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Abstract

The vast amount of data shared on the Web requires effective and efficient techniques to retrieve
and create machine usable knowledge out of it. The creation of integrated knowledge from the
Web, especially knowledge about the same entity spread over different web data sources, is a
challenging task. Several data interoperability problems such as schema, structure, or domain
conflicts need to be solved during the integration process. Semantic Web Technologies have
evolved as a novel approach to tackle the problem of knowledge integration out of heterogeneous
data. However, knowledge retrieval and integration from web data sources is an expensive
process, mainly due to the Extraction-Transformation-Load approach that predominates the
process. In addition, there are increasingly many scenarios, where a full physical integration of
the data is either prohibitive (e.g. due to data being hidden behind APIs) or not allowed (e.g.
for data privacy concerns). Thus, a more cost-effective and federated integration approach is
needed, a method that supports organizations to create valuable insights out of the heterogeneous
data spread on web sources. In this thesis, we tackle the problem of knowledge retrieval an
integration from heterogeneous web sources and propose a holistic semantic knowledge retrieval
and integration approach that creates knowledge graphs on-demand from a federation of web
sources. We focus on the representation of web sources data, which belongs to the same entity,
as pieces of knowledge to then synthesize them as knowledge graph solving interoperability
conflicts at integration time. First, we propose MINTE, a novel semantic integration approach
that solves interoperability conflicts present in heterogeneous web sources. MINTE defines the
concept of RDF molecules to represent web sources data as pieces of knowledge. Then, MINTE
relies on a semantic similarity function to determine RDF molecules belonging to the same entity.
Finally, MINTE employs fusion policies for the synthesis of RDF molecules into a knowledge
graph. Second, we define a similarity framework for RDF molecules to identify semantically
equivalent entities. The framework includes state-of-the-art semantic similarity metrics, such as
GADES, but also a semantic similarity metric based on embeddings named MateTee developed
in the scope of this thesis. Ultimately, based on MINTE and our similarity framework, we design
a federated semantic retrieval engine named FuhSen. FuhSen is able to effectively integrate data
from heterogeneous web data sources and create an integrated knowledge graphs on-demand.
FuhSen is equipped with a faceted browsing user interface oriented to facilitate the exploration
of on-demand built knowledge graphs. We conducted several empirical evaluations to assess the
effectiveness and efficiency of our holistic approach. More importantly, three domain applications,
i.e., Law Enforcement, Job Market Analysis, and Manufacturing, have been developed and
managed by our approach. Both the empirical evaluations and concrete applications provide
evidence that the methodology and techniques proposed in this thesis help to effectively integrate
the pieces of knowledge about entities that are spread over heterogeneous web data sources.
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CHAPTER 1

Introduction

The intensified use of digital devices, e.g., laptops, tablets and mobile phones, results in an
increasing digitization of people’s activities. These digital activities generate vast amounts
of information about different entities from all sorts of knowledge domains, e.g., education,
healthcare, e-commerce, or marketing. The Web has become an ideal place to share and access
such information. However, this information is spread over several segments of the Web, such
as the Social Web, where we can find profiles of people and organizations, or the Deep Web,
where we can find product offers on e-commerce platforms. This segmentation of the Web makes
knowledge retrieval and integration a challenging task.

The more the amount of information grows on the Web, the more important is it to develop
efficient and effective techniques to search, integrate, and explore this distributed information.
Both, academia and industry, research innovative ways to create valuable knowledge out of the
information on the Web. Large companies, such as Google, spend a vast amount of resources
structuring disparate data from the Web into actionable knowledge. As a result, proprietary
knowledge graphs that describe real-world entities and their interrelations are created, e.g., the
Google Knowledge Graph1, the Airbnb Knowledge Graph2, and the Industrial Knowledge Graph3

developed by Siemens. However, small and medium-sized organizations, e.g., law enforcement
agencies, startups or research institutes, cannot invest comparable resources to create and
maintain these knowledge graphs. This work is devoted to easing a knowledge retrieval and
integration approach for distributed information spaces on the Web. In the following section,
we illustrate the main problem and challenges of this thesis with a motivational example.

1.1 Motivation

Recent studies show that the dominant search task on the Web is the quest for knowledge about
entities [2], i.e., about 70% of the web search queries contain one or more entities [3]. This
statistic shows that people need to retrieve knowledge about entities from web sources [1]. We
see the necessity for searching and integrating knowledge about entities from heterogeneous web
sources not only for people but for organizations as well. Consider as a motivational example a
case of a journalist who wants to know about the political career of a politically exposed person4

1 https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
2 https://medium.com/airbnb-engineering/scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95
3 https://www.sigs-datacom.de/ots/2018/ki/1-anwendungsszenarien-fuer-wissensnetze-bei-siemens.html
4 https://en.wikipedia.org/wiki/Politically_exposed_person

1
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Social Web Deep Web Dark Web

Web of Data

Figure 1.1: Motivation: The knowledge about an entity, e.g., a politically exposed person, is spread
over different web sources in heterogeneous web segments (Layer 1). There is the need for knowledge
representation of these pieces of information (Layer 2), to finally integrate them into a consolidated
knowledge graph to get insights about the entity (Layer 3).

and a possible relationship with an offshore company. Figure 1.1 shows how the knowledge about
the entities of interest is spread in different segments of the Web (Layer 1 - Web Sources). The
typical process for a journalist is to use a Web search engine and start collecting the required
bits of knowledge through individual keyword searches (Layer 2 - Knowledge Molecules), in order
to finally manually produce integrated and consolidated knowledge about a politician. However,
traditional search engines limit us in most cases, e.g., to search for personal profiles on the Web.
Traditional search engines fail to search for connections between people and organization mainly
because they are limited to only one segment of the Web (the Web of Documents) and do not
combine and integrate knowledge from different sources.

Figure 1.1 motivates the need to integrate pieces of knowledge about an entity, e.g., a politician,
from heterogeneous web sources. The information about a politician might be spread across
social networks, such as Twitter and Facebook, but as well in private catalogs of the Deep
Web, such as the OCCRP5 web source—a journalist association that collects documents related
to politically exposed persons. A similar knowledge retrieval and integration scenario can be
found in various domains, such as education where the integration of open educational material
is needed. Another example is market analysis where a unified view of product offers from
different marketplaces is required, e.g., for price comparison in online e-commerce platforms, or
exploration of illegal online markets for law enforcement.

Information Retrieval (IR) is a long established research field to search in unstructured data,
e.g., HTML websites, and semi-structured data, i.e., XML documents. Several IR solutions,
such as Apache Solr6 and Elastic Search7 are now driving large-scale information retrieval
applications. Likewise, the Semantic Web community has proposed several approaches and
platforms, e.g., [4, 5] to provide a unified search across unstructured and semi-structured data.
However, for many scenarios and applications, heterogeneous information represented in different
5 https://www.occrp.org/en
6 http://lucene.apache.org/solr/
7 https://www.elastic.co/
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1.2 Problem Specification and Challenges

modalities (structured, semi-structured, or unstructured) and spread across distributed web
sources that have to be made searchable and explorable for end users in an integrated way.
In terms of web sources, the main goal of this thesis is to retrieve and integrate knowledge

from: the Social Web, comprising user-generated content and profiles, e.g., Facebook, Google+,
or Twitter social networks; the Deep Web comprising Web APIs and data hidden in databases e.g.
behind e-commerce platforms, such as eBay and Amazon; the Web of Data, with open knowledge
bases comprising billions of machine-comprehensible facts as background knowledge; finally,
the Dark Web, hosting web sources only accessible through specific software, configuration,
and authorization mechanisms. The problem of consolidating knowledge about entities from
heterogeneous data sources is hard to solve. Many challenges need to be addressed to produce
an integrated knowledge asset, e.g., about a politically exposed person. In the following section,
we discuss the main problem and challenges motivating this thesis.

1.2 Problem Specification and Challenges
The decentralized and autonomous nature of the Web allows for multiple representations of the
same entity, e.g., a politically exposed person. At the conceptual level, we face a knowledge
retrieval and integration problem, i.e., “search and integrate pieces of knowledge about the
same entity spread on web sources from different segments of the Web”. To achieve such
knowledge integration several challenges need to be overcome. Figure 1.2 illustrates the three
main cross-layer challenges motivating this thesis and preventing us from producing integrated
knowledge from heterogeneous web sources.

1.2.1 Challenge 1: Representing Pieces of Knowledge from Web Sources
The first challenge to overcome is the representation of pieces of knowledge spread over het-
erogeneous web sources. Data can be represented in different levels of structuredness, e.g.,
structured, semi-structured, and unstructured—the structuredness conflict [6], and web sources
provide information in all these three levels of structuredness. For structured data, web sources
provide Web APIs with a fixed entity model, e.g., the Twitter API to search for user accounts8.
For semi-structured data, we find web sources containing RDF datasets mainly located in the
Web of Data, e.g., the Linked-Leaks dataset9. Finally, web sources provide unstructured data
in various formats: textual, such as posts in social networks; images, for example, product
descriptions in e-commerce sites; or videos shared by users on content platforms.
The web sources are produced, kept, and managed by different organizations using diverse

schemata, e.g., Twitter uses the term User, while Facebook uses People to describe personal
information—the schematic conflict [6]. This problem is exacerbated by the use of different
representations for the same data, for example, different scales or units, various values of
precision, different criteria for identifiers, and various encoding methods. Last but not least,
each web source may be equipped with specific accessibility, search facility, providing different
security mechanisms. For example, Twitter uses application authentication for access to the
information, while Facebook requires a user token. Thus, to produce integrated knowledge about
entities from heterogeneous web sources, we need a unified knowledge representation that is
able to deal with the structuredness, schematic, and accessibility conflicts.
8 https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/

get-users-search
9 https://data.ontotext.com
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Social Web Deep Web Dark Web

Web of Data

Social Web Deep Web Dark Web

Web of Data

Challenge 3: Enabling Knowledge Retrieval and Exploration

Providing a technique for on-demand knowledge retrieval 
and exploration.

Challenge 2: Solving Semantic Interoperability Conflicts

Identify the pieces of knowledge of the same entity 
considering domain, granularity and completeness conflicts.

Challenge 1: Representing Pieces of Knowledge

The lack of a unified representation produces schematic 
and structuredness conflicts.

Challenge 1: Representing Pieces of Knowledge

The lack of a unified representation produces schematic 
and structuredness conflicts.

Figure 1.2: Challenges: To produce integrated knowledge from distributed web sources about entities,
we need to solve three main challenges i.e. (CH1) Represent pieces of knowledge spread over the web,
(CH2) Resolve interoperability conflicts at integration time, and (CH3) Facilitate knowledge retrieval
and exploration on-demand.

1.2.2 Challenge 2: Solving Semantic Interoperability Conflicts

Once the data has been transformed into a homogenous model, the main challenge is to integrate
the entities that, albeit described differently, correspond to the same entity. In consequence,
semantic interoperability conflicts present on data coming from different web sources need to
be solved at integration time. We identify three main semantic interoperability conflicts that
need to be solved. The domain conflict [6] occurs when various interpretations of the same
domain are represented. Different interpretations include: Homonyms, the same name is used
to represent concepts with a different meaning; Synonyms, distinct names are used to model the
same concept; Acronyms, different abbreviations for the same concept; and Semantic constraint,
different integrity constraints are used to model the characteristics of a concept. The granularity
problem, web sources can contain measurements observed at different time-frequency, various
criteria of aggregation, and model data at various levels of detail. For example, the Governor of
California’s current location in Twitter may say Monterey, while his Google+ account indicates
just California, meaning that conflicts can occur even because one web source is more precise than
another. Finally, web sources usually contain complementary information—the completeness
conflict [6]. For instance, Twitter and OCCRP10 contain complementary information about
Arnold Schwarzenegger. The integration of such complementary information is required to
obtain properly consolidated knowledge about Arnold Schwarzenegger. Thus, we need a semantic
integration approach that solves these interoperability conflicts.

10 https://www.occrp.org/en
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1.3 Research Questions

1.2.3 Challenge 3: Enabling effective Knowledge Retrieval and Exploration

There exist numerous paradigms to knowledge retrieval and exploration from web sources.
However, most current approaches follow a costly Extraction-Transformation-Load (ETL)
pipeline. An ETL approach requires access to the entire web dataset to materialize an index
which serves as a central repository to provide search and exploration functionality. ETL is
an expensive process that not all organizations can afford, and having access to the entire
dataset is not possible in many application scenarios [1], e.g., web sources in the Deep Web or
personal data. Therefore, the challenge here is to provide a technique for knowledge retrieval
and exploration on-demand. A technique oriented on average users (users without expertise
in data integration) looking for knowledge on the Web. Additionally, two aspects need to be
considered while working with web sources: 1) Web sources are rarely static in their life time,
their information changes over time, e.g., the address of a person. The schemata describing
the information evolve as well, new relations, new concepts are added or deleted on time. A
user may just want to see the latest status of the information or explore the evolution (history)
of the information. 2) An integrated knowledge graph does not provide any value if the user
cannot find relevant insights by exploring the entities. Users immerse into entities of interest,
meandering from topic to topic, exploring for insights. Therefore, a knowledge retrieval approach
is needed, an approach that allows users to search entities from a federation of web sources,
providing effective techniques to explore the results.

As the problem of knowledge retrieval and integration is much larger and poses many issues
and obstacles in different scenarios, we consider the following challenges and problems out of the
scope of this thesis: a formal data quality assessment approach is not applied to the integrated
knowledge; neither complex logic rules nor advanced reasoning on web sources is tackled by
this thesis; the source selection problem is not addressed in this work; finally, structured query
transformation is not studied in detail, since we assume all web sources to provide a keyword
query mechanism. Nevertheless, the findings presented in this thesis will also serve as a basis
for a future work addressing those challenges.

1.3 Research Questions

Based on the main problem and associated challenges described in the previous section, we
formulate four research questions in the scope of this thesis:

RQ1: How can semantics encoded in RDF graphs be exploited during the process of
integrating data collected from heterogeneous web sources?

With the objective of answering this question, we investigate state-of-the-art approaches for
data integration using semantic technologies. We analyze how semantic interoperability conflicts
can be solved by the usage of both: semantic similarity metrics, e.g., GADES [7]; and also
fusion policies, i.e., combining equivalent entities to create a unified knowledge representation
without duplicates. Particularly, we analyze and evaluate the RDF molecule concept [8] in the
context of data integration. In the context, of this research question, we assume that the pieces
of information are adhering to a unified representation.
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RQ2: How can semantic similarity metrics facilitate the process of integrating data
collected from heterogeneous web sources?

To address this question, we evaluate state-of-the-art semantic similarity approaches that
can be used as a building block for knowledge integration of web sources. We evaluate and
compare the accuracy of the integration process using semantic similarity versus non-semantic
similarity metrics. Finally, we study the use of a novel similarity metric coming from the Machine
Learning world, i.e., a vector representation of the pieces of knowledge—known as embeddings [9].

RQ3: How can knowledge graphs be populated on-demand with data collected from
heterogeneous web sources?

Based on the observation that most of the web sources usually provide a Web API, we evaluate
an approach to exploit these Web APIs for knowledge integration. Our hypothesis is that these
Web APIs can be used to populate knowledge graphs on-demand. We emphasize the scalability
analysis of the approach. To complete the retrieval and exploration cycle, we investigate the
interaction design patterns for on-demand knowledge exploration. We investigate how the
semantics encoded in the RDF graphs provides a more meaningful exploration approach. In
particular, we explore the Faceted Browsing approach and investigate its applicability for the
scenario of on-demand knowledge exploration.

RQ4: How does semantic data integration impact the adaptability of knowledge retrieval
systems?

To address this question, we select various domain-specific applications and apply the tech-
niques and approaches developed in this thesis. We empirically evaluate to what extend the
techniques can be tuned to solve domain-specific knowledge integration problems. Our hypothesis
is that the usage of semantic technologies for knowledge integration and retrieval can provide a
more adaptive and tailored solution for each domain-specific application.

1.4 Thesis Overview
In this section we present an overview of our main contributions, the research areas investigated
by this thesis, the references to scientific publications covering this work, and an overview of the
thesis structure.

1.4.1 Contributions
The contributions of this thesis are cross disciplinary involving the Data Integration, Information
Retrieval and User Interaction fields. Figure 1.3 shows the four main contributions of this thesis.

1. RDF Molecule-Based Integration Techniques for Heterogeneous Data. To solve interoperab-
ility conflicts among web sources at integration time we devise MINTE, a novel semantic
integration technique. MINTE utilizes semantics encoded in ontologies and defines a
two-fold approach for both identifying and fusing semantically equivalent entities—what
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we call semantic data integration. MINTE defines RDF molecules as the basic unit of
the data integration process. We demonstrate two main properties of MINTE i.e., the
high adaptability of the approach and the low complexity of the MINTE framework.
MINTE defines a set of parameters that can be tuned according to the interoperability
conflicts, this allows us to see MINTE as a set of techniques to synthesize knowledge
graphs. Empirical evaluations demonstrate the effectiveness of MINTE for the integration
of heterogeneous web sources, the experiments use generic and domain-specific datasets.
The MINTE approach contributes to answering research question RQ1.

2. A Semantic Similarity Framework for Knowledge Integration. A similarity metric is a core
building block of the MINTE integration approach. Thus, we present a framework that
contains a set of similarity metrics that work on RDF molecules for knowledge integration.
After evaluating state-of-the-art metrics from the Semantic Web community, we select
and adapt GADES [7] a graph-based semantic similarity measure. Moreover, we propose
a novel similarity metric for RDF molecules based on embeddings—an embedding is a
mapping from RDF molecules to vectors of real numbers, each vector characterize each
RDF molecule according to a specific criterion, e.g., its metadata. As a result, we present
MateTee, a semantic similarity measure that combines the gradient descent optimization
method with semantics encoded in ontologies. MateTee precisely computes values of
similarity between RDF molecules, with the advantage that background domain knowledge
is not required. We empirically study the accuracy of the similarity framework on the data
integration task. The observed results show the benefits of semantic similarity metrics in
terms of accuracy with respect to non-semantic methods, these results allow us to answer
research question RQ2.

3. A Federated Semantic Search Engine for Web Sources. Based on our the RDF molecule
integration approach that utilizes semantic similarity metrics to integrate pieces of in-
formation, we propose FuhSen, a federated semantic search engine. FuhSen is able to
create a knowledge graph on-demand from heterogeneous web sources by using their
Web APIs. An empirical evaluation of the quality of the FuhSen search engine indicates
that FuhSen’s approach accurately integrates RDF molecules collected from web sources.
Moreover, FuhSen provides a user interface UI adapted for an RDF molecule faceted
browsing experience. An evaluation of the usability of FuhSen UI suggest that FuhSen is
advantageous compared to purely keyword-based search. The FuhSen approach contributes
to answering research question RQ3.

4. An Production-Ready Pipeline to Synthesize Knowledge Graphs from Web Sources During
the development of this thesis, we helped to solve three real-world domain-specific know-
ledge retrieval and integration scenarios. First, law enforcement agencies needed to collect
knowledge about suspects and illegal products (complying to data privacy regulation) from
social networks, darknet sites, or on specific web sources in the Deep Web. In the second
application, we created a consolidated view of the data scientist job market (at the Europe
Union level) by integrating job ads from different job portals. Finally, the third application
allows the on-demand completion of knowledge a manufacturing company has about the
providers in the supply chain. This knowledge completion enables the company to provide
a better experience to their employees by providing additional facts about their providers.
Therefore, we implement a production-ready pipeline that includes the MINTE integration
approach, the Semantic Similarity Framework, and the FuhSen federated engine. The
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Applications that synthesized knowledge graph from web sources

Social Web Deep Web Dark Web

Web of Data

Law Enforcement Job Market Analysis Manufacturing

A Federated Semantic Search Engine for Web Sources

Contrib. 3

Contrib. 4

RDF Molecule-Based Integration 
Techniques to Synthesizing 

Knowledge Graphs

Contrib. 1

A Semantic Similarity 
Framework for RDF 

Molecules

Contrib. 2

Figure 1.3: Contributions: Four are the main contributions of this thesis including: (1) a novel semantic
integration technique; (2) a set of semantic similarity metrics for knowledge integration; (3) a federated
search engine to build and explore knowledge graphs on-demand; and (4) the application of the thesis
results in three different domain-specific applications.

use of Semantic Technologies allows us to quickly adapt the pipeline to the challenges of
each domain-specific application, thus allowing us to answer research question RQ4. The
three applications are either under pre-production evaluation or in production showing
the maturity of the work presented in this thesis.

1.4.2 List of Publications

The work on this thesis has led to multiple scientific publications. Appendix A contains the
complete list of publications. In particular, the thesis is based on the following scientific
publications (explanations of the authors contributions to these are added for joint-publications
with other PhD candidates):

• Conference Papers:
1. Diego Collarana, Mikhail Galkin, Christoph Lange, Simon Scerri, Sören Auer,

Maria-Esther Vidal. Synthesizing knowledge graphs from web sources with MINTE+.
In Proceedings of the 17th International Semantic Web Conference (ISWC’18), 359-
375;

2. Diego Collarana, Mikhail Galkin, Ignacio Traverso-Ribón, Christoph Lange, Maria-
Esther Vidal, Sören Auer. Semantic Data Integration for Knowledge Graph Con-
struction at Query Time. In Proceedings of the 11th IEEE International Conference
on Semantic Computing (ICSC’17), 109-116;
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3. Diego Collarana, Mikhail Galkin, Ignacio Traverso-Ribón, Christoph Lange, Maria-
Esther Vidal, Sören Auer. MINTE: semantically integrating RDF graphs. In Proceed-
ings of the 7th International Conference on Web Intelligence, Mining and Semantics
(WIMS’17), 22:1-22:11; This is a joint work with Mikhail Galkin, another PhD
student at the University of Bonn. In this paper, my contributions include preparing
a motivating example, problem and approach definition, architecture of the approach,
formalization of fusion policies, preparation of datasets for experiments.

4. Mikhail Galkin, Diego Collarana, Ignacio Traverso-Ribón, Christoph Lange, Maria-
Esther Vidal, Sören Auer. SJoin: A Semantic Join Operator to Integrate Heterogen-
eous RDF Graphs. In Proceedings of the 28th International Conference of Database
and Expert Systems Applications (DEXA’17), 206-221; This is a joint work with
Mikhail Galkin, another PhD student at the University of Bonn. In this paper, I
contributed to the definition and implementation of the semantic join operators,
preparation of datasets for experiments, evaluation, and analysis of obtained results.

5. Camilo Morales, Diego Collarana, Maria-Esther Vidal, Sören Auer. MateTee: A
Semantic Similarity Metric Based on Translation Embeddings for Knowledge Graphs.
In Proceedings of the 17th International Conference of Web Engineering (ICWE’17),
246-263; Best Paper Award. This is a joint work with Camilo Morales, a Master
student at the University of Bonn. I mentored the development of the whole work.
In particular, for the article, I contributed to the motivation, the definition, and
implementation of the similarity metric, preparation of datasets for experiments,
evaluation, and analysis of obtained results.

6. Diego Collarana, Mikhail Galkin, Christoph Lange, Irlán Grangel-González, Maria-
Esther Vidal, Sören Auer. FuhSen: A Federated Hybrid Search Engine for Building a
Knowledge Graph On-Demand (Short Paper). In Proceedings of the On the Move to
Meaningful Internet Systems OTM 2016 Conferences - Confederated International
Conferences CoopIS, CTC, and ODBASE (ODBASE’16), 752-761.

• Workshops, Demos, and Doctoral Consortium:

7. Diego Collarana, Mikhail Galkin, Maria-Esther Vidal, Mayesha Tasnim. Syn-
thesizing Data Scientist Job Offers with MINTE+ Proceedings of the ISWC 2018
Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th
International Semantic Web Conference (ISWC), 2018;

8. Luis Fuenmayor, Diego Collarana, Steffen Lohmann, Sören Auer. FaRBIE: A
Faceted Reactive Browsing Interface for Multi RDF Knowledge Graph Exploration. In
Proceedings of the Proceedings of the Third International Workshop on Visualization
and Interaction for Ontologies and Linked Data (VOILA’17), 111-122; This is a joint
work with Luis Fuenmayor, a Master student at the University of Aachen. I mentored
the development of the whole work. In particular, for the article, I contributed to the
motivating example, the definition and implementation of the approach, and analysis
of obtained results.

9. Diego Collarana. A Semantic Integration Approach for Building Knowledge Graphs
On-Demand. In Proceedings of the 17th International Conference of Web Engineering
(ICWE’17), 575-583;
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10. Diego Collarana, Christoph Lange, Sören Auer. FuhSen: A Platform for Federated,
RDF-based Hybrid Search. In Proceedings of the 25th International Conference on
World Wide Web (WWW’16), 171-174.

1.5 Thesis Structure
The remainder of this thesis comprises seven chapters organized as follows. Chapter 2 introduces
concepts and preliminaries required for the reader. We begin the chapter by describing the
segments of the Web and information retrieval techniques to search within them. Next, we
introduce the concept of RDF Knowledge Graphs as the foundation for data integration used in
this thesis. Finally, we discuss the principles of data integration using semantic technologies. In
Chapter 3, we present state-of-the-art related to this thesis. Firstly, we give a complete view of
data integration approaches using semantic web technologies. Secondly, we discuss techniques
and frameworks to measure the similarity among entities. Finally, we show the most recent
approaches for information retrieval and exploration on the Web. Chapter 4 presents a novel
semantic integration approach developed in the scope of this thesis. We show how the RDF
molecule concept serves as data integration unit, and we describe the use of semantics at each
integration step. In Chapter 5, we present a similarity metrics framework including two semantic
similarity metrics for knowledge integration, i.e., an adapted version of GADES to work on RDF
molecules, and MateTee a semantic similarity metric based on embeddings. We show the results
of a detailed performance evaluation of different similarity metrics on the knowledge integration
task. Chapter 6 delves into knowledge retrieval and exploration, and we present a novel search
engine named FuhSen, which is able to search and integrate knowledge from web sources. FuhSen
is defined on top of our integration approach (Chapter 4) and similarity metrics framework
(Chapter 5). Additionally, FuhSen defines the properties of a semantic federated search engine
capable of building knowledge graphs on-demand from heterogeneous web sources. In Chapter 7,
we describe how the approaches defined in this thesis are applied in three domain-specific
applications. The applications correspond to both research and industrial projects including law
enforcement, job market analysis, and manufacturing scenarios. The implementation is open
source and can be used by different research communities and organizations. Chapter 8 finalizes
the thesis with a summary of the main results and contributions to the problem of knowledge
retrieval and integration from heterogeneous web sources. To conclude the thesis, we define the
possible future directions for subsequent research work.
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CHAPTER 2

Foundations and Preliminaries

In this chapter, we introduce the concepts and theoretical foundations we will use in later
chapters of this thesis. To properly tackle the problem of knowledge retrieval and integration
from web sources, the following foundations are required. In Section 2.1, we discuss the main
concepts and approaches for Information Retrieval (IR) on the Web. Additionally, we make a
clear distinction between a federated versus index-based search engines. Finally, we point out
that the keyword search approach is still one of the main approaches for searching on the Web.
Section 3.1 presents the foundations of RDF Knowledge Graphs. We introduce RDF Schema
as a formal knowledge representation model. Then, one of the core concepts of this thesis is
introduced, i.e., RDF molecules. We explain the formal query language for RDF knowledge
graphs, i.e., SPARQL. Finally, the most well-known approach for RDF graph exploration is
described, i.e., Faceted Browsing. In Section 2.3, we present the principles of data integration
using Semantic Technlogies. Firstly, we present the keyword search as a novel on-demand
integration approach. Secondly, we introduce the use of RDF as the lingua franca for data
integration. Thirdly, the problem of entity matching is introduced as well as the usage of
similarity metrics to solve this problem. Lastly, we discuss the semantic interoperability conflicts
we need to tackle during the integration process.

2.1 Searching on the Web

2.1.1 Segments of the Web

The accessibility, the growing, and content purpose of the data on the Web has lead to the
division of the Web in the following segments: the Web of Documents, containing HTML
documents hosted in websites; the Web of Data, comprising billions of machine-comprehensible
facts; the Social Web, comprising user-generated content and profiles; the Deep Web, containing
websites hidden behind HTTP forms; finally, the Dark Web, containing websites accessible only
via the usage of a specialized software, configuration, and authorization. Figure 2.1 shows an
image representation of the segmentation of the Web according to its visibility.

The Web of Documents

The Web of Documents is the portion of the Web that is readily available to the general public
and searchable via the standard web search engines such as Google [10]. It can be seen as an
information space composed mainly by HTML documents. The HTML documents and other
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Figure 2.1: Segments of the Web: According to its visibility and content, the Web can be conceptually
segmented in: The visible web containing information that web crawlers can reach, the visible web
comprises the Web of Documents and the Web of Data. The invisible web contains information that
traditional web crawlers cannot reach, it comprises the Social Web, the Deep Web, and the Dark Web.

web resources are identified by Uniform Resource Locators (URLs), interlinked by hypertext
links, and can be accessed via the Internet. The HTML documents can be accessible openly via a
Web Browser such as FireFox. By crawling these HTML Documents huge indexes are created by
companies such as Google, or Bing. According to the World Wide Web Size1 organization, the
Google index size of the Web of Documents reaches 14.5 billion pages. This index is accessible
through API, for example, someone can use Google Custom Search API2 to search in the
Google index. In the recent years, the HTML documents have been annotated with semantic
information (RDFa3) in order to provide more semantic information its content. The semantics
annotations in the websites are then used by crawlers to improve the index creation and the
interpretation of the content of the website.

The Web of Data

C. Bizer et al. [11] explain that “Traditionally, data published on the Web of Documents have
been made available as raw dumps in formats such as CSV or XML or marked up as HTML
tables, sacrificing much of its structure and semantics”. This gives birth to the Web of Data, a
web containing structured semantic data that machines can understand. In the Web of Data, we
can find datasets comprising billions of machine-comprehensible facts. These datasets provide
important background knowledge, e.g., spatial context information for aggregating information.
The most well-known datasets in this category are: DBpedia4 [12], and GeoNames5 datasets.

1 http://www.worldwidewebsize.com/
2 https://developers.google.com/custom-search/json-api/v1/overview
3 https://www.w3.org/TR/rdfa-primer/
4 https://wiki.dbpedia.org/
5 http://www.geonames.org
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We refer to the Linked Open Data Cloud6 (LOD) to have an estimation of the size of the Web
of Data. In the latest report, the LOD contains about 1,163 datasets comprising billions of facts.
Similarly to the Web of Documents, the accessibility of the Web of Data is open. Datasets on
the Web of Data commonly provide SPARQL endpoints as API for querying and exploration.

The Social Web

According to Wikipedia7, the Social Web is “is a set of social relations that link people through
the Web”. The Social Web consists of user-generated content, plus connections among people
and their objects of interest. Breslin et al. [13] argue that the connections created by people on
online social websites are established through social objects of common interest, e.g., the content
they create together, co-annotate, or for which they use similar annotations. Therefore, what
clearly distinguishes the Social Web is the ability of users to interact with each other via the
content published on the social networks. Facebook, Google+ and Twitter are the most relevant
social networks. The number of users at 2017 is estimated at 2,46 billion. The user needs
to register as a member of a social network for producing and browsing content, it means an
account and a password is required. These social networks often provide a REST API interface
to access and query their data.

The Deep Web

The Deep Web, also known as the hidden web [14], is the segment of the Web which content is
not indexed by standard web search engines. The content of the Deep Web is hidden behind
HTML forms and its purpose varies according to its application. Common applications in the
Deep Web are webmail, online banking, on-demand video, newspapers, and many more services
that users must pay to get access (and which are protected by a paywall). The Deep Web size
is estimated to be 500 times bigger than the Web of Documents [15]. Web sources hosted in
the Deep Web usually provide a Web API interface for accessing their data. Several projects
such DARPA Memex [16] have created an index of provides an API to access it. E-commerce
platforms as well provide APIs to query the content, e.g., eBay8.

The Dark Web

The Dark Web is an overlay network of the Web, accessible only through specific software,
configuration, authorization, and often using non-standard communication protocols and ports.
Two typical darknet types are friend-to-friend networks (usually used for file sharing with a
peer-to-peer connection), and private networks such as Tor. The Dark Web is a subset of the
Deep Web, and it is known for hosting illegal activities. The most remarkable example is the
Dark Market Silk Road9, best known as a platform for selling illegal drugs and weapons. In
order to access the content, a user needs specific software such as Tor Browser and Tor Proxy10.
Several projects have started to create indexes of the Darknet websites, for example, GRAMS11

and Onion.city and the information can be accessed through their APIs.
6 http://lod-cloud.net/
7 https://en.wikipedia.org/wiki/Social_media
8 https://go.developer.ebay.com
9 https://en.wikipedia.org/wiki/Silk_Road_(marketplace)

10 https://www.torproject.org/projects/torbrowser.html.en
11 https://de.wikipedia.org/wiki/Grams_(Suchmaschine)
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Segment Content Size Accesibility APIs

1. Web of Documents HTML Docs 14 billion sites Open Google, Bing, etc.
2. Web of Data RDF 1,163 datasets Open SPARQL Endpoints
3. Social Web User Content 2,46 billions User Tocken Facebook, Twitter, etc.
4. Deep Web HTML Docs 500 times 1 Forms DARPA, etc.
5. Dark Web HTML Docs Deep Web subset Special Software GRAMS, Onion.city, etc.

Table 2.1: Web segments. Characterization of the web segments relevant for the scope of this thesis.

Table 2.1 shows a characterization of the Web’s segments according to their content, size,
accessibility, and Web APIs they offer to query their data. We observe in Table 2.1 the variety
of the data on the Web. A single approach to create a unique index from these segments of the
Web is costly and maybe not even feasible. This observation suggests that a federated approach
to retrieve the knowledge from web sources is more convenient. A fact discovered during this
thesis is that all of the segments provide Web APIs for searching and integration purposes.

2.1.2 Information Retrieval

The purpose of Information Retrieval (IR) systems is to help people find the right (most useful)
information, in the right (most convenient) format, at the right time (when they need it). The
main activity of an IR system is obtaining relevant sources to an information need from a
collection of information sources. IR is a mature science field of searching for information in
documents, searching for documents themselves, but also for searching metadata that describes
the documents, as well as for images and sounds. Searches can be based on full-text or other
content-based indexing. An IR process begins when a user enters a query into the IR system.
Queries are formal statements of information needs, for example, keywords in web search engines.
In information retrieval, a query does not uniquely identify a single object in the collection.
Instead, several objects may match the query, with different degrees of relevancy. To evaluate
the performance of an IR system, i.e., how well a system meets the information needs of its
users, the most common evaluation metrics includes precision and recall.

Definition 2.1: Information Retrieval Evaluation Metrics

a) Precision is the fraction of the documents retrieved RD that are relevant to the users
information need R.

Precision = |R ∩RD|
|RD|

b) Recall is the fraction of the documents that are relevant to the query R that are
successfully retrieved.

Recall = |R ∩RD|
|R|

c) F-measure is the weighted harmonic mean of Precision and Recall, the traditional
F-measure or balanced F-score is.

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall
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2.1.3 Federated Search Engines
Two are the main approaches in the IR field: Index-based and Federated-based engines. Shokouhi
el al. [17] define federated search as a “technique for searching multiple text collections simul-
taneously, also know as federated information retrieval”. A user makes a single query that is
distributed to other search engines participating in the federation—federation members. Then,
the federated search engine aggregates the results to create a consolidated view of the results for
presentation to the user. At difference of index-based search engines, which create huge indexes
of documents by crawling the Web, federated-based search engines produce results on-demand.
Shokouhi el al. [17] show that index-based search engines “cannot easily index uncrawlable hidden
web collections while federated search systems can search the contents of hidden web collections
without crawling”. Three are the main challenges for federated-based search engines: the source
selection problem, for each query the most suitable federation members need to be selected; the
source representation problem, we need to specify the type of results each federation member
can provide; and the merging problem, the results returned from each federation member need
to be merged before the final presentation to the user.

2.1.4 Keyword Search
Keyword search is still one of the main user interfaces approaches to retrieve information from
web sources [18]. Tran et al. [19] reported that “keyword queries enjoy widespread usage as they
represent an intuitive way of specifying information needs”. The keyword search approaches fit
well the scenarios where the users search for knowledge about entities spread on web sources [1].
In traditional information retrieval, a keyword search retrieves a ranked list of documents with
matches to all of the keywords. A keyword query consists of a set of terms, each term gets
matched against document’s content, and the highest-scoring matches are returned.

Doan et al. [20] showed that keyword search approaches are also used to search on structured
data, such as relational databases; and semi-structured data, such as XML where the goal is to
find different nodes that match the keywords. To answer keyword queries over structured and
semi-structured data, the general approach is representing the data as a graph relating data and
metadata items. Nodes in the graph represent attribute values—and in some cases metadata
items such as attribute labels or relations. Directed edges represent conceptual links between
the nodes, e.g., foreign keys in relational databases. Then, the keyword query gets matched
against the node in the graph, and the highest-scoring nodes are returned as answers.
Although data sets on the Web of Data are equipped with its own query language, i.e.,

SPARQL, keyword search is still supported [18]. All the main dataset stores, supporting the
Web of Data, such as Virtuoso or Jena Fuseki support keyword search. 12 The main reason is
that to write SPARQL queries a user requires some expertise in graph patterns, which limits
the accessibility to a broad scope of users.

2.2 RDF Knowledge Graphs
The term Knowledge Graph was coined by Google in 201213 as a novel knowledge management
paradigm. The concept received a significant attention in the research community, especially
in the Semantic Web community. Thus, several public and private knowledge graphs (e.g.,
12 https://jena.apache.org/documentation/query/text-query.html
13 https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
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DBpedia [21], Wikidata [22], Yahoo [23], Microsoft14, Facebook15) have been developed to
support the provision of smart services. For example, knowledge graphs enable web search
engines to search for entities, e.g., people or places stored in knowledge graphs and instantly
get information that’s relevant to a user’s query. The prime source of information to build a
knowledge graph is the Web, containing data from different domains, e.g., government, scientific
communities, social media, etc. Although there is not an agreement upon a formal definition of
knowledge graphs, in this thesis we use the definition presented by Paulheim in 2017:

Definition 2.2: Knowledge Graph [24]

1. mainly describes real world entities and their interrelations, organized in a graph;

2. defines possible classes and relations of entities in a schema;

3. allows for potentially interrelating arbitrary entities with each other;

4. covers various topical domains.

A data model is required to build a knowledge graph under the definition presented by
Paulheim. The Resource Description Framework16 (RDF) is a data model to describe resources
on the Web of Data. It is part of specification family driven by the Semantic Web research
community and the W3C17. Figure 2.2 shows the semantic web technology stack where we can
observe technologies to query, exchange, represent and format data on the Web. RDF is the
W3C recommended standard for exchanging data on the Web, and it is the perfect data model
for building knowledge graphs. RDF as a data model is capable of using a variety of syntax,
notations, and data serialization formats. A large amount of data has been converted to RDF,
often as multiple datasets physically distributed over different locations.
The basic structure of RDF is the triple: subject, predicate, object. Based on this basic

structure big knowledge graphs have been built, e.g., Wikidata [22] and DBpedia [21]. These
knowledge graphs have become powerful assets for enhancing search, and they are being
intensively used in both academia and industry. Although it is difficult to measure the value of a
knowledge graph, it serves as a basis for empowering enterprise information applications such as
Semantic Search Engine, Entity Recognition, Question Answering Systems or Data Integration.
RDF knowledge graphs help to automatically solve data-driven oriented tasks, providing more
useful and meaningful services from heterogeneous data [26] such as web sources.

Definition 2.3: RDF Triple [27]

Let I, B, L be disjoint infinite sets of URIs, blank nodes, and literals, respectively. A tuple
(s, p, o) ∈ (I ∪B) × I × (I ∪B ∪ L) is denominated an RDF triple, where s is called the
subject, p the predicate, and o the object.

14 https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
15 https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-entities-graph/10151490531588920
16 https://www.w3.org/RDF/
17 https://www.w3.org/standards/semanticweb/
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Figure 2.2: The Semantic Web Layer Cake 2015 – Bridging between Big and Smart Data. Source of
picture [25]

2.2.1 RDF Schema

In order to add more semantic information to the data, the RDF data model relies on schemas—
RDFS and OWL. These schemas enrich the resources such that computer algorithms can
make sense out of them. RDF Schema18 (RDFS) is an extension to RDF and it provides a
data-modeling vocabulary RDF data. RDFS provides meaning to things described as RDF
entities, e.g., what is an athlete, what is a politician, what is the relation between them.
RDFS allows to model not have only nodes and edges (Values), but meaning as well (Schema).
RDFS allows defining constraints, the type, and characteristics of an entity of interest. RDFS
allows to model hierarchies of classes and properties, which provides meanings for reasoning.
It is the simples modeling languages in the Semantic Web Technology Stack. The RDFS
most important concepts are: rdfs:Class and rdfs:subClassOf, enabling hierarchical classes
structures; rdfs:subPropertyOf, enabling hierarchical properties structures; rdfs:domain and
rdfs:range, allow to identifying the type of the subject and the type of the object value of
a triple; finally, rdfs:comment and rdfs:label, allows to add human-readable annotations.
Figure 2.3 illustrates an example RDF knowledge graph of a politically exposed person using
RDF and RDFS schemas. The graph contains all RDF classes (e.g., ex:Person) as well as
instances (e.g. ex:Arnold-Schwarzenegger), literals (e.g., a location California).

Definition 2.4: Triple Pattern [28]

Let U,B,L be disjoint infinite sets of URIs, blank nodes, and literals, respectively. Let V
be a set of variables such that V ∩ (U ∪B∪L) = θ. A triple pattern tp is member of the set
(U∪V )×(U∪V )×(U∪L∪V ). Let tp1, tp2, . . . , tpn be triple patterns. A Basic Graph Pattern
(BGP) B is the conjunction of triple patterns, i.e., B = tp1ANDtp2AND . . . ANDtpn

18 https://www.w3.org/TR/rdf-schema/
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Figure 2.3:RDF Knowledge Graph: Excerpt of an RDF knowledge graph describing the RDF molecule
of a politically exposed person.

2.2.2 RDF Molecule
To manage the knowledge of a specific real-world entity in a knowledge graph, a finer grain
unit is the concept of RDF molecule. While an RDF knowledge graph defines the knowledge of
a whole domain, the RDF molecule is bounded to a single entity. Figure 2.3 shows the RDF
molecule of a politically exposed person. The RDF molecule of links all the knowledge regarding
to the politician such as the birth place, the birth data, or the height. Thus, all the statements
have as suject ex:Arnold-Schwarzenegger. Formally, an RDF molecule is defined as follows:

Definition 2.5: RDF molecule [8]

Given an RDF graph G, an RDF subject-molecule M ⊆ G is a set of triples t1, t2, . . . , tn
in which subject(t1) = subject(t2) = · · · = subject(tn).

2.2.3 RDF Query Language
SPARQL19 is the W3C recommend language to query RDF datasets. SPARQL is able to retrieve
and manipulate data stored in RDF format. It is a W3C standard recognized as one of the
key technologies of the Semantic Web. The latest version is SPARQL 1.1 released in March
2013. A SPARQL query consists of triple patterns, conjunctions, disjunctions, and optional
patterns. Triple patterns are similar to RDF triples where the subject, predicate, or object may
be variables. In a query, variables act like placeholders which are bound with RDF terms to
build the solutions of the query. The expressive power of SPARQL [29] comes in the ability to
combine data properties and the schema of the data, it consists of five parts:

• Prefix Declaration: a list of URI prefixes to avoid writing complete URIs in the query.

• Dataset Clause: similarly to SQL databases, where the user specifies the schema to be
used, in the dataset clause is specified which graph is going to be queried.

• Result Clause: in this clause the type of query (SELECT, ASK, CONSTRUCT or
DESCRIBE) and the variables to return are specified.

19 https://www.w3.org/TR/rdf-sparql-query/
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• Query Clause: it contains the patterns that have to be matched in the graph. Resources
fulfilling the specified patterns will be associated with the corresponding variables in the
result clause.

• Solution Modifiers: the results of the queries can be paginated, ordered or sliced.

Listing 2.1 and 2.2 show examples of SELECT and CONSTRUCT queries on the RDF
knowledge graph that describes knowledge about a politician. The query request the name of
the people who has been governor of the city of California.

PREFIX ex: <http :// example .org /2017/03/ schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>

SELECT ?name
WHERE {

?s rdf:type ex: Person .
?s ex: formerGovernor ex: California .
?s ex:name ?name

}

Listing 2.1: Select SPARQL query example

PREFIX ex: <http :// example .org /2017/03/ schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>

CONSTRUCT
?s rdf:label ?name .
?s rdf:type ? Politician .
WHERE {
?s rdf:type ex: Person .
?s ex: formerGovernor ex: California .
?s ex:name ?name
}

Listing 2.2: Construct SPARQL query example

2.2.4 RDF Graph Exploration

RDF knowledge graphs such as DBpedia, Yago, or Freebase have become a powerful asset for
many applications, and they are being intensively used in both academia and industry [30]. One
of the main applications supported by RDF graphs is knowledge exploration since the RDF
data model is ideal for performing an explorative search. Accordingly, White et al. [31] depict it
as a scenario: “typified by uncertainty about the space being searched and the nature of the
problem that motivates the search”, where the following situations may occur. Firstly, the search
target is either fully, or partially, unknown. Secondly, the search begins with a given degree of
certainty about known facts, which evolve into unknown and unfamiliar upon exposure to new
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information. Lastly, the users distinguish valuable information portions by scanning through
different resources, where they evaluate their usefulness and eventually determine their content
and structure. Knowledge graphs such as DBpedia, Yago, or Freebase are typically oriented
towards end-users search, thus a critical challenge is to provide an appropriate user interaction
and user interface oriented to end-users. User interaction to explore RDF knowledge graphs
attracted a great deal of attention in the Semantic Web community, the goal is to develop of
simple yet powerful query interfaces for non-expert users [32–34].

Faceted Browsing

Faceted search is the de-facto approach for exploratory search in RDF repositories [35]. It has
its origins in the e-commerce applications, and it has been shown as a suitable approach for
RDF knowledge graph exploration. Faceted search is an approach for querying collections of
entities where users can narrow down the search results by applying filters—called facets [36].
A facet typically consists of a predicate (e.g., ‘gender’ or ‘occupation’ when querying entities
about people) and a set of possible string values (e.g., ‘female’ or ‘research’), and entities in the
collection are annotated with predicate-value pairs. During faceted search users iteratively select
facet values and the entities annotated according to the selection are returned as the search
result. Faceted search of RDF datasets has received significant attention and many approaches
have been developed [37–39]. Furthermore, several of those systems have been successfully
applied on big knowledge graphs exploration, e.g., exploring Freebase knowledge graph [40].

2.3 Semantic Data Integration

2.3.1 Principles of Data Integration

The main problem of this thesis can be tackled from the Data Integration perspective, i.e., we
have heterogeneous data spread over web sources. Data integration is the process of combining
data from diverse sources and providing a unified view to work with. Data integration systems
are formally defined as a triple < O,S,M >, where O is the global (or mediated) schema, S is
the heterogeneous set of source schemas, and M is a set of mappings between the source and
the global schema. A data integration system is formalized as follows:

Definition 2.6: Data Integration [41]

A data integration system IS is defined as a tuple < O,S,M >, where

• O is the global schema (e.g., RDF Schema), expressed in a language LO over an
alphabet AO. The alphabet AO consists of symbols for each element in O.

• S is the source schema, expressed in a language LS over an alphabet AS . The
alphabet AS contains sybmbols for each element of the sources.

• M is the mapping between O and S that is represented as assertions: qs → qo ;
qo → qa. Where qs and qo are two queries of the same arity, qs is a query expressed
in the source schema, qo is a query expressed in the global schema. The assertions
imply correspondence between global and source concepts.
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The data integration process implies the combination of sources with heterogeneous schemas
into a unified view, e.g., for knowledge graph construction. One of the most important contribu-
tions of the Semantic Web research community is the applicability of the Semantic Technology
Stack on the data integration problem. Then, Semantic Data Integration is the use of
semantic web technologies to solve data integration problems. By using semantic technologies,
i.e., the W3C standards RDF, RDFS, OWL, and SPARQL, heterogeneous datasets can be
integrated in a more flexible way, since the information about entities and their relationships are
held together in a meaningful way. Thus, the process of semantic data integration creates an
interrelated information space that facilitates the management of the knowledge derived from
the data, providing a 360° view of the data. There are two main approaches to integrate data:
Materialized approach, the data is moved to a central repository; and the Virtual approach; the
data remain at the source and the integration is performed at query time. Virtual approaches
are more suitable for integration scenarios where the data frequently change, and a variety of
entities exits in the data sources, which is the case of web sources.

Mediator-Wrapper Architecture

It is a well-known architecture for virtual data integration. Wrappers are the components of
a data integration system that communicates with the data sources. The task of a wrapper
involves sending queries from the higher levels of the data integration system to the sources,
converting then the replies to a format that can be manipulated by the Mediator. The Mediator
orchestrates the executing of the wrappers and merge the results into a consolidated view of the
data [42]. The complexity of the wrapper depends on the nature of the data source. For example,
a wrapper to a web API would translate a query into the appropriate HTTP request. When
the answer comes back in JSON format, the wrapper would extract the objects and translated
them to a global schema that the mediator knows. There are two main types of mediators in
the literature [43]: Local-as-View (LAV) and Global-as-View (GAV).

Local-as-View Mediator

Local-as-View (LAV) mediation [44] is a well-known and flexible approach to perform data
integration over heterogeneous and autonomous data sources. A LAV mediator relies on views
to define semantic mappings between a uniform interface defined at the mediator level, and
local schemas or views that describe the integrated data sources. A LAV mediator employes a
query rewriter to translate a mediator query into the union of queries against the local views.
LAV is suitable for environments where data frequently change, and entities of different types
are defined in a single source. The formal definition of a LAV mediator is the following:

Definition 2.7: Local-as-View [41]

In a data integration system IS =< O,S,M > based on LAV approach the mapping M
associates to each element s of the source schema S a query qo in terms of the global
schema O: s→ qo, i.e., the sources are represented as a view over the global schema.
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Keyword Search as Integration on Demand

Traditional data integration objectives are: build applications, whether Web-based or more
traditional, that provide cross-source information access; and data analysis plus exploration via
sophisticated query interfaces performed by sophisticated users [20]. However, recent attention
has been paid to enable “average users” (non-database-experts) to pose ad-hoc queries over
integrated data via a familiar interface, e.g., keyword search [45]. Keyword search is a good
approach to reduce the complexity of typical data integrated query interfaces. Intuitively, the
set of keyword terms describes a set of concepts in which the user is interested. Then, the data
integration system task is to find the related tables, objects, or tuples to these concepts.

2.3.2 RDF the Lingua Franca of Data Integration

One of the main challenges in data integration is to provide a global schema O, which is flexible
but expressive at the same time. RDF and RDFS provide a mean to create from lightweight
vocabularies to heavyweight ontologies containing logical rules for data integration. Frischmuth
et al. [46] present RDF as the “Lingua Franca for Data Integration”. RDF is simple, less invasive,
and different kinds of data models (relational, taxonomic, graphs, object-oriented, etc. . . ) can
be easily encoded and combined. RDF support a variety of serializations to interface with other
applications, RDF can be serialized as HTML with RDFa, XML with RDF-XML, JSON with
JSON-LD, and CSV. Additionally, RDF supports distributed data and schema. Finally, the
RDF representational unit, “the triple—subject, predicate, object”, facilitates mashing data
from different perspectives, i.e., facts, entity-relation, logical axioms, and objects. All these
characteristics make RDF a suitable data model for solving complex data integration scenarios,
enabling the creation of sustainable data ecosystems.

2.3.3 Entity Matching

Entity matching is the problem of finding data from different sources that refer to the same
real-world entity. Entity matching plays a critical role during the data integration process, and
it raises two major challenges: accuracy and scalability. Matching entities accurately is difficult
because data that refer to the same real-world entity is often very different, e.g., misspelled,
different format, incomplete data, etc. Scalability refers to the problem of finding similar entities
among a large number of entities, a comparison of all pairs of entities would be quadratic in
time and therefore impractical. The entity matching problem is formalized as follows:

Definition 2.8: Entity Matching [20]

Given two sets of entities X and Y , we want to find all pairs of entities (x, y), where x ∈ X
and y ∈ Y , such that x and y refer to the same real-world entity.

Similarity Metric

A similarity metric maps a pair of entities (x, y) into a number in the range [0,1], a higher
value indicates greater similarity between x and y. The terms distance and cost have also been
used to describe similarity metrics, except that smaller values indicate higher similarity. Values
close to 0 indicate that the compared objects are dissimilar while values close to the supreme
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of Is correspond to very similar objects. There exist three types of similarity metrics: the
distance-based similarity measures, the feature-based similarity measures, and the probabilistic
similarity measures [47]. In this thesis, we evaluate distance-based and feature-based similarity
metrics to solve the problem of entity matching among web sources.

Definition 2.9: Similarity Metric Sim [48]

A similarity metric on elements in X is an upper bound, exhaustive, and total function
Sim: X ×X → Is ⊂ < with | Is |> 1. Is represents a set of real numbers containing at
least two elements that allow to distinguish similar from dissimilar elements. Defining the
range of a similarity measure as Is is equivalent to defining a minimum and a maximum
value. Thus, Is is upper and lower bounded and the set has both a supremum (sup) and
an infimum (inf).

2.3.4 Data Provenance
Data provenance is a record of the origins of the data, i.e., which operations were applied, where
it moves over time, etc. Data provenance gives visibility to trace errors back to the root cause in
the data integration process. In the broadest sense, the provenance may include a huge number
of factors, e.g., who created the initial data, when was created, or what equipment was used. In
the Semantic Web community, data provenance is model commonly using vocabularies such as
the provenance ontology20 (PROV). The PROV ontology provides a set of classes, properties,
and restrictions that can be used to represent provenance information generated during the
creation and transformation of an RDF entity.

2.3.5 Semantic Interoperability Conflicts
To integrate heterogeneous sources in a unified way, Bellazi et al. [49] show the importance of
analyzing the data sources to identify interoperability conflicts. Vidal et al. [6] characterize the
interoperability conflicts into six categories. Figure 2.4 summarizes the main characteristics of
each interoperability conflict.

1. Structuredness (C1): data sources may be described at different levels of structuredness,
i.e., structured, semi-structured, and unstructured. The entities in a structured data
source are described in terms of fixed schema and attributes, e.g., the entity-relationship
model. In semi-structured data sources, a fixed schema is not required, and entities can be
represented using different attributes and properties. Examples of semi-structured data
models are the Resource Description Framework (RDF) or XML. Lastly, in unstructured
data sources the no data model is used, so the data does not follow any structured.
Typically unstructured data formats are: textual, numerical, images, or videos.

2. Schematic (C2): the following conflicts arise when data sources are modeled with different
schema. i) the same entity is represented by different attributes; ii) different structures
model the same entity, e.g., classes versus properties; iii) the same property is represented
with different data types, e.g., string versus integer; iv) different levels of specialization/-
generalization describe the same entity; v) the same entity is named differently; and vi)

20 https://www.w3.org/TR/prov-o/
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Semantic Interoperability Conflicts
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Figure 2.4: The Semantic Interoperability Conflicts existing among heterogeneous sources divided
into six main categories. Picture based on the book chapter [6]

different ontologies are used, e.g., to describe a gene function the following ontologies may
be used UMLS, SNOMED-CT, NCIT, or GO.

3. Domain (C3): various interpretations of the same domain exist on different data sources.
These interpretations include: homonyms, synonyms, acronyms, and semantic constraints—
different integrity constraints are used to model a concept.

4. Representation (C4): different representations are used to model the same entity. These
representation conflicts include: different scales and units, values of precision, incorrect
spellings, different identifiers, and various encodings.

5. Language (C5): the data and schema may be specified using different languages.

6. Granularity (C6): the data may be collected under different levels of granularity. Examples
of granularity include: samples of the same measurement observed at different time-
frequency, various criteria of aggregation, and data model at different levels of detail.
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Related Work

This chapter reviews the most relevant state-of-the-art approaches related to this thesis. Different
approaches exist in the literature regarding the problem of retrieving and integrating pieces of
knowledge about entities spread over web sources. Figure 3.1 shows the dimensions defined during
the literature review. For each dimension, we present an overview of the approaches highlighting
their limitations to solve the challenges defined in the scope of this thesis. Firstly, in Section 3.1
we discuss the use of semantic technology to solve the problem of heterogeneous data integration.
We show the shortcomings of the state-of-the-art techniques on the problem of integrating
semantically equivalent entities from heterogeneous web sources. Secondly, Section 3.2 presents
a summary of the state-of-the-art metrics to determine the similarity between two entities in an
RDF graph. We review a spectrum of methods ranging from classic metrics such as Jaccard to
more advanced machine learning metrics using multidimensional vector representation of entities,
i.e., embeddings. Finally, Section 3.3 presents the most recent approaches in the Information
Retrieval field. We show that these approaches focus only on particular segments of the Web,
i.e., search engines for the Deep Web or for the Web of Data. We close the section by showing
faceted browsing approaches to explore the results of the search engines, we particularly focus
on approaches for knowledge graphs.

Related Work

Semantic Data 
Integration

Similarity 
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Exploration on the Web

Ontology-
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Materialized 
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Virtual 
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Rule-
Based
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Specific
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Figure 3.1: Dimensions of the Related Work: We present the works related to this thesis in three
dimensions including Semantic Data Integration approaches, Similarity Metrics for Entity Matching, and
Search Engines for the Web.
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Figure 3.2: Ontology-Based Data Access (OBDA) paradigm. Source of picture [51].

3.1 Semantic Integration of Data
Semantic integration of data is the process of combining data from disparate sources to create a
consolidated and valuable view of the information through the use of Semantic Technologies (cf.
Section ). The problem of integrating heterogeneous data using semantic technologies has been
in the research focus for many years, in this section, we review the main approaches.

3.1.1 Ontology-Based Integration Approaches

Doan et al. [20] states that “some aspects of data integration can also be viewed as a knowledge
representation problem”. Ontology-based integration approaches use an ontology as a global
schema for data integration, i.e., ontologies that describes the universe of discourse. The
Ontology-Based Data Access (OBDA) paradigm defines and uses an ontology as a core element
of the data integration process [50, 51]. Calvanese et al. [51] present the three components
defined by the OBDA paradigm: the Ontology O, the Source Schema S, and the mappings M
between S and O (Figure 3.2 shows). OBDA paradigm is independant of its implementation
that can be materialized or virtual [52], although in practice in can be both [53].
OpTop, presented by Calvanese et al. [54, 55], allows querying relational databases in an

integrated manner using an ontology as the global schema. OnTop follows a virtual approach
that means the SPARQL query is transformed into local SQL queries. OnTop is open source
and supports the main relational databases providers. To express mappings between the source
schemas and the ontology OnTop uses R2RML mappings. R2RML is the W3C mapping
language recommendation to express mappings from relational databases to RDF [56]. R2RML
has captured the attention of many researchers and several editors have been proposed [57–59] to
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create such mappings. Another influential work under ODBA paradigm is Ultrawrap [60, 61].
Ultrawrap takes advantage of the algorithms and optimizations already provided by database
management systems (DBMS) to effectively execute SPARQL queries. Ultrawrap uses SQL
views to encode a logical representation of RDF graphs, SPARQL queries are then translated to
these views. Finally, these views query executions are automatically optimized by the DBMS
providing fast response to complex SPARQL queries.
Under the OBDA paradigm, we find domain-specific applications, e.g., in the Healthcare

and Clinical Data domain [62–64], where clinical trials and medical records are integrated from
heterogeneous data sources. Typically, ontologies are derived from medical standards such HL7
v3 Reference Information Model1, then a set of R2RML mappings relates the HL7 ontologies to
the underlying relational databases, finally, SPARQL queries can be executed with acceptable
performance. Another domain where OBDA has been applied successfully is in the Social
Sciences and Humanities [65, 66], where cultural heritage data need to be integrated from
heterogeneous data sources. Knoblock et al. [66] show the data integration from 14 American
Art Museums, producing more than two thousand R2RML mapping rules, consolidating more
than nine million RDF triples. As result, the integrated RDF Dataset can be easily queried
by the different museums. Semantic data integration under the ODBA paradigm is now been
studied on the Big Data scenario providing new insights to tackle the variety perspective in
the Big Data scenario [67, 68]. All these domain-specific applications applied a heavy ETL
integration approach.
Discussion: Despite the success of the ODBA paradigm, it has been mostly studied on

integrating relational databases [69]. We argue that more research needs to be done in the
scenario of heterogeneous web sources. Moreover, ETL approach is expensive, in this thesis we
aim for an on-demand integration approach. Finally, interoperability conflicts such as the entity
matching have not been completely addressed by ODBA that is a major challenge in the scope
of this thesis. ODBA defines SPARQL the query language, we argue that SPARQL is not a
suitable approach for heterogeneous web sources, which mainly provide keyword-based access
mechanism, i.e., REST APIs.

3.1.2 Materialized Integration Approaches
The materialized integration approach follows an extraction-transformation-load (ETL) pipeline
storing the integrated data in a single store such as Virtuoso2, then queries and analytics can
be performed on top of it. The final goal of a materialized integration approach is to produce
a consolidated knowledge graph to provide smart services. Approaches towards materilized
knowledge graphs include NOUS [70], DeepDive [71], and Knowledge Vault [72], which
uses (un-,semi-)structured web sources to create a knowledge graph. NOUS [70] defines an
end-to-end framework to create knowledge graphs for arbitrary application domains. NOUS
combines knowledge extracted from text with curated knowledge bases, supporting the ability
to answer queries where the answer is a combination of multiple data sources. Another
example is DeepDive [71] where a full pipeline is proposed to build a knowledge graph from
Wikipedia articles. DeepDive pipeline automatically extracts meaningful relations from the
Wikipedia articles. Although DeepDive’s approach is generic, in the paper the authors focus
on two relations: Founder/Company and Family trees. Finally, Knowledge Vault [72] is an
automatic method for constructing a web-scale probabilistic knowledge graph. Knowledge
1 http://www.hl7.org/implement/standards/rim.cfm
2 https://virtuoso.openlinksw.com/
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Figure 3.3: Linked data lifecycle for a materialized integration. Source of picture [46].

Vault combines extractions from web content with prior knowledge derived from existing
knowledge bases. Knowledge Vault employs supervised machine learning methods for merging
information from both web-crawled content and existing knowledge base facts, e.g., Freebase [73].
The traditional ETL pipeline has been adapted for the use of semantic web technologies (cf.

Section 3.1). Figure 3.3 shows the life cycle proposed by Frischmuth et al. to integrate data in
enterprises. A considerable amount of literature has been published on materialized integration
approach using semantic technologies. Knoblock et al. [74] propose KARMA, a framework
for integrating a variety of data sources including databases, spreadsheets, XML, JSON, and
Web APIs. Using Machine Learning algorithms, KARMA suggests mappings from structured
sources to ontologies, then using a user interface these mappings can be refined. KARMA has
been used in several applications such as linking art data to the Linked Open Data Cloud [75]
(LOD), and combating human trafficking by creating a knowledge graph of escort ads crawled
from web sites [76]. Schultz et al. [77] describe the Linked Data Integration Framework (LDIF).
LIDF is oriented to integrate RDF datasets from the Web and provides a set of independent
tools to support the interlinking task. LIDF’s tools include: (1) an expressive mapping language
for translating data from various vocabularies to a consistent ontology; and (2) a Linked Data
crawler component for accessing SPARQL endpoints and remote RDF dumps. LIDF tackles
the problem of identity resolution by defining linking rules using the SILK tool [78]. Based on
the defined rules, SILK identifies owl:sameAs links among entities of two datasets.
ODCleanStore [79] and UnifiedViews [80, 81] are another ETL framework examples for

integrating RDF data. ODCleanStore relies on SILK to perform instance matching and

28



3.1 Semantic Integration of Data

provides a custom data fusion modules to merge the data of the discovered matches. Based on
ODCleanStore, UnifiedViews supports a wide range of processing tasks including instance
linking and data fusion—the LD-FusionTool [82] is responsible for data fusion. MatWare [83]
is a tool to construct domain-specific semantic warehouses. MatWare focuses on connectivity
assessment, provenance, and freshness of the data and it has been used to create an operational
semantic warehouse in the marine domain. Finally, approaches and tools have been proposed to
perform data fusion, i.e., merge data of two entities at integration time. The most remarkable
examples are Sieve tool [84] and internal modules of the ODCleanStore framework.
Discussion: Although the aforementioned approaches effectively integrate heterogenous data,

they require significant manual effort to configure their integration pipelines. In contrast, the
purpose of this thesis is to define a universal integration pipeline that requires only a small
number of high-level parameters while leaving room for tweaks and adjustments. Moreover,
previous work has focused mostly on the problem of heterogeneity of data sources, while in the
scope of this thesis, we focus on the problem of integrating semantically equivalent entities. In
comparison, the novelty of the approaches proposed in this thesis resides in a non-materialized
knowledge graph creation and profound use of Web APIs that provide access to data in web
sources. Non-materialization supports efficient on-demand knowledge delivery. Further, we
investigate a more suitable data integration unit that fits better the local view of the web sources
data, i.e., we do not have access to the whole dataset but pieces of entity data. Thus, we research
the suitability of RDF molecules to enclose the information delivered by web sources [85], we
expect a more meaningful and flexible integration than ETL integration approaches.

3.1.3 Virtual Integration Approaches

Other efforts to integrate data from heterogeneous sources with semantic technologies are the
virtualized integration approaches. In the virtualized approach the data remains in their local
source but an intermediated layer provides an integrated access to the data sources. OpTop [54,
55] and Ultrawrap [60, 61] follow in this category, they virtualized an integrated access to
heterogeneous databases, translating SPARQL queries into local SQL queries. Much of the
literature on virtual integration approaches are concerned with Federated SPARQL query
engines. ANAPSID, presented by Acosta et al. [86], is an adaptive federated query processing
engine for SPARQL endpoints. ANAPSID is able to adapt the query execution schedules
to the data availability and run-time conditions of the SPARQL endpoints. The integration
step is performed by ANAPSID boolean operators: adaptive group-join agjoin, and adaptive
dependent-join adjoin. FedX [87] is another example of federated SPARQL engine that enables
efficient SPARQL query on heterogeneous SPARQL endpoints. FedX proposes join and grouping
techniques to minimize the number of remote requests. First, the source selection is performed
using a cache containing metadata obtained using ASK SPARQL queries from the endpoints.
Then, FedX utilizes the bound join technique that uses one subquery to evaluate the input
sequences producing the final result.

The federated query engine SPLENDID [88] optimizes SPARQL query plans using statistical
data obtained from voiD descriptions [89]. SPLENDID provides hash joins and bind joins
to optimize the performance in the query execution strategies. In SPLENDID, the hash join
arguments are processed in parallel from the data sources, while in the bind join a variable must
be bound for the succeeding join operation. Saleem et al. in [90] propose TopFed, a federated
query engine that allows a virtual integration of multiple SPARQL endpoints. TopFed was
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Name Approach Mapping-based Schema Matching Entity Matching Data Fusion

OnTop [54, 55] Virtual YES NO NO NO
UltraWrap [60, 61] Virtual YES NO NO NO
KARMA [74] Materialized YES YES NO NO
LIDF [77] Materialized NO YES NO NO
ODCleanstore [79] Materialized NO NO YES YES
MatWare [83] Materialized NO NO NO NO
ANAPSID [86] Virtual NO NO NO YES
FedX [87] Virtual NO NO NO YES
SPLENDID [88] Virtual NO NO NO YES
TopFed [90] Virtual NO NO NO YES

Table 3.1: Semantic Integration of Data. Comparison of the different approaches. This is an modified
version of the comparison presented by Vidal et al. [6].

evaluated with the Cancer Genome Atlas3 (TCGA) catalog for genetic mutations responsible
for cancer using genome analysis techniques. TopFed implements a source selection algorithm
that on average selects less than half sources compared to FedX (mantaining 100 percent of
recall). The authors report that, thanks to the source selection algorithm, on average TopFed’s
query processing time is one third in comparison to state-of-the-art approaches.
Discussion: To properly apply a virtual integration using Federated SPARQL engines

datasets need to be completely transformed into RDF and SPARQL endpoints need to be
provided. In contrast to the Federated SPARQL approaches, in this thesis we work with Web
APIs that provides a local view of the data in form of JSON objects. Moreover, we need to solve
the problem of joining pieces of data from the same entity by determining relatedness, and not
simply applying join operators. Thus, even if two pieces of data differ syntactically, i.e., they
have non-matching URIs, they will be joined if they are identified as semantically equivalent.

3.2 Similarity Metrics
Entity matching is the problem of determining structured data items that describe the same
real-world entity. A similarity metric tackles the problem of entity matching by comparing
entities and producing a similarity value. Over the years, many research has been conducted
and several approaches have been presented to measure the similarity among entities. In the
context of this thesis, we review similarity metrics for RDF entities. In this section, we describe
the related similarity metrics divided into three categories, i.e., rule-based, semantic-based and
learning-based approaches.

3.2.1 Rule-Based Similarity Metrics
We begin by covering similarity metrics that employ handcrafted matching rules. Isele et al.
propose SILK [78] a tool to specify matching rules that will be used to determine the similarity
among entities producing owl:sameAs links. SILK also supports supervised learning, i.e., based
on a dataset analysis, matching rules are automatically suggested. One of the main characteristics
of SILK is that it offers several string similarity metrics such as Jaro distance [91] and its
extension Jaro-Winkler [92]. Additionally, SILK matching rules can be executed on-demand
through REST API requests. Ngonga et al. present LIMES [93] a framework to discover links
among entities on the Web of Data. LIMES presents two novel algorithms, i.e., computation of
3 https://cancergenome.nih.gov/
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exemplars and matching-based on exemplars. These algorithms employ pessimistic estimations
of distances [94] to reduce the number of comparisons necessary to complete a matching task.
LIMES allows different approximation techniques for estimating the similarities between RDF
instances. A configuration file is provided to define the properties and restrictions to measure
the similarity. Similarly to SILK, LIMES returns owl:sameAs links and provide a confidence
score of the matching algorithm.
Discussion: The codification of matching rules requires a deep knowledge on the domain—

universe of discourse. Therefore, rule-based similarity metrics are expert dependent, i.e., experts
on the field usually define the matching rules. Moreover, these approaches are hard to maintain,
prone to error, and they are not flexible enough, i.e., once the rules are defined they do not
adapt to any context of the data.

3.2.2 Semantic-Based Similarity Metrics

Semantic-based approaches perform an analysis at the semantic level of the entity data. Thus, no
rules are manually defined but these approaches automatically analyze the semantics encoded in
data, e.g., RDF knowledge graphs. Suchanek et al. present PARIS [95] a probabilistic approach
to align RDF instances. PARIS detects owl:sameAs relationships by exploiting functional
properties (a predicate that has only one object e.g., wasBornIn) of the RDF instances, to
then calculate their similarity. PARIS does not require matching rules and offers a centralized
solution tested with a large number of entities. WebPie [96], presented by Urbani et al., takes
as input owl:sameAs relationships and computes in a parallel way their transitive and symmetric
closure in order to produce inferred owl:sameAs relationships.

Jeh et al. [97] present SimRank, a domain-independent similarity metric that measures the
neighborhood similarity among objects. The intuition behind SimRank is that two nodes are
similar if their neighbors are similar. Thus, to compute the similarity, SimRank requires a
full knowledge graph with all nodes and edges in it. So, closer neighbors contribute more than
further nodes to the similarity value.
LINDA [98] is an automatic similarity metric that produces owl:sameAs links amidst entities

on RDF graphs. LINDA produces the similarity score based on two criteria: the similarity of
the data properties, and the contextual similarity that is derived from object properties of the
entities. LINDA provides two versions of the similarity metric, i.e., a multi-core version as well
as a distributed MapReduce-based version. Additionally, experiments on big RDF datasets have
been made demonstrating the efficiency and scalability of LINDA’s algorithms.
Paul et al. [99] propose GBSS, an efficient graph-based document similarity. Despite the

authors present GBSS to compare semantically annotated documents, it can be used to compare
any type of entity in an RDF graph. Similar to LINDA, GBSS computes the similarity based
on two aspects: the hierarchy of classes similarity, and the neighborhood similarity. However,
GBSS does not take into account the entity literal properties to compute the similarity score.

Efthymiou et al. present MinoanER [100] a framework that discovers owl:sameAs relation-
ships on RDF datasets. To reduce the number of comparisons among entities, MinoanER
performs clustering as a pre-procession step. MinoanER creates clusters based on the properties
of the entities as well as the metadata. Then, the similarity is applied just among the elements
of the same cluster. MinoanER analysis the neighborhood similarity to decide whether to
produce or not the owl:sameAs link.
Discussion: Although handcrafted rules are not necessary with the semantic-based similarity

metrics, they require a complete view of the dataset. To work with the limited entity data that
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the web sources provide, an adaptation and evaluation are required. Moreover, the semantic-
based approaches require a tuning process and its performance depends on the quality of the
data. Thus, an empirical evaluation is required to measure their applicability on the knowledge
retrieval and integration context from web sources.

3.2.3 Embedding-Based Similarity Metrics

With the hype of Artificial Intelligence (AI) novel approaches have been proposed to automatically
create a vectorial representation of RDF entities, i.e., Graph Embeddings. Although embeddings
are not directly a similarity metric, by using any vector distance metric, e.g., euclidean distance4,
they can be used to measure the similarity between entities. In this section, we provide a review
of the most relevant approaches for creating embeddings for RDF entities.
Griver et al. [101] present Node2Vec (the latest method of the everything-2-vec saga).

Node2Vec tackles the problem of producing a vector representation of graph nodes. The main
contribution and uniqueness of Node2Vec, compared with similar techniques, is the flexible
notion it gives to the meaning of neighborhood. It is based on the idea that nodes, and their
connectivity patterns in the network, can be described based on two factors: First, on the
communities to which they belong, i.e., homophily or essentially the set of their 1-hop neighbors,
and second, on the role the nodes play in the network, i,e., structural equivalence or the type
of node they are, e.g., border node, internal node, etc. Therefore, a node could have multiple
neighborhoods, and it can only be considered k of these neighborhoods, the problem turns
into a best-sampling-method problem. Node2Vec focuses on two prediction tasks: multi-label
classification of nodes, where the objective is to classify new unknown nodes into one of the
known classes; and link prediction with the objective of predicting if a link i.e., relation, should
be established (or re-established in case of incomplete datasets) between nodes. Based on
Breadth-first Sampling (BFS) and Depth-first Sampling (DFS), Node2Vec proposes a sampling
approach that uses Random Walks. It consists of exploring the connectivity patterns based on
both BFS and DFS manners, interpolating between both approaches based on a bias term.
TransE, presented by Bordes et al.[102, 103], is another relevant approach to produce vector

representations of entities in knowledge graphs. In TransE, a neural network acts as a bridge
between the entities in the original graph and their feature representation, e.g., a vector of 100
dimensions. TransE considers only relations among entities, that means subjects and objects
act as operators. The fundamental characteristics of TransE approach include flexibility and
domain independence, i.e., it should work and be easily adaptable for most of the available
knowledge graphs Additionally, the vectors produced by TransE are compact, each entity is
assigned one low-dimensional vector in the feature space and only one matrix to each relation.
In TransE, the relations are normal embeddings with the special characteristic that they are
not normalized after each iteration of training, as for subjects and objects.
Paulheim et al. [104] present RDF2Vec, an RDF embeddings generation approach that

adapts the word embeddings approach Word2Vec [9] for entities in an RDF knowledge graph.
As noted by Paulheim: “RDF2Vec uses language modeling approaches for unsupervised
feature extraction from sequences of words, and adapts them to RDF graphs”. The idea
behind RDF2Vec is quite simple, using Weisfeiler-Lehman Graph Kernels [105] and graph
walks, RDF2Vec traverse the RDF graph and produces a text description of a sequence of
entities. Then, Word2Vec is applied to this sequence to get embeddings for the entities in the

4 https://en.wikipedia.org/wiki/Euclidean_distance
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Name Approach Configuration Output Type Evaluated in task

SILK [54, 55] Rule-based Manual same:As Entity linking
LIMES [60, 61] Rule-based Manual same:As Entity linking
PARIS [95] Semantic-based Automatic score Entity linking
Jeh et al. [77] Semantic-based Automatic score Entity linking
LINDA [79] Semantic-based Automatic score Entity linking
GBSS [83] Semantic-based Automatic score Document similarity
MinoanER [86] Semantic-based Automatic score Entity linking and clustering
Node2Vec [101] Embedding-based Learned vector Prediction tasks
TransE [102] Embedding-based Learned vector Knowledge completion
RDF2Vec [104] Embedding-based Learned vector Classification and regression
Cochez et al. [106] Embedding-based Learned vector Classification and regression

Table 3.2: Similarity Metrics and Graph Embeddings aproaches. A summary of the different
similarity metrics and methods to create embeddings from RDF Knowledge Graphs.

graph. The embeddings produced by RDF2Vec were evaluated in two simple machine learning
tasks: classification, mark molecules as mutagenic or no-mutagenic; and regression, predict the
lithogenesis property of rock units.

Cochez et al. [106] present an approach to generate embeddings for RDF entities based on a
global-context in a given RDF graph. While RDF2Vec relies on local sequences generated from
RDF graph nodes and then generate the embeddings by using Word2Vec [9], Cochez presents
an approach that utilizes the global context of the graph. Inspired by GloVe [107] method—to
create the embeddings for words, Cochez approach first creates a global co-occurrence matrix of
entities from a given RDF graph. Then, the minimize the cost function defined in Glove is use to
create the RDF entity’s embeddings. Cochez’s approach was evaluated with the same machine
learning tasks than RDF2Vec showing competitive results, i.e, classification, and regression.
Discussion: Although RDF entity vector space embeddings have been shown to perform

well in data mining and machine learning tasks -[106], these approaches have not been really
applied to the data integration scenario. In addition, all these approaches required long training
period time and a large set of training data. Moreover, the quality depends on the quality of
the training data, so an empirical evaluation is required to test its applicability in the context
of knowledge retrieval and integration from web sources.

3.3 Knowledge Retrieval and Exploration on the Web

The problem of searching for information on the Web has evolved during the last decades. As a
result, the Information Retrieval (IR) is the most mature research field in this area. As Herzig [1]
states: “Nowadays, search on the Web goes beyond the retrieval of textual Web sites and
increasingly takes advantage of the growing amount of structured data”. Companies, like Google,
have recognized this and now provide a semantic entity search as part of its engine [10]. In the
scope of this thesis, we review three main trends in terms of entity retrieval and exploration in the
Web: (1) hybrid search engines that combine structured, semistructured, and unstructured
data to produce the results; (2) domain-specific search engines that are created with a
specific domain knowledge on the mind; and (3) faceted search engines for RDF, the data
model selected on this thesis. These approaches are explained in the following sub-sections:
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3.3.1 Hybrid Search Engines

Several approaches have been proposed to combine search results from unstructured data, e.g.,
text documents, with structured data, e.g., RDF. For example, Usbeck et al. [5] present a
Hybrid Question Answering Framework (HAWK) combining entity search over linked data
and textual data from the Web. The search input is a question expressed in natural language,
which passes through an eight-step pipeline. HAWK’s pipeline is quite complex since it pursues
a question answering on natural language queries. So the keyword search APIs, provided by
web sources, are not considered in its pipeline. Bhagdev et al. [4] propose a hybrid search
architecture that aims the combination of concepts search and keyword search on documents
and their metadata. They propose a keyword search engine on documents and combined with
the search on documents metadata. The architecture proposed by Bhagdev et al. requires an
index of the documents. Moreover, they focus only on documents, leaving the gap of searching
for a more generic approach that works on the abstract concept of an entity.

Montoya et al. [108, 109] proposes SemLAV, a hybrid search engine to query Deep Web and
Web of Data sources. SemLAV executes SPARQL queries against the Deep Web and Linked
Open Data data sources by using a mediator-wrapper architecture approach (cf. Section 2.3).
The SPARQL queries are expressed using a mediator schema vocabulary, then SemLAV selects
relevant data sources and ranks them. SemLAV ranking strategy delivers results quickly based
only on view definitions, thus no statistics on data sources are required.
Herzig et al. [1] presents a entity search engine that consolidates entities from heterogeneous

data sources on-the-fly. The authors propose a language-model based approach to represent
the entities coming from web sources and to compute the similarity among the entities. Herzig
et al. use the concept of a threshold value to perform an entity consolidation step, i.e., only
entities which similarity value pass the threshold are merged. Herzig’s approach is the most
similar work to the one presented on this thesis. Nevertheless, the representation of entities and
the similarity metric is static, they are strongly correlated and cannot be replaced for a more
suitable approach according to the domain-application context.
Discussion: The approaches presented in this section are first attempts have been made

to provide a unified search across unstructured (Web) and structured (RDF) sources dubbed
hybrid search. We argue that a much more universal approach for a federated hybrid search
encompassing not only unstructured and RDF sources is required to address application scenarios
described in this thesis. In particular, various degrees of structure (unstructured, semi-structured
and structured), various data models and data topologies (distributed, federated and integrated
data sources) have to be supported. In this thesis, we aim to provide an approach and its
prototypical implementation for a federated semantic search. Our approach is capable to
retrieve and integrate the knowledge about entities spread on web sources that, albeit described
differently, correspond to the same real-world entity.

3.3.2 Domain Specific Search Engines

In the specific application domain of law enforcement, organizations are demanding more
intelligent software to support their work. Therefore, both the academia and the industry
are making efforts to build innovative crime analysis software. The DIG system [76] builds a
knowledge graph to combat human trafficking by crawling websites with escort ads. The DIG
system provides an easy to use faceted browsing interface to query and explore the knowledge
graph. Huber [110] presents a crime investigation tool focused on social networks. Huber’s
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tool approach harvest data from social networking websites, e.g., user data, private messages,
photos, etc. To produce a consolidated profile information about people and organizations.
Then, these profiles can be explored via a user interface. Maltego5 is an open source forensics
application. Maltego offers information mining as well as visualization tools to determine the
relationships between entities such as people, companies, or websites. Finally, Poderopedia6

is an initiative to promote transparency of power control in South America. Poderopedia’s
search engine relies on a knowledge graph containing people and the power they have on the
continent. Journalists contribute by adding entities and relations to the knowledge graph. The
degree of power a person has is determined by its relations with other organizations and people.

In the Biomedical domain, several search engines have been proposed to integrate heterogeneous
web sources. Hu et al. [111] present BioSearch a search engine that uses ontologies to execute
federated queries over SPARQL endpoints. BioSearch utilizes a virtual integration approach
to provide a unified view of heterogenous RDF datasets in the biomedical domain. BioSearch
applies an ontology matching approach to solve the heterogeneity of schema problem. Therefore,
mappings are created to convert local RDF entities to a global schema, i.e., the SIO ontology [112].
Discussion: Despite these search engines solved domain-specific scenarios, we argue that

they are still expensive to maintain. Mainly because they require a consolidated knowledge
graph. Additionally, privacy issues need to be taken into consideration, especially in the law
enforcement domain (one of the main use cases in this thesis), where data protection and privacy
laws, e.g., the General Data Protection Regulation, must be followed. We see the need for a
more suitable set of tools to quickly adapt to dynamicity of the web sources. In contrast to
these search engines, we aim an approach to building knowledge graph on-demand, i.e., when a
query is entered, the results are built by integrating results collected from search APIs.

3.3.3 Faceted Search Engines

Entity search is one of the main use cases in the scope of this thesis. In this section, we review
faceted search engines over RDF, the data model selected in this work. Arenas et al. [113,
114] introduced SemFacet a faceted search approach on RDF knowledge graphs. SemFacet
automatically generates facet names and values from metadata provided in RDFS and OWL.
Besides the use of explicit knowledge encoded RDF entities, SemFacet creates more facets
from the implicit knowledge by using a reasoning component on the RDF knowledge graph.
SemFacet applies inference algorithms to derive new facts about the entities, which are then
used as new facets. SemFacet is based on a strong theoretical framework that accounts for
both RDF data and OWL2 axioms [115].
Stadler et al. [116] presented Facete, a spatial data search engine that query SPARQL

endpoints to produce a faceted view of the entities. Thus, a difference of SemFacet, Facete
allows exploring multiple RDF knowledge graphs at the same time. Facete automatically
generates the facets and provides a map view of the spatial data for the users to explore.
However, Facete focus on the exploration of spatial data, i.e., its application to another type of
data will require the development of extensions.

Ferré [117] presents Sparklis faceted search, the goal of Sparklis is to enable non-technical
users to explore RDF entities. Using SPARQL endpoints, Sparklis allows to answer complex
questions based on facets suggested by the application. To do so, Sparklis combines the

5 https://www.paterva.com/
6 http://www.poderopedia.org/

35

https://www.paterva.com/
http://www.poderopedia.org/


Chapter 3 Related Work

expressivity of SPARQL query language and the usability of faceted search, i.e., the facets
execute SPARQL queries to retrieve answers to complex questions.

Finally, Khalili et al. [118] presented LD-R, a component-based framework to quickly build
user interfaces for RDF knowledge graphs. Although LD-R focuses on providing a development
framework, one of its main out-of-the-box configurations is the faceted browsing user interface
named FERASAT [119]. FERASAT is a novel faceted browsing environment, it supports a
set of serendipity-fostering design patterns in the facets—serendipity allows the discovery of
valuable facts not initially sought for.
Discussion: Faceted Search Engines on RDF allows to search and explore knowledge about

entities in an RDF knowledge graph. Faceted browsing is the defacto entity exploration approach
in the Semantic Web community, but these approaches work under the assumption of having
the access one consolidated RDF graph. Thus, we argue the exploration of entities coming from
a federation of sources, which is the scenario in this thesis, is still underexplored. In this thesis,
we propose a reactive user interface to explore entities that come from multiple sources, i.e., a
user interface that reacts and adapts itself properly to the heterogeneity of data and semantics
encoded in the entities. Stolz and Hepp [120] conducted an evaluation of the appropriateness
of a reactive faceted search user interface paradigm for e-commerce on the Web of Data, i.e.,
the user interface elements changes according to the semantics of the data. In their work, they
present preliminary evidence of the applicability of an adaptive user interface for faceted search.
In this thesis, we explore the applicability of this approach in the scenario of knowledge retrieval
and integration from web sources.
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CHAPTER 4

Semantic Based Approaches for Synthetizing
Equivalent Entities

This chapter is dedicated to solve one of the core challenges of this thesis, i.e., to identify and
integrate knowledge of semantic equivalence entities. The content of this chapter is based on
the publications [121–123]. The nature of the Web allows for numerous descriptions of the
same entity, generating data interoperability conflicts (cf. Section 2.3.5). Integrating data from
web sources requires the effective identification and resolution of these interoperability conflicts.
Figure 4.1(a) shows the main problems to produce an integrated knowledge from pieces spread
over web sources. The results of this chapter provide an answer to the following research question:

RQ1: How can semantics encoded in RDF graphs be exploited during the process of
integrating data collected from heterogeneous web sources?

To provide a unified representation of the same real-world entity, the data contained in
web sources need to be semantically integrated. Therefore, we require a semantic integration
approach capable of managing and exploiting the knowledge encoded in web sources to determine
the relatedness of different representations of the same entity, e.g., axiomatic definition of
vocabulary properties or resource equivalences. We assume at this level that the heterogeneity
of representation problem is solved (cf. Section 1.2.1), and we work with the RDF data model.

First, in Section 4.1, we present a motivating example illustrating the problem of integrating
semantically equivalent RDF entities. To address research question RQ1, we devise MINTE, a
semantic integration technique able to utilize semantics encoded in vocabularies in order to fuse
semantically equivalent RDF entities in a single pipeline—what we call semantic integration.
Next, Section 4.2 describes our approach including a formal problem statement and the main steps
MINTE performs. MINTE implements a two-fold approach for both determining the relatedness
of two RDF entities and merging them. Section 4.2.2 details our semantic disambiguation
and integration technique, and the data fusion strategy and policies for merging equivalent
RDF molecules. Then, the main two properties of MINTE, i.e., high adaptability and low
complexity of the integration approach are presented in Section 4.3.
A comprehensive evaluation of the MINTE approach and analysis of the obtained results is

presented in Section 4.4. Observed results suggest that MINTE is able to accurately integrate
semantically equivalent RDF graphs. Further, MINTE behavior is empowered by semantic
similarity measures, ontologies, and fusion policies that consider not only textual data properties
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Challenge 2: Solving Semantic Interoperability Conflicts

Integrate the pieces of knowledge of the same entity 
considering domain, granularity and completeness conflicts

Challenge 2: Solving Semantic Interoperability Conflicts

Integrate the pieces of knowledge of the same entity 
considering domain, granularity and completeness conflicts

(a) Problems tackled in this chapter

RDF Molecule-Based Integration Techniques 
to Synthesizing Knowledge Graphs

Content based on the publications [121-123]

Contrib. 1

(b) Contributions described in this chapter

Figure 4.1: Challenges and Contributions: This chapter focuses on the problem of integrating
knowledge of semantically equivalent entities from different web sources, and propose an RDF molecule-
based integration approach to solve this problem.

as current approaches do, but also logical axioms encoded in the graphs to tackle relations
among objects and properties. Finally, Section 4.5 presents the closing remarks of this chapter.
We summarize the contributions of this chapter as follows:

• A novel semantic integration approach named MINTE, which is based on the concept of
RDF molecules of knowledge. MINTE clearly defines the use of semantic technologies as
building blocks and configuration parameters in the integration process.

• A novel method for matching and merging semantically equivalent RDF entities. Semantics
encoded in RDFS and OWL are exploited during the integration process.

• An empirical evaluation to assess the effectiveness of MINTE for the integration of RDF
graphs. Experiments are executed on DBpedia, Wikidata, and Drugbank. Different types
of heterogeneity at schema, property, and value levels are considered in the study.

4.1 Integrating Semantic Equivalent Entities

The original vision of the Web put a strong emphasis on the distributed and federated nature.
the Semantic Web follows the same vision. While there have been some efforts to provide a
unified view of the entities contained on web sources, such as federated SPARQL queries [86–88],
semantic search and (meta-)data registries, we still deem that there is an imbalance and a large
part of the data integration technologies are mimicking traditional data management techniques.
The knowledge about entities is spread over different web sources on the internet or even in the
intranets of organizations. For example, information about chemical components and drugs is
published by different data providers, e.g., DrugBank1 or Kegg2. Similarly, data about people
can be found in social networks, customer relationship management (CRM), or human-resource
(HR) systems. Further, product information is available in e-commerce web sites, product
life-cycle management (PLM) systems or open product data repositories. It is not realistic to
expect that all these data sources will publish their data using the same unique identifiers and
unified vocabularies.
1 https://www.drugbank.ca/
2 http://www.genome.jp/kegg/
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dbc:AnInflam_Drug      owl:sameAs                     db:AnInflammAgents
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pubchem                       owl:equivalentProperty   compoundID
pubchem                       rdf:type                             owl:FunctionalProperty
compoundID                  rdf:type                            owl:FunctionalProperty

(c) Axioms

Figure 4.2: Motivating Example. The drug Ibuprofen in the DBpedia and Drugbank RDF graphs.
Properties such as name or case number are shared in both RDF graphs, while properties such as chemical
formula or name translations only exist in one of the graphs. The challenge is to produce an integrated
RDF molecule for Ibuprofen.

The integration of semantic equivalent entities is an important task in a variety of domains
but is it hard due to the semantic interoperability problems. For a motivating example, we
choose the chemical domain, where numerous representations of drugs are available across
various RDF graphs. All of them are valid RDF descriptions despite using different schemas or
covering different properties. DBpedia contains general information about drugs, for instance,
dbr:Ibuprofen3 (Figure 4.2(a)) comprises common properties, e.g., rdfs:label in different
languages, dct:subject categories, rich rdf:type annotations in terms of numerous ontologies
(i.e., DBpedia ontology, YAGO, Umbel, Wikidata, DUL), and links to other language pages
in DBpedia, wiki links and knowledge bases. Another well-known dataset in the chemical
domain is Drugbank. Drugbank’s description of Ibuprofen4 (Figure 4.2(b)) contains detailed,
domain-specific drug data i.e., chemical formula, pharmacological data, interactions, drug targets,
enzymes, and transporters. Drugbank and DBpedia descriptions have few facts in common but
greatly complement each other. Although the vocabularies, URIs, properties and values used to
describe the drugs are different, they refer to the same real world drug.

Semantic technologies provide the basis for semantic description, interlinking and fusion of
disparate web sources. Existing approaches often separate the linking and fusion steps, which we
together subsume under the concept of semantic integration. Linking approaches implemented
in tools such as Silk [78] and LIMES [93], for example, allow for discovering links between RDF
resources by exploiting the similarity of literals of their datatype properties. Thus, entities
representing drugs with similar names can be linked. Subsequently, data fusion frameworks
such as Sieve [84] and ODCleanStore [79] implement methods for semi-automatically merging
equivalent RDF entities. However, we believe that both data linking and fusion approaches do
not sufficiently exploit the semantics encoded in the vocabularies used to describe heterogeneous
data, e.g., functional and inverse properties, sub-classes, or sub-properties. Consequently, RDF
entities that are represented using syntactically different properties or resources, but that are
semantically equivalent with respect to a vocabulary semantics, cannot be linked or integrated.

3 http://dbpedia.org/page/Ibuprofen
4 https://www.drugbank.ca/drugs/DB01050

39

http://dbpedia.org/page/Ibuprofen
https://www.drugbank.ca/drugs/DB01050


Chapter 4 Semantic Based Approaches for Synthetizing Equivalent Entities

4.2 The MINTE approach
4.2.1 Problem Definition
At the conceptual level, we model the pieces of knowledge spread on web sources as RDF molecule
for knowledge integration. Thus, the problem of integrating semantic equivalent entities from
different web sources can be defined as follows:

Definition 1 (RDF Molecule) Given an RDF graph G, we call a subgraph M of G an RDF
molecule iff the RDF triples of M = {t1, . . . , tn} share the same subject, i.e., ∀ i, j ∈ {1, . . . , n}
(subject(ti) = subject(tj)). An RDF molecule can be represented as a tupleM = (R, T ), where
R corresponds to the URI (or blank node ID) of the molecule’s subject, and T is a set of pairs
p = (prop, val) such that the triple (R, prop, val) belongs to M . Property values are free of blank
nodes, i.e., let I be a set of IRIs and L a set of literals, then val ∈ I ∪ L.

We call R and T the head and the tail of the RDF moleculeM, respectively. For example,
an RDF molecule of the drug Ibuprofen is (dbr:Ibuprofen, {(rdf:type, ChemicalSubstance),
(dbo:actPrefix, "C01"), (pubchem, 3673)})5. Further, an RDF graph G is defined in terms of
RDF molecules as follows:

φ(G) = {M = (R, T )|t = (R, prop, val) ∈ G ∧ (prop, val) ∈ T}

Definition 2 (Equivalent RDF molecules) Let φ(G) and φ(D) be two sets of RDF mo-
lecules. Let F be an idealized set of integrated RDF molecules across all sets of RDF molecules.
Let θ be a homomorphism such that θ : φ(G) ∪ φ(D)→ F . LetMG andMD be RDF molecules
from φ(G) and φ(D), respectively. MG andMD are semantically equivalent if and only if there
is an RDF moleculeMF from F , such that θ(MD) = θ(MG) =MF .

Given two RDF graphs G and D, an entity e can be represented by two different RDF
moleculesMG andMD in φ(G) and φ(D), i.e.,MG andMD corresponding to semantically
equivalent RDF molecules. In this work, we tackle the problem of matching and merging
semantically equivalent RDF molecules from RDF graphs. This problem is defined as follows:
Given φ(G) and φ(D) composed of RDF molecules, and an idealized set F of integrated RDF
molecules from φ(G) and φ(D) and free of semantically equivalent RDF molecules, i.e., there is
only one RDF molecule in F that corresponds to the integration ofMG andMD.

The problem of semantically integrating φ(G) and φ(D) consists of building a homomorphism
θ : φ(G) ∪ φ(D)→ F , such that if RDF moleculesMG andMD represent the same entity e,
then θ(MG) = θ(MD), otherwise, θ(MG) = θ(MD).

Consider the RDF molecules presented in Figure 4.3 to illustrate an instance of the problem
of semantically integrating RDF graphs. RDF molecules in Figure 4.3(a) belong to two different
datasets but they are semantically equivalent because both represent the same entity, i.e., the
Ibuprofen drug. On the other hand, RDF molecules in Figure 4.3(c) comprise an idealized
set of RDF molecules that integrates semantically equivalent molecules from two graphs in
Figure 4.3(a). A solution of the problem of semantically integrating RDF graphs is to identify the
homomorphism θ that maps RDF molecules (e.g., Ibuprofen and DB01050) into integrated RDF
molecules. Figure 4.3(b) illustrates the homomorphism to map source graphs in Figure 4.3(a)
to an idealized graph in Figure 4.3(c).
5 We use standard prefixes according to 6
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Figure 4.3: The problem of semantically integrating RDF graphs. The two RDF graphs in 4.3(a)
contain semantically equivalent RDF molecules. The problem consists of building a homomorphism θ to
an idealized integrated RDF graph such as that in 4.3(c). Such a homomorphism θ to map equivalent
entities, e.g., dbr:Ibuprofen and DB01050, to an integrated entity is presented in 4.3(b).

However, real-world cases impose several restrictions on the problem of building a homo-
morphism. Firstly, only few RDF graphs provide their entities with established links to the
semantically equivalent entities in other graphs. Generally, such links must be discovered before-
hand. Secondly, an ideal graph is hardly ever available for the entire diversity of RDF graphs
available in Linked Open Data cloud. Therefore, the initial problem has to be approximated
taking into account the real-world settings. The approximation includes two steps: identification
of semantically equivalent entities in arbitrary RDF graphs and fusion of the matches found
into an idealized unified RDF graph. For instance, during the identification task it has to be
decided whether dbo:Ibuprofen (Figure 4.2(a)) and DB01050 (Figure 4.2(b)) are equivalent
based on their properties and general axioms in Figure 4.2(c). In turn, the fusion task aims
at generating a unified representation of those two molecules if they are marked as equivalent.
Below we describe how our approximation approach tackles the identification and fusion steps
to build a homomorphism between arbitrary RDF graphs.

4.2.2 Proposed Solution

We propose MINTE, an integration framework able to identify and merge semantically equivalent
RDF graphs, thus providing a solution to the problem of semantically integrating RDF graphs.
MINTE consists of two essential components. First, the identification component discovers
semantically equivalent entities with the help of two sub-components, namely the Dataset
Partitioner and the 1-1 Weighted Perfect Matching Calculator. Second, the Integrator component
digests the output of the previous one in order to produce a semantically integrated knowledge
graph. Figure 4.4 depicts the main components of the MINTE architecture. The pipeline
receives two RDF graphs G and D, and additional parameters in order to produce a semantically
integrated RDF graph. MINTE relies on a semantic similarity measure Simf and an ontology
O to determine when two RDF molecules are semantically equivalent.
Semantic similarity functions employ the axioms in O together with the object properties

(cf. Figure 4.5(a)) to deduce a semantic equality of such entities. Additional knowledge
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Figure 4.4: The MINTE Architecture. MINTE receives RDF datasets, a similarity function Simf ,
a threshold γ, an ontology O, and a fusion policy σ. The output is a semantically integrated RDF
graph. A Dataset Partitioner creates a bipartite graph of RDF molecules and assigns the similarity
value according to Simf , γ, and O. Semantically equivalent RDF molecules are related by edges in a 1-1
weighted perfect matching from the bipartite graph. Equivalent RDF molecules are integrated according
to σ and mappings in O

about class hierarchy (rdfs:subClassOf), equality of objects (owl:sameAs) and properties
(owl:equivalentProperty) allows to investigate deep semantic relations at the graph level
instead of comparing plain literals. For instance, analyzing Figure 4.2(c) one can entail that
ChemicalSubstance is a sub-class of Drug, anti-inflammatory drug is the same entity as anti-
inflammatory agent, the values of atcPrefix and atcCode of the compared drugs are close to
each other, and finally that "Ibuprofen" is synonymous to "Femadon". Therefore, a semantic
analysis manages to discover that dbo:Ibuprofen and DB01050 are semantically equivalent.

To do so, the Dataset Partitioner compares RDF molecules in φ(G) and φ(D) based on the
similarity measure Simf . A bipartite graph is created between G and D; edges correspond to
the pair-wise comparison of the RDF molecules and are weighted with values of the similarity
measure Simf . Once a bipartite graph is created, MINTE identifies the semantically equivalent
RDF molecules. A 1-1 weighted perfect matching algorithm is executed in order to identify for
each RDF molecule the most similar one. Thus, if two RDF molecules are connected by an edge
of the 1-1 perfect matching, then they are considered semantically equivalent.

Finally, the RDF Molecule Integrator component resorts to fusion policies σ for integrating
semantically equivalent RDF molecules and generating an integrated RDF graph. An ontology
O is utilized to map properties and resources in equivalent RDF molecules, while fusion policies
σ specify certain rules for how the mapped properties or values should be physically merged
in order to eliminate redundancy while preserving consistency. Figure 4.5(b) illustrates how
semantic fusion is capable of producing a fused entity aiming at complete and consistent facts.
Between two objects linked by owl:sameAs only one, e.g., dbc:AnInflammDrug, is chosen; one
atcCode property is merged into a fused entity as it contains a more general and complete value;
class hierarchy is retained; pubchem value is kept as a functional property, i.e., it should have
only one value; and labels with brand names complement each other.
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Figure 4.5: Instance and integration fusion.

Identifiying Semantic Equivalence Entities

MINTE uses a semantic equivalent technique to decide when two RDF molecules correspond to
the same entity, e.g., determining if two drugs are semantically equivalent. The process involves
two stages: (a) dataset partitioning and (b) finding a perfect matching between partitions.
Dataset Partitioner. The partitioner employs a similarity measure Simf and ontology O

to compute the relatedness between RDF molecules in φ(G) and φ(D). Addressing flexibility,
MINTE allows for arbitrary, user-supplied similarity functions that leverage different algorithms
to estimate the extent of correlation between RDF molecules. Supporting a variety of similarity
measures including simple string similarity functions we, however, advocate semantic similarity
measures that achieve better results (as we show in Section 4.4) by considering semantics encoded
in RDF graphs. After computing similarity scores, the partitioner constructs a bipartite graph
between the sets φ(G) and φ(D).

A threshold γ is used to discard edges of the graph whose weights are lower than γ. Figure 4.6
illustrates the impact of different threshold values on the number of edges of a bipartite graph.
Edges in bipartite graphs represent relations between RDF molecules with similarity values
greater or equal than a threshold. If the threshold is equal to 0, the bipartite graph is complete
and the edges represent the pair-wise comparison of the RDF molecules. Contrarily, if the
threshold is high, e.g., 0.8, few edges are included in the graph.
1-1 Weighted Perfect Matching. MINTE solves the problem of identifying semantically

equivalent RDF molecules by computing a 1-1 weighted perfect matching between the sets of
RDF molecules to be integrated. The input of the 1-1 weighted perfect matching component is a
weighted bipartite graph, where a weight of an edge between two RDF molecules corresponds to
a similarity value. The Hungarian algorithm is utilized to compute the matching. Figure 4.7(b)
illustrates the result of computing a 1-1 weighted perfect matching on the bipartite graph in
Figure 4.7(a). The edges between the RDF molecules in the graph in Figure 4.7(b) represent the
fact that the connected RDF molecules are semantically equivalent, e.g., RDF molecules M2a
and M2b are semantically equivalent. As will be shown in the results reported in 4.4, the accuracy
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Figure 4.6: Bipartite Graph Pruning. Different thresholds on the values of the similarity measure and
the impact on a bipartite graph between RDF molecules. A threshold equal to 0.0 does not impose any
restriction on the values of similarity; thus the bipartite graph includes all the edges. High thresholds,
e.g., 0.8, restrict the values of similarity, resulting in a bipartite graph comprising just a few edges.
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Figure 4.7: 1-1 Weighted Perfect Matching. (a) A bipartite graph between RDF molecules from
DBpedia and Drugbank; only the edges with similarity values equal or greater than 0.3 are included in
the graph. (b) A 1-1 weighted perfect matching of the graph in (a); each RDF molecule is matched to
the most similar one.

of the process of determining when two RDF molecules are semantically equivalent is impacted
by the characteristics of the similarity measure Simf . In case a semantic similarity measure like
GADES is utilized, MINTE is able to precisely match RDF molecules that correspond to the
same real-world entity.

Integration Semantic Equivalence Entities

Once the semantically equivalent RDF molecules have been identified, the second component
of MINTE produces an integrated knowledge graph. In order to retain completeness and
consistency and, at the same time, reducing the redundancy of the data, MINTE applies a set
σ of fusion policies, i.e., rules operating on the triple level, which are triggered by a certain
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combination of predicates and objects. Fusion policies resemble flexible filters tailored for specific
tasks, e.g., keep all literals with different language tags or discard all except one, replace one
predicate with another, or simply merge all predicate-value pairs of given molecules. Fusion
policies resort to an ontology O to resolve possible conflicts and inequalities on the levels of
resources, predicates, objects and literals.

The policies that process resources, e.g., URI naming conventions when creating an integrated
graph, are denoted as a subset σr ∈ σ. The policies that focus on properties are denoted as
σp ∈ σ. Interacting with the ontology O, σp tackles RDFS and OWL property axioms, e.g.,
rdfs:subPropertyOf, owl:equivalentProperty, and owl:FunctionalProperty. Such an in-
teraction is particularly important when the σp policies have to comply with sophisticated OWL
restrictions on properties. That is, if a certain property can have only two values of some fixed
type, σp has to accurately monitor the merging process to ensure semantic consistency. Lastly,
the policies dedicated to objects (both entities and literals) comprise a subset σv ∈ σ. For literals,
the σv policies have to implement string processing techniques, such as recognition of language
tags, e.g., @en, @de, etc., to be able to identify whether two values are different or the same
but with syntactic errors. For instance, S1 rdfs:label "Ibuprofen"@en and S1 rdfs:label
"Aktren"@de are considered different whereas "Ibuprofen"@en and "Iburpofen"@en are evid-
ently the same. Similar requirements can be applied to xsd:date and other standard datatypes.
For objects of object properties, the σv policies are more flexible and may provide rules in case,
e.g., objects of different properties are linked by owl:sameAs. Generally, the σv policies are
closely connected with the σp policies and affect each other, allowing for enriching an integrated
knowledge graph with new facts. For instance, some configuration of σp and σv may lead an
OWL reasoner to deduce from :Person :birthCity ns1:Berlin and :Person :birthCity
ns2:Q64 that ns1:Berlin and ns2:Q64 are owl:sameAs. MINTE defines three fusion policies,
which are illustrated in Figure 4.8:

Union policy. The union policy creates a set of (prop, val) pairs where duplicate pairs, i.e.,
pairs that are syntactically the same, appear only once. In Figure 4.8(a) the pair (p1, A) is
replicated, then it is included once in Figure 4.8(b). The rest of the pairs are added directly.
Subproperty policy. This policy tracks if a property of one RDF molecule is a sub-property

(rdfs:subPropertyOf) of a property of another RDF molecule, i.e., {r1, p1, A}, {r2, p1, B} +
O + subPropertyOf(p1, p2) |= {σr(r1, r2), p2, σv(A,B)}. As a result of applying this policy,
the property p1 is replaced with a more general property p2. The default σv object policy
is to keep the property value of p1 unless a custom policy is specified. In Figure 4.8(c), a
property p3 is generalized to p4 while preserving the value C according to the ontology axiom
p3 rdfs:subPropertyOf p4 in Figure 4.8(a).
Authoritative graph policy. The policy allows for selecting one RDF graph as a prevalent

source of data when integrating the following configurations of (prop, val) pairs:

• The functional property policy keeps track of the properties annotated as funtional
properties (owl:FunctionalProperty), i.e., such properties may have only one value. The
authoritative graph policy then retains a value of a molecule from the primary graph:
{r1, p1, B}, {r2, p1, C}+O + functional(p1) |= {σr(r1, r2), p1, σv(B,C)}. Annotated as a
functional property in Figure 4.8(a), p2 has the value B in Figure 4.8(d), as the first graph
has been marked as authoritative beforehand. The value C is discarded. However, σv can
redefine these criteria, and employ further processing to ensure that property values are
equivalent or not.
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Figure 4.8: Merging Semantically Equivalent RDF Molecules. Applications of a fusion policy σ:
(a) semantically equivalent molecules R1 and R2 with two ontology axioms; (b) simple union of all triples
in R1 and R2 without tackling semantics; (c) p3 is replaced as a subproperty of p4; (d) p2 is a functional
property and R1 belongs to the authoritative graph; therefore, literal C is discarded.

• The equivalent property policy is triggered when two properties of two molecules are
owl:equivalentProperty:
{r1, p1, A}, {r2, p2, B}+O + equivalent(p1, p2) |= {σr(r1, r2), σp(p1, p2), σv(A,B)}. The
authoritative policy selects a property from the authoritative graph, e.g., either p1 or p2.
By default, the property value is taken from the chosen property. Custom σv policies may
override these criteria.

• The equivalent class or entity policy contributes to the integration process when
property values are annotated as owl:equivalentClass or owl:sameAs, i.e., two classes
or individuals represent the same real-world entity, respectively: {r1, p1, A}, {r2, p2, B}+
O + equiva-lent(A,B) |= { σr(r1, r2), σp(p1, p2), σv(A,B)}. Similarly to the equivalent
property case, the value with its corresponding property is chosen from the primary graph.
Custom σp policies may handle the merging of properties.

The spectrum of possible fusion policies is not limited to the list described above. Fusion
policies allow for a flexible management, and for a targeted control of creation of an integrated
knowledge graph. These policies vary from naming convention for resources to a fine-grained
tuning of desired parameters. Varying a set of applied policies, it is possible to focus on a certain
integration aspect

4.3 Properties of our Approach
In this section, we show the two main properties of MINTE: (1) its high adaptability, thanks
to the parametrization of its components; and (2) the low complexity, thanks to the efficient
algorithms used in at each of the two steps.

4.3.1 High Adaptability

Adaptability is to be understood here as the ability of MINTE to adapt itself efficiently and fast
to different semantic interoperability conflicts. Ergo, MINTE is able to fit its integration process
according to changes in its environment, e.g., different application domains. Each application
domain poses different challenges, for example, in the crime investigation domain the fusion
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step is only done if the similarity is really high (Threshold 0.9). In contrast, in the job market
analysis domain, job adds are fused when they are similar enough (Threshold 0.75). As described
in Section 4.2.2, MINTE approach defines five parameters which are described in Table 4.1.
Conceptually, it is like having multiple approaches under the same framework, i.e., when the
threshold changes the integration approach changes.

Parameter Value Type Description

Ontology RDFS or OWL An ontology describing the RDF molecules
Datasets RDF The datasets to be integrated by MINTE
Similarity Metric Function A similarty function
Threshold Double Value to define the threshold when two entities need to be integrated
Fusion Policy Function Defines the way two molecules are synthesized

Table 4.1: MINTE Configuration Parameters

We empirically evaluated this property by applying MINTE in three domain-specific applica-
tions (cf. Chapter 7). During the implementation of these applications, more than 20 different
datasets were integrated. MINTE successfully employed the following elements: three fusion
policies, i.e., the Union, and the Authoritative policy; a threshold value between 0.0 and 1.0;
three similarity metrics, i.e., GADES, Jaccard, SILK rule-based; finally, MINTE has been tested
with three different ontologies: OntoFuhsen, SARO, and schema.org.

4.3.2 Low Complexity
Graph Matching Complexity

MINTE receives two sets φ(G) and φ(D) of n and k RDF molecules. To estimate the complexity
the two most expensive operations have to be analyzed. Table 4.2 gives an overview of the
analysis. The complexity of the Dataset Partitioner module depends on the complexity of the
chosen similarity measure that has to be applied for nk pairs. The asymptotic approximation
thus equals to O(nk ·O(Simf )). The complexity of 1-1 Weighted Perfect Matching component
employs the Hungarian algorithm [124] and hence converges to O(n3). Partitioning and perfect
matching are executed sequentially. Therefore, the overall complexity conforms to the sum of
complexities, i.e., O(nk ·O(Simf ))+O(n3). We thus deduce that the graph matching complexity
depends on the complexity of the chosen similarity measure, whereas the lowest achievable order
of complexity is limited to O(n3).

Stage Entities Identification Fusion

Partitioning O(nk ·O(Simf ))
1-1 Matching O(n3) O(n ·O(lp))
Overall O(nk ·O(Simf )) + O(n3) O(n ·O(lp))

Table 4.2: Time Complexity. Results for the steps of Partitioning and Matching, where n, k are the
numbers of RDF molecules, n ≥ k. l := card(Mi) + card(Mj) + card(O), i.e., the amount of properties
to merge having an ontology O; p is a constant.

Graph Fusion Complexity

Fusion policies resort to axioms, e.g., property hierarchies, functionality, transitivity, disjointness,
inverses, symmetry, chains, irreflexivity, that are defined in the OWL 2 RL profile, which is in
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Experiment 1: People Experiment 2: People Experiment 3: Drugs
DBpedia D1 DBpedia D2 DBpedia Wikidata DBpedia DrugBank

Molecules 500 500 20,000 20,000 1,568 1,568
Triples 17,951 17,894 1,421,604 855,037 398,043 517,023

Table 4.3: Benchmark Description. RDF datasets used in the evaluation

turn based on the DLP logic [125]. Reasoning in OWL 2 RL is proven to be polynomial [126].
Therefore, given n identified pairs, a number of l := card(Mi)+card(Mj)+card(O) of properties
in the compared molecules and ontology O, then the fusion complexity conforms to O(n ·O(lp)),
where p is a constant, i.e., polynomial complexity.

4.4 Experimental Studies
The MINTE approach exploits the semantics encoded in RDF molecules at each step of its
pipeline. To answer research question 1 (cf. Section 1.3) stated in this thesis, we evaluate the
effectiveness of MINTE in solving the integration problem between RDF graphs. We conducted
three experiments evaluating different types of heterogeneity on the schema, properties, and
value levels, using RDF graphs from DBpedia, Wikidata, and Drugbank. We address the
following questions:

• Q1: Is MINTE capable of integrating diverse RDF graphs effectively?

• Q2: How does a similarity function affect the effectiveness of the MINTE integration
technique?

4.4.1 Metrics and Settings
MINTE is implemented in Python 2.7.10. The experiment was executed on a Ubuntu 14.04
(64 bits) machine with CPU: Intel Xeon E5-2650 2.3 GHz (4 physical cores) and 32 GB RAM.
We evaluated three similarity functions in the MINTE pipeline: GADES [7], Semantic Jaccard
(SemJaccard) [127], and GBSS [128]. GADES relies on semantic description encoded in ontologies
to determine relatedness. GADES examines both hierarchy similarity, i.e., graph neighbourhoods,
and string similarity. SemJaccard is an extension of Jaccard similarity metric adjusted for
supporting reasoning and materialization. That is, comparing entities from different vocabularies,
SemJaccard requires the materialization of implicit knowledge and mappings instead of direct
triple sets comparison as plain Jaccard does. Deduced facts increase the possible intersection of
triples and raise the similarity score. Finally, GBSS7 is a similarity function that is tailored
only for DBpedia vocabularies.

Although each experiment has different datasets and gold standards, we use the same metrics
for all the experiments. We measure Precision, Recall and F-measure. Precision is the fraction
of RDF molecules that has been identified and integrated by MINTE (M) that intersects with
the Gold Standard (GS), i.e., Precision = |M∩GS |

|M | . Recall corresponds to the fraction of the
identified similar molecules in the Gold Standard, i.e., Recall = |M∩GS |

|GS | . F-measure is the

7 https://github.com/chrispau1/SemRelDocSearch
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GADES SemJaccard GBSS
γ Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

NT 0.810 0.814 0.810 0.770 0.784 0.777 0.466 0.466 0.466
P95 0.836 0.808 0.822 0.784 0.784 0.784 0.906 0.462 0.612
P97 0.840 0.808 0.824 0.909 0.782 0.841 0.924 0.46 0.614
P99 0.857 0.758 0.804 0.910 0.770 0.834 0.936 0.382 0.543

Table 4.4: Experiment 2: MINTE Effectiveness on DBpedia. Values of γ correspond to percentiles:
95, 97, and 99, and No-Threshold (NT). MINTE exhibits the best performance for semantic similarity
functions, e.g., GADES and SemJaccard

(a) GADES (b) SemJaccard (c) GBSS

Figure 4.9:Histogram of the Similarity Scores between GADES, SemJaccard, and GBSS for DBpedia
Molecules with different threshold values

harmonic mean of Precision and Recall. Precision and Recall equally contribute to the final
score; therefore we compute the F1 metric.

4.4.2 Integrating RDF Molecules from DBpedia

The goal of this experiment is to evaluate the MINTE approach on RDF graphs that share the
same vocabulary, while the RDF molecules have different properties.
Benchmark: We extracted 500 molecules8 of type Person from the live version of DBpedia

(Released on July 2016). Based on the original RDF molecules we created two sets of molecules
by randomly deleting or editing triples in the two sets. Table 4.3 (Experiment 1) provides basic
statistics on the benchmark.
Baseline: The gold standard includes the original DBpedia person entities and corresponds

to the idealized RDF graph F . The fusion policy is set to the default one, i.e., the Union policy.
We evaluate MINTE with GADES, SemJaccard, and GBSS on datasets D1 and D2 presented

in Table 4.3. RDF molecules are described using the DBpedia vocabulary, and each molecule has
only one corresponding semantically equivalent molecule. Table 4.4 shows the results obtained
from the integration of DBpedia molecules.

MINTE exhibits high values of precision and recall for SemJaccard and GADES, and the best
F-Measure value is achieved when MINTE utilizes SemJaccard and only similarity values above
the 97th percentile are considered; histograms are reported in Figure 4.9. Because no schema
heterogeneity exists in D1 and D2, and the DBpedia ontology encodes a large number of class
and property hierarchies, MINTE is able to accurately integrate RDF molecules.

8 Datasets are available at: https://github.com/RDF-Molecules/Test-DataSets
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GADES SemJaccard
γ Precision Recall F-Measure Precision Recall F-Measure

NT 0.76 0.76 0.76 0.253 0.253 0.253
P95 0.836 0.588 0.69 0.253 0.253 0.253
P97 0.861 0.537 0.661 0.253 0.253 0.253
P99 0.913 0.39 0.547 0.282 0.252 0.266

Table 4.5: MINTE Effectiveness on DBpedia and Wikidata Molecules Values of γ correspond
to the percentiles: 95, 97, and 99, and No-Threshold (NT). MINTE exhibits a better performance in
GADES, while SemJaccard is affected by the heterogeneity of DBpedia and Wikidata vocabularies

(a) GADES (b) SemJaccard

Figure 4.10: Histogram of the similarity scores of GADES and SemJaccard for DBpedia and
Wikidata datasets with different threshold values

4.4.3 Integrating DBpedia and Wikidata RDF Molecules

The goal of this experiment is to evaluate MINTE approach on RDF graphs that contain
semantically equivalent entities but are annotated with different vocabularies, namely DBpedia
and Wikidata.
Benchmark: Table 4.3 (Experiment 2) describes the datasets containing 20,000 molecules of

type Person extracted from the live version of DBpedia (July 2016) and Wikidata.
Baseline: The gold standard includes the owl:sameAs links between entities from DBpedia

and Wikidata. The fusion policy is set to the default Union policy.
We evaluate how MINTE performs when integrating datasets described with different vocabu-

laries. Table 4.5 contains the results of MINTE using the SemJaccard and GADES similarity
measures. We observe that MINTE exhibits the best behavior when GADES is utilized, i.e., the
maximal F-Measure is 0.76 in comparison to 0.266 obtained by SemJaccard. GADES considers
semantics and is able to leverage equivalence and subsumption relations between entities in
RDF graphs. Thus, even when the molecules are described with different vocabularies, GADES
is able to detect relatedness between RDF molecules. However, SemJaccard does not utilize this
semantics and therefore, it produces worse results even in high percentiles (cf. Figure 4.10).

4.4.4 Integrating RDF Molecules from DBpedia and Drugbank

The goal of this experiment is to evaluate MINTE against RDF graphs annotated with different
vocabularies. In the third experiment we compare Drug entities.
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GADES SemJaccard
γ Precision Recall F-Measure Precision Recall F-Measure

NT 0.749 0.749 0.749 0.854 0.854 0.854
P95 0.882 0.502 0.64 0.854 0.854 0.854
P97 0.88 0.409 0.558 0.854 0.854 0.854
P99 0.859 0.191 0.313 0.99 0.851 0.915

Table 4.6: MINTE Effectiveness on DBpedia and Drugbank Values of γ correspond to the
percentiles: 95, 97, and 99, and No-Threshold (NT). MINTE exhibits a better performance with
SemJaccard because the heterogeneity between DBpedia and Drugbank vocabularies is addressed by
hand-crafted mappings

(a) GADES (b) SemJaccard

Figure 4.11:Histogram of the similarity scores between GADES and SemJaccard similarity functions
for the Drugs dataset with different threshold values

Benchmark: contains 1568 molecules of type Drug extracted from the live version of DBpedia
(July 2016) and Drugbank. Table 4.3 (Experiment 3) shows details of the involved datasets.
Baseline: The gold standard includes the links between DBpedia and Drugbank entities and

corresponds to the idealized RDF graph F . The fusion policy is set to the default Union policy
in each experiment conducted.
Table 4.6 shows the results of MINTE with SemJaccard and GADES. Contrarily to the

previous experiment, heterogeneity of vocabularies is addressed by mappings between DrugBank
properties and DBpedia properties. Some mappings are already described in the datasets
by owl:sameAs and owl:equivalentProperty axioms, while other mappings have been hand-
crafted for this experiment. The mappings produce more materialized triples that in turn
increase the performance of SemJaccard. Varying the threshold value, MINTE manages to
achieve 0.915 F-Measure for the 99th percentile (cf. Table 4.6).

4.4.5 Discussion of Observed Results

Based on the three experiments considering Precision, Recall, and F-Measure, we can positively
answer Q1, i.e., MINTE is capable to integrate semantically equivalent RDF molecules to create
an integrated RDF graph. We can also observe that the accuracy of MINTE is indeed affected
by the behavior of the studied similarity measures, as shown in the Tables 4.4, 4.5, and 4.6.
Therefore, these observed results allow us to answer Q2: a semantic similarity function tends to
produce more precise and reliable results than non-semantic ones.
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4.5 Summary
After many approaches and techniques to integrate heterogeneous data using semantic tech-
nologies, the integration of semantic equivalent entities from heterogeneous Web sources in
a single pipeline remained unfulfilled. In this chapter, we presented MINTE, the first “RDF
Molecule-based Integration Technique” for integrating semantically equivalent RDF molecules
from Web sources into a single RDF graph. MINTE follows a two-fold approach where first
semantically equivalent RDF molecules are identified, and then, semantically equivalent RDF
molecules are merged. MINTE may utilize different similarity measures to decide whenever two
RDF molecules are equivalent. Furthermore, MINTE resorts to different fusion policies to merge
semantically equivalent RDF molecules. We show that the MINTE computation complexity is
in the order of polynomial time, therefore, MINTE can be effectively applied for integrating
semantically equivalent RDF molecules from different Web sources. The behavior of MINTE was
empirically studied on three real-world RDF graphs and on three similarity measures. Observed
results suggest that MINTE is able to effectively identify and merge semantically equivalent
entities, and is empowered by the semantics encoded in ontologies and can exploit similarity
measures. MINTE defines a set of input parameters making the integration process flexible and
applicable to different application domains.
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CHAPTER 5

A Semantic Similarity Framework for
Knowledge Integration

In this chapter, we focus on the problem of determining relatedness among RDF molecules
at integration time. The content of this chapter is based on the publications [122, 129]. A
semantic similarity metric is a key building block of MINTE, the RDF molecule-based integration
technique we defined in Chapter 4. Thus, in this chapter, we present a semantic similarity
framework that includes two semantic similarity metrics adapted to work with RDF molecules,
i.e., GADES and MateTee. The semantic similarity metrics included in the framework help
to improve the performance of the MINTE’s integration process. The results of this chapter
provide an answer to the following research question:

RQ2: How can semantic similarity metrics facilitate the process of integrating data
collected from heterogeneous web sources?

To solve the problem of determining relatedness between entities several similarity metrics
have been proposed. Traditional similarity metrics translate the entity’s properties into a
mathematical representation, where the comparison is easily measurable. Nevertheless, we
focus our study and analysis on similarity metrics that exploit the semantics encoded in RDF
molecules (what we call a semantic similarity metric). Figure 5.1(a) shows the main problems
to compare entities extracted from data spread over heterogeneous web sources.

First, we motivate the problem of determining relatedness among entities in knowledge graphs
using a practical example in Section 5.1. Then we show an empirical evaluation of the impact on
the integration process accuracy cause by semantic similarity metrics. We adapt two similarity
metrics to work with RDF molecules, Jaccard (no semantic, Section 5.2.1) and GADES [7]
(semantic, Section 5.2.2). Finally, we compare the performance of the two approaches via an
empirical study and we show the results in Section 5.2.3.

Besides the analysis of the impact of state-of-the-art semantic similarity metrics, in Section 5.3
we propose an new similarity metric for RDF molecules based on embeddings. Section 5.3.1
describes the details of embedding concept, this is required to understand the proposed solution.
Section 5.3.2 defines the problem, the proposed solution, and the MateTee architecture. Sec-
tion 5.3.3 reports on the empirical evaluation. Finally, Section 5.4 presents the closing remarks
of this chapter. In summary, the contributions described in this chapter are the following:

53



Chapter 5 A Semantic Similarity Framework for Knowledge Integration

Challenge 2: Solving Semantic Interoperability Conflicts

Identify the pieces of knowledge of the same entity 
considering domain, granularity and completeness conflicts

(a) Problems tackled in this chapter

RDF Molecule-Based Integration Techniques 
to Synthesizing Knowledge Graphs

A Semantic Similarity Framework for RDF 
Molecules

Content based on the publications [122-129]

Contrib. 2

(b) Contributions described in this chapter

Figure 5.1: Challenges and Contributions: This chapter focuses on the problem of identifying
semantically equivalence entities from different web sources, and proposes a semantic similarity framework
for RDF molecules to solve this problem.

• An empirical evaluation of the impact on the integration task using a semantic similarity
metric, i.e., GADES [7].

• An end-to-end approach named MateTee that is able to compute similarity values among
entities in a knowledge graph. MateTee is based on TransE, which utilizes the gradient
descent optimization method to learn a features representation of the entities automatically.

• An extensive empirical evaluation on existing benchmarks and state-of-the-art showing
MateTee behavior. Results indicate the benefits of using embeddings for determining
relatedness among entities in a knowledge graph. MateTee and experimental studies are
publicly available1.

5.1 The Need for a Semantic Similarity Framework

The semantic representation of the data in RDF helps in the endeavor of automatically solving
data-driven oriented tasks, providing as result, more useful and meaningful services from such
big and heterogeneous data [26]. Particularly, the tasks affected by a good similarity metric
between data entities are: semantic data integration of heterogeneous data, or entity linking and
clustering. The future of the Web of Data and the Web of Things brings even more heterogeneity
and larger datasets. Streaming data coming at high rates need to be processed on-demand, all
of which only increases the need of automation in the process of creation and processing of
semantics. In the case of knowledge graphs, we are referring to classification of entities in a
set of classes, and prediction (or discovery) of new relations between entities, i.e., RDF triples.
Consider a knowledge graph in Figure 5.2. Nodes of the same color indicate they share the same
properties, while nodes of different colors differ in at least one property. Determining relatedness
among same-colored nodes, e.g., Camilo with Diego, requires to compare, in a 1-1 fashion, values
of each property of those entities and aggregate the results. This computation can be done as
Camilo and Diego have the same set of properties, i.e., Child_of and Birth_Place. Contrary, if
entities have different properties, i.e., they are on different colors, the problem is to measure
their relatedness considering the complete set of properties of both nodes while is not possible
to use the 1-1 approach, e.g., Germany and Camilo. Moreover, whenever entities are compared
1 https://github.com/RDF-Molecules/MateTee

54

https://github.com/RDF-Molecules/MateTee


5.1 The Need for a Semantic Similarity Framework
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Figure 5.2: Motivating Example. A portion of a knowledge graph describing relationships among
persons and the places where they have been born. There exist different types of relations and multiple
connectivity patterns among the entities.

in terms of their neighborhoods and reachable nodes, Camilo should be more similar to Diego
than to Mike, as Diego and Camilo are from Europe, while Mike is from China.

These difficulties come inherently with the multi-relational datasets. In relational data tables,
all elements have the same properties, i.e., columns, and therefore, the similarity computation
is performed aggregating a 1-1 similarity value between each pair of the properties. With
multi-relational data, nodes need to be made comparable, which means that they all must have
the same set of properties or features. This can be done manually, handcrafting the features,
and creating a list of them for each node, based on previous knowledge of the specific field
or domain of the data. These sets of features will be regarded as a new representation of the
nodes in the knowledge graph. Then, these sets of features can be compared, again, in a 1-1
fashion. The problem is that manual creation of the features requires deep domain knowledge,
not to mention it is error-prone and time consuming. Thus, to solve these problems a similarity
measurement approach that automatically creates a canonical entity representations is required.
Data management and Artificial Intelligence approaches play an important role on the task

of knowledge graph data analysis. Machine Learning (ML), mostly in its supervised flavor,
aims to give machines the capability to learn by examples, essentially, labeled data. ML field
has achieved promising results with sophisticated techniques, such as Kernel methods or Deep
Learning models. Furthermore, the Semantic Web, and in general, all the available knowledge
graphs such as DBpedia or Yago, have been built with a tremendous effort of the scientific
community having the main objective of making the data understandable not only by humans
but also by computers. Structured data facilitates the tasks of data integration, relations or
associations discovery, as presented by Bordes et al. 2013 with TransE [102]. On one hand, we
have an immense amount of available knowledge facts, encoded as structured data in knowledge
graphs, and on the other, we have the Machine Learning boom and techniques able to have
access to Big Data sets, for two main tasks: classification and link prediction.
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5.2 Semantic Similarity Metrics for RDF Molecules

In this section, we present two metrics for RDF molecules, the classic (no semantic) Jaccard
metric is used as the baseline of comparison, and GADES a state-of-art semantic similarity
metric. We explain the re-definition of Jaccard and GADES to work on RDF molecules of data.
We present an empirical performance analysis of both approaches on the task of identifying the
similarity among RDF molecules from heterogeneous web sources for integration.

5.2.1 Jaccard Similarity for RDF Molecules

We use Jaccard distance to compute a similarity score of two molecules, and it is defined as
follows: Let A be an RDF molecule with a set T1 of n properties and values (i.e. |T1| = n ), and
let B be an RDF molecule with a set T2 of k properties and values (i.e., |T2| = k). The Jaccard
similarity is then computed as:

Jaccard(A,B) = |T1 ∩ T2|
|T1 ∪ T2|

The intersection set contains only those pairs of 〈property, val〉 that are present in both T1 and
T2. The union set contains all unique 〈property, val〉 pairs.

5.2.2 GADES for RDF Molecules

GADES2 [7] is a semantic similarity metric used to compare entities in a knowledge graph.
GADES considers three different aspects: the class hierarchy, the neighbors of the entities, and
the specificity of the entities. Thus, GADES is defined as a combination of three similarity
values Simhier, Simneigh and Simspec. These similarity values can be combined with different
T-Norms as the product or the average depending on the domain. In the case of the RDF
molecules we define GADES as:

GADES(A,B) =
Simhier(A,B) + Simneigh(A,B)

2

Hierarchical similarity. Given a knowledge graph G, the hierarchy is inferred by the set of
hierarchical edges. Hierarchical edges are a subset of knowledge graph edges whose property
names refer to a hierarchical relation, e.g., rdf:type or rdfs:subClassOf. In the case of DBpedia
and according to Lam et al. [130], the Wikipedia Category Hierarchy is used to determine
the hierarchical similarity between two entities. Thus, the hierarchy is induced by relations
skos:broader and dc:subject. Given this hierarchy, dtax [131] is used by GADES to measure the
hierarchical similarity between two entities.
Neighborhood similarity. The neighborhood of an entity e in a RDF moleculeM is defined

as the set of property-object pairs included in the triples of the molecule N(e) = {(p, o)|(s, p, o) ∈
M}. Thus, there are two types of neighbors: URIs representing entities and literals representing
attributes. This definition of neighborhood allows for considering together the neighbor entity
and the relation type of the edge. GADES uses the knowledge encoded in the relation and class
2 The adaptation of GADES is a joint work with Ignacio Traverso Ribón, a Ph.D. student at the Karlsruher
Institut für Technologie (KIT). My contributions include the preparation and implementation of a REST service
for RDF molecules.
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hierarchies of the knowledge graph to compare two pairs n1 = (p1, o1) and n2 = (p2, o2). The
similarity between two pairs n1 and n2 is computed as follows:

• If o1 and o2 are URIs, GADES uses a hierarchical similarity measure between URIs:

Simpair(n1, n2) = Simhier(o1, o2) + Simhier(p1, p2)
2

• If o1 and o2 are literals, GADES uses the Jaro-Winkler similarity measure between literals:

Simpair(n1, n2) = SimJaro-Winkler(o1, o2) + Simhier(p1, p2)
2

In order to maximize the similarity between two neighborhoods, GADES combines pair

comparisons as: Simneigh(e1, e2) =

|N(e1)|∑
i=0

max
nx∈N(e2)

Simpair(ni,nx)+
|N(e2)|∑

j=0
max

ny∈N(e1)
Simpair(nj ,ny)

|N(e1)|+|N(e2)|

5.2.3 Empirical Studies
With the following configuration, we empirically study the impact of a semantic similarity
metric, i.e., GADES on the task of integrating data from web sources (cf. Section 1.3, RQ2). By
assessing the following research questions, we evaluate the impact of GADES on the integration
problem of RDF molecules:

• Q1: Can the semantic similarity metric implemented in GADES integrate data in a
knowledge graph more accurately than Jaccard a no-semantic similarity metric?

• Q2: Is the accuracy of the molecule-based integration technique implemented in MINTE
impacted by the similarity metric used during integration process?

Gold Standard (GS): The ground truth dataset was extracted from the live version of
DBpedia (July 2016). We created two subsets of the ground truth to evaluate the scalability of
the similarity metrics. The first GS contains 500 molecules of type Person3, i.e., 500 subjects
with all available properties and their values. The overall number of triples is 20,936. The
second GS contains 20,000 molecules of the type Person, which results in 829,184 triples. The
Gold Standards are used to compute precision and recall during the evaluation.

Test Datasets (TS): The molecules from the Gold Standard with their properties and
values were randomly split among two test datasets. Each triple is randomly assigned to one or
several test datasets. The selection process takes two steps: 1) a number of test datasets to copy
a triple to is chosen randomly under a uniform distribution; 2) the chosen number is used as a
sample size to randomly select particular test datasets to write a triple. URIs are generated
specifically for each test dataset. Eventually, each test dump contains a subset of the properties
in the gold standard. Each subset of properties of each molecule is composed randomly using
a uniform distribution. A small tweak was made as to the first Gold Standard in order to
make both test datasets contain 500 molecules. Nevertheless, properties were still assigned
randomly to each test dataset. Tables 5.1 and 5.2 provide additional statistics on the data sources.

3 http://dbpedia.org/ontology/Person
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DataSet1 DataSet2 Gold
Size (MB) 2.3 2.3 3.2
RDF Molecules 500 500 500
Triples 14,692 14,705 20,936

Table 5.1: Description of Datatasets. 500 molecules

DataSet1 DataSet2 Gold
Size (MB) 86.1 85.9 124
RDF Molecules 13,242 13,391 20,000
Triples 553,059 552,425 829,184

Table 5.2: Description of Datatasets. 20,000 molecules

Metrics: We measure the behavior of GADES in terms of the following metrics:
a) Precision is the fraction of RDF molecules identified and integrated by GADES (M) that
intersects with the Gold Standard (GS).

Precision = |M ∩GS|
|M |

b) Recall is the cardinality of the intersection of molecules (M) integrated and Gold Standard
(GS), divided by that of the Gold Standard (GS).

Recall = |M ∩GS|
|GS|

c) F-measure is the harmonic mean of Precision and Recall.

Implementation: Experiments were run on a Windows 8 machine with an Intel i7-4710HQ
2.5 GHz CPU and 16 GB 1333 MHz DDR3 RAM. We implemented GADES and the Jaccard
similarity metric in Scala and Java. Further, the transformation of the RDF molecules was
implemented using Jena in Java 1.8. The GADES framework, and the test sets evaluated in
this experiment are publicly available.4

Discussion: With this experiment, we answer our research questions Q1 and Q2. GADES
is run on the two test sets of different sizes to calculate the similarity among molecules with
a triple-based approach implemented by Jaccard and a molecule-based one implemented by
GADES. We compute Precision, Recall, and F-measure according to the Gold Standard. Table
5.3 reports on the values of these metrics for 500 molecules, Table 5.4 contains the values for
20,000 molecules. Jaccard demonstrates lower performance on both datasets as it relies just on
the particular properties of the RDF molecule. Jaccard does not utilize semantics encoded in
the knowledge graph and cannot be used as a ’black box’ to compute the similarity between
arbitrary sets of molecules without prior knowledge of the data model of those RDF molecules.
On the other hand, GADES might be used as such a ’black box’ as it does not require any

metadata or knowledge of the schema. Nevertheless, the performance depends on the threshold
parameter. As a simple sets-based approach, the performance (precision, recall, and F-Measure)

4 https://github.com/LiDaKrA/RDF-Molecules-Experiment
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Precision
T0.0 T0.1 T0.2 T0.3 T.0.4 T0.5 T0.6 T0.7 T0.8 T0.9

Jaccard 0.77 0.84 0.55 0.43 0.45 0.45 0.62 0.4 0.4 0.4
GADES 0.81 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.83 0.87

Recall
T0.0 T0.1 T0.2 T0.3 T.0.4 T0.5 T0.6 T0.7 T0.8 T0.9

Jaccard 0.77 0.5 0.1 0.05 0.03 0.03 0.01 0.004 0.004 0.004
GADES 0.81 0.81 0.81 0.81 0.81 0.81 0.77 0.59 0.26 0.07

F-Measure
T0.0 T0.1 T0.2 T0.3 T.0.4 T0.5 T0.6 T0.7 T0.8 T0.9

Jaccard 0.77 0.63 0.17 0.1 0.06 0.06 0.02 0.008 0.008 0.008
GADES 0.81 0.84 0.84 0.84 0.84 0.84 0.81 0.70 0.40 0.13

Table 5.3: Effectiveness of GADES on 500 RDF molecules. Jaccard triple-based integration vs
GADES semantic integration approach using different thresholds (T). Highest values of Recall and
F-measure are highlighted in bold.

Precision
T0.0 T0.1 T0.2 T0.3 T.0.4 T0.5 T0.6 T0.7 T0.8 T0.9

Jaccard 0.72 0.77 0.44 0.34 0.37 0.36 0.27 0.21 0.21 0.21
GADES 0.76 0.80 0.80 0.79 0.79 0.79 0.79 0.76 0.70 0.65

Recall
T0.0 T0.1 T0.2 T0.3 T.0.4 T0.5 T0.6 T0.7 T0.8 T0.9

Jaccard 0.72 0.42 0.09 0.05 0.02 0.02 0.01 0.01 0.01 0.01
GADES 0.76 0.76 0.76 0.76 0.76 0.76 0.68 0.46 0.22 0.06

F-Measure
T0.0 T0.1 T0.2 T0.3 T.0.4 T0.5 T0.6 T0.7 T0.8 T0.9

Jaccard 0.72 0.54 0.15 0.08 0.04 0.04 0.02 0.02 0.02 0.02
GADES 0.76 0.78 0.78 0.77 0.77 0.77 0.73 0.57 0.33 0.11

Table 5.4: Effectiveness of GADES on 20,000 RDF molecules. Jaccard triple-based integration
vs GADES semantic integration approach using different thresholds (T). Highest values of Recall and
F-measure are highlighted in bold.

of the Jaccard similarity quickly decreases with higher thresholds. On low thresholds only one or
two common triples between molecules are sufficient to mark the molecules as similar even though
other properties and values are different. Higher thresholds increase the necessary amount of
common triples to classify molecules as similar. However, GADES leverages higher semantic
abstraction layers involving hierarchies and neighborhoods. GADES is capable of maintaining
stable performance and quality on thresholds up to 0.7 despite the size of the datasets. The
drop at higher thresholds is explained by insufficient amounts of common triples which serve
as a basis for materialization of class hierarchy, property hierarchy, and neighborhood. Q1 is
therefore confirmed, as one can vary the quality of interlinking in a wide range, whereas in
the triple-based approach the quality is always constant. The accuracy of the molecule-based
integration approach (Q2) is indeed affected by a similarity measure and its parameters as
shown in the Table 5.3 and Table 5.4.
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5.3 A Semantic Similarity Metric Based on Translation Embeddings

In this section, we present MateTee, a similarity approach that relies on embedding the original
knowledge graph into a vector space in order to make all entities comparable. Similarity values
among embeddings are measured based on any distance metric defined for vector spaces, e.g.,
Euclidean distance. Large knowledge graphs e.g., DBpedia or Wikidata, are created with
the goal of providing structure to unstructured or semi-structured data. Having these special
datasets constantly evolving, the challenge is to utilize them in a meaningful, accurate, and
efficient way. Further, exploiting semantics encoded in knowledge graphs e.g., class and property
hierarchies, provides the basis for addressing this challenge and producing a more accurate
analysis of knowledge graph data. Thus, we focus on the problem of determining relatedness
among entities in knowledge graph, which corresponds to a fundamental building block for
any semantic data integration task. We devise MateTee, a semantic similarity metric that
combines the gradient descent optimization method with semantics encoded in ontologies, to
precisely compute values of similarity between entities in knolwedge graphs. We empirically
study the accuracy of MateTee with respect to state-of-the-art methods. The observed results
show that MateTee is competitive in terms of accuracy with respect to existing methods, with
the advantage that background domain knowledge is not required.

5.3.1 Background: Translation Embeddings

MateTee determines relatedness between entities in Knowledge Graphs based on Encoding
Generation methods such as TransE [102]. MateTee combines the gradient descent optimization
method (used in TransE) with the explicit knowledge encoded in the ontologies of a knowledge
graph. MateTee is based on TransE [102], acronym of Translation Embeddings, presented by
Bordes et al. 2013. TransE tackles the problem of embedding a knowledge graph into a low
dimensional vector space (called embedding space) for subsequent prediction or classification
objectives, e.g., predict missing edges. The core of TransE is to learn the embeddings of entities
in a way that similar entities in the knowledge graph should be also close in the embedding space.
Additionally, dissimilar entities in the knowledge graph should be also far in the embeddings
space. Learning the embeddings is done by analysing the connectivity patterns between entities in
a knowledge graph, and then encoding these patterns into their vector representation, i.e., their
embeddings. The optimization technique Stochastic Gradient Descent is executed to compute
this encoding. Modeling RDF triples in the embedding space with relations as translations is
the core contribution of TransE. The basic idea behind translation-based model is the following:

Subject+ Translation ≈ Object

TransE aims at minimizing the error when summing up the distance d between the embeddings
of the Subject+Translation pair and the embedding of the Object. Stochastic Gradient Descent
(SGD) meta-heuristic allows for learning entity embeddings by minimizing the error defined as
the sum of the distances d of all the triples in the knowledge graph. A global minimum cannot
be ensured because SGD depends on a randomly selected start position of the descent. The
random initialization procedure followed by TransE is presented in detail at [132]. Figure 5.3
illustrates the intuition of this approach.
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Figure 5.3: TransE approach intuition. (a) An RDF Knowledge Graph where similar entities are in
the same color; (b) Clusters of entities in the embedding space. Entities of the same color are close to
each other in the identified cluster.

5.3.2 The MateTee Approach
MateTee focuses on measuring the similarity between any pair of entities belonging to an input
RDF Knowledge Graph. Measuring the similarity between entities is an important phase for
any data integration problem, and for most machine learning tasks, e.g., clustering of nodes,
or link prediction in knowledge graphs. The main problem for computing the similarity of
RDF knowledge graphs is that not all the nodes have the same properties, therefore, a 1-1
comparison at property level cannot be performed. State-of-the-art methods like GADES [7]
perform a semantic analysis of the entities based on multiple aspects, i.e., 1-hop neighborhood,
class hierarchy of the subjects/objects, class hierarchy of the properties, and mixtures of them.
This analysis relies on domain knowledge and user expertise about the provenance of the data,
e.g., GADES requires a good design of the hierarchy of classes and properties.

To overcome this problem, MateTee embeds an RDF knowledge graph into a vector space, once
all the entities are represented as vectors with same dimensionality, it uses any common distance
metric to calculate their similarity values. MateTee relies on finding a vector representation
of graph entities to produce the similarity value. For this, MateTee utilizes TransE [102], a
method based on Stochastic Gradient Descent that encodes the connectivity patterns of the
entities into a low-dimensional embedding space. TransE ensures that similar nodes in the RDF
graph are close in the embedding space, while dissimilar nodes in the graph are distant in the
embedding space. By using TransE approach, MateTee aims to calculate similarity values as
close as possible to the ground truth: values accepted by the scientific community because they
were calculated manually with deep domain expertise, e.g, Sequence Similarity in the Gene
Ontology domain. Formally, MateTee can be defined as:

Definition 3 (MateTee Embedding) Given a knowledge graph G = (V,E) composed by a
set T of RDF triples, where V = {s | (s, p, o) ∈ T}∪{o | (s, p, o) ∈ T} and E = {p | (s, p, o) ∈ T},
MateTee aims to find a set M of embeddings of each member of V , such that:

arg min
m1,m2∈M

Error(M) = arg min
m1,m2∈M

∑
m1,m2∈M

|S1(m1,m2)− S2(m1,m2)|
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Figure 5.4: The MateTee Architecture. MateTee receives as input an RDF Knowledge Graph, and
entities e1 and e2 from the knowledge graph. MateTee outputs a similarity value between e1 and e2
according to the connectivity patterns found in knowledge graph. A pre-processing step allows for the
transformation of a knowledge graph into a matrix-based representation. Then, n-dimensional embeddings
are generated. Finally, values of similarity are computed.

where S1 is a similarity metric computed using any distance measure defined for vector spaces,
e.g., Euclidean distance, and S2 is a similarity value given by the Gold Standards. The Gold
Standards are the values considered as ground truth.

The MateTee Architecture

Figure 5.4 depicts the end-to-end MateTee architecture. MateTee receives as input an RDF
Knowledge Graph, and entities e1 and e2 belonging to the knowledge graph. The objective of
the complete process is to calculate the similarity value between e1 and e2.

Data Preprocessing

The first step is to Pre-Process the original data in order to transform it into the format
required by the optimization method. As the optimization methods are numeric based, we
need a numerical representation of the data. In other words, the string-based triples coming as
input must be translated into a numeric format, usually sparse matrices. The implementation of
TransE employs three sparse matrices: one representing the Objects, another for the Subjects,
and a third one for the Translations. The matrices have as many columns as RDF triples are in
the original knowledge graph, and as many rows as entities, i.e., number of Subjects + number
of Translations + number of Objects. Note that if a Subject appears also as Object in another
RDF triple, it is considered as one. Moreover, in order to map the original entities to their
respective encodings, i.e., embeddings, dictionaries need to be created. Dictionaries map the
original URIs of the entities with the ID of their embeddings.

Gradient Descent Algorithm

Once the numerical representation and dictionaries of the RDF triples are created, the embeddings
of the entities can now be learned. Learning embeddings happens at the Encoding Generation
phase. This numerical representation of the data is now fed to the optimization method. The
method aims to update the value of the embeddings in order to minimize an overall error
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according to a proposed model. MateTee is based on TransE, this method aims at minimizing
the distance (in MateTee Euclidean Distance is used) between the sum of the embeddings of
the Subject and Translation to the embeddings of the Object. TransE also defines corrupted
triples, which are triples with either the Subject or Object replaced by another randomly selected
resource from the set of entities. This is required because TransE needs not only to ensure that
similar entities should be close in the embedding space, but also, that dissimilar entities must be
farther than the similar ones. This can be seen in the following Loss Function used by TransE:

Definition 4 (Loss function) Given is a set of RDF triples T and their respective set of
corrupted RDF triples (original triples with either the Subject or Object replaced) T ′. Embeddings
of Subject s, Object o, and Transitions t in T are represented as S, O, and T, respectively.
Similarly, embeddings of Subject s′ and Object o′ in corrupted RDF triples in T ′ are represented
as S′ and O′, respectively. The loss function can be defined as:

Loss(T, T ′) =
∑

(s,t,o)∈T

∑
(s′

,t,o
′)∈T

′

[margin+ d(S + T,O)− d(S′ + T,O′)]+

The key is to notice that the loss function only considers the positive part of the difference of
the distances, plus the margin; this is denoted by [x]+ in the loss formula. Considering positive
values is crucial because if the distance between entities of the original triple, i.e., d(S + T,O),
is greater than the distance between the entities of the corrupted triple, i.e., d(S′ + T,O′),
then the difference between the two is positive (regardless of the margin) and this number will
increase the overall error. This situation should not occur according to the model S + T ≈ O as
we want this difference to be as close to zero as possible. On the other hand, if the opposite
situation happens, the distance between the entities of the original RDF triple, i.e., d(S + T,O),
is smaller than the distance between the entities of the corrupted triple, i.e., d(S′ + T,O′). This
state is exactly what the model looks for, and since the difference between both distances is
negative, the overall error is not increased as only the positive part is considered. In the case
when the entities of the original RDF triple is smaller than the distance between the entities
of the corrupted triple, the margin tightens the model as the negative difference between both
distances must be at least as big as the margin, otherwise the overall error will be increased.

TransE - Gradient Descent Algorithm

The core of TransE learning algorithm performs the following steps:

1. Initialization: The embedding of each entity (Subject/Object) is initialized uniformly
and randomly between −6√

k
and 6√

k
where k is the dimensionality of the embeddings. At

this point only the relations are normalized, they will not be normalized again during the
optimization. Entities will be normalized at the beginning of each iteration.

2. Training (loop):
a) Entity embeddings normalization: In each iteration, first current embeddings of

the entities are normalized. This is important because it prevents the optimization to
minimize the error by artificially increasing the length i.e., norm, of the embeddings.

b) Creation of mini-batches: Triples to be used as training examples for each
iteration of the GD are selected. First, a random sample of the set of triples from the
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Figure 5.5: Corrupted triples. An original RDF triple t and two corrupted versions of t are presented
on the left and right hand of the figure, respectively. Corrupted triples have either the Subject or the
Object replaced by another randomly selected entity from the input knowledge graph.

input data set is chosen, and then, for each triple in the sample, a corrupted triple is
created. A corrupted triple is defined as follows:

• Corrupted triples: A corrupted triple is the same as the original but with
either its Subject or Object replaced by another randomly selected entity from
the data set, always just one, not both at the same time, as show in Figure 5.5:

c) Embeddings update: Once the training set of examples, i.e., real triples ∪
corrupted triples is set, it proceeds with the actual optimization process:

• For each one of the dimensions of each one of the embeddings in the data set, we
calculate the derivative of the overall error with respect to this parameter. This
derivative gives the direction on which the overall error is growing with respect
to this parameter. Then, to know how to update this parameter so that the
overall error decreases, it changes the direction to the opposite of the derivative,
and moves one unit of the learning rate (which is also an input hyper-parameter).
This process iterates until a maximum number of iterations is reached.

Similarity Mesaure Computation

When the optimization step reaches the termination condition, e.g., the maximum number of
iterations in TransE, the embeddings of the entities have been already learned. Having the
embeddings of all the entities in the input knolwedge graph, including e1 and e2, MateTee can
now proceed to the Similarity Measure Computation of both entities. Any distance metric
for vector spaces can be used to calculate this value, e.g., any Minkowski distance, Euclidean for
MateTee. It is important to notice that MateTee calculates the similarity and not the distance.
Therefore, using the following Euclidean distance formula, MateTee finds a similarity value
between 0 and 1:

similarity(A,B) = 1
1 + EuclideanDistance(A,B)

5.3.3 Empirical Studies

We empirically study the effectiveness of MateTee on measuring the semantic similarity between
entities in a knowledge graph. We assess the following research questions:

• Q1: Does the translations embeddings method used in MateTee improve the accuracy of
determining relatedness between entities in a knowledge graph?
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CESSM 2008 CESSM 2014
Size (MBs) 1 1
Triples 8,359 20,153

Entities
Left 1,039 1,559
Shared 0 0
Right 1,908 3,909

Relations 1 1

Table 5.5: CESSM 2008 and 2014 - Dataset description. Shows dataset size in Megabytes, overall
number of triples, number of left entities (Subjects), right entities (Objects), and shared entities (appearing
as Subject and as Object), and number of relations, to present a comparison of size between datasets
from 2008 and 2014

• Q2: Is MateTee able to perform as good as the state-of-the-art similarity metrics?

• Q3: Does MateTee perform well in Knowledge Graphs from different domains?

To answer our research questions, we evaluate MateTee in two different scenarios. In the first
evaluation, we compare Proteins annotated with the Gene Ontology5. In the second evaluation,
we compare people extracted from DBpedia, we prepare a dataset named DBpedia People [127].
MateTee is implemented in Python 2.7.10. The experiments were executed on a Ubuntu 14.04
(64 bits) machine with CPU: Intel(R) Xeon(R) E5-2660 2.60GHz (20 physical cores) with 132GB
RAM, and GPU card GeForce GTX TITAN X. MateTee’s source code is available in Git6.

Similarity among Proteins annotated with the GO ontology

Datasets. This experiment is conducted on the collections of proteins published at the
Collaborative Evaluation of GO-based Semantic Similarity Metrics [133] (CESSM) websites
20087 and 20148. The CESSM 2008 collection is composed of 13,430 pairs of proteins from
UniProt with 1,039 distinct proteins, while the CESSM 2014 dataset includes 22,302 pairs of
proteins also from UniProt with 1,559 distinct proteins. The sets of annotations of CESSM
2008 and 2014 comprise 1,908 and 3,909 distinct GO terms, respectively. The original CESSM
collections are presented in a multi-file fashion, one file per protein. Technical details in
Table 5.5 refer to the unified (single file) dataset, after data transformations are applied. CESSM
computes the Pearson’s correlation coefficients with respect to three similarity measures from the
genomic domain9: ECC similarity [134], Pfam [135], and the Sequence Similarity (SeqSim) [136].
Furthermore, the CESSM evaluation framework makes the results of eleven semantic similarity
measures available.
These state-of-the-art semantic similarity measures are specific for the genomic domain and

exploit the knowledge encoded in the Gene Ontology (GO) to determining relatedness among
proteins in the CESSM collections. These semantic similarity measures are extensions of well-
known similarity measures to consider GO annotations, Information Content (IC) of these
annotations, and pair-wise combinations of common ancestors in GO hierarchy. The extended
5 http://geneontology.org/
6 https://github.com/RDF-Molecules/MateTee
7 http://xldb.di.fc.ul.pt/tools/cessm/
8 http://xldb.di.fc.ul.pt/biotools/cessm2014/
9 The area in molecular biology and genetics that studies the genetic material of an organism.
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Figure 5.6: Results from the CESSM evaluation framework for the CESSM 2008 collection.
Results include: average values for MateTee with respect to SeqSim. The black diagonal line represents
the values of SeqSim for the different pairs of proteins in the collection. The similarity measures are:
simUI (UI), simGIC (GI), Resnik’s Average (RA), Resnik’s Maximum (RM), Resnik’s Best-Match
Average (RB/RG), Lin’s Average (LA), Lin’s Maximum (LM), Lin’s Best-Match Average (LB), Jiang
& Conrath’s Average (JA), Jiang & Conrath’s Maximum (JM), J. & C.’s Best-Match Average. (JB).
MateTee outperforms eleven measures and reaches a value of Pearson’s correlation of 0.787.

similarity measures are the following: Resnik (R) [137]; Lin (L) [138]; and Jiang and Conrath
(J) [139]. Additionally, the CESSM evaluation framework considers the average of the ICs of
pairs of common ancestors during the computation of these measures; this measure is denoted
with the label A. Following the approach reported by Sevilla et al. [140], the maximum value
of IC of pairs of common ancestors is computed; combined measures are distinguished with
the label M. As proposed by Couto et al. [141], the best-match average of the ICs of pairs
of disjunctive common ancestors (DCA) is also computed; measures labelled with B or G
correspond to combinations with the best-match average of the ICs. Finally, the Jaccard index
is applied to sets of annotations together with domain-specific information in the similarity
measures simUI (UI) and simGIC (GI) [142].
Results. Figures 5.6 and 5.7 report on the comparison of MateTee and the rest of the

eleven similarity measures with SeqSim; both plots were generated by the CESSM evaluation
framework. The black diagonal lines represent the values assigned by SeqSim. The majority of
the studied similarity measures assign high values of similarity to pairs of proteins that SeqSim
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Figure 5.7: Results from CESSM evaluation framework for the CESSM 2014 collection.
Results include: average values for MateTee with respect to SeqSim. The black diagonal line represents
the values of SeqSim for the different pairs of proteins in the collection. The similarity measures are:
simUI (UI), simGIC (GI), Resnik’s Average (RA), Resnik’s Maximum (RM), Resnik’s Best-Match
Average (RB/RG), Lin’s Average (LA), Lin’s Maximum (LM), Lin’s Best-Match Average (LB), Jiang
& Conrath’s Average (JA), Jiang & Conrath’s Maximum (JM), J. & C.’s Best-Match Average. (JB).
MateTee outperforms eleven measures and reaches a value of Pearson’s correlation of 0.817.

considers as similar proteins, i.e., in pairs of proteins with high values of SeqSim, the majority
of the curves of the similarity measures are close to the black line. Nevertheless, the same
behavior is not observed for the pairs of proteins that are not similar according to SeqSim, i.e.,
the corresponding curves are far from the black line. Contrary to state-of-the-art similarity
measures, MateTee is able to compute values of similarity that are more correlated to SeqSim,
i.e., the curve of MateTee is close to the black line in both collections. MateTee is able to reach
values of the Pearson’s correlation of 0.787 and 0.817 in CESSM 2008 and 2014, respectively.

Additionally, we present the comparison of MateTee and eleven similarity measures with
respect to the gold standard similarity measures: ECC, Pfam, and SeqSim; Table 5.6 presents
the results, including five additional similarity measures, i.e., dtax [131], dps [143], OnSim [144],
IC-OnSim [145], and GADES [146]. As before, values of the Pearson’s correlation represent
the quality of a measurement of similarity, the higher the correlation with the gold standards,
the better the measurement. The top 5 similarity measures (before introducing MateTee) with
higher quality are highlighted in gray, and the highest is highlighted in bold.
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Discussion: From the results, the following insights can be concluded; MateTee already
outperforms the quality of GADES for both collections 2008 and 2014, which is the best-
performing measurement before our method, for the Sequence Similarity. In the 2008 collection,
MateTee stands at the 5th position against the other two gold standards, only at 0.015 points
to the GADES for ECC, and 0.043 for Pfam. While in the 2014 collection, MateTee stands at
the 3th position against the Pfam gold standard, only at 0.029 points to the GADES (the best
before MateTee), and at the 5th position against the ECC gold standard, only at 0.014 points
to the GADES (the best before MateTee).

It can be observed that GADES [146] is the greatest competitor for MateTee. It performs
better comparing with the ECC and Pfam gold standards, but it is outperformed against
SeqSim. As the results of GADES and MateTee are rather close. For the three gold standards,
the advantage of MateTee against GADES is that the former requires domain expertise to
define its final similarity measure (GADES defines multiple measures based on: Class hierarchy,
Neighborhood, Relation Hierarchy, Attributes, and mixtures of them). While the latter learns
the embeddings in an automatic way (through an optimization process called Stochastic Gradient
Descent), and then uses any common vector similarity measure, e.g., Euclidean or Cosine, to
calculate their similarity.

Similarity 2008 2014
measure SeqSim ECC Pfam SeqSim ECC Pfam
GI [142] 0.773 0.398 0.454 0.799 0.458 0.421
UI [142] 0.730 0.402 0.450 0.776 0.470 0.436
RA [147] 0.406 0.302 0.323 0.411 0.308 0.264
RM [148] 0.302 0.307 0.262 0.448 0.436 0.297
RB [149] 0.739 0.444 0.458 0.794 0.513 0.424
LA [150] 0.340 0.304 0.286 0.446 0.325 0.263
LM [148] 0.254 0.313 0.206 0.350 0.460 0.252
LB [149] 0.636 0.435 0.372 0.715 0.511 0.364
JA [151] 0.216 0.193 0.173 0.517 0.268 0.261
JM [148] 0.234 0.251 0.164 0.342 0.390 0.214
JB [149] 0.586 0.370 0.331 0.715 0.451 0.355
dtax [131] 0.650 0.388 0.459 0.682 0.434 0.407
dps [143] 0.714 0.424 0.502 0.750 0.480 0.450
OnSim [144] 0.733 0.378 0.514 0.774 0.455 0.457
IC-OnSim [145] 0.779 0.443 0.539 0.810 0.513 0.489
GADES [146] 0.780 0.446 0.539 0.812 0.515 0.49
MateTee 0.787 0.431 0.496 0.817 0.501 0.461

Table 5.6: GO - CESSM 2008 and 2014 - Results. Quality in terms of Pearson’s correlation
coefficient between three gold standards, i.e, SeqSim (Sequence) similarity, Pfam (Protein Families)
similarity and EC (Enzyme Commission) similarity, and thirteen in-house similarity measures of CESSM,
plus OnSim, IC-OnSim and GADES. With gray background the best 6 correlations and the best in bold.
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Data set 1 Data set 2 Data set 3
Size (MBs) 80 80 80
Triples 552,355 553,232 552,527
Subjects (Persons) 20,000 20,000 20,000

Entities
Left 60,000
Shared 0
Right 247,465

Relations 1,981

Table 5.7: Description of the data set DBpedia People. Shows the datasets size in Megabytes,
overall number of triples, overall number of persons, number of left entities (Subjects), right entities
(Objects), and shared entities (appearing as Subject and as Object), and number of relations, to present
a comparison of size between three dumps

Similarity among People from DBpedia

Dataset: Table 5.7 shows technical details of the datasets used in the DBpedia People experiment.
The Gold Standard (GS) was extracted from the live version of DBpedia (July 2016). It
contains 20,000 subjects of type Person10, i.e., 20,000 subjects with all available properties and
their values. The overall number of RDF triples is 829,184. The Gold Standard is used to
compute Precision and Recall during the evaluation. The Test Datasets (TS) are created
from the Gold Standard with their properties and values were randomly split among three test
datasets. Each triple is randomly assigned to one or several test datasets. The selection process
takes two steps: 1) a number of test datasets to copy a triple to is chosen randomly under a
uniform distribution; 2) the chosen number is used as a sample size to randomly select particular
test datasets to write a triple. URIs are generated specifically for each test data set. Eventually,
each test dump contains a randomly uniform subset of the properties in the gold standard.
Metrics: We measure the behavior of MateTee in terms of the following metrics:

• Precision From all matched pairs (pairs with similarity greater than the threshold),
percentage of correct matches.

Precision = Number of correctly matched pairs
Total number of matched pairs

• Recall From all expected matches (all, including below and above the threshold), per-
centage of correct matches.

Recall = Number of correctly matched pairs
Total number of expected matches

Results: We tested the quality of MateTee by comparing its results with two other similarity
measurements: Jaccard (Section 5.2.1) and GADES (Section 5.2.2). For each one we calculate
the Precision and Recall, considering different values of Threshold. The Threshold is the
minimum similarity value so that the pair of people is considered in the matched-pairs set.
Table 5.8 show the results obtained using Jaccard, GADES, and MateTee similarity approaches.

10 <http://dbpedia.org/ontology/Person>
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T0.6 T0.7 T0.8 T0.9
Precision Recall Precision Recall Precision Recall Precision Recall

Jaccard 0.36 0.01 0.30 0.01 0.30 0.01 0.30 0.01
GADES 0.87 0.73 0.83 0.43 0.80 0.16 0.63 0.05
MateTee 0.93 0.79 0.99 0.59 1.00 0.10 0.00 0.00

Table 5.8: DBpedia People Test Datasets. Results comparison of precision and recall using Jaccard,
GADES and MateTee similarity measurements, obtained with different threshold values: 0.6, 0.7, 0.8
and 0.9. In bold the best value for each threshold

Discussions: From the results we extract the following insights. Regarding Precision,
MateTee similarity measurement has the best quality among all the three measurements, and
for all the considered thresholds. Regarding Recall, our method is the best up until a threshold
of 0.7. For higher thresholds, e.g., 0.8, the recall rapidly goes down to 0.1, and to absolute 0 for
0.9. The explanation for this is that MateTee, being an optimization-based method, will always
have an error as small as possible, so even if the neighborhoods of two entities are exactly the
same, it is very unlikely to have similarities higher than 0.9 or 1.0, they will for sure be higher
than between people which neighborhoods are absolutely different, but very unlikely be equal to
1.0. Then, using a threshold equal to 0.9, very few pairs of people will be considered, and with
1.0, absolutely no pairs are considered to count in the numerator of the Recall formula.

5.4 Summary
A similarity metric is a key building in the integration process of semantic equivalent entities
from web sources. In this chapter, we studied the effectiveness of GADES (a semantic similarity
metric) versus Jaccard (a non-semantic similarity metric). To do so, we adapted both GADES
and Jaccard to work with RDF molecules. The observed results suggest that GADES performs
better since it uses the semantics encoded in the RDF molecules. We presented as well MateTee,
a method to compare entities in knowledge graphs, based on the vector representation of
the entities (embeddings) created automatically without any domain expertise. We compared
MateTee versus several state-of-the-art methods including GADES, OnSim, and metrics available
in the CESSM evaluation framework. MateTee exhibited competitive results, even outperforming
GADES’ results, one of the best-performing similarity metric. GADES and MateTee are both
semantic similarity metrics, they take advantages of the semantics encoded in the RDF molecules,
e.g., classes and relationships. Both show good performance on the task of determining the
relatedness among RDF molecules and they can be plugged into MINTE integration pipeline.
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CHAPTER 6

On-Demand Knowledge Retrieval and
Exploration Engine for the Web

Heterogeneous web sources contain knowledge about the same entity. To build a complete
knowledge graph, we need to collect and integrate the knowledge about entities spread over web
sources. Of equal importance, we need to facilitate the exploration of the resulting knowledge
graphs. In this chapter, we focus on the problem of building and exploring knowledge graphs
on-demand from heterogeneous web sources, the content of this chapter is based on the publica-
tions [122, 123, 127, 152]. This chapter answers the following research question:

RQ3: How can knowledge graphs be populated on-demand with data collected from
heterogeneous web sources?

We start the chapter by presenting the problems of knowledge retrieval and exploration over
web sources in Section 6.1. Particularly, we analyze the problem of on-demand knowledge
retrieval and exploration, which is important in the scope of this thesis. Then, in Section 6.2
we present our solution to the research question RQ3, i.e., a federated semantic search engine
named FuhSen. FuhSen is a keyword-based federated engine that exploits the search capabilities
of heterogeneous sources during query processing and generates knowledge graphs on-demand
applying an RDF molecule integration approach in response to keyword-based queries. The
resulting knowledge graph describes the semantics of entities collected from the integrated
sources, as well as relationships among these entities. At first, in Section 6.2.1, we formalize
the problem that FuhSen is solving. FuhSen’s core relies on the integration approach MINTE
(cf. Chapter 4) and in the semantic similarity framework (cf. Chapter 5). After, we explain the
three main steps performed by FuhSen, i.e., the creation of the RDF molecules in Section 6.2.2,
the integration of these RDF molecules of data in Section 6.2.3, and finally the exploration of
the synthesized RDF graphs in Section 6.2.4.
Furthermore, we conducted empirical evaluations where FuhSen is compared to traditional

search engines. FuhSen semantic search capabilities, supported by domain ontologies, allow
users to complete search tasks that could not be accomplished with traditional Web search
engines during the evaluation study. Section 6.3 presents the results of our empirical studies
on FuhSen. The evaluation results suggest that FuhSen is able to accurately integrate data in
a knowledge graph than from heterogeneous web sources. Finally, the closing remarks of this
chapter are pointed out in Section 6.4. In summary, the contributions of this chapter are:
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Figure 6.1: Challenges and Contributions: This chapter focuses on the problem of retrieving and
integrating pieces of knowledge from web sources and proposes a federated semantic search engine to
build knowledge graphs on-demand.

• A federated hybrid search concept over highly heterogeneous data sources using a semantic
aggregation of the distributed information in its core. To the best of our knowledge, this
is the first approach targeting such a diverse set of data modalities in a federated manner
with semantic aggregation.

• A component-based architecture, where every element can evolve and be replaced with
an improved version without affecting the others as well as a comprehensive open-source
implementation of the architecture.

• A reactive component-based UI approach that handles the uncertainty imposed by the
intrinsic nature of RDF graphs. Additionally, we present its open source proof-of-concept
implementation using modern Web UI development technologies.

6.1 The Problem of Knowledge Retrieval and Exploration
The strong support that Web based technologies have received from researchers, developers,
and practitioners has resulted in the publication of data from almost any domain. Additionally,
standards and technologies have been defined to query, search, and manage Web accessible data
sources. A vast amount of information about various types of entities is spread over several parts
of the Web, e.g., people or organizations on the Social Web, product offers on the Deep Web or
on the Dark Web. These data sources can comprise heterogeneous data and are equipped with
different search capabilities, e.g., the Google+ API can return the profile of a user, while the
Twitter API also allows for finding the trends of a place. For example, Web access interfaces
or APIs allow for querying and searching sources like DBpedia, Wikidata, or the Oxford Art
archive. Web sources make overlapping as well as complementary data available about entities,
e.g., people, organizations, or art paintings. However, these entities may be described in terms
of different vocabularies by these web sources, and data that correspond to the same real-world
entities then needs to be integrated in order to have a more complete description of these
entities. End users such as investigators from law enforcement institutions searching for traces
and connections of organized crime have to deal with these interoperability problems not only
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Figure 6.2: Motivating Example of Knowledge Retrieval. Eugenio Bonivento on different web
sources is represented as RDF molecules.

during search time (Knowledge Retrieval) but also while exploring the collected information
from different sources (Knowledge Exploration).

6.1.1 On-Demand Knowledge Retrieval Challenges

In the crime investigation process, collecting and analyzing information from different sources
is a key step performed by investigators. Although scene analysis is always required, a crime
investigation process can greatly benefit from searching information about people and products
on the Web. Consider a case of counterfeit paintings of Eugenio Bonivento, investigators need to
gather all the information about the painter and his work. General domain knowledge bases such
as DBpedia or Wikidata (Web of Data) contain common information about Eugenio Bonivento,
while domain-specific web sources like the Oxford Art archive (Deep Web) contain detailed
information about his paintings. Figure 6.2 illustrates the RDF molecules of Eugenio Bonivento
present in these different web sources. DBpedia and Wikidata RDF molecules can be integrated
to produce a complete profile of Eugenio Bonivento, while Oxford Art completes the paintings
information. However, there are heterogeneity problems at the schema and data levels. Each
data source provides RDF molecules described in its own vocabulary (schema conflicts) and the
same fact might be expressed differently (data conflicts), e.g., the dates in Figure 6.2. Current
data integration approaches are performed by experts and it is extremely cumbersome and
time-consuming as it requires to access a large number of different data sources and set up
a whole integration infrastructure as in [76]. To facilitate the integration of the data about
Eugenio Bonivento, similarity measures able to decide on the relatedness of the corresponding
RDF molecules, and equivalent or complementary properties are required. The following are the
more relevant problems we need to solve in an on-demand knowledge retrieval scenario:

P1. Heterogeneous data sources. This refers to the ability to search in multiple and
heterogeneous web sources. The platform should hide the complexity of data search,
extraction and homogenization. The high degree of heterogeneity is defined in terms of
data formats, structures, coverage, size, and accessibility.

P2. Extensible by design. This means being able to add or remove sources of information,
in the platform. All data sources defined for the platform are dynamic by nature. On
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the Social Web, a new social network may gain relevance or expose a new version of its
API. On the Deep Web, a new e-commerce platform can hit the marketplace and become
a valuable source of information. Finally, the Data Web is growing very fast, with new
valuable open dataset appearing continuously.

P3. No index creation. Our approach is neither crawling nor mining the different data
sources defined in the vision of the platform. This is related with privacy issues and
copyrights to index content of the data sources, especially when they contain sensitive
personal data. Instead, our platform should be able to search in real-time information
about entities in its data sources.

P4. Efficiency and Findability. The speed of processing queries from a client should be as
fast as possible. As the platform deals with Big Data sources, such as Social Networks and
the Data Web, the integration process should be designed for an acceptable performance
from the beginning. As described in [10], retrieving everything that is relevant to the user
is the most important requirement for any search engine regardless of its type. So the
platform should avoid making the user review irrelevant content.

P5. Provenance. With information coming from different sources, it is critical to maintain its
provenance. The goal is to track the origin of every piece of information. This is relevant
in the domain of criminal investigation because investigators must decide whether to
accept some piece of information as valid or to carry out further steps, such as an in-place
verification of the information.

6.1.2 On-Demand Knowledge Exploration Challenges
Let us assume the following distributed web source browsing scenario in the context of a crime
investigation: during an ongoing investigation for corruption, browsing and analyzing information
coming from various sources is one of the key steps performed by investigators. In the case of
a "politically exposed person", such as a politician, an investigator wants to explore whether
or not this politician is in any form involved or related to the Panama Papers scandal, and at
the same time retrieve additional general information about the politician. While the Linked
Leaks Dataset1 contains an RDF representation of the Panama Papers, DBpedia2 contains
general information about politicians. Figure 6.3 illustrates how a user typically requires two
different UIs for exploring information about Mauricio Macri in two RDF graphs. In this case,
SemFacet (Figure 6.3(a)) is used to browse the RDF graph of DBpedia, while the OntoText
browser (Figure 6.3(b)) is used to explore the RDF graph of Linked Leaks.
Additionally, the exploration of on-demand built knowledge graph brings new challenges at

the UI level. The UI has to deal with a higher degree of uncertainty, such as connectivity
problems and longer query response times. These are issues which are only aggravated by the
variations in the size of the retrieved data, and the complexity in the semantics of the data,
all factors which potentially have a negative effect on the usability of the interface, ultimately
progressing into a decrease of the overall user experience. State-of-the-art approaches [113, 115,
116, 118] are mainly designed to explore one RDF graph at a time. Consequently, they do not
address these challenges sufficiently. In the following, we will briefly describe what we identified
as some of the main UI problems when browsing on-demand built knowledge graphs.
1 http://data.ontotext.com/linkedleaks
2 http://wiki.dbpedia.org
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(a) Exploring DBpedia using SemFacet (b) Exploring Linked Leaks using OntoText’s UI

Figure 6.3: Motivating Example of Knowledge Exploration. A user typically requires two different
UIs to explore the RDF graphs of DBpedia and Linked Leaks.

P1. Reactiveness towards the semantics of the data The quality and amount of the
semantics of data in a on-demand built knowledge graph exploration scenario vary in a
significant way. We may find general concepts (e.g., Organization) to more specialized
concepts (e.g, Terrorist Organization). The UI needs to deal and react to the variety of
the semantics in the data, in the sense of preserving the semantics of the information being
retrieved. Most of the current implementations [35, 116] are designed with single RDF
knowledge graph exploration scenarios in mind, where flows of information in the form
of entities and attributes that originate from them are static in structure. In such cases,
designing interfaces that implement reactivity in the semantic context have received more
attention of researchers recently. However, this is unfortunately not the case when it comes
to the exploration of on-demand built knowledge graphs. This is due to the fact that the
flow of information in such cases is no longer static in structure – it is inherently different,
constantly growing and evolving, thus posing a challenge when it comes to designing
standardized but scalable interfaces that cope with such change. Hence, we identified a
lack of reactive approaches that tackle semantic contexts when it comes to on-demand
built knowledge graph exploration. We tackle this problem by developing a reactive UI
components that allows on-demand built knowledge graph exploration while preserving
the semantic contextualization of the results.

P2. Error visibility and feedback Another potential pitfall that can be observed when
exploring on-demand built knowledge graphs is that of error visibility and feedback. Errors
during the browsing process need to be made clearly visible so as to provide better feedback
to the users, in accordance to the visibility of the system status and the help users recognize,
diagnose, and recover from errors heuristics referred to by Nielsen [153]. At the same
time, the attention span time frames mentioned by Nielsen [154] should also be preserved.
These usability heuristics help safeguard that interfaces are sufficiently comfortable and
functional when the user performs the intended tasks of a system, ensuring further adoption
of the technology. However, these principles are difficult to preserve in the context of
on-demand built knowledge graph exploration, due to the nature of how federated searches
operate—different queries for different knowledge graph sources, performed in parallel,
typically imply different response times for the queries as well. This contributes to longer
waiting times, where the user could be left without any feedback for time spans that
surpass a few seconds, causing confusion and triggering a sense of lack of control in the
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users, which ultimately breaks the feedback flow between the interface and the user. We
attempt to tackle this problem by the implementation of a reactive UI component, which
allows for improved visibility and feedback of errors that may happen during the federated
search process, where the user can have full feedback as to the current system status, as
well as obtaining information about the nature of the errors that have occurred.

P3. Minimalist design (P3) A UI for exploring RDF graphs needs to manage well the
topic of minimalism and avoid violating the aesthetics and minimalist design rules that
also form part of Nielsen’s heuristics [153]. To address these rules, we took three main
requirements into consideration when designing our approach: maximum screen space
usability, maximum visibility (to also contribute in solving P2), and minimal cluttering.
However, providing minimal cluttering in a screen space where there is both abundant
information to display and considerable functionality to support becomes a challenge,
especially in systems which have multi-layer navigation bars, as they either consume an
important block of screen space or become too confusing or difficult to follow for the user.
Thus, these design requirements were also carefully considered when designing our UI
components. Moreover, the implementation of reactive features in our design further aims
to contribute to minimizing the required screen space, as well as improving the ergonomics
of the interface by providing familiarity in the interface by means of semantically enabling
or disabling views or functions according to the results being obtained during the search.

6.2 A Federated Semantic Search Engine

In this section, we present FuhSen a novel federated semantic search engine. FuhSen exploits
state-of-the-art semantic similarity measures, and integrate properties on-demand of any type of
entity e.g., a person Eugenio Bonivento into a single RDF knowledge graph from web sources.

6.2.1 Problem Definition

Our federated semantic search engine FuhSen addresses the challenges described in Section 6.1.
In this section, we formally define the problem as follows. Given a keyword query, i.e., a set
of strings containing one or more entities. FuhSen creates a knowledge graph at query time
that represents the entities associated with the keywords in the query, and utilizes semantic
similarity measures to determine the relatedness of entities to be integrated. A knowledge
graph is composed of a set of entities, their properties, and relations among these entities. The
Semantic Web technology stack provides the pieces required to define and build a knowledge
graph. To properly understand these concepts, we follow the notation proposed by Arenas et.
al. [27], Piro et. al. [155], and Fernandez et. al. [8], Ribón et. al. [7] to define RDF triples,
knowledge graphs, RDF molecules, and similarity measures, respectively.

Definition 5 (RDF triple [27]) Let I, B, L be disjoint sets of URIs, blank nodes, and literals,
respectively. A tuple (s, p, o) ∈ (I ∪B)× I× (I ∪B ∪ L) is denominated an RDF triple, where s
is called the subject, p the predicate, and o the object.

Definition 6 (Knowledge Graph [155]) Given a set T of RDF triples, a knowledge graph
is a pair G = (V,E), where V = {s | (s, p, o) ∈ T} ∪ {o | (s, p, o) ∈ T} and E = {(s, p, o) ∈ T}.
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Definition 7 (RDF Subject Molecule) Using the defintion we provided in Section 4.2, we
define an RDF molecule as follows: Given an RDF graph G, we call a subgraph M of G an RDF
molecule iff the RDF triples of M = {t1, . . . , tn} share the same subject, i.e., ∀ i, j ∈ {1, . . . , n}
(subject(ti) = subject(tj)). An RDF molecule can be represented as a tupleM = (R, T ), where
R corresponds to the URI (or blank node ID) of the molecule’s subject, and T is a set of pairs
p = (prop, val) such that the triple (R, prop, val) belongs to M . Property values are free of blank
nodes, i.e., let I be a set of IRIs and L a set of literals, then val ∈ I ∪ L.

Definition 8 (Individual similarity measure [7]) Given a knowledge graph G = (V,E),
two entities e1 and e2 in V , and a resource characteristic RC of e1 and e2 in G, an individual
similarity measure SimRC (e1, e2) corresponds to a similarity function defined in terms of RC
for e1 and e2.

Definition 9 (Aggregated similarity measure [7]) Given a knowledge graph G = (V,E)
and two entities e1 and e2 in V , an aggregated similarity measure α for e1 and e2 is defined as
α(e1, e2 | T, β, γ) := T (β(e1, e2), γ(e1, e2)) where:

• T is a triangular norm (T-Norm) [156].

• (β(e1, e2) and γ(e1, e2)) are aggregated or individual similarity measures.

FuhSen leverage semantic similarity measures to address a research problem: given a keyword
query Q, a threshold T, build a knowledge graph of heterogeneous data which are no less
semantically similar than T. Figure 6.2 presents three RDF molecules with data about Eugenio
Bonivento collected from DBpedia, Wikidata, and Oxfort Art, respectively. Each of the data
sources applies its own approach for knowledge serialization, e.g., DBpedia employs human-
readable URIs whereas Wikidata encodes entities with auto-generated identifiers as combinations
of letters and numbers which is hard to comprehend without prior acquaintance with the Wikidata
data model. Evidently, simple string similarity metrics will fail to identify a possible link among
those molecules due to a lack of shared common string literals. Semantics of the facts encoded
in RDF molecules has to be considered in order to truly grasp their similarity. In other words, a
new, higher abstraction layer has to be established. Such a level, which operates on semantic
knowledge instead of symbols (in which the knowledge is presented), allows for semantic similarity
measures. The following section introduces and describes the architecture of FuhSen, a system
that is capable of exploiting the MINTE framework (cf. Chapter 4), and solving the knowledge
retrieval and exploration problem described in Section 6.2.1.

6.2.2 Creation of RDF Molecules

As an input, FuhSen receives a keyword query Q, e.g., Eugenio Bonivento, a similarity metric,
a fusion policy, and threshold value T, e.g., 0.7. The input values are processed by the
Query Rewriting module, which formulates a correct query to be sent to the Mediator-Wrapper
component. The Mediator explores all RDF Wrappers in the federation and using the Definition 7
transforms the output into RDF molecules under the OntoFuhSen vocabulary. Intermediate
results are enriched with additional knowledge in the RDF Molecules Enrichment module.
Finally, molecules with materialized induced facts are integrated into a knowledge graph in
the RDF Molecule Integration module. The integration module uses the MINTE Framework
described in Chapter 4, and it consists of three sub-modules responsible for: 1) identifying
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Figure 6.4: The FuhSen Architecture. FuhSen receives a keyword query Q and a threshold T , and
produces a knowledge graph G populated with the entities associated with the keywords in the query and
their relationships. Input queries are rewritten into queries understandable by the available data sources.
Wrappers are used to collected the data from the relevant sources and to create RDF molecules. Values of
semantic similarity measures are computed pair-wise among RDF molecules, and the 1-1 weighted perfect
matching is computed to the determine the most similar RDF molecules. RDF molecules connected by
an edge in the solution of the 1-1 weighted perfect matching are merged into a single RDF molecule in
knowledge graph G.

semantic similarity of molecules; 2) performing one-to-one perfect matching; and 3) integrating
similar RDF molecules. Figure 6.4 shows the main modules of the FuhSen approach. We
describe each component in detail.

The OntoFuhSen Vocabulary

The OntoFuhSen3 vocabulary serves as a global schema for the federated search engine to
retrieve and integrate data coming from different web sources. The OntoFuhSen vocabulary
allows for describing the data sources, and entities in the federation. The rationale of the
vocabulary is threefold: 1) facilitating visualization and faceted browsing of the results; 2) acting
as a unified data schema on top of which semantic algorithms can enhance the completeness of
search results; and 3) as a response format for exchanging data collected from the wrappers
with the rest of the FuhSen’s engine components. Additionally, the OntoFuhSen vocabulary
allows for the description of user search activities, data sources, and entities in the federation
(cf. Figure 6.5). The vocabulary is divided into the following three modules:

(1) Search engine metadata: comprises classes modeling a user’s search activity (e.g.,
fs:Search, fs:SearchableEntity). This module takes into account the provenance of re-
sources. To enable provenance tracking, classes of the PROV 4 standard vocabulary have been
extended to model the provenance of the information related to a user’s search activities.
(2) Data source metadata: contains classes describing Web API services and access points

3 https://w3id.org/eis/vocabs/fuhsen
4 http://www.w3.org/ns/prov
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Figure 6.5: An Overview of the OntoFuhSen vocabulary. The three modules of the OntoFuhSen
vocabulary are depicted in different colors; main classes of each module are presented.

(e.g., fs:Parameter, fs:Operation). They model data sources from which the RDF molecules
are collected, e.g., Facebook, DBpedia, Twitter, or Google Knowledge Graph.
(3) Domain specific metadata: includes classes for describing the results collected from FuhSen

during keyword query processing. For the crime domain concepts include: gr:ProductOrService
and org:Organization. The FuhSen vocabulary utilizes existing well-known ontologies, e.g.,
terms from FOAF and Schema.org 5.

Query Rewriting

This component basically transforms the initial keyword query to queries that the wrappers
understand. Using the data source description in the OntoFuhSen vocabulary the initial query
is transformed into, e.g., a SPARQL query or a REST API request depending on the case. The
final list of queries is sent to the search engine component.

Wrapper-Mediator Components

The wrapper-mediator components orchestrate the data extraction process using RDF wrappers
and store the RDF molecules in an in-memory graph. The search engine receives the keyword
query and, based on the data sources’ description defined in terms of the OntoFuhSen vocabulary,
orchestrates in an asynchronous manner the RDF molecules creation. Requests to the RDF
wrappers are created based on the Web APIs6 of the data sources, whose wrappers are described
in terms of OntoFuhSen. Once a result has been received from a wrapper, a request to aggregate
it in the results knowledge graph is sent to the vocabulary-based aggregator component. The
aggregator creates an in-memory RDF graphs containing the RDF molecules, where all responses
produced by the RDF wrappers are aggregated and described using OntoFuhSen. The vocabulary-
based approach keeps the data aggregation task relatively simple.

RDF Molecules Enrichment

Once the RDF molecules have been constructed, FuhSen allows for additional quality improve-
ment by enriching them with new facts acquired through the typing process [157]. It is thus
5 http://xmlns.com/foaf/spec/, http://schema.org/
6 Example of a RDF wrapper request: https://wrapper-url/ldw/oxford/search?query=Eugenio+Bonivento
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Figure 6.6: The 1-1 Weighted Perfect Matching Problem. The algorithm to compute the 1-1
weighted perfect matching receives as input a weighted bipartite graph where weights represent the values
of a similarity measure between the RDF molecules in the bipartite graph. The output of the algorithm is
a maximal matching of the RDF molecules in the bipartite graph, where each RDF molecule is matched
to exactly one RDF molecule; edges in the matching have a maximal value.

possible to attach additional semantic information to the KG, e.g., location information. Thus,
the string “Italy” of a Twitter tweet can be annotated with resources from other knowledge
graphs, such as DBpedia Italy resource7. Enrichment of on-demand KGs is achievable through
facts mining based on the existing facts and using graph analysis algorithms. Additionally,
two of the built-in advantages of the on-demand KGs built by FuhSen are: (1) provenance
information, which allows to trace the origins of a certain fact to a certain source; and (2) the
freshness of data, since web sources evolve over time the on-demand approach allows FuhSen to
collect and integrate the latest data.

6.2.3 Integration of RDF Molecules

This module constructs a knowledge graph out of the enriched molecules. The input is a set
of molecules, and the output is an integrated RDF graph. The module consists of three sub-
modules, namely Semantic Similarity sub-module, Perfect Matching sub-module, and Integration
sub-module. In this module we based on the results presented in Chapter 4. We describe below
how we configure each sub-module of MINTE in details.

Computing Similarity of RDF Molecules

Similar molecules should be merged in order to create a fused, universal representation of a
certain entity. In contrast with triple-based linking engines like Silk [158], we employ a molecule-
based approach increasing the abstraction level and considering the semantics of molecules.
That is, we do not work with independent triples, but rather with a set of triples belonging
to a certain subject. The MINTE molecule-based approach (cf. Chapter 4) allows for natural
clustering of a knowledge graph, reducing the complexity of the linking algorithm.
7 http://www.dbpedia.org/resource/Italy
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The 1-1 Weighted Perfect Matching

Given a weighted bipartite graph BG of RDF molecules, where weights correspond to values
of semantic similarity between the RDF molecules in BG, a matching of BG corresponds to
a set of edges that do not share an RDF molecule, and where each RDF molecule of BG is
incident to exactly one edge of the matching. The problem of the 1-1 weighted perfect matching
of BG corresponds to a matching where the sum of the values of the weights of the edges
in the matching have a maximal value [159]. The Hungarian algorithm [160] computes the
1-to-1 weighted perfect matching. Figure 6.6(a) illustrates the input of the algorithm where BG
comprises edges between RDF molecules, while Figure 6.6(b) represents the final state. RDF
molecules with the maximal values of similarity are mapped in pairs in the solution of the 1-1
weighted perfect matching and will be considered as RDF molecules to be merged. To determine
the minimal value of similarity that represents RDF molecules that may be considered similar,
a threshold T in the range of [0.1] is considered. Edges with weights less than T are considered
as 0.0 by the 1-1 weighted perfect matching algorithm.

Integration functions

When similar molecules are identified under the desired conditions, the last step of the pipeline
is to integrate them into an RDF knowledge graph. The result knowledge graph contains all the
unique facts of the analyzed set of molecules. The implementation of the integration function in
FuhSen is the union, i.e., the logical disjunction, of the molecules identified as similar during
the previous steps.

6.2.4 Exploration of RDF Molecules

Once a consolidated graph is built out of the web sources. The next step is to enable the
exploration of the knowledge graph. The state-of-the-art user interfaces are mainly oriented to
explore materialized knowledge graph and not on-demand created knowledge graphs. In this
section, we show the design of a new approach to exploring knowledge graphs build on-demand
from web sources named FaRBIE.

The FaRBIE Approach

To tackle the challenges of browsing on-demand built knowledge graphs, and to keep up with
providing non-technical users with a more enjoyable and usable experience, we propose a reactive
user interface design style. In contrast to imperative approaches (e.g., libraries such as jQuery), a
Reactive UI updates itself by reacting to changes in the data and rendering the right components
whenever such data changes occur. Reactive UIs are component-oriented, where each component
may evolve independently, facilitating reusability in the interface. A reactive UI component may
contain not only the view but also pieces of logic to react appropriately to the semantics of the
data. Hence, we argue that this style of UI fits well for RDF-based applications. ReactJS8 has
become one of the most popular libraries to implement this style of user interface.

8 https://facebook.github.io/react/
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Figure 6.7: UI Design. (a) FaRBIE design contains the Results Logic Keeper and Reactive UI
Components; (b) Reactive UI Components organized in levels from generic to specific. The UI components
can be extended and specialized in providing a better UX according to the semantics of data.

User Interface Design

By making the user interface components reactive, we can provide developers with the possibility
of making such components interact with the users in real time, while the queries for the multiple
datasets are still running. In general, a common faceted browsing UI can be divided into three
main UI sections: i) the search box or input section and source selection, where the user enters
a keyword to start the search process and select data sources and entity types of interest. ii) the
facets section contains all the UI elements to filter and narrow down the results; the facets are
automatically generated based on the results collected from the RDF graphs. iii) the results
section shows the entities found in the RDF graphs that match the keyword. Additionally, it
provides users with feedback concerning the current state of a multiple dataset query (whether
the search has succeeded, has failed, or is in progress). Figure 6.7 illustrates the FarBIE user
interface design.

Logic Keeper

The Logic Keeper is not a user interface component but a component responsible for handling
the communication with the RDF graph servers (e.g., using SPARQL HTTP requests). It uses
the keyword search input and prepares the queries to the RDF graph servers. In this paper,
we assume that the RDF graph server supports Keyword Search9. The Logic Keeper manages
all the logic applied to the results coming from the RDF graph servers, including 1) facets
generation, 2) entity results preparation, and 3) meta-data creation from the search process.

To generate the facets, we based our implementation on the work of Arenas et al. [35]. In brief,
generic SPARQL queries are applied on the resulting entities to generate the facets. Additionally,
the list of facets and the number of facet values are computed and maintained by the Logic
Keeper. The second responsibility of the Logic Keeper is that of preparing the entity results,
where a snippet is composed per result, and values such as dates are standardized for the reactive
9 Common Triple Stores, such as Virtuoso or Fuseki, usually provide a keyword search functionality. https:

//jena.apache.org/documentation/query/text-query.html
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a

t1 User click on a data source (t1+Θ)

Figure 6.8: (a) Search Box reactive component. A new data source selection produces a reaction in the
categories list with the new entities available in the graph

UI components. Finally, meta-data about the search process is created, including provenance
of results, server request success or error information, the number of results, the number of
results by type and the type of entities. All this metadata is computed and managed by the
Logic Keeper. To trigger the reaction of the UI components, the Logic Keeper communicates
whenever there is a change in the search results data, under the following circumstances: 1)
more results arrive from the RDF graphs, resulting in new facets or new result items, or 2) a
user interaction in the UI components demands more data.

Reactive UI components

The following reactive components were designed to tackle the UI challenges mentioned in
Section 6.1.2. For the sake of terminology, we will be naming entities as categories and attributes
as elements in the following.
Search Box: The purpose of this UI component is to provide the user with an interface for

the input of the query parameters, and thus the creation of the federated query. No particular
reactivity needs to be incorporated in this component apart from the common auto-suggestion
and auto-completion features well-know for this type of UI component.
Source & Entity Selector: Allows users to focus on specific web sources or entities. The

reactivity designed on these components is triggered by a user interaction. When the user filters
a data source, the categories list is updated with the searchable entities of that web source.
Faceted Bar: Through the use of a real-time-populated Faceted Bar, we attempt to

address the reactivity and visibility issues in terms of views navigation and results (i.e. data)
filtering for a set of RDF knowledge graph datasets. We attempt to achieve this by combining
the Accordion10 user interface element and the List menu patterns into one unified reactive
component, which we call the Faceted Bar. The Faceted Bar provides users with a layered
menu-styled navigational experience, in order to provide the ability of browsing through entities
and thus filtering results as well, in a single component, which could potentially save time and
improve the ergonomics. For the purposes of our design, we support the implementation of
10 Accordion menu pattern in CSS3.

https://designmodo.com/css3-accordion-menu/
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Figure 6.9: (a) Source Box component reacts when a data source query is retrieved successfully or with
errors. (b) Faceted Bar component reacts to new facet items or categories.

this component as a left-side-bar or as a top-bar, according to the developer’s preference. The
Faceted Bar also allows to minimize the impact of the screen space trade-off, for the benefit
of saving additional screen space without sacrificing visibility in neither the navigation area
(i.e., the categories and elements filtering) nor the actual screen space required for the data
presentation (i.e., results presentation).
Facet Navigation Menu: The Facet Navigation Menu is a child UI component of the

Faceted Bar UI component. It allows users to semantically navigate within the elements being
obtained as results from the federated search query, through entity categorization. The idea
is to provide menus and sub-menus which allow users to narrow down the list of results, in
order to improve usability by means of offering better grouping and increased visibility, while
providing a design backbone for future developers at the same time. Our approach supports
default entity categorizations using the types Persons, Organizations, Products, and Documents.
For instance, it maps all the elements obtained as a result of the query which belong to the
person category, thus creating a “menu” container for such attributes. The Facet Navigation
Menu UI component holds two child UI components: Facet Item and Facet Search.
Facet Items: The purpose of the Facet Item UI Component is to serve as the final display

and selection place for each category. Thus, elements such as gender for a category of type
person, for example, would be placed as checkbox UI components, which the user could use as
selection to further narrow the results view of the query.
Facet Search: The purpose of the Facet Search UI Component is to serve as a means of a

refined search among the obtained elements throughout each category. By using such component,
we provide users also with the ability of refining the field of options available for navigation of
the elements.
Sources Infobox: The purpose of this UI component is to provide a toolbox interface where

users can have an overview of the status corresponding to the sources being queried. This
component has three elements: 1) successfully retrieved sources, 2) failed sources, and 3) the
information button, which pop ups a dialog with detailed information regarding the status of the
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a b

t1 More data arrives (t1+Θ)

Figure 6.10: (a) Results Container component reacts when more data arrive. Additionally, it selects
the best view according to the semantics of the results. (b) View Bar component reacts after analyzing
the results, e.g., the map view is enabled when geo-data is found in the search results.

sources, response times, as well as error codes and messages, which clearly indicate the nature
of a failure in a queried source.
Results Container: The purpose of this UI component is to encapsulate the main UI

components related to the results of the query. This includes the screen area allocated for
displaying the list or map of results belonging to a query, in which each result of the query is
then displayed in a child ResultsItem UI component. At the same time, the children ResultsItem,
Source Box, Views Bar and Settings Bar can also be found under this UI component. The
reactivity designed on this component is triggered whenever more data is coming from the RDF
graphs, e.g., new results are appended to the list.
Results Item: The purpose of this UI component is to provide a unique container each of

the results being obtained from the query will be mapped to, in order to be later displayed in the
Results Container component. Thus, each Results Item UI component will be shown or hidden
from the Results Container, depending on the navigational input obtained from the Faceted
Bar component. The reactivity designed on this component is triggered by the semantics of the
entities contained in the data, e.g., for a person, it may be more relevant to show demographic
information, but for an organization, its location information might be more relevant. This is
achieved by specialized views in the UI component structure hierarchy.
Views Bar: The purpose of this UI component is to provide the users with the possibility of

switching the display of the results through different view modes. The reactivity designed on
this component is triggered by more data coming from the RDF graphs. After analyzing the
results, an appropriate view is automatically enabled. FaRBIE supports the following common
view modes:

• List mode: Results are displayed in a list, it is the default view mode.

• Table mode: Results are shown in a table, each column is an entity attribute of interest.

• Map mode: Results are displayed on a map when geodata is provided.

• Graph mode: It uses a graph visualization to display the relationships between the results
if a sufficient number of links is found.

Settings Bar: The purpose of this UI component is to provide the user with the possibility
of accessing additional options, such as entering credentials to obtain log-in tokens, importing
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Figure 6.11: Proof of Concept. FaRBIE allows to explore the on-demand built knowledge graph from
DBpedia and Linked Leaks web sources.

a previously saved configuration file to use as input parameter for the federated search, or
selecting the displayed language. Other options could be implemented and supported by future
researchers and developers in order to adapt to their needs. No particular reactivity has been
incorporated into this component.

Proof-of-concept

To validate our approach, we have developed a proof-of-concept, based on the introduced use
case scenario in the criminal investigation domain. We have configured FaRBIE to explore two
datasets, namely DBPedia and Linked Leaks. Figure 6.11 shows the results using Mauricio
Macri as keyword. Two people and one organization were found matching the keyword, already
providing insights to the possible activities and relation between Mauricio Macri and the
Panama Papers scandal, with only a single search. In order to implement FarBIE, we evaluated
different frameworks for web user interfaces as well as web development platforms resulting in
the following selection:

• ReactJS11: A modern javascript library for building web user interfaces. It is a component-
oriented library, and the features of virtual DOM it provides fit perfectly the requirements
of modifying the user interface dynamically when new data is sent from the server to
the user interface. In the work of Khalili et al. [118], it is used as the core technology to
provide a reusable set of user interface elements to build Linked Data applications.

• Web Socket: A protocol providing full-duplex communication channels over a single
TCP connection. It is an ideal protocol to realize the communication of the reactive
user interface with the backend system. In our case, a web socket is opened between the
LogicKeeper component and the federated search engine. The data is continuously pushed
from the server to the client.

• Play Framework12: Is a high velocity web framework for Java and Scala. Many web
11 https://facebook.github.io/react/
12 https://www.playframework.com
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Experiment 1: People Experiment 2: People
DBpedia D1 DBpedia D2 DBpedia Wikidata DBpedia Wikidata

Molecules 500 500 500 500 1000 1000
Triples 17,951 17,894 29,263 16,307 54,590 29,138

Table 6.1: Benchmark Description. RDF datasets used in the evaluation.

frameworks, such as Grails, Tomcat, Spring, PHP, or Rails, use threaded servers. A
threaded server assigns one thread per request and uses blocking I/O. The play framework
is based on an event server (Netty). It assigns one thread/process per CPU core and uses
non-blocking I/O. Threaded vs. event matters in a reactive user interface, as the engine
spends most of the time waiting for query results.

The proof-of-concept interface and the intial source code is available as an open source
project.13 FaRBIE is empowered with flexible user interface components that react to new data
coming from the server. The user is able to explore the portion of search results as soon as
they are retrieved from the datasets in the RDF graph federation. Instant filtering is possible
without waiting for the complete set of results.

6.3 Empirical Evaluations
6.3.1 Performance Evaluation
To answer research question 3 (cf. Section 1.3), we evaluate the effectiveness of FuhSen on
building on-demand knowledge graphs using GADES—a semantic similarity metrics, compared
to Jaccard—a non-semantic similarity metric. We assess the following research questions:

• Q1: Does a semantic similarity metric, i.e., GADES, synthesize RDF graphs on-demand
more efficiently and effectively compared to Jaccard?

• Q2: What is the impact of threshold values on the completeness of the on-demand built
knowledge graph?

The experimental configuration to evaluate these research questions is as follows:

Experimental Setup

Benchmark: Experiment 1 is executed against a dataset of 500 molecules14 of type Person
extracted from the live version of DBpedia (February 2017). Based on the original molecules,
we created two sets of molecules by randomly deleting or editing triples in the two sets sharing
the same DBpedia vocabulary. Experiment 2 employs subsets of DBpedia and Wikidata of the
Person class. Assessing FuhSen in the higher heterogeneity settings, we sampled datasets of 500
and 1000 molecules varying triples count from 16K up to 55K. Table 6.1 provides basic statistics
on the experimental datasets.
Baseline: Gold standards include the original DBpedia Person descriptions (Experiment 1)

and owl:sameAs links between DBpedia and Wikidata (Experiment 2). The Gold standard for
13 https://github.com/LiDaKrA/FaRBIE
14 https://github.com/RDF-Molecules/Test-DataSets/tree/master/DBpedia-People/20160819
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(a) T = 0.1 (b) T = 0.3

(c) T = 0.5 (d) T = 0.8

Figure 6.12: Experiment 1 (GADES) integrating molecules of DBpedia. FuhSen produces
complete results at all threholds.

evaluating FuhSen is comprised of the pre-computed amounts of pairs which similarity score
exceeds a predefined threshold, the gold standards are computed offline.
Metrics: We report on execution time (ET in secs) as the elapsed time required by the

FuhSen to produce all the answers. Furthermore, we measure Completeness over time, i.e., a
fraction of results produced at a certain time stamp. The timeout is set to one hour (3,600
seconds), the operators results are checked every second. Ten thresholds in the range [0.1 : 1.0]
and step 0.1 were applied in Experiment 1. In Experiment 2, five thresholds in the range
[0.1 : 0.5] were evaluated because no pair of entities in the sampled RDF datasets has a GADES
similarity score higher than 0.5.
Implementation: For this experiment we implemented FuhSen using Scala and Play Frame-

work15. The experiments were executed on a Ubuntu 16.04 (64 bits) Dell PowerEdge R805 server,
AMD Opteron 2.4GHz CPU, 64 cores, 256GB RAM. We evaluated two similarity functions:
GADES (cf. Section 5.2.2) and Jaccard (cf. Section 5.2.1). GADES relies on semantic descrip-
tions encoded in ontologies to determine relatedness, while Jaccard requires the materialization
of implicit knowledge and mappings. Evaluating schema heterogeneity of DBpedia and Wikidata
in Experiment 2 the similarity function is fixed to GADES.

DBpedia to DBpedia People

Experiment 1 evaluates the performance and effectiveness of FuhSen. The testbed includes two
split DBpedia dumps with semantically equivalent entities but non-matching resource URIs
and randomly distributed properties; That is, both web sources are described in terms of one
DBpedia ontology. GADES and Jaccard similarity functions are compared.
Figure 6.12 shows the results of the evaluation of FuhSen with GADES. FuhSen achieves

completeness over time in all four cases with the threshold in the range 0.1-0.8. Figure 6.12(a)
demonstrates that FuhSen is capable of producing 100% of results within the timeframe. In
15 https://github.com/LiDaKrA/FuhSen-reactive
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(a) T = 0.4, GADES (b) T = 0.4, Jaccard

Figure 6.13: Experiment 1 with fixed threshold. GADES identifies two orders of magnitude more
results than Jaccard while FuhSen still achieves full completeness.

Figure 6.12(b), FuhSen achieves the full completeness even faster. In Figure 6.12(c) FuhSen
finishes after 10 minutes. Figure 6.12(d) shows FuhSen taking a bit more time but achieves answer
completeness. Figure 6.13 illustrates the difference in elapsed time and achieved completeness
of FuhSen applying GADES and Jaccard similarity functions. Evidently, Jaccard outputs fewer
tuples even on lower thresholds, e.g., 486 pairs at 0.4 threshold value, against 50,857 pairs
by GADES. Analyzing the empirical results we are able to answer Q1, i.e., we demonstrate
that plain set similarity metric as Jaccard that consider only an intersection of exactly same
triples are ineffective in integrating heterogeneous RDF graphs. We also observe that FuhSen
consistently exhibits reliable results. However, time efficiency depends on the input graphs and
applied similarity functions. A further observation is that the semantic similarity function allows
for matching RDF graphs more accurately.

DBpedia - Wikidata People

The distinctive feature of the experiment consists in completely different vocabularies used to
semantically describe the same people. Therefore, traditional similarity metrics, e.g., Jaccard,
are not applicable. Thus, we evaluate the performance of FuhSen employing GADES semantic
similarity measure only. Results of FuhSen executed against 500 and 1000 molecules configura-
tions are reported on 6.14. The observed behavior of FuhSen resembles the one in Experiment
1, i.e., FuhSen outputs complete results within a predefined time frame. Analyzing the observed
empirical results, we are able to answer research questions Q2, i.e., a threshold value prunes the
number of expected results and does not affect the completeness of FuhSen.

6.3.2 Usability Evaluation

This section presents the usability evaluations performed on FaRBIE, our on-demand built
knowledge graph exploration approach. The goal is to ascertain that FaRBIE: a) allows to
complete exploration tasks over on-demand built knowledge graph; b) is easy and pleasant to
use compared to exploration interfaces of conventional knowledge graphs. To do so, first, we
select two state-of-the-art user interfaces to compare our proposed approach, i.e., LD-R [118]
and SemFacet [113, 114]. We used a formative evaluation technique and a usability evaluation
questionnaire in a controlled environment. We selected 5 participants with experienced in
software development. The participants were all male, aged 26-32.
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(a) T = 0.2, 500 molecules (b) T = 0.4, 500 molecules

(c) T=0.2, 1000 molecules (d) T=0.4, 1000 molecules

Figure 6.14: Experiment 2. FuhSen on-demand graph synthesization on different dataset
sizes. In larger setups, FuhSen still reaches full completeness.

Environment Set-up

A testing environment was set-up, in order to run all three systems in a stable and efficient
matter. The evaluation was performed using a MacBook-Pro 2015 with 8GB of RAM, under
the MacOS X High Sierra platform. In this regard, FaRBIE was tested through a web-server
in the development environment. LD-R was evaluated using the live demo available under the
project’s homepage, while SemFacet and its dependencies were installed in a fresh, clean install
of Ubuntu 16.04.03 LTS, installed under the aforementioned MacOS X High Sierra platform by
means of the Oracle VM VirtualBox hypervisor software.

Formative Evaluation

A moderator introduced the experiments to the participants and controlled the task execution
time. The evaluation instrument consisted of four simple tasks, each targeted at measuring
task-usability per evaluated system:

1. Find information about a famous person the participant recognizes;

2. Find location information amongst the provided list of results;

3. Find an option in the system where to toggle the results display view, towards table- or
map-based layouts;

4. Find information regarding errors that may have happened during the search process.

We define the following metrics: Task Completion Rate16, a metric for measuring usability
in terms of effectiveness, by means of the mathematical formula:

Effectiveness = SCT

TNT
∗ 100%

16 https://usabilitygeek.com/usability-metrics-a-guide-to-quantify-system-usability/
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Figure 6.15: FaRBIE formative evaluatio: Overall Task Completion Rates.

with SCT as the number of Succesfully Completed Tasks per scenario, and TNT as the Total
Number of Tasks per scenario. This metric allows for a rapid visualization of efficiency per
task, with a reduced amount of effort—to notate the task completion rate per task per system
per user, a single binary-notation system is used, where 1 indicates a successfully-completed
task, with 0 indicating otherwise. At the end of the task, test, or evaluation, it just suffices to
summarize the output results from this binary notation and calculate using the formula provided
above. Next, while the test is underway, a task is marked as not succesful whenever the user
surrenders from a task without having completed it.

Discussion: Figure 6.15 reports on the overall recorded Task Completion Rates for the
usability evaluation. Users all four tasks at once per system, with a five minutes break between
systems. The results exhibit FaRBIE operating within expected parameters, with many users
scoring at least a completion rate per task of at least 60 percent, with it being the sole interface
that managed to score a rate in Task 4, Find information regarding errors that may have
happened during the search process, thus confirming an increase in visibility over other systems.
The comparison systems did not perform as well as FaRBIE during the evaluation; LD-R
came in second place performance-wise, faring better than FaRBIE in Task 1, Find information
about a famous person the participant recognizes with a staggering 100 percent task-efficiency
rate, as well as in Task 3 Find an option in the system where to toggle the results display view,
towards table or map-based layouts with a reported task-efficiency rate of 80 percent. Meanwhile,
SemFacet performed poorly, with a reported task-efficiency rate of less than 50 percent task
completion rate in regards to its mean task-average.
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Usability Evaluation

At the same time, and to gather supplementary usability information, the participants were
asked questions with the help of a small questionnaire. The questionnaires were applied at the
end of each system scenario testing cycle, in order to obtain valuable, non-quantitative additional
feedback from the systems being tested. After-Scenario Questionnaire (ASQ)17: measured
through qualitative methods that provide insights into additional feedback from users. This
metric is evaluated through an on-site questionnaire. The questions included in this Likert-Scale
questionnaire were as follows:

1. On a scale from 1-5, being 1 the most difficult and 5 the easiest, how easy-to-use did you
find this website?

2. On a scale from 1-5, being 1 the most difficult and 5 the easiest, how did you find the
navigation through this website?

3. Imagine this website is available to the public. On a scale from 1-5, being 1 the least
probable, and 5 the most probable, how likely are you to using this website in the future?

4. In a scale of 1-5, being 1 the worst, and 5 the best, how well integrated did you find the
functions in this website?

5. In a scale of 1-5, being 1 the least confident, and 5 the most confident, how confident did
you feel using this website?

6. In a scale of 1-5, being 1 the slowest, and 5 the the fastest, how fast do you believe people
would learn how to use this website?

7. In a scale of 1-5, being 1 the least likely, and 5 the most likely, how likely are you to
recommend this website to a friend?

8. Please let us know any other remarks about this website that you feel important to share.

Discussion: Figure 6.16(a) reports on the feedback provided by users during the After-
Scenario feedback collection. Users report feeling confident when using FaRBIE, while being
neutral in all other categories except for re-using the software. However, since the system is
still in prototype, it can be argued that these impressions should improve with a next, more
stable release version of the interface. Nevertheless, SemFacet proved once more unpopular
(Figure 6.16(b)), receiving only positive marks in relation to Q1 (likely to use the system again
in the future) and Q7 (likely to recommend system to a friend), all the while it was the poorest
performer in terms of task-completion rates. We observe similar results for LD-R (Figure 6.16(c)),
with most of the participants being either neutral towards the system, or in strong disagreement
of the statements. These statistics allow us to reach the conclusion that, while FaRBIE still has
room for improvement, it ultimately shows promise as an interface design pattern for exploring
on-demand built knowledge graphs, finally establishing a relevant design backbone that paves
the way for on-demand build graph exploration.

17 https://conversionxl.com/blog/8-ways-to-measure-ux-satisfaction/
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(a) After-Scenario Questionnaire results for FaRBIE.

(b) After-Scenario Questionnaire results for SemFacet.

(c) After-Scenario Questionnaire results for LD-R.

Figure 6.16: After-Scenario Feedback. Analysis of the usability questionnaire: a) FaRBIE results; b)
SemFacet results; and c) LD-R results.
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6.4 Summary
In this chapter, we presented FuhSen, a federated hybrid search engine. FuhSen is able to create a
knowledge graph on-demand by integrating data collected from a federation of heterogeneous web
sources using an RDF molecule integration approach (MINTE). We have explained the creation
of RDF molecules by using Linked Data wrappers; we have also presented how semantic similarity
measures can be used to determine the relatedness of two entities in terms of the relatedness of
their RDF molecules. Additionally, we presented FaRBIE, a reactive faceted browsing UI to
explore on-demand built graphs. With the goal to provide a better user experience, FaRBIE
follows a reactive user interface approach that handles the uncertainty in terms of connection,
query response times, and size imposed by on-demand built graphs. FaRBIE is composed of
several reactive UI components which react to changes of the semantics, variations in the size of
the data, and the disparities in the response times coming from the different sources, allowing
for a real-time user experience.
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CHAPTER 7

Synthesizing Knowledge Graphs from Web
Sources

In this chapter, we present the use of MINTE and FuhSen in three domain-specific applications.
We name MINTE+ to the implementation and combination of both approaches. In consequence,
MINTE+ is an integration framework that retrieves and integrates data from heterogeneous web
sources into a knowledge graph. MINTE+ implements novel semantic integration techniques
that rely on the concept of RDF molecules to represent the meaning of this data; it also provides
fusion policies that enable synthesis of RDF molecules. The content of this chapter is based
on the publications [161, 162]. The results of this chapter provide an answer to the following
research question:

RQ4: How does semantic data integration impact the adaptability of knowledge retrieval
systems?

We present the main results, showing a significant improvement of the task completion
efficiency when the goal is to find specific information about an entity and discuss the lessons
learned from each application. The remainder of the Chapter is structured as follows: First the
MINTE+ implementation is described in Section 7.1. Then, the application of MINTE+ in Law
Enforcement (Section 7.2), Job Marked Analysis (Section 7.3), and Manufacturing (Section 7.4)
is described. Finally, Section 7.5 presents our summary and conclusions.

7.1 The Synthesis of RDF Molecules Using MINTE+

Although several approaches and tools have been proposed to integrate heterogeneous data, a
complete and configurable framework specialized for web sources is still not easy to set up. The
power of MINTE+ comes with the parameters to tune the integration process according to the use
case requirements and challenges. MINTE+ builds on the main outcomes of the semantic research
community such as semantic similarity measures [7], ontology-based information integration,
RDF molecules [121], and semantic annotations [163] to identify relatedness between entities
and integrate them into a knowledge graph.
We are living in the era of digitization. Today as never before in the history of mankind,

we are producing a vast amount of information about different entities in all domains. The
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Applied evaluation of synthesizing knowledge graphs from web sources

Law Enforcement Job Market Analysis Manufacturing

Contrib. 4

Figure 7.1: Domain-specific applications. (a) Law Enforcement agencies need to synthesize knowledge
about suspects. (b) For a Job Market analysis, the job offers from different job portals need to be
synthesized. (c) A manufacturing company needs synthesized knowledge about providers.

Web has become the ideal place to store and share this information. However, the information
is spread across several web sources, with different accessibility mechanisms. The more the
amount of information grows on the Web, the more important are efficient and cost-effective
search, integration, and exploration of such information. Creating valuable knowledge out of
this information is of interest not only to research institutions but to enterprises as well. Big
companies such as Google or Microsoft spend a lot of resources in creating and maintaining
so-called knowledge graphs. However, institutions such as law enforcement agencies, or SMEs
cannot spend comparable resources to collect, integrate, and create value out of such data.

Institutions from different domains require the integration of data coming from heterogeneous
Web sources. Typical use cases include Knowledge Search, Knowledge Building, and Knowledge
Completion. We report on the implementation of MINTE+ in three domain-specific applications:
Law Enforcement, Job Market Analysis, and Manufacturing. The use of RDF molecules as
data representation and a core element in the framework gives MINTE+ enough flexibility to
synthesize knowledge graphs in different domains. We first describe the challenges in each
domain-specific application, then the implementation and configuration of the framework to
solve the particular problems of each domain. We show how the parameters defined in the
framework allow to tune the integration process with the best values according to each domain.
Finally, we present the main results, and the lessons learned from each application.

Law enforcement agencies need to find information about suspects or illegal products on web
sites, social networks, or private web sources in the Deep Web such as OCCRP1. For a job
market analysis, job offers from different web portals need to be integrated to gain a complete
view of the market. Finally, manufacturing companies are interested in information about
their providers available in knowledge graphs such as DBpedia, which can be used to complete
1 Organized Crime and Corruption Reporting Project, https://www.occrp.org/
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the company’s internal knowledge. Figure 7.1 illustrates the main problem and challenges
of integrating pieces of knowledge from heterogeneous web sources. Although three different
domain specific applications are presented, the core problem is shared: “synthesizing knowledge
graphs from heterogeneous web sources”, involving, for example, knowledge about suspects, or
job postings, or providers (Layer 3 of Figure 7.1). This knowledge is spread across different web
sources such as social networks, job portals, or Open Knowledge Graphs (Layer 1 of Figure 7.1).
However, the integration of this information poses the following challenges:

• The lack of uniform representation of the pieces of knowledge.

• The need to identify semantically equivalent molecules.

• A flexible process for integrating these pieces of knowledge.

7.1.1 MINTE+ Framework Implementation
Grounded on the semantic data integration techniques proposed in Chapter 4, the semantic
similarity framework proposed in Chapter 5, and in the federated search engine proposed in
Chapter 6. We implemented MINTE+, an integration framework able to create, identify, and
merge semantically equivalent RDF entities. Figure 7.2 depicts the main components of the
MINTE+ implementation. The pipeline receives a keyword-based query Q and a set of APIs
of web sources (API 1,API 2,API n) to run the query against. Additionally, the integration
configuration parameters are provided as input. These parameters include: a semantic similarity
measure Simf , a threshold γ, and an ontology O; they are used to determine when two RDF
molecules are semantically equivalent. Furthermore, a set of fusion policies σ to integrate the
RDF molecules is part of the configuration. MINTE+ consists of three essential components:
RDF molecule creation, identification, and integration. First, various RDF subgraphs coming
from heterogeneous web sources are organized as RDF molecules, i.e., sets of triples that
share the same subject. Second, the identification component discovers semantically equivalent
RDF molecules, i.e., ones that refer to the same real-world entity; it performs two sub-steps,
i.e., partitioning and 1-1 weighted perfect matching. Third, having identified equivalent RDF
molecules, MINTE+’s semantic data integration techniques resemble the chemical synthesis of
molecules [164], and the integration component integrates RDF molecules into complex RDF
molecules in a knowledge graph.

7.1.2 Creating RDF Molecules
The RDF molecule creation component relies on search API methods, e.g., the API for searching
people on Google+2, and transforms an initial keyword-based query Q into a set of API
requests understandable by the given web sources. MINTE+ implements the mediator-wrapper
approach; wrappers are responsible for physical data extraction, while a mediator orchestrates
transformation of the obtained data into a knowledge graph. An ontology O provides formal
descriptions for RDF molecules, using which the API responses are transformed into RDF
molecules using SILK Transformation Tasks3. All the available sources are queried, i.e., no
source selection technique is applied. Nevertheless, the execution is performed in an asynchronous
fashion, so that the process requires as much time as the slowest web API. Once a request is
2 https://developers.google.com/+/web/api/rest/latest/people/search
3 http://silkframework.org/
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Figure 7.2: The MINTE+ Implementation. MINTE+ receives a set of web APIs, a keyword query
Q, a similarity function Simf , a threshold γ, an ontology O, and a fusion policy σ. The output is a
semantically integrated RDF graph.

(a) Web API Interface (b) SILK Interface (c) Twitter Wrapper

Figure 7.3: MINTE+ framework defines three basic interfaces for a wrapper: WebApiTrait, SilkTrans-
formationTrait, and OAuthTrait.

complete, wrappers transform the results into sets of RDF triples that share the same subject, i.e.,
RDF molecules. Then, the mediator aggregates RDF molecules into a knowledge graph, which
is sent to the next component. These RDF molecule-based methods enable data transformation
and aggregation tasks in a relatively simple way. Figure 7.3 depicts the interfaces implemented
by a wrapper in order to be plugged into the pipeline.

7.1.3 Equivalent Molecules Identification

MINTE+ employs a semantic similarity function Simf to determine whether two RDF molecules
correspond to the same real-world entity, e.g., determining if two job posts are semantically
equivalent. A similarity function has to leverage semantics encoded in the ontology O. For
instance, GADES [7] implementation4 supports this requirement. Additional knowledge about
class hierarchy (rdfs:subClassOf), equivalence of resources (owl:sameAs), and properties
(owl:equivalentProperty) enable uncovering semantic relations at the molecule level instead
of just comparing plain literals. The identification process involves two stages: (a) dataset
partitioning and (b) finding a perfect matching between partitions.
Dataset Partitioner. The partitioner component relies on a similarity measure Simf and

an ontology O to determine relatedness between RDF molecules. Addressing flexibility, MINTE+

allows for arbitrary, user-supplied similarity functions, e.g., simple string similarity and set
4 https://github.com/RDF-Molecules/sim_service
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Figure 7.4: Bipartite Graph Pruning. Various thresholds on a semantic similarity function and their
impact on creating a bipartite graph between RDF molecules.

similarity. We, however, advocate for semantic similarity measures as they achieve better results
(as we show in Chapter 4) by considering semantics encoded in RDF graphs. After computing
similarity scores, the partitioner component constructs a bipartite graph between the sets of
RDF molecules; it is used to match the RDF molecules.

A threshold γ bounds the values of similarity when two RDF molecules cannot be considered
similar. It is used to prune edges from the bipartite graph whose weights are lower than the
threshold. Figure 4.6 illustrates how different threshold values affect the number of edges in
a bipartite graph. Low threshold values, e.g., 0, result in graphs with almost all the edges.
Contrarily, when setting a high threshold, e.g., 0.8, graphs are significantly pruned.
1-1 Weighted Perfect Matching. Having prepared a bipartite graph in the previous

step, the 1-1 weighted perfect matching component identifies the equivalent RDF molecules by
matching them with the highest pairwise similarity score; a Hungarian algorithm is used to
compute the matching. Figure 7.4 (γ=0.8) illustrates the result of computing a 1-1 weighted
perfect matching on the given bipartite graph. MINTE+ demonstrates better accuracy when
semantic similarity measures like GADES are applied when building a bipartite graph.

7.1.4 RDF Molecule Integration

The third component of MINTE+, namely the RDF molecule integration component, leverages
the identified equivalent RDF molecules in creating a unified knowledge graph. In order to
retain knowledge completeness, consistency, and address duplication, MINTE+ resorts to a set
of fusion policies σ implemented by rules that operate on the RDF triple level. These rules are
triggered by a certain combination of predicates, objects, and axioms in the ontology O. Fusion
policies resemble flexible filters tailored for specific tasks, e.g., keep all literals with different
language tags or retain an authoritative one, replace one predicate with another, or simply
merge all predicate-value pairs of given molecules. Ontology axioms are particularly useful
when resolving conflicts and inequalities on different semantic levels. Types of fusion policies
include the following: Policies that process RDF resources such as dealing with URI naming
conventions, are denoted as a subset σr ∈ σ. Policies that focus on properties are denoted as
σp ∈ σ. Interacting with the ontology O, σp tackles property axioms, e.g., rdfs:subPropertyOf,
owl:equivalentProperty, and owl:FunctionalProperty. Property-level fusion policies tackle
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Figure 7.5: Merging Semantically Equivalent RDF Molecules. Applications of a fusion policy σ:
(a) semantically equivalent molecules R1 and R2 with two ontology axioms; (b) simple union of all triples
in R1 and R2 without tackling semantics; (c) p3 is replaced as a subproperty of p4; (d) p2 is a functional
property and R1 belongs to the authoritative graph; therefore, literal C is discarded.

sophisticated OWL restrictions on properties. That is, if a certain property can have only two
values of some fixed type, σp has to guide the fusion process to ensure semantic consistency.
Lastly, the policies dedicated to objects (both entities and literals) comprise a subset σv ∈ σ.
On the literal level, the σv policies implement string processing techniques, such as recognition
of language tags, e.g., @en, @de, to decide whether those literals are different or contain synta.
For object properties, the σv policies deal with semantics of the property values, e.g., objects of
different properties are linked by owl:sameAs. In this application of MINTE+, the following
policies are utilized [121]:
Union policy. The union policy creates a set of (prop, val) pairs where duplicate pairs, i.e.,

pairs that are syntactically the same, are discarded retaining only one pair. In Figure 7.5(a) the
pair (type,A) appears in both molecules. In Figure 7.5(b), only one pair is retained. The rest of
the pairs are added directly.
Subproperty policy. The policy tracks if a property of an RDF molecule is annotated as

rdfs:subPropertyOf. As a result of applying this policy, the more general property is kept.
The default σv object policy is to keep the property value of p1 unless a custom policy is specified.
In Figure 7.5(c), a property brother is generalized to sibling preserving the value C according to
the subproperty ontology axiom in Figure 7.5(a).
Authoritative graph policy. The policy selects one RDF graph as a major source when

merging various configurations of (prop, val) pairs:

− The functional property policy keeps track of the funcional properties annotated as
owl:FunctionalProperty, i.e., such properties may have only one value. The authoritative
graph policy then retains the value from the primary graph: {r1, p1, B}, {r2, p1, C} +
O + functional(p1) |= {σr(r1, r2), p1, σv(B,C)}. Annotated as a functional property in
Figure 4.8(a), age has the value 35 in Figure 4.8(d), as the first graph has been marked as
authoritative beforehand. The value 38 is therefore discarded.

− The equivalent property policy is triggered when two properties of two molecules are
equivalent, i.e., they are annotated as owl:equivalentProperty:
{r1, p1, A}, {r2, p2, B}+O + equivalent(p1, p2) |= {σr(r1, r2), σp(p1, p2), σv(A,B)}. The
authoritative policy selects a property from the authoritative graph, e.g., either p1 or p2.
By default, the property value is taken from the chosen property. Custom σv policies may
override these criteria.

100



7.2 Law Enforcement Application

− The equivalent class or entity policy contributes to the integration process when
entities are annotated as owl:equivalentClass or owl:sameAs, i.e., two classes or indi-
viduals represent the same real-world entity, respectively: {r1, p1, A}, {r2, p2, B} + O +
equivalent(A,B) |= { σr(r1, r2), σp(p1, p2), σv(A,B)}. Similarly to the equivalent property
case, the value with its corresponding property is chosen from the primary graph. Again,
custom σp policies may handle the merging of properties.

7.2 Law Enforcement Application
7.2.1 Motivation and Challenges
Law enforcement agencies and other organizations with security responsibilities are struggling
today to capture, manage and evaluate the amounts of data stored in countless heterogeneous
web sources. As Figure 7.1a shows, possible sources include the document-based Web (so-called
“visible net”), usually indexed by search engines such as Google or Bing. The Social Web (e.g.,
Facebook or Twitter), the Deep Web and the Dark Web (so-called “invisible net”). Deep web
sources, such as e-commerce platforms (e.g., Amazon or eBay), cannot be accessed directly,
but only via web interfaces e.g., REST APIs. The same holds for dark web sources, which
are usually among the most relevant web sources for investigating online crime. Finally, open
data catalogs in the Data Web, i.e., machine-understandable data from open sources such as
Wikipedia, serve as sources of information for investigations. Law enforcement agencies spend a
lot of time on searching, collecting, aggregating, and analyzing data from heterogeneous web
sources. The main reason for such inefficient knowledge generation is that the agencies need
different methods and tools to access this diversified information. If the investigators are not
experts in a particular tool or technique, such as querying the Web of Data using SPARQL,
they may not find the information they need. Thus, there is a lack of a holistic overview of the
entities of interest. Without knowledge of programming, APIs, query languages, data analysis,
etc., an investigator is not able to use and link all available data sources. Finally, most current
search technology is based on simple keywords but neglects semantics and context. The latter is
particularly important if you are looking for people with common names such as “Müller” or
“Schmidt”. Here, a context of related objects such as other people, places or organizations is
needed to make a proper distinction. The main challenges of this application are the following:

C1. Heterogeneity of accessibility: Different access mechanisms need to be used to collect data
from the web sources. Social networks require user-token authentication, deep web sources
use access keys, and dark web sources require the use of the special software Tor Proxy5.

C2. Provenance Management: Law enforcement institutions need to know the origin of the
data, for a post-search veracity evaluation.

C3. Information Completeness: Although the process should be as automatic as possible, no
data should be lost, e.g., all aliases or names of a person should be kept.

C4. Privacy by design: The system must be fully compliant with data protection laws, e.g.,
the strict ones that hold in the EU and especially in Germany. Citizens privacy is mainly
protected by a fundamental design decision: No comprehensive data warehouse is built-up,
but information is access on-demand from the Web sources.

5 https://www.torproject.org/
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Parameter Value Description

Query Free Text usually people, organizations, or products name or description.
Ontology LiDaKrA the ontology describing the main concepts in the crime investigation domain
Web APIs 11 Facebook, Google+, VK, Twitter, Xing, ICIJ Offshore Leaks, DBpedia, eBay, darknet

sites, crawled darknet markets, OCCRP reports
Simf GADES [7] A semantic similarity measure for entities in knowledge graphs
Threshold 0.9 Only highly similar molecules are synthesized.
Fusion Policy Union No information is lost, e.g., all alias names of a person are kept in the final molecule.

Table 7.1: MINTE+ Configuration. The Law Enforcement Application

The LiDaKrA6 project has as main goal the implementation of a Crime Analysis Platform to
solve the challenges presented above. The platform concept should be offered as a platform-as-a-
service intended to support police departments, in the following use cases:

U1. Politically Exposed Persons: searching for politicians’ activity in social networks, and
possible relations with corruption cases and leaked documents detailing financial and
client information of offshore entities. Relevant sources are Google+, Twitter, Facebook,
DBpedia, OCRRP, Linked Leaks7, etc.

U2. Fanaticism and terrorism: searching for advertising, accounts and posts on social networks.
Relevant sources are Twitter, Google+, OCRRP, etc.

U3. Illegal medication: searching for web sites, posts, or video ads, with offers or links to
darknet markets. Relevant sources are darknet markets, Tweets, Facebook posts, YouTube
videos, ads, etc.

7.2.2 MINTE+ Configuration
In order to solve these challanges we configured MINTE+ in the following way: To address
the challenges of this application and support the use cases, we configured MINTE+ with the
parameters shown in Table 7.1. As keyword Q, the users mainly provide people, organization,
or product names, e.g., Donald Trump, Dokka Umarov, ISIS, or Fentanyl. Figure 7.7(a) shows
the main RDF molecules described with the LiDaKrA domain-specific ontology O developed
for this application. To address C1, thirteen wrappers were developed by implementing the
interfaces described in Figure 7.6(a). These interfaces were sufficient for the social network and
deep web sources defined in the application. However, an extension to access dark web sources
was needed. A new interface was defined to enable a wrapper to connect to the Darknet using a
Tor Proxy. As the similarity function, we used GADES [7] with a threshold of 0.9. This high
value guarantees that only very similar molecules are integrated.

To address C2, each RDF molecule is annotated with its provenance at creation time using
PROV-O8, Figure 7.6(b) shows an RDF molecule example. The fusion policy Union was
selected to address C3; this guarantees no information is lost during the integration process, e.g.,
whenever a person has two aliases, both are kept in the final molecule. By design, MINTE+ does
not persist any result in a triple store. All molecules are integrated on demand and displayed to
the user. The on demand approach addresses challenge C4.
6 https://www.bdk.de/der-bdk/aktuelles/artikel/bdk-beteiligt-sich-im-forschungsprogramm-lidakra
7 http://data.ontotext.com/
8 https://www.w3.org/TR/prov-o/
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Figure 7.6: MINTE+ in the Law Enforcement Application. (a) A new wrapper interface is
implemented for querying the Dark Web. (b) An RDF molecule synthesized by the application; it
synthesizes information about Donald Trump.
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Figure 7.7:MINTE+ in LiDaKrA. (a) LiDaKrA UML ontology profile view (cf. [165]) of the main RDF
molecule types. (b) The faceted browsing user interface that allows the exploration of the synthesized
RDF molecules.

To close the application cycle, a faceted browsing user interface exposes the integrated RDF
graph to users. Figure 7.7(b) shows the UI; users pose keyword queries and explore results
using a multi-faceted browsing user interface. We chose facets as a user-friendly mechanism for
exploring and filtering a large number of search results [35]. In Chapter ??, we presented a demo
of the user interface, comprising the following elements: a text box for the search query, a result
list, entity summaries, and a faceted navigation component. Technically, MINTE+ provides a
REST API to execute its pipeline on demand. JSON-LD is the messaging format between the
UI and MINTE+ to avoid unnecessary data transformations for the UI components.

7.2.3 Results and Lessons Learned

Currently, the application is installed in four law enforcement agencies in Germany for evalu-
ation.9 The user feedback is largely positive. The use of semantics in the integration process
and as input for the faceted navigation gives the necessary context to facilitate the exploration
9 For confidentiality we cannot state their names, nor gather usage data automatically.
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and disambiguation of results, e.g., suspects with similar names. One main user concern about
the application relates to the completeness of results, e.g., a person is not found by MINTE+

but it is found via an interactive Facebook search. Since MINTE+ is limited to the results
returned by the API, completeness of results cannot be guaranteed.

Thanks to MINTE+, law enforcement agencies can integrate new web sources into the system
with low effort (1–2 person days). This dynamicity is important in this domain due to some web
sources going online or offline frequently. The users gave further important on the possibility
to integrate internal data sources of the law enforcement agencies into the framework, which
is possible thanks to the design of MINTE+. The keyword search approach allows MINTE+

to cope with all use cases defined for the system (e.g., U1, U2, and U3). In this application,
we validate that the MINTE+ framework works in an on-demand fashion. The main result of
this application has become a product offered by Fraunhofer IAIS, which shows the maturity of
MINTE+’s approach.10

7.3 A Job Market Application

7.3.1 Motivation and Challenges

Declared by Harvard Business Review as the “sexiest job of the 21st-century”11, data scientists
and their skills have become a key asset to many organizations. The big challenge for data
scientists is making sense of information that comes in varieties and volumes never encountered
before. A data scientist typically has a number of core areas of expertise, from the ability
to operate high-performance computing clusters and cloud-based infrastructures, to apply
sophisticated big data analysis techniques and produce powerful visualizations. Therefore, it
is in the interest of all companies to understand the job market and the skills demand on this
domain. The main goal of the European Data Science Academy (EDSA), which was established
by an EU-funded research project and will continue to exist as an “Online Institute”12, is to
deliver learning tools that are crucially needed to close this problematic skills gap. One of these
tools is a dashboard intended for the general public, such as students, training organizations,
or talent acquisition institutions. Through this dashboard, users can monitor trends in the
job market and fast evolving skill sets for data scientists. A key component of the dashboard
is the demand analysis responsible for searching, collecting and integrating job postings from
different job portals. The job posts need to be annotated with the skills defined in the SARO
ontology [163] and enriched with geo-location information; it presents the following challenges:

C1. Complementary Information: A complete view of the European data science job market is
needed by gathering job postings from all member states.

C2. Information Enrichment: The job posting description should be annotated with the
required skills described in the text.

C3. Batch Processing: To get an updated status of the job market, job postings should be
extracted at least every two weeks.

10 https://www.iais.fraunhofer.de/de/geschaeftsfelder/enterprise-information-integration/uebersicht/
dezentrale-suche.html

11 https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
12 http://edsa-project.eu/
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Parameter Value Description

Query Job Title + Country list of 150 job titles, e.g., Machine Learning, and 28 EU Countries, e.g., IT
(Italy)

Ontology SARO [163] The ontology describes data scientist job postings and skills.
Web APIs 5 Adzuna, Trovit, Indeed, Jooble, and XING
Simf SILK [78] Job title, description and hiring organization are used in the linking rules.
Threshold 0.7 best score to integrate the same job posting from different job portals
Fusion Policy Authoritative Adzuna was defined as the main source.

Table 7.2: MINTE+ Configuration. The Job Market Analysis Application

(a) Skill annotation wrapper extension

saro:descriptionsaro:description

Data Scientist
... skills in Scala experience in Hadoop (including Hive, 
Pig or Mahout) experience in statistical programming 
environments (R in particular) strong theoretical and 
practical knowledge of ...

saro:description

Data Scientist
... skills in Scala experience in Hadoop (including Hive, 
Pig or Mahout) experience in statistical programming 
environments (R in particular) strong theoretical and 
practical knowledge of ...

Scala Hadoop

HiveMahout

R
Pig

(b) RDF Molecule

Figure 7.8: MINTE+ in the Job Market Application. (a) A new wrapper interface is implemented
for annotating a job description with the corresponding skills defined in the SARO ontology. (b) An
RDF molecule synthesized by the application; it synthesizes an annotated job description.

The EDSA dashboard uses the results of the MINTE+ integration framework; it can address
the following use cases:

U1. Searching for a job offer: Search for relevant data scientist jobs by EU country or based
on specific skills (e.g., Python or Scala).

U2. Missing Skills Identification: it should be possible to identify what skills a person is missing
on their learning path to becoming a data scientist.

U3. Analysis of Job Market By Country: analyze which EU country has more job offers, what
is the average salary per country, etc.

U4. Top 5 Required Skills: identify the current top 5 relevant skills for a data scientist.

7.3.2 MINTE+ Configuration

To address the stated challenges and to support the use cases, we configured MINTE+ with the
parameters shown in Table 7.2. A query Q is constructed from a list of 150 job titles and 28
countries. The combination of both is used as a keyword, e.g., “Machine Learning IT”, yielding
a total of 4,200 results. Figure 7.9(a) depicts the RDF molecule described with the SARO
ontology O [163]. To address C1, five wrappers (Adzuna, Trovit, Indeed, Jooble, and XING)
were developed by implementing the interfaces described in Figure 7.8(b). The data sources
were selected covering as many countries as possible, e.g., Adzuna provides insights on the DE,
FR, UK, IT markets. Indeed complements with data from NL, PL, ES. To address C2, a new
interface SkillAnnotationTrait was defined. Figure 7.8(a) shows how the wrappers implement

105



Chapter 7 Synthesizing Knowledge Graphs from Web Sources

foaf:Organizationfoaf:Organization

foaf:name         rdfs:Literal
rdfs:comment  rdfs:Literal

saro:JobPostingsaro:JobPosting

saro:jobLocation  rdfs:Literal
saro:source           rdfs:Literal
saro:title                rdfs:Literal
saro:url                  rdfs:Literal

geo:lat                   rdfs:Literal
geo:long                rdfs:Literal

saro:Skillsaro:Skill

rdfs:label  rdfs:Literal
rdfs:comment  rdfs:Literal

saro:description   rdfs:Literal
saro:datePosted  DateTime

hiringOrganization

requiredSkill

saro:baseSalary   rdfs:Literal

(a) SARO ontology (b) User Interface

Figure 7.9: MINTE+ in EDSA. (a) The SARO ontology defines the RDF molecules for job market
analysis. (b) Screenshot of the EDSA dashboard.

this new interface in addition to the standard ones defined in the framework. Technically, we
employ GATE Embedded13 to do the annotation using the SARO ontology.

As a similarity function, we resort to SILK [78] with a threshold of 0.7. The threshold was
assigned after an empirical evaluation of the linkage rules in SILK. The RDF molecules created
from job posts are similar in terms of properties. The Authoritative fusion policy was configured
in this scenario, as only one property is required for fusion. Adzuna was defined as a main
source. To periodically extract and integrate the job postings, a script was developed. The
script reads the file containing the list of job titles and countries, calls MINTE+ through its
API, and saves the results in a triple store. Thus, batch processing (challenge C3) is addressed.
Then, the EDSA dashboard shows the integrated information about the EU job market.

7.3.3 Results and Lessons Learned

The EDSA dashboard14 is running and open to the general public. Thanks to the flexibility of
the wrappers, the skills annotation behavior was easy to implement. The integrated job posting
knowledge graph serves as the information source to address the defined use cases (U1, U3) by
using the dashboard. Using a semantic representation of job postings, it was feasible to link the
job market analysis with the supply analysis (i.e., the analysis of learning material) and the
learning path identified in use cases U2 and U4. The main conclusion on this application is that
MINTE+ is able to support an intense integration process (batch mode). Overall, it takes one
day to execute all the query combinations and update the status of the job market.

13 https://gate.ac.uk/family/embedded.html
14 http://edsa-project.eu/resources/dashboard/
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7.4 Smart Manufacturing Application

Parameter Value Description

Query Provider metadata includes company name, address, web site.
Ontology Schema.org An extension of organization concept is used to describe the providers.
Web APIs 4 DBpedia, Google Knowledge Graph, plus further confidential sources
Simf SILK Wikipedia page is used in the linking rule.
Threshold 1.0 Providers with same Wikipedia page are integrated.
Fusion Policy Authoritative DBpedia is defined as the main source.

Table 7.3: MINTE+ Configuration. The Manufacturing Application

7.4 Smart Manufacturing Application

7.4.1 Motivation and Challenges

The application is motivated by a global manufacturing company15, which needs to complement
their internal knowledge about parts providers with external web sources. The final usage of
this external knowledge is to improve the user experience of some applications the company has
been running already. The main challenges are:

C1. Entity Matching: identify the internal provider information with the external data sources.
No matching entities should be discarded.

C2. Context Validation: we have to validate whether the external provider’s data belongs to
the manufacturing domain.

The use case (U1) is simple: based on the internal metadata of the providers, the company
wants to complete their knowledge about them from external sources.

7.4.2 MINTE+ Configuration

To address the challenges of this application and support the use case, MINTE+ was configured
with the parameters shown in Table 7.3. As query Q, metadata about the providers, e.g., the
provider’s name, is sent to MINTE+. As the ontology O, schema.org was configured, in particular,
the subset that describes the Organization concept16 was extended: theCompany:PartsProvider
(a subclass of schema:Organization), having the property theCompany:industry with values
such as “Semiconductors”. Four wrappers were developed for this application. For confidentiality
reasons, we can mention just DBpedia and Google Knowledge Graph. To address challenge C1,
SILK was configured to provide values of similarity, i.e., it is used in MINTE+ as a similarity
function. In this application, only one rule was configured in SILK to measure the similarity
between a Google Knowledge Graph molecule with a DBpedia molecule. Only if the organization
Wikipedia page17 in both molecules refer to the same URL, they are considered the same. This
is the reason for a threshold of 1.0. DBpedia is selected as major source in the authoritative
fusion policy configured for this application. To provide the necessary interface for other systems
on top of the MINTE+ API, a new REST method returning just JSON was designed with the
company. To address the C2 challenge, a SPARQL Construct query filters the manufacturing
context of the molecules (theCompany:industry = Semiconductors).
15 For confidentiality reasons we cannot mention the name.
16 http://schema.org/Organization
17 http://schema.org/ContactPage
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7.4.3 Results and Lessons Learned
The application is in production state. The company has more than 300 providers in their
internal catalog. We evaluated the accuracy of knowledge completion (U1) by randomly selecting
100 molecules and manually creating a gold standard, then compared the results produced
by MINTE+ to the gold standard. We obtained 85% accuracy, which means 85 times out of
100 MINTE+ was able to complete the internal knowledge about providers with molecules
coming from DBpedia and Google Knowledge Graph. Matching failures are explained mostly by
outdated information from the providers, e.g., when the name of a subcontractor has changed.
Although the percentage is not high, it still impacts user experience in the company’s control
system. Thanks to the good results regarding providers, the next step is to apply MINTE+ to
other entities handled by the company, such as “Components”.

7.5 Summary
In this chapter, we described MINTE+ and discussed its implementation in three domain-specific
applications to synthesize RDF molecules into a knowledge graph. The three applications are
either under evaluation in the field or in production. The role of semantic web technology is
central to the success of the MINTE+ framework. We showed the benefits of the MINTE+

implementation in terms of the configurability and extensibility of its components. The effort to
configure, extend, and adapt the MINTE+ implementation is relatively low (new fusion policies,
similarity functions, wrappers may be developed and plugged into the framework); state-of-art
approaches can be easily integrated. MINTE+ is started to be used in biomedical applications
to integrate and transform big data into actionable knowledge. Therefore, MINTE+ is being
extended to scale up to large volumes of diverse data.
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CHAPTER 8

Conclusions and Future Directions

In this thesis, we studied the problem of retrieving and integrating pieces of knowledge about
entities spread over web sources. We proposed a set of strategies and techniques to semantically
integrate these pieces of knowledge on-demand. In particular, we tackled the problems of
knowledge integration in Chapter 4, entity matching in Chapter 5, knowledge retrieval from
heterogeneous web sources in Chapter 6, and we demonstrated the applicability of our methods
in real-world domain-specific applications in Chapter 7. In the following sections, we summarize
our contributions, discuss main findings and lessons learned, and define future directions for
this work from the perspectives of both research and technology.

8.1 Overall contributions and conclusions

The main goal of this thesis is to advance the field of knowledge retrieval and integration by
providing a novel set of strategies and techniques to solve the main challenges in a distributed and
federated scenario. In this regard, we contributed to answer four research questions. First, we
tackled the problem of knowledge integration from heterogeneous sources solving interoperability
conflicts at integration time, and we answer the following research question.

RQ1: How can semantics encoded in RDF graphs be exploited to integrate data collected
from heterogeneous web sources?

The scenario of knowledge integration from web sources exhibits complex interoperability
conflicts, such as domain conflicts, granularity conflicts, and complementary knowledge conflicts.
After our literature review presented in Chapter 3, we argue that the state-of-the-art semantic
integration frameworks mimic traditional integration approaches, i.e., under the assumption
of full access to the datasets, performing heavy ETL pipelines, which is not the case with
heterogeneous web sources. To answer RQ1, we need a knowledge integration approach that fits
better to the scenario of web sources data integration. In consequence, we proposed the MINTE
approach, a novel semantic integration approach based on RDF molecules. The MINTE approach
is able to integrate semantically equivalent entities from web sources, and it has been designed to
exploit the semantics encoded in the data collected from web sources to produce a consolidated
knowledge graph. The key characteristics that allow MINTE to exploit semantics are: (a) the
use of RDF molecules as the unit of data integration; and (b) the two-fold approach, first by
identifying the semantically equivalent entities (using semantic similarity metrics), and then
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integrating the molecules (using fusion policies). MINTE utilizes RDF molecules in both steps of
the integration pipeline, making use of the semantics encoded in the molecules. We empirically
demonstrated the advantages of using semantics to integrate data collected from web sources,
and we showed the benefits of RDF molecules as the data integration unit. Our theoretical and
empirical findings indicate that—in comparison with the state-of-the-art approaches, MINTE
integrates heterogeneous data with good accuracy, when interoperability conflicts are present
in the web sources, answering research question RQ1. Moreover, the MINTE defines a set of
configuration parameters making it applicable to a variety of domain-specific applications.

Based on our findings, we contribute to the state-of-the-art in the area of knowledge integration
by: 1) defining a new integration approach based on RDF molecules, the approach is tailored
for the scenario of web sources integration where the governance of the data stills on the hands
of the data producers; 2) formalizing RDF molecules as data integration, and demonstrating
its flexibility to deal with different domain-specific applications; and 3) providing a flexible
architecture that allows adding state-of-the-art approaches from the Semantic Web community
with low effort, increasing the visibility and the impact of new approaches coming from the
community. Moreover, MINTE’s implementation1 is open source and accessible to anybody.

The second problem we tackled is determining semantically similar entities over heterogeneous
web sources, the obtained results allowed us to answer the following research question.

RQ2: How can semantic similarity metrics facilitate the process of integrating data
collected from heterogeneous web sources?

Several approaches have been proposed to compare the similarity between entities, however,
the impact of these metrics on the data integration task has not been sufficiently studied. To
answer RQ2, we first reviewed the state-of-the-art approaches and selected GADES as semantic
similarity measure. In order to evaluate different similarity metrics, we defined a semantic
similarity framework that includes GADES (a semantic metric) and Jaccard (a non-semantic
metric). To perform a fair comparison, both GADES and Jaccard were adapted to work with
RDF molecules. We empirically demonstrated that using a similarity metric, i.e., GADES,
provides better performance than non-semantic similarity metric, i.e., Jaccard, in the task of
integration when the data sources suffer from semantic interoperability problems. The empirical
evaluations show the benefits of using semantic similarity approaches to support the problem of
integrating pieces of knowledge belonging to the same entity.

Although GADES performed well on the task of determining semantically equivalent entities,
it requires a fine-tuning process of its parameters. Moreover, GADES’ quality depends on
the quality of the ontology defined for the RDF molecules. To avoid the need for a manual
fine-tuning intervention, we proposed MateTee a novel similarity metric based on embeddings.
We defined a process to produce embeddings from RDF molecules and calculate the distance
among these embeddings. As a result, we are able to determine the similarity among entities
coming from web sources. We empirically demonstrated the advantages of MateTee, i.e., no
manual fine-tuning process is required, and it performs well on knowledge graphs from different
domains. To test the accuracy of MateTee, we compared its results with state-of-the-art
methods such as GADES, OnSim, as well as state-of-the-art similarity measures available in the
CESSM evaluation framework. MateTee exhibited high accuracy and competitive results, even
outperforming the results of GADES. This behavior was observed in the collections of proteins

1 https://github.com/RDF-Molecules/MINTE
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for UniProt and the collection of persons from DBpedia. The observed results suggest that
representing knowledge encoded in RDF molecules as embeddings provide an accurate method
for determining relatedness among entities in knowledge graphs. MateTee’s approach won the
best paper award at the 17th International Conference on Web Engineering (cf. Appendix B).
We formally and empirically proved that the use of semantic similarity measures improves

the task of integrating knowledge from web sources. Based on our findings, we contributed to
the state-of-the-art by: 1) demonstrating how semantic interoperability conflicts may be solved
by using a semantic similarity metric, i.e., GADES to integrate knowledge web sources; and 2)
defining a new similarity metric for RDF molecules based on embeddings, i.e., MateTee. All the
source code of the semantic similarity framework is open source2 and accessible to anybody.
The third problem we tackled in this thesis is building and exploring knowledge graphs

on-demand from web sources, answering the following research question:

RQ3: How can knowledge graphs be populated on-demand with data collected from
heterogeneous web sources?

Most of the state-of-the-art approaches to build knowledge graphs start with the assumption
of full access to datasets, so huge indexes for knowledge exploration can be created. In contrast,
web sources provide access just to local views of entities via Web APIs, they are autonomous,
independent, evolve on their own pace. To answer question RQ3, first, we evaluated the
use of these APIs as a door to extract information from different segments of the Web. We
devised then FuhSen, an on-demand knowledge retrieval and exploration engine for web sources.
We demonstrated how Web APIs, provided by web sources, can we used to create knowledge
graphs at query time, integrating the knowledge about entities they contain. The use of RDF
molecule wrappers and the MINTE approach facilitate the integration of sources from different
segments of the Web. Results of the empirical evaluations suggest that FuhSen is able to
effectively integrate pieces of knowledge spread over different web sources on-demand. The
experiments suggest that the molecule based integration technique implemented in FuhSen
integrates data into a knowledge graph more accurately than existing integration techniques.
FuhSen’s approach devises a novel knowledge retrieval paradigm incorporating principles of
Linked Data and Federated Search engines. FuhSen can be applied in numerous use cases, e.g.,
related to e-commerce (e.g., price comparison) or human resources management (e.g., build a
complete candidate profile from open web data). Moreover, to explore the knowledge graphs
built on-demand, we presented FaRBIE, a reactive faceted browsing UI to explore multiple
RDF graphs from the LOD Cloud at a time. FaRBIE follows a reactive user interface approach
that handles the uncertainty imposed by the intrinsic nature of RDF graphs, with the goal to
provide a better user experience. FaRBIE is composed of several reactive UI components which
react to changes of the semantics, variations in the size of the data, and the disparities in the
response times coming from the different sources, allowing for a real-time user experience. Our
experiments suggest that the reactive user interface style used in RDF user interfaces, such as
faceted browsing reactivity, is a path for improved overall user experience and becoming a key
factor in bringing on-demand built knowledge graphs closer to non-technical users.
We show empirically that FuhSen is able to populate knowledge graphs on-demand from

web sources. We also demonstrate the advantages of an on-demand exploration approach, i.e.,
FaRBIE. Based on our findings, we contribute to the state-of-the-art by: 1) defining a federated

2 https://github.com/RDF-Molecules
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semantic search engine for web sources, which is able to integrate pieces of knowledge about the
same entity from different segments of the Web; 2) designing an on-demand approach to build
knowledge graphs at query time, which accurately creates a knowledge graph out of web sources;
and 3) presenting a novel on-demand exploration paradigm for knowledge graphs, providing a
positive user experience to explore entities.
The fourth and final question we answered in the scope of this thesis is the following:

RQ4: How does semantic data integration impact the adaptability of knowledge retrieval
systems?

Because of the continuous growth of heterogeneous data on different segments of the Web,
new technologies need to be adaptable enough to work on different domain-specific applications.
Each domain-specific application contains different degrees of interoperability problems that
need to be solved at integration time. To answer RQ4, we implemented and integrated all the
approaches described throughout this thesis, the result is an open source application named
MINTE+. We have applied MINTE+ in three different domain-specific applications. For the law
enforcement and crime analysis support, we show some of the potential use cases of on-demand
knowledge graph creation, i.e., corruption cases, fanaticism, and illegal medication markets. The
application developed is compliant with EU regulations and can be used by law enforcement
agencies. During the development and evaluation of this application domain, we were able to
confirm the feasibility of integrating data from web sources of different segments of the Web, i.e.,
Deep Web, Social Web, and Dark Web. For the job market analysis, we show how the approach
developed in the scope of this thesis is able to produce a complete view of the European job
market by integrating web sources. Finally, in the manufacturing domain, we show how the
internal knowledge about providers can be completed from open web data sources on-demand.

The integration of a new data source may take 1-2 working days. The parameters defined in
MINTE+ i.e., the threshold, the similarity function, the fusion policy allowed us to tune the
integration approach accordingly to the needs of the specific domain application. We can reuse
existing schemata, such as Schema.org, and the DBpedia Ontology. New semantic similarity
metrics and fusion policies can be integrated quite easily. Through the successful conclusion of
the projects where MINTE+ was applied, we are able to answer RQ4 and conclude that using
the semantic integration approach MINTE+ we can accurately integrate data for the crime
investigation domain, for the job market analysis scenario, and for the manufacturing domain.
Those are just some of the many domain-specific applications where MINTE+ can be used.

8.2 Outlook

In this final section, we describe some possible future directions for this work. In the scope of
this thesis, we focused on just some properties of the proposed solutions, e.g., the effectiveness
of the MINTE approach. Therefore, there is still room to improve the results proposed in
this thesis, e.g., wrt. scalability. Regarding the MINTE integration approach, we envision the
following future work:

• Extend the MINTE approach to be context aware; the problem of entity similarity during
the integration process has been extensively tackled in the scope of this thesis. However,
the context dimension, i.e., two entities are not the same in all contexts [166], could be
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a new extension to the MINTE framework. A possible addition could be defining a new
fusion policy that considers the context of the entities.

• Deep Learning is gaining a lot of attention in all domains including data management [167].
Thus, MINTE integration results could be improved and automated by the usage of Deep
Learning models. A possible extension could be the use of reinforcement learning for
automatic configuration of MINTE parameters. We can find already research pursuing a
similar goal in [168–170].

• In order to improve the information quality in the integration process of large amounts of
data, MINTE requires a formal process quality schema. We suggest to follow the criteria
defined by Wang et al. [171]: Traceability of the data origin (Data Provenance), Traceability
of the loading process (Logging of errors and main events), Referential Integrity (Control
on the artificially generated URIs), and Time Variance (Tracking changes over time).

Regarding the semantic similarity framework, it can be extended with the following ideas:

• Add new state-of-the-art similarity metrics for RDF entities based on artificial intelligence
approaches. Traverso and Vidal [172] present GARUM, a semantic similarity measure
based on machine learning and entity characteristics, a natural step would be analyze and
integrate GARUM to the framework.

• The usage of embeddings to solve the problem of entity similarity is a promising research
line. We suggest to continue and extend the similarity metric we have defined in this thesis,
i.e., MateTee. Possible extensions could be considering not only the explicit knowledge
encoded in the RDF molecules but the implicit knowledge as well, i.e., implicit relations can
be materialized using inferencing components to then use TransE to create the embeddings.
Our intuition tells us the similarity metric accuracy should improve.

• Although MateTee accuracy is comparable with state-of-the-art approaches, it requires
a lot of time to produce the embeddings of the entities, making it difficult for real-time
scenarios. Another line of research would produce the embeddings on-demand using
transfer learning, i.e., based on pre-trained embeddings from open knowledge graphs such
as DBpedia, utilize those and train few iterations with the new RDF molecules.

Regarding our federated search engine, in the future, we plan to:

• All improvements and changes made in MINTE and the Similarity Framework discuss in
the previous items should be evaluated in FuhSen. These improvements should have a
positive impact on FuhSen performance.

• Evolve the concept of RDF molecule even further as the unit of representation for knowledge
integration in general, not just for web sources. The definition of an RDF molecule should
encode not only the data, but as well as metadata, e.g., provenance information, context
information, history of evaluation, and more. The goal is that this additional metadata
serves as input to the components in FuhSen to improve the performance at each step.

• Regarding FaRBIE, an interesting line of research would be to study how FaRBIE may
foster serendipitous discoveries on-demand on the data coming from web sources. Khalili et
al. [173] show how RDF graph exploration allows the discovery of interesting and valuable
facts not initially sought for.
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In terms of the applicability of the approaches presented in this thesis, we see many oppor-
tunities to solve integration problems in the following domains:

• In the healthcare domain where the knowledge of entities is spread over hundreds of IT
systems, integrating and exploring these data on-demand may facilitate the analysis of
the data produce by healthcare institutions. Aasman et al. [174] present the deployment
of a patient knowledge graph for improving patient care and medical research, showing
the value of knowledge graphs to provide the information to find patterns in the data and
to use those patterns for clinical purposes to improve clinical outcomes.

• The Internet of Things (IoT) is another application domain where the application of
the results of this thesis is interesting. The IoT is characterized by the velocity of the
generated data, and the use of APIs to access this data. The on-demand knowledge graph
creation from the data produced by smart devices in the IoT domain can be in the interest
of many companies looking to create value out of this data.

8.3 Closing Remarks
With the increasing amount of data about entities on the Web, the knowledge integration
problem is constantly facing new opportunities and challenges. In this thesis, we have shown
the benefits of semantic integration approaches to successfully tackle the problem of integrating
pieces of knowledge of the same entity spread over web sources. Future research work can
build upon the contributions presented in this thesis to devise more flexible and comprehensive
integration approaches. Additionally, the pieces of software produced during the development of
this thesis are impacting several application domains—resulting in a Fraunhofer IAIS product
and taking part in new European research proposals and projects.
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