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Abstract

Question answering (QA) over knowledge graphs has gained significant momentum over the past five
years due to the increasing availability of large knowledge graphs and the rising importance of question
answering for user interaction. DBpedia has been the most prominently used knowledge graph in this
setting. QA systems implement a pipeline connecting a sequence of QA components for translating
an input question into its corresponding formal query (e.g. SPARQL); this query will be executed
over a knowledge graph in order to produce the answer of the question. Recent empirical studies have
revealed that albeit overall effective, the performance of QA systems and QA components depends
heavily on the features of input questions, and not even the combination of the best performing QA
systems or individual QA components retrieves complete and correct answers. Furthermore, these QA
systems cannot be easily reused, extended, and results cannot be easily reproduced since the systems
are mostly implemented in a monolithic fashion, lack standardised interfaces and are often not open
source or available as Web services. All these drawbacks of the state of the art that prevents many of
these approaches to be employed in real-world applications.

In this thesis, we tackle the problem of QA over knowledge graph and propose a generic approach to
promote reusability and build question answering systems in a collaborative effort. Firstly, we define
ga vocabulary and Qanary methodology to develop an abstraction level on existing QA systems and
components. Qanary relies on ga vocabulary to establish guidelines for semantically describing the
knowledge exchange between the components of a QA system. We implement a component-based
modular framework called "Qanary Ecosystem" utilising the Qanary methodology to integrate several
heterogeneous QA components in a single platform. We further present Qaestro framework that provides
an approach to semantically describing question answering components and effectively enumerates QA
pipelines based on a QA developer requirements. Qaestro provides all valid combinations of available QA
components respecting the input-output requirement of each component to build QA pipelines. Finally,
we address the scalability of QA components within a framework and propose a novel approach that
chooses the best component per task to automatically build the QA pipeline for each input question. We
implement this model within FRANKENSTEIN, a framework able to select QA components and compose
pipelines. FRANKENSTEIN extends Qanary ecosystem and utilises ga vocabulary for data exchange. It
has 29 independent QA components implementing five QA tasks resulting in 360 unique QA pipelines.
Each approach proposed in this thesis (Qanary methodology, Qaestro, and FRANKENSTEIN) is supported
by extensive evaluation to demonstrate their effectiveness. Our contributions target a broader research
agenda of offering the QA community an efficient way of applying their research to a research field
which is driven by many different fields, consequently requiring a collaborative approach to achieve
significant progress in the domain of question answering.
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CHAPTER 1

Introduction

In the era of Big Knowledge, Question Answering (QA) systems allow for responding natural language
or voice-based questions posed against various data sources, e.g. knowledge graphs, videos, relational
databases, or documents [1-3]. Particularly, with the advent of open knowledge graphs (e.g. DBpedia [4],
Freebase [5], and Wikidata [6]), question answering over structured data gained momentum and research-
ers from different communities, e.g. semantic web, information retrieval, databases, and natural language
processing have extensively studied this problem over the past decade [3, 7, 8]. Thus, since 2010, more
than 62 QA systems have been published, and DBpedia is the underlying knowledge graph in 38 of
them [3]. Those systems usually translate natural language questions to a formal representation of a
query that extracts answers from the given knowledge graph. Figure 1.1 illustrates the layers of question
answering process over knowledge graphs. Layer 3 comprises of underlying knowledge graph which
is used as knowledge source to extract answers. Layer 2 presents several QA systems developed by
researchers extract answers from the underlying knowledge base. The analysis of the architecture of these
QA systems over DBpedia shows that the QA system architectures share similar question answering
tasks on the abstract level [9] and abstract QA tasks are at the first level as illustrated in Figure 1.1. These
tasks include Named Entity Recognition and Disambiguation (NER and NED), Relation Linking (RL),
Class Linking (CL), dependency parsing, and Query Building(QB) [9, 10].

For instance, in question “What is the time zone of New York City?”, an ideal QA system over DBpedia
generates a formal representation of this question, that is a formal query (here expressed as SPARQL!),
which retrieves all answers from the DBpedia endpoint® (i.e. SELECT ?c {dbr:New_York_City
dbo:timeZone Z?c.}). During this process, a QA system performs successive QA tasks. In the first
step (i.e. NED), the QA system is expected to recognise and link the entity being present in the question
to its candidate(s) from DBpedia (e.g. mapping New York City todbr:New_Yo rk_City?). The
next step is RL, where QA systems link the natural language predicate to the corresponding predicate
in DBpedia (e.g. mapping t ime zone to dbo:timeZone*). In the final step, the QB component
formulates a SPARQL query using these IRIs.

Research Objectives. Several independent QA components for various QA tasks (e.g. NED and RL)
have been released by research community. Some of these components are reused in QA frameworks such
as openQA [11], QALL-ME [12], OKBQA [13] to build QA systems in collaborative community efforts
rather building a system from scratch. However, in existing frameworks, a user has to choose components

"https://www.w3.org/TR/rdf-sparql-query/
http://dbpedia.org/sparqgl

3Prefix dbr is bound to http: //dbpedia.org/resource/
“4Prefix dbo is bound to http://dbpedia.org/ontology/
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QA Tasks

Layer 1

POS Tagging

DBpedia Spotlight ReMatch
Aylien I CASIA OKBQA NLIWOD POMELO NLIWOD QB
Stanford NER AGDISTIS AskNow QA Components
TextRazor Freya Intui2 Xser and QA Systems
QAKIS PowerAqua
... ... ... ... ...

Layer 2

Knowledge Base

Layer 3

Figure 1.1: Layers of Semantic Parsing Based Question Answering. The Question Answering Systems implement
similar tasks to translate a user defined natural language question to its formal representation.

manually and there is no automatic way to compose QA pipelines automatically. Recent empirical studies
have revealed that albeit overall effective, the performance of QA systems and QA components depends
heavily on the features of input questions such as question length, POS tags, question head word etc. [14,
15], and not even the combination of the best performing QA systems or individual QA components
retrieves complete and correct answers [16]. Therefore, in order to advance the state of the art, and
explore future research directions, it is important to combine QA components into a QA framework
based on the strengths and weaknesses of the range of existing QA components.

1.1 Motivation, Problem Statement, and Challenges

The necessity of this research study emerged from our observations we have made on more than 60
QA systems and several other independent QA components which have been published until now. In
fact, a great number of independent components perform QA tasks — either as part of QA systems or
standalone. Figure 1.2 presents several QA components, implementing the QA tasks NED (Named
Entity Disambiguation) implemented by (i) DBpedia Spotlight [17], (ii) Aylien API°, and (iii) Tag Me
API [18]), RL (Relation Linking) implemented by (i) ReMatch [19] and (ii) RelMatch [13]), and QB
(Query Building) implemented by (i) SINA [20] and (ii) NLIWOD QB9).

Among these components, DBpedia Spotlight, ReMatch, and NLIWOD QB achieve the best perform-
ance for the tasks NED, RL, and QB, respectively [21]. When QA components are integrated into a
QA pipeline, the overall performance of the pipeline depends on the individual performance of each
component. The fact that a particular component gives superior performance for a task on a given set of
questions does not imply that the component is superior for all types of questions. That is, it may be a

Shttp://docs.aylien.com/docs/introduction
SComponent is based on ht tps://github.com/dice-group/NLIWOD and [8].
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Question NED RL QB SPARQL Query
Q1

DBpedia SELECT DISTINCT ?uri WHERE

{dbr:Canada dbo:capital ?uri .}

SINA I
SELECT DISTINCT ?uri WHERE
{dbr:Brooklyn_Bridge dbo:crosses ?uri .}

ASK WHERE {dbr:Socrates
dbo:influenced dbr:Aristotle .}

ASK WHERE {dbr:Nikola_Tesla dbo:award
dbr:Nobel_Prize_in_Physics .}

Q2 ReMatch

Q3 Did Tesla win a nobel
prize in physics? RelMatch NLIWOD QB
Q4 Which river does the

Brooklyn Bridge cross?

P3 e P4

Figure 1.2: Four natural language questions answered successfully by different pipelines composed of three NED,
two RL, and two QB components. The optimal pipelines for each question are highlighted.

case that the performance of components varies depending on the type of question with varying number
of words, number of POS tags etc.

For example, Figure 1.2 illustrates the best performing QA pipelines for four exemplary input questions.
We observe that Pipeline P1 is the most efficient for answering Question Q;: “What is the capital of
Canada?” but it fails to answer Question Q4: “Which river does the Brooklyn Bridge cross?”. This
is caused by the fact that the RL component ReMatch in Pipeline P1 does not correctly map the
relation dbo:crosses in Q4 for the input keyword “cross”, while RelMatch maps this relation
correctly. Although the overall precision of ReMatch on QALD-5 is higher than that of RelMatch,
for O, the performance of RelMatch is higher. Similarly, for Question Q> “Did Socrates influence
Aristotle?” Pipeline P2 delivers the desired answer, while it fails to answer the similar question Q3
“Did Tesla win a nobel prize in physics?”. Although questions Q> and Q3 have a similar structure
(i.e., Boolean answer type), DBpedia Spotlight NED succeeds for (,, but on Qs it fails to disambiguate
the resource dbr :Nobel_Prize_in_Physics. Atthe same time, Tag Me can accomplish the NED
task successfully. Although, the optimal pipeline for a given question can be identified experimentally by
executing all possible pipelines, this approach is costly and even practically impossible, since covering all
potential input questions is not feasible. Therefore, a heuristic approach to identify an optimal pipeline
for a given input question is required.

Before aiming for an optimal pipeline for a given question, several other challenges need to be
addressed. For example, components that are part of motivating example illustrated in Figure 1.1 are
heterogeneous and have different interoperability issues such as heterogeneity at programming language,
input/output requirements. Second, there is no systematic way to integrate these components into a single
platform. However, if components from existing QA systems implementing subsequent steps of a QA
pipeline are reused and integrated into a single architecture, it will result in a new question answering
system. Several QA systems have been developed recently in the research community, for example, [20,
22-24]. While many of these systems achieved significant performance for special use cases, a shortage
was observed in all of them. We figured out that the existing QA systems suffer from the following
drawbacks (for details, please refer to Chapter 3):

* Potential of reusing the available components is very weak. In spite of several overlapping QA
tasks, reusability for further research is limited and remains an open challenge because of their
focus on specific technologies, applications or datasets. As a result, creating new QA systems
is currently still cumbersome and inefficient and needs to start from scratch. Particularly, the
research community is not empowered to focus on improving particular components of the QA
process, as developing a new question answering system and integrating a component is extremely
resource-consuming.
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* The existing attempts for promoting reusability in QA systems lacks scalability. Some first
steps for developing flexible, modular question answering systems have started to address this
challenge, e.g., [11, 12]. These frameworks follow a tightly coupled approach at the implementation
level for reusing QA components. Therefore, existing QA frameworks do not tackle scalability of
QA components within the framework and QA pipelines have to be composed manually.

* Interoperability between the employed components is not systematically defined. The ex-
isting QA frameworks lack several key properties required for constructing QA systems in a
community effort as they are, for example, bound to a particular technology environment and have
rather static interfaces, which do not support the evolution of the inter-component data exchange
models. For example, openQA [11] expects each component to be implemented in Java, whereas
OKBQA [13] has strict input/output data format requirements.

* Missing heuristic approach for selecting best component based on input question. We have
observed in our motivating example (Figure 1.2) that QA components exhibit different behaviour
based on different types of question. There are many independent components implementing one
QA task. Hence, assuming if all these components are integrated into a framework/platform, it
is challenging to choose the best QA pipeline given all the viable possible combinations with
other QA components implementing different QA tasks. Current frameworks lack a heuristic
approach for selecting the best components per QA task as these frameworks have not considered
the scalability of QA components within the framework.

* Missing Semantics of QA components. Existing QA frameworks lack an automatic way of
composing QA pipelines. Currently, the user is expected to select the component manually from
the state-of-the-art QA frameworks. Also, there is no way to semantically describe a QA component
based on the input/output requirement of the component and the associated QA task. Due to the
lack of semantic description, it is difficult for a QA system developer to choose a component
and integrate it in the QA pipeline. QA systems developer is expected to understand the internal
working of the component (i.e. the task it performs, the required input etc.) manually. There is no
automatic process to compose QA pipelines on demand. Considering the observed shortcomings,
the main research problem this thesis tackles is formulated as:

Research Problem Definition

How can existing components for question answering tasks be reused to build effective and seamless
dynamic question answering pipelines?

1.1.1 Challenges for Building Effective Dynamic QA Pipelines

Based on the motivating example in the previous section, we identify four core challenges to address
formulated research question. Each challenge correspond to a sub research question.



1.1 Motivation, Problem Statement, and Challenges

Challenge 1: Heterogeneity of Existing QA Components and Systems

Most of the state-of-the-art QA systems and components are developed in a span of the last ten years
by different researchers [10]. These QA approaches have heterogeneity at different levels such as pro-
gramming language, input/output format, data exchange within a QA system, architecture etc. Therefore,
while aiming to reuse the existing QA components, the first challenge is to address the heterogeneity of
these tools/components at different levels of granularity and make them interoperable.

Challenge 2: Reusability of QA Components to Build QA Systems

In the past years, a large number of QA systems were proposed using approaches from different fields
and focusing on particular tasks in the QA process (i.e. pipeline). Unfortunately, most of these systems
cannot be easily reused, extended, and results cannot be easily reproduced since the systems are mostly
implemented in a monolithic fashion, lack standardised interfaces and are often not open source or
available as Web services. Therefore, it is very challenging to reuse them easily and limited reusability
constitutes towards the second challenge.

Challenge 3: Automatic Composition of QA Pipeline

Since QA process involves a vast number of (partially overlapping) subtasks, existing QA components
can be combined in various ways to build tailored QA systems that perform better in terms of scalability
and accuracy in specific domains and use cases. However, to the best of our knowledge, no systematic
way exists to formally describe and automatically compose such components to build on-demand QA
systems. With the growing number of QA components for a specific task, and aiming towards their
integration in a single platform, it is challenging to foresee QA component composition in a QA pipeline
manually. In other words, if there are many components available for each task, the challenge here is how
to combine a given QA component with components performing other QA tasks, respecting high-level
input/output dependencies.

Consider DBpedia Spotlight NED [17] which can perform disambiguation task in a question answering
pipeline. It requires just the natural language question as an input, and provides an output as DBpedia
URLs of entities present in the question. AGDISTIS [25] is an another component that performs named
entity disambiguation task. However, the required input for AGDISTIS is the input question, and
recognised spots of entities present in the question. These two tools have completely different input
requirements, yet perform the same QA tasks. To utilise (reuse) either of these tools in a QA pipeline,
the developer needs to understand the functionality of the tool, specific input/output requirements. In a
real-world scenario, it is not expected from a QA developer to first learn about specific input/output of
each component. Therefore, with the availability of a large number of QA components in a platform,
manual composition of QA pipelines respecting such dependencies is cumbersome and constitutes the
third challenge for defined research objective.

Challenge 4: Scalability of QA Components in a Framework

With a vision to integrate existing QA components in a single platform to build effective QA pipelines (i.e.
systems), it is important to consider the scalability. For example, let us assume we have 10 components
available for named entity disambiguation, five for relation linking, and two for query building task
in a single platform. One option is to run all the possible viable combinations of the components to
extract answer (in this case 10X5X2). Therefore, the challenge here is to select the best performing
component per task for each input question based on the strengths and weaknesses of the QA components.
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Research
Questions

Step 1 Step 2 Step 3 Step 4
> -
Framework for Methodology and
QA Abstraction Generic QA Automatic QA Framework for | Approach to Address
level Framework Pipeline Dynamic QA Research Questions
Composition composition

QAestro /—ﬁ
Framework

Qanary [7] Singh et al.(DEXA 17),
Framework [8] Singh et al. (ISWC 17 demo)
————————————————— Frankenstein

Contributions in the

[2] Both et al. (ESWC 16) Framework .
[3] Diefenbach et al. (ICWE 17) ~ Thesis to Address
[4] Singh et al. (K-Cap 17) Research Questions

[5] Singh et al. (ESWC Satellite Event 16)

[6] Both et al. (ICWE 17)
QA vocabulary

[1] Singh et al. (ICSC 16) [9] Singh et al.(WWW 2018)
[10] Singh et al. (ESWC 2018)
[11] Singh et al. (SIGIR 2018)

Figure 1.3: Approach for addressing the main research problem comprises four steps. Each Step addresses
individual challenges of the overall approach, and is supported by research publications.

Recent empirical studies have described that the performance of QA systems and QA components
depends heavily on the features/type (such as question length, POS tags etc.) of input questions [14, 15].
This is because it may be a case that one NED component can effectively identify and disambiguate
particular types of entities (for e.g. entities written in lower case in input question), may fail for another
type of entities (for e.g. entities with upper case characters). Similarly, for other tasks, a component’s
performance may also vary based on the type of input questions. Therefore, it is not a wise idea to use
same components per task for each input question. Assuming more and more components are added to a
single platform, scalability becomes a key issue.

1.1.2 Approach

The approach that aims to address the four identified challenges has multiple stages as shown in Figure 1.3.
The first step comprises the creation of an abstract level on top of existing QA systems and components.
The existing state-of-the-art QA systems differ at multiple levels of granularity of their interoperability
such as data exchange format, architecture, programming language, input/output format of intermediate
steps etc. Hence the first stage (and Challenge 1) consists of modelling and conceptualising QA systems
to make them interoperable.

The second level incorporates the methodology and framework to integrate the existing QA components
in a single platform overcoming their heterogeneity to build reusable QA systems. The task of building
such methodology and framework constitutes the second stage (and Challenge 2) of the proposed
approach. The third step presents a way to assist the QA system developer to compose effective QA
pipelines. With the possibility of increasing scalability of QA components, and foreseeing their integration
in a single platform, it is quite challenging to manually combine the components to form QA pipelines.
In turn, the third stage (Challenge 3) implies an effective way to compose QA pipelines. Once, the
approach tackles the problem of QA pipeline composition in the previous step, the last stage envisages
a dynamic composition of QA pipelines based on the type of question. In other words, the challenge
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Figure 1.4: Four sub research questions contribute to the overall research objective of the thesis

(Challenge 4) here is to select the best component per task for a given input question from the plethora of
QA components integrated into the single platform.

1.2 Research Questions

Based on the revealed challenges we devise the following research questions to be addressed in the thesis.
Each challenge is mapped to one sub-research question and collectively contributes towards the overall
research question of the thesis as illustrated in the Figure 1.4.

Research Question 1 (RQ1)

How can semantics contribute in establishing interoperability of QA components?

The Web of Data has attracted the attention of the question answering community and recently, a
number of schema-aware question answering systems have been introduced. Much research has been
done w.r.t. specific QA applications, showing clearly that the problem is very complex from a scientific as
well as technical point of view. While research achievements are individually significant yet, integrating
different approaches is not possible due to the lack of a systematic approach for conceptually describing
QA systems and tackle their heterogeneity at different dimensions (e.g. input/output requirements,
programming language etc.). To address this research problem, we analyse the challenges for making
existing QA systems and components interoperable. We study the problems that hinder the interoperability
of QA systems. We then analyse the need of a generic approach to model and conceptualise QA systems
and components. This approach must cover all needs of current QA systems and be abstracted from
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implementation details. Moreover, it must be open such that it can be used in future QA systems. This will
allow interoperability, extensibility, and reusability of QA approaches and components of QA systems.

Research Question 2 (RQ2)

How can QA components be integrated in a single platform agnostic to their implementation to
promote reusability?

QA systems are very complex and existing approaches are mostly singular and monolithic implement-
ations for QA in specific domains. Therefore, it is cuambersome and inefficient to design and implement
new or improved approaches, in particular as many components are not reusable. In this question, we
study a mechanism to promote reusability of QA components to build new QA systems instead of
building a complete QA system from scratch. We define a methodology to integrate heterogeneous
QA components in a single platform which is agnostic to implementation details of QA components.
Additionally, we address the heterogeneity of existing QA components at different levels of granularity
to integrate them within a single platform.

Research Question 3 (RQ3)

How can the process of composing QA pipelines be effectively automated?

An effective way to compose QA pipelines in an automatic manner is investigated in the third research
question. Due to the increasing number of QA systems and components, question answering involves
several tasks and subtasks, common in many systems. Existing components can be combined in various
ways to build the tailored question answering pipelines. However, manual compositions of such pipelines
are cumbersome and time-consuming. When we are aiming for integrating several QA components
in a single framework, the problem may arise when many components are present for each task. We
thus overview existing pitfalls of the manual composition of QA pipelines and devise an approach for
automatic composition of QA pipelines in a seamless manner. This automates the process of combining
QA components with minimal manual effort respecting input and output requirement of each component.

Research Question 4 (RQ4)

How can effective dynamic QA pipelines be composed by reusing components?

We then delve into the possibility and methodology for composing dynamic question answering
pipelines. We consider the scalability of QA components and devise an approach for composing QA
pipelines based on the type of question and call it dynamic QA pipeline.
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1.3 Thesis Overview

To present a high-level but descriptive overview of the achieved results during the course of conducted
research, this section emphasises the main contributions of the thesis and provides references to scientific
articles covering these contributions published throughout the whole term.

1.3.1 Contributions
Contributions for RQ1

Vocabularies for promoting the interoperability of question answering systems.

To address the first research question, we present two generic vocabularies built upon an abstract level
of existing QA systems. We initiate a step towards an interoperable approach that will be used to
build systems which follow a philosophy of being actually open for extensions. Firstly, we present a
QAV vocabulary [9] to semantically define the QA components and systems. This vocabulary helps
us to define a component based on the task it performs, its input and output requirements on a higher
level. This provides a clear picture of the component. We then collect and generalise the necessitated
requirements from implementing the state-of-the-art QA systems. We model the conceptual view of
QA systems using and extending the Web Annotation Data Model’” while thereafter we show how these
requirements are fulfilled while using the Web Annotation Data Model. This model empowers us for
designing a knowledge-driven approach for QA systems and deals with the heterogeneity of existing
question answering approaches. This resulted into a vocabulary which is concluded from conceptual
views of different question answering systems. We call this ontology ga vocabulary [26]. In this way by
proposing QAV and ga vocabularies, we are enabling researchers to implement knowledge-driven QA
systems and to reuse and extend different approaches without interoperability and extension concerns.

Contributions for RQ2

A framework for knowledge-driven open question answering systems.

Establishing a QA system is time-consuming. One main reason is the involved fields, as solving
a Question Answering task, i.e., answering a user’s question with the correct fact(s), might require
functionalities from different fields like information retrieval, natural language processing, and linked
data. Therefore, it is cumbersome and inefficient to design and implement new or improved approaches,
in particular as many components lack reusability and extensibility. Hence, there is a strong need for
enabling best-of-breed QA systems, where the best performing components are combined, aiming at the
best quality achievable in the given domain. Taking into account the high variety of functionality that
might be of use within a QA system and therefore reused in new QA systems, we provide an approach
driven by a core QA vocabulary (i.e. ga) that is aligned to existing, powerful ontologies provided by
domain-specific communities. We achieve this by a methodology for binding existing vocabularies to

"https://www.w3.org/TR/annotation-model/
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our core QA vocabulary without re-creating the information provided by external components. We thus
provide a practical approach for rapidly establishing new (domain-specific) QA systems, while the core
QA vocabulary is re-usable across multiple domains. We name the proposed methodology Qanary [27].
Qanary methodology is the first approach to open QA systems that are agnostic to implementation details
and that inherently follow the Linked Data principles. The ga vocabulary is the foundation for Qanary
methodology for implementing the QA processes.

Qanary Ecosystem is the implementation of the Qanary methodology where all knowledge related
to questions, answers and intermediate results is stored in a central local Knowledge Base (KB). The
knowledge is represented in terms of the ga vocabulary in the form of annotations of the relevant parts
of the question. Within Qanary ecosystem, the components all implement the same service interface.
Therefore, all components can be integrated into a QA system without manual engineering effort. Using
its service interface, a component receives information about the KB (i.e., the endpoint) storing the
knowledge about the currently processed question of the user. Hence, the common process within all
components is organised as follows:

1. A component fetches the required knowledge via (SPARQL) queries from the KB. In this way, it
gains access to all the data required for its particular process.

2. The custom component process starts, computing new insights of the user’s question.
3. Finally, the component pushes the results back to the KB (using SPARQL).

Therefore, after each process step (i.e., component interaction), the KB should be enriched with new
knowledge (i.e., new annotations of the currently processed user’s question). This way the KB keeps track
of all the information generated in the QA process even if the QA process is not predefined or not even
known. The ga vocabulary and Qanary methodology act as the foundation for the Qanary ecosystem
[27-29] which is the framework consisting of components and web services integrated in a single
platform using Qanary methodology. Here, our main contribution is a component-based architecture
enabling developers to create or re-combine components following a plug-and-play approach. While
aiming at an optimal system w.r.t. a given use case, (scientific) developers are enabled to rapidly create
new/adapted QA systems from the set of Qanary components available. Hence, our component-based
architecture enabling developers to create or recombine components following a plug-and-play approach.
While aiming at an optimal system w.r.t. a given use case, (scientific) developers are enabled to rapidly
create new/adapted QA systems from the set of Qanary components available.

Besides the methodology, and framework for creating QA systems, we also contribute an approach
for creating relation linking components. The research community has developed many components
for named entity recognition and disambiguation task, but little work has been done in the direction of
independent relation linking components. To scale up the number of components in Qanary ecosystem,
we developed an approach for creating relation linking component reusing the large corpus of natural
language relational patterns.

Contributions for RQ3

A framework for semantic-based composition of question answering pipelines.

Examining reusability of QA components and systems, we took a detailed look at their implementation.
Despite different architectural components and techniques used by the various QA systems, these

10
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systems have several high-level functions and tasks in common. However, to the best of our knowledge,
no systematic way exists to formally describe and automatically compose QA pipelines from such
components. Thus, we introduce Qaestro, a framework for semantically describing both QA components
and developer requirements for QA component composition. Qaestro relies on a controlled vocabulary
and the Local-as-View (LAV) approach to model QA tasks and components, respectively. Furthermore,
the problem of QA component composition is mapped to the problem of LAV query rewriting [30], and
state-of-the-art SAT solvers [31] are utilised to efficiently enumerate the solutions. We have formalised
51 existing QA components implemented in 20 QA systems using Qaestro. Our empirical results suggest
that Qaestro enumerates the combinations of QA components that effectively implement QA developer
requirements to compose on demand QA pipelines.

Contributions for RQ4

Methodology and framework for composing effective dynamic QA pipelines.

We have observed in motivating example that modern question answering (QA) systems need to
flexibly integrate a number of components specialised to fulfil specific tasks in a QA pipeline. Since a
number of different software components exist that implement different strategies for each of these tasks,
it is a major challenge to select and combine the most suitable components into a QA system, given the
characteristics of a question. We study this optimisation problem and train classifiers, which take features
of a question as input and have the goal of optimising the selection of QA components based on those
features. We then devise a greedy algorithm to identify the pipelines that include the suitable components
and can effectively answer the given question. We implement this model within FRANKENSTEIN, a QA
framework able to select QA components and compose QA pipelines. We evaluate the effectiveness
of the pipelines generated by Frankenstein using question answering benchmarks. These results not
only suggest that FRANKENSTEIN precisely solves the QA optimisation problem but also enables the
automatic composition of optimised QA pipelines, which outperform the static Baseline QA pipeline.
FRANKENSTEIN uses Qanary methodology to integrate QA components in its architecture. The modular
architecture of FRANKENSTEIN allows developers to add more components to this platform just by
following simple configuration steps. Overall, FRANKENSTEIN promotes reusability of components and
tools performing different QA tasks by integrating them into a single platform. Question Answering
is a domain which is driven by different fields, consequently, it requires a collaborative approach to
achieve significant progress. Hence, by reusing infrastructure and tools provided by FRANKENSTEIN,
researchers can build QA systems in collaboration with a focus on individual stages of QA tasks, and
reuse components for other tasks from the FRANKENSTEIN.

1.3.2 Publications

The following list of publications contribute a scientific basis of this thesis and acts as a reference point
for numerous figures, tables and ideas presented in the later chapters. Please note that the co-authors in
the papers are either Professors, post-docs, or masters student. For the papers co-authored with other
PhD student, individual contribution is clearly mentioned. Therefore, parts of the contributions of this
dissertation which is mentioned below were achieved as the result of effective teamwork. The author
(Kuldeep Singh) will use the “we” pronoun throughout this dissertation, but all of the contributions and
materials presented in this work, except the below mentioned collaborative works with an another PhD
student, originated from the work of the author solely by himself.

11
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* Conference Papers (peer reviewed)

1. K Singh, AS Radhakrishna, A Both, S Shekarpour, I Lytra, R Usbeck, A Vyas, A Khikmatul-
laev, D Punjani, C Lange, ME Vidal, J Lehmann, S Auer. Why Reinvent the Wheel- Lets Build
Question Answering Systems Together. In Proceedings of the Web Conference (formerly
known as WWW), 2018, ACM;

2. K Singh, A Both, AS Radhakrishna, S Shekarpour. Frankenstein: a Platform Enabling
Reuse of Question Answering Components. In Proceedings of the 15th Extended Semantic
Web Conference (ESWC), 2018, Springer;

3. K Singh, IO Mulang, I Lytra, MY Jaradeh, A Sakor, ME Vidal, C Lange, S Auer. Capturing
Knowledge in Semantically-typed Relational Patterns to Enhance Relation Linking. In
Proceedings of the Knowledge Capture Conference (K-Cap), 2017, ACM,;

4. K Singh, I Lytra, ME Vidal, D Punjani, H Thakkar, C Lange, S Auer. Qaestro -Semantic-
based Composition of Question Answering Pipelines. In Proceedings of 28th International
Conference on Database and Expert Systems Applications (DEXA), 2017, Springer;

5. D Diefenbach, K Singh, A Both, D Cherix, C Lange, S Auer. The Qanary ecosystem:
getting new insights by composing Question Answering pipelines. In Proceedings of the
17th International Conference on Web Engineering (ICWE), 2017, Springer; The work was
done jointly with PhD student Dennis Diefenbach (Universite Jean Monnet, France). In this
paper, my contributions include designing and implementing the integration of various QA
components in the core Qanary architecture. I have also contributed in designing the core
Qanary Ecosystem using Springboot framework.

6. A Both, D Diefenbach, K Singh, S Shekarpour, D Cherix, C Lange. Qanary -a methodology
for vocabulary-driven open question answering system. In Proceedings of the 13th Extended
Semantic Web Conference (ESWC), 2016, Springer; This work was predecessor work for
Qanary ecosystem jointly done with Dennis Diefenbach (Universite Jean Monnet, France). 1
contributed in designing the fundamentals of the Qanary methodology, and implementing the
core QA pipeline architecture for the evaluation of the proposed methodology.

7. K Singh, A Both, D Diefenbach, S Shekarpour. Towards a message-driven vocabulary for
promoting the interoperability of question answering system. In Proceedings of the 10th
International Conference on Semantic Computing (ICSC), 2016, IEEE; The foundational step
for Qanary is the ga vocabulary proposed in this paper, jointly done with Dennis Diefenbach
(Universite Jean Monnet, France). My contributions in this paper was to collect all the
requirements for designing open and scalable vocabulary by reviewing state of the art QA
systems, and then jointly designing the concrete requirements wrt. Web Annotation Data
model for conceptualising the QA systems.

* Demo Papers (peer reviewed)

8. K Singh, I Lytra, A Sethupat, A Vyas, ME Vidal. Dynamic Composition of Question
Answering Pipelines With Frankenstein. In Proceedings of the 41st International ACM SIGIR
conference on research and development in Information Retrieval (SIGIR), 2018, ACM;

9. A Both, K Singh, D Diefenbach, I Lytra. Rapid Engineering of QA Systems Using the
Light-Weight Qanary Architecture. In Proceedings of the 17th International Conference on
Web Engineering (ICWE), 2017.
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10. K Singh, I Lytra, K Abhinav, ME Vidal. Qaestro Framework- Semantic Composition of QA
Pipelines. In Posters and Demo Track, 16th International Semantic Web Conference (ISWC)
2017. CEUR Workshop Proceedings.

11. K Singh, A Both, D Diefenbach, S Shekarpour. Qanary—the Fast Track to Creating a
Question Answering System with Linked Data Technology. In Posters and Demo Track at the
13th Extended Semantic Web Conference (ESWC), 2016.

» Workshop Articles (peer reviewed)

12. S Shekarpour, KM Endris, A Jaya Kumar, D Lukovnikov, K Singh, H Thakkar, and C Lange.
Question answering on linked data: Challenges and future directions. In Proceedings of the
25th International Conference Companion on World Wide Web (WWW Companion). 2016.

* Miscellaneous Papers (peer reviewed)

Following publications originated during and are related to this thesis but are not part of the thesis
itself.

13. 10 Mulang, K Singh, F Orlandi. Matching Natural Language Relations to Knowledge Graph
Properties for Question Answering. In Proceedings of the Semantics, ACM, 2017.

14. K Singh, I Lytra, AS Radhakrishna, S Shekarpour, ME Vidal, J Lehmann. No one is Perfect-
Analysing the Performance of Question Answering Components over the DBpedia Knowledge
Graph. Submitted to Information Processing and Management Journal, Elsevier.

The full list of publications completed during the PhD term is available in Appendix A.

1.4 Thesis Structure

The thesis is structured into eight chapters. Chapter 1 introduces the thesis covering the main research
problem, the motivation for the conducted study, research questions, scientific contributions that address
research questions, and a list of published scientific papers that formally describe those contributions.
Chapter 2 presents fundamental concepts and background in the fields of Semantic Web, Linked Data, and
Question Answering for a holistic overview of the research problem. Chapter 3 describes state-of-the-art
efforts in the domain of question answering. We describe QA components, systems and frameworks to
provide a detailed understanding of their limitation, and gaps we identified in this thesis.

In Chapter 4 we describe two vocabularies to 1) conceptualise existing QA systems and components 2)
capture knowledge generated in a QA process. These two vocabularies are foundations of our approach
defined in Chapter 5 for automatic composition of QA pipelines, and solving interoperability issues of
QA components. Therefore, in Chapter 5, we report the efforts aimed at the first step towards integrating
existing QA components in a single platform. We describe Qanary, a methodology for creating question
answering systems using Linked Data technologies. We also describe Qanary Ecosystem, which is
a framework built using Qanary methodology. We show how independent QA components can be
integrated into Qanary Ecosystem, and benchmarked to evaluate their performance. In next Chapter, We
devise an approach for creating relation linking components by reusing a large corpus of natural language
relational patterns and their corresponding DBpedia predicates. Chapter 6 describes this approach for
capturing information in large knowledge sources such as PATTY and then utilise this knowledge to
build an independent relation linking tool. We detailed Qaestro framework in Chapter 7 able to deal
with the QA pipeline composition problem by casting it to the query rewriting problem and leveraging
state-of-the-art SAT solvers. Qaestro helps QA developers to semantically describe QA components and
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developer requirements based on these semantic descriptions; a controlled vocabulary is utilised to model
QA tasks and is exploited in the description of the QA components.

In Chapter 8, we present our approach for dynamic composition of QA pipelines considering the
type of the question. We implement this approach in a framework known as FRANKENSTEIN. We
describe FRANKENSTEIN and its architecture with a large scale evaluation of its 29 components. Finally,
Chapter 9 concludes the thesis with directions of future work. We once more look through the research
questions and answer them based on the obtained results.
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CHAPTER 2

Background

The research problem of creating effective dynamic question answering pipelines by reusing existing
QA components and systems defined in Chapter 1 require a comprehensive approach from different
perspectives. The principles and concepts presented in this chapter lay the foundations for addressing
posed challenges. Figure 2.1 illustrates basic building blocks for the defined research problem. Resource
Description Framework (RDF) defined in Section 2.1.1 acts as a foundation for defining data in machine-
readable format. We leverage properties and characteristics of RDF in answering research question
RQ1 and RQ2. Knowledge Graphs defined in Section 2.2 act as a rich source of structured information
which a user may be interested in. Therefore, leveraging the strengths of Knowledge Graphs with
SPARQL query processing on top to extract right information act as foundations for question answering
process. Therefore, we leverage Knowledge Graph and SPARQL capabilities in RQ2 and RQ4. Question
Answering Tasks defined in Section 2.3 act as a conceptual representation of existing state-of-the-art QA
components and systems. QA tasks define the foundations for RQ3 and RQ4.

2.1 Semantic Web & Linked Data

On the Web, the documents and files can be identified by Uniform Resource Locators (URIs) and are
accessible via the HyperText Transfer Protocol (HTTP). Berners-Lee et al. [32] proposed the idea of
Semantic Web in 2001 to allow machines to understand the context of data. Semantic web describes
resources (things) in a machine-readable format which are real-world entities such as "cars" but also
define abstract concepts such as "transportation”. Semantic web is an extension of existing Web with
adding meaning to the information to make the data more accessible and structured. Extensible Markup
Language (XML) [33] and its descendants as Turtle ', N-Triples 2, N3 3, TriG * are important technologies
for developing Semantic Web. XML is W3C specification’ that focuses on simplicity, generality, and
usability over the Internet for textual data. Resource Description Framework (RDF) is the core of
Semantic Web data representation. Meaning of data is expressed in RDF that uses a triple model
<subject verb object> to provide a formal resource description. In RDF, a document makes
statement about a resource (e.g. Barack Obama) has properties (e.g. wife of, president of) with certain
values (another resource such as Michelle Obama, or United States of America) [32]. Standardised

"Turtle Specification https://www.w3.org/TR/turtle/
IN-Triples Specification https://www.w3.0rg/TR/n-triples/
3N3 Specification https://www.w3.org/TeamSubmission/n3/
“TriG Specification https://www.w3.org/TR/trig/
Shttps://www.w3.org/TR/REC-xml/
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Figure 2.1: Relevant foundations for the defined research problem. Resource Description Framework lay
foundations of knowledge graph creation and provides a machine-understandable knowledge representation.
Knowledge Graphs act as a framework for uniform knowledge representation. SPARQL Query Processing is
responsible for extraction of information from Knowledge Graphs. Question Answering tasks represent the existing
QA systems on conceptual level.

vocabulary is used to achieve the formal semantics in RDF. These resources and concepts are represented
by unique URIs to give better representation, uniqueness, and accessibility.

Furthermore, the main advantage of Semantic Web is its powerful structured representation for data
consumption and publishing. Tim Berners-Lee proposed five Star deployment scheme® for open data
as illustrated in Figure 2.2. In these five levels of data deployment scheme, Linked open Data (LOD)
constitutes towards highest order of this deployment scheme. To promote reusability and add semantics
in linked data, there are four principles proposed by Tim Berners-Lee to adhere to [34]:

* To use URIs as names of the things (i.e. resources);
* To use HTTP URIs for dereferencing such that user can look up for these names easily;
* When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL);

* Interlink URIs so that people can discover more things.

The core message behind these principles is to promote openness and interlinking of information over
Web. Following these principles, more and more data providers adapted it, which lead to the development
of Linked Open Data Cloud (LOD Cloud) [35], a network of interconnected 5 star datasets. Some of the
examples include DBpedia [4] — a structured version of Wikipedia’; Wikidata [6] — an uniform source
for Wikipedia articles; LinkedGeoData [36] — a collection of geospatial RDF data from OpenStreetMap®.

Shttp://5stardata.info/en/
"http://www.wikipedia.org
dhttps://www.openstreetmap.org/
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Figure 2.2: 5 Star Deployment Scheme. PDF, XSL, CSV, RDF, and Linked Open Data (LOD) represent five levels
of data deployment schemes in increasing order of openness.

2.1.1 The Resource Description Framework (RDF) and Web Ontology
Language (OWL)

The Resource Description Framework (RDF) is a W3C standard [37] that is originally designed as
meta data model. It has been widely used for conceptual description or modelling of information using
variety of syntax, notations, and web standards. RDF data models is similar to classical conceptual data
modelling approaches such as entity relationships or class diagrams and information is represented as
triple which can be described as follows:

* A triple consists of subject, object and verb to define a sentence. Consider the sentence "Michelle
Obama is the spouse of Barack Obama", this sentence can be represented in RDF w.r.t DBpedia
knowledge base as: <dbr:Michelle_Obama, dbo:spouse, dbr:Barack_Obama>.

* Subject denotes a resource to which verb and object belong; subjects are either blank node or URIs
in RDF. In our example subject is Michelle Obama represented as dbr :Michelle_Obama.

* Verb (or predicate) denotes the relationship between subject and object in in this case, it is the
ontology: dbo: spouse.

* Object specifies predicate with a particular value; and it can be URISs, blank nodes or string literals.
For the given sentence it is: dbor :Barack_Obama.

In Semantic Web, vocabularies (or RDF vocabularies) are the set of terms defined using standard
formats (e.g. RDF) for further reuse by the users. RDF Schema is used to define RDF vocabularies.
RDF Schema (RDFS) is alternatively known as RDF Vocabulary Description Language’. To structure
the RDF information (such as resources), RDF Schema is used which is a collection of classes and
properties providing basic elements for the description of RDF vocabularies (ontologies). Meaning of
terms and the relationship between those terms are represented by Web Ontology Language (OWL). This

https://www.w3.0rg/2001/sw/RDFCore/Schema/200203/
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representation of terms is called Ontology [38]. OWL is built on top of RDFS to allow users to define
ontologies. Ontologies can be defined as formal definitions of vocabularies that permit users to define
complex structures as well as new relationships between the vocabulary terms and between members of
the classes present in it. OWL is used to define and illustrate vocabularies and it is also in forms of triples.
All the data expressed using ontologies can be stored in special datastores called RDF triplestores. RDF
Triplestores have following properties'®:

* RDF triplestores are flexible like NoSQL datastores with no pre-defined schema.
* They are fast and scalable to deal with large amount of data.
» Subjects and objects are stored as nodes, whereas edges are the predicates.

* Data can be interpreted easily.

Ontotext!!, Stardog'?, and rdf4j'3 etc. are few examples of such triplestores. RDF triplestores can be
queried using formal query language known as SPARQL.

2.1.2 SPARAQL as a Query Language

SPARQL is similar to SQL and used to query RDF data by querying unknown relationships. It can
perform a complex join of disparate data in a simple query. SPARQL is a W3C recommendation that
uses triple pattern as its foundation'*. Basic Graph Pattern (BGP) denotes a set of triple patterns.

Triple Pattern, Basic Graph Pattern [39]

Definition 2.1.1 Let U, B, L be disjoint infinite sets of URIs, blank nodes, and literals, respectively.
Let V be a set of variables such that V N (U U BU L) = 0. A triple pattern tp is member of the set
UUVXUUV)X(UULUV). Let tp1,tpy, . .., tp, be triple patterns. A Basic Graph Pattern (BGP)
B is the conjunction of triple patterns, i.e., B =tp; AND tpy, AND ... AND tp,.

The conjunctions of triple patterns can be extended with filters (F I LTER), optional patterns (OPTIONAL),
logical operators (UNION and AND), aggregate functions in SPARQL. Furthermore, SPARQL defines
following four query forms: SELECT query returns all, or a subset of the variables bound in query match
pattern. ASK query returns a boolean value TRUE or FALSE depending on the query pattern matches with
the given BGP or not. CONSTRUCT query returns an RDF graph constructed by substituting variables
in a set of triple patterns. DESCRIBE query result is an RDF graph that describe the resource found.
SPARQL expression and SELECT query is formally defined as:

URDF Tutorial: https://www.fullstackacademy.com/
Uphttps://ontotext.com
2https://www.stardog.com/

Bhttp://rdf4j.org/
Yhttps://www.w3.org/TR/rdf-sparqgl-query/
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2.2 Knowledge Graph and DBpedia

SPARQL Expression and SELECT Query [39]

Definition 2.1.2 Let V be a set of variables. A SPARQL expression is built recursively as follows.
1. A tuple from (U U V) X (U U V)X (UU LUYV)is a triple pattern.

2. If Q1 and Q, are graph patterns, then expressions (Q1 AND Q»), (Q1 UNION Q,), (Q1 OPT Q»)
are graph patterns and SPARQL expressions, i.e., conjunctive graph pattern, union graph pattern,
and optional graph pattern, respectively.

3. If Q is a SPARQL expression and R is a SPARQL filter condition, then (Q FILTER R) is a SPARQL
expression, i.e., filter graph pattern.

If Q is a SPARQL expression and S C V a finite set of variables, then SPARQL SELECT query is an
expression of the form SELECTs(Q).

Listing 2.3, Listing 2.2 and Listing 2.3 illustrate example of three different SPARQL queries. First
Listing is a SPARQL SELECT query that returns answer of Name the municipality of Roberto Clemente
Bridge. evaluated against DBpedia. Second SPARQL is a ASK query which expect boolean answer for
the question Is Nikolai Morozov the former coach of Stanislav Morozov?:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?2uri

WHERE { dbr:Roberto_Clemente_Bridge
dbo:municipality ?uri }

Listing 2.1: An Example of SPARQL SELECT query.

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
ASK WHERE { dbr:Stanislav_Morozowv

dbo: formerCoach

dbr:Nikolai_Morozov_ (figure_skater)> }

Listing 2.2: An Example of SPARQL ASK query.

2.2 Knowledge Graph and DBpedia

Google used the term Knowledge Graph for the first time in 2012 [40]. Knowledge graph is the structured
representation of information collected about the objects in the real world. Objects could be person, car,
movie, or any types of other things. Paulheim [41] describe the features of knowledge graphs as follows:
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Knowledge Graph ([41])

Definition 2.2.1 A knowledge graph:
1. mainly describes real world entities and their interrelations, organised in a structured graph;
2. defines possible classes and relations of entities in a schema;
3. allows for potentially interrelating arbitrary entities with each other;

4. covers various topical domains.

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
SELECT DISTINCT COUNT (?uri)

WHERE{ ?x dbo:hometown

dbr:India . ?x

dbp:religion ?uri . }

Listing 2.3: An Example of SPARQL COUNT query.

Besides Google’s knowledge graph, there are many publicly available knowledge graphs such as DBpedia,
Wikidata [6], Yago [42] etc. DBpedia is a widely used knowledge graph that uses Wikipedia for extracting
information to be represented in RDF format. DBpedia has more than 4 million entities, with over 3
billion RDF triples. Each Web page of Wikipedia is represented as unique URI in DBpedia. For example,
consider the city of Delhi in India. DBpedia refer Delhi as http://dbpedia.org/resource/
Delhi (in short dbr:Delhi). During the extraction process, related information (e.g. infobox fields,
categories, and page links) about wiki page of Delhi are also extracted and stored as triples, described in
the Listing 2.4. This information is added to the knowledge base as properties of the corresponding URI.

dbr:Delhi dbo:isoCodeRegion IN-DL

dbr:Delhi dbo:part dbr:List_of_ districts_of_Delhi
dbr:Delhi dbo:leaderName dbr:Alok_Verma

dbr:Delhi dbp:east dbr:Uttar_ Pradesh

dbr:Delhi dbo:populationTotal "18686902"

Listing 2.4: A snippet of the triples describing http://dbpedia.org/resource/Delhi.

The knowledge present in DBpedia can be easily extracted by querying its online endpoints using
SPARQL queries. However, DBpedia or other knowledge graphs do not provide an inbuilt easy interface
where users can type natural language questions to extract information. For this, question answering
systems have been built by the research community to provide an easy to use interface in order to extract
information from Knowledge Graphs.
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2.3 Question Answering over Knowledge Graphs

The Web of Data is growing permanently as well as the industrial data sets. Induced by this movement
the challenge for retrieving knowledge from such data sets has gained much importance in research and
industry. Question answering research is tackling this challenge by providing an easy-to-use natural
language interface for retrieving knowledge from large data sets. In recent years, QA systems have
received much interest, since they manage to provide intuitive interfaces to humans for accessing
distributed knowledge — structured, semi-structured, or unstructured — in an efficient and effective
way. Since the first attempts to provide natural language interfaces to databases around 1970 [43], an
increasing number of QA systems and QA related components have been developed by both industry
and the research community [7, 44]. Question answering over unstructured data has been a field of
continuous interest for the researchers in the last two decades [45]. In recent years, question answering
over structured knowledge bases (e.g., DBpedia [4]) has also gained momentum. Despite different
architectural components and techniques used by the various QA systems, these systems have several
high-level functions and tasks in common [46].

The Question Answering Tasks Now we formally define a set of necessary QA tasks as 7 =
{t1,12,...,1,} such as NED, RL, and QB. Each task (#; : ¢* — ¢*) transforms a given representation ¢*
of a question ¢ into another representation ¢g*. For example, NED and RL tasks transform the input
representation “What is the time zone of India?” into the representation “What is the dbo : t imeZone
of dbr:India?”. The entire set of QA components is denoted by C = {Cy,C3,...,Cy}. Itis also
possible to have availability of multiple components per QA task. Therefore, while aiming to build QA
pipelines reusing existing components, we define two levels of optimisation problems:

1. Local Optimisation: With availability of several components for each task, idea is to find best
performing component per task rather blindly traversing the space of available components and
running each of them. The problem of finding the best performing component for accomplishing
the task #; for an input question g, denoted as yg, is formulated as follows:

Yy = arg max (Pr(p(C)lq)} (2.1)

i

Where Pr(p(C))lg, t;) is a supervised learning problem to predict the performance of the given
component C; for the given question g; Each component C; solves one single QA task; po(C;)
corresponds to the QA task #; in 7" implemented by C;. For example, DBpedia Spotlight [17]
implements the entity linking QA task, i.e., p(DBpediaSpotlight) = NED. In this work, we assume
a single knowledge graph (i.e., DBpedia); thus, A is considered a constant parameter that does not
have any impact.

2. Global optimisation: the problem of finding the best performing pipeline of QA components
d/zoal, for a question g and a set of QA tasks called goal. Formally, this optimisation problem is
defined as follows:

oal
= Q. 22
Y5 = arg nJ&?ﬁ‘an{ ™, 9)} (2.2)

where &E(goal) represents the set of pipelines of QA components that implement goal and (1, )
corresponds to the estimated performance of the pipeline 77 on the question g.

Figure 2.3 depicts an abstract pipeline of the QA tasks, which receives a question as input and outputs
the answers to this question over a knowledge base [46]. We first list different question answering tasks
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Figure 2.3: Pipeline of QA Tasks. A QA pipeline receives a question and outputs the question answers. Question
Analysis allows for question linguistic and semantic analysis to identify question features. During Data Mapping,
question features are mapped into concepts in a Knowledge Base. A SPARQL query is constructed and executed
during Query Generation and Answer Generation respectively.

below and then in the next section we list the components performing different tasks. The below QA task
definitions describe the logical structure of an abstract QA pipeline. However, QA systems implement
these tasks differently, sometimes combining several of these tasks in a different order or skipping some
of the tasks which are often a case in state of the art QA systems.

Question Analysis: Using different techniques, the input question is analysed linguistically to
identify syntactic and semantic features. The following techniques form important subtasks:

Tokenisation: A natural language question is fragmented into words, phrases, symbols, or other
meaningful units known as tokens. For the question "What is the time zone of India?", tokenisation
task will provide keywords "time zone, India" as output.

POS Tagging: The part of speech, such as noun, verb, adjective, and pronoun, of each question word is
identified and attached to the word as a tag. The Stanford POS tagger'> converts "What is the time
zone of India?" into what/WP is/VBZ the/DT time/NN zone/NN of/IN India/NNP ?/.

Dependency Parsing: An alternative form of syntactic representation of the question to form a tree-like
structure is created where arcs (edges in the tree) indicate that there is a grammatical relation
between two words, whereas the nodes in the tree are the words (or tokens) in the question. The
sample output of such dependency parsing is describe below:

(ROOT
(SBARQ
(WHNP (WP what))
(SQ (VBZ 1is)

(NP
(NP (DT the) (NN time) (NN zone))
(PP (IN of)
(NP (NNP India)))))
(- 2)))

Listing 2.5: Dependency Parsing of the Question "What is the time zone of India

Bhttp://nlp.stanford.edu:8080/parser/index. jsp
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Named Entity Recognition: An input question is parsed to identify the sequence of words that represent
a person, a thing, or any other entity. For example question, the entity Tndia is recognised by a
NER component.

Named Entity Disambiguation: The identity of the entity in the text is retrieved and then linked to its
mentions in knowledge graph. An ideal NED component will disambiguate India to dbr : India.

Linguistic Triple Generation: Based on the input natural language question, triple patterns of the form
(query term, relation, term) are generated [46]. A sample triple is <India, timeZone, ?>.

Data Mapping: Information generated by Query Analyser such as entities and tokens is mapped to
its mentions in online knowledge bases such as DBpedia. The triple from triple generator is mapped to
<dbr:India,dbo:timeZone, ?>.

Query Generating: SPARQL queries are constructed; generated queries represent input questions
over entities and predicates in online knowledge bases. A corresponding SPARQL query is constructed
by a query builder component as:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?2uri

WHERE { dbr:India

dbo:timeZone ?uri }

Answer Generating: The SPARQL queries are executed on the end points of knowledge bases to
obtain the final answer. The expected correct answer of the SPARQL query is http://dbpedia.
org/resource/Indian_Standard_Time.

Other QA Tasks

* Question Type Identification: This task identifies the type of the question. The input is the
natural language question; the output is the type of the question, e.g., “yes-no”, “location”,

LT3 LEINNT3

“person”,“misc”, “time”, or “reason”. For exemplary question, question type is misc.

* Answer Type Identification: This task identifies the desired type of the final answer. In our
example, answer type is list. This task is sometimes performed as a part of the Question Analysis
task or as a subtask of Answer Generation.

* Query Ranking: In some of the QA systems, the task Query Generation generates multiple
candidate queries. This task ranks the generated SPARQL queries using a ranking function and it
helps to select the best ranked query.

2.4 Local as View and Global as View

In data integration systems, the aim is to integrate data from various sources and provide a uniform view
of them. These systems are generally defined as a triple <G,S,M> where G is the global schema, S is the
heterogeneous groups of source schemas, and M is the mapping between G and S. The View-based data
integration frameworks address the problem of data integration by coupling the data sources into a single
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Global Entities Relations

Schema SkyRocket(x) launches(x,y)
Lorry(x) supplies(x,y)
Shipment(x)

Local
Schema

hasShipment(x,y) transports(x,y)

Figure 2.4: Data Integration Example. Two different sources S| and S, that consist of local schemas have to be
aligned with the global schema. The global schema describes three entities and two relations between them.

unified view. In a data integration system, the view presented to the user as the Global Schema. This
view is a unified view of all the heterogeneous data sources. The user runs queries on the Global schema,
and system access many local views to combine data from these views to provide a final answer to the
user query. There are two basic approaches to provide mapping in a data integration system [47]. These
are: Global-As-View (GAV) and Local-As-View(LAV) approaches. The LAV mappings are formally
defined as:

Local-as-View (LAV) [47]

Definition 2.4.1 In a data integration system IS = (0, S, M) based on LAV approach the mapping M
associates to each source in S a query qo in terms of the global schema O:

S —do

That is, the sources are represented as a view over the global schema.

In contrast with LAV mappings, GAV mappings define the principles about the creation of a global
database from the local databases, querying in a GAV approach is straightforward. GAV approach
performs well when sources are stable. Local As View (LAV) approach overcomes the limitations of
GAV. The LAV approach requires each source to have an associated view over the global schema. The
LAV approach follows the exact opposite methodology of a GAV and defines each local schema as a
function of the global schema and assume global schema as fixed. GAV mappings are formally defined:
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Global-as-View (LAV) [47]

Definition 2.4.2 In a data integration system 1S = (0, S, M) based on GAV approach the mapping M
associates to element in the global schema O a query qs in terms of the sources S :

0 — (s

That is, the elements of the global schema are represented as a view over the sources.

We have utilised the power of LAV mappings to describe QA components in form of views to
their semantic description. We then utilised these views to provide valid (in terms of input-output
requirements of the components) composition of QA pipelines (for details please see Chapter 7). Figure
2.4 illustrates two local sources S1 and S2 with their individual schema which is expected to be aligned
to global schema O. The global schema defines three concepts SkyRocket(x), Lorry(x), Shipment(x)
and two relations, namely launch(x,y) that explains that some SkyRocket launches some Shipment, and
supply(x,y) that describes that some Lorry supplies some Shipment. Source S1 contains relations in
the form hasShipment(x,y) related to skyrocket and shipment but without explicit class assignment of
variables x and y. Furthermore, source S2 contains relation transports(x,y) that implicitly links lorry and
shipment. This example explains a typical data integration task. The LAV mappings are defined as below
where relations in S1 and S2 are mapped as a conjunctive query over the concepts in global schema.

hasShipment (x,y) := launches(x,vy),SkyRocket (x), Shipment (y)
transports(x,y) := supplies(x,y),Lorry(x),Shipment (y)

In contrast to LAV mappings, GAV performs well when source is stable. Applying GAV mapping over
our data integration example illustrated in the Figure 2.4, the concepts are determined as a conjunctive
query over local relations from S 1 or S 2. Some of GAV mappings are given below:

launches (x,y) := hasShipment (x,V)
SkyRocket (x) := hasShipment (x,V)
Shipment (y) := hasShipment (x,y)
supplies(x,y) := transports(x,y)
Lorry (x) := transports(x,y)
Shipment (y) := transports(x,y)
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CHAPTER 3

Related Work

This chapter reviews the state of the art approaches related to the main research problem and research
questions presented in Chapter 1. We show that the problem remains largely unexplored while existing
state-of-the-art researches partly address the mentioned challenges in this thesis.

Section 3.1 presents a brief overview of current state-of-the-art question answering systems. We further
describe independent components that can be part of question answering systems. While many of these
systems achieved significant performance for special use cases, a shortage was observed in all of them.
We figured out that the existing QA systems suffer from the following drawbacks: (1) potential of reusing
their components is very weak, (2) extension of the components is problematic, and (3) interoperability
between the employed components is not systematically defined.

Section 3.2 describes some of the existing frameworks that promote reusability of QA components.
We observe that all of them face limitations in terms of the easy configuration of QA systems just by
reusing components, and do not support the dynamic composition of QA pipelines based on the type of
the question. We take a closer look at their implementation to understand the pitfalls, and limitations in
terms of scalability, reusability, and ease-of-use. We conclude that the potential of reusing existing QA
components to build effective QA pipelines to be elicited.

3.1 Question Answering Systems

In 1970, first attempt of providing easy to use natural language interface to interact with data has been
published [43]. Since then, an increasing number of QA systems and QA related components have been
developed by both industry and the research community [7, 44]. The QA systems can be distinguished
based on the scope of applicability and approaches. Some of them consider a specific domain to answer
a query, they are known as closed domain QA systems. These QA systems are limited to a specific
Knowledge Base (KB), for example medicine [48]. In this work, the authors presented a dedicated QA
system for translating a natural language question to its corresponding SPARQL query to extract answers
from structured medical data.

For a QA system, an input type can be anything ranging from the keyword, factoids, temporal and
spatial information (e.g., the geo-location of the user), audio, video, image etc. Many systems have
been evolved for a particular input type. For example, DeepQA of IBM Watson [49], Swoogle [50],
and Sindice [51] focus on natural language based search whereas systems described in [52] integrate
QA and automated speech recognition (ASR). Similarly, there are several examples of QA based on
different sources used to generate an answer like Natural Language Interfaces to Data Bases (NLIDB)
and QA over free text. However, when the scope is limited to an explicit domain or ontology, there are

27



Chapter 3 Related Work

QA System
OKBQA [13]
Alexandria [54]
QAKIS [23]
HAWK [55]
AskNow [56]
CASIA [57]
DEANNA [58]
Intui2 [59]
Intui3 [24]
ISOFT [60]
POMELO [61]
PowerAqua [62]
QAnswer [63]
SemGraphQA [64]
SINA [20]
SWIP [65]
TBSL [8]

Xser [606]
UTQA [67]
gAnswer [68]
FREyA [69]
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Table 3.1: QA Systems and Tasks. Analysis of the architecture of various QA systems shows that these systems
implement similar tasks by dedicated components.

fewer chances of ambiguity and high accuracy of answers. It is also difficult and costly to extend closed
domain systems to a new domain or reuse it in implementing a new system. Other types of QA systems
described in [53] extract answers from an unstructured corpus (e.g., news articles) or other various forms
of documents available over Web. They are known as corpus-based QA systems. QuASE [53] is one of
such corpus based QA system that mines answers directly from the Web.

To overcome the limitations of closed domain QA systems, researchers have shifted their focus to
open domain QA systems. FreeBase [5], DBpedia [4], and WikiData [6] are few examples of open
domain Knowledge Bases. However, KBs like Google’s knowledge graph [40] are not publicly available.
Open domain QA systems use the publicly available semantic information to answer questions. Question
answering over structured knowledge bases has gained momentum since last one decade. The recent
survey by Diefenbach et al. [10] provides a complete and holistic overview of existing QA systems and
their employed techniques. The field of QA is so vast that the list of different QA systems can go long.
Besides domain-specific question answering, QA systems can be further classified on the type of question
(input), sources (structured data or unstructured data), and based on traditional intrinsic challenges posted
by search environment (scalability, heterogeneity, openness, etc.) [44].

In 2011, a yearly benchmark series QALD was introduced. In the latest advancements, QALD now
focuses on hybrid approaches using information from both structured and unstructured data [70]. Many
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Figure 3.1: AskNow Architecture [56]. AskNow is a monolithic QA system which has a QA pipeline using
several QA components implementing various QA task. DBpedia Spotlight is reused in this architecture.

open-domain QA systems now use QALD for the evaluation. PowerAqua [62] is an ontology-based QA
system which answers the question using the information that can be distributed across heterogeneous
semantic resources. FREyA [69] is another QA system that increases system’s QA precision by learning
user’s query formulation preferences. It also focuses to resolve ambiguity while using natural language
interfaces. QAKiS [23] is an agnostic QA system that matches fragments of the question with binary
relations of the triple store to address the problem of question interpretation as a relation-based match.
SINA [20] is a semantic search engine which obtains either the keyword-based query or natural language
query as input. It uses a Hidden Markov model for disambiguation of mapped resources and then applies
forward chaining for generating formal queries. It formulates the graph pattern templates using the
knowledge base. TBSL [8] is a template based QA system over linked data that matches a question
against a specific SPARQL query. It combines natural Language Processing capabilities (NLP) with
linked data to produce good results w.r.t. QALD benchmark. Figure 3.1 illustrates the architecture of
Asknow QA system. It can be observed from the architecture that the system implements a sequence of
several QA tasks and reuses DBpedia spotlight as entity linking component.

We deeply analysed the architecture of more than 30 QA systems and looked into the implementation
of more than 50 QA components in total which is part of various QA systems. Table 3.1' summarises
the snippet of our findings. The detailed list of analysed QA systems and components can be seen at
http://wdaqua.eu/QAestro/gasystems/. We observe from our analysis that most of the QA
systems have implemented similar QA tasks using various components in their architecture. Hence, the
following observations were made:

* The QA system developers have employed various approaches while building QA systems, however
on the logical level, these systems implement similar and overlapping QA tasks.

* In spite of a high number of overlapping components at an abstract level, there is no way/approach
to address their interoperability and connect them physically.

* Some of the QA tasks such as NED and QB are implemented by all the QA systems by dedicating
a separate component in its architecture.

» At the implementation level, the QA systems implementing similar tasks are heterogeneous at
different levels of granularity such as different input/output format, input datasets, programming
languages etc.

"For a few QA systems, results have been taken from [10]
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* The components present in these QA systems are not easily reusable due to their monolithic
implementation. If a developer is looking to reuse some of these components, she needs a major
engineering effort to decouple the components present in these QA systems.

This motivated us to propose an approach to tackle heterogeneity of QA components, and aim towards
building an infrastructure for QA pipeline composition to easily reuse QA components.

3.1.1 Components for Question Answering

In the previous section, we provide an overview of question answering systems over structured data.
Besides the components which are part of existing QA systems, we surveyed the independent components
available for different question answering tasks. This section provides a brief overview of some of these
components. We have reused all these components in proposed Qanary Ecosystem and FRANKENSTEIN
framework (Chapter 8).

Named Entity Recognition and Disambiguation Components The aim of the named entity
recognition (NER) task is to recognise the entities present in the question and the aim of named entity
disambiguation (NED) is to link these spotted entities to their knowledge base mentions (e.g., for DBpedia
[4]). For instance, in the example question “Who is the mayor of Berlin?”, an ideal component performing
the NER task recognises Ber1in as entity and components for NED task link it to its DBpedia mention
dor:Berlin?. Below we list some of the NER and NED components.

1. Entity Classifier uses rule base grammar to extract entities in a text [71]. Its REST endpoint is
available for wider use for NER task.

2. Stanford NLP Tool: Stanford named entity recogniser is an open source tool that uses Gibbs
sampling for information extraction to spot entities in a text [72].

3. Babelfy is a multilingual, graph-based approach that uses random walks and the densest subgraph
algorithm to identify and disambiguate entities present in a text [73]. We have used public API® of
Babelfy for NER and NED task as separate components.

4. AGDISTIS is a graph based disambiguation tool that couples the HITS algorithm with label
expansion strategies and string similarity measures to disambiguate entities in a given text [25].
The code is publicly available*.

5. DBpedia Spotlight is a web service® that uses vector-space representation of entities and using
the cosine similarity, recognise and disambiguate the entities [17].

6. Tag Me matches terms in a given text with Wikipedia, i.e., links text to recognise named entities.
Furthermore, it uses the in-link graph and the page dataset to disambiguate recognised entities to
their Wikipedia URIs [74]. Tag Me is open source, and its REST API endpoint® is available for
further (re-)use.

2dbr corresponds to http: //dbpedia.org/resource/
3http://babelfy.org/guide
*https://github.com/dice-group/AGDISTIS
Shttps://github.com/dbpedia-spotlight/dbpedia-spotlight
®https://services.d4science.org/web/TagMe/documentation
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7. Other APIs: Besides the open-source available components, there are many commercial APIs that
also provide open access for the research community. Aylien API’ is one of such APIs that use
natural language processing and machine learning for text analysis. Its text analysis module also
consists of spotting and disambiguation entities. TextRazor®, Dandelion®, Ontotext'? [75], Ambi-
verse!!, and MeaningCloud'? are other APIs that have been providing open access to researchers
for their reuse.

Relation Linking Components Relation Linking (RL) task aims to disambiguate the natural lan-
guage (NL) relations present in a question to its corresponding mention in a knowledge base (KB).
Considering our example question “Who is the mayor of Berlin?” a relation linker component would cor-
rectly link the text “mayor of” to dbo : Leader!?. In best of our knowledge, the following components
can be reused for Relation Linking (RL):

1. ReMatch maps natural language relations to knowledge graph properties by using dependency
parsing characteristics with adjustment rules [19]. It then carries out a match against knowledge
base properties, enhanced with word lexicon Wordnet via a set of similarity measures. It is an open

source tool, and the code is available for reuse as RESTful service!*.

2. RelMatch: The disambiguation module (DM) of OKBQA framework [13] provides disambigu-
ation of entities, classes, and relations present in a natural language question. This module is the
combination of AGDISTIS and disambiguation module of AutoSPARQL project [8]. The DM

module is an independent component in OKBQA framework and available for reuse'”.

3. RNLIWOD: Natural Language Interfaces for the Web of Data (NLIWOD) community group'®
provides reusable components for enhancing the performance of QA systems.

4. Spot Property: This component is the combination of RNLIWOD and OKBQA disambiguation
module [13] for the relation linking task.

Components for Class Linking To correctly generate a SPARQL query for a NL query, it is
necessary to also disambiguate classes against the ontology.!” For example, considering the question
“Which river flows through Seoul” the word “river” needs to be mapped to dbo : River!'®. A little work
has been done for Class Linking, and the following two components can be reused for this task:

1. NLIWOD CLS: NLIWOD Class Identifier is one among the several other tools provided by
NLIWOD community for reuse. The code for class identifier is available on GitHub'®.

2. OKBQA Class Identifier: This component is part of OKBQA disambiguation module?°.

"http://docs.aylien.com/docs/introduction
dhttps://www.textrazor.com/docs/rest
https://dandelion.eu/docs/api/datatxt/nex/getting-started/
OUhttp://docs.s4.ontotext.com/display/S4docs/REST+APIs
https://developer.ambiverse.com/
2https://www.meaningcloud.com/developer
Bhttp://dbpedia.org/ontology/leader
Yhttps://github.com/mulangonando/ReMatch
Bhttp://repository.okbga.org/components/7
Yhttps://www.w3.org/community/nli/
"https://www.w3.org/TR/rdf-schema/#ch_class
Bpnttp://dbpedia.org/ontology/River
Yhttps://github.com/dice-group/NLIWOD
Mnttp://repository.okbga.org/components/7
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Components for Query Builder A query builder generates SPARQL queries using disambiguated
entities, relations and classes which can serve as input from previous steps in a QA pipeline. Little has
been done also for query builder task. Following two components can be easily reused in a QA system:

1. NLIWOD QB: Template based query builders are widely used in QA community for SPARQL
query construction (e.g., HAWK [55], TBSL [8] etc). NLIWOD reusable resources>! provides a
template based query builder.

2. SINA Query Builder: SINA is a keyword and natural language query search engine that is based
on Hidden Markov Models for choosing the correct dataset to query [20]. The developers of SINA
have decoupled the query builder module from its monolithic implementation for further reuse.

It can be observed from the existing QA systems and components that there are many independent
components which can be part of a QA system and perform similar tasks as monolithic QA systems.
However, a generic yet effective approach is missing to address their heterogeneity and integrate these
components in a single platform.

3.1.2 Ontologies for Question Answering

Ontologies play an important role in question answering. First, they can be used as a knowledge source
to answer the questions. Prominent examples are the DBpedia Ontology and YAGO [76]. DBpedia is a
cross domain dataset of structured data extracted from Wikipedia articles (infoboxes, categories, etc.).
The DBpedia Ontology is “a shallow, cross-domain ontology, which has been manually created based
on the most commonly used infoboxes within Wikipedia”.?2. Users can configure annotations to their
specific needs using the DBpedia Ontology.

The YAGO ontology unifies semantic knowledge extracted from Wikipedia with the taxonomy of
WordNet. The YAGO Knowledge Base contains more than 10 million entities and more than 120 million
facts about these entities. YAGO links temporal and spatial dimensions to many of its facts and entities.

NIF ontology were designed aiming for promoting interoperability for natural language processing
tools, language resources, and annotations. For example, One of the output format of DBpedia Spotlight
is using NIF Interchange Format ontology (NIF) [77].

Ontologies can also be used to model the search process in a question answering system. For example,
the research presented in [78] describes a search ontology that abstracts a user’s question. One can model
complex queries using this ontology without knowing a specific search engine’s syntax for such queries.
This approach provides a way to specify and reuse the search queries. However, the approach focuses
on textual queries, i.e., it is not completely agnostic to possible question types (e.g., audio, image, ... ).
Search Ontology also does not cover other possibly useful properties, such as the dataset that should be
used for identifying the answer. So far no ontology has been developed that would provide a common
abstraction to model the whole QA process.

3.1.3 Question Answering Benchmarks

To evaluate question answering over knowledge graphs, several benchmarking datasets have been released
by QA community. Question answering over Freebase have various datasets for evaluating QA systems,
such as SimpleQuestion [79] and WebQuestions [80]. SimpleQuestion contain over 100,000 questions
whereas WebQuestions contain 5810 questions. QA systems such as [80] and [81] are evaluated using

2lhttps://github.com/dice-group/NLIWOD
2nttp://wiki.dbpedia.org/services-resources/ontology
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these datasets. For Wikidata, recently proposed dataset [82] contains 21,957 questions with 689 questions
in addition that are actual user questions asked to QA system deployed online”’.

Question answering systems over DBpedia have been mostly evaluated using Question Answering
over Linked Data Challenge (QALD) [70] which is now in its 9th edition’*. QALD series have various
tasks involving performance evaluation of various types of questions such as bio-medical questions,
multilingual questions, simple questions over DBpedia etc. However, comparing to Freebase or Wikidata
datasets, a total number of questions in QALD series ranges from 50-400; and all the QA systems over
DBpedia have been evaluated using a limited number of questions. To overcome this problem dataset
called LC-QuAD [83] has been released in 2017 with 5000 questions. This dataset contains 80 percent
complex questions (questions with more than one entity and one relation). It is important to note that
question answering over linked data has been restricted to open knowledge extracted from Wikipedia,
and fewer attempts have been made to extend question answering in specific domains such as geospatial.
A recent attempt has been made in this direction, where researchers have released a linked data based
question answering benchmark for geospatial question answering over linked data. The dataset has been
made publicly available?. For this thesis, we rely on QALD and LC-QuAD datasets for evaluation.

3.2 Component Based Question Answering Frameworks

Earlier in this chapter, we have observed that the field of QA is growing and new advancements are made
in each of existing approaches over the short period of time. There exist many independent components
that can be reused in question answering. However, there is a need for open frameworks for generating
QA systems that integrate state-of-the-art of different approaches. Now we discuss some approaches for
establishing an abstraction of QA systems and semantic search.

Research presented in [78] describes a search ontology to provide the abstraction of user’s question.
The user can create complex queries using this ontology without knowing the syntax of the query. This
approach provides a way to specify and reuse the search queries but the approach is limited in defining
properties represented within the ontology. Using search ontology, a user can not define the dataset
that should be used and other specific properties. Moreover, OAQA [84] follows several architectural
commitments to components to enable interchangeability, however, it is restricted to the biomedical
domain. QANUS [85] also provides capabilities for the rapid development of information retrieval based
QA systems. In 2014, Both et al. [86] presented a first semantic approach for integrating components,
where modules that carry semantic self-descriptions in RDF are collected for a particular query until the
search intent can be served using the proposed approach.

The QALL-ME framework [12] is an attempt to provide a reusable architecture for multilingual,
context aware QA framework. It is an open source software package. The QALL-ME framework
uses an ontology to model structured data of a targeted domain. This framework is restricted to closed
domain QA and finds the limitation to get extended for heterogeneous data sources and open-domain QA
systems. The openQA [11] framework is an architecture that is dedicated to implementing a QA pipeline.
Additionally, here the implementation of a QA pipeline is restricted to Java and cannot work agnostically
to the programming language. Furthermore, openQA has a few numbers of components.

OKBQA [13] is a recent and effective attempt to develop question answering systems with a collabor-
ative effort. OKBQA has 24 components targeting English and Korean language question answering.
The limitation of OKBQA is that it divides the components into four tasks, namely template generation,

Bhnttp://wdaqua-frontend.univ-st-etienne.fr/
%http://2018.nliwod.org/home
Bhttp://geoga.di.uoa.gr/
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disambiguation, query generation, and answer generation and follow strict input/output format. New
components performing other QA tasks such as answer type detection, named entity recognition, rela-
tion linking etc cannot be easily added to OKBQA. With the missing flexibility both in terms of data
format and implementations, OKBQA is restricted to a specific type of components respecting these
requirements. Besides the frameworks described above, we are not aware of other QA framework that
addresses reusability of components to build QA systems. Also, these frameworks are limited in their
functionalities. None of the existing frameworks for building QA systems consider the scalability of
QA components and add dynamicity i.e. composing question answering pipelines on demand based on
the type of input question. For example, OKBQA has 24 components. Here, components have to be
manually selected to be part of a QA pipeline. Also, it is highly unlikely that components which are part
of a QA pipeline will answer all the questions. There are chances that if one question is not answered
by one QA pipeline comprising some of these 24 components, it may be answered by another pipeline.
Hence, components need to be dynamically chosen to be part of a QA pipeline to answer the question.
In 2017, QA4ML [15] is the first attempt to add dynamicity to the QA framework where a QA system
is selected out of 6 QA systems based on the question type. QA4ML describes several features to label a
question (question length, entity type etc.) and trains classifiers to predict the performance of QA systems
per component but does not allow composition of QA pipelines reusing the components, or adds new
components to the framework. However, the implementation is restricted to six existing QA systems.
Below we summarise the limitations which have been observed in state-of-the-art QA frameworks:

* The existing QA frameworks are rigid in terms of a fixed number of tasks and input/output format,
and specific data format, hence interoperability issue of various QA components is still open.

* There is no standard way to establish communication between the integrated components in the
QA frameworks.

* Itis not easy and flexible to integrate QA components at any stage of QA pipeline due to fixing
pipeline architecture at the implementation level.

* Many components are integrated into these frameworks, yet QA pipelines are composed manually.
There is no seamless way to compose QA pipeline within these frameworks automatically.

* With an increasing number of QA components developed by the research community, existing
QA frameworks do not consider the scalability of components for various QA tasks. With the
availability of many QA components in a single platform, it is not clear if it is expected to run all
the possible viable combinations for each input question. For example, if a QA framework has 10
components for NED, five for relation linking, five for query builder task, the number of resulting
pipelines in the framework is 250. In existing frameworks, there is no dynamic (on the fly) way to
select the best components per task to be part of the QA pipeline for the given input question based
on strength and weaknesses of these components.

OKBQA, openQA, and QALL-ME frameworks can be directly used to build customised QA pipelines
for DBpedia. We summarise their characteristics and limitations in Table 3.2. Besides building the QA
frameworks, the question answering researchers have also focused on building frameworks for question
answering evaluations. QA frameworks, evaluation frameworks like GERBIL [87] have emerged over
the last years. GERBIL provides means to benchmark several QA systems on multiple datasets in a
comparable and repeatable way fostering the open science methodology. Using GERBIL, many entity
disambiguation components can be evaluated using different datasets. Very recently, this framework is
further extended for benchmarking complete QA pipelines [3]. Although GERBIL provides benchmarks
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Features QALL-ME | openQA | OKBQA
Promoted reusability of QA components v v v

Strict programming language dependencies v v

Strict input/output requirements v v

Isolation of integrated components
Number of reusable components

\NI

7
Manual QA pipeline composition v

NNRINY

Easy exchange of components within framework

Table 3.2: Comparison of QA frameworks

for disambiguation components and QA systems, it does not provide benchmarking capabilities to evaluate
components for relation linking, class linking, and other such tasks. Hence, individual benchmarks need
to be created for benchmarking other tasks.
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CHAPTER 4

Semantic Based Approach for Describing QA
Systems and Processes

In the previous chapters, we describe research problems, challenges, and state-of-the-art QA systems and
components. We also illustrated that QA systems are connected on abstract level in terms of the QA tasks,
however there is a clear lack of conceptual representation of existing (QA) systems and components that
prevents these QA components and systems to be integrated in a single platform, in order to build more
powerful QA systems. In other words, there is no systematic way to describe existing QA components —
either standalone or parts of other QA systems — based on their functionality, i.e., the task they perform.
Therefore, we made following observations:

» Several independent QA components are available for various QA tasks. However, QA system
developer needs to study the architecture of QA component to understand its functionality and
other dependencies. This is due to the fact that QA components are not semantically described
based on the task they perform and high level input/output requirements.

* With a vision to integrate several QA components in a single framework, it becomes challenging
to manually compose QA pipelines. For instance, with the increasing number of QA components,
identifying all viable combinations of components when creating new QA pipeline requires a
manual and time-consuming search in the large combinatorial space of solutions when integrated
in a single platform, for example in OKBQA framework [13]. OKBQA has 24 QA components,
but there is no semantic description of these components based on which task they perform, what
is the input/output requirement. Hence, it becomes difficult for a developer to utilise plethora of
QA components for building QA systems.

* Besides the missing semantic description of QA components, many independent QA components
are not interoperable due to heterogeneity at different levels (programming language, datasets,
input format etc.

* In Chapter 3, we reviewed existing state-of-the-art QA systems and frameworks. We identified that
most of the available QA systems are more focused on implementation details and have limited
reusability and extensibility in other QA approaches. Hence, considering the challenges of QA
systems there is a need of a generalised approach for architecture or ontology of a QA system to
bring all state-of-the-art advancements of QA under a single umbrella.

Therefore, there is a need for a descriptive approach that defines a conceptual view of QA systems
covering both 1) logical description of QA systems and components 2) an approach that must cover
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all needs of current QA systems design and be abstracted from implementation details. Moreover the
approaches should be extensible such that they can be used in future QA systems. To address these
problems, we first aim at defining and conceptualising the QA systems and components based on the
task they perform. We define a QA component based on its input/output requirement and associated task
using a controlled vocabulary QAV. We use concepts of Local as View (LAV) mappings to describe the
components. These semantic descriptions allow us to understand the functionalities of QA components
effectively and in a simple way.

The second contribution of this chapter is a generalised ontology named ga which covers the need for
interoperability of QA systems on an implementation level. We initiate a step towards an interoperable
approach that will be used to build QA systems which follow a philosophy of being actually open for
extensions. Our approach collects and generalises the necessitated requirements from the state-of-the-art
of QA systems. While thereafter we show how these requirements are fulfilled while using the Web
Annotation Data Model. We model the conceptual view of QA systems using and extending the Web
Annotation Data Model. This model empowers us for designing a knowledge-driven approach for
QA systems as next logical step towards building reusable QA systems. The QAV vocabulary and ga
vocabulary differ to each other in following aspects:

* The QAV vocabulary targets the problem of missing semantic representation and description of QA
components. Such semantic description can be helpful in automatising the process of selection of
components for the QA pipeline (c.f. Chapter 5). However, it does not consider the requirements
of actually implementing a new QA system by reusing QA components. Also, QAV vocabulary
does not solve the interoperability issue at implementation level. It solves the interoperability at
logical level i.e. assuming when components are already integrated in the QA framework, how to
semantically define these components to build automatic QA pipelines.

* The ga vocabulary on other hand concerns with solving the interoperability issues at implement-
ation level. It collects all the requirements related to the QA process (i.e. complete process
of extracting answers from the KGs for input question), and focuses on capturing knowledge
generated during this process. It allows us to propose a knowledge driven approach for creating
QA pipelines by reusing the heterogeneous components (c.f. Chapter 5).

Therefore, we semantically describe QA components using the proposed QAV vocabulary, and then
introduce ga vocabulary to capture all the knowledge exchanged between the QA components during the
QA process. In this way we will establish for the first time a conceptual view of the existing QA systems.
Therefore, following research question is addressed in this chapter:

Research Question 1 (RQ1)

How can semantics contribute in resolving interoperability of QA components?

We made following contributions in this chapter towards the mentioned RQ1 and the research problem
in general (This chapter is based on [26]" and [9].):

'The ga vocabulary proposed in this paper, jointly done with Dennis Diefenbach (Universite Jean Monnet, France). My
contributions in this paper was to collect all the requirements for designing open and scalable vocabulary by reviewing state of
the art QA systems, and then designing the concrete requirements wrt. Web Annotation Data model for conceptualising the QA
systems.
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* A controlled vocabulary following the Local as View mapping concepts to semantically describe
existing QA components.

* Descriptive analysis of requirements of knowledge driven approach for QA systems;
* A generalised knowledge-driven vocabulary built upon an abstract level,

The rest of this chapter is structured as follows. Next Section describe the QAV vocabulary for
conceptualising the QA components. Section 4.2 describes the dimensions of QA systems for conceptu-
alising question answering systems and components. Section 4.3 describes the existing problem and our
proposed idea of an implementation independent compatibility level in detail. Section 4.4 details the
requirement of knowledge-driven QA systems which are derived from the state-of-the-art QA approaches.
Section 4.5 illustrates our proposed ontology with a case study to address all the requirements. We
summarise the chapter in Section 4.6.

4.1 Semantic Description of QA Components

To semantically describe the QA components based on their functionalities, we introduce a controlled
vocabulary named QAV. This vocabulary (i.e. QAV) of the domain of QA tasks is described as a pair
(06, A), where ¢ is a signature of a logical language and A is the set of axioms describing the relationships
among vocabulary concepts. A signature 0 is a set of predicate and constant symbols, from which
logical formulas can be constructed, whereas the axioms A describe the vocabulary by illustrating
the relationships between concepts. For instance, the term disambiguation is a predicate of arity four
in 0; disambig(x, y, z,t) denotes that the QA task disambiguation relates an entity x, a question y, a
disambiguated entity z, and a template ¢. Furthermore, the binary predicate questionAnalysis(x, y) models
the question analysis task and relates an entity x to a question y. The following axiom states that the
disambiguation task is a subtask of the question analysis task:

disambig(x,vy,z,t) —> questionAnalysis(x,V)

We then define a new concept QAC, which is a set of predicate signatures {QACY, ..., QAC,} that
model QA components. For example, AGDISTIS [25] is represented with predicate Agdistis(x,y, z)
where x, y, and z denote an entity, a question, and a disambiguated entity, respectively. AGDISTIS is
a NED tool that accept question, recognised entities as input and provide DBpedia URLSs of entities.
Further, the QA component Stanford NER [72] is modelled with the predicate Stanford NER(y, x), which
relates a question y to an entity x.

We follow the Local-As-View (LAV) approach to define QA components in QAC based on predicates
in QAV. LAV is commonly used by data integration systems to define semantic mappings between
local schemas and views that describe integrated data sources and a unified ontology [88]. The LAV
formulation allows us to scale up to a large number of QA components, as well as to easily be adjusted to
new QA components or modifications of existing ones. This property of the LAV approach is particularly
important in the area of question answering, where new QA systems and components are constantly being
proposed by practitioners and the research community. Following the LAV approach, a QA component C
is defined using a conjunctive rule R. The head of R corresponds to the predicate in QAC that models C,
while the body of R is a conjunction of predicates in QAV that represent the tasks performed by C. LAV
rules are safe, i.e., all the variables in the head of a rule are also variables in the predicates in the body of
the rule. Additionally, input and output restrictions of the QA components can be represented in LAV
rules. The following LAV rules illustrate the semantic description of the QA components AGDISTIS
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and Stanford NER in terms of predicates in QAV. The symbol “$” denotes an input attribute of the
corresponding QA component.

Agdistis ($x,S$y,z) :—disambig(x,y,z,t),entity(x),question(y),
disEntity (z)
StanfordNER ($y, x) :—recognition(y, x),question(y),entity (x)

These rules state the following properties of AGDISTIS and Stanford NER: (i) AGDISTIS implements
the QA task of disambiguation; an entity and a question are received as input, and a disambiguated entity
is produced as output; (ii) Stanford NER implements the QA task of recognition; it receives a question as
input and outputs a recognised entity. We further consider semantic descriptions for DBpedia NER [17],
Alchemy API, and the answer type generator component of the QAKIS QA system [23] (Qakisatype).

DBpediaNER (Sy, x) : —recognition (y, x),question(y),entity (x)
Alchemy (Sy, z) : —disambig(x,vy, z,t),question(y),disEntity (z)
Qakisatype (Sy, a) :—answertype (y,a, o), question (y),atype(a)

These rules state the following properties of the described QA components:

* The predicates DBpediaNER(Sy, x), Alchemy($y, z), and Qakisatype($y, a) represent the QA com-
ponents DBpedia NER, the Alchemy API, and Qakisatype, respectively. The symbol $ denotes
the input restriction of these QA components, i.e., the three QA components receive a question as
input. These predicates belong to QAC.

 The predicates recognition(y, x), disambig(x, y, z,t), and answertype(y, a, 0) model the QA tasks:
entity recognition, disambiguation, and answer type identification, respectively. These predicates
belong to the QAV.

* An input natural language question is modelled by the predicate question(y), while entity(x)
represents a named entity identified in a question.

* The QAV predicates disEntity(z) and atype(a) model the QA tasks of generating disambiguated
entities and answer type identification, respectively.

* The variables x, y, z, and a correspond to instances of predicates entity, question, disEntity, and
atype, respectively. The variable o is not bound to any predicate because Qakisatype does not
produce ontology concepts.

Semantic description of the components using QAV as LAV mapping allows us to understand the
functionalities of the components more clearly, their abstract level input and output requirements.
Although the input/output format of these components differ at implementation level (i.e. JSON/XML
etc.), the upper level abstraction using LAV mapping provides a clear understanding of the functionalities
of these components. For instance, all the components implementing disambiguation task now can be
described as LAV mapping rules respecting their input/output dependencies. This gives the components
a semantic representation in a more formal way. We formalise 51 such components using the QAV
vocabulary and the complete list is online at our website?.

’nttp://wdaqua.eu/QAestro/gacomponents/
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Figure 4.1: Main dimensions of question answering systems to define overall information need in QA process.

4.2 Dimensions of Question Answering Systems

In the previous section, we semantically describe the QA components at abstract level, but QAV vocabu-
lary does not consider the implementation details of the components. Furthermore, QAV vocabulary does
not focus on describing the knowledge generated and exchanged between various QA components during
complete question answering process. When we look at the implementations of a typical pipeline of QA
systems, the complete QA process is oriented to three main dimensions as follows: (i) Query dimension:
covers all processing on input query. (ii) Answer dimension: refers to processing on the query answer.
(iii) Dataset dimension: is related to the both characteristics of and processing over employed datasets.

Figure 4.1 presents these high level dimensions. Generally, all of various known QA processes either
associated or interacted with QA systems are corresponding to one of these dimensions. Now, we discuss
each dimension in detail.

1. Query Dimension: The first aspect of this dimension refers to the characteristics of the input query.
User-supplied queries can be issued through multifold interface such as voice-based, text-based,
and form-based. Apart from the input interface, each query can be expressed in its full or partial
form. For instance, full form of a textual or voice query is a complete natural language query
whereas partial form is an incomplete natural language query (i.e., either keyword-based query or
phrase-based); or full form of a form-based query is a completion of all fields of the form. The
second aspect of this dimension refers to processing techniques, which are run on the input query,
e.g., query tokenisation or NER.

2. Answer Dimension: Similar to the input query, answer dimension (i.e., refers to the retrieved
answer for the given input query) also can have its own characteristics. Answer can have different
types (e.g., image, text, audio) also with full or partial form. For instance, a given query can have
either a single or a list of items as answer (e.g., the query “islands of Germany” has a list of items
as answer). The system might deliver a complete answer (the full list of items) or partial answer
(i.e., a subset of items).

3. Dataset Dimension: This dimension also has a series of inherent characteristics such as (i) The
type of a dataset refers to the format in which a dataset has been published, i.e., structured,
semi-structured or unstructured. (ii) Domain of dataset specifies subject of information included.
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(e.g., movies, sport, life-science and so forth). If the domain of a dataset covers all subjects, the
dataset is open domain. In contrast, a closed domain dataset is limited to a few number of subjects.
(iii) The size of data obviously shows how big are the employed datasets. Datasets hold two
sub-dimensions as follows:

a) Helper Dataset Sub-dimension This dimension includes all datasets required for (i) providing
additional information, (ii) training the models. In other words, the helper dataset is used for
annotating the input query. Dictionaries like WordNet, gazetteers are examples of this kind
of dataset.

b) Target Dataset Sub-dimension Target datasets are leveraged for finding and retrieving answer
of input query. For instance, Wikipedia can be a target dataset for search.

4.3 Addressing Interoperability of QA Components

In this section we will present the problem observed from the state of the art concerning interoperability
issues which motivates the development of gavocabulary. Thereafter we will outline our idea for solving
the problem.

Problem: Considering the related work in the previous chapter, we identify three groups of problems:

1. Lack of a generic conceptional view on QA systems: While there are many different architectures
for QA systems (e.g., [11, 52, 53, 62]), most of them are tailored to specific and limited use cases
as well as applications. Reusability and interoperability were not (enough) in the focus of such
approaches. Creating a new QA systems is cumbersome and time consuming as well as limited to
domains or programming languages.

2. No standardised knowledge exchange format for QA systems: While there are plenty of available
tools and services employed by QA systems, yet, interoperability is not ensured due to a missing
knowledge format. However, there might be great synergy effect while creating QA systems
w.r.t. the combination of different tools. For example, in a given architecture, NER and NED
components are integrated in a single tool. NER solutions might be evolved and thus, implemented
in either a novel way (e.g., in [17]) or employ existing tools (e.g., the Stanford NER [72] used in
[89]). Thus, integrating a (new) NER approach without a standardised knowledge format is also
cumbersome and time consuming. However, integrating different components is very difficult and
causes a lot of work for each new implementation.

3. Scalability and Coverage problem: ExXisting schema-driven approaches mainly focus on the input
query (even limited to textual representations of input query), and aren’t flexible for fulfilling
emerging demands which are not discovered yet (e.g., [78]).

Hence, considering the implementations of current QA systems (and their components) it can be observed
that they do not achieve compatibility due to their concentration on the implementation instead of the
conceptual view. Instead, implementation details need to be hidden and the focus has to be on the
knowledge format communicated between the components of the QA system.

Idea: A conceptual view of QA systems has to be completely implementation-independent. Therefore,
we introduce a vocabulary (i.e., schema) that addresses abstract definitions of the data needed for solving
QA tasks. We will describe the data model by following mentioned dimensions (Section 4.2).

1. Input Query: The abstract definition of the input query along with its properties used for the
interpretation and transformation leading towards a formal query of the given dataset.
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2. Answer: The abstract definition of the answer (i.e., the search result for the given input query)
covering all its associated properties.

3. Dataset: The abstract definition for all kinds of data being used as background knowledge (i.e., for
interpreting the input query and retrieving the answer).

Please note that we do not describe a specific architecture. Instead our focus is the conceptual level,
i.e., the format of the information that needs to be used as input and returned as output by the components
of the QA system. Hence, question needs to be annotated with properties to make them available for
the following components in the QA system pipeline. As each component of the QA system will use
the knowledge about the question, QA applications following this idea are called knowledge-driven.
Hence, all the information in the question needs to be annotated to the knowledge to make it available
for the next components in the QA system pipeline. We adapt the definition of annotations from the Web
Annotation Data Model?.

Definition 4.3.1 (Annotation) An annotation is an object having the properties body and target. There
should be associated one or more instances of the body property of an annotation object, but there might
be zero body instances. There must be one or more instances of the target property of an annotation.

For example, considering the question “Where was the European Union founded?” (target) it might be
annotated that it contains with the named entity “European Union” (body). In many circumstances, it is
required to retrieve the annotator (i.e., the creator) of annotations. Thus, we demand the provenance
of each annotation to be expressible (e.g., while using several NED components and later pick one
interpretation). We manifest this in the following requirement:

Req. 1 (Provenance of Annotations) The provenance of each annotation needs to be re-presentable
within the data model. The annotator needs to be a resource that identifies the agent responsible for
creating the annotation.

Hence, if annotations are available, then each atom of the question can be annotated with additional
information to provide richer meta-information.

Definition 4.3.2 (Question Atom) The smallest identifiable part of a question (user query) is called
question atom and denoted by q,. Thus, each given user query Q independent of its type consists of a
sequential set of atoms Q = (q1,q2, - - -,qn)-

For example, while considering the question to be a text, the characters of the string or the words of
the query might be considered as question atoms, while a user query in the form of an audio input
(e.g., for spoken user queries) might be represented as byte stream. Considering textual questions, the
main component might be parser or Part of Speech taggers. They are used to identify relations between
the terms in a question. These relations can have a tree structure like in the case of dependency trees but
also more complex ones like direct acyclic graphs (DAG) that are used for example in Xser [66]. Some
QA systems such as gAnswer [68] use co-reference resolution tools, i.e., finding phrases that refer to
some entity in the question. Moreover, a typical goal of QA systems is to group phrases in triples that
should reflect the RDF structure of the given dataset. These examples imply the following requirement:

Req. 2 (Relations between Annotations) (a) It has to be possible to describe relations between annota-
tions. (b) Using these relations, it has to be possible to describe a directed or undirected graph (of the
respective defined annotations).

3W3C First Public Working Draft 11 December 2014, http://www.w3.0rg/TR/annotation-model/
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Annotations of components do not always have boolean characteristics. It is also possible to assign a
confidence, (un)certainty, probability, or (in general) score for the annotations. Once again an example is
the NED process, where for entity candidates also a certainty is computed (like in [17]). This implies the
following new requirement to be considered:

Req. 3 (Score of Annotations) It should be possible to assign a score to each annotation.

Note: The type of the score is an implementation detail, e.g., in [17] the confidence (score) is within the
range [0, 1] while in [63] the score might be any decimal number.

4.4 Requirements for Knowledge-driven QA Vocabulary

In this section while aiming for a conceptional level on top of existing QA approaches, the requirements of
knowledge-driven approach for describing QA systems are derived from the state-of-the-art (Chapter 3).
We present collected requirements following the dimensions of QA systems as described in Section 4.2.
Hence, on the one side a data model for knowledge generated in QA process should be able to describe
at least actual QA systems. On the other side the data model has to be flexible and extensible since it is
not known how future QA systems will look like nor which kind of annotations their components will
use. In general, there are two main attributes which we have to take into account:

* The proposed approach should be comprehensive in order to catch all known annotations used so
far in QA systems.

* It should have enough flexibility for future extensions in order to be compatible with the upcoming
new annotations depending on the requirements.

4.4.1 Input Query

The input query of a QA system can be of various types. For example it might be a query in natural
language text (e.g., [8]), a keyword-based query (e.g., [20]), an audio stream (e.g., [90]), or a resource-
driven input (e.g., [91]). In all these cases the parts of an input query need to be identifiable as a referable
instance such that they can be annotated during the input query analysis. Hence, we define the following
requirements for the input query:

Req. 4 (Part of the Input Query) The definitions of part of the input query satisfy the following con-
ditions: (i) Part consists of a non-empty set of parts and atoms: each part might be an aggregation of
atoms and other parts. However, the transitive closure of the aggregation of each part needs to contain
at least one question atom. (ii) For an input query an arbitrary number of parts can be defined.

Please note that as we mentioned before, all of the requirements or definitions are independent of any
implementation details. Thus, for instance, input query, atom or part have to been interpreted conceptually
and independent of their implementation in various QA systems.

Examples from an implementation view are as follows: for text queries the NIF [77] vocabulary might
be used to identify each part by its start and end position within the list of characters. Similarly, the
Open Annotation Data Model [92] selects parts of a binary stream by indicating the start and end position
within the list of bytes. We leave the actual types of atoms and properties of parts open, as it is depending
on the implementation of the actual QA system.

In a QA system the components of the analytics pipeline will annotate the parts of the query. Examples
for such components are Part-of-Speech (POS) taggers (e.g., in [93]), NER tools (e.g., in [23]) or NED
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tools (like [25]). One possible scenario for a textual question is that first several parts are computed
(e.g., with a POS-tagger). Thereafter a NED component might annotate the parts with the additional
properties, expressing the current state of the question analytics, using the properties that are accepted in
the NED community. As it is not known what kind of properties are annotated by which component, we
will not define them here. Hence, we have to keep the annotations open for on-demand definition:

Req. 5 (Annotations of Parts) It has to be possible to define an arbitrary number of annotations for
each part of the input question.

For example, for the input textual query “capital of Germany”, the part “Germany” might be annotated
by a NER tool as place (e.g., while using dbo : place?).

4.4.2 Answer

Each QA system is aiming at the computation of a result. However, considering the QA task there are
some demands of the type of the answer. For example, the QA task might demand a boolean answer
(e.g., for “Did Napoleon’s first wife die in France?”), a set of resources (e.g., for “Which capitals have
more than 1 million inhabitants?”’), a list of resources, just one resource etc. Therefore, we define the
following requirement:

Req. 6 (Answer) The question needs to be annotated with an object typed as answer. A resource of the
type answer might be annotated with a property describing the type of tasks (e.g., boolean, list ... ).

Of course, it is possible that the answer type is pre configured by the user as well as that it needs to be
derived automatically by the QA system from the given question. Additionally only several types might
be acceptable for the items been contained in the answer. For example, given the question “Who was the
7th secretary-general of the United Nations?” only specific resource types are acceptable as answer items
(w.r.t. the given data). Here it might be dbo : person. From this observation we derive the following
requirement.

Req. 7 (Types of Answer Items) An arbitrary number of types can be annotated, to express the types
acceptable for the items within the answer.

As an answer is also an annotation of the question, the answer, its answer item types and any additional
pieces of information might also be annotated with a score (Requirement 3), the annotator (Requirement
1) and other.

4.4.3 Dataset

The proposed data model needs to take into account information about the employed datasets. The dataset
dimension and its sub dimensions were introduced in the Section 4.2. To include these dimensions to the
data model, the following requirements are met:

Req. 8 (Dataset) A dataset provides an endpoint where the data can be accessed and statements about
the dataset format can be gathered.

Req. 9 (Helper Dataset) A question should be annotated by an arbitrary number of helper datasets
(which are subclass of dataset class).

‘@prefix dbo: <http://dbpedia.org/ontology/>

45



Chapter 4 Semantic Based Approach for Describing QA Systems and Processes

Req. 10 (Target Dataset) At least there is one target dataset (which is subclass of dataset class). Both
question and answer should be annotated by at least one target dataset (note: the number of target
datasets is arbitrary and depends on the requirement).

These requirements enable QA system components to easily (1) spot data, (2) access data, (3) query
data. Please note that target datasets might overlap with the helper data sets and vice versa.

4.5 Running Example
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Figure 4.2: This picture represents an annotation of the question "Where was the European Union founded?". The
part "European Union" is selected using a Specific Resource and a Selector. Moreover a semantic tag is associated.

In the previous section, we have collected the requirements for a data model describing the knowledge
of interoperable QA systems. As running example, we now focus on an ontology that fulfils these
requirements (although other formal representation will also comply with the requirements). Here, the
Web Annotation Data Model (WADM?) is used as basis that is currently a W3C working draft. The
WADM is an extensible, interoperable framework for expressing annotations and is well accepted. In the
following it is shown how the identified requirements are met.

The WADM introduces the class Annotat ion of the vocabulary 0a®. Thus, any annotation can be
defined as an instance of this class. The class Annotation has two major characteristics as the body
and the target. The body is “about” the target and it can be changed or modified according to the intention
of the annotation. The basic annotation model is represented in Turtle format’ is as follows where the
below pseudo code describes an annotation instance which is identified by anno. The anno has the
properties target and body (i.e., each one is a resource):

SW3C First Public Working Draft 11 December 2014, http: //www.w3.o0rg/TR/annotation-model/
SQprefix oa: <http://www.w3.org/ns/oa#>
"http://www.w3.org/TR/turtle/
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<anno> a oa:Annotation ;
oa:thasTarget <target> ;
oa:hasBody <body>

In the following, we extend the WADM in order to meet all requirements. For this purpose, a new
namespace is introduced:

@prefix ga: <urn:ga>

In order to illustrate the implications, we use a running example with the question “Where was the
European Union founded?”. First an instance with the type ga:Question is instantiated with the
identifier URIQuestion. We extended the data model as the input query needs to be defined as well as
the answer and the dataset. These concepts are represented by the classes ga : Question, ga:Answer
and ga:Dataset which are used to identify questions, answers and datasets. For the example also
a URI for the answer URIAnswer and for the dataset URIDataset is introduced. Then one can
establish the corresponding instances:

<URIQuestion> a ga:Question
<URIAnswer> a ga:Answer
<URIDataset> a ga:Dataset

These annotations instantiate question, answer and dataset object. To establish an annotation of a
question instance we introduce a new type of annotation namely ga : AnnotationOfQuestion. Itis
defined as follows:

ga:AnnotationOfQuestion rdf:type owl:Class ;
rdfs:subClassOf oa:Annotation ;
owl:equivalentClass |
rdf:type owl:Restriction ;
owl:onProperty oathasTarget ;
owl:someValuesFrom ga:Question

].

This means that annotations of this type need to have a target of type question. Analogously two new
annotation types are introduced ga :AnnotationOfAnswer and ga:AnnotationOfDataset.
In our example, the question is annotated with an answer (annol) and a dataset (anno?2).

<annol> a oa:AnnotationOfQuestion ;
oa:hasTarget <URIQuestion> ;
oa:hasBody <URIAnswer>

<anno2> a oa:AnnotationOfQuestion ;
oa:hasTarget <URIQuestion> ;
oa:hasBody <URIDataset>

Now, we will consider Requirement 4. To select parts of a query, WADM introduces two con-
cepts: Specific Resources and Selectors. In the WADM, there is a class called Specific Resource
(oa:SpecificResource) for describing a specific region of another resource called source. We use
this class for typing the concept of part of query in our data model. Assume “European Union” is a part
of the input query. For this part, we instantiate a resource with the identifier sptarget1 and the type
oa:SpecificResource. The WADM introduces the property oa: hasSource which connects a
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specific resource to its source. In our example, the source of sptargetl is URIQuestion stating
that “European Union” is a part of the input query. Another relevant class which can be captured from
the WADM is the class oa: Selector. It describes how to derive the specific resource from the source.
In our example we instantiate the resource selectorl which is a particular type of selector, namely a
oa:TextPositionSelector. It describes that the part “European Union” can be selected in the
input query between the character 13 and 27. This is indicated using the properties oa:start and
oa:end. This can be expressed via:

<sptargetl> a oa:SpecificResource;

oa:hasSource <URIQuestion>;
oa:hasSelector <selectorl>

<selectorl> a oa:TextPositionSelector;
ocoa:start 13 ;
oa:end 27

WADM introduces other types of selectors like Data Position Selectors for byte streams and Area
Selectors for images. Hence, Requirement 4 is fulfilled. It is obvious that we can instantiate an arbitrary
number of annotations for each part of a question. Thus, Requirement 5 is also met.

The WADM defines the property oa : annotatedBy to identify the agent responsible for creating the
Annotation, s.t., Requirement 1 is fulfilled. To comply with Requirement 3 a new property ga: score
with domain oa : Annotation and range xsd:decimal is introduced. For example, if “European
Union” is annotated by DBpedia Spotlight® with a confidence (score) of 0. 9, this can be expressed as:

<anno3> a oa:Annotation ;
oa:hasTarget <sptargetl> ;
oa:hasBody <semanticTag>

<semanticTag> a
foaf:page
<anno3> oa:annotatedBy

ca:score

oa:SemanticTag
dbr:European_Union
DBpedia spotlight
"0.9"""xsd:decimal

4

To fulfil Requirement 6, in our data model a new class ga: AnswerFormat and a new type of
annotation ga : AnnotationOfAnswerFormat are introduced:

ga:AnnotationOfAnswerFormat a
rdfs:subClassOf
owl:
rdf:type
owl:onProperty
owl:

owl:Class;
oa:AnnotationOfAnswer;
equivalentClass [

owl:Restriction;
oa:hasBody;
someValuesFrom ga:AnswerFormat

1.

If the expected answer format is a string, then this can be expressed with the following annotation:

<anno4> a
oa:hasTarget
oa:hasBody

<body4> a
rdfs:label

ga:AnnotationOfAnswerFormat ;
<URIAnswer> ;

<body4>

ga:AnswerFormat ;

"String"

8@prefix dbr: <http://dbpedia.org/resource/>
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Although later a resource will be used (instead of the rdfs: 1abel), this shows that Requirement 6 is
met. Requirement 7 is analogously satisfied. Now the requirements for datasets are considered. To fulfil
Requirement 8 a new class ga : Endpoint is introduced having the property ga: hasFormat and a
new annotation ga : AnnotationOfEndpointOfDataset:

ga:AnnotationOfEndpointOfDataset a owl:Class ;
rdfs:subClassOf ocoa:AnnotationOfDataset;
owl:equivalentClass [
rdf:type owl:Restriction;
owl:onProperty oa:hasBody;

owl:someValuesFrom ga:Endpoint

1.

If the question in the example should be answered using a SPARQL endpoint available under the URI
body5 (e.g., http://dbpedia.org/sparqgl), this might be expressed by:

<annob> a oa:AnnotationOfEndpointOfDataset;
ocoa:hasTarget <URIDataset> ;
oa:hasBody <body5>

<bodyb5> a ga:Endpoint ;
ga:hasFormat dbr:SPARQL

To fulfil requirements 9 and 10 two new classes are introduced, namely ga : HelperDataset and
ga:TargetDataset. Both are subclasses of ga :Dataset. If DBpedia is considered to be a target
dataset, this can be expressed as follows while URIDataset is http://dbpedia.org:

<URIDataset> a ga:TargetDataset ;
rdfs:label "DBpedia version_2015"

Relations between two annotations <annoX> and <annoY> with a label can be expressed using a
new annotation in the following way:

<annoz> a oa:Annotation ;
oa:thasTarget <annoX> ;
oa:hasBody <annoY> ;
rdfs:label "my anotation_label"

This corresponds to a directed edge between the two annotations. Representing undirected edges is
possible in a similar way. This shows that Requirement 2 is also fulfilled.

To sum up, in this example we expressed the demanded data model with a generalised ontology which
is reusing the concepts of the Web Annotation Data Model. These concepts capture all knowledge
generated in the QA process in a homogeneous way. We call the proposed ontology “qa” vocabulary. We
have shown that it is able to address all the requirements identified in Section 4.4. Moreover, we have
illustrated the usage with an example and the data model is extensible and open for improvements. The
complete running example is also available as online appendix at https://goo.gl/vECgK5

4.6 Summary

In this chapter we have motivated the high demand for vocabularies which cover the need for interoper-
ability of QA systems on a conceptual and implementation level. We first present QAV vocabulary to
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semantically describe the QA components and systems based on the task they perform. This provides a
homogeneous way to represent a QA component w.r.t the corresponding QA task along with input and
output requirements at abstract level. We then focus on the knowledge generated in the QA process at the
implementation level, s.t., everything needed to establish a QA system is included within the data model.
Given the requirements and the corresponding running example, we have established for the first time a
knowledge-driven interoperable approach that follows a philosophy aiming for QA systems actually open
for extension. Consequently, we collected the requirements for the data model from the recent works
to cover also the needs of existing QA systems. We have chosen a vocabulary that is agnostic to the
implementation and the actual representation of the input question and the answer as well as the datasets.
Hence, it is a descriptive and open approach. Hence, a logical, extensible, and machine-readable repres-
entation is now available fulfilling the collected requirements. Eventually, the proposed gavocabulary
can be used for all existing QA systems while transforming them into knowledge-driven (and therefore
interoperable) implementations.

The QAV vocabulary and ga vocabulary present the foundation for promoting interoperability within
QA community. However, an approach that utilises these vocabularies to integrate the QA components
in a single platform is missing in this chapter. We utilise semantics of the QA components, and the
knowledge produced in the QA process Also, we believe the QAC mapping can be used to automatise the
process of composing QA pipelines in QA frameworks. We present this chapter as the first step towards
addressing interoperability issues of QA components and systems. Based on the presented data model (or
its implementation as an ontology in the use case presented in Section 4.5) it enable us to establish a new
generation of QA systems and components of QA systems that are interoperable and we address first
sub-research question (RQ1 successfully. Hence, actually open and reusable QA systems are in sight.
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CHAPTER DO

Knowledge-Driven Creation of Question
Answering Systems

In the previous chapter, we first laid the foundation to describe QA components and systems semantically
using the QAV vocabulary. We also proposed the ga vocabulary for creating an abstraction level on top
of existing QA systems and components. Although the field of QA is large and many state-of-the-art QA
systems exist, we have observed in the study of state of the art in Chapter 3 that QA components are
not easily reusable because the QA systems and frameworks focus more on implementation details. For
example, PowerAqua [62] links information available across distributed semantic resources to answer
queries whereas TBSL [8] presents an approach that parses the question to produce SPARQL templates
that depict the internal structure of the question. However, TBSL provides better results regarding
linguistic analysis of questions, whereas PowerAqua is limited w.r.t. linguistic coverage of questions.
Combining the capabilities of both systems open up the chances to provide better functionalities.

In other research areas, such as service-oriented architectures or cloud computing, the vision of building
an ecosystem of components within a dedicated field has already proven its significance for the rapid
advancement of research. Therefore, establishing a methodology — on a conceptual and implementation
level — is considered crucial for managing the identified challenges of question answering in previous
chapters. We first describe a methodology for developing question answering systems driven by the
knowledge available for describing the question and related concepts. In this methodology, the knowledge
is represented in RDF, which ensures a self-describing message format that can be extended, as well as
validated and reasoned upon using off-the-shelf software. Additionally, using RDF provides the advantage
of retrieving or updating knowledge about the question directly via SPARQL. We aim at establishing
a methodology for integrating external components into a QA system using the ga vocabulary. By
this, we eliminate the need to (re)write adapters for sending pieces of information to the component
(service call) or custom interpreters for the retrieved information (result). To this end, our methodology
binds information provided by (external) services to the QA systems, driven by the ga vocabulary.
Because of the central role of the ga vocabulary, we call our methodology Qanary: Question answering
vocabulary. The approach is enabled for question representations beyond text (e.g., audio input or
unstructured data mixed with linked data) and open for novel ideas on how to express the knowledge
about questions in question answering systems. Using this knowledge driven approach, the integration
of existing components is possible; additionally one can take advantage of the powerful vocabularies
already implemented for representing knowledge (e.g., DBpedia Ontology', YAGO?) or representing the

"http://dbpedia.org/services—resources/ontology
http://www.mpi-inf.mpg.de/departments/databases—and-information-systems/
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analytics results of data (e.g., NLP Interchange Format [77], Ontology for Media Resources?). Hence, for
the first time an RDF-based methodology for establishing question answering systems is available that is
agnostic to the used ontologies, available services, addressed domains and programming languages.

To evaluate the effectiveness of Qanary methodology, we present the first reference implementation
of components and services that are integrated using the ga vocabulary and the Qanary methodology
within the Qanary ecosystem- a framework for creating reusable question answering systems. Using
Qanary ecosystem, a sophisticated framework level is achieved while hiding implementation details
of the integrated components and establishing the ga vocabulary as representation of the knowledge
about the user’s question and the search query derived from it. Moreover, we show how the Qanary
ecosystem can be used to analyse QA processes to detect weaknesses and research gaps. We illustrate this
by focusing on the NER and NED task w.r.t. textual natural language input, which is a fundamental step
in most QA processes. Additionally, we contribute the first NED benchmark for QA, as open source. Our
main goal is to show how research community can use Qanary to gain new insights into QA processes.
At a higher level, the following research question is addressed in this chapter:

Research Question 2 (RQ2)

How can state-of-the-art QA components be integrated in a single platform agnostic to their imple-
mentation to promote reusability effectively?

The stated RQ2 benefits from the following contributions of this chapter:
* Qanary, a methodology for vocabulary-driven open question answering systems;
* Qanary Ecosystem, a framework for creating fast track question answering system;

* Empirical evaluation of NER and NED components integrated in the Qanary Ecosystem using
Qanary methodology.

The chapter is structured as follows. Section 5.1 presents Qanary, a methodology for creating open
question answering systems by reusing existing QA components. Section 5.2 is dedicated to the
description of Qanary Ecosystem, a framework built on top of Qanary and ga vocabulary for integrating
heterogeneous QA components in a single platform. We integrate several NED and NER components,
and provide benchmarking of these components using a question answering dataset and present the
experimental results. Finally, in Section 5.3, we provide a summary of the achieved results and conclude
whether RQ2 holds true. This chapter is based on [27-29, 9474

3W3C Recommendation 09 February 2012, v1.0, http: //www.w3.org/TR/mediaont-10/

“In these papers, my contributions include designing and implementing the integration of various QA components in the
core Qanary architecture. I have also contributed in designing the core Qanary Ecosystem using Springboot framework. I then
contributed in designing the fundamentals of the Qanary methodology, and implementing the core QA pipeline architecture for
the evaluation of the proposed methodology. These papers have been a joint work with another PhD student Dennis Diefenbach
(Universite Jean Monnet, France)
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5.1 Qanary — A Knowledge-driven Methodology for Open
Question Answering Systems

QA systems can be classified by the domain of knowledge in which they answer questions, by supported
types of demanded answer (factoid, boolean, list, set, etc.), types of input (keywords, natural language
text, speech, videos, images, plus possibly temporal and spatial information), data sources (structured or
unstructured), and based on traditional intrinsic software engineering challenges (scalability, openness,
etc.) which are identified in the recent QA survey [44].

Closed domain QA systems target specific domains to answer a question, for example, medicine [48]
or biology [95]. Limiting the scope to a specific domain or ontology makes ambiguity less likely and
leads to a high accuracy of answers, but closed domain systems are difficult or costly to apply in a
different domain. Open domain QA systems either rely on cross-domain structured knowledge bases or
on unstructured corpora (e.g., news articles). DBpedia and Google’s non-public knowledge graph [40]
are examples of semantically structured general-purpose Knowledge Bases used by open domain QA
systems. Recent examples of such QA systems include PowerAqua [62], FREyA [69], QAKIS [23], and
TBSL [8] and others as described in Chapter 3.

Each of these QA systems addresses a different subset of the space of all possible question types, input
types and data sources. For example, PowerAqua finds limitation in linguistic coverage of the question,
whereas TBSL overcomes this shortcoming and provides better results in linguistic analysis [8]. It would
thus be desirable to combine these functionalities of [8] and [93] into a new, more powerful system. Also,
the open source web service DBpedia Spotlight [17] analyses texts leading to NER and NED, using the
DBpedia ontology. AIDA [89] is a similar project, which uses the YAGO ontology. AGDISTIS [25] is an
independent NED service, which, in contrast to DBpedia Spotlight and AIDA, can use any ontology, but
does not provide an interface. The PATTY system [96] provides a list of textual patterns that can be used
to express properties of the YAGO and DBpedia ontologies. As these components have different levels
of granularity and as there is no standard message format, combining them is not easy and demands the
introduction of a higher level concept and manual work.

However, currently the integration of components is not easily possible because the semantics of their
required parameters as well as of the returned data are either different or undefined. Components of
question answering systems are typically implemented in different programming languages and expose
interfaces using different exchange languages (e.g., XML, JSON-LD, RDF, CSV). A framework for
developing question answering systems should not be bound to a specific programming language as
it is done in [11]. Although this reduces the initial effort for implementing the framework, it reduces
the reusability and exchangeability of components. Additionally, it is not realistic to expect that a
single standard protocol will be established that subsumes all achievements made by domain-specific
communities. Hence, establishing just one (static) vocabulary will not fulfil the demands for an open
architecture. However, a standard interaction level is needed to ensure that components can be considered
as isolated actors within a question answering system while aiming at interoperability. Additionally
this will enable the benchmarking of components as well as aggregations of components ultimately
leading to best-of-bread domain-specific but generalised question answering systems which increases the
overall efficiency [12]. Furthermore it will be possible to apply quality increasing approaches such as
ensemble learning [97] with manageable effort. Therefore, we aim at a methodology for open question
answering systems with the following attributes (requirements): interoperability, i.e., an abstraction
layer for communication needs to be established, exchangeability and reusability, i.e., a component
within a question answering system might be exchanged by another one with the same purpose, flexible
granularity, i.e., the approach needs to be agnostic to the processing steps implemented by a question
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answering system, isolation, i.e., each component within a QA system is decoupled from any other
component in the QA system.

Existing Problem in State of the Art QA Systems and Frameworks

Question answering systems are complex w.r.t. the components needed for an adequate quality. Sophist-
icated QA systems need components for NER, NED, semantic analysis of the question, query building,
query execution, result analysis, etc. Integrating multiple such components into a QA system is incon-
venient and inefficient, particularly considering the variety of input and output parameters with the same
or similar semantics (e.g., different terms for referring to “the question”, or “a range of text”, or “an
annotation with a linked data resource”, or just plain string literals where actual resources are used). As no
common vocabulary for communicating between components exists, the following situation is observable
for components that need to be integrated: (1) a (new) vocabulary for input values is established, (2) a
(new) vocabulary for the output values is established, (3) input or output values are represented without
providing semantics (e.g., as plain text, or in JSON or XML with an ad hoc schema). Confronted with
these scenarios, developers of QA systems have the responsibility to figure out the semantics of the
components, which is time-consuming and error-prone. Hence, efficiently developing QA systems is
desirable for the information retrieval community in industry and academics.

Requirements for Knowledge Driven QA systems

From the previous problem statement and our observations in state of the art, we derived the follow-
ing concrete requirements for a vital ecosystem of QA system’s components (note: we have already
summarised problem in last chapter, now we concretely define them):

Requirement 1 (Interoperability) Components of question answering systems are typically implemen-
ted in different programming languages and expose interfaces using different exchange languages
(e.g., XML, JSON-LD, RDF, CSV). It is not realistic to expect that a single fixed standard protocol
will be established that subsumes all achievements made by domain-specific communities. However, a
consistent standard interaction level is needed. Therefore, we demand a (self-describing) abstraction of
the implementation.

Requirement 2 (Exchangeability and Reusability) Different domains or scopes of application will
require different components to be combined. Increasing the efficiency for developers in academia and
industry requires a mechanism for making components reusable and enable a best-of-breed approach.

Requirement 3 (Flexible Granularity) It should be possible to integrate components for each small
or big step of a QA pipeline. For example, components might provide string analytics leading to NER
(e.g., [17]), other components might target the NED only (e.g., [25]) and additionally there might exist
components providing just an integrated interface for NER and NED in a processing step.

Requirement 4 (Isolation) Every component needs to be able to execute their specific step of the QA
pipeline in isolation from other components. Hence, business, legal and other aspects of distributed
ownership of data sources and systems can be addressed locally per component. This requirement
targets the majority of the QA platform, to enable benchmarking of components and the comparability of
benchmarking results. If isolation of components is achieved, ensemble learning or similar approaches
are enabled with manageable effort.
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No existing question answering system or framework for such systems fulfils these requirements.
However, we assume here that fulfilling these requirements will provide the basis for a vital ecosystem of
question answering system components and therefore unexpectedly increased efficiency while building
question answering systems.

Idea

In this section, we are following a two-step process towards integrating different components and services
within a QA system.

1. On top of a standard annotation framework, the Web Annotation Data Model (WADM?), the ga
vocabulary is defined. This generalised vocabulary covers a common abstraction of the data models
we consider to be of general interest for the QA community. It is extensible and already contains
properties for provenance and confidence.

2. Vocabularies used by components for question answering systems for their input and output
(e.g., NIF for textual data annotations, but also any custom vocabulary) are aligned with the ga
vocabulary to achieve interoperability of components. Hence, a generalised representation of the
messages exchanged by the components of a QA system is established, independently of how they
have been implemented and how they natively represent questions and answers.

5.1.1 Approach
Web Annotation Framework

The Web Annotation Data Model (WADM)® is a framework for expressing annotations. A WADM
annotation has at least a target and a body. The target indicates the resource that is described, while the
body indicates the description. The basic structure of an annotation, in Turtle syntax, looks as follows:

<anno> a oa:Annotation ;
oa:thasTarget <target> ;
oa:hasBody <body>

Additionally the oa vocabulary provides the concept of selectors, which provide access to specific
parts of the annotated resource (here: the question). Typically this is done by introducing a new
oa:SpecificResource, which is annotated by the selector:

<mySpTarget> a oa:SpecificResource ;
oa:hasSource <URIQuestion> ;
oa:hasSelector <mySelector>

<mySelector> a oa:TextPositionSelector ;
oa:start "n"*"*xsd:nonNegativelInteger ;
oa:end "m"**xsd:nonNegativelnteger

Moreover, one can indicate for each annotation the creator using the oa : annotatedBy property and
the time it was generated using the oa : annotatedAt property.

SW3C Working Draft 15 October 2015, http://www.w3.0org/TR/annotation-model
®https://www.w3.org/TR/annotation-model/
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Vocabulary for Question Answering Systems

In the last chapter (c.f. 4) we introduced the vocabulary for the knowledge driven approach. Following
the data model requirements of question answering systems, this vocabulary — abbreviated as ga —is
used for exchanging messages between components in QA systems.

We reuse the ga vocabulary in Qanary that extends the WADM such that one can express typical
intermediate results that appear in a QA process. It is assumed that the question can be retrieved from a
specific URI that we denote with URIQuestion. This is particularly important if the question is not a
text, but an image, an audio file, a video or data structure containing several data types. URIQuestion
is an instance of an annotation class called ga : Quest ion. The question is annotated with two resources
URIAnswer and URIDataset of types ga:Answer and ga:Dataset respectively. All of these
new concepts are subclasses of oa : Annotation. Hence, the minimal structure of all concepts is uni-
form (provenance, service URL, and confidence are expressible via ga : Creator, oa:annotatedBy,
and ga : score) and the concepts can be extended to more precise annotation classes.

These resources are further annotated with information about the answer (like the expected answer
type, the expected answer format and the answer itself) and information about the dataset (like the URI
of an endpoint expressing where the target data set is available). This model is extensible since each
additional information that needs to be shared between components can be added as a further annotation
to existing classes. For example, establishing an annotation of the question is possible by defining a new
annotation class ga : AnnotationOfQuestion:

Class: ga:AnnotationOfQuestion
EquivalentTo: oa:Annotation that oa:hasTarget some ga:Question

Integration of (external) component interfaces

Following the Qanary approach, existing vocabularies should not be overturned. Instead, any information
that is useful w.r.t. the task of question answering will have to be aligned to Qanary to be integrated
on a logical level, while the domain-specific information remains available. Hence, we provide a
standardised interface for interaction while preserving the richness of existing vocabularies driven by
corresponding communities or experts. Existing vocabularies will be aligned to Qanary via axioms or
rules. These alignment axioms or rules will typically have the expressiveness of first-order logic and
might be implemented using OWL subclass/subproperty or class/property equivalence axioms as far as
possible, using SPARQL CONSTRUCT or INSERT queries, or in the Distributed Ontology Language
DOL, a language that enables heterogeneous combination of ontologies written in different languages and
logics [98]. The application of these alignment axioms or rules by a reasoner or a rule engine will translate
information from the Qanary knowledge base to the input representation understood by a QA component
(if it is RDF-based), and it will translate the RDF output of a component to the Qanary vocabulary, such
that it can be added to the knowledge base. Hence, after each processing step a consolidated representation
of the available knowledge about the question is available. Each new annotation class (with a specific
semantics) can be derived from the existing annotation classes. Additionally, the semantics might be
strengthened by applying restrictions to oa : hasBody and oa :hasTarget annotations.

5.1.2 Alignment of Component Vocabularies

Our goal in this section is to provide a methodology for binding the ga vocabulary to existing ones
used by QA systems. Of course, it is not possible to provide a standard solution for bindings of all
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PREFIX itsrdf: <http://www.w3.0rg/2005/11/its/rdf#>

PREFIX nif: <http://persistence.uni-leipzig.org/..../nif-core#>
PREFIX ga: <http://www.wdaqua.eu/qga#>

PREFIX oa: <http://www.w3.org/ns/openannotation/core/>

INSERT {

?s a oa:TextPositionSelector

?s oa:start ?begin

?s oa:end ?end

?x a ga:AnnotationOfNE

?x oa:hasBody ?NE

?x oa:hasTarget [ a oa:SpecificResource;
oa:hasSource <URIQuestion>;
oa:hasSelector ?s ]

?x ga:score ?conf

?x oa:annotatedBy ’'DBpedia Spotlight wrapper’

?xX oa:annotatedAt ?time

} WHERE { SELECT ?x ?s ?NE ?begin ?end ?conf
WHERE { graph <http://www.wdaqua.eu/ga#tmp> {
?s itsrdf:taldentRef ?NE

?s nif:beginIndex ?begin
?s nif:endIndex ?end
?s nif:confidence ?conf
BIND (IRI(CONCAT (str(?s), ’'#’,str(RAND()))) AS ?x)
BIND (now () as ?time)

Figure 5.1: Aligning identified named entities to a new ga annotation using SPARQL

existing vocabularies due to the variety of expressing information. However, here we provide three
typical solution patterns matching standard use cases and presenting the intended behaviour. As running
example we consider an implemented exemplary question answering system with a pipeline of three
components (NER+NED, relation detection, and query generation and processing; section 5.1.3). In
the following the components are described briefly and also a possible alignment implementation of the
custom vocabulary to ga.

NER and NED via DBpedia Spotlight

DBpedia Spotlight provides the annotated information via a JSON interface [17]. An adapter was
implemented translating the untyped properties DBpedia Spotlight is returning into RDF using NIF.
On top of this service we developed a reusable service that aligns the NIF concepts with the annota-
tions of ga. First we need to align the implicit NIF selectors defining the identified named entities
with the ca: TextPositionSelector while aligning the oa: TextPositionSelector with
nif:Stringonalogical level iff nif:beginIndex and nif:endIndex exist. This is expressed
by the following first-order rule:

rdf:type(?s, nif:String) A nif:beginlndex(?s, ?b) A nif:endIndex(?s, 7e)

— (I?7x e rdf:type(?x, oa:TextPositionSelector) A oa:start(?x, ?b) A oa:end(?x, ?e)) SRV
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Additionally the identified resource of the named entity (taIdentRef of the vocabulary it srdf)
needs to be constructed as annotation. We encode this demanded behavior with the following rule:

itsrdf:taldentRef(?s, ?NE) A nif:confidence(?s, ?conf)t

— rdfs:subClassOf(qa: AnnotationOfEnitites, oa: AnnotationOfQuestion) A
(A7sp e rdfs:type(?sp, oa:SpecificResource) A oa:hasSource(?sp, <URIQuestion>)A
oa:hasSelector(?sp, ?s)) A (d?7x e rdfs:type(?x, oa:AnnotationOfNE)A

oa:hasBody(?x, ?NE) A oa:hasTarget(?x, 7sp) A qa:score(?x, ?conf))
(5.2)

Figure 5.1 shows our SPARQL implementations of this rule. After applying this rule, named entities and
their identified resources are available within the ga vocabulary.

Relation detection using PATTY lexicalisation

PATTY [96] can be used to provide lexical representation of DBpedia properties. Here we created a
service that uses the lexical representation of the properties to detect the relations in a question. The
service adds annotations of type ga : AnnotationOfEntity. Consequently, the question is annotated
by a selector and a URI pointing to a DBpedia resource comparable to the processing in Figure 5.1. For
example, the question “Where did Barack Obama graduate?”” will now contain the annotation:

PREFIX dbo: <http://dbpedia.org/ontology/>

<urn:uuid:a...> a oa:TextPositionSelector ;
oa:start "24"""xsd:nonNegativelnteger ;
oa:end "33"*"xsd:nonNegativelnteger ;

<urn:uuid:b...> a ga:AnnotationOfEntity ;
oa:hasBody dbo:almaMater ;

oathasTarget [ a oa:SpecificResource ;
oa:hasSource <URIQuestion> ;
oa:hasSelector <urn:uuid:a...> 1 ;

ga:score "23"""xsd:decimal ;
oa:annotatedBy <http://wdaqua.example/Patty> ;
oa:annotatedAt "2015-12-19T00:00:00Z2"*"xsd:dateTime

In our use case the PATTY service just extends the given vocabulary. Hence, components within a QA
system called after the PATTY service will not be forced to work with a second vocabulary. Additionally,
the service might be replaced by any other component implementing the same purpose (Requirement 2:
exchangeability and reusability, and Requirement 4: isolation are fulfilled).

Query Construction and Query Execution via SINA

SINA [20] is an approach for semantic interpretation of user queries for question answering on interlinked
data. It uses a Hidden Markov Model for disambiguating entities and resources. Hence, it might use the
triples identifying entities while using the annotation of type ga : AnnotationOfEntity, e.g., for
“Where did Barack Obama graduate?” the entities dbr : Barack_Obama’ and dbo: almaMater® are

"http://dbpedia.org/resource/Barack_Obama
dhttp://dbpedia.org/ontology/almaMater
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present and can be used. The SPARQL query generated by SINA as output is a formal representation of
a natural language query given below:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?uri

WHERE { dbr:Barack_Obama

dbo:almaMater ?2uri }

As this query, at the same time, implicitly defines a result set, which needs to be aligned with the
ga :Answer concept and its annotations. We introduce a new annotation oa : SparglQueryOfAnswer,
which holds the SPARQL query as its body.

sparglSpec:select(?x, ?t) A rdf:type(?¢, xsd:string)

— rdfs:subClassOf(oa:SparqlQueryOfAnswer, oa: AnnotationOf Answer) A
(47x o rdfs:type(?x, oa:SparqlQueryOfAnswer) A oa:target(?x, <URIAnswer>)A
oa:body(?x, “SELECT ...”))

(5.3)

The implementation of this rule as a SPARQL INSERT query is straightforward. Thereafter, the
knowledge base of the question contains an annotation holding the information which SPARQL query
needs to be executed by a query executor component to obtain the (raw) answer.

Discussion

In this section we have shown how to align component-specific QA vocabularies. Following our Qanary
approach each component’s knowledge about the current question answering task will be aligned with the
ga vocabulary. Hence, while using the information of the question answering system for each component
there is no need of knowing other vocabularies than ga. However, the original information is still
available and usable. In this way Requirement 4 islolation is fulfilled, and we achieve exchangeability
(Requirement 2) by being able to exchange every component.

Note that the choice of how to implement the alignments depends on the power of the triple store used.
Hence, more elegant vocabulary alignments are possible but are not necessarily usable within the given
system environment (e.g., an alternative alignment for Section 5.1.2, implemented as an OWL axiom, is
given in the online appendix”). Here our considerations finish after the creation of a SELECT query from
an input question string. A later component should execute the query and retrieve the actual resources as
result set. This result set will also be used to annotate URIAnswer to make the content available for
later processing (e.g., HCI components).

5.1.3 Use Case

In this Section we present a QA system that follows the idea presented in Section 5.1. Note that in this
section our aim was not to present a pipeline that performs better by quantitative criteria (e.g., F-measure)
but to show that the alignment of isolated, exchangeable components is possible in an architecture
derived from the Qanary methodology. We have extended the vocabulary proposed in Chapter 4 to align
individual component vocabularies together to integrate them into a working QA architecture. Without
such an alignment, these components cannot be integrated easily together because of their heterogeneity.

%alternative alignment: https://goo.gl/hdsaqg4
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[ Exemplary Question Answering System ]

process(Mj){—)M process(M?—)M process(l}?—)M V
DBpedia Spotlight NIF| | PATTY Service SINA N L
Wrapper (NEI+NED) (relation detection) (query construction) |77 > 9 ﬂ |

Figure 5.2: Architecture of the exemplary question answering system.

Our exemplary QA system consists of three components: DBpedia Spotlight for named entity identi-
fication and disambiguation, a service using the relational lexicalisations of PATTY for relation detection,
and the query builder of SINA. All information about a question is stored in a named graph of a triple
store using the QA vocabulary. As a triple store, we used Stardog!?. We can term it as local Knowledge
Base (KB) of Qanary.

The whole architecture is depicted in Figure 8.4. Initially the question is exposed by a web server
under some URI, which we denote by URIQuest ion. Then a named graph reserved for the specific
question is created. The WADM and the ga vocabularies are loaded into the named graph together with
the predefined annotations over URIQuest ion described in Section 5.1.1. Step by step each component
receives a message M (8.4) containing the URI where the triple store can be accessed and the URI of the
named graph reserved for the question and its annotations. Hence, each component has full access to all
the messages generated by the previous components through SPARQL SELECT queries and can update
that information using SPARQL UPDATE queries. This in particular allows each component to see what
information is already available. Once a component terminates, a message is returned to the question
answering system, containing the endpoint URI and the named graph URI (i.e., the service interface is
defined as process (M) — M). Thereafter, the retrieved URI of the triple store and the name of the
named graph can be passed by the pipeline to the next component. Now let us look into detail about the
working of each component.

The first component wraps DBpedia Spotlight and is responsible for linking the entities of the question
to DBpedia resources. First, it retrieves the URI of the input question from the triple store and then
downloads the question from that URI. It passes the question to the external service DBpedia Spotlight
by using its REST interface. The DBpedia Spotlight service returns the linked entities. The raw output of
DBpedia Spotlight is transformed using the alignment from Section 5.1.2 to update the information in
the triple store with the detected entities. The second component retrieves the question from the URI and
analyses of all parts of the question for which the knowledge base does not yet contain annotations. It
finds the most suitable DBpedia relation corresponding to the question using the PATTY lexicalisations.
These are then updated in the local triple store (or the local knowledge base) (Section 5.1.2). Finally,
the third component ignores the question and merely retrieves the resources with which the question
was annotated directly from the triple store. The query generator of SINA is then used to construct a
SPARQL query which is then ready for sending to the DBpedia endpoint. Hence, the common process
within all components is organised as follows:

1. A component fetches the required knowledge via (SPARQL) queries from the local Knowledge

Ohttp://stardog.com/, community edition, version 4.0.2

60


http://stardog.com/

5.2 Qanary Ecosystem

Base (KB) i.e. triplestore. In this way, it gains access to all the data required for particular process.
2. The custom component process is started, computing new insights of the user’s question.

3. Finally, the component pushes the results back to the KB (using SPARQL).

Therefore, after each process step (i.e., component interaction), the KB should be enriched with new
knowledge (i.e., new annotations of the currently processed user’s question). We implemented the
pipeline in Java but could have used any other language as well. The implementation of each component
requires just a few lines of code (around 2-3 KB of source code); in addition, we had to implement
wrappers for DBpedia Spotlight and PATTY (4-5 KB each) to adapt their input and output (e.g., to
provide DBpedia Spotlight’s output as NIF). Note that this has to be done just once for each component.
The components can be reused for any new QA system following the Qanary approach. Overall, it is
important to note that the output of each component is not merely passed to the next component just
like other typical pipeline architecture, but every time when an output is generated, the triple store is
enriched with the knowledge of the output. Hence, it is a message-driven architecture built on top of
a self-describing blackboard-style knowledge base containing valid information of the question. Each
component fetches the information that it needs from the triple store by itself.

In conclusion, the use case clearly shows the power of the approach. The knowledge representa-
tion is valid and consistent using linked data technology. Moreover, each component is now isolated
(Requirement 4), exchangeable and reusable (Requirement 2), as the exchanged messages follow the ga
vocabulary (Requirement 1), which contains the available pieces of information about the question, and
their provenance and confidence. The components are independent and lightweight, as the central triple
store holds all knowledge and takes care of querying and reasoning. As Qanary does not prescribe an
execution order or any other processing steps, requirement of granularity (Requirement 3) is also fulfilled.
The use case is available as online appendix'!.

5.2 Qanary Ecosystem

We describe in the previous section that the ga vocabulary laid foundation to the Qanary methodology.
The message-driven implementation of Qanary foresees an QA ecosystem. The advantage of such an
ecosystem is that it combines different approaches, functionality, and advances in the QA community
under a single umbrella. In this section, we present Qanary ecosystem, which consists of a variety of
components and services that can be used during a QA process. We describe in the following what
components and services are available. The Qanary ecosystem includes various components covering
a broad field of tasks within QA systems. This includes different components performing NER like
FOX [99] and Stanford NER [72] and components computing NED such as DBpedia Spotlight and
AGDISTIS [25]. Also industrial services such as the Alchemy API are part of the ecosystem.
Furthermore, Qanary includes a language detection module [100] to identify the language of a textual
question. A baseline automatic speech recognition component is also included in the reference imple-
mentation. It translates audio input into natural language texts and is based on Kaldi'?. Additionally
it should be noted that a monolithic QA system component [101] was developed and is integrated in
Qanary. Additional external QA components are included in the ecosystem. In particular, Qanary
includes two components from the OKBQA challenge!? namely the template generation and disam-
biguation component. All components are implemented following the REST principles. Hence, these

Unttps://github.com/WDAqua/Pipeline
2http://kaldi-asr.org
Bhttp://www.okbga.org/
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tools/approaches become easy to reuse and can now be invoked via transparent interfaces. To make it
easy to integrate a new component we have created a Maven archetype that generates a template for a
new Qanary component'“. The main services are encapsulated in the Qanary Pipeline. It provides, for
example, a service registry. After being started, each component registers itself to the Qanary Pipeline
central component following the local configuration'® of the component. Moreover, the Qanary Pipeline
provides several web interfaces for machine and also human interaction (e.g., for assigning a URI to
a textual question, retrieving information about a previous QA process, etc.)!®. Particularly, as each
component automatically registers itself to the Qanary Pipeline, a new question answering systemcan be
created and executed just by on-demand configuration (a concrete one is shown in the Figure 5.3). Hence,
the reference implementation already provides the features required for QA systems using components
distributed over the Web and can be accessed either as web service or provided as open source projects.

An additional interface allows for benchmarking a QA system created on demand using Gerbil for
QA'7, thus allowing third-party evaluation and citeable URIs. Figure 5.4 illustrates the complete reference
architecture of Qanary and a few of its components. The code is maintained in the repository'® under the
MIT License'® for open source usage.

5.2.1 Gaining new insights into the QA process

To show how Qanary can be used to gain new insights into QA processes we focus here on the NED
task. We present how we have extended the ga vocabulary to represent the information produced by
NER and NED tools. Moreover, we describe the components of the Qanary ecosystem that are integrated
using the Qanary methodology and that can be used for the NED task. We describe how we constructed a
benchmark for NED out of QALD-62°. The analysis of the benchmark will show: what are the best tools
to tackle QALD, where are current research gaps, and for which questions do single tools fail and what
are the reasons behind it. The following workflow is not restricted to the NED task but can be applied to
any other sub-task of the QA process to gain new insights into QA processes and have utilised in next
few chapters of the thesis.

The QA vocabulary for the NED task

The ga vocabulary is designed to be extensible so as not to constrain the creativity of the QA community
developers. All information that can possibly be generated and that might need to be shared across
QA components can be expressed using new annotations. This principle follows the understanding of
standards that allow communication between QA components must be defined by the community. Taking
into consideration the state of the art (e.g., [25, 72]), the ga vocabulary was extended with standard
concepts for NER and NED representations. This in particular uniforms the representation of the input
and output of every integrated component, making it easy to compare and analyze the integrated tools.
Note that this does not only hold for tools that can be used for NED but for every tool integrated into the
Qanary ecosystem. To describe an entity spotted within a question we introduced a dedicated annotation
which is describe below:

Yhttps://github.com/WDAqua/Qanary/wiki

15The configuration property spring.boot .admin.url defines the endpoint of the central component.
Yhttps://github.com/WDAqua/Qanary/wiki/Frequently-Asked-Questions
"http://gerbil-qga.aksw.org

Bpnttps://github.com/WDAqua/Qanary

Yhttps://opensource.org/licenses/MIT

Mnttps://gald.sebastianwalter.org/
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Qanary Start a QA process with a new textual question

Please insert a textual question:

| What is Batman's real name?

Activate the components to be executed and drag them in the intended execution order:

Currently available Qanary components

¥ FOX-NER

] AGDISTIS-NED

[ Alchemy-NERD

I DBpediaSpotlight-NER
¥ DBpediaSpotlight-NED
[ LuceneLinker-NERD

[ Stanford-NER

start QA process provided by Qanary +

Figure 5.3: Snapshot of the Web interface for defining a textual question and a sequence of components to process
it (here only NED/NER components where registered).

QA Pipeline Service
Configurator Repository
Logging Restful API

sync call

QALD

Evaluator

calls

QA client

AGDISTIS WS Q
DBpedia y
Spotlight WS
Alchemy Entity
Bxraction API SPARQL endpoint
providing
knowledge using
DBpedia the ga
Spotlight W5 vocabulary
FOX WS
SPARGL Qanary Qanary Qanary client core third-party
queries exchange adapters componeant applications components components

Figure 5.4: The Qanary reference architecture implementation highlighting the NER/NED components.
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ga:AnnotationOfSpotInstance a owl:Class;
rdfs:subClassOf ga:AnnotationOfQuestion

If in the question “When was Narendra Modi born?” a spotter detects “Narendra Modi” as an named
entity, this fact can be expressed by the following annotation, where oa : SpecificResource and
oa:hasSelector are concepts of the WADM to select a part of a text.

<annol> a ga:AnnotationOfSpotInstance
<annol> oa:hasTarget [
a oa:SpecificResource ;
oa:hasSource <URIQuestion>;
oa:hasSelector [
a oa:TextPositionSelector;
oa:start "10"**xsd:nonNegativelnteger;
oa:end "22"~"xsd:nonNegativelInteger

]

For named entities, we define the new concept ga : NamedEnt ity and a corresponding annotation
subclass (i.e., annotations of questions whose body is an instance of ga : NamedEntity):

ga:NamedEntity a owl:Class ;
ga:AnnotationOfInstance a owl:Class ;
owl:equivalentClass [
a owl:Restriction ;
owl:onProperty oa:hasBody ;

owl:someValuesFrom ga:NamedEntity
I
rdfs:subClassOf ga:AnnotationOfQuestion

If an NED tool detects in the question “When was Narendra Modi born?” that the text “Narendra Modi”
refers to dbr : Narendra_Modi, then this can be expressed (using oa : hasBody) as:

<annol> a ga:AnnotationOfInstance ;
oa:hasTarget [

a oa:SpecificResource ;
oa:hasSource <URIQuestion> ;
oa:hasSelector [

a oa:TextPositionSelector ;
oa:start "10"*"xsd:nonNegativelnteger;
oa:end "22"*"xsd:nonNegativelnteger

]
I
oa:hasBody dbr:Narendra_Modi

Note that using annotations provides many benefits, thanks to the inclusion of additional metadata such
as the creator of the information, the time and a trust score. However, this information is omitted here for
improving the readability of the annotations.
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5.2 Qanary Ecosystem

5.2.2 Reusable NER and NED components

The following components were integrated into the Qanary ecosystem as Qanary components solve the
task of NER and NED. The NER tool can be combined with each NED tool just by configuration utilising
the power of Qanary methodology.

» Stanford NER (NER) is a standard NLP tool that can be used to spot entities for any ontology,
but only for languages where a model is available (it has currently support for English, German,
Spanish and Chinese languages) [72].

* FOX (NER) integrates four different NER tools (including the Stanford NER tool) using ensemble
learning techniques for spotting entities [99].

* DBpedia Spotlight spotter (NER) uses lexicalisations, i.e., ways to express named entities, that
are available directly in DBpedia [17].

* DBpedia Spotlight disambiguator (NED), the NED part of DBpedia Spotlight, disambiguates
entities by using statistics extracted from Wikipedia texts [17].

* AGDISTIS (NED) is a NED tool that uses the graph structure of an ontology to disambiguate
entities present in the question [25].

+ ALCHEMY (NER + NED): Alchemy API?! is a commercial service (owned by IBM) exposing
several text analysis tools as web services.

* Lucene Linker (NER + NED) is a component that we implemented following the idea of the
SINA QA system [20], which employs information retrieval methods.

5.2.3 A QALD-based benchmark for NED in QA

To compare the different entity linking approaches, we created a benchmark based on the QALD
(Question Answering over Linked Data) benchmark used for evaluating complete QA systems. The
QALD-6 training set>?, which is the recent successor of QALD-5 [70], contains 350 questions, including
questions from previous QALD challenges. For each question, it contains a SPARQL query that retrieves
the corresponding answers. For example, the following SPARQL query corresponds to the question
“Name the municipality of Roberto Clemente Bridge”.

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?2uri

WHERE { dbr:Roberto_Clemente_Bridge
dbo:municipality ?2uri }

NED tools should provide functionality to interlink the named entities present in the question with
DBpedia (or other data), i.e., they should be able to identify “Roberto Clemente Bridge” and link to it the
resource dbr :Roberto_Clemente_Bridge. Our benchmark compares the URIs generated by an
NED tool with the resource URIs in the SPARQL query (i.e., those in the dbr namespace), which are
obviously required for answering the question. Hence the gold standard for each question is given by all
resource URIs in the SPARQL query.

2lhttp://alchemyapi.com
22Training Questions of Task 1: http://gald.sebastianwalter.org/index.php?x=challengesq=6
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# correct URIs retrieved by the NED configuration for ¢

Precision(g) =
15100(9) =2 RIS retrieved by the NED configuration identifying entities in g

Recall(q) :# correct URIs retrieved by the NED configuration for ¢

# gold standard answers for g
Precision(g) x Recall(g)

Fi- =2 X
1-measure(q) Precision(q) + Recall(q)

Figure 5.5: Metrics used in the NED benchmark

The metrics for a question ¢ are calculated as defined in the QALD benchmark and are reported in
Figure 5.5.In the corner cases where the number of system answers or the number of gold standard answers
is zero we follow the same rules that are used in the QALD evaluation; see https://github.com/
ag-sc/QALD/blob/master/6/scripts/evaluation. rb. The metrics over all questions are
defined as the average of the metrics over the single questions. The corresponding benchmark component
is available at Github®3.

Note that this procedure can be generalised and applied to many sub-processes of a QA pipeline. For
example, one might establish a benchmark to recognise relations or classes, a benchmark to identify
the type of the SPARQL query required to implement a question (i.e., a SELECT or an ASK query),
a benchmark for identifying the answer type (i.e., list, single resource, ...) and so on. We used our
benchmarking resource described above to evaluate NED tools. We have identified different strategies to
annotate entities in questions. These include using the spotters Stanford NER, FOX, DBpedia Spotlight
Spotter, the NED tools AGDISTIS, and the DBpedia Spotlight disambiguator, as well as the monolithic
w.r.t. NER and NED tools Alchemy and Lucene Linker. Each of them is implemented as an independent
Qanary component. According to the Qanary methodology the computed knowledge about a given
question is represented in terms of the ga vocabulary and can be interpreted by the benchmark component.
For the benchmark all three NER components are combined with each of the two NED components. All
questions of QALD-6 are processed by each of the six resulting configurations, and by the two monolithic
tools. The benchmark was executed exclusively using the service interface of the Qanary Pipeline
and this process is automatic. Table 5.1 shows the benchmark results**. The “fully detected” column
indicates the number of questions ¢ where some resources were expected and the NED configuration
achieved Recall(g)=1. Column “Correctly Annotated” indicates for how many questions we obtained
Precision(g)=Recall(¢q)=1. Finally, the table shows for each configuration the precision and recall metrics
over all questions.

Discussion

Thanks to the ga vocabulary we can collect (from the SPARQL endpoint) the results produced by every
configuration. We analysed both this data and the results presented in Table 5.1 to draw some conclusions
on the performance of the used tools with respect to QALD.

For some QALD-6 questions none of the pipeline configurations is able to find the required resources:

* QI: “Give me all cosmonauts.” with the following resources requested in the SPARQL query:

Bhnttps://github.com/WDAqua/Qanary

24the benchmarking has been performed by co-author Dennis Diefenbach in our paper [94]. However author of the thesis
(Kuldeep Singh) contributed in integrated several of these components in Qanary Ecosystem and results of the benchmark have
been included in this chapter for completeness of Qanary Ecosystem.
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5.3 Summary

Pipeline Fully Correctly . .

configuration detected Annotated Precision  Recall - Ii-measure
StanfordNER +

AGDISTIS 200 195 0.76 0.59 0.59
StanfordNER +

Spotlight disamb. 209 189 0.77 0.62 0.61
FOX + AGDISTIS 189 186 0.83 0.56 0.56
FOX + Spotlight 199 192 086  0.59 0.58
disambiguator

Spotlight Spotter +

AGDISTIS 209 204 0.75 0.62 0.62
Spotlight spotter + ) 213 076 071 0.68
disambiguator

Lucene Linker 272 0 0.01 0.78 0.03
Alchemy 143 139 0.91 0.42 0.42

Table 5.1: Benchmarking of Entity Linking Components over QALD-6 data using the Qanary implementation.

dbr:Russia, dbr:Soviet_Union. For this question one should be able to understand that
cosmonauts are astronauts born either in Russia or in the Soviet Union. Detecting such resources
would require a deep understanding of the question. Q201 is similar: “Give me all taikonauts.”.

* QI3: “Are tree frogs a type of amphibian?”’; requested resources: dbr :Hylidae, dbr:Amphibian.
The problem here is that the scientific name of “tree frogs” is Hylidae and there is no such informa-
tion in the ontology except in the free text of the Wikipedia abstract.

* Q311: “Who killed John Lennon?”’; requested resource: dbr :Death_of_John_ Lennon.
The problem is that one would probably assume that the information is encoded in the ontology as
a triple like “John Lennon”, “killed by”, “Mark David Chapman” but this is not the case. Even
if in the question the actual NE is “John Lennon”, DBpedia happens to encode the requested
information in the resource “Death of John Lennon”. A similar case is Q316 (“Which types of

grapes grow in Oregon?”’), where the resource dbr : Oregon_wine is searched.

5.3 Summary

In this chapter, we present our contributions for building flexible framework for creating QA systems by
reusing existing QA components. Our first contribution of the chapter is a knowledge driven methodology
named Qanary, which takes into account the major problems while designing (complex) question
answering systems. Via alignments, the ga vocabulary (which is the foundation of Qanary) is extensible
with well-known vocabularies while preserving standard information. This enables best-of-breed QA
approaches where each component can be exchanged according to considerations about quality, domains
or fields of application. Hence, the approach presented in this chapter provides a clear advantage in
comparison to earlier closed monolithic approaches. However, our goal is not to establish an independent
solution. Instead, by using the methodology of annotations, Qanary is designed to enable the alignment
with existing/external vocabularies, and it provides provenance and confidence properties as well. On the
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PREFIX ga: <http://www.wdaqua.eu/ga#>

PREFIX oa: <http://www.w3.org/ns/openannotation/core/>

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchemat#>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX git: <https://github.com/dbpedia-spotlight/>

<annol> a ga:AnnotationOfInstance ;
oa:annotatedAt "2018-04-28T12:43.67+02:00"""xsd:dateTime ;
oa:hasTarget [

a oa:SpecificResource ;

oa:Selector [
a oa:TextPositionSelector ;
oa:end 10 ;

oa:start 22
1
oa:hasSource <URIQuestion>
1.
oa:hasBody dbr:Narendra_Modi ;
oa:annotatedBy git:dbpedia-spotlight

Figure 5.6: Example data of Question: “When was Narendra Modi Born?”

one hand, developers of the components for question answering (e.g., question analyses, query builder,
...) can now easily use our standard vocabulary and also have descriptive access to the knowledge
available for the question via SPARQL. Additionally, aligning the knowledge of such components with
our vocabulary and enabling them for broader usage within question answering systems is now possible.
Fulfilling the requirements (Req. 1-4 defined in Section 5.1) ultimately sets the foundation for rapidly
establishing new QA systems. A main advantage of our approach is the reusable ontology alignments,
increasing the efficiency and the exchangeability in an open QA system.

We presented the status of the Qanary ecosystem (c.f. Section 5.2), which includes a variety of
components and services that can be used by the research community. These include typical components
for sub-tasks of a QA pipeline as well as a number of related services. We have integrated several NER
and NED components using Qanary in Qanary ecosystem. This allows the first step towards creation of
comprehensive QA systems in a community effort. Driven by the demand for better QA technology, we
propose a general workflow to develop future QA systems. It mainly breaks down into two parts: (1.)
the identification and integration of existing state-of-the-art approaches to solve a particular sub-task
in the QA pipeline, and (2.) the derivation of a benchmark from benchmarks for QA such as QALD.
Additionally a new gold standard for the sub-task can be provided. In contrast to other approaches the
ga vocabulary allows to analyse a QA process. Hence, full traceability of the information used in the QA
process is ensured, enabling, for example, the optimisation of the assigned components. Additionally,
the Qanary methodology allows to create such processes in a flexible way. This allows researchers to
focus on particular tasks taking advantage of the results of the research community and contributing to it
directly in a reusable way.

We have demonstrated this workflow in the case of NER and NED task. This way we realised a set
of reusable components as well as the first benchmark for NED in the context of QA. All together we
have shown how Qanary ecosystem can be used to gain deep insights in QA processes. While having
such insights the engineering process can be steered efficiently towards the improvement of the QA
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5.3 Summary

components. Hence, the presented engineering approach is particularly well suited for experimental
and innovation-driven approaches (e.g., used by research communities). The Qanary ecosystem are
maintained and used as open source projects, where Qanary methodology is the reference architecture
for new components.
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CHAPTER O

Relation Linking using a Semantically
Indexed Bi-Partite Knowledge Base

In the last chapter, we have presented Qanary methodology, and Qanary Ecosystem. We have integrated
several independent tools for named entity recognition and disambiguation in Qanary Ecosystem. We
observe in Chapter 3 that many independent tools are available for NER and NED tasks, but for relation
linking, only four independent tools are there. In Section 5.1.2 we have (re)used PATTY [96] for relation
linking tool to be part of our exemplary question answering system described in Section 5.1.3. Research
shows that formal query formulation from natural language questions and, more specifically, linking
relations to Knowledge Graph (KG) properties, often require extra knowledge sources that contain
semantic descriptions or extensions of the underlying knowledge graphs. These knowledge bases (KBs)
capture knowledge from large corpora or taxonomies, e.g., Wordnet [57], PATTY [57, 66], or the BOA
pattern library [56], and allow for enhancing the accuracy of the process of mapping natural language
relations to concepts in a specific knowledge graph. Hence, extracting knowledge from such background
knowledge bases will also improve the effectiveness of the relation linking task and increase the overall
performance of QA systems.

The idea of providing semantically typed patterns against the properties in a knowledge graph is a
special feature. For example, PATTY [96] is a large knowledge base consisting of semantically typed
relational patterns with their associated properties in open domain knowledge graphs such as DBpedia.
Therefore, PATTY provides a rich source of relational patterns that can be used during relation linking.
Hoffner et al. [7] report that PATTY allows for flexible mapping of natural language relations to their
KG properties. However, this flexibility implies that one relation can be matched to several patterns. For
example, the natural language relational pattern been playing with, appears 12 times in PATTY and is
associated with 11 relations. Hence, efficient methods are needed both for capturing knowledge from a
large corpus like PATTY, and for exploiting their features in QA systems.

In this chapter, we devise an approach for capturing knowledge from collections of semantically typed
relational patterns like PATTY; further, we present a relation linking method able to exploit these features.
First, SIBKB, a semantic-index based representation of these knowledge bases is proposed; SIBKB
provides searching mechanisms for accurately linking relational patterns to semantic types. The benefits
of SIBKB have been empirically evaluated on existing QA benchmarks. Results suggest that SIBKB
enhances the performance of relation linking methods by up to three times. This chapter provides an
independent relation linking tool by capturing knowledge encoded in PATTY knowledge base. We further
integrate this component in Qanary Ecosystem as next step for full end to end QA pipeline to translate
natural language question to its formal representation (i.e. SPARQL). The remainder of the chapter is
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structured as follows. Section 6.1 motivates our work with an example. Section 6.2 elaborates on the
specific problem of capturing knowledge from semantically typed knowledge bases; this is followed by a
detailed illustration of the approach and the proposed solution. Section 6.3 presents the experiments to
evaluate our approach and then we summarise the chapter in 6.4. The content of this chapter is derived
from the article [102].

6.1 Reusability Issue of PATTY

We motivate the chapter by analysing the problem of extracting knowledge from a large knowledge
base corpus during the relation (predicate) linking task in QA systems. PATTY [96] is one such large
knowledge base of semantically-typed relational patterns; it contains 127,811 pairs of relational phrases
and DBpedia predicates, involving 225 DBpedia relations in total. Many QA systems, such as Xser [66]
and CASIA [57] use PATTY s relational phrases to match word patterns in an input question and find the
corresponding DBpedia relation, as part of understanding a natural language question.

Let us consider the following question: Where was Albert Einstein born? Part of understanding this
natural language question includes: (1) the extraction of the named entities and (2) the identification of
the predicate(s). The successful completion of these tasks will allow a QA system to construct a formal
query — e.g., a SPARQL query — in order to retrieve the answers from a knowledge graph like DBpedia.

For the first task of QA process, named entity recognition and disambiguation, tools such as DBpedia
Spotlight [17] or AGDISTIS [25] can be used to identify the ALBERT EINSTEIN entity and disambiguate
it to its DBpedia mention dbr:Albert_Einste in!. For the second task, the PATTY knowledge base
can be used to link phrase patterns in the question such as was born to its associated DBpedia predicates
(i.e., relations). In our exemplary question, the pattern was born can be mapped to six different DBpedia
predicates of the PATTY corpus, namely dbo: birthPlace?, dbo:deathPlace, dbo: spouse,
dbo:parent, dbo:relation, and dbo:predecessor. In fact, all of these relations are linked
to several textual patterns (e.g., dbo:birthPlace is related to more than 6,000 patterns of the PATTY
corpus), which are often shared among different relations, as illustrated in Figure 6.1.

For example, in the PATTY corpus, the pattern was born appears 876 times and corresponds to
six DBpedia relations like dbo:birthPlace (the correct answer in this case), dbo:religion,
dbo:parent, dbo:predecessor, dbo:spouse, and dbo:deathPlace. Hence, if simple
keyword based matching or generic similarity techniques are used to match phrase patterns of the
question, multiple DBpedia relations for a given pattern are retrieved from the knowledge base. For the
pattern was born, for instance, this will lead to six candidate DBpedia relations in PATTY knowledge
base, as depicted in Figure 6.2.

Hakimov et al. [103] and Dubey et al. [56] describe this problem of PATTY and report noisy behaviour
of PATTY patterns while building a QA system and relation linking tool. Many incomplete and ambiguous
patterns in PATTY such as s son [[adj]], It ref gt with also cause noisy behaviour of PATTY. However, for
our question, only dbo:birthPlace will provide the correct relation that will allow a QA developer
to construct a SPARQL query to retrieve the correct answers. In the case of identifying the predicates
dbo:deathPlace, dbo:spouse, and dbo:parent, a QA system which is utilising PATTY will
retrieve wrong answers, while matching to the predicates dbo: predecessor and dbo:relation
will lead to an empty answer set (see Figure 6.3). Therefore, relational pattern knowledge bases need to
be exploited in an efficient way, in order to increase precision and recall in QA systems.

'"http://DBpedia.org/resource/Albert_Einstein
2dbo is bound to http://DBpedia.org/ontology
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6.2 Bi-partite Graphs of Semantically-typed Relational Patterns

DBpe_dla PATTY Patterns
Relation
was born;
birthPlace ([adj]] hometown of; 6138
patterns
s homecountry of;
was born; 3707
deathPlace was born grew up; patterns
died in [[det]] town of;
was born;
spouse also married [[det]]; 3426
aged [[num]) married; __Patterns
was born;
parent s son [[adj]}; 1204
s daughter [[con]]; patterns
was born;
s son [[adj]); 1513
predecessor ; patterns
([con]] father of;
) was born; 846
relation was born after;
patterns

([det]] son [[pro]];

Figure 6.1: Excerpt of PATTY Knowledge Base; The natural language relational pattern "was born" is associated
with six DBpedia predicates.

6.2 Bi-partite Graphs of Semantically-typed Relational Patterns

In this section, we present the problem of capturing knowledge in semantically-typed relational patterns.
Further, we propose an index-based approach that allows for efficiently extracting the properties from a
knowledge base that solves the relation linking task in question answering pipelines.

A collection of semantically-typed relational patterns corresponds to a bi-partite graph of patterns and
properties in a knowledge base. A collection G of semantically-typed relational patterns is defined as a
triple G = (R, P, E), where:

* P and R are two disjoint sets representing semantic relational patterns and properties in a knowledge
base (e.g., RDF properties from DBpedia or Yago ), respectively.

» FEisaset of pairs (7, p) in R X P representing a semantic type r of a relational pattern p, i.e., ris a
property semantically related to p.

PATTY can be represented as a bi-partite graph G = (R, P, E) where relational patterns in P are mined
from large corpora, and properties in R correspond to the DBpedia predicates associated or semantically
related to these patterns. Figure 6.5 illustrates a portion of a bi-partite graph for PATTY.

Rels(pattern(Q), G) = {r | p € pattern(Q) and (p,r) € E} (6.1)
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Figure 6.3: Potential SPARQL queries to answer the input question.

Where was Albert Einstein born?

was born
matches with

Candidate
DBpedia Relations

birthPlace

deathPlace

spouse

parent

predecessor

relation

Figure 6.2: DBpedia predicates in PATTY associated with the pattern was born in the question.

wrong results

empty results

o

dbr:Kingdom_of_Wirttemberg |

dbr:UIm

SELECT ?x WHERE {

{dbr:Albert_Einstein dbo:

SELECT ?x WHERE {

x dbr:Albert_Einstein dbo:
}

SELECT ?x WHERE {

x dbr:Albert_Einstein dbo:

¥
SELECT ?x WHERE {

x dbr:Albert_Einstein dbo:
}

ELECT ?x WHERE {

dbr:Albert_Einstein dbo:

}
SELECT ?x WHERE {

dbr:Albert_Einstein dbo:

¥

dbo:birthPlace allows for collecting correct answers.
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6.2 Bi-partite Graphs of Semantically-typed Relational Patterns

Vector Representation of Indexed Patterns of Knowledge Graph

|

was born
<3.41...0.98>
birthPlace <-8.84....4.58> —
deathPlace <-1.45...3.69> —
<-2.54..6.21>

spouse

parent <-7.30....5.32>

been married to died at

<1.111...0.97> <6.10...5.40>
spouse <-2.54...6.21> restingPlace <-7.30....5.32>
parent <-7.30.....5.32> knownFor <-4.36....1.32>
successor <4.67....1.00> deathPlace  <-1.45...3.69>
child <9.98....-7.68> majorShrine  <-7.387....0.32>

R P’

<-3.41...4.098>
<1.111..0.97>

<6.10.....5.40>

<-8.21...-9.98>

Each pattern in PATTY

is playing i )
<ISB.’;:ZT99.!;;> acts as index for the

bucket

managerClub <-5.89....3..32>
Relations in

team <-0.30....3.33> a bucket for

| 140..532 a patternin

eague <-1.40..... 32> PATTY and

college <-330..2.11> | @ssociated
vectors

> Vector Representation of Knowledge Graph

_/

Figure 6.4: Example of SIBKB on PATTY. A portion of a Semantically Indexed Bi-partite Knowledge Base

(SIBKB) for PATTY.

dbo:birthPlace
dbo:deathPlace
dbo:spc

been married to

was born

died at

dbo:award

L is playing in

R

Figure 6.5: A portion of a Bi-partite Graph for PATTY

Question I Where was Albert Einstein born? ”Q

}pattern(Q)

Question| was born, was Albert, [Noun],
Patterns [Noun] born, was [Noun]
Relations dbo:birthPlace, dbo:deathPlace,

dbo:spouse, dbo:relation

}Rels(pattern(Q),G)

Figure 6.6: A question, its patterns, and corresponding relations (DBpedia properties) from PATTY

Figure 6.6 presents relational patterns of the question Where was Albert Einstein born?, as well
as their associated semantic types in DBpedia. Semantic types associated with a pattern are used in
question answering pipelines for building SPARQL queries whose evaluation will provide the answers of
a question Q. For example, Figure 6.7 shows three SPARQL queries that can be built from the DBpedia
predicates dbo:birthPlace, dbo:deathPlace, and dbo:relation.

Given a set Rel of semantic types or RDF properties in Rels(pattern(Q), G), f(Rel, D, Q, G) denotes a
set of SPARQL queries over the knowledge base D that use predicates in Rel and that provide the correct
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| dbr:Kingdom_of_Wirttemberg |

| dbr:German_Empire || dbr:Ulm |

SELECT ?x WHERE {
/dbr‘:Alber‘t_Einstein dbo:birthPlace ?x}

o8

S 3_J| SELECT ?x WHERE {

3 2] Xdbr:Albert_Einstein dbo:deathPlace ?x}
zL

2 3J| SELECT 2x WHERE {

o £ ¢ dbr:Albert_Einstein dbo:relation ?x}

Figure 6.7: Potential SPARQL queries from the selected DBpedia properties

Input Step performed Output Input Step performed Output

1. patternVectors P’

from SIBKB PotentialRels(pattern(Q’),G’)
N Apply
2. vectors for question . P {parent, spouse,
Sim(P",Q)>=

patterns {was born, Threshold (T1) deathPlace, predecessor,
was [[Noun]], birthPlace, relation}
([Noun]] born}

PotentialRels(pattern(Q’),G’)
{parent, spouse,
deathPlace, predecessor,
birthPlace, relation}

RankedRel’(pattern(Q’),G’)
{parent, spouse, birthPlace, deathPlace,
predecessor, relation}

Apply Penalty(W)>=
Threshold (T2)

S
List of potential relations is generated birthPlace changes its position in retrieved results
(a) Finding Potential Relevant Relations in a SIBKB (b) Ranking Potential Relevant Relations in a SIBKB
Input Step performed Output Input Step performed Output

1 Remove unnecessary 1.  extendedPredicate(pr’){born,

. _ words (eg.: was) extendedPredicate(pr){ birth, deliver, bear} from Step A‘pply ) Ra}nkedRelatlons(R )
Question Predicate 2 Apply Synonym born, birth, deliver. (c) Sim(extendedPredicate, | {birthPlace, parent, spouse,
(pr) (was born) 3' Crpr \)/ tors for b } ’ ! 2. RankedRel'(pattern(Q’),G') RankedRel) deathPlace, predecessor,

) Sy:i:ymesc orsto ear {parent, spouse, birthPlace, relation}

deathPlace, predecessor,
relation} from Step (b)

(c) Extending the Set of Relevant Natural Language

Relations for Input Question (d) Re-ranking the Relevant Relations

Figure 6.8: A SIBKB Relation Linking Pipeline. Four-step pipeline exploiting SIBKB indices and captured
knowledge.

answers for the question Q; f(Rel, D, Q, G) is defined as follows:

f(Rel,D,Q,G) ={Q(r) | r € Rel A
Rel C Rels(Pattern(Q), G) A (6.2)
Q(r) € IdealQueries(Q, D)}

* Q(r)is a SPARQL query composed of a triple pattern whose predicate is r;

* IdealQueries(Q, D) represents a set that only includes the SPARQL queries that need to be run
over D to produce the complete answer to the question Q.

In our running example, the resources dbr : German_Empire, dbr:Kingdom_of_Wirttemberg,
and dbr : Ulm correspond to the complete answers of Q in DBpedia; one SPARQL query produces all
these results, i.e., IdealQueries(Q, D) is only composed of this query. Thus, although f(Rel, D, Q,G) in
Figure 6.7 includes this query, the other two queries in this set produce either incorrect or empty results
for the input question.

Problem Statement Given a question Q and a collection G of semantically typed relational patterns,
the problem of linking relational patterns in Q to semantic types from a knowledge base D corresponds
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to selecting a subset Rel of Rels(pattern(Q), G) from which the maximal number of SPARQL queries
that produce the correct answers of Q can be generated. We define the problem of linking relational
patterns in a question as the following optimisation problem:

argmax f(Rel, D, Q. G) (6.3)

RelCRels(Pattern(0),G) Max(|Rell, |IdealQueries(Q, D)|)

Since the set IdealQueries(Q, D) only includes one query in our running example, the optimal solution
to this optimization problem corresponds to the set Rel that is only composed of the DBpedia property
dbo:birthPlace. This property is part of the only triple pattern of the SPARQL query that produces
the complete answer for the question Q.

Proposed Solution For matching the correct relations from a knowledge base for a given input
question Q, we follow a two-step process. In the first step, a semantically indexed bi-partite knowledge
graph (SIBKB) is built. In the second step, SIBKB is utilised in a pipeline for relation linking.

Semantically Indexed Bi-Partite Knowledge Base (SIBKB) : In the first step, we applied the GloVe [104]
model to PATTY and built a vector representation of its bi-partite graph G = (R, P, E), i.e., each node in
R and P is replaced by its vector representation. PATTY is converted into G’ = (R’, P’, E’) where R’, P’
are the vector representations of the semantically typed relational patterns and their associated DBpedia
relations, respectively. Furthermore, a dynamic hashing [105] on semantically typed relational patterns is
built; each entry in the hash table corresponds to a bucket composed of the predicates, e.g., in DBpedia,
associated with the pattern in the key of the bucket. Figure 6.4 illustrates a portion of the SIBKB built on
top of PATTY.

6.2.1 Pipeline for Relation Linking using a Semantically Indexed Bi-Partite
Knowledge Base (SIBKB)

For finding the associated relation set Rel which is part of the set Rels(pattern(Q), G) (see Section 6.2), a
four-step process is followed; Figure 6.8 illustrates the steps of this pipeline.

Finding potential relevant relations in SIBKB In this first step of the pipeline, we convert
pattern(Q) into its vector representation pattern(Q’). We then calculate the cosine similarity between
pattern(Q’) and the indexed semantically typed relational patterns P’ such that

Sim(pattern(Q"), P") > Threshold(T) (6.4)

where Threshold(T) is the minimum admissible limit of the cosine similarity value. This results into a
set of potential relevant relation vectors potentialRels’ (pattern(Q’), G') in SIBKB. In our example, the
input for this step is the vector of question patterns, e.g., where, where was, was born, was [Noun],
[Noun] born; the output is the list of vectors associated with potential relevant relations: dbo : parent,
dbo:spouse,dbo:relation,dbo:deathPlace, dbo:birthPlace, dbo:predecessor.

Ranking potential relevant relations in SIBKB The numbers of occurrence of a particular
pattern in PATTY is not uniform as illustrated in section 6.1. Therefore, it is likely that, while calculating
the cosine similarity, some relations are ranked higher than others due to a higher number of associated
matched patterns. To solve this issue, we applied a penalty function. For each relation R in PATTY, we
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first count the number of relational patterns associated with it; then this value is normalised by the total
number of patterns in PATTY. The penalty function W is defined as follows:

count(P,1)/count(P )
wW=1- e
count(P, )/ count(P,)

P.1, -+ P, are numbers of patterns for a relation, and P,y is the total number of relational pat-
terns in PATTY. This step changes the ranking of the retrieved relations in Step 6.2.1. Therefore,
potentialRels' (pattern(Q’), G’) is now turned into the ranked relations RankedRel (pattern(Q’),G’),
which is the output of this pipeline step. In our example, the ranked list of relevant relations is
updated from the list (dbo:parent, dbo:spouse, dbo:deathPlace, dbo:predecessor,
dbo:birthPlace,dbo:relation)to(dbo:parent, dbo:spouse,dbo:birthPlace,
dbo:deathPlace,dbo:predecessor,dbo:relation),i.e., the DBpediapredicate dbo:birth-
Place is ranked in a higher position.

Extending the set of relevant natural language relations for the input Question Many
times an irrelevant pattern appearing in a question, matches higher in number while calculating cosine
similarities in the previous step. For example, the word ‘where’ appears 1,498 times in PATTY; this
will negatively impact on the overall results. Therefore, to overcome this problem, we extract NL
relations from the input question. In DBpedia, it is very likely that the DBpedia predicate associated
has similar names with the NL predicate. For example, the NL relation ‘was born’ is associated with
dbo:birthPlace, the relation ‘president of” is associated with dbo : President, the relation ‘wife
of” is associated with dbo : spouse in the ranked list of DBpedia properties, and so on. Therefore,
we extract Predicate(Pr) from the question Q; furthermore, we expand this list with synonyms from
Wordnet. We then create vector representation of each of the relations in extendedPredicate(Pr’) using
the GloVe model. In our running example, the relation ‘was born’ is expanded to the list (born, birth,
bear, deliver); it is converted further into its vector representation.

Re-ranking the relevant relations In the last step of the pipeline, we take the outputs of the
second and third step, which correspond to the vector representation of ranked potential relations
(RankedRel’ (pattern(Q’), G)) and extended predicate patterns (extendedPredicate(Pr’)). We again calcu-
late cosine similarities between them to re-rank the list of obtained relations in RankedRel’ (pattern(Q’), G").
In our example, the extended question predicate list from the third step is (born, birth, bear, de-
liver) and the ranked list of potential relations from the second step of the pipeline is (dbo: parent,
dbo:spouse,dbo:birthPlace, dbo:predecessor,dbo:relation,dbo:deathPlace).
After this step, the relation dbo :birthPlace has the highest similarity with birth, changing its posi-
tion in the ranked list of relations. Therefore, our final re-ranked list of relations associated with the pattern
was born is the following: (dbo:birthPlace, dbo:parent, dbo:spouse, dbo:deathPlace,
dbo:predecessor, dbo:relation). The DBpedia predicate dbo:birthPlace is the top-1.

6.3 Experimental Study

We empirically study the efficiency and effectiveness of SIBKB for extracting properties from a know-
ledge base to solve the relation linking task. For this, we have integrated our tool in Qanary Ecosystem
described in Section 5.2. In the first experiment, we assess the precision, recall, and F-Score of our
approach using the QALD-7 benchmark. We address the following research questions: RQil) What is
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the impact of using an SIBKB on a relation linking task? RQi2) What is the impact of using an SIBKB
on the relation linking execution time? RQi3) What is the impact of an SIBKB on the size of a collection
of semantically-typed relational patterns?

The experimental configuration is as follows:

Relation Linking Benchmark In Section 5.2, we created a benchmark for entity linking task based on
the QALD (Question Answering over Linked Data) benchmark used for evaluating complete QA systems.
We devised a similar approach for the relation linking benchmark using the QALD-7 training set® that
contains 215 questions.

Metrics: i) Execution Time: Elapsed time between the submission of a question to an engine
and the delivery of the relevant DBpedia relations. Timeout is set to 300 seconds. ii) Inv.Time: It
is calculated as: 1- (average execution time for BaseLine/average execution time for SIBKB) iii) In
Memory Size: The Total size of the PATTY knowledge base and size of its corresponding SIBKB.
iv) Inv.Memory: Itis calculated as: 1- (Memory Size of PATTY/Memory Size of SIBKB) v) Global
Precision: The number of correct relations retrieved at first rank in the list of retrieved relations out of
the total number of questions. vi) Global Recall: The number of questions answered at any position
(in our case till the 5th position of occurrence of a relation in the retrieved list) out of the total number
of questions. vii) F-Score: Harmonic mean of global precision and global recall. viii) Precision
@ K: The cumulative precision at position K. ix) Recall @ K: The correct relations for questions
recommended in top K position out of total number of questions. x) F-~Score @ K: Harmonic mean of
precision and recall at position K.

Implementation: The pipeline for relation linking has been implemented in Python 2.7.12. Experiments
were executed on a laptop with a quad-core 1.50 GHz Intel i7-4550U processor and 8GB RAM, running
Fedora Linux 25. The word to vector conversion was done using GloVe [104]. Furthermore, for
extracting NL predicates from the input question in the third step of the pipeline in section 6.2.1, we
used the TextRazor API*. The source code and evaluation results can be downloaded from https :
//github.com/WDAqua/ReMatch for independent use.

Cumulative Frequency at Rank Positions Precision @k Recall @k | F-Score @k
Num Properties || Total | Rank#1 | Rank#2 | Rank#3 | Rank#4 | Rank#5 #1 #5 #5 #5

1 Property 116 55 71 78 84 87 474% | 57.6% 75.0% 63.2%
Properties 21 10 11 13 13 13 47.6% | 53.1% 61.9% 57.2%

5 10 14 14 15 23.80% | 44.9% 71.4% 52.6%

6 1 1 1 1 1 16.6% | 16.6% 16.6% 16.6%

Properties 1 1 2 4 4 16.6% | 30.5% 66.6% 41.8%

1 1 2 2 2 16.6% | 22.2% 33.3% 26.64%

Table 6.1: SIBKB Performance. Cumulative Frequency at Rank Positions 1 to 5; Precision, Recall, and F-Score
are also reported at Top-1 and Top-5. Accuracy of the SIBKB-based relation linking method is enhanced whenever
Top-5 results are considered.

3https://github.com/ag-sc/QALD/blob/master/7/data/gald-7-train-multilingual.json
‘https://www.textrazor.com/
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Global
Precision | Recall | F-Score
Baseline 17% 37% 23%
SIBKB 51% 73% 60%

Table 6.2: Comparison of SIBKB and Baseline. Top-1 predicates are considered; SIBKB enhances accuracy of
the proposed relation linking method.

6.3.1 Experiment 1: Performance Evaluation Using Relation Linking
Benchmark

Evaluation of Relation Linking Task Using SIBKB

To evaluate the impact of the SIBKB on the relation linking task, we first calculate the performance of
PATTY using a similarity measurement between question patterns and PATTY relational patterns using
cosine similarity [104]; we call it ‘BaseLine’ approach. In the BaseLine approach, PATTY is directly
used without indices. However, in our approach, we use SIBKB i.e., PATTY with indices along with
the pipeline described in Section 6.2.1. Out of 215 questions of QALD-7, using PATTY patterns, we
can answer 143 questions. The remaining 72 questions do not have any associated relational patterns for
QALD questions in PATTY, and are therefore out of the scope for evaluation. Table 6.2 illustrates the
results. Using our approach, the global precision increases from 17% to 51% compared to the BaseLine,
which means a significant improvement of nearly three folds. The same analysis can be also seen in
terms of the global recall and F-score.

We further observed the impact of our approach on capturing knowledge from the knowledge base by
calculating the precision and recall values till the first five occurrences in the obtained list of relations. We
divided questions with two or three properties into different groups as shown in Table 6.1. For example,
the question ‘“Which professional surfers were born in Australia?’, contains two DBpedia properties,
namely, dbo:occupation and dbo:birthPlace.

Table 6.1 has two or three rows depending on the number of relations in a question. Using our SIBKB
approach for relation linking, precision and recall at the first position are high enough to prove that our
implementation can be easily used as relation linking tool in modular question answering frameworks
such as OKBQA[13]; it will significantly improve the overall performance of QA systems in general. For
example, QA system CASIA, which uses PATTY, shows an average precision of 0.35 over QALD-3 [57].
If its relation linking tool is replaced by our approach, this will improve the overall performance of the
CASIA system. Furthermore, we have excluded a performance comparison with state-of-the-art relation
linking tool presented in [19] because this work does not use the background knowledge base PATTY; it
relies on modelling natural language relations with their underlying part of speech. The part of speech is
then enhanced with Wordnet and dependency parsing. In contrast, our approach focuses on enhancing
efficient knowledge capturing from knowledge bases for relation linking, which can further be extended
for other similar knowledge bases like PATTY. However, combining both approaches will result in better
performance of the relation linking task since relational patterns in PATTY are limited.

6.3.2 Experiment 2: Trade-offs between Different Metrics

We illustrate a trade-off between different dimensions of performance metrics for the SIBKB-based
approach compared to the baseline. We choose global precision, global recall, F-score, in-memory size,
and execution time as five different dimensions. The in-memory size of the PATTY knowledge base has
increased from 7.34 MB to 22.44 MB as we have converted PATTY (two column corpus of relational
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Global Precision

Global Recdll nv.Time

BaseLine

~ Our Approach
Using SIBKB

F-Score Inv.Memory

Figure 6.9: Performance of SIBKB. SIBKB and the Baseline are compared in terms of Global Precision, Global
Recall, Global F-Score, Inv.Time, Inv.Memory; higher values are better. SIBKB increases Precision, Recall, and
F-Score at the cost of evaluation time and memory consumption; Precision, Recall, and F-Score are improved by
up to three times.

pattern and associated DBpedia relations) into SIBKB (indexed bipartite knowledge base from PATTY)
using the GloVe model. Also, the average execution time per question is increased from 0.64 seconds to
5.96 seconds. A large portion of the total execution time of our implementation per question includes
calling the TextRazor API (nearly 20 percent) for extracting NL predicates from the question. Figure 6.9
illustrates the trade-offs between these five dimensions. Although the SIBKB-based approach is more
expensive by an order of magnitude in terms of memory consumption and execution time, it shows a
drastic improvement with regard to precision, recall, and F-Score.

6.4 Summary

In this chapter, we addressed the need of building new components for relation linking task by reusing
the knowledge encoded in PATTY knowledge base. Due to unavailability of independent components for
other tasks except NED and NED, it is challenging to populate the Qanary Ecosystem with working full
QA pipelines returning answer of the input questions. For this, we have presented the novel approach
SIBKB - a semantic-based index which is able to capture knowledge encoded in background knowledge
bases such as PATTY for the relation linking task. Many QA systems (e.g., [56] could not completely
rely on PATTY owing to inherent noise, poor baseline performance, and in memory overheads. SIBKB
is an approach that can be generalised for application on similar knowledge bases to alleviate these
limitations. SIBKB indices allow not only for speeding up the search but also for reducing irrelevant
relations appearing in the selection while efficiently and effectively matching natural language patterns
to semantic relational patterns of knowledge bases. We demonstrate a case where semantically typed
knowledge bases can now be fully utilised to a comparable degree to already successful graph types.
SIBKB can, therefore, be integrated with other successful techniques for semantic disambiguation such
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as Wordnet similarity measures besides the inclusion of synonyms to extend precision of relation linking
tools. We have integrated SIBKB component in Qanary ecosystem as a relation linking component.
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CHAPTER [

Semantic Composition of Question
Answering Pipelines

Previous chapters, i.e., Chapter 4 and Chapter 5, focused on building a modular question answering (QA)
framework for creating QA pipelines by reusing independent components. We introduced The Qanary
ecosystem (c.f. Section 5.2) that supports the reusability of such QA components. The Qanary Ecosystem
provides a framework for developing or even integrating QA systems but fails to systematically address
how to formally describe and automatically compose existing QA components. In chapter 4, we defined
QA components in form of Local As View (LAV) mappings of various components provide a systematic
and homogeneous way to represent QA components using QAV as controlled vocabulary. Frameworks
such as openQA [106], OKBQA [13], and QALL-ME [12] have attempted integration of QA components
in a single platform, but there is no way to automatically compose QA pipelines within these QA
frameworks. Similar problem continued in Qanary framework. QA system developer is expected to
select the components manually to include them in the pipeline. This chapter studies the problem of
effective composition of QA pipelines (Challenge 3 defined in Section 1.1). For this, we introduce
Qaestro, a framework to semantically describe QA components and QA developer requirements and
to produce QA component compositions based on these semantic descriptions. In particular, we utilise
the QAV controlled vocabulary to model QA tasks and exploit the LAV approach [107] to express QA
components. Furthermore, QA developer requests are represented as conjunctive queries involving
the concepts included in the vocabulary. The QA Component Composition problem can be afterwards
cast to the LAV Query Rewriting Problem (QRP) [30]. Then, state-of-the art SAT solvers [31] can
find the solution models in the combinatorial space of all solutions which eventually correspond to QA
component compositions. Using Qaestro, we formalised 51 QA components included in 20 distinct QA
systems. In an empirical study, we show that Qaestro effectively enumerates possible combinations of
QA components for different developer requirements to compose question answering pipelines. The
content and details present in this chapter is based on following published articles: [9, 108]. At a higher
level, the following research question is addressed in this chapter:

Research Question 3 (RQ3)

How can the process of composing QA pipelines be effectively automated ?

Towards addressing RQ3 the following contributions are made:
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* Qaestro - a framework for semantic-based composition of question answering pipelines;
* A controlled vocabulary to describe a QA system and developer requirements.

* An empirical evaluation of QAESTRO behaviour on QA developer requirements over the formalised
components which are part of a QA framework.

The structure of the chapter is as follows: we introduce the problem of QA Component Composition
in the context of a motivating example in 7.1. In Section 7.1.1 and 7.1.3, we introduce the QAESTRO
framework and present its details respectively. The results of our evaluation are reported in 7.2. We
provide a summary of the Chapter in Section 7.3.

7.1 Seamless Composition of Question Answering Pipelines

We motivate our work by discussing the problem of QA component composition in the context of the
Open Knowledge Base and Question Answering (OKBQA) framework!. OKBQA considers QA as a
predefined workflow consisting of four core modules providing Web service interfaces: (1) Template
Generation Module for analysing a question in natural language and producing SPARQL query skeletons,
(2) Disambiguation Module for mapping words or word sequences to Linked Data resources, (3) Query
Generation Module for producing SPARQL queries based on modules (1) and (2), and finally, (4)
Answer Generation Module for executing SPARQL queries to get the answers. Figure 7.1 illustrates an
instantiation of a QA pipeline with the components OKBQA TGM v.2, OKBQA AGDISTIS, Sparglator,
and OKBQA AGM 2016 which implement the aforementioned modules (1)-(4), respectively®. Although
OKBQA provides a public repository comprising several QA components that can be composed in
the OKBQA pipeline, still several issues remain open for the QA system developer. First of all, there
is no systematic way to identify other existing components — either standalone or parts of other QA
systems — that could be part of the OKBQA pipeline. Secondly, there is no way to exploit OKBQA
QA components in existing QA systems systematically. Thirdly, it is not clear whether and how other
QA-related tasks and/or subtasks can be integrated in the OKBQA framework. For instance, let us
consider the disambiguation task. Several components, such as Alchemy API®, and DBpedia NED [17]
may replace OKBQA AGDISTIS in the QA pipeline of Figure 7.1 since they perform conceptually the
same QA task. Similarly, OKBQA AGDISTIS could serve the purpose of disambiguation in other QA
systems as well. The same observation holds for other QA tasks that can participate in a QA pipeline.
Based on the motivating example in previous section we identify following problems in existing QA
frameworks:

* Due to missing semantic description of QA components within QA frameworks, it is challenging
to combine QA components

* With the growing number of QA components in a framework, identifying all viable combinations
of QA components that perform one or more tasks in combination requires a complex search in the
large combinatorial space of solutions, which until now has to be performed manually.

To address the identified problems, and for seamless composition of a QA pipeline, we introduce
Qaestro, which is a QA framework that allows for the composition of QA components into QA pipelines.

"http://www.okbga.org/
2All components can be found at http: //repository.okbga.org.
3http://alchemyapi.com
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QA Component
| Alternative QA Components [ AIDA ] [ Alchemy ] [ DBpedia NED ] ! L)
i Performing Disambiguation 5 [: QA Task
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Question 4[ OKBQA TGM v.2 H AGDISTIS H Sparglator H OKBQA AGM 2016 }— Answers
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Figure 7.1: OKBQA QA Pipeline and Pipeline Instance. OKBQA pipeline consists of four components that
implement four core modules: Template Generation Module, Disambiguation Module, Query Generation Module,
and Answer Generation Module. In this example, the disambiguation task can be performed by OKBQA AGDISTIS,
Alchemy, and DBpedia NED interchangeably.

Qaestro is based on QAYV vocabulary (c.f. Section 4.1) which encodes the properties of generic QA
tasks and is utilised to semantically describe QA components. Qaestro exploits semantic descriptions
of QA components, and enumerates the compositions of the QA components that implement a given
QA developer requirement. Thus, Qaestro provides a semantic framework for QA systems that not
only enables a precise description of the properties of generic QA tasks and QA components, but also
facilitates composition, integration, and reusability of semantically described QA components.

7.1.1 Qaestro Framework

Formally, Qaestro is defined as a triple (QAV, QAC, QACM), where: i) QAV is a domain vocabulary
composed of predicates describing QA tasks, e.g., disambiguation or entity recognition; if) QAC is a set
of existing QA components that implement QA tasks, e.g., AGDISTIS [25] or Stanford NER [72]; and
iii) QACM is a set of mappings that define the QA components in QAC in terms of the QA tasks that they
implement. Mappings in QACM correspond to conjunctive rules, where the head is a predicate in QAC
and the body is a conjunction of predicates in QAV. QA developer requirements are also represented as
conjunctive queries over the predicates in QAC. Moreover, the problem of QA component composition
corresponds to the enumeration of combinations of QA components that implement a QA developer
requirement. In the following sections, Qaestro and the problem of QA composition are described.

7.1.2 Question Answering Developer Requirements

A QA developer requirement expresses the QA tasks that are required to be implemented by compositions
of existing QA components. QA developer requirements are represented as conjunctive rules, where the
body of a rule is composed of a conjunction of QA tasks. Similarly as for LAV mapping rules, input
and output conditions can be represented; the symbol “$” denotes attributes assumed as input in the
QA developer requirement. For instance, consider a developer who is interested in determining those
compositions of QA components that, given a question g, perform entity recognition and disambiguation,
and produce as output an entity e; the question g will be given as input to the pipeline.

QADevReq($Sqg,e) —:recognition(g,e),disambig (e, q,de, t)

Now, suppose another developer requires also to know the compositions of QA components able to
perform the pipeline of entity recognition and disambiguation. However, given the question as input,
she requires to check all the intermediate results produced during the execution of the two tasks. In this
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case, the body of the rule remains the same, while the head of the rule (QADevReq) includes all variables
corresponding to the arguments of the disambiguation task.

QADevReq($qg,e,de,t) :—recognition(qg,e),disambig (e, q,de, t)

7.1.3 Composing QA Pipelines with Qaestro

In this section, we describe Qaestro as solution to the problem of QA component composition. We then
describe the Qaestro architecture, and the main features of the Qaestro components.

Qaestro uses the QAV vocabulary that formalises QA tasks, and allows for the definition of QA
components using LAV rules and QA developer requirements using conjunctive queries based on QAV.
In this subsection, we will show how Qaestro solves the problem of QA Component Composition, i.e.,
how different QA components are automatically composed for a given developer requirement based on
LAV mappings that semantically describe existing QA components. Consider the LAV mappings of few
QA components described below:

Agdistis ($x,Sy,z) :—disambig(x,y,z,t),entity(x),question(y),
disEntity (z)

StanfordNER ($y, x) :—recognition(y, x),question(y),entity (x)

DBpediaNER (Sy, x) : —recognition (y, x),question(y),entity (x)

Alchemy (Sy, z) : —disambig(x,vy, z,t),question(y),disEntity (z)

Qakisatype (Sy, a) :—answertype (y,a, o), question (y),atype(a)

Additionally, consider the following QA developer requirement for QA component compositions in a
pipeline of entity recognition, disambiguation, and answer type identification, which receives a question
g and outputs an entity e.

QADevReq($qg,e) :—recognition (g, e),disambig(e,q,de,t), answertype (g, a, o)

Qaestro generates two QA compositions as solutions to the problem of QA Component Composition.
These compositions correspond to the enumeration of those combinations of QA components that
implement the pipeline of the QA tasks of recognition, disambiguation, and answer type identification.
Further, each composition satisfies the input restrictions of each QA component.

QADevReq ($q,e) :—StanfordNER ($qg, e) ,Agdistis (Se, $q,de),

Qakisatype ($qg, a) (1)
QADevReq($Sqg, e) : -DBpediaNER (S$qg, e) ,Agdistis ($e, $g,de),
Qakisatype ($q, a) (2)

Composition (1) indicates that the combination of the QA components Stanford NER, AGDISTIS, and
Qakisatype implements the pipeline of recognition, disambiguation, and answer type identification. The
input restriction of StanfordNER($q, e) is satisfied by the question that is given as input in the pipeline.
The QA component Agdistis($e, $¢, de) is next in the composition; both the entity e produced by Stanford
NER and the question g given by input to the pipeline, satisfy the input restrictions of this QA component.
Similarly, input restriction of Qakisatype($q, a) is satisfied by the question ¢g. Additionally, Composition
(2) implements the pipeline, but the QA component DBpedia NER is utilised for the QA task of entity
recognition. The input restriction of DBpedia NER is also satisfied by the question received as input
of the concerned question answering pipeline. Consider the following compositions for the same QA
developer requirement:
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QADevReq ($qg, e) :—-StanfordNER ($qg, e) ,Alchemy ($qg, de),

Qakisatype ($q, a) (3)
QADevReq ($qg, e) : -DBpediaNER ($qg, e) ,Alchemy ($qg, de),
Qakisatype ($qg, a) (4)

Both compositions implement the pipeline of recognition, disambiguation, and answer type identifica-
tion; also the input restrictions of the QA components are satisfied. However, these compositions are
not valid because the argument e that represents an entity is not generated by Alchemy. This argument
is required to be joined with the entity produced by the QA component that implements the entity
recognition task and to be output by the compositions.

Formally, the problem of QA Component Composition is cast to the problem of Query Rewriting
using LAV views [109]. An instance of QRP receives a set of LAV rules on a set P of predicates that
define sources in V, and a conjunctive query Q over predicates in P. The output of Q is the set of
valid rewritings of Q on V. Valid rewritings QR of Q on V are composed of sources in V that meet the
following conditions:

* Every source in QR implements at least one subgoal of Q.

* If § is a source in QR and implements the set of subgoals S G of Q, then
— The variables in both the head Q and S G are also in the head of S.

— The head of the LAV rule where S is defined, includes the variables in S G that are in other
subgoals of Q.

Note that the QA component Alchemy(q, de) violates these conditions in Composition (3) and (4), i.e.,
Alchemy(q, de) does not produce an entity e for a question g. Thus, compositions that implement the QA
task of disambiguation with Alchemy(q, de) are not valid solutions for this QA developer requirement.

Qaestro casts the problem of QA Component Composition into the Query Rewriting Problem (QRP).
Deciding if a query rewriting is a solution of QRP is NP-complete in the worst case [88]. However,
given the importance of QRP in data integration systems and query optimisation, QRP has received a
lot of attention in the Database area, and several approaches are able to provide effective and efficient
solutions to the problem, e.g., MCDSAT [109, 110] or GQR [111]. Thus, building on existing solutions
for QRP, we devise a solution to the problem of QA Component Composition that is able to efficiently
and effectively enumerate valid compositions of a QA developer requirement. Qaestro implements a
two-fold approach, where first, solutions to the cast instance of QRP are enumerated. Then, input and
output restrictions of QA components are validated. Valid compositions of QA components that both
implement a QA developer requirement and respect the input and output restrictions, are produced as
solutions of an instance of the problem of QA Component Composition.

7.1.4 The Qaestro Architecture

Qaestro relies on MCDSAT, a state-of-the-art solver of QRP to efficiently enumerate the compositions
of QA components that correspond to implementations of a QA developer requirement. Figure 8.4
depicts the Qaestro architecture. Qaestro receives as input a QA developer requirement QADR expressed
as a conjunctive query over QA tasks in a vocabulary QAV. Furthermore, a set QACM of LAV rules
describing QA components in terms of QAV is given as input to Qaestro. QACM and QADR correspond
to an instance of the QA Component Composition which is cast into an instance of QRP and passed to
MCDSAT, a solver of QRP. MCDSAT encodes the instance of QRP into a CNF theory in a way that
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Figure 7.2: Qaestro Architecture. Qaestro receives as input a QA developer requirement QADR and a set QACM
of LAV rules describing QA components, and produces all the valid compositions that implement QADR.

models of this theory correspond to solutions of QRP. MCDSAT utilises an off-the-shelf SAT solver to
enumerate all valid query rewritings that correspond to models of the CNF theory. The output of the
SAT solver is decoded, and input and output restrictions are validated in each query rewriting. Finally,
Qaestro decodes valid query rewritings where input and output restrictions are satisfied, and generates
the compositions of QA components that implement the pipeline of QA tasks represented by QADR.

7.2 Empirical Study

We empirically study the behavior of Qaestro in generating possible QA component compositions given
QA developer requirements. We assess the following research questions: 1. RQj1: Given the formal
descriptions of QA components using QAV and QA developer requirements are we able to produce sound
and correct compositions? 2. RQj2: Are we able to produce efficiently solutions to the problem of QA
Component Composition? The experimental configuration is as follows:

QA Components and developer requirements To evaluate Qaestro empirically, we have se-
mantically described 51 QA components implemented by 20 QA systems which have participated in
the first five editions of the QA over Linked Data Challenge (QALD1-5)*. Additionally, we studied
well-known QA systems such as AskNow [56], TBSL [8], and OKBQA to semantically describe their
components. After closely examining more than 50 components of these QA systems, we broadly
categorised the components based on the QA tasks they perform, as defined in Section 2.3. For defining
the LAV mappings, we selected only those QA components, for which there is a clear statement about
input, output, and the QA tasks they perform in a publication (i.e., scientific paper, white paper, or source
repository) about the respective QA system. Furthermore, we constructed manually 30 QA developer
requirements for standalone QA tasks and QA pipelines integrating various numbers of tasks.

Metrics i) Number of QA component compositions: Number of QA component compositions given
the semantic descriptions of QA components in QACM and a QA developer requirement; ii) Processing
Time: Elapsed time between the submission of a QA developer requirement and the arrival of all the QA
component compositions produced by Qaestro.

“http://gald.sebastianwalter.org/
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Figure 7.3: QA Systems, Components, and Tasks 51 QA components from 20 QA systems over DBpedia,
implementing 11 distinct QA tasks are depicted as a directed graph.

Implementation Qaestro is implemented in Python 2.7 on top of MCDSAT [109], which solves QRP
with the use of the off-the-shelf model compilation and enumeration tool c2d’. Qaestro source code can
be downloaded from https://github.com/WDAqua/Qaestro and the evaluation results can
be viewed at https://wdaqua.github.io/Qaestro/. Experiments were executed on a laptop
with Intel 17-4550U, 4x1.50GHz and 8GB RAM, running Fedora Linux 25.

7.2.1 Evaluation Results

Analysis of QA Components In Figure 7.3, we illustrate all QA components that have been
formalised using Qaestro along with their connections to the QA tasks they implement and the QA
systems they belong to as an undirected graph®. In total, the resulting graph consists of 82 nodes and 102
edges. From the 82 nodes, 20 correspond to QA systems, 11 represent QA tasks, and 51 refer to concrete
QA components — 43 are part of the QA systems while 8 are provided also as standalone components
(e.g., AGDISTIS, DBpedia NER, etc.). It can be observed in Figure 7.4 that the majority of the analyzed
QA components implement the Disambiguation task (10 in total) followed by the Query Generation
(8), Tokenisation (8), and POS Tagging (7) tasks. Many of these components are reused among the
different QA systems. In addition, Figure 7.5 shows that in almost half of the QA systems, components
that implement Tokenisation and Query Generation are included, while some less popular QA tasks like
Answer Type Identification and Syntactic Parser are part of only two QA systems.

Shttp://reasoning.cs.ucla.edu/c2d/
The graph visualisation was generated with cytoscape - http://www.cytoscape.org.
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Figure 7.4: QA Components per QA Task
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Figure 7.5: QA Systems per QA Task

7.2.2 Discussion

QA Component Compositions In order to evaluate the efficiency of Qaestro, we edited 30 QA
developer requirements with different number of QA tasks to be included in the QA pipeline and
different expected inputs and outputs. Given these requirements and the semantic descriptions of QA
components Qaestro produced possible QA component compositions. Figure 7.6 reports on the number
of different compositions for all 30 requirements grouped according to the number of QA tasks they
include. Figure 7.7 demonstrates the time needed by Qaestro to process each of the requirements and
generate QA component compositions. We performed the measurements 10 times and calculated the
mean values.

While for standalone QA components or components that perform two tasks the solution space is
relatively limited — from one to 30 combinations — for QA developer requirements that include three
or more QA tasks the number of QA compositions may increase significantly. For instance, we notice
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Figure 7.7: Execution Time for Generating QA Component Compositions

that for a few requirements with three and four QA tasks the possible compositions are more than 100.
In these cases, the requirements do not foresee input or output dependencies between QA components,
hence, the number of possible combinations increases significantly. All solutions produced by Qaestro
are sound and complete, since MCDSAT is able to produce every valid solution and all solutions that it
provides are valid [109]. Furthermore, the processing time is for all requirements less than half a second
and relates linearly to the number of QA tasks, since MCDSAT can perform model enumeration in linear
time. Consequently, the experimental results allow us to positively answer RQj1 and RQj2 described in
this section.
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QAestro

Below you will find information about the different components that can be used to build a pipeline. How many tasks would you like to have?

® One © Two @ Three @ Four @ Five

Recognition, Disambiguation
Datamapper, Answergen Your I'ESUItS:
Dependencyparser, Triplegen
Triplegen, Datamapper
Tokenization, Postagging
Querygen, Answergen

Querygen, Answertypeid :- StanfordNER. DBpediaspotlightNED

m :- StanfordNER, Agdistis

:- DBpediaNER. DBpediaspotlightNED

:- DBpediaNER, Agdistis

Chosen component(s):

Recogrlition Disambiguation :- casiaNER. DBpediaspotlightNED

:- casiaNER, Agdistis

'With Constraints  Without Constraints

Figure 7.8: Qaestro UI: Qaestro is integrated with Qanary and the developer can compose and run QA pipelines
using a user interface.

7.3 Summary

In this chapter, we have tackled the problem of QA Component Composition by casting it to the Query
Rewriting Problem. We introduced QAESTRO, a framework that enables QA developers to semantically
describe QA components and developer requirements by exploiting the LAV approach. Moreover,
QAESTRO computes compositions of QA components for a given QA developer requirement by taking
advantage of SAT solvers. In an empirical evaluation, we tested QAESTRO with various QA developer
requirements for QA pipelines of varying complexity, containing from two to five tasks. We observed that
QAESTRO can not only produce sound and valid compositions of QA components, but also demonstrates
efficient processing times. QAESTRO can successfully deal with the growing number of QA systems and
standalone QA components, that is, the appearance of a new QA component only causes the addition of a
new mapping describing the QA component in terms of the concepts in the QA vocabulary. Automated
composition of QA components will enable subsequent research towards determining and executing
best-performing QA pipelines that achieve better performance in terms of accuracy (precision, recall) and
execution time. Currently, QAESTRO is not capable of implementing the QA pipeline in an automated way
to answer an input question, however,we have integrated QAESTRO in Qanary Ecosystem to automatically
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Functionality Qaestro Qanary Ecosystem
Resolves interoperability at implementation level | — v

Resolves interoperability at logical level v -

Vocabulary used QAV vocabulary | ga vocabulary
Promotes reusability v v

Allows benchmarking of components - v

Automatic composition of QA pipelines v -

Table 7.1: Comparison of Qaestro and Qanary Ecosystem

retrieve all feasible combinations of available QA components and to realise the best-performing QA
pipeline in concrete use cases. Using a user interface as illustrated in Figure 7.8, user can choose the
components, and compose and execute the QA pipelines.

It is important to note that Qaestro framework and Qanary solve two different dimensions of the
overall identified problem in this thesis. Firstly, Qanary methodology and Ecosystem are concerned with
resolving interoperability issues at the implementation level, and aim towards bringing heterogeneous
QA components under a single umbrella to connect them physically. However, aim here is not to allow a
QA developer to assist in QA pipeline composition. Once QA components are integrated in the Qanary
Ecosystem using Qanary methodology, QA developer (or user) needs to run the pipelines by selecting
the components manually. There is no semantic description of the components that allows QA developer
to understand the functionalities of integrated component, and exhibit easy exchange of the components
performing the similar tasks. Qaestro addresses this problem and assist QA developer to compose the
pipelines automatically. In other words, just by specifying QA developer requirements as semantic
mappings and using QAV vocabulary, Qaestro compose pipelines of integrated components within a
framework ( Qanary Ecosystem or OKBQA). Also, Qaestro is independent of QA framework. It can be
easily reused with any of the available QA framework ( OKBQA, openQA etc.) on top of it using an in
built User Interface. Therefore, Qaestro framework is the solution to resolve interoperability at logical
level when components are integrated in a single platform. We summarise differences/functionalities of
Qaestro and Qanary in the Table 7.1.
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CHAPTER 8

Dynamic Composition of Question Answering
Pipelines

Modern QA systems need to flexibly integrate a number of components specialised to fulfil specific
tasks in a QA pipeline. These systems typically include components building on Artificial Intelligence,
Natural Language Processing, and Semantic Technology; they implement common tasks such as Named
Entity Recognition and Disambiguation, Relation Extraction, and Query Building. In Chapter 4 we
present a generalised ontology (i.e. ga vocabulary) which covers the need for interoperability of QA
systems on a conceptual level. Using the ga vocabulary as foundation, we devise Qanary methodology
for integrating heterogeneous QA components in a single platform. Qanary led to the development of
Qanary Ecosystem, which is a framework for integrating QA components. On top of Qanary Ecosystem,
we integrated QAestro framework which we have described in Chapter 7 for automatic composition of
QA pipelines. Evaluation studies have shown that there is no best performing QA system for all types of
Natural Language (NL) questions; instead, there is evidence that certain systems, implementing different
strategies, are more suitable for certain types of questions [14]. Hence, modern QA systems need to
flexibly integrate a number of components specialised to fulfil specific tasks in a QA pipeline. This is
also necessary to tackle scalability of components i.e. in case when large number of QA components are
available for same task. Therefore, we address following research question in this chapter:

Research Question 4 (RQ4)

How can effective dynamic QA pipelines be composed by reusing components?

To address this question, we devise FRANKENSTEIN, a framework able to dynamically select QA
components in order to exploit the properties of the components to optimise the F-Score. We consider the
scalability of QA components in the framework and FRANKENSTEIN implements a classification based
learning model, which estimates the performance of QA components for a given question, based on its
features. Given a question, the FRANKENSTEIN framework implements a greedy algorithm to generate
a QA pipeline consisting of the best performing components for the particular question from the user.
We empirically evaluate the performance of FRANKENSTEIN using two renowned benchmarks from
the Question Answering over Linked Data Challenge1 (QALD) and the Large-Scale Complex Question

'https://gald.sebastianwalter.org/index.php?x=home&g=>5
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Answering Dataset” (LC-QuAD). We observe that FRANKENSTEIN is able to combine QA components
to produce optimised QA pipelines outperforming the static Baseline pipeline.
Towards addressing RQ4 the following contributions are made:

* FRANKENSTEIN framework relying on machine learning techniques for dynamically selecting
suitable QA components and composing QA pipelines based on the input question, thus optimising
the overall F-Score.

* A collection of 29 reusable QA components that can be combined to generate 360 distinct QA
pipelines, integrated in the FRANKENSTEIN framework.

* An in-depth analysis of advantages and disadvantages of QA components in QA pipelines after a
thorough benchmarking of the performance of the FRANKENSTEIN pipeline generator using over
3,000 questions from the QALD and LC-QuAD QA benchmarks.

8.1 Predicting Best Performing Components

A full QA pipeline is composed of all the necessary tasks to transform a user-supplied Natural Language
(NL) question into a query in a formal language (e.g., SPARQL), whose evaluation retrieves the desired
answer(s) from an underlying knowledge graph. Correctly answering a given input question g requires
a QA pipeline that, ideally, uses those QA components that deliver the best precision and recall for
answering ¢. Identifying the best performing QA pipeline for a given question g requires: (i) a prediction
mechanism to predict the performance of a component given a question ¢, a required task, and a
knowledge graph A; (ii) an approach for composing an optimised pipeline by integrating the most
accurate components in the pipeline.

In this context, we formally define a set of necessary QA tasks as 7 = {t1,12,...,,} such as NED,
RL, and QB. Each task (¢; : ¢* — ¢*) transforms a given representation ¢* of a question ¢ into another
representation g*. For example, NED and RL tasks transform the input representation “What is the
capital of Canada?” into the representation “What is the dbo:capital of dbr:Canada?”. The
entire set of QA components is denoted by C = {Cy,C,...,C,}. Each component C; solves one
single QA task; 6(C;) corresponds to the QA task #; in 7" implemented by C;. For example, ReMatch
implements the relation linking QA task, i.e., 8(ReMatch) = RL. Let p(C;) denote the performance of a
QA component, then our first objective is to predict the likelihood of p(C)) for a given representation g*
of g, a task t;, and an underlying knowledge graph A. This is denoted as Pr(p(C))lq", t;, A). In this work,
we assume a single knowledge graph (i.e., DBpedia); thus, A is considered a constant parameter that does
not impact the likelihood leading to:

Pr(p(Clq", 1:) = Pr(p(Clq", ti, A) (8.1

Moreover, for each individual task #; and question representation ¢*, we predict the performance of all
pertaining components. In other words, for a given task ¢;, the set of components that can accomplish #; is
C'" ={Cj,...,Ct}. Thus, we factorise #; as follows:

YC; e C", [Pr(p(C)lq") = Pr(p(C)lq", ;)] (8.2)

Further, we assume that the given representation ¢* is equal to the initial input representation ¢ for all
the QA components, i.e., ¢* = ¢. Finally, the problem of finding the best performing component for

’nttp://lc-quad.sda.tech/
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accomplishing the task #; for an input question g, denoted as y;", is formulated as follows:

y;" = arg énfé{Pr(p(Cj)|Q)} (8.3)

Solution Suppose we are given a set of NL questions @ with the detailed results of performance for
each component per task. We can then model the prediction goal Pr(p(C))|q, t;) as a supervised learning
problem on a training set, i.e., a set of questions Q and a set of labels £ representing the performance
of C; for a question g and a task #;. In other words, for each individual task #; and component C}, the
purpose is to train a supervised model that predicts the performance of the given component C; for a
given question ¢ and task #; leveraging the training set. If |[77| = n and each task is performed by m
components, then n X m individual learning models have to be built up. Furthermore, since the input
questions ¢ € Q have a textual representation, it is necessary to automatically extract suitable features,
ie., ¥(q) = (fi,.-., fr). The details of the feature extraction process are presented in Subsection 8.4.2.

8.1.1 Identifying Optimal QA Pipelines

The second problem deals with finding a best performing pipeline of QA components lﬁg()al, for a question
q and a set of QA tasks called goal. Formally, we define this optimisation problem as follows:

oal
- Q. 8.4
Y5 = arg nerggid){ 1, 9)} (8.4)

where E(goal) represents the set of pipelines of QA components that implement goal and Q(7, q)
corresponds to the estimated performance of the pipeline n7 on the question g.

Solution We propose a greedy algorithm that relies on the optimisation principle that states that
an optimal pipeline for a goal and a question ¢ is composed of the best performing components that
implement the tasks of the goal for g. Suppose that @ denotes the composition of QA components, then
an optimal pipeline wzoal is defined as follows:
1/ .
v = regoalVy) (8.5)

The proposed greedy algorithm works in two steps: QA Component Selection and QA Pipeline
Generation. During the first step of the algorithm, each task #; in goal is considered in isolation to
determine the best performing QA components that implement ¢; for ¢, i.e., yZ. For each ¢; an ordered
set of QA components is created based on the performance predicted by the supervised models that
learned to solve the problem described in Equation 8.3. Figure 8.1 illustrates the QA component selection
steps for the question g=“What is the capital of Canada?” and goal = {NED, RL, OB}. The algorithm
creates an ordered set OS;, of QA components for each task # in goal. Components are ordered in
each OS;, according to the values of the performance function p(.) predicted by the supervised method
trained for questions with the features ¥ (¢) and task #;; in our example, ¥ (¢)={(QuestionType: What),
(AnswerType:String), (#words:6), #DT:1), (#IN:1), #WP:1), #VBZ:1), #NNP:1), (#NN:1)} indicates
that g is a WHAT question whose answer is a String; further, g has six words and POS tags such as
determiner, noun etc. Based on this information, the algorithm creates three ordered sets: OSygp, OSgr,
and OSpp. The order in OSygp indicates that Dandelion®, Tag Me, and DBpedia Spotlight are the top 3

3https://dandelion.eu/docs/api/datatxt/nex/getting-started/
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Question .
Question: What is the Features | QuestionType: What
capital of Canada? —— AnswerType: String
#words: 6
Goal: {NED, RL, QB} #NN: 1, ..

Step I: QA Component Selection

1. Dandelion 1. Spot Property 1. SINA
2. Tag Me 2. ReMatch 2. NLIWOD QB

3. DBpedia Spotlight 3. RNLIWOD

OScp 0s

RL

Step II: QA Pipeline Generation

1. Dandelion ¢ — = 1.SINA ¢/
‘ 2. ReMatch ¢/ 2. NLIWOD QB

3. DBpedia Spotlight 3. RNLIWOD

oS (O}

RL

Figure 8.1: QA Optimisation Pipeline Algorithm. The algorithm performs two steps: First, QA components are
considered in isolation; supervised methods are used to predict the top & best performing QA components per task
and question features. Second, the QA Pipelines are generated from the best performing QA component of the
tasks NED and QB, and the top 3 QA components of RL. The QA pipeline formed of Dandelion, ReMatch, and
SINA successfully answers q.

best performing QA components for queries with the features 7 (¢) in the QA task NED; similarly, for
OS g1 and OS gp sets.

In the second step, the algorithm follows the optimisation principle in Equation 8.5 and combines the
top k; best performing QA components of each ordered set. Values of k; can be configured; however, we
have empirically observed that for all studied types of questions and tasks, only the relation linking (RL)
task requires considering the top 3 best performing QA components; for the rest of the tasks, the top 1
best performing QA component is sufficient to identify a best performing pipeline. Once the top k; QA
components have been selected for each ordered set, the algorithm constructs a QA pipeline and checks if
the generated pipeline is able to produce a non-empty answer. If so, the generated QA pipeline is added to
the algorithm output. In Equation 8.5, the algorithm finds that only the QA pipeline Dandelion, ReMatch,
and SINA produces results; the other two pipelines fail because the QA components RNLIWOD* and
Spot Property® are not able to perform the relation linking task of the question g=“What is the capital of
Canada?”. The algorithm ends when the top k; QA components have been combined and checked; the
output is the union of the best performing QA pipelines that produce a non-empty answer.

*Component based on https://github.com/dice-group/NLIWOD.
5This component is the combination of the NLIWOD and RL components of [13].
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Figure 8.2: FRANKENSTEIN architecture comprising separate modules for question feature extraction, pipeline
generation and optimisation, as well as pipeline execution.

8.2 Scalability of QA Components

In the previous chapter, we have presented Qanary methodology and Qanary framework. To address the
fourth research question, we integrate 29 QA components using Qanary methodology implementing five
QA tasks, namely Named Entity Recognition (NER), Named Entity Disambiguation (NED), Relation
Linking (RL), Class Linking (CL), and Query Building (QB) in Qanary ecosystem. To the best of our
knowledge, only two reusable CL and QB components, and five reusable RL. components are available,
therefore the component distribution among tasks is uneven. In most of the cases NED, RL and QB
components are necessary to generate the SPARQL query for a NL question. However, to correctly
generate a SPARQL query for certain NL questions, it is sometimes necessary to also disambiguate
classes against the ontology. For example, in the question “Which comic characters are painted by Bill
Finger”, “comic characters” needs to be mapped to dbo : ComicsCharacter®. Table 8.1 provides a
list of QA components integrated in proposed FRANKENSTEIN. FRANKENSTEIN framework is build on
top of Qanary framework. The 11 NER components are used with AGDISTIS to disambiguate entities as
AGDISTIS requires the question and spotted position of entities as input [25]. Henceforth, any reference
to NER tool, will refer to its combination with AGDISTIS, and we have excluded individual performance
analysis of NER components. However, other 7 NED components recognise and disambiguate the entities
directly from the input question.

8.3 FRANKENSTEIN Framework

FRANKENSTEIN is a framework that implements the QA optimisation pipeline algorithm and generates
the best performing QA pipelines based on the input question features and QA goal.

Shttp://dbpedia.org/ontology/ComicsCharacter
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8.3.1 FRANKENSTEIN Architecture

Figure 8.2 depicts the FRANKENSTEIN architecture. FRANKENSTEIN receives, as input, a natural
language question as well as a goal consisting of the QA tasks to be executed in the QA pipeline. The
features of an input question are extracted by the Feature Extractor; afterwards the QA Component
Classifiers predict best performing components per task for the given question; these components are
passed to the Pipeline Generator, which generates best performing pipelines to be executed, eventually,
by the Pipeline Executor. The FRANKENSTEIN architecture comprises the following modules:

Feature Extractor. This module extracts a set of features from a question. Features include question
length, question and answer types, and POS tags. Features are discussed in Section 8.4.2.

QA Components. FRANKENSTEIN currently integrates 29 QA components implementing five QA tasks
(NED, NER, RL, CL, and QB). Qanary ecosystems is now integrated into FRANKENSTEIN framework to
provide a single framework to solve our research problem. Hence, ga vocabulary, Qanary methodology,
and Qanary framework serve as the foundations for FRANKENSTEIN framework.

QA Component Classifiers. For each QA component, a separate Classifier is trained; it learns from a
set of features of a question and predicts the performance of all pertaining components.

QA Pipeline Optimiser. Pipeline optimisation is performed by two modules. The Component Selector
selects the best performing components for accomplishing a given task based on the input features and
the results of the QA Component Classifiers; the selected QA components are afterwards forwarded to
the Pipeline Generator to dynamically generate the corresponding QA pipelines.

Pipeline Executor. This module executes the generated pipelines for an input question in order to extract
answers from the knowledge base (i.e., DBpedia in our case).

8.3.2 Implementation Details

The code for FRANKENSTEIN including all 29 integrated components and empirical study results can be
found in our open source GitHub repository’. The integration of the 29 new components with the Qanary
methodology in FRANKENSTEIN is implemented in Java 8. Remaining FRANKENSTEIN modules are
implemented in Python 3.4 which include learning module, feature extraction module, pipeline generator,
and component selector module.

8.4 Corpus Creation

In this section, we describe the datasets used in our study and how we prepare the training dataset for
our classification experiments. All experiments were executed on 10 virtual servers, each with 8 cores,
32 GB RAM and the Ubuntu 16.04.3 operating system. It took us 22 days to generate training data by
executing questions of considered datasets for all 28 components, as some tools such as ReMatch[19] and
RelationMatcher [102] took approximately 120 and 30 seconds, respectively, to process each question in
these components.

8.4.1 Description of Datasets

Throughout our experiment, we employed the Large-Scale Complex Question Answering Dataset® (LC-
QuAD) [83] as well as the 5™ edition of Question Answering over Linked Data Challenge9 (QALD-5)

"https://github.com/WDAqua/Frankenstein
8http://lc-quad.sda.tech/
https://qald.sebastianwalter.org/index.php?x=home&g=>5
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8.4 Corpus Creation

Component/ QA Task Year Open RESTful Publi-
Tool Source Service cation
Entity Classifier [71] NER 2013 X v/ v
Stanford NLP [72] NER 2005 v v
Ambiverse [112] NER/NED 2014 X v v
Babelfy [73] NER/NED 2014 X v v
AGDISTIS [25] NED 2014 v v
MeaningCloud" NER/NED 2016 X v X
DBpedia Spotlight [17]  NER/NED 2011 v v v
Tag Me API [18] NER/NED 2012 v v v
Aylien API'Y NER/NED - X v X
TextRazor¥ NER - X v X
OntoText [75]" NER/NED - X v v
Dandelion"ii NER/NED - X v X
RelationMatcher ([102] RL 2017 v v e
ReMatch [19] RL 2017 v v
RelMatch [13] RL 2017 v v
RNLIWOD' RL 2016 v X X
Spot Property [13]X RL 2017 v v v
OKBQA DM CLS™ CL 2017 v/ v v
NLIWOD CLS"ii CL 2016 X X
SINA [20] QB 2013 X v
NLIWOD QB"'ii QB 2016 v X X

ihttps://developer.ambiverse.com/
iinttps://www.meaningcloud.com/developer
¥http://docs.aylien.com/docs/introduction
Vhttps://www.textrazor.com/docs/rest
Vinttps://www.ontotext.com/

Vil https://dandelion.eu/

vill gimilar to https://github.com/dice-group/NLIWOD.

X gimilar to http://repository.okbga.org/components/7.

Table 8.1: 29 QA components integrated in FRANKENSTEIN using Qanary methodology: 8 QA components
are not available as open source software, 25 provide a RESTful service API and 19 are accompanied by peer-
reviewed publications.

dataset [70].

LC-QuAD has 5,000 questions expressed in natural language along with their formal representation
(i.e., SPARQL query), which is executable on DBpedia. W.r.t. the state of the art, this is the largest
available benchmark for the QA community over Linked Data. We ran the entire set of SPARQL queries
(on 2017-10-02) over the DBpedia endpoint!?, and found that only 3,252 of them returned an answer.
Therefore, we rely on these 3,252 questions throughout our experiment.

QALD-5. Out of the QALD challenge series, we chose the 5th version (QALD-5) because it provides
the largest number of questions (350 questions). However, during the experimental phase the remote Web
service of the ReMatch component went down and we were only able to obtain proper results for 204 of
the 350 questions. Therefore, we took these 204 questions into account to provide a fair and comparable
setting (although, we obtained the results for all 350 questions for all other components).

Ohttps://dbpedia.org/sparqgl
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8.4.2 Preparing Training Datasets

Since we have to build an individual classifier for each component in order to predict the performance of
that component, it is required to prepare a single training dataset per component. The whole sample set
within the training dataset was formed by using the NL questions included from the datasets described
previously (from both QALD and LC-QuAD). In order to obtain an abstract and concrete representation
of NL questions, we extracted major features enumerated below.

1. Question Length: The length of a question w.r.t. the number of words has been introduced as a
lexical feature by Blunsom et al. [113] in 2006. In our running example “What is the capital of
Canada?”, this feature has the numeric value 6.

2. Question Word: Huang et al. [114, 115] considered the question word (“wh-head word”) as a
separate lexical feature for question classification. If a specific question word is present in the
question, we assign the value 1, and O to the rest of the question words. We adapted 7 Wh-

words: “what”, “which”, “when”, “where”, “who”, “how” and, “why”. In “What is the capital of
Canada?”, “What” is assigned the value 1, and all the other words are assigned O.

3. Answer Type: This feature set has three dimensions, namely “Boolean”, “List/Resource”, and
“Number”. These dimensions determine the category of the expected answer [14]. In our running
example, we assign “List/Resource” for this dimension because the expected answer is the resource
dbr:Ottawa (i.e correct answer of input question).

4. POS Tags: Part of Speech (POS) tags are considered an independent syntactical question feature
that can affect the overall performance of a QA system [113]. We used the Stanford Parser!! to
identify the POS tags, where the number of occurrences is considered as a separate dimension in
the question feature extraction.

We prepared two separate datasets from LC-QuAD and QALD. We adopted the methodology presented
in Section 5.2.3 for the benchmark creation of the subsequent steps of the QA pipelines. Furthermore,
the accuracy metrics are micro F-Score (F-Score) as a harmonic mean of micro precision and micro
recall. Thus, the label set of the training datasets for a given component was set up by measuring the
micro F-Score (F-Score) of every given question.

8.5 Evaluating Component Performance

The aim of this experiment is to evaluate the performance of components on the micro and macro levels
and then train a classifier to accurately predict the performance of each component.

Metrics i) Answered Questions: The number of questions for which the QA pipeline returns
an answer. ii) Micro Precision (MP): The ratio of correct answers vs. total number of answers
retrieved by a component for a particular question. iii) Precision (P): For a given component,
the average of the Micro Precision over all questions. iv) Micro Recall (MR): For each question,
the number of correct answers retrieved by a component vs. gold standard answers for the given
question. v) Recall (R): For a given component, the average of Micro Recall over all questions.
vi)Micro F-Score (F-Score): Foreach question, the harmonic mean of MP and MR. vii) Macro
F-Score (F): For each component, harmonic mean of P and R.

Uhttp://nlp.stanford.edu:8080/parser/
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8.5 Evaluating Component Performance

8.5.1 Macro-level Performance of Components

In this experiment, we measured the performance of the reusable components from the QA community
that are part of FRANKENSTEIN. We executed each component for each individual query from both LC-
QuAD and QALD datasets. Then, for each dataset we calculated the macro accuracy per component and
selected those representing highest macro performance. The performance results of the best components
are shown in Table 8.2. For brevity, detailed results for each component are placed in our GitHub
repository 2.

QA Task Dataset Best Component P R F

OB LC-QuAD NLIWOD QB 048 0.49 048
QALD-5 NLIWOD QB 049 0.50 0.49
CL LC-QuAD OKBQADMCLS 047 059 0.52
QALD-5 OKBQADMCLS 0.58 0.64 0.61
NED LC-QuAD Tag Me 0.69 0.66 0.67
QALD-5 DBpedia Spotlight 0.67 0.75 0.71
RL LC-QuAD RNLIWOD 025 0.22 0.23
QALD-5  ReMatch 0.54 0.74 0.62

Table 8.2: The macro accuracy of the best components for each task on the QALD and LC-QuAD corpora.

Key Observation: Dependency on Quality of Input Question. From Table 8.2, it is clear that the
performance considerably varies per dataset. This is because the quality of questions differs across
datasets. Quality has various dimensions, such as complexity or expressiveness. For example, only 728
(22 %) questions of LC-QuAD are simple (i.e., with single relation, single entity), compared to 108
questions (53 %) of QALD. The average length of a question in LC-QuAD is 10.63, compared to 7.41
in QALD. Therefore, components that perform well for identifying an entity in a simple question may
not perform equally well on LC-QuAD, which is also evident from Table 8.2 considering the NED task.
The same holds for RL components. ReMatch, which is the clear winner on QALD, is outperformed by
RNLIWOD on LC-QuAD. Hence, there is no overall best performing QA component for these two tasks,
and the definition of the best performing QA component differs across datasets. However, this does hold
true neither for CL components nor for QB components (note, these two tasks only have two components
each), even though the Macro F-Score values on both datasets have significant differences.

8.5.2 Training the Classifiers

The aim of this part is to build up classifiers which efficiently predict the performance of a given
component for a given question w.r.t. a particular task. As observed in the micro F-Score values of the
components, these values are not continuous but usually discrete, e.g., 0.0, 0.33, 0.5, 0.66 or 1. Hence,
we adopted five classification algorithms (treating it as a classification problem) namely 1) Support
Vector Machines (SVM), 2) Gaussian Naive Bayes, 3) Decision Tree, 4) Random Forest, and 5) Logistic
Regression. During the training phase, each classifier was tuned with a range of regularisation parameters
to optimise the performance of the classifier on the available datasets. We used the cross-validation
approach with 10 folds on the LC-QuAD dataset. Figure 8.3 illustrates the details of our experiment for

Phttps://github.com/WDAqua/Frankenstein
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Figure 8.3: Comparison of Classifiers for all QA Components. Five Classifiers, namely Logistic Regression,
Support Vector Machines, Decision Tree, Gaussian Naive Bayes, and Random Forest are compared wrt accuracy.

training classifiers. Predominantly, Logistic Regression and Support Vector Machines expose higher
accuracy as illustrated in Figure 8.3.

8.6 Evaluating Pipeline Performance

In this experiment, we pursue the evaluation question “Can an approach that dynamically combines
different QA components taking the question type into account (such as FRANKENSTEIN) take advantage
of the multitude of components available for specific tasks?” To answer this question, we measure the

FRANKENSTEIN performance on the (i) task level and (ii) pipeline level. Throughout our experiment, we
adopt a component selector strategy as follows:

1. Baseline-LC-QuAD: The best component for each task in terms of Macro F-Score on the LC-QuAD
dataset ( 8.5.1).

2. Baseline-QALD: The best component for each task in terms of Macro F-Score on the QALD
dataset ( 8.5.1).

3. FRANKENSTEIN-Static: The QA pipeline consisting of the best performing components for each
task on the QALD dataset (8.5.1).

. FRANKENSTEIN-Dynamic: The QA pipeline consisting of the top performing components from
the learning approach.

. FRANKENSTEIN-Improved: Similar to the dynamic FRANKENSTEIN pipeline with a different
setting (top 3 pipelines).

8.6.1 Task-level Experiment

Our major goal is to examine whether or not we can identify the N-best components for each QA task.
Accordingly, we utilised the following metrics for evaluation i) Total Questions: the average number of
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QA  Total Answer- FRANKENSTEIN Baseline
Task Questions able Topl Top2 Top3

QB 324.3 175.4 162.7 1754 - 159.6
CL 324.3 76 68.1 76 - 68.2
NED 324.3 2942 2452 2709 2843 236.3
RL 324.3 153.1 90.3 1189 1344 84.2

Table 8.3: 10-fold Validation on LC-QuAD

QA  Answer- FRANKENSTEIN Baseline Baseline

Task able Topl Top2 Top3 QALD LC-QuAD
QB 119 91 119 - 102 102
CL 55 52 55 - 52 52
NED 168 132 153 163 144 109
RL 138 83 107 121 105 46

Table 8.4: Performance comparison on task level using LC-QuAD as training and QALD as test dataset.

questions in the underlying test dataset. ii) Answerable: the average number of questions for which at
least one of the components has an F-Score greater than 0.5. iii) Top N: the average number of questions
for which at least one of the Top N components selected by the Classifier has an F-Score greater than
0.5. Furthermore, we rely on a top-N approach for choosing the best performing component during our
judgement for each QA task.

Experiments on LC-QuAD. This experiment was run on the questions from the LC-QuAD dataset by
applying a cross-validation approach. We compare the component selector approach in (i) learning-based
manner — called FRANKENSTEIN, and (ii) Baseline-LC-QuAD manner — called Baseline. Table 8.3 shows
the results of our experiment. FRANKENSTEIN’s learning-based approach selects the top-N components
with the highest predicted performance values for a given input question. Obviously, this approach
outperforms the Baseline approach for the NED, RL, and QB tasks and equals the Baseline for CL
task. When we select the top-2 or top-3 best performing components, FRANKENSTEIN’s performance
improves further.

Cross Training Experiment. The purpose of this experiment is similar to the previous experiment but
in order to verify the credibility of our approach, we extended our dataset by including questions from
QALD. In fact, questions from QALD are utilised as the test dataset. The results of this experiment are
shown in Table 8.4. We observe that FRANKENSTEIN significantly outperforms the LC-QuAD Baseline
components for the NED (i.e., Tag Me) and RL (i.e., RNLIWOD) tasks while it achieves comparable
results for the CL task.

8.6.2 Pipeline-level Experiment

In this experiment, we greedily arranged a pipeline by choosing the best performing components per task
from three strategies. We use the same settings as cross training experiments by utilising QALD questions
as test dataset. The first one is the FRANKENSTEIN-Static pipeline composed of Baseline components
driven by QALD (i.e., DBpedia Spotlight for NED, ReMatch for RL, OKBQA DM for CL, and NLIWOD
QB for QB). The other two strategies are the FRANKENSTEIN-Dynamic and FRANKENSTEIN-Improved
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FRANKENSTEIN- Answered P R Macro F-
Pipeline Questions Score
Static 37 0.17 0.19 0.18
Dynamic 29 0.14 0.14 0.14
Improved 41 0.20 0.21 0.20

Table 8.5: Comparison with the Baseline Pipeline

pipelines composed by the learning-based component selector with top-1 setting (top-3 for RL of the
improved strategy). The results of the comparison are demonstrated in Table 8.5. We conclude that the
accuracy metrics for the dynamic pipeline are lower than for the static pipeline. (Note: As performance
metrics for state-of-the-art QA systems on the same set of questions in QALD were not available, we
excluded this comparison in the table.)

We noticed that the failure of the RL component significantly affects the total performance of both
static or dynamic pipelines. Thus, we selected the top-3 components for the RL task to compensate
for this deficiency. This setting yields the FRANKENSTEIN-Improved pipeline, where we ran three
dynamically composed pipelines out of the 360 possible ones per question. Although this strategy is
expected to affect the total accuracy negatively, this did not happen in practice; we even observed an
increase in the overall precision, recall, and F-Score. Typically, the available RL and QB components
have a full accomplishment or full failure for the input question. For example, considering the question
“What is the capital of Canada?”, two of the top-3 selected RL. components do not process the question.
Hence, eventually, only one of the three pipelines returns a final answer. Thus, this simple modification
in the setting significantly improves overall pipeline performance and the number of answered questions.
With the static pipeline, the number of answered questions is fixed, however, with dynamic pipelines, the
number of answered questions can be increased.

8.7 Insights on Evaluation Results

Despite the significant overall performance achieved by FRANKENSTEIN, we investigated erroneous
cases in performance specifically w.r.t. classifiers. For instance, in our exemplary question “What is
the capital of Canada?”, the top-1 component predicted by the Classifier for the RL task fails to map
“capital of ” to dbo : capital. Similarly, for the question (“Who is the mayor of Berlin?”), the predicted
Dandelion NED component can not recognise and disambiguate “Berlin”. One of the reasons is related
to the primary features extracted from questions. We plan to extend the feature set especially using
the recent embedding models and also using different features per task as we have currently used the
same features for all tasks. This can be done by associating features with component performance
and calculating Cramér’s V-coefficient for each feature and a component’s ability to answer the given
question [15]. One more extension is about switching to more sophisticated learning approaches like
HMM, or deep learning approaches which require significantly larger datasets. Another observation is
that the existing RL and QB components generally result in poor performance. The QB components
need improvement in cases where previous tasks yield a low F-Score for a given question (i.e. returning
more than one DBpedia URL as an answer). Hence, QB components should intuitively learn based on
available URLs of entities and relations, and then form the right query. The current QB components fail
to do so, which severely affected the overall performance of the complete QA pipelines (cf. Table 8.5).
Further, RL and QB components need significant improvements in runtime efficiency and performance
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on complex questions. Thus, the QA community has to pay more attention to improve the components
accomplishing these two tasks. To the best of our knowledge, currently very few independent components
are available for these tasks (also for Class Linking) and the QA community can contribute building more
independent components for these tasks. The FRANKENSTEIN architecture is not rigid and not restricted
to the tasks considered in this paper. With the availability of more components performing new QA tasks
(e.g., answer type prediction, syntactic parsing, query re-ranking, etc.), just by extending concepts of
the gavocabulary, new components can be added to the platform. Furthermore, in real world settings, a
greedy approach may negatively affect the runtime of the pipeline. Hence, to provide a more efficient
framework for creating QA pipelines, we plan to replace the greedy approach with concepts similar
to web service composition [116], where we assign cost metrics (e.g., precision, runtime, or memory
consumption) to select components using a pipeline optimiser in an automatic way.

8.8 FRANKENSTEIN as Resource Platform

In the last section, we describe FRANKENSTEIN, which is concerned with (1) a prediction mechanism
to predict the performance of a component given a question and a required task; (2) an approach for
composing performance-optimised pipelines'® by integrating the most accurate components for the
current QA tasks (i.e., the user’s question). FRANKENSTEIN uses Qanary methodology to integrate
state-of-the-art QA components within its architecture. However, we disregarded implementation details,
reusability, configuration details, integration advantages of FRANKENSTEIN in the previous Section,
while this Section introduces FRANKENSTEIN as an application/platform addressing a) how to build a
new QA pipeline using 29 integrated components b) how each component can be reused independently
¢) how to evaluate the questions/texts. Hence, we disassemble the FRANKENSTEIN implementation
to present a large set of reusable components from the QA community which can be run, evaluated
and compared using the additional tools FRANKENSTEINis offering. In other words, by decoupling
Frankenstein architecture, the overall architecture becomes collection of 29 components as reusable
resources, which can be either used to build QA pipeline or text analysis. We introduce major modules
of FRANKENSTEINwhich not only enable detecting optimum pipelines but also enable us to easily run,
evaluate and compare any configured QA system. FRANKENSTEINintegrates 29 QA components by
developing an individual wrapper for each component. Thus, end-user does not need to get involved
in configuration and implementation details of components. In fact, these components can be directly
reused to build QA systems. Consequently, just by using the QA components described in this paper 380
reasonable QA pipelines can be created with little effort. Hence, many new insights w.r.t. the performance
of QA might be derived using these components and pipelines which also providing support for analytics
as well as adopting additional components.

The contribution of this section is to release the FRANKENSTEIN modules containing two kinds of
open-source resources namely (i) reusable components as well as (ii) component-wise runners and
evaluators. These resources are briefly described in the following:

Reusable QA Components: We collected 29 QA components accomplishing various QA tasks,
i.e., named entity identification/recognition (NER), Named Entity Disambiguation (NED), Relation
Linking (RL), Class Linking (CL), and Query Builder (QB). Then, we implemented a wrapper
for every included component which enables these popular tools to be easily integrated and
reused in the FRANKENSTEINframework. Therefore, these components can be used for building

13Please be noted that a full QA pipeline is composed of all the necessary tasks to transform a user-supplied textual question
into a formal query.
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modular question answering systems which might analyse text, provide knowledge extraction
etc. Furthermore, the wrapper annotates the output of the components using the gavocabulary to
provide machine readability and homogeneity among outputs of all components.

Evaluators for components and benchmarks: We have automatised the process of running and
evaluating any component integrated within FRANKENSTEIN. Thus, it enables evaluating and
comparing QA components for individual stages of QA pipeline. Consequently, it is possible to
analyse the performance of each QA component as well as of the whole QA systems which lead
to completely new insights on the performance of particular QA tasks. Hence, researchers are
enabled to easily uncover quality flaws and improve the performance while aiming at existing or
novel fields of applicability. The evaluator components are independent of the input benchmark,
and it is configurable in easy steps based on the requirement of the user.

This work is substantially impactful for QA and NLP communities because (1) it facilitates comparison
of NED, NER, CL, and QB components w.r.t. any given gold standard; (2) it can easily integrate new
and upcoming components at any stage of QA pipeline to ensure scalability. Thus, by this platform, the
research community is empowered to an automatic approach which easily reuses the core components
and facilitates running and comparing the performance of components over any given benchmarks.

8.8.1 Broader Impact

Impact on QA Community. Recently, QA community was supported by the modular approaches
such as openQA [11], OKBQA [13], QALL-ME [12], aiming at integrating and reusing the existing
QA core components. FRANKENSTEINis a smart solution on top of Qanary to the limitations observed
in the prior approaches. For example, openQA expects Java implementation of the components which
is not possible in most of the cases. Also, openQA and QALL-ME have configuration difficulties
and its components are not directly reusable in other approaches. More importantly these frameworks
do not support a dynamic pipeline methodology. Moreover, the distinguished features united within
FRANKENSTEINmakes it scalable, user-friendly and fully automatic which are rare in the prior approaches.
Apart from these general characteristics, FRANKENSTEINresources make the researchers needless of
developing a QA full pipeline. In fact, researchers can focus on improving individual stages of QA
pipelines while reusing for other QA tasks to complete their pipeline.

For example, recent work on query builder component [117] has reused results of components for
building and evaluating QA pipeline for its empirical study. In this way, QA researchers can focus
on independent stages to make it more accurate and intelligent. Furthermore, using the automated
process of evaluation (i.e., [R2]) within FRANKENSTEINassists researchers to easily integrate their newly
developed component and evaluate its performance against the-state-of-the-art components over any
given benchmark.

Impact beyond QA Community. Although the primary contribution of our work targets the QA
community, other disciplines — particularly information extraction (IE) and Natural language processing
(NLP) communities — are beneficial of FRANKENSTEINbecause of the common tasks such as NED,
RL, and CL. For example, 11 of NER components and 9 of NER components are integrated into
FRANKENSTEINand coupled with tools (i.e., and [R2]). These components are also utilised in
information retrieval and social media analytics for entity recognition and disambiguation on large
textual corpora or a tweet corpus. Any given benchmark can be uploaded to therefore possibly, a
domain-specific evaluation of performance is published. Enabling these communities to reuse the existing
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Figure 8.4: Modules of Frankenstein (i) Reusable QA Component Wrappers and (ii) Evaluators.

components opens new perspectives for the future steps. For example, there is no meticulous study about
the performance details as for where each component is well-performed or what is its pitfalls.

8.8.2 Approach for Building Reusable QA Components within FRANKENSTEIN

Figure 8.4 represents the resource-wise (module-wise) architecture of FRANKENSTEIN. It is decoupled
into two independent categories, (i) which provides an individual wrapper for each component,
and (ii) which provides an individual runner & evaluator for every integrated component. In the
following, these two sets of resources are described in more details.

Integration Approach and its Challenges

Here, we present the integration approach and its associated challenges for integrating components accom-
plishing tasks of NER, NED, RL, CL, and QB using Qanary methodology applied in FRANKENSTEIN
framework.

Employing Qanary methodology and ga Vocabulary. Qanary follows a micro service-based
architecture where all components are accessible as RESTful services to be possibly integrated into a
Qanary QA process. A QA process within Qanary is a knowledge-driven process where input/output
about question, answer, annotations generated in different steps of QA pipeline is conceptualised
and annotated by the gavocabulary. Each component integrated into a QA pipeline populates a local
knowledge graph (typically its output is annotated by ga vocabulary) shared with other components
within Qanary.

In order to be able to annotate outputs generated by all the QA tasks, we had to extend the original
version of ga vocabulary by adding new concepts for RL, CL, and QB tasks, and reuse annotations of
NER and NED s from Section 5.2.3. E.g., to describe relations appeared in the natural language question,
we introduce the annotation:
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PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

ga:AnnotationOfRelation rdf:type owl:Class ;
rdfs:subClassOf ga:AnnotationOfQuestion

For instance, for the given question Who is the mayor of Berlin?, the annotated output of
RNLIWOD component for RL task is shown below'#. There, the output i.e., ht tp: //dbpedia.org/
ontology/leaderName is annotated by the ga vocabulary. However w.r.t. gaextension, we also in-
troduce further annotations ga : AnnotationOfClass and ga:AnnotationOfAnswerSPARQL
for CL and QB tasks. We reused ga : AnnotationOfSpotInstance for NER task and the annota-
tion ga: AnnotationOfInstance for NED tasks from Section 5.2.3.

<tag:stardog:api:0.9278702836234858>
a <http://www.wdaqua.eu/ga#AnnotationOfRelation> ;
oa:core/hasTarget :bnode_5daal0259 ;
oa:hasBody <http://dbpedia.org/ontology/leaderName>;
oa:annotatedBy <http://RNLIWOD.com>;
oa:AnnotatedAt "2017-10-02T13:04:21.27"""xsd:dateTime

Alignment of QA Component Annotations. To ensure interoperability of a new component
with existing ones, component has to express the semantics of its generated information using the ga
vocabulary. We call this the alignment of the component to ga. There are at least three ways to align
the knowledge of a component about the given question. (1) SPARQL queries: A component can
execute SPARQL INSERTSs in the knowledge base to generate new annotations expressed using the ga
vocabulary, (2) OWL axioms: When a component already generates information in a specific vocabulary
like the NIF vocabulary used by DBpedia Spotlight OWL axioms might express the semantic relation to
the specific vocabulary to the ga vocabulary (e.g., by defining owl : sameAs rules) [17], (3) Distributed
Ontology Language (DOL): It enables heterogeneous combinations of ontologies written in different
languages and logics [98]. We presented alignments of some existing components using the Qanary
approach in Section 5.1 and reused similar alignments.

Wrapping Components and Challenges. During the development of Qanary wrappers in FRANKEN-
STEINfor different components, we encountered several challenges. The first challenge was to deal with
interoperability issues among the components. For instance, a number of components were available as
RESTful service, while a few ones [19] had the open source code. Thus, we implemented a RESTful
service on top of their source codes to make them easily reusable. The second challenge was associated
with the heterogeneous output formats of the components. While some just provide output in JSON
(e.g., [73, 74]), some provide output in their own specific vocabulary (e.g., OntoText [75]). A more
challenging case was decoupling SINA from its monolithic implementation required to change the
complete package structure, dependencies, input format etc. of the original code to make it reusable.

Integrating Evaluation Module

Another set of valuable resources in FRANKENSTEINIs its evaluation modules. These modules have three
configurations 1) benchmark creation, 2) pipeline configuration, and 3) evaluators. The configurations

4Where oa is identified as http: //www.w3.0rg/ns/openannotation/core/
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are briefly described below:

Creating Benchmarks for QA Tasks

We follow the methodology provided in Section 5.2.3 to create benchmarks for each individual stage
of QA pipeline. For our running example Who is the mayor of Berlin? the corresponding
SPARQL query in QALD-5" is:

PREFIX dbo: <htp:/dbpedia.org/ontology/>
PREFIX res: <htp:/dbpedia.org/resource/>
SELECT DISTINCT ?2uri

WHERE { res:Berlin

dbo:leader ?uri

}

For NED and RL tasks, our modules compare the detected named entities and relations by the compon-
ents with the entities or relations mentioned in the corresponding SPARQL query (e.g., res:Berlin
for NED and dbo: 1eader for RL). For class linking (CL) components, a similar approach is applied
when questions contain class references. To assess the performance of QB components, we run the
generated SPARQL query and the benchmark SPARQL query, then we compare the return answers. For
evaluating the complete pipeline, answers of the pipeline can be compared with the gold standard answers.
In future, we plan to provide a simple configuration that directs the SPARQL results to GERBIL [3]
which is an evaluation platform for complete QA processes.

Pipeline Configuration and Runner

To ease the process of composing pipelines, we have automatised the whole process of configuring and
running them using Bash scripts. Based on the required task, the users can choose the components,
update the script and automatically run the pipeline in three different modes- 1) Frankenstein static, 2)
Frankenstein dynamic, and 3) Frankenstein improved. Below a sample Bash command is represented:

../serverUpdateAndRun.sh stanfordNER (a)
. ./serverUpdateAndRun.sh Babefly AGDISTIS (b)

The first command i.e., (a), runs a single component i.e., stanfordNER and the second command
simultaneously run the two components Babef1y and AGDISTIS. These scripts are very useful when
the user want to evaluate 1000s of questions at bulk. However, FRANKENSTEINis provided with an
in-built UI from Qanary for executing pipeline with a single input question.

Pipeline Execution.

We implemented an independent module called LC-Evaluator within FRANKENSTEINfor executing
pipelines. This module is customised in an automatic way for evaluating every individual component
of the pipeline. This module obtains questions from a text file (supports csv and txt formats). A user
can run a single component or a pipeline containing multiple components. However, the pipeline
executor automatically passes the questions sequentially to the associated components. Relying on
Qanary methodology, the outputs of components (annotations) are stored in a knowledge graph (i.e.,
Stardog v4.1.3'6). Then, the pipeline executor reads the annotations of a particular question from the

Bhttps://gald.sebastianwalter.org/index.php?x=home&qg=5
Yhttps://www.stardog.com/
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triplestore and creates an independent file using the turtle format (TTL) for the given input question with
the label “questionID_component.tt]”. This process is efficient in case of a large number of questions or
text. The user can upload the text file containing annotations of a question, then execute the LC-Evaluator
component, and all the output is automatically generated in form of . tt1 extension for each question.

Pipeline Evaluator.

We developed individual benchmarks for each step of QA pipeline used in evaluation module. Currently,
since LC-QuAD [83] and QALD-5 [70] are the most popular and largest state-of-the-art gold standards,
thus we developed individual benchmarks out of them for each separate QA task. In the future, we plan
to provide additional benchmark files (e.g., for other QALD series). For NED task and for full pipeline
evaluation, we plan to integrate pipeline evaluator to GERBIL platform [87]. Using these benchmarks,
users are enabled to evaluate the performance of their components for any step of QA pipeline w.r.t. other
QA components in FRANKENSTEIN.

8.9 Summary

Functionality Frankenstein QALL-ME openQA OKBQA
Promotes Reusability v’ v’ v’ v’
Programming Language Independent ~ - - v’
Input/Output Format Independent v’ - - -
Number of Reusable Components 29 7 2 24
Automatic QA pipeline Composition v - - -
Microservice Based Architecture v’ v’ - v’

Use of Linked Data Technologies v’ v’ v’ v’

Table 8.6: Comparison of Various QA Frameworks

FRANKENSTEIN is the first framework of its kind for integrating all state-of-the-art QA components to
build more powerful QA systems with collaborative efforts. The comparison of various functionalities
of FRANKENSTEIN with other QA frameworks is given in the Table 8.6. It simplifies the integration of
emerging components and is sensitive to the input question. The rationale was not to build a QA system
from scratch but instead to reuse the currently existing 29 major components being available today to the
QA community. Furthermore, our effort demonstrates the ability to integrate the components released by
the research community in a single platform. FRANKENSTEIN’s loosely coupled architecture enables easy
integration of newer components in the framework and implements a model that learns from the features
extracted from the input questions to direct the user’s question to the best performing component per
QA task. Also, FRANKENSTEIN’s design is component agnostic; therefore, FRANKENSTEIN can easily
be applied to new knowledge bases and domains. Thus, it is a framework for automatically producing
intelligent QA pipelines. Our experimental study provides a holistic overview on the performance of
state-of-the-art QA components for various QA tasks and pipelines. In addition, it measures and compares
the performance of FRANKENSTEIN from several perspectives in multiple settings and demonstrates the
beneficial characteristics of the approach. FRANKENSTEIN can be extended in following directions: (i)
improving quality as well as quantity of extracted features, (ii) improving the learning algorithm, (iii)
extending our training datasets, and (iv) including more emerging QA components. In conclusion, our
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component-oriented approach enables the research community to further improve the performance of
state-of-the-art QA systems by adding new components to the ecosystem, or to extend the available data
(i.e., gold standard) to adapt the training process.
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CHAPTER 9

Conclusion

With the advent knowledge graphs, question answering has been a continuous field of research since last
one decade. However, implementing a QA system was cumbersome and time-consuming as most of the
QA systems were developed as black boxes and the possibility of reuse was limited. Our vision is initiated
by the fact that so far the research community has focused deeply on various QA tasks such as question
classification, named entity recognition and disambiguation, relation extraction and has released many
independent components and tools accomplishing these tasks. Combining these tools in a single platform
eventually leads to the development of modular QA systems where researchers can reuse few components
and focus on building specific components for other tasks. Considering prior attempts in this regard and
their limitations, we also have a strong focus towards developing automatic and intelligent ways to build
QA pipelines on demand. There are concrete pieces of evidence that there is no best performing QA
system for all types of natural language questions with different features like question length, POS tags,
capitalisation of entities etc.; instead, there are studies suggesting that certain systems, implementing
different strategies, are more suitable for certain types of questions [14, 15]. Hence, modern QA systems
need to flexibly integrate a number of components specialised to fulfil specific tasks in a QA pipeline and
that also laid the foundation for our overall research problem definition of the thesis:

Research Problem Definition

How can existing components for question answering tasks be reused to build effective and seamless
dynamic question answering pipelines?

In this thesis, we are concerned with utilising semantics associated with each QA component by
semantically describing its functionality, and utilising its strength and weaknesses to build effective
dynamic QA pipelines. We divided the research problem into four sub-research questions. We first
focused on foundations [26-29] which are the essential steps to solve the interoperability, integration
and reusability issues of QA components. We proposed the ga vocabulary [26] (Chapter 4) as a flexible
and extensible data model for annotating outputs of QA components. The ga vocabulary creates an
abstraction layer on top of the implementation of the QA components, and provide a homogeneous way to
represent all the knowledge (e.g. question, question type, entities and relation in question etc.) produced
in QA process. We have also developed a controlled QAV vocabulary [9] to semantically describe
the QA components using the high-level input/output requirements of it, and the associated task. We
conclude that ga and QAV vocabularies can successfully describe the QA components and the associated
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process semantically and set the foundation for our approach for building an infrastructure to reuse QA
components. These two vocabularies collectively contribute towards our approach for addressing the first
research question:

RQ1

How can semantics contribute in resolving interoperability of QA components

Thereafter, we describe Qanary [27-29], a methodology for integrating components of QA systems
which (i) utilises ga vocabulary for annotation, (ii) is independent of programming languages, (iii) is
agnostic to domains and datasets, (iv) integrates components on different granularity levels. We provide
Qanary ecosystem as a framework for creating reusable question answering systems. Qanary has the
limitation that it does not describe QA components based on the tasks it performs and there is no way to
provide valid combinations of QA pipelines. For the same, we utilise the proposed QAV vocabulary in
Qaestro [9, 108], a framework to semantically describe QA components and QA developer requirements
and to produce QA component compositions based on these semantic descriptions. Specifically, we
employed QAV controlled vocabulary to model QA tasks and exploit the Local As View (LAV) approach
to express QA components. The Qaestro framework solves the problem of QA pipeline composition
problem by casting it to the query rewriting problem and leveraging state-of-the-art SAT solvers. It
helps QA developers to semantically describe QA components and developer requirements based on
these semantic descriptions. We have integrated Qaestro and Qanary ecosystem to provide a seamless
composition of QA pipelines. Therefore, Qanary, Qanary ecosystem, and Qaestro framework contribute
towards addressing the second and third research questions:

RQ2

How can state-of-the-art QA components be integrated in a single platform agnostic to their imple-
mentation to promote reusability effectively?

RQ3

How can the process of composing QA pipelines be effectively automated?

We further extended our work to develop SIBKB approach [102] (described in Chapter 6) to build a new
relation linking component by reusing the already existing knowledge graph PATTY. We also scale up
the number of components in Qanary Ecosystem to 18 NED, five RL, two CL, and two QB components.
Considering the scalability of the QA component within the framework, we developed Frankenstein
[21], which is concerned with (1) a prediction mechanism to predict the performance of a component
given a question and a required task; (2) an approach for composing performance-optimised pipelines by
integrating the most accurate components for the current QA tasks (i.e., the user’s question). Frankenstein
uses Qanary methodology to integrate state-of-the-art QA components within its architecture and build on
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Frankenstein

(RQ4)
Qanary Meth°d°|°gy, Qanary The Contributions to
Ecosystem, QAestro, and SIBKB ~— | Address overall
(RQ2 and RQ3) Research Objective of
the Thesis

QAYV and QA Vocabularies
(RQ1)

Figure 9.1: Contributions made to address the research questions are interconnected. Each contribution acts as
foundation for the other. Collectively they are addressing the overall research objective successfully.

top of Qanary ecosystem. Hence, FRANKENSTEIN has utilises 29 QA components of Qanary Ecosystem
with a learning mechanism implemented on top of it for predicting best components per task. This
provides an automatic way to compose QA pipelines per question and provides an effective way of
composing pipelines respecting the strengths and weaknesses of each QA component per task. This
successfully addresses the fourth research question defined in this thesis:

RQ4

How can effective dynamic QA pipelines be composed by reusing components?

This thesis is contributing to a broader research agenda of offering the QA community an efficient
way of applying their research to a research field which is driven by many different fields, consequently
requiring a collaborative approach to achieve significant progress. It is important to note that the
applicability of the approaches such as Qanary, ga vocabulary, and Frankenstein are currently applied to
a single knowledge graph i.e. DBpedia. This is due to the reasons that most of the available independent
components are bound to DBpedia as underlying KG. Qanary is independent of knowledge graph and
implementation of the components. Although in this thesis the experiments are limited to DBpedia, we
trust that the results may generalise to many other large cross domain knowledge graphs, for instance
YAGO [76] and Wikidata [6]'; the QA pipelines for other graphs are also similar to the QA pipelines
defined in this thesis, and the graphs share similar structures and overlap in content (Wikipedia is common
source of content in many publicly available knowledge graphs). Also, there is no specific assumption
in our work on the structure or schema of the underlying knowledge graph, and our method should be

18 components evaluated in this study were not exclusively released for DBpedia, but were for both DBpedia and
Wikipedia in general; some of them additionally provide dismabiguated URIs for Yago and Freebase.
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equally applicable and can be extended to any other knowledge graph.

We release integration of Qaestro, and Frankenstein providing an effective user interface which can
be accessible at the URL: http://frankenstein.ganary—qga.com. It contains 28 various QA
components, and Qaestro is used to generate valid combinations of QA pipelines by respecting input and
output requirements of various QA components.

9.1 Limitations

Despite the overall achieved research objective, there are few limitations of this research which have not
been covered in the scope of the thesis. We list the following limitations:

* The QAYV vocabulary is a domain restricted vocabulary which is not extensible to other approaches.
However, ga vocabulary is extensible to other question answering approaches, for example, specific
domain. Work presented in [118] has extended ga vocabulary for representing all the knowledge
generated in geospatial question answering process. The ga vocabulary is not extensible in other
research areas such as information extraction, data management etc.

* Improving the efficiency of the overall QA pipeline has been out of the scope of this thesis. This is
due to the fact that proposed approaches heavily rely on the individual performance of the re-used
components. The QA pipelines composed after reusing QA components are not competitive in
terms of overall precision and recall with state of the art monolithic QA systems. However, we
have performed an intensive evaluation of the 29 QA components to understand the strength and
weaknesses of used QA components. For example, we identified that relation linking and query
builder components demonstrate the poorest performance and that impact negatively on overall
QA pipelines. Researchers have already started contributing in this direction, and recent research
work significantly improve relation linking performance (we report 0.23 as highest F-score for the
state-of-the-art relation linking component in Chapter 8, EARL [119] improves it to 0.36, Sakor et
al. [120] reports 0.58 for the same task). Similar work has been done to improve query builder
component by Zafar et. al. [117] based on identified gaps in this thesis. We believe our work
can be the foundation for improving the identified challenges in the state of the art, and the QA
community can collectively work towards improving QA over KGs.

e Overall run time of the QA pipeline is another limitation of the work presented in the thesis.
Many of the existing QA components are very slow (e.g. ReMatch for RL, and SINA for QB
tasks describe in Chapter 8), consequently, they affect the overall run time of the QA pipeline
and also restrict many of these approaches to be re-used in real world scenarios. However, we
have considered run time performance for SIBKB approach and Qaestro framework to illustrate
effectiveness and efficiency of these approaches.

9.2 Future Directions

Based on our findings, and the contributions made in this thesis, we now present some of the future
directions for the research community:

* Our work can be extended in multiple directions. Firstly, the work presented in the thesis can be
utilised for other knowledge graphs such as Wikidata and Yago by including components based on
these KGs in Qanary and FRANKENSTEIN framework.
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SIBKB approach for capturing knowledge encoded in PATTY knowledge graph can be extended
to multiple knowledge sources such as WordNet and others to improve the overall QA process, by
improving relation linking components.

* Components from other domains such as components for biomedical, geographical, temporal
question answering can be included in the FRANKENSTEIN framework to enhance FRANKENSTEIN
as domain agnostic QA framework. Punjani et al. [118] have extended Frankenstein framework to
develop geospatial question answering system where new components for geo functionalities have
been added, and components for NER and NED tasks have been reused.

* FRANKENSTEIN and Qanary approaches are agnostic of the implementation detail. It is also
possible to integrate end to end QA systems as QA pipelines in these frameworks targeting specific
types of questions and train supervised learning methods to choose best pipelines (end to end or
components based) for each question type.

* Stato-dynamic QA pipelines can be one of the solutions of improving overall QA process. Recently
published query builder tool overcoming the limitations pointed in this thesis significantly improves
the performance of the state of the art QB components [117]. Also, this tool answers all the
questions answered by other QB components (i.e. other QA component’s answered questions are
the subset of the proposed tool). Therefore, making the QA pipeline static at the QB task, and
choose other components dynamically is one solution for stato-dynamic QA pipelines. This can be
done by combining the capabilities of Qaestro framework and FRANKENSTEIN. Using Qaestro, a
component selected by the dynamic pipeline can be overruled by the pre-defined QB component in
developers requirement.

* We have evaluated 19 NED tools and highest F-score for complex questions is 0.69. These entity
linking tools are not specifically developed for question answering. Therefore, tools suffer from
many specific problems. For example, all the tools are sensitive to the character cases and their
performance drops sharply if the entity is written in lower case. Also, the performance of the
questions with a single entity is about 0.65 (for TagMe). Therefore, it can be observed that generic
entity linking tools have a lot of room for improvement. Researchers can target the problem of
entity linking for question answering as an independent research area.

* In NLP community, a lot of work has been done for relation extraction from free text. Relation
extraction and linking it to knowledge graphs for a given question is more challenging due to
limited contextual information available in the question considering a limited number of words.
We observe that existing relation linking tools have performed poorly and also a number of tools
are limited, and this is another research direction for future research. We did first work towards it
in question answering domain by proposing SIBKB [102], but linking relation of an input sentence
in a document to knowledge graph is yet to be explored. We believe this would be an important
step in the direction of knowledge graph completion and population.

» Several masters thesis have been emerged based on the contributions made in this thesis. Sakor
[120] have developed an independent entity and relation linking tool” and integrated in Frankenstein.
In second masters thesis [121], the author has studied the impact of each input feature on the
prediction model employed in Frankenstein and found that there are few features which impact
most on the performance of prediction model, and there are several features that do not have any

https://labs.tib.eu/falcon/
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impact. Work present in [122] extended the Qaestro model to implement a MIN MAX SAT solver
to provide composed pipelines in its decreasing order of overall F-score.

As result of this work, we expect a new class of QA systems to emerge. Currently, QA systems are
tailored to a particular domain (mostly common knowledge), a source of background knowledge (most
commonly DBpedia [4]) and benchmarking data (most commonly QALD). Based on the approaches
proposed in this thesis, more flexible, domain-agnostic QA systems can be built and quickly adapted to
new domains. This will eventually improve the question answering research in collaborative effort.
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