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CHAPTER 1

Abstract

In this thesis Yukawa couplings from D-branes on non-factorisable tori are computed. In particular
intersecting D6-branes on the torus, generated by the S O(12) root lattice, is considered, where the
Yukawa couplings arise from worldsheet instantons. Thereby the classical part to the Yukawa couplings
are determined and known expressions for Yukawa couplings on factorisable tori are extended.
Further Yukawa couplings for the T-dual setup are computed. Therefor three directions of the S O(12)
torus are T-dualized and the boundary conditions of the D6-branes are translated to magnetic fluxes on the
torus. Wavefunctions for chiral matter are calculated, where the expressions, known from the factorisable
case, get modified in a non-trivial way. Integration of three wavefunctions over the non-factorisable
torus yields the Yukawa couplings. The result not only confirms the results from the computations on the
S O(12) torus, but also determines the quantum contribution to the couplings.
This thesis also contains a brief review to intersecting D6-branes on Z2×Z2 orientifolds, with applications
to a non-factorisable orientifold, generated by the S O(12) root lattice.
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CHAPTER 2

Introduction

Motivation

Physics at the microscopic level is described with great accuracy by the Standard Model (SM) of particle
physics. The embedding space for particles of the SM is given by a four dimensional Minkowski space
with an

S U(3)C × S U(2)L × U(1)Y (2.1)

gauge symmetry. Elementary particles are treated as irreducible representations of their little group
and gauge groups and are described as fields of a quantum field theory [1–3]. To preserve the gauge
symmetry all fields must be apriori massless and the algebra for the little group of massless particles in
four dimensional Minkowski space is su(2) × su(2). It is distinguished between matter fields and gauge
fields, where the first ones have spin 1/2 and the second ones have spin 1. Matter fields occur in three
families of the following bifundamental representations of S U(3) × S U(2)

(1, 2)−1/2 ⊕ (3, 2)1/6 ⊕ (1, 1)1 ⊕ (1, 1)0 ⊕
(
3, 1

)
−2/3
⊕

(
3, 1

)
1/3

, (2.2)

where the subscript denotes the U(1)Y charge. The fields belonging to (1, 2)−1/2 ⊕ (3, 2)1/6 transform in
the chiral representation ( 1

2 , 0) of su(2) × su(2) and the other fields in the antichiral representation (0, 1
2 ).

Further matter fields charged under the S U(3) are identified with quarks, where fields not charged under
the S U(3) are called leptons. Gauge fields transform in the vector representation ( 1

2 ,
1
2 ) of their little

group and in the adjoint representation of the gauge groups. Hence the SM contains 12 gauge fields
belonging to the representation

(1, 1)0 ⊕ (1, 3)0 ⊕ (8, 1)0 (2.3)

of S U(3) × S U(2) ×U(1). In order to allow the particles to gain mass, the S U(2)L ×U(1)Y factor hast to
be spontaneously broken to a U(1)el gauge symmetry. The symmetry breaking is triggered by a scalar
field, called the Higgs boson and which transforms in the representation

(1, 2)1/2 (2.4)

under the gauge symmetry. The Higgs acquiring a non-trivial vacuum expectation value (vev) [4, 5]
induces the symmetry breaking. The unbroken U(1)el is the linear combination of U(1) ⊂ S U(2)L

and U(1)Y under which the Higgs boson is uncharged. The gauge boson of the unbroken U(1)Y is
identified with the photon, which is the transmitter of the electromagnetic force. The eight gluons, how
the gauge bosons of the S U(3) are called, confine the quarks, thus are responsible for the strong force,
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Chapter 2 Introduction

which is observed for example as the force binding atomic nuclei. The remaining three gauge bosons of
S U(2)L × U(1)Y/U(1)el mediate the weak force and become massive after symmetry breaking. Therefor
the weak force only becomes noticeable in quantum effects, such as β-decay.

However the force, which is probably the most experienced force in everyday life (except for life
in space), is not explained by the SM, namely gravity. Since gravity is to weak to measure its effects
at the quantum level, gravity is described in a classical field theory as spacetime curving, due to the
back reaction of the coupling to energy densities [6]. At macroscopic levels gravity, as described in
the framework of general relativity, has proven itself to describe the universe accurately. But trying to
incorporate gravity with quantum field theory fails. The mediator particle of gravity has the properties of
a spin 2 symmetric tensor field, called the graviton. Graviton interactions lead to divergences roughly at
the Planck scale (∼ 1019 GeV), which can not be handled with the know methods in quantum field theory
[7]. But in order to describe for example the early universe or black holes, quantum effects of gravity can
no longer be ignored and a quantum theory of gravity is needed. Further the disturbing circumstances as
the presence of dark matter and dark energy, which are needed to explain for example the rotation curves
of galaxies and the accelerated expansion of the universe, are confirmed by the PLANCK collaboration
in 2013 [8]. Their results show that only 4% of the energy in the universe consists of the known particles,
where 25% is contained in dark matter and the remaining 70% of the energy has to be dark energy.

A main problem of the SM, besides incorporating gravity, is the inability to explain dark matter and
dark energy. Further, since neutrino oscillations have been observed [9], it is clear that the SM particle
content needs to be extended in order to explain mass terms for neutrinos. The detection of the Higgs
particle at the LHC [10, 11] confronted the SM with another problem: Quantum corrections to the mass
of scalar fields push their mass scale towards the Planck scale and the mass of the Higgs field ∼ 125 GeV
can be explained in the framework of the SM, only when strong tuning is admitted. These problems lead
to the conclusion, that even though the SM is successful to explain many phenomena, it can only be the
effective theory of a more fundamental theory.

A new ingredient, which brings promising new features with it, is supersymmetry [12–14]. Supersym-
metry is the only possible extension to the Poincare algebra according to the Coleman-Mandula no-go
theorem [15]. It is a symmetry relating bosonic and fermionic degrees of freedom and introduces for
each SM particle a superpartner, which has the same quantum numbers, except the spin quantum number
differing by 1/2. Since no superpartner has been found yet, supersymmetry, if realized in nature, must be
broken at an energy scale not yet probed. The superpartners are possible candidates for dark matter and
their contribution to the quantum corrections might protect the Higgs mass. Further the gauge coupling
constants can get affected in such a way that the couplings unify at a scale ∼ 1016 GeV and the SM
gauge symmetry gets enhanced to a bigger gauge group in a Grand Unified Theory (GUT) [16]. Gauged
superymmetries, also called supergravity, brings a spin 2 particle with them which has the properties
of the graviton. Hence the theory of general relativity is incorporated in supergravity. However the
divergences of the quantum contributions from gravitons are not absent in supergravity theories, which
is the reason that a fundamental theory even beyond supergravity (if supergravity is realized in nature)
needs to exist.

String theory is a candidate for such a fundamental theory. In string theory fundamental particles
are considered to be strings, where different quantum numbers of particles are actually just different
oscillation modes of the string. Gravity is naturally included into string theory, because closed strings
contain states, which behave as expected from the graviton. However consistency requires the string to be
embedded into a ten dimensional spacetime, which might seem to be peculiar at first, but compactification
opens many possibilities to engineer structures in four dimensions. Further, spacetime supersymmetry is
a byproduct of consistency conditions. Actually five consistent descriptions of string theories exist in ten
dimensions, which where shown in [17, 18] to be dual to each other and to be ten dimensional limits of
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an eleven dimensional theory, called M-theory. Effective theories of string theories in the limit of zero
string length become ten dimensional supergravity theories. String theories such as E8 × E8 and S O(32)
heterotic string theory or Type I string theory contain naturally gauge groups, big enough to contain the
SM gauge groups, but also Type IIA and IIB string theories are allowed to contain gauge symmetries by
including orientifolds.

Four dimensional theories, constructed by compactifying string theory, depend highly on the geometry
of the internal space [19–21]. The vast amount of possibilities to compactify string theories, allow them
to generate different kinds of four dimensions models, such as (hopefully) the SM among them. That
way the SM could by derived by compactifying string theory and the numerical values for parameters
of the SM, like masses or coupling strengths, can be derived by the string coupling and geometry of
the internal space. Further, desired features such as for example inflation of the early universe, can be
manufactured in the framework of string theory [22]. Hence string theory is not only a good candidate
for a fundamental theory but also contemplable for a unified theory. As open questions, it still remains
to explain how and at which scale supersymmetry is broken and how the particular geometry for string
compactification leading to the SM looks like. Further a satisfactory explanation for the right amount of
dark energy is still awaited.

Outline

In this work at first Type IIA string theory compactified on orientifolds with intersecting D6-branes
and the resulting four dimensional features are reviewed, where special attention is given to a particular
non-factorisable geometry. Later Yukawa couplings on non-factorisable tori are computed.

After briefly introducing the basics to string theory with the main focus on Type II string theories and
D-branes in chapter 3, Type IIA compactification on orientifolds are discussed in chapter 4. Chapter
4 is mainly a review of D6-branes on orientifolds, with the application to a specific non-factorisable
orientifold: In the first part of chapter 4 the geometry of orientifolds is discussed. They are constructed
by projecting out worldsheet parity from orbifolds. The type of orbifolds considered here are given by
the quotient space of six dimensional tori divided by discrete subgroups of S U(3). A short insight into
the resolution of orbifold fixed points is presented and the geometries of 3-cycles for D6-branes are
studied. In the second part of chapter 4, massless states from Type IIA closed strings and open strings
on D6-branes in Z2 × Z2 orientifolds are investigated and the resulting spectra are checked for possible
anomalies. In the third part of chapter 4 the introduced concepts are applied to a non-factorisable Z2 × Z2
orientifold, which is generated by the S O(12) root lattice, and differences to the factorisable case are
revealed.

In chapter 5 Yukawa couplings from intersecting branes are considered and extended to the non-
factorisable torus, generated by the S O(12) root lattice. Therefor, first Yukawa couplings from intersecting
branes on two dimensional tori are reviewed. In the second step the computations are generalized on
to the S O(12) torus. It turns out that the couplings involve intersection points labeled by vectors of
general three dimensional lattices and the worldsheet instantons, which generate the Yukawa couplings,
admit selection rules. A procedure to determine the lattices for labels of intersection points and the
selection rules for the instantons is described. Summing over worldsheet instantons yields the classical
contribution to the Yukawa couplings on the S O(12) torus.

In chapter 6 the S O(12) torus and the D-brane boundary conditions on it are T-dualized along
three directions. In the T-dual picture D9-branes with magnetic fluxes fill out the dual torus. The
non-factorisable structure of the torus is mirrored in Wilson lines of the fluxes. The discussion for
computing wavefunctions of chiral matter on the factorisable torus is first generalized for the case
with magnetic fluxes wrapping non-coprime wrapping numbers. In the next step the discussion is
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Chapter 2 Introduction

extended to the non-factorisable case by expressing the gauge indices of fields as vectors on general three
dimensional lattices. Wavefunctions for massless fields in bifundamental representations are determined
by computing zeromodes of the Dirac operator and solving boundary conditions occurring from the
Wilson lines. Yukawa couplings follow from calculating the overlap integral of three zeromodes over the
non-factorisable torus. The result not only confirms the result from the intersecting D6-brane picture in
chapter 5, but also yields the quantum corrections to the Yukawa couplings.
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CHAPTER 3

Overview to string theory

In this chapter a short introduction to string theory, especially Type II string theories, is given. For the
topics discussed in the present work Type II string theories furnish the necessary framework. In this
chapter after introducing the superstring it is explained how Type II string theories are constructed and
their relations via T-duality is illustrated by introducing circle compactification. It is also explained how
D-branes fit into the context of Type II strings. For that, [19–21, 23–26] are followed and for a more
detailed discussion, those references can be consulted.

3.1 Superstrings

3.1.1 Worldsheet and superstring action

Let Σ be a two dimensional Riemannian surface, with one timelike and one spatial direction, parametrized
by the coordinates σ0 ∈ R and σ1 ∈ [0, `]. Let Σ be embedded into a D dimensional spacetime MD via
the maps X : Σ→ MD by

X :
(
σ0, σ1

)
7→ Xµ(σ0, σ1) ∈ MD , (3.1)

where Xµ are coordinates in MD, with µ ∈ {0, 1, ...,D−1} denoting spacetime directions. The Riemannian
surface Σ is a worldsheet of a superstring, propagating in MD, when the integral

S = −
T
2

∫
Σ

d2σηαβ∂αXµ∂βXνηµν −
i

4π

∫
Σ

d2σψ
µ
ρα∂αψµ , (3.2)

describes the action for Σ in superconformal gauge [27–29]. The indices α, β ∈ {0, 1} denote worldsheet
coordinates, the parameter T = (2πα′)−1 is the string tension, the operators ρα are the two generators of
the Clifford algebra with a metric with Lorentzian signature. The functions ψµ are similar to Xµ, maps
from the worldsheet to the spacetime, but they transform as Dirac spinors on the worldsheet , with ψ

µ
its

Dirac conjugated. Hence ψµ has two components ψµ± in the spinor representation of S O(1, 1), where each
of them is a map from Σ to MD

ψµ =

(
ψ
µ
+

ψ
µ
−

)
, with ψ

µ
± : (σ0, σ1)→ MD . (3.3)

The action in (3.2) describes the surface of the worldsheet, spread out in MD while the string is propagat-
ing. Furthermore the expression in (3.2) describes the action in superconformal gauge, which means
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Chapter 3 Overview to string theory

local supersymmetry is imposed on Σ and the symmetries on the worldsheet, such as diffeomorphism
invariance, Weyl and Super-Weyl invariance, are used to eliminate the degrees of freedom of the world-
heet metric and the gravitino. Solutions to the equations of motion for the maps Xµ and ψµ take the
expressions

Xµ(σ0, σ1) = Xµ
L(σ+) + Xµ

R(σ−) , ψ
µ
±(σ0, σ1) = ψ

µ
±(σ±) , (3.4)

where σ± = σ0 ± σ1 are light cone coordinates on the worldsheet. Functions depending solely on σ± are
named as left- and rightmovers, respectively. However satisfying the equations of motion is not enough
to extremize the action in (3.2), but boundary conditions on the strings have to be imposed. The boundary
conditions lead to two kinds of strings, given by

• closed strings satisfying

Xµ(σ0, σ1) = Xµ(σ0, σ1 + `) , ψµ(σ0, σ1) = ηψµ(σ0σ1 + `) , (3.5)

• open strings, with its end points satisfying Neumann (N) boundary conditions

∂1Xµ
∣∣∣
σ1∈{0,`} = 0 ,

(
ψ
µ
+ − ηψ

µ
−

)∣∣∣∣
σ1∈{0,`}

= 0 (3.6)

or Dirichlet (D) boundary conditions

∂0Xµ
∣∣∣
σ1∈{0,`} = 0 ,

(
ψ
µ
+ + ηψ

µ
−

)∣∣∣∣
σ1∈{0,`}

= 0 . (3.7)

The open string boundary conditions relate the left-and rightmovers at the end points as

Xµ
L

∣∣∣
σ1∈{0,`} =

+ Xµ
R

∣∣∣
σ1∈{0,`} for N

− Xµ
R

∣∣∣
σ1∈{0,`} for D

, ψ
µ
+

∣∣∣
σ1∈{0,`} =

+η ψ
µ
−

∣∣∣
σ1∈{0,`} for N

−η ψ
µ
−

∣∣∣
σ1∈{0,`} for D

. (3.8)

The parameter η is allowed to take the values η ∈ {±1}. The choice η = −1 leads to the Neveu-Schwarz
(NS) string and η = −1 to the Ramond (R) string [30, 31]. A Fourier expansion of the left-and rightmovers
is given by

Xµ
L/R =

1
2

xµ +
πα′

`
pµσ± + i

√
α′

2

∑
n∈Z\{0}

1
n
α
µ
ne−2πinσ±/` , ψ

µ
± =

√
2π
`

∑
n∈Z

bµn+re
2πiσ±/` (3.9)

for closed strings and

Xµ
L/R =

1
2

xµ +
πα′

`
pµσ± + i

√
α′

2

∑
n∈Z\{0}

1
n
α
µ
ne−πinσ±/` , ψ

µ
± =

√
2π
`

∑
n∈Z

bµn+re
πi(n+r)σ±/` (3.10)

for open strings, where

r =

 1
2 for NS sector ,
0 for R sector .

(3.11)

Usually the set of Fourier modes in the left-and rightmoving sector are distinguished by
{
α
µ
n, bµ, b

µ
n+1/2

}
n∈Z

for the rightmovers and
{
α̃
µ
n, b̃µn, b̃µn+1/2

}
n∈Z

for the leftmovers. However since open string boundary
conditions relate the oscillator modes from the leftmoving sector with the ones from the rightmoving

8



3.1 Superstrings

sector, s.t. they are not independent and one set of oscillator modes {αµn, bµn, bµn+1/2}n∈Z is sufficient to
describe oscillations on the open string worldsheet. In the closed string sector on the other hand the two
sets of oscillator modes are not independent. The parameters xµ and pµ denote position and momentum
of the center of mass of the string. For the left-and rightmovers to be real fields, the oscillator modes
need to behave under complex conjugation as(

α
µ
n

)∗
= α

µ
−n ,

(
α̃
µ
n

)∗
= α̃

µ
−n ,

(
bµn+r

)∗
= bµ−n−r ,

(
b̃µn+r

)∗
= b̃µ−n−r . (3.12)

3.1.2 String quantization and D=10 string states

In order to quantize the string, the fields Xµ
± and ψµ± become operators acting on a vacuum state, which

describes the ground state of the worldsheet. Therefor the Poisson brackets, satisfied by the fields at the
classical level, are replaced by (anti-) commutators. The non vanishing (anti-) commutator relations are
given by:[

xµ, pν
]

= iηµν ,
[
α
µ
m, α

ν
n

]
=

[
α̃
µ
m, α̃

ν
n

]
= mδm+nη

µν ,
{
bµm+r, b

ν
n+r

}
=

{
b̃µm+r, b̃

ν
n+r

}
= ηµνδm+n+2r ,

(3.13)

and the the algebra for oscillator modes reveal that the oscillators behave as creation and annihilation
operators acting on states of a Hilbert space. However the above algebra leads to negative norm states
[32–34]. The reason is, that not all oscillators in (3.13) are independent, since the worldsheet contains a
remaining superconformal symmetry. Symmetry transformations of the superconformal algebra can be
used to gauge away oscillators in two directions, but in order to preserve spacetime Poincare invariance
the number of spacetime dimensions has to be fixed to D = 10. The procedure is called light cone
quantization (see [35] for more details). The algebra for the oscillator modes in light cone gauge is given
by [

xµ, pν
]

= iδµν ,
[
α
µ
m, α

ν
n

]
=

[
α̃
µ
m, α̃

ν
n

]
= mδm+nδ

µν ,
{
bµm+r, b

ν
n+r

}
=

{
b̃µm+r, b̃

ν
n+r

}
= δµνδm+n+2r ,

(3.14)

with µ, ν ∈ {2, ..., 9}, where the degrees of freedom in the 0-th and 1st direction for xµ, pµ and oscillators
have been gauged away. Now a consistent quantum theory with states, corresponding to oscillations of
the string, can be constructed. Let the vacuum state |0〉NS in the NS sector be defined by the state getting
annihilated by

α
µ
n |0〉NS = bµn−1/2|0〉NS = 0 , ∀ n ≥ 1 , (3.15)

where the vacuum state |0〉R in the R sector correspondingly is defined by getting annihilated

α
µ
n |0〉R = bµn |0〉R = 0 , ∀ n ≥ 1 . (3.16)

The vacuum state corresponds to the unexcited worldsheet of NS and R strings and are eigenstates of
the center of mass momentum pµ1. Acting with creation operators from the rightmoving sector on the

1 To be more precise, for each value of pµ it exists a vacuum state, with pµ the eigenvalue to the center of mass momentum
operator.
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Chapter 3 Overview to string theory

vacuum, the states are constructed, which belong to the Hilbert spaces given by

HNS =


9∏
µ=2

∞∏
n=1

(
α
µ
−n

)Kµ
n
(
bµ
−n+1/2

)S µ
n
|0〉NS

∣∣∣∣ Kµ
n ∈ Z≥0 , S

µ
n ∈ {0, 1}

 ,

HR =


9∏
µ=2

∞∏
n=1

(
α
µ
−n

)Kµ
n
(
bµ−n

)S µ
n
|0〉R

∣∣∣∣ Kµ
n ∈ Z≥0 , S

µ
n ∈ {0, 1}

 , (3.17)

and contain the rightmoving states of the NS and R sector respectively, where by acting with creation
operators from the leftmoving sector on the vacuum, the states belonging to the Hilbert spaces

H̃NS =


9∏
µ=2

∞∏
n=1

(
α̃
µ
−n

)Kµ
n
(
b̃µ
−n+1/2

)S µ
n
|0〉NS

∣∣∣∣ Kµ
n ∈ Z≥0 , S

µ
n ∈ {0, 1}

 ,

H̃R =


9∏
µ=2

∞∏
n=1

(
α̃
µ
−n

)Kµ
n
(
b̃µ−n

)S µ
n
|0〉R

∣∣∣∣ Kµ
n ∈ Z≥0 , S

µ
n ∈ {0, 1}

 , (3.18)

which contain the leftmoving NS and R states respectively, are constructed. Those states correspond
to excitations of the worldsheet and can be interpreted as oscillations of the string. Open string states
are given by elements ofHNS andHR, where closed string states |st〉cl. are constructed by combining a
leftmoving state |st〉L ∈ H̃α from the α ∈ {NS/R} sector with a rightmoving state |st〉R ∈ H̃β from the
β ∈ {NS/R} by the tensorproduct

|st〉cl. = |st〉L ⊗ |st〉R ∈ H̃α ⊗Hβ , (3.19)

s.t. one can construct four closed string sectors, given by the NS-NS, NS-R, R-NS and R-R sector. Using
reparametrization invariance of the worldsheet, the spacetime mass-shell condition can be derived and
the mass M of a string state is determined by its eigenvalue to the mass operator given by

α′M2 =

 2
(
NB + NF + ÑB + ÑF + 2a

)
for closed string ,

NB + NF + a for open string ,
(3.20)

with the number operators defined by

NB =

9∑
µ=2

∑
n∈Z>0

α
µ
−nα

µ
n , ÑB =

9∑
µ=2

∑
n∈Z>0

α̃
µ
−nα̃

µ
n , (3.21)

NF =

9∑
µ=2

∑
n∈Z>0

bµ−n+rb
µ
n−r , ÑF =

9∑
µ=2

∑
n∈Z>0

(n − r)b̃µ−n+rb̃
µ
n−r ,

which count the level of excitation, and

a =

−1
2 NS sector ,

0 R sector ,
(3.22)

10



3.1 Superstrings

denoting the vacuum energy. Only closed string states satisfying the level matching condition

NB + NF = ÑB + ÑF , (3.23)

are considered to be physical states, which means they satisfy the symmetries of the worldsheet on the
quantum level. Applying the mass operator to the NS ground state

α′M2|0〉NS = −
1
2
|0〉NS , (3.24)

reveals that it has negative mass squared and is therefore tachyonic. The tachyonic state indicate an
unstable vacuum and needs to be projected out of the spectrum in consistent string theories (as will be
discussed in the following section). The algebra for the R zeromodes, given by {bµ0, b

ν
0} = δµν, describes

the eight dimensional euclidean Clifford algebra up to a factor of 2. Hence the R zeromodes can be
related to the eight generators Γµ of the Clifford algebra by bµ0=̂ 1√

2
Γµ and the operators

S ±α =
1
√

2

(
b2α

0 ± ib2α+1
0

)
, S̃ ±α =

1
√

2

(
b̃2α

0 ± ib̃2α+1
0

)
, a ∈ {1, ..., 4} , (3.25)

satisfying the algebra
{
S −a , S

+
b

}
=

{
S̃ −a , S̃

+
b

}
= δab, describe lowering and raising operators of weight

states in the spinor representation of S O(8). Since acting with the zeromodes onto the groundstate leaves
the groundstate energy invariant, the R vacuum has to be degenerate. In particular the groundstate is
preserved by the action of S ±. Hence the R groundstate consists of 16 states, which transform as a Dirac
spinor of S O(8). Denoting |0〉R as the lowest weight state of the Dirac spinor, the ground states in the R
sector are given by

|0〉R , S +
αS +

β |0〉R , S +
1 S +

2 S +
3 S +

4 |0〉R , S +
α |0〉R , S +

αS +
βS +

γ |0〉R , α , β , γ . (3.26)

The γ5 matrix corresponding to the eight dimensional Clifford algebra is given by Γchiral = 16
∏9

µ=2 bµ0
and defining the chirality of |0〉R to be given by Γchiral|0〉R = +|0〉R, the eight states |0〉R, S +

αS +
β |0〉R

and S +
1 S +

2 S +
3 S +

4 |0〉R belong to the chiral representation of S O(8), where the other eight states S +
α |0〉R

and S +
αS +

βS +
γ |0〉R belong to the antichiral representation. The group of isometries in ten dimensional

Minkowski space contains transformations of S O(1, 9). Massless states in ten dimensions transform
under the subgroup S O(8), which is the little group of ten dimensional massless fields. Hence the R
ground states transform as massless spacetime fermions. The 16 states of the R ground state can be sorted
into the chiral and antichiral representation 8S and 8C of S O(8) by

4∏
α=1

(
S +
α

)Kα |0〉R ∈

8S for
∑
α Kα = even ,

8C for
∑
α Kα = odd .

(3.27)

The massless states in the NS sector are given by the eight states bµ
−1/2|0〉, which form the eight states of

the vector representation 8V of S O(8)
bµ
−1/2|0〉NS ∈ 8V . (3.28)

Similar massive states inHNS transform as bosons in representations of S O(9) and massive states inHR
transform as fermions of S O(9), where S O(9) is the little group for massive states in ten dimensions.
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Chapter 3 Overview to string theory

3.2 Type II strings

3.2.1 Modular invariance and GSO-projection

Type II string theories are constructed as closed string theories in ten dimensions. The quantum corrections
to the spacetime vacuum, coming from one-loop amplitudes of closed string states, lead to a strong
condition on the closed string Hilbert spaces called modular invariance [36]: The one-loop vacuum
corrections from closed strings arise from worldsheets with the topology of two dimensional tori, where
the worldsheet admits the following boundary conditions

Xµ(σ0, σ1) = Xµ(σ0, σ1 + `) , Xµ(σ0, σ1) = Xµ(σ0 + Imτ, σ1 + Reτ) , τ ∈ C , (3.29)

s.t. a closed string state |st〉cl. propagate for a time δσ0 = Imτ and returns to its initial state |st〉cl. with
a shift δσ1 = Reτ. A two dimensional torus is described by a real Kähler and a complex structure
modulus K ∈ R and U ∈ C (which will be explained in more detail in example (i) of section 4.1.1). The
Käher modulus plays no role, since the worldsheet can be rescaled by a Weyl transformation and absorb
the Kähler modulus that way. On the other hand the complex structure is given by U = τ. Tori with
complex structure moduli differing by S L(2,Z) describe physically equivalent worldsheets. Therefor,
transformations of the parameters Reτ and Imτ in the one-loop amplitude, corresponding to the S L(2,Z
transformations of U, must leave the one-loop amplitude invariant. The S L(2,Z) invariance is denoted
by modular invariance of the one-loop amplitude. Taking fermionic states on the worldsheet into account,
one has to consider that by parallel transporting a fermion on a non-contractible closed loop of a two
dimensional surface, the fermion can collect an additional sign unlike to the worldsheet bosons2. Hence
the boundary conditions for worldsheet fermions on a torus is given by

ψµ(σ0, σ1) = ±ψµ(σ0, σ1 + `) , ψµ(σ0, σ1) = ±ψµ(σ0 + Imτ, σ1 + Reτ) . (3.30)

The different choices for the sign in the first boundary condition of (3.30) leads to the distinction of the
NS and R sector. The choice for the sign in the second boundary condition of (3.30) is implemented by
taking only states from (3.17) and (3.18) into account, which survive the GSO-projection, denoted by
|L〉GSO and |R〉GSO, where [37, 38]

|R〉GSO =

1
2

(
1 − (−1)FNS

)
|st〉R for |st〉 ∈ HNS ,

1
2

(
1 ± Γchiral(−1)FR

)
|st〉R for |st〉 ∈ HR ,

, (3.31)

|L〉GSO =

1
2

(
1 − (−1)F̃NS

)
|st〉L for |st〉 ∈ H̃NS ,

1
2

(
1 ± Γchiral(−1)F̃R

)
|st〉L for |st〉 ∈ H̃R ,

,

with the fermion number operators defined by

FNS =

9∑
µ=2

∑
n∈Z≥0

bµ
−n−1/2bµn+1/2 , FR =

9∑
µ=2

∑
n∈Z>0

bµ−nbµn , (3.32)

F̃NS =

9∑
µ=2

∑
n∈Z≥0

b̃µ
−n−1/2b̃µn+1/2 , F̃R =

9∑
µ=2

∑
n∈Z>0

b̃µ−nb̃µn ,

2 See [21] for more details
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3.2 Type II strings

which count the number of fermionic excitations on the worldsheet. The GSO-projection ensures modular
invariance of the one-loop amplitude and projects out the tachyonic state together with half of the other
NS states. In the R sector, for each level of excitation only states with the same chirality are preserved
by the GSO-projection, where the chirality depends on the sign in front of Γchiral in the GSO-projection.
Closed string theories with states given by |L〉GSO ⊗ |R〉GSO are modular invariant and hence consistent
at the quantum level. Depending on the choice of the sign for the R sector in the GSO-projection, two
inequivalent closed string theories can be constructed that way. String theories, with the same sign for the
GSO-projection in the R sector are labeled by Type IIB, where string theories, with opposite sign in the
GSO-projection in the R sector, are denoted by Type IIA. It turns out that the GSO-projection preserves
the same amount of fermionic and bosonic degrees of freedom in spacetime and the spectra of the two
theories exhibit an N = 2 spacetime supersymmetry. The corresponding two supersymmetry generators
QL and QR are 16 dimensional Majorana-Weyl fermions. Their chirality is determined by

ΓchiralQL =

+ΓchiralQR for Type IIB ,
−ΓchiralQR for Type IIA ,

. (3.33)

For low energy theories only the massless string states are assumed to play a role. The massless closed
string states, constructed from left-and rightmovers, which survive the GSO-projection, are given by

• the 8 × 8 NS-NS states
b̃µ
−1/2|0〉NS ⊗ bν

−1/2|0〉NS , (3.34)

which, decomposed into the trace, antisymmetric and symmetric part, contains a dilaton, antisym-
metric background field and a graviton,

• the 64 NS-R states

b̃µ
−1/2|0〉NS ⊗

4∏
α=1

(
S +
α

)Kα |0〉R , (3.35)

with Kα ∈ {0, 1} and
∑
α Kα = even, containing a dilatino and a gravitino,

• the 64 R-NS states
4∏
α=1

(
S̃ +
α

)Kα
|0〉R ⊗ bµ

−1/2|0〉NS , (3.36)

with
∑
α Kα = even for Type IIB and

∑
α Kα = odd for Type IIA, containing a dilatino and gravitino,

with the same (opposite) chirality as in the NS-R sector for Type IIB (IIA) and

• the 64 R-R states
4∏
α=1

(
S̃ +
α

)Kα
|0〉R ⊗

4∏
α=1

(
S +
α

)Lα |0〉R , (3.37)

with
∑
α Kα = even and

∑
α Lα = even for Type IIB or

∑
α Lα = odd for Type IIA, containing a

0-form, 2-form and 4-form gauge potential in Type IIB and a 1-form and 3-form gauge potential in
Type IIA.

The massless NS-NS sector describes excitations of the spacetime and hence leads to a theory of gravity.
The NS-R and R-NS sector contain the fermionic superpartners in the supergravity multiplet, depending
on Type IIB or Type IIA. The R-R sector contains besides the q-form gauge potentials Cq also further
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Chapter 3 Overview to string theory

8 − p-form gauge potentials C8−q, which are related via the electromagnetic duality

dCq = ∗dC8−q . (3.38)

The existence of two gravitinos and two dilatinos indicate that the massless spectra for Type IIA and
Type IIB fit into N = (1, 1) and N = (2, 0) supergravity multiplets and reflects the relation of the
supersymmetry generators in (3.33). The p-form gauge potential content from the R-R sector in the two
Type II theories are summarized in table 3.1.

sector p-form magn. dual
Type IIA C1 C7

C3 C5

Type IIB C0 C8
C2 C6
C4 self dual

Table 3.1: p-forms from R-R sector in Type IIA and IIB.

3.2.2 Open strings and D-branes

Since the NS-NS states describe deviations of the spacetime from the flat space, the coupling of a
worldsheet to spacetime is described by the coupling of a string to the NS-NS fields. Here the coupling
of open strings to the spacetime metric and a B-field is considered. Let Σ be the worldsheet of an open
strings with ∂Σ its boundary at the string endpoints. Hence the boundary is tangent to the eigentime of
the string (the boundary normal to the worldsheet eigentime is considered to be at σ0 = −∞ and σ0 = ∞).
The corresponding action is given by [39]

S = −
1

4πα′

∫
Σ

d2σ
(
gµνη

αβ + Bµνεαβ
)
∂αXµ∂βXν −

∫
∂Σ

dσ0 Aµ∂0Xµ , (3.39)

where gµν and Bµν denote components of the spacetime metric and B-field. The boundary ∂Σ needs
to couple to a vector field A = Aµdxµ, which admits a shift symmetry, in order to preserve the gauge
invariance of the B-field3. Introducing a gauge invariant field strength F with the components

2πα′Fµν = Bµν + 2πα′Fµν, where Fµν = ∂µAν − ∂νAµ , (3.40)

the action (3.39) can be expressed by

S = −
1

4πα′

∫
Σ

d2σgµνη
αβ∂αXµ∂βXν −

1
2

∫
∂Σ

dσ0 FµνXµ∂0Xν . (3.41)

Extremizing the action (3.41) lead to the boundary conditions at the string end points by(
gµν∂1Xν + 2πα′Fµν∂0Xν

) ∣∣∣∣
∂Σ

= 0 . (3.42)

3 The gauge transformation B→ B + dΛ, with Λ a 1-form vector field, leads in the first term on the righthand side of (3.39)
to a boundary term for open strings. To cancel the boundary term, the gauge field A is introduced, which transforms as
A→ A + 1

2πα′Λ, s.t. the gauge symmetry for B is preserved for open strings.
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The boundary ∂Σ is determined by D boundary conditions, thus F , with non vanishing F, is restricted
on a submanifold Σq ⊆ M10, which purely admits N boundary conditions for the open string. Σq are
worldvolumes spanned by Dp-branes, with q = p + 1 [40]. Dp-branes are p dimensional dynamical
objects, which extend in directions with N boundary conditions and are located at points in the directions
with D boundary conditions for open strings. The D boundary conditions for open strings in (3.7)
break Poincare invariance. To be more precise, directions in which string end points obey D boundary
conditions are no longer invariant under translations and momentum can flow out of string end points. In
order to restore momentum conservation, open strings have to be placed on Dp-branes, which exchange
momentum with the string, s.t. total momentum is conserved. D-branes interact with each other via
exchanging NS-NS and R-R closed strings [41]. Their coupling to the NS-NS and R-R closed strings
can be extracted from the DBI action SDBI and Chern-Simons (CS) terms SCS in the effective action for
Dp-branes, given by [42, 43]

Seff = SDBI + SCS . (3.43)

The DBI-action is given by

SDBI = µp

∫
Σp+1

dp+1σ e−φ
√

det
(
gi j + Bi j + 2πα′Fi j

)
, (3.44)

where µp is the brane tension, gi j, Bi j and Fi j are the components of the induced metric, B-field and
fieldstrength F on the branevolume, with i, j denoting directions along Σp+1, and φ the dilaton. The
leading order terms with respect to α′ in the CS terms, for a vanishing spacetime curvature 2-form, are
given by [44], [45]

SCS =µp

∫
Σp+1

Cp+1 +
(
2πα′

) ∫
Σp+1

Cp−1 ∧ Tr F +
1
2

(
2πα′

)2
∫

Σp+1

Cp−3 ∧ Tr F2 + ...

 . (3.45)

The coupling to the fields Cp+1 in the CS terms reveal, that Dp-branes are sources for the R-R (p + 1)-
form potentials. Comparing the field content in the R-R sector of Type IIA and IIB from table 3.1, it
turns out that Type IIA admits Dp-branes, with p ∈ {0, 2, 4, 6}, where Type IIB allows the presence of
Dp-branes with p ∈ {1, 3, 5, 7} and D(−1)-branes, which are pointlike instantons. Due to the open string
boundary conditions on the branes, the left-and rightmoving sectors get identified according to the N
and D conditions. The boundary conditions in (3.6) and (3.7) reveal that each direction xa admitting D
boundary conditions relates the left-and rightmovers with a sign and directions admitting N boundary
conditions are related without a sign. Hence the supersymmetry charges from the left-and rightmoving
sector QL and QR are related to each other, s.t. only a linear combination of both is preserved on the
branes, s.t. only half of the supersymmetry in the bulk remains on the branevolume [46]. Therefore
Dp-branes are considered as BPS-states of the N = 2 supersymmetry in Type II string theories. Since F
is further invariant under U(1) transformations of A, each D-brane contains a U(1) gauge symmetry on its
worldvolume. String end points attached to the brane are charged under the U(1), since they couple via
the boundary term in (3.39) to the gauge field A. By stacking D-branes on top of each other, the multiple
U(1)’s enhance to a non-abelian gauge group such as U(N), S O(N) or US p(N) as it will be encountered
for example in section 4.2.2 [47]. Due to the coupling of string end points to the gauge fields on the
branes, open string end points can be viewed as states transforming in the fundamental representation
�N or antifundamental representation �N of the gauge group on the branevolume, depending on the
orientation of the string. The Chan-Paton labels |i j〉 of an open string, is determined by the states in the
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gauge representation of its two end points [48]

|i j〉 ∈ �N ⊗ �M , (3.46)

where the end point corresponding to i transforms in �N and the end point corresponding to j transforms
in �M. Open string states |st〉op. from the NS or R sector are then given by

|st.〉op. = |α〉 ⊗ |i j〉 , with |α〉 ∈ Hα , α ∈ {NS/R} . (3.47)

Intersecting D-branes on C

Let the boundary conditions for an open string on a plane be given by by the D and N boundary conditions
[49]

∂0 (ImZ)|σ1=0 = 0 , ∂0
[
Im

(
eiθZ

)]∣∣∣∣
σ1=`

= 0 , (3.48)

∂1 (ReZ)|σ1=0 = 0 , ∂1
[
Re

(
eiθZ

)]∣∣∣∣
σ1=`

= 0 ,

where Z is the complexified solution to the string equations of motion on the complex plane

Z :
(
σ0, σ1

)
7→ C , with Z(σ0, σ1) = X1(σ0, σ1) + iX2(σ0, σ1) . (3.49)

The mode expansion for solutions to the boundary conditions in (3.48) is given by [49]

Z(σ+, σ−) = i

√
α′

2

∑
n

(
1

n − v
αn−veπi(n−v)σ+

+
1

n + v
α̃n+veπi(n+v)σ−

)
, with v = θ/π , (3.50)

where the moddings for the complex oscillators αn−v and α̃n+v are shifted by a fractional value. Since D
boundary conditions require D-branes, two branes a and b, with their loci pa ∈ C and pb ∈ C determined
by

pa = {Re(z) | z ∈ C} , pb =
{
z = eiθµ | µ ∈ R

}
, (3.51)

have to be present in order to preserve momentum conservation. The two branes have the shape of straight
lines on the plane and intersect at the origin of C. The open string admitting the boundary conditions
(3.48) is attached with its end point σ1 = 0 at the brane a and with the end point σ1 = ` at the brane b.
Hence the end point at σ1 = 0 transforms in the fundamental representation �aof the gauge group on a
and the end point at σ1 = ` transforms in the antifundamental representation �bof the gauge group on
b. The Chan-Paton labels then belong to the bifundamental representation

(
�a,�b

)
. Due to the string

tension the open string is localized at the intersection point. Hence chiral matter arises at intersection
points of intersecting branes.

3.2.3 Circle compactification and T-duality

The simplest approach to compactify a direction xµ of the spacetime M10, is to compactify it on a circle
with a radius R. Formally this means the space for xµ is given after circle compactification by the quotient
space

S 1 =
R

RZ
(3.52)
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3.2 Type II strings

and is to be understood as the identification of all points in the µ-th direction, which differ by the distance
of multiples of 2πR

xµ ' xµ + 2πR , xµ ∈ R . (3.53)

The boundary conditions in the compactified direction for closed strings have to admit the identification
in (3.53) and is given by

Xµ(σ0, σ1) = Xµ(σ0, σ1 + `) + 2πRW (3.54)

with W ∈ Z denoting the number of winding numbers around the S 1, and analogous for the worldsheet
fermions. The mode expansions solving the boundary conditions in (3.54) is given by [50]

Xµ
L/R =

1
2

xµ +
πα′

`
pµL/Rσ

± + i

√
α′

2

∑
n∈Z\{0}

1
n
αiµn e2πinσ±/` , (3.55)

with
pµL/R =

K
R
±

WR
α′

, (3.56)

where the center of mass momentum pµ = pµL + pµR is quantized, with K ∈ Z denoting Kaluza-Klein
excitations, in order to make the quantum mechanical wavefunction single valued. The mass operator
for closed strings in (3.20) get an additional contribution of K2

R2 +
(WR)2

α′2
from the momentum in the µ-th

direction and the level matching condition becomes

NB − ÑB + NF − ÑF = WK , (3.57)

s.t. one gets for each closed string state |N〉cl. ∈ H̃NS/R ⊗HNS/R, with a definite excitation level N, where(
NB + ÑB + NF + ÑF

)
|N〉cl. = N |N〉cl., an infinite tower of new states |N,W,K〉, with different winding

numbers and Kaluza-Klein excitations

α′M2|N,W,K〉 =

(
K2

R2 +
(WR)2

α′2
+ 2N + 4a

)
|N,W,K〉 . (3.58)

Closed string spectra from circle compactification are invariant under transformations T , called T-duality
transformation [51]. T-duality transformations exchange Kaluza-Klein excitations with winding numbers
by inverting the radius R simultaneously

T : R→
α′

R
, W ↔ K , (3.59)

which leaves (3.58) invariant. At the level of the left- and rightmovers, the transformation in (3.59)
translates to giving the rightmovers a sign

T : (Xµ
L, ψ

µ
+)→ (Xµ

L, ψ
µ
+) , (Xµ

R, ψ
µ
−)→ −(Xµ

R, ψ
µ
−) . (3.60)

Giving ψµ− a sign implies that the µ-th zeromode for the rightmovers in the R sector gets a sign and
hence flips the GSO-projection in the R sector for the rightmovers. That means performing a T-duality
transformation in Type IIA string theory, maps it to Type IIB and vice versa [52]. The theories are said to
be T-dual to each other, which means that they actually describe the same physics, but from a different
perspective. T-duality transformation for the left-and rightmovers in (3.60) applied to open strings,
corresponds to flipping N boundary conditions to D boundary conditions and vice versa. Hence, when the
T-dualized direction xµ is normal to a Dp-brane, in the dual picture the brane becomes a D(p + 1)-brane,
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Chapter 3 Overview to string theory

extending additionally in the µ-th direction, where when xµ is tangent to a Dp-brane, the brane in the
dual theory becomes a D(p − 1)-brane, localized at a point in the µ-th direction [53]. This is consistent
with the brane contents for the Type II string theories, since the D-branes allowed for Type IIB differ by
±1 dimensions for Type IIA and vice versa.

From intersecting to magnetized D-branes on C

Circle compactifying the system of intersecting D-branes in section 3.2.2, for example the direction x2,
allows to construct a T-dual theory, by T-dualizing the x2 direction and making the dual radius large.
Under the transformation (3.60) the boundaray conditions in (3.48) become for open stirng in the T-dual
picture

∂1X2
∣∣∣
σ1=0 = 0 , ∂0X1 − tan θ ∂1X2

∣∣∣
σ1=`

= 0 , (3.61)

∂0X1
∣∣∣
σ1=0 = 0 , ∂1X1 + tan−1 θ partial0X2

∣∣∣
σ1=`

= 0 .

Comparing with the boundary conditions in (3.42), the term 2πα′Fµν can be identified with tan−1 θ. Since
no B-field is considered the angle θ between intersecting branes is related in the T-dual picture to a
non-vanishing fieldstrength F on the whole C by

F =
(
2πα′ tan θ

)−1 dX1 ∧ dX2 . (3.62)

For T-dualizing the direction x1, the flux on the dual theory is given by

F = 2πα′ tan θ dX1 ∧ dX2 . (3.63)

The physical interpretation is, that in the T-dual picture the whole C is filled out with a D-brane, which
carries the magnetic flux F on it [49].
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CHAPTER 4

Type IIA compactification on orientifolds

In order for string theory to describe the SM of particle physics in a low energy limit, six of the ten
dimensions for the spacetime M10 need to be compactified on a six dimensional compact space X6,
leaving four dimensional Minkowski space R1,3 uncompact

M10 → R1,3 × X6 . (4.1)

In this chapter it is described how to compactify Type IIA string theory on orientifolds with intersecting
D-branes. Orientifold compactification already leads in four dimensions to features, which are similar to
those described in the SM. Type IIA orientifolds are introduced in [54, 55], where intersecting branes
are discussed in [49]. Since then many orientifold models with intersecting D-branes where constructed
where [56–58] are just some examples. In section 4.1 geometric properties of orientifolds are discussed
and for that [20, 23] is followed.

4.1 Geometry of orientifolds

4.1.1 Torus

Let {~αi}i∈{1,...,2n} be a set of 2n linearly independent vectors in R2n. The set {~αi} generates a 2n-dimensional
lattice Λ2n, where Λ2n is the set of all integer linear combinations of the generators ~αi

Λ2n =
{ 2n∑

i=1

ni~αi

∣∣∣∣ni ∈ Z
}

=: 〈~α1, ..., ~α2n〉 . (4.2)

The quotient space

T 2n =
R2n

Λ2n , (4.3)

describes a 2n-dimensional flat torus T 2n, where the quotient in (4.3) is to be understood as the identifica-
tion of points, which differ by translation of lattices vectors, as

x ∼ x + ~λ, x ∈ R2n, with ~λ ∈ Λ2n . (4.4)

The neighbourhood in R2n containing all points, which are inequivalent according to the identification
(4.4), is called the fundamental domain of the torus F (T 2n) ⊂ R2n. A natural basis for a coordinate system
on the torus, besides the canonical basis, is given by the set of the generators {~αi}. The basis is named in
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Chapter 4 Type IIA compactification on orientifolds

the following as the lattice basis and coordinates in the lattice basis are denoted by (y1, ..., y2n) ∈ R2n.
The canonical basis in R2n is spanned by 2n orthonormal basis vectors {~ei}i∈{1,...,2n} and the corresponding
coordinates are denoted in the following as (x1, ..., x2n) ∈ R2n. The fundamental domain of the torus can
then be defined by all points of R2n within a cell of Λ2n and can be expressed by

F (T 2n) =
{ 2n∑

i=1

yi~αi

∣∣∣∣∀ yi ∈ [0, 1[
}
, (4.5)

s.t. the local geometry of the torus is described by the line element for R2n given by

d2s =

2n∑
i=1

dxi
2 . (4.6)

The transformation matrix M ∈
{
xi = Mi

jy j
∣∣∣ M ∈ GL(2n,R)

}
for a coordinate transformation, contains

the vielbein of a metric g on the torus and its components can be deduced by

g = MT · M, s.t. δi jdxidx j = gi jdyidy j . (4.7)

Global properties of the torus, such as lengths and relative angles of the generators ~αi are captured in g. If
g has a blockdiagonal form, consisting of n 2 × 2 dimensional matrices in the diagonal and the remaining
off-diagonal elements vanish, as

g =


g(1)

g(2)

. . .

g(n)

 , with g(h) =

g(h)
11 g(h)

12
g(h)

12 g(h)
22

 , (4.8)

the torus is called factorisable. The generators of the underlying lattice of a factorisable torus can be
sorted to n pairs of vectors

{
(~α2h−1, ~α2h)

}
h∈{1,...,n}, s.t. each pair is mutually orthogonal to the other pairs,

which means the lattice is factorisable into n mutually orthogonal two dimensional lattices Λ2
(h), each

spanned by a pair (~α2h−1, ~α2h). Thus the quotient space of R2n by a factorisable lattice, decomposes
likewise into a product of n two dimensional tori

T 2n =
R2n∏n

h=1 Λ2
(h)

=

n∏
h=1

T 2
(h), with T 2

(h) =
R2

Λ2
(h)

. (4.9)

When introducing complex coordinates (zh)h∈{1,..,n} ∈ C
n, with zh = x2h−1 + ix2h on R2n, each T 2 factor

can be placed on a complex plane, s.t. a coordinate zh denotes points on T 2
(h). If the generators of

the underlying lattice of a torus cannot be sorted to mutually orthogonal pairs, the torus is called non-
factorisable. The hermitian metric h, Kähler 2-form ω2 and volume n-form Ωn for the torus is inherited
from its covering space R2n and given by [59]

h =
1
2
δi jdzidz j +

1
2
δi jdzidz j, ω2 =

i
2
δi jdzi ∧ dz j, Ωn =

n∧
i=1

dzi , (4.10)
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4.1 Geometry of orientifolds

where zi = x2i−1 + ix2i are complex coordinates. The Kähler 2-form and volume n-form are calibration
forms1 on the torus. Parameters in the hermitian metric and Kähler form, called moduli, carry global
properties of the torus, such as shape and size.

The following two examples shall illustrate and deepen the above discussion:

(i) Two dimensional Torus T2:

Let a two dimensional torus T 2 be given by

T 2 =
R2

Λ2 , with Λ2 = 〈~α1, ~α2〉 . (4.11)

By introducing the complex coordinates

w = y1 + Uy2 , (4.12)

the torus is fully specified by a Kähler and complex structure modulus K ∈ R and U ∈ C

K =
√

det(g) , and U =
g12

g11
+ i

√
det(g)
g11

, (4.13)

where g is the metric on the T 2 [61]. Let the two generators of the lattice be given by

~α1 = R , ~α2 = Rτ , with R ∈ R , τ ∈ C , (4.14)

in the complex plane. Then the metric takes the form

g = R2
(

1 Re(τ)
Re(τ) |τ|2

)
, (4.15)

and the moduli are
K = R2Im(τ) , U = τ . (4.16)

The complex structure modulus contains the information of the angle between ~α1 and ~α2, where
the overall size of the torus is encoded in the Kähler structure modulus. Performing a coordinate
transformation in (4.10), using the vielbein of g, the hermitian metric for the T 2 is expressed in the
lattice basis by

h = R2dwdw , (4.17)

where the Kähler 2-form can be given by

ω2 = R2Im(τ) Re(dw) ∧ Im(dw) , (4.18)

s.t. its components is given by the Kähler modulus. The transformations

~α2 → ~α2 + ~α1 and ~α1 → ~α2 + ~α1 (4.19)

1 A calibration p-form φ for an n dimensional complex manifold M is defined by being a closed form dφ = 0 and minimizing
the volume of p dimensional submanifolds N ⊂ M. That means, if the volume of N is given by Vol(N) =

∫
N
φ, then

Vol(N) ≤ Vol(N′), ∀N′ in the same homology class. See [60] for more details.

21



Chapter 4 Type IIA compactification on orientifolds

leave the lattice Λ2 invariant. These transformations correspond to the transformations of the
complex structure given by

τ→ τ + 1 and τ→
τ

τ + 1
, (4.20)

which are the generators of the modular group S L(2,Z). Hence two dimensional tori with complex
structure moduli differing by modular transformations are equivalent, since their underlying lattices
are equivalent.

(ii) SO(12)-Torus T6
SO(12)

:
The six simple roots of the Lie algebra S O(12)

~α1 = (1,−1, 0, 0, 0, 0)T , ~α2 = (0, 1,−1, 0, 0, 0)T , ~α3 = (0, 0, 1,−1, 0, 0)T ,

~α4 = (0, 0, 0, 1,−1, 0)T , ~α5 = (0, 0, 0, 0, 1,−1)T , ~α6 = (0, 0, 0, 0, 1, 1)T . (4.21)

are the generators of the S O(12) root lattice ΛSO(12). The six dimensional torus resulting from the
quotient space R6 divided by the S O(12) root lattice, is denoted in the following as T 6

SO(12):

T 6
SO(12) =

R6

ΛSO(12)
. (4.22)

Since the generators cannot be sorted into three mutually orthogonal pairs the torus is non-
factorisable. By turning on moduli, the T 6

SO(12) can be further deformed. In the following the
deformation parameters Rh ∈ R and τh ∈ C are turned on in each complex plane individually, s.t.
the hermitian metric and Kähler 2-form is given by

h =

3∑
h=1

Rh
2|1 − τh|

2dwhdwh , ω2 =

3∑
h=1

Rh
2 |1 − τh|

2 dwh ∧ dwh , (4.23)

with the complex coordinates wh defined by

w1 = y1 +
τ1y2

1 − τ1
, w2 = y3 −

y2

1 − τ2
+

τ2y4

1 − τ2
, w3 = y5 −

y4

1 − τ3
+

1 + τ3

1 − τ3
y6 . (4.24)

Due to the diagonal form of the hermitian metric in (4.23), one Kähler structure modulus Kh and
one complex structure modulus Uh for each complex plane can be defined similar as for the T 2 by2

wh = Re(wh) + UhIm(wh) , ω2 =

3∑
h=1

Kh Re(dwh) ∧ Im(dwh) . (4.25)

The moduli for the deformed T 6
SO(12) depend on the deformation parameters accordingly by

Uh = τh , Kh = Rh
2 |1 − τh|

2 Im(τh) . (4.26)

The deformation parameters capture the lengths and relative angles of the lattice vectors and at the
point (Rh, τ) = (1, i), the undeformed T 6

SO(12) is reconstructed.

2 Turning on moduli in each plane individually ensures that D6-branes, wrapping the T 6
SO(12) remain supersymmetric. It is

further explained in section 4.1.4
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4.1 Geometry of orientifolds

4.1.2 Orientifolds for type IIA compactification

In this section real six (or complex three) dimensional orientifolds, suitable for Type IIA string compacti-
fication are considered. It is required that the orientifolds lead at most to N = 1 supersymmetry in the
uncompact space, otherwise a chiral spectrum in four dimensions cannot be achieved. Such orientifold
arise, from six dimensional tori quotient out by an orientifold group GΩ, with GΩ containing a discrete
subgroup of S U(3) and a worldsheet parity. Let the orientifold group be composed of the discrete group
G and the operator ΩR as

GΩ = G ∪ΩRG , (4.27)

where G is a discrete subgroup of S U(3) and acts on the internal space, where ΩR acts additionally as an
involution on the worldsheet. An orientifold is then defined by the quotient space

O6 =
T 6

G ∪ΩRG
. (4.28)

As an intermediate step before considering the full orientifold projection, orbifolds are discussed in the
following. Orbifolds are given by the quotient space T 6/G and are discussed in the context of string
theory in [62, 63].

Orbifold

The discrete group G is called the orbifolding group and its group elements g = (θ,~t) ∈ G in general
consists of a rotation θ and a translation ~t [64]. The action of g on a point x ∈ T 6 is defined by

g : x→ gx = θx + ~t. (4.29)

The rotations are called twists and the translations are called roto-translations. The subgroup of G
consisting only of the rotations is called the point group P and has to be an automorphism of the
underlying lattice of the torus. G is of order N, when gN acts trivially on the torus (but not necessarily
on the covering space R6). That implies, that the action of gN on a point x ∈ T 6 is trivial up to lattice
translations

gN x = x + ~λ, with ~λ ∈ Λ6 . (4.30)

For orbifolding groups with no roto-translations, gN acts also trivially on the covering space. The group
containing the orbifolding group and all lattice translations ~λ ∈ Λ6 is called the space group S = {Λ6,G}
of the orbifold and the quotient space

R6

S
=

T 6

G
(4.31)

is called an orbifold. In the following only orbifolding groups with trivial roto-translations are considered,
s.t. the orbifolding group is equivalent to its point group P and the space group is just the semidirect
product S = P n Λ6. The rotations of the point group can be expressed in representations of S O(6)
transformations. Denoting the three Cartan generators of S O(6) by Hh, with h ∈ {1, 2, 3}, a rotation θ ∈ P
is given by

θ = exp

2πi
3∑

h=1

vhHv

 . (4.32)
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Chapter 4 Type IIA compactification on orientifolds

The vector ~v = (v1, v2, v3)T is called the twist vector. Each Cartan generator acts on a complex plane, s.t.
the action of θ on the complex coordinates in the compact space is given by

θ : (z1, z2, z3)→
(
e2πiv1z1, e2πiv2z2, e2πiv3z3

)
. (4.33)

On fermionic fields ψ, θ acts as

θ : |s1, s2, s3〉 → e2πi
∑

h shvh |s1, s2, s3〉, with sh = ±1/2 , (4.34)

where |s1, s2, s3〉 denotes the state of ψ in the spin representation of S O(6). For P to be of order N the
components of the twist vector must satisfy

Nvh ∈ Z, ∀h ∈ {1, 2, 3} . (4.35)

Further, in order to preserve a four dimensional N = 1 supersymmetry generator in the uncompact space
from a ten dimensional supersymmetry generator, P must preserve one Killing spinor on the orbifold.
For example the state |12 ,

1
2 ,

1
2 〉 has to be invariant under the action of P. Applying (4.34) on the spinor, it

remains invariant only for twist vectors with components satisfying

v1 + v2 + v3 = 0 mod 2 . (4.36)

Thus the rotations of P are traceless and hence P is given by a discrete subgroup of S U(3). Some space
group elements (θ, ~λ) leave some points FIX(g) on the torus invariant, which are called fixed points. They
are determined by the fixed point equation

FIX(g) =

{
x = g · x + ~λ

∣∣∣∣ x ∈ T 6, g ∈ P, ~λ ∈ Λ6
}
. (4.37)

Excluding the fixed points from the orbifold, the local geometry of the remaining space is that of the
covering space R6. That means locally, infinitesimal distances are determined by the euclidean line
element

d2s = δhhdzhdzh, ∀ z ∈
T 6

P
\{FIX(g)}g∈P . (4.38)

However the fixed points contain singular curvature, as can be seen, when tangent vectors are parallel
transported around a fixed point: Let γ be the path between two points x1 and x2 differing by a spacegroup
element

γ(c)
∣∣∣
c=0 = x1, γ(c)

∣∣∣
c=1 = θ · x1 + ~λ = x2, c ∈ [0, 1] . (4.39)

The tangent vector d
dcγ

∣∣∣
c=0 ∈ TpM

∣∣∣
x1

parallel transported along γ to the point x2 gets rotated, s.t. d
dcγ

∣∣∣
c=0

differs by a θ transformation from the tangent vector d
dcγ

∣∣∣
c=1 ∈ TpM

∣∣∣
x2

. On the covering space R6, this
would not lead to any consequences, but on the orbifold the tangent spaces TpM

∣∣∣
x1

and TpM
∣∣∣
x2

are
identified and the path γ is a closed loop on the orbifold. Hence the holonomy group of the orbifold has
to be given by the point group P ⊂ S U(3), because parallel transporting tangent vectors rotate them by
the action of P. However the remaining space, without the fixed points, is euclidean, as described in
(4.38), so the entire curvature of the orbifold has to be densed at the fixed points. Therefor the curvature
becomes singular at the fixed points. Due to the presence of the curvature singularities the orbifold is not
a manifold (but an almost manifold so to say).

Next a closer look at supersymmetry from orbifold compactifiaction is taken: Let the supersymmetry
charges be denoted by Qα, with α ∈ {1, ..., 16}. They are the components of a spinor belonging to the
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4.1 Geometry of orientifolds

Majorana-Weyl representation of S O(1, 9). The 16 spin states are labeled by

Qα = |s0, s1, s2, s3〉, with si = ±1/2, . (4.40)

After compactification of the ten dimensional spacetime on the orbifold

M10 → R1,3 ×
T 6

P
, with P ⊂ S U(3) , (4.41)

transformations of S O(1, 9) decompose into a S O(1, 3) and S O(6) part, where the S O(1, 3) is the Lorentz
group acting on the uncompact space and the S O(6) part is the rotation group acting on the compact
space. The values for s1, s2, s3 correspond to the eigenvalues of the three Cartan generators Hi of the
rotation group in the compact space, as described in (4.34), and s0 denotes the spin state in a Weyl
representation of the Lorentz group S O(1, 3). The holonomy group of the internal space ensures that all
states which transform non-trivially under (4.34) gets projected out. The only states of Qα, which are
covariantly constant on the orbifold, are

Qξ =
∣∣∣s0,

1
2 ,

1
2 ,

1
2 〉, and Qξ̇ =

∣∣∣s0,−
1
2 ,−

1
2 ,−

1
2 〉 , (4.42)

with ξ, ξ̇ ∈ {1, 2} for s0 ∈ {±
1
2 }. The states Qξ serve as the four dimensional N = 1 supersymmetry

generator and Qξ̇ its complex conjugated. Hence the orbifold preserves from each ten dimensional
supersymmetry generator Q, the generators of the four dimensional N = 1 supersymmetry algebra.
For string theories with N = 1 supersymmetry in ten dimension, such as heterotic string theories,
compactifying on an orbifold with S U(3) holonomy leads to N = 1 supersymmetry in four dimensions.
These kinds of models have been intensively studied for example in [65–67]. But for Type II string
theories, compactification on orbifolds with S U(3) holonomy leads to N = 2 supersymmetry in four
dimensions and brings a non chiral spectrum in four dimensions with it.

Strings on orbifolds

Closed string states on the orbifold are inherited by string states on the torus, which survive the point
group projection. They are determined by the transformation behaviour of the states under the twist
operators. By expressing the twist operators in representations of S O(6) as in (4.32) the transformation
on left- and rightmoving string states under the point group can be determined. Closed string states
preserved by the point group are those, which transform trivially under all twist elements. Such string
states which are preserved from the spectrum on the torus are called untwisted states.

However the non-trivial structure of the orbifold fixed points mirrors in the spectrum from closed
strings on the orbifold. Open strings on the torus are closed on the orbifold, when their end points
are mapped by a rotation of g ∈ P to each other. That way new closed string states, called twisted
closed strings and which did not exist on the torus, can arise on the orbifold. They wrap around orbifold
fixed points and hence are located at the fixed points. Twisted closed strings are determined by twisted
boundary conditions (similar to open strings at intersecting D-branes). A twisted closed string, which is
closed up to a rotation of g on the orbifold and therefore located at a g fixed point, is determined by the
g-twisted boundary conditions [63]

Xµ(σ0, σ1 + `) = gXµ(σ0, σ1) + 2πRW , ψµ(σ0, σ1 + `) = ±gψµ(σ0, σ1) , (4.43)

where R is the compactification radius of the µ-th direction and W ∈ R is the winding number of the
closed string around the µ-th direction. The necessity of twisted closed strings is realized, when taking a
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Chapter 4 Type IIA compactification on orientifolds

look at the one-loop vacuum corrections from closed strings. The one-loop amplitude is only modular
invariant for closed strings in orbifolds, when states from twisted closed strings are included [63]. As an
example, in section 4.2.1 and appendix A, the massless Type IIA closed strings states in the untwisted
and twisted sector on a Z2 × Z2 orbifold are explicitly computed.

Orientifold

Type II string compactification on orbifolds lead to N = 2 supersymmetry in four dimensions. Hence
the supersymmetry charges need to be further halved. The two supersymmetry generators QL and QR

of Type II belong to the left- and rightmoving sector respectively. An operation relating the leftmoving
sector with the rightmoving sector and vice versa is given by worldsheet parity. Worldsheet parity is
defined by inverting the orientation of the string and by denoting the worldsheet parity operator by Ω, it
is acts on the worldsheet coordinates as

Ω : (σ0, σ1)→ (σ0, ` − σ1) . (4.44)

The symmetry between the left- and rightmoving sector in Type IIB , allows to quotient out the action of
Ω from Type IIB. That means only states invariant under Ω are preserved, which means for QL and QR,
that only a linear combination of those two are preserved, leaving 16 of the 32 supersymmetry charges
remaining. Further compactification on an orbifold eliminates 12 degrees of freedom and leads to N = 1
supersymmetry in four dimensions. Hence compactifying Type IIB on an orientifold, with GΩ = G ∪ΩG
in (4.27), is a possible choice in order to receive a chiral spectrum in four dimensions. However this is
not the only possibility: T-dualiy exposes other possibilities for ΩR. Since Ω exchanges the left- and
rightmoving sector, it acts on the pair of fields Xµ = (Xµ

L, X
µ
R) as

Ω : (Xµ
L, X

µ
R)→ (Xµ

R, X
µ
L) . (4.45)

The pair (Xµ
L, X

µ
R) has to belong to a theory S, which is invariant under Ω, such as a ten dimensional Type

IIB. In order to determine the corresponding operator Ω̃ in the theory S̃, with a direction xa T-dualized,
one has to transform the pair X̃a = (X̃a

L, X̃
a
R) from S̃ into S by using T-duality, given in (3.60), apply Ω

and then T-dualize the transformed fields back to S̃. The computations

Ω̃ : (X̃a
L, X̃

a
R)→ TΩT X̃a = TΩ(Xa

L,−Xa
R) = T (−Xa

R, X
a
L) = −(X̃a

R, X̃
a
L) , (4.46)

exposes that worldsheet parity for T-dualized directions, has to be afflicted with a spacetime reflection R
along the T-dualized directions

Ω̃ = ΩR , with R : xa → −xa . (4.47)

By reflecting a spacetime direction the string oscillator modes for that direction also gets a sign. Since the
R zeromodes correspond to the eight dimensional Gamma matrices Γa, Γchiral = 16

∏9
µ=2 Γµ obtains for

each reflected direction xa a sign. For Ω̃ to respect the GSO-projection (3.31), the spacetime involution R
has to act on the chirality operator as

R : Γchiral →

Γchiral for Type IIB,
−Γchiral for Type IIA,

(4.48)
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and consequently R can be given by

R : zi → zi, for

even number of zi for Type IIB,
odd number of zi for Type IIA.

(4.49)

Further ΩR has to map spacetime fermions from the leftmoving sector to spacetime fermions in the right-
moving sector and vice versa, s.t. a representation for ΩR in the spinor space is given by

∏
a (ΓaΓchiral),

with xa the directions on which R acts non-trivially3. Hence the 16 supercharges of QL from the leftmov-
ing sector get mapped to the 16 supercharges of QR of the rightmoving sector and vice versa by ΩR, s.t.
quotienting out ΩR preserves only a linear combination Q of the two supersymmetry generators given by

Q = QL +
∏

a

ΓaΓchiralQR , (4.50)

with a denoting the T-dualized directions, starting from ten dimensional Type IIB. Compactifying Type
II string theory on T 6/ (G ∪ΩRG), with G ⊂ S U(3), ΩR cancels 16 of the 32 degrees of freedom of the
supersymmetry charges and G eliminates 3/4 of the supercharges, s.t. four supercharges remain and form
a Dirac spinor for the N = 1 supersymmetry generator in four dimensions.

Besides fixed points, preserved by the orbifolding group, the orientifold preserves orientifold fixed
planes, also named O-planes. For a given group element ΩRg ∈ G, where g ∈ P, an O-plane preserved by
the group element is defined by the plane consisting of the set of points, which is left invariant under ΩRg

FIX(ΩRg) =

{
x = Rgx + ~λ

∣∣∣∣ x ∈ T 6, ~λ ∈ Λ6
}
. (4.51)

O-planes couple to R-R closed strings and therefore have non-trivial RR charge [41, 45, 69]. The
couplings to R-R strings can potentially lead to divergent terms in the vacuum energy called tadpoles. It
will be discussed in section 4.2.3 how tadpoles are cancelled by placing D-branes with the opposite R-R
charge. In the following of this chapter it will be focused on Type IIA compactified on orientifolds, with
R acting non-trivially on three directions x5, x7, x9, s.t. O-planes are determined by

(z1, z2, z3) = (e−2πiv1z1, e−2πiv2z2, e−2πiv3z3) + ~λ , (4.52)

for ~v = (v1, v2, v3)T the twist vectors of the point group elements. The O-planes are called O6-planes,
because they fill six spatial directions: three in the compact and three in the uncompact space.

4.1.3 Fixed point resolution

The orbifold itself is due to the presence of curvature singularities in the fixed points not a manifold.
However it exists a definite prescription to resolve the orbifold singularities. In this section it will be
briefly sketched how to find the right resolutions to orbifold singularities. For a more detailed decription
see for example [70–72]. Orbifolds with the point group given by ZN or ZM × ZN is considered in the
following. The resulting orbifold singularities are locally like C3/ZN singularities. First the following
objects have to be introduced:
Let N be a lattice isomorphic to Zn. Let V = {vi}i∈{1,...,d}, with d > n, be a collection of lattice vectors in

3 Since Γchiral anticommutes with ΓaΓchiral,
∏

a ΓaΓchiralψ flips its chirality of ψ for each direction xa. For more details see [19,
68].
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N. A cone σ spanned by a subset of lattice vectors {vi}i⊆{1,...,d} is given by

σ = 〈vi1 , vi2 , ...〉 =
{∑

i

aivi

∣∣∣∣ai ∈ R≥0, i ⊆ {1, ..., d}
}

(4.53)

and is called convex if ω ∈ σ − {0}, then −ω < σ. If the cones constructed out of V are all convex and
their faces are again lower dimensional cones and furthermore the intersection of two cones are also
cones, then the collection of the cones or the set V is called a fan Σ. To a fan Σ a toric variety XΣ can be
associated the following way: Let zi be a homogeneous coordinate in Cd, associated to a vector vi of the
fan. To each vector vi a codimension one divisor Di can be assigned by Di = {zi = 0}. The vectors vi need
to satisfy d − n linear equation

d∑
i=1

l(a)
i vi = 0, a = 1, ..., d − n, l(a)

i ∈ Z. (4.54)

The above linear equation defines a (C∗)d−n action on the homogeneous coordinates

C∗ : (z1, ..., zd) ∼ (λ
l(a)
1

a z1, ..., λ
l(a)
d

a zd). (4.55)

Let the exclusion set F be defined by the set of simultaneous zero loci of the homogeneous coordinates,
whose assosiated vectors do not spann a fan

F =
⋃

i

{z1i = 0, ..., zki = 0}, 〈v1i , ..., v1k〉 < Σ. (4.56)

The toric variety is then given by the quotient space

XΣ =
Cd − F

(C∗)d−n . (4.57)

The space XΣ is smooth if the set of vectors V cover all points in the lattice N. These tools can now be
used to resolve orbifold singularities. Let the orbifold action be generated by

θ : (z1, z2, z3)→ (εn1z1, ε
n2z2, ε

n3z3), ε = e2πi/n,

3∑
i=1

ni = 0 mod n. (4.58)

From the orbifold action it can be read of that three vectors belonging to the fan and which correspond to
the coordinates zi have to satisfy

n1v1 + n2v2 + n3v3 = 0 mod n. (4.59)

Due to the condition that the orbifold group is a subgroup of S U(3), the coordinates for the three vi’s can
always be set to one in one plane. When the orbifold contains singularities, the three vi’s are not enough
to reach all lattice points in N, indicating that the orbifold is not smooth. Next one adds the missing
vectors xi, s.t. the resulting space gets smooth. Adding new vectors xi means introducing new coordinates
wi corresponding to exceptional divisors at Di = {wi = 0}. The set of vectors {vi, wi} and a collection of
the cones, which they span, generates the fan of the resolved orbifold Res

(
C3/Zn

)
. The exclusion set F

contains all fixed points and are replaced by the exceptional divisors at Di = {wi = 0}. That way the fixed
points are removed and replaced by smooth manifolds, s.t. the resulting space is smooth.
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4.1.4 3-cycles on tori and orbifolds

Homology

In order to introduce cycles on compact manifolds arguments in [59, 73] are followed. Let M be a
dimensional compact manifold and the set

{
Ni

p

}
i∈{1,2,...}

contain the p dimensional submanifolds Np ⊆

M, with k ≤ dim(M). They form a vectorspace Cp of p-chains, where a p-chain is given by linear
combinations of the submanifolds

Ck(M) =

ap =
∑

i

xiZi
p

∣∣∣∣∣∣∣ xi ∈ R, Zi
p ⊆ M, dim(Ni

p) = p ≤ dim(M)

 . (4.60)

Let the interior Int(N) of a p dimensional manifold N denotes the set of points in N, whose neighbourhood
is given by an open subset of Rp. The boundary ∂N of N is then given by the complement of the interior
of N and maps p-chains to (p − 1)-chains

∂ : Cp → Cp−1 , with ∂N = N\Int(N) . (4.61)

A p-chain ap without a boundary is called a p-cycle of M and the set of p-cycles Zp are given by

Zp(M) =
{
ap ∈ Cp

∣∣∣ ∂ap = 0, ap ∈ M
}
. (4.62)

Since the boundary of a boundary is always zero a p-cycle ap, which is already the boundary of a
(p + 1)-chain is a trivial p-cycle. Let Bp denote the set of trivial p-cycles

Bp(M) =
{
∂ap+1 ∈ Cp

∣∣∣ ap+1 ∈ Cp+1, ap+1 ∈ M
}
, (4.63)

then the space of the p-th homology Hp(M) of M is given by

Hp(M) =
Zp(M)
Bp(M)

, (4.64)

and contains the set of non-trivial p-cycles on M. All p-cycles, which are related by trivial p-cycles
belong to the same homology class

[
ap

]
[
ap

]
=

{
ap ' ap + ∂bp+1

∣∣∣ ap ∈ Hp, ∂bp+1 ∈ Bp
}
. (4.65)

The p-th homology has a vectorspace structure with the different homology classes serving as a basis and
the dimension of Hp given by the number of homology classes.

For example, the first homology H1(T 2) of the two dimensional torus T 2 is two dimensional. It is
spanned by the 1-cycles

a =
{
~x = µ~α1

∣∣∣ µ ∈ [0, 1)
}

and b =
{
~x = ν~α2

∣∣∣ ν ∈ [0, 1)
}
. (4.66)

Due to the identification of the points 0 ∼ ~α1, a has no boundaries and similar due to 0 ∼ ~α2, b has also
no boundaries. A cycle a′ parallel to a, belongs to the same homology class as a, because a and a′ form
the boundary of a segment of the torus, which is a trivial 2-chain. Since the difference of a and b is not a
segment of the T 2, they lie in different homology classes.

In the following D6-branes are discussed intensively. They wrap volume minimizing 3-cycles in the
compact space which are given by special Lagrangian (sLag) cycles[74]. Hence the third homology of six
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Chapter 4 Type IIA compactification on orientifolds

dimensional tori and orientifolds H3(T 6) and H3(O6) are particularly interesting for this work. First sLag
3-cycles on the torus are discussed. When the orientifold is considered, it is distinguished between two
kinds of 3-cycles: Bulk 3-cycles, which are inherited from the underlying torus, and fractional 3-cycles,
wrapping the exceptional divisors at orbifold fixed points.

Special Lagrangian cycles on the T6

A particular class of cycles, which are important in the context of D6-branes, are called special Lagrangian
(sLag) cycles. They have the important property of being volume minimizing in their homology class
[60]. An n dimensional submanifold N ⊂ M is volume minimizing, when it is calibrated by a calibration
n-form [75]. That means, when J is a calibration n-form on M, then N is volume minimizing, when its
volume is given by

Vol(N) =

∫
N

J . (4.67)

The sLag conditions for a p-cycle Πp in a compact manifold M with Kähler 2-form ω2 and volume
n-form Ωn are [60, 75, 76]

• dim
(
Πk

)
= 1

2 dim (M),

• ω2
∣∣∣
Πk = 0,

• Im(eiϑΩn)
∣∣∣
Πk = 0,

with ϑ ∈ [0, 2π] some phase called the calibration phase. On the T 6 the sLag conditions are solved by
3-cycles Π3, which factorise into three mutually orthogonal 1-cycles: Let Π1

(h) ∈ H1(T 6), for h ∈ {1, 2, 3},
with Π1

(1) ⊥ Π1
(2) ⊥ Π1

(3). Then Π3 ∈ H3(T 6), with

Π3 =

3∏
h=1

Π1
(h) , (4.68)

is a sLag 3-cycle, when Π1
(h) has the shape of a straight line in the h-th complex plane. The relative angles

θh of Π1
(h) to the real axis are related to the calibration phase by θ1 + θ2 + θ3 = ϑ, s.t.

3∑
h=1

arctan


∣∣∣∣∣∣∣∣Im (

Π1
(h)

)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Re
(
Π1

(h)

)∣∣∣∣∣∣∣∣
 = ϑ , (4.69)

with
∣∣∣∣∣∣∣∣Re

(
Π1

(h)

)∣∣∣∣∣∣∣∣ and
∣∣∣∣∣∣∣∣Im (

Π1
(h)

)∣∣∣∣∣∣∣∣ the length of the real and complex part of Π1
(h) in the h-th complex plane

on the fundamental domain of the T 6. On the factorisable torus each 1-cycle Π1
(h) can be parametrized by

integers nh,mh ∈ Z, which denote the wrapping numbers around the a and b cycle in H1(T 2
(h)) on each

T 2 factor. For the non-factorisable torus the notation can be adopted when it is possible to introducing
a factorisable lattice Λ6

fact, where the underlying lattice of the T 6 is a sublattice Λ6 ⊂ Λ6
fact. Then the

integers nh,mh parametrize wrappings numbers of Π1
(h) along two basis vectors of Λ6

fact in the h-plane and

the whole 3-cycle is determined by six integers
{
nh,mh

}
{
h ∈ {1, 2, 3}} and its position on the covering
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space R6 is determined by

Π3 =

3∏
h=1

(nh,mh) =:

 3∑
h=1

(
nh~α2h−1 + mh~α2h

)
µh

∣∣∣∣∣∣∣ µ1, µ2, µ3 ∈ R

 , (4.70)

where ~α2h−1, ~α2h are the two generators of Λ6
fact., which lie in the h-plane. Since the basis vectors of Λ6

fact
are in general shorter than the basis vectors of the non factorisable lattice, it can happen that multiple
wrappings on the factorisable lattice correspond to one wrapping number around the non factorisable
torus.

Example: sLag 3-cycles on T6
SO(12)

:

Here sLag cycles on the T 6
SO(12) shall be investigated. The Kähler 2-form ω2 vanishes at a subspace N,

when each term dzh ∧ dzh vanishes individually as it is the case for example for a straight line in the h-th
plane: The term dzh ∧ dzh at

zh =
{ (

nh~e2h−1 + imh~e2h
)
µ
∣∣∣ µ ∈ R} , (4.71)

with nh,mh integers, becomes
((

nh
)2
−

(
mh

)2
)

dµ ∧ dµ and vanishes due to the antisymmetric properties
of the wedge product. Consequently the Kähler 2-form vanishes at the subspace given by

~z =

 3∑
h=1

(
nh~e2h−1 + imh~e2h

)
µh | µ1, µ2, µ3 ∈ R

 . (4.72)

The integers nh,mh denote wrapping numbers around generators of the lattice Z6 = 〈~e1, ...,~e6〉. The
S O(12) Lie root lattice is a sublattice of Z6, and sLag 3-cycles on T 6

SO(12) can therefor be described
by (4.72), where (4.71) can be used to describe the 1-cycle factors of the sLag cycles. When ~x

∣∣∣
µ=0 is

identified with ~x
∣∣∣
µ=1 by some S O(12) roots, the line gets compactified to a 1-cycle on T 6

SO(12). However
not all integers integers nh,mh describe closed cycles on the torus. Only for nh + mh ∈ 2Z, the points
at µ = 0 get identified with points at µ = 1 for (4.71), which means for example a cycle with wrapping
numbers (nh,mh) = (2, 0) wraps the T 6

SO(12) only once, even though it wraps Λ6
fact twice. For wrapping

numbers satisfying
nh + mh ∈ 2Z, ∀h ∈ {1, 2, 3}, (4.73)

the corresponding 3-cycle is closed on T 6
SO(12) [77]. If the condition (4.73) is not fulfilled, then {~z} in

(4.72) covers for ∀h∈{1,2,3} µh ∈ [0, 1) only half of a closed 3-cycle on T 6
SO(12) [77]. By doubling the the

wrapping numbers nh, mh of such a half cycle in a plane h, for which (4.73) is violated, one receives
a closed cycle on the T 6

SO(12). For the case, where (4.73) is violated in only one plane, doubling the
wrapping numbers in that plane, satisfies (4.73) clearly. For the cases where (4.73) is violated for two or
three planes, it is more subtle, that only one factor of 2 is enough to close the 3-cycle on the T 6

SO(12). As
an example a closer look at

3∏
h=1

(nh,mh) =

 3∑
h=1

(nh~e2h−1 + imh~e2h)µh

∣∣∣∣ µ1, µ2, µ3 ∈ [0, 1)

 , (4.74)

with
n1 + n1 = odd , n2 + n2 = odd , n3 + n3 = even , (4.75)
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is taken. The cycle does not satisfy (4.73) and therefor only wraps half of a 3-cycle on T 6
SO(12). However

2
∏3

h=1(nh,mh) can be expressed by [77]

2
3∏

h=1

(nh,mh) = (4.76){
(n1~e1 + m1~e2 + n2~e3 + m2~e4)ν1 + (n1~e1 + m1~e2 + n2~e3 − m2~e4)ν2 + (n3~e5 + m3~e6)µ3

}
,

with ν1, ν2, µ3 ∈ [0, 1), which is indeed closed on the S O(12) lattice, since the vectors (n1,m1, n2,m2, 0, 0),
(n1,m1, n2,−m2, 0, 0) and (0, 0, 0, 0, n3,m3) are S O(12) roots. For wrapping numbers violating (4.73) in
all three planes, the doubled 3-cycle can also be expressed by S O(12) lattice vectors in a similar way by

2
3∏

h=1

(nh,mh) =

(n1,m1, n2,m2, 0, 0)Tµ1 + (n1,m1, n2,−m2, 0, 0)Tµ2 + (0, 0, n2,m2, n3,m3)Tµ3 ,

with µ1, µ2, µ3 ∈ [0, 1). Turning on deformation parameters Rh and τh as described in section 4.1.1, the
position of the 3-cycles is given by

3∏
h=1

(
nh,mh

)
=

3∑
h=1

Rh
((

nh + Re(τh)mh
)
~e2h−1 + iIm(τh)mh~e2h

)
µh (4.77)

and the calibration phase of the cycle is given by

3∑
h=1

arctan
(

Im(τh)mh

nh + Re(τh)mh

)
= ϑ . (4.78)

That way, sLag 3-cycles on the T 6
SO(12) remain sLag after turning on deformations. It also means that the

factorisable lattice Λfact, containing ΛSO(12), has to be deformed as well and is actually spanned by

K1 (1, 0, 0, 0, 0, 0)T , K1 (Re(τ1), Im(τ1), 0, 0, 0, 0)T ,

K2 (0, 0, 1, 0, 0, 0)T , K2 (0, 0,Re(τ2), Im(τ2), 0, 0)T , (4.79)

K3 (0, 0, 0, 0, 1, 0)T , K3 (0, 0, 0, 0,Re(τ3), Im(τ3))T ,

when deformations are turned on and Z6 = Λfact holds for the point (Rh, τ) = (1, i).

Bulk- and fractional cycles on the orbifold

By quotienting the point group out of the torus, only cycles, which are invariant under the point group,
remain on the orbifold. A superposition of a torus 3-cycle with all its images under the point group is
called a bulk cycle Π3

Bulk [78]. Therefore it is naturally invariant under the point group action and for an
orbifold with the point group P given by

Π3
Bulk =

∑
g∈P

g · Π3 ∈ H3
(
T 6/P

)
. (4.80)
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The exceptional divisors may also contain 3-cycles, so called twisted cycles Π3
twist, and when they are

preserved by the point group they can be used to construct fractional cycles [78, 79]. A fractional cycle
consists of a torus cycle Π3, whose images under the point group action are collapsed to twisted cycles at
the fixed points, which intersect with Π3. A fractional cycle Π3

frac is then given by

Π3
frac = Π3 +

∑
g∈P

ε
g
αΠ3

twist,g , (4.81)

where α denote the fixed points, which lie on Π3 and εgα encodes the orientation of Π3
twist,g. Fractional

cycles are preserved by the orbifold projection, when discrete torsion is turned on [78, 80]. Discrete
torsion denotes the non trivial choice of a phase ε(g, h) in the orbifold partition function [79]

Z =
1
N

∑
h∈P

∑
g∈P

ε(g, h)Z(h, g). (4.82)

The term Z(g, h) denotes the sums over the closed string states from the twisted sector g, forming
invariant states under the action of h 4. Let T and S denote the generators of the modular group S L(2,Z)
transforming the complex structure modulus τ of a T 2 by

T : τ→ τ + 1 , S : τ→ −1/τ . (4.83)

Applying T and S transformations on the closed string partition function, the terms in the partition
transform as

T : Z(g, h)→ Z(g, hg) , S : Z(g, h)→ Z(h, g−1) . (4.84)

The phase ε(g, h) has to be choosen, s.t. the partition function respects modular invariance. When
modular invariance allows ε(1,1) , ε(g, h) for some g, h ∈ P, then the choice for the phase ε(g, h) is
called discrete torsion and determines the action of h on the exceptional divisors at the fixed point of g.

4.1.5 Example: T6
SO(12)

/ (Z2 × Z2 × ΩR)

To illustrate the previous discussion, the orientifold, given by

O6 =
T 6

SO(12)

Z2 × Z2 ×ΩR
. (4.85)

shall be investigated in this section. The point group Z2 × Z2 is generated by two generators, which are
denoted by θ and ω. They act on the complex coordinates of the compact space as

θ : (z1, z2, z3)→ (−z1,−z2, z3), ω : (z1, z2, z3)→ (z1,−z2,−z3) , (4.86)

and the spacetime involution R reflects the directions along all three imaginary axis

R : (z1, z2, z3)→ (z1, z2, z3) . (4.87)

In order to safely quotient out the discrete group Z2 × Z2 × ΩR, it has to be an automorphism of the
underlying lattice. This could possibly constrain the deformation parameters Rh and τh for T 6

SO(12).
Invariance of the lattice under the spacetime involution R demands that the real part of the complex

4 For more details see [23]
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strucutre moduli need to be integer Re(τh) ∈ Z, since otherwise the lattice vector 1 + τh in the h-th
complex plane gets projected away by the involution5.

Fixed points and exceptional divisors

The fixed point equation for fixed points under θ, given by

(x1, x2, x3, x4, x5, x6) = (−x1,−x2,−x3,−x4, x5, x6) + ~λ, ~λ ∈ ΛSO(12) , (4.90)

is solved by

FIX(θ) =

(n1

2
,

n2

2
,

n3

2
,

n4

2
, x5, x6

) ∣∣∣∣∣∣∣ ni ∈ Z,
4∑

i=1

ni = 0 mod 2, x5, x6 ∈ R

 . (4.91)

The solutions given in (4.91) show that, because θ acts trivially on the last plane, the coordinates x5, x6
are unconstrained and taking the action of the S O(12) roots on the last plane into account, the last plane
for the fixed loci FIX(g) are compactified on two dimensional tori, which has the S O(4) Lie lattice
underlying

T 2
fix =

R2

ΛSO(4)
, with ΛSO(4) = 〈(1, 1)T , (1,−1)T 〉 . (4.92)

That means the fixed loci are given by fixed tori T 2
fix, each located at fixed points in the first two planes.

Identifying all fixed tori differing by lattice vectors, one finds that there are eight inequivalent fixed tori
on T 6

SO(12)/ (Z2 × Z2), whose loci are given by

FIX(θ) =
(
0, 0, 0, 0,T 2

fix

)
∪

(
1
2
,

1
2
, 0, 0,T 2

fix

)
∪

(
1
2
, 0,

1
2
, 0,T 2

fix

)
∪

(
0,

1
2
,

1
2
, 0,T 2

fix

)
(4.93)

∪

(
0,0,

1
2
,

1
2
,T 2

fix

)
∪

(
1
2
, 0, 0,

1
2
,T 2

fix

)
∪

(
0,

1
2
, 0,

1
2
,T 2

fix

)
∪

(
1
2
,

1
2
,

1
2
,

1
2
,T 2

fix

)
.

Each of those fixed tori gets twisted by ω

ω : T 2
fix →

T 2
fix

Z2
. (4.94)

In a similar fashion the other two twist operators ω and θω preserve each eight fixed tori. They are
located on fixed points in the second and last plane or in the first and third plane respectively, as listed in
table 4.1.

In order to find the exceptional divisors hidden in the orbifold fixed points, one has to resolve the
singularities as explained in section 4.1.3. The neighbourhood of a fixed torus T 2

fix in T 6
SO(12) has locally

5 The action of R on 1 + τh is given by
R : 1 + τh → 1 + τh . (4.88)

In order for R to be a lattice automorphism, the lattice has to contain lattice vectors, which compensate the transformation of
the involution. Therefore it needs to be found an S O(12) vector, which satisfies

1 + τh = 1 + τh + u1 + τhu2 , (4.89)

where u1, u2 are components of S O(12) roots in the h-th plane. The solutions are given by u2 = 2 and u1 + 2Re(τh). Since
u1, u2 have to satisfy u1 + u2 = 0 mod 2 (otherwise they do not form an S O(12) root), the real part of τh needs to be integer
Re(τh) ∈ Z.
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FIX(θ) FIX(ω) FIX(θω)
(0, 0, 0, 0,T 2

fix) (T 2
fix, 0, 0, 0, 0) (0, 0,T 2

fix, 0, 0)
( 1

2 , 0,
1
2 , 0,T

2
fix) (T 2

fix,
1
2 , 0,

1
2 , 0) ( 1

2 , 0,T
2
fix,

1
2 , 0)

(0, 1
2 ,

1
2 , 0,T

2
fix) (T 2

fix, 0,
1
2 ,

1
2 , 0) (0, 1

2 ,T
2
fix,

1
2 , 0)

(0, 1
2 , 0,

1
2 ,T

2
fix) (T 2

fix, 0,
1
2 , 0,

1
2 ) (0, 1

2 ,T
2
fix, 0,

1
2 )

( 1
2 , 0, 0,

1
2 ,T

2
fix) (T 2

fix,
1
2 , 0, 0,

1
2 ) ( 1

2 , 0,T
2
fix, 0,

1
2 )

( 1
2 ,

1
2 , 0, 0,T

2
fix) (x1, x2,

1
2 ,

1
2 , 0, 0) ( 1

2 ,
1
2 ,T

2
fix, 0, 0)

(0, 0, 1
2 ,

1
2 ,T

2
fix) (T 2

fix, 0, 0,
1
2 ,

1
2 ) (0, 0,T 2

fix,
1
2 ,

1
2 )

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,T

2
fix) (T 2

fix,
1
2 ,

1
2 ,

1
2 ,

1
2 ) ( 1

2 ,
1
2 ,T

2
fix,

1
2 ,

1
2 )

Table 4.1: Fixed tori of T 6
SO(12)/Z2 × Z2..

the geometry of T 2
fix sitting at a C2/Z2 singularity. A Z2 action on C2 is given by

(z1, z2)→ (−z1,−z2) (4.95)

s.t. the vectors of the fan satisfy
v1 + v2 = 0 mod 2 . (4.96)

This is the case for v1 = (1, 1) and v2 = (1,−1). Notice that the point (1, 0) cannot be reached by v1 and
v2 revealing that the space contains singularities. To resolve the singularity, the lattice vector w = (1, 0) is
included into the fan, which corresponds to a coordinate x. The fan consists of the two cones spanned by
{v1, w} and {v2, w}. The set {v1, v2} does not spann a cone, in a way that the criteria for a fan are satisfied.
Therefore the exclusion set is F = {z1 = z2 = 0}. This is precisely the C2/Z2 singularity, which is cut out.
The scaling relation for the toric variety can be extracted by the coefficients of the equation

v1 + v2 − 2w = 0. (4.97)

The (C)∗ action on the homogeneous coordinates are then given by

(C)∗ : (z1, z2, x) ∼ (λz1, λz2, λ
−2x) . (4.98)

At Di = {x , 0}, x can be scaled away by λ = ±
√

x, s.t. at Di one has (±
√

xz1,±
√

xz2, 1), which is the
Z2 orbifold. At the point E = {x = 0}, from the scaling relation (z1, z2) ∼ (λz1, λz2) it can be recognized,
that a CP1 is hidden at the fixed point. Each fixed torus in the T 6

SO(12) therefore is actually CP1 × T 2
fix.

Taking the action of the other point group elements, the orbifold group preserves

CP1 ⊕
T 2

fix

Z2
(4.99)

at the fixed points.
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Chapter 4 Type IIA compactification on orientifolds

O6-planes

The spacetime reflections contained in the group Z2 × Z2 ×ΩR are given by the set {R, Rθ, Rω, Rθω}.
Their action on the complex coordinates is given by

R : (z1, z2, z3)→ (z1, z2, z3),

Rθ : (z1, z2, z3)→ (−z1,−z2, z3), (4.100)

Rω : (z1, z2, z3)→ (z1,−z2,−z3),

Rθω : (z1, z2, z3)→ (−z1, z2,−z3).

Solving the fixed loci equation for O-planes (4.51), the O6-plane loci on the covering space R6 are given
by

FIX(R) =

{ (
x4,

n1

2
, x6,

n2

2
, x8,

n4

2

)T
∣∣∣∣∣∣ ni ∈ Z,

3∑
i=1

ni ∈ 2Z, x4, x6, x8 ∈ R

}
,

FIX(Rθ) =

{ (n1

2
, x5,

n2

2
, x7, x8,

n4

2

)T
∣∣∣∣∣∣ ni ∈ Z,

3∑
i=1

ni ∈ 2Z, x5, x7, x8 ∈ R

}
, (4.101)

FIX(Rω) =

{ (
x4,

n1

2
,

n2

2
, x7,

n4

2
, x9

)T
∣∣∣∣∣∣ ni ∈ Z,

3∑
i=1

ni ∈ 2Z, x4, x7, x9 ∈ R

}
,

FIX(Rθω) =

{ (n1

2
, x5, x6,

n2

2
,

n4

2
, x9

)T
∣∣∣∣∣∣ ni ∈ Z,

3∑
i=1

ni ∈ 2Z, x5, x6, x9 ∈ R

}
.

Identifying the O-planes, which differ by S O(12) lattice translations, the inequivalent O-planes on the
torus are given by

FIX(R) = (x5 = 0, x7 = 0, x9 = 0) ∪
(
x5 =

1
2
, x7 =

1
2
, x9 = 0

)
(4.102)

∪
(
x5 =

1
2
, x7 = 0, x9 =

1
2

)
∪

(
x5 = 0, x7 =

1
2
, x9 =

1
2

)
,

FIX(Rθ) = (x4 = 0, x6 = 0, x9 = 0) ∪
(
x4 =

1
2
, x6 =

1
2
, x9 = 0

)
∪

(
x4 =

1
2
, x6 = 0, x9 =

1
2

)
∪

(
x4 = 0, x6 =

1
2
, x9 =

1
2

)
,

FIX(Rω) = (x5 = 0, x6 = 0, x8 = 0) ∪
(
x5 =

1
2
, x6 =

1
2
, x8 = 0

)
∪

(
x5 =

1
2
, x6 = 0, x8 =

1
2

)
∪

(
x5 = 0, x6 =

1
2
, x8 =

1
2

)
,

FIX(Rθω) = (x4 = 0, x7 = 0, x8 = 0) ∪
(
x4 =

1
2
, x7 =

1
2
, x8 = 0

)
∪

(
x4 =

1
2
, x7 = 0, x8 =

1
2

)
∪

(
x4 = 0, x7 =

1
2
, x8 =

1
2

)
.

The fixed planes in (4.102), preserved by the action of Rg, with g ∈ {θ, ω, θω}, wrap four sLag 3-cycles
of the same homology class on the T 6

SO(12)

[
Π3

]
O6Rg

FIX(Rg) = 4
[
Π3

]
O6Rg

, (4.103)
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where the cycles in the homology class
[
Π3

]
O6Rg

are specified according to (4.70) by the wrapping
numbers

[Π3]O6R = (2, 0) × (1, 0) × (1, 0), [Π3]O6Rθ = (0, 1) × (0,−1) × (2, 0), (4.104)

[Π3]O6Rω = (2, 0) × (0, 1) × (0,−1), [Π3]O6Rθω = (0, 1) × (2, 0) × (0,−1) .

The O6-planes preserved by the whole orientifold group are therefor given by

4Π3
O6 = 4

(
[Π3]O6R + [Π3]O6Rθ + [Π3]O6Rω + [Π3]O6Rθω

)
. (4.105)

According to (4.69) the calibration phase of Π3
O6 is given by ϑ = 0.

sLag bulk 3-cycles

In section 4.1.4 sLag 3-cycles on the T 6
SO(12) where introduced. They can be used to construct bulk

3-cycles on the orbifold, which are wrapped by D6-branes. The 1-cycles Π1
(h) = (nh,mh) of the sLag

3-cycle on the h-th plane transforms under the point group elements as

Z2 : (nh,mh)→ −(nh,mh) , (4.106)

when the group elements have a non-trivial action in that plane. Since each point group element acts
non-trivially on two planes, the two signs from the transformations of the two 1-cycles cancel in the
product

∏3
h=1(nh,mh) and the corresponding 3-cycle transforms trivially and is mapped to itself. From

(4.80), it can be deduced that a bulk 3-cycle on the orbifold Π3
Bulk ∈ H3

(
T 6

SO(12)/(Z2 × Z2)
)

is given by

Π3
Bulk = Π3 + θΠ3 + ωΠ3 + θωΠ3 = 4Π3 , (4.107)

where Π3 ∈ H3
(
T 6

SO(12)

)
denotes a sLag 3-cycle on the torus. Let two 3-cycles on the torus be denoted

by Π3
a and Π3

b and the corresponding bulk cycles on the orbifold by Π3
Bulk,a = 4Π3

a and Π3
Bulk,b = 4Π3

b.
The intersection number Iorbi

ab of the two bulk cycles on the orbifold is related to the intersection number
Iab of the two cycles Π3

a and Π3
b on the torus by

Iorbi
ab =

1
4

[
Π3

a

]
Bulk
·
[
Π3

b

]
Bulk

=
1
4

4
[
Π3

a

]
· 4

[
Π3

b

]
= 4Iab . (4.108)

with Iab = [Π3
a] · [Π3

b], where the prefactor of 1/4 after the first equal sign arises from the identification
of intersection points by the point group. According to that the intersection numbers of bulk cycles are
always multiples of four and therefore it seems that on Z2×Z2 orbifolds, there are possibly smaller cycles,
given by half of a bulk cycle. But in order not to get projected out by the orbifold projection, they must
go through fixed points. The spacetime reflection R maps cycles to their orientfold image, or to be more
precisely a cycle with wrapping numbers Π3 =

∏3
h=1(nh,mh) is mapped to Π3 ′ =

∏3
h=1(nh,−mh). An

invariant 3-cycle Π3
inv ∈ H3

(
T 6

SO(12)/(Z2 × Z2 ×ΩR)
)

on the orientifold is then given by a superposition
of orbifold invariant 3-cycles with their orientifold images

Π3
inv =

1
2

(
Π3

Bulk + Π3 ′
Bulk

)
= 2

(
Π3 + Π3 ′

)
, with R : Π3 → Π3 ′ , Π3 ∈ H3

(
T 6

SO(12)

)
, (4.109)
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Chapter 4 Type IIA compactification on orientifolds

In section 4.2.3 it is explained that D6-branes share the same supersymmetry, when they are wrapped on
cycles with the same calibration phase. The O6-planes fix the calibration phase to ϑ = 0. Therefor, in
order to preserve N = 1 supersymmetry, the calibration phase of the D6-branes have to be ϑ = 0 and
inserting it into (4.69), one gets the supersymmetry condition

3∑
h=1

Im(τh)mh

nh + Re(τh)mh = 0 , Re(τh) ∈ Z , Im(τh) ∈ R , (4.110)

for wrapping numbers of D6-brane cycles on the deformed T 6
SO(12).

Fractional 3-cycles

The fixed point resolution exposes that the fixed loci of the point group are CP1 ⊕
(
T 2

SO(4)/Z2
)
’s. A CP1

is topologically isomorphic to a 2-sphere S 2, which means each CP1 contains a non-trivial 2-cycle, the
S 2 itself. The 2-cycles belonging to the exceptional divisors of the orbifold, are denoted by egi j, where
g ∈ {θ, ω, θω} denotes the generator of the twisted sector and (i j), with i, j ∈ {1, 2, 3, 4}, denote the
position of the fixed point in the two planes, on which g acts non-trivially. The fixed loci are placed on
the points (0, 0), ( 1

2 , 0), (0, 1
2 ), ( 1

2 ,
1
2 ) on each plane and when they are labeled by

(0, 0)→ 1 , ( 1
2
, 0)→ 2 , (0, 1

2
)→ 3 , ( 1

2
,

1
2
)→ 4 , (4.111)

for example the S 2 from the resolution of FIX(θ) = (0, 1
2 ,

1
2 , 0,T

2
inv) is wrapped by the 2-cycle, which is

denoted by eθ21. The transformation rules for the terms in the orbifold partition function (4.82) under the
modular transformations, allows different phases ε for the two sets{

Z(1,1)
}
∪

{
Z(g1, g2),Z(g1, g1 · g2),Z(g2, g1),

Z(g2, g1 · g2),Z(g1 · g2, g2),Z(g1 · g2, g1)
}
\
{
Z(1,1)

}
,

with ∀ g1, g2 ∈ {1, θ, ω, θω}. That means one can choose two different phases ε: One for Z(1,1) and one
for all other terms, s.t. the action of the orbifold on the S 2’s at the fixed points can be given by [78]

S 2 → εS 2, with ε = ±1 . (4.112)

The choice ε = −1 is called “with discrete torsion” and implies that the orbifold action on the collapsed
2-cycles is given by

egi j → −egi j . (4.113)

Together with a 1-cycle wrapping the fixed torus of the corresponding twisted sector, egi j forms a 3-cycle
which is called a twisted cycle and is invariant under the orbifold action [81]. Therefore the orbifold with
discrete torsion contains at each twisted sector, a two dimensional homology of twisted 3-cycles, spanned
by the following two homology classes

[αgi j,n] = 2[egi j] ⊗ [a], [αgi j,m] = 2[egi j] ⊗ [b] , (4.114)

with a and b denoting 1-cycles of the T 2 defined as in (4.66). Twisted 3-cycle can then be expressed by

Π3
i j,g = n[αgi j,n] + m[αgi j,m], n,m ∈ Z (4.115)
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4.1 Geometry of orientifolds

with n,m as the wrapping numbers around the a and b cycle of the T 2
fix. For the self-intersection number

[ei j] · [ekl] = −2δikδ jl [78], intersection numbers with twisted 3-cycles are given by

[Π3
i j,g]a · [Π3

kl,h]h = −4δikδ jlδgh (namb − manb) . (4.116)

Then by (4.81) the whole fraction cycle is given by [78]

Π3
frac =

1
4

Π3
Bulk +

1
4

∑
g∈{θ,ω,θω}

∑
(i, j)∈xgfix

ε
g
i jΠ

3
i j,g , (4.117)

where εgi j = ±1 defines the charge of the collapsed brane, wrapping Π3
i j,g, and determines the orientation

of the cycle around the S 2 at the fixed point labeled by (i j). The charges of the collapsed cycles are
not independent from each other but need to satisfy certain relation due to consistency reasons6. The
fractional cycle in (4.117) describes a cycle on the torus, whose orbifold images are collapsed at fixed
loci and wrap twisted cycles.
In the following however orientifolds without discrete torsion are considered and therefor the D6-branes
do not wrap fractional cycles. They where introduced for the sake of completeness and to mention the
further possibilities there are for string compactification.

Factorisable vs. non-factorisable

In order to compare orientifolds, their Hodge numbers are a good quantity to look at. The 1-forms dzi and
dzi correspond via deRham duality to 1-cycles, wrapping the T 6

SO(12) in the i-th plane, hence belonging to

the cohomology groups H1,0
(
T 6

SO(12)

)
and H0,1

(
T 6

SO(12)

)
. By wedging the 1-forms, the (p, q)-forms

dzi1 ∧ ... ∧ dzip ∧ dz j1 ∧ ... ∧ dz jq , with i1, ..., ip, j1, ..., jq ∈
{
1, ..., dimC

(
T 6

SO(12)

)}
, (4.118)

span a basis for the (p, q)-th cohomology group Hp,q
(
T 6

SO(12)

)
. Using the antisymmetric behaviour of the

wedge product, from straight combinatorics it follows that dim (Hp,q) =
(

3
p

)(
3
q

)
. The cohomology groups

Hp,g, Hq,p, H3−p,3−q and H3−q,3−p are dual to each other via the combination of deRham-, Hodge-, and
Poincare duality 7. Hence for a complex three dimensional manifold it is sufficient to look at cohomology
groups H1,0, H1,1, H2,0, H2,1, H3,0 and H3,3. On the orbifold only (p, q)-forms invariant under the point
group are preserved. The action of a twist element g ∈ P on the cohomology group elements from (4.118)
is given by

e2πivi1 dzi1 ∧ ... ∧ e2πivip dzip ∧ e−2πiv j1 dz j1 ∧ ... ∧ de−2πiv jq z jq . (4.119)

Due to the condition (4.36) for the twist vectors,the (2, 0)- and (1, 0)-forms are always projected away
and the (3, 0)- and (3, 3)-form are always preserved. Hence h1,0 = h2,0 = 0 and h3,0 = h3,3 = 1 for all

orbifolds (with the holonomy given by a discrete subgroup of S U(3)), where hp,q = dim
(
Hp,q

(
T 6

SO(12)
Z2×Z2

))
are the Hodge numbers on the orbifold. Therefor it is sufficient to investigate the Hodge numbers h1,1

and h2,1. The (1, 1)- and (2, 1)-forms preserved by the Z2 × Z2 point group are

dzi ∧ dzi , dzi ∧ dx j ∧ dzk , for i , j , k , i, j, k ∈ {1, 2, 3} . (4.120)

6 For more details see [78]
7 For more details, see appendix B of [20].
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Chapter 4 Type IIA compactification on orientifolds

Therefor the Hodge numbers on the orbifold, which are inherited from the torus, are given by

h0,0
un = h3,0

un = 1 , h1,1
un = h2,1

un = 3 , (4.121)

from the invariant forms of (4.120). But the orbifold further contains exceptional divisors at fixed loci.
Each fixed locus is topologically isomorphic to S 2 × T 2, where the sphere contains one (1, 1)-form. The
contribution to the Hodge numbers from the exceptional divisors depend on the choice of discrete torsion
ε = ±1. For the case without discrete torsion ε = +1 the point group acts trivially on the sphere and the
(1, 1)-form on the S 2 is preserved. For the case with discrete torsion ε = −1 the (1, 1)-form gets a sign,
but together with the 1-form on the fixed torus, which also gets a sign, the (2, 1)-form on the S 2 × T 2 is
preserved by the point group. Hence the 24 exceptional divisors on T 6

SO(12)/ (Z2 × Z2) contribute

h1,1
tw = 24 without discrete torsion h2,1

tw = 24 with discrete torsion , (4.122)

s.t. the the Hodge numbers of T 6
SO(12)/ (Z2 × Z2) are given by

(
h1,1, h2,1

)
=

(27, 3) , ε = +1
(3, 27) , ε = −1

. (4.123)

The features resulting from the non-factorisable structure of the orbifold are turned off in the factorisable
orbifold T 6

fact/ (Z2 × Z2), with T 6
fact = R6/Λ6

fact, where ΛSO(12) ⊂ Λ6
fact is defined in section 4.1.4. The

Hodge numbers of the factorisabel orbifold are discussed in [78] and given by

(
h1,1, h2,1

)
=

(51, 3) , ε = +1
(3, 51) , ε = −1

. (4.124)

The spacetime reflection R, acting as complex conjugation, maps (p, q)-forms to (q, p)-forms, hence the
(p, q)-th cohomology group gets mapped to the (q, p)-th cohomology group

R : Hp,q → Hq,p , (4.125)

and forms in H1,1 and linear combinations of forms in H2,1 ⊕H1,2 are preserved on the orientifold. Hence
by comparison of Hodge numbers of the factorisable orientifold with the non-factorisable orientifold it
seems evident that the non-factorisable orientifold has less structrure than the factorisable orientifold
and hence compactification on the non-factorisable orientifold is more restrictive. Further the number of
O6-planes on the non-factorisable orientifold is also reduced to half of the number of O6-planes on the
factorisable orientifold. For D6-branes on the non-factorisable orientifold that means, their wrapping
numbers are more restricted than on the factorisable orientofold, as will be seen in the following of this
chapter.

4.2 Intersecting D-branes on Z2 × Z2 × ΩR-Orientifolds

In this section Type IIA string theory compactified on Z2 × Z2 ×ΩR-orientifolds

Type IIA : M1,9 → R1,3 ×
T 6

Z2 × Z2 ×ΩR
(4.126)
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4.2 Intersecting D-branes on Z2 × Z2 ×ΩR-Orientifolds

is discussed and the resulting massless spectra in four dimensions is analyzed. The generators of the
orientifolding group are given by (4.86) and (4.87). Since the spacetime reflections preserve O6-planes,
D6-branes have to be included in order to cancel the total R-R charge [41]. Open string on the D6-branes
lead to a chiral spectrum in four dimensions [49]. Models arising from these kind of orientifolds have been
discussed mostly for factorisabel tori, for example in [81–83]. But also for non-factorisable orientifolds
there has been attempts to construct realistic intersecting D-brane models for example in [77].

4.2.1 Massless states from type IIA closed strings

Compactifying the ten dimensional spacetime according to (4.126) on the orientifold, decomposes
the group of spacetime isometries S O(1, 9) into the Lorentz group S O(1, 3) acting on the uncompact
space R1,3 and an S O(6) part, acting on the internal space. The point group elements g ∈ {θ, ω, θω} are
expressed in an S O(6) representation by

g = exp

2πi
3∑

h=1

vhHh

 , with ~v =

1
2 (1,−1, 0)T for θ ,
1
2 (0, 1,−1)T for ω ,

(4.127)

and Hh the three Cartan generators of S O(6). The transformation behaviour of the string states under the
S O(1, 3) factor of S O(1, 9) determines what kind of field the states correspond to in four dimensions.
In appendix A the transformation of the massless Type IIA closed string states under the algebra
su(2) ⊗ su(2), which is the little group of massless particles in four dimensions, is investigated. Further
their transformation under the Z2 × Z2 point group and the orientifold projection by ΩR has been
coomputed and that way the invariant states on Z2 × Z2 ×ΩR orientifolds are determined.

The dimensional reduction of the eight massless NS states lead to a massless vector field and six scalars.
The decomposition of the eight chiral and eight antichiral states in the left- and rightmoving R sector,
leads to four chiral and four antichiral spinors in four dimensions. Combining the left- and rightmoving
states to closed string states, 64 states in each of the NS-NS, NS-R, R-Ns and R-R sector arise. Their
representation under the algebra su(2) ⊗ su(2) for the uncompact space is deduced by decomposing the
products of left-and rightmoving states into irreducible representations. The trace, antisymmetric and
symmetric part of the product of the four dimensional vectors from the left- and rightmoving NS sector,
form a dilaton, B-field and graviton in the uncompact space, where the combinations of the vectors
with the six scalars and the scalars with each other in the NS-NS sector provide the four dimensional
spectrum with 12 graviphotons and 36 scalars. In the NS-R sector the decomposition of the vector with
the four fermions gives four dilatinos and four gravitinos and the combination of the six scalars with the
four fermions lead to 24 fermions. The R-NS sector contains also four dilatinos, four gravitinos and
24 fermions, but each has the opposite chirality as in the fields in the NS-R sector. The product of a
chiral an antichiral fermion in four dimensions, decompose for the massless case into two scalars and a
vector field. Hence the combination of four chiral and four antichiral fermions in the R-R sector lead
to 16 vector potentials and 32 scalars. The massless spectrum achieved that way by the dimensional
reduction of the massless Type IIA closed string states fit into a N = (4, 4) supergravity multiplet. The
trivial holonomy in the compact space, which was assumed by the decompostion of the states, leaves all
supercharges unbroken and hence the 32 supercharges of Type IIA form eight supersymmetry generators
in four dimensions.
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Untwisted sector

The states from the initial closed string states in ten dimensions, which are invariant under the Z2 × Z2
projection, form the set of untwisted massless states on the orbifold. The 12 graviphotons and 24 scalars
from the NS-NS sector are projected out. Further one gravitino, dilatino and six fermions are preserved in
each of the NS-R and R-NS sector. In the R-R sector 1/4 of the states survive the point group projection,
s.t. four vector potentials and eight scalars remain. As explained in section 4.1.2 only eight of the 32
supercharges in Type IIA are preserved by the point group. The field content formed by the untwisted
states, fit into a griviton multiplet three vector and four hyper multiplets of N = (1, 1) supersymmetry in
four dimensions. By the orientifold projection ΩR half of those states get further projected out, s.t. in
the NS-NS sector ten scalars, including the dilaton, and the graviton are preserved, the NS-R and R-NS
sector form invariant linear combinations, s.t. one dilatino, one gravitino and six other fermions remain
and in the R-R sector the symmetric part in the tensor product of the antichiral and chiral fermion are
projected out, leaving in total three scalars. The orientifold action reduces the supersymmetry further to
N = 1 in four dimensions and the states remaining from the massless Type IIA closed string states on the
Z2×Z2×ΩR orientifold form a graviton multiplet and seven chiral multiplets. It seems that ΩR preserves
from each of the N = (1, 1) vector multiplet and hyper multiplet a N = 1 chiral multiplet. Comparing
the number of multiplets with the Hodge numbers of a Z2 × Z2 orbifold (as in section 4.1.5), the vector
multiplets in the untwisted states correspond to the number of non-tivially closed (1, 1)-forms in the
bulk h1,1

un (as in (4.121)), where the number of hyper multiplets is related to the number of non-trivially
closed (2, 1)-forms in the bulk by h2,1

un + 1 [84, 85]. Since the (1, 1)-form get mapped to themselves by
the orientifold projection their eigenvalue to ΩR be ±1. Since only chiral multiplets remain from each
vector multiplet, by the correspondence of the differential forms and the supersymmetry multiplets8, it
seems that the (1, 1)-forms from the bulk transform with a sign under ΩR.

Twisted sector

According to (4.43), twisted states from closed strings, which arise due to the non-trivial structure of
the orbifold fixed points can arise. Applying the twisted boundary conditions in (4.43) to the Z2 × Z2
orbifold, the moddings of the bosonic and fermionic oscillators from twisted strings at a g fixed point get
shifted by 1/2 in the direction on which the g acts non-trivially. For example θ from (4.86) acts on the
directions xi, with i ∈ {4, ..., 7}, non-trivally, thus the bosonic and fermionic oscillators modes in those
directions are given by

i ∈ {4, ..., 7}


αi

n−1/2 for bos. sector

bi
n for NS sector

bi
n−1/2 for R sector

, n ∈ Z , (4.128)

where for the remaining directions the moddings of the oscillators do not change. The oscillator moddings
for the other twisted sectors are determined analogously. The ground state energies Etw

0 for the twisted
NS and R sector get modified due to the different moddings of the oscillators. The ground state energies
are determined by normal ordering constants arising from commuting oscillator modes in the quantized
theory. Therefor the ground state energy gets the contribution Zµ from oscillator modes for each directions
µ by

Zµ =
1
2

∑
w>0

w −
1
2

∑
w+r>0

(w + r) , (4.129)

8 for more details see [86].
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4.2 Intersecting D-branes on Z2 × Z2 ×ΩR-Orientifolds

with r ∈ {0, 1/2} for the R/NS sector and w the moddings of the oscillators. The first term is the
contribution from the bosonic oscillators and the second term the contricbution from the fermionic
oscillators. For a g ∈ Z2 twisted sectors, w ∈ Z for the directions in which g acts trivially and w ∈ Z + 1

2
for directions in which g acts non-trivially and the ground state energies are given by then given by

Etw
0 =

9∑
µ=2

Zµ = 0 , (4.130)

for the NS and R sector. Hence the twisted NS and R ground states are massless and because the both
twisted sectors contain each four zeromodes, which satisfy the four dimensional Clifford algebra, the
ground states are four fold degenerate. A GSO-projection, which is consistent with the choice for ΩR,
preserves in the left-and rightmoving sector the same two massless states in the twisted NS sector, where
in the twisted R sector the opposite states are preserved in the left- and rightmoving sector. From the four
dimensional point of view, the twisted NS states transform as scalars, where in each of the twisted left-
and rightmoving R sector the two states transform as a fermion, but with opposite chiralities. Each Z2
fixed locus contains four scalars from the NS-NS sector, four fermions from the NS-R and R-NS sector
and a vector field and two scalars in the R-R sector. They fit into a N = (2, 2) vector multiplet. However
the second Z2 of the point group breaks the N = (2, 2) supersymmetry to N = (1, 1) by projecting out
half of the twisted states. TheN = (2, 2) vector multiplet decomposes into anN = (1, 1) vector multiplet
and a N = (1, 1) hyper multiplet. Which of those multiplets are preserved depends on the choice of
discrete torsion. For the case without discrete torsion the vector multiplet is preserved, where for the case
with discrete torsion the hyper multiplet is preserved. Comparing the number of multiplets in the twisted
sector with the Hodge numbers from the exceptional divisors of Z2 × Z2 orbifolds, the vector multiplets
can be associated to the (1, 1)-forms, where the hyper multiplets correspond to (2, 1)-forms, which is
consistent with the behaviour under discrete torsion.

4.2.2 Massless spectrum from intersecting D6-branes

Supersymmetric D6-branes

D6-branes are six dimensional dynamical objects spreading out a seven dimensional worldvolume Σ7 in
spacetime. Their loci are determined by Neumann boundary conditions along the directions tangent to
brane volume and Dirichlet boundary conditions along directions normal to the brane volume. D6-branes
are spacetimefilling in the uncompact space and wrap 3-cycles in the compact space X6

Σ7 = R1,3 × Π3 ⊂ R1,3 × X6 , with Π3 ∈ H3(X6) . (4.131)

A D6-brane carries a brane tension given by µ6 =
(α′)−7/2

(2π)6 and therefor Σ7 tends to minimize its volume.
Hence the D6-brane has to wrap a volume minimizing 3-cycle, which means Π3 has to be a sLag cycle
[87–90]. According to the discussion in section 4.1.4, D6-branes on a T 6 have in each complex plane the
shape of straight lines. Generalizing the case for intersecting branes in section 3.2.2 to three complex
dimensions, D6-branes intersect at points on the T 6 and unlike to the uncompact example on C, the
identification of points differing by lattice vector leads possibly to more than one intersection point.
Chan-Paton labels of open string states attached to a single stack of D6-branes form states of the adjoint
representation adj ⊆ � ⊗ � of the gauge group on that stack. String states from open strings attached
to two different stacks of D6-branes a and b are located at the intersection points of a and b on the T 6

and their Chan-Paton labels transform in the bifundamental representation
(
�a,�b

)
of the gauge groups
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Chapter 4 Type IIA compactification on orientifolds

on a and b. From the four dimensional point of view the string states on a single stack of D6-branes
lead to gauge fields of the corresponding gauge symmetry and strings states on two different stacks of
D6-branes behave like chiral matter. Since the D6-branes fill out the whole uncompact space, open
strings on D6-branes enjoy N boundary conditions in the uncompact space and can propagate there freely.
The mass of an open string state on two D6-banes a and b is given by [49, 91]

α′M2 =
Y2

4π2α′
+ NB + NF + r

3∑
h=1

vh
ab − r , r =

0 R sector
1
2 NS sector

, (4.132)

where vh
ab = θabh/π, with θh

ab the relative angles of the branes a and b on the h-th complex plane and Y
measuring the distance stretched by the string. The lightest states at intersection points are given by [92]

α′M2 =
(~r −~vab)2

2
+

3∑
h=1

1
2
|vh

ab|
(
1 − |vh

ab|
)
−

1
2
, (4.133)

where ~vab = (0, v1
ab, v

2
ab, v

3
ab)T and ~r = (r0, r1, r3, r4)T , with ri ∈ Z for NS states and ri ∈ Z+ 1

2 for R states,
where r0 = 0 denotes a scalar, r0 = ±1

2 a chiral, antichiral Weyl spinor and r0 = ±1 vector fields in four
dimensions. The four dimensional spectrum of light states in four dimensions is listed in table 4.2 for the
case where θ1

ab, θ
2
ab > 0 and θ3

ab < 0 [92]. At the intersection points there is always a massless fermion in

sector ~r −~vab α′M2 4d field

NS:
(
0,−1 + v1

ab, v
2
ab, v

3
ab

)
1
2

(
−v1

ab + v2
ab − v

3
ab

)
scalar(

0, v1
ab,−1 + v2

ab, v
3
ab

)
1
2

(
v1

ab − v
2
ab − v

3
ab

)
scalar(

0, v1
ab, v

2
ab, 1 + v3

ab

)
1
2

(
v1

ab + v2
ab + v3

ab

)
scalar(

0,−1 + v1
ab,−1 + v2

ab, 1 + v3
ab

)
1 − 1

2

(
v1

ab + v2
ab − v

3
ab

)
scalar

R:
(
−1

2 . −
1
2 + v1

ab,−
1
2 + v2

ab,
1
2 + v3

ab

)
0 Weyl spinor

Table 4.2: Light open string states at intersection points of D6-branes and their representation in the uncompact
space.

four dimensions and for
3∑

h=1

θh
ab = 0 , (4.134)

the NS sector provides the four dimensional spectrum with a massless scalar, s.t. an N = 1 chiral
multiplet in four dimensions is formed at each intersection point. The condition (4.134) is satisfied, when
both D-branes a and b wrap 3-cycles with the same calibration phase. The calibration phase determines
which subset of supercharges from the bulk is preserved on the brane [88], since the D6-branes are BPS
states in Type IIA [46]. When both branes share the same calibration phase it means they preserve the
same supercharges on their volume. Further the condition (4.134) is similar to the condition (4.36) for
twist vectors for orbifolds preserving one killing spinor. The killing spinors preserved on the D-branes a
and b are related by a S U(3) transformation according to (4.134), which is the supersymmetry condition
on orbifolds.
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4.2 Intersecting D-branes on Z2 × Z2 ×ΩR-Orientifolds

Z2 × Z2 × ΩR-projection

In section 4.1.5 it was discussed that Z2 × Z2 invariant cycles wrap twice a torus cycle, which passes
through Z2 × Z2 fixed points. That means a D6-brane a wrapping Na times a cycle Π3

a on the torus,
becomes under the Z2 × Z2 action a brane wrapping Na

2 times an orbifold cycle. Under the action of the
spacetime involution R, a gets mapped to an image brane a′, which wraps the image cycle Π3

α′ , where
R : Π3

a → Π3
a′ . On the level of the gauge groups this means, that a U(Na) × U(N′a) gauge group on the

torus, with U(N′a) the gauge symmetry on the image branes to the stack generating U(Na), gets broken by
the point group to a U(Na/2) × U(N′a/2) gauge symmetry and the spacetime refelection further reduces
the gauge symmetry to U(Na/2) [81]:

U(Na) × U(Na)
Z2×Z2
−−−−−→ U(Na/2) × U(Na/2)

R
−→ U(Na/2) . (4.135)

However if the stacks a and a′ lie on top of an O-plane, they can be viewed as a single stack with 2Na

branes getting mapped by R to themselves. The gauge symmetry of D-branes on top of O-planes are
determined by the effect of worldsheet parity on the Chan-Paton labels: Open string states on a stack on
top of an O-plane have to form invariant states under worldsheet parity. Worldsheet parity interchanges
the two open string endpoints and therefore Ω acts on the Chan-Paton labels as transposing them

Ω : |i j〉 → γ| ji〉γ−1 , (4.136)

with γ containing the action of Ω on the gauge indices. Acting twice with Ω has to give back initial state

Ω2 : |i j〉 → γ
(
γ| ji〉γ−1

)T
γ−1 = |i j〉 (4.137)

leading to γ = ±γT . The condition is solved by γ = 1N for the plus sign and by γ = i
(

0 1N/2
1N/2 0

)
for

the minus sign. Recalling the open string boundary conditions (3.6), (3.7) and inserting the open string
mode expansions into them, one receives for N boundary conditions on both end points

Xµ(σ0, σ1) = xµ +
2πα′

`
pµσ0 + i

√
2α′

∑
n∈Z\{0}

1
n
α
µ
ne−iπnσ0/` cos

(
nπσ1/`

)
, (4.138)

and for D boundary conditions on both end points

Xµ(σ0, σ1) = xµ +
1
`

cµσ1 +
√

2α′
∑

n∈Z\{0}

1
n
α
µ
ne−iπnσ0/` sin

(
nπσ1/`

)
. (4.139)

Using the fact that worldsheet partity acts on the strings as

ΩR : Xµ(σ0, σ1) =

Xµ(σ0, ` − σ1) for N
−Xµ(σ0, ` − σ1) for D

, (4.140)

it can be deduced that the oscillators transform as ΩR : αµn → α
µ
n. Analogous the fermionic oscillators

transform as ΩR : bµn+r → eiπ(n+r)bµn+r. The massless open string states then transform as

ΩR : bµ
−1/2|0〉NS ⊗ |i j〉 → iηNSbµ

−1/2|0〉NS ⊗ γ|i j〉γ−1 , bµ0 |0〉R ⊗ |i j〉 → ηRbµ0 |0〉R ⊗ γ|i j〉γ−1 , (4.141)
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with ηNS/R capturing the transformation behavior of the ground states ΩR : |0〉NS/R → ηNS/R|0〉NS/R. For
ηR = −iηNS =: η, the massless open string states stay invariant, when the Chan-Paton factors transform as

|i j〉 = ηγ|i j〉γ−1 . (4.142)

Since Ω is an involution on the worldsheet η = ±1. For those two choices, the Chan-Paton factors
belonging to fundamental representations of [41]

|i j〉 ∈

S O(N) for |i j〉 = γ|i j〉γ−1

US p(N) for |i j〉 = −γ|i j〉γ−1 (4.143)

preserve the massless NS and R open string states. The choice for η has to be specified in accord with
tadpole cancellation condition. As going to be explained in section 4.2.3, the total R-R charge needs to
vanish. That means the amplitudes for interaction of O-planes and D-branes via R-R closed strings among
each other needs to interfere destructively [41]. Therefore the amplitude of the interactions between
O-planes with D-branes need to have the opposite sign as O-planes with O-planes and D-branes with
D-branes. For Type IIA strings on a Z2 × Z2 × ΩR orientifold this is the case for the Chan-Paton factors
belonging to US p(N) [81].

The massless spectrum in four dimensions received from intersection D6-branes a and b on a Z2 ×

Z2 × ΩR orientifold is listed in table 4.3 [81]. Iab is the intersection number of the cycles, wrapped by a
and b, and Gα ∈ {U(Nα), S O(Nα),US p(Nα)}, with α ∈ {a, b}, the gauge symmetry on the branes. When
branes intersect with their orientifold images one gets beside bifundamental matter also chiral matter
in the symmetric and antisymmetric irreducible representations Symα ⊂ �α ⊗ �α and Antiα ⊂ �α ⊗ �α.
Their multiplicity depend on the number of O-planes NO6.

sector multiplicity rep. Ga ×Gb

a 1
(
adja, 1

)
b 1

(
1, adjb

)
a ∩ b + a′ ∩ b′ Iab

(
�a,�b

)
a ∩ b′ + a′ ∩ b Iab′ (�a,�b)

a ∩ a′ + a′ ∩ a 1
2
(
Iaa′ − NO6Ia,O6

) (
Syma, 1

)
1
2
(
Iaa′ + NO6Ia,O6

)
(Antia, 1)

Table 4.3: Gauge representation of massless open strings states on intersecting branes and their number of families
in four dimensions.
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4.2.3 Consistency conditions and anomaly cancellation for D6-branes

O6-planes, as well as D6-branes, are charged under the RR 7-form gauge fields C7 [41]. From Maxwells
theory for higher dimensions the equations of motion for RR 7-forms are given by

d ∗ dC7 ∝ J , (4.144)

where J is the R-R charge density and ∗ the Hodge star. Integrating (4.144) over a compact space, the
left-hand side of (4.144) has to vanish due to Gauss law. Hence the right-hand side must also vanish, s.t.
the total R-R charge in the compact space has sum up to zero. Otherwise the interactions of O6-planes
and D6-branes via R-R closed strings lead to divergent amplitudes, called tadpoles. The R-R charge of an
O6-plane is -4 times the RR charge of a D6-brane and to cancel the charge of an O-plane four D-branes,
wrapping cycles from the same homology class as the O-plane cycle, has to be inserted [54, 55, 83].
Hence the tadpole cancelation condition is given by∑

a

Na
[
Π3

a

]
+

∑
a′

Na
[
Π3

a′
]
− 4NO6

[
Π3

O6

]
= 0 . (4.145)

Due to the presence of chiral matter in the four dimensional spectrum, anomalies in the four dimensional
theory are possible. In [45, 93–97] such anomalies are discussed also for orientifold compactifica-
tions, where some of the arguments are repeated in the following of this section. The possible four
dimensional anomalies are S U(N)3 cubic anomalies, mixed U(1) − a − S U(Nb)2 anomalies and mixed
U(1)-gravitational anomalies, arising from the U(1) and S U(N) factors in the U(N) gauge groups on the
brane volumes9. The cubic anomaliesAaaa, coming from the current ψσψ with ψ a chiral fermion in the
fundamental representation �a of S U(Na), are proportional to the trace

Aaaa
�a

= Tr
(
T a {

T a,T a}) , (4.146)

for each generators T a of S U(Na), where the trace is taken over indices in the gauge representation.
Using the relations 10

TrSyma F2 = (Na + 4)Tr�a , TrAntia F2 = (Na − 4)Tr�a , (4.147)

with F the fieldstrength of S U(Na) and Trα the trace taken over the gauge indices in the α representation,
the anomalies coming from chiral fermions in the antifundamental, symmetric and antisymmetric
representations �a, Syma and Antia are related to the anomaly from fundamental fields by

Aaaa
�a

= −Aaaa
�a

, Aaaa
Syma

= (Na + 4)Aaaa
�a

, Aaaa
Antia = (Na − 4)Aaaa

�a
. (4.148)

For an intersecting D6-brane setup with O6-planes, the total cubic S U(Na)3 anomalyAaaa
total for coming

from all chiral fields with the corresponding multiplicity from table 4.3 is given by

Aaaa
total =

∑
b,a

Nb (Ia′b − Iab) +
Na − 4

2
(
Iaa′ + NO6Ia,O6

)
+

Na + 4
2

(
Iaa′ − NO6Ia,O6

)Aaaa
�a

, (4.149)

9 U(N) ' (S U(N) × U(1)) /ZN as will be explained in section 6.2.2.
10 Given in appendix B of [86]
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and using Iab =
[
Π3

a

]
·
[
Π3

b

]
one can factor out Π3

a, s.t the total cubic anomaly is proportional to∑
b

Nb
([

Π3
b

]
+

[
Π3

b′
])
− 4NO6

[
Π3

O6

]
(4.150)

and hence vanishes, when tadpole cancelation is satisfied. The mixed U(1)a − S U(Nb)2 anomalies are
given by

Aabb = Tr
(
QaT bT b

)
, (4.151)

where Qa is the U(1)a generator. Again using the relations (4.147), the mixed U(1)a−S U(Nb)2 anomalies
are proportional to

Aabb ∝
∑

b

Nb (Iab − Ia′b) , (4.152)

and hence non zero. However they can get canceled by a four dimensional Green-Schwarz mechanism
[92, 98]. In the following the anomaly cancellation is illustrated by using the arguments in [20]. The
terms

∫
Σ7

C5 ∧TrF and
∫
Σ7

C3 ∧TrF2 in the Chern-Simons action in (3.45) express how the gauge groups
on the brane volumes couple to the 5-form and 3-form gauge potentials. First a basis for the H3(X6) is
introduced by

{
[αk] ,

[
βk

]}
k∈{1,...,4}

, where [αk] are dual to
[
βk

]
in the sense that [αk] ·

[
βl
]

= δl
k. Now let

the stack a wrap a cycle in the internal space from the homology class [αk] and the stack b a cycle
[
βl
]
.

Then integrating the 5-form C5 on the stack a and the 3-form C3 on the stack b over the internal space
leads to a 2-form B2 and scalar θ in four dimensions

Bk
2 =

∫
[αk]

C5 , θl =

∫
[βl]

C3 . (4.153)

Remembering that the C5 gauge potential is the magnetic dual of C3 in ten dimensions and they are
related via dC5 = ∗dC3, the four dimensional relation θl and Bk

2 follows11

∂µBk
νρ = εµνρσ∂

σθl . (4.155)

Let the brane a containing the U(1)a wrap the cycle Π3
a and the brane b, containing the S U(Nb) factor wrap

the cycle Π3
b. Then integrating out the internal space from the Chern-Simons term Na

∫
R1,3×Π3

a
C5 ∧ TrFa

from the brane a and
∫
R1,3×Π3

b
C3 ∧ TrFb

2 from the brane b the four dimensional couplings of the U(1)a to

Bk
2 and S U(Na) to θl is given by

Nasak

∫
R1,3

Bk
2 ∧ TrFa , ql

b

∫
R1,3

θl ∧ TrFb
2 , (4.156)

where sak =
[
Π3

a

]
· [αk] and ql

b =
[
Π3

b

]
·
[
βl
]

contain the overlap of the brane cycles with the cycle wrapped
by the gauge potentials. The field Bk

2 couples to the U(1)a gauge boson and the field θl to two S U(Nb)
gauge bosons and due to the relation (4.154) the U(1)a can couple to two S U(Nb)’s via the exchange

11 Integrating the equation dC5 = ∗dC3 over the compact space one receives

∂µ

∫
[αk]

C5 = εµνρσ∂
σ

∫
[βl]

C3 , (4.154)

where C5 fills out the directions ν and ρ in the uncompact space. Inserting the definitions of Bk
2 and θl the relation in four

dimensions ∂µBk
2 = εµνρσ∂

σθl follows.
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of the scalar field θl, generating four dimensional Green-Schwarz terms. The Green-Schwarz terms
interfere destructively with the U(1)a−S U(Nb)2 anomaly terms and therefor the mixed U(1)a−S U(Nb)2

anomalies are canceled. Similar the mixed gravitational anomalies also vanish12. However the coupling
of the U(1) gauge boson to the field Bk

2 breaks the U(1) symmetry through a Stückelberg mechanism,
where θl behaves as an axion with a shift symmetry13. The broken U(1) remains as a discrete symmetry
[99]. The non-anomalous U(1), is a linear combination of the other U(1) and its generator QY is given by
a linear combination of the other U(1) generators Q by

QY =
∑

a∈{U(1)}

caQa , (4.157)

where the coefficients ca are determined by the conditons∑
a

Na (sak − sa′k) ca = 0 , ∀k ∈ {1, 2, 3, 4} . (4.158)

4.3 Model building on T6
SO(12)

/(Z2 × Z2 × ΩR)

4.3.1 Towards realistic four dimensional particle physics

sector U(4) × U(2) × U(2)
ab + ab′ 3 × (4, 2, 1)
ac + ac′ 3 ×

(
4, 1, 2

)
bc + b′c (Ibc + Ib′c) × (1, 2, 2)

Table 4.4: Pati-Salam from intersecting branes.

The results achieved in [58, 81, 82, 100–102] are just some examples for the progress in constructing
realistic four dimensional particle physics models with intersecting D-branes on orientifolds. There has
been also some attempts to construct intersecting brane models on non-factorisable orientifolds as in
[77, 103–105]. The term "realistic" in the context of string compactifiaction is used for the following six
criteria:

(i) The maximal supersymmetry in the massless four dimensional spectrum should be N = 1.
Otherwise one receives a non chiral spectrum.

(ii) The gauge group of the theory should be either S U(3) × S U(2) × U(1), where the U(1) has the
properties of hypercharge, or a GUT group of the SM, s.t. it is possible to break the gauge group to
the SM.

(iii) The massless chiral spectrum should contain at least three families of quarks and leptons.

12 For more details see [86].
13 The four dimensional coupling of B2 and the U(1) gauge bosonis given by cB2 ∧ F in the Lagrangian, with F the U(1)

fieldstrength. Substituting the field B2 by its magnetic dual scalar θ by using the relation (4.155), the corresponding term
in the Lagrangian becomes 2 (cA + dθ)2, which indicate massterms for the gauge bosons. The term is symmetric under
A → A + dΛ, when the scalar θ admits the simultaneous shift symmetry of θ → θ − cΛ, s.t. only a subset of the U(1)
symmetry is preserved.
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sector U(3)B × U(2) QB QL Qb QI1 QI1 Field
a1b + a1b′ 3 × (3, 2) 1 0 -1 0 0 QL

a2b + a2b′ 3 × (1, 2) 0 1 -1 0 0 L
a′1c1 3 ×

(
3, 1

)
-1 0 0 1 0 u

a′1c2 3 ×
(
3, 1

)
-1 0 0 0 1 d

a′2c1 3 × (1, 1) 0 -1 0 1 0 νR

a′2c2 3 × (1, 1) 0 -1 0 0 1 eR

bc1 + b′c1 (Ibc + Ib′c) × (2, 1) 0 0 1 1 0 Hu

bc2 + b′c2 (Ibc + Ib′c) × (2, 1) 0 0 -1 0 1 Hd

Table 4.5: Pati-Salam to S U(3) × S U(2) × U(1).

(iv) It should be possible to construct Yukawa couplings between chiral fermions and a scalar field, in
order for the quarks and leptons to gain masses via a Higgs mechanism. It is further desired that
the couplings allow mass hierachies.

(v) Vector-like exotics should be absent in the massless spectrum.

(vi) Absence of anomalies and tadpoles.

The first criterion is satisfied, when the extra dimensions are compactfied on an orientifold described as
described in section 4.1.2 and D-branes are placed, which share the same calibration phase. The gauge
group and particle spectrum is controlled by the number of branes on a stack and the intersection numbers
of the branes. There are two types of models, which can be constructed: In the first type the S U(2) factor
comes from a stack of branes with a U(2) symmetry on them and in the second type the S U(2) factor
comes from a stack of branes on top of O-planes with a US p(2) symmetry on them. Both choices are
possible since S U(2) ⊂ U(2) and S U(2) ' US p(2). The amount and wrapping numbers of D6-branes
are restricted by the tadpole cancellation condition. Further, anomaly cancellation leads to the U(1)
charges of the fields. In order to allow Yukawa couplings, the D-brane configuration must obey a certain
geometry: A Yukawa coupling between three fields accrues from worldsheet instantons connecting the
three fields [106]. This is only possible, when the branes on which the three fields sit, form the boundary
for worldsheet instantons. When three stacks of branes intersect non trivially and no stack is parallel
to the other two stacks, worldsheet instantons can stretch between the D-branes and the fields, sitting
at their intersection points, couple via the instanton and allow Yukawa couplings. Since the instanton
strength is supressed by its area spread out in the internal space, mass hierachies can naturally arise in
intersecting D-brane models and different masses in the low energy mass spectrum can be explained by
the global geometry of the internal space. A simple GUT model containing the correct Yukawas is given
by U(4) × U(2) × U(2) Pati-Salam, for example discussed in [107]. In order to realize Pati-Salam from
intersecting branes, one needs at least three stacks of branes. Let the three stacks be denoted by a, b and
c. All three stacks are placed apart from O-planes, s.t. orientifold images a′, b′, c′ need to be included to
the setup. The number Nα of D-branes on the stacks α ∈ {a, b, c} are

Na = 4 , Nb = Nc = 2 . (4.159)

Their intersection numbers have to be

Iab + Iab′ = 3 , Iac = −3 , Iac′ = 0 , Ibc + Ib′c , 0 . (4.160)
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Then one gets three generations of bifundamentals in S U(4) × S U(2) and a non vanishing amount of
bifundamentals in S U(2)2:

3 × (4, 2) , 3 ×
(
4, 2

)
∈ S U(4) × S U(2) , (Ibc + Ib′c) × (2, 2) ∈ S U(2) × S U(2) . (4.161)

By splittint the stack a into two stacks a = a1 + a2, with Na1 = 3 and Na2 = 1, the group U(4) breaks to

U(4)
a→a1+a2
−−−−−−−→ U(3)B × U(1)L (4.162)

and the fields (4, 2) and
(
4, 2

)
decompose into

(4, 2)→ (3, 2) ⊕ (1, 2) ,
(
4, 2

)
→ (3, 2) ⊕ (1, 2) . (4.163)

By further splitting the stack c into c = c1 + c2, with Nc1 = Nc2 = 1, the second U(2) gauge group breaks
to

U(2)
c→c1+c2
−−−−−−−→ U(1)I1 × U(1)I2 (4.164)

and the fields (2, 2) and
(
3, 2

)
⊕ (1, 2) decompose into(

3, 2
)
⊕ (1, 2)→

(
3, 1

)
⊕

(
3, 1

)
⊕ (1, 1) ⊕ (1, 1) , (2, 2)→ (2, 1) ⊕ (2, 1) . (4.165)

The total number of chiral fields and its representation under the gauge groups, before and after the
Higgsing14, are listed in table 4.4 and 4.5, where QB and Qb are the generators of the U(1)’s in U(3)B
and U(2). When the remaining massless U(1)Y is generated by the following linear combination

QY =
1
6

QB −
QL + QI1 − QI2

2
, (4.166)

U(1)Y serves as the SM-like hypercharge and the fields listed in table 4.5 are indeed SM-like chiral
matter. In order not to overshoot the tadpole cancellation condition, the cycles Π3

α, wrapped by the branes
α ∈ {a, b, c}, need to satisfy ∑

α∈{a,b,c}

Nα[Π3
α] +

∑
α∈{a′,b′,c′}

Nα[Π3
α] ≤ 4NO6[Π3

O6] . (4.167)

If more branes are needed to saturate the tadpole cancellation, additional fields on the extra branes
arise. In order not to spoil the SM-like particle content in low energies, the new fields should not form
vector-like exotics and a mechanism, to give them high masses and decouple them from the low energy
spectrum, needs to be implemented. In Pati-Salam models arising from intersecting branes, as in (4.5), it
is possible to construct the trilinear couplings

(QLHuu) , (QLHdd) , (LHuνR) and (QLHdeR) , (4.168)

which gives the quarks and leptons masses, proportional to the coupling strength, when vev’s for Hu and
Hd are turned on.

14 The seperation of branes from a stack is denoted as Higgsing, since massless states, from strings attached to both stacks,
become massive and the process can be viewed as a Higgs mechanism.
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4.3.2 Supersymmetric toy model on T6
SO(12)

/(Z2 × Z2 × ΩR)

Let six stacks of D6-branes α ∈ {a, b, c, h1, h2, h3} wrap Nα times the 3-cycles Π3
α on the T 6

SO(12), with
wrapping numbers given in table 4.6. The stacks a and c are oblique to the O-planes, where the

stack α Π3
α =

∏3
h=1(nh

α,m
h
α) Nα

a (2, 0) × (1, 1) × (1,−1) 6
b (0, 1) × (2, 0) × (0,−1) 2
c (1, 1) × (1,−1) × (2, 0) 2
h1 (2, 0) × (0, 1) × (0,−1) 2
h2 (0, 1) × (0,−1) × (2, 0) 6
h3 (0, 1) × (2, 0) × (0,−1) 6

Table 4.6: Intersecting D6-branes on T 6
SO(12)

stacks b, h1, h2 and h3 are on top of O-planes. The stacks b and h3 are parallel but separated from
each other. In order for the D-branes to wrap calibrated cycles with the calibration phase ϑ = 0, the
deformation parameters of the torus have to be chosen to be Im(τ1) = Im(τ2) = Im(τ3) = 1 and
Re(τ1) = Re(τ2) = Re(τ3) = 0. The tadpole cancellation condition (4.145) is satisfied and therefore
non-abelian and mixed anomalies are absent from the resulting model. The gauge symmetry arising from
the D-branes is U(3) × S U(2)2 ×US p(6)2, where the S U(2) factors are generated by the stacks b and h1.
The non-vanishing intersection numbers for the intersecting branes are15

Iab = 2 , Iac = −4 , Ibc = 2 , Iah2 = −2 , (4.169)

Iah3 = 2 , Ich1 = 2 , Ich3 = −2 .

The four dimensional spectrum of chiral matter resulting from string states at the intersection points is
listed in table 4.7. Two families of lefthanded quark-like fields, four families of righthanded quark-like

sector U(3)a × S U(2)b × S U(2)h1 × US p(6)h2 × US p(6)h3 U(1)a U(1)c Field
a ∩ b 2 × (3, 2, 1, 1, 1) +1 0 Q
a ∩ c 4 ×

(
3, 1, 1, 1, 1

)
-1 +1 q

b ∩ c 2 × (1, 2, 1, 1, 1) 0 -1 H
a ∩ h2 2 ×

(
3, 1, 1, 6, 1

)
-1 0 φ1

a ∩ h3 2 ×
(
3, 1, 1, 1, 6

)
+1 0 φ2

c ∩ h1 2 × (1, 1, 2, 1, 1) 0 +1 h
c ∩ h3 2 × (1, 1, 1, 1, 6) 0 -1 ϕ

Table 4.7: Four dimensional spectrum of chiral matter.

fields and two Higgs-like fields are contained in the toy model. The remaining fields are exotic chiral
matter, because, due to their charge under the US p(6) gage groups, they cannot even remotely be
associated to any SM particle. Both U(1) factors are anomaly free as can be seen from the vanishing of
the total U(1) charges of the chiral fields. However non of the U(1)’s have the properties to be the SM
hypercharge U(1). Even though the above model is just a toy model, several aspects of model building on

15 Remember that the intersection number on the T 6
SO(12) is given by Iab = 1

2

∏3
h=1(nh

amh
b − nh

bmh
a).
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the T 6
SO(12)/ (Z2 × Z2 ×ΩR) orientifold can be elucidated. As already pointed out in [77] it is not possible

to have models with an odd number of families, which is why one has to construct models with at least
four generations and find a mechanism to make the extra families massive in such a way that only three
families remain in the low energy limit. However the tadpole cancellation condition is more restrictive
for the non-factorisable orientifold that for the factorisable orientifold, since the number of O-planes
is reduced to half of the number as possible on factorisable orientifolds, which consequently reduces
the possible number of wrappings for the D-branes. In order not to overshoot the tadpole cancellation
condition the wrapping numbers for the stack carrying the S U(3) color symmetry have to be minimized.
This was tried for the stack a in table 4.6. The electroweak S U(2) factor can be generated from branes
on top of O-planes. That allows to spare half of the amount of branes, which are needed when the S U(2)
factor comes from a U(2) gauge group. However at least one further stack is needed, which intersects
non-trivially with the stacks containing the S U(3) and S U(2) gauge groups. Otherwise massterms cannot
be constructed. If the third stack had a U(2) symmetry on it, by seperating the stack to two stacks and
breaking the U(2) to U(1)×U(1), up- and down-like quarks and two Higgs fields, connecting the left-and
righthanded quarks, could be realized. However tadpole cancellation only allowed for the stack c in table
4.6 a U(1) gauge symmetry. The only realistic feature the above model realizes is allowing Yukawa
couplings for the fields Q, H and q. Let the Yukawa coupling of the fields {Qi}i∈{1,2}, {H j} j∈{1,2} and
{qk}k∈{1,...,4} be given by

LYuk = Yi jkQiH jqk , (4.170)

with i, j, k labeling the families of the three fields. The factor Yi jk gives the coupling strength of the
trilinear coupling. The term LYuk can be expressed as the product 3 ⊗ 1 ⊗ 3 in the S U(3) representation
and as 2 ⊗ 2 ⊗ 1 in the S U(2) representation. The antisymmetric part of both tensor products contain a
singlet, hence LYuk is invariant under the S U(3)× S U(2) factor of the model. Since the U(1) charges add
up to zero in LYuk and the fields Q, H and q are not charged under the remaining gauge groups, LYUk is
indeed a gauge invariant coupling in the model and the fields Q and q acquire mass by giving the fields
H j vev’s through a Higgs mechanism.

It is difficult to get a spectrum with four families and simultaneously gauge groups, which are big
enough to reproduce the whole SM gauge group with the SM field content from the particular orientifold.
As can already be seen in table 4.7 only the field q has four generations, where for the other fields there
are just two families. However turning on discrete torsion might relieve the constraints on the D-brane
wrapping numbers. In order to fully turn away from the T 6

SO(12) has to investigate, whether discrete
torsion does not bring along more structure for model building [108].
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CHAPTER 5

Yukawa couplings from D6-branes on T6
SO(12)

As discussed in section 4.3.1, there is the hope that realistic four dimensional particle physics models
can be realised in orientifold models with intersecting branes on them. It is then necessary that one can
compute Yukawa couplings in for the models. The couplings in orientifolds are inherited by the couplings
in the underlying torus, which is why it is necessary to be able to compute Yukawa couplings on the
torus as an intermediat step. In [106] Yukawa couplings from intersecting branes on factorisable tori
where already computed. In this chapter the generalization to Yukawa couplings on a non-factorisable is
presented. It is based on the discussion in [109].

5.1 Yukawa couplings from D6-branes

5.1.1 Yukawa couplings from worldsheet instantons

A worldsheet instanton is a worldsheet with the topology of a disc embedded into the inernal space, s.t. it
is localized at a point in the uncompact space and can be viewed as an instanton in four dimensions. They
are discussed in [52, 76, 110–112]. Since boundaries of worldsheets are attached to D-branes, worldsheet
instantons are stretched between D-branes. Let D be a worldsheet with the topology of a disc and ∂D = d
its boundary. Let the 3-cycles Π3

α ∈ H3(X6) in the internal space X6, be wrapped by the D6-branes α.
The embedding f of D into X6 has to be given by the following properties [76]

f : d → f (d) ∈ ∪αΠ3
α , D→ f (D) ∈ H2

(
X6,∪αΠ3

α

)
, (5.1)

where H2
(
X6,∪αΠ3

α

)
is the space of two dimensional surfaces in X6, with their boundaries on ∪αΠ3

α.
Further f (D) has to satisfy the classical equations of motion, which for worldsheets translates to the
condition that the area, streched out by the worldsheet, has to be minimized. Hence f (D) has to be
calibrated by the Kähler 2-form, s.t. its volume is given by

Vol ( f (D)) =

∫
f (D)

ω2 , (5.2)

which means f (D) wraps holomorphic 2-cycles. Since the worldsheet also couple to the U(1) gauge field
on the branes, it can collect phases, due to Wilson lines θα on the branes, which is given by [76]

e2πiθα = e2πi
∫

f (d) Aα , (5.3)
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where Aα is the U(1) gauge field on the brane α. The coupling strength I of the instanton is exponentially
supressed by the worldsheet area and proportional to the U(1) phases [113]

I ∝ exp

− 1
2πα′

∫
f (D)

ω2 + 2πi
∑
α

∫
f (d)

Aα

 . (5.4)

Since on a compact space cycles can be wrapped multiple times, f (D) is specified by its wrapping
number n around the 2-cycle Σ2 ∈ H2

(
X6,∪αΠ3

α

)
. A Yukawa coupling describes the interaction of three

chiral fields. As already discussed, in intersecting D-brane setups, chiral fields are located at intersection
points of two D6-branes. Let the three chiral fields, denoted by φi, φ j and φk, belong to the following
bifundamental representations

φi '
(
�a,�b

)
, φ j '

(
�c,�a

)
, φk '

(
�b,�c

)
, (5.5)

for example in a U(Na) × U(Nb) × U(Nc) gauge theory. Then they sit at the intersection points

i ∈ Π3
a ∩ Π3

b , j ∈ Π3
c ∩ Π3

a , k ∈ Π3
b ∩ Π3

c , (5.6)

where Π3
α, α ∈ {a, b, c}, are the 3-cycles wrapped by the branes α, which carry the gauge group U(Nα).

The Yukawa coupling between the fields φi, φ j and φk is denoted by Yi jk. At the CFT level, tree level
contributions to Yi jk are described by correlation functions of three Vertex operators V i, V j and Vk on a
worldsheet with the topology of a disc D

Yi jk ' 〈V i V j Vk〉D . (5.7)

The vertex operators V i,V j,Vk create the CFT states, which correspond to the fields φi, φ j, φk in
spacetime. That means, from the spacetime point of view, tree level constributions to the Yukawa
coupling Yi jk arise from worldsheet instantons, where the embedding f of D into X6 has to satisfy the
conditions:

• f : D→ f (D) ∈ H2
(
X6,∪α∈{a,b,c}Π

3
α

)
,

• f : d → f (d) ∈ ∪α∈{a,b,c}Π3
α,

• {i, j, k} ∈ f (d) and

•
∫

f (D) ω2 = Vol( f (D)).

The sum over all instantons satisfying the above four conditions lead to the tree level contribution of Yi jk

[106]

Yi jk ∝
∑

f (D)∈H2(X6,∪α∈{a,b,c}Π
3
α)

exp
{
−

1
2πα′

∫
f (D)

ω2 + 2πi
∑

α∈{a,b,c}

∫
f (d)

Aα
}
. (5.8)

5.1.2 Yukawa couplings on the torus

Since the Kähler 2-form on a flat torus is given by the sum ω2 = i
2
∑

h dzh ∧ dzh, with zh = x2h−1 + ix2h,
the condition for f (D) to wrap holomorphic 2-cycles in T 2n becomes

i
2

∫
f (D)

n∑
h=1

dzh ∧ dzh = Vol( f (D)) , (5.9)
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which shows that worldsheet instantons on a torus are given by a sum over n two dimensional surfaces,
each spreading out in a complex plane. Further the boundary of the instanton has to be placed on
D6-branes. As explained in section 4.1.4 D6-branes in tori span in each complex plane a straight line and
therefor, to connect three different intersection points, the instantons have the shape of triangles in each
complex plane. The edges of the triangle lie on D6-branes and the corners of the triangles are intersection
points of the branes. The strategy to compute Yukawa couplings consists of the following steps:

1. Parametrizing the three D6-branes a, b, c on the covering space R6.

2. Calculating the loci of intersection points of the D-branes and finding a labeling i, j, k for the
inequivalent intersection points on the torus.

3. Computing all triangles which connect three intersection points, labeled by the same triplet (i, j, k).

4. Inserting the areas of the triangles into (5.8) and adding Wilson lines if necessary.

5.2 Yukawa couplings on T2

5.2.1 Computing Yukawa couplings on T2

Yukawa couplings on factorisable T 6 have been discussed intensively in [106]. For Yukawa couplings in
factorisable tori, one computes Yukawa couplings on each two dimensional T 2 factor and considers the
product of the two dimensional couplings. In the following it will first be revised how Yukawa couplings
on a T 2 are computed and some arguments in [106] are repeated, in order to adjust them to the more
general case when the non-factorisable torus is discussed. In the following the two dimensional torus
T 2 = R2/Λ2 is considered, whose underlying lattice Λ2 is spanned by the basis vectors

~α1 = R
(
1
0

)
and ~α2 = R

(
Reτ
Imτ

)
, (5.10)

where R2Im(τ) ∈ R and τ ∈ C are the Kähler and complex structure modulus. Let the three branes,
which are denoted by a, b and c, be placed into the torus. Each brane α ∈ {a, b, c} wraps a sLag 1-cycle
Π1
α ∈ H1(T 2) on the torus. The wrapping numbers of α around the cycle, generated by ~α1, is denoted by

nα and the cycle, generated by ~α2, by mα:

Π1
α = (nα,mα) . (5.11)

In order to calculate the Yukawa couplings, the four steps described in section 5.1.2 are followed :

1. Parametrizing the D-branes in R2: The brane α is parametrized in R2 by the set of points {~xα},
which satisfy the equation

~xα = ~sα + R
(
nα + mαReτ

mαImτ

)
µα + ~λα, ~λα ∈ Λ2, µα ∈ R , (5.12)

with

~sα = R
(
−mαImτ

nα + mαReτ

)
εαVol(T 2)
||Π1

α||
2

, ~λα = R
(
p1 + p2Reτ

p2Imτ

)
, p1, p2 ∈ Z . (5.13)

The vector ~sα is a displacement vector, where εα is the shortest distance of the brane to the origin,
measured in units of Vol(T 2)/||Π1

α||. Vol(T 2) is the the volume of the torus and ||Π1
α|| is the lenght
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of the cycle Π1
α

Vol(T 2) = R2Imτ, ||Π1
α|| = R

√
nα2 + 2nα ,mαReτ + |τ|2mα

2 . (5.14)

The displacement vector parametrizes the displacement of the brane to the origin. The lattice
vectors ~λα generate the images of α, generated by lattice translations, in R2.

2. Intersection points on R2: In [106] inequivalent intersection points on a T 2 were labeled by an
integer i ∈ {0, 1, ..., |Iab| − 1}, where Iab = namb − nbma is the intersection number of the cycles Π1

a
and Π1

b on the torus. The notation can be adopted for general tori, but since the aim is to generalize
the concepts to non factorisable tori, one needs to keep track of how the lattice vectors ~λα depend
on the intersection points. The loci (ab) of intersection points of the brane a with b is found by
solving the equation ~xa = ~xb. The solutions are given by

(ab) : R2
∣∣∣
a∩b = ~sb + R

(
nb + mbReτ

mbImτ

)
µb + ~λb , (5.15)

with
µb = (q1 − p1)

ma

Iab
− (q2 − p2)

na

Iab
+
εa

Iab
−

vabεb

||Π1
b|| · ||Π

1
b||
, (5.16)

where

vab =
nanb + Reτ(namb + nbma) + |τ|2mamb

Iab
. (5.17)

One gets an infinit amount of intersection points in R2, where each intersection point is generated
by the images under lattice translation of a and b. However all intersection points, which differ by
lattice vectors, are identified on the torus and only those, which cannot be identified, are inequivalent
intersection points on the torus. Taking a closer look at (5.16) one finds for g.c.d.(na,ma) = 1, that
the parameter µb can be expressed by a label i as

µb =
i

Iab
+
εa

Iab
−

vabεb

||Π1
b|| · ||Π

1
b||
, i ∈ Z , (5.18)

where the intersection points with i ∈ {0, 1, ..., |Iab| − 1} form the set of inequivalent intersection
points on T 2. The index i is used to label the intersection points on the torus and the inequivalent
intersection points on the torus are determined by

(ab) : T 2
∣∣∣
a∩b = ~sb + R

(
nb + mbReτ

mbImτ

)  i
Iab

+
εa

Iab
−

vabεb

||Π1
b|| · ||Π

1
b||

 (5.19)

with
i ∈

Z

IabZ
, (q1 − p1)ma − (q2 − p2)na = i mod Iab . (5.20)

It will turn out for six dimensional tori, the intersection points can be denoted by labels, which
belong to more general three dimensional lattices. Including the brane c one further gets the
intersection points between a and c, given by

(ac) : R2
∣∣∣
c∩a = ~sa + R

(
na + maReτ

maImτ

) (
j

Ica
+
εc

Ica
−

vacεa

||Π1
a|| · ||Π

1
a||

)
+ ~λa , (5.21)
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and intersection points between b and c

(bc) : R2
∣∣∣
b∩c = ~sc + R

(
nc + mcReτ

mcImτ

) (
k

Ibc
+
εb

Ibc
−

vcbεc

||Π1
c || · ||Π

1
c ||

)
+ ~λc , (5.22)

with
j ∈

Z

IcaZ
, k ∈

Z

IbcZ
and ~λa, ~λc ∈ Λ2 . (5.23)

The labels j and k depend on lattice vectors analogous to (5.20).

3. Closed triangles in R2: When the branes a, b and c form closed triangles, the edges of the
triangles lie on the branes and the corners of the triangle are intersection points. The edges ~za,
~zb and ~zc of a triangle 4i jk, whose corners are labeld by i, j and k, are computed by subtracting
the corresponding intersection points (ab), (bc) and (ca) from each other. That way one gets the
expressions

~za = ~va + R
(
na + maReτ

maImτ

) (
j

Ica
+
εc

Ica
−

vacεa

||Π1
a|| · ||Π

1
a||

)
(5.24)

−R
(
nb + mbReτ

mbImτ

)
i

Iab
+ R

(
p1 − q1 + (p2 − q2)Reτ

(p2 − q2)Imτ

)
,

~zb = ~vb + R
(
nb + mbReτ

mbImτ

)  i
Iab

+
εa

Iab
−

vabεb

||Π1
b|| · ||Π

1
b||


−R

(
nc + mcReτ

mcImτ

)
k

Ibc
+ R

(
q1 − t1 + (q2 − t2)Reτ

(q2 − t2)Imτ

)
,

~zc = ~vc + R
(
nc + mcReτ

mcImτ

) (
k

Ibc
+
εb

Ibc
−

vcbεc

||Π1
c || · ||Π

1
c ||

)
−R

(
na + maReτ

maImτ

)
j

Ica
+ R

(
t1 − p1 + (t2 − p2)Reτ

(t2 − p2)Imτ

)
,

with p1, q2, q1, q2, t1, t2 ∈ Z and

~va = −R
(
nb + mbReτ

mbImτ

)  εa

Iab
−

vabεb

||Π1
b|| · ||Π

1
b||

 + ~sa − ~sb, (5.25)

~vb = −R
(
nc + mcReτ

mcImτ

) (
εc

Ibc
−

vbcεc

||Π1
c || · ||Π

1
c ||

)
+ ~sb − ~sc,

~vc = −R
(
na + maReτ

maImτ

) (
εc

Ica
−

vacεa

||Π1
a|| · ||Π

1
a||

)
+ ~sc − ~sa .

The edges ~zα have to be parallel to the brane α, since the corners connected by ~zα lie both on that
brane. Hence the scalar product of ~zα with the directional vector orthogonal to α has to vanish

~zα ·
(
−mαImτ

nα + mαReτ

)
= 0 . (5.26)
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This is only the case if the parameters p1, p2, ..., t2 satisfy the three Diophantine equations

−i = (p1 − q1)ma − (p2 − q2)na, (5.27)

−k = (q1 − t1)mb − (q2 − t2)nb,

− j = (t1 − p1)mc − (t2 − p2)nc .

In order to solve (5.27) it is helpful to relabel the intersection points by

i→
iIac

da
, j→

jIcb

dc
, k →

kIba

db
, (5.28)

where da = g.c.d.(Iab, Ica), db = g.c.d.(Ibc, Iab) and dc = g.c.d.(Ica, Ibc). After relabeling one can
find infinitly many solutions to (5.27), which are given by(

p1 − q1
p2 − q2

)
=

i
da

(
nc

mc

)
+ sa

(
na

ma

)
, sa ∈ Z (5.29)(

q1 − t1
q2 − t2

)
=

k
db

(
na

ma

)
+ sb

(
nb

mb

)
, sb ∈ Z(

t1 − p1
t2 − p2

)
=

j
dc

(
nb

mb

)
+ sc

(
nc

mc

)
, sc ∈ Z .

The intersection numbers satisfy the relation(
nc

mc

)
Iab +

(
na

ma

)
Ibc +

(
na

ma

)
Ica = 0 (5.30)

and for g.c.d.(nα,mα) = 1 it can be seen, that if for a pair of intersection numbers have dα , 1, then
the other intersection number contains a factor of dα, s.t. d = da = db = dc = g.c.d.(Iab, Ibc, Ica).
For some cases, the relabeling defined in (5.28) labels two inequivalent intersection points by the
same label. An example is given by the case with the intersection numbers Iab = 4 and Ica = 6.
The six labels j ∈ {0, 1, ..., 5} are asigned to the new labels j′ = 2 j mod 6

0→ 0, 1→ 2, 2→ 4, 3→ 0, 4→ 2, 5→ 4 , (5.31)

leaving only three ineqivalent labels j′ ∈ {0, 2, 4}, where the ’old’ labels i ∈ {1, 3, 5} are lost. The
fact that after relabeling some intersection points have no “new” labels, leads to the problem that
triangles connected to those intersection points cannot be computed. However it will turn out that
for the case d , 1, for each triangle there are further d congruent triangels, from couplings fields
with different labels i, j, k, and each triangle, whose “new” label vanishes, can be calculated by
a congruente triangle, of a coupling, whose involved fields have “new” labels. Continuing the
computations, one finds the vector ~vα is parallel to α, since the scalar product with (−mαImτ, na +

maReτ)T vanishes. Therefore ~vα can also be expressed by the projection onto the directional vector
of α by

~va = R2
(
nα + mαReτ

mαImτ

) ~vα · (nα + mαReτ
mαImτ

)
||Π1

α|| · ||Π
1
α||

. (5.32)
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Inserting the results into (5.24) and using the relations (5.30),

vab + vca = ||Π1
a|| · ||Π

1
a||

Icb

IabIca
(5.33)

and
vab

2Iab

||Π1
a|| · ||Π

1
b||

+
Iab

2

||Π1
a|| · ||Π

1
b||Iab

=
1

Iab
, (5.34)

the edges ~zα can be expressed

~za = R
(
na + maReτ

maImτ

)
Icb

(
j

dcIca
+

i
daIab

+
Ibcεa + Icaεb + Iabεc

IcaIabIbc
+

sa

Icb

)
,

~zb = R
(
nb + mbReτ

mbImτ

)
Ica

(
i

daIab
+

k
dbIbc

+
Ibcεa + Icaεb + Iabεc

IcaIabIbc
+

sb

Ica

)
,

~zc = R
(
nc + mcReτ

mcImτ

)
Iab

(
j

dcIca
+

k
dbIbc

+
Ibcεa + Icaεb + Iabεc

IcaIabIbc
+

sc

Iab

)
.

(5.35)

For 4i jk to be closed, the edges need to satisfy the Diophantine equation

~za +~zb +~zc = 0 , (5.36)

which is solved by

sa = −
k
db

+
Ibc

d
(` + l0), sb = −

j
dc

+
Ica

d
(` + l0), sc = −

i
da

+
Iab

d
(` + l0), (5.37)

with d = da = db = dc and ` ∈ Z. l0 is a function mapping the labels i, j, k to numbers in Zd

l0 : (i, j, k)→
{

0,
1
d
, ...,

d − 1
d

}
(5.38)

and is needed to ensure that in (5.29) the lefthand side is indeed integer and thus correspond
to integer lattice shifts. Further the condition that the lefthand side of (5.29) is integer leads to
selection rules for i, j and k, which were postulated in [106], and unveils that not all combinations
of labels belong to closed triangles, when d , 1.

4. Computing Yukawa couplings: After inserting (5.37) into (5.35), the edges ~zα for designated
labels i, j, k, depend only on the free parameter `. ` corresponds to the winding number of the
triangle around the torus and hence denotes the winding number of the instanton. The area Vol(4i jk)
of the triangles are calculated via

Vol(4i jk) =
1
2

√
|~za|

2|~zb|
2 −

(
~za ·~zb

)2 (5.39)

and is given by the expression

Vol(4i jk) =
1
2

A|IabIbcIca|

(
i

daIab
+

j
dcIca

+
k

dbIbc
+ ε̃ +

l0
d

+
`

d

)2

, (5.40)
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with A = Vol
(
T 2

)
and ε̃ = (Ibcεa+Icaεb+Iabεc)/IcaIabIbc. Substituting A by −iK, where K = B2+iA

is the complexified Kähler structure modulus, the instanton is allowed to couple to a B-field B.
Wilson lines on the branes can be further turned on, as in [106], s.t. the instanton collects the U(1)
phases e2πIabθc , e2πIcaθb and e2πIbcθa , when going around the branes. Inserting the instantons into the
sum in (5.8), the Yukawa couplings on the T 2 are given by

Yi jk ∝
∑
`∈Z

e
1
2 (δ+`/d)2κe2πi(δ+`/d)φ (5.41)

with

δ =
i

daIab
+

j
dcIca

+
k

dbIbc
+ ε̃ +

l0(i, j, k)
d

, (5.42)

φ = Iabθc + Icaθb + Ibcθa,

κ =
iK

2πα′
|IabIbcIca| .

5.2.2 Example: Branes with non coprime intersection numbers in T2

To illustrate the discussion in section 5.2.1, the following toy model will be investigated: Let the three
branes a, b, c wrap cycles, with the following wrapping numbers

(na,ma) = (1, 0), (na,ma) = (1, 2), (na,ma) = (1,−4) . (5.43)

The intersection numbers for the setup are

Iab = 2, Ibc = −6, Ica = 4 . (5.44)

By relabeling i, j, k under the prescription (5.28) one gets the “new” labels

i : (0, 1)→ (0,−), j : (0, 1, 2, 3)→ (0, 3, 2, 1), k : (0, 1, 2, 3, 4, 5)→ (0, 5, 4, 3, 2, 1) , (5.45)

and oberves that the “old” label i = 1 has no “new” label. But for d = 2, couplings with the "old" label
i = 1 can be expressed by a coupling, which are congruent to couplings with the "old" label i = 0. But
first one has to determine the selection rules for the labels i, j, k. Demanding the lefthand side of (5.29) to
be integer for the case at hand, for i = 0 the conditions are given by(

1
0

) (
k
2
− 3l0

)
∈ Z2, (5.46)(

1
2

) ( j
2

+ 2l0
)
−

(
1
0

)
k
2
∈ Z2,(

1
−4

)
l0 −

(
1
2

)
j
2
∈ Z2 .

The function l0(i, j, k) can take the values {0, 1
2 }. For l0 = 0, k and j have to be even, where for l0 = 1

2 , k
and j have to be odd. The selection rules are hence

k + j = 0 mod 2 (5.47)
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and an explicit choice for the function l0 is for example l0 =
j
2 . Then the quantity x0 = i

Iab
+ k

Ibc
+

j
Ica

+ l0
becomes

x0 =
3 j
4
−

k
6
. (5.48)

For the triangles with a corner labeled by the “old” label i = 1, one needs to find a congruent triangle

0, 0’
0, 0’

0, 0’

3, 1’

4, 2’

1, 3’

3, 3’

2, 4’ 5, 1’

1, 5’

2, 2’

1, −

Figure 5.1: Three intersecting branes on a T 2: The blue, green and red line indicate the position of the branes a, b
and c on the fundamental domain of the T 2, where the blue, brown and red integers, label the intersection points i,
j and k. The primed labels, are labels after relabeling and the unprimed labels are the “old” labels.

with a corner denoted by the “old” label i = 0. This can be achieved by taking the triplet of “old” labels
(i, j, k) and shifting them by

(i, j, k)→ (i, j, k) +
1
d

(Iab, Ica, Ibc) (5.49)

to receive the intersection points of the congruent triangle. Afterwards one needs to relabel the intersection
points and inserts them into x0. For example, the intersection points with the old labels (0, 3, 1) and
(1, 1, 4) each form three corners of two congruent triangles, as can be seen in figure5.1. Since (1, 1, 4) has
no i label after relabeling, one has to shift the triplet by

(1, 1, 4)→ (1, 1, 4) +
1
2

(2, 4,−6) = (0, 3, 1) (5.50)

and sees that the shift indeed mapped the triplet of labels to labels, corresponding to the congruent
triangle.
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5.3 Yukawa couplings on T6
SO(12)

5.3.1 Labeling inequivalent intersections

In this section the notation used in [106], for labeling intersection points on a T 6, is extended. Already
in the two dimensional case one could observe the relevance of finding a convenient labeling for the
intersection points in order to compute the Yukawa couplings. In [106] the intersection points of 3-cycles
on a factorisable T 6 are labeled by a triplet of integers j = ( j(1), j(2), j(3)), where each j(h) corresponds to
the label of the intersection point on the T 2 factor lying in the h-th plane. Since the three T 2 factors are
independent from each other the label j belongs to the factorisable lattice

j ∈
3⊗

h=1

Z

|I(h)
ab |Z

. (5.51)

On the non factorisable torus T 6
SO(12), it is not possible to subdivide the torus into independent T 2 factors,

but since the brane cycles factorise into mutually orthogonal lines, it is possible to adopt the notation of
labeling the intersection points by triplets of integers. However it will be shown that j belongs to a more
general three dimensional lattice

j ∈ Λ3
ab . (5.52)

Let a brane α wrap a 3-cycle Π3
α = (n1

α,m
1
α)× (n2

α,m
2
α)× (n3

α,m
3
α). Taking all images under S O(12) lattice

translations into account the brane position ~xα on the covering space R6 is given by

~xα =
(
n1
αµ

(1)
α ,m1

αµ
(1)
α , n2

αµ
(2)
α ,m2

αµ
(2)
α , n3

αµ
(3)
α ,m3

αµ
(3)
α

)T
+ ~λ , (5.53)

with ~λ ∈ ΛSO(12) generating the images under the compactification lattice and µ(1), µ(2), µ(3) ∈ R, denoting
the points on each 1-cycles. For now it is implied that α goes trough the origin and a displacement vector
is not needed. Since the intersection number is a topological quantity, displacements of the brane do not
change the intersection numbers or the labeling of intersection points. The intersection points of two
branes a and b are given by the solutions to the equation ~xa = ~xb, which are

R6
∣∣∣
a∩b =

{ (
Aabn1

a, Aabm1
a, Babn2

a, Babm2
a,Cabn3

a,Cabm3
a,

)T
, with (5.54)

Aab =
t1m1

b−t2n1
b

I(1)
ab

, Bab =
t3m2

b−t4n2
b

I(2)
ab

, Cab =
t5m3

b−t6n3
b

I(3)
ab

,

I(h)
ab = (nh

amh
b − nh

bmh
b), ~t = (t1, t2, t3, t4, t5, t6)T ∈ ΛSO(12)

}
.

The parameters Aab, Bab and Cab are the same as in (5.16) for the two dimensional case, with the
displacements εa and εb set to zero. That means, by introducing labels j(h) for the intersections in the
h-th plane, that they can be defined analogous to the factorisable case by (5.20). The crucial difference
is however that the components ti of the lattice vectors in (5.20) are no longer independent of the
components in the other planes and therefor the labels j(h) are also not independent of labels from other
planes. Thus the triplet j can in general not be factorised. The intersection number on T 6

SO(12) is half of
the intersection number on the factorisable torus [77]

Iab =
1
2

3∏
h=1

I(h)
ab . (5.55)

64



5.3 Yukawa couplings on T 6
SO(12)

Hence the index of the lattice Λ3
ab has to be

∣∣∣Λ3
ab

∣∣∣ = 1
2
∏3

h=1 I(h)
ab . The following example illustrates how

the lattice for the labels is constructed: Let the wrapping numbers of a and b be given by

∀h∈{1,2,3} ∀α∈{a,b}
(
nh
α + mi

α = 0 mod 2, g.c.d.(nh
α,m

h
α) = 1

)
. (5.56)

Then the inequivalent labels belong to

j ∈
{ (

t1m1
b − t2n1

b, t3m2
b − t4n2

b, t5m3
b − t6n3

b

) ∣∣∣~t ∈ ΛSO(12)
}
. (5.57)

The projections of j onto the h-th plane are computed via

j(h) = t2h−1mh
b − t2hnh

b ∈ Z , (5.58)

with

t2h−1mh
b − t2hnh

b =

even for t2h−1 + t2h = even
odd for t2h−1 + t2h = odd

. (5.59)

When the labels j(h) are composed to the triplet j, one has to take into account that
∑3

h=1 t2h−1 + t2h has
to be even for ~t to be an S O(12) root. Then j(h) can only be odd for an even number of planes, where
it can be even for an odd number of planes. The generators of the S O(6) Lie lattice, ~α1 = (1,−1, 0)T ,
~α2 = (0, 1,−1)T and ~α3 = (0, 1, 1)T , spann a lattice satisfying the criteria for j and hence j belongs to the
S O(6) Lie lattice ΛSO(6). Since I(h)

ab are all even the following shifts

j(h) → j(h) + I(h)
ab (5.60)

in (5.54) can be absorbed by a lattice vector ~λ, s.t. j and j + (..., I(h)
ab , ...) labels equivalent intersection

points on the torus. Therefor the labels for inequivalent intersection on the torus belong to the lattice

j ∈
ΛSO(6)⊗3
h=1 I(h)

ab Z
. (5.61)

The index of the lattice is computed by the quotient∣∣∣∣∣∣ ΛSO(6)⊗3
h=1 I(h)

ab Z

∣∣∣∣∣∣ =

∣∣∣∣∣∣E
⊗3

h=1 I(h)
ab Z

EΛSO(6)

∣∣∣∣∣∣ , (5.62)

with EΛ the volume of the fundamental cell of Λ. The volumes for a fundamental cell of a lattice is
determined by the determinant of the dreibein of the lattices. Hence

EΛSO(6) = det

1 −1 0
0 1 −1
0 1 1

 = 2, (5.63)

E⊗3
h=1 I(h)

ab Z
= det


I(1)
ab 0 0
0 I(2)

ab 0
0 0 I(3)

ab

 =

3∏
h=1

I(h)
ab ,
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and the index

∣∣∣∣∣∣ ΛSO(6)⊗3
h=1 I(h)

ab Z

∣∣∣∣∣∣ = 1
2
∏3

h=1 I(h)
ab is indeed the expected intersection number on T 6

SO(12). In appendix

B various cases for Λ3
ab are discussed and it is concluded that the index of Γab is always in accordance

with (5.55).

5.3.2 Computing Yukawa couplings on T6
SO(12)

In the above section the intersection points on T 6
SO(12) where investigated and a labeling for them where

introduced. The next step is to compute the triangles formed by three intersecting branes. Let the branes
be parametrized as in (4.72), but this time the branes do not need to intersect the origin necessarily. The
displacement of the brane α from the origin is captured in the displacement vector ~sα similar to (5.13) in
the the two dimensional case, s.t. the cycle Π3

α is shifted by

Π3
α → Π3

α + ~sα , (5.64)

in (4.72), where the displacement vector fot the six dimensional case is given by

~sα =

−m1
α

ε(1)
α

||Π1
α||

2
, n1

α

ε1
α

||Π1
α||

2
,−m2

α

ε2
α

||Π2
α||

2
, n2

α

ε2
α

||Π2
α||

2
,−m3

α

ε3
α

||Π3
α||

2
, n3

α

ε3
α

||Π3
α||

2

T

, (5.65)

with ||Πh
α||

2 = (nα)2 + (mα)2 the length of the cycle in the h-th plane. Since the worldsheet instantons are
given by a sum of three triangles, each located on a different plane, one has to investigate the projections
of the branes on each plane, because they form the triangles. The projections of the intersection points on
the h-th plane are corners for the triangles in those planes and are given by

p(h)
ab =

(
nh

b
mh

b

)  i(h)

I(h)
ab

+
εh

a

I(h)
ab

−

(
mh

bmh
a + nh

anh
b

)
εh

b(
(nh

b)2 + (mh
b)2

)
I(h)
ab

 +

(
−mh

b
nh

b

)
εh

b

(nh
b)2 + (mh

b)2
+

(
p2h−1
p2h

)
,

p(h)
ac =

(
nh

a
mh

a

)  j(h)

I(h)
ca

+
εh

c

I(h)
ca

−

(
mh

cmh
a + nh

cnh
a

)
εh

a(
(nh

a)2 + (mh
a)2

)
I(h)
ca

 + (5.66)

(
−mh

a
nh

a

)
εh

a

(nh
a)2 + (mh

a)2
+

(
q2h−1
q2h

)
,

p(h)
bc =

(
nh

c
mh

c

) k(h)

I(h)
bc

+
εh

b

I(h)
bc

−

(
mh

cmh
b + nh

cnh
b

)
εh

c(
(nh

c)2 + (mh
c)2

)
I(h)
bc

 +

(
−mh

c
nh

c

)
εh

c

(nh
c)2 + (mh

c)2
+

(
t2h−1
t2h

)
,

with i, j, k labels for the inequivalent intersection points of the branes a, b, c, as explained in section
5.3.1, and p(h)

ab the projection of the intersection point pab =: R6
∣∣∣
a∩b onto the h-th plane. In the following

triangles, which are located in the h-th plane and whose corners are labeld by i, j, k, are denoted by
4

i jk
(h). The edges z(h)

a , z(h)
b and z(h)

c of 4(i jk
(h) are obtained by subtracting the intersection points with the
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corresponding labels. The edges for the triangles are then expressed by

z(h)
a = ~vh

a +

(
nh

a
mh

a

)  j(h)I(h)
cb

d(h)
c I(h)

ac

+
εh

c

I(h)
ca

−

(
mh

amh
c + nh

anh
c

)
εh

a(
(nh

a)2 + (mh
a)2

)
I(h)
ca


−

(
nh

b
mh

b

)
i(h)I(h)

ac

d(h)
a I(h)

ab

+

(
q2h−1 − p2h−1

q2h − p2h

)
, (5.67)

z(h)
b = ~vh

b +

(
nh

b
mh

b

)  i(h)I(h)
ac

d(h)
a I(h)

ab

+
εh

a

I(h)
ab

−

(
mh

amh
b + nh

anh
b

)
εh

b(
(nh

b)2 + (mh
b)2

)
I(h)
ab


−

(
nh

c
mh

c

) k(h)I(h)
ba

d(h)
b I(h)

cb

+

(
p2h−1 − t2h−1

p2h − t2h

)
,

z(h)
c = ~vh

c +

(
nh

c
mh

c

)  k(h)I(h)
ba

d(h)
b I(h)

bc

+
εh

b

I(h)
bc

−

(
mh

cmh
b + nh

cnh
b

)
εh

c(
(nh

c)2 + (mh
c)2

)
I(h)
bc


−

(
nh

a
mh

a

) j(h)I(h)
cb

d(h)
c I(h)

ca

+

(
t2h−1 − q2h−1

t2h − q2h

)
,

with the two dimensional vectors

~vh
a = −

(
nh

b
mh

b

)  εh
a

I(h)
ab

−
(mh

bmh
a + nh

anh
b)εh

b(
(nh

b)2 + (mh
b)2

)
I(h)
ab

 +

(
−mh

a
nh

a

)
εh

a

(na)2 + (ma)2

−

(
−mh

b
nh

b

)
εh

b

(nh
b)2 + (mh

b)2
,

~vh
b = −

(
nh

c
mh

c

)  εh
b

I(h)
bc

−
(mh

bmh
c + nh

cnh
b)εh

c(
(nh

c)2 + (mh
c)2

)
I(h)
bc

 +

(
−mh

b
nh

b

)
εh

b

(nb)2 + (mb)2

−

(
−mh

c
nh

c

)
εh

c

(nh
c)2 + (mh

c)2
,

~vh
c = −

(
nh

a
mh

a

)  εh
c

I(h)
ca

−
(mh

cmh
a + nh

anh
c)εh

a(
(nh

a)2 + (mh
a)2

)
I(h)
ca

 +

(
−mh

c
nh

c

)
εh

c

(nc)2 + (mc)2

−

(
−mh

a
nh

a

)
εh

a

(nh
a)2 + (mh

a)2
,

(5.68)

where the components i(h), j(h) and k(h) where already relabeled by the prescription (5.28). The edges z(h)
α

have to be parallel to brane α in the h-th plane, yielding the following three Diophantine equations for
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each plane

nh
a(q2h − p2h) − mh

a(q2h−1 − p2h−1) = −
i(h)I(h)

ac

dh
a

,

nh
b(t2h − p2h) − mh

b(t2h−1 − p2h−1) = −
k(h)I(h)

ba

dh
b

, (5.69)

nh
c(p2h − t2h) − mh

c(p2h−1 − t2h−1) = −
j(h)I(h)

cb

dh
c

,

which are equivalent to (5.27) in the two dimensional case in section 5.2.1. The solutions are given by
(5.29) for each plane. But in contrast to the factorisable case it is not enough to impose

−
i(h)

d(h)
a

(
nh

c
mh

c

)
+ s(h)

a

(
nh

a
mh

a

)
=

(
q2h−1 − p2h−1

q2h − p2h

)
∈ Z2, s(h)

a ∈ Z ,

−
k(h)

d(h)
b

(
nh

a
mh

a

)
+ s(h)

b

(
nh

b
mh

b

)
=

(
t2h−1 − p2h−1

t2h − p2h

)
∈ Z2, s(h)

b ∈ Z , (5.70)

−
j(h)

d(h)
c

(
nh

b
mh

b

)
+ s(h)

c

(
nh

c
mh

c

)
=

(
p2h−1 − t2h−1

p2h − t2h

)
∈ Z2, s(h)

c ∈ Z ,

but the information, that the pairs (p2h−1, p2h), (q2h−1, q2h) and (t2h−1, t2h) are components of S O(12)
lattice vectors, needs to be implemented. That leads to the following additional conditions

3∑
h=1

−s(h)
a (nh

a + mh
a) +

i(h)(nh
c + mh

c)

d(h)
a

 = 0 mod 2 ,

3∑
h=1

−s(h)
b (nh

b + mh
b) +

k(h)(nh
a + mh

a)

d(h)
b

 = 0 mod 2 , (5.71)

3∑
h=1

−s(h)
c (nh

c + mh
c) +

j(h)(nh
b + mh

b)

d(h)
c

 = 0 mod 2 .

Applying the relations (5.30), (5.33) and (5.34) and inserting the results into z(h)
a , z(h)

b and z(h)
c one gets

z(h)
a =

(
nh

a
mh

a

)
I(h)
bc

 i(h)

d(h)
a I(h)

ab

+
j(h)

d(h)
c I(h)

ca

+ ε̃(h) +
s(h)

a

I(h)
bc

 ,
z(h)

b =

(
nh

b
mh

b

)
I(h)
ca

 i(h)

d(h)
a I(h)

ab

+
k(h)

d(h)
b I(h)

bc

+ ε̃(h) +
s(h)

b

I(h)
ca

 , (5.72)

z(h)
c =

(
nh

c
mh

c

)
I(h)
ab

 j(h)

d(h)
c I(h)

ca

+
j(h)

d(h)
c I(h)

ca

+ ε̃(h) +
s(h)

c

I(h)
ab

 ,
with ε̃(h) =

I(h)
bc ε

h
a +I(h)

ca ε
h
b +I(h)

ab ε
h
c

I(h)
ab I(h)

bc I(h)
ca

. For 4i jk
(h) to close

z(h)
a + z(h)

b + z(h)
c = 0 , ∀h ∈ {1, 2, 3} , (5.73)
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has to be satisfied. Inserting the expressions from (5.72) into (5.73), the parameters s(h)
a , s(h)

b and s(h)
c are

allowed to depend on a single independent parameter `(h) given by

s(h)
a =

k(h)

d(h)
b

+
I(h)
bc

(
`(h) + l(h)

0

)
d(h) ,

s(h)
b =

j(h)

d(h)
c

+
I(h)
ca

(
`(h) + l(h)

0

)
d(h) , (5.74)

s(h)
c =

i(h)

d(h)
a

+
I(h)
ab

(
`(h) + l(h)

0

)
d(h) ,

where l(h)
0 is a function of i(h), j(h) and k(h) as explained in (5.38), and makes sure that s(h)

a , s(h)
b and

s(h)
c lead to integer lattice shifts in (5.29). Composing the parameters `(h) from each plane to a triplet
` = (`(1), `(2), `(3)), ` can be expressed as an element from a three dimensional lattice. For the factorisable
torus, ` is given by [106]

` ∈ Z3 . (5.75)

For the present case however, inserting (5.74) into (5.70) and (5.71) leads to selection rules for `, s.t. `
belongs in general to a generic three dimensional lattice Λ3, possibly with a label dependend off-set

` =
(
`(1), `(2), `(3)

)
∈ Λ3 . (5.76)

The lattice Λ3 is determined by the selection rules

−
i(h)

d(h)
a

(
nh

c
mh

c

)
+

k(h)

d(h)
b

(
nh

a
mh

a

)
+

I(h)
cb

(
`(h) + l(h)

0

)
d(h)

(
nh

a
mh

a

)
∈ Z2 ,

−
k(h)

d(h)
b

(
nh

a
mh

a

)
+

j(h)

d(h)
c

(
nh

b
mh

b

)
+

I(h)
ca

(
`(h) + l(h)

0

)
d(h)

(
nh

b
mh

b

)
∈ Z2 , (5.77)

−
j(h)

d(h)
c

(
nh

b
mh

b

)
+

j(h)

d(h)
a

(
nh

c
mh

c

)
+

I(h)
ab

(
`(h) + l(h)

0

)
d(h)

(
nh

c
mh

c

)
∈ Z2 ,

and

3∑
h=1

− i(h)

d(h)
a

N(h)
c +

k(h)

d(h)
b

N(h)
a +

I(h)
cb

(
`(h) + l(h)

0

)
d(h) N(h)

a

 = 0 mod 2 ,

3∑
h=1

− k(h)

d(h)
b

N(h)
a +

j(h)

d(h)
c

N(h)
b +

I(h)
ca

(
`(h) + l(h)

0

)
d(h) N(h)

b

 = 0 mod 2 , (5.78)

3∑
h=1

− j(h)

d(h)
c

N(h)
b +

j(h)

d(h)
a

N(h)
c +

I(h)
ab

(
`(h) + l(h)

0

)
d(h) N(h)

c

 = 0 mod 2 ,

where N(h)
α is defined as N(h)

α =: nh
α + mh

α. The surface of the instanton, connecting the intersection points
i, j, k and wrapping number ` around the torus, is denoted by Ai jk(`). The area of Ai jk(`) in each plane is
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then computed by inserting (5.72) into (5.40) and therefore the whole area spread out by the instanton is
given by the sum

Ai jk(`(h)) =
1
2

3∑
h=1

|I(h)
ab I(h)

bc I(h)
ca |

 i(h)

d(h)
a I(h)

ab

+
j(h)

d(h)
a I(h)

ca

+
k(h)

d(h)
b I(h)

bc

+ ε̃(h) +
`(h)

d(h)

2

. (5.79)

By turning on the deformation parameter Rh and τh in each plane, as explained in example (ii) in section
4.1.1, the T 6

SO(12) gets deformed. By complexifying the Kähler structure modulus as

Kh = Rh
2Im(τh)→ Bh + iRh

2Im(τh) , (5.80)

in the h-th plane, the worldsheet instanton is allowed to couple to a B-field, with the components Bh in
the h-th plane. Using the result for the two dimensional case in section 5.2.1, it can be deduce that the
volume of each triangle 4i jk

(h) is scaled by −iKh. The Yukawa coupling for fields, sitting at the intersection
points i, j, k, is given, according to (5.8), by the sum of all instantons connecting the corresponding
intersection points

Yi jk = hqu

∑
`∈Λ3

exp
(
−

Ai jk(`)
2πα′

)
, (5.81)

with

Ai jk(`) = −
i
2

3∑
h=1

K(h)|I(h)
ab I(h)

bc I(h)
ca |

 i(h)

d(h)
a I(h)

ab

+
j(h)

d(h)
a I(h)

ca

+
k(h)

d(h)
b I(h)

bc

+ ε̃(h) +
`(h)

d(h)

2

. (5.82)

The factor hqu contains the quantum contribution to the Yukawa couplings.

5.3.3 Example

Here an illustrative example on the T 6
SO(12) with three branes a, b, c, whose wrapping numbers are listed

in table 5.1, is discussed. Investigating the wrapping numbers, one observes that only the brane a satisfies

h = 1 h = 2 h = 3
(nh

a,m
h
a) (1,-3) (1,1) (1,1)

(nh
b,m

h
b) (1,0) (2,0) (1,-2)

(nh
c ,m

h
c) (2,3) (4,6) (1,-1)

I(h)
ab 3 -2 -3

I(h)
ac 9 2 -2

I(h)
bc 3 12 1

d(h) 3 2 1

Table 5.1: Example

the condition (4.73), which is why g.c.d.(n2
b,m

2
b) = 2 and g.c.d.(n2

c ,m
2
c) = 2. First one has to compute the

labels for the intersection points. Following (5.54), the intersection points pab of a and b are

pab =
{ (−3t1 − t2

−3
, 0, 2

t3 − t4
2

, 0,
t5 − t6

3
,−2

t5 − t6
3

) ∣∣∣∣~t ∈ ΛSO(12)
}

(5.83)
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and their labels are given by
i = (−3t1 − t2, t3 − t4, t4 − t6) . (5.84)

For ti being components of S O(12) lattice vectors, the labels i belongs to the S O(6) root lattice. Inserting
the labels into (5.83) and shifting them by

i→ i + (0, 2, 0), i→ i + (3, 1, 0), i→ i + (0, 1, 3) (5.85)

lead to equivalent intersection poiints on the torus. Hence the inequivalent labels belong the lattice

i ∈
ΛSO(6)

Γab
, (5.86)

with

Γab =

{ 3∑
i=1

ni~ei

∣∣∣∣∣∣ ni ∈ Z, ~e1 =

02
0

 , ~e2 =

31
0

 , ~e3 =

01
3


}
. (5.87)

The lattice for the labels i correspond to case 7 in appendix B, with the first and second plane permuted.
Relabeling the intersection points according to (5.28), the mapping of the “old” labels to the “new” labels
is given by

(i(1), i(2), i(3))→ (3i(1), i(2),−2i(3)) mod Γab . (5.88)

In tabel 5.2 the "old" and "new" labels are listed together with the coordinates of the corresponding
intersections of a and b. When inequivalent labels get mapped to equivalent labels by relabeling, the

old label i new label i′ coordinates
(0,0,0) (0,0,0) (0, 0, 0, 0, 0, 0)
(1,0,1) - (−1

3 , 0, 0, 0,
1
3 ,−

2
3 )

(2,0,0) - (−2
3 , 0, 0, 0, 0, 0)

(0,0,2) (0,0,2) (0, 0, 0, 0, 2
3 ,−

4
3 )

(2,0,2) - (−2
3 , 0, 0, 0,

2
3 ,−

4
3 )

(1,1,0) - (−1
3 , 0, 1, 0, 0, 0)

(2,1,1) (0,0,1) (0, 0, 1, 0, 1
3 ,−

2
3 )

(2,1,1) - (−2
3 , 0, 1, 0,

1
3 ,−

2
3 )

(1,1,2) - (−1
3 , 0, 1, 0,

1
3 ,−

4
3 )

Table 5.2: Intersection points a and b

corresponding intersection point is not assigned by a "new" label. For example the intersection point
with the "old" label i = (1, 0, 1) gets mapped to i′ = (3, 0,−2). Shifting the "new" label by the lattice
vector (−3, 0, 3) ∈ Γab,one receives (0, 0, 1). But the intersection point with the "old" label (2, 1, 1) gets
also mapped to the "new" label i′ = (0, 0, 1). Therefor intersection points with the "old" label (1, 0, 1)
lose their label after relabeling. Similar, intersection points initially labeled by (2, 0, 0), (2, 0, 2), (1, 1, 0),
(2, 1, 1) and (1, 1, 2) also lose their labels after relabeling and only three new labels remain (see table 5.2).
Next the "old" and "new" labels for the intersections between b and c and intersections between a and c
are computed. The intersection points pac between a and c are given by

pac =

{(
3t1 − 2t2

9
,−3

3t1 − 2t2

9
,

6t3 − 4t4

2
,

6t3 − 4t4

2
,

t5 + t6

2
,

t5 + t6

2

) ∣∣∣∣~t ∈ ΛSO(12)

}
, (5.89)
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and are labeled by
j = (3t1 − 2t2, 6t3 − 4t4,−t5 − t6) . (5.90)

For ~t ∈ ΛSO(12) the labels j belong to the lattice Z ⊗ 2Z ⊗ Z. Shifts in j which map points in (5.89) to
points differing by S O(12) lattice vectors are given by

j→ j + (9, 0, 0), j→ j + (0, 2, 0), j→ j + (0, 0, 2) , (5.91)

s.t. the space of labels for inequivalent intersection points pac is

j ∈
Z ⊗ 2Z ⊗ Z

9Z ⊗ 2Z ⊗ 2Z
. (5.92)

The lattice for j corresponds to case 6 in appendix B and the prescription for relabeling of j is given by

( j(1), j(2), j(3))→ (− j(1),−6 j(2),− j(3)) mod 9Z ⊗ 2Z ⊗ 2Z . (5.93)

On the torus the intersection points pbc of b and c are given by the set

pbc =
{ (

2
t2
3
, 3

t2
3
, 4

2t4
12
, 6

2t4
12
, 2t5 + t6,−2t5 − t6

) ∣∣∣∣~t ∈ ΛSO(12)
}
, (5.94)

with the corresponding labels
k = (t2, 2t4, 2t5 + t6) (5.95)

take values on the lattice Z ⊗ 2Z ⊗ Z. Intersection points pbc are mapped to equivalent intersection points
on the torus by

k → k + (0, 0, 1), k → k + (0, 12, 0), k → k + (3, 6, 0) . (5.96)

Hence the set of inequivalent labels belong to the quotient lattice

k ∈
Z ⊗ 2Z ⊗ Z

Γbc
, (5.97)

with

Γbc =

{ 3∑
i=1

ni~ei

∣∣∣∣∣∣ ni ∈ Z, ~e1 =

00
1

 , ~e2 =

 0
12
0

 , ~e3 =

36
0


}
, (5.98)

which corresponds to case 8 in appendix B. The set of inequvialent labels before and after relabeling
as well as the coordinates of the intersection points pca and pbc are listed in the tables 5.3 and 5.4.
All the information needed to compute Yukawa couplings arising for the setup in table 5.1 is contained
in the tables 5.2, 5.3 and 5.4. As an illustrative example, the Yukawa couplings of the field sitting at
the intersection point i = (0, 0, 0) is computed. Applying (5.70) and (5.71), the selection rules for the
couplingstake the form 

s(1)
a

−3s(1)
a

s(2)
a

s(2)
a

s(3)
a

s(3)
a


,



s(1)
b −

k(1)

3
k(1)

2s(2)
b −

k(2)

2
− k(2)

2
s(3)

b − k(3)

−2s(3)
b − k(3)


,



2s(1)
c −

j(1)

3
3s(1)

c

4s(2)
c − j(2)

6 j(2)

s(3)
c − j(3)

−s(3)
c + 2 j(3)


∈ ΛSO(12) (5.99)
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old label j new label j′ coordinates
(0,0,0) (0,0,0) (0, 0, 0, 0, 0, 0)
(1,0,0) (8,0,0) ( 1

9 ,−
1
3 , 0, 0, 0, 0)

(2,0,0) (7,0,0) ( 2
9 ,−

2
3 , 0, 0, 0, 0)

(3,0,0) (6,0,0) ( 1
3 ,−1, 0, 0, 0, 0)

(4,0,0) (5,0,0) ( 4
9 ,−

4
3 , 0, 0, 0, 0)

(5,0,0) (4,0,0) ( 5
9 ,−

5
3 , 0, 0, 0, 0)

(6,0,0) (3,0,0) ( 2
3 ,−2, 0, 0, 0, 0)

(7,0,0) (2,0,0) ( 7
9 ,−

7
3 , 0, 0, 0, 0)

(8,0,0) (1,0,0) ( 8
9 ,−

8
3 , 0, 0, 0, 0)

(0,0,1) (0,0,1) (0, 0, 0, 0, 1
2 ,

1
2 )

(1,0,1) (8,0,1) ( 1
9 ,−

1
3 , 0, 0,

1
2 ,

1
2 )

(2,0,1) (7,0,1) ( 2
9 ,−

2
3 , 0, 0,

1
2 ,

1
2 )

(3,0,1) (6,0,1) ( 1
3 ,−1, 0, 0, 1

2 ,
1
2 )

(4,0,1) (5,0,1) ( 4
9 ,−

4
3 , 0, 0,

1
2 ,

1
2 )

(5,0,1) (4,0,1) ( 5
9 ,−

5
3 , 0, 0,

1
2 ,

1
2 )

(6,0,1) (3,0,1) ( 2
3 ,−2, 0, 0, 1

2 ,
1
2 )

(7,0,1) (2,0,1) ( 7
9 ,−

7
3 , 0, 0,

1
2 ,

1
2 )

(8,0,1) (1,0,1) ( 8
9 ,−

8
3 , 0, 0,

1
2 ,

1
2 )

Table 5.3: Intersection points c and a

and for the triangles to close, the parameters sα have to be the following functions of instanton winding
numbers `:

s(1)
a =

k(1)

3
+ `(1), s(2)

a = k(2)

2 + 6`(2), s(3)
a = k(3) + `(3),

s(1)
b =

j(1)

3
− 3`(1), s(2)

b =
j(2)

2 − `
(2), s(3)

b = j(3) + 2`(3), (5.100)

s(1)
c = `(1), s(2)

c = −`(2), s(3)
c = −3`(3) .

Inserting (5.100) into (5.99) yields conditions on k and j as well as on `. For the vectors in (5.99) to be
vectors with integer components, one receives from the selection rules the following conditions

`(1) = −
k(3)

3
+ l(1) , with l(1) ∈ Z ,

j(1)

3
= p +

k(1)

3
, with p ∈ Z , (5.101)

`(2) =
l(2)

2
, with l(2) ∈ Z ,

`(3) = l(3) , with l(3) ∈ Z .

Further imposing (5.99) to be S O(12) lattice vectors yield the condition

l(1) + l(2) + p + j(3) = 0 mod 2 . (5.102)
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old label k new label k′ coordinates
(0,0,0) (0,0,0) (0, 0, 0, 0, 0, 0)
(1,0,0) (-1,0,0) (− 2

3 ,−1, 0, 0, 0, 0)
(2,0,0) (-2,0,0) (− 4

3 ,−2, 0, 0, 0, 0)
(0,2,0) (0,2,0) (0, 0, 2

3 ,−1, 0, 0)
(1,2,0) (-1,2,0) (− 2

3 ,−1,−2
3 ,−1, 0, 0)

(2,2,0) (-2,2,0) (− 4
3 ,−2,−2

3 ,−1, 0, 0)
(0,4,0) (0,4,0) (0, 0,−4

3 ,−2, 0, 0)
(1,4,0) (-1,4,0) (− 2

3 ,−1,−4
3 ,−2, 0, 0)

(2,4,0) (-2,4,0) (− 4
3 ,−2,−4

3 ,−2, 0, 0)
(0,6,0) (0,6,0) (0, 0,−2,−3, 0, 0)
(1,6,0) (-1,6,0) (− 2

3 ,−1,−2,−3, 0, 0)
(2,6,0) (-2,6,0) (− 4

3 ,−2,−2,−3, 0, 0)
(0,8,0) (0,8,0) (0, 0,−8

3 ,−4, 0, 0)
(1,8,0) (-1,8,0) (− 2

3 ,−1,−8
3 ,−4, 0, 0)

(2,6,0) (-2,6,0) (− 4
3 ,−2,−8

3 ,−4, 0, 0)
(0,10,0) (0,10,0) (0, 0,−10

3 ,−5, 0, 0)
(1,10,0) (-1,10,0) (− 2

3 ,−1,−10
3 ,−5, 0, 0)

(2,10,0) (-2,10,0) (− 4
3 ,−2,−10

3 ,−5, 0, 0)

Table 5.4: Intersection points b and c

The selection rules in (5.102) obliges the winding numbers of the instanton to belong to the lattice

ΛSO(4) ⊗ Z = span
(
(1, 1, 0)T , (1,−1, 0)T , (0, 0, 1)T

)
, (5.103)

with an offset depending on j(3) + p. For example, the fields sitting at the intersection points with the
“new” labels i = (0, 0, 0), j = (8, 0, 0) and k = (−1, 0, 0) have a non trivial Yukawa coupling, since j(1) and
k(1) indeed satisfy the second condition in (5.101) with p = 3. The Yukawa coupling for them is given by

− hqu

∑
l∈(1,0,0)+ΛSO(4)⊗Z

exp
(
−
π

α′

[
9A(1)

(
8 + 3l(1)

)2
+ 12A(2)l(2)2

+ 6A(3)l(3)2
])

(5.104)

The boundaries of the worldsheet instanton, which are attached to the branes, are parametrized by the
vectors


z(1)

a

z(2)
a

z(3)
a

 =



− 8
9 + l(1)

8
3 − 3l(1)

3l(2)

3l(2)

l(3)

l(3)


,


z(1)

b
z(2)

b
z(3)

b

 =



2 2
3 − 3l(1)

0
−l(2)

0
2l(3)

−4l(3)


,


z(1)

c

z(2)
c

z(3)
c

 =



−1 7
9 + 2l(1)

− 8
3 + 3l(1)

−2l(2)

−3l(2)

−3l(3)

3l(3)


. (5.105)

The leading contribution to the Yukawa coupling has either the winding number l = (1, 0, 0) or l = (0, 1, 0)
depending on the value for the moduli A(1) and A(2).

Not all intersection points between a and b have “new” labels. To compute Yukawa couplings of fields
sitting at those intersection points, one proceeds as in the two dimensional case in section 5.2.2: Let the
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8

0 0 0

0 000−1

Figure 5.2: Worldsheet Instanton from intersecting branes: The three square bases, depict the three planes and
the blue, green and red lines indicate the position of the branes a, b and c in the planes. The area spread out
by the leading order worldsheet instanton, coupling to the intersection points with the "new" labesl i = (0, 0, 0),
j = (−1, 0, 0) and k − (8, 0, 0) is highlighted by the color pink.

“old” labels, of the coupling considered, be denoted by i1, j1 and k1, where for example i1 has no “new”
label. The label i1 is shifted by a fraction of an equivalence shift and mapped to another label i2, which is
not removed by relabeling, by

i2 = i1 −
δ

d
~λab, with δ ∈ {1, ..., d − 1}, ~λab ∈ Γab . (5.106)

The integer d is the greatest common divisor of the three intersection numbers. Next the other two
“old“ labels j1 and k1, belonging to the coupling, are shifted by the same fraction of the corresponding
equivlanece shifts

j1 → j2 = j1 −
δ

d
~λca, k1 → k2 = k1 −

δ

d
~λbc, ~λca ∈ Γca, ~λbc ∈ Γbc . (5.107)

The shifts in (5.106) and (5.107) have to be chosen, s.t. the labels i2, j2 and k2 exist and the instanton
connecting the corresponding intersection points is congruent to the instanton connecting the points
labeled by i1, j1 and k1. On the other hand, if the ”new“ labels of i2, j2 and k2 do not satisfy the selection
rules, the corresponding Yukawa coupling is zero. That way for example the coupling with the ”old“
labels i1 = (2, 0, 0), j1 = (4, 0, 0), k1 = (2, 6, 0) can be computed, even though relabeling leads to the loss
of i1’s label. To compute the coupling, the labels are shifted by

i→ i −
1
3

(6, 0, 0), j→ j −
1
3

(9, 0, 0), k → k −
1
3

(3, 18, 0) , (5.108)

s.t. one receives the shifted labels i2 = (0, 0, 0), j2 = (1, 0, 0) and k2 = (1, 0, 0). As one can see in figure
5.3, the leading order instanton connecting the labels i1, j1 and k1 is indeed congruent to the instanton
connecting i2, j2 and k2. Relabeling i2, j2 and k2 shows that the corresponding Yukawa coupling is given
by (5.104).
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5

−

0 6 0 0− −

−2

Figure 5.3: Worldsheet instanton coupling to intersection points with no label: The area spread out by worldsheet
instanton coupling to the intersection points, labeled by the "old" labels i = (2, 0, 0), j = (4, 0, 0) and k = (2, 6, 0),
is highlighted by the color yellow. However after relabeling the intersection points are labeled by j = (5, 0, 0) and
k = (−2, 6, 0), but i has no new label. Comparing the area with the worldsheet instanton from figure 5.2, both
instantons clearly spread out areas with the same volume.
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CHAPTER 6

Yukawa couplings from D9-branes on the dual
T6

SO(12)

In this chapter the T-dual of intersecting D6-branes on T 6
SO(12), with three T-dualized directions, is

considered and the Yukawa couplings from a T-dual setup to the one in chapter 5.3 is computed. Besides
of serving as a consistency check, the computations lead to the quantum contribution of the Yukawa
couplings on the T 6

SO(12). The discussion is based on the work [114] and extends the results of [115].

6.1 From T6
SO(12)

to the dual T6
SO(12)

6.1.1 Buscher rules

In this section T-duality on more general spaces than discussed in section 3.2.3 is introduced and therefore
the results of [53] are revised in order to approach a T-dual torus of T 6

SO(12). Consider a manifold with
metric gµν and a background field Bµν.. For open strings on the manifold, the action (3.39) describes the
coupling of the open strings to the spacetime. Let the action be invariant under

Xµ → Xµ + 2πR (6.1)

for one spatial direction µ = θ. Invariance under (6.1) implies circle compactification of the direction θ
on a S 1 with radius R. The remaining directions are left uncompact. Decomposing (3.39) in components
of uncompact directions i ∈ {µ}\{θ} and circle compactified direction θ, the open string action can be
expressed as

S = −
1

4πα′

∫
Σ

d2σ
[ (
gθθ∂αθ∂βθ + 2gθi∂αθ∂βX j + gi j∂αXi∂βX j

)
ηαβ (6.2)

+
(
2Biθ∂αXi∂βθ + Bi j∂αXi∂βX j

)
εαβ

]
−

∫
∂Σ

dσ0
(
Ai∂0Xi + Aθ∂0θ

)
.

Let the isometry in (6.1) be generated by the infenitesimal translations θ → θ + ε. The symmetry
can be implemented into the action (6.2) by making it in a covariant. Therefor a covariant derivative
∂αθ → Dαθ = ∂αθ + Vα needs to be introduced, where Vα transforms as Vα → Vα − ∂αε. By gauge fixing
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θ = 0, one recives

S′ = −
1

4πα′

∫
Σ

d2σ
[ (
gθθVαVβ + 2gθiVα∂βX j + gi j∂αXi∂βX j

)
ηαβ (6.3)

+
(
2Biθ∂αXiVβ + Bi j∂αXi∂βX j

)
εαβ + 2θ̃εαβ∂αVβ

]
−

∫
∂Σ

dσ0
(
Ai∂σ0 Xi + AθV0 +

1
2πα′

θ̃V0

)
,

where the information ∂αθ = Vα is kept in (6.3) by introducing a Lagrange multiplier θ̃. The equations of
motion for θ̃ lead to the constraint ∂αVβεαβ = 0 and inserting the the solutions into (6.3) returns to (6.2).
The Lagrange mulitplier θ̃ corresponds to the T-dual direction of θ. By integrating out the field Vα in
(6.3) one receives the T-dual action S̃to (6.2). The equations of motion for Vα are(

gθθVβ + gθi∂βX j
)
ηαβ + Bθi∂βX jεαβ = −∂βθ̃ε

αβ . (6.4)

with the additional constraint
Aθ +

1
2πα′

θ̃ = 0 (6.5)

coming from the boundary term. Inserting the equations of motion back into (6.3) leads to

S̃ = −
1

4πα′

∫
Σ

d2σ
[ (
g̃θθ∂αθ̃∂βθ̃ + 2g̃θi∂αθ̃∂βX j + g̃i j∂αXi∂βX j

)
ηαβ (6.6)

+
(
2B̃iθ∂αXi∂βθ̃ + Bi j∂αXi∂βX j

)
εαβ

]
−

∫
∂Σ

dσ0 Ai∂σ0 Xi ,

with

g̃θθ = gθθ
−1 , g̃θi = gθθ

−1Bθi , B̃θi = gθθ
−1gθi , (6.7)

g̃i j = gi j − gθθ
−1

(
gθigθ j − BθiBθ j

)
, B̃i j = Bi j − gθθ

−1
(
gθiBθ j − Bθigθ j

)
.

The relations (6.7) for the metric and B-field components between the dual theories are called the Buscher
rules. Notice that in (6.6) the gauge field A lost its component in the T-dualized direction and in order
to perserve the gauge symmetry of the B-field, open string have no longer N boundary conditions in
that direction. This consequently means that a Dp-brane containing the gauge field A on its volume
and extending in the direction θ becomes, by T-dualizing θ, a D(p − 1)-brane, localised at a point in the
direction θ̃. On the other hand, since T-dualizing twice the same direction is a trivival transformation,
T-dualizing a transverse direction of a Dp-brane, needs to lead in the dual picture to a D(p + 1)-brane,
which fills out the T-dualized direction. In section 3.2.3 T-duality for circle compactification was
introduces. T-duality exchanges N with D boundary conditions and vice versa while inverting the radius.
In general the flipping of open string boundary holds in T-duality holds due to (6.5). For the case where
the direction µ = 9 of the ten dimensional Minkowski space R1,9 is compactified on a S 1 with radius R,
the corresponding metric is given by gµν = diag(−1, 1, ..., 2πR). Applying the Buscher rule g̃θθ = g−1

θθ one
receives the metric g̃µν = diag(−1, , 1, ..., 2πα

′

R ), with α′ = (2π)−2, which leads in the dual theory to an S 1

with radius α′

R . Hence the Buscher rules are indeed a more general formulation for what was encountered
in section 3.2.3.
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SO(12) to the dual T 6

SO(12)

6.1.2 T-dualizing T6
SO(12)

with D6-branes

Dual of T6
SO(12)

In section 4.1.1 deformations of T 6
SO(12), where described by turning on the deformation parameters τh

and Rh. The deformations where chosen, in such a way that the hermitian metric remained diagonal and
line element is given by

d2s =

3∑
h=1

Rh
2|1 − τh|

2|dwh|
2 , (6.8)

with the complex coordinates

w1 = y1 +
τ1y2

1 − τ1
, w2 = y3 −

y2

1 − τ2
+

τ2y4

1 − τ2
, w3 = y5 −

y4

1 − τ3
+

1 + τ3

1 − τ3
y6 . (6.9)

Now a B-field is included, which contains non vanishing components for each complex plane individually,
s.t. it is given by 1

B =
i
2

3∑
h=1

Rh
2|1 − τh|

2Bhdwh ∧ dwh . (6.10)

The Kähler 2-from, deduced from (4.10) and expressed in the lattice basis is given by

ω2 =

3∑
h=1

Rh
2|1 − τh|

2dwh ∧ dwh =

3∑
h=1

Rh
2|1 − τh|

2Im(τh) Re(dwh) ∧ Im(dwh) , (6.11)

s.t. the complexified Kähler from becomes

ω2 =

3∑
h=1

{
Rh

2|1 − τh|
2Bh + iRh

2|1 − τh|
2Im(τh)

}
Re(dwh) ∧ Im(dwh) . (6.12)

A T-duality transformation in each plane individually is performed, by T-dualizing the 1-cycles, which
are generated by

y1 → y1 + 1 , y3 → y3 + 1 , and y5 → y5 + 1 . (6.13)

That way each T-duality transformation does not affect the other planes. The line element obtained by
applying the Buscher rules is

d2s =

3∑
h=1

|dwh|
2

Rh
2|1 − τh|

2
, (6.14)

and the B-field becomes

B =
i
2

Re(τ̃1) − |τ1|
2

|1 − τ̃1|2

dw1 ∧ dw1

Im(τ̃1)
+

i
2

1 − Re(τ̃2)
|1 − τ̃2|2

dw2 ∧ dw2

Im(τ̃2)
(6.15)

+
i
2

1 − Re(τ̃3)
|1 − τ̃3|2

dw3 ∧ dw3

Im(τ̃3)
− dy3 ∧ dy4 − dy5 ∧ dy6 ,

1 Expressing the B-field in orthonormal coordinates (x1, ..., x6), it takes the simple form B =
∑3

h=1 Bhdx2h−1 ∧ dx2h.
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for the dual torus T̃ 6
SO(12), where the complex coordinates are defined by

w1 = y1 + τ̃1y2 , w2 = y3 + τ̃2 (y4 − y2) , w3 = y5 + τ̃3 (2y6 − y4) , (6.16)

with the complex structure moduli τ̃h defined by

τ̃h = Bh + iRh
2Im(τh) . (6.17)

Comparing the moduli of T 6
SO(12) with T̃ 6

SO(12), one observes, that the components of the hermitian metric
have been inverted and the complex structure moduli has been exchanged by the complexified Kähler
moduli. In the following of this chapter let the six dimensional torus T 6 be described by the line element

d2s =

3∑
h=1

Ah
2|dwh|

2 , (6.18)

with the complex coordinates defined by

w1 = y1 + K1y2 , w2 = y3 + K2(y4 − y2) , w3 = y5 + K3(2y6 − y4) . (6.19)

Choosing the deformation parameters by A2
h = Rh

−2|1 − τh|
−2 and Kh = Bh + iRh

2Im(τh) one receives the
dual torus of T 6

SO(12) in (6.14).

Magnetic flux on T̃6
SO(12)

In this section the T-duality transformations along the directions, given in (6.13), and its effect on the
open string sector are investigated. A D6-brane wrapping a sLag cycle Π3 on T 6

SO(12), with the wrapping
numbers

Π3 = (n1,m1) × (n2,m2) × (n3,m3) , (6.20)

is included. The cycle is parametrized in the covering space R6 by the equations

x2h =
mh

nh x2h−1 , h ∈ {1, 2, 3} (6.21)

and by performing a change of basis into the lattice basis, one gets

y1 =
n1

N(1) y2 , y3 =
m2

N(2) y2 +
n2

N(2) y4 , y5 =
m3

N(3) y4 +
n3 − m3

N(3) y6 , (6.22)

where we defined N(h) = nh + mh. The parametrizations describe N boundary conditions for open strings,
because the lines describe the loci in R6 on which open strirngs can propagat freely. As described in
section 6.1.1 N and D boundary conditions are exchanged and the T-dualized directions y1, y3 and y5,
correspond in the dual picture to gauge field components. The gauge field corresponding to the boundary
conditions in (6.22) is according to (6.5) given by

A1 = −2π
n1

N(1) y2 , A3 = −2π
m2y2 + n2y4

N(2) , A5 = −2π
m3y4 + (n3 − m3)y6

N(3) , (6.23)
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where α′ = (2π)−2 was set. A 1-form gauge field with the components given in (6.23) can be deduced
from a 2-form field strength given by

F =
iπ

Im(τ̃1)
n1

N(1) dw1 ∧ dw1 +
iπ

Im(τ̃2)
m2

N(2) dw2 ∧ dw2 (6.24)

+
iπ

Im(τ̃3)
m3

N(3) dw3 ∧ dw3 + 2πdy3 ∧ dy4 + 2πdy5 ∧ dy6 .

Together with the B-field, the gauge invariant fieldstrength defined in (3.40) can be computed:

F =
iπ

Im(τ̃1)

(
Re(τ̃1) − |τ1|

2

|1 − τ̃1|2
+

n1

N(1)

)
dw1 ∧ dw1 (6.25)

+
iπ

Im(τ̃2)

(
1 − Re(τ̃2)
|1 − τ̃2|2

+
m2

N(2)

)
dw2 ∧ dw2

+
iπ

Im(τ̃3)

(
1 − Re(τ̃3)
|1 − τ̃3|2

+
m3

N(3)

)
dw3 ∧ dw3 .

The terms proportional to dy3 ∧ dy4 and dy5 ∧ dy6 in F and B drop out in F , which means that a
simulataneous gauge transformation on B and F can be performed, which brings the field strength tensor
into the holomorphic form

F
iπ

=
n1

N(1)

dw1 ∧ dw1

Im(τ̃1)
+

m2

N(2)

dw2 ∧ dw2

Im(τ̃2)
+

m3

N(3)

dw3 ∧ dw3

Im(τ̃3)
. (6.26)

The absence of (2, 0)- and (0, 2)-forms in F confirms that the D9-brane, dual to the D6-brane, wrapping
the cycle (6.20), preserves superymmetry and wraps calibrated cycles on the torus [87, 116]. The sLag
condition ω2

∣∣∣
Π3 = 0 for D6-brane cycles is translated to the condition that F(2,0) = F(0,2) = 0 for

D9-brane fluxes. The gauge symmetry living on the D9-branes is a U(ND9) symmetry, with ND9 denoting
the wrapping number of the D9-brane around the torus. It is consitent to asume that ND9 is equal to
the intersections of the corresponding D6-brane in the dual theory with the T-dualized cycle. Let the
D6-brane wrap the cycle Π3 ND6 times, which means the gauge symmetry on the D6-brane volume is
U(ND6). Then, incorporating the multiplicity from Π3 wrapping the cycle (1,−1) × (1,−1) × (1,−1) 2,
the wrapping number ND9 is related to the wrapping number ND6 by

ND9 =
N(1)N(2)N(3)

2
ND6 =: NND6 , (6.27)

which implies that the gauge symmetry on thr D9-brane is U(NND6). At first sight this seems like a
different gauge symmetry arises on the dual theory, but Wilson lines break the gauge symmetry to

U(ND9)→ U(ND6) , (6.28)

as will be explained in the following.

2 Remember that the intersection number Iab of two cycles Π3
a =

∏3
h=1(nh

a,m
h
a) and Π3

b = prod3
h=1(nh

b,m
h
b) on T 6

SO(12) is given by
Iab = 1

2

∏3
h=1(nh

amh
b − nh

bmh
a).
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6.2 Magnetic fluxes on the dual T6
SO(12)

6.2.1 Symmetry breaking via magnetic fluxes

In this section it is explained how magnetic fluxes break the gauge symmetry on the D9-branes. Here
the notation in appendix A of [115] is partly followed. Let a U(P) gauge theory be described by the
Lagrangian

L = −
1

4g2 Tr
{
Fi jFi j

}
, (6.29)

where Fi j is the corresponding field strength tensor and the trace is taken over the gauge indices. A basis
for matrices in the adjoint representation is given by the set of P matrices Ua = δaiδa j and eab = δaiδb j,
where Ua form a basis for the diagonal elements and eab = δaiδb j, form a basis for the off diagonal
elements. A field A in the adjoint representation of U(P) can then be expanded by

A = BaUa + Wabeab . (6.30)

Magnetic fluxes considered here, arise from giving the Ba components a vev’s, s.t. the corresponding
fieldstrength is constant. The vev breaks the initial gauge group U(P) to a subgroup of U(P), which is
generated by elements, commuting with the flux. Let the wrapping number of the

∏
α NαND6 D9-branes

on the torus be P =
∑
α∈{a,b,c...} NαND6α . A vev is turned on, which is given by

〈A0〉 = diag(ma,ma, ...,ma︸          ︷︷          ︸
NaND6a times

, mb, ...,mb︸     ︷︷     ︸
NbND6b times

, mc, ...,mc︸     ︷︷     ︸
NcND6c times

, ...) . (6.31)

Identifying the generators of U(P), which commute with 〈A0〉, one finds that the gauge symmetry is
broken to

U(P)
〈A0〉
−−−→

∏
α

U(NαND6α) . (6.32)

In the following discussions, the wrapping number ND6 is set to ND6 = 1, that means, only U(1)’s
symmetries on the T-dual side are considered. As described in section 6.1.2, D6-branes with angles lead
to the constant fluxes of the form

F =

3∑
h=1

Fwhwhdwh ∧ dwh , (6.33)

with

Fw1w1 =
iπ

Im(τ̃1)


n1

a

N(1)
a
1Na

n1
b

N(1)
b

1Nb

. . .

 , and (6.34)

Fα
whwh

=
iπ

Im(τ̃h)


mh

a

N(h)
a
1Na

mh
b

N(h)
b

1Nb

. . .

 , h ∈ {2, 3} .
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The corresponding adjoint field is

A(~w) = diag(Aa, ..., Aa︸    ︷︷    ︸
Na times

, Ab, ..., Ab︸    ︷︷    ︸
Nb times

, ...) , (6.35)

with

Aα =
π

Im(τ̃1)
n1
α

N(1)
α

Im(w1dw1) +
π

Im(τ̃2)
m2
α

N(2)
α

Im(w2dw2) +
π

Im(τ̃3)
m3
α

N(3)
α

Im(w3dw3) . (6.36)

Since A has the same diagonal form as in (6.31), it breaks the U(P) symmetry analogous to (6.32). The
unbroken gauge group in the presence of the flux (6.33) is

∏
α U(Nα) ⊂ U(P).

6.2.2 Wilson loops and quantization condition

Next the effect of the compactification lattice on the gauge theory is investigated. D9-branes are placed
into T 6 wrapping the torus P times. Thus the T 6 contains a U(P) gauge symmetry arising from the gauge
symmetry on the spacetimefilling branes. By turning on magnetic fluxes, given in (6.33), the gauge
symmetry on the branes is broken to

∏
α U(Nα) as explained in the above section. In the following the

isomorphism 3

U(n) '
S U(n) × U(1)

Zn
, (6.37)

is used to decompose U(Nα) elements into S U(Nα) elements and a U(1) factor. Let φα be a field living
on the torus and transforming in the fundamental representation of U(Nα)

φα : T 6 → CNα . (6.38)

Under translations along the torus, φα transforms in the gauge representation as

φα
a(x)→ φα

a(x′) = exp
iq ∫ x′

x
Aα(x) · 1Nα

 (Wα)ab φα
b(x) , (6.39)

where Wα ∈ S U(Nα) and a, b ∈ {1, ...,Nα} are gauge indices4. Since the transformations wi → wi + 1
generate isometries on T 6, six independent Wilson loops naturally arise on the T 6. φ transforms under
the isometries as:

φα(..., yi + 1, ...) = eiqχαi (...,yi,...)ωαi φα(..., yi, ...) , (6.40)

3 Let M ∈ S U(n) and eiϕ ∈ U(1). Then K = eiϕM ∈ U(n). But M̃ = ei k
n M ∈ S U(n), for k

2π ∈ Z, because det
(
ei k

n M
)

=

eik det(M)︸ ︷︷ ︸
=1

. Then also ei(ϕ−k/n) M̃ = K. Since (ei k
n )n, the factors ei k

n can be seen as Zn elements and hence U(1) × S U(n)

contains a Zn factor. Quotienting the Zn factor out lead to the isomorphism (6.37) .
4 In the language of gauge bundles, (6.39) describes the transformation in the fibre, when moved along the base space.
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with

χα1 (~w) =
πn1

α

N(1)
α

Im(w1)
Im(K1)

, χα2 (~w) =
πn1

α

N(1)
α

Im(K1w1)
Im(K1)

−
πm2

α

N(2)
α

Im(K2w2)
Im(K2)

, (6.41)

χα3 (~w) =
πm2

α

N(2)
α

Im(w2)
Im(K2)

, χα4 (~w) =
πm2

α

N(2)
α

Im(K2w2)
Im(K1)

−
πm3

α

N(3)
α

Im(K3w3)
Im(K3)

,

χα5 (~w) =
πm3

α

N(3)
α

Im(w3)
Im(K3)

, χα6 (~w) =
2πm3

α

N(3)
α

Im(K3w3)
Im(K3)

.

The S U(Nα) factors ωi are yet undetermined, but the Dirac quantization condition provide constraints on
them[115]. Let γ be a closed loop wrapping a trivial 1-cycle on a non trivial 2-cycle of the torus, s.t. the
2-cycle is seperated into two surfaces and γ is the boundary of both surfaces. The quantization condition
demands that the gauge transformations of φ, after its moved along γ, is trivial [117]. Non trivial 2-cycles
on the torus are generated by two lattice vectors: Let Π2

i j ∈ H2(T 6) be the 2-cycle generated by the two
generators of the underlying lattice ~αi and ~α j. Then a closed contractible loop on Π2

i j is generated by the
following translation

γ : (yi, y j)
+~αi
−−−→ (yi,+1y j)

+~α j
−−−→ (yi + 1, y j + 1)

−~αi
−−−→ (yi, y j + 1)

−~α j
−−−→ (yi, y j) . (6.42)

Moving the field φ along γ, leads to a gauge transformation, which has to be trivial according to the
quantization condition. That means the parameters for the Wilson lines need to satisfy

eiqχαi j
(
ωαj

)−1 (
ωαi

)−1
ωαjω

α
i φ(~w) = φ(~w) , (6.43)

with

χα12 = −2π
n1
α

N(1)
α

, χα32 = 2π
m2
α

N(2)
α

, χα34 = −2π
m2
α

N(2)
α

, (6.44)

χα54 = 2π
m3

N(3) , χ56 = −4π
m3
α

N(3)
α

,

and all other χαi j = 0.

Solving the quantization condition

The solutions to (6.43) lead to expressions for ωi’s in the Wilson lines. It turns out that the solutions to
the following two dimensional problem is helpful: Let ω1, ω2 ∈ S U(N), with N ∈ Z and

(ω2)−1(ω1)−1ω2ω1 = e2πi k
N 1N , (6.45)

with
M = k mod N , M ∈ Z . (6.46)

Solutions to ω1 and ω2 are given by [115]

ω1 = QM , ω2 = P (6.47)
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with

Q =


1

e2πi/N

. . .

e2πi(N−1)/N

 , P =


1

1
. . .

1

 . (6.48)

Reminding that Nα = 1
2
∏3

h=1 N(h)
α , (6.43) can be rewritten into a similar form as in (6.45)(
ωαj

)−1 (
ωαi

)−1
ωαjω

α
i = e2πikαi j/Nα · 1Nα (6.49)

with

k12 =
n1
α

2
N(2)
α N(3)

α mod Nα , k32 = −
m2
α

2
N(1)
α N(3)

α mod Nα , (6.50)

k34 =
m2
α

2
N(1)
α N(3)

α mod Nα , k54 = −
m3
α

2
N(1)
α N(2)

α mod Nα ,

k56 = m3
αN(1)

α N(2)
α mod Nα .

The values for ki j have to be integer. That means if N(h)
α = 0 mod 2 is not satisfied for all planes

h ∈ {1, 2, 3}, one needs to double N(h)
α in one plane. This is exactly the condition (4.73) for 3-cycles to

be closed on the T 6
SO(12), which should not be a surprise, because the magnetic flux was derived from

D-branes wrapping closed 3-cycles on the T 6
SO(12). The two dimensional solutions (6.47) can be used to

construct S U(Nα) factors solving (6.43): Let the ω’s for the Wilson loops be given by

ω1 = Qn1
α

(1) ⊗ 1N(2)
α
⊗ 1N(3)

α
, ω2 = P(1) ⊗ P−1

(2) ⊗ 1N(3)
α
, (6.51)

ω3 = 1N(1)
α
⊗ Qm2

α

(2) ⊗ 1N(3)
α
, ω4 = 1N(1)

α
⊗ P(2) ⊗ P−1

(3) ,

ω5 = 1N(1)
α
⊗ 1N(2)

α
⊗ Qm3

α

(3) , ω6 = 1N(1)
α
⊗ 1N(2)

α
⊗ P2

(3) ,

where the subscript (h) of the matrices P and Q denote that they are N(h)
α × N(h)

α dimensional. The
solutions in (6.51) solve the conditions in (6.49), but the matrices ωi are 2Nα × 2Nα dimensional, hence
to big. A similar problem was already encountered, when the intersection points of two 3-cycles on the
T 6

SO(12) where counted. There the number of projections of the intersection points onto the h-th plane

is given by I(h)
ab and the product

∏3
h=1 I(h)

ab leads to two times the intersection number on T 6
SO(12). It was

necessary to place the labels for the intersection points on a general three dimensional lattices. Applying
the concept to the solutions in (6.51), the ”tensoring“ of the matrices has to be defined in a more general
way: The components of ωi’s given by

(ω1)i j = Qn1
α

i(1) j(1)δi(2) j(2)δi(3) j(3) , (ω2)i j = Pi(1) j(1) P−1
i(2) j(2)δi(3) j(3) , (6.52)

(ω3)i j = δi(1) j(1) Qm2
α

i(2) j(2)δi(3) j(3) , (ω4)i j = δi(1) j(1) Pi(2) j(2) P−1
i(3) j(3) ,

(ω3)i j = δi(1) j(1)δi(2) j(2) Qm3
α

i(3) j(3) , (ω6)i j = δi(1) j(1)δi(2) j(2) P2
i(3) j(3) ,

are labeled by two triplets i = (i(1), i(2), i(3))T and j = ( j(1), j(2), j(3))T , which belong to a general three
dimensional lattice Λ3

α. As already observed for the 3-cycles on T 6
SO(12), the wrapping numbers N(h)

α can
be
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(i) even for all planes, with g.c.d.(nh
α,m

h
α) = 1,

(ii) even for all planes, with g.c.d.(nh
α,m

h
α) = 2 for one exactly one h and in the other two planes

g.c.d.(nh
α,m

h
α) = 1,

(iii) odd in exactly one plane and g.c.d.(nh
α,m

h
α) = 2 in exactly one plane, in which N(h)

α is even. In the
other planes g.c.d.(nh1

α ,mh
α) = 1 and

(iv) even for exactly one plane, where g.c.d.(nh1
α ,mh

α) = 2 in that plane. In the other two planes N(h)
α is

odd and g.c.d.(nh
α,m

h
α) = 1.

It will turn out to be consistent to choose Λ3
α as the following: For the N(h)

α ’s given in (i) and (ii), Λ3
α is

given by

Λ3
α =

ΛSO(6)⊗3
h=1 N(h)

α Z
, (6.53)

where for cases (iii) and (iv) it will have the more general form

Λ3
α =

ΛSO(6)

Γα
, (6.54)

where the lattice Γα depends on the wrapping numbers: Without loss of generality N(2)
α = 1 mod 2 and

g.c.d.(n1
α,m

1
α) = 2 for case (iii) and N(1)

α = 0 mod 2 and g.c.d.(n1
α,m

1
α) = 2 for case (iv) is set. Then Γα

is spanned by the basis vectorsN(1)
α

2
, N(2)

α , 0
T

,

N(1)
α

2
, −N(2)

α , 0
T

,
(
0, 0, N(3)

α

)T
(6.55)

for case (iii) and N(1)
α

2
, N(2)

α , 0
T

,

N(1)
α

2
, −N(2)

α , 0
T

,
(
0, N(2)

α , N(3)
α

)T
(6.56)

for case (iv). For other cases of (iii) and (iv) the basis vectors has to be adjusted accordingly.
The Wilson lines break each U(Nα) gauge group to a U(1) (or U(NαND6) to U(ND6) for ND6 , 1). To

see that, one needs to observe how a gauge field transforms under the action of the Wilson lines: Let
A ∈ adj(U(Nα)) be a gauge field of U(Nα). Translations along a lattice vectors ~αi, transforms A in the
gauge representation as

A→ ωiA(ωi)−1 , (6.57)

but due to the compactification A has to be identified with ωiA(ωi)−1, which projects Nα − 1 degrees of
freedom out of A, leaving only one degree of freedom left.

6.2.3 Boundary conditions for bifundamentals

In this section it is investigated how to deduce the boundary conditions from Wilson lines for bifunda-
mental fields. Let φ ∈ (�a,�b) be a field on the torus, transforming in the bifundamental representation
of U(Na) × U(Nb):

φ : T 6 → CNa×Nb . (6.58)

In the gauge representation φ is a Na × Nb matrix and its components are denote by φka,kb , where ka and
kb are triplets of integers belonging to Λ3

a and Λ3
b as defined in (6.53) and (6.54). Shifting φ on the torus
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along the lattice vectors ~αi, the components of φ transform due to the Wilson lines as the following:

φka,kb(y1 + 1, ...) = eiπĨ(1)
ab

Im(w1)
Im(K1) e

2πi
k(1)

a
n1

a
N(1)

a
−k(1)

b

n1
b

N(1)
b


φka,kb(y1, ...) , (6.59)

φka,kb(..., y2 + 1, ...) = e
iπ

(
Ĩ(1)
ab

Im(K1w1)
Im(K1) −Ĩ(2)

ab
Im(K2w2)

Im(K2)

)
φk′a,k′b

(..., y2, ...) ,

φka,kb(..., y3 + 1, ...) = eiπĨ(2)
ab

Im(w2)
Im(K2) e

−2πi
k(2)

a
m2

a
N(2)

a
−k(2)

b

m2
b

N(2)
b


φka,kb(..., y3, ...) ,

φka,kb(..., y4 + 1, ...) = e
iπ

(
Ĩ(2)
ab

Im(K2w2)
Im(K2) −Ĩ(3)

ab
Im(K3w3)

Im(K3)

)
φk′′a ,k′′b

(..., y4, ...) ,

φka,kb(..., y5 + 1, ...) = eiπĨ(3)
ab

Im(w3)
Im(K3) e

−2πi
k(3)

a
m3

a
N(3)

a
−k(3)

b

m3
b

N(3)
b


φka,kb(..., y5, ...) ,

φka,kb(..., y6 + 1) = e2iπĨ(3)
ab

Im(K3w3)
Im(K3) φk′′′a ,k′′′b

(..., y6) ,

where Ĩ(h)
ab = I(h)/N(h)

a N(h)
b , k′α = kα + (1,−1, 0)T , k′′α = kα + (0, 1,−1)T and k′′′α = kα + (0, 0, 2)T . One can

observe that the Wilson lines shift the indices ka and kb by S O(6) root vectors and since there are in total
Nα inequivalent indices for ka and Nb inequivalent indices for kb, the assumption

ka ∈ Λ3
a , kb ∈ Λ3

b , (6.60)

with Λ3
a and Λ3

b defined in (6.53) and (6.54) is consistent.
In [115] bifundamentals of U(Na) × U(Nb), with g.c.d.(Na,Nb) = 1 on a factorisbale T 6 where

discussed and the components of the bifundamentals where labeled by an single index l. In the following
it is shown that bifundamentals on non factorisable T 6 can be labeled in a similar way by two labels,
which are denoted by l and δ and belonging to general three dimensional lattices.

Labeling bifundamental states with non coprime (Na, Nb) on a T2

Before investigating bifundamentals on a T 6, they are examined on a T 2. A bifundamental field
φ ∈ (�a,�b) on a T 2 has in the gauge representation Na × Nb components φka,kb , where the indices ka and
kb are given by

ka ∈ {0, 1, ...,Na − 1} , and kb ∈ {0, 1, ...,Nb − 1} . (6.61)

In [115], each component was labeled by one index l, where

l ∈ {0, 1, ...,NaNb − 1} , with kα = l mod Nα , α ∈ {a, b} , (6.62)

s.t. φka,kb ∼ φl,l. This works as long as g.c.d.(Na,Nb) = 1. Let g.c.d.(Na,Nb) = d. Then the equation

ka + sNa = kb + tNb = l , with s, t ∈ Z , (6.63)

can only be solved when ka − kb = 0 mod d. For

ka − kb = δ mod d , (6.64)

with δ ∈ {1, ..., d − 1}, however (6.63) can be modified by

ka + sNa = kb + δ + tNb = l , (6.65)
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which is solvable for any given pair of indices (ka, kb) and they can be assigned to two indices (δ, l) by

ka = l mod Na , kb + δ = l mod Nb , for ka − kb = δ mod d , (6.66)

with
l ∈

{
0, 1, ...,

NaNb

d

}
, δ ∈ {0, 1, ..., d − 1} . (6.67)

Wilson lines on the T 2 lead, similar to (6.59), to the boundary conditions for bifundamentals given by

φl,l−δ(w + 1) = eiπĨab
Im(w)
Im(τ) e

2πi
(

naka
Na
−

nbkb
Nb

)
φl,l−δ(w) , (6.68)

φl,l−δ(w + τ) = eiπĨab
Im(τw)
Im(τ) φl+1,l−δ+1(w) ,

where w = y1 + τy2, with τ the complex structure modulus for T 2. Since Iab is a multiple of d 5, the
following translation leads to a trivial phase for φ:

φl,l−δ(y1, y2 + NaNb/d) = φl+ NaNb
d ,l−δ+ NaNb

d
(y1, y2) . (6.69)

Notice that the boundary conditions in (6.68) relates only components with the same value for δ. That
motivates to view φka,kb’s with different δ’s as independent and decompose φ into d "irreducible subsets"
φδ ⊂ φ, where each subset contains the set of states φka,kb , with the same δ. Each φδ therefore contains
NaNb

d components and for d = 1, one returns to φδ = φ. The boundary condition for y1 → y1 + 1 in (6.68)
can then be expressed in terms of l and δ by

φl,l−δ(w) = eiπĨab
Im(w)
Im(τ) e

2πi
(
Ĩabl+ nbδ

Nb

)
φl,l−δ(w) . (6.70)

Unlike the case where Na,Nb are coprime, the boundary conditions involve an additional phase depending
on δ.

Labeling bifundamental states on a the T6
SO(12)

Now the above discussion is generalized in order to label all components of φ given in (6.58), which are
related by the boundary conditions in (6.59). The gauge indices ka and kb of φ belong to the lattices

ka ∈
ΛSO(6)

Γa
, ka ∈

ΛSO(6)

Γb
, with Λa, Λb ∈ ΛSO(6) . (6.71)

Let Γa and Γb be spanned by three generators ai and bi repsectively:

A = span (a1, a2, a3) , B = span (b1, b2, b3) , (6.72)

and let Γa and Γb be sublattices of Γd, s.t. all other lattices which contain Γa and Γb are sublattices of Γd.
Then the following equation is only solvable for ka − kb ∈ Γd

ka + As = kb + Bt = l , s, t ∈ Z3 , (6.73)

with
A = (a1, a2, a3) , B = (b1, b2, b3) , (6.74)

5 Rewriting Iab = naNb − nbNb, Iab, one can see that Iab is always a multiple of g.c.d.(Na,Nb) = d.
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where A and B are 3 × 3 matrices, with the columns given by the components of the corresponding basis
vectors. Similar to the non coprime case in two dimensions, by introducing another label

δ ∈
ΛSO(6)

Γd
, (6.75)

where ka − kb = δ mod Γd, the equation (6.73) can be modified by

ka + As = kb + δ + Bt = l , s, t ∈ Z3 , (6.76)

s.t. it can be solved for any pair (ka, kb), similar to (6.65) in the two dimensional case. The label l in
(6.76) has to belong to the S O(6) lattice, because ka, kb, As, Bt are S O(6) vectors for any s, t ∈ Z3. For

l ∈
ΛSO(6)

Γa ∩ Γb
, (6.77)

any pair (ka, kb), with ka − kb = δ mod Γd, obeys the relation

ka = l mod Γa , kb + δ = l mod Γb . (6.78)

The number of states #(ka, kb) of φ satisfies the relation6

#(ka, kb) =

∣∣∣∣∣ΛSO(6)

Γa

∣∣∣∣∣ ∣∣∣∣∣ΛSO(6)

Γb

∣∣∣∣∣ =

∣∣∣∣∣ΛSO(6)

Γd

∣∣∣∣∣ ∣∣∣∣∣ ΛSO(6)

Γa ∩ Γb

∣∣∣∣∣ , (6.79)

hence there is indeed a one to one relation between the pairs (l, δ) and (kb, kb). The boundary conditions
in (6.59) reveal, that, analogous to the two dimensional case, only states with the same δ are related by
lattice shifts of the φ and therefor φ can be decomposed into

∣∣∣∣ΛSO(6)
Γd

∣∣∣∣ independent (or irreducible) subsets

φδ ⊂ φ, with each φδ containing
∣∣∣∣ΛSO(6)
Γa∩Γb

∣∣∣∣ components. Each component in an irreducible subset φδ is
labeled by a different l. Using the labels δ and l, the boundary conditions, generated by z1 → z1 + 1,
z2 → z2 + 1 and z3 → z3 + 1, can be expressed as

φl,l−δ(y1 + 1, ..., ) = eiπĨ(1)
ab

Im(w1)
Im(K1) e

2πi
Ĩ(1)

ab l(1)+
n1
bδ

(1)

N(1)
b


φl,l−δ(y1, ...) , (6.80)

φl,l−δ(..., y3 + 1, ..., ) = eiπĨ(2)
ab

Im(w2)
Im(K2) e

2πi
Ĩ(2)

ab l(2)+
n2
bδ

(2)

N(2)
b


φl,l−δ(..., y3, ...) ,

φl,l−δ(..., y5 + 1, ..., ) = eiπĨ(3)
ab

Im(w3)
Im(K3) e

2πi
Ĩ(3)

ab l(3)+
n3
bδ

(3)

N(3)
b


φl,l−δ(..., y5, ...)

6 See appendix C for a proof.
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6.3 Wavefunctions for chiral matter on the T6

6.3.1 Massless chiral fermions

Let a U(Na + Nb + Nc) gauge symmetry on the T 6 be broken by the magnetic flux F =
∑3

h=1 Fwhwhdwhdwh

with

Fw1w1 =
iπ

Im(K1)


n1

a

N(1)
a
1Na

n1
b

N(1)
b

1Nb

n1
c

N(1)
c
1Nc

 , (6.81)

Fw2w2 =
iπ

Im(K2)


m2

a

N(2)
a
1Na

m2
b

N(2)
b

1Nb

m2
c

N(2)
c
1Nc

 ,

Fw3w3 =
iπ

Im(K3)


m3

a

N(3)
a
1Na

m3
b

N(3)
b

1Nb

m3
c

N(3)
c
1Nc

 ,
to a U(Na) × U(Nb) × U(Nc) symmetry. The Lagrangian for the gauge theory is given in (6.29). The
corresponding Lagrangian containing the superpartners Ψ to the bosonic fields A is given by [115]

L =
i

2g2 Tr
{
ΨΓiDiΨ

}
, (6.82)

with Γi the six Gamma matrices forming the six dimensional Clifford algebra and Di the covariant
derivative. The fields Ψ are fermions on the torus and since they are the superpartners to A, they
transforms in the adjoint representation adj(U(Na + Nb + Nc)). In six dimensions a Dirac spinor contains
eight spin states, which are denoted by

ψ~ε : T 6 → C(Na+Nb+Nc)2
, (6.83)

where ψ~ε is a state of Ψ in the eight dimensional Dirac spinor respresentation of S O(6), and ~ε =

(ε(1), ε(2), ε(3)), with ε(h) = ±1/2, denote the eigenvalues under the three Cartan generators of S O(6). The
equations of motion from (6.82) for massless spinors Ψ leads to the Dirac equation

i
3∑

h=1

(
Γwh Dwh − Γwh Dwh

)
Ψ(~z) = 0 . (6.84)

From the Dirac equation (6.84), three differential equations for each of the eight spin states ψ~ε can be
deduced:

∀ h ∈ {1, 2, 3}

Dhψ~ε(~w) = 0, for ε(h) = +

D†hψ~ε(~w) = 0, for ε(h) = −
, (6.85)
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where the covariant derivative acts on the fermionic fields as

Dhψ~ε = ∂hψ~ε +
[
Awh , ψ~ε

]
, (6.86)

with the components for Awh deduced from the flux (6.81) and are given by

Aw1 = −
πw1

2Im(K1)


n1

a

N(1)
a
1Na

n1
b

N(1)
b

1Nb

n1
c

N(1)
c
1Nc

 ,

Aw2 = −
πw2

2Im(K2)


m2

a

N(2)
a
1Na

m2
b

N(2)
b

1Nb

m2
c

N(2)
c
1Nc

 ,

, Aw3 = −
πw3

2Im(K3)


m3

a

N(3)
a
1Na

m3
b

N(3)
b

1Nb

m3
c

N(3)
c
1Nc

 .
By expressing ψ~ε in the gauge representation as

ψ~ε =

A B C
D E F
G H I

 (6.87)

with A, B, ..., I being Na × Na- , Na × Nb- ,..., Nc × Nc-dimensional block matrices. Inserting (6.87) into
(6.86), we recive

∂hA = 0 , ∂hE = 0 , ∂hI = 0 , for ε(h) = + , (6.88)

∂hA = 0 , ∂hE = 0 , ∂hI = 0 , for ε(h) = − ,

s.t. the components of A, B and C are holomorphic or antiholomprphic in the variables wh. They
correspond to the gaugeginos of U(Na), U(Nb) and U(Nc) respectively. The off-diagonal blocks have to
satsify ∂h +

πĨ(h)
ab

2Im(Kh)
wh

 B = 0 ,

∂h −
πĨ(h)

ab

2Im(Kh)
wh

 D = 0 , (6.89)∂h +
πĨ(h)

ca

2Im(Kh)
wh

G = 0 ,
∂h −

πĨ(h)
ca

2Im(Kh)
wh

C = 0 ,∂h +
πĨ(h)

bc

2Im(Kh)
wh

 F = 0 ,

∂h −
πĨ(h)

bc

2Im(Kh)
wh

 H = 0 ,
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for ε(h) = + and ∂h −
πĨ(h)

ab

2Im(Kh)
wh

 B = 0 ,

∂h +
πĨ(h)

ab

2Im(Kh)
wh

 D = 0 , (6.90)∂h −
πĨ(h)

ca

2Im(Kh)
wh

G = 0 ,
∂h +

πĨ(h)
ca

2Im(Kh)
wh

C = 0 ,∂h −
πĨ(h)

bc

2Im(Kh)
wh

 F = 0 ,

∂h +
πĨ(h)

bc

2Im(Kh)
wh

 H = 0 ,

for ε(h) = −. The following Ansatz for B can be made:

B ∝


ei

πĨ(h)
ab

Im(Kh) zhIm(wh)
, for ε(h) = + ,

ei
πĨ(h)

ab
Im(Kh)whIm(wh)

, for ε(h) = − ,

(6.91)

but B diverges for
lim

Im(wh)→±∞
B = ∞ , for ε(h) = −sign

(
I(h)
ab

)
. (6.92)

That means the block B in ψ~ε can only be non vanishing for

~ε =
(
sign

(
I(1)
ab

)
, sign

(
I(2)
ab

)
, sign

(
I(3)
ab

))T
. (6.93)

Similar the following ansatz for D can be made

D ∝


e−i

πĨ(h)
ab

Im(Kh)whIm(wh)
, for ε(h) = + ,

e−i
πĨ(h)

ab
Im(Kh) zhIm(wh)

, for ε(h) = − ,

(6.94)

with D only non vanishing for

~ε =
(
−sign

(
I(1)
ab

)
,−sign

(
I(2)
ab

)
,−sign

(
I(3)
ab

))T
. (6.95)

Without loss of generality it will be focused from now on, on the case where

I(h)
ab > 0 , ∀ h ∈ {1, 2, 3} , (6.96)

and the non vanishing B and D are contained in ψ+++ and ψ−−− respectively. They are given by

B = exp

iπ 3∑
h=1

Ĩ(h)
ab

Im(Kh)
whIm(wh)

 ξIab(w1, w2, w3) , (6.97)

D = exp

−iπ
3∑

h=1

Ĩ(h)
ab

Im(Kh)
whIm(wh)

 ξIba(w1, w2, w3) ,

where ξIab and ξIba are Na ×Nb and Nb ×Na matrices respectively. Taking a closer look at the fields B and
D, one can see that they are related by complex conjugation to each other and by defining the chirality
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of ψ~ε by the sign of ε1ε2ε3, B and D have opposite chiralities. They can be interpret as the field B as
a bifundamental field (�a,�b) of U(Na) × U(Nb) and D being its conjugate (�a,�b). The intersection
numbers satisfy the relation

Ĩ(h)
ab + I(h)

bc + I(h)
ca = 0 , ∀ h ∈ {1, 2, 3} (6.98)

and without loss of generality it will be focused from now on, on the case

|I(h)
ab | + |I

(h)
ca | = |I

(h)
bc | , I(h)

bc < 0 , ∀ h ∈ {1, 2, 3} . (6.99)

Having fixed the signs for the intersection numbers the remaining equations in (6.89) and (6.90) can be
solved analogous to B and D and one receives expressions for the other blocks in ψ~ε . Defining

ψIαβ(w1, w2, w3) = exp

iπ 3∑
h=1

Ĩ(h)
αβ

Im(Kh)
whIm(wh)

 ξIαβ(w1, w2, w3) , (6.100)

the fields C, F, G and H are given by

G = C† = ψIca(w1, w2, w3) , H = F† = ψIcb(w1, w2, w3) , (6.101)

with G and H (C and F) being chiral (antichiral) fermions in the bifundamental representation of
U(Nc) × U(Na) and U(Nc) × U(Nb) respectively. For the choice, made in (6.99), only the two spin states

ψ+++ =

 A ψIab 0
0 E 0
ψIca ψIcb I

 , and ψ−−− =


A† 0

(
ψIca

)†(
ψIab

)†
E†

(
ψIcb

)†
0 0 I†

 , (6.102)

have non vanishing off diagonal blocks. For a different choice of signs in (6.99), the off diagonal blocks
of two other spin states ψ~ε , would have non vanishing entries, where ~ε depends on the signs of the
intersection numbers similar to (6.93).

6.3.2 Light chiral scalars

Here a closer look a the bosonic fields in (6.29) is taken in order to determine the wavefunctions for chiral
scalars. As already mentioned, the states commuting with the vev, belong to the adjoint representation of
the unbroken gauge group. The remaining degrees of freedom, remain as bifundamental scalars, which
correspond to the superpartners of the chiral fermions ψIab , ψIcb , ψIca and their conjugates. To be more
precise, when decomposing the (Na + Nb + Nc)2 states of an adjoint field adj ∈ U(Na + Nb + Nc) into
Na × Na, Na × Nb, etc. blocks similar to (6.87)

Φi =

A B C
D E F
G H I

 , (6.103)

the gauge field Ai of the unbroken gauge group takes in that representation the form

Ai =

Aa
i

Ab
i

Ac
i

 , (6.104)
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where Aαi has Nα × Nα components for each α ∈ {a, b, c}. Ai indeed commutes with the flux given in
(6.81). The action of Ai on Φ j is given by the commutator

[
Ai,Φ j

]
=


[
Aa

i , A
]

Aa
i B − BAb

i Aa
i C −CAc

i

Ab
i D − DAa

i

[
Ab

i , E
]

Ab
i F − FAc

i

Ac
i G −GAa

i Ac
i H − HAb

i

[
Ac

i , I
]

 . (6.105)

From (6.105), one can deduce that A, E and I transform in the adjoint of U(Na), U(Nb) and U(Nc)
respectively. But one can further see that the fields B, F and G transform in the bifundamental represent-
ation of U(Na) × U(Nb), U(Nb) × U(Nc) and U(Nc) × U(Na) respectively, where C, D and H transform
in the conjugate representations. That means in order to find wavefunctions for the bifundamentals in Φ,
eigenfunctions of the Laplace operator D2 =

∑6
i=1 Di

2 have to be found, with Di the covariant derivative.
The square of the Dirac operator is related to the Labplace operator as

(
i /D

)2
=

1
2

{
Γi,Γ j

}︸ ︷︷ ︸
2gi j

DiD j +
1
2

ΓiΓ j
[
Di,D j

]︸   ︷︷   ︸
=Fi j

(6.106)

= D2 +
1
2

ΓiΓ jFi j .

The Clifford algebra, in the basis chosen for (6.81), is given by{
Γh,Γk

}
=

4
Ah

2 δ
wh,wk , (6.107)

with Ah defined in (6.18). Inserting the flux components from (6.81) into (6.106), one receives

(
i /D

)2
= D2 + 2

3∑
h=1

Fwh,wh

Ah
2 . (6.108)

Since the eigenfunctions for the Dirac operator where already found by i /Dψ~ε = 0, the eigenfunctions for
the Laplace operator are also known, where their eigenvalues are given by

D2ψIαβ =

3∑
h=1

2πĨ(h)
αβ

Ah
2Im(Kh)

ψIαβ , (6.109)

s.t. ψIαβ are not only solutions to bifundamental fermionic fields, but serves as wavefunctions for
bifundamental scalar fields with a mass given by

m2 =

3∑
h=1

2πĨ(h)
αβ

Ah
2Im(Kh)

. (6.110)

The mass in (6.110) for the scalars can be related to the masses of the light NS open strings at intersection
points of D6-branes [61]. Since the components of Fwhwh where derived by the boundary conditions
(6.21), the right term in (6.108) is related to the angles in the complex planes of intersecting D6-branes of
the T-dual theory. In order for the two branes to share the same supersymmetry charges on their volume
they need to be calibrated by the same calibration phase and due to the condition (4.134) one would
expect the right term in (6.108) to vanish for supersymmetric theories [118, 119]. Hence the scalar with

94



6.3 Wavefunctions for chiral matter on the T 6

vanishing mass for (6.110) corresponds in the intersecting branes picture to the massless NS open string
state at intersection points. Analogous to the factorisable torus, the two polarization states of the massless
field Φi are given by [115]

Φ+ = ψ+++ Φ− = ψ−−− (6.111)

with ψ+++ and ψ−−− defined in (6.102).

6.3.3 Massless chiral fields and Wilson lines

Up to now turning on magnetic flux of the form (6.81) in (6.29) and (6.82), led to chiral matter from
gauge fields of the unbroken gauge group. The wave functions for the massless (or light) bifundmantals
are

ψIab(w1, w2, w3) = exp

iπ 3∑
h=1

Ĩ(h)
ab

Im(Kh)
zhIm(wh)

 ξIab(w1, w2, w3) , (6.112)

with ξIab ∈ CNa×Nb , and the complex conjugate of ψIab . In section 6.2.3 the discussed showed how
bifundamentals transform under Wilson lines, which occur from the compactification lattice. For
the wavefunction in (6.112) to be consistent with the compactification, it has to satisfy the boundary
conditions (6.59). Applying (6.59) to ψIab , boundary conditions for ξIab can be deduced and are given by:

ξIab
l,l−δ (w1 + 1, w2, w3) = e

2πi
Ĩ(1)

ab l(1)+
n1

bδ
(1)

N(1)
b


ξIab

l,l−δ(~w) , (6.113)

ξIab
l,l−δ (w1 + K1, w2 − τ2, w3) = e−πi

(
Ĩ(1)
ab (2w1+K1)−Ĩ(2)

ab (2w2−K2)
)
ξIab

l′,l′−δ(~w) , (6.114)

ξIab
l,l−δ (w1, w2 + 1, w3) = e

2πi
Ĩ(2)

ab l(2)+
n2

bδ
(2)

N(2)
b


ξIab

l,l−δ(~w) , (6.115)

ξIab
l,l−δ (w1, w2 + K2, w3 − τ3) = e−πi

(
Ĩ(2)
ab (2w2+K2)−Ĩ(3)

ab (2w3−K3)
)
ξIab

l′′,l′′−δ(~w) , (6.116)

ξIab
l,l−δ (w1, w2, w3 + 1) = e

2πi
Ĩ(3)

ab l(3)+
n3

bδ
(3)

N(3)
b


ξIab

l,l−δ(~w) , (6.117)

ξIab
l,l−δ (w1, w2, w3 + 2K3) = e−4πiĨ(3)

ab (w3+K3)ξIab
l′′′,l′′′−δ(~w) , (6.118)

with l′ = (1,−1, 0)T , l′′ = (0, 1,−1)T and l′′′ = (0, 0, 2)T . The following ansatz solves (6.113), (6.115)
and (6.117)

ξIab
l,l−δ(~w) =

∑
~n∈Z3

exp

2πi
3∑

h=1

(
n(h) + Ĩ(h)

ab l(h) + ϕ(h)
)
wh

 ρ~n (l) , (6.119)

with

ϕ(1) =


n1

bδ
(1)

N(1)
b

, for h = 1

−
mh

bδ
(h)

N(h)
b

, for h ∈ {2, 3}
, (6.120)

and ρ~n(l) a factor independent of the variables ~w. To determine ρ~n(l), the remaining boundary conditions
(6.114), (6.116) and (6.118) are imposed on (6.119). After inserting ξ from (6.119) into the boundary
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conditions, comparing the coefficients with equal ~n, one finds the following conditions for ρ~n

ρ~n(l + (1,−1, 0)T )
ρ~n(l)

=e
2πi


n(1)+Ĩ(1)

ab (l(1)+ 1
2 )+

n1
bδ

(1)

N(1)
b

K1−

n(2)+Ĩ(2)
ab (l(2)− 1

2 )−
m2

bδ
(2)

N(2)
b

K2


,

ρ~n(l + (0, 1,−1)T )
ρ~n(l)

=e
2πi


n(2)+Ĩ(2)

ab (l(2)+ 1
2 )−

m2
bδ

(2)

N(2)
b

K2−

n(3)+Ĩ(3)
ab (l(3)− 1

2 )−
m3

bδ
(3)

N(3)
b

K3


,

ρ~n(l + (0, 0, 2)T )
ρ~n(l)

=e
2πi

n(3)+Ĩ(3)
ab (l(3)+1)−

m3
bδ

(3)

N(3)
b

K3

. (6.121)

The above boundary conditions are solved by

ρ~n(l) = N~n exp

iπ 3∑
h=1

(
n(h) + Ĩ(h)

ab l(h) + ϕ(h)
)2 Kh

Ĩ(h)
ab

 , (6.122)

where N~n is a normalization factor.

6.3.4 Counting numbers of independent zeromodes

In the previous section the zeromodes for of the Dirac and Laplace operator (when the D9-branes wrap
cycles with the same calibration phase) we determined. The zeromodes are given by (6.112)

ψIab(~w) = exp

iπ 3∑
h=1

Ĩ(h)
ab

Im(Kh)
whIm(wh)

 ξIab(~w) , (6.123)

with the components for ξ given by

ξl,l−δ =
∑
~n∈Z3

N~ne
2πi

∑3
h=1

(n(h)+Ĩ(h)
ab l(h)+ϕ(h)

)
Wh+ 1

2

(
n(h)+Ĩ(h)

ab l(h)+ϕ(H)
)2 Kh

Ĩ(h)
ab


(6.124)

and ϕ(h) defined in (6.120). First notice that, since the label l admits the identification

l ∼ l + λ , with λ ∈ Γa ∩ Γb , (6.125)

a transformation of l of the form (6.125) must leave the wavefunction invariant. Comparing the coefficients
of ξl,l−δ with the coeffients of ξl+λ,l+λδ , one finds the relation for the normalization factors are not all
independent, but obey the relation

N~n = N~n+~qλ , with ~qλ =
(
Ĩ(1)
ab λ

(1), Ĩ(2)
ab λ

(2), Ĩ(3)
ab λ

(3)
)T
. (6.126)

Inserting the generators of Γa ∩ Γb, which are given in appendix D, one finds that vectors ~qλ belong to
the following lattice:

•

Λn =

3⊗
h=1

I(h)
ab

d(h)
ab

Z , (6.127)

for the cases (a)-(c) in appendix D,
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•

Λn = span




I(1)
ab

2d(1)
ab

I(2)
ab

d(2)
ab

0

 ,


I(1)
ab

2d(1)
ab

−
I(2)
ab

d(2)
ab

0

 ,


0
0

I(3)
ab

d(3)
ab


 (6.128)

for the cases (d) and (e) in appendix D,

•

Λn = span




I(1)
ab

2d(1)
ab

I(2)
ab

d(2)
ab

0

 ,


I(1)
ab

2d(1)
ab

−
I(2)
ab

d(2)
ab

0

 ,


0
I(2)
ab

d(2)
ab

I(3)
ab

d(3)
ab


 (6.129)

for the cases (e) in appendix D.

The identification (6.126) implies that the summation index ~n of independent normalization factors
belong to the lattice

~n ∈
Z3

Λn
. (6.130)

Hence ψIab
l,l−δ in (6.112) can be decomposed into

∣∣∣∣ Z3

Λn

∣∣∣∣ independend zero modes:

ψIab
l−l−δ(~w) =

∑
~k∈ Z

3
Λn

N~keiπ
∑3

h=1
Ĩ(h)
ab

Im(Kh)whIm(wh)
∑

λab∈Γa∩Γb

χn,k,l,δ(~w) , (6.131)

with

χn,k,l,δ(~w) =exp

2πi
3∑

h=1

(
I(h)
ab λ

(h)
ab + Ĩ(h)

ab l(h) + k(h) + ϕ(h)
)
wh


· exp

πi
(
I(h)
ab λ

(h)
ab + Ĩ(h)

ab l(h) + k(h) + ϕ(h)
)2 Kh

Ĩ(h)
ab

 . (6.132)

Notice that wavefunctions with different values for δ are also independent, because they cannot be
related by lattice translations. The total number of independent wavefunctions for a bifundamental
(�a,�b) ∈ U(Na) × U(Nb) is therefore given by the product of the amount of wavefunctions with
independent normalization factors with the number of irreducible subsets

#(�a,�b) =

∣∣∣∣∣ΛSO(6)

Γd

∣∣∣∣∣
∣∣∣∣∣∣Z3

Λn

∣∣∣∣∣∣ =
1
2

3∏
h=1

I(h)
ab , (6.133)

which is exactly the number of families, for chiral matter on the T 6
SO(12). Since Γa and Γb are sublattices

of Γd, the matrices A, B from (6.74) can be decomposed into

A = DMa , B = DMb , (6.134)
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where D = (d1, d2, d3), with di the generators of Γd, and Ma and Mb both being integral 3 × 3 matrices.
The following Diophantine equation

13 = MaP − MbQ , (6.135)

can be solved by integral matrices P,Q ∈ Z3×3 7. The phase ϕ(h) can be manipulated by adding a zero,
the following way

ϕ(h) = ϕ(h) + Ĩ(h)
ab (MaPδ)(h) − Ĩ(h)

ab (MaPδ)(h) (6.136)

=


−

nh
b(MaPδ)(h)+nh

b(MbQδ)(h)

N(h)
b

+ (MaPδ)(h) , for h = 1
mh

b(MaPδ)(h)+mh
b(MbQδ)(h)

N(h)
b

+ (MaPδ)(h) , for h ∈ {2, 3}
,

where the relation Ĩ(h)
ab =

nh
a

N(h)
a
−

nh
b

N(h)
b

= −
mh

a

N(h)
a

+
mh

b

N(h)
b

has been used.The term (MaPδ)(h) is an integer and

can be absorbed in k(h) in χn,k,l,δ(~w). The vectors MaPδ and MbQδ are not necessary S O(6) vectors, but
since δ = MaPδ − MbQδ ∈ ΛSO(6), the components of MaPδ and MbQδ satisfy the relation

3∑
h=1

(MaPδ)(h) + (MbQδ)(h) = 0 mod 2 . (6.137)

Therefor the six dimensional vector given by(
(MaPδ)(1) , (MbQδ)(1) , (MaPδ)(2) , (MbQδ)(2) , (MaPδ)(3) , (MbQδ)(3)

)T
(6.138)

can be identified with S O(12) lattice vectors. Combining the labels k ∈ Z
3

Λn
with the δ’s in the exponents

of χn,k,l,δ one gets

k(h) + ϕ(h) =


nh

b(k−MaPδ)(h)+nh
b(k−MbQδ)(h)

N(h)
b

, for h = 1

−
mh

b(k−MaPδ)(h)+mh
b(k−MbQδ)(h)

N(h)
b

, for h ∈ {2, 3}
. (6.139)

Comparing the expression in (6.139) with (5.57), the numerator on the righthandside of (6.139) can
be identified, with components of the label j, which where used to label intersection points on T 6

SO(12),
where the components of the corresponding lattice shift ~t ∈ ΛSO(12) in (5.57) can be identified with

t1 = k(1) − (MaPδ)(1) , t2 = k(1) − (MbQδ)(1) , t3 = k(2) − (MaPδ)(2) ,

t4 = k(2) − (MbQδ)(2) , t5 = k(1) − (MaPδ)(3) , t6 = k(2) − (MbQδ)(3) .

(6.140)

An independent zeromode for chiral matter can therefor be expressed by the label j, used for intersection
points on the dual theory. On the other hand, if δ and l in (6.78), where defined by

ka − δ = l mod Γa , kb = l mod Γb , (6.141)

7 A proof is given in appendix C
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s.t. ka − kb = δ = Γd still holds, but the δ correction in (6.76), was shifted into ka, the phases ϕ(h) would
be given by

ϕ(h) =


nh

aδ
(h)

N(h)
a

, for h = 1

−
mh

aδ
(h)

N(h)
a

, for h ∈ {2, 3}
(6.142)

and the components of the labels j′, denoting independent zeromodes, are related to the label j in (6.139)
by

N(h)
a j′ (h) = N(h)

b j(h) . (6.143)

The wavefunction for independent zeromodes are given by

ψ
j,Iab
l (~w) =N i,Iab exp

iπ
3∑

h=1

Ĩ(h)
ab

Im(Kh)
whIm(wh)

 ·
∑

λab∈Γa∩Γb

e
2πi

∑3
h=1

I(h)
ab λ

(h)
ab +Ĩ(h)

ab l(h)+
j(h)

N(h)
b

wh+ 1
2

I(h)
ab λ

(h)
ab +Ĩ(h)

ab l(h)+
j(h)

N(h)
b

2
Kh
Ĩ(h)
ab


. (6.144)

6.3.5 Normalization factor for chiral wavefunctions

In order to get canonical kinetic terms, the zeromodes need to be orthogonal in the way [21, 115]

g−2
∫

T 6
d6x Tr

{
ψi,Iab ·

(
ψ j,Iab

)†}
= δi, j , (6.145)

with g a coupling constant. The integral over T 6 can be expressed by integrations over the generators of
T 6 by ∫

T 6
d6x = 2

3∏
h=1

Ah
2Im(Kh)

∫ 1

0
dy1

∫ 1

0
dy2

∫ 1

0
dy3

∫ 1

0
dy4

∫ 1

0
dy4

∫ 1

0
dy6 . (6.146)

The trace over the gauge indices can be expressed by a sum over the index as l ∈ ΛSO(6)
Γa∩Γb

Tr
{
ψi,Iab ·

(
ψ j,Iab

)†}
=

∑
ka∈

ΛS O(6)
Γb

,kb∈
ΛS O(6)

Γb

ψi,Iab
ka,kb
·
(
ψ

j,Iab
ka,kb

)†
=

∑
l∈

ΛSO(6)
Γa∩Γb

δδ1,δ2 ψ
i,Iab
l,l−δ1

·
(
ψ

j,Iab
l,l−δ2

)†
. (6.147)

In section 6.2.3, boundary conditions relating different gauge indices l via Wilson lines where faced.

Applying those boundary conditions to the combined wavefunction ψi,Iab
l,l−δ1

·
(
ψ

j,Iab
l,l−δ2

)†
, one finds that

wavefunctions with different l can be identified through the Wilson lines as:

ψi,Iab
l,l−δ1

·
(
ψ

j,Iab
l,l−δ2

)†
(...y2 + 1, ...) =ψi,Iab

l′,l′−δ1
·
(
ψ

j,Iab
l′,l′−δ2

)†
(...y2, ...) ,

ψi,Iab
l,l−δ1

·
(
ψ

j,Iab
l,l−δ2

)†
(...y4 + 1, ...) =ψi,Iab

l′′,l′′−δ1
·
(
ψ

j,Iab
l′′,l′′−δ2

)†
(...y4, ...) , (6.148)

ψi,Iab
l,l−δ1

·
(
ψ

j,Iab
l,l−δ2

)†
(...y6 + 2) =ψi,Iab

l′′′,l′′′−δ1
·
(
ψ

j,Iab
l′′′,l′′′−δ2

)†
(...y6) ,

with l′ = (1,−1, 0)T , l′′ = (0, 1,−1)T and l′′′ = (0, 0, 2)T . The boundary conditions in (6.148) can be used
to relate terms with different l in the integral of the trace (6.147), by shifting the domain of integration
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the following way: ∫ 1

0
dy2 ψ

i,Iab
l′,l′−δ1

·
(
ψ

j,Iab
l′,l′−δ2

)†
(~y) =

∫ 2

1
dy2 ψ

i,Iab
l,l−δ1

·
(
ψ

j,Iab
l,l−δ2

)†
(~y) (6.149)

and similar for the directions y4 and y6. By using the relation (6.149), the sum over l can be completely
absorbed into the integration by enlarging the domain of integration. For the three types of lattices of
Γa ∩ Γb, considered in appendix D, one finds that the enlarged domain of integration is given by the unit
cell C̃ of the lattice spanned by

~v1 = (1, 0, 0)T , ~v3 = (0, 1, 0)T , ~v5 = (0, 0, 1)T , (6.150)

and

(a)

~v2 =


N(1)

a N(1)
b

d(1) K1

0
0

 , ~v4 =


0

N(2)
a N(2)

b
d(2) K2

0

 , ~v6 =


0
0

N(3)
a N(3)

b
d(3) K3

 , (6.151)

for the cases (a)-(c) for Γa ∩ Γb in appendix D,

(b)

~v2 =


N(1)

a N(1)
b

2d(1) K1
N(2)

a N(2)
b

d(2) K2

0

 , ~v4 =


N(1)

a N(1)
b

2d(1) K1

−
N(2)

a N(2)
b

d(2) K2

0

 , ~v6 =


0
0

N(3)
a N(3)

b
d(3) K3

 , (6.152)

for the cases (d)-(e) for Γa ∩ Γb in appendix D and

(c)

~v2 =


N(1)

a N(1)
b

2d(1) K1
N(2)

a N(2)
b

d(2) K2

0

 , ~v4 =


N(1)

a N(1)
b

2d(1) K1

−
N(2)

a N(2)
b

d(2) K2

0

 , ~v6 =


0

N(2)
a N(2)

b
d(2) K2

N(3)
a N(3)

b
d(3) K3

 , (6.153)

for the case (f) for Γa ∩ Γb in appendix D.

Hence the integral in (6.145) can be reduces to an integration of the term with l = 0 over C̃∫
T 6

d6x Tr
{
ψi,Iab ·

(
ψ j,Iab

)†}
= 2

3∏
h=1

Ah
2Im(Kh)

∫
C̃

d6y F(~y) , (6.154)

with

F(~w) =:δδ1,δ2 ψ
i,Iab
0,−δ1

·
(
ψ

j,Iab
0,0−δ2

)†
= N i,IabN j,Iabe−2π

∑3
h=1

Ĩ(h)
ab

Im(Kh) (Im(wh))2 ∑
λab∈Γa∩Γb

∑
ρab∈Γa∩Γb

(6.155)

· e
2πi

∑3
h=1

Ĩ(h)
ab λ

(h)
ab + i(h)

N(h)
b

wh−

Ĩ(h)
ab ρ

(h)
ab +

j(h)

N(h)
b

wh


· e

πi
∑3

h=1

Ĩ(h)
ab λ

(h)
ab + i(h)

N(h)
b

2
Kh
Ĩ(h)
ab

−

Ĩ(h)
ab ρ

(h)
ab +

j(h)

N(h)
b

2
Kh
Ĩ(h)
ab


.
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When integrating over y1, y3 and y5 in (6.145), the integrals given by∫ 1

0
dy2h−1 exp

2πi

Ĩ(h)
ab

(
λ(h)

ab − ρ
(h)
ab

)
+

i(h) − j(h)

N(h)
b

 y2h−1

 , ∀h ∈ {1, 2, 3} , (6.156)

need to be computed. From the definition of the labels i, j in (6.139), it can be deduced that the non
integer part in the term

Ĩ(h)
ab

(
λ(h)

ab − ρ
(h)
ab

)
+

i(h) − j(h)

N(h)
b

(6.157)

is
δ(h)

1 −δ
(h)
2

N(h)
b

and taking the Kronecker delta δδ1,δ2 from the trace (6.147) into account, the non integer part

vanishes and the term in (6.157) is integer. Hence the integration over y1, y3 and y5 leads to Kronecker
deltas implying the conditions

Ĩ(h)
ab

(
λ(h)

ab − ρ
(h)
ab

)
+

i(h) − j(h)

N(h)
b

= 0 , ∀ h ∈ {1, 2, 3} . (6.158)

The integral in (6.154) simplifies to

(
N i,Iab

)2
∫

C̃
dy2dy4dy6 e−2π

∑3
h=1

Ĩ(h)
ab

Im(Kh) (Im(wh))2 ∑
λab∈Γa∩Γb

e
−4π

∑3
h=1

Ĩ(h)
ab λ

(h)
ab + i(h)

N(h)
b

Im(wh)
e
−2π

∑3
h=1

Ĩ(h)
ab λ

(h)
ab + i(h)

N(h)
b

2
Im(Kh)

Ĩ(h)
ab

=
(
N i,Iab

)2
∫

C̃
dy2dy4dy6

∑
λab∈Γa∩Γb

e
−2π

∑3
h=1

Ĩ(h)
ab

Im(Kh)

Im(w)+Im(Kh)λab+ i(h)

N(h)
b

Im(Kh)

Ĩ(h)
ab

2

. (6.159)

Notice that the terms Im(Kh)λ(h)
ab in the exponent are actually components of lattice vectors of the lattice

spanned by ~v2, ~v4 and ~v6 in (6.151), (6.152) and (6.153), as can be seen by inserting the generators of
Γa ∩ Γb, which are presented in appendix D. The sum over λab can be absorbed into the integration by
enlarging the domain of integration similar to the method,which was used to get rid of the sum over l:∫

C̃
dy2dy4dy6

∑
λab∈Γa∩Γb

→

∫
R3

dy2dy4dy6

∑
λab∈Γa∩Γb

=
1
2

3∏
h=1

∫
R

Im(wh)
Im(Kh)

, (6.160)

where in the last step a change of basis is performed. The change of basis makes the following
computations simpler, since the function in (6.159) depends on Im(wh). The remaining integral in (6.159)
are just Gaussian integrals and one receives

1
2

3∏
h=1

∫
R

Im(wh)
Im(Kh)

e
−2π

∑3
h=1

Ĩ(h)
ab

Im(Kh)

Im(w)++ i(h)

N(h)
b

Im(Kh)

Ĩ(h)
ab

2

=
1
2

3∏
h=1

(
2Ĩ(h)

ab Im(wh)
)− 1

2 . (6.161)

Inserting the results into (6.145), the normalization factors need to satisfy

g−2
(
N i,IabN j,Iab

)2
3∏

h=1

Ah
2

√
Im(Kh)

2Ĩ(h)
ab

= δi, j , (6.162)
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which leads to the normalization constant

N i,Iab = g

3∏
h=1

1
Ah

 2Ĩ(h)
ab

Im(Kh)


1
4

. (6.163)

6.4 Yukawa couplings from overlapping wavefunctions

6.4.1 Yukawa couplings from magnetic fluxes

In the previous sections it was discussed how magnetic fluxes on a torus break the gauge symmetry and
lead to chiral matter on the T 6. In this section some results of appendix A in [115] are repeated in order
to explain how compactifying a ten dimensional spacetime on a T 6, with magnetic fluxes on it leads to
four dimensional Yukawa couplings. The magnetic fluxes can only be turned on in the internal space in
order to preserve Poincare invariance in the uncompact directions. By giving the gauge fields vev’s in the
internal space, they only break translation invariance in the T 6 and correspond to D boundary conditions
in the T-dual theory.

Six dimensions of a 10 dimensional spacetime M10 with a U(P) gauge symmetry shall be compactified
on a torus

M10 → M4 × T 6 . (6.164)

The field content shall be given by gauge vector fields A and gauginos Ψ

AI : M10 → CP×P , Ψ~ε → C
P×P , (6.165)

which are described by the Lagrangians given in (6.29) and (6.82) for 10 dimenisions

L = −
1

4g2 Tr
{
F IJFIJ

}
+

i
2g2 Tr

{
ΨΓIDIΨ

}
. (6.166)

Here I, J ∈ {0, 1, ..., 9} denote the spacetime indices of M10 and FIJ are the components of the field
strength tensor. The fermionic part in (6.166) contains the term

L ⊃
1

2g2 Tr
{
ΨΓI [AI ,Ψ]

}
, (6.167)

which leads to Yukawa couplings after turning on vev’s in the diagonal elements of AI . As already
discussed in section 6.3.1, the gauge fields AI and ψ~ε decompose into gauge fields of the unbroken gauge
group and scalars and fermions in bifundamental representations. Let A and Ψ be expanded in the basis
Ua, eab as in (6.30). The off-diagonal elements of A and Ψ are denoted by Wab and χab. Then the term
containing the off-diagonal elements in (6.167) is given by

1
2g2 Tr

{
χcbΓI

[
W I

ca, χab
]}
⊂ L . (6.168)

and describes triliner couplings of chiral fields. Decomposing W I
ab and χab into eigenmodes of the Dirac
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and Laplace operator /D6 = ΓiDi and ∆6 = DiDi of the internal space, such as

χab(xI) =
∑

n

ηn
ab(xµ) ⊗ ψn

ab(xi) , (6.169)

Wab
J (xI) =

∑
n

ϕn,J
ab(xµ) ⊗ φn,J

ab(xi) ,

with

i /D6ψn
ab = mnψn

ab , (6.170)

∆6φn,J
ab = M2

nφn,J
ab ,

where mn and M2
n are the corresponding masses for the Kaluza-Klein modes. Only zeromodes are

considered, because the compactification radii of the torus are assumed to be very small and the Kaluza-
Klein momenta therefor to be very high. It is further imposed that the magnetic flux is contained on
D9-branes, wrapping calibrated cycles on the torus, s.t. a massless scalar is contained in the chiral
spectrum. Therefore, for the low energy spectrum in M4, only the terms containing the zeromodes in
(6.168) are relevant and by integrating over the internal space, one gets the Yukawa couplings Yi jk of the
form [21, 115]

Yi jk =
1
g2

∫
T 6

d6x
(
ψa

i

)†
Γmφb

j,mψ
c
k fabc . (6.171)

fabc = Tr {Ta, [Tb,Tc]} are the structure constants with {Tα}α∈{a,b,c} the generators of the gauge group and
i, j, k denote indepenendent zeromodes. In sections 6.3.1 and 6.3.2, the wavefunctions for the zeromodes
ψ0 and φ0 where computed, and in section 6.3.4, the zeromodes where decomposed into Iab indepenedent
zeromodes. Inserting for Ψ and A in (6.167) the results from 6.3.1 and 6.3.2 for the spin and polarization
states ψ~ε and Φ± and integrating over the internal space, one gets the corresponding terms to (6.168),
which are

1
g2

∫
T 6

d6x Tr
{
ψ+++

[
Φ−, ψ+++

]}
, (6.172)

and its CPT conjugate. The state ψ+++ and Φ− contain the normalizable wavefunctions for the choice of
signs made in (6.99) for Ĩab, Ĩbc, Ĩca. By inserting the results for ψ+++ and Φ− into (6.172), one gets for
the Yukawa couplings the following integral over overlapping wavefunctions :

Yi jk =
1
g2

∫
T 6

d6xTr
{
ψ j,Ica · ψ j,Iab ·

(
ψk,Icb

)†}
, (6.173)

where i, j, k denote independent zeromodes.

6.4.2 Computing Yukawa couplings

In this section the expressions from (6.144) are inserted into (6.173) and the integral is computed. The
result gives the Yukawa couplings Yi jk for the three chiral fields ψ j,Ica and ψk,Icb .

Domain of integration

First the domain of integration in (6.173) has to be specified. The fundamental domain of the T 6 can be
deduced from the moduli, specified in (6.18) and is given by the fundamental cell C of a lattice spanned
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by the vectors

~v1 = (1, 0, 0)T , ~v2 = (K1,−K2, 0)T , ~v3 = (0, 1, 0)T , (6.174)

~v4 = (0,K2,−K3)T , ~v5 = (0, 0, 1)T , ~v6 = (0, 0, 2K3)T .

The integration in (6.173) can be expressed by∫
T 6

d6x = (A1A2A3)2
∫

C
d6x = 2

3∏
h=1

Ah
2Im(Kh)

∫ 1

0
dy1

∫ 1

0
dy2 . . .

∫ 1

0
dy6 , (6.175)

where the factor 2
∏3

h=1 Ah
2Im(Kh) is the determinant of the Jacobi-matrix from the change of basis. The

trace in (6.173), taken over the gauge indices, can be expressed by the sum over a single summation
index l, where l belongs to the lattice ΛSO(6)

Γa∩ΓbΓc
< as

Tr
{
ψ j,Ica · ψ j,Iab ·

(
ψk,Icb

)†}
=

∑
ka∈

ΛSO(6)
Γa

∑
kb∈

ΛSO(6)
Γb

∑
kc∈

ΛSO(6)
Γc

ψ
j,Ica
kc,ka
· ψ

j,Iab
ka,kb
·
(
ψk,Icb

kc,kb

)†
=

∑
l∈

ΛSO(6)
Γa∩Γb∩Γc

δδab+δca,δcbψ
j,Ica
l,l−δca

· ψ
j,Iab
l−δca,l−δca−δab

·
(
ψk,Icb

l−δca−δab+δcb,l−δca−δab

)†
(6.176)

The relations between the labels i, j, k and the parameters for the phases δab, δca, δcb are given by (6.139).
Notice that for the wavefunction ψk,Icb

kc,kb
, the parameter kc − kb = δcb is shifted into the first index of the

matrix elements of φk,Icb as in (6.141]), s.t. φk,Icb
kc,kb

= φk,Icb
l−δcb,l

, with

kc − δcb = l mod Γc , kb = l mod Γb , with kc − kb = δcb mod Γdcb . (6.177)

This corresponds to relabeling k by the components
N(h)

b

N(h)
c

k(h) as mentioned in (6.143). The choice of
(6.177) will later turn out to be useful. Applying the boundary conditions from (6.59) to the overlapping

wavefunction, one finds that ψ j,Ica
kc,ka
· ψ

j,Iab
ka,kb
·
(
ψk,Icb

kb,kc

)†
(~w), ∀ l with definite i, j, k, get identified on the torus

ψ
j,Ica
kc,ka

ψ
j,Iab
ka,kb

(
ψk,Icb

kb,kc

)†
(..., y2 + 1, ...) = ψ

j,Ica
kc
′,ka

′ψ
j,Iab
ka
′,kb

′

(
ψk,Icb

kb
′,kc
′

)†
(..., y2, ...) ,

ψ
j,Ica
kc,ka

ψ
j,Iab
ka,kb

(
ψk,Icb

kb,kc

)†
(..., y4 + 1, ...) = ψ

j,Ica
kc
′′,ka

′′ψ
j,Iab
ka
′′,kb

′′

(
ψk,Icb

kb
′′,kc

′′

)†
(..., y4, ...) ,

ψ
j,Ica
kc,ka

ψ
j,Iab
ka,kb

(
ψk,Icb

kb,kc

)†
(..., y6 + 1) = ψ

j,Ica
kc
′′′,ka

′′′ψ
j,Iab
ka
′′′,kb

′′′

(
ψk,Icb

kb
′′′,kc

′′′

)†
(..., y6) ,

(6.178)

where k′α = kα + (1,−1, 0)T , k′′α = kα + (0, 1,−1)T and k′′′α = kα + (0, 0, 2)T and the relation (6.98) has
been used. These boundary conditions can be used to simplify the integral in (6.173), by shifting the
domain of integration in (6.173) for each term in the trace, in such a way that each l for the terms in
(6.176) is shifted to l = 0. That way it only needs to be integrated one term of (6.176) over an enlarged
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domain of integration∫
C

d6y
∑

l∈
ΛSO(6)

Γa∩Γb∩Γc

δδab+δca,δcbψ
j,Ica
l,l−δca

· ψ
j,Iab
l−δca,l−δca−δab

·
(
ψk,Icb

l−δca−δab+δcb,l−δca−δab

)†
=

∫
C̃

d6y δδab+δca,δcb Fi, j,k(~y) , (6.179)

with
Fi, j,k(~y) =: ψ j,Ica

0,−δca
· ψ

j,Iab
−δca,−δca−δab

·
(
ψk,Icb
−δab−δca+δcb,−δca−δab

)†
(6.180)

where C̃ is now a bigger domain of integration and depends on the lattice Γa ∩ Γb ∩ Γc. In appendix D
three types of lattices for Γa ∩ Γb ∩ Γc are discussed. The enlarged domain of integration C̃ is given by
the unit cells of the lattice spanned by the vectors ~v1, v3, v5 as in (6.174) and

~v2 =


N(1)

abcK1
0
0

 , ~v4 =


0

N(2)
abcK2

0

 , ~v6 =


0
0

N(3)
abcK3

 , (6.181)

for Γa ∩ Γb ∩ Γc given in (D.12),

~v2 =


N(1)

abcK1

2
N(2)

abcK2
0

 , ~v4 =


N(1)

abcK1

2
N(2)

abcK2
0

 , ~v6 =


0
0

N(3)
abcK3

 , (6.182)

for Γa ∩ Γb ∩ Γc given in (D.13) and

~v2 =


N(1)

abcK1

2
N(2)

abcK2
0

 , ~v4 =


N(1)

abcK1

2
N(2)

abcK2
0

 , ~v6 =


0

N(2)
abcK2

N(3)
abcK3

 , (6.183)

for Γa ∩ Γb ∩ Γc given in (D.14), where N(h)
abc =

N(h)
a N(h)

b N(h)
c

d(h)
abc

was defined. The integration over the directions

of ~v2, ~v4, ~v6 is then given by

l1 = (N(1)
abc, N(1)

abc, N(1)
abc/2)T , l2 = (0, N(2)

abc, N(2)
abc/2)T , l3 = (0, 0, N(3)

abc/2)T , (6.184)

for C̃ given by (6.181),

l1 =


N(1)

abc/2
N(1)

abc/2 + N(2)
abc

N(1)
abc/4 + N(2)

abc/2

 , l2 =


N(1)

abc/2
N(1)

abc/2 − N(2)
abc

N(1)
abc/4 − N(2)

abc/2

 , l3 =


0
0

N(3)
abc/2

 , (6.185)

for C̃ given by (6.182) and

l1 =


N(1)

abc/2
N(1)

abc/2 + N(2)
abc

N(1)
abc/4 + N(2)

abc/2

 , l2 =


N(1)

abc/2
N(1)

abc/2 − N(2)
abc

N(1)
abc/4 − N(2)

abc/2

 , l3 =


0

N(2)
abc

N(2)
abc + N(3)

abc/2

 , (6.186)
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for C̃ given by (6.183). It can be verified that the components of li are indeed integer and the integration
of Fi, j,k over C̃ indeed covers all terms in (6.176), by determining whether Nabc is even or odd for N(h)

α

even or odd and g.c.d.(Nh
α,m

h
α) 1 or 2 from the definitions in appendix D.

Integrating overlapping wavefunctions

In this section the integration given in (6.179) is computed. Inserting the expressions for the wavefunctions
and using the relation (6.98), one gets the following expression for Fi, j,k:

ψ
j,Ica
0,−δca

· ψ
j,Iab
−δca,−δca−δab

·
(
ψk,Icb

0,−δcb

)†
(~w) =

N i,IabN j,IcaNk,Icbexp

−2π
3∑

h=1

Ĩ(h)
cb

Im(Kh)
(Im(wh))2

 ∑
λab∈Γa∩Γb

∑
λca∈Γa∩Γa

∑
λcb∈Γc∩Γb

· e
2πi

∑3
h=1


Ĩ(h)

ab

(
λ(h)

ab−δ
(h)
ca

)
+Ĩ(h)

ca λ
(h)
ca + i(h)

N(h)
b

+
j(h)

N(h)
a

wh−

Ĩ(h)
cb

(
λ(h)

cb δ
(h)
ab−δ

(h)
ca

)
+ k(h)

N(h)
b

wh


·e
πi

∑3
h=1


Ĩ(h)

ab

(
λ

(h)
ab −δ

(h)
ca

)
+ i(h)

N(h)
b

2
Kh
Ĩ(h)
ab

+

Ĩ(h)
ca λ

(h)
ca +

j(h)

N(h)
a

2
Kh
Ĩ(h)
ca
−

Ĩ(h)
cb

(
λ

(h)
cb −δ

(h)
ab −δ

(h)
ca

)
+ k(h)

N(h)
b

2
Kh
Ĩ(h)
cb

 .
(6.187)

Taking a closer look at the following term

Ĩ(h)
ab

(
λ(h)

ab − δ
(h)
ca

)
+ Ĩ(h)

ca λ
(h)
ca − Ĩ(h)

cb

(
λ(h)

cb − δ
(h)
ab − δ

(h)
ca

)
+

i(h)

N(h)
b

+
j(h)

N(h)
a

−
k(h)

N(h)
b

, (6.188)

which is a factor in the exponent of the term depending on y1, y3 and y5, one finds that, when the
Kronecker delta δδca+δab,δcb from (6.176) is taken into account, the expression in (6.188) is integer
∀ h ∈ {1, 2, 3} 8. Therefor the integrals over y1, y3 and y5 can be replaced by the following Kronecker
deltas ∫ 1

0
dy2h−1 e

2πi
Ĩ(h)

ab

(
λ(h)

ab−δ
(h)
ca

)
+Ĩ(h)

ca λ
(h)
ca −Ĩ(h)

cb

(
λ(h)

cb −δ
(h)
ab−δ

(h)
ca

)
+ i(h)

N(h)
b

+
j(h)

N(h)
a
− k(h)

N(h)
b

y2h−1

(6.190)

= δ
Ĩ(h)
ab

(
λ(h)

ab−δ
(h)
ca

)
+Ĩ(h)

ca λ
(h)
ca −Ĩ(h)

cb

(
λ(h)

cb −δ
(h)
ca −δ

(h)
ab

)
+ i(h)

N(h)
b

+
j(h)

N(h)
a
− k(h)

N(h)
b

.

They lead to the conditions

Ĩ(h)
ab

(
λ(h)

ab − δ
(h)
ca

)
+ Ĩ(h)

ca λ
(h)
ca − Ĩ(h)

cb λ
(h)
cb +

i(h)

N(h)
b

+
j(h)

N(h)
a

−
k(h)

N(h)
b

= 0 , ∀ h ∈ {1, 2, 3} , (6.191)

8 The terms Ĩ(h)
αβλ

(h)
αβ are integers ∀λαβ ∈ Γα ∩ Γβ, with α, β ∈ {a, b, c} as can be seen by inserting the generators of Γα ∩ Γβ, which

are listed in appendix D, for λαβ. According to (5.57) and (6.177) the non integer part of the term i(h)

N(h)
b

+
j(h)

N(h)
a
− k(h)

N(h)
c

is given

by
nh

bδ
(h)
ab

N(h)
b

+
nh

aδ
(h)
ca

N(h)
a
−

nh
cδ

(h)
cb

N(h)
c

. By applying the condition δca + δab = δcb from the Kronecker delta in (6.176), the potentially non

integer term in (6.188) vanishes

− Ĩ(h)
ab δ

(h)
ca +

n(h)
b

N(h)
b

δ(h)
ab +

n(h)
a

N(h)
a

δ(h)
ca −

n(h)
c

N(h)
c

δ(h)
cb + Ĩ(h)

cb δ
(h)
cb = 0 , ∀ h ∈ {1, 2, 3} . (6.189)
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which are three Diophantine equations, similar to those ee already encountered in section 5.3.2. There the
Diophantine equations contained the conditions for D6-branes to wrap 3-cycles forming closed triangles.
Apparently the condition for open string instantons wrapping triangles on the T 6

SO(12), corresponds to in
the dual theory to the trace over the zero modes. In order to solve (6.191), the following relabeling of the
indices i, j, k is performed, similar to (5.28),

i(h) →
i(h)

d(h)
b

I(h)
cb , j(h) →

j(h)

d(h)
a

I(h)
ba , k(h) →

k(h)

d(h)
c

I(h)
ac . (6.192)

Solutions to the Diophantine equations in (6.191) can be given by

λ(h)
ab = N(h)

abc p(h) + N(h)
a N(h)

b M(h)
c q(h) +

j(h)

d(h)
a

N(h)
b + δca ,

λ(h)
ca = N(h)

abc p(h) + N(h)
a M(h)

b N(h)
c q(h) −

k(h)

d(h)
c

N(h)
a , (6.193)

λ(h)
cb = N(h)

abc p(h) + M(h)
a N(h)

b N(h)
c q(h) +

i(h)

d(h)
b

N(h)
c + δca + δab ,

where p and q belong to three dimensional lattices Λ3
p ⊆ Z

3 and Λ3
q ⊆ Z

3, which allow the components
of λab, λca and λcb in (6.193) to be in accordance with the lattices Γa ∩ Γb, Γc ∩ Γa and Γc ∩ Γb. Inserting
the solutions into the overlapping wavefunctions in (6.187), one receives∫ 1

0

∫ 1

0

∫ 1

0
dy1dy3dy5 ψ

j,Ica
0,−δca

· ψ
j,Iab
−δca,−δca−δab

·
(
ψk,Icb

0,−δcb

)†
(~y) = N i,IabN j,IcaNk,Icb

·
∑
p∈Λ3

p

∑
q∈Λ3

q

e
−2π

∑3
h=1

Ĩ(h)
cb

Im(τh)

Im(wh)+N(h)
abcIm(Kh)p(h)+

I(h)
cb M(h)

a q(h)+ i(h)

N(h)
b

I(h)
cb

d(h)
b

− k(h)

N(h)
c

I(h)
ca

d(h)
c

 Im(Kh)

Ĩ(h)
cb

2

(6.194)

· exp

iπ
3∑

h=1

 i(h)

d(h)
b I(h)

ab

+
k(h)

d(h)
c I(h)

cb

+
j(h)

d(h)
a I(h)

ca

+ 2q(h)

2

Kh|I
(h)
ab I(h)

ca I(h)
cb |

 =: Hi jk(Im(~w)) .

As already mentioned the summation indices p and q must be chosen s.t. the components λ(h)
ab , λ(h)

ca and
λ(h)

cb from (6.193) belong to vectors of the ΛS0(6) lattice. First the lattice Λ3
p shall be determined: When

the components of p satisfy
3∑

h=1

N(h)
abc p(h) = 0 mod 2 . (6.195)

it is guaranteed that the terms ins (6.193) depending on p do not spoil the S O(6) structure of the λ’s.
From (6.195) it follows that as long as N(h)

abc is even, which means at least N(h)
a , N(h)

b or N(h)
c is even, the

component p(h) is independent from the components of p of the other planes. But when N(h)
abc is odd,

either p(h) has to be even or N(h′)
abc p(h′) in a different plane h′ has to be odd too. Hence the lattice for Λ3

p

depends on Γa, Γb and Γc, and for the cases considered in appendix D, one finds that Λ3
p is spanned by

the following generators

(i) ρ1 = (1, 0, 0)T , ρ2 = (0, 1, 0)T , ρ3 = (0, 0, 1)T when Γa ∩ Γb ∩ Γc is given by (D.12),

(ii) ρ1 = (1/2, 1, 0)T , ρ2 = (1/2,−1, 0)T , ρ3 = (0, 0, 1)T when Γa ∩ Γb ∩ Γc is given by (D.13) and
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(iii) ρ1 = (1/2, 1, 0)T , ρ2 = (1/2,−1, 0)T , ρ3 = (0, 1, 1)T when Γa ∩ Γb ∩ Γc is given by (D.14) .

Notice that the vectors given by the components N(h)
abcρ

(1)
i , with i ∈ {1, 2, 3}, are exactly the lattice vectors

~v2, ~v4 and ~v6 spanning the lattice of C̃, which are presented in (6.181), (6.182) and (6.183). Therefore, the
shift p→ p + ρi in the term∫

C̃
dy2dy4dy6 exp

−2π
3∑

h=1

Ĩ(h)
cb

Im(Kh)

(
Im(wh) + N(h)

abc p(h) + ch
i,k(q)

)2
 , (6.196)

with

ch
i,k(q) =:

I(h)
cb M(h)

a q(h) +
i(h)

N(h)
b

I(h)
cb

d(h)
b

−
k(h)

N(h)
c

I(h)
ca

d(h)
c

 Im(Kh)

Ĩ(h)
cb

, (6.197)

can be replaced by a shifting the domain of integration by ~v2i to the neighbouring unit cell C̃ +~v2i just
next to C̃. That way the whole sum over p ∈ Λ3

p can be absrobed into the integration, by enlarging the
domain of integration of y2, y4, y6 to R3

∑
p∈Λ3

p

∫
C̃

dy2dy4dy6 exp

−2π
3∑

h=1

Ĩ(h)
cb

Im(Kh)

(
Im(wh) + N(h)

abc p(h) + ch
i,k(q)

)2
 (6.198)

=

∫
R3

dy2dy4dy6 exp

−2π
3∑

h=1

Ĩ(h)
cb

Im(Kh)

(
Im(wh) + N(h)

abc p(h) + ch
i,k(q)

)2

∣∣∣∣∣∣
p=

(
0
0
0

)

Since after the integration over y1, y3 and y5, the integrand in (6.194) only depends on Im(wh) it will be
helpful to rewrite the remaining integration as∫

dy2dy4dy6 =
1
2

3∏
h=1

∫
Im(dwh)
Im(Kh)

. (6.199)

After having absorbed the sum over p into the integration, as in (6.198), the integral in (6.176) becomes∫ 1

0

∫ 1

0

∫ 1

0
dy2dy4dy6 Hi, j,k(Im(~w)) = N i,IabN j,IcaNk,Icb

∑
q∈Λ3

q

· exp

iπ
3∑

h=1

 i(h)

d(h)
b I(h)

ab

+
k(h)

d(h)
c I(h)

cb

+
j(h)

d(h)
a I(h)

ca

+ 2q(h)

2

Kh|I
(h)
ab I(h)

ca I(h)
cb |


·

1
2

3∏
h=1

∫
R3

Im(dwh)
Im(Kh)

exp

−2π
3∑

h=1

Ĩ(h)
cb

Im(Kh)

(
Im(wh) + ch

i,k(q)
)2


=

1
2
N i,IabN j,IcaNk,Icb

3∏
h=1

(
2Ĩ(h)

cb Im(Kh)
)− 1

2
∑
q∈Λ3

q

·e
iπ

∑3
h=1

 i(h)

d(h)
b I(h)

ab

+ k(h)

d(h)
c I(h)

cb

+
j(h)

d(h)
a I(h)

ca
+2q(h)

2

Kh |I
(h)
ab I(h)

ca I(h)
cb |

,
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where in the last step the Gaussian integrals where computed. After having evaluated the integration in
(6.173) and inserting the normalization factors, the Yukawa couplings are given by the expression

Yi jk = g

3∏
h=1

Ah
−1

 2
Im(Kh)

Ĩ(h)
ab Ĩ(h)

ca

Ĩ(h)
cb


1/4 ∑

q∈Λ3
q

e
iπ

∑3
h=1

 i(h)

d(h)
b I(h)

ab

+ k(h)

d(h)
c I(h)

cb

+
j(h)

d(h)
a I(h)

ca
+2q(h)

2

Kh |I
(h)
ab I(h)

ca I(h)
cb |

. (6.200)

Selection rules for summation index

The Yukawa couplings from (6.200), contain the sum over the summation index q ∈ Λ3
q, where Λ3

q still
has not been specified. By taking linear combinations of the equations (6.193), the equations can be
made independent of p(h):

λ(h)
ab − λ

(h)
ca − δ

(h)
ca = I(h)

bc N(h)
a l(h) +

j(h)

d(h)
a

N(h)
b +

k(h)

d(h)
c

N(h)
a , (6.201)

λ(h)
ca − λ

(h)
cb − δ

(h)
cb = I(h)

ba N(h)
c l(h) −

k(h)

d(h)
c

N(h)
a −

i(h)

d(h)
b

N(h)
c ,

λ(h)
cb − λ

(h)
ab − δ

(h)
cb + δ(h)

ca = I(h)
ac N(h)

b l(h) +
i(h)

d(h)
b

N(h)
c −

j(h)

d(h)
a

N(h)
b ,

where 2q(h) = ”l(h) was defined. Since the vectors λab, λca, λcb, δca and λcb belong to the S O(6) lattice,
the sum of their components must always be even. Therefor l has to satisfy the conditions

3∑
h=1

I(h)
bc N(h)

a l(h) +
j(h)

d(h)
a

N(h)
b +

k(h)

d(h)
c

N(h)
a =0 mod 2 ,

3∑
h=1

I(h)
ba N(h)

c l(h) −
k(h)

d(h)
c

N(h)
a −

i(h)

d(h)
b

N(h)
c =0 mod 2 , (6.202)

3∑
h=1

I(h)
ac N(h)

b l(h) +
i(h)

d(h)
b

N(h)
c −

j(h)

d(h)
a

N(h)
b =0 mod 2 ,

and comparing (6.202) with the selection rules from (5.78) reveals that the the summation index l from
(6.202) and the instanton winding number from (5.78) both belong to the same lattice Λ3.

6.4.3 Quantum contribution to Yukawa couplings

The Yukawa couplings are given by

Yi jk = g

3∏
h=1

Ah
−1

 2
Im(Kh)

Ĩ(h)
ab Ĩ(h)

ca

Ĩ(h)
cb


1/4 ∑

l∈Λ3

exp
(
−

Ai jk(l)
2πα′

)
, (6.203)

with

Ai jk(l) = −
i
2

3∑
h=1

 i(h)

d(h)
b I(h)

ab

+
k(h)

d(h)
c I(h)

cb

+
j(h)

d(h)
a I(h)

ca

+ l(h)

2

Kh|I
(h)
ab I(h)

ca I(h)
cb | , (6.204)
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and Λ3 satisfying the selection rules from (6.202) with α′ set to α′ = (2π)−2. The coupling constant
g is given by g = eφ10/2α′3/2, where φ10 is the ten dimensional dilaton [115]. Decomposing the ten
dimensional dilaton into a four dimensional dilaton φ4 and the part for the internal space as in [115] one
gets

eφ10 = eφ4

3∏
h=1

Im (Jh)1/2 , (6.205)

where Jh is the Kähler modulus in the h-plane and the volume for the T 6 is given by Vol
(
T 6

)
=∏3

h=1 Im (Jh). For the moduli of T 6 defined in (6.18), the geometry part in the Kähler moduli are

Im(Jh) = 4π2α′Ah
2Im (Kh) . (6.206)

Inserting the definitions into (6.203), the expression for the Yukawa couplings become

Yi jk = (2π)3/4α′3/2eφ4/2
3∏

h=1

4π (
A2

h/α
)−1 Ĩ(h)

ab Ĩ(h)
ca

Ĩ(h)
cb


1/4 ∑

l∈Λ3

exp
(
−

Ai jk(l)
2πα′

)
. (6.207)

The quantities Ĩaαβ can be related to the slope of the D6-branes in the T-dual picture as mentioned in
section 6.3.2 [61, 115] by introducing the angles

θ(h)
αβ = 4π

Ĩ(h)
αβ(

Ah
2Im (Kh)

)
/α′

. (6.208)

Expressing (6.207) with the angles θ(h)
αβ and α′ = 1/(4π2), the Yukawa couplings take the form

Yi jk =
eφ4/2

(2π)9/4

3∏
h=1

Im (Kh)1/4

∣∣∣∣∣∣∣θ
(h)
ab θ

(h)
ca

θ(h)
cb

∣∣∣∣∣∣∣
1/4 ∑

l∈Λ3

exp
(
−

Ai jk(l)
2πα′

)
, (6.209)

which allows it to compare with the Yukawa couplings from intersecting D6-branes on the T 6
SO(12).

Comparing (6.209) with (5.81), the quantum contribution hqu for the intersecting branes picture can be
extracted from the expression (6.209) to be given by

hqu =
eφ4/2

(2π)9/4

3∏
h=1

Im (Kh)1/4

∣∣∣∣∣∣∣θ
(h)
ab θ

(h)
ca

θ(h)
cb

∣∣∣∣∣∣∣ . (6.210)

Since according to (6.17) the complex structure moduli Kh become after T-duality transformations the
complexified Kähler moduli for the deformed T 6

SO(12), the factor
∏3

h=1 Im(Kh) describes the volume of

the T 6
SO(12). Hence eφ4/2 ∏3

h=1 Im(Kh)1/4 describes the string coupling constant g̃ = eφ̃10/2 on the Type

IIA side with eφ̃10 = eφ4
∏3

h=1 Im(Kh)1/2 and the quantum corrections on the Type IIA side are given by

hqu =
eφ̃10/2

(2π)9/4

3∏
h=1

∣∣∣∣∣∣∣θ
(h)
ab θ

(h)
ca

θ(h)
cb

∣∣∣∣∣∣∣ . (6.211)
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CHAPTER 7

Conlusion

In the present work Type IIA string compactification to four dimensions with particularly non-factorisable
tori has been investigated. The main goal to extend the expressions of Yukawa couplings on non-
factorisable tori has been achieved and demonstrated by performing the computations with intersecting
D6-branes on the six dimensional torus, which is generated by the S O(12) root lattice. The procedure
can be applied straight forward to other non-factorisable tori, whose underlying lattice consist of S O(2N)
Lie lattices, but it can also be adopted for other non-factorisable tori, whenever it is possible to find
a factorisable lattice, which contains the underlying lattice of the torus as a sublattice. Intersection
points of D6-branes on the non-factorisable torus where described by their position on three mutually
orthogonal planes, s.t. the notation for the factorisable torus in [106] could be adopted. Due to the
non-factorisable structure of the torus, labels for the intersection points belong to more general three
dimensional lattice than for the factorisable torus. The worldsheet instantons generating the Yukawa
couplings spread out triangles on the planes like on the factorisable torus. However the worldsheet
instantons on the non-factorisable torus underly selection rules, s.t. their winding numbers, similar to
the intersection points, belong to general three dimensional lattices. A recipe is given to identify the
lattices for labels of the intersection points and how to determine the selection rules for the worldsheet
instantons. Additionally the computations revealed a straight forward method to determine selection
rules for Yukawa couplings when the branes have non-coprime wrapping numbers, which were merely
conjectured in [106]. That way the classical part of the Yukawa couplings from intersecting D6-branes
on the non-factorisable torus were computed.

The quantum contributions to the Yukawa couplings were determined by studying the T-dual torus
with magnetic fluxes and hence extended the known discussions for Yukawa couplings from magnetized
branes. Therefor three directions of the S O(12) torus where T-dualized and the the boundary conditions
of the D6-branes where translated into magnetic fluxes of D9-branes. The notation of [115] for the
factorisable torus was adopted, but the non-factorisable structure of the torus manifested itself in a
non-trivial way on the Wilson lines of the fluxes. Consequently gauge indices had to be expressed as
lattice vectors of general three dimensional lattices. As an intermediate step wavefunctions of chiral
matter on the factorisable torus had to be derived, which solve boundary conditions arising from fluxes
with non-coprime wrapping numbers. It was discovered that unlike to the coprime case, not all states
of bifundamentals can be related via Wilson lines to each other. Comparing the number of independent
zeromodes for the Dirac operator with the number of independent intersection points of D6-branes
on the corresponding T-dual torus, it turned out that in general independent zeromodes are not only
determined by boundary conditions on their normalization constants but also on additional phases, which
depend on the greatest common divisor of the wrapping numbers for the fluxes. In the second step the
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wavefunctons for zeromodes on the non-factorisable torus were calculated and manipulations of the
arguments in the wavefunctions showed that labels for independent zeromodes are indeed related to the
labels of intersection points on the T-dual torus. Yukawa couplings were finally computed by integrating
three overlapping wavefunctions over the fundamental domain of the non-factorisable torus. The same
selection rules as for the worldsheet instantons, generating Yukawa couplings on the corresponding
T-dual torus, accrued. The final result showed that the couplings for the three overlapping wavefunctions
are proportional to the Yukawa couplings on the intersecting branes picture. The proportionality factor
was identified as the quantum contribution. The quantum contribution is the same as for the factorisable
torus, which was somehow expected since quantum corrections are considered to be local effects.

The discussion of the Z2 × Z2 ×ΩR orientifold, showed that orientifolds constructed from the torus,
which is generated by the S O(12) lattice, put stronger restrictions on the wrapping numbers of intersecting
D6-branes as on factorisable orientifolds. More precisely speaking, the amount of O-planes is reduced and
therefore the R-R charge, needed to cancel the O-plane charges, is less than on factorisable orientifolds.
The same arguments hold for orientifolds constructed from non-factorisable tori, whose underlying lattice
contains S O(2N) Lie lattices. As the toy model in chapter 4 showed, the conditions are actually too
restrictive to construct realistic models. Therefore from phenomenological point of view, tori, generated
by S O(2N) lattices, seem to be uninteresting for model building, at least when discrete torsion is turned
off. However this does not mean that non-factorisable tori in general are not good for phenomenological
aspects. The computations in [108] show that with discrete torsion, non-factorisable orientifolds of the
type discussed in this work might be attractive for model building. Further the work in [103–105] prove
that orientifolds with intersecting D-branes on non-factorisable tori are worth to look at and for that
reason the computations of Yukawa couplings, presented in this work, might be a necessary step for
being able to derive mass hierarchies.

To finalize the discussion of Yukawa couplings from D-branes, it is still left remained to determine the
Yukawa couplings, which are inherited on orientifolds, after the point group and orientifold projection
is quotiented out of non-factorisable tori. Further the effect of discrete torsion needs to be studied with
respect to Yukawa couplings arising from fractional D-branes.
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APPENDIX A

Massless type IIA closed string states on
Z2 × Z2 × ΩR-orientifolds

The representation of massless closed string states from Type IIA under the four dimensional Lorentz
group and the resulting fields in four dimensions is investigated here. Further it is described, how the
Z2 × Z2 × ΩR projection is taken over the massless states and how the four dimensional spectrum is
affected.

A.1 Four dimensional fields from massless type IIA strings

Massless states in ten dimensions transform in representations of S O(8), which is their corresponding
little group. The massless Type IIA states in the rightmoving sector are given by the eight NS states

bM
−1/2|0〉NS , with M ∈ {2, ..., 9} , (A.1)

which transform in the vector representation 8V of S O(8) and the eight R states

3∏
α=1

(
S +
α

)Kα |0〉R ,
4∑
α=1

Kα = 0 mod 2 , Kα ∈ {0, 1} , (A.2)

which transform in the chiral representation 8S of S O(8), where S ±α are the ladder operators for the
spinorial states of S O(8) as defined in (3.25). The leftmoving massless states are given by the eight NS
states

b̃M
−1/2|0〉NS , (A.3)

which also transform in the vector representation 8V of S O(8) and the eight R states

4∏
α=1

(
S̃ +
α

)Kα
|0〉R ,

4∑
α=1

Kα = 1 mod 2 , Kα ∈ {0, 1} , (A.4)

which belong to the antichiral representation 8C of S O(8). Compactifying the six directions x4,x5,...,x9

of the ten dimensional spacetime M10, the S O(1, 9) acting on M10, decomposes into S O(6), which
acts on the directions x4,...,x9, and S O(1, 3), which acts on the uncompact directions x0, x1, x2, x3. In
the following of this chapter the uncompact directions are denoted by µ ∈ {2, 3} and the compact
directions by i ∈ {4, ..., 9}. The four dimensional spectrum from Type IIA strings is determined by the
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Appendix A Massless type IIA closed string states on Z2 × Z2 ×ΩR-orientifolds

transformation of the string states under the S O(1, 3) factor. Massless states in four dimensions transform
in representations of the algebra su(2) ⊗ su(2), which is the algebra of the little group for massless
particles in four dimensions. The two NS states

bµ
−1/2|0〉NS , µ ∈ {2, 3} , (A.5)

then transform in the representation
(

1
2 ,

1
2

)
of su(2) ⊗ su(2) and hence describe the two polarization states

of a massless vector field in four dimensions. The six states

bi
−1/2|0〉NS , i ∈ {4, ..., 9} , (A.6)

transforms as a vector field in the compact space, but as six scalars in the uncompact space. The
operators S ±1 are raising and lowering operators of ∫ u(2). Hence the two states

∏4
α=1

(
S̃ +
α

)Kα
|0〉R and∏4

α=1

(
S̃ +
α

)1−Kα
|0〉R, for fixed Kα, can be viewed as the basis for the fundamental representation of the

algebra su(2). Hence the correspond to the two spin states of a Weyl fermion in four dimensions, where∑
α Kα = even/odd determines, whether they belong to the chiral/antichiral representation of su(2)⊗ su(2) 3∏

α=1

(
S̃ +
α

)Kα
|0〉R ,

3∏
α=1

(
S̃ +
α

)1−Kα
|0〉R

 ∈

(

1
2 , 0

)
for

∑
α Kα = even(

0, 1
2

)
for

∑
α Kα = odd

. (A.7)

It is convenient to use the notation

|s1s2s3s4〉 =:
3∏
α=1

(
S̃ +
α

)Kα
|0〉R , with sα =

1
2
(−1)1−Kα , (A.8)

to denote the spinor states. Then one can define four Weyl spinors

ψ1
ξ = | ± 1

2
± 1

2
± 1

2
± 1

2
〉 , ψ2

ξ = | ± 1
2
± 1

2
∓ 1

2
∓ 1

2
〉 , ψ3

ξ = | ± 1
2
∓ 1

2
∓ 1

2
± 1

2
〉 , ψ4

ξ = | ± 1
2
∓ 1

2
± 1

2
∓ 1

2
〉

(A.9)

in the chiral representation
(

1
2 , 0

)
and four Weyl spinors

ψ
1
ξ = | ± 1

2
± 1

2
± 1

2
∓ 1

2
〉 , ψ

2
ξ = | ± 1

2
± 1

2
∓ 1

2
± 1

2
〉 , ψ

3
ξ = | ± 1

2
∓ 1

2
± 1

2
± 1

2
〉 , ψ

4
ξ = | ± 1

2
∓ 1

2
∓ 1

2
∓ 1

2
〉

(A.10)

in the antichiral representation (0, 1
2 ), where ξ = sign(s1) denotes the spin state.

A.1.1 Type IIA compactified on a T6

The torus compactification leaves all Type IIA string states invariant. The contribution of the massless
Type IIA states to the four dimensional spectrum is computed by tensoring the left-and rightmoving
states together and decomposing them into irreducible representations of su(2) ⊗ su(2).

NS-NS states

Massless NS-NS states are given by the states b̃M
−1/2bN

−1/2|0〉NS. Decomposing the 8V into representations
of su(2) ⊗ su(2), the NS-NS states

b̃µ
−1/2bν

−1/2|0〉NS (A.11)
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A.1 Four dimensional fields from massless type IIA strings

belong to the product
(

1
2 ,

1
2

)
⊗

(
1
2 ,

1
2

)
, where the 12 graviphotons

b̃µ
−1/2bi

−1/2|0〉NS , b̃i
−1/2bν

−1/2|0〉NS (A.12)

belong to the vector representation
(

1
2 ,

1
2

)
and the 36 states

b̃i
−1/2b j

−1/2|0〉NS (A.13)

transform as scalars in four dimensions. The product
(

1
2 ,

1
2

)
⊗

(
1
2 ,

1
2

)
decomposes into its trace, antisym-

metric and symmetric part and is given by the irreducible representations (0, 0) ⊗ (1, 0) ⊗ (0, 1) ⊗ (1, 1).
Trace (0, 0) corresponds to a dilaton in four dimensions, where the antisymmetric part (1, 0) ⊗ (0, 1) is
a B-field bµν and the symmetric part (1, 1) is a graviton gµν in four dimensions. In four dimensions a
B-field is magnetically dual to an axion θ and hence carries only a scalar dof. The dilaton, B-field and
gravition therfore have together four on-shell dof, which fits with the four dof of b̃µ

−1/2bν
−1/2|0〉NS. T he

36 scalars correspond to moduli of the compact space.

NS-R states

Massless NS-R states are given by the product b̃M
−1/2|0〉NS ⊗ |s1s2s3s4〉, with

∑
α sα ∈ Z. Decomposing

the 8V and 8S into representations of su(2) ⊗ su(2) the NS-R states are given by the four states

b̃µ
−1/2|0〉 ⊗ ψ

a
ξ , (A.14)

which belong to the representation ( 1
2 ,

1
2 ) ⊗ ( 1

2 , 0), and the 24 states

b̃i
−1/2|0〉 ⊗ ψ

a
ξ , (A.15)

which transform as chiral fermions in four dimensions. Decomposing the product ( 1
2 ,

1
2 ) ⊗ ( 1

2 , 0) into
irreducible representation, the states b̃µ

−1/2|0〉 ⊗ ψ
a
ξ , for each a ∈ {1, ..., 4} the product is given by

(0, 1
2 ) ⊗ (1, 1

2 ), which corresponds to a dilatino λ
a
ξ and gravitino Ψ

a
µ ξ in the antichiral representation.

Hence the NS-R sector provides the massless four dimensional spectrum with four antichiral gravitinos,
four antichiral dilatinos and 24 chiral fermions.

R-NS states

The R-NS sector is similar to the NS-R sector, except, that the chiralities are flipped. Massless NS-R
states are given by the product |s1s2s3s4〉 ⊗ bM

−1/2|0〉NS, with
∑
α sα ∈ Z + 1

2 . Decomposing the 8V and 8C

into representations of su(2) ⊗ su(2) the R-NS states are given by the four states

ψ
a
ξ ⊗ bµ

−1/2|0〉 , (A.16)

which belong to the representation (0, 1
2 ) ⊗ ( 1

2 ,
1
2 ), and the 24 states

ψ
a
ξ ⊗ bi

−1/2|0〉 , (A.17)

which transform asantichiral fermions in four dimensions. Decomposing the product (0, 1
2 ) ⊗ ( 1

2 ,
1
2 )

into irreducible representation, the states ψ
a
ξ ⊗ bµ

−1/2|0〉, for each a ∈ {1, ..., 4} the product is given by
( 1

2 , 0) ⊗ ( 1
2 , 1), which corresponds to a dilatino λa

ξ and gravitino Ψa
µ ξ with opposite chirality as in the
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NS-R sector. Hence the R-NS sector also provides the massless four dimensional spectrum with four
gravitinos, four dilatinos and 24 spinors, but each with the opposite chirality as in the NS-R sector.

R-R states

Decomposing the R-R states into products of su(2) ⊗ su(2), they are given by 16 times the states

ψ
a
ξ ⊗ ψ

b
ξ , (A.18)

which transform in the product representation (0, 1
2 ) ⊗ ( 1

2 , 0) and decomposing it into irreducible repres-
entation one gets a vector representation ( 1

2 ,
1
2 ). However massless vector fields in four dimension have

only two dof and hence the other two dof in ψ
a
ξ ⊗ ψ

b
ξ contribute as two scalars, In other words the two

states 1√
2

(
ψ

a
+ · ψ

b
+

)
and 1√

2

(
ψ

a
− · ψ

b
−

)
are the polarization states of a vector potential, where the symmetric

and antisymetric states 1√
2

(
ψ

a
+ · ψ

b
− ± ψ

a
− · ψ

b
+

)
are the states of two scalar fields. Hence the R-R sector

provides the four dimensional spectrum with 16 1-form gauge potentials and 32 scalar fields.

SUSY multiplet

In total the massless Type IIA states contain a graviton gµν, four chiral and four antichiral gravitinos Ψa
µ ξ,

Ψ
a
µ ξ, 28 vector fields, 28 chiral and 28 antichiral spinors and 70 scalar fields in four dimensions. The field

content fills out an N = (4, 4) supergravity multiplet. Hence the massless spectrum unveils that the ten
dimensional N = (1, 1) susy is decomposed to N = (4, 4) susy in four dimensions, for compactification
on a six dimensional compact space with trivial holonomy.

A.2 Z2 × Z2-orbfiold projection

A.2.1 Untwisted states

The action of the generators θ, ω of Z2 × Z2 on the compact space is given by (4.127)

g = exp

2πi
3∑

i=1

viHi

 , (A.19)

with Hi the three Cartan generators of S O(6) and vi the components of the twist vectors of g. The
eigenvalues of the NS and R states to the operators θ and ω are given by

R states NS states θ ω

ψ4
ξ , ψ

2
ξ bµ1/2|0〉NS + +

ψ3
ξ , ψ

1
ξ b4,5

1/2|0〉NS - +

ψ1
ξ , ψ

4
ξ b6,7

1/2|0〉NS - -

ψ2
ξ , ψ

3
ξ b8,9

1/2|0〉NS + -

Only closed string states are preserved by the Z2 × Z2 projection, whose left-and rightmovers have the
same eigenvalues under θ and ω. Those states are called untwisted states and are inherited from the initial
Type IIA closed string sates (before the point group projection).
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A.2 Z2 × Z2-orbfiold projection

Untwisted NS-NS states

The four dimensional dilaton, B-field and graviton are preserved by the point group, because the twist
elements act trivially in the uncompact space. However all 12 graviphotons transform non-trivally and
therefor get projected out. Further only half of the scalars, given by the states

b̃4,5
−1/2b4,5

−1/2|0〉 , b̃6,7
−1/2b6,7

−1/2|0〉 , b̃8,9
−1/2b8,9

−1/2|0〉 , (A.20)

survive the point group projection and therefore only 12 scalars are preserved from the 36 moduli fields.

Untwisted NS-R states

Combining leftmovinf NS states with rightmoving R states, which have the same eigenvalues under the
Z2 × Z − 2 generators, the invariant NS-R states are given by

b̃µ
−1/2|0〉NS ⊗ ψ

4
ξ , b̃4,5

−1/2|0〉NS ⊗ ψ
3
ξ , b̃6,7

−1/2|0〉NS ⊗ ψ
1
ξ , b̃8,9

−1/2|0〉NS ⊗ ψ
2
ξ , (A.21)

so only one gravitino Ψ
1
µ ξ, one dilatino λ

1
ξ and six other fermions are preserved.

Untwisted R-NS states

Similar to the NS-R sector the invariant R-NS states are given by

ψ
2
ξ ⊗ bµ

−1/2|0〉NS , ψ
1
ξ ⊗ b4,5

−1/2|0〉NS , ψ
4
ξ ⊗ b6,7

−1/2|0〉NS , ψ
3
ξ ⊗ b8,9

−1/2|0〉NS , (A.22)

so again only one gravitino Ψ1
µ ξ, one dilatino λ1

ξ and six other fermions are preserved. However they
belong to the opposite chiralities as in the untwisted NS-R sector.

Untwisted R-R sector

In the R-R sector the combination of the left- and rightmoving R states with the same transformation
behaviour under the point group are

ψ
2
ξ ⊗ ψ

4
ξ , ψ

1
ξ ⊗ ψ

3
ξ , ψ

4
ξ ⊗ ψ

1
ξ , ψ

3
ξ ⊗ ψ

2
ξ , (A.23)

where the other R-R states are projected out. It remains therefor four 1-form gauge potentials and eight
scalar from the R-R sector.

SUSY multiplets

The four dimensional spectrum contains after the Z2 × Z2 projection one graviton, one chiral and one
antichiral gravitino, four vector fields, seven chiral and seven antichiral fermions and 22, which fits into
an N = (1, 1) graviton multiplet, three N = (1, 1) vector multiplets and eight N = (1, 1) half-hyper
muliplets (or four hyper multiplets). As discussed in section 4.1.2 the point group preserves only one four
dimensional susy generator from each ten dimensional susy generator. That can indeed by confirmed at
the level of the four dimensional massless spectrum for the discussed Z2 × Z2 projection.
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A.2.2 Twisted states

The g twisted boundary conditions, with g ∈ {θ, ω, θω}, shift the oscillator moddings by 1
2 in the directions,

on which g acts non-trivially. Therefore the oscillators for the g twisted NS sector contains zeromodes bi
0

in the directions xl on which g acts non-trivially. They are related by 1√
2
bl

0 = Γl to the Gamma matrices
of the four dimensional Clifford algebra. They act on the spinor representation of S O(4), which is the
rotation group in the four directions xl. The twisted NS ground state |0〉twNS is massless and therefore also
bi

0|0〉
tw
NS. Similar to the untwisted R ground state being a spinor of the S O(8), the twisted NS ground

state transforms as a spinor of S O(4) and can be given by four states |sl1 sl2〉
tw
NS, with sl ∈ ±

1
2 . Since xl lie

entirely in the compact space the S O(4) has no factor in common with the four dimensional Lorentz group
and hence the four states |sl1 sl2〉

tw
NS are scalar fields in the uncompact space. On the other hand the twisted

R states contains only four zeromodes, two in the uncompact space and two in the directions xk, on which
g acts trivially. They also form a four dimensional Clifford algebra. Therefor the twisted R ground state
is given by a spinor |s1sk〉

tw
R of S O(4), but since s1 is the eigenvalue to the spin in four dimensions, the

twisted R ground state transforms as a fermion in the uncompact space. The GSO-projection acting on
the left-and right moving sector for twisted NS states have, unlike for the untwisted states, an additional
factor of 4

∏4
i=1 bi

0, which is the chirality operators for the spinor representation of S O(4). Under the
action of the orientifold projection ΩR, the zeromodes bl

0 in the imaginary directions of the compact
space get a sign which cancels in the combination for the chirality operator. Therefore the GSO projection
preserves in the twisted NS sector the same two states |sl1 sl2〉

R
NS for the left-and rightmovers, with either∑

a sia ∈ Z or
∑

a sia ∈ Z + 1
2 . The GSO-projection for the twisted R sector has a factor of 4b2

0b3
0
∏

j b j
0

and since ΩR only flips the sign of b j in the imaginary direction, the GSO-projection differs by a sign in
the left- and rightmoving twisted R sector, thus preserves fermions with different chiralities in the twisted
left-and rightmoving R sectors. The massless twisted states preserved by the GSO-projection are chosen
in the rightmoving sector to be given by

| ± 1
2
± 1

2
〉twNS , | ± 1

2
± 1

2
〉twR , (A.24)

with | ± 1
2 ±

1
2 〉

tw
NS two scalars and | ± 1

2 ±
1
2 〉

tw
R two spin states of chiral spinor from the four dimensional

point of view, and in the leftmoving sector by

| ± 1
2
± 1

2
〉twNS , | ± 1

2
∓ 1

2
〉twR , (A.25)

with | ± 1
2 ∓

1
2 〉

tw
R two spin states of an antichiral spinor. That way each fixed point FIX(g) contains 16

massless NS and R states arising from twisted closed strings, by combining the four scalars with the two
spinors. The action of another twist element h , g on FIX(g), acts on the twisted NS and R states as

h : |si1 si2〉
tw
NS → eπisia |si1 si2〉

tw
NS , |s1s j〉

tw
R → eπis j |s1s j〉

tw
R , (A.26)

where h acts on the ia-th and j-th plane non-trivially. In order for the twisted closed string states to remain
the whole orbifold projection they need to form invariant states also under the other twist elements h ∈ P.
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Twisted NS-NS states

The massless NS-NS states in the twisted sector is given by combining the states | ± 1
2 ±

1
2 〉

tw
NS from the

left-and rightmoving sector. It gives the four states

|+ 1
2
+ 1

2
〉twNS⊗|+

1
2
+ 1

2
〉twNS , |+ 1

2
+ 1

2
〉twNS⊗|−

1
2
− 1

2
〉twNS , |− 1

2
− 1

2
〉twNS⊗|+

1
2
+ 1

2
〉twNS , |− 1

2
− 1

2
〉twNS⊗|−

1
2
− 1

2
〉twNS ,

(A.27)
which are four scalars under the four dimensional Lorentz group. The effect of the other Z2 action on the
twisted states preserve only the two states | ± 1

2 ±
1
2 〉

tw
NS ⊗ | ∓

1
2 ∓

1
2 〉

tw
NS.

Twisted NS-R states

The massless NS-R states in the twisted sector is given by combining the states | ± 1
2 ±

1
2 〉

tw
NS from the

leftmoving sector with the | ± 1
2 ±

1
2 〉

tw
R in the rightmoving sector. They form two fermions

| + 1
2

+ 1
2
〉twNS ⊗ | ±

1
2
± 1

2
〉twR , | − 1

2
− 1

2
〉twNS ⊗ | ±

1
2
± 1

2
〉twR , (A.28)

which transform in the ( 1
2 , 0) representation in the uncompact space. The second Z2 preserves only the

two states | + 1
2 + 1

2 〉
tw
NS ⊗ | −

1
2 −

1
2 〉

tw
R and | − 1

2 −
1
2 〉

tw
NS ⊗ | +

1
2 + 1

2 〉
tw
R , which can be put to one Weyl spinor in

four dimensions together.

Twisted R-NS states

The massless R-NS states in the twisted sector is given by combining the states | ± 1
2 ∓

1
2 〉

tw
R from the

leftmoving sector with the | ± 1
2 ±

1
2 〉

tw
NS in the rightmoving sector. Analogous to the twisted NS-R sector,

they form two fermions

| ± 1
2
± 1

2
〉twR ⊗ | +

1
2

+ 1
2
〉twNS , | ± 1

2
± 1

2
〉twR ⊗ | −

1
2
− 1

2
〉twNS , (A.29)

each transforming in the (0, 1
2 ) representation. As in the NS-R sector, the other twist elements project out

two states and preserve one Weyl spinor.

Twisted R-R states

The twisted R-R states are given by the product of the chiral and antichiral fermion. Decomposing
the product into irreducible representations of su(2) ⊗ su(2), they provide two dof belonging to the
( 1

2 ,
1
2 ) representation and two scalar dof in four dimensions. That means each twisted R-R sector

contains a vector field and two scalars. The invariant states under the second Z2 action are given by
| + 1

2 + 1
2 〉

tw
R ⊗ | +

1
2 −

1
2 〉

tw
R and | − 1

2 −
1
2 〉

tw
R ⊗ | −

1
2 + 1

2 〉
tw
R , which are the two polarization states of a spin 1

vector field. Hence the orbifold action on the twisted R-R sector projects out the two scalars.

Discrete torsion

Turning on discrete torsion gives an additional sign to the g twisted states by the action of other twist
elements h ∈ P with h , g. Hence the action of h on a massless twisted states is given by

h : |sasb〉
tw
NS/R ⊗ |scsd〉

tw
NS/R → −eπi(sb+sd)|sasb〉

tw
NS/R ⊗ |scsd〉

tw
NS/R , (A.30)
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where h acts non trivially on the b-th and d-th plane. Therefor the states which are preserved are those
which are projected out in the case without discrete torsion. Each fixed point contributes two scalars from
the NS-NS sector, two scalars from the R-R sector and two fermions from the NS-R and R-NS sector.

SUSY multiplets

Each fixed point contains six scalars, four spinors and one vector field. They fit into an N = (1, 1)
half-hyper multiplet and an N = (1, 1) vector multiplet. However the action of the other Z2 projection
breaks the susy to N = 1, projecting out half of the twisted states. For the case without discrete torsion
two scalars, two spinors and one vector field is preserved, which fit into an N = 1 vector multiplet.
However for the case with discrete torsion four scalars and two fermions are preserved, which form an
N = 1 chiral multiplet.

A.3 Orientifold projection

The orientifold action ΩR on the string transforms the left- and rightmovers from as

ΩR : Xµ
L/R(σ±), ψµ±(σ±)→

+Xµ
R/L(σ∓), ψµ∓(σ∓) for µ ∈ {2, 3, 4, 6, 8}

−Xµ
R/L(σ∓), ψµ∓(σ∓) for µ ∈ {5, 7, 9}

. (A.31)

Inserting the mode expansions from (3.9) the oscillator modes transform as

ΩR : αµn, bµn+r ↔

α̃µn, b̃µn+r

−α̃
µ
n, −b̃µn+r

. (A.32)

In order to preserve the graviton in b̃µ
−1/2bν

−1/2|0〉NS, the orientifold action acts on the NS ground state
as ΩR : |0〉NS → −|0〉NS. On the R sector the orientifold projection acts on the operators S ±α as
ΩR : S ±2,3,4 ↔ S̃ ∓2,3,4 and S ±1 ↔ S ±1 . It is therefore consistent to define the transformation of the lowest
weight state of the R ground state by ΩR : | − 1

2 −
1
2 −

1
2 −

1
2 〉R ↔ | −

1
2 + 1

2 + 1
2 −

1
2 〉R. Then the R states

transform under ΩR as

ψ1
ξ ↔ ψ

4
ξ , ψ2

ξ ↔ ψ
3
ξ , ψ3

ξ ↔ ψ
1
ξ , ψ4

ξ ↔ ψ
2
ξ . (A.33)

A.3.1 Untwisted states

The orientifold projection preserves the states from the untwisted NS-NS sector which are symmetric
under the exchange of the spacetime indices µ and i. That means the states

b̃2
−1/2b2

−1/2|0〉NS , b̃3
−1/2b3

−1/2|0〉NS ,
1
2

(
b̃2
−1/2b3

−1/2|0〉NS + b̃3
−1/2b2

−1/2|0〉NS
)
, (A.34)

correspinding to the dilaton and graviton dof, and the three scalars

b̃2i+1
−1/2b2i+1

−1/2|0〉NS , b̃2i
−1/2b2i

−1/2|0〉NS ,
1
2

(
b̃2i+1
−1/2b2i

−1/2|0〉NS + b̃2i
−1/2b2i+1

−1/2|0〉NS
)
, (A.35)

for each plane i ∈ {1, 2, 3} in the compact space, remain after the action of ΩR. Since the NS-R and
R-NS sector are not left-right symmetric only linear combinations of both sectors survive the orientifold
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projection. The states

1
2

(
b̃µ
−1/2|0〉NS ⊗ ψ

4
ξ + ψ

1
ξ ⊗ bµ

−1/2|0〉NS

)
, (A.36)

corresponding to one dilatino and one gravitino, and the two fermions

1
2

(
b̃2i,2i+1
−1/2 |0〉NS ⊗ ψ

a
ξ + ψ

a
ξ ⊗ b2i,2i+1

−1/2 |0〉NS
)
, (A.37)

for each plane i, are preserved by ΩR. Since spacetime fermions anticommute the action of ΩR on R-R
states is given by

ΩR : ψ
a
ξ ⊗ ψ

b
ξ → ψ

b
ξ ⊗ ψ

a
ξ = −ψ

a
ξ ⊗ ψ

b
ξ . (A.38)

That means only the antisymmetric states in the untwisted R-R sector are left invariant by ΩR and the
four scalar states

1
2

(
ψ

2
+ · ψ

4
− − ψ

2
− · ψ

4
+

)
,

1
2

(
ψ

1
+ · ψ

3
− − ψ

1
− · ψ

3
+

)
,

1
2

(
ψ

4
+ · ψ

1
− − ψ

4
− · ψ

1
+

)
,

1
2

(
ψ

3
+ · ψ

2
− − ψ

3
− · ψ

2
+

)
,

(A.39)
remain on the orientifold. In total the untwisted sector of Type IIA contributes to the four dimensional
spectrum, after the whole Z2 × Z2 × ΩR projection, a graviton, a gravitino, seven fermions and 14 scalar
fields, which fit into an N = 1 graviton multiplet and seven N = 1 chiral multiplets.

A.3.2 Twisted states

The zeromodes in the twisted sector transform under ΩR as

ΩR : bM
0 →

b̃2,3,4,6,8

−b̃5,7,9 , (A.40)

and vice versa, so that
ΩR : S ±1 ↔ S̃ 1± , S ±j ↔ S̃ ∓j , (A.41)

for the twisted R sector and
ΩR : S ±i ↔ S̃ i∓ , (A.42)

for the twisted NS sector. Defining the twisted ground states to transform under ΩR as

ΩR : | − 1
2
− 1

2
〉twR → | −

1
2

+ 1
2
〉twR , | − 1

2
− 1

2
〉twNS → | −

1
2
− 1

2
〉twNS , (A.43)

the transformation of the twisted states under the orientifold can be deduced to be given by

ΩR : |si1 si2〉
tw
NS → |si1 si2〉

tw
NS , |s1s j〉

tw
R → |s1 − s j〉

tw
R . (A.44)

Then the states preserved by ΩR in the twisted NS-NS sector are the two states |+ 1
2 + 1

2 〉
tw
NS ⊗ |+

1
2 + 1

2 〉
tw
NS

and | − 1
2 −

1
2 〉

tw
NS⊗ |−

1
2 −

1
2 〉

tw
NS. Since they are only preserved for the case with discrete torsion, the twisted

NS-NS states are only present when discrete torsion is turned on. Similar the twisted R-R states which are
invariant under ΩR are the two polarization states |+ 1

2 + 1
2 〉

tw
R ⊗ |+

1
2 −

1
2 〉

tw
R and | − 1

2 −
1
2 〉

tw
R ⊗ | −

1
2 + 1

2 〉
tw
R

for a vector field. They are preserved on the orbifold withou discrete torsion, hence the twisted R-R
sector contributes only for the case when discrete torsion is turned off. The twisted NS-R and twisted
R-NS sector form two linear combinations, which are invariant states under ΩR and provide the four
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dimensional spectrum with a fermion. That means at each fixed point the states remaining after the
Z2 ×Z2 ×ΩR projection, are either two scalars and a fermion for the case with discrete torsion or a vector
field and a fermion for the case without discrete torsion. The orientifold projection breaks the N = (1, 1)
susy at the twisted sectors toN = 1. The invariant states form aN = 1 chiral multiplet in the presence of
discrete torsion or a N = 1 vector multiplet when no discrete torsion is not turned on.
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APPENDIX B

Labels for intersection points on T6
SO(12)

Some of the lattices for labels of inequivalent intersection points of D6-branes on T 6
SO(12) are discussed

here. The lattice for a label j depends in the following way on the wrapping numbers of the two cycles,
which the Branes are wrapping,

j ∈
{(

t1m1
b − t2n1

b, t3m2
b − t4n2

b, t5m3
b − t6n3

b

)T ∣∣∣~t ∈ ΛSO(12)

}
, (B.1)

with the identificationn1
a

j(1)

I(1)
ab

, m1
a

j(1)

I(1)
ab

, n2
a

j(2)

I(2)
ab

, m2
a

j(2)

I(2)
ab

, n3
a

j(3)

I(3)
ab

, m3
a

j(3)

I(3)
ab

 ∼ (B.2)n1
a

j(1)

I(1)
ab

, m1
a

j(1)

I(1)
ab

, n2
a

j(2)

I(2)
ab

, m2
a

j(2)

I(2)
ab

, n3
a

j(3)

I(3)
ab

, m3
a

j(3)

I(3)
ab

 + ~λ , ~λ ∈ ΛSO(12)

Case 1

Here the following configuration is considered

∀h∈{1,2,3}∀α∈{a,b}
(
nh
α + mh

α = 0 mod 2 , g.c.d.(nh
α,m

h
α) = 1

)
. (B.3)

The only way for the term t2h−1mh
α − t2hnh

α to be odd is that the lattice vector components satisfy
t2h−1 + t2h = 1 mod 2. But, because the sum of all six lattice vector components has to be even, the
label j can only have either zero or two components, which are odd. On the other hand it is possible to
make t2h−1mh

α − t2hnh
α even for each plane individually. This is the case for the S O(6) Lie lattice. Hence j

belongs to the S O(6) lattice. From the relation

I(h)
ab =

nh
a − mh

b

2

(
nh

b + mh
b

)
−

nh
b − mh

b

2
(Nh

a + mh
a) , (B.4)

one sees that I(h)
ab is even and therefor a shift of the components of j by j(h) → j(h) + I(h)

ab , can be performed
independently from the components of the other planes. Further, since nh

a + mh
a is even, the shift of j(h)

leads to a S O(12) lattice shift in the term in (B.2), which is can be absorbed by the identification. For the
labels j that means that the inequivlanet labels are given by the quotienting out the shifts from the S O(6)
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lattice
j ∈

ΛSO(6)⊗3
h=1 I(h)

ab Z
. (B.5)

Case 2

Here the following configuration is considered

∀h∈{1,2,3}
(
nh

a + mh
a = 0 mod 2 , g.c.d.(nh

a,m
h
a) = 1

)
, (B.6)

∀h∈{2,3}
(
nh

b + mh
b = 0 mod 2 , g.c.d.(nh

b,m
h
b) = 1

)
,

n1
b + m1

b = 0 mod 2 , g.c.d.(n1
b,m

1
b) = 2 .

In this case the brane b wraps the first plane twice and since
m1

b
2 +

n1
b

2 = 1 mod 2, with
m1

b
2 ,

n1
b

2 ∈ Z, it is
possible for 1

2

(
t1m1

b − t2n1
b

)
to take any integer value, independently from the values of the other two

components of j. Further, it is possible to find lattice vectors ~t ∈ ΛSO(12), s.t.
(

j(1)

2 , j(2), j(3)
)

takes any

value in Z3. Hence the labels j belong to the lattice 2Z ⊗ Z ⊗ Z. Analogous to case 1, (B.4) reveals that
I(h)
ab , ∀h ∈ {1, 2, 3}, is even, and because nh

a + mh
a is even, the inequivalent labels j belong to the quotient

lattice
j ∈

2Z ⊗ Z ⊗ Z⊗3
h=1 I(h)

ab Z
. (B.7)

Case 3

Here the following configuration is considered

∀h∈{1,2,3}
(
nh

b + mh
b = 0 mod 2 , g.c.d.(nh

b,m
h
b) = 1

)
, (B.8)

∀h∈{2,3}
(
nh

a + mh
a = 0 mod 2 , g.c.d.(nh

a,m
h
a) = 1

)
,

n1
a + m1

a = 0 mod 2 , g.c.d.(n1
a,m

1
a) = 2 .

Inserting the wrapping numbers of the brane b into (B.1), one sees analogous to case 1, that j belongs to
the S O(6) lattice. Since I(h)

ab and nh
a + mh

a are even ∀h ∈ {1, 2, 3}, the labels for inequivalent intersections
are given by the quotient lattice in (B.5) as in case 1.

Case 4

Here the following configuration is considered

∀h∈{1,2,3}
(
nh

a + mh
a = 0 mod 2 , g.c.d.(nh

a,m
h
a) = 1

)
, (B.9)

n1
b + m1

b

2
= odd , n2

b + m2
b = odd , n3

b + m3
b = even ,

∀h∈{2,3}
(
g.c.d.(nh

b,m
h
b) = 1

)
, g.c.d.(n1

b,m
1
b) = 2 .

Similar to case 2, it is possible to for j to take values of the lattice 2Z ⊗ Z ⊗ Z and since nh
a + mh

a is even,
shifting j by I(h)

ab in each plane individually, leads to S O(12) lattice shifts in (B.2). Hence inequivalent j’s
belongs to the quotient lattice given in (B.7).
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Case 5

Here the following configuration is considered

∀h∈{1,2,3}
(
nh

b + mh
b = 0 mod 2 , g.c.d.(nh

b,m
h
b) = 1

)
, (B.10)

n1
a + m1

a

2
= odd , n2

a + m2
a = odd , n3

a + m3
a = even ,

∀h∈{2,3}
(
g.c.d.(nh

a,m
h
a) = 1

)
, g.c.d.(n1

a,m
1
a) = 2 .

Similar to case 1 j belong to the S O(6) lattice. But this time I(2)
ab is not necessarily even and since n2

a + m2
a

is odd, the shift j → j +
(
0, I(2)

ab , 0
)

does not lead to a lattice shift in (B.2). Instead, shifting j by the
following three vectors (

I(1)
ab , 0, 0

)T
,

(
I(1)
ab /2, I

(2)
ab , 0

)T
,

(
0, 0, I(3)

ab

)T
, (B.11)

leads to equivalent intersection points on the torus, by (B.2). Hence the inequivalent labels belong to the
lattice

j ∈
ΛSO(6)

Γab
, Γab = span



I(1)
ab
0
0

 ,


I(1)
ab
2

I(2)
ab
0

 ,


0
0

I(3)
ab


 . (B.12)

Case 6

Here the following configuration is considered

∀h∈{1,2,3}
(
nh

a + mh
a = 0 mod 2 , g.c.d.(nh

a,m
h
a) = 1

)
, (B.13)

n1
b + m1

b

2
= odd , n2

b + m2
b = odd , n3

b + m3
b = odd ,

∀h∈{2,3}
(
g.c.d.(nh

b,m
h
b) = 1

)
, g.c.d.(n1

b,m
1
b) = 2 .

Similar to case 4, the inequivlanet labels j belong to the lattice 2Z ⊗ Z ⊗ Z and the labels, denoting
inequivlanet intersection points on the torus, belong the quotient lattice given in (B.7).

Case 7

Here the following configuration is considered

∀h∈{1,2,3}
(
nh

b + mh
b = 0 mod 2 , g.c.d.(nh

b,m
h
b) = 1

)
, (B.14)

n1
a + m1

a

2
= odd , n2

a + m2
a = odd , n3

a + m3
a = odd ,

∀h∈{2,3}
(
g.c.d.(nh

a,m
h
a) = 1

)
, g.c.d.(n1

a,m
1
a) = 2 .
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Similar to case 5, the labels j belong to the S O(6) lattice. Unlike to case 5, this time I(3)
ab and n3

a + m3
a are

also odd. The lattice for inequivalent labels j for this case is given by

j ∈
ΛSO(6)

Γab
, Γab = span



I(1)
ab
0
0

 ,


I(1)
ab
2

I(2)
ab
0

 ,


0
I(h)
ab

I(3)
ab


 . (B.15)

Case 8

Here the following configuration is considered

∀α∈{a,b}

n1
α+m1

α

2 = odd , n2
α + m2

α = odd , n3
α + m3

α = even ,
∀h∈{2,3}

(
g.c.d.(nh

α,m
h
α) = 1

)
, g.c.d.(n1

α,m
1
α) = 2 .

(B.16)

Similar to case 2, j belongs to the lattice 2Z ⊗ Z ⊗ Z. This time I(1)
ab = 0 mod 4 and therefore allows j to

be shifted by (
I(1)
ab , 0, 0

)T
,

(
I(1)
ab /2, I

(2)
ab , 0

)T
,

(
0, 0, I(3)

ab

)T
, (B.17)

which generate the quotientent lattice Γab, for the inequivalent labels

j ∈
2Z ⊗ Z ⊗ Z

Γab
. (B.18)

Case 9

Here the following configuration is considered

n1
a + m1

a

2
= odd , n2

a + m2
a = odd , n3

a + m3
a = even , (B.19)

∀h∈{2,3}
(
g.c.d.(nh

a,m
h
a) = 1

)
, g.c.d.(n1

a,m
1
a) = 2 ,

n1
b + m1

b

2
= odd , n2

b + m2
b = odd , n3

b + m3
b = odd ,

∀h∈{2,3}
(
g.c.d.(nh

b,m
h
b) = 1

)
, g.c.d.(n1

b,m
1
b) = 2 ,

Again, similar to case 8, the inequivlanet labels j belong to the quotient lattice given in (B.18) with the
generators in (B.17) for Γab.

Case 10

Here the following configuration is considered

n1
b + m1

b

2
= odd , n2

b + m2
b = odd , n3

b + m3
b = even , (B.20)

∀h∈{2,3}
(
g.c.d.(nh

b,m
h
b) = 1

)
, g.c.d.(n1

b,m
1
b) = 2 ,

n1
a + m1

a

2
= odd , n2

a + m2
a = odd , n3

a + m3
a = odd ,

∀h∈{2,3}
(
g.c.d.(nh

a,m
h
a) = 1

)
, g.c.d.(n1

a,m
1
a) = 2 ,
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This time the ineqivalent labels belong to the quotient lattice

j ∈
2Z ⊗ Z ⊗ Z

Γab
, Γab = span



I(1)
ab
0
0

 ,


I(1)
ab
2

I(2)
ab
0

 ,


0
I(h)
ab

I(3)
ab


 . (B.21)

Here the following configuration is considered

∀α∈{a,b}

 n1
α+m1

α

2 = odd , n2
α + m2

α = odd , n3
α + m3

α = odd ,
∀h∈{2,3}

(
g.c.d.(nh

α,m
h
α) = 1

)
, g.c.d.(n1

α,m
1
α) = 2 .

(B.22)

The ineqivalent labels for this case is also belongs to the quotient lattice given in (B.21).
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APPENDIX C

Quotient lattices and integral matrices

On the dual of T 6
SO(12), the gauge indices k for fields in representations of U(Na) gauge groups, are given

by k ∈ ΛSO(6)
Γa

, where Γa is a sublattice of ΛSO(6) spanned by three generators with integer components.
Denoting the three generators by a1, a2 and a3, a 3 × 3 integral matrix A can be associated to Γa, where
the components for the i-th column is given by ai

A = (a1, a2, a3) . (C.1)

Let A and B be two integral 3 × 3 matrices, associated to the lattices Γa ⊂ ΛSO(6) and Γb ⊂ ΛSO(6). Let
Γd be a three dimensional sublattice of ΛSO(6), s.t. Γa and Γb are sublattices of Γd and all other lattices,
containing Γa and Γb as sublattices, are sublattices of Γd. Let Γa ∩ Γb be the contained in Γa and Γb as
a sublattice, s.t. all other common sublattices of Γa and Γb are sublattices of Γa ∩ Γb. Let D and M be
the associated 3 × 3 matrices of Γd and Γa ∩ Γb respectively. D is called a left divisor of A and B, which
means A and B can be expressed by

A = DMa , B = DMb , (C.2)

where Ma and Mb are integral 3 × 3 matrices. Further D is the greatest common left divisor, since from
the definition of Γd, it follows, that all other left divisors of A and B are also left divisors of D. Since the
the representation of the generators of the lattices should not have an effect, the greatest common left
divisor of A and B is unique up to unimodular transformations (see e.g.[120]). Then for the following
Diophantine equations

D = AP − BQ , (C.3)

solutions exist, where P and Q are integral 3× 3 matrices (see proof of Proposition 3.4 in [121]). Because
M can be expressed by

M = ANa and M = BNb , (C.4)

with Na and Nb being integral 3 × 3 matrices, M is called a right multiple of A and B. Since from the
definition of Γa ∩Γb, there does not exist any further common right multiple, which is not a right multiple
of M, M is called the lowest common right multiple of A and B. The matrices D and M can be related by
(see theorem 5 of [122].)

M = AD−1B . (C.5)
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Appendix C Quotient lattices and integral matrices

Using (C.5), the volume of the fundamental cell of the quotient lattice ΛSO(6)
Γa∩Γb

is given by∣∣∣∣∣ ΛSO(6)

Γa ∩ Γb

∣∣∣∣∣ =

∣∣∣∣∣det(M)
2

∣∣∣∣∣ =
1
2

∣∣∣∣∣det(A)det(B)
det(D)

∣∣∣∣∣ , (C.6)

from which it follows

1
2
|det(M)det(D)| =

1
2
|det(A)det(B)| (C.7)

⇒

∣∣∣∣∣ ΛSO(6)

Γa ∩ Γb

∣∣∣∣∣ ∣∣∣∣∣ΛSO(6)

Γd

∣∣∣∣∣ =

∣∣∣∣∣ΛSO(6)

Γa

∣∣∣∣∣ ∣∣∣∣∣ΛSO(6)

Γb

∣∣∣∣∣ .
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APPENDIX D

Lattices for gauge indices and irreducible
subsets

The lattices Γα, with α ∈ {a, b}, where already classified in (6.53) and (6.54): There are three different
cases, occurring from, whether N(h)

α = 1 mod 2 for one or two planes (remember that at least in one
plane N(h)

α = 0 mod 2, with g.c.d.(nh
α,m

h
α) = 2). Here the cases are investigated, in which Γa and Γb are

given by

(i)

Γ1
α = span



N(1)
α

0
0

 ,


0
N(2)
α

0

 ,


0
0

N(3)
α


 , (D.1)

where N(h)
α = 0 mod 2 and g.c.d.(nh

α,m
h
α) = 1, ∀ h ∈ {1, 2, 3},

(ii)

Γ2
α = span




N(1)
α

2
N(2)
α

0

 ,


N(1)
α

2
−N(2)

α

0

 ,


0
0

N(3)
α


 , (D.2)

where N(2)
α = 1 mod 2, N(h)

α = 0 mod 2 for h ∈ {1, 3}, but g.c.d.(n1
α,m

1
α) = 2 and g.c.d.(nh

α,m
h
α) =

1 for h ∈ {2, 3},

(iii)

Γ3
α = span




N(1)
α

2
N(2)
α

0

 ,


N(1)
α

2
−N(2)

α

0

 ,


0
N(2)
α

N(3)
α


 , (D.3)

where N(h)
α = 1 mod 2 and g.c.d.(nh

α,m
h
α) = 1 for h ∈ {2, 3}, but N(1)

α = 0 mod 2 and g.c.d.(n1
α,m

1
α) =

2.

Since the volume of the fundamental cells of Γi
α is always Vol

(
Γi
α

)
=

∏3
h=1 N(h)

α , ∀i ∈ {1, 2, 3}, the

number of gauge indices kα ∈
ΛSO(6)

Γα
is

#(kα) =

∣∣∣∣∣ΛSO(6)

Γα

∣∣∣∣∣ =
N(1)
α N(2)

α N(3)
α

2
. (D.4)
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Appendix D Lattices for gauge indices and irreducible subsets

The smallest common sublattice Γa ∩ Γb of Γa and Γb and the greatest lattice Γd, for which Γa and Γb are
sublattices are given for the following different cases by

(a)

Γa ∩ Γb =

3⊗
h=1

N(h)
a N(h)

b

d(h) Z , Γd =

3⊗
h=1

d(h)Z , (D.5)

for Γ1
a and Γ1

b,

(b)

Γa ∩ Γb =

3⊗
h=1

N(h)
a N(h)

b

d(h) Z , Γd = span




d(1)

2
d(2)

0

 ,


d(1)

2
−d(2)

0

 ,
 0

0
d(3)


 , (D.6)

for Γ1
a, Γ2

b and Γ2
a, Γ1

b,

(c)

Γa ∩ Γb =

3⊗
h=1

N(h)
a N(h)

b

d(h) Z , Γd = span




d(1)

2
d(2)

0

 ,
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and the relation (6.79) is indeed satisfied.
The function of three overlapping wavefunctions in section 6.4.2 involves the smallest common
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