
An Approach for Collaborative Ontology
Development in Distributed and

Heterogeneous Environments

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Lavdim Halilaj

aus
Kosovo

Bonn, 25.10.2018

Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen
Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB
Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.

1. Gutachter: Prof. Dr. Sören Auer
2. Gutachter: Prof. Dr. Jens Lehmann

Tag der Promotion: 10.12.2018
Erscheinungsjahr: 2019

http://hss.ulb.uni-bonn.de/diss_online

Abstract

The era of digitalization poses high demands on capturing and processing knowledge generated
in everyday life in formal models. Ontologies provide common means for formal knowledge
capturing and modeling for a universe of discourse. Developing ontologies, however, can be a
complex, time-consuming and expensive process which requires a significant amount of resource
investments. Different stakeholders, such as ontology engineers, domain experts and ultimately
users, are usually involved in the development process; they may be geographically distributed
and work independently in isolated environments while typically have to synchronize their
contributions. Supporting the entire development life-cycle of ontology modeling places a number
of challenges. Stakeholders may have different working behaviors and practices that should be
accommodated. Concurrent ontology modifications performed using various authoring editors
have to be tracked, integrated and may result in synchronization conflicts. Further, ensuring
ontology quality according to the domain requirements is another challenge to be tackled. In the
past years, several methodologies and tools have been created to enable ontology development for
a number of different purposes and applications. Albeit designed to cover a range of development
aspects, existing approaches lack comprehensive support of the ontology life-cycle, in particular
independent work in disparate environments.

In this thesis, we tackle the problem of collaborative ontology development in distributed and
heterogeneous environments, and present a stakeholder-oriented approach able to holistically
assist the development of ontologies in diverse and independent scenarios. First, we define
Git4Voc, a lightweight methodology comprising a set of guidelines and practices to be followed
by stakeholders while modeling ontologies. We then conceive VoCol, a flexible and integrated
development platform to address critical requirements from a technical perspective. Moreover,
techniques for reducing the number of conflicts and allowing the efficient evaluation of test
cases have been designed and implemented. VoCol can be adopted in numerous scenarios and
accommodate additional tools in a well-designed and semi-automatic ontology development
workflow. The benefits of this flexibility are two-fold: 1) stakeholders do not need to strictly
follow a specific methodology; in contrary, they can organize their work in small and incremental
development steps; and 2) consumers may provide their feedback, even though they are not
directly part of the active development team. VoCol can be utilized to efficiently ensure
quality ontologies with respect to the pre-defined requirements. We conducted several empirical
evaluations to assess the effectiveness and efficiency of our holistic approach. More importantly,
ontologies for various domains, such as Industry 4.0, life sciences and education, have been
successfully developed and managed following our approach. The results from the empirical
evaluations and concrete applications provide evidence that the methodology and techniques
presented in this thesis comply with stakeholders’ needs and effectively support the entire
ontology development life-cycle in distributed and heterogeneous environments.

iii

Contents

I Preliminaries 1

1 Introduction 3
1.1 Motivation . 4
1.2 Problem Definition and Challenges . 5
1.3 Research Questions . 8
1.4 Thesis Overview . 9

1.4.1 Contributions . 9
1.4.2 List of Publications . 11

1.5 Thesis Structure . 13

2 Background 15
2.1 Ontologies . 15

2.1.1 The Resource Description Framework . 16
2.1.2 Expressiveness of Ontologies . 20
2.1.3 The SPARQL Protocol and RDF Query Language 21
2.1.4 The Semantic Web . 22

2.2 Ontology Development . 23
2.2.1 Collaborative Ontology Development . 25
2.2.2 Test-driven Development . 25

2.3 Version Control Systems . 25
2.3.1 Centralized Version Control Systems . 26
2.3.2 Distributed Version Control Systems . 27

3 Related Work 31
3.1 Methodologies for Collaborative Ontology Development 31

3.1.1 Workflow-dependent Methodologies . 31
3.1.2 Workflow-independent Methodologies . 35

3.2 Platforms for Collaborative Ontology Development 38
3.2.1 Integrated Environments with own Version Control 39
3.2.2 Integrated Environments based on Generic Version Control Systems . . . 41

3.3 Conflict Prevention during Change Synchronization 43
3.4 Test-driven Approaches for Ontology Development 44

v

II Collaboratively Developing Ontologies 47

4 Requirements for Collaborative Ontology Development 49
4.1 Method . 50

4.1.1 Important Roles . 51
4.1.2 Analysis of Widely used Ontologies . 52

4.2 Requirements . 54
4.2.1 Methodological Requirements . 55
4.2.2 Technical Requirements . 56

4.3 Summary . 57

5 A Lightweight Methodology for Developing Ontologies in Distributed Environments 59
5.1 The Git4Voc Approach . 61

5.1.1 Governing Aspects . 62
5.1.2 Development Practices . 67

5.2 Evaluation . 72
5.2.1 Schema.org Use Case . 72
5.2.2 Survey and Result Discussion . 74

5.3 Summary . 75

6 An Integrated Environment for Collaborative Ontology Development 77
6.1 The VoCol Approach . 78

6.1.1 Contributor Workflow . 81
6.2 Implementation . 81

6.2.1 Configuration . 82
6.2.2 Client-side Tasks . 83
6.2.3 Server-side Tasks . 85
6.2.4 Deployment . 88

6.3 Evaluation . 88
6.3.1 Industry Application . 89
6.3.2 User Study . 89

6.4 Summary . 91

III Quality Assurance for Ontology Development 93

7 Serialization Agnostic Ontology Development in Distributed Settings 95
7.1 Motivating Example . 97
7.2 Problem Definition . 98
7.3 The SerVCS Approach . 99
7.4 Implementation . 101

7.4.1 Version Control System . 101
7.4.2 UniSer . 102

7.5 Empirical Evaluation . 105
7.5.1 Impact of the Ontology Size . 107
7.5.2 Impact of the Sorting Criteria . 107

7.6 Summary . 108

vi

8 A Dependency-aware Approach for Test-driven Ontology Development 109
8.1 Motivating Example . 110
8.2 Problem Definition . 111
8.3 The EffTE Approach . 113
8.4 Implementation . 116

8.4.1 Version Control System . 116
8.4.2 Integrated Validation Service . 116

8.5 Empirical Evaluation . 117
8.5.1 Impact of the Ontology Size . 119
8.5.2 Impact of the Topology of TCGφ

O . 119
8.5.3 Impact of the Number of the Test Cases 120
8.5.4 Discussion . 120

8.6 Summary . 121

IV Applications and Conclusions 123

9 Establishing Semantic Interoperability between Industry 4.0 Models 125
9.1 A Semantic Administrative Shell for Industry 4.0 Components 126

9.1.1 Background . 127
9.1.2 Challenges . 129
9.1.3 An RDF-based Approach for Semantifying I4.0 Components 129
9.1.4 Use Case . 133

9.2 A Semantic Integration Perspective for Industry 4.0 Standards 136
9.2.1 Background . 137
9.2.2 Methodology . 137
9.2.3 An RDF-based Approach for the I4.0 Standards Landscape 138
9.2.4 Use Case . 141

9.3 Summary . 143

10 Establishing Semantic Interoperability between Industry 4.0 Data 145
10.1 Motivating Example . 146
10.2 Realizing an RDF-based Information Model . 147

10.2.1 Development Methodology . 147
10.2.2 Information Model Governance . 149

10.3 Architecture and Implementation . 149
10.4 Use Cases . 151

10.4.1 Tool Management . 151
10.4.2 Energy Consumption . 151

10.5 Evaluation and Lessons Learned . 153
10.5.1 Stakeholder Feedback . 153
10.5.2 Lessons Learned . 154

10.6 Summary . 156

11 Collaborative Development of Ontologies in Real-world Scenarios 157
11.1 Architecture . 158
11.2 Ontologies in VoColReg . 160

vii

11.3 Analysis and Discussions . 161
11.4 Summary . 163

12 Conclusions and Future Direction 165
12.1 Revisiting the Research Questions . 165
12.2 Future Work . 168

12.2.1 Research Perspective . 168
12.2.2 Technical Perspective . 169

Bibliography 171

A List of Publications 187

List of Figures 191

List of Tables 197

viii

Part I

Preliminaries

1

CHAPTER 1

Introduction

In an era where data is considered as the new oil, the lack of meaning and well-defined structure of
data will lead to interoperability and usability problems. To overcome these problems, ontologies
are a representation paradigm to capture and represent the knowledge of a universe of discourse
and structure it in a machine-comprehensible format. Ontologies are an integral part of a wide
range of techniques, such as data integration, entity annotation, and search optimization [1].
Developing ontologies can be a time-consuming and expensive process and requires a significant
investment, which is difficult to make by a single person or organization. An effective approach to
tackle this problem is building ontologies in a collaborative way where all interested stakeholders
are involved. It includes identifying the main terms and concepts by finding a consensus among
stakeholders while defining a shared terminology and formalizing it for the intended domain.
The process of jointly building ontologies in distributed environments, which we refer to as

collaborative ontology development, can be complex. In fact, the main challenge for stakeholders
is to work collaboratively on a shared objective in a constructive and efficient way, while
avoiding misunderstandings, uncertainty, and ambiguity. The involved stakeholders, which may
be geographically distributed, should be able to easily express and integrate their diverse views
and ideas without risking to lose the original intention. Researchers have presented methodologies
and platforms to allow ontology construction in various scenarios. However, they lack of support
for scenarios where stakeholders work independently in isolated and heterogeneous environments.
On the other hand, version control systems, such as Subversion (SVN) or Git, are becoming
increasingly popular for ontology development. Several aspects of ontology development—in
particular with regard to revision management, access control, and governance—are already
well covered by version control. Nevertheless, the support for other crucial development aspects,
such as validation, consistency checking, documentation, and visualization, is missing.
This thesis intends to facilitate the bridging between the conceptual development process of

ontologies in distributed and heterogeneous environments and concrete guidelines and practices
to guide this process.1 Further, our objective is to efficiently ensure qualitative ontologies, where
the term “quality” is used as “the indicator of matching between a developed product and user
requirements” [3]. Another contribution of the thesis is providing a semi-automatic approach
to map the ontology development workflows with concurrent version control methods. The
approach features a modular and extensible architecture to allow the integration of additional
components or services for addressing specific aspects of ontology development.
1 In this work, we are focused on lightweight ontologies or “vocabularies”, as they are developed in initiatives like

Schema.org and defined by the W3C [2].

3

Chapter 1 Introduction

Ontology engineers and
domain experts

Shared Repositories

Shared Applications

Local Ontologies

Contributors

100 90 80 70

Consumers

Humans and machines

Private working versions of
ontologies

Synchronized versions of
ontologies

Applications and services to
support ontology publishing
and explorations

1

2

4

3

5

Scenario 1 Scenario 2 Scenario 3

Figure 1.1: Ontology development in distributed and heterogeneous environments. A distrib-
uted and heterogeneous environment typically consist of several layers. Different stakeholders, such as
domain experts and ontology engineers are located in the Contributors layer. The Local Ontologies layer
contains working replicas of ontologies in local machines. The Shared Repositories layer allows the distri-
bution and synchronization of changes among replicas. Applications located in the Shared Applications
layer offer additional possibilities for exploration, visualization and analysis. Third party users or services
are located in the Consumers layer. The ontology can be developed and deployed according to various
scenarios, such as Scenario 1 : there is no connection between remote Shared Repositories and Shared
Applications, Scenario 2 : a unidirectional connection exists between Shared Repositories and Shared
Applications, and Scenario 3 : the ontology is not deployed or can not be used in Shared Applications.

1.1 Motivation

Let us suppose a team composed of ontology engineers and domain experts working together to
develop an ontology for a specific domain, as depicted in Figure 1.1, Contributors layer. After
definition of the ontology scope, the stakeholders collect the requirements which later on will be
used to define competency questions, i.e., questions that the ontology should be able to answer [4].
The stakeholders use a Version Control System, such as Git, to track the changes and manage
different versions of the ontology. Initially, the stakeholders work in their local machines by
performing additions and modifications based on the defined requirements. The Local Ontologies
layer referes to the working replicas of ontologies in local machines of the contributors. To
ensure that changes are conform to the requirements, a suite of test cases can be executed. In
addition, the test cases can prevent violation of constraints and bad modeling practices. However,
implementing such a quality assurance task is tedious and requires extra efforts. Furthermore,

4

1.2 Problem Definition and Challenges

contributors might use different tools to execute the test suite or automatize this task using the
flexibility of version control systems. Without such quality assurance measures, the ontology may
suffer from quality issues and not cover the requirements, which requires additional resources to
add the missing concepts or correct the errors in later phases.

Additional mechanisms, such as Remote Hosting Platforms located in the Shared Repositories
layer enable the exchanging of local changes. Therefore, changes are distributed and synchronized
between local and remote ontology replicas. Ontologies may be built using various ontology
authoring editors, such as Protégé, TopBraid Composer or even any plain text editor. Commonly,
ontologies are represented in the RDF format and composed of a set of triples. The ordering
of the triples within the file does not play any role, thus the editors can produce arbitrary
files being semantically equivalent using different sorting criteria. During the synchronization
process, a number of conflicts are generated, which are difficult to resolve, in particular when
the ontology is sufficiently large.
The Shared Applications layer integrates external tools to offer additional possibilities for

exploring, visualization and analysis. Further, this layer enables ontology publishing, a very
important factor to further encourage the potential reusability. According to the first scenario,
there is no direct connection from the Shared Repositories to this layer. Thus, ontology engineers
have to set-up a publishing platform, where for each new version, the ontology is manually
deployed. Consequently, there is always a possibility that the ontology is not well synchronized
and does not reflect the latest version. In the second scenario, a link between layers: Remote
Hosting Platforms and Shared Applications is established. Although the latest version of the
ontology is offered, customized applications should be further developed and manually managed.
The third scenario illustrates the case where the ontology is not published in any other format,
apart from RDF. This forces any potential consumer to directly go to the Remote Hosting
Platform and try to understand the ontology in the original format in order to reuse it. In
all aforementioned scenarios, stakeholders are required to cope with a number of tools for
performing their modeling tasks. As a consequence, divergent views of the same ontology may
exist, thus making development and discussion activities among team members a challenge.

As depicted in the Consumers layers, third-party users or machines should be able to exploit
and reuse the ontology via specialized services or rich interfaces. This allows the ontology to be
adopted and extended for covering other domains or more specific requirements. Moreover, the
need for methodological governance stands orthogonal to the entire development life-cycle. The
team should clearly organize its work and follow recommendations for tasks, such as naming
conventions, ontology modularization, branching strategies, and utilization of existing ontologies.
The lack of methodological support may cause misunderstandings or uncertainty as well as
difficulties to maintain and reuse the ontology being developed.

1.2 Problem Definition and Challenges

Ideally, ontology engineers and domain experts should be able to develop ontologies using
version control systems and different ontology authoring editors. At conceptual level, this
thesis addresses the problem of ontology development in distributed environments with a focus
on synchronization of the concurrent ontology changes, while continuously enforcing quality
checks on the ontology being developed in a time efficient manner. Therefore, the approach
should integrate and facilitate the activities performed during the entire development life-cycle
associated with interrelated discussions across various stakeholders.

5

Chapter 1 Introduction

Figure 1.2 illustrates four main cross-layer challenges identified by this thesis. The first challenge
is to ascertain guidelines and practices for supporting collaborative ontology development
and publication in distributed settings. The community may consist of geographically spread
stakeholders with different ways of thinking and working, as well as various interests. Another
important factor to be considered in this regard is the ability to contribute in a workflow
independent fashion and parallel development in multiple branches. The second challenge is to
allow non-expert users and client applications to reuse and consume the developed ontologies in
human-friendly representations and machine-understandable formats, respectively. The third
challenge is to effectively ensure the synchronization of changes among ontology replicas. Finally,
the last challenge is to efficiently execute a set of test cases that check for compliance with
competency questions and help avoiding violation of constraints.

As the problem of collaborative ontology development is much larger and poses many issues
and obstacles in different scenarios, we consider the following challenges and problems out
of the scope of this thesis: logically expressive and very large scale ontologies; heavyweight
methodologies; detection and resolution of semantic conflicts; and real-time collaboration support.
However, we deem that the results presented in this thesis form the foundation for extending
the work also in these aspects.

Challenge 1: Supporting collaborative development of ontologies in distributed
environments.

There exists a number of methodologies supporting ontology development in various scenarios.
According to [5], these methodologies can be split into two main categories: centralized method-
ologies and decentralized methodologies. The first category includes methodologies which focus
more on activities performed by a number of participants co-located and working together to
develop ontologies for a very specific domain or organization. The second category applies to a
larger and distributed community working jointly to define ontologies for more general purposes
and usage. Other important aspects of the development process are considered by lightweight
methodologies which provide generic guidelines and practices.
Apart from ontology engineers, the stakeholder community including domain experts and

other third-party users is increasing. Various platforms, such as version control systems, are used
to accommodate their needs and enable ontology modeling in these scenarios. These platforms
are typically workflow independent where participants can work without obeying to a specific
methodology. The challenge that arises here is facilitating the distributed development by
providing best practices and guidelines. In particular, crucial guidelines include: modularization
of ontologies, communication threads and strategies for branching. Additionally, practices for
reusability, naming conventions and labeling of versions are of paramount importance.

Challenge 2: Enabling the availability and reusability of ontologies.

Publishing and consuming ontologies by third-party users and client applications requires
features for ready to use and easy to explore through rich visualizations and human-friendly
documentation as well as various machine-comprehensible formats. Using individual tools or
services for ontology development poses additional overhead for the team, leading to inconsistent
results and diverse views. Furthermore, the reusability of the ontology for other purposes or
another domains is hampered. The challenge here is providing an integrated and at the same
time extensible platform for developing ontologies in distributed and heterogeneous environments.

6

1.2 Problem Definition and Challenges

Ontology engineers and
domain experts

Shared Repositories

Shared Applications

Local Ontologies

Contributors

100 90 80 70

Consumers

Humans and machines

Private working versions of
ontologies

Synchronized versions of
ontologies

Applications and services to
support ontology publishing
and explorations

1

2

4

3

5

RQ2: How can ontology
development workflows

be mapped on and
supported by distributed
version control methods?

RQ1: Which
guidelines and
best practices

facilitate
collaborative

ontology
development in
distributed and
heterogeneous

scenarios?

CH2: Enabling the
availability and
reusability of
ontologies.

CH1:
Supporting

collaborative
development

of ontologies in
distributed

environments.

CH3: Improving
conflict resolution

during change
synchronization.

CH4: Efficiently
enforcing

compliance with
domain

requirements and
competency

questions during
ontology

development.

RQ4: How can the
quality and efficiency

in distributed and
heterogeneous

ontology development
be ensured?

RQ3: How can
concurrent changes
from heterogeneous
ontology authoring

editors be effectively
synchronized?

Figure 1.2: Main Challenges and Research Questions. This thesis identifies four main challenges to
support the ontology development in distributed and heterogeneous environments. Four research questions
are proposed with the objective of addressing these challenges. Each challenge and research question is
located at the respective layer of the problem domain.

This platform should be able to accommodate a number of built-in components and services
along with of-the-shelf tools to cover particular aspects of the development process. Moreover, a
number of tasks helping team members on modeling activities have to be semi-automatically
initiated and the output should be easily accessible.

Challenge 3: Improving conflict resolution during change synchronization.

Resolving conflicts during change synchronization between local and remote replicas of the
ontology is a very time-consuming task. This is exacerbated when heterogeneous ontology
authoring editors are used for modeling purposes. Git is able to detect lines within the ontology
file that have been changed from the previous version. Ontologies are written in the RDF format,
composed of a set of triples where their position in the file does not play any role. Therefore,
editors can produce very different serializations for semantically equivalent RDF files, for example,
by ordering triples alphabetically or grouping them by categories, such as classes, properties and
individuals and later, sorting them within a category. During change synchronization, users will
receive many conflicts detected by Git as a result of different sorting criteria. These conflicts
should be manually resolved by comparing two versions of the same ontology file. However, in
many cases, the synchronization problem is time-consuming and can result on: 1) duplication
of RDF triples and several syntactic errors; 2) introducing inconsistencies and violating design
decisions; or 3) with the loss of the entire change set, such as classes, properties or individuals.
The challenge here is to prevent the version control system from wrongly identifying conflicts.

7

Chapter 1 Introduction

Challenge 4: Efficiently enforcing compliance with domain requirements and competency
questions during ontology development.

The majority of ontologies are dynamic and evolve over time, in order to reflect a changing
world. Thus checking for completeness, represented by competency questions and certain quality
assessment indicators should be continuously performed, to avoid any possible divergence and
mistake. To reduce the cost of later corrections, this task should be realized in advance in the
spirit of test-driven development, which means a defined set of test cases are executed before any
ontology concept is modeled. Current techniques enable execution of the entire set of test case
after each change. Due to high demands of processing time, many stakeholders may avoid this
task at all, thus negatively impacting the quality of the ontology with regard to conformance
to initially defined requirements. Therefore, the challenge here is providing a technique for the
execution of a set of test cases in time-efficient manner. Moreover, in the distributed scenario,
where the team is composed of several contributors, another issue is to associate particular test
cases to specific roles or contributors.

1.3 Research Questions
Based on the discussion in the motivation section where various scenarios are presented as well
as the above identified challenges, we define four main research questions. Figure 1.2 illustrates
these questions and their mapping to the corresponding layers.

RQ1: Which guidelines and best practices facilitate collaborative ontology development
in distributed and heterogeneous scenarios?

To address this question, we analyze the nature of ontology development processes in dis-
tributed environments. The result of this step is a collection of important requirements that
should be considered. Driven by the idea and the success of Git used as a version control system,
in the context of software development, we study its applicability for collaborative ontology
development process. Next, we investigate strategies on how to enable ontology construction even
in cases when no specific workflow or methodology is followed. Finally, we examine and evaluate
a number of governing aspects and development practices with respect to their application and
impact that will have on concrete use cases.

RQ2: How can ontology development workflows be mapped on and supported by distrib-
uted version control methods?

With the objective of answering this research question, we devise a semi-automatic approach
that is able to perform actions and tasks after occurrence of specific events. As a result, a
conceptual architecture for an integrated development environment is designed. To support
various scenarios and team compositions, we dive deeper in the following important aspects:

• extensible - enable integration of additional tools and services to provide support for
specific aspects of ontology development;

• interoperable - work in different operating systems and allow the synchronization of results
produced by heterogeneous ontology authoring editors;

• customizable - based on their requirements, stakeholders are able to select a subset of tools
and services to be provided by the platform.

8

1.4 Thesis Overview

RQ3: How can concurrent changes from heterogeneous ontology authoring editors be
effectively synchronized?

To answer this research question, we investigate how parallel changes performed by stakeholders
in their local ontology replicas can be effectively synchronized. Particularly, we focus on reducing
the number of conflicts resulting from ontology authoring editors that use different ordering
criteria to sort triples in the serialization output. Therefore, only the actual conflicts, i.e.,
overlapping triples, are identified and can easily resolved with human intervention. Next, we
study the behavior of the version control systems, such as Git, with respect to the conflict
detection whenever the ordering criteria or the size of the ontology is changed.

RQ4: How can the quality and efficiency in distributed and heterogeneous ontology
development be ensured?

Here, we study how to efficiently enforce the development of qualitative ontologies by ensuring
that pre-defined requirements important for the representation of the domain are fulfilled. In
particular, we investigate how the dependency between test cases derived from the requirements
can be modeled in a directed acyclic graph. As a result, the ontology can be evaluated in an
efficient manner by excluding any test case whose parents have already failed. Considering the
distributed scenario where multiple stakeholders are involved and the fact that an ontology may
comprise several files, we analyze how to evaluate test cases dedicated to specific users or files.

1.4 Thesis Overview
With the aim of preparing the reader for the rest of the document, we present an overview of:
our main contributions and research areas investigated in this thesis; references to scientific
publications covering this work; and an overview of the thesis structure.

1.4.1 Contributions

Figure 1.3 illustrates the main research contributions of the approach presented in this thesis,
which provides methodological and technical support for ontology development in distributed
and heterogeneous environments. In the following, these contributions are described in detail:

1. A lightweight methodology for collaborative ontology development based on version control.
Contribution for RQ1 We propose a methodology for facilitating collaborative ontology
development process in distributed environments. It enables experts with different back-
grounds, system understanding and domain knowledge to work together while avoiding
misunderstandings and lack of communication. The complexity of this process increases
with the number of people involved, the variety of systems to be used and the dynamics
of their domain. Therefore, we collect a number of crucial requirements by analyzing the
nature of collaborative ontology development process and state of the art methods. Draw-
ing from these findings, we define Git4Voc methodology which comprises guidelines and
practices on how Git can be adopted to ontology development. In addition, we demonstrate
strategies for a clear separation between different branches, and issues associated with as
well as practices for naming, reuse, and documentation.

9

Chapter 1 Introduction

Ontology engineers and
domain experts

Shared Repositories

Shared Applications

Local Ontologies

Contributors

100 90 80 70

Consumers

Humans and machines

Private working versions of
ontologies

Synchronized versions of
ontologies

Applications and services to
support ontology publishing
and explorations

1

2

4

3

5

Contribution 2: An integrated environment
to support version-controlled ontology
development.

Contribution 3: An
approach for
serialization
agnostic ontology
development in
distributed settings.

Contribution 4: A
dependency-aware
approach for test-
driven ontology
development.

Contribution 1: A
lightweight
methodology for
collaborative
ontology
development
based on version
control.

SerVCS EffTE

Git4Voc VoCol

Figure 1.3: Thesis Contributions. Four main contributions encapsulated in our holistic approach:
a lightweight methodology, an integrated environment for distributed development of ontologies, a
mechanism for producing unique serialization and a method for efficiently ensuring the quality ontologies
based on the domain requirements. The outcome of this thesis has been used to support modeling of
ontologies in a number of different domains, such as manufacturing, health care and education.

2. An integrated environment to support version-controlled ontology development.
Contribution for RQ2 We devise VoCol, a semi-automatic and modular approach
for supporting ontology development in distributed and heterogeneous environments. It
is based on a fundamental model of ontology development, consisting of the three core
activities: modeling, population, and testing. The underlying layer of VoCol, is a pre-defined
workflow which orchestrates the execution of tasks after occurrence of specific events. This
platform has been implemented following principles for extensibility, interoperability and
customisability. The modular architecture allows the platform to be extended by adding
or exchanging components or services with the aim of addressing specific development
aspects. We demonstrate the applicability of VoCol on a number of concrete use cases
where ontologies representing different domains are collaboratively developed.

3. An approach for serialization agnostic ontology development in distributed settings.
Contribution for RQ3 This approach tackles the problem of synchronization of changes
performed with heterogeneous authoring editors. VCSs collect metadata describing changes
and allow for their propagation to different ontology replicas. For conflict detection, VCSs
usually apply techniques where files are compared line by line. We design the SerVCS
approach, to enhance VCSs to cope with different serializations of the same ontology.
Following the principle of prevention is better than cure, SerVCS produces a unified
representation of the concepts before modifications are committed. As a result, the number

10

1.4 Thesis Overview

of false-positive conflicts, i.e., conflicts that do not result from ontology changes but from
the fact that two ontology versions are differently serialized is significantly decreased, thus
allowing stakeholders to effectively synchronize the ontology replicas.

4. A dependency-aware approach for test-driven ontology development.
Contribution for RQ4 Following the principles of the test-driven development technique,
we devise a requirement-driven approach for enforcing qualitative and efficient ontology
construction. A set of test cases prevents non-intended ontology changes and avoids
constraint violations. However, since the number of test cases can be large and their
evaluation time may be high, the ontology development process can be negatively impacted.
We present EffTE, an approach for efficient test-driven ontology development relying on
a graph-based model of dependencies between test cases. It enables prioritization and
selection of test cases to be evaluated. Traversing the dependency graph is realized via
the breadth-first search algorithm along with a mechanism that tracks tabu test cases,
i.e., test cases to be ignored for further evaluation due to faulty parent test cases. As a
result, the number of evaluated test cases is minimized, thus reducing the time required for
validating the ontology after each modification. Additionally, the approach performs user-
or file-based evaluations, reflecting the diverse team composition and ontology modularity.

1.4.2 List of Publications
Part of the work in this thesis is based on the following publications:

1. Lavdim Halilaj, Irlán Grangel-González, Steffen Lohmann, Maria-Esther Vidal, Sören
Auer. EffTE: A Dependency-aware Approach for Test-Driven Ontology Development. In
33rd ACM/SIGAPP Symposium On Applied Computing (ACM SAC) 2018 Proceedings,
ACM. This article is a joint work with Irlán Grangel-González, a PhD student at the
University of Bonn. In this article, I devised the formalization of the problem, led the
definition and implementation of the proposed approach, reviewed related work, and
prepared of the experiments and analysis of the obtained results;

2. Lavdim Halilaj, Irlán Grangel-González, Maria-Esther Vidal, Steffen Lohmann, Sören
Auer. DemoEffTE: A Demonstrator of Dependency-aware Evaluation of Test Cases over
Ontology. In 13th International Conference on Semantic Systems (Semantics) - Posters and
Demo Track, 2017. This demonstration article is joint work with Irlán Grangel-González,
a PhD student at the University of Bonn. In this article, I conducted the description of
the architecture, implementation and demonstration of the prototype;

3. Niklas Petersen, Lavdim Halilaj, Irlán Grangel-González, Steffen Lohmann, Christoph
Lange, Sören Auer. Realizing an RDF-based Information Model for a Manufacturing
Company – A Case Study. (One of the two nominees for the Best In-Use Paper Award) In
16th International Semantic Web Conference (ISWC) 2017 Proceedings, 350-366, Springer.
This article is a joint work with Niklas Petersen and Irlán Grangel-González, PhD students
at the University of Bonn. My contributions focused on the implementation of the proposed
approach, the preparation and presentation of the use cases, and analysis of different
strategies for data integration for the given scenario;

4. Irlán Grangel-González, Paul Baptista, Lavdim Halilaj, Steffen Lohmann, Maria-Esther
Vidal, Christian Mader, Sören Auer. The Industry 4.0 Standards Landscape from a Semantic

11

Chapter 1 Introduction

Integration Perspective. In 22nd IEEE International Conference on Emerging Technologies
And Factory Automation (ETFA) 2017 Proceedings. This article is a joint work with Irlán
Grangel-González, a PhD student at the University of Bonn and Paul Baptista, a student
assistant at Fraunhofer IAIS. In this article, I contributed to the implementation of the
proposed approach, reviewing of related work and analysis of the obtained results;

5. Lavdim Halilaj, Irlan Grangel-González, Maria-Esther Vidal, Steffen Lohmann, Sören
Auer. SerVCS: Serialization Agnostic Ontology Development in Distributed Settings. In
Communications in Computer and Information Science (CCIS) 914 - Revised Selected
Papers from 8th International Joint Conference, IC3K 2016, Porto, Portugal, 213-232,
Springer. This article is a joint work with Irlán Grangel-González, a PhD student at
the University of Bonn. In this article, I conducted the formalization of the problem,
implementation of the approach, the revision of the state of the art approaches, the
presentation of the use cases, as well as the analysis of the results;

6. Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Steffen Lohmann, Sören Auer.
Git4Voc: Collaborative Vocabulary Development Based on Git. In International Journal of
Semantic Computing (IJSC), 1-24, World Scientific. This article is a joint work with Irlán
Grangel-González, a PhD student at the University of Bonn. In this article, my contributions
are related with collecting requirements for collaborative ontology development, the
description of the approach, the revision of the related work and presentation of the use
case evaluation;

7. Lavdim Halilaj, Irlan Grangel-González, Maria-Esther Vidal, Steffen Lohmann, Sören
Auer. Proactive Prevention of False-Positive Conflicts in Distributed Ontology Development.
(Best Paper Award) In 8th International Conference on Knowledge Engineering and
Ontology Development Proceedings (KEOD), 43-51, SciTePress. This article is a joint
work with Irlán Grangel-González, a PhD student at the University of Bonn. In this article,
I led the formalization of the problem, implementation of the approach, the revision of the
related work, the presentation of the use cases, as well as the analysis of the results;

8. Lavdim Halilaj, Niklas Petersen, Irlán Grangel-González, Christoph Lange, Sören Auer,
Gökhan Coskun, Steffen Lohmann. VoCol: An Integrated Environment to Support Version-
Controlled Vocabulary Development. (Paper of the Month - Fraunhofer IAIS) In 20th
International Conference on Knowledge Engineering and Knowledge Management (EKAW)
2016 Proceedings, 303-319, Springer. This article is a joint work with Niklas Petersen
and Irlán Grangel-González, PhD students at the University of Bonn. In this article,
I conducted the problem description, definition and implementation of the conceptual
architecture, the revision of the state of the art approaches, the presentation of the use
cases, and the realization of the user study evaluation;

9. Irlán Grangel-González, Lavdim Halilaj, Sören Auer, Steffen Lohmann, Christoph Lange,
Diego Collarana. An RDF-based Approach for Implementing Industry 4.0 Components with
Administration Shells. In IEEE Emerging Technologies and Factory Automation (ETFA)
2016 Proceedings, 1-8, IEEE. This article is a joint work with Irlán Grangel-González, a
PhD student at the University of Bonn. My contributions to this article are related to the
revision of the state of the art approaches, implementation of the proposed approach, the
presentation of the use cases, as well as the analysis of the results;

12

1.5 Thesis Structure

10. Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Sören Auer. Git4Voc: Git-
based Versioning for Collaborative Vocabulary Development. In IEEE Tenth International
Conference on Semantic Computing (ICSC) 2016 Proceedings, 285 - 292, IEEE. This article
is a joint work with Irlán Grangel-González, a PhD student at the University of Bonn.
In this article, I contributed to collecting requirements for collaborative development of
ontologies, definition of the approach, the analysis of the related work and the presentation
of the use cases in real world scenarios;

11. Irlan Grángel-González, Lavdim Halilaj, Gökhan Coskun, Sören Auer. Towards Vocabu-
lary Development by Convention. In 7th Knowledge Engineering and Ontology Development
(KEOD) 2015 Proceedings, 334-343, SciTePress. This article is a joint work with Irlan
Grángel-González, a PhD student at the University of Bonn. My contributions focused
on the review of state of the art approaches, devising, conducting and analyzing the user
study and presentation of the outcomes.

The entire list of publications completed during the PhD studies can be found in Appendix A.

1.5 Thesis Structure
This thesis is composed of four main parts each having several chapters. It starts by providing
the context, motivation, research questions and challenges in Part I. Further, this part includes
the preliminaries and the related work, to help the reader for a better understanding of the
thesis. Part II initially explains the collected requirements necessary for supporting collaborative
ontology development in distributed and heterogeneous environments. Next, a lightweight
methodology comprising a set of best practices and guidelines to be followed by stakeholders
involved in the development process, is described. We then continue with the presentation of a
conceptual architecture of the integrated environment and its implementation, developed for
supporting ontology development centered around version control systems. Part III dives deeper
into specific aspects of ontology development, such as synchronization and quality assurance with
respect to the defined requirements. An approach for enabling synchronization of changes from
heterogeneous ontology authoring editors by providing a unique serialization is presented. Next
chapter describes an approach for efficiently ensuring quality of the ontologies by pro-actively
preventing from non-indented ontology modifications. In Part IV, using the results from the
previous parts, we present and discuss three real-world applications with respect to our holistic
approach. Further, we provide usage statistics and other insights on how the VoCol platform is
applied in a larger number of projects. Finally, this thesis is concluded by revisiting the research
questions and presenting possible future directions in two perspectives: research and technical.
An overview at the beginning of each part gives relevant information about the included topics.

13

CHAPTER 2

Background

In this chapter, we describe relevant terminology that serve as a foundation of the research
realized in this thesis. In Section 2.1, we initially discuss important concepts related to ontologies
as well as languages and syntaxes used to model them. We continue looking into main topics of
the ontology development process and its essential activities in Section 2.2. Finally, in Section 2.3,
we discuss techniques of version control systems exploited and adopted in our approach to enable
a collaborative ontology development in distributed and heterogeneous environments.

2.1 Ontologies

The field of graph data models has become very active in recent years. Its main objective is
to enable modeling of data and their relationships in a naturally oriented fashion. Angles et
al. [6] defines graph data models as "those in which data structures for the schema and instances
are modeled as graphs or generalizations of them, and data manipulation is expressed by
graph-oriented operations and type constructors". Over the years, many graph data models are
proposed, such as Logical Data Model (LDM), GROOVY, Simatic-XT and Gram. In addition,
there exist other models, such as GraphDB, Object Exchange Model (OEM), Database Graph
Views and Resource Description Framework (RDF), that inherits graph-like features. A more
detailed survey of the most representative graph data models and similar proposals, is presented
in [6]. In this thesis, we are focused on ontologies which offer the means to conceptualize the
knowledge of a universe of discourse and the RDF, as a modeling language for ontologies.
The term originally comes from the field of philosophy where an Ontology is considered

as a systematic account of being and existence. It focuses on the study of the things, their
categorizations and relations with each other for a particular domain, irrelevant whether they
physically exist or not. The earliest notable work is done by Aristotle in his Metaphysics, where
he dealt with the study of being qua being, which involves: 1) a study; 2) a subject matter (being);
and 3) a manner in which the subject matter is studied (qua being) [7].
On the other hand, many definitions are given in the field of computer science. However,

the most known definition comes from [8], where an ontology is explicit specification of a
conceptualization. Another definition is given by [9], where an ontology is a formal and explicit
specification of a shared conceptualization, which is considered to be one of the most complete
by [10]. According to [11], a conceptualization is an abstract and simplified view of the world that
we wish to represent for some purpose. During this process, a number of relevant concepts, their
attributes and relations between each other, are captured. The meaning of these concepts should

15

Chapter 2 Background

be explicit, thus avoiding any potential ambiguity among them. In order to enable machines to
understand and process the identified concepts, they should be represented in a formal language.
Furthermore, since the ontology encapsulates the joint efforts of a community, all definitions
should derive from a consensual agreement among different stakeholders.

2.1.1 The Resource Description Framework
The Resource Description Framework (RDF) [12] is a W3C Standard for representing information
about resources that exists across the Web. Originally designed to allow the annotation and reuse
of the resource metadata or data about data, it is becoming a data modeling language for encoding
information from many different areas. RDF, through its design mechanisms, is intended to
support publishing and interlinking of data in a human-readable and machine-understandable
format, respectively. It enables the interoperability among intelligent agents by providing a
standardized way of encoding and exchanging semantics of the information, regardless of their
platform or domain. Thus, RDF bridges between the conceptual and operational levels of
information and data representation. The basic structure of RDF, is a statement formed by
three elements: subject,predicate,object, called triple, formally defined in Definition 2.1.

Definition 2.1: RDF Triple [13]

Let I, B, L be disjoint infinite sets of URIs, blank nodes, and literals, respectively. A tuple
(s, p, o) ∈ (I ∪B) × I × (I ∪B ∪ L) is denominated an RDF triple, where s is called the
subject, p the predicate, and o the object.

The subject represents a resource, the object denotes either a resource or a literal value,
whereas the relationship between them is established through the predicate. The RDF resources
are typed by simply adding a triple with the rdf:type property as the predicate and a suitable
object representing the class in which the resource belongs to. Uniform Resource Identifiers
(URIs) are used to identify resources unambiguously, while literals (consisting of either a string
and its language tag or a value and its datatype) describe concrete data values. RDF can be
represented as a directed graph composed of vertices (representing subjects and objects) and
edges (representing predicates). Properties and classes required to describe and structure data of
a certain domain can be defined in RDF using taxonomic relations. Such descriptions of classes
and properties are called vocabularies, RDF schemas, or ontologies, and are encoded in an RDF
document. An RDF document D, is defined as a set of triples: D ⊂ I × I × (I ∪ L), where I
represents the set of URIs and L the set of literals. Therefore, RDF can be used to easily represent
various types of information and data, including taxonomic/tree data, tabular/relational data,
and logical axioms. Since all schema and data entities have URI identifiers associated that are
worldwide unique, it is easy to link to other data (instance level) or to reuse vocabulary elements
from existing ontologies (schema level).
Let us consider the following natural statement: Lavdim studies at University of Bonn.

The RDF representation of this statement would start with the definition of: Lavdim and
UniversityOfBonn as resources, where the first is denoted as a subject and the second as an
object. The relationship between those two is denoted by study at, which is a predicate or
property. The statement is encoded as following: http://sda.uni-bonn.de/onto/staff/Lavdim,
http://sda.uni-bonn.de/onto/staff/studyAt, http://uni-bonn.de/University, where the URIs are
used to provide a unique identification for each of the above elements. Further, this statement is

16

2.1 Ontologies

Student University City

Lavdim UniversityOfBonn Bonn

Person Organization Place

is a is a

study At
domain

studyAt locatedIn

located In

is a

range rangedomain

subClassOf subClassOf subClassOf

Figure 2.1: Example of an RDF graph. T-Box represents the conceptual level of entities and their
inter-relationships whereas A-Box represents concrete instantiations of the defined concepts.

extended with another property, such located In to connect with the city of Bonn. In addition
to concrete instances which belongs to A-Box or Assertional Knowledge, RDF allows modeling
of the conceptual level in T-Box or Terminological Knowledge. More information, represented
by classes and properties are added to better describe the knowledge about this scenario. For
instance, Lavdim can be seen as a Student, UniversityOfBonn as a University and Bonn as a
City. Since one of the important characteristics of ontologies is reusability, concepts such as
Person, Organization and Place, can be imported from other external ontologies and interlinked
as the super classes of Student, University and City, respectively. Moreover, domain denotes the
type of a subject and range denotes the type of an object that a property can have. The domain
values of the property studyAt are from Student class and range values are from the University
class whereas the property locatedIn has University as domain and City as range. Figure 2.1
illustrates the graph representation of the above example.

RDF Syntax

In order to enable ontology modeling using RDF, various serialization formats are proposed. In
the following, we list some of the most well-known formats:
RDF/XML1 is a W3C recommendation used to represent the RDF data model. It is based

on the XML syntax, imposing hierarchical structure for representation of resources. The root
node of an RDF/XML document is and rdf:RDF, which is followed by a number of namespaces.
Multiple nested elements can be encoded within the rdf:RDF node. Triples encoded in XML
constructs are grouped according to their subject. The XML element, rdf:Description, is used to
describe subjects and objects of the RDF triples. The unique identifier of a resource is handled
by an rdf:about attribute, whereas the literal values are encoded in separated tags. Predicates can
either be defined via XML attributes or as separate resources. Listing 2.1 shows the RDF/XML
shortened representation of the Figure 2.1.
The main advantage of this syntax is the ability to be parsed by many mature tools and

libraries compatible with XML. On the other hand, the RDF/XML is not very human readable,
making it not attractive for people who model ontologies using plain text editors, in particular
when the size is increased. Moreover, due to number of XML encoded constructs, an RDF/XML
document tends to grow very quickly, increasing memory and processing requirements.
1 http://www.w3.org/TR/rdf-syntax-grammar/. Date Accessed: 28 March 2018.

17

http://www.w3.org/TR/rdf-syntax-grammar/

Chapter 2 Background

<?xml version ="1.0" encoding ="utf -8" ?>
<rdf:RDF xmlns:rdf =" http :// www.w3.org /1999/02/22 - rdf -syntax -ns#"

xmlns:rdfs =" http :// www.w3.org /2000/01/ rdf - schema #"
xmlns:sda =" http :// sda.uni -bonn.de/onto/staff #">

<rdf: Description rdf:about =" http :// sda.uni -bonn.de/onto/staff#Bonn">
<rdf:type rdf: resource =" http :// sda.uni -bonn.de/onto/staff#City "/>

</rdf: Description >

<rdf: Description rdf:about =" http :// sda.uni -bonn.de/onto/staff#
UniversityOfBonn ">
<rdf:type rdf: resource =" http :// sda.uni -bonn.de/onto/staff# University "/>
<sda: locatedIn rdf: resource =" http :// sda.uni -bonn.de/onto/staff#Bonn "/>

</rdf: Description >

<sda: Student rdf:about =" http :// sda.uni -bonn.de/onto/staff# Lavdim ">
<sda: studyAt rdf: resource =" http :// sda.uni -bonn.de/onto/staff#
UniversityOfBonn "/>

</sda:Student >
</rdf:RDF >

Listing 2.1: RDF/XML Syntax. RDF/XML serialization of the example in Figure 2.1.

Turtle2, which stands for Terse RDF Triple Language, aims at improving human readability
of RDF documents. Using namespaces, it is possible to abbreviate the URIs of the internally
defined concepts or externally used ones. The namespaces are normally written in the beginning
of a Turtle document, in a form of a header. In order to enable their inner usage within the
document, a unique prefix is associated for each namespace, respectively. The position and
order of triples within the document is not important. Triples are separated with each other
using dots, whereas spaces and line-breaks apart from the URIs, are irrelevant and ignored by
parsers. Additionally, the so-called syntactic sugar allows triples to be grouped according to the
same subject. In this case, the subject is written only once whereas its predicates and objects are
terminated by a semicolon. Furthermore, objects sharing the same subject and predicate, can
be grouped together and separated between each other using a comma. As a result, the Turtle
format in addition to its human readability, is even more space efficient compared to RDF/XML.
Listing 2.2 shows the serialization of the example depicted in Figure 2.1 in the Turtle syntax.

@prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
@prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
@prefix sda: <http :// sda.uni -bonn.de/onto/staff#> .

sda:Bonn rdf:type sda:City.

sda: UniversityOfBonn rdf:type sda: University ;
sda: locatedIn sda:Bonn;
rdfs:label " University of Bonn" .

sda: Lavdim rdf:type sda: Student ;
sda: studyAt sda: UniversityOfBonn ;
rdfs:label " Lavdim " .

Listing 2.2: Turtle Syntax. Representation of the example in Figure 2.1 using the Turtle serialization.

2 https://www.w3.org/TR/turtle/. Date Accessed: 30 March 2018.

18

https://www.w3.org/TR/turtle/

2.1 Ontologies

JSON-LD3 is designed with the primary objective to enable the serialization of Linked Data
into JSON format. Thus, RDF information encoded as Linked Data can be processed by any
JSON parser and library. Using JSON-LD, applications are able to consume Linked Data and
navigate across data sources on the Web, simply by following the embedded links. Moreover,
JSON-LD is intended to be easily converted in Turtle, or queried with the SPARQL language,
respectively. Important elements that compose a JSON-LD document are: 1) JSON object -
a compact structure representing an object surrounded by curly brackets with zero or more
key-value pairs; 2) array - a structure to represent zero or more values surrounded by square
brackets; and 3) string, number, boolean and null - to allow encoding of values into respective
formats. JSON-LD introduces additional features to those inherited from JSON for a unique
identification of JSON objects via URI s, annotation of strings into different languages, ability
to express more than one directed graph in a single document, etc. Listing 2.3 represents an
excerpt into JSON-LD format of the example graph in Figure 2.1.

prefix declaration

[
{

"@id ":" http :// sda.uni -bonn.de/ ontologies /staff#Bonn",
"@type ":[

"http :// sda.uni -bonn.de/ ontologies /staff#City"
]

},
{

"@id ":" http :// sda.uni -bonn.de/ ontologies /staff# Lavdim ",
"@type ":[

"http :// sda.uni -bonn.de/ ontologies /staff# Student "
],
"http :// sda.uni -bonn.de/ ontologies /staff# studyAt ":[

{
"@id ":" http :// sda.uni -bonn.de/ ontologies /staff# UniversityOfBonn "

}
]

},
{

"@id ":" http :// sda.uni -bonn.de/ ontologies /staff# UniversityOfBonn ",
"@type ":[

"http :// sda.uni -bonn.de/ ontologies /staff# University "
],
"http :// sda.uni -bonn.de/ ontologies /staff# locatedIn ":[

{
"@id ":" http :// sda.uni -bonn.de/ ontologies /staff#Bonn"

}
]

}
]

Listing 2.3: JSON-LD Syntax. Representation of the graph in Figure 2.1 into JSON-LD format.

There exist a number of other well-known serialization syntaxes used in different domains or
to address specific requirements. RDFa4 is a W3C recommendation that allows for the addition

3 http://www.w3.org/TR/json-ld/. Date Accessed: 30 March 2018.
4 http://www.w3.org/TR/rdfa-syntax/. Date Accessed: 02 April 2018.

19

http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/rdfa-syntax/

Chapter 2 Background

of rich metadata with the purpose of providing more information about the resources. As a
result, the expressions subject-predicate-object can be embedded within the structure of XHTML
documents and easily extracted by application agents. Trig5, is another important syntax, which
consists directives for grouping a set of triples into named graphs within an RDF document. For
each named graph, an URI is associated, allowing for the identification and referencing from
inside or outside of the RDF document. Trig is an extension of the Turtle format, inheriting
its features for formatting triples as well as improving the human-readability. Furthermore, it
facilitates the encoding of metadata related to the provenance and maintenance.

2.1.2 Expressiveness of Ontologies

The RDF model comprises only minimum number of modeling constructs to allow for the
definition of the triples and providing unique identifiers. In order to enable encapsulation of the
meaning of the resources as well as a detailed description of their relations, various schemes
should be used. As a result, this description is enriched with a formal specification of the resources
and their relationships, facilitating the intelligent agents to comprehend this information. In the
following, the two most important schemas and their features are described.

RDF Schema

The RDF Schema (RDFS) [14] is created on the top of the RDF model, by extending it with
additional modeling constructs, such as rdfs:Class, rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain, and rdfs:range. The rdfs:Class allows for the specifications of a particular
resource as a Class. Establishing a hierarchical structure between classes is realized using the
rdfs:subClassOf. Relationships between classes are defined by properties, i.e., rdf:Property.
Furthermore, properties use rdfs:domain and rdfs:range to allow a more detailed specification
of these relationships. The domain of a property specifies its subject type within a triple whereas
by range, the type of an object is defined. By doing so, the potential values for a relationship
represented by a particular property are restricted to specific types, as defined in the domain
and range of that property. Using the rdfs:subPropertyOf, properties can be organized in
a hierarchical fashion. The modeling constructs, such as rdfs:comment and rdfs:label are
used as annotation properties to enrich the human-readability of the given concepts. The RDF
Schema serves as foundation to build classification of the typed hierarchies according to their
relationships defined by rdfs:subClassOf and rdfs:subPropertyOf, as well as the restrictions
specified using rdfs:domain, and rdfs:range [15].

The Web Ontology Language

The Web Ontology Language (OWL) [16] is a standard recommended by W3C, which has a rich
set of constructs for modeling of complex ontologies. Thus, OWL is more expressive compared
to RDFS, providing a comprehensive coverage with variety of axioms to represent the knowledge
of an intended domain. Apart from taxonomic relations, and other simpler relations that can
be modeled using RDFS, OWL allows for the specifications of restrictions or cardinalities for
objects and literal values. Rigidity is an important feature of OWL, enabling ontology engineers
to specify not only how particular axioms can be used but also how cannot be used. OWL offers
special axioms to support modeling of the ontology metadata related to provenance, versioning,
5 http://www.w3.org/TR/trig/. Date Accessed: 15 April 2018.

20

http://www.w3.org/TR/trig/

2.1 Ontologies

and maintenance. Apart from allowing the expression of the knowledge in a formal language,
through reasoning process, new implicit facts can be inferred from the already explicit modeled
ones. Some of the most relevant axioms of OWL are listed as follows:

1. define expected type of properties, i.e., object value, using owl:ObjectProperty for
resource as value and owl:DatatypeProperty for literal as value;

2. distinguish and avoid overlapping between two different classes with owl:disjointWith;
3. use logic operators, such as AND, OR and NOT with owl:intersectionOf, owl:unionOf

or owl:complementOf;
4. define flat relationships, such as synonyms in the concept level via owl:equivalentClass

or in the instance level via owl:sameAs;
5. restrict type and number of individuals to be used via owl:allValuesFrom, owl:someValuesFrom

or owl:cardinality;
6. specify complex relationships using owl:SymmetricProperty, owl:TransitiveProperty

or owl:InverseFunctionalProperty.

OWL Profiles To adjust the level of expressivity for various application scenarios, OWL 2 [17]
provides the three following profiles: OWL EL, OWL SQL, and OWL RL. With the objective of
facilitating the reasoning, these profiles restrict the number of modeling axioms that can be
used for each of them, respectively.

OWL EL - is suitable for scenarios where ontologies with large number of classes and/or
properties need to be modeled. Algorithms dedicated for this profile are highly scalable
and can perform reasoning in a polynomial time.

OWL QL - is tailored for scenarios where a large amount of instance data need to be handled
and querying them is the most important task. To ensure a polynomial reasoning time, its
level of expressivity, is rather limited, although the main modeling features are included.

OWL RL - is designed to balance requirements for scalable reasoning and expressive power.
Checking for consistency, satisfiability and subsumption for class expression as well as
answering of conjunctive queries is realized in a polynomial time w.r.t. the ontology size.

Therefore, while the ontology is being modeled, a trade-off between the appropriate profile
and the reasoning performance should always be considered. A more expressive ontology can
lead to the non computational time during reasoning process.

2.1.3 The SPARQL Protocol and RDF Query Language
The SPARQL Protocol and RDF Query Language (SPARQL) is the standard language to query
the information represented according to the RDF format [18]. Similar to the Structured Query
Language (SQL), used to query and manipulate data in the relational databases, SPARQL
supports graph databases with functionalities, such as aggregation, filtering, and nested queries.
It enables simultaneous execution of the queries over multiple data sources using a federated
query mechanism. Moreover, SPARQL allows for querying other types of data sources, like
Relational Databases, XML or CSV, whenever they can virtually represented as RDF. With
SPARQL, it is possible to explore the RDF graph through traversing the relations between
concepts. This is realized by matching basic graph patterns, defined in a query, where each

21

Chapter 2 Background

element of the given triples can be a variable. Next, these variables are replaced with concrete
values in case the basic graph pattern matches with the resulting triples from the RDF graph.

Definition 2.2: Triple Pattern [19]

Let U,B,L be disjoint infinite sets of URIs, blank nodes, and literals, respectively. Let V
be a set of variables such that V ∩ (U ∪B ∪L) = θ. A triple pattern tp is member of the set
(U∪V)×(U∪V)×(U∪L∪V). Let tp1, tp2, . . . , tpn be triple patterns. A Basic Graph Pattern
(BGP) B is the conjunction of triple patterns, i.e., B = tp1ANDtp2AND . . . ANDtpn

The SPARQL query language provides four forms of queries: 1) ASK; 2) SELECT; 3) CONSTRUCT;
and 4) DESCRIBE. The ASK form returns a boolean value either true or false, depending on
whether the given pattern matches any triple in the RDF graph. SELECT retrieves all triples that
match the pattern (cf. Definition 2.2) defined in the query, considering clauses for constraints and
filters. The result is formatted according to the aggregation, or ordering functions including the
limit and pagination. A new RDF graph can be created via the CONSTRUCT form, corresponding
to the query template. The DESCRIBE form shows all information contained in an RDF graph
about a particular resource which is specified in the query.
Listing 2.4 depicts a simple SELECT query used to retrieve the information about the name

of the university and its actual number of students where the resource named ’Lavdim’ is studying.

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX sda: <http :// sda.uni -bonn.de/onto/staff#>
PREFIX dbo: <http :// dbpedia .org/ ontology />

SELECT ? university ? numberOfStudents WHERE {
? university a sda: University ;

sda: isLocatedIn ?city;
dbo: numberOfStudents ? numberOfStudents .

? student sda: studyAt ? university ;
rdfs:label ? studentName .

FILTER (? studentName = ’Lavdim ’)
}

Listing 2.4: A SPARQL query. A query to retrieve the name of the university and its number of
students where the resource named ’Lavdim’ is studying.

2.1.4 The Semantic Web
The idea of extending the Web of Documents towards Semantic Web where things are intercon-
nected and able to exchange information with each other, was introduced by Tim Berners-Lee
et al. [20]. The Semantic Web vision can be achieved by structuring the existing information or
those being generated using ontologies as one of the important means. As a result, the current
unstructured and heterogeneous Web of Documents which is easily understandable and explored
by humans, is transfered into structured and integrated global information source. As described
by authors, different agents are able to understand the meaning of data and the context on
which they are going to be used. Intelligent agents collaborate with each other in an autonomous

22

2.2 Ontology Development

Evaluation

Knowledge Acquisition

Specification Conceptualization Formalization Implementation Maintenance

Documentation

Figure 2.2: Activities during ontology development. Core activities performed typically in sequence:
specification, conceptualization, formalization, implementation and maintenance. In addition, three
activities are performed in parallel: knowledge acquisition, evaluation and documentation [21].

fashion to conduct a particular task at a specific time. As a result, we have a Global Information
Source, where heterogeneous data coming from different sources are integrated and ready to be
used. However, in order to enable this integration, a flexible and simple, yet powerful enough
formal language should be used for modeling purposes. For this reason, the Resource Description
Framework (RDF) created by World Wide Consortium (W3C)6, as a generic framework for
representing information on the Web is utilized to develop ontologies.

Ontologies are used for structuring and sharing the knowledge among different organizations,
which might be dispersed across the world. They are developed by many people with various
interests that contribute on conceptualization of a particular domain and defining the concepts,
attributes and relationships. Opinions and interests from stakeholders should be integrated, in
order to avoid disagreements and inadequate contribution.

2.2 Ontology Development
Ontological engineering refers to “the set of activities that concern the ontology development
process, the ontology life-cycle, principles, methods and methodologies for building ontologies, as
well as the tool suites and languages that support them” [10]. During this process, a number of
people with different roles and expertises are involved, where two of them are the most important
ones: 1) Ontology Engineers (OEs); and 2) Domain Experts (DEs). Ontology Engineers are
skilled people with technical expertise in formal languages and tools, necessary to model a
domain of interest. Domain Experts are professional persons who have the expertise on the
given domain and its requirements. Figure 2.2 illustrates five core activities and three additional
ones performed in parallel during entire ontology development life-cycle [21]:

Specification During this activity, the objective and the scope of an ontology is specified.
Usually questions, such as "What is the purpose of the ontology being developed?",
"Who are the stakeholders that will be involved in development and maintenance?",
"Who will use the ontology?", are clarified. The intention here is to identify the goals
and define the granularity of the domain knowledge to be modeled while limiting the
complexity. Commonly, a list of competency questions derived from the requirements are

6 https://www.w3.org/TR/rdf-concepts/

23

https://www.w3.org/TR/rdf-concepts/

Chapter 2 Background

A1 A2 A3Life-cycle

Final Product

A1 A2 A3 A1 A2 A3

Waterfall Iterative Evolving

Figure 2.3: Life-cycles models. Comparison of the sequence of activities performed in different models,
such as: a) Waterfall; b) Iterative; and c) Evolving [22].

used to determine the ontology scope. Later on, these questions are used to evaluate the
completeness and avoid any negative impact of modifications to the core concepts.

Conceptualization A number of concepts are derived as an outcome of the previous activity.
As a result, a conceptual model is built to represent the concepts and their relationships
in a language independent fashion. A number of clusters may be created, since several
concepts are strongly connected with each other. These clusters can be aligned as separate
modules where the ontology can further be decomposed.

Formalization Next, the conceptual model is converted into a formal model using necessary
axioms to reduce the potential interpretations of the meaning for the defined concepts.
Usually, a hierarchical structure is created by specifying the relationships between concepts,
such as "sub-class-of" or "part-of".

Implementation In this step, the formal model is implemented based on a particular language
with a set of strictly defined axioms. As a result, the developed ontology is machine
processable and a reasoner can be employed to infer new facts.

Maintenance Commonly, ontology evolves over the time and is subject of changes even after
the implementation process is finished. These modifications are performed to reflect the
new requirements that may come from the stakeholders or to repair possible bugs.

In addition to the above mentioned activities, there are some activities that are orthogonally
performed during the entire ontology life-cycle:

Knowledge acquisition As the development process continues, ontology engineers and domain
experts will gather new knowledge about the domain. As a result, the ontology is refined
according to the acquired knowledge.

Evaluation Ensures that a certain quality is met by continuously validating the ontology.
Moreover, the completeness with respect to competency questions can be assessed and
any not intended change to the core concepts and relationships should be avoided.

Documentation Track and monitor the tasks that have been realized and the way of realization
as well as design decisions that have been taken. In addition to improve the clarification
and reusability of the defined concepts, it facilitates the maintenance of the ontology itself.

As depicted in Figure 2.3, the above mentioned activities can be performed following various
life-cycle models, such as waterfall, iterative and evolving. [22] states that the majority of
methodologies for ontology development are based on an evolving prototyping model. This allows
for the switching back and forth to any activity with the objective to improve the prototype,
until the defined requirements and the evaluation criteria are fulfilled.

24

2.3 Version Control Systems

2.2.1 Collaborative Ontology Development

A collaborative ontology development process involves many stakeholders working together to
model a domain of interest. This process should be supported by specialized methods and tools
to accommodate stakeholders with different skills, experience and responsibilities, as well as
potentially divergent agendas [5]. Typically, activities starting from specification, conceptual-
ization, formalization, implementation and maintenance are performed during a collaborative
development as well. Stakeholders need to jointly define the domain requirements while proposing
and negotiating various use cases. Next, a number of constraints and modeling decisions, such
as the level of granularity, naming conventions, and reuse of existing ontologies, are defined.
To avoid misunderstandings, stakeholders may define a common glossary including technical
terms. They further investigate current tools and frameworks for collaborative development and
decide upon which one to use, considering current team composition and their skills. Another
important aspect to be carefully analyzed, is the definition of the quality metrics, which should
be performed in parallel to each activity during the entire development process. In these scenarios
where many people are involved, the roles for each of them have to be clearly defined and the
mechanisms to monitor their contributions should be specified.

2.2.2 Test-driven Development

Test-driven Software Development (TDD) is a programming approach where a set of test cases
is defined before the code is actually written [23]. Three are the main steps based on the TDD
principles: 1) add a test; 2) write the code; and 3) refactor the code. First, test cases which
represent the requirements to cover different aspects of the software being developed, should be
defined. Next, these test cases have to be executed, which initially will fail. The developer should
write only the necessary code to pass the test. The execution process has to be repeated until
there is no test case that fails. The refactoring step ensures that any written code meets certain
quality criteria, such as: a) purpose and the use of each module, class and variable is clearly
defined; b) avoid duplicates; and c) split large modules, classes or methods into smaller ones to
support maintainability and readability. On the other hand, the development of domain-specific
ontologies requires joint efforts among different groups of stakeholders, such as ontology engineers
and domain experts. Following the principles of TDD, the ontology development process is
ensured that any ontology modification has only the expected effects, by continuously running
a set of test cases. This set of test cases can be defined based on the Competency Questions
and the constraints derived from the domain requirements. Figure 2.4 illustrates SAMOD, a
simplified agile methodology for ontology development [24]. It is based on iteration over a modelet,
which is an isolated model used to conceptualize a specific aspect of the domain with respect to
the motivation scenario. SAMOD follows the TDD principles, consisting of three main steps: 1)
ontology engineers together with domain experts collect domain requirements, build a modelet
and create a test case; 2) current model is merged with the modelet of the new test case from
last iteration by ontology engineers; and 3) ontology engineers perform refactoring based on the
outcome from the previous step [24].

2.3 Version Control Systems

Version Control Systems (VCSs) are software systems used to manage changes made to a
repository over the time. Typically, a repository comprises a file or set of files organized into

25

Chapter 2 Background

1
1

23

Figure 2.4: SAMOD - A Simplified Agile Methodology for Ontology Development. SAMOD
follows the TDD principles: 1) collecting the domain requirements; 2) merging models from two different
iterations; and 3) refactoring based on the outcome of the previous step [24].

directories. Any performed change is tracked, enabling the VCS to create regular snapshots
for the repository. The snapshots represent different versions of the files and allow to reverse
back to a previous state of a file, in case of identified mistakes. Developers of a team can work
collaboratively while simultaneously performing changes to the same project. If properly used,
the version control prevents from a potential loss of the work realized over the time, as well as
it avoids the gradual worsening of the work or any unindented action. A hosting platform is
chosen to maintain and propagate changes performed to a repository by different developers.

There are two major types of version control: 1) Centralized Version Control Systems; and 2)
Distributed Version Control Systems [25].

2.3.1 Centralized Version Control Systems

The main concept in centralized version control is a central repository. It primarily serves as a
shared space to store the entire history of changes and enables developers to access it following
the principles of a client-server architecture.

A new version of a repository is created after each change or set of changes. The new version
contains metadata to describe more details about it, and an identification number, which is
automatically incremented or uniquely generated according to a special pattern. Users are able
to retrieve the latest or a specific version of the repository using the checkout command while
providing the version id. Thus, they can work on the personal working copy, which does not
include the entire history of changes made on it. Further, users share their local modifications
with other team members via the commit operation. The update operation is used to receive
the latest changes realized by other users. Changes between different versions of the repository
are calculated as deltas using various diff algorithms. The parallel development is supported by
various branches, acting as independent lines of the main repository, where users can fix related
bugs, implement new features or release the mature versions.

The central repository acts as a single point of failure, where in case of any mistake, the entire
work and the history of changes can be lost. Another drawback of centralized version control
systems, is the need to be always connected for performing specific operations, such as commit.

26

2.3 Version Control Systems

Server

Workstation/PC #3

Workstation/PC #2

Workstation/PC #1

Working copy
Remote repository

Working copy

commit

Working copy
User A

User B

User C

update

(a) Centralized Version Control Systems

Workstation/PC #2

Server

Workstation/PC #1

Local repository
Remote repository

push

User A

User B

pull
Working Copy

Log DB

commit update

Local repository

Working Copy

Log DB

commit update

Workstation/PC #3

Local repository

User C

Working Copy

Log DB

commit update

(b) Distributed Version Control Systems

Figure 2.5: Version Control Systems: Centralized vs Distributed. Collaboration workflows: a)
several users work together on the same central repository; and b) several users work on their local
repositories and synchronize the changes with the others via a shared repository.

2.3.2 Distributed Version Control Systems

To address some limitations of the centralized version controls, a new generation of VCSs, the
Distributed Version Control Systems has emerged. Instead of having only one central repository,
users always retrieve the entire repository, including the complete history of changes. This allows
to perform many operations, such as commit, even without being connected to a network.

As illustrated in the Figure 2.5(b), working offline is enabled using the clone command, where
a local repository is mirrored in the user machine from the remote repository. User continues
to edit files in the working copy, until it reaches a state where changes should be committed.
During the commit process, a message is provided to describe the reason for the changes that
have been realized. A new version of the repository is created comprising additional metadata
for the user who performed the modifications and the timestamp information.

Synchronization

A VCS assists users to work collaboratively on shared artifacts, and helps them to prevent from
overwriting changes made by each other. Basically, mechanisms to avoid change overwriting can
be classified according to pessimistic and optimistic approaches [26]. The first ones are based on
the lock-modify-unlock paradigm, which implies that modifications to an artifact are permitted
only for one user at a time. The latter ones are based on the copy-modify-merge paradigm, where
users work on personal copies, each reflecting the remote repository at a certain time. After
the work is completed, the local changes are merged into the remote repository by an update
command, comprising the phases: comparison, conflict detection, conflict resolution, and merge.

Users can perform many changes and commit them to the repository. Since the entire history
of changes is logged, it is possible to trace it through unique identifiers and navigate to a specific
version. However, in case that a User A wants to share her changes with other team members,
she should publish them to the shared remote repository. In order to realize that, the push
command is used. After the latest version is pushed to the remote repository, other users can
retrieve it via the pull command.

27

Chapter 2 Background

Conflicts Different techniques, such as line-, tree-, and graph-based ones, can be employed
to compare two versions of the same artifact [27]. The line-based technique, which achieved a
wide applicability, compares artifacts line by line, with each line being treated as a single unit.
This technique is also known as textual or line-based comparison [26]. Examples of VCSs that
use the line-based approach are Subversion, CVS, Mercurial, and Git. Line-based comparisons
are applicable on any kind of text artifact, as they do not consider syntactical information [27].
Accordingly, line-based approaches also neglect syntactical information of ontologies, which are
commonly represented in some text-based OWL serialization.
Challenges arise when two ontology developers simultaneously modify the same artifact on

their personal working copies. Changes might contradict each other, for instance, developers may
both edit the name of an ontology concept. Such parallel and controversial modifications can
result in conflicts during the merging operation of two ontology versions. In general, a conflict
is defined as “a set of contradicting changes where at least one operation applied by the first
developer does not commute with at least one operation applied by the second developer” [27].
Conflicts can be detected by identifying changed units (i.e., added, updated, deleted) in parallel.
Conflict resolution can be done automatically or may require users to manually fix them by
resolving the conflicting changes.

False-positive conflicts A distributed VCS follow the optimistic approach to enable the
concurrent modification of the ontology artifacts, as well as conflict detection and resolution.
From the ontology development point of view, the situation is exacerbated when different
ontology authoring editors are used during the development process. This is due to the fact
that these editors often produce different serializations of the same ontology, i.e., the ontology
concepts are grouped and sorted differently in the files generated by the editors.7 The ability of
the VCS to detect the actual changes in ontologies is lowered. As a consequence, the VCS may
detect a large number of false-positive conflicts, i.e., conflicts that do not result from ontology
changes but from the fact that two ontology versions are differently serialized.

Hooks – An Event Triggered Mechanism

Hooks are special scripts triggered after occurrence of particular events, such as during commit
or merge operations. They enable customization of actions and creating specific workflows to
achieve a desired result or meet certain requirements. Thus, special mechanisms to automate
tasks for development and deployment can be designed. According to the scope of the action
coverage, Git hooks are divided in two groups: 1) client-side; and 2) server-side hooks.
Client-side hooks are invoked prior to occurrence of specific actions in the local repository.

They are split into three categories: committing-workflow hooks, email-workflow scripts, and
everything else.8 Among the most important hook within the committing-workflow category is
the pre-commit hook. It is invoked each time when a user runs the git commit command along
with providing a commit message. This hook can be utilized for inspecting various aspects of the
changes recently performed over the code. Additional test coverage techniques can be employed
to ensure that changes do not break rules or constraints that are defined in advance.

7 With “different serializations”, we refer to two different ontology files that represent the same ontology using
the same syntax (e.g., RDF/XML, Turtle, and Manchester) but use a different structure to list and group the
ontology concepts.

8 https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks. Date Accessed: 17 April 2018.

28

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

2.3 Version Control Systems

Server-side hooks reside in remote hosting platforms, i.e., GitHub, Bitbucket or Gitlab.
Typically, these hooks are managed by administrators, who are responsible for maintaining
the repository, monitoring activities and managing the user permissions. The most important
hooks in this group are: pre-receive, update, and post-receive. They are invoked at different
phases after running the git push command. Pre-receive and update are executed before the
conducted changes are permanently written into repository. It is possible to prevent users
from pushing changes if the commit or format of the commit message do not meet a certain
criteria. Post-receive takes place after the push operation is successfully completed. Tasks, such
as emailing the team involved into the development process or acting as a continuous integration
service, are typical scenarios for this hook.

Branching and Merging

Branching and merging are fundamental features of a VCS, which allow parallel development
within the same repository. Developers quite often want to test a new feature or to fix a bug in
an isolated copy, without interfering the primary development line. The main reason is related
with avoiding any negative impact that a new feature or bug fix might have to a mature version
of the project. Typically, a repository comprises the following branches: release, often named
as master, development, testing or branches associated with feature or issue name, respectively.
There are two major branching styles that can be followed during the development process [28].
Early Branching is suitable for larger projects with fine-grained requirements for control and
safety, but posing additional overhead for propagation of the changes. Deferred Branching fits
better to scenarios that can tolerate a small portion of safety risks to gain a higher productivity.

On the other hand, merging operation should be carefully performed, since a wrongly conducted
merge may cause the loss of changes or introduce new issues. An important aspect to be considered
during multi-branch development, is doing regular synchronizations to avoid potential divergences
between them. One way to tackle this, is using continuous integration services for allowing
the harmonization of changes from different branches. However, this task should be regularly
monitored and in many cases requires human intervention to reduce number of the possible issues
that might arise. In the line with branching style, a team should also consider the merging style
suitable for its use case [28]. Restricted Merging Style implies stricter policies and constraints
for increasing the safety and avoiding any risk that may lead to non-intended consequences.
Relaxed Merging Style sacrifices the safety for having less policies and constraints.

29

CHAPTER 3

Related Work

In this chapter, we discuss the related work to our research, according to the defined research
questions. We initially describe the general classification of methodologies and their characteristics.
We then dive more in deep in methodologies which are focused on the collaborative aspects of
ontology development. Here, we elaborate the main aspects of these methodologies and how
they are used in practice. We start the next section with a brief presentation of standalone
tools used for creating ontologies. We then continue on revising the platforms dedicated for
collaborative ontology development. Moreover, we look on how concurrently modified ontologies
on version control systems are synchronized by preventing from the overlapping conflicts. In the
end, we discuss the approaches provided in the literature to support test-driven development of
the ontologies with a focus on efficient execution of a given set of test cases.

3.1 Methodologies for Collaborative Ontology Development

Ontology development is an active research area for many years in the Semantic Web com-
munity [29]. Several methodologies are proposed with the objective of facilitating the development
process in various scenarios. Nowadays, teams involved in ontology creation are composed of
many people using different communication channels to assist their collaboration and organize
their assigned endeavors. Considering the collaborative aspect, methodologies are classified in
two categories: 1) traditional methodologies, which target developing ontologies in organizations
where a group of people work together in a closed environment; and 2) collaborative ontology
development methodologies, with a strong focus on collaboration aspects, where a large number
of people or a community is involved [5]. Another classification can be made according to the
fact whether a methodology adhere to a specific workflow. In this regard, first group comprises
methodologies that describe ontology development as set of activities that should be performed
following a particular order. Second group comprises methodologies typically agile oriented and
do not require to follow a strict workflow. These methodologies propose set of guidelines and
practices covering a wide range of aspects of the development process.

3.1.1 Workflow-dependent Methodologies

In the following, some of the representative workflow-dependent methodologies for supporting
collaboration during ontology development, are described.

31

Chapter 3 Related Work

Figure 3.1: The HCOME methodology. Overview of the main phases of the HCOME methodology,
their goals and respective tasks. (S) - denotes shared spaces, whereas (P) - denotes private spaces [30].

HCOME

The Human-Centered Ontology Engineering Methodology (HCOME) presented by Kotis et
al. [30], is a methodology which has the main focus on creation of ontologies in distributed
settings. The two major distinguished roles are: knowledge workers, who are experts from
the field and knowledge engineers, responsible for modeling ontologies based on a particular
formal language. HCOME suggests different spaces where team members can work and save the
ontologies. The Personal Space is used by members to create and modify ontologies according
to their personal opinions, as well as to manage various versions. Once the developed ontology
evolves to a mature version, it can be uploaded into the Shared Space, where the other members
can access and explore it. The Shared Space allows for the comparison of various versions of the
same ontology and supports the discussion of modeling decisions. Authors identify four important
issues that should be addressed by the methodology: 1) the work of the community members
should be approach independent, allowing them to integrate different concepts, including those
with informal definitions, reuse and refine existing ontologies; 2) lower the contributions barriers
for knowledge workers by hiding implementation details and enable conceptualization in a way
that is convenient for them; 3) workers should be able to communicate and shape the information
synergistically by posting issues, proposing changes as well as avoiding deadlock situations; and
4) mapping the definition of the concepts to other external ontologies to ensure they reflect the
intended meaning for the respective domain. Figure 3.1 depicts three phases of HCOME, where
each of them have their goals and tasks associated with, respectively.

32

3.1 Methodologies for Collaborative Ontology Development

Figure 3.2: The Ontology Maturing Process. The four phases of the ontology maturing process: 1)
emergence of ideas; 2) consolidation in communities; 3) formalization; and 4) axiomatization [31].

Specification - during this phase the domain is specified, including the requirements to
restrict the ontology scope and the team comprising knowledge workers and knowledge engineers
is established. The outcomes of this phase are recorded in specification documents to be used
later on during the entire development process.
Conceptualization - after the definition of the domain, requirements and the team, the

process continues with the conceptualization of the ontology. The team members start to review
and import existing ontologies for a potential reuse. To better understand the domain, generic
ontologies are consulted and the informal definitions of their concepts are analyzed. Next, the
ontology is being developed in parallel by various knowledge engineers, where multiple versions
should be mapped and merged in order to achieve a unified view and allow the reusability.
Exploitation - in this phase, the ontology is subject of a critical review process, where the

involved workers provide their feedback. The ontology is investigated by various team members
to identify and critique any wrong or incomplete concepts. The feedback and their comments
are stored and published to later support and revise the design decisions.

Ontology Maturing

Braun et al. [31] observe the ontology engineering as an informal learning process, in which
the involved team members enhance their comprehension and competency about a particular
domain. Furthermore, as the definition of concepts should derive from a shared understanding,
the collaborative work between ontology engineers and domain experts should be facilitated by
reducing the level of formality and complexity. Therefore, the contribution of domain experts is
increased whenever the methodology and tool support is lightweight, easy to use and understand.
Another important aspect observed by the authors, is that ontology development is a continuous
process where the ontology evolves over the time to reflect new ideas, changes on the real world
and better understanding of the domain.

To accommodate the above observations, the authors defined the maturing model as illustrated
in Figure 3.2, which is composed of the four following phases:
Emergence of ideas - is the initial phase, where the proposed ideas for concepts are rather

33

Chapter 3 Related Work

ad hoc and without a clear definition. Usually tags are used to annotate or look for particular
resources which later can be replaced in case of previous incorrect definitions.
Consolidation in communities - a common terminology is created from the collaborative

work of the engaged community. This is achieved by utilizing tags and refining them for the
definition of the future concepts. Thus, the retrieval of resources is improved including additional
synonyms that are used in the daily life.
Formalization - concepts are organized in a hierarchical fashion as well as their inter-relations

are identified. As a result, a lightweight taxonomy is established, allowing users to navigate in a
number of various broader and narrower levels.
Axiomatization - denotes the last phase of the maturing process, which transfer the outcome

of the previous phases to a formal representation language. This enables capturing of the domain
knowledge to improve inference processes, e.g., question answering systems. Knowledge engineers
are highly involved in this phase since it requires the usage of complex axioms.
According to the authors, the proposed ontology maturing assumes that ontologies are not

built from scratch but rather they evolve from set of informal tags to well defined taxonomies.
Furthermore, this is seen as an iterative process over the four defined phases. As potential
applications are identified to be from the areas of semantic annotation and resource retrieval.

DILIGENT

DILIGENT presented by Pinto et al. in [32], is another methodology for supporting collaborative
ontology development in distributed settings. It considers the following important issues that
the development process should have: 1) be realized in a decentralized fashion, where a number
of stakeholders are not necessarily settled in the same geographic location; 2) enable users to
have a partial autonomy, where they personalize their own local copy to reflect their needs; and
3) be iterative, by providing clear steps on how to iterate between different phases. The authors
identifies four roles which participate in the development process: ontology engineers, knowledge
engineers, domain experts and users.

The DILIGENT process depicted in Figure 3.3 comprises the following five activities in order
to support the collaborative creation of a shared ontology:
Build - based on the predefined requirements, participants build an initial version of the

ontology, which is not needed to be complete. Even the team is recommended to be small with
the aim to avoid long discussions and achieve a consensus more easily for the specified terms.
Local adaptation - users are eligible to perform modifications of their local ontology copies,

in order to accommodate the new business requirements or rules. However, these modifications
are not directly represented in the shared ontology, rather they are collected by a responsible
board which assesses for a potential adoption in the future.
Analysis - the collected modifications from the locally modified ontologies are investigated

by the responsible board to find potential similarities, which will further be elaborated before
introducing them in the new version of the shared ontology. In addition, new requirements that
might come from users are considered and a balanced decision should be taken.
Revision - the shared ontology is revised on regular basis to prevent from a possible deviation

between that and its local copies. Thus, the board is represented in a well-balanced way by
various kinds of stakeholders involved in the development process.
Local updates - users are able to decide whether to apply the approved modifications of the

shared ontology to their local copy. By applying changes, they benefit from the interoperability
point of view with the respect to the jointly defined concepts.

34

3.1 Methodologies for Collaborative Ontology Development

Figure 3.3: The DILIGENT Life-cycle. The different stages of the DILIGENT methodology: Build,
Local Adaption, Analysis, Revision, Local Update [33].

3.1.2 Workflow-independent Methodologies

In the following, three well-known methodologies which do not enforce obeying to a particular
workflow during the development process, are presented.

Guidelines for Constructing Reusable Domain Ontologies

Annamalai et al. [34] present Constructing Reusable Domain Ontologies (CRDO). It comprises
guidelines to systematically construct domain ontologies based on a purpose-driven approach.
A strategy to support developing reusable domain ontologies is outlined, starting first with
identifying relevant domain knowledge to be encoded; next, consolidating the pieces of knowledge;
finally, select the ones that can be reused and create isolated modules. The purpose of the authors
is to facilitate the communication, integration and information sharing across the distributed
environment of the scientific community, which performs experiments, gathers data and publishes
various types of findings. Two types of ontologies are distinguished in this environment: domain
ontologies, which capture more generic knowledge from a given domain and are loosely coupled
with each other; and purposive ontologies, which encode specific domain knowledge by combining
different reusable domain ontologies. Based on the fact whether existing ontologies will be used
to develop domain and purposive ontologies, the proposed guidelines are divided in:
Ontology Development Guidelines I - groups the following steps: a) define the purpose

and use of the ontology; b) identify the main concepts; c) define competency questions based on
the given requirements; d) identify additional terms needed for competency questions and their
answers; e) identify new concepts, attributes and their relations as well as structure them in a
conceptual model; f) evaluate the conceptual model using competency questions; g) return to c),
if more details should be included; h) create potential reusable submodules by clustering similar

35

Chapter 3 Related Work

Figure 3.4: Overview of the RapidOWL methodology. It consists of three building blocks: Values;
Principles; and Practices, each of them covering different aspects of ontology modeling [35].

concepts; i) link the submodules to the main model; and j) formalize reusable domain ontologies
and purposive ontologies out of the main model and submodules.
Ontology Development Guidelines II - comprises the following steps for developing

purposive and domain ontologies: a) define the ontology purpose; b) design the model of the
purposive ontology; c) investigate for existing ontologies that can be reused; d) develop the
unsupported part of the model according to the Guidelines I steps b) - g); e) localize a possible
region in the model that can be reused. If exists any, develop an independent and reusable
submodule which contains the most relevant concepts. It is related to the (Guidelines I, step h);
f) reuse external ontologies (as identified in c), to accommodate specific application requirements;
and g) recreate the model of the purposive ontology by inter-linking it with submodules, and
proceed with the formalization of the designed ontologies.

RapidOWL

Inspired by eXtreme Programming (XP) of knowledge-based systems, Auer et al. [35] present
RapidOWL, an adaptive and lightweight methodology for Collaborative Knowledge Engineering.
Furthermore, RapidOWL adopts Wiki Design Principles1, which are used for text editing in a
collaborative fashion. The methodology does not provide any specific life-cycle, rather it aims
supporting ontology development by performing rapid and small changes. A number of guidelines
are proposed to facilitate the contribution of domain experts to the development process, by
avoiding the necessity to rely on a considerable involvement of knowledge engineers. The building
blocks of RapidOWL separated in three different categories are illustrated in Figure 3.4:
Values - RapidOWL brings the values from eXtreme Programming to represent the long-term

goals. Communication and Feedback are combined into Community, to cover important aspects of
communication and interaction across contributors including comments, critics, assessments and
suggestions; Simplicity, to ease the maintenance of the ontology and data part of a knowledge
base; Courage, to facilitate the progress and avoid possible modeling dead-ends. RapidOWL
introduces Transparency, an additional new value, enabling the community to view the entire
history of ontology changes as well as monitor and track contributions of the participants.
Principles - RapidOWL suggests various principles to guide the mid-term agile development

of ontologies. These principles define characteristics that a single RapidOWL process should have.
1 http://c2.com/cgi/wiki?WikiDesignPrinciples

36

http://c2.com/cgi/wiki?WikiDesignPrinciples

3.1 Methodologies for Collaborative Ontology Development

Some of the relevant principles are: following a uniform method for modeling of the schema and
data; incremental and observable development; and rapid feedback to facilitate the maintenance
and accommodate diverse views of the community.
Practices - the third category comprises practices adopted from eXtreme Programming as

well as from collaborative design of knowledge bases [36]. Among the most important ones are:
Joint Ontology Design, to facilitate the work between domain experts, knowledge engineers and
users; Information Integration, to ensure that the ontology captures adequate domain knowledge;
View Generation, to provide various exploration views for a better understanding of the concepts
hierarchy, their metadata and relationships across them.

Just Enough Ontology Engineering

Just Enough Ontology Engineering (JEOE) [37] is a set of aspects essential to ontology develop-
ment based on principles of the ""just enough"" approaches. It indents to support experts of
different fields, who may be part of the process with fundamental notions of ontology develop-
ment, without forcing them to follow a specific methodology. JEOE comprises interdependent
steps and activities to be adopted in an agile process and performed iteratively. Below are the
steps that should be followed in JEOE:
1. Identify stakeholders - persons and their responsibilities during the development process

and profile them according to common characteristics: goals, interests and requirements.
2. Define the purpose and goal - to have a clear understanding and expectations of the

ontology to be developed as well as focusing the efforts to accomplish the identified requirements.
3. Requirements - definition serves as a mechanism for continuous verification of the ontology

whether is able to solve the problem for which it is designed for.
4. Identify existing knowledge sources - and asses their qualitative and quantitative

characteristics for a possible reuse and extend, in order to fill the missing gaps.
5. Scoping the ontology - by specifying the level of granularity and setting up the boundaries

to help on reducing the complexity of modeling and avoid a never-ending process.
6. Quality assurance - using a “quality model” that is built on initial stages and comprises

patterns to measure the qualitative and quantitative parameters of different aspects.
7. Competence - shows whether the developed ontology contains all necessary constructs to

answer the given set of competency questions.
8. Define the ontology artifacts - including terminology and vocabulary, their meaning,

the relationships between them, axioms and constraints to be used for consistency checking.
9. Implementation - by transferring the defined artifacts from the previous step into a

formal knowledge representation language according to the goal, scope and the requirements.
10. Deployment - of the ontology or its modules as a compact and standalone artifact by

specifying the access infrastructure and level of integration to be supported.
11. Testing and validation - of different aspects, such as syntax, consistency, integrity,

redundancy of the ontology or its modules, as a part of a comprehensive quality assurance plan.
12. Publish - the ontology to provide access for the interested users by describing the

mechanism and policies how to reach and use it, as well as specifying the license terms.
13. Maintenance and reuse - ensures that the ontology reflects the last state of the intended

domain. This is realized by regularly updating and maintaining the things which are changed
since the release of the last version.

37

Chapter 3 Related Work

Table 3.1: Coverage of the ontology development aspects. Comparison between methodologies
with respect to coverage of the important aspects for ontology development.

Reuse NamingMultilinguality Documentation ValidationAuthoring
METHONTOLOGY[21] Yes No Yes Yes Yes No
CRDO [34] Yes No No No No No
DILIGENT [32] Yes Yes No No No No
On-To-Knowledge [40] No Yes No No Yes No
RapidOWL [35] No Yes No No No Yes
JEOE [37] Yes No No Yes Yes Yes
Linked Data Patterns [38] Yes No Yes Yes No Yes
NeOn Methodology [39] Yes No Yes No Yes No

Summary Generally, traditional and collaborative focused methodologies provide coverage to
wide-range of aspects of the ontology development process. For instance, some of the above
mentioned methodologies [21, 32, 35, 37–39] cover the main aspects for ontology development in
a top-down approach. Various ontology life-cycle models comprising different phases are proposed
and can be followed depending on the use case and team composition. In addition, a number of
complementary guidelines and methods presented by lightweight oriented methodologies facilitate
ontology creation. Despite this, we observe a lack of governance and best practices dedicated for
distributed scenarios where the development process is centered around the version control. More
specifically, guidelines to address ontology engineering from organizational point of view, such as:
management of parallel development, version releases, communication and monitoring activities
among team members and modularization are still missing in these scenarios. Furthermore,
during the development process, providing a number of practices from the operational point of
view, like: reuse, naming convention, multilinguality, documentation, and validation are crucial.
Table 3.1 shows the coverage of the practical aspects from different methodologies.

A novel methodology for supporting the ontology development process in distributed and
heterogeneous scenarios is needed. This methodology should facilitate a workflow-independent
process in a dynamic environment, where the number of team members, development tools,
and parallel ontology versions is constantly changing. One central characteristic is to actively
support stakeholders when taking organizational and design decisions. Moreover, operational
practices to facilitate ontology engineering process regarding the reusability, multilinguality,
naming convention, validation and authoring for such scenarios are still missing.

3.2 Platforms for Collaborative Ontology Development

Over the years, much research has been conducted and several approaches has been presented
to provide tool support for ontology development in different scenarios. One area of research is
concerned with creation of web applications that lower the access barriers to the development
process. Tools, such SOBOLEO [41] foster the collaborative editing of the SKOS thesauri with
a specialized browser, to navigate and change the taxonomy as well as a semantic search engine
for annotating web resources. SOBOLEO is used in the domain of social networks and offers
tag recommendations for describing people based on existing ontologies. TopBraid Enterprise
Vocabulary Net (TopBraid EVN)2 is a proprietary tool to ease the collaborative creation of SKOS
taxonomies and ontologies. It incorporates change audits, role management, search capabilities
2 http://www.topquadrant.com/products/topbraid-enterprise-vocabulary-net/

38

http://www.topquadrant.com/products/topbraid-enterprise-vocabulary-net/

3.2 Platforms for Collaborative Ontology Development

as well as data quality rules to check for SKOS and OWL constraints. Moreover, it enables
the creation of hierarchy reports through graphical user interfaces. MoKi [42] is a collaborative
MediaWiki-based tool to support ontology modeling tailored for business processes. MoKi
associates a wiki page, containing both unstructured and structured information, to each entity
of the ontology and process model. However, a number of the proposed tools are not available
anymore or the documentation about them is hardly accessible. Therefore, we look more in deep
into well-known platforms for the ontology engineers community that are currently supported.

3.2.1 Integrated Environments with own Version Control
In the following, several well-known platforms which have their built-in version control for
supporting collaborative ontology development, are described.

WebProtégé

One of the most prominent platforms in this area is WebProtégé [43], which is a lightweight
version of the Protégé desktop editor. Its target, is supporting a wide range of users, starting from
ontology engineers to domain experts, with the aim of lowering the threshold for a collaborative
ontology development. As a result, WebProtégé is implemented based on a flexible and extensible
infrastructure that can be utilized for various scenarios.
User Interface. WebProtégé is highly customizable and composed from a number of tabs

with different functionalities. Each tab contains several portlets, which offer special views of
ontology concepts, such as Class Tree, Property Tree and Instance Table.
Collaboration Support. It offers a variety of collaboration features to support the devel-

opment of ontologies across team members. Among the most important ones are: tracking of
changes, fine-grained access control and contextualized discussions. Changes realized to the
ontologies are represented as instances of the CHAO ontology [44]. Respective portlets show
and visualize notes and changes made by users at a particular time and concept.
Extensibility. WebProtégé is easily extended with additional functionalities using its plugin

infrastructure. Developers can use the Ontology Service to add various backends, such as triple
stores, OWL-API or Jena Library, thus avoiding the need to do any change in the user interface.
The first interaction of users is through client applications, such as Desktop Protégé or

WebProtégé. These applications are connected with the servlet container via a Remote Procedure
Call or REST Services. Finally, development is supported from the collaboration framework which
enables tracking of the changes, administration of the access control, storing and facilitating
discussions among team members. OWL-API allows for the concurrent modification and offline
access of the ontologies, following principles of version control systems. Moreover, WebProtégé
provides a chat service, as well as the functionality for annotating the vocabulary terms.

VocBench

VocBench [45] is a web application which targets editing of SKOS and SKOS-XL based thesauri.
It supports the workflow management, validation, and publication of vocabularies, and provides
a full history of changes as well as a dedicated SPARQL query endpoint. The main characteristics
of VocBench are described in the following:
User Interface. Several tabs associated with particular functionalities enable a better

exploration of the thesauri. Concepts are depicted using the tree view whereas the details view
shows all information of a specific concept including multilingual labels and synonyms.

39

Chapter 3 Related Work

Collaboration Support. VocBench implements the separation of responsibilities through a
role-based access control mechanism, checking user privileges for different tasks of the thesauri
editing. The editorial workflow management facilitates the collaboration between the stakeholders
by enabling monitoring and approving changes by responsible roles i.e., content validators.
Alignment. Since VocBench is dedicated to manage multiple thesauri at the same time, a

dedicated feature is implemented to help on the creation of alignments between them. Mappings
among the SKOS concepts in different thesauri can be manually created or assisted from a
concept-tree feature associated with an advanced search mechanism.

In addition, VocBench allows for the aggregation of concepts that belongs to different schemas
as well as filtering them based on a specific schema. External vocabularies and data can be
imported and exported from and in various RDF serialization formats. Various statistical reports
and metrics related to thesauri, such as hierarchy depth and width, level of uniformity can be
generated. The integration of SPARQL 1.1, enables users to formulate customized queries to get
more insights about the thesauri.

The implementation of VocBench is divided in several layers. The layer dealing with presenta-
tion and multiuser management is powered by Google Web Toolkit. It stores the user accounts and
track their activity in a relational database, accessed via a JDBC connector. The communication
with different triples stores is supported through RDF API abstraction layer which is based on
OWL ART 3. Data management layer is an extension of the Semantic Turkey RDF platform
with new services necessary for the operation of VocBench. Thus, the management of RDFS
and OWL ontologies is facilitated through a number of integrated layers and services.

PoolParty

PoolParty [46] provides a web interface for building and managing SKOS-based thesauri. A
user-friendly GUI facilitates the participation of domain experts. It allows for the utilization of
information from external Linked Open Data sources and performing a text-based analysis on
documents to extract relevant concepts necessary for thesauri modeling.
User Interface. The GUI of PoolParty is developed by utilizing AJAX techniques to ease

merging of concepts via drag & drop features as well as the auto-completion of labels while a user
is typing. Moreover, a key-phrase extractor helps on semi-automatically expanding of thesauri by
analyzing various documents, e.g. PDF files or web pages. A number of integrated visualization
features, such as graph- and tree-based, are used to view concepts and their inter-relationships.
Collaboration Support. PoolParty has a strong focus on enabling collaborative development

for people with no background knowledge on Semantic Web. Taxonomists are supported with
a rich-feature set for creating and editing concepts and tracking the changes performed over
the time. Any modification or deletion is captured using versioning mechanisms and can be
compared in detail to find the potential differences. Workflows can be customized to address the
project requirements and maintain the information flow across the involved stakeholders.
Publishing Capabilities. Thesauri may be published as Linked Open Data and linked to

other external datasources, such as DBpedia lookup service. This enhances interlinking of the
concepts and enriching them with additional information from outside. A SPARQL endpoint
offers the capability for executing queries and getting more insights of the thesauri. Additionally,
an HTML Wiki version of the thesauri enriched with RDFa metadata is published, as an easy
alternative for browsing and editing of the concepts. Thesauri can be imported in various
serialization formats, including RDF/XML or Turtle.
3 http://art.uniroma2.it/owlart/

40

http://art.uniroma2.it/owlart/

3.2 Platforms for Collaborative Ontology Development

3.2.2 Integrated Environments based on Generic Version Control Systems
Three approaches for collaborative ontology development based on generic version control
systems, such as Apache Subversion SVN or Git, are presented in the following:

SVoNt

Luczak at al. [47] proposes SVoNt, an approach for versioning of OWL ontologies based on SVN.
Its objective is to enable the revision history of the ontology concepts similar to the way that
SVN performs for documents. A separate server is used to store conceptual changes between
different versions of ontologies. These versions are generated as a result of a diff operation
between the modified and the base ontology. As a result, the backward compatibility of ontology
changes made over the time is ensured. SVoNt supports conflict detection and resolution by
comparing the structure and semantics of the ontologies.
Design and Implementation. SVoNt is implemented following the principles of a client-

server architecture. The SVoNt server extends SVN and reuse its built-in features, like tracking,
versioning and authentication. In addition, the SVoNt server includes functionalities dedicated
for ontologies that are implemented in the pre-commit hook. During the commit procedure, the
ontology is checked for consistency, changes are detected and logged to a metadata repository. An
external mechanism is integrated to represent the structural or semantic changes that are realized
in the ontology, in a concept-based level. As a result, a specific file is generated using Ontology
Metadata Vocabulary (OMV) after each commit and used to store the ontological changes. On
the other hand, the SVoNt client includes modules adopted to support the ontology versioning.
Moreover, it is able to maintain the history of local changes of the ontology since the last
modification. For this reason, special modules, such as Change-Detection and Change-Selector
are used to detect and commit changes to the server, respectively.

OnToology

OnToology [48] is a tool for collaborative ontology development based on GitHub. The objective
is to address several requirements related to the development process. These requirements cover
various aspects of the ontology life-cycle, such as documentation, visual depiction, evaluation
and publication of ontologies. Each repository should be registered to OnToology for enabling
monitoring and generation of artifacts, each time when new changes are pushed.
Design and Implementation. OnToology comprises two main parts: 1) the web interface;

and 2) the integrator. The web interface is responsible for handling the notifications delivered
each time when the ontology is changed as well as enabling users to configure the platform
according to their needs. The integrator executes an automatic workflow by communicating
with three external components. It produces an HTML documentation of the ontology using
Widoco [49], while a report for possible ontology pitfalls is provided based on the OOPS
service [50]. AR2DTool4 is used for creating class and taxonomy diagrams. Finally, all generated
artifacts can be attached to the repository after a pull request is performed.

Ontohub

Ontohub [51] supports the development and management of heterogeneous ontologies in distrib-
uted environments. It enables sharing and exchanging of ideas as well as contributions among
4 https://github.com/idafensp/ar2dtool

41

https://github.com/idafensp/ar2dtool

Chapter 3 Related Work

the involved communities. Ontologies written in heterogeneous languages can be integrated and
easily retrieved. Complex inter-theory mappings of concepts and their relationships associated
with formal semantics are allowed. Furthermore, alignment from a network of ontologies is
possible and new ontologies can be derived as a result of that. The objective of Ontohub is to
satisfy a subset of requirements defined in the Open Ontology Repository (OOR) initiative5.
Among the most important features of Ontohub are related with supporting of: 1) distributed
and modular development of ontologies; 2) alignment and combination of various ontologies; 3)
different ontology languages, such as RDF, OWL and vice-versa translations; and 4) federated
and collaborative ontology development repositories.
Design and Implementation. The Ontohub architecture is composed of several decent-

ralized services performing specific tasks. Data exhange between Onthub and other similar
platforms is allowed through a federation API. Parsing and static analysis service returns any
symbol and sentence of a particular ontology in XML format. Local inference is a RESTful API
which encapsulates batch-processing reasoners, such as Fact, Pellet and SPASS. Ontologies and
their changes are stored and managed in the persistence layer, which is based on Git. Therefore,
branching and merging as well local work on user machines are supported.

Summary The aforementioned platforms, such as WebProtégé [43], VocBench [45], Pool-
Party [46] provide a rich-feature set fulfilling many requirements for ontology development in
collaborative scenarios. In order to manage change synchronization, conflict prevention and
ontology evolution in general, these platforms utilize their integrated version control, which
is tailored for processing semantics of ontology constructs. Thus, they are not focused on the
direct inclusion of the generic version control systems as a core part of the ontology development
process. On the other hand, SVoNt, OnToology, Ontohub are centered around generic version
control systems, such as SVN and Git. SVoNt leverages SVN as a VCS for the versioning of
ontologies. It stores conceptual changes between different versions of ontologies in a separate
server. These versions are generated as a result of a diff operation between the modified and
base ontology. SVoNt supports conflict detection and resolution by comparing the structure and
semantics of the ontologies. OnToology [48] is a tool for ontology development based on Git. It
generates a documentation using Widoco, while an ontology pitfalls report is provided based
on the OOPS service. OnToology uses AR2DTool for creating class and taxonomy diagrams.
OnToology is integrated on GitHub as hosting platform restricting users to only its basic features.
Providing a user-friendly client which hides the complexity of the version control system is not
in the focus of these works. Thus, these systems are rather suited for ontology development
projects that involve users with a strong technical background. Ontohub platform has Git client
integrated in its own architecture to manage changes. It provides a number of different views
for documentation, visualization, and evolution. In addition, it uses the Distributed Ontology,
Modeling and Specification Language (DOL) as a meta-level to allow for the representation and
alignment of ontologies that are logically heterogeneous. Ontohub has a dedicated hosting service
to store and manage ontologies from different domains. This platform is focused on supporting
the development process after submission of changes to the remote repository by generating set
of artifacts to enable further exploration. Furthermore, there is a lack of support for scenarios
where various ontology authoring editors are used in the development process.

We foresee the necessity for an integrated environment which encapsulates a number of
components to enable ontology development in distributed scenarios. Moreover, stakeholders
5 http://www.oor.net/

42

http://www.oor.net/

3.3 Conflict Prevention during Change Synchronization

using heterogeneous editors should be able to easily synchronize their changes. Apart from
GitHub, this environment has to provide support for ontology projects managed in various
hosting platforms, like Gitlab and Bitbucket. A number of additional views and services should
allow third-party users and applications to explore and reuse ontologies in different formats.

3.3 Conflict Prevention during Change Synchronization

Synchronization of changes among different versions of the same artifact has attracted the
attention of researches for several years. For example, enhancing VCSs with additional information
related to the semantics of software code and re-factoring with the objective of improving the
merging process has been proposed in a number of works [52–54]. Asenov et al. [55] and Protzenko
et al. [56] propose to add unique IDs to source code elements in order to achieve a more precise
conflict detection. Brun et al. [57] presents an approach called “speculative analysis”, identifying
the possible existence of conflicts in a continuous and precise way. Furthermore, they identify
several classes of conflicts and provide detailed instructions how to address them. However, these
approaches are focused on source code of software artifacts where the order of lines is important.
Although, line order can also be important in our case, semantics encoded in the ontology is not
necessarily affected by the position of the triples in the file.

Version Management for Model-based Development

We describe works whose main focus is on overcoming the problem of wrongly indicated conflicts
in the field of model-based development, where model is the main artifact. SMoVer, a semantically
enhanced Version Control System for models, is proposed by Altmanninger et al. [58, 59]. Using
the semantic view concept to explain aspects of a modeling language, a better conflict detection
can be achieved and the reason of conflicts is more easily determined.
Brosch [60] suggests to use a model checker for detecting semantic conflicts of an evolving

UML sequence diagram. When an automatic merge is not possible due to conflicting changes,
additional redundant information essential for the models is used to determine invalid solutions.
With this technique, it is possible to assert concrete modifications realized in a sequence diagram.

A related technique uses domain-specific metamodels describing syntactic and semantic
conflicts associated with their resolution [61]. This technique allows for the identification of
different conflict patterns that occur during the modeling phase, which are frequently ignored
by common structure-based algorithms.
Krusche et al. [62] tackle real-time model synchronization, and propose EMFStore, a peer-

to-peer based solution for real-time synchronization of changes on model instances with all
collaborators of a session. EMFStore borrows concepts of VCS’s to synchronize models in
real-time but does not include a VCS itself.

Zhang et al. [63] investigate composite-level conflict detection in UML Model Versioning, and
propose a two-fold approach: in the preprocessing stage, redundant operations are removed
from the originally recorded operation lists. During the conflict detection stage, a fragmentation
procedure is performed to collect only potentially conflicted operations into the same fragment.
Finally, a pattern-matching strategy is followed to solve the conflict detection problem.

43

Chapter 3 Related Work

Version Management for Ontologies

Approaches that focus on providing version management for ontologies in collaborative develop-
ment processes are discussed in the following.

An ontology for unique identification of changes between two RDF graphs is presented by Lee
et al. [64]. To recognize these changes (or deltas), a pretty-printed version of RDF graphs is
utilized. The authors distinguish two types of deltas that can be applied as patches to RDF
graphs. First, weak deltas, which are directly applied to the graph from where they are computed.
Second, strong deltas, which specify the changes independently of the context. This approach
focuses on the semantic representation of changes and its application to RDF graphs.
Vöelkel et al. [65] present SemVersion, an RDF-based system for ontology versioning. The

approach is based on the two core components data management and versioning functionality.
The first is responsible for the storage and retrieval of data chunks. The second deals with
specific features of the ontology language, such as structural and semantic differences. To find
semantic differences between two versions, e.g., whether a statement has been added or removed,
SemVersion employs a simplified heuristic method for conflict detection.
Cassidy et al. [66] propose an approach for realizing a distributed version control system

for RDF stores. The approach is based on a semi-formal theory of patches to allow for the
manipulation of so-called RDF-patches with the objective of facilitating the revert and merge
operations. An implementation of the approach has been realized on top of the VCS Darcs6

which enables linguistic annotation on RDF stores among different users.
A holistic approach for collaborative ontology development based on ontology change man-

agement is described by Palma et al. [29]. The approach comprises different strategies and
techniques to realize collaborative processes in inter-organizational settings, such as centralized,
decentralized, and hybrid ones where multiple people are involved.
Edwards [67] proposes techniques for managing high-level application-defined conflicts. Con-

sequently, the introduced mechanisms should be able to handle conflict resolutions. Further,
certain types of conflicts can be tolerated and others forbidden according to the specified
application requirements. Furthermore, a multi-editor environment for collaborative ontology
editing is presented by Noy et al. [44]. The proposed framework is able to control and maintain
ontologies, as well as support users throughout the whole ontology development process.

Summary The majority of the above mentioned approaches [29, 44, 65, 67] rely on their own
version control mechanisms tailored for ontology development. Other approaches [64, 66] utilize
a semi-formal theory of patches to find deltas among versions, thus enabling to revert or merge
specific versions. Considering an increasing use of generic version control systems for ontology
development, we identify a significant need to empower these systems for coping with different
serializations. Moreover, the solution should be provided as an integrated service without forcing
users to install on their local machines. As a result, a huge number of false-positive conflicts can
be avoided and contributors can use heterogeneous ontology editors for modeling purposes.

3.4 Test-driven Approaches for Ontology Development

Many research approaches have been presented to support ontology engineers in developing
ontologies according to domain requirements while at the same time avoiding constraints violation.
6 http://darcs.net/

44

http://darcs.net/

3.4 Test-driven Approaches for Ontology Development

In this regard, Ren et al. [68] present an approach for enabling ontology engineers to formulate
machine processable Competency Questions (CQs). The implemented solution allows users to
utilize the predefined CQs or to enter new CQs in a controlled natural language. As a result,
appropriate Authoring Tests are generated and automatically executed to check whether an
ontology meets predefined requirements. An approach for test-driven development of ontologies
is described in [69]. It provides a number of predefined tests which help ontology developers
to verify which axiom is missing and how to properly add it. Unit Tests for Ontologies [70]
transfers principles of software engineering techniques to test-based development of ontologies.
Two ontologies, positive test ontology T+ and negative test ontology T− are created to force
the developed ontology to follow constraints defined in T+ and avoid constraints defined in T−.
SHACL[71] is a language for validating RDF graphs against a set of conditions provided as
shapes and other constructs expressed in the form of an RDF graph. [72] presents an approach
for validating SHACL constraints by using two different algorithms. A methodology for assessing
the quality of Linked Data is described in [73]. It uses the concepts of test-driven software
development such as test cases to ensure a basic level of quality. Test cases defined as SPARQL
templates later are materialized as concrete test queries for assessing the quality of the ontologies
and knowledge bases. A parent-child relationship between test cases can be established, such
that a failure of parent causes not executing of child test case. OntologyTest [74] is a tool that
supports specification of different types of tests such as instantiation tests, recovering tests, or
satisfaction tests. These tests check for the predefined ontology requirements, and can be run all
at once, by grouping them into categories or individually.

In software development, regression testing is the process of retesting the software with a test
suite after each modification. However, due to large amount of time needed for regression testing,
much research has been conducted in areas such as: minimization, by eliminating redundant test
cases; selection, by identifying relevant test cases based on recent changes; and prioritization, by
ordering the test cases based on specific criteria [75]. Various techniques are developed in this
regard. Particularly relevant for us are studies focused on so-called Graph-Walk Approaches such
as Control Dependency Graphs (CDGs). The CDGs utilizes a depth-first algorithm to traverse
the graph for selecting a subset of test cases according to the modified code [76].

Summary Considering the above-mentioned approaches, we are focused on efficient test-driven
development technique, where the ontology is the main artifact. In order to ensure an efficient
evaluation of test cases, a dependency graph between child test cases which can have multiple
parents should be established. Therefore, additional mechanisms are necessary to traverse the
graph and store faulty test cases. As a result, the graph can be pruned with the objective
of avoiding subsequent test cases from further evaluation. The approach should be able to
perform a file-oriented evaluation of test cases, in order to respect the fact that an ontology
can be composed of multiple files, representing submodules. As a specific functionality, such an
approach should consider the fact that a team is composed by many members, causing the test
case evaluation to be stakeholder-based.

45

Part II

Collaboratively Developing
Ontologies

This part describes a methodology and a platform for enabling stakeholders to develop ontologies
in a collaborative way. In Chapter 4, we start with collecting important requirements based
on a round-trip development model, which comprises three fundamentals steps: modeling,
population and testing. In addition, requirements are gathered based on the state of the art
review as well as validated from a survey with ontology experts. These requirements cover
methodological and technical perspectives of the ontology development process. In Chapter 5,
we continue with presenting a lightweight methodology to support construction of ontologies
in distributed scenarios. The presented methodology addresses in detail the organizational
and operational aspects. Finally, in Chapter 6, an integrated environment for collaborative
ontology development based on version control systems, is shown. A conceptual architecture and
a concrete implementation of this environment is described in detail. It incorporates a number
of different built-in and external components to address the technical requirements.

47

CHAPTER 4

Requirements for Collaborative Ontology
Development

Ontologies are powerful means to realize the conceptualization of the knowledge for a particular
domain. However, developing ontologies can require a significant investment, which is difficult
to make by a single person or organization. Thus, a number of interested stakeholders come
together and decide to define a new ontology for the chosen domain. They build a consortium
which drives this process and in periodic meetings, representatives from the different stakeholders
come together, communicate their specific needs, and try to find a consensus. If the outcome,
which can be a vocabulary of terms, is at a satisfying maturity level, a specification document
will be released. This process, which we refer to as collaborative ontology development, itself
is a complex problem to be solved. In fact, the main challenge for the ontology engineers is
to work collaboratively on a shared objective in a harmonic and efficient way while avoiding
misunderstandings, uncertainty and ambiguity. The quality of the produced ontology is another
challenge that must be tackled with adequate methods and concrete guidelines. Finding a
suitable collaboration methodology is exacerbated by the number and diversity of the involved
stakeholders as well as the complexity of the domains. Due to the open, distributed and
participatory nature of the Web, a solution to this problem is of paramount interest.
In this chapter, we investigate the fundamental activities of the development process, i.e.,

modeling, population and evaluation. As a result, a round-trip development model is introduced
which suggests an iterative and incremental fashion of moving between the fundamental activities.
A number of methodological and technical requirements for enabling ontology development in
distributed and heterogeneous environments according to the round-trip model are collected. In
addition, to obtain insights for modeling practices, we perform an analysis of some of the widely
used ontologies. We observe common modeling practices regarding to reuse, internationalization,
documentation and naming present on these ontologies, which impact on better understanding
for the defined concepts. For the methodological scope, we focus on workflow independent
requirements needed for organizational and modeling purposes. Next, we derive a number of
requirements necessary to provide technical support, and group them in four different categories:
1) Change Management; 2) Quality Assurance; 3) User Experience; and 4) Ontology Deployment.

Contributions of this chapter are summarized as follows:

• Conception of round-trip ontology development comprising of three fundamental activities:
1) modeling; 2) population; and 3) testing;

49

Chapter 4 Requirements for Collaborative Ontology Development

• Analyzing the modeling practices applied in some of the widely used ontologies;
• A set of requirements needed for the methodological support of the development process;
• A set of technical requirements necessary for designing and implementing an approach to

enable distributed development of ontologies in heterogeneous scenarios.

This chapter is based on the following publications:

• Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Steffen Lohmann, Sören Auer.
Git4Voc: Collaborative Vocabulary Development Based on Git. In International Journal of
Semantic Computing (IJSC), 1-24, World Scientific. This article is a joint work with Irlán
Grangel-González, a PhD student at the University of Bonn. In this article, my contributions
are related with collecting requirements for collaborative ontology development, the
description of the approach, the revision of the related work and presentation of the use
case evaluation;

• Lavdim Halilaj, Niklas Petersen, Irlán Grangel-González, Christoph Lange, Sören Auer,
Gökhan Coskun, Steffen Lohmann. VoCol: An Integrated Environment to Support Version-
Controlled Vocabulary Development. In 20th International Conference on Knowledge
Engineering and Knowledge Management (EKAW) 2016 Proceedings, 303-319, Springer.
This article is a joint work with Niklas Petersen and Irlán Grangel-González, PhD students
at the University of Bonn. In this article, I conducted the problem description, definition
and implementation of the conceptual architecture, the revision of the state of the art
approaches, the presentation of the use cases, and the realization of the user study
evaluation;

• Irlan Grángel-González, Lavdim Halilaj, Gökhan Coskun, Sören Auer. Towards Vocabu-
lary Development by Convention. In 7th Knowledge Engineering and Ontology Development
(KEOD) 2015 Proceedings, 334-343, SciTePress. This article is a joint work with Irlan
Grángel-González, a PhD student at the University of Bonn. My contributions focused
on the review of state of the art approaches, devising, conducting and analyzing the user
study and presentation of the outcomes.

This chapter is organized as follows: we initially discuss the fundamental phases of the
ontology development process in Section 4.1. We then analyze several widely used ontologies
and get insights on practices used to model them in Subsection 4.1.2. We start Section 4.2
with the foundation of requirements necessary for ontology construction. Subsection 4.2.1
lists requirements needed for organizational and modeling purposes. A number of technical
requirements to be covered by the platform are described in Subsection 4.2.2. Finally, we
summarize the chapter in Section 11.4.

4.1 Method
During a collaborative ontology development process a group of decentralized stakeholders with
a shared objective work together to model a domain of interest in a harmonic and efficient
way while avoiding misunderstandings, uncertainty and ambiguity. Deriving requirements for
the envisioned methodology and development environment demands the clarification of our
understanding of the most fundamental ontology development activities. An ontology comprises
a terminology which is known as TBox - Terminological Knowledge. The creation of this

50

4.1 Method

VoCol

Queries

Vocabulary

Data

Population Testing

Modeling

1

2 3

Requirements,
Competency Questions

Taxonomies,
Standards

Example, Raw,
Master Data

Figure 4.1: Round-trip model. A round-trip model covering the fundamental activities of the ontology
development life-cycle: modeling, population and evaluation.

terminology is realized using a logical formalism during the modeling activities [4]. It comprises
the analysis and conceptualization of the domain and the specification of the ontology terms,
such as classes, properties, and the relationships between them. Once the ontology modeling
has been completed, the next typical activity is the population. It includes the addition of
actual data in line with the defined classes and properties, also known as ABox - Assertional
Knowledge [77]. To verify whether the created ontology correctly represents the domain, a list of
queries can be compiled from competency questions [68] and used for testing purposes. Ontology
engineers may iterate in an incremental fashion between the modeling, population, and testing
activities during the entire development life-cycle. In fact, these three core activities lead to the
conception of the round-trip development, as illustrated in Figure 4.1. However, the order of
these activities is not deterministic and can be performed in other way around, starting from
testing, modeling, and population.

4.1.1 Important Roles

Ontologies represent a shared conceptualization of several people, i.e., a common understanding
of a domain of interest. Usually, ontology development projects involve stakeholders that
have various levels of expertise and interests. Traditional methodologies recognize three main
distinctive roles: knowledge engineers, ontology engineers and domain experts [10]. Knowledge
engineers are responsible to coordinate activities for extracting the knowledge of the domain
by defining the requirements, constraints and relevant questions. The role of domain experts
is to provide their knowledge about the domain, such as identifying important concepts, their
attributes and the relationships between them. Moreover, domain experts can validate changes
whether they are correctly modeled via issue reporting mechanisms or even perform changes
in some organizations. As a result, a conceptual model is created which describes the elicited
knowledge of the domain of interest. Next, ontology engineers transfer the conceptual model
into a machine understandable format using a formal representation language. This is realized
by finding the right axioms which impact the level of the expressiveness.

51

Chapter 4 Requirements for Collaborative Ontology Development

Table 4.1: Roles and permissions. Various active and passive roles and their permissions that are
involved in the collaborative ontology development process.

Permission type Contributors End Users
Ontology engineers Domain experts Users Machines

Propose changes + +
Perform changes +
Report issues + + +
Consume + + + +

In collaborative ontology development projects, generally two roles are distinguished: ontology
engineers and domain experts [5]. Domain experts or ontology contributors actively participate
on the development process by providing feedback and proposing changes to the current concepts.
Ontology engineers are responsible for encoding the knowledge of the domain using a specific
formal language as well as ensuring the quality of the ontology being developed. They can
perform changes in the ontology according to the new requirements or proposals that come from
stakeholders. Normally, they can report issues or even develop a parallel version of the ontology
according to different needs and scenarios, which in the end can be merged with the base version.
Another role which occasionally is involved in ontology development, are the end users, who
are mostly interested on the outcome in order to use the ontology for their particular use case.
In addition, since ontologies are created with the objective to be comprehended by machines,
intelligent agents can be another type of users. They are more affected by changes in the ontology,
so it is very important that each version is validated for syntax and consistency before it is
finally published. Table 4.1 lists common roles that actively contribute to the construction
process or simply consume the ontology being developed as well as their respective permissions.

4.1.2 Analysis of Widely used Ontologies

With the objective of investigating common modeling practices, we compiled a list of the 20
most widely used ontologies, as represented in Table 4.2. The selection is based on the following
criteria. Initially, a usage rate of more than 5% in all datasets of the Linked Data Cloud [78] is
considered and as a result, 13 ontologies are chosen. Next, we look for recognized ontologies that
contain best practices regarding documentation, dereferenceability and are used by independent
data providers1, which result on choosing three ontologies. Finally, Linked Open Vocabularies
(LOV)2 is observed for most reused ontologies. The outcome of this observation is four additional
ontologies to be included on the list for further consideration. These ontologies are revised and
used for many years, and also the community recognized that they are built following good
practices [79]. For that reason, we believe that studying them will provide a better understanding
of the common features and best practices of current ontology development. In this regard, we
aim to understand important aspects of ontology creation, such as reuse, internationalization,
documentation and naming as well as the implicit structure of these ontologies (e.g. use of
logical axioms, property domain/range definitions).
With respect to Reuse, 80% of the ontologies use elements defined elsewhere and 57% of

them reuse elements from at least two external ontologies. This shows a considerable presence
1 http://www.w3.org/wiki/Good_Ontologies
2 http://lov.okfn.org/dataset/lov/

52

http://www.w3.org/wiki/Good_Ontologies
http://lov.okfn.org/dataset/lov/

4.1 Method

Table 4.2: Widely used ontologies. The list of 20 ontologies, including name, prefix and domain, that
are frequently used in different domains.
Name Prefix Domain
Friend Of A Friend http://xmlns.com/foaf/0.
1/

foaf Terms related to Persons (e.g., Agent, Document, and Or-
ganization).

Dublin Core ontology Terms http://purl.
org/dc/terms/

dcterms General metadata terms (e.g., Title, Creator, Date, and
Subject).

WGS84 Geo Positioning http://www.w3.org/
2003/01/geo/wgs84_pos#

geo Represents longitude and altitude information in the
WGS84 geodetic reference datum.

Socially Interconnected Online Communities
ontology http://rdfs.org/sioc/ns#

sioc Aspects of online community sites (e.g., Users, Posts, and
Forums).

Simple Knowledge Organization System
Namespace http://www.w3.org/2004/02/
skos/core#

skos Data model for sharing and linking knowledge organiza-
tion systems.

Vocabulary of Interlinked Datasets http://
rdfs.org/ns/void#

void Metadata about RDF datasets (e.g., Dataset, and Link-
set).

Biographical information http://vocab.org/
bio/0.1/.html

bio Biographical information about people, both living and
dead.

Data Cube Vocabulary http://purl.org/
linked-data/cube#

qb Statistic data (e.g., Dimensions, Attributes, and Meas-
ures).

Vocabulary for Rich Site Summary http://
purl.org/rss/1.0/

rss Models the declaration for Rich Site Summary (RSS) 1.0.

Vocabulary for modeling abstracts things
for people http://www.w3.org/2000/10/swap/
pim/contact#

w3con General concepts about people everyday life (e.g., Address,
and Phone).

Description of a Project http://usefulinc.
com/ns/doap#

doap Terms for Open Source Projects (e.g., Version, and Repos-
itory).

Bibliographic Ontology http://purl.org/
ontology/bibo/

bibo Citations and bibliographic references (e.g., quotes, books,
and articles).

Data Catalog Vocabulary http://www.w3.org/
ns/dcat#

dcat Facilitate interoperability between data catalogs pub-
lished on the Web.

Schema.org http://schema.org schema Broad schema of concepts (e.g., Events, Organization, and
Person).

GoodRelations http://purl.org/
goodrelations/v1

gr E-Commerce related terms (e.g., Products, Services, and
Locations).

Music Ontology http://purl.org/ontology/
mo/

mo Terms related to music (e.g., Artists, Albums, and
Tracks).

Creative Commons schema http:
//creativecommons.org/ns

cc Describes copyright licenses (e.g., License Properties, and
Work Properties).

GeoNames http://www.geonames.org/
ontology

gn Geospatial semantic information (e.g., Population, and
PostalCode).

MarineTLO ontology http://www.ics.forth.
gr/isl/ontology/MarineTLO/

marinetlo Marine domain (e.g., Species, and Marine Animal).

Event Ontology http://purl.org/NET/c4dm/
event.owl

event Describes reified events (e.g., event, location, and time).

of the reuse aspect in the selected cases. An important aspect of Internationalization (I18n)
is the support for multilinguality. This can be implemented by providing textual values for
properties, such as rdfs:label, rdfs:comment in different languages, i.e., associating dedicated
language tags for RDF string literals. In 70% of the ontologies, we encounter explicit literals
in English language, i.e., @en. In 15% of the cases, there exist translations of the terms into
other languages and in the remaining 15%, there were no explicit language tags used at all.
Consequently, despite the fact that I18n is important for existing ontologies, we discover that
the most common practice is to support only the English language.
Documentation refers to human readable labels and descriptions (e.g., using the rdfs:label,

rdfs:comment properties) added to the ontology elements, i.e., classes, properties and individuals.
We observe that rdfs:label or rdfs:comment are present in 86% of the cases. It is worth
noting that the combination of the two above mentioned elements with rdfs:isDefinedBy is

53

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.w3.org/2003/01/geo/wgs84_pos#
http://rdfs.org/sioc/ns#
http://www.w3.org/2004/02/skos/core#
http://www.w3.org/2004/02/skos/core#
http://rdfs.org/ns/void#
http://rdfs.org/ns/void#
http://vocab.org/bio/0.1/.html
http://vocab.org/bio/0.1/.html
http://purl.org/linked-data/cube#
http://purl.org/linked-data/cube#
http://purl.org/rss/1.0/
http://purl.org/rss/1.0/
http://www.w3.org/2000/10/swap/pim/contact#
http://www.w3.org/2000/10/swap/pim/contact#
http://usefulinc.com/ns/doap#
http://usefulinc.com/ns/doap#
http://purl.org/ontology/bibo/
http://purl.org/ontology/bibo/
http://www.w3.org/ns/dcat#
http://www.w3.org/ns/dcat#
http://schema.org
http://purl.org/goodrelations/v1
http://purl.org/goodrelations/v1
http://purl.org/ontology/mo/
http://purl.org/ontology/mo/
http://creativecommons.org/ns
http://creativecommons.org/ns
http://www.geonames.org/ontology
http://www.geonames.org/ontology
http://www.ics.forth.gr/isl/ontology/MarineTLO/
http://www.ics.forth.gr/isl/ontology/MarineTLO/
http://purl.org/NET/c4dm/event.owl
http://purl.org/NET/c4dm/event.owl

Chapter 4 Requirements for Collaborative Ontology Development

(a) Object properties and domain axioms (b) Object properties and range axioms

Figure 4.2: Usage statistics of domain and range. a) Relation of the amount of object properties
and domain axioms; and b) Relation of the amount of object properties and range axioms.

used with a frequency of 57%. Only in one case (i.e., 5%), there is no any form of documentation.
This shows that the documentation (i.e., rdfs:label, rdfs:comment for commenting, and
rdfs:isDefinedBy for linking definitions) is widely used by the existing ontologies.

Another important practice in ontology creation is the convention for naming elements. The
CamelCase notation is with 60% of the cases the most used one. In all other cases (i.e., 40%),
no homogeneous naming convention could be identified. A combination of CamelCase notation,
underscore or dash sign is commonly encountered instead.

We perform a statistical analysis regarding the inclusion of domain and range axioms for
properties. Using the Shapiro-Wilk test over the observations of the object properties, domain
and range axioms, we encounter that the data do not follow a normal distribution for these
variables. Our hypothesis is that there is a correlation in the obtained data regarding the
amount of object properties and the domain and range axioms. Therefore, the Spearman rank
coefficient is computed, to check for any existing correlation. For the amount of object and
domain properties as well as range axioms, a value of 0.91 and 0.95 is obtained, respectively.
This indicates a strong correlation between object properties as well as domain and range axioms.
The results for various ontologies are illustrated in Figure 4.2(a) and Figure 4.2(b), respectively.
The y-axis is transformed to logarithmic scale for a better comprehension. We perform the same
process between domain and datatype properties as well as range axioms. In this case, we obtain
the value of 0.93 for both cases. These observations favor the conclusion that object properties
and data properties should contain domain and range axioms. The percentage for inverse
properties (60%) and class disjointness (50%) is calculated as well. This data indicate that
the above mentioned axioms should be more carefully analyzed regarding the domain but are
still important when building a ontology.

4.2 Requirements

In order to provide methodological and technical support for the round-trip development
of ontologies, corresponding requirements have to be identified and addressed accordingly.
Therefore, we identified requirements that are crucial for a successful adaptation of Git to
ontology development. The process of gathering is realized by aggregating insights from the state
of the art, analysis of the round-trip development, the outcome from the widely used ontologies,

54

4.2 Requirements

and our own experiences with developing a number of the ontologies, such as MobiVoc, SCORVoc
or STO using Git as a version control system.3 These requirements are divided into two main
groups, based on scope coverage: 1) methodological - dedicated to the governing and operational
aspects of the development process; and 2) technical - related to the functionalities to be provided
by an integrated environment that aims to support full-featured ontology development. Further,
the technical requirements are split into four categories: 1) Change Management; 2) Quality
Assurance; 3) User Experience; and 4) Ontology Deployment. Next, we describe in detail the
requirements of the two main groups as well as categories of the second one.

4.2.1 Methodological Requirements

In the following, requirements that ease collaboration and governing aspects of the distributed
development process are described.

M1 Communication: The collaborative development of ontologies is about finding consensus
among different stakeholders. It is essential that they share ideas, make agreements, and
discuss issues during the entire development life-cycle [44, 80], w.r.t. introducing new ele-
ments, extending or modifying the subsumption hierarchy [81]. An effective communication
has a significant impact on the quality of the collaboration and its outcome.

M2 Information Provenance: Each change in ontology reflects the understanding of the
domain by the respective stakeholder who conducted that. In case of disagreements, it
is necessary to know which change has been made by whom at which time and for what
reason. Hence, managing and documenting provenance of the information and design
decisions is needed during the entire development process.

M3 Workflow Independence: The overall field of methodologies and workflows for collaborative
ontology development is continuously changing [80]. Tools supporting collaboration should
be generic and be able to adapt in highly dynamic context. Therefore, it is essential to
facilitate scenarios with high flexibility that follow different methodologies and workflows.

M4 Parallel Development: The community should not be limited to a strict and linear path
of the development process, rather it should be able to work simultaneously, considering
their diverse interests or requirements. As a result, parallel versions might co-exist for
purposes of testing new features, bug fixing or other issues. Therefore, support for parallel
development is crucial to boost the productivity of the team in such scenarios [28].

M5 Role Definition: Stakeholders with different backgrounds and levels of expertise are
involved in ontology development. Consequently, clear definition of roles and permissions
is an important requirement that must be taken into consideration [5, 80].

M6 Modularity: Modularization is recognized as an important step in collaborative ontology
building [82]. Reusability, the decrease of complexity, ownership and customization are
some of the benefits of ontology modularization. Although there is no universal way to
perform the modularization [83], guidelines based on the clustering or number of concepts
are necessary to reduce the cost of maintenance and increase the applicability of ontologies.

M7 Version Labeling: Release versions of ontologies should be appropriately named using
self-description labels. This ensures that users, either humans or machines have always
the possibility to use specific version according to their needs, and not only the latest one.

3 See https://github.com/vocol/mobivoc , https://github.com/vocol/scor and https://github.com/i40-Tools/
StandardOntology.

55

https://github.com/vocol/mobivoc
https://github.com/vocol/scor
https://github.com/i40-Tools/StandardOntology
https://github.com/i40-Tools/StandardOntology

Chapter 4 Requirements for Collaborative Ontology Development

M8 Modeling Practices: During the modeling phase, a number of practices should be persist-
ently followed by all team members. These practices which comprise naming conventions,
reusability of existing ontologies, metadata definition and utilization of particular properties
help on increasing the quality of ontology and avoid later inconsistencies.

M9 Multilinguality: In order to have a wide range of applicability to different cultures and
communities, the ontology terms must be translated into various languages [84]. The
localization (and internationalization) process of the ontology should be continuously
maintained and curated by dedicated team members.

4.2.2 Technical Requirements
The following requirements are crucial for supporting the development process from technical
perspective. These requirements are divided in four categories: 1) Change Management; 2)
Quality Assurance; 3) User Experience; and 4) Ontology Deployment.

Change Management This category comprises requirements related to the management of
meta-information about changes as well as coping with heterogeneous ontology editors.

P1 Conflict Detection: Several users may simultaneously perform changes regarding to
their needs or make corrections to existing terms in their local copies. Such changes must
be tracked and conflicts must be detected during synchronization process.

P2 Evolution Tracking: Collaborative development of ontologies should respond to the
evolution of the knowledge domain [5]. Therefore, support for identifying and documenting
the semantic differences between versions is necessary to enable developers to understand
the mentioned evolutions. This includes the modifications, the additions of new elements
(i.e., classes, properties) as well as the removals of existing ones.

P3 Editor Agnostic: In contrast to software code, ontologies are abstract artifacts which
can be serialized with different techniques without losing the encoded semantics. Since
contributors may use different editors which style the syntax in different ways, the support
of the collaboration must be editor agnostic and syntax independent.

Quality Assurance This category comprises requirements for the systematic checking of quality
criteria that should be fulfilled by the ontology being developed.

P4 Continuous Validation: Syntactic and semantic correctness as well as the application of
best practices on designing ontologies are relevant quality aspects. Providing tool support
for these aspects is essential to help contributors in making fewer errors and ultimately
increasing the quality of the ontology.

P5 Testing: Competency Questions, i.e., questions that the ontology must be able to answer,
can be translated into queries and used as test cases in later phases [68]. An integrated
ontology development environment should provide mechanisms to allow users for executing
such queries efficiently.

User Experience This category groups requirements for enabling contributors to effectively
achieve their objectives and in a user-centered manner.

P6 Client Performance: The development of ontologies is driven by contributors who might
be affected from occasional network interruptions. Therefore, the contributors should be

56

4.3 Summary

able to work offline on their local machines as well as synchronize and distribute the
ontology changes once they are again connected [85].

P7 Documentation: Domain experts are often team members with little technical expertise in
knowledge representation and engineering tools. In order to enable them contributing to
the development process, presenting the current state of the ontology in a human-friendly
way is vital. Therefore, an automatic documentation generation feature is necessary.

P8 Visualization: Visualization is known to have a positive impact on the modeling, explor-
ation, verification, and sense-making of ontologies [86]. It is particularly helpful for domain
experts, but can also provide useful insights for knowledge engineers.

Ontology Deployment Finally, there are requirements concerning the deployment of the
developed ontology that also need to be taken into account by an integrated environment.

P9 Machine Accessibility: An important requirement towards realizing the vision of the
web as a global information space is to provide details about the ontology terms in various
representation formats [87]. This enables machines to access and comprehend the ontology
according to their specific use cases.

P10 Querying: In order to check whether the developed ontology is suitable for a certain use
case, the environment should appropriate interfaces for execution of user-defined queries.
Furthermore, a possibility to export the query results in various formats can help to
achieve a better comprehension of the ontology.

4.3 Summary
In this chapter, we investigate the collaborative ontology development process in distributed and
heterogeneous scenarios. This process involves a consortium of stakeholders which realize periodic
meetings to communicate specific needs, and try to find a consensus for topics, such as ontology
terms, their definitions, and the reuse of external ontologies. Next, we introduce the round-trip
development model and explained its three fundamental steps that may be performed iteratively
and in an incremental fashion. We then continued with analyzing several ontologies that are
widely reused and presented results from this analysis regarding to their modeling practices and
design decisions. We observed a number of commonalities in terms of the key aspects, such as
reuse, documentation, multilinguality, naming, validation and practices regarding authoring.
The main outcome of the above analyses is an exhaustive list with requirements that should
be considered from the methodological perspective. Since software and ontologies are not the
same, we study their differences by identifying the requirements that should be considered
when construction of ontologies is centered around the version control systems. Next, from the
technical perspective, we collected a number of requirements to be addressed by an integrated
platform with the objective of supporting ontology construction in distributed scenarios.

57

CHAPTER 5

A Lightweight Methodology for Developing
Ontologies in Distributed Environments

The dynamic World Wide Web demonstrates that the interoperability is also possible to some
extend with a minimalistic standard set and flexible de facto standards. This is mainly enabled
by focused applications and well documented specification pages. In some cases these de facto
standards become real standards. However, the main idea is that they are not created in a
top-down approach as in traditional standardization activities. Concretely, the implementation
is not based on a predefined standard, but the standard is based on the adoption and the
experience with existing implementations. That makes them more practical and avoid overly
engineered standards like Common Object Request Broker Architecture (CORBA), or Customised
Applications for Mobile networks Enhanced Logic (CAMEL). We consider this as a bottom-up
approach for defining a standard.

Even within the Web context, the danger of overly engineered standards is actual. The vision
of the Semantic Web for example, caused the enthusiastic creation of standards like the Web
Ontology Language and the Rule Interchange Format, to represent knowledge and rules. However,
these standards will be broadly adopted only if they are really practical enough to be used in
various information systems. In contrast, positive examples likes Schema.org, clearly demonstrate
that a practice-oriented approach is very effective. The definition, implementation and the usage
of these ontologies is integrated pragmatically and not organized sequentially.

Our approach towards a practice-oriented ontology construction is to support the collaborative
ontology development with a lightweight methodology for distributed version control in a
domain-agnostic way. In this regard, we have chosen Git for the following two reasons: on the
one hand, Git is a mature version control system supported by sophisticated tools and broadly
used in software development projects. More than 85 million repositories were hosted by the
GitHub service in April 2018.1 On the other hand, well-known vocabularies and ontologies like
Schema.org, Description of a Project (DOAP), or the Music Ontology2 publish their efforts
on GitHub to leverage the contribution of the community. This indicates that the ontology
development community is already familiar with Git.

In Chapter 4, a number of requirements from methodological and technical point of view are
presented. This chapter addresses the requirements from Subsection 4.2.1, that are focused on
the methodological aspects with the objective to ease the collaboration during development
1 https://github.com/ten
2 https://github.com/schemaorg, https://github.com/edumbill/doap, https://github.com/motools/musicontology

59

https://github.com/ten
https://github.com/schemaorg
https://github.com/edumbill/doap
https://github.com/motools/musicontology

Chapter 5 A Lightweight Methodology for Developing Ontologies in Distributed Environments

processes. We investigate the fundamental features of Git, and assess the potential exploitation
for ontology construction. As a result, a number of guidelines covering information management,
ontology structure, parallel development and deployment aspects, are proposed. Moreover, we
analyze the applicability of the Convention over Configuration paradigm, a well-known paradigm
and broadly adopted in software engineering, to ontology development. It aims at reducing
the number of decisions that developers need to make, so they can focus on the mainly on
development. Inspired by this paradigm and the broad adoption of lightweight ontologies like
Schema.org, we propose a set of practices for facilitating ontology construction. We derive these
practices from the study of widely used ontologies presented in Subsection 4.1.2 as well as
our own experience in the ontology development process. The bottom-up and pragmatically
best-practice oriented approach which we applied, is described in detail.

In this chapter, we address the following research question:

RQ1: Which best practices facilitate collaborative ontology development in distributed
and heterogeneous scenarios?

Contributions of this chapter are summarized as follows:

• A set of guidelines to cover governing aspects of distributed ontology development;
• A number of best practices to be used for modeling and deployment purposes;
• Evaluation of the defined methodology with a concrete use case;
• A survey with ontology engineers to assess their opinion regarding the defined practices.

Some parts of this chapter are based on the following publications:

• Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Steffen Lohmann, Sören Auer.
Git4Voc: Collaborative Vocabulary Development Based on Git. In International Journal of
Semantic Computing (IJSC), 1-24, World Scientific. This article is a joint work with Irlán
Grangel-González, a PhD student at the University of Bonn. In this article, my contributions
are related with collecting requirements for collaborative ontology development, the
description of the approach, the revision of the related work and presentation of the use
case evaluation;

• Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Sören Auer. Git4Voc: Git-
based Versioning for Collaborative Vocabulary Development. In IEEE Tenth International
Conference on Semantic Computing (ICSC) 2016 Proceedings, 285 - 292, IEEE. This article
is a joint work with Irlán Grangel-González, a PhD student at the University of Bonn.
In this article, I contributed to collecting requirements for collaborative development of
ontologies, definition of the approach, the analysis of the related work and the presentation
of the use cases in real world scenarios;

• Irlan Grángel-González, Lavdim Halilaj, Gökhan Coskun, Sören Auer. Towards Vocabu-
lary Development by Convention. In 7th Knowledge Engineering and Ontology Development
(KEOD) 2015 Proceedings, 334-343, SciTePress. This article is a joint work with Irlan
Grángel-González, a PhD student at the University of Bonn. My contributions focused
on the review of state of the art approaches, devising, conducting and analyzing the user
study and presentation of the outcomes.

60

5.1 The Git4Voc Approach

ValidationDocumentation Reusability Naming Multilinguality

Management of
Generated Information

Branching Strategy
Rights

Management
Ontology Structure

Labeling of
Release Versions

Governance
Level

Operational
Level

Ontology Development

Authoring

Figure 5.1: The Git4Voc methodology. Governing and Operational levels of Git4Voc, covering a
number aspects and practices of the ontology development process, respectively.

This chapter starts with describing the approach that is followed to concept the Git4Voc in
Section 5.1. In Subsection 5.1.1, we provide the guidelines on how to manage the generated
information, strategies for parallel development, structuring the ontology according to its size,
and labeling possibilities of release versions. We then provide a number of practices derived from
analysis in Subsection 4.1.2 of the widely used ontologies. The presented approach is evaluated
with a particular use case in Subsection 5.2.1 and a survey with ontology engineers is conducted
in Subsection 5.2.2. Section 5.3 concludes the work in this chapter.

5.1 The Git4Voc Approach

Approaching a task can be done in two different ways. A top-down starts from the abstract
and elaborates the concrete whereas A bottom-up starts from the concrete level and continues
towards the abstract. From a logic perspective, the former corresponds to deductive reasoning.
It starts with known facts that are considered as premises and seeks for conclusions. The latter,
on the contrary, starts with a given set of statements and looks for premises that caused them.
In the context of defining a methodology for ontology development, a top-down approach

starts with the facts that are known about the expected outcome, namely the ontology. From
the different characteristics of it, a possible creation process is derived. In the next steps, a list
of roles is established and a set of tools are developed or selected, which can be used among
various steps of the overall process. In fact, most ontology engineering methodologies have been
created by applying this approach. On the contrary, a bottom-up approach with the objective of
deriving guidelines and best practices, is supposed to start from the current state of art and
look for evidences that explain why people are doing what they are doing. The most common
activities of the successful outcomes are then compiled as a set of best-practices. This is in
fact the method we applied in this work. We advocate that there is no need for just another
comprehensive methodology that is designed in detail in a top-down approach. Rather, we claim
that in the meanwhile there are sufficient good examples to be analyzed and learnt from. For
that reason, we empirically analyzed a number of popular ontology development efforts.

In typical scenarios, such as the cross-organizational or enterprise settings, there are different
decision making bodies in various hierarchy levels involved in the entire ontology life-cycle. First,
the steering committee is a board of people dealing with strategic decisions, such as which new
ontologies should be created for what purpose, who will use them and who will be involved in
the development process. Second, the stakeholder committee is responsible for governing aspects

61

Chapter 5 A Lightweight Methodology for Developing Ontologies in Distributed Environments

related to the organization of the work, release versions, number of branches and types of roles
including their permissions. Moreover, a development team, which can be part of the stakeholder
committee, is responsible for concrete modeling aspects, including transferring of the domain
knowledge into a formal language, by choosing the right axioms and handling technical issues.
We present Git4Voc, devised according to a bottom-up approach for covering aspects of the

stakeholder committee which are presented in following. On the one hand, we show how the
requirements listed in Section 4.2 can be addressed by exploiting the fundamental features of
Git as a distributed version control. As a result, we investigated the following governing aspects
as critical for development process: 1) management of generated information; 2) branching
strategies; 3) rights management; 4) ontology modularization; and 5) labeling of release versions.
On the other hand, from our analysis in Subsection 4.1.2 and examination of the state of the art,
we defined a set of practices related to reuse, naming convention or multilinguality. Figure 5.1
illustrates governing aspects and development practices covered by the Git4Voc approach. The
order of performing these aspects is irrelevant, stakeholders can start by agreeing on governing
aspects and operational practices before development is started. They can also start constructing
the ontology and then decide for aspects and practices following a learn-by-doing approach.
However, a natural working process would be based on first approach, since it helps on reducing
the number of corrections or misunderstandings in later phases.

5.1.1 Governing Aspects

In the following, we show in detail how requirements defined in Subsection 4.2.1 are addressed
by our approach with the presented governing aspects.

Management of Generated Information

During the development process, a bunch of information is generated by different contributors.
The capability to manage this information within the entire project life-cycle is essential. In
fact, value added services like GitHub, GitLab or Bitbucket enrich Git functionality with
powerful information management features. For instance, issues are a great way of tracking
communications, reporting problems including bug fixes and announcements of the version
releases. Communities like Schema.org, manage their discussions using GitHub. The above
mentioned means support the requirement M1. Based on this fact, we propose that activities
gathered in Table 5.1 should be documented. If possible, the name of issues should correspond
to the name of the activities. Furthermore, the Labeling, as a built-in feature of the repository
hosting platforms, should be used to organize the issues in different categories. In addition, all
issues should contain the ontology version to which they belong to. Later on, this helps users to
easily understand the version of the ontology which is affected by a particular issue.

Another important requirement in collaborative ontology development, is the ability to view
the history of the changes according to the principles of the traceability in software engineering.
This is conform to the requirement M2. Using commands git log and git diff, a user can explore
the entire history of commits as well as the differences between them. Each commit should be
realized based on the Best Commit Practices3.

3 http://www.git-tower.com/learn/git/ebook/command-line/appendix/best-practices

62

http://www.git-tower.com/learn/git/ebook/command-line/appendix/best-practices

5.1 The Git4Voc Approach

Table 5.1: Common activities in collaborative ontology development. A number of activities that
are performed during ontology construction from different contributors.
Activity Name Description Example
ACT1 Simple Addi-

tion/Deletion
Adding new or deleting existing ele-
ments like classes and properties

Adding a class in the last level of the
taxonomy

ACT2 Complex Addi-
tion/Deletion

Adding new elements to be inter-
connected within the existing class
or properties taxonomy

Adding a object property as a super
property of two existing properties

ACT3 Modification Modifying existing elements Modifying the domain and range of an
existing object property

ACT4 Reusing Reusing elements of the Linked
Data Cloud

Defining new local concepts by using
external resources

ACT5 Alignment Alignment of existing elements
with equivalents in the cloud

Alignment of classes and instances with
owl:equivalentClass and owl:sameAs

ACT6 Refactoring Changing the name and metadata
of an specific element and its con-
nections

Renaming a class which is connected
in many domain and range relation
of properties and need to be renamed
everywhere

ACT7 Common
Metadata

Adding/Removing/Modifying pre-
define RDFS metadata

Adding metadata to a class with
rdfs:label, rdfs:comment

ACT8 External
Metadata

Adding/Removing/Modifying ex-
ternal metadata

Adding metadata to a class with
skos:prefLabel, dc:title

ACT9 Translating Adding/Removing/Modifying
translation for the terms

Using rdfs:label to translate elements
into different languages

ACT10 Modularization Adding new modules to the exist-
ing ontology

Creating and integrating new modules
due to new requirements

ACT11 Partitioning Partitioning into different modules
with existing elements

The ontology has grown in size and
semantic complexity. Partitioning the
existing ontology into different modules

Branching Strategy

Git is a very flexible tool, allowing teams to organize their work in different types of workflows4,
addressing the requirement M3. Branching strategies affect the quality in collaborative software
development [88, 89]. Ontology development is mostly accepted to be a specific type of software
development. Therefore, it is considered that the branching strategy impacts the quality of
the ontologies. Well-known ontology initiatives, such as Schema.org use branches to organize
their work. In order to design a branching model, it is important to understand the possible
activities that a team can perform. Thus, we collected common activities of collaborative ontology
development which are listed in Table 5.1. Aiming at producing an ontology with good quality,
the entire team should be aware of these activities and how to face them in the development
process. Due to their impact on the overall ontology, we have classified these activities into three
categories: 1) basic activities (ACT1, ACT7, ACT9); 2) semantic issues (ACT2, ACT3, ACT4,
ACT5, ACT6, ACT8); and 3) structural issues (ACT10, ACT11). This led us to the branching
model that is depicted in Figure 5.2. We identified different branches according to the mentioned
categories. Basic activities have to be performed in the Develop Branch. For the second category,
we propose a dedicated branch called Semantic Issues. In case of the third category, a branch

4 https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow

63

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow

Chapter 5 A Lightweight Methodology for Developing Ontologies in Distributed Environments

Time

Develop

v1.0.0 v2.1.6 v2.9.8 v3.5.1 v4.2.1

Semantic
Issues

Master

Tags

Structural
Issues

Figure 5.2: Branching model for ontology development. Parallel development can be facilitated
and maintained using a number of dedicated branches for specific purposes, i.e., master, semantic issues,
develop, and structural issues.

named Structural Issues has to be applied. It is important to bear in mind that we are not
restricting the flexibility of Git regarding branches. On the contrary, other branches can be
used as a complement of this model. Nevertheless, our approach of branching model will help
developers because those branches are connected to specific activities in collaborative ontology
development addressing the requirement M4. This model is built on top of the best practices
for branching in software development.5

Rights Management

Definition of the roles is of paramount importance during any initiative for building ontologies
in a collaborative fashion. Table 5.2 shows common roles and their permissions, with respect to
the defined categories of activities. Standalone solutions, such as GitLab6 and Gitolite7 as well
as third-party services like Bitbucket8 and GitHub9, offer basic options for the management of
the user rights, like reading, writing, posting, adding new team members, and the definition of
new tags. However, even with these solutions a high level of user management, i.e., restricting
editing a specified number or type of classes, properties or instances, cannot be achieved with
Git. In order to address requirement M5, we explore a combination of branching and hooks.
With this combination a more fine grained access management can be achieved. Concretely, by
using server-side hooks, administration of the rights on top of user roles is possible. For instance,
an implementation of a pre-push hook can check for the user’s role and permissions and deny if
the necessary rights in the respective branch are not specified.

5 http://nvie.com/posts/a-successful-git-branching-model
6 https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/permissions/permissions.md
7 https://github.com/sitaramc/gitolite
8 https://confluence.atlassian.com/display/BITBUCKET/Add+Users,+Set+Permissions,+and+Review+Account+Plans
9 https://help.github.com/articles/permission-levels-for-an-organization-repository

64

http://nvie.com/posts/a-successful-git-branching-model
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/permissions/permissions.md
https://github.com/sitaramc/gitolite
https://confluence.atlassian.com/display/BITBUCKET/Add+Users,+Set+Permissions,+and+Review+Account+Plans
https://help.github.com/articles/permission-levels-for-an-organization-repository

5.1 The Git4Voc Approach

Table 5.2: Roles and their primary activities. Stakeholders team may have roles, such as ontology
engineers, domain experts, translators, and common users which can work on different types of issues.
Roles Basic Activities Semantic Issues Structural Issues
Ontology Engineers + + +
Domain Experts + - -
Translators + - -
Common Users - - -

Smart commits allow the repository contributors to control the execution of specific actions,
such as commenting on issues or record timestamp information against issues.10 These actions
are encoded into the commit message based on the following pattern:

< ignored message text >< ISSUE_KEY >< ignored message text > #
< COMMAND >< optional COMMAND_ARGUMENTS >

According to this pattern, we integrated the idea of the smart commits into Git4Voc. This
introduces a flexibility to the user on choosing only specific tasks to be performed and facilitates
obtaining and monitoring of the information for later contribution analysis, according to
requirement M2. The following pattern presents a command which is encoded in the commit
message:

< commit message > # < COMMAND > # < optional ARGUMENTS >

where:

• 〈commit message〉 is the message given by the user, expressed in a free text format;
• 〈COMMAND〉 is the action to be performed, expressed with predefined keywords or

particular range of numbers;
• 〈ARGUMENTS〉 are optional variables a user can add to invoke specific actions.

The available commands are as follows:

• 〈All〉 or 〈1〉 – perform all tasks listed in the following (default behavior);
• 〈SyntaxValidation〉 or 〈2〉 – check the ontology for syntactic errors;
• 〈CheckBadPractices〉 or 〈3〉 – check the ontology for bad modeling practices;
• 〈Normalization〉 or 〈4〉 – normalize the structure of the ontology;
• 〈GenerateDocumentation〉 or 〈5〉 – generate a documentation of the ontology;
• 〈SemanticDiffs〉 or 〈6〉 – list semantic differences between ontology versions.

For example, to perform a default syntax validation (without specific arguments and no other
additional task), the user can append the number 2 or the keyword SyntaxValidation to the
commit message:

“Error correction#SyntaxV alidation′′ or “Error correction#2′′

The message is captured according to the above pattern and a specific action will be performed
the based on the attached command.
10 https://confluence.atlassian.com/fisheye/using-smart-commits-298976812.html

65

https://confluence.atlassian.com/fisheye/using-smart-commits-298976812.html

Chapter 5 A Lightweight Methodology for Developing Ontologies in Distributed Environments

Vocabulary

Modules

Aircraft

MobiVoc

Bike
Sharing

Charging
Points

Energy

Filling
Stations

Fuel

Low Emission
Zone

Means of
Transport

Motor
 Vehicle

Parking

Related
Vehicle

Figure 5.3: The structure of MobiVoc. The MobiVoc vocabulary comprises several modules divided
according to their specific subdomain coverage.

Ontology Structure

The basic functionalities of Git do not support modularizing code or ontologies. Therefore, in
order to address the requirement M6, we define several guidelines for organizing the ontology
in files where each file represents a module. Considering the fact that each line should encode
a triple and based on the insights of [90], we propose that files should not contain more than
300 triples. We highlight three possible forms for organization of the files. All of these cases are
based on single Git repository to store the ontology files.
1. The complete ontology is contained in one single file. When the ontology is small (e.g.

contains less than 300 lines of code) and represents a domain which cannot be divided in
subdomains, it should be saved within one single file. If the number of contributors is relatively
small and the domain of the ontology is very focused, organizing it into one single file might be
possible, even if it exceeds 300 lines of code. However, if the comprehensibility is exacerbated,
splitting it into different files should be considered.
2. The ontology is split in multiple files. If the ontology contains more than 300 lines of code

or covers a complex domain, it should be organized into different subdomains or modules. In
this regard, we mapped subdomains with modules. When the subdomains themselves are small
enough, they should be represented by different files within the parent folder. There exists
patterns for ontology modularization [91]. We developed the MobiVoc based on the pattern n
modules importing 1 module. In this case, 1 module was the ontology itself. The n modules like
Aircraft, Fuel were saved in separate files. Each file represents a specific subdomain. By following
this approach, domain experts can contribute independently to ontology development according

66

5.1 The Git4Voc Approach

to their field of expertise. Figure 5.3 depicts the structure of MobiVoc and its modules.
3. Ontology modules are stored in files and folders. For huge ontologies that comprises complex

domains, splitting it into files is not sufficient. This would lead to a large amount of files within
a single folder. Therefore, if the subdomains are large enough to be split into files they should
be represented by folders. Each folder contains files which are linked to modules. In this case,
the folder and file structure should reflect the complex hierarchy of the overall domain. Splitting
the ontology into files for specific purposes may facilitate requirements for role definition (M5)
and multilinguality (M9). Associating roles to the specific files, such as Translators, facilitates
the translation of the ontology terms into the required languages.

Labeling of Release Versions

Based on the requirement M7, proper labeling of release versions is vital, as it facilitates the
reusability. One of the common ways to realize that, is to deploy each release version in a
dedicated file. However, this could lead to the following problems as identified in [92]: 1) the
number of files could increase rapidly; 2) choosing versions creates confusion; 3) maintenance
needs additional resources; and 4) synchronizing with latest version from dependent applications
requires additional effort. To avoid the above mentioned problems, we propose to keep versions
of ontologies in the same file. These versions are separated by Git built-in functionality of
tagging and are saved in the master branch, which is part of the branching model as illustrated
in Figure 5.2. It is possible to create and filter tags at any time. Moreover, users can obtain a
specific version of the ontology by just giving the tag name. Therefore, each released version of
an ontology must have a version number. Based on the scheme from [93] and the mentioned
categories of activities in Table 5.1, we propose tagging of different versions according to the
following pattern: v[StI.SeI.BaA], where StI stands for Structural Issues, SeI for Semantic Issues
and BaA for Basic Activities. Each category is related with a number, in the respective position.
Changes in the ontology regarding to the categories are commonly reflected by increasing the
respective numbers. For instance, the difference between releases v[1.0.0] and v[2.0.0] indicates
changes on the Structural Issues category (StI).

5.1.2 Development Practices

In this subsection, we provide a comprehensive list of practices for ontology development
addressing the requirements: M8 and M9. We derive this list from our own experience in
creating ontologies, like SCORVoc and MobiVoc11 in combination with the results of the analysis
in Subsection 4.1.2 as well as with current state of the art practices. They will serve as guidelines
focusing on the most important aspects of the ontology creation process. Moreover, these
guidelines are independent of the concrete environment or tool used for development purposes.

Reuse

In the ontology construction field, the reuse of existing terms is of paramount importance [94,
95]. The main idea is to avoid creating new terms, but to utilize those that are present in the
existing ontologies. Apart from saving time and investment costs, ontology reuse is expected to
ensure a certain level of quality. The reason for this is that the longer an ontology exists and
is reused, the more review processes it has gone through. Additionally, according to [87], the
11 http://purl.org/eis/vocab/scor/, http://www.mobivoc.org/

67

http://purl.org/eis/vocab/scor/
http://www.mobivoc.org/

Chapter 5 A Lightweight Methodology for Developing Ontologies in Distributed Environments

reuse is considered to be a best-practice in ontology construction. Therefore, in the following we
discuss important practices regarding reuse.

P-R1 Reuse of widely used ontologies We define authoritative ontologies as ontologies
(cf. Table 4.2) which are: 1) published by renowned standardization organizations; 2) used
widely in a large number of other ontologies; and 3) defined in a domain independent
fashion, addressing more general concerns. Reusing authoritative ontologies increases the
probability that data can be consumed by a wide range of applications [79].

P-R2 Reuse of non-authoritative ontologies Use ontology registries, like LOV and
LODStats12 or other more domain specific ontology registries, such as BioPortal13 to
find terms for reuse. For instance, by searching in LOV for a specific term the following
information can be derived: 1) the number of datasets that use it; 2) the number of
occurrences of the term in all datasets; and 3) the reuse frequency of the ontology to which
the term belongs to [95]. Also, the semantic description and definition of the term should
be checked to verify whether it fits the intended use. The above information supports the
decision process regarding to which terms are positioned as better candidates for reusing.

P-R3 Avoid semantic clashes If the term has a strong semantic meaning for the domain,
different from the existing ones, then a new element should be created.

P-R4 Reuse of individuals Especially elements from authoritative ontologies should be re-
used as individual ontology elements. For non-authoritative ontologies, a reuse of individual
resources is less recommendable and the creation of own ontology elements with a possible
alignment (cf. P-R6) or the reuse of larger modules (cf. P-R5) should be considered.

P-R5 Reuse of ontology module (Opposite of P-R4) Often ontologies require certain
basic structures, such as addresses, persons, organizations, which are already defined in
non-authoritative ontologies. Such structures comprise usually the definition of one or
several classes and a number of properties. If the conceptualizations is matched, a whole
module should be considered for reuse.

P-R6 Soft alignments with existing ontologies Instead of the strong semantic com-
mitment of reusing identifiers from non-authoritative ontologies, additional alignments
using axioms, such as owl:sameAs, owl:equivalentClass, owl:equivalentProperty,
rdfs:subClassOf, rdfs:subPropertyOf can be established.

Utilization of SKOS Vocabulary The Simple Knowledge Organization System SKOS is a
W3C recommendation for modeling taxonomies in the Web. SKOS is currently used by at least
478 ontologies [96]. The utilization of some SKOS constructs is considered as a best practice to
declare and document the indexing terms (i.e., skos:prefLabel) and alternatives terms (i.e.,
skos:altLabel) [97, 98]. Both above mentioned properties are subproperties of rdfs:label.
SKOS provides a more detailed notion of the labeling concept, which can be useful for a better
descriptions of the ontology terms.

P-R7 Use skos:prefLabel to complement the labeling of concepts Add skos:prefLabel
in combination with rdfs:label to provide a complementary semantic definition for each
element. For instance, skos:prefLabel might be used to describe a shorter definition for
a concept compared to rdfs:label.

12 http://lov.okfn.org/dataset/lov/, http://lodstats.aksw.org/
13 https://bioportal.bioontology.org/

68

http://lov.okfn.org/dataset/lov/
http://lodstats.aksw.org/
https://bioportal.bioontology.org/

5.1 The Git4Voc Approach

P-R8 Use skos:altLabel to describe variations of the elements Add complementary
descriptions for the elements, such as synonyms, acronyms, abbreviations, spelling variants,
and irregular plural/singular forms by using skos:altLabel.

Authoring

In Subsection 4.1.2, we analyzed common practices followed by ontology engineers (i.e., the
creation of object properties and their associated domain and range axioms). Those practices
are always domain dependent, but still can serve as general guidelines to be followed in the
process of designing ontologies.

P-A1 Domain and range definitions for properties When creating a property, consider
to provide the associated domain and range definitions. This also means that in case
of object properties, the corresponding classes should be defined. In case of datatype
properties, the range should be a suitable datatype.

P-A2 Avoid inverse properties Create inverse properties only if it is strictly necessary to
have bidirectional relations (i.e., invalidates and isInvalidatedBy). Inverse properties
affect the size as well as the complexity of the ontology.

P-A3 Use of class disjointness Use class disjointness to logically avoid overlapping classes.
Even though disjointness has been used in authoritative ontologies, it should be carefully
examined since this can easily lead to semantic inconsistencies.

Documentation

Providing a user friendly view of ontologies for non-experts is crucial for integrating Semantic
Web with everyday Web [99]. It facilitates contribution of domain experts during the development
process. In addition, it helps the other interested parts for an easy adoption of ontology in the
later phases as well. Basically, documentation generation tools require that following information
should be present for each ontology resource to enable the representation in a user friendly view.

P-Do1 Use of rdfs:label and rdfs:comment Add an rdfs:label to every element, to
define the main name of the concept that is being represented and an rdfs:comment to
describe the context for which the element is created.

P-Do2 Generate human-readable documentation Easy-to-use documentation is critical
for the wide adoption of the ontology. Use appropriate tools for documentation generation
based on the types of URIs.

Naming Conventions

Following proper naming conventions has a high impact in ontology development [100]. Naming
conventions help to avoid lexical inaccuracies and increase the robustness and exportability,
particularly in cases when ontologies should be interlinked and aligned with each other [79].
Providing meaningful names increases the power of context-based text mining for automatic
term recognition and facilitates manual and automated integration of terminological artifacts
(i.e., comparison, checking, alignment and mapping) [100, 101].

Considering the literature on this topic [79, 102] and the results of Subsection 4.1.2, we define
several practices to be followed in the process of naming elements in ontologies. For ontology
construction, the use of the CamelCase notation is a considered as a best practice [103]. Our

69

Chapter 5 A Lightweight Methodology for Developing Ontologies in Distributed Environments

study also indicates the presence of this notation in 62% of the cases. Therefore, we propose
following notation forms to be used during ontology construction.

P-N1 Concepts as single nouns Name all ontology concepts as single nouns using CamelCase
notation (i.e., ChargingPoint).

P-N2 Properties as verb senses Name all properties as verb senses in combination with
CamelCase fashion. The name of a property should not be a plain noun phrase, in order
to clearly distinct from class names (i.e., hasProperty or isPropertyOf).

P-N3 Short names Provide short and concise names for elements. When natural names
contain more than three nouns, use the rdfs:label property for encoding long name while
using a short name for the element. For instance, for ManageSupplyChainBusinessRules
use BusinessRules and set the full name in the label. In order to explain the context (i.e.,
Supply Chain), complement this label with the skos:altLabel.

P-N4 Logical and short prefixes for namespaces Assign logical and short prefixes to
namespaces, preferable no more than five letters (i.e., foaf:XXX, skos:XXX).

P-N5 Regular space as word delimiters for labeling elements For example, rdfs:label
"A Process that contains..".

P-N6 Avoid the use of conjunctions and words with ambiguous meanings Avoid
names with “And”, “Or”, “Other”, “Part”, “Type”, “Category”, “Entity” and those related
to datatypes like “Date” or “String”.

P-N7 Use positive names Avoid using the negations. For instance, instead of NoParkingAl-
lowed, use ParkingForbidden.

P-N8 Respect the names for registered products and company names In those cases
is not recommended the use of CamelNotation. Instead, the name of the company or of a
particular product should be used in the original form (i.e., SAP, Daimler AG).

Dereferenceability

One of the four rules to be followed during ontology development is naming things with HTTP
URIs.14 Adopting HTTP URIs for identifying things is appropriate due to the following reasons:
1) it is simple to create global unique keys in a decentralized fashion; and 2) the generated key
is not used just as a name but also as an identifier.

By combining dereferenceability with content negotiation15, it is possible to provide adequate
content for a resource based on the type of request. There are three different strategies to make
dereferenceable URIs of resources: 1) slash URIs; 2) hash URIs; and 3) a combination of both.16

P-D1 Use slash URIs If the client requests a resource from a server by specifying its URI, the
server response will be 303 see other. Slash URI should be used when dealing with large data-
sets to enable the server response with the only requested resource. For example, the Char-
gingPoint resource is identified as: http://purl.org/net/mobivoc/ChargingPoint. The URI of
the turtle representation of above resource is http://purl.org/net/mobivoc/ChargingPoint.ttl
and the URI of HTML representation is http://purl.org/net/mobivoc/ChargingPoint.html.
To get information about ChargingPoint, the client gives its URI and specifies the request
type. In turn, the server response will be 303 see other by redirecting to the appropriate
representation format.

14 http://www.w3.org/DesignIssues/LinkedData.html
15 http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
16 http://www.w3.org/TR/cooluris

70

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
http://www.w3.org/TR/cooluris

5.1 The Git4Voc Approach

P-D2 Use hash URIs This solution is formed by including a fragment to the URIs as
in the following format URI#resource. Use hash URIs when dealing with small data-
sets to reduce number of HTTP round trips. For instance, the URI of the ScorVoc
ontology is http://purl.org/eis/vocab/scor whereas the URI of the Process resource is
http://purl.org/eis/vocab/scor#Process.

P-D3 Use combination between slash and hash URIs This allows a large dataset to be
split into multiple fractions. It is appropriate for large datasets where it is not practical to
serve all resources in single document(e.g., http://purl.org/eis/vocab/scor/Process#this).

Multilinguality

Providing multilingual ontologies is desirable but not a straightforward issue [84]. According to
our empirical analysis in Subsection 4.1.2 and with the aim to keep things simple, we propose
the following practices for multilinguality support.

P-M1 Use English as the main language Use English for every element and explicitly
encode the resource definition using the @en notation.

P-M2 Encoding other languages In order to add a new language, use another triple
according to the same format for every element. The following example illustrates this
practice with translations for the SupplyChain class.
scor:SupplyChain rdf:type owl:Class ;

rdfs:label "SupplyChain"@en;
rdfs:comment "A Supply Chain is a ..."@en ;
rdfs:label "Lieferkette"@de;
rdfs:comment "Eine Lieferkette ist ..."@de.

This approach should be applied to all elements starting from the most basics ones, like
rdfs:label and rdfs:comment as well as external annotation properties (e.g., skos:prefLabel).

Validation

Validation is an important aspect in the ontology development process [50]. It analyzes whether
ontology correctly represents the knowledge domain in accordance to the user requirements
and best practices for ontology modeling [10, 104]. Criteria used for validation activity are: 1)
correctness; 2) completeness; and 3) consistency [39]. With the purpose of addressing the above
mentioned criteria, we propose the following practices:

P-V1 Syntax validation When collaborating directly on the ontology source code, syntax
checking is of paramount importance. Ideally, syntax checking is directly integrated into
the editor and committing the code with errors is not possible. For example, tools like
Rapper17 or Web-based services, such as the RDF Validation Service or OWL2 Validator18
can be used for finding common typos and syntax errors.

P-V2 Code-Smell checking Code smells are symptoms in the software source code that
possibly indicate deeper problems. Similarly tools, such as OOPS can be used for ontology
smell checking. OOPS is a Web-based tool for detecting common ontology pitfalls, such
as: 1) missing relationships; 2) using incorrectly ontology elements; and 3) missing domain
and range properties. The complete list of pitfalls detected by OOPS is presented in [50].

17 http://librdf.org/raptor
18 http://www.w3.org/RDF/Validator/, http://mowl-power.cs.man.ac.uk:8080/validator/

71

http://librdf.org/raptor
http://www.w3.org/RDF/Validator/
http://mowl-power.cs.man.ac.uk:8080/validator/

Chapter 5 A Lightweight Methodology for Developing Ontologies in Distributed Environments

P-V3 Consistency checking Since we deal with lightweight ontologies it is not very likely
to have axioms that produce semantic inconsistencies. Nevertheless, our analysis in Sub-
section 4.1.2 showed that in authoritative ontologies there are cases that lead to semantic
inconsistencies (i.e., class disjointness). Handling inconsistencies impacts the quality of
ontologies [105]. Tools, like Pellet or Fact++19 should be used for consistency checking.

P-V4 Linked Data validation Tools, such as Vapour verify whether data are correctly pub-
lished according Linked Data principles and the best publishing practices vocabularies.20

5.2 Evaluation
The main goal of the evaluation is to assess the applicability of the defined governance aspects
to a well-know vocabulary. In addition, a survey with ontology engineers is conducted to analyze
their opinion regarding to the presented operational practices for ontology modeling.

5.2.1 Schema.org Use Case
We evaluated our approach against Schema.org, which is one of the most well-known vocabulary
at the moment. It is a collaborative initiative for creating, promoting and maintaining schemes
for structured data on the internet, like web pages, and email messages. Among the companies
involved in this initiative are Google, Microsoft, Yahoo and Yandex, which contribute to the
vocabulary development process and apply the defined concepts to their web resources. According
to the latest version from its repository21, statistics of Schema.org are: 767 classes, 1190 properties
and 273 instances, while these numbers are continuously increasing. The vocabulary is hosted
and managed through Git and the GitHub platform. Basic Git functionalities, such as versioning,
issue tracking, and branching, are used to organize the development process. Publication of the
new versions and human-friendly representation is powered by a software application which
is based on the Google App Engine and written in Python programming language. Since the
development process is organized through Git and GitHub, we have identified Schema.org as an
ideal case for analyzing how the application of our approach could improve the development
and deployment process. In the following, we detail our analysis and show our proposed solution
according to the governing aspects defined in the previous section.

Management of Generated Information

Using the issue tracker mechanism of GitHub, the community of Schema.org contributes actively
in the development process by proposing new terms, or modifications to existing ones according
to their needs. A total number of 1370 issues have been created so far, where 591 of them are
already closed and 779 remain open. In order to make a clear grouping of issues based on their
intention, 21 different labels, such as: 1) schema.org vocab; 2) type:exact proposal; 3) site tools +
python code; and 4) type:bug, have been created. This categorization helps the users to easily find
information related to the vocabulary changes or dedicated to the publishing software. However,
665 issues do not have any associated label, which makes it difficult to retrieve and categorize
them for further analysis. Furthermore, bugs of the Schema.org software are announced using
this mechanism as well. Other issues related to specific version can be found only on release
19 http://clarkparsia.com/pellet, http://hermit-reasoner.com/
20 http://validator.linkeddata.org/vapour, http://http://www.w3.org/TR/swbp-vocab-pub/
21 https://github.com/schemaorg/schemaorg

72

http://clarkparsia.com/pellet
http://hermit-reasoner.com/
http://validator.linkeddata.org/vapour
http://http://www.w3.org/TR/swbp-vocab-pub/
https://github.com/schemaorg/schemaorg

5.2 Evaluation

notes of the Schema.org website22, since no dedicated label exists for this purpose. Therefore, in
order to find information related to the specific version which the issue pertains, we propose
creating additional labels with specific purposes, such as: 1) version dedicated, represents issues
according to the version number; 2) module dedicated, groups issues based on the module; 3)
extensions dedicated, groups issues related to the extensions of the current concepts, etc.

Repository Organization Structure

The Schema.org repository contains both, the vocabulary and the publishing software. According
to software development best practices, a project (which is comparable to a repository) should
contain either software or data but not both at the same time. Thus, we propose creating two
separate repositories, one for the vocabulary and the other one for the publishing software. By
doing so, contributors and users of the vocabulary, which are our main target groups, can easily
participate in the development process and any potential confusion can be avoided.
Further exploration of the repository, we see that the data folder comprises other folders

and files related to different versions of the vocabulary. Within this folder, the main file is
schema.rdfa, which contains a complete representation of the vocabulary in RDFa format. In
order to simplify the contribution activity and avoid forcing users from opening each time the
whole vocabulary, we propose splitting it in multiple files and multiple folders. We highlight
three possible forms of organizing the Schema.org vocabulary:

1. Types of the concepts. The vocabulary may be split based on the types of the concepts,
such as classes, object properties, datatype properties and instances. As a result, the repository
will contain four different files, where each file represents one of the above concept types. In
case that during the development process a new type of concept is introduced, a dedicated file
associated with it should be created.

2. The number of lines/concepts per file. According to the above vocabulary statistics, the
current version of the Schema.org comprises a total number of 2230 concepts. Since this number
is already relatively high for a vocabulary and will increase over time, the vocabulary can be
split based on the number of concepts. As a result, the repository could, for instance, consist of
six files, where each file contains a bit more than 300 concepts.

3. Hierarchy of concepts. Another way of splitting Schema.org is based on the hierarchy
of the concepts. Key concepts in the vocabulary hierarchy are: Action, Creative Work, Event,
Intangible, Medical Entity, Organization, Person, Place and Product. These concepts can be
saved into separate files. If the number of sub-concepts is high, the vocabulary can additionally
be split into folders, where each folder represents one of the above concepts and the files within
it represent the sub-concepts. In addition to the main concepts, Schema.org contains another
concept called Data Type. This concept should be saved in a separate file. Figure 5.4 depicts a
potential modularization structure of Schema.org and its concepts.

Branching Strategy and Release of the Versions

The development process on Schema.org is organized using different branches. The repository
contains 114 branches named according to various styles: 1) from the combination of sdo prefix
22 http://schema.org/docs/releases.html

73

http://schema.org/docs/releases.html

Chapter 5 A Lightweight Methodology for Developing Ontologies in Distributed Environments

Action

Thing

Creative
Work

Schema.org
Vocabulary

Event Intangible Medical
Entity

Organization Person Place

Product

Boolean

Date

Number

Text

Time

Data Type

Figure 5.4: Proposed modularization structure of Schema.org. The structure of Schema.org can
be organized into different sub-modules based on the key concepts as well as Data Type concept.

and one of the character’s name in 23; 2) the name of the contributor; 3) the number of issue
that has been fixed; and 4) the name of the release version. In addition, several branches are
named based on the name of the software feature, or new tools that have been experimented.
To align with our defined branching strategy and the activities presented in the Table 5.1,

we propose the organization of the development process according to the following branches:
1) Basic Activities; 2) Semantic Issues; 3) Structural Issues; and 4) Release. This simplifies
the involvement of the contributors with different roles, such as: 1) ontology engineers, which
contribute in the major fixes and structural issues; and 2) domain experts, which contribute in
adding, modifying or deleting the vocabulary concepts and fixing minor issues. Furthermore,
temporal branches dedicated to the testing of specific versions of the vocabulary can be created.
Periodically, all unnecessary branches should be removed from the repository. As a result, the
development process will have a clear path and the confusion created by high number of branches
and different conventions used for their names, will be avoided.
Following the approach for defining the release versions will result on a very convenient

numbering pattern. Each change made on the branches results on increasing the number in the
respective position of the following pattern: v[StI.SeI.BaA]. For example, if the current version
of the vocabulary is v[1.2.4] and changes are made on the Basic Activities branch then BaA
position is increased and the next version will be v[1.2.5].

5.2.2 Survey and Result Discussion

With the goal to validate the defined practices, we perform a survey with ontology engineers.24

The experience in the selected group is as follows, 58% have up to two years and 41% from two to
five years. The Likert Scale [106] was used to collect the opinions. Figure 5.5 depicts the results
of the survey. Generally, all practices have received good evaluations regarding to the opinion
of experts. The authoring aspect was the most controversial one. The practice P-A2, received
some negative scores due to the existing debate regarding the use of inverse properties.25 The
23 https://en.wikipedia.org/wiki/Ghostbusters#Cast
24 https://goo.gl/X8otxe
25 https://lists.w3.org/Archives/Public/public-vocabs/2014Apr/0200.html

74

https://en.wikipedia.org/wiki/Ghostbusters#Cast
https://goo.gl/X8otxe
https://lists.w3.org/Archives/Public/public-vocabs/2014Apr/0200.html

5.3 Summary

0

2

4

6

8

10

12

Strongly Agree Somewhat Agree Neither Agree nor Disagree Somewhat Disagree Strongly Disagree

Figure 5.5: Results of the survey with ontology engineers. Horizontal axis lists proposed practices
whereas vertical axis shows opinions of participants for each particular practice, respectively.

results of P-A4, P-A5 show that even SKOS as a generally accepted standard still is not well
received for a certain group of ontology engineers.

5.3 Summary
In this chapter, we present Git4Voc, a lightweight methodology for supporting ontology devel-
opment in distributed environments. The overall goal is to pave the way for a new paradigm
of ontology development similar to Software Development by Convention. It aims at reducing
the number of decisions that developers need to make during the modeling process. We started
with investigating the applicability of Git for collaborative ontology development. As a result,
Git4Voc is conceived following a bottom-up approach by exploiting fundamental features of Git
in combination with the state of the art practices. Several governing aspects are defined, such as:
1) management of generated information; 2) rights management; 3) branching and merging; 4)
ontology modularization; and 5) labeling of release versions, to facilitate ontology construction
using version control. Moreover, from our analysis in Subsection 4.1.2 and the examination of the
state of the art, we define a set of practices related to reuse, naming convention, documentation,
authoring, validation and multilinguality.

We evaluated our governing aspects against the Schema.org vocabulary, a community-driven
initiative to enable creation, maintaining, and promoting structured data on the Web. As a
result, the repository of Schema.org will have a clean structure, number of branches will be
reduced, and issues will be easy reachable based on a clear categorization. Considering the
vocabulary structure, Schema.org would have been divided into several submodules according to
the basic concepts. In addition, the repository will reside only the vocabulary, whereas the tools
that powers it, will be moved to another dedicated repository. On the other hand, to asses the
relevance of the defined practices, we conduct a survey with experts. Generally, according to the
opinion of ontology engineers, the majority of the practices received good evaluations. Certain
practices, such as P-A2, P-A4 and P-A5 received some contradictory opinions due existing
debate for the reuse of inverse properties or SKOS labeling axioms.

75

CHAPTER 6

An Integrated Environment for Collaborative
Ontology Development

This chapter presents VoCol, an integrated environment that supports the development of
ontologies centered version control systems. We designed VoCol as a comprehensive and flexible
approach for realizing a fully-featured development platform. VoCol supports a fundamental
round-trip model of ontology development, consisting of the three core activities modeling,
population, and testing. In the spirit of test-driven software engineering, VoCol allows to formulate
queries which represent competency questions for testing the expressivity and applicability
of a ontology a priori. For a posteriori testing, it supports the automatic detection of “bad
smells” in the ontology design by employing SPARQL patterns. For modeling, VoCol integrates
a number of techniques facilitating the conceptual work, such as automatically generate the
documentations and visualizations, thus providing different views on the ontology as well as
an evolution timeline supporting traceability. For population, VoCol supports the integration
of mappings between data sources (e.g., R2RML mappings to relational databases) and the
ontology. The governance of distributed ontology development is supported by the access control
as well as the branching and merging mechanisms of the underlying VCS.

VoCol bridges between the conceptual development of ontologies and the operational execution
in a concrete IT landscape. It has been implemented following the principles for extensibility,
interoperability and customisability. The VoCol platform is based on a loose coupling, leveraging
the webhook mechanism provided by many VCSs with tools and techniques addressing particular
aspects of ontology development. The modular architecture allows the platform to be extended by
adding or exchanging components or services. New built-in components can be implemented or
off-the-shelf components can be plugged-in to an orchestration layer. Users are able to customize
VoCol by (de)activating a subset of components or services based on their specific needs or
scenario. By bundling all tools and encapsulating dependencies into virtual environments, such
as Vagrant and Docker containers, VoCol is an interoperable platform easy to be deployed or
used as-a-service in conjunction with arbitrary VCS installations. Furthermore, an incorporated
component ensures the unique serialization of ontology changes which can be modeled using
heterogeneous editors to prevent false-positive conflicts. We demonstrate the applicability of
VoCol with a real-world example from the industry domain and report on a user study that
confirms its usability and usefulness.

77

Chapter 6 An Integrated Environment for Collaborative Ontology Development

In this chapter, we address the following research question:

RQ2: How can ontology development workflows be mapped on and supported by distrib-
uted version control methods?

Contributions of this chapter are summarized as follows:

• An integrated and semi-automatic environment based on a modular architecture to enable
ontology construction in distributed scenarios;

• An implementation of defined architecture composed of several services and components
to address specific requirements;

• An evaluation of the approach with a use case from an industry partner, where the
development process is driven using VoCol;

• A user study with ontology engineers to assess their opinion regarding the usefulness and
usability of the integrated services.

This chapter is based on the following publication:

• Lavdim Halilaj, Niklas Petersen, Irlán Grangel-González, Christoph Lange, Sören Auer,
Gökhan Coskun, Steffen Lohmann. VoCol: An Integrated Environment to Support Version-
Controlled Vocabulary Development. In 20th International Conference on Knowledge
Engineering and Knowledge Management (EKAW) 2016 Proceedings, 303-319, Springer.
This article is a joint work with Niklas Petersen and Irlán Grangel-González, PhD students
at the University of Bonn. In this article, I conducted the problem description, definition
and implementation of the conceptual architecture, the revision of the state of the art
approaches, the presentation of the use cases, and the realization of the user study
evaluation.

The remainder of this chapter is structured as follows: Section 6.1 describes the approach and a
conceptual architecture composed of several services and components. In Section 6.2, we provide
an implementation of the defined architecture centered around Git as the core component. We
then demonstrate the practical application of VoCol in a real world scenario in Subsection 6.3.1.
We conduct a survey with ontology engineers in Subsection 6.3.2 to asses the usefulness of the
provided services. In the end, the work is summarized in Section 6.4.

6.1 The VoCol Approach
In order to implement VoCol as an integrated environment, we initially designed the system
architecture, as illustrated in Figure 6.1. It follows the principles of Component Based Software
Development (CBSD) [107], which promotes the reuse of components to develop large-scale
systems. In other words, it advocates selecting the appropriate off-the-shelf components and
assembling them into a well-defined software architecture. Following this idea, we compose
VoCol from a set of smaller components according to the functionalities they provide. Each of
these components is exchangeable and can be replaced by alternatives. In the following, these
components and their characteristics are described in detail.

Version Control System A VCS component is required for the management of the ontology
changes, such as change capturing and change propagation. According to [29], change manipula-
tion includes supplementary methods and strategies that support the management of changes in

78

6.1 The VoCol Approach

Administrator

Repository Hosting
Platform

Configuration Service

Monitoring Service

Validation Service

User

Documentation
Generation

Visualization Generation

Querying Service

Machine Accessibility

Syntax Validation Service
SerVCS Service
EffTE Service

HTML Representation

Graphical Visualization

Synchronization with the
latest version of vocabulary

Machine Comprehensible
Formats and Content

Negotiation
Machine

Evolution TrackingVocabulary Evolution Report

Users VoCol Environment

VoCol Server

Version Control
System

Contributors

Inconsistency and
Constraint Checking

Inconsistencies and
Constraint Violation Report

Orchestration Service

Figure 6.1: The VoCol Architecture. Main services of VoCol: Configuration Service, Validation Service,
Monitoring Service and Orchestration Service with their respective components as well as the interactions
between services and components.

distributed environments. By capturing and storing the changes, various revisions of the same
ontology are created. Viewing the syntactic differences is realized by computing the changesets
between different revisions of the ontology file. During change the synchronization process several
conflicts may be detected as a result of syntactic differences, forcing the user to resolve conflict
before submitting her local changes, thus addressing the requirement P1. To ensure a consistent
development process, any change that is made should be propagated to all other contributors.
A distributed VCS enable contributors to work collaboratively, without the need of sharing a
common network or the necessity of being always online addressing the requirement P6. In
addition, conflicts inevitably arise in environments where multiple contributors are working
simultaneously and changing ontology terms. The VCS detects conflicting changes by employing
built-in algorithms and ensures conflict resolution. It allows for the integration of these conflicts
in an effective and easy way, according to the requirement P1.
Since the VCS is the first component that is aware of changes, we declared it to be the

core component of the overall VoCol system. Each additional component that is necessary to
support ontology development is triggered by the VCS. We also integrated a hosting platform
into the VoCol environment (cf. Figure 6.1), as it provides a low-threshold access for involved
stakeholders. It acts as the repository storage where the ontology files are saved and accessed.

79

Chapter 6 An Integrated Environment for Collaborative Ontology Development

Its feature for Access Control authenticates users and outputs a permit or a deny message
according to the set of permissions. Furthermore, using the Issue Tracker of the repository
hosting platform, contributors are able to discuss about the ontology by proposing new terms or
alternatives for existing ones. In cases where sensitive information should be transmitted, the
repository hosting platform can deliver email notifications to private user accounts.

Integrated Validation Service With the objective of addressing the requirement P4, such that
any change submitted to the repository is correct with respect to syntax, consistency and do
not violate pre-defined constraints, a dedicated service is integrated into VoCol. This service
comprises the following components:

Syntax Validation To ensure that the latest revision of the ontology in the remote repository
is always syntactically correct, VoCol integrates a syntax validation component. In principle,
syntax validation could be executed at different stages of the overall workflow. However,
with the aim to keep the requirements on the client side at a minimum level, we integrated
the syntax validation as a service in the backend. It rejects syntactically incorrect commits
and provides a detailed error report in those cases.

Unique Serialization In a distributed environment, contributors use different editors during
the development process which may produce various structures of ontology files. To avoid
this problem, a component integrated into VoCol creates a unique serialization of ontology
terms before the changes are pushed to the remote repository. Thus, the VCS is prevented
from indicating false-positive conflicts, making it editor agnostic as required in P3.

Inconsistency and Constraint Checking After the changes have been pushed to the remote
repository, validations of semantic inconsistencies and constraints violation are performed.
As a result, two reports with detailed information on respective findings are generated
and can be used for corrections addressing the requirement P5.

Monitoring Service Repository hosting platforms typically expose most of their functionality
via web service APIs, so that it can be controlled programmatically. Any change to the repository
is delivered as a payload event to this service which is listening on VoCol server. As a consequence,
the other services for performing specific tasks are automatically invoked.

Orchestration Service Is responsible for coordinating the execution of particular components
according to a pre-defined workflow. The number of the components to be invoked may vary
depending on their activation status. This service is triggered by Monitoring Service after
occurrence of a push event. Following components are integral part of this service:

Documentation Generation With the objective of addressing the requirement P7, a docu-
mentation generation component creates an HTML representation of the ontology. This
permits contributors to easily navigate through the ontology by providing a human-friendly
overview of it. Moreover, contributors are able to explore annotations of the modeled
concepts into a number of different languages.

Visualization Generation The integrated visualization component depicts the ontology
terms and their connections in a graphical way, and allows an interactive navigation over
the modeled concepts. It complements the generated documentation by particularly rep-
resenting the structure, distribution, and relationships within the ontology. By graphically

80

6.2 Implementation

depicting terms, such as classes, properties and their connections, a better view of general
structure is provided. Consequently, users are empowered with a coherent view of the
ontology according to the requirement P8.

Evolution Tracking The VCS takes care of maintaining the revision history of the files. To
detect semantic differences between ontology versions, an evolution tracking component is
integrated into VoCol. It shows which classes and properties have been added, removed,
or modified, enabling users to see the evolution history over the time as required in P2.

Querying Component VoCol integrates a SPARQL endpoint synchronized with the latest
version of the ontology to address the requirement P10. Queries derived from competency
questions can be used to verify whether the ontology meet the domain requirements. These
queries are stored in the repository and are pre-loaded in the query interface.

Machine Accessibility Using content negotiation and dereferenceable URIs, VoCol delivers
various machine-comprehensible representations. By specifying the content type in the
HTTP header along with the resource URI, the ontology can be accessed by different
software agents compliant with Linked Data principles1 addressing the requirement P9.

Configuration Service This service provides a graphical user interface to facilitate the configur-
ation of VoCol. The system administrator can choose from various tools for syntax validation and
documentation generation. Furthermore, the other components can be activated or deactivated
simply by selecting the corresponding checkboxes.

6.1.1 Contributor Workflow
The interaction of the contributors with the VoCol environment starts with cloning the repository
in her local machine. Next, the user is able to add, modify or delete ontology concepts according
to her assignments. To store her work, she commits changes to local repository. During the
commit phase, changes are validated for the syntax and inconsistency errors as well as the
violation of pre-defined constraints. If the validation process is passed, a unique serialization
of the ontology is generated and changes are successfully committed. To make her changes
available, the user continue with synchronization of the local ontology with the Remote Hosting
Platform. After invoking the push command, the hosting platform delivers a notification to the
Monitoring Service. This activates the Validation Service to perform the server-side checking
of the recent changes. Next, the Orchestration Service is triggered and a number of specific
tasks, such as documentation generation, and visualization are initiated for the execution. The
generated artifacts are served to the user through the Presentation Service. Figure 6.2 illustrates
interaction of a contributor with VoCol and sequence of the steps that are performed.

6.2 Implementation

We implemented VoCol backend using Node.js2, as an interoperable cross-platform programming
language along with Express.js3, which is a flexible web application framework dedicated for
Node.js. It manages any request that comes from the user or software application and based on
that, specific actions are performed. VoCol backend comprises a set four main services: Configur-
ation Service, Monitoring Service, Orchestration Service and Validation Service. These services
1 https://www.w3.org/DesignIssues/LinkedData.html
2 https://nodejs.org/
3 https://expressjs.com/

81

https://www.w3.org/DesignIssues/LinkedData.html
https://nodejs.org/
https://expressjs.com/

Chapter 6 An Integrated Environment for Collaborative Ontology Development

Ontology
Engineer

Local
repository

Remote
Repository

Notification
Service

Validation
Service

Monitoring
Service

Orchestration
Service

Presentation
Service

Clone the repository

Commit
changes

Perform
changes

Validate changes

Validation result

Push changes

Trigger event

Deliver notification

Initiate task
execution

Validate changes

Validation result

Call orchestration

Generate result

Present result

User Machine Hosting Platform VoCol Server

Repository
cloned

Figure 6.2: Contributor Workflow. Sequence of steps and events occurring in a typical development
workflow of a contributor during the interaction with the VoCol environment.

are responsible for providing functionalities for syntax validation, visualization, documentation
generation, evolution depiction, and querying.

6.2.1 Configuration

This service is developed to allow the utilization of VoCol for different application scenarios.
It enables the system administrator to configure VoCol by entering the details of the ontology
repository (e.g., repository URL, and user credentials) in a graphical user interface (GUI) (cf.
Figure 6.3, General Info and Repository Info sections). The administrator defines the main
branch of the repository by entering the value in the Branch Name field. For this branch, all
selected services will be provided by VoCol. Via checkboxes within the Additional Services
section, services for visualization, evolution report, and querying, can be selected for automatic
execution by VoCol. Furthermore, by checking the Turtle Editor option, a tool that allow online
editing of Turtle files and has direct synchronization with GitHub repository [108], is added into
the VoCol environment. The option Predefined Queries indicates that queries defined in files
with the extension .rq are automatically loaded into the SPARQL interface. Next, VoCol can
be configured to run on public mode where everyone who has the link can access and explore
the provided content or it can be restricted to private mode, which allows access only to the
people with the given credentials. Finally, all serialization formats that VoCol should deliver via
content negotiation, can be selected.

82

6.2 Implementation

Figure 6.3: The VoCol Configuration Page. The configuration page contains several sections: 1)
General Info; 2) Repository Info; 3) Private Mode Access; 4) Additional Services; and 5) Serialization
Formats. Details about the ontology project can be provided in the Homepage Description section. This
page allows for the administrating of the VoCol platform for different scenarios.

VoCol is able to recognize the used hosting platform (e.g., GitHub, Bitbucket) based on the
URL entered for the ontology repository, and automatically access the respective API to create
a webhook. This hook contains the address of the VoCol server to which the repository hosting
platform will henceforth send information about any push event.

6.2.2 Client-side Tasks

Client-side tasks refer to the tasks performed before pushing to the remote repository, including
a number of specific tasks realized after invocation of the push command.

Integrated Validation Service is responsible for validating the syntax, checking for fulfillment
of requirements via SPARQL queries and generating a unique serialization.

To reduce the efforts needed for the subsequent corrections, VoCol validates the syntax before
pushing the changed files to the repository. An adapted pre-commit hook (cf. Listing 6.1) posts
the ontology files that have been changed with tools like Protégé or TopBraid Composer4, from
the user machine to the VoCol server. First, the server validates the ontology files for syntactic
errors. If the validation fails, the user receives a detailed error description, including the file name,
the affected lines in the files, and the type of the error. If the syntax validation succeeds, a unique
serialization of the ontology files is created using the SerVCS component that we implemented
on top of the RDF serialization tools, like Rdf-toolkit or Rapper5. As a result, the ontology
elements are serialized in an alphabetic order, which reduces the number of false-positive conflicts
indicated by the VCS during the merging process. Additionally, the integrated TurtleEditor
4 http://protege.stanford.edu , http://www.topquadrant.com/composer/.
5 https://github.com/edmcouncil/rdf-toolkit, http://librdf.org/raptor/

83

http://protege.stanford.edu
http://www.topquadrant.com/composer/
https://github.com/edmcouncil/rdf-toolkit
http://librdf.org/raptor/

Chapter 6 An Integrated Environment for Collaborative Ontology Development

can be used to edit the ontology files directly on the repository hosting platform. Following the
idea of a just-in-time debugger, this editor implements an instant validator that immediately
reports on all found syntax errors. Furthermore, it provides auto-completion of ontology terms
according to the declared namespaces.
#!/ bin/sh
#

files=$(git diff --cached --name -only --diff - filter =ACM | grep ".ttl$")
if [" $files " = ""]; then

exit 0
fi
for file in ${files }; do

fileContent =‘cat ${file}‘
fileHeader ="${file} StringToSplit "
fileContent ="${ fileHeader }${ fileContent }"
echo " ${ fileContent } " > tempFileCurl .ttl

res=$(curl -X POST --data - binary @tempFile .ttl http :// vocol/ client)
code="$?"
if ["$code" = "6"] || ["$code" = "7"]; then

echo " Connection refused or service not available ";
pass=false

elif ["$code" = "0"]; then
if echo $res | grep -q " Service Temporarily Unavailable "; then

echo " Connection refused or service not available ";
pass=false

elif echo $res | grep -q " Undefined error"; then
message ="See the above messages !"; pass=false

elif echo $res | grep -q "Error"; then
echo " Validation Failed ! ${file}"
echo $res; pass=false

elif echo $res | grep -q " Syntax Validation "; then
echo " Validation Passed ! ${file}"

elif echo $res | grep -q " prefix "; then
echo " Validation passed and the ${file} file reformatted "
echo "$res" > ${file}

fi
else

echo " Undefined error. Contact the administrator !"; pass=false
fi

rm -f tempFileCurl .ttl
done

git update -index --again

echo "\ Validation complete \n"

if ! $pass; then
echo " COMMIT FAILED : Syntactic errors found .\n"
echo ${file}
exit 1

else
echo " COMMIT SUCCEEDED "

fi

Listing 6.1: Pre-commit hook. A customized pre-commit hook to submit the local changes to the VoCol
server for syntax validation, checking for bad modeling practices and generating a unified serialization.

84

6.2 Implementation

6.2.3 Server-side Tasks

Server-side tasks refer to the tasks related to the validation and publication of artifacts in human
and machine-comprehensible formats, performed after occurrence of each Git push event.
Triggering Changes on the Repository Using the PubSubHubbub protocol6, after each

push event, the repository hosting platform delivers a payload with information about the last
commit(s) to a server subscribed to it. The Monitoring Service, implemented in VoCol, receives
the payload and pulls the ontology from the remote repository.
Validation and Error Reporting Next, the IVS is triggered to validate each file for syntax

errors using tools like Rapper or Jena Riot7. This task is rerun on the server side to avoid
further processing of ontologies with syntax errors, which can happen if users do not validate
the syntax during the commit phase. If the validation fails, an HTML document is created with
detailed information about the found errors.
Publishing the Artifacts for Humans and Machines If the syntax validation process

is passed successfully, all ontology files are merged into a single file. After that, the following
tasks are performed automatically to generate updated artifacts for the evolution report,
documentation, and visualization.

Documentation Generation: A dedicated component is responsible for generating human-
friendly documentation of the ontology. It comprises rich features to facilitate exploration
and understanding of the ontology, its taxonomy and details of each concept. Users can
quickly reach any concept by typing its name in the search bar, which causes the tree to be
updated with a list of concepts containing the given letters. A number of different filtering
capabilities enable users to show concepts that belong to a specific file and filter them
according to the type, e.g. classes, properties or individuals as depicted in Figure 6.4(a).
After selecting a particular concept, all associated metadata, object and datatype properties
as well as its instances are displayed in a tabular format of key-value pairs. Figure 6.4(b)
illustrates various representation formats, such as RDF/XML, Turtle, N3 and JSON,
which are provided in the Source tab of the selected concept. In addition, users may
view its graphical depiction as shown in Figure 6.4(c), where the selected concept is the
root node surrounded by many other nodes connected through different properties. The
single page per concept feature, as illustrated in Figure 6.4(d), enables deferenceability for
each term defined in the ontology. Furthermore, following the principle of RDF Molecule
Template [109], defined as a set of triples sharing the same subject, a comprehensive view
of the selected concept including its metadata, relationships with other concepts and its
instances is provided. Statistics of the ontology comprising number of classes, properties,
individuals can be illustrated using different graphical charts as shown in Figure 6.5(c).

Visualization Generation: The visual depiction of the entire ontology is realized using the
WebVOWL [110] tool. WebVOWL is integrated as a component to allow an interactive
visualization of ontologies. It implements the Visual Notation for OWL Ontologies (VOWL)
to graphically represent the ontology concepts and their relations in a dynamic layout
according to a force-directed graph fashion. An excerpt of a generated visualization is
shown in Figure 6.5(a). WebVOWL has many built-in features, enabling users to search
for concepts, filter based on the concept type, e.g., class disjointness, or object or datatype
properties. The layout can be exported in various formats, such as JSON or SVG.

6 https://pubsubhubbub.appspot.com
7 http://librdf.org/raptor/, https://jena.apache.org/documentation/io/

85

https://pubsubhubbub.appspot.com
http://librdf.org/raptor/
https://jena.apache.org/documentation/io/

Chapter 6 An Integrated Environment for Collaborative Ontology Development

(a) Tree View (b) Source View

(c) Graphical Depiction (d) Single Page per Concept

Figure 6.4: Human-friendly Documentation. Information about an ontology concept represented
using various views: Tree View, Source View, Graphical Depiction, and Single Page per Concept View.

Evolution Tracking: When the semantic differences between ontology versions exist, an evolution
report is generated using the Owl2vcs [111] tool. It utilizes algorithms for structural diffs
and three-way merge tools along with OWL 2 direct semantics. The application of direct
semantics eliminates problems with blank nodes and allows for comparing ontologies axiom
by axiom. This report lists each point in time, i.e., in a timeline fashion, when a new
ontology revision has been pushed, as shown in Figure 6.5(d). After selecting a node in the
timeline window, details related to semantic changes like addition, removal, or modification
of elements are represented in a tabular format. Users are able to filter tabular entries
based on the change type, person who submitted, submission time or commit message.

Machine Accessibility: Various machine-comprehensible formats of the ontology being developed,
such as Turtle, JSON and RDF/XML, are delivered to an agent through the content
negotiation mechanism. This mechanism which is an integral part of VoCol backend,
is implemented based on the best practices for publishing vocabularies8. Following the
principles of the server-driven9, an agent specifies the accept parameter in the HTTP header

8 http://www.w3.org/TR/swbp-vocab-pub/. Date Accessed: 25 April 2018.
9 https://www.w3.org/blog/2006/02/content-negotiation. Date Accessed: 25 April 2018.

86

http://www.w3.org/TR/swbp-vocab-pub/
https://www.w3.org/blog/2006/02/content-negotiation

6.2 Implementation

(a) Visualization (b) Querying

(c) Statistics (d) Evolution

Figure 6.5: Additional VoCol Views. Other views, such as Visualization, Querying, Statistics and
Evolution provide possibilities for exploring and better understanding of the ontology being developed.

request, whereas the server deliver the requested format. As a result, agents are provided
with the latest version of the entire ontology at any time. Furthermore, the combination of
the content negotiation with the dereferenceability enable agents to perform more granular
requests, such as asking only for a particular concept in different representation formats.

Querying Component: An integrated SPARQL endpoint component using Jena Fuseki allows
to perform queries and exporting the results in different formats. Users can test whether
the ontology being developed meets their requirements. Additionally, this component
checks for the existence of files within the repository that has extension .rq, commonly
dedicated to SPARQL queries. All found files are uploaded to this component considering
the file name as the query name, and the content of the file as the query. Table 6.1 lists
some examples of the predefined queries, that can be easily changed or extended. An
indication for constraint violation is the case when the returned value after executing the
corresponding SPARQL query does not match the value in the “Expected Value” column.
The results of the validation process is reported in HTML format. Listing 6.2 depicts the
SPARQL query that checks for missing rdfs:label and rdfs:comment in the English language.

87

Chapter 6 An Integrated Environment for Collaborative Ontology Development

Table 6.1: Predefined Queries. Examples of the predefined queries for constraint checking, such as
finding duplicate labels or comments, checking for forbidden words, etc.

Query Expected
Value

Required

At least one owl:Ontology needs to be defined isNotEmpty Mandatory
Two resources should not have the same rdfs:label isEmpty Mandatory
Two resources should not have the same rdfs:comment isEmpty Mandatory
All resources should have rdfs:label and rdfs:comment in English isEmpty Optional
All resources must not have literals with "foo bar", "lorem" or "ipsum" isEmpty Mandatory
All resources should have rdfs:label different from rdfs:comment isEmpty Optional
All resources should have rdfs:comment in different languages isEmpty Optional
All skos:ConceptSchemes should have a skos:definition in english isEmpty Mandatory
All skos:Concepts should be skos:inScheme isEmpty Mandatory
All skos:Concepts should have a skos:broader statement isEmpty Optional

SELECT DISTINCT ?r WHERE
{ ?r rdf:type ?type .

MINUS { ?r rdf:type skos: Concept . }
MINUS { ?r rdf:type skos: ConceptScheme . }
OPTIONAL { ?r rdfs:label ?label .
FILTER ((STRLEN (? label) > 0) && langMatches (lang (? label), ’en ’))}

OPTIONAL { ?r rdfs: comment ? comment .
FILTER ((STRLEN (? comment) > 0) && langMatches (lang (? comment), ’en ’))}

FILTER (!bound (? label) || !bound (? comment))
} ORDER BY ?r

Listing 6.2: Check for documentation properties. A SPARQL query to check whether resources
have at least one English rdfs:label or rdfs:comment, which are used for documentation purposes.

6.2.4 Deployment

With the objective of facilitating the installation and configuration, VoCol is deployed in virtual
environments, such as VirtualBox and Docker. As a result, the process of setting up such an
image is reproducible and documented at the same time. The VoCol environment, thus works
as an isolated platform without affecting the rest of the physical machine. This ensures high
portability, allowing the administrator to easily start, stop, move, or share it as well as making
VoCol as a an interoperable and cross-platform solution applicable in various operating systems.
With a few additional steps, the VoCol environment can be installed and configured on a clean
web server. All implementation details are available on the VoCol repository10.

6.3 Evaluation
We show the applicability of VoCol in an industry use case to evaluate its usefulness and
effectiveness in a real-world setting. Furthermore, we conduct a qualitative user study to get
additional insights into the usefulness and usability of VoCol.
10 https://github.com/vocol/vocol

88

https://github.com/vocol/vocol

6.3 Evaluation

6.3.1 Industry Application

In this scenario, VoCol is applied in a specific industry use case to develop ontologies for
formally describing the assets of an enterprise, including how they are relate to each other. All
of these ontologies are the intellectual property of the industry partner. We are restricted in the
information we can provide here, but we share at least some experiences and insights that we
gathered during project implementation.
A group of seven people contributed in parallel to the development of the ontologies. While

the ontology engineers conducted most of the formalization, the domain experts participated
by creating issues. Overall, 46 issues of different types were created ranging from proposals
to add, modify, or remove ontology concepts. Additionally, other issues, such as bug fixes and
feature requests are registered in various phases of the project. In total, the developed ontologies
comprise 151 classes, 93 object properties, 225 datatype properties, and 79 instances.

The loose coupling characteristic of VoCol allowed us to integrate a new component for defining
and establishing R2RML mappings between the developed ontologies and legacy systems of the
industry partner. By doing so, users were able to execute queries against these systems and
receive the results in various representation formats, such as tabular, pie, and bar charts.

According to the informal feedback of the involved stakeholders, VoCol provides a very useful
and effective support in this use case. In particular, the different views are considered to be very
helpful in getting a better understanding and exploring the current status of ontologies. The
easy and comfortable access to all services via one integrated web interface was essential for
stakeholders to optimize their efforts with respect to contribution and use of ontologies.

Despite the above mentioned benefits of VoCol for this use case scenario, one of the drawbacks
that we experienced is the lack of a simple form-based editing of ontology terms. This prevented
domain experts from contributing with their ideas directly to the development process, enforcing
the continuous involvement of ontology engineers.

6.3.2 User Study

We conduct a qualitative user study of VoCol under controlled conditions using the Concurrent
Think Aloud (CTA) method: Participants are observed and asked to verbalize their thoughts
while performing the given tasks [112]. At the beginning of each session, the interviewer gave
a general introduction into VoCol. The interaction with the system as well as comments and
suggestions are recorded for a later analysis. After completing the given tasks, participants had
a discussion with the interviewer about their experiences and any difficulties they faced while
performing the experiment. To measure the usability and ease of use, participants are asked to
fill a questionnaire at the end of the interview.
Participants To ensure that participants represent as closely as possible the targeted ontology

engineers group of the VoCol system, we chose twelve users with different levels of expertise.
Their expertise range from basic ontology modeling experience to a more advanced expertise in
knowledge conceptualization and representation.
Tasks and Questionnaire We designed a set of tasks that comprise all activities of the

round-trip development described in the Section 4.1: Starting from the modeling activity, the
first task was to define several classes with various numbers of properties. The next task was
concerned with the population of the ontology, in which users had to create instances based
on the defined classes. The tasks are first performed on the user machine by committing all
changes to the local repository, and later pushing those changes to the remote repository. In

89

Chapter 6 An Integrated Environment for Collaborative Ontology Development

0

1

2

3

4

5

6

7

8

9

10

11

12

Syntax Validation SPARQL Endpoint Documentation
Generation

Visualization Evolution Report

Very important Important Fairly important Slightly important Not Important

Figure 6.6: Scores given for VoCol services. The given scores for the usefulness of the VoCol services,
such as Syntax Validation, SPARQL Endpoint, Documentation Generation, Visualization and Evolution
Report according to the participants of the study.

addition, to test the functionality of the TurtleEditor, users were asked to perform the same
tasks using it. The SPARQL endpoint was used to execute test queries verifying whether the
developed ontology met certain criteria. All functionalities provided by VoCol, including the
syntax validation before commit and after push events to the remote repository, documentation
generation, and visualization, are covered in the user study.

In addition, we asked the participants to fill an electronic post-study questionnaire composed
of two main sections. The first section contains the USE Questionnaire11, which uses five-point
Likert scales for rating, ranging from 1 (strongly disagree) to 5 (strongly agree). We evaluated
four usability dimensions: 1) usefulness; 2) ease of use; 3) ease of learning; and 4) satisfaction. To
get more insights into specific areas, we defined three additional questions in the second section
of the questionnaire. With these questions, we aim to get the participants’ opinion about: 1) the
importance of the individual services integrated into VoCol; 2) negative and positive aspects of
the system through an open response question; and 3) potential services to be integrated in the
future. The evaluation material is available online12.
Results We obtained the evaluation results by observation, discussions at the end of each

session, and the post-study questionnaires. The following are some of the findings that we
derived from the analysis of the observation notes and discussions:

• Participants with prior knowledge about VCS, especially with Git, find VoCol very easy
to learn and use;

• A few participants expect to see the provenance metadata in the browser, i.e., the date
and author for each term added to the ontology;

• The instant syntax-checking and auto-completion feature of the TurtleEditor is considered
very helpful by the majority of the participants.

11 http://hcibib.org/perlman/question.cgi?form=USE
12 https://figshare.com/articles/VoCol_Evaluation_Material/3438371

90

http://hcibib.org/perlman/question.cgi?form=USE
https://figshare.com/articles/VoCol_Evaluation_Material/3438371

6.4 Summary

The results from the USE questionnaire showed that the responders rated their experience
with VoCol very high. The average scores received by each dimension are as follows: usefulness =
4.34, ease of use = 3.97, ease of learning = 4.35, and satisfaction = 4.31. These scores indicate
a high usability of VoCol (nearly all scores are > 4) and correlate with the oral feedback of
the participants that VoCol is “easy to learn and use”, as well as the informal feedback of the
stakeholders from the industry use case that VoCol provides “very useful and effective support”.
Figure 6.6 shows that each of the services provided by VoCol is of high relevance to the

study participants. For instance, 10 of the 12 participants consider syntax validation a very
important service, while the scores for the other services are only slightly lower due to different
level of expertise of participant where for more experienced ones, the provided services are less
impacting. Some interesting suggestions made by the participants are: 1) creating a possibility for
dynamically adding and removing tools from the user interface; and 2) automatic recommendation
of similar ontologies (e.g., using the LOV API13).

6.4 Summary
This chapter presents VoCol, an integrated environment for distributed development of ontologies
based on version control systems. We argue that the development of an effective and efficient
environment for distributed collaboration is the main challenge in the context collaborative
ontology development in distributed environments. A conceptual architecture is introduced with
the objective of addressing the requirements identified in the Subsection 4.2.2. The fundamental
principle of this approach is to enable developing of VoCol according to the given architecture
by extending the functionality of plain version control systems with additional modules to cover
specific aspects of the ontology construction.
VoCol is implemented on the basis of the widely used Git as version control and leveraging

the webhook mechanism of the repository hosting platforms. Tasks such as content negotiation,
documentation and visualization generation, as well as evolution tracking are performed in a
fully automated way. In addition, a querying service, synchronized with the latest version of the
ontology, enables users to execute customized SPARQL queries. The VoCol environment is easily
expandable with other tools to provide additional functionalities. The current implementation of
VoCol is tailored to small and medium size ontologies. However, it can be adopted and extended
for supporting various scenarios by replacing its components with adequate alternatives. The
applicability of VoCol is demonstrated with a real-world example for an industry partner.
Additionally, a user study to asses the its usability and usefulness is conducted with a group
of twelve participants having different level of experience. The results from the practical
application and the user study provide evidences that VoCol effectively support the entire
ontology development life-cycle centered around versions control systems along with a set of
useful and usable services to cover specific modeling aspects.

13 http://lov.okfn.org/dataset/lov/vocabs

91

http://lov.okfn.org/dataset/lov/vocabs

Part III

Quality Assurance for Ontology
Development

In Part II, we described a number of collected requirements along with the defined methodology
and the platform to support collaborative ontology construction in distributed scenarios. This
part is focused in synchronization of changes and quality aspects of the development process.
In particular, an approach for preventing false-positive conflicts during the synchronization of
parallel changes performed by heterogeneous authoring editors is presented in Chapter 7. As
a result, changes to the ontology are serialized according to a unique criteria, thus reducing a
huge number of conflicts detected by generic version control systems. We then continue with
Chapter 8, which describes an approach to efficiently ensure the development of qualitative
ontologies conform pre-defined domain requirements. A suite of test cases built after the
requirement definition phase is used to prevent any non-indented modification to the ontology.
To efficiently evaluate this suite, test cases are organized in a dependency graph, which is
traversed using the breadth-first search algorithm.

93

CHAPTER 7

Serialization Agnostic Ontology Development
in Distributed Settings

This chapter presents SerVCS, an approach for enabling VCSs to deal with various serializations
of the same ontology in a multi-editor scenario in order to address the requirement P3 defined
in Subsection 4.2.2. The presented approach pave the way to built a dedicated component,
which then is integrated into VoCol platform. It facilitates the development process which
requires significant efforts and knowledge, and the participation of different stakeholders who are
geographically distributed [29]. In this process, it is crucial to track, propagate and synchronize
ontology changes to all contributors. Thus, supporting change management is indispensable for
a successful ontology development in distributed settings.
A Version Control System (VCS) assists users to collaboratively work on shared artifacts,

and helps them to prevent from overwriting each other changes. Basically, mechanisms to avoid
change overwriting can be classified in pessimistic and optimistic approaches [26]. The first ones
are based on the lock-modify-unlock paradigm, which implies that modifications to an artifact are
permitted only for one user at a time. The latter ones follow the copy-modify-merge paradigm,
where users work on personal copies, each reflecting the remote repository at a certain time.
After completing the work, the local changes are merged into the remote repository by an update
command, comprising the phases comparison, conflict detection, conflict resolution, and merge.

Different techniques, such as line-, tree-, and graph-based ones, can be employed to compare
two versions of the same artifact [27]. The line-based technique, which achieved wide applicability,
compares artifacts line by line, where each line is treated as a single unit. This technique is
also known as textual or line-based comparison [26]. Examples of VCSs that use the line-based
approach are Subversion, CVS, Mercurial, and Git. Line-based comparisons are applicable on
any kind of text artifact, as they do not consider syntactical information [27]. Accordingly,
line-based techniques also neglect syntactical information of ontologies, which is commonly
represented in some text-based RDF serialization.
Challenges arise when two ontology engineers modify in parallel the same artifacts on their

personal working copies. These changes might contradict each other, for instance, engineers
may both edit the name of an ontology concept simultaneously. Such parallel and controversial
modifications can result in conflicts during the merging of two ontology versions. In general,
a conflict is defined as “a set of contradicting changes where at least one operation applied
by the first developer does not commute with at least one operation applied by the second
developer” [27]. Conflicts can be detected by identifying changed units (i.e., added, updated,

95

Chapter 7 Serialization Agnostic Ontology Development in Distributed Settings

deleted) that have been performed in parallel. Conflict resolution can be done automatically or
may require user intervention to manually fix them by resolving the conflicting changes.
From the ontology development point of view, the situation is exacerbated when various

ontology editors are used during the development process. This is due to the fact that these
editors often produce different serializations of the same ontology, i.e., the ontology concepts are
grouped and sorted differently in the files generated by the editors.1 As a result, the ability of
VCSs to detect the actual changes in ontologies is lowered, since they find a number of conflicts
that are actually not given but are a result of different serializations of the ontology files. In
order to increase the accuracy of conflict detection in VCSs, the problem of different groupings
and orderings must be tackled.

We present SerVCS with the objective to enhance VCSs for coping with different serializations
of the same ontology, following the principle of prevention is better than cure. SerVCS resorts
on unique ontology serializations and minimizes the number of false-positive conflicts. It is
implemented on top of Git, utilizing tools such as Rapper and RDF-toolkit for syntax validation
and unique serialization, respectively. We conducted an empirical evaluation to determine
the conflict detection accuracy of SerVCS whenever simultaneous changes to an ontology are
performed using different ontology editors. Experimental results suggest that SerVCS allows
VCSs to conduct more effective synchronization processes by preventing false-positive conflicts.

In this chapter, we address the following research question:

RQ3: How can concurrent changes from heterogeneous ontology authoring editors be
effectively synchronized?

Contributions of this chapter are summarized as follows:

• A formal definition of an approach for enabling ontology development in distributed
environments using heterogeneous editors;

• An implementation of the defined approach on top of Git and VoCol to prevent contributors
from introducing false-positive conflicts;

• An empirical evaluation to asses the accuracy of SerVCS with regard to conflict detection
in two different scenarios, by changing: 1) the ontology size; and 2) the sorting criteria.

This chapter is based on the following publications:

• Lavdim Halilaj, Irlan Grangel-González, Maria-Esther Vidal, Steffen Lohmann, Sören
Auer. SerVCS: Serialization Agnostic Ontology Development in Distributed Settings. In
Communications in Computer and Information Science (CCIS) 914 - Revised Selected
Papers from 8th International Joint Conference, IC3K 2016, Porto, Portugal, 213-232,
Springer. This article is a joint work with Irlán Grangel-González, a PhD student at
the University of Bonn. In this article, I conducted the formalization of the problem,
implementation of the approach, the revision of the state of the art approaches, the
presentation of the use cases, as well as the analysis of the results;

• Lavdim Halilaj, Irlan Grangel-González, Maria-Esther Vidal, Steffen Lohmann, Sören
Auer. Proactive Prevention of False-Positive Conflicts in Distributed Ontology Development.

1 With “different serializations”, we refer to two different ontology files that represent the same ontology using
the same syntax (e.g., RDF/XML, Turtle, Manchester) but use a different structure to list and group the
ontology concepts.

96

7.1 Motivating Example

In 8th International Conference on Knowledge Engineering and Ontology Development
Proceedings (KEOD), 43-51, SciTePress. This article is a joint work with Irlán Grangel-
González, a PhD student at the University of Bonn. In this article, I led the formalization
of the problem, implementation of the approach, the revision of the related work, the
presentation of the use cases, as well as the analysis of the results.

The remainder of this chapter is organized as follows: It starts with an overview of the
motivating scenario, which is presented in Section 7.1. The problem is defined in Section 7.2 and
in Section 7.3, we describe the SerVCS approach. The implementation is described in Section 7.4,
whereas the approach is evaluated against a number of different scenarios in Section 7.5, before
the chapter is summarized in Section 7.6.

7.1 Motivating Example
As a motivating example, we consider two users working together in developing an ontology
for a specific domain. In order to ease the collaboration and maintain different versions of the
developed ontology that result from changes, they decide to use Git. They proceed by setting up
the working environment and creating an initial ontology repository which contains several files.
Together, users define the ontology structure with the most fundamental concepts and upload
the ontology file F to the remote repository. After that, they decide to proceed with their tasks
by separately working on their local machines.
The users start synchronizing their local working copies with the remote repository, as

illustrated in Scene 1 of Figure 7.1. Scene 2 depicts simultaneous changes performed on different
copies of the same ontology file, such as adding new concepts, modifying existing ones, or deleting
concepts. For realizing this task, different ontology editors are used. In our case, User 1 works
with Desktop Protégé2, whereas User 2 prefers to edit the ontology with TopBraid Composer3.

After finishing the task, User 1 uploads her personal working copy (F*) to the remote
repository, as shown in Scene 3. Next, User 2 completes his task and starts uploading the
changes he made on his local copy to the remote repository. While trying to trigger this action,
he receives a rejection message from the VCS, listing all changes which result in conflicts, as
depicted in Scene 4. These conflicts need to be resolved in order for the VCS to allow the user
to successfully upload his version (F**) to the remote repository. User 2 starts resolving the
conflicts manually by comparing his version of the ontology with the one of User 1 that has
already been uploaded to the remote repository.

Since the users are working with different ontology editors where each use its own serialization
during saving the ontology file, the files are differently organized. For instance, while the concepts
in one of the files are grouped into categories, such as Classes and Properties, they are ordered
alphabetically in the other case, without any grouping. Consequently, the information about
actual changes, i.e., concrete changes on the ontology performed by each user, can no longer be
detected by the line-based comparison of the VCS, but a huge number of conflicts result, which
are due to the different organization of the ontology files. This prevents User 2 from merging
his changes, and his version of the ontology cannot be uploaded to the remote repository.

This scenario illustrates that, despite the various benefits provided by a VCS for collaborative
ontology development, it has not been possible so far to effectively use a VCS in cases where
different editors and ontology serializations are used.
2 http://protege.stanford.edu
3 http://www.topquadrant.com/composer/

97

http://protege.stanford.edu
http://www.topquadrant.com/composer/

Chapter 7 Serialization Agnostic Ontology Development in Distributed Settings

1 2

3 4

User 1 User 2

Protégé

F

F F

TopBraid

1

Scene 1
Synchronization of repositories

Remote
Repository

Download

65

User 1 User 2

Protégé

F

F* F**

TopBraid

Scene 2
Perform local changes

Remote
Repository

User 1 User 2

Scene 3
User 1 – successfully synchronize

Remote
Repository

Upload

F*

F*

Protégé

F**

TopBraid

User 1 User 2

Scene 4
User 2 – unable to synchronize

Remote
Repository

F*

Protégé

F*

F**

TopBraid

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3

4

5

1

2

3

4

5

1 2

3

4 4

5

1

2

3

6

5

1 2

3

4

5

1 2

3

4

5

1 2

3

4

4

5

1

2

3

6

Merge Conflicts

Figure 7.1: Motivating Example. A distributed environment illustrating an ontology development
process. Different ontology editors, e.g., Editors X and Y, are used for defining ontology F by Users 1
and 2, respectively. F* and F** represent local versions of F. If F* is uploaded first, changes in F* can be
synchronized. Changes in F** cannot be merged whenever F* and F** serializations are different.

7.2 Problem Definition
This section provides basic terminology and the of formal definition of the SerVCS approach.
An ontology is represented in an RDF document, which A is formally defined as A ⊂ (I∪B) ×
I × (I∪B∪L), where I, B, and L correspond to sets of IRI s, blank nodes, and literals (typed
and untyped), respectively [113].

Definition 1 (Changeset): Given two RDF documents A and A∗, a changeset of A∗ with
respect to A is defined as follows:

ChangeSet(A∗/A) = (δ+(A∗/A), δ−(A∗/A), <), where

• δ+(A∗/A) = {t | t ∈ A∗ ∧ t < A},
• δ−(A∗/A) = {t | t ∈ A ∧ t < A∗}, and
• < is a partial order between the RDF triples in δ+(A∗/A) ∪ δ−(A∗/A).

Example 1: Consider two RDF documents A = {t1, t2, t3} and A∗ = {t1, t2, t4} such that A∗
is a new version of A where the RDF triple t4 was added and the triple t3 was deleted. Then,
the changeset of A with respect to A∗, ChangeSet(A∗/A), is as follows:

• δ+(A∗/A) = {t4},
• δ−(A∗/A) = {t3}, and
• <= {(t4, t3)}.

Definition 2 (Syntactic Conflicts): Given two RDF documents A and A∗, and the changeset
of A∗ with respect to A, ChangeSet(A∗/A) = (δ+(A∗/A),
δ−(A∗/A), <), there is a syntactical conflict between A and A∗ iff there are RDF triples ti and
tj such that:

• ti ∈ δ
−(A∗/A),

• tj ∈ δ
+(A∗/A),

98

7.3 The SerVCS Approach

• (ti, tj) ∈ < , and
• ti = (s, p, oi), tj = (s, p, oj), and oi , oj.

Example 2: Consider two RDF documents A and A∗ with triples t3=(:Train, rdfs:label,
"Trai"@en) and t4=(:Train, rdfs:label, "Trainn"@en). Since the object value of the prop-
erty rdfs:label of the subject :Train has been changed, there is a syntactic conflict between
the RDF documents A and A∗.

Definition 3 (RDF Document Serialization): Given an RDF document A and an ordering
criteria η, a serialization of A according to η , Γ(A, η) corresponds to an ordering of the triples
in A according to η:

Γ(A, η) =< t1, t2, ..., tn >

Example 3: Suppose three RDF triples t1, t2, and t3 are defined as follows in an RDF docu-
ment A: t1=(:Car, rdfs:label, "Car"@en), t2=(:Truck, rdfs:label, "Truck"@en), and
t3=(:Bus, rdfs:label, "Bus"@en), respectively. A serialization Γ(A, η) of A listing the triples
by their labels in alphabetical order η would be:

Γ(A, η) =< t3, t1, t2 >

Definition 4 (False-Positive Conflicts): Given two RDF documents A and A∗ such that F1
and F2 are serializations of A and A∗ according to some ordering criteria η1 and η2, respectively.
There is a false-positive conflict between F1 and F2, iff there exist η ordering criteria such that:

Γ(A, η) = Γ(A∗, η) and F1 , F2

Example 4: Consider serializations F1 =< t1, t3, t2 > and F2 =< t2, t1, t3 > both representing
two identical RDF documents A = A∗, respectively, such that A = {t1, t2, t3}. Then, there
are three false-positive conflicts between F1 and F2, because there exist ordering criteria η,
Γ(A, η) = Γ(A∗, η).

7.3 The SerVCS Approach
With the objective of enabling ontology development in distributed environments, where sets of
changes are performed (cf. Definition 1) using different editors, the indication of False-Positive
Conflicts (cf. Definition 4) by the VCS must be avoided. For this reason, ontologies should have
a unique serialization (see Definition 3). In order to realize that, we developed SerVCS, which
generates a unique serialization of ontologies regardless of the used editing tool. The modeled
concepts (triples) are ordered alphabetically in this unique serialization, first according to the
subject name, then by property name. That way, ontologies (represented as text-based RDF
documents) have always a consistent serialization in the remote repository. As a result, a high
accuracy of conflict detection can be achieved and the identified conflicts are reduced to those
caused by overlapping changes, Syntactical Conflicts (cf. Definition 2). This enables a VCS to
automatically resolve most conflicts using its built-in algorithms. In the worst case, a user is
confronted with conflicting changes and has to manually resolve them by providing a valid and
consistent ontology. Since all ontologies have a unified serialization in the remote repository, the
user is able to see the differences between any two versions of the ontology. Figure 7.2 illustrates
the SerVCS approach, which consists of five main steps: 1) input: RDF documents serialized by

99

Chapter 7 Serialization Agnostic Ontology Development in Distributed Settings

5

3

2

1

4
2

3

5

1

4

OutputInput

3

6

5

2

1

4

6

2

3

5

1

4

F**

F*

Fs**

Fs*

6

2

3

5

1

4

Fm

7

Serialized by
criteria 1

Serialized by
criteria 2

Unique serialization

Comparision

Conflict Detection

Conflict Resolution

Merge

Serialization Service

VCS

Synchronized
RDF Document

Step 1 Step 2 Step 3 Step 4 Step 5

Figure 7.2: The SerVCS Approach. SerVCS receives RDF documents serialized by different sorting
criteria (Step 1), and generates a synchronized RDF document (Step 5). In Step 2, a unique serialization
is produced. RDF documents are sorted with same criteria (Step 3). Finally, a VCS synchronization
process is performed (Step 4), i.e., comparison, conflict detection, conflict resolution, and merge.

User 1 User 2

Protégé

F

F* F**

TopBraid

Scene 2
 Perform local changes

Remote
Repository

UniSer
Service

User 1 User 2

Protégé

F* F**

TopBraid

Scene 3
Generate unique serialization

F

Remote
Repository

UniSer
Service

s s

User 1 User 2

Scene 4
User 1 – successfully synchronize

User 1 User 2

Upload

TopBraid

F*

Protégé

F*

Protégé

F** F**

TopBraid

Upload

Scene 5
 User 2 – successfully synchronize

Remote
Repository

UniSer
Service

F*

Remote
Repository

UniSer
Service

F**

s

s

s

s

s s

1 2

3 4

1 2

3 4

5

1 2

3

4 4

5

1

2

3

6

6

2

3

5

1

44

1 2

3

5

4

1 2

3

5

4

1 2

3

5 6

2

3

5

1

4 4

1 2

3

5

Unique Serialization

User 1 User 2

Protégé

F

F F

TopBraid

Scene 1
 Perform local changes

Remote
Repository

UniSer
Service1 2

3 4

1 2

3 4

Download

1 2

3 4
7

2 3

6

1

4 5

7

2 3

6

1

4 5

Figure 7.3: The SerVCS Development Workflow. A distributed environment illustrating an ontology
development process using SerVCS. Different ontology editors, e.g., Editors X and Y, are used for defining
ontology F by Users 1 and 2, respectively. F* and F** represent local versions of F. Before synchronization
with remote version, a unique serialization is created for F* and F**. F* is uploaded first. Next, changes
in F** are successfully synchronized with F* since they have a unique serialization and any possible
conflict is easy to be detected and resolved.

different sorting criteria; 2) generate unique serialization; 3) output: RDF documents sorted with
same criteria; 4) synchronization process from the point of view of VCS; and 5) final outcome:
synchronized RDF document.
Figure 7.3 depicts the ontology development workflow using the SerVCS approach. After

personal working copies are synchronized with the remote repository (cf. Scene 1 of Figure 7.1),
users start performing their tasks with various ontology editors. When making any changes, such
as adding, removing, or modifying existing concepts, the updated ontology is saved locally on
the machine of the user, as illustrated in Figure 7.2, Scene 2 (which is still identical to Scene 2
of Figure 7.1). Next, these changes are uploaded to the remote repository. Scene 3 shows that a
unique serialization of the ontology is created as intermediate step. As a result, the concepts are

100

7.4 Implementation

organized using a common ordering criteria. In Scene 4, User 1 uploads her changes successfully
to the remote repository. Lastly, as illustrated in Scene 5, User 2 starts uploading his changes
to the remote repository. Since the ontology has a unified serialization, the VCS can merge
both versions. In case of overlapping changes, the VCS shows exactly the lines which resulted in
conflicts. Formally, a list of conflicts LC identified by SerVCS is defined as follows:

Definition 5 (List of Conflicts): Given two RDF documents A and A∗ such that F1 and F2
are serializations of A and A∗ according to ordering criteria η1 and η2, a list LC =< c1, . . . , cn >
of conflicts between F1 and F2, identified by SerVCS, comprises triples ci = (i, entryi1, entryi2):

• i ∈ [1,MIN(size(F1), size(F2))],
• entryi1 = (si1, pi1, oi1) and entryi2 = (si2, pi2, oi2) are RDF triples at the position i in F1

and F2, respectively,
• entryi1 and entryi2 are different, i.e., si1 , si2 or pi1 , pi2 or oi1 , oi2.

Theorem 1: Given serializations F1 and F2 according to ordering criteria η of RDF documents
A and A∗, respectively. Consider LC =< c1, . . . , cn > the list of conflicts between F1 and F2
identified by SerVCS. If there are only syntactical conflicts between A and A∗4, then for all
ci = (i, entryi1, entryi2) ∈ LC

• entryi1 = (s, p, oi1) and entryi2 = (s, p, oi2), and
• oi1 , oi2.

Proof 1: We proceed with a proof by contradiction. Assume that there are only syntactical con-
flicts between A and A∗, and there is a conflict ci in LC, such that ci = (i, (si1, pi1, oi1), (si2, pi2, oi2)),
and si1 , si2 or pi1 , pi2. Since F1 and F2 are serializations according to the same ordering
criteria η, entryi1 ∈ δ−(A∗/A) and entryi2 ∈ δ+(A∗/A). However, the statement si1 , si2 or
pi1 , pi2 contradicts the fact that only syntactical conflicts exist between A and A∗.

7.4 Implementation
The architecture depicted in Figure 7.4 has been implemented to empower VCSs to prevent
wrongly indicated conflicts. The architecture consists of three main components: 1) a VCS, which
handles different ontology versions via changesets; 2) a UniSer component, which generates
unique serializations for the RDF documents; and 3) a repository hosting platform, which stores
the RDF documents and propagates the changes.

7.4.1 Version Control System
Git is used as a Version Control System (VCS), i.e., Git is responsible for managing different
versions of the ontologies. Furthermore, the Git hook mechanism is utilized to automatize the
process of generating the unique serialization of the ontologies before they are pushed to the
remote repository. Once the modification of the ontology is finished, it is added to the Git stage
phase. The next step proceeds with committing the current state to the personal working copy.
4 Given two RDF-documents A and A

∗, and ChangeSet(A∗/A) = (δ+(A∗/A), δ−(A∗/A), <), there are only
syntactical conflicts between A and A∗, iff size(A∗) = size(A), and for each RDF triples ti and tj :

• ti ∈ δ
−(A∗/A) and tj ∈ δ+(A∗/A),

then, there is a pair (ti, tj) ∈ < , and ti = (s, p, oi), tj = (s, p, oj), and oi , oj .

101

Chapter 7 Serialization Agnostic Ontology Development in Distributed Settings

Repository
Hosting
Platform

Version Control
System
(VCS)

Syntax
Validation

Unique
Serialization

UniSer

Ontology
Editor

7

2

3

6

1

4

User

Figure 7.4: The SerVCS Architecture. Users interact with ontology editors, e.g., Protégé: 1) a VCS
handles different ontology versions via changesets, e.g., Git; 2) The UniSer component performs syntax
validation and generates unique serializations, e.g., Rapper or RDF-Toolkit; and 3) A Repository Hosting
Platform stores the ontologies and propagates the changes (GitHub).

The initialization of the commit event triggers a hook named pre-commit. This hook is adapted
with a new workflow to handle the process of automatically generating a unique serialization,
apart from the default one provided by Git.
SerVCS uses Curl5 as command-line HTTP client to send the modified files to the UniSer

service. In case that ontologies fail to pass the validation process, the commit is aborted and a
corresponding error message is shown to the user. Otherwise, the files are organized according to
the unique serialization. Subsequently, newly generated content overwrites the current content
of the files by replacing the old serialization created by the ontology editor with the new unique
serialization created by UniSer. When no error occurs during the entire process, the pre-commit
hook event is completed and the commit is applied successfully. As a result, a new revision
of the modified ontologies is created and the user is able to further proceed with successfully
pushing her version to the remote repository. In addition, GitHub is used as hosting platform
for the repository to ease the collaborative development among several contributors.

7.4.2 UniSer

Furthermore, we implemented a stand-alone service, UniSer, using the cross-platform JavaScript
runtime environment Node.js. Other tools are integrated to realize the tasks required for this
service, e.g., syntax validation and unique serialization. The service accepts the ontology files as
input through an HTTP interface and returns to the client either the error message from the
validation process or the unique serialization of the file.

Once the input is received, UniSer validates the ontology, since a prerequisite for the unique
serialization process is that ontology files are free of syntactic errors. The syntax validation is
performed by Rapper. In case of errors, a detailed report comprising the file name, error type,
and error line is returned to the client. Otherwise, the process continues with creating a unique
serialization using RDF-toolkit6 or Rapper, according to the user preference for the sorting
criteria to be used. During this task, a unified serialization of the ontology file is created by 1)
grouping elements into categories, such as classes, properties, and instances, and 2) alphabetically
ordering elements within the categories. The unique serialization of the ontology is send back to
5 https://curl.haxx.se
6 https://github.com/edmcouncil/rdf-toolkit

102

https://curl.haxx.se
https://github.com/edmcouncil/rdf-toolkit

7.4 Implementation

the client as final outcome and the respective file is updated accordingly.
In the following, we present several examples of a simple ontology serialized in Turtle format

comprising three main concepts: Train and UrbanTrain of type owl:Class and a UrbanTrain01
instance of the Train class.

@prefix : <http://example.com/> .
@prefix owl : <http://www.w3.org/2002/07/owl#> .
@prefix rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:Train rdf:type owl:Class ;
rdfs:comment "Train Concept"^^xs:string ;
rdfs:label "Train"^^xs:string ;
rdfs:subClassOf :Vehicle .

:UrbanTrain rdf:type owl:Class ;
rdfs:comment "Train Concept"@en ;
rdfs:label "Train"@en ;
rdfs:subClassOf :Train .

:UrbanTrain01 rdf:type :UrbanTrain ;
rdfs:comment "UrbanTrain01 operates in zone B"@en ;
rdfs:label "UrbanTrain01"@en .

The below excerpt serialized using Protégé tool is shown as follows:

@prefix : <http://example.com/> .
@prefix owl : <http://www.w3.org/2002/07/owl#> .
@prefix rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

##
Classes
##
http://example.com/Train
:Train rdf:type owl:Class ;

rdfs:comment "Train Concept"^^xs:string ;
rdfs:label "Train"^^xs:string ;
rdfs:subClassOf :Vehicle .

http://example.com/UrbanTrain
:UrbanTrain rdf:type owl:Class ;

rdfs:comment "Train Concept"@en ;
rdfs:label "Train"@en ;
rdfs:subClassOf :Train .

###
Individuals
###
http://example.com/UrbanTrain01
:UrbanTrain01 rdf:type :UrbanTrain ;

103

Chapter 7 Serialization Agnostic Ontology Development in Distributed Settings

rdfs:comment "UrbanTrain01 operates in zone B"@en ;
rdfs:label "UrbanTrain01"@en .

The same ontology serialized with the TopBraid Composer is as follows:

@prefix : <http://example.com/> .
@prefix owl : <http://www.w3.org/2002/07/owl#> .
@prefix rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:Train
a owl:Class ;
rdfs:comment "Train Concept"^^xs:string ;
rdfs:label "Train"^^xs:string ;
rdfs:subClassOf :Vehicle .

:UrbanTrain
a owl:Class ;
rdfs:comment "Train Concept"@en ;
rdfs:label "Train"@en ;
rdfs:subClassOf :Train .

:UrbanTrain01
a :UrbanTrain ;
rdfs:comment "UrbanTrain01 operates in zone B"@en ;
rdfs:label "UrbanTrain01"@en .

Using the UniSer service, the excerpt of the ontology is generated according to a unique
serialization. The following listing depicts the result after the serialization by UniSer (which is
nearly identical to the TopBraid Composer serialization).

@prefix : <http://example.com/> .
@prefix owl : <http://www.w3.org/2002/07/owl#> .
@prefix rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:Train rdf:type owl:Class ;
rdfs:comment "Train Concept"^^xs:string ;
rdfs:label "Train"^^xs:string ;
rdfs:subClassOf :Vehicle .

:UrbanTrain rdf:type owl:Class ;
rdfs:comment "Train Concept"@en ;
rdfs:label "Train"@en ;
rdfs:subClassOf :Train .

:UrbanTrain01 rdf:type :UrbanTrain ;
rdfs:comment "UrbanTrain01 operates in zone B"@en ;
rdfs:label "UrbanTrain01"@en .

104

7.5 Empirical Evaluation

Table 7.1: Ontology Description. Ontologies of different sizes, described in terms of number of triples,
subjects, properties, and objects.

Ontology # triples # subjects # properties # objects
Synthetic ontology 16 6 4 10
DBpedia Ontology 30,793 3,986 23 16,807
Gene Ontology 1,540,109 266,919 49 473,227

7.5 Empirical Evaluation
In this section, we present the results of an experimental study investigating the effectiveness of
the SerVCS approach. The goal of the experiment is to analyze the impact of the ontology size,
type of ontology changes, and sorting criteria on the behavior of SerVCS. For this purpose, we
assess the following research questions:

• RQ1 Does the size of the ontology have an impact on the behavior of SerVCS?
• RQ2 Is the effectiveness of SerVCS affected by the different sorting criteria?

The experimental configuration to evaluate these research questions is as follows:

Ontologies: We compare the behavior of SerVCS using three ontologies of different sizes.
Table 7.1 describes these ontologies w.r.t. number of triples, subjects, properties, and objects.

• Synthetic ontology: Synthetically generated small-size ontology composed of 16 RDF
triples with six different subjects, four properties, and ten objects.

• DBpedia Ontology7: Medium-size ontology composed of 30,793 RDF triples. This
ontology is used to describe Wikipedia infoboxes in DBpedia.

• Gene Ontology(GO)8: Large-size ontology composed of 1,540,109 RDF triples. GO
describes molecular activities and relationships among genes.

Ontology Change Generation: The number of ontology changes are randomly generated
following a Poisson distribution, i.e., we simulate ontology changes performed by users assuming
that these changes obey a Poisson distribution. The parameter λ indicates the average number of
ontology changes per time interval, i.e., λ = 2 simulates that in average two ontology changes are
performed per hour. Figure 7.5 illustrates the number and types of ontology changes performed
by two users during eight hours. To ensure that our evaluation represents as much as possible a
real scenario, a list of basic changes typically performed in ontology development is utilized (cf.
Table 7.2). These changes are randomly chosen following a uniform distribution with replacement.
We consider the change type Modification to be a combination of Deletion and Addition.

Metrics: We report on the number of conflicting lines (NCL). It is computed as the number of
conflicts indicated by Git during the merge process of two versions of the ontology after each
hour, and corresponds to the cardinality of the list of conflicts LC (cf. Definition 5).

Gold Standard: We compute the gold standard by summing up the number of conflicting
7 http://wiki.dbpedia.org/services-resources/ontology/
8 http://www.geneontology.org/

105

http://wiki.dbpedia.org/services-resources/ontology/
http://www.geneontology.org/

Chapter 7 Serialization Agnostic Ontology Development in Distributed Settings

Table 7.2: Ontology Changes. Basic changes of type Addition, Modification and Deletionperformed
during ontology development process as well as their respective examples.
ID Change Type Description Example
CH1 Addition Adding new elements like

classes and properties
Add a new class, e.g., the class
Train with properties rdfs:label and
rdfs:comment

CH2 Modification Modifying existing elements Modify a property value, e.g.,
rdfs:label of UrbanTrain class

CH3 Deletion Deleting existing elements Delete an instance, e.g., the Urban-
Train01 instance if it exists

[CH3]
1

[CH1][CH2]
2

[CH2][CH3]
2

[CH1]
1

[CH1][CH3]
2

[CH3][CH2][CH2]
3

[CH3][CH1][CH3]
3

[CH3][CH2][CH1]
3

[CH2][CH1][CH3]
3

[CH1][CH2]
2

[CH1]
1

[CH1]
1

[CH3]
1

[CH1]
1

[CH1][CH3][CH2]
3

[CH2]
1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f
ch

an
ge

s
p

er
 h

o
u

r

Instance of time

User 1 User 2

Figure 7.5: Ontology Change Distribution. Number and types of ontology changes (CH) per user in
an interval of 8 hours. A Poisson distribution with λ = 2 models an average of two changes per hour. A
uniform distribution with replacement is followed to sample the type of ontology changes (CH).

lines (NCL), which corresponds to the cardinality of overlapping changes made by users in a
particular hour (cf. Definition 2).

Implementation: Experiments were run on a Linux Ubuntu 14.04 machine with a 4th Gen
Intel Core i5-4300U CPU, 3MB Cache, 2.90GHz with 8GB RAM 1333MHz DDR3. SerVCS
is implemented using Node.js version 4.4.5. The syntax validation is realized using Rapper
version 2.0.15 whereas the unique serialization is performed using RDF-toolkit version 1.4.0.1
and Rapper respectively. The used Git version is 1.9.1. The ontology change generator is
implemented using RStudio version 0.99.9029.

Method: In order to answer the research questions, ontology changes of two users are simulated;
two different ontology editors are assumed. User 1 works with TopBraid, whereas User 2 works
with Protégé. Two scenarios are evaluated: 1) Users work purely with the functionalities of
Git. 2) SerVCS along with Git as VCS is used. Log of ontology changes is kept during the
9 https://www.rstudio.com/products/RStudio/

106

https://www.rstudio.com/products/RStudio/

7.5 Empirical Evaluation

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

N
C

L

Instance of time

Git SerVCS Gold Standard

(a) Synthetically Generated Onto-
logy

1

10

100

1,000

10,000

100,000

1 2 3 4 5 6 7 8

N
C

L

Instance of time

Git SerVCS Gold Standard

(b) DBpedia Ontology (log. scale
base 10)

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 2 3 4 5 6 7 8

N
C

L

Instance of Time

Git SerVCS Gold Standard

(c) Gene Ontology (log. scale base
1,000)

Figure 7.6: Impact of Ontology Size on SerVCS. Number of conflicting lines (NCL) detected by Git
and SerVCS compared to the Gold Standard based on the Ontology Change Distribution in Figure 7.5.
(a) SerVCS detects the same NCLs as the Gold Standard in five instances of time in the Synthetic
Ontology; (b) SerVCS indicates up to three orders of magnitude less NCLs than Git in the DBpedia
Ontology; (c) SerVCS indicates up to four orders of magnitude less NCLs than Git in the Gene Ontology.
SerVCS is not equally affected as Git.

experiment. In total, users make 30 changes: 11 additions, 9 modifications, and 10 deletions.
The distribution of ontology changes per user is simulated with the Poisson distribution shown
in Figure 7.5. A log of ontology changes is available on GitHub10.

7.5.1 Impact of the Ontology Size
For answering research question RQ1, we follow the above described method to evaluate the
behavior of plain Git and SerVCS with three different ontologies (cf. Table 7.1). Figure 7.6
shows the number of conflicting lines (NCL) in the Gold Standard, as well as the ones detected
by Git and SerVCS. In the three ontologies, NCL values are significantly less in SerVCS than in
Git. Moreover, in the Synthetic Ontology (small-size ontology), the NCL values are the same
in SerVCS and Gold Standard for five time instances. In the DBpedia Ontology (medium-size
ontology), SerVCS indicates up to three orders of magnitude less NCLs than Git. Finally,
SerVCS reports up to four orders of magnitude less NCLs than Git in the Gene Ontology
(large-size ontology). Git utilizes a line-based algorithm for the comparison of ontology changes
conducted by users. As the size of an ontology increases and modified ontologies are sorted
differently, the number of compared ontology lines also increases. Therefore, Git performance
is deteriorated as shown in Figure 7.6. On the other hand, SerVCS compares pairs of changes
ontologies also line-wise, but both documents are sorted using the same criteria and the space
of potential conflicting lines in SerVCS is smaller. Thus, as shown in Figure 7.6, SerVCS is not
equally affected as Git from different ontology sizes. However, SerVCS may also wrongly identify
conflicts, i.e., NCL values are not the same in SerVCS and Gold Standard. This behavior of
SerVCS happens when users concurrently modify the subject or predicate of an RDF triple, i.e.,
a non-syntactical conflict is generated and Theorem 1 is not satisfied.

7.5.2 Impact of the Sorting Criteria
With the goal of answering research question RQ2, the experimental method is also followed
when SerVCS utilizes different sorting criteria, i.e., RDF-toolkit and Rapper are used to
10 https://github.com/lavdim/unistruct

107

https://github.com/lavdim/unistruct

Chapter 7 Serialization Agnostic Ontology Development in Distributed Settings

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

N
C

L

Instance of time

Git SerVCS: RDF-toolkit SerVCS: Rapper Gold Standard

Figure 7.7: Impact of Sorting Criteria. Number of conflicting lines (NCL) detected by Git and
SerVCS compared to Gold Standard. Synthetic Ontology is modified according to the Ontology Change
Distribution in Figure 7.5. SerVCS follows two different sorting criteria produced by RDF-toolkit and
Rapper. SerVCS exhibits similar behavior in both sorting criteria.

generate unique serializations. RDF-toolkit sorts triples based on ontological concepts; RDF
triples of classes, properties, and instances are categorized, and then, RDF triples are ordered
alphabetically within category. Rapper simply sorts RDF triples in alphabetical order. Results
in Figure 7.7 show that SerVCS exhibits similar behavior in both sorting criteria and is able to
identify the same NCL values as the Gold Standard in several instance times. Moreover, SerVCS
also outperforms Git independently of the sorting criteria.

7.6 Summary
In this chapter, we present SerVCS, a generic approach for the realization of optimistic and tool-
independent ontology development on the basis of Version Control Systems. As a result, VCSs
become editor agnostic, i.e., capable to detect actual changes and automatically resolve conflicts
using the built-in merging algorithms. We implemented and applied the SerVCS approach on the
basis of the widely used Git as version control. In addition, we developed a middleware service
to generate a unique serialization of ontologies before they are pushed to the remote repository.
The unique serialization ensures that ontologies have always the same serialization in the remote
repository, regardless of the used ontology editor. Thus, we avoid incompatibility problems with
regard to wrongly detected conflicts resulting from the use of different ontology editors, and
assist ontology developers to collaborate more efficiently in distributed environments.

To study the effectiveness of SerVCS compared to Git, we perform an empirical evaluation. The
results suggest that SerVCS reduces the number of false-positive conflicts when different ontology
editors are utilized concurrently during the development process. Additional experiments are
conducted to evaluate the impact of the ontology size, as well as different sorting criteria. Based
on the achieved results, we conclude that the effectiveness of SerVCS is less impacted compared
to Git whenever the size of the ontologies is increased or different sorting criteria are used to
generate unique serializations.

108

CHAPTER 8

A Dependency-aware Approach for Test-driven
Ontology Development

In this chapter, we present EffTE, an approach for efficient test-driven ontology development.
This approach is designed to address the requirement P5 defined in Subsection 4.2.2 to efficiently
ensure that ontology changes performed by different stakeholders are conform to domain
requirements and do not have any non-intended consequence.

The development of domain-specific ontologies requires joint efforts among different groups of
stakeholders, such as ontology engineers and domain experts. Functional requirements can be
expressed through Competency Questions, which are questions that the underlying ontology
should be able to answer [4]. However, the concurrent definition of ontology concepts often
results in a violation of the defined requirements, or creates design issues like duplicate entries
or missing documentation. For example, in the large and monolithic DBpedia ontology, version
2016-041, only 556 from a total of 2,849 properties have an associated label description or a
comment [114]. To ensure that any ontology modification has only the expected effects, a set of
test cases can be defined based on Competency Questions. This is similar to the principles of
test-driven software development, where test cases (which represent requirements) are defined
before the code is actually written [23].

On the contrary, the ontology as the main artifact is subject of change due to number of reasons,
such as 1) the evolution of the domain; 2) changes in the user perception of the domain; or 3)
fixing design issues [115, 116]. Since much effort is invested in creating and extending ontologies,
it is crucial to make ontology development and maintenance cost-effective [117]. However, with a
naive approach, test cases are exhaustively evaluated to identify any non-intended modification
or design issue introduced during the concurrent development of the ontology. While the number
of test cases can be large and their evaluation time may be high, the ontology development
process can be impacted negatively. The evaluation should be user based, such that for a number
of test cases associated to a specific user of group of users, the evaluation is instantiated only
for them. Moreover, the evaluation of test cases has to be file or module dedicated considering
the fact that ontology may comprise several files or modules.

We present EffTE, an approach for efficient test-driven ontology development. EffTE relies on
a dependency graph defined by the stakeholders, i.e., ontology engineers, according to their needs;
it enables prioritization and selection of test cases to be evaluated. Traversing the dependency
graph is performed using breadth-first search; tabu test cases are tracked and ignored for further
1 http://wiki.dbpedia.org/services-resources/ontology/

109

http://wiki.dbpedia.org/services-resources/ontology/

Chapter 8 A Dependency-aware Approach for Test-driven Ontology Development

evaluation because of faulty parents. As a result, the number of test cases that are evaluated
is minimized, thus reducing the time required for ontology validation after each modification.
We conduct an empirical evaluation to determine the efficiency of our approach under different
conditions, such as changing the number of predefined test cases, ontology sizes, and dependency
relationships of test cases. Experimental results suggest that our approach is more efficient than
a naive one, in particular with an increasing ontology size and number of test cases.
In this chapter, we address the following research question:

RQ4: How can the quality and efficiency in distributed and heterogeneous ontology
development be ensured?

Contributions of this chapter are summarized as follows:

• A formal definition for an approach to efficiently evaluate of a set of test cases derived
from the domain requirements;

• An implementation of the EffTE approach on top of Git and VoCol to prevent contributors
from submitting non-indented changes;

• An empirical evaluation to asses the efficiency of EffTE with regard to time needed and
the number of executed test cases in three different scenarios, by changing: 1) the number
of test cases; 2) the ontology size; and 3) the dependency between test cases.

This chapter is based on the following publications:

• Lavdim Halilaj, Irlán Grangel-González, Steffen Lohmann, Maria-Esther Vidal, Sören
Auer. EffTE: A Dependency-aware Approach for Test-Driven Ontology Development. In
33rd ACM/SIGAPP Symposium On Applied Computing (ACM SAC) 2018 Proceedings,
ACM. This article is a joint work with Irlán Grangel-González, a PhD student at the
University of Bonn. In this article, I devised the formalization of the problem, led the
definition and implementation of the proposed approach, reviewed related work, and
prepared of the experiments and analysis of the obtained results;

• Lavdim Halilaj, Irlán Grangel-González, Maria-Esther Vidal, Steffen Lohmann, Sören
Auer. DemoEffTE: A Demonstrator of Dependency-aware Evaluation of Test Cases over
Ontology. In 13th International Conference on Semantic Systems (Semantics) - Posters and
Demo Track, 2017. This demonstration article is joint work with Irlán Grangel-González,
a PhD student at the University of Bonn. In this article, I conducted the description of
the architecture, implementation and demonstration of the prototype.

The remainder of this chapter is organized as follows: Initially, the motivating example is
presented in Section 8.1. The problem is described in Section 8.2 whereas Section 8.3 defines
the EffTE approach. In Section 8.4, we outline the implementation of EffTE. The approach is
evaluated in different scenarios in Section 8.5 and the Section 8.6 summarizes the work.

8.1 Motivating Example
Suppose a team composed of ontology engineers and domain experts work together to develop
an ontology for a specific domain. After the requirement gathering phase, they define questions
that the ontology should be able to answer, e.g., List attribute types of particular concept where

110

8.2 Problem Definition

tc3

tc6

tc1

tc7

tc4

tc2

tc14

tc12

tc8

tc5

tc13

tc9

tc15

tc10 tc11

tc13

(a) A set of TCs

t1 t2 tn

tc3

tc6

tc1

tc7

tc4

tc2

tc14

tc12

tc8

tc5

tc13

tc9

tc15

tc10 tc11

tc3

tc6

tc1

tc7

tc4

tc2

tc14

tc12

tc8

tc5

tc13

tc9

tc15

tc10 tc11

tc3

tc6

tc1

tc7

tc4

tc2

tc14

tc12

tc8

tc5

tc13

tc9

tc15

tc10 tc11

. . .

(b) Faulty TCs over time

Instance
of time

No. of
eval. TCs

t1

t2

tn

15

15

...

15

tn

(c) Evaluated TCs
Figure 8.1: Motivating Example. a) Test Cases (TCs) to check if an ontology satisfies the design
requirements following an entailment regime; b) faulty test cases (orange) over time after each ontology
modification; and c) number of evaluated test cases per instance of time. Every instance of time, the set
of TCs is completely evaluated.

a condition is fulfilled or there should be at least 20 classes that represent the most basic concepts
of the domain and individually enumerate them. Each class should have at least two subclasses,
providing further details about the intended domain. Furthermore, to achieve a basic quality
of the ontology, they define several guidelines to be followed by each team member. These
guidelines include generic constraints that should not be violated during ontology development,
e.g., "all concepts must have at least one rdfs:label in English" or "all concepts must not share
the same English rdfs:label ". As initial step, ontology engineers define a set of 15 test cases
as depicted in Figure 8.1(a). This set ensures that each change made to the ontology is in line
with the requirements and has only the intended effects according to a given entailment regime.
Moreover, it prevents team members from violating the already defined constraints. Figure 8.1(b)
shows several faulty test cases after each modification of the ontology at different instances of
time ti. For example, in the following time instances t1: tc2, tc4, tc9, tc12; in t2: tc4, tc5; and tn:
tc3, tc8, tc10 have failed, respectively. Since there exists no specified dependency relationship
between the test cases, all of them will be evaluated at every instance of time ti. This process
is time-consuming, in particular when test cases have a natural dependency relationship. For
instance, checking for duplicate labels should not be performed if none of the concepts defined
so far do not have labels associated to them; or checking for the existence of subclasses should
not be performed before the respective classes are defined. Additionally, there can be other
cases where the dependency between test cases is more project oriented, such as one test case
checks for a particular concept or resource; in case of satisfaction, another test case verifies its
properties or relations to another concept or resource. Moreover, a number of test cases can
be valid to only a contributor or group of contributors, therefore the evaluation process should
be associated with them. In addition, since ontology may comprise several files, it should be
possible to assign test cases to be evaluated only for particular files.

8.2 Problem Definition

Test Suite (TS): A test suite TS represents a set of test requirements {r1, . . . , rn} that need
to be satisfied during the development of an ontology O according to a given entailment regime.
A test-driven development approach allows for an efficient validation of test cases that comprise
a test suite TS. Our test-driven development approach EffTE is able to identify the minimal

111

Chapter 8 A Dependency-aware Approach for Test-driven Ontology Development

Table 8.1: EffTE Notations. Symbols and their respective definitions used to describe the test-driven
development approach EffTE.
Symbols Description
TS Test suite with a set of requirements {r1, . . . , rn}
O Ontology
tc A Test Case represented as a SPARQL query
φ Entailment Regime

σ(ri | STC, O, φ) Set of test cases in STC associated with a requirement ri over O
using φ

[[tc]]φO Set of mappings resulting of evaluating tc over O following φ

Fault(TS | STC, O, φ) Requirements in TS not achieved in O using φ because of faulty test
cases in STC

F(STC′ | STC, O, φ) Test cases in STC - STC ’ that fail as a consequence of failures of test
cases in STC ’

T (STC | O,φ) Faulty test cases in STC over O following φ

F(STC′ | STC, O, φ) Fault Detection Effectiveness of STC ’ given O using φ and STC ; is a
higher is better measure that takes values in [0.0;1.0]

TCGφ
O = (STC, E) A dependency graph in STC over O using φ; dependencies between

test cases are represented in set of edges E

number of test cases required to be evaluated in order to determine if an ontology does not
satisfy a test suite TS based on the given entailment regime. The following definitions state
the core concepts required to formulate the problem tackled by EffTE ; Table 8.1 summarizes
symbols used for representing EffTE notations and definitions.

Test Cases (TCs): A test case corresponds to the formal specification of checks required to
validate if the requirements in a TS are satisfied in O according to a entailment regime. Test
cases can be represented using any rule language for ontologies, such as SWRL; however, we
focus on test cases expressed as SPARQL queries over concepts defined in O respecting the test
suite entailment regime. Given a test suite TS = {r1, . . . , rn} over an ontology O, an entailment
regime φ, and a set of test cases STC, the function σ(ri | STC, O, φ) represents the subset of
test cases in STC that need to evaluated against O to achieve the requirement ri following the
entailment regime φ. The evaluation of a test case tc in STC is denoted by [[tc]]φO. The ontology
O meets the test case tc following φ, iff [[tc]]φO is different from the empty mapping µ∅ [19].
Otherwise, tc is a faulty test case in O w.r.t. the requirement ri such that tc ∈ σ(ri | STC, O, φ)
is not achieved by O following φ.

Faulty Test Case Identification: Given a set STC of test cases implementing a test suite TS,
Fault(TS | STC, O, φ) is a set of requirements in TS associated with at least one test case tc in
T whose evaluation fails in an ontology O following an entailment regime φ.

Fault(TS | STC, O, φ) = {ri | ri ∈ TS ∧ tc ∈ σ(ri | STC, O, φ)

∧ [[tc]]φO = µ∅} (8.1)

112

8.3 The EffTE Approach

Determining the faulty test cases from STC requires a considerable amount of time, since all
the test cases need to be evaluated over the ontology O according to φ. Nevertheless, dependencies
between test cases as well as subsumption relationships can be exploited to identify a subset of
test cases whose failure implies the failure of the test cases in STC.
Given an ontology O, an entailment regime φ, and a set STC ’ of test cases in STC, the

fault detection effectiveness of STC ’ given O, φ, and STC, denoted as F(STC′ | STC, O, φ),
corresponds to the fraction of the number of faulty test cases from STC ’ divided by the number
of faulty test cases in STÇ :

F(STC′ | STC, O, φ) = | F(STC′ | STC, O, φ) |
| T (STC | O,φ) | +1 , where (8.2)

• F(STC′ | STC, O, φ) is the set of faulty test cases in STC not included in STC ’ that fail
as a consequence of failures of test cases in STC ’ (grey nodes in Figure 8.2(b)).

• T (STC | O,φ) is the set of faulty test cases in STC over O following φ (orange and grey
nodes in Figure 8.2(b)).

• F(STC′ | STC, O, φ) is a "higher is better measure" that takes values in [0.0;1.0]. A value
close to 0.0 indicates that a small number of faulty test cases in STC can be detected
from STC ’, whilst a value close to 1.0 expresses that the number of faulty test cases in
STC ’ and STC are almost the same.

Test Case Prioritization Problem: The EffTE approach selects from a set of test cases STC
that implement a test suite TS for an ontology O using an entailment regime φ, a subset STC ’
with maximal fault detection effectiveness F(STC′ | STC, O, φ). The problem of prioritizing test
cases in STC over O and φ is defined as follows:

argmax
STC′⊆STC

F(STC′ | STC, O, φ) = {tc | tc ∈ STC′∧

∀STC′′ ⊆ STC,F(STC′′ | STC, O, φ) 6 F(STC′ | STC, O, φ)} (8.3)

The set cover problem [118] can be reduced to the problem of prioritizing test cases, thus
demonstrating the NP-completeness of the test case prioritizing problem. EffTE implements an
approach that relies on information about the dependencies between test cases to provide an
approximate solution to the problem of prioritizing test cases.

8.3 The EffTE Approach

To solve the problem of prioritizing test cases in STC over an ontology O given an entailment
regime φ, the EffTE approach tracks information about the dependencies between test cases in
STC. The EffTE approach implements a graph traversal algorithm that explores the test cases
STC ’ whose failure imply the failure of the test cases that depend on them. Furthermore, each
test case contains information about to which user or group of users or for which ontology file it
be evaluated. Thus, the fault detection effectiveness F(STC′ | STC, O, φ) can be maximized.

113

Chapter 8 A Dependency-aware Approach for Test-driven Ontology Development

tc3

tc6

tc1

tc7

tc4

tc2

tc14tc12

tc8

tc5

tc13

tc9

tc15

tc10

tc11

(a) A TCGφO graph

t1 t2 tn

. . .
tc3

tc6

tc1

tc7

tc4

tc2

tc14tc12

tc8

tc5

tc13

tc9

tc15

tc10

tc11

tc3

tc6

tc1

tc7

tc4

tc2

tc14tc12

tc8

tc5

tc13

tc9

tc15

tc10

tc11

tc3

tc6

tc1

tc7

tc4

tc2

tc14tc12

tc8

tc5

tc13

tc9

tc15

tc10

tc11

(b) Faulty TCs over time

Instance
of time

No. of
eval. TCs

t1

t2

tn

7

10

...

3

tn

F(STC |
O, STC)

0.66

0.8

0.55

(c) Eval. TCs

Figure 8.2: The EffTE Approach. a) A test case dependency graph TCGφO with 15 test cases (TCs); b)
faulty test cases over time (orange nodes are faulty test cases (STC’), gray nodes represent TCs ignored
for evaluation F (STC′ | STC, O, φ); and c) number of evaluated TCs and F (STC′ | STC, O, φ) values
per instance of time. Dependencies enable to ignore faulty test cases.

A dependency graph of test cases: Given an ontology O following φ, a set of test cases STC
that implement a test suite TS for the ontology O, a test case dependency graph TCGφ

O =
(STC, E) is a directed acyclic graph (DAG), where:

• E ⊆ STC× STC is a set of directed edges representing dependencies between test cases.
If (tci, tcj) ∈ E, then the test case tcj depends on the test case tci. Furthermore, tcj fails
whenever the evaluation results of tci or tcj over O following φ return the empty mapping
µ∅, i.e., tcj fails whenever [[tci]]

φ
O=µ∅ or [[tcj]]

φ
O=µ∅.

The approach: Figure 8.2 illustrates the behavior of the EffTE approach, contrasting it to
Figure 8.1. EffTE relies on modeling the relationships between test cases as a dependency
graph TCGφ

O = (STC, E) to solve the problem of prioritizing test cases. Thus, EffTE identifies
a faulty subset STC ’ of STC, and removes the subadjacent graph from further consideration.
The user can define different TCGφ

O according to a given test suite TS. Figure 8.2(a) depicts an
exemplary TCGφ

O where tc5 and tc9 depend on the outcome of tc2. If tc2 is identified as faulty,
such that [[tc]]φO is equal to empty mapping µ∅, the evaluation of the test cases tc5, tc9 will not
be performed. As depicted in Figure 8.2(b), in the time instance t1, the faulty test cases are tc2,
tc4, and tc12. This enables pruning the graph traversal, and excluding all test cases that depend
on the faulty ones from further evaluation. Similarly, in subsequent time instances t2, . . . , tn, for
any faulty tc, the dependent test cases will not be considered for evaluation. As a result, the
number of evaluated test cases is reduced. Figure 8.2(c) shows the number of test cases that are
evaluated per invocation in the given example, e.g., seven test cases are evaluated in t1, only
three test cases in t2, while in tn, ten of them are evaluated.

Traversing a test case dependency graph: We used Breadth First Search (BFS) algorithm
for traversing a TCGφ

O to efficiently find the nodes in TCGφ
O that are closer to the root and

correspond to faulty test cases. Given a set of root test cases S and their dependencies in E,
TCGφ

O is systematically explored by the BFS algorithm to evaluate every reachable tc starting
from S. As shown in Algorithm 1, after the initial phase of defining S, the procedure continues
by recursively iterating on each tc of the TCGφ

O. On each iteration, a tc is retrieved from the
queue defined as a FIFO list and is set as current_tc. Three preconditions must be met before
evaluating current_tc: (1) the current_tc must not have been already visited; (2) all of its

114

8.3 The EffTE Approach

Algorithmus 1 : Breath-First Search with Tabu mechanism for traversing a TCGφ
O

1 create lists: visitedTCs, nextTCs, tabuTCs, currentTCs;
2 add rootTCs to currentTCs;
3 while currentTCs is not empty do
4 current_tc = currentTCs.dequeue();
5 if current_tc not in visitedTCs or current_tc.Parents not in tabuTCs or

current_tc.Parents are in visitedTCs then
6 if [[tci]]φO , µ∅ then
7 foreach child in current_tc.Children do
8 if child is already defined as parent then
9 STOP the procedure to avoid a cyclic possible graph;

10 end
11 add child to nextTCs
12 end
13 else
14 add current_tc to tabuTCs; continue;;
15 end
16 if current_tc.FileName = OntologyFileName and current_tc.User = UserName

then
17 evaluate current_tc;
18 add current_tc to visitedTCs;
19 else if current_tc.Parents in tabuTCs then
20 add current_tc to tabuTCs;
21 else if current_tc.Parents not in visitedTCs then
22 add current_tc to pendingTCs;
23 if currentTCs.dequeue() is null AND (nextTCs is not empty or pendingTCs is not

empty) then
24 add nextTCs to currentTCs;
25 pendingTCs to currentTCs;
26 nextNodes.clear(); pendingNodes.clear();
27 end
28 end

parents have already been visited; and (3) none of its parents has already been classified as
tabuTC. In case that [[tc]]φO is equal to empty mapping µ∅, the current_tc is added to the
tabuTCs list which represents F(STC | O,φ). Additionally, the current_tc is checked whether
the user who is invoking with it and the ontology file are associated with it. If these preconditions
are met, the algorithm continues with the evaluation of current_tc. To avoid any possibility on
entering in a endless cycle, the children of current_tc are checked whether they are previously
classified as parents which will cause immediate stop of the procedure. Otherwise, its children
are added to the nextTCs list to be considered in the next iterations. The iteration over the
currentTCs list continues until there is no tc left. Next, all nodes that exist in the nextTCs or
pendingTCs lists, will be added to the currentTCs list for future evaluation. The execution of
the algorithm terminates when there is no tc left in currentTCs, nextTCs, or pendingTCs.

115

Chapter 8 A Dependency-aware Approach for Test-driven Ontology Development

2

3

5

1

4

F
2

3

5

1

4

F
Test
Set

Select test to be

executed based

on Breadth First

Search algorithm Test Cases DB

Test Case Selection

Test Case Evaluation Test Case Definition

Integrated Validation Service

Remote
Repository

Local Copy

pull
push

EffTE

Log DB

Local Copy

Log DB

Syntax
Validation

commit

pre-
commit

Figure 8.3: Implementation of EffTE. A locally modified ontology file is received, as well as a set of
test cases and their dependencies; the result of the validation process is returned as output. An Integrated
Validation Service validates syntactic errors in an ontology using a Syntax Validation component. A Test
Case Validation component checks the ontology against a set of test cases. The ontology is synchronized
with a Remote Repository for the distribution of changes.

8.4 Implementation

The EffTE architecture depicted in Figure 8.3 consists of three main components: 1) the Version
Control System (VCS) manages ontology versions via change logs; 2) the Integrated Validation
Service performs a syntax validation of the ontology and a validation of the ontology against
the STC ; and 3) the Repository Hosting Platform stores and propagates ontology changes to
other users. EffTE is part of VoCol architecture described in Figure 6.1.

8.4.1 Version Control System

Managing versions of the ontology files is realized using Git as a Version Contro System (VCS).
The Git hook mechanism is utilized to prevent users from committing changes to an ontology file
without successfully passing a complete set STC. During the committing phase, the pre-commit
hook is triggered which transfers the modified ontology files to the validation service. The
commit is terminated if the modified ontology files are unable to pass the validation process,
and the user is notified with an error message comprising the failure details. On the other hand,
the commit is successfully completed if no error occurs during the validation process. As a result,
a new revision of the modified ontology files is created and the user is able to further proceed
with pushing the new version into the remote repository.

Remote hosting platform: GitHub is used as remote hosting platform for saving different
versions of the ontology as well as tracking and propagating the changes among users. This
facilitates the synchronization of various replicas of the ontology files.

8.4.2 Integrated Validation Service

We implemented EffTE as a component within Integrated Validation Service (IVS). The IVS
accepts the ontology files as input through an HTTP interface and returns to the client either
an error message from the validation process or a successful passing message. Next, the EffTE
component validates the ontology file against a set of test cases. The TCGφ

O is defined by the
user as an Adjacency List collection and stored in the Test Cases DB module. The Test Case
Selection is responsible for prioritization and selection of the test cases to be evaluated. Each test
case is evaluated in the Test Case Evaluation module on a given entailment regime considering

116

8.5 Empirical Evaluation

Table 8.2: Ontology Description. Different ontology sizes in terms of number of triples, subjects,
properties, and objects.

Ontology # triples # subjects # properties # objects
FOAF 631 86 15 192
Schema.org 8,103 1,569 13 3,545
DBpedia 30,793 3,986 23 16,807

the information whether test case is associated with the user who is conducting changes or the
file on which changes are performed. In case of failure a flag is added to the response message,
which prevents users from realizing the commit. Additionally, users receive details regarding the
faulty test cases. Otherwise, a validation message notifying the user for correctness of the recent
changes is provided and the commit is successfully applied.

8.5 Empirical Evaluation
We present the results of an experimental study realized with the objective to investigate the
efficiency of the EffTE approach. The goal of the experiment is to analyze the impact of: 1)
ontology size; 2) various dependency graph TCGφ

O; and 3) number of test cases on the efficiency
of EffTE. We assess the following research questions:

• RQ1 How does the ontology size impact EffTE efficiency?
• RQ2 How do different dependency graphs TCGφ

O affect EffTE efficiency?
• RQ3 How does the number of test cases affect the EffTE efficiency?

The experimental configuration is defined as follows:

Ontologies: We compare the behavior of EffTE using three ontologies of different sizes.
Table 8.2 describes information about these ontologies with regard to number of triples, different
subjects, properties, and objects.

• FOAF2: used to describe persons, activities, and relationships between them and other
objects. Further, social networks can be described even without a central database.

• Schema.org3: describes entities, actions, and their relations with the objective of pro-
moting the usage of the structured data in Web.

• DBpedia4: is a manually created cross-domain ontology which allows for the description
of the information extracted from Wikipedia infoboxes.

PREFIX rdf: <http ://.../22 - rdf -syntax -ns#>
PREFIX rdfs: <http ://.../ rdf - schema #>

SELECT * WHERE { ?s ?p ?o .
FILTER (?o = <some -resource >) }

Listing 8.1: A simple Test Case. A SPARQL SELECT query, where <some-resource> is replaced to
generate a faulty test case according to the configuration settings.

2 http://xmlns.com/foaf/spec/
3 http://schema.org/
4 https://wiki.dbpedia.org/services-resources/ontology

117

http://xmlns.com/foaf/spec/
http://schema.org/
https://wiki.dbpedia.org/services-resources/ontology

Chapter 8 A Dependency-aware Approach for Test-driven Ontology Development

Test case definition: With the objective of achieving a fair comparison, and avoiding any
impact on the evaluation time that arises from the complexity of the query itself, we use the
query depicted in Listing 8.1. It represents a simple SPARQL SELECT query where the variable
<some-resource> is replaced with a particular non-existing concept or instance of some concept
to artificially simulate its failure for experimental purposes.

Dependency graph generation: Different dependency graphs TCGφ
O are randomly generated

using randomDAG function of the RStudio platform. The parameter prop denotes the probability
of connecting a test case to another test case with higher topological ordering i.e., prop = 0.2,
generates TCGφ

O where test cases have an average of two parent test cases.

Test case failure generation: We randomly generate the number of faulty test cases following
a Poisson distribution, i.e., test cases that fail after each change realized by users presuming that
these failures occur according to a Poisson distribution. The parameter λ indicates the average
number of faulty test cases after each ontology change, i.e., λ = 2 simulates that in average two
faulty test cases after each change. Following a Uniform distribution with replacement, various
test cases are randomly chosen to fail.

Metrics: We report on the following metrics: 1) evaluation time (ET), which corresponds to
the time required for evaluation of a STC ; and 2) number of evaluated test cases (ETC).

Baseline: Represents: 1) time required for evaluation of a STC by a naive approach; and
2) the maximum number of evaluated test cases, which corresponds to the number of test
cases evaluated in a naive based approach. The naive approach corresponds to the exhaustive
evaluation of all the test cases, where neither order nor dependency information is considered.

Implementation: Experiments are run on a Linux Ubuntu 16.04 machine, with a 6th Gen
Intel Core i7-6820HQ, 2.70GHz, and 16GB RAM 2133MHz DDR4. EffTE is implemented using
Node.js version 4.4.5. The Syntax Validation is implemented using Rapper version 2.0.15 whereas
the Test Case Validation component using Java Apache Jena libraries version 3.0.1. Git version
is 2.7.4 is used as the VCS. Generation of the faulty test cases for different scenarios is realized
with functions for Poisson Distribution and Uniform Distribution in RStudio version 1.0.1365.

Method: Three different scenarios are defined to answer the above mentioned research questions
by changing: 1) the size of the ontology; 2) the topology of TCGφ

O; and 3) the number of test
cases. On each scenario, experiments are run twice in each time instance (TI), using the naive
and EffTE approach. In time instances TI-1:4, different test cases are randomly chosen to
fail following a Uniform distribution with replacement. We enforce a zero-faulty tc in TI-5,
to compare the efficiency of the naive approach and EffTE in similar conditions. Table 8.3
illustrates the configuration of each scenario. For first scenario, as a dependency graphs TCGφ

O

is the one depicted in Figure 8.4(a). For second scenario, three different dependency graphs
TCGφ

O with 10 test cases each are generated as depicted in Figure 8.4. Finally, for third scenario,
three different dependency graphs TCGφ

O with: a) 10; b) 20; and c) 30 test cases, respectively
are generated (cf. Figure 8.5). The RDFS entailment regime is used in all the scenarios.
5 https://www.rstudio.com/products/RStudio/

118

https://www.rstudio.com/products/RStudio/

8.5 Empirical Evaluation

Table 8.3: Experimental Set-Up. Three scenarios varying: Ontology sizes, dependency graph topology,
and number of test cases (TCs). Different faulty TCs are generated for first four instances of time (TI),
whereas in TI-5, zero faulty TCs are enforced.

Scen. Ontology No. ofTCs Faulty TCs per TI
TI-1 TI-2 TI-3 TI-4 TI-5

1
Foaf

10 3, 4, 7 3 1, 5, 7, 9 2, 7, 5, 8 -Schema.org
DBpedia

2 DBpedia 10 3, 4, 7 3 1, 5, 7, 9 2, 7, 5, 8 -

3 DBpedia
10 3, 4, 7 3 1, 5, 7, 9 2, 7, 5, 8 -

20 1, 6, 12,
16, 19 2, 4, 8, 9 2, 39,

14, 20 1, 4, 19 -

30 3, 18 7, 9, 13,
22, 28

6, 7, 10,
14, 23 2, 8, 18 -

(a) TCGφO No#1 (b) TCGφO No#2 (c) TCGφO No#3

Figure 8.4: Dependency Graph Topologies. Different topologies of dependency graphs between, each
of them comprising ten test cases.

8.5.1 Impact of the Ontology Size

To answer RQ1, we follow the above described method for assessing the efficiency of the naive
approach and EffTE with three different ontologies (cf. Table 8.2). Figure 8.6(a) shows the
evaluation time for a STC required by the naive approach and EffTE. In the three ontologies,
the ET values are lower for EffTE compared to the naive approach in time instances TI-1,2,3,4.
We observe that ET values of EffTE and the naive approach, in case of the FOAF ontology are
not different. The reason for this is that FOAF is a small-size ontology and query execution time
is relatively low. In the Schema.org ontology case, which is a medium-size ontology, an increased
difference of ET values between two approaches is recognized. Finally, EffTE requires lower
ET values in the first four instance of time compared to the naive approach for the DBpedia
Ontology which more than 30K triples.

8.5.2 Impact of the Topology of TCGφ
O

With the aim of answering the research question RQ2, various TCGφ
O are defined, i.e., test cases

have different dependencies between each other. As shown in Table 8.3, Scenario 2, three different
TCGφ

O with 10 test cases each are generated. For every TCGφ
O, a particular number of test cases

are chosen to fail. Results in Figure 8.6(b) shows that EffTE exhibits better performance on

119

Chapter 8 A Dependency-aware Approach for Test-driven Ontology Development

(a) TCGφO with 10 TCs (b) TCGφO with 20 TCs (c) TCGφO with 30 TCs

Figure 8.5: Different number of test cases. Dependency graphs having various number of test cases:
a) 10 ; b) 20; and c) 30 test cases, respectively.

0

20

40

60

80

100

120

Naive
Approach

EffTE Naive
Approach

EffTE Naive
Approach

EffTE

foaf schema.org dbpedia

TI-1 TI-2 TI-3 TI-3 TI-5

Ev
al

u
at

io
n

 T
im

e
(E

T)
 in

 M
S

(a) Different ontology size

0

20

40

60

80

100

120

140

Naive
Approach

EffTE Naive
Approach

EffTE Naive
Approach

EffTE

Topology - 1 Topology - 2 Topology - 3

TI-1 TI-2 TI-3 TI-3 TI-5

Ev
al

u
at

io
n

 T
im

e
(E

T)
 in

 M
S

(b) Different TCGφO

0
50

100
150
200
250
300
350
400

Naive
Approach

EffTE Naive
Approach

EffTE Naive
Approach

EffTE

10 - TCs 20 - TCs 30 - TCs
TI-1 TI-2 TI-3 TI-3 TI-5

Ev
al

u
at

io
n

 T
im

e
 (

ET
)

in
 M

S

(c) Different number of TCs

Figure 8.6: Evaluation Time (ET): Naive Approach vs EffTE. Impact of different scenarios on
Execution Time (ET): a) Ontology size; b) dependency graph topology; and c) and number of test cases.
Results suggest that EffTE exhibits better ET values in four instances of time TI-1,2,3,4 whereas in
TI-5 it performs worse, since there is no faulty test case.

time needed to evaluate all the dependency graphs on four instances of time. The EffTE will
require additional time in TI-5 because of no faulty tc. As shown in Figure 8.7(a), the ETC
values are less in EffTE compared to the naive approach in the first four instances of time.

8.5.3 Impact of the Number of the Test Cases

We define Scenario 3 (cf. Table 8.3), to answer RQ3. This scenario comprises three TCGφ
O

composed of 10, 20, and 30 test cases, respectively. Similar to other scenarios, for each TCGφ
O, a

number of test cases are chosen to fail. From the Figure 8.6(c), we can observe that with the
increase number of test cases, EffTE exhibits better performance on the time needed for the
evaluation of a TCGφ

O in time instances TI-1,2,3,4. As expected, EffTE requires a bit more
time in TI-5 than the naive approach in case of absence of faulty test cases. Additionally,
Figure 8.7(b) depicts the ETC values of two approaches for different number of predefined test
cases. We note that ETC values are considerably lower in EffTE, in first four instances of time
where faulty test cases exists.

8.5.4 Discussion

As we can observe, in the first four instances of time of each scenario, EffTE is performing
better than the naive approach. However, as shown in TI-5, EffTE may also need more time for
evaluation of test cases, i.e., ET values are higher in EffTE. This behavior occurs when there are
no faulty test cases and additional workload is only used for traversing a TCGφ

O. Although the
test case to be evaluated is intentionally chosen to be the "simplest" one, the reported time from

120

8.6 Summary

0

2

4

6

8

10

12

Naive
Approach

EffTE Naive
Approach

EffTE Naive
Approach

EffTE

Topology - 1 Topology - 2 Topology - 3
TI-1 TI-2 TI-3 TI-3 TI-5

N
u

m
b

er
 o

f
ev

al
u

at
ed

 T
C

s
(E

TC
)

(a) Different topology of depend-
ency graphs

0

5

10

15

20

25

30

35

Naive
Approach

EffTE Naive
Approach

EffTE Naive
Approach

EffTE

10 - TCs 20 - TCs 30 - TCs

TI-1 TI-2 TI-3 TI-3 TI-5

N
u

m
b

er
 o

f
ev

al
u

at
ed

 T
C

s
(E

TC
)

(b) Different number of Test Cases
(TCSs)

Figure 8.7: Number of Evaluated Test Cases (ETC): Naive Approach vs EffTE. Impact of
different scenarios on ETC : a) Dependency graph topology; and b) number of test cases. Results suggest
that EffTE exhibits better ETC values in four instances of time TI-1,2,3,4 whereas in TI-5 it has same
ETC values as a naive approach, since there is no faulty test case.

the experiments shows an improvement of hundreds milliseconds. This improvement becomes
more evident in cases when the size of the ontology is not small and increases progressively
in time as well in cases when the ontology is defined by a team composed of several members
which are contributing in parallel during the development process. Moreover, if the complexity
of the test case increases, i.e., checking for duplicate labels particularly in the ontologies with a
large number of concepts, avoiding such kind of test cases from further evaluation if none of
the defined concepts has label associated becomes a crucial aspect in the development process.
Figure 8.7 shows that EffTE reports lower ETC values, i.e., less number of evaluated test
cases in time instances TI-1,2,3,4, whereas in TI-5, it has same ETC values with the naive
approach. As a conclusion, whenever exists a faulty test case that has other test cases depending
on its outcome, the overall number of evaluated test cases is considerably lower using the EffTE
approach. In worst case, the number of evaluated test cases in EffTE is equal with the number
of evaluated test cases in a naive based approach.

8.6 Summary
This chapter presents EffTE, an approach for efficient test-driven development of ontologies.
EffTE relies on a dependency graph TCGφ

O modeled by users according to their requirements on
a given entailment regime; dependency graphs enable prioritization of the test cases. Traversing
a TCGφ

O is realized by a BFS algorithm along with an additional mechanism that stores tabu
test cases, i.e., test cases to be ignored for further evaluation because of faulty parents. As a
result, the number of evaluated test cases is minimized, thus the fault detection effectiveness
F(STC′ | STC, O, φ) is increased and the test case validation time is reduced. We perform an
empirical evaluation to study the efficiency of EffTE compared to a naive approach on various
scenarios with different ontology size, dependency graph topologies, and number of test cases.
The results suggest that in all cases where a faulty test case exists, the efficiency of EffTE
is higher compared to a naive approach. Furthermore, additional parameters are considered,
such as users who perform changes and modified ontology files (if an ontology is developed in
multiple files). Thus, a user- and file- based selection of test cases is achieved which enhances
the ontology development process on collaborative environments.

121

Part IV

Applications and Conclusions

In this part, we start with presenting of the applicability of our holistic approach to build a
number of ontologies for different domains. Chapter 9 describes two approaches which aim to
support the semantic interoperability in the context of Industry 4.0. Next, in Chapter 10, an
approach based on ontologies for allowing data integration across heterogeneous data sources, is
presented. Chapter 11 provides general information about 19 ontologies from various domains
which are built using our integrated development environment. Further, this chapter describes
more in detail the methodological and technical aspects of nine ontologies currently being
developed and managed on the top of the VoCol platform.

This thesis is concluded in Chapter 12, by revisiting the research questions. Finally, we look
into future extensions of this work from both, research and technical perspectives.

123

CHAPTER 9

Establishing Semantic Interoperability between
Industry 4.0 Models

This chapter presents two approaches for solving interoperability issues in the respective domains.
They are based on ontologies as main artifacts used to model the knowledge from domain as
well as to enable interlinking between concepts and different granularity levels. The ontologies
are developed using the Git4Voc methodology, in particular practices for naming convention
and reuse of external ontologies. In addition, VoCol is used as an integrated environment to
support the development and deployment of these ontologies.
We initially start with engineering and manufacturing domain, where currently there is an

atmosphere of departure to a new era of digitized production. In different regions, ongoings
initiatives are known under various names, such as industrie du futur in France, industrial
internet in the US or Industrie 4.0 in Germany. Within the German Industry 4.0 initiative,
the concept of an Administrative Shell was devised to respond to these requirements. The
Administrative Shell is planned to provide a digital representation of all information being
available about and from an object which can be a hardware system or a software platform.
Therefore, we present an approach to develop such a digital representation based on semantic
knowledge representation formalisms, such as RDF, RDF Schema and OWL. Our concept of
a Semantic I4.0 Component addresses the communication and comprehension challenges in
Industry 4.0 scenarios using semantic technologies. The approach is illustrated with a concrete
example, showing its benefits in a real-world use case.
We continue with addressing the interoperability from perspective of standards interlinking.

A number of different standards and reference architectures have been proposed to empower
interoperability in Smart Factories. Standards allow for the description of components, systems,
and processes, as well as interactions among them. Reference architectures classify, align, and
integrate industry standards according to their purposes and features. To tackle the problem
of interoperability between standards, we survey the landscape of Industry 4.0 standards from
a semantic perspective and develop the STO, an ontology for describing standards and their
relations. It allows to describe characteristics of I4.0 standards and exploiting them for further
classification from various perspectives according to the reference architectures. Moreover, the
semantics encoded in STO enable relations discovery between I4.0 standards as well as mapping
them across reference architectures proposed by different industry communities.

125

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

Contributions of this chapter are summarized as follows:

• An approach to digitally represent Administrative Shell concept based on semantic know-
ledge representation formalism’s, such as RDF, RDF-Schema and OWL;

• An ontology to describe Industry 4.0 standards and their detailed characteristics as well
as their interrelations.

This chapter is based on the following publications:

• Irlán Grangel-González, Lavdim Halilaj, Sören Auer, Steffen Lohmann, Christoph Lange,
Diego Collarana. An RDF-based Approach for Implementing Industry 4.0 Components with
Administration Shells. In IEEE Emerging Technologies and Factory Automation (ETFA)
2016 Proceedings, 1-8, IEEE. This article is a joint work with Irlán Grangel-González, a
PhD student at the University of Bonn. My contributions to this article are related to the
revision of the state of the art approaches, implementation of the proposed approach, the
presentation of the use cases, as well as the analysis of the results;

• Irlán Grangel-González, Paul Baptista, Lavdim Halilaj, Steffen Lohmann, Maria-Esther
Vidal, Christian Mader, Sören Auer. The Industry 4.0 Standards Landscape from a Semantic
Integration Perspective. In 22nd IEEE International Conference on Emerging Technologies
And Factory Automation (ETFA) 2017 Proceedings. This article is a joint work with Irlán
Grangel-González, a PhD student at the University of Bonn and Paul Baptista, a student
assistant at Fraunhofer IAIS. In this article, I contributed to the implementation of the
proposed approach, reviewing of related work and analysis of the obtained results.

The remainder of this chapter is organized as follows: First, Section 9.1 presents an approach for
semantification of Administrative Shells used as intermediate layer for Industry 4.0 components.
Second, an ontology for describing standards, their metadata and interrelations as well as
allowing interlinking with external data sources is presented in Section 9.2. Finally, Section 9.3
summarizes the ideas and contributions presented in this chapter.

9.1 A Semantic Administrative Shell for Industry 4.0 Components
The dynamic of today’s world imposes new challenges to the enterprises. The globalization,
the ubiquitous presence of the internet and the development of hardware systems are some
of the technological improvements that provoke changes everywhere. Industry 4.0 (I4.0) is a
term coined in Germany to refer to the fourth industrial revolution. This is understood as the
application of concepts such as Internet of Things (IoS), Cyber-physical Systems (CPS), the
Internet of Services (IoS) and data-driven architectures in the real industry. With approximately
the similar meaning, in North America, the term Industrial Internet has been created. This
term is very similar to I4.0, but the application is broader than industrial production. Other
areas are included as well, for instance, smart electrical grids [119].
With the goal to develop the Industry 4.0 vision, CPS are of paramount importance. CPS

integrate physical and software processes [120]. In order to do so, they use various types of
available data, digital communication facilities, and services [121].
While the vision of digitizing production and manufacturing gained much traction lately, it

is still relatively unclear how this vision can actually be implemented with concrete standards

126

9.1 A Semantic Administrative Shell for Industry 4.0 Components

and technologies. The physical network connection problem is meanwhile largely solved using
technologies, such as Profibus/Profinet [122] and OPC-UA [123]. However, the more challenging
problem is to make smart industrial devices able to communicate and understand each other
as a prerequisite for cooperation scenarios. To address this problem, we need techniques and
standards for representing and exchanging information, data and knowledge between devices
participating in manufacturing and production processes. Such standards must be flexible to
accommodate new features, usage scenarios, cover multiple domains, device categories, and
bridge organizational boundaries. Most importantly, they must be able to evolve seamlessly over
time to facilitate the swift realization of new features and scenarios as they become apparent.
Within the Industry 4.0 initiative, the concept of an Administrative Shell was devised

to respond to these requirements. The Administrative Shell is planned to provide a digital
representation of all information (and services) being available about and from a physical
manufacturing component. We present an approach to develop such a digital representation
based on semantic knowledge representation formalisms, such as RDF, RDF-Schema and OWL.
The advantages of such an RDF-based approach are:

• Identification. The use of URI/IRIs provides a decentralized, holistic, extensible global
identification scheme for all relevant entities either physical or abstract;

• Integration. The simple, but at the same time expressive statement-centric RDF data
model enables the representation of facts, raw data, schema, provenance and meta-data
information in a unified manner;

• Coherence. Existing and new taxonomies, vocabularies, and ontologies can be mixed
and meshed to represent information about various domains, application scenarios, or
organizations, in a natural way.

9.1.1 Background

The Reference Architecture Model for Industry 4.0 (RAMI 4.0) encompasses the core aspects of
Industry 4.0 in a three-dimensional model [124, 125]. It illustrates the connection between IT,
manufacturers/plants and the product life-cycle in a three-dimensional space. Each dimension
shows a particular part of these domains divided into different layers, as depicted in Figure 9.1(a).
The model extends the hierarchy levels defined in IEC 62264/61512 by adding the concepts
Product on the lowest level and Connected World at the top level, which goes beyond the
boundaries of an individual factory.

The vertical axis on the left hand side of Figure 9.1(a) represents the IT perspective, comprising
layers ranging from the physical device (asset) to complex functions, as they are available in
ERP systems (functional). These layers correspond to the IT way of thinking, where complex
projects are decomposed into smaller manageable parts. The horizontal axis on the left hand
side indicates the product life-cycle where Type and Instance are distinguished as two main
concepts. The RAMI 4.0 model enables the representation of data gathered during the entire
life-cycle. The horizontal axis on the right hand side organizes the locations of the functionalities
and responsibilities in a hierarchical structure.

Industry 4.0 Component A component is a core concept in the Industry 4.0 context. As
defined in [124], an I4.0 component constitutes a specific case of a Cyber-Physical System
(CPS). It is used as a model to represent the properties of a CPS, for instance, real objects in a

127

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

(a) RAMI Model.

Administration Shell

Objects

(b) Industry 4.0 component.

Figure 9.1: Industry 4.0 Concepts. a) Reference Architecture Model for Industry 4.0 (RAMI 4.0),
comprising the three dimensions: layers, life-cycle and hierarchy levels (source [124]); b) An Industry 4.0
component object wrapped by an Administration Shell (adapted from [124]).

production environment connected with virtual objects and processes. An I4.0 component can be
a production system, an individual machine, or an assembly inside a machine. It is comprised of
two foundational elements: an object and its Administration Shell. Every object or entity that is
wrapped by an Administration Shell becomes an I4.0 component, as illustrated in Figure 9.1(b).
In the following, the different parts of I4.0 components are presented in more detail.

Object In [124], the term object is used to refer to an individual physical or non-physical entity.
An object can be an entire machine, an automation component, or a software platform; it can
be a legacy system or a new system. The industry should be able to integrate and benefit from
these objects in I4.0 contexts, independently of their type and age.

Administration Shell The Administration Shell is used to store all important data of an object.
Its goal is to create benefits for each participant in a networked manufacturing [124], including:

Data Management The Administration Shell provides mechanisms to manage large amounts
of data and information generated by manufacturers and other stakeholders. This includes
storing and administrating information about configuration, maintenance, and connectivity.

Functions Different functions, such as operations, maintenance tasks, or complex algorithms
implementing business logic, can be provided by the Administration Shell. These functions
facilitate the interaction between I4.0 components and other actors.

Services Although the information of a component is stored only once, it can be used beyond
the boundaries of the component, within enterprise networks or in a cloud. The information
can be made available to different users and can be accessed in various use cases.

Integration The Administration Shell, in combination with communication protocols, offers
the possibility of an easy integration of I4.0 components.

Modularity Each specific part of an object should be able to store information in the
Administration Shell. This ensures that all information is saved and ready to be used for
subsequent analysis or various application scenarios.

128

9.1 A Semantic Administrative Shell for Industry 4.0 Components

9.1.2 Challenges
Developing the vision of Industry 4.0 raises new challenges which become even harder when
participants in a networked manufacturing apply different policies. Some of the critical challenges
of the I4.0 in general and the I4.0 component in particular, are presented in the following:

Interoperability (Ch1) On the one hand, I4.0 vision includes new ways of managing data,
machines and components. On the other hand, the enterprises need to maintain a huge
amount of legacy systems with their corresponding existing data. Commonly, this data is
in different formats (e.g., plain text, DBMS, and XML). The new data and new formats
have to coexist with the old ones.

Global unique identification (Ch2) Enabling intercommunication among I4.0 components
over the Internet is a big challenge. In addition to this, there should be a linking mechanism
between the I4.0 components and the generated information [126]. Therefore, addressing
this challenge is of paramount importance in order to realize the vision of I4.0.

Data availability (Ch3) Another challenge is the availability of the data beyond the bound-
aries of the manufacturers and across different hierarchy levels. This challenge becomes
even harder when various policy rules from manufacturers are applied. I4.0 components
will communicate with each other and interact with the environment through exchanging
the data generated from different sensors and react to the events by triggering actions
with the aim of controlling the physical world [127]. Therefore, sharing the generated data
between participants [128] is a key factor in the Industry 4.0.

Standardization compliance (Ch4) The Standardization process is an important step
toward the realization of I4.0. Several standards to deal with different layers in the
enterprises exist nowadays. For instance, AutomationML [129], Profibus [130] and OPC-
UA [123, 131] are just some of the examples of the mentioned standards. The core idea of this
effort is to provide a detailed description of the components in the manufacturing process.
The production process constantly generates different components and the standards need
to reflect this dynamically. As a result, the standards grow in size and number, making
interoperability between them a problem to solve.

Integration (Ch5) Highly dynamic environment is one of the key obstacles to the establish-
ment of the vision of I4.0. The complexity of horizontal and vertical integration of the I4.0
components is drastically increased with the fluctuating number of the participants. Self-
sense, self-configuration and self-integration are some concepts used to describe autonomous
interaction of a component with the environment in a networked manufacturing. Following
the principles from Reconfigurable Manufacturing Systems (RMS), adding, removing,
replacing or rearranging the components must not affect the production process [132].
Thus, developing a consistent data model is a crucial factor that facilitates the integration
of I4.0 components in the changing environments.

Multilinguality (Ch6) In order to achieve a wide range of applicability to different cultures
and communities [133], the I4.0 should be able to support localization (and internation-
alization) of the generated information. This will decrease the learning curve and allow
easier and faster adoption of the Industry 4.0 in real production environment.

9.1.3 An RDF-based Approach for Semantifying I4.0 Components
Semantic technologies play a crucial role with regard to the description and management of
things, devices, and services [134, 135]. Moreover, it has been recognized that I4.0 components

129

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

Administration
Shell

Legacy
Systems

Administration
Shell

Sensors

3) RDF
Serialization

1) Schema
Mapping

In-house vocabularies Linked Open Data vocabularies

2) Metadata
Enrichment

Administration
Shell

Electrical

Administration
Shell

Mechanical
System

...
I4.0 Components RDF-Based I4.0 Components

RDF-Based Approach Pipeline

Administration
Shell

Legacy
Systems

Administration
Shell

Sensors

Administration
Shell

Electrical

Administration
Shell

Mechanical
System

...
eClassOWL
(ECO)

Units of Measure
(OM)

Geo Positioning
(GEO)AdminShell (RAMI)

IEC 62264 (IEC)
Provenance
(PROV)

Sensors
(SSN)

Figure 9.2: The RDF-based Pipeline. The pipeline for semantifying I4.0 components comprising RDF
vocabularies of relevant standards to represent information about a wide range of components.

and their content should follow a common semantic model [124]. Therefore, we propose an
RDF-based approach to pave the way towards a common semantic model for Industry 4.0
components, as illustrated in Figure 9.2. For representing the hierarchy levels of the RAMI 4.0
model, we created an RDF-based vocabulary conform the IEC 62464:2013 standard.

Interoperability To meet the interoperability demand, RDF and Linked Data have proven to
be successful for integrating various types of data [136–138]. Embedded in the semantics
for Administrative Shell, we propose RDF as a middle layer to support the interoperability
between the data of the legacy systems and the data generated by the I4.0 component. We
aim to establish RDF as a lingua franca for data interoperability in the I4.0 landscape.

Global unique identification Identification of each I4.0 component using global unique
identifiers ensures entity disambiguation and retrievable [139]. According to Linked Data
principles [140], HTTP URIs should be used for naming things. Following the above-
mentioned principle, we propose that each I4.0 component should be identified by an
HTTP URI. By doing so, a decentralized, holistic and extensible global unique identification
scheme for I4.0 components is established. As a consequence, we will have derefenceable
I4.0 components, which are able to self-locate and communicate with each other.

Data availability The benefits of employing RDF as the standard for representation of the
data are twofold. Firstly, various data serialization formats are easy to be generated and
transmitted over the network. Secondly, using SPARQL, as a query language and protocol,
it is possible to make data available through a standard interface. RDF representation
of the data can be created on the fly, even if they are stored in relational databases or
other data formats [141]. By doing so, our approach enables data sharing between legacy
systems and other participants in a networked manufacturing as well.

Standardization compliance Following the idea of employing RDF as a lingua franca for
data integration, we propose to translate existing standards into RDF vocabularies and
SKOS thesauri. The interoperability between standards can thus be managed through
integration of the respective vocabularies. In addition, these vocabularies are also connected
with the Administrative Shell data (cf. Figure 9.2). As an example, we created an RDF
vocabulary for the IEC 61360 - Common Data Dictionary (IEC CDD)1. IEC CDD is a
common repository of concepts for all electrotechnical domains based on the methodology
and the information model of IEC 61360. It provides a widely accepted terminology and
definitions based on sources, such as IEC standards as well as other industry standards. It

1 http://std.iec.ch/cdd/iec61360/iec61360.nsf/

130

http://std.iec.ch/cdd/iec61360/iec61360.nsf/

9.1 A Semantic Administrative Shell for Industry 4.0 Components

contains four major concepts: Component, Material, Feature and Geometry. Component
describes an industrial product which serves a specific function. Moreover, considering a
given context it should not be decomposable or physically divisible and is intended for use
in a higher-order assembled product. Component is represented by an Object in RAMI
Model, and when it is surrounded by the Administrative Shell forms an I4.0 component.

Integration Running on completely unified and consistent data model facilitates the integration
of I4.0 components. Newly added components need a shorter time for the integration process.
Other peers will be aware of new peer and the way of communication with it by simply
synchronizing with the latest version of vocabulary which contains all necessary information
for interaction and data exchanging between peers in a networked manufacturing.

Multilinguality Since various communities across the world will interact with I4.0 components,
it is very important that they will receive terms in their own language. The semantic web
technologies enable implementation of multilinguality in a very straightforward manner.
This will remain valid even for the newly introduced languages or concepts.

The RAMI Vocabulary

Our approach defines a semantic vocabulary for the Administration Shell concept by providing an
ontological formalization of the elements that describe I4.0 components. Since the Administration
Shell is a key concept of the RAMI 4.0 model, we decided to use the namespace rami for the
vocabulary also. The core classes of the vocabulary are rami:BasicData, rami:AdminShell
and rami:Object. The class rami:AdminShell represents the Administration Shell concept and
its properties. The objects in the RAMI 4.0 model are described by the rami:Object class.
In addition, properties like rami:name, rami:isPartOf and rami:description are created to
represent the characteristics and features of the object. The basic data associated with the
object are represented by the rami:BasicData class. Different types of data, such as sensor,
mechanical, electrical, or physical data, as subclasses to the rami:BasicData class can be
further added. Further, it permits incorporation of existing models, such as the Object Memory
Model (OMM), which supports the creation of digital memories for manufacturing objects [142].
OMM provides blocks for grouping data on a certain aspect of an object. These blocks contain
metadata for describing the object, for instance, its ID, description, or format. In the RAMI
vocabulary, we included some of the OMM concepts, such as identification and description
type, and organize them in the rami:BasicData class. In this way, different types of data
associated with the object, for instance, rami:EngineeringData, inherit attributes that have
been defined for rami:BasicData. Additionally, they inherit attributes specifically defined for
rami:EngineeringData, in this case, standard name, and version. The rami:AdminShell
class is used to connect the object with its basic data. Figure 9.3 depicts the main classes and
properties of the RAMI vocabulary.
In manufacturing processes, provenance is crucial aspect [143]. For instance, authenticating

a specific product w.r.t. its manufacturer, or the date when it was manufactured, are critical
information to record within the manufacturing context. For this reason, we reused the W3C
Provenance Ontology2 to track the creator and contributors of an object in the RAMI vocabulary.

With the goal of aligning the RAMI 4.0 model with the IEC 62264 hierarchy levels, we define
the class rami:RAMIHierarchyLevel. Instances of this class represent the RAMI 4.0 hierarchy
levels (e.g., rami:Station, and rami:WorkCenter). This allows to link concepts, such as the
IEC 62264 Storage Unit, which is a type of Work Center, as shown in Listing 9.1.
2 https://www.w3.org/TR/prov-o/

131

https://www.w3.org/TR/prov-o/

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

@prefix iec62264 : <https : / / w3id . org / i 40 / i e c /62264/> .
@prefix rami: <https : / / w3id . org / i 40 / rami /> .

iec62264 : StorageUnit rami: RAMIHierarchyLevel rami: WorkCenter .

Listing 9.1: Alignment RAMI 4.0 and IEC 62264 concepts. RDF representation of alignments
between concepts of RAMI vocabulary and those of IEC 62264.

Units of measurement are of paramount importance in manufacturing environments to ensure
correct functioning and coordination of processes. Units are required for the specification of
products as well as for representing the data produced by measuring devices (e.g. sensors). Often,
units are represented as simple strings, e.g., °C, mm, and kg. This has the drawback that the
semantics of the units are not machine-readable and sometimes unknown or ambiguous. For
example, both “18 in” and “45,72 cm” are referring to the same length.

For properly representing units, we aligned the RAMI vocabulary with the Ontology of Units
of Measure (OM) [144]. This ontology provides global identifications and definitions for units
of measurement, including quantities, measurements, and dimensions. By using the in and cm
concepts from the OM ontology, the semantics of the units can be understood by a machine
because their formal definitions can be looked up in the ontology via the URIs of the concepts
as well as processed and interpreted by a software agent. For example, “centimetre” is defined as
a unit in the dimension of length, amounting to 1/100 of the “metre” unit. Listing 9.2 illustrates
how data values can be represented using the OM ontology.

@prefix om: <http : //www. wurvoc . org / v o c abu l a r i e s /om−1.8/> .
@prefix rami: <http : // w3id . org / i 4 0 / rami /> .
@prefix eco: <http : //www. ebus in e s s−unibw . org / o n t o l o g i e s / e c l a s s /5.1 .4/#>
@prefix ex: <http : // example . org / data /> .

ex: object1 eco: P_BAA018001 ex: lengthOfObj1 .
ex: lengthOfObj1 om: numerical_value "42.72" .
ex: lengthOfObj1 om: units_of_measure_or_measurement_scale

om: centimetre .
rami: object2 eco: P_BAA018001 ex: lengthOfObj2 .
ex: lengthOfObj2 om: numerical_value "18" .
ex: lengthOfObj2 om: units_of_measure_or_measurement_scale

om:inch - international .

Listing 9.2: Reuse of the OM ontology. Representing length units using the OM ontology.

We consider the alignment with eCl@ss [145]. eCl@ss is a cross-industry classification system
to describe products and services using unique identifiers. In the context of Industry 4.0, eCl@ss
performs a crucial function by providing common definitions of a vast amount of products
and services. eCl@ss is available as an RDF-based vocabulary3 and can therefore be easily
reused and aligned with our approach. To describe units of measurement, the eCl@ss vocabulary
incorporates the GoodRelations vocabulary4. Since the OM ontology contains more specialized
and rich descriptions for units, we propose to use both (i.e., the eCl@ss and GoodRelations
vocabularies) jointly. Based on this, we recommend to align the eCl@ss concepts to our definitions
in the RAMI vocabulary. Figure 9.3 illustrates the core classes and their relationships between
each other in the RAMI vocabulary.
3 http://www.heppnetz.de/projects/eclassowl/
4 http://www.heppnetz.de/projects/goodrelations/

132

http://www.heppnetz.de/projects/eclassowl/
http://www.heppnetz.de/projects/goodrelations/

9.1 A Semantic Administrative Shell for Industry 4.0 Components

Figure 9.3: RAMI Vocabulary. Overview of the core classes and relationships of the RAMI vocabulary.

IEC 62264 Vocabulary

The RAMI 4.0 model is centered around the IEC 62264 standard to define hierarchy levels for
the manufacturing domain. Next to the hierarchy levels, this standard specifies core concepts
for the development of manufacturing companies, such as work centers, production lines, and
storage zones. Based on these definitions, we developed an RDF-based vocabulary that models
the structure as well as the concrete semantics of these concepts.

Our RDF-based approach allows to align the information models of different companies with
the proposed standard. For example, the term Plant is commonly used in the manufacturing
world. The meaning of this term is equivalent to the term Site according to the standard.

Following the same idea, also other cases, i.e., expressing that one concept is broader or
narrower than some other, can be addressed by reusing specialized vocabularies, such as the
Simple Knowledge Organization System (SKOS) vocabulary.

9.1.4 Use Case

The objective of Industry 4.0 vision is to enable a decentralized production using smart objects
that are autonomous with respect to decision-making. To accomplish this goal, object metadata,
data, and relations with other objects, need to be semantically described within the Administrat-
ive Shell. By doing so, the information provided by one object can be understood and exploited
by other smart objects in the production chain. To illustrate the applicability of our approach,
a use case using semantic Administrative Shell to describe an I4.0 component and some of its
basic relations is presented in the following. Listing 9.3 shows the semantic representation of
the Administrative Shell for the Motor controller CMMP-AS-C2-3A-M3 object (a product of
Festo AG5). For brevity, we describe here the most relevant data of the resources. This example
contains four instances of respective types. An AdminShell1 surrounds Object1 and connects it
with the majority of the concepts in the domain, as the Platform1 in this case. Also, Object1
has its technical data defined on the resource TechnicalData1 (cf. Figure 9.4).

One of the main advantages of the Semantic Administrative Shell is the uniform data repres-
entation according to the RDF model, which enables efficient integration and querying the data
comprised in the shell. In order to illustrate the data retrieval, we have designed simple SPARQL
queries. For example, it is relevant to know the technical characteristics of a component in its
various phases (e.g. Single, Three). In the following query (cf. Listing 9.4), we construct an RDF
graph that contains a description of the technical feature of an object with Single-phase.

5 https://www.festo.com/cat/en-gb_gb/products_CMMP_AS

133

https://www.festo.com/cat/en-gb_gb/products_CMMP_AS

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

1501325

Motor controller
CMMP-AS-C2-3A-M3

AdminShell
1

hasTechnical
Data

surround

60 Ohm

0...1,000 Hz

Seven-segment
display

TechnicalData
1

Object
1

Platform
1

hasTechnical
Functionality

2015-11-02

https://.../Siemens_V3_0.zip

v0.3

Single-phase

Figure 9.4: An example of Industry 4.0 graph. Several concepts of Industry 4.0 interlinked with
each other as well as their respective attributes.

@prefix i40c: <http : // pur l . org / e i s / i 4 0 c />.
@prefix rdf: <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#> .

i40c: AdminShell1 a i40c: AdministrativeShell ;
rdfs:label " AdminShell1 "^^ xsd: string ;
i40c: surround i40c: Object1 ;
i40c: hasTechFuncionality i40c: Platform1 .

i40c: Object1 a i40c: Object ;
rdfs:label "Motor control ..."@en ;
i40c:hasId " 1501325 "^^ xsd: string ;
i40c: hasPhase "Single -phase"@en ;
i40c: hasTechnicalData i40c: TechnicalData1 ;
i40c:image "<http ://... b4dc.jpg >" .

i40c: TechnicalData1 a i40c: TechnicalData ;
rdfs:label " TechnicalData1 "@en ;
i40c: BrakingResistance "60 Ohm";
i40c: Outputfrequency "0...1 ,000 Hz" ;
i40c: display "Seven - segment display "@en .

i40c: Platform1 a i40c: Platform ;
rdfs:label " Function blocks ..."@en ;
i40c: functionBlockUrl "https ://.../ Siemens_V3_0 .zip";
i40c: hasDate "2015 -11 -02"^^ xsd:date ;
i40c: hasVersion "3.0"^^ xsd: string .

Listing 9.3: The RDF representation of Administrative Shell. The Semantic Administrative Shell
for the servo motor controller CMMP-AS-C2-3A-M3.

134

9.1 A Semantic Administrative Shell for Industry 4.0 Components

@prefix i40c: <http :// purl.org/eis/i40c />.
@prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .

SELECT {
? object rdfs:label ?name.
? technicalData i40c: brakingResistance ? resistance .
? technicalData i40c: outputFrequency ? frequency .

} WHERE {
? object i40c: hasPhase "Single -phase"@en .
? adminShell i40c: surround ? object .
? object rdfs:label ?name.
? object i40c: hasTechnicalData ? technicalData .
? technicalData i40c: brakingResistance ? resistance .
? technicalData i40c: outputFrequency ? frequency .

}

Listing 9.4: Obtaining information about a particular phase. SPARQL query to retrieve the
electrical data where the phase variable has value of Single-phase.

Another example is retrieving the metadata of the I4.0 component platform, during the
maintenance cycle. The platform entities are referring to functional library elements, which are
specific to a certain automation system. The query modeled in Listing 9.5 obtains the details of
the platform like the name, version and the software URL that supports the I4.0 object.

@prefix i40c: <http :// purl.org/eis/i40c />.
@prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .

SELECT {
? object i40c:hasId ? objectId .
? platform rdfs:label ?name .
? platform i40c: hasVersion ? version .
? platform i40c: hasDate ?date .
? platform i40c: functionBlockUrl ?url .

} WHERE {
? adminShell i40c: surround ? object .
? adminShell i40c: hasTechnicalFuncionality ? platform .
? object i40c:hasId ? objectId .
? platform i40c: hasVersion ? version .
? platform i40c: hasDate ?date .
? platform i40c: functionBlockUrl ?url .
? platform rdfs:label ?name .

}

Listing 9.5: Obtaining metadata about the platform. SPARQL query to retrieve the version, date
and URL of the software of the component’s platform.

The above use case shows how the Semantic Administrative Shell provides a flexible data
model. This semantic representation helps to overcome the challenges that I4.0 is facing.

135

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

9.2 A Semantic Integration Perspective for Industry 4.0 Standards

For the realization of the I4.0 vision, many organizations and stakeholders need to collaborate
and interchange data and information [146]. Standardization efforts enable the adoption of
production and manufacturing technologies across different organizations and stakeholders.
Standards define terms, components, procedures, dimensions, and materials along with many
other aspects of relevance for production and manufacturing. Standards are of paramount
importance in the manufacturing and automation domain and for the realization of the I4.0
vision where different enterprises and stakeholders interact in an interoperable manner [147].

Although standards are regionally extended or adapted, they represent a common understand-
ing of terms for a wide range of practitioners from the industry. There exist standards that
describe the enterprise as a whole, while others have been created to deal with specific problems,
such as PLC programming or automation design. Relevant examples to I4.0 are AutomationML
for mechatronic data modeling and OPC UA for machine-to-machine communication.

Different organizations have developed reference architectures to align standards in the context
of I4.0. In Germany, the Deutsches Institut für Normung (DIN) along with other organizations,
published the “Reference Architecture Model for Industry 4.0 (RAMI 4.0)”6. In the United States,
the National Institute of Standards and Technology (NIST) published a “Standards Landscape for
Smart Manufacturing Systems”7. In China, the Ministry of Industry and Information Technology
(MIIT) and the Standardization Administration of China (SAC) published the “National Smart
Manufacturing Standards Architecture Construction Guidance”. All these reference architectures
pursue the common objective of providing a roadmap for the use of standards for smart factories.

Emphasis is put on the interoperability of the standards and the alignment with the processes
in the factories. Despite the classification of the existing standards, there is still no structured
and systematic approach to describe these standards and the relationships among them. In
addition, the knowledge of the standards, the domain they cover, and the overlap that might
exist among them is still not formalized. In this work, we devise a semantic-based landscape
for I4.0 and present the STO ontology for describing I4.0 standards. The semantics encoded in
STO is exploited for discovering implicit relations between standards. An evaluation allows for
the tracking known properties of existing I4.0 standards and uncovering relations that were not
initially modeled, e.g., a relation between AutomationML (AML) and IEC 61499 [148]. Thus,
this landscape provides a building block for the implementation of a knowledge graph for Smart
Factory standards, as well as for their mapping and semantic integration.

In particular, we make the following contributions:

• The Standards Ontology (STO) to describe characteristics of standards for Smart Factories
and their relations;

• A description of more than 60 relevant standards to I4.0 and 20 standard organizations
using STO and the classification of standards with regard to their RAMI layers and
dimensions and NISTIR criteria, such as Product Life-cycle Management (PLM);

• A real-world use case showing the applicability and benefits of the standardization landscape
following a semantic-based approach.

6 https://bit.ly/2M3G7od/
7 https://www.nist.gov/publications/current-standards-landscape-smart-manufacturing-systems

136

https://bit.ly/2M3G7od/
https://www.nist.gov/publications/current-standards-landscape-smart-manufacturing-systems

9.2 A Semantic Integration Perspective for Industry 4.0 Standards

9.2.1 Background

In the following, relevant architectures of standardization landscapes for Smart Manufacturing,
in addition to the RAMI model (cf. Subsection 9.1.1), are presented. It is important to note
that some standards are classified at different layers these architectures.

Standards Landscape of the National Institute of Standards and Technology The National
Institute of Standards and Technology (NIST) has defined a standards landscape focusing Smart
Manufacturing Systems [149]. The standards landscape classifies standards with respect to
their functions. First, standards are aligned with regard to the levels of the manufacturing
pyramid of the ISA 95 standard, i.e., from the device to the enterprise level. Second, standards
are organized taking into account different phases of the product life-cycle, such as Modeling
Practice, Product Model and Data Exchange, Manufacturing Model Data, Product Category
Data, and Product Life-cycle Data Management. Finally, standards are classified with regard to
the life-cycle of production systems. In this case, they include categories, such as Production
System Model Data, Production System Engineering and Production System Operation and
Maintenance. Similarly, ISA 95 classifies standards into various layers. However, ISA 95 is not
a multi-dimensional model, and the classification of standards is more general than in RAMI.
For instance, OPC UA is classified in the SCADA layer providing an uniform information model
framework. However, in this classification, OPC UA focuses only on the SCADA systems and
not on the use of the data, e.g., data management and analytic processes.

National Smart Manufacturing Standards Architecture The Ministry of Industry and In-
formation Technology of China in a joint effort with the Standardization Administration created
a report for defining a National Smart Manufacturing Standards Architecture [150, 151]. The
architecture comprises three dimensions: 1) smart functions: from resource elements, system
integration, interconnect, and information convergence to new business models; 2) life-cycle:
from design, production, logistics, marketing and sales to service; and 3) hierarchy levels: from
device, control, plant, and enterprise to inter-enterprise collaboration. Their objective is to
classify standards into different architectural levels according to their functions.

9.2.2 Methodology

Here, we present the methodology followed during the creation of the semantic-based landscape
for I4.0 standards. We first looked into the different initiatives related to standards classifications,
i.e., the RAMI model, the NIST standard landscape, and the Chinese approach. These initiatives
are focused on I4.0 and the related Smart Factory concept.
The RAMI model comprises the Administration Shell concept. It describes how standards

are linked to certain submodels, e.g., identification, communication, or engineering [152]. For
example, the identification submodel is aligned with the ISO 29005, whereas the communication
submodel with the IEC 61784 Fieldbus Profiles. The aim of the current specification of the
RAMI model is not to provide a complete description of the standards. However, it provides a
starting point to further investigate the relevance for the Administration Shell concept.
Next, we considered the submodels, e.g., communication, engineering, and found other

standards particularly relevant for them. For instance, the engineering domain is aligned
with standards, such as IEC 61360, IEC 61987, and eCl@ss. In this regard, we extended our
classification to include the Automation Markup Language AutomationML (AML) [153], also

137

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

STO

RAMI

4) RDF
Serialization

1) Standards
description

In-house vocabularies Linked Open Data vocabularies

DCTerms

DEO

3) Mapping to
I4.0 Initiatives

2) Relations
description

FOAF

I4.0 Related Standards Semantic I4.0 Standards Landscape

...
MUTO

AutomationML
Automation

ML

Figure 9.5: The Semantic Standard Landscape Pipeline. I4.0 standards are received as input and
the output is a graph representing relations between standards. STO and existing vocabularies are utilized
to describe known relations among standards. A reasoning process exploits the semantics encoded in
STO to infer new relations between standards.

known as IEC 62714, since it is recognized as an important standard for engineering in the
I4.0 realization [154–156]. The RAMI model also classifies standards according to its layers.
We analyzed the IT layer of RAMI and classified standards for further mappings. For this, we
considered all layers, from the Asset to the Business layer. Further, we investigated specific
synergies of standards which are commonly described in scientific or white papers. For example,
the relationship between OPC UA and AML is relevant for the realization of the I4.0 vision [154,
155]. As a result, these two standards have been combined into a new standard: DIN SPEC
16592. Provenance and other characteristics of I4.0 standards, e.g., relations between them,
correspond to the properties modeled in the I4.0 landscape. For instance, the following relations
are described in the literature: OPC UA with IEC 61499 [157], and OPC UA and IEC 61850 [158].
Further, we extend our view on current standards and their use in the Smart Manufacturing
domain by analyzing related initiatives, e.g., NISTIR 8107 [149]. In this work, standards are
classified according to different areas of importance for Smart Factories, e.g., PLM. We considered
PLM-related areas, such as Product Life-cycle Data Management and Product Catalog Data,
and categorized standards regarding their functions in these areas of PLM, e.g., ISO 10303 and
ISO 13584, respectively. Figure 9.5 depicts the pipeline that implements the methodology we
followed during the creation of the I4.0 Standards Landscape.

9.2.3 An RDF-based Approach for the I4.0 Standards Landscape

The Standards Ontology (STO) is designed to semantically describe standards related to I4.0
as well as their relations. We used a knowledge-driven approach to model the most relevant
concepts in order to represent all metadata of the I4.0 standards. The STO development follows
best practices for ontology building provided in the Git4Voc methodology, e.g., reusing existing
concepts of well-known ontologies, such as MUTO for tagging [159], FOAF8 for representing
and linking documents and agents (e.g., persons, organizations), DCTERMS9 for document
metadata, including licenses as well as the RAMI vocabulary for linking Standards with RAMI
concepts. VoCol has been used as an integrated environment by providing various views of the
ontology, such as a human-friendly documentation, graphical visualization, and statistical charts.
As a result, apart from ontology engineers, other groups of users, in particular domain experts,
are able to actively contribute to the further development of STO. Following best practices for
8 http://purl.org/muto/core#, http://xmlns.com/foaf/spec/
9 http://dublincore.org/documents/dcmi-terms/

138

http://purl.org/muto/core#
http://xmlns.com/foaf/spec/
http://dublincore.org/documents/dcmi-terms/

9.2 A Semantic Integration Perspective for Industry 4.0 Standards

Figure 9.6: The Standards Ontology (STO). STO classes and properties describe the meaning and
relations of I4.0 standards. The RAMI vocabulary models a layer where a standard is classified in
the RAMI architecture. Data type and Object properties are represented by green and blue squares,
respectively; red arrows represent inverse functional properties.

ontology publishing10, the STO ontology is available via a W3ID permanent URL as well as
registered in the LOV service11.

Class description In the following, the main STO classes are described.

sto:Standard: describes the concept of a standard. Since standards are usually published
as documents, this class is a specialization of the foaf:Document class to represent the
publication format of the standards.

sto:SDO: models common organizations that develop standards, such as ISO, IEC. This class
specializes foaf:Organization, allowing to link its instances to FOAF defined resources.

sto:Domain: specifies relevant domains to the standards, e.g., Manufacturing Operation
Management, Functional Safety, Industry Automation.

sto:ISA95Level: describes levels of the ISA95 standard. It enables linking of standards to
the NIST initiative along with the linking them to the ISA95 levels.

sto:ProductionSystem: represents standards for modeling of complex systems, automation
engineering as well as operation and maintenance perspectives of production systems.

Futhermore, the STO ontology reuses other classes from the MUTO and RAMI vocabularies,
such as muto:Tag, rami:RAMIHierarchyLevel, rami:RAMIITLayer, respectively. Figure 9.6
illustrates the class diagram of STO concepts and their connections between each other.

Properties description We describe some of the core properties of STO as follows:

sto:license: links a standard with its correspondent license document. This information shows
whether the standard is free to use or has to be purchased first.

sto:isPartOf : links a standard document with the specific parts of the standard.
sto:published: links a standard with the organization that published the standard.
rami:ramiHierarchyLevel and rami:RAMIITLayer: align standards with their hierarchy

level and ITLayer in the RAMI model, respectively.
10 https://www.w3.org/TR/swbp-vocab-pub/
11 https://w3id.org/i40/sto, http://lov.okfn.org

139

https://www.w3.org/TR/swbp-vocab-pub/
https://w3id.org/i40/sto
http://lov.okfn.org

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

sto:relatedTo: represents links between I4.0 standards. This property is symmetric and
transitive. The inference model based on sto:relatedTo allows for the uncovering new
relations between standards. For example, the standard ISO 13849 is directly related
to IEC 61511. Likewise, IEC 61511 is directly related to IEC 61508. By utilizing this
transitivity, a relation of ISO 13849 to IEC 61508 can be inferred.

sto:scope: describes the scope of a standard by defining its specific goals and limitations.
sto:hasOntology: refers to the ontology of a standard, if it has been already defined. For

instance, the ISO 15926 standard, used in the integration of life-cycle data for process
plants, is available as an ontology12 that can be linked accordingly.

Additionally, standards can be linked with other external resources using the following
properties: sto:hasWikipediaArticle, sto:hasWikidataEntity, sto:hasDBpediaResource,
and sto:hasOfficialResource.

Population

Based on the STO ontology, we created the STO dataset. It contains the descriptions for a set
of existing standards, along with their metadata, e.g., licenses and relations. It also includes
descriptions for the organizations that published the standards. The dataset can be expanded
with further information by the community, through directly accessing it on GitHub13. Further,
a public VoCol instance14 is provided, where users can easily view and explore the described
standards and their metadata, to enable a better comprehension for non-ontology engineers. In
the following, we exemplify some of the most important concepts as instances described in STO.
Listing 9.6 depicts the semantic description of the OPC UA standard defined by the OPC

Foundation. The overall dataset comprises more than 60 standards and more than 20 standard
organizations at the moment. Moreover, we document more than 20 direct relations between
the standards, with the possibility of inferring more than 50 new ones.
@prefix sto: <https : / / w3id . org / i 40 / s t o#> .
@prefix rami: <https : / / w3id . org / i 40 / rami#> .
@prefix dc: <http : // pur l . org /dc/ terms /> .
sto: IEC_62541 rdf:type sto: Standard ;

dc: description "OPC Unified Architecture (OPC UA) is an ..."@en;
rami: hasRAMIHierarchyLevel rami: ControlDevice ;
rami: hasRAMILifeCycleLayer rami: Communication ;
sto: hasISA95Level sto: SCADALevel ;
sto: developer sto: OPC_Foundation ;
sto: hasDBpediaResource <http : // dbpedia . org / . . . / OPC_Unified_Architecture>;
sto: hasOfficialResource <https : / / opc foundat ion . org / . . . / opc−ua/>;
sto: hasTag "OPC UA"@en;
sto: hasWikidataEntity <https : / /www. wik idata . org / e n t i t y /Q623244>;
sto: hasWikipediaArticle <https : / / w ik ip ed i a . org / . . OPC_Unified_Architecture>;
sto:norm "62541";
sto: publisher sto:IEC;
sto: relatedTo sto:IEC_62714 , sto: IEC_61499 ;
sto:scope sto: Industrial_Automation .

Listing 9.6: The RDF representation of an Industry 4.0 standard. Semantic description of the
OPC UA standard with the STO ontology and its metadata.

12 https://www.posccaesar.org/wiki/ISO15926inOWL
13 https://github.com/i40-Tools/StandardsVocabulary
14 http://vocol.iais.fraunhofer.de/sto/

140

https://www.posccaesar.org/wiki/ISO15926inOWL
https://github.com/i40-Tools/StandardsVocabulary
http://vocol.iais.fraunhofer.de/sto/

9.2 A Semantic Integration Perspective for Industry 4.0 Standards

IEC 61360

IEC 62714
AML relatedTo

relatedTo

relatedTo

relatedTo

relatedTo

eCl@ss

IEC 62424

61987-X

IEC 62541

(a) Explicit relations between AML and other I4.0
standards

IEC 61360

IEC 62714
AML relatedTo

relatedTo

relatedTo

relatedTo

relatedTo

eCl@ss

IEC 62424

61987-X

IEC 62541

relatedTo

ISO 13584
relatedTo

IEC 61131

relatedTo

IEC 61499

relatedTo relatedTo

IEC 20922

relatedTorelatedTo

(b) Explicit and inferred relations between AML
and I4.0 standards

Figure 9.7: I4.0 Standards related to AML. Relations between I4.0 standards are visualized using
graphs; continuous and dashed directed arrows represent explicit and inferred relations, respectively. The
inference model relies on the transitive and symmetric properties of sto:relatedTo. (a) Known relations
between AML and I4.0 standards are explicitly described using the STO object property sto:relatedTo.
(b) Relations between I4.0 standards connected to AML with dashed directed arrows and colored in
a different color, are inferred. The relation between AML (IEC 62714) and the I4.0 standard named
Measurement and Control Devices (IEC 61499) has been validated [148].

PREFIX rami: <https :// w3id.org/i40/rami#>
PREFIX sto: <https :// w3id.org/i40/sto#>
SELECT DISTINCT
?name ? RAMIITLayer ? ISA95Level ?PLM ? AdminShellSubmodel ? license ? publisher
WHERE {

?std a sto: Standard ; sto:norm ?norm ;
(sto: publisher /sto:name) ? publisher ;
(sto: publisher /sto: abbreviation) ? publisherAbbrv ;
rami: hasRAMIITLayer ? RAMIITLayer .
FILTER (LANGMATCHES (LANG (? publisher), "en"))
OPTIONAL { ?std sto: hasTag ?tag .}
OPTIONAL { ?std sto: license ? license ;
sto: hasOfficialResource ? officialResource . }
OPTIONAL { ?std rami: hasAdminShellSubmodel ? AdminShellSubmodel . }
OPTIONAL { ?std sto: hasISA95Level ? ISA95Level . }
OPTIONAL { ?std sto: isUtilizedIn ?PLM . }
BIND(CONCAT (? publisherAbbrv ," " ,?norm ," - " ,?tag) as ?name)

}

Listing 9.7: SPARQL query for retrieving the metadata of the encoded standards.

9.2.4 Use Case

One of the main motivations to create the standards dataset is to describe I4.0 standards using
STO, as well as to study existing relations among them. Figure 9.7(a) depicts explicit relations,
which are currently annotated in the dataset; Figure 9.7(b) shows inferred relations, which are
obtained after executing the aforementioned query and running the inference process based on
the symmetric and transitivity properties of sto:relatedTo. These queries can be evaluated as

141

Chapter 9 Establishing Semantic Interoperability between Industry 4.0 Models

(a) Graph representing explicit relations between
I4.0 standards

(b) Graph representing explicit and inferred rela-
tions between I4.0 standards

Figure 9.8: Relations between I4.0 Standards. Relations between I4.0 standards are visualized using
graphs; continuous and dashed lines represent explicit and inferred relations, respectively. The inference
model relies on the transitive and symmetric properties of sto:relatedTo. For readability only symmetric
relations are represented using undirected line. (a) Known relations between I4.0 standards are explicitly
described using the STO object property sto:relatedTo. (b) Relations between I4.0 standards are inferred;
the graph comprises 74 edges: 50 are inferred while 24 are explicit.

well on the STO VoCol instance in the Analytics Menu. To this end, the ForceGraph option
should be chosen as the graph type, and the Direct Standard Relations or Direct and Indirect
Standard Relations options as queries to be executed.

This feature allows for the retrieving not only relations that have been explicitly defined in the
STO dataset, but also those that are inferred. For instance, relations of AML (IEC 62714) and

Table 9.1: Exemplar Descriptions of I4.0 Standards in the I4.0 Standard Landscape. An I4.0
standard is described in terms of the classification level in the reference architectures, e.g., RAMI and
ISA95; as well as basic properties like license and publisher. The same I4.0 standard can be classified by
two reference architectures, e.g., IEC 62264.

Standard RAMIITLayer ISA95Level PLM Submodel license Publisher
IEC 62714 Information - ProductModelDataExchange Engineering Open IEC
ISO 19439 Business Enterprise - - Propietary ISO
IEC 62264 Functional Enterprise - - Propietary IEC
SE ModBus Integration SCADA ProductionEngineering - Propietary SE
IEC 61360 Asset - ManufacturingModelData Engineering Propietary IEC
IEC 62541 Communication SCADA - - Open IEC

OPC UA (IEC 62541) as well as OPC UA (IEC 62541) and IEC 61499 were explicitly defined
in the dataset. Based on this fact, the relation between AML and IEC 61499 (cf. Figure 9.7) is
inferred. We validated that this relation exist and is important according to the literature [148].
Furthermore, all relations between the I4.0 standards can be retrieved at once (cf. Figure 9.8).
The result of this query reports on 24 relations between the standards (cf. Figure 9.8(a)) on
the dataset, and 50 new relations inferred when the symmetric and transitive properties are
considered by the inference process (cf. Figure 9.8(b)).

Finally, the query in Listing 9.7 is executed over STO dataset to retrieve description of
standards. The results, particularly help to understand how standards are linked with important
I4.0 concepts, such as the Administration Shell submodel, the IT RAMI layer as well as with

142

9.3 Summary

PLM. Additional metadata used to describe I4.0 standards in the I4.0 standards landscape, e.g.,
name and tag, the license, and the publishing organization, are obtained (cf. Table 9.1).

9.3 Summary
This chapter presents two RDF-based approaches where ontologies are modeled to support
interoperability in exchanging information in the different scenarios. The Git4Voc methodology
along with the VoCol platform are used to manage and facilitate the collaborative and distributed
development among different stakeholders.

Administrative Shell Vocabulary First, we describe an approach for semantically representing
information about smart I4.0 devices with an Administrative Shell. The approach is based on
structuring the information using an extensible and lightweight vocabulary aiming to capture all
relevant information. Compared to prior approaches, the RDF-based Semantic Administrative
Shell has a number of advantages. The URI/IRI based identification scheme provides a unified
way to identify all types of relevant entities, from physical objects, abstract concepts, properties,
concrete raw and derived data. Existing standards (e.g., eClass, IEC device characteristics or
AutomationML) are more easily integrated and referenced. Information about and from different
objects can be combined (since a basic integration can be achieved by merging sets of triples).
Accessing the information in a unified way is established by using SPARQL, as a standard
protocol and query language.

Standards Ontology Second, we develop both a landscape of Industry 4.0 related standards
and the Standard Ontology (STO) for the semantic description of standards and their relations
as well as respective organization responsible for publication and maintenance. Further, we
investigate the existing reference models like RAMI and NIST, and populated the STO with
descriptions of more than 60 standards, more than 20 standardization organizations, and 74
relations between the standards. Next, we illustrate the benefits of our semantic-based approach
with a concrete use case.

We consider this work as a first step in a larger research and development agenda aiming
at equipping manufacturing devices with semantics-based means to ease communication and
data exchange. In the medium to long term, we aim to bring more intelligence to the edge of
production facilities thus promoting self-organization and resilience of these devices. Furthermore,
with the ontology-based representation of standards and their relations, our objective is to
facilitate the structuring, discovery, selection, and integration of standards on a conceptual as
well as operational and implementation level.

143

CHAPTER 10

Establishing Semantic Interoperability between
Industry 4.0 Data

This chapter focuses on describing an information model realized for a global manufacturing
company to describe its assets and information sources. In addition, it enables the semantic
integration and exchange of data beyond manufacturer boundaries.

Although the vision of digitizing production and manufacturing has gained much traction lately
(viz. Industry 4.0), it is still not clear how it can actually be implemented in an interoperable
way using concrete standards and technologies [160]. A key challenge is to enable devices to
communicate and to understand each other as a prerequisite for cooperation scenarios [161].
Various standards, such as those from the ISO and IEC series, are used to describe information
about manufacturing, security, identification and communication, among other areas. For instance,
machines produce assets following the description given by work orders. Work orders drive the
production process for a given asset, and these information are managed in a different software
platforms. Further important information for decision making, such as energy consumption for
each produced asset by a particular work order, is not easily managed in the current setting.
Such issues reduce the efficiency of the production process and therefore hamper the realization
of the Industry 4.0 vision in actual working environments.
Integrating all relevant information and automating as many production steps as possible is

the central goal of the Industry 4.0 vision [162]. Instead of envisioning one monolithic system or
database, we pursue a decentralized semantic integration, i.e., the formal description and linking of
all relevant assets and data sources based on an aligned set of RDF vocabularies – the information
model. This avoids unnecessary data redundancy and allows structured querying and analyses
across individual assets and data sources. The information model serves as a crystallization
point and reference for data structures and semantics emerging from the data sources and value
chains. Further, it is aligned to important industry standards, such as RAMI [124] and IEC
62264 [163], to additionally foster data exchange and semantic interoperability.

The information model is centered around machine data and describes all relevant assets, key
terms and relations in a structured way, making use of existing as well as newly developed RDF
vocabularies. In addition, it comprises numerous RML mappings that link different data sources
required for integrated data access and querying via SPARQL. The technical infrastructure and
methodology used to develop and maintain the information model is based on a Git repository
and utilizes our VoCol platform, as the development environment as well as the Ontop framework
for Ontology Based Data Access.

145

Chapter 10 Establishing Semantic Interoperability between Industry 4.0 Data

Contributions of this chapter are summarized as follows:

• A methodology for the development, governance and interlinking of vocabularies for the
domain of interest;

• A technical infrastructure to implement the Information Model for establishing data
integration across heterogeneous data sources;

• The application of the defined approach to concrete uses cases, demonstrating the benefits
and opportunities provided by the information model;

• A survey with stakeholders to asses their option on the benefits of the Information Model
and benefits of semantic technologies in general as well as a report on lessons learned
during project implementation.

This chapter is based on the following publication:

• Niklas Petersen, Lavdim Halilaj, Irlán Grangel-González, Steffen Lohmann, Christoph
Lange, Sören Auer. Realizing an RDF-based Information Model for a Manufacturing
Company – A Case Study. In 16th International Semantic Web Conference (ISWC) 2017
Proceedings, 350-366, Springer. This article is a joint work with Niklas Petersen and Irlán
Grangel-González, PhD students at the University of Bonn. My contributions focused on
the implementation of the proposed approach, the preparation and presentation of the use
cases, and analysis of different strategies for data integration for the given scenario.

This chapter is organized as follows: In Section 10.1, we describe the motivation of this work.
The core contributions, the information model, modeling approach and its implementation are
presented in Section 10.2 and Section 10.3, respectively. In Section 10.4, we apply the information
model to two use case scenarios, demonstrating its benefits and opportunities. Section 10.5 reports
findings and lessons learned derived from the stakeholder interview. Section 10.6 summarizes
the work that has been realized in this chapter.

10.1 Motivating Example
The information modeling project involved employees from different departments and hierarchical
levels of the manufacturing company, external consultants and a third party IT provider. The
company itself realized that their IT infrastructure has reached a level of complexity making
difficult to manage and effectively use their existing systems and data. While adding new sensors
to production lines is straightforward, using the sensor data effectively to improve the production
process and decision-making can be cumbersome. The need to share production data with
clients led them to evaluate the fitness of semantic technologies. For example, the production
of bearing tools is fairly quality-driven depending on the customer specifications. Sharing the
production details in a more processable format (compared to non-machine-comprehensible
formats) aroused interest. Further goals were to gain a bigger picture of the company’s assets
(physical and non-physical) and to capture as much expert knowledge as possible.

The concrete use cases are based upon a machine newly introduced into the production lines
of the company, a so-called machine tool. It is a machine that requires the mounting of tools to
assemble specific metal or rigid products. Compared to older generations, the new machine is
heavily equipped with embedded sensors that monitor the production process.
Tool management Possible tools to be mounted into the machine are cutters, drillers

or polishers. A tool usually consists of multiple parts. The number of parts depends on the

146

10.2 Realizing an RDF-based Information Model

manufacturer of the tool, which is not necessarily the same as the manufacturer of the machine.
Mounting tools into a machine is a time-consuming task for the machine operator. Uncertain
variables of the tools, such as location, availability and utilization rate, play a major role in the
efficiency of a work shift and of a machine in particular. The production of certain goods may
wear a tool out quickly, thus decreasing its overall lifetime and forcing the machine operator
to stop the machine and replace it with a new tool. Reducing the idle time for remounting
the machine by clearly describing its configuration, location and weariness was therefore one
concrete goal to be addressed by the information model.
Energy consumption Producing goods with the machine tool is an energy-intensive process.

Before we started the information modeling project, only the energy costs per factory were
known. Sensors were added to track the energy consumption per machine and processed work
order. For the cost calculation, data from the added sensors and the work orders, which resides
in different data sources, needs to be linked and jointly queried. Therefore, integrating this data
to be able to retrieve the information at run-time was another concrete goal to be achieved.

Three types of data were of particular interest in the project: i) Sensor Data (SD), ii) the Bill
of Materials (BOM), and iii) data from the Manufacturing Execution System (MES). The SD
comprises sensor measurements of the machine tool. These measurements record parameters
needed for the continuous monitoring of the machine, such as energy, power, temperature, force,
and vibration. The MES contains information about work orders, shifts, material numbers, etc.
The machine produces assets based on the work order details, which provide the necessary
information for the production of a given asset. The BOM contains information about the general
structure of the company, such as work centers, work units, associated production processes, as
well as information related to the work orders and the materials needed for a specific production.

10.2 Realizing an RDF-based Information Model
The information model aims at a holistic description of the company, its assets and information
sources. The core of the model is based on a factory ontology we developed in a previous
project [164], which describes real world objects from the factory domain, including factories,
employees, machines, their locations and relations to each other. In addition, the information
model comprises the mappings between ontologies that represent the data sources (i.e., SD,
BOM, MES) and their corresponding schemes.

10.2.1 Development Methodology
Our development methodology was based on the approach proposed by Uschold et al. [165].
We first defined the purpose and scope of the information model; then, we captured the
domain knowledge, conceptualized and formalized the ontologies and aligned them with existing
ontologies, vocabularies and various standards. Finally, we created the mappings between the
data sources and ontological entities. In line with best practices, we followed the iterative
and incremental round-trip model based on the Git4Voc methodology, i.e., with an increased
understanding of the domain, the information model was continuously improved.
All artifacts were hosted and maintained by VoCol, which we adapted with additional

features to allow querying and retrieving data from heterogeneous sources. VoCol supports the
requirements of the stakeholders: i) version-control of the ontology; ii) online and offline editing;
and iii) support for different ontology editors (by generating a unique serialization before changes
are merged to avoid false-positive conflicts).

147

Chapter 10 Establishing Semantic Interoperability between Industry 4.0 Data

In addition, it offers different web-based views on the ontology, including a human-readable
documentation, a visualization and graphical charts generated from customized queries applied
to the ontology and instance data. These views are designated to ease the collaboration of
domain experts in the development process, i.e., enabling them to participate via single access
point and without having to set up and maintain a proper infrastructure themselves.

Purpose and scope The information model comprises i) a formal description of the physical
assets of the company, ii) mappings to database schemas of existing production systems, and iii)
a formalization of domain-related knowledge of experienced employees about certain tasks and
processes within the company. The heart of the information model represents the aforementioned
machine tool, including its sensor data, usage processes and human interaction. Therefore, the
majority of concepts are defined by their relation to this machine.
The scope is set by the motivating examples energy consumption and tool management

introduced in Section 10.1. The objective of the management is to gain a clearer picture of all
assets of the company. For example: What local knowledge exists in the factory? What kind
of data exists for which machine? Where is that data? Who has access to it? Discussions on
fully automated order-driven production sites are ongoing. The management hopes for this to
be supported by the information model, and we aim to provide the basis towards that goal.

Capturing domain knowledge The knowledge from domain is captured in different ways:

1. The company provided descriptive materials of the domain, including maps of the factories,
descriptions of machines and work orders, information about processes, sensor data and
tool knowledge. The types of input material ranged from formatted and unformatted text
documents to spreadsheets and SQL dumps.

2. An on-site demonstration of the machine within the factory was given during the project
kick-off, including a discussion of further contextual information missing in the material.
In subsequent meetings, open questions were clarified and concrete use cases for the
information model were discussed.

3. We reviewed relevant existing ontologies and industry standards, intending to build on
available domain conceptualizations and formalizations.

4. We created customized document templates to enable easy participation of domain experts
by collecting input on the ontology classes and properties in a structured way. We collected
names and descriptions of all properties having a given class as their domain in one table
with one row per property; additional details about the domains and ranges of properties
were collected in a separate table. These documents were continuously handed over to the
domain experts to be reviewed and completed.

5. We trained IT-affine employees of the company to model ontologies with editors, such as
Protégé, TopBraid Composer and the Turtle editor integrated into the VoCol environment.1

Conceptualizing and formalizing Since Machine(s) are the main assets of the manufacturing
company, they have been used as a starting point for creating the ontology. Each machine
contains a geo-location (property with range Geometry) and is part of a certain Section, which
is in a certain Hall. Certain tools can be mounted directly onto the machine holder. Tools are
the parts that wear out over time and need to be replaced. The geo-location of machines enables
1 http://protege.stanford.edu, http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition

148

http://protege.stanford.edu
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition

10.3 Architecture and Implementation

showing their position on a map. The tool ontology part reflects the configuration options for
tools of multiple tool manufacturers. Specialized classes and properties are created to detail the
core concepts and their relationships. In total, the developed ontologies comprise of 148 classes,
4662 instances, 89 object and 207 datatype properties.

Aligning with existing ontologies & standards The developed information model consists
of concepts from existing vocabularies and industry standards formalized during the project.
Particularly, concepts from the VIVO (vivo:Building), NeoGeo (ngeo:Geometry), FOAF
(foaf:Person) and Semantic Sensor Network ssn:Sensor) ontologies are reused.2 We aligned
the ontologies of the information model to the RDF vocabularies of the industry standards, such
as RAMI (cf. Subsection 9.1.3) and IEC 62264 [163]. RAMI is used to structure the interrelations
between IT, manufacturing and product life-cycles, whereas IEC 62264 defines the hierarchical
levels within a company. RAMI includes the IEC concepts and adds the “connected world” as
an additional level, to align with the basic idea and motivation of this work.

10.2.2 Information Model Governance
Introducing new technologies is often a challenge for companies. It has to be well-aligned with the
organizational structure of the company to balance the added value produced for the information
model to the business and the maintenance costs of the technology. Thus, in parallel with the
introduction of the information model, we defined a procedure to support the governance of
information to ensure the maintenance of the model and uniform decision-making processes.
Since the core of the information model is a network of ontologies and vocabularies with a

clear hierarchical and modular structure, there are boards of experts assigned to each part, which
are responsible for its maintenance. Design decisions cover, for instance, including new terms
or removing existing ones, reusing and aligning with external vocabularies, and the continuous
alignment with Industry 4.0 standards, e.g., RAMI, IEC, ISO. Additionally, we provided concrete
guidelines for maintaining the information model along with the use of VoCol, for example3:

• detailed documentation of all terms defined in the vocabulary by skos:prefLabel,
skos:altLabel, and skos:definition;

• multilingual definition of labels, i.e., in English and German;
• definition of rdfs:domain and rdfs:range for all properties;
• inclusion of provenance metadata, licenses, attributions, etc.

10.3 Architecture and Implementation
With the objective to provide a uniform interface for accessing heterogeneous and distributed
data sources, we designed and implemented the architecture illustrated in Figure 10.1. It is
extensible and able to accommodate additional components for accessing other types of data
sources as well as supporting federated query engines. The architecture distinguishes the following
four main layers, some of which are orthogonally located across different components:

The ontology layer consists of several ontologies that have been created to conceptualize a
unified view of the data. Wache et al. [166] distinguish three main approaches of using ontologies
to explicitly describe data sources: i) Global Ontology Approach - all data sources are described
2 http://vivoweb.org, http://geovocab.org, http://xmlns.com/foaf/spec, https://www.w3.org/TR/vocab-ssn
3 These are based on the W3C “Data on the Web Best Practices” Recommendation, https://www.w3.org/TR/dwbp/

149

http://vivoweb.org
http://geovocab.org
http://xmlns.com/foaf/spec
https://www.w3.org/TR/vocab-ssn
https://www.w3.org/TR/dwbp/

Chapter 10 Establishing Semantic Interoperability between Industry 4.0 Data

PostgreSQL
Databases

MSSQL Databases

Wrapper

RDF Data

SPARQL Endpoint

Local Ontology

Wrapper

SPARQL Endpoint

Mappings

Wrapper

SPARQL Endpoint

 Mappings

Information Model

RAMI

Application Clients

Processing

Factory ... Sensor

Analytics ReportingSPARQL Endpoint

BOM

MES
SDGeoDS

RDFS
Turtle

Jena
Fuseki

RDF
R2RML

Mappings

Quest
Engine

ToolManagementApp
EnergyConsumptionApp

Ontop

R2RML
Mappings

Quest
Engine

OntopJena Fuseki

JavaApp &
Jetty

Local
Ontology

Local
Ontology

Legend: Data access layerOntology layer Mapping layer Data source layer Application layer

Figure 10.1: The implemented architecture. It comprises several layers hosting various components:
a) ontology Layer; b) data access layer; c) mapping layer; d) data source layer; and e) application layer.

in an integrated, global ontology; ii) Multiple Ontology Approach - separate local ontologies
represent the respective data sources, and mappings between them are established; the iii)
Hybrid Ontology Approach - a combination of the two previous approaches to overcome the
drawbacks of maintaining a global shared ontology and mappings between local ontologies.

We followed the third approach, which enables new data sources to be easily added, avoiding
the need for modifying the mappings or the shared ontology. Accordingly, our ontologies are
organized in two groups: i) a shared ontology to represent the highest level of abstraction of
concepts and mappings with external ontologies; and ii) local ontologies representing the schemas
of the respective data sources. This makes our architecture quite flexible with respect to the
addition of diverse types of data sources [167].

The data access layer consists of various wrappers acting as bridges between client applica-
tions and heterogeneous data sources. It receives user requests in the form of SPARQL queries,
which are translated into the query languages of the respective data sources, and returns the
results after query execution. Relational databases are accessed via the Ontology-Based Data
Access (OBDA) paradigm, where ontologies serve as a conceptualization of the unified view of
the data, and mappings to connect the defined ontology with the data sources [168]. Particularly,
the Ontop [169] framework is used to access the relational data sources, i.e., the BOM, MES,
and SD data, which exposes them as virtual RDF graphs, thus eliminating the requirement to
materialize data into RDF triples. Jena Fuseki is used as in-memory triple store for loading
GeoDS, since the information about the geo-locations of the machines are less than 20K triples.

The mapping layer deals with the mappings between the data stored in the data sources and
the local ontologies. For the definition of the mappings, we used R2RML4, the W3C standard
4 http://www.w3.org/TR/r2rml/

150

http://www.w3.org/TR/r2rml/

10.4 Use Cases

RDB-to-RDF mapping language. As a result, it is possible to view and access the existing
relational databases in the RDF data model.

The data source layer comprises the external data sources, i.e., databases and RDF datasets.
Due to the high dynamicity and the huge amount of incoming data, the data sources are
replicated and synchronized periodically. As a result, any performance and safety degradation
of the production systems is avoided. Additional types of data sources can be easily integrated
in the overall architecture by defining local ontologies, mappings with the global ontology and
data sources as well as choosing an appropriate wrapper.
The application layer contains client applications that benefit from the unified access

interface to the heterogeneous data sources. These applications can be machine agents or human
interface applications able to query, explore and produce human-friendly presentations.

10.4 Use Cases

We applied the developed information model to the use cases introduced in Section 10.1 to
demonstrate the possibilities resulting from semantically integrated data access.

10.4.1 Tool Management

Figure 10.2 displays different views on the assets of the company. On a world map (cf. Fig-
ure 10.2(a)), the sites of the company are highlighted based on their geo-location given in
the information model. By zooming in, the different locations can be investigated w.r.t. their
functionality, address, or on-site buildings up to the level of machines. By clicking on the objects
on the map, static production data is displayed. As an example, Figure 10.2(b) shows all tools
stored in a certain paternoster system, grouped by drawer. Figure 10.2(c) provides an example of
a machine with its properties: production name, current status, self-visualization, mounted basic
holder, and tool with its diameter. Further, it contains links to existing external analytical web
pages. A “Determine Tool Availability” function is offered for locating the tools to be assembled
in the closest paternoster storage system based on the location of the machines.
Each time a certain view is opened, a SPARQL query retrieves the required data in the

information model. Geo-locations are drawn to the world map view using Leaflet JavaScript5.

10.4.2 Energy Consumption

Information about the energy, power or temperature are critical for the company to forecast the
production process, expenses and maintenance. In the second use case, we asked the following
question: what is the energy consumption of a given machine for a given day for a particular
work order? To answer this question, data from sources (SD, MES, BOM) are taken into account.
Since the SD lacks the work order definitions, we used time intervals to access the required
energy stream data. Next, we linked the work order IDs in the BOM and MES databases. Among
others, it includes its material number, total execution time and target production amount.
As a part of the information model, we created R2RML mappings for all data sources: 1)

mappings from the work orders table to the ontology (cf. Listing 10.1); and 2) mappings from the
energy data to the ontology (cf. Listing10.2). Based on the defined mappings, we created several
queries for retrieving information about work orders and energy consumption. For example,
5 http://leafletjs.com/

151

http://leafletjs.com/

Chapter 10 Establishing Semantic Interoperability between Industry 4.0 Data

(a) Global view of the company sites

(b) Paternoster view (c) Factory view
Figure 10.2: Various views of the tool management application. a) Geographical depiction of the
places where the company is located; b) List of tools stored in a paternoster system; and c) Detailed
information about a machine located within a factory.

Listing 10.3 illustrates a specific query used to retrieve the energy consumption values for a
work order in a specific time interval.
@prefix rr: <http :// www.w3.org/ns/r2rml#> .
@prefix im: <http :// iais. fraunhofer .de/ infomodel #> .
<WorkOrderMap > a rr: TriplesMap ;

rr: logicalTable [rr: tableName " WorkOrders "];
rr: subjectMap [rr: template

"http ://.../ infomodel / WorkOrder /{ WorkOrderId }"; rr:class im: WorkOrder];
rr: predicateObjectMap

[rr: predicate im: workOrderId ; rr: objectMap [rr: column " WorkdOrderId "]],
[rr: predicate im: targetAmount ; rr: objectMap [rr: column " TargetAmount "]],
[rr: predicate im: totalExecTime ; rr: objectMap [rr: column " TotalExecTime "]],
[rr: predicate im: matDesc ; rr: objectMap [rr: column " MatDesc "]].
...

Listing 10.1: Work orders mappings. R2RML mappings between the local ontology and work orders
data in MES database.

152

10.5 Evaluation and Lessons Learned

@prefix rami: <https :// w3id.org/i40/rami/#> .
<EnergyConsumptionMap > a rr: TriplesMap ;

rr: logicalTable [rr: tableName " View_GetEnergyConsumption "];
rr: subjectMap [rr: template

"http :// iais. fraunhofer .de/ infomodel /{ DateOfMeasure }/{ HourOfMeasure }";
rr:class rami: SensorMeasurementData];

rr: predicateObjectMap
[rr: predicate im: dateOfMeasure ; rr: objectMap [rr: column " DateOfMeasure "]],
[rr: predicate im: hourOfMeasure ; rr: objectMap [rr: column " HourOfMeasure "]],
[rr: predicate im: measurementValue ; rr: objectMap [rr: column "Value"]].
...

Listing 10.2: Energy consumption mappings. R2RML mappings between the local ontology and
energy consumption in SD database.

PREFIX im: <http :// iais. fraunhofer .de/ vocabs / infomodel #>
SELECT ?hour ((? latest - ? earliest) AS ? measurementByHour) {

{ SELECT ?hour (MIN (? measurement) AS ? earliest)
WHERE {

? machineSensor im: energyTime ?time;
im: energyValue ? measurement .

}
GROUP BY (HOURS (? time) AS ?hour) }

{ SELECT ?hour (MAX (? measurement) AS ? latest)
WHERE {

? machineSensor im: energyTime ?time;
im: energyValue ? measurement .

}
GROUP BY (HOURS (? time) AS ?hour) }

FILTER (?hour >= timeFrom && ?hour <= timeTo) } ORDER BY ?hour

Listing 10.3: Retrieving energy consumption. A SPARQL query to retrieve the energy consumption
per machine per hour.

This allowed us to integrate the information from the three data sources using the information
model and SPARQL queries. Figure 10.3(a) depicts the information of work orders for a given
machine, and Figure 10.3(b) shows the energy consumption per hour for that machine for a
given day. Overall the performance of the implemented approach was satisfactory, i.e., time to
retrieve the energy consumption of particular work order was less than five seconds.

10.5 Evaluation and Lessons Learned
To gain feedback from the stakeholders involved in the information modeling project, we designed
a questionnaire and sent it to the stakeholders, asking for anonymous feedback. Table 10.1
lists the questions and results of the questionnaire. We were interested in how the stakeholders
evaluate the developed information model and semantic technologies in general, based on the
experience they gained in the project.

10.5.1 Stakeholder Feedback
Five employees of the manufacturing company (three IT experts, one analyst, and one consultant)
who were actively involved in the project, answered the questionnaire. The results varied across
the stakeholders: While some regarded the information model and future potential of semantic

153

Chapter 10 Establishing Semantic Interoperability between Industry 4.0 Data

(a) Work orders (b) Energy consumption

Figure 10.3: Various views of the analytics application. a) Work order data for a given machine in
a time interval of one day; and b) Energy consumption of a given work order within a day.

Table 10.1: Survey questions and given scores. Likert scale of 1 to 5, 1 = not at all, 5 = very much
is used to categorize the given scores from stakeholders. M represents the mean value and SD represnts
the standard deviation.

Question M SD
1. Did the developed RDF-based information model meet your expectations? 2.4 0.9
2. Do you think investing in semantic technologies can result in a fast ROI? 3.0 1.4
3. Do you consider semantic technologies fit for usage in the manufacturing domain? 3.6 0.9
4. Are you satisfied with the software for semantic technologies available on the market? 2.8 1.3
5. Is it easy to hire personnel with knowledge in semantic technologies? 1.8 0.4
Free-text questions:
6. What do you expect from semantic technologies in manufacturing contexts?
7. What is the biggest bottleneck in using semantic technologies in manufacturing contexts?

technologies as promising, others remained skeptical about its impact within the company.
Question 6 asking for the expectations towards semantic technologies (cf. Table 10.1) was
answered by nearly all as an “enabler for autonomous systems” and by one as a “potential
technology to reduce the number of interfaces”. One stakeholder praised the “integration and
adaption” capabilities of semantic technologies. Question 7 asking for the biggest bottleneck
yielded the following subjective answers: “lack of standardized upper ontologies”, “lack of field-
proven commercial products”, “lack of support for M2M communication standards”, “skepticism
of the existing IT personnel”. While the stakeholders find the advantages of semantic technologies
appealing and suited to solve the underlying essential problems of interoperability and integration,
a successful application requires the provision of tools suited for different user groups.

10.5.2 Lessons Learned

In the following, we reflect on the lessons learned during implementation of this work including
opinions from the company staff about current state of the semantic technologies.

Technology awareness within the company After all, the majority of the stakeholders were
enthusiastic and committed to develop an integrated information model and applications on top
of it. Nevertheless, reservations on the fitness of the technology and methodology existed from
the start. A few stakeholders preferred a bottom-up approach by first gathering and generating
internally an overview of the existing schemas and models before involving external parties (such

154

10.5 Evaluation and Lessons Learned

as our research institute). However, the management preferred an outside view and put a focus
on quick results. Instead of spending time on finding an agreement on how to proceed, speed
was the major driving force. Thus, they preferred to try out a (for them) “new” technology and
methodology, which does not yet have the reputation of strong industry maturity.

Perceived maturity of semantic technologies While semantic technologies are already widely
used in some domains (e.g., life sciences, e-commerce or cultural heritage), there is a lack of
success stories, technology readiness and show-case applications in most industrial areas. With
regard to smaller and innovative products, the penetration of semantic technologies is still
relatively small. A typical question when pitching semantic technologies within companies is
“Who else in our domain is using them already?”. Therefore, it is important to point to successful
business projects, even if details on them are usually rare.

Lack of semantic web professionals on the job market Enabling the employees of the manu-
facturer to extend the information model by themselves is crucial for the success of the project.
Consequently, it is necessary to teach selected stakeholders the relevant concepts and semantic
technologies. Hiring new staff experienced with semantic technologies is not necessarily an easy
alternative. Compared to relational data management and XML technologies, there is still a
gap between the supply of skilled semantic technology staff and the demand of the market.6

Importance of information model governance Of major importance for the company is a
clear governance concept around the information model, answering questions, such as who or
which department is allowed to access, modify and delete parts of the information model. An
RDF-based information model has advantages in this regard: i) it enables people across all sites
of the company to obtain a holistic view of company data; ii) current data source schemes are
enriched with further semantic information, enabling the creation of mappings between similar
concepts; and iii) developers can follow a defined and documented process for further evolving
and maintaining the information model.

Building on top of existing systems Accessing data from the existing infrastructure as a virtual
RDF graph was a crucial requirement of the manufacturer. It avoids the costs of materializing
the data into RDF triples and the redundant maintenance in a triple store, and at the same
time, benefits from mature mechanisms for querying, transaction processing, and security of the
relational database systems. Three different data access strategies were considered:

DB in Dumps Relational data to be analyzed is dumped in an isolated place away from the
production systems, as not to affect their safety and performance. This strategy is used in
cases where the amount of data is small and most likely static or updated very rarely.

DB in Replication All data is replicated, allowing direct access from both production systems
and new analytic platforms. This approach was considered in cases where data changes
frequently and the amount of data is relatively high. It requires allocation of additional
resources to achieve a “real-time” synchronization and to avoid performance degradation
of the systems in production. We used this strategy to implement our solution, since it

6 For the related field of data science, the European Data Science Academy has conducted extensive studies
highlighting such a skill/demand gap all over Europe; cf. Deliverables D1.2 and D1.4 (“Study Evaluation Report
1/2”) downloadable from http://edsa-project.eu.

155

http://edsa-project.eu

Chapter 10 Establishing Semantic Interoperability between Industry 4.0 Data

allows to access the data sources as a virtual RDF graph and benefit from the maturity of
relational database systems.

DB in Production The strategy of accessing data in real-time systems does not require allocating
additional resources, such as investment in new hardware or software. Since this strategy
exposes a high risk for performance degradation of the real-time systems, whereas sensitive
information requires high availability and not providing it on time can have hazardous
consequences, we did not apply it in our scenario.

10.6 Summary
This chapter presents a case study on realizing an RDF-based information model for a global
manufacturing company using semantic technologies. The information model is centered around
machine data and describes all relevant assets, concepts and relations in a structured way, making
use of existing as well as specifically developed ontologies. The objective of the information
model is to describe business units, their processes and assets for the entire organization.
Furthermore, it contains a set of RML mappings that link different data sources required
for integrated data access and SPARQL querying. Finally, it is aligned to relevant industry
standards, such as RAMI [124] and IEC 62264 [163], to additionally foster data exchange and
semantic interoperability. We described the used methodology to develop the information model,
its technical implementation and reported on the gained results and feedback. Additionally, we
reflected on the lessons learned from the case study. The guidelines and practices defined in
the Git4Voc methodology are used to organize the development process and facilitate design
decisions regarding to the naming conventions, reuse and multilinguality. On the other hand, all
artifacts generated over the time are hosted and managed into the VoCol platform.

The use of data-centric approaches in engineering, manufacturing and production is currently
a widely discussed topic (cf. the related initiatives to Industry 4.0 or Smart Manufacturing).
The challenges and complexity of data integration are perceived as a major bottleneck for
the comprehensive digitization and automation in these domains. A key issue is to efficiently
and effectively integrate data from different sources to ease the management of individual
factories and production processes up to complete companies. The presented information model
is envisioned to serve as a crystallization point and semantic reference in this context.

156

CHAPTER 11

Collaborative Development of Ontologies in
Real-world Scenarios

In this chapter, we present VoColReg, a registry to support development and exploration of
ontologies for various domains in the same time. Additionally, statistics and useful insights for a
number of ontologies hosted in VoColReg are described in detail.
The number of ontologies used for different purposes, such as data integration, information

retrieval or search optimizations is constantly increasing. An ontology is comprised of classes,
properties and instances, to represent as good as possible the intended domain. In case that an
ontology is not any more accessible or even not published, humans and dependent machines that
were potentially using it before, will suffer from the possibility to explore and use its defined
concepts. This is against the semantic interoperability, one of the fundamental aspects for
enabling the Semantic Web vision [170]. Furthermore, it negatively impacts the reusability of the
concepts by imposing extra efforts on capturing and modeling the knowledge of a domain, which
might cause duplication and inconsistencies across terminologies and their semantic descriptions.
Several platforms and mechanisms are developed to enable organization of ontologies into

repositories. They facilitate searching and maintenance, which are important factors for a better
comprehension and reuse of ontologies [51]. For instance, BioPortal [171] supports a number of
technical requirements related to the assessment of biomedical ontologies via Web browsers or
other Web services. In addition, it allows the community to evaluate the ontology content and
contribute on its evolution process. Linked Open Vocabularies (LOV) [170] offers mechanisms
for searching over vocabularies using different criteria, such as metadata and ranking values, as
well as allows accessing them via APIs and a SPARQL endpoint. The LOV initiative collects
a number of indicators, including incoming and outgoing links of the vocabularies, history of
versions and other metadata. OntoHub [51] supports the development of modular and distributed
ontologies along with the definitions of logical relations between them. Ontologies can be aligned
and translated into other languages as well as offered as linked data.

We created VoCoReg, a registry of ontologies which is built on top of the VoCol platform. It
operates as an integrated ecosystem where the community can browse, discuss, reuse and improve
ontologies in a collaborative fashion. In addition to help the community on discovering ontologies,
it provides a suite of tools and services, including ontology documentations, term search, and
ontology evolution. Incorporation of sophisticated tools for visual representation facilitates
cognitive exploration and navigation over defined concepts. Currently, the VoColReg registry
hosts 19 ontologies from various domains, such as manufacturing, health care and education. In

157

Chapter 11 Collaborative Development of Ontologies in Real-world Scenarios

Apache Server

Container 2 Container 3 Container N

Remote Hosting Platforms and Local Working Replicas

. . .

Docker Engine

Container 1 . . .

Pe
rs

is
te

n
ce

 L
ay

er
W

eb

In
te

rf
ac

e
La

ye
r

C
o

n
ta

in
er

 H
o

st
 L

ay
er

Figure 11.1: The VoColReg Architecture. It is composed of several layers: a) persistence layer; b)
web interface layer; and c) container host layer. Each layer consists a number of different components.

this chapter, we describe in detail nine ontologies that are currently being developed. Various
information, including the number of classes, properties and instances as well as details related to
the development process, such as number of commits, contributors, branches, etc., are collected.
We then analyze these statistics and present the findings along with a discussion of potential
mechanisms to achieve a better quality for ontologies and ease the collaboration process.
Contributions of this chapter are summarized as follows:

• An architecture and implementation of VoCoReg to enable searching and development of
ontologies in distributed environments;

• A detailed description of ontologies that are hosted in VoColReg, including metrics and
statistics related to development aspects;

• Analysis of findings and a discussion of potential mechanisms to improve the development
process according the practices and guidelines of the Git4Voc methodology.

This chapter is organized as follows: It starts with an overview of the VoColReg architecture
in Section 11.1, including its layers and their main characteristics. In Section 11.2, we present
details of the ontologies currently hosted and being developed in VoColReg. Section 11.3 reports
findings and insights from a deeper analysis of these ontologies. The work that has been realized
in this chapter is summarized in Section 11.4.

11.1 Architecture
VoColReg has an extensible and flexible architecture able to accommodate many instances of
VoCol as well as additional components for accessing various types of data sources. It consists

158

11.1 Architecture

of three main layers (cf. Figure 11.1): a) Persistence Layer ; b) Web Interface Layer ; and c)
Container Host Layer. The details of each layer are described as follows:

Persistence Layer: stores and maintains ontologies and their versions. By managing the
atomicity and durability of the changes, it is possible to easily backup and restore a
particular ontology version. This layer is composed of two components: 1) Remote Hosting
Platforms, which allows for change distribution and synchronization as well as administering
with role permissions of the stakeholders involved in the development process; and 2) Local
Working Replicas, where team members directly contribute on ontology construction.

Web Interface Layer: is responsible for two main tasks: 1) accepts notifications from Remote
Hosting Platforms after occurrences of each push event via PubSubHubbub protocol,
according to the principles of publish-subscribe for a distributed communication; and 2)
it presents various views of the ontology by exposing them via a web-based graphical
interface, helping users to explore and understand the ontology.

Container Host Layer: consists of a Docker Engine responsible for managing a number
of docker containers. These containers act as isolated node workers, where each node
has a VoCol installation inside connected with a repository hosted in Persistence Layer.
Therefore, nodes can be restarted, stopped or even moved to another server, without
affecting the work that is being realized in the Persistence Layer.

VoColReg provides an infrastructure to perform federated queries over external data sources
using SPARQL endpoints. Another important feature, is offering metadata and other information
for enabling users to have a better overview for ontologies. With the objective of facilitating the
quality assessment of ontologies, the following information are provided:

Ontology Metrics: are provided for each ontology, including number of axioms, classes, object
properties, datatype properties, individuals as well as the expressivity profile.

Validation Report: shows the results of the validation process. It consists of two parts: 1)
syntax checking that shows detailed information about syntactic errors, if any; and 2)
consistency checking, listing details of any inconsistency that has been found.

Evolution Details: are generated after the comparisons of each new version pushed to the
Remote Repository with the previous one. Information such as, affected axioms, user who
pushed the changes or date and time, are easily navigated via user interface.

Ontology accessibility A customized sharing mechanism implemented into VoColReg allows
administrators to manage access permissions to their ontology. They can decide for the visibility
of the ontology, whether it will be public, shared with a link, or private. Choosing the public
option, means that the ontology link will be added to the VoColReg homepage, so everyone can
see and access it. If the option shared with a link is chosen, then only users who know the link
can access the ontology. Finally, by selecting the private option, administrators have to specify
credentials which later should be provided by users in order to be able to access the ontology.

Ontology availability Users can browse and consume the content of the ontology via various
forms. Apart from the graphical user interface, ontologies are exploited through two additional
mechanisms. First, using a SPARQL endpoint, users or applications can post specific queries
and retrieve customized results to be used for further analyses. Second, the Content Negotiation
mechanism enables software agents to receive the appropriate format, simply by specifying the
content-type in the HTTP request.

159

Chapter 11 Collaborative Development of Ontologies in Real-world Scenarios

Table 11.1: Ontologies being developed in VoColReg. Overview of the ontologies representing
various domains in terms of accessibility, hosting platform, expressivity and the number of triples.
Ontology Domain Access Hosting Platform Expressivity # triples
STO Industry 4.0 /sto/ GitHub SHOI(D) 2135
MobiVoc Mobility /mobivoc/ GitHub ALUO(D) 12134
SCORVoc Supply Chain /scorvoc/ GitHub ALCHO(D) 8496
IDS Industry 4.0 /ids/ GitHub ALH(D) 1727
MatOnto Supply Chain /matonto/ GitHub ALCHO(D) 359
IASIS Health /iasis/ GitHub AL(D) 727
SARO Education /saro/ GitHub AL(D) 338
Onto. #1 Accounting private Bitbucket ALUO(D) 7515
Onto. #2 Health private Bitbucket SRIF(D) 3210

Ontology exploration Relationships and other important information of concepts can be
modeled using a number of different properties and attributes. For instance, representing the
taxonomy between concepts is realized utilizing properties, such as rdfs:subClassOf from RDFS
vocabulary or skos:narrower and/or skos:broader from SKOS vocabulary. Users can browse the
generated class hierarchy in the Documentation view along with further details related to other
important attributes. A comprehensive picture of the relations among concepts is provided in
Visualization view, where concepts are depicted in a node-link interactive diagram.

11.2 Ontologies in VoColReg

A total number of 19 ontologies in various sizes are currently hosted in VoColReg. Overall,
these ontologies comprise 191K triples, where 18K are distinct subjects, 839 are properties and
47K are objects. Hosted ontologies represent different domains, ranging from: 1) Industry 4.0 -
with four ontologies; 2) Education - three ontologies; 3) Supply Chain, Health Care and Web
Interoperability - with two ontologies each; and 4) Accounting, Law, Research, Manufacturing
and IT - each of them with one ontology. Regarding to the accessibility of ontologies: 11 of
them are publicly reachable and listed in the VoColReg homepage, so people can chose from
the list for further exploration, four of them are accessible from people who know the link, and
the last four can only be accessed via given credentials. Repositories including version history
for these ontologies are managed using hosting platforms as follows: 13 are in GitHub, four on
Bitbucket and two of them are stored in Gitlab.

In the following, we focus our analysis on nine ontologies that are currently being developed
by various teams. Table 11.1 presents an overview of these ontologies regarding to the name,
domain, accessibility, hosting platform, level of expressiveness and number of triples. More
details about ontologies in terms of number of classes, different types of properties, such as
object properties, datatype properties, annotation properties from OWL schema and properties
from RDF schema, are described in Table 11.2.
Table 11.3 provides statistics about the development process, such as number of commits,

contributors, issues, branches, modules and languages used to define concepts for each of the
selected ontologies. Numbers provided in the tables are frequently changing considering that the
development process of these ontologies is currently ongoing.

160

11.3 Analysis and Discussions

Table 11.2: Ontology statistics. Metrics of the ontologies currently being developed in terms of number
of classes, types of properties, such as object properties, datatype properties, annotation properties from
OWL schema and properties from RDF schema.

Ontology #
classes

total
prop.

object
prop.

datatype
prop.

ann.
prop.

rdf
prop.

#
individ.

STO 11 34 16 17 1 0 239
MobiVoc 27 147 22 51 1 73 80
SCORVoc 279 256 1 249 2 4 224
IDS 104 135 86 49 0 0 95
MatOnto 11 35 7 28 0 0 12
IASIS 90 120 58 62 0 0 2
SARO 29 47 0 0 0 47 0
Onto. #1 92 100 15 11 74 0 1075
Onto. #2 72 96 63 32 1 0 27

Table 11.3: Development statistics. Overview of the ontologies currently being developed in terms of
number of commits, contributors, issues, branches, modules and languages.

Ontology #
commits

#
contributors

#
issues

#
branches

#
modules

#
languages

STO 395 9 37 3 1 1
MobiVoc 319 13 40 4 4 2
SCORVoc 165 5 27 1 1 1
IDS 125 3 11 7 22 2
MatOnto 76 4 8 1 1 1
IASIS 349 3 0 1 1 0
SARO 31 2 0 1 1 1
Onto. #1 116 4 6 1 4 1
Onto. #2 208 2 5 1 1 7

11.3 Analysis and Discussions
By analyzing the ontologies currently being developed, we can observe some interesting facts
about them. These ontologies contain a total number of 715 classes, 970 properties and 1754
individuals. Splitting properties more in detail, 124 are properties from RDF schema and
the rest are from OWL schema, where: 268 are object properties, 499 datatype properties and
79 annotation properties. Figure 11.2(a) depicts the average number of classes, properties
and individuals per ontology. Overall, ontologies have an average number of 143 classes, 30
object properties, 55 datatype properties, 9 annotation properties, 14 RDF properties, and 195
individuals. Figure 11.2(b) illustrates average number of commits, contributors, issues, branches,
modules and languages per ontology, respectively.
Ontology modularity As we can see from Figure 11.2(b), the average number of modules per

ontology is four. The Industrial Data Space (IDS) ontology has the highest modularity rate with a
total number of 22 modules, representing various functionalities of the IDS reference architecture.
If we omit the IDS ontology, the average number of modules per ontology is decreased to two.
Figure 11.2(d) presents more details related to number of classes and properties per module

161

Chapter 11 Collaborative Development of Ontologies in Real-world Scenarios

79

30

55

9 14

195

0

20

40

60

80

100

120

140

160

180

200

220

Classes Object Properties

Datatype Properties Annotation Properties

RDF Properties Individuals

(a) Average metrics about ontologies

198

5
15

2 4 2
0

20

40

60

80

100

120

140

160

180

200

commits # contributors # issues
branches # modules # languages

(b) Average development statistics

44

25
33

42

19

116

16
29

104

0

20

40

60

80

100

120

140

(c) Average number of commits per user for each
ontology, respectively

45
44

535

11
46

210

76
48

166

0
50
100
150
200
250
300
350
400
450
500
550
600

(d) Average number of classes and properties per
module per ontology

Figure 11.2: Various statistics. Four different statistics about the nine ontologies: a) Average number
of classes, properties and individuals per ontology; b) Average number of commits, contributors, issues,
branches, modules, and languages per ontology; c) Average number of commits per user per ontology;
and d) Average number of classes and properties per module per ontology.

for each ontology. We can observe that majority of ontologies do not follow any pattern for
modularization as presented in Subsection 5.1.1, such as number of triples or number of concepts
per module. They are comprised of only one module, thus causing potential reusability difficulties
or maintenance problems. To increase the modularity of the ontology, teams can create rules for
defining new modules. Furthermore, ensuring the applicability of these rules can be realized
using SPARQL queries to check whenever the ontology or a module reaches a particular number
of concepts or triples. As a result, the team will be notified for the necessity of splitting into a
new module in order to be able to continue with development process.
Ontology multilinguality Out of nine ontologies, eight of them have labels or comments in

English language, three of them are also translated in German language, and one has translations
in seven different languages: French, Italian, Japan, Polish and Spanish in addition to English
and German. One ontology does not use any language tag at all, although the meaning of its
concepts are explained using rdfs:comment. We can observe that the majority of ontologies
are only translated in one language, which burden the objective of achieving a wide range of
reusability. There might be several reasons for not providing translations in other languages

162

11.4 Summary

rather than English, such as: 1) the ontology is developed for general purposes; 2) is applicable
in only a particular country; or 3) there is a lack of local experts who can translate terms in their
own language. A suite of test cases along with their dependency relationships, can be evaluated
using the EffTE approach forcing the definition of each concept in at least one language.
Ontology expressivity The ontologies in VoColReg have different levels of expressivity:
AL(D) and ALUO(D), each of them with two ontologies, whereas SHOI(D), ALCHO(D),
ALH(D), ALCHO(D), SRIF(D), each with one ontology, respectively. We can observe that the
ontologies are mainly expressed using the base language AL or attributive language, which allows
for the definition of: atomic concepts, conjunctions, value restrictions and limited existential
quantification. Two ontologies use an additional S, which is the abbreviation for ALC or
attributive language with transitive roles. ALC includes full negation and disjunction, boolean
values (and, or, not) as well as restrictions on role values. More details about the meaning for
the above mentioned letters are explained as below [172]:

• U Concept union;
• C Complex concept negation;
• H Role hierarchy with rdfs:subPropertyOf ;
• F Functional properties, a particular case of uniqueness quantification;
• R Axioms for complex role inclusion and disjointness; reflexivity and irreflexivity;
• O Nominals, such as enumerated classes of object value restrictions: owl:oneOf, owl:hasValue;
• I Inverse properties;
• (D) Usage of datatype properties or data values.

11.4 Summary
In this chapter, we describe VoColReg, a registry which offers searching and publishing capabilities
for ontologies. The incorporation of a number of rich interfaces, allows VoColReg to perform
as a generic infrastructure, thus enabling a community-based ontology development through a
peer-review and collaborative process. Users can easily browse the hosted ontologies, explore and
asses them for a potential reuse while navigating over defined concepts and understanding their
relationships between each other. Moreover, using a standard tree view, the hierarchy of concepts
modeled either through RDFS or SKOS vocabularies, can be displayed. In addition to the user
interface, a variety of access mechanisms are provided, with the objective of facilitating the reuse
of ontologies from humans and software agents. These mechanisms include: dedicated SPARQL
endpoints per ontology, content negotiation and dereferenceability. We gave an overview of
ontologies hosted in VoColReg with a focus on those that are still in the development process.
Details about number of triples, classes, properties and instances as well as the number of
commits, branches, contributors, are presented. Finally, we describe the outcome of the analysis
over these ontologies. From our findings, we observe that some of them do not follow any
strategy for branching, so the entire development process is driven using only one branch. Few
ontologies follow a modularization approach, splitting concepts according to specific subdomains.
Regarding multilinguality, the majority of them have defined rdfs:label and rdfs:comment in only
one language, concretely in English language. An ontology does not associate any language tag
to rdfs:label and rdfs:comment to define the meaning of its concepts. In addition to these aspects,
we discuss several features to be used or implemented in order to enforce the stakeholders for
following specific guidelines and best practices or avoid constraint violations.

163

CHAPTER 12

Conclusions and Future Direction

In this thesis, we study the problem of supporting collaborative ontology development in
distributed and heterogeneous environments. We devise a lightweight methodology and a
platform to enable stakeholders working together in such environments. We discuss the problem
and challenges to be addressed in Chapter 1. The background with fundamental terminology
essential for this thesis and an overview of the related work are presented in Chapter 2 and
Chapter 3, respectively. In Part II, we collect a number of requirements that guide the approach
followed in this thesis. The next chapters describe the defined approach from the methodology
and technical perspectives. Part III dives more into detail to the problem of ensuring quality of
ontologies in terms of effective synchronization and efficient evaluation in distributed scenarios.
Part IV initially describes several approaches to support the semantic interoperability and
data integration using ontologies. Furthermore, we provide details about the application of our
approach in concrete uses cases. Finally, in this chapter, we conclude the thesis by assessing the
results with respect to the research questions. Moreover, Section 12.2 presents future work that
can expand the work of this thesis in both directions: research and technical.

12.1 Revisiting the Research Questions

As we stated in the introduction, the main goal of this thesis is to advance the field of collaborative
ontology development by providing methodological and technical support. In this regard, we
split the core problem of collaborative ontology development in distributed environments into
four research questions. The first research question is related to the methodological support for
facilitating stakeholders to organize and manage their collaborative work along with an analysis
of best practices for ontology development. The second research question aims at transferring
ontology development workflows to version control methods. The third research questions deals
with the problem of synchronization of changes performed with various ontology authoring
editors. Finally, the objective of the fourth research question is investigating the possibilities to
efficiently ensure quality of ontologies considering predefined domain requirements.
In order to answer these research questions, we initially investigated collaborative ontology

development as the process of identifying the main terms for a domain of interest by finding a
consensus between the involved stakeholders. Next, we analyzed the fundamental steps of this
process: modeling, population and testing, usually performed in an iterative and incremental
fashion. Moreover, a number of widely reused ontologies are studied for their commonalities in
terms of important development aspects, such as reuse, documentation, multilinguality, naming,

165

Chapter 12 Conclusions and Future Direction

validation and authoring. Based on the findings, we collected a number of crucial requirements for
the process of developing ontologies in collaborative fashion in Chapter 4. In this section, we go
through the defined research questions and summarize the achieved contributions, respectively.

RQ1: Which guidelines and best practices facilitate collaborative ontology development in
distributed and heterogeneous scenarios?

While answering this research question, we have observed that applying guidelines and best
practices foster ontology development in collaborative scenarios. As a result, activities and design
decisions taken over the time are clearly organized and managed by responsible stakeholders.
Several exiting methodologies outline a predefined number of activities to be performed in a
systematic way, while other methodologies describe best practices for an agile-oriented ontology
construction. In the context of this research question, Chapter 5 presents Git4Voc, a lightweight
methodology comprising an exhaustive list of guidelines and best practices for collaboratively
developing ontologies. Git4Voc is conceived following a bottom-up approach by exploiting
fundamental features of Git, applicable for ontologies along with state of the art practices. Its
governing guidelines covers aspects, such as: 1) administration of generated information; 2)
rights management; 3) branching and merging; 4) ontology modularization; and 5) labeling
of release versions, to facilitate ontology construction using a version control. Moreover, from
our analysis of widely used ontologies and examination of the state of the art, we defined a
set of best practices related to reuse, naming convention, documentation, authoring, validation
and multilinguality. The presented methodology is evaluated against a concrete use case as
well as with a survey where ontology experts are asked for their opinion regarding the defined
practices. By applying Git4Voc to the Schema.org use case, a clear organization of the ontology
structure, communication issues and special branches is achieved, thus helping team members to
easily collaborate and contribute in various development phases. Finally, from the survey with
ontology experts, we observed that the majority of the defined practices received good evaluation
results. Therefore, we can conclude that Git4Voc is indeed beneficial and provides comprehensive
support for collaboratively developing ontologies in distributed and heterogeneous environments.

RQ2: How can ontology development workflows be mapped on and supported by
distributed version control methods?

By investigating the actual trend of building ontologies in collaborative scenarios, which implies:
1) organizing the entire development process centered around the version control systems; 2)
involving a huge community with diverse views and different requirements; and 3) reusing existing
ontologies as much as possible, instead of constructing them from scratch, we perceived a high
demand for a flexible and easily adaptable solution to be used in various cases. Therefore, the
ability to map development workflows with distributed version control methods is a crucial factor
that allows ontology modeling in such scenarios. Although current state of the art approaches
cover a wide range of the development activities, they lack of support for dynamically changing
and heterogeneous environments. In this thesis, concretely in Chapter 6, we present an approach
and its realization based on technical requirements collected in Chapter 4 to answer RQ2.
VoCol is an integrated environment for the distributed development of ontologies based on
version control systems. It has a modular architecture where an orchestration service is able to
invoke different components in an automatic fashion. VoCol has been implemented following
principles for extensibility, interoperability and customisability. The modularity enables the

166

12.1 Revisiting the Research Questions

platform to be extended by adding new components or replacing existing ones. The principle
of interoperability is addressed in two directions. First, VoCol is an interoperable platform
that can be deployed in different operation systems. Second, it enables modeling of ontologies
with heterogeneous editors. Users are granted with the possibility to customize the services or
components to be automatically invoked according to their use case. The VoCol platform has a
rich interface to assist reusability of ontologies being developed whereas it offers various access
mechanisms for external users and machines. Furthermore, Chapter 11 presents VoColReg, a
registry of ontologies developed on top of the VoCol platform. Currently, it hosts 19 ontologies
from various domains that are supported during entire development process. Considering the
evidences from its applicability in a number of concrete use cases, we argue that VoCol enables
accommodation of diverse ontology development workflows with distributed version control
methods while providing essential support for constructing ontologies in collaborative scenarios.

RQ3: How can concurrent changes from heterogeneous ontology authoring editors be
effectively synchronized?

By analyzing scenarios where multiple stakeholders simultaneously perform changes in ontology
replicas, we observed that employing mechanisms to effectively realize the synchronization
process avoids from a potential loss of changes and introducing of syntactic and semantic errors.
Distributed version control systems follow optimistic approaches to allow parallel modification
of the ontology artifacts. These systems usually utilize line-by-line comparison techniques to
detect conflicts of different versions of the same file. Since the position of the triple within an
RDF file is semantically irrelevant, ontologies can be serialized using different ordering criteria.
Consequently, a large number of false-positive conflicts, i.e., conflicts that do not result from
ontology changes but from the fact that two ontology versions are differently serialized can
be detected. To answer the research question RQ3, we describe an approach that tackles the
problem of change synchronization performed with heterogeneous ontology authoring editors.
Following the principle prevention is better than cure, Chapter 7 presents SerVCS, an approach
to enhance version control for coping with different serializations of the same ontology. As a
result, version control systems become editor agnostic, i.e., capable to detect actual changes and
resolve syntactical conflicts using built-in merging algorithms. Thus, incompatibility problems
with regard to wrongly detected conflicts caused from the use of different authoring editors are
avoided. From empirical results, we can conclude that SerVCS is significantly more effective
compared to plain Git on reducing the number of false-positive conflicts, including scenarios
when the ontology size or sorting criteria is changed.

RQ4: How can the quality and efficiency in distributed and heterogeneous ontology
development be ensured?

While answering this research question, we observed that ensuring compliance with respect to
domain requirements is one of the critical aspects to achieve qualitative ontologies. A set of test
cases derived from domain requirements are used to prevent from non-intended ontology changes
and violation of constraints. Moreover, we perceived that having methods to efficiently evaluate
a given set of test cases has a positive impact on the quality. As the state of the art approaches
allow only for an exhaustive evaluation of the set of test cases, in Chapter 8 we present EffTE,
an approach for ensuring quality and efficiency during ontology construction based on principles
of the test-driven development technique. EffTE relies on a dependency graph between test cases

167

Chapter 12 Conclusions and Future Direction

modeled by users to enable priority evaluation. The breadth first search algorithm is used to
traverse the given dependency graph. An additional mechanism stores test cases to be excluded
from further evaluation due to faulty parent tests. This leads to a minimal evaluation of the
number of test cases, increasing the fault detection effectiveness and decreasing the test case
validation time. Based on an empirical evaluation, the efficiency of EffTE is significantly higher
compared to a naive approach. This is valid in various scenarios with different ontology sizes,
dependency graph topologies, and number of test cases, whenever a faulty test case exists. EffTE
is able to cope with additional parameters, such as users who perform changes and modify
ontology files (if an ontology comprises multiple files). Therefore, the selection of test cases to
be evaluated is user- and file-specific. By utilizing EffTE as a an integrated service in the VoCol
platform to cover client-side and server-side activities performed before and after occurrences of
push events, respectively, we argue that stakeholders are enforced to efficiently model qualitative
ontologies according to the given domain requirements.

The main outcome of this thesis is a holistic approach bridging together methodological and
technical dimensions of the core problem of collaborative ontology development in distributed and
heterogeneous environments. We conclude that this approach provides a comprehensive support
for a wide range of aspects and activities, such as design decisions, change synchronization, quality
assurance, maintainability, publication and exploration. Hence, stakeholders can effectively and
efficiently build ontologies in collaborative scenarios whereas third party users can exploit and
consume the results via a number of integrated components and services.

12.2 Future Work
There exist various directions for future work as extension of this thesis, as well as advancements
of actual limitations. In this section, we explore a number of potential research and technical
directions, while keeping the same motivation and objectives presented in the thesis.

12.2.1 Research Perspective
In the following, we discuss several possible work streams that can be realized from the research
perspective, including new complementary areas to the objectives of the thesis.

Improving ontologies via crowdsourcing Our approach is focusing on supporting stakeholders
for collaboratively developing ontologies. However, ontologies are dynamic artifacts that evolve
over the time, to represent the knowledge from a domain of interest. Although, much effort is
invested in the development process, there exists always the possibility that ontologies suffer
from missing concepts or relationships between them. Facilitating the process of continuous
ontology evolution, can be done via crowdsourcing, i.e., involving a wider and unidentified
crowd in the process. Questions Answering (QA) systems are a new technique for answering
natural language questions in an automatic fashion by exploiting facts that are encoded in a
Knowledge Graph (KG) [173]. Ontologies can be the backbone of these QA systems, and are
commonly open to the crowd. Thus, any question that cannot be answered by the systems is a
potential indication for missing concepts or relationships. Our methodology and platform can be
extended to accommodate the integration of other systems, such as QA, to foster the evolution
of ontologies. The automatically recommended changes are later assessed by the team, thus
causing ontology enrichment or correction, if necessary. The new version is applied to the QA
system, so the previously not answered questions can now be answered.

168

12.2 Future Work

Machine-supported ontology modularization Modularization of the large monolithic ontolo-
gies is crucial for avoiding the reusability, scalability and maintenance problems [83]. Although in
Git4Voc and VoCol, we provide the respective guidelines and mechanisms on how to perform the
modularization, the human intervention to accomplish this task is still required. Combining the
network analysis and unsupervised classification methods to automatically generate standalone
modules would lead to a significant improvement towards dealing with the aforementioned
problems. The decomposition can be realized based on the hierarchy, structure or the existence
of subdomains within a large ontology. Creating domain specific ontologies by composing a
number of standalone modules, is another interesting topic is this regard. Leveraging a concep-
tual clustering paradigm along with similarity measure techniques can lead to an effective way
towards machine-aided ontology construction.

Detecting and resolving semantic conflicts during change synchronization The presented
approach for change synchronization is currently limited to syntactic conflicts. In the future, we
envision to develop new techniques for automatically detecting and resolving semantic conflicts.
Incorporation of probabilistic models and machine learning mechanisms would empower the
ability of SerVCS to achieve a more accurate conflict detection and resolution. A semantic layer
can be added to prevent inconsistencies caused as a result of merging two different versions
of the same ontology. Another crucial factor during synchronization process is the amount of
time needed for conflict detection and resolution. Efficient techniques should be investigated
and developed to avoid additional overload during ontology modeling. As a result, effectiveness
and efficiency of VoCol will be improved on resolving both, syntactic and semantic conflicts.

Smart and continuous test cases evaluation To ensure qualitative ontologies, users are forced
to manually create test cases and the dependency relationships between them. This might require
large efforts, in particular for teams which lack ontology engineers. Adding features for automatic
generation of test cases based on domain requirements as well as creation of their relationships
in a dependency graph may lead to a significant improvement of the ontology quality. Moreover,
the approach can be advanced with mechanisms for dynamic prioritization and selection of the
test cases and limit their evaluation only to the recent ontology modifications. Thus, a new
version can then be assessed with regard to only modified parts and a full ontology checking is
avoided. The challenge to be considered here is that in many cases changes may affect multiple
concepts and relationships in different ways.

12.2.2 Technical Perspective
The technical dimension is the other area in which our work can be extended and improved. In
the following, we describe in detail three important aspects for increasing flexibility and lowering
barriers of using our holistic approach in different scenarios.

VoCol as a Service In order to use VoCol, the team should install it either on its own server
or on the cloud and configure it to monitor their repository where the ontology is hosted.
Providing VoCol as a Service (VaaS), where users can simply subscribe the repositories and
benefit from all its functionalities will enable a wide range of usage in various domains. The
envisioned architecture of VaaS is illustrated in Figure 12.1. It is composed of five layers: 1)
persistence - enable modeling and storing ontologies; 2) orchestration - invokes and coordinates
automatic execution of a number of components; 3) validation and synchronization - responsible

169

Chapter 12 Conclusions and Future Direction

P
er

si
st

en
ce

Ontology engineers and
domain experts

Shared Repositories

Ontology Registry

Local Ontologies

Contributors

Consumers

Humans and machines

Private working versions of
ontologies

Synchronized versions of
ontologies

Applications and services to
support ontology development,
publishing and explorations

Presentation

Federation & Harmonization

100 90 80 70

 Orchestration

Administration & Configuration

Documentation Visualization Evolution Content Negotation

Querying

1

2

4

3

5

V
al

id
a

ti
o

n
 &

 S
yn

ch
ro

n
iz

at
io

n

Figure 12.1: The architecture of VoCol-as-a-Service from a technical perspective. It is composed
of five layers containing a number of different components and services: 1) persistence; 2) orchestration;
3) validation and synchronization; 4) federation; and 5) presentation.

for quality checking as well as detecting and resolving conflicts; 4) federation - allows federated
querying over multiple internal and external ontologies; and 5) presentation - offers rich forms
for facilitating exploration and navigation of ontologies. VaaS will act as a hosting registry of
many ontologies where a number of different analysis and studies can be performed over them.

Plugin-based architecture and workflow VoCol has a modular architecture where different
components can be easily exchanged. However, to realized that, a small portion of code is required
for allowing the orchestration service to invoke them and present the outcome in an appropriate
fashion. This hinders the ability of users to employ other components necessary for dealing with
specific tasks during ontology modeling. The implementation of a plugin-based mechanism along
with a metalanguage to describe the functionality of components, their invocation interface, and
the way to present the results, would facilitate adoption of VoCol for various use cases.

Synchronous development The organization of work into VoCol is inherited from Git, which
uses the optimistic approach, i.e., clone-modify-merge. After cloning the repository, stakeholders
can asynchronously perform ontology modifications on their local copies and later merge with
changes from the others. However, further optimization of this platform for domain experts
requires providing a web interface based on the pessimistic approach, i.e., lock-modify-unlock.
This would enable a synchronous development in scenarios where stakeholders are aware in
real-time for actual changes and prevented from overwriting modifications of each other.

170

Bibliography

[1] D. L. Rubin, N. Shah and N. F. Noy, Biomedical ontologies: a functional perspective,
Briefings in Bioinformatics 9 (2008) 75, url: https://doi.org/10.1093/bib/bbm059
(cit. on p. 3).

[2] Vocabularies, W3C Report, World Wide Web Consortium (W3C), 2015, url:
https://www.w3.org/standards/semanticweb/ontology (visited on 12/03/2018)
(cit. on p. 3).

[3] J. M. Juran, Juran’s Quality Control Handbook, 4th, Mcgraw-Hill (Tx), 1974,
isbn: 0070331766, url: https://www.amazon.com/gp/product/0070331766
(cit. on p. 3).

[4] M. Grüninger and M. S. Fox, “Methodology for the design and evaluation of ontologies”,
IJCAI95 Workshop on Basic Ontological Issues in Knowledge Sharing, 1995
(cit. on pp. 4, 51, 109).

[5] E. Simperl and M. Luczak-Rösch, Collaborative ontology engineering: a survey,
Knowledge Engineering Review 29 (2014) 101,
url: https://doi.org/10.1017/S0269888913000192 (cit. on pp. 6, 25, 31, 52, 55, 56).

[6] R. Angles and C. Gutiérrez, Survey of graph database models,
ACM Computing Surveys (CSUR) 40 (2008) 1,
url: http://doi.acm.org/10.1145/1322432.1322433 (cit. on p. 15).

[7] S. M. Cohen, “Aristotle’s Metaphysics”, The Stanford Encyclopedia of Philosophy,
Winter, Metaphysics Research Lab, Stanford University, 2016 (cit. on p. 15).

[8] T. R. Gruber,
Toward Principles for the Design of Ontologies Used for Knowledge Sharing,
International Journal of Human-Computer Studies 43 (1995) 907, issn: 1071-5819,
url: http://dx.doi.org/10.1006/ijhc.1995.1081 (cit. on p. 15).

[9] R. Studer, V. R. Benjamins and D. Fensel,
Knowledge Engineering: Principles and Methods,
Data & Knowledge Engineering 25 (1998) 161,
url: https://doi.org/10.1016/S0169-023X(97)00056-6 (cit. on p. 15).

[10] A. Gómez-Pérez, M. Fernández-López and Ó. Corcho,
Ontological Engineering: With Examples from the Areas of Knowledge Management,
e-Commerce and the Semantic Web, Advanced Information and Knowledge Processing,
Springer, 2004, isbn: 978-1-85233-551-9, url: https://doi.org/10.1007/b97353
(cit. on pp. 15, 23, 51, 71).

[11] M. R. Genesereth and N. J. Nilsson, Logical foundations of artificial intelligence,
Morgan Kaufmann, 1988, isbn: 978-0-934613-31-6 (cit. on p. 15).

171

https://doi.org/10.1093/bib/bbm059
https://www.w3.org/standards/semanticweb/ontology
https://www.amazon.com/gp/product/0070331766
https://doi.org/10.1017/S0269888913000192
http://doi.acm.org/10.1145/1322432.1322433
http://dx.doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1016/S0169-023X(97)00056-6
https://doi.org/10.1007/b97353

Bibliography

[12] F. Manola, M. Eric and B. McBride, RDF Primer, W3C Recommendation,
World Wide Web Consortium (W3C), 2014,
url: https://www.w3.org/TR/rdf-primer/ (visited on 12/02/2018) (cit. on p. 16).

[13] M. Arenas, C. Gutiérrez and J. Pérez, “Foundations of RDF Databases”,
Reasoning Web. Semantic Technologies for Information Systems, 5th International
Summer School, Brixen-Bressanone, Italy, Tutorial Lectures, 2009 158,
url: https://doi.org/10.1007/978-3-642-03754-2_4 (cit. on p. 16).

[14] D. Brickley and R. Guha, RDF Schema 1.1, W3C Recommendation,
World Wide Web Consortium (W3C), 2014,
url: https://www.w3.org/TR/rdf-schema/ (visited on 26/02/2018) (cit. on p. 20).

[15] S. Staab and R. Studer, eds., Handbook on Ontologies,
International Handbooks on Information Systems, Springer, 2004, isbn: 3-540-40834-7
(cit. on p. 20).

[16] M. K. Smith, C. Welty and D. L. McGuinness, OWL Web Ontology Language Guide,
W3C Recommendation, World Wide Web Consortium (W3C), 2018,
url: http://www.w3.org/TR/owl-guide/ (visited on 05/04/2018) (cit. on p. 20).

[17] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue and C. Lutz,
OWL 2 Web Ontology Language Profiles, W3C Recommendation,
World Wide Web Consortium (W3C), 2018,
url: https://www.w3.org/TR/owl-profiles/ (visited on 05/04/2018) (cit. on p. 21).

[18] S. Harris and A. Seaborne, SPARQL 1.1 Query Language, W3C Recommendation,
World Wide Web Consortium (W3C), 2013,
url: http://www.w3.org/TR/sparql11-query/ (visited on 26/02/2018) (cit. on p. 21).

[19] J. Pérez, M. Arenas and C. Gutiérrez, Semantics and complexity of SPARQL,
ACM Trans. Database Syst. 34 (2009) 16:1,
url: http://doi.acm.org/10.1145/1567274.1567278 (cit. on pp. 22, 112).

[20] T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web,
Scientific American 284 (2001) 34 (cit. on p. 22).

[21] M. Fernández-López, A. Gómez-Pérez and N. Juristo,
“METHONTOLOGY: From Ontological Art Towards Ontological Engineering”,
Proceedings of the Ontological Engineering AAAI-97 Spring Symposium Series,
Ontology Engineering Group (OEG),
American Asociation for Artificial Intelligence, 1997 (cit. on pp. 23, 38).

[22] H. S. A. N. P. Pinto and J. P. Martins, Ontologies: How can They be Built?,
Knowledge and Information Systems 6 (2004) 441 (cit. on p. 24).

[23] S. Fraser, K. L. Beck, B. Caputo, T. Mackinnon, J. Newkirk and C. Poole,
“Test Driven Development (TDD)”, Extreme Programming and Agile Processes in
Software Engineering, 4th International Conference, XP, Genova, Italy. Proceedings,
2003 459, url: https://doi.org/10.1007/3-540-44870-5_84 (cit. on pp. 25, 109).

[24] S. Peroni, “A Simplified Agile Methodology for Ontology Development”,
OWL: - Experiences and Directions - Reasoner Evaluation - 13th International
Workshop, (OWLED), and 5th International Workshop, ORE, Bologna, Italy, Revised
Selected Papers, 2016 55 (cit. on pp. 25, 26).

172

https://www.w3.org/TR/rdf-primer/
https://doi.org/10.1007/978-3-642-03754-2_4
https://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/sparql11-query/
http://doi.acm.org/10.1145/1567274.1567278
https://doi.org/10.1007/3-540-44870-5_84

[25] B. de Alwis and J. Sillito, “Why are software projects moving from centralized to
decentralized version control systems?”,
Proceedings of the ICSE Workshop on Cooperative and Human Aspects on Software
Engineering, (CHASE), Vancouver, BC, Canada, 2009 36,
url: https://doi.org/10.1109/CHASE.2009.5071408 (cit. on p. 26).

[26] T. Mens, A State-of-the-Art Survey on Software Merging,
IEEE Transactions on Software Engineering 28 (2002) 449 (cit. on pp. 27, 28, 95).

[27] K. Altmanninger, M. Seidl and M. Wimmer, A survey on model versioning approaches,
International Journal of Web Information Systems 5 (2009) 271,
url: https://doi.org/10.1108/17440080910983556 (cit. on pp. 28, 95).

[28] B. Appleton, S. Berczuk, R. Cabrera and R. Orenstein,
“Streamed lines: Branching patterns for parallel software development”,
5th Annual Conference on Pattern Languages of Program Design, (PLoP), Proceedings,
vol. 98, 1998 (cit. on pp. 29, 55).

[29] R. Palma, Ó. Corcho, A. Gómez-Pérez and P. Haase,
A holistic approach to collaborative ontology development based on change management,
Journal of Web Semantics 9 (2011) 299,
url: https://doi.org/10.1016/j.websem.2011.06.007 (cit. on pp. 31, 44, 78, 95).

[30] K. Kotis and G. A. Vouros,
Human-centered ontology engineering: The HCOME methodology,
Knowledge and Information Systems 10 (2006) 109,
url: https://doi.org/10.1007/s10115-005-0227-4 (cit. on p. 32).

[31] S. Braun, A. P. Schmidt, A. Walter, G. Nagypál and V. Zacharias,
“Ontology Maturing: a Collaborative Web 2.0 Approach to Ontology Engineering”,
Proceedings of the Workshop on Social and Collaborative Construction of Structured
Knowledge (CKC) at the 16th International World Wide Web Conference (WWW)
Banff, Canada, 2007 (cit. on p. 33).

[32] H. S. Pinto, S. Staab and C. Tempich, “DILIGENT: Towards a fine-grained methodology
for Distributed, Loosely-controlled and evolving Engineering of oNTologies”, Proceedings
of the 16th Eureopean Conference on Artificial Intelligence, (ECAI), Valencia, Spain,
2004 393 (cit. on pp. 34, 38).

[33] C. Tempich, H. S. Pinto and S. Staab,
“Ontology Engineering Revisited: An Iterative Case Study”, 3rd European Semantic Web
Conference, (ESWC), Research and Applications, Budva, Montenegro, Proceedings, 2006
110, url: https://doi.org/10.1007/11762256_11 (cit. on p. 35).

[34] M. Annamalai and L. Sterling,
“Guidelines for Constructing Reusable Domain Ontologies”,
Ontologies in Agent Systems, Proceedings of the Workshop on Ontologies in Agent
Systems (OAS) at the 2nd International Joint Conference on Autonomous Agents and
Multi-Agent Systems, Melbourne, Australia, 2003 71 (cit. on pp. 35, 38).

[35] S. Auer and H. Herre, “RapidOWL - An Agile Knowledge Engineering Methodology”,
Perspectives of Systems Informatics, 6th International Andrei Ershov Memorial
Conference, PSI, Novosibirsk, Russia. Revised Papers, 2006 424,
url: https://doi.org/10.1007/978-3-540-70881-0%5C_36 (cit. on pp. 36, 38).

173

https://doi.org/10.1109/CHASE.2009.5071408
https://doi.org/10.1108/17440080910983556
https://doi.org/10.1016/j.websem.2011.06.007
https://doi.org/10.1007/s10115-005-0227-4
https://doi.org/10.1007/11762256_11
https://doi.org/10.1007/978-3-540-70881-0%5C_36

Bibliography

[36] H. Knublauch, An agile development methodology for knowledge-based systems including
a Java framework for knowledge modeling and appropriate tool support,
PhD thesis: University of Ulm, Germany, 2002,
url: http://vts.uni-ulm.de/docs/2002/2101/vts_2101.pdf (cit. on p. 37).

[37] P. D. Maio, “’Just enough’ ontology engineering”, Proceedings of the International
Conference on Web Intelligence, Mining and Semantics, (WIMS), Sogndal, Norway, 2011
8, url: http://doi.acm.org/10.1145/1988688.1988698 (cit. on pp. 37, 38).

[38] L. Dodds and I. Davis, Linked data patterns,
Online: http://patterns.dataincubator.org/book (2011) (cit. on p. 38).

[39] M. C. Suárez-Figueroa,
NeOn methodology for building ontology networks: specification, scheduling and reuse,
PhD thesis: Technical University of Madrid, 2012, isbn: 978-3-89838-338-7,
url: http://d-nb.info/1029370028 (cit. on pp. 38, 71).

[40] Y. Sure, S. Staab and R. Studer, “On-To-Knowledge Methodology (OTKM)”,
Handbook on Ontologies, ed. by S. Staab and R. Studer,
International Handbooks on Information Systems, Springer, 2004 117,
isbn: 3-540-40834-7 (cit. on p. 38).

[41] V. Zacharias and S. Braun,
“SOBOLEO – Social Bookmarking and Lighweight Engineering of Ontologies”,
Proceedings of the Workshop on Social and Collaborative Construction of Structured
Knowledge (CKC) at the 16th International World Wide Web Conference (WWW)
Banff, Canada, 2007 (cit. on p. 38).

[42] C. Ghidini, M. Rospocher and L. Serafini,
“MoKi: a Wiki-Based Conceptual Modeling Tool”,
Proceedings of the nternational Semantic Web Conference, (ISWC), Posters &
Demonstrations Track: Collected Abstracts, Shanghai, China, 2010 (cit. on p. 39).

[43] T. Tudorache, C. Nyulas, N. F. Noy and M. A. Musen,
WebProtégé: A collaborative ontology editor and knowledge acquisition tool for the Web.,
Semantic Web 4 (2013) 89, url:
http://dblp.uni-trier.de/db/journals/semweb/semweb4.html#TudoracheNNM13
(cit. on pp. 39, 42).

[44] N. F. Noy, A. Chugh, W. Liu and M. A. Musen,
“A Framework for Ontology Evolution in Collaborative Environments”,
5th International Semantic Web Conference, (ISWC), Athens, GA, USA, Proceedings,
2006 544, url: https://doi.org/10.1007/11926078_39 (cit. on pp. 39, 44, 55).

[45] A. Stellato, S. Rajbhandari, A. Turbati, M. Fiorelli, C. Caracciolo, T. Lorenzetti,
J. Keizer and M. T. Pazienza,
“VocBench: A Web Application for Collaborative Development of Multilingual Thesauri”,
12th European Semantic Web Conference, (ESWC), Latest Advances and New Domains,
Portoroz, Slovenia. Proceedings, 2015 38 (cit. on pp. 39, 42).

[46] T. Schandl and A. Blumauer,
“PoolParty: SKOS Thesaurus Management Utilizing Linked Data”,
7th Extended Semantic Web Conference, (ESWC), Research and Applications, Heraklion,
Crete, Greece, Proceedings, Part II, 2010 421 (cit. on pp. 40, 42).

174

http://vts.uni-ulm.de/docs/2002/2101/vts_2101.pdf
http://doi.acm.org/10.1145/1988688.1988698
http://d-nb.info/1029370028
http://dblp.uni-trier.de/db/journals/semweb/semweb4.html#TudoracheNNM13
https://doi.org/10.1007/11926078_39

[47] M. Luczak-Rösch, G. Coskun, A. Paschke, M. Rothe and R. Tolksdorf,
“SVoNt - Version Control of OWL Ontologies on the Concept Level”,
Informatik: Service Science - Neue Perspektiven für die Informatik, Beiträge der 40.
Jahrestagung der Gesellschaft für Informatik e.V. (GI), Band 2, Leipzig, Deutschland,
2010 79 (cit. on p. 41).

[48] A. Alobaid, D. Garijo, M. Poveda-Villalón, I. S. Pérez and Ó. Corcho,
“OnToology, a tool for collaborative development of ontologies”, Proceedings of the
International Conference on Biomedical Ontology, (ICBO), Lisbon, Portugal. 2015,
url: http://ceur-ws.org/Vol-1515/demo3.pdf (cit. on pp. 41, 42).

[49] D. Garijo, “WIDOCO: A Wizard for Documenting Ontologies”, 16th International
Semantic Web Conference, (ISWC), Vienna, Austria, Proceedings, Part II, 2017 94,
url: https://doi.org/10.1007/978-3-319-68204-4%5C_9 (cit. on p. 41).

[50] M. Poveda-Villalón, M. C. Suárez-Figueroa and A. Gómez-Pérez,
“Validating Ontologies with OOPS!”,
Knowledge Engineering and Knowledge Management - 18th International Conference,
(EKAW), Galway City, Ireland. Proceedings, 2012 267 (cit. on pp. 41, 71).

[51] M. Codescu, E. Kuksa, O. Kutz, T. Mossakowski and F. Neuhaus,
Ontohub: A semantic repository engine for heterogeneous ontologies,
Applied Ontology 12 (2017) 275, url: https://doi.org/10.3233/AO-170190
(cit. on pp. 41, 157).

[52] D. Dig, K. Manzoor, R. E. Johnson and T. N. Nguyen,
“Refactoring-Aware Configuration Management for Object-Oriented Programs”,
29th International Conference on Software Engineering, (ICSE), Minneapolis, MN, USA,
2007 427, url: https://doi.org/10.1109/ICSE.2007.71 (cit. on p. 43).

[53] T. Ekman and U. Asklund, Refactoring-aware versioning in Eclipse,
Electronic Notes in Theoretical Computer Science 107 (2004) 57,
url: https://doi.org/10.1016/j.entcs.2004.02.048 (cit. on p. 43).

[54] H. V. Nguyen, M. H. Nguyen, S. C. Dang, C. Kästner and T. N. Nguyen,
“Detecting semantic merge conflicts with variability-aware execution”,
Proceedings of the 10th Joint Meeting on Foundations of Software Engineering,
(ESEC/FSE), Bergamo, Italy, 2015 926 (cit. on p. 43).

[55] D. Asenov, B. Guenat, P. Müller and M. Otth,
“Precise Version Control of Trees with Line-Based Version Control Systems”,
Fundamental Approaches to Software Engineering - 20th International Conference,
(FASE), Uppsala, Sweden, Proceedings, 2017 152 (cit. on p. 43).

[56] J. Protzenko, S. Burckhardt, M. Moskal and J. McClurg,
“Implementing real-time collaboration in TouchDevelop using AST merges”,
Proceedings of the 3rd International Workshop on Mobile Development Lifecycle,
(MobileDeLi), Pittsburgh, PA, USA, 2015 25 (cit. on p. 43).

[57] Y. Brun, R. Holmes, M. D. Ernst and D. Notkin,
“Proactive detection of collaboration conflicts”,
19th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE) and
13th European Software Engineering Conference (ESEC), 2011 168 (cit. on p. 43).

175

http://ceur-ws.org/Vol-1515/demo3.pdf
https://doi.org/10.1007/978-3-319-68204-4%5C_9
https://doi.org/10.3233/AO-170190
https://doi.org/10.1109/ICSE.2007.71
https://doi.org/10.1016/j.entcs.2004.02.048

Bibliography

[58] K. Altmanninger,
“Models in Conflict - A Semantically Enhanced Version Control System for Models”,
Proceedings of the Doctoral Symposium at the 10th International Conference on
Model-Driven Engineering Languages and Systems, Nashville, USA, 2007 (cit. on p. 43).

[59] K. Altmanninger, W. Schwinger and G. Kotsis, Semantics for Accurate Conflict
Detection in SMoVer: Specification, Detection and Presentation by Example,
IJEIS 6 (2010) 68, url: https://doi.org/10.4018/jeis.2010120206 (cit. on p. 43).

[60] P. Brosch, “Improving conflict resolution in model versioning systems”,
31st International Conference on Software Engineering, (ICSE), Vancouver, Canada,
Companion Volume, 2009 355,
url: https://doi.org/10.1109/ICSE-COMPANION.2009.5071020 (cit. on p. 43).

[61] A. Cicchetti, D. D. Ruscio and A. Pierantonio,
“Managing Model Conflicts in Distributed Development”, 11th International Conference
on Model Driven Engineering Languages and Systems, (MoDELS), 2008 311
(cit. on p. 43).

[62] S. Krusche and B. Brügge, Model-based Real-time Synchronization,
Softwaretechnik-Trends 34 (2014) (cit. on p. 43).

[63] H. Chong, R. Zhang and Z. Qin,
“Composite-based conflict resolution in merging versions of UML models”,
17th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, (SNPD), Shanghai, China,
2016 127, url: https://doi.org/10.1109/SNPD.2016.7515890 (cit. on p. 43).

[64] T. B. Lee and D. Connolly,
Delta: an ontology for the distribution of differences between RDF graphs, tech. rep.,
W3C, 2001 (cit. on p. 44).

[65] M. Völkel and T. Groza, “SemVersion: An RDF-based Ontology Versioning System”,
IADIS International Conference on WWW/Internet, IADIS, 2006 195 (cit. on p. 44).

[66] S. Cassidy and J. Ballantine, “Version Control for RDF Triple Stores”,
2nd International Conference on Software and Data Technologies (ICSOFT), 2007 5
(cit. on p. 44).

[67] W. K. Edwards,
“Flexible Conflict Detection and Management in Collaborative Applications”,
Proceedings of the 10th Annual ACM Symposium on User Interface Software and
Technology, UIST, Banff, Alberta, Canada, 1997 139 (cit. on p. 44).

[68] Y. Ren, A. Parvizi, C. Mellish, J. Z. Pan, K. van Deemter and R. Stevens,
“Towards Competency Question-Driven Ontology Authoring”,
11th Extended Semantic Web Conference, (ESWC), 2014 752 (cit. on pp. 45, 51, 56).

[69] C. M. Keet and A. Lawrynowicz, “Test-Driven Development of Ontologies”,
13th Extended Semantic Web Conference, (ESWC), 2016 642,
url: http://dx.doi.org/10.1007/978-3-319-34129-3_39 (cit. on p. 45).

[70] D. Vrandecic and A. Gangemi, “Unit Tests for Ontologies”,
On the Move to Meaningful Internet Systems, OTM Workshops and Posters, 2006 1012,
url: http://dx.doi.org/10.1007/11915072_2 (cit. on p. 45).

176

https://doi.org/10.4018/jeis.2010120206
https://doi.org/10.1109/ICSE-COMPANION.2009.5071020
https://doi.org/10.1109/SNPD.2016.7515890
http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/11915072_2

[71] H. Knublauch and D. Kontokostas, Shapes Constraint Language (SHACL),
Accessed: 2017-05-08, 2017,
url: https://www.w3.org/TR/shacl/ (visited on 08/05/2017) (cit. on p. 45).

[72] I. Boneva, J. E. L. Gayo and E. G. Prud’hommeaux,
“Semantics and Validation of Shapes Schemas for RDF”, 16th International Semantic
Web Conference, (ISWC), Vienna, Austria, Proceedings, Part I, 2017 104,
url: https://doi.org/10.1007/978-3-319-68288-4_7 (cit. on p. 45).

[73] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen and
A. Zaveri, “Test-driven evaluation of linked data quality”,
23rd International World Wide Web Conference, (WWW), 2014 747,
url: http://doi.acm.org/10.1145/2566486.2568002 (cit. on p. 45).

[74] S. García-Ramos, A. Otero and M. Fernández-López,
“OntologyTest: A Tool to Evaluate Ontologies through Tests Defined by the User”,
Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and
Ambient Assisted Living, 10th International Work-Conference on Artificial Neural
Networks, (IWANN) Workshops, Salamanca, Spain. Proceedings, Part II, 2009 91,
url: https://doi.org/10.1007/978-3-642-02481-8%5C_13 (cit. on p. 45).

[75] S. Yoo and M. Harman,
Regression testing minimization, selection and prioritization: a survey,
Software Testing, Verification and Reliability 22 (2012) 67,
url: https://doi.org/10.1002/stv.430 (cit. on p. 45).

[76] G. Rothermel and M. J. Harrold,
“A Safe, Efficient Algorithm for Regression Test Selection”, Proceedings of the
Conference on Software Maintenance, (ICSM), Montréal, Quebec, Canada, 1993 358,
url: https://doi.org/10.1109/ICSM.1993.366926 (cit. on p. 45).

[77] C. Giuliano and A. M. Gliozzo,
“Instance-Based Ontology Population Exploiting Named-Entity Substitution”,
Proceedings of the 22nd International Conference on Computational Linguistics,
(COLING), Manchester, UK, 2008 265 (cit. on p. 51).

[78] M. Schmachtenberg, C. Bizer and H. Paulheim,
“Adoption of the Linked Data Best Practices in Different Topical Domains”,
13th International Semantic Web Conference, (ISWC), Riva del Garda, Italy,
Proceedings, Part I, 2014 245 (cit. on p. 52).

[79] D. Schober, B. Smith, S. E. Lewis, W. Kusnierczyk, J. Lomax, C. Mungall, C. F. Taylor,
P. Rocca-Serra and S. Sansone,
Survey-based naming conventions for use in OBO Foundry ontology development,
BMC Bioinformatics 10 (2009) (cit. on pp. 52, 68, 69).

[80] N. F. Noy and T. Tudorache,
“Collaborative Ontology Development on the (Semantic) Web”,
Symbiotic Relationships between Semantic Web and Knowledge Engineering, AAAI
Spring Symposium, Technical Report SS-08-07, Stanford, California, USA, 2008 63
(cit. on p. 55).

177

https://www.w3.org/TR/shacl/
https://doi.org/10.1007/978-3-319-68288-4_7
http://doi.acm.org/10.1145/2566486.2568002
https://doi.org/10.1007/978-3-642-02481-8%5C_13
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/ICSM.1993.366926

Bibliography

[81] J. Seidenberg and A. L. Rector, “The State of Multi-User Ontology Engineering”,
Proceedings of the 2nd International Workshop on Modular Ontologies, (WoMO),
Whistler, Canada, 2007 (cit. on p. 55).

[82] M. C. Suárez-Figueroa, A. Gómez-Pérez and M. Fernández-López,
“The NeOn Methodology for Ontology Engineering”,
Ontology Engineering in a Networked World. 2012 9,
url: https://doi.org/10.1007/978-3-642-24794-1%5C_2 (cit. on p. 55).

[83] M. d’Aquin, A. Schlicht, H. Stuckenschmidt and M. Sabou,
“Ontology Modularization for Knowledge Selection: Experiments and Evaluations”,
Database and Expert Systems Applications, 18th International Conference, (DEXA),
Regensburg, Germany, Proceedings, 2007 874 (cit. on pp. 55, 169).

[84] J. Gracia, E. Montiel-Ponsoda, P. Cimiano, A. Gómez-Pérez, P. Buitelaar and
J. P. McCrae, Challenges for the multilingual Web of Data,
Journal of Web Semantics 11 (2012) 63,
url: https://doi.org/10.1016/j.websem.2011.09.001 (cit. on pp. 56, 71).

[85] T. Redmond, M. Smith, N. Drummond and T. Tudorache,
“Managing Change: An Ontology Version Control System”, Proceedings of the Fifth
OWLED Workshop on OWL: Experiences and Directions, collocated with the 7th
International Semantic Web Conference (ISWC), Karlsruhe, Germany, 2008
(cit. on p. 57).

[86] S. Lohmann, S. Negru, F. Haag and T. Ertl, Visualizing ontologies with VOWL,
Semantic Web 7 (2016) 399, url: https://doi.org/10.3233/SW-150200
(cit. on p. 57).

[87] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global Data Space,
Synthesis Lectures on the Semantic Web, Morgan & Claypool Publishers, 2011 1,
url: https://doi.org/10.2200/S00334ED1V01Y201102WBE001 (cit. on pp. 57, 67).

[88] S. Phillips, J. Sillito and R. J. Walker,
“Branching and merging: an investigation into current version control practices”,
Proceedings of the 4th International Workshop on Cooperative and Human Aspects of
Software Engineering, (CHASE), Waikiki, Honolulu, HI, USA, 2011 9,
url: http://doi.acm.org/10.1145/1984642.1984645 (cit. on p. 63).

[89] E. Shihab, C. Bird and T. Zimmermann,
“The effect of branching strategies on software quality”,
2012 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, (ESEM), Lund, Sweden, 2012 301,
url: http://doi.acm.org/10.1145/2372251.2372305 (cit. on p. 63).

[90] A. Schlicht and H. Stuckenschmidt,
“Towards Structural Criteria for Ontology Modularization”, Proceedings of the 1st
International Workshop on Modular Ontologies, (WoMO), co-located with the
International Semantic Web Conference,(ISWC), Athens, Georgia, USA, 2006
(cit. on p. 66).

178

https://doi.org/10.1007/978-3-642-24794-1%5C_2
https://doi.org/10.1016/j.websem.2011.09.001
https://doi.org/10.3233/SW-150200
https://doi.org/10.2200/S00334ED1V01Y201102WBE001
http://doi.acm.org/10.1145/1984642.1984645
http://doi.acm.org/10.1145/2372251.2372305

[91] S. B. Abbès, A. Scheuermann, T. Meilender and M. d’Aquin,
“Characterizing Modular Ontologies”,
Proceedings of the 6th International Workshop on Modular Ontologies, Graz, Austria,
2012 (cit. on p. 66).

[92] P. Bedi and S. Marwaha, Versioning OWL Ontologies using Temporal Tags,
International Journal of Computer, Electrical, Automation, Control and Information
Engineering 1 (2007) 686 (cit. on p. 67).

[93] J. P. Diane I. Hillmann Gordon Dunsire,
“Versioning Vocabularies in a Linked Data World”,
World Library and Information Congress, (IFLA), Lion, France, 2014 (cit. on p. 67).

[94] M. Poveda-Villalón, “A Reuse-Based Lightweight Method for Developing Linked Data
Ontologies and Vocabularies”,
9th Extended Semantic Web Conference, (ESWC), Heraklion, Crete, Greece. Proceedings,
2012 833, url: https://doi.org/10.1007/978-3-642-30284-8%5C_66 (cit. on p. 67).

[95] C. Pedrinaci, J. S. Cardoso and T. Leidig,
“Linked USDL: A Vocabulary for Web-Scale Service Trading”, 11th International
Conference - Trends and Challenges, (ESWC), Anissaras, Crete, Greece. Proceedings,
2014 68 (cit. on pp. 67, 68).

[96] B. Haslhofer, F. Martins and J. Magalhães,
“Using SKOS vocabularies for improving web search”, 22nd International World Wide
Web Conference, (WWW), Rio de Janeiro, Brazil, Companion Volume, 2013 1253,
url: http://doi.acm.org/10.1145/2487788.2488159 (cit. on p. 68).

[97] N. A. A. Manaf, S. Bechhofer and R. Stevens,
“The Current State of SKOS Vocabularies on the Web”, 9th Extended Semantic Web
Conference, (ESWC), Research and Applications, , Heraklion, Crete, Greece. Proceedings,
2012 270, url: https://doi.org/10.1007/978-3-642-30284-8%5C_25 (cit. on p. 68).

[98] T. Baker, S. Bechhofer, A. Isaac, A. Miles, G. Schreiber and E. Summers,
Key choices in the design of Simple Knowledge Organization System (SKOS),
Journal of Web Semantics 20 (2013) 35 (cit. on p. 68).

[99] S. Peroni, D. M. Shotton and F. Vitali, Tools for the Automatic Generation of Ontology
Documentation: A Task-Based Evaluation,
International Journal on Semantic Web and Information Systems (IJSWIS) 9 (2013) 21,
url: https://doi.org/10.4018/jswis.2013010102 (cit. on p. 69).

[100] D. Schober, I. Tudose, V. Svátek and M. Boeker, OntoCheck: verifying ontology naming
conventions and metadata completeness in Protégé 4,
Journal of Biomedical Semantics 3 (2012) S4 (cit. on p. 69).

[101] V. Svátek and O. Šváb-Zamazal,
“Entity naming in semantic web ontologies: Design patterns and empirical observations”,
2010 1 (cit. on p. 69).

[102] E. Montiel-Ponsoda, D. Vila-Suero, B. Villazón-Terrazas, G. Dunsire, E. E. Rodriguez
and A. Gómez-Pérez,
“Style Guidelines for Naming and Labeling Ontologies in the Multilingual Web”,
Proceedings of the International Conference on Dublin Core and Metadata Applications,
DC, The Hague, The Netherlands, 2011 105 (cit. on p. 69).

179

https://doi.org/10.1007/978-3-642-30284-8%5C_66
http://doi.acm.org/10.1145/2487788.2488159
https://doi.org/10.1007/978-3-642-30284-8%5C_25
https://doi.org/10.4018/jswis.2013010102

Bibliography

[103] V. Svátek, O. Sváb-Zamazal and V. Presutti,
“Ontology Naming Pattern Sauce for (Human and Computer) Gourmets”,
Proceedings of the Workshop on Ontology Patterns (WOP), collocated with the 8th
International Semantic Web Conference (ISWC), Washington D.C., USA, 2009
(cit. on p. 69).

[104] M. Kezadri and M. Pantel, “First Steps Toward a Verification and Validation Ontology”,
Proceedings of the International Conference on Knowledge Engineering and Ontology
Development, (KEOD), Valencia, Spain, 2010 440 (cit. on p. 71).

[105] S. Abburu, A survey on ontology reasoners and comparison,
International Journal of Computer Applications 57 (2012) 33 (cit. on p. 72).

[106] H. N. Boone and D. A. Boone, Analyzing likert data, Journal of Extension 50 (2012) 1
(cit. on p. 74).

[107] A. Kaur and K. S. Mann, Component based software engineering,
International Journal of Computer Applications 2 (2010) 105 (cit. on p. 78).

[108] N. Petersen, G. Coskun and C. Lange, “TurtleEditor: An Ontology-Aware Web-Editor
for Collaborative Ontology Development”,
10th International Conference on Semantic Computing, IEEE, 2016 183,
url: http://dx.doi.org/10.1109/ICSC.2016.26 (cit. on p. 82).

[109] K. M. Endris, M. Galkin, I. Lytra, M. N. Mami, M. Vidal and S. Auer,
“MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates”,
Database and Expert Systems Applications - 28th International Conference, (DEXA),
Lyon, France, Proceedings, Part I, 2017 3 (cit. on p. 85).

[110] S. Lohmann, V. Link, E. Marbach and S. Negru,
“WebVOWL: Web-based Visualization of Ontologies”, Knowledge Engineering and
Knowledge Management, (EKAW), Satellite Events, Sweden. Revised Selected Papers.
2014 154, url: https://doi.org/10.1007/978-3-319-17966-7%5C_21 (cit. on p. 85).

[111] I. Zaikin and A. Tuzovsky, “Owl2vcs: Tools for Distributed Ontology Development”,
Proceedings of the 10th International Workshop on OWL: Experiences and Directions
(OWLED) co-located with 10th Extended Semantic Web Conference (ESWC),
Montpellier, France. 2013 (cit. on p. 86).

[112] J. Russo, E. Johnson and D. Stephens, The validity of verbal protocols,
Memory & Cognition 17 (1989) 759 (cit. on p. 89).

[113] C. Gutiérrez, C. A. Hurtado, A. O. Mendelzon and J. Pérez,
Foundations of Semantic Web databases,
Journal of Computer and System Sciences 77 (2011) 520,
url: https://doi.org/10.1016/j.jcss.2010.04.009 (cit. on p. 98).

[114] N. Mihindukulasooriya, M. Poveda-Villalón, R. García-Castro and A. Gómez-Pérez,
“Collaborative Ontology Evolution and Data Quality - An Empirical Analysis”,
OWL: - Experiences and Directions - Reasoner Evaluation - 13th International
Workshop, (OWLED), Bologna, Italy, Revised Selected Papers, 2016 95,
url: https://doi.org/10.1007/978-3-319-54627-8_8 (cit. on p. 109).

[115] N. F. Noy and M. C. A. Klein, Ontology Evolution: Not the Same as Schema Evolution,
Journal Knowledge and Information Systems 6 (2004) 428 (cit. on p. 109).

180

http://dx.doi.org/10.1109/ICSC.2016.26
https://doi.org/10.1007/978-3-319-17966-7%5C_21
https://doi.org/10.1016/j.jcss.2010.04.009
https://doi.org/10.1007/978-3-319-54627-8_8

[116] P. Plessers and O. D. Troyer, “Ontology Change Detection Using a Version Log”,
4th International Semantic Web Conference, (ISWC), 2005 578,
url: https://doi.org/10.1007/11574620_42 (cit. on p. 109).

[117] M. Mehrotra, “Ontology analysis for the Semantic Web”,
Ontologies and the Semantic Web: AAAI Workshop ,Technical Report WS-02-11,
AAAI Press, 2002 (cit. on p. 109).

[118] R. M. Karp, “Reducibility Among Combinatorial Problems”, 50 Years of Integer
Programming 1958-2008 - From the Early Years to the State-of-the-Art, 2010 219,
url: https://doi.org/10.1007/978-3-540-68279-0_8 (cit. on p. 113).

[119] R. Drath and A. Horch, Industrie 4.0: Hit or Hype?[Industry Forum],
Industrial Electronics Magazine, IEEE 8 (2014) 56, issn: 1932-4529 (cit. on p. 126).

[120] E. A. Lee, “Cyber Physical Systems: Design Challenges”,
11th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, (ISORC), Orlando, Florida, USA, 2008 363,
url: https://doi.org/10.1109/ISORC.2008.25 (cit. on p. 126).

[121] M. Mikusz, Towards an Understanding of Cyber-physical Systems as Industrial
Software-Product-Service Systems, Procedia CIRP 16 (2014) 385 (cit. on p. 126).

[122] E. Tovar and F. Vasques, Real-time fieldbus communications using Profibus networks,
IEEE Transactions Industrial Electronics 46 (1999) 1241,
url: https://doi.org/10.1109/41.808018 (cit. on p. 127).

[123] W. Mahnke, S.-H. Leitner and M. Damm, OPC unified architecture,
Springer Science & Business Media, 2009, isbn: 978-3-540-68898-3 (cit. on pp. 127, 129).

[124] P. Adolphs, H. Bedenbender, D. Dirzus, M. Ehlich, U. Epple, M. Hankel, R. Heidel,
M. Hoffmeister, H. Huhle, B. Kärcher, H. Koziolek, R. Pichler, S. Pollmeier, F. Schewe,
A. Walter, B. Waser and M. Wollschlaeger,
Reference Architecture Model Industrie 4.0 (RAMI4.0), Status Report,
ZVEI and VDI, 2015 (cit. on pp. 127, 128, 130, 145, 156).

[125] P. Adolphs, S. Auer, H. Bedenbender, M. Billmann, M. Hankel, R. Heidel,
M. Hoffmeister, H. Huhle, M. Jochem, M. Kiele, G. Koschnick, H. Koziolek, L. Linke,
R. Pichler, F. Schewe, K. Schneider and B. Waser,
Structure of the Administration Shell. Continuation of the Development of the Reference
Model for the Industrie 4.0 Component, Status Report, ZVEI and VDI, 2016, url: http:
//www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-
of-the-administration-shell.html (cit. on p. 127).

[126] K. Främling, M. Harrison, J. Brusey and J. Petrow, Requirements on unique identifiers
for managing product lifecycle information: comparison of alternative approaches,
International Journal of Computer Integrated Manufacturing 20 (2007) 715,
url: https://doi.org/10.1080/09511920701567770 (cit. on p. 129).

[127] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi,
I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer and P. Doody,
Internet of things strategic research roadmap,
Internet of Things-Global Technological and Societal Trends 1 (2011) 9 (cit. on p. 129).

181

https://doi.org/10.1007/11574620_42
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/41.808018
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
https://doi.org/10.1080/09511920701567770

Bibliography

[128] M. Abu-Elkheir, M. Hayajneh and N. A. Ali,
Data Management for the Internet of Things: Design Primitives and Solution,
Sensors 13 (2013) 15582, url: https://doi.org/10.3390/s131115582 (cit. on p. 129).

[129] R. Drath, Datenaustausch in der Anlagenplanung mit AutomationML: Integration von
CAEX, PLCopen XML und COLLADA, Springer-Verlag, 2010 (cit. on p. 129).

[130] IEC, IEC 61918:2013 Industrial communication networks - Installation of
communication networks in industrial premises, 2013,
url: https://webstore.iec.ch/publication/6100 (cit. on p. 129).

[131] U. Enste and W. Mahnke, OPC Unified Architecture.,
Automatisierungstechnik 59 (2011) 397 (cit. on p. 129).

[132] E. Abele, A. Wörn, J. Fleischer, J. Wieser, P. Martin and R. Klöpper,
Mechanical module interfaces for reconfigurable machine tools,
Production Engineering 1 (2007) 421,
url: https://doi.org/10.1007/s11740-007-0057-1 (cit. on p. 129).

[133] M. Hillier, The role of cultural context in multilingual website usability,
Electronic Commerce Research and Applications 2 (2003) 2,
url: https://doi.org/10.1016/S1567-4223(03)00005-X (cit. on p. 129).

[134] M. Thoma, T. Braun, C. Magerkurth and A. Antonescu,
“Managing things and services with semantics: A survey”,
IEEE Network Operations and Management Symposium, (NOMS), Krakow, Poland,
2014 1, url: https://doi.org/10.1109/NOMS.2014.6838366 (cit. on p. 129).

[135] W. Wahlster, “Semantic Technologies for Mass Customization”,
Towards the Internet of Services: The THESEUS Research Program, 2014 3,
url: https://doi.org/10.1007/978-3-319-06755-1_1 (cit. on p. 129).

[136] A. Langegger, W. Wöß and M. Blöchl,
“A Semantic Web Middleware for Virtual Data Integration on the Web”,
5th European Semantic Web Conference, (ESWC), Tenerife, Spain, Proceedings, 2008
493, url: https://doi.org/10.1007/978-3-540-68234-9%5C_37 (cit. on p. 130).

[137] C. Bizer, C. Becker, P. N. Mendes, R. Isele, A. Matteini and A. Schultz,
“LDIF–A Framework for Large-Scale Linked Data Integration”, 21st International World
Wide Web Conference, (WWW), Developers Track, Lyon, France, 2012 (cit. on p. 130).

[138] M. Graube, J. Pfeffer, J. Ziegler and L. Urbas,
“Linked Data as Integrating Technology for Industrial Data”, The 14th International
Conference on Network-Based Information Systems, (NBiS), Tirana, Albania, 2011 162,
url: https://doi.org/10.1109/NBiS.2011.33 (cit. on p. 130).

[139] D. Bandyopadhyay and J. Sen,
Internet of Things: Applications and Challenges in Technology and Standardization,
Wireless Personal Communications 58 (2011) 49,
url: https://doi.org/10.1007/s11277-011-0288-5 (cit. on p. 130).

[140] C. Bizer, T. Heath and T. Berners-Lee, Linked Data - The Story So Far,
International Journal on Semantic Web and Information Systems 5 (2009) 1,
url: http://dx.doi.org/10.4018/jswis.2009081901 (cit. on p. 130).

182

https://doi.org/10.3390/s131115582
https://webstore.iec.ch/publication/6100
https://doi.org/10.1007/s11740-007-0057-1
https://doi.org/10.1016/S1567-4223(03)00005-X
https://doi.org/10.1109/NOMS.2014.6838366
https://doi.org/10.1007/978-3-319-06755-1_1
https://doi.org/10.1007/978-3-540-68234-9%5C_37
https://doi.org/10.1109/NBiS.2011.33
https://doi.org/10.1007/s11277-011-0288-5
http://dx.doi.org/10.4018/jswis.2009081901

[141] B. Quilitz and U. Leser, “Querying Distributed RDF Data Sources with SPARQL”,
5th European Semantic Web Conference, (ESWC), Research and Applications, Tenerife,
Spain, Proceedings, 2008 524 (cit. on p. 130).

[142] J. Haupert, M. Seißler, B. Kiesel, B. Schennerlein, S. Horn, D. Schreiber and R. Barthel,
Object Memory Modeling, Incubator Group Report,
World Wide Web Consortium (W3C), 2011,
url: https://www.w3.org/2005/Incubator/omm/XGR-omm-20111026/
(cit. on p. 131).

[143] T. Aruväli, W. Maass and T. Otto,
Digital Object Memory Based Monitoring Solutions in Manufacturing Processes,
24th DAAAM International Symposium on Intelligent Manufacturing and Automation
69 (2014) 449 (cit. on p. 131).

[144] H. Rijgersberg, M. van Assem and J. L. Top,
Ontology of units of measure and related concepts, Semantic Web 4 (2013) 3,
url: https://doi.org/10.3233/SW-2012-0069 (cit. on p. 132).

[145] eCl@ss, Standardized Material and Service Classification, 2016,
url: http://www.eclass.eu/ (visited on 26/01/2016) (cit. on p. 132).

[146] S. Weyer, M. Schmitt, M. Ohmer and D. Gorecky, Towards Industry 4.0-Standardization
as the crucial challenge for highly modular, multi-vendor production systems,
15th IFAC Symposium on Information Control Problems in Manufacturing 48 (2015) 579
(cit. on p. 136).

[147] V. Vyatkin, Software Engineering in Industrial Automation: State-of-the-Art Review,
IEEE Transactions Industrial Informatics 9 (2013) 1234,
url: https://doi.org/10.1109/TII.2013.2258165 (cit. on p. 136).

[148] C. Pang and V. Vyatkin,
“IEC 61499 function block implementation of Intelligent Mechatronic Component”,
8th IEEE International Conference on Industrial Informatics, IEEE, 2010 1124
(cit. on pp. 136, 141, 142).

[149] Y. Lu, K. Morris and S. Frechette,
Current standards landscape for smart manufacturing systems,
National Institute of Standards and Technology, (NISTIR) 8107 (2016)
(cit. on pp. 137, 138).

[150] M. of Industry, I. technology of China (MIIT) and S. A. of China (SAC),
National Intelligent Manufacturing Standard System Construction Guidelines, tech. rep.,
Standardization Administration of China, (SAC), 2015 (cit. on p. 137).

[151] Q. Li, H. Jiang, Q. Tang, Y. Chen, J. Li and J. Zhou,
“Smart Manufacturing Standardization: Reference Model and Standards Framework”,
OTM Workshops - Confederated International Workshops: EI2N, FBM, ICSP, Meta4eS,
and OTMA, Rhodes, Greece, Revised Selected Papers, 2016 16 (cit. on p. 137).

[152] P. Adolphs, S. Auer, M. Billmann, M. Hankel, R. Heidel, M. Hoffmeister, H. Huhle,
M. Jochem, M. Kiele, G. Koschnick, H. Koziolek, L. Linke, R. Pichler, F. Schewe,
K. Schneider and B. Waser, Structure of the Administration Shell, Status Report,
ZVEI and VDI, 2016 (cit. on p. 137).

183

https://www.w3.org/2005/Incubator/omm/XGR-omm-20111026/
https://doi.org/10.3233/SW-2012-0069
http://www.eclass.eu/
https://doi.org/10.1109/TII.2013.2258165

Bibliography

[153] R. Drath, A. Lüder, J. Peschke and L. Hundt,
“AutomationML - the glue for seamless automation engineering”,
Proceedings of 13th IEEE International Conference on Emerging Technologies and
Factory Automation, (ETFA), Hamburg, Germany, 2008 616 (cit. on p. 137).

[154] M. Schleipen, M. Damm, R. Henßen, A. Lüder, N. Schmidt, O. Sauer and S. Hoppe,
“OPC UA and AutomationML - collaboration partners for one common goal: Industry
4.0”, 3rd AutomationML User Conference, Blumberg, 2014 (cit. on p. 138).

[155] R. Henßen and M. Schleipen, Interoperability between OPC UA and AutomationML,
Procedia CIRP 25 (2014) 297, 8th International Conference on Digital Enterprise
Technology (DET) - 2014 Disruptive Innovation in Manufacturing Engineering towards
the 4th Industrial Revolution, issn: 2212-8271 (cit. on p. 138).

[156] F. Himmler, “Function Based Engineering with AutomationML - Towards better
standardization and seamless process integration in plant engineering”,
Smart Enterprise Engineering: 12. Internationale Tagung Wirtschaftsinformatik, (WI),
Osnabrück, Germany, 2015 16 (cit. on p. 138).

[157] S. Kozar and P. Kadera, “Integration of IEC 61499 with OPC UA”,
21st IEEE International Conference on Emerging Technologies and Factory Automation,
(ETFA), Berlin, Germany, 2016 1,
url: https://doi.org/10.1109/ETFA.2016.7733538 (cit. on p. 138).

[158] S. Cavalieri and A. Regalbuto, Integration of IEC 61850 SCL and OPC UA to improve
interoperability in Smart Grid environment,
Computer Standards & Interfaces 47 (2016) 77,
url: https://doi.org/10.1016/j.csi.2015.10.005 (cit. on p. 138).

[159] S. Lohmann, P. Díaz and I. Aedo, “MUTO: the modular unified tagging ontology”,
Proceedings the 7th International Conference on Semantic Systems, (I-SEMANTICS),
Graz, Austria, 2011 95, url: http://doi.acm.org/10.1145/2063518.2063531
(cit. on p. 138).

[160] M. Brettel, N. Friederichsen, M. Keller and M. Rosenberg,
How virtualization, decentralization and network building change the manufacturing
landscape: An Industry 4.0 perspective, International Journal of Mechanical, Aerospace,
Industrial and Mechatronics Engineering 8 (2014) 37 (cit. on p. 145).

[161] E. Kharlamov, B. C. Grau, E. Jiménez-Ruiz, S. Lamparter, G. Mehdi, M. Ringsquandl,
Y. Nenov, S. Grimm, M. Roshchin and I. Horrocks,
“Capturing Industrial Information Models with Ontologies and Constraints”,
15th International Semantic Web Conference, (ISWC), Kobe, Japan, Proceedings, Part II,
2016 325 (cit. on p. 145).

[162] M. Hermann, T. Pentek and B. Otto, “Design Principles for Industrie 4.0 Scenarios”,
49th Hawaii International Conference on System Sciences, (HICSS), Koloa, HI, USA,
2016 3928, url: https://doi.org/10.1109/HICSS.2016.488 (cit. on p. 145).

[163] IEC 62264-1: Enterprise-Control System Integration Part 1: Models and Terminology,
Standard, International Electrotechnical Commission, 2013 (cit. on pp. 145, 149, 156).

184

https://doi.org/10.1109/ETFA.2016.7733538
https://doi.org/10.1016/j.csi.2015.10.005
http://doi.acm.org/10.1145/2063518.2063531
https://doi.org/10.1109/HICSS.2016.488

[164] N. Petersen, M. Galkin, C. Lange, S. Lohmann and S. Auer,
“Monitoring and Automating Factories Using Semantic Models”,
Semantic Technology - 6th Joint International Conference, (JIST), Singapore, Singapore,
Revised Selected Papers, 2016 315,
url: https://doi.org/10.1007/978-3-319-50112-3%5C_24 (cit. on p. 147).

[165] M. Uschold and M. Gruninger, Ontologies: principles, methods and applications,
Knowledge Engineering Review 11 (1996) 93,
url: http://dx.doi.org/10.1017/S0269888900007797 (cit. on p. 147).

[166] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann and
S. Hübner,
“Ontology-Based Integration of Information - A Survey of Existing Approaches”,
Proceedings of the IJCAI Workshop on Ontologies and Information Sharing Seattle, USA,
2001 (cit. on p. 149).

[167] L. Bellatreche and G. Pierra, “OntoAPI: An Ontology-based Data Integration Approach
by an a Priori Articulation of Ontologies”, 18th International Workshop on Database
and Expert Systems Applications (DEXA), Regensburg, Germany, 2007 799,
url: https://doi.org/10.1109/DEXA.2007.152 (cit. on p. 150).

[168] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini and R. Rosati,
Linking Data to Ontologies, Journal on Data Semantics 10 (2008) 133,
url: https://doi.org/10.1007/978-3-540-77688-8%5C_5 (cit. on p. 150).

[169] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,
M. Rodriguez-Muro and G. Xiao,
Ontop: Answering SPARQL queries over relational databases,
Semantic Web 8 (2017) 471 (cit. on p. 150).

[170] P. Vandenbussche, G. Atemezing, M. Poveda-Villalón and B. Vatant, Linked Open
Vocabularies (LOV): A gateway to reusable semantic vocabularies on the Web,
Semantic Web 8 (2017) 437, url: https://doi.org/10.3233/SW-160213
(cit. on p. 157).

[171] P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache and
M. A. Musen, BioPortal: enhanced functionality via new Web services from the National
Center for Biomedical Ontology to access and use ontologies in software applications,
Nucleic Acids Research 39 (2011) 541 (cit. on p. 157).

[172] F. Baader, “Description Logics”, Reasoning Web. Semantic Technologies for Information
Systems, 5th International Summer School, Brixen-Bressanone, Italy, Tutorial Lectures,
2009 1, url: https://doi.org/10.1007/978-3-642-03754-2_1 (cit. on p. 163).

[173] D. Lukovnikov, A. Fischer, J. Lehmann and S. Auer, “Neural Network-based Question
Answering over Knowledge Graphs on Word and Character Level”, Proceedings of the
26th International Conference on World Wide Web, (WWW), Perth, Australia, 2017
1211, url: http://doi.acm.org/10.1145/3038912.3052675 (cit. on p. 168).

185

https://doi.org/10.1007/978-3-319-50112-3%5C_24
http://dx.doi.org/10.1017/S0269888900007797
https://doi.org/10.1109/DEXA.2007.152
https://doi.org/10.1007/978-3-540-77688-8%5C_5
https://doi.org/10.3233/SW-160213
https://doi.org/10.1007/978-3-642-03754-2_1
http://doi.acm.org/10.1145/3038912.3052675

APPENDIX A

List of Publications

• Journal Articles and Book Chapters:
1. Lavdim Halilaj, Steffen Lohmann, Maria-Esther Vidal, Sören Auer. EcoVoc: An

Ecosystem for Distributed and Version-Controlled Ontology Development. To be
submitted in a relevant journal;

2. Lavdim Halilaj, Irlan Grangel-González, Maria-Esther Vidal, Steffen Lohmann,
Sören Auer. SerVCS: Serialization Agnostic Ontology Development in Distributed
Settings. In Communications in Computer and Information Science (CCIS) 914 -
Revised Selected Papers from 8th International Joint Conference, IC3K 2016, Porto,
Portugal, 213-232, Springer;

3. Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Steffen Lohmann, Sören
Auer. Git4Voc: Collaborative Vocabulary Development Based on Git. In International
Journal of Semantic Computing (IJSC), 1-24, World Scientific.

• Conference Papers:
4. Irlán Grangel-González, Lavdim Halilaj, Maria-Esther Vidal, Omar Rana, Steffen

Lohmann, Sören Auer, Andreas W. Müller. Knowledge Graphs for Semantically
Integrating Cyber-Physical Systems. In 9th International Conference on Database and
Expert Systems Applications (DEXA) 2018 Proceedings;

5. Fathoni A Musyaffa, Lavdim Halilaj, Yakun Li, Fabrizio Orlandi, Hajira Jabeen,
Sören Auer. OpenBudgets.eu: A Platform for Semantically Representing and Analyzing
Open Fiscal Data. In 18th International Conference on Web Engineering (ICWE)
2018 Proceedings, Springer;

6. Lavdim Halilaj, Irlán Grangel-González, Steffen Lohmann, Maria-Esther Vidal,
Sören Auer. EffTE: A Dependency-aware Approach for Test-Driven Ontology Devel-
opment. In 33rd ACM/SIGAPP Symposium On Applied Computing (ACM SAC)
2018 Proceedings, ACM;

7. Niklas Petersen, Lavdim Halilaj, Irlán Grangel-González, Steffen Lohmann, Chris-
toph Lange, Sören Auer. Realizing an RDF-based Information Model for a Manufac-
turing Company – A Case Study. (One of the two nominees for the Best In-Use Paper
Award) In 16th International Semantic Web Conference (ISWC) 2017 Proceedings,
350-366, Springer;

187

Appendix A List of Publications

8. Irlán Grangel-González, Paul Baptista, Lavdim Halilaj, Steffen Lohmann, Maria-
Esther Vidal, Christian Mader, Sören Auer. The Industry 4.0 Standards Landscape
from a Semantic Integration Perspective. In 22nd IEEE International Conference on
Emerging Technologies And Factory Automation (ETFA) 2017 Proceedings;

9. Lavdim Halilaj, Irlan Grangel-González, Maria-Esther Vidal, Steffen Lohmann,
Sören Auer. Proactive Prevention of False-Positive Conflicts in Distributed Ontology
Development. (Best Paper Award) In 8th International Conference on Knowledge
Engineering and Ontology Development Proceedings (KEOD), 43-51, SciTePress;

10. Lavdim Halilaj, Niklas Petersen, Irlán Grangel-González, Christoph Lange, Sören
Auer, Gökhan Coskun, Steffen Lohmann. VoCol: An Integrated Environment to Sup-
port Version-Controlled Vocabulary Development. (Paper of the Month - Fraunhofer
IAIS) In 20th International Conference on Knowledge Engineering and Knowledge
Management (EKAW) 2016 Proceedings, 303-319, Springer;

11. Irlán Grangel-González, Diego Collarana, Lavdim Halilaj, Steffen Lohmann, Chris-
toph Lange, María-Esther Vidal, Sören Auer. Alligator: A Deductive Approach for
the Integration of Industry 4.0 Standards. In 20th International Conference on Know-
ledge Engineering and Knowledge Management (EKAW) 2016 Proceedings, 272-287,
Springer;

12. Irlán Grangel-González, Lavdim Halilaj, Sören Auer, Steffen Lohmann, Christoph
Lange, Diego Collarana. An RDF-based Approach for Implementing Industry 4.0
Components with Administration Shells. In IEEE Emerging Technologies and Factory
Automation (ETFA) 2016 Proceedings, 1-8, IEEE;

13. Fathoni A Musyaffa, Lavdim Halilaj, Ronald Siebes, Fabrizio Orlandi, Sören Auer.
Minimally Invasive Semantification of Lightweight Service Descriptions. In IEEE
International Conference on Web Services (ICWS) 2016 Proceedings, 672–677, IEEE;

14. Irlán Grangel-González, Lavdim Halilaj, Gökhan Coskun, Sören Auer, Diego Col-
larana, Michael Hofmeister. Towards a Semantic Administrative Shell for Industry 4.0
Components. (Paper of the Month - Fraunhofer IAIS) In IEEE Tenth International
Conference on Semantic Computing (ICSC) 2016 Proceedings, 230 - 237, IEEE;

15. Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Sören Auer. Git4Voc:
Git-based Versioning for Collaborative Vocabulary Development. In IEEE Tenth
International Conference on Semantic Computing (ICSC) 2016 Proceedings, 285 -
292, IEEE;

16. Andreas Poxrucker, Christian Mader, Peter Hevesi, Lavdim Halilaj, Steffen Lohmann,
Paul Lukowicz, Sören Auer. Towards a Smart Data Repository for the SDIL. In 1st
Smart Data Innovation Conference (SDIC) 2016 Proceedings, 23-29;

17. Irlan Grángel-González, Lavdim Halilaj, Gökhan Coskun, Sören Auer. Towards
Vocabulary Development by Convention. In 7th Knowledge Engineering and Ontology
Development (KEOD) 2015 Proceedings, 334-343, SciTePress.

• Workshops and Demos:
18. Irlán Grangel-González, Lavdim Halilaj, Maria-Esther Vidal, Steffen Lohmann,

Sören Auer, Andreas W. Müller. Seamless Integration of Cyber-Physical Systems

188

in Knowledge Graphs. In 33rd ACM/SIGAPP Symposium On Applied Computing
(ACM SAC) 2018 Proceedings, ACM;

19. Lavdim Halilaj, Irlán Grangel-González, Maria-Esther Vidal, Steffen Lohmann,
Sören Auer. DemoEffTE: A Demonstrator of Dependency-aware Evaluation of Test
Cases over Ontology. In 13th International Conference on Semantic Systems (Se-
mantics) - Posters and Demo Track, 2017;

20. Fathoni A. Musyaffa, Fabrizio Orlandi, Tiansi Dong, Lavdim Halilaj.OpenBudgets.eu:
A Distributed Open-Platform for Managing Heterogeneous Budget Data. In 13th In-
ternational Conference on Semantic Systems (Semantics) - Posters and Demo Track,
2017;

21. Lavdim Halilaj, Steffen Lohmann, Christian Mader, Sören Auer. Distributed Vocab-
ulary Development with Version Control Systems. In W3C Smart Descriptions and
Smarter Vocabularies (SDSVoc), 2016;

22. Lavdim Halilaj, Niklas Petersen, Irlán Grangel-González, Christoph Lange, Steffen
Lohmann, Christian Mader, Sören Auer. Industrial Data Space: Semantic integration
of Enterprise Data with VoCol. In 12th International Conference on Semantic Systems
(Semantics) - European Linked Data Contest, 2016.

189

List of Figures

1.1 Ontology development in distributed and heterogeneous environments.
A distributed and heterogeneous environment typically consist of several layers.
Different stakeholders, such as domain experts and ontology engineers are located
in the Contributors layer. The Local Ontologies layer contains working replicas of
ontologies in local machines. The Shared Repositories layer allows the distribution
and synchronization of changes among replicas. Applications located in the
Shared Applications layer offer additional possibilities for exploration, visualiza-
tion and analysis. Third party users or services are located in the Consumers
layer. The ontology can be developed and deployed according to various scenarios,
such as Scenario 1 : there is no connection between remote Shared Repositories
and Shared Applications, Scenario 2 : a unidirectional connection exists between
Shared Repositories and Shared Applications, and Scenario 3 : the ontology is not
deployed or can not be used in Shared Applications. 4

1.2 Main Challenges and Research Questions. This thesis identifies four main
challenges to support the ontology development in distributed and heterogen-
eous environments. Four research questions are proposed with the objective of
addressing these challenges. Each challenge and research question is located at
the respective layer of the problem domain. 7

1.3 Thesis Contributions. Four main contributions encapsulated in our holistic
approach: a lightweight methodology, an integrated environment for distributed
development of ontologies, a mechanism for producing unique serialization and
a method for efficiently ensuring the quality ontologies based on the domain
requirements. The outcome of this thesis has been used to support modeling of
ontologies in a number of different domains, such as manufacturing, health care
and education. 10

2.1 Example of an RDF graph. T-Box represents the conceptual level of entities
and their inter-relationships whereas A-Box represents concrete instantiations of
the defined concepts. 17

2.2 Activities during ontology development. Core activities performed typically
in sequence: specification, conceptualization, formalization, implementation and
maintenance. In addition, three activities are performed in parallel: knowledge
acquisition, evaluation and documentation [21]. 23

2.3 Life-cycles models. Comparison of the sequence of activities performed in
different models, such as: a) Waterfall; b) Iterative; and c) Evolving [22]. 24

191

List of Figures

2.4 SAMOD - A Simplified Agile Methodology for Ontology Development.
SAMOD follows the TDD principles: 1) collecting the domain requirements; 2)
merging models from two different iterations; and 3) refactoring based on the
outcome of the previous step [24]. 26

2.5 Version Control Systems: Centralized vs Distributed. Collaboration
workflows: a) several users work together on the same central repository; and b)
several users work on their local repositories and synchronize the changes with
the others via a shared repository. 27

3.1 The HCOME methodology. Overview of the main phases of the HCOME
methodology, their goals and respective tasks. (S) - denotes shared spaces,
whereas (P) - denotes private spaces [30]. 32

3.2 The Ontology Maturing Process. The four phases of the ontology maturing
process: 1) emergence of ideas; 2) consolidation in communities; 3) formalization;
and 4) axiomatization [31]. 33

3.3 The DILIGENT Life-cycle. The different stages of the DILIGENT methodo-
logy: Build, Local Adaption, Analysis, Revision, Local Update [33]. 35

3.4 Overview of the RapidOWL methodology. It consists of three building
blocks: Values; Principles; and Practices, each of them covering different aspects
of ontology modeling [35]. 36

4.1 Round-trip model. A round-trip model covering the fundamental activities of
the ontology development life-cycle: modeling, population and evaluation. 51

4.2 Usage statistics of domain and range. a) Relation of the amount of object
properties and domain axioms; and b) Relation of the amount of object properties
and range axioms. 54

5.1 The Git4Voc methodology. Governing and Operational levels of Git4Voc,
covering a number aspects and practices of the ontology development process,
respectively. 61

5.2 Branching model for ontology development. Parallel development can be
facilitated and maintained using a number of dedicated branches for specific
purposes, i.e., master, semantic issues, develop, and structural issues. 64

5.3 The structure of MobiVoc. The MobiVoc vocabulary comprises several
modules divided according to their specific subdomain coverage. 66

5.4 Proposed modularization structure of Schema.org. The structure of
Schema.org can be organized into different sub-modules based on the key concepts
as well as Data Type concept. 74

5.5 Results of the survey with ontology engineers. Horizontal axis lists pro-
posed practices whereas vertical axis shows opinions of participants for each
particular practice, respectively. 75

6.1 The VoCol Architecture. Main services of VoCol: Configuration Service,
Validation Service, Monitoring Service and Orchestration Service with their
respective components as well as the interactions between services and components. 79

6.2 Contributor Workflow. Sequence of steps and events occurring in a typical
development workflow of a contributor during the interaction with the VoCol
environment. 82

192

List of Figures

6.3 The VoCol Configuration Page. The configuration page contains several
sections: 1)General Info; 2) Repository Info; 3) Private Mode Access; 4) Additional
Services; and 5) Serialization Formats. Details about the ontology project can
be provided in the Homepage Description section. This page allows for the
administrating of the VoCol platform for different scenarios. 83

6.4 Human-friendly Documentation. Information about an ontology concept
represented using various views: Tree View, Source View, Graphical Depiction,
and Single Page per Concept View. 86

6.5 Additional VoCol Views. Other views, such as Visualization, Querying, Stat-
istics and Evolution provide possibilities for exploring and better understanding
of the ontology being developed. 87

6.6 Scores given for VoCol services. The given scores for the usefulness of the
VoCol services, such as Syntax Validation, SPARQL Endpoint, Documentation
Generation, Visualization and Evolution Report according to the participants of
the study. 90

7.1 Motivating Example. A distributed environment illustrating an ontology
development process. Different ontology editors, e.g., Editors X and Y, are used
for defining ontology F by Users 1 and 2, respectively. F* and F** represent local
versions of F. If F* is uploaded first, changes in F* can be synchronized. Changes
in F** cannot be merged whenever F* and F** serializations are different. 98

7.2 The SerVCS Approach. SerVCS receives RDF documents serialized by differ-
ent sorting criteria (Step 1), and generates a synchronized RDF document (Step
5). In Step 2, a unique serialization is produced. RDF documents are sorted with
same criteria (Step 3). Finally, a VCS synchronization process is performed (Step
4), i.e., comparison, conflict detection, conflict resolution, and merge. 100

7.3 The SerVCS Development Workflow. A distributed environment illustrating
an ontology development process using SerVCS. Different ontology editors, e.g.,
Editors X and Y, are used for defining ontology F by Users 1 and 2, respectively.
F* and F** represent local versions of F. Before synchronization with remote
version, a unique serialization is created for F* and F**. F* is uploaded first.
Next, changes in F** are successfully synchronized with F* since they have a
unique serialization and any possible conflict is easy to be detected and resolved. 100

7.4 The SerVCS Architecture. Users interact with ontology editors, e.g., Protégé:
1) a VCS handles different ontology versions via changesets, e.g., Git; 2) The
UniSer component performs syntax validation and generates unique serializations,
e.g., Rapper or RDF-Toolkit; and 3) A Repository Hosting Platform stores the
ontologies and propagates the changes (GitHub). 102

7.5 Ontology Change Distribution. Number and types of ontology changes (CH)
per user in an interval of 8 hours. A Poisson distribution with λ = 2 models an
average of two changes per hour. A uniform distribution with replacement is
followed to sample the type of ontology changes (CH). 106

193

List of Figures

7.6 Impact of Ontology Size on SerVCS. Number of conflicting lines (NCL)
detected by Git and SerVCS compared to the Gold Standard based on the
Ontology Change Distribution in Figure 7.5. (a) SerVCS detects the same NCLs
as the Gold Standard in five instances of time in the Synthetic Ontology; (b)
SerVCS indicates up to three orders of magnitude less NCLs than Git in the
DBpedia Ontology; (c) SerVCS indicates up to four orders of magnitude less
NCLs than Git in the Gene Ontology. SerVCS is not equally affected as Git. . . 107

7.7 Impact of Sorting Criteria. Number of conflicting lines (NCL) detected by
Git and SerVCS compared to Gold Standard. Synthetic Ontology is modified
according to the Ontology Change Distribution in Figure 7.5. SerVCS follows two
different sorting criteria produced by RDF-toolkit and Rapper. SerVCS exhibits
similar behavior in both sorting criteria. 108

8.1 Motivating Example. a) Test Cases (TCs) to check if an ontology satisfies the
design requirements following an entailment regime; b) faulty test cases (orange)
over time after each ontology modification; and c) number of evaluated test cases
per instance of time. Every instance of time, the set of TCs is completely evaluated.111

8.2 The EffTE Approach. a) A test case dependency graph TCGφ
O with 15 test

cases (TCs); b) faulty test cases over time (orange nodes are faulty test cases
(STC’), gray nodes represent TCs ignored for evaluation F (STC′ | STC, O, φ);
and c) number of evaluated TCs and F (STC′ | STC, O, φ) values per instance of
time. Dependencies enable to ignore faulty test cases. 114

8.3 Implementation of EffTE. A locally modified ontology file is received, as well
as a set of test cases and their dependencies; the result of the validation process
is returned as output. An Integrated Validation Service validates syntactic errors
in an ontology using a Syntax Validation component. A Test Case Validation
component checks the ontology against a set of test cases. The ontology is
synchronized with a Remote Repository for the distribution of changes. 116

8.4 Dependency Graph Topologies. Different topologies of dependency graphs
between, each of them comprising ten test cases. 119

8.5 Different number of test cases. Dependency graphs having various number
of test cases: a) 10 ; b) 20; and c) 30 test cases, respectively. 120

8.6 Evaluation Time (ET): Naive Approach vs EffTE. Impact of different
scenarios on Execution Time (ET): a) Ontology size; b) dependency graph
topology; and c) and number of test cases. Results suggest that EffTE exhibits
better ET values in four instances of time TI-1,2,3,4 whereas in TI-5 it performs
worse, since there is no faulty test case. 120

8.7 Number of Evaluated Test Cases (ETC): Naive Approach vs EffTE.
Impact of different scenarios on ETC : a) Dependency graph topology; and b)
number of test cases. Results suggest that EffTE exhibits better ETC values in
four instances of time TI-1,2,3,4 whereas in TI-5 it has same ETC values as a
naive approach, since there is no faulty test case. 121

9.1 Industry 4.0 Concepts. a) Reference Architecture Model for Industry 4.0
(RAMI 4.0), comprising the three dimensions: layers, life-cycle and hierarchy
levels (source [124]); b) An Industry 4.0 component object wrapped by an
Administration Shell (adapted from [124]). 128

194

List of Figures

9.2 The RDF-based Pipeline. The pipeline for semantifying I4.0 components
comprising RDF vocabularies of relevant standards to represent information
about a wide range of components. 130

9.3 RAMI Vocabulary. Overview of the core classes and relationships of the RAMI
vocabulary. 133

9.4 An example of Industry 4.0 graph. Several concepts of Industry 4.0 inter-
linked with each other as well as their respective attributes. 134

9.5 The Semantic Standard Landscape Pipeline. I4.0 standards are received
as input and the output is a graph representing relations between standards.
STO and existing vocabularies are utilized to describe known relations among
standards. A reasoning process exploits the semantics encoded in STO to infer
new relations between standards. 138

9.6 The Standards Ontology (STO). STO classes and properties describe the
meaning and relations of I4.0 standards. The RAMI vocabulary models a layer
where a standard is classified in the RAMI architecture. Data type and Object
properties are represented by green and blue squares, respectively; red arrows
represent inverse functional properties. 139

9.7 I4.0 Standards related to AML. Relations between I4.0 standards are visu-
alized using graphs; continuous and dashed directed arrows represent explicit
and inferred relations, respectively. The inference model relies on the transit-
ive and symmetric properties of sto:relatedTo. (a) Known relations between
AML and I4.0 standards are explicitly described using the STO object property
sto:relatedTo. (b) Relations between I4.0 standards connected to AML with
dashed directed arrows and colored in a different color, are inferred. The rela-
tion between AML (IEC 62714) and the I4.0 standard named Measurement and
Control Devices (IEC 61499) has been validated [148]. 141

9.8 Relations between I4.0 Standards. Relations between I4.0 standards are
visualized using graphs; continuous and dashed lines represent explicit and
inferred relations, respectively. The inference model relies on the transitive and
symmetric properties of sto:relatedTo. For readability only symmetric relations
are represented using undirected line. (a) Known relations between I4.0 standards
are explicitly described using the STO object property sto:relatedTo. (b) Relations
between I4.0 standards are inferred; the graph comprises 74 edges: 50 are inferred
while 24 are explicit. 142

10.1 The implemented architecture. It comprises several layers hosting various
components: a) ontology Layer; b) data access layer; c) mapping layer; d) data
source layer; and e) application layer. 150

10.2 Various views of the tool management application. a) Geographical de-
piction of the places where the company is located; b) List of tools stored in a
paternoster system; and c) Detailed information about a machine located within
a factory. 152

10.3 Various views of the analytics application. a) Work order data for a given
machine in a time interval of one day; and b) Energy consumption of a given
work order within a day. 154

195

List of Figures

11.1 The VoColReg Architecture. It is composed of several layers: a) persistence
layer; b) web interface layer; and c) container host layer. Each layer consists a
number of different components. 158

11.2 Various statistics. Four different statistics about the nine ontologies: a) Average
number of classes, properties and individuals per ontology; b) Average number of
commits, contributors, issues, branches, modules, and languages per ontology;
c) Average number of commits per user per ontology; and d) Average number of
classes and properties per module per ontology. 162

12.1 The architecture of VoCol-as-a-Service from a technical perspective.
It is composed of five layers containing a number of different components and
services: 1) persistence; 2) orchestration; 3) validation and synchronization; 4)
federation; and 5) presentation. 170

196

List of Tables

3.1 Coverage of the ontology development aspects. Comparison between
methodologies with respect to coverage of the important aspects for ontology
development. 38

4.1 Roles and permissions. Various active and passive roles and their permissions
that are involved in the collaborative ontology development process. 52

4.2 Widely used ontologies. The list of 20 ontologies, including name, prefix and
domain, that are frequently used in different domains. 53

5.1 Common activities in collaborative ontology development. A number
of activities that are performed during ontology construction from different
contributors. 63

5.2 Roles and their primary activities. Stakeholders team may have roles, such
as ontology engineers, domain experts, translators, and common users which can
work on different types of issues. 65

6.1 Predefined Queries. Examples of the predefined queries for constraint checking,
such as finding duplicate labels or comments, checking for forbidden words, etc. . 88

7.1 Ontology Description. Ontologies of different sizes, described in terms of
number of triples, subjects, properties, and objects. 105

7.2 Ontology Changes. Basic changes of type Addition, Modification and Dele-
tionperformed during ontology development process as well as their respective
examples. 106

8.1 EffTE Notations. Symbols and their respective definitions used to describe the
test-driven development approach EffTE. 112

8.2 Ontology Description. Different ontology sizes in terms of number of triples,
subjects, properties, and objects. 117

8.3 Experimental Set-Up. Three scenarios varying: Ontology sizes, dependency
graph topology, and number of test cases (TCs). Different faulty TCs are
generated for first four instances of time (TI), whereas in TI-5, zero faulty TCs
are enforced. 119

9.1 Exemplar Descriptions of I4.0 Standards in the I4.0 Standard Land-
scape. An I4.0 standard is described in terms of the classification level in the
reference architectures, e.g., RAMI and ISA95; as well as basic properties like
license and publisher. The same I4.0 standard can be classified by two reference
architectures, e.g., IEC 62264. 142

197

List of Tables

10.1 Survey questions and given scores. Likert scale of 1 to 5, 1 = not at all, 5 =
very much is used to categorize the given scores from stakeholders. M represents
the mean value and SD represnts the standard deviation. 154

11.1 Ontologies being developed in VoColReg. Overview of the ontologies rep-
resenting various domains in terms of accessibility, hosting platform, expressivity
and the number of triples. 160

11.2 Ontology statistics. Metrics of the ontologies currently being developed in
terms of number of classes, types of properties, such as object properties, datatype
properties, annotation properties from OWL schema and properties from RDF
schema. 161

11.3 Development statistics. Overview of the ontologies currently being developed
in terms of number of commits, contributors, issues, branches, modules and
languages. 161

198

	I Preliminaries
	Introduction
	Motivation
	Problem Definition and Challenges
	Research Questions
	Thesis Overview
	Contributions
	List of Publications

	Thesis Structure

	Background
	Ontologies
	The Resource Description Framework
	Expressiveness of Ontologies
	The SPARQL Protocol and RDF Query Language
	The Semantic Web

	Ontology Development
	Collaborative Ontology Development
	Test-driven Development

	Version Control Systems
	Centralized Version Control Systems
	Distributed Version Control Systems

	Related Work
	Methodologies for Collaborative Ontology Development
	Workflow-dependent Methodologies
	Workflow-independent Methodologies

	Platforms for Collaborative Ontology Development
	Integrated Environments with own Version Control
	Integrated Environments based on Generic Version Control Systems

	Conflict Prevention during Change Synchronization
	Test-driven Approaches for Ontology Development

	II Collaboratively Developing Ontologies
	Requirements for Collaborative Ontology Development
	Method
	Important Roles
	Analysis of Widely used Ontologies

	Requirements
	Methodological Requirements
	Technical Requirements

	Summary

	A Lightweight Methodology for Developing Ontologies in Distributed Environments
	The Git4Voc Approach
	Governing Aspects
	Development Practices

	Evaluation
	Schema.org Use Case
	Survey and Result Discussion

	Summary

	An Integrated Environment for Collaborative Ontology Development
	The VoCol Approach
	Contributor Workflow

	Implementation
	Configuration
	Client-side Tasks
	Server-side Tasks
	Deployment

	Evaluation
	Industry Application
	User Study

	Summary

	III Quality Assurance for Ontology Development
	Serialization Agnostic Ontology Development in Distributed Settings
	Motivating Example
	Problem Definition
	The SerVCS Approach
	Implementation
	Version Control System
	UniSer

	Empirical Evaluation
	Impact of the Ontology Size
	Impact of the Sorting Criteria

	Summary

	A Dependency-aware Approach for Test-driven Ontology Development
	Motivating Example
	Problem Definition
	The EffTE Approach
	Implementation
	Version Control System
	Integrated Validation Service

	Empirical Evaluation
	Impact of the Ontology Size
	Impact of the Topology of TCGO
	Impact of the Number of the Test Cases
	Discussion

	Summary

	IV Applications and Conclusions
	Establishing Semantic Interoperability between Industry 4.0 Models
	A Semantic Administrative Shell for Industry 4.0 Components
	Background
	Challenges
	An RDF-based Approach for Semantifying I4.0 Components
	Use Case

	A Semantic Integration Perspective for Industry 4.0 Standards
	Background
	Methodology
	An RDF-based Approach for the I4.0 Standards Landscape
	Use Case

	Summary

	Establishing Semantic Interoperability between Industry 4.0 Data
	Motivating Example
	Realizing an RDF-based Information Model
	Development Methodology
	Information Model Governance

	Architecture and Implementation
	Use Cases
	Tool Management
	Energy Consumption

	Evaluation and Lessons Learned
	Stakeholder Feedback
	Lessons Learned

	Summary

	Collaborative Development of Ontologies in Real-world Scenarios
	Architecture
	Ontologies in VoColReg
	Analysis and Discussions
	Summary

	Conclusions and Future Direction
	Revisiting the Research Questions
	Future Work
	Research Perspective
	Technical Perspective

	Bibliography
	List of Publications
	List of Figures
	List of Tables

