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Introduction

The subject of algebraic K-theory takes its roots in the 1950’s, when Grothendieck
introduced the notion of a group K associated to an abelian category A to re-
formulate the Riemann-Roch theorem. The letter “K” stands for the German word
“Klassen” (classes). Nowadays it is denoted by K0(A) and is called the Grothendieck
group of A.

Nearly at the same time another topic that influenced the development of K-
theory was growing. Namely, Whitehead in his work on simple homotopy theory
constructed an obstruction for a homotopy equivalence f between CW -complexes
to be built up from expansions and contractions. This obstruction, denoted τ(f ),

is an element of a group, nowadays called Whitehead group Wh(π), that depends
only on the fundamental group of the CW -complex considered. The Whitehead
group is given as a quotient of K1(Zπ), where Zπ denotes the group ring of π.
Among other topological applications of the lower K-groups we should mention
h-cobordisms, pseudo-isotopies, and Wall’s finiteness obstruction. These important
connections were motivating the interest in computing the algebraic K-groups of
an integral group ring.

In his fundamental work [Q] Quillen united the existing foundations of K0, K1

and introduced K-theory of an exact category C using the Q-construction. Namely,
he defined higher K-groups as homotopy groups of the classifying space of the
associated Quillen category QC

Ki(C) = πi+1(BQC), i ≥ 0.

If R is a ring with 1, then applying the Q-construction to the category P(R) of
finitely generated projective left R-modules we obtain the classical algebraic K-
theory of a ring Ki(R) = Ki(P(R)). The computation of K-groups is an extremely
di�cult task, the Quillen-Lichtenbaum and the Vandiver Conjecture give the pre-
diction for the groups Kn(Z), but the verification of these conjectures remains an
open problem.

If we let Modf g(R) to be the category of all finitely generated left R-modules
we get the so called G-theory

Gi(R) = Ki(Modf g(R)), i ≥ 0.

There is a canonical map Ki(R) → Gi(R), called the Cartan map, which is an
isomorphism if R is regular. The computation of G-groups of a ring is usually an
even harder problem than determining the K-groups. One of the di�culties that
arises when dealing with G-theory is a lack of functoriality.

The following interesting conjecture formulated by Lück in [Lü] was one of the
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motivations for us to study G-theory of group rings. The conjecture says that
the amenability of a group G (we allow infinite groups here) can be detected by
the element [CG] ∈ G0(CG). Using the machinery developed for the group von
Neumann algebras Lück showed that if G is amenable then [CG] is an element of
infinite order in G0(CG) and in particular is non-zero. The direction of showing
that [CG] 6= 0 ∈ G0(CG) implies amenability of a group G is an open problem.

As in the situation with K-theory, the interest in studying G-theory of integral
group rings for finite groups was motivated by the following obstruction problem
coming from dynamical systems. Given a smooth compact manifold M and a
di�eomorphism f : M → M, determine when f is isotopic to a Morse-Smale di�eo-
morphism. The isotopy classes of Morse-Smale di�eomorphisms have particularly
well-behaved dynamical properties and such dynamical systems were objects of
considerable research. Franks and Shub constructed an obstruction, the Lefschetz
invariant L(f ), that vanishes if and only if f is isotopic to a Morse-Smale di�eo-
morphism. These obstructions lie in a universal group SSF, which was described
by Lenstra in terms of Grothendieck groups G0(ZCn) with cyclic groups Cn. In his
work Lenstra showed more, he proved a beautiful decomposition of a Grothendieck
group of an integral group ring for any finite abelian group G

G0(ZG) ∼=
⊕

C∈C(G)

G0

(
Z
[
ξ|C|,

1

|C|
])
, (1)

where C(G) denotes the set of all cyclic quotients of G (isomorphic quotients
coming from di�erent subgroups of G are considered to be di�erent), |C| is the
order of a cyclic group C, and ξ|C| is a primitive |C|-th root of unity.

It was a natural next step to consider the higher groups Gn(ZG) for an arbitrary
finite group G. This question was independently studied by Webb [We1], [We2]
and Hambleton, Taylor and Williams [HTW]. In [We1] Webb adapted the methods
of Lenstra and obtained explicit decomposition formulas for G0(ZG) in case of
dihedral groups D2n and quaternion groups Q4m.

In [We2] Webb proved the same Lenstra formula (1) for higher groups Gn(RG)

for all n > 0 with R a noetherian ring and G a finite abelian group. Let Γ

denote a maximal Z-order in QG containing ZG. Then Γ is Morita equivalent to
the product of maximal orders ΓC in the corresponding simple algebras AC of
QG, C ∈ C(G). Denote by U the product of ΓC[ 1

|C| ] taken over C(G). Then the

Lenstra formula is saying that G0(ZG) ∼=
⊕

C∈C(G) G0(ΓC[ 1
|C| ]). Webb defined the

Lenstra functor on the level of classifying spaces and proved that the constructed
map carries certain homotopy fibers to the required homotopy fibers, mimicking
Lenstra’s observation for G0. The original Lenstra map is carrying the relations R1

in the Heller-Reiner presentation Gt0(Γ)/R1 of G0(ZG) to the relations R2 of the
presentation Gt0(Γ)/R2 of G0(U) obtained from the localization sequence Γ→ U ,
we will discuss these presentations in detail in Section 3.3. With the same approach
in [We5] Webb obtained an analogous decomposition formula for Gn(RG) for G
a finite nilpotent group with some restrictions on its 2-Sylow subgroups and R a
noetherian ring.

Using a completely di�erent argument Hambleton, Taylor, and Williams in [HTW]
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proved the same result for all nilpotent groups and conjectured a general decom-
position formula for Gn(RG) for all finite groups G. This formula will be the main
focus of the thesis.

For a finite group G consider the Wedderburn decomposition of the rational
group algebra

QG ∼=
∏

ρ∈X(G)

Mnρ(D
op
ρ ), (2)

where X(G) denotes the set of isomorphism classes of rational irreducible rep-
resentations of G, and Dρ is the division algebra EndQG(Vρ) associated to
ρ : G → Aut(Vρ).

For a representation ρ ∈ X(G) let kρ be the order of the kernel of ρ and let
dρ be the dimension of any of the irreducible complex constituents of C ⊗Q ρ.
Define ωρ = |G|

kρdρ
. Let Λρ be a maximal Z[1/ωρ]-order in Dρ. Hambleton, Taylor

and Williams conjectured the following decomposition formula, which we call the
HTW-decomposition.

Conjecture (Hambleton-Taylor-Williams). Let G be a finite group and R a noethe-
rian ring. Then

Gn(RG) ∼=
⊕
ρ∈X(G)

Gn(R ⊗ Λρ), ∀n ≥ 0. (3)

Note that the isomorphism of groups is only conjectured abstractly without
providing a candidate map for the isomorphism. There is no obvious map between
the two sides of the conjectured decomposition since unlike for K-theory here we
are lacking functoriality. Hence constructing the map is a part of the conjecture.
We discuss this point in the Subsection 3.1.2.

In [We4] Webb showed the HTW-decomposition for groups of square-free order
and for all n ≥ 0. In [LaWe] Laubenbacher and Webb proved the conjecture for
n = 0 and G a group with cyclic Sylow subgroups. Webb and Yao [WeY] found out
that in general the Hambleton-Taylor-Williams Conjecture fails to be true, and the
symmetric group S5 is a counterexample in degree n = 1. Using Keating’s result on
the rank of G1(ZG) and the fact that Q is a splitting field for the group S5 Webb
and Yao explicitly computed the ranks of both sides of the HTW-decomposition, and
the ranks did not agree. Nevertheless, Webb and Yao remarked it is reasonable to
expect that the HTW-Conjecture might hold for finite solvable groups. In Section 3.4
we provide a solvable counterexample to the Hambleton-Taylor-Williams Conjecture.

Theorem A. The group SL(2,F3) does not satisfy the HTW-decomposition.

To prove this we use the same source of contradiction as in [WeY], namely, the
rank of G1(ZG). For a finite group G we consider the following two numbers:
R(G) (“R” stands for “rank”), the rank of G1(ZG), and P (G) (“P” stands for “pre-
diction”), the rank of

⊕
ρ∈X(G) G1(Λρ). We give a computable description of R(G)

and P (G) and then apply this description to compute the di�erence P (G)−R(G)

for the solvable group G = SL(2,F3). The di�erence turns out to be non-zero
and therefore we conclude that the group SL(2,F3) is a counterexample to the
Hambleton-Taylor-Williams Conjecture.



8 Introduction

In the same Section 3.4 we prove a general inequality estimating the number
of modular irreducible representations of a finite group G in terms of the rational
irreducible representations of G. Let Eρ be the center of Dρ and let Oρ be the ring
of algebraic integers in Eρ.

Theorem B. Let G be any finite group and let p be a prime integer that divides
the order of G. Then

#{irreducible Fp-representations of G} ≥
∑
ρ∈Ip

tρ,

where Ip is the set of rational irreducible representations ρ of G for which the
corresponding number ωρ is not divisible by p, and tρ is the number of di�erent
prime ideals in Oρ that divide the principal ideal (p).

As a corollary of Theorem B we obtain that P (G) ≥ R(G) for any finite group
G. The proof of the inequality gives an explanation of the failure of the HTW-
decomposition for G1(ZG) and sheds some light on the meaning of the number
ωρ. Namely, in the language of modular representation theory, the condition that the
number ωρ is not divisible by a prime p exactly means that the complex constituents
of the representation ρ are p-blocks of defect zero for the quotient group of G they
faithfully represent and that they remain irreducible after reduction mod p. Strict
inequality may occur, because in general not every irreducible Fp-representation of
G is obtained from such a representation. Theorem A and Theorem B are contained
in our paper [S]. The inequality obtained P (G) ≥ R(G) leads to the natural
guess that a weaker version of the HTW-Conjecture may hold. Namely, instead
of asking for the isomorphism in the HTW-decomposition, one might conjecture
that there exists either an injective homomorphism Gn(ZG) ↪−→

⊕
ρ∈X(G) Gn(Λρ)

or a surjective homomorphism
⊕

ρ∈X(G) Gn(Λρ) � Gn(ZG). Since we still don’t
have any map that would work for all groups G we have to consider both of these
options.

On a positive side of results that confirm the HTW-decomposition (and hence
the weaker versions of it) we checked in Section 3.2 and Section 3.6 using the
result of Kuku that in all degrees other than 1 the rank predicted by the HTW-
decomposition is the correct one. Let Rn(G) be the rank of Gn(ZG) and Pn(G)

the rank of
⊕

ρ∈X(G) Gn(Λρ).

Theorem C. Let G be a finite group, then for all n ≥ 2 and n = 0 it holds

Pn(G) = Rn(G).

Furthermore, using the results of Keating and some analysis of Schur indices
in Section 3.5 we were able to compare the torsion part of G1(ZG) with the
one predicted by the HTW-decomposition. Surprisingly, in this case the HTW-
decomposition gives a correct answer for all finite groups G.

Theorem D. Let G be a finite group, then tors G1(ZG) ∼=
⊕

ρ∈X(G) tors G1(Λρ).
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The thesis is organized as follows. Chapter 1 is meant to be an introduction
to modular representation theory. There we include all the facts needed to prove
Theorem B, in particular the Brauer-Nesbitt theorem on blocks of defect zero. In
Chapter 2 we introduce K- and G-groups and consider examples showing that in
general these groups are very di�erent. In Chapter 2 we state all the main tools
needed for treating the HTW-decomposition. In Section 2.4 we present the result
of Keating on G1(ZG). Chapter 3 is the core of this thesis. In Section 3.1 we
review the Hambleton-Taylor-Williams Conjecture and explain the initial motivation
behind Lenstra’s result. In Sections 3.2 and 3.3 we present the computations for rank
and torsion of G0 predicted by the HTW-decomposition. Section 3.4 is based on
the author’s paper [S] and is devoted to the comparing P (G) and R(G) as defined
above. In particular the counterexample SL(2,F3) is treated in detail. The inequality
P (G) ≥ R(G) is obtained as a corollary from Theorem B of this Section. Next in
Section 3.5 Theorem D confirming the Hambleton-Taylor-Williams Conjecture for the
torsion part of G1 is obtained. The results of Kuku and Theorem C are the content of
Section 3.6. The numbers ωρ being inverted in the HTW-decomposition are exactly
the same as those appearing in the Jacobinski conductor formula, which we discuss
in Section 3.7. Finally, in Section 3.8 we present the proof due to Hambleton, Taylor,
and Williams of the HTW-decomposition for finite nilpotent groups.
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Chapter 1

Modular representation theory
background

In this Chapter we introduce all the terminology and important statements from the
theory of modular representations that are needed for the investigation of G-theory
later in Chapter 3. In the situation when representations of a group are considered
over a field of characteristic dividing the order of the group, the theory becomes
very di�erent and much more di�cult then the classical case of characteristic zero.
The main sources we used for this Chapter are the classical book by C. Curtis and
I. Reiner [CuRe1], the book by P. Webb [W], and the book by J.-P. Serre [Se].

1.1 Definitions

1.1.1 Language of representations and modules

This subsection is devoted to stating basic definitions in representation theory of
finite groups. All representations and all modules are understood to be finite di-
mensional.

Let G be a finite group and F be an arbitrary field. A representation of G
over a field F , or an F -representation of G, is a pair (V, φ), where V is a finite
dimensional F -vector space and φ : G → GL(V ) is a group homomorphism. Given
such a representation (V, φ) we may turn V into a left FG-module by defining
g · v = φ(g)v , for all g ∈ G, v ∈ V. And vice versa, given a finite dimensional
FG-module V, we have an action of G on V by F -linear invertible endomorphisms.
This gives a homomorphism G → GL(V ) and hence a representation of G over
F. In other words, a representation of G over F is the same as an FG-module
having a finite F -basis. We will use both languages of representations and modules
interchangeably.

Using the language of modules the classical notion of a representation of a
group G over a field can be carried over unchanged to define a representation of G
over a commutative ring. All rings we consider are always meant to be unital rings.
Given a commutative ring R, an R-representation of G is an RG-module V that
has a finite R-basis.

Suppose that V is free as an R-module (which is the case if R is a field). Then
we may choose an R-basis {v1, . . . , vn} of V and write the action of each g ∈ G
as a matrix φg ∈ GLn(R). The rank n of the free R-module V is called the degree
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of the representation. This way we obtain a matrix representation of G, i.e., a group
homomorphism φ : G → GLn(R). It is easy to check that the result of selecting
a di�erent basis {v ′1, . . . , v ′n} in V is an equivalent matrix representation of G,
meaning that there exists a matrix A ∈ GLn(R), such that φ′g = AφgA

−1 for all
g ∈ G.

1.1.2 Change of the base ring

A natural question to ask is how representations of the same group over di�erent
base fields are related. Most frequently the representations of a group G over
algebraically closed fields such as C or Q̄ are considered. For us it will be important
to look at representations of G over fields that are not algebraically closed, and
to study the behavior of these representations when passing to field extensions, in
particular to the algebraic closure of the base field. An inverse question will be of
importance as well, namely, whether a representation can be defined over a smaller
field or a subring. This subsection is devoted to setting the terminology and basic
facts concerning the change of the base ring.

Let R be a commutative ring and V an RG-module. Let R′ be another com-
mutative ring and f : R → R′ be a ring homomorphism. Then we may consider
U = R′ ⊗R V, which is a module over R′ ⊗R RG ∼= R′G in a clear way. This
easy construction will be extremely useful for us, especially in the following two
situations.

1. If R is a subring of a commutative ring R′, then we say that an R′G-module
U = R′ ⊗R V is obtained from V by extending the scalars from R to R′. If
an R′G-module U is isomorphic to R′ ⊗R V for some RG-module V, then
we say that U can be written in R.

2. Let R′ = R/I, where I is an ideal in R. Then U = R′⊗R V ∼= V/IV. In terms
of matrix representation the resulting representation U is obtained from V by
reducing coe�cients of matrices modulo I . We say that U is a reduction of
V modulo I . In case an R′G-module W is of the form R′ ⊗R V for some
RG-module V, we say that W can be lifted to V , and V is a lift of W. In
general a lift V is not uniquely determined up to an R-equivalence.

Suppose that V is a free R-module with an R-basis {v1, . . . , vn}. Then an
R′G-module U = R′ ⊗R V is also free as an R′-module and 1⊗R v1, . . . , 1⊗R vn
is its R′-basis. With such a choice of basis the group G acts on U by matrices
with coe�cients in R. Vice versa, if we can choose an R′-basis {u1, . . . , un} of an
R′G-module U in a way that the action of G with respect to this basis is given by
the matrices with coe�cients in R, then V := R〈u1, . . . , un〉 is an RG-submodule
of U and U = R′ ⊗R V.

Let G a finite group. An RG-module L is called an RG-lattice if it is finitely
generated and projective as an R-module. If R is a Dedekind domain the condition
for L being an RG-lattice becomes easier, namely, L should be finitely generated
and torsion-free as an R-module. In the situation when R is a PID, the definition
reduces to requiring L to be finitely generated and free as an R-module.
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Let us assume for now that R is a PID with field of fractions F . We are going
to examine the relation between RG- and FG-modules. Given an RG-module U
we can extend the scalars to obtain an FG-module V = F ⊗R U, and we may view
U as a subset of V. The other way around, starting with an FG-module V we call
an RG-submodule U ⊆ V a full RG-lattice in V , if U is an RG-lattice and has
an R-basis which is also an F -basis of V. It is clear that if U is a full RG-lattice
in V, then V ∼= F ⊗R U. The following lemma implies that every finitely generated
FG-module contains a full RG-lattice, and hence can be written in R.

Lemma 1. Let R be a PID with field of fractions F. Let V be a finite dimensional
vector space over F. Then any finitely generated R-submodule U that contains an
F -basis of V is a full R-lattice in V.

Proof. Let U be a finitely generated R-submodule that contains an F -basis of V.
Since U is a subset of an F -vector space it is R-torsion free. The fact that R is a PID
implies that U is a free R-module. Therefore, U is an R-lattice. Let {u1, . . . , un}
be an R-basis of U. We will show that it is also an F -basis of V. Since U contains
an F -basis of V, it follows that {u1, . . . , un} span V over F. Suppose that we have
a non-trivial linear relation λ1u1 + . . . + λnun = 0, for some λi ∈ F. Since F
is a field of fractions of R we may write λi = xi

yi
, xi , yi ∈ R. After clearing the

denominators we will obtain a linear dependence of {u1, . . . , un} over R, which is
a contradiction. Thus, we have shown that U is a full R-lattice in V.

Corollary 2. Let R be a PID with field of fractions F. For any finite dimensional
FG-module V there exists a full RG-lattice in V .

Proof. Let {v1, . . . , vn} be an F -basis for V. Consider an R-submodule U in V
generated by {gvi | g ∈ G, i = 1, n}. Clearly, U is an RG-submodule and it is
finitely generated as an R-module. Moreover, it contains an F -basis of V. Hence by
Lemma 1 U is a full RG-lattice in V, which finishes the proof.

Remarks.

1. The Corollary 2 will play an important role later in the procedure of pass-
ing from a representation over a field of characteristic zero to a modular
representation.

2. The existence of a full RG-lattice for a given FG-module V is guaranteed by
the Corollary 2, but in general such a lattice does not have to be unique up
to an R-isomorphism.

3. Let R ⊆ R′ be commutative rings. Let V be an R′G-module that is free as
R′-module and can be written in R. In general this does not imply that V
contains a full RG-lattice. Nevertheless, in the situation when R′ is noetherian
Smith normal form guarantees the existence of a full RG-lattice.
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1.2 Modular representations vs ordinary rep-
resentations

Let G be a finite group and p be a prime integer dividing the order of the group
|G|. Modular representations are representations of G over a field of positive char-
acteristic. When the characteristic of the ground field does not divide |G| the
representation theory is the same as in ordinary (characteristic zero) case. In the
situation when characteristic divides |G| the representation theory becomes much
more sophisticated. Before we describe a procedure of reduction modulo p, which
will allow us to pass from characteristic 0 to characteristic p, let us discuss the
major di�erences between ordinary representation theory and the one over a field
of characteristic p.

Semisimplicity By Maschke’s theorem the group algebra FG is semisimple if
and only if charF does not divide the order |G|. As a corollary we have that
in case of charF - |G| every representation of G over F is a direct sum of
irreducible representations, which essentially reduces ordinary representation
theory to the study of simple FG-modules. In the situation of charF = p

we don’t have this powerful tool, but since FG is Artinian we still can use a
weaker alternative, namely, Jordan-Hölder decomposition. Recall, that Jordan-
Hölder theorem guarantees, that for every finitely generated FG-module V
there is a series of modules, called composition series

0 = V0 ⊆ V1 ⊆ . . . ⊆ Vn−1 ⊆ Vn = V,

such that all composition factors Vi/Vi−1 are simple FG-modules. Moreover,
Jordan-Hölder theorem ensures that the set of composition factors and mul-
tiplicities with which they occur do not depend on the choice of composition
series. Of course, just knowing the set of composition factors with multiplic-
ities does not recover the initial module, but still will be important for us in
the sequel.

Characters Let (V, φ) be a representation of G over a field F. Recall that the
character of (V, φ) is a function χ : G → F given by χ(g) = Tr(φ(g)). If
F is a field of characteristic 0, then representation is uniquely determined
up to isomorphism by its character. The analogous statement fails in any
positive characteristic q, since the direct sum of q copies of trivial represen-
tation and the direct sum of 2q copies of trivial representation are obviously
non-isomorphic, but have the same character, which is zero for all elements
of G. This problem can be fixed by the so called Brauer character, which
will be introduced later in Section 1.4. However, Brauer character determine
representation only up to composition factors, not up to isomorphism.

Number of irreducible representations If F is algebraically closed and
charF - |G|, then the number of irreducible representations of G equals
the number of conjugacy classes of elements in G. In the situation when F
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is algebraically closed and charF = p the number of irreducible represen-
tations is equal to the number of conjugacy classes of elements in G with
order coprime to p. Therefore, we always have more simple modules when
charF - |G| compared to the case of charF | |G|.

1.3 Reduction modulo p: the passage from
char 0 to char p

Let G be a finite group and let p be a prime integer that divides the order of
G. We are going to describe the procedure, called the reduction modulo p, which
takes a representation of G over a field of characteristic zero as an input, and
returns a representation of G over a field of characteristic p instead. We remark
that the resulting modular representation will not be uniquely determined up to
isomorphism, but only up to composition factors, which we will discuss in greater
details later in this section.

A p-modular system is a triple (F,R, k), where F is a field of characteristic zero
with a discrete (additive) valuation v , R = {x ∈ F | v(x) ≥ 0} is a valuation ring
of F with a unique maximal ideal (π), and k = R/(π) is a field of characteristic
p. All further discussion will be held in a general setting of an arbitrary p-modular
system, but for our purposes the theory developed later on will only be applied to
the following important case.

Example 3. Let K be an algebraic number field.

• R the ring of integers in K

• p fixed prime ideal in R lying above p ∈ Q, i.e. p ∈ p

• Rp localization of R at p

• P = pRp = (π) unique maximal ideal in Rp

• K := R/p ∼= Rp/P finite field of characteristic p

Let us note that the ring Rp is a PID with field of fractions K. The unique maximal
ideal P = pRp is principal, which justifies our notation pRp = (π), π ∈ Rp.

We claim that (K,Rp, K) is a p-modular system. Since Rp is a PID and therefore
a unique factorization domain, each element x ∈ Rp can be written uniquely up to
units in a form

x = παπα1
1 . . . παkk ,

where α,αi ∈ Z≥0 and πi ∈ Rp are prime elements not associated to π. We put
v(x) := α. The p-adic valuation on K is defined by

v(x/y) := v(x)− v(y), x, y ∈ R \ {0},

and v(0) := ∞. It is easy to check that it is indeed a valuation on K and it does
not depend on the choice of a generating element π of the ideal pRp. It is also
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evident that Rp is a valuation ring of K, and K = Rp/(π) is a field of characteristic
p. Therefore, (K,Rp, K) is a p-modular system.

From now on let (F,R, k) be a p-modular system. Let (V, φ) be an F -
representation of G, and let us fix some F -basis {v1, . . . , vd} of V. The procedure
of the reduction modulo p goes in two steps.

Step 1. Replace φ by an F -equivalent R-representation φ′, or in other words
choose a full RG-lattice U in V. This is possible due to Corollary 2. In terms of
representations it guarantees that we can find a base change A ∈ GLd(F ) such
that φ′(g) := Aφ(g)A−1 ∈ GLd(R) for all g ∈ G. In general the choice of the
matrix A is not unique and φ′ is not determined up to an R-equivalence.

Step 2. Reduce the representation φ′ modulo (π). In our terminology for
modules this means that we reduce a full RG-lattice U modulo ideal (π). We call
the resulting kG-module V = U/πU a reduction modulo p of an FG-module V. In
terms of a matrix representation the reduction φ : G → GLd(k) is a composition
of φ′ with the quotient map GLd(R)→ GLd(k). We call this new k-representation
φ the reduction modulo p of φ, and say that φ is a lift of φ.

As we emphasized in the beginning the result of reduction modulo p of an
FG-module does not have to be uniquely defined up to k-isomorphism, because of
the choice involved in the first step. Nevertheless, the following theorem shows that
the composition factors counted with multiplicities in Jordan-Hölder decomposition
of the resulting module V are independent of the choice being made during the
reduction modulo p.

Theorem 4 (Brauer-Nesbitt). Let (F,R, k) be a p-modular system, let G be a finite
group, and let V a finitely generated FG-module. Let U1, U2 be full R-lattices in V.
Then the kG-modules U1 = U1/πU1 and U2 = U2/πU2 have the same composition
factors counted with multiplicities.

Proof. The sum U1 + U2 is a full RG-lattice in V, by Lemma 1, and contains both
modules U1, U2. Therefore it is enough to prove the claim for the case if U1 ⊆ U2.

Since an RG-module U2/U1 has finite composition length, without loss of generality
we may assume that U2/U1 is simple or equivalently that U1 is a maximal kG-
submodule in U2. Hence the kG-submodule πU2/U1 ⊆ U2/U1 must be either
trivial or the whole U2/U1. The latter case is impossible since RadR = (π) and by
Nakayama’s lemma M = RadR ·M implies M = 0.

Therefore we have the following chain of inclusions πU1 ⊆ πU2 ⊆ U1 ⊆ U2. It is
left to show that the kG-modules U2/U1 and πU2/πU1 have the same composition
factors. The multiplication by π gives an isomorphism of RG-modules U2/U1

∼=
πU2/πU1, which implies that these modules are also isomorphic over kG.

Recall that by G0(A), where A is a finite dimensional algebra over a field,
we mean a Grothendieck group with a basis indexed by simple A-modules. Given
(F,R, k) a splitting p-modular system for G the reduction modulo p induces a map
on Grothendieck groups d : G0(FG) → G0(kG) which we call the decomposition
map. We define the decomposition matrix D to be the matrix with rows indexed
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by the simple FG-modules and columns indexed by the simple kG-modules with
entries given by

dV S = multiplicity of S as a composition factor of V ,

where S is a simple kG-module, V is a simple FG-module, and V is a reduction
of V modulo p. The coe�cients dV S are called decomposition numbers. Directly
from the definition we have that for a simple FG-module V

d(V ) = [V ] =
∑
S

dV S[S] ∈ G0(kG),

where sum runs over all simple kG-modules. Brauer-Nesbitt theorem guarantees
that the multiplicity of composition factors does not depend on the choice of a
reduction V , and hence the decomposition map and the decomposition matrix are
well-defined.

To avoid confusion of having several decomposition matrices the condition of
being splitting is added to (F,R, k). Also we will need this assumption later to show
the relation of the decomposition matrix to the Cartan matrix, which is not fulfilled
without splitting assumption for (F,R, k). A computation of a decomposition
matrix is in general a very hard task, since when trying to do it from scratch one
has to construct all simple representations in characteristic zero, then find full RG-
lattices inside those, reduce the lattices modulo maximal ideal in R, and finally
determine the composition factors. The problem might be a bit simplified by using
Brauer characters instead of directly dealing with representations, which is discussed
in the next section. Nevertheless, the problem of finding the decomposition numbers
remains widely open in general, for instance, it is still open for symmetric groups.

1.4 Brauer characters

Let G be a finite group, let F be an arbitrary field and V be an FG-module. The
definition of an F -character makes sense for any field, namely, χ : G → F given by
χ(g) = Tr(g) is always well-defined. The F -characters can be used to distinguish
simple modules because of the following theorem [CuRe1, Theorem 17.3].

Theorem 5 (Frobenius-Schur). For a finite group G and an arbitrary field F the
F -characters a�orded by a set of inequivalent simple FG-modules are F -linearly
independent.

However, as was mentioned before if F is a field of positive characteristic two
FG-modules can have the same F -characters without even having the same set
of composition factors. Brauer found a clever way to fix this issue by introducing
Brauer characters, which he was calling "modular characters" at that time. Given
(F,R, k) a splitting p-modular system, Brauer associated to each kG-module L a
function λ : Gp′ → F, where Gp′ is the set of p-regular elements of G, and this
function λ determines L up to composition factors. In this section we briefly review
the definition and main properties of Brauer characters. Even though everything
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will be stated in the general context of a p-modular system, for the purposes of
our work this machinery will be only applied to the case of F being an algebraic
number field.

We start by stating some facts from group theory needed for the construction
of Brauer character. Recall, that an element of a group is called p-singular (or
p-element) if its order is a power of p. An element of a group is called p-regular
(or p′-element) if its order is coprime to p. The set of p-elements in G is denoted
by Gp and the set of p′-elements is denoted by Gp′. It is clear that the intersection
of Gp and Gp′ consists of one element, namely the identity element.

Lemma 6 ([CuRe], Lemma 40.3). Every element g ∈ G has unique decomposition
g = gp′gp, where gp′, gp commute and gp′ ∈ Gp′, gp ∈ Gp.

The elements gp′ and gp are called the p′-part (or p-regular part) of g, and the
p-part (or p-singular part) of g, respectively.

Remark 7. Let k be a field of characteristic p, then the values of k-characters
on Gp do not provide new information. Namely, given any representation of G its
k-character satisfies χ(g) = χ(1), for all g ∈ Gp.

Proof. Let g ∈ Gp. Since the order of g is pr for some r ∈ Z≥0 all the eigenvalues
of the action of g are pr -th roots of unity (to have roots of unity we may pass to
an algebraic closure of the field), which can only be 1 in characteristic p. The value
of the character χ(g) equals the sum of eigenvalues of the action of g, and hence,
equals χ(1).

Let |G| = pdm, where (p,m) = 1. Let (F,R, k) be a splitting p-modular
system for G with charF = 0. The condition of splitting is needed since we want F
and k to contain a primitive m-th root of unity, which we denote by ω. If we would
like to define Brauer character for F not containing m-th root of unity, then first
we need to extend the scalars to achieve this property. Since the valuation of roots
of unity is 0 it follows that ω ∈ R. Denote by f : R → k the quotient map. It is
not di�cult to show that the image ω = f (ω) ∈ k is also a primitive m-th root of
unity in k and the restriction f|〈ω〉 : 〈ω〉 → 〈ω〉 is an isomorphism of cyclic groups.
Let L be a finitely generated kG-module and let x ∈ Gp′. All the eigenvalues of the
action of x on L are m-th roots of unity, that we denote by ξ1, . . . , ξd . Put

λ(x) :=

d∑
i=1

f −1(ξi).

We call λ : Gp′ → F defined as above the Brauer character of L. Let us emphasize
that it is only defined on p-regular elements of G and takes values in a field F of
characteristic 0.

Example 8. Let G be an arbitrary finite group and V1 a direct sum of p copies
of a trivial representation of G over Fp, i. e. V1 =

⊕p
i=1 Fp. Then for any x ∈ Gp′

all the eigenvalues are 1 and hence the corresponding Brauer character takes value
λ1(x) = p. Analogously, for V2 =

⊕2p
i=1 Fp the corresponding Brauer character

takes value λ2(x) = 2p, for all x ∈ Gp′.
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This example shows that opposed to the ordinary character Brauer character
can distinguish representations V1 and V2. Let us state the elementary properties of
Brauer characters.

Proposition 9. Let (F,R, k) be a p-modular system with charF = 0, and let U
be a kG-module. Then

1. λU(1) = dimk(U).

2. λ is a class function on the set of conjugacy classes of p-regular elements.

3. If 0 → U1 → U2 → U3 → 0 is a short exact sequence of kG-modules, then
λU2

= λU1
+λU3

. In particular, Brauer character depends only on composition
factors of a module.

4. If U can be lifted to an RG-lattice Û, i. e. U ∼= Û/(π)Û, then the values of
the ordinary character of Û coincide with the Brauer character of U on the
set of p-regular elements of G.

As one would expect by analogy with the ordinary characters the Brauer charac-
ters of the simple kG-modules are linearly independent. Namely, let us denote by
ccp(G) the set of conjugacy classes of p-regular elements in G, and by F ccp(G) the
vector space of functions ccp(G)→ F.

Theorem 10. Let U1, . . . , Un be a full set of non-isomorphic simple kG-modules.
Then the corresponding Brauer characters λ1, . . . , λn form a basis of F ccp(G).

Theorem 10 together with Proposition 9 imply that the Brauer character precisely
characterizes the composition factors of a module, but in general cannot detect its
equivalence-type.

Corollary 11. Let L and M be kG-modules with Brauer characters λ and µ,
respectively. Then λ = µ if and only if L and M have the same set of composition
factors (counted with multiplicities), or equivalently [L] = [M] ∈ G0(kG)

As we already mentioned the Brauer character gives us a tool for computing the
decomposition matrix. Namely, given an FG-module V and its ordinary character
χV we immediately obtain from Proposition 9 that

χV (g) =
∑
S

dV SλS(g), for all g ∈ Gp′.

Linear independence of Brauer characters {λS}S guarantees that the coe�cients
dV S are uniquely determined. Hence, in the situation when the ordinary characters
of simple FG-modules and the Brauer characters of simple kG-modules are known,
we may easily compute the decomposition numbers just by expressing an ordinary
character as a linear combination of simple Brauer characters.
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1.5 Projective modules

Let us switch for a moment to a more general setting of A being a finite dimen-
sional algebra over a field, bearing in mind our main example of a group algebra.
All modules are finitely generated unless explicitly stated otherwise. Even though an
algebra A, viewed as a module over itself, does not necessarily decompose into a
direct sum of simple A-modules, we still can write it as a direct sum of indecom-
posable A-modules. The Krull-Schmidt theorem guarantees that indecomposable
components are uniquely determined up to isomorphism. The following properties,
which we state without proofs, show the importance of the role indecomposable
projective modules play in modular representation theory.

1. The decompositions of A into a direct sum of submodules A = A1 ⊕ A2 ⊕
. . . ⊕ An biject with expressions of 1 as a sum of orthogonal idempotents
1 = e1 + e2 + . . . + en, ei ∈ A. The submodule corresponding to the
idempotent ei is determined by Ai = Aei and Ai is indecomposable if and
only if ei is primitive.

2. Every simple A-module S has a projective cover PS, which is uniquely deter-
mined up to isomorphism. It is given by PS = AeS, where eS is a primitive
idempotent in A satisfying eSS 6= 0.

3. Isomorphism classes of indecomposable projective A-modules are in bijection
with isomorphism classes of simple A-modules. The correspondence is given
as follows.{

Iso classes of indecomposable
projective A-modules

}
←→

{
Iso classes of

simple A-modules

}

P 7−→ S = P/RadP

PS ←−p S,

where PS is the projective cover of S. In other words, every indecomposable
projective A-module is isomorphic to a projective cover PS of some simple
module S, and PS ∼= PT if and only if S ∼= T.

4. Every indecomposable projective A-module PS occurs as a direct summand
of the module A and we have the following decomposition

A ∼=
⊕
S

P nSS ,

where the sum runs over all simple modules S and nS = dimDS(S), DS =

EndA(S). Let us note that nS equals multiplicity of S appearing as a sum-
mand in A/RadA.

5. Every projective A-module (not necessarily finite dimensional) decomposes
into a direct sum of indecomposable projective submodules, the summands
are uniquely determined up to isomorphism.
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6. Let (F,R, k) be a splitting p-modular system for G. Given a projective RG-
module P its reduction P/(π)P is a projective kG-module. Moreover, every
projective kG-module can be uniquely lifted to a projective RG-module. This
means that reduction homomorphism K0(RG) → K0(kG) is an isomor-
phism. On the contrary, the reduction of a simple RG-module does not have
to be a simple kG-module; in general, not every simple kG-module can be
lifted to an RG-module

In the situation when FG is a group algebra with coe�cient field of characteristic
zero all finitely generated modules are projective by Maschke theorem, and being
simple is the same as being projective indecomposable, while in positive character-
istic simple modules are mostly non-projective. Comparing ordinary and modular
representation theory, we see that even though properties, we are used to have
for simple modules in characteristic 0, do not pass through to the modular case,
some of them do still hold for the indecomposable projective modules. Namely,
if A = FG with charF = 0 the properties (1) − (5) translate into the standard
statements about irreducible representations.

One of the important applications of the projective modules is a computation
of the multiplicity of a simple module as a factor in a Jordan-Hölder decomposition
of an arbitrary module. For a simple A-module S and an A-module M , we denote
by [M : S] the multiplicity of S as a composition factor of M .

Proposition 12. Let S be a simple A-module with projective cover PS.

1. Let T be a simple A-module, then

dim HomA(PS, T ) =

{
dim EndA(S), if T ∼= S

0, otherwise.

2. Let M be an A-module, then

[M : S] = dim HomA(PS,M)/ dim EndA(S).

Proof. (1) From the condition that PS/RadPS ∼= S is simple and the fact that RadPS
is the smallest submodule in PS , such that the quotient PS/RadPS is semisimple,
we immediately conclude that if f : PS → T is a non-zero homomorphism, then
T ∼= S. Any homomorphism f : PS → S factors through the quotient PS/RadPS,

and any homomorphism PS/RadPS → S is either an isomorphism or a zero map,
which implies HomA(PS, T ) ∼= EndA(S).

(2) Let 0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M be a composition series for M.
We prove the claim by induction on n. For n = 1 the result follows from part
(1). To conclude the induction step suppose that n > 1 and [Mn−1 : S] =

dim HomA(PS,Mn−1)/ dim EndA(S) and consider the short exact sequence

0→ Mn−1 → M → M/Mn−1 → 0,
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which after applying HomA(PS,−) becomes

0→ HomA(PS,Mn−1)→ HomA(PS,M)→ HomA(PS,M/Mn−1)→ 0.

Therefore,

dim HomA(PS,M) = HomA(PS,Mn−1) + dim HomA(PS,M/Mn−1) =

= dim EndA(S)([Mn−1 : S] + [M/Mn−1 : S]),

where the last equality follows from part (1). Dividing both sides by dim EndA(S)

completes the induction step and the proof is finished.

We now introduce the Cartan matrix for a group G in characteristic p. Let
(F,R, k) be a splitting p-modular system for G. The Cartan matrix C is the matrix
with rows and columns indexed by the simple kG-modules with entries defined by

cST = [PT : S] = multiplicity of S as a composition factor in PT ,

where S and T are simple kG-modules. The coe�cients cST are called Cartan
invariants. Later we will see how the Cartan matrix is related to the decomposition
matrix and it will be shown that the Cartan matrix is symmetric.

1.6 Example: p-groups

Let G be a finite p-group and let k be a field of characteristic p. In this situation
it is very easy to describe all simple and projective kG-modules. Nevertheless, this
example will be of a great use for us later on.

Proposition 13. Let G be a p-group and k a field of characteristic p. The trivial
module k is the unique simple kG-module.

Proof. Let S be a simple kG-module. If k = Fp , then S is a finite set. The
cardinality of S is divisible by p, since it is a vector space over the field with p
elements. The group G acts on S and each orbit has size a power of p (can be 1),
since G is a p-group. The zero element in S has orbit of size 1. Therefore, since
the sum of sizes of all orbits in S equals to the cardinality of S there must exist
a non-zero element x ∈ S with an orbit of size 1. This means that x is fixed
by G and hence generates a trivial kG-submodule in S. Consequently S ∼= k. In a
general situation of k being an arbitrary field of characteristic p, consider a nonzero
element s ∈ S and let S′ be an FpG-submodule in S generated by {gs | g ∈ G}.
By the previous argument S′ contains a non-zero vector x fixed by G, and again by
simplicity of S we conclude that S ∼= k.

Lemma 14. Let G be a p-group and k a field of characteristic p. Then Rad(kG)

coincides with the augmentation ideal I(kG) = {
∑
αgg ∈ kG |

∑
αg = 0}.

Proof. It is straightforward from the definition that the augmentation ideal I(kG)

is precisely the set of those elements in kG that act by zero on the trivial kG-
module k. Using the characterization of a radical as Rad(kG) = {x ∈ kG | xS =
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0 for every simple kG-module S} and that k is the only simple kG-module we
conclude the claim Rad(kG) = I(kG).

Proposition 15. Let G be a p-group and k a field of characteristic p. Then the
regular representation is the only indecomposable projective kG-module.

Proof. The uniqueness follows from Proposition 13 and the bijection between iso-
morphism classes of indecomposable projective modules and simple modules. Let
us show that kG is indecomposable. If kG = V1 ⊕ V2, where Vi are non-zero kG-
submodules, then Rad(kG) = Rad(V1) ⊕ Rad(V2) with Rad(Vi) 6= Vi . Hence, the
codimension of RadkG in kG is at least two, but as we have shown in Lemma 14
kG/Rad(kG) = kG/I(kG) ∼= k , which leads to a contradiction.

Note that we have just proved that kG is a projective cover of k, since by
Nakayama Lemma kG → kG/Rad(kG) is an essential epimorphism.

Corollary 16. For a p-group G and a field k of characterisitc p any projective
kG-module is free.

Proof. Any projective kG-module decomposes into a direct sum of indecomposable
projective kG-modules, hence by Proposition 15 it should a free module.

1.7 The cde triangle

The goal of this section is to prove the relation between the decomposition matrix
and the Cartan matrix, namely C = DTD. Later on this will be used to deduce
the significant properties of blocks of defect zero, which are the essential tools in
our work. We start by introducing the cde triangle. Let (F,R, k) be a splitting p-
modular system for G. The cde triangle is the following triangular-shaped diagram.

G0(FG)

d

%%

K0(kG)

e
99

c // G0(kG)

Homomorphisms:

c We choose a basis of K0(kG) given by the classes of indecomposable projective
kG-modules [PS]. Any such module PS can be viewed as an element in
G0(kG) and the homomorphism c called the Cartan map is given on the
basis elements by

c([PS]) = [PS].

d A basis of G0(FG) is given by the classes of simple FG-modules [V ]. The
decomposition map d was already defined as a reduction modulo p. Namely,
given a simple FG-module V we put

d([V ]) = [V ].
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e An indecomposable projective kG-module PS can be lifted to a projective RG-
module P̂S, which is uniquely determined up to isomorphism and hence we
have a well-defined the map

e([PS]) = [F ⊗R P̂S].

Proposition 17. The homomorphisms above satisfy c = de.

Proof. Let PS be an indecomposable kG-module, then e([PS]) = [F ⊗R P̂S]. To
reduce F ⊗R P̂S modulo p we need to choose a full RG-sublattice, which may be
taken P̂S, and then reduce it modulo maximal ideal (π). Since P̂S is a lift of PS we
obtain that

de(PS) = d([F ⊗R P̂S]) = [P̂S/πP̂S] = [PS] = c([PS]).

It is easy to see that in the chosen bases the Cartan map c is given by the Cartan
matrix C and the decomposition map d is given by DT the transpose of the
decomposition matrix. Our next goal is to determine the matrix of e. For this we
will need the following lemma, relating the homomorphisms between lattices and
homomorphisms between reductions of those lattices.

Lemma 18. Let (F,R, k) be a p-modular system. Let U, V be FG-modules and
U0, V0 be the corresponding full RG-lattices.

1. HomRG(U0, V0) is a full R-lattice in HomFG(U, V ).

2. Assume that additionally U0 is projective as an RG-module, then

HomRG(U0, V0)/πHomRG(U0, V0) ∼= HomkG(U0/πU0, V0/πV0).

Proof. (1) We may identify HomRG(U0, V0) with a subset of HomFG(U, V ), since
R-bases in U0 and V0 are at the same time F -bases of U and V, respectively,
and an RG-homomorphism U0 → V0 written as a matrix in the chosen basis has
coe�cients in R ⊆ F, hence it determines an FG-homomorphism U → V. Since
HomRG(U0, V0) is a subset of a free finitely generated R-module HomR(U0, V0)

and R is a PID, then HomRG(U0, V0) is an R-lattice.
It is left to show that HomRG(U0, V0) spans HomFG(U, V ) over F. Let f : U →

V be an FG-homomorphism, let us write it in terms of the bases chosen in U0 and
V0, we get a matrix Mf with entries in F . By clearing denominators we can choose
r ∈ R \ {0} such that rMf has coe�cients in R, and hence r f ∈ HomRG(U0, V0).

(2) Firstly, let us observe that πHomRG(U0, V0) = HomRG(U0, πV0), since the
multiplication by π on the left induces an RG-isomorphism V0 → πV0. Next, con-
sider the map q : HomRG(U0, V0)→ HomRG(U0, V0/πV0) induced by the quotient
V0 → V0/πV0. Because of projectivity of U0 the map q is surjective with kernel
HomRG(U0, πV0). Therefore,

HomRG(U0, V0)/πHomRG(U0, V0) ∼= HomRG(U0, V0/πV0).
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Moreover, every RG-homomorphism U0 → V0/πV0 must vanish on πU0 and hence
factors through U0/πU0, which implies

HomRG(U0, V0/πV0) ∼= HomkG(U0/πU0, V0/πV0).

Theorem 19. Let (F,R, k) be a splitting p-modular system for G and assume
that R is complete with respect to its valuation. Let S be a simple kG-module and
let V be a simple FG-module, then

[(F ⊗R P̂S) : V ] = [V : S].

In particular with respect to the chosen bases the matrix of e is D.

Proof. Since FG is a semisimple algebra we have that

[(F ⊗R P̂S) : V ] = dimF HomFG(F ⊗R P̂S, V )/ dimF EndFG(V ).

Let V0 be a full RG-lattice in V. Applying Lemma 18 we obtain

dimF HomFG(F ⊗R P̂S, V ) = dimR HomRG(P̂S, V0)

= dimk HomkG(PS, V ).

As we have shown in Proposition 12

[V : S] = dimk HomkG(PS, V )/ dimk EndkG(S).

Since we assumed that both F, k are splitting fields for G the dimensions of
EndFG(V ) and EndkG(S) are both 1, which yields the desired formula

[(F ⊗R P̂S) : V ] = [V : S].

The matrix of the homomorphism e is determined by

e([PS]) = [F ⊗R P̂S] =
∑
V

eV S[V ],

hence eV S = [F ⊗R P̂S : V ] = [V : S] = dV S, which completes the proof.

From Proposition 17 and Theorem 19 we get an immediate corrolary which allows
to easily determine the Cartan matrix from the knowledge of the decomposition
matrix.

Corollary 20. Let (F,R, k) be a splitting p-modular system for G. Then C =

DTD, in particular the Cartan matrix C is symmetric.

1.8 Blocks

The theory of blocks plays a crucial role in the modular representation theory. Even
though for our purposes only the so-called blocks of defect zero are needed, let
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us first introduce the general notion of a block. In the literature one may find
di�erent equivalent approaches to define what a block is. Here we will provide
several definitions of a block and see how they are equivalent. After that we will
examine blocks of defect zero in more detail.

Blocks as idempotents. Let A be a ring with 1. A block of a ring A is a
primitive idempotent in the center Z(A), i.e., e ∈ Z(A) such that e2 = e and if e =

e1 + e2 with ei ∈ Z(A) orthogonal idempotents, then one of ei is 0. The following
proposition shows how central idempotents of A determine decompositions of A
into a direct sum of 2-sided ideals (compare to the property (1) from Section 1.5).

Proposition 21. The decompositions of a ring A into a direct sum of 2-sided
ideals

A = A1 ⊕ . . .⊕ An
biject with expressions of 1 as a sum of orthogonal central idempotents

1 = e1 + . . .+ en.

The central idempotent ei corresponding to Ai is determined as identity element of
Ai . In opposite direction the 2-sided ideal corresponding to ei is Ai = Aei . The Ai
is indecomposable as a ring if and only if the corresponding ei is a primitive central
idempotent.

The proof is straightforward and we don’t include it here. The decomposition
of A as a direct sum of indecomposable 2-sided ideals is unique in a very strong
sense, namely, the summands Ai are uniquely determined as subsets of A, and
automatically the corresponding primitive central idempotents ei are also uniquely
determined. For the comparison the statement about decomposition of A into
a direct sum of indecomposable A-modules only guarantees the uniqueness of
summands up to isomorphism. From the Proposition 21 we immediately get the
following equivalent definition of a block.

Blocks as ring summands. A block of a ring A is an indecomposable
2-sided ideal in A that is a direct summand of A.

We proceed by showing that each block determines an equivalence class of
indecomposable A-modules. Let V be an A-module and let

1 = e1 + . . .+ en,

where ei ∈ Z(A) are orthogonal primitive central idempotents. We can decompose
V into a direct sum of A-submodules as

V = e1V ⊕ . . .⊕ enV.

If V is an indecomposable A-module we obtain that V = eiV for some i , and
ejV = 0 for j 6= i . We say that a module V belongs to a block e if eV = V.

This defines an equivalence relation on indecomposable A-modules, It is clear that
each indecomposable A-module belongs to a unique block, and each block e is
non-empty, since it contains all indecomposable Ae-modules viewed as A-modules.
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Therefore, we see that a block e is uniquely determined by modules that belong to
it, and we obtain the following equivalent description of a block.

Blocks as equivalence classes of indecomposable modules. A
block of a primitive central idempotent e consists of all indecomposable A-modules
V , such that eV = V.

So far all the descriptions of a block directly involved primitive central idempo-
tents of A. The next characterization of a block di�ers from previous and is given
in terms of an equivalence relation on simple A-modules.

We say that simple A-modules S, T are linked if there exists a non-split
short exact sequence of A-modules 0 → X → Y → Z → 0 with {X,Z} =

{S, T}, which is equivalent to the condition that at least one of the groups
Ext1

A(S, T ), Ext1
A(T, S) is non-trivial. We call simple A-modules S, T equiv-

alent S ∼ T if either S ∼= T or there is a sequence of simple A-modules
S = S1, S2, . . . , Sn = T such that the consecutive modules Si , Si+1 are linked.

Proposition 22. Let A be a finite dimensional algebra over a field, and let S, T
be simple A-modules. The following are equivalent.

1. S ∼ T.

2. There exists a sequence of simple A-modules S = S1, S2, . . . , Sn = T such
that the consecutive modules Si and Si+1 are composition factors of the same
indecomposable projective A-module.

3. S and T belong to the same block.

Proof. (1) ⇒ (2) It is enough to prove that if two simple A-modules S and T are
linked, then there is an indecomposable projective A-module having S, T among its
composition factors. Let

0 // S
i // X

q
// T // 0 (1.1)

be a non-split short exact sequence. Let πT : PT → T be a projective cover of
T. By projectivity of PT there exists a homomorphism f : PT → X making the
following diagram commute

PT
f

~~

πT
����

S �
�

// X
q
// // T

We claim that f is surjective. Suppose that im f is a proper submodule of X. Since
X has only 2 composition factors im f must be simple. Since T is a composition
factor of im f , we conclude that q|im f : im f → T is an isomorphism, which forces
the sequence (1.1) to split and leads to a contradiction. Hence, f : PT → X is sur-
jective and therefore, both S and T are composition factors of the indecomposable
projective A-module PT .

(2) ⇒ (3) The claim immediately follows from an easy observation that if 0 →
X → Y → Z → 0 is a short exact sequence of A-modules, then Y belongs to a
block e if and only if X,Z belong to e.
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(3) ⇒ (1) Let us decompose the set of equivalence classes of simple A-modules
into two parts: C1 consisting of all simple modules that are equivalent to S, and
C2 being the set of all the rest simple A-modules. We claim that every A-module
V can be uniquely written as V = V1 ⊕ V2, where Vi is a submodule in V having
all its composition factors in Ci , i = 1, 2. The idea behind the proof of this claim
is an observation that it is possible to find a composition series 0 = M0 ⊆ M1 ⊆
. . . ⊆ Mn = V such that for some index i all the composition factors of Mi belong
to C1 and composition factors of V/Mi belong to C2. This can be achieved by
“interchanging” consecutive composition factors from C2 and C1 in the composition
series. Then we put V1 = Mi , which is the submodule of V carrying C1 composition
factors of V. Repeating the same procedure with roles of C1 and C2 interchanged
we get V2. For more details see Lemma 12.1.6 in [W].

Decompose A into a direct sum of submodules A = A1 ⊕ A2, such that de-
composition factors of Ai lie in Ci . Apart from being a left ideal Ai is also a right
ideal, since for any a ∈ A multiplication by a on the right induces a surjective ho-
momorphism of A-modules Ai → Ai · a, which means that the composition factors
of Ai · a belong to Ci . Hence A1 is a direct sum of blocks. Since S and T belong to
the same block in A1, we conclude that T ∈ C1 and S ∼ T.

Blocks as equivalence classes of simple modules. A block of A is an
equivalence class of simple A-modules given by the equivalence relation generated
by S ∼ T if Ext1

A(S, T ) 6= 0.

1.9 Blocks of defect 0

A notable role in this thesis is played by the blocks of defect 0. So far we have not
explained what a "defect of a block" is, but blocks of defect zero are particularly
easy to describe. Here we are going to use the characterization of a block in terms
of equivalence classes of simple modules. Let G be a finite group and let (F,R, k)

be a splitting p-modular system. We call a block e of kG a block of defect zero if
it contains a simple projective kG-module.

Lemma 23. If a block of kG contains a simple kG-module S that is at the same
time projective, then S is the only simple kG-module in this block.

Proof. We claim that any short exact sequence 0 → X → Y → Z → 0 of kG-
modules with S ∈ {X,Z} splits. If Z = S, then it must split by projectivity of S.
At the same time we know that any projective kG-module is injective, so in case
X = S the sequence splits because of injectivity of S. Therefore, S is the only
simple module in its equivalence class, which finishes the proof.

We have just shown that a block of defect zero consists of precisely one simple
module. Let S be a simple kG-module from a block of defect zero. Since S is
projective it can be uniquely lifted to a simple projective RG-module Ŝ by Property
6 in Section 1.5, which is in general not the case for an arbitrary simple kG-module.
Therefore, a simple FG-module V = F ⊗R Ŝ is the unique lift of S. By abuse of
notation both simple modules S and V will be called blocks of defect zero of kG
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and FG, respectively. Note that for FG we defined blocks of defect zero as lifts of
defect zero blocks in kG. In this section we characterize defect zero blocks in FG
and show that complex characters of those vanish outside p-regular elements of G.

Theorem 24. Let G be a finite group of order pαm, where p - m, and let (F,R, k)

be a splitting p-modular system. Let V be an FG-module with a full RG-sublattice
U. The following are equivalent.

1. A kG-module V = U/πU is simple and projective.

2. V is a simple FG-module and pα| dimF (V ).

3. V is a simple FG-module and U is a projective RG-module.

Proof. (1) ⇒ (2) Let us first show that V is a simple FG-module. Assume on the
contrary that V = V1 ⊕ V2, where Vi are FG-submodules in V. Then we can find
full RG-sublattices Ui in Vi , i = 1, 2 and obtain that composition factors of V are
the same as of U1 ⊕ U2, which is contradicting to simplicity of V .

Next we explain how projectivity of V implies that the dimension of V is a
multiple of pα. It is clear that dimF V = rank RU = dimk V . Let H be a Sylow
p-subgroup in G. Since V is a projective kG-module its restriction ResGHV is also
projective as a kH-module (see e.g. [W, Lemma 8.1.2]). By Corollary 16 all finitely
generated projective kH-modules are free, since H is a p-group and chark = p.

Therefore, the dimension of V is divisible by order of H, which is exactly pα. Hence,
pα| dimF (V ).

(2) ⇒ (3) Denote by n = dimF (V ) = rank R(U). Let us view U as a module
over EndR(U) ∼= Mn(R). Then U is projective, since it is isomorphic to an Mn(R)-
module of column vectors {(u1, . . . , un)T | ui ∈ R}, that is obviously a direct
summand in Mn(R).

Our next claim is that the homomorphism RG → EndR(U) given by the action
of RG identifies EndR(U) ∼= Mn(R) with a direct summand of RG. It is easy to
see that this claim implies that U is a projective RG-module.

Let us consider the primitive central idempotent in FG associated with V

e =
n

|G|
∑
g∈G

χV (g)g−1.

Since pα | n we have n/|G| ∈ R. As χV (g) is a sum of roots of unity, which all
have valuation 1, we conclude that χV (g) ∈ R and thus get e ∈ R. Therefore

RG = eRG ⊕ (1− e)RG.

The homomorphism ρ : FG → EndF (V ) given by the action of FG on V

has kernel (1 − e)FG and identifies eFG with EndF (V ) ∼= Mn(F ). Since U is
a full RG-lattice in V we conclude that the restriction of ρ to RG has image
in EndR(U) ∼= Mn(R) and has kernel (1 − e)RG. Now it is left to show that
ρ|RG : RG → EndR(U) is surjective. Let us check that the following homomorphism
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is a section for ρ : FG → EndF (V )

s : EndF (V )→ FG

s(φ) = n
|G|
∑
g∈G

Tr(ρ(g−1)φ) · g.

It is enough to check ρs(ρ(h)) = ρ(h) for h ∈ G, since EndF (V ) is generated by
ρ(h).

s(ρ(h)) =
n

|G|
∑
g∈G

Tr(ρ(g−1)ρ(h)) · g =
n

|G|
∑
g′∈G

Tr(ρ(g′−1)) · hg′ = he.

Therefore,
ρs(ρ(h)) = ρ(he) = ρ(h)ρ(e) = ρ(h).

We see that the image of EndR(U) ⊆ EndF (V ) under the section s lies in RG,
hence ρ|RG : RG → EndR(U) is a surjective homomorphism, which finishes the
proof.

(3) ⇒ (1) Since U is a direct summand of a free RG-module, its reduction
V = U/πU is a direct summand of a free kG-module. Hence V is a projective
kG-module.

We proceed by showing that V is indecomposable. Suppose on the contrary that
V ∼= PS1

⊕ . . .⊕ PSr , where PSi is an indecomposable projective module, and due
to characterization provided in Section 1.5 is a projective cover of some simple kG-
module Si . Hence U ∼= P̂S1

⊕. . .⊕P̂Sr and V ∼= (F⊗R P̂S1
)⊕. . .⊕(F⊗R P̂Sr ), which

implies r = 1 and V ∼= PS1
. Let us examine the multiplicity of S1 as a composition

factor in V ∼= PS1
. On one hand PS1

/Rad(PS1
) ∼= S1 and Soc(PS1

) ∼= S1, hence if
PS1

� S1 the multiplicity of S1 as a composition factor in PS1
is at least 2. On the

other hand by Theorem 19 we have that for any simple FG-module W it holds

[W : S1] = [(F ⊗R P̂S1
) : W ] = [V : W ] =

{
1, if W ∼= V

0, otherwise.

In other words it means that the column of decomposition matrix corresponding to
S1 consists of zeroes apart from the only entry in the row of a simple FG-module
V. Using the fact that C = DTD we conclude that [PS1

: S1] = 1. Therefore,
PS1
∼= S1 and V is simple as claimed.

Proposition 25. Let P be a projective RG-module. Then the character of F⊗RP
vanishes on the elements of order divisible by p.

Proof. Let g ∈ G be an element of order divisible by p. Consider a cyclic subgroup
C = 〈g〉 generated by g. Then P is still projective viewed as an RC-module. Let
us write g = gpgp′, where gp, gp′ are p-singular and p-regular components of g,
respectively. Since gp and gp′ commute it is clear that C = 〈gp〉 × 〈gp′〉.

The reduction P/(π)P is a projective kC-module. Any projective kC-module
can be written as a tensor product over k of a projective k〈gp〉-module and a
projective k〈gp′〉-module. By Corollary 16 all projective k〈gp〉-modules are free,
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since 〈gp〉 is a p-group, and we deduce that

P/(π)P ∼= (k〈gp〉)a ⊗ P ′,

where P ′ is a projective k〈gp′〉-module. Let a projective R〈gp′〉-module P̂ ′ be the
lift of a k〈gp′〉-module P ′. Hence by the uniqueness of lifts

P ∼= (R〈gp〉)a ⊗ P̂ ′, for some a ∈ Z≥0,

F ⊗R P ∼= (F 〈gp〉)a ⊗ (F ⊗R P̂ ′).

The property of characters that χM⊗N = χMχN implies that the character of F⊗RP
is the product of a · χF 〈gp〉 and χF⊗RP̂ ′. It is clear that the character of the regular
representation χF 〈gp〉 is zero outside the elements of 〈gp′〉, which concludes the
proof.

Proposition 26. Let F be a splitting field for G of characteristic 0, and let V be
a simple FG-module. Let p be a prime integer and |G| = pαm, where p - m. If
pα| dimF V, then χV (g) = 0 for any element g ∈ G of order divisible by p.

Proof. As we have shown in Theorem 24, V is a block of defect zero in FG, hence
is of the form F ⊗R PS, where PS is an indecomposable projective RG-module.
Hence by Proposition 25 χV vanishes on the elements of order divisible by p, which
finishes the proof.

1.10 p-blocks of a group

Let G be a finite group and (F,R, k) be a splitting p-modular system. If we
apply the theory of blocks to a semisimple algebra FG, then the Artin-Wedderburn
decomposition

FG ∼=
∏
i

Mni (F )

will be the same as a decomposition of FG into a direct sum of blocks, and each
block will contain exactly one simple FG-module. On the other hand, we may obtain
much more interesting partition of simple FG-modules into blocks as follows. Let
V be a simple FG-module, it may be viewed as an RG-module, since RG is a
subring in FG. Let e ∈ RG be a block in RG, then e is also a central idempotent
in FG. We say that an FG-module V belongs to a block e if eV = V. Evidently
each simple FG-module V belongs to a unique block, and if U is a full RG-lattice
in V, then U belongs to the same block as V. Hence we have just defined a partition
of simple FG-modules into blocks consistent with that for RG. Next proposition
shows that blocks of RG biject with blocks of kG under the reduction modulo the
ideal (π).

Proposition 27. Let G be a finite group and (F,R, k) be a splitting p-modular
system, such that R is complete. Then the reduction modulo (π) induces a bijection

{idempotents in Z(RG)} ↔ {idempotents in Z(kG)},
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where primitive idempotents correspond to primitive ones.

From this we immediately conclude that the decomposition of RG into blocks
after reduction modulo π becomes the decomposition of kG into blocks; and an
RG-module V belongs to a block e ∈ RG if and only if V/πV belongs to a block
e ∈ kG.

In the same manner as with the notion of a block, a p-block of a group G is
any of the following objects (with the passage from one object to another explained
above).

• A block of RG, i.e., an indecomposable central idempotent e in RG, keeping
in mind corresponding indecomposable two-sided ideal eRG in RG, and
RG-modules that belong to e.

• A block in kG, i.e., an indecomposable central idempotent e in kG, indecom-
posable two-sided ideal ekG in kG; kG-modules that belong to e.

• Block of simple FG-modules {V − simple FG-module | eV = V }, for e
indecomposable central idempotent in RG.

For the sake of completeness let us introduce the notion of the defect of a
block. Let G be a group of order |G| = pαm, with (p,m) = 1. The defect d of a
p-block e of G is the smallest integer such that pα−d divides the dimensions of all
simple FG-modules in this block. Denote by ordp(n) the biggest power of p that
divides n. Let V be a simple FG-module. From the fact that over a splitting field F
of characteristic zero the dimensions of irreducible representations divide the order
of G, we get that ordp(dimF V ) ≤ α, and hence automatically d ≥ 0.

In the situation if the defect of a block e is zero the definition says that all simple
FG-modules in e have dimensions divisible by pα. Let V be a simple FG-module
in e. By Theorem 24 the reduction V is simple and projective kG-module and by
Lemma 23 V is the only simple kG-module in a block e. Hence our definition is
consistent with the one given in Section 1.9. Therefore, V is the only simple FG-
module in a block e, since another simple FG-module V ′ in e would give rise to a
non-isomorphic simple kG-module V

′
in a block e, which is impossible.
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Chapter 2

K- and G-theory prerequisites

This Chapter serves as an introduction to an algebraic K- and G-theory. Here we
explain all the prerequisites needed later for the Conjecture of Hambleton, Taylor,
and Williams. Since we are aiming to discuss the decomposition of G-groups of a
group ring into G-groups of certain maximal orders in Chapter 3 here we will be
paying a special attention to group rings and maximal orders.

2.1 First definitions and examples of groups
K0 and G0

2.1.1 Definitions and properties

Historically the motivation to study algebraic K-groups has several origins. Firstly,
K-groups host interesting topological invariants. For instance, the group K1 gives
rise to a Whitehead group, which in turn contains the so-called Whitehead torsion
that is an obstruction for a homotopy equivalence of finite CW-complexes to be
simple. Secondly, similar construction appeared in Grothendieck’s proof of Riemann-
Roch theorem and in the topological K-theory of Atiyah-Hirzebruch. The analogy
between projective modules and vector bundles led to the development of the
algebraic K-theory of rings.

Definition 28. Let R be a ring. Define K0(R) to be an abelian group given by
the following presentation.

• Generators: isomorphism classes of finitely generated projective R-
modules, where the class represented by a module P is denoted by P̄ ;

• Relations: P̄0 + P̄2 = P̄1 for every exact sequence 0→ P0 → P1 → P2 → 0

of finitely generated R-modules P0, P1, P2.

Since every short exact sequence of projective R-modules splits, K0(R) is just
a group completion of an abelian monoid formed by the isomorphism classes of
projective R-modules together with the direct sum operation. The group K0(R) is
also called the Grothendieck group of R. A natural question to ask is what kind of
a group we get if we drop the adjective ‘projective’. If we add an extra restriction
on R asking it to be a left noetherian ring, then the defined object will have very
nice properties, which in general are lost if we allow arbitrary rings. We will return
to this point when stating the main properties of K- and G-theory.
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Definition 29. Let R be a ring. Define G0(R) to be an abelian group given by
the following presentation.

• Generators: isomorphism classes M̄ of finitely generated R-modules M ;

• Relations: M̄0 + M̄2 = M̄1 for every exact sequence 0 → M0 → M1 →
M2 → 0 of finitely generated R-modules M0,M1,M2.

The following lemma gives a criterion for two modules to represent the same
element in G0(R).

Lemma 30. Let R be a ring. Let M1,M2 be finitely generated R-modules. Then
[M1] = [M2] ∈ G0(R) if and only if there exist finitely generated R-modules A,B, C
and short exact sequences of the form

0→ A→ M1 ⊕ B → C → 0,

0→ A→ M2 ⊕ B → C → 0.

Proof. The su�ciency is obvious and we only need to show the necessity. Suppose
[M1] = [M2] ∈ G0(R). The group G0(R) is defined as a quotient of the free
abelian group with generators given by isomorphism classes of finitely generated
R-modules by the subgroup generated by the expressions M̄ − M̄ ′ − M̄ ′′ coming
from the short exact sequences. Therefore

M̄1 − M̄2 =
∑
i∈I

(
X̄i − X̄ ′i − X̄ ′′i

)
−
∑
j∈J

(
Ȳj − Ȳ ′j − Ȳ ′′j

)
,

where the index sets I, J are finite, and modules Xi , X ′i , X
′′
i fit into an exact se-

quence 0→ X ′i → Xi → X ′′i → 0, and the same for modules Yj , Y ′j , Y
′′
j . Hence,

M̄1 +
∑
i∈I

(
X̄ ′i + X̄ ′′i

)
+
∑
j∈J

Ȳi = M̄2 +
∑
j∈J

(
Ȳ ′j + Ȳ ′′j

)
+
∑
i∈I

X̄i .

Consider X = ⊕i∈IXi , Y = ⊕j∈JYj and analogously define X ′, X ′′, Y ′, Y ′′. Then
there are short exact sequences

0→ X ′ → X → X ′′ → 0,

0→ Y ′ → Y → Y ′′ → 0
(2.1)

and an R-module B = M1 ⊕ X ′ ⊕ X ′′ ⊕ Y is isomorphic to M2 ⊕ Y ′ ⊕ Y ′′ ⊕ X.
From (2.1) there is a short exact sequence

0→ X ′ ⊕ Y ′ → B ⊕M2 → M1 ⊕X ′′ ⊕ Y ′′ ⊕M2 → 0.

Doing the same for M2 ⊕ Y ′ ⊕ Y ′′ ⊕X ∼= B we obtain a short exact sequence

0→ X ′ ⊕ Y ′ → B ⊕M1 → M1 ⊕X ′′ ⊕ Y ′′ ⊕M2 → 0,

which finishes the proof.
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The corresponding condition for two finitely generated projective modules to
represent the same element in K0(R) is much easier.

Lemma 31. Let R be a ring and let P1, P2 be finitely generated projective R-
modules. Then [P1] = [P2] ∈ K0(R) if and only if P1 is stably isomorphic to P2,
i.e., P1 ⊕ Rn ∼= P2 ⊕ Rn for some n ∈ N.

In some literature in the situation when R is a non-noetherian ring G0(R) is
defined di�erently. Namely, instead of all finitely generated R-modules one consid-
ers pseudo-coherent modules, i.e., those modules that admit an infinite resolution
by finitely generated projective R-modules. In this work we will denote such a
group by G ′0(R). If R is noetherian then every finitely generated R-module is
pseudo-coherent, which yields G0(R) ∼= G ′0(R). Both groups K0(R) and G0(R)

are instances of the following general construction.

Definition 32. Let C be a small exact category. Define K0(C) to be an abelian
group with generators [C], C ∈ Obj(C) and relations [C1] = [C0] + [C2] for every
short exact sequence 0→ C0 → C1 → C2 → 0 in C.

Examples.

1. If PR is a category of finitely generated projective R-modules, then K0(PR) =

K0(R).

2. If Modf g(R) is a category of all finitely generated R-modules, then
K0(Modf g(R)) = G0(R).

3. IfMR is a category of pseudo-coherent R-modules, then K0(MR) = G ′0(R).

4. Let HR be a category of all R-modules having a finite length resolution
by finitely generated projective R-modules. The category HR is an exact
subcategory of Mod(R) and it is closed under taking kernels of surjections.
Therefore, K0(HR) ∼= K0(R).

One of the crucial di�erences between K0 and G0 is that K0 is functorial while
G0 is not. Namely, given rings R,S any ring homomorphism f : R → S induces a
homomorphism of groups f∗ : K0(R)→ K0(S) via [P ] 7→ [S⊗RP ]. Since any short
exact sequence of projective R-modules splits, the tensor product S⊗R− preserves
exactness and the map f∗ is well-defined. Clearly, the same procedure would
not work for G0 since exactness of the short exact sequences is not necessarily
preserved after tensoring with S. Nevertheless, with some additional assumptions a
ring homomorphism f : R→ S will induce the following maps on G0.

– If S is finitely generated as an R-module, in particular this holds if the ring
homomorphism f : R → S is surjective, then we may view each finitely gen-
erated S-module as an R-module via r · m = f (r) · m for r ∈ R,m ∈ M
and the resulting R-module will be finitely generated. The defined functor
Modf g(S) → Modf g(R) is exact and therefore induces a group homomor-
phism resf : G0(S) → G0(S), which we call a transfer or a a restriction
homomorphism.
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– If S is flat as an R-module, then the functor Modf g(R)→ Modf g(S) send-
ing M to S ⊗R M is exact, and hence induces a group homomorphism
f∗ : G0(R) → G0(S), which we call a base change homomorphism. It is
possible to extend the definition of f∗ to the situation when S has a finite res-
olution by flat right R-modules. In this case Serre’s formula gives an explicit
expression f∗([M]) =

∑
(−1)i [TorRi (S,M)].

Let us explain how to define a base change homomorphism f∗ when S, viewed as a
right R-module, admits a finite resolution by flat R-modules

0→ Fn → Fn−1 → . . .→ F0 → S.

Let F be a full subcategory of Modf g(R) consisting of R-modules M such that
Tori(S,M) = 0 for all i 6= 0, i.e., precisely the category for which the functor
S ⊗R − : F → Modf g(S) is exact. It is clear that F contains P(R). Moreover,
every finitely generated R-module M has a finite resolution by modules from F
because of the following. Let

. . .→ Pn+1 → Pn → Pn−1 → . . .→ P0 → M → 0

be a projective resolution of M. The kernel Kn = ker(Pn−1 → Pn−2) is a finitely
generated module which has a projective resolution that consists of truncated at
n-th place projective resolution of M

. . .→ Pn+2 → Pn+1 → Kn → 0.

From this Tori(S,Kn) = Torn+i+1(S,M) = 0 for i > 0, since S admits length n
flat resolution. Therefore, Kn ∈ F and M admits a finite resolution by modules
from F . Moreover, the category F is closed under taking kernels of epimorphisms
by a long exact sequence for Tor. Hence K0(F) ∼= G0(R) and the tensor product
S ⊗R − induces a map

f∗ : G0(R) ∼= K0(F)→ G0(S).

Serre’s formula
f∗([M]) =

∑
(−1)i [TorRi (S,M)] (2.2)

follows immediately from the fact that for a bounded chain complex C∗ we have
(see e.g. [Wei] Proposition II.7.5)

χ(C∗) =
∑
i

(−1)i [Ci ] =
∑
i

(−1)i [Hi(C∗)].

For any ring R there is a canonical homomorphism i : Z 17→1−−→ R which induces a
group homomorphism i∗ : K0(Z)→ K0(R).

Definition 33. The cokernel of i∗ is called the reduced K0-group of R

K̃0(R) = K0(R)/im i∗.
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2.1.2 Examples of explicit computations

The following examples of computations show that in general the groups
K0(R), G0(R), G ′0(R) are very di�erent.

1. Let R = k [x1, x2, . . . , xn, . . .]/
(
xixj | i , j ∈ Z>0

)
, where k is a field and

k [x1, x2, . . . , xn, . . .] denotes a polynomial ring in variables xi . It is clear that the
ideal m generated by the images of xi ’s in R satisfies m2 = 0 and R/m ∼= k.

Moreover, m is the unique maximal ideal in R, because any element outside m is
of the form α0 +

∑
i≥1 αix i , α0 ∈ k× and has an inverse α−2

0 (α0 −
∑

i≥1 αix i).

Therefore, R is a local ring with a maximal ideal m. Since m is a nilpotent ideal in
R we obtain (see e.g. [Wei] Lemma II.2.2)

K0(R) ∼= K0(R/m) ∼= Z.

The following argument due to Swan [Sw] shows that

G0(R) = 0.

Firstly, by induction on the number of generators it is easy to show that the class
[M] ∈ G0(R) of any finitely generated R-module M can be written as a finite sum∑

i [R/Ji ], for some ideals Ji in R. Hence, it is enough to show that [R/J] = 0 for
any ideal J in R. We consider separately the cases of J being of finite and infinite
dimension over k .

Case 1: dimk(J) = ∞. Denote by x i the image of xi in R. Then
{x1, x2, . . . , xn, . . .} is a k-basis of m. Let {j1, j2, . . . , jn, . . .} be a k-basis of J
and let jn =

∑
i λinx i , λin ∈ k. Consider a finitely generated R-module M , that

has a k-basis {a, b, ci}∞i=1 and the action of R is given by xn · a = cn, xn · b =∑
i λinci , xn · ci = 0. Then we have the following exact sequences

0 // R
α

1 7→a
//M // coker(α) ∼= k // 0,

0 // R
β

17→b
//M // coker(β) ∼= R/J // 0,

which imply that [R/J] = [k ]. Now let us take an infinite dimensional ideal J ′ =

(x2, . . . , xn, . . .) in R and consider a map γ : k → R/J ′ which sends 1 to the
image of x1. This gives an exact sequence

0 // k
γ

1 7→x1

// R/J ′ // k // 0,

from which we conclude 2[k ] = [R/J ′] = [k ] = 0. Consequently, [R/J] = 0.

Case 2: dimk(J) = m < ∞. Then [J] is itself a finitely-generated R-module
and [J] = m[k ] = 0 by the result from Case 1. An obvious exact sequence

0→ J → R→ R/J → 0
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implies that [R/J] = [R]. Similarly to the previous case, let us consider an R-
module M ′ with a k-basis {a, b, ci}∞i=1 and the action of R given by

xn · a = cn, xn · ci = 0,

and
x2n · b = c2n, x2n−1 · b = 0.

This provides us the following exact sequences

0 // R
α′

17→a
//M ′ // k // 0,

0 // R/
(
x2n−1 |n ∈ Z>0

) β′

17→b
//M ′ // R/

(
x2n |n ∈ Z>0

)
// 0.

It yields [R] = [M ′] = 0, where the last equality follows from the conclusion of the
previous case. This finishes the proof of the claim that [R/J] = 0.

Finally, we prove that
G ′0(R) ∼= Z

by showing that every pseudo-coherent R-module M is isomorphic to Rn for some
n. We call a free resolution

. . .
α3 // P2

α2 // P1
α1 // P0

α0 //M // 0

of M minimal if every Pi has a free R-basis that is mapped to a minimal set of
generators of the image αi(Pi) = ker(αi−1). Similarly, the existence of a projective
resolution is proved, one may show the existence of a minimal resolution. If all
the terms Pi in a free resolution of M are finitely generated R-modules then it is
minimal if and only if the image of each Pi+1 is contained in mPi . This is so since
the set of generators is minimal if and only if there are no relations between them
with one of the coe�cients being a unit, and the image of Pi+1 consists of exactly
those elements in Pi that give relations between generators of ker(αi−1).

Let us take a minimal free resolution of M. Since M is pseudo-coherent
Tori(M, k) are finite dimensional vector spaces, and the dimension of Tori(M, k)

equals the rank of Pi in a minimal free resolution of M . Therefore, α1(P1) ⊆ mP0

and hence mP1 ⊆ ker(α1), since m2 = 0. On the other hand, ker(α1) = im (α2) ⊆
mP1, and, consequently, ker(α1) = mP1. But unless P1 = 0 an R-module mP1 is
not finitely generated, which contradicts to the fact that it is an image of a finitely
generate module P2. Hence, M ∼= P0 = Rn for some n ∈ N, which finishes the
proof.

2. Let G be a finite group and let R = ZG be the group ring of G. Swan showed
[[Sw2] Theorem 8.1 and Proposition 9.1] that in this case the reduced projective class
group K̃0(ZG) is finite and hence

rank K0(ZG) = rank (Z⊕ K̃0(ZG)) = 1.

On the other hand, if G is a cyclic group Cn the Lenstra decomposition, which we
discuss in much greater detail later, gives
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G0(ZCn) ∼=
⊕
d |n

(Z⊕ Cl(Z[ξd , 1/d ])),

where ξd is a primitive d th root of unity and Cl(Z[ξd , 1/d ]) denotes the ideal class
group of the Dedekind ring Z[ξd , 1/d ]. Therefore, we immediately conclude that
K0(ZCn) � G0(ZCn) for any n > 1. Since for a finite group G the group ring ZG
is noetherian we have that

G ′0(ZG) ∼= G0(ZG).

3. If G is an infinite group it is much harder to obtain any information about
G0(ZG). Let F2 = 〈a, b〉 be the free group on two generators a, b and let R = ZF2

be the group ring. Lück [Lü] computed that

0 = [ZF2] ∈ G0(ZF2)

The argument goes as follows. Consider a short exact sequence of ZF2-modules

0 // (ZF2)2

(0,1)7→(a−1)
(1,0) 7→(b−1)

// ZF2 17→1
// Z // 0

coming from the cellular chain complex of the universal cover of S1∨S1, where Z is
a trivial ZF2-module. It implies that [ZF2] = −[Z] in G0(ZF2). Now it is enough to
show that [Z] = 0 ∈ G0(Z[Z]), since there exists a surjective group homomorphism
F2 → Z which induces a restriction map G0(Z[Z])→ G0(ZF2) that takes the trivial
Z[Z]-module Z to the trivial ZF2-module Z. Denote by x a generator of the group
Z. Now we may consider a short exact sequence of Z[Z]-modules

0 // Z[Z]
1 7→(x−1)

// Z[Z]
17→1

// Z // 0,

coming from the cellular chain complex of the universal cover of S1. It yields
[Z] = 0 ∈ G0(Z[Z]), which finishes the proof.

It is an open question whether the whole group G0(ZF2) is trivial. Furthermore,
there is the following related conjecture (see [Lü], Conjecture 9.67).

Conjecture. The group G is amenable if and only if [CG] 6= 0 ∈ G0(CG).

It would be also interesting to know whether the stronger version of the conjec-
ture holds, namely if a group G is non-amenable then G0(CG) = 0.

On the other hand, Gersten (see [Ge], Theorem 5.1) showed that

K0(ZF2) ∼= Z.

Moreover, every finitely presented ZF2-module has a finite resolution by finitely
generated projective ZF2-modules. Therefore,

G ′0(ZF2) ∼= K0(ZF2) ∼= Z.
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This example shows that in the situation of a non-noetherian group ring the groups
G0(ZG) and G ′0(ZG) become di�erent even though they coincide in the case of a
finite G.

4. Combining the first two examples and taking R = R1 × R2, where R1 =

k [x1, x2, . . . , xn, . . .]/
(
xixj | i , j ∈ Z>0

)
and R2 = ZCn with n a non-prime integer,

we obtain an example of a ring R for which all three groups K0(R), G0(R), and
G ′0(R) are pairwise distinct.

5. Even though in general the groups K0(R) and G0(R) are di�erent we may al-
locate a nice class of rings, namely regular rings (for properties and characterization
of regular rings see [Se3]), for which they appear to be the same.

Definition 34. A noetherian ring R is called regular, if R has finite global homo-
logical dimension.

In particular every finitely generated module over a regular ring has a finite
resolution by finitely generated projective R-modules. Therefore, for a regular ring
R the Cartan map is an isomorphism and

K0(R)
∼=−→ G0(R) ∼= G ′0(R)

The class of regular rings includes Dedekind domains (in particular fileds). If a ring
R is regular, then so is a polynomial ring R[x ], and any localization of R. The group
rings of non-trivial finite groups are not regular. Another class of rings that will be
important for us are hereditary rings.

Definition 35. A ring R is called left hereditary if every left ideal of R is a
projective R-module.

By the characterization in [Re] Theorem 2.44 for a left hereditary ring R all
the submodules of a free module are projective. In particular if additionally R is
noetherian every finitely generated R-module has a resolution by finitely generated
projective R-modules of length at most 1. Consequently, a noetherian hereditary
ring R is regular and we have K0(R) ∼= G0(R) ∼= G ′0(R).

6. If R is a Dedekind domain, then

G0(R) ∼= K0(R) ∼= Z⊕ K̃0(R)

and it is well known that
K̃0(R) ∼= Cl(R),

where Cl(R) is the class group of R.
7. The following results answer the natural question how the groups K0 and G0

change when passing from a ring R to a polynomial ring R[t] or to a ring of Laurent

polynomials R[t, t−1] ∼= R[Z]. First notice that the obvious map f : R[t]
t 7→0−−→ R is

not flat, but R admits a finite resolution by projective (hence flat) right R[t]-modules

0→ R[t]
·t−→ R[t]

t 7→0−−→ R→ 0
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Therefore, we may define f∗ : G0(R[t])→ G0(R) via Serre’s formula 2.2

f∗([M]) = [R ⊗R[t] M]− [Tor
R[t]
1 (R,M)].

Analogously, the exact sequence of right R[t, t−1]-modules

0→ R[t, t−1]
·(t−1)−−−→ R[t, t−1]

t 7→1−−→ R→ 0

yields a map g∗ : G0(R[t, t−1])→ G0(R) given by Serre’s formula 2.2. For the proof
of the following theorem see ([R], Chapter 3).

Theorem 36 (Fundamental Theorem for G0). Let R be a noetherian ring. Then
the maps f∗ and g∗ are isomorphisms

G0(R) ∼= G0(R[t]) ∼= G0(R[t, t−1]).

If a ring R is regular, then both R[t] and R[t, t−1] are also regular and Theorem
36 gives

K0(R) ∼= K0(R[t]) ∼= K0(R[t, t−1]).

For an arbitrary ring R the structure of K0(R[t, t−1]) is more complicated and
involves the so called nil-terms (see [R], Theorem 3.3.2).

Theorem 37 (Fundamental Theorem for K0). Let R be an arbitrary ring. Then

K0(R[t, t−1]) ∼= K0(R)⊕K−1(R)⊕ NK0(R)⊕ NK0(R).

2.2 K1 and G1

2.2.1 Definitions

Before proceeding with the general framework of higher K-groups let us first exam-
ine the groups K1 and G1, since they are much better understood than the general
case.

Definition 38. Let C be a small exact category. Define K1(C) to be an abelian
group with generators [(C,α)], where C ∈ Obj(C) and α ∈ Aut(C), and relations

• [(C,αβ)] = [(C,α)] + [(C, β)] for all α, β ∈ Aut(C);

• [(C1, α1)] = [(C0, α0)] + [(C2, α2)] for every commutative diagram in C with
exact rows of the form

0 // C0

α0

��

i // C1
q
//

α1

��

C2

α2

��

// 0

0 // C0
//i // C1

q
// C2

// 0.
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As before we define K1(R) := K1(PR) and G1(R) := K1(MR), where PR is a
category of finitely generated projective R-modules andMR is a category of finitely
generated R-modules.

The group K1(R) has another interesting characterization. Let GL(R) be the
infinite general linear group given as a direct limit of inclusions

GL1(R) ⊆ GL2(R) ⊆ . . . ⊆ GLn(R) ⊆ GLn+1(R) ⊆ . . .

where A ∈ GLn(R) is mapped to
(
A 0
0 1

)
∈ GLn+1(R). Let En(R) ⊆ GLn(R) be

a subgroup generated by the elementary matrices {Ei j(x) | x ∈ R}. Let E(R) =

lim−→n
En(R). Then it is not di�cult to show that

[GL(R),GL(R)] = E(R). (2.3)

Theorem 39. There is an isomorphism

K1(R) ∼= GL(R)/[GL(R),GL(R)] = GL(R)ab.

Sketch of the proof. First note, that we may replace the group K1(R) by the group
Kf

1 (R), which is defined in the same way but whose generators are (F,α), where
F are finitely generated free R-modules and α ∈ Aut(F ). An isomorphism
φ : K1(R) → Kf

1 (R) is given as follows. If P is a finitely generated projective R-

module, then we may find a finitely generated R-module Q such that P ⊕Q
∼=−→
g
Rn

for some n. Then we define φ([P,α]) = [Rn, g ◦ (α⊕ idQ) ◦ g−1]. It is not di�cult
to check that the homomorphism ϕ : GL(R)ab → Kf

1 (R) sending A ∈ GLn(R) to
[Rn, rA], where rA denotes the right multiplication by A, is well-defined and induces
an isomorphism of abelian groups.

For any ring R there is an obvious homomorphism of abelian groups

i : R×ab → K1(R), x 7→ [R, rx ],

where rx denotes a right multiplication by an element x. In general the homo-
morphism i is neither surjective nor injective. In the situation when a ring R is
commutative the determinant map induces a surjective homomorphism

det : K1(R)→ R×, [Rn, f ] 7→ det(f )

which satisfies det ◦i = idR×, and hence in this case i is injective and R× appears
as a direct summand in K1(R).

Definition 40. If R is commutative we define SK1(R) := ker(det : K1(R) →
R×).

Hence for a commutative ring R it holds K1(R) ∼= SK1(R)⊕R× and SK1(R) is
the “interesting part” of K1(R). From Theorem 39, equality 2.3, and an observation
that every elementary matrix has determinant 1 we immediately conclude that

SK1(R) ∼= SL(R)/E(R)
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and hence SK1(R) may be viewed as an obstruction for SL(R) to be generated
by the elementary matrices. The proof of the first part of the following result can
be found in [R, Corollary 2.3.7]. The second part is the famous Bass-Milnor-Serre
theorem and for its proof see [BMS] or [Mil].

Theorem 41.

1. If R is a Dedekind domain such that R/p is finite for every non-zero prime
ideal p in R, then SK1(R) is a torsion group.

2. If OF is the ring of algebraic integers of a number field F , then SK1(OF )

vanishes.

Therefore, for the ring of integers OF it holds

K1(OF ) ∼= G1(OF ) ∼= O×F

and consequently K1(OF ) is completely determined by the classical Dirichlet’s unit
theorem.

Theorem 42 (Dirichlet’s unit theorem). Let F be a number field and let OF be
the ring of algebraic integers in F. Then the abelian group O×F is finitely generated
with torsion subgroup equal to the cyclic subgroup of roots of unity in F and

rank (O×F ) = r1 + r2 − 1,

where r1 is the number of real embeddings of F and r2 is the number of conjugate
pairs of complex embeddings of F .

In the following subsection we present the description of K1 of a finite dimen-
sional central division algebra due to Wang and Hasse-Schilling-Maass. This result
will be needed later in Keating’s computation of G1(ZG) for a finite group G.

2.2.2 The reduced norm

Let D be a finite dimensional division algebra over its center Z(D) = F, let
d = dimF (D). Let E be a maximal subfield in D and let n = [E : F ], then
E ⊗F D ∼= Mn(E) and hence, d = n2 (see e.g. [La]). The integer n is called the
Schur index of D. Schur indices will be treated in more detail in Section 3.5. The
inclusion D ↪→ Mn(E) gives rise to a map

Nred : D× ↪→ GLn(E)
det−→ E×,

whose image lies in F×. This map Nred : D× → F× is called a reduced norm of D
and is independent of the choice of E. If A is a finite dimensional simple algebra,
then by Artin-Wedderburn theorem A is isomorphic to a matrix algebra Mk(D)

for some division algebra D with center F, and then for each m > 0 it holds
Mm(A) ∼= Mmk(D). We call the induced map Nred : GLm(A) ∼= GLmk(D) → F×

the reduced norm for A. We define SK1(A) to be the kernel of the induced map

Nred : K1(A) ∼= K1(D)→ K1(F ) ∼= F×.
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Suppose that F is a number field. Wang proved that in this case SK1(D) = 1.

Moreover, the Hasse-Schilling-Maass norm theorem (see e.g. [Re], §33 for more
details) gives a description of the image of Nred in F×, and hence determines the
whole K1(D). For every real embedding σ : F → R we have that R ⊗F D is a
matrix algebra over R or H. D is called ramified at σ if H occurs.

Theorem 43 (Hasse-Schilling-Maass). Let F be a number field and let D be a
division ring with center F, then

Nred : K1(D)
∼=−→ F+ := {x ∈ F | σ(x) > 0 in R for all ramified σ}.

Let A be a finite dimensional semisimple algebra over a field F. Then we may
extend the definition of the reduced norm as follows. Let A = A1⊕ . . .⊕Al , where
Ai are simple algebras, and let Fi denote the center of Ai . Let E be a splitting field
for A, i.e., E ⊗F A is a direct sum of matrix algebras over E. The reduced norm of
A is defined as a direct product of reduced norms on Ai

Nred : K1(A) ∼=
l⊕
i=1

K1(Ai)→
l⊕
i=1

F×i .

Let A be a finite-dimensional semisimple algebra over a number field F, let R be
the ring of integers in F , and let Λ be an R-order in A. The inclusion Λ ↪→ A

induces a map K1(Λ)→ K1(A) and composing it with the reduced norm map we
obtain a reduced norm defined for Λ

Nred : K1(Λ)→ K1(A)→
l⊕
i=1

F×i .

We define SK1(Λ) to be the elements of K1(Λ) with the reduced norm 1.

2.2.3 Maximal orders

Since the main focus of this work is the investigation of the decomposition of G-
groups of a group ring into direct sum of G-groups of some maximal orders let us
introduce orders here and discuss what is known for them. For the exposition in
this subsection we will mainly follow [Re] and [AG].

Definition 44. Given a commutative domain R with field of fractions k and a
finite dimensional k-algebra A we call a subset Λ ⊆ A an R-order in A if

(i) Λ is a finitely generated R-submodule in A;

(ii) kΛ = A;

(iii) Λ is a subring of A.

If additionally Λ is not properly contained in any other R-order of A, then we say
that it is a maximal R-order. A subset Λ ⊆ A satisfying only the first two conditions
(i), (i i) is called a full R-lattice in A.
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Examples.

1. Let G be a finite group, then RG is an R-order in kG.

2. The ring of integers OF in an algebraic number field F is the unique maximal
Z-order in F.

3. Let A = Q+Qi +Qj +Qk be the quaternion algebra, then Z-submodule Λ

generated by 1, i , j, k is a Z-order which is contained in the maximal Z-order
Γ generated by i , j, k, (1 + i + j + k)/2.

4. M2(Z) is the maximal Z-order in M2(Q).

5. Let R be a complete discrete valuation ring with field of fractions k and let
D be a division k-algebra. Then the integral closure of R in D is the unique
maximal R-order in D. In general a maximal order does not have to be
unique.

In the next proposition we state without the proof some properties of the maximal
orders that will be needed later.

Proposition 45 (Properties of maximal orders).

(i) Let Λ be a maximal R-order in a central simple k-algebra A and let S ⊆ R be
a multiplicative subset. Then Λ[S−1] is a maximal R[S−1]-order in A (see e.g.
[AG], Proposition 1.1).

(ii) Assume that R is noetherian and integrally closed, let A be a central simple
k-algebra. Then any R-order in A is contained in a maximal order (see e.g.
[AG], Proposition 1.1).

(iii) Let R be a Dedekind ring and A be a separable k-algebra. Let Λ be an R-
order in A. Then Λ is maximal if and only if for each prime ideal P in R, the
localization ΛP is a maximal RP -order in A, which is equivalent to Λ̂P being a
maximal R̂P -order in ÂP ([Re], §11).

(iv) Let R is a Dedekind ring and A be a separable k-algebra, then every maximal
R-order Λ in A is left and right hereditary (see [Re], Theorem 21.4). Furthermore,
Λ is noetherian. Therefore, for such Λ it holds Gi(Λ) = Ki(Λ) for all i ≥ 0.

From now on we assume that R is a Dedekind domain with field of fractions k.
Let A be a separable finite dimensional algebra over k. Let

A ∼=
∏
i

Ai ,

where Ai are simple k-algebras. Then every maximal R-order Λ in A is a direct
product of maximal R-orders Λi in the simple components Ai . Hence the problem of
understanding maximal orders in separable algebras reduces to the one for separable
simple algebras. The following lemma shows that it su�ces to work with simple
central algebras.
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Lemma 46. Let A be a separable simple k-algebra. Let k ′ be the center of A and
R′ the integral closure of R in k ′. If Λ is a maximal R′-order in A, then Λ is at the
same time a maximal R-order in A, and vice versa.

Proof. Λ is a maximal R′-order in A. Since k ′ is a separable extension of k it follows
that R′ is a finitely generated module over R. It is clear that Λ is finitely generated as
an R-module. Now since k ⊗R R′ = k ′ we get that k ⊗R Λ = k ⊗R (R′⊗R′ Λ) = A

and hence Λ is an R-order in A. The task is now to show that it is a maximal
R-order. Suppose on the contrary that there exists an R-order Γ such that Λ ( Γ.

Then it is easy to see that R′ · Γ is an R′-order in A and R′ · Λ = Λ ( Γ ⊆ R′ · Γ,
which contradicts the maximality of Λ.

In the other direction if Λ is a maximal R-order, then since R′ is finitely gen-
erated over R we immediately conclude that Λ is also a maximal R′-order. This
finishes the proof.

Let A be a separable simple central k-algebra. Then

A ∼= HomD(V, V )

for some uniquely determined division algebra D and V a right D-vector space. Let
Γ be a maximal R-order in D. Then using the above notation Theorem 21.6 in [Re]
implies the following.

Proposition 47. Every maximal R-order Λ in A is Morita equivalent to Γ.

This allows us to talk about G-groups of a maximal R-order in A without
specifying the order, since they are all Morita equivalent.

Let us now switch to the situation when R is the ring of integers in a number
field F . Let A be a separable F -algebra. The following theorem due to Lam ([La3],
Theorem 3.3) which is the analogue of the similar result of Bass-Milnor-Serre for K1

of ring of integers allows to estimate the rank of G1 for an arbitrary R-order in A.

Theorem 48 (Lam). Let Λ be an R-order in A. Then

(i) G1(Λ)→ G1(A) has finite kernel.

(ii) If Λ′ ⊆ Λ is another R-order in A, then G1(Λ′) → G1(Λ) has finite kernel and
cokernel.

(iii) K1(Λ)→ G1(Λ) has finite kernel and cokernel.

In the next section we will outline main tools used for the computation of K-
and G-groups.

2.3 Higher K-groups and classical tools to
compute them

2.3.1 Q-construction

So far we only talked about K0 and K1 groups and did not mention higher K-
groups. In this section we define higher K-groups of an exact category using the
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classical Quillen’s Q-construction (see the original Quillen’s paper [Q]). The idea is
to define higher K-groups as homotopy groups of a classifying space of a category.
To obtain the desired properties the trick is to modify the initial category C and
consider the category QC instead.

Definition 49. Let C be a category with exact sequences.

• A morphism A → B in C is called an admissible monomorphism if it can be
completed to the right to a short exact sequence in C

0→ A→ B → X → 0.

An admissible monomorphism is denoted by A� B.

• A morphism A → B in C is called an admissible epimorphism if it can be
completed to the left to a short exact sequence in C

0→ X → A→ B → 0.

An admissible epimorphism is denoted by A� B.

Given an exact category C let QC be the category with the same objects as C
and morphisms HomQC(A,B) given by the set of equivalence classes of diagrams

A� X � B.

The diagrams A� X � B and A� X ′� B are said to be equivalent i� they fit
in a commutative diagram

A X

∼=
��

oooo // // B

A X ′oooo // // B.

The composition of morphisms A� X � B and B � X ′� C is defined via

A� X ×B X ′� C,

where X ×B X ′ denotes a pullback. If the resulting category QC is not a small
category we may replace it by an equivalent small subcategory. Recall that for
a small category the classifying space is a geometric realization of the nerve of
this category. Hence after passing to a small subcategory of QC we obtain a well-
defined (up to a homotopy equivalence) classifying space, which we denote by BQC.
Note that there is a natural choice of a basepoint for BQC given by the 0-object.
Moreover, since for every object A in QC there is a morphism 0 � 0 � A the
space BQC is path-connected.

Let C be a skeletally small exact category then Quillen [Q] showed that there is
a natural isomorphism

π1(BQC, 0) ∼= K0(C),

π2(BQC, 0) ∼= K1(C).
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This motivates the following definition of the higher K-groups.

Definition 50. Let C be an exact skeletally small category, then the K-groups are
defined to be the homotopy groups

Kn(C) := πn+1(BQC), n ≥ 0.

In his fundamental work Quillen along with the Q-construction gave another
less technical one suited to define the higher algebraic K-groups of a ring, which he
called a ’plus-construction’. There Quillen defined K-groups as homotopy groups
of a modified version of a space BGL(R), which he called BGL(R)+. Even though
the two constructions look very di�erent they produce the same K-groups, which
is quite complicated result(for the proof see e.g. [Sr], Chapter 7). Depending on the
instances it might be more beneficial to use one or the other construction.

Later some alternative constructions of the higher K-groups were found. Wald-
hausen gave the so-called called S q-construction for Waldhausen’s categories [Wa].
For exact categories there is an alternative construction by Gillet and Grayson [GG].
All of these constructions agree and give the same K-groups, but each of them has
some advantages in certain situations. For the extensive treatment of this subject
see e.g. [Wei], Chapter IV.

2.3.2 Fundamental theorems in K-theory

We list without proof fundamental theorems that are the basic tools for computing
K-groups. We mainly follow [R] and [Wei]. Other useful sources for this subject
include [Ber], [Mil], [Q], [Sr].

Morita invariance. Two rings R,S are called Morita equivalent if the categories
of left R-modules and left S-modules are equivalent. Here we consider the category
of all modules, not only finitely generated. If F : Mod(R) → Mod(S) is a Morita
equivalence, then one may show that it preserves projectivity and takes finitely
generated R-modules to finitely generated S-modules. Hence there is an induced
equivalence between categories PR and PS, as well as between Modf g(R) and
Modf g(S). Any ring R is Morita equivalent to the matrix ring Mn(R) for any n ∈ N
(see [Re], Chapter 4). From this it is straightforward to deduce the Morita invariance
for K- and G-groups (for detailed treatment see e.g. [La2]).

Theorem 51 (Morita invariance). Let R be a ring and let n ∈ N. Then for any
j ≥ 0 there are natural isomorphisms

Kj(Mn(R)) ∼= Kj(R),

Gj(Mn(R)) ∼= Gj(R).

Compatibility with products and colimits. For the proof see e.g. [Q], p.103 (8)
and p.20 (12).

Theorem 52. 1. If A and B are exact categories then

Ki(A× B) ∼= Ki(A)⊕Ki(B).
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2. Let {Ri , i ∈ I} be a directed system of rings. Then the canonical map

colimi∈IKj(Ri)
∼=−→ Kj(colimi∈IRi)

is an isomorphism for all j ≥ 0.

Resolution. The following theorem allows to replace the initial category by a
subcategory in the computation of K-groups, if every object of the category admits
a finite resolution by objects from the subcategory.

Theorem 53 (Resolution). Let B be a full exact subcategory of an exact category
A. Assume B is closed under extensions and under kernels of admissible surjections
in A. Suppose every object A ∈ A has a finite resolution by objects from B

0→ Bn → . . .→ B1 → B0 → A→ 0.

Then Kj(A) ∼= Kj(B).

Localization. An abelian subcategory B of an abelian category A is called Serre
subcategory if B is closed under subobjects, quotients, and extensions. We define
a quotient category A/B by the following "calculus of left fractions". A morphism
f in A is called B-iso if ker(f ) and coker(f ) are in B. Objects of A/B are the
same as objects of A. The morphisms between A1, A2 are given by the equivalence
classes of diagrams in A :

A1
s ′←− A′ f

′
−→ A2, s

′ is a B-iso.

Two such diagrams A1
s ′←− A′ f

′
−→ A2 and A1

s ′′←− A′′ f
′′
−→ A2 are equivalent if there is

a chain A1 ← A→ A2 that fit into a commutative diagram

A′

f ′

  

s ′

~~

A1 Aoo //

∼=B

OO

∼=B
��

A2

A′′
s ′′

``

f ′′

>>

where A → A′ and A → A′′ are B-isos. The composition of morphisms A1
s←−

A′
f−→ A2 and A2

β←− A′′′ g−→ A3 is defined as A1
s←− A′ ← A→ A′′′

g−→ A3, where A

is a pullback of A′
f−→ A2

β←− A′′′. One might think of morphisms in A/B as of left
fractions s−1f , where the set of denominators s coincide with B-isos. The resulting
category A/B is abelian and the quotient functor loc : A → A/B is exact (see e.g.
[Sw] or [Wei], p. 189)

Theorem 54 (Localization, [Q]). If B ⊆ A is a Serre subcategory of an abelian
category, then there is a long exact sequence

. . .→ Ki(B)→ Ki(A)
loc−→ Ki(A/B)→ Ki−1(B)→ . . . .
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The following application will be of a great importance for us in the computation
of G-theory of group rings. Let R be a ring and let S be a central multiplicative
set in R. LetMS(R) be the category of all finitely generated S-torsion R-modules.
Recall that a module M is called S-torsion if for every element m ∈ M there
exists s ∈ S such that sm = 0. Clearly,MS(R) is a Serre subcategory ofM(R).

The quotient categoryM(R)/MS(R) is naturally equivalent toM(S−1R) and the
localization sequence in this case looks as follows

. . .→ Ki(MS(R))→ Gi(R)
loc−→ Gi(S

−1R)→ Ki−1(MS(R))→ . . . .

Devissage. This tool will allow us to reduce the computation of K-theory to a
smaller category in the situation when it is possible to break up objects from the
initial category into pieces from the smaller category.

Theorem 55 (Devissage). Let A be an abelian category, and let B be an exact
abelian subcategory of A that is closed under subobjects and quotients. Assume
that every object A ∈ A has a finite filtration

0 = An ⊆ . . . ⊆ A1 ⊆ A0 = A,

where Ai ∈ Obj(A) and each quotient Ai−1/Ai lies in B. Then Kj(A) ∼= Kj(B).

The following two applications of the Devissage Theorem will be used later.
Application 1. Let R be an Artinian ring, and let Modss(R) be the subcategory
of Modf g(R) consisting of semisimple R-modules. Since every finitely generated
R-module has a finite composition series, the Devissage implies

Kj(Modf g(R)) ∼= Kj(Modss(R)).

Schur’s lemma gives that Modss(R) is equivalent to
∏
i Modf g(Di), where the prod-

uct runs over the set of non-isomorphic simple R-modules Vi and Di = EndR(Vi).

Therefore we conclude that

Gj(R) ∼= ⊕iKj(Di).

Application 2. Let R be a noetherian ring. Fix x ∈ Z(R) and denote by Mod〈x〉(R)

the abelian category of all modules M in Modf g(R) annihilated by some power
of x, i.e., xnM = 0 for some n. Clearly, all the quotients of the following filtration

0 = xnM ⊆ . . . ⊆ xM ⊆ M

lie in R/xR. Therefore, by the Devissage

Kj(Mod〈x〉(R)) = Gj(R/xR).
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2.4 Keating’s computation of G1(ZG)

Let G be a finite group of order n. Let R be the ring of integers of an algebraic
number field, e.g. R = Z. In this subsection we overview the result of Keating [Ke],
in which he completely determined the abelian group G1(RG).

For any ring T of characteristic 0 we put T ′ = T [n−1]. Let A = Modf g(R) and
let B = Mod〈n〉(R). The corresponding localization sequence

. . .→ G1(RG)
loc−→ G1(R′G)

δ−→ K0(Mod〈n〉(RG))→ G0(RG)
loc−→ G0(R′G)

after applying the Devissage becomes

. . .→ G1(RG)
loc−→ G1(R′G)

δ−→
⊕
i∈E

K0(EndRG(Vi))→ G0(RG)
loc−→ G0(R′G),

where E is the set of isomorphism classes of simple RG-modules Vi with nVi = 0.

Let k be the field of fractions of R. One of the main results in [Ke, Theorem 1]
is that the base change homomorphism

G1(RG)→ G1(kG) = K1(kG), [M] 7→ [k ⊗R M]

is injective. This immediately implies that loc : G1(RG) → G1(R′G) is injective.
Since given Vi a simple RG-module End(Vi) is a division ring, it is clear that⊕

i∈E K0(End(Vi)) is a free abelian group of rank ε = |E|. From this we obtain

tors G1(RG) = tors G1(R′G).

Moreover, since the order of the group G is invertible in R′ the group ring R′G is
semisimple and hence every finitely generated R′G-module is projective. Therefore,

G1(R′G) = K1(R′G).

It was proved by Swan that ker(loc : G0(RG)→ G0(R′G)) is a finite group, which
means that the image of G1(R′G) under δ has rank ε. Consequently

rank G1(RG) = rank K1(R′G)− ε

and
tors G1(RG) = tors K1(R′G).

To get an explicit description of rank and torsion of K1(R′G) we need the
following notation. Let

kG ∼=
m∑
i=1

Mni (Di)

be the Wedderburn’s decomposition of an algebra kG into simple components.
Denote by Fi the center of Di . Let Oi be a maximal R-order in Z(Mni (Di)). Hence
O = ⊕mi=1Oi is a maximal R-order in Z(kG) and O′ is a maximal R′-order in
Z(kG) by the properties of maximal orders stated in the Subsection 2.2.3. The
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order R′G is the maximal R′-order in kG. In [Ke2, Theorem 2] Keating showed that
SK1(R′G) = 0, i.e., the reduced norm

Nred : K1(R′G) ↪→ K1(kG) ∼=
m⊕
i=1

K1(Di)
∼=−→

m⊕
i=1

(F×i )+

is injective. Therefore, it is enough to determine the image of the base change map
K1(R′G) → K1(kG). This can be done by the following result of Wilson ([Wi],
Lemma 3) which we present in our notation.

Lemma 56 (Wilson). If Λ is a maximal R′-order in kG then the image of K1(Λ)

in K1(kG) consists of those elements in K1(kG) whose reduced norms are in O′.

From this it immediately follows that

K1(R′G) ∼= O′ ∩
m⊕
i=1

(F×i )+ =

m⊕
i=1

U+(O′i),

where U+(O′i) is the group of units of O′i that are positive at every real place
where Di ramifies. Put ri = rank U(Oi) and let vi be the number of distinct prime
ideals in Oi that divide n. The following theorem of Keating summarizes everything
written above about G1(RG).

Theorem 57. Let G be a finite group of order n and let R be the ring of integers
of a number field k . Then using the above notation we have

rank G1(RG) = r1 + . . .+ rm + v1 + . . .+ vm − ε,

tors G1(RG) =

m⊕
i=1

tors U+(O′i) =

m⊕
i=1

tors U+(Oi).
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Chapter 3

The decomposition conjecture
for G-theory of group rings

In [HTW] I. Hambleton, L. Taylor and B. Williams conjectured a general formula in
the spirit of H. Lenstra for the decomposition of Gn(RG) for any finite group G
and noetherian ring R. The conjectured decomposition was shown to hold for some
large classes of finite groups. D. Webb and D. Yao discovered that the conjecture
failed for the symmetric group S5, but remarked that it still might be reasonable
to expect the HTW-decomposition for solvable groups. In this Chapter we revisit
the conjecture. We present the current state of the conjecture and provide the
new results, which are the main achievement of this work. On the side of negative
results we show that the solvable group SL(2,F3) is a counterexample to the
conjectured HTW-decomposition in degree 1. The contradiction to the conjecture
will be obtained by examining the ranks of G1. Nevertheless, we prove that for any
finite group G the rank of G1(ZG) does not exceed the rank of the expression in
the HTW-decomposition. We also show that the torsion part of G1(ZG) is predicted
correctly by the HTW-decomposition for all finite groups G. We compare the ranks
predicted by the conjecture in degrees n = 0 and n ≥ 2 and see that the prediction
given by the HTW-decomposition is correct. This provides evidence that the weaker
version of the Hambleton-Taylor-Williams Conjecture might still hold true for all finite
groups.

3.1 Hambleton-Taylor-Williams Conjecture

3.1.1 The statement and the state of the Conjecture

In [Le] Lenstra obtained a beautiful explicit formula for the decomposition of the
Grothendieck group G0(RG) of the group ring RG for an abelian group G and
noetherian ring R. Namely, if C(G) denotes the set of all cyclic quotients of G
(isomorphic quotients coming from di�erent subgroups of G are considered to be
di�erent), then

G0(RG) ∼=
⊕

C∈C(G)

G0

(
R ⊗Z Z

[
ξ|C|,

1

|C|
])
,

where |C| is the order of a cyclic group C, and ξ|C| is a primitive |C|-th root of unity.
In [We2], [We3] Webb proved the same decomposition formula for Gn(RG), n > 0
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for all abelian groups G, and obtained decomposition formulas for Gn(ZG) for
certain nonabelian groups G, in particular for dihedral and generalized quaternion
2-groups. In [HTW] Hambleton, Taylor and Williams conjectured the general formula
in the spirit of Lenstra for the decomposition of Gn(RG) for any finite group G
and noetherian ring R. Their conjecture is consistent with all previous results of
Lenstra and Webb. Moreover it was shown to hold for finite nilpotent groups [HTW],
[We5] and groups of square-free order [We4]. The conjecture was also proved for
G0(ZG), where G is a group of odd order having cyclic Sylow subgroups [LaWe].

In order to state the conjecture let G be a finite group, and let ρ : G → Aut(Vρ)

be a rational irreducible representation of G. Then there is an associated division
algebra Dρ = EndQG(Vρ) and we have the following Wedderburn decomposition of
the rational group algebra [Se, p. 92]

QG ∼=
∏

ρ∈X(G)

Mnρ(D
op
ρ ), (3.1)

where ρ ranges over the set X(G) of isomorphism classes of rational irreducible
representations of G.

For such a representation ρ : G → Aut(Vρ), let kρ be the order of the kernel of
the representation ρ and let dρ be the dimension of any of the irreducible complex
constituents of C ⊗Q Vρ. Let ωρ = |G|

kρdρ
. We remark that ωρ is an integer. Indeed,

the kernel of the irreducible rational representation ρ coincides with the kernel of
any of the irreducible complex constituents of C ⊗Q Vρ. Hence such a constituent
is a complex irreducible representation of the quotient group G/ ker ρ. Therefore,
integrality of ωρ follows from the fact that the dimension of a complex irreducible
representation of a group divides the order of that group [Se, p. 52].

Let Λρ be a maximal Z[1/ωρ]-order in Dρ. Hambleton, Taylor and Williams
conjectured the following decomposition formula, which we call the HTW-
decomposition.

Conjecture (Hambleton-Taylor-Williams). Let G be a finite group and R a noethe-
rian ring. Then

Gn(RG) ∼=
⊕
ρ∈X(G)

Gn(R ⊗ Λρ), ∀n ≥ 0. (3.2)

It turned out that in general this conjecture does not hold. Webb and Yao [WeY]
showed that the formula failed for the symmetric group S5, but remarked that it
still might be reasonable to expect that the HTW-decomposition holds for solvable
groups. In Section 3.4 we provide a solvable counterexample.

3.1.2 The map in the Conjecture

Let G be a finite group. Assume for a moment that R = Z. Let Γ be a maximal
Z-order in QG containing ZG. Then

Γ ∼=
∏

ρ∈X(G)

Γρ,



3.1. Hambleton-Taylor-Williams Conjecture 55

where Γρ is a maximal Z-order in the simple component Mnρ(D
op
ρ ) corresponding

to ρ ∈ X(G) in the Wedderburn decomposition (3.1). Then by Proposition 47
Γρ[1/ωρ] is Morita equivalent to Λρ and

Gn(Λρ) ∼= Gn(Γρ[1/ωρ]).

Since G-theory is lacking functoriality, it is not obvious that there is a map
between Gn(ZG) and

⊕
ρ∈X(G) Gn(Γρ[1/ωρ]). In the original paper [HTW] the HTW-

conjecture was stated in terms of the existence of an abstract isomorphism, and
so far no general construction of a candidate map is known. A straightforward
approach to obtain a map Gn(ZG) → ⊕ρ∈X(G)Gn(Γρ[1/ωρ]) by the extension of
scalars does not work since in general Γρ[1/ωρ] is not a flat ZG-module. For
instance, the summand corresponding to the trivial representation is Gn(Z), since
in this case the number ωρ equals 1. If Z was a flat ZG-module, then it would also
be projective as a ZG-module due to result of Benson and Goodearl [BG, Theorem
3.4]. But this would imply that the cohomology groups Hj(G,Z) are all trivial for
j > 0, which is the case only if G is a trivial group. Therefore, if G is a non-trivial
group, then Z viewed as a ZG-module with a trivial G-action is never flat.

In the approach of Webb [We2] in those cases for which the conjecture was
established the desired isomorphism was constructed in the following way. Let
U =

⊕
ρ∈X(G) Γρ[1/ωρ]. Then we have ZG ⊆ Γ ⊆ U ⊆ QG. Since the order Γ

is finitely generated over ZG the restriction of scalars Modf g(Γ) → Modf g(ZG)

induces a map on G-groups

resn : Gn(Γ) −→ Gn(ZG).

On the other hand we may consider the localization map Modf g(⊕ρ∈X(G)Γρ) →
Modf g(⊕ρ∈X(G)Γρ[1/ωρ]). It induces an extension of scalars homomorphism on
G-groups

extn : Gn(Γ) −→ Gn(U).

Then the idea is to find a topological analogue of the strategy of Lenstra, who
considered a functor on the category of finitely generated Γ-module that carries
the relations R1 in the Heller-Reiner presentation Gt0(Γ)/R1 of G0(ZG) isomorphi-
cally into the relations R2 in the presentation Gt0(Γ)/R2 of G0(U) coming from
the localization sequence, hence inducing the isomorphism of the quotient groups

Gt0(Γ)/R1

∼=−→ Gt0(Γ)/R2. Following this strategy for some classes of groups it is
possible to define the so-called Lenstra functor

L : Modtor (Γ)→ Modtor (Γ),

which carries the homotopy fiber of res : Modtor (Γ) → Modtor (ZG) to the ho-
motopy fiber of ext : Modtor (Γ) → Modtor (U) and hence induces a homotopy
equivalence λ : BQModtor (ZG) → BQModtor (U). “Reducing” the map given by
L on the homotopy fiber sequence

ΩBQMod(Γ)→ ΩBQMod(QG)→ ΩBQModtor (Γ)
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Webb constructed a map between the following homotopy fiber sequences

ΩBQMod(ZG) //

W

��

ΩBQMod(QG)

ΩL
��

// ΩBQModtor (ZG)

λ
��

ΩBQMod(U) // ΩBQMod(QG) // ΩBQModtor (U),

such that W : ΩBQMod(ZG) → ΩBQMod(U) is a weak equivalence. There-
fore, the constructed map W induces the conjectured isomorphism of G-groups

W∗ : G∗(ZG)
∼=−→ G∗(U).

3.1.3 A motivation

The initial interest in computing/decomposing the Grothendieck group G0(ZG) for
finite abelian groups G arose from the question of determining the so called SSF-
group which hosts an obstruction for a di�eomorphism to be Morse-Smale. In this
subsection we follow the survey of Bass [Ba], the paper by Grayson [Gr], and the
work of Franks and Shub [FS].

Let M be a smooth compact manifold and f : M → M be a di�eomorphism.
A point x ∈ M is called wandering if there is a neighbourhood U of x such
that U ∩ f n(U) = ∅ for all n 6= 0. Let D be the set of all self-di�eomorphisms
of M equipped with the C1 topology. Then f is called structurally stable if for
each g from some su�ciently small neighborhood of f in D it holds that g is
topologically conjugated to f , i.e., there exists a homeomorphism h : M → M such
that f ◦ h = h ◦ g.

Definition 58. A di�eomorphism f : M → M is called Morse-Smale if there is a
finite number of non-wandering points and f is structurally stable.

An example of a Morse-Smale di�eomorphism can be obtained from the gradient
flow of the height function on the sphere. Morse-Smale di�eomorphisms provide
particularly simple dynamical systems. Namely, for such a dynamical system (M, f )

all chain recursions are just periodic orbits, there are only finitely many periodic
points all of which are hyperbolic, and the invariant manifolds of periodic orbits
meet transversely. These systems have been extensively studied. For all the details
we refer the reader to [FS].

It is a natural question to ask if a given homotopy class contains a Morse-Smale
di�eomorphism. The group SSF in which the obstruction lies is constructed as
follows. Let A be the category of pairs (H, u), where H is a finitely generated
abelian group and u ∈ Aut(H) such that there exists n ∈ Z>0 with un − idH
nilpotent. The morphisms in A from (H, u) to (H′, u′) are group homomorphisms
f : H → H′ satisfying f ◦u = u′◦f . An object (H, u) is called a permutation module
if H admits a Z-basis permuted by u. Let P be a subgroup of K0(A) generated
by the classes of permutation modules. Then we define the group SSF to be the
quotient

SSF = K0(A)/P.
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Assume additionally that dimM > 5 and π1(M) = 0. Let f : M → M be a
di�eomorphism such that the eigenvalues of f∗ on H∗(M,Q) are roots of unity.
Franks and Shub showed that the Lefschetz invariant

L(f ) =
∑
i≥0

(−1)i [Hi(M,Z), fi ] ∈ SSF

vanishes if and only if f is isotopic to a Morse-Smale di�eomorphism (see [FS]).
Later Bass studied the group SSF and gave a presentation of it in terms of ideal

class groups of cyclotomic fields, which was then improved by Lenstra [Le]. Denote
by An the full subcategory of A that contains the objects (H, u) with un = idH,

and let Pn be the subgroup of K0(An) generated by the classes of permutation
modules in An. Then

SSF ∼= lim−→
n

K0(An)/Pn,

where the limit is taken over the positive integers ordered by divisibility. For (H, u) ∈
An we may view H as a ZCn-module, where Cn is a cyclic group of order n with
the generator of Cn acting by u ∈ Aut(H). It is clear that

K0(An) ∼= G0(ZCn).

From the isomorphism constructed in [Le]

ϕ : G0(ZCn)
∼=−→
⊕
d |n

G0(Z[ξd , 1/d ]) ∼=
⊕
d |n

(Z⊕ Cl(Z[ξd , 1/d ])) (3.3)

Lenstra determined the image ϕ(Pn), which turned out to be the free part Zτ(n) of
the right hand side of (3.3), where τ(n) denotes the number of positive divisors of
n. Hence

SSF ∼= lim−→
d |n

Cl(Z[ξd , 1/d ]) ∼=
⊕
d≥1

Cl(Z[ξd , 1/d ]).

After the success of Lenstra’s approach in understanding G0(ZG) for finite abelian
groups it was a natural question to ask how Gn(ZG) decomposes for an arbitrary
finite group and n ≥ 0.

3.2 The comparison of ranks of G0-groups

We start by finding some evidence for the HTW-decomposition (3.2) that holds for all
groups. In this section we compare the ranks of G0 of both sides of the Hambleton-
Taylor-Williams Conjecture. As a coe�cient ring we take R = Z. We denote by
R0(G) the rank of G0(ZG), and by P0(G) the rank of ⊕ρ∈X(G)G0(Λρ), where X(G)

as before is the number of isomorphism classes of irreducible representations of G
over Q. As an outcome of the computations we will see that both numbers coincide,
which means that no counterexample to the HTW-decomposition in degree 0 can be
obtained by this strategy. We emphasize that there are no known counterexamples
to the conjecture for G0.
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As we already remarked a maximal order in a central simple algebra over a field
is not necessarily unique. Nevertheless, given two maximal orders Λ and Γ the
categories of left Λ- and Γ-modules are equivalent (see e.g. [SwEv, Theorem 5.15]).
This equivalence restricts to the subcategories of finitely generated modules. Thus,
when talking about G-groups of some maximal order in a central simple algebra we
do not have to specify the choice of such an order.

The following result allows us to compute the rank of G0(ZG) (for the proof see
[SwEv, Theorem 4.1]).

Theorem 59. Let R be a Dedekind ring for which the Jordan-Zassenhaus theorem
holds. Let k be the quotient field of R of characteristic 0. Then the kernel of the
extension of scalars map l∗ : G0(RG)→ G0(kG) is finite.

Since the Jordan-Zassenhaus theorem holds for Z it is a straightforward corollary
from Theorem 59 that

rank G0(ZG) ≤ rank G0(QG).

On the other hand G0(QG) is a free abelian group with generators given by the
classes of simple QG-modules. By Corollary 2 we know that every simple QG-
module M contains a full ZG-lattice M ′, which implies that l∗([M ′]) = [Q⊗ZM ′] =

[M] and l∗ is surjective. From this we immediately conclude that

R0(G) = rank G0(ZG) = rank G0(QG) = #X(G).

To determine G0(Λρ), where Λρ is a maximal Z[1/ωρ]-order in Dρ we first recall
some terminology. Let R be a Dedekind ring with a quotient field k . Suppose k is
a global field. Let A be a central simple k-algebra. Denote by I(R) the group of
fractional ideals of R. Let PA(R) be a subgroup of I(R) generated by the following
principal ideals

PA(R) = 〈xR | x ∈ k, x > 0 at every real place where A ramifies〉.

The group PA(R) is an analogue of the group of principal ideals. The quotient

ClA(R) = I(R)/PA(R)

is callled a ray class group. In the situation when A is a field ClA(R) becomes the
usual class group of R.

The following result describes G0(Λρ) [SwEv, Theorem 7.8].

Theorem 60. Let R be a Dedekind ring with a quotient field k and let Λ be a
maximal R-order in a central simple k-algebra A. Suppose k is a global field. Then
the following sequence is exact

0→ ClA(R)→ K0(Λ)→ K0(A)→ 0

and hence
K0(Λ) ∼= Z⊕ ClA(R).
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Moreover, the group ClA(R) is finite and therefore rank K0(Λ) = 1.

Recall that we denoted by Dρ the division algebra corresponding to the irre-
ducible representation ρ ∈ X(G). Let Eρ be the center of Dρ and Oρ the ring
of integers in Eρ. Let now Γρ be a maximal Oρ-order in Dρ. By Lemma 46 the
ring Γρ is at the same time a maximal Z-order in Dρ. Then by the localization
property of maximal orders Γρ[1/ωρ] is a maximal Z[1/ωρ]-order as well a maximal
Oρ[1/ωρ]-order in Dρ. By Theorem 60 we have

rank (Λρ) = rank G0(Γρ[1/ωρ]) = 1.

Hence the rank predicted by the HTW-decomposition is

P0(G) =
∑

ρ∈X(G)

rank G0(Λρ) = #X(G),

and finally P0(G) = R0(G). Consequently, we have shown that rationally the HTW-
Conjecture holds in degree zero for all finite groups G.

3.3 The computation of torsions for G0-groups

In this section we present the computation of the torsion part of both sides of the
HTW-decomposition. Even though the expressions obtained are quite explicit, it is
completely not clear whether or not they are isomorphic for all finite groups. Hence
in general the HTW-Conjecture remains open in degree 0.

3.3.1 The computation of tors G0(ZG)

To describe the group G0(ZG) in terms of the ideal structure in the rings Oi we
follow the paper by Heller and Reiner [HeRe1]. As before for i ∈ X(G) we denote
by Oi the ring of integers in Ei = Z(Di). Let Γ be a maximal Z-order in A = QG
which contains ZG. Given an algebraic number field F with the ring of integers R
we denote by I(R) the group of fractional ideals of R. We denote by Gt0(R) the
Grothendieck group of the category of all finitely generated Z-torsion R-modules.
There exists a commutative diagram with exact rows

loc. seq. for Γ K1(QG)

id

��

δ′ // Gt0(Γ)

β

����

η′
// G0(Γ)

θ′ //

Swan α

����

G0(QG) //

id

��

0

loc. seq. for ZG K1(QG)
δ // Gt0(ZG)

η
// G0(ZG)

θ // G0(QG) // 0.

The maps α and β are induced by the restriction of scalars. Swan [Sw3] showed
that the homomorphism α is surjective, which by the Five Lemma implies that the
restriction homomorphism β is also surjective. Since G0(QG) is a free abelian
group we have

G0(ZG) ∼= G0(QG)⊕ im (η ◦ β) ∼= G0(QG)⊕
Gt0(Γ)

im δ′ + ker β
. (3.4)
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For every i ∈ X(G) there exists Λi a maximal Oi -order in Di , such that Γi is Morita
equivalent to Mmi (Λi). Thus

Gt0(Γ) ∼=
⊕
i∈X(G)

Gt0(Γi) ∼=
⊕
i∈X(G)

Gt0(Λi).

To determine the group appearing on the right hand side of the equation (3.4) we
examine the components of appearing terms Gt0(Γ), ker β, im δ′ separately.

The description of Gt0(Λi). By the result of Heller and Reiner

Gt0(Λi) ∼= I(Oi) ∼=
⊕
P

Z,

where P ranges over the set of maximal ideals in Oi . The isomorphism
τ : Gt0(Λi)→ I(Oi) can be described as follows. Given a Λi -module M define

ann(M) = {x ∈ Oi | xM = 0} ∈ I(Oi).

For any Oi -torsion Λi -module M consider its composition series

0 = M0 ⊆ M1 ⊆ . . . ⊆ Ml = M

and define the order ideal of M as

ord(M) =

l∏
j=1

ann(Mj/Mj−1) ∈ I(Oi).

The map sending [M] to ord(M) clearly induces a well-defined homomorphism

τ : Gt0(Λi)→ I(Oi).

Since the group Gt0(Λi) is generated by the modules of the form Λi/m, where m is
a maximal left ideal in Λi , we need to understand what is the order ideal of such
a module Λi/m. Using the ideal theory in maximal orders (see [Re], §22) we know
that there is the unique maximal two-sided ideal P of Λi contained in m and its
intersection with Oi gives a prime ideal p = P∩Oi in Oi . Using this description it
is not di�cult to check that the defined map is indeed an isomorphism (see [HeRe1]).
Another useful observation about this map is that

ord(Λi/m) = Nm ∈ I(Oi),

where N denotes the norm.
The description of im δ′. Consider the decomposition of QG into the

product of simple algebras

QG ∼=
s∏
i=1

Ai .
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The map δ′ : K1(QG)→ Gt0(Γ) composed with τ decomposes into a direct sum of
componentwise maps δ′i : K1(Ai)→ I(Oi). The image of δ′i is given by the group

PAi (Oi) = 〈xOi | x ∈ Ei , x > 0 at every real place where Di ramifies〉.

The description of ker β. To determine the kernel of the homomorphism
β : Gt0(Γ)→ Gt0(ZG) as a subgroup of

∏s
i=1 I(Oi) we note that β may be written

as a direct sum

β = ⊕
p
βp : ⊕

p
G0(Γ/pΓ)→ ⊕

p
G0(ZG/pZG),

where the sum ranges over the prime numbers p and

βp : G0(Γ/pΓ)→ G0(ZG/pZG)

denotes the restriction of scalars. Since β is an epimorphism thus each βp is also
surjective. Additionally if p does not divide |G|, we have that Γ/pΓ ∼= ZG/pZG
and hence in this situation βp is an isomorphism. Consequently,

τ(ker β) =
∏
p | |G|

Wp, Wp = τ(ker βp).

To describe Wp for a prime p | |G| let us unravel the definitions of the homomor-
phisms involved. Consider the factorization of p into the product of prime ideals
in Oi

pOi =

ti∏
j=1

P
ei j
i j .

By Devissage G0(Λi/P
ei j
i j Λi) ∼= G0(Λi/Pi jΛi). The ring Λi/Pi jΛi has up to an iso-

morphism the unique simple module which we denote by Si j . Therefore it holds

G0(Γ/pΓ) ∼=
s
⊕
i=1
G0(Λi/pΛi) ∼=

s
⊕
i=1

ti
⊕
j=1
G0(Λi/P

ei j
i j Λi)

∼= ⊕
i ,j
G0(Λi/Pi jΛi) ∼= ⊕

i ,j
Z.

(3.5)

Under the isomorphism τ : Gt0(Λi) → I(Oi) the element [Si j ] corresponds to the
ideal Pi j ∈ I(Oi). By the restriction of scalars from Γ to ZG we may view every
module Si j as a ZG/pZG-module. Note that the only elements of ZG/pZG that
may act non-trivially on Si j are those elements whose projection on Γi/Pi jΓi is
non-zero. Thus

Wp = τ(ker βp) = {
s∏
i=1

ti∏
j=1

P
ai j
i j |

∑
i ,j

ai j [Si j ] = 0 ∈ G0(ZG/pZG)}. (3.6)

It is useful to note that the class of Si j in G0(Λi/Pi jΛi) can be expressed in terms
of the simple QG-module Vi that corresponds to the i-th simple component Ai in
the Wedderburn decomposition of QG in the following way. First recall that for Vi
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it holds

Di = HomAi (Vi , Vi), Vi
∼= Dmi

i , Ai
∼= HomDi (Vi , Vi)

∼= Mmi (Di). (3.7)

There exists a finitely generated projective Λi -module Ui such that

QUi ∼= EiUi ∼= Vi

and analogously to (3.7) for Ui it holds

Λi ∼= HomΓi (Ui , Ui), Γi ∼= Mmi (Λi) ∼= HomΛi (Ui , Ui).

One can check that
[Ui/Pi jUi ] = li [Si j ],

where l2i = [Di : Ei ]. Furthermore, if for a fixed prime p we denote by {X1, . . . , Xr}
a full set of non-isomorphic simple FpG-modules, then for each prime ideal Pi j ⊆
Oi dividing p the composition series of an FpG-module Ui/Pi jUi gives

[Ui/Pi jUi ] =

t∑
k=1

d
(k)
i j [Xk ] ∈ G0(FpG), (3.8)

where the non-negative integers d (k)
i j may be thought of as a generalization of the

decomposition numbers in the situation of a non-splitting field. Recall, that we
defined the decomposition numbers for a splitting modular system exactly to avoid
the confusion of having many decomposition numbers. In terms of the generalized
decomposition numbers the map βp :

∏s
i=1 I

(p)(Oi) ∼= G0(Γ/pΓ) → G0(FpG)

becomes

βp(
∏
i ,j

P
ai j
i j ) =

∑
i ,j,k

ai j
d

(k)
i j

ni
[Xk ]. (3.9)

If Q appears to be a splitting filed for G, then each Di coincides with Q and we just
obtain the ordinary decomposition numbers in the expression (3.9). As a summary
we have the Heller-Reiner decomposition

G0(ZG) ∼= G0(QG)⊕
∏s
i=1 I(Oi)∏s

i=1 PAi (Oi)×
∏
p⊃|G|Wp

, (3.10)

with Wp given by (3.6) and known as Heller-Reiner relations.

3.3.2 The computation of the predicted torsion

Note that in this Section we denoted by Λi a maximal Z-order in Di . From Theo-
rem 60 we obtain that

G0(Λi [1/ωi ]) ∼= Z⊕
I(Oi)

PAi (Oi)×
∏
p|ωi I

(p)(Oi)
, (3.11)
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where I(p)(Oi) denotes the subgroup of I(Oi) generated by the prime ideals in Oi
that divide p. Hence to test the HTW-Conjecture for the torsion part of G0 we need
to compare the following two groups

T0(G) =

∏s
i=1 I(Oi)∏s

i=1 PAi (Oi)×
∏
p⊃|G|Wp

and

PT0(G) =

∏s
i=1 I(Oi)∏s

i=1 PAi (Oi)×
∏
p|ωi I

(p)(Oi)
.

Examples.

• If G = Sn is a symmetric group for some n, then Q is a splitting field for
G and every I(Oi)/PAi (Oi) is just Cl(Z) = 1. Hence the additional relations
are not having any impact on the group, and in this case T0(G) = PT0(G).

Note, that S5 is a counterexample to the HTW-Conjecture in degree 1 (see
[WeY]), but in degree zero the HTW-decomposition holds for all symmetric
groups.

• If G is a group such that all the number fields Ei ’s which are the centers of
the division algebras Di ’s appearing in the Wedderburn decomposition of QG
are totally imaginary, then again all the groups I(Oi)/PAi (Oi) are trivial. In
such case the HTW-Conjecture holds in degree zero. The group SL(2,F3)

is an example of a group with this property and hence the HTW-Conjecture
holds in degree zero for Z[SL(2,F3)] despite the fact that it fails in degree 1.

3.4 The comparison of ranks for G1-groups

3.4.1 The description of R(G)

Let G be a finite group. As we have seen in Section 2.4 the abelian group G1(ZG)

was completely determined by Keating [Ke]. Recall Keating’s formula for the rank of
G1(ZG). We use the same notation as in the beginning of Chapter, namely, ρ : G →
Aut(Vρ) denotes a rational irreducible representation of G, Dρ = EndQG(Vρ) is
the corresponding division algebra, and the rational group algebra decomposes as
QG ∼=

∏
ρ∈X(G)Mnρ(D

op
ρ ).

Theorem 61 (Keating’s rank formula). Let Γρ be the maximal Z-order in the center
of Dρ. Let rρ be the rank of group of units in Γρ, and let vρ be the number of primes
of Γρ that divide |G|. Let ε be the number of isomorphism classes of simple ZG-
modules annihilated by |G|. Then

rank G1(ZG) =
∑

ρ∈X(G)

(rρ + vρ)− ε.

Denote by Eρ the center of Dρ. Obviously it is an algebraic number field and
moreover Eρ/Q is an abelian extension (see [BaRo, Lemma 2.8]). Denote by Oρ the
ring of algebraic integers in Eρ (it is the maximal Z-order in Eρ). Since Eρ is an
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abelian number field it is either totally real or totally imaginary. Let mρ = [Eρ : Q].

Then by Dirichlet’s unit theorem the rank rρ of the group of units in Oρ is equal to
#{real embeddings of Eρ}+#{conjugate pairs of complex embeddings of Eρ}−1.

Therefore

rρ =

{
mρ − 1, if Eρ is totally real,

mρ/2− 1, if Eρ is totally complex.

It is clear that

ε =
∑
p|n

#{isomorphism classes of simple FpG-modules},

where the sum ranges over all prime numbers that divide the order n of the group
G. To compute the number of irreducible Fp-representations of G explicitly we first
establish some notation. Denote by d the L.C.M. of orders of all p-regular elements
in G. Let k be the smallest positive integer such that pk = 1 (mod d ). Denote by
T the multiplicative group of exponents {pi | i = 1, 2, . . . , k} modulo d .

Definition 62. Two p-regular elements g1, g2 ∈ G are called Fp-conjugate if
gt1 = hg2h

−1 for some t ∈ T and h ∈ G.

Theorem 63 (Berman [B]). The number of irreducible representations of G over
Fp equals the number of p-regular Fp-conjugacy classes.

Hence
ε =

∑
p|n

#{p-regular Fp-conjugacy classes}.

Now we have a very computable description of the summands appearing in
Theorem 61 and we denote by R(G) the rank of G1(ZG). More precisely we have

R(G) =
∑

ρ∈X(G)

(rρ + vρ)− ε.

3.4.2 The description of P (G)

In this subsection we are going to compute the rank of G1(ZG) as predicted by the
Hambleton-Taylor-Williams Conjecture. If the HTW-decomposition holds for a group
G and any noetherian coe�cient ring R, then taking R = Z gives

G1(ZG) ∼=
⊕
ρ∈X(G)

G1(Λρ)

and
rank G1(ZG) =

∑
ρ∈X(G)

rank G1(Λρ).

Denote by P (G) the rank of G1(ZG) that is predicted by the HTW-
decomposition, i.e., P (G) :=

∑
ρ∈X(G) rank G1(Λρ). We are going to give an

explicit description of P (G) and compare it with the real rank R(G) computed in
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the previous subsection. Obviously, if P (G) 6= R(G), then the group G does not
satisfy the HTW-decomposition.

For a rational irreducible representation ρ we determine the rank of G1(Λρ) by
applying the following theorem ([La3], [SwEv]).

Theorem 64 (Lam). Let R be a Dedekind ring with quotient field K and let A be
a separable semisimple K-algebra such that

(i) R/p is finite for every non-zero prime ideal p ⊆ R, and

(ii) if L is a finite separable field extension of K and S is the integral closure of
R in L, then the class group Cl(S) is a torsion group.

Let Z(A) be the center of A, R̃ the integral closure of R in Z(A), and Λ an R-order
in A. Then

G1(Λ) ∼=
mod torsion

R̃×.

Let R = Z[1/ωρ], K = Q and A = Dρ. The prime ideals in the localization
Z[1/ωρ] are of the form qZ[1/ωρ], where q is a prime integer that does not divide
ωρ. Hence the first condition of Theorem 64 is satisfied, because

Z[1/ωρ]/qZ[1/ωρ] ∼= (Z/qZ)[1/ωρ] ∼= Z/qZ.

If L is an algebraic number field and OL is the ring of algebraic integers in L,
then the integral closure of Z[1/ωρ] in L is OL[1/ωρ]. To check that the second
condition of Theorem 64 holds it is enough to show that Cl(OL[1/ωρ]) is finite.
Recall that for a Dedekind ring R the ideal class group of R is given by the
quotient Cl(R) = IR/PR, where IR is the group of fractional ideals of R and
PR is the subgroup of principal fractional ideals of R. Let φ : IOL → IOL[1/ωρ] be
a map sending a fractional ideal I of OL to the fractional ideal OL[1/ωρ] ⊗OL I
of OL[1/ωρ]. This map is obviously a group homomorphism. Moreover φ takes
principal fractional ideals of OL to principal fractional ideals of OL[1/ωρ] and is
surjective, since OL and OL[1/ωρ] have the same field of fractions. Therefore φ
induces a surjective group homomorphism

φ̄ : Cl(OL)� Cl
(
OL
[ 1

ωρ

])
.

Now finiteness of the group Cl(OL[1/ωρ]) follows from the surjectivity of φ̄ and
the classical result that the ideal class group of the ring of integers in an algebraic
number field is finite.

The integral closure of Z[1/ωρ] in Z(Dρ) = Eρ is Oρ[1/ωρ]. Therefore, Theo-
rem 64 implies

G1(Λρ) ∼=
mod torsion

(
Oρ
[ 1

ωρ

])×
.

To determine the rank of units in Oρ[1/ωρ] we use the S-unit theorem (see,
for example, [Ne, p. 88]). Let us briefly recall its statement. Let L be an algebraic
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number field and let S be a finite set of prime ideals in OL. Define

OL(S) := {x ∈ L | ordp(x) ≥ 0, for all prime ideals p /∈ S}.

Define the group U(S) of S-units to be

U(S) :=
(
OL(S)

)×
= {x ∈ L | ordp(x) = 0, for all p /∈ S}.

Theorem 65 (S-unit theorem). The group of S-units is finitely generated and

rank U(S) = rank O×L + #S.

Let S be the set of all prime ideals in Oρ that divide ωρ. Then OEρ(S) =

Oρ[1/ωρ] and U(S) =
(
Oρ[1/ωρ]

)×
. Hence by Theorem 65

rank
(
Oρ[1/ωρ]

)×
= rank O×ρ + #{prime ideals in Oρ that divide ωρ}

and finally

rank G1(Λρ) = rρ + #{prime ideals in Oρ that divide ωρ}.

Let us denote by wρ the number of prime ideals in Oρ that divide ωρ. Then

P (G) =
∑

ρ∈X(G)

rank G1(Λρ) =
∑

ρ∈X(G)

(
rρ + wρ

)
.

3.4.3 A solvable counterexample

In this subsection we show that G = SL(2,F3), the group of 2 × 2 matrices
with determinant 1 over the finite field F3, is a counterexample to the Hambleton-
Taylor-Williams Conjecture by comparing R(G) and P (G) that were described in
the previous section. Note that the order of the group G is 24.

For the computation of R(G) and P (G) we need to know the table of com-
plex irreducible characters of G. If ρ is an irreducible rational representation
of G, then the center Eρ of the corresponding division algebra Dρ appearing
in the Wedderburn decomposition is isomorphic to the field of character values
Q(χCρ ) := Q(χCρ (g) | g ∈ G), where χCρ is the character of any irreducible com-
plex constituent of the complexification of the representation ρ (see [Je, Theorem
3.3.1]).

Denote by ξ a primitive cubic root of unity. The complex irreducible characters
of SL(2,F3) are well-known (see [Bo, p. 132]) and are presented in Table 3.1.

The field Q(ξ) is the splitting field for the group G. The Galois group
Gal(Q(ξ)/Q) acts on the set of complex representations of G, in particular it
permutes irreducible complex representations. Let χ be the character of an irre-
ducible rational representation of G. It is well known (see [CuRe2, (74.5)]) that χ
can be realized as a sum of all distinct Galois conjugates of some complex irre-
ducible character ϕ taken with multiplicity m(ϕ), which is the Schur index of ϕ,
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Table 3.1: Character table of SL(2,F3)

repr.:
(

1 0
0 1

) ( −1 0
0 −1

) (
0 −1
1 0

) ( −1 1
0 −1

) (
1 −1
0 1

) ( −1 −1
0 −1

) (
1 1
0 1

)
Q(χ)

size: 1 1 6 4 4 4 4
order: 1 2 4 6 3 6 3
χ1 1 1 1 1 1 1 1 Q

χ2 3 3 -1 0 0 0 0 Q

χ3 2 -2 0 1 -1 1 -1 Q

χ4 1 1 1 ξ ξ ξ2 ξ2 Q(ξ)

χ5 1 1 1 ξ2 ξ2 ξ ξ Q(ξ)

χ6 2 -2 0 ξ -ξ ξ2 -ξ2 Q(ξ)

χ7 2 -2 0 ξ2 -ξ2 ξ -ξ Q(ξ)

i.e., χ = m(ϕ)
∑

σ ϕ
σ. And vice versa any complex irreducible representation gives

rise to a unique rational irreducible representation in the way described above.
The Galois group Gal(Q(ξ)/Q) permutes characters χ4 with χ5, and χ6 with

χ7. The character χ3 is fixed by Gal(Q(ξ)/Q), but the corresponding representation
is not defined over Q and has Schur index 2. We have 2 absolutely irreducible
rational representations ρ1, ρ2 with characters χ1, χ2, respectively; and 3 irreducible
rational representations ρ3, ρ4, ρ5, s.t. χ3 is the character of one of the irreducible
complex constituents of ρC3 , χ4 is the character of one of the irreducible complex
constituents of ρC4 , and χ6 is the character of one of the irreducible complex
constituents of ρC5 (here ρC denotes the complexification C⊗Q ρ of a representation
ρ).

The kernel of a representation ρ coincides with the kernel of the induced char-
acter kerχρ = {g ∈ G | χρ(g) = χρ(e)}. Moreover, since the rational irreducible
representation is expressible in terms of complex irreducible representations, the
kernel of ρ coincides with the kernel of χCρ . Therefore we have the following list of
centers Eρ’s and values of ωρ’s given in Table 3.2.

Table 3.2

ρ1 ρ2 ρ3 ρ4 ρ5

Eρ Q Q Q Q(ξ) Q(ξ)

Oρ Z Z Z Z[ξ] Z[ξ]

ωρ = 24
kerχCρ dimχCρ

1 4 12 3 12

vρ = #{prime ideals in Oρ that divide 24} 2 2 2 2 2
wρ = #{prime ideals in Oρ that divide ωρ} 0 1 2 1 2

For the computation of numbers vρ and wρ in Table 2 we used the following
theorem (for a more general statement see [Ne, p. 47]) to determine the number of
prime ideals in Z[ξ] that divide 2 and 3.
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Theorem 66. Let α be an algebraic integer such that Z[α] is integrally closed,
and let f be the minimal polynomial of α. Let p be a prime number and let

f (x) =
∏
i

fi(x)ei

in Fp[x ]. Then the prime ideals that lie above p in Z[α] are precisely the ideals
(p, fi(α)).

For p = 3 the minimal polynomial of ξ factors as x2 + x + 1 = (x − 1)2 in
F3[x ] and hence by Theorem 66 there is only one prime ideal above 3 in Z[ξ]. For
p = 2 the polynomial x2 + x + 1 is irreducible in F2[x ] and hence there is exactly
one prime ideal above 2 in Z[ξ].

The last step is to determine ε appearing in the description of R(G). For this
we need to compute the number of p-regular Fp-conjugacy classes for p = 2, 3.

For p = 3 there are 3 conjugacy classes of 3-regular elements, namely the classes
with representatives

(
1 0
0 1

)
,
( −1 0

0 −1

)
and

(
0 −1
1 0

)
. Since the first two elements belong

to the center of G and
(

0 −1
1 0

)3
=
(

0 −1
1 0

)
, these elements belong to 3 di�erent F3-

conjugacy classes.
For p = 2 there are 3 conjugacy classes of 2-regular elements, namely the

classes with representatives
(

1 0
0 1

)
,
(

1 1
0 1

)
and

(
1 −1
0 1

)
. Since

(
1 1
0 1

)2
=
(

1 −1
0 1

)
the

elements
(

1 1
0 1

)
and

(
1 −1
0 1

)
are F2-conjugated. Therefore there are two 2-regular

F2-conjugacy classes. Finally

P (G)−R(G) =
∑
ρ

(rρ+wρ)−
∑
ρ

(rρ+vρ)+ε =
∑
ρ

wρ−
∑
ρ

vρ+ε = 6−10+5 = 1.

This shows that the actual rank of G1(ZG) and the rank predicted by the HTW-
Conjecture do not coincide and G = SL(2,F3) is a solvable counterexample to the
conjectured formula. Thus Theorem A is proved.

3.4.4 Counting modular representations in terms of ra-
tional

In this subsection we prove an inequality estimating the number of modular irre-
ducible representations of a finite group G in terms of rational irreducible repre-
sentations of G. The result we obtain implies that P (G) ≥ R(G) for any finite
group G. The proof of the inequality provides an explanation why in general the
HTW-Conjecture does not hold for G1(ZG). We are using the same notation as
before.

Let p be a prime number that divides the order of G. Recall that for any
rational irreducible representation ρ of G there is an associated algebraic number
field Eρ : the field of character values Q(χCρ ), where χCρ is the character of any of
the irreducible complex constituents of C ⊗Q ρ. Let tρ be the number of di�erent
prime ideals in Oρ that divide the principal ideal (p). Then the following inequality
holds.
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Theorem B. Let G be any finite group and let p be a prime integer that divides
the order of G. Then

#{irreducible Fp-representations of G} ≥
∑
ρ∈Ip

tρ,

where Ip is the set of rational irreducible representations ρ of G for which the
corresponding number ωρ is not divisible by p.

The main ingredient in the proof of Theorem B is the following classical theorem
due to Brauer and Nesbitt (see [BrNe], [CuRe]).

Theorem 67 (Brauer-Nesbitt). Let G be a finite group of order |G| = pam, where
(p,m) = 1. If a complex irreducible representation φ has dimension divisible by
pa, then it remains irreducible after reduction mod p. Moreover, the character of φ
vanishes on all elements of G whose order is divisible by p, and coincides with the
Brauer character of φ̄ (reduction mod p of φ) on p-regular elements of G.

We start with some preparatory statements and definitions before giving the
proof of Theorem B. Recall Lemma 6 that any element g ∈ G is expressible as
g = gp′gp, where gp′ and gp commute, gp′ has order coprime with p, and gp has
order a power of p.

Lemma 68. Let H be a normal subgroup in G, and let g = gp′gp ∈ G. If gp 6∈ H,
then ordG/H(ḡ) is divisible by p, where ordG/H(ḡ) is the order of g considered as
an element in the quotient group G/H.

Proof. For an element x ∈ G we denote by x̄ the image of x in the quotient
group G/H. Let a = ordG/H(ḡ). Since elements gp′ and gp commute in G we
have ḡa = gp′

agp
a = e. Hence (gp′

−1)a = gp
a. The order of the element gpa in

G/H divides the order of gap in G, and therefore ordG/H(gp
a) is a power of p.

The same way the order of (gp′
−1)a in G/H is coprime with p. This implies that

(gp′
−1)a = gp

a = e and hence a is divisible by ordG/H(gp). At the same time
gp 6= e and hence ordG/H(gp) is divisible by p. Therefore a is divisible by p.

Lemma 69. Let ϕ1, ϕ2 be complex irreducible characters of G. Let H1 = ker(ϕ1)

and H2 = ker(ϕ2). Suppose the following conditions are satisfied.

1. ϕi(g) = 0 for all g ∈ G, s.t. ordG/Hi (ḡ) is divisible by p, i ∈ {1, 2};

2. ϕ1(g) = ϕ2(g) for all g ∈ G, s.t. ordG(g) is not divisible by p.

Then ϕ1 and ϕ2 are equal.

Proof. Any element g ∈ G is expressible in the form g = gp′gp, where gp′ is p-
regular and gp is p-singular. If gp 6∈ H1, then by Lemma 68 we have that ordG/H1

(ḡ)

is divisible by p, and therefore by the first condition ϕ1(g) = 0. Analogously, if
gp 6∈ H2, then ϕ2(g) = 0. Hence we have the following equalities

ϕ1(g) = ϕ1(gp′gp) =

{
0, if gp 6∈ H1

ϕ1(gp′) = ϕ2(gp′), if gp ∈ H1

(3.12)
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and

ϕ2(g) = ϕ2(gp′gp) =

{
0, if gp 6∈ H2

ϕ2(gp′) = ϕ1(gp′), if gp ∈ H2.
(3.13)

Let us consider the inner product of the characters ϕ1, ϕ2

〈ϕ1, ϕ2〉 =
1

|G|
∑
g∈G

ϕ1(g)ϕ2(g) =
1

|G|
∑

g=gp′gp∈G,
gp∈H1∩H2

ϕ1(gp′)ϕ1(gp′), (3.14)

where the last equality holds since all terms with gp 6∈ H1 ∩H2 vanish. The value of
the sum is a positive real number, because each term is a non-negative real number
and taking g to be the identity element e gives a non-zero summand |ϕ1(e)|2.
This implies that the inner product of irreducible characters ϕ1, ϕ2 is non-zero, and
therefore ϕ1 = ϕ2.

Let K be an algebraic number field that is a splitting field for G and a Galois
extension of Q. This means that any complex representation of G is realized over
K. Let OK denote the ring of algebraic integers of K and let p be a prime ideal in
OK containing p. Denote the field OK/p by K̄. It is clearly a finite Galois extension
of Fp. Recall that to any representation φ over K we can associate a representation
φ̄ over K̄, whose composition factors are uniquely determined (see e.g. [CuRe, §82]).
We call this process reduction mod p. Let d : G0(KG) → G0(K̄G) be the map
induced by reduction mod p.

Definition 70. Let φ be an irreducible complex representation of G. We call φ
p-special if the corresponding number ωφ = |G/ ker φ|

dimφ
is not divisible by p.

Thus φ is p-special if and only if φ is a p-block of defect zero for the quotient
group of G that it faithfully represents. The next lemma shows that the reduction
mod p is injective on the set of p-special representations. Whenever we mention the
set of representations, we mean the set of isomorphism classes of representations.

Proposition 71. Let G be a finite group, p a prime number that divides |G|, and
K, K̄ defined as above. Then the following holds.

(i) Reduction mod p of a p-special representation of G is an irreducible K̄-
representation of G.

(ii) The restriction of the map d : G0(KG) → G0(K̄G) to the set of p-special
representations of G is injective.

Proof. (i) Let φ be a p-special representation of G. Denote by H the kernel of
φ. Then φ induces a representation of G/H, which we denote by φG/H. Since
φ is irreducible, the representation φG/H is irreducible as well. Now the Brauer-

Nesbitt Theorem can be applied to φG/H, because
|G/H|

dimφG/H
is not divisible by p

by the definition of a p-special representation. Therefore φ̄G/H is an irreducible
K̄-representation of G/H, which implies that φ̄ is an irreducible K̄-representation
of G.
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(ii) The Brauer-Nesbitt Theorem guarantees that the character of φG/H vanishes
on all elements of G/H having order divisible by p, and coincides with Brauer
character of φ̄G/H on p-regular elements of G/H. Note that p-regular elements of
G remain p-regular when passing to the quotient group G/H.

Suppose that the reduction mod p of two p-special representations φ1 and φ2

gives K̄-equivalent representations φ̄1, φ̄2. Then the Brauer characters of φ̄1 and
φ̄2 are the same, which by the Brauer-Nesbitt Theorem implies that the ordinary
characters of φ1 and φ2 coincide on p-regular elements of G. This means that
conditions of Lemma 69 are satisfied for the characters of φ1 and φ2, hence the
representations φ1 and φ2 are K-equivalent. Therefore the restriction of the map d
to the set of p-special representations of G is injective.

To prove Theorem B we will also use the following theorem that describes the
behavior of irreducible representations under extension of the base field (see [CuRe2,
(74.5)]).

Theorem 72. Let G be a finite group, k an arbitrary field, and E a splitting field
for G, s.t. E is a finite Galois extension of k. Then we have

(i) For a simple kG-module U there is an isomorphism of EG-modules

E ⊗k U ∼= (V1 ⊕ . . .⊕ Vt)⊕m,

where {V1, . . . , Vt} is a set of non-isomorphic simple left EG-modules per-
muted transitively by the Galois group Gal(E/k), and m = mk(Vi) is the
Schur index.

(ii) Let ϕ be an absolutely irreducible character of G a�orded by some simple
left EG-module V. Then there is a simple kG-module U , unique up to iso-
morphism, s.t. ϕ occurs in the character χ a�orded by U. Then V occurs as
a summand in the decomposition of E ⊗k U , say V = V1, and

χ = m

t∑
i=1

ϕi , k(ϕ1) ∼= . . . ∼= k(ϕt),

where ϕi is the character of G a�orded by Vi , and k(ϕi) is the field of
character values.

Now we are ready to prove Theorem B.

Proof of Theorem B. The assumption of Theorem 72 is satisfied for k = Q and
E = K, therefore it gives a one to one correspondence between rational irreducible
representations of G and orbits of the Galois group Gal(K/Q) action on the set of
irreducible K-representations of G. In particular, it gives a one to one correspon-
dence between the set Ip and orbits of the Gal(K/Q)-action on the set of p-special
representations of G.

Given a p-special representation φ of G let ϕ be its character. Denote by Eφ
the field of character values Q(ϕ). Then by [CuRe, Theorem 70.15] the size of the
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orbit of φ under the action of Gal(K/Q) is given by

|Orb(φ)| = |Eφ : Q| = |Gal(Eφ/Q)|.

Next we examine the orbit Orb(φ) after reduction mod p. Since the irreducible
representation φ is p-special, Proposition 71 implies that all Galois conjugates of φ
remain irreducible when reduced mod p. Denote by φ̄ the reduction mod p of φ,
and by Orb(φ) the set Orb(φ) after reduction mod p. By Proposition 71 the set
Orb(φ) consists of pairwise non-isomorphic irreducible K̄-representations. This
implies that the set Orb(φ) has the same number of elements as Orb(φ).

It is well known that the decomposition group D(p/p) = {σ ∈
Gal(K/Q) | σ(p) = p} naturally surjects onto the Galois group Gal(K̄/Fp) with
kernel the inertia group I(p/p) (see e.g. [Se2, §7]). Therefore the Galois group
Gal(K̄/Fp) preserves the set Orb(φ).

Let us see how many orbits this action has. Let φ̄σ ∈ Orb(φ), σ ∈ Gal(K/Q).

Again by [CuRe, Theorem 70.15] the size of the orbit of φ̄σ under the action of
Gal(K̄/Fp) is given by

|Orb(φ̄σ)| = |Fp(ϕ̄σ) : Fp|,

where ϕ̄σ is the character of φ̄σ, and Fp(ϕ̄σ) is the field of character values. The way
the process of reduction mod p is defined implies that Fp(ϕ̄σ) ⊆ Oφσ/(p∩Oφσ) ∼=
Oφ/(σ−1p∩Oφ), where Oφ is the ring of integers of the number field Eφ. For short
denote the prime ideal σ−1p ∩ Oφ by q. Hence for each φ̄σ ∈ Orb(φ) we have

|Orb(φ̄σ)| ≤ |(Oφ/q) : Fp|,

where |Orb(φ̄σ)| means the same as before. Therefore the number of orbits of the
action of Gal(K̄/Fp) on the set Orb(φ) is at least

|Orb(φ)|
|(Oφ/q) : Fp|

=
|Gal(Eφ/Q)|

|Gal((Oφ/q)/Fp)| =
|Gal(Eφ/Q)|
|D(q/p)| |I(q/p)| = tρ|I(q/p)|.

The last equality holds since Eφ = Eρ and the Galois group Gal(Eφ/Q) acts
transitively on prime ideals in Oφ dividing p, and D(q/p) is exactly the stabilizer of
a prime ideal q by Gal(Eφ/Q).

Since K̄ is a splitting field for G (see [CuRe, (83.7)]) and K̄ is a finite Galois
extension of Fp, we may apply Theorem 72 to k = Fp and E = K̄. As before it
gives a one to one correspondence between irreducible Fp-representations of G
and orbits of the Gal(K̄/Fp)-action on the set of irreducible K̄-representations of
G.
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Q . . .

K . . . . . . . . . 	 Gal(K/Q)

reduction mod p

K̄ . . . . . . . . . 	 Gal(K̄/Fp)

Fp . . . . . . . . .

From what is computed above it follows that an irreducible rational representa-
tion ρ ∈ Ip gives rise to at least tρ|I(q/p)| di�erent irreducible Fp-representations
of G, that correspond to orbits of the Gal(K̄/Fp)-action on Orb(φ), where φ
is an irreducible K-representation occurring in decomposition of K ⊗Q ρ. More-
over, Proposition 71 and Theorem 72 guarantee that the sets of corresponding Fp-
representations coming from the two non-isomorphic representations ρ1, ρ2 ∈ Ip do
not have common elements, because the corresponding sets Orb(φ1) and Orb(φ2)

have empty intersection, where φ1, φ2 are irreducible K-representations occurring
in the decompositions of K ⊗Q ρ1, K ⊗Q ρ2, respectively. Therefore we get

#{irreducible Fp-representations of G} ≥
∑
ρ∈Ip

tρ|I(q/p)| ≥
∑
ρ∈Ip

tρ.

We have the following corollary from Theorem B.

Corollary 73. For any finite group G the following inequality holds

P (G) ≥ R(G).

Proof. Note that

wρ =
∑
p|ωρ

#{prime ideals in Oρ that divide p} =
∑
p|ωρ

tρ,

vρ =
∑
p| |G|

#{prime ideals in Oρ that divide p} =
∑
p| |G|

tρ,

P (G)− R(G) = ε+
∑

ρ∈X(G)

(wρ − vρ) =
∑
p| |G|

(#{irr. Fp-rep. of G} −
∑

ρ∈X(G)
p-ωρ

tρ)

=
∑
p| |G|

(#{irreducible Fp-representations of G} −
∑
ρ∈Ip

tρ) ≥ 0,
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where the last inequality holds by Theorem B applied to each summand.

3.5 The comparison of torsions for G1-groups

Analogously as to what we have done for the ranks of G1 we can do the comparison
test for the torsion of G1(ZG) as computed by Keating and the torsion of G1(ZG)

as predicted by the HTW-decomposition. We will see that in contrast to the rank
the HTW-Conjecture predicts the correct torsion for G1. Keating’s result gives

tors G1(ZG) =
⊕
ρ∈X(G)

tors U+(Oρ). (3.15)

To compute the torsion predicted by the HTW-decomposition we need to determine
the tors G1(Λρ) for Λρ a maximal Z[1/ωρ]-order in Dρ. Our goal will be achieved
by combining another result of Keating which allows to determine K1 of a maximal
order in a division algebra with some analysis of local Schur indices.

3.5.1 Schur indices

Let A be a central simple k-algebra. Thus A ∼= Ml(D) for some uniquely deter-
mined division k-algebra D. The Schur index of A denoted by ind(A) is the index
of D, i.e., a square root of dimk(D). Let χ be a complex irreducible character of
a group G and let K be a field of characteristic 0. The Schur index of χ over K,
which we denote by mK(χ), is defined as the Schur index of the simple component
A(χ,K) in the decomposition of KG that corresponds to the character χ.

Another way of thinking about the Schur index of χ over K is the following. Let
K ≤ L, L be a splitting field for G and L/K is a Galois extension. Then the Schur
index mK(χ) measures to which extend χ fails to be realized over K. Namely, let
φ be an L-representation that a�ords the character χ, and let ϕ be an irreducible
K-representation, such that φ appears as a constituent in L⊗K ϕ. Then the Schur
index of χ over K is a multiplicity of φ in L⊗K ϕ (see also Theorem 72). The proof
of the next characterizations of the Schur index can be found for instance in [CuRe],
Theorem (70.12).

Lemma 74 (Characterizations of Schur index). Let K be a field of characteristic 0
and let χ be a complex irreducible character of G.

1. The Schur index mK(χ) is the smallest positive integer such that there exists
degree mK(χ) extension L of a field of character values K(χ), such that χ
is a�orded by some L-representation of G.

2. The Schur index mK(χ) is the smallest positive integer such that mK(χ)χ is
a�orded by a K(χ)-representation of G.

The following references [Hu] Chapter 38 and [CuRe] Section 70 contain a detailed
treatment of Schur indices, in particular the equivalence of the definition of mK(χ)

in terms of the index of the simple component A and the definition in terms of the
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realization of χ over K can be found there. The first description of a Schur index
in Lemma 74 implies that

mK(χ) = mK(χ)(χ). (3.16)

Next we will define local indices of a central simple algebra. Let E be a number
field with ring of integers R. Each prime ideal P in R gives rise to a P -adic valuation
on E. Let A be a central simple E-algebra. Denote by AP = EP ⊗E A the P -adic
completion of A. Then AP is a central simple EP -algebra.

Definition 75. The index mP (A) = ind(AP ) is called the local Schur index of A
at P.

Let χ be an irreducible complex character of G, E = Q(χ) and A = A(χ,E)

be the simple component in EG corresponding to χ. Then clearly A is a central
simple E-algebra. In this situation the following result of Benard [Be1] guarantees
that the local indices mP (χ) := mEP (χ) = mP (A) agree at primes of E that lie
above the same rational prime p.

Theorem 76 (Benard). Let A = A(χ,E) be as above. Let p be a rational prime
and P1, P2 be primes of E dividing p. Then the algebras AP1

and AP2
have the same

index.

For every prime ideal P in the ring of integers of E = Q(χ) lying above p the
localization EP is the composite of Qp with E (see e.g. [Se2] Chapter 2, §3)

EP = QpE = Qp(χ).

Therefore, we have an immediate corollary from Theorem 76 and equality (3.16) that

mP (χ) = mQp(χ) (3.17)

for all prime ideals P lying above p. This corollary reduces the computation of
local Schur indices over number fields to the determination of indices over the p-
adic fields Qp. The following result due to Benard gives an explicit way to compute
mQp(χ) in terms of the values of χ and the values of an irreducible Brauer character
for those characters χ whose p-block has cyclic defect group (see [Be]).

Theorem 77 (Benard’s formula). Let p be a rational prime and χ a complex irre-
ducible character lying in a p-block with cyclic defect group. Let φ be an irreducible
modular constituent of χ, then

mQp(χ) = [Qp(χ, φ) : Qp(χ)].

Benard’s formula implies the following theorem which shows that there are only
finitely many rational primes for which local Schur index of A is non-trivial, in
particular those primes should divide the order of the group G.

Theorem 78. Let p be a finite rational prime and χ an irreducible complex
character of G. If p does not divide ωχ = |G|

| ker(χ)|χ(1)
, then mQp(χ) = 1.
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Proof. Let H be the kernel of χ. Then χ may be viewed as an irreducible character
of a group G = G/H. Since p does not divide |G|/χ(1) the character χ belongs to
the block of defect 0. Let χ∗ be the reduction modulo p of χ. The Brauer-Nesbitt
theorem implies that χ∗ is an irreducible Brauer character lying in the same p-block
as χ. Moreover,

χ(g) = χ∗(g), ∀g ∈ Gp′.

From this Qp(χ∗, χ) = Qp(χ) and hence the Benard’s formula (Theorem 77) gives

mQp(χ) = [Qp(χ) : Qp(χ)] = 1.

This finishes the proof, since for the Schur index it does not matter whether we
view χ as a character of G or G.

3.5.2 SK1 of maximal orders

The next result reduces the computation of SK1 of a maximal order in a division
algebra to the determination of local Schur indices. For the detailed treatment see
§45C in [CuRe2].

Theorem 79. Let R be a Dedekind ring with field of fractions k an algebraic
number field. Let ∆ be a maximal R-order in a central division k-algebra D. Then

SK1(∆) ∼=
∏
P

SK1(∆P ),

where the sum ranges over the maximal ideals P of R. Let mP be the local Schur
index of D at P and qP = |R/P |. The group SK1(∆P ) is a cyclic group of order
(qmPP − 1)/(qP − 1), which is non-trivial only for finite number of P ’s with mP > 1.
Furthermore, there is an exact sequence

1→ SK1(∆)→ K1(∆)→ U+(R)→ 1.

Now we may apply Theorem 79 to our situation. Let us fix an irreducible rational
representation ρ ∈ X(G). Let D = Dρ, E = Eρ = Z(D), O = Oρ, let Λ be a
maximal Z[1/ωρ]-order in D (at the same time it is a maximal O[1/ωρ]-order in
D), A a simple component of EG that corresponds to ρ, and χ a character of
any of the irreducible complex constituents of ρ. The prime ideals in O[1/ωρ] are
in one-to-one correspondence with prime ideals of O not dividing ωρ. Let P be a
prime ideal in O[1/ωρ] and P ′ the corresponding prime ideal in O. Let p be the
unique rational prime that belongs to P ′. Note that since P ′ does not divide ωρ it
follows that p - ωρ. Since EP = EP ′ to determine the structure of SK1(ΛP ) we
may work with the local Schur index at P ′. By (3.17) we have

mP ′(D) = mQp(χ)(A) = mQp(χ) = 1,
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where the last equality holds by Theorem 78. Consequently, by Theorem 79 we
obtain that SK1(Λ) is a trivial group and

K1(Λ) ∼= U+(O[1/ωρ]).

Therefore, ⊕
ρ∈X(G)

tors G1(Λρ) ∼=
⊕
ρ∈X(G)

tors U+(Oρ[1/ωρ])

=
⊕
ρ∈X(G)

tors U+(Oρ) ∼= tors G1(ZG),

where the last equation is the result by Keating (3.15). Hence, we have showed
that the HTW-decomposition predicts the correct torsion for G1(ZG) and hence
Theorem D is proved.

3.6 The comparison of ranks for higher de-
grees

In this section we will present the result due to Kuku which allows us to perform the
comparison test for ranks for the HTW-Conjecture in higher degrees. The outcome
is that for n ≥ 2 the HTW-decomposition predicts the correct rank for Gn(ZG) for
all finite groups G. We start with the finiteness result for Gn and SGn of orders (see
[Ku], Theorem 7.1.13).

Theorem 80 (Kuku). Let R be the ring of integers in a number field K. Let ∆ be
any R-order in a semisimple K-algebra Σ. Let Γ be a maximal R-order in Σ that
contains ∆. Then the following holds.

1. For all n ≥ 2 the map resn : Gn(Γ) → Gn(∆) induced by the restriction of
scalars has finite kernel and cokernel. If n is even, then resn is injective.

2. Gn(∆) is finitely generated for all n ≥ 1.

3. For all n ≥ 2 the group SGn(∆) is finite. If n is even, then SGn(∆) = 0.

In particular Theorem 80 implies that if Γ is a maximal R-order in KG that
contains RG, then

rank Gn(RG) = rank Gn(Γ) =
∑
i

rank Gn(Γi), ∀n ≥ 2,

where the sum runs over the simple components of Σ and Γi ⊆ Σi denote a
maximal order in a simple component Σi . Note that for degree n = 1 the situation
is di�erent and we don’t have such an equality of ranks. Let Λi denotes a maximal
R-order in Di . Since

Gn(Γi) ∼= Gn(Λi)



78 Chapter 3. The decomposition conjecture for G-theory of group rings

to conclude that for n ≥ 2 the HTW-Conjecture predicts the correct rank for
Gn(ZG) it is enough to check that inverting ωi in Λi has no e�ect on the rank of
Gn. This can be done by applying the following finiteness result of Kuku on Gn of a
finite ring to the localization sequence (see [Ku], Theorem 7.1.12).

Theorem 81. Let T be a finite ring with 1. Then for all n ≥ 1 it holds

1. Kn(T ) is a finite group.

2. Gn(T ) is a finite group. If n is even then Gn(T ) is a trivial group.

Let us consider the localization sequence

. . .→ Gn(Λi/ωiΛi)→ Gn(Λi)→ Gn(Λi

[ 1

ωi

]
)→ Gn−1(Λi/ωiΛi)→ . . . .

The ring Λi/ωiΛi is finite and therefore for n ≥ 2 Theorem 81 gives that the groups
Gn(Λi/ωiΛi) and Gn−1(Λi/ωiΛi) are finite. Hence,

rank Gn(Λi) = rank Gn(Λi

[ 1

ωi

]
) for all n ≥ 2.

Therefore for n ≥ 2 it holds

rank Gn(ZG) = rank Gn(Γ) =
∑
i∈X(G)

rank Gn(Λi) =
∑
i∈X(G)

rank Gn(Λi

[ 1

ωi

]
),

which confirms the HTW-Conjecture for ranks in degree n ≥ 2, and together with
the result of Section 3.2 implies Theorem C.

3.7 Jacobinski conductor formula

Let G be a finite group of order n. Let R be a Dedekind ring with field of fractions
F and assume that charF does not divide n. Let A = FG. The following result (see
e.g. [Re], Theorem (41.1)) provides information about maximal orders in A containing
RG.

Lemma 82. Let Γ be any R-order in A containing RG. Then

RG ⊆ Γ ⊆ n−1RG.

Proof. Let us fix an F -basis of A consisting of the elements of G. For every element
a ∈ A consider its linear action al on A given by the multiplication with a on the
left. Then for each g ∈ G the trace of gl is zero unless g = e, in which case the
trace equals n. Since every x =

∑
g∈G λgg ∈ Γ is integral over R its characteristic

polynomial χA/Kx has coe�cients in R and hence Tr(x) ∈ R. For every g ∈ G it
holds

Tr(xg−1) = nλg ∈ R,

because G ⊆ Γ. This implies that nΓ ⊆ RG, which finishes the proof.
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As a corollary of Lemma 82 we have that the order RG is a maximal R-order
in A if and only if n is invertible in R. Suppose that RG is a maximal order
and n is not invertible in R. Consider a subring Λ in A generated by RG and
an idempotent e = n−1

∑
g∈G g. It is easy to see that Λ is a Z-order in A that

properly contains RG, which contradicts the maximality of RG. The implication
in the opposite direction is immediate from Lemma 82. In particular ZG is not a
maximal order in QG unless G is a trivial group. For the rest of this subsection let
Γ be a maximal R-order in A containing RG. Define the left and right conductors
of Γ into RG as follows

(Γ : RG)l = {x ∈ A : xΓ ⊆ RG},

(Γ : RG)r = {x ∈ A : Γx ⊆ RG}.

Note that the right conductor is the largest left Γ-submodule in RG. From Lemma
82 we see that the element n belongs to both (Γ : RG)l and (Γ : RG)r . The
following result of Jacobinski [Ja] refines the lemma and gives an explicit description
of the conductors. We present the proof here which follows [Re, Section 41]. Let
A =

⊕k
i=1 Ai be the decomposition of A into simple algebras. Then Γ =

∑k
i=1 Γi ,

where Γi is a maximal R-order in Ai . Let tri denote the reduced trace from Ai to
F. The inverse di�erent of Γi with respect to tri is given by

D−1
i := {x ∈ Ai : tri(xΓi) ⊆ R.}

Theorem 83 (Jacobinski).

(Γ : RG)l = (Γ : RG)r =

k∑
i=1

n

ni
D−1
i .

Proof. Consider the bilinear form τ : A × A → K given by the trace τ(x, y) =

TrA/F (xy) and fix an F -basis of A given by the elements of G. As we remarked in
the proof of Lemma 82 for g, h ∈ G it holds that

τ(g, n−1h) = δgh,

and hence {n−1g, g ∈ G} is a dual basis to the chosen one with respect to τ. With
every full R-lattice Λ in A we may associate a dual R-lattice given by

Λ̃ = {a ∈ A | τ(a,Λ) ⊆ R}.

It is easy to check that the map Λ→ Λ̃ is an inclusion reversing bijection from the

set of full left R-lattices to the set of full right R-lattices in A, which satisfies ˜̃Λ = Λ

and takes any R-free lattice to the R-free lattice generated by the dual basis. From
this we immediately conclude that

R̃G =
⊕
g∈G

Rn−1g = n−1RG.
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Since Λ = (Γ : RG)r is the maximal left Γ-module in RG we obtain that its dual Λ̃

is the smallest right Γ-module containing R̃G. Therefore,

Λ̃ = R̃G · Γ = n−1RG · Γ = n−1Γ, Λ = nΓ̃.

To describe Γ̃ we write every X ∈ A in the from x =
∑

i xi , where xi ∈ Ai , and
use the fact that the trace can be expressed in terms of reduced traces as follows

Tr(x) =

k∑
i=1

nitri(xi),

which implies that

Γ̃ = {x ∈ A | nitri(xiΓ) ⊆ R, 1 ≤ i ≤ k} =

k⊕
i=1

n−1
i D

−1
i ,

(Γ : RG)r =

k⊕
i=1

n

ni
D−1
i .

The same argument works for the left conductor.

Now we focus on the situation R = Z and A = QG. Let A =
⊕

ρ∈X(G) Aρ
be the decomposition of A into simple components, where X(G) is the set of
irreducible representations of G over Q. For each ρ ∈ X(G) the associated simple
component Aρ is determined by the corresponding central primitive idempotent in
QG given by

eρ =
1

n

∑
g∈G

χρ(g
−1)g.

Then Aρ = A · eρ and let prρ denote the projection of A into the component Aρ,
which is given by the multiplication by eρ. Let ωρ = n

kρdρ
, ρ ∈ X(G) be the numbers

appearing in the HTW-decomposition. Note that the number nρ = [Aρ : Z(Aρ)]1/2

that appears in the Jacobinski formula coincides with the dimension dρ of any of
the complex constituents of the representation ρ complexified. This is true due to
the following observation. Denote by Eρ the center of Aρ and let Aρ ∼= Mmρ(Dρ).

Then
C⊗Q Aρ ∼= C⊗QMmρ(Dρ)

∼= (C⊗Q Eρ)⊗Eρ Mmρ(Dρ),

C⊗Q Eρ ∼= ⊕
[Eρ:Q]

C,

C⊗Eρ Mmρ(Dρ)
∼= Mmρ(M[Dρ:Eρ]1/2(C)).

Hence the dimension of any complex constituent of C⊗Q ρ equals mρ[Dρ : Eρ]
1/2

and consequently

n2
ρ = [Mmρ(Dρ) : Eρ] = m2

ρ[Dρ : Eρ] = d2
ρ ,

which proves the claim. The following lemma shows how the numbers ωρ and the
Jacobinski conductor formula are related.
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Lemma 84. For every ρ ∈ X(G) the images of Z[1/ωρ]G and Z[1/ωρ] ⊗Z Γ in
the factor Aρ under the projection prρ coincide.

Proof. Let ρ ∈ X(G) be fixed and let H < G be the kernel of the representation
ρ. Denote by q : QG → Q[G/H] the homomorphism of group algebras induced by
the quotient map G → G/H. We denote the restriction q|ZG : ZG → Z[G/H] by
the same letter q. Let

Q[G/H] =
⊕

ρ′∈X(G/H)

A′ρ′

be the decomposition of Q[G/H] into simple algebras. The representation ρ may
be viewed as a representation of G/H, since the elements of H act trivially, and it
is clearly an irreducible rational representation. Denote the corresponding simple
component of Q[G/H] by A′ρ. We claim that q(Aρ) = A′ρ and q|Aρ : Aρ → A′ρ is an
isomorphism of algebras. To see this recall that Aρ = QG ·eρ and A′ρ = Q[G/H]·e ′ρ,
where e ′ρ denotes the central primitive idempotent in Q[G/H] associated to ρ ∈
X(G/H).

eρ =
1

n

∑
ḡ∈G/H

∑
h∈H

χρ(h
−1ḡ−1)ḡh =

1

n

∑
ḡ∈G/H

(
χρ(ḡ

−1)
∑
h∈H

ḡh
)
,

q(eρ) =
|H|
n

∑
ḡ∈G/H

χρ(ḡ
−1)ḡ = e ′ρ.

From this it is immediate that q(Aρ) = A′ρ and since Aρ is a simple algebra we
obtain that q|Aρ : Aρ → A′ρ is an isomorphism. Let Γ′ = q(Γ), then Γ′ is a maximal
Z-order in Q[G/H] that contains Z[G/H], and Γ′ = ⊕ρ′∈X(G/H)Γ′ρ′, where Γ′ρ′ is a
maximal Z-order in A′ρ′. Since the restriction of q induces an isomorphism from Aρ
to A′ρ we have the following commutative diagram

ZG q
//

prρ

��

Z[G/H]

pr′ρ
��

ZG · eρ
q

∼=
//

� _

��

Z[G/H] · e ′ρ� _

��

Γρ
q

∼=
// Γ′ρ.

By the Jacobinski conductor formula and the remark made above that nρ = dρ we
obtain

|G/H|
dρ

Γ′ρ ⊆ Z[G/H] · e ′ρ,

and therefore,

ωρΓρ =
|G/H|
dρ

Γρ ⊆ ZG · eρ.

And finally, since ZG · eρ ⊆ Γρ we conclude that

Z[1/ωρ]⊗Z Γρ = Z[1/ωρ]G · eρ,
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which finishes the proof.

3.8 The known results for higher G-groups

In the same paper [HTW] where the conjecture was stated for the first time Ham-
bleton, Taylor and Williams gave a short proof of the HTW-decomposition in the
case when G is a finite nilpotent group. Here we provide a more detailed treatment
of their proof following the paper [HTW]. The proof goes in two steps. Firstly,
the decomposition is established for p-groups. For such a group it is possible
to define a map Gn(ZG) →

⊕
i∈X(G) Gn(Γi [1/ωi ]) using the extension of scalars

approach with some modifications for the summand corresponding to the trivial
representation. Then the HTW-decomposition for nilpotent groups is derived from
the HTW-decomposition for p-groups.

Let j : R → RG be the natural inclusion. Since G is a finite group j induces a
restriction map from the category of finitely generated RG-modules to the category
of finitely generated R-modules

j∗ : Modf g(RG)→ Modf g(R)

and for every n ≥ 0 we have the corresponding map

resn : Gn(RG)→ Gn(R).

On the other hand, every finitely generated R-module M may be turned into an
RG-module, where the elements of G act trivially

e∗ : Modf g(R)→ Modf g(RG).

This functor also induces a homomorphism on Gn which we denote by en

en : Gn(R)→ Gn(RG).

Clearly, the composition j∗e∗ : Modf g(R) → Modf g(R) is the identity functor and
thus Gn(R) is a direct summand in Gn(RG).

Lemma 85. Let G be a p-group and let R be a noetherian ring. Then the following
sequence is split exact

0 // Gn(RG)
locn⊕resn// Gn(R[1/p]G)⊕ Gn(R)

res′n−loc′n// Gn(R[1/p]) // 0.

Proof. Consider the localization sequence associated to the localization RG →
R[1/p]G

. . . // Kn(Mp(RG)) // Gn(RG)
locn // Gn(R[1/p]G) // Kn−1(Mp(RG)) // . . .

where Mp(R) denotes the category of finitely generated p-torsion RG-modules,
i.e., those finitely generated modules for which every element is annihilated by some



3.8. The known results for higher G-groups 83

power of p. If M ∈ Mp(R) then there is a finite filtration of M with the quotients
annihilated by p. Thus without loss of generality we may assume p ·M = 0 and
therefore M is an R/pR-module. The same way as we proved the Proposition 13 we
can show that if M is non-zero then for a p-group G the set MG of elements in M
fixed by G is non-empty. Hence M has a finite filtration with quotients given by the
RG-modules with the trivial G-action. The full subcategory of Mp(R) consisting
of the modules with the trivial G-action is an abelian subcategory, therefore by the
Devissage Theorem e∗|Mp(R)

induces an isomorphism of K-groups

hn : Kn(Mp(R))
∼=−→ Kn(Mp(RG)),

where the inverse map is induced by j∗|Mp(RG)
. Combining the localization sequence

for R → R[1/p] with the localization sequence for RG → R[1/p]G we get the
following commutative diagram

. . . // Kn(Mp(R)) //

hn ∼=
��

Gn(R)
loc′n //

w W

en

��

Gn(R[1/p]) //
w W

e ′n
��

Kn−1(Mp(R)) //

hn−1 ∼=
��

. . .

. . . // Kn(Mp(RG))
αn // Gn(RG)

resn

TTTT

locn // Gn(R[1/p]G) //

res′n

TTTT

Kn−1(Mp(RG)) // . . .

(3.18)
Note that Gn(RG) ∼= Gn(R)⊕Xn for some abelian group Xn with a projection

Gn(RG) → Gn(R) given by resn, and similarly Gn(R[1/p]G) ∼= Gn(R[1/p]) ⊕ Yn
for some abelian group Yn with a projection given by res′n. Now it is easy to see
that the homomorphism

locn ⊕ resn : Gn(RG)→ Gn(R[1/p]G)⊕ Gn(R)

is injective, since the kernel of locn coincides with the image of αn, which is
contained in the image of Gn(R) under en. But then if the element in the image
of en is mapped to zero under resn it must be zero itself, which finishes the proof
of injectivity. From the commutativity of the middle square in the diagram (3.18) it
immediately follows that im (locn ⊕ resn) = ker(res′n − loc′n). The surjectivity of
res′n − loc′n is obvious from the surjectivity of the res′n. Hence we have showed that
the sequence

0 // Gn(RG)
locn⊕resn// Gn(R[1/p]G)⊕ Gn(R)

res′n−loc′n// Gn(R[1/p]) // 0

(3.19)
is exact. The homomorphism e ′n ⊕ 0: Gn(R[1/p])→ Gn(R[1/p]G)⊕ Gn(R) gives
the desired splitting of the sequence (3.19), which finishes the proof.

As a corollary of the Lemma 85 we obtain the HTW-decomposition for p-groups.
Given a finite p-group G and an irreducible rational representation ρ of G put

Γρ =

{
a maximal Z[1/p]-order in Dρ, if ρ is not trivial

Z, if ρ is trivial.
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Theorem 86. Let R be a noetherian ring and G a finite p-group for some prime
p. Then

Gn(RG) ∼=
⊕
ρ∈X(G)

Gn(R ⊗Z Γρ),

where X(G) denotes the set of irreducible rational representations of G.

Proof. Since for a p-group G its order is invertible in the ring Z[1/p] we know
that Z[1/p]G is a maximal Z[1/p]-order in QG. Therefore, it decomposes into the
product

Z[1/p]G ∼=
∏

ρ∈X(G)

Λρ,

where Λρ is a maximal Z[1/p]-order in the corresponding factor Mnρ(Dρ). Since
Gn preserves products we immediately have

Gn(R[1/p]G) ∼=
⊕
ρ∈X(G)

Gn(R ⊗Z Λρ).

The image of the splitting map en : Gn(R[1/p]) → Gn(R[1/p]G) is a direct
summand of Gn(R[1/p]G) that corresponds to the trivial rational representation
Gn(R ⊗Z Z[1/p]). Hence by the Lemma 85 Gn(ZG) is isomorphic to a direct sum
of Gn of maximal Z[1/p]-orders Λρ’s corresponding to nontrivial irreducible rational
representations and Gn(Z), which corresponds to the trivial representation. Since
Λρ is Morita equivalent to a maximal Z[1/p]-order in Dρ by the Morita invariance
property of G-theory we obtain

Gn(RG) ∼=
⊕
ρ∈X(G)

Gn(R ⊗Z Γρ),

which finishes the proof.

Definition 87. We say that for a group G the HTW-decomposition holds if for
every noetherian ring R and every n ≥ 0 the groups Gn(RG) and

⊕
ρ∈X(G) Gn(R⊗Z

Γρ) are isomorphic, where Γρ is a maximal Z[1/ωρ]-order in Dρ.

The following observation ([HTW], Remark 11) allows us to extend the class for
which the HTW-decomposition holds.

Proposition 88. Let H and H′ be finite groups of relatively prime order for which
the HTW-decomposition holds. Then the HTW-decomposition holds for H × H′. In
particular, the HTW-decomposition holds for all finite nilpotent groups.
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Proof. Let R be a ring, then R[H × H′] ∼= RH[H′] and therefore by the HTW-
decomposition for the group H′ with a coe�cient ring RH we obtain

Gn(R[H ×H′]) ∼=
⊕

ρ′∈X(H′)

Gn(RH ⊗Z Γρ′)

∼=
⊕

ρ′∈X(H′)

Gn(R ⊗Z Γρ′[H])

∼=
⊕

ρ′∈X(H′)
ρ∈X(H)

Gn(R ⊗Z Γρ′ ⊗Z Γρ).

(3.20)

If α is an irreducible rational representation of H × H′, then there exist unique up
to isomorphism irreducible representations ρ ∈ X(H) and ρ′ ∈ X(H′) such that α
is a direct summand of ρ ⊗Q ρ′. This is true due to the following observation. By
Theorem 72 every irreducible rational representation ρ ∈ X(H) is obtained from
the Galois orbit of some irreducible complex representation ϕ of H

ρ ∼= mQ(ϕ)
∑

φ∈Orb(ϕ)

φ,

where mQ(ϕ) is the Schur index and Orb(ϕ) denotes the orbit of φ under the
action of a Galois group Gal(Q(ξ|H|)/Q). Furthermore, the set of isomorphisms
classes of irreducible complex representations of H ×H′ is given by

IrrC(H ×H′) = {φ⊗C φ′ | φ ∈ IrrC(H), φ′ ∈ IrrC(H′)}.

Hence, for any ρ ∈ X(H) and ρ′ ∈ X(H′) it holds

ρ⊗Q ρ′ ∼= mQ(ϕ)mQ(ϕ′)
∑

φ∈Orb(ϕ)
φ′∈Orb(ϕ′)

φ⊗C φ′.

For each φ⊗C φ′ appearing as a summand in ρ⊗Q ρ′ every element from its orbit
under the action of the Galois group Gal(Q(ξ|H×H′|)/Q) also appears as a direct
summand in ρ ⊗Q ρ′. Since ρ ⊗Q ρ′ is a rational representation and it contains
as a direct summand the orbit of φ ⊗ φ′, which is a representation with rational
character values, we conclude that ρ ⊗ ρ′ contains as a summand an irreducible
rational representation that corresponds to φ ⊗ φ′. From this we see that every
irreducible rational representation of H × H′ is contained as a constituent in the
uniquely determined representation of the form ρ⊗Qρ′ with ρ ∈ X(H), ρ′ ∈ X(H′).

Since Q(ξ|H|) and Q(ξ|H′|) are splitting fields for H and H′, respectively, we
obtain that in the situation when the orders of the groups H and H′ are relatively
prime the Galois group

Gal(Q(ξ|H×H′|)/Q) ∼=
(
Z/(|H| · |H′|) · Z

)×
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decomposes into the product of the Galois groups

GalH := Gal(Q(ξ|H|)/Q) ∼=
(
Z/|H| · Z

)×
GalH′ := Gal(Q(ξ|H′|)/Q) ∼=

(
Z/|H′| · Z

)×
.

This yields that the orbit of any irreducible representation ϕ⊗Cϕ′ of H×H′ under
the action of the Galois group Gal(Q(ξ|H×H′|)/Q) equals

Orb(ϕ⊗C ϕ′) = {φ⊗C φ′ | φ ∈ OrbGalH(ϕ), φ′ ∈ OrbGalH′ (ϕ
′)}.

Hence, if (|H|, |H′|) = 1 then for every irreducible rational representation α of
H × H′ there exist a positive integer r and uniquely determined ρ ∈ X(H), ρ′ ∈
X(H′) such that

r · α ∼= ρ⊗Q ρ′.

Furthermore, Γα and Γρ⊗ZΓρ′ are both Z[1/ωα]-maximal orders in Morita equivalent
division algebras.

Concluding remarks.
In addition to what was done in Section 3.4 it is easy to compute both values

P (G), R(G) using the provided description. For G = SL(2,F3) these are P (G) =

6, R(G) = 5. Using the computer algebra system GAP [GAP] we computed the
di�erence P (G)− R(G) for all finite groups of order less than 200.

If it is possible to correct the HTW-decomposition following the same pattern
but choosing di�erent numbers ωρ to be inverted, then these new numbers ωρ
should satisfy the following relation∑

ρ∈X(G)

#{prime ideals in Oρ that divide ωρ} −
∑

ρ∈X(G)

vρ + ε = 0.

The inequality P (G) ≥ R(G) obtained in Corollary 73 leads to the natural
guess that the weaker version of the HTW-Conjecture might hold. Namely, instead
of asking for the isomorphism in the HTW-decomposition, one might conjecture
that there exists either an injective homomorphism Gn(ZG) ↪−→

⊕
ρ∈X(G) Gn(Λρ)

or a surjective homomorphism
⊕

ρ∈X(G) Gn(Λρ)� Gn(ZG). Since there is no map
known between Gn(ZG) and

⊕
ρ∈X(G) Gn(Λρ) that would work for all finite groups

G we have to consider both of these options.
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Zusammenfassung

In this thesis we investigate Quillen’s G-theory of group rings mostly fo-
cusing on the case of finite groups. We study the Hambleton-Taylor-Williams
decomposition conjecture for G-theory of the integral group rings. The con-
jecture expresses Gn(ZG) as a direct sum of the groups Gn of maximal orders
in the simple components of QG with certain integers inverted. The HTW-
conjecture generalizes the results of Lenstra and Webb on abelian groups.
Since G-theory lacks functoriality (as opposed to K-theory) it is a highly non-
trivial task to construct a map between G-groups of different rings. The
construction of the map between two sides of the HTW-decomposition is a
part of the conjecture.

Even though Webb and Yao found a counterexample to the HTW-
decomposition in degree 1 they still expected the conjecture to hold for solv-
able groups. Using the results of Keating we explicitly compute the ranks
of both sides of the conjecture for G1 and show that the solvable group
SL(2,F3) is a counterexample to the conjectured decomposition. Neverthe-
less, we prove that for any finite group G the rank of G1(ZG) does not
exceed the rank of the expression in HTW-decomposition. To show this we
use the methods from modular representation theory, in particular the results
of Brauer and Nesbitt on blocks of defect zero. Since the results of Brauer
and Nesbitt are only valid for a splitting field of G to get the desired inequal-
ity for ranks we first look at representations over a splitting field and then
“glue” the representations over Q and Fp out of them using the action of the
corresponding Galois group. The inequality for ranks of G1 leads us to the
natural guess that a weaker version of the conjecture might hold for all finite
groups.

On the side of positive results using some analysis of local Schur indices
we proved that the HTW-decomposition gives a correct prediction for the
torsion subgroup of G1(ZG) for all finite groups G. Furthermore, we show
that the ranks of Gn(ZG) agree with the prediction of the conjecture in all
degrees apart from the degree n = 1.


