Example-Based Urban Modeling

Dissertation

zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultit
der Rheinischen Friedrich-Wilhelms-Universitiat Bonn

vorgelegt von
Dipl.-Inf. (FH), Stefan Michael Hartmann, M.Sc

aus Lichtenfels

Bonn, Januar 2018



Angefertigt am Institut fiir Informatik II mit Genehmigung der Mathematisch-
Naturwissenschaftlichen Fakultit der Rheinischen Friedrich-Wilhelms-
Universitiat Bonn

Dekan: Prof. Dr. Johannes Beck

1. Referent: Prof. Dr. Reinhard Klein
2. Referent: Prof. Dr. Andreas Kolb

Tag der miindlichen Priifung: 20.07.2018

Erscheinungsjahr 2018 Diese Dissertation ist auf dem Hochschulschriftenserver
der ULB Bonn

http://hss.ulb.uni-bonn.de/diss_online

elektronisch publiziert.


http://hss.ulb.uni-bonn.de/diss_online

Contents

Disclaimer v
Zusammenfassung vii
Abstract ix
Acknowledgements X
1 Introduction 1
1.1 Motivation . . . . . . .. . .. 1

1.2 Why Example-Based Modeling? . . . . ... ... ........ 2
1.2.1 Types of Content Generators . . . . . . .. .. ...... 2

1.2.2  The Example-Based Modeling Pipeline . . . . ... ... 3

1.2.3  Strengths of Example-Based Modeling . . .. ... ... 5

1.3  Why Example-Based Urban Modeling? . . . ... ... ... .. 6

1.4 Structure of the Thesis . . . . . . . .. ... ... ... ..... 7

1.5 Contributions . . . . . .. ... 9

1.6 Publications . . . . . ... .. ... 10

2 Review of Urban Content Generation Algorithms 13
2.1 Techniques for Road Network Synthesis . . . . . . .. ... ... 13
2.1.1 Road Network Growing Schemes . . . . . ... ... .. 14

2.1.2 Example-Based Road Network Generators . . . . . . .. 14

2.1.3  Simulation-Based and Time-Dependent Approaches . . . 16

2.1.4 Countryside Road Generation . . . . ... ........ 17

2.1.5 Optimization-Based Approaches . . . . . ... ... ... 18

2.1.6  Controllable Road Network Generators . . . . .. .. .. 19

2.2 Techniques for City Blocks Layouts Synthesis . . . . . . ... .. 19
2.2.1 City Block Layouts using Subdivision Schemes . . . . . . 20

2.2.2  Generation of General Discrete Element Layouts . . . . . 21



CONTENTS

2.3 Techniques for Sequence Generation and Building Synthesis . . .

2.3.1
232
2.33
234

Fixed-Sized Sequences . . . . . . .. ... ... .. ...
Variable-Length Sequences . . . . . . . ... ... ....
Resource Constrained Shortest Path . . . . . . . ... ..
Synthesis of Buildings . . . . ... .. ... .......

3 Efficient Optimization with Multiple Resource Constraints
3.1 Motivation . . . . . . ...
3.2 Resource-Constrained Sequences . . . . . . .. ... .......
3.3 Efficient Resource-Constrained Sequence Optimization . . . . . .

3.3.1
332
333
334

Single Resource-Constrained Optimization . . . . . . . .
Extension to Multiple Resource Constraints . . . . . . . .
Interval Constraints . . . . . . ... ... ... ......
Extension to Higher Order Sequences . . . . . . ... ..

34 Complexity Analysis . . . . ... ... ... .. ...
3.5 Comparisonand Analysis . . . . . ... ... ... L.

4 Example-based Road Network Generation
4.1 Hierarchical Road Network Generation . . .. ... ... ....

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6

Motivation . . . . . . . ... L
Hierarchical Fragment Construction . . . . . . ... . ..
Hierarchical Synthesis of Street Networks . . . . . . . ..
Results . . . ... ... ... . .. 0.
Analysis and Comparison . . . . . ... ... ... ...
Limitations . . . . . . ... . ... ... ... ...

4.2 Road Network Generation with GANs . . . . . . ... ... ...

4.2.1
4.2.2
423
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

Motivation . . . . . . ... oL
Method Overview . . . . . . ... ... ... ......
Review of Generative Adversarial Networks . . . . . . . .
Towards Neurally Guided Road Network Synthesis . . . .
Case Study: Road Network Types . . . . . ... .. ...
Implementation Details . . . . . .. ... ... ......
Analysis and Comparison . . . . . ... ... ... ...
Limitations . . . . . . .. .. ... ... ...

S Example-Based Cityblock Layout Synthesis
5.1 Example-Based Cityblock Layout Transfer . . . . ... ... ..

5.1.1
5.1.2
5.1.3
5.14

Motivation . . . . . . . ...
Problem Definition and Overview . . . . ... ... ...
City Block Layout Transfer . . . . ... ... ... ...
City Block Layout Refinement . . . . . . ... ... ...

11

22
22
23
24
25

29
29
30
32
32
35
38
38
42
42

45
45
45
48
50
56
59
60
62
62
66
66
68
72
80
81
82

85



CONTENTS

5.1.5 Example-Based 3D Building Placement . . . . . . . . .. 91

5.1.6  Synthesized Cityblock Layouts . . . . ... ... .... 93

5.1.7 Synthesized Building Layouts . . . . . ... ... .... 102

5.1.8 Analysis and Comparison . . . . .. ... ... ..... 102

5.1.9 Limitations . . . . ... .. .. ... ... ... 104

5.2 Guided Re-Synthesis of Discrete Element Arrangements . . . . . 107
5.2.1 Motivation . . . . ... 107

5.2.2  Re-synthesis Domain and Element Arrangements . . . . . 108

5.2.3 Efficient Re-synthesis of Element Arrangements . . . . . 111

5.2.4 Application: City Block Re-Synthesis . . . . . . ... .. 116

5.2.5 Analysis and Comparison . . . ... ... ........ 120

5.2.6 Limitations . . . . . . .. .. ... 121

6 Example-based Building Synthesis 125
6.1 Motivation . . . . . . . ... 125
6.2 Building Database and Annotations . . . . . ... ... ... .. 126
6.3 Case Study: Resource Constraint Building Design . . . . . . . .. 128
6.4 Performance Evaluation. . . . . .. ... ... ... ....... 134
6.5 Analysisand Comparison . . . . . . . .. ... ... 135
6.6 Discussion and Future Work . . . . . ... .. ... ... ... 135
7 Summary 139
7.1 Conclusion . . . . . ... ... 139
7.2 Example-Based Urban Modeling . . . . . ... ... ... .... 142
7.3 Technical Future Directions . . . . . . ... ... ... ...... 143
7.3.1 Road Network Synthesizers . . . ... ... ....... 143

7.3.2  Cityblock Layouts Synthesizers . . . . ... ... .. .. 144

7.3.3 Constrained Building Synthesizers . . . . . . . ... ... 145

7.4 Future Trends for Example-Based Modeling . . . . .. ... ... 146
7.4.1 Generation of Urban Structures . . . . . ... ... ... 146

7.4.2  Content Storage and Compression . . . . . .. ... ... 147

743 LevelofDetail . ... ... ... .. ........... 147

7.4.4 Neurally Guided Content Generators . . . . . . . ... .. 147

11



CONTENTS

v



Disclaimer

The content of this dissertation is based on three first author publications that have
already been presented at different conferences with a focus on computer graphics.
The paper StreetGAN: Towards Road Network Synthesis with Generative Adver-
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The dissertation contains a much more detailed analysis of the related work and
includes an in-depth discussion of the published approaches. In addition, it adds
additional chapters that present algorithms, yet unpublished. These include a
hierarchical road network synthesis algorithm, a technique for the synthesis of
building footprint layouts reusing the existing footprint layouts from real-world
city blocks. To increase the geometric detail of a synthesized urban area a tech-
nique for the example-based placement of 3D building models reusing existing
3D building models is proposed. Finally, the last chapter of the thesis contains
an entirely new view on future directions for the different technical parts and pro-
vides an extended, in-depth discussion of possible research directions in the field
of example-based urban modeling. The work at hand contains text parts of the
three mentioned papers that were transferred to this thesis without further modi-
fication. To make these copied sentences recognizable among the newly written
parts they are highlighted in gray.
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Zusammenfassung

Um die Erzeugung virtueller Welten und insbesondere stiddtischer Umgebungen
einem breiten Spektrum von Nichtexperten zuginglich zu machen, stellt diese
Arbeit neue Methoden und Algorithmen zur automatischen beispielbasierten Er-
zeugung virtueller stddtischer und urbaner Umgebungen vor. Beispielbasierte Ge-
nerierung bedeutet in diesem Kontext, dass neue virtuelle Inhalte durch die Wie-
derverwendung von digitalisierten Geodaten, die als Beispiele oder Schablonen
dienen, von Computerprogrammen automatisch erzeugt werden. Die notwendigen
Geodaten, d.h. StraBennetze, Geldndetopographie, Gebdudegrundrissdaten von Ka-
tasteramtern und detailliert modellierte 3D Modelle aus Gebiudedatenbanken,
sind vermehrt {iber Internetdienste abrufbar und somit 6ffentlich zuginglich. Um
diese Daten effizient und automatisch zu neuen virtuellen Straennetzen, Stadt-
blocken und individuellen Gebiduden zu rekombinieren ist die Entwicklung von
neuen Methoden und Algorithmen notwendig. Diese kapseln Expertenwissen und
erlauben es durch wenige Benutzereingaben, die Bestandteile virtueller Welten
kontrolliert zu generieren. Der Fokus in dieser Arbeit liegt auf der automatischen
Generierung von drei essentiellen Bestandteilen virtueller Stadte: StraBennetze,
Grundrissanordnungen in Stadtblocken und individuelle Gebaude.

Zunichst wird in einem theoretischen Kapitel ein Optimierungsverfahren vor-
stellt, welches es ermoglicht, bespielbasierte Synthese als kiirzeste Wege Pro-
blem unter der Einhaltung von Nebenbedingungen zu formulieren. Die Verwen-
dung einer Hilfsdatenstruktur in Form eines gerichteten Graphen ermdglicht es
Losungen, welche die Nebenbedingungen nicht erfiillen, effizient zu verwerfen
und somit von der finalen Pfadsuche auszuschliefen. Hieraus ergibt sich ein ver-
bessertes Laufzeitverhalten, wenn man die neue Methode gegen existierende Ver-
fahren vergleicht. Die Basis einer stitischen Umgebung bilden Straennetzwer-
ke. Um virtuelle Straen zu generieren werden in dieser Arbeit zwei neue Ver-
fahren vorgestellt. Der erste Algorithmus extrahiert basierend auf einer hierar-
chischen Kategorisierung der Stralen in einem realen Straennetzwerk Grund-
bausteine, die als Schablonen dienen. Diese kapseln Straenmuster und Topo-
graphie auf unterschiedlichen Skalen. Ausgehend von einem Straenskelett und
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ZUSAMMENFASSUNG

optionaler Geldndetopographie, vorgegeben durch einen Benutzer, werden die
Schablonen rekursiv rekombiniert, wobei die beste Passform iiber einen Form-
deskriptor, erweitert um Topographieinformation, ermittelt wird. Auf diese Wei-
se bildet sich so iiber mehrere Skalen wiederholt, ein neues Stralennetz. Auf-
tretende Form- und Topographiedifferenzen werden durch Interpolation ausge-
glichen. Das zweite Verfahren verwendet Erzeuger-Gegner Netze zur Generie-
rung von Stralennetzen, eine kiirzlich eingefiihrte Technik, die auf neuronalen
Netzen basiert. Das in Vektordaten vorliegende Stralennetz wird als Binérbild
kodiert, wobei Pixelintensititen die Existenz sowie die Abwesenheit von Stra-
Ben kodieren. Das Erzeuger-Gegner Netz (GAN) wird anhand von Bildausschnit-
ten fixer GroBe trainiert, um die ,,datengenerierende’ Verteilung zu lernen. Mit
dem Erzeuger generierte Stralennetze spiegeln nicht nur visuelle Eigenschaften,
sondern auch statistische Eigenschaften des StraBengraphs, wie Blockgrofle oder
Liange-Breite Verhiltnis, wieder. Um die Stadtblocke eines Stralennetzwerkes mit
Gebidudegrundrissen zu fiillen werden in dieser Arbeit zwei neue Techniken vor-
gestellt. Das erste Verfahren verwendet reale Stra3enblocke und {ibertrigt die dar-
in enthaltenen Gebdudegrundrissanordnungen in die virtuelle Welt, indem reale
und virtuelle Stadtblocke anhand ihrer Form verglichen und ausgerichtet werden.
Darin enthaltene Grundrisse konnen anschlieend in den Zielblock kopiert wer-
den. Zur Evaluierung des Verfahrens werden eine Menge von Stadtblocklayouts
synthetisiert und anschlieend beispielbasiert mit 3D Gebéduden angereichert. Die
zweite Technik generiert Gebdudegrundrisslayouts, wobei der Beispiel- und der
Zielstadtblock in ihrer Form stark unterschiedlich sind. Durch das Konzept einer
Fiihrungskarte, d.h. einer Hilfsstruktur, die das gegebene Layout verzerrt in den
Zielstadtblock abbildet, wird gezeigt wie sich die Grundrissanordnungen in einen
form#hnlichen aber nicht passgenauen Stadtblock iibertragen lassen und somit den
urspriinglichen Anordnungsstil erhalten. Die Synthese individueller Gebdude wird
auf Basis des anfangs vorgestellten Optimierungsverfahrens als die Suche nach
einem Resourcen-beschrinkten kiirzesten Pfad durch einen Graphen formuliert,
wobei Knoten Gebidudebauteile detailliert modellierter Gebiude, die in einer Da-
tenbank gespeichert sind, reprisentieren. Eine Evaluation des Verfahrens erfolgt
durch die Synthese komplexer Gebdudestrukturen, welche mehrere lokale sowie
globale Bedingungen erfiillen. Abschlieend wird gezeigt, wie Gebdude von der
GroBe eines Stadtblocks generiert werden und anschlieBend zum Auffiillen leerer
Stadtblocke verwendet werden konnen. Die in dieser Arbeit vorgestellten Me-
thoden haben das Ziel, moglichst wenige Benutzereingaben zu bendtigen. Meist
reicht eine abstrakte Zeichnung und die Vorgabe von Nebenbedingungen aus, um
plausible Ergebnisse zu generieren. Manueller Aufwand besteht nur beim Aufbau
von Datenbanken fiir Gebdudebauteile oder dem Herunterladen von Geodaten aus
dem Internet.
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Abstract

The manual modeling of virtual cities or suburban regions is an extremely time-
consuming task, which expects expert knowledge of different fields. Existing mo-
deling tool-sets have a steep learning curve and may need special education skills
to work with them productively. Existing automatic methods rely on rule sets and
grammars to generate urban structures; however, their expressiveness is limited
by the rule-sets. Expert skills are necessary to typeset rule sets successfully and,
in many cases, new rule-sets need to be defined for every new building style or
street network style. To enable non-expert users, the possibility to construct ur-
ban structures for individual experiments, this work proposes a portfolio of novel
example-based synthesis algorithms and applications for the controlled genera-
tion of virtual urban environments. The notion example-based denotes here that
new virtual urban environments are created by computer programs that re-use exi-
sting digitized real-world data serving as templates. The data, i.e., street networks,
topography, layouts of building footprints, or even 3D building models, necessa-
ry to realize the envisioned task is already publicly available via online services.
To enable the reuse of existing urban datasets, novel algorithms need to be de-
veloped encapsulating expert knowledge and thus allow the controlled generation
of virtual urban structures from sparse user input. The focus of this work is the
automatic generation of three fundamental structures that are common in urban
environments: road networks, city block, and individual buildings.

In order to achieve this goal, the thesis proposes a portfolio of algorithms that are
briefly summarized next. In a theoretical chapter, we propose a general optimi-
zation technique that allows formulating example-based synthesis as a general
resource-constrained k-shortest path (RCKSP) problem. From an abstract pro-
blem specification and a database of exemplars carrying resource attributes, we
construct an intermediate graph and employ a path-search optimization techni-
que. This allows determining either the best or the k-best solutions. The resulting
algorithm has a reduced complexity for the single constraint case when compared
to other graph search-based techniques. For the generation of road networks, two
different techniques are proposed. The first algorithm synthesizes a novel road net-
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ABSTRACT

work from user input, i.e., a desired arterial street skeleton, topography map, and a
collection of hierarchical fragments extracted from real-world road networks. The
algorithm recursively constructs a novel road network reusing these fragments.
Candidate fragments are inserted into the current state of the road network, while
shape differences will be compensated by warping. The second algorithm syn-
thesizes road networks using generative adversarial networks (GANSs), a recently
introduced deep learning technique. A pre- and postprocessing pipeline allows
using GANSs for the generation of road networks. An in-depth evaluation shows
that GANSs faithfully learn the road structure present in the example network and
that graph measures such as area, aspect ratio, and compactness, are maintained
within the virtual road networks. To fill empty city blocks in road networks we
propose two novel techniques. The first algorithm re-uses real-world city blocks
and synthesizes building footprint layouts into empty city blocks by retrieving via-
ble candidate blocks from a database. We evaluate the algorithm and synthesize a
multitude of city block layouts reusing real-world building footprint arrangements
from European and US-cities. In addition, we increase the realism of the synthe-
sized layouts by performing example-based placement of 3D building models.
This technique is evaluated by placing buildings onto challenging footprint lay-
outs using different example building databases. The second algorithm computes
a city block layout, resembling the style of a real-world city block. The original
footprint layout is deformed to construct a guidance map, i.e., the original layout
is transferred to a target city block using warping. This guidance map and the ori-
ginal footprints are used by an optimization technique that computes a novel foot-
print layout along the city block edges. We perform a detailed evaluation and show
that using the guidance map allows transferring of the original layout, locally as
well as globally, even when the source and target shapes drastically differ. To syn-
thesize individual buildings, we use the general optimization technique described
first and formulate the building generation process as a resource-constrained opti-
mization problem. From an input database of annotated building parts, an abstract
description of the building shape, and the specification of resource constraints
such as length, area, or a number of architectural elements, a novel building is
synthesized. We evaluate the technique by synthesizing a multitude of challen-
ging buildings fulfilling several global and local resource constraints. Finally, we
show how this technique can even be used to synthesize buildings having the sha-
pe of city blocks and might also be used to fill empty city blocks in virtual street
networks. All algorithms presented in this work were developed to work with a
small amount of user input. In most cases, simple sketches and the definition of
constraints are enough to produce plausible results. Manual work is necessary to
set up the building part databases and to download example data from mapping
services available on the Internet.
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CHAPTER 1

Introduction

1.1 Motivation

Today’s simulation environments and video games represent huge virtual worlds
that are composed of rich and high-quality virtual content. Even digital movie
productions cannot possibly be imagined without highly detailed virtual fantasy
worlds. These worlds are represented as 2D or 3D scenes of varying size and con-
sist of a significant amount of digital assets. To achieve a convincing perception
for the observer, a huge amount of varying content having different levels of detail
is necessary. In the early days of digital content production, the virtual assets rep-
resenting different types of content were modeled from scratch by a large pool of
3D artists and then composed to larger scenes. A lack of easy to use design tools
makes the production of digital content an extremely arduous and cumbersome
task. Sometimes, even specialized technical skills and extensive training might
be necessary to use well-established design tools such as Maya©, 3DSMaX@, or
Modo®, in a time efficient and productive way.

Instead of modeling content from scratch, automatic data acquisition based on dif-
ferent capturing techniques such as 3D scanning or photography might be used.
While the quality of digitized real-world artifacts might be higher, the problem
of efficient content creation is just shifted. Many cases disallow the direct use
of captured content as artifacts might be present, thus requiring additional time-
consuming human assisted post-processing. It should not be forgotten that the
time for capturing content also includes the time to transfer the capturing de-
vice to a specific location. In addition, capturing content typically produces large
amounts of data that need to be stored somewhere, and therefore only a few ob-
jects might be captured at a given point in time.

One possible approach to reduce the time and cost of modeling novel content is

1



CHAPTER 1. INTRODUCTION

using algorithms as workhorses to support 3D artists. Such algorithmic content
generators can either produce virtual assets in a fully automatic fashion or might
be interactively guided by a user. For the efficient design of virtual content gen-
erators, several questions arise: How can an algorithm generate content that is
perceived as plausible and mimics the style found in real-world examples? What
type of content can be generated by what sort of algorithm? What input data,
parameters, or user input is necessary to produce content that even contains varia-
tions efficiently? What type of algorithmic abstraction is required to make a single
content generator capable of synthesizing plausible results for different types of
content?

To answer these questions, the efficient design and editing of content for digital
media in general, and computer graphics, in particular, continues to be one of
the most prolific subjects of investigation within the computer graphics research
community. Intensive efforts to close the productivity gap of typical 2D and 3D
modeling work-flows have given rise to novel models and user interfaces that
make the design and editing process of digital content more intuitive and efficient.
Approaches that were developed within the computer graphics community in re-
cent years range from powerful algorithms for the synthesis and re-targeting of
animation sequences, editing and deformation of shapes and shape collections,
parametric and data-driven texture synthesis, and even geometry synthesis and
quilting.

1.2 Why Example-Based Modeling?

The generation of novel content that is perceived as plausible and even mimics the
style found in real-world examples is a vibrant research topic within the computer
graphics community. Apart from the questions, What types of content can be gen-
erated? and What data might serve as input to the algorithm?, an essential aspect
in the field of algorithmic content generators is the type of algorithm that pro-
duces novel objects. When reviewing, the area of automatic and semi-automatic
content generation algorithms, typically three types of content generators arise:
procedural content generators and example-based content generators.

1.2.1 Types of Content Generators

Procedural Content Generators: Procedural approaches are steered by a set
of deterministic production rules in combination with a set of parameters. The
rules are evaluated, and a deviation structure is constructed that is used to pro-
duce certain types of content. As only rules and parameters are necessary, this
representation for virtual content is very compact. Varying content is achieved

2



1.2. WHY EXAMPLE-BASED MODELING?

by randomness in the deviation of specific rules. However, even with carefully
designed statistical variability, the output generated by this class of methods is
limited by the expressiveness of the rule-set. In many cases, the rules are de-
fined manually; however, the manual design of the rules is still an an incredibly
tedious task. The reader is referred to recent literature for an in-depth discussion
of procedural algorithms [SKUF15, ADBW16].

Example-Based Content Generators Example-based approaches are fed with
a single example or a set of examples stored in a database. The exemplars might
be taken from existing data sets or might be captured for a specific application pur-
pose. Sometimes, the input examples might be further split into sub-parts in a pre-
processing step. These sub-parts form the basic building blocks from which novel
content is built. A custom-tailored algorithm utilizes these buildings blocks, de-
termines different parts that fit together and then copies, re-shuffles, re-combines,
or bends them produces novels objects.

When the content generator only re-uses the original parts, by just copying them to
form a possibly larger output the content generator is said to be purely data-driven.
When the input is analyzed in a first step, statistical information is extracted, a
complex model is learned, or the content is deformed or bend, then the more
general term example-based content generator might be utilized.

1.2.2 The Example-Based Modeling Pipeline

Example-based content generators were introduced to the computer graphics com-
munity to reduce the productivity gap further and lessen the obstacles for fast and
intuitive content generation. Early example-based modeling pipelines were docu-
mented in Cohen [M00] or Funkhouser et al. [FKS*04]. In these early pipelines,
four basic building blocks can be identified that are part of each example-based
modeling pipeline (see Figure 1.1). Even in more recent publications about example-
based modeling, these building blocks can still be found. In the following, each
of the major blocks and its primary task is briefly described.

Data Acquisition In a very first step, the examples serving as input to an example-
based algorithm need to be acquired. These might be images, 3D models, videos
or vector graphics. With the emergence of web-services, large databases that
already contain plenty of data can be tapped for designing and implementing
example-based modeling pipelines. Examples for such databases that contain
plenty of existing content are Textures.com [Tex17] for texture resources, Tur-
bosquid [Turl7] and Trimble Warehouse3D [Tril7] for general 3D models or
Earth Explorer [Ear17] for satellite images, roads networks, or topography data.

3



CHAPTER 1. INTRODUCTION

User input
Data Pre- Example- Present
L » . » based » generated
acquisition processing PV results
Updated
user input

Figure 1.1: Overview of the four essential steps that are present in example-based
modeling pipelines.

In cases where no specific data is available or re-usable, it might be acquired for
a specific application to use the example-based modeling metaphor. Concrete
examples can be found in the works of, Pauly et al. [PMG™05] for 3d scan com-
pletion, Lerner et al. [LCLO07] for moving crowd video data, Xie et al. [XYST16]
for example-based tree modeling, or Ruiters et al. [RSK13] for interpolation of
bidirectional texture functions.

Data Preprocessing Although plenty of data that might serve as input for example-
based modeling techniques exists, the data gathered from these databases is typ-
ically not directly usable as input to the content generator. In a first step, the
data might be filtered to only extract the necessary content parts, or it might be
transformed into a different representation that simplifies further processing. In

a second step, it might be further split or decomposed into meaningful parts that
are enriched with statistics or semantics. The result is then typically stored in a
database and serves as input to concrete synthesis algorithms.

Content Generator Algorithm The core of the modeling pipeline is in many
cases a custom-tailored algorithm that re-uses the exemplars to generate novel
content. In many cases specifications provided by a user serve as additional input
to the content generator. These might come in the form of sketches, scribbles,
preferences encoded as weights, or semantic maps and are generally used to con-
trol and constrain the output produced by the content generator. Algorithms that
generate content are typically designed to achieve one or multiple intended design
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goals. The core task of the content generators is to perform matching of exemplars
against each other and/or the provided user input and to determine a set of candi-
date exemplars for further processing. The outcome from the candidate selection
is used to evaluate one or multiple objective functions and to perform constraint
satisfaction checks. Finally, the examples are combined by applying different
techniques such as copying, warping, or mixing techniques. During this step, ad-
ditional tests are performed to ensure that the previously defined constraints are
not violated. Depending on the application domain, the algorithm might produce
a single optimal solution or a set of solutions.

Presentation of the Results After the previous steps have produced the content,
the best solution or multiple most probable solutions are presented to a user. He
or she then selects the result that closest fits their demands. In any case that she
might not be satisfied with the results, the provided user input might be updated,
or the example database might be manipulated or exchanged, and the algorithm is
run once again. According to Fisher et al. [FRS™ 12] a single solution or multiple
solutions should be presented, and they state that a suitable heuristic might be:
every third solution should be a ’good’ one.

1.2.3 Strengths of Example-Based Modeling

The example-based modeling metaphor has several strengths that make it a good
choice for specific target applications. The most important requirement to suc-
cessfully apply this methodology is the presence of available data that might serve
as input for the content generators. When existing data repositories and publica-
tions are reviewed, there is indeed high-quality content available for nearly any
category of object types that are commonly used for the design of virtual worlds.
A few resources of exemplars that have been used in publications and that were
made publicly available are in particular motion segments [MRC"07], building
and room layout [SYZ117, BLS16], textures [Tex17, CMK™ 14, DRV 14], archi-
tectural textures [DRSV13].

The content generation algorithm is typically designed to reduce the workload of
a possible user drastically. The tedious work that is necessary to recombine or re-
shuffle the examples manually is delegated to an algorithm. Thus, the algorithm
needs to encapsulate the "knowledge’ or best-practices’ of a domain specific ex-
pert, that knows how to recombine existing content parts. This is extremely useful,
as it suddenly allows non-expert users to create novel digital content effectively.
On the other hand, experts can create novel content more productive and time ef-
ficient. In addition, the synthesized content might support the creativity of a user
as it effectively allows to browse the solution space and to inspect or to analyze
how different exemplars might be combined in different ways.
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The exemplars that are fed to the content generator are typically extracted from
real data and stored in a database. For different target applications, the existing
content may be available in a similar form. For example, music and animation
sequences are time-series of varying content types. Textures are typically rep-
resented as 2D image patches, and 3D objects might be represented as volume
elements. A transformation of the exemplars into a more abstract representation
allows designing content generation algorithms that can produce novel content for
utterly different target applications.

One benefit of the example-based modeling metaphor is that users can produce
rich and detailed content with only a small amount of input. In many cases, the
input needs to be specified using just a few simple operations such as sketching,
scribbling, and the selection of a database that stores the exemplars. As the user
interface to interact with the content generator is typically clearly arranged and
intuitively designed, the tools are easy to learn. Thus, a short introduction of
the overall interface and an explanation of the possible operations are enough to
allow non-expert users to efficiently design, edit, and re-design novel content.
For these reasons, the example-based methodology significantly reduces the user
interaction with the content generation system to three steps: (1) acquisition of
data from which the exemplars are derived, (2) provide input and constraints, (3)
selection of candidates among the synthesized results.

1.3 Why Example-Based Urban Modeling?

Especially with the emergence of a large variety of publicly available content
repositories for geographical data, that are maintained by large communities, mod-
eling by example has also been exploited for the synthesis of urban environments.
With access to mapping services such as OpenStreetMap [Opel7a] or EarthEx-
plorer [Ear17], planet-scale real-world data has become available. It contains ex-
amples ranging from satellite imagery, terrain data, road networks data and build-
ing information of near any town or settlement of the world. Even land surveying
offices offer publicly available multi-purpose cadastre data such as detailed build-
ing footprints and parcels layouts. The existence of such publicly available data
allows creating virtual replicas of the real world and even the design and gener-
ation of novel virtual urban environments. This allows a variety of different ap-
plications such as driver training, the planning of urban neighborhoods, or virtual
architectural design.

Reusing the real-world data also allows the creation of novel virtual worlds that
demand specific requirements. These requirements are typically necessary to per-
form human behavioral studies, a particular type of experiment where the reaction
of an individual user is evaluated during an individual experiment. Such scenarios
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were the demand of our project partner, during the first years of my thesis. In
more detail, the partner had a concrete need for tools and algorithms that can be
used for the intuitive creation of virtual urban environments that should be used
for the conduction of individual virtual driving experiments. The virtual urban
spaces, where the experiment will take place should be created by psychologists
who plan and conduct the experiments. Thus, the potential users of the modeling
tools are users who are non-experts in the field of urban modeling. In addition,
these people were not familiar with standard 3D modeling tools such as Blender,
Maya or 3D Studio Max and they also had no experience with procedural urban
modeling systems such as CityEngine [Esr17].

Such a situation calls for urban modeling tools that have a flat learning curve, are
easy to use, and require only a small amount of user input. The virtual worlds to
be created should mimic the real world to provide a harmonious and comfortable
environment for a specific test-person and might be edited and updated until they
fit the psychologists’ needs. In combination with all the necessary data available
via online services such as OpenStreetMap [Opel7a], EarthExplorer [Ear17] and
Trimble Warehouse3D [Tril7], the example-based modeling metaphor seems to
be a promising choice, especially for the development of novel content generation
algorithms, for the design of urban spaces. For these reasons, the primary goal of
the work at hand is to provide a portfolio of algorithms to synthesize three types of
structures that are necessary to model detailed virtual urban environments: road
networks, city block layouts and building layouts.

1.4 Structure of the Thesis

In here, we briefly give an overview of the structure of the work at hand. The
current introductory chapter is followed by an in-depth discussion of related work
on the generation of different urban structures such as road networks, city block
layouts and buildings and building layouts. In chapter 3, a general algorithm for
resource-constrained optimization for example-based modeling is introduced. The
algorithm is uncoupled from specific types of exemplars and allows to be used in
different content generation tasks, such as human motion synthesis, sound syn-
thesis, image synthesis, and building synthesis. By using an intermediate graph
representation, the algorithm achieves superior performance to previous work, as
only resources feasible solutions are traversed during the optimization. The ap-
plicability of the proposed algorithm is exemplified by the generation of buildings
and city blocks that satisfy different sets of local and global constraints.

In chapter 4, we put the focus on the generation of road networks, the skeleton of
nearly every urban layout. The content of chapter 4 consists of two different road
network synthesis strategies. The first algorithm synthesizes a new road network
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from a hierarchical set of fragments. The fragments are automatically extracted
from publicly available real-world street data and can be recursively recombined
taking terrain topography into account. In contrast to this algorithm, the sec-
ond road network synthesis technique employs machine learning techniques for
the generation of street networks. It is based on generative adversarial networks
(GAN), a recently introduced deep learning technique. The structure of an ex-
ample network is learned by first training the GAN on a raster representation of
the example road network. Novel road networks can be synthesized by feeding
values drawn from a simple distribution to the generative component of the GAN
and extracting the road graph from the produced image and transforming it into a
vector-based representation.

The space that is covered by a road network is divided into small areas enclosed by
roads - the city blocks. For increasing the realism of a city layout, it is crucial to fill
these city blocks with realistic building footprint arrangements. We focus on this
problem in chapter 5 and present two different solutions that transfer the building
footprint layout from real-world city blocks into the city blocks of the virtual street
network. The first algorithm (see section 5.1) approaches the synthesis of building
footprint layouts using the shape of the virtual city blocks and retrieves a viable
candidate by comparing the shapes of the city blocks. After alignment of both city
blocks, the building footprints from the retrieved candidate block can be copied
into the target block. Potential overlaps with the street area and pavement are
resolved using a constrained optimization technique. Additional details are added
to the city block layout by example-based building placement using databases
containing 3D building models. In here, a viable candidate building is retrieved
from a database by comparing the shapes of the footprints. The second algorithm
targets city blocks where the shape between the virtual and the real city blocks
strongly differ. To properly transfer the real-world building footprint layout to the
virtual world, we propose a re-synthesis scheme in section 5.2. Here, the original
footprint layout is warped into the target city block. This deformed layout is used
as a guidance map to compute a new building footprint layout reusing the original
building footprints as building blocks.

In chapter 6 of this thesis, we focus on the synthesis of the smallest entities of
an urban layout - the buildings. In contrast to chapter 5 where existing buildings
were reused as a whole, we focus on the generation of new buildings using a
database of building parts. The building parts carry resource attributes and can
be recombined and reshuffled to form new buildings maintaining the style of an
example building. We use the optimization technique proposed in chapter 3 to
synthesize a multitude of individual buildings and city blocks that satisfy several
local and global constraints. In addition, we show that the synthesized building
blocks can be used to fill the empty city blocks within virtual and real-world street
networks.
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1.5 Contributions

The work at a hand proposes a portfolio of algorithms and applications to ease the
controlled generation of urban structures, heavily re-using real-world exemplars.
The algorithms range from the synthesis of macroscopic urban structures to the
generation of microscopic urban structures as already briefly discussed in section
1.4. In particular, the contributions include:

e Graph-Based Constrained Optimization: We formulate example-based
synthesis as a general resource-constrained k-shortest path (RCKSP) prob-
lem. An abstract problem specification and a database of exemplars car-
rying resource attributes serve as input. We approach the problem using a
novel two-step approach. First, we construct an intermediate graph repre-
sentation, containing only resource feasible solutions. Second, we employ
a path-search optimization technique to determine either the best or the k-
best solutions. An in-depth analysis shows that the proposed method has a
reduced complexity for the single constraint case when compared to other
graph search-based techniques.

e Road Network Synthesizers:

— We propose a purely example-based approach for the generation of
road networks from sparse user input, i.e., a sketch of a desired arterial
street skeleton and a height map that represents the desired topography.
We exploit the natural hierarchy of road networks to extract a set of
hierarchical, closed fragments that form the central building blocks for
the road network synthesizer. We present an algorithm that recursively
constructs a new road network by retrieving viable fragments from a
database and inserts them into the current state of the road network,
while the difference in shape will be compensated by warping both
the interior street topology and the topography of the best matching
candidate fragment.

— We propose a novel method for the synthesis of road networks using
generative adversarial networks (GANSs), a recently introduced deep
learning technique. We develop a pre- and postprocessing pipeline to
use GANS for the generation of road networks. We provide an in-depth
evaluation that shows that GANs faithfully learn the road structure
present in the example network and that the synthesized road networks
even maintain graph measures such as area, aspect ratio, compactness
when compared to those of the original network.

e City Block Layout Synthesizers:
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— We propose a layout transfer algorithm for filling real-world building
footprint layouts into empty city blocks of real or virtual road net-
works. We evaluate the algorithm by synthesizing a multitude of city
block layouts reusing real-world building footprint arrangements from
European and US-cities. We increase the realism of the synthesized
layout by performing example-based placement of 3d building models
and evaluate this strategy on challenging footprint layouts with differ-
ent example-building databases.

— We develop a re-synthesis scheme for computing new city block lay-
outs that resemble the style of a real-world city block. We propose to
transfer the layout of a real-world city-block into a virtual city block
using warping to construct a guidance map. We present an efficient la-
beling algorithm that uses the computed guidance map and the build-
ing footprints shapes from the real-world city block to synthesize a
novel layout within the virtual city block. We perform an in-depth
evaluation that shows, that the use of the guidance map allows trans-
ferring the style of the original layout locally as well as globally even
when the source and target shapes drastically differ.

o Example-based building synthesis: We use the graph-based optimization
framework to formulate the synthesis of buildings as a constrained opti-
mization problem that uses the proposed resource constrained k-shortest
path algorithm. From an input database of annotated building parts, a skele-
ton that describes the shape of the building, and the specification of resource
constraints such as length, area, or a specific number of architectural ele-
ments, a novel building is synthesized using the mentioned Graph-based
Constrained Optimization technique. We evaluate the method by synthesiz-
ing a multitude of challenging buildings fulfilling several global and local
resource constraints and that even can be used to fill in empty city blocks in
road networks.

1.6 Publications

As part of the work at hand, the following four papers were published at different
computer graphics conferences. Please note, that the thesis only describes and
discusses the content of the publications where the author of this thesis is also the
first author of the individual publications.

1. Stefan Hartmann, Elena Trunz, Bjorn Kriiger, Reinhard Klein, and Matthias B.
Hullin. Efficient multi-constrained optimization for example-based synthe-
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sis. The Visual Computer / Proc. Computer Graphics International (CGI
2015), 31(6-8):893-904, June 2015

2. Stefan Hartmann, Bjorn Kriiger, and Reinhard Klein. Content-aware re-
targeting of discrete element layouts. In International Conference on Com-
puter Graphics, Visualization and Computer Vision, volume 23 of WSCG
proceedings, pages 173-182, June 2015

3. Stefan Hartmann, Michael Weinmann, Raoul Wessel, and Reinhard Klein.
Streetgan: Towards road network synthesis with generative adversarial net-
works. In International Conference on Computer Graphics, Visualization
and Computer Vision, June 2017

4. Jonathan Klein, Stefan Hartmann, Michael Weinmann, and Dominik L. Michels.
Multi-scale terrain texturing using generative adversarial networks. In Im-
age and Vision Computing New Zealand, December 2017
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CHAPTER 2

Review of Urban Content Generation
Algorithms

In this chapter, we review literature that is closely related to example-based urban
modeling. We focus on the review of three essential urban structures: street net-
works, city blocks, and building synthesis techniques. Additional readings in the
context of urban modeling can be found in Vanegas et al. [VAW " 10] who focus
on appearance of urban spaces, Wonka et al. about procedural urban modeling
and simulation [WMWF07, WAMV11], Musialski et al. about urban reconstruc-
tion [MWA ™ 13], or Aliaga et al. [ADBW16] who provide an extensive tutorial on
inverse procedural modeling techniques for urban structures.

2.1 Techniques for Road Network Synthesis

Road networks represent an essential part of an urban ecosystem and thus form
an important component of an urban environment. For the design of virtual ur-
ban environments, it is crucial to have algorithms that are able to synthesize road
networks that mimic the style found in real-world examples. Different require-
ments on the virtual road networks have spawned several individual solutions that
might be used for the design of cities, villages or neighborhoods. Among them,
one finds approaches that produce content that might be suited for game design or
movie productions. However, there exist methods that try to advance the process
of virtual urban planning and focus on the generation of high-quality road struc-
ture and parcel layouts. The goal of this section is to provide a brief overview of
the various techniques that are closely related to the work at hand.
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2.1.1 Road Network Growing Schemes

An early approach for procedural road network generation was introduced by
Parish and Miiller [PMO1]. Their work utilizes extended L-Systems to procedu-
rally grow road networks satisfying global goals and local constraints. The gen-
eration process is separately performed on two different street hierarchy levels,
major and minor using different re-writing rules controlled by several rule param-
eters. In order to follow global goals, the placement of roads is constrained to
regions of high population density. Major roads use rules to achieve a certain road
network pattern type such as grid, radial, or irregular style. In contrast to global
goals, local constraints adopt the rule parameters in order to avoid the placement
of illegal road constellations such as steep road segments or roads touching the
water. Furthermore, local constraints also provide a snapping mechanism to con-
nect newly generated road segments to existing nearby located crossings or road
segments. Kelly and McCabe [KMO7] follow the road generation procedure of
Parish and Miiller and synthesize roads on two street levels, i.e. major and mi-
nor roads. However, in contrast to Parish and Miiller they do not use a string
based rewriting system, but let the user specify the high-level topology of the road
network in a preprocessing step. The major road courses are then generated by
sampling and plotting roads that smoothly adapt to the underlying terrain. Minor
roads are then generated by first placing seed points along the edges’ of the major
road graph and second using a parallel growth algorithm inspired by L-systems.
While the previous approaches focused on the road network generation of cities
or city-like structure, the automatic generation of sparse settlements or villages
has been investigated by Emilien et al. [EBP*12]. The roads of a village skeleton
are constructed across the terrain utilizing an anisotropic shortest path algorithm
that is guided by several user adjustable objective functions. In order to avoid
the generation and placement of a huge amount of different nearby located road
branches, the weights along existing road courses are re-weighted. This enables
the shortest path algorithm to re-use existing road structures heavily and allows
synthesizing plausible looking road courses found in villages.

2.1.2 [Example-Based Road Network Generators

Sun et al. [SYBGO02] propose to use templates for the design of novel road net-
works. They define templates as 'modules’ that encapsulate an algorithm that pro-
duces an individual road network pattern. From a set of population centers that
serve as sites for the computation of a Voronoi diagram, a road network can be
constructed by interpreting the edges of the diagram as roads. Grid structured and
radial structured road patterns are produced by encapsulating growing algorithms
with specific rule sets steered by parameters into templates.
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More recent approaches for road network generation make use of templates in or-
der to synthesize road structures. However, compared to Sun et al. [SYBGO02] the
templates represent different sized patches of roads that are either extracted from
a real-world road network or hand-crafted and enriched by manual annotations.
Yang et al. [YWVW13] use hand-crafted templates to synthesize the high-quality
road network structures found in suburban layouts that follow urban design guide-
lines. They propose a recursive subdivision scheme that splits an initial empty
domain into smaller sub-domains using templates that represent virtual replicas
of road patterns, commonly found in suburban regions. The basic idea of the al-
gorithm is to match the outline of a template to the coarse shape of a closed empty
region within a virtual road network. The candidate template is then iteratively
deformed and reoriented to closely match the shape of the region that shall be
split. When the initial deformation energy is too high, a fall-back subdivision is
achieved by computing streamlines that are utilized to subdivide the region into
different parts without using any templates.

Aliaga et el. [AVBOS] follows a different line. In their work, they use crossings
enriched with statistical information as templates. An existing road network and
a set of arterial streets is used to compute a road hierarchy using stream order-
ing [Hol94] including loops. Each crossing within the original road network is
annotated with incoming street levels and statistical information such as the dis-
tance between consecutive crossings, the angles between adjacent road segments,
and curvature. By re-distributing the existing crossings in a new urban area, a ran-
dom walk algorithm constructs the new road network topology starting from the
highest hierarchy level. It utilizes the information stored along with the crossing
in order to iteratively form the most likely connection to nearby located crossings.
One disadvantage of using enriched crossings [AVBO08] or crossing templates
[YS12] as input for the road network generator is that essential road structures
such as ramps, roundabouts, and plazas cannot be faithfully reproduced within
the new road topology. This important issue was later addressed by Nishida et
al. [NGDA16a] where templates represent patches of roads extracted from real-
world road networks such as OpenStreetMap [Opel7a]. Road segments at the
patch boundary represent connector segments that accept connections to other
patches when they share a similar length. The user feeds the system with an ini-
tial seed point, that is used by the algorithm to perform example-based growth
steps. This particularly means that the road network is expanded in a breadth-first
manner utilizing a database of extracted example-patches. At each growth step,
local constraints similar to Parish and Miiller [PMO1] are evaluated in order to
either accept the network expansion or to perform a procedural fall-back similar
to Aliaga et al. [AVBOS].

In Yu and Steed [YS12] crossings with their adjacent road segments are used
as templates. Their approach is a combination of the two algorithms presented
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in [AVBOS8] and [PMO1]. From an initial seed point, the road network is itera-
tively expanded. Their method searches the example network for a region that is
topologically and geometrically similar to the neighborhood of the currently pro-
cessed crossing with its adjacent road segments. The size of the neighborhood
used typically depends on the size of the structures that should be captured within
the example network. They expand the road topology after performing, local con-
straint checks similar to [PMO01, KMO7].

Emilien et al. [EVC™15] learn distributions from small patches of generated con-
tent or manually modeled 3D content. The learned distributions are applied in a
brushed-based modeling metaphor in order to steer the underlying procedural con-
tent generators that produce roads, foliage, trees, or buildings. Their road network
generation component extends the one of [AVBO08] by avoiding the cumbersome
manual distribution of crossings. Instead, they learn a radial distribution function
inspired by recent works on point distributions by Otztereli and Gross [OG12].
Connections between crossings are then achieved using the random walk method
of [AVBOS].

2.1.3 Simulation-Based and Time-Dependent Approaches

The approaches discussed so far were tailored to produce static road networks
representing a fixed point in time. However, for urban planning or simulation
games, these road network generators are not suited. For dynamic cites a different
class of algorithms for geometric and behavioral modeling is necessary. These
types of algorithms simulate the dynamic growth of one or multiple cities over
time by taking urban attributes such as traffic, population, jobs, land use, or land
value into account. In contrast to early approaches that simulate urban develop-
ment [Wad02, WBN"03] using drastically simplified models for simulation of
urban spaces, more recent approaches integrate detailed geometric aspects into
the simulation loops. In Weber et al. [WMWGO09] a system for the temporal sim-
ulation of a 3D urban model is presented. Instead of performing the simulation
on a regular grid (see Waddel [Wad02, WBN103]), the simulation takes exact ge-
ometries, such as street geometry, parcel boundaries, or building footprints into
account. Their road network growth is inspired by Parish and Miiller, but instead
of using a rewriting system they stochastically choose high probability nodes lo-
cated nearby growth centers. The street is grown according to a rule set and needs
to adapt to the environment similar to the local constraints of Parish and Miiller.
The main difference is that the produced segments are just planned; however, their
final position is already fixed. As common in geometric urban modeling, first ma-
jor roads are grown, while minor roads are processed in a second step. The traffic
is simulated by performing virtual trips between street segments. These depend
on the population and the attractiveness at certain locations and include already
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planned segments. When enough traffic demand for planned street segments is
generated, they finally become active after a user-defined threshold is passed. In
contrast to the common process of generating major roads or highways in a first
step and minor roads in a second one, Benes et al. [BWK14] reverse the road gen-
eration process. From an initial major road network, minor roads are grown in the
first step around identified city cores. Paths along major roads connecting these
cores are utilized to perform a traffic simulation for pairs of neighboring cities to
determine a potential increase in traffic and thus the demand for new major roads.
These are generated utilizing special rules for major road growth that introduce
novel road segments or transform existing minor segments into major ones.
Vanegas et al. [VABWO09b] couples behavioral modeling and geometric modeling
in an interactive design system. The behavioral simulation is inspired by Wad-
del [Wad02] who simulate urban development on spatial grids, where cells cap-
ture urban attributes such as land use, population, jobs, and accessibility. Their
focus is on editing and designing a new urban model instead of simulating the
growth over time [WMWGO09, BWK14]. A user can change any geometric or
behavioral attribute, while a dynamic system assures an equilibrium state, a state
where the behavioral model matches the geometric model and vice versa. In their
model streets are grown at three different levels: highways, arterial roads, and lo-
cal roads. Intersection seeds are computed by identifying job and high population
clusters. Streets are generated in a breadth-first manner, taking the underlying cell
attributes into account while higher level roads, i.e., arterial and local roads are
grown from a mixture of seed points computed by a clustering approach that is
augmented with seed points placed on the streets of the parent street level. This
ensures that higher level roads are always connected to already existing street
structures.

Krecklau et al. [KMK12] use a data-driven approach for the interpolation of cities
instead of a model-driven one [Wad02, VABW(09b] that typically requires a huge
amount of professional and expert knowledge. They rely on key points in the past,
1.e., historic city maps that represent intermediate interpolation targets. An event
system simulates the construction and destruction of specific urban objects, i.e.
streets and buildings. The events are stored in a dependency graph, that reflects
relations between different types of events. In a simulation loop, the events are
categorized into different priorities and are subsequently executed. The system
automatically detects event conflicts and asks the user to resolve them interac-
tively.

2.1.4 Countryside Road Generation

Another important road structure type is cross-country roads. These roads form
vessels across the country to enable transit connections between different urban re-
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gions. The synthesis of such road structures is proposed by Galin et al. [GPMG10].
The authors focus on the generation of a path that connects two arbitrary selected
points on a landscape. The underlying terrain space is discretized into cells, that
are used to compute the shortest path between a user-specified start and endpoint.
During the path computation, several cost functions are evaluated, that guide the
construction of tunnels, bridges, and road segments across the terrain. To increase
the variability in possible direction changes the path generator is allowed to skip
neighboring cells and directly advance to other cells in a user-defined n x n neigh-
borhood. While this approach is only able to connect a single start and destination
point, Galin et al. [GPGB11] advance this approach to generate connection net-
works for different sized urban areas, i.e., cities, towns, and villages. These are
connected using different types of roads, i.e., highways, major roads, and minor
roads. An additional cost function penalizing or favoring different terrain regions
guides the shortest path algorithm connecting the urban structures. In contrast to
Emilien et al. [EBP™12] (see Section 2.1.1) they do not have a mechanism to al-
low road re-use and therefore propose to merge roads that are closely located next
to each other.

2.1.5 Optimization-Based Approaches

In a different line of research, optimization techniques are used for the design of
road structures. Such methods leverage the power of recent combinatorial opti-
mization solvers to enable road network designs that fulfill different types of hard
and soft constraints. The approach of Peng et al. [PYW14] proposes to compute
a discrete tiling of arbitrarily shaped domains that are represented as a quadri-
lateral mesh. The tiling is composed of building blocks where each of them is
itself formed from a set of quadrilaterals and can be imagined similar to Tetris
blocks. Their outline edges can be interpreted in an application-specific way. For
the synthesis of road networks, the outline of the tiles represents individual road
segments. The authors formulate the tiling problem as an integer linear program
(ILP), where the building blocks represent the variables of the optimization prob-
lem. Such a tiling problem can be solved using off-the-shelf solvers that perform
well when the number of building blocks is small. One advantage of the ILP for-
mulation is that different types of constraints such as the number of T-crossings
or the occurrence of specific building blocks can be easily controlled. ILP-based
formulations for the synthesis of functional networks were extended in the work
of Peng et al. [PYB™16]. In their formulation, a network is now represented as a
set of activated edges within the initial domain that is composed of quadrilateral
elements. The vertices of the quadrilateral mesh might serve to model different
types of constraints such as sink constraints or point-to-point constraints. The first
constraint type allows forcing the network to start or end at a subset of vertices,
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while the latter allows for producing connections between a subset of vertices.

2.1.6 Controllable Road Network Generators

Apart from synthesizing novel content, editing and updating the generated content
has been established as an essential research direction within the computer graph-
ics community. Controlling the procedural generation of road networks was tack-
led by Chen et al. [CEWT08], who let the user define and edit two-dimensional
tensor fields. The user has access to different types of tensor fields such as radial or
grid ones. The procedural road network algorithm is aware of the tensor field and
traces hyper streamlines along the major and minor eigen-directions of the tensor
field. They utilize a modified Runge-Kutta integration scheme and an interleaved
tracing strategy in order to produce meaningful road patterns. The controlled gen-
eration of procedural content was also studied by Lipp et al [LSWWI11]. Their
method allows an efficient and controlled change of the appearance of an existing
layout by the definition of layered constraints. These constraints include relative
positioning of parcels, city blocks, or streets to user-defined anchor points. The
layout is updated by merging the content defined on different layers into the ex-
isting city layout, while locally preserving defined constraints.

2.2 Techniques for City Blocks Layouts Synthesis

City blocks, i.e., the regions within a street network completely enclosed by roads,
represent an essential part of every city layout. They can be depicted as atomic
building entities that are surrounded by streets and offer the space for different
types of entities such as buildings, recreational areas, or office zones. For the
planning process of new urban districts or the re-development of existing ones,
they are indispensable. For virtual worlds, they are as important as for real cities
as they offer space for virtual assets and thus make the virtual space lively. In
general, the computation of a city-block layout can be conducted in two different
ways, when the current state of the art is reviewed. The first possibility is subdivid-
ing the empty space inside the block into smaller regions called parcels. Individual
buildings might be later placed into these regions. The second approach abstracts
real-world objects by polygons with optional attributes. These polygons serve as
input to a custom-tailored layout algorithm that either uses statistics or practical
guidelines as rules for the composition of a new city block layout. In many cases,
the layout is computed using a stochastic optimization technique such as a Markov
Chain Monte Carlo (MCMC) sampler that discovers layouts having a high proba-
bility according to the evaluation of a problem tailored objective function.

In the following, we first review techniques that focus on the subdivision of city
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blocks into parcels and then advance to studying more general layout algorithms
in the second part of this section.

2.2.1 City Block Layouts using Subdivision Schemes

Parish and Miiller [PMO1] already discussed an early approach for the subdivi-
sion of the space encompassed by a city block. Their algorithm generates parcels
by recursively splitting the city block along longest and near parallel edges into
polygonal regions that are called parcels. During the recursive splitting, they re-
strict the algorithm to only produce convex parcels. The subdivision into smaller
areas and finally parcels is stopped when a certain minimum area falls below a
certain user-defined threshold.

Aliaga et al. [AVBO08] follow a different strategy to subdivide the city block into
parcels. They compute the medial axis of the city blocks, approximated by the
major axis of the object-oriented bounding box (OBB). Points along this major
axis are sampled according to learned statistics. These points are then duplicated
and randomly perturbed to form sites that are used to derive a Voronoi diagram.
The intersection of the Voronoi edges with the outline of the city block produces
an interior skeleton that splits the space into plausible parcel regions. This strategy
even leads to a likely parcel layout, when the shape of the city block outline is
non-convex.

Vanegas et al. [VABWO09a] focus on the procedural extension of existing urban
spaces and demonstrate their method by simulating the future development of
urban areas using socio-economic data. In order to produce meaningful parcel
layouts within newly generated city blocks, they extend the simple recursive sub-
division scheme of Parish and Miiller. More precisely, they start by computing the
(OBB) of the city block polygon. In a subsequent step, a simulation step predicts
the number of parcels to be generated within the current city block polygon. This
information is utilized to decide whether to introduce a new street segment or a
parcel boundary, by the split along the minor axis of the OBB. The splitting al-
gorithm repeats the prediction and the subdivision step until a desired number of
parcels is reached.

Vanegas et al. [VKW12] generalizes parcel generation within city blocks, by
introducing two different subdivision schemes. The first one is based on the re-
cursive splitting scheme introduced by Parish and Miiller [PMO1]. It uses an OBB
based splitting mechanism as already proposed in Venegas et al. [VABW(09a]. The
major difference between Vanegas et al. [VABWO09a] and Parish and Miiller [PMO1]
is that the OBB is computed to be aligned with an existing parcel edge leading to
a more robust subdivision. In addition, their approach can control the street ac-
cess of parcels, by splitting the current parcel either along the major or minor axis
according to a user defined probability. Their second approach computes the me-
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dial axis of the city block polygon, which is approximated by the straight skeleton
[AAAGI6]. Such a skeleton divides the city block into several faces where each
face is adjacent to an outline edge of the city block polygon. However, these faces
contain undesirable diagonal edges near street intersections resulting from angu-
lar bi-sectors. A re-assignment of such faces to adjacent regions removes these
artifacts depending on street direction and street-length. The resulting ’cleaned’
regions are subdivided into parcels, by casting rays from sample points drawn
along the street segments towards the adapted city block skeleton.

Yang et al. [YWVWI13] use templates with predefined parcel layouts. These
templates are similar to their street pattern templates that were already discussed
in section 2.1.2. Parcel templates in their approach contain different patterns such
as strips, i.e., multiple parcels placed next to each other, and spikes, i.e., parcel
layouts that are modeled around a dead-end road segment. These templates are
assigned to regions and might be procedurally expanded in order to fill up empty
space. This is especially used to achieve a tight parcel packing within the city
block. The candidate parcel layout is then non-linearly deformed to match the
shape of the region where it was assigned to.

Commercial Software for City Block Layouts Apart from approaches pro-
posed by the scientific computer graphics community, different commercial soft-
ware packages provide tools that are suited for the layout design of city blocks.
Civil 3D from Autodesk [Sofl17] and SiteOps [Ops17] provide interactive and
semiautomatic tools for parcel design. Both software packages provide algorithms
for computing parcel layouts along street segments by splitting the segment by
point sampling. From these points, rays orthogonal to the street segments are
traced up to a certain distance to produce the shapes of the parcels. The user is
then able to manually adapt the layout until his demands are satisfied.
CityEngine from Esri [Esr17] provides a set of parcel layout algorithms inspired
by recent techniques from the computer graphics research community. Early ver-
sions of the software use an algorithm adapted from Parish and Miiller [PMO1].
More recent releases use adoptions of the algorithms proposed by Vanegas et al.
[VKWT12]. They even provide a combination of the strip-based layout and the
adaptive subdivision algorithm mentioned in the paper of Vanegas et al..

2.2.2 Generation of General Discrete Element Layouts

Orthogonal to the previous discussed methods are discrete element layout algo-
rithms that use stochastic optimization techniques, e.g. Markov Chain Monte
Carlo (MCMC). These methods learn object relations from a set of examples
[YYT™"11], are feed with well-known design guidelines [MSL*11], or use object
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relations encoded in factor graphs [YYW™12, YBY'13] in order to synthesize
novel element layouts.

2.3 Techniques for Sequence Generation and Build-
ing Synthesis

In here, we discuss techniques for the synthesis of buildings and architectural
structures using procedural as well as example-based approaches. Before we
discuss techniques that can be used for the generation of buildings we discuss
graph-based optimization techniques. These techniques arrange exemplars into
sequences by minimizing problem specific objective functions. Such optimization
techniques are important because a large variety of content within the computer
graphics community is arranged as one-dimensional sequences. Concrete exam-
ples are audio data, captured motion data, or video sequences. Even images can be
transformed into 1D sequences by slicing it into patches along one image dimen-
sion. Similar to images buildings and architectural elements such as ornaments
can be interpreted as 1D sequences of smaller entities that are arranged along a
primary dimension. A discussion of related graph-based optimization techniques
is mandatory as the work at hand proposes a novel optimization technique in sec-
tion 3 that is applied to the application of building synthesis in chapter 6. In
addition, one algorithm for the synthesis of footprint layouts within city blocks in
chapter 5 utilizes such an optimization technique.

We start with a discussion of these types of algorithms and then move on to more
specific techniques for the generation of architectural structures and buildings.

2.3.1 Fixed-Sized Sequences

Graph-based optimization techniques can be split into two different categories.
The first category produces sequences that are composed of a fixed number of el-
ements, while the number of elements present in the result is known in advance.
In addition, all exemplars or elements have the same elongation in e.g. seconds,
video frames, pixels, or meters. For the example-based synthesis of audio tracks,
Wenner et al. [WBSH™ 13], decompose audio data according to beat analysis into
smaller chunks of fixed size, ranging from 250 ms to 1500 ms depending on the
detected beat of the music genre. A novel song is synthesized by defining a tar-
get length and the subsequent computation of a sequence that consists of a fixed
number of elements that is computed from the target length and the fixed size au-
dio chunks extracted from an exemplar song. The audio chunks that compose the
novel song are determined using a dynamic programming approach similar to the
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one presented by Viterbi [Vit67]. Zhou et al. [ZLL13] synthesize texture patterns
along curves. The input to their algorithm is a parametric curve and a texture
patch containing the pattern that is used during the synthesis step. In a first step a
ribbon around this curve is constructed by computing offset curves using positive
and negative normal direction. The domain enclosed by the ribbon is split into a
fixed number segments, when is curve is split into a fixed number of equally size
arc length regions. A dynamic programming algorithm is used to determine a se-
quence of texture regions that are optimally aligned with the ribbon segments and
additionally minimizes the error in color transitions between neighboring ribbon
segments.

2.3.2 Variable-Length Sequences

Lefebvre et al. [LHL10] propose an algorithm to compose new images utilizing
image strips of varying size. Their algorithm is able to compose a new image of a
fixed size, without having to specify the number of image strips used in the final
result in advance. Recently, Zhou et al. [ZJL14] proposed an algorithm for the
synthesis of structured vector patterns that follow a predefined curve. The input
to the algorithm is a vector pattern composed of polygons with properly defined
interior and exterior areas, which is split into smaller parts using parallel slices.
For each slice, a topology descriptor is computed. The method uses a constrained
dynamic programming approach in order to recombine the slices by using topol-
ogy descriptors to compute a topology-aware layout. A continuous optimization
scheme refines the layout be ensuring continuous connections between individual
parts and produces a vector pattern ready for fabrication.

In computer animation, various shortest-path algorithms have been proposed to
synthesize novel motions from motion capture databases. Kovar et al. [KGP02]
presented a greedy branch-and-bound approach to generate walks through a mo-
tion graph following a predefined path. Their ideas were extended by Safonova
and Hodgins [SHO7], who introduced interpolated motion graphs and an efficient
A* search to generate smoother and more complex animation sequences along
a path that may include environmental constraints similar to our key points de-
scribed in Section 3.3.1. Lo and Zwicker [LZ10] reduced the exponential search
space of this kind of problem, by employing a bidirectional A* algorithm and
merging the two search trees by interpolation, they were able to synthesize human
motions at interactive rates.

In order to compute these sequences along a path, the surrounding space is dis-
cretized. In the case of Safonova and Hodgins [SHO7] motions segments are
placed at the start point of the path. The space around the path is discretized
into grid cells. From one or multiple segments, a graph is grown and dynamically
expanded using variants of Dijkstra or A* shortest path computation. The space
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around the path is discretized into d cells and a database of n motion segments is
used. In order to compute path that consists of d motion segments out of n motion
segments the search space is already O(n?). This search space was reduced by
Lo and Zwicker [LLZ10] using a bi-directional algorithm that expands one search
tree from the start point towards the endpoint and a second search tree from the
endpoint towards the start point. This drastically reduces the search space from

0(n) to O(n?).

The algorithms of Lefebvre et al. [LHL10] and Zhou et al. [ZJL.14] synthesize
one-dimensional structures by discretizing the space along an image dimension or
along the parameter domain of a curve. They further require that the generated ob-
ject satisfies a certain image size (Lefebvre) or length and topology (Zhou). Both
algorithms construct a graph from a defined start point towards a defined endpoint
by iteratively adding nodes. Thus, there search space is in case of d discretiza-
tion steps and n elements in O(nd). After a new node is added to the graph, the
paths are re-ordered by the optimization algorithm using the transition cost. The
online graph construction might be inefficient in cases when a large number of
paths is generated that will not lead to a solution that satisfies the requirements.
Thus in the worst case, the runtime of such types of algorithms might be in O(n?).
The algorithms of Zhou et al. [ZLL13] and Wenner et al.[WBSH™ 13] reduce the
problem complexity by specifying the number of elements within the resulting
sequence in advance.

2.3.3 Resource Constrained Shortest Path

Although this NP-hard [GJ79] problem has been studied for more than four decades
and several pseudo-polynomial algorithms have been proposed, we are not ad-
vocating for any of the existing RCSP algorithms for several reasons. Most of
them set only an upper bound on the constraints [Zie0O4, ZW12]. In our appli-
cations, however, also a lower bound is necessary and needs to be fulfilled. It
makes the problem much harder, even for the single resource case, as it includes
the well-known knapsack problem with an equality constraint as a special case
([MR84, GJ79]). The algorithms of Ribeiro and Minoux [RM85] and Turner
[Turl2] are designed to deal with both upper and lower boundaries. However, the
method of Ribeiro handles only one constraint and the work of Turner only dis-
cusses equality constraints. We aim to provide multiple solutions, strictly speak-
ing, the k-best solutions, that was not taken into account and discussed by previous
approaches.
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2.3.4 Synthesis of Buildings

Next, we discuss synthesis schemes for individual buildings. The seminal city
generation system of Parish and Miiller [PMO1] proposed the generation of build-
ings using stochastic L-systems. Subsequent manipulation of the ground plan
generates concrete building instances. Different L-system modules encapsulate
operations such as extrusion, transformation, and branching, while others encap-
sulate geometric templates of building parts. String outputs produced by the L-
system are transformed into concrete building geometry, that is further enhanced
with procedural textures that are organized as layered grids. The parametric gener-
ation of buildings using grammar rules was extended by Wonka et al. [WWSRO03]
proposing a parametric set shape grammar to describe the construction of build-
ings. This overcomes the difficulty with L-systems that are typically used to grow
open spaces such as road networks. The split grammar starts with an initial shape
and splits the different facades into floors down to individual windows and orna-
ments. The limitation to simple splits was lifted by Miiller et al. [MWH'06] who
contribute the ‘repeat split’ rule and the adaptive scaling of rules. The proposed
CGA shape grammar was extended by Schwarz and Miiller [SM15] to prioritize
the shapes and enable direct access to shapes and the derivation tree. Both systems
are integrated into the CityEngine [Esr17], the commercial city planning toolchain
by Esri.

In order to overcome the manual definition of rules, Bekins and Aliaga. [BAOS]
propose Build-by-Numbers, a technique for the time-efficient design of buildings.
From a set of images, an initial textured 3D model is reconstructed. The user
is asked to subdivide the reconstructed mass model into different features, i.e.,
floors, facade, windows, doors, and decorations. The system analyses the var-
ious labels and automatically derives rules for the repetition and reorganization
of existing architectural elements. Their work is a very early approach to inverse
procedural modeling, i.e., the process of automatically determining the production
rules. Miiller et al. [MZWVGO07] focus on the derivation of a meaningful facade
hierarchy in order to overcome the manual definition and grouping of semanti-
cally similar architectural elements. Automatically deriving construction rules for
3D geometry was addressed by Bokeloh et al. [BWS10]. They derive construction
rules for building geometries by exploiting self-similarities and symmetries within
a given 3D model. For procedural editing of point clouds similar to the early work
of Bekins and Aliaga [BAO5] was studied by Demir et al. [DAB15]. For addi-
tional details about inverse procedural modeling techniques apart from buildings
we refer the interested reader to the recent tutorial of Aliaga et al. [ADBW16] that
provides an in-depth discussion of the state of the art.

In contrast to procedural algorithms, example-based techniques have also been
proposed for generating man-made objects and architectural structures. One of
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the first approaches was the model synthesis technique introduced by Merrell
[MerO7]. This technique draws ideas from texture synthesis literature (see Wei
et al. [WLKTO09] for a detailed overview). The algorithm expects as input a 3D
model decomposed into smaller pieces, that serve as building blocks. These can
be recombined or placed next to each other, guided by a set of Boolean functions
that encode adjacency rules. The model synthesis is realized by a labeling algo-
rithm that operates on a 3D lattice and assigns building block labels to each lattice
cell without violating the adjacency constraints. Merrell and Manocha [MMO08]
extended the model synthesis algorithm to work on a continuum instead of a grid.
The adjacency constraints are reformulated to operate on local neighborhoods.
Thus, a synthesized model, when viewed at a microscopic level, resembles the
style of the exemplar. Strictly speaking every local neighborhood within a synthe-
sized model needs to be present somewhere within the exemplar. In order to im-
prove the flexibility of the model synthesis technique, additional constraints were
added in Merrell and Manocha [MMO09] to capture the intent of the user. In addi-
tion to the simple adjacency constraint [Mer07, MMOS], algebraic constraints and
connectivity constraints can be specified to control the output of the algorithm and
to produce a large variety of output models from one or multiple input exemplars.
A generalization of the model synthesis algorithm [Mer(7] towards tile patterns
was proposed by Yeh et al. [YBY " 13]. Their approach is inspired by MC-SAT, a
technique that mixes Markov Chain Monte Carlo (MCMC) techniques with satis-
fiability problems and models a pattern as a probabilistic graphical model called
factor graph. Using such a model enables to integrate adjacency constraints with
more than two model pieces into the synthesis step.

The more complex the examples that should be synthesized or re-targeted, the
more complex is the challenge of capturing the intent of the user. The task gets
even more complicated when irregularities are present that need to be handled by
the synthesis algorithm. Re-synthesis of irregular structures on the special case of
irregular buildings is proposed by Lin et al. [LCOZ™ 11]. The model is transferred
to a more abstract representation of axis-aligned bounding boxes that envelope ge-
ometric details at multiple levels. These boxes are used to construct a hierarchy to
capture large-scale structures. Within these bounding boxes, dominant structures
are identified by the computation of longest sequences sharing similar attributes.
Resizing a model is then iteratively achieved by repeating or scaling bounding
boxes that are captured by dominant sequences. A similar approach was pre-
sented by Wu e al. [WLW™14]. Instead of a manual decomposition of the input
model, a set of principal re-targeting directions is derived. In addition, descrip-
tors to measure self-similarities are computed. Resizing a model is achieved by
replication of the original model inside a 3D grid. Thus multiple model parts are
assigned to each cell that are differentiated by a unique label. Similar to Merrell
[Mer(07] a labeling problem is solved. Instead of the model synthesis algorithm, a
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multi-label graph cut optimization technique is used to compute a smooth label-
ing within a 3D grid. The final labels assigned to the individual grid cells are used
to reconstruct the resized 3D model from different parts of the replicated model
instances.
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CHAPTER 3

Efficient Optimization with Multiple
Resource Constraints

In this chapter of the work at hand, we describe an efficient algorithm for example-
based content generation. Its heart is a novel multi-constrained optimization tech-
nique, which generalizes the resource constraint shortest path (RCSP) problem in
order to produce a portfolio of multiple optimal solutions. The content of this
chapter is based on the peer-reviewed publication

Stefan Hartmann, Elena Trunz, Bjorn Kriiger, Reinhard Klein, and
Matthias B. Hullin. Efficient multi-constrained optimization for example-
based synthesis. The Visual Computer / Proc. Computer Graphics
International (CGI 2015), 31(6-8):893-904, June 2015.

3.1 Motivation

An important sub-class of problems that occurs in virtually all fields of multi-
media computing: the arrangement of atomic elements from a database into a
sequence that is optimal under some problem-specific objectives and constraints.
Whether it be animation sequences, architectural models, audio chunks, video
snippets, many types of media content are composed of atomic elements along a
one-dimensional parameter domain. Concrete examples include duration or path
length of human motions, duration of audio and video sequences, building length,
or building height of individual architectural models. Examples for atomic build-
ing blocks used to compose different media types are single images, audio snip-
pets, collections of human motion snippets, image slices, or even building parts.
Typically, the various atomic elements carry multiple attributes and relations (tran-
sitions) to other elements that are encoded and stored inside a concrete element
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database. Possible transitions between the different elements form a graph that
can be traversed in order to produce novel content that is composed of multiple
atomic elements. However, a typical goal is to compute a sequence of elements
that is optimal according to an application specific objective function and in addi-
tion satisfies specific constraints such as length, element occurrence etc. Thus, it
is not enough to compute arbitrary paths through the mentioned graph, but we are
strongly interested in computing one or multiple paths that minimize the objective
function, while none of the requested constraints is violated. In this chapter, we
propose to formulate the resource-constrained synthesis of new sequences from
atomic elements as a general resource-constrained k-shortest path (RCKSP) prob-
lem. For the kK = 1 case (RCSP), it has been shown that it abstracts some problems
in graphics well. The more general task of finding multiple optimal solutions,
on the other hand, has received much less attention although it corresponds to
problems where a portfolio of candidate solutions is desired. Both features are of
great relevance to content generation problems in computer graphics. A unique
property of our approach and the key to its superior performance is that the graph
traversal is guided by resource use, rather than the cost function as is usually the
case. This turns out to be a significant advantage if the number of elements in the
database is large. In addition, our technique is capable of meeting an extended
set of goals: (a) first, to satisfy multiple constraints which might be intervals; (b)
second, to find k guaranteed optimal solutions; (c) third, generalized structures
where elements can have more than two neighbors such as t-junctions.

3.2 Resource-Constrained Sequences

In the following, we formulate the problem of computing optimal sequences sub-
ject to multiple constraints (equality and interval) with the focus on computing
a set of k£ optimal solutions. In addition, we will compare the different features
of other state of the art algorithms (see section 2.3) in solving the special case of
k=1 (see Table 3.1).

Optimal Sequences as Resource-Constrained Shortest Paths. Assume a
database D containing n elements. Allowing multiple occurrences of the same
element, we compose a sequence X of elements from D. Every time element e
is used, it consumes a certain amount of resources as given by its non-negative
resource usage vector r(e) = (ro,...,r,)(e), m being the number of different re-
sources in our budget. The cost of placing e; immediately before e; in a sequence
is given by the transition cost function &(e;,e;) > 0. The total resource usage, R,
and the total transition cost, A, for a sequence X = (ey,...,e,) of length p add up as
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)4 p—1
R(X) = Zr(e,-) and A(X) = Z O(ej eiry). (3.1)
i=1 i=1
Let . be the set of all feasible sequences that consume resources within certain
given bounds,

Xe={X € x| RMM < Ri(X) < RPNV i=1,...m},

where ¥ is the set of all sequences of elements of D. Our objective now is to find
x(])‘pt = {X,,lp,, e ,X(’fpt}, the set of k solutions, each of which is both feasible, i.e.,
it satisfies the user defined resource constraints, and optimal with respect to the
total transition cost after exclusion of known better solutions. In other words, the
j"-best solution X/ p can be defined recursively as follows:

X({pt = argmin A(X) (3.2)

j—1
XE%('\{X(}I)I‘S' . ~7X({pt }

The constraint vectors R™" = (RMM __ RMIN) and RM* may be a mix of inte-
gers and real values, all non-negative. Their meaning depends on the application
and can include the length of a generated sequence as well as other parameters
(“minimum number of balconies on city block” or “number of jumps in motion
sequence”). For now, we note the presence of both lower and upper bounds,
which define an interval or an equality constraint if set to the same value (e.g.,
“total duration of media playlist in seconds”). Following the example of Lefeb-
vre et al. [LHL10], we interpret the above configuration as a graph. The nodes
of the graph are elements e from database D consuming a fixed resource usage
vector r(e). The transition between subsequent elements is described by the cost
0 (e, e;) that represents the weight of the directed edge from state e; to state e;.
The problem of minimizing the cost of a sequence as per Eq. 3.2 then immedi-
ately translates to computing the shortest path through the graph under the given
resource constraints, a class of problem that has been investigated in operations
research [RMS85, Gar(09, Turl2].
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Method Respurce Key points 15D
constraints / type / type
Safonova[SHO7] None Yes/Class No
Lo[LZ10] None Yes/Class No
Lefebvre[LHL10] One/Equality Yes/Element | No
Wenner[ WBSH™13] One/Equality Yes/Class No
Zhou[ZL1.13] One/Equality No No
Ribeiro[RM85] One/Interval No No
Ziegelmann[Zie(04] Multiple/Upper No No
Zhu[ZW12] Multiple/Upper No No
Turner[Turl2] Multiple/Equality No No
Zhou [Z]JL14] Two/Equality No No
This work Multiple/Interval | Yes/Class Yes

Table 3.1: A detailed comparison of the algorithmic features that are supported
by algorithms that were discussed in detail in section 2.3. The feature
comparison includes the type of constraints the different algorithms
support, the handling of keypoint elements, i.e., the enforced place-
ment of a specific element at a certain position and the support of 1.5D
structures. These type of structures allows using elements that can be
connected with more than two other elements. This is especially nec-
essary when the provided input that should be serialized is similar to a
tree (see Figure 3.3).

3.3 Efficient Resource-Constrained Sequence Opti-
mization

3.3.1 Single Resource-Constrained Optimization

In this section, we describe and formulate a multi-constrained optimization ap-
proach for example-based sequence generation. The heart of our approach is an
intermediate graph representation, which serves two major purposes. First, it
transforms the original constrained problem into an unconstrained one. Second,
it spans the search space, containing only feasible solutions, i.e., it only contains
solutions that satisfy the constraints independent from the transition cost. To this
end, we introduce discrete resource consumption levels (henceforth simply re-
ferred to as level [) that group subsequences of elements by their resource usage
and impose a total order on the intermediate graph. After the intermediate graph
has been built, the transitions costs are computed and assigned to the edges con-
necting consecutive elements. Then we have several options. First, we can com-
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pute the optimal solution according to the transition cost, using the well-known
shortest path algorithm, e.g., Dijkstra’s algorithm. Second, we can also compute a
larger class of k solutions including the optimal one and k — 1 other near-optimal
solutions, sorted by increasing total transition cost. Such a set of solutions can be
computed using algorithms for computing k-shortest paths, for example, the one
proposed by Eppstein [Epp94] .

Single-Resource Case. Let us first discuss the construction of the intermediate
graph for problems that underlie a single constraint, leaving us with a scalar re-
source budget. The satisfaction of equality constraints is a major strength of our
algorithm, so we will for now focus on this type of constraint. The intermediate
graph is directed and acyclic, properties achieved by unrolling re-occurrences of
elements in a sequence. Its nodes are represented as N(e,[,r“), where e denotes
an element from the database, / represents the level on which the node will be
placed, and r¢ tracks the already allocated resource so far, including the element’s
own r(e). Construction of the intermediate graph happens in three stages: initial-
ization, growing, and pruning.

Initialization: Before the actual intermediate graph is built, first the number of
levels L is determined from the single constraint R. In our setting, a constraint rep-
resents an application specific attribute A that needs to be satisfied by all feasible
solution sequences in the set y.. The number of levels L = R/GCD is determined
by dividing R by the greatest common divisor (GCD) that the exemplars of D
share for that specific attribute. The value of R is here derived from the specified
maximum allowed resource consumption R™**. For real-valued constraints, if no
GCD exists, we rescale/round the elements’ resource usage values so that a GCD
can be computed. In this way, the real-valued resource is transformed into one that
consumes integer values and can be used in the synthesis setting. We perform this
as a preprocessing step and store the result for each element e € D. For the sake of
simplicity, let us assume GCD = 1 for the time being. Now, elements e; € D that
are allowed to be placed at the front and at the back of the solution sequences ) are
inserted into the yet empty graph at levels [y = 0 and [, = L — r°(e;). Their nodes
are set to carry the information N(e;,lr,r°(e;)) for front elements and N(e;, 1, L)
for elements at the back, and they are connected by zero-cost edges from a source
node s (front elements) or to a sink node ¢ (back elements). The level can now be
interpreted as a position between source and sink.

Graph Growing: We grow the graph in a bi-directional fashion by alternating
between forward expansion from the source s (listed in Function 1) and backward
expansion from the sink node 7, until a stopping criterion is met. In order to make
the growing process easy to understand, the pseudo code presents the procedure in
its simplest form. In the following, we explain its efficient implementation using
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for all nodes v; = (e,ly,r°(e)) do
for all possible successors ey, of e do
Lsuce < Lt + r(e)Q
rc(esucc) — rc(e) + r(esucc);
if Lyyce < lis and r¢(egyec) < L then
Vo = (esucm Lsuce, rc(esucc));
if node v, not exists then
create node v»;
end if
create edge (vi,v2,6(e, €suce));
end if
end for
end for

Function 1: Construction of the intermediate graph (forward step)

two separate priority queues Qr and Q),, one for each expansion direction.

The fundamental difference of our algorithm when compared to other graph search
algorithms is that the nodes in Q¢ and in Q, are sorted by the current resource con-
sumption instead of the path cost. More specifically, Qs will prioritize nodes with
the least resource consumption ¢, while Qj, processes with the highest consump-
tion r€ first.

Without loss of generality, we start explaining the forward step. In order to expand
the graph towards ¢, we extract the current top node Ny(ey,lr,r(ef)) from Qy,
generate all possible successor nodes N'(esuce, Lsuce, € (€suce) ), and connect them
with an edge of cost §(e f,esucc). The level Iy, of node N’ is computed from
the current top element of Q ¢, namely Iy, = Iy + r(e f), and the overall resource
consumption is increased by the successor’s usage, r°(esucc) = r‘(er) + r(€succ)-
The backward expansion works along the same line, producing nodes that precede
those currently stored in Q. Each time this step is executed, the current top node
Ny (ep,lp,r¢(ep) of Oy is extracted and predecessor nodes N'(€pred; Lpred, (e pred))
are generated, adding edges with cost 0(epeq,€p). Here, €04 is an element from
possible predecessors of e, and its node level [,,.q = [ — r(ep,ed) is computed
by simply subtracting the resource usage r(e,.q) of the predecessor element e,,.4
from the current node level /,. The resource consumption so far is updated accord-
ingly, r“(eprea) = r°(ep) —r(ep). In case if anode N'(e,,r¢(e)) already exists only
an edge with assigned cost 0 is inserted into the graph (see Function 1). We label
nodes by the direction in which they were created (forward, backward) and restrict
both steps to only expand nodes that were created from the particular expansion
step. The algorithm terminates when the level of the current top node /; overlaps
with the level [, of the current top element in Qp, or if both queues are empty. We
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give a detailed complexity analysis in section 3.4. There, we prove that the worst-
case complexity of the proposed algorithm for a single constraint is in &'(Ldn),
where n denotes the number of elements in the database and d is the maximum
count of concatenation neighbors determined across all elements.

Pruning. In order to reduce the nodes that might be traversed during the op-
timization, we apply two different pruning strategies: overflow/underflow prun-
ing and dead-end pruning. The first strategy focuses on detecting resource over-
flows/underflows. Thus nodes that would produce a resource overflow/underflow
will not be created during the expansion step, as they would not be part of any
feasible solution at all. The second strategy scans the graph for existing nodes
that do not have any successor or predecessor nodes, i.e., dead-end nodes. These
nodes would also not become part of any solution. Thus, we remove them from
the intermediate graph too.

3.3.2 Extension to Multiple Resource Constraints

We now extend the single-resource solution to satisfy multiple equality constraints
simultaneously. First, we revert from using the scalar resource usage r to the
vector r, ending up with a node definition of N(e,l,r{(e)). When incorporating
multiple constraints, the total order implicitly given by the single scalar resource
consumption is lost. In order to re-establish a total order, the generated nodes are
inserted lexicographically into the queues using their attached vectors tracking
the currently consumed resources r¢(e)). During the initialization, the number of
levels is determined over the sum of all constraints (L = ZT:I R;/GCDj), where
GCDj is the greatest common divisor that the exemplars of D share for the at-
tribute j. The levels of the nodes are now computed by adding up the resources,
arriving at [y = I + Y00 rl-(ef) for the forward step. To keep track of con-
sumption of each individual resource, the currently consumed resource vector r¢
is updated as r(eg.cc) = r(ef) +r(egucc). Just as before, for the backward ex-
pansion step, we subtract the resources accordingly. Unlike in the single-resource
case, multiple instances of an element may occur on a level, since different com-
binations of resources may result in the same sum. However, although multiple
instances of a specific element might be placed on the same level, they can still be
distinguished from the other instances, because of their unique vector r°(e) track-
ing the resources consumed until that element instance so far. Thus a new node is
only generated if no node having the unique node signature N(e,/,r(e)) already
exists. If such a node N(e,,r¢(e)) already exists, only an edge is inserted. Fur-
ther, we note that the relative scales of the resource components, and their order
in the vector, have no influence on the final outcome of the algorithm. They do,
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however, affect the intermediate graph, the order in which the solutions are gen-
erated, and possibly the memory or runtime requirement of our algorithm. The
construction procedure for a small example that only contains three elements is
illustrated in Figure 3.1.
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additional local X
constraints

global constraints

Figure 3.2: Structure is a set of constraints defined on the primary parameter do-
main, x. Here, the key point k; divides the structure S into substruc-
tures S » that may each be constrained differently.

3.3.3 Interval Constraints

Our method is also able to handle the request for interval constraints. In order
to support such constraints, the graph construction procedure does not need to
be changed. The only step that needs to be adapted is the second part of the
initialization, which was described in Section 3.3.1. Instead of a single end level L,
we now have an interval between L,,;, and L,,,,. Nodes for the elements allowed
to be placed at the back of the solution sequences are then created for all levels
from L, to L,,.x. We observe that, despite the backward graph being expanded
from a multitude of root nodes, in practice, this bloats the graph less severely than
expected. After all, during the expansion step, elements already present on a level
can be re-used and will not need to be duplicated.

3.3.4 Extension to Higher Order Sequences

A sequence in the sense of this chapter is a succession of elements, which we
associate with an arrangement along a primary parameter x, such as length of an
object or time to move from a start point of a curve to the endpoint of that curve.
Our algorithm treats this primary parameter as one out of several resources of
which each element uses different amounts. Hence, if a certain time or length
needs to be filled, the resulting sequence could consist of many short elements
or just a few long elements. In order to give the user precise control over the
synthesis, we use the concept of structure, which we define in a narrower sense
than usual. The structure is the entirety of constraints on the synthesis.

It is specified by the user at and in between key points that live on the primary
parameter domain of the content modality. For instance, the structure of an ani-
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Primary structure 5.
S1— ki — So— ko — S5 S3

" Secondary structures
{kl — S4, k2 — 55}

S

s, e

Merged structure:
Sl—>k‘1—)S4—>]€1—>Sg—>k2—)55—>k2—>53

Figure 3.3: We decompose binary tree structures by recursively extracting the
longest paths from the structure graph.

mation might contain the specification, “the actor should jump at time 5 seconds”.
It is not until the final sequence has been assembled that this key point will cor-
respond to some i element that happens to end up at that particular time. The
connection between structure and the sequence is, therefore, an implicit one. In
this section, we will describe how our algorithm handles structural constraints in
terms of key points, and how they can be used to assemble generalized (“1.5D”)
structures.

Key points divide an 1D structure into a set of substructures S ={S1,...,Sn+1},
where m is the number of key points (see Fig. 3.2). They may further enforce
the localized occurrence of a specific element class, which is a harder task than
just enforcing a particular element because it means that adjacent substructures
cannot be treated independently of each other. Additional local constraints may
be specified for the domain covered by each of the substructures S; € S. For each
Si, the algorithm constructs a subgraph G;, where elements placed at key points
serving as front or back elements. All subgraphs G; are now merged into the
"global’ intermediate graph G, while the front elements of Sy are connected by
zero-cost edges to the source node s and the back elements of S, connected by
zero-cost edges to the sink node 7.

1.5D Synthesis. Our framework described so far can also be used to synthesize
structures in the shape of a binary tree or closed curves, while still guaranteeing
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———

Secondary structure:
k’l — 54 — k‘l

A)

...........

——t———l

B) Primary structure: s — S; — ky — So — ko — S3 — t

Figure 3.4: Merging the subgraph of a child structure into its parent.

A)

Figure 3.5: Closed curves are split at a key point that are cloned, thus, serving as
start and end element of a sequence.
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a globally optimal result. To allow branching, we introduce a special type of key
point with three neighboring elements that represent the branching elements in-
side a binary tree. The major challenge here is to transform the tree into a 1D
sequence and ensure the uniqueness of the elements that will end up being placed
at key points. We solve this by performing an iterative longest path search starting
from the root node of the initial tree (Figure 3.3). We remove the path edges from
the tree and store them as the primary structure. From the remaining connected
components, we extract a set of secondary structures, and so on, until no more
connected components are found. We obtain a hierarchical set of structures that
will be utilized to construct the intermediate graph. The actual graph construction
starts with the primary structure that contains at least one key point, that subdi-
vides it into multiple substructures. We first construct the initial graph for these
substructures as described above. For secondary and higher-order structures the
subgraph construction slightly differs, because by definition these structures start
with an element that has three possible neighbors. Setting up the subgraph of a
higher order structure might cause element ambiguities because the optimal ele-
ment starting this structure might be a different one than the one chosen in the
parent structure. To avoid such ambiguities, we construct separate graphs for each
element that is allowed to start this current structure. We recurse into child struc-
tures until we have a full set of subgraphs. In a final step, the child structures
need to be merged into the graph of its parent structure. Here, we proceed as il-
lustrated in Figure 3.4. Assume we have created separate graphs for substructure
ki — S4, each starting with a different element e; with more than two neighbors.
In the parent structure, this corresponds to an element e/, of which we create a
virtual duplicate ef’ " that consumes zero resources and retains the outgoing edges
from the original. The outgoing edges of the original e/ are replaced by new
edges that connect to the front element of the substructure. Its back elements,
in turn, are linked back to ef " via zero-cost edges. This procedure allows us to
merge a child structure into the graph structure of its parent without causing ele-
ment ambiguities. At that point, the choice of a specific element (for instance, a
T-shaped part) will thus depend on all its neighbors, rather than just on the usual
two. Closed curves are treated similarly. Here, we simply split them at a key point
(Figure 3.5). The main difference to dead-end branches as described above, are
real costs associated with the edges that close the cycle. In case if a cycle and
t-junctions are present, we split and unroll the cycle at a key point and use the
unrolled cycle as primary structure. Then the remaining higher order structures
can be computed as described above.

41



CHAPTER 3. EFFICIENT OPTIMIZATION WITH MULTIPLE RESOURCE CONSTRAINTS

3.4 Complexity Analysis

In the following, we analyze the complexity of our algorithm for one resource R.
Let n denote the number of elements in a database and d denote the maximum
number of concatenation neighbors of an element. As we described in Section
3.3.1, the algorithm performs two expansion steps, forward and backward. Each
step consists of two nested for-loops. The outer for-loop is executed at most once
for each node on a current level. There are at most n nodes in each level since a
new node on a level is created at most once for each element of the database. The
inner for-loop is executed for each concatenation neighbor of the current outer
loop node, thus at most d times for each node of a level. Hence, the runtime of
each step is in the order of &'(dn). Since each step, including the initialization, is
executed at most once for each level, the overall runtime of the algorithm is in the
order of &(Ldn), where L is the number of levels. By definition L = =&~ thus

GCD>
the complexity of the presented algorithm is in the order of & (%dn).

3.5 Comparison and Analysis

Our technique requires a bit of effort, and it may seem to the reader as if existing,
possibly simpler, approaches should easily generalize to the RCKSP class of prob-
lems. We found that this is not the case—in fact, we only developed the proposed
algorithm after finding that the most promising existing technique, computing a
constraint shortest path, in the fashion of Lefebvre et al. [LHL10] is not capable of
computing multiple optimal solutions, cannot handle complex structures and suf-
fers from huge performance issues when multiple constraints are required and the
element database is large. Zhou et al. [ZJL14] use a dynamically growing table
instead of a graph. However, we found that such approaches cannot be extended
to reasonably deal with our larger set of goals, namely complex structures and
multiple optimal solutions.

We will use the remainder of this section to explain why we opted against using
any of the existing resource constrained shortest path algorithms such as the one
by Lefebvre et al. [LHL10], Zhou et al. [ZJL.14] or Turner [Tur12], which we will
summarize with the term constraint forward search. The “canonical” extension of
the constraint forward graph search technique introduces a notion of states, which
are identified by an element e and a vector of currently consumed resources r(e).
Each state also stores the current path cost. Starting from the source node, states
with minimal cost (as opposed to minimal resource consumption) are expanded
first until a state is reached that satisfies all the resource constraints. States that
violate any constraints are not expanded further as it is realized in our approach.
When a valid goal state is reached, the algorithm terminates and outputs the found
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optimal solution. This simple algorithm works because it relies on bounding the
states with the integer simplification as it is done by our method as well. However,
as it can be easily seen, this simple algorithm has several flaws and it is not useful
in our particular problem setting. First, this algorithm uses the cost in order to sort
or rank paths which are immediately explored next. This strategy, is known to be
very inefficient when used for RCSP problems in theory (see Ziegelmann [Zie04],
Handler et al. [HZ80] and Skiscim et al. [SG89]). The fundamental problem of
such an approach is that it lacks an explicit correlation between the total cost and
the feasibility of a solution in terms of resource constraints. Therefore, the number
of paths that need to be enumerated might be very high until the first optimal and
feasible solution is found. By enumerating states by cost, the algorithm is likely
to be misguided towards exploring cheap but infeasible paths first, which may
heavily affect its runtime.

A further gain in performance is attained using the proposed bidirectional search.
Although there are cost-oriented algorithms for bidirectional search such as the
approach of Lo and Zwicker[LZ10], in order to achieve competitive performance,
they require a carefully designed strategy to balance the growth of the forward and
backward search trees. In addition, such approaches are not capable of delivering
multiple optimal solutions. The outlined forward graph search technique would,
in principle, be able to find multiple solutions by running the algorithm multiple
times and suppressing edges from previous solutions. However, this implies that
the guarantee of optimality is lost for all solutions except the first one. For some
applications, however, the optimality of the generated solutions is of great impor-
tance; see, for example, Safonova and Hodgins [SHO7]. Finally, we are not aware
of any way how existing forward search techniques might be efficiently extended
towards globally optimal 1.5D or cyclic structures.
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CHAPTER 4

Example-based Road Network
Generation

4.1 Hierarchical Road Network Generation

4.1.1 Motivation

Existing approaches for urban modeling, whether procedural approaches, inverse
procedural approaches, or example-based approaches share one common idea:
They attempt to synthesize or reproduce visually convincing results by mimicking
the style of existing real-world examples.

Procedural approaches and inverse procedural approaches rely on a fixed or learned
rule set respectively; however, in both cases, the rules or the grammar represented
by them can be interpreted as an abstract representation of one style or multiple
styles found in the real world. Rule-based approaches have been used for the syn-
thesis of street networks [PM01, KMK12, FBG"16, BWK14, KM07, EBP*12].
The reader is referred to section 2.1, where a brief overview of existing road net-
work generators is discussed. In order to define these rules, grammars generally
exploit distinctive geometrical or structural relationships such as a grid or a ra-
dial based road patterns or grid-based facade layouts. Unfortunately, finding a
viable grammar is far from being trivial. For more complex structures such as city
layouts with complex structured road networks and a huge variety of individual
buildings, the use of a procedural method often requires an extensive amount of
manual work such as rule definition, parameter tuning, and modeling of custom
3D geometry.

In contrast to procedural approaches, captured or modeled examples in combi-
nation with custom tailored algorithms might be used for the content generation

45



CHAPTER 4. EXAMPLE-BASED ROAD NETWORK GENERATION

process. Methods that re-use existing content in order to synthesize novel con-
tent are called example-based approaches. In contrast to procedural approaches,
where diversity and style are encoded in rule sets, real-world exemplars encode
the diversity and the style found in the real world. Example-based approaches en-
capsulate the knowledge how these examples might be recombined to shape novel
content, either within a learned model or a custom-tailored algorithm. Such al-
gorithms have already been proposed for the synthesis of road networks [AVBOS,
NGDA16a] and even the synthesis of buildings or building like structures [BAOS,
Mer07, MMO09, LCOZ™ 11] several approaches can be found when reviewing the
literature (see section 2.1 and section 2.3) for additional details.

Example-based approaches typically require only a small amount of user inter-
action, 1.e., a few sketches or scribbles in combination with the selection of an
example database are enough to steer the custom-tailored algorithm. This sig-
nificantly reduces the user interaction with the example-based system and pro-
vides a very flat learning curve when compared to procedural approaches, where
rule sets need to be defined, and a large set of parameters need to be correctly
set in order to produce the desired result. Instead, all relevant information and
features are extracted from the exemplars and the user input. With emerging geo-
graphical information system (GIS) repositories such as EarthExplorer [Earl7] or
OpenStreetMap [Opel7a] publicly available high-quality road network data and
cadastre data is available that can be used to feed example-based urban modeling
techniques with a nearly infinite amount exemplars.

However, even with a significant amount of high-quality example data at hand,
the creation of urban layouts remains a challenging task. The major reason is that
there is no a-priori notion of style and semantics that can turn a given user input
into a plausible city layout incorporating both streets and buildings. In this part of
this thesis, we make the fundamental assumption that fragments within existing
city layouts represent the look of cities locally. Such a fragment can be seen as a
continuous region within a city similar to a district. It may contain other streets
and information about the street topology, building footprints, topographic relief,
and even semantic information about land use and building density. Naturally,
larger districts are subdivided by roads into smaller regions that are themselves
subdivided by even minor roads. At the very end of that hierarchy regions com-
pletely enclosed by roads - the city blocks - containing building footprints and
dead-end roads are left over.

The approach for synthesizing a new urban layout, proposed in here, exploits the
described hierarchy and includes a novel hierarchical fragment based algorithm
for synthesizing street networks. The fragments are extracted from example city
maps by a hierarchical decomposition of the road network in a first step. A novel
road network is generated from sketched arterial streets by applying a recursive
warping-based fragment insertion scheme. In this section, we will focus on the
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synthesis of road networks using the mentioned fragments. A technique that syn-
thesizes building footprint layouts and places 3D buildings models on top of them
is presented in section 5.1.

Since the internal structure of fragments - i.e., the placement of streets and foot-
prints - is preserved, a plausible style transfer from real cities to virtual cities is
possible. One advantage of using fragments is that they can be annotated with
additional semantic knowledge, e.g., street pattern, building density, land use or
building height distribution. Such semantics can then be incorporated into the
synthesis algorithm using appropriate weights to prefer specific characteristics.
Using examples from publicly available databases such as OpenStreetMap [Opel7al,
a plausible street network can be generated in a fully automated fashion without
the need for any expert knowledge. By simply choosing viable examples, that
contain the streets and street patterns of different cities, their individual style can
be easily transferred to a novel virtual road network.

The approach presented in here categorizes itself into works on example-based
urban modeling. Our approach differs from Aliaga et al. [AVBOS8] by the use of
closed fragments.These fragments are more flexible than the crossings used by
Aliaga as their use allows to maintain the road topology when copied or warped
to a target region. Thus, structures such as plazas and round-abouts are present in
the synthesized results. In addition, the fragments can be placed terrain-aware as
each fragment stores its topographic information where it was placed in the real
world. Furthermore, semantic attributes can be propagated from lower hierarchy
levels towards higher hierarchy levels and even allow the semantic placement of
buildings or even road patterns according to that information. The very end of the
hierarchy is able to store real-world building footprints which can be copied into
the city blocks to shape an initial building footprint layout including the semantics
of the transferred buildings. In contrast, Aliaga procedurally generates parcel
structures and fills them by copying image fragments from real-world satellite
imagery that typically have semantics attached and thus cannot be transferred to
the final layout.

Yang et al. [YWVW13] uses a hierarchical set of templates similar to our frag-
ments. Their templates are hand-made and heavily annotated in a preprocessing
step. In contrast, our fragments are extracted from real-world cities. This enables
access to a large diversity of different styles and to capture real-world semantics
found in real-world city districts.

Nishida et al. [NGDA 16a] use road patches from real road networks as templates.
In contrast to our closed fragments, they focus on growing a novel road network
by copying road patches in order to preserve special structures such as round-
abouts and plazas. In cases were no example-based growth can be performed,
they employ a procedural growing scheme similar to that of Aliaga et al. [AVB08]
is performed. In a final step, buildings and additional details are procedurally syn-
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thesized. The methods of Yang et al. [YWVW13] and Nishida et al. [NGDA16a]
contain several improvements that are not included in the proposed approach here.
However, the proposed approach was discussed by Mandt [Man11] in a rudimen-
tary version, was presented to our project partners in 2011, and then submitted
for review in 2012. At the time presented, our method could only be compared to
Aliaga [AVBO08] and, thus, the contribution should be related to their work.

Figure 4.1: A fragment that is part of the city of Bonn taken from OpenStreetMap
is shown here. Such a fragment locally represents the style of the street network
and the building layouts found in an individual district of a city. The red line
indicates the boundary of the fragment.

4.1.2 Hierarchical Fragment Construction

In this section, we discuss the preprocessing step for the decomposition of an ex-
ample city map into a set of hierarchical fragments. For all examples presented in
this work publicly available road networks retrieved from OpenStreetMap [Opel7a]
are used.

Hierarchical Example City Decomposition The goal is to exploit the natural
hierarchy of streets that is present in a multitude of real-world cities: Major streets
typically enclose urban districts, each having characteristic properties related to
land use, topography, street pattern, and building distribution. Minor streets sub-
divide these districts even further. This allows to decompose them into smaller
entities and in even finer and more localized parts. Our goal is to catch these char-
acteristics on different street levels and store them as semantic entities of cities
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called fragments that will be the basic building blocks for the road network synthe-
sis algorithm. In order to extract these fragments from given example city maps,
a hierarchical representation of the streets is necessary in the first place in order
to identify the fragments that live on different hierarchy levels. The concept of
street hierarchies, has previously been discussed in urban planning literature such
as Marshall [Mar04] and was also employed in the work of Aliaga et al. [AVBO0S]
to annotate individual intersections with a street hierarchy level. In our setting,
individual road segments will be annotated with a street level.

In order to form a street hierarchy, the streets of a given example city are inserted
into a graph G = (V,E) where V denote the vertices, i.c., street intersections of
the street network, and E denote the edges, i.e., piecewise linear street segments.
The hierarchical street labeling is performed from an initial set of arterial streets,
1.e., important streets that define the skeleton of the street network. On the one
hand, the set of arterial streets can be directly determined from the exemplar road
network in the case it provides meaningful annotations or street labels. On the
other hand, the labels can also be determined by computing a set of the longest
streets or a set of streets that have small direction changes within G. From the ini-
tial arterial street set, labels for the remaining streets in G are determined inspired
from stream order proposed by Holton [Hol94]. Such an ordering has been used to
determine a hierarchy in rivers and stream networks or the hierarchy of stems and
branches in trees. The arterial streets and their segments within the street graph
G will be labeled with street-level O to provide an initial label. Branching streets
of the currently processed street level will be labeled with the next higher level.
However, a street network of a city is typically a graph, rather than a tree and calls
for an adaption of the stream order to properly handle loops (cf. Figure 4.2). The
hierarchical labeling typically results in four to five street levels.

We use the hierarchical street representation in order to extract fragments that later
serve as building blocks for the synthesis step. Before, we continue explaining the
method for the fragment extraction we first define the notion of a fragment F;. A
fragment F; of street-level / is defined by a boundary Bf, and a set of inner/interior
streets I, Streets segments located on the boundary By, of the fragment F; are
labeled with street levels L € [0,1]. The streets that are part of I, are by definition
of street-level / + 1. The boundary Bp, is later used for the Fragment Retrieval
step, the interior streets are used in the Fragment Insertion step. Both steps are
explained in section 4.1.3. The computation of the regions that form fragments of
a specific street level / can be performed by computing minimal cycles within a
subset of G. To be more specific, the minimal cycles are computed by only taking
the street segments labeled with street-level / € [0,/] into account. The computed
minimal cycles form the boundary Bf, of the fragments of level [. A fragment
might enclose street segments with higher hierarchy levels than / 4+ 1. However,
only those street segments that have level [ 4 1 are extracted and stored in F; (cf.
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Figure 4.3). In cases where a fragment is not subdivided into smaller blocks, i.e.,
it only contains dead-end streets, the fragment represents a city block (see Figure
4.3). The fragment is then stored as a city block, and its interior streets are stored
along with it. Such fragments later produce dead-end streets in the final layout.

The extracted fragments F; are stored in a hierarchical fragment database and can
be combined with other fragments of same hierarchy level into street pattern style
collections (e.g. Grid, Irregular, Suburban, Mediterranean). Additionally, each
fragment stores a part of the relief from the example city it was extracted from.

=| Streetlevel 0 -
Streetlevel 1 -
Streetlevel 2

| Streetlevel 3

Figure 4.2: The hierarchical street representation illustrated using a part of an ex-
ample city. Streets of different hierarchy level are colored differently.
The gray shaded region represents the area of a fragment of level 0.

4.1.3 Hierarchical Synthesis of Street Networks

After describing the offline preprocessing step in Section 4.1.2 that creates the hi-
erarchical fragments from a given exemplar city map, we proceed in this section
with a detailed description of the novel hierarchical urban layout synthesis tech-
nique based on recursive fragment insertion. As our method requires user input in
order to synthesize a novel street network, we start with a brief explanation of the
required user input that is necessary.
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Fragment level 0
Fragment level 1
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Figure 4.3: The extracted level O fragment (cf. gray shaded area in Figure 4.2).
This fragment subdivides into a set of level 1 fragments containing
streets that may subdivide these fragments even further. Regions that
cannot be further subdivided will be stored as city blocks.

Sketch Based User Input.

The minimal input for the urban layout algorithm is at least a set of arterial streets
that need to be provided by a user. The user may sketch a set of arterial roads A =
{A1,..., A} using the sketch interface. Here, each arterial road A; is represented
as polyline A; = {py, ..., pn} thatis composed of n points p;, where each p; € U C
RR? is located in the urban layout U which is a closed subset of R%. The user may
provide optional input such, as a relief map R that contains the desired terrain
topography, or attributes maps that contain information about the street pattern
style, land use style or the architectural style in specific regions of the urban layout
as images. A representative user input that shows arterial street sketches, as well
as the topographic relief map, is shown in Figure 4.7.

Street Network Synthesis Algorithm.

The street network synthesis technique uses the k sketched arterial streets A and
constructs an initial street graph G = (V,E) where each of the edges is labeled
with street-level 0. The initial street graph G is used to compute a set of empty
fragments Foq that are used for the synthesis of the next higher street level 1. The
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boundary B EY of the fragments Foq is determined by the computation of minimal

cycles taking only street segments that have street level / = 0 assigned into ac-
count.

Hierarchical Synthesis of Street Networks \
‘ Level:i=i+1 I
Extract Query ‘ Fragment ‘ Fragment .
Fragments Retrieval Insertion
A £ e F; ‘

Figure 4.4: Our hierarchical street network synthesis pipeline

For the general case of street-level / the boundary of the fragments qu are the
minimal cycles of G taking only street segments labeled with [ € [0, /] into account.
The following steps are performed consecutively for each hierarchy level / starting
from level / = 0 as outlined in Function 2.

For each empty fragment qu of hierarchy level / extracted from the street graph
G, a fragment with similar characteristics, i.e., similar boundary shape and to-
pography, is retrieved from the fragment database. In case if any style maps are
provided, only candidates matching these specific criteria (e.g., street pattern, land
use) are considered for the fragment retrieval step.

The most similar candidate fragment F;" retrieved is incorporated for the insertion
into the empty fragment F[q. Here, the most similar fragment is determined by
the total matching cost that measures the deviation in shape and the deviation in
elevation (see paragraph Fragment Retrieval below for a detailed explanation).
The local street topology of the interior streets /pm and thus the street pattern
located within the candidate fragments is preserved by warping the interior streets
of the retrieved fragment F;" into qu. The same warping is performed for the
fragment topography. As the local topography of the fragments from real-world
cities differs in their elevation level a smooth transition, especially at the fragment
boundaries, needs to be ensured. In here, we ensure this smooth height transitions
at the fragment boundary of 7, by merging the relief of F" using Poisson Image
Interpolation introduced by Perez et al. [PGBO03].

The algorithm stops if no further fragments of hierarchy level / can be extracted
from the street graph G. After the algorithm has terminated a novel virtual road
network has been constructed that might be further enriched with building foot-
prints and 3D building models. Such a step is discussed in chapter 5. Addition-
ally, it proposes a re-synthesis of a building footprint layout for the case when the
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1: level <0
2: frags < GetFragments(level)
3: [ < Length(frags)
4: while/ > 0do
5: fori=1—1Ildo
6: style <— DetermineFragmentStyle( fragsli])
7: f < RetrieveMatchingFragment ( fragsli, style)
8: InsertFragment (f)
9: PropagateH eight Distribution(f)
10:  end for
11:  level + level +1
12:  frags < GetFragments(level)

13: [ < Length(frags)
14: end while

Function 2: The different steps performed by the hierarchical street network syn-
thesis algorithm.

shape difference between the query fragment and the matched candidate fragment
is large. For now, we continue with the retrieval of the candidate fragments.

Fragment Retrieval

In order to identify viable candidate fragments from the database we adopt the
Shape Context descriptor initially introduced by Belongie et al. [BMMO0] and ex-
tend the induced shape similarity measure by a cost term accounting for similarity
in height. Incorporating height is necessary because fragment characteristics, i.e.,
street topology, building distribution and land use in flat urban areas commonly
differ from those of hilly regions. A classic example is that a serpentine curve
typically shows a very different style when compared to ordinary road courses.

Given a set of points p; that are uniformly sampled from the outline of a 2D
shape, the Shape Context at a point p; characterizes the local neighborhood of
pi in terms of a histogram over the distances from p; to neighboring outline
points. Let the dissimilarity of two Shape Contexts of points p; and p; be de-
noted by Cf; To determine the distance between two shapes P = (py, .., p,) and
0 =(qi,--.-,qn) according to the sets of underlying Shape Contexts, a (cyclic) per-
mutation Pi(Q) = (g,i(1),...,qpi(n)) is computed, such that the resulting match-
ing costs C(P,Q) =Y" Cf o(i) &re minimized. The shape context is configured to
be rotation invariant, i.e., the log-polar histogram is aligned with the local tangent
computed at each sample point. In addition, we need the matching procedure to
respect the scale of the fragments. This is achieved by using the inter-point dis-
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tance inside the log-polar histogram without normalization by the mean distances
between all sample points. To incorporate additional fragment characteristics such
as topography or land use, we extend the original approach by additional match-
ing cost terms, such that the resulting land use, building density or building height
reads:

c(PO) =Y Y %Clsu (4.1)
i=1j=1

where y; € [0,1] and }_y; = 1 holds. C/ denotes the matching costs for the par-
ticular fragment characteristic and y; governs the balance between the individual
characteristics. In our setting, we incorporate shape and size as well as the relief.
Therefore, equation 4.1 simplifies to

c(PQ) =Y vC i +(1-1Chy (4.2)
i=1

where ij denotes the shape term and ClEj denotes the elevation term, taking the
relief of the fragments into account. Let F;, be a candidate fragment, that matches
the characteristics, shape and elevation, of the query fragment F,;. Then the costs
for Cl-Sj are computed as described by Belongie et al. [BMMOO0] utilizing uniform
samples on the fragment boundaries (see Figure 4.5).

To determine the costs for matching the different elevation levels Cg, we first
compute the height difference between boundary points p; and the centers of the
Shape Context bins (see Figure 4.5). Let E),; denote the height at p; and let E,’)in
denote the height at the center of Shape Context bin #,# = 1,...v. We store the
resulting slopes slhw in a descriptor SL(i) = (sl;,...,sl;y). The elevation
based costs for matching points p; and p; can now be defined as

o . A(SLD)SL)
! 2¢/(v)

where d(.) denotes the Euclidean distance. Note that as we mostly consider urban
terrain, where the local slope is not larger than 1, which ensures that CIEJ- € [0,1].
Using this differential height descriptor makes the cost independent of the actual
heights, and better reflects the fact that the slope is affecting streets more than
absolute heights.

The similarity measure for a pair of fragments is finally derived by minimizing
the total matching cost of all pair permutations C;;. This can be achieved by com-
puting the least cost path through the cost matrix C using Dynamic Time Warping
(DTW) [SC78]. Because conducting DTW between qu and all possible candi-
date fragments F;" would be too costly to compute, we first prune inappropriate

(4.3)
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Figure 4.5: Example fragment F; uniformly sampled along its boundary. The log-
polar histogram represents the Shape Context for a single sample point
pi (red) of F;. The histogram is aligned at the 0° bin to the center of
gravity (blue dot) of F;. The green dots illustrate the sample points
Epin, used to compute the slope between p; and Ej;, in the elevation
term CE; j

fragments of the current hierarchy level [/, by clustering their size, aspect ratio,
and relative elevation changes. In our experiments, we use the first c = 10 candi-
dates in order to compute the similarity measure between Fl.q and the F"’s using
Dynamic Time Warping.

Fragment Insertion

Once the most similar fragment has been retrieved from the database it is in-
serted into the synthesized street network. Naturally, position and orientation of
the closest match F;" differs from that of qu. Therefore, qu and F/" are rigidly
aligned using the correspondences between sample points on the boundaries of
F™ and qu. These correspondences can be easily extracted from the least cost
path through the cost matrix C that was previously computed within the fragment
retrieval step by the Dynamic Time Warping algorithm. During the insertion of
a matched candidate fragment, we would like to preserve the street pattern and
the street topology. Thus, we are able to transfer round-abouts, and intersection
configurations as they are present within the real world. Simply copying the inner
streets Ir; of the matched fragment F;" is inappropriate, because street connec-
tions towards the boundaries might not be established in Fl-q. In addition, the
street structure might get destroyed, because parts of the street segments would
be cut off. This results from individual streets located inside F;" might be located
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outside qu due to boundary shape differences. Instead of copying the interior
streets of F}", we warp them into F;" using Generalized Barycentric Coordinates
(GBC) introduced by Hormann [HF06]. In detail, we compute the barycentric
coordinates for each intersection located within F;" reusing the points that were
sampled along the fragment boundary and were used for computing the Shape
Context descriptors from the fragment retrieval step. The final positions of the
intersections located inside qu are computed using the sample points of qu and
the point-to-point correspondences derived from the least cost path through the
cost matrix C. The same warping approach is employed to transfer the relief of
the fragment F;" into the height-field of the urban layout. Generally, the relief of
the matched fragment F;" is located on a different elevation layer. Just warping
the relief is not enough, because unpleasant discontinuities would be visible in the
final height-field. Smooth transitions between fragment boundaries are ensured
by propagating the gradient field of the relief into the height-field by employing
Poisson Image Editing introduced by Perez et al. [PGB03]. The main advantage
of the warping approach is that the local topology of the street segments of F;" and
therefore the street pattern is preserved. Another advantage is that the relief of the
matched fragment is smoothly transferred into the current state of the topography
map.

4.1.4 Results

The effectiveness of the road network generation algorithms was evaluated for a
multitude of different challenging use cases. These include pure street network
generation, to the generation of complex urban layouts that show a variety of
different street patterns.

The ability to retrieve and identify similar fragments is of fundamental importance
for successfully synthesizing plausible street and building footprint layouts. The
first test we conducted is the reproduction of a small part of the city of Bonn
shown in Figure 4.1.

The result of this experiment is illustrated in Figure 4.6. It shows that the fragment
retrieval is able to reproduce the look of a given city district from the respective
arterial streets and a fragment database containing fragments of a complete city.
For this example, we used a database containing the fragments of the city of Bonn.
The sketched boundary highlighted in red and the underlying terrain information
were expressive enough that our method is able to re-synthesize the street patterns
found in the district shown in Figure 4.1. In addition, we synthesized building
footprint arrangements using the technique showcased in section 5.1.

Figure 4.7 and 4.8 show a synthesized road network for which only suburban
regions extracted from the city of Boston were used. The curvy street layout com-
monly found in suburban regions is faithfully reproduced. However, we can notice
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Figure 4.6: The reproduced look of a district of a real-world example city: Red
sketched arterial streets serve as input. The recursive fragment synthesis algorithm
faithfully reproduces the look of the region shown in Figure 4.1. Notice that even
the style of building footprint layout is similar when compared to the original
layout. The 3D building models were placed using the technique presented in
section 5.1

that in specific regions the streets are unduly warped. This is a direct consequence
of large shape differences between the query and candidate fragments. Here, the
used warping technique introduces heavy distortions that locally produce road
courses that look implausible. Another property of rural regions is a sparse dis-
tribution of buildings within the city blocks. We used the technique proposed in
section 5.1 in order to transfer the building footprint layout from suburban frag-
ments extracted from the city of Boston to the synthesized road network. The
result shows that our approach is able to reproduce the sparse building footprint
distributions, that are commonly found in suburban regions, within the virtual city
layout.

As discussed in Section 4.1.3 there is a relationship between the topography and
the street patterns that occur in different regions. The presence of steeper slopes
within the terrain topography should affect the synthesized street pattern in such
areas. A synthesized result using our approach is depicted in Figure 4.9, were we
used fragments from Kopenhagen (DK) and San Fransico (USA, CA). This result
illustrates that our method is able to adapt the style of the street pattern according
to the actual terrain. Hence, this leads to more curvy street pattern appearance in
hilly areas, while in regions dominated by flat ground, irregular streets patterns
from the fragment database of Kopenhagen are selected.

One of the strengths of our approach is that style of both streets and buildings can
be easily controlled by user defined maps. Figure 4.10 shows the result of mixing a

57



CHAPTER 4. EXAMPLE-BASED ROAD NETWORK GENERATION

Figure 4.7: A sketched arterial road network provided by the user

Figure 4.8: A synthesized urban layout that was generated using fragments ex-
tracted from the suburban area from the city of Boston NY. Notice the style of the
distinctive style of the street network mostly occurring in suburban areas of US
cities is preserved.

grid-based street layout, typical for North American metropolises, with irregular
street patterns commonly found in European cities. Comparing statistics based
on fragment aspect ratio and fragment area for both, example and synthesized
road networks clearly indicates that style transfer is effective (see Figure 4.11 and
4.12).
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Figure 4.9: Topography Example: The example was generated using a sample
from San Francisco (Mount Davidson Park, Mount Sutro) and Kopen-
hagen. In the area enclosed by the red polygon, fragments from San
Francisco were chosen because of the similar topography distribution.
Notice that in this hilly area, the street pattern style differs drastically
from the street pattern style in other parts in the urban layout.

4.1.5 Analysis and Comparison

Existing methods are also able to produce detailed urban layouts that consist of
complex street networks and building footprint layouts. The method of Yang et
al. [YWVW13] shares the idea of using hierarchical building blocks. However,
in contrast to our real-world fragments, they rely on manually designed templates
that capture common subdivision patterns found in suburban regions. The number
of annotations necessary to produce such templates might be cumbersome when
other street patterns should be integrated. Therefore, an automatic approach that
extracts templates from real-world data as we did enables access to a large variety
of street patterns. Compared to Aliaga et al. [AVBO0S] the use of templates allows
the preservation of topology structures such as roundabouts and plazas as it was
confirmed by the more recent work of Nishida et al.[NGDA16a]. The use of
closed templates enables the propagation of semantics and urban structures such
as footprints to different hierarchy levels, that is more difficult to achieve when
“open’ templates are used as done by Nishida.

The integration of the topographic information allows the integration of additional
semantics, namely, the constraint placement of slope specific road structures (see
Figure 4.9). However, the placement strongly depends on the variety of different
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Figure 4.10: The resulting street network was synthesized using fragments from
the city of Kopenhagen (irregular street pattern) and from Phoenix
(grid) pattern. The street network contains 883 city blocks, and the
whole street length is 532 km.

templates that are present within the database. Having too few templates, directly
result in recognizable distortions introduced by warping, and repeated insertion of
one or multiple fragments. When the number of templates is large, the probability
of finding a template with a moderate shape difference increases. Thus, the dis-
tortions that might affect the street layout within a fragment might be neglected.

4.1.6 Limitations

We identified several limitations of the proposed road network synthesis tech-
nique, that will be discussed in the following. The current approach performs the
recursive insertion strategy for each fragment individually. This strategy, however,
limits the creation of street connections between neighboring fragments. These
inter-fragment connections are especially necessary for improved traffic flow and
efficient movement within the street network. In the presented approach, these
connections are established by luck, and no guarantee can be given that larger
structures will be formed on higher hierarchy levels.

The number of fragments that can be extracted on the different levels strongly de-
pends on arterial streets that are used to compute the hierarchical street labeling.
Typically, only a few fragments can be extracted on lower hierarchy levels when
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Figure 4.11: The illustrated histogram shows the distribution of the fragment area
within the synthesized road network and the fragments that chosen
as the best match during the fragment retrieval.
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Figure 4.12: The illustrated histogram shows the distribution of the fragment as-
pect ratio within the synthesized road network and the fragments that
were chosen as the best match during the fragment retrieval.
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compared to the number of fragments that can be computed on higher hierarchy
levels. For the synthesized road network, this will result on a recognizable re-
peated subdivision pattern on lower hierarchy levels, because the same fragment
might be multiple times the best match. This effect can be alleviated by choosing
a random fragment among the n best matches; however, in combination with the
risk of an increased shape difference and thus unpleasant warping artifacts.

The number of fragments available within the database also has a reasonable ef-
fect on the quality of the final layout. When a small number of fragments is
available, the probability that a suitable fragment with only a small shape differ-
ent is available is typically very small. Thus, the shape difference between the
query fragment and the best-matched fragment will be large. When the streets
are transferred using the generalized barycentric coordinates, the interior streets
are extensively warped especially at the boundary. This effect intensifies when
additional attributes such as topography, land use, or other custom types should
be incorporated into the street network generation process. In rare cases, warped
intersections might be located outside the target domain. This might happen when
the target domain has an extremely concave shape. Such cases need to be detected
and instead of inserting a fragment with a completely different shape. A fall back
that procedurally splits the domain might help to overcome such defects.

4.2 Road Network Generation with Generative Adver-
sarial Networks (GANSs)

In this chapter, a novel example-based approach for road network generation using
a recently introduced deep learning technique is described. The content is based
on the peer-reviewed publication

Stefan Hartmann, Michael Weinmann, Raoul Wessel, and Reinhard
Klein. Streetgan: Towards road network synthesis with generative ad-
versarial networks. In International Conference on Computer Graph-
ics, Visualization and Computer Vision, June 2017.

This chapter contains text parts of the mentioned publication that were copied
without further modification. These text parts are highlighted in gray.

4.2.1 Motivation

Existing road network generation algorithms use either procedural approaches
[PMO1, BWK14, FBG"16] or example-based approaches [AVB08, YWVW13,
NGDA16a]. While the first rely on rules or re-writing systems, example-based ap-
proaches use custom-tailored algorithms that reshuffle, recombine, and bend the
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content in order to statistically and perceptually match the style encoded within
the examples. When such algorithms are used for generating novel content, the
diversity and the realism strongly depends on the expressiveness of the rule sets
or the variations found in the exemplars.

With the explosive dissemination of deep learning techniques recently, generative
neural networks have shown tremendous potential for the automatic content gener-
ation. They have been used for texture synthesis [GEB15, LW16] or 3d shape and
model synthesis [NGDA ™ 16b, HKYM16, YARK15]. Especially with the inven-
tion of generative adversarial networks (GANs) [GPAM™ 14] a novel technique
has been proposed, that is able to implicitly learn the data-generating distribution
that was used to produce a set of exemplars.

In this chapter of the work at hand a novel example-based approach for road net-
work generation that leverages the potential of generative adversarial networks
(GANS) is proposed. We believe that GANSs are particularly well-suited for the
generation of novel content as they tend to learn the data-generating distribution
as stated above. Such a technique would provide different advantages when com-
pared to existing road network generation algorithms. First, it would be possible
to overcome the manual definition of rules that encode specific street patterns.
Second, tedious parameter tuning that is necessary to produce the desired output
would be superfluous. Third, the use of such a technique used in combination with
a custom-tailored algorithm might boost the variation of the generated results, be-
cause novel templates can be generated in order to augment real templates with
synthesized ones. To the best of our knowledge, no other method for road network
generation using a GAN approach has been published so far.

Before, we state our approach we, briefly review existing approaches for con-
tent generation that have recently proposed and that leverage deep learning tech-
niques. Yumer et al. [YARK135], enables intuitive exploration of high dimensional
parameter spaces. The high dimensional parameters of procedural models are cat-
egorized into shape categories and then compressed using an encoding-decoding
architecture. Novel shapes can be generated by feeding a low-dimensional seed
vector into the decoder which faithfully reproduces a parameter vector that can be
used to generate a shape of a specific category. Novel shapes can even be gener-
ated by interpolating the low-dimensional seed vector, allowing the intuitive ex-
ploration of the parameter space. Huang et al. [HKYM16] synthesize procedural
shapes from abstract hand-drawn sketches of objects. In their approach, they train
a neural network to learn a map between sketches and procedural model parame-
ters from a large set of synthetic line drawings. Novel shapes can be synthesized
by feeding a hand-drawn sketch to the network, which regresses the parameters
of a procedural model that closely matches the shape depicted within the user
sketch. Nishida et al. [NGDA™ 16b] follow the same line for the interactive design
of procedural building models. They train neural networks to classify sketches,
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drawn by a user, into categories of architectural elements, i.e., building mass, win-
dow, roof. In addition, they train individual neural networks that learn mappings
from individual sketches to corresponding parameter sets of procedural models
that produce a specific category of architectural elements. The user interactively
sketches architectural elements to construct a novel virtual building, while their
system first classifies the category of the drawn architectural element and subse-
quently regresses the parameters of the corresponding rule set.

Ritchie et al. [RTHG16] focus on controlling procedural algorithms using neural
networks. In particular, the neural network manipulates the next steps of the al-
gorithm based on the content generated so far. Apart from the approaches that
require the existence of procedural algorithms, pure image-based algorithms have
been investigated for the controlled content generation. Isola et al. [IZZE16] in-
vestigate GANs for transfer learning, i.e., they learn a mapping from one object
representation into another such as urban map to aerial image or sketch to im-
age. In other words, the output of the neural network is produced by providing
a condition as input. The theory for such conditional generative adversarial net-
works (CGANSs) can be found in Mirza et al. [MO14]. A significant advantage
of CGANS is that they are able to learn such a mapping without manual fea-
ture engineering. When GANs are used for image generation, the size of the
produced images is typically constraint to a specific output resolution, because
at a certain point within the network topology an inner product layer is used
[GPAM™ 14, RMC15]. In order to overcome this drawback, additional convolu-
tional blocks can be added to the network including layers to upsample the image
resolution. However, this calls for retraining of the network to learn the weights of
the added filter banks. To avoid this heavy computational step, it would be neces-
sary to eliminate the inner product layer and only use convolutional layers. Such
“fully’ convolutional generative adversarial networks were recently introduced by
Jetchev et al. [JBU16] in the context of texture synthesis. With their approach,
they are able to synthesize images of arbitrary size. In contrast to previous ap-
proaches where a d-dimensional seed was used to generate an image, Jetchev et
al. use d-dimensional vectors that are spatially arranged and thus represents a seed
that lives in R"*"*4_ where n denotes the spatial resolution. As the seed vectors
are spatially arranged, their technique is called Spatial GAN (SGAN) and can be
seen as an unrolled GAN technique. In order to evaluate GANSs for the synthesis
of road networks, it is crucial to synthesize road network patches of a varying
scale. Thus, a technique such as presented in Jetchev et al. [JBU16] seems to be
especially well-suited for the envisioned task. Therefore, we use it as the basis for
our example-based road network synthesis approach.

The previously discussed technique uses images for the training step. So far, all
modern deep learning framework rely on images served as input, especially when
convolutions are part of the network topology. Approaches that directly work on
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Figure 4.13: Our system is composed of two components. In an offline step, a
road network patch taken from a real-world city is rasterized into an
image. The rasterized road network is used to train a GAN, and the
generator weights are stored. In an online step, the trained model,
i.e., the generator weights, is used to synthesize road network varia-
tions from seeds that live in R”*"*¢ and are sampled from a simple
distribution. A graph is extracted from the produced image ready to
use in GIS applications.

Noise Image

geometry [BBL"17] or graphs [SSD™17] have been proposed recently. Because
of this, these methods are still at an early stage; therefore, we stitch to the well-
established image-based neural networks. In order to use street network graphs
in combination with generative adversarial networks (GANs) we designed a pre-
and post-processing step to successfully employ this learning technique. The pro-
posed content generation algorithm consists of three major components that are
presented in the following. The first component prepares and converts an input
road network into a binary image, where the pixel intensities encode the pres-
ence or absence of roads. The second component trains a generative adversarial
network (GAN) [GPAM™ 14] on image patches extracted from the prepared road
network image. The third step utilizes the GAN to synthesize arbitrary sized im-
ages that contain a rasterized road network. In order to use the produced road
network encoded in the image in GIS applications such as CityEngine [Esrl17],
we extract the road graph and post-process it in a final step. The results that
are shown in Section 4.2.5 illustrate that our approach is able to synthesize road
networks that are visually similar when compared to the original road network.
Moreover, they also faithfully reproduce road network properties like city block
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area, compactness and city block aspect ratio (see Section 4.2.5). A detailed sta-
tistical evaluation of the synthesized results shows that the major characteristics
and the style, present within the original network are maintained.

4.2.2 Method Overview

Digitized road networks are typically available in a vector-based representation,
i.e., roads are represented by a set of piecewise line segments. In order to suc-
cessfully apply a GAN to street network data, we developed three components to
approach this task (see Figure 4.13). In an offline step, a sample map from OSM
is transferred into the image domain using rasterization (see Section 4.2.4). The
produced image encodes the presence or absence of roads using pixel intensities,
i.e. we currently do not incorporate information about the road hierarchy into
the rasterized image. From such an image random patches of size w x h, where
w denotes the width of the patch and & the height of the patch respectively, are
extracted, that contain parts of the original road network, and serve as training
set for the GAN training (see Section 4.2.4). After training, novel road network
patches can be generated from d-dimensional vectors that are arranged spatially
into a volume z. The values of the individual d-dimensional vectors at each spa-
tial position are drawn from a simple distribution p,(z). The generator component
of the GANSs takes an input such z’s and transforms them into gray-scale images
x € R where w and & denotes the width and height of the produced image.
The produced images contain a road network that is encoded by pixel intensities.
The images are used in a post-processing step in order to extract a road graph
(see Section 4.2.4). We use the reconstructed graph representations of the street
network to conduct an in-depth evaluation of the synthesized networks. Our eval-
uation shows that the generated road networks share the characteristics and the
style, present within the original network. Moreover, it also shows that the GAN
faithfully reproduces road network properties like city block area, city block com-
pactness, and city block aspect ratio (see Section 4.2.5).

4.2.3 Review of Generative Adversarial Networks

Before outlining our approach in Section 4.2.4, we provide a brief overview of
generative adversarial networks (GANSs) that we apply to generate road networks.
GANS are a technique to learn a generative model based on concepts from game
theory. The key ingredients of GANSs are given by two players, a generator G and
a discriminator D. The generator is a function Gyo(z) : RY — R"*"*€ that takes
as input a vector z € R? sampled from a d-dimensional prior distribution p,(z)
such as a uniform distribution and uses the parameters 6(%) to transform it into a
sample image x’. The fabricated sample x’ = G(z) is an image x’ € R"*"*¢, where
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w and & denote its width and its height and ¢ denotes its channels. In contrast, the
discriminator D is a function Dgp(x) : R"*/*¢ — R that takes as input either an
image patch x from the training set or a fabricated image x’, and uses its parameters
6D to produce a scalar that represents the probability that the investigated sample
is an example x from training set, instead of a fabrication x’ produced by G. The
discriminator cost is accordingly given by

1

J(D) (G(D)a G(G)) = _EExwpdam(x) log(D(x))
1
B log(1- DY)

which is the standard cross-entropy for a binary classification problem. The dis-
criminator tries to minimize J(P) (G(D ), Q(G)) while it controls only the parameters
6(P), however, it also depends on the parameters 6(%) of the generator.

The term, E,_,,, [log(D(x)], measures the skill of D to distinguish fabricated
samples x’ from real ones x that are produced by the data-generating distribution
Pdata- In contrast, E,_, . [log(1 — D(x)] measures the skill of G to fabricate
examples, that are misclassified by D and thus considered as real examples. In the
previous terms, [E represents the expectation value of the /log-probability, which in
practice boils down to the arithmetic mean of the log-probabilities computed using
the samples of the current training iteration. The cost function of G is given by
J©G(eP) 9(G)) = _yDP)(9P) (%)) and its goal is to maximize D’s error on the
fabricated examples x’. As both cost functions follow different goals and compete
against each other, the underlying problem is described as a game between the
two players [GBC16, Gool6]. One strategy to solve the described problem is in
terms of a zero-sum game also called minimax game. The game is accordingly
described by the objective

argmin max —JP) (6P 9(9))
0(G) (D)

where —J(P >(9(D ), G(G)) represents the discriminator’s pay-off. The overall goal
of such a game is to minimize the possible loss for a worst case maximum loss.
In particular, this is realized by performing a minimization in an outer loop, while
performing a maximization in an inner loop. We refer the reader to a recent tutorial
by Goodfellow [Goo16] for additional details.

In practice, G and D are represented as neural networks and training them is sim-
ilar to finding the Nash equilibrium of the described minimax game played by G
and D. A Nash equilibrium in such a context can be described as a parameter
state (0(P), 6(9)) that is a local minimum of J(P) and a local minimum of J(%). In
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order to keep the problem tractable, G and D are trained in an alternating fashion
instead of using the nested loops as described above. Furthermore, G’s cost func-
tion J(9) (0P, 9(9)) is changed to — %EZNPZ(Z) log(D(x')). The term in the original
cost function —%EZNPZ(Z) log(1—D(x")) would lead to vanishing gradients during
the training, when D successfully rejects examples fabricated by G. For early
analysis of the vanishing gradient problem conducted by Hochreiter [Hoc91], we
refer the reader to his thesis. Instead of previously minimizing the log-probability
that the sample x’ is classified as fabricated, the new goal of the generator G is
now to maximize the log-probability that D performs a wrong classification. As
noted in [Goo16], that change enables both G and D to produce strong gradients
during the final training.

For the modified game and its training, this particularly means that in one iteration
D is trained, while in the next iteration G is trained. As we search a local minimum
for D and G, the parameters of the current component are updated in each iteration
using stochastic gradient descent. We use a different update technique for the
gradient that is called ADAM[KB14]. The ADAM Optimizer is typically used
for training GANSs as it tends to perform more stable optimization and accelerates
convergence. When G is trained, its parameters are tuned towards the production
of samples x’ that are indistinguishable from the real training data and thus to fool
the discriminator D. In contrast, when D is trained its parameters are tuned to
improve D’s skill to discriminate the fabricated samples x’ from the real samples
x. For additional details about the theoretic background, we refer the interested
reader to the recent works and tutorial about GANs [Gool6, JBU16].

So far, when the GAN is trained using neural networks, no well-founded the-
ory about the determination of the success of training procedure of a GAN can
be found in the literature. Therefore, it is necessary to check generated sam-
ples visually and to capture the weights 8¢ of G that fabricate visually pleas-
ing outputs. Note, there is no need to capture 8 because after the training D
can be omitted and only the generator G is necessary to produce new samples
[GBC16, Gool6, JBU16].

4.2.4 Towards Neurally Guided Road Network Synthesis

Road Network Preparation

We use publicly available community mapping data from OpenStreetMap (OSM)
[Opel7a] in which road networks are represented as piecewise-linear polylines,
that are attached a highway label in order to distinguish them from other struc-
tures like buildings, rivers, and parks. Each road is assigned a specific highway
type representing its category. For all our examples, we extract roads from the
OSM dataset that have one of the following highway-categories assigned: mo-
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torway, primary, secondary, tertiary, residential, living street, pedestrian.
The raw road network extracted from OSM is represented as vector data in geo-
coordinates. As well-established CNN pipelines require images as input, we trans-
form the road network into a raster representation, in a first step. We start with
projecting the geo-coordinates to WGS84, which is a well-established coordinate
projection that transforms geo-coordinates given in Latitude/Longitude to meters.
Next, we scale the road network that each pixel in the rasterized representation
represents an area of 3 x 3 meters. Finally, we raster the road segments as lines
with a width of 15 pixels using the line rasterization routine of OpenCV [Bra(00]
to produce a binary image. During this process we drop the highway label and
merge all roads into the same category. The main reason for this step is to evalu-
ate if the structure found within a road network can be learned at all. Within such
an image, white pixels correspond to the presence of roads while black pixels rep-
resent the absence of roads. Please note that we inverted the colors in the Figures
shown within the current chapter.

GAN Training Procedure

We train the GAN on image patches with a fixed size of n x n pixels that are
extracted from the image containing the rasterized representation of the road net-
work. In order to provide a suitable large training set and to enable the network
to capture the local statistics well, we perform the training on images patches
with a size of n xn = 321 x 321 instead of using a single image. The GAN
training is performed in an alternating fashion as it is proposed by Goodfellow
[GPAM™ 14]. This means that G and D are trained consecutively within each it-
eration. In the step when G is trained, it takes as input a set Z = {zp,...,2}. As
described in Jetchev et al. [JBU16], that serves as basis for our training, each z; is a
volume z; € R"™*™*4 where at each spatial location a d-dimensional vector drawn
from p;, typically a uniform distribution providing values d; € [—1, 1], is inserted.
The z; is then transformed by G into a gray-scale image patches x; = G(z;) of
size x; € R ! When D is trained, a set X = {xo,...,x} of k image patches
x; € R 1 and the set X’ = {x{,,...,x}} fabricated by G serves as input. The
samples x € X are extracted from random locations inside the training image. We
refer the reader to the work by Jetchev et al. [JBU16] for additional details about
the training procedure. Please note that we use only a single image, that provides
patches for the training procedure, but using multiple different images would be
possible and would increase the examples present in the overall training set. But
although we use only a single image for all our example, the size of the training
set is already large enough that the GAN is able to extract valuable information.
For an image with a size of 650 x 650 pixel, that corresponds to about 4 km?* and
a patch size of 321 x 321 pixels, the training roughly contains 108k individual
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training samples.

Road Network Generation

After the training of the GAN, the discriminator component D can be omitted as
it is not necessary anymore. For the synthesis of novel road networks, only the
generator G and its learned parameters 0(%) are necessary. Synthesizing a novel
image that contains a road network structure is fairly easy. We use the generator
component G and feed it with a volume z where z € R™*"*4 where m represents
the spatial resolution and d the dimension of the randomly sampled vectors that
will be inserted at each spatial location. Each d-dimensional vector is drawn from
a simple distribution. As it was already described in Section 4.2.3 and 4.2.4 the
generator maps its input to an image x’ € R"*"*1 where w and h represent the
width and height of the image, respectively. For all the examples shown in the
current chapter, we sampled values from a uniform distribution and limited the
values to stay within [—1.0, 1.0].

One advantage of the SGAN technique is that the generator network contains only
learned filters and has no fully connected layer, that would fix the network topol-
ogy. This allows that the spatial resolution of z can be varied after the training.
Thus, a multitude of different resolutions can be achieved by changing the spatial
resolution of z € R”*"*4_The only parameter that is fixed is the depth d.

Road Network Post-Processing

The images produced by the generator component G contain a road network en-
coded as pixel intensities. In order to use the resulting road network in GIS ap-
plications or in a road network analysis task, we need to transform the gray-scale
image intensities back into a road network graph. For this purpose, we apply a
post-processing to the synthesized images.

Image post-processing: The gray-scale images produced by the generator net-
work contain pixel intensities in the range [0,255]. In a first step, we threshold
the gray values at 127 in order to produce a binary image where pixels set to true
represent the presence and pixels set false represent the absence of a road. Apply-
ing the threshold might produce undesirable isolated pixels and also small cusps
along road regions. In order to get rid of these artifacts, we apply a morphological
erosion operation. However, the produced result might still contain small holes or
road regions that do not touch within a local radius of up to five pixels. In order
to close such small gaps, we apply five steps of morphological dilation. For all
morphological operations, we use a 3 x 3 structuring element with the shape of a
cross. The obtained initial road network, however, contains road regions that are
too thick to extract an initial road graph. Therefore, we thin out the result and

70



4.2. ROAD NETWORK GENERATION WITH GANS
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Figure 4.14: Illustration of the block artifacts that result from the graph construc-
tion.

extract a skeleton from the cleaned binary image using the algorithm from Zhang
et al. [ZS84].

Road Graph Construction: We utilize the pixel-skeleton from the previous step
to construct an initial graph & = (7, &) representation of the synthesized road
network, where 7 are its vertices and & are its edges. In order to construct ¢,
we add a node V; to ¥ for each of the skeleton pixels. Next, we examine the
8-neighborhood of each V; in the image. For each skeleton pixel V; inside the
8-neighborhood of V;, we add an edge E;; = (V;,V;).

Road Network Post-Processing

City Block Cleanup: The graph construction from the pixel skeleton produces
regions within the road network that have a very small area of 0.5 square pixels
(see Figure 4.14), which are removed in a first step. The regions within a road
network graph are typically called city blocks. Strictly speaking, a city block is a
region within the graph ¢, that is enclosed by a set of road segments and might
contain dead-end street segments. In order to identify these small regions, we first
compute all the city blocks of the graph. As the graph is a directed graph and
embedded in R?, the city blocks can be computed by determining the minimal
cycles of the graph by computing loops of edges. Next, we filter out blocks with
an area of 0.5 pixels. These artifact blocks can be removed by identifying and
removing their longest edge, which has a length of v/2.

Road courses smoothing: Another artifact produced by constructing ¢ from the
image raster are jagged edges. In order to smooth these in the final graph, we
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extract a set of street chains § = {S;} from the graph. Each S; = {Vp,...,V,,}
consists of n nodes, while the degrees of Vj and V,, are constrained by deg(Vp) # 2
and deg(V,,) # 2. From each of the S;, a polyline P, = { po, ..., pn} With n positions
is built. A smoothed version of the positions can be obtained by applying 5 steps
of local averaging p; = %pi_l + %pﬁ— }‘plur] to the p;’s with i € [1,n— 1], and
replacing the original p;’s with their smoothed version p;. Finally, we additionally
straighten the road courses, by removing superfluous nodes using the Douglas
Peucker simplification [DP73]. We allow to remove nodes that deviate up to 3
meters from a straight line. As the generator G produces many short dead-end
streets, we remove small dead-end street chains with a total length of up to 25
meters.

4.2.5 Case Study: Road Network Types

In order to showcase the versatility of our road network synthesis approach, we
evaluate our approach on a set of challenging test cases. We composed a collec-
tion of real-world road network as well as synthetic road network examples (see
Figure 4.15 a)-d)). The real-world examples were taken from OSM, while the
synthetic ones were taken from [MIS17]. For all the examples shown in here, we
used a patch size of n x n = 321 x 321 (cf. Figure 4.20) pixel during the training
procedure. That size captured the local structures present within the different road
networks used for the evaluation. Furthermore, we used only a single road net-
work image from which patches were extracted. We synthesized two examples for
each road network shown in Figure 4.15 a)-d). In our evaluation, we investigate
the visual appearance of the generated results and analyze the similarity in terms
of road networks measures such as area, compactness and aspect ratio of the city
blocks by comparing the resulting distributions.
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Visual Evaluation

Irregular: Synthetic As a first test case, we considered a synthetic road network
(see Figure 4.15a). The major characteristics of this road network are blocks of
different sizes with and without dead-ends, and blocks of similar size, that form
small groups. Nearly all blocks have a rectangular shape up to a few exceptions.
Figure 4.16a and 4.16b show road networks generated by GAN model after pass-
ing our post-processing pipeline. It can be noticed, that the generated results
contain blocks similar in shape and size when compared to the original network.
Notice, that the results even contain the small groups of nearly square shaped
blocks that are present in the original network. Larger road courses are present
in the examples, although they have different curvatures when compared to the
original network.

Irregular: San Marco Next, we evaluated a street network patch from a village in
Italy (see Figure 4.15b). A major characteristic of that network is its large amount
of small city blocks in comparison to only a few larger ones. Generated samples
of this network type are depicted in Figure 4.17a and 4.17b. Both samples contain
a significant number of small blocks when compared to the number of medium-
sized and large city blocks. It is also noticeable that smaller blocks are located
next to each other. Furthermore, the result contains large-scale structures such as
connected road courses that separate groups of smaller blocks. Another produced
sample visualized using CityEngine[Esr17] can be seen in Figure 4.26.
Irregular: Berlin In contrast to the previous example, the network that is shown
in Figure 4.15¢ is composed of a significant amount of larger, mainly square or
rectangular shaped blocks. Only a few blocks are irregularly shaped and even con-
tain dead-ends. The generated samples shown in Figure 4.18a and 4.18b contain a
significant amount of nearly square shaped blocks and rectangular shaped blocks.
It can be recognized that the generated networks also contain irregularly shaped
blocks and even L-shaped blocks not being present within the example network.
Suburban: Synthetic Next, we show results generated from a synthetic network
of a suburban region with structures mainly found in rural regions of the US (see
Figure 4.15d). A major property of such network types is the presence of curved
road courses. Our produced results shown in Figure 4.19a and 4.19b contain these
typical curved roads shapes.

Statistical Evaluation

Apart from the visual comparison of the results, we performed an evaluation of
graph measures computed on the synthesized road networks and the original road
networks. These measures include the cityblock area, the compactness, i.e., the
ratio between block area and its minimum bounding box, and the city block as-
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(a)

(c) (d) (e)

Figure 4.15: Overview of the different road network styles used in our case study:
(a) Synthetic irregular, (b) Cellino San Marco irregular, (c) Berlin
irregular, (d) Synthetic suburban, (e) Portland with highway ramps.

(b)

Figure 4.16: Two road networks generated using the trained GAN model after
passing the postprocessing pipeline. Both networks contain blocks
that are similar in shape an size when compared to the road network
used for training (see Figure 4.15a).

pect ratio, i.e., the ratio between the shorter and the longer side of the minimum
bounding box.
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Figure 4.17: Two road networks generated using the trained GAN model based
on the road network shown in Figure 4.15b. As it can be noticed the
network consists of different sized blocks that even arrange in groups
of blocks of similar size.

Figure 4.18: Here we show two road network samples that were generated using
the GAN that was trained on image patches from the road network
illustrated in Figure 4.15c. Both results consist of a large amount of
square and near rectangular blocks when compared to the original
road network. Even irregular shapes such I-shaped city blocks occur
in both result road networks.
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Irregular: Synthetic Figure 4.21 compares the graph measures between the syn-
thetic irregular network shown in Figure 4.15a with the ones obtained from our
synthesized results. While the distributions of the block area and the compactness
have a similar shape, the aspect ratio distribution varies as the generated result
contains much more variation of rectangular shaped blocks than the original road
network.

Irregular: San Marco In this result (see Figure 4.15b), the distributions of block
area, aspect ratio and compactness are similar to each other(see Figure 4.22). The
resulting network mostly consists of small city blocks as illustrated by the block
area distribution. Both the original and the generated road network contain a
significant amount of nearly rectangular blocks (see compactness). As the aspect
ratios within the generated network are also similar, thus, the learned model has
captured the characteristics of the original network.

Irregular: Berlin In Figure 4.23, we illustrate the distributions for the Berlin
example shown in Figure 4.15c. While the block area and the aspect ratio of the
blocks found in the generated example tend to be similar, the compactness varies
more than in the previous examples. As the streets in the produced network are
not perfectly straight anymore, the compactness of the blocks deviates from being
close to 1.0.

Figure 4.19: Curved road structure as common in suburban regions of US-cities
can be faithfully reproduced using the GAN model trained from im-
age patches of the original network depicted in Figure 4.15d. Large-
scale features, i.e., large curved road structures, can only be repro-
duced up to the size context used for training the network.
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Suburban: Synthetic For suburban networks such as the one shown in Figure
4.15d, the distributions of block area and aspect ratio differ, while especially the
aspect ratios within the generated network have a few spikes (cf. Figure 4.24).
However, at a larger scale, the overall shape of the distribution is similar. As
this road network type contains large-scale structures such as curved roads that
pass through the whole network, the chosen context size cannot capture these.
Thus, the generated network will suffer from these missing global properties. This
leads to a structurally different generated road network which is reflected by the
distributions of the different graph measures.

» p.

original image

LA

synthesized image

Figure 4.20: Illustration of the context size using during the training stage. Left:
Original image with the overlaid extent of the training image. Right:
Generated sample with an overlay of the training image size.

Limitations

Large-scale structures and ramps. We noticed that our approach cannot suc-
cessfully handle road network patches that contain highway ramps and networks
that contain street lanes that are located very close to each other, as illustrated in
the road network example taken from Portland (see Figure 4.15¢). When the road
network is rasterized nearby lanes will be merged and form even thicker lanes.
If highway ramps are present, additional pixel blobs are introduced as illustrated
in the synthesized example shown in Figure 4.25. It can be noticed that the grid-
like road pattern is faithfully reproduced. However, due to the thick lanes and
the limited context size (see Figure 4.20) the highway structures present in the
training data cannot be recovered successfully. Instead, thick road structures oc-
cur on the left border (cf. green arrows), and blob-shaped artifacts are scattered
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Figure 4.21: Statistical evaluation of Synthetic irregular
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Figure 4.22: Statistical evaluation of Cellino San Marco
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Figure 4.23: Statistical evaluation of Berlin irregular
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Figure 4.24: Statistical evaluation of synthetic suburban
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over the synthesized example (cf. region surrounded by green ellipses). When the
post-processing is applied, these artifacts will be alleviated; however, irregularly
shaped blocks will be present in the final road network.
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Figure 4.25: In case of nearby located highway lanes and highway ramps, the
GAN fails to capture these properties. This leads to blob-like arti-
facts in the generated samples.

Deadend roads. All the synthesized examples contain much more dead-ends
when compared with the number of dead-end streets present in their correspond-
ing original road network. This might be due to the patch-based training proce-
dure. Each patch that is used for training contains virtual dead-end street segments
that abruptly end at the patch boundary.

4.2.6 Implementation Details

The algorithms are implemented in Python, and we used GAN implementation
of [JBU16] as a basis for learning the different road network models. However,
the original implementation was adapted in order to consistently support single-
channel images. The GAN model for the different road networks is trained on
a single NVidia TitanX (Pascal). Each epoch takes 100 iterations with a batch
size of 64 and takes about 90 seconds to compute. We trained all the models
for at least 100 epochs and decided from a visual examination of samples taken
from various epochs which model to choose. The overall training is done in an
offline step that takes up to 3 hours. The single steps of the online synthesis
step take up to a few seconds. In more detail, the generation of a sample of size
769 x 769 pixels produced from a tensor z € R>*23<100 sampled from p,(z), takes
on average (.08 seconds on a single NVidia TitanX (Pascal). The postprocessing
steps are performed on an Intel Core-i7 5820K, with only a single core in use.
Each step takes: for graph construction: 1.5s, for block computation: 1.6s, for
simplification: 2.0s and for deadend removal: 0.02s in average.
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geometry generated using CityEngine

Figure 4.26: The resulting road network is directly usable in urban planning tools
such as CityEngine.

4.2.7 Analysis and Comparison

There exist a variety of road network synthesis algorithms, that already produce
realistic road networks and road structures including the one presented in chapter
4.1. The proposed approach mainly differs by replacing the typically custom-
tailored algorithm with a generative model. The task of encapsulating expert
knowledge within complex algorithms is transferred to the computer, especially
the neural network that is trained to capture the statistics and structure present in
the exemplars. We use images to feed information into the neural network. Thus
we lose important information about the street topology and structure, that is typ-
ically exploited by existing techniques [NGDA16a, YWVW13]. However, the
generated samples show similarity to the exemplars at smaller scales such as city
block groups. Large-scale structures cannot be faithfully reproduced, because,
the neural network only ’sees’ small patches that were cut out at random posi-
tions. The integration of different street levels might be a good choice to capture
road courses at larger scales. However, we leave this for future work.

A significant advantage of the GAN architecture used is the absence of any fully-
connected layout within the neural network. Thus it is not restricted to producing
outputs of a fixed size. By varying the spatial resolution of z it is possible to
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(b) (©

(2 (b

Figure 4.27: Synthesized road network images patches: These patches use the
generator trained on the example road network shown in Figure
4.15a. Each patch was synthesized using a different sample z; with
a spatial resolution of 6x7 resulting in images with a resolution of
193x161 pixels. Note small-scale structures such as city blocks are
present in generated patches.

synthesize small patches (see Figure 4.27) as well as large patches (Figure 4.28).
These patches might serve as open templates similar to Nishida et al. [NGDA16a]
or these patches could also serve as ’fill” street patches and might help to synthe-
size the street layout at higher hierarchy levels in our approach that was presented
in chapter 4.1.

4.2.8 Limitations

During the evaluation of our pipeline, we identified several limitations. First,
structures like roundabouts, highway ramps and also roads that are very close to
each other are not sufficiently captured during the training. This means that round-
abouts or highway ramps cannot be successfully synthesized with our approach.
Second, currently, we consider all highway categories as part of the same street
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Figure 4.28: Generated road network patches. These patches use the generator
trained on the example road network shown in Figure 4.15a. In
contrast to Figure 4.27 a spatial resolution of 12x14 (image size:
417x353 ) was used for each sampled z;. Note that the structure
found in the example network are also present within these patches.

level. We did not succeed in learning models for different street levels. Thus, we
decided to perform the experiments using only a single street level (cf. Section
4.2.4). Typically, a road network naturally splits into multiple street levels such as
major and minor roads. Thus, it is necessary to perform an in-depth evaluation of
multiple street levels in future work.

Furthermore, large-scale road courses are typically present in every road network.
Although, these structures are rudimentary present in the synthesized examples
shown in Section 4.2.5, our post-processing step lacks an additional step to en-
force such large-scale structures consistently. One possibility to address this issue,
would be fitting curves to individual road courses and enforce global constraints
such as parallelism.

Another limitation is that we currently have no control over the output of the
generator. In real road networks, the road courses are specifically planned to
fulfill specific requirements regarding land use or terrain. Furthermore, the urban
planner might also incorporate existing objects into its road design decisions. As
our approach is a very first step towards using GANs for road network generation,
we did not incorporate such external constraints. However, such constraints are
necessary to steer the output of the generator G, and we leave this for future work.
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CHAPTER 5

Example-Based Cityblock Layout
Synthesis

5.1 Example-Based Cityblock Layout Transfer

5.1.1 Motivation

The techniques for synthesizing individual road networks that are discussed in
section 4.1 and 4.2 have shown that the example-based methodology is a pow-
erful technique to transfer the style of real-world examples to virtual urban en-
vironments. So far, we have only considered the generation of road networks.
In order to produce a more detailed and realistic city layout, the empty regions
within the road network - the city blocks - need to be filled with building foot-
prints and 3D building models. In here, a building footprint represents the outline
of an individual building at ground level. This section focuses on synthesizing
city block layouts, i.e. we fill the empty regions present within the street networks
with realistic building footprint layouts. The major goal is following the example-
based modeling metaphor and re-using city block layouts from real-world cities
and use them to transfer their individual building footprint layout to a virtual ur-
ban environment. We believe that this technique is particularly well-suited for the
envisioned task as (1) we can find a huge amount of real-world city block layouts
in GIS repositories on the Internet, (2) these city block layouts mirror the style
of the building arrangements found within the real world, and (3) optionally pro-
vides rich annotations about building usage or additional details such as positions
of phone and letterboxes, trees, or even recycling containers and playgrounds. On-
line GIS mapping services such as OpenStreetMap[Opel7a] seem to be a suitable
choice as a data source because they provide extremely detailed city layouts from
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all over the world that are covered with detailed footprint layouts (see Figure 5.1).
In the following, we will define the problem setting and provide detailed informa-
tion about the technique we propose to fill real-world city block layouts into city
blocks of virtual road networks.

cpstrabe
Geldor®" ) 3

Figure 5.1: Layouts of city blocks as they can be found at GIS repositories such
as OpenStreetMap. Here a part of Cologne is depicted, that contains
detailed building footprints, tree locations (green circles) and other
rich annotations such a building type, i.e., coffee shop, or pharmacy.

5.1.2 Problem Definition and Overview

In this chapter we investigate the re-use of real-world city block layouts to enrich
the details of virtual city layouts, i.e., we use a database of city block examples
and use them to infill the empty regions present within a street network, that are
completely enclosed by street segments. Thus, we pursue the direction that has
been used for the hierarchical generation of road networks discussed in section
4.1. In contrast to existing city block layout algorithms that subdivide the empty
city blocks into a set of smaller entities called parcels (see section 2.2.1 for a de-
tailed review), we focus on the transfer of the building footprints from a real-world
city block into a similarly sized and shaped virtual city block by copying the orig-
inal footprint shapes into the empty city block. One significant advantage of such
a strategy is that we can resort to the huge variety of individual footprint layouts
that can be found in the real world. In addition, to the variation present within the
building footprint layout of the city block itself, the individual footprints contain
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large variations in their shape which in return increases the realism of the overall
layout.

Next, we briefly discuss the overview of the example-based footprint synthesis al-
gorithm. The input to the city block layout algorithm is a street network that might
come from different sources such as the road network generators from Section 4.1
and 4.2, from OpenStreetMap[Opel7a], or a procedural road network generation
system such as CityEngine[Esr17].

Example-based city block layout synthesis \

City Block » City Block Layout
Layout Transfer Refinement
Street

Network . Q / / ‘ / |
I Street Offset
- City Block Outline /

C|ty block database

Figure 5.2: Our footprint and 3D building synthesis pipeline

When we speak of a city block, we speak of a domain D € R? where D = (B, ) is
a tuple composed of a boundary B and a set of building footprints & = {P,...,B,}.
From a given street graph G, a set of city blocks 29 = {D?,... D]} is extracted
that will be filled with building footprint arrangements layouts taken from real-
world city blocks D™ that are typically stored in a database. We use superscript
q in order to indicate that the city block is used as query object to retrieve a suit-
able real-world city block, and use superscript m to indicate that this block was
retrieved as a suitable match from the city block database. The set 4 is extracted
from the provided street graph G by extracting minimal cycles. These can be
extracted by computing closed walks of street segments, i.e., edges of G. The
resulting set of cycles represent the outline B of the individual city blocks D? used
as query. Each city block D? within the virtual street network is used to retrieving
a real-world city block D™ from a database of example city blocks, that is similar
in shape and size. We use a database of example city blocks originally taken from
different real-world cities containing a huge variety of different sizes and shapes.
After the retrieval step both the query object D? and the best matching candidate
D™ are aligned and the footprints located inside D" can be transferred by copying
their shapes into the city block D? originally used as query object. After transfer-
ring the retrieved layout to DY, individual P,’s might be partially located outside
the outline B of D? or are partially located on the street. These building foot-
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prints are marked as ’conflicted’ and are resolved by employing a physics-based
simulation. The individual steps of the algorithm are depicted in Figure 5.2.

5.1.3 City Block Layout Transfer

As mentioned above, we want to pursue the direction that has been used for the
hierarchical generation of road networks (see Section 4.1), where we used shape
matching in order to identify viable candidate fragments from the set of exemplars.
In order to compare the shape of a D7 against the city block shapes that are stored
within the example database, we use the Shape Context introduced by Belongie et
al. [BMMOO]. However, in contrast to section 4.1 we drop the term that took the
relief into account for the evaluation of the technique and the results shown in this
section because we did not have access to detailed terrain information for all of
the used cities especially the German ones. However, it can be incorporated as it
was done in chapter 4.1 when access to high-resolution terrain data is available..
Instead, we focus only on the comparison of the individual shapes of the city
blocks. In order to use the Shape Context for comparing city blocks, we uniformly
sample point sets along the boundary B of a query city block D? and the boundary
B of the city block D™ from the example database resulting in two point sets P =
(p1y.-, pn) for D4 and Q = (q1, ..., qn) for D™. As the Shape Context characterizes
the local neighborhood of a sample point p; in terms of a histogram over the
distances from p; to neighboring outline points it allows for efficient comparison
between two shapes. The dissimilarity of two Shape Contexts of points p; and py
is denoted as Clé;{ and the overall distance between two shapes P = (py, .., p,) and
0 = (q1,...,qn) according to the sets of underlying Shape Contexts is determined
by the computation of a (cyclic) permutation I1(Q) = (¢z(1),---»¢z(n))> Such that
the resulting matching costs C(P,Q) =Y." Cf o(i) are minimized. As discussed in
Section 4.1 the similarity between two city blocks is computed, by minimizing the
matching cost between all pair permutations C;;, which boils down to computing
the least cost path through the cost matrix C. This can be efficiently achieved
by the Dynamic Time Warping (DTW) algorithm [SC78]. The computation of
Dynamic Time Warping between a query city block D?, and all the D’} present in
the example database would be too costly. Therefore, we first prune inappropriate
city blocks that are too different in area, outline length and aspect ratio. For
determining the best suitable candidate by using the first ¢ = 10 candidates from
the pruning step and compute the similarity measure between DY and the D’J’-“’s
using Dynamic Time Warping.

Having identified a suitable city block candidate D™, that is the most similar ac-
cording to the ¢ candidates, we can now transfer the building footprints & from
the city block D™ to the city block D?. Typically, both the query city block D?
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and the retrieved candidate city block D™ are not aligned and live in different co-
ordinates systems. However, we can use the corresponding points to align them.
Luckily, we already computed corresponding points P = (py,.., p,) for D? and
0= (q1,---,qn) for D™ during the computation of the least cost path using the Dy-
namic Time Warping algorithm. We use these corresponding points to compute an
alignment (R,1), where R is a rotation, and ¢ is a translation, that aligns P and Q in
least squares sense. Such an alignment can be computed by solving the following
optimization problem

n
(R,t) argmin ZH(qu—H)—pin
ReS02,tcR2 =1

After computing the alignment, we can now transfer the footprints & located
in the city block D™ into the city block D?, by employing the computed rigid
transformation to each individual footprint. The matrix R contains the rotational
part of the transformation and ¢ is a translation. Applying it to all footprints &
will not lead to overlaps between individual footprint, but might lead to two types
of problems, (1) the transferred footprint P; is located outside or partially outside
the outline B of D? and (2) the footprint P, is located on the street area of DY.
Both cases might occur when the shape difference between D? and D™ is large.
We handle both cases in order to ensure that the transferred footprints & form a
valid layout, which means that no footprint is partially located either outside the
outline of DY and is partially located on the street area. In the case of (1), we
simply remove the affected footprint from the set &7 in D9. In the case of (2),
we mark the footprint as conflicted and perform a layout refinement step using a
physics-based simulation in order to resolve such conflicts (see section 5.1.4).

5.1.4 City Block Layout Refinement

The transfer of the building footprints into the query city block D? may lead to
undesired side effects as described in Section 5.1.5. These effects include build-
ing footprints that overlap with nearby located street segments. In order to reduce
these side effects and resolve such conflicts, we employ a constraint optimiza-
tion, inspired by physics simulation. Essentially, the footprints are modeled as
rigid bodies, and collision between street segments and them are resolved us-
ing position based dynamics [MHHRO7]. To accelerate overlapping tests, each
footprint is approximated using a Bounding Volume Hierarchy (BVH). Before the
optimization starts, conflicted footprints (see red colored areas in Figure 5.3) and
non-conflicted footprints (see dark green colored areas in Figure 5.3) inside D?
are detected in a first step. All footprints that do not partially overlap the street
area are marked as non-conflicted and stay fixed at their current position.
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Figure 5.3: Conflicted building footprints (grey) that are partially placed on road
and pavement

Figure 5.4: Partially overlapping conflicts are resolved utilizing our constraint op-
timization scheme

The footprints are represented as an undirected graph structure P = (C,W) where
C represents the corner points of the footprints and W denotes the edges con-
necting the footprint vertices typically representing walls. Each edge w; stores its
desired target edge length [,

If a footprint vertex p; is located outside the offset polygon of the street or inside
another footprint, a collision impulse is simulated by setting the building point
location p! to the outline of the offset polygon or the footprint. In a Gauss-Seidel
relaxation scheme, using explicit Verlet Integration the position of the new build-
ing points is iteratively changed such that none of the soft constraints is violated,
while the difference dl,, = ||I!, — I%||* between target edge length ¢/, and current
edge length [{, is minimized.
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5.1.5 Example-Based 3D Building Placement

After the synthesis of the building footprint layout into the city blocks of a pro-
vided street graph, we now describe how we add details such as 3D building
models to a synthesized city layout in order to increase its details and its realism
further. In contrast to chapter 6, where we focused on the synthesis of individ-
ual buildings we re-use already modeled 3D buildings, that might be placed as
whole on top of similarly sized footprints. The main goal here is first trying to
re-use the buildings by comparing building footprints and synthesized footprints.
The process is typically much faster then synthesizing individual buildings. In
addition, we need segmentations of the buildings into basic building blocks in-
cluding semantic annotations in order to apply the technique proposed in chapter
6. Such data is difficult to create and might not be available for existing large
building databases. Therefore, we use a large repository, Trimble 3D Warehouse
[Tril17], that contains a huge amount of detailed building collections that are pub-
licly available. This repository contains 3D buildings models from all over the
world containing a large variety of geometric details and buildings shapes. In or-
der pursue the example-based modeling metaphor from section 5.1.3 and place
3D building models on top of the synthesized building footprints by comparison
of the footprint shapes, it is crucial to have access to a building footprint for these
3D models, that represent their individual shapes at the ground level. However, the
3D buildings from such an online repository typical consist of 3D geometry and
optional textures and do not carry any building footprint. In order to successfully
synthesize 3D buildings into a city block layout, two essential steps are necessary:
(1) the extraction of the building footprint for the individual 3D buildings, and (2)
the placement of the 3D buildings on top of synthesized footprints.

Extraction of Footprints of 3D Buildings

Next, we discuss how we extract the 2D outline of the 3D model in order to
allow the envisioned application. Instead of using a geometric approach, we em-
ploy a robust image-based technique to compute the footprint of the 3D building
using rasterization. We render the building from the top view into a binary im-
age. In such an image, the pixel intensities encode the presence or absence of the
3D building. The extraction of contours from binary images is well understood;
therefore, we rely on the technique of Suzuki [S*85] to extract the contours. We
make the assumption that a building typically consists of a single contour and thus
the largest connected component of the extracted contour set, represents the 2D
outline of the building footprint. The extracted outline typically contains a large
number of redundant points along the walls. Therefore, we further simplify the
footprint polygon employing a feature preserving chain approximation algorithm
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[TC89]. The resulting outline P consists of a set of n points P = {P},...,P,} and
is stored along with its corresponding the 3D model M in a 3D Buildings database
as a tuple H = (M, P). Such a tuple H that represents a 3D model M and its corre-
sponding building footprint P, illustrated in Figure 5.5). Please note that this step
needs only performed once for each building in a pre-processing step.

Figure 5.5: Extracted footprint (green) from the illustrated 3D building. The foot-
print is extracted by rendering the building from its top view into a
binary image. Then we extract the boundary and simplify the largest
connected component using a feature preserving chain approximation
algorithm. The extracted footprint is finally stored along with the 3D
building model in the 3D building database.

Placement of 3D Building Models

The placement of buildings is performed after the City Block Layout Refinement
step from Section 5.1.4. The overall goal is to place a 3D model on top of each
of the synthesized footprints P present within the set &7 of each city block D? of
the set 29 = {D?,...,Dj}. Next, we discuss how we perform the placement of
an individual building. In order to place 3D buildings on each footprint present
within the city layout, this procedure needs to be repeated multiple times and can
be performed in parallel. In order to place 3D buildings on top of the synthe-
sized building footprints, we perform exactly the same steps, that were performed
for the retrieval of viable city blocks D™ in section 5.1.3. Instead of pruning, re-
trieving and aligning the outline B of the city blocks D? and D" we now use the
footprints & as query objects P? in order retrieve suitable set of building candi-
dates 7" containing ¢ building tuples #" = {H{",...,H]"}, that have similar
area, outline length and aspect ratio. The shape comparison using Shape Con-
texts is now performed between the 2D outline of the query footprint P? and the
footprints P" of the candidate buildings H/"'. The retrieval of the buildings can op-
tionally be constrained by an architectural style map that is provided as an image
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where the pixel intensities encode individual buildings styles such as residential
buildings, skyscrapers, or commercial buildings.

The diversity of the 3D buildings and thus the shape of the buildings footprints is
typically much smaller than the shape of the building footprints within the syn-
thesized layout. In order to constrain the placement of buildings where the shape
difference between P? and P" is large, we perform an additional check before we
allow the 3D building to be placed into the synthesized layout. First we compute
the intersection

Ipagpmn = P1NP"
between P¢ and P".
Let
07 = Alpapr)
A(P9)

be the overlap ratio between the area of intersection /pspn and the area of the query
footprint P and let
A(Ipapm)

A(P™)
be the overlap ratio between the area of intersection /psp» and the area of the foot-
print of the retrieved candidate building H™ we only accept the placement if both
overlaps O7 and O™ pass a user-defined threshold 7 > 0.85. Thus, a small amount
is acceptable as the probability of finding a building with a perfect matching foot-
print is very small due to the relatively small size of the building database.

0" =

5.1.6 Synthesized Cityblock Layouts

In order to evaluate the city block layout transfer algorithm, we conducted sev-
eral experiments that include reconstruction of a city block layout, exchanging
footprint layout style by a different one, extending a partial city block layout, and
synthesizing a city block layout for a street network generated by the algorithm
described in section 4.2. We prepared a large set of example city blocks from
European and US Cities, including: Augsburg, Bonn, Braunschweig, Bremen,
Cologne, Frankfurt, Niirnberg, New York, Brooklyn, Queens, Huntington, that
are used for different experiments.

Reconstruction of a City Block Layout In a first experiment, the goal is to re-
construct a city block layout of a part of the German city of Braunschweig. The
purpose of this experiment is to show that if we are able to rebuild an existing
layout, then the algorithm should produce meaningful results in virtual road net-
works, that contain city blocks that share similar properties as a real-world city
block layout. We extracted the city blocks from the whole town of Braunschweig
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Figure 5.6: The city block layout of a part of the German city of Braunschweig.
This layout serves as a reference for the experiment in which this lay-
out is going to be reconstructed using the city block layout transfer
algorithm.

in order to conduct this experiment. The result of this extraction is 830 city blocks
in total that might be used during the synthesis procedure. The part of Braun-
schweig we are going to use for this experiment consists of city blocks of varying
shape and size and is illustrated in Figure 5.6. We used the algorithm in sec-
tion 5.1.3 in order to match the individual blocks against the city block database
of Braunschweig. The Shape Contexts were computed using 100 evenly spaced
sample points that were sampled along the boundary of the city blocks. Each
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shape context was constructed with eight angular bins and five distance bins. The
final reconstruction is depicted in Figure 5.7 and it is identical when compared to
the original layout. The result does not only show that the shape matching algo-
rithm works correctly. It also shows that in case the richness of the database is
large and thus contains city blocks that share similar or even identical properties
as the city blocks used as query objects, this simple methodology that copies and
pastes the layout already produces meaningful results.

Figure 5.7: Reconstruction of the layout shown in Figure 5.6. In order to achieve
this reconstruction, a database containing all city blocks from the Ger-
man city of Braunschweig was used.

The next experiment, we evaluate filling the same part of the city of Braun-
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schweig; however, instead of using city blocks from Braunschweig, we use a
collection of city blocks from different German cities: Bonn, Bremen, Frankfurt,
Munich, Niirnberg. All city blocks from these cities result in a database of about
5000 exemplars. The result is shown in Figure 5.8 and it can be recognized that
city blocks with a sparse building footprint layout look more plausible than city
blocks that contain densely packed buildings, located near the street edges. In such
cases, the shape difference between the query and the best match city block are
still too large in order to successfully transfer the layout style. The eye-catching
flaws of the transferred layout are the non-constant distance (increasing or de-
creasing) of the building footprint to the nearest street edge and corner buildings
that might get culled away because they are partially located outside the query
city block after alignment. However, the number of city blocks affected by such
artifacts is typically very small. The overall layout looks plausible and realistic
when the number of small blocks containing artifacts are neglected. Due to the in-
dependent matching strategy, it is conspicuous that in many cases the layout style
is not coherent between neighboring city blocks.

Exchanging the Building Footprint Layout Style In this experiment, we ex-
change the city block layout of a part of the German City of Heidelberg with
city blocks from different US cities. The goal of this experiment is to show that
our algorithm can be used for layout style transfer and its result is illustrated in
Figure 5.9. In order to conduct this experiment, we extracted city blocks from
different parts of New York and Huntington. The size of the database comprises
about 13500 downtown city blocks. When one analyzes the city block shape of
US-cities it can be recognized that most city blocks have a rectangular or nearly
rectangular shape. Other shapes such as triangular or trapezoid ones can be found
occasionally; however, these shapes occur much less often. The chosen part of
Heidelberg contains a significant amount of rectangular or nearly rectangular city
block shapes, while only a few of them have a very irregular shape. The richness
of the city block database is large enough to infill city blocks with a plausible and
realistic footprint distribution. Even trapezoid shaped blocks are present within
the database. In case of a densely packed footprint layout, even a nearly constant
distance to the nearest street edges is preserved. Triangular and more irregular
shapes are clearly 'underrepresented’ within the city block database. The clos-
est triangular shapes have been placed and produce artifacts such as non-constant
distance to the street edges and corner buildings that were culled away. Espe-
cially, US-cities contain city blocks that have a strongly varying building density.
Here it would be necessary to incorporate neighborhood information to produce a
coherent layout across multiple city block boundaries.
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Figure 5.8: A city block layout filled by re-using exemplar city blocks from Ger-
man cities: Bonn, Bremen, Frankfurt, Munich, Niirnberg. For adja-
cent rectangular shaped city blocks, plausible and realistic layouts are
achieved using the city block layout transfer algorithm. For irregu-
larly shaped blocks the result strongly depends on the richness of the
exemplars present in the database.

Extension of a Partial City Block Layout Another application of the city block
layout transfer is extending an existing city layout. Figure 5.10 illustrates a part of
New York near the administration boundary. Such regions where no building foot-
prints have been mapped by the community still occur very often across different
countries and cities. In the following experiment, we showcase the infill of these
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Figure 5.9: In this image, the layout style of the city blocks from a part of the Ger-
man city of Heidelberg is exchanged by city block layouts from differ-
ent US cities. The richness of the city block database is large enough
to infill city blocks with a plausible and realistic footprint distribution.
Even trapezoid shaped blocks are present within the database.

empty regions and thus extend the city block layout of New York using city blocks
from different US cities, i.e., New York (Queens, Brooklyn) and Huntington.

The synthesized layout is illustrated in Figure 5.11. The city blocks located on the
left-hand side of the red line belong to the original layout, while the city blocks
on the right-hand side of the red line. The database used to infill the missing city
block layouts has a size of about 13500 city blocks that were taken from New
York (Queens, Brooklyn) and Huntington. The query and the example blocks
used in this experiment come from US-cities. Typically, city layouts from US-

98



5.1. EXAMPLE-BASED CITYBLOCK LAYOUT TRANSFER

®
o i e s | Marc
e
P - ionTurnpl!
R TurpIKe V"
__——Uni =S
3 — Jurnpike=——
ﬁw“*
%, . |
2% Joseph Stree
) patton Boulevard
reet
\, o) Lawrence S¢
2 s¢
% @
2 RIS et
k- e
2 S, % Lahey St
8 K 2
placg CY
el eet G
) campbel! St 2
= 5
/ 5y . \\ \ Parksville e
/ © 3 aone 2T\ { School Nugent S O“S\reﬂ‘
7z ? 2 \ A\ e
/“{-; g 1 o A
2 - ) e
S [} - i3 g puenV
o 2 i Aver ? 1 C- a0®
2 % : 2
3 % : & 8 g
=0 3 x we % 5@
2 3 1 % 4 o} m\“’\'a“
3 A % G
) 2 . 2
= - t3 3
% £ 55 Qe S L)
X & w W <
o' T ° %
A\
o - o <
- <« NY 258 |
e ® > 7.
i A\ & 8 N S
2
g % 1 § ¥ %,
o 5 . 5\ >3 %
2 P : N\ % <
S = ® E < % 7, B3 Z
& gxs\Nen“ ?é > 2 . ’9% o % R 3
G : < © % & & o
2 < 1 NorthNew 3, 75 S s % %
R F it % < g “ a = %
3 % 1 Hyde Park 2 % 2 3 © 2 &
> © ?
2 : S & S,
3 1 \ & % 2
5 . e S 4
: & 3 & e
. & K N
: o &
1
° <
2 .
s %
2 b
3 1
S e 1

)
9Ston giceet

Figure 5.10: City block layouts are not present in every region of different cities
This is exemplified by looking at the administrative boundary of New

York. Outside the administration level, no building footprint layouts
are present within the city blocks.

city centers tend to have rectangular or at least near rectangular shapes. This
holds for the layout shown in Figure 5.11, where a large amount of city blocks is
nearly rectangular. However, even in this layout, city blocks with more complex
shapes such as I-shapes are present. For each of them, a suitable block in the
database is present and the placed city block layouts look plausible and realistic.
It is eye-catching that the density of the building footprint within the blocks varies
between the different parts of the layout. When one takes a look on the left-hand
side of the city layout, the density inside the city blocks is nearly constant up to
a few exceptions. The varying building footprint density in our result is a direct

consequence of the independent matching and insertion of the best candidate for
each individual city block within the layout.
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Figure 5.11: The goal of this experiment is to infill empty city blocks with ex-

Due to the

ample blocks that were taken from different US cities.

richness of the database plausible footprint arrangements for near

rectangular as well as complex irregular shaped city blocks can be

synthesized.

d Street Network In a final experiment,

1Z¢

Block Layouts for a Synthesi

ty

i

we fill a

C

synthesized street graph with real-world city blocks (see Figure 5.12).

we synthesized a street network using the

9

In order to conduct this experiment

technique presented in section 4.2. As a database, we used city blocks from dif-

ferent German cities:

Frankfurt, Munich, Niirn-

Bremen, Koln,

9

Bonn

Augsburg,

berg. The city blocks of the road network contain large shape variation and a

shape and even t-shape. In

51_

ie.
the street network contains near rectangular city blocks

substantial amount of irregularly shaped blocks,

addition

that have wavy

9

inside adjacent

The footprint arrangements

segments between crossings.

street

look plausible especially in cases where the final

1.e.
layouts within the irregularly shaped city blocks look less plausible, because the

rectangular shaped city blocks

layout is sparse

, buildings are not densely packed side-by-side. However, the
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Figure 5.12: A street network that was generated by StreetGAN (section 4.2) is
filled with city blocks from various German cities. Near rectangular
city blocks even with wavy street segments are filled with plausible
footprint layouts. Due to a small variety of irregularly shaped city
blocks within the database, the synthesized city blocks are less likely
in irregularly shaped blocks, because several building footprints are
removed that were partially located outside the city block polygon.

city block is not covered with building footprint along each of the street segments.
This is a direct result from large shape difference between the individual query
blocks and the best matching exemplar. The consequence is that different build-
ings, which are partially located outside the city block polygon, will not be trans-
ferred. In addition, the distance of the individual footprints increases or decreases
along the street segments, a property seldom present in real-world footprint ar-
rangements. Typically, the city block database contains much less variation of
irregularly shaped blocks such as 1-shaped ones in contrast to rectangular shaped
city blocks that occur much more often. For such cases, the estimation of a rigid
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transformation is not enough. Here, it would be necessary to compute the location
of the buildings using a more elaborated algorithm which maintains the shape of
the footprint as close as possible and aligns the building with it potential neigh-
bors along the nearest road segment without introducing intersection between the
building footprints.

5.1.7 Synthesized Building Layouts

In order to populate the synthesized footprint layouts with 3D buildings, we next
show results using the technique presented in section 5.1.5. In order to evaluate
the placement of buildings, we conducted several experiments. We downloaded
3D models from the public geometry repository TrimbleWarehouse 3D and cate-
gorized them into different groups such as ’skyscrapers’ or 'residential’ buildings.
In this first experiment, we evaluate the placement of skyscrapers on the footprint
layout of a part of the German city of Braunschweig. The building footprint within
the original layout has a nearly rectangular or trapezoid shape, 1-shaped footprint
with different length of both flanks, and a few irregular shaped footprints that even
contain curved regions. We used two different skyscraper data sets to conduct the
experiment. One contains 400 skyscrapers from New York, and the other one con-
tains 300 skyscrapers from Chicago. Figure 5.13 show a top view and Figure 5.14
shows a perspective view of the placed 3D buildings using the database of 400
building models from New York. In the top view (see Figure 5.13) it can be rec-
ognized that a building was placed for every footprint present within the original
layout. This demonstrates that even with a small database of buildings at hand, it
is possible to populate an area with buildings that have already been modeled for
a different use case. The database is rich enough and provides building footprints
of various shapes: nearly rectangular, 1-shapes with different lengths of the flanks.
It is eye-catching that several building footprints have nearly identical shapes.
The matching strategy is done independently for each building footprint; thus, the
same building might be placed multiple times within the same city layout.
Conducting the same experiment with a different database using 300 models from
Chicago leads to a different result, which is illustrated in Figure 5.15 and Figure
5.16. As the database does not contain a large variety of buildings having an I-
shaped building footprint, the overlap check discussed in section 5.1.5 fails in 14
% of the cases. As a consequence, no building will be placed, and the footprints
stay empty.

5.1.8 Analysis and Comparison

City Block Layouts Existing methods for computing city block layouts rely
on algorithms that divide the space enveloped by a city block using procedu-
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Figure 5.13: A footprint layout from the German city of Braunschweig. Each
building footprint was populated with a 3D model having a similar
sized and shaped building footprint. The overall size of the building
database is 400 skyscrapers from New York.

ral or rule-based algorithms. Different subdivision schemes for city blocks have
been proposed such as [VKW112, PMO01, AVB08]. In Yang et al. [YWVW13]
procedural templates have been used to generate parcel layouts. In contrast to
our approach, these algorithms are designed to produce parcels that provide the
space for different buildings. The different building footprint shapes typically
depend on the technique that generates the buildings, i.e., the shape grammar
[WWSR03, MWH06]. Our approach re-uses real-world exemplars that contain
a huge amount of varying building footprint layouts. In principle, our source of
data may carry parcel subdivisions; however, specific parcel layouts are very rare
and are not present for the most of the city blocks.

Placement of 3D Buildings The standard way to populate buildings on pre-
defined building footprints is to use procedural algorithms using shape grammars
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Figure 5.14: A perspective view onto the populated footprint layout from Fig-
ure 5.13.

[WWSR03, MWH06]. However, the use of shape grammars is typically cumber-
some and labor-intensive and has a very steep learning curve. For these reasons,
we decided to follow the example-based methodology that is less labor-intensive
as the exemplars can be easily downloaded from public geometry databases. How-
ever, the quality of the available 3D models strongly varies in both, level of detail
and quality of the delivered textures. Especially the texture contains many un-
pleasant effects such as different light intensities, reflections, and cars and trees in
front of the different buildings. Apart from this, our technique shows that plausible
building layouts on top of existing footprint layouts can be synthesized even if the
size of the database is small. Footprints that will not get covered with a building,
due to large footprint shape difference can be treated using individual techniques
to synthesize a building on the fly, e.g., a shape grammar [WWSR03, MWH06]
or an example-based building synthesis technique (see section 6).

5.1.9 Limitations

The example-based city block layout transfer produces city layouts that mimic the
style of footprint arrangements found in the real world. Especially, with the addi-
tional placement of 3D buildings on top of the synthesized layout the realism of
the layout is drastically increased. During the evaluation of the results presented
in section 5.1.6, we identified several limitations that will be discussed next. The
city block layout transfer algorithm has a significant dependency on the city block
database. There exist cases where the database does not contain viable city blocks
where the shape difference between the city block used as query object and the re-
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Figure 5.15: The same building footprint layout shown in Figure 5.13. In this ex-
periment, a different similar sized database was chosen. The result of
the building placement strongly depends on the shape variety present
within the footprint of the 3D building models. About 14 % of place
buildings to do not pass the overlap check discussed in section 5.1.5.

trieved candidates is small. In such cases, the transferred building footprints might
not be located along the enclosing street segments. One possible solution would
be to increase the size of the city block database further. However, pursuing such
a strategy will still not guarantee that every possible query shape is present within
the database. The same problem occurs during the placement of 3D buildings on
top of the synthesized building footprints. To alleviate such cases, we developed
an algorithm that compensates the large shape difference by synthesizing a novel
layout that preserves the overall style of the original building footprint layout.
This algorithm will be presented in section 5.2.

The example city blocks that are retrieved as viable candidates are inserted in-
dependently of each other. This might lead to drastic layout changes between
adjacent city blocks. However, there is currently no metric to compare the simi-
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Figure 5.16: A perspective view onto the populated footprint layout from Fig-
ure 5.15. It can be recognized that for similar shape building foot-
print the same example building might be used several times.

larity of the building footprint arrangements within city blocks, especially when
the shape and the size of the city blocks strongly differ. In contrast, to the al-
gorithms that subdivide a city block into a set of parcels (see Section 2.2.1), our
algorithm cannot produce or copy such parcels, because they are not present in
the example city blocks. However, parcels are especially necessary to assign a
specific area of land around a building. One possibility to overcome this lack of
information within the example city blocks would be to reconstruct a cadastral
topological map using Voronoi diagrams using the 2D outline or its segments as
sites. This would lead to a coarse subdivision of the city blocks into a set of parcels
enveloping each of the synthesized building footprints. To overcome such effects,
the work at hand presents a specialized re-synthesis scheme custom tailored to
city blocks in Chapter 5.2.
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5.2 Guided Re-Synthesis of Discrete Element Arrange-
ments

Herein, a novel re-synthesis scheme for layouts composed of sets of discrete ele-
ments is described. The proposed approach utilizes a guidance map that is content
aware and can be used to synthesize a novel layout while maintaining the style of
the original one. The novel re-synthesis scheme is evaluated in-depth, and sev-
eral challenging re-synthesis results on real-world city-blocks are illustrated. The
content of this section is based on the peer-reviewed publication

Stefan Hartmann, Bjorn Kriiger, and Reinhard Klein. Content-aware
re-targeting of discrete element layouts. In International Confer-
ence on Computer Graphics, Visualization and Computer Vision, vol-
ume 23 of WSCG proceedings, pages 173—182, June 2015.

and contains text parts of the mentioned publication that were copied without
further modification. These text parts are highlighted in gray.

5.2.1 Motivation

Road networks subdivide the urban space into smaller structures that are enclosed
by roads. These structures are called city blocks. Naturally, the city block pro-
vides space for buildings and is typically subdivided into smaller regions, where
the building footprints are placed. However, the road network generation algo-
rithm only provides the road network. So far, no further structures such as build-
ing footprints are placed in inside these blocks. The primary goal of this chapter
is to fill this empty space using an example-based technique. In contrast to section
5.1, where we studied techniques to transfer city block layouts using simple trans-
formations, we focus here on large shape difference between a source and a target
city block. As plenty of existing city blocks layout have been designed within
cities all over the world, we have access to a large number of existing layouts.
In order to transfer the real-world layouts to a target domain, we need to bend
or re-structure the original layout to fit into the target city block. This might in-
volve a continuous deformation to the original layout, thus distorting the original
arrangements and even their discrete elements. Instead of deforming and repair-
ing distortions, our goal is to re-synthesize a plausible layout that resembles the
style of the original layout locally and even globally using discrete atomic build-
ing blocks. Our key insight for synthesizing such a new layout that mimics the
style of the original one is to feed the synthesis technique with a guidance map,
that encodes the style present in the initial layout. Thus it is content aware. Such
a guidance map can be retrieved from a modification of the initial domain, such
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as the appliance of a continuous deformation to the initial layout elements. Using
such a guidance map during the synthesis has two major advantages: First, it al-
lows our synthesis technique to resemble the global style of initial layout, and it
even allows introducing discrete copies of the original elements to maximize the
layout compliance, i.e. the local style. Second, it guides the algorithm during the
exploration of the layout space and allows for efficient pruning this typically large
search space. In contrast, to the procedural approaches that were discussed in de-
tail in section 2.2.1, we focus on the synthesis of a novel layout based on an exist-
ing one. In terms of urban modeling, we want to compute a city block layout, that
resembles the style of a real-world city block, e.g., taken from OpenStreetMap.
The approach implicitly uses adjacency information from the guidance map to
preserve the style, while methods such as Merrel et al. [Mer07, MMO09] or Lin et
al. [LCOZ™'11], extract this information in a preprocessing step that sometimes
even requires manual work. Layout synthesis algorithms based on Markov Chain
Monte Carlo (MCMC) are also heavily used for the computation rooms or floor
plans [YYT"11, YYWT12, YBY"13, MSL*11]. However, these methods use
predefined or learned object relationships in order to determine the probability or
fitness of a current layout state. These types of algorithms are typically compu-
tational expensive, and the produced results strongly depend on the number of
iterations used for the optimization procedure.

(a) A real-world city block with (b) An office floor plan composed out of
discrete building footprints a set of discrete room instances.
taken from a block within the
city of Bonn.

Figure 5.17: Real world layout examples that both consist of a set of discrete ele-
ments. Both examples are taken from OpenStreetMap[Opel7a].

5.2.2 Re-synthesis Domain and Element Arrangements
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boundary segment S1
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boundary segment S3

boundary segment S2 — boundary B

Figure 5.18: Abstraction of a complex scene as 2D domain D with a set of dis-
crete elements. The domain is enveloped by a boundary B split into
subregions S;, each assigned with a set of discrete elements.

A large variety of real-world structures can be abstracted as a set of polygons en-
veloped by a closed boundary. Typical examples for such real-world structures
are building footprints located inside a city block or rooms located in a floor plan
(Figure 5.17). We define & = {P,...,P,} as the set of n polygons, each repre-
senting a 2D outline of discrete elements, placed within a complex scene. Each
of them may carry a set of application specific annotations. These elements lo-
cated in a scene are typically enveloped by a closed curve denoting its boundary
B € R?. The area enclosed by B represents the scene itself and is a planar domain
D € R2. Inside this area, we expect that the elements are arranged into a set of
m groups 4 = {Gy,...,Gy}, each containing a subset of the discrete elements
(Figure 5.18). However, the initial layout does not necessarily have to be a tightly
packed one, i.e., elements need not directly placed next to each other, there might
be empty space in between them.

Before we state the problem definition, we first analyze the atomic entities within
the domain D and merge them into a set of arrangement groups G. In our setting,
we expect that the discrete elements are located within an application specific
distance near the boundary B of the domain D. The boundary might be further
split into a set of boundary segments, separating the initial boundary into a set
of [ smaller entities B = {Si,...,S5;}. The segments S; C B typically represent a
road segment which is part of a city block boundary or a wall inside a building
or room. In order to merge the elements into groups, they need to be assigned
to the segments S; along the boundary B. In order to decide which element is
assigned to a certain group, we determine the Hausdorff distance 4(P;,S;)VS; € B
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Preprocessing
Input: Result preprocessing:

R R R R R g

Figure 5.19: As preprocessing step, the domain D is analyzed, and its discrete el-
ements are assigned to arrangement groups G illustrated by the dif-
ferent shaded colors. Additionally, each discrete element is attached
a behavioral type fixed(F) or repeatable(R).

between the outline of the discrete element P; and the boundary segments S; C B.
In case h(P;,S;) < 7 falls below an application specific threshold (7 = 25.0 meters
in our city block application), the discrete element instance is assigned to that
certain arrangement group G that corresponds to a boundary segment S ;. It might
happen that a few elements will be assigned to multiple boundary segments, this
is an indicator that the element is located at the end of an arrangement group
and might need special, application specific, treatment (Figure 5.18). Most of the
elements are typically assigned to at least one boundary segment S;. The count
of assignments of a discrete element P; to different §; is used to deduce three
behavioral attributes, i.e. the element type, for the element instances:

e fixed (F): elements with two or more assignments, are not allowed to be
repeated. These are elements placed at a street corner.

e repeatable (R): elements with a single assignment, allowed to be placed
multiple times. An original element might be stretched within the guid-
ance map. In order to compensate for increased space usage, we repeat the
element multiple times.

e empty space (E): a special element that serves as a fill region, preferably
placed in regions, where no discrete element covers the space within the
group G;. The purpose of this element is to discretize empty space, i.e.
space where no element is placed. In order to reproduce empty space in the
new layout, we assign such an element to each group G;. As it is a virtual
element that will not be visualized in the result, we use a fixed dimension
of wxd=1.0mx 10 m.
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5.2.3 An Efficient Algorithm for Interactive Re-Synthesis of
Element Arrangements

Deformation as guidance information

Re-synthesis of an existing layout is necessary if the different operations are ap-
plied to the initial domain D. The editing operation might include the movement
of a boundary vertex or the relocation of a street segment S;. Another application
would be the insertion of an example city block into an empty city block located
inside a virtual street network. Such an application was already proposed in sec-
tion 5.1. Both applications imply that the interior of the city block or domain is
affected by applying amap ¢ : D;, — D;, where D;,, denotes the initial domain that
and D, denotes the deformed one. Computing such mappings is well researched
and can be achieved by employing different techniques such as the well-known
Mean Value Coordinates [HF06] or (quasi)-conformal mappings [LKF12]. In this
work the Mean Value Coordinates were used to realize the mapping D;, — Dg.
When ¢ is directly applied to the discrete elements and their corresponding ge-
ometry located within the domain, visually unappealing artifacts might be the
consequence i.e. the elements get distorted and unnaturally stretched/warped.

One possibility to avoid deformation artifacts would be treating the objects as
single points, represented by their centroid. This might avoid object deformations;
however, will usually lead to other artifacts such as element overlaps and dissolved
element groups, i.e. element get overlapped with other elements or elements that
were exactly placed next to each other will set apart in the new layout. Such
effects might be reduced by applying smarter deformation techniques; however,
this claims for additional knowledge about the objects’ structure, which is not the
scope of this work. We follow a different line here and compute a novel layout
out of the original elements using a deformed version of the original layout, which
we call guidance map. The guidance map is a set of deformed discrete elements
' that are the direct result from applying the map ¢ to the interior, i.e. the
discrete elements & of the initial domain ¢ : &2 — 2?’. Although the elements are
deformed, the layout still contains important information about the original layout.
It includes groups, i.e. elements that are placed next to each other in the original
layout &2 will be placed next to each other in the deformed layout &?’. Further, the
presence of empty space and the ordering of the discrete elements is preserved &2,
We use this valuable information encoded in the set of deformed discrete elements
' to compute a novel layout that mimics the style of the original layout.
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Interactive deformation
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Figure 5.20: When interactively editing the domain, deformations are applied to
the boundary. The interior of the domain is deformed and serves
as prior to our iterative synthesis technique, that computes a novel
layout guided by the deformed discrete elements.

Re-Synthesis Formulation using 1D Sequences

In the following the solution for synthesis of a novel layout that preserves the
properties of the initial one is presented. Before we show the mathematical for-
mulation to tackle the problem, we comprehensibly explain the styles that can be
maintained by the proposed algorithm. We focus on the following three properties
to achieve our goals:

1. Element groupings present in the initial domain shall be preserved. This
means elements that are placed exactly next to each other in & will be
placed exactly next to each other in &',

2. Elements prefer to be located at similar relative positions, and

3. Elements prefer their original neighborhood.

In our setting, the term neighborhood does not express the local similarity of ge-
ometric attributes. Our goal is that we simply want to preserve the local element
ordering found in the initial domain. Up to now, we have discussed the input
data and its segmentation into a set of discrete elements and their grouping into
arrangement groups G ;. From now on, we focus on formulating the re-targeting
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problem as an optimization problem which can be solved efficiently, thus allowing
to explore solutions for different domain deformations interactively.

Problem Formulation The key idea for re-synthesizing a deformed domain is
its formulation as a labeling problem. This type of problem formulations is well
studied in the computer vision community, and several efficient solution tech-
niques exist [BVZ01]. While the formulation of a labeling problem is typically
done for 2D problems e.g. image segmentation, we exploit the sub-structures
found in our problem setting, namely the linear element arrangement groups. This
allows us to solve the layout problem employing efficient algorithms. These con-
siderations result in the following equation to be minimized:

N N-1
L(fi,.-.fn) =Y, O(fi) + Y, 8(fi> fis1) (5.1)
k=1 k=1

The f;’s are representations of discrete elements that might get placed at different
discrete positions located within the parameter domain of the boundary segments
S;. Thus, a fi = (P;,m,d) is a tuple that consists of a reference to a discrete ele-
ment P, its current discrete position m and d being the length of P; projected onto
the boundary segment S;. In our setting the d’s are rounded to be a multiple of 1.0
meter. The energy we want to minimize in order to find an optimal sequence of
discrete elements is given in Equation 5.1. This energy is composed of two terms,
that can be mapped to our notion of style preservation outlined above. The data
term O(f;) measures the cost for assigning an element f to a specific location
m. Thus, it penalizes elements that will be placed at positions, where they do not
overlap with their corresponding distorted instance Pl/ within the guidance map.
From a different view, it can also be seen as prior term pulling the original ele-
ments towards the position, where the deformed instance of the particular discrete
element is located. We designed O(f;) to be the area difference between the orig-
inal element P; and the area of the intersection of both original P; and deformed Pl/
defined as follows: /
O(fy) = A(P) ~A(RNP))

Thus O(f;) penalizes space not covered between its discrete element P; and its
corresponding deformed Pl/ . Further, it depends on the current location m, where
fx might be positioned inside the result sequence, and it changes every time the
domain is modified. The transition between two consecutive discrete elements is
penalized by 8 (fi, fr1) that is defined as follows

o iffreENfyy1 €EE
O(fi, fir1) =4 (1—a) if fi = fiq
0 if fi # fi1
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This function encourages omitting two identical discrete elements P, getting placed
next to each other and instead prefers different instances. In order to achieve
continuous regions of empty space, when present, we penalize two consecutive
empty space elements less severe, than two identical P;. In our examples we used
o = 0.05. As described in Section 5.2.2 we exploit that, elements can be grouped
into arrangements along segments of the boundary polygon. For each of them,
the optimization problem boils down to computing a sequence of elements along
a curve, that in total fulfills a certain minimal length M along the parameter do-
main. In order to employ an efficient algorithm, that minimizes Equation 5.1 the
fi’s are restricted to be placed at discrete positions along the curve. The discretiza-
tion depends on the specific application (we used discrete steps of 1 meter in our
examples). This allows us to reformulate the objective function in the following,
recursive way:

L{fi,mp] = O(f1)
L{fi,mg] = O(fi) +min(L|fi—1,mp_ ] +6(fr1,/k)) (5.2)

We solve this recursive formulation using a graph-based dynamic programming
approach adapted from Lefebvre ef al. [LHL10]. In our setting we need to in-
corporate both, node costs O, i.e., overlapping cost and neighbor costs 0, i.e.,
‘concatenation costs’ when growing the graph implicitly. We can terminate the
growing in case if the sequence length m including the current top node of the
queue is m > M. During the graph expansion step, the paths are managed by a
priority queue, where the least cost path can be extracted by extracting the node
at the front of the priority queue.

fi =argmin(Lf,myp|+8(f 1. fi)) (5.3)
m*>M

If the condition m > M is satisfied the node that represents the front of the priority
queue can be used to extract the optimal sequence f;" (see [LHL10] for details).
This is done by tracing back the parents until the start node i.e. the node, that
envelopes the element that starts the sequence, is reached. The optimal sequence
represents a sequence of discrete elements that best approximates the original lay-
out along each of the §;.

Iterative Synthesis of Arrangement Groups

While the proposed formulation in Section 5.2.3 only guarantees a global optimal
solution in case the initial layout consists of a single arrangement group located
within the initial domain, we employ a meaningful heuristic in case multiple ar-
rangements groups exist. Instead of combining and linking them together and
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original x(T)
B | m
Figure 5.21: Concept modified guidance map. Left: the original map. Right: The
guidance map is transformed by applying anisotropic scaling to the
individual elements. Due to this deformation, the elements in the

guidance map may overlap partially. This allows for a less restrictive
positioning of the elements in larger areas.

optimize for a globally optimal layout, we have decided to choose an iterative al-
gorithm, that synthesizes each arrangement group separately. This dramatically
improves the performance of the synthesis procedure and allows to use it in in-
teractive editing sessions. We decided to sort the groups by their cardinality of
the discrete elements assigned to them. Thus, the synthesis technique starts with
the most dominant group located inside the initial layout. The most dominant
group is the one that contains the largest amount of building footprints within the
original layout. In order to avoid overlaps with already synthesized sequences,
we constrain the j — th arrangement group by the previous k € [j — 1,..., 1] that
potentially placed elements (fixed, repeatable) will not penetrate the convex hull
of existing sequences.

Different Guidance Strategies

As mentioned above the guidance map &’ is the result of applying the map ¢
to the interior elements of the initial domain &. Typically, the creation of such
a guidance map is not restricted to a specific deformation method. It is possi-
ble to modify the size of the discrete elements in advance or apply a deformation
scheme, where weights can be distributed using a simple brush metaphor. Such
a scaling scheme was presented in the work of Moser er al. [MDWKO08]. When
using the guidance map 7', the algorithm might present solutions, that contain
multiple consecutive occurrences of discrete elements. This results from the guid-
ance map, which encourages the algorithm placing elements in regions, where
they overlap with their corresponding distorted instance, is cheaper than placing
them somewhere else. This may result in visually unappealing repetitions, i.e., the
same elements is repeated multiple times (Figure 5.31(a)).

In order to overcome this unappealing side effect we use a modified version of the
guidance map x (7). Instead of applying the map to the initial discrete elements
directly, we apply a scaling operator 7" to each P, before applying the deformation
map, thus (7) : ¢(T(P,)) — Pl-”. As aresult of this scaling, the deformed discrete
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\ () (b)

Figure 5.22: Re-targeting of a tightly packed city block. (a) Deformations (red
arrows) applied to the initial domain (grey boundary) result in the
edited domain (black boundary), distorted elements (various colors)
serve as a guidance map. (b) Re-synthesized block layout.

elements now partially overlap and, therefore, the algorithm is able to bypass the
original ordering temporarily. In our examples, we use anisotropic scaling along
the direction of the boundary segment S; by a factor of 1.5 and apply it to each
discrete element present in the corresponding arrangement group G;. An example
for such a modified guidance map x(7) is shown in Figure 5.21.

5.2.4 Application: City Block Re-Synthesis

In order to showcase the versatility of our re-targeting approach, we evaluated
our algorithm on a set of challenging test cases. Our primary application is the re-
targeting of real-world city blocks. We extracted a set of city blocks from the well-
known community mapping service OpenStreetMap (OSM) [Opel7a]. When we
speak of a city block, we strictly speak of a simply connected and piecewise-linear
closed boundary labeled as street. Inside, such a city block a set of polygons is
located that are labeled as buildings in our examples.

Our first experiment, tackles the deformation of tightly packed city blocks, mean-
ing that buildings and their 2-dimensional footprints are densely placed along the
street segments.

In Figure 5.22(a) the deformation applied boundary intersections is highlighted
by the red arrows. Applying this deformation to the initial layout results in distor-
tions heavily shearing the elements and changing their size. The block re-layout
computed by our algorithm (Figure 5.22(b)), resembles the style of the original
block as a tightly packed layout is re-computed.

Figure 5.23 and 5.24 show different deformations applied to the same initial city
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\ (a) (b)

Figure 5.23: (a) Heavy enlargement of a city block. The applied deformation
destroys the noticeable structure of diamond-shaped buildings. (b)
Re-synthesized block layout: the style of the diamond-shaped build-
ings is preserved, due to original copies and additional elements are
spawned as a result of the heavily enlarged edge.

block. Again, the red arrows highlight the applied deformations. In Figure 5.23
the block was heavily enlarged, in Figure 5.24 the blocks was moderately shrunk.
In both cases, the noticeable structure and the orientation of the diamond-shaped
buildings are preserved. The result further illustrates that if boundary regions are
heavily shrunk or enlarged the algorithm is able to reduce the number of discrete
elements or add additional ones.

In Figure 5.25(b) shows a re-synthesis of the initial layout of a city block shown

4 N () (b)

Figure 5.24: A city block that is moderately shrunk: notice, that elements get
discarded from the layout in case the boundary regions reduced their
size. However, the overall layout style is still recognizable.
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Figure 5.25: Re-synthesis of an original domain. The original layout (a) is used
to guide the algorithm in order to synthesize the novel layout (b) into
the original domain.

in Figure 5.25(a). Notice, the similarity between the initial layout shown in Fig-
ure 5.25(a) and the synthesized layout Figure 5.25(b). The algorithm is not able to
reproduce the exact layout, due to the discrete nature of our approach. Figure 5.26
shows a result, where the outline of the original city block (Figure 5.25) was topo-
logically modified by adding two additional intersections, leading to strongly vis-
ible shearing and bending of the elements within the guidance map. Using this
guidance map as prior information for the layout algorithm, we are able to pro-
duce a plausible new layout, although some footprints present in the initial layout
were discarded.

Other, examples demonstrating the strength our method are sparsely packed city
blocks. Figure 5.27, illustrates that if empty space is present between buildings
(five at the top street), the algorithm discards first empty space rather than discard-
ing whole buildings since this would result in higher layout costs. For the result
shown in Figure 5.28 we inserted two additional intersections along the edge with
densely packed buildings. Notice that along the segment, where the split was
introduced, the style (tightly packed footprints) is preserved, and even the space
between the five buildings (top segment) is preserved in the synthesized result.
Figure 5.29 presents an additional result, which combines changing the topology
of the boundary and applying a heavy deformation to the initial domain. Even in
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(a)

Figure 5.26: Topological modification of the city block outline, where two addi-
tional points were inserted. (a) Applied transformations and warped
interior of the layout shown in Figure 5.25 (a). (b) Resulting layout:
Our algorithm splits up the sequences at additional inserted points.
Thus, the bending of the buildings is avoided.

(a)

(b)

Figure 5.27: Sparsely packed city block, if edges get shrunk, and empty space is
present in the layout our algorithm first discards empty space rather
than discarding buildings.
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(a)

)

\

(b)

Figure 5.28: Deformed block after two additional intersections were added to the
boundary. It can be noticed, that the continuous tight building layout
is split into disjoint sequences, which are still tightly packed. Further
note that space is preserved between the upper five buildings.

this in the case of a totally distorted domain, plausible building arrangements can
be still synthesized.

In Figure 5.30, we present a result, where our approach was employed to a mod-
eled city block populated with buildings taken from Trimble Warehouse3d. Please
note, how additional buildings along the enlarged edges are introduced, and even
the single tree present in the original block is replicated.

Finally, Figure 5.31 illustrates the usage of the modified guidance map. Notice
that when an unmodified guidance map is employed, multiple consecutive rep-
etitions are present in the result Figure 5.31(a) and (c). Employing a simple
anisotropic scaling to the individual elements present within the guidance map
reduces, the consecutive repetitions (Figure 5.31(b) and (d)). Finally, we want to
note that generating the results found inside the paper took no longer than 0.135s,
using a desktop workstation with Core i7 4930K (3.4 GHz) and 32GB RAM.

5.2.5 Analysis and Comparison
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(a)

Figure 5.29: Heavily distorted block with additional intersections added to the
boundary (a). Please note, that even applying such heavy defor-
mations to the initial boundary, the element grouping (consecutive
groups of two buildings) are present in the result (b).

So far, we presented a large set of different re-targeting results that were applied
to several real-world city blocks. These contained several significantly differ-
ent initial building footprint layouts. The city block portfolio used for the de-
tailed evaluation of the presented re-synthesis scheme ranged from tightly packed
city blocks, commonly found in downtown areas, to sparse suburban layouts con-
taining building footprints with empty space in-between. The restriction to only
generating layouts along the boundary segments allowed us to use an efficient
graph search technique to synthesize a novel layout re-using the original dis-
crete elements, i.e., building footprints. Compared to parcel generation algorithms
[AVB08, VKW 112, VABW(9a] our algorithm enables the transfer of semantics
attached to the real world footprints to the novel layout. This information could be
exploited by an algorithm that places 3D buildings onto of these footprints such as
the one proposed in section 5.1.5 and would enable more fine-grained constraints
on the building types.

The presented algorithm might not be suitable for the synthesis of city block lay-
outs with strong irregularities. Examples might be city blocks, where only a few
large buildings are present, such as a school building next to office buildings, a
sports facility, or a park. In such cases, it does not make sense to replicate the
school building or the park instance. Typically, when such a block is placed the
existing layout needs to be transferred as a whole by a geometric adaption of the
footprint shapes.

5.2.6 Limitations
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Figure 5.30: (a) A deformation of a city block populated with detailed modeled
buildings. Notice, that even additional trees are inserted. (b) We
show the deformation and the guidance map. (c) Top-view of the
resulting layout. (d) The original building block.

Although, all these results look plausible, we identified a few limitations that need
to be discussed in here. In our current implementation we rely on two conditions
found in the input data (1) the atomic discrete elements blocks can be combined
into larger groups, and (2) the elements are dominantly arranged along the bound-
ary. Our algorithm is not restricted to element groups located near the boundary.
In principle, any group of elements that dominantly follow a curve can be synthe-
sized with our algorithm. Only a few modifications need to be realized to handle
this case. (1) a method to fit a plausible curve, along the elements will be synthe-
sized and (2) an additional data term, that handles, how ‘well’ the elements are
oriented to the curve locally. Even in this case, we could again exploit the structure
of the problem and still have an efficient algorithm to compute solutions. How-
ever, if no such groups are identifiable, our algorithm will produce failure cases.
Further, we may note, that we currently do not see a promising straightforward
extension of our approach for ‘real’ 2D dimensional domains.
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(b)

Figure 5.31: Illustrating the effect of using modified guidance maps. We show
additional modifications to the block introduced in Figure 5.30. The
results that are shown in (a) and (c) where obtained by simple warp-
ing of the guidance map. In this case, multiple consecutive repeti-
tions of the same building are visible. To create the results that are
shown in (b) and (d), simple an-isotropic scaling (referred to as blur-
ring in Figure 5.21) was employed. This simple modification already
reduced the number of consecutive repetitions significantly.

In addition, we identified another limitation introduced by our continuous de-
formation method acting globally across the polygon: It happens that even if
the boundary edges do not change their length, the layout changes along these
edges because the underlying guidance map has changed. This effect might be
avoided by choosing a different deformation method, that can locally control the
allowed deformation. We plan to investigate the approach presented by Moser et
al. [IMDWKOS8] for further evaluation.
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CHAPTER 6

Example-based Building Synthesis

6.1 Motivation

Many types of content can be represented as sequences, such as text, 2D or 3D
curves, audio data, videos, or media play-lists. Even content that is primarily used
for urban modeling such as architectural textures [LHL10] and buildings can be
represented as sequences of image strips or building parts. A sequential repre-
sentation of a building can be achieved by cutting the initial building model into
different slices along one primary dimension. A more abstract real-life exam-
ple is the construction of building walls made of concrete wall elements. These
wall elements are arranged along each other in order to form the different build-
ing sides. Sometimes they include even window and door openings. When this
setting is transferred to the domain of example-based building synthesis, a novel
building can be constructed by recombining individual building parts along one
primary dimension. Typically, the envisioned 3D building model should satisfy a
set of user-defined restrictions or constraints. Such constraints might be a certain
length, a certain base area, a specific number of windows, or a certain area of solar
panels placed on the building’s rooftop.

An intuitive modeling metaphor for the synthesis of buildings might be derived
by letting the user specify the shape of the building and a set of additional re-
quirements. Thus, a building might be described by a skeleton shape and a set of
n requirements that demand a set of resources that need to be allocated in order
to satisfy them. In this chapter, we propose to solve the synthesis of buildings as
a generalized resource-constrained k shortest path (RCKSP) problem, which was
described in chapter 3.
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Figure 6.1: Building parts labeled as end-parts. On the left-hand side, a left-end
part is illustrated, while the part on the right-hand side a right end part
is illustrated. Both parts carry attributes such as length highlighted
by the light green bar and other attributes such as the number of solar
panels, number of air conditions or the presence of a front door.

6.2 Building Database and Annotations

The databases that are used for the building synthesis algorithm contain a set of
building parts that manually prepared by segmenting existing 3D buildings from
Trimble Warehouse 3D [Tril7]. All parts are labeled as left and right end parts
(see Figure 6.1), corners with different angles (see Figure 6.2), middle/filling parts
(see Figure 6.3) and T-shaped parts (see Figure 6.4), and annotated with different
real-valued, integer attributes such as length, number of balconies, number of
windows, number of doors etc. In addition, each part stores a polygon which
represents the cross-section of the axis aligned cut for each side of the building
part (see the blue polygon highlighted in Figure 6.2 and 6.4). The geometry of the
building parts is scaled to quantize their length attribute (see the light green bars
in Figure 6.1, 6.2, 6.3, 6.4) to multiples of 0.2 m. The transition cost between two
building parts is defined as

d(eiyeiv1) = |Air—Ajl, (6.1)

i.e., the area of cross-section disagreement between two adjacent parts, a measure
of how well they fit together (see Eq. 6.1). The areas A; , and A;; represent the
right cross-section of element e; and the left cross-section of element e, respec-
tively. In all cases, we arrange the neighboring costs that are computed in advance
and use a lookup table that is stored along with the database.
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Figure 6.2: Building parts labeled as 1-parts. On the left-hand side, two individual
I-parts are illustrated both having different angles. The length attribute
(light green bar) and other attributes such as solar panels are depicted
by the orange ellipse. On the right-hand side, the cross section poly-
gon of one side of the 1-part is illustrated by the blue polygon.

Figure 6.3: Variants of different building parts labeled as middle/filling parts.
Building part attributes such as length depicted by the light green bar,
solar panels, fire-ladders, balconies and air-conditions highlighted by
the orange, dark-green, violet and blue ellipses.

Figure 6.4: Building parts labeled as t-parts. This building parts have three neigh-
boring elements and thus three cross-sections. This special building
part has two length attributes as highlighted by the light green bar.
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6.3 Case Study: Resource Constraint Building De-
sign

We use our technique in order to synthesize a portfolio of different building de-
signs from individual libraries of building parts. We show how using our concept
of structure, global and local design goals can be implemented elegantly. One
such example can be seen in Fig. 6.5, where we synthesized different skyscrapers
from a set of floor parts shown in Figure 6.5 (a). Each of these floor parts is an-
notated with building height and a floor-area attribute round to a multiple of 0.2m
and 1m? respectively. In order to compute these building we have used two con-
straints building height and FAR. The resulting skyscrapers in Fig. 6.5 (b), (¢) and
(d) where forced to have the same height but the floor-to-area ratio (FAR, the total
floor area divided by ground floor area) is varied. As one would expect, choosing
a small FAR results in a more slender building, while the larger the FAR is chosen,
the more chubby the shape of the building becomes.

it

..I

(a) Floor parts (b) FAR: 10.0 (c) FAR: 15.0 (d) FAR: 20.0

Figure 6.5: Skyscrapers with a fixed height of 120 m and different floor-to-area
ratios (FAR). Database: 18 elements, 80 transitions.

A second use case for architectural geometry is the construction of more complex
building layouts from a user-defined footprint shape. We represent this footprint
shape as a simple skeleton graph that describes the shape of the output building
(see Figure 6.6, 6.8a, 6.7). The result shown in Figure 6.6 and 6.8a only use
length as single global constraint. The result in Figure 6.7 uses length as a global
constraint and local constraints by requesting specific attributes that are present
within the different building parts. Vertices in the skeleton represent key points,
and edges connecting them can be annotated with multiple additional constraints
that need to be fulfilled, as well as an orthogonal direction vector to define the
building front.
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Figure 6.6: A complex example that contains multiple nested t-parts in combina-
tion with a closed loop.

At each key point, only a specific class of building parts is allowed to be posi-
tioned, which we determine by analyzing the number of outgoing edges of the
skeleton vertices. If one edge leaves, either left or right end parts (see Figure 6.1)
will be chosen, depending on the front direction of the edge. If two edges leave a
vertex, corner parts (see Figure 6.2) depending on the angle between these edges
are selected. T-shaped parts ((see Figure 6.4)) are selected from the database for
vertices with three outgoing edges. From that input we compute a hierarchical
structure according to Section 3.3.4 serving as input for the graph construction
(see Section 3.3.1).

From the resulting intermediate graph (see section 3.3.1), the k-shortest-paths al-
gorithm of Eppstein [Epp94] computes either the optimal sequence X, or the k
best sequences that contain valid arrangements of building parts according to the
input skeleton and the user-defined global and local constraints. As the solution
found by the shortest path algorithm is a sequential list of building parts, we need
to arrange them according to the input skeleton as a final step. Each key point el-
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Figure 6.7: A building synthesized with different local constraints.

ement in the solution is aware at which vertex of the input skeleton it needs to be
positioned, and so we can compute partial buildings starting and ending with key
point elements, and simply transform them to the corresponding skeleton edges.

Decoupling the database and the defined structure makes it easily possible to syn-
thesize buildings of the same shape targeting a completely different style, as il-
lustrated in Fig. 6.8. Note: Both buildings have exactly the same shape, but the
number of elements chosen to realize the shape is completely different (colored
cylinder represent the start of a new element in the resulting sequence). This is
why structure needs to be defined on the primary dimension rather than the se-
quence index (section 3.3.4). The database used to synthesize these buildings
were composed of 99 elements, 4950 transitions in case of the yellow building
and 131 elements, 9170 transitions in the case of the ancient building.

Variations can be achieved either by modifying the constraints as already demon-
strated with the skyscraper model or by computing the k-best solutions and se-
lecting according to taste. Fig. 6.9 demonstrates the three best solutions that were
computed according to the defined cross-section disagreement cost function. All
three buildings share exactly the same shape. By inspecting different limbs of
the model and the parts selected at the t-junction and their surroundings, one can
easily recognize that all three models vary their look locally. Such automatically
generated variations may also serve as an inspiration to impose certain constraints
on the next design iteration. For instance, the user may have noticed a balcony,
but prefer to have it in a different location.

Finally, we note that despite the simple nature of our user input (key points and
constraints), this concept of structure allows for intuitive modeling even of very
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(©

Figure 6.8: Buildings obtained from the same structure using different styles. The
colored marks indicate that the spatial composition of each sequence
is highly dependent on the part database.
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complex buildings (Fig. 6.6, 6.5, 6.8 and 6.9). All models shown took no more
than a few seconds to generate on a standard desktop PC (less than 3 s for the most
complex example in Fig. 6.6), which makes our technique a candidate for inter-
active modeling sessions. In Fig. 6.12, we provide a rudimentary performance
analysis across an extended range of problem sizes.

Figure 6.9: Three of the five best solutions given the same structure. Note that
even the part at the T-joint can vary (also see Section 3.3.4).

It might happen that city blocks within an existing urban layout do not contain any
building footprint at all (see Figure. 6.10). In order to fill such empty city blocks,
we can use the building design technique presented in this chapter to synthesize a
specific building. The design specification can be generated from the initial city
block shape, i.e., the green polygon illustrated in Figure 6.10, described by the
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street center lines.

Figure 6.10: For empty city blocks such as the one highlighted by the green poly-
gon, a building design specification can be automatically generated
by computing an offset polygon (red)

The skeleton of the target building is defined by an offset polygon (see red polygon
in Figure 6.10) computed from the initial city block shape. The building that
was generated using the offset polygon as the design specification is illustrated in
Figure 6.11. The yellow building is integrated into a city block layout that was
populated with 3D buildings using the technique presented in section 5.1.
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Figure 6.11: The synthesized yellow building integrated into an existing city block
layout that was populated with 3D building models using the tech-
nique described in section 5.1

6.4 Performance Evaluation

To demonstrate the effectiveness of our approach we performed two series of ex-
periments. First, we compared our method to related approaches in simple set-
tings, where the variations of the path ranking method used in previous work can
also find solutions. It should be noted that in the very rare case, when most of the
elements concatenate with zero cost, path ranking method often finds the optimal
solution faster than our algorithm, because in such case the probability is very
high to find a feasible solution in one of the front places of the queue, used to
enumerate sequences. Second, we generated various examples on more complex
settings, for which path ranking fails to find a solution in a reasonable amount of
time.
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Figure 6.12: Performance study: From a database of complete buildings
(74 elements, 5402 transitions), we generated streets of vary-
ing length R and measured the total time required for build-
ing the intermediate graph and finding the shortest path. The
image shows the solution for 80 m. We found the runtime to
be roughly proportional to R'2°.

6.5 Analysis and Comparison

From literature, we are aware that buildings and/or facades can be modeled us-
ing forward [MWH™ 06, MMO09] or inverse [BWS10, TLL" 11] procedural mod-
eling metaphors. Although they might be able to generate visually compelling
results, we argue that these approaches are not directly suitable for modeling
a combination of global and local constraints such as the floor-to-area ratio or
the specific occurrence of architectural elements as shown in our examples (see
Fig. 6.7). Another possibility would be utilizing stochastic tiling as proposed by
Yeh et al. [YBY113], which might indeed generate plausible results; however,
their method would struggle to satisty hard constraints.

6.6 Discussion and Future Work
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Availability of annotated data: The outcome of any example based synthesis
technique can only be as good as the data fed into it. In our case, the elements
need to be meaningfully segmented and annotated with additional information,
which is not included in the research databases we are aware of. Consequently, we
had to manually prepare the 3D and motion data in order to make it usable for our
purpose. The automatic and community-driven generation of example databases
are vibrant research topics, and we are confident that in near future good example
data will be available.

Constraining the search space: It is the nature of hard constraints that they cut
down the space of feasible solutions. This, of course, depends on many factors
including the size of the database and the relative resource consumption of the el-
ements contained in it. In fact, in our experiments, we encountered cases where a
very slight variation of equality constraints made all the difference between there
being many solutions and none at all. Our algorithm performs best at equality
constraints where suitable solutions exist. If there are none, for instance when
trying to build a 50 m street out of a database of 20 m buildings, the failure can
easily be detected by observing that the forward and backward trees do not con-
nect. At that point, the user can be presented with several options to re-specify the
problem, for instance by relaxing the constraint that caused the impossibility.
Characterization: Although we have presented a theoretical basis for handling
more general structures including T-junctions under multiple constraints, our anal-
ysis of the algorithmic complexity is currently limited to the single constraint.
From our experiments, we observe that the method scales well to rather complex
structures including multiple T-joints. A rigorous analysis of the algorithmic and
memory complexity in these scenarios is subject of future work.

Transfer to applications: The problem (RCSP) that our algorithm solves at its
core is not specific to an application. However, due to the discrete way in which
we handle resource usage, some creative experimentation may be needed in order
to adapt the technique for a given content generation task. As more problems
are solved using our technique, we hope to gain the insight required to make
recommendations on how to best deal with certain types of constraints. So far, we
found that most are best formulated in terms of per-element resources, and others
may map better to per-transition costs. Yet others may depend on the context and
require a side tap into the algorithm, like the extra cost term we used to make the
animation follow a path—an example we used to illustrate that the core of our
technique is in principle flexible enough to allow for the injection of other kinds
of constraints.

Outlook: So far, we have only started exploring the potential of our algorithm in
real-world use cases, and there are many research directions that might be worth a
closer look. For instance, we are not aware of any example-based synthesis tech-
niques for multi-character animations (imagine a dancing couple), which could
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map well to motion graphs with T-joints as the actors split and re-join. Beyond
the directions sketched in this paper, we plan to investigate the wider field of me-
dia computing. We see plenty of sequential problems that might benefit from
our approach, from re-mixing of text, summarization of audio and video, to the
generation of playlists or game level design [HF12a, STWMO09].
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CHAPTER 7

Summary

7.1 Conclusion

In here, we draw a detailed conclusion about the urban structure synthesizers pre-
sented in, chapter 3, chapter 4, chapter 5, and chapter 6.

Example-based Road Network Synthesis The proposed hierarchical street net-
work generation (see section 4.1) is an example-based road network generation al-
gorithm that only requires a limited set of user input, i.e., an arterial street skeleton
and desired a topography map. These two types of user input are already enough to
compute a detailed street network that faithfully reproduces the style found in the
exemplars. We showed that the algorithm is able to synthesize road networks that
resemble the style of a real-world network by using a novel hierarchical fragment
representation capturing the road network styles at different scales. Our method
relies on rich variations of fragments extracted from real-world cities to produce
plausible road networks. Too few fragments in the database will typically result in
large shape difference between the query and the matched fragments. As a conse-
quence, the street segments will excessively be deformed, especially at the frag-
ment boundaries. Although structures such as plazas, ramps, and roundabouts are
topologically preserved they receive geometric distortions, that might produce un-
pleasant artifacts. However, the work of Yang et al. [YWVW13] showed that such
warping effects can be drastically reduced when an iterative warping approach is
used. In contrast, our algorithm can only compensate such warping artifacts by
additional fragments. These need to be extracted from multiple cities with a sim-
ilar street network style to have access to an increased amount of shape variations
and thus more potential candidates. Optionally, a supervised fragment augmenta-
tion by scaling or mirroring might also help to enrich the variations present within
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the database further.

The road network generation algorithm using recently introduced generative ad-
versarial networks (GANS) (see section 4.2) is one of the very first attempts to use
neural networks for the automatic content generation in the context of urban mod-
eling. Standard deep learning techniques typically rely on images as input. Thus
they cannot directly be used with road network representations available from
OpenStreetMap or EarthExplorer. A transformation of the road network into the
image domain using rasterization helped to overcome this problem. In contrast to
other image synthesis techniques that train GANs on colored textures [JBU16],
only the road network information is present within the input images. Thus, the
network only ’sees’ the road structure during the training and thus is able to adapt
the filter banks to capture the details found in the road structure fully. After the
training, only the generator network is kept and feeding it with samples from a
simple distribution allowed to synthesize images containing road networks within
milliseconds. To perform an evaluation of how well the statistics and network
measures on the generated road network patches were reproduced we realized an
effective post-processing algorithm to extract a graph-based representation of the
synthesized network. The synthesized results that are produced by the generator
are structurally sound and visually similar when compared to the example net-
work. An in-depth statistical evaluation of different road network measures such
as city block area, city block compactness, and city block aspect ratio was pre-
sented. The performed evaluation substantiated that the produced road networks
are visually plausible, but also provided similar statistics as they can be found
within the original road network. One advantage of the GAN technique used to
realize the example-based road network synthesizer is indeed the capability to
produce arbitrarily sized output patches. This allowed generating samples that are
significantly larger than the input example. However, this also allowed generating
patches, that are much smaller than the road network used for training. In both
cases, these patches still contain meaningful road structures and might be suitable
to be used in a synthesis application where the road network is grown from one or
multiple seed patches. The lack of control over the generated content output was
identified as a major drawback of this road network generation approach.

Example-based City Block Layout Transfer and Re-synthesis The proposed
city block layout transfer algorithm (see 5.1) is an attempt to enrich city lay-
outs with building footprint arrangements of those commonly found in real-world
cities. The key idea of the proposed approach is to extract city blocks and their cor-
responding building footprint arrangements and re-use them to populate the empty
city blocks within a synthesized road network with realistic building footprint dis-
tributions. The envisioned task was achieved by comparing the shape between
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virtual and example city blocks, align them, and copy the content to the virtual
city block. Conflicted buildings, i.e., building footprints that are partially located
outside the virtual city block were removed, while building footprints that partially
overlap the street area are corrected by a constraint optimization scheme based on
position dynamics. Additional geometric details were added to the layout, by pop-
ulating the building footprints with 3D buildings retrieved from a database. Here,
we pursued the same retrieval strategy based on comparing the shape of the foot-
prints to retrieve viable candidate buildings, as it was done during the city block
layout transfer. In both cases: during the retrieval of city blocks and during the re-
trieval of candidate buildings our algorithm strongly depends on a rich variation of
city block shapes as well as example building footprint shapes. Too few candidate
shapes stored within the database will typically result in a large shape difference
between the query object and the best-matched candidate object, city blocks and
buildings respectively. In order to alleviate these problems, fall-back algorithms
for city block layout re-synthesis (see section 5.2) and constrained building syn-
thesis (see section 3 and 6) are proposed in the work at hand.

A re-synthesis scheme to compute novel city block layouts based on existing ones
was presented and evaluated in section 5.2. With access to plenty of existing city
block layouts from mapping services such as OpenStreetMap, the primary mo-
tivation for this approach was to re-use these layouts and transfer them to city
blocks that strongly vary in shape. One of the key goals was to preserve the shape
of the building footprints inside the new layout. Thus, using a warping algorithm
to compute the novel layout was not an option. However, mapping the building
footprints from the example city block into the target domain by applying a defor-
mation, led to the introduced concept of the guidance map. This information has
proven to be a powerful prior for the layout computation. At the very first step, a
city block was used, and no deformation was applied. This step allowed visualiz-
ing and inspecting the differences between the original building footprint layout
the synthesized one. In the result section, we demonstrated that the example-based
modeling methodology can be used to compute new layouts in city blocks with
a strong shape difference. The results presented in section 5.2 illustrate that the
style of the layout present inside the original city block layout can be preserved
even under complex deformations. The synthesis technique allows for exploring
the layout space of different deformations at interactive rates, while whole city
blocks can be synthesized within milliseconds. These fast generation times al-
low to integrate the algorithm into the urban layout generator presented in chapter
4.1. The most prominent drawback is that the algorithm relies on the presence of
building footprints positioned along the road segments. Thus, utterly unstructured
city blocks or city blocks with only large and irregular building footprints cannot
be re-synthesized.
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Constrained Building Layouts A novel algorithm for the constrained building
generation was proposed in chapter 3 and chapter 6. The algorithm expects as
input a database of annotated building parts. A specification of the abstract build-
ing shape in combination with the definition of the constraints, the algorithm first
spans the space of resource feasible solutions as a graph. After this step, efficient
path-search algorithms can be used to extract one or k-optimal solutions. First
spanning the space of feasible solutions in a first step and then computing the
best-solutions showed superior performance compared to path-ranking and for-
ward path-search (see section 6.4). We introduced tree-decomposition and loop-
cuts to synthesize 1.5D structures such as t-shaped buildings and even buildings
with backyards or combinations of both. Exchanging the database and using the
same specification enables to transfer the style of one building to a new shape.
The abstract representation of the buildings in the form of annotations even al-
lows tackling different types of content as it was exemplified in the corresponding
paper [HTK"15] by synthesizing constraint motions along different curves. As a
drawback, we identified that in cases, where no combination of parts will satisfy
the constraints, we will not be able to produce a solution, because the forward and
the backward search trees do not establish a connection. Here, a constraint relax-
ation according to user-defined importance might be a viable solution that needs
to be evaluated in future work.

7.2 Example-Based Urban Modeling

The algorithms presented in this thesis are designed that they can be combined
into an interactive modeling system for the generation of virtual urban environ-
ments. This allows providing an example-based modeling pipeline with a very
flat learning curve and a slim user interface. In addition, it enables non-expert
users to design virtual urban environments efficiently. The individual components
for road network synthesis, city block layout synthesis, and the constrained build-
ing synthesis, only rely on a small set of parameters that might be hidden from a
novice user. The components are independent of each other; therefore, each com-
ponent might be exchanged by a different or improved version of the algorithm
for a specific content type.

In recent years the user count for online mapping services such as OpenStreetMap
has tremendously increased when reviewing their mapping statistics [Opel7b].
Thus, plenty of data for virtual urban structures is available to feed the road net-
work synthesis algorithms (see chapter 4) and the city block re-synthesis scheme
(see chapter 5). While the road network data from OpenStreetMap is available
for a huge number of cities all over the world, the amount of building footprints
and parcel information is still far from being complete. Especially, when building
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attributes should be used one can notice that these annotations are incoherent and
only sparsely available. For these reasons, the city block re-synthesis scheme un-
rolls its full potential, when these data might be available in the near future. The
building models from Trimble Warehouse [Tril7] that were used to conduct the
evaluation of the algorithm for the constrained building synthesis are handpicked
examples that have high quality. The overall quality of the buildings available
at Trimble Warehouse varies extremely, from very detailed models to buildings
represented as textured boxes. All building parts that were used as database were
manually prepared; however, for a practical use-case scenario, this manual prepa-
ration is not cost-effective. A digital content creation company, where such an
algorithm might be used, typically has access to an internal database of building
blocks that is already richly annotated. Even the building block have discrete di-
mensions to exchange and recombine them efficiently. These facts were confirmed
in a private communication [cG17] with an industrial designer from a digital con-
tent creation company.

7.3 Technical Future Directions

There are several future directions that might be worth to be taken into account. In
here, several future research directions for the methods proposed in the chapters
3,4, 5, and 6 will be discussed. Finally, a bigger picture for research trends in the
context of urban modeling will be sketched at the end of this chapter.

7.3.1 Road Network Synthesizers

The hierarchical road network generation (see section 4.1) approach might be ex-
tended by taking several future directions into account. To synthesize large-scale
structures, i.e., streets that cross several districts and inter-fragment relationships,
are crucial. Technically, this could be achieved by dropping the independent frag-
ment insertion and replacing it by an algorithm that incorporates a cost term that
measures potential street connections across the fragment boundaries. The algo-
rithm could start with a randomly selected or user-specified region and grows the
layout by simulating the insertion process while pairwise neighborhood costs are
used to determine the best candidates. The algorithm might proceed greedily to
produce a plausible street layout for each level. An alternative way would be to
formulate the per-street level layout problem as a binary integer program, that in-
corporates a matching cost for each candidate fragment and the cost between the
fragment boundaries. As off-the-shelve solvers have shown excellent performance
for tiling problems [PYW14], network computation [PYB™16], and building re-
construction [NW17], the solver from Gurobi Inc. [Inc17] might be worth a closer
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look for the evaluation of such an approach.

Apart from the synthesis, we would like to improve the usability of our approach
by allowing the user to manipulate a synthesized layout. One method would be to
enable the user to access multi-resolution editing tools for modifying road courses
on different hierarchy levels efficiently. Typically, editing the road courses might
require, local re-synthesis of affected regions, while incorporating both inter and
intra-fragment context of the existing layout.

The road network generation algorithm proposed in section 4.2 might be improved
by taking several directions into account. Real-world road networks are composed
of streets having different importance categories, i.e., highways, connectors, or lo-
cal streets. One interesting research direction would be to investigate, whether the
GAN is able to learn road courses of multiple importance categories encoded into
the same image. An important aspect that was not incorporated in this work is the
controlled generation of a new road network. A user might sketch a road course
that needs to be present in the final result, and the neural network should gener-
ate road courses that branch from the sketch to form a plausible extension of the
road network. In combination with attribute maps [KAEE16], that might contain
density information, land use, or even terrain more advanced control techniques
would be possible. The GAN technique used in that part of the thesis allows gen-
erating output that has a smaller spatial resolution than the patches used for train-
ing. This enables the generation of individual road patches that might be used in
an algorithm that grows a new road network similar to the approach of Nishida et
al. INGDA16a]. However, with the advantage that the templates contain a near in-
finite amount of variation assumed that the data-generating distribution has been
successfully learned by the GAN. Finally, the rasterized road network needs a
smart post-processing step to allow a fair comparison to existing road network
generators. Apart from using GANs for urban structures, we might also investi-
gate their use for feature map generation for texture synthesis algorithms such as
[RSK10, KNL*15].

7.3.2 Cityblock Layouts Synthesizers

The city block layout transfer algorithm (see section 5.1) might be improved in
several ways. To improve the overall building layout within an urban region a pos-
sible step would be to integrate a statistical model for the distribution of buildings.
This model might also take into account higher order structures of the underlying
road network. It might be possible to learn such information from the exam-
ple cities, by taking building density, building height, or land use into account.
The prediction of the building locations might be realized by the development
of a novel algorithm inspired by the recent work of Arietta et al. [AERA14]. In
combination with the strategic placement of individual entities such as parks or
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recreational areas, the overall realism of the urban layout can be drastically im-
proved. Another direction would be the design of a descriptor for the comparison
of the building footprint arrangement within a city block. This would then allow
to constraining the selection of a viable city block to the adjacent city blocks, as in
real-world city layouts the style in adjacent city blocks is typically coherent. An
optimal selection of the best-suited city blocks according to shape and layout sim-
ilarity might be achieved by formulating the city block layout problem might an
integer linear program, that can be efficiently solved using off-the-shelve solvers
such as the one from Gurobi Inc. [Inc17].

The layout computation for city blocks (see section 5.2) might be extended and
improved in several ways. The proposed algorithm relies on building footprints
that are arranged in sequences located near the boundary street segments. Thus,
interior buildings are neglected or might only be copied to the target block. An
essential improvement would be, to exchange the labeling algorithm with a more
powerful algorithm that is able to synthesize more general two-dimensional lay-
outs. For room layouts [YYT'11, MSL"11] or shop layouts [YYW™12] Markov
Chain Monte Carlo (MCMC) algorithms have been explored. However, instead
of steering these algorithms by rules or design guidelines the proposed guidance
map might be a suitable alternative. Transferring the layout of a source city block
to a target city block might also be achieved using learned position or orienta-
tion functions as proposed in Guerrero et al. [GIWW 14, GIWW15]. In addition,
recent machine learning techniques, such as GANs in combination with a large
database of city blocks might be used to learn a layout model and to predict an oc-
cupancy map for different shaped city blocks. As individual city blocks are part of
a larger neighborhood, contextual information from nearby locations might serve
as additional information during the training procedure.

7.3.3 Constrained Building Synthesizers

There are several directions that would improve the constrained building synthesis
approach (see chapter 3 and 6). If a user defines local and global constraints that
cannot be satisfied, because there is no valid combination of building parts within
the database, the algorithm is not able to produce a resource feasible solution. In
such a case the forward and the backward search tree have not established a con-
nection during the construction of the intermediate graph. A possible solution to
tackle this problem would be a relaxation of the defined resource constraints, by
letting a user specify different importance weights for the satisfaction of the differ-
ent resource constraints. In a post-processing step, the intermediate graph could
be analyzed to detect disconnections. A connection could be forced by adding
placeholder nodes carrying virtual resources to fill the gap taking the importance
weights into account. Another possibility to produce a resource feasible solu-
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tion might be a relaxation of the globally optimal result. Instead of constructing
the full intermediate graph, the substructures might be solved incrementally, and
connected substructures are forced to start or end with the building parts of an ad-
jacent solution. A similar approach has been successfully employed to synthesize
game level layouts [MVLS14].

Apart from the building synthesis, the graph-based optimization technique (see
chapter 3) might be utilized for other content domains, such as video summariza-
tion of multiple video streams. An application scenario would be fusing various
captured video streams into a single video, while different time constraints for
individual example streams might be specified and a global time limit should not
be exceeded. Other application domains might be the constrained generation of
song lists that consist of an overall duration time with constraints on songs from
different music genres, or sequential game level layouts as they are common in 2d
platform video games. For the latter domain, different approaches have already
been proposed [HF12b, STWMAO9], that can be used as a starting point for an
in-depth evaluation.

7.4 Future Trends for Example-Based Modeling

In the final section of these work, an outlook for future research directions on
efficient digital content generation will be given.

7.4.1 Generation of Urban Structures

Research on the synthesis of road networks has spawned several approaches from
the generation of cross-country roads to the generation of the individual street
layouts of settlements or cities. An essential aspect of large-scale road networks,
however, is the connection of cross-country roads with the outgoing links of an
existing city. Algorithms that can establish such nontrivial connections need to
provide generic parametric models for the generation of motorway interchanges
and on-ramps. These parametric structures might be used by algorithms that are
designed to compute a strategic placement of these structures. The placement
strategy might include contextual information of the existing city layout such as
the presence and the accessibility of industrial areas, recreational areas, and park
and rail access points. In urban environments, multiple modalities for transporta-
tion exist aside from road networks. Examples for these modalities are railways,
underground railways, trams, cycleways, and bus networks. In large-scale ur-
ban environments, these structures partially depend on each other, to ensure time-
efficient movement. However, the possible placement of these structures strongly
depends on the environment and might increase their construction costs. For the
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planning of multi-mode transportation networks, it is crucial to design novel syn-
thesis algorithms that might incorporate such dependencies. In addition, multi-
model synthesis algorithms might also need different user interaction methodolo-
gies to enable the possibility to specify the functional demands and the constraints
to control the complex content.

7.4.2 Content Storage and Compression

Apart from the design of novel content generation algorithms, it is essential to
consider the storage size of the generated content. While the cost for storage
space on hard-disks might be neglected, in-memory storage might still be limited
to today’s consumer hardware. With the increasing demand for additional details
and the growing size of virtual worlds, future content generation algorithms will
need to synthesize novel content in a compressed representation that is only un-
packed during the visualization stage. When the content needs to be edited at run-
time, algorithms need to efficiently update the compressed representation without
regenerating the whole content and re-compression the generated data. For real-
time texture synthesis, the first steps have already been taken into account in the
work of Lefevbre et al. [LHL10]. For the large-scale synthesis of virtual worlds
these crucial steps, have been neglected so far.

7.4.3 Level of Detail

Increased level of detail is essential to increase the perceived coherence within a
virtual environment. However, manual placement of these additional details is too
costly, especially when the size of the virtual world is huge. Algorithms for syn-
thesizing specific details found in different contexts have already been presented.
They range from synthesizing detailed geometry onto abstract shapes [MWTI11],
[ROM ™ 15] using ideas from texture synthesis or point processes, or placing traffic
signs along road networks [TB16], and the synthesis of entangled details for nat-
ural environments. Apart, from these details that already increase the realism of
virtual urban environments, there are a few other types of details that make them
perceived as real: imperfections, forfeit buildings and gardens, or even small piles
of dirt and waste. Instead of adding these details afterward into a scene, con-
tent generation algorithms should be adapted that all these unpleasant details are
present in the future virtual urban environments.

7.4.4 Neurally Guided Content Generators

Many of today’s example-based content generation algorithms rely on a custom-
tailored algorithm that is able to synthesize a specific type of content from pro-
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vided examples. With the advent of deep learning and especially the invention
of generative adversarial networks (GAN) by Goodfellow [GPAM™14] there is a
huge amount of unexplored potential for urban content generation and virtual as-
set generation algorithms in general. The road network synthesis algorithm based
on GANSs is an early step towards the replacement of the custom-tailored example-
based content generators by learned models. Typically, content that can be trans-
formed into an image or a volume representation might be suited for training such
a generative model. Recent works in this field range from terrain synthesis [BP17]
to 3d shape synthesis [WZX 16, LXC*17].

Classical neural networks, for example, have been applied to the generation of
resource maps for video games [LIHT16]. Such an approach could in principle
be used to learn the strategic placement of individual urban objects, such as parks,
recreational areas, or schools.

Although the number of papers that use generative adversarial networks in partic-
ular for the generation of content has drastically increased recently [Kall7], there
are still plenty of unexplored areas where the use of a GAN might be useful, such
as 2D and 3D layouts, distributions of plants or trees. However, besides finding
improved training strategies, sophisticated network architectures, one focus of at-
tention needs to be on the design of smart post-processing algorithms that improve
the output quality of generative component to make the produced content directly
usable in specific applications.
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