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Summary

In this thesis we develop highly accurate simulation tools for variably saturated flow through
porous media able to take advantage of the latest supercomputing resources. Hence, we aim
for parallel scalability to very large compute resources of over 105 CPU cores.

Our starting point is the parallel subsurface flow simulator ParFlow. This library is of
widespread use in the hydrology community and known to have excellent parallel scalability
up to 16k processes. We first investigate the numerical tools this library implements in or-
der to perform the simulations it was designed for. ParFlow solves the governing equation
for subsurface flow with a cell centered finite difference (FD) method. The code targets high
performance computing (HPC) systems by means of distributed memory parallelism. We pro-
pose to reorganize ParFlow’s mesh subsystem by using fast partitioning algorithms provided
by the parallel adaptive mesh refinement (AMR) library p4est. We realize this in a mini-
mally invasive manner by modifying selected parts of the code to reinterpret the existing mesh
data structures. Furthermore, we evaluate the scaling performance of the modified version of
ParFlow, demonstrating excellent weak and strong scaling up to 458k cores of the Juqueen
supercomputer at the Jülich Supercomputing Centre.

The above mentioned results were obtained for uniform meshes and hence without explicitly
exploiting the AMR capabilities of the p4est library. A natural extension of our work is to
activate such functionality and make ParFlow a true AMR application. Enabling ParFlow
to use AMR is challenging for several reasons: It may be based on assumptions on the parallel
partition that cannot be maintained with AMR, it may use mesh-related metadata that is
replicated on all CPUs, and it may assume uniform meshes in the construction of mathematical
operators. Additionally, the use of locally refined meshes will certainly change the spectral
properties of these operators.

In this work, we develop an algorithmic approach to activate the usage of locally refined grids
in ParFlow. AMR allows meshes where elements of different size neighbor each other. In this
case, ParFlow may incur erroneous results when it attempts to communicate data between
inter-element boundaries. We propose and discuss two solutions to this issue operating at two
different levels: The first manipulates the indices of the degrees of freedom, While the second
operates directly on the degrees of freedom. Both approaches aim to introduce minimal changes
to the original ParFlow code.

In an AMR framework, the FD method taken by ParFlow will require modifications to
correctly deal with different size elements. Mixed finite elements (MFE) are on the other hand
better suited for the usage of AMR. It is known that the cell centered FD method used in
ParFlow might be reinterpreted as a MFE discretization using Raviart-Thomas elements of
lower order. We conclude this thesis presenting a block preconditioner for saddle point problems
arising from a MFE on locally refined meshes. We evaluate its robustness with respect to various
classes of coefficients for uniform and locally refined meshes.

i





Contents

1 Introduction

.

1

2 Simulation of subsurface flow

.

5
2.1 Mathematical modeling

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Mass conservation

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Conservation of momentum

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Darcy’s Law

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Introduction to partial differential equations

.

. . . . . . . . . . . . . . . . . . . . . 9

2.3 Partial differential equations in subsurface flow

.

. . . . . . . . . . . . . . . . . . . 12

2.3.1 Saturated case

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Variably saturated case

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Numerical methods

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Time stepping

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Finite differences

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Finite volume method

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Finite element method

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.5 Mixed finite elements

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Discretization equivalences

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Parallel computing

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 The message passage interface

.

. . . . . . . . . . . . . . . . . . . . . . . . 23

3 The subsurface flow simulator ParFlow

.

25
3.1 Generalities

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Discretization

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Solvers

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Preconditioners

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Mesh management

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Compute and communication packages

.

. . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Discussion

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 A modified version of ParFlow

.

37
4.1 High performance computing essentials

.

. . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Mesh parallelization

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 The software library p4est

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Enabling p4est as Parflow’ s mesh manager

.

. . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Rearranging the mesh layout

.

. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Attaching subgrids of correct size

.

. . . . . . . . . . . . . . . . . . . . . . . 44

4.4.3 Querying the ghost layer

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.4 Further enhancements

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



Contents

4.5 Performance results

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 Weak scaling studies

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 Strong scaling studies

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Illustrative numerical experiment

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Discussion

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Towards AMR in ParFlow

.

59
5.1 AMR with p4est

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Enabling locally refined meshes in ParFlow

.

. . . . . . . . . . . . . . . . . . . . 59
5.2.1 Correcting the mesh layout

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Two proposals to correct the communication layout

.

. . . . . . . . . . . . 63
5.3 Discussion

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 A block preconditioner for locally refined meshes

.

69
6.1 Problem formulation

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.1 Weak formulation

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.2 Discretization

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.3 Adaptivity

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.4 Preconditioning

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Multigrid for Saddle Point Problems

.

. . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.1 Algebraic multigrid (AMG)

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.2 Smoothers for saddle point problems

.

. . . . . . . . . . . . . . . . . . . . . 77
6.2.3 AMG setup for saddle point systems

.

. . . . . . . . . . . . . . . . . . . . . 78
6.3 Numerical Results

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Homogeneous Dirichlet conditions

.

. . . . . . . . . . . . . . . . . . . . . . 80
6.3.2 An example with Neumann conditions

.

. . . . . . . . . . . . . . . . . . . . 83
6.3.3 Non trivial conductivity tensor

.

. . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.4 High conductivity contrast

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Discussion

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusion and Outlook

.

93

iv



List of Figures

2.1 Example of a connected void space

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Darcy’s experiment

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Finite difference mesh example

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Crank-Nicholson stencil

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Distributed memory architecture

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Background example

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Parflow’s mesh example

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Get patches representation

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Compute packages representation

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Space filling curve

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Lexicographic and SFC ordering comparison

.

. . . . . . . . . . . . . . . . . . . . . 41
4.3 Enabling multiple subgrids per process

.

. . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 A p4est brick

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 p4est ghost example

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Subgrid storate: default and with p4est

.

. . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Deadlock illustration for Algorithm

.

4.1

..

. . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Weak scaling upstream

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9 Weak scaling modified

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.10 Weak scaling modified - split

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11 Weak scaling memory heap

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.12 p4est timing

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.13 Strong scaling single subgrid

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.14 Strong scaling Amdahh’s law

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.15 Strong scaling multiple subgrids

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.16 Ilustrative numerical experiment

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Local refinement illustration

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Work flow to enable AMR

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Locally refined grid in ParFlow

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Corrected mesh associated to the brick from Figure

.

5.3c

.

.

.

. . . . . . . . . . . . . . 63
5.5 Enabling locally refined meshes, approach 2

.

. . . . . . . . . . . . . . . . . . . . . 65
5.6 Enabling locally refined meshes, approach 1

.

. . . . . . . . . . . . . . . . . . . . . 65

6.1 Degrees of freedom for the rectangular RT 0 element

.

. . . . . . . . . . . . . . . . 72
6.2 Locally refined mesh with hanging nodes

.

. . . . . . . . . . . . . . . . . . . . . . . 73
6.3 RT 0 degrees of freedom identification for VTK visualization

.

. . . . . . . . . . . . 80
6.4 Error plot for the example defined in Section

.

6.3.1

.

and uniform meshes

.

. . . . . . 81
6.5 Error plot for the example defined in Section

.

6.3.1

.

and adaptive meshes

.

. . . . . 81
6.6 Error plot for the example defined in Section

.

6.3.2

.

and uniform meshes

.

. . . . . . 83

v



List of Figures

6.7 Error plot for the example defined in Section

.

6.3.2

.

and adaptive meshes

.

. . . . . 84
6.8 Error plot for the example defined in Section

.

6.3.3

.

: uniform case

.

. . . . . . . . . 85
6.9 Error plot for the example defined in Section

.

6.3.3

.

: adaptive case

.

. . . . . . . . . 85
6.10 Sample plot of the one dimensional version of m(x;x0, a, b, c).

.

. . . . . . . . . . . 87
6.11 Error plot for the 2d example defined in Section

.

6.3.4

..

. . . . . . . . . . . . . . . 87
6.12 Velocity magnitude for the numerical solution of the example from Section

.

6.3.4

..

88
6.13 y-velocity magnitude extrusion illustrating a two dimensional RT 0 vector field

.

. 88
6.14 Error plot for the 3d example defined in Section

.

6.3.4

..

. . . . . . . . . . . . . . . 89
6.15 Threshold plot from the computed velocity of the 3d example from Section

.

6.3.4

..

89
6.16 Degrees of freedom comparison against error

.

. . . . . . . . . . . . . . . . . . . . . 90

vi



List of Tables

4.1 FLOP/s comparison

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Strong scaling setup

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Iteration count table for a 2d mixed Poisson system (Section

.

6.3.1

.

)

.

. . . . . . . . 82
6.2 Iteration count table for a 3d mixed Poisson system (Section

.

6.3.1

.

)

.

. . . . . . . . 82
6.3 Iteration count table, non trivial 2d conductivity tensor (Section

.

6.3.3

.

)

.

. . . . . . 84
6.4 Iteration count table, non trivial 3d conductivity tensor (Section

.

6.3.3

.

)

.

. . . . . . 86
6.5 Iteration count, high contrast 2d conductivity tensor (Section

.

6.3.4

.

)

.

. . . . . . . 90
6.6 Iteration count, high contrast 3d conductivity tensor (Section

.

6.3.4

.

)

.

. . . . . . . 90

vii





1 Introduction

Regional hydrology studies are often supported by high spatial resolution simulations of sub-
surface flow of the order O(1 km) or even less [121

.

, 171

.

, 57

.

, 168

.

, 108

.

, 92

.

]. Such simulations
demand enormous computational time and memory resources, and considerations of efficiency
become prominent [104

.

, 116

.

].

This is further emphasized if we consider the so-called hyperresolution trend in global hy-
drology modeling: The high resolution employed in the regional models is also required when
addressing water cycle questions at the global scale [169

.

, 23

.

, 22

.

]. Global models typically em-
ploy a much coarser space resolution that ranges between O(10 km) and O(100 km). An increase
in a factor of ten in the space resolution implies a growth up to of a factor of a hundred in
computation and storage requirements [23

.

]. Additionally, using finer resolutions may require
to explicitly simulate physical processes at the fine scale instead of averaging or parameterizing
them, increasing the computational workload even more [22

.

].

Computer simulations of subsurface flow generally proceed by computing a numerical solution
of the three dimensional Richards’ equation [136

.

]. Assuming a two-phase water-gas system, the
Richards’ equation can be derived from the generalized Darcy laws [125

.

] under the assumption
that the pressure gradient in the gas phase is small. One of the variants of Richards’ equation
reads

∂(φs(p))

∂t
+∇ · u = f, (1.1a)

u = −K∇(p− z), (1.1b)

where p denotes the pressure head, s(p) is the pressure-dependent saturation, φ the porosity
of the medium, u the flux, z is the depth below the surface, K = K(x; p) the symmetric con-
ductivity tensor and f the source term. Classical discretization methods for partial differential
equations (PDE) are then applied to (1.1

.

). These include finite differences (FD) [152

.

], finite
elements (FE) [25

.

], finite volume (FV) [112

.

], discontinuous Galerkin (DG) [86

.

] and mixed finite
elements (MFE) [31

.

] methods. All these methods cover the simulation domain with a mesh.
The latter is used to define the spacial location of the discrete values that should approximate
the continuous unknown (the pressure head in the case of (1.1

.

)). Hyperresolution modeling
demands that the size of the mesh elements should be small enough such that the relevant
physics are resolved accordingly [104

.

].

A clear computational trend is that the computational power to perform extensive calcula-
tions is provided by parallel computing [122

.

]. Hence, effective employment of high performance
(parallel) computing strategies (HPC) is fundamental. Computer codes should be able to ef-
ficiently use the resources from massively parallel computers with hundreds of thousands of
processing units. Currently, the largest machines offer a theoretical performance of the order
of dozens of petaflops, that is 1016 floating point operations per second (FLOPS) [133

.

]. The
next generation of parallel machines offering exaflop (1018 FLOPS) performance is expected in
the near future.

1



1 Introduction

There has been a significant focus across the hydrology modeling community to incorporate
modern HPC paradigms into their simulation codes. Examples are PARSWMS [83

.

], TOUGH2-
MP [172

.

], PFLOTRAN [82

.

], Hydrogeosphere HGS [91

.

], RichardsFOAM [127

.

], suGWFOAM
[113

.

] and ParFlow [10

.

, 96

.

, 103

.

].
In exploiting HPC resources with parallel computing, the mesh employed by the discretization

method plays a key role. Many PDE-based simulators are parallelized by partitioning the mesh
into segments. Each one of these is assigned to a unique central processing unit (CPU), which
is responsible for updating the degrees of freedom corresponding to that subset only. Dedicated
libraries that target the problem of partitioning and distributing a given mesh on a parallel
computer are for example ParMETIS [101

.

], Zoltan [55

.

], Chombo [49

.

], peano [166

.

], p4est [36

.

],
SAMRAI [167

.

] and others. Some of the previously mentioned modeling platforms make use
of these libraries in their implementations, for example PARSWMS and PFLOTRAN delegate
their mesh management to the library ParMETIS. Others like ParFlow manage the mesh
parallelization internally.

Unfortunately, even with the power of current supercomputing facilities, problems requiring
extremely high spacial resolution may be infeasible to solve if a uniformly refined mesh is im-
posed. A valuable tool to reduce the workload of numerical simulations without compromising
the accuracy is adaptive mesh refinement (AMR) [11

.

, 20

.

, 56

.

]. AMR builds upon the concept of
using a fine mesh locally only where high accuracy is required and keeping it coarse elsewhere.
When combined with suitable error indicators that guide when to refine or coarsen the mesh
[26

.

, 162

.

, 46

.

], AMR can reduce the workload and run time of a simulation by using less mesh
elements in comparison with a uniform mesh [43

.

, 124

.

].
In terms of efficiency, one the most successful approaches to implement AMR is based on

space filling curves (SFC) [12

.

, 141

.

]. Here, the information about the size and position of mesh
elements is maintained within a tree data structure that can be associated with a recursive
refinement scheme where, for example in two space dimensions, a square is subdivided into four
half size child squares. The leaves of the tree represent the elements of the mesh and they can be
linearly ordered with the help of a SFC. The latter is a mapping between a higher dimensional
space and a one dimensional space that induces an ordering of the leaves and hence on the
mesh elements. Then, a partition on the mesh is defined by decomposing the SFC into parts
containing a balanced amount of elements. Libraries implementing this approach are Dendro
[142

.

] for hexahedral meshes and sam(oa)2 [117

.

] for 2d triangular meshes. These libraries have
shown to scale to up to tens of thousands and hundred thousand of processes, respectively.

The canonical domain associated with a tree is a cube (a square in 2D). In order to represent
more complex domain shapes, the SFC approach has been extended to consider unions of trees
[44

.

]. The software library p4est [44

.

, 94

.

] provides efficient algorithms that implement a self-
consistent set of parallel AMR operations for hexahedral meshes. It employs a Morton SFC
[123

.

] and has shown excellent parallel scalability to up to 3.1 million processes [40

.

, 137

.

, 41

.

].
The goal of this thesis is to develop parallel adaptive solvers for subsurface flow able to take

advantage of the latest supercomputing resources. Our starting point is the software library
ParFlow, which provides a solver for (1.1

.

) based on a cell centered finite differences discretiza-
tion on uniform hexahedral meshes. ParFlow exploits HPC resources by using distributed
memory parallelism (MPI). We propose to reorganize the mesh subsystem of this library using
partitioning algorithms provided by the parallel adaptive mesh refinement library p4est with a
view to introduce AMR to the subsurface simulation ParFlow. As a related topic, introducing
locally refined meshes into ParFlow will certainly change the spectral properties of the dis-
crete mathematical operators appearing after discretization. Hence, we investigate alternative

2



preconditioners for saddle point problems.

We begin this thesis with a review of the mathematical and computational tools frequently
employed in the simulation of subsurface flow. Hence, we prepare the necessary concepts in
order to introduce the reader to the simulation platform ParFlow. In particular, we focus on
the algorithmic approach ParFlow implements to target HPC systems. This leads to a detailed
study of how ParFlow’s computational mesh is distributed in parallel. The latter research is
of fundamental importance for the overall goal of this thesis: We are able to identify parallel
bottlenecks that may limit the code’s scalability as well as algorithms based on traditional
assumptions that cannot be maintained with an AMR implementation. In particular, we note
that ParFlow does not implement a strictly distributed storage of its mesh.

With this knowledge, we proceed to implement an interface that sets p4est as new mesh
manager without introducing disrupting changes in the original code. Our effort results in a
modified version of ParFlow with two valuable features: First, it is backwards compatible
with the upstream one. And second, it takes the code a step further in order to take advantage
of the computational resources offered by the latest HPC systems [38

.

]. At this point, we are still
keeping the ParFlow mesh uniform. Hence, a natural extension is to make use of the AMR
functionality provided by p4est to introduce locally refined meshes in ParFlow. We discuss
how this can be done, issues one may encounter due to the (previously identified) assumptions
not compatible with AMR and solutions to overcome such issues.

The work done integrating ParFlow with p4est exclusively modifies the mesh logic of the
former. We keep the discretization method and numerical solvers. Switching to an AMR
framework will have effects on both of these. Regarding the discretization, we require it to be
compatible with nonconforming hexahedral meshes, i.e., it should achieve continuity of the flux
u across connecting faces of different size. While traditional finite difference schemes are no
longer directly applicable, there are MFE spaces suitable to enforce this property, one example
being the Raviart-Thomas spaces [135

.

]. Using particular quadratures, a MFE discretization us-
ing Raviart-Thomas spaces of lower order is equivalent to the FD approach taken in ParFlow
[6

.

]. This suggest that reinterpreting ParFlow’s discretization as a MFE method might be
beneficial when switching to locally refined meshes. Because a MFE discretization (1.1

.

) leads
to a linear system with saddle point structure, in the last part of this thesis we study precon-
ditioners for this kind of system.

This thesis is organized as follows:

In Chapter 2

.

we summarize the main mathematical and computational tools employed to
simulate subsurface flow. We then present the main features of the subsurface flow simulator
ParFlow in Chapter 3

.

, with a detailed description of the parallelization of its computational
mesh and how it enables but also limits parallel scalability.

In Chapter 4

.

we present a modified version of ParFlow in which the mesh management
has been delegated to the parallel AMR library p4est. We realize this in a minimally inva-
sive manner following a principle that we call reinterpret instead of rewrite akin to [13

.

]: We
carefully select parts of the ParFlow code to reinterpret and reuse most of the existing mesh
data structures. Without exploiting the AMR capabilities of p4est, this modified version of
ParFlow already offers a wider range of configurations the code may be executed with and an
improved performance with respect to the upstream version. We conclude this chapter evalu-
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1 Introduction

ating the scaling performance of the modified version of ParFlow, demonstrating good weak
and strong scaling up to 458K processes. This chapter was first published in 2018 [38

.

].
Chapter 5

.

is devoted to expose our ideas to prepare the ParFlow code for local mesh
refinement by activating the AMR functionalities of p4est. In particular, we focus on the
correctness of the mesh connectivity and the correct propagation of information when the code
is executed on a parallel machine. We conclude this chapter proposing two solutions to ensure
that ParFlow correctly determines the MPI peers and senders of a message when a locally
refined mesh is employed.

We conclude this thesis presenting a block preconditioner for saddle point problems (SPAMG)
in Chapter 6

.

. The design of this preconditioner corresponds to work realized by co-author B.
Metsch [120

.

]. The SPAMG preconditioner is compared against standard diagonal and Schur
preconditioners for a low-order Raviart-Thomas discretization of a mixed diffusion problem on
adaptive quadrilateral meshes. We finish the chapter with numerical experiments in 2D and
3D showing that the SPAMG preconditioner displays nearly mesh-independent iteration counts
for adaptive meshes and heterogeneous coefficients. We are currently preparing Chapter 6

.

for
publication.
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2 Simulation of subsurface flow

In this chapter we provide a summary of the mathematical and computational tools that are
frequently employed in the simulation of subsurface flow. We begin by covering some back-
ground information concerning the physical concepts of subsurface flow phenomena in order to
derive the corresponding model equations.

2.1 Mathematical modeling

In general, a model is a simplified version of a real system or a set of processes that take
place within it, which approximately describes relevant features of the system being studied
[17

.

, pp. 29]. The fundamental aim of a model is to predict the behavior of a system in order to
better understand it. Roughly speaking, a model refers to any construction that approximates a
real situation. Developing such construction usually starts by defining a conceptual framework,
which is a set of assumptions that express the current level of understanding of the system’s be-
havior. A mathematical model is a translation of this conceptual framework into mathematical
language, which in the case of fluid flow simulation usually takes the from of partial differential
equations (PDEs). We will give a brief introduction to this topic in Section 2.2

.

and devote
the rest of this section to introduce key concepts and the physical principles for describing the
governing equations of subsurface flow.

The subsurface is a porous medium, consequently, we require to properly define what such a
medium is. We start recalling

Definition 2.1.1 (Material phase). A material phase is a homogeneous portion of space that
is separated from other such portions by a definite physical boundary [17

.

, pp. 42].

Intuitively, a porous medium refers to a material that allows a fluid to infiltrate. Examples
of porous media materials are sand, soil, fractured rocks, ceramics, foam, etc. There are two
features that all these examples, and in general all porous media, have in common. First, it is
possible to identify a portion that permits fluid transport and a portion that acts as an obstacle.
The former one is known as the void space, and the latter as the solid matrix or solid phase.
Second, the void space and the solid matrix are distributed throughout the material in a very
special way: sufficiently large samples of the material at different locations always contain void
space and solid phase. In order to facilitate the exposition, we will assume that samples are
spheres centered at a given point in space. A more formal definition is the following.

Definition 2.1.2 (Porous medium). A domain U ⊂ Rd, d = 2, 3 is said to be a porous medium
if it satisfies the following properties.

i) U = Us ∪ Uv with Us ∩ Uv = ∅, where Us denotes the solid phase and Uv the void space.

ii) There exists a r > 0 such that for every point x ∈ U , Br(x) ∩ Us 6= ∅ and Br(x) ∩ Uv 6= ∅.
Here Br(x) := {y ∈ U : ‖x− y‖ < r}.
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2 Simulation of subsurface flow

solid

solid

solid

solid

solid

void

Figure 2.1: Example of a connected void space. The void space permits fluid transport while
the solid matrix serves as an obstacle.

Definition 2.1.3 (Representative elementary volume (REV)). The set Br(x) from Defini-
tion 2.1.2

.

is called Representative Elementary Volume, abbreviated REV.

Thus, a porous medium is a domain in which a solid phase and a void space can be identified
and for which a REV can be found. We are interested in modeling the situation where multiple
fluid phases that occupy the void space move through it. Hence, it is natural to assume that
the void space is connected. See Figure 2.1

.

.

Remark 2.1.4. Because gases in general do not maintain a distinct physical boundary between
them, it is assumed that there can only be one gaseous phase in a given system.

As introduced above, the movement of fluid phases through the void space is mathematically
expressed as a set of PDEs. The construction of such equations is based on the fundamental
assumption that each of the phases in the porous medium, including the solid matrix, behave
as a continuum that fills up the entire space. This supposition allows to describe state variables
and material parameters of a phase as continuous differentiable functions of time and the spacial
coordinates.

Remark 2.1.5. An intermediate step would be to regard each phase as a continuum only in the
region of space it fills and not over the whole porous medium. Such approach will then require
detailed knowledge of the boundary between phases. This information is in general not known
and even impossible to determine for practical applications.

The continuum approach overlooks the details at the molecular level. In order to upscale to a
coarser level of description, a practical method developed in the engineering sciences is volume
averaging [15

.

, pp. 7]. The phase behavior at the microscopic scale, e.g., the molecular level,
is averaged over a REV in order to obtain the phase behavior as a continuum. Consequently,
the size of the REV has to be carefully chosen such that the averaged values of all geometric
characteristics of a phase are statistically meaningful. The averaged values are called macro-
scopic quantities and for a particular porous medium, they can be determined experimentally
[16

.

, Sec. 1.1.3]. Another approach is provided by homogenization theory, which makes use of
asymptotic expansions to let the microscopic scale tend to zero. See for example [88

.

, Ch. 1] for
a comprehensive introduction to this technique.

The building blocks of mathematical models based on the continuum assumption are con-
servation laws. In general, a conservation law states that a measurable property of a system
remains constant as the system changes in time. For the case of subsurface flow, the driving
equations are based on the conservation of mass and momentum.
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2.1 Mathematical modeling

2.1.1 Mass conservation

Let Ω ⊂ Rd be a region in the space (d = 2, 3) filled with a fluid. We consider the portion
of the fluid enclosed in a subdomain V ⊂ Ω. In addition, we assume that there exists a time
dependent vector field, ϕ : [0, T ]×Ω that describes the motion of a particle at position x with
time. Further, we assume that ϕ(t,x) is differentiable and invertible for each t ∈ [0, T ]. Then,
for t > 0, the fluid occupies the domain

Vt := {ϕ(t, x̂) | x̂ ∈ V }. (2.1)

We said that Vt is the volume moving with the fluid. Our assumptions imply that there is a
well defined velocity vector field for each fixed x ∈ Vt, characterized as

u(t,x) :=
∂

∂t
ϕ(t, x̂), x = ϕ(t, x̂). (2.2)

The principle of mass conservation states that the mass of a fluid enclosed in Vt is constant
with respect to t. If ρ(t,x) denotes the mass density of the fluid, this is mathematically
expressed as

d

dt

∫
Vt

ρ(t,x) dx = 0. (2.3)

In order to evaluate the time derivative in (2.3

.

) we need the Reynolds transport theorem (see
eg. [115

.

]).

Theorem 2.1.6 (Transport Theorem). Let Vt and u be defined as in (2.1

.

) and (2.2

.

) respec-
tively. Further, let f : [0, T )× Ω→ R a differentiable scalar function. Then, it holds that

d

dt

∫
Vt

f(t,x) dx =

∫
Vt

(
∂

∂t
f +∇ · (fu)

)
(t,x) dx. (2.4)

Using (2.4

.

) in (2.3

.

) yields ∫
Vt

(
∂

∂t
ρ+∇ · (ρu)

)
(t,x) dx = 0, (2.5)

which should be valid for every Vt and hence we obtain the continuity equation

∂

∂t
ρ+∇ · (ρu) = 0. (2.6)

2.1.2 Conservation of momentum

We consider a time dependent volume Vt and ρ(t,x) as in the last section. The principle of
conservation of (linear) momentum states that the rate of change of momentum in the region
enclosed by Vt is equal to the sum of forces applied to that region. There are two different
types:

• Body forces, which act throughout the volume Vt and can be expressed as∫
Vt

ρ(t,x)f(t,x) dx, (2.7)

where f is a given force density per unit volume.
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2 Simulation of subsurface flow

Q

A

Sand

L

h1

z1

ψ1

h2

z2

ψ2

∆h = h1 − h2

Figure 2.2: Experimental setup to investigate water flow Q through an inclined sand column
of length L and cross sectional area A. The quantities hi = ψi + zi, for i = 1, 2,
represent the hydraulic head (2.12

.

) measured at the two endpoints the of the column.
Figure adapted from [17

.

].

• Surface forces, which according to Cauchy’s theorem [80

.

, Ch. 5] can be expressed as∫
∂Vt

σ(t,x)nds, (2.8)

where σ is the symmetric stress tensor and n is the outward unit normal to the boundary
of Vt.

The principle of conservation of (linear) momentum is then mathematically expressed as

d

dt

∫
Vt

ρ(t,x)u(t,x) dx =

∫
Vt

ρ(t,x)f(t,x) dx+

∫
∂Vt

σ(t,x)nds. (2.9)

Applying (2.4

.

) componentwise in the left term of (2.9

.

) and the divergence theorem to the
surface integral we obtain∫

Vt

{
∂

∂t
(ρu) + u · ∇(ρu) + (ρu)∇ · u− ρf −∇ · σ

}
(t,x) dx = 0, (2.10)

which should be valid for any Vt. Hence, we find the differential form of the momentum equation,

∂

∂t
(ρu) + u · ∇(ρu) + (ρu)∇ · u− ρf −∇ · σ = 0. (2.11)

2.1.3 Darcy’s Law

Fluid flow in the subsurface is driven by the hydraulic head

h =
p

ρg
+ z, (2.12)

where z is the elevation with respect to some datum, p and ρ denote the fluid’s pressure and
density and g the gravity acceleration. The quantity

ψ =
p

ρg
(2.13)
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2.2 Introduction to partial differential equations

is called pressure head and measured in length units. With an experimental setup similar to the
one depicted in Figure 2.2

.

, Henri Darcy [51

.

] concluded that the water flux Q in a homogeneous,
saturated porous medium, represented in his experiment as a sand column of cross sectional
area A filled with water, is proportional to the change in the hydraulic head over a specified
length L, multiplied with the cross sectional area of the column, that is,

Q = −KA∆h

L
. (2.14)

The proportionally constant K is called hydraulic conductivity and has units of length over
time. It is a material depend quantity expressing the ease with which a fluid flows through the
void space. The hydraulic conductivity is commonly written as

K = k
ρg

µ
, (2.15)

where µ denotes the dynamic viscosity of the fluid and k is the permeability of the porous
medium. The generalization of (2.14

.

) to a three dimensional anisotropic medium, reads (see
eg. [17

.

, Sec. 4.1.2])
q = −K∇h = −K∇(ψ + z), (2.16)

where q denotes specific discharge: the volume of fluid passing per unit area of porous medium
per unit time. The hydraulic conductivity takes now the form of a second order symmetric
tensor K. The relation (2.15

.

) also holds for an anisotropic porous medium, implying that the
permeability is also a second order tensor. It is frequently assumed that the principal directions
of anisotropy are aligned with a selected coordinate system, implying that K becomes diagonal.

A key parameter in the description of flow through a porous media is the porosity, which
is defined as the volume fraction occupied by the void space and it is usually denoted as φ.
Instead of the specific discharge, one is usually interested in the average fluid velocity through
the porous medium v. The relation between these is given by q = φv, which is intuitively clear
from the fact that flow can only occur in the fraction occupied by the void space.

It is important to emphasize that (2.16

.

) is derived under saturated flow conditions, and it may
be adjusted to account for unsaturated and two-phase flow. We will present the corresponding
equations in Section 2.3

.

. To finish this section, we would like to comment on the range of
validity of Darcy’s law. In a general fluid flow simulation, the Reynolds number (Re) constitutes
a fundamental parameter that helps to differentiate laminar and turbulent flow, occurring at
low and higher velocities, respectively. The Reynolds number is as measure of the relative size
of the non-viscous (convection) and viscous (diffusion) forces acting on a moving fluid [14

.

].
Experimental evidence indicates that Darcy’s law is valid when Re < 10, and that most of the
saturated subsurface flow occurs within this range [17

.

, p. 147].

2.2 Introduction to partial differential equations

Partial differential equations appear naturally as modeling tools for many fundamental physical
processes. An extensive amount of work has been dedicated in order to understand them as a
mathematical object. A fundamental step in order to attempt to solve, either analytically or
numerically, a given partial differential equation is to recognize its type. This has implications
on the kind of boundary conditions required to define a well posed problem and also affects
the choice of a suitable numerical scheme. The objective of this section is to present a brief
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2 Simulation of subsurface flow

introduction to partial differential equations and their classification in the second order case.
The material exposed here is covered in classical text books; see e.g., [95

.

, 151

.

, 76

.

, 64

.

] for further
details. For the rest of this section, Ω will denote a domain in Rd, d ≥ 1 with Lipschitz boundary
Γ = ∂Ω and u : Ω→ R a scalar function smooth enough so that all derivatives appearing make
sense.

Definition 2.2.1. (Notation)

i) A multiindex α is an integer-valued vector α = (α1, . . . , αd). Its order is defined as
|α| := α1 + α2 + · · ·+ αd.

ii) Let x = (x1, . . . , xd) be a point in Rd. For a multiindex α, we define Dαu(x) :=

∂|α|u(x)

∂α1x1 · · · ∂αdxd
.

iii) For a given k ∈ N the set of all partial derivatives of order k is written as Dku(x) :=
{Dαu(x) | |α| = k}.

Note that Dku(x) can be identified with a point in Rdk , for example for k = 1 we identify

Du(x) with the gradient of u, ∇u =
(
∂u
∂x1

, . . . , ∂u∂xd

)
and D2u(x) with the Hessian matrix

Hu =
(

∂2u
∂xi∂xj

)
i,j=1,...,d

. With this notation in mind, a general definition of a partial differential

equations reads as follows.

Definition 2.2.2. (PDE) Let k, d ∈ N and Ω ⊂ Rd, d ≥ 2 denote a domain.

i) A partial differential equation (PDE) of order k ≥ 1 is a functional relation of the form

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x),x) = 0, (2.17)

where F : Rdk×Rdk−1×· · ·×Rd×R→ R is a given function and u : Ω→ R is the unknown
solution.

ii) A strong solution of (2.17

.

) is a k-times continuously

differentiable function v(x) satisfying (2.17

.

).

We are interested in the second order case (k = 2) and in particular when (2.17

.

) takes the
form

d∑
i,j=1

aij (Du(x), u(x),x)
∂u(x)

∂xi∂xj
+ b (Du(x), u(x),x) = 0 (2.18)

for some coefficients aij : R2d+1 → R and b : R2d+1 → R. This kind of equation is known as
quasilinear second order PDE. This contains the semilinear case, when aij = aij (u(x),x) and
also the linear case when the coefficients aij depend only on the spacial location and additionally
b has the form

b =

d∑
i=1

ci(x)
∂u(x)

∂xi
+ f(x), (2.19)

where f, ci : Rd → R for i = 1, . . . , d are given scalar functions. Equations like (2.18

.

) may be
further classified as elliptic, hyperbolic, and parabolic. Such classification is useful because each
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2.2 Introduction to partial differential equations

of the three types requires a substantially different kind of analysis, from both the theoretical
and numerical point of view. Concerning this classification, the main role is played by the
second order differential operator

d∑
i,j=1

aij (Du(x), u(x),x)
∂u(x)

∂xi∂xj
, (2.20)

and more specifically by the matrix A(x) with coefficients Aij(x) := aij (Du(x), u(x),x), for
i, j = 1, . . . , d.

Definition 2.2.3. a) The equation (2.18

.

) is elliptic at the point x if all the eigenvalues of the
matrix A(x) are different from zero and have the same sign.

b) The equation (2.18

.

) is parabolic at the point x if the matrix A(x) has one zero eigenvalue
and the remaining d− 1 nonzero eigenvalues have the same sign.

c) The equation (2.18

.

) is hyperbolic at the point x if all the eigenvalues of the matrix A(x)
are different from zero and one eigenvalue has the opposite sign of the remaining d− 1.

In the parabolic and hyperbolic cases, the eigenvalue displaying a different sign as the re-
maining ones corresponds to a special variable that is normally associated with time. Examples
of the above mentioned classes are:

• The Poisson equation

−∆u(x) = f(x), (2.21)

where f : Rd → R is a given function and ∆ := ∇ · ∇ denotes the Laplace operator. It is
the prototype of an elliptic equation.

• If u : (0, T )× Ω→ R , with T > 0, then the heat equation reads

∂u(t,x)

∂t
−∆xu(t,x) = 0, (2.22)

where ∆x denotes the Laplace operator acting in the x variable. It is the canonical
example of a parabolic PDE.

• For a function u as above, the wave equation,

∂2u(t,x)

∂2t
−∆xu(t,x) = 0, (2.23)

is the prime example of a hyperbolic PDE.

It is important to emphasize that the classification introduced in Definition 2.2.3

.

does not cover
the whole spectrum of existing PDEs. There are equations not belonging to any of this classes.
A second important point is that the classification depends on the spacial location and the
solution itself. For example, the Euler-Tricomi equation [109

.

],

∂2u(x, y)

∂2x
+ x

∂2u(x, y)

∂2y
= 0, (2.24)

11



2 Simulation of subsurface flow

is elliptic if x > 0, parabolic if x = 0 and hyperbolic if x < 0. Another example is the following
variant of the Richards equation [136

.

]

1

4

∂(s(p))

∂t
−∇ · (∇(p− z)) = Q, (2.25)

where s(p) : R→ [0, 1] denotes the pressure-head dependent water saturation in a given porous
medium, Q is a source term, and z denotes the elevation below the surface. This PDE is elliptic
in the fully saturated case (s(p) ≡ 1) and parabolic otherwise.

In analogy with ordinary differential equations, none of the equations (2.21

.

)–(2.23

.

) or the
more general case (2.18

.

) provide enough information to define a unique solution u. Depending
on the type, one may need to prescribe values of the unknown function and/or its derivatives
at the boundary of the domain in order to define a well posed problem. For time dependent
problems like the parabolic and hyperbolic case, an initial condition, i.e., values of the unknown
function at some starting time point t0, is also required. We speak about Dirichlet boundary
conditions when the sought function u is prescribed on parts of the domain’s boundary. When
the prescribed values correspond to derivatives of u we speak of Neumann boundary conditions.
A Robin condition corresponds to a linear combination of the previous two [151

.

].
The notion of strong solution given in Definition 2.2.2

.

is in general too restrictive for the
equations encountered in practice. The regularity conditions implicitly assumed when inserting
a function u into equation (2.18

.

) may be too strong. In many cases a strong solution fails
to exist because we are looking into the wrong class of functions. Hence, it is convenient to
enlarge the definition of solution and consider classes of spaces that allow functions with jumps
and even discontinuities. This is in line with the notion that natural phenomena are frequently
driven by non-smooth or even discontinuous processes. Such an approach has lead to consider
weak solutions and variational methods. See e.g., [64

.

, Ch. 6]. We will not go into detail here
and postpone the basic definitions until we require them in Chapter 6

.

.
Unfortunately, even when searching for a solution in a suitable function space, the class

of PDEs for which an explicit solution may be found is reduced to a few examples. PDEs
modeling real physical systems with an acceptable accuracy do not belong to this category and
the development of numerical techniques to compute an approximate solution has become a
central tool to gain understanding of such systems. We will present a summary of the main
numerical methods for solving PDEs in Section 2.4

.

.

2.3 Partial differential equations in subsurface flow

Mathematical modeling of subsurface flow problems usually lead to second order PDEs. In
this section we summarize the basic equations for saturated and variably saturated flow. The
former occurs when the fluid occupies the whole void space and the latter corresponds to the
case where the void space is filled up with a fluid and a gaseous phase (water and air).

2.3.1 Saturated case

For a fluid occupying the whole void space of a porous medium with porosity φ, the governing
equation may be derived by combining a variant of the continuity equation (2.6

.

) written for
the fluid phase and Darcy’s law. The former takes the form

∂

∂t
(φρ) +∇ · (φρu) = Q, (2.26)
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2.3 Partial differential equations in subsurface flow

where u denotes the mean velocity of the fluid in the void space, we now consider sources (or
sinks) Q, measured as volume per unit time. Combining (2.26

.

) with Darcy’s law (2.16

.

) and
recalling that u relates to the Darcy flux q by u = φ−1q, we obtain

∂

∂t
(φρ)−∇ · (Kρ∇(ψ + z)) = Q. (2.27)

Employing additional assumptions on the compressibility of the fluid and the porous medium
deformability, see [17

.

, Sec. 5.1.3], the above equation may be written as

Ss
∂ψ

∂t
−∇ · (K∇(ψ + z)) = Q. (2.28)

where Ss denotes the coefficient of specific storage, see [17

.

, pp. 175] for a definition.

2.3.2 Variably saturated case

The governing equation for fluid flow in a porous medium whose void space is occupied by both
a gas and a fluid phase can be obtained combining a special form of Darcy’s law, the continuity
equation for the fluid phase and assuming that the movement of gas is negligible. Darcy’s law
takes the form

qw = −Kkr∇(ψw + z), (2.29)

where qw is the Darcy flux for the water phase, K the saturated hydraulic conductivity tensor,
kr is a scalar function denoting the relative permeability with respect to the water phase and
ψw the water pressure head. In addition, if uw denotes the mean velocity of the water, and
Sw ∈ [0, 1] describes the water saturation, the continuity equation for the water phase is written
as

∂

∂t
(φρSw) +∇ · (φρuw) = Q. (2.30)

Again, uw is related to the Darcy flux of the water phase by uw = φ−1qw. Combining the
latter with (2.29

.

) and (2.30

.

) we obtain

∂

∂t
(φρSw)−∇ · (Kkrρ∇(ψ + z)) = Q. (2.31)

Once more, simplifying assumptions on the compressibility of the fluid and the porous medium
deformability (see eg. [17

.

, Sec. 5.1.3] or [90

.

, Sec. 4.5.1]), allow (2.31

.

) to be written as

SsSw
∂ψ

∂t
+ φ

∂Sw
∂t
−∇ · (Kkr∇(ψ + z)) = Q. (2.32)

The water saturation Sw and the permeability kr depend on the materials properties and may
be written in the functional form

kr = kr(Sw) and Sw = Sw(ψ). (2.33)

These formulas involve fitting coefficients that can be determined by solving an inverse problem.
Examples include the Brooks and Corey [33

.

] and Van Genuchten [160

.

] specifications.
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2 Simulation of subsurface flow

2.4 Numerical methods

As pointed out in Section 2.2

.

most of the “interesting” PDEs cannot be solved analytically
and we can at most approximate its solution numerically. In order to perform such a task, we
must translate the continuous problem to a discrete one, hence instead of solving a PDE we
solve a system of algebraic equations with the hope that the discrete values correctly reproduce
the behavior of the continuous unknowns of the PDE. Different types of problems in physics
generally correspond to different types of PDEs. In analogy, the numerical methods aiming to
solve these equations have substantial differences depending on the type. In this section we
present a summary of the main numerical schemes for PDEs. Detailed information on each
method can be found in the references presented at the beginning of each subsection. Because
equations of parabolic type appear naturally in the study of subsurface flow, we first recall the
most basic time discretization scheme.

2.4.1 Time stepping

Our starting point is an initial value problem for a system of ordinary differential equations

dw

dt
= F (w, t), (2.34a)

w(0) = w0, (2.34b)

where t ∈ (0, T ), T > 0 and w(t) ∈ Rd. We introduce a partition of [0, T ] of NT intervals of
size ∆t = T/NT . Let tn = n ·∆t. We use the notation wn = w(tn), and for a fixed θ ∈ [0, 1]
we define by Fn+θ the time average

Fn+θ := θF (wn+1, tn+1) + (1− θ)F (wn, tn). (2.35)

The θ-method for (2.34

.

) is defined by: Given w0, find w1, . . . ,wNT such that

wn+1 = wn + ∆tFn+θ for n = 0, . . . , NT − 1. (2.36)

For each θ ∈ [0, 1] and sufficiently small ∆t the method is convergent. The order of convergence
and additional stability properties, like the step size that guarantees that numerical errors are
damped as we iterate, depend on the value of θ. Popular cases are the forward Euler scheme
for θ = 0, the Crank-Nicholson method for θ = 1/2 and the backward Euler scheme for θ = 1,
see eg. [154

.

, Ch. 12].

2.4.2 Finite differences

In the finite difference method (FD), a PDE is approximately solved by replacing the derivatives
appearing in the differential equation by difference quotients. It is one of the most popular meth-
ods for solving PDEs arising from subsurface flow problems. The FD method constitutes one
of the oldest methods for solving ordinary and partial differential equations. As a consequence,
it is supported by an extensive body of literature and benchmarks. See eg. [110

.

, 152

.

, 156

.

].
A first step in many discretization techniques is to cover the domain of interest with a

mesh. This mesh is then used to define the spacial location of the discrete values that should
approximate the continuous unknown. These values are referred to as degrees of freedom in the
literature. Finite difference schemes employ orthogonal grids, which for simplicity reasons are
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Figure 2.3: Example of a grid-centered (a) and a cell-centered (b) finite difference discretization.
The black dots represent the degrees of freedom.

assumed as equally spaced in each coordinate direction. See Figure 2.3

.

for a two dimensional
example.

The actual location of the degrees of freedom is in general problem dependent. Grid-centered
and cell-centered FD methods place the degrees of freedom in the mesh nodes and the face
of a mesh cell respectively; see Figure 2.3

.

. The cell-centered approach may be constructed by
considering mass conservation in every cell of the mesh, a reason for which it is widely used
in the modeling community [17

.

, Ch. 8]. It can also be regarded as a special case of the finite
volume method. See the end of Section 2.4.3

.

. For problems involving multiple variables (e.g.,
velocity and pressure) placing all degrees of freedom in the same spatial locations could lead
to nonphysical oscillatory patterns in the solution. The staggered grid variant places different
unknown values at different locations in order to avoid this situation [78

.

, Ch. 3].

We would like to introduce some concepts that will be useful in Chapter 3

.

with the following
example. Let Ω = (a, b) be a domain in R and T > 0. For given functions u0, k : Ω → R
consider the problem to find u : [0, T ]× Ω→ R satisfying

∂u(t, x)

∂t
− ∂

∂x

(
k(x)

∂u(t, x)

∂x

)
= 0 in [0, T ]× Ω, (2.37a)

u(0, x) = u0(x) in Ω, (2.37b)

k(x)
∂u(t, x)

∂x
= 0 on [0, T ]× ∂Ω. (2.37c)

Let ∆t := T/NT and ∆x := (b− a)/(N + 1) where NT , N ∈ N are some positive numbers. We
introduce uniformly spaced meshes in time and space,

{tn | tn = n∆t, n = 0, 1, . . . , NT },
{xi+1/2 | xi+1/2 := a+ (i+ 1)∆x, i = −1, 0, 1, . . . , N}.

and employ a cell-centered FD scheme to discretize (2.37

.

), which means that the degree of
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2 Simulation of subsurface flow

freedom corresponding to the mesh cell Ki := [xi−1/2, xi+1/2] is located at

xi :=
1

2

(
xi−1/2 + xi+1/2

)
. (2.38)

Further, we use the notation uni = u(tn, xi). Then, for a given time step tn, the second order
term in (2.37a

.

) is approximated as

1

∆x

(
ki+1/2

uni+1 − uni
∆x

− ki−1/2

uni − uni−1

∆x

)
. (2.39)

The values of the coefficient k(x) in (2.39

.

) can be approximated as ki±1/2 = k(xi±1/2), the
arithmetic mean

ki±1/2 =
1

2

(
k(xi) + k(xi±1/2)

)
, (2.40)

or with the harmonic mean

ki±1/2 =
2k(xi)k(xi±1/2)

k(xi) + k(xi±1/2)
. (2.41)

For higher dimension domains, and the case of highly heterogeneous k(x), the choose of the
arithmetic or harmonic mean can be physically motivated [173

.

]. Additionally, the harmonic
mean offers the advantage that it automatically accommodates to zero flux boundary conditions.
This property is extended in two and three dimensions because of the tensor product nature of
finite difference quotients on orthogonal grids. Combining (2.39

.

) with the θ-method (2.36

.

), a
complete discretization scheme for (2.37

.

) reads

un+1
i − uni

∆t
= (1− θ) 1

∆x

(
ki+1/2

uni+1 − uni
∆x

− ki−1/2

uni − uni−1

∆x

)
+ θ

1

∆x

(
ki+1/2

un+1
i+1 − un+1

i

∆x
− ki−1/2

un+1
i − un+1

i−1

∆x

)
.

(2.42)

For the case of the forward Euler method, (2.42

.

) defines an explicit iterative process to find an
approximate value of the solution. The major drawback of this approach is that the following
condition on the time and space steps must hold,

‖k(x)‖ ∆t

(∆x)2
≤ 1

2
, (2.43)

such that the numerical error introduced at each time step does not grow exponentially. The
inequality (2.43

.

) is the CFL condition [50

.

] for this scheme and implies that taking a small time
step restricts the spacial step to be even smaller. This translates into additional computational
workload, which for three dimensional problems may be prohibitively expensive. The variants
with θ = 1 or θ = 1/2 do not have this restriction at the expense of solving a (non-linear)
system of equations at each time step.

A concept frequently found in the FD theory is that of a stencil. It refers to a geometric
representation of the degrees of freedom relevant for computing a numerical approximation of
a derivative at a given point. For example, taking k ≡ 1 and u(t, x) = u(x), equation (2.39

.

)
gives an approximation of the second order derivative

∂2u(x)

∂2x

∣∣∣∣
x=xi

≈ ui−1 − 2ui + ui+1

(∆x)2
. (2.44)
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i− 1 i i+ 1

(a)

i− 1, n i, n i+ 1, n
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(b)

Figure 2.4: Left, 3 point stencil for approximating the second order derivative. Right, Crank-
Nicholson stencil corresponding to (2.42

.

) with θ = 1/2.

The corresponding stencil consists of the point itself and its two neighbors. Time stepping
information is frequently included in the stencil as well. See Figure 2.4

.

.
The difference quotients used to approximate a given derivative are normally taken from

truncated Taylor expansions. In particular, the FD method requires local smoothness of the
target solution. Hence, dealing with discontinuous coefficients becomes an issue. Another
drawback from the FD method lies in the use of orthogonal meshes, since these make it difficult
to geometrically conform to domains with a complex boundary.

2.4.3 Finite volume method

The finite volume method (FV) is a discretization technique especially well suited for PDEs
arising from conservation laws. It its based on the idea of splitting the spatial domain into
control volumes (cells) and enforcing a local version of the integral form of the PDE over
each cell. Compared to the FD method, where the PDE is solved point-wise, the FV method
represents the solution as cell averages. These values are modified at each time step due to
fluxes through the cell’s boundary. Then, a special reconstruction approximates the fluxes
based on the available cell averages.

A major advantage of the FV over FD method is that it does not require a structured
mesh. Consequently, flexibility to deal with complex geometries is gained. It also demands
less regularity of the target solution and by construction it is locally conservative. The latter
property has made the FV method a particularly attractive scheme for modeling problems in
which the governing equations are derived from mass balance considerations. The method also
builds upon an extensive theoretical framework [111

.

, 67

.

, 112

.

].
We will use (2.37

.

) to explain the main ideas behind the FV method. To this end, we define
the flux F (t, x) := −k(x) ∂

∂xu(t, x) and rewrite (2.37a

.

) as

∂

∂t
u(t, x) +

∂

∂x
F (t, x) = 0. (2.45)

Then, integrating (2.45

.

) over a cell Ki := [xi−1/2, xi+1/2] gives∫
Ki

∂

∂t
u(t, x) dx+ F (t, xi+1/2)− F (t, xi−1/2) = 0. (2.46)

Integration with respect to t over a time interval [tn, tn+1] and Fubini’s theorem yields∫
Ki

(u(tn+1, x)− u(tn, x)) dx+

∫ tn+1

tn

F (t, xi+1/2) dt−
∫ tn+1

tn

F (t, xi−1/2) dt = 0. (2.47)
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2 Simulation of subsurface flow

Dividing by the length of Ki, which we will denote by m(Ki) to emphasize the fact that cells
may have different sizes, the last equation can be rearranged as

1

m(Ki)

∫
Ki

u(tn+1, x) dx =
1

m(Ki)

∫
Ki

u(tn, x) dx −

1

m(Ki)

{∫ tn+1

tn

F (t, xi+1/2) dt−
∫ tn+1

tn

F (t, xi−1/2) dt

}
.

(2.48)

The integral
1

m(Ki)

∫
Ki

u(tn, x) dx (2.49)

represents the cell average of the conserved quantity at time step tn. Hence, equation (2.48

.

)
gives the correct formula to update this average at a given cell when advancing a time step
of size ∆t, taking into account the flux over the cell’s boundary. Because in general, none of
the integrals in (2.48

.

) can be computed exactly. The idea of the FV method is to approximate
them in a way that in the resulting discrete scheme mimics (2.48

.

). Hence, if Qni approximates
(2.49

.

), for example by quadrature, then a FV scheme for solving (2.37a

.

) has the form

Qn+1
i = Qni −

∆t

m(Ki)

{
Fni+1/2 −Fni−1/2

}
, (2.50)

where Fni+1/2 is an approximation of the flux along the cell’s boundary at x = xi+1/2. Such ap-
proximation is in general problem dependent and ideally should take into account the direction
and speed at which the information is propagated. See [112

.

, Ch. 4].
Note that the cell’s size did not play an active role in the derivation of the method. Con-

sequently, the cells may have different sizes. This also applies for a higher dimensional con-
struction where there is also more flexibility concerning the shape of the cells. The integral
formulation relaxes the regularity requirements and even discontinuous coefficients may be
treated with the method. The choice of the flux approximation can be generalized to higher di-
mensions in a systematical way [158

.

]. To finish this section we would like to note that choosing
Qni = uni and

Fni+1/2 = (1− θ) 1

∆x

(
ki+1/2

uni+1 − uni
∆x

)
+ θ

1

∆x

(
ki+1/2

un+1
i+1 − un+1

i

∆x

)
(2.51)

reduces (2.50

.

) to the cell-centered finite difference scheme (2.42

.

). In particular, if (2.50

.

) defines
an explicit scheme the cell’s length is also restricted by the CFL condition.

2.4.4 Finite element method

In the finite element (FE) method the PDE is solved in weak form, which is an extended
formulation that allows solutions whose derivatives may fail to exist in the classical sense. The
solution is sought in a Hilbert space of functions V , defined on the domain Ω where the PDE
is posed. For the case of elliptic PDEs, the weak formulation takes the following abstract form:
Find u ∈ V such that

a(u, v) = L(v) for all v ∈ V, (2.52)

where a : V × V → R is a continuous and symmetric bilinear form on V × V and L : V → R a
continuous linear functional on V . The problem (2.52

.

) arises when trying to find the minimum
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of the linear functional J(v) := 1
2a(v, v)− L(v) over V . The FE method can be regarded as a

technique to build finite dimensional subspaces Vm of V , called finite element spaces, such that
instead of (2.52

.

) the following problem is solved: Find um ∈ Vm such that

a(um, vm) = L(vm) for all vm ∈ Vm, (2.53)

with the hope that um correctly approximates the real solution u of (2.52

.

). To this end, the
domain Ω is partitioned into simple subdomains called elements and the functions on V are
approximated by polynomials defined locally on each element. By imposing matching conditions
on the interfaces between the elements, these local approximations are pasted together in such
a manner that a function in V is globally represented using piece-wise continuous polynomials.
Like the previously reviewed schemes, the FE method is also supported by a rich amount of
literature [150

.

, 25

.

, 28

.

, 63

.

].
We will apply the ideas of the FE method to (2.37

.

) to give an example of how this scheme
is used for parabolic PDEs. First, we will suppose that (2.37

.

) was already discretized in time
with an explicit Euler method. Hence, our starting point is

un+1(x) = un(x) + ∆t
∂

∂x

(
k(x)

∂un(x)

∂x

)
, (2.54)

where we have employed the notation un( · ) = u(tn, · ). Assuming that the solution at time
step t = tn has been already computed, a weak formulation is obtained by multiplying (2.54

.

)
with a smooth function v(x), referred to in the FE community as test function, and integrating
over Ω, ∫

Ω
un+1(x)v(x) dx =

∫
Ω
un(x)v(x) dx−∆t

∫
Ω

∂

∂x

(
k(x)

∂un(x)

∂x

)
v(x) dx. (2.55)

Using the product rule (Gauß divergence theorem) and the boundary condition yields the
following problem: Find un+1(x) ∈ V such that∫

Ω
un+1(x)v(x) dx =

∫
Ω
un(x)v(x) dx + ∆t

∫
Ω
k(x)

∂

∂x
un(x)

∂

∂x
v(x) dx for all v ∈ V.

(2.56)
For this example a good choice is to search for solutions in V = H1(Ω), which is the standard
space of functions whose first order derivatives are square integrable in Ω. Introducing the
bilinear form

a(u, v) = (u, v)0,Ω :=

∫
Ω
u(x)v(x) dx (2.57)

and the linear functional

Ln(v) = (un, v)0,Ω + ∆t

(
k
∂

∂x
un,

∂

∂x
v

)
0,Ω

, (2.58)

we can write (2.56

.

) in the form (2.52

.

).
The FE method will then provide a finite dimensional subspace Vm of V to instead solve the

problem: Find un+1
m (x) ∈ Vm such that∫

Ω
un+1
m (x)v(x) dx =

∫
Ω
unm(x)v(x) dx+ ∆t

∫
Ω
k(x)

∂

∂x
unm(x)

∂

∂x
vm(x) dx for all vm ∈ Vm.

(2.59)
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2 Simulation of subsurface flow

If {φ1(x), . . . , φm(x)} denotes a basis of Vm, we can express un(x) =
∑

i u
n
i φi(x) for some coef-

ficients uni to be determined. Consequently, ∂
∂xu

n(x) =
∑

i u
n
i φ
′
i(x). Inserting these expansions

in (2.56

.

) with v = φj leads to solve the following system of equations,

m∑
i=1

un+1
i

∫
Ω
φi(x)φj(x) dx =

m∑
i=1

uni

∫
Ω

[
φi(x)φj(x) + ∆tk(x)φ′i(x)φ′j(x)

]
dx, j = 1, . . . ,m,

(2.60)
which is the classical Galerkin scheme [25

.

]. Other choices for the functions v are possible; see
the above mentioned literature. With help of the matrices M := (M)ij = (φi, φj)0,Ω and
A := (A)ij = −(kφ′i, φ

′
j)0,Ω, (2.60

.

) can be written in the more compact form

Mun+1 = Mun + ∆tAun, (2.61)

where un = (un1 , . . . , u
n
m)>.

The previous discussion highlights the main ideas of a FE method. It allows to employ
elements variable in shape and size. This feature can be combined with high order local poly-
nomials to improve the quality of the approximation (hp-adaptivity) [53

.

]. For our particular
example, we note that despite using an explicit time integration scheme, the discretization in
general requires to invert a matrix at each time step. While the classical FE method is well
suited for elliptic PDEs, on the other hand it is not a natural choice for problems in which
information is propagated directionally, even though it can be improved with the assistance of
stabilization techniques [89

.

].

2.4.5 Mixed finite elements

For many physical problems the corresponding mathematical models translate into systems of
PDEs. Due to the disparity of the unknowns appearing in such systems of equations, there is
an interest in obtaining them simultaneously. Mixed finite elements (MFE) refers in general
to FE approximations in which each quantity of interest is approximated as a primal variable
and sought in a different finite element space. In the area of fluid flow simulation, where the
corresponding PDEs are derived from mass balance laws, these finite element spaces may be
constructed in such a way that the normal traces of the unknown functions are continuous
between element interfaces. That is, MFE schemes are locally conservative [7

.

]. Additionally,
MFE methods are supported by a rich amount of theoretical work. See eg. [31

.

, 24

.

, 74

.

].

The canonical example to motivate the use of MFE is the given by the Stokes equations, which
model the motion of an incompressible viscous fluid, under the assumption that the convective
and acceleration inertial forces are negligible compared to the viscous forces [14

.

]. The Stokes
system of equations is posed in terms of two variables: the pressure p and velocity u of the
fluid. Thus, a MFE formulation is a natural choice. With the notation from Section 2.4.4

.

and
introducing an additional Hilbert space W , a MFE formulation leads to the following abstract
problem: Find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = L(v) for all v ∈ V, (2.62a)

b(u, q) = `(q) for all q ∈W. (2.62b)

b : V ×W → R is a continuous bilinear form on V ×W and ` : W → R a continuous linear
functional on W . The problem (2.62

.

) arises for example when trying to resolve the following
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constrained optimization problem:

Minimize

{
1

2
a(u, u)− L(u)

}
over V (2.63)

subject to b(u, q) = `(q) for all q ∈W. (2.64)

The MFE methods deal with constructing finite element spaces of the form Vm ⊂ V , Ws ⊂ W
to solve a discrete version of (2.62

.

): Find (um, ps) ∈ Vm ×Ws such that

a(um, vm) + b(vm, ps) = L(vm) for all vm ∈ Vm, (2.65a)

b(um, qs) = `(qs) for all qs ∈Ws, (2.65b)

In general, the subspaces Vm and Ws cannot be chosen independently. A compatibility condition
(LBB condition) involving the bilinear forms a( · , · ) and b( · , · ) must be fulfilled in order to
guarantee the solvability of the resulting system of algebraic equations [29

.

].
If {φi}i=1,...,m and {ψl}l=1,...,s denote basis for Vm and Ws respectively, MFE discretization

of (2.62

.

) leads to linear systems of equations whose matrix has the following block structure,[
A B>

B 0

]
, (2.66)

where A := (A)ij = a(φi, φj) and B = (B)li = b(φi, ψl). The matrix (2.66

.

) is in general
indefinite, meaning that additional care and considerably more computational work must be
taken into account in comparison with the systems of equations obtained with other methods.
We will revisit MFE in Chapter 6

.

in the context of a diffusion equation.

2.5 Discretization equivalences

When applied to particular cases, some discretization methods produce the same systems of
equations that we could obtain for another method. We showed an example of this situation
at the end of Section 2.4.3

.

, where a FV discretization on orthogonal grids that approximates
the cell averages as constants, is equivalent to a FD scheme. Such equivalence results are of
interest because of two reasons. First, they allow to transfer and study properties from a given
method to a second that a priory does not satisfy them. And second, one may profit from
implementations of a given method to build new ones at relative low cost in terms of coding.

For example, it has been shown that when applying certain quadrature rules, MFE of lower
order are equivalent to cell centered FD schemes [6

.

]. If there is an interest in extending a given
implementation that builds on a FD scheme, this result suggests that the code structures may
be compatible with an equivalent MFE method. Another example arises when considering the
multipoint flux approximation (MPFA) method, which is an extension to FD for non-orthogonal
meshes that subdivides elements into subregions that are connected with appropriate continuity
criteria [1

.

]. This method has been shown to be equivalent to a particular MFE method [93

.

].

2.6 Parallel computing

The numerical solution of (2.28

.

) or (2.32

.

) is challenging because of two main reasons. The
first, is the non-linearity and large variation in the equation’s coefficients introduced by the

21



2 Simulation of subsurface flow

Data

Program

Data

Program

Data

Program

Data

Program

distributed

memory

parallel

processes

Communication network

Figure 2.5: Distributed memory architecture

conductivity tensor [96

.

]. The second is the requirement of discretizing very large temporal
and spatial domains with a resolution sufficient for detailed, physics based hydrological models
[104

.

]. As a consequence, demands for computational time and memory resources for computer
simulations of subsurface flow are enormous, and considerations of efficiency become prominent.
One way to decrease the solution time while (almost) preserving the available algorithms is to
employ parallel computing.

Parallel computing refers to the simultaneous use of multiple compute resources in order to
solve a given problem. Hence, a parallel computer is a machine whose architecture is built to
allow for such capability. A generally used approach to classify computer architectures was
introduced by M.J. Flynn [71

.

], and it categorizes all computers according to the number of
instruction and data streams they support. The classes introduced by Flynn are

(a) Single instruction, single data (SISD): refers to a system with a single processing unit and
a single data stream. Hence, there is no parallelism at all

(b) Single instruction, multiple data (SIMD): are systems which can handle only one instruction
but apply it to multiple data streams simultaneously.

(c) Multiple instruction, single data (MISD): are architectures designed to handle different
tasks over the same data stream.

(d) Multiple instruction, multiple data (MIMD): in such system each processing element has
its own stream of instructions operating on its own data.

Modern central processing units (CPUs) belong to the latter class. Out of the previous four,
MIMD is the most general class and as a consequence it might be further refined. A distinction
relevant for this work and often employed in practice is to classify the MIMD machines according
to how each processing unit has access to memory. Two classes of systems can be identified.
The first one comprises shared memory systems, where every process can directly access all the
memory available in the whole parallel machine. A second one gathers those MIMD systems
where each process has its own local memory and communicates with other processes by sending
and receiving messages that travel through a communication network. For the remainder of
this document we will consider only distributed memory systems (see also Figure 2.5

.

).

Designing code for MIMD machines usually follows the single program, multiple data model
(SPMD) [52

.

]. In this paradigm, a single program is executed on all processing units in an
asynchronous manner. On distributed memory machines, SPMD programs make use of message
passing to exchange data and coordinate the computations on each of the processes. We will
discuss this in more detail in the upcoming section.
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2.6.1 The message passage interface

In order to facilitate the implementation of parallel programs, a number of libraries was devel-
oped, eg. Zipcode[147

.

], PVM [18

.

], PALMACS [45

.

] and Express [70

.

] to cite a few. Although
some of these libraries are portable, not every new system provide an implementation of all
common packages. This motivated the establishment of a standard, a message passage inter-
face (MPI) that should facilitate portability and usability of programs in a distributed memory
communication environment. The standardization effort involved people from academia, in-
dustry and government laboratories and began with the Workshop on Standards for Message
Passing in a Distributed Memory Environment in 1992, eventually leading to the creation of the
first version of the MPI standard in 1994 [118

.

]. The current version of the standard is MPI-3.1
released in 2015 [119

.

].

MPI is the most widely used of the standards. In the rest of the section, we present a short
summary of the basic concepts specified in MPI that are relevant for the topics developed later
in this thesis.

Communicators and messages

Two core concepts in MPI are those of communicator and rank. The first one is a set of
processes that can communicate with each other. The second denotes a unique number in the
range {0, 1, . . . n− 1}, where n denotes the total number of processes in the communicator. A
key feature in MPI is that communicators are static objects. Once created, we are not allowed
to add, remove or manipulate the ordering of the processes it contains. Therefore, a rank
uniquely determines a process in a given communicator. Such a feature simplifies coding in the
SPMD model because it allows to use the processes’ rank in a program to selectively execute
the portions of the code it should be responsible for [119

.

].

The primary goal of MPI is to provide a framework in which processes can communicate to
each other so they can coordinate their activities by explicitly sending and receiving messages.
Conceptually, a message consists of an envelope and data. The first should contain enough
information such that the sender and the receiver of the message are uniquely identified. In
MPI, the envelope comprises the source or destination rank, a tag and the communicator where
the ranks are defined. The data is uniquely identified by providing its type, size and starting
address in memory.

The MPI functions for sending and receiving a message are called MPI Send and MPI Recv,
respectively. We will not discuss their prototypes in detail here, for further information we refer
to [119

.

]. Essentially, the send function takes the message envelope and data as arguments. The
receive function needs the message envelope and a buffer with enough space to hold the data
from a matching send.

MPI Send and MPI Recv are blocking operations in the sense that they will not return until
the communication is complete. In the case of the send function this means that the data has
actually been sent or that it has been copied to an internal (system defined) buffer. The receive
function can only return when the data is fully received and copied into the buffer that was
passed as argument. If the system provides no buffering or the message data is too big to fit
into the system’s buffer, then the send function may block until a matching receive is found.
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2 Simulation of subsurface flow

Communication modes

MPI defines three send modes additional to the default MPI Send, in which the system decides
whether or not to buffer the data. These are call synchronous, buffered and ready modes. In
the synchronous send mode, the send function will block until a matching receive which is ready
to get the message is found. A buffered send mode employs an application defined buffer (that
the user should allocate) to ensure that the send operation does not block, even if no matching
receive has been posted. Lastly, a ready send mode is used when an application can guarantee
that a matching receive has been posted. MPI defines only one MPI Recv function that will
match any of the send modes. A more detailed presentation of these communication modes can
be consulted in eg. [129

.

].

Non-blocking and collective communication

For each of the communication modes there is a corresponding non-blocking variant. In the
case of the send and receive functions defined above, these are named MPI Isend and MPI -

Irecv respectively. A non-blocking send or receive only initiates the communication operation
and returns immediately. At a later point, the code needs to call one of the special functions
MPI Test, MPI Probe or MPI Wait. The first one only checks if the operation has been com-
pleted and returns even if that is not the case. The second one blocks if the operation is not
ready to be completed, for example, if we call a non-blocking send this function blocks if the
corresponding matching receive has not been posted. Finally, the latter blocks until the op-
eration completes. An application is not allowed to read or write to the buffer passed to the
operation until one of these functions indicates that the communication has been completed.
Non-blocking operations can be used in order to overlap computation and communication: one
can perform communication in a background process and organize the program such that useful
computations are carried out while the messages are in transit.

A collective function in MPI is defined as a routine that has to be executed in all processes
of a given communicator. Their objective is to manipulate information that is shared or has to
be shared among all members of the communicator. Typically, they implement operations that
a single process will not be able to complete alone. An example is the MPI Reduce operation,
which may be used to compute the sum of all elements of a vector partitioned in chunks among
the processes of the communicator. Additional examples are the functions MPI Bcast and MPI -

Gather, where the first parcels out data owned by a special process called root to every process
in the communicator. The latter performs the inverse operation, in collecting data owned from
every process of the communicator into a root process. Up to MPI-2, the collective operations
are available in only one mode, which corresponds to the default mode of the MPI Send described
above [119

.

].
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3 The subsurface flow simulator ParFlow

The software library ParFlow [10

.

, 96

.

, 103

.

, 104

.

] is a complex parallel code that is used ex-
tensively for high-performance computing (HPC), specifically for the simulation of surface and
subsurface flow. In this chapter we present the upstream version of ParFlow, which is in
widespread use and taken as the starting point of the modifications presented later in this the-
sis. We discuss the numerical tools this library implements in order to perform the simulations
it was designed for. Our main focus is on the mesh management.

3.1 Generalities

ParFlow is an integrated hydrology model that targets large scale groundwater flow problems.
The code is mainly written in C and employs a modular architecture that emulates object-
oriented programming. It targets HPC architectures by making use of distributed memory
parallelism (MPI).

The main input file in ParFlow is a tcl configuration script that is loaded at runtime
and contains all parameters necessary to define a problem. The code simulates variably sat-
urated subsurface flow in heterogeneous porous media in three spacial dimensions by solving
the Richards equation. Let Ω ⊂ R3 denote the flow domain and its boundary be partitioned as
∂Ω = ΓD ∪ ΓN with ΓD 6= ∅. The form of the Richards equation implemented in ParFlow is

SsSw(ψ)
∂ψ

∂t
+ φ

∂ (Sw(ψ))

∂t
−∇ · (K(x)kr(ψ)∇(ψ − z)) = Q in Ω, (3.1a)

ψ = ψD on ΓD, (3.1b)

− (K(x)kr(ψ)∇ψ) · n = gN on ΓN , (3.1c)

where n is the outward pointing unit normal vector to ∂Ω, ψ is the pressure-head, Sw denotes
the water saturation, Ss the specific storage coefficient, φ the porosity of the medium, K(x)
is the saturated hydraulic conductivity tensor (also called absolute permeability), kr(ψ) the
relative permeability (water to air), z represents the elevation or depth with respect to some
datum or reference point and Q any water source or sink terms. Equation (3.1

.

) is completed
with the initial condition

ψ = ψ0(x), t = 0. (3.2)

The permeability tensor K(x) is assumed to be of the form

K(x) = K(x)

kx(x) 0 0
0 ky(x) 0
0 0 kz(x)

 , (3.3)

where K is a scalar field which can be set to a constant, read from a user-provided file or
generated by a geostatistical model that allows to set correlation lengths per coordinate direction
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3 The subsurface flow simulator ParFlow

[157

.

]. The relative permeability kr(ψ) and the water saturation Sw(ψ) can be either set to
constant, polynomial, or be defined via the Van Genuchten [160

.

] or Haverkamp-Vauclin [84

.

]
formulations.

3.2 Discretization

ParFlow employs a cell-centered finite difference method and the implicit Euler scheme for
discretization in space and time, respectively. The computational mesh is given by a tensor
product with Nt points in each coordinate direction, t ∈ {x, y, z}. Following [128

.

], we define

Ux
i+ 1

2
,j,k

:= (K(x)kr(ψ))i+ 1
2
,j,k

ψn+1
i+1,j,k − ψn+1

i,j,k

∆x
, (3.4a)

Uy

i,j+ 1
2
,k

:= (K(x)kr(ψ))i,j+ 1
2
,k

ψn+1
i,j+1,k − ψn+1

i,j,k

∆y
, (3.4b)

U z
i,j,k+ 1

2

:= ((K(x)kr(ψ))i,j,k+ 1
2

(
ψn+1
i,j,k+1 − zk+1

)
−
(
ψn+1
i,j,k − zk

)
∆z

(3.4c)

and

∇ ·Un+1 :=
Ux
i+ 1

2
,j,k
−Ux

i− 1
2
,j,k

∆x
+
Uy

i,j+ 1
2
,k
−Uy

i,j− 1
2
,k

∆y
+
U z
i,j,k+ 1

2

−U z
i,j,k− 1

2

∆z
. (3.5)

Then, for a given time step ∆t, discretization results in the nonlinear system of equations

(SsSw(ψ))i,j,k
ψn+1
i,j,k − ψni,j,k

∆t
+ φi,j,k

Sn+1
w (ψi,j,k)− Snw(ψi,j,k)

∆t
−∇ ·Un+1 = Qn+1

i,j,k , (3.6)

Hence, a zero of the following nonlinear operator should be found in each cell

Fi,j,k(ψ
n+1) := ∆x∆y∆z

[
(SsSw)i,j,k

(
ψn+1
i,j,k − ψni,j,k

)
+ φi,j,k

(
Sn+1
w − Snw

)]
−

∆t∆y∆z
[
Ux
i+ 1

2
,j,k
−Ux

i− 1
2
,j,k

]
−∆t∆x∆z

[
Uy

i,j+ 1
2
,k
−Uy

i,j− 1
2
,k

]
−

∆t∆x∆y
[
U z
i,j,k+ 1

2

−U z
i,j,k− 1

2

]
−∆t∆x∆y∆z Qn+1

i,j,k ,

(3.7)

where we have omitted the explicit dependency Sw = Sw(ψ) to keep the notation readable. The
values of K(x) and kr(ψ) (ψ at the current step) at cell interfaces are obtained by harmonic
average and upwinding respectively. The latter is a technique commonly used in the FV method
and can be understood as an averaging process that takes into account the direction in which
information flows; see [112

.

, Sec. 4.8].

3.3 Solvers

The nonlinear problem (3.6

.

) is addressed with a multigrid preconditioned inexact Newton-
Krylov method [96

.

]. Given a continuously differentiable function G : Rn → Rn, the standard
Newton method to find a solution of

G(x) = 0 (3.8)
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3.3 Solvers

Algorithm 3.1: Newton’s method

Input : Continuous differentiable function G, initial
approximation x(0)

1 for k = 0, 1, 2, . . . until convergence do

2 Solve G′(x(k))δx(k) = −G(x(k))

3 Update x(k+1) = x(k) + δx(k)

4 end

5 return xk+1

Algorithm 3.1: Classical Newton’s method to approximate a zero of a given function.

is given by Algorithm 3.1

.

.
The basic assumption is that (3.8

.

) has a solution x∗ where the Jacobian G′(x∗) is invertible
and Lipschitz continuous. This ensures that for x(0) close enough to x∗, we have second order
convergence of the sequence (x(k))k∈N to the solution x∗ (see, e.g., [102

.

, Ch. 3]). When the
linear system

G′(x(k))δx(k) = −G(x(k)) (3.9)

is solved by a Krylov iterative process we are using an inexact Newton-Krylov method [102

.

]. In
such a case, we have a two level algorithm, in the outer layer is the Newton method itself and
in the inner layer the Krylov iterative procedure. An important feature of Krylov methods is
that they only require the action of the matrix G′ when applied to a vector and not the matrix
itself. In the special case of (3.9

.

), the matrix-vector product can be approximated as

G′(x(k))v ≈ G(x(k) + εv)−G(xk)

ε
. (3.10)

Provided that the value of ε is small enough, the convergence rate of the Newton’s method is
preserved [34

.

]. A value for ε frequently employed in the literature, and introduced in [35

.

] is
given by the formula

ε = sign(x(k) · v)βmax
{
|x(k) · v|, ‖v‖1

}
/v>v, (3.11)

where β is a relative measure of the precision of the non-linear function evaluation. A typical
value found in the literature is

√
ε0, where ε0 is the machine unit precision.

Because (3.9

.

) is solved just approximately, we need a stopping criterion for the Krylov method
that should be related to the overall progress achieved in the outer iteration. Line 3 from
Algorithm 3.1

.

is replaced by: find δx(k) such that

‖G′(x(k))δx(k) +G(x(k))‖ ≤ η‖G(x(k))‖. (3.12)

The constant η is known as the forcing term [58

.

]. As any fixed value η > 0 will destroy the
quadratic convergence of the Newton method, we require η = ηk with limk→∞ ηk = 0 to get
super linear and ηk = O

(
‖G(x(k))‖

)
to recover second order convergence [59

.

]. Finally, to ensure
affine invariance (see e.g., [54

.

, pp. 13] for a definition) we can take

ηk = O

(
‖G(x(k))‖
‖G(x(0))‖

)
. (3.13)
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3 The subsurface flow simulator ParFlow

Algorithm 3.2: Multigrid MG(Ah,xh, bh)

Input : Ah,xh, bh

1 Build the operators IHh , IhH and AH

2 xh ← pre-relaxation on Ahxh = bh

3 bH ← IHh (bh −Ahxh)

4 if AH is small then

5 xH ← (AH)−1bH Direct solve

6 else
7 for m = 1, . . . , µ do

8 xH ← MG(AH ,xH , bH) Recursive solve

9 end

10 end

11 Correct xh ← xh + IhHx
H

12 xh ← post-relaxation on Ahxh = bh

13 return xh

Algorithm 3.2: Recursive multigrid method with µ-cycle.

The Jacobian from the operator (3.7

.

) is not symmetric, hence GMRES [140

.

] is chosen as the
Krylov subspace method. The robustness of Newton’s method is enhanced by including a line-
search backtracking procedure that allows to modify the Newton step in order to guarantee
progress towards the solution at each iteration [35

.

].

3.4 Preconditioners

Due to the size and spectral properties of the Jacobian system (3.9

.

) corresponding to the
nonlinear operator (3.7

.

), ParFlow employs a multigrid preconditioned Krylov solver to reduce
the number of iterations. The main idea of multigrid is to accelerate the convergence of a simpler
iterative solver called relaxation method (e.g., Gauss-Seidel) by means of a global correction
that is computed by solving a coarser problem, i.e., with less variables. Usually, the coarse
problem has a similar structure as the original one and it is solved by applying the same idea
with an even coarser problem. Eventually, a coarse enough problem is reached so it is feasible
to compute the global correction by using a direct method. If we consider a linear system of
equations

Ax = b, (3.14)

where A = Ah ∈ Rn×n, the unknown vector x = xh and the right hand side b = bh are defined
on a given grid with mesh size h, then a multigrid method to approximate the solution of
(3.14

.

) is determined by several components: the relaxation method, an interpolation operator
IhH that transfers vectors from coarse to fine grids, a restriction operator IHh that transfers
vectors from fine to coarse grids and a coarse operator AH . The procedure is summarized in
Algorithm 3.2

.

. Typical values for the parameter µ are µ = 1 (V-cycle) and µ = 2 (W-cycle).
When properly designed, multigrid methods have the property that the solver’s convergence
rate is independent of the size of the problem [32

.

]. The two main choices in ParFlow are the
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3.5 Mesh management

parallel semi-coarsening multigrid solver (SMG) [144

.

] and the ParFlow multigrid PFMG [10

.

].
We briefly describe them in the following.

SMG

SMG is a multigrid solver that targets linear systems coming from a finite difference, finite
volume or finite element discretization of a three dimensional diffusion equation on locally
rectangular grids. It introduces a red/black plane coloring and updates the approximate solution
at all red planes to satisfy their equations. This is known as plane smoothing [144

.

]. Its key
component is a specially constructed interpolation operator IhH that accounts for the relationship
between red and black plane errors after a relaxation sweep.

PFMG

PFMG is a parallel semi-coarsening multigrid solver similar to SMG with the difference that it
employs point-wise smoothing.

The implementation of both preconditioners is provided by the external dependency hypre

[155

.

]. The PFMG preconditioner was developed inside ParFlow and then evolved into the
current hypre implementation. The ParFlow version is still available in the code under the
name MGSemi. Finally, ParFlow offers a variant of PFMG named PFMGOctree, which
essentially is a memory optimized version of the first one.

3.5 Mesh management

ParFlow’s computational mesh is uniform in all three dimensions. The count and the spacing
of mesh points in each dimension is user defined.

Two basic concepts are used in ParFlow for the mesh management:

(a) The background, which is a global object representing a regular mesh whose size (Nx, Ny.
Nz), spacing (∆x,∆y,∆z) and position (determined by an anchor point (x0, y0, z0)) are
fixed by the user via the tcl configuration script. See Figure 3.1

.

.

(b) A subgrid, is defined in terms of the numbering of the mesh nodes. It is a refinement of
the Background. See Figure 3.1

.

. Thus, a subgrid s can be represented as a local object
whose members are: the owner process (s.rank), the refinement level over the background
(s.rx, s.ry, s.rz), the anchor point in the index space (s.ix, s.iy, s.iz) and number of points
(s.nx, s.ny, s.nz) per coordinate direction. Specifically, a subgrid s identifies the following
set of indices

{s.ix + i : i = 0, 1, . . . , s.nx− 1}⊗
{s.iy + j : j = 0, 1, . . . , s.ny − 1}⊗
{s.iz + k : k = 0, 1, . . . , s.nz− 1}.

(3.15)

The physical location (xi, yj , zk) for a degree of freedom lying in the portion of the domain
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Figure 3.1: An example of a two dimensional background with anchor point (x0, y0). The
shaded green area represents a subgrid with index anchor point (s.ix, s.iy) = (3, 0)
and s.nx = 4 and s.ny = 3 points in the x and y coordinate direction, respectively.
The crosses represent the elements of the subgrid and the black dots degrees of
freedom of the discretization. The dotted boxes emphasize that ParFlow employs
a cell-centered FD discretization.

defined by a subgrid s is related to an index vector (i, j, k) by

xi = x0 + (i+ 0.5)

(
∆x

2s.rx

)
, (3.16a)

yj = y0 + (j + 0.5)

(
∆y

2s.ry

)
, (3.16b)

zk = z0 + (k + 0.5)

(
∆z

2s.rz

)
, (3.16c)

where (x0, y0, z0) and ∆t, t ∈ {x, y, z} denote the background’s anchor point and mesh spacing,
respectively. The refinement level (rx, ry, rz) targets the usage of locally refined grids. The
upstream version of ParFlow does not implement this feature, and in practice the refinement
level is set to zero for all coordinate directions.

ParFlow’s mesh is logically partitioned into non-overlapping Cartesian blocks that corre-
spond to the previously defined subgrids. It is a local object that may contain copies of subgrids
owned by different processes. The routine that allocates a new grid essentially performs a loop
over all processes in the parallel machine, creates a single subgrid per iteration and appends it
to a “subgrid array” that we will denote by Sall. The parameters defining a freshly allocated
subgrid are determined by the following arithmetic.

Let Pt denote the number of process divisions in the t coordinate direction, for t ∈ {x, y, z}.
These three values are read from the tcl configuration script. The total number of processes
must match their product

P = PxPyPz. (3.17)

The number of mesh points in each direction is configured in the script as Nt and split among
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3.5 Mesh management

Pt subgrid extents as

Nt = mt · Pt + lt, mt ∈ N, lt ∈ {0, . . . , Pt − 1}, (3.18)

where mt and lt are uniquely determined by Nt and Pt according to

mt := Nt/Pt, lt := Nt%Pt. (3.19)

Here, a/b denotes integer division and a%b the integer residual from dividing a by b. Both Nt

and Pt are defined by the user in the tcl configuration script and subject to the constraint
(3.17

.

). Now, if pt is a process number in the range {0, ..., Pt − 1} and the triple p = (px, py, pz)
determines an index into the three dimensional process grid, define

c(pt) := pt ·mt + min(pt, lt), (3.20)

q(pt) :=

{
mt + 1 if pt < lt,

mt otherwise.
(3.21)

With these definitions, the subgrid corresponding to p

(a) has the index triple (c(px), c(py), c(pz)) as anchor point,

(b) has q(pt) index points in the t coordinate direction,

(c) is owned by process Pown(p) = Pown(px, py, pz), where

Pown(px, py, pz) := (pz · Py + py) · Px + px ∈ {0, . . . , P − 1}. (3.22)

An example of such a distribution of subgrids is shown in Figure 3.2

.

. From this logic it becomes
clear that ParFlow’s computational mesh is distributed in a parallel machine by assigning each
of its subgrids to exactly one process by means of the rule (3.22

.

). This order of subgrids is
called lexicographic.

Internally, ParFlow maintains two arrays of subgrids: the first one corresponds to the
above introduced Sall, that contains all the subgrids composing the mesh; the second one holds
subgrids exclusively owned by the current process. We will denote the later as Sloc. From our
previous discussion we conclude in the upstream version of ParFlow Sloc contains a single
subgrid.

ParFlow’s subgrids are meant to store the mesh metadata only. Such metadata allows the
code to distribute the numerical data (pressure fields, saturation, etc.) in a parallel machine.
The most important units of numerical information are the vectors and matrices. In analogy
to the computational mesh, vectors and matrices in ParFlow are distributed into subvectors
and submatrices. There is a one-to-one correspondence between each of them and the subgrids
composing the mesh. Consequently, they are inherently distributed in parallel via the same
rule (3.22

.

). In order to consistently operate on subvectors and submatrices, the code requires
to establish additional information to exchange data between processes. How exactly this is
done is the objective of the next section.
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Figure 3.2: Example of a ParFlow mesh with Nx = 10 and Ny = 7. We take Nz = 1 to create
a two dimensional mesh, thus the value Pz = 1 is implicit. The number of processes
is Px = 3, Py = 2, P = 6. Each shaded box is a subgrid whose color symbolizes its
assignment to a specific process. We use the same convention for the crosses and
black dots as in Figure 3.1

.

.
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Figure 3.3: A two dimensional grid composed of four subgrids. The areas shaded red give a
representation of the patch array computed by Algorithm 3.3

.

when applied to the
lower left subgrid s0 and the case of a stencil in which each degree of freedom requires
information of the adjacent face neighbor. Because the red areas are contained
in subgrids s1 and s2, the latter two will be included in s0’s neighbors array by
Algorithm 3.4

.

.

3.6 Compute and communication packages

At each time step of a simulation, a subset of degrees of freedom close to the boundary of a pro-
cess subgrid couples to degrees of freedom lying on a foreign process (subgrid) to compute and
update to its values. ParFlow denotes this subset as the “dependent region.” The dependent
region is characterized by the stencil chosen for discretization.

Given a stencil, ParFlow automatically determines the dependent region. For each local
subgrid s, special routines loop over all subgrids in the mesh and check which of those are direct
neighbors of s with respect to the processes’ partition. Specifically, if we denote by sten(s) the
action of a given stencil on the subgrid s, the code constructs a “patch array” whose elements
are the non-empty set differences sten(s) − s := {v ∈ sten(s) | v /∈ s}; see Figure 3.3

.

. Then,
ParFlow inspects which subgrids in the mesh have a non-empty intersection with the cells of
this patch array and adds them to a “neighbors array.” The whole process is summarized in
Algorithm 3.3

.

and Algorithm 3.4

.

.

Once the neighbors array Sneigh is determined, the dependent region (also internally identified
as “send region”) of a given subgrid s is the set {s∩ sten(t) | t ∈ Sneigh}; see Algorithm 3.5

.

, the
“receive region” is defined by {sten(s) ∩ t | t ∈ Sneigh}, and finally the “independent region” is
described as the complement of the dependent region. For a given stencil, ParFlow refers to
the previously defined sets as a compute package. With the data provided by a compute package,
ParFlow is able to determine the source and destination (i.e., sender and receiver) processes
and the degrees of freedom relevant to the MPI messages required to perform vector and matrix
updates. We will refer to this information as the MPI envelope. ParFlow implements data
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Algorithm 3.3: GetPatches

Input : SubgridArray S, stencil sten
1 foreach s ∈ S do
2 t← sten(s)− s difference as sets of indices

3 if t 6= ∅ then
4 Append t to Spatch

5 end

6 end
7 return Spatch

Algorithm 3.3: Determine the patch array with respect to a given stencil.

Algorithm 3.4: GetNeighbors

Input : SubgridArray Sloc, SubgridArray Sall, Stencil sten
1 Spatch ← GetPatches(Sloc, sten)
2 foreach s ∈ Sall do
3 foreach ` ∈ Spatch do
4 if s ∩ ` 6= ∅ then
5 Append s to Sneigh

6 break break loop over Spatch

7 end

8 end

9 end
10 return Sneigh

Algorithm 3.4: Determine the neighboring subgrids of the local partition with respect to a given
stencil.

Algorithm 3.5: GetSendRegion

Input : SubgridArray Sloc, SubgridArray Sall, Stencil sten
1 Sneigh ← GetNeighbors(Sloc, Sall, sten)
2 foreach s ∈ Sloc do
3 foreach t ∈ Sneigh do
4 Append s ∩ sten(t) to Ssend

5 end

6 end
7 return Ssend

Algorithm 3.5: Determine the send region with respect to a given stencil.
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Figure 3.4: A two dimensional grid composed of four subgrids. Graphical representation of the
members of a compute package from the perspective of the lower left subgrid s0 and
the case of a stencil in which each degree of freedom requires information of the
adjacent face neighbor.

exchange between two neighboring subgrids via the use of a ghost layer, i.e., an additional strip
of artificial degrees of freedom along the edges of each subgrid. Hence, data transferred via MPI
messages is read from a subgrid of the sender and written into the ghost layer of the receiver.
The extent of the ghost layer, i.e., the size of the strip in units of degrees of freedom, is also
defined by the stencil.

3.7 Discussion

The subgrid approach used to exploit distributed parallelism has made it possible to efficiently
execute the code for machines up to 16k processes [104

.

]. Part of this success is due to the
lexicographic ordering principle of the subgrids, which has a significant impact on how the
information in the MPI envelope is computed. Each subgrid s, as a data structure, stores its
coordinates in the process grid (px, py, pz). As a consequence, the processes owning the neighbor
subgrids to S are located with simple arithmetic. For example, the top neighbor of s is owned
by the process Pown(px, py, pz + 1), where Pown was defined on (3.22

.

). The fact that there is
exactly one subgrid per process implies that the process number provides sufficient information
to uniquely identify the sender and receiver of MPI messages.

Nevertheless, a downside of this principle is that the number of processes determines the size
of the subgrids. Using few processes requires to use a few large subgrids, while using many
processes makes the subgrids fairly small. Furthermore, imagining to allow for multiple subgrids
per process, the lexicographic ordering will place them in a row along the x-axis, leading to an
elongated and thin shape of a process’ domain that has a large surface-to-volume ratio, and
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thus prompts a larger than optimal message size.
As discussed at the end of Section 3.5

.

, in order to organize the storage of subgrids, each
process holds two arrays subgrids: Sall and Sloc. The first one stores pointers to the metadata
(such as coordinates in the process grid, position and resolution) of all subgrids composing the
grid, and the second one stores this information only for the subgrids owned by the current
process (which is always one in the upstream version). This implies two main problems: First,
the mesh metadata is replicated in every process inside of Sall, which leads to a memory usage
proportional to the total number of processes P , on every process. In practice, this disallows
runs with more than 32k processes. Secondly, we have identified loops which run over the
elements of Sall (e.g., Algorithm 3.4

.

), which means that the amount of work done by a process
is also proportional to P . In the upcoming chapter we will introduce our approach to solve these
two issues by delegating ParFlow’s mesh management to a specialized library implementing
state-of-the-art mesh partition algorithms.
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This chapter is based on the publication [38

.

]. We have carried out minor editions in order to
fit into the general notation of this document without changing its core content. Copyright c©
by Springer. Unauthorized reproduction of this chapter is prohibited.

In the previous chapter we summarized the state of the upstream version of the ParFlow
code and how the parallelization of its computational mesh enables but also limits parallel
scalability. In the present chapter we propose to reorganize this subsystem using fast mesh
partitioning algorithms provided by the parallel adaptive mesh refinement library p4est [44

.

, 94

.

].
We realize this in a minimally invasive manner by modifying selected parts of the code to
reinterpret the existing mesh data structures. In this way, we obtain a modified version of
ParFlow that is backwards compatible with the upstream one. We test our work by computing
an approximate solution of the Richards equation with both versions and directly comparing
the results. Finally, we evaluate the scaling performance of the modified version of ParFlow,
demonstrating good weak and strong scaling up to 458K processes, and exercise an example
application at large scale.

4.1 High performance computing essentials

High performance computing (HPC) refers to the use of aggregate computing power to target
data/compute intensive assignments that are impractical or even impossible to address with
standard machines. A clear computational trend is that such computational power is provided
by parallel computing [122

.

]. Hence, we consider a parallel computer that implements the
message passage interface (MPI) standard. It consists of multiple physical compute nodes
connected by a network. Each node has access to the memory physically located in that node,
thus we speak of distributed memory and distributed parallelization. A node has multiple
central processing units (CPUs), consisting of one or more CPU cores each, with each core
running one or more processes or threads. For the purpose of this thesis, we will use the terms
process, CPU core, and CPU interchangeably, really referring to one MPI process as the atomic
unit of parallelization.

Parallel computing is employed because of two main reasons. First, the increase in the
computational power provided by adding more nodes in principle allows a code to be executed
faster because more floating points operations per time can be performed. Second, the inclusion
of more nodes enlarges the amount of available memory. This opens the possibility of executing
larger simulations as the number of nodes increases. A measure of how much a particular
application benefits from adding more processes is the speedup, which is defined as the ratio
between the execution time on a parallel and a single process system. Theoretical upper limits
to the speedup are provided by Amdahl’s [4

.

] and Gustafson’s [81

.

] laws. If a fraction f ∈ (0, 1)
of a given code is perfectly parallelizable while the remaining fraction (1 − f) is completely
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sequential, then the speedup according to Amdahl’s law is given by

SAmdahl :=
1

(1− f) + f
P

, (4.1)

where P denotes the number of processes. Equation (4.1

.

) is derived under the assumption of a
fixed work load. On the other hand, Gustafson argued that instead of a fixed workload, usually
more processes are added to solve larger problems. Hence, he assumed that execution time
remains constant by running the code using p processes. The speedup according to Gustafson’s
law is given by

SGustafson := (1− f) + fP. (4.2)

Equations (4.1

.

) and (4.2

.

) are the most basic models to estimate the speedup, and may be
extended to account for more general assumptions; see eg. [99

.

, 87

.

].

The ideal hypothesis of parallel computing is that subdividing a task fairly among several
processes will result in a proportional reduction of the overall runtime. In order to effectively
produce such behavior, parallel codes should meet two basic requirements: maintain a balanced
work-load per process and minimize process-intercommunication, both in terms of the number
of messages and the message sizes. The number of messages to be sent and received depends
on the exact assignment of the mesh elements to processes: Two different assignments for the
same global mesh topology can lead to significantly different communication volumes. One
guideline that helps bounding the communication is to make sure that each process has only a
constant number of other processes to communicate with, independent of the size and shape of
the mesh elements and the total number of processes. Ensuring this property usually requires
to carefully define both the topology of the mesh and the assignment of elements to processes
itself.

Once the communication pattern is established, i.e., it has been determined which process
sends a message to which, the impact of sending and receiving the messages can be reduced
by performing the communication in a background process and organizing the program such
that useful computations are carried out while the messages are in transit. The MPI standard
supports this design by providing routines for non-blocking communication, and most modern
codes use them in one way or another to good effect.

4.2 Mesh parallelization

Like ParFlow, many PDE-based simulators are parallelized by partitioning the domain of
interest into subdomains. Each subdomain is then assigned to a process, which is responsible for
updating the degrees of freedom corresponding to that subdomain only. The chosen partition
strategy has a profound effect on the simulator’s performance. Most numerical simulations
require synchronization during the lifetime of the application. Hence, ensuring a balanced
work load is mandatory. A suboptimal partitioning may lead to performance losses caused
by faster processes having to wait for the slower ones. This is further complicated when a
simulator models physical phenomena with multiple phases that may have their own optimal
load distribution. As an example, in a subsurface simulation, solving the Richards equation on
the non-saturated part of the domain is computationally more demanding than in the saturated
part. Consequently, the work load may not be adequately balanced by just trying to equalize
the number of degrees of freedom on each process.
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Another key aspect is communication overhead: Any time spent transmitting or receiving
data contributes to a reduction in speedup. This suggests that the partition scheme should
to some extent minimize the communication volume. Nevertheless, the communication volume
depends on the communication network, which is far from trivial to judge for modern HPC
systems. Additionally, for practical effects the details on this network are hidden from the user.
Even when the HPC system offers some control on how the communication pattern is mapped
on the communication network, defining such a mapping is a task that demands expertise
with the particular architecture. A more generic approach is to minimize communication time
instead. As pointed out earlier, a good strategy to mask communication time is to perform
data transfers while useful computations are performed.

Mesh parallelization libraries can be classified according to the partition algorithm they
employ. In a first class, the mesh is associated with an adjacency graph for which a graph
partitioning algorithm is then applied. The latter aims to balance the number of vertices
in each partition and simultaneously minimize the number of edges that need to be split in
order to create the partition [21

.

]. Examples of graph based partition libraries are METIS[100

.

],
ParMETIS [47

.

], Scotch [48

.

], and Zoltan [55

.

].

Graph–based partitioners do not explicitly employ the geometric information provided by the
coordinates of the mesh vertices. A second class of partitioners is the geometry-based partition
methods, which do make use of such information. Two examples are the recursive coordinate
bisection method [146

.

] and the recursive circle bisection [77

.

]. The first one recursively splits
the graph in two parts choosing a different coordinate direction per iteration. The second
one essentially maps the vertices of the mesh onto a sphere of a higher dimension, performs
a partition there and then translates the result back to define a partition of the mesh. The
library Zoltan also provides routines implementing these methods.

A subfamily of geometric partitioning algorithms that is relevant for this thesis comprises
the methods based on space filling curves [141

.

, 12

.

] (SFC). A SFC is a mapping between a
higher dimensional space and a one dimensional space. This map induces an ordering of the
mesh elements, defined by their position on the curve. Then, the curve is partitioned into parts
containing a balanced amount of elements. When the mesh connectivity information is stored
in a spacial data structure like an octree, a SFC can be used to define a linear ordering of the
tree’s leaves and hence provides a tool to decompose it [12

.

, Sec. 1.1].

In the case of hexahedral meshes (such as used in ParFlow) the logic of common SFCs
can be formulated with higher simplicity due to the local tensor product structure. It is also
well-suited to compute topological entities like face-neighbors, children, and parents of given
mesh elements. Moreover, SFCs are memory efficient because for a mesh element only the
coordinates of one anchor node plus its refinement level have to be stored. Using SFCs on
hexahedral meshes has been demonstrated to be fast and scalable [3

.

, 134

.

, 94

.

, 41

.

].

4.3 The software library p4est

Tree based parallel adaptive mesh refinement (AMR) refers to methods in which the information
about the size and position of mesh elements is maintained within an octree data structure whose
storage is distributed across a parallel computer. An octree is basically a 1:8 (3D; 1:4 in 2D)
tree structure that can be associated with a recursive refinement scheme where a cube (square)
is subdivided into eight (four) half-size child cubes (squares). The leaves of the tree either
represent the elements of the computational mesh directly, or can be used to hold other atomic
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q0 q1

q2 q3

q4 q5

Figure 4.1: The space filling curve (SFC; zig-zag line) determines an ordering of the 16 quadrants
qi obtained by two recursive subdivisions of a square. In this example we use the SFC
to partition the quadrants between three processes (color coded). We use dashed
lines when two elements that are adjacent in the SFC ordering are not direct face
neighbors in the domain. Since most diagonal lines connect quadrants that are
still indirectly face-adjacent, the process domains are localized, which makes their
surface-to-volume ratio less than that of the elongated strip domains produced by
a lexicographic ordering. In fact, it is known that with this SFC each process’
subdomain has at most two disconnected pieces [42

.

].

data structures (for example one subgrid each). We will refer to the leaves of an octree/quadtree
as quadrants.

The canonical domain associated with an octree is a cube (a square in 2D). When the shape
of the domain is more complex, or when it is a rectangle or brick with an aspect ratio far
from unity (as is the case for most regional subsurface simulations), it may be advantageous to
consider a union of octrees, conveniently called a forest.

The software library p4est [44

.

, 94

.

] provides efficient algorithms that implement a self-
consistent set of parallel AMR operations. This library creates and modifies a forest-of-octrees
refinement structure whose storage is distributed using MPI parallelism. In p4est a space filling
curve (SFC) determines an ordering of the quadrants that permits fast dynamic re-adaptation
and repartitioning; see Figure 4.1

.

. A p4est brick structure corresponds to the case in which
a forest consists of multiple tree roots that are arranged to represent a rectangular Cartesian
mesh.

Even when using a uniform refinement and leaving the potential for adaptivity unused, as
we do in the present chapter, the space filling curve paradigm is beneficial since it allows to
drop the restriction (3.17

.

): The total number of processes does not need to match the number
of patches used to split the computational mesh. Furthermore, using an SFC as opposed to
a lexicographic ordering makes each process’ domain more local and approximately sphere-
shaped, which reduces the communication volume on average; see Figure 4.2

.

.
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p0
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(b)

Figure 4.2: Two dimensional mesh whose cells have been distributed among three processes
p0, p1 and p2 (color coded). We display the distribution corresponding to a lex-
icographic and the SFC ordering in (a) and (b), respectively. The lexicographic
ordering principle leads to an elongated and thin shape of a process’ domain along
the x-axis that implies larger messages in comparison to the SFC ordering. For
example, if every mesh cell requires values from its adjacent neighbor, process p0

has to send a message considerably larger to p1 in (a) than in situation (b).

4.4 Enabling p4est as Parflow’ s mesh manager

For large scale computations it is imperative that the mesh storage is strictly distributed.
With the exception of a minimally thin ghost layer on every process’ partition boundary, any
data related to the structure of the process-local mesh should be stored on this process alone.
As pointed at the end of Section 3.7

.

, such mesh storage is not implemented in ParFlow’s
upstream version. This affects the runtime as well as the total memory usage: We identified
loops proportional to the total number of processes P in the grid allocation phase and during
the determination of the dependent region that consume roughly 40 minutes on 32k processes
(and would need 1h and 20 minutes on 64k processes, and so forth). The presence of such
loops limit the performance of the code when executed in machines with several hundreds of
thousands of processes. Our proposed solution to enable scalability to O(105) processes and
more reads as follows.

(a) Implement a strictly distributed storage of ParFlow’s computational mesh.

(b) Replace loops proportional to the total number of processes with constant-size loops.

(c) Allow ParFlow to use multiple subgrids per process.

The first two items are essential to enhance the scalability of the code. We aim to proceed in a
minimally invasive way, reusing most of ParFlow’s mesh data structures. This principle may
be called reinterpret instead of rewrite. Of course, establishing an optimized non-lexicographic
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and distributed mesh layout is a fairly heavy task, which is why we delegate it to a special-
purpose software library as described above. This removes much of the burden from the first
item and lets us concentrate on the second, which requires to audit and modify the code’s
accesses to mesh data. The third item serves to decouple the number of subgrids allocated
from P , which adds to the flexibility in the setup of simulations.

4.4.1 Rearranging the mesh layout

The space filling curve mentioned above provides a suitable encoding to implement a strictly
distributed mesh storage. Computation of parallel neighborhood relations between processes is
part of the p4est algorithm bundle and encoded in the p4est ghost structure. Mesh gener-
ation, distribution and computation of parallel neighborhood relations are scalable operations
in p4est, in the sense that they have demonstrated to execute efficiently on parallel machines
with up to 458k processes [94

.

].
Delegating the mesh management from ParFlow to p4est by identifying each p4est quad-

rant with a ParFlow subgrid allows us to inherit the scalability of p4est with relatively few
changes to the ParFlow code. In particular, the following features are achievable.

(i) ParFlow’s mesh storage can be trimmed down to reference only the process-local sub-
grid(s) and their direct parallel neighbors. As a consequence, the memory occupied by
mesh storage no longer grows with P , and loops over subgrids take far less time.

(ii) The rule of fixing one subgrid per process can be relaxed. This is due to the fact that
p4est has no constraints on the number of quadrants assigned to a process, including the
case of empty processes.

(iii) The computation of ParFlow’s dependent region is simplified by querying neighbor data
available through the p4est ghost structure.

The main challenges arising while implementing the identification of a subgrid with a quad-
rant are the following.

(i) Parallel neighborhood relations between processes are only known to p4est. Such infor-
mation must be correctly passed on to the numerical code in ParFlow.

(ii) The lexicographic ordering of the subgrids will be replaced by the ordering established by
p4est via the space filling curve. This means we must modify the message passing code
to compute correct neighbor process indices.

(iii) We should add support for configurations in which a process owns multiple subgrids. This
will enlarge the range of parallel configurations available and enable the option to execute
the code on small size machines without necessarily reducing the number of subgrids
employed. Additionally, we prepare the code for a subsequent implementation of dynamic
mesh adaptation, which operates by changing the number of subgrids owned by a process
at runtime.

Our proposed solution to the third challenge without introducing disruptive changes in the code
is to extend the existing ParFlow data structures such that subgrids owned by a common
process p exchange information via MPI messages that p sends to itself. With this approach we
can reuse most of the existing code supporting MPI communication and the only problem to
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Subgrid 0

send 0 recv 0

Subgrid 1

recv 1 send 1

(a) Wrong communication

Subgrid 0

send 0 recv 0

Subgrid 1

recv 1 send 1

(b) Desired communication

Figure 4.3: Communication pattern enforced by a stencil requiring information from the adja-
cent neighbor. Both subgrids are owned by the same processor. MPI messages with
the same rank as sender and receiver may result in undesired transfer of data as in
(a). In our extensions we provide additional information to the message envelopes
such that the send data is written into the correct subgrid (b).

address is to ensure that the communicated data is written into the proper memory location.
See Figure 4.3

.

.

The remainder of this section is dedicated to describe how to generate the ParFlow mesh
using p4est. Essentially, we create a forest of octrees with a specifically computed number
of process-local quadrants and then attach a suitably sized subgrid to each of them. Subse-
quently, we discuss how to obtain information on the parallel mesh layout from the p4est ghost
interface.

The concept of a fixed number of processes per coordinate direction is not present in p4est.
Only the total number of processes is required to compute the process partition by exploiting the
properties of the space filling curve. Hence, we do not make use of the values of Pt, t ∈ {x, y, z},
specified by the user. Instead, we add three variables to the tcl reference script that provide
values for mt, the desired numbers of points in a subgrid along the t coordinate directions.
Then, we rearrange the arithmetic of (3.18

.

) to compute Pt and lt as derived variables satisfying

Nt = mt · Pt + lt, Pt ∈ N, lt ∈ {0, . . . ,mt − 1}. (4.3)

This construction only interprets Pt as the number of subgrids in the t direction (while the
upstream version of ParFlow configures it so).

We must create a p4est object with K := Px × Py × Pz total quadrants. To do so, we find
the smallest box containing Pt quadrants in the t direction and then refine it accordingly. Let
k0 and g be defined as

k0 := max
k∈N

{
2k | gcd(Px, Py, Pz)

}
, g := 2k0 . (4.4)

Thus, g is the biggest power of two dividing the greatest common divisor of Px, Py and Pz.
Then, a p4est brick with dimensions

Px/g, Py/g, Pz/g (4.5)

and refined k0 times will have exactly K quadrants. A brick mesh resulting from applying these
rules is shown in Figure 4.4

.

.
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p0 p1

p2 p3

p4

p5

p5
p4
p3
p2
p1
p0

Process Subgrid Size

4× 4
3× 4
4× 3
3× 3
3× 4
3× 3

Figure 4.4: Left, example of a p4est brick distributed among 6 processes. Its dimensions are
obtained by (4.5

.

) after using Nx = 10, Ny = 7, Nz = 1 and mx = my = 3, mz = 1
as input values in formula (4.3

.

). Right, the size of the subgrids attached to each
quadrant according to formula (3.21

.

).

4.4.2 Attaching subgrids of correct size

The subgrids must be a partition of the domain in the sense that their interiors are pairwise
disjoint and the union of all of them covers the grid defined by the user. These conditions impose
restrictions on the choice of the parameters Nt and mt. Specifically, for each t ∈ {x, y, z} we
must require

Pt−1∑
pt=0

q(pt) = Nt (4.6)

in order to satisfy (4.3

.

). Recall that q(pt) is defined in (3.21

.

) as the length in grid points of the
pt’th subgrid along direction t. Condition (4.6

.

) is checked prior to the grid allocation phase,
and in case of failure quits the program with a suitable error message specifying the pair of
parameters that violates it.

We inspect the bottom left corner of each of the quadrants in the p4est brick, which by
construction are only those that are local to the process, to choose the proper size of the
subgrid that should be attached to it. In the native p4est format, each of these corners is
encoded by three 32 bit integers that we scale with the quadrant multiplier g from (4.4

.

). This
translates it into integer coordinates that match the enumeration pt ∈ {0, . . . Pt − 1} and are
consistent with the rule (3.21

.

). Thus, we can use these numbers to determine the position and
dimensions of the ParFlow subgrid metadata structure that we allocate and attach to each
quadrant.

4.4.3 Querying the ghost layer

We utilize the ghost interface of p4est to obtain the neighborhood information required for
parallel updates. Specifically, the ghost data structure provides an array of off-process quad-
rants that are direct face neighbors to the local partition; we call these ghost quadrants (see
Figure 4.5

.

). We should then populate these quadrants with suitable subgrid metadata that we
use to track their identification on their respective owner processes. The p4est ghost object
provides the necessary information to do this, including the lower left corner of each ghost
quadrant. In fact, we can use the enumeration pt ∈ {0, . . . Pt − 1} that serves as input to
equation (3.21

.

) to compute the dimensions of both the local and ghost subgrids. This is most
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(a)

-

(b)

-

(c)

Figure 4.5: In (a) we display a p4est brick with six quadrants (identified with one subgrid
each) distributed among two processes (color coded). In (b) and (c) we show the
view of the brick from processes zero and one, respectively. The solid boxes rep-
resent process-local quadrants, for which we allocate mesh metadata and degrees
of freedom storage. The dashed boxes represent quadrants in the ghost layer. For
the ghost quadrants we allocate mesh metadata but no storage for the degrees of
freedom. Just as the local quadrants, the ghost quadrants are traversed in the order
of the space filling curve (gray arrow).

easily done by extending the loop over the local p4est brick quadrants described above such
that it also visits the ghost quadrants.

While we retain the interpretation of the subgrids array of the upstream version, storing
pointers to the process-local subgrids, we remove almost all storage in the array Sall: The
modified version stores pointers to local and ghost subgrids in it, which are roughly a 1/P
fraction of the total number of subgrids. Thus, we avoid allocation of the metadata of all other,
locally irrelevant subgrids that would be of order P ; see Figure 4.6

.

. The advantage of this
method is that most of the ParFlow code does not need to be changed: When it loops over
the Sall array, the loops will be radically shortened, but the relevant logic stays the same. This is
the most significant change to enable scalability to the full size of the Juqueen supercomputer
[98

.

] (we describe these demonstrations in Section 4.5

.

).

4.4.4 Further enhancements

We have edited ParFlow’s code for reading configuration files. If p4est is compiled in, we
activate the corresponding code at runtime depending on the value of a new configuration
variable. Hence, even if compiled with p4est, a user has the flexibility to still use the upstream
version of ParFlow on a run-by-run basis.

We have set up an automatic test suite to check consistency of our code extensions with the
upstream version of ParFlow. Specifically, we use ParFlow’s Richards solver to approximate
the solution of a two dimensional Laplace equation for different mesh configurations. We run
this solver two times, once with p4est activated and once without. For three dimensional
problems we repeat the exercise but for the solution of the Richards equation p = xyzt+ 1. We
compare the pressure output file for both runs directly with a tolerance of 1e–8.

Additionally, we have written an alternative routine to access and distribute the information
from the user-written configuration file. As before, the file is read from disk by one process and
sent to all other processes. We have updated the details of this procedure, since we noticed that
for high process counts (greater equal 65,536) the routine distributed incorrect data due to an
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p∗

(a)

p∗

(b)

Figure 4.6: Allocated subgrids in processor p∗. An owned subgrid is colored blue and red stands
for foreign subgrids. Left, in the default ParFlow version each processor allocates
space for all the subgrids in the grid. Right, using p4est we allocate space only for
the off-processor subgrids that are direct neighbors of p∗. The solid / dashed line
represents the ordering of the subgrids.

integer overflow, causing the program to crash during the setup phase. The modified version
delegates this task to the MPI Bcast routine, which works reliably and fast on the usual data
size of a few kilobytes.

Many algorithms in ParFlow rely on the lexicographic ordering of the subgrids in order to
retrieve neighboring information. Because our aim is to introduce minimal code modifications,
we identified that only two of them require changes when switching to the SFC ordering prin-
ciple. A first one is presented in Algorithm 4.1

.

. It requires information to be propagated from
bottom to top z-level subgrids. The upstream version of Algorithm 4.1

.

heavily relies on the as-
sumption of one subgrid per process. The Receive in line 7 and the Send in line 13 correspond
to blocking MPI receive and send operations, respectively. Additionally, the conditions in lines 6
and 12 are easily checked when the subgrids follow a lexicographic ordering. For example, given
a subgrid s identified with the process coordinates (px, py, pz) with pz > 0, its bottom neighbor
is the subgrid owned by the process Pown(px, qy, pz−1); see (3.22

.

). Our modified version allows
configurations in which a process can hold multiple subgrids from different levels; leaving the
algorithm unchanged may lead to a deadlock situation: The code hangs indefinitely because
of processes waiting simultaneously for each other; see Figure 4.7

.

. To avoid this situation, we
introduced an additional loop over the z-levels in the grid and made the Send in line 13 non-
blocking, because with the SFC ordering, we can at most guarantee that a matching receive has
been posted one level before the current one. These changes correspond with the blue shaded
lines in Algorithm 4.1

.

.

The second one is presented in Algorithm 4.2

.

. It operates column-wise on the grid. For each
subgrid in the z–dimension an array of floating point numbers is created and sent to the bottom
most subgrid s0. Then, the process owning the latter performs a reduction operation on the data
and broadcasts the result back to all subgrids in s0’s column. The assumption of one subgrid
per process plays a key role in the upstream implementation; the Send in lines 5 and 13 and
the Receive of lines 6 and 9 correspond to blocking MPI operations. The lexicographic ordering
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Algorithm 4.1: Vertical propagation

Input : Local subgrids Sloc, z-level array zlevels

1 for ` ∈ zlevels do
2 for s ∈ Sloc do
3 if s.iz 6= ` then
4 skip this subgrid
5 end
6 if s has a bottom neighbor sb then
7 Receive z from sb Blocking receive

8 else
9 z ← s.iz anchor point from s in the z direction

10 end
11 z ← do work on z
12 if s has a top neighbor st then
13 Send z to st made non-blocking Isend in the modified version

14 end

15 end
16 Complete Isend operations from level `− 1 to ` with Wait

17 end

Algorithm 4.1: Propagates information from bottom to top subgrids. The blue shaded lines cor-
respond to the changes introduced in our modified version of ParFlow. When
a process holds multiple subgrids, as our modified version allows, these subgrids
may be located at different heights. In order to propagate the information in the
correct order, our modification first inspects subgrids at given z–level `, sends
data to the next level and checks whether information from a level below has to
be received.
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s0 sends to s2

s1 sends to s3

s2 receives from s0
...

s3 sends to s5

...

s3 receives from s1

Figure 4.7: Left, we consider a grid consisting of two subgrids in the x-coordinate and three
in the z-coordinate directions. The grid is distributed among two processes (color
coded). Right, the sequence of messages according to Algorithm 4.1

.

that may lead
to a deadlock situation if no further changes are introduced: The first send in the
green process blocks until the corresponding receive is posted, note that the green
process is also responsible for the latter receive. Simultaneously, the first receive
in the red process blocks until the second send in the green process is posted, but
this is not going to happen because the green process is waiting for its first send to
complete.

implies that checking which process holds the lowest subgrid in a column is a straightforward
operation. For example, given a subgrid s identified with the process coordinates (px, py, pz),
then the subgrid s0 in line 2 is the subgrid owned by process Pown(px, qy, 0); see (3.22

.

). The same
logic applies to localize the subgrids in a given column. Hence, using blocking MPI operations
is safe in the upstream version of ParFlow because it implements the loops over a subgrid’s
column from bottom to top and posts the receive and send operations in the appropriate order.

Implementing Algorithm 4.2

.

with the subgrid ordering established by p4est requires special
care for two reasons: First, we cannot use a simple arithmetic to find s0 given s. Second,
considering that our modified version of ParFlow allows processes to hold multiple subgrids,
we have to audit the blocking operations present in the algorithm to avoid deadlock situations.
Let ŝ denote the projection of s onto a given plane z = z0. We recall that each subgrid s is
attached to a p4est quadrant q. Thus, we require to identify the quadrant q̂ holding ŝ. Given
the quadrant q, it is simple to build q̂. If additionally, we can figure out which octree q̂ belongs
to, we can use the function p4est quadrant find owner() to retrieve the owner process of q̂
in the parallel partition. Assuming we proceed in this way, our modifications are reflected as
the red and blue shaded lines in Algorithm 4.2

.

, they stand for removed and newly added lines,
respectively. Our idea is to loop twice over the local subgrids; during the first loop we only
post all the necessary send operations to the rank owning the lowest subgrid. The second loop
takes care of receiving the data, performing the reduction and broadcast procedures.

While running numerical tests, we also encountered some memory issues. Essentially, mem-
ory allocation in ParFlow was increasing exponentially with the number of processes. With
the help of the profiling tool Scalasca [75

.

], we located the source of the problem in the precon-
ditioner. Preconditioners in ParFlow are managed by the external dependency hypre [155

.

],
which is generally known for its scalability. Since the bug had already been resolved by the
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4.4 Enabling p4est as Parflow’ s mesh manager

Algorithm 4.2: Calculate elevations

Input : Local subgrids Sloc

1 foreach s ∈ Sloc do
2 s0 ←lowest subgrid in s’s column
3 ea ← Compute elevation array
4 if s 6= s0 then
5 Send ea to s0 made non-blocking in the modified version

6 Receive reduced ea from s0

7 else
8 foreach st ∈ s0’s column do
9 Receive ea from st

10 end
11 Reduce operation on received ea’s
12 foreach st ∈ s0’s column do
13 Send reduced ea to st
14 end

15 end

16 end
17 foreach s ∈ Sloc do
18 s0 ←lowest subgrid in s’s column
19 if s = s0 then
20 foreach st ∈ s0’s column do
21 Receive ea from st
22 end
23 Reduce operation on received ea’s
24 foreach st ∈ s0’s column do
25 Isend reduced ea to st
26 end

27 else
28 Ireceive reduced ea from s0

29 end

30 end
31 Complete Ireceive operations with Wait

32 Complete Isend operations with Wait

Remove these
lines in the
modified
version

Algorithm 4.2: Retrieves information from the grid, performs a column-wise reduction on it fol-
lowed by a column-wise broadcast operation. It is used internally in ParFlow
to enforce initial pressure conditions. Our convention is to use red for lines that
have been deleted and blue for newly added ones in our modification. In order to
ensure that the communication operations are executed cleanly, we implement
an additional loop over the local subgrids. This takes care of posting all the
send operations to the rank owning the lowest subgrid in a column. The second
loop performs the column-wise reduction and broadcast operations, respectively.
Note that except the Receive’s in line 21, all the operations are non-blocking in
the modified version. In line 21 it is safe to use blocking receives because they
match the sends from line 5 posted in an earlier loop.
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4 A modified version of ParFlow

hypre community, an update to the latest version was sufficient to cure the issue.

4.5 Performance results

In order to evaluate parallel performance, we follow the concepts of strong and weak scaling
studies. In a strong scaling analysis, a fixed problem is solved on an increasing number of
processes and the speedup is reported. For a perfectly parallelized code, the speedup should be
proportional to the increase in the number of processes. In a weak scaling study, we increase
the problem size and the number of cores simultaneously such that the work and problem size
per core remain the same. In the optimal case, the runtime should remain constant for such a
study.

Weak and strong scaling studies in this work are assessed on the massively parallel supercom-
puter Juqueen [98

.

]. Juqueen is an IBM Blue Gene/Q system with 28,672 compute nodes,
each with 16 GB of memory and 16 compute cores, for a total of 458,752 cores. The machine
supports four way simultaneous multi-threading, though we do not make use of this capability
in our studies and always run one process per core.

For each of the experiments, we collect timing information for the entire simulation. Addi-
tionally, we report timings for different components of the simulation like the solver setup, the
solver itself and p4est wrap code executed. Concerning the wrap code, we added additional
code to execute p4est interface functions, retrieve information from their results and propagate
it to ParFlow variables. Particularly important for our purposes are the measurements related
to the solver setup: The parameters for grid allocation and the management data required for
the parallel exchange of information are computed during this phase.

In the past, parallel scalability of ParFlow has been evaluated mainly using weak scaling
studies; see e.g., [103

.

, 104

.

, 128

.

, 73

.

]. In order to produce unbiased comparisons with these
results, which are based on past upstream versions of ParFlow, we keep one subgrid per
process in most of our weak scaling studies, even though we have extended the modified version
to use one or optionally more. We make use of this new feature in our strong scaling studies;
see Figure 4.15

.

.

4.5.1 Weak scaling studies

In this section we present results on the weak scalability of the modified version of ParFlow.
We set up a test case in which a global nonlinear problem with integrated overland flow must be
solved. The test case was published previously in [116

.

] and consists of a 3D regular topography
problem in which lateral flow is driven by slopes based on sine and cosine functions. The
problem has a uniform subsurface with space discretization ∆x = ∆y = 1.0 m, ∆z = 0.5 m.
It is initialized with a hydrostatic pressure distribution such that the top 10.0 m of the aquifer
are initially unsaturated. By doubling the number of grid points Nx and Ny, the horizontal
extent of the computational grid is increased by a factor of four per scaling step. The number
of grid points in the vertical direction Nz remains constant per scaling step. The unit problem
has dimensions Nx = Ny = 50 and Nz = 40, meaning that the problem size per process is fixed
to 100,000 grid points. The problem was simulated until time t = 10.0 s using a uniform time
step ∆t = 1.0 s.

In order to offer a self-contained comparison with possible improvements in the ParFlow
model platform, we conduct the weak scaling study twice, once with the upstream version of
ParFlow and then with the modified version with p4est enabled. In the first case, we see that
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Figure 4.8: Weak scaling timing results for the upstream version of ParFlow. The total
runtime grows with the number processes. Breaking it down into solver setup and
solver execution shows that the former is responsible for the increase of the total
runtime. The solver setup time grows from 81 to 639 seconds, which is perfectly
proportional to the 8x increase in problem size.

the total runtime grows with the number of processes. As can be seen in Figure 4.8

.

, the solver
setup routine is responsible for this behavior. Its suboptimal scaling was already reported in
[104

.

], which is in line with us noticing several loops over the all-subgrids array in this part of
the code, which make the runtime effectively proportional to the total number of processes. In
the experiments we were not able to run the upstream code for 65,536 processes or more, which
we attribute to a separate issue in the routine that reads user input from the configuration
reference script, as we detail in Section 4.4.4

.

.

Repeating the exercise with the modified version of ParFlow dramatically improves the
weak scaling behavior of the solver setup; see Figures 4.9

.

and Figure 4.10

.

. With p4est enabled,
the setup time drops from over ten minutes at 32k processes to under two seconds (by a factor
of over 300). Additionally, our patch to the routine that reads the user’s configuration allows us
to use as many as 262,144 processes for this study with nearly optimal, flat weak scaling. Our
implementation of a strictly distributed storage of ParFlow’s mesh also leads to a reduction in
memory usage at large scale; see Figure 4.11

.

. This is significant for computers like Juqueen,
which may only offer about two hundred megabytes if the executable is large, especially in
combination with multi-threading.

We also made use of this scaling study to evaluate the relative cost of using p4est as new
mesh backend by measuring the overall timing of p4est related functions introduced in in
ParFlow. Our results are displayed in Figure 4.12

.

and show that the wrap code amounts to
at most 7% of the total execution time.

Additionally, we employed this test case to estimate the performance of the code in terms of
the floating point operations per second (FLOP/s) and compare them to the theoretical peak
of the Juqueen machine. Measurements were obtained by instrumenting the code with the
Scalasca profiler, which gives access to the hardware counters from the Performance Application
Interface (PAPI) [130

.

]. In particular, the number of floating point operations from a whole run
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4 A modified version of ParFlow

FLOP/s

# Processes Upstream Modified

256 1.223× 108 1.226× 108

1024 1.192× 108 1.194× 108

4096 1.167× 108 1.169× 108

Table 4.1: Floating point operations per second (FLOP/s) for the solver component of the
upstream and modified version of ParFlow, respectively. The numbers are identical
up to two significant digits. Both versions of ParFlow use roughly 3.6% of the
theoretical peak performance that we expect to get from a single Juqueen process,
which amounts to 3.2× 109 FLOP/s.
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Figure 4.9: Weak scaling timing results of the modified version of ParFlow. The total and
solver runtimes are nearly identical. In comparison to Figure 4.8

.

, the solver setup
executes in negligible time, ranging between 0.72 and 1.64 seconds.

have been collected and the FLOP/s estimated as a derived metric using the CUBE browser
[143

.

]. We display our results in Table 4.1

.

.

4.5.2 Strong scaling studies

In this section, we report our results on the strong scalability of the modified version of
ParFlow. The test case is the same as in the previous section, with the exception of fix-
ing Nx and Ny while trying a range of process counts. We divide the results of this study into
two categories, depending on whether we allow for multiple subgrids per process or not.

We start with one subgrid per process. In order to keep the problem size fixed when adding
more processes, we adjust the subgrid dimensions properly, i.e., by decreasing the subgrid sizes
in the same proportion as the number of processes increases. We run three scaling studies, the
smallest of which uses a configuration with roughly 671 million grid points. In each subsequent
study we increase the problem size by a factor of four. Hence, the largest problem has around
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Figure 4.10: Split of weak scaling timing results from Figure 4.9

.

. In (a) we display the total
and solver runtimes that vary little in relative terms. In (b) we see that the solver
setup time of the modified version of ParFlow stays under two seconds wallclock
time. Please note the zoom and offset on the vertical axis.
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Figure 4.11: Weak scaling memory usage for the upstream and modified versions of ParFlow,
respectively. Using the memory allocation information provided by the
mallinfo() function [72

.

], we record the maximum heap allocation per process
and plot the maximum of this quantity over all processes.
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Figure 4.12: Left: overall timing for p4est toplevel functions used in the code. The absolute
runtimes are well below one second. Right: We show timing results for the wrap
code executed when p4est is enabled. We measure solver and setup related rou-
tines independently. Compared with the total solver time (see previous figures),
the wrap code amounts to a fraction of about 7% at most.

10.7 billion grid points. In order to use the full Juqueen system under our self-imposed
restriction of keeping one subgrid per process, while still obtaining runtimes comparable to the
previous scaling studies, we tweak the subgrid dimensions and number of processes requested
in such a way that the resulting problem size is as close as possible to 10.7 billion. Table 4.2

.

presents a summary of the main parameters defining these scaling studies; Figure 4.13

.

and
Figure 4.14

.

contain our runtime results.

We have designed the modified version of ParFlow such that it allows for configurations
in which one process may hold multiple subgrids. In practice, this option provides additional
flexibility when a problem with a certain size must be run, but the number of processes available
depends on external factors. Using this feature, we are able to conduct a strong scaling study
without changing the subgrid size with each scaling step. To illustrate this and additionally to
test that the new code supporting such configurations performs well, we take the medium size
problem defined in Table 4.2

.

and execute a classical strong scaling analysis by changing only
the number of processes. We do this for three different but fixed subgrid sizes. We present our
results in Figure 4.15

.

. We observe that increasing the number of subgrids per process incurs
slightly higher simulation times but still offers nearly optimal strong scaling behavior and is
thus a viable option compared to the single-subgrid configuration.

4.6 Illustrative numerical experiment

In soil hydrology the challenge of scale is ubiquitous. Heterogeneity in soil hydraulic properties
exists from the sub-centimeter to the kilometer scale related to, e.g., micro- and macro-porosity
and spatially continuous soil horizons, respectively. This heterogeneity impacts the flow and
transport processes in the shallow soil zone and interactions with land surface processes. Exam-
ples are groundwater recharge and leaching of nitrate and pesticides and the resulting impact
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4.6 Illustrative numerical experiment

Subgrid size number of processes Problem size
mx ×my ×mz Px × Py × Pz Pxmx · Pymy · Pzmz

128× 128× 40 32× 32× 1 671 088 640
64× 64× 40 64× 64× 1 671 088 640

Study 1 32× 32× 40 128× 128× 1 671 088 640
16× 16× 40 256× 256× 1 671 088 640
8× 8× 40 512× 512× 1 671 088 640

128× 128× 40 64× 64× 1 2 684 354 560
64× 64× 40 128× 128× 1 2 684 354 560

Study 2 32× 32× 40 256× 256× 1 2 684 354 560
16× 16× 40 512× 512× 1 2 684 354 560

128× 128× 40 128× 128× 1 10 737 418 240
Study 3 64× 64× 40 256× 256× 1 10 737 418 240

32× 32× 40 512× 512× 1 10 737 418 240

Full system 18× 32× 40 896× 512× 1 10 569 646 080
run

Table 4.2: Relevant parameters for the strong scaling study under the restriction of one subgrid
per process. The problem size remains constant per scaling study by setting up the
subgrid dimensions inversely proportional to the number of processes.
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Figure 4.13: Strong scaling timing results of the modified version of ParFlow for different
problem sizes. We plot the total runtime for each case. The solid green circle
corresponds to the full size of the Juqueen system at 458,752 processes.
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Figure 4.14: Strong scaling timing results of the modified version of ParFlow for different
problem sizes. We plot the total runtime for each case against the number of grid
points per process. The solid curve shows a fit of Amdahl’s law t = c1 · x + c2,
where x denotes the number of grid points per MPI rank. The fitted parameters
are c1 = 0.0016 and c2 = 14.7. This diagram offers another perspective on the
optimality of weak scaling: We observe that measurements for simulations with
the same number of grid points per process lie on top of each other in the vertical.
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Figure 4.15: Strong scaling timing results of the modified version of ParFlow. We compare
runs with single and multiple subgrids per process. The red line corresponds
to the 2.68 billion degrees of freedom single-subgrid problem (also colored red
in Figure 4.13

.

). Here we choose three fixed subgrid sizes (blue, green, brown).
Increasing the number of processes eventually leads to a single subgrid per process,
which is the case already covered in Figure 4.13

.

. This limit is indicated by the
final dotted segment in each graph. The largest number of subgrids per process
(left end point of each graph) is four for the run represented by the blue curve, 16
for the green and 32 for the brown.
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4.7 Discussion

on shallow aquifers. One major structural soil feature is defined by small scale preferential flow
paths, developed from cracking and biota, that serve as high velocity conduits in the vertical
direction. In large scale simulations, accounting simultaneously for layered soil horizons and
macro porosity at the plot scale on the order to 102 to 103 m has been essentially impossible
because of the high spatial resolution required and the enormous size of the system of equations
resulting from the boundary and initial value problem defined by the 3D Richards equation.

The improved parallel performance offered by the modified version of ParFlow motivates
us to eventually target such complex simulations. In order to illustrate this, we simulate
a hypothetical example configuration focused on the presence of macroporosity and layered
soil horizons. The numerical experiment chosen solves an infiltration problem on a Cartesian
domain. The initial water table is implemented as a constant head boundary at the bottom of
the domain with a five meter unsaturated zone on top of it. The heterogeneous permeability
parameter is simulated with a spatially correlated log-transformed Gaussian random field. We
employ two realizations of such a field to model vertical and lateral preferential flow paths,
respectively. Both random field realizations are obtained with a parallel random field generator
implemented in ParFlow (the turning-bands algorithm [157

.

]). We display an example of
the outcome of such realizations and the saturation field obtained from our experiment in
Figure 4.16

.

. The total compute time required was roughly 280,000 core hours. While the
modified version of ParFlow can be scaled easily to use large multiples of this number, using
such amounts of time must be carefully justified. At this point, it makes sense to reserve
extended scientific studies for a later research that will focus exclusively on the design and
usefulness of such simulations.

4.7 Discussion

In this chapter we have presented our approach in order to improve the parallel performance
of the subsurface simulator ParFlow. In particular, our work takes the code a step further
in order to take advantage of the computational resources offered by the latest HPC systems.
Our approach was to couple the ParFlow and p4est libraries such that the latter acts as
the parallel mesh manager of the former. We achieved this with relatively small and local
changes to ParFlow that constitute a reinterpretation rather than a redesign. This modified
version of ParFlow offers a wider range of runnable configurations and improved performance
with respect to the upstream version. We report good weak and strong scaling up to 458,752
MPI ranks on the Juqueen supercomputer. As a result, the modified version of ParFlow has
been accepted into the High-Q-Club at the Jülich Supercomputing Centre [97

.

]. The improved
performance of the modified version of ParFlow opens the possibility of bigger and more
realistic simulations. Considering our enhancements, most parallel bottlenecks are removed
and implementation scalability is in principle unlimited. We note that we did not address
the algorithmic efficiency of the time stepper or the preconditioner, since the mathematics of
the solver remain unchanged. A natural extension of the work presented in this chapter is to
make use of the AMR functionality provided by p4est to introduce locally refined meshes in
ParFlow. In the next chapter, we will further investigate the mesh structures in ParFlow
and propose minimal changes to advance in this direction.
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(a)

(b)

Figure 4.16: Picture a) shows a slice of the permeability field, generated by combining two
log-transformed Gaussian random fields with standard deviations ranging over 3
orders of magnitude. In b) we display the saturation field obtained after 32,928
time steps, which correspond to 9.83 seconds simulated time. The wall clock
compute time required for this simulation was around 17 hours using 16,384 MPI
ranks of Juqueen.
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5 Towards AMR in ParFlow

In Chapter 4

.

we exposed the integration of ParFlow with the parallel AMR library p4est.
We demonstrated with numerical examples how this enlarged the range of process counts that
ParFlow may be executed with and improved parallel scalability. These results were obtained
for uniform meshes and hence without explicitly exploiting the AMR capabilities of the p4est

library. The objective of this chapter is to expose some of the ideas we developed in order to
prepare the code for local mesh refinement. We focus on the correctness of the mesh connectivity
when the code is executed on a parallel machine.

5.1 AMR with p4est

In Section 4.3

.

we introduced the concept of an octree and how it is naturally associated to a
mesh covering a cubic (square in 2D) domain. Furthermore, the class of domains that may
be represented can be enlarged by considering unions of octrees, conveniently named forest of
octrees. A core functionality of tree based AMR libraries like p4est is to dynamically change
the mesh elements by traversing the quadrants of the corresponding forest and either

• refine the mesh by replacing a quadrant by its eight (four in 2D) children,

• coarsen the mesh, replacing a family of eight quadrants (four in 2D) by its common parent.

The p4est implementation of the previous routines takes as argument a user defined callback
function that marks the quadrants to be considered for refinement or coarsening. A key feature
of the SFC approach used in p4est is that the ordering of the quadrants is maintained after
refine or coarsen are executed. Hence, manipulation of the mesh resolution can be achieved
with small movements of data. Furthermore, quadrants of different refinement level are allowed
to be neighbors of each other. This translates into meshes where elements of different sizes
share parts of a mesh face or edge. Optionally, the p4est library guarantees that the size of the
difference is at most a factor of two. This is known as 2:1 balance condition which we consider
in our work; see Figure 5.1

.

.

5.2 Enabling locally refined meshes in ParFlow

In Section 4.4

.

, we exposed our approach to delegate ParFlow’s mesh management to the
software library p4est. The aim of this section is to extend it to include the case when the
p4est object represents a locally refined mesh, and to carry out the minimal modifications such
that ParFlow executes cleanly in parallel when a locally refined mesh is employed.

Our starting point is the p4est brick that we also use to create a uniform mesh with the
input data provided by the user. We first refine this brick and then proceed to attach a suitable
subgrid to each of its quadrants. We maintain the (user defined) number of points mt in a
subgrid along the t coordinate direction for t ∈ {x, y, z}. Local refinement is then enforced by
halving the subgrid mesh spacing in accordance with the quadrant level. See Figure 5.2

.

.
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(a) (b) (c)

Figure 5.1: Local refinement. Starting from the mesh in (a), the blue shaded quadrant is marked
for refinement. The refine routine will replace it by its four children to obtain the
mesh displayed in (b). After refinement, the size difference between the red and
green shaded quadrants in (b) amounts to a factor of four. We may enforce the
2:1 balance condition by refining the red shaded quadrant to produce the mesh
depicted in (c). In all three figures the blue zig-zag line denotes the corresponding
space filling curve, which determines the ordering of the elements.

q0 q1

q2 q3

q4 q0 q1

q2

q3 q4

q5

p4est refine ParFlow+p4est

Figure 5.2: Work flow to enable AMR in ParFlow. We create a p4est object representing the
mesh displayed in the left picture. Its dimensions are obtained by (4.5

.

) after using
Nx = 9, Ny = 9, Nz = 1 and mx = my = 3, mz = 1 as input values in formula
(4.3

.

). The corresponding space filling curve is shown in blue. With the p4est refine
routine, this p4est object is modified to represent the mesh displayed in the middle.
We keep our idea of attaching a subgrid to each of the quadrants in the later p4est
object. The number of points per subgrid remains fixed but we adjust the mesh
spacing when attaching a subgrid to a refined quadrant.
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5.2 Enabling locally refined meshes in ParFlow

A key observation in the approach presented in Section 4.4

.

is that the scaled bottom left
corner of the brick’s quadrants matches the enumeration employed by the upstream version of
ParFlow. This allows us to keep most of the original algorithms that operate on the mesh.
In particular, we preserve those employed to determine the necessary information to perform
parallel updates; see Algorithm 3.3

.

in Section 3.6

.

. With the introduction of a locally refined
mesh we may loosen the this property of the quadrant’s corners. In order to illustrate this we
consider the following example.

Suppose that we start with a computational mesh of dimensionsNx×Ny = 20×20, partitioned
into four subgrids of dimensions mx × my = 10 × 10, as displayed in Figure 5.3a

.

. We then
activate the AMR capabilities of p4est to refine the upper right corner of the associated p4est

brick object; see Figure 5.3c

.

. If left unchanged, the methodology from Section 4.4

.

to place a
subgrid inside of the quadrants of the modified brick will lead to an erroneous mesh as shown in
Figure 5.3d

.

. Specifically, subgrids placed inside the newly created quadrants will have incorrect
size and physical location. The reason is that the scaled lower left corner (cx, cy) from a child
quadrant does no longer translate into integer coordinates that are consistent with the rule
(3.21

.

). In order to apply this rule, remember that we required ct ∈ {0, 1, . . . , Pt − 1}, where
Pt is configured as the number of subgrids in the t direction and fixed at the beginning of the
simulation. In the particular case of Figure 5.3d

.

, we have Px = Py = 2 which will enforce
(cx, cy) ∈ {0, 1} × {0, 1}, but as shown in Figure 5.3c

.

, the four new quadrants arising from
the refinement process satisfy (cx, cy) ∈ {2, 3} × {2, 3}. The issue with the proper scaling of
the subgrids corresponding to these quadrants is straightforward to fix, and we will discuss the
details in Section 5.2.1

.

. A more cumbersome problem relates to the algorithms that determine
the send and receive regions for a given stencil.

According to formula (3.20

.

), the subgrids s1 and s3, placed inside the quadrants q̂1 and q̂3

with scaled corners (1, 0) and (2, 3), respectively, identify the following two sets of indices (3.15

.

):

I1 := {i : i = 0, 1, . . . , 9} ⊗ {10 + j : j = 0, 1, . . . , 9}, (5.1a)

I3 := {20 + i : i = 0, 1, . . . , 9} ⊗ {30 + j : j = 0, 1, . . . , 9}, (5.1b)

which are completely separated. In the configuration from Figure 5.3c

.

, the quadrants q̂1 and q̂3

share a mesh face. Hence, a stencil requiring information from the adjacent neighbor will involve
communication between the subgrids placed inside these quadrants. For example, subgrid s1

needs access to the degrees of freedom corresponding to the indices on the stripe {(20 + i, 10) :
i = 1, . . . , 9} from s3, that is, those located at the bottom of its top neighbor subgrid. However,
ParFlow will try to determine this stripe by shifting the set I1 and then intersecting the
outcome with I3, which will result in the empty set. We propose two ideas to overcome this
issue in Section 5.2.2

.

.
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(a)

q0 q1

q2 q3

(0, 0) (1, 0)

(0, 1) (1, 1)

(b)

q̂0 q̂1

q̂2

(0, 0) (1, 0)

(0, 1)
q̂3 q̂4

q̂5 q̂6

(2, 2) (2, 3)

(3, 2) (3, 3)

(c) (d)

Figure 5.3: In (a) we show a ParFlow mesh obtained using Nx = 20, Ny = 20, Nz = 1 and
mx = my = 10, mz = 1 as input values in formula (4.3

.

). The corresponding p4est

brick object is shown in (b). We refine the latter to produce the brick displayed in
(c). For each of the quadrants qi in (b) and q̂j in (c) we display its lower left corner
scaled by the multiplier g from (4.4

.

). Without further modifications, the approach
exposed in Section 4.4

.

to place a subgrid inside each of the quadrants of the brick
(c) leads to the erroneous mesh depicted in (d).
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Figure 5.4: Corrected mesh associated to the brick from Figure 5.3c

.

.

5.2.1 Correcting the mesh layout

In Section 3.5

.

, we saw that the physical location of a point lying in a subgrid s is given by

xi = x0 + (i+ 0.5)

(
∆x

2s.rx

)
, (5.2a)

yj = y0 + (j + 0.5)

(
∆y

2s.ry

)
, (5.2b)

zk = z0 + (k + 0.5)

(
∆z

2s.rz

)
, (5.2c)

where (x0, y0, z0) is the background’s anchor point, ∆x,∆y,∆z and rx, ry, rz denote the mesh
spacing and refinement per coordinate direction, respectively. We will assume that the re-
finement level ` ≥ 0 is the same in all coordinate directions. Hence, our modified version of
ParFlow takes

rx = ry = rz = `. (5.3)

This is compatible with the upstream version, where ` is fixed to zero.
If the subgrid s is attached to a given quadrant q, we need to relate ` with the refinement level

qL of q in the p4est object. By the construction in Section 4.4.1

.

, the quadrants of the p4est

object representing the initial uniform mesh have refinement level k0, where k0 was defined in
(4.4

.

). Therefore, the correct value is
` = qL − k0. (5.4)

Taking a look back into the introductory example, this is the required modification to produce
the mesh depicted in Figure 5.4

.

, which is spaced correctly.

5.2.2 Two proposals to correct the communication layout

The main issue appearing with the introduction of a locally refined mesh is that ParFlow
may fail to correctly determine the send and receive regions; see Section 3.6

.

. In the case of the
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send region, Algorithm 3.5

.

assumes that if two subgrids s and s̃ are neighbors, then the indices
corresponding to the coordinate direction of the mesh face they share are consecutive numbers.
For example, in a two dimensional situation where s and s̃ share a face in the x direction, it
follows that

|s.ix− s̃.ix| = nx. (5.5)

If s and s̃ correspond to subgrids attached to quadrants of different levels of refinement q
and q̃, respectively, this property does not hold anymore. The immediate consequence is that
ParFlow will miss the fact that s and s̃ are neighbors. We have come up with two variants
that aim to solve this issue. In both cases the parent of the finer quadrants plays a fundamental
role. Without loss of generality, let q̃ denote the finer quadrant, by the 2:1 balance condition
the parent of q̃ has the same refinement level as q. In analogy, we may define the parent subgrid
of s̃ as the subgrid with the same dimensions as s̃ but with the lower left corner computed from
the parent quadrant of q̃. With these definitions in mind, our two proposed solutions are the
following.

(A) If s̃ denotes the finer subgrid, then the parent subgrid of s̃ and s will be neighbors and the
indices of the mesh face they share will be compatible in the sense explained above. From this
observation, we may construct the parent subgrid on the fly when subgrids of different levels
are intersected to compute the send (or receive) region. See Figure 5.5

.

. In particular,

i) If we try to intersect a coarse subgrid s with a fine shifted one s̃, we get the right values
by replacing s̃ by its shifted parent and performing the intersection.

ii) If we try to intersect a fine subgrid s̃ with a coarse shifted one s, we get the right values
by replacing s̃ by its parent and then map the result of the intersection back to s̃.

Hence, this variant operates in the indices of the degrees of freedom to reuse the existing
ParFlow infrastructure that handles parallel communication. A procedure summarizing this
approach is show in Algorithm 5.1

.

.

(B) In the second variant, we operate with the degrees of freedom directly: When a given
subgrid requires data from a different size one to update the values it is responsible for, our
idea is to construct the parent subgrid sp of the finer and use it to carry out the required
calculations; see Figure 5.6

.

. Specifically,

i) A coarse subgrid s requires data from a fine subgrid s̃ to complete a calculation. Then,
we construct the parent of s̃, project the values s̃ is responsible for to sp and perform the
calculation using s and sp.

ii) A fine subgrid s̃ requires data from a coarse subgrid s to complete a calculation. Here,
we construct the parent of s̃, project the values s̃ is responsible for to sp, perform the
calculation using s and sp and finally interpolate the result back to s̃.

Note that in both cases of the variant (B), the calculation involving s and sp will require extra
communication not included in the ParFlow functionality and hence must be explicitly coded.
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s0 s1

s2
s3 s4

s5 s6

sp

neighbors in index space

distant in index space

Figure 5.5: Assuming a stencil requiring information from the adjacent neighbors, the subgrids
s1 and s3 need to communicate. Specifically, they should share with each other the
degrees of freedom enclosed in red and blue. Because the corresponding indices are
not neighbors in the index space, we may build the parent subgrid of sp of s3. In
the index space sp and s1 are neighbors, so we can use this fact to compute the send
and receive regions with respect to sp and map them accordingly to s3. This covers
both cases from the variant (A) described in Section 5.2.2

.

.

s0 s1

s2
s3 s4

s5 s6

sp

MPI

interpolation

projection

Figure 5.6: Assuming a stencil requiring information from the adjacent neighbors, the subgrid
s4 needs data from s1 to update its own degrees of freedom. We may build the
parent subgrid sp of s4, project s4’s values to sp and use the latter to complete the
calculation. This step will require communication between sp and s1. After the
computation is complete, we interpolate the result back to s4. This corresponds to
case ii) from the variant (B) described in Section 5.2.2

.

. Case i) follows a similar
path omitting the interpolation step and interchanging the roles of s1 and s4.
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Algorithm 5.1: Send Region with locally refined meshes

Input : SubgridArray Sloc, SubgridArray Sall, Stencil sten
1 Sneigh ← GetNeighbors(Sloc, Sall, sten) Neighbors array from Algorithm 3.4

.

2 Spatch ← GetPatches(Sneigh, sten) Patch array from Algorithm 3.3

.

3 foreach s ∈ Sall do
4 foreach s̃ ∈ Spatch do
5 if s.` < s̃.` s is finer than s̃

6 then
7 s̃p ← parent subgrid of s̃
8 t← s ∩ sten(s̃p) s̃ is a shifted subgrid, intersect with shifted parent

9 else
10 if s.` > s̃.` s is coarser than s̃

11 then
12 sp ← parent subgrid of s
13 t′ ← sp ∩ s̃
14 t← t′ projected onto s transfer result back to the finer subgrid

15 else
16 t← s ∩ s̃ same level subgrids

17 end

18 end
19 if t 6= ∅ then
20 Append s to Ssend

21 end

22 end

23 end
24 return Ssend

Algorithm 5.1: Modification of Algorithm 3.5

.

to compute the send region with respect to a given
stencil and taking into account the case of different size subgrids. We recall
that Algorithm 3.4

.

computes the neighbors of all local subgrids with respect to
a given stencil. Meanwhile Algorithm 3.3

.

computes an array consisting of the
non-empty differences sten(s)− s := {v ∈ sten(s) | v /∈ s}, for each subgrid s it
takes as argument; see Section 3.6

.

for further details. This corresponds to the
variant (A) explained in Section 5.2.2

.

.
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5.3 Discussion

In this chapter we have discussed the algorithmic approach to activate the usage of locally
refined grids in ParFlow. We have focused exclusively on the mesh subsystem and its correct
functioning when the code is executed in parallel. That is, ParFlow must correctly determine
the message envelopes when the AMR capabilities of p4est are activated. This step still
leaves a long way to go in order to establish the appropriate data representation and numerical
mathematics context. For example, we did not address how we want to interpolate fluxes at
the boundary of two subgrids with different mesh spacing. We will investigate this in future
work.
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6 A block preconditioner for locally refined
meshes

This chapter is based on the manuscript [39

.

]. We have carried out minor editions in order
to match the notation of this thesis, without changing its core content. The content from
Section 6.2

.

corresponds to work realized by co-author B. Metsch. We decided to keep it in this
thesis in order to offer a self-contained exposition of the results of this chapter.

In many applications one is more interested in the gradient of the solution of the Poisson
equation than in the solution itself. One approach is to use standard methods such as finite
differences (FD), finite elements (FE) or finite volumes (FV), to obtain an approximate solution
and then to compute its gradient via numerical differentiation, which may lead to a loss in
accuracy. A mixed finite element (MFE) discretization appears to be a more natural choice
since the gradient of the solution is part of the unknown variables of the formulation. Generally,
in MFE methods the vector valued quantity is approximated at least with the order of accuracy
of the scalar unknown [31

.

]. In addition, the computed solution satisfies mass conservation at the
element level, a property highly relevant in fields like fluid flow simulation where the governing
partial differential equations (PDE) are derived from mass balance laws.

Another PDE in which MFE is a natural choice is the Stokes system, here a FE or FD
discretization could lead to spurious oscillations on the scalar (pressure) variable since this is in
general not unique. Mixed Stokes and Poisson systems have a similar mathematical structure in
the sense that both lead to a block saddle point problem. Nevertheless, they require in general
different MFE spaces. For the Poisson case, continuity is only required in the normal component
of the vector (velocity) variable. This has the consequence that geometry transformations are
different if one is interested in working with isoparametrically mapped elements [24

.

, Sec. 2.1.3].

MFE discretizations lead to symmetric indefinite systems of algebraic equations that may
be solved by iterative methods. In order to obtain a solution with a reasonable investment of
computational resources, the use of optimal preconditioners becomes mandatory. Although the
existence of an optimal preconditioner for general (anisotropic) coefficients remains an open
question, there has been a significant amount of work in this direction. In [8

.

], the authors
propose two preconditioners for the operator (I − grad div) in two dimensions, one based on
domain decomposition and another on multigrid. The latter was generalized to operators of
the form (ρI − µgrad div) and three-dimensional problems [9

.

]. From the observation that a
MFE discretization of a generalized diffusion equation is well posed in a product of two different
discrete function spaces, [132

.

] and [131

.

] propose two block-diagonal preconditioners. One of
them is what we will refer to as Schur complement preconditioner and consists of a lumped
diagonal approximation of the (1, 1) block and an algebraic multigrid V-cycle to approximate
a Schur complement on the (2, 2) block. The preconditioners introduced in these chapter are
shown to be optimal with respect to the mesh size and various classes of coefficients (such as a
conductivity tensor). Recent work [105

.

] introduces a new preconditioner whose key ingredient
is the approximation of the (1, 1) block with an auxiliary space multigrid method [106

.

] that
offers optimality with respect to a larger class of coefficients. The authors provide numerical

69



6 A block preconditioner for locally refined meshes

evidence for two dimensional problems posed on uniform rectangular meshes.
For some problems we may require a very fine mesh in order to correctly resolve the phe-

nomena we are trying to model. A uniform mesh might be undesirable or even impractical
given the computational resources it requires. One solution to this problem is to use locally
refined meshes, which use the correct resolution only in the portion of the domain that really
requires it [11

.

, 20

.

, 56

.

]. In a uniform mesh, the vertices of the mesh elements are shared between
neighboring elements. Introducing local refinement may destroy this property and introduce
the so called hanging nodes. A hanging node is a vertex of a mesh element that lies in an edge
or face of a neighboring element. When using locally refined meshes, there are essentially two
possibilities, either we allow the presence of hanging nodes or not [126

.

, 2

.

]. In the context of
MFE, implementations making use of adaptively refined meshes with hanging nodes are not the
standard, nevertheless the theoretical framework has been established in the early 90s [65

.

, 66

.

].
None of the above mentioned methods for preconditioning address the case of adaptively refined
meshes. Hence, the goal of this chapter is to present a multigrid preconditioner that retains its
robustness in such case by taking into account the different scales in the saddle point structure.

6.1 Problem formulation

In this section we briefly review the mixed formulation of a Laplacian-like partial differential
equation. The material covered here is standard and found in many textbooks; see e.g., [24

.

, 28

.

],
and augmented with a few recent results.

Let Ω ∈ Rd for d ∈ {2, 3} be a bounded Lipschitz domain with boundary Γ = ∂Ω. Hm(Ω)
will denote the standard Hilbert space of functions in L2(Ω) whose weak derivatives up to order
m ≥ 0 are also square integrable. Hm(Ω) is endowed with the usual norm and seminorm,

‖v‖m :=
∑
|α|≤m

∫
Ω
|Dαv|dx, |v|m :=

∑
|α|=m

∫
Ω
|Dαv|dx. (6.1)

We define the velocity space

H(div; Ω) := {v ∈ (L2(Ω))d : divv ∈ L2(Ω)}, (6.2)

which is a Hilbert space with the norm

‖v‖2div = ‖v‖20 + ‖divv‖20. (6.3)

We assume that Γ = ΓD ∪ΓN , with ΓD ∩ΓN = ∅, and that ΓD has nonzero (d− 1)-dimensional
Lebesgue measure. Lastly, define

H1
0,D(Ω) := {φ ∈ H1(Ω) : φ|ΓD

= 0}. (6.4)

In the following, we use bold mathematical symbols to denote vectors and matrices over Rd
and the default font for scalar quantities.

We consider the equation

−divK(x)∇p = f in Ω, (6.5a)

p = p0 on ΓD, (6.5b)

K(x)∇p · n = g on ΓN , (6.5c)
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where n is the outer normal vector to the boundary Γ. The conductivity tensor K(x) is a d×d
symmetric positive definite matrix whose smallest eigenvalue is bounded uniformly away from
zero. Furthermore, the data is required to satisfy

f ∈ L2(Ω), p0 ∈ H1/2(ΓD) and g ∈ L2(ΓN ), (6.6a)

where H1/2(ΓD) stands for the space spanned by functions of the form q |ΓD
with q ∈ uH1(Ω).

Introducing the variable u = K∇p leads to the mixed first-order system

u = K∇p in Ω, (6.7a)

−divu = f in Ω, (6.7b)

p = p0 on ΓD, (6.7c)

u · n = g on ΓN . (6.7d)

6.1.1 Weak formulation

To derive the mixed weak formulation of (6.7

.

) we introduce the following space,

H0,N (Ω) := {τ ∈H(div; Ω) : 〈τ · n, φ〉 = 0 for all φ ∈ H1
0,D(Ω)}. (6.8)

Due to particular properties of The dual paring 〈 · , · 〉 is defined via Green’s formula; see [24

.

,
pp. 50]. Multiplying the first equation in (6.7

.

) by K−1 and then by a test function v ∈H0,N (Ω),
the second by some q ∈ L2(Ω), integrating over Ω and using Green’s formula on the gradient
term yields the following weak formulation: Find (u, p) ∈H0,N (Ω)× L2(Ω) such that∫

Ω
K−1u · v dx+

∫
Ω
p divv dx =

∫
ΓD

p0(v · n) ds for all v ∈H0,N (Ω), (6.9a)∫
Ω
q divu dx = −

∫
Ω
fq dx for all q ∈ L2(Ω). (6.9b)

Let us define the bilinear forms a : H(div; Ω)×H(div; Ω)→ R and b : H(div; Ω)×L2(Ω)→ R,

a(u,v) :=

∫
Ω
K−1u · v dx, b(v, p) :=

∫
Ω
p divv, (6.10)

and linear functionals A : H(div; Ω)→ R, B : L2(Ω)→ R,

A(v) :=

∫
ΓD

p0(v · n) ds, B(q) := −
∫

Ω
fq dx. (6.11)

To enforce the Neumann boundary condition (6.5c

.

), (6.7d

.

), let p̃ a classical solution of (6.5

.

)
with f = 0 and p0 = 0. Then, taking ũ = ∇p̃ the mixed weak formulation of (6.7

.

) is: Find
u = ũ+ u0 with u0 ∈H0,N (Ω) and p ∈ L2(Ω) such that

a(u0,v) + b(v, p) = A(v)− a(ũ,v) for all v ∈H0,N (Ω), (6.12a)

b(u, q) = B(q)− b(ũ, q) for all q ∈ L2(Ω). (6.12b)

Existence and uniqueness of a solution for the problem (6.12

.

) follows from standard arguments,
namely establishing coercivity of the bilinear form a( · , · ), and the Ladyženskaja-Babuška-
Brezzi (LBB) condition; see eg. [31

.

].
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◦← →

↑

↓
(a) (b)

Figure 6.1: Degrees of freedom for the rectangular RT 0 element in two (a) and three (b) di-
mensions. For the velocity, the degrees of freedom are normal components at the
edge (face) mid sides of an element. The pressure is located at the center of the
element.

6.1.2 Discretization

We pick finite dimensional subspaces Xh
0 ⊂H0,N (Ω) and V h ⊂ L2(Ω) and define the following

problem: Find (uh, ph) ∈Xh
0 × V h such that

a(uh,vh) + b(vh, ph) = Ã(vh) for all vh ∈Xh
0 , (6.13a)

b(uu, qh) = B̃(qh) for all qh ∈ V h, (6.13b)

where the linear forms Ã and B̃ take into account the Neumman boundary condition like in
(6.12

.

), that is

Ã(v) :=

{
A(v)− a(ũ,v) if ΓN 6= ∅,
A(v) else,

(6.14a)

B̃(q) :=

{
B(q)− b(ũ, q) if ΓN 6= ∅,
B(q) else.

(6.14b)

To ensure that (6.13

.

) is well posed, the pair of spaces (Xh
0 , V

h) must be chosen such that the
LBB condition is fulfilled for the discrete problem. Many spaces with this property have been de-
veloped since the early seventies, such as the Raviart-Thomas [135

.

] and Brezzi-Douglas-Marini
[30

.

] spaces. In this chapter we stick to the lowest order Raviart-Thomas space discretization
(RT 0) defined on rectangles/hexahedra. Hence, in an element Ωe the velocity and pressure test
functions take the form

v|Ωe =

{
(a0 + b0x, a1 + b1y)T if d = 2

(a0 + b0x, a1 + b1y, a2 + b2z)
T if d = 3

}
, p|Ωe = c0, (6.15)

respectively, where ai, bi for i = 0, . . . , d − 1 and c0 are constants. The degrees of freedom are
shown in Figure 6.1

.

. The following approximation properties are well known for RT 0 in the
context of affine elements defined on uniform meshes [24

.

],

‖u− uh‖0 ≤ Ch‖u‖1, (6.16a)

‖p− ph‖0 ≤ ch (‖p‖1 + ‖u‖1) , (6.16b)

where we assume that the pair (u, p) fulfills the regularity requirements required by the right
hand side of (6.16

.

).
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u0 u1

u2

u3

ũ2

ũ3

ũ0 ũ1

Figure 6.2: Locally refined mesh with hanging nodes. To enforce continuity of the flux normals
for a RT 0 discretization, the velocity value on a hanging node is defined by the
corresponding non-hanging node lying in the same edge. For the case in the picture
we define ũ0 := −u1.

6.1.3 Adaptivity

For well behaved (smooth) problems posed on convex domains, the use of a uniform mesh
usually offers satisfactory results when computing a numerical solution, that is, there is an
optimal trade-off between numerical effort (computational resources) invested and effective
reduction of the error. Nevertheless, there are situations in which the mesh resolution required
to accurately reproduce the physical behavior of the underlying PDE becomes computationally
impractical if imposed on the whole domain.

Adaptive mesh refinement (AMR) provides a valuable tool in order to reduce the compu-
tational complexity in such situations by increasing the mesh resolution only locally where is
required. As stated in section Section 6.1.2

.

, we will work with meshes composed of rectan-
gles/hexahedra. The refinement schemes used in this chapter include the case of a mesh with
hanging nodes, that is, we allow (a nonempty) intersection of two elements to be a complete side
of a neighboring element. Additionally, we specify to use 2:1 balanced meshes: The length ratio
between a coarse and a fine element is at most of factor two; see Figure 6.2

.

. Non 2:1 balanced
meshes would also be possible, although this will require more technical work regarding the
definition of MFE spaces and the parallelization. Continuity of fluxes across interfaces for this
kind of meshes can be enforced in several ways. One is to eliminate te degrees of freedom at
hanging nodes [65

.

]. Another approach is to use Mortar finite elements [5

.

]. We will follow the
former option. Due to our assumption of 2:1 balance, for a RT 0 discretization given a hanging
node with flux value ũ, there is only one non-hanging node u lying in the same edge/face; see
Figure 6.2

.

.

Estimates for locally refined meshes using hanging nodes have been studied in [65

.

, 66

.

]. Es-
sentially, it is shown that the RT 0 spaces still respect the LBB condition after introducing
locally refined grids, and hence the estimates (6.16

.

) are still valid.
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6.1.4 Preconditioning

The discretization of (6.7

.

) via stable MFE leads to a saddle point problem defined by the
following block matrix,

Ah :=

[
A B>

B 0

]
=

[
Idh −gradh
divh 0

]
, (6.17)

where A is the vector mass matrix and B is the discrete divergence operator. This is a well
studied problem and there are several solution methods available; see e.g., [19

.

] for a compre-
hensive review. They range from Uzawa algorithms and its variants [27

.

], projection methods
[79

.

], to block factorization methods [60

.

, 114

.

]. In contrast to most methods that treat flux and
pressure individually, we introduce a monolithic block multigrid method [120

.

].
To prepare the following exposition, let us briefly discuss notation and some background. We

consider the case that matrix (6.17

.

) is symmetric and indefinite. The factorization

Ah =

[
I 0

BA−1 I

] [
A 0
0 −S

] [
I A−1B>

0 I

]
, S = BA−1B>, (6.18)

implies that Ah is congruent to a block diagonal matrix [68

.

]. This fact motivates the use of a
preconditioner of the form

B =

[
M 0
0 −N

]
, (6.19)

where M and N satisfy

MA ≈ I, (6.20a)

NS ≈ I. (6.20b)

A simple choice is to take M as the inverse of the lumped mass matrix A. The Schur comple-
ment S represents the operator −∆h. Hence, (6.20b

.

) suggests N ≈ ∆−1
h , and the second block

of the preconditioner P should approximate the inverse of a discrete Laplacian in pressure space.
Then, we can use a solver for elliptic operators such as multigrid to apply N . Nevertheless,
it is a concern that our pressure belongs to L2(Ω), and strictly speaking we do not have the
required regularity to apply ∆−1

h . An option to deal with this problem is to use the auxiliary
space technique [170

.

], in which the idea is to use a multigrid preconditioner for continuous
pressure elements and then project it in to the desired space of discontinuous pressure elements
in combination with a suitable smoothing operator. We note that some approaches only use a
one-sided factorization of (6.18

.

), which leads to a block-triangle form of B; eg. [62

.

, 107

.

]. For
problems in which the (1,1) block of Ah has a non-symmetric term, this variant offers a faster
converge of the iterative solver at the price of evaluating an additional sparce matrix vector
product with respect to the block diagonal preconditioner [69

.

].
In the context of the (Navier-)Stokes equations, dedicated approximations to the inverse of the

Schur complement have been proposed [62

.

, 61

.

]. These include the pressure Schur complement
methods [159

.

] and the least squares commutator preconditioner a.k.a. BFBt and its extensions
[60

.

]. Following the presentation from [138

.

], the BFBt approximation of the inverse of the Schur
complement can be written

S−1
BFBt := (BC−1B>)−1(BC−1AD−1B>)(BD−1B>)−1, (6.21)

where C and D are diagonal and symmetric positive definite matrices. The original choice sets
C and D to the lumped velocity mass matrix of the system. New modifications have been

74



6.2 Multigrid for Saddle Point Problems

introduced in an effort to improve the effectiveness of the preconditioners in cases where the
equations present high variability in the (scalar) coefficients [137

.

, 138

.

]. For the Poisson instead
of the Stokes equations, A is the velocity mass matrix instead of a discrete Laplacian. Hence,
with C = D ≈ A the method reduces to SBFBt ≈ S, the usual Schur complement.

6.2 Multigrid for Saddle Point Problems

Multigrid (MG) methods provide efficient preconditioners for important classes sparse of linear
systems, in particular if the matrix system arises from the discretization of an elliptic PDE.
Their main advantage is that they scale linearly in the number of unknowns N , i.e. that they
require only O(N) computational work and memory. Multigrid has been primarily developed
for symmetric positive M-matrices as they typically arise from FD/FV/FE discretizations of
(scalar) second order elliptic PDEs.

As already indicated in the previous section, multigrid algorithms can be used inside Schur
complement preconditioners to invert one (or both, depending on the application) of the diago-
nal blocks. While this approach allows an easy re-use of existing and well-established techniques,
it does not longer guarantee linear convergence for the overall on the block system. The multi-
grid cycles are applied only to the sub-problem(s), while couplings between the unknowns are
handled by the outer iteration (for example GMRES, BiCGStab or (inexact) Uzawa). In con-
sequence, the outer iteration essentially determines the overall convergence speed, even if the
inner sub-blocks can be solved quickly.

The question is whether it is possible to build a multigrid hierarchy for the coupled system
to take into account the cross-couplings on all levels. Several developments have been made
in this direction. Geometric multigrid methods for (Navier-)Stokes have been proposed in e.g.
[161

.

, 145

.

]. In [163

.

, 164

.

, 165

.

], this has been extended to a “semi-algebraic” AMGe-approach,
where the coarse levels still have to determined geometrically. In this section, we will use the
completely algebraic method introduced in [120

.

]. As in classical AMG for M-matrices, this
method only requires the matrix to build a robust multigrid hierarchy and hence can adapt
itself to difficulties such as anisotropic or jumping coefficients as well as meshes that cannot be
coarsened geometrically.

6.2.1 Algebraic multigrid (AMG)

The whole hierarchy of grids {Ωl}Ll=1, operators {Λl}Ll=1, and transfer operators {P l}L−1
l=1 ,

{Rl}L−1
l=1 needed in the multigrid cycle (solution phase) is computed from the system matrix

Λ during a setup phase. In this chapter we will understand the term ‘grid’ as a set of indices,
AMG methods require no geometric mesh information. The strength of AMG is its ability
to deal with difficulties in the operator, such as heterogeneous strongly varying coefficients
as well as unstructured meshes, for which a hierarchy cannot be (easily) identified. To set the
stage for our proposed method, let us briefly recapitulate the classical Ruge-Stüben AMG setup
[139

.

, 153

.

]. We start on the finest level l = 1 using the fine system matrix Λ1 := Λ and the
finest set of degrees of freedom indices Ω1 = {1, . . . , n1}.

1. We decompose the grid Ωl into the set of fine grid points Fl and coarse grid points Cl.
The latter form the next coarser grid Ωl+1 := Cl of size nl+1.
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6 A block preconditioner for locally refined meshes

2. We compute the interpolation matrix

P l ∈ Rnl×nl+1 , P l :=

[
P l,F

IC

]
. (6.22)

The submatrix P l,F contains the interpolation weights for all fine grid points i ∈ Fl. For
the coarse grid points i ∈ Cl, interpolation is just the identity.

3. We compute the next coarser matrix by the Galerkin product

Λl+1 := P>l ΛlP l. (6.23)

The algorithm is then recursively applied to the input matrix Λl+1. If nl is small enough
such that Λl can be efficiently factored by a direct solver, the recursion is terminated. In our
experiments we use a redundant serial solver if nl = 1000.

We recall that for a fast multigrid algorithm, the error components not efficiently reduced
by smoothing (the smooth vectors) must be well represented within the range of the interpo-
lation operator P l. In AMG, we take a simple smoothing scheme like Jacobi or Gauss-Seidel
relaxation. For symmetric positive definite M-matrices, an investigation of the smooth error
components e = (e1, . . . , en)> reveals that these satisfy D−1Λe ≈ 0, where D := diag(Λ). If
we denote the coefficients of Λ by λij , this means

ei ≈ −
1

λii

∑
j 6=i

λijej . (6.24)

Equation (6.24

.

) already delivers us a template for the interpolation formula: The value at
the fine grid point i should be approximated by the values at those points j for which −λij
is relatively large, while those (scaled) entries λij also provide the interpolation weights. In
consequence, a substantial amount of those large negative connections should lead (directly or
indirectly) to coarse grid points j ∈ Cl. This imposes certain connections on the selection of
the coarse grid points Cl ⊂ Ωl. Many algorithms to the coarse grid selection and construction
of the interpolation have been proposed. We do not describe them in detail here, but refer to
[139

.

, 153

.

, 85

.

, 149

.

, 148

.

] The restriction matrix is taken as the transpose of the interpolation.
The Galerkin ansatz for the coarse grid matrix (6.23

.

) has two benefits: First, for symmetric
positive definite Λl, Λl+1 is also symmetric positive definite for any full (column) rank interpo-
lation operator P l. Second, the resulting two-grid correction operator I − P lΛ

−1
l+1P lΛl is an

orthogonal projector, which (extended recursively over all levels and combined with smoothing)
ensures that the multigrid cycle converges [153

.

].
We now present an algebraic multigrid approach for a monolithic solution of saddle point

problems of the form [
A B>

B −C

] [
u
p

]
=

[
v
q

]
. (6.25)

We will construct a multigrid hierarchy of saddle point matrices indexed by l,

Al =

[
Al B>l
Bl −C l

]
, (6.26)

as well as block interpolation matrices Pl. Note that we include a lower right block C l, which
will be zero on the first level, C1 = 0, and non-zero for l ≥ 2.
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6.2 Multigrid for Saddle Point Problems

6.2.2 Smoothers for saddle point problems

Classical relaxation schemes like the Jacobi or Gauss-Seidel iteration are not suitable for saddle
point systems, since the smoothing properties for these schemes rely on the positive definiteness
of the matrix. We present two dedicated smoothing schemes for saddle point systems [145

.

]:
First, a predictor-corrector algorithm, which combines segregated sweeps over the physical
components, and second, a box relaxation scheme, where small saddle point subsystems are
solved within a global Schwarz method.

Uzawa relaxation. Our first option is a symmetric inexact Uzawa relaxation scheme. Within
each iteration, a predictor u∗ for the flux is computed first, which is used to update u. Finally,
employing the updated values of pit+1

l , the next iterate uit+1
l is computed,

u∗l = uit + Â
−1
l

(
v −Alu

it
l −B>l pitl

)
, (6.27a)

pit+1
l = pitl + Ŝ

−1
l

(
Blu

∗
l −C lp

it
l − q

)
, (6.27b)

uit+1
l = uitl + Â

−1
l

(
v −Alu

it
l −B>l pit+1

l

)
. (6.27c)

The matrices Âl and Ŝl are chosen such that Âl−Al and Ŝl−BlÂ
−1
l B

>
l −C l are symmetric

positive definite. Furthermore, they should be easily invertible. For example, we can choose to

use the scaled diagonals of Al and BlÂ
−1
l B

>
l +C l, respectively. The magnitude of the scaling

can be obtained with the help of the power iteration on the latter matrices. For convergence
and further properties of this smoother we refer to [145

.

].

Vanka smoothing. The second alternative requires us to first decompose the computational
domain into small overlapping patches. To this end, we employ the non-zero structure of Bl

and construct a patch Ωl,j for each row of Bl: For the j-th row, Ωl,j consists of the index j as
well as all indices i such that there exists an entry bji 6= 0

Ωl,j := {i : bji 6= 0} × {j}. (6.28)

The transfer between the global domain Ωl and the subdomains Ωl,j is accomplished by (op-
tionally scaled) injection operators V l,j (flux) and W l,j (displacement),

V l,j = diag(vl,i)i=1,...,nl
J j (6.29)

W l,j = J j , (6.30)

where J j is a binary matrix with ones at the fine points and zero else. First, the residuals are
restricted to the subdomain,

vl,j = V >l,j
(
v −Alul −B>l pl

)
, (6.31a)

ql,j = W>
l,j

(
q −Blul +C>l pl

)
. (6.31b)

Then, on each subdomain, a small saddle point problem of the form[
Âl,j B>l,j
Bl,j Bl,jÂ

−1
l,j B

>
l,j − Ŝl,j

] [
ul,j
pl,j

]
=

[
vl,j
ql,j

]
, (6.32)
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is solved and finally the updates are prolongated to the global domain,

ul = ul + V l,jul,j , (6.33a)

pl = pl +W l,jpl,j . (6.33b)

The small matrices Âl,j , Bl,j and Ŝl,j (the latter is just a scalar) are defined by

Âl,j = V >l,jÂlV̂ l,j , (6.34a)

Bl,j = W>
l,jBlV̂ l,j , (6.34b)

Ŝl,j = β−1(C l,j +Bl,jÂ
−1
l,j B

>
l,j). (6.34c)

where C l,j denotes the j-th diagonal entry of C l and V̂ l,j = diag(v−1
l,i )i=1,...,nl

J j , i.e. its scaling

factors are inverse to those of (6.29

.

). Again, Âl is a scaled version of the diagonal of Al such
that Âl −Al is positive definite. Likewise, β > 0 is chosen such that

diag(Ŝl,j)−
(
C l +BlÂ

−1
l B

>
l

)
(6.35)

is symmetric positive definite.
The iteration can be performed either additively (i.e., the residuals are computed once, then

all subdomain solves are performed independently) or multiplicatively (after each subdomain
solve the residuals are updated). In the latter case, in most cases it is beneficial to perform a
symmetric sweep, i.e., after a complete sweep the subdomain solves are performed in reverse
order. If we choose

vl,i =
1√

|{j : bji 6= 0}|
, (6.36)

the additive smoother coincides with the Uzawa method described in the previous section [145

.

].
On the other hand, in the multiplicative case the simple choice of

vl,i = 1 (6.37)

may result in a faster convergence.

6.2.3 AMG setup for saddle point systems

The starting point for our saddle point AMG method (SPAMG) is the block diagonal matrix

B =

[
Al 0

0 BlÂ
−1
l B

>
l +C l

]
. (6.38)

This operator is symmetric positive definite Let us assume that we can apply the classical AMG

setup algorithm as described in Section 6.2.1

.

to each of the blocks Al and BlÂ
−1
l B

>
l +C l. We

hence construct coarse grids and interpolation operators P l,u and P l,p for each of these blocks
and obtain a block interpolation operator

Pl :=

[
P l,u 0

0 P l,p

]
. (6.39)
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Now, one idea would be to construct the coarse grid operator in the usual Galerkin way,
Al+1 := P>l AlPl. Unlike in the symmetric positive definite case, however, we cannot be sure
that Al+1 is invertible, thus we might attain an unusable multigrid hierarchy. To prevent this,
we modify the interpolation operator Pl by the multiplication of a stabilization term. To this
end, we re-write the velocity prolongation block such that the rows corresponding to the fine
grid points come first,

P l,u =

[
P l,u,CF

ICl

]
, (6.40)

where ICl
is the identity injecting the values from level l+ 1 to level l and P l,u,CF contains the

interpolation weights from coarse to fine. Analogously, we write

B>l =

[
B>l,F
B>l,C

]
, Â

>
l =

[
Â
>
l,F 0

0 Â
>
l,C

]
. (6.41)

The stabilized interpolation operator is computed by

P̃l :=

IFl
0 −Â−1

l,FB
>
l,F

0 ICl
0

0 0 I


P l,u,CF 0

ICl
0

0 P l,p

 . (6.42)

Now, we use the modified Galerkin product

Al+1 := P̃>l AlP̃l (6.43)

to compute the coarse grid operator. For this matrix, we can show an inf-sup-condition if (a)
the fine grid matrix Al fulfills such a condition and (b) the interpolation operator P l,u for
the velocity satisfies certain approximation properties, which most usual AMG interpolation
schemes do [120

.

, Lemma 4.6]. The invertibility of the coarse grid matrix (6.43

.

) is ensured by
its lower right block

C l+1 = P>l,p
[
C l + 2Bl,F Â

−1
l,FB

>
l,F +Bl,F Â

−1
l,FAl,F Â

−1
l,FB

>
l,F

]
P l,p, (6.44)

This can be understood as a partial Schur complement that ensures the stability of the coarse
grid matrix.

6.3 Numerical Results

In this section, we evaluate the effectiveness of SPAMG compared to the diagonal and Schur
preconditioners for uniform and adaptive meshes. We choose the examples based on manu-
factured solutions, that is, we prescribe a target pressure field and compute the velocity field,
boundary conditions, and right hand sides in order to satisfy (6.7

.

). Examples 1 to 3 are typical
benchmarks with smooth coefficients. In example 4 we challenge the numerical solver and the
preconditioner by using a conductivity tensor with strong coefficient variation. We employ
three different flavors of smoothers inside SPAMG: The inexact Uzawa scheme (6.27

.

), and two
variants of the multiplicative Vanka smoother, either using the scaling (6.36

.

) (“Vanka Scale”),
or non-scaled injection (6.37

.

) (“Vanka One”).
We delegate the parallel mesh management to the octree-based AMR software library p4est

[44

.

, 94

.

]. This library provides a collection of algorithms that implement scalable parallel AMR
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• •

••

← →

↓

↑

(a) x components

• •

••

← →

↓

↑

(b) y components

Figure 6.3: RT 0 degrees of freedom identification for VTK visualization of a two dimensional
vector field. Bold curved arrows indicate value copy.

operations. In particular, we employ p4est to create and modify a hexahedral triangulation of
the unit square/cube and to introduce a numbering of the degrees of freedom suitable for a RT 0

discretization. Regarding solvers and preconditioners, we use the GMRES [140

.

] implementation
provided by the software library hypre [155

.

]. In order to approximate the product Nr for a
given residual r, we employ one SPAMG V-cycle. We use the parallel multigrid implementation
BoomerAMG from hypre as the frame to which our saddle-point AMG is added.

We visualize the pressure and velocity fields arising from the RT 0 discretization using the
VTK file format. The pressure scalar field, being approximated by discontinuous piecewise
constants is trivially written as cell data. For the velocity vector field, we require to save it as
point data. The VTK routines require information for each element corner, while there are 2d

corners per element, we have 2 velocity degrees of freedom per coordinate direction for d = 2, 3.
We have addressed this mismatch by replicating the computed velocity value to the corners of
the face containing it. In Figure 6.3

.

we show the result for a two dimensional vector field.

6.3.1 Homogeneous Dirichlet conditions

We solve (6.7

.

) with an identity conductivity tensor and homogeneous Dirichlet boundary con-
ditions. We compute the right hand side based on the manufactured solution

p(x, y) = (x2 − x3)(y2 − y3) (6.45)

in 2d and

p(x, y, z) = (x2 − x3)(y2 − y3)(z − z2) (6.46)

in 3d, respectively. With this example we verify the correctness of our implementation of
the RT 0 discretization. The discretization error converges the predicted rates as confirmed in
Figure 6.4

.

and Figure 6.5

.

. The iteration counts displayed in Table 6.1

.

and Table 6.2

.

confirm the
(well known) robustness of the Schur preconditioner for uniform meshes. For adaptive meshes,
the Schur complement preconditioner incurs high iteration counts, particularly for the 3d case.
The three variants of the SPAMG preconditioner retain mesh independent iteration counts for
both uniform and adaptive meshes in this example.
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Figure 6.4: Error plot for the numerical solution of a mixed Poisson system corresponding to
the example specified in Section 6.3.1

.

(homogeneous Dirichlet boundary conditions)
in two (a) and three dimensions (b) for uniform meshes and identity conductivity
tensor. The level ` is related to the mesh size h via h = 2−`. We confirm the
expected convergence rates predicted by (6.16

.

).
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Figure 6.5: Error plot for the numerical solution of a mixed Poisson system corresponding to the
example specified in Section 6.3.1

.

in two (a) and three dimensions (b) for adaptive
meshes and identity conductivity tensor. We choose to refine an element of side
length h by two additional levels whenever its centroid lies within the circle/sphere
of radius 2dh2 around the point (1

2 ,
1
2) for d = 2 and (1

2 ,
1
2 ,

1
2) for d = 3. Because of

the smoothness of the solution and the equations coefficients we do not expect that
local refinement translates into an improvement of the approximation with respect
to a uniform case mesh. (Figure 6.4

.

).
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Level # Iterations

NoPC Diag Schur SPAMG

Uzawa Vanka one Vanka scale

4 459 299 22 9 8 8

5 >1000 773 22 10 8 8

6 - >1000 24 12 9 10

7 - - 24 14 10 10

8 - - 24 14 10 11

9 - - 24 14 10 11

(a)

Level # Iterations

NoPC Diag Schur SPAMG

Uzawa Vanka one Vanka scale

4− 7 >1000 >1000 87 10 7 7

5− 8 - - 87 10 7 8

6− 9 - - 99 13 10 10

7− 10 - - 98 13 10 10

8− 11 - - 112 15 11 11

9− 12 - - 149 15 11 11

(b)

Table 6.1: Number of iterations required by the GMRES solver for a two dimensional mixed
Poisson system (Section 6.3.1

.

) on a uniform (a) and adaptive mesh (b). The relative
tolerance of the linear solve is fixed to 10−6. We display iteration counts employing
no preconditioning in column two, a diagonal lumped mass matrix in column three,
a Schur complement preconditioner in column four and three different smoothers in
the SPAMG preconditioner in columns five to seven from each table. The level ` is
related to the mesh size h via h = 2−`.

Level # Iterations

Schur SPAMG

Uzawa Vanka one Vanka scale

3 20 9 7 7

4 22 11 8 8

5 22 13 9 9

6 24 14 9 10

7 24 15 11 12

(a)

Level # Iterations

Schur SPAMG

Uzawa Vanka one Vanka scale

3− 6 238 11 8 8

4− 7 322 11 8 8

5− 8 338 13 9 9

6− 9 383 14 10 10

7− 10 390 17 12 12

(b)

Table 6.2: Number of iterations required by the GMRES solver for a three dimensional mixed
Poisson (Section 6.3.1

.

) discretized on a uniform (a) and adaptive mesh (b). We use
the same setup as in Table 6.1

.

.
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Figure 6.6: Error plot for the numerical solution of a mixed Poisson system specified in Sec-
tion 6.3.2

.

(inhomogeneous Dirichlet/Neumann boundary conditions) in two (a) and
three (b) dimensions for uniform meshes.

6.3.2 An example with Neumann conditions

We solve (6.7

.

) with an identity tensor. We impose homogeneous mixed homogeneous Dirichlet
/ Neumann boundary conditions and compute the right hand side based on the exact solution

p(x, y) = xy(1− y)(1− x)2 (6.47)

in 2d and

p(x, y, z) = xy(1− y)(1− x)2(1− z) (6.48)

in 3d, respectively. The Neumann boundary is set at y = 0 and y = 1 in both cases. As
in the previous section, the theoretical converge rates agree with the bounds (6.16

.

). Due to
the smoothness solution and the equation constant coefficient, no additional benefit is expected
from local adaptation of the mesh; see Figure 6.6

.

and Figure 6.7

.

.

6.3.3 Non trivial conductivity tensor

In this example we approximate the solution of (6.7

.

) for the case of a non-diagonal conductivity
tensor K. We impose non-zero Dirichlet boundary conditions. The Manufactured solution is

p(x, y) = ex sin(y) (6.49)

in 2d and

p(x, y, z) = ex sin(y)(1 + z2) (6.50)

in 3d, respectively. The conductivity tensor is given by

K(x, y) =

(
ex/2+y/4 sin(2πx)

sin(2πx) ex/4+y/2

)
(6.51)
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Figure 6.7: Error plot for the numerical solution of a mixed Poisson system specified in Sec-
tion 6.3.2

.

in two (a) and three (b) dimensions for adaptive meshes. The refinement
criteria is chosen as in Figure 6.5

.

.

Level # Iterations

NoPC Diag Schur SPAMG

Uzawa Vanka one Vanka scale

4 >1000 >1000 85 18 12 11

5 - - 102 20 13 13

6 - - 113 23 14 14

7 - - 130 24 16 15

8 - - 142 25 16 17

9 - - 169 25 17 18

(a)

Level # Iterations

NoPC Diag Schur SPAMG

Uzawa Vanka one Vanka scale

4− 7 >1000 >1000 250 18 11 10

5− 8 - - 255 19 13 12

6− 9 - - 415 22 14 13

7− 10 - - 338 24 15 15

8− 11 - - 394 24 16 16

9− 12 - - 539 24 16 17

(b)

Table 6.3: Number of iterations required by the GMRES solver for a two dimensional mixed
Poisson system (Section 6.3.3

.

) discretized in a uniform (a) and adaptive mesh (b).
We use the same setup as in Table 6.1

.

.

in 2d and

K(x, y, z) =

ex/2+y/4 sin(2πx) 0

sin(2πx) ex/4+y/2 0
0 0 ez

 (6.52)

in 3d.

The example presented in this section aims to test the effectiveness of the SPAMG precondi-
tioner for a full conductivity tensor example. The three variants of the SPAMG preconditioner
offer mesh independent iteration counts for uniform and adaptive meshes. The Schur comple-
ment again produces growing iteration counts, in particular for the three dimensional case and
even for uniform meshes. See Table 6.3

.

and Table 6.4

.

.
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Figure 6.8: Error plot for the numerical solution of a mixed Poisson system specified in Sec-
tion 6.3.3

.

in two (a) and three (b) dimensions for uniform meshes.
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Figure 6.9: Error plot for the numerical solution of a mixed Poisson system specified in Sec-
tion 6.3.3

.

in two (a) and three (b) dimensions for adaptive meshes. The refinement
criteria is chosen as in Figure 6.5

.

.
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Level # Iterations

Schur SPAMG

Uzawa Vanka one Vanka scale

3 65 19 13 13

4 84 21 14 14

5 103 23 15 16

6 113 24 17 17

7 128 26 18 19

(a)

Level # Iterations

Schur SPAMG

Uzawa Vanka one Vanka scale

3− 6 330 22 14 14

4− 7 456 23 15 14

5− 8 486 24 16 15

6− 9 471 25 17 18

7− 10 493 27 18 20

(b)

Table 6.4: Number of iterations required by the GMRES solver for a three dimensional mixed
Poisson system (Section 6.3.3

.

) discretized on a uniform (a) and adaptive mesh (b).
We use the same setup as in Table 6.1

.

.

6.3.4 High conductivity contrast

We solve (6.7

.

) with a conductivity tensor that exhibits strong coefficient variation. We enforce
inhomogeneous mixed Dirichlet boundary conditions and compute the right hand side terms
based on the manufactured solution

p(x, y) = sin(x)ey (6.53)

in 2d and
p(x, y, z) = sin(x)ey(1 + z2) (6.54)

in 3d. The conductivity Tensor K is given by a identity matrix scaled pointwise by a continu-
ously differentiable function m(x;x0, a, b, c) constructed to fulfil the following properties:

• m(x;x0, a, b, c) = 1 if ‖x− x0‖ ≥ b,

• m(x;x0, a, b, c) = 1− c if ‖x− x0‖ ≤ a and

• m(x;x0, a, b, c) ∈ (1− c, 1) if a < ‖x− x0‖ < b.

Such a function can be constructed by defining

h(t) :=

{
e−1/t if t > 0,

0 else
(6.55)

and

m(x;x0, a, b, c) := 1− c h(b− ‖x− x0‖)
h(b− ‖x− x0‖) + h(‖x− x0‖ − a)

. (6.56)

Hence, the first three arguments define the location and radius of the support of m. The
parameter c allows us to tune the coefficients to vary across the domain. From an application
point of view, if c is close to one the function m models a medium in which almost no flow
is allowed within a circle (sphere) centered at x0 with radius a. Given this information, it is
clear that the velocity field is likely to have a strong gradient within the ring-shaped region
a < ‖x − x0‖ < b. Therefore, we choose to refine a given element on the mesh whenever it
overlaps this region.
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x0 − b x0 − a x0 x0 + a x0 + b

1− c

1

Figure 6.10: Sample plot of the one dimensional version of m(x;x0, a, b, c).
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Figure 6.11: Error plot for the numerical solution of a mixed Poisson system corresponding to
the example defined in Section 6.3.4

.

(high conductivity contrast) in two dimensions
for uniform (a) and adaptive (b) meshes.

This example targets effectiveness of the SPAMG preconditioner in the presence of high
conductivity contrast and thus closer to what is encounter in practice. The three variants of
the SPAMG preconditioner offer mesh independent iteration counts for uniform and adaptive
meshes. The Schur complement produces growing iteration counts, in particular when we
activate the local refinement to resolve the strong gradient in the region a < ‖x − x0‖ < b.
This behavior causes that the GMRES solver fails to reduce the error within the prescribed
maximum number of iterations. See Table 6.5

.

and Table 6.6

.

.

6.4 Discussion

The numerical examples exposed in this document show that the SPAMG preconditioner yields
iteration counts which are nearly independent of the mesh size. This behavior holds for uniform
and locally refined meshes. This allows us to profit from the effectiveness of AMR: Less variables
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(a) (b)

Figure 6.12: Velocity magnitude for the numerical solution corresponding to the example of
Section 6.3.4

.

in two dimensions for a uniform level 5 mesh (a) and an adaptive
mesh from level 4 to 10 (b).

Figure 6.13: y-velocity magnitude extrusion illustrating a two dimensional RT 0 vector field for
a level 4 to 10 adaptively refined mesh. By construction, the y-velocity component
is continuous in the y-direction and discontinuous in the x-direction.
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Figure 6.14: Error plot for the numerical solution corresponding to the example defined in
Section 6.3.4

.

(high contrast, c = 0.999) in three dimensions for uniform (a) and
adaptive (b) meshes.

Figure 6.15: Threshold plot from the computed velocity of a three dimensional version of the
example defined in Section 6.3.4

.

. An adaptive mesh from level 4 to 8 was used in
the calculation.
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Figure 6.16: For example defined in Section 6.3.4

.

, we compare the number of degrees of freedom
with uniform and adaptive meshes against the L2 and H1 errors of the velocity for
a two (a) and tree dimensional problem (b).

Level # Iterations

NoPC Diag Schur SPAMG

Uzawa Vanka one Vanka scale

4 >1000 >1000 36 12 8 9

5 - - 56 14 9 8

6 - - 55 14 9 10

7 - - 47 15 10 11

8 - - 43 15 10 11

9 - - 41 15 11 11

(a)

Level # Iterations

NoPC Diag Schur SPAMG

Uzawa Vanka one Vanka scale

4− 7 >1000 >1000 379 12 8 8

5− 8 - - 547 13 8 8

6− 9 - - 930 13 9 9

7− 10 - - >1000 15 10 10

8− 11 - - - 15 10 10

9− 12 - - - 16 10 11

(b)

Table 6.5: Number of iterations required by the GMRES solver for a two dimensional mixed
Poisson system defined by the example in Section 6.3.4

.

discretized on a uniform (a)
and adaptive mesh (b).

Level # Iterations

Schur SPAMG

Uzawa Vanka one Vanka scale

3 40 13 9 9

4 45 13 8 9

5 56 15 9 9

6 53 15 10 10

7 47 15 11 11

(a)

Level # Iterations

Schur SPAMG

Uzawa Vanka one Vanka scale

3− 6 637 15 11 11

4− 7 855 14 10 11

5− 8 >1000 15 11 11

6− 9 - 16 12 12

7− 10 - 20 14 15

(b)

Table 6.6: Number of iterations required by the GMRES solver for a three dimensional mixed
Poisson system defined by the example in Section 6.3.4

.

discretized in a uniform (a)
and adaptive mesh (b). We use the same setup as in Table 6.1

.

.
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compared to the uniform mesh case lead to a better approximation of the expected solution
(e.g., Figure 6.16

.

). Regarding the Schur complement strategy, our results show that in the
presence of adaptive meshes denigrates the effectiveness of the preconditioner. Hence, SPAMG
can be a valuable alternative as preconditioner for saddle point systems arising from a MFE
discretization of a second order elliptic problems. In future work we would like to investigate the
robustness of SPAMG with respect to more strongly heterogeneous and anisotropic coefficients
and compare with newly developed strategies such as the auxiliary space multigrid presented
in [105

.

]. Additionally, we would like to extend our implementation to test the behaviour of the
SPAMG with higher order Raviart-Thomas elements and investigate additional choices of the
matrices C and D in the BFBt preconditioner (6.21

.

). For example, motivated by the work in
[137

.

], we are interested in the choice C = D =
√
A.
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7 Conclusion and Outlook

In this thesis we are concerned with the development of highly accurate simulation tools for
variably saturated flow through porous media. Our starting point is the parallel subsurface
flow simulator ParFlow.

We begin by studying ParFlow’s management of the computational mesh in detail, focusing
on how its parallelization enables but also limits parallel scalability. We extend the parallel
code ParFlow such that it can scale to the size of today’s supercomputer installations. We
achieve this by reorganizing the parallel mesh subsystem to rely on the fast partitioning al-
gorithms provided by the software p4est. This requires tweaks to the logic of ParFlow’s
index arithmetic and a reinterpretation of some data structures. As a main result, there is no
longer any need to store the entire mesh connectivity information on each processor. This has
significantly reduced ParFlow’s memory footprint, effectively removing the memory bottleneck
that had previously prevented ParFlow from running at extreme scales. It has also reduced the
setup time from as much as 40 minutes at 32k cores previously to several seconds at 458k with
our modified version.

The above developments improve the scalability of ParFlow such that it has become a true
petascale application, with successful demonstrations running on the entire 28-rack IBM Blue-
Gene/Q system at the Jülich Supercomputing Centre (JSC). As a result, the modified version
of ParFlow has been accepted into the High-Q-Club at the JSC [97

.

]. Due to our changes to the
code being local and transparent, the modified version of ParFlow is backwards compatible
with the upstream version. This work will be merged into the public version of ParFlow in the
near future, making the extended speed and scalability available to the greater public.

We note that we did not address the algorithmic efficiency of the time stepper or the pre-
conditioner and the I/O subsystem. The mathematics of the solver remain unchanged. Future
developments in this regard will automatically inherit and benefit from the improvements in
scalability presented in this thesis. Regarding the I/O implemented in ParFlow, we inves-
tigate its scalability and conclude that it produces excessive overhead and limits the size of
simulations that can be analyzed visually [37

.

]. Future work in this subsystem will be crucial to
fully benefit from our developments and the upcoming supercomputers.

Another contribution of this thesis is the algorithmic approach to prepare the usage of locally
refined meshes in ParFlow. AMR allows meshes where elements of different size neighbor
each other. In this case, we notice that ParFlow incurs erroneous results when it attempts
to communicate data between inter-element boundaries. We propose and discuss two solutions
to this issue operating at two different levels: The first manipulates the indices of the degrees
of freedom. While the second operates directly on the degrees of freedom. In our opinion,
both options can be implemented without introducing disruptive changes to the code. Here,
it is important to point out that this effort constitutes a first step in establishing the data
representation of the code and numerical mathematics context. For example, we make no
statement of which approach is better suited for implementation and did not address how do
we want to interpolate fluxes at the boundary of two subgrids with different mesh spacing. The
latter question has to be postponed until the decision on the discretization method has been
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7 Conclusion and Outlook

made. Results on the equivalence between specific MFE and certain FD schemes [6

.

] motivate
us to consider a MFE discretization based on low order Raviart-Thomas elements [135

.

] for
ParFlow. We will investigate this in future work.

Lastly, we present the SPAMG preconditioner designed by our co-author B. Metsch in [120

.

].
With numerical examples we demonstrate that it displays iteration counts that are nearly
independent of the mesh size for a mixed formulation of a diffusion equation. The value of this
result is that it holds for uniform and locally refined meshes and various classes of coefficients
(such as the conductivity tensor). In future work we would like to test the preconditioner
with more general coefficients than the ones presented in this thesis and to compare it with
the most recent strategies like the auxiliary space multigrid from [105

.

]. Another important
item for future research is to evaluate the parallel scalabilty of the SPAMG preconditioner.
Finally, relating the work presented in the last chapter of this thesis with our research with
ParFlow, a full AMR implementation will require preconditioners with the robustness that
SPAMG displays with respect to the mesh refinement and equation coefficients. The actual
preconditioners in ParFlow are not well suited for the SFC approach to mesh adaptation,
hence an implementation of a preconditioner like SPAMG will be a key ingredient in a fully
operational version of ParFlow with AMR.
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