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Abstract

Einstein's formula for the viscosity of dilute suspensions describes how rigid particles im-
mersed in a Stokes-�uid increase its macroscopic viscosity in terms of the particle volume
density φ. However, up to now, a rigorous justi�cation has only been obtained for dissipation
functionals of the �ow �eld. In this thesis, a cloud of N spherical rigid particles of radius R
suspended in a �uid of viscosity µ is considered. It is rigorously shown that the homogenized
�uid in the regime NR3 → 0 as N → ∞ has, in accordance with Einstein's formula, the
viscosity

µ′ = µ

(
1 +

5

2
φ

)
to �rst order in φ. This is done by establishing L∞ and Lp estimates for the di�erence
of the solution to the microscopic problem and the solution to the homogenized equation.
Regarding the distribution of the particles, it is assumed that the particles are contained
in some bounded region and are well separated in the sense that the minimal distance is
comparable to the average one. The main tools for the proof are a dipole approximation of
the �ow �eld of the suspension together with the so-called method of re�ections and a coarse
graining of the volume density.

By a very close mathematical analogy to electrostatics a similar result, regarding Maxwell's
formula for the conductivity of suspensions, is proven, namely that the conductivity of the
homogenized material is

η′ = η (1 + 3φ)

to �rst order in φ.





Contents

1. Introduction 1

1.1. Einstein's and Maxwell's formulas . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. The mathematical similarity between Stokes �uids and electrostatics . . . . . 3
1.3. Heuristic derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. Review of literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5. Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Setting of the problem and main result 15

2.1. Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1. Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Weak formulation of the problem . . . . . . . . . . . . . . . . . . . 18

2.2. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3. The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1. Strategy of the proof . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. The dipole approximation 31

3.1. Approximation by abstract dipoles . . . . . . . . . . . . . . . . . . . . . . 31
3.2. Chracterization of W⊥i and Pi . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3. Convergence of the method of re�ections . . . . . . . . . . . . . . . . . . . 48
3.4. The explicit dipole approximation . . . . . . . . . . . . . . . . . . . . . . . 56

4. Homogenization 63

4.1. From the microscopic approximation to a homogenized equation . . . . . . . 63
4.2. Passage to the Stokes equation with variable viscosity . . . . . . . . . . . . 79

5. Discussion 87

5.1. Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2. Higher Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3. Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A. Appendix 89

i





1. Introduction

Mixtures of di�erent materials occur in all kinds of modern scienti�c applications. They
appear naturally (sand, sea water,...) or as arti�cially produced materials with prede�ned
properties. In order to understand natural processes on the one hand but more importantly to
manufacture special materials on the other hand, it is important to characterize the properties
of such mixtures with respect to their individual constituents. In this thesis we consider the
special case of the mixture of two materials and furthermore assume that one of the materials
constitutes the main part of the mixture while the other one is contained in it in many small
and dilute inclusions. Examples for such mixtures are bacterial suspensions in which many
small bacteria are suspended in a liquid or dilute solutions of large molecules (like sugar) in
water.

1.1. Einstein's and Maxwell's formulas

In his annus mirabilis, 1905, Einstein published �ve seminal works contributing to di�er-
ent areas of physics. One of these works was his dissertation "Eine neue Bestimmung der
Moleküldimensionen" [Ein06]. In it he derives a formula for the e�ective viscosity of a dilute
suspension and relates it to the formula for the mass di�usivity in order to obtain a formula
for the size of the particles in the suspension. Applying this to a solution of sugar in water
he is able to estimate the molecular dimensions of sugar, since both viscosity and di�usivity
can be measured experimentally. These �ndings contributed greatly to the theory of matter
as the general idea that materials are constituted of small entities like molecules was still
under dispute at that time.

The formula that Einstein derived for the e�ective viscosity was µeff = µ(1 + φ) where φ
is the concentration (the volume fraction) of the dissolved substance. Later he was made
aware that the coe�cient of φ seemed to be larger in experiments. He asked his assistant to
check the calculations and he found an error. Einstein thus revised his formula to the �nal
([Ein11]):

µeff = µ

(
1 +

5

2
φ

)
.

This formula became known as 'Einstein's formula'. In his thesis, Einstein assumes that
the dissolved particles are of spherical shape, rigid and very dilute so that every particle
can be considered as being a single particle immersed in the �uid. It is therefore possible
to compute the additional energy dissipation caused by one particle explicitly and sum up
these contributions. This work has inspired many other works attempting to improve the
result considering di�erent shapes, rigidity and density of the particles as well as rigour of
the mathematical derivation.
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1. Introduction

About a third of a century before Einstein derived his result, Maxwell [Max73, p. 365] gave
a formula for the resistance (the inverse of the conductivity) of a suspension of spheres.

For spheres with resistance k1 and a surrounding material of resistance k2 Maxwell states
that the e�ective resistance keff of the mixture must be

keff =
2k1 + k2 + φ(k1 − k2)

2k1 + k2 − 2φ(k1 − k2)
k2. (1.1)

A perfectly conducting sphere has resistance k1 = 0, which reduces the formula to

keff = k2
1− φ
1 + 2φ

.

Taking the inverse gives a formula for the e�ective conductivity ηeff of a suspension of perfectly
conducting spheres in a material of conductivity η:

ηeff = η
1 + 2φ

1− φ
.

Expanding the fraction in powers of φ gives

1 + 2φ

1− φ
= 1 + 3φ+ o(φ),

where o(φ) is a term that satis�es o(φ)
φ → 0 as φ→ 0. If we take into account only the terms

up to �rst order of φ we obtain

ηeff = η(1 + 3φ),

a formula that looks remarkably similar to Einstein's formula. Of course, this is due to the
fact that both are expansions up to �rst order in φ.

Nevertheless, Taylor [Tay32] later found a formula for the e�ective viscosity when the im-
mersed particles are viscous themselves, that had the same general form as Maxwell's original
formula (1.1). This is not by chance. The two situations of a viscous suspension of particles
and a conducting suspension of particles are mathematically quite similar.
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1.2. The mathematical similarity between Stokes �uids and electrostatics

1.2. The mathematical similarity between Stokes �uids

and electrostatics

The state of an incompressible �uid occupying a domain Ω ⊂ R3 can at any given time be
described by its velocity u : Ω→ R3. The associated local rate of strain is e = 1

2

(
∇u+∇uT

)
.

The stress inside the �uid is given by σ satisfying the equilibrium equation −div σ = f where
f is some force density. In order to know how the �uid reacts to forces, it is necessary to
know what strain is caused by the stress. This is called a constitutive relation. Simple
theories often assume that this relation is linear and �uids that behave like this are called
Newtonian.

In general, this linear dependence is described by a tensor R3×3 → R3×3, however, if the �uid
is isotropic and incompressible, the relation is given by a simple scalar:

σ = 2µe− p Id,

and the factor µ is called the viscosity of the �uid. The second term is associated to the
pressure p, which is a consequence of the incompressibility.

Using the constitutive equation we obtain a partial di�erential equation for the velocity, the
Stokes equation

−µ∆u+∇p = f.

Taking into account boundary conditions, the solution of this partial di�erential equation
gives the reaction of the �uid to the force.

A very similar theory can be found in electrostatics. There, the potential u : Ω → R in a
dielectric material induces an electric �eld that is given by E = −∇u. Again, there is a
�ux, here the electric displacement �eld D, which in turn satis�es the equilibrium equation
divD = ρ where ρ is the charge density. Looking for a constitutive relation between E and
D, the simplest assumption is, that this relation is linear and that for homogeneous media
the associated tensor is actually a scalar:

D = εE,

where the factor ε is called the electric permittivity.

There are theories for other physical quantities like heat, current or mass which are mathe-
matically exactly the same. There, the factor in the linear relationship between the �ux and
the gradient of the potential is called thermal conductivity, electric conductivity or di�usion
coe�cient respectively. For simplicity, from now on we will call the factor conductivity and
denote it by η.

Again, using the constitutive equation we obtain a partial di�erential equation for the po-
tential. This is the Poisson equation for the electrostatic case:

−η∆u = ρ.
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1. Introduction

The similarity between the �uid and the electrostatic case and their respective partial di�er-
ential equations extends to situations where particles are present inside the material. Let a
rigid, force-free body be present inside Ω. Assume that the body occupies the part B ⊂ Ω of
the domain and that a �uid occupies Ω \B. Then the correct boundary conditions are,

u(x) = V + ω ∧ x in B,
ˆ
∂B

σn dS = 0,

ˆ
∂B

x ∧ (σn) dS = 0

since rigid bodies can undergo only rigid body motions (V is the translational velocity and
ω is the angular velocity of the body) and the total force and moment of force on the body
is zero. Now let a perfectly conducting, uncharged body be present inside Ω. Again, let the
body occupy the part B ⊂ Ω of the domain and let a dielectric material occupy Ω \B. The
electrostatic boundary conditions are

u(x) = c in B,
ˆ
∂B

D · n dS = 0,

since all charges present in the body will have moved to the boundary (constant potential)
and the total charge is zero. Here c ∈ R, V, ω ∈ R3 are constants which are not a priori known
but must be determined as part of solving the problem. Note that in both cases the second
boundary condition is the integrated �ux through the boundary ∂B. In the �rst condition a
rigid body motion for �uids plays the role of a constant in the electrostatic case.

In the spirit of this similarity, lots of results that were �rst obtained for the Poisson equation
(a partial di�erential equation that is very well understood), were later transferred to the
Stokes equation where one has to deal with the additional constraint of incompressibility.

One example we have discussed already: Maxwell �rst derived a formula for the e�ective con-
ductivity and Taylor later found a formula for the e�ective viscosity that resembled Maxwell's
formula. And of course, if the reader was to repeat Einstein's computation for a suspension
of ideally conducting spheres she would arrive at

ηeff = η(1 + 3φ),

while the computation would be simpler than the one for Stokes equation. This thesis adopts
this parallelism between the two equations. All results will be derived for the Poisson equation
and then (with some additional work here and there) be transferred to Stokes equation.

1.3. Heuristic derivation

Let us consider a collection of rigid spherical particles Bi = BR(Xi), i = 1, .., N where
Xi ∈ R3 and |Xi −Xj | > 2R for all i 6= j. This implies that the particles neither intersect
nor touch each other. We set

Ω = R3 \
N⋃
i=1

Bi.
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1.3. Heuristic derivation

Let us start with the electrostatic setting, where the particles are perfectly conducting inclu-
sions in a dielectric material of conductivity η occupying Ω. Let some charge distribution f
be given. This leads to the following set of equations for the potential u : R3 → R:

−η∆u = f in Ω, (1.2)ˆ
∂Bi

η
∂u

∂n
dS = 0 for i = 1, . . . , N, (1.3)

u = ci on Bi for i = 1, . . . , N, (1.4)

u(x)→ 0 as |x| → ∞, (1.5)

where ci is unknown and must be determined as part of the solution. In problem (1.2)-(1.5)
one can replace f by f ′ = χΩf where χΩ is the characteristic function of Ω since the equation
holds only in Ω. Additionally we can assume that η = 1 by rescaling f by the factor 1

η . Let
us assume that the solution u is already close, in some sense, to the solution of the problem
without particles:

−∆v = f ′ in R3,

v(x)→ 0 as |x| → ∞.

Then, in order to get a better approximation of u, the main point is to satisfy the condition
u = const. on the balls. On each ball Bi the function v has to �rst order the form

v(x) = v(Xi) +∇v(Xi)(x−Xi) + o(R).

So in order to get closer to a constant we subtract the (dipole-)function di that is de�ned
by

di(x) =

{
∇v(Xi) · (x−Xi) , for |x−Xi| ≤ R,
R3∇v(Xi) · x−Xi

|x−Xi|3
, for |x−Xi| > R.

Then, v−di = const.+o(R) in Bi. Now we want the approximation ũ to be close to constant
on all the balls which means we set

ũ = v −
N∑
i=1

di.

Of course for i 6= j the dipole di will not vanish on Bj but since the decay of di is quadratic
we may hope that under some conditions on the particle distribution this e�ect is comparable
to the one coming from higher order terms in the Taylor expansion of v in Bi. Note that the
di are harmonic outside Bi so that −∆ũ = f ′ is still valid in Ω. Now let φ = RN3 (this is
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1. Introduction

a slight abuse of notation since φ denoted the physical volume fraction before) and assume
that the rescaled volume density

ρN =
1

φ

4π

3
R3

N∑
i=1

δXi ,

converges in some sense to a function ρ as N → ∞ so that φρ is some kind of virtual
limit volume density (assuming that φ stays constant while the number of particles tend to
in�nity,). Then we can write

ũ(x) = v(x)−
N∑
i=1

di(x)

= v(x)−
ˆ
R3

3

4π
φρN∇v(y) · x− y

|x− y|3
dy

≈ v(x)−
ˆ
R3

3

4π
φρ∇v(y) · x− y

|x− y|3
dy

= v(x)−
ˆ
R3

3φρ∇v(y) · ∇y
1

4π |x− y|
dy

= v(x) +

ˆ
R3

divy (3φρ∇v(y))
1

4π |x− y|
dy.

Now we use the fact that

ΦP (x) =
1

4π |x|
,

is the fundamental solution of the Poisson equation. Taking −∆ on both sides and using
f ′ ≈ (1− φρ)f we arrive at

−∆ũ = (1− φρ)f + div (3φρ∇v) .

Since ũ is already close to v, by replacing v by ũ in the divergence term, we make an error
of φo(φ), since ∇v is additionally multiplied by φ (which is supposed to be small). Then we
obtain the following equation

−div ((1 + 3φρ)∇ũ) = (1− φρ)f.

This suggests that the e�ective conductivity for a suspension in a material of conductivity η
is given by

ηeff = (1 + 3φρ)η,
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1.3. Heuristic derivation

to �rst order in φ for small volume fractions of the immersed particles, where, we recall, φρ
is the physical volume density, that plays the role of φ in Einstein's formula. Note that, since
ρ is typically non-constant, the e�ective conductivity is a function of the space variable.

Now assume that the particles are rigid, inertialess and suspended force-free in a surrounding
�uid of viscosity µ occupying Ω. Here f is a force density. This entails the following problem
for the �uid velocity u : R3 → R3:

−µ∆u+∇p = f in Ω, (1.6)

div u = 0 in Ω, (1.7)ˆ
∂Bi

σn dS = 0 for i = 1, . . . , N, (1.8)

ˆ
∂Bi

(x−Xi) ∧ (σn) dS = 0 for i = 1, . . . , N, (1.9)

u(x) = Vi + ωi ∧ (x−Xi) on Bi for i = 1, . . . , N, (1.10)

u(x)→ 0 as |x| → ∞, (1.11)

where

σ = −p Id +2µeu, eu =
1

2
(∇u+∇uT ),

and the Vi, ωi ∈ R3 are a priori unknown. Again we can rescale so that µ = 1. The solution
without particles is given by

−∆v +∇p = f ′ in R3,

div v = 0 in R3,

v(x)→ 0 as |x| → ∞.

In order to approximate u we want u = Vi + ωi ∧ (x − Xi) to be satis�ed on the balls and
pursue the same strategy as for problem (1.2)-(1.5). On the ball Bi the function v, up to
�rst order, has the form

v(x) = v(Xi) +∇v(Xi)(x−Xi) + o(R).

The linear part consists of a skew-symmetric part that induces rotations and that we want to
keep, while we need to correct for the symmetric part ev(Xi) = εi. So this time, in order to
get closer to a rigid body motion, we subtract the (dipole-)function di that only incorporates
the symmetric gradient and is de�ned by

7



1. Introduction

di(x) =


εi(x−Xi) , for x ∈ Bi,
5
2R

3
(

(x−Xi)((x−Xi)·εi(x−Xi))
|x−Xi|5

)
+R5

(
εi(x−Xi)
|x−Xi|5

− 5
2

(x−Xi)((x−Xi)·εi(x−Xi))
|x−Xi|7

)
, otherwise.

Then v − di = v(Xi) + ωi ∧ (x − Xi) + o(R) in Bi, where ωi is determined by the skew-
symmetric part of the gradient. Again we set up ũ = v−

∑N
i=1 di. This time the di solve the

homogeneous Stokes equation outside Bi so that −∆ũ+∇p = f ′ is still valid in Ω. Note that
here di consists of two parts, one of which decays much more rapidly than the other. Hence
we take into account only the �rst part for the following heuristics. Again assume that the
rescaled volume density ρN = 1

φ
4π
3 R

3
∑N
i=1 δXi converges in some sense to ρ as N → ∞ so

that φρ is the virtual limit volume density. We can write

ũ(x) = v(x)−
N∑
i=1

di(x)

≈ v(x)−
ˆ
R3

3

4π
φρN (y)

5

2

(
(x− y) ((x− y) · ev(y)(x− y))

|x− y|5

)
dy.

Now we introduce the fundamental solution to the Stokes equation

ΦSij(x) =
1

8π

(
δij
|x|

+
xixj

|x|3

)
.

We will see later that the following identity holds for symmetric and traceless matrices ε,
where here, and in the following we use the Einstein convention to always sum over doubly
appearing subscripts:

εki∂kΦij(x) = − 3

8π

xjxkεkixi

|x|5
.

Using this we arrive at the following approximation:

ũj(x) ≈ vj(x) +

ˆ
R3

5φρN (y)ev(y)ki
(
∂kΦSij

)
(x− y) dy

≈ vj(x) +

ˆ
R3

5φρ(y)ev(y)ki
(
∂kΦSij

)
(x− y) dy

= vj(x) +

ˆ
R3

ΦSij(x− y) divy (5φρev(y))i dy.

8



1.3. Heuristic derivation

Here we used the fact that
(
∂kΦSij

)
(x − y) = −∂yk

(
ΦSij(x− y)

)
. Taking −∆ on both sides

and using f ′ ≈ (1− φρ)f we arrive at

−∆ũ+∇p = (1− φρ)f + div (5φρev) .

Again, we replace v by ũ in the divergence term to obtain the following equation

−div (∇ũ+ 5φρeũ) +∇p̃ = (1− φρ)f,

div ũ = 0.

We can use the fact that div ũ = 0 (and hence div∇ũT = 0) to write

−div ((2 + 5φρ) eũ) +∇p̃ = (1− φρ)f,

div ũ = 0.

This has the form

−div σ = (1− φρ)f,

where

σ = 2

(
1 +

5

2
φρ

)
eũ− p Id .

Comparing to the form of the stress tensor for a homogeneous �uid this suggests that the
e�ective viscosity of a suspension for small volume fractions of the immersed particles in a
material of viscosity µ is given by

µeff = (1 +
5

2
φρ)µ

to �rst order of φ. Note that, since ρ is typically non-constant, the e�ective viscosity is a
function of the space variable.

In regions where the density ρ is constant, the divergence acting on the part of the transposed
gradient vanishes because div ũ = 0. In these regions we recover Einstein's formula even for
the classical form of the Stokes equation:

−(1 +
5

2
φρ)∆ũ+∇p̃ = (1− φρ)f,

div ũ = 0.

9



1. Introduction

1.4. Review of literature

In this section we give an overview of what results have been achieved so far regarding the
e�ective viscosity of suspensions and of methods that may be of importance for the derivation
of such results.

The �rst generalization of Einstein's result was undertaken by Je�ery [Jef22] who considers
ellipsoidal particles instead of spheres. His approach is quite similar to Einstein's approach
in his thesis. The result for spheres is rediscovered and it is shown that, for spheroids (an
ellipsoid with two identical semi-diameters), depending on the ellipticity a−b

a of the bodies,
the coe�cient lies in an interval that is contained in [2,∞] and contains 5

2 . The fact that the
author can only give an interval and not an exact value comes from the problem not being
well-posed, since the orientations are not �xed. Hinch and Leal [LH71, HL72] solved this
problem by considering the ensemble average and a steady-state distribution of orientations
getting explicit numerical values for the coe�cient for di�erent ellipticities.

In [Tay32], mentioned in Section 1.1, drops of another �uid (with �nite viscosity) suspended
in a surrounding �uid are considered for the �rst time. This is the analogous situation to
the one for which Maxwell derived his formula in electrostatics although Taylor must assume
that the boundary of the particles stays spherical. And indeed a similar formula is obtained
for the e�ective viscosity.

In [KRM67] the authors establish several extremum principles for the Stokes �ow including
fairly general boundary conditions and rigid particles. They use those principles to prove,
among other results, uniqueness of the solution and to obtain bounds and an asymptotic
formula for the e�ective viscosity in the low concentration regime and for high concentrations
when the particles are situated on a lattice. In the same year in [FA67] another result
was given for high concentrations. Numerical research can be found in [NK84], in which
arbitrary concentrations are considered and also asymptotic formulas for high concentrations
are obtained. [BBP05] considers the case of highly concentrated suspensions and uses a
so-called network approximation.

A second order correction to the viscosity was �rst considered by Batchelor and Green.
In [BG72] they calculate the second order correction to the viscosity to be 7.6φ2 with an
estimated error of the numerical factor of 10% which comes from numerical and asymptotic
evaluation of an, in principle, known function.

While the so far mentioned results mostly rely on formal considerations to derive viscosity
formulas, [KRM67] rigorously proves

µeff = µ(1 +
5

2
φ+ o(φ)).

The employed method is the following. On the boundary of the (�nite) domain, conditions are
imposed that would make a homogeneous �uid undergo a pure shear �ow, namely u(x) = εx
on ∂Ω where ε is a symmetric and trace-free matrix. The total (rate of) energy dissipation
of the suspension is

D[u] =

ˆ
Ω

µ |eu|2 .

10



1.4. Review of literature

This is compared to the energy dissipation of a homogeneous �uid with viscosity µ′ for which
the solution with pure strain boundary conditions is u′(x) = εx. The dissipation for this
homogeneous �uid is thus

D[u′] = |Ω|µ′ |ε|2 .

Then, the e�ective viscosity of the suspension is speci�ed to be the viscosity that makes a
homogeneous �uid dissipate the same energy as the suspension. This amounts to equating

D[u] = |Ω|µ′ |ε|2

and gives a formula µ′ = µ′(µ, φ, . . . ). Of course this method depends on a good (explicit)
computation ofD[u]. This is done by assuming that the particles are single particles and using
explicit solutions to the single particle problem. This method of de�ning the e�ective viscosity
by equating dissipation functionals is the most prominent one in all articles mentioned here.

The authors of [KRM67] impose the pure strain boundary condition for a domain that be-
comes in�nite in the limit in order to circumvent boundary e�ects. This disadvantage was
overcome only in 2012 by Haines and Mazzucato [HM12] when they proved, simultaneously
bounding the power of the next order term:

∣∣∣∣µeff − µ
(

1 +
5

2
φ

)∣∣∣∣ ≤ Cµφ 3
2 .

They consider a �xed domain with pure strain boundary conditions with particle positions
�xed to a lattice. In this sense, their result can also be considered a type of periodic homoge-
nization. Before the proof of this result, with the invention of the so-called two-scale method,
a lot of results in periodic homogenization could be obtained. In [LSP85] the periodic homog-
enization of the Navier-Stokes equation is discussed. For the �rst time, the e�ective viscosity
is not determined by an asymptotic or a dissipation functional method, but as a prefactor
of the strain in the homogenized equation. In their paper the authors derive a homogenized
Navier-Stokes equation up to terms of order φ that includes the term ([LSP85, p. 13])

div

(
2

(
1 +

5

2
φρ

)
eu

)
.

Almog and Brenner [AB98] consider non-constant volume fraction and ensemble averages
and obtain an e�ective viscosity �eld µ(x) which con�rms Einstein's formula. Also here the
e�ective viscosity appears inside the Stokes equation. They also recover the results up to φ2

with a second factor 6.95. Both results are not completely rigorous, though.

The articles [LSP85, AB98] take an approach to the problem of e�ective viscosity that is
di�erent from the dissipation functional approach. Using the comparison of energy dissipation
to determine the e�ective viscosity is physically sound, since the dissipation D is a quantity
that can be measured experimentally. Nevertheless one might ask whether the solution to
the Stokes equation of the suspension is close in some sense to the solution of the Stokes
equation for a homogeneous �uid with the e�ective viscosity, i.e. the solution of
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1. Introduction

−div (µeffeu) +∇p = f.

This looks a bit di�erent from the usual Stokes equation, but recalling that we have

σeff = 2µeffeu− p Id, −diveff σ = f,

this is the natural form of the equation when µ depends on the space variable. The approach
just described is also the one that will be taken by this thesis.

Although not directly in the line of research of the e�ective viscosity we mention [All90a,
All90b] where the periodic homogenization of the Stokes equation for suspensions is dealt
with rigorously. It is shown that, for Dirichlet boundary conditions, the limit equations
are either the Stokes equation if the particles are very small, Darcy's law for large particles
or the Brinkman equation for the intermediate regime. The non-periodic homogenization
with Dirichlet boundary conditions at the particles is, with increasing levels of generality,
discussed in the papers [DGR08, Hil16, HMS17] for bounded domains. They obtain results
for the homogenized equation given that the kinetic energy of the empirical measure in phase
space is bounded and the �rst two moments in the momentum-space converge. The results
from [DGR08] were reproven by Höfer and Velázquez in [HV18]. They use the so-called
method of re�ections which will also play an important role in this thesis.

The method of re�ections for several particles was �rst introduced by Smoluchowski in
[Smo11] and used extensively in the physical literature to solve all kinds of problems in-
volving several particles. The �rst mathematically rigorous proof for the convergence of the
method with boundary conditions suited for the treatment of sedimenting particles was given
in [Luk89]. There the analogy between electrostatics and Stokes �uids was already used to
obtain convergence of the method for the electrostatic situation, too. The article also employs
extremum principles similar to those used in this thesis. In [HV18] the method is revisited
thoroughly and convergence results are proven rigorously, with a version for unbounded do-
mains by means of weighted summation. The method is then used to reprove the result
from [DGR08], even extended to unbounded domains. In [JO04] a version of the method of
re�ections was used to prove bounds for the sedimentation speed of dilute suspensions.

Finally, coming back to vicosity, suspensions of active particles (micro-swimmers) are a very
active �eld of research. In the publications by Haines et al. [HABK08, HABK12] corrections
to Einstein's formula are found in a particular case of prolate microswimmers. It turns out
that the e�ective vicosity in their case is lower than the one for non-active particles.

There is a multitude of articles in physics, chemistry and engineering about the e�ective
conductivity of heterogeneous media. Since the result about the conductivity is a byproduct
rather than an intended result we do not attempt to give a review of literature in this �eld.

1.5. Structure of the thesis

In Chapter 2 we �rst introduce the mathematical framework used in the thesis by de�ning
the appropriate function spaces, the weak formulation of the problem and by stating some
basic results. We furthermore state the assumptions on the data and the particle distribution

12



1.5. Structure of the thesis

and introduce some speci�c notations that are necessary to derive the main results which will
be presented at the end of the chapter with a short outline of the proof, containing the main
ideas.

In Chapter 3 we introduce an abstract and an explicit dipole approximation to the problem
and derive closeness to the original problem by proving statements for �xed N . The argu-
ments presented are mostly short calculations, step by step carving out properties of dipoles
so that �nally the closeness result for the dipoles can be proven.

Chapter 4 is concerned with the closeness of the microscopic to the homogenized equation.
The proofs are signi�cantly longer and for the most part concerned with the estimation of
convolutions with the fundamental solutions to the Poisson and the Stokes equation.

Finally in Chapter 5 we will discuss in what sense the obtained results are optimal and
propose possible further research regarding the e�ective viscosity of suspensions.
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2. Setting of the problem and main

result

In this chapter we introduce the setting of the problem regarding function spaces, weak
formulation and basic results. We furthermore state all the assumptions that will be used in
the derivation of the results. Finally we introduce the notation that is necessary and state
the main results of this thesis.

2.1. Setting

2.1.1. Function spaces

In order to obtain meaningful weak formulations of the problems (1.2)-(1.5) and (1.6)-(1.11)
it is necessary to overcome the problem that, in R3, there is no Poincaré inequality, which
means it is not possible to control the L2 norm of a function by the L2 norm of its gradient. So
instead of using the classical Sobolev spaces we use so-called homogeneous Sobolev spaces.

Let Ḣ1 be the closure of functions in C∞c (R3,R) with respect to the L2 norm of the gradient
and let Ḣ−1 be its dual. Ḣ1 is a Hilbert space and every element of Ḣ1 is a L1

loc function with
a weak gradient bounded in L2. Elements of the dual space Ḣ−1 are for example expressions
of the form div g (understood in the distributional sense) where g ∈ L2(R3) and functions in
L

6
5 (R3) since all elements of Ḣ1 are in L6(R3) by the Gagliardo-Nirenberg theorem. We will

denote the Ḣ1 pairing with 〈·, ·〉 while we write (·, ·) for the Lp−Lq pairing where 1
p + 1

q = 1.

For two functions u, v ∈ Ḣ1 this means

〈u, v〉 = (∇u,∇v) .

In this framework the Laplacian −∆w (understood in the distributional sense) of w ∈ Ḣ1 is
an element in Ḣ−1 since

−∆w[ϕ] = (∇w,∇ϕ) = 〈w,ϕ〉 for all ϕ ∈ Ḣ1. (2.1)

Take any element f ∈ Ḣ−1. By the Riesz theorem there is w ∈ Ḣ1 such that

f [ϕ] = 〈w,ϕ〉 for all ϕ ∈ Ḣ1.

By equation (2.1) we then say that −∆w = f . By this identity the solution operator (−∆)
−1

is an isometric isomorphism from Ḣ−1 to Ḣ1.

15



2. Setting of the problem and main result

The solution operator (−∆)−1 is given by w = ΦP ∗ f where ΦP is the fundamental solution
of the Poisson equation given by

ΦP (x) =
1

4π

1

|x|
.

We will from now on drop the notation f [ϕ] and write (f, ϕ) instead which coincides with
the classical notation if f ∈ L 6

5 (R3).

Note that any function in Ḣ1 is in H1(U) for any open and bounded U ⊂ R3 because of the
Poincaré inequality.

We now introduce the function spaces connected to the Stokes equation. In order to avoid
excessive double notation from now on we will not distinguish spaces that have either R or
R3 as target space. So instead of C∞c (R3,R) and C∞c (R3,R3) we just write C∞c (R3). Which
target space is meant should always be clear from the context but is usually R in the Poisson
and R3 in the Stokes case. In order to incorporate the incompressibility condition we de�ne

Ḣ1
σ =

{
w ∈ Ḣ1 : divw = 0

}
,

the space of all functions in Ḣ1 whose weak divergence vanishes almost everywhere. Here
Ḣ1 needs to be understood as the closure of functions in C∞c (R3,R3) with respect to the L2

norm of the gradient. The dual of Ḣ1
σ is denoted by Ḣ−1

σ .

Note that for functions in Ḣ1
σ the L2 pairing of the gradients is the same up to a factor of

2 as the L2 pairing of the symmetric gradients. We denote ew = 1
2

(
∇w +∇wT

)
. Then for

functions v, w ∈ Ḣ1
σ ∩ C∞c (R3,R3):

(
∇v,∇wT

)
=

ˆ
R3

∂ivj(x)∂jwi(x) dx

= −
ˆ
R3

∂j∂ivj(x)wi(x) dx

= −
ˆ
R3

∂i∂jvj(x)wi(x) dx

= 0,

since ∂jvj(x) = div v(x) = 0. By density this holds for arbitrary v, w ∈ Ḣ1
σ and hence

2 (ev, ew) =
1

2

(
(∇v,∇w) +

(
∇v,∇wT

)
+
(
∇vT ,∇w

)
+
(
∇vT ,∇wT

))
= (∇v,∇w) .

Therefore the two inner products imply exactly the same structure on the space Ḣ1
σ in

terms of orthogonality, norm etc.. Since the decomposition of the gradient into a symmetric
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2.1. Setting

and a skew-symmetric part is important for what follows in this thesis we introduce some
notation.

Note that there is a bijective linear map T between R3 and the skew-symmetric matrices
R3×3

skew given by

T (ω)ij = −εijkωk,

where εijk is the Levi-Civita symbol. For any x ∈ R3 it holds that (Tω)x = ω ∧ x, where
we understand the vector product of x, y ∈ R3 to be given by (x ∧ y)i = εijkxjyk. We will
write Aω = Tω and ωA = T−1A for ω ∈ R3 and A ∈ R3×3

skew. We will also deliberately
switch between the notation (∇u)

skew
= 1

2

(
∇u−∇uT

)
and ωu = T−1 (∇u)

skew and use

that (∇u)
skew

x = ωu ∧ x. In this notation we have ∇ux = eu x+ ωu ∧ x.

Coming back to function spaces, by the Riesz theorem, for any f ∈ Ḣ−1
σ there is a w ∈ Ḣ1

σ

such that

(f, ϕ) = 〈w,ϕ〉 for all ϕ ∈ Ḣ1
σ. (2.2)

By [Gal94, Lemma V.1.1] we have that if equation (2.2) holds for all ϕ ∈ Ḣ1
σ, then, there

exists p ∈ L2(R3) such that

(f, ϕ) = 〈w,ϕ〉+ (divϕ, p) for all ϕ ∈ Ḣ1. (2.3)

We then say that

−∆w +∇p = f, (2.4)

in the weak sense. The solution operator S−1 : Ḣ−1
σ → Ḣ1

σ that maps f to w is an isometric
isomorphism and its inverse S is the so-called Stokes operator.

The solution operator S−1 is given by S−1f = ΦS ∗ f where ΦS is the fundamental solution
of the Stokes equation, the so-called Oseen tensor, given by

ΦS(x) =
1

8π

(
Id

|x|
+
x⊗ x
|x|3

)
.

The corresponding pressure such that −∆S−1f +∇p = f is given by p = Π ∗ f where

Π(x) =
1

4π

x

|x|3
.
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2. Setting of the problem and main result

Since the pressure p is merely a Lagrange multiplier ensuring that the velocity �eld is
solenoidal we will write p for every appearing pressure, so that it may change between di�erent
equations but also from line to line in one computation.

At this point we want to state the typical decay properties of the fundamental solutions.
There is a constant C > 0 such that for all x ∈ R3 \ {0}:

∣∣ΦP (x)
∣∣ ≤ C 1

|x|
and

∣∣ΦS(x)
∣∣ ≤ C 1

|x|
,∣∣∇ΦP (x)

∣∣ ≤ C 1

|x|2
and

∣∣∇ΦS(x)
∣∣ ≤ C 1

|x|2
,

∣∣∇2ΦP (x)
∣∣ ≤ C 1

|x|3
and

∣∣∇2ΦS(x)
∣∣ ≤ C 1

|x|3
.

For all spaces we will use a 0 as subscript to indicate that the support of that function lies
inside the closure of the given domain. E.g. w ∈ Ḣ1

0 (B1(0)) means that w ∈ Ḣ1 and that
sptw ⊂ B1(0). Also, for any classical Sobolev spaces, the subscript σ indicates that the weak
divergence vanishes.

2.1.2. Weak formulation of the problem

Let us consider for any N ∈ N a collection of rigid spherical particles

BNi := BRN (XN
i ), i = 1, . . . , N

where XN
i ∈ R3 are the centres and RN > 0 is the radius of all particles so that they all have

the same size. Let

dNij :=
∣∣XN

i −XN
j

∣∣ > 2RN for all i 6= j.

This implies that the particles do not intersect nor touch each other. For future use we set

dN := min
1≤i,j≤N

dNij .

The domain of the suspending material is given by

ΩN = R3 \
N⋃
i=1

BNi .

We will drop the superscript N for Bi, Xi, R, dij , d,Ω and all other quantities in the further
discussion while it is always implicitly understood that they depend on N , but might still
use it where it seems appropriate to highlight this dependence.
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2.1. Setting

Given f ∈ L
6
5 (R3) ∩ L2(R3), we de�ne fN = fχΩ where χ is the characteristic function.

Here, in accordance with our convention, f might be a scalar or a vector valued function
depending on the problem.

We state problem (1.2)-(1.5) after rescaling by 1
η :

−∆uN = f in Ω, (2.5)ˆ
∂Bi

∂uN

∂n
dS = 0 for i = 1, . . . , N, (2.6)

uN = ci on Bi for i = 1, . . . , N, (2.7)

uN (x)→ 0 as |x| → ∞. (2.8)

When dealing with boundary integrals we will always write dS for the integration with
respect to the two dimensional Hausdor� measure con�ned to the surface that we integrate
over. Even though it is not important in this instance , let us �x that by n we will always
mean the outward normal of the ball Bi which is the inward normal to Ω. A function u is a
weak solution of problem (2.5)-(2.8) if u ∈ Ḣ1 (which implies (2.8)), if u is constant on all
Bi for i = 1, .., N ((2.7)), if for all ϕ ∈ Ḣ1

0 (Ω)

ˆ
Ω

∇u · ∇ϕ dx =

ˆ
Ω

fϕ dx, (2.9)

and if

ˆ
∂Bi

∂u

∂n
dS = 0 for i = 1, . . . , N. (2.10)

The last condition might seem a bit ambiguous at �rst glance because u is only in H1 locally
and the trace of the gradient might not exist. However, by equation (2.9) we have div∇u ∈ L2

and the following statement holds true ([Gal94, Chap. III, Sec. 2, pp 113�.])

Lemma 2.1. Let U ⊂ R3 be open with Lipschitz boundary. De�ne the space

L2
div(U) =

{
g ∈ L2(U) : div g ∈ L2(U)

}
.

Then there exists a continuous operator γ1 : L2
div(U) → H−

1
2 (∂U) such that for all g ∈

L2
div(U), w ∈ H1(U) we have

ˆ
U

(g · ∇w + div g · w) dx =

ˆ
∂U

γ1g · w dS,

And for g ∈ C1(U) ∩ L2
div(U) we have γ1g = g|∂U · n.

Remark 2.2. In Lemma 2.1, the function g might be R3 or R3×3 valued.
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2. Setting of the problem and main result

By Lemma 2.1, the expression (2.10) is well-de�ned, since div∇u ∈ L2 and certainly χ∂Bi ∈
H

1
2 (∂Bi).

The �rst question is of course whether problem (2.5)-(2.8) has a unique solution. The fol-
lowing lemma gives the a�rmative answer.

Lemma 2.3. Problem (2.5)-(2.8) has a unique weak solution in Ḣ1.

Before proving Lemma 2.3 we de�ne the space of functions that are constant inside the
particles:

WP :=
{
w ∈ Ḣ1 : ∃ c1, . . . , cN ∈ R s.t. w = ci on Bi, i = 1, . . . , N

}
.

Proof of Lemma 2.3. There are several ways to prove existence here. One is, to use standard
variational arguments considering the minimization of the energy

E(w) =

ˆ
R3

(
1

2
|∇w|2 − fNw

)
dx,

in WP . Note that the domain of integration is in reality Ω since fN = 0 and ∇w = 0 in
R3 \ Ω. For future use it is nevertheless useful to consider the domain of integration to be
the whole R3. All functions in WP already satisfy (2.7) and (2.8). Since WP is a closed
subspace of Ḣ1 the direct method gives a minimizer u ∈ WP . Then, the Euler-Lagrange
equation gives that for all ϕ ∈WP it must hold that

0 =

ˆ
R3

(
∇u · ∇ϕ− fNϕ

)
dx.

Since this holds in particular for all ϕ ∈ Ḣ1
0 (Ω) we have −∆u = fN in Ω whence (2.9) is

satis�ed. Finally, for �xed i take ϕ ∈WP such that cj = δji. Such a φ exists and can e.g. be
obtained by solving

−∆ϕ = 0 in Ω, ϕ = δij on Bj ,

which is an outer Laplace problem. Then we obtain

0 =

ˆ
R3

∇u · ∇ϕ− fNϕ dx =

ˆ
Ω

∇u · ∇ϕ− fNϕ dx = −
N∑
j=1

ˆ
∂Bj

ϕ
∂u

∂n
dS = −

ˆ
∂Bi

∂u

∂n
dS.

This is (2.10). Uniqueness is also standard but for completeness note that by the Euler-
Lagrange equation for all minimizers u it must hold that

‖∇u‖2L2(R3) =

ˆ
R3

fNu dx. (2.11)
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2.1. Setting

Suppose there are two minimizers u1, u2, then (using the Euler-Lagrange equations and
(2.11)):

‖∇(u1 − u2)‖2L2(R3) = ‖∇u1‖2L2(R3) − 2

ˆ
R3

∇u1 · ∇u2 dx+ ‖∇u2‖2L2(R3)

=

ˆ
R3

fNu1 dx−
ˆ
R3

fNu1 dx−
ˆ
R3

fNu2 dx+

ˆ
R3

fNu2 dx

= 0.

Hence u1 = u2, that is the minimizer is unique.

Now we state problem (1.6)-(1.11) after rescaling by 1
µ .

−∆u+∇p = f in Ω, (2.12)

div u = 0 in Ω, (2.13)ˆ
∂Bi

σn dS = 0 for i = 1, .., N, (2.14)

ˆ
∂Bi

(x−Xi) ∧ (σn) dS = 0 for i = 1, .., N, (2.15)

u = Vi + ωi ∧ (x−Xi) on Bi for i = 1, .., N, (2.16)

u(x)→ 0 as |x| → ∞, (2.17)

where

σ = −p Id +2eu, eu =
1

2
(∇u+∇uT ).

A function u is a weak solution of problem (2.12)-(2.17) if u ∈ Ḣ1
σ (which implies (2.13),(2.17)),

if u is a rigid body motion on all Bi for i = 1, .., N (this is (2.16)), if for all ϕ ∈ Ḣ1
σ,0(Ω)

ˆ
Ω

∇u · ∇ϕ dx =

ˆ
Ω

f · ϕ dx, (2.18)

and if (2.14), (2.15) are satis�ed. Here ∇u and p are a priori only in L2 and the trace of
σ might not exist so that (2.14), (2.15) may not be well-de�ned. We can use Lemma 2.1 to
resolve this problem. In order to see that div σ ∈ L2 it is is useful to introduce the so-called
reciprocal principle (or theorem) (see, e.g. [HB65]). For any p ∈ L2(R3) and w ∈ Ḣ1

σ we
write σ = 2ew − p Id. Then for v, w ∈ Ḣ1

σ we have
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2. Setting of the problem and main result

ˆ
R3

∇w · ∇v dx = 2

ˆ
R3

ew · ev dx

= 2

ˆ
R3

ew · ∇v dx

=

ˆ
R3

σ · ∇v dx.

In the �rst step we used that the scalar product of a symmetric and a skew-symmetric matrix
is zero (∇v = ev + (∇v)

skew), while in the second, we used, that v is divergence-free whence
Id ·∇v = div v = 0. The name reciprocal principle comes from the fact that the same equality
holds for interchanged w, v. Note that, if w satis�es (2.16), then, because ew = 0 in Bi for
all i = 1, . . . , N we can write

ˆ
R3

∇w · ∇v dx =

ˆ
Ω

σ · ∇v dx.

Now take a function u ∈ Ḣ1
σ that already satis�es (2.12),(2.16). For all ϕ ∈ Ḣ1

σ,0(Ω) we have
by (2.18) and by the reciprocal principle

ˆ
Ω

σ · ∇ϕ dx =

ˆ
Ω

f · ϕ dx,

whence div σ = f in Ω and hence div σ ∈ L2(Ω). By Lemma 2.1 σn ∈ H−
1
2 (∂Bi) for

all i = 1, . . . , N . We certainly have ek ∈ H
1
2 (∂Bi) for k = 1, 2, 3 and therefore (2.14) is

well-de�ned since all three components are well-de�ned. Now we write

ek · ((x−Xi) ∧ (σn)) = (σn) · (ek ∧ (x−Xi))

where we used the vector rule A · (B ∧ C) = C · (A ∧ B) for A,B,C ∈ R3. Since ek ∧ (x −
Xi) ∈ H1(Bi) we have ek ∧ (x − Xi) ∈ H

1
2 (∂Bi) and we obtain that (2.15) is well-de�ned

componentwise.

Before proving existence let us state a consequence of the reciprocal principle:

Lemma 2.4. Let u ∈ Ḣ1
σ satisfy (2.12),(2.16). Then for any ϕ ∈ Ḣ1

σ:

ˆ
R3

∇u · ∇ϕ dx = −
N∑
i=1

ˆ
∂Bi

ϕ · (σn) dS +

ˆ
R3

fN · ϕ dx.

Proof. We use the reciprocal principle.
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2.1. Setting

ˆ
R3

∇u · ∇ϕ dx =

ˆ
Ω

σ · ∇ϕ dx

= −
N∑
i=1

ˆ
∂Bi

ϕ · (σn) dS +

ˆ
R3

fN · ϕ dx,

integrating by parts and using that div σ = fN weakly in Ω and that n is the outward normal
of the ball.

The proof of existence of a weak solution to (2.12)-(2.17) is analogous to the one for the
Poisson equation. We need to consider the subspace of functions that are rigid body motions
inside the particles:

WS :=
{
w ∈ Ḣ1

σ : ∃ V1, . . . , VN , ω1, . . . , ωN ∈ R3 s.t. w(x) = Vi + ωi ∧ (x−Xi) on Bi, i = 1, . . . , N
}
.

Lemma 2.5. Problem (2.12)-(2.17) has a unique weak solution in Ḣ1
σ.

Proof. Consider

E(w) =

ˆ
R3

(
|ew|2 − fN · w

)
dx,

in WS . Note that for w ∈ Ḣ1
σ,

E(w) =

ˆ
R3

(
1

2
|∇w|2 − fN · w

)
dx,

which also justi�es the use of the same symbol as for the Poisson energy. All functions in
WS already satisfy (2.13),(2.16) and (2.17). Since WS is a closed subspace of Ḣ1

σ the direct
method gives a minimizer u ∈ WS . Then, the Euler-Lagrange equation gives that for all
ϕ ∈WS it must hold that

0 =

ˆ
R3

∇u · ∇ϕ− fN · ϕ dx.

Now take all ϕ ∈ Ḣ1
σ,0(Ω) to get that u is a weak solution of −∆u +∇p = fN in Ω. Next,

�x i and take a function ϕ ∈WS
0 (R3 \ ∪j 6=iBj). Now, using Lemma 2.4:
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2. Setting of the problem and main result

0 =

ˆ
R3

∇u · ∇ϕ dx−
ˆ
R3

fN · ϕ dx

= −
N∑
j=1

ˆ
∂Bj

ϕ · (σn) dS +

ˆ
R3

fN · ϕ dx−
ˆ
R3

fN · ϕ dx

= −
ˆ
∂Bi

ϕ · (σn) dS.

By taking ϕ = e1, e2, e3 on Bi we obtain

ˆ
∂Bi

σn dS = 0.

Again, the existence follows from solving the homogeneous Stokes equation outside the par-
ticles. For ω ∈ R3 choosing ϕ = ω ∧ (x−Xi) we have

0 =

ˆ
∂Bi

(ω ∧ (x−Xi)) · (σn) dS

=

ˆ
∂Bi

ω ((x−Xi) ∧ (σn)) dS.

By the choices ω = e1, e2, e3 we get

ˆ
∂Bi

((x−Xi) ∧ (σn)) dS = 0.

The proof of uniqueness works exactly the same way as for problem (2.5)-(2.8).

We will from now on ignore the superscripts P and S whenever the argument or statement
is the same for both cases in order to minimize unnecessary repetitions.

2.2. Assumptions

We set φ = NR3. Then, this is, up to the factor 1
L3 the volume fraction of the particles in

the large ball BL(0). In this thesis we will assume that the following requirements are met
by the sequence of particle con�gurations:

(1) There is some L > 0 such that |Xi|+R < L for all i = 1, . . . , N .

(2) There is some constant C > 0 such that N−
1
3 ≤ Cd.

(3) The particles are well separated in the sense that d ≥ 4R.
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(4) The quantity φ logN → 0 as N →∞.

Condition (1) ensures that all particles are contained in some large ball BL(0). Condition
(2) implies that the minimal particle distance is comparable to the mean particle distance.
This is a very common assumption (see, e.g. [DGR08]). Condition (3) ensures that the balls
B2R(Xi) are still disjoint and we can modify functions in the vicinity of the particles without
those modi�cations in�uencing each other. In principle the factor 4 can be replaced by any
number > 2 but for ease of computations we use 4. Note that (3) is implied by (2) if φ < 1

64C .
In particular this is the case for large N if φ→ 0 which is implied by (4). The last condition
is a bit stronger than the minimal assumption φ → 0 as N → ∞ describing the regime we
consider. The stronger version (4) is necessary so that certain sums stay negligible.

We will make the following assumptions for f :

(i) f ∈ L 6
5 (R3);

(ii) f ∈ C0,α(R3) for some α > 0.

Here, we see C0,α(R3) as a normed space. In consequence f ∈ C0,α(R3) does not only
mean, that f is continuous and the corresponding Hölder seminorm is bounded but also
that f ∈ L∞(R3). Together with (i) this implies that f ∈ Lp(R3) for every p ∈ [ 6

5 ,∞]. In
particular f ∈ L2(R3).

In the following universal constants C > 0 will often appear in statements. They never
depend on N,R, d and X1, . . . , XN and other N -dependent quantities but possibly on f
unless otherwise stated. When constants appear they might change their value from line to
line without indication.

2.3. The main result

In order to state the result that compares the microscopic solutions of problem (2.5)-(2.8)
and (2.12)-(2.17) to the solutions of certain homogenized problems, it is necessary to de�ne
some kind of limit volume density. It will prove useful to use a coarse grained density like in
[NV06] where this was applied in the context of a capacity density.

De�nition 2.6. Let sN > 0 be a sequence such that sN logN → 0 as N →∞. In particular
sN → 0 as N →∞. Let R3 be decomposed into half-open disjoint cubes Aj of side length s

N

where j ∈ Z3. Let n(Aj) be the number of particles (particle centres Xi) in Aj, i.e.

n(Aj) =

ˆ
Aj

N∑
i=1

δXi .

Then we de�ne the rescaled averaged particle volume density ρN to be constant on each of
the cubes Aj and for x ∈ Aj the value ρN (x) is given by

ρN (x) =
4π

3

1

N(sN )3
n(Aj).
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2. Setting of the problem and main result

Notice that φρN = 4π
3
R3

s3 n(Aj) is the local volume density of the particles in each cube. This

vanishes in the limit N → ∞, since by assumption (2) n(Aj) ≤ C s3

d3 ≤ Cs3N and hence
φρN ≤ CNR3 = Cφ. Therefore it is necessary to rescale by the volume fraction, in order to
obtain a quantity that does not converge to zero. On the other hand ρN is, up to numerical
factors, the averaged number density of the particles. Since all particles are contained in
a big ball (assumption (1)), ρN will, for large N be compactly supported in BL+1(0). By
assumption (2) ρN is uniformly bounded in L∞ and, combining both properties, will therefore
for all p ∈ [1,∞] have a subsequence with a weak(-∗) limit in Lp. We need some additional
regularity of the limit density ρ. We will assume

(5) ρN ⇀ ρ in some Lp(R3), p > 3;

(6) ρ ∈W 1,∞(R3).

Assumption (5) ensures that the whole sequence converges. Otherwise the results hold for
a subsequence. Assumption (6) is really only an assumption about ∇ρ since by the bounds
derived on ρN , the function ρ must be in L∞.

As the dipoles used for approximation of the microscopic problem are singular, we must
de�ne a domain that leaves a bit more space for the particles. Let rN = max(2R, δN ) where
δN > 0 such that 1

(δN )2N
→ 0 and δ

d → 0 as N → ∞. We introduce the following domain:

ΩNδ = R3 \ ∪Ni=1Br(Xi).

The goal of the thesis is to prove a (non-periodic) result, that shows that Einstein's formula
indeed appears in the Stokes equation for a homogenized �uid. We know that ρN ⇀ ρ. One
might think that leaving the volume density φ constant and letting N →∞ should lead (by
Einstein's result) to a homogenized equation of the form

− div

((
1 +

5

2
φρ

)
eū

)
+∇p = f, (2.19)

or something similar. However, Einstein's result is just a linear approximation and therefore,
by

µeff = µ

(
1 +

5

2
φρ+ o(φ)

)
, (2.20)

the homogenized equation should have the form

−div

((
1 +

5

2
φρ+ o(φ)

)
eū

)
+∇p = f.

Proving a result that relates the microscopic solutions to the solution of this equation for
�xed φ would amount to proving a functional dependence of the form µeff = µeff(φ) for �nite
values of φ. Even for the second order term of the expansion in φ = 0 di�erent formal results
exist and no rigorous result is available. Therefore proving a such a functional dependence
for �nite φ is out of the scope of this thesis.
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2.3. The main result

So instead of keeping φ �xed, we let it approach 0 as N →∞. Then of course the candidate
for the homogenized equation (2.19) is not �xed anymore but depends on N (through φ).
The limit of this equation as φ→ 0 is

−∆ū+∇p = f,

which is again the Stokes equation with unchanged viscosity and is not useful as a limit
equation. Therefore we are forced to dismiss the idea of one limiting equation and instead
compare the solutions ū of (2.19) to the microscopic solutions u for each N . Since the
viscosity in (2.19) is 1 + 5

2φρ and we know that for the suspension the e�ective viscosity
should be given by (2.20).

µeff = µ

(
1 +

5

2
φρ+ o(φ)

)
,

the viscosities di�er on scale o(φ). Therefore, we would expect that not only

∥∥uN − ūN∥∥→ 0 as N →∞,

for some appropriate norm ‖·‖, but that the stronger result

∥∥uN − ūN∥∥ = o(φ) as N →∞,

holds, or equivalently

1

φ

∥∥uN − ūN∥∥→ 0 as N →∞.

Indeed, this result is true, when one takes the Lp norm. The two main results of this thesis
read as follows:

Theorem 2.7. The solution ū ∈ Ḣ1 to the equation

−div ((1 + 3φρ)∇ū) = (1− φρ)f,

is close to u, the weak solution of (2.5)-(2.8), in the following sense

1

φ
‖u− ū‖L∞(ΩNδ ) → 0, N →∞.

Furthermore, if U ⊂ R3 is of �nite measure and p ∈ [1, 3
2 ], then

1

φ
‖u− ū‖Lp(U) → 0, N →∞.

27



2. Setting of the problem and main result

Theorem 2.8. The solution ū ∈ Ḣ1
σ to the equation

−div ((2 + 5φρ) eū) +∇p = (1− φρ)f, (2.21)

div ū = 0, (2.22)

is close to u, the solution of (2.12)-(2.17), in the following sense

1

φ
‖u− ū‖L∞(ΩNδ ) → 0, N →∞.

Furthermore, if U ⊂ R3 is of �nite measure and p ∈ [1, 3
2 ], then

1

φ
‖u− ū‖Lp(U) → 0, N →∞.

Remark 2.9. Note that

∣∣R3 \ ΩNδ
∣∣ = Nr3 ≤ C max(2R, δ)3 ≤ CNd3 max(

R

d
,
δ

d
)→ 0, N →∞.

Therefore, even in L∞, the solution of the homogenized equation is close to u on scale φ in
a volume that is asymptotically the whole R3.

2.3.1. Strategy of the proof

The strategy is in principle to make the computations of Section 1.3 rigorous. To that end
we use successive approximations u→ v1 → ũ→ û→ ū and split the proof in two parts.

The �rst part is to prove that the dipole approximation ũ is actually close to the microscopic
solution u which is achieved in Chapter 3. For this we take a small detour and �rst de�ne a
related but abstract dipole approximation v1 de�ned via projections to subspaces of Ḣ1 and
Ḣ1
σ incorporating the constant and rigid body boundary conditions on the particles. This

method was �rst used in [Luk89]. In [Hoe16] it is used in a way that is also employed here.
Closeness of v1 to u can be obtained by �rst proving closeness inside the particles using vari-
ational methods and the method of re�ections. Closeness in the region outside the particles
can then be established using decay properties of the fundamental solutions of the Poissson
and the Stokes equation. The structure of the proof closely follows [Hoe16]. Nevertheless,
since we take into account rotations for the particles in the Stokes case, some adjustments
have to be made and it is necessary to establish a Korn and a Korn-Poincaré inequality for
balls with integrated boundary conditions. Using carefully obtained characterizations of the
projections we then show that inside the particles v1 and ũ are already close and that, again,
using the decay of the dipoles, this can be extended to the domain outside the particles.
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2.3. The main result

The second part consists in proving the closeness of ũ to the solution ū of the Stokes equation
with Einstein viscosity in Chapter 4. This is done by means of the intermediate approximation
û which is the solution to the equation

− div (∇û+ 5φρev) +∇p = (1− φρ)f. (2.23)

To prove that ũ is close to û we use the fact that for every point in space the contributions
of the particles in a moderately large region around this point are negligible. But further
away the number density ρN looks approximately like ρ which allows passage from sum to
integral. The proof relies heavily on the representation of solutions as convolutions with the
fundamental solutions and involves various estimates regarding these convolution integrals.

In order to replace v by ū in the homogenized equation we �rst prove that v is already close
to ū namely that

‖v − ū‖ ≤ Cφ.

This is achieved by standard regularity arguments and estimates of the solutions of the
homogenized equation in terms of the right hand side. With the same methods it is then
possible to prove that the solution to (2.23), û, is close to the solution of the �nal equation
(2.21), ũ, since their di�erence satis�es an equation with a right hand side that is already
small.
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3. The dipole approximation

It is useful to start not with the explicit dipole approximation, but to consider another
approximation, using slightly di�erent dipoles, �rst. In contrast to the explicit dipoles, these
can be characterized using variational formulations thereby simplifying the comparison to
the microscopic solution. In order to do so we adapt the theory developed in [Hoe16]. With
the exception of the Korn and Korn-Poincaré inequality in Lemma 3.9 and Corollary 3.11,
which are not needed in [Hoe16], all statements in Section 3.1, Section 3.2 and Section 3.3
concerning the abstract dipoles are statements/ideas from [Hoe16] adapted to the situation
of electrostatics and rigid body motions instead of constants respectively.

3.1. Approximation by abstract dipoles

Let us recall the de�nitions of the solutions for the particle-free problem. The solution vN

to the particle-free Poisson problem is given by

−∆vN = fN in R3, (3.1)

vN (x)→ 0 as |x| → ∞. (3.2)

By the theory for the Poisson equation v = ΦP ∗ fN with vN ∈ H2
loc(R3) and ∇vN ∈

H1(R3).

The solution vN to the particle-free Stokes problem is given by

−∆vN +∇p = fN in R3, (3.3)

div vN = 0 in R3, (3.4)

vN (x)→ 0 as |x| → ∞. (3.5)

By the theory for the Stokes equation v = ΦS∗fN with vN ∈ H2
loc(R3) and∇vN ∈ H1(R3).

The solutions to the particle-free problems are minimizers of the energies introduced in Sub-
section 2.1.2.

Lemma 3.1. The solution vN of problem (3.1),(3.2) is the minimizer in Ḣ1 of the energy

E(w) =

ˆ
R3

(
1

2
|∇w|2 − fNw

)
dx.
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3. The dipole approximation

Proof. This follows from the fact that (3.1) is the Euler-Lagrange equation of E.

Lemma 3.2. The solution vN of problem (3.3)-(3.5) is the minimizer in Ḣ1
σ of the energy

E(w) =

ˆ
R3

(
|ew|2 − fN · w

)
dx.

Proof. We have for w ∈ Ḣ1
σ:

E(w) =
1

2

ˆ
R3

|∇w|2 −
ˆ
R3

fNw.

This implies that the minimizer w of E in Ḣ1
σ satis�es the following Euler-Lagrange equation:

0 =

ˆ
R3

∇w · ∇ϕ−
ˆ
R3

fNϕ for all ϕ ∈ Ḣ1
σ.

But this is exactly the weak formulation of (3.3)-(3.5)) and hence w = v.

On the other hand, the solution u to problem (2.5)-(2.8) and (2.12)-(2.17) is the minimizer
of E in the space WP and WS respectively as seen in Lemma 2.3 and Lemma 2.5.

The fact that u minimizes E inW means that u is the orthogonal projection of v from Ḣ1 and
Ḣ1
σ to the subspace WP and WS respectively. We call PP : Ḣ1 →WP and PS : Ḣ1

σ →WS

the orthogonal projections. Then u = Pv. That this is the case can be seen by taking any
w ∈W and observing that, by the weak formulations that v and u satisfy, we have

〈v − u,w〉 =

ˆ
R3

∇(v − u) · ∇w dx =

ˆ
R3

(fN − fN )w dx = 0.

This implies that

‖v − u‖Ḣ1 ≤ ‖v − w‖Ḣ1 for all w ∈W.

By choosing a suitable function w one can thus get an estimate for ‖u− v‖Ḣ1 . This will be
part of the proof of Theorem 3.28.

It will become clear that we need to consider the L∞ norm to obtain ‖u− v‖ ≤ Cφ, though.
In order to get L∞ estimates it is useful to work with the so-called method of re�ections.
This is due to the fact that the projection ontoW is not so easy to characterize. The method
of re�ections works with solutions of single particle problems. The single particle spaces
involved, are much easier to characterize than W . For this we �rst de�ne the particle wise
versions of WP and WS :
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3.1. Approximation by abstract dipoles

WP
i =

{
w ∈ Ḣ1 : w = c on Bi, c ∈ R

}
,

WS
i =

{
w ∈ Ḣ1

σ : w = V + ω ∧ (x−Xi) on Bi, V, ω ∈ R3
}
.

Since Wi is a closed subspace there is an orthogonal projection PPi : Ḣ1 → WP
i and PSi :

Ḣ1
σ → WS

i respectively. Notice that W = ∩Ni=1Wi. The orthogonal complement of Wi has a
useful characterization:

Lemma 3.3.(
WP
i

)⊥
=

{
w ∈ Ḣ1 : −∆w = 0 in R3 \Bi,

ˆ
∂Bi

∂w

∂n
dS = 0

}
,

(
WS
i

)⊥
=

{
w ∈ Ḣ1

σ : −∆w +∇p = 0 in R3 \Bi,
ˆ
∂Bi

σn dS = 0,

ˆ
∂Bi

(x−Xi) ∧ (σn) dS = 0

}
.

Proof. Any element s of the right hand side of the �rst line is orthogonal to w ∈WP
i :

〈w, s〉 =

ˆ
R3

∇w · ∇s dx

=

ˆ
R3\Bi

∇w · ∇s dx

= −
ˆ
∂Bi

w
∂s

∂n
dS −

ˆ
R3\Bi

w∆s dx

= −c
ˆ
∂Bi

∂s

∂n
dS

= 0

On the other hand, observe that for w ∈WP
i and s ∈

(
WP
i

)⊥
, using the computation above,

we have:

0 = 〈w, s〉 = −
ˆ
∂Bi

w
∂s

∂n
dS −

ˆ
R3\Bi

w∆s dx.

By �rst considering all w ∈ Ḣ1
0 (R3 \Bi) we obtain −∆w = 0 in R3 \Bi. Then taking w = 1

on Bi we get

ˆ
∂Bi

∂s

∂n
= 0.

Such a w exists, take e.g. w(x) = R
|x−Xi| for x ∈ R3 \ Bi. Now, take any element s of the

right hand side of the second line. Then for any w ∈ WS
i , using the reciprocal principle, we

obtain (let w = V + ω ∧ (x−Xi) on Bi):

33



3. The dipole approximation

〈w, s〉 =

ˆ
R3\Bi

∇w · σ[s] dx

= −
ˆ
∂Bi

w (σ[s]n) dS −
ˆ
R3\Bi

w div σ[s] dx

= −
ˆ
∂Bi

(V + ω ∧ (x−Xi)) (σ[s]n) dS

= −V
ˆ
∂Bi

(σ[s]n) dS − ω
ˆ
∂Bi

(x−Xi) ∧ (σ[s]n) dS

= 0.

On the other hand, by the same computation, for any s ∈
(
WS
i

)⊥
we have

0 = 〈w, s〉 = −
ˆ
∂Bi

w (σ[s]n) dS −
ˆ
R3\Bi

w div σ[s] dx.

First consider all w ∈ Ḣ1
σ,0(R3 \ Bi) to obtain 0 = −div σ[s] = −∆s+∇p in R3 \ Bi. Then

use that

0 = −V
ˆ
∂Bi

(σ[s]n) dS − ω
ˆ
∂Bi

(x−Xi) ∧ (σ[s]n) dS.

with V, ω = e1, e2, e3.

A function with the property that

0 =

ˆ
∂Bi

w
∂s

∂n
dS =

ˆ
Bi

∆w dx

or, in the Stokes case,

0 =

ˆ
∂Bi

σn dS =

ˆ
Bi

div σ dx,

is usually called a dipole since the �rst moment of the charge and the force distribution
respectively vanishes inside the ball.

We come back to our goal to approximate u by v. We already know that, following the idea
from Section 1.3, it makes sense to subtract from v at every ball the dipole preventing v
from beeing constant or a rigid body motion respectively. Let Qi = Id−Pi be the orthogonal
projection onto W⊥i . We know that v − Qiv = Piv ∈ Wi is a constant or a rigid body
motion respectively on the ball Bi, hence Qiv is the dipole we are looking for. As explained

34



3.1. Approximation by abstract dipoles

in Section 1.3, subtracting Qiv only helps with the boundary condition on Bi, so we have to
subtract the dipole for all balls which gives rise to the �rst approximation

v1 =

(
Id−

N∑
i=1

Qi

)
v.

Of course this approximation will not be constant on all balls, since the additional Qjv for
j 6= i will have nonvanishing contributions on Bi. But since the dipoles solve the homogeneous
Stokes equation outside Bi, the function v1 still satis�es the same equation as v and u in Ω.
The approximation v1 is already good enough for our purposes. Let us nevertheless repeat
the process of subtracting dipoles in order to make the functions closer to constant or to rigid
body motions on the balls. This leads to approximations vk given by

vk =

(
Id−

N∑
i=1

Qi

)k
v. (3.6)

The idea is that taking k →∞ one should have

P = lim
k→∞

(
Id−

N∑
i=1

Qi

)k
.

This would imply that vk → Pv = u as k →∞.

Note that one could also take another approach and project onto Wi successively instead of
simultaneously, de�ning

vk = (PNPN−1 . . . P2P1)
k
v,

Also in this case, one could hope that

P = lim
k→∞

(PNPN−1 . . . P2P1)
k
.

This method was used in [Luk89], and convergence of the method was shown, by proving
a lower bound on the angle between the di�erent single particle subspaces relying on the
geometry of the particle arrangement. However, de�nition (3.6) is better suited for our
purposes because we have good control of the error term v1 − Piv = −

∑
j 6=iQiv next to the

particle Bi.

Before attempting to prove that the vk converge to u we need a better understanding of the
projections Pi and Qi respectively.
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3. The dipole approximation

3.2. Chracterization of W⊥
i and Pi

Lemma 3.4. For w ∈
(
WP
i

)⊥
we have

 
∂Bi

w dS = 0, (3.7)

and hence for w ∈ Ḣ1 the projection to WP
i satis�es

PPi w(x) =

 
∂Bi

w dS for all x ∈ Bi.

Remark 3.5. Here and in the following, for some µ-measurable set U ⊂ R3 with bounded
µ-measure and a µ-measurable function g we set

 
U

g dµ =
1

µ(U)

ˆ
U

g dµ.

In particular

 
∂Bi

w dS =
1

4πR2

ˆ
∂Bi

w dS.

Proof of Lemma 3.4. The idea is to use an explicit test function, for which we know the
Neumann boundary data on the sphere. Take ϕ such that −∆ϕ = 0 in R3 \Bi, ϕ = 1 on Bi.
Then ϕ ∈WP

i and

ϕ(x) =
R

|x−Xi|
,

for |x−Xi| > R. For w ∈
(
WP
i

)⊥
we have

0 = 〈w,ϕ〉 =

ˆ
R3\Bi

∇w · ∇ϕ = −
ˆ
∂Bi

∂ϕ

∂n
w dS = −

ˆ
∂Bi

1

R
w dS.

This implies (3.7). Now, for w ∈ Ḣ1, we use that PPi w = w − QPi w, with QPi w ∈
(
WP
i

)⊥
and that PPi w is constant on Bi and in particular on ∂Bi. Then, for x ∈ Bi

PPi w(x) =

 
∂Bi

PPi w dS =

 
∂Bi

w −QPi w dS =

 
∂Bi

w dS.
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3.2. Chracterization of W⊥
i and Pi

Lemma 3.6. For w ∈
(
WS
i

)⊥
we have

 
∂Bi

w dS = 0 and

 
∂Bi

(x−Xi) ∧ w dS = 0. (3.8)

Hence, for w ∈ Ḣ1
σ the projection to WS

i satis�es PSi w(x) = V + ω ∧ (x−Xi) for all x ∈ Bi
with

V =

 
∂Bi

w dS and ω =
3

2R2

 
∂Bi

(x−Xi) ∧ w dS. (3.9)

Proof. Again we use, for linear motion and rotation seperately, explicit testfunctions. This
time the drag σn plays the role of the Neumann boundary data. Let w ∈

(
WS
i

)⊥
. Take ϕ

such that −∆ϕ+∇p = 0, divϕ = 0 in R3 \Bi and ϕ = V , V ∈ R3 on Bi. Then ϕ ∈WS
i and

ϕ(x) =
3

4
R

(
V

|x−Xi|
+

(V · (x−Xi)) (x−Xi)

|x−Xi|3

)
+

1

4
R3

(
V

|x−Xi|
− 3

(V · (x−Xi)) (x−Xi)

|x−Xi|3

)
,

for |x−Xi| > R. The drag on the sphere is then given by σ[ϕ]n = 3
2RV (Stokes drag). Then

by the same computation as in Lemma 3.3 we know

0 = 〈w,ϕ〉

= −
ˆ
∂Bi

w · (σ[ϕ]n) dS −
ˆ
R3\Bi

w · div σ[ϕ] dx

= − 3

2R
V ·

ˆ
∂Bi

w dS.

By setting V = e1, e2, e3 this proves the �rst part of (3.8).

Now we take ϕ such that −∆ϕ+∇p = 0, divϕ = 0 in R3 \Bi and ϕ = ω ∧ (x−Xi), ω ∈ R3

on Bi. Then ϕ ∈WS
i and

ϕ(x) = R3ω ∧ (x−Xi)

|x|3
,

for |x−Xi| > R. The drag on the sphere is then given by (σ[ϕ]n) = − 3
Rω ∧ (x−Xi). Then
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3. The dipole approximation

0 = 〈w,ϕ〉

= −
ˆ
∂Bi

w · (σ[ϕ]n) dS −
ˆ
R3\Bi

w · div σ[ϕ] dx

=
3

R

ˆ
∂Bi

w · (ω ∧ (x−Xi)) dS

=
3

R
ω ·

ˆ
∂Bi

(x−Xi) ∧ w dS.

Setting ω = e1, e2, e3 we arrive at the second part of (3.8).

Now for w ∈ Ḣ1
σ we know that w − Piw = Qiw ∈

(
WS
i

)⊥
. On the other hand there are

V, ω ∈ R3 such that Piw(x) = V + ω ∧ (x−Xi) for all x ∈ Bi. But then

0 =

 
∂Bi

Qiw dS

=

 
∂Bi

w − Piw dS

=

 
∂Bi

w dS −
 
∂Bi

V + ω ∧ (x−Xi) dS

=

 
∂Bi

w dS − V,

and hence the �rst part of (3.9) is true.

Also, using the vector rule A ∧ (B ∧ C) = (A · C)B − (A ·B)C for A,B,C ∈ R3:

 
∂Bi

(x−Xi) ∧ (ω ∧ (x−Xi)) dS =

 
∂Bi

ω |x−Xi|2 − (x−Xi) (ω(x−Xi)) dS =
2R2

3
ω,

and therefore

0 =

 
∂Bi

(x−Xi) ∧Qiw dS

=

 
∂Bi

(x−Xi) ∧ (w − Piw) dS

=

 
∂Bi

(x−Xi) ∧ w dS −
 
∂Bi

(x−Xi) ∧ (V + ω ∧ (x−Xi)) dSω

=

 
∂Bi

(x−Xi) ∧ w dS − 2R2

3
ω,
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3.2. Chracterization of W⊥
i and Pi

whence

ω =
3

2R2

 
∂Bi

(x−Xi) ∧ w dS.

As a consequence of these characterizations we obtain a Poincaré inequality on the space(
WP
i

)⊥
, as well as a (�rst) Korn inequality and consequently a Korn-Poincaré inequality on(

WS
i

)⊥
.

Lemma 3.7. Let r > 0 and X ∈ R3. Let p ∈ (1,∞] and let

Hp
X,r :=

{
w ∈W 1,p(Br(X)) :

ˆ
∂Br(X)

w dS = 0

}
.

There is a constant C > 0 that does not depend on X or r such that for all w ∈ Hp
X,r:

‖w‖Lp(Br(X)) ≤ Cr ‖∇w‖Lp(Br(X))

Remark 3.8. This lemma holds for the target space R as well as for R3. In the proof we
will use the notation for R with obvious adjustments for the vector case.

Proof of Lemma 3.7. It is well known, that for closed cones in which∇w = 0 implies that w =
0, such a Poincaré inequality holds. For instructiveness we give the proof here nevertheless.
Let us �rst prove the case p = ∞. If w ∈ H∞X,r, then w is Lipschitz and hence absolutely
continuous on each line whence

w(x) = w(X)+

ˆ 1

0

d

dt
w(tx+(1−t)X) dt = w(X)+(x−X)·

ˆ 1

0

∇w(tx+(1−t)X) dt. (3.10)

Taking
ffl
∂Br(X)

of this expression we arrive at

0 = w(X) +

 
∂Br(X)

(x−X) ·
ˆ 1

0

∇w(tx+ (1− t)X) dt dS.

This gives us the estimate

|w(X)| ≤ r ‖∇w‖L∞(Br(X)) .

Applying this to (3.10) we obtain
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3. The dipole approximation

‖w‖L∞(Br(X)) ≤ 2r ‖∇w‖L∞(Br(X)) .

The proof for general p ∈ (1,∞) will be done indirectly here (although it can, in this case, be
done directly without too much e�ort). We �rst show that ∇w = 0 implies w = 0. Assume
w ∈ Hp

X,r with ∇w = 0. Then, since Br(X) is connected, there is some c ∈ R such that
w = c on Br(X). But then

c =

 
∂Br(X)

w dS = 0,

and therefore w = 0. We �rst prove the result for X = 0, r = 1. Hp
0,1 is a closed cone, i.e.

it is convex and invariant under multiplication with arbitrary α ∈ R (this is due to the fact
that

´
∂Br(X)

w dS = 0 is a linear and closed condition). In the following we will omit the
domain B1(0) in the spaces. Now, for the sake of contradiction, assume there is no C > 0
such that for all w ∈ Hp

0,1:

‖w‖Lp ≤ C ‖∇w‖Lp .

Then there is a sequence wk ∈ Hp
0,1 such that ‖wk‖Lp ≥ k ‖∇wk‖Lp . By rescaling we can

arrange that ‖wk‖W 1,p = 1 for all k ∈ N (since Hp
0,1 is a cone, the wk will still be in Hp

0,1).
But then the sequence is bounded and there is a subsequence (again denoted by wk) and
w∗ ∈ W 1,p such that wk ⇀ w∗ in W 1,p. Note that, since Hp

0,1 is convex, we have that
w∗ ∈ Hp

0,1. On the other hand, we know that

‖∇wk‖Lp ≤
1

k
‖wk‖Lp ≤

1

k
.

Hence ∇wk → 0 in Lp and ∇w∗ = 0 since at the same time ∇wk ⇀ ∇w∗. By our foregoing
considerations ∇w∗ = 0 implies that w∗ = 0.

But this is of course a contradiction, since by the Rellich embedding theorem wk → w∗ = 0
strongly in Lp and hence wk → 0 in W 1,p contradicting ‖wk‖W 1,p = 1 for all k ∈ N.

The case of general X, r follows by noticing that for w ∈ Hp
X,r the translated and rescaled

version w′(x) = w(rx+X) is in Hp
0,1, and ‖w′‖Lp = ‖w‖Lp while ‖∇w′‖Lp = r ‖∇w‖Lp .

Lemma 3.9. Let r > 0 and X ∈ R3. Let p ∈ (1,∞) and let

Hp
σ,X,r :=

{
w ∈W 1,p(Br(X)) :

ˆ
∂Br(X)

w dS = 0,

ˆ
∂Br(X)

(x−X) ∧ w dS = 0

}
.

There is a constant C > 0 that does not depend on X or r, such that for all w ∈ Hp
σ,X,r:

‖∇w‖Lp(Br(X)) ≤ C ‖ew‖Lp(Br(X))
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In order to prove this, we need the following lemma, known as Korn's second inequality for
Lp.

Lemma 3.10 (see [KO88], �2, Theorem 8). Let U ⊂ Rn be bounded and connected with
Lipschitz boundary. Let p ∈ (1,∞). Then there is a constant C > 0 that depends only on p
and U , such that for all u ∈W 1,p(U) there is a skew-symmetric matrix A ∈ R3×3

skew with:

‖∇u−A‖Lp(U) ≤ C ‖eu‖Lp(U) .

Proof of Lemma 3.9. Note that we only need to prove the result for X = 0, r = 1, the case of
general X and r follows simply from the fact that for w ∈ Hp

σ,X,r the translated and rescaled
version w′(x) = w(rx+X) is in Hp

σ,0,1, and ‖ew′‖Lp = r ‖ew‖Lp ,‖∇w′‖Lp = r ‖∇w‖Lp .

Hp
σ,0,1 is a closed cone since the conditions are linear and closed. The proof of the Korn

inequality is indirect and uses the same idea as the proof of the Poincaré inequality in Lemma
3.7. Hence we must �rst prove that for w ∈ Hp

σ,0,1 we have that ew = 0 implies w = 0. This
is understood by noting the well known result that ew = 0 implies that w must be skew-
symmetric a�ne, i.e. ωw is constant with A = Tωw and w(x) = w(0) +Ax = w(0) +ωw ∧ x
for all x ∈ B1(0) (this is also a direct consequence of Lemma 3.10). But now we can use
the two integral boundary conditions in the cone to show that any skew-symmetric a�ne
function in Hp

σ,0,1 already vanishes:

0 =

 
∂B1(0)

w dS

= w(0) +

 
∂B1(0)

Ax dS

= w(0),

0 =

 
∂B1(0)

x ∧ w dS

=

 
∂B1(0)

x ∧ (ωw ∧ x) dS

=
2

3
ωw.

This shows that w = 0.

In the following we will omit the domain B1(0) in the spaces. Now, for the sake of contra-
diction, assume that there is no C > 0 such that

‖∇w‖Lp ≤ C ‖ew‖Lp ,

for all w ∈ Hp
σ,0,1. Then there is a sequence wk ∈ Hp

σ,0,1 such that ‖∇wk‖Lp ≥ k ‖ewk‖Lp .
By rescaling we can arrange that ‖wk‖W 1,p = 1 for all k ∈ N (since Hp

σ,0,1 is a cone the wk
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3. The dipole approximation

will still be in Hp
σ,0,1). But then the sequence is bounded and there is a subsequence (again

denoted by wk) and w∗ ∈W 1,p such that wk ⇀ w∗ in W 1,p. Note that since Hp
σ,0,1 is convex

we have that w∗ ∈ Hp
σ,0,1. On the other hand we know that

‖ewk‖Lp ≤
1

k
‖∇wk‖Lp ≤

1

k
.

Hence ewk → 0 in Lp and ew∗ = 0 since at the same time ewk ⇀ ew∗. By our foregoing
considerations this implies that w∗ = 0.

By compact embedding we know that wk → 0 strongly in Lp. But to reach a contradiction
we also need that the full gradient ∇wk → 0 strongly, not only the symmetrized part. The
key idea is, that by Korn's second inequality the gradient is already close to some constant
skew-symmetric matrix and for constant matrices we have strong compactness.

Indeed, by Korn's second inequality (Lemma 3.10) there exist matrices Ak ∈ R3×3
skew such that

‖∇wk −Ak‖Lp ≤ C ‖ew‖Lp ≤ C
1

k
.

Since ∇wk is bounded in Lp this implies that the sequence (Ak)k must be bounded in R3×3
skew.

But then there is a subsequence (again denoted Ak) such that Ak → A∗. Furthermore we
can pick the subsequence in such a way that

|B1(0)|1/p |Ak −A∗| ≤
1

k
.

Then we have

‖∇wk −A∗‖Lp ≤ ‖∇wk −Ak‖Lp + ‖Ak −A∗‖Lp ≤ (C + 1)
1

k
.

Therefore, ∇wk converges strongly to A∗ in Lp. But at the same time ∇wk ⇀ 0 weakly in
Lp. This yields A∗ = 0 and ∇wk → 0 strongly in Lp and wk → 0 strongly in W 1,p. This is a
contradiction since ‖wk‖W 1,p = 1 for all k ∈ N.

Corollary 3.11. Let p ∈ (1,∞]. There is a constant C > 0 that does not depend on X or r
such that for all w ∈ Hp

σ,X,r:

‖w‖Lp(Br(X)) ≤ Cr ‖ew‖Lp(Br(X)) .

Remark 3.12. Note, that this Korn-Poincaré inequality does hold for p =∞.
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Proof of Corollary 3.11. If p <∞ we can use Lemma 3.7 (in the vector version) on Hp
σ,X,r ⊂

Hp
X,r and Lemma 3.9 to obtain

‖w‖Lp(Br(X)) ≤ Cr ‖∇w‖Lp(Br(X)) ≤ Cr ‖ew‖Lp(Br(X)) .

If p =∞ we further use the Sobolev-embedding W 1,q ↪→ L∞ for q > 3 to get for X = 0 and
r = 1:

‖w‖L∞(B1(0)) ≤ C ‖w‖W 1,q(B1(0)) ≤ C ‖∇w‖Lq(B1(0))

≤ C ‖ew‖Lq(B1(0)) ≤ C |B1(0)|1/q ‖ew‖L∞(B1(0))

The general inequality follows by translation and scaling as seen in Lemma 3.7.

We know that elements of w ∈ W⊥i solve the homogeneous Poisson and Stokes equation
respectively outside Bi. In both cases this coincides with minimizing the respective norm.

Lemma 3.13. Let s ∈ Ḣ1 and −∆s = 0 on R3\V for some closed V with Lipschitz boundary.
Then s minimizes ‖∇w‖L2(R3\V )2 among all w ∈ Ḣ1

σ with w = s on V .

This is well-known and we will not prove it, but it works the same way as

Lemma 3.14. Let s ∈ Ḣ1
σ and −∆s +∇p = 0 on R3 \ V for some closed V with Lipschitz

boundary. Then s minimizes ‖ew‖L2(R3\V )2 among all w ∈ Ḣ1
σ with w = s on V .

Proof. Let s be the minimizer. Then, by taking the variation for all w ∈ Ḣ1
σ with w ∈

Ḣ1
σ,0(R3 \ U) we have (n is the outer normal of V )

0 = 〈s, w〉

= −
ˆ
∂U

w (σ[s]n) dS −
ˆ
R3\U

w div σ[s] dx

= −
ˆ
R3\U

w div σ[s] dx.

This gives −∆s+∇p = 0 on R3 \ U .

By choosing a suitable competitor we can therefore get estimates of the norm of w ∈W⊥i in
terms of its values in Bi. This competitor can be constructed using the following extension
lemmas:
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3. The dipole approximation

Lemma 3.15. There is a constant C > 0 that does not depend on X or r, and an extension
operator EPX,r : HX,r → H1

0 (B2r(X)) such that

∥∥∇EPX,rw∥∥L2(B2r(X))
≤ C ‖∇w‖L2(Br(X)) for all w ∈ H2

X,r.

Proof. Let us �rst considerX = 0, r = 1. Let E0,1 : H1(B1(0))→ H1
0 (B2(0)) be a continuous

extension operator, i.e. ‖E0,1w‖H1(B2(0)) ≤ C ‖E0,1w‖H1(B1(0)) for all w ∈ H
1(B1(0)). The

existence of E0,1 follows from the existence of a bounded extension operator H1(B1(0)) →
H1(R3) (see for example [Eva10]) and the use of a cuto� ϕ ∈ C∞c (B2(0)) with ϕ = 1 in
B1(0). Then

‖∇E0,1w‖L2(B2(0)) ≤ ‖E0,1w‖H1(B2(0)) ≤ C ‖w‖H1(B1(0)) ≤ C ‖∇w‖L2(B1(0)) ,

where the last inequality came from the Poincaré inequality on H2
0,1 (Lemma 3.7). Now

de�ne

EPX,rw(x) = (E0,1wX,r)

(
1

r
(x−X)

)
,

where wX,r(x) = w(r(x+X)). Then

∥∥∇EPX,rw∥∥L2(B2r(X))
=

1

r
‖∇E0,1wX,r‖L2(B2(0)) ≤ C

1

r
‖∇wX,r‖L2(B1(0)) = C ‖∇w‖L2(Br(X)) .

In order to construct an extension operator for the divergence free spaces we will use the
following statement by Bogovskii, that allows the construction of a function with given di-
vergence and Dirichlet boundary data:

Lemma 3.16 ([Bog80]). Let U be a bounded domain with Lipschitz-boundary. Let

L2
0(U) =

{
g ∈ L2(U) :

ˆ
U

g dx = 0

}
.

There is a continuous operator B : L2
0(U)→ H1

0 (U) such that

− divB[g] = g in U.
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Lemma 3.17. There is a constant C > 0 that does not depend on X or r, and an extension
operator ESX,r : H2

σ,X,r → H1
σ,0(B2r(X)) such that∥∥∇ESX,rw∥∥L2(B2r(X))

≤ C ‖ew‖L2(Br(X)) for all w ∈ H2
σ,X,r.

Proof. As in the proof of Lemma 3.15 we can get ESX,r from ES0,1 by translation and scaling
without changing C. Take EP0,1 : H0,1 → H1

0 (B2(0)) from Lemma 3.15. Let

B : L2
0(B2(0) \B1(0))→ H1

0 (B2(0) \B1(0)),

be the Bogowskii-operator from Lemma 3.16 associated to the annulus. Then set

ES0,1w = EP0,1w + B[divEP0,1w].

To show that this is indeed the right choice let us �rst verify that divEP0,1w ∈ L2
0(B2(0) \

B1(0)). We have

ˆ
B2(0)\B1(0)

divEP0,1w dx =

ˆ
∂B2(0)

Ep0,1w dS −
ˆ
∂B1(0)

EP0,1w dS = 0−
ˆ
∂B1(0)

w dS = 0.

Then ES0,1w = w on B1(0) and divES0,1w = divEP0,1w − divEP0,1w = 0. Finally we have

∥∥∇ES0,1w∥∥L2(B2(0))
≤
∥∥ES0,1w∥∥H1(B2(0))

≤ C
∥∥EP0,1w∥∥H1(B2(0)

+ C
∥∥divEP0,1w

∥∥
L2(B2(0))

≤ C
∥∥EP0,1w∥∥H1(B2(0))

≤ C ‖w‖H1(B1(0)) ≤ C ‖∇w‖L2(B1(0)) ≤ C ‖ew‖L2(B1(0)) ,

where the second to last inequality came from the Poincaré inequality on Hσ,0,1 ⊂ H0,1

(Lemma 3.7) while the last is the Korn inequality from Lemma 3.9.

Corollary 3.18. There is a constant C > 0 such that for all w ∈
(
WP
i

)⊥
‖w‖Ḣ1 ≤ C ‖∇w‖L2(Bi)

.

Proof. By Lemma 3.13 w minimizes the L2-norm of the gradient among all functions in Ḣ1

that are equal to w on Bi. Take EPXi,Rw as a competitor, then, due to Lemma 3.15,

‖w‖Ḣ1 ≤
∥∥EPXi,Rw∥∥Ḣ1 =

∥∥∇EPXi,Rw∥∥L2(B2R(Xi))
≤ C ‖∇w‖L2(Bi)

.
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3. The dipole approximation

Corollary 3.19. There is a constant C > 0 such that for all w ∈
(
WS
i

)⊥

‖w‖Ḣ1 ≤ C ‖ew‖L2(Bi)
.

Proof. By Lemma 3.14 w minimizes the L2-norm of the symmetrized gradient among all
functions in Ḣ1

σ that are equal to w on Bi. Take ESXi,Rw as a competitor, then, due to
Lemma 3.17,

‖w‖Ḣ1 = 2 ‖ew‖L2(R3) ≤ 2
∥∥eESXi,Rw∥∥L2(R3)

= 2
∥∥eESXi,Rw∥∥L2(B2R(Xi))

≤ 2
∥∥∇ESXi,Rw∥∥L2(B2R(Xi))

≤ C ‖ew‖L2(Bi)
.

Using the extension lemmas we can furthermore prove the following decay properties of the
dipoles

Lemma 3.20. There is a constant C > 0 such that for all w ∈
(
WP
i

)⊥
and for all x ∈

R3 \B2R(Xi) we have

|w(x)| ≤ C R
3
2

|x−Xi|2
‖w‖Ḣ1 , (3.11)

|∇w(x)| ≤ C R
3
2

|x−Xi|3
‖w‖Ḣ1 . (3.12)

Proof. The main idea of the proof is to represent w as the convolution of its Laplacian with
the fundamental solution. For any function with compactly supported Laplacian this gives a
1
|x| -like decay. The fact that the Laplacian of w integrates to zero due to the dipole property
gives rise to the additional power in the decay.

Let f = −∆w. This means f ∈ Ḣ−1 and

‖f‖Ḣ−1 = ‖w‖Ḣ1 , spt f ⊂ Bi,
ˆ
Bi

f = −
ˆ
∂Bi

∂w

∂n
ds = 0.

In particular combining the last two statements, we have
´
R3 f = 0.

We have w = ΦP ∗ f . Let

(ΦP )x−Xi,R =

 
∂BR(x−Xi)

ΦP .

Then we obtain
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|w(x)| =
∣∣(ΦP ∗ f) (x)

∣∣
=
∣∣((ΦP − (ΦP )x−Xi,R

)
∗ f
)

(x)
∣∣

=
∣∣(EPx−Xi,R (ΦP − (ΦP )x−Xi,R

)
∗ f
)

(x)
∣∣

≤ ‖f‖Ḣ−1

∥∥EPx−Xi,R (ΦP − (ΦP )x−Xi,R
)
)
∥∥
Ḣ1 .

Note that it was only possible to use EP because we �rst subtracted the mean value, so
that the argument of the extension operator is actually in the right space H2

x−Xi,R. Now by
Lemma 3.15 we have

∥∥Ex−Xi,R (ΦP − (ΦP )x−Xi,R
)∥∥
Ḣ1 ≤ C

∥∥∇ΦP
∥∥
L2(BR(x−Xi))

≤ C R
3
2

|x−Xi|2
.

Here, in the last step we just used that |x−Xi| ≥ 2R and hence for y ∈ BR(x − Xi),
|y| ≥ 1

2 |x−Xi|.

Since ∇w = ∇ΦP ∗ f we can do the same computation with ∇Φ, using the decay of ∇2ΦP

to obtain inequality (3.12).

Lemma 3.21. There is a constant C > 0 such that for all w ∈
(
WS
i

)⊥
and for all x ∈

R3 \B2R(Xi) we have

|w(x)| ≤ C R
3
2

|x−Xi|2
‖w‖Ḣ1 , (3.13)

|∇w(x)| ≤ C R
3
2

|x−Xi|3
‖w‖Ḣ1 . (3.14)

Proof. The proof is analogous to the one of Lemma 3.20. Let f = Sw (see section 2.1.1) so
that −∆w +∇p = f . This means f ∈ Ḣ−1

σ and

‖f‖Ḣ−1
σ

= ‖w‖Ḣ1
σ

= ‖w‖Ḣ1 , spt f ⊂ Bi,
ˆ
Bi

f = −
ˆ
∂Bi

σn = 0.

In particular
´
R3 f = 0. Now we use w = ΦS ∗ f and ∇w = ∇ΦS ∗ f to repeat the same

computations as in the proof of Lemma 3.20, using the decay of ∇ΦS and ∇2ΦS . Note, that
even though we are in the Stokes case it is enough to use the Poisson extension operator
EP since we have a good estimate of the full gradient of the fundamental solution. Also,
we did not actually use all conditions on w, so that this decay is valid for a broader class of
functions.
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3.3. Convergence of the method of re�ections

The ultimate goal of the method of re�ections is, to prove that the gradients and the sym-
metrized gradients respectively of the approximations vk approach 0 in L∞ inside the parti-
cles. If w ∈ Ḣ1 has an uniformly bounded gradient in Bi we can get the following estimates

Corollary 3.22. There is a constant C > 0 such that for all w ∈ Ḣ1 ∩W 1,∞(Bi) and for
all x ∈ R3 \B2R(Xi) we have

∣∣QPi w(x)
∣∣ ≤ C R3

|x−Xi|2
‖∇w‖L∞(Bi)

, (3.15)

∣∣∇QPi w(x)
∣∣ ≤ C R3

|x−Xi|3
‖∇w‖L∞(Bi)

. (3.16)

Proof. We have QPi w = w − PPi w. Since PPi w is constant on Bi we have ∇QPi w = ∇w on
Bi.

Since QPi w ∈W⊥i we know from Corollary 3.18 that:

∥∥QPi w∥∥Ḣ1 ≤ C
∥∥∇QPi w∥∥L2(Bi)

= ‖∇w‖L2(Bi)
≤ CR 3

2 ‖∇w‖L∞(Bi)
. (3.17)

Since QPi w ∈W⊥i , we can use Lemma 3.20 to obtain (3.15) and (3.15).

Corollary 3.23. There is a constant C > 0 such that for all w ∈ Ḣ1
σ ∩W 1,∞(Bi) and for

all x ∈ R3 \B2R(Xi) we have

∣∣QSi w(x)
∣∣ ≤ C R3

|x−Xi|2
‖ew‖L∞(Bi)

, (3.18)

∣∣∇QSi w(x)
∣∣ ≤ C R3

|x−Xi|3
‖ew‖L∞(Bi)

. (3.19)

Proof. We know that QSi w = w−PSi w and since PSi w is a rigid body motion on Bi we have
ePSi w(x) = 0 for all x ∈ Bi and hence eQSi w = ew on Bi.

Since QSi w ∈W⊥i we know from Corollary 3.19 that:

∥∥QSi w∥∥Ḣ1 ≤ C
∥∥eQSi w∥∥L2(Bi)

= ‖ew‖L2(Bi)
≤ CR 3

2 ‖ew‖L∞(Bi)
. (3.20)

Since QSi w ∈W⊥i , we can use Lemma 3.21 to obtain (3.18) and (3.18).

In order to prove the main approximation statement of this chapter we need some estimates
for recurring sums (also see Lemma 2.1 of [JO04] for the �rst two inequalities):
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Lemma 3.24. There is a constant C > 0 such that

∑
j 6=i

1

dij
≤ CN

2
3

d
≤ CN, (3.21)

∑
j 6=i

1

d2
ij

≤ CN
1
3

d2
≤ CN, (3.22)

∑
j 6=i

1

d3
ij

≤ C logN

d3
≤ CN logN, (3.23)

∑
j 6=i

1

d4
ij

≤ C 1

d4
≤ CN 4

3 . (3.24)

The proof can be found in the appendix.

Corollary 3.25. There is a constant C > 0 such that for all x ∈ R3 the following holds.
Let 1 ≤ i ≤ N such that |x−Xi| ≤ |x−Xj | for any 1 ≤ j ≤ N , i.e. Xi is the centre of the
particle closest to x. Then we have

∑
j 6=i

1

|x−Xj |
≤ CN

2
3

d
≤ CN, (3.25)

∑
j 6=i

1

|x−Xj |2
≤ CN

1
3

d2
≤ CN, (3.26)

∑
j 6=i

1

|x−Xj |3
≤ C logN

d3
≤ CN logN, (3.27)

∑
j 6=i

1

|x−Xj |4
≤ C 1

d4
≤ CN 4

3 . (3.28)

(3.29)

Proof. We have to show that |x−Xj | ≥ 1
2 |Xi −Xj |. Then the inequalities (3.25), (3.26),

(3.27) and (3.28) follow from Lemma 3.24. Suppose that the inequality is false, i.e. |x−Xj | <
1
2 |Xi −Xj |, then

|x−Xi| ≥ ||Xi −Xj | − |x−Xj || = |Xi −Xj | − |x−Xj | ≥
1

2
|Xi −Xj | > |x−Xj | ,

which is a contradiction to the fact that Xi is the closest centre point to x.

We will also use a maximum modulus theorem for the Stokes equation:

49



3. The dipole approximation

Lemma 3.26 ([MRS99]). Let Ω ⊂ R3 be an exterior domain (a domain with bounded com-
plement) and assume that g ∈ C0(ΩC) satis�es

ˆ
∂Ω

g · n dS = 0.

Then, there is a constant C > 0 that depends only on Ω, such that the unique solution
u ∈ Ḣ1

σ(R3) of the Dirichlet problem

−∆u+∇p = 0 in Ω,

div u = 0 in Ω,

u = g on ΩC ,

satis�es

‖u‖L∞ ≤ C ‖g‖L∞ .

Remark 3.27. We will use this statement only for Ω being the exterior of a ball. The constant
is invariant under translation and scaling of the ball: Let g ∈ C(Br(X)) with

´
∂Br(X)

g ·
n dS = 0 be given. De�ne g′(x) = g(r(x+X)). Then g′ ∈ C0(B1(0)) and

´
∂B1(0)

g′ ·n dS = 0

and the solution u′ to the homogeneous Stokes equation outside B1(0) satis�es

‖u′‖L∞ ≤ C ‖g
′‖L∞ .

But then we have

‖u‖L∞ = ‖u′‖L∞ ≤ C ‖g
′‖L∞ = C ‖g‖L∞ ,

with the same constant C.

We are now able to prove the convergence of the method of re�ections. We recall the de�nition
of the dipole approximations (3.6):

vk =

(
Id−

N∑
i=1

Qi

)k
v.
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3.3. Convergence of the method of re�ections

Theorem 3.28. There is ε > 0 such that if φ logN < ε, we have vk → u in Ḣ1 and L∞(R3)
for k →∞ and in particular

‖u− v1‖L∞ ≤ φo(1), as N →∞.

Proof. The strategy of the proof is the following. We �rst establish that for all vk we
have Pvk = u where P is the projection onto W . Using this we know that ‖u− vk‖Ḣ1 ≤
‖w − vk‖Ḣ1 for all w ∈ W . With the use of the extension operators EP and ES we then
construct suitable competitors in W to obtain (in the Poisson case)

‖u− vk‖2Ḣ1 ≤ C
N∑
i=1

R3 ‖∇vk‖2L∞(∪Bi) .

Using that ∇vk −∇QPi vk = 0 on Bi and the decay of ∇QPj vk for j 6= i (Corollary 3.22) to-
gether with Corollary 3.25 gives an estimate of the form ‖∇vk+1‖L∞(∪Bi) ≤ Cφ logN ‖∇vk‖L∞(∪Bi).

By the smallness of φ logN we obtain vk → u in Ḣ1. For the convergence in L∞ we can use
the same decay techniques together with the maximum principle and the maximum modulus
theorem respectively.

We �rst prove that Pvk = u for all k ∈ N. We already know that v0 = v satis�es this
equality. Now assume that is holds for some k ∈ N. Since vk+1 = vk −

∑N
i=1Qivk we need

only show that PQi = 0 for all i = 1, . . . , N . We know that Qiw ∈ W⊥i for all w ∈ Ḣ1 and
Ḣ1
σ respectively. But since W ⊂ Wi we have that W⊥i ⊂ W⊥. Since P is the orthogonal

projection onto W and Qiw ∈W⊥ it follows that PQi = 0. This implies that

‖u− vk‖Ḣ1 ≤ ‖w − vk‖Ḣ1 for all w ∈W. (3.30)

By choosing a suitable w we obtain a bound for ‖u− vk‖Ḣ1 .

We �rst consider the Poisson case. Let

w = vk −
N∑
i=1

EPXi,RQ
P
i vk.

By Assumption (3) (d > 4R), we know that the supports of the EPXi,RQ
P
i vk are disjoint.

Hence we have for x ∈ Bi: w(x) = vk(x) −QPi vk(x) = PPi vk(x). Therefore w ∈ WP . Then
we have
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3. The dipole approximation

‖w − vk‖2Ḣ1 =

∥∥∥∥∥
N∑
i=1

EPXi,RQ
P
i vk

∥∥∥∥∥
2

Ḣ1

=

N∑
i=1

∥∥EPXi,RQPi vk∥∥2

Ḣ1

≤ C
N∑
i=1

∥∥∇QPi vk∥∥2

L2(Bi)
= C

N∑
i=1

‖∇vk‖2L2(Bi)

≤ C
N∑
i=1

R3 ‖∇vk‖2L∞(∪Bj) = Cφ ‖∇vk‖2L∞(∪Bj) .

At this point it is not yet clear that ∇vk ∈ L∞(∪Bi). We prove this now. To estimate ∇vk
in L∞(Bi) suppose we already know that ∇vk−1 ∈ L∞(∪Bj) and observe that for x ∈ Bi:

∇vk(x) = ∇

vk−1 −
N∑
j=1

QPj vk−1

 =
∑
j 6=i

∇QPj vk−1,

since vk−1−QPi vk−1 = PPi vk−1 is constant in Bi. Using (3.16) in Corollary 3.22 and Corollary
3.25 this leads to the following estimate:

|vk(x)| ≤ C
∑
j 6=i

R3

|x−Xj |3
‖∇vk−1‖L∞(Bj)

≤ CN logNR3 ‖∇vk−1‖L∞(∪Bj) .

Therefore we have

‖∇vk‖L∞(Bi)
≤ Cφ logN ‖∇vk−1‖L∞(∪Bj) .

In particular ∇vk ∈ L∞(∪Bj). By iterating this argument we see that there is C > 0 such
that

‖∇vk‖L∞(∪Bi) ≤ (Cφ logN)
k ‖∇v‖L∞(∪Bi) .

It remains to see that ∇v ∈ L∞(∪Bj). For this we estimate
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3.3. Convergence of the method of re�ections

|∇v(x)| =

∣∣∣∣∣
ˆ
R3

(1−
N∑
k=1

χBk(y))∇ΦP (x− y)f(y) dy

∣∣∣∣∣
≤ C

ˆ
R3

|f(y)| 1

|x− y|2
dy

≤ C ‖f‖L2

ˆ
R3\B1(0)

1

|y|4
dy + C ‖f‖L∞

ˆ
B1(0)

1

|y|2
dy

≤ C ‖f‖L2 + C ‖f‖L∞
≤ C

Therefore actually ∇v ∈ L∞(R3). Thus all estimates made before are well-de�ned. Recalling
(3.30) this means that

‖u− vk‖2Ḣ1 ≤ φ (Cφ logN)
k ‖∇v‖L∞(∪Bj)

and hence that vk → u in Ḣ1 if φ logN < 1
C = ε.

The convergence also holds in L∞. To prove this we take some x ∈ R3 and take Xi to be the
centre of the particle closest to x. Then, employing (3.15) and the maximum principle, we
obtain

|vk+1(x)− vk(x)| =

∣∣∣∣∣∣
N∑
j=1

QPj vk(x)

∣∣∣∣∣∣
≤
∑
j 6=i

∣∣QPj vk(x)
∣∣+
∣∣QPi vk(x)

∣∣
≤ C

∑
j 6=i

R3

|x−Xi|2
‖∇vk‖L∞(∪Bj) + C

∥∥∥∥vk −  
∂Bi

vk

∥∥∥∥
L∞(Bi)

≤ CR3N ‖∇vk‖L∞(∪Bj) + CR ‖∇vk‖L∞(Bi)

≤ C(φ+R) (Cφ logN)
k ‖∇v‖L∞(∪Bj) .

We used Corollary 3.25 and the Poincaré inequality on H∞Xi,R (Lemma 3.7) in the third line.

Summing up we obtain

∞∑
j=k

(vj+1(x)− vj(x)) ≤
∞∑
j=k

|vj+1(x)− vj(x)|

≤ C
∞∑
j=k

(φ+R) (Cφ logN)
j

≤ C(φ+R) (Cφ logN)
k
.
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3. The dipole approximation

Here we already assumed that φ logN < 1
C . Since the sum is absolutely convergent this

means in particular that limk→∞ vk(x) exists for every x. But since vk → u in Ḣ1 this
implies u(x) = limk→∞ vk(x) whence

|u(x)− vk(x)| =

∣∣∣∣∣∣
∞∑
j=k

(vj+1(x)− vj(x))

∣∣∣∣∣∣ ≤ C(φ+R) (Cφ logN)
k
.

Since R logN ≤ CRN 1
3 = Cφ

1
3 we know that R logN → 0 as N →∞ and hence we obtain

‖u− v1‖L∞(R3) ≤ φo(1), N →∞.

Now we come to the Stokes case. Let

w = vk −
N∑
i=1

ESXi,RQ
S
i vk.

By Assumption (3) we know that the supports of the ESXi,RQ
S
i vk are disjoint. Hence, for

x ∈ Bi we have: w(x) = vk(x)−QSi vk(x) = PSi vk(x). Therefore w ∈WS . Then we have

‖w − vk‖2Ḣ1 =

∥∥∥∥∥
N∑
i=1

ESXi,RQ
S
i vk

∥∥∥∥∥
2

Ḣ1

=

N∑
i=1

∥∥ESXi,RQSi vk∥∥2

Ḣ1

≤ C
N∑
i=1

∥∥eQSi vk∥∥2

L2(Bi)
= C

N∑
i=1

‖evk‖2L2(Bi)

≤ C
N∑
i=1

R3 ‖evk‖2L∞(∪Bi) = Cφ ‖evk‖2L∞(∪Bi) .

Again, it is not clear a priori whether evk ∈ L∞(∪Bi). But exactly the same computation
as for ∇v in the Poisson case with ΦP replaced by ΦS shows that ∇v ∈ L∞(R3) and hence
ev ∈ L∞(R3). We now iteratively estimate evk in L∞ by the L∞ norm of evk−1 on ∪Bj . We
observe that for x ∈ Bi:

evk(x) = e

vk−1 −
N∑
j=1

QSj vk−1

 =
∑
j 6=i

eQSj vk−1,

since vk−1 −QSi vk−1 = PSi vk−1 has vanishing symmetrized gradient in Bi. Using (3.19) and
Corollary 3.25 this leads to:
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3.3. Convergence of the method of re�ections

|evk(x)| ≤ C
∑
j 6=i

R3

|x−Xj |3
‖evk−1‖L∞(Bj)

≤ CN logNR3 ‖evk−1‖L∞(∪Bj) .

Therefore

‖evk‖L∞(∪Bj) ≤ Cφ logN ‖evk−1‖L∞(∪Bj) .

By iterating this argument we see that

‖evk‖L∞(∪Bj) ≤ (Cφ logN)
k ‖ev‖L∞(∪Bj) .

This means that

‖u− vk‖2Ḣ1 ≤ φ (Cφ logN)
k ‖ev‖L∞(∪Bj)

and hence that vk → u in Ḣ1 if φ logN < 1
C = ε.

Again, the convergence also holds in L∞. To demonstrate this, we take some x ∈ R3 and take
Xi to be the centre of the particle closest to x. Note that for x ∈ Bi by the Korn-Poincaré
inequality from Corollary 3.11 we have

∣∣QSi vk(x)
∣∣ ≤ CR ‖evk‖L∞(∪Bj) .

But by the maximum modulus Lemma 3.26 we have the same inequality (with a larger
constant) for general x. Then

|vk+1(x)− vk(x)| =

∣∣∣∣∣∣
N∑
j=1

Qjvk(x)

∣∣∣∣∣∣
≤
∑
j 6=i

|Qjvk(x)|+ |Qivk(x)|

≤ C
∑
j 6=i

R3

|x−Xi|2
‖evk‖L∞(∪Bj) + CR ‖evk‖L∞(∪Bj)

≤ C(φ+R) (Cφ logN)
k ‖ev‖L∞(∪Bj) .

The rest of the argument is exactly the same as for the Poisson case so that we obtain

‖u(x)− vk(x)‖L∞(R3) ≤ C(φ+R) (Cφ logN)
k
.
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3. The dipole approximation

This implies

‖u− v1‖L∞ ≤ φo(1), N →∞.

3.4. The explicit dipole approximation

We now have a dipole approximation that is close enough to u. The next step is to show that
this approximation is close to another, more explicit, dipole approximation. We need this
explicit approximation in order to relate the dipoles to the fundamental solution. To do so

we need to handle terms of the form (x−Xk)⊗l

|x−Xk|n . If one considers the di�erence of such terms
with arguments that are close then one gets an additional power in the denominator.

Lemma 3.29. There is a constant C > 0 such that for x, z ∈ R3 with |x−Xi| ≤ 1
2 |Xi − z|

and all n > l ≥ 0 and k 6= i we have the following estimate:∣∣∣∣ (x− z)⊗l|x− z|n
− (Xi − z)⊗l

|Xi − z|n
∣∣∣∣ ≤ C |x−Xi|

|Xi − z|n−l+1
.

Proof. We have |x− z| ≥ 1
2 |Xi − z|. First we set

g(y) =
(y − z)⊗l

|y − z|n
.

Observe that for y ∈ B|x−Xi|(Xi):

|∇g(y)| ≤ C 1

|y − z|n−l+1
≤ C 1

|Xi − z|n−l+1
,

since |y − z| ≥ 1
2 |Xi − z|. Then

|g(x)− g(Xi)| =
ˆ 1

0

d

dt
g((1− t)Xi + tx) dt

≤ |x−Xi|
ˆ 1

0

|∇g((1− t)Xi + tx)| dt

≤ C |x−Xi|
|Xi − z|n−l+1

.
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3.4. The explicit dipole approximation

The gradient of the dipoles di and QPi v inside the balls is ∇v(Xi) and ∇v(x) respectively.
We need the di�erence of those two terms to be small.

Lemma 3.30. There is a constant C > 0 such that for x ∈ B2L(0) and a = |x−Xi|

|∇v(Xi)−∇v(x)| ≤ C
(
φ

1
4 + a+ aα

)
.

Remark 3.31. In particular, taking a < R we have

‖∇v(Xi)−∇v‖L∞(Bi)
≤ C

(
φ

1
4 +R+Rα

)
≤ o(1), as N →∞.

Proof of Lemma 3.30. The idea of the proof is the following. If v was in C2 this could be
proved easily by Taylor expansion. But we cannot expect v to be two times di�erentiable
since fN is zero on the particles and hence in general not continuous. Still, the function that
is subtracted from f to obtain fN is supported only on the particles and hence should have
a contribution vanishing with φ. This can be made clear by writing ∇v = ∇Φ ∗ fN . For the
part that remains we expect Hölder continuity, since f is Hölder continuous.

We know:

|∇v(Xi)−∇v(x)| =

∣∣∣∣∣
ˆ
R3

(1−
N∑
k=1

χBk(y))f(y) (∇Φ(Xi − y)−∇Φ(x− y)) dy

∣∣∣∣∣ .
As proposed above we split the term into a part with the pure f and a part that incorporates
the characteristic functions of the particles. Let us �rst estimate the latter

∣∣∣∣∣
ˆ
R3

N∑
k=1

χBk(y)f(y) (∇Φ(Xi − y)−∇Φ(x− y)) dy

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
BL(0)

N∑
k=1

χBk(y)f(y) (∇Φ(Xi − y)−∇Φ(x− y)) dy

∣∣∣∣∣
≤ ‖f‖L∞

∥∥∥∥∥
N∑
k=1

χBk

∥∥∥∥∥
L4

‖∇Φ‖
L

4
3 (B3L(0))

≤ Cφ 1
4 .

Here we used that |∇Φ(x)| ≤ C 1
|x|2 ∈ L

4
3 (B3L(0)). For the other terms we compute:
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3. The dipole approximation

∣∣∣∣ˆ
R3

f(y) (∇Φ(Xi − y)−∇Φ(x− y)) dy

∣∣∣∣
=

∣∣∣∣∣
ˆ
R3\B3L(0)

f(y) (∇Φ(Xi − y)−∇Φ(x− y)) dy

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
B3L(0)

f(y) (∇Φ(Xi − y)−∇Φ(x− y)) dy

∣∣∣∣∣
≤ ‖f‖L2

∥∥∥∥∥ a

|Xi − y|3

∥∥∥∥∥
L2(R3\B3L(0))

+

∣∣∣∣∣
ˆ
B3L(Xi)∩B3L(x)

(f(Xi − y)− f(x− y))∇Φ(y) dy

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
B3L(Xi)\B3L(x)

f(Xi − y)∇Φ(y) dy

∣∣∣∣∣+

∣∣∣∣∣
ˆ
B3L(x)\B3L(Xi)

f(x− y)∇Φ(y) dy

∣∣∣∣∣
≤ C

(
a+ aα[f ]α ‖∇Φ‖L1(B3L(Xi)∩B3L(x)) + a(3L)2 ‖f‖L∞

1

L2

)
≤ C (a+ aα) .

Here we used Lemma 3.29 in the second line and Hölder continuity of f as well as decay
properties of ∇Φ. This gives us

|∇v(Xi)−∇v(x)| ≤ C
(
φ

1
4 + a+ aα

)
.

We recall the explicit dipoles

dPi (x) =

{
∇v(Xi)(x−Xi) , for |x−Xi| ≤ R,
∇v(Xi)R

3 x−Xi
|x−Xi|3

, otherwise.

and

dSi (x) =


ev(Xi)(x−Xi) , for |x−Xi| ≤ R,
5
2R

3
(

(x−Xi)((x−Xi)·ev(Xi)(x−Xi))
|x−Xi|5

)
+R5

(
ev(Xi)(x−Xi)
|x−Xi|5

− 5
2

(x−Xi)((x−Xi)·ev(Xi)(x−Xi))
|x−Xi|7

)
, otherwise.

Corollary 3.32. For x ∈ R3 \B2R(Xi) we have

|di(x)−Qiv(x)| ≤ R3

|x−Xi|2
o(1), as N →∞.
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3.4. The explicit dipole approximation

Proof. By computation we see that di ∈W⊥i and hence di(x)−Qiv ∈W⊥i . For the Poisson
case, applying Corollary 3.22 we obtain

∣∣dPi (x)−QPi v(x)
∣∣ ≤ C R3

|x−Xi|2
∥∥∇dPi −∇QPi v∥∥L∞(Bi)

.

But for x ∈ Bi, using Lemma 3.30 (and Remark 3.31), we know:

∣∣∇dPi (x)−∇QPi v(x)
∣∣ = |∇v(Xi)−∇v(x)| = o(1).

For the Stokes case, applying Corollary 3.23 we obtain

∣∣dSi (x)−QSi v(x)
∣∣ ≤ C R3

|x−Xi|2
∥∥edSi − eQSi v∥∥L∞(Bi)

.

And for x ∈ Bi, with Lemma 3.30, we have:∣∣edSi (x)− eQSi v(x)
∣∣ = |ev(Xi)− ev(x)| ≤ |∇v(Xi)−∇v(x)| = o(1).

It remains to use Corollary 3.32 to prove that the di�erence between the whole dipole ap-
proximations is small. The singularities of the dipoles are quite strong, which forces us to
keep some distance from the particle centres when attempting to prove closeness. There-
fore take a sequence δN > 0 such that 1

(δN )2N
→ 0 and δ

d → 0 as N → ∞. In particular

N−
1
2 ≤ CδN ≤ CN−

1
3 . For example one could take δN = N−βd for some small 0 < β < 1

6 .
Then we de�ne r = max(2R, δ). Furthermore we de�ne the domain with extended holes

ΩNδ = R3 \ ∪Ni=1Br(Xi).

Finally we recall the de�nition

ũ = v −
N∑
i=1

di. (3.31)

Lemma 3.33. We have

‖v1 − ũ‖L∞(ΩNδ ) ≤ φo(1), as N →∞.
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3. The dipole approximation

Proof. We have

v1 − ũ =

N∑
i=1

Qiv − di.

Take x ∈ ΩNδ and take Xi to be the next centre point. Then by Corollary 3.32

|Qiv(x)− di(x)| ≤ R3

|x−Xi|2
o(1) ≤ R3δ−2o(1) ≤ R3No(1) ≤ φo(1).

For the dipoles, that are further away, we use Corollary 3.32 and Corollary 3.25 to get

∣∣∣∣∣∣
∑
j 6=i

(Qjv(x)− dj(x))

∣∣∣∣∣∣ ≤ o(1)
∑
j 6=i

R3

|x−Xi|2
≤ R3No(1) = φo(1).

We now want to get a similar estimate inside the particles. We have just seen, for x ∈ Bi:

|di(x)−Qiv(x)| ≤ R ‖∇di −∇Qiv‖L∞(Bi)
≤ CR(φ

1
4 +R+Rα).

Even if we use that both the �rst and the second derivative of v are Hölder continuous and
hence bounded if one takes f instead of fN as a right hand side, this improves the (optimal)
estimate only slightly to contain R2 as one of the smallest terms. This is, in general, not
of the type φo(1). So instead of an estimate in L∞ we aim for an estimate in Lp for some
p ≥ 1. In order to estimate the di�erence v1 − ũ in this space we only need to consider the
di�erence of the dipoles originated at the closest particle. So we �nd approximately:

‖v1 − ũ‖Lp(∪Ni=1Bi)
=

(
N∑
i=1

ˆ
Bi

|v1(x)− ũ(x)|p dx

) 1
p

∼

(
N∑
i=1

ˆ
Bi

|Qiv(x)− di(x)|p dx

) 1
p

≤ C

(
N∑
i=1

ˆ
Bi

(Ro(1))
p

dx

) 1
p

≤ C

(
N∑
i=1

R3+p

) 1
p

o(1)

=
(
NR3+p

) 1
p o(1)

= φ
1
3 + 1

pN−
1
3 o(1),
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3.4. The explicit dipole approximation

where we used Lemma 3.7 and Remark 3.31 in the third line. For this to be of type φo(1)
we need p ≤ 3

2 . Notice that on the other hand the dipoles decay like 1
|x|2 . This is only in

Lp(R3 \ BL(0)) for p > 3
2 . Therefore, the powers just fall short of each other so that, using

the explicit form of the o(1) term, it might be possible to �nd a common p = 3
2 + ε for which

we have closeness on the whole space. But it is clear what the decay is far away from the
particles anyway and going from p = 3

2 to p = 3
2 + ε next to the particles does not seem

particularly important. So we refrain from trying to prove closeness on the whole space for
Lp. If we ignore the decay at in�nity and just look at sets of bounded measure the answer
above is correct.

Lemma 3.34. Let U ⊂ R3 be be of �nite measure. For p ∈ [1, 3
2 ] it holds:

‖v1 − ũ‖Lp(U) ≤ φo(1).

Proof. First of all note that by Lemma 3.33 we only need to prove the statement for U =
∪Ni=1Br(Xi). Let x ∈ U , then x ∈ Br(Xi) for one and only one i because of Assumption (2).
By the proof of Theorem 3.33 we only need to consider the dipole di−Qiv because the other
dipoles behave exactly the same as outside Br(Xi), giving L∞ estimates. If x ∈ B2R(Xi), by
the maximum principle plus Lemma 3.7 as well as Lemma 3.30, we have:

∣∣QPi v(x)− dPi (x)
∣∣ ≤ CR ∣∣∇QPi v(x)−∇dPi (x)

∣∣ = R |∇v(x)−∇v(Xi)| ≤ Ro(1).

and by Lemma 3.26 plus 3.11 as well as Lemma 3.30:

∣∣QSi v(x)− dSi (x)
∣∣ ≤ CR ∣∣eQPi v(x)− edPi (x)

∣∣ = R |ev(x)− ev(Xi)| ≤ R |∇v(x)−∇v(Xi)| ≤ Ro(1).

By the computation done before the lemma this gives ‖v1 − ũ‖Lp(∪Ni=1B2R(Xi))
≤ φo(1). If

r = 2R we are done. Otherwise observe that for |x−Xi| ∈ (2R, δ) we can use Corollary 3.32
and get

‖v1 − ũ‖Lp(∪Bδ(Xi)\B2R(Xi))
≤ o(1)

(
N

ˆ δ

2R

R3p 1

|x|2p
dx

) 1
p

+ o(1)φ

≤ o(1)
(
Nδ3−2pR3p

) 1
p + o(1)φ

≤ o(1)N
1
pR3 + o(1)φ

≤ φo(1).

This was the computation for p 6= 3
2 . If p = 3

2 we get
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3. The dipole approximation

‖v1 − ũ‖Lp(∪Bδ(Xi)\B2R(Xi))
≤ C

(
φ

1
4 +Rα +R

)
N

1
pR3 (log δ − log 2R)

= φN−
1
3 (− logR)

(
φ

1
4 +Rα +R

)
.

= φo(1).

Here we used that −Rα logR→ 0 and

−N− 1
3φ

1
4 logR ≤ CR− 1

2N−
1
3φ

1
4 ≤ Cφ− 1

6N−
1
6φ

1
4 = o(1).
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4. Homogenization

In this chapter we relate the approximation ũ to the solution of a homogenized equation on
the whole space.

4.1. From the microscopic approximation to a

homogenized equation

Assumption (5) tells us that the rescaled volume density ρN ⇀ ρ in some Lp(R3), p > 3. The
solution v to the reference problem without particles involves the individual particles on the
right hand side and is therefore not in a good form for the treatment of the limit problem.
Therefore we �rst prove that v is close to the solution v̂ of the following problems:

−∆v̂ = (1− φρ)f in R3, (4.1)

v̂(x)→ 0 as |x| → ∞, (4.2)

in the Poisson case and

−∆v̂ +∇p = (1− φρ)f in R3, (4.3)

div v̂ = 0 in R3, (4.4)

v̂(x)→ 0 as |x| → ∞, (4.5)

in the Stokes case.

Lemma 4.1. For the solution v of problem (3.1)-(3.2) or problem (3.3)-(3.5) and the solution
v̂ of problem (4.1)-(4.2) or problem (4.3)-(4.5) respectively it holds that

‖v − v̂‖W 1,∞(ΩNδ ) ≤ φo(1).

Let U ⊂ R3 be of �nite measure and p ∈ [1, 3]. Then

‖v − v̂‖Lp(U) ≤ φo(1).
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4. Homogenization

Proof. The idea of the proof is to represent v, v̂ in terms of the fundamental solution. Since
there is a φ in front of ρ and ρN is close to ρ in a weak sense (when convoluted with the
fundamental solution), we can replace ρ by ρN . We can furthermore ignore terms at regions
that are close to the point in question since they are small anyway. For regions further away
from the point, the number density ρN looks approximately like the rescaled sum of the
characteristic functions of the particles.

We write v, v̂ by means of the fundamental solution to see that

|v(x)− v̂(x)| =

∣∣∣∣∣
ˆ
R3

(
N∑
k=1

χBk(y)− φρ(y)

)
Φ(x− y)f(y) dy

∣∣∣∣∣ .
The proof comes in four parts. The �rst part shows that we can replace ρ by ρN and that
particles close to x can be ignored, the second part establishes the closeness of the functions
in L∞ while the third part is concerned with the closeness of the gradients in L∞. In the
last part the necessary Lp estimates are shown.

Part 1: We can replace ρ by ρN since

∣∣∣∣ˆ
R3

(φρN (y)− φρ(y))Φ(x− y)f(y) dy

∣∣∣∣ = φ

∣∣∣∣∣
ˆ
BL+1(0)

(ρN (y)− ρ(y))Φ(x− y)f(y) dy

∣∣∣∣∣ = φo(1),

because ρN ⇀ ρ in Lp(BL+1(0)) and fΦ(x− ·) ∈ Lq(BL+1(0)) where q is the Hölder dual of
p and hence q < 3

2 .

Let Xi be the closest centre point to x. Then we can ignore the ith term in the sum:

∣∣∣∣ˆ
R3

χBi(y)Φ(x− y)f(y) dy

∣∣∣∣ ≤ CR3 1

δ
≤ CR3N

1
2 = φN−

1
2 = φo(1),

and we can replace χBk by 4π
3 R

3δXk using Lemma 3.29 and Corollary 3.25:

∣∣∣∣∣∣
ˆ
R3

∑
k 6=i

(χBk(y)− 4π

3
R3δXk)Φ(x− y)f(y) dy

∣∣∣∣∣∣ ≤ Cφ 1

N

∑
k 6=i

 
Bk

|Φ(x− y)− Φ(x−Xk)| dy

≤ Cφ 1

N

∑
k 6=i

R

|x−Xk|2
dy

≤ CφR = φo(1).

Therefore, what is left to show is
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4.1. From the microscopic approximation to a homogenized equation

∣∣∣∣∣∣ 1

N

∑
k 6=i

4π

3
Φ(x−Xk)f(Xk)−

ˆ
R3

ρN (y)Φ(x− y)f(y) dy

∣∣∣∣∣∣ = o(1).

We can ignore the contributions by particles in the range s :

∣∣∣∣∣
ˆ
Bs(x)

ρN (y)Φ(x− y)f(y) dy

∣∣∣∣∣ ≤ C
ˆ
Bs(x)

1

|x− y|
dy

≤ Cs2 = o(1),∣∣∣∣∣∣ 1

N

∑
k 6=i,|x−Xk|≤s

Φ(x−Xk)f(Xk)

∣∣∣∣∣∣ ≤ C 1

N

∑
k 6=i,|x−Xk|≤s

1

|x−Xk|

≤ C 1

N

1

d

(
s3

d3

) 2
3

≤ Cs2 = o(1).

Here we used that ρN is uniformly bounded in the range s there can only be a number of
particles ≤ C s3

d3 and then applied Corollary 3.25 with N = s3

d3 .

The above reasoning applies to particles in the range of 3s in the same way. This means we
can ignore all cubes Aj that intersect the boundary ∂Bs(x) since they will be included in
B3s(x) anyway.

Part 2: Therefore estimating the di�erence above reduces to estimating the di�erence of
appropriately grouped terms in the sum to its corresponding parts (the cube Aj) of the
integral. This means we want to estimate

∑
j:dist(Aj ,x)>s

∣∣∣∣∣∣4π3 1

Ns3

∑
Xk∈Aj

ˆ
Aj

f(Xk)Φ(x−Xk)− f(y)Φ(x− y) dy

∣∣∣∣∣∣ = o(1).

Using Hölder-continuity of f and Lemma 3.29 we have

|(f(Xk)− f(y))Φ(x−Xk)| ≤ C sα

|x−Xk|
,

|f(y) (Φ(x−Xk)− Φ(x− y))| ≤ C s

|x−Xk|2
.

Hence, using Corollary 3.25:
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4. Homogenization

∑
j:dist(Aj ,x)>s

∣∣∣∣∣∣4π3 1

Ns3

∑
Xk∈Aj

ˆ
Aj

f(Xk)Φ(x−Xk)− f(y)Φ(x− y) dy

∣∣∣∣∣∣
≤ C

∑
j:dist(Aj ,x)>s

∣∣∣∣∣∣4π3 1

N

∑
Xk∈Aj

sα

|x−Xk|
+

4π

3

1

N

∑
Xk∈Aj

s

|x−Xk|2

∣∣∣∣∣∣
≤ C s

α

N

∑
k 6=i

1

|x−Xk|
+ C

s

N

∑
k 6=i

1

|x−Xk|2

≤ C (sα + s) = o(1).

Part 3: In order to understand that the estimate holds for the gradient note that

|∇v(x)−∇v̂(x)| =

∣∣∣∣∣
ˆ
R3

(

N∑
k=1

χBk(y)− φρ(y))∇Φ(x− y)f(y) dy

∣∣∣∣∣ .
We can now reproduce all the steps from the proof above using the fact that

• ρN ⇀ ρ in Lp(BL+1(0)) and f∇Φ(x − ·) ∈ Lq(BL+1(0)), since 1
|x|2 is q-integrable for

q < 3
2 ;

• 1
δ2N → 0, so∣∣∣∣ˆ

R3

χBi(y)∇Φ(x− y)f(y) dy

∣∣∣∣ ≤ CR3 1

δ2
= R3 1

δ2N
N = φo(1);

•

φ
1

N

∑
k 6=i

R

|x−Xk|3
dy ≤ Cφ logNR ≤ CφN 1

3R = φ
4
3 = φo(1);

•
ˆ
Bs(x)

1

|x− y|2
dy ≤ Cs = o(1),

1

N

∑
k 6=i,|x−Xk|≤s

1

|x−Xk|2
≤ C 1

N

1

d2

(
s3
N

d3

) 1
3

≤ Cs = o(1);

•

sα

N

∑
k 6=i

1

|x−Xk|2
≤ Csα = o(1);
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4.1. From the microscopic approximation to a homogenized equation

•
s

N

∑
k 6=i

1

|x−Xk|3
≤ Cs logN = o(1).

This gives

|∇v(x)−∇v̂(x)| = φo(1).

Part 4: In order to get the Lp result simply notice that we can use the L∞ results everywhere
even where x ∈ Br(Xi) as long as we did not use that |x−Xi| > r. In fact this was used
only once so that we have to look at the following term again when x ∈ Br(Xi):

∣∣∣∣ˆ
R3

χBi(y)Φ(x− y)f(y) dy

∣∣∣∣ ≤ C ˆ
Bi

1

|x− y|
dy.

If |x−Xi| > 2R then this is smaller than CR3 1
|x−Xi| . If |x−Xi| ≤ 2R it scales like R2.

Integrating the pth power of the left hand side over the union of the Br(Xi) gives

(ˆ
∪Ni=1Br(Xi)

∣∣∣∣ˆ
R3

χBi(y)Φ(x− y)f(y) dy

∣∣∣∣p dx

) 1
p

≤ C

(
N

(
R2pR3 +R3p

ˆ δ

2R

t−p+2 dt

)) 1
p

≤ C
(
N
(
R2p+3 +R3p (δ)

−p+3
)) 1

p

≤ C
(
N

1
pR2+ 3

p +R3N
1
p δ−1+ 3

p

)
≤ φo(1).

Now we can establish the �rst closeness result for the solution of the homogenized equation.

Lemma 4.2. Let û ∈ Ḣ1 be the solution to

−div (∇û+ 3φρ∇v̂) = (1− φρ)f, (4.6)

and ũ be the explicit electrostatic dipole approximation from equation (3.31). Then we have

‖ũ− û‖L∞(ΩNδ ) ≤ φo(1).

Let U ⊂ R3 be of �nite measure and p ∈ [1, 3
2 ]. Then

‖ũ− û‖Lp(U) ≤ φo(1).

67



4. Homogenization

Proof. In priciple we employ the same strategy as in the proof of Lemma 4.1. We represent
û in terms of the fundamental solution and then we use Lemma 4.1 as well as ρN ⇀ ρ to
show, that the di�erence of the sum and the integral is small.

Note, that

û(x) = v̂(x) +

ˆ
R3

3φρ(y)∇v̂(y)(∇ΦP )(x− y) dy. (4.7)

Integrating by parts and applying −∆ to both sides gives:

−∆û = (1− φρ)f + div (3φρ∇v̂) .

This means the function û from (4.7) is indeed the solution to (4.6). The main point of the
proof is to show that ũ is close to the representation of û that is given in (4.7).

In order to show the closeness let x ∈ ΩNδ be given. We have

|ũ(x)− û(x)| ≤ |v(x)− v̂(x)|+

∣∣∣∣∣−
N∑
k=1

dk(x)−
ˆ
R3

3φρ(y)∇v̂(y)∇ΦP (x− y) dy

∣∣∣∣∣ .

In Lemma 4.1 it was shown that |v(x)− v̂(x)| = φo(1). It remains to prove that

∣∣∣∣∣−
N∑
k=1

dk(x)−
ˆ
R3

3φρ(y)∇v̂(y)∇ΦP (x− y) dy

∣∣∣∣∣ = φ · o(1). (4.8)

Again, the proof is divided in four parts. The �rst part shows that we can replace v̂ by v. In
the second part we show that particles close to x can be ignored and that we can replace ρ
by ρN . The third part establishes the closeness of the functions in L∞ while the fourth part
is concerned with the Lp result.

Part 1: Since the function appearing in the dipoles di is v we would like to replace v̂ by v
in (4.8). But by Lemma 4.1 we have
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4.1. From the microscopic approximation to a homogenized equation

∣∣∣∣ˆ
R3

3φρ(y)(∇v(y)−∇v̂(y))∇ΦP (x− y) dy

∣∣∣∣
=

∣∣∣∣∣
ˆ
BL(0)∩ΩNδ

3φρ(y)(∇v(y)−∇v̂(y))∇ΦP (x− y) dy

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
BL(0)

N∑
k=1

χBr(Xk)(y)3φρ(y)(∇v(y)−∇v̂(y))∇ΦP (x− y) dy

∣∣∣∣∣
≤ Cφ2o(1)

ˆ
BL(0)∩ΩNδ

1

|x− y|2
dy + Cφ

∥∥∇ΦP
∥∥
L

4
3 (BL(0))

∥∥∥∥∥
N∑
k=1

χBr(Xk)

∥∥∥∥∥
L4

= φ2o(1) + Cφ
(
Nδ3

) 1
4

= φ2o(1) + φ
(
Nd3

) 1
4 o(1)

= φ (φo(1) + o(1))

= φo(1).

Thus we in fact need to prove that

∣∣∣∣∣−
N∑
k=1

dk(x)−
ˆ
R3

3φρ(y)∇v(y)∇ΦP (x− y) dy

∣∣∣∣∣ = φ · o(1).

Part 2: Let Xi be the closest centre point to x. Then we can ignore the ith term in the
sum:

|di(x)| ≤ C R3

|x−Xi|2
≤ CR3δ−2 = R3N

1

δ2N
= φo(1).

Let us replace R3 = φ 1
N . Then we are left to show that∣∣∣∣∣∣φ 1

N

∑
k 6=i

∇v(Xk) · x−Xk

|x−Xk|3
− φ

ˆ
R3

3ρ(y)∇v(y) · x− y
4π |x− y|3

dy

∣∣∣∣∣∣ = φ · o(1),

or equivalently

∣∣∣∣∣∣ 1

N

∑
k 6=i

∇v(Xk) · x−Xk

|x−Xk|3
−
ˆ
R3

3ρ(y)∇v(y)
x− y

4π |x− y|3
dy

∣∣∣∣∣∣ = o(1).

We can replace ρ by ρN . Since ρ is supported in B2L(0), this is due to the fact that
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4. Homogenization

∣∣∣∣∣
ˆ
B2L(0)

3

4π
(ρN − ρ(y))∇v(y) · x− y

4π |x− y|3
dy

∣∣∣∣∣ = o(1).

The integral vanishes for N → ∞ since ρN ⇀ ρ in Lp for p > 3 and the rest is in the dual
space since ∇v ∈ L∞.

We can leave out a ball of size s around x in the integral since

∣∣∣∣∣
ˆ
Bs(x)

3

4π
ρN (y)∇v(y) · x− y

4π |x− y|3
dy

∣∣∣∣∣ ≤ C
ˆ
Bs(x)

1

|x− y|2
dy ≤ Cs = o(1).

Here we used that the ρN are uniformly bounded in L∞ due to assumption (2).

In the same manner we can ignore the parts of the sum where |Xk − x| ≤ s. For the terms
in this range we get:∣∣∣∣∣∣ 1

N

∑
k 6=i,|x−Xk|≤s

∇v(Xk) · x−Xk

|x−Xk|3

∣∣∣∣∣∣ ≤ C 1

N

∑
k 6=i,|x−Xk|≤s

1

|x−Xk|2

≤ C 1

N

(
s3

d3

) 1
3 1

d2
≤ Cs = o(1),

using Corollary 3.25 with N = s3

d3 , since the number of particles involved in this sum is

≤ C s3

d3 .

It remains to prove the following estimate:

∣∣∣∣∣∣ 1

N

∑
k:|x−Xk|>s

∇v(Xk) · x−Xk

|x−Xk|3
−
ˆ
R3\Bs(x)

3

4π
ρN (y)∇v(y) · x− y

|x− y|3
dy

∣∣∣∣∣∣ = o(1).

We can employ the same reasoning as above to exclude all particles in the range of 3s.
This means we can ignore all cubes Aj that intersect the boundary ∂Bs(x) since they will
eventually be included in B3s(x) anyway.

Part 3: Therefore estimating the di�erence above comes down to estimating the di�erence
of appropriately grouped terms in the sum to its corresponding parts (the cube Aj) of the
integral. I.e. estimating

∑
j:dist(Aj ,x)>s

∣∣∣∣∣∣ 1

N

∑
Xk∈Aj

∇v(Xk) · x−Xk

|x−Xk|3
−
ˆ
Aj

3

4π
ρN (y)∇v(y) · x− y

|x− y|3
dy

∣∣∣∣∣∣ = o(1).
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4.1. From the microscopic approximation to a homogenized equation

Notice that the cubes with Aj ∩B2L(0) = ∅ have no contribution since there ρN = 0.

Looking at one term of the sum we are left to estimate∣∣∣∣∣∣ 1

N

∑
Xk∈Aj

∇v(Xk) · x−Xk

|x−Xk|3
−
ˆ
Aj

3

4π
ρN (y)∇v(y) · x− y

|x− y|3
dy

∣∣∣∣∣∣ .
We now use the de�nition of ρN to write this as∣∣∣∣∣∣ 1

N

∑
Xk∈Aj

∇v(Xk) · x−Xk

|x−Xk|3
−
ˆ
Aj

3

4π

1

Ns3

4π

3
n(Ak)∇v(y) · x− y

|x− y|3
dy

∣∣∣∣∣∣
=

1

N

∣∣∣∣∣∣
∑

Xk∈Aj

(
∇v(Xk) · x−Xk

|x−Xk|3
− 1

s3

ˆ
Aj

∇v(y) · x− y
|x− y|3

dy

)∣∣∣∣∣∣
≤ C 1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

∇v(Xk) · x−Xk

|x−Xk|3
−∇v(y) · x− y

|x− y|3
dy

∣∣∣∣∣ .
We can replace ∇v(y) by ∇v(Xk) in the integral since for the di�erence, by Lemma 3.30, we
have:

|∇v(y)−∇v(Xk)| ≤ C
(
sα + s+ φ

1
4

)
= o(1),

and hence

∣∣∣∣∣
ˆ
Aj

∇v(Xk) · x− y
|x− y|3

−∇v(y) · x− y
|x− y|3

dy

∣∣∣∣∣ ≤ o(1)

ˆ
Aj

1

|x− y|2
dy.

Since the number of particles in one Aj is bounded by Ns3, summing up we obtain

∑
j:dist(Aj ,x)>s

1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

∇v(Xk) · x− y
|x− y|3

−∇v(y) · x− y
|x− y|3

dy

∣∣∣∣∣
≤

∑
j:dist(Aj ,x)>s,n(Aj)6=0

o(1)

ˆ
Aj

1

|x− y|2
dy

≤ o(1)

ˆ
BL+s(0)

1

|x− y|2
dy

≤ o(1).

Then, by Lemma 3.29, for y,Xk ∈ Aj we have
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4. Homogenization

∣∣∣∣∣ (x−Xk)⊗3

|x−Xk|5
− (x− y)⊗3

|x− y|5

∣∣∣∣∣ ≤ C s

|x−Xk|3
.

Using this, we obtain

1

Ns3

∑
Xk∈Aj

∇v(Xk) · x−Xk

|x−Xk|3
−∇v(Xk) · x− y

|x− y|3

≤ C 1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

‖∇v‖L∞
s

|x−Xk|3

∣∣∣∣∣
≤ C s

N

∑
Xk∈Aj

1

|x−Xk|3
.

Summing up over j gives

∑
j:dist(Aj ,x)>s

1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

∇v(Xk)

(
x−Xk

|x−Xk|3
− x− y
|x− y|3

)∣∣∣∣∣ ≤ C s

N

∑
k 6=i

1

|x−Xk|3

≤ C s

N

logN

d3

≤ Cs logN

= o(1).

This �nishes the L∞ part of the proof.

Part 4: In order to get the Lp result simply notice that we can use the L∞ results everywhere
even where x ∈ Br(Xi) as long as we did not use that |x−Xi| > r. In fact this was only
used once so that we have to look at di(x) again when x ∈ Br(Xi): If |x−Xi| > R, this is
smaller than CR3 1

|x−Xi|2
. If |x−Xi| ≤ R it scales like R. Integrating the pth power of this

over the union of the Br(Xi) gives

(
N∑
i=1

ˆ
Br(Xi)

|di(x)|p dx

) 1
p

≤ C

(
N

(
RpR3 +R3p

ˆ δ

R

t−2p+2 dt

)) 1
p

≤ C
(
N
(
Rp+3 +R3pδ−2p+3

)) 1
p

≤ CN
1
pR1+ 3

p +R3δ−2+ 3
p

≤ CN
1
pR1+ 3

p +R3N
1

Nδ2
δ

3
p

≤ φo(1).
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4.1. From the microscopic approximation to a homogenized equation

Lemma 4.3. Let û be the solution to

−div (∇û+ 5φρ ev̂) +∇p = (1− φρ)f, (4.9)

div û = 0. (4.10)

and let ũ be the explicit Stokes dipole approximation. Then we have

‖ũ− û‖L∞(ΩNδ ) ≤ φo(1).

Let U ⊂ R3 be of �nite measure and p ∈ [1, 3
2 ]. Then

‖ũ− û‖Lp(U) ≤ φo(1).

Proof. The proof is completely analogous to the one for the Poisson case, except that the
dipoles have a faster decaying part that can be ignored and that the gradient of the funda-
mental solution is a bit more involved.

Again we write û (componentwise) in terms of the fundamental solution:

ûj(x) = v̂j(x) +

ˆ
R3

5φρ(y)ev̂(y)ki∂kΦSij(x− y) dy. (4.11)

Integrating by parts with respect to y in the second integral shows that û is the convolution
of Φ with some function and therefore div û = 0. Applying −∆ to both sides then gives:

−∆û+∇p = (1− φρ)f + div (5φρ ev̂) ,

showing that û is indeed the solution to (4.9).

In order to show the closeness of ũ to the representation from (4.11) let x ∈ ΩNδ be given. In
Lemma 4.1 it was shown that |v(x)− v̂(x)| = φo(1). It remains to prove that

∣∣∣∣∣−
N∑
k=1

dk(x)−
ˆ
R3

5φρ(y)ev̂(y)∇ΦS(x− y) dy

∣∣∣∣∣ = φo(1).

The proof is divided in several parts. The �rst part shows that we can replace v̂ by v. In
the second part we show that the closest particle as well as the fast decaying parts of the
dipoles can be ignored. The next part determines the explicit form of the gradient of the
fundamental solution when applied to a symmetric,trace-free matrix. In the fourth part it is
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4. Homogenization

shown that we can replace ρ by ρN and ignore close particles. The �fth part establishes the
closeness of the functions in L∞ while the last part is concerned with the Lp result.

Part 1: Using the fact that by Lemma 4.1 we have

∣∣∣∣ˆ
R3

5φρ(y)(ev(y)− ev̂(y))∇ΦS(x− y) dy

∣∣∣∣
=

∣∣∣∣∣
ˆ
BL(0)∩ΩNδ

5φρ(y)(ev(y)− ev̂(y))∇ΦS(x− y) dy

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
BL(0)

N∑
k=1

χBδ(y)5φρ(y)(ev(y)− ev̂(y))∇ΦS(x− y) dy

∣∣∣∣∣
. φ2o(1)

ˆ
BL(0)∩ΩNδ

1

|x− y|2
dy + Cφ

∥∥∇ΦS
∥∥
L

4
3 (BL(0))

∥∥∥∥∥
N∑
k=1

χBr

∥∥∥∥∥
L4

≤ φ2o(1) + Cφ
(
N(δ)3

) 1
4

= φ(φo(1) + o(1))

= φo(1),

we will actually prove that

∣∣∣∣∣−
N∑
k=1

dk(x)−
ˆ
R3

5φρ(y)ev(y)∇ΦS(x− y) dy

∣∣∣∣∣ = φo(1).

Part 2: Let Xi be the closest centre point to x. Then we can ignore the ith term in the
sum:

|di(x)| ≤ C R3

|x−Xi|2
+ C

R5

|x−Xi|4
≤ CR3δ−2 = CR3N

1

Nδ2
= φo(1).

Next we look at the fast decaying terms of dk:

∑
k 6=i

R5

(
ev(Xk)(x−Xk)

|x−Xk|5
− 5

2

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|7

)
≤ C

∑
k 6=i

R5

|x−Xk|4

≤ CR5N
4
3

= Rφ
4
3

= φo(1).

Thus we can leave out these terms and only consider the terms of the form
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4.1. From the microscopic approximation to a homogenized equation

5

2
R3

(
(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5

)
.

Part 3: Now we want to know what ev(y)∇ΦS(x− y) actually looks like. We compute the
derivative of the Oseen-Tensor to be

∂kΦij(x) =
1

8π

(
−δijxk
|x|3

+
δikxj + δjkxi

|x3|
− 3

xixjxk

|x|5

)
.

Take any symmetric, trace free matrix ε. Then

(ε∇Φ)j := εki∂kΦij(x)

=
1

8π

(
−εkixk
|x|3

+
εkkxj + εijxi
|x3|

− 3
εkixixjxk

|x|5

)

= − 3

8π

εkixixjxk

|x|5

= − 3

8π

(
x (x · εx)

|x|5

)
j

.

Let us replace R3 = φ 1
N . Then we are left to show that∣∣∣∣∣∣φ 1

N

∑
k 6=i

5

2

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5
− φ

ˆ
R3

15

8π
ρ(y)

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣∣
= φ · o(1),

or equivalently∣∣∣∣∣∣ 1

N

∑
k 6=i

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5
−
ˆ
R3

3

4π
ρ(y)

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣∣
= o(1).

Part 4: We can replace ρ by ρN . ρ is supported in B2L(0) and we have

∣∣∣∣∣
ˆ
B2L(0)

3

4π
(ρN − ρ(y))

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣ = o(1).
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4. Homogenization

The integral vanishes for N → ∞ since ρN ⇀ ρ in Lp for p > 3 and the other terms are in
the dual space.

We can leave out a ball of size s around x in the integral since

∣∣∣∣∣
ˆ
Bs(x)

3

4π
ρN (y)

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣ ≤ C
ˆ
Bs(x)

1

|x− y|2
dy

≤ Cs = o(1).

Here we used again that the ρN are uniformly bounded in L∞.

In the same way we can ignore the parts of the sum where |Xk − x| ≤ s. For the terms in
this range we get:∣∣∣∣∣∣ 1

N

∑
k 6=i,|x−Xk|≤s

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5

∣∣∣∣∣∣ ≤ C 1

N

∑
k 6=i,|x−Xk|≤s

1

|x−Xk|2

≤ C 1

N

(
s3
N

d3

) 1
3 1

d2

≤ Cs = o(1).

Here we used 3.25. The number of particles involved in the sum is ≤ C s3N
d3 since every particle

occupies a volume that is at least proportional to d3.

It remains to show:

1

N

∑
k:|x−Xk|>s

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5

−
ˆ
R3\Bs(x)

3

4π
ρN (y)

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy = o(1).

We can employ the same reasoning as above to exclude all particles in the range of 3s.
This means we can ignore all cubes Aj that intersect the boundary ∂Bs(x) since they will
eventually be included in B3s(x) anyway.

Part 5: Therefore estimating the di�erence above reduces to estimating the di�erence of
appropriately grouped terms in the sum to its corresponding parts (the cube Aj) of the
integral. I.e. we need to estimate

∑
j:dist(Aj ,x)>s

| 1

N

∑
Xk∈Aj

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5

−
ˆ
Aj

3

4π
ρN (y)

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy| = o(1).
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4.1. From the microscopic approximation to a homogenized equation

Notice that the cubes with Aj ∩B2L(0) = ∅ have no contribution since there ρN = 0.

Looking at one term of the sum we are left to estimate

∣∣∣∣∣∣ 1

N

∑
Xk∈Aj

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5
−
ˆ
Aj

3

4π
ρN (y)

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣∣ .
We now use the de�nition of ρN to write this as

∣∣∣∣∣∣ 1

N

∑
Xk∈Aj

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5
−
ˆ
Aj

3

4π

1

Ns3

4π

3
n(Ak)

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣∣
=

1

N

∣∣∣∣∣∣
∑

Xk∈Aj

(
(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5
− 1

s3

ˆ
Aj

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

)∣∣∣∣∣∣
≤ C 1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5
− (x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣ .
We can replace ev(y) by ev(Xk) in the integral since for the di�erence, by Lemma 3.30, we
have:

|ev(y)− ev(Xk)| ≤ |∇v(y)−∇v(Xk)| ≤ C
(
sα + s+ φ

1
4

)
= o(1),

and hence

∣∣∣∣∣
ˆ
Aj

(x− y) ((x− y) · ev(Xk)(x− y))

|x− y|5
dy −

ˆ
Aj

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣
≤ o(1)

ˆ
Aj

1

|x− y|2
dy.

Since the number of particles in one Aj is bounded by Ns3, adding this up we obtain

∑
j:dist(Aj ,x)>s

1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

(x− y) ((x− y) · ev(Xk)(x− y))

|x− y|5
dy −

ˆ
Aj

(x− y) ((x− y) · ev(y)(x− y))

|x− y|5
dy

∣∣∣∣∣
≤

∑
j:dist(Aj ,x)>s,n(Aj)6=0

o(1)

ˆ
Aj

1

|x− y|2
dy

≤ o(1)

ˆ
BL+s(0)

1

|x− y|2
dy

≤ o(1).
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4. Homogenization

Then, by Lemma 3.29, for y,Xk ∈ Aj we have∣∣∣∣∣ (x−Xk)⊗3

|x−Xk|5
− (x− y)⊗3

|x− y|5

∣∣∣∣∣ ≤ C s

|x−Xk|3
.

Using this, we obtain

1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

(x−Xk) ((x−Xk) · ev(Xk)(x−Xk))

|x−Xk|5
− (x− y) ((x− y) · ev(Xk)(x− y))

|x− y|5

∣∣∣∣∣
≤ C 1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

‖∇v‖L∞
s

|x−Xk|3

∣∣∣∣∣
≤ C s

N

∑
Xk∈Aj

1

|x−Xk|3
.

Summing up over j gives

∑
j:dist(Aj ,x)>s

1

Ns3

∑
Xk∈Aj

∣∣∣∣∣
ˆ
Aj

∇v(Xk)

(
x−Xk

|x−Xk|3
− x− y
|x− y|3

)∣∣∣∣∣ ≤ C s

N

∑
k 6=i

1

|x−Xk|3

≤ C s

N

logN

d3

≤ Cs logN

= o(1).

This �nishes the L∞ part.

Part 6: In order to get the Lp result simply notice that we can use the L∞ results everywhere
even where x ∈ Br(Xi) as long as we did not use that |x−Xi| > r. In fact this was only
used once so that we have to look at di(x) again when x ∈ Br(Xi): If |x−Xi| > R, this is
smaller than CR3 1

|x−Xi|2
. If |x−Xi| ≤ R it scales like R. Integrating the pth power of this

over the union of the Br(Xi) gives

(
N∑
i=1

ˆ
Br(Xi)

|di(x)|p dx

) 1
p

≤ C

(
N

(
RpR3 +R3p

ˆ dN−β

R

t−2p+2 dt

)) 1
p

≤ C
(
N
(
Rp+3 +R3p

(
dN−β

)−2p+3
)) 1

p

≤ CN
1
pR1+ 3

p + CR3N
2
3 +2β− 3

pβ

≤ φo(1).
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4.2. Passage to the Stokes equation with variable viscosity

4.2. Passage to the Stokes equation with variable viscosity

In order to obtain the �nal result we want to replace the v̂ in equation (4.6) and equation
(4.9), respectively by û. First we establish a regularity lemma:

Lemma 4.4. There is a constant C > 0 such that the following holds. Let g ∈ L2(R3)
compactly supported in B2L(0). Let w ∈ Ḣ1 solve the equation

−∆w = g in R3,

or w ∈ Ḣ1
σ solve

−∆w +∇p = g in R3,

divw = 0 in R3,

respectively. Then, w ∈ L∞(R3) and ‖w‖L∞(R3) ≤ C ‖g‖L2(R3).

Proof. We apply the fundamental solution to write

|w(x)| =
∣∣∣∣ˆ
R3

Φ(x− y)g(y) dy

∣∣∣∣
=

∣∣∣∣∣
ˆ
BL(0)

Φ(x− y)g(y) dy

∣∣∣∣∣
≤ C

ˆ
BL(0)

1

|x− y|
|g(y)| dy

≤ C ‖g‖L2

∥∥∥∥ 1

|y|

∥∥∥∥
L2(B2L(x))

≤ C ‖g‖L2 .

Now we establish existence and estimates for the �nal equation:

Lemma 4.5. There is a constant C > 0 such that the following holds. The equation

−div ((1 + 3φρ)∇ū) = (1− φρ)f

has a solution in Ḣ1 and for small φ we have ‖∇ū‖L2 ≤ ‖f‖
L

6
5
. Moreover, the gradient of

the solution satis�es ∇ū ∈ H1(R3). The estimate for ∇2ū is given by

∥∥∇2ū
∥∥
L2 ≤ C

(
φ ‖∇ρ‖L∞ ‖f‖L 6

5
+ (1 + φ ‖ρ‖L∞) ‖f‖L2

)
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4. Homogenization

Proof. We consider the weak formulation

ˆ
R3

(1 + 3φρ)∇ū∇ϕ =

ˆ
R3

(1− φρ)fϕ

where ϕ ∈ Ḣ1. Since ρ is non-negative as the limit of non-negative functions, the left hand
side is a bounded and coercive bilinear form on Ḣ1 (it is even symmetric). The right hand
side is a linear form, so by Lax-Milgram there is a solution ū to the weak form of the equation.
For φ ≤ ‖ρ‖−1

L∞ we get the estimate for the gradient by setting ϕ = ū and estimating the
right hand side like

ˆ
R3

(1− φρ)fϕ ≤ ‖f‖
L

6
5
‖ū‖L6 ≤ ‖f‖

L
6
5
‖∇ū‖L2 .

It is classical regularity theory of elliptic equations with variable coe�cients to see that
∇2ū ∈ L2(R2). We nevertheless give a proof here. We test the equation with ϕ = −D−hk Dh

k ū
where Dh

kϕ(x) = 1
h (ϕ(x+ hek)− ϕ(x)) is the usual di�erence quotient. This test function

is in Ḣ1 since ū is. This gives the following equation:

−
ˆ
R3

(1 + 3φρ)∇ūD−hk Dh
k∇ū = −

ˆ
R3

(1− φρ)fD−hk Dh
k ū.

By the partial integration rule for di�erence quotients this leads to

ˆ
R3

(1 + 3φρ)
h
Dh
k∇ūDh

k∇ū+

ˆ
R3

Dh
k (1 + 3φρ)∇ūDh

k∇ū = −
ˆ
R3

(1− φρ)fD−hk Dh
k ū.

Here we denote ϕh(x) = ϕ(x+ hek). The �rst term on the left hand side is obviously bigger

than
∥∥Dh

k∇ū
∥∥2

L2 while for the second term we have the estimate:

∣∣∣∣ˆ
R3

Dh
k (1 + 3φρ)∇ūDh

k∇ū
∣∣∣∣ ≤ ∥∥Dh

k (1 + 3φρ)
∥∥
L∞
‖∇ū‖L2

∥∥Dh
k∇ū

∥∥
L2

≤ 1

4

∥∥Dh
k∇ū

∥∥2

L2 + 9φ2 ‖∇ρ‖2L∞ ‖∇ū‖
2
L2 .

Now it is left to estimate the right hand side. We have

∣∣∣∣ˆ
R3

(1− φρ)fD−hk Dh
k ū

∣∣∣∣ ≤ ‖1− φρ‖L∞ ‖f‖L2

∥∥Dh
k∇u

∥∥
L2

≤ 1

4

∥∥Dh
k∇ū

∥∥2

L2 +
(

2 + 2φ2 ‖ρ‖2L∞
)
‖f‖2L2 .
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4.2. Passage to the Stokes equation with variable viscosity

Here we used that
∥∥D−hk ϕ

∥∥
L2 ≤ ‖∇ϕ‖L2 for any ϕ ∈ Ḣ1. By absorbing the two 1

4

∥∥Dh
k∇ū

∥∥2

L2

terms we obtain the estimate

1

2

∥∥Dh
k∇ū

∥∥2

L2 ≤ 9φ2 ‖∇ρ‖2L∞ ‖∇ū‖
2
L2 +

(
2 + 2φ2 ‖ρ‖2L∞

)
‖f‖2L2 .

Since this estimate is independent of h we obtain ∇2u ∈ L2 with

∥∥∇2ū
∥∥
L2 ≤ C

(
φ ‖∇ρ‖L∞ ‖f‖L 6

5
+ (1 + φ ‖ρ‖L∞) ‖f‖L2

)

Lemma 4.6. There is a constant C > 0 such that the following holds. The equation

−div ((2 + 5φρ) eū) +∇p = (1− φρ)f in R3

div ū = 0 in R3,

has a solution in Ḣ1
σ and for small φ we have ‖∇ū‖L2 ≤ ‖f‖

L
6
5
. Moreover, the gradient of

the solution satis�es ∇ū ∈ H1(R3). The estimate for ∇2ū is given by∥∥∇2ū
∥∥
L2 ≤

(
φ ‖∇ρ‖L∞ ‖f‖L 6

5
+ (1 + φ ‖ρ‖L∞) ‖f‖L2

)
.

Proof. The proof is completely analogous to the one of Lemma 4.5. Consider the weak
formulation

ˆ
R3

(2 + 5φρ) eūeϕ dx =

ˆ
R3

(1− φρ)fϕ dx, (4.12)

where ϕ ∈ Ḣ1
σ. The left hand side is a bounded and coercive bilinear form on Ḣ1

σ. Coercive-
ness follows from

ˆ
R3

(2 + 5φρ) |eϕ|2 dx ≥ 2

ˆ
R3

|eϕ|2 dx =

ˆ
R3

|∇ϕ|2 dx.

The right hand side of (4.12) is a linear form (since every φ ∈ Ḣ1
σ is also in L6(R3) and

f ∈ L 6
5 (R3)), so by Lax-Milgram there is a solution ū to the weak form of the equation. For

φ ≤ ‖ρ‖−1
L∞ we get the estimate for the gradient by setting ϕ = ū and estimating the right

hand side like
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4. Homogenization

ˆ
R3

(1− φρ)fϕ ≤ ‖f‖
L

6
5
‖ū‖L6 ≤ ‖f‖

L
6
5
‖∇ū‖L2 .

Note that we can rewrite the weak formulation as

ˆ
R3

∇ū∇ϕ dx+

ˆ
R3

5φρeūeϕ dx =

ˆ
R3

(1− φρ)fϕ dx.

To see that ∇2ū ∈ L2(R2) we use again the method of di�erence quotients and test the
equation with ϕ = −D−hk Dh

k ū. This test function is in Ḣ1
σ since ū is in Ḣ1

σ. This gives the
following equation:

−
ˆ
R3

∇ūD−hk Dh
k∇ū dx−

ˆ
R3

5φρeūD−hk Dh
keū dx = −

ˆ
R3

(1− φρ)fD−hk Dh
k ū.

By partial integration this leads to

ˆ
R3

Dh
k∇ūDh

k∇ū dx+

ˆ
R3

(5φρ)
h
Dh
keūD

h
keū+

ˆ
R3

Dh
k (5φρ) eūDh

keū = −
ˆ
R3

(1− φρ)fD−hk Dh
k ū.

The �rst term on the left hand side is obviously equal to
∥∥Dh

k∇ū
∥∥2

L2 , the second term is
positive while for the third term we have the estimate:

∣∣∣∣ˆ
R3

Dh
k (5φρ) eūDh

keū

∣∣∣∣ ≤ ∥∥Dh
k (5φρ)

∥∥
L∞
‖∇ū‖L2

∥∥Dh
k∇ū

∥∥
L2

≤ 1

4

∥∥Dh
k∇ū

∥∥2

L2 + Cφ2 ‖∇ρ‖2L∞ ‖∇ū‖
2
L2 .

Now we are left to estimate the right hand side. We have

∣∣∣∣ˆ
R3

(1− φρ)fD−hk Dh
k ū

∣∣∣∣ ≤ ‖1− φρ‖L∞ ‖f‖L2

∥∥Dh
k∇u

∥∥
L2

≤ 1

4

∥∥Dh
k∇ū

∥∥2

L2 + C
(

1 + φ2 ‖ρ‖2L∞
)
‖f‖2L2 .

Here we used that
∥∥D−hk ϕ

∥∥
L2 ≤ ‖∇ϕ‖L2 for any ϕ ∈ Ḣ1. By absorbing the two 1

4

∥∥Dh
k∇ū

∥∥2

L2

terms we obtain the estimate
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4.2. Passage to the Stokes equation with variable viscosity

1

2

∥∥Dh
k∇ū

∥∥2

L2 ≤ C
(
φ2 ‖∇ρ‖2L∞ ‖∇ū‖

2
L2 +

(
1 + φ2 ‖ρ‖2L∞

)
‖f‖2L2

)
.

Since this estimate is independent of h we obtain ∇2u ∈ L2 with∥∥∇2ū
∥∥
L2 ≤ C

(
φ ‖∇ρ‖L∞ ‖f‖L 6

5
+ (1 + φ ‖ρ‖L∞) ‖f‖L2

)
.

We can now establish the �nal estimate.

Lemma 4.7. There is a constant C > 0 such that the following holds. The weak solutions û
and ū in Ḣ1 to the equations

−div (∇û+ 3φρ∇v̂) +∇p = (1− φρ)f, (4.13)

−div ((1 + 3φρ)∇ū) +∇p = (1− φρ)f, (4.14)

di�er on scale φ2, i.e. ‖û− ū‖L∞(R3) ≤ Cφ2.

Proof. By subtracting equation (4.1) from equation (4.14) we obtain:

−div (∇ū−∇v̂ + 3φρ∇ū) = 0.

Hence, for the di�erence ū− v̂, we get:

−∆ (ū− v̂) = φ div (3ρ∇ū) . (4.15)

Testing with ū− v̂ gives

‖∇ū−∇v̂‖L2 ≤ 3φ ‖ρ‖L∞ ‖∇û‖L2 ≤ Cφ ‖ρ‖L∞ ‖f‖L 6
5
. (4.16)

On the other hand we know that ∇ū ∈ H1 and by the same argument ∇v̂ ∈ H1 so that we
can test equation (4.15) by −∆ (ū− v̂) in order to obtain

∥∥∇2 (ū− v̂)
∥∥2

L2 ≤ Cφ
∥∥∇2 (ū− v̂)

∥∥
L2 ‖ρ‖W 1,∞ ‖∇ū‖H1 ,∥∥∇2 (ū− v̂)

∥∥
L2 ≤ Cφ ‖ρ‖W 1,∞ (1 + φ ‖ρ‖W 1,∞)

(
‖f‖L2 + ‖f‖

L
6
5

)
.
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4. Homogenization

This proves that ‖∇ (ū− v̂)‖H1 ≤ Cφ.

Now we subtract the equations for ū and û to obtain for the di�erence w = ū− û:

−div (∇w + 3φρ (∇ū−∇v̂)) = 0.

This means that

−∆w = div (3φρ (∇ū−∇v)) .

The right hand side is compactly supported in B2L(0) and in L2. By Lemma 4.4 this means
that

‖w‖L∞ ≤ Cφ ‖ρ‖W 1,∞ ‖∇ū−∇v‖H1 .

≤ Cφ2.

Lemma 4.8. There is a constant C > 0 such that the following holds. The weak solutions
in Ḣ1

σ to the equations

−div (2eû+ 5φρev̂) +∇p = (1− φρ)f, (4.17)

− div ((2 + 5φρ) eū) +∇p = (1− φρ)f, (4.18)

di�er on scale φ2, i.e. ‖û− ū‖L∞(R3) ≤ Cφ2.

Proof. By subtracting equation (4.3) from equation (4.18) we obtain:

− div (2eū− 2ev̂ + 5φρeū) +∇p = 0.

Hence, for the di�erence ū− v̂, we get:

−∆ (ū− v̂) +∇p = φ div (5ρeū) . (4.19)

Testing with ū− v̂ gives

‖∇ū−∇v̂‖L2 ≤ 5φ ‖ρ‖L∞ ‖∇û‖L2 ≤ Cφ ‖ρ‖L∞ ‖f‖L 6
5
. (4.20)
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4.2. Passage to the Stokes equation with variable viscosity

On the other hand we know that ∇ū ∈ H1 and by the same argument ∇v̂ ∈ H1 so that we
can test equation (4.19) by −∆ (ū− v̂) in order to obtain

∥∥∇2 (ū− v̂)
∥∥2

L2 ≤ Cφ
∥∥∇2 (ū− v̂)

∥∥
L2 ‖ρ‖W 1,∞ ‖∇ū‖H1 ,∥∥∇2 (ū− v̂)

∥∥
L2 ≤ Cφ ‖ρ‖W 1,∞ (1 + φ ‖ρ‖W 1,∞)

(
‖f‖L2 + ‖f‖

L
6
5

)
.

This proves that ‖∇ (ū− v̂)‖H1 ≤ Cφ.

Now we subtract the equations for ū and û to obtain for the di�erence w = ū− û:

−div (∇w + 5φρ (∇ū−∇v̂)) +∇p = 0.

This means that

−∆w +∇p = div (5φρ (∇ū−∇v)) .

The right hand side is compactly supported in B2L(0) and in L2. By Lemma 4.4 this means
that

‖w‖L∞ ≤ Cφ ‖ρ‖W 1,∞ ‖∇ū−∇v‖H1 .

≤ Cφ2.

Proof of Theorem 2.7. The statement follows by combining Theorem 3.28, Lemma 3.33,
Lemma 3.34, Lemma 4.2 and Lemma 4.7. Note that we do not need a separate Lp statement
in Theorem 3.28 and in 4.7 since we have control over the L∞ norm of the di�erence on the
whole space.

Proof of Theorem 2.8. The statement follows by combining Theorem 3.28, Lemma 3.33,
Lemma 3.34, Lemma 4.3 and Lemma 4.8.
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5. Discussion

From an experimental viewpoint, Einstein's formula seems to hold for concentrations of
up to 2 − 3%. It might be worthwhile to think about rigorous justi�cations of alternative
formulas for the e�ective viscosity. The authors of [SK13] discuss the possibility that the
linear approximation is far better for the inverse of the viscosity, the so-called �uidity (i.e.
the formula holds for much larger concentrations) leading to the formula

µeff =
1

1− 5
2φ
µ

Also the formula given by Taylor [Tay32] seems to have a validity for suspensions of medium
concentration.

One might wonder why a Brinkman type term does not appear in the limiting equations
of the problem considered in this thesis since the capacity density, crucial for the onset of
the additional term, is of order NR which is larger than the small parameter φ = NR3 of
our problem. The answer to this question is, that the boundary conditions here are not of
Dirichlet type and allow the particles to move freely with the �uid rather than restricting the
�uid velocity to be zero or more generally a given value at the boundary of the particles.

5.1. Optimality

First of all, since the viscosity is intrinsically related to dissipation one might expect to
have closeness results in terms of the dissipation norm ‖eu‖2L. But by using the comparison
construction from Chapter 3 we see that we can only expect closeness of order φ

1
2 due to

the decay properties of the dipoles in the vicinity of the particles. Secondly, there is no hope
of getting the L∞ estimate on the whole domain for the small radius regime since just one
dipole is too singular to obtain this. In retrospective it should be possible to obtain some
result for the closeness in the L2 norm of the gradient away from the particles, but the L∞

norm is the most natural one when using the method of re�ections and obtaining closeness
in another space away from the particles does not change the result qualitatively.

The assumptions on the particle con�gurations can probably be weakened. In generalization
of Assumption (1), if the particles are distributed in the whole space the result should still
be valid if the decay of the particle density is strong enough at in�nity. This assumption was
only used in Chapter 4. Assumption (2) can probably be replaced by an integrated condition
similar to the one used in [Hil16]. For even weaker assumptions a probabilistic setting might
be of use, where the result would then hold with high probability. In any case it is not
realistic that the result holds for arbitrary geometries since for (locally) high concentrations
the interaction between the particles is expected to dominate. Assumption (3) is already
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5. Discussion

weak and since one can take any factor strictly larger than 2 there is not much room for
improvement. Finally Assumption (4) is a bit unsatisfying but getting rid of the logarithmic
term, if at all possible, is a matter of very carefully analyzing the sums involving third powers
of the distance. If it is possible to �nd cancellation e�ects at least away from the boundary
of the cloud, then one might hope to weaken this assumption.

Regarding the assumptions on f , both were used heavily and since we need both the de-
cay at in�nity (Assumption (i)) and the local continuity behaviour of f (Assumption (ii))
substantial improvements do not seem to be possible.

Finally there were two assumptions on ρN . Assumption (5) is merely there to avoid passing
to a subsequence while Assumption (6) can probably be weakened to ρ ∈ L∞, the space we
expect ρ to be in anyway. This seems to be possible by using Lp regularity theory of the
gradient instead of L2 regularity of the second gradient in order to obtain bounds on the L∞

norm of the function itself.

5.2. Higher Orders

With respect to [BG72] it would be interesting to try and prove the next order term, along
the way removing some ambiguity concerning the exact value of the prefactor. The approach
taken in this thesis seems to be well suited for this task. The �rst idea that comes to mind,
is to look at the approximation v2 discussed in chapter 3. By the method of the proof we
basically have that u − v2 ∼ o(φ2). The two steps that have to be carried out are to �nd
explicit expressions that are close to the dipoles PiPjv for i 6= j in the same sense in which
di is close to Piv and then to decide whether the terms lead to a term of the form φ2eu in
the limit. One could alternatively consider Piv1 directly and use that v1 is close to ū. In
this setting ū would replace v as the 'zero order approximation'. This is work in progress
of the author. At this point the author proposes the conjecture that the coe�cient of the
second order term is given by 6.25 = 25

4 =
(

5
2

)2
which is well in the range of the coe�cients

mentioned so far in the physics literature. If the second order approximation works, it is
probable that the higher order approximations vn for n = 3, 4, . . . will give higher order
approximations to the e�ective viscosity.

5.3. Dynamics

By setting Ẋi = Vi the system becomes dynamic in the sense that the particle centres
depend on time. Therefore the particle distribution changes over time and it would be
interesting to see whether and in what sense the particle density moves with the �ow given
by the Stokes equation with e�ective viscosity. Also the time scale in which no critical
particle aggregation takes place would be interesting. Short time existence and closeness
can probably be established with methods similar to the ones used in [Hoe16]. A second
possibility is to consider the Navier-Stokes equation, thus taking into account the inertia of
the �uid while a third option would be to take into account the inertia of the particles leading
to an acceleration term in the force balance.
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A. Appendix

Lemma A.1 (Lemma 3.24). There is a constant C > 0 such that

∑
j 6=i

1

dij
≤ CN

2
3

d
≤ CN, (A.1)

∑
j 6=i

1

d2
ij

≤ CN
1
3

d2
≤ CN, (A.2)

∑
j 6=i

1

d3
ij

≤ C logN

d3
≤ CN logN, (A.3)

∑
j 6=i

1

d4
ij

≤ C 1

d4
≤ CN 4

3 . (A.4)

Proof. Without loss of generality we assume i=1 and X1 = 0. We order the balls in such a
way that |X1| ≤ · · · ≤ |XN |. Since dij ≥ d the balls B

(
Xi,

d
2

)
and B

(
Xj ,

d
2

)
do not intersect.

Moreover for any 2 ≤ i ≤ N we have

i⋃
j=1

B

(
Xj ,

d

2

)
⊂ B

(
0,
d

2
+ |Xi|

)
⊂ B(0, 2 |Xi|).

We compare the left and the right volume to obtain

i

(
d

2

)3

≤ (2 |Xi|)3,

|Xi| ≥
1

4
d i

1
3 .
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Now for n = 1, 2 (inequalities (A.1) and (A.2)):

N∑
i=2

1

dn1i
=

N∑
i=2

1

|Xi|n

≤ 16

dn

N∑
i=2

i−
n
3

≤ 16

dn

ˆ N

0

x−
n
3 dx

≤ 48
N1−n3

dn

≤ CN.

For inequality (A.3) we estimate:

N∑
i=2

1

d3
1i

=

N∑
i=2

1

|Xi|3

≤ C 1

d3

N∑
i=2

i−1

≤ C 1

d3

ˆ N

1

x−1 dx

≤ C logN

d3

≤ CN logN.

For inequality (A.4) we have:

N∑
i=2

1

d4
1i

=

N∑
i=2

1

|Xi|4

≤ C 1

d4

N∑
i=2

i−
4
3

≤ C 1

d4

ˆ N

1

x−
4
3 dx

≤ C 1

d4

(
1−N− 1

3

)
≤ C 1

d4

≤ CN 4
3 .
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