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1. INTRODUCTION 

1.1 Human Brain and Central Nervous System 

Brain is one of the most sophisticated and complex organs in the animal kingdom. It comprises more than 

86 billion neurons 1, and several supporting cells which are called glia cells 2.  Neurons in brain organize to 

form neural circuits enabling to process different kind of sensory information, with the help of glial cells. 

One type of glial cells, the astrocytes, perform optimization of neuronal environment by maintaining ion 

and pH balance, clearing waste, and delivering oxygen and glucose to neurons while another type of glial 

cells, the oligodendrocytes, improve conduction of electrochemical signals by insulating neuronal axons 

within fatty substance called myelin.  On the other hand, another glial cell population with myeloid origin, 

called microglia, perform immune surveillance and modulate several immune functions in central nervous 

system (CNS). Thus, brain disorders are caused not only by improper functioning of neurons, but also lack 

of activity of any of these glial cells. 

1.2 Alzheimer’s Disease 

Alzheimer’s disease (AD) is one of the well-known brain disorders affecting more than 46 million people 

worldwide 3. AD is difficult to diagnose and there is no treatment available for the disease. Current 

therapeutics available in market for AD are mostly symptomatic. AD patients require constant care and 

the cost of AD is increasing day by day. In 2015, the worldwide cost of AD reached USD 818 billion 3. Since 

age is the most crucial factor for AD occurence, the rate of getting the disease doubles in every 5 years 

after age of 65 4.  The most common form of AD is sporadic (caused by particular genetic changes), it has 

the late onset, and it does not demonstrate Mendelian pattern of inheritance 5.Thus, complexity of gene 

function can be attributed to AD progression rather than gene transmission 6. The pathological hallmarks 

of AD are accumulation of cerebral plaques of β-amyloid peptide (Aβ), dystrophic neurites and 
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neurofibrillary tangles in medial-temporal lobe.7 Furthermore, pathology of AD is characterized by 

inflammation which is led by brain intrinsic immune cells, the microglia. 8 

AD seems to be multifactorial. The curent and most accepted theory, the ‘amyloid hypothesis’, suggests 

that in the context of failing protection and compensation mechanisms in the aging brain, accumulation 

of the Aβ peptide aggregates induces several pathophysiological changes that ultimately lead to cognitive 

dysfunction 9. Aβ is produced from amyloid precusor protein (APP) through sequencially cleaveage by two 

membrane-bound secretases (β-and γ -secretases) 10.  

Although immune system activation is common in neuroinflammatory diseases such as multiple sclerosis 

(MS) or neurodegenerative diseases, such as AD and Parkinson’s Disease (PD), important differences 

among these disease types are observed. The main difference with respect to immune system alterations 

in these diseases is the type of adaptive immune cells involved. While adaptive T and B lymphocytes are 

involved in MS 11; microglia, perivascular macrophages, and astrocytes are the main effector cells in AD 

12. Moreover, initiating factors also differ among these disease types as protein misfolding triggers AD and 

PD, while aberrations in T cell autoimmunity is responsible in MS 13. 

Recent preclinical, genetic and bioinformatics findings demonstrated that immune activation does not 

only accompany protein misfolding but also could contribute to disease progression 14. Some studies even 

point out much earlier involvement of inflammation 8,15. In some instances, systemic immune challenges 

were demonstrated to drive AD-like pathology (Aβ plaques, tau protein aggregation and microglia 

activation) in wild type mice 16. 
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1.3 Microglia 

1.3.1 Discovery, Localization and Distribution of Microglia 

Microglia, the resident immune cells of CNS, were first identified by Rudolf Virchow (1821-1902) owing to 

its distinct morphology from neurons. He first described them as connective tissue cells which have the 

functions of repairing injuired tissue and supporting neurons. The discrimination of microglia from other 

glia cells was performed by Rio-Hortega in early 1900s by silver staining. Rio-Hortega also postulated the 

mesodermal origin of microglia 17. However, more recently, it has now been very well established that 

microglia arise from yolk sac primitive macrophages, which persist in the CNS into adulthood as discussed 

further 18–20.  

Distribution of microglia cells is not homogeneous through the brain and they are encountered less in 

grey matter than white matter 21.  Microglia population represents 0.5% to 16.6% of the total of cells in 

the brain in humans, showing similar regional variability as that of rodents 22. Microglia and macrophages 

represent important part of innate immune system of brain 23. Both microglia and macrophages are the 

resident tissue mononuclear phagocytes and share several functions, including phagocytosis, production 

of reactive oxygen and nitrogen species, and capability to respond to chemokines and purinergic stimuli 

24. Like macrophages, microglia survey the brain environment for pathogens and provide support CNS 

homeostasis and plasticity by guarding and remodeling synapses 25. Even though the origin of microglia 

has been debated for so long, the present commonly accepted hypothesis supports a first wave of 

migration from the yolk sac (YS). These microglia precursor cells populate the future CNS around E10 

in mice 19,20,26 (Figure 1).  
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Figure 1 Origin of microglia and macrophages. Despite similar functions, macrophages and microglia cells emerge 
through different developmental paths and different factors. Colony-stimulating factor 1 (CSF1), the CSF1 receptor 
(CSF1R), CD34 and the transcription factor PU.1 are needed for differentiation and proliferation of microglia; CSF1, 
CSF1R and the transcription factors PU.1, CCAAT/enhancer-binding proteins (C/EBPs) and activator protein 1 (AP1) 
are needed for macrophage differentiation. Moreover, macrophages arise from bone marraw monocytes whenever 
they are needed. However, microglia arise from yolk microglial cell progenitors at embryonic day 10.5 27. 

 

1.3.2 Microglia in Alzheimer’s Disease 

Among the non-neuronal cells, microglia are most closely associated with alterations in AD 28–31. Aβ is 

produced from processed APP by membrane bound secretases. Reaching a critical concentration, 

oligomeric structure are assembled from Aβ peptides and they finally culminate in mature fibrils 32.  Those 

secondary and tertiary structures of Aβ were found to bind to several receptors of microglia including 

CD14 33, CD36 34,35, CD47 36, α6β1 integrin 37, class A scavenger receptor 38 , receptor for advanced 

glycosylation end products (RAGE) 39 and toll-like receptors (TLRs) 34. Via signaling through these 

receptors, microglia cells are capable of phagocytosing Aβ particles in vitro and in vivo 40. Moreover, Aβ 

dependent progressive impairment of microglial functions was strongly observed in AD 41.  Impairment of 

microglia function was also shown by another study conducted with APP-PS1 mice which demonstrated 
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decreased levels of Aβ binding scavenger proteins and Aβ-degrading enzyme 42. APP-PS1 mice express 

human APP and presenilin and it is frequently used in the research of AD 43. Also, this inefficient Aβ 

clearance of microglia was observed in AD patients 44.  Those studies demonstrate the important role of 

microglia in AD 45. Also, most markers of inflammation such as Interleukin-1 (IL-1) 46, IL-6 47, granulocyte-

macrophage colony stimulating factor (GM-CSF) 47, IL-12 48, IL-23 48 and tumor necrosis factor (TNF) 49 were 

detected in AD models and in the brains of AD patients.  

Rare structural variants of Triggering receptor expressed on myeloid cells 2 (TREM2) 50–53, cluster of 

differentiation 33 (CD33/Siglec3) 54–57 and complement receptor 1 (CR1) 58 were shown to be strongly 

associated with AD. TREM2 is involved in microglial phagocytosis 59–61 and TREM2 activity ameliorates 

survival of activated microglia and their myeloid counterparts such as perivascular macrophages in AD 

62,63. TREM2 engages perivascular macrophages or microglia with Aβ plaques by recognizing lipids 

associated with Aβ plaques 63. Knock-down studies of TREM2 in APP/PS1 mice showed decreased plaque 

load in hippocampus 62, proving that ITAM signaling is very important for progression of AD. 

1.3.2 Siglecs and CD33 

CD33 belongs to the sialic acid-binding immunoglobulun-like lectins (SIGLECS) family 64. It is expressed on 

myeloid precursors which give rise to macrophages and microglia cells 65,66.  Depending on sequence 

similarity and evolutionary conservation, SIGLECS can be categorized into two: evolutionary conserved 

SIGLECS and CD33-related SIGLECS 67. SIGLECS recognize sialic acids on the outermost layer of the cell 

membrane, contributing to adhesion, cell signalling and endocytosis 66,68,69Extracellular part of SIGLECS 

comprise V-Set Immunoglobulin and C2 set Immunoglobulin (Ig) domains and the extent of Ig domain vary 

among SIGLECS  70. The V set Ig domain is the binding domain of SIGLECS to sialic acids and they can bind 

sialic acids both cis and trans manner 67. Most SIGLECS comprise conserved immunoreceptor tyrosine-

based inhibitory motifs (ITIMs) and/or ITIM-like motifs in their cytosolic tails and these motifs enable 
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recruitment of SH2-containing tyrosine phosphatases, SHP1 and SHP2 71 (figure 2). ITIM signaling inhibits 

immunoreceptor tyrosine-based activatory motif (ITAM) signaling upon binding its ligand and ensures the 

regulation of myeloid cell responses 72. Via phosphatase activity, SHP1 removes the phosphate group from 

ERK, SYK or other intermediates and ensures that the activation occurs only at the right time 73.  

 

 

 

 

 

 

 

 

 

Figure 2 Activatory (ITAM) and inhibitory (ITIM) signaling of microglia. There are two main signaling in microglia and 
macrophages which control activation. ITAM signaling (through CD64 and TREM2 receptors) is responsible for the 
activation of microglia when there is activatory ligand is present, whereas ITIM signaling (through CD33 or SIRPα 
receptors) counter-regulates this activation by phophatase activity of SHP1. SHP1 removes phosphate group from 
ITAM signaling intermediates SYK and ERK and controls the activation of macrophages/microglia. 

1.3.3 CD33 in Alzheimer’s Disease 

CD33 is mainly expressed on the cells of myeloid origin 74. Although CD33 is present in both humans and 

mice, it shows structural differences among these two species (figure 2). Compared to human CD33, 

mouse analogue has only one ITIM-like domain and has positively charged transmembrane domain which 

enables to interact with Dap12/Tyrobp adaptor protein 75. CD33 is known to play roles in peripheral 

immune activation and proliferation, endocytosis and degradation 66, however, the function of CD33 in 

brain physiology has not been determined so far. Recent studies point out the involvement of CD33 in 

Alzheimer’s disease 55,76. Genome-wide association studies (GWAS) showed that single nucleotide 
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polymorphisms in CD33 gene, which are rs3865444C and rs12459419, are associated with lowered AD risk 

77. On the other hand,  another polymorphism, rs3865444A, was found to increase risk of having AD 78. 

These findings demonstrate that CD33 is very important for progression of AD and can increase the risk 

of having AD. Especially, rs3865444C polymorphism, which is causing CD33 to lose its functional binding 

domain of sialic acids (Exon2), is one of major interest in the research of AD. This polymorphism was also 

shown to decrease the risk of having AD and underlying mechanism remains to be elucidated 77. 

 

 

 

 

 

 

Figure 3 Structure of mouse and human microglia CD33 (Siglec 3). Comparison of human and mouse CD33 shows 
critical differences in their signaling. In cytosolic domain of mouse CD33, only one ITIM-like domain is found and the 
binding pattern and activity of mouse siglec-3 is still controversial. However, in cytosolic domain of human CD33, 
ITIM and ITIM like domain coexist and combination of these motifs lead to inhibition of microglia/macrophage 
responses 67 

 

1.4 Sialic Acids and Their Role in Immune Regulation 

Sialic acids, major determinants of molecular cell surface phenotype, are 9-Carbon sugar residues found 

at outermost layer of membrane 79. Three types of sialic acids are found on mammalian membrane: N-

acetlyneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc) and Ketodeoxynonulosonic acid 

(Kdn) (Figure 4). Sialic acids were detected for the first time via thiobarbituric acid test in deuterostome 

lineage and higher vertebrates 80. As higher species evolved sialic acid utilization, some bacteria species 

evolved Neu5Ac production pathways to evade host innate immune cell responses 81. 
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N-Acetylmannosamine (ManNAc) is the precursor for sialic acid biosynthesis pathway to produce 

Neu5Ac82. Once produced, Neu5Ac enters nucleus and forms complex with cytidine-5'-monophosphoric 

acid (CMP-Neu5Ac) which can be converted to CMP-Neu5Gc by Cytidine monophosphate N-

Acetylneuraminic acid hydroxylase (CMAH) 83. The presence of additional hydroxy group on Neu5Gc might 

alter its binding properties by changing its pKa, measure of acid strength 84. Addition of hydroxyl (–OH) 

group was shown to increase polarity and hydrophilicity of molecules 85. This effect might be contributing 

to disease phenotype by making sialic acids more hydrophobic. Effect of this change could cause drastic 

changes and might impair several functions in brain since sialic acids are found predominantly in brain. 

 

 
 
 
 
 
 
 
 
 
 

Figure 4 Major types of sialic acids in vertebrates. There are three major types of sialic acids. Neu5GC and Neu5Ac 
are the most abundant sialic acids. The main difference between these is the presence of –OH group at C5 in Neu5GC 
86 

 

1.4.1 Role of CMAH in Distribution of Sialic Acids 

CMAH is the only enzyme specific for Neu5Gc synthesis 87 and expressed variably in different tissues and 

species 86. Humans are unable to synthesize Neu5Gc because of a universal 96 bp deletion in CMAH gene 

88 (figure 5). This mutation is considered to be a consequence of Alu-mediated recombination resulting in 

a premature stop codon and highly truncated polypeptide 89.  Alu elements are repetitive DNA sequences 

in genome and through recombination, they can create genomic instability by the deletion of host DNA 

sequences during their integration into the genome. This integration creates genomic DNA deletions 

associated with intrachromosomal and interchromosomal recombination events 90,91.  This kind of 
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recombination event was shown to delete of Reiske iron sulfur binding region CMAH gene which is 

essential for its enzyme activity and eventually, resulted in loss of functional CMAH enzyme 92. However, 

despite the lack of CMAH activity, Neu5GC can be metabolically taken from diet in very low levels and 

utilized in metabolism by humans 93. Incorporation of Neu5GC occurs via fluid-phase pinocytosis to 

lysosomes, in which Neu5GC is released from glycoproteins via sialidase activity 94. Neu5Gc is then 

delivered to cytosol via sialic acid transporters, where Neu5Gc follows the same path with Neu5Ac 95. 

 

 

Figure 5 Comparison and expression pattern of CMAH. In humans, because of a 92 bp frameshift deletion in exon 6 
of CMAH, a truncated protein of 72 amino acids is produced. However, in other close ancestors of humans (e.g. 
chimp), as well as in mice, this gene is still active and both Neu5Ac and Neu5Gc are produced 96. 
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Table 1 Distribution of Neu5Gc in different species and organs. Owing to differential expression of CMAH in different 
organs and in different species, Neu5Gc presence shows highly diverse expression. Although Neu5Gc is expressed in 
many species, the common point is either lack or the presence of traces of Neu5Gc in their brain (++: major fraction; 
+: minor fraction; –: absent; trace: present at 0.8–3%; nr: not reported) 97. 

1.4.2 Distribution of Sialic Acids 

Sialic acids are most abundant in the brain 98. Therefore, when they were discovered in 1941 by Ernst 

Klenk, they were named as neuraminic acids 99. Despite the high content of sialic acids, Neu5Gc is 

suppressed in mammal brains and this supression is conserved throughout evolutionary periods 97 (Table 

1). Interestingly, the left hemisphere of the human brain showing 30 % more Neu5Ac compared to right 

hemisphere, which might indicate correlation between neural activity with sialic acid concentration100. 

However, functional outcome of this correlation still remains to be elucidated.  

1.4.3 Sialic acids in Diseases 

Although Neu5Gc is not present in mammalian brain, it has important roles in other tissues. Adaptation 

to presence of Neu5Gc was found to important for homeostasis and immune system in mice. CMAH-/- 

mice exhibited several abnormal phenotype including delayed wound healing and age dependent hearing 
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loss 87, heightened B cell response 101,102 and tendency for decreased insulin production 103. However, 

incorporation of Neu5Gc was found to trigger immune responses is species which are lacking functional 

CMAH gene. Especially in humans, incorporated Neu5Gc caused susceptibility  to diseases and it was 

found to be associated with cancer, atherosclerosis and autoimmune diseases 104,105. Moreover, several 

studies demonstrated immune responses against Neu5Gc  in humans 93. 

Neu5Gc incorporation triggers immune responses in species that adapted to have Neu5Ac solely in their 

glycocalyx. CMAH-/- mice exhibited several human-like phenotype,  including induction of anti-Neu5Gc 

antibodies 106, increase in cancer-related inflammation and progression of Neu5Gc containing tumors 

104,107–109, increased immune clearance of Neu5Gc containing therapeutics 110, delayed wound healing 87, 

enhanced age-related hearing loss 87,111, altered immune responses 102,112,113, altered sexual selection 

through Neu5Gc antigenicity 114,115, increased susceptibility towards metabolic disorders 103,116,117, and 

susceptibility towards muscular dystrophy 118–120. These studies reveal the importance of Neu5Gc 

incorporation for the balance of homeostasis in mammals.
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2. AIM AND OBJECTIVES  
 

Throughout evolutionary process, organisms gain or lose functions because of emerging mutations. The 

frameshift mutation emerged in human CMAH gene is one of these loss of function mutations and it 

caused human glycocalyx to have distinct phenotype compared to other mammals. Owing to this loss of 

function mutation, humans lost the ability to process sialic acids, thus making them incapable of 

converting N-acetlyneuraminic Acid (Neu5Ac) to N-glycolylneuraminic Acid (Neu5Gc). Despite this loss, 

humans can still metabolically incorporate Neu5Gc and utilize them as analogue for Neu5Ac and present 

them on their glycocalyx. 

CD33 is one of the sialic acid binding protein found to be involved in progression of Alzheimer’s disease. 

Recent genome-wide association studies revealed that polymorphisms in CD33 gene are involved in the 

progression of Alzheimer’s disease. Although CD33 is known to be having roles in cellular activation, 

proliferation, endocytosis and degradation, the function of CD33 in brain physiology has not been clarified 

so far. CD33 was found to recognize and bind to both Neu5Ac and Neu5Gc and related functional changes 

were elucidated in celular level in this study. Also, underlying molecular machinery causing these 

functional changes was assessed. 

The effects of Neu5Gc incorporation by immune cells and their impacts on neurodegenerative disorders 

have not been studied so far. The aim of this study is understand how Neu5Gc incorporation regulates 

and modifies innate immune cell responses and affects progress of neurodegeneration in vitro. For this 

reason, murine CMAH gene was expressed in human THP1 macrophages which lack intact CMAH gene. 

Moreover, CMAH gene has also been overexpressed in human CD33KO THP1 macrophages to investigate 

whether CD33 signaling is affected by presence of Neu5Gc. These transduced macrophages were 

characterized in relation to major alterations observed in AD.
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3. MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Cell lines 

Cell Line Origin 

ARPE Cells Human retinal pigmented epithelial cells 

Kindly provided by Mona Mathews, University of Bonn 

Stellar™ Competent Cells Supercompetent E.coli bacteria 

Clontech® Laboratories, Inc., USA 

THP1 Wild Type Cells Human monocytes derived from acute myeloid leukemia  

Kindly provided by AG Hornung, University of Bonn 

CD33KOTHP1 monocytes Human monocytes lacking functional human CD33 derived from 

acute myeloid leukemia cells 

Kindly generate d and provided by AG Hornung, University of Bonn 

HEK293FT Cells Human Embryonic Kidney Cells  

Kindly provided by Jens Kopatz, University of Bonn 

 

3.1.2 Chemicals and reagents 

Chemical Company 

100 bp DNA Ladder Thermo Fisher Scientific Inc., USA 

1 kb plus DNA Ladder Thermo Fisher Scientific Inc., USA 

1,4-Diazabicyclo[2.2.2]octane Sigma Aldrich Chemie GmbH, 

Germany 

2-Mercaptoethanol Chemicon Europe, Germany 

Amphicilin Sigma Aldrich Chemie GmbH, 

Germany 

Agarose VWR International GmbH, Germany 

Ampuwa ddH2O Fresenius Kabi Deutschland GmbH, 

Germany 

Aqua-poly/Mount Polysciences Inc., USA 
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Biotinylated Amyloid β Bachem, Germany 

Bovine Serum Albumin Sigma Aldrich Chemie GmbH, 

Germany 

Calcium Chloride (CaCl2) Sigma Aldrich Chemie GmbH, 

Germany 

ddH2O Laboratory Made 

DEPC-Treated Water Thermo Fisher Scientific Inc., USA 

Dihydroethidium (DHE) Thermo Fisher Scientific Inc., USA 

Dimethyl Sulfoxide (DMSO) Sigma Aldrich Chemie GmbH, 

Germany 

DiI, cell tracker Thermo Fisher Scientific Inc., USA 

DMEM with L-glutamine and 4.5g/l D-glucose, without 

sodium pyruvate 

Thermo Fisher Scientific Inc., USA 

DMEM/F12 [1:1] with L-glutamine and HEPES [15mM] Thermo Fisher Scientific Inc., USA 

Nucleoside triphosphates containing deoxyribose (dNTP) mix Peqlab, Erlangen, Germany 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth GmbH & Co KG, Germany 

Ethanol Carl Roth GmbH & Co KG, Germany 

Ethidium Bromide Sigma Aldrich Chemie GmbH, 

Germany 

Fetal Calf Serum (FCS) Thermo Fisher Scientific Inc., USA 

First Strand Buffer (5x) Thermo Fisher Scientific Inc., USA 

Fluoresbrite® Polychromatic Red Microspheres 1.0 μm beads Polysciences Inc., USA 

GelStar Nucleic acid gel stain Lonza Cologne GmbH, Germany 

Glacial Acetic acid Carl Roth GmbH & Co KG, Germany 

Glucose Sigma Aldrich Chemie GmbH, 

Germany 

Glycerol Sigma Aldrich Chemie GmbH, 

Germany 

HALT™ Protease and Phosphatase Inhibitor Coctail Thermo Fisher Scientific Inc., USA 

Hexanucleotide Mix Roche Holding GmbH, Germany 

Hydrochloric Acid (HCI)  Sigma Aldrich Chemie GmbH, 

Germany 

Isopropanol Sigma Aldrich Chemie GmbH, 

Germany 

Kanamycin Sigma Aldrich Chemie GmbH, 

Germany 

L-Glutamine Thermo Fisher Scientific Inc., USA 

Lipofectamine™ Transfection Reagent Thermo Fisher Scientific Inc., USA 

Lipopolysaccharide (LPS) Invivogen, USA 
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Lysogeny Broth (LB) Sigma Aldrich Chemie GmbH, 

Germany 

Lysogeny Broth - Agar Sigma Aldrich Chemie GmbH, 

Germany 

Magnesium Chloride (MgCl2) Carl Roth GmbH & Co KG, Germany 

Methanol Carl Roth GmbH & Co KG, Germany 

Mowiol Kremer Pigmente GmbH & Co, Germany 

N2 Supplement (100X) Thermo Fisher Scientific Inc., USA 

Non-biotinylated Amyloid β Peptide speciality laboratories, 

Germany 

Non-Essential Amino acids Thermo Fisher Scientific Inc., USA 

Normal Chicken Serum Thermo Fisher Scientific Inc., USA 

Nuclease Free DNAase Qiagen GmbH, Germany 

Okadaic acid Sigma Aldrich Chemie GmbH, 

Germany 

Opti-MEM® I Reduced-SerumMedium (1x), liquid Thermo Fisher Scientific Inc., USA 

PageRuler™ Prestained Protein Ladder Thermo Fisher Scientific Inc., USA 

Paraformaldehyde Sigma Aldrich Chemie GmbH, 

Germany 

Penicilin/Streptomycin (Pen/Strep) Thermo Fisher Scientific Inc., USA 

Phorbol-12-myristate-13-acetate (PMA) Sigma Aldrich Chemie GmbH, 

Germany 

Phosphate Buffered Saline (PBS) Thermo Fisher Scientific Inc., USA 

Plasmocin Invivogen, USA 

Poly-L-Lysine [PLL] Sigma Aldrich Chemie GmbH, 

Germany 

Potassium Chloride (KCI) Sigma Aldrich Chemie GmbH, 

Germany 

QIAzol™ Lysis Reagent Qiagen GmbH, Germany 

Random Hexamer Primer Solution Roche Holding GmbH, Germany 

RPMI Medium Thermo Fisher Scientific Inc., USA 

Sodium Chloride (NaCI) Carl Roth GmbH & Co KG, Germany 

Sodiumhydrogenphosphate (NaH2PO4*H2O) Carl Roth GmbH & Co KG, Germany 

Sodiumhydrogenphosphate (NaH2PO4*7H2O) Carl Roth GmbH & Co KG, Germany 

Sodium Hydroxide (NaOH) Carl Roth GmbH & Co KG, Germany 

Sodium Pyruvate Thermo Fisher Scientific Inc., USA 

Sulfuric Acid (H2SO4) Carl Roth GmbH & Co KG, Germany 

SYBR Green Thermo Fisher Scientific Inc., USA 

Trisaminomethane (TRIS) Carl Roth GmbH & Co KG, Germany 
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TritonX Sigma Aldrich Chemie GmbH, 

Germany 

Trolox Cayman Chemical, USA 

Trypan Blue Sigma Aldrich Chemie GmbH, 

Germany 

Trypsin (0.25%) Thermo Fisher Scientific Inc., USA 

5.1.3 Antibodies 

Primary Antibodies For Western Blot 

 

Primary Antibodies and Respective Isotype For Flow Cytometry and Immunocytochemistry 

 

Secondary Antibodies 

Antibody Brand Catalog  IP Conc. WB Conc 

CD33 (WM53) Abcam ab30371 1/200 1/1000 

P-ERK Cell Signaling Technologies 9101  1/1000 

SHP1 Santa Cruz SC-7289  1/80 

Total ERK Cell Signaling Technologies 9102 1/100 1/1000 

Antibody Brand Host Catalog  Conc. Isotype Catalog Conc. 

Catalase        

CD11b BD Pharmingen Rat 553307 1/200 Rat IgG2b 555740 1/100 

CD206 Acris Mouse SM1829P 1/100 Mouse 
IgG1κ 

555746 1/100 

CD33 
(HIM34) 

Exbio Mouse 11-365-C025 1/400 Mouse 
IgG1κ 

555746 1/200 

CD33 
(WM53) 

Abcam Mouse ab30371 1/400 Mouse 
IgG1κ 

555746 1/200 

CD64 Santa Cruz Mouse SC-1184 2.5/20
0 

Mouse 
IgG1k 

555746 1/200 

Antibody Brand Catalog  Conc. 

Alexa488-conjugated goat-anti-rat Invitrogen A11006 1/200 

Anti-Rabbit HRP    

Biotin, anti-mouse Sigma B7653 1/200 

Cy3-conjugated Streptavidin Jackson Immuno Research 016-160-084 1/200 

Cy5-conjugated goat-anti-mouse IgG Jackson Immuno Research 115-176-072 1/200 

Cy5-conjugated goat-anti-rabbit IgG Dianova 111-176-144 1/200 
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5.1.4 Buffers and solutions 

 

Buffer/Solution Composition/Company 

1% Agarose gel 0.7 g Agarose 

70 mL TAE Buffer 

5 μL Ethidium Bromide or GelStar Dye 

4% Paraformaldehyde 20 g PFA 

30 mL NaOH 

50 mL PBS (10X) 

Complete to 500 mL with ddH2O 

10X Bovine Serum Albumin 10 g BSA 

100 mL PBS (1X) 

Diluent Buffer Biolegend Inc., USA 

KREBS-HEPES Buffer 135 mM NaCI 

5 mM KCI 

1 mM MgSO4 

0.4 mM K2HPO4 

5.5 mM Glucose 

20 mM HEPES 

Adjust the pH to 7.4. 

Mowiol 4.8 g Mowiol 

12 g Glycerol 

24 mL 0.2M Tris Buffer 

1.32 g DABCO 

NuPAGE™ LDS Sample Buffer Thermo Fisher Scientific Inc., USA 

NuPAGE™ MES SDS Running Buffer Thermo Fisher Scientific Inc., USA 

NuPAGE™ Transfer Buffer Thermo Fisher Scientific Inc., USA 

Phosphate Buffered Saline (10X) 5.125 g NaH2PO4*H2O 

23.84 g NaH2PO4*7H2O 

175.25 g NaCI 

Complete to 1 L with ddH2O  

Adjust pH to 7.3 

Restore Plus™ Western Blot Stripping Buffer Thermo Fisher Scientific Inc., USA 

RIPA Buffer Thermo Fisher Scientific Inc., USA 

Tris-Acetate-EDTA (TAE) Buffer 96.8 g Tris Base 

22.8 g Glacial Acetic acid 

7.4 g EDTA 

Cy5-conjugated goat-anti-rat IgG Jackson Immuno Research 112-175-167 1/200 

Cy5-conjugated Streptavidin Dianova 016-170-084 1/200 
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Complete to 2 L with ddH2O 

Tris Buffered Saline with Tween® 20 (TBST 10X) 24 g Tris Base 

88 g NaCI 

10 mL Tween® 20 

Complete to 1 L with ddH2O  

 

5.1.5 Kits 

Kit Company 

Anti-Neu5Gc Antibody Kit Biolegend inc., USA 

DynaBeads Protein G Immunoprecipitation Kit Thermo Fisher Scientific Inc., USA 

NucleoBond® Xtra Midi Kit Macherey Nagel 

NucleoBond® Xtra Maxi Kit Macherey Nagel 

SuperScript First-Strand Synthesis System  Thermo Fisher Scientific Inc., USA 

Super Signal West Pico Maximum Sensitivity Substrate Thermo Fisher Scientific Inc., USA 

QIAprep Spin Miniprep Kit Qiagen GmbH, Germany 

QIAquick Gel Extraction Kit Qiagen GmbH, Germany 

 

5.1.6 Media 

Media Components 

ARPE Medium 5 mL Pennicilin/Streptavidin (100X) 

50 mL FCS (10X) 

500 mL DMEM/F12 

Freezing Medium 50 % FCS (10X) 

10 % DMSO 

40 % Culture Medium 

LB Media 1 L ddH2O 

25 g LB Powder 

MEF Medium 50 mL FCS (10X) 

5 mL L-Glutamine (200 mM) 

5 mL Non-Essential Amino Acids (100X) 

5 mL Sodium Pyruvate (100x) 

500 mL DMEM with L-Glutamine, without Sodium Pyruvate, 

high glucose 

THP1 Medium 10 mL Chicken Serum (10X) 
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5 mL L-Glutamine (200 mM) 

5 mL Pennicilin/Streptavidin (100X) 

5 mL Sodium Pyruvate (100x) 

500 mL RPMI 

THP1 Differentiation Medium 50 μL PMA (1 μg/mL) 

1 mL Chicken Serum (10X) 

0.5 mL L-Glutamine (200 mM) 

0.5 mL Pennicilin/Streptavidin (100X) 

0.5 mL Sodium Pyruvate (100x) 

50 mL RPMI 

 

5.1.7 Consumable supplies 

Consumable Company 

5, 10 and 25 mL plastic pipettes Sarstedt Inc., USA 

6-Well Tissue Culture Plate Cellstar, Greiner Bio One, Germany 

10, 100 and 1000 μL pipette tips Starlab GmbH, Germany 

10 and 50 mL Syringes Omnifix, Braun Meisungen AG, Germany 

Cell strainer Becton Dickinson GmbH, Heidelberg, Germany 

Corning Cell Scraper Sigma Aldrich Chemie GmbH, Germany 

Cryovials (2 ml) Nunc GmbH & Co KG, Wiesbaden, Germany 

Falcon Tubes (15 ml) Cellstar, Greiner Bio One, Germany 

Falcon Tubes (50 ml) Sarstedt Inc., USA 

Filtropur (0.25 μm, 0.4 μm) Sarstedt Inc., USA 

Lab-Tek Chamber Slide w/ Cover Permanox 

Slide Sterile 4 Well 

Labomedic, Germany 

Latex Gloves Ansell Healthcare Europe NV, Belgium 

Microscope Cover Glasses P. Marienfeld GmbH, Germany 

Nitrile Gloves Ansell Healthcare Europe NV, Belgium 

Nitrocellulose membrane 0.2 µm Bio-Rad Laboratories GmbH, Germany 

Pasteur Pipettes Brand GmbH & Co KG, Germany 

Petri Dishes BD Falcon, Germany 

QPCR Semi-Skirted 96-Well PCR Plate VWR International GmbH, Germany 

Safe-seal Micro Tubes (0.5 ml, 1.5 ml, 2 ml) Sarstedt Ag & Co KG, Germany 

Tissue Culture Dishes (35 mm, 60 mm, 100 

mm) 

Sarstedt Inc., USA 

Tissue Culture Flask (25 cm², 75 cm²) Sarstedt Inc., USA 

Vacuum driven disposable Bottle Top Filter Millipore Corporation, MA, USA 
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5.1.8 Primers and plasmids 

 

Primers For Cloning Purposes (5’-3’)  

CMAH forward GAATTCGCCACCATGATGG 

CMAH middle forward AAGTTCACCGAGGAGTGGAA 

CMAH middle reverse TCTTCCGGATCAGGTTGTTC 

CMAH reverse  CGCAGTGCATCAGGAAGCT 

 

Primers for RT-PCR (5’-3’) Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) 

CD33 TGTTCCACAGAACCCAACAA GGCTGTAACACCAGCTCCTC 

CD64 TCGACCCCCAGCTACAGAAT ACCAGCTTATCCTTCCACGC 

GAPDH CTGCACCACCAACTGCTTAG TTCAGCTCAGGGATGACCTT 

IL-1β CCAGCTACGAATCTCCGACC TGGACCAGACATCACCAAGC 

SHP-1 GGCACCATCATCCACCTCAA AGGCTCTCACGCACAAGAAA 

SIRPα GGTCAGCAAAAGCCATGACC GGCATTCTTCTCGGGCTCAT 

TNFα AACCTCCTCTCTGCCATCAA  CCAAAGTAGACCTGCCCAGA 

 

Name of Plasmid Source 

12ABUUYP_ hCMAH_Opt_pMA Life Technologies™ 

pLenti-EF1A Provided kindly by Gabriel Liviu Bodea, Institute of 

Reconstructive Neurobiology, University of Bonn, 

Germany 

pMD2.G (Packaging Lentiviral Vector) Provided kindly by AG Brustle, Institute of 

Reconstructive Neurobiology, University of Bonn, 

Germany 

psPAX2 (Packaging Lentiviral Vector) Provided kindly by AG Brustle, Institute of 

Reconstructive Neurobiology, University of Bonn, 

Germany 

 

5.1.9 Enzymes and recombinant proteins 

Name Company 

Amyloid Beta  Bachem, Germany 

AccuPrime™ Pfx SuperMix Thermo Fisher Scientific Inc., USA 

BamHI Roche Holding GmbH, Germany 

Calf Intestinal Alkaline Phosphatase New England BioLabs GmbH, Germany 

DNAase Qiagen GmbH, Germany 

EcorI Roche Holding GmbH, Germany 
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InFusion™ HD Enzyme Premix Clontech® Laboratories, Inc., USA 

pHRODO Red Staphylococcus aures bioparticles Thermo Fisher Scientific Inc., USA 

Staphylococcus aureus bioparticles™ Thermo Fisher Scientific Inc., USA 

Superoxide Dismutase from bovine erythrocytes 

(SOD1) 

SERVA Electrophoresis GmbH, Germany 

T4 DNA Ligase Roche Holding GmbH, Germany 

T4 Polynucleotide Kinase New England BioLabs GmbH, Germany 

 

5.1.10 Technical equipment 

Instrument Company 

- 20 °C freezer Liebherr, Switzerland 

+ 4 °C fridge Liebherr, Switzerland 

Acculab Scale Sartorius  

Axiovert 40 CFL (Microscope) Carl Zeiss AG  

BD FacsCalibur BD Biosciences 

BD FacsDiva BD Biosciences 

Biofuge Fresco (Centrifuge) Heraeus Holding GmbH, Germany 

Cell MateII (Pipette Boy) Thermo Fisher Scientific Inc., USA 

Confocal Olympus IX81 Olympus 

DarkReader DR89X Transilluminator Clare Chemical Research 

Eppendorf Mastercycler epgradient S Eppendorf AG, Germany 

EPS 301 - Electrophoresis Power Supply GE Medical Systems, Germany 

Gel Doc 2000 (Gel Imaging System) Bio-Rad Laboratories GmbH, Germany 

Hera Cell 150 (Incubator) Heraeus Holding GmbH, Germany 

Hera Freeze (- 80°C Freezer) Heraeus Holding GmbH, Germany 

Hera Safe (Laminar-air Flow Workbench) Kendro Laboratory Products GmbH, 

Germany 

KS-15 Control (Shaker) Edmund Bühler GmbH, Germany 

Mastercycler epgradientS realplex4 (qRT-PCR) Eppendorf AG, Germany 

Mefaguge1.0R (Centrifuge) Heraeus Holding GmbH, Germany 

NanoDrop 1000 Spectrophotometer Thermo Fisher Scientific Inc., USA 

PerfectBlue Gelsystem Mini M (Agarose Gel Chamber) VWR International GmbH, Germany 

Pipettes (2 μl,10 μl, 100 μl, 1000 μl) Eppendorf AG, Germany 

Sorvall Discovery 90 SE  HITACHI  

Sorvall RC 6+ ThermoScientific  

Sorvall 5B Plus ThermoScientific  

Standard Power Pack P25 (Voltage Power Supply) Biometra GmbH, Germany 

Systec D-150 (Autoclave) Systec GmbH, Germany 

Thermomixer Compact Eppendorf AG, Germany 
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Water Bath WB/OB7-45 Memmert GmbH & CoKG, Germa 

XCell SureLock Electrophoresis Cell Thermo Fisher Scientific Inc., USA 

Severin 800 Microwave Oven SEVERIN Elektrogeräte  

pH Meter CG840 Schott  

Pump drive PD 5001 Peristaltic Pump Heidolph  

VacuuHandControl Vacuumbrand  

Vacuu-lan® network for lab  Vacuumbrand  

Vortex 2X2 Velp Scientifica  

XCell SureLock Electrophoresis Cell Thermo Fisher Scientific Inc., USA 

5.1.11 Softwares 

Name Company 

Adobe Reader XI Adobe Systems, USA 

Cellquest Pro BD Biosciences, USA 

Corel Draw ® X5 Corel GmbH, Germany 

FlowJo Version 8.7 Tree Star, BD Biosciences, USA 

Gene Designer DNA2.0, USA 

Geneious Version 8.1.8 Biomatters, USA 

Image J Open Source, National Institute of Health (NIH), USA 

Image Lab BioRad Laboratories GmbH, Germany 

Mendeley Desktop Version 1.17.6 Open Source, Elsevier, Netherlands 

Microsoft Office 2016  Microsoft, Germany 

Microsoft Windows 8 Microsoft, Germany 

Nanodrop Version 3.8.1 Thermo Fisher Scientific Inc., USA 

Realplex 2.2 Eppendorf AG, Germany 

SPSS Statistics 22 Release  IBM, Germany 

WinRar win.rar GmbH, Germany  

 

 



 

32 
 

3.2 Methods 

3.2.1 Cell culture 

Cells were thawn quickly in 37⁰C water bath and added to 15 mL falcon tube containing 4 mL respective 

medium. The falcon tube is centrifuged for 3 minutes at 1500g and supernatant was discarded. The pellet 

was resuspended in fresh media and kept in 5% CO2, 95% humidity and 37⁰C.  When cells reached 80% 

confluency, depending on the cell type and experimental setup, they are either mechanically scraped or 

treated with trypsin for 3 minutes. If the cells are in suspension, the cell suspension is transferred to falcon 

and centrifuged for 3 minutes at 1500g. Cells were frozen down in freezing media (Table 3.1) and kept in 

-80 ⁰C fridge for 3 months and then, transferred to -160⁰C fridge 

THP1 cell lines were kindly provided by Dr. Jens Kopatz, Institute of Reconstructive Neurobiology. 

Depending on the cell culture conditions, cells were either grown in either serum free or 1% inactivated 

chicken serum.  THP1 cells were differentiated with 10 ng/mL PMA for 2 days in 5% CO2, 95% humidity 

and 37⁰C. Afterwards, cells are washed 2 times with fresh medium and they were left for 2 more days in 

same conditions for cells to recover. 

3.2.2 Cellular functional experiments 

 

3.2.2.1 Cell surface marker analysis 

Receptor expression was assessed by respective monoclonal primary antibody via FACS. For this 

procedure, 3x106 monocytic THP1 cells were seeded in 10 cm dishes in the first day in serum free THP1 

medium and differentiated with 10 ng/mL PMA. After 48 hours, the medium of the cells were replaced 

with new media and incubated for two days for differentiation to macrophages. Incubation for 2 days was 

performed for recovery of macrophages. Cells were deattached mechanicaly by scraping and deattached 

cells were transferred to 15 cm falcon tubes and centrifuged at 1300 rpm for 3 minutes. The supernatant 
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was removed and 800 μL THP1 medium was added. The cells were divided into 200 μL aliquots. Respective 

primary antibody was diluted in PBS. Cells were centrifuged in 7000 rpm in tabletop centrifuge for 3 

minutes and each pellet resuspended in 200 μL antibody solution. Next, cells were incubated in ice for 60 

minutes. Cells were centrifuged at 7000 rpm for 3 minutes and washed 3 times in this centrifugation 

condition. Respective secondary antibody is diluted in PBS and the pelleted cells were resuspended with 

this antibody mixture. Cells were incubated in ice for 30 minutes. Then, cells were centrifuged in 7000 

rpm for 3 minutes, washed 3 times with PBS in this centrifugation and eventually, they were resuspended 

in 200 mL PBS.  

FACS analysis was performed in one of Cantos at IMMEI. Voltage values are set depending on morphology 

of the cells.  

3.2.2.2 Neu5Gc staining  

106 THP1 macrophages were scraped in PBS and centrifuged down at 1300 rpm for 3 minutes to obtain 

the pellet. Pellets were resuspended in 100 μL diluent buffer and divided into two tubes. The tubes were 

centrifuged again at 7000 rpm for 3 minutes. Meanwhile, master mix of Neu5Gc antibody, 1/500 

concentration of anti-Neu5Gc antibody in 100 μL diluent buffer, is prepared and and used for 

resuspension of pellet. The antibody pellet mix is incubated at room temperature for 90 minutes. Diluent 

buffer without antibody was used as control.  Master mix of secondary antibody, 1/200 concentration of 

biotin-anti-chicken antibody in 100 μL diluent buffer was prepared and cells were incubated on ice for 45 

minutes. Then, tertiary antibody mix composing 1/200 concentration of Cy5 anti-streptavidin in 100 μL 

diluent buffer were prepared, the cells were resuspended and incubated on ice for 30 minutes. Washing 

with diluent buffer were performed for 2 times before each antibody is resuspended. Flow cytometry was 

performed at 660/20 red channel. 



 

34 
 

3.2.2.3 Phagocytosis assays 

Cells were checked for several phagocytic phenotype. Aβ, neural debris, and Staphylococcus aureus 

coupled pHRODO bioparticles phagocytosis were analyzed in this experimental set. 

3.2.2.3.1 pHRODO bioparticle uptake assay 

105 THP1 monocyte cells per well were seeded in 4-well chamberslide and general differentiation protocol 

was followed. pHRODO bioparticles were prepared as stock in 200 μL (10X) 1X PBS. The bioparticles were 

diluted in pre-heated medium and incubated for 2 hours in 37 ⁰C. Then, slides were washed with PBS 

three times and fixed in 4% paraformaldehyde (PFA). After 15 minutes, the slides were washed three 

times with PBS, the walls of chambers were removed and coverslides were placed with 70 μL moviol. The 

slides were stored at 4°C Fridge and images were taken at confocal microscope. Area and integrated 

density of images were measured. To remove background of image, mean fluorescent intensity of 

background was measured. Calculation was performed according to formula below: 

Area*Mean Fluorescent Intensity of Background – Integrated density 

3.2.2.3.2 Retinal debris production 

ARPE cells were thawn according to thawing protocol and cultured in ARPE medium in 15 cm dish and 

incubated in 5% CO2, 95% humidity and 37⁰C until they reached 90 % confluency. When they reached 

confluency, okadaic acid (1/1000) was added to reach 40 nM working concentration and incubated 24 

hours in the incubator. Afterwards, medium was collected and centrifuged at 1500 rpm for 4 minutes and 

pellet was washed once with PBS. Then, pellets were resuspended in 210 μL RDD buffer containing 30 μL 

DNAase for 15 minutes at room temperature and transferred to pre-weighted eppendorf tubes. Debris 

was divided into two depending on whether it will be labeled with Dil dye solution (1/1000, 1 μg/mL). 

Non-labeled debris is diluted to 100 μg/mL in PBS and stored in -20 ⁰C. For labeled debris, Dil solution was 
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added to PBS and the pellet was incubated for 5 minutes at 37 ⁰C and for 15 minutes at 4⁰C, respectively. 

The pellet was washed once with PBS and diluted to 100 μg/mL and stored at -20 ⁰C until use. 

3.2.2.3.3 Aβ and debris phagocytosis 

105 THP1 monocyte cells per well were seeded in 4-well chamber slide and general differentiation protocol 

was followed. In the second day of experiment, biotinylated-Aβ was placed in 37°C in incubator for 

polymerization for 3 days.  In the fourth day of experiment, old medium was removed and replaced with 

300 µL N2 medium composing 3 µL biotinylated-Aβ (1mg/mL)  or 5 µL labeled debris (100 µg/uL) and 

incubated for 90 minutes. After incubation each chamber was washed with PBS and 4% paraformaldehyde 

(PFA) was added for fixation. After 15-minute incubation, the chambers were washed 3 times with PBS 

and blocked with blocking solution containing 10% 1x BSA, 5% normal goat serum and 0.1% Triton-X for 

30 minutes. Afterwards, primary antibody for microglia which is rat-anti-CD11b (1:500) in 500 µL PBS was 

added to each chamber and incubated overnight at 4°C Fridge. Next day, chambers were washed with 

PBS and secondary antibody mix that contains Alexa 488 Goat-anti-rat(Invitrogen) and CY3-conjugated-

streptavidin (only for Aβ uptake) in 1:500 ratio in 500 µL PBS were added and incubated for 90 minutes at 

room temperature. Finally, the chambers were washed 3 times with PBS. The walls of chambers were 

removed and with 70 μL moviol, coverslides were placed. The slides were stored at 4°C Fridge and images 

were taken at confocal microscope. Uptaken Aβ and debris were analyzed via 5 randomly taken images 

and 3D Reconstruction. Images were analyzed in ImageJ software. 

3.2.2.4 Detection of oxidative stress by DHE staining 

105 THP1 cells were seeded in each chamber of chamber-slides. General differentiation protocol was 

applied and cells were treated according to scheme (Figure 6). In the day of experiment, macrophages 

were pre-incubated with SOD1 (60 U/mL- 1/50) and Trolox (40 μM -1/1000) for 1 hour at 37°C.  

Afterwards, medium of the cells were treated with fresh pre-heated media containing either debris (10 
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μg/μL), Aβ1-42 (10 μM), or Bioparticles (10 μM) for 15 minutes. Meanwhile, DHE (30 μM) was diluted in 

1/1000 pre-heated Krebs-HEPES buffer and medium of the cells were replaced with DHE solution and 15-

minute incubation at 37 °C was performed. After 15 minutes, chambers were washed 3 times with Krebs-

HEPES buffer to avoid absorption of any extracellular oxyethidium formed by autooxydation of DHE. Cells 

were fixed for 15 minutes in 4% PFA solution containing 0.25% Glutaraldehyde and washed 3 times with 

PBS.  The walls of chambers were removed and with 70 μL moviol, and coverslides were placed. Five 

images per condition captured and analyzed in ImageJ software. Area and integrated density of images 

were measured. To remove background of image,  mean fluorescent intensity of background was 

measured. Calculation was performed according to formula below: 

Area*Mean Fluorescent Intensity of Background – Integrated density 

 

Figure 6 Orientation and layout of the THP1 monocytes in DHE staining 

 

3.2.3 High pressure liquid chromatography (HPLC) 

In order or determine the activity of CMAH enzyme in transduced cells, the ratio of Neu5Gc to Neu5Ac 

should be calculated. xCGE-LIF (Multiplexed Capillary Gel Electrophoresis with Laser Induced Fluorescence 

Detection) was used to measure the ratio. 106 monocytes were seeded on 6-well plate and differentiated 

to macrophage according to previous protocol. After differentiation and recovery, cells were scraped in 
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PBS and centrifuged for 3 minutes at 1300 rpm.  Following centrifugation, pellet was resuspended in 100 

μL RIPA buffer containing 1x HALT proteinase and phosphotase inhibitor. Three time independent repeat 

of each experiment was performed and the cells were placed and stored at -80 °C until analysis.   

xCGE-LIF experiment was performed in cooperation with collaborators in Max Planck Institute for 

Dynamics of Complex Technical Systems, Magdeburg. Via collaboration, precipitated proteins were 

concentrated by affinity solid phase extraction and seperated on 2 dimensional (2D) gel electrophoresis 

system. Then, the bands were excised out with scalpels and N-Glycan structures were extracted from gel. 

N-Glycan structures were labeled with 9-aminopyrene-1,4,6 trisulfonic acid (APTS) and run a UPLC system 

to detect Neu5Ac and Neu5Gc amounts. 

3.2.4 Molecular biology 

3.2.4.1 Molecular cloning 

Is (2013) completed murine CMAH cloning in his Masters thesis 121. Murine CMAH mRNA sequence 

(NM_001284519.1) was codon optimized according to commonly used codons by Homo sapiens via 

DNA2.0 software 121. Mammalian Kosak sequence was added to 3’ of gene sequence for translation 

initiation. While EcorI restriction site was added to 3’ region of gene sequence, BamHI restriction site was 

added to 5’ region for cloning into pLenti-EF1A plasmid (figure 7). CMAH gene sequence was commercially 

synthesized from Life Technologies™: The plasmid map of CMAH was shown in figure 11. The synthesized 

gene was cloned into pLenti-EF1A (figure 8A) plasmid and cloning was verified by restriction digestion and 

sequencing analysis. psPAX2 (figure 8B) and pMD2.G (figure 8C) plasmids were kindly obtained from AG 

Brustle, University of Bonn. 

 

 

Figure 7 The scheme of synthesized and codon optimized CMAH 
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3.2.4.2 Bacteria culture 

To initiate new bacteria cultures, inoculums or aliquots were taken from -80°C long storage cryovials into 

3-5 mL LB medium (for small scale culture) or 200-250 mL LB medium (for large scale cutures) containing 

appropriate selection antibiotic, placed in 37°C shaking incubators (200-250 rpm) and grown until 

required bacterial density was reached. For long term storage, bacteria containing LB media was mixed 

with glycerol in a 1:1 ratio (v/v), placed in cryotubes and stored at -80°C. 
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Figure 8 Plasmid maps of (A) Plenti-EF1α Vector, (B) psPAX2 and (C)  pMD2.G 

A B 
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3.2.4.3 Plasmid isolation 

Depending on the scale of isolation, competent cells were inoculated either to 3 mL culture tubes or 200 

mL LB medium in 500 mL Flasks. The bacteria were shaken in 37°C incubator (200-250 rpm) overnight and 

next day, plasmid isolation for small scale was performed using QIAprep Spin Miniprep Kit and for large 

scale Macherey Nagel Maxi Prep Kit. The supplied protocol of company was followed during the isolations.  

3.2.4.4 Plasmid digestion and ligation 

Plasmids (3 µg) were digested using EcoRI and BamHI restriction enzymes in appropriate buffer for 1.5 

hour at 37°C. The resulted bands were visualized by gel electrophoresis (1% agarose), using GelStar® 

Nucleic Stain or ethidium bromide on a Dark Reader Transilluminator, in the presence of 100 bp and 1 

kb plus DNA ladder. The correct bands were excised and purified via QIAquick Gel Extraction Kit, 

followed by MiniElute PCR Purification Kit for improved purity. 

Mix Type Component Quantity Condition 

Restriction Digestion Mix BamHI 1 μL (10 U)  

 EcorI 1 μL  

 Buffer A 2 μL  

 DNA 3 μg  

 H2O Up to 20 μL  

   Incubated for 2 hours at 37°C 

Ligation Mix Insert  ~ 10 ng   

 Vector ~ 50 ng  

 T4 DNA Ligase Buffer 0.5 μL  

 T4 DNA Ligase 1 μL (5 U)  

 H2O Up to 5 μL  

   Incubated for 16 hours at 

16°C 

 
Table 2 Restriction digestion and ligation mix and components 
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3.2.4.5 Bacterial transformation and ligation confirmation 

Competent bacteria were transformed using all of the ligation mix via the heat-shock method, then plated 

on agar containing proper antibiotic (ampicillin 100 μg/mL) and incubated overnight at 37°C. 

No Step Quantity Temperature Time 

1 Bacteria Thawing 100 μL On Ice 15 minutes 

2 Incubation of Ligation Mix 

with bacteria 

+ 5 μL On Ice 30 minutes 

3 Heat Shock  42°C (water bath) 45 seconds 

4 Bacterial wall restabilisation  On Ice 5 minutes 

5 Liquid preculturing + 900 μL SOC  37°C. (incubator) 60 minutes 

6 Bacteria harvesting – 

centrifugation 7000xg, 

  3 minutes 

7 Concentrating bacteria - 900 μL medium   

8 Resuspending pellet with 

remaining medium 

   

9 Plating on agar 100 μL   

10 Incubation    Overnight  

 

Table 3 Bacterial transformation protocol 

 

Inoculums of resulted colonies were selected and transferred to small culture volume and verified by 

restriction enzyme digestion and/or sequencing of the isolated plasmids.  

3.2.4.6 Polymerase chain reaction (PCR) 

In some instances, in order to check ligation products, polymerase chain reaction was used.  

Mix Type Component Quantity Condition 

Accuprime Pfx DNA 

polymerase 

Enzyme mix 12.5 μL (10 

U) 

 

 Primer Forward 1 μL  

 Primer Reverse 1 μL  

 DNA 10-100 ng  

 H2O Up to 25 μL  

   Proceed to PCR Reaction 
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Table 4 Polymerase Chain Reaction Mixture 

No Step Temperature Time 

1 Initial Denaturation 94°C 120 seconds 

2 Denaturation 94°C 15 seconds 

3 Annealing  58-63°C 15 seconds 

4 Extension 68°C 1 minute per kb 

5 Cycle  30 cycles (Step 2>4) 

6 Initial Storage 4°C overnight 

7 Long Term Storage  -20°C  

 

Table 5 Polymerase chain reaction conditions 

3.2.4.7 Real time polymerase chain reaction 

Differentiated macrophages were used to assess gene transcription profile of cytokines or some markers. 

Modified Phenol Chloroform Extraction Method was used to isolate RNA from cells. 

3.2.4.7.1 mRNA isolation via phenol chloroform extraction 

No Step Quantity Temperature Time 

1 Washing the cells in 6-well plate in 

PBS twice 

   

2 Adding QIAzol to tissue/cells  + 1 mL  5 minutes 

3 Incubation with chloroform with 

mixing 

+ 200 μL Room temperature 3 minutes 

4 Centrifugation 13,000xg,  4°C 15 minutes 

5 Collection of the aqueous phase -  400 μL   

6 Mixing with isopropanol 1:1 (vol)  + 400 μL On ice  

7 Centrifugation 13,000xg,   4°C 20 minutes 

8 Washing 3 times with 70 % Ethanol 300 μL On ice 5 minutes 

9 Airdrying  Room temperature Until ethanol 

evaporates 

10 Resuspension of RNA Samples  

RNAase Free Water 

11 μL On ice   

11 Long Term Storage   - 80°C 2-3 months 

 

Table 6 Protocol of phenol chloroform extraction 
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3.2.4.7.2 Reverse transcription 

Mix Type Component Quantity Condition 

Reverse Transcription Mix I RNA 8 μL  

 Hexanucleotids (mM) 1 μL  

 dNTPs (mM each) 1 μL  

>>> Start RT Program    

 Temperature Time  

 65°C 5 minutes  

 4°C 1 minute  

 4°C Pause  

    

Reverse Transcription Mix II Component Quantity Condition 

 Forwards Strand Buffer 5x 4 μL  

 DTT (0.1 M) 2 μL  

 SuperScript III 1 μL  

   Completed to 20 μL 

>>> Continue RT Program    

 Temperature Time  

 25°C 5 minutes  

 55°C 1 hour  

 70°C 15 

minues 

 

 4°C Overnight  

 - 20°C  Long Term Storage 

 

Table 7 Protocol of reverse transcription from isolated mRNA 

3.2.7.4.3 sqRT-PCR 

Mix Type Component Quantity Condition 

RT-PCR Mix per well SybrGreen mix 12.5 μL  

 Primer Forward 1 μL  

 Primer Reverse 1 μL  

 DNA 1 μL (100 ng/μL) 

 H2O 8.5 μL  

   Proceed to PCR Reaction 

 

Table 8 RT-PCR mix and its components 
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No Step Temperature Time Cycle 

1 Initial Denaturation 95°C 10 minutes  

2 Denaturation 95°C 15 seconds  

40 cycles 3 Annealing  60°C 30 seconds 

4 Elongation 72°C 30 seconds 

5 Inactivation 95°C 10 minutes  

6 Melting Curve 60 - 95°C 20 minutes  

7 Final  95°C 15 seconds  

8 Storage 4°C   

 

 Table 9 RT-PCR reaction condtions 

For amplifications, a Mastercycler epgradient S® was used and the results were evaluated with the 

manufacturer’s software. Amplification specificity was confirmed by melting curve analysis and the 

quantification was carried out using the ΔΔCt method. 

∆Ct = CtTargetGen – CtReferenceGene (1) 

∆∆Ct = ∆CtStimulation – ∆CtControl (2) 

Fold change = 2-∆∆Ct 

3.2.4.8 Plasmid transfection to HEK293FT cells 

For the overexpression of proteins, lentiviral particles were generated. In this regard, the lentiviral plasmid 

containing the gene of interest was mixed with packaging plasmids psPAX2 and pMD2.G and added on 

HEK293FT cells pre-seeded on poly-L-lysine, in 15cm2 dishes (6.5 x106 cells/dish seeded in MEF media 

24h. 

No Step Component Quantity Condition 

1 Preparation of 

Lipofectamine Mix 

Lipofectamine 2000 72 μL per well  

  Opti-MEM Complete to 3 mL Incubation for 5 

minutes at RT 

2 Preparation of Plasmid 

Mix 

pLENTI-EF1α-Gene 19 μg  

  psPAX2 6 μg  

  pMD2.G 6 μg  
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  Opti-MEM Complete to 3 mL  

3 Final Mix Lipofectamine Mix + 

Plasmid Mix 

6 mL in total Incubation for 20 

minutes at RT 

4 Adding drop-wise on new 

OPTI-MEM media 

   

5 Replace medium MEF Medium 20 mL After 24 hours 

6 Confirm particle 

production with Lenti-X 

Stix Test 

  After 24-48 hours 

7 Harvest Particles   After positive 

band appears in 

Stix Test 

8 Filter the medium with 

0.4 μm filters 

   

9 Storage for later use   - 80 °C 

 

Table 10 Protocol for plasmid transfection to HEK293FT cells to produce viral particles 

3.2.4.9 Viral transduction 

Viral particles stored in -80 °C fridge were thawn on ice and Lenti-X concentrator was added in 1/3 ratio 

of previous media volume and kept in 4°C fridge overnight. Centrifugation for 45 minutes at 1500g was 

performed and the pellet was resuspended in fresh THP1 medium. 3x106 THP1 monocytes were added to 

the concentrated lentiviral mix and after 2 days, the medium of the cells were changed. After 3 sequential 

medium change, the cells were transferred to S1 incubator and they were analyzed at FACS for GFP 

fluorescence. If the cells are GFP positive, half of the cells were frozen and the rest was continued for FACS 

Sorting. 

3.2.4.9.1 Fluorescence activated cell sorting (FACS) isolation of transduced THP1 cells 

20x106 THP1 monocytes were obtained, centrifuged down at 1300 rpm for 3 minutes and they were 

resuspended in 3 mL PBS. The cells were transferred to Flow Cytometry Core Facility (FCCS), University of 

Bonn to sort according to GFP fluorescence and GFP+ monocytes were seperated and transferred to fresh 

medium. Monocytes were incubated until they reach 90 % confluency. When the cells reached 
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confluency, GFP fluorescence was measured again and if they reached above 80 % GFP+ population, 

experiments were started and the rest of the cells were frozen down in freezing media -80°C and stored 

for further use. 

3.2.5 Immunochemistry 

3.2.5.1 Immunocytochemistry (ICC) 

For Immunocytochemistry, 105 THP1 monocyte cells were seeded on each chamber of chamber slide. 

Normal differentiation protocol was applied and in the experiment day, table 11 was followed. 

No Step Quantity Temperature Time 

1 Washing 3 times 500 μL PBS RT  

2 Fixing the cells 4 % PFA RT 15 minutes 

3 Washing 3 times 500 μL PBS RT  

4 Blocking 300 μL Blocking Solution (10 % 

BSA, 5 % Normal Goat Serum, 

0.1 % Triton X-100) 

RT 1 hour 

 First Antibody Respective concentration in 

500 mL PBS 

4°C Overnight 

 Washing 3 times 500 μL PBS RT  

3 Secondary antibody Respective concentration in 

500 mL PBS 

RT 2 hours 

4 Washing 3 times 500 μL PBS RT  

5 Covering slides with 

cover strips 

70 μL Mowiol RT  

6 Storage   4°C 

7 Analysis    

 

Table 11 Protocol of immunocytochemistry 

3.2.5.2 Immunoprecipitation (IP) 

106 THP1 cells were seeded on 6-well plate and differentiated as previously described. Then, macrophages 

were detached by scraping in PBS and centrifuged down at 1300 rpm for 3 minutes.  Cells were lysed by 

vortexing in 100 μL RIPA buffer that contains phosphatase and protease inhibitors (HaltTM Protease 
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Inhibitor) on ice. After 1 hour, the lysate was centrifuged down(13,000xg) at 4°C and the supernatant was 

used for further determinations. 

For antigen precipitation, the lysate supernatant was incubated with magnetic Dynabeads® that were pre-

coated with antibodies according to manufacturer’s specifications. The immunoprecipitation of the target 

antigen was performed according to table 12. 

No Step Quantity Temperature Time 

1 Beads binding to 

antibody 

100 μL DynaBeads+ Antibody 4°C 2 hours 

2 Lysis of the cells 100  μL RIPA Buffer + 1/100 HALT™ 

Proteinase Coctail 

On ice 1 hour 

3 Centrifugation 

13,000xg, 

 4°C 15 

minutes 

4 Antigen (lysate) 

binding to beads 

+ 100 μL DynaBeads 4°C 1 hours 

5 Magnetic Seperation of 

Beads 

 Room 

Temperature 

 

6 Washing 3 times with 

PBS 

200 μL   

7 Elution 10 μL NuPage® LDS Sample Buffer + 

20 μL Elution Buffer 

 

70 °C 10 

minutes 

8 Magnetic Seperation of 

Beads 

  -20 °C 

 

Table 12 Protocol of immunoprecipitation which is followed by western blot 

3.2.6 Western blot 

The antigens isolated by immnoprecipitation were loaded onto 10% NuPAGE® Bis-Tris Gels and run in 

NuPAGE® MES SDS running buffer, under constant 130 V for 90 minutes. PageRuler Plus prestained 

protein ladder was used as marker. The protocol presented in Table 13 was used. For transfer of proteins, 

the gel sandwich structure in figure 9 was established. 
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Figure 9 Structure of gel sandwich in western blot 

No Step Quantity Temperature Time 

1 Loading Samples 20 μL sample - 

5 mL PageRuler prestained protein ladder 

On ice  

2 Electrophoresis, 

130 V 

NuPAGE MES SDS Running Buffer On ice 90 minutes 

3 Blot (See Figure 

13), 380 mA 

NuPAGE® Transfer Buffer On ice 1 hour 

4 Blocking, rotation 1xTBST Buffer Room 

temperature 

1 hour 

5 Primary antibody, 

rotation 

Respective antibody in 1x 10 mLTBST Buffer 4°C Overnight 

6 Washing 1X TBST  3 times in 

15 minutes 

7 Secondary 

antibody, rotation 

Respective phospho antibody in 1x 10 mL 

TBST Buffer 

4°C 1 hour 

8 Washing 1X TBST  3 times in 

15 minutes 

9 Peroxidase 

Labeling 

300 μL SuperSignal® West Pico 

Luminol/Enhancer Solution + 300 μL 

SuperSignal® West Pico Stable Peroxide 

Solution 

Room 

temperature 

 

10 Stripping Restore Plus WB Stripping Buffer Room 

temperature 

20 minutes 

11 Washing 1X TBST  3 times in 

15 minutes 

12 Primary antibody, 

rotation 

Respective antibody in 1x 10 mLTBST Buffer 4°C Overnight 

13 Washing 1X TBST  3 times in 

15 minutes 
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14 Secondary 

antibody, rotation 

Respective antibody in 1x  10 mLTBST Buffer 4°C 1 hour 

15 Washing 1X TBST  3 times in 

15 minutes 

16 Peroxidase 

Labeling 

300 μL SuperSignal® West Pico 

Luminol/Enhancer Solution + 300 μL  

SuperSignal® West Pico Stable Peroxide 

Solution 

Room 

temperature 

 

 

Table 13 Protocol of Western Blot 
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4. RESULTS 

4.1 Cloning and Expression of CMAH 

4.1.1 Cloning of CMAH was completed 

Murine CMAH gene was synthesized and cloned into pLenti lentiviral vector as previously described 

(section 3.2.4.1) 121. Successful cloning was confirmed by digestion of pLenti_CMAH with EcorI and BamHI 

restriction enzymes that resulted in two DNA fragments (Figure 10). Sanger sequencing further validated 

the proper insertion of the genes into construct. 

Figure 10 CMAH gene was cloned into the pLenti_EF1α lentiviral vector. Digestion of pLenti_CMAH with EcorI and 
BamHI restriction enzymes that resulted in two fragments. The 11 kb and 1.8 kb DNA fragments correspond to pLenti_ 
EF1α  and CMAH, respectively. 

4.1.2 CMAH expression was detected in wild type and CD33KO macrophages 

Empty pLenti vector (GFP) and pLenti_CMAH (CMAH) were transfected with packaging vectors to 

HEK293FT cells as described in section 3.2.4.8. Afterwards, viral particles were produced and used for 
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transduction as described according to section 3.2.4.1 121. Efficiency of viral particle production was 

assessed via Lenti-X™ GO-StiX Test from Clontech Laboraties.  

THP1 monocytes were transduced with produced lentiviral particles as decribed in section 3.2.4.9. IRES-

GFP in pLenti vector enabled constitutive production of green fluorescent protein (GFP). Transduced THP1 

monocytes were sorted for GFP+ fluorescence. The GFP+ sorting was performed for both THP1 wild type 

(figure 11A) and CD33KO (figure 11B) monocytes. The monocytes were first gated in forward and side 

scatter to distinguish healthy population. Then, at width channel of forward and side scatter, most healthy 

population were selected for the second time. At the final channel, THP1 monocytes were gated and 

sorted according to GFP+ fluorescence. Viral transduction efficiency was ranging from 2-5 % in all cell lines. 

 

 

A 
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Figure 11 Viral transduced GFP+ monocytes were sorted in FACS. Both (A) wild type and (B) CD33KO THP1 monocytes 
were sorted using 3 different gates. First, the monocytes were gated according to their health in Forward (FCS) and 
Side scatter (SSC) channels. Then, Clustered monocytes were gated in width and area of FCS and SSC. Finally, the 
monocytes were gated according to GFP fluorescence. Non-transduced control cells showed no GFP+ population. 

 

 

 

 

 

B 
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4.1.3 CMAH expression in THP1 macrophages led to incorporation of Neu5Gc in the glycocalyx 

 

CMAH is the enzyme converting Neu5Ac to Neu5Gc in mammals. Because of frameshift mutation in CMAH 

gene, human cells are not able to synthesize Neu5Gc sugar in their glycocalyx. However, with dietary 

intake, Neu5Gc can still be incorporated into glycocalyx. To check whether transduced CMAH gene is 

functional in human THP1 macrophages, CMAH expressing THP1 monocytes were differentiated to 

macrophages  (protocol in section 3.2.1) and stained with anti-Neu5Gc antibodies to detect presence of 

Neu5Gc (protocol in section 3.2.2.2). Initially, the macrophages were grown in both chicken (1%) and 

human serum (1%). Preliminary results showed that CMAH expressing macrophages were highly positive 

for Neu5Gc staining in both conditions (data not shown). Chicken serum was selected for further 

experiments owing to its easier accessibility (Figure 12A). Three independent experiments in chicken 

serum conditions showed that CMAH expression in THP1 macrophages successfully altered the glycocalyx 

and led to conversion of Neu5GC from Neu5Ac. After CMAH expression, Neu5Gc staining increased 

significantly in CMAH expressing wild type macrophages (WT CMAH) compared to empty vector 

transduced wild type macrophages (WT GFP). WT CMAH showed 91.2 ± 0.67 % Neu5Gc staining while WT 

GFP showed 0.5 ± 0.3 %, p < 0.001 (figure 12B).  
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Figure 12 Activity of CMAH in transduced macrophages was demonstrated using anti-Neu5Gc antibodies in FACS. (A) 
The expression of murine CMAH in THP1 macrophages led to conversion of Neu5Ac to Neu5Gc. (B) While the non-
transduced and control plasmid transduced macrophages (GFP) showed minimal Neu5Gc expression, CMAH 
expression significantly increased Neu5Gc staining in CMAH expressing THP1 macrophages (WT CMAH) (Mean±SEM, 
n = 3, Analyzed with One Way ANOVA followed by Bonferroni post hoc test p ≤ 0.001, data normalized to WT GFP) 

 

Although CMAH activity was demonstrated by FACS on THP1 macrophages, how much Neu5Ac is 

converted to Neu5Gc could only be detected by biochemical methods. In collaboration with the group of 

Dr. Erdmann Rapp (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg), 

advanced high performance multiplexed capillary gel electrophoresis with laser-induced fluorescence 

detection (xCGE-LIF) technology demonstrated the ratio of Neu5Ac/Neu5Gc in THP1 macrophages (figure 

13). While WT GFP did not show any Neu5GC presence, WT CMAH showed 91.73 ± 0.38 % significant 

conversion of Neu5Ac to Neu5Gc (p<0.001, Figure 13C). However, WT CMAH cells was still expressing 8.26 

± 0.38 % Neu5Ac (which could not be converted by CMAH enzyme). Similarly, this pattern was also 

observed in transduced CD33KO macrophages.  Empty vector transduced CD33KO macrophages (CD33KO 

GFP) showed 100 % Neu5Ac and no Neu5Gc presence. On the other hand, CMAH expressing CD33KO 

macrophages (CD33KO CMAH) showed 90.02 ± 0.30 % Neu5Gc and 9.98 ± 0.30 Neu5Ac (p < 0.001, figure 

13C).  
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Figure 13 Relative Neu5Gc and Neu5GC presence in transduced macrophages was revealed by Advanced xCGE-LIF 
technique and CMAH expresing macrophages predominantly expressed Neu5Gc. (A) Elution time of Neu5Ac and 
Neu5Gc peaks were optimized in HPLC. (B) Transduced macrophages were analyzed for the percentage of Neu5Ac 
and Neu5Gc. (C) Neu5Gc is predominantly found in CMAH overexpressing macrophages (WT CMAH and CD33KO 
CMAH), whereas Neu5Ac in control samples (WT GFP and CD33KO GFP). Both Neu5Ac and Neu5Gc were present on 
CMAH expressing macrophages. (Mean±SEM, n = 3, Analyzed with one way ANOVA followed by Bonferroni post hoc 
test p ≤ 0.001, data normalized to WT GFP) 

 

4.2  Phagocytosis and Oxidative Stress 

4.2.1 CMAH expressing in THP1 cells show decreased apoptotic debris internalisation and 

Aβ Phagocytosis 

After assessing the significant alterations in the glycocalyx after CMAH expression, functional changes 

related to AD phenotype were assessed. Since Aβ and apoptotic debris internalisation are highly altered 

and deteriorated in AD phenotype, uptake of Aβ and debris were analyzed for non-transduced wild type 

macrophages (NT), WT GFP, and WT CMAH. Aβ particles were incubated for 3 days in 37⁰ C for 

polymerization and macrophages were treated with particles as described in section 3.2.2.3.3. Retinal 

C 
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debris was produced from ARPE cells and stained with DiI solution according to section 3.2.2.3.2. Uptake 

of Aβ and debris were confirmed with 3-dimensional reconstruction of confocal images (figure 14A and 

14C, respectively). Aβ phagocytosis decreased significantly in WT CMAH compared to WT GFP (0.69 ± 0.05 

FC, p < 0.001, figure 14B). Debris phagocytosis also significantly decreased in WT CMAH compared to WT 

GFP (0.57 ± 0.06 FC, p < 0.05, figure 14D). These results led to conclusion that Neu5Gc incorporation in 

high levels caused by CMAH expression has inhibiting effect on phagocytosis. 

 

 

Figure 14 WT CMAH expressing cells showed decrease in both Aβ and Debris phagocytosis. (A-C) WT CMAH showed 
significant decrease in Aβ phagocytosis compared to WT GFP. (B-D) WT CMAH demonstrated significant decrease in 
debris phagocytosis compared to WT GFP  (Mean±SEM, n > 3, Analyzed with one way ANOVA followed by Bonferroni 
post hoc test *** p ≤ 0.001, *  p ≤ 0.05, data normalized to WT GFP, Red- Aβ or debris Green-CD11b, scale bar 10 µm) 

 

A B 

C D 
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4.2.2 CMAH-mediated decrease in debris, Aβ and Staphylococcus aureus bioparticle 

phagocytosis is independent from CD33 

Debris uptake is one of the important function of immune cells to regulate homeostasis. After 

observing decrease in phagocytosis caused by CMAH expression, I investigated the possible role of 

CD33 in this decline as it is one of markers of AD and it can recognize sialic acids. The effect of CMAH 

expression in debris phagocytosis was independent from CD33. In CD33KO CMAH, debris 

phagocytosis was decreased compared to CD33KO GFP (CD33KO CMAH showed 0.39 ± 0.09 FC, p < 

0.001, figure 15). Previous decrease in wild type conditions was also confirmed in this setting (WT 

CMAH showed 0.45 ± 0.03 FC, p < 0.001). Moreover, there was also no effect of CD33 in debris 

phagocytosis. No significant change in CD33KO GFP was observed compared to WT GFP (CD33KO GFP 

showed 0.92 ± 0.13 FC, figure 15B in debris phagocytosis). 
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Figure 15 CMAH expression caused decrease in debris phagocytosis independent from CD33. (A) Uptaken debris in 
transduced macrophages can be observed in 3D constructed images. All the macrophages intenalized debris 
successfully (Green:CD11b, Red: neural debris), (B) CMAH expression caused significant decrease in both wild type 
and CD33KO macrophages. There was no difference between WT GFP and CD33KO GFP  (Mean±SEM, n = 3, Analyzed 
with one way ANOVA followed by Bonferroni post hoc test p ≤ 0.001 data was normalized to WT GFP) 

 

Previously, CD33 was found to be associated with AD and Aβ uptake 54,122 . Since I have revealed that 

CMAH expresssion decreases Aβ uptake (figure 14), I next investigated whether CD33 might be involved 

in this decrease (Figure 16A). Again, WT CMAH showed significantly decreased Aβ uptake compared to 

WT GFP (0.49 ± 0.02 FC, p < 0.01, figure 16B). Knocking-out CD33 increased the levels of Aβ uptake and 

CD33KO GFP showed significant increase in Aβ uptake compared to WT GFP (CD33KO GFP showed 1.88 ± 

0.13 FC, p < 0.001, figure 16B), whereas CD33KO CMAH also showed significant decrease in Aβ 

phagocytosis compared to CD33KO GFP (1.12 ± 0.13 FC, p < 0.001, figure 16B). Thus, CMAH expression in 

CD33KO macrophages diminished the elevated levels of Aβ phagocytosis in CD33KO GFP to WT GFP levels. 
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Figure 16 CMAH expression decreased Aβ uptake independent from CD33 and it decreased elevated phagocytic 
phenotype of CD33KO macrophages to normal levels. (A) 3D constructed images of uptaken Aβ in transduced 
macrophages can be observed. All the macrophages have succesfully taken Aβ particles (Green:CD11b, Red: Aβ) (B) 
CMAH transduction caused significant decrease in both wild type and CD33KO background. There was significant 
increase in CD33KO GFP compared to WT GFP. Combination of lack of CD33 with CMAH overexpression decreased 
the uptake to normal level (Mean±SEM, n = 4, Analyzed with one way ANOVA followed by Bonferroni post hoc test 
***p ≤ 0.001, ** p ≤ 0.01, data normalized to WT GFP) 

A 

B 

B 
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Bacterial bioparticle uptake is an important function of macrophage cells. Bacterial particles which were 

coupled to phRODO dye was used to assess internalization by macrophages (figure 17A). phRODO is pH 

sensitive dye which is fluorescencent when internalized by macrophages within lysosomes 123,124. The 

experiment was completed according to section 3.2.2.3.1. WT CMAH showed significant decrease in 

bioparticle uptake compared to WT GFP (0.68 ± 0.06 FC, p < 0.001, Figure 17B). The uptake of bioparticles 

was also analyzed in CD33KO background to detect CD33-dependent effects. No significant difference was 

observed between WT GFP and CD33KO GFP (CD33KO GFP showed 0.75 ± 0.27 FC in bioparticle uptake). 

Increased uptake in WT GFP that is significantly decreased by CMAH expression; CD33KO leads to trend 

of decreased uptake (not reaching significance) that is further accentuated by CMAH expression (CD33KO 

CMAH showed 0.69 ± 0.30 FC in bioparticle uptake and the difference was not significant).  
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Figure 17 CMAH expression decreased phRODO coupled bacterial bioparticles in macrophages and the responses 
were accentuated in CD33KO background. (A) Macrophages taken up phRODO bioparticle appeared as red in the 
images taken in confocal microscope. (B) WT CMAH showed decreased bioparticle uptake compared to WT GFP. 
However, this difference was not observed in CD33KO background. Also no significant change was observed between 
CD33KO GFP and WT GFP (Mean±SEM, n = 5, Analyzed with one way ANOVA followed by Bonferroni post hoc test 
***p ≤ 0.001, **, data normalized to WT GFP, scale bar= 40 µm) 

4.2.3 Decreased neuraminidase activity caused impaired phagocytosis 

Prior to phagocytosis, macrophages and other phagocytic cells remove sialic acids on their membrane 125. 

Although the underlying reason of this clearance has not been clarified completely, it might be to remove 

the effect of inhibitory signaling of ITIM signaling to initiate complete phagocytosis. Since removal of sialic 

acids were performed with neuraminidases, I investigated whether neuraminidase activity was altered in 

CMAH expressing macrophages in pathological conditions. To mimic pathological conditions, 

macrophages were treated with pre-incubated Aβ particles. Sambucus nigra lectin was used to stain the 

sialic acids on macrophages 126 and decrease in lectin staining after Aβ treatment was measured. WT 

CMAH showed significant decrease in response to Aβ treatment compared to response of WT GFP (WT 

CMAH showed 5.03 ± 2.11 % vs while WT GFP showed 19.96 ± 3.88 %, p < 0.05, figure 18). CD33KO GFP 

showed a decrease in response to Aβ treatment, but the difference was not significant compared to 
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response of WT GFP (CD33KO GFP showed 8.18 ± 3.73 % response to Aβ treatment, figure 18). Moreover, 

despite that there was decrease in response of CD33KO CMAH compared to WT CMAH, the decrease in 

response of CD33KO CMAH was not significant (CD33KO CMAH showed 3.96 ± 2.63 % decrease in 

response to Aβ treatment, figure 18) 
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CD33KO GFP CD33KO CMAH 
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Figure 18 CMAH expression caused diminished response to Aβ demonstrated by lectin staining. Responses of  (A) WT 
GFP, (B) WT CMAH, (C) CD33KO GFP and (D) CD33KO CMAH to Aβ treatment were analyzed by FACS after lectin 
staining. Decrease in lectin staining after Aβ stimulation was assessed for each macrophage type (E) WT CMAH 
showed significant decrease in response to Aβ treatment compared to WT GFP. Despite marked decrease in response 
of CD33KO GFP compared to WT GFP, the decrease was not significant. Moreover, there was no significant change 
between CD33KO CMAH and WT CMAH (Mean±SEM, n = 3, Analyzed with one way ANOVA followed by Bonferroni 
post hoc test  * p ≤ 0.05, data normalized to WT GFP).  

 

4.2.4 Superoxide release was increased in CMAH transduced macrophages 

Free radical production is a defense mechanism for macrophages to fight against pathogens. Reactive 

oxygen species (ROS) such as peroxides, superoxide, hydroxyl radical, and singlet oxygen are released to 

clear the area of infection 127. However, improper functioning of ROS production mechanisms can also 

damage the organisms’ residents cells. In this experiment, the effect of CMAH expression on reactive 

oxygen species (ROS) production was assessed via DHE staining (figure 19A). DHE reacts with superoxide 

anions and forms a red fluorescent product (ethidium) which intercalates with DNA and by measuring the 

DHE staining 128,129, ROS production by macrophages can be analyzed. WT CMAH elicited significant 
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increase in ROS production compared to WT GFP (CMAH transduced cells showed 1.45 ± 0.06 FC, p < 

0.001, figure 19B). 

 

 

 

 

 

 

 

 

 

Figure 19 CMAH expression caused increase in ROS production in wild type background. DHE is a dye intenalized by 
macrophages and it gives red color though reaction with superoxides. (A) Red color was measured using images from 
confocal microscope. (B) WT CMAH showed significant increase in ROS production compared to WT GFP (Scale Bar 
– 50 µM, Mean±SEM, n > 3, Analyzed with Student’s T-test *** p ≤ 0.001, data normalized to WT GFP) 

 

 

A 

B 

CMAH 

W
IL

D
 T

Y
P

E 

GFP CMAH 



 

66 
 

To analyze how ROS production is affected by stimulation, macrophages were incubated with debris, Aβ, 

and Staphylococcus aureus bioparticles and analyzed via DHE staining. To confirm stimulus dependent 

increase, Trolox and SOD1 were used as ROS scavengers. Aβ stimulated WT GFP showed significant 

increase compared to non-stimulated condition (1.40 ± 0.07 FC, p < 0.001, figure 20A). SOD1 and trolox 

treated WT GFP elicited significant decrease in ROS production compared to Aβ stimulated condition 

(SOD1 and trolox showed 1.04 ± 0.06 FC, p < 0.001 and 0.89 ± 0.05 FC, p < 0.001, figure 20A, respectively). 

WT CMAH showed significant increase in ROS production compared to WT GFP in non-stimulated 

conditions, similar to previous experiments (CMAH expressing macrophages showed 1.28 ± 0.07 FC, p < 

0.001, figure 20A). However, after Aβ stimulation, WT CMAH did not elicit any significant change (Aβ 

stimulated WT CMAH showed 1.38 ± 0.05 FC, figure 20A). Scavengers caused significant decrease in ROS 

production caused by CMAH expression (SOD1 and trolox treated WT CMAH showed 0.96 ± 0.04 FC and 

0.93 ± 0.06 FC, p < 0.001, figure 20A). 

Neural debris stimulation caused significant increase in WT GFP compared to non-stimulated condition 

(1.47 ± 0.05 FC, p < 0.001, figure 20B). This increase was eliminated by scavenger addition. (SOD1 and 

trolox treated WT GFP showed 0.96 ± 0.06 FC, p < 0.001 and 0.86 ± 0.05 FC, p < 0.001, figure 20B, 

respectively). Similar to previous experiments,  WT CMAH showed significant increase in ROS production 

compared to WT GFP (WT CMAH showed 1.29 ± 0.06 FC, p < 0.01, figure 20B). However, after debris 

stimulation, WT CMAH did not elicit any significant change (debris stimulated WT CMAH demonstrated 

1.37 ± 0.06 FC, figure 20B). Moreover, scavengers caused significant decrease in ROS production caused 

by CMAH expression (SOD1 and trolox treated WT CMAH showed 0.96 ± 0.06 FC and 0.92 ± 0.06 FC, p < 

0.001, figure 20B).  
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Finally, treatment of Staphylococcus aureus bioparticles to WT GFP in ROS production demonstrated 

patterns of Aβ and debris stimulatIon experiments. Bioparticle treated WT GFP showed significant 

increase compared to non-stimulated condition (1.46 ± 0.06 FC, p < 0.001, figure 20C). Also, SOD1 and 

trolox caused significant decrease compared to bioparticle stimulated condition (SOD1 and trolox treated 

WT GFP showed 0.98 ± 0.06 FC, p < 0.001 and 0.86 ± 0.06 FC, p < 0.001, figure 20C, respectively). Similar 

to previous experiments, WT CMAH showed significant increase in ROS production compared to WT GFP 

(WT CMAH showed 1.38 ± 0.08 FC, p < 0.001, figure 20C). After bioparticle stimulation, despite marked 

increase in ROS production compared to bioparticle stimulated control macrophages, WT CMAH did not 

elicit any significant change (Bioparticle stimulated WT CMAH showed 1.62 ± 0.08 FC, figure 20C). 

Scavengers eliminated the increase in ROS production caused by CMAH expression (SOD1 and trolox 

treated WT CMAH showed 1.08 ± 0.06 FC and 1.07 ± 0.05 FC, p < 0.001, figure 20C).  
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Figure 20 ROS production did not change after (A) Aβ, (B) debris and (C) Staphylococcus aureus bioparticle stimulation 
by CMAH expression. After stimulation with particles, WT GFP showed significant increase compared to non-
stimulation conditions (NS). Moreover, SOD1 and trolox scavengers significantly decreased ROS production caused 
by stimulus compared to particle stimulated conditions. Non-stimulated WT CMAH showed significant increase in 
ROS production compared to non-stimulated WT GFP. Trolox and SOD1 treated macrophages showed significantly 
decrease in ROS production and reverted the increase caused by CMAH expression. WT CMAH did not show significant 
increase in particle stimulated condition compared to non-stimulated condition. (Mean±SEM, n > 3, Analyzed with 
one way ANOVA followed by Bonferroni post hoc test ***p ≤ 0.001, ** p≤ 0.01, data normalized to non-stimulated 
WT GFP)  
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4.2.5 CMAH-mediated superoxide release was dependent on CD33 

CD33-related-Siglecs were shown as important regulator of ROS production in macrophages 130. To assess 

the role of CD33 in ROS production, CD33KO GFP and CD33KO CMAH were included (Figure 21A). CD33KO 

CMAH showed significant decrease in ROS production compared to WT CMAH (0.79 ± 0.04 FC, p < 0.001, 

figure 21B). Moreover, no significant change was observed between CD33KO GFP and CD33KO CMAH 

(CD33KO GFP showed 0.91 ± 0.06 FC, figure 21B) proving that CMAH increases ROS production in CD33 

dependent manner.  
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Figure 21 Increase in ROS production caused by CMAH expression is dependent to CD33. CD33KO CMAH showed 
significant decrease in ROS production comprared to WT GFP. No significant difference was observed between WT 
GFP and CD33KO GFP (Scale Bar – 50 µM, Mean±SEM, n > 3, Analyzed with one way ANOVA followed by Bonferroni 
post hoc test ***p ≤ 0.001, data normalized to WT GFP)  

 

To investigate the combined effect of CD33 loss and CMAH expression in ROS production, CD33KO GFP 

and CD33KO CMAH were also stimulated with Aβ, neural debris or Staphylococcus aureus bioparticles. Aβ 

stimulation did not cause any significant change in CD33KO GFP and CD33KO CMAH compared to Aβ 

stimulated WT GFP (CD33KO GFP and CD33KO CMAH showed 1.33 ± 0.06 FC and 1.24 ± 0.08 FC, figure 

22A, respectively). The scavenger controls of CD33KO GFP demonstrated significant decrease compared 

to Aβ stimulated condition (SOD1 and trolox treated CD33KO GFP showed 0.96 ± 0.04 FC, p < 0.001 and 

0.95 ± 0.05 FC, p < 0.001, figure 22A). Although significant decrease was observed in SOD1 treated CD33KO 

CMAH (0.84 ± 0.05 FC, p < 0.01, figure 22A), trolox control did not elicit any significant change compared 

to Aβ stimulated in CD33KO CMAH (0.94 ± 0.06 FC, figure 22A). CD33KO CMAH also showed significant 

decrease compared to WT CMAH (0.97 ± 0.06 FC, p < 0.001, figure 22A). 
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Debris stimulated CD33KO GFP showed significant increase compared to non-stimulated CD33KO GFP 

(Debris stimulated CD33KO GFP showed 1.72 ± 0.10 FC, p < 0.001 while non-stimulated CD33KO GFP 

showed 0.99 ± 0.08 FC, figure 22B).  Scavenger controls of CD33KO GFP showed significant decrease 

compared to debris stimulated CD33KO GFP (SOD1 and trolox controls elicit 0.95 ± 0.06 FC, p < 0.001 and 

0.98 ± 0.07 FC, p < 0.001, figure 22B).  Debris stimulated CD33KO GFP showed increase in ROS production 

compared to debris stimulated WT GFP. However, this increase was not significant. CD33KO CMAH did 

not respond to debris like CD33KO GFP. Despite marked increase in ROS production after debris 

stimulation, there was no significant change (Debris stimulated CD33KO CMAH showed 1.20 ± 0.08 FC, 

figure 22B).  While trolox treatment to CD33KO CMAH caused significant decrease compared to debris 

stimulated condition (trolox control showed 0.82 ± 0.06 FC, p < 0.05, figure 22B), SOD1 treatment did not 

elicit any significant change (SOD1 treatment showed 0.95 ± 0.06 FC, figure 22B). Most importantly, debris 

stimulated CD33KO CMAH showed significant decrease compared to debris stimulated CD33KO GFP 

(CD33KO CMAH showed 1.20 ± 0.08 FC, p < 0.01, figure 22B). 

Results of ROS production after bioparticle stimulation showed similarity to Aβ stimulation experiments. 

Bioparticle stimulated CD33KO GFP and CD33KO CMAH did not elicit any significant change compared to 

bioparticle stimulated WT GFP (CD33KO GFP and CD33KO CMAH showed 1.28 ± 0.07 FC and 1.20 ± 0.05 

FC, respectively, figure 22C). Bioparticle stimulation to CD33KO GFP caused increase compared to non-

stimulated CD33KO GFP but the difference was not significant (non-stimulated CD33KO GFP showed 1.02 

± 0.08 FC,  figure 22C). The scavenger controls of CD33KO GFP caused significant decrease compared to 

bioparticle stimulated condition (SOD1 and trolox treated CD33KO GFP showed 0.93 ± 0.07 FC, p < 0.001 

and 0.89 ± 0.05 FC, p < 0.001, figure 22C). Likewise Aβ stimulation experiments, SOD1 treated CD33KO 

CMAH showed significant decrease compared to bioparticle stimulated CD33KO CMAH (SOD1 treated 

CD33KO CMAH showed 0.90 ± 0.06 FC, p < 0.05, figure 22C). On the other hand, trolox treatment to 

CD33KO CMAH did not elicit any significant change (0.94 ± 0.05 FC, figure 22C). 
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Figure 22 ROS production in CD33KO cells is limited by CMAH expression after stimulation with (B) neural debris and 
(C) Staphylococcus aureus bioparticles. In (A) Aβ and bioparticle stimulated conditions, stimulation did not elicit any 
significant change between wild type and CD33KO backgrounds. However, CD33KO CMAH showed significant 
decrease after debris stimulation compared to WT CMAH. Non-stimulated CD33KO CMAH showed significant 
decrease in all stimulation experiments compared to WT CMAH macrophages (Mean±SEM, n > 3, Analyzed with one 
way ANOVA followed by Bonferroni post hoc test *** p ≤ 0.001, ** p ≤ 0.01 * p ≤ 0.05, data normalized to non-
stimulated WT GFP)  

 

The results of non-stimulated conditions compared to WT CMAH were also reproduced in stimulation 

experiments. Non-stimulated CD33KO CMAH showed significant decrease compared to non-stimulated 

WT CMAH in Aβ stimulation experiments (0.97 ± 0.06 FC, p < 0.01, figure 22A), debris stimulation 

experiments (1.04 ± 0.10 FC, p < 0.05, figure 22B) and bioparticle stimulation experiments (1.02 ± 0.07 FC, 

p < 0.01, figure 22C). 
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4.3  Immune Gene Transcription and Protein Expression 

4.3.1 IL1β and TNFα transcription did not change in CMAH expressing macrophages 

As pro-inflammatory cytokines, transcription of IL1β and TNFα, were analyzed. All the analysis were 

performed in non-stimulated conditions. Both cytokines did not show any significant difference between 

WT GFP and WT CMAH (WT CMAH showed IL1β and TNFα transcription as 0.97 ± 0.18 FC, figure 23A and 

1.37 ± 0.17 FC, figure 23B respectively). However, pro-inflammatory cytokines transcription showed 

significant increase in CD33KO GFP compared to WT GFP (IL1β transcription showed 10.96 ± 0.74 FC, p < 

0.01, figure 23A, TNFα transcription showed 3.35 ± 0.29 FC, p < 0.001, figure 23B). CMAH expression in 

CD33KO background recovered the increase caused by CD33 loss (IL1β transcription showed significant 

decrease in CD33KO CMAH compared to CD33KO GFP (IL1β transcription showed 2.88 ± 0.99 FC, p < 0.05, 

figure 23A). Although there is tendency towards decrease in TNFα transcription in CD33KO CMAH, the 

decrease was not significant (TNFα transcription in CD33KO CMAH showed 2.21 ± 0.55 FC, figure 23B) 
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Figure 23 CMAH expression did not elicit any significant change in proinflammatory cytokines and diminished the 
reactivity of CD33KO macrophages.  All the transduced macrophages were analyzed for (A) IL1β, and (B) TNFα. WT 
CMAH did not show any significant change in comparison to WT GFP for both cytokines. However, CD33KO GFP 
showed increased transcription of IL1β, and TNFα compared to WT GFP. On the other hand, this increase diminished 
significantly in IL1β when CMAH is expressed (Mean±SEM, n > 3, Analyzed with one way ANOVA followed by 
Bonferroni post hoc test *** p ≤ 0.001, ** p ≤ 0.01 * p ≤ 0.05, data normalized to WT GFP) 

 

4.3.2 SIRPα, SHP1 and TREM2 gene transcription did not change after CMAH expression 

Neu5Gc incorporation can affect the cellular inhibition and activation of macrophages in several ways. 

Transcription of key markers which might be affected by CMAH expression was analyzed in non-

stimulated conditions (figure 24). Upon ligand binding, SHP1 is recruited and controls inhibitory ITIM 

signaling.  SHP1 transcription did not change in WT CMAH compared to WT GFP (WT CMAH showed 0.90 

± 0.15 FC, figure 24A). However, CD33KO GFP showed significant increase in SHP1 transcription, compared 

to WT GFP (CD33KO GFP showed 1.82 ± 0.13 FC, p < 0.01, figure 24A). There was no significant change 

between CD33KO GFP and CD33KO CMAH. (CD33KO CMAH showed 1.43 ± 0.30 FC, figure 24A). 

Like CD33, SIRPα  also regulates inhibitory ITIM signaling through SHP1 recruitment 131. Transcription of 

SIRPα was analyzed in non-stimulated conditions. Results did not show any significant change in 

transcription of SIRPα in WT CMAH compared to WT GFP (WT CMAH showed 0.87 ± 0.13 FC, figure 24B). 
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Expressing CMAH in CD33KO background did not cause any significant change in transcription as well 

compared to WT GFP (CD33KO GFP and CD33KO CMAH showed 0.87 ± 0.13 FC and 0.87 ± 0.13 FC, figure 

24B, respectively). Moreover, there was no significant change in SIRPα transcription between CD33KO 

GFP and CD33KO CMAH (figure 24B). In addition, transcription of TREM2 was analyzed as activatory ITAM 

signaling molecule. TREM2, via its adaptor molecule TYROBP, regulates activatory ITAM signaling and 

changes in CD33 signaling might have caused changes in ITAM signaling. Similar to SIRPα, there was no 

significant change in between WT CMAH and WT GFP (WT CMAH showed 1.17 ± 0.07 FC, figure 24C).  

Moreover, transcription of TREM2 did not show any significant change in CD33KO background compared 

to WT GFP (CD33KO GFP and CD33KO CMAH showed 1.01 ± 0.14 FC and 0.81 ± 0.11 FC, figure 24C, 

respectively). There was also no significant change between CD33KO GFP and CD33KO CMAH (figure 24C). 
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Figure 24 Transcription of key markers of ITIM and ITAM signaling of macrophages did not change after CMAH 
expression. Transcription key markers; (A) SHP1 (B) SIRPα and (C) TREM2 were analyzed. Significant increase in SHP1 
transcription was observed in CD33KO GFP compared to WT GFP.  However, no significant difference was observed 
in the transcription of SIRPα and TREM2 levels among transduced macrophages. (Mean±SEM, n > 3, Analyzed with 
one way ANOVA followed by Bonferroni post hoc test ** p ≤ 0.01, data normalized to WT GFP) 
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4.3.3 Transcription and protein expression of CD64 were not altered in CMAH expressing 

macrophages 

Fcγ signaling is important for the activatory phenotype of macrophages 132. To observe whether Neu5Gc 

incorporation exerts its effect by FcᵞR signaling, transcription and expression of Fcγ receptor I alpha chain 

(CD64) was checked.  To check its expression, anti-CD64 antibody was used in flow cytometry (figure 25A). 

There was no significant difference in WT CMAH compared to WT GFP at both expression level (WT CMAH 

showed 1.12 ± 0.02 FC, figure 25B) and transcriptional level (WT CMAH showed 1.22 ± 0.11 FC, figure 

25C). However, significant decrease in transcription and expression were observed in CD33KO GFP and in 

CD33KO CMAH compared to WT GFP (CD33KO GFP showed 0.11 ± 0.01 FC, P < 0.001, and CD33KO CMAH 

showed 0.32 ± 0.12 FC, p < 0.001, figure 25B, in expression, respectively). Moreover, this decrease was 

also significant at transcription levels of CD33KO GFP and CD33KO CMAH (0.11 ± 0.01 FC, P < 0.001 and 

0.09 ± 0.02 FC, p < 0.001, figure 25C). There was no significant change in both transcription and 

expression of CD64 between CD33KO GFP and CD33KO CMAH. 
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Figure 25 CMAH expression did not exert its effects through Fcγ signaling. (A) Expression profile of CD64 was assessed 
with anti-CD64 antibody compared to isotype control. No significant change was observed between WT GFP and WT 
CMAH in both expression and transcription. On the other hand,  (B) CD33KO GFP showed significant decrease in CD64 
in expression. (C) This decrease was also observed in transcription levels in transduced macrophages. CD33KO 
macrophages showed significant decrease in transcription compared to wild type macrophages (Mean±SEM, n > 3, 
Analyzed with one way ANOVA followed by Bonferroni post hoc test ***p ≤ 0.001, data normalized to WT GFP) 
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4.4  Signaling 

4.4.1 Cis binding of sialic acid to CD33 did not change in CMAH expressing macrophages 

CD33 is able to bind to sialic acids in both trans and cis fashion 67. In this experiment, cis interaction of 

CD33 was assesed via utilization of different binding epitopes of CD33 antibodies which are Ig V and C2 

set Ig domains.  Sialic acid binding domain is located in V-set Ig domain. While WM53 clone binds to V-Ig 

domain, HIM34 clones bind to C2 domain, which can be blocked by cis binding. In flow cytometry, binding 

of these two antibody clones were assessed (figure 26A) and cis bound CD33 was calculated by subtracting 

binding of HIM34 clone from WM53. Then, to calculate cis/total bound CD33, cis value is divided to total 

CD33 which is detected by binding of WM53 clone. WT CMAH showed 89.73 ± 2.19 % HIM34 and 93.97 ± 

1.25 % WM53 binding (figure 26B). CD33KO macrophages, CD33KO GFP and CD33KO CMAH, did not show 

any binding to CD33 antibodies owing to frameshift mutation in CD33 gene. While WT GFP showed 85.91 

± 0.89 HIM34 and 91.45 ± 1.24 WM53 binding, CD33KO GFP showed 3.83 ± 1.55 HIM34 and 2.38 ± 1.13 

WM53 protein binding. Also, CD33KO CMAH showed 0.47 ± 1.02 % HIM34 and -0.27 ± 0.18 %, figure 26B. 

This decrease was significant for both antibodies (p < 0.001, figure 26D). Afterwards, relative ratio of 

cis/total bound CD33 was calculated and there was no change between WT GFP and WT CMAH (WT CMAH 

showed 0.76 ± 0.25 FC, figure 26C) 
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Figure 26 Cis/Total binding of CD33 did not change after CMAH expression. CD33 can bind to sialic acids in both cis 
and trans manner. While HIM34 clone of anti-CD33 can bind to C2 Ig domain and be blocked by cis binding, WM53 
can bind to variable region (V-set Ig) and gives total binding. (A) Binding of HIM34 and WM53 clone were assessed 
with flow cytometry. (B) There was significant decrease in all antibody binding in CD33 knockout macrophages 
compared to wild type macrophages (Mean±SEM, n = 3, Analyzed with one way ANOVA followed by Bonferroni post 
hoc test ***p ≤ 0.001) (C) No significant difference was observed between WT GFP and WT CMAH (Mean±SEM, n = 
3, Analyzed with Student’s T-test p ≤ 0.05, data normalized to WT GFP) 

 

4.4.2 Slight increase in phosphorylation of activatory signaling intermediate molecule, ERK in 

CMAH expressing macrophages 

ITAM signaling is generally directed through phosphorylation of intermediate molecule ERK. 

Phosphorylated form of ERK is the activated form of this molecule and it shows that the cells are more 

phagocytic 133. In this experiment, Phospho/Total ERK was measured via Western blot. Although there is 

marked increase in WT CMAH compared to WT GFP, the difference was not significant (WT CMAH showed 

1.22 ± 0.07 FC, figure 27). On the the other hand, CD33KO GFP showed significant increase in p-ERK/t-ERK 

ratio compared to WT GFP (CD33KO GFP showed 1.40 ± 0.14 FC, p < 0.01, figure 27). Despite marked 

increase, CD33KO CMAH didn’t show significant difference compared to WT CMAH (1.68 ± 0.14 FC, p < 

0.01,  figure 27).  There was also no significant difference between CD33KO GFP and CD33KO CMAH (figure 

27). 
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Figure 27 Phosphorylation of ERK was increased after CMAH expression but the difference was not significant.  (A) 
From transduced macrophages, protein samples were isolated and stained for phospho and total ERK. The bands in 
western blot were in correct sizes and detected for both phospho and total ERK. (B) There was significant increase in 
CD33KO GFP compared to WT GFP. However, despite there was increase in WT CMAH and WT GFP, this difference 
was not significant. Also, CD33KO CMAH showed significant increase compared to WT CMAH  (Mean±SEM, n > 3, 
Analyzed with one way ANOVA followed by Bonferroni post hoc test ** p ≤ 0.01, data normalized to WT GFP) 

 

4.4.3 SHP1 recruitment to CD33 was decreased in CMAH overexpressing macrophages 

SHP1 is an important regulatory molecule for ITIM signaling and inhibition of macrophage responses. In 

normal conditions, CD33 binds to sialic acids which is leading to recruitment of SHP1 73. However, binding 

of Neu5Gc instead of Neu5Ac might have caused aberrations in SHP1 recruitment. To check SHP1 
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recruitment to CD33, protein samples from differentiated macrophages were immunoprecipitated against 

CD33 and stained for SHP1 and CD33 in western blot. Immunoprecipitated SHP1 and CD33 were in right 

sizes in the blot (figure 28A). The results showed that there was significant decrease in SHP1 recruitment 

to CD33 after CMAH expression compared to WT GFP (WT CMAH showed 0.54 ± 0.03 FC, p < 0.001, figure 

28B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 CMAH expression caused decrease in SHP1 recruitment to CD33 (A) Total proteins were isolated with anti-
CD33 antibody and CD33 bound proteins were isolated via immunoprecipitation. Then, immunoprecipitated proteins 
were stained for SHP1 and total CD33. The bands in western blot were in correct sizes and detected for both SHP1 
and CD33. (B) There was significant decrease in SHP1 recruitment in WT CMAH compared to WT GFP (Mean±SEM, n 
> 3, Analyzed with Student’s T-test *** p ≤ 0.001, data normalized to WT GFP) 
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4.4.4 Peroxisomal catalase activity was increased in CMAH expressing macrophages 

Macrophages and microglia respond to oxidative stress by increasing peroxisomal catalase activity 134 and 

catalase activity is mostly observed in peroxisomes 134. In previous experiments, CMAH expressing 

macrophages displayed increased oxidative stress in CD33 dependent manner. Macrophages were 

differentiated as previously described and immunostained according to section 3.2.5.1. Transduced 

macrophages were stained with anti-catalase antibody to investigate whether ROS production caused 

complementary increase in catalase activity. Anti-CD11b antibody was used to stain the macrophages 

(figure 29A). The staining results showed increased peroxisomal catalase activity in WT CMAH compared 

to WT GFP (WT CMAH showed 1.89 ± 0.22 FC, p < 0.01, figure 29B). CD33KO GFP did not present any 

significant difference compared to WT GFP (1.09 ± 0.09 FC, figure 29B). Moreover, CD33KO CMAH 

demonstrated significant increase in catalase activity compared to CD33KO GFP (CMAH expressing 

macrophages showed 1.83 ± 0.17 FC, p < 0.001, figure 29B, compared to CD33KO GFP). CD33KO CMAH 

also did not show any significant difference compared to WT CMAH. 

4.4.5 CMAH expressing macrophages showed increased lysosomal activation in CD33 

dependent manner 

Neuraminidases were shown to have decreased activity towards Neu5Gc 93. To observe whether the 

number of lysosomes or lysosomal activation was altered through CMAH expression, transduced 

macrophages were stained against CD68 as activated macrophages were known to increase CD68 

expression135. WT CMAH showed significant increase in CD68 staining compared to WT GFP (WT CMAH 

showed 1.50 ± 0.14 FC, p < 0.01, figure 30B). No significant change was observed between CD33KO GFP 

and WT GFP (CD33KO GFP showed 0.66 ± 0.09 FC, figure 30B, in CD68 staining). On the other hand, 

CD33KO CMAH showed significant decrease in CD68 staining compared to WT CMAH (CD33KO CMAH 

showed 0.70 ± 0.08 FC, p < 0.001, figure 30B). There was no significant change between CD33KO GFP and 

CD33KO CMAH.  
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Figure 29 CMAH expression caused increase in peroxisomal catalase activity in CD33 independent manner. WT CMAH 
showed significant increase compared to WT GFP in catalase staining. Also, CD33KO CMAH showed significant 
increase in catalase staining, However, lack of CD33 did not cause any significant change in catalase activity and 
there was no significant difference between CD33KO GFP and WT GFP (Mean±SEM, n > 3, Analyzed with one way 
ANOVA followed by Bonferroni post hoc test *** p ≤ 0.001 ** p ≤ 0.01, data normalized to WT GFP, scale bar 50 μm, 
blue-DAPI, green-CD11b, red-catalase) 
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Figure 30 CMAH expression caused increase in lysosomal activation in CD33 dependent manner. WT CMAH showed 
significant increase in CD68 staining compared to WT GFP. There was no significant change between CD33KO GFP 
and WT GFP. CD33KO CMAH significant decrease in CD68 staining compared to WT CMAH. No significant change 
was observed between CD33KO GFP and CD33KO CMAH (Mean±SEM, n > 3, Analyzed with one way ANOVA followed 
by Bonferroni post hoc test *** p ≤ 0.001 **, data normalized to WT GFP, scale bar 40 μm, green-CD11b, red-CD68)
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5. DISCUSSION 

5.1 Sialic acids in brain 

Brain is different from many organs in several ways, one of the most important aspects being the 

unproportional amount of sialic acids. Although the functional relevance of sialic acids in brain have been 

studied extensively, effect of sialic acids in respect to neurodegeneration has not been clarified 

completely. In this study, I tried to characterize responses of macrophages when foreign type sialic acid is 

present on its glycocalyx. Since macrophages and microglia cells are functionally similar 24, I tried to 

understand how immune cells in general respond to presence of different sialic acid (Neu5Gc). Main 

functional alterations related to neurodegeneration such as ROS production, phagocytosis, cytokine 

production, and ITIM/ITAM signaling related molecules were analyzed in this study. I incorporated 

Neu5Gc via expressing CMAH gene in macrophages.  

Sialic acids are encountered as bound to glycan (sialoglycans) 136. Sialoglycans in brain possess unique 

structure and composition. Most of brain sialic acids are found in lipid-bound form as gangliosides 136. 

Gangliosides take part in signal transduction as part of lipid rafts, mediate axon-myelin interactions and 

can serve as receptors for neurotrophic bacterial toxins 136. Sialic acids can also be found in protein-bound 

form as homopolymer of >90 sialic acid residues. This structure of sialic acids are named polysialic acid 

(PSA). PSA is involved in the modulation of cell-cell interactions and play crucial role in neuronal 

development and regeneration 137–139. Moreover, PSA has been recently shown as reservoir for growth 

factors 140,141. All of these sialic acid dependent processes might cause aberrations when there is foreign 

sialic acid present. 
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In the brains of mammals, Neu5Gc is found only in traceable amounts. The reason lying behind this 

distinction has not been clarified so far. But there are several hypothesis about the lack of Neu5Gc in 

brain. One of the hypothesis state that sialic acid-binding lectins, whether pathogenic or endogenous, 

might have different preference over different sialic acid types, and these may affect the balance of 

Neu5Ac and Neu5Gc presence.  Since this balance is controlled by CMAH gene, selective down-regulation 

of CMAH gene is the most plausible explanation till now 86. This is why, expressing CMAH gene in immune 

cells is one of the most plausible ways to analyze wrong sialic acid incorporation. However, since this 

enzyme is expressed under Elongation factor 1 α (EF1α) promoter, the results which were shown in this 

study could represent only over-feeding, extreme, or pathological conditions. EF1α promoter is very 

strong promoter and drives gene expression to very high levels.  

5.2 Role of CMAH in sialic acid metabolism 

Neu5Gc can be called as a marker of the deuterostome lineage of animals (vertebrates and so-called 

“higher” invertebrates), and and it represents a unique evolutionary step that occurred at or just before 

the Cambrian expansion, ~500 million years ago 142. Approximately 2–3 million years ago, our ancestors 

inactivated the gene CMAH, and since then, Neu5Gc could not be produced from Neu5Ac 143. This 

mutation could be traced till Neandertals. Like humans, neandertals were known to not express Neu5Gc, 

144. Neu5Gc could not be produced in human and their very close ancestors because of 92 bp deletion in 

exon 6 that caused the frameshift in CMAH enzyme’s catalytic domain, leading to a truncated inactive 

peptide. This evolutionary change seem to be specific Homo sapiens and causes several different 

outcomes.  

5.3 Consequences of Neu5Gc incorporation from dietary sources  

Despite the inability of humans to produce Neu5Gc endogenously, it can still be detected in small amounts 

in human epithelial and endothelial cells 93, and also in human carcinomas 95,145. Mice engineered to have 
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a human-like mutation in the Cmah gene, shows no evidence of any alternate pathway for Neu5Gc 

biosynthesis 87. Thus, metabolic incorporation via dietary consumption is the only possible source of the 

Neu5Gc that is found in human tissues.  

Uptaken Neu5Gc has been shown to drive several pathologies in humans. Humans who consumed Neu5Gc 

were found to express circulating anti-Neu5Gc antibodies in variable proportion. Chronic inflammation 

induced in this way was shown to drive carcinoma formation in CMAH-/- mice 109. Moreover, Neu5Gc 

causes vulnerability against several infectious disases, such as malaria 146, viral infections  147 and bacterial 

infections 148. Also,  Neu5Gc incorporation contributes to progression of muscular dystrophy 120. For this 

reason, the results of this study could shed light upon functional alterations caused by Neu5Gc 

incorporation. 

5.4 Consequences of Neu5GC incorporation from CMAH expression  

5.4.1 Validation of CMAH activity in human macrophages 

CMAH is the only enzyme to produce Neu5Gc from Neu5Ac. In literature, Cmah-/- mice was shown to be 

incapable of producing Neu5Gc 87. The aim of this thesis was to study the effects of wrong sialic acid 

incorporation in cellular system. To investigate Neu5Gc effects, CMAH expressing macrophages were used 

as model and CMAH gene was virally transduced to THP1 monocytes. To confirm the model is functional, 

transduced and differentiated macrophages were stained with anti-Neu5Gc antibody. Transduced 

macrophages were stained against anti-Neu5Gc and WT CMAH was able to synthesize Neu5Gc. This result 

demonstrated that cloning strategy of CMAH gene into pLenti lentiviral vector was sufficient to drive 

production of Neu5Gc from Neu5Ac in macrophages. 

The focus of this study was to analyze the effects of CMAH in human macrophage cells. Despite proven 

conversion of Neu5Ac to Neu5Gc, the percentage of each sialic acid was still needed to be elucidated. In 

collaboration with the group of Dr. Erdmann Rapp, advanced xCGE-LIF technique showed that around 
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10 % of Neu5Ac and 90 % Neu5Gc remained in CMAH transduced macrophages. Previous attempts 

of feeding experiments with 3 mM Neu5Gc led to incorporation 28% in fibroblast cells, and 61% in 

neuroblastoma cells 94. In our experimental setup, Neu5Gc could reach up to 90 % in CMAH 

expressing macrophages, WT CMAH and CD33KO CMAH. This Neu5Gc percentage is very high 

compared to normal levels and results obtained could demonstrate long term adaptation of Neu5Gc 

accumulation or extreme feeding conditions with Neu5Gc.  

5.4.2 Toxicity of Neu5Gc accumulation 

Neu5Gc accumulation can be toxic not only by disrupting activatory and inhibitory signaling of 

macrophages, but also through its metabolites, such as glycolate which can cause long term adaptations. 

These adaptations can limit the innate immune responses of macrophages, such as phagocytosis or 

reactive oxygen species production. These two innate immune responses are critical for proper 

functioning of macrophages, thus, these innate responses were analyzed in this study for both wild type 

and CD33KO macrophages.  

5.4.2.1 Decreased phagocytosis via diminished neuraminidase activity 

Macrophages are the first line of defense in response to tissue injuiry 149. Several studies demonstrated 

that CMAH expression decreases phagocytic capacity of macrophages 113. In this study, uptake of Aβ, 

retinal debris and bioparticle uptake were assessed. CMAH expressing macrophages showed decreased 

uptake compared to control macrophages. However, there was no effect of CD33, an important regulator 

of phagocytosis, on uptake. These result showed that decrease in uptake might be a consequence of other 

factors rather than changes in signaling of macrophages. In literature, neuraminidases were shown to 

have decreased affinity towards Neu5Gc 112,113,150. Prior to phagocytosis, sialic acids are removed by host 

neuraminidases and especially, NEU1 is critical for proper functioning of phagocytosis 125. I hypothesized 

that Neu5Gc could not be cleaved as easy as Neu5Ac by host neuraminidases and this could lead to 
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decreased phagocytosis in immune cells. To test this hypothesis, transduced macrophages were treated 

with fibrillary Aβ and amount of sialic acids which could not be cleaved by host neuraminidases were 

measured with lectin staining. CMAH expressing macrophages showed more staining after lectin staining, 

indicating that neuraminidases in CMAH expressing macrophages could not indeed cleave sialic acids. 

Having –OH group might have decreased the affinity of neuraminidases in Neu5Gc in contrast to Neu5Ac. 

Thus, CMAH expressing macrophages could not enter phagocytic stage and Aβ could not be uptaken. Since 

priming of phagocytosis is disrupted in CMAH expressing macrophages, this mechanism can also explain 

the decrease in other uptake experiments (figure 31). But these experiments can only demonstrate 

changes in cellular level and there might be other factors which can only be revealed in vivo setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Proposed mechanism for decrease in phagocytosis caused by CMAH expression. When there is a stimulus 
(Aβ) in the surrounding environment, macrophages prime to phagocytosis by cleaving sialic acids in glycocalyx. Since 
Neu5Gc could not be cleaved by neuraminases, macrophages could not enter complete phagocytic state. 
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5.4.2.2 Metabolites of Neu5Gc increases oxidative stress and depletes scavenger reservoir of 

macrophages 

Uptaken Neu5Gc was shown to give rise to glycolate and glucosamine 6-phosphate end products 151. 

However, Neu5Ac was metabolized to acetate and glucosamine 6-phosphate 152. The main catalytic 

different product of Neu5Gc compared to Neu5Ac is having glycolate instead of acetate. Glycolate was 

shown to increase oxidative stress in hepatocytes via oxalate cycle 153. In oxalate cycle, glycolate is first 

converted to glyoxlate and then to oxalate. As side product of these conversions, H2O2 is produced (figure 

32). Produced H2O2 is neutralized by peroxisomal catalase.  

In our study, CMAH expressing macrophages showed increased peroxisomal catalase activity. The most 

plausible explanation to this phenoma is that CMAH expression causes more production of Neu5Gc which 

in turn leads to more metabolic turnover of Neu5Gc and thereby, more production of metabolite, 

glycolate. In order to cope with this kind of oxidative stress, macrophages increased their peroxisomal 

catalase activity. However, this mechanism could have possibly depleted oxidative stress scavenging 

mechanisms of macrophages.  

5.4.2.3 Accumulated Neu5Gc limits the responsiveness of macrophages and reverts the activated 

phenotype of macrophages 

Recent findings showed that CMAH-/-  mice demonstrated increased sensitivity to endotoxic shock 113.   

Thus, it is reasonable to assume that CMAH expressing macrophages would display decreased sensitivity 

to external stimuli. I observed that under non-treated conditions, transcription of proinflammatory 

cytokines was similar in WT CMAH compared to WT GFP. This finding is also supported by previous 

literature findings. 

CD33KO macrophages were known to display increased Aβ phagocytosis 122, increased ROS production 

after stimulation 154 and increased proinflammatory cytokine production 155. These results were 

reproduced in our experimental setup. However, when CMAH is expressed on CD33KO background 
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(CD33KO CMAH), the increased responses of macrophages reverted to normal conditions. Neu5Gc 

accumulation inhibited the elevated cellular responses of CD33KO macrophages. Also CD33KO CMAH 

could not respond to SOD1 and trolox scavengers after stimulation. This phenomena could be explained 

by internal toxicity of Neu5GC rather than aberrations in internal signaling. Owing to increased ROS 

scavenging and decreased neuraminidase activities, macrophages could not respond properly. I concluded 

that Neu5Gc pushed the macrophages into an irreversible activated phenotype. 

 

Figure 32 Oxalate cycle in peroxisome produces H2O2 from glycolate. From metabolic turnover of internalized Neu5Gc, 
glycolate is produced and glycolate enters the oxalate cycle. In this cycle, H2O2 is produced and neutralized by 
peroxisomal catalase. This cascade of events depletes the scavenger reservoir of macrophages. 
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5.4.2.4 Internalized Neu5Gc activates lysosomes and contribute to ROS production 

CMAH expression caused increased catalase activity. This elevated response might not only be a result of 

metabolic products of Neu5Gc, but also through interference of Neu5Gc in other cellular events. 

Previously, Neu5Gc was shown to be transported to lysosomes where sialic acids is removed from 

glycoconjugates via neuraminidase acitivity 94. For this reason, lysosomal activation pattern was analyzed 

because activity of neuraminidases might have altered the lysosomes. Previous findings in literature and 

lectin staining results demonstrated that neuraminidases do not possess stronger affinity towards Neu5Gc 

112,113,150. This phenomena could cause accumulation of sialic acid glycoconjugates and might lead to 

symptoms similar to lysosomal storage disorders (figure 33). Especially, defective or deficient NEU1 

activity could be observed because NEU1 is one of the responsible neuraminidases cleaving sialic acids 

from glycoproteins in lysosomes 156.  LAMP1 is lysosome associated membrane sialylated glycoprotein, 

involved in several lysosomal storage diseases, and it is one of the substrates of Neu1 157. LAMP1 plays an 

active role in the docking of lysosomes at the plasma membrane 158. Consequently owing to decreased 

Neu1 activity, LAMP1 might remain in oversialylated state, and have a prolonged half-life. Accumulation 

of oversialylated LAMP1 increases the number of LAMP1-marked lysosomes that dock at the plasma 

membrane. Consequently, these events could cause excessive extracellular release of lysosomal contents 

like cathepsin B from deficient cells. Released cathepsin B was shown to promote oxidate stress in 

mitochondria 159. This mechanism might have contributed to increased ROS production in CMAH 

expressing macrophages (figure 34). Displaying increased CD68 staining by CMAH expressing 

macrophages can be considered as another supporting evidence to this concept as CD68 can be 

considered as activation marker. Moreover, other uprocessed accumulated glycoproteins can further 

promote activatory signaling of lysosomes which might lead to increase in ROS production. 
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5.4.3 Neu5Gc as a ligand for CD33 

CD33 is a member of the SIGLEC family of molecules having the ability to recognize sialic acids. CD33 is 

known to bind both sialic acid type, Neu5Gc and Neu5Ac 67.The human CD33 binds preferentially to 

Neu5Gc glycans rather than Neu5Ac glycans 160, however, the downstream signaling events followed by 

Neu5Gc binding to CD33 has not been clarified so far. Of note, CD33 can bind to Neu5Ac glycans to some 

extent 160. This study showed that binding of Neu5Gc affects downstream signaling and causes activation 

of macrophages. 

5.4.3.1 Neu5Gc activates lysosomes in CD33 dependent manner 

Several human pathogens evolved to express sialic acids on their glycocalyx 161. Thus, those pathogens 

can be considered as potential ligands for CD33. Several sialylated pathogens have been shown to bind to 

SIGLECS 162–164.  Receptor mediated endocytosis directs CD33 containing endosomes to lysosomes and 

sialic acid-CD33 glycoprotein complex is processed with neuraminadases. In my study, I have observed 

that Neu5Gc bound CD33 activates lysosomes and CMAH expression did not lead to activation of 

lysosomes in CD33KO background. Thus, CD33 can be accounted as the main carrier of Neu5Gc. In support 

of this fact, bivalent antibodies directed against CD33 were shown to decrease surface expression of CD33 

165–167. Since CD33 has higher affinity towards Neu5Gc, binding of Neu5Gc might have triggered receptor 

mediated endocytosis.  

 

 

 

 

 

 

 



 

98 
 

 

 

 

Figure 33 Neu5Gc causes oxidative stress through decreased neuraminidase activity. Internalized glycans are sent to 
lysosomes for turnover. However, neuraminidases cannot cleave Neu5Gc efficiently. This might lead to glycan 
accumulation in lysosomes, causing symptoms similar to lysosomal storage disorders. Eventually, hypersialylated 
LAMP accumulate in lysosomes causing the lysosomal contents leak through the membrane of the lysosomes and 
damaging mitochondria which is a possible source of ROS. Also, signaling in lysosomes might have contributed to 
ROS production because of accumulated glycoproteins. However, ROS produced through these mechanisms are 
eliminated thorugh peroxisomal catalase activity. Decreased neuraminidase activity also affects phagocytosis owing 
to disrupted priming of macrophages. 

5.4.3.2 Binding of Neu5Gc to CD33 disrupts ITIM signaling and increases activation of macrophage 

Sialic acid binding domain is located in V set Ig domain of CD33 and sialic acids can bind to CD33 in both 

cis and trans manner 67. In this study, cis of sialic acids to CD33 was analyzed. Since CD33 knockout 

macrophages do not express CD33, they were not included in this experiment. CMAH expression did not 

alter the cis binding of sialic acids to CD33. In both Neu5Ac and Neu5Gc conditions, the macrophages did 
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not show any alteration in cis binding. Despite presenting no change in CD33 binding capacity, Neu5Gc 

could still cause alterations in the intracellular downstream signaling. CD33 counter-regulates the 

activatory ITAM signaling by the recruitment of SHP1 and SHP2 71. For this reason, I checked recruitment 

of SHP1 to CD33 after CMAH expression. CMAH expressing macrophages showed decreased recruitment 

of SHP1. However, transcription of SHP1 did not show any alteration after CMAH expression. CD33KO 

GFP, on the other hand, showed complementary increase in transcription to CD33 loss.  

Extracellular signal regulated kinases (ERK) is one of the activatory signaling of macrophages which is 

regulated by SHP1 168. ERK is an important member of the MAPK family, which plays a pivotal role in signal-

transduction pathways 169,133. MAPKs respond to various extracellular stimuli, including growth factors and 

oxidative stress that have been linked to pathophysiologic processes 170–172. After observing less 

recruitment of SHP1 to CD33, phosphorylation status of ERK was analyzed. Although there was slight 

increase in ERK phosphorylation in WT CMAH compared to WT GFP, the difference was not significant. 

CD33KO GFP showed increased ERK phosphorylation compared to WT GFP as expected. Since CD33 is an 

inhibitory molecule, lack of its expression might have led to increased ERK phosphorylation. 

Expression of activatory and inhibitory cellular markers of macrophages were also analyzed. Upon ligan 

binding, TREM2 and CD64 are involved in activation of macrophages 173,174. Moreover, TREM2 was found 

to be associated with AD 51,52,174. Expression of TREM2 and CD64 did not show any difference between WT 

CMAH and WT GFP. However, CD64 transciption and surface marker expression decreased significantly in 

CD33KO GFP compared to WT GFP. This phenomena could be explained by feedback regulation of 

macrophages. Since there is decrease in one of the inhibitory signaling molecules, macrophages might 

have responded by decreasing one or more of activatory signaling molecules.  

As inhibitory molecule, transcription of SIRPα was analyzed in combination with CD33 and CMAH 

expression. Like CD33, SIRPα is a cell signaling molecule that is predominantly expressed by myeloid origin 
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cells 131,175,176 and contains a cytoplasmic tail that bears ITIM motifs 177,178. Transciption of SIRPα did not 

show any change after CMAH expression. Moreover, CD33KO GFP did not show any significant change 

compared to WT GFP. Since there is an already increase in SHP1 transcription, CD33KO macrophages 

might not have responded through intermediate molecule of ITIM signaling rather than changing 

expression of receptors. 

5.4.3.3 Disrupted ITIM signaling and lysosomal activation causes increase in ROS production  

A recent study showed that Neu5Gc incorporation was found to be associated with oxidative stress 111. 

However, the complete mechanism underlying ROS production has not been clarified so far. My study 

shows that Neu5Gc incorporation via CMAH expression causes increase in ROS by several ways. 

Metabolites of Neu5Gc and glycan accumulation were found to increase oxidative stress in CMAH 

expressing macrophages. However, Neu5Gc could exert its effects not only through metabolites but also 

through changing activatory and inhibitory signaling.  

In this study, role of CD33 in oxidative stress was clarified in cellular level. CMAH expressing macrophages 

showed CD33 dependent increase in oxidative stress. Previous results of this study showed that SHP1 

recruitment to CD33 decreased significantly. Despite the decrease in SHP1 recruitment caused slight 

increase in ERK phosphorylation, the increase was not significant. This result indicated that there might 

be other mechanisms increasing oxidative stress.   

Findings in lysosomal activation complemented signaling of CD33. Antibody bound CD33 was shown to be 

directed to lysosomes more in literature 165–167. Neu5Gc bound CD33 might have triggered similar 

mechanism. Since neuraminidases would not cleave this complex, it might have triggered other signaling 

pathways that contribute to increased in number of lysosomes or elevated activation. These mechanisms 

in total might have given rise to CD33 dependent increase in ROS production (figure 34). 
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5.5 Altered sialylation in neurodegeneration  

Alterations in protein sialylation have been associated with human neurodegenerative disease states, 

such as prion disease179, MS180 , AD181, and PD182. Altough sialylation was found to be related with 

neurodegeneration, underlying correlation between neurodegeneration with sialylation have not been 

clarified. Also, previous studies showed that sialylation have impacts on neurodegeneration associated 

molecules.  

5.5.1 Sialylation in Alzheimer’s disease 

There are reports that have been published about alteration of sialic acid metabolism in AD 183. Soluble 

sialyltransferase (enzymes which transfer sialic acids to glycoproteins) activity was reported in a 

comparative study including 12 AD patients and 12 age-matched controls 184. This finding was also 

reproduced in postmortem brains of AD patients and matched controls 185. Decreased sialyltransferase 

activity was demonstrated in membrane and soluble fractions of frontal and temporal lobe, but not 

observed in hippocampus. Moreover, lectin blotting analysis of cerebrospinal fluid proteins showed 

differences in sialylation between AD patients and healthy individuals 186. Another lectin blotting study to 

Cerebrospinal fluid (CSF) of AD patients replicated these results and confirmed reduced binding in AD 

patients 187. However, due to cross-reactivity of lectins and limited sample size, these studies could not 

clearly show which molecules were differentially sialylated in AD.  
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Figure 34 Possible mechanisms underlying CD33 dependent increase in ROS production. Binding of Neu5Gc to CD33 
might induce conformational change in CD33, causing less docking of SHP1. Less phosphatase activity of SHP1 could 
lead to increased phosphorylation of ERK and turn of events cause increase in superoxide production. On the other 
hand, Neu5Gc bound CD33 is intenalized more into lysosomes and Neu5Gc could not be cleaved of by neuraminidases. 
Consequently, Neu5Gc bound CD33 molecules could accumulate and activate lysosomes. All of these molecular 
events might shed light upon the reasons underlying CD33 based increase in ROS production. 
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One of the most important terminal caping reactions of N-glycans involve addition of terminal sialic acids. 

Several AD associated molecules were found to N-glycosylated and especially, it is functionally important 

for APP.  It has two potential N-glycosylation sites and elevated sialylation of N-linked glycans of APP was 

shown to increase secretion of both APP and its metabolites 188–190. Moreover, mutations in N-

glycosylation sites in APP were found to be highly important for AD progression.  Deletion of these 

glycosylation sites in APP resulted in decreased secretion and microsomal localization of APP 191 (figure 

36). Also, Swedish and London mutations in APP, known to alter N-Glycosylation sites, were shown to 

increase total amount of Aβ and Aβ42/ Aβ40 ratio 192. In addition to N-glycosylation, APP was shown to 

have three O-glycosylation sites which are Thr291, Thr292 and Thr576 193. Although the role of O-glycan 

is still elusive, there is supporting evidence that O-glycosylated APP is preferentially secreted 194. 

Furthermore, APP processing enzyme BACE1 affects sialylation. Several studies have shown that 

processing of ST6Gal1 by BACE1 is necessary to produce soluble form of this sialyltransferase 195–197. 

ST6Gal1 is sialyltransferase which transfers sialic acids to glycoproteins 197. In this way, BACE1 does not 

only cleave APP but also by down-regulate sialylation via ST6Gal-I cleavage 190. Modulation of APP 

sialylation is also performed in lysosomes through neuraminidase 1 activity 198. Deficiency in lysosomal 

sialidase NEU1 leads to occurence of an AD-like amyloidogenic process in mice 199. Loss of function 

mutation in NEU1-/- mice caused accumulation and and amyloidogenic processing of hypersialylated APP 

in lysosomes.  

These literature findings strongly suggest that the biosynthetic or the catabolic control of the sialic acids 

on APP is highly relevant for its β-amyloidogenic processing 157. Since cleaveage of Neu5Gc from 

glycoproteins by neuraminidases was proven to be more difficult, I claim that sialylation of APP with 

Neu5Gc may change its half-life and lead to accumulation of this complex in lysosomes.  That might cause 

accumulated APP to be more prone to β-amyloidogenic cleavage and accelerated production of 
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neurotoxic APP end-products. This concept could explain the pathogenecity of Neu5Gc through APP in 

neurons. 

Another affected molecule in Alzheimer’s disease is tau protein. Interestingly, Tau was found to be N-

glycosylated in AD but not in healthy brain 200. N-glycosylation of tau was found to make it more 

susceptible to phosphorylation. Thus, it might lead to hyperphosphorylated form of tau which is a 

hallmark of AD  201,202. Tau also has multiple O-Glycosylation sites 203 and the level of O-Glycosylated is 

decreased in AD brain compared to control brain 204. O-glycosylation was shown to be more protective in 

AD compared to N-glycosylation since it is less susceptible to phosphorylation 205,206. Since there is no 

study about whether Neu5Gc preferes O-Glycosylation or N-glycosylation, I could only speculate that sialic 

acid Neu5Gc might choose different pathway than Neu5Ac which might have led to more N-Glycosylation.  

Sialylation does not only affect AD through misfolded proteins but also through immune activation. 

Several genome wide association studies have pointed out the importance of CD33, a member of sialic 

acid binding immunoglobulin like lectins 65,77,78,122. Moreover, CD33 variant 2 which lacks sialic acid binding 

domain, was shown to protective against AD 77. In this study, I clarified CD33 dependent mechanisms of 

Neu5Gc incorporation in vitro culture model. In literature, antibody binding to CD33 causes less surface 

expression of CD33 in the membrane causing it to be more directed through lysosomes 207. Similar 

mechanism seemed to be triggered by Neu5Gc binding because lysosomes were activated in CD33 

dependent manner.  

5.5.2 Resemblance of CMAH expressing macrophages to microglia in AD 

Experimental findings of this study revealed the similarity of CMAH expressing macrophages to microglia 

in AD. Both of the cell types not only display altered sialylation phenotype, but also increased oxidative 

stress and decreased phagocytic capacity. Oxidative stress in AD has been shown extensively in microglia 

208–213. The results of this study showed that CMAH expressing macrophages contributed oxidative stress 
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through its metabolites, accumulated glycans and glycoproteins in lysosomes, and CD33 signaling. 

Moreover, because of decreased neuraminidase activity, CMAH expressing macrophages could not prime 

phagocytosis and decreased phagocytosis was observed.  All of these findings point out importance of 

Neu5Gc incorporation in AD. It would be much speculation to claim that Neu5Gc incorporation is the only 

reason of AD. However, AD related polymorphisms combined with Neu5Gc incorporation might be one of 

the underlying reasons of neurodegeneration. Moreover, Neu5Gc might have acted as slow poison whose 

effect could be observable only in aged brain. Since Neu5Gc is having paralysis effect on immune 

functions, microglia in aged brain with Neu5Gc incorporation might not perform immune functions and 

contribute to neurodegeneration process. 

5.5.3 Connection between red meat consumption and AD 

Research conducted in this study combined with literature shows that Neu5Gc incorporation might 

increase the tendency towards AD. These results are being supported by current findings about 

prevelance of AD as well. AD prevelance is found to be higher North America and Western Europe 214. Diet 

patterns in these countries were found to be strongly associated with AD prevelance. While western diet 

which is abundant in red meat and milk products has been causing chronic glia activation and more AD 

prevelance 215, Mediterrenean diet which is rich in fruits and vegetables was found to decrease AD 

prevelance 216,217. Since Neu5Gc is encountered aboundantly in red meat and milk products, it is resonable 

to hypothesize that consuming red meat and milk products increase the prevalence of AD. 
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6. SUMMARY 

Throughout evolutionary processes, organisms gain or lose functions because of emerging mutations. The 

frameshift mutation emerged in the human CMAH gene is one of these loss of function mutations and it 

caused the human glycocalyx to have distinct phenotype compared to other mammals. Owing to this loss 

of function mutation, humans lose the ability to process sialic acids as they are not capable of converting 

N-acetlyneuraminic Acid (Neu5Ac) to N-glycolylneuraminic Acid (Neu5Gc).  

The effects of Neu5Gc incorporation to immune cells have not been studied with their impacts on 

neurodegenerative diseases so far. Aim of this study is to figure out how Neu5Gc incorporation regulates 

and modifies innate immune cell responses and affects progress of neurodegeneration in in vitro culture 

system. With this purpose, murine CMAH gene has been expressed in human THP1 macrophages. 

Moreover, CMAH gene has been expressed in CD33KO macrophages since CD33 is one of the sialic acid 

binding protein and it has been found to have impacts in progression of Alzheimer’s disease.  

There were two major outcomes in this study. Firstly, CMAH expression decreased Aβ, debris, and 

staphylococcus aureus bioparticle phagocytosis. The decrease in phagocytosis is not affected by the lack 

of CD33. This decrease could be explained by difficulty of clearance of Neu5Gc to Neu5Ac. Sialic acids 

must be cleaved prior to phagocytosis and Neu5Gc could not be cleaved as easy compared to Neu5Ac. 

Disrupted cleavage of Neu5Gc prior to phagocytosis could be the reason of accumulated Aβ plaques in 

Alzheimer’s disease. Secondly, CMAH expressing macrophages exhibited increase in ROS production via 

CD33 dependent manner and stimulation with Aβ, debris, and staphylococcus aureus bioparticles did not 

cause increase in further ROS production. The increase in ROS production could be explained by disrupted 

ITIM signaling, increased lysosomal activation and increased metabolic turnover of Neu5Gc. Lysosomal 

activation was shown to be CD33 dependent and it could be one of the links to Alzheimer’s disease in 

respect to ROS production.  
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Another distinct phenotype of CMAH expressing macrophages is their inability to respond and perform 

immune functions. CMAH expression limited the responses of macrophages to certain level. CD33KO 

macrophages were known to have increased pro-inflammatory cytokine release, increased Aβ 

phagocytosis, and elevated response in ROS production after neural debris stimulation. However, when 

CMAH was expressed in CD33KO macrophages, all of these responses get deteriorated and changes 

related with CD33KO phenotype reverted. Combined with CMAH expression, CD33KO macrophages 

displayed decreased proinflammatory cytokine transcription, Aβ phagocytosis and ROS production to 

external stimuli such as neural debris. 

Results of this study might demonstrate the missing connection between Neu5Gc incorporation with 

macrophage functions in cellular level. Owing to close progeny, these result could shed light upon the 

connection between CD33 and microglia connection in Alzheimer’s disease. Neu5Gc incorporation to 

macrophages in high levels demonstrated similar phenotype to microglia in Alzheimer’s disease which 

have decreased phagocytic capability and increased oxidative stress in cellular level. However, these 

results are applicable to only in vitro level and more research in vivo is necessary to reach more conclusive 

findings. Afterwards, Neu5Gc replacement therapies could be considered as alternative therapy against 

Alzheimer’s disease. 
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