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Summary 

Filarial nematodes are prevalent in tropical regions worldwide with some species 

pathogenic to humans. Filarial diseases include lymphatic filariasis (68 million infected people) 

and onchocerciasis (37 million infected people) that can result in severe symptoms and are a 

health problem in affected communities. Anthelmintic drugs must be applied for years as the 

substances do not act against the adult worms. Moreover, reported side effects and suspected 

reduced efficacy of the currently used anthelmintics are worrisome. The development of novel 

substances effective against all life stages of the filariae and suitable for mass drug 

administration programs is substantial to successfully eliminate filarial diseases. Wolbachia are 

obligate intracellular Gram-negative bacteria that are widespread in arthropods and found in 

several filarial nematode species. In filarial worms, Wolbachia are obligate mutualistic 

endosymbionts required for survival of their hosts and for embryogenesis in the female worms. 

Thus, filariasis can be effectively treated with antibiotics targeting Wolbachia. However, the 

currently used antibiotics are not suitable for mass drug administration programs and new 

substances, which are well-tolerated by patients, are required. A better understanding of 

Wolbachia biology is crucial to identify novel potential antibiotic targets. The genome of 

Wolbachia is highly reduced due to adaption to their hosts and in contrast to free-living bacteria, 

they do not need a protective cell wall composed of the macromolecule peptidoglycan. 

However, the peptidoglycan precursor lipid II has already been shown to be synthesized and 

required for cell division in Wolbachia. Until now, it is unclear if and how lipid II is modified 

and peptidoglycan has never been detected in these endobacteria. 

To provide insight into wolbachial lipid II processing, the putative penicillin-binding 

proteins (PBPs) PBP2 and PBP6a from Wolbachia endosymbionts of the filarial nematode 

Brugia malayi (wBm) were analyzed in this study. Also, the activity of AmiD and PBP3 from 

Wolbachia endosymbionts of Drosophila melanogaster (wMel) were characterized, two lipid II 

processing enzymes additionally present in genomes of Wolbachia residing in arthropods. 

Binding studies were performed to measure a potential interaction between the peptidoglycan-

associated outer membrane lipoprotein (Pal) from wBm and lipid II as well as PBP2. To detect 

a putative peptidoglycan-like structure in Wolbachia, lipid II was labeled in Wolbachia from 

Aedes albopictus using dipeptide analogues. Moreover, an established cell-free Wolbachia 

culture was further studied regarding potential growth facilitating factors and impact of 

antibiotics. 
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The results of the present study demonstrate PBP activity in dependence on functional 

serines of the active site motifs SXXK. PBPs are typically blocked by β-lactam antibiotics that 

bind to the serine of the highly conserved SXXK motif. Nevertheless, the PBPs were resistant 

to β-lactams. Contrary to their E. coli orthologs, all examined wolbachial PBPs encode 

additional SXXK motifs which might contribute to enzyme functionality and might explain 

β-lactam resistance. In silico analyses predicted that due to protein folding, β-lactams might not 

have access to all active site motifs. Therefore, in contrast to canonical systems like E. coli, 

these enzymes are not appropriate targets to deplete Wolbachia. AmiD showed zinc-dependent 

amidase activity and cleaved intact peptidoglycan, monomeric lipid II and additionally 

anhydromuropeptides, substrates that are generated by cleaved glycosidic bonds of glycan 

strands. The conservation of the capability of AmiD to cleave anhydromuropeptides gives a 

hint that at least insect Wolbachia may contain a peptidoglycan-like structure with connected 

glycan strands. Lipid II and PBP2 both interacted with the outer membrane protein Pal from 

wBm suggesting that lipid II and PBP2 are present in the Wolbachia periplasmic space. These 

results together with the active PBPs from wBm indicate that lipid II might be processed to a 

peptidoglycan-like structure also in Wolbachia residing in filarial nematodes. The dipeptide 

labeling provided visual evidence of a lipid II-containing structure in Wolbachia for the first 

time, which was absent in fosfomycin-treated cells with impaired lipid II synthesis. Moreover, 

fosfomycin led to an aberrant phenotype of cell-free Wolbachia resulting in enlarged cells. 

None of the other applied antibiotics including β-lactams showed an effect on morphology 

providing further evidence that Wolbachia are resistant to this class of antibiotics.  

In conclusion, the results of this study together with latest research findings regarding 

peptidoglycan in intracellular bacteria indicate that Wolbachia are not cell wall-less bacteria, 

but rather have a physical structure composed of lipid II that can interact with outer membrane 

proteins and that is necessary for coordinated cell division. 

  



Zusammenfassung 

3 
 

Zusammenfassung 

Filarien kommen weltweit in den Tropen vor und einige humanpathogene Arten 

verursachen Krankheiten wie die lymphatische Filariose (68 Millionen Infizierte) oder 

Onchozerkose (37 Millionen Infizierte). Diese Infektionen können zu schweren Pathologien 

führen und stellen ein erhebliches Gesundheitsproblem in betroffenen Gebieten dar. Die zur 

Verfügung stehenden Antiwurmmittel müssen jahrelang verabreicht werden, da die 

Medikamente nicht gegen die adulten Würmer wirken. Außerdem besteht bei den 

Antiwurmmitteln das Risiko möglicher Nebenwirkungen und Resistenzentwicklungen. Um 

Filarioseerkrankungen komplett einzudämmen, werden neue Medikamente benötigt, die gegen 

alle Entwicklungsstadien der Filarien wirksam sind und in Massenanwendungsprogrammen 

eingesetzt werden können. Wolbachien sind obligat intrazelluläre Gram-negative Bakterien, die 

sowohl in Arthropoden als auch in einigen Filarienarten vorkommen. In Filarien sind 

Wolbachien mutualistisch und essentiell für das Überleben ihres Wirtes sowie für die 

Embryogenese der weiblichen Würmer. Daher können Filariosen durch die Gabe von 

Antibiotika, die die Wolbachien abtöten, effektiv behandelt werden. Die momentan 

verwendeten Antibiotika sind jedoch nicht für Massenanwendungsprogramme geeignet. Um 

neue potentielle Angriffspunkte für Antibiotika zu finden, die für die Behandlung von 

Filariosen verwendet werden können, ist die Grundlagenforschung über Wolbachien 

unerlässlich. Das Genom von Wolbachien ist aufgrund ihrer endosymbiontischen Lebensweise 

bis auf die Gene reduziert, die essentiell zum Überleben sind. Die intrazellulären Wolbachien 

benötigen im Gegensatz zu freilebenden Bakterien keine schützende Zellwand bestehend aus 

einer Peptidoglykanmatrix. Jedoch wurde gezeigt, dass das Peptidoglykan Vorläufermolekül 

Lipid II synthetisiert und für die Zellteilung von Wolbachien notwendig ist. Die weitere 

Modifikation von Lipid II ist aber unbekannt und ein Peptidoglykan-ähnliches Molekül wurde 

bisher nicht nachgewiesen.  

Um einen Einblick in die mögliche Prozessierung von Lipid II zu bekommen, wurden 

in der vorliegenden Doktorarbeit die Penicillin-bindenden Proteine (PBPs) PBP2 und PBP6a 

aus Wolbachien des Fadenwurms Brugia malayi (wBm) untersucht. Des Weiteren wurden 

AmiD und PBP3 aus Wolbachien der Fruchtfliege Drosophila melanogaster (wMel) 

charakterisiert. Diese beiden Lipid II-prozessierenden Enzyme sind zusätzlich in Wolbachien 

aus Arthropodenspezies annotiert. Außerdem wurden Bindungsstudien durchgeführt, um 

mögliche Interaktionen zwischen dem Peptidoglykan-assoziierten äußeren Membran 

Lipoprotein Pal aus wBm und Lipid II bzw. PBP2 zu detektieren. Um eine potentielle 
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zellwandartige Struktur in Wolbachien nachzuweisen, wurde Lipid II in Wolbachien aus Aedes 

albopictus mit Hilfe von Dipeptidanalogen markiert. Außerdem wurde eine etablierte zellfreie 

Wolbachien Kultur in Hinblick auf mögliche wachstumsfördernde Substanzen sowie die 

Wirkung von Antibiotika untersucht. 

Die Ergebnisse belegen enzymatische Aktivitäten der PBPs in Abhängigkeit von 

funktionalen Serinen des SXXK Motivs im aktiven Zentrum. β-Lactam-Antibiotika binden an 

das Serin des hochkonservierten SXXK Motivs und hemmen normalerweise die Aktivität von 

PBPs. Allerdings waren alle untersuchten PBPs aus Wolbachien resistent gegen β-Lactam-

Antibiotika. Im Gegensatz zu ihren Orthologen aus E. coli haben alle in dieser Arbeit 

analysierten PBPs mehr als ein SXXK Motiv in ihrer Sequenz, die zur Enzymaktivität beitragen 

und die beobachtete Resistenz erklären könnten. In silico Analysen prognostizierten, dass 

β-Lactame aufgrund der Proteinfaltung der PBPs nicht an alle Motive des aktiven Zentrums 

gelangen. Daher sind β-Lactame ungeeignet, um die Wolbachien PBPs zu hemmen und somit 

die Bakterien abzutöten. AmiD zeigte eine zinkabhängige Amidaseaktivität und spaltete 

Peptidoglykan, Lipid II sowie Anhydromuropeptide, die durch die Teilung von Glykanketten 

entstehen. Die konservierte Funktion des AmiD Anhydromuropeptide zu spalten, weist auf eine 

zellwandartige Struktur mit verknüpften Glykanketten hin, zumindest in Wolbachien, die in 

Insektenzellen leben. Sowohl Lipid II als auch PBP2 interagierten mit dem äußeren 

Membranprotein Pal aus wBm, was darauf hindeutet, dass Lipid II und PBP2 vermutlich im 

periplasmatischen Raum der Wolbachien präsent sind. Diese Ergebnisse zusammen mit den 

aktiven PBPs aus wBm indizieren, dass möglicherweise auch Wolbachien aus Filarienspezies 

Lipid II zu einer peptidoglykanartigen Struktur prozessieren. Die markierten Dipeptide wiesen 

zum ersten Mal eine sichtbare Lipid II-beinhaltende in Wolbachien nach, die bei Fosfomycin-

behandelten Zellen mit gehemmter Lipid II Synthese nicht mehr nachweisbar war. Zellfreie 

Wolbachien waren nach Fosfomycin Behandlung außerdem vergrößert. Keine der anderen 

verabreichten Antibiotika inklusive β-Lactame führten zu einer veränderten Morphologie. Dies 

bestätigt weiter, dass Wolbachien resistent gegen β-Lactame sind.  

Die Ergebnisse dieser Arbeit, unterstützt durch neuere Forschungsergebnisse bezüglich 

nachgewiesener peptidoglykanartiger Strukturen in anderen intrazellulären Bakterien, deuten 

darauf hin, dass Wolbachien keineswegs zellwandlos sind. Sie haben vermutlich eine aus 

Lipid II bestehende physikalische Struktur, die mit der äußeren Membran interagiert und 

notwendig für eine koordinierte Zellteilung ist. 
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1 Introduction 

1.1 Neglected tropical diseases and filariasis 

Around one billion people in 149 countries are affected by so-called neglected tropical 

diseases caused by a variety of pathogens including bacteria, helminths, protozoa and viruses 

(Mackey et al., 2014). Neglected tropical diseases are mainly prevalent in the tropical regions 

of Africa, Asia and Latin America and play a minor role in research in high-income western 

countries. Diagnostics, medication and vaccines either do not exist or are outdated and 

unsuitable for use in areas with poor infrastructure (Mueller-Langer, 2013). Infected people 

suffer from severe illness, disability, social exclusion and mortality, the economic impact 

includes low productivity and high health care costs. As neglected tropical diseases are a 

constraint to economic growth and lower the already low standard of living in affected areas, 

the gap in equality between developed and developing countries widens further (Gallup and 

Sachs, 2000). In the past few years, the World Health Organization (WHO) has raised 

awareness of this topic, for example by publishing a roadmap to accelerate work on neglected 

tropical diseases (WHO, 2012). Subsequently, private and public partners signed up to the 

London Declaration on neglected tropical diseases in 2012 which commits them to work on the 

WHO targets, in particular by funding or supply of drugs. Additionally, the Sustainable 

Developmental Goals by the United Nations also include neglected tropical diseases as a target 

to “end the epidemics […] by 2030” (UN, 2015). New and ongoing efforts to control, eliminate 

and eradicate neglected tropical diseases represent key elements for achieving these goals 

(Hotez et al., 2016). 

Neglected tropical diseases include lymphatic filariasis and onchocerciasis caused by 

filarial nematodes of the order Spirurida, which are endemic in tropical regions worldwide with 

around one billion people living in risk areas mainly in Africa and Southeast Asia (WHO, 

2016a). Currently, around 68 million people have lymphatic filariasis provoked by Wuchereria 

bancrofti, Brugia malayi and Brugia timori (Ramaiah and Ottesen, 2014). Infectious third-stage 

(L3) larvae are transmitted from the intermediate host, mosquitoes of the genera Aedes, 

Anopheles, Culex and Mansonia during a blood meal onto the skin of the mammalian host 

(Figure 1). The larvae migrate to and penetrate through the bite wound into their definitive host, 

where they enter the lymphatic system and molt two more times as they develop into adult 

worms (Wenk and Renz, 2003). The adult worms reside in lymphatic vessels, mostly of the 

extremities and male genitalia where they can breed and, in case of Wuchereria bancrofti, 

survive up to ten years in humans (Wenk and Renz, 2003). After mating, the female worms 
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release microfilariae which migrate through the lymph into the blood stream, where they are 

ingested by a mosquito vector taking a blood meal. Inside the mosquito, the microfilariae lose 

their sheaths and migrate from the midgut into the thoracic musculature where they pass through 

first-stage (L1) and second-stage (L2) larval stages before becoming infective L3 larvae which 

migrate into the proboscis (Wenk and Renz, 2003).  

 

Figure 1: Life cycle of Brugia malayi exemplary for filarial nematodes causing lymphatic filariasis (Center 
for Disease Control and Prevention, https://www.cdc.gov/parasites/lymphaticfilariasis/biology_b_malayi.html). 
Infected mosquitoes are the intermediate host and transmit third-stage (L3) filarial larvae  during a blood meal 
onto the skin of the human definitive host. The L3 larvae penetrate through the bite wound and enter the lymphatic 
system. After developing into adults, the worms commonly reside in the lymphatics and produce microfilariae. 
The microfilariae migrate actively into lymph and blood channels where a mosquito ingests the microfilariae 
during a blood meal. The microfilariae lose their sheaths, penetrate the mosquito’s midgut and migrate to the 
thoracic muscles. There, the microfilariae develop into first-stage (L1), then second-stage (L2) larvae and 
subsequently into infectious L3 larvae. The L3 larvae migrate to the mosquito's head and proboscis and can infect 
another human when the mosquito takes a blood meal. 

Due to the death of the adult worms severe pathologies like hydrocele and lymphedema 

(elephantiasis) can occur in infected individuals (Figure 2A) (Hoerauf et al., 2001; Taylor et 

al., 2010). Around 36 million cases of hydrocele and lymphedema are reported and affected 

people are predisposed to secondary bacterial infections, which can be life-threatening when 

untreated (Dreyer et al., 2000; Ramaiah and Ottesen, 2014). Lymphatic filariasis-caused 
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lymphedema is the second leading cause of global disability and moreover, the disfigurement 

of body parts leads to social stigmatization and marginalization (Ramaiah and Ottesen, 2014).  

Onchocerciasis in humans is caused by the filarial worm Onchocerca volvulus and is 

transmitted through the bites of infected blackflies of the genus Simulium. Around 37 million 

people are infected with more than 99 % of cases located in Sub-Saharan African countries 

(Noma et al., 2013; WHO, 2016b). When a blackfly is taking a blood meal on an infected 

human, microfilariae are ingested and penetrate the blackfly’s midgut and migrate to the 

thoracic musculature where they pass through L1 and L2 larval stages before they develop into 

infective L3 larvae which migrate to the head and blackfly’s proboscis (Wenk and Renz, 2003). 

During another blood meal, the infected blackfly introduces L3 filarial larvae onto the skin of 

the human host, where they penetrate through the bite wound. In subcutaneous tissues the larvae 

develop into adult worms, which commonly reside in nodules. Notably, adult filariae causing 

onchocerciasis can breed and survive up to 15 years in humans (Ōmura and Crump, 2004). The 

ovoviviparous female adult worms release up to 1000 microfilariae per day, which migrate 

through skin tissues and the eyes. The death of microfilaria induces immune responses that can 

cause a variety of pathologies in the human body including blindness (river blindness), skin 

rashes, lesions, intense itching and skin depigmentation (Sowda) (Figure 2B) (Taylor et al., 

2010). River blindness is the second leading cause of vision loss induced by infections (Boatin 

and Richards, 2006). Moreover, recent studies reveal an association between the nodding 

syndrome and the infection with O. volvulus (Foltz et al., 2013; Idro et al., 2016). This seizure 

disorder, mostly affecting children in Eastern Africa, may be an autoimmune epilepsy induced 

by Onchocerca worms (Johnson et al., 2017).  

 

Figure 2: Severe pathologies of lymphatic filariasis and onchocerciasis (adapted from Taylor et al., 2010). 
A) In lymphatic filariasis, the dead adult worms (Wuchereria bancrofti, Brugia malayi or Brugia timori) inside 
the lymphatic vessels can lead to hydrocele (left) or lymphedema (right). B) Worms of the species Onchocerca 

volvulus reside in subcutaneous skin nodules (left). Released microfilariae migrate through the skin and can cause 
depigmentation (right).  

Although not lethal per se, lymphatic filariasis and onchocerciasis cause 3.9 million 

disability-adjusted life years (DALYs) annually (WHO, 2016a, 2016b). DALYs regard the 
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immense limitations of life quality of infected people and measure the impact of the disease on 

the affected community. Thus, filarial diseases play a major social as well as economic role in 

endemic countries and infections have an enormous impact on the life of millions of people 

(Ottesen, 2000; Ramaiah and Ottesen, 2014). 

1.2 Treatment of filarial diseases 

Currently, there are no approved vaccinations available against filarial diseases (Khatri 

et al., 2018). Thus, alternative approaches are needed to interrupt the life cycle of the worms 

and to stop transmission. One possibility is the protection against infectious mosquito bites by 

repellents or bed nets, but the feasibility for residents of endemic areas is mixed (Sangoro et al., 

2014). Another possibility is vector control, but this requires the use of chemicals like 

dichlorodiphenyltrichloroethane (DDT), which persists in the environment, accumulates in 

fatty tissues and can cause adverse health effects in humans (Turusov et al., 2002). For people 

already infected with filariasis, mainly the anthelmintic drugs albendazole (ALB), 

diethylcarbamazine (DEC) and ivermectin (IVM) are applied (Fischer et al., 2017). William C. 

Campbell and Satoshi Ōmura were awarded the Nobel Prize in Physiology or Medicine in 2015 

for discovering the compound avermectin produced by Streptomyces avermitilis, which was 

chemically modified to the more effective drug IVM (reviewed by Campbell, 2012). IVM has 

radically lowered the incidence of onchocerciasis as well as lymphatic filariasis and, moreover, 

has shown efficacy against various other parasitic diseases like strongyloidiasis and also 

ectoparasitic infections like scabies (Crump and Ōmura, 2011; Tambo et al., 2015).  

The WHO has launched programs to eliminate lymphatic filariasis and onchocerciasis 

by 2020 and 2025, respectively (Ramaiah and Ottesen, 2014). The current mass drug 

administration (MDA) strategy to treat lymphatic filariasis is to provide repeated, annual doses 

of ALB with either DEC or IVM for the lifespan of adult worms (Tisch et al., 2005; Fischer et 

al., 2017). Remarkably, it is estimated that about 97 million cases of lymphatic filariasis were 

prevented or cured since the beginning of MDA treatments in 2000 leading to a 59 % reduction 

of initial infection levels (Ramaiah and Ottesen, 2014). A pilot study reveals that a DEC, IVM 

and ALB single-dose triple-drug regimen is safe and more effective than the standard DEC plus 

ALB combination (Thomsen et al., 2015). These findings will potentially accelerate efforts to 

eradicate lymphatic filariasis (Fischer et al., 2017). DEC has been phased out as the drug of 

choice in treating of onchocerciasis as the sudden death of enormous numbers of microfilariae 

in the skin can cause serious side effects in patients (Bird et al., 1980; Francis et al., 1985; 

Awadzi and Gilles, 1992). Onchocerciasis is treated with IVM in MDA programs (Komlan et 
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al., 2018). In Latin America, MDA programs were successful achieving that four countries are 

verified free of onchocerciasis transmission (WHO, 2016b). 

Unfortunately, apart from possible side effects and suspected resistance development, 

one major disadvantage of the presently used anthelmintic drugs is that all of them mainly have 

microfilaricidal effects and do not act against the adult worms (Osei-Atweneboana et al., 2011). 

Since these can survive and breed several years in humans, it is necessary to assure the 

administration of drugs for years, but for example 22 African countries are still challenged with 

the start, scale-up and continuation of MDA (WHO, 2016a). Moreover, in regions endemic for 

onchocerciasis with high prevalence it has been shown that transmission is likely to reappear 

when administration is stopped even after 17 years of annual treatment (Katabarwa et al., 2011). 

Additionally, IVM or DEC treatment in regions that are co-endemic for the filarial nematode 

species Loa loa can result in progressive neurologic decline and encephalopathy, thus excluding 

MDA in these areas (Gardon et al., 1997; Kamgno et al., 2009; Bockarie and Deb, 2010). 

Despite much progress, a major effort is needed to achieve the WHO goals. For the successful 

elimination of filarial infections novel drugs with macrofilaricidal or sterilization effects are 

required, which can be applied in short-term MDA programs and in areas with emerging IVM 

resistance or L. loa co-endemicity (Klarmann-Schulz et al., 2017). 

1.3 Wolbachia endosymbionts as targets for anti-filarial treatment 

Obligate α-proteobacterial endosymbionts of the genus Wolbachia, present in many 

filarial nematodes, have been investigated as a novel approach for chemotherapy to treat filarial 

diseases (Taylor and Hoerauf, 1999; Bandi et al., 2001; Hoerauf et al., 2003; Walker et al., 

2015). These bacteria were first described as “Rickettsia-like organisms in insects” in 1924 by 

the scientists Marshall Hertig and Samuel Wolbach, and later named Wolbachia (Hertig and 

Wolbach, 1924; Hertig, 1936). Wolbachia are pleomorphic and cell size usually varies between 

0.5 and 1.3 µm (Hertig, 1936). Subsequently, it has been shown that Wolbachia indeed belong 

to the order Rickettsiales and are widespread in arthropods, infecting at least 40 % of species 

(Zug and Hammerstein, 2012). Unlike members of the related genera Anaplasma, Ehrlichia 

and Rickettsia, Wolbachia do not routinely infect vertebrates (Werren et al., 2008). Wolbachia 

have attracted considerable interest in the last two decades, primarily because of their effects 

on their hosts, which range from reproductive manipulation to mutualism, and potential 

applications in pest and disease vector control (Werren et al., 2008). 

Wolbachia intracellularly reside in host-derived Golgi-related vacuoles in the cytoplasm 

of some somatic tissues as well as in cells of the host germline (Tram et al., 2003; Cho et al., 
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2011). A general characteristic feature of intracellular bacteria is a highly reduced genome due 

to the adaption to their host (Stepkowski and Legocki, 2001). Sequenced genomes of different 

Wolbachia strains range from 0.9–1.5 Mb and they have lost many genes compared to 

free-living bacteria, particularly those involved in biosynthetic pathways (Wu et al., 2004; 

Foster et al., 2005; Lindsey et al., 2016). 

In arthropods, Wolbachia are facultative endosymbionts and as survival of the host is 

not necessarily dependent on the bacteria, manipulating the host by inducing cytoplasmic 

incompatibility, parthenogenesis, feminization and male killing are strategies of the Wolbachia 

to ensure vertical transmission and survival (Clark, 2007). However, there are exceptions and 

in some cases the arthropod host requires Wolbachia for oogenesis and positive benefits to 

fitness have also been demonstrated in terms of resistance to different pathogens and in nutrient 

provisioning (Zug and Hammerstein, 2015). Interestingly, several filarial nematode species also 

harbor Wolbachia (Sironi et al., 1995). Here, the Wolbachia are obligate mutualistic 

endosymbionts required for survival of their hosts and embryogenesis of microfilariae (Bandi 

et al., 1998; Bandi et al., 1999; Hoerauf et al., 2000). 

The current hypothesis is that Wolbachia provide their host with essential metabolites 

and vice versa. For instance, the nematode host is not able to generate flavin adenine 

dinucleotide, purine, pyrimidine, riboflavin and heme and therefore needs to obtain these 

compounds by external sources or from its endosymbiont that is able to synthesize them (Foster 

et al., 2005; Slatko et al., 2010). In turn, Wolbachia strains residing in filarial nematodes have 

a smaller genome than strains living in arthropods and thus need essential compounds provided 

by their host (Foster et al., 2005). They lack almost all biosynthetic pathways to produce amino 

acids de novo and retained only incomplete pathways for the synthesis of certain vitamins and 

cofactors such as nicotinamide adenine dinucleotide, biotin, lipoic acid, ubiquinone, folate, 

pyridoxal phosphate, and Coenzyme A, making them dependent on external sources (Slatko et 

al., 2010). 

Wolbachia are predominantly found in the hypodermal cells of the lateral cords in both 

male and female nematodes as well as in all larval stages (Hoerauf et al., 2001). Their presence 

in oocytes, developing eggs and microfilaria indicates that the bacteria are maintained in the 

population by vertical transmission. Wolbachia are essential for worm development, fertility 

and survival (Bandi et al., 1998). In addition, they were shown to be a major driver of the 

inflammatory pathogenesis in filarial diseases (Tamarozzi et al., 2011).  

Several studies have demonstrated that the depletion of Wolbachia by the antibiotics 

doxycycline and rifampicin leads to sterility and degeneration of adult worms, revealing 
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Wolbachia as an effective target for anti-filarial therapy (Hoerauf et al., 2000; Hoerauf et al., 

2003; Volkmann et al., 2003; Specht et al., 2008) (Figure 3). As L. loa do not harbor Wolbachia 

endosymbionts, these antibiotics could be used in co-endemic areas without the risk of severe 

adverse reactions (Bockarie and Deb, 2010). Moreover, anti-wolbachial treatment decreases 

immune responses that appear when Wolbachia are released after death of filariae, thus having 

a beneficial effect on treated patients (Pfarr et al., 2009). 

 

Figure 3: Impact of the depletion of endosymbiotic Wolbachia by doxycycline to Onchocerca volvulus 

(adapted from Hoerauf et al., 2000). A) A midbody cross-section of a female Onchocerca volvulus worm 
containing Wolbachia found mainly in the hypodermal chords and in embryos (Wolbachia are stained in red). B) 
Wolbachia are depleted after treatment with doxycycline and embryos are degenerated. h: hypodermal chords, c: 
cuticle, m: musculature, i: intestine, u: uterus epithelium, arrows: non-corpuscular, less intense staining possibly 
of nematode mitochondrial hsp-60. 

Rifampicin is an essential back-up antibiotic for the treatment of tuberculosis, which is 

also endemic in many of the areas where filarial diseases occur, thus presenting a risk of 

selecting for rifampicin-resistant tuberculosis pathogens (Mycobacterium spp.) when broadly 

applied as an anti-wolbachial drug (Smits, 2009). The use of doxycycline in MDA programs is 

constrained by contraindications in children under eight years as well as pregnant or breast 

feeding women and the logistics of a relatively lengthy course of treatment (4–6 weeks) 

(Hoerauf et al., 2008; Taylor et al., 2014). However, doxycycline can be used for individual 

drug administration (Taylor et al., 2010). A recent clinical phase two pilot study suggests that 

the combination of doxycycline (200 mg/day 3 weeks) with ALB (800 mg/day 3 days) leads to 

an additive effect on top of that of doxycycline alone and might be a promising step forward to 

reduce treatment time (Klarmann-Schulz et al., 2017). Nevertheless, the development of 

substances suitable for short-term MDA and targeting all stages of the filarial worms is urgently 

needed. 

Comparative genomics, bioinformatics and experimental analyses have identified a 

number of potential interactions which may be drug targets in Wolbachia including membrane 

proteins, ankyrins, lipoprotein biosynthesis, enzymes of undecaprenyl-pyrophosphoryl-
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MurNAc-pentapeptide-GlcNAc (lipid II) biosynthesis, heme biosynthesis, the glycolytic 

enzymes pyruvate phosphate dikinase and cofactor-independent phosphoglycerate mutase 

(Slatko et al., 2010). For example, treatment with globomycin, which inhibits lipoprotein 

biosynthesis, led to a reduced Wolbachia load in an infected insect cell culture and significant 

reductions in motility and viability in B. malayi in in vitro experiments (Johnston et al., 2010). 

The benzimidazole compound wALADin1 selectively targets the δ-aminolevulinic acid 

dehydratase of Wolbachia (wALAD), an enzyme of heme biosynthesis. wALADin1 also 

exhibits macrofilaricidal effects on Wolbachia-containing filarial worms in vitro (Lentz et al., 

2013). Currently, the most promising drug is corallopyronin A, a non-competitive inhibitor of 

the bacterial deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase 

which is synthesized by Corallococcus coralloides (Irschik et al., 1985). In vivo, corallopyronin 

A depletes Wolbachia, resulting in impeded worm development (Schiefer et al., 2012). 

Resistance development in Staphylococcus aureus due to mutations were reported (Mariner et 

al., 2011). However, recombination rates were shown to be slow in Wolbachia from nematodes 

(Jiggins, 2002). Thus, corallopyronin A is an antibiotic to be developed further in clinical 

studies for filariasis elimination without concern for cross-resistance development in 

tuberculosis as this antibiotic has low efficacy against Mycobacterium spp. (Schäberle et al., 

2014). The approach with an antibiotic-based therapy shows promising results in defeating 

filariasis and preventing the painful and disfiguring symptoms of elephantiasis (Rebollo and 

Bockarie, 2014; Walker et al., 2015). 

1.4 Wolbachia as an intracellular model organism: the benefit of basic 

      research to identify new targets against filariasis 

Wolbachia pipientis is the most common bacterial infection in the animal world and has 

a vast influence on invertebrate reproduction, sex determination, speciation and behavior 

(LePage and Bordenstein, 2013). From a biodiversity perspective, Wolbachia infections are one 

of the great pandemics in the history of life (LePage and Bordenstein, 2013). The discoveries 

that Wolbachia-infected mosquitoes show lower susceptibility or even resistance to viruses 

causing dengue, chikungunya, yellow fever and zika as well as malaria-causing Plasmodium 

spp. create a potentially cheap and sustainable system in which this pandemic can be used as a 

tool to control vector-borne diseases (Moreira et al., 2009; Bian et al., 2010; Dutra et al., 2016). 

For instance, in an effort to eliminate dengue, a technology was developed with the stable 

introduction of W. pipientis into the mosquito Aedes aegypti to reduce its ability to transmit 



1 Introduction 

13 
 

dengue fever due to life shortening and inhibition of viral replication effects (Hoffmann et al., 

2011). Other research areas have focused on the mutualistic role between Wolbachia and filarial 

nematodes aiming to eliminate the bacterial infection and thereby reducing the fitness of the 

worms that depend on it. The evolutionary distance of Wolbachia from mammals is far greater 

than that from nematodes, affording opportunities for treating filarial infections by specifically 

targeting its endosymbiont (Slatko et al., 2010). 

Due to their obligate intracellular lifestyle and reduced genome, Wolbachia represent an 

organism in which essential processes like cell elongation and cell division are functionally 

organized in a minimal set-up. One of the most significant challenges to the experimental 

investigation of Wolbachia biology is the reliance on a eukaryotic host cell for bacterial 

proliferation (Rasgon et al., 2006). Attempts to establish a cell line containing nematode 

Wolbachia strains were not successful so far (Slatko et al., 2014), but Wolbachia-infected insect 

cell lines like Aedes albopictus Aa23 or C6/36 are established in vitro models to simulate filarial 

Wolbachia strains (O'Neill et al., 1997; Turner et al., 2006). Notably, insect W. pipientis strain 

A. albopictus B (wAlbB) can be purified from host cells and maintained extracellularly up to 

one week in a cell culture, but without replication (Rasgon et al., 2006). A better understanding 

of Wolbachia biology and particularly host-symbiont interactions is a key for future 

development of drugs against filarial diseases and therefore an excellent example of how basic 

research can be translated to biomedical science. 

1.5 Bacterial cell wall 

Free-living bacteria are dependent on a cell surrounding envelope which regulates 

bacterial size, shape, internal pressure and diffusion of molecules from the environment (Cloud-

Hansen et al., 2006). The bacterial cell wall consists of a peptidoglycan polymer, which, as the 

name implies, is made of long linear glycan chains that are cross-linked by short peptides 

(Figure 4) (Höltje, 1998). The glycan chains are composed of alternating β-1,4 linked amino 

sugar units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). 

Pentapeptides, usually consisting of the amino acids L-alanine (L-Ala), D-glutamic acid (D-

Glu), meso-diaminopimelic acid (m-DAP) or L-lysine (L-Lys), and two terminal D-alanine (D-

Ala), are attached to the carboxy-group of MurNAc (Schwechheimer and Kuehn, 2015). The 

amino acid m-DAP, an intermediate product of the bacterial lysine biosynthesis pathway, is 

typically found in the peptide chains of Gram-negative bacteria and the Gram-positive bacilli, 

while L-Lys is found in most Gram-positive bacteria (Schwechheimer and Kuehn, 2015). The 

terminal D-Ala of the pentapeptide is removed during the crosslinking transpeptidation process, 
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which takes place between the carboxyl group of the D-Ala at position four and the amino group 

of the m-DAP/L-Lys at position three of an adjacent peptide chain (Typas et al., 2012). 

Gram-positive bacteria have an inner membrane and are surrounded by several peptidoglycan 

layers of about 40–80 nm. The predominantly single-layered peptidoglycan of Gram-negative 

bacteria is much thinner at around 7–8 nm and located in the periplasm between the inner and 

the outer membrane (Malanovic and Lohner, 2016). 

 

Figure 4: Structure of peptidoglycan. A) Simplified scheme of peptidoglycan consisting of linear glycan strands 
interlinked via peptide side chains. Green hexagons represent the sugar moiety N-acetylglucosamine (GlcNAc), 
blue hexagons represent N-acetylmuramic acid (MurNAc). Circles represent the amino acids L-alanine (L-Ala; 
yellow), D-glutamic acid (D-Glu; orange), L-lysine (L-Lys; red) or meso-diaminopimelic acid (m-DAP; red) and 
D-alanine (D-Ala; purple). B) Chemical structure of a peptidoglycan monomer unit composed of GlcNAc and 
MurNAc, and a pentapeptide containing L-Ala, D-Glu, L-Lys or m-DAP and two D-Ala (Olrichs, 2010).  

1.5.1 Cell wall synthesis and breakdown in bacteria 

Peptidoglycan biosynthesis is a multi-step process that takes place in three different 

cellular compartments: the cytoplasm, the cytoplasmic membrane and the periplasm (Figure 5) 

(Typas et al., 2012). It starts in the cytoplasm with the synthesis of uridine diphosphate 

N-acetyl-glucosamine (UDP-GlcNAc) by the conversion of fructose-6-phosphate via the 

activity of the enzymes GlmS, GlmM and GlmU (Misra et al., 2015). The precursor 

UDP-N-acetylmuramic acid pentapeptide (UDP-MurNAc-pentapeptide) is synthesized from 

UDP-GlcNAc and is catalyzed by the six enzymes MurA to MurF. Subsequently, the 

UDP-MurNAc-pentapeptide moiety is attached to the membrane-bound lipid carrier 

undecaprenyl phosphate (C55-P) by the enzyme MraY, yielding lipid I. The lipid I molecule 
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serves as a substrate for the enzyme MurG to add an UDP-GlcNAc molecule forming the final 

cell wall precursor lipid II (Typas et al., 2012). After synthesis, lipid II is flipped across the 

cytoplasmic membrane into the periplasm. To date, the identity of the enzyme translocating 

lipid II across the cell membrane remains a matter of debate. There are several candidates 

including MurJ, FtsW and RodA which might function as a flippase, but these are 

controversially discussed (Ruiz, 2016).  

 

Figure 5: Peptidoglycan synthesis in Gram-negative bacteria. The peptidoglycan precursor lipid II is 
synthesized by the enzymes MurA-MurG and MraY. After translocation into the periplasm, lipid II is incorporated 
into the growing chain by various synthesizing and hydrolyzing enzymes building peptidoglycan. 

Once in the periplasm, lipid II is incorporated into the growing peptidoglycan by a multi-

enzyme complex, the elongasome, as exemplarily shown for the Gram-negative bacterium 

Escherichia coli (E. coli) (Typas et al., 2012) (Figure 6). The enzymes of the elongasome are 

highly regulated to avoid disturbing the equilibrium between synthesizing and hydrolyzing 

enzymes, which would ultimately lead to cell death if not tightly controlled.  
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Figure 6: Different peptidoglycan synthesis complexes are active during the cell cycle of E. coli (Typas et al., 
2012). MreB and associated membrane proteins control the position and activity of peptidoglycan synthases 
PBP1A and PBP2 as well as so far unknown hydrolases (Hyd) during dispersed elongation. During a preseptal 
mode of elongation, which is located to the midcell, FtsZ forms the Z-ring and is associated with ZapA, ZipA, 
FtsA, FtsEX and FtsK. It is unknown whether MreB and associated proteins participate at this time point. The cell 
division complex contains essential, inner membrane-localized cell division proteins, the peptidoglycan synthases 
PBP1B and PBP3, lytic transglycosylases (LT) and amidase enzymes (Ami) with their activators as well as proteins 
of the Tol-Pal complex for constriction of the outer membrane. 
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The sugar moieties are linked to the nascent glycan chains by glycosyltransferases, 

while D-alanyl-D-alanine (DD)-transpeptidases catalyze the formation of peptide cross-links. 

The degree of cross-linking is regulated by DD-carboxypeptidases that cleave the terminal 

D-Ala of the pentapeptide side chains to maintain cell shape by controlling the amount of 

pentapeptide substrates available to the peptidoglycan synthetic DD-transpeptidases (Peters et 

al., 2016). The DD-transpeptidases and DD-carboxypeptidases belong to the family of 

penicillin-binding proteins (PBP) named after their capacity to covalently bind penicillin 

(Suginaka et al., 1972) (see chapter 1.5.2). The insertion of a new peptidoglycan strand into the 

existing sacculus requires the degradation of mature peptidoglycan by lytic enzymes referred 

to as cell wall hydrolases (Vollmer et al., 2008). Cell wall hydrolases such as lytic 

transglycosylases, endopeptidases and amidases are capable of cleaving different bonds within 

the net-like peptidoglycan structure. Lytic transglycosylases cleave the glycosidic bond 

between MurNAc and GlcNAc units, endopeptidases cut various amide bonds between the 

amino acids of the peptide chains and amidases hydrolyze the amide bond between MurNAc 

and the N-terminal L-Ala residue of the peptide chain (Vollmer et al., 2008). The degradation 

process is essential for proper cell division in which septal peptidoglycan needs to be cleaved 

but on the other hand also produced at the same time to allow separation of the daughter cells. 

This complex machinery, the divisome, consists of various synthesizing, hydrolyzing, 

cytoskeletal and regulating proteins as well as proteins of the Tol-Pal complex (Typas et al., 

2012).  

1.5.2 Penicillin-binding proteins (PBP) 

PBPs belong to the protein family of acyl serine transferases and are essential enzymes 

for the final steps of peptidoglycan biosynthesis and are also required for proper cell division 

(Scheffers and Pinho, 2005). These enzymes play a crucial role in β-lactam susceptibility which 

is based on their high affinity for binding these antibiotics (Suginaka et al., 1972). Usually, 

PBPs have a PBP and serine/threonine kinase associated domain (PASTA) which forms a stable 

covalent adduct with β-lactam antibiotics (Yeats et al., 2002). Amino acid sequences of PBPs 

characteristically harbor the three conserved motifs SXXK, SX(D/N) and K(S/T)G with X 

denoting a variable amino acid residue. Occasionally, SXN is substituted by SXD and KTG is 

substituted by KSG, while SXXK is invariant (Goffin and Ghuysen, 2002). The SXXK motif 

contains the active site serine and is involved in binding of the substrate forming an 

acyl-enzyme intermediate and reacts with β-lactams. Subsequent deacylation is catalyzed by 

serine of the SX(D/N) motif and polarized by lysine of the K(S/T)G motif (Dougherty and 



1 Introduction 

18 
 

Pucci, 2011). Secondary and tertiary structures show that the SXXK motif is located in an α-

helix, while SX(D/N) is in a loop connecting two α-helices and K(S/T)G is found in a β-sheet 

(Kelly and Kuzin, 1995; Goffin and Ghuysen, 1998). Four different physiological functions are 

assigned to PBPs (Egan et al., 2015) (Figure 7): first, transglycosylation, where PBPs catalyze 

the polymerization of disaccharide units with simultaneous removal of undecaprenyl 

pyrophosphate (C55-PP; bactoprenol) probably leaving one C55-PP at the terminal MurNAc 

residue of the new glycan strand; second, DD-carboxypeptidation, where PBPs cleave the 

terminal D-Ala of a pentapeptide chain regulating the extent of peptidoglycan cross-linking; 

third, transpeptidation, in which PBPs catalyze the cross-linking of the peptide chains; and 

fourth, endopeptidation, in which PBPs hydrolyze the cross-linked peptide chains.  

 

Figure 7: Schematic presentation of identified PBP activities. PBPs can catalyze transglycosylation reactions 
to connect the sugar units with simultaneous removal of undecaprenyl pyrophosphate (C55-PP) probably leaving 
one C55-PP at the terminal MurNAc residue of the new glycan strand (Egan et al., 2015). They can also exhibit 
DD-carboxypeptidase activity by cleaving the terminal D-Ala in a pentapeptide chain. PBPs can further act as 
DD-transpeptidases by cross-linking the peptide chains (with simultaneous DD-carboxypeptidase activity) or as 
endopeptidases by cleaving the cross-linked peptide chains. Green hexagons represent GlcNAc, blue hexagons 
MurNAc. Circles represent the amino acids L-Ala (yellow), D-Glu (orange), L-Lys or m-DAP (red) and D-Ala 
(purple). 

PBPs are divided into high molecular weight (HMW) PBPs and low molecular weight 

(LMW) PBPs (Sauvage et al., 2008). HMW-PBPs are usually anchored to the outer surface of 

the cytoplasmic membrane and are responsible for peptidoglycan polymerization (Goffin and 

Ghuysen, 1998; Born et al., 2006). Depending on their structure and activity, they are further 

classified into class A and class B PBPs. While the C-terminal domain of all HMW-PBPs shows 

DD-transpeptidase activity, the N-terminal domain of class A provides glycosyltransferase 

activity (Sauvage et al., 2008). Thus, they are bifunctional PBPs (Höltje, 1998). In class B, the 
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N-terminal domain is thought to be involved in maintaining cell shape by providing a 

recognition site for interaction with other proteins during the cell cycle (Den Blaauwen et al., 

2008; Zapun et al., 2008). Class B PBPs in E. coli are monofunctional DD-transpeptidases 

(Sauvage et al., 2008). LMW-PBPs are described by the general term of class C PBPs. They 

are monofunctional and exhibit DD-carboxypeptidase or endopeptidase activity (Ghuysen, 

1991; Massova and Mobashery, 1998). Bacteria have a variable number of PBPs which are 

historically numbered according to their migration on protein gels. For instance, E. coli have 

twelve known PBPs: PBP1a, PBP1b and PBP1c (class A HMW-PBPs); PBP2 and PBP3 (class 

B HMW-PBPs); PBP4a, PBP4b, PBP5, PBP6a, PBP6b, PBP7 and AmpH (class C LMW-PBPs) 

(Sauvage et al., 2008). Although the biochemical activities from of all these PBPs are well 

studied, control mechanisms and their exact roles within cells are not fully understood 

(Markovski et al., 2016). 

1.5.3 Interaction between peptidoglycan and outer membrane proteins 

In Gram-negative bacteria, the predominantly single-layered peptidoglycan sacculus is 

connected to the outer membrane by covalent and noncovalent interactions with various outer 

membrane proteins (Typas et al., 2010). The peptidoglycan-associated lipoprotein (Pal) is an 

outer membrane protein which specifically binds to uncross-linked m-DAP and is part of the 

membrane-spanning Tol-Pal complex (Parsons et al., 2006). The N-terminus of Pal containing 

the lipid moiety is anchored to the inner side of the outer membrane, with the C-terminus 

binding to peptidoglycan via a pocket for m-DAP residues (Bos et al., 2007). Pal interacts with 

the transmembrane protein TolA that, together with TolQ and TolR, forms a sub-complex in 

the inner membrane. TolB is a periplasmic protein which competes with peptidoglycan to bind 

Pal and thus regulates this association (Gerding et al., 2007). The Tol-Pal complex also interacts 

with other outer membrane proteins and builds a connection between the outer membrane, inner 

membrane and peptidoglycan layer facilitating membrane integrity (Godlewska et al., 2009). 

However, the Tol-Pal complex has not only been shown to play a role in cell wall stabilization 

but is also essential for proper constriction of the outer membrane during cell division (Gerding 

et al., 2007).  

Apart from that, it was demonstrated in E. coli that certain outer membrane-anchored 

lipoproteins control peptidoglycan synthases (Paradis-Bleau et al., 2010; Typas et al., 2010). 

Each so-called Lpo protein stimulates the DD-transpeptidase activity of its cognate PBP by 

binding and inducing conformational changes (Egan et al., 2014; Markovski et al., 2016). Lpo 

proteins are limited to γ-proteobacteria (LpoA) and enterobacteria (LpoB). They evolved 
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independently and have no sequence homology (Typas et al., 2010). The additional level of 

regulation provided by Lpo proteins may enable niche-specific adaptation and other bacterial 

groups may have proteins with regulatory roles similar to Lpo proteins (Typas et al., 2012). 

1.5.4 Host response to cell wall fragments 

In E. coli, around 40–50 % of the peptidoglycan sacculus is removed during each 

generation and either translocated to the cytoplasm or liberated into the environment (Typas et 

al., 2012). To keep resources, most of the degradation products are recovered, translocated into 

the cytoplasm via permeases and recycled by several enzymes to be available again for the 

synthesis of new peptidoglycan (Park and Uehara, 2008). The release of cell wall fragments has 

important messenger functions in bacterial communication and, in infections, liberated 

fragments can also be detected by the host leading to an immune response (Johnson et al., 2013; 

Wheeler et al., 2014). To identify pathogens, eukaryotes have evolved different 

pattern-recognition-receptors (PRRs). One group of PRRs are Toll-Like-Receptors (TLRs) 

which are part of the innate immune system and recognize pathogen-associated molecular 

patterns (PAMPs). TLRs sense a variety of PAMPs like bacterial lipopolysaccharides (TLR4), 

lipopeptides and peptidoglycan (TLR2, TLR6) (Kawai and Akira, 2007). Another group of 

PRRs are the nucleotide-binding oligomerization domain receptors (NOD). They sense 

bacterial cell wall fragments, i.e. anhydromuropeptides, and subsequently activate the 

transcription factor NFκB, which plays a key role in regulating the immune response to 

infection (Wheeler et al., 2014). NOD 1 has been shown to be specifically activated by m-DAP 

typically found in Gram-negative bacteria, while NOD 2 binds 

N-acetyl-muramyl-L-alanyl-D-glutamate (MurNAc-dipeptide) fragments of the cell wall from 

Gram-positive and Gram-negative bacteria (Lee et al., 2009). Hence, peptidoglycan and cell 

wall fragments are major players in pathogenesis by contributing to fever, sleepiness and loss 

of appetite that are symptomatic for many bacterial infections (Wheeler et al., 2014). 

1.5.5 Cell wall biosynthesis as a target for antibiotics 

Currently, cell wall biosynthesis inhibitors are the most clinically used antibiotics 

worldwide (Sarkar et al., 2017). The precursor lipid II is essential, highly conserved and 

difficult to modify, thus resistance to lipid II-targeting antibiotics develops more slowly 

compared to other antibiotics, e.g. protein biosynthesis inhibitors (Schneider and Sahl, 2010). 

In particular, easy access outside the cytoplasm makes lipid II and peptidoglycan attractive 

antibiotic targets from the early identification of penicillin to the recent discovery of teixobactin 
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(Ling et al., 2015). For this reason, peptidoglycan synthesis is called the Achilles’ heel of 

bacteria (Schneider and Sahl, 2010).  

1.6 Lipid II metabolism in Wolbachia 

The genome of Wolbachia is highly reduced due to their obligate endosymbiotic 

lifestyle and it is hypothesized that retained genes and metabolic pathways are crucial for 

survival (Foster et al., 2005). The characterization of preserved pathways that are essential for 

Wolbachia is necessary to better understand Wolbachia biology and possibly their interaction 

with their different hosts. As for other intracellular bacteria, Wolbachia are protected by the 

host cell and therefore do not need peptidoglycan to withstand osmotic challenges. 

Interestingly, the Wolbachia genomes that have been sequenced and annotated encode all 

proteins required for the synthesis of lipid II, but endopeptidases and almost all peptidoglycan 

recycling enzymes are not annotated (Foster et al., 2005) (Figure 8). Also bifunctional PBPs 

with glycosyltransferase activity were not identified leading to the assumption that Wolbachia 

might have an unusual cell wall without connected glycan subunits (Vollmer et al., 2013). 

However, a cell wall has not been detected (Kozek, 1977; Louis and Nigro, 1989) and the 

question remains why Wolbachia should keep the high resource consuming process of lipid II 

synthesis. It has been shown that recombinant Wolbachia proteins and purified Wolbachia 

membranes synthesize lipid I and II, supporting the hypothesis that lipid II is required during 

cell division (Henrichfreise et al., 2009; Vollmer et al., 2013). When lipid II synthesis was 

blocked by the antibiotic fosfomycin, Wolbachia in a C6/36 insect cell culture could not 

separate properly resulting in enlarged cells (Vollmer et al., 2013). These findings indicate that 

Wolbachia might have kept the energy consuming process of lipid II synthesis, because cell 

wall biosynthesis and cell division are tightly connected and cannot be separately eliminated in 

the course of evolution. Additionally, it was demonstrated that Wolbachia lipid II likely 

contains D-Ala obtained by the racemase MetC (Vollmer et al., 2013). It is unclear whether 

lipid II is further processed and any attempts to detect peptidoglycan in Wolbachia have not 

been successful (Henrichfreise et al., 2009). Therefore, the exact composition of a possible 

Wolbachia cell wall is of great interest in order to find potential targets for the treatment of 

filarial diseases. 
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Figure 8: Proposed lipid II pathway in Wolbachia (adapted from Henrichfreise et al., 2009). Lipid II 
biosynthesis takes place in the cytoplasm and is catalyzed by the enzymes MurA to MurF, MraY and MurG. 
Lipid II synthesis can be inhibited by fosfomycin and MetC has been shown to function as a racemase that 
generates D-amino acids which might be connected to dipeptides via the D-alanine-D-alanine ligase Ddl, which is 
expressed in Wolbachia (Vollmer et al., 2013). Lipid II might be flipped into the periplasm where it could be 
cross-linked by the action of DD-carboxypeptidases and DD-transpeptidases. Wolbachia from Brugia malayi 
(wBm) only encode genes for PBP2 and PBP6a, while Wolbachia from Drosophila melanogaster (wMel) 
additionally encode for PBP3 and AmiD. Genes that are not annotated in the Wolbachia genome are depicted with 
red X’s. Question marks indicate yet unidentified or uncharacterized metabolic steps. 

1.6.1 Retained lipid II processing enzymes in Wolbachia 

Although almost all peptidoglycan recycling enzymes and glycosyltransferases are not 

annotated, there are still peptidoglycan synthesizing enzymes encoded in the genome of 

Wolbachia. PBP2 and PBP6a are found in filarial and insect Wolbachia, while PBP3 is only 

annotated in insect Wolbachia. PBP2 and PBP3 in free-living bacteria are known to provide 

DD-transpeptidase activity and catalyze the cross-linking of peptide stems, the 

DD-carboxypeptidase PBP6a regulates the degree of crosslinking by cleaving the terminal 

D-Ala of the pentapeptide (Höltje, 1998). The annotated genomes of Wolbachia from 

arthropods (e.g. wMel, Wolbachia from Drosophila melanogaster; wRi, Wolbachia from 

Drosophila simulans; wPiP, Wolbachia from Culex quinquefasciatus Pel) have retained one 

cell wall hydrolase that shows homology to the E. coli N-acetylmuramoyl-L-alanine-amidase 
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AmiD. Vollmer et al. (2013) showed that lipid II processing enzymes are not only encoded in 

the wolbachial genome, but they are indeed expressed in wAlbB. However, the activity of these 

enzymes has not been studied in Wolbachia and it is unknown if and how lipid II is processed. 

A new cell wall labeling technique revealed that obligate intracellular bacteria of the 

genus Chlamydia synthesize a peptidoglycan-like structure after decades of debates between 

scientists (Liechti et al., 2014). With the same technique, a peptidoglycan-like structure was 

also detected in free-living Planctomycetes for the first time and recently also in Orientia 

tsutsugamushi, which are closely related to Wolbachia also belonging to the order Rickettsiales 

(Atwal et al., 2017). 

1.6.1.1 Penicillin-binding protein PBP2 

PBP2 (synonyms: MrdA, pbpA) is a HMW class B PBP DD-transpeptidase involved in 

cell elongation and maintenance of cell shape. These proteins have an N-terminal, 

non-penicillin-binding domain, which might be involved in protein-protein interactions and a 

C-terminal domain with the active site motifs (Höltje, 1998). Inhibition of PBP2 by specific 

antibiotics, like mecillinam, leads to spherical cells instead of rods in E. coli (Spratt and Pardee, 

1975). As shown for S. aureus, PBP2 localizes at the septum in the presence of lipid II. When 

the lipid II synthesis pathway is inhibited by the antibiotic D-cycloserine, PBP2 delocalizes 

from the septum (Pinho and Errington, 2005). PBP2 was also found in the lateral wall and at 

mid-cell during cell division suggesting that it might have an additional housekeeping role (Den 

Blaauwen et al., 2003). The filarial Wolbachia DD-transpeptidase homolog PBP2 from wBm 

was re-annotated on the database of the National Center for Biotechnology Information (NCBI) 

and is now listed as a putative PBP3, a monofunctional DD-transpeptidase involved in cell 

division. The characterization of this enzyme is part of this work. 

1.6.1.2 Penicillin-binding protein PBP3 

In free-living bacteria, PBP 3 (synonym: FtsI) is part of the divisome and responsible 

for correct septation (Goffin et al., 1996). In E. coli, the protein is a HMW class B PBP, which 

consists of an N-terminal non-penicillin-binding domain with a short intracellular part, a 

membrane anchor responsible for correct localization, and the C-terminal penicillin-binding 

domain which harbors the active site motifs (Goffin et al., 1996; Weiss et al., 1999). Up to now, 

no transpeptidation activity could be detected for PBP3 in vitro, but purified protein from E. coli 

has been shown to hydrolyze artificial thioester compounds, which might at least indicate the 

presence of an accessible active site (Adam et al., 1991; Egan et al., 2015). The specific 

inhibition of PBP3 by the antibiotic aztreonam leads to the arrest of cell division and a 
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filamentous phenotype which facilitates in vivo activity assays (Weiss et al., 1997). Filarial 

Wolbachia only harbor the putative monofunctional DD-transpeptidase PBP2 (see chapter 

1.6.1.1), whereas Wolbachia residing in insect cells encode PBP2 and PBP3. The function of 

this additional PBP in Wolbachia biology is unknown. Thus, the putative PBP3 enzyme from 

wMel was investigated in this thesis. 

1.6.1.3 Penicillin-binding protein PBP6a 

The final reaction in cell wall synthesis is the cleavage of the terminal D-Ala residue 

accompanied by the formation of an interpeptide bridge. The degree of cross-linking is 

regulated by DD-carboxypeptidases which belong to LMW class C PBPs. In E. coli, three 

periplasmic monofunctional DD-carboxypeptidases have been identified: PBP5, PBP6a 

(synonym: DacC, formerly known as PBP6) and PBP6b (Peters et al., 2016). To date, the exact 

function of these proteins, especially PBP6a, is poorly understood. They seem to play a vital 

role in controlling cell diameter and septum formation as well as in modulating the mature 

peptidoglycan meshwork (Ghosh et al., 2008; Sarkar et al., 2011). DD-carboxypeptidases are 

dispensable for the survival of E. coli and the deletion of the corresponding genes does not 

affect cell growth or morphology except for PBP5, which is considered to act as the main 

DD-carboxypeptidase (Nelson and Young, 2001). Due to their high amino acid sequence 

similarity, a potential substitution of PBP5 by PBP6a was investigated, but PBP6a did not 

compensate growth defects of PBP5-lacking cells (Chowdhury et al., 2010). Additionally, 

PBP6 was shown to have an in vitro enzyme activity five times weaker than PBP5 (Chowdhury 

et al., 2010). Contrary to PBP5, which is produced primarily during early exponential growth 

in E. coli, PBP6a is highly expressed in the stationary phase (Baquero et al., 1996). This leads 

to the hypothesis of a functional difference between PBP5 and PBP6a in vivo, suggesting a role 

for the latter in the stabilization of peptidoglycan during the stationary phase (Van der Linden 

et al., 1992). Of note, overexpressed PBP6a from E. coli was able to restore cell division of a 

PBP3-repressed E. coli strain, which shows a filamentous phenotype when grown at the 

non-permissive temperature of 42 °C (Begg et al., 1990). This growth defect can be 

complemented by the overexpression of a DD-carboxypeptidase cleaving the terminal D-Ala 

of the pentapeptide chains. The subsequent cleavage of the tetrapeptides by a second 

carboxypeptidase (LD-carboxypeptidase A) results in increased levels of available tripeptide 

chains in peptidoglycan. These are the preferred substrates for the residual activity of the 

impaired PBP3 and cell division can be complemented partially (Botta and Park, 1981; 

Pisabarro et al., 1986; Begg et al., 1990; Dai et al., 1993). Restoration of growth in the same 
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PBP3-repressed E. coli strain has also been performed with PBP6 from Chlamydia pneumoniae 

and provides an established assay for the determination of in vivo DD-carboxypeptidase activity 

(Otten, 2014). The elucidation of the putative cell wall active enzyme PBP6a from wBm is part 

of this work.  

1.6.1.4 N-acetylmuramoyl-L-alanine-amidase AmiD 

In E. coli, four periplasmic N-acetylmuramoyl-L-alanine-amidases are described 

(Uehara and Park, 2007; Kerff et al., 2010). All of them are zinc-dependent and can be blocked 

by metal chelators like ethylenediaminetetraacetic acid (EDTA). AmiA, AmiB and AmiC 

belong to the amidase 3 family and play a role in septum cleavage leading to separation of the 

daughter cells at the end of cell division (Heidrich et al., 2001). These enzymes hydrolyze the 

amide bond between the MurNAc lactyl group and the L-alanine of the peptide but they have 

no activity when the MurNAc is in its anhydro form as a result of glycan chain cleavage by lytic 

transglycosylases (Heidrich et al., 2001). AmiD, the last N-acetylmuramoyl-L-alanine amidase 

identified in E. coli, is a periplasmic lipoprotein anchored in the outer membrane belonging to 

the amidase 2 family. It exerts its broader hydrolytic activity on the intact peptidoglycan and 

soluble fragments containing MurNAc regardless of its anhydro form (Uehara and Park, 2007). 

AmiD is not involved in cell separation during the bacterial division, and its exact role in the 

cell has not been identified (Kerff et al., 2010). It has been proposed that AmiD is part of a 

secondary strategy to prevent immune responses in the host organism by degrading cell wall 

fragments in the periplasm (Uehara and Park, 2007). The genomes of arthropod Wolbachia (e.g. 

wMel, wRi, wPiP) all contain only one predicted periplasmic cell wall hydrolase. Sequenced 

genomes of filarial wBm and O. volvulus (wOv) show that these strains have lost the ability to 

synthesize any of these enzymes, e.g. wBm0682 might encode an amidase, but genome analysis 

has concluded that it is a pseudogene (Wu et al., 2004; Foster et al., 2005). Recently, the only 

identified chlamydial amidase AmiA has been shown to perform a novel bifunctional activity 

on lipid II as an amidase as well as a DD-carboxypeptidase in vitro and this amidase is essential 

for cell division (Klöckner et al., 2014). In this thesis, the putative hydrolyzing activity of AmiD 

from wMel was analyzed. 

1.6.2 Interaction of Wolbachia lipid II and outer membrane proteins 

Bioinformatic analysis of the wBm genome using distinct databases consistently 

identified two lipoproteins in the outer membrane: Wolbachia Pal and Wolbachia VirB6, which 

is a core component of the bacterial Type IV secretion system (Turner et al., 2009; Voronin et 

al., 2014). Analysis of the proteome of adult female B. malayi revealed that Pal is one of the 
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most abundant proteins in Wolbachia (Voronin et al., 2014). Wolbachia do not encode Tol 

genes located in the inner membrane. Only some of the annotated Wolbachia strains (e.g. 

wAlbB, wMel, wPip) found in arthropods possess the gene for the periplasmic protein TolB 

which is assumed to modulate Pal by competing for peptidoglycan (Gerding et al., 2007). 

However, it is possible that Pal is necessary to connect the inner and outer membrane, especially 

during cell division, and this interaction partner might be lipid II (Vollmer et al., 2013). First 

evidence for this was demonstrated in fosfomycin-treated Wolbachia (blocking of lipid II 

synthesis) resulting in enlarged cells unable to divide and a perturbed localization of the 

lipoprotein Pal (Vollmer et al., 2013). 

1.6.3 Host response to Wolbachia cell wall fragments 

In filarial infections, the pro-inflammatory activity of B. malayi and O. volvulus is higher 

when Wolbachia are present, and lipoproteins have been identified as key ligands (Hise et al., 

2007; Turner et al., 2009; Tamarozzi et al., 2011). It was shown that Wolbachia activate 

TLR 2/6 in filariasis, and Pal recruits neutrophils, macrophages and other innate immune cells, 

stimulating their activation and the production of an array of pro-inflammatory cytokines and 

mediators (Saint André et al., 2002; Hise et al., 2007; Tamarozzi et al., 2011). Additionally, 

Wolbachia lipoproteins also drive adaptive Th1 immunity through activation of dendritic cells 

(Turner et al., 2009). Thus, Pal is likely a major driver of Wolbachia-mediated inflammatory 

immunity. With protein extract of Litomosoides sigmodontis, a filarial nematode infecting 

rodents used as a mouse model for human filarial infections, it was demonstrated that both 

NOD 1 and NOD 2 receptors were activated in stimulated human embryonic kidney cells 

expressing the specific receptor (Ajendra et al., 2016). When Wolbachia residing in the 

nematodes were depleted by tetracycline, the receptors were not activated after incubation with 

L. sigmodontis extract. The activation of NOD 1 and NOD 2 receptors further confirm that at 

least cell wall precursors are synthesized by Wolbachia which likely contain m-DAP (Ajendra 

et al., 2016).  
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1.7 Objectives 

Wolbachia endobacteria are not challenged by osmotic pressure and peptidoglycan has 

never been detected. Still, Wolbachia encode almost all genes required for the synthesis of the 

cell wall precursor lipid II, which has been shown to be synthesized and to be essential for cell 

division (Henrichfreise et al., 2009; Vollmer et al., 2013). However, it is unknown if and how 

lipid II is processed. The investigation of Wolbachia enzymes involved in lipid II metabolism 

and the exact composition of a putative Wolbachia cell wall not only provides insight into 

Wolbachia biology but might also identify novel targets for the development of antibiotics for 

use in depleting these essential endobacteria from filarial nematodes. Since the role of lipid II 

in Wolbachia biology is poorly understood, the function of the retained lipid II modifying 

enzymes in cell wall biosynthesis and cell separation were examined. The overall objective of 

the present thesis was to elucidate the processing of lipid II in Wolbachia. In particular, the 

functionality as well as antibiotic susceptibility of putative lipid II processing enzymes were 

investigated in vivo and in vitro. The main goals of the thesis were: 

 

1. Characterization of the following proteins: 

(I) AmiDwMel, a putative N-acetylmuramoyl-L-alanine-amidase from Wolbachia 

endosymbionts of D. melanogaster 

(II) PBP2wBm, a putative DD-transpeptidase from Wolbachia endosymbionts of B. malayi 

(III) PBP3wMel, a putative DD-transpeptidase involved in cell division from Wolbachia 

endosymbionts of D. melanogaster 

(IV) PBP6awBm, a putative DD-carboxypeptidase from Wolbachia endosymbionts of 

B. malayi 

(V) PalwBm, peptidoglycan-associated lipoprotein from Wolbachia endosymbionts of 

B. malayi 

2. By labeling lipid II in vivo, it was investigated whether Wolbachia from an infected C6/36 

insect cell culture have a peptidoglycan-like structure. 

3. In interaction assays, it was examined in vitro whether PalwBm interacts with lipid II and 

PBP2wBm.  

4. An established cell-free Wolbachia culture was further studied and supplemented with 

substances in order to enhance stability and growth (Vollmer, 2012). Moreover, cell-free 

Wolbachia were incubated with different antibiotics to test the efficacy and impact on 

proliferation and morphology.  
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2 Materials and methods 

2.1 Equipment and consumables 

2.1.1 Chemicals and solvents 

Table 1: List of chemicals used in this thesis. 
Name Manufacturer 

1,10-Phenanthroline Sigma-Aldrich, Steinheim, Germany 

Anhydrotetracycline IBA Lifesciences, Göttingen, Germany 

(L-)Arginine Sigma-Aldrich, Steinheim, Germany 

(L-)Ascorbic acid Sigma-Aldrich, Steinheim, Germany 

β-Mercaptoethanol Merck Millipore, Darmstadt, Germany 

BCIP Carl Roth, Karlsruhe, Germany 

Betaine Sigma-Aldrich, Steinheim, Germany 

Biotin Sigma-Aldrich, Steinheim, Germany 

Biotin Blocking Buffer IBA Lifesciences, Göttingen, Germany 

Bovine Serum Albumin Fraction V Fisher Scientific, Schwerte, Germany 

Bradford reagent Cytoskeleton, Denver, USA 

Bromophenol blue Sigma-Aldrich, Steinheim, Germany 

C55-P Larodan Fine Chemicals, Malmö, Sweden  

CENTATM Calbiochem, Darmstadt, Germany 

Chloroform J.T. Baker, Griesheim, Germany 

(D-)Desthiobiotin IBA Lifesciences, Göttingen, Germany 

DMF Sigma-Aldrich, Steinheim, Germany 

DMSO Sigma-Aldrich, Steinheim, Germany 

EDTA Carl Roth, Karlsruhe, Germany 

Ethanol Merck Millipore, Darmstadt, Germany 

Ethynyl-D-alanyl-D-alanine Pepmic Co., Ltd., Suzhou, China 

Ethynyl-L-alanyl-L-alanine Pepmic Co., Ltd., Suzhou, China 

Glycerol Sigma-Aldrich, Steinheim, Germany 

HCl Sigma-Aldrich, Steinheim, Germany 

KH2PO4 Sigma-Aldrich, Steinheim, Germany 

LE-Agarose Biozym, Hamburg, Germany 

(D-)Mannitol Sigma-Aldrich, Steinheim, Germany 

Methanol J.T. Baker, Griesheim, Germany 

MgCl2 Sigma-Aldrich, Steinheim, Germany 

Midori Green Advanced Nippon Genetics Europe, Düren, Germany 

MOPS Sigma-Aldrich, Steinheim, Germany 

NaOH Carl Roth, Karlsruhe, Germany 

Na2HPO4 Sigma-Aldrich, Steinheim, Germany 

NBT Carl Roth, Karlsruhe, Germany 

NovexTM sharp prestained protein ladder Thermo Scientific, Waltham, USA 

PAGEruler prestained protein ladder 1kb Thermo Scientific, Waltham, USA 

PAGEruler unstained protein ladder 1kb Thermo Scientific, Waltham, USA 

Perchloric acid 70 % Merck Millipore, Darmstadt, Germany 
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Name Manufacturer 

Paraformaldehyde Merck Millipore, Darmstadt, Germany 

Quick-Load 1kb DNA ladder  New England Biolabs, Ipswich, USA 

Remazol Brilliant Blue Dye Sigma-Aldrich, Steinheim, Germany 

SDS Carl Roth, Karlsruhe, Germany 

Strep-Tactin® Sepharose IBA Lifesciences, Göttingen, Germany 

Sucrose Sigma-Aldrich, Steinheim, Germany 

SYBR Green Fermentas, St. Leon-Rot, Germany 

TEMED Roth, Karlsruhe, Germany 

(D-)Trehalose Sigma-Aldrich, Steinheim, Germany 

Triton X-100 Sigma-Aldrich, Steinheim, Germany 

Tri-Track loading dye Thermo Scientific, Waltham, USA 

Uridine 5′-diphospho-N-acetylglucosamine 

sodium salt  

Sigma-Aldrich, Steinheim, Germany 

Vectashield Mounting Medium Vector Laboratories, Burlingame, USA 

ZnCl2 Sigma-Aldrich, Steinheim, Germany 

2.1.2 Enzymes 

Table 2: List of enzymes used in this thesis. 
Name Manufacturer 

α-Amylase from Aspergillus oryzae Sigma-Aldrich, Steinheim, Germany 

α-Chymotrypsin Sigma-Aldrich, Steinheim, Germany 

Alkaline phosphatase conjugate IBA Lifesciences, Göttingen, Germany 

Benzonase Novagen, Darmstadt, Germany 

BamHI New England Biolabs, Ipswich, USA 

BsaI HF New England Biolabs, Ipswich, USA 

EcoRI HF New England Biolabs, Ipswich, USA 

NcoI HF New England Biolabs, Ipswich, USA 

D-amino acid oxidase (DAAO) Sigma-Aldrich, Steinheim, Germany 

Lysozyme Novagen, Darmstadt, Germany 

Phusion® HF Polymerase Thermo Scientific, Waltham, USA 

T4 Ligase New England Biolabs, Ipswich, USA 

2.1.3 Kits 

Table 3: List of kits used in this thesis. 
Name Manufacturer 

Click-iT® Cell Reaction Buffer Kit Thermo Scientific, Waltham, USA 

HotStarTaq® DNA Polymerase Kit Qiagen, Hilden, Germany 

LIVE/DEAD® BacLight™ Bacterial  

Viability Kit 

Molecular Probes, Carlsbad, USA 

Nucleospin Gel and PCR Clean-up Kit Macherey Nagel, Düren, Germany 

QIAamp DNA Mini Kit Qiagen, Hilden, Germany 

QIAprep Spin Miniprep Kit Qiagen, Hilden, Germany 

QIAquick PCR purification Kit Qiagen, Hilden, Germany 

QuantaBluTM Fluorogenic Peroxidase  Thermo Scientific, Waltham, USA 
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Name Manufacturer 

Substrate Kit 

QuikChange Lightning Site-Directed 

Mutagenesis Kit 

Agilent Technologies, Waldbronn, Germany 

Strep Tactin Miniprep Spin Column Kit IBA Lifesciences, Göttingen, Germany 

2.1.4 Technical equipment 

Table 4: List of technical equipment and devices used in this thesis. 
Name Manufacturer 

96-well cell culture well plates, clear, flat 

bottom, with lid 

Greiner, Frickenhausen, Germany 

Bench-top centrifuge 5417R Eppendorf, Hamburg, Germany 

Bench-top centrifuge Mikro 200 Hettich, Tuttlingen, Germany 

Biacore® T100 GE Healthcare, Chicago, USA 

Binocular Leitz Diavert Leitz, Wetzlar, Germany 

BLItz® system device Pall ForteBio, Fremont, USA 

Borosilicate glass beads 3mm Sigma-Aldrich, Steinheim, Germany 

Cellstar standard cell culture flasks Greiner, Frickenhausen, Germany 

CM5 sensor chip GE Healthcare, Chicago, USA 

Corning cell lifter Sigma-Aldrich, Steinheim, Germany 

Electrophoresis power supply consort EV243 Thermo Scientific, Waltham, USA 

FalconTM Chambered Cell Culture Slides  BD Falcon, Corning, USA 

FastGene Led Illuminator Nippon Genetics Europe, Düren, Germany 

Fraction Collector FC204 Gilson, Middleton, USA 

Freeze dryer Alpha 2-4 LSC Martin Christ, Osterode am Harz, Germany 

Gel DocTM EZ Imager Bio-Rad, München, Germany 

Heraeus Multifuge 1 S-R Heraeus Instruments, Hanau, Germany 

Hi-Trap DEAE FF column Amersham Biosciences, Freiburg, Germany 

HPLC Gilson, Middleton, USA 

Incubator Type B6120 Heraeus Instruments, Hanau, Germany 

MicroPulserTM Bio-Rad, München, Germany 

Mini-PROTEAN® 12 % Precast Gels Bio-Rad, München, Germany 

Mini-PROTEAN® Tetra Electrophoresis System Bio-Rad, München, Germany 

Nanophotometer TM 7122v1.6.1  Implen, München, Germany 

Neubauer counting chamber improved Laboroptik, Bad Homburg, Germany 

Nitrocellulose blotting membrane Amersham Biosciences, Freiburg, Germany 

PCR cycler MWG-Biotech, Ebersberg, Germany 

PierceTM Streptavidin Coated Plates Thermo Scientific, Waltham, USA 

Polypropylene column Qiagen, Hilden, Germany 

QIAcube robotic workstation Qiagen, Hilden, Germany 

Rotavapor RE11 Büchi Labortechnik, Flawil, Switzerland 

Rotorgene 6000 Corbett Life Sciences, Sydney, Australia 

Shaker MaxQ 5000 Mod4360 Thermo Scientific, Waltham, USA 

Silica plate TLC Silica Gel 60 Merck Millipore, Darmstadt, Germany 

Sorvall Discovery M120 SE Fisher Scientific, Schwerte, Germany 

Sorvall Evolution EC Superspeed Centrifuge Fisher Scientific, Schwerte, Germany 

SparkTM 10M multimode microplate reader Tecan, Männedorf, Switzerland 
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Name Manufacturer 

Spectramax® 340PC Molecular Devices, Biberach an der Riss, 

Germany 

Streptavidin biosensors Pall ForteBio, Fremont, USA 

SunriseTM microplate reader Tecan, Männedorf, Switzerland 

Teflon tubes Nalgene, Rochester, USA 

Trans-Blot TurboTM Transfer System Bio-Rad, München, Germany 

UviLine 9400 photometer SI Analytics, Mainz, Germany  

Vortexer RS-VA10 Phoenix Instruments, Garbsen, Germany 

Zeba Spin Desalting Columns 7K MWCO Thermo Scientific, Waltham, USA 

ZeissAxio VertA.1 Epifluorescence microscope Carl Zeiss AG, Oberkochen, Germany 

Zeiss Laser Scanning Microscope 710 Carl Zeiss AG, Oberkochen, Germany 

2.1.5 Culture media and supplements 

Table 5: Culture media and agar plates used in this thesis. 
Name Composition/Manufacturer 

ATCC medium: 200 YM medium 3 g yeast extract, 3 g malt extract, 10 g dextrose, 

5 g peptone, ad 1 l aqua dest.; pH 6.2 

L15 Leibovitz medium  Invitrogen, Darmstadt, Germany 

Lysogeny broth (LB) medium 10 g tryptone, 5 g yeast extract, 10 g NaCl, ad 

1 l aqua dest.; pH 7.5 

LB agar 10 g tryptone, 5 g yeast extract, 10 g NaCl, 15 g 

agar, ad 1 l aqua dest.; pH 7.5 

Mueller-Hinton agar Becton Dickinson GmbH, Heidelberg, Germany 

Mueller-Hinton broth Carl Roth, Karlsruhe, Germany 

NaCl-free LB broth 10 g tryptone, 5 g yeast extract, ad 1 l aqua dest.; 

pH 7.5 

Super optimal broth (SOC) medium Thermo Scientific, Waltham, USA 

Tryptone soya broth (TSB) Thermo Scientific, Waltham, USA 

Table 6: Culture media supplements used in this thesis. 
Name Manufacturer 

α-cardiac actin from bovine cardiac muscle Hypermol, Bielefeld, Germany 

BactoTM-Yeast extract Becton Dickinson, Heidelberg, Germany  

BactoTM-Tryptone Becton Dickinson, Heidelberg, Germany  

Biotin Sigma-Aldrich, Steinheim, Germany 

Cholesterol Sigma-Aldrich, Steinheim, Germany 

Fetal Calf Serum (FCS) PAA Laboratories, Colbe, Germany 

Lipid Mixture PeproTech Inc, Hamburg, Germany 

MEM non-essential amino acids PAA Laboratories, Colbe, Germany 

Penicillin/Streptomycin PAA Laboratories, Colbe, Germany 

Sodium pyruvate Sigma-Aldrich, Steinheim, Germany 

Tryptose phosphate broth PAA Laboratories, Colbe, Germany 
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2.1.6 Antibiotics 

Table 7: Antibiotics used in this thesis. 
Name Manufacturer 

Aztreonam Sigma-Aldrich, Steinheim, Germany 

Ampicillin  Sigma-Aldrich, Steinheim, Germany 

Bacitracin AppliChem GmbH, Darmstadt, Germany 

BocillinTM FL penicillin Thermo Scientific, Waltham, USA 

Clindamycin Alfa Aesar, Ward Hill, USA 

Chloramphenicol Sigma-Aldrich, Steinheim, Germany 

Doxycycline Calbiochem, Darmstadt, Germany 

Fosfomycin Infectopharm, Heppenheim, Germany 

Mecillinam Sigma-Aldrich, Steinheim, Germany 

Penicillin G Sigma-Aldrich, Steinheim, Germany 

Polymyxin B Sigma-Aldrich, Steinheim, Germany 

Rifampicin Sigma-Aldrich, Steinheim, Germany 

Sulfamethoxazol Sigma-Aldrich, Steinheim, Germany 

Tetracycline Sigma-Aldrich, Steinheim, Germany 

Trimethoprim Sigma-Aldrich, Steinheim, Germany 

Vancomycin Sigma-Aldrich, Steinheim, Germany 

2.1.7 Antibodies and fluorophores 

Table 8: Antibodies and fluorophores used in this thesis. 
Name Manufacturer 

Alexa Fluor® 488 azide Thermo Scientific, Waltham, USA 

Alexa Fluor® 594 azide Thermo Scientific, Waltham, USA 

DAPI Sigma-Aldrich, Steinheim, Germany 

Goat anti-Rabbit IgG (H+L) secondary 

antibody, Alexa Fluor® 488 conjugate 

Thermo Scientific, Waltham, USA 

Goat anti-Rabbit IgG (H+L) secondary 

antibody, Alexa Fluor® 594 conjugate 

Thermo Scientific, Waltham, USA 

Nile red Sigma-Aldrich, Steinheim, Germany 

Rabbit wPAL anti-serum Taylor Laboratory, Liverpool School of Tropical 

Medicine, Liverpool, UK 

Rabbit Wolbachia FtsZ anti-serum Sullivan Laboratory, University of California, 

Santa Cruz, USA 

Strep-MAB-Immo monoclonal antibody IBA Lifesciences, Göttingen, Germany 

Strep-Tactin® Alkaline phosphatase conjugate IBA Lifesciences, Göttingen, Germany 
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2.2 Strains, expression vectors and primers 

2.2.1 Cell lines, yeast and bacterial strains 

Table 9: Cell lines, yeast and bacterial strains used in this thesis. 
Strain Description Reference 

Aedes albopictus C6/36 Cell line Turner, Langley et al. 

2006 

Aedes albopictus C6/36 infected 

with Wolbachia pipientis 

Wolbachia pipientis strain Aedes 

albopictus B (wAlbB) 

Turner, Langley et al. 

2006 

Bacillus cereus T Indicator strain Provided by AG 

Bierbaum, Bonn, 

Germany 

Escherichia coli (E. coli) 

ADE24 +PBAD33 

Δ amiA, amiB, amiC amidase triple 

mutant, harboring pBAD33-amiCEc, 

glucose induced chain forming 

phenotype  

Klöckner, Otten et al. 

2014; Provided by AG 

Vollmer, Newcastle, UK 

E. coli C43 B F dcm ompT hsdS(rBmB) 

Gal λ (DE3)  

Lucigen, Middleton, USA 

E. coli JM83 rpsL ara Δ(lac-proAB) 

Φ80dlacZΔM15 

DSM 3947 

E. coli MCI23 [araD139]B/r, leu-260::Tn10, 

ftsI23(ts), Δ(argF-lac)169, λ-, 

e14-, flhD5301, Δ(fruKyeiR) 

725(fruA25), relA1, 

rpsL150(strR), rbsR22, Δ(fimBfimE) 

632(::IS1), deoC1: FEGSC 

CGSC; Provided by AG 

Henrichfreise, Bonn, 

Germany 

E. coli ML-35 pYC ΔlacI, constitutive β-galactosidase 

expression, plasmid-encoded (pBR-

22) β-lactamase, AmpR  

Lehrer, Barton et al. 1988 

E. coli W3110 Sex(Hfr,F+,F-,or F'): F- DSM5911 

One Shot TOP10® chemically 

competent E. coli 

F-mrcAΔ/mrr-hsdRMS-mrcBC) 

Φ80lacZΔM15VlacX74deoRrec 

A1araD139Δ(ara-leu) 

7697galUgalKrpsLendA1nupG 

 

Invitrogen, Darmstadt, 

Germany 

Micrococcus flavus Indicator strain  

 

Provided by AG 

Schneider, Bonn, 

Germany 

Rhodotorula minuta var. 

texensis 

Yeast strain ATCC, Manassas, USA; 

Phaff, Mrak et al. 1952 

Staphylococcus simulans 22 Indicator strain  Sahl and Brandis 1981; 

Provided by AG 

Bierbaum, Bonn, 

Germany 



2 Materials and methods 

34 
 

2.2.2 Expression vectors 

pASK-IBA plasmids are Strep-tag II expression vectors manufactured by IBA 

Lifesciences, Germany. These vectors carry the promoter region from the tetA resistance gene 

in front of the multiple cloning site, thus overexpression of heterologous proteins can be 

induced by adding anhydrotetracycline (AHT) at a concentration that is antibiotically 

ineffective (200 ng/ml). Strep-tag II is a short peptide, which selectivity binds to Strep-Tactin, 

an engineered streptavidin. In this thesis, four different pASK-IBA vectors were used (Table 

10). 

pASK-IBA2 contains an N-terminal OmpA leader-sequence for periplasmic 

overexpression of the target protein and a C-terminal Strep-tag II. In this work, both pASK-

IBA2 and pASK-IBA2C were used, which encode an ampicillin or a chloramphenicol 

resistance gene, respectively.  

pASK-IBA3 encodes a C-terminal Strep-tag II fused to the gene of interest, is used for 

cytoplasmic overexpression and contains an ampicillin resistance gene.  

pASK-IBA6 harbors an N-terminal OmpA leader-sequence and Strep-tag II for 

periplasmic expression of the target protein. In this work pASK-IBA6C was used, which 

encodes a chloramphenicol resistance gene.  
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Table 10: List of pASK-IBA expression vectors used in this thesis.  
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2.2.3 Primers 

Table 11: Primers used for cloning into expression vectors and sequencing. Restriction sites are written 
in bold. Annealing temperatures used in PCRs and restriction enzymes are shown in the right column. 

 

Primer name 

  

Sequence (5´→ 3´) 

Restriction 

enzyme/ 

Annealing °T 

IBA2C_amiD for ATGGTAGGTCTCAGGCCAAAATCCAACTATCTA

AAGTCAAC 

     BsaI/ 

     57 °C 
 rev ATGGTAGGTCTCAGCGCTACGAATTTCTTCCTTT

GCTTTTTCTAAATAC 

IBA2_amiDΔSP for ATGGTAGGTCTCAGGCCTCAAGCAATATCGAGA

ATGATTTTCA 

     BsaI/ 

     57 °C 
rev ATGGTAGGTCTCAGCGCTACGAATTTCTTCCTTT

GCTTTTTCTA 

IBA2C_pbp2 for ATGGTAGGTCTCAGGCCATGTGGATAAAAAAC

AAAGTCTTTAATC 

     BsaI/ 

     57.2 °C 
rev ATGGTAGGTCTCAGCGCTCCCTTTAAGCATATA

CCGCAATATT 

IBA2C_pbp2ΔTM for ATGGTAGGTCTCAGGCCCGAAACAGACAAAAA

TACGAAAAGC 

     BsaI/ 

     57.2 °C 
rev ATGGTAGGTCTCAGCGCTCCCTTTAAGCATATA

CCGCAATATT 

IBA2C_pbp6a for ATGGTACCATGGTAGTATATTAGACAAATTGGT

AATCCTGCTG 

     NcoI/ 

     59.3 °C 
rev ATGGTACCATGGTCAAACAATATTCTAAAAAAC

TTTTCTACGTAATTTAATTCC 

IBA2C_pbp6aΔSP for ATTCTTCCCATGGTTACCAATTTAGAACTAAAG

CA 

     NcoI/ 

     59 °C 
rev ATGGTACCATGGTCAAACAATATTCTAAAAAAC

TTTTCTACGTAATTTAATTCC 

IBA3_amiD for ATGGTAGGTCTCAAATGATGAAAATCCAACTAT

CTAAAGTCAAC 

     BsaI/ 
     57 °C 

rev ATGGTAGGTCTCAGCGCTACGAATTTCTTCCTTT

GCTTTTTCTA 

IBA6C_pbp2 for ATGGTAGGTCTCAGCGCTGGATAAAAAACAAA

GTCTTTAATCGT 

     BsaI/ 
     57.2 °C 

rev ATGGTAGGTCTCATATCACCCTTTAAGCATATA

CCGCAATATT 

IBA6C_pbp2ΔTM for ATGGTAGGTCTCAGCGCCGAAACAGACAAAAA

TACGAAAAGC 

     BsaI/ 
     57.2 °C 

rev ATGGTAGGTCTCATATCACCCTTTAAGCATATA

CCGCAATATT 

IBA2C_pbp3 for ATGGTAGGTCTCAGGCCCAAGCATTACTTAAAA

ATAAGCTCCG 

     BsaI/ 
     58 °C 

 rev ATGGTAGGTCTCAGCGCTCATCTCAGGTGTAAC

ATTTAGTATAG 

 

IBA_sequencing for GAGTTATTTTACCACTCCCT  

 rev CGCAGTAGCGGTAAACG  
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Table 12: Primers used for mutagenesis of the active site residues. Mutated positions are underlined. 
Primer name  Sequence (5´→ 3´) 

amiD_mut1 (H79A) for GGTTATAGTTCACGCGACTGAAACATCAAC 

rev GTTGATGTTTCAGTCGCGTGAACTATAACC 

amiD_mut2 (S83A) for CACCATACTGAAACAGCAACACTAAAAGGTAC 

rev GTACCTTTTAGTGTTGCTGTTTCAGTATGGTG 

amiD_mut3 (D207A) for GCTATACAATGCGTAAACCAGCGCCACACAAATTGTTTGATTG 

rev CAATCAAACAATTTGTGTGGCGCTGGTTTACGCATTGTATAGC 

amiD_mut4 (S400A) for AGATATCGCATATGGTCTGCCCTCTATAAACCATTTAAGC 

rev GCTTAAATGGTTTATAGAGGGCAGACCATATGCGATATCT 

pbp2_mut1 (S107A) for GTAACAAAATCGGCGGAAACAAAAATAACCGCTC 

rev GAGCGGTTATTTTTGTTTCCGCCGATTTTGTTAC 

pbp2_mut2 (S265A) for CGTATCAAATTCCACCTGGTGCGATATTTAAAATAATAGTTG 

rev CAACTATTATTTTAAATATCGCACCAGGTGGAATTTGATACG 

pbp3_mut1 (S107A) for GAGTACTTACTGCCGAAAAGAAATTTGCTTGG 

rev CCAAGCAAATTTCTTTTCGGCAGTAAGTACTC 

pbp3_mut2 (S256A) for GGGGTATATGAGATGGGGGCGGTATTAAAATACTTTAC 

rev GTAAAGTATTTTAATACCGCCCCCATCTCATATACCCC 

pbp3_mut3 (S339A) for GCTATGAAGCTATTTGCGCCTTTGAAAATAGAAATACC 

rev GGTATTTCTATTTTCAAAGGCGCAAATAGCTTCATAGC 

pbp3_mut4 (S445A) for GAGGAAAAACTGGAGCGGCGGAAAAAGTTG 

rev CAACTTTTTCCGCCGCTCCAGTTTTTCCTC 

pbp6a_mut1 (S48A) for GTTCATTTTTGAGCATAATGCCGACGAAAAGATGTCTCC 

rev GGAGACATCTTTTCGTCGGCATTATGCTCAAAAATGAAC 

pbp6a_mut2 (S56A) 

 

for CGAAAAGATGTCTCCATCTGCAATGAGCAAGCTAATGAC 

rev GTCATTAGCTTGCTCATTGCAGATGGAGACATCTTTTCG 

 

Table 13: Primers used for quantitative real-time PCR. 
Primer name Sequence (5´→ 3´) 

16S rRNA-for TTGCTATTAGATGAGCCTATATTAG 

16S rRNA-rev GTGTGGCTGATCATCCTCT 

2.3 Microbiological methods 

2.3.1 General cultivation of bacterial strains 

Material from glycerol stocks (see chapter 2.3.5) was streaked out on LB agar plates 

with the appropriate antibiotic, incubated overnight at 30 °C or 37 °C and afterwards kept at 

4 °C. For bacterial growth in liquid media, a single colony from an LB agar plate was inoculated 

in fresh LB medium containing the appropriate antibiotic and grown at 30 °C or 37 °C under 

shaking (120–180 rpm) overnight. To prepare a main culture, 1 % inoculum from the overnight 

culture was applied unless otherwise indicated. Selective media were supplemented with 

30 µg/ml chloramphenicol or with 50 µg/ml ampicillin. 
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2.3.2 Preparation of competent E. coli cells 

2.3.2.1 Chemically competent E. coli cells 

50 ml TYM medium (Table 14) was inoculated with 2 % of an E. coli C43, JM83 or 

W3110 overnight pre-culture in LB medium and incubated at 37 °C under shaking at 120 rpm 

until the optical density at 600 nm (OD600) reached 0.6. Cells were kept cool for 10 min on ice, 

transferred into a pre-chilled 50 ml falcon tube and centrifuged (Heraeus Multifuge, HighConic 

Rotor, 2,500 rpm, 10 min, 4 °C). The cell pellet was resuspended in 5 ml cold TFB I buffer and 

centrifuged again. The pellet was resuspended in 2 ml cold TFB II buffer and cells were 

aliquoted in a final volume of 50 µl, shock frozen in liquid nitrogen and stored at -80 °C. 

Table 14: Medium and buffers for the preparation of chemically competent cells. 
TYM medium TFB I TFB II 

10 g Tryptone 30 mM KAc, pH 5.8 100 mM MOPS, pH 7 

2.5 g Yeast extract 50 mM MnCl2 7.5 mM CaCl2 

100 M NaCl 100 mM KCl 10 mM KCl 

10 mM MgSO4 10 mM CaCl2 15 % Glycerol 

 15 % Glycerol  

ad 500 ml Aqua dest. ad 250 ml Aqua dest. ad 250 ml Aqua dest. 

2.3.2.2 Electro-competent E. coli cells 

500 ml LB medium was inoculated with 1 % of an overnight E. coli MCI23 pre-culture 

and incubated at 30 °C and 120 rpm until OD600 = 0.5. Cells were chilled for 15 min on ice and 

afterwards harvested by centrifugation (Sorvall Evolution, Rotor SLC 4000, 6,000 rpm, 4 °C, 

15 min). The pellet was resuspended in 150 ml ice-cold sterile distilled water. After a second 

centrifugation step, the pellet was resuspended in 10 ml ice-cold water with 10 % sterile 

glycerol (v/v) and transferred into a cold 50 ml falcon tube. The pellet was again harvested by 

centrifugation and finally resuspended in 800 µl ice-cold distilled water with 10 % sterile 

glycerol (v/v). Aliquots of 50 µl were prepared, frozen in liquid nitrogen and stored at -80 °C. 

2.3.3 Transformation of chemically competent E. coli cells 

A 50 µl aliquot of chemically competent cells was thawed on ice and mixed with 100 ng 

of plasmid DNA. The mixture was incubated for 30 min on ice, subsequently heat-shocked for 

30 s at 42 °C and immediately cooled on ice for 5 min. Cells were mixed with 950 µl of SOC 

medium and incubated at 37 °C and 120 rpm for 2 h. Afterwards, cells were spread on LB plates 

containing the desired antibiotic and incubated overnight at 37 °C. 
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2.3.4 Transformation of electro-competent E. coli cells 

Transformation of plasmid DNA into E. coli MCI23 using electroporation instead of a 

heat-shock was necessary due to high temperature-sensitivity of the strain. Electro-competent 

cells were thawed on ice, mixed with 100 ng of plasmid DNA and incubated for 1 min on ice. 

The suspension was transferred into a pre-cooled 2 mm electroporation cuvette and placed into 

an electroporation apparatus (MicroPulserTM, Bio-Rad). Cells were pulsed for 5 ms, 

immediately mixed with 950 µl of pre-warmed SOC medium and incubated for 2 h at 30 °C 

under shaking at 120 rpm. Cells were spread on fresh LB plates containing the desired antibiotic 

and incubated at 30 °C overnight. 

2.3.5 Preparation of glycerol stocks 

For long term storage of bacterial strains and clones, 5 ml LB medium containing the 

appropriate antibiotic was inoculated with a single colony and grown overnight under shaking. 

The next day, 800 µl of the suspension was mixed with 200 µl of sterile glycerol and 

subsequently stored in cryovials at -80 °C.  

2.3.6 In vivo activity assays 

2.3.6.1 In vivo complementation assay of E. coli MCI23 with AmiDwMel, PBP2wBm, PBP3wMel 

                 and PBP6awBm 

One colony of E. coli MCI23 containing a pASK-IBA vector with amiD
wMel, pbp2

wBm, 

pbp3
wMel or pbp6a

wBm was inoculated in 5 ml LB medium with the desired antibiotic and grown 

at 30 °C and 120 rpm overnight. The next day, 2 % of the culture was transferred into fresh LB 

medium supplemented with antibiotic and grown at 30 °C and 120 rpm until OD600 = 0.4. 

100 ng/ml tetracycline dissolved in ethanol was added inducing expression of the pASK-IBA 

vector and the culture was split into two conical flasks. One culture was further incubated at 

30 °C, the other one transferred to 42 °C where E. coli MCI23 cannot divide anymore as the 

activity of its essential cell division protein PBP3 is repressed at that temperature (Begg et al., 

1990; Dai et al., 1993). E. coli MCI23 expressing the empty vector or pal
wBm served as controls. 

120 min after induction, 1 µl of the culture was applied to a 1 % agarose slide and 

complementation was monitored by microscopy. Five randomly chosen pictures were taken 

from each sample and cell size was measured using ImageJ (Version 2.0.0-rc-43/1.50e, 

https://imagej.nih.gov/ij/). Cells were categorized in single/dividing cells (< 7 µm2) and 

elongated cells (≥ 7 µm2). 
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2.3.6.2 In vivo complementation assay of E. coli ADE24 ΔamiABC with AmiDwMel 

To investigate whether AmiDwMel is involved in cell separation, complementation assays 

were carried out using the E. coli ADE24 ΔamiABC- triple knockout mutant (kindly provided 

by AG Vollmer, Newcastle, UK, Table 9). This mutant harbors an arabinose-inducible pBAD33 

plasmid with amiC from E. coli (Klöckner et al., 2014). By adding 0.8 % glucose, the expression 

of AmiC is repressed and the E. coli cells cannot separate any longer resulting in long chains 

(Guzman et al., 1995). 10 ml LB with the appropriate antibiotic were inoculated with a 2 % 

overnight culture of E. coli ADE24 ΔamiABC harboring amiD
wMel in pASK-IBA2, pASK-

IBA2C or pASK-IBA3. 100 ng/ml tetracycline were added to induce AmiDwMel expression and 

cells were grown at 30 °C to the exponential phase (OD600 = 0.5). 1 µl of the culture was applied 

on 1 % agarose slides and visualized under a microscope (ZeissAxio VertA.1, Carl Zeiss AG). 

E. coli ADE24 ΔamiABC expressing the empty vector served as a control. 

2.3.6.3 Growth kinetics 

E. coli cultures harboring pASK-IBA expression vectors were grown in LB medium 

supplemented with the desired antibiotic at 25 °C and 120 rpm. Protein expression was induced 

with 200 ng/ml AHT at OD600 = 0.6 and the optical density was measured hourly after induction. 

Growth was recorded to control the viability of the production strain after the induction of 

protein expression. 

2.3.6.4 In vivo complementation assay with PBP2wBm and PBP3wMel in the presence of 

            antibiotics 

Inhibition of PBP2 by the β-lactam mecillinam leads to spherical cells instead of rods 

in E. coli (Spratt and Pardee, 1975). Aztreonam is a β-lactam with high affinity for PBP3 

leading to arrested cell division and a filamentous phenotype (Georgopapadakou et al., 1982). 

To investigate if these antibiotics affect PBP2wBm and PBP3wMel, E. coli MCI23 were prepared 

as described (see chapter 2.3.6.1) and 30 min after induction, the appropriate antibiotic was 

added (PBP2wBm: 16 µg/ml mecillinam; PBP3wMel: 8 µg/ml aztreonam). The cultures were 

further incubated at 30 °C (PBP3wMel) or 42 °C (PBP2wBm) for 120 min and subsequently 

visualized via microscopy. Uninduced E. coli MCI23 as well as cultures with the induced empty 

vector supplemented with aztreonam or mecillinam served as controls. 

2.3.7 Preparation of Remazol Brilliant Blue (RBB)-peptidoglycan sacculi 

To analyze if AmiDwMel is capable of cleaving polymeric peptidoglycan, Remazol 

Brilliant Blue (RBB)-dyed peptidoglycan was used as a substrate. During the reaction, which 
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takes place in an alkaline environment at elevated temperature, the vinylsulphone function of 

the dye reacts with free hydroxyl groups of peptidoglycan (Broadbent, 2001). When used in 

enzyme assays, the subsequent cleavage of N-acetyl-anhydromuramoyl-L-alanine bonds within 

RBB-peptidoglycan by an amidase releases stained fragments of different lengths, which are 

visible with the naked eye and can be quantified at 595 nm (Figure 9).  

 

Figure 9: Reaction of Remazol Brilliant Blue (RBB) with peptidoglycan (PG) building an RBB-PG complex. 

This complex can be cleaved by enzymes, e.g. N-acetyl-anhydromuramoyl-L-alanine amidases releasing stained 
fragments of different lengths, which can be quantified at 595 nm. 

An E. coli W3110 overnight pre-culture was inoculated 1 % in 2 l LB medium and 

incubated at 37 °C and 130 rpm until OD600 = 0.6. The culture was harvested (Sorvall Evolution, 

Rotor SLC 4000, 6,000 rpm, 4 °C, 12 min) and the pellet was resuspended in 20 ml phosphate 

buffered saline (PBS) (4 mM KH2PO4, 16 mM Na2HPO4, 115 mM NaCl, pH 7.4). The mixture 

was transferred to an 80 ml boiling 5 % sodium dodecyl sulfate (SDS)-solution and incubated 

for 30 min under stirring. Afterwards, the mixture was further incubated overnight at room 

temperature (RT) under stirring to completely lyse bacterial cells. To separate peptidoglycan 

sacculi from other cell components and to remove SDS, the mixture was centrifuged (Sorvall 

Discovery, Rotor S80-AT3, 12,600 rpm, 20 min, RT) and washed three times with 1 ml distilled 

water. The sacculi were further incubated with 300 µg/ml α-chymotrypsin overnight at 37 °C. 

Then, 250 µl of a 5 % SDS-solution was added and the mixture was incubated for 2 h at 95 °C. 

Sacculi were centrifuged (Sorvall Discovery, Rotor S80-AT3, 21,000 rpm, 20 min, RT) and 

washed three times with 2 ml distilled water. The sacculi were incubated with 200 µg/ml α-

amylase for 2 h at 37 °C, centrifuged (Sorvall Discovery, Rotor S80-AT3, 21,000 rpm, 20 min, 

RT) and washed two times with 1 ml distilled water. E. coli W3110 sacculi were stained with 

20 mM RBB and 250 mM NaOH in PBS buffer at 37 °C overnight. To adjust the RBB-

peptidoglycan to pH 7, 1 M HCl was added. The dyed sacculi were centrifuged (Sorvall 

Discovery, Rotor S80-AT3, 21,000 rpm, 20 min, RT) and washed several times with distilled 

water until the supernatant was completely colorless. Then, the pellet was resuspended in 1 ml 
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distilled water and 50 µl aliquots were prepared. After shock freezing in liquid nitrogen, the 

RBB-peptidoglycan aliquots were lyophilized overnight and stored at -20 °C. 

2.4 Molecular Biological Methods 

2.4.1 Isolation of genomic and plasmid DNA 

Genomic DNA (gDNA) from wBm (NCBI RefSeq NC_006833.1) was kindly provided 

by Dr. Kenneth Pfarr (IMMIP). gDNA from wMel (NCBI RefSeq NC_002978) was kindly 

provided by Dr. Benjamin Makepeace, Liverpool School of Tropical Medicine, UK and by Dr. 

Benjamin Loppin, Université de Lyon, France. gDNA from the C6/36 insect cell culture 

infected with W. pipientis strain A. albopictus B (wAlbB) (NCBI RefSeq 

NZ_CAGB00000000.1, Table 9) was extracted using the QIAamp DNA Mini Kit (Qiagen) 

following the manufacturer’s instructions for DNA purification from blood or body fluids with 

an adjusted elution volume of 50 µl. Plasmid DNA was purified using the QIAprep® Miniprep-

Kit (Qiagen) according to the manufacturer’s instructions with an adjusted elution volume of 

30 µl. Genomic and plasmid DNA of multiple samples was extracted using a QIAcube robotic 

workstation (Qiagen).  

2.4.2 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is a broadly-used standard technique to produce 

high amounts of any desired DNA sequence in vitro (Mullis et al., 1986). The reaction needs a 

DNA template, a thermo-stabile DNA polymerase (e.g. Taq or Pfu), two primers binding on 

the opposite strands on the regions outside the target DNA sequence, magnesium chloride, and 

deoxynucleotides (dNTPs). The reaction includes several cycles and each cycle consists of three 

steps. First step is the denaturation of the double stranded DNA by increasing the temperature 

up to 98 °C. Second, the temperature is decreased enabling the primers to anneal to the DNA 

template. Last step is extension, where temperature is increased to 72 °C, which is the optimal 

temperature for the polymerase to synthesize the new filament of DNA. Here, PCR was used 

to amplify wBm or wMel genes for further cloning into an expression vector, the corresponding 

primers with annealing temperatures are listed in Table 11. The standard reaction mixture and 

PCR cycling parameters are shown in Table 15. 
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Table 15: PCR reaction mixture and cycling parameters. 
1x PCR reaction mixture PCR cycling parameters 

Component Volume [µl] Cycles Temperature Time 

5x Reaction buffer  

(including MgCl2) 

10 1 cycle 

 
98 °C 5 min 

dNTP-mix (10 mM) 1  

30 cycles 

 

98 °C 10 s 

Primer forward (10 µM) 2.5 Table 11 30 s 

Primer reverse (10 µM) 2.5 72 °C 30 s/kb 

gDNA (100 ng) X  

1 cycle 

 

72 °C 

 8 °C 

 

10 min 

 ∞ 
Phusion® HF (2 U/µl) 0.5 

Ultrapure water ad 50 

2.4.3 Agarose gel electrophoresis 

Agarose gel electrophoresis is a method to separate nucleic acid fragments by their 

length. In an agarose gel, the negatively charged DNA fragments migrate along an applied 

electrical field from the cathode to the anode and the speed of migration depends on the 

fragment’s size (Sambrook et al., 1989). The gels used in this study contained 1 % agarose and 

Midori Green advanced, which allows visualization of DNA bands under UV light. Agarose 

gels were placed into a running chamber containing 0.5x TBE buffer (Table 16). DNA samples 

were mixed with Tri-Track loading dye and applied to the gel. Agarose gels were run at 120 V 

for 45 min and subsequently visualized using an automated gel imaging instrument (Gel DocTM 

EZ Imager, Bio-Rad). The length of the analyzed DNA fragments was determined with a 1kb 

DNA ladder. 

Table 16: 0.5x TBE buffer used for agarose gel electrophoresis. 
Component Concentration 

Tris base 4.45 mM 

Boric acid 44.5 mM 

Na2EDTA·2H2O 1.25 mM 

Aqua dest.  ad 1 liter 

2.4.4 Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) is an established method to amplify specific parts 

of DNA and to quantify the products at the same time using a fluorescent dye or a fluorescent 

reporter. The principle of DNA amplification is identical to a standard PCR reaction (see 

chapter 2.4.2), but with an additional fluorophore in the reaction mixture. Here, SYBR Green 

was used which intercalates in double-stranded DNA emitting fluorescent light that is 

detectable in the appropriate channel of a thermal cycler (Rotorgene 6000, Corbett Life 

Sciences). wAlbB cell numbers were calculated by the quantification of 16S rRNA gene copies 

by qPCR as previously described (Makepeace et al., 2006) using the HotStar Taq Polymerase 
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Kit (Qiagen). A qPCR reaction contained 1 x HotStar Taq polymerase buffer, 3 mM MgCl2, 

200 µM dNTPs, 0.2 µl SYBR Green 1:1000 dilution in dimethyl sulfoxide (DMSO), 0.5 µM 

16S rRNA gene specific forward and reverse primers (see Table 13), 0.5 U HotStar Taq 

polymerase and 2 µl of extracted gDNA. Standard qPCR cycling conditions are shown in Table 

17. Melt curve analysis confirmed a specific peak for all positive samples. Data were analyzed 

using Rotorgene 6000 software version 1.7. 

Table 17: qPCR cycling parameters. 
Cycles Temperature Time 

1 95 °C 15 min 

45 95 °C 10 s 

 55 °C 15 s 

 72 °C 20 s 

1 72 °C 10 min 

2.4.5 Cloning 

AmiDwMel, PBP2wBm, PBP3wMel and PBP6awBm were amplified from gDNA of wBm or 

wMel, with specific primers (see Table 11). Primers were designed following the 

manufacturer’s instructions using the software “Primer D’Signer” (IBA Lifesciences). During 

the PCR, BsaI or NcoI restriction sites were added at the 5' and 3'-ends of the respective 

products. The amplified products were controlled for correct size and purity by agarose gel 

electrophoresis, purified and cloned into pASK-IBA expression vectors (see Table 10). Correct 

cloning of the inserts into the vectors was confirmed by sequencing (Microsynth Seqlab, 

Göttingen, Germany). Wolbachial PBPs were only cloned into vectors which encode a 

chloramphenicol resistance cassette as ampicillin is a β-lactam and might interfere with the 

PBPs when added to the LB medium during expression. 

2.4.5.1 Purification of DNA fragments 

To remove compounds from the reaction mixtures and other contaminants, DNA 

fragments were purified after PCR (see chapter 2.4.2), after restriction digest (see chapter 

2.4.5.2) and after dephosphorylation (see chapter 2.4.5.3) with a Nucleospin Gel and PCR 

Clean-up Kit following the manufacturer’s instructions (Macherey Nagel). 

2.4.5.2 Restriction digest 

Restriction enzymes are endonucleases which recognize specific sites in DNA and 

degrade it by the hydrolysis of the phosphate backbone producing double-stranded fragments 

with either blunt or sticky ends with terminally unpaired bases (Pham et al., 1998). The 
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restriction enzymes BsaI and NcoI used in this work produce sticky-ends which facilitates the 

correct insertion of the DNA fragments into the vector during the ligation process. The reaction 

scheme is summarized in Table 18. The vector and the PCR product were digested by 

incubating the mixture for 60 min at 37 °C and subsequently incubating for 20 min at 65 °C 

(BsaI) or 80 °C (NcoI) to heat-inactivate the restriction enzyme. After restriction digest, the 

gene of interest was purified (see chapter 2.4.5.1), while the vector was dephosphorylated (see 

chapter 2.4.5.3). 

Table 18: Restriction digest mixture. 
Components Volume [µl] 

1 µg purified PCR product/vector DNA X 

10x CutSmart buffer 5 

Restriction enzyme 1 

Aqua dest. ad 50 

2.4.5.3 Dephosphorylation 

To avoid re-ligation of the restricted and linearized vector, the phosphate of the 5’ ends 

can be removed by a phosphatase. Here, 5 µl of 10x Phosphatase reaction buffer and 1 µl of 

Antarctic Phosphatase were applied to the 50 µl restriction mixture of the vector and incubated 

for 1 h at 37 °C. Subsequently, the dephosphorylated vector was purified (see chapter 2.4.5.1). 

2.4.5.4 Ligation 

The ligation step inserts the gene of interest into the vector building a construct that can 

be transformed into E. coli cells (see chapter 2.3.3 and 2.3.4). A ligase catalyzes the formation 

of the phosphodiester bond between the 3’ hydroxyl group of the sugar and the 5’ phosphate 

group of two adjacent DNA strands (Sambrook et al., 1989). The T4 ligase used in this work 

catalyzes the reaction of both blunt-ended and sticky-ended DNA fragments (Rusche and 

Howard-Flanders, 1985). The molar ratio of insert:plasmid was 3:1, the standard reaction is 

shown in Table 19. The ligation mixture was either incubated for 15 min at RT or overnight at 

16 °C and subsequently heat inactivated at 70 °C for 5 min. 

Table 19: Scheme of the ligation reaction mixture. 
Components Volume [µl] 

Insert X 

50 ng Vector X 

10x T4 ligase Buffer  2 

T4 DNA ligase 1 

Aqua dest. ad 50 
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2.4.5.5 Suicide cut 

Restriction with BsaI or NcoI removes the multiple cloning site from the pASK-IBA 

vector and during ligation, the desired gene is inserted. To further decrease the level of false 

positive clones caused by undigested re-ligated empty vectors, they were cut with a suitable 

restriction enzyme after ligation. BamHI was selected as a suitable restriction enzyme for 

AmiDwMel, which targets a recognition site in the multiple cloning site of pASK-IBA vectors, 

but not in the sequence of AmiDwMel. For PBP2wBm and PBP6awBm, EcoRI was used. The 

ligation mixture was supplemented with 5.6 µl CutSmart buffer and 1 µl BamHI/EcoRI and 

incubated for 1 h at 37 °C. EcoRI was inactivated at 65 °C for 20 min (not required for BamHI) 

and 5 µl of the mixture were used for transformation in chemically competent E. coli cells (see 

chapter 2.3.3). 

2.4.6 Site-directed mutagenesis 

Putative active site motifs in the gene sequences of wolbachial AmiD and PBPs were 

changed using the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent 

Technologies). This technique is used to specifically introduce point mutations into a gene of 

interest. Two complementary primers harboring the mutation bind to the plasmid and are 

amplified in a PCR with a PfuUltra high-fidelity DNA polymerase leading to the formation of 

a mutated and non-methylated version of the vector. DpnI digestion of the amplification 

products cuts the original plasmid in contrast to the newly synthesized mutated one due to 

missing methylation (Figure 10). In this thesis, primers were designed using the software 

"PrimerX automated design of mutagenic primers for site-directed mutagenesis" 

(http://www.bioinformatics.org/primerx/) according to the manufacturer’s guidelines for 

primer design. The site-directed mutagenesis was performed following the manufacturer’s 

instructions (Tables 20 and 21) with one modification. Instead of using the provided 

chloramphenicol resistant E. coli XLGold cells, 5 µl of the mixture was transformed into E. coli 

TOP10 cells since the used pASK-IBA vectors harbor a chloramphenicol selection marker. 

After transformation, correct base changes were confirmed by sequencing (see Table 11).  
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Table 20: Reaction mixture of site-directed mutagenesis. 
Components Volume [µl] 

10x Reaction buffer 5 

100 ng dsDNA template X 

125 ng oligonucleotide primer forward X 

125 ng of oligonucleotide primer reverse X 

dNTP mix 1 

QuikSolution reagent 1.5 

Aqua dest. ad 50 

QuikChange Lightning Enzyme 1 

	

Table 21: Cycling parameters for site-directed mutagenesis. 
Cycles Temperature Time 

1 95 °C 2 min 

18 95 °C 20 s 

 60 °C 10 s 

 68 °C 30 s/kb of plasmid length 

1 68 °C 5 min 

2.5 Biotechnological methods 

2.5.1 Overproduction using Strep-tagged proteins 

2.5.1.1 Overproduction pre-tests 

By carrying out pre-tests, the optimal conditions for protein overexpression were 

determined for each protein used in this study. Overproduction was tested in different E. coli 

strains (C43, JM83 and W3110), different temperatures (25 °C and 30 °C), time points of 

induction (OD600 = 0.5 and OD600 = 1.2) and length of expression (4 h and overnight). 

Overproduction pre-tests were performed in 50 ml LB medium containing chloramphenicol. 

Medium was inoculated with 1 % of an E. coli overnight culture containing a pASK-IBA vector 

with the gene of interest. 1 ml samples were collected before induction of protein expression 

with 200 ng/ml AHT and after 4 h or overnight expression. The samples were lysed (see chapter 

2.5.1.3) and analyzed via SDS-PAGE and Western Blot (see chapter 2.6). Cells containing the 

induced empty vector served as a control. 

2.5.1.2 Small-scale co-solvent screen 

The substitution of NaCl in LB medium with co-solvents has been shown to improve 

production, folding and stability of proteins expressed in the periplasm (Otten et al., 2015). 

Therefore, it was tested if co-solvent assisted overproduction also had positive effects on the 

Figure 10: Principle of QuikChange 

Site-Directed mutagenesis (Agilent 

technologies). Primers harboring the 
mutation bind to the plasmid and are 
amplified in a PCR leading to the 
formation of a mutated and non-
methylated version of the vector (purple-
blue). DpnI only cuts the methylated non-
mutated plasmid (green-yellow). 
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proteins investigated in this thesis. To prevent osmotic stress, the amount of co-solvent was 

adjusted to an osmotic pressure elicited by 10 g/l NaCl. 171 mM NaCl which are equivalent to 

342 osm/l of dissociated Na+ and Cl- ions were replaced by 342 mM of non dissociating 

co-solvents (equivalent to 342 osm/l) (Otten et al., 2015). All co-solvents had a final 

concentration of 342 mM, except for arginine, which was observed to be toxic for bacteria in 

high concentrations. Thus, arginine was used in a final concentration of 100 mM. After addition 

of co-solvents to the NaCl-free LB medium, the pH was adjusted to 7.5 and the medium was 

sterile filtered. After optimal expression conditions were determined (see chapter 2.5.1.1), 

50 ml NaCl-free LB medium was supplemented with different co-solvents (Table 22), 

inoculated with 1 % from an overnight E. coli culture, grown until OD600 = 0.5 and then induced 

with 200 ng/ml AHT. The harvested pellets were lysed and analyzed by SDS-PAGE and 

Western Blot (see chapter 2.5.1.3 and 2.6). 

Table 22: Used co-solvents for the substitution of NaCl. 
Co-solvent Molecular mass [g/mol]  Amount [g/l] Molarity [mM] 

L-Arginine 174.20 17.42 100 

Betaine 117.15 40.09 342 

Glycerol 92.09 31.52 342 

D-Mannitol 182.17 62.34 342 

Sucrose 342.30 117.15 342 

D-Trehalose 342.30 117.15 342 

2.5.1.3 Protein overproduction and purification 

NaCl-free LB medium containing the appropriate antibiotic and co-solvent was 

inoculated with 1 % from an overnight culture and grown under the optimal induction 

conditions as determined previously (see chapter 2.5.1.1 and 2.5.1.2).  

Purification of Strep-tagged proteins was performed according to the manufacturer´s 

instructions (IBA Lifesciences) with slight adjustments. Cell pellets were resuspended in 10 ml 

Buffer P per liter E. coli culture, supplemented with 1 mg/ml lysozyme (Table 23) and lysed 

for 30 min at 4 °C under gentle rotation. For PBP2wBm with its native transmembrane domain, 

2 % Tween 200 was added to the lysis Buffer P as a detergent to increase solubility. To reduce 

viscosity, benzonase (20 U/ml) and MgCl2 (3 mM) were added and the suspension was 

incubated for additional 15 min on ice. Cleared lysate containing soluble proteins was prepared 

by centrifugation (38,800 g, 15 min, 4 °C) and Strep-tagged proteins were purified by gravity 

flow chromatography at 4 °C. For this, 1 ml Strep-Tactin® Sepharose was applied to a 1 ml 

polypropylene column and equilibrated with 2 ml Buffer W (Table 23). The cleared lysate was 

loaded onto the column and washed five times with 1 ml Buffer W. Finally, the proteins were 
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eluted eight times with 0.5 ml Buffer E (Table 23). As AmiDwMel is a putative metalloprotein, 

adjusted buffers were used following the manufacturer’s recommendations. Briefly, 

ethylenediaminetetraacetic acid (EDTA) in Buffer P was substituted by 2 mg/ml polymyxin B, 

while Buffer W and Buffer E were prepared without EDTA. To test if amidase activity of 

AmiDwMel is deacreased in the presence of EDTA, some batches of overexpressed protein were 

prepared with EDTA. Purified proteins were kept at 4 °C for up to five days and, in case of 

AmiDwMel, for long-time storage in 50 % sterile glycerol at -20 °C. 

Table 23: Buffers used for cell lysis and purification of Strep-tagged proteins. 
Buffer P Buffer W Buffer E 

100 mM TrisHCl, pH 8 

500 mM Sucrose 

1 mM EDTA 

1 mg/ml Lysozyme 

100 mM TrisHCl, pH 8 

150 mM NaCl 

1 mM EDTA 

 

100 mM TrisHCl, pH 8 

150 mM NaCl 

1 mM EDTA 

2.5 mM D-Desthiobiotin 

2.6 Electrophoretic methods 

2.6.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates 

proteins equivalent to their molecular weight, based on their differential rates of migration 

through a sieving matrix under the influence of an applied electrical field (Laemmli and Favre, 

1970). Proteins are denaturated by the addition of a loading buffer containing 

β-mercaptoethanol as a reducing agent and by heating. The internal charge, which is a 

consequence of the different properties of the contained amino acids, is overlaid by the 

association of negatively charged SDS. The intensity of this constant negative charge is 

proportional to the length of the peptide chain and therefore indirectly to molecular weight of 

the polypeptides (Laemmli and Favre, 1970). Polyacrylamide polymerization results in a matrix 

in which the denaturated protein samples can be separated driven by an electric field. Protein 

samples are concentrated first in an upper stacking gel with large pores in the matrix due to a 

lower concentration of acrylamid. In the lower separation gel protein samples are fragmented 

by their molecular weight. In this thesis, Mini-PROTEAN® Stain-freeTM 12 % Precast Gels 

(Bio-Rad) were used. Alternatively, self-made gels were prepared. A 4 % stacking gel contained 

3 ml distilled water, 1.25 ml upper buffer (0.5 M Tris-HCl, 0.4 % SDS, pH 6.8) and 750 µl 

acrylamide/bisacrylamide. Polymerization was initiated by adding 15 µl 10 % ammonium 

persulphate (APS) and 10 µl Tetramethylethylenediamine (TEMED). TEMED induces free 

radical formation from APS which transfers electrons to the acrylamide/bisacrylamide 
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monomers causing a vinyl addition and resulting in a polyacrylamide chain. For a 12.5 % 

separation gel, 4 ml of lower buffer (1.5 M Tris-HCl, 0.4 % SDS, pH 8.8) were mixed with 

5.3 ml distilled water and 6.7 ml acrylamide/bisacrylamide, 80 µl of 10 % APS and 8 µl 

TEMED. 5 µl of 5x SDS sample buffer was added to 20 µl of the sample (Table 24). Samples 

were mixed, heated 10 min at 70 °C and subsequently applied to the SDS gel. The SDS gel was 

run at 160 V for 45 min in buffer (25 mM Tris-HCl, 192 mM glycine, 0.1% SDS, pH 8.3). 

Table 24: 5x SDS sample buffer. 
Component Concentration 

Tris-HCl, pH 6.8 25 mM 

Glycerol 25 % 

SDS 7.5 % 

Bromophenol blue  0.04 % 

β-Mercaptoethanol 12.5 % 

2.6.2 Western Blot 

Western Blot is a technique to transfer proteins 

from a polyacrylamid gel to a membrane to specifically 

visualize tagged proteins (Renart et al., 1979). Western 

Blots can be detected with chemiluminescent, 

colorimetric or fluorescent methods. Here, Strep-tagged 

proteins were visualized using a colorimetric method. 

After separating proteins by SDS-gelelectrophoresis 

(see chapter 2.6.1), they were transferred to a 

nitrocellulose membrane. The nitrocellulose membrane 

and blotting paper were pre-wetted in Towbin running 

buffer (25 mM Tris Base, 192 mM glycine, 20 % 

methanol, pH 8.3). For blotting, the Trans-Blot® 

TurboTM Transfer System (Bio-Rad) was used for 80 min 

at 15 V. Chromogenic detection of Strep-tagged proteins with Strep-Tactin Alkaline 

Phosphatase (AP) conjugate was performed following the manufacturer’s instructions (IBA 

Lifesciences, Figure 11). Briefly, the membrane was incubated in 20 ml PBS blocking buffer 

(4 mM KH2PO4, 16 mM Na2HPO4, 115 mM NaCl, pH 7.4, with 3 % bovine serum albumin 

(w/v, BSA) and 0.5 % Tween 20 (v/v)) for 1 h at RT under gentle shaking. PBS-blocking buffer 

was removed by washing three times with 20 ml PBS-Tween buffer (PBS buffer with 0.1 % 

Tween 20 (v/v)) for 5 min at RT and gentle shaking. After the last washing step, 10 ml PBS-

Tween buffer plus 10 µl of Biotin blocking buffer were added to the membrane to block 

Figure 11: Detection of recombinant 

Strep-tagged fusion proteins (IBA 

Lifesciences). Immobilized proteins on a 
nitrocellulose membrane are linked to 
Strep-Tactin-Alkaline-Phosphatase (AP) 
conjugate and detected by colorimetric 
detection after the addition of 
chromogenic substrates. 
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endogenously biotinylated proteins of the expression strain. 5 µl Strep-Tactin alkaline 

phosphatase conjugate (1:2000) was added and incubated for 1 h and subsequently washed two 

times with PBS-Tween buffer for 1 min. After washing, the membrane was transferred to 20 ml 

reaction buffer (100 mM NaCl, 5 mM MgCl2, 100 mM Tris-HCl, pH 8.8). Specific staining of 

Strep-Tactin motifs of recombinant proteins was visualized by addition of 10 µl 7.5 % nitro 

blue tetrazolium (w/v, NBT) solution and 60 µl of 5 % 5-bromo-4-chloro-3-indolyl-phosphate 

(w/v, BCIP) solution. The reaction was stopped with tap water. 

2.7 Biochemical methods 

2.7.1 Protein determination via Bradford assay 

The Bradford assay is a quantitative method to determine the protein concentration in a 

solution (Bradford, 1976). Coomassie Brilliant Blue G-250 dye builds complexes with cationic 

and unpolar side chains of polypeptides in an acidic environment shifting the absorption 

maximum of the dye from 465 to 595 nm. Using a BSA standard curve with known 

concentrations allows determination of the relative protein concentration of the samples. 

Quantification is based on the positive correlation of the absorption rate of the dye and the 

amount of protein in the samples. In this thesis, a standard curve with defined concentrations 

of BSA between 7.5 µg/ml up to 2 mg/ml was used. 3 µl of protein samples were applied in 

triplicates to a 96-well plate and 300 µl of 1x Bradford reagent was added to each sample. The 

plate was subsequently measured in a photometric plate-reader at 595 nm (Spectramax® 340PC, 

Molecular Devices) and analyzed with Softmax® Pro Version 6.3. 

2.7.2 In vitro DD-carboxy- and DD-transpeptidase activity assays using lipid II 

         as a substrate 

Lipid II is the precursor of peptidoglycan and the natural substrate of PBPs. To perform 

in vitro assays, lipid II containing either m-DAP or Lys was synthesized (see chapter 2.9) and 

used to study wolbachial protein activity. 

Standard in vitro activity assays for wolbachial PBPs were carried out in a final volume 

of 70 µl containing 0.5 nmol purified protein, 2 nmol lipid II, 50 mM MES (pH 5.5), 2 mM 

MgCl2 and 20 % DMSO. The reaction mixture was incubated for 4 h or overnight at 30 °C. To 

test the impact of β-lactam antibiotics on PBP activity, penicillin G or ampicillin were added to 

the reaction mixture in a molar ratio of 1:10. Reaction products were extracted with 70 µl of 

n-butanol/pyridine acetate (2:1, v/v, pH 4.2). For the extraction solution, 6 M glacial acetic acid 
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was adjusted to pH 4.2 by the addition of pyridine and mixed with two volumes of n-butanol 

according to Anderson (1967). The mixture was vortexed for 1 min and centrifuged (21,000 g, 

5 min, RT). The upper phase containing lipids was analyzed via TLC and MALDI-TOF (see 

chapter 2.7.5 and 2.8.1) as described previously (Klöckner et al., 2014). For DD-transpeptidase 

activity assays, TLC bands were quantified by Image QuantTM TL (GE Healthcare). 

Standard in vitro activity assay mixtures for AmiDwMel contained 4 µg purified protein, 

2 nmol lipid II, 50 mM Tris (pH 7.5) and 5 % DMSO in a volume of 40 µl and were incubated 

for 4 h at 30 °C. Reaction products were extracted with 40 µl of n-butanol/pyridine acetate (2:1, 

v/v, pH 4.2), centrifuged (21,000 g, 5 min, RT) and analyzed by TLC and MALDI-TOF (see 

chapter 2.7.5 and 2.8.1). To inhibit amidase activity of AmiDwMel, the protein was lysed and 

purified in the presence of 1 mM of the non-specific metal chelator EDTA (see chapter 2.5.1.3). 

As a second approach, 5 mM of the zinc-specific inhibitor 1,10-phenanthroline was added to 

the reaction mixtures of the activity tests. 

2.7.3 In vitro activity of AmiDwMel using peptidoglycan as a substrate  

For the RBB-PG dye-release assay, 20 µl of stained peptidoglycan sacculi (see chapter 

2.3.7) were incubated at 30 °C overnight with 4 µM of purified AmiDwMel in a final volume of 

200 µl containing 50 mM Tris (pH 7.5) and 5 % DMSO. Samples were centrifuged (20,000 g, 

20 min, RT) and absorbance of the supernatants was measured at 595 nm in a nanophotometer 

(TM 7122v1.6.1, Implen). 

2.7.4 Cleavage of anhydromuropeptides by AmiDwMel 

The cleavage of anhydromuropeptides was performed by the research group of Prof. 

Vollmer, University of Newcastle, United Kingdom. Briefly, E. coli sacculi were prepared as 

described previously (Glauner et al., 1988). Peptidoglycan (750 µg) was digested with the lytic 

transglycosylase Slt (1 µM) in a final volume of 210 µl containing 10 mM HEPES (pH 7.5) and 

150 mM NaCl for 18 h at 37 °C. The reaction mixture was heated for 10 min at 100 °C and 

centrifuged for 20 min. The supernatant containing the 1,6-anhydro-muropeptides was 

collected and stored at 2–8 °C. 1,6-anhydro-muropeptides (15 µl) were incubated with 

AmiDwMel (2 µM) in a final volume of 50 µl containing 50 mM Tris (pH 7.5) and 5 % DMSO 

for 4 h at 30 °C. Samples were boiled for 10 min and centrifuged for 20 min, and the supernatant 

was recovered. The pH of the supernatant was adjusted to pH 4 with 20 % phosphoric acid. 

HPLC analysis was carried out as described previously (Glauner et al., 1988) and selected peaks 

were collected and analyzed by mass spectrometry (Bui et al., 2009). 
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2.7.5 Thin layer chromatography (TLC) 

Thin layer chromatography (TLC) is a method to separate mixtures of non-volatile 

compounds according to their different solubility in a mobile and a stationary phase (Gordon et 

al., 1943). The various applications of TLC include the determination of the purity of samples, 

the identification of compounds and the examination of reactions. The mobile phase (a solvent) 

moves by capillary action along the stationary phase (silica plate) transporting the compounds. 

Here, the upper phase of lipid extracts was spotted onto a silica plate and dried. The TLC plate 

was placed in a glass chamber containing chlorophorm:methanol:water:ammonia (88:48:10:1, 

v/v/v/v) as the mobile phase according to Rick (1998). After separating the compounds up to 

60 min, the plate was removed and dried. To visualize lipid bands, the TLC plate was dipped 

into a phosphomolybdic acid (PMA) staining solution (2.5 % phosphomolybdic acid (w/v), 1 % 

ceric IV sulfate (w/v), 6 % sulfuric acid (v/v)) and dried again. The silica plate was developed 

at 140 °C in an oven until stained blue bands were visible.  

2.8 Instrumental methods 

2.8.1 Matrix assisted laser desorption/ionization (MALDI) 

Matrix assisted laser desorption/ionization (MALDI) is routinely used for the analysis 

of biomolecules (e.g. DNA, proteins, peptides and sugars) and large organic molecules (e.g. 

polymers, dendrimers and other macromolecules) (Karas et al., 1987). The target molecules are 

embedded in a defined matrix and ionized via a pulse laser. In this thesis, MALDI was 

combined with a time-of-flight detector (MALDI-TOF). For detection of reaction products 

from AmiDwMel and PBP6awBm activity assays using lipid II (see chapter 2.7.2), 1 µl of the 

sample was placed onto a ground steel MALDI-TOF target plate and dried at RT. Each sample 

was then overlaid with 1 µl of matrix (saturated solution of 6-Aza-2-thiothymine in 50 % 

ethanol/20 mM diammonium citrate or alpha-cyano-cinnamic acid in 33 % acetonitril/0.1 % 

trifluoroacetic acid) and air dried at RT again. Spectra were recorded in the reflector negative 

mode on a Biflex III mass spectrometer (Bruker Daltonik). MALDI-TOF measurements were 

performed by Michaele Josten, AG Schneider, IMMIP, University of Bonn. 

2.8.2 Biomolecular binding interaction studies 

Surface plasmon resonance (SPR) and Biolayer interferometry (BLI) are two 

established techniques for label-free measurement of biomolecular binding interactions. SPR 
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and BLI use light to measure the interaction between two molecules in real-time. In this thesis, 

both techniques were used to examine interactions between wolbachial proteins and lipid II. 

2.8.2.1 Surface plasmon resonance (SPR) 

SPR is a method to determine 

specificity, affinity and kinetic parameters of 

the interaction between two macromolecules 

for example protein-protein, protein-DNA or 

lipid membrane-protein (Karlsson et al., 1991; 

Nguyen et al., 2015). This optical technique 

measures the refractive index changes in the 

vicinity of metal layers, i.e. a gold layer in a 

sensor chip, in response to biomolecular interactions (Figure 12). The sensor chip consists of a 

glass surface coated with a thin layer of gold. This is the basis for a range of specialized surfaces 

designed to optimize the binding of a variety of molecules. One of the interaction partners, the 

ligand, is coupled to the surface of a sensor chip. The analyte, the potential interaction partner 

of the ligand, is dissolved in running buffer and flows over the sensor surface continuously. 

Binding between the ligand and the analyte changes the detectable resonance signal; when 

molecules in a solution bind to a target molecule the mass increases, when they dissociate the 

mass falls. This principle forms the basis of the sensorgram, which monitors the association and 

dissociation of the interacting molecules in real-time. The sensorgram provides quantitative 

information on specificity of binding, kinetics and affinity. In this thesis, the interaction 

between PalwBm and lipid II with either m-DAP or Lys was investigated using a Biacore® T100 

(GE Healthcare). Purified PalwBm was immobilized on a CM5 sensor chip using a Strep-tag II 

specific Strep-MAB-Immo monoclonal antibody (IBA Lifesciences) following the 

manufacturer’s protocol. As CM5 sensor chips have a carboxy-methylated dextran matrix 

attached to a gold layer, molecules can be covalently coupled to the sensor surface via amine, 

thiol, aldehyde or carboxyl groups. StrepMAB-Immo antibody nearly irreversibly captures 

Strep-tag® II fusion proteins on solid phases. Lipid II (0–12.5 µM) dissolved in HBS-EP 

running buffer (Table 25) was used as the analyte of the binding reaction. Data were analyzed 

using the provided Biacore® T100 software. 

  

Figure 12: Principle of surface plasmon resonance 

(SPR) (University of Chicago, USA). SPR detects 
changes in the refractive index at the surface of a sensor 
which is comprised of a glass substrate and a thin gold 
coating. 
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Table 25: Biacore HBS-EP running buffer. 
Component Concentration 

HEPES, pH 7.4 10 mM 

NaCl 150 mM 

EDTA 3 mM 

Surfactant P20 0.005 % v/v 

2.8.2.2 Biolayer interferometry (BLI) 

BLI is a label-free technology for measuring biomolecular 

interactions (Cooper, 2006). The binding between a ligand 

immobilized on a biosensor surface and an analyte in solution 

produces an increase in optical thickness at the biosensor resulting 

in a wavelength shift (Figure 13). Any changes in the number of 

molecules bound to the biosensor can be measured in real-time, 

whereas unbound molecules or changes in the refractive index of 

the surrounding medium do not affect the interference pattern. This 

feature of BLI allows application of crude samples for protein-

protein interaction, quantitation, affinity and kinetic 

measurements. In this thesis, a BLItz® system device (Pall ForteBio) was used to measure 

interactions between PalwBm and PBP2wBm. 50 µg PalwBm was biotinylated and purified using 

Zeba Spin Desalting Columns (Thermo Scientific) according to the manufacturer’s instructions. 

In a basic kinetic assay, biotinylation was confirmed. For interaction measurements, a 

streptavidin sensor (Pall ForteBio) was incubated with 1 µl biotinylated PalwBm (ligand) for 1 

min. The sensor was measured in analysis buffer for 30 s to get a baseline before starting the 

interaction measurements. 1 µl PBP2wBm (analyte) or the empty vector, which served as a 

negative control, were applied and measured for 2 min. The sensor was incubated with analysis 

buffer for 1 min to measure dissociation. Data were analyzed using the provided BLItz® Pro 

software (version 1.2.0.49). 

2.9 Chromatographic methods 

2.9.1 Lipid II Synthesis 

2.9.1.1 Isolation of UDP-MurNAc-pentapeptide substrate 

UDP-MurNAc-pentapeptide is a cytoplasmic, soluble precursor of peptidoglycan (see 

chapter 1.5.1), which can be accumulated and subsequently purified. In this thesis, 

Figure 13: Principle of 

Biolayer interferometry 

(BLI) (Pall ForteBio). A 
biosensor with a coated matrix 
can immobilize molecules 
(ligand). An analyte in solution 
which binds to the ligand 
results in a wavelength shift of 
the optical layer. 
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Staphylococcus simulans 22 and Bacillus cereus T were used to accumulate and isolate UDP-

MurNAc-pentapeptide with either Lys or m-DAP at position three of the pentapeptide side 

chain for lipid II synthesis. 4 l Mueller-Hinton broth was inoculated with 1 % of S. simulans 22 

or B. cereus T overnight cultures and incubated at 37 °C and 120 rpm until OD600 = 0.75. To 

inhibit protein biosynthesis, 130 µg/ml chloramphenicol was added for 15 min. 

Chloramphenicol prevents the de novo synthesis of enzymes that may interfere, e.g. through 

induction of cellular autolysis, with the accumulation of the UDP-linked peptidoglycan 

precursor in the cytoplasm (Dai and Ishiguro, 1988). Afterwards, the 10x minimal inhibitory 

concentration of vancomycin (S. simulans 22: 5 µg/ml, B. cereus T: 10 µg/ml) was added. 

Vancomycin binds to the terminal D-alanyl-D-alanine (D-Ala-D-Ala) residues of the 

pentapeptide and therefore blocks the regeneration of the lipid-carrier C55-P, leading to an 

accumulation of the UDP-MurNAc-pentapeptide in the cytoplasm (Anderson et al., 1967). 

After 1 h of incubation, cells were harvested (Sorvall Evolution, Rotor SLC-4000, 10 min, 

8,000 rpm, 4 °C) and the pellet was resuspended in 20 ml distilled water. The suspension was 

slowly transferred to 80 ml boiling distilled water under stirring in a 500 ml Erlenmeyer flask. 

After 15 min boiling, the suspension was chilled on ice and centrifuged again (Sorvall 

Evolution, Rotor SS-34, 18,000 rpm, 30 min, 4 °C) to remove insoluble cell parts. The 

supernatant containing the UDP-MurNAc-pentapeptide substrate was shock frozen with liquid 

nitrogen, lyophilized in a freeze dryer and stored at -20 °C. For lipid II synthesis, UDP-

MurNAc-pentapeptide was resolved in 4 ml distilled water and added to the reaction mixture 

(see chapter 2.9.1.3). 

2.9.1.2 Membrane preparation 

As the enzymes MraY and MurG are necessary to build lipid II (see chapter 1.5.1), the 

membranes of Micrococcus flavus were isolated as described previously (Schneider et al., 

2004). Briefly, 2 l TSB were inoculated with 1 % of an overnight culture of M. flavus and 

incubated at 37 °C and 120 rpm overnight. The next morning, cells were harvested (Sorvall 

Evolution, Rotor SLC 4000, 7,500 rpm, 15 min, 4 °C), the pellet was washed in 700 ml Tris-

buffer (50 mM Tris-HCl, 10 mM MgCl2, pH 7.5) and centrifuged again. The pellet was 

resuspended in the Tris-buffer containing 800 µg/ml lysozyme and 80 µg/ml benzonase and 

incubated on ice for 60 min. The suspension was heated up in a water bath to 35 °C and 

afterwards cooled again on ice. Membranes were obtained through centrifugation (Sorvall 

Evolution, Rotor SLC 4000, 13,000 rpm, 20 min, 4 °C). Finally, pellets were resuspended in 

8 ml Tris-buffer and stored at -80 °C until further use. 



2 Materials and methods 

57 
 

2.9.1.3 In vitro lipid II-synthesis 

To synthesize lipid II in vitro, the isolated membranes from M. flavus were incubated 

with UDP-MurNAc-pentapeptide from S. simulans or B. cereus T, C55-P and UDP-GlcNAc. 

For every synthesis, the optimal conditions had to be titrated in an analytical assay before 

preparing lipid II in a larger scale for purification. Lipid II was obtained by mixing 20–30 µl 

isolated membranes (see chapter 2.9.1.2), 7.5–15 µl UDP-MurNAc-pentapeptide (see chapter 

2.9.1.1), 5 nmol C55-P, 1 mM UDP-GlcNAc, 5 mM MgCl2, 60 mM Tris-HCl (pH 7.5), 0.5 % 

Triton X-100 (v/v) in a final volume of 75 µl. C55-P (dissolved in 10 µl chloroform/methanol, 

1:1, v/v) was vacuum-dried in a desiccator and subsequently re-dissolved by adding 0.5 % 

Triton X-100 and vortexed vigorously. The remaining components were added and the mixture 

was incubated for 4 h at 30 °C and under shaking. To verify that lipid II was synthesized, 

bactoprenol-containing products were extracted and visualized via TLC (see chapter 2.7.5). 

Lipid II synthesis in a larger scale was achieved by using the 200-fold volume of the optimal 

analytical scale. Extraction was done in two steps by first extracting the lipids in 15 ml and then 

in 10 ml of n-butanol/pyridine acetate (2:1, v/v, pH 4.2). The two upper phases containing 

soluble lipids were combined and washed with ice-cold, acidic ultrapure water (1:1, v/v, 

pH 4.2). The mixture was centrifuged (Heraeus Multifuge, HighConic Rotor, 10.000 rpm, 10 

min, 4 °C) and the upper phase was used for HPLC purification of lipid II. 

2.9.1.4 Purification of lipid II via high performance liquid chromatography (HPLC) 

High performance liquid chromatography (HPLC) is a separation technique for 

chemical and biological compounds which is mainly used to identify, quantify or purify 

compounds from a mixture (Horvath and Lipsky, 1966; Jadaun et al., 2017). HPLC pumps a 

liquid mobile phase through a stationary phase, usually a column, which separates the sample 

components. During the chromatographic separation, a pump can either deliver a constant 

mobile phase composition (isocratic) or an increasing mobile phase composition (gradient). In 

this thesis, the liquid mixture containing in vitro synthesized lipid II was applied to a 5 ml 

HiTrap DEAE FF-Agarose-column with Buffer A (Table 26) and a flow rate of 3 ml/min for 1 

h. Lipid II was eluted by creating a linear ammonium bicarbonate gradient flow with up to 25 % 

Buffer B (Table 26) and a flow rate of 5 ml/min for 3 h. Fractions of 5 ml were collected in 

glass tubes and the ones containing purified lipid II were identified via TLC (see chapter 2.7.5). 

These fractions were combined and separated from the organic solvents with a rotating 

evaporator (Büchi Labortechnik). The remaining solution was transferred to a teflon tube, dried 

in an exsiccator to remove chloroform, then frozen with liquid nitrogen and lyophilized 
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overnight. The dried material was resolved in 500 µl chloroform/methanol (1:1, v/v) and 

centrifuged (Eppendorf 5417R, Rotor FA45-24-11, 10 min, 5,000 rpm, RT) to remove salts. 

The supernatant was applied to a glass tube and stored at -20 °C. Lipid II concentration was 

determined by its phosphate content (see chapter 2.9.1.5). 

Table 26: Buffers used for HPLC purification of lipid II. 
Buffer Components 

Buffer A Chloroform, methanol, ultrapure aqua dest. (2:3:1, v/v/v) 

Buffer B Chloroform, methanol, 300 mM ammonium bicarbonate (2:3:1, v/v/v) 

2.9.1.5 Determination of phosphate concentration 

As lipid II contains two phosphate residues, the amount synthesized in vitro can be 

quantified by determination of the phosphate concentration. In this thesis, the method according 

to Rouser (1970) was used. This assay is based on the principle that free inorganic phosphate 

(Pi) is released when phospholipids are hydrolyzed. In an acidic environment, Pi binds to 

molybdate resulting in yellowish phosphomolybdic acid. Ascorbic acid reduces 

phosphomolybdic acid to molybdenum blue which can be measured at 797 nm. To determine 

the phosphate concentration of the synthesized lipid II, two different volumes (5 µl and 10 µl) 

were applied to clean and phosphate-free glass tubes, 0–90 nmol Pi of 1 mM monopotassium 

phosphate (KH2PO4) served as a standard. The tubes were dried at 140 °C for 20 min and 

afterwards 300 µl of 70–72 % perchloric acid (HClO4) was added to each tube. The mixture 

was incubated for 3 h at 180 °C to hydrolyze the lipid II or the standard and afterwards cooled 

down to RT. 1 ml phosphate-free ultrapure water, 400 µl of 1.25 % ammonium heptamolybdate 

and 400 µl of 5 % ascorbic acid were added, the mixture was vigorously vortexed and boiled 

for 5 min in a water bath. The absorption was measured at 797 nm (UviLine 9400, Schott 

Instruments) and the concentration of lipid II was calculated based on the standard curve.  

2.10 Fluorometric methods 

2.10.1 QuantaBlu assay 

To examine whether wolbachial PBPs or AmiD exhibit DD-carboxypeptidase activity 

in vitro, a fluorescent-linked enzyme assay to detect free D-Ala was performed using QuantaBlu 

Substrate solution (Thermo Scientific). Free D-Ala, which is released through the activity of a 

DD-carboxypeptidase, can be converted into pyruvate, ammonia and hydrogen peroxide by a 

D-amino acid oxidase (DAAO). The hydrogen peroxide can be used by horseradish peroxidase 

(HRP) to oxidize a suitable fluorogenic substance. In this thesis, the substrate from QuantaBlu 
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Substrate solution (QBS) was converted into a chromophore detectable at 420 nm following the 

reaction scheme: 

 

Purified protein was incubated with synthesized lipid II (see chapter 2.9). A 

DD-carboxypeptidase (VanY) from S. aureus served as a positive control and the pASK-IBA 

empty vector as a negative control. After overnight incubation, every sample was supplemented 

with 150 pmol D-Ala due to the detection limit of this assay and the reaction was stopped by 

adding 360 µl of a detection mixture (55 mg/ml ampicillin, 10 µl QuantaBlu substrate solution, 

2.78 µg/ml FAD, 100 mM Tris-HCl, 1U HRP and 0.06 U DAAO). The samples were further 

incubated for 1 h at RT and subsequently measured (excitation/emission 325/420 nm) in a 

luminescence photometer (SparkTM 10M, Tecan).  

2.10.2 In vivo β-lactamase activity assay 

To examine whether wolbachial PBPs or AmiD possess β-lactamase activity, an assay 

using CENTATM as a substrate was performed. CENTATM is a chromogenic β-lactamase 

substrate suitable for both Gram-positive and Gram-negative bacteria (Jones et al., 1982). The 

hydrolysis of the β-lactam ring causes a shift in absorption maxima (λmax) from 340 nm to 

405 nm. Permeabilization of the outer membrane with the pore forming compound polymyxin 

B enables the substrate access to the enzyme and vice versa. E. coli ML-35 pYC constitutively 

expressing a β-lactamase served as a positive control (Lehrer et al., 1988). PBP2wBm and 

PBP6awBm were expressed in E. coli JM83 and PBP3wMel was expressed in E. coli C43, two 

strains deficient in native β-lactamases. Fresh LB medium supplemented with chloramphenicol 

was inoculated with 2 % of the respective E. coli pre-culture harboring a pASK-IBA expression 

vector with a wolbachial PBP or AmiD. Cells were grown at 30 °C until OD600 = 0.4 and then 

induced with 200 ng/ml AHT. After 4 h of expression, cells were diluted 1:10 and supplemented 

with 150 µM CENTATM (dissolved in DMSO) and 1 µg/ml polymyxin B (dissolved in ultrapure 

water) in 200 µl LB medium in a flat bottom 96-well plate. The mixture was incubated for 16 h 

in a plate reader (Tecan SunriseTM, Tecan) at 30 °C and λ405 was measured every 10 min. All 

samples were prepared in duplicates, the empty vector served as a negative control. 

2.10.3 Penicillin-binding assay 

To test whether Wolbachia AmiD or PBPs bind to penicillin, the fluorescent derivative 

BocillinTM FL was used (Zhao et al., 1999). 4 µg purified protein, 10 µM BocillinTM FL, 20 mM 
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potassium phosphate, pH 7.5 and 140 mM NaCl in a total volume of 20 µl were incubated in 

the dark at 20–35 °C for 30 min up to 16 h. Afterwards, SDS-PAGE was performed (see chapter 

2.6.1) and the protein bound to BocillinTM FL was visualized with a FastGene Led Illuminator 

(Nippon Genetics Europe GmbH). 

2.11 Cell biological methods 

2.11.1 C6/36 insect cell culture 

Culture experiments were performed with an A. albopictus C6/36 insect cell line 

uninfected or stably infected with wAlbB (Turner et al., 2006). Cells were grown at 26 °C and 

split every seven days as described previously (Turner et al., 2006; Henrichfreise et al., 2009). 

Culture medium consisted of L15 Leibovitz medium supplemented with 5 % fetal calf serum 

(FCS), 2 % tryptose phosphate broth, 1 % MEM non-essential amino acids and 1 % 

penicillin/streptomycin. In later experiments, the standard 5 % FCS in the culture media was 

switched to 20 % as this was shown to increase the percentage of infected cells by Wolbachia 

(Clare et al., 2015).  

2.11.2 Isolation of wAlbB from C6/36 insect cells 

Wolbachia wAlbB were purified from infected C6/36 cells as described (Vollmer, 

2012). Briefly, cells were grown to ~90 % confluence, harvested in 10 ml cell culture medium 

and lysed by vortexing with 100 sterile 3 mm borosilicate glass beads (Sigma-Aldrich) for 

5 min. Cell debris was removed by centrifugation at 2,500 g for 10 min at 4 °C and the 

supernatant was filtered through a 5 µm syringe filter. The number of Wolbachia was 

determined by qPCR of the Wolbachia 16S rRNA single copy gene (see chapter 2.4.4).  

2.11.3 Cell-free wAlbB culture 

The cell-free wAlbB culture consisted of culture medium (see chapter 2.11.1), isolated 

wAlbB (see 2.11.2) and fractionated insect cell lysate from uninfected C6/36 cells (Vollmer, 

2012). The amount of uninfected insect cells was calculated using a Neubauer counting 

chamber. Subsequently, uninfected cells were lysed by vortexing with 100 sterile 3 mm 

borosilicate glass beads for 5 min. Cell debris was removed by centrifugation at 2,500 g for 

10 min at 4 °C and the supernatant was filtered through a 5 µm syringe filter. Additionally, the 

uninfected insect cell lysate was centrifuged at 20,000 g, 4 °C for 30 min. The supernatant 

containing cytosol, microsomes and plasma membranes was retained and used to prepare cell-
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free wAlbB cultures. The final concentration of insect cell lysate fraction added to the culture 

was equivalent to 0.95 x 106 insect cells/ml. Purified Wolbachia were added in a final 

concentration of 0.5–1 x 103 16S rRNA gene copies/µl. Prepared cell-free Wolbachia cultures 

of 200 µl were incubated in triplicates in 96-well plates for twelve days at 26 °C. Wolbachia 

numbers were calculated by qPCR on day 0 and then every three days by harvesting three wells. 

2.11.4 Cell-free wAlbB with modified growth conditions 

As Wolbachia are obligate intracellular bacteria, there is a high dependence on 

substances from their hosts to ensure survival and proliferation (see chapter 1.3). Isolated 

cell-free wAlbB were incubated with culture medium and additionally supplemented with insect 

cell lysate (see chapter 2.11.3), which has been shown to facilitate growth (Vollmer, 2012). 

However, the cell-free wAlbB culture decreased after twelve days as shown in qPCR and thus 

likely needs modified growth conditions to keep viable and to proliferate (Vollmer, 2012). In 

this work, several conditions were tested whether they could enhance growth and stability of 

the culture. Apart from that, cell-free wAlbB were incubated with different antibiotics to test 

the efficacy and impact on proliferation and morphology. 

2.11.4.1 Incubation in a lowered oxygen environment 

As shown for other intracellular bacteria, culturing in a lowered oxygen environment 

can increase cell-free growth (Omsland et al., 2009). Here, a carbonic gas chamber with 3 % 

oxygen, 5 % carbonic gas and 77 % nitrogen was used to examine whether proliferation of 

cell-free Wolbachia could be enhanced under these conditions. Cells were prepared as described 

in chapter 2.11.3 and fresh gas was applied every three days after harvesting three samples. 

2.11.4.2 Incubation of cell-free wAlbB on actin-coated streptavidin plates 

PalwBm specifically binds to actin filaments of B. malayi and might be crucial in 

maintenance of endosymbiosis (Melnikow et al., 2013). As cell-free wAlbB show no adherence 

in the 96-well plate (J. Vollmer, pers. communication), culturing on a plate with actin was used 

to examine if the bacteria bind to the substrate to facilitate medium change. Here, a streptavidin 

plate was coated with biotin-labeled α-cardiac actin from bovine cardiac muscle according to 

the manufacturer’s protocol (Hypermol). Briefly, biotin-labeled actin was adjusted to 10 µg/ml 

with wash buffer (25 mM Tris, 150 mM NaCl; pH 7.2, 0.1% BSA (w/v), 0.05% Tween 20 

(v/v)). Each well of the streptavidin plate was washed three times with 200 µl wash buffer and 

was then incubated with 100 µl of biotin-labeled actin for two hours under shaking at RT. The 

plates were washed three times with 200 µl wash buffer and subsequently washed three times 
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with 200 µl Leibovitz medium. Cell-free wAlbB were prepared (see chapter 2.11.3) and 

medium change was performed on day six. 

2.11.4.3 Supplementation of cell-free wAlbB culture medium 

An optimized culture medium was designed for cell-free growth of the obligate 

endobacteria Coxiella burnetii (Omsland et al., 2009). The cell-free wAlbB standard medium 

was compared to the medium for C. burnetii. Substances, which were only present in the 

medium for C. burnetii were supplemented to the cell-free wAlbB medium including biotin, 

cystine, glucose, pyridoxal 5-phosphate (PLP) and sodium bicarbonate (Table 27). Moreover, 

insufficient amounts of cholesterol were considered being a potential limiting factor of cell-free 

growth. Wolbachia do not synthesize lipid A and it was proposed that cholesterol might be 

necessary to promote membrane stability as a substitute for lipopolysaccharide (Lin and 

Rikihisa, 2003; Wu et al., 2004). Therefore, cholesterol was also added to the cell-free wAlbB 

standard medium. Lipid Mixture Solution (PeproTech) contains non-animal-derived fatty acids 

and lipids to improve cell growth in serum-free media, but the exact formulation is proprietary 

of PeproTech. The lipid mixture solution was added to the cell-free wAlbB culture to examine 

any beneficial effects regarding proliferation. 

Table 27: Supplements tested in cell-free wAlbB culture. 
Compound Concentration Solvent 

Biotin 25 mg/l 1N NaOH (adjusted to pH 7) 

Cholesterol 0.1 mg/l and 1 mg/ml H2O 

D-Glucose 500 mg/l H2O 

L-Cystine 30 mg/l 1M HCl (adjusted to pH 7) 

Lipid mixture 1x, 2.5x and 5x H2O 

PLP 0.247 mg/l H2O 

Sodium bicarbonate 250/500/2500 mg/l H2O 

2.11.4.4 Growth of cell-free wAlbB co-cultured with yeast 

B. malayi and B. pahangi infective-stage larvae co-cultured in vitro with the yeast 

Rhodotorula minuta have been shown to support consistent and reproducible molting to the 

fourth larval stage (Smith et al., 2000). It was assumed that the larvae are benefiting from an 

unknown secreted product of the yeast. R. minuta were cultured in YM medium (see Table 5) 

at 24 °C. Cell-free Wolbachia were prepared (see chapter 2.11.3) and co-cultured with different 

concentrations of R. minuta ranging from 104–107 cells/ml. Proliferation rates were examined 

via qPCR (see chapter. 2.4.4). 
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2.11.4.5 Antibiotic treatment 

Cell-free wAlbB were prepared (see chapter 2.11.3) and additionally treated with 

antibiotics (Table 28). All antibiotics were applied freshly every three days during the assay, 

except for fosfomycin, which had to be given daily due to its short half-life in solution (Kirby, 

1977). Growth was detected via qPCR every three days and changes in morphology were 

examined using immunohistochemistry (see chapter 2.12.1). 

Table 28: Antibiotics tested in the cell-free wAlbB culture. 
Compound Antibiotic class Target Concentration Solvent 

Ampicillin β-lactam Cell wall synthesis 512 µg/ml H2O 

Bacitracin Cyclic peptide Cell wall synthesis 512 µg/ml H2O 

Ciprofloxacin Fluoroquinone DNA synthesis 512 µg/ml 0.1 M HCl 

Clindamycin Lincosamide Protein synthesis 512 µg/ml H2O 

Corallopyronin A Alpha-pyrone RNA synthesis 1 µg/ml DMSO 

Doxycycline Tetracycline Protein synthesis 4 µg/ml H2O 

Fosfomycin Phosphonic Cell wall synthesis 512 µg/ml H2O 

Rifampicin Ansamycin RNA synthesis 512 µg/ml Ethanol 

Sulfamethoxazol Sulfonamide Folic acid synthesis 512 µg/ml Ethanol 

Trimethoprim Sulfonamide Folic acid synthesis 512 µg/ml DMSO 

Vancomycin Glycopeptide Cell wall synthesis 512 µg/ml DMSO 

2.12 Immunohistochemistry 

2.12.1 Fluorescence microscopy of antibiotic treated cell-free wAlbB 

For viability assays, Wolbachia were pelleted by centrifugation at 18,400 g for 5 min 

and suspended in ultrapure water, PBS or Leibovitz medium, respectively. To test for lysozyme 

sensitivity, isolated wAlbB were resuspended in 5 mg/ml lysozyme. Bacteria were stained with 

the LIVE/DEAD® BacLight™ Bacterial Viability Kit (Molecular Probes) as previously 

described (Rasgon et al., 2006) and examined with a fluorescence microscope (ZeissAxio 

VertA.1, Carl Zeiss AG).  

To test the effect of antibiotics on growth of cell-free wAlbB, cultures were prepared 

(see chapter 2.11.3), cultured in 96-well plates and treated with the respective antibiotic for 

twelve days (see chapter 2.11.4.5). Cell-free wAlbB were stained with the LIVE/DEAD® 

BacLight™ Bacterial Viability Kit as described previously (Rasgon et al., 2006). Additionally, 

cell-free wAlbB were fixed, stained and visualized as described for C6/36 wAlbB infected cells 

(Vollmer et al., 2013). Briefly, 50 µl wAlbB were dried on a microscope slide and fixed in ice-

cold 4 % paraformaldehyde (w/v) for 15 min. Then, samples were washed three times with 1x 

PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) and cells were 
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permeabilized with 1x PBS + 0.25 % Triton X-100 (v/v) for 15 min. Subsequently, slides were 

washed three times and blocked with 1x PBS + 10 % BSA (w/v) for 1 h at RT. Samples were 

washed again three times with 1x PBS and incubated with a Wolbachia-specific FtsZ/Pal 

antibody diluted 1:1000 in PBS overnight at 4 °C in a humid chamber. The next day, samples 

were washed three times with 1x PBS and incubated with secondary antibody conjugated to 

Alexa Fluor® 488 diluted 1:200 in PBS for 1 h at RT in the dark. After three washing steps with 

1x PBS, 0.25 µg/ml DAPI was applied and incubated for 10 min at RT. Cells were washed 

again three times with 1x PBS and stored at 4 °C until fluorescence microscopy was performed. 

2.12.2 Lipid II labeling of wAlbB 

Liechti et al. (2014) developed a novel peptidoglycan labeling approach that bypasses 

the bacterial Ddl enzyme using D-Ala-D-Ala dipeptide analogues modified with alkyne 

functional groups (Ethynyl-D-alanyl-D-alanine;	 EDA-DA) and click chemistry. With this 

technique, a peptidoglycan-like structure was revealed for the first time in intracellular 

Chlamydia trachomatis, in free-living Planctomycetes and in the closely to Wolbachia-related 

O. tsutsugamushi (Liechti et al., 2014; Jeske et al., 2015; Van Teeseling et al., 2015; Atwal et 

al., 2017). Here, the labeling technique was applied to the C6/36 wAlbB infected culture to 

investigate if Wolbachia residing in insect cells also have a peptidoglycan-like structure. Cells 

were harvested, counted in a Neubauer chamber and inoculated to a final concentration of 

50.000 cells/ml in chamber slides. To block lipid II synthesis, 512 µg/ml fosfomycin was 

applied daily for 12 days to the C6/36 wAlbB infected culture before harvesting and seeding 

the cells to chamber slides. Cells were incubated with 1 mM EDA-DA or ELA-LA (synthesized 

by Pepmic Co., Ltd.) for 72 h and subsequently prepared for fluorescence microscopy. Cells 

were fixed in ice-cold 4 % paraformaldehyde (w/v) for 15 min, washed three times with 1x PBS 

(136 mM NaCl, 2.68 mM KCl, 10 mM Na2HPO4-2H2O, 1.98 mM KH2PO4, pH 7.4) and were 

incubated for 10 min with 1x PBS + 0.15 % Tween 20 (v/v). Cells were washed again three 

times and blocked with 1x PBS + 3 % BSA (w/v) for 1 h at RT. Click chemistry was performed 

using the Click-iT® Cell Reaction Buffer Kit (Thermo Scientific) following the manufacturer’s 

instructions with a concentration of 10 mM Alexa Fluor® 594 azide. Cells were washed again 

three times with 1x PBS and incubated with a Wolbachia-specific FtsZ or Pal antibody diluted 

1:1000 in PBS overnight at 4 °C in the dark. The next day, samples were washed three times 

with 1x PBS and incubated with secondary antibody conjugated to Alexa Fluor® 488 diluted 

1:200 in PBS for 1 h at RT in the dark. After three washing steps with 1x PBS, 0.25 µg/ml 

DAPI was applied and incubated for 10 min at RT. Cells were washed again three times with 
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1x PBS and observed with a fluorescence microscope (ZeissAxio VertA.1, Carl Zeiss AG). 

Fosfomycin treated cells were visualized using a confocal microscope (Zeiss LSM710, Carl 

Zeiss AG). 

2.13 Bioinformatics 

2.13.1 In silico analyses  

BLAST analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to identify sequences 

similar to Wbm0075 (pal), Wbm0152 (pbp2), Wbm0290 (pbp6a), WD1073 (amiD) and 

WD1273 (pbp3) and the sequence alignment tool Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) to align wolbachial and E. coli sequences. The 

presence of transmembrane domains and a signal peptide for secretion in the periplasm was 

predicted using TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) and SignalP 4.1 

(http://www.cbs.dtu.dk/services/SignalP/). Protein structure prediction of the proteins was 

generated by Phyre2 (protein homology/analogy recognition engine V2.0) based on secondary 

structure prediction by recognition of similar sequences and related 3D structures 

(www.sbg.bio.ic.ac.uk). Potential ligand binding sites were predicted by 3DLigandSite 

(http://www.sbg.bio.ic.ac.uk/~3dligandsite/) (Wass et al., 2010). 3D-models of the proteins 

with highlighted putative active sites were illustrated using Jmol 14.28.3 

(http://jmol.sourceforge.net/). 

2.13.2 Statistical analyses 

For statistical analyses, GraphPad Prism 5 software (GraphPad Software Inc., La Jolla, 

USA) was used. Normality tests were performed using Shapiro-Wilk tests. For normal 

distributed data, parametric t-tests were applied (comparison of two groups), whereas non-

parametric data were analyzed using Mann-Whitney tests (comparison of two groups) or 

Kruskal-Wallis tests (comparison of more than two groups) with subsequent Dunn’s 

comparison post-hoc test with a significance level of P < 0.05. 
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3 Results 

3.1 Functional analysis of PBP6awBm
 

3.1.1 Primary structure analysis of PBP6awBm 

The genome of wBm encodes the putative DD-carboxypeptidase PBP6awBm (NCBI: 

WP_041571552.1) which consists of 370 amino acids with a predicted molecular mass of 

42.21 kDa. PBP6awBm shares 84 % sequence similarity with PBP6a from wMel (NCBI: 

AAS13855.1) having identical conserved PBP active site motifs SXXK, SX(D/N) and K(S/T)G 

(Supplementary Figure 1). PBP6awBm and PBP6a from E. coli (NCBI: WP_032169860.1) have 

35 % sequence identity (Figure 14). Notably, the wolbachial PBP6a has one more SXXK motif 

which might harbor the active site serine than its E. coli homolog, but only the second SXXK 

(S56MSK), SXN (S116GN) and the KTG (K218TG) motifs align to E. coli PBP6a. PBP6awBm has 

a predicted signal peptide ranging from amino acid 1–22, but no predicted transmembrane 

domain suggesting the enzyme being localized in the periplasm (Supplementary Figure 2).  

PBP6a wBm ----MSILDK----LVILLLVSTLPFSSY--SYQFRTKAKQAVVLDLASDLFIFEHNSDE 50 
PBP6a E. coli MTQYSSLLRGLAAGSAFLFLFAPTAFAAEQTVEAPSVDARAWILMDYASGKVLAEGNADE 60 
      *:*       .:*:*.:   *::        ..*:  :::* **. .: * *:** 

      
 

PBP6a wBm KMSPSSMSKLMTLYVAFDYLKAGIIDMKDKFRVSRKAWER------KGSSMFLKEGQSVS 104 
PBP6a E. coli KLDPASLTKIMTSYVVGQALKADKIKLTDMVTVGKDAWATGNPALRGSSVMFLKPGDQVS 120 
 *:.*:*::*:** **. : ***. *.:.* . *.:.**         .* **** *:.** 

 
 

PBP6a wBm VKELLEGVTTVSGNDACITLAEGIAGSEENFVVEMNEVAQNLNLSDSYFVNSSGWPDKDH 164 
PBP6a E. coli VADLNKGVIIQSGNDACIALADYIAGSQESFIGLMNGYAKKLGLTNTTFQTVHGLDAPGQ 180 
 * :* :**   *******:**: ****:*.*:  **  *::*.*::: * .  *    .: 

 
 

PBP6a wBm FMSAKDLVVLAKRIFTDFPEYYDLFSKQYLTYNDIIQKNKNLLLF-HDIGVDGLKTGYTN 223 
PBP6a E. coli FSTARDMALLGKALIHDVPEEYAIHKEKEFTFNKIRQPNRNRLLWSSNLNVDGMKTGTTA 240 
 * :*:*:.:*.* :: *.** * :..:: :*:*.* * *:* **:  ::.***:*** * 

 
 

PBP6a wBm AGGYGIVISAKRNDRRIFAVVNGLNTEKERIEEAKRLIQYSFNHFNTKKIFAKDSVVEEI 283 
PBP6a E. coli GAGYNLVASATQGDMRLISVVLGAKTDRIRFNESEKLLTWGFRFFETVTPIKPDATFVTQ 300 
 ..**.:* **.:.* *:::** * :*:: *::*:::*: :.*..*:* . :  *:..    

 
 

PBP6a wBm NVLYGKERKVSATVANDVTITYNRNLRDKIKVR-VEYKDMIPAPIKKGQEVGKIFIEIPG 342 
PBP6a E. coli RVWFGDKSEVNLGAGEAGSVTIPRGQLKNLKASYTLTEPQLTAPLKKGQVVGTIDFQLNG 360 
 .* :*.: :*.  ..:  ::*  *.  .::*.  .  :  : **:**** **.* ::: * 

 
 

PBP6a wBm IEQQTIPLYAVNDVQELNYVEKFFRILF------------ 370 
PBP6a E. coli KSIEQRPLIVMENVEEGGFFGRVWDFVMMKFHQWFGSWFS  400 
 . :  ** .:::*:* .:. :.: :::              

 

Figure 14: Primary structure and amino acid alignment of PBP6a
wBm

 and E. coli PBP6a. PBP6awBm 
(WP_041571552.1) shares 35 % similarity with its E. coli homolog (WP_032169860.1). Conserved SXXK, 
SX(D/N) and K(S/T)G motifs found in PBP6awBm

 are written in bold letters, motifs which align to E. coli PBP6a 
are additionally framed in black. The predicted signal peptide for periplasmic secretion ranging from amino acid 
1–22 is highlighted gray. * fully conserved residue; : conservation between groups of strongly similar properties; 
. conservation between groups of weakly similar properties. 
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3.1.2 Secondary structure analysis of PBP6awBm
 

To get a deeper insight into the putative active site of PBP6awBm, secondary structure 

analysis was performed. Based on sequence alignments to E. coli, the conserved active site 

motifs found in PBP6awBm were localized (Figure 15). The first SXXK motif (S48DEK) was 

predicted to be located on a loop, while the second SXXK motif (S56MSK) is putatively found 

in an α-helix. S116GN is likely localized in an α-helix and loop, whereas K218TG is found in a 

β-sheet. The results of the structure analysis indicated that PBP6awBm has a catalytic center and 

might be an active DD-carboxypeptidase. The gene pbp6a from wBm was cloned into pASK-

IBA2C, transformed into different E. coli strains and tested in in vivo and in vitro activity 

assays. 

 

Figure 15: Secondary structure of PBP6a
wBm

 as predicted by Phyre
2
. S48DEK or S56MSK (blue) might, 

together with S116GN (green) and K218TG (red), build the catalytic center of the enzyme. The molecular structure 
of PBP6awBm

 was illustrated by Jmol. 

3.1.3 Characterization of PBP6awBm in vivo 

The characterization of DD-carboxypeptidases in vivo is challenging as depletion in 

E. coli does not lead to an aberrant phenotype (Nelson and Young, 2001). However, the activity 

of DD-carboxypeptidases can be measured indirectly by complementation of E. coli MCI23. 

This strain encodes a temperature sensitive version of the essential cell division 

DD-transpeptidase PBP3 resulting in a filamentous phenotype when grown at the 

non-permissive temperature of 42 °C (Begg et al., 1990; Dai et al., 1993). This growth defect 

can be complemented by the overexpression of a DD-carboxypeptidase cleaving the terminal 

D-Ala of the pentapeptide chains of peptidoglycan. The subsequent cleavage of the 

tetrapeptides by the LD-carboxypeptidase A results in increased levels of available tripeptide 
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chains in peptidoglycan (Begg et al., 1990). These are the preferred substrates of PBP3 (Botta 

and Park, 1981; Pisabarro et al., 1986). This is sufficient to partially restore cell division by the 

residual activity of PBP3 (Begg et al., 1990). To test the in vivo activity of the putative 

DD-carboxypeptidase PBP6awBm, the encoded pbp6a gene from wBm was cloned into the 

expression vector pASK-IBA2C. The native signal sequence of pbp6a was replaced by the 

ompA signal peptide of the expression vector pASK-IBA2C. Successful cloning was confirmed 

by sequencing (Supplementary Figure 3) and the construct was transformed into E. coli MCI23 

and ready-to-use for in vivo assays. E. coli MCI23 expressing recombinant PBP6awBm showed 

short and dividing cells at 30 °C and PBP6awBm
 overproduction at the non-permissive 

temperature of 42 °C partially restored cell division (Figure 16A). Additional staining with 

DAPI displayed distinct DNA separation of PBP6awBm
 expressing cells, thus confirming the 

restoration of cell division in the temperature sensitive E. coli MCI23 strain. E. coli MCI23 

with the induced empty vector pASK-IBA2C incubated at 30 °C had a normal phenotype with 

only single and dividing cells, whereas bacteria grown at 42 °C were unable to divide resulting 

in elongated cells (Figure 16B). In accordance, no partition of DNA was monitored in 

DAPI-stained cells. Consequently, each filament represents one viable elongated cell. 

Experiments were repeated six times and in each experiment five randomly chosen pictures 

were taken for quantitative analysis of cells at the non-permissive temperature. E. coli MCI23 

expressing PBP6awBm were statistically shorter than and cells expressing the empty vector 

control at 42 °C (Figure 16C). In E. coli MCI23 expressing recombinant PBP6awBm at 42 °C, a 

mixed set of phenotypes was observed with 36.3 % (± 25.6 standard deviation (SD)) elongated 

cells and 63.7 % (± 25.6 SD) short cells able to divide (Figure 16D). E. coli MCI23 expressing 

the empty vector pASK-IBA2C at 42 °C resulted in 97.8 % (± 2.6 SD) elongated bacteria and 

only 2.2 % (± 2.6 SD) short single and dividing cells. In conclusion, these results give a first 

hint that PBP6awBm
 might act as a DD-carboxypeptidase in vivo. 
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Figure 16: PBP6a
wBm

 rescues cell division in a temperature sensitive E. coli MCI23 mutant. E. coli MCI23 
were grown in LB medium containing chloramphenicol until OD600 = 0.4. PBP6awBm expression was induced with 
100 ng/ml tetracycline and cells were incubated for 120 min at 30 °C (endogenous PBP3 is expressed, cells divide 
normally; permissive temperature) or 42 °C (endogenous PBP3 is not expressed, cells do not divide normally and 
form long, filamentous strands; non-permissive temperature). A) E. coli MCI23 expressing recombinant PBP6awBm 
complement cell division at 30 °C and partially at the non-permissive temperature of 42 °C, scale bar = 20 µm. 
DAPI staining confirmed septa formation in E. coli MCI23 expressing PBP6awBm, scale bar = 5 µm. B) E. coli 
MCI23 expressing the empty vector pASK-IBA2C have short, single cells at 30 °C, but are not able to divide at 
42 °C showing a filamentous phenotype. DAPI staining confirmed that septa were absent in cells with the empty 
vector control. C) At least 938 cells from 30 randomly chosen pictures taken from six independent assays per 
sample at 42 °C were measured by Image J. Boxes extend from the 25th to the 75th percentile. The line in the middle 
of the box is plotted at the median. Whiskers represent 1st and 99th percentiles, dots represent outliers. Statistical 
analysis was performed using Mann-Whitney test. *** = P ≤ 0.001. D) Columns represent mean ± SD of relative 
occurrence of different phenotypes at 42 °C from 30 randomly chosen pictures in six independent experiments. 

3.1.4 Active site analysis of PBP6awBm
 in vivo 

The serine of the SXXK motif catalyzes the enzymatic reaction of PBPs and the 

mutagenesis of SXXK motifs in PBP6 from C. pneumoniae was shown to inhibit 

DD-carboxypeptidase activity in vitro (Otten, 2014). Since PBP6awBm
 contains two SXXK 

motifs, it was tested which of the serine residues from the conserved SXXK motifs is essential 
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for enzyme activity. Mutagenesis PCRs were performed to exchange serine from both SXXK 

motifs to alanine (S48A and S56A) (Figure 17). Successful mutagenesis was confirmed by 

nucleotide sequencing (Supplementary Figure 4).  

 

Figure 17: Primary structure of PBP6a
wBm

 in pASK-IBA2C after site-directed mutagenesis. Serine residues 
from SXXK motifs were substituted by alanine (red bold letters). The predicted native signal peptide (highlighted 
gray) was removed and replaced by OmpA from the pASK-IBA2C vector. The amino acid sequence is shown in 
single-letter code. 

E. coli MCI23 cultures expressing mutated PBP6awBm were tested for their ability to 

rescue division at 42 °C. In control assays with E. coli MCI23 expressing recombinant 

PBP6awBm S48A, S56A or S48A-S56A at 30 °C, all cells were short and dividing (data not 

shown). Expression at 42 °C of PBP6awBm with one mutated SXXK motif (S48A or S56A) 

resulted in a mixed set of phenotypes similar to the expression of unmutated PBP6awBm at 42 °C 

(see chapter 3.1.1). In contrast, the expression of PBP6awBm S48A-S56A predominantly resulted 

in elongated cells (Figure 18A-C). Analysis of six independent experiments confirmed these 

observations showing that cells with only one SXXK mutation were significantly shorter than 

the double SXXK mutant (Figure 18D). Expression of single SXXK mutants resulted in 61.3 % 

(± 29.5 SD) (PBP6awBm S48A) and 59.7 % (± 31.2 SD) (PBP6awBm S56A) short cells able to 

divide (Figure 18E) similar to the unmutated PBP6awBm (see chapter 3.1.1). Expression of 

PBP6awBm S48A-S56A resulted in an increase of elongated cells to 91 % (± 8.1 SD) with a 

concomitant decrease of short, single and dividing cells to 9 % (± 8.1 SD).  
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Figure 18: Complementation assay to test for the ability of PBP6a
wBm

 active site mutants to rescue cell 

division in a temperature sensitive E. coli MCI23 mutant. Cultures were grown in LB medium containing 
chloramphenicol at 30 °C and protein expression was induced with 100 ng/ml tetracycline at OD600 = 0.4. Cells 
were further incubated for 120 min at the non-permissive temperature of 42 °C. Phase-contrast micrographs show 
that E. coli MCI23 expressing A) PBP6awBm

 S48A and B) PBP6awBm
 S56A partially rescue cell division, while C) 

expression of PBP6awBm
 S48A-S56A leads to elongated cells unable to divide. Scale bars = 20 µm. D) At least 683 

cells from 30 pictures taken from six independent assays per sample were measured by Image J. Boxes extend 
from the 25th to the 75th percentile. The line in the middle of the box is plotted at the median. Whiskers represent 
1st and 99th percentiles. Statistical analysis was performed using Kruskal-Wallis test and Dunn’s comparison post-
hoc test. ns = not significant, *** = P ≤ 0.001. E) Columns represent mean ± SD of relative occurrence of different 
phenotypes at 42 °C from 30 randomly chosen pictures in six independent experiments.  

Growth of E. coli was monitored to exclude that the different observed phenotypes 

resulted from potential cell arrests induced by protein induction. In three independent 

measurements, all cultures grew exponentially after induction (Figure 19). 

 

Figure 19: Growth kinetics of E. coli MCI23 during periplasmic expression of PBP6a
wBm

. Protein expression 
was induced at OD600 = 0.4 with 100 ng/ml tetracycline. OD600 was measured every hour. Each point represents 
mean ± SD (n = 3). 
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As the number of single and dividing cells in PBP6awBm S48A-S56A (9 %) was still 

higher than cells expressing the empty vector (2.2 %), further control experiments with E. coli 

MCI23 expressing PalwBm were performed. This protein is not expected to have any 

DD-carboxypeptidase or DD-transpeptidase activity and was an appropriate control to exclude 

potential false positive results caused by expression stress of proteins after induction which 

could also contribute to reduced cell size. In six independent assays, cells expressing PalwBm 

were significantly shorter than the empty vector control, but only 8.32 % (± 2.42 SD) of cells 

were single and dividing, whereas 91.68 % (± 2.42 SD) of cells were elongated (Figure 20). 

This explains the apparent remaining activity of the PBP6awBm S48A-S56A which is likely 

caused by expression stress of the bacteria. 

 

Figure 20: Lack of complementation of cell division defect of E. coli MCI23 with Pal
wBm

. A) The phase-
contrast micrograph shows that E. coli MCI23 expressing PalwBm predominantly have elongated cells unable to 
divide. Scale bar = 20 µm. B) At least 351 cells from 30 pictures taken from six independent assays per sample 
were measured by Image J. Boxes extend from the 25th to the 75th percentile. The line in the middle of the box is 
plotted at the median. Whiskers represent 1st and 99th percentiles. Statistical analysis was performed using Kruskal-
Wallis test and Dunn’s comparison post-hoc test. *** = P ≤ 0.001. C) Columns represent mean ± SD of relative 
occurrence of different phenotypes at 42 °C from 30 randomly chosen pictures in six independent experiments. 

In conclusion, the results from the in vivo complementation assays in E. coli indicate 

that the serines in both SXXK motifs of PBP6awBm are most likely responsible for catalytic 

activity in this enzyme. 

3.1.5 Periplasmic expression and purification of recombinant PBP6awBm  

As previous attempts to obtain purified recombinant PBP6awBm by cytoplasmic 

overexpression were not successful (data not shown), pbp6a was cloned into pASK-IBA2C 

with ompA substituting the native signal peptide for periplasmic expression. This method has 

been shown to improve protein yields of expressed recombinant PBPs from intracellular 

bacteria of the genus Chlamydia (De Benedetti et al., 2014; Klöckner et al., 2014; Otten et al., 

2015). For small-scale overexpression pre-tests, pASK-IBA2C containing pbp6a was 

transformed into the E. coli strains C43, JM83 and W3110. Pre-tests were carried out to identify 

conditions that facilitate the production of recombinant PBPs and yield the highest amounts of 
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soluble protein. PBP6awBm
 was expressed in all three strains and E. coli JM83 was chosen to be 

used for further overexpression as this strain yielded highest protein amounts. PBP6awBm 

overproduction was additionally optimized by co-solvent supplementation. Co-solvent assisted 

overproduction has been established for heterologous expression of recombinant proteins from 

intracellular Chlamydia (Otten et al., 2015). The co-solvent test revealed that 4 h expression at 

25 °C in the presence of arginine resulted in the highest amount of soluble protein. 

Subsequently, the expression culture was scaled-up to 4 l and recombinant protein was purified 

using Strep-tag chromatography. Protein concentration of each eluate was measured (80–120 

µg/ml) and purity of PBP6awBm was confirmed by Western Blot analysis (Figure 21). As a 

negative control, a mock purification of the empty vector pASK-IBA2C was performed, which 

is exemplarily shown in chapter 3.4.1.1. 

 

Figure 21: Overexpressed and purified PBP6a
wBm

 in pASK-IBA2C. Western Blot analysis of elution fractions 
(E1-E8) after PBP6awBm expression and Strep-tag purification. The arrow points to the recombinant protein with a 
predicted molecular weight of 42.21 kDa. 

3.1.6 Activity of PBP6awBm in vitro using lipid II as a substrate 

The arginine-assisted overproduction of recombinant PBP6awBm
 yielded in soluble 

protein accessible to biochemical characterization. The protein was incubated with the cell wall 

precursor lipid II for 4 h or overnight at 30 °C. To exclude false positive results from potentially 

contaminating E. coli DD-carboxypeptidases, the corresponding eluate of the overexpressed 

and purified empty vector pASK-IBA2C served as a negative control. The 

DD-carboxypeptidase VanY from S. aureus served as a positive control and was incubated with 

lipid II for 1 h. After incubation of PBP6awBm with lipid II for 4 h and separation of the reaction 

mixture by TLC, a lipid II band at the normal running level was detected. However, after 

overnight incubation, two bands at different levels were observed (Figure 22A). The lower band 

represents lipid II with a tetrapeptide, which is generated when the terminal D-Ala is cleaved 
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from the pentapeptide chain. This band was also detected when lipid II was incubated with 

VanY from S. aureus. The upper band represents lipid II with a pentapeptide, which was also 

observed in the empty vector. MALDI-TOF analysis of the reaction products confirmed the 

TLC results (Figure 22B). Lipid II (L-Lys) has a mass of around 1875 Da, which was detected 

in the empty vector control. When incubated with PBP6awBm, a mass of 1805 Da was measured 

due to the cleavage of the terminal D-Ala from the pentapeptide side chain. The enzyme activity 

of PBP6awBm was slower compared to VanY from S. aureus. Nevertheless, TLC as well as 

MALDI-TOF analysis of the reaction products indicated in vitro DD-carboxypeptidase activity 

of PBP6awBm.  

 

Figure 22: In vitro activity of PBP6a
wBm

. The overexpressed recombinant PBP6awBm showed 
DD-carboxypeptidase activity on lipid II. A) TLC comparing DD-carboxypeptidase activity of PBP6awBm after 4 
h and overnight (o/n) incubation with lipid II. The DD-carboxypeptidase VanY (S. aureus) was used as a positive 
control, the empty vector pASK-IBA2C served as a negative control. B) MALDI-TOF analysis of the lipid II 
reaction products after incubation with PBP6awBm and the empty vector pASK-IBA2C. Cleaving of terminal D-
Ala from the pentapeptide side chain of lipid II (mass: 1875 Da) resulted in the formation of lipid II-tetrapeptide 
(mass: 1805 Da). MALDI-TOF analysis was performed by M. Josten, IMMIP. 
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3.1.7 Active site analysis of PBP6awBm in vitro 

The expressed and purified PBP6awBm
 S48A-S56A protein, in which both active site 

serine residues of the SXXK motifs were replaced by alanine, was not capable of cleaving the 

terminal D-Ala from lipid II as shown by TLC and MALDI-TOF (Figure 23). The mass of the 

reaction products after overnight incubation of PBP6awBm S48A-S56A with lipid II was around 

1877 Da, which corresponds to the mass of lipid II (L-Lys) with a pentapeptide confirming no 

DD-carboxypeptidase activity of the active site mutant.  

 

Figure 23: In vitro activity of PBP6a
wBm

 S48A-S56A active site mutant. TLC and MALDI-TOF analysis of the 
lipid II reaction products after incubation with overexpressed recombinant PBP6awBm S48A-S56A active site 
mutant did not reveal DD-carboxypeptidase activity on lipid II. MALDI-TOF analysis was performed by 
M. Josten, IMMIP.  

3.1.8 Resistance of PBP6awBm
 to β-lactam antibiotics in vitro 

As PBPs usually show a high penicillin-binding affinity, antibiotic susceptibility tests 

using β-lactam antibiotics were performed. These antibiotics bind to the active site serine in the 

SXXK motif of PBPs and inhibit cell wall synthesis by the formation of an acyl-enzyme 

complex due to structural similarity to the natural substrate D-Ala-D-Ala (Sauvage and Terrak, 

2016). Neither penicillin G nor ampicillin abolished the DD-carboxypeptidase activity of 

PBP6awBm after incubation overnight in a molar ratio of 1:10 (Figure 24). A BocillinTM FL-

binding assay confirmed that penicillin did not bind to the protein in vitro (Supplementary 

Figure 5). Additionally, a more sensitive assay with radiolabeled penicillin also did not reveal 

any binding to PBP6awBm (data not shown). Altogether, these results indicate that PBP6awBm is 

resistant to β-lactam antibiotics. 
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Figure 24: β-lactam susceptibility testing of PBP6a
wBm

. The resistance of PBP6awBm
 to the β-lactams penicillin 

G and ampicillin (molar ratio 1:10) shown by TLC analysis.  

3.1.9 In vivo β-lactamase activity assay of PBP6awBm
 

DD-carboxypeptidases and β-lactamases are members of the so-called serine proteases 

and have high structural similarities (Smith et al., 2013). Serine-β-lactamases hydrolyze the 

lactam ring by an active serine residue resulting in resistance to β-lactam antibiotics. A 

bifunctional DD-carboxypeptidase and β-lactamase activity was demonstrated in PBP5 from 

Pseudomonas aeruginosa explaining β-lactam resistance of these bacteria (Smith et al., 2013). 

As penicillin G and ampicillin were not able to inhibit PBP6awBm
 activity in vitro and penicillin-

binding was not observed (see chapter 3.1.7), a β-lactamase assay was performed to examine if 

PBP6awBm cleaves β-lactam antibiotics. For this, PBP6awBm was expressed in E. coli JM83 

cultures supplemented with CENTATM as a substrate and incubated for 16 h. Analysis of 

absorbance measurements of six independent assays showed an increase of λ405 from 0.48 

(± 0.04 standard error of the mean (SEM)) to 1.36 (± 0.15 SEM) in cultures containing the 

positive control E. coli ML-35 pYC indicating successful CENTATM hydrolysis (Figure 25). In 

contrast, constant absorbance values around λ405 = 0.38 (± 0.02 SEM) were observed in cells 

expressing PBP6awBm in eight independent assays. Cultures expressing the empty vector control 

showed slightly increased λ405 levels from 0.4 (± 0.03 SEM) to 0.58 (± 0.07 SEM) after 16 h 

incubation in six independent assays. In conclusion, no β-lactamase activity for PBP6awBm was 

detected under the conditions tested. 
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Figure 25: β-lactamase activity assay of PBP6a
wBm

 in vivo. E. coli JM83, carrying PBP6awBm in pASK-IBA2C 
were induced with 200 ng/ml AHT. β-lactamase activity was detected at λ405 using the chromogenic cephalosporin 
CENTATM as a substrate. E. coli ML35-pYC constitutively expressing a periplasmic β-lactamase were used as a 
positive control, pASK-IBA2C (empty vector) served as a negative control. PBP6awBm data represent means from 
eight independent assays, the positive and negative control were tested in six independent assays. Error bars 
represent ± SEM. 

3.1.10 In silico binding of PBP6awBm to cefoxitin 

In silico analysis predicted a binding of the β-lactam antibiotic cefoxitin to PBP6awBm, 

including the serine of the second SXXK motif S56 (Figure 26). Contrary to PBP6a from 

E. coli, PBP6awBm has two SXXK motifs allowing the enzyme to be active even when bound to 

a β-lactam. As the first SXXK serine is not involved in binding and in vivo assays indicate that 

SXXK motifs can substitute each other (see chapter 3.1.4), PBP6awBm might still be a functional 

DD-carboxypeptidase in the presence of a β-lactam. 

 

Figure 26: PBP6a
wBm

 bound to cefoxitin as predicted by 3DLigandSite. The residues S55, S56, K59, S93, 
S116, N118, S157, P160, K204, T219, Y221, T222 putatively involved in binding to cefoxitin (green) are labeled 
in red, their corresponding structures are marked in blue. The arrow points to the active site serine S56 of the 
SXXK motif predicted to be involved in binding. 
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3.2 Functional analysis of PBP2wBm
 

3.2.1 Primary structure analysis of PBP2wBm 

In rod-shaped E. coli, PBP2 is an essential compound of the peptidoglycan biosynthesis 

multi-enzyme complex and promotes cell elongation as well as shape maintenance (Typas et 

al., 2012). The annotated wolbachial DD-transpeptidase homolog PBP2wBm (NCBI: 

WP_011256277) investigated in this thesis consists of 520 amino acids with an estimated size 

of 58 kDa. It harbors one predicted N-terminal transmembrane domain ranging from amino 

acids 1–35, but no signal peptide for periplasmic secretion (Supplementary Figure 6). PBP2wBm 

contains two SXXK, four SX(D/N) and one K(S/T)G motif. E. coli PBP2 (NCBI: 

WP_000776176.1) has only one SXXK motif, but four SX(D/N) and one KSG motif. A 

glycosyltransferase activity site was not identified in PBP2wBm, thus it might be a 

monofunctional DD-transpeptidase like E. coli PBP2 (Sauvage et al., 2008). PBP2wBm was re-

annotated on NCBI and is now listed as a putative PBP3, a DD-transpeptidase involved in cell 

division. PBP2wBm shares 28 % sequence identity with E. coli PBP2 and 24 % with E. coli PBP3 

(NCBI: ARB43848.1) (Figure 27). Sequence alignment of PBP2wBm with PBP2wMel and 

PBP3wMel revealed a high similarity around 84 % to PBP2wMel and only 18 % to PBP3wMel 

(Supplementary Figures 7, 8). Thus, the term PBP2wBm was kept in this thesis as a description 

for this enzyme. However, the question remained whether this enzyme is involved in cell 

elongation or whether it is part of the cell division complex. 
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PBP2 wBm -------------MWIKNKVFNRRAF-ILGGIQLTISTIFSCRLYSLQIRNRQKYEKLAD 46 
PBP2 E. coli ----MKLQNSFRDYTAESALFVRRAL-VAFLGILLLTGVLIANLYNLQIVRFTDYQTRSN 55 
PBP3 E. coli MKAAAKTQKPKR--QEEHANFISWRFALLCGCILLALAFLLGRVAWLQVISPDMLVKEGD 58 
                 :   *    : :     *    .:  .:  **:       . .: 

 
 

PBP2 wBm NNRIRVAAIMPKRGRILDRNGIELAVDKISYIVLFDKQKISS-----EEVDWETLSEI-- 99 
PBP2 E. coli ENRIKLVPIAPSRGIIYDRNGIPLALNRTIYQIEMMPEKVDN-----VQQTLDALRNVVD 110 
PBP3 E. coli MRSLRVQQVSTSRGMITDRSGRPLAVSVPVKAIWADPKEVHDAGGISVGDRWKALANALN 118 
 . :::  :  .** * **.*  **:.     :    ::: .          .:* :    

  
 

PBP2 wBm ------------------------------------ESNVTKSSETKITALYKRHYPFGS 123 
PBP2 E. coli LTDDDIAAFRKERARSHRFTSIPVKTNLTEVQVARFAVNQYRFPGVEVKGYKRRYYPYGS 170 
PBP3 E. coli IPLDQLSARINANP-KGRFIYLARQVNP---DMA-DYIKKLKLPGIHLREESRRYYPSGE 173 
                                       :  :    .:    :*:** *. 

 
 

PBP2 wBm ICSHTLGYTKKQQG-----------------INEAGISGIEYTYDHILKGKPGRSEQEIN 166 
PBP2 E. coli ALTHVIGYVSKINDKDVERLNNDGKLANYAATHDIGKLGIERYYEDVLHGQTGYEEVEVN 230 
PBP3 E. coli VTAHLIGFTN---------------------VDSQGIEGVEKSFDKWLTGQPGERIVRKD 212 
   :* :*:..                      .. *  *:*  ::. * *: *    . : 

 
 

PBP2 wBm SKKRIVRELSSIPQQDGQDVQLTIDIDLQEKIAEI-------FKGHKGSVTAIDVGNGEI 219 
PBP2 E. coli NRGRVIRQLKEVPPQAGHDIYLTIDLKLQQYIETL-------LAGSRAAVVVTDPRTGGV 283 
PBP3 E. coli RYGRVIEDISSTDSQAAHNLALSIDERLQALVYRELNNAVAFNKAESGSAVLVDVNTGEV 272 
    *::.::..   * .::: *:**  **  :            .  .:..  *  .* : 

                                               
 

PBP2 wBm LTLYNSPSYDNNLFANKLSNEAWEG-LNTPSLPLVNRALSYQIPPGSIFKIIVALAGLKD 278 
PBP2 E. coli LALVSTPSYDPNLFVDGISSKDYSALLNDPNTPLVNRATQGVYPPASTVKPYVAVSALSA 343 
PBP3 E. coli LAMANSPSYNPNNL------------SGTPKEAMRNRTITDVFEPGSTVKPMVVMTALQR 320 
 *:: .:***: * :             . *.  : **:      *.* .*  *.::.*.  

 
 

PBP2 wBm GIITPEEKFSCVGYMK---I--GERRFCCLKSKVHGYVSLNEAMALSCNTYFYNIGKKIS 333 
PBP2 E. coli GVITRNTSLFDPGWWQ---LPGSEKRYRDWKKWGHGRLNVTRSLEESADTFFYQVAYDMG 400 
PBP3 E. coli GVVRENSVLNTIPYTIPYRINGHEIK--DVA--RYSELTLTGVLQKSSNVGVSKLALAMP 376 
 *::  :  :    :     :   * :        :. :.:.  :  *.:. . ::.  : 

 
 

PBP2 wBm VDSLVEMARKFGIGSGPLIGAFKEEAPGLLPDKDWRTRKLYSEWYLGDTVNLVIGQGYVL 393 
PBP2 E. coli IDRLSEWMGKFGYGHYTGID-LAEERSGNMPTREWKQKRFKKPWYQGDTIPVGIGQGYWT 459 
PBP3 E. coli SSALVDTYSRFGLGKATNLG-LVGERSGLYPQKQ--------RWSDIERVTFSFGYGL-M 426 
 . * :   :** *    :. :  *  *  * ::         *   : : . :* *    

 
 

PBP2 wBm TTPLQLAVLAA-RIATGKEVIPRIEMSKTMQ----------DFPDID--IAHEHLSIVRK 440 
PBP2 E. coli ATPIQMSKALMILINDGIVKVPHLLMSTAEDGKQVPWVPPHEPPVGD--IHSGYWELAKD 517 
PBP3 E. coli VTPLQLARVYATIGSYGIYRPLSI--TK------------VDPPVPGERVFPESIVRTVV 472 
 .**:*::         *      :  :.             : *  .  :       .   

 
 

PBP2 wBm AMFNMVNIKAGTYRKGLSS--IRIAGKTG--------------TPEINSKGESHKLFIAY 484 
PBP2 E. coli GMFGVANRPNGTAHKYFASAPYKIAAKSGTAQVFGLKANETYNAHKIAERLRDHKLMTAF 577 
PBP3 E. coli HMMESVALPGGGGVK-AAIKGYRIAIKTGTAKKVGPDGRYI--NK-------YIAYTAGV 522 
 *:  .    *   *  :    :** *:*                             .  

 
 

PBP2 wBm GPYHDPRYAISVFIEYGKAPRQ---------DVAMANEILRYMLKG-------------- 521 
PBP2 E. coli APYNNPQVAVAMILENGGAGPA---------VGTLMRQILDHIMLGDNNTDLPAENPAVT 628 
PBP3 E. coli APASQPRFALVVVINDPQAGKYYGGAVSAPVFGAIMGGVLRTMNIEPDALTTGDKNEFVI 582 
 .*  :*: *: :.::   *              ::   :*  :                  

 
 

PBP2 wBm ---------- 521 
PBP2 E. coli AAEDH----- 633 
PBP3 E. coli NQGEGTGGRS 592 
   

Figure 27: Primary structure analysis and amino acid alignment of PBP2
wBm

 and E. coli PBP2 and PBP3. 
PBP2wBm (WP_011256277.1) shares 28 % sequence identity to E. coli PBP2 (WP_000776176.1) and 24 % identity 
to E. coli PBP3 (ARB43848.1). Conserved SXXK, SX(D/N) and K(S/T)G motifs found in PBP2wBm

 are written in 
bold letters, motifs which align to E. coli PBP2 and PBP3 are additionally framed in black. The predicted 
N-terminal transmembrane domain is highlighted gray. * fully conserved residue; : conservation between groups 
of strongly similar properties; . conservation between groups of weakly similar properties. 
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3.2.2 Secondary structure analysis of PBP2wBm 

To get a deeper insight into the putative active site of PBP2wBm, secondary structure 

analysis was performed. Here, the three conserved motifs were localized based on sequence 

alignments to E. coli. Secondary structure analysis predicted that the first SXXK motif 

(S107ETK) is outside the predicted catalytic center (Figure 28). The second motif (S265IFK), 

which was found to be conserved in the E. coli PBP2, is probably localized in an α-helix and 

thus might comprise the active site with S320CN (α-helix and loop) and K465TG (β-sheet). The 

results of the structure analysis indicated that PBP2wBm has a catalytic center and might be an 

active DD-transpeptidase. The gene pbp2 from wBm was cloned into pASK-IBA expression 

vectors, transformed into different E. coli strains and tested in in vivo and in vitro activity 

assays. 

 

Figure 28: Secondary structure of PBP2
wBm

 as predicted by Phyre
2
. S265IFK (blue) might, together with S320CN 

(green) and K465TG (red), build the catalytic center of the enzyme, while S107ETK is predicted to be located outside 
the active site (blue). The molecular structure of PBP2wBm

 was illustrated by Jmol. 

3.2.3 Characterization of PBP2wBm in vivo 

To gain a first insight into the function of the putative wolbachial DD-transpeptidase 

PBP2wBm, in vivo complementation assays were performed with the PBP3 temperature sensitive 

E. coli MCI23 strain. As PBP2 and PBP3 have clearly distinct tasks in other bacteria like E. coli, 

a complementation of cell division deficiency would only be expected if PBP2wBm was involved 

in cell division. PBP2wBm with and without its predicted N-terminal transmembrane domain 

(PBP2ΔTMwBm) was cloned into pASK-IBA6C and transformed into E. coli MCI23. Successful 

cloning and transformation were confirmed by sequencing (Supplementary Figures 9,10). 
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Additionally, E. coli MCI23 were transformed with the empty vector as a control for in vivo 

assays. E. coli MCI23 expressing recombinant PBP2∆TMwBm, PBP2wBm or the empty vector 

control at 30 °C only had short and dividing cells (data not shown). At the non-permissive 

temperature of 42 °C, E. coli MCI23 expressing recombinant PBP2∆TMwBm were mainly short 

and dividing (Figure 29A), whereas E. coli MCI23 overexpressing PBP2wBm and the empty 

vector control did not rescue cell division (Figure 29B,C). Analysis of six independent assays 

confirmed the observed results (Figure 29D,E). E. coli MCI23 expressing recombinant 

PBP2∆TMwBm were significantly shorter than PBP2wBm and the empty vector control with 85.7 

% (± 7.6 SD) short and dividing cells at 42 °C and 14.3 % (± 7.6 SD) elongated cells at 42 °C. 

In contrast, E. coli MCI23 overexpressing PBP2wBm did not restore cell division with only 6 % 

(± 5.2 SD) short and 94 % (± 5.2 SD) elongated cells observed. Cells expressing the empty 

vector had 95.3 % (± 5.9 SD) filamentous and 4.6 % (± 5.9 SD) short cells. Possibly, the soluble 

PBP2∆TMwBm replaced the impaired E. coli PBP3 on the division site, while PBP2wBm with its 

native transmembrane domain was not recruited to the divisome. In conclusion, the in vivo 

results indicated that PBP2wBm might be an active DD-transpeptidase. 

 

Figure 29: PBP2ΔTM
wBm

 rescues cell division in a temperature sensitive E. coli MCI23. A) Phase-contrast 
microscopy shows E. coli MCI23 expressing recombinant PBP2ΔTMwBm

 are mainly short and dividing, while B) 
expressed PBP2wBm are not able to restore cell division at 42 °C. C) The induced empty vector pASK-IBA6C is 
not able to restore cell division. Scale bars = 20 µm. D) At least 667 cells from 30 pictures taken from six 
independent assays per sample were measured by Image J. Boxes extend from the 25th to the 75th percentile. The 
line in the middle of the box is plotted at the median. Whiskers represent 1st and 99th percentiles. Statistical analysis 
was performed using Kruskal-Wallis test and Dunn’s comparison post-hoc test. ns = not significant, *** = P ≤ 
0.001. E) Columns represent mean ± SD of relative occurrence of different phenotypes from five randomly chosen 
pictures in each experiment (n = 6). 
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3.2.4 Active site analysis of PBP2ΔTMwBm
 in vivo 

The serine of the SXXK motif catalyzes the enzymatic reaction of PBPs and the 

mutagenesis of SXXK motifs in PBP3 from C. pneumoniae was shown to inhibit enzyme 

activity (Otten, 2014). Thus, the active site serine of both SXXK motifs in PBP2ΔTMwBm were 

changed to alanine (S107A and S265A) by mutagenesis PCR (Figure 30), successful amino 

acid substitution was confirmed by nucleotide sequencing (Supplementary Figure 11). 

 

Figure 30: Primary structure analysis of PBP2ΔTM
wBm

 in pASK-IBA6C after site-directed mutagenesis. 

Serine residues from SXXK motifs were substituted by alanine (red bold letters). The predicted transmembrane 
domain (highlighted gray) was removed to increase solubility of the protein. The amino acid sequence is shown in 
single-letter code. 

The plasmid containing mutated PBP2ΔTMwBm was transformed into E. coli MCI23 and 

activity assays were performed (see chapter 3.2.3). E. coli MCI23 expressing PBP2∆TMwBm 

S107A, S265A or S107A-S265A were exclusively short or dividing at 30 °C (data not shown). 

At 42 °C, single mutation of the SXXK motifs did not impair PBP2ΔTMwBm activity, still 

restoring division in 84.1 % (± 14.3 SD) (S107A) and 82.3 % (± 21.7 SD) (S265A) of cells 

(Figure 31). Expression of a PBP2∆TMwBm double active site mutant (S107A-S265A) revealed 

functional dependency of at least one functional serine of the SXXK motif as an increase to 

72.5 % (± 13.6 SD) of elongated cells unable to divide was observed. 
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Figure 31: Complementation assay to test for the ability of PBP2ΔTM
wBm

 active site mutants to rescue cell 

division in a temperature sensitive E. coli MCI23 mutant. Phase-contrast micrographs shows E. coli MCI23 
expressing PBP2ΔTMwBm active site mutants A) PBP2ΔTM S107A and B) PBP2ΔTM S265A partially rescue cell 
division, while C) PBP2ΔTM S107A-S265A cannot restore growth defects resulting in elongated cells. Scale bars 
= 20 µm. D) At least 652 cells from 30 pictures taken from six independent assays per sample were measured by 
Image J. Boxes extend from the 25th to the 75th percentile. The line in the middle of the box is plotted at the median. 
Whiskers represent 1st and 99th percentiles. Statistical analysis was performed using Kruskal-Wallis test and 
Dunn’s comparison post-hoc test. * = P ≤ 0.05, *** = P ≤ 0.001. E) Columns represent mean ± SD relative 
occurrence of different phenotypes at 42 °C from five randomly chosen pictures in each experiment (n = 6). 

Growth of E. coli was monitored to exclude that the different observed phenotypes 

resulted from potential cell arrests induced by protein induction. In three independent 

measurements, all cultures grew exponentially after induction (Figure 32). 

 

Figure 32: Growth kinetics of E. coli MCI23 during periplasmic expression of PBP2
wBm

. Protein expression 
was induced at OD600 = 0.4 with 100 ng/ml tetracycline. OD600 was measured every hour. Each point represents 
mean ± SD (n = 3). 
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3.2.5 Mecillinam treatment of PBP2wBm in vivo 

Specific inhibition of PBP2 by the β-lactam mecillinam leads to spherical cells instead 

of rods in E. coli (Spratt and Pardee, 1975). Thus, the potential sensitivity of PBP2ΔTMwBm to 

this antibiotic was examined. In vivo complementation assays using E. coli MCI23 at the non-

permissive temperature of 42 °C were conducted (see chapter 3.2.3) in the presence of 

mecillinam in six independent assays. E. coli MCI23 overexpressing PBP2∆TMwBm were 

mainly short and rod-shaped indicating that mecillinam did not affect the activity of this enzyme 

(Figure 33A). Control cultures with uninduced PBP2∆TMwBm had spherical cells due to the 

inhibition of PBP2 from E. coli by mecillinam (Spratt and Pardee, 1975) (Figure 33B). Cultures 

overexpressing the empty vector showed an altered phenotype with elongated, but also 

spherical cells in the presence of mecillinam (Figure 33C). E. coli MCI23 with the uninduced 

empty vector served as a further control resulting in spherical cells after mecillinam treatment 

(Figure 33D). These results suggest that PBP2wBm is not inhibited by mecillinam. 

 

Figure 33: Cell division of E. coli MCI23 expressing PBP2ΔTM
wBm

 is not inhibited by mecillinam, a specific 

inhibitor of PBP2. A) E. coli overexpressing PBP2ΔTMwBm complement cell division in the presence of 
mecillinam, while B) uninduced cells show a spherical phenotype. C) E. coli expressing the empty vector pASK-
IBA6C are partially elongated, but also show a spherical phenotype. D) Uninduced cultures harboring the empty 
vector are spherical after mecillinam treatment. 
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3.2.6 Periplasmic expression and purification of recombinant PBP2wBm 

As previous attempts to get soluble protein by cytoplasmic overexpression in pET 

vectors were unsuccessful (data not shown), the PBP2wBm encoding gene was cloned into 

pASK-IBA vectors for co-solvent assisted periplasmic expression (Otten et al., 2015). Ppb2 

was cloned with and without its predicted transmembrane domain (ΔTM). This modification 

was performed to allow the protein to accumulate in the periplasm in a soluble and correctly 

folded state. In the following step, small-scale overexpression pre-tests in different E. coli 

strains (C43, JM83 and W3110) and in the presence of different co-solvents were carried out to 

identify conditions that facilitate the production of recombinant PBP2wBm and yield the highest 

amounts of soluble protein. Taken together, the overproduction and purification conditions 

were optimized regarding expression strain, addition of co-solvents and detergents, and 

recombinant PBP2wBm
 was successfully purified for the first time (Figure 34). Although the 

largest proportion of recombinant protein was found in flow-through and wash fractions, 

mannitol-assisted overproduction in E. coli JM83 for 4 h at 25 °C resulted in soluble 

PBP2ΔTMwBm. By adding the detergent Tween 20 to the lysis Buffer P, also soluble PBP2wBm 

with its native transmembrane domain was purified. Protein concentrations of single elution 

fractions were around 100 µg/ml (PBP2wBm) or 200 µg/ml (PBP2ΔTMwBm) respectively, which 

was sufficient for biochemical characterization. 

 

Figure 34: Purification of PBP2ΔTM
wBm

 and PBP2
wBm

 via Strep-Tactin affinity chromatography. Western 
Blot analysis shows recombinant protein from different steps of the purification procedure of A) PBP2ΔTMwBm, 
the empty vector pASK-IBA2C and B) PBP2wBm. L = Ladder, E = Elution fractions, F = Flow through, W = Wash 
Fraction, F empty = Flow through of the empty vector control, W empty = Wash fraction of the empty vector 
control. Arrows point to expected protein size. 
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3.2.7 Characterization of PBP2wBm in vitro 

3.2.7.1 DD-transpeptidase activity test using lipid II as a substrate 

The cross-linking of lipid II stem peptide moieties by monofunctional 

DD-transpeptidases is poorly characterized in vitro even in well investigated bacteria due to a 

lack of established assays (Dougherty and Pucci, 2011). Still, the presence or absence of 

monomeric lipid II on a TLC plate can indicate DD-transpeptidation since polymerized lipid II 

cannot be extracted by butanol-pyridine acetate and is consequently not detectable on the TLC 

plate. PBP2wBm was incubated with 2 nmol synthesized lipid II overnight and reaction products 

were analyzed by TLC. The corresponding elution fraction of the empty vector served as a 

negative control, PBP2 from S. aureus, which is a bifunctional PBP with DD-transpeptidase 

and glycosyltransferase activity, served as a positive control. In first assays, a bright lipid II 

band was detectable on the TLC plate after overnight incubation with PBP2wBm (Figure 35). In 

the positive control with PBP2 from S. aureus, no lipid II was detectable indicating 

polymerization of lipid II. In contrast, the lipid II band was still present after incubation with 

the empty vector elution fraction, implying that lipid II was not polymerized in this sample.  

 

Figure 35: In vitro activity assay of PBP2
wBm

. PBP2wBm was incubated with lipid II and incubated overnight. The 
mixture was applied on a TLC and stained bands were quantified using Image QuantTM TL. Polymerization of the 
monomeric lipid II results in extinction of the lipid II band on a TLC as shown here for the positive control PBP2 
from S. aureus with only 0.18 nmol detectable residual lipid II. PBP2wBm shows a slight band containing 0.78 nmol 
lipid II. The overexpressed and purified empty vector containing 1.43 nmol lipid II after overnight incubation 
served as a negative control to exclude activity of potentially contaminating E. coli DD-transpeptidases. 2 nmol 
pure lipid II were applied to the TLC as a reference of band intensity for quantification. 

These observations were confirmed by quantification of the bands (Image QuantTM TL). 

As a reference, 2 nmol pure lipid II were applied to the TLC. Based on the intensity of this 

band, the amount of monomeric lipid II in the other samples was calculated. The mixture with 

the positive control PBP2 from S. aureus had 0.18 nmol residual lipid II after overnight 

incubation. In the PBP2wBm containing sample, 0.78 nmol lipid II were detected, while the 

mixture with the empty vector contained 1.43 nmol lipid II. Assays were repeated under 

different conditions (time, temperature, pH, increased protein concentration), but none of them 

resulted in increased extinction of the lipid II band in the presence of PBP2wBm.  
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3.2.7.2 Penicillin-binding assays 

Penicillin-binding was tested by incubating cleared lysates, wash fractions and elution 

fractions of overexpressed PBP2wBm with BocillinTM FL. While 4 µg of purified PBP2 from S. 

aureus (positive control) was sufficient to observe a distinct fluorescent band, no bands were 

detectable in lanes containing PBP2wBm
 (Supplementary Figure 5). Further, a more sensitive 

assay using radiolabeled penicillin also did not reveal binding to PBP2wBm (data not shown). 

These results indicate that PBP2wBm might not bind to β-lactam antibiotics. 

3.2.8 In vivo β-lactamase activity assay of PBP2wBm
 

As PBP2wBm was resistant to mecillinam in vivo (see chapter 3.2.5) and no penicillin-

binding of was observed in vitro (see chapter 3.2.7.2), a potential β-lactamase activity of 

PBP2wBm was examined using CENTATM as a substrate. PBP2wBm and PBP2ΔTMwBm were 

expressed in E. coli JM83, supplemented with CENTATM and incubated for 16 h. In six 

independent experiments, absorbance λ405 increased of from 0.48 (± 0.04 SEM) to 1.36 (± 0.15 

SEM) in cultures containing the positive control E. coli ML-35 pYC indicating CENTATM 

hydrolysis (Figure 36). Cultures expressing PBP2wBm only slightly increased from λ405 = 0.4 

(± 0.02 SEM) to 0.54 (± 0.04 SEM) in seven independent assays. Similar values were observed 

in cells expressing PBP2ΔTMwBm with a slight increase from λ405 = 0.4 (± 0.02 SEM) to 0.52 

(± 0.05 SEM) in seven experiments. Cultures expressing the empty vector control slightly 

increased from λ405 = 0.4 (± 0.03 SEM) to 0.58 (± 0.07 SEM) in six independent assays. No 

β-lactamase activity of PBP2wBm or PBP2ΔTMwBm was detected under these conditions.  

 

Figure 36: β-lactamase activity assay of PBP2
wBm

 in vivo. E. coli JM83 with PBP2wBm in pASK-IBA6C or 
PBP2ΔTMwBm in pASK-IBA2C were induced with 200 ng/ml AHT. β-lactamase activity was detected at λ405 using 
CENTATM as a substrate. E. coli ML35-pYC were used as a positive control, pASK-IBA2C (empty vector) served 
as a negative control. PBP2wBm and PBP2ΔTMwBm data represent means from seven independent assays, the 
positive and negative control were tested in six independent assays. Error bars represent ± SEM. 
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3.2.9 In silico modeling of PBP2wBm 

In silico analysis predicted a binding of the β-lactam antibiotic cefoxitin, including the 

serine of the second SXXK active site motif S265 (Figure 37). As the first SXXK motif is not 

involved in binding, PBP2wBm might still be active in the presence of a β-lactam with inactivated 

S265 as indicated by in vivo assays (see chapter 3.2.2 and 3.2.3).  

 

Figure 37: 3D structure of PBP2
wBm

 bound to cefoxitin as predicted by 3DLigandSite. The residues S265, 
K268, L303, S320, N322, 389, T452, T466, G467, T468, E470, A503, P504 putatively involved in binding to 
cefoxitin (green) are marked in blue. The arrow points to the active site serine S265 of the SXXK motif. 

3.3 Functional analysis of PalwBm
 

3.3.1 Primary structure analysis of PalwBm 

Peptidoglycan-associated lipoprotein PalwBm is among the most abundant proteins in 

Wolbachia (Voronin et al., 2014). PalwBm (NCBI: AAW70743.1) consists of 159 amino acids 

with a predicted molecular mass of 18.5 kDa and shares 37 % sequence identity with E. coli 

Pal (NCBI: WP_001560401.1) (Figure 38). PalwBm contains a signal peptide ranging from 

amino acid 1–24 suggesting the enzyme being localized in the periplasm (Supplementary Figure 

12). Fosfomycin treatment of Wolbachia (blocking of lipid II synthesis) results in enlarged cells 

and a perturbed localization of wolbachial Pal indicating that this protein is necessary to connect 

the inner and outer membrane, in particular during cell division (Vollmer et al., 2013). The 

interaction partner of Pal might be lipid II. In E. coli, outer membrane-anchored lipoproteins 

control PBP activity by binding and inducing conformational changes (Paradis-Bleau et al., 
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2010; Typas et al., 2012; Egan et al., 2014). Thus, a potential binding between PalwBm and 

PBP2wBm as well as PalwBm and lipid II were investigated in in vitro experiments in this thesis.  

Pal wBm -MWSRLVAMCCFCLLLTGVSSCSKR----------------------GVNA---INKMNF 34 
E. coli Pal MQLNKVLKGLMIALPVMAIAACSSNKNASNDGSEGMLGAGTGMDANGGNGNMSSEEQARL 60 
    .:::    :.* : .:::**..                      * .     :: .: 

 
 

Pal wBm VVKQ-MKEKRVFFDYDKSDISEAGADTLLDVMEVLQDDPNVKVTLIGHTDNRGSYEYNVA 93 
E. coli Pal QMQQLQQNNIVYFDLDKYDIRSDFAQMLDAHANFLRSNPSYKVTVEGHADERGTPEYNIS 120 
 ::*  ::: *:** ** ** .  *: *    :.*:.:*. ***: **:*:**: ***:: 

 
 

Pal wBm LGARRADAAKNFMVSCTPYLENRIKTASKGETEPLVYVADDSKNSKYEKEHAKNRRVEFS 153 
E. coli Pal LGERRANAVKMYLQGKG-VSADQISIVSYGKEKPVVLGHDEAA-------YAKNRRAVLV 172 
 ** ***:*.* :: .      ::*. .* *: :*:*   *::        :*****. :  

 
 

Pal wBm FSGMKK 159 
E. coli Pal Y----- 173 

 :  
 

 

Figure 38: Amino acid alignment of Pal
wBm

 and E. coli Pal. PalwBm (AAW70743.1) shares 37 % sequence 
identity with E. coli Pal (WP_001560401.1). The predicted signal peptide ranges from amino acids 1–24 
(highlighted gray). * fully conserved residue; : conservation between groups of strongly similar properties; . 
conservation between groups of weakly similar properties. 

3.3.2 PalwBm interaction with PBP2wBm 

To measure a potential interaction between PalwBm and PBP2wBm in vitro, biolayer 

interferometry was performed. Biotinylated PalwBm was immobilized on a streptavidin 

biosensor. Purified PBP2ΔTMwBm or the empty vector control was used as the analyte and 

applied to the biosensor. Here, a concentration-dependent interaction of PBP2∆TM wBm with 

PalwBm was observed, but not from supernatant of the overexpressed empty vector control, as 

exemplarily shown (Figure 39). In five independent assays using purified protein from two 

different expressions, the interaction of PalwBm and PBP2∆TM wBm had a dissociation constant 

with a mean of 12.1 (±3.4 nM SD), indicating a high affinity between the proteins.  

 

Figure 39: Interaction between PBP2ΔTM
wBm

 and Pal
wBm

 detected by biolayer interferometry (BLI). 
Biotinylated PalwBm was immobilized on a streptavidin biosensor PBP2ΔTMwBm (29.5 nM – 118 nM) was used as 
an analyte. Calculated dissociation constant in this assay was 9.7 nM. The empty vector served as a negative 
control. The graph is representative for five experiments using purified PBP2ΔTMwBm from two different 
expressions. 
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3.3.3 PalwBm interaction with lipid II 

Surface plasmon resonance was used to measure a possible protein-lipid II interaction 

between PalwBm and lipid II (either mDAP or L-Lys). PalwBm was immobilized on a CM5 chip 

using a strep-tag II specific monoclonal antibody. Lipid II was dissolved in running buffer and 

used as the analyte of the binding reaction. PalwBm showed a higher affinity for lipid II with an 

mDAP residue at position 3 in the pentapeptide side chain typically found in Gram-negative 

bacteria compared to lipid II with an L-Lys residue at position 3 typically found in Gram-

positive bacteria (Figure 40). 

 

Figure 40: Binding of Pal
wBm

 to lipid II. PalwBm has a higher affinity for A) lipid II with an mDAP residue 
compared to B) lipid II with an L-Lys residue at position 3 in the pentapeptide side chain as revealed by surface 
plasmon resonance. PalwBm was immobilized on a CM5 chip using a strep-tag II specific monoclonal antibody. 
Lipid II dissolved in running buffer (0–12.5 µM) was used as the analyte of the binding reaction. 

3.4 Functional analysis of AmiDwMel
 

3.4.1 Primary structure analysis of AmiDwMel 

The genomes of insect Wolbachia such as wMel encode a putative peptidoglycan 

hydrolase, the N-acetylmuramoyl-L-alanine amidase AmiD, although a functional cell wall has 

not been detected. AmiDwMel (NCBI: AAS14728) has 497 amino acids and is almost double the 

size of AmiD from E. coli (NCBI: NP_415388) with 257 amino acids (Kerff et al., 2010) 

(Figure 41). Sequence alignments with periplasmic E. coli AmiA, AmiB, AmiC and AmiD 

reveal the highest homology to E. coli AmiD with 27 % sequence identity. AmiDwMel contains 

an N-terminal predicted signal sequence from amino acids 1–30 for the transport into the 

periplasm (Supplementary Figure 13). However, the signal sequence lacks a typical lipobox 
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motif with a conserved cysteine residue for lipidation and insertion into the outer membrane 

suggesting that AmiDwMel is not a lipoprotein. A putative amidase catalytic site with three 

conserved zinc-binding residues is present (H79, H187 and D207). Additionally, two SXXK, two 

SX(D/N) and one K(S/T)G motif are conserved in AmiDwMel. 

 
AmiD wMel MKIQLSKVNKYLLVLLITVSAFLISGQVSSSSNIENDFQDLQEKLPLLKDQDLLFLDPAS 60 
AmiD E. coli -------MRRFF---WLVAAALLLAGCAGEKGIVEKEGYQLDTRR--------------- 35 
        :.:::    :..:*:*::* ..... :*::  :*: :                 

 

 

AmiD wMel ALNYGDRAGKKVLMVIVHHTETSTLKGTKDTLNARGLSVHFIVD-------RDGSITLMV 113 
AmiD E. coli ----QAQAAYPRIKVLVIHYTADDFDSSLATLTDKQVSSHYLVPAVPPRYNGKPRIWQLV 91 
       :*.   : *:* *  :. :..:  **. : :* *::*         .  *  :* 

 

 

AmiD wMel PLEKEAWHAGISYARVKVDSKLEELRKLNNYSVGIEIVNTGLE---------PFPEEQMR 164 
AmiD E. coli PEQELAWHAGISAWRG--------ATRLNDTSIGIELENRGWQKSAGVKYFAPFEPAQIQ 143 
 * :: *******  *           :**: *:***: * * :         **   *:: 

 

 

AmiD wMel SVKELILYLMERFKIKRDMIFSHSEIGTIVYDPELGYTMRKPDPHKLFDWELLEKNEIGL 224 
AmiD E. coli ALIPLAKDIIARYHIKPENVVAHADIA----------PQRKDDPGPLFPWQQLAQQGIGA 193 
 ::  *   :: *::** : :.:*::*.            ** **  ** *: * :: ** 

 

 

AmiD wMel HISDRINPKDAKHKMGKTLYKAGDRNEG---ILKLKQRLNRFFYKIEPWNDKRGNVIFPD 281 
AmiD E. coli WPDAQR----------VNFYLAGRAPHTPVDTASLLELLARYGYDVKPDMTPREQ----- 238 
   . :            .:* **   .      .* : * *: *.::*    * :      

 

 

AmiD wMel NNADYSDEFDENFVWVIYQFSIHNLPREIRKDLPLKLEQADIFPEFFSEYSHGISSSYLT 341 
AmiD E. coli -------------RRVIMAFQMHFRPTLYNGEA--DAETQAIAEALLEKYGQD------- 276 
                **  *.:*  *   . :   . *   *   ::.:*.:.        

 

 

AmiD wMel FSEKIKSTLQPCLSKVDYENLLSSLAQYENNISPDASTTLMYKIKLYYGSYLRYRIWSSL 401 
AmiD E. coli ------------------------------------------------------------ 276 
  

 

 

AmiD wMel YKPFKLNVLEELEILKSGVLSLKSLDSSKAAEVSSLIDSFKVDISLEFQGFEKQWFQEFK 461 
AmiD E. coli ------------------------------------------------------------ 276 
  

 

 

AmiD wMel NAWRQEFIPSLEEQITWTALHEAILEYLEKAKEEIR 497 
AmiD E. coli ------------------------------------ 276 
  

 

 

Figure 41: Sequence alignment of AmiD
wMel

 with E. coli AmiD. AmiDwMel (AAS14728) shares 27 % sequence 
identity to E. coli AmiD (NP_415388). The signal peptide of AmiDwMel (highlighted gray) was predicted by 
SignalP and lacks a cysteine-containing lipobox motif that mediates the insertion into the outer membrane as found 
in E. coli (LAGC, underlined). The three conserved zinc-coordinating residues of the amidase active site are shaded 
in black. AmiDwMel additionally contains two SXXK, two SX(D/N) and one K(S/T)G motif (bold letters).   

3.4.2 Secondary structure analysis of AmiDwMel 

The active site of AmiDwMel comprises three conserved zinc-coordinating residues (H79, 

H187, D207). In silico analysis of AmiDwMel predicted that these residues indeed bind to zinc, 

thus it is highly possible that they are essential for N-acetylmuramoyl-L-alanine amidase 

activity (Figure 42). However, the modeling was incomplete because it was based on 

homologies to the presumed E. coli ortholog which is half the size of AmiDwMel (see chapter 

3.4.1). Thus, the putative DD-carboxypeptidase active site could not be analyzed as it is located 

in the C-terminus outside the predicted secondary structure of AmiDwMel. For functional 

analysis of AmiDwMel, the gene was cloned and transformed into expression strains by 
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Dr. Miriam Wilmes, IMMIP. As part of this thesis, the enzyme was overproduced in 

E. coli JM83 by co-solvent assisted periplasmic expression which has been established for 

chlamydial proteins (Otten et al., 2015). Activity was tested by in vivo and in vitro assays. The 

potential dependency on zinc was tested by mutation of the respective residues in the enzyme. 

 

Figure 42: 3D structure of AmiD
wMel

 bound to zinc as predicted by 3DLigandSite. The zinc-coordinating 
residues H79, H187 and D207 are marked in blue, zinc ions are marked in green-gray. 

3.4.3 Characterization of AmiDwMel in vivo 

3.4.3.1 AmiDwMel complementation assay with an E. coli amidase mutant 

E. coli AmiD is not involved in cell separation and it has been hypothesized that the 

insertion into the outer membrane prevents movement of AmiD to the septum (Uehara et al., 

2010). As AmiDwMel lacks a lipobox motif, the enzyme might be soluble in the periplasm after 

cleavage of its predicted signal peptide and thus might be involved in cell division. Hence, it 

was tested if AmiDwMel can restore the normal phenotype of an E. coli ADE24 ∆amiABC triple 

knockout mutant. E. coli ADE24 is characterized by long chains of cells due to the deletion of 

all three periplasmic amidases involved in cell separation (Klöckner et al., 2014). To prevent 

impaired growth of cultures, E. coli ADE24 harbor pBAD33-amiC which restores cell division 

defects and which can be blocked by glucose. AmiDwMel without its native signal peptide was 

cloned in pASK-IBA2 and IBA2C by Dr. M. Wilmes and transformed into E. coli ADE24 for 

periplasmic expression. As part of this thesis, AmiDwMel
 was cloned with its native signal 

peptide in pASK-IBA3 and transformed into E. coli ADE24 for cytoplasmic expression. 

Expression of E. coli AmiC was blocked by adding 0.8 % glucose to the culture, which resulted 

in long chains (Figure 43A). Expression of AmiDwMel in three independent assays did not rescue 

cell separation in the E. coli ∆amiABC triple mutant in none of the pASK-IBA vectors (Figure 

43B-D). The induced empty vector served as a control for all constructs. 
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Figure 43: Complementation assay of E. coli ∆amiABC triple-knockout mutant ADE24 with AmiD
wMel

. A) 
E. coli ADE24 harbor an arabinose-inducible plasmid with amiC (E. coli). In the presence of 0.8 % glucose, amiC 
expression is blocked resulting in long chains of cells. In the presence of glucose and 100 ng/ml tetracycline, 
expression of AmiDwMel with either B) and C) the OmpA leader sequence (pASK-IBA2, pASK-IBA2C) or D) its 
native signal sequence (pASK-IBA3) did not complement cell division. Cells transformed with the empty vectors 
pASK-IBA2, pASK-IBA2C and pASK-IBA3 were used as controls. Scale bars = 20 µm. 
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To confirm that AmiDwMel was expressed in E. coli ADE24, cultures were harvested and 

proteins were extracted. Western Blot analysis revealed that the protein was expressed, but it 

was half the expected size already after 1 h of expression (Figure 44). Due to the high 

proteolytic activity of E. coli ADE24, no conclusion could be drawn if AmiDwMel is able to 

restore the normal phenotype in this strain. 

 

Figure 44: Western Blot analysis of expressed AmiD
wMel

 in E. coli ADE24. Western Blot analysis confirmed 
the presence of degraded AmiDwMel in the periplasm after 1 h of expression. The outer membrane and cell wall 
were disrupted and cells were centrifuged at 18,000 g and 4 °C to separate the periplasmic contents (found in the 
supernatant) from cytoplasmic contents (found in the pellet). The different fractions were separated by SDS-PAGE 
and detected using Strep-Tactin Alkaline Phosphatase conjugate. The picture is representative of three expressions. 
L: Ladder, P: Periplasmic fraction, C: Cytoplasmic Fraction. Arrow points to expected protein size of recombinant 
AmiDwMel. 

3.4.3.2 AmiDwMel localization 

The presence of an N-terminal signal peptide (see chapter 3.4.1) indicated a periplasmic 

localization of AmiDwMel. To test whether AmiDwMel is transported into the periplasm after 

expression, the protein was overproduced in E. coli JM83 with its native signal sequence in the 

cytoplasm via pASK-IBA3. The cells were harvested and the outer membrane and cell wall 

were disrupted by polymyxinB and lysozyme, respectively, to release periplasmic proteins. 

Western Blot confirmed the presence of AmiDwMel in the periplasm in three independent 

expressions (Figure 45).  
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Figure 45: Cellular distribution of AmiD
wMel

 after cytoplasmic expression in E. coli JM83. Western Blot 
analysis confirmed the presence of AmiDwMel in the periplasm after expression. The outer membrane and cell wall 
were disrupted and cells were centrifuged at 18,000 g and 4 °C to separate the periplasmic contents (found in the 
supernatant) from cytoplasmic contents (found in the pellet). The different fractions were separated by SDS-PAGE 
and detected using Strep-Tactin Alkaline Phosphatase conjugate. The picture is representative of three expressions 
experiments. L: Ladder, P: Periplasmic fraction, C: Cytoplasmic Fraction. Arrow points to expected protein size 
of recombinant AmiDwMel. 

3.4.3.3 Growth kinetics of E. coli JM83 overexpressing AmiDwMel 

When AmiDwMel was overexpressed in E. coli JM83, the turbidity of the culture 

decreased gradually (Figure 46). This might be the result of AmiDwMel hydrolytic activity on 

peptidoglycan and subsequent lysis of the host strain. In contrast, cells expressing the empty 

vector did not show growth defects. To validate that lysis was induced by AmiDwMel activity, 

the zinc-coordinating active sites H97 and D207 of the enzyme were mutated to alanine by Dr. M. 

Wilmes. The overexpressed mutants did not decrease turbidity of the E. coli cultures suggesting 

that bacteria lysis was indeed caused by hydrolytic activity of AmiDwMel. 

 

Figure 46: In vivo activity of AmiD
wMel

 and active site mutants expressed in E. coli JM83. Periplasmic 
overexpression of AmiDwMel resulted in lysis of E. coli JM83 compared to the amidase active site mutants 
AmiDwMel H79A and AmiDwMel D207A and the empty vector control pASK-IBA2C. OD600 was measured every 
30 min for 8.5 h. Each point represents mean ± SD (n = 3). 
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3.4.4 Characterization of AmiDwMel in vitro 

3.4.4.1 Overexpression and purification of AmiDwMel 

For functional analysis of AmiDwMel, the enzyme was produced in E. coli JM83 by co-

solvent assisted periplasmic expression in NaCl-free LB medium containing D-mannitol. The 

turbidity of the E. coli JM83 culture decreased gradually when AmiDwMel was overexpressed 

(see chapter 3.4.3.3). Thus, cells were harvested around two hours after induction when they 

started lysing. AmiDwMel was purified by Strep-tag affinity chromatography and recombinant 

protein was detected by Western Blot (Figure 47). A mock purification of the empty vector 

served as a control. Protein concentration of eluates ranged between 500–1000 µg/ml making 

the recombinant AmiDwMel accessible for in vitro activity assays. Contrary to the other 

investigated wolbachial enzymes in this thesis, AmiDwMel could be stored in 50 % glycerol 

at -20 °C and was stable for at least 8 months in activity assays (data not shown). 

 

Figure 47: Overexpressed and purified AmiD
wMel

 in pASK-IBA2C. Western Blot analysis of six elution 
fractions after AmiDwMel expression and Strep-tag purification. A mock expression and purification of the empty 
vector pASK-IBA2C served as a negative control. L: Ladder, E: Eluate. The arrow points to expected protein size 
of AmiDwMel. 

3.4.4.2 Peptidoglycan as a substrate for AmiDwMel 

The activity of purified AmiDwMel using peptidoglycan as a substrate was analyzed in a 

dye-release assay by incubating the enzyme with RBB-stained peptidoglycan. Released 

reaction products in the supernatant resulting from peptidoglycan cleavage were quantified by 
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absorbance measurements. Recombinant AmiDwMel was fully active at pH 7–9 (Figure 48A) 

and temperatures ranging from 20 °C–37 °C (Figure 48B). For all further in vitro activity tests 

a temperature of 30 °C and a pH of 7.5 were chosen. 

 

Figure 48: Peptidoglycan-degrading activity of AmiD
wMel

 at different pH and temperatures. To find the 
optimal conditions for AmiDwMel activity, degradation of peptidoglycan was measured by monitoring the 
absorbance at 595 nm of Remazol Brilliant Blue dye released into the supernatant after incubation with AmiDwMel 
overnight at different conditions regarding pH (5–10) and temperature (20–40 °C). Bars represent mean ± SD 
(n = 3). 

Released RBB-stained reaction products in the supernatant resulting from peptidoglycan 

cleavage were quantified by absorbance measurements. After incubation with AmiDwMel 

overnight at 30 °C and pH 7.5, significantly more products were released compared to the empty 

vector control in six independent assays (Figure 49). 

 

Figure 49: AmiD
wMel

 can use peptidoglycan as a substrate in vitro. Degradation of peptidoglycan was detected 
by monitoring the absorbance at 595 nm of Remazol Brilliant Blue-dye reaction products released into the 
supernatant after incubation with AmiDwMel overnight at 30 °C and pH 7.5. Product from cells containing the empty 
vector pASK-IBA2C was used as a negative control. Bars represent mean ± SD (n = 6). Statistical difference was 
determined using the Unpaired student’s t-test, two tailed, *** = P ≤ 0.001. 



3 Results 

98 
 

3.4.4.3 Lipid II as a substrate for AmiDwMel 

It was tested whether AmiDwMel can remove the pentapeptide side chain of lipid II. Lipid 

II was incubated with AmiDwMel and the reaction products were extracted and analyzed by TLC 

and MALDI-TOF. Contrary to E. coli AmiD (Pennartz et al., 2009), AmiDwMel was able to use 

lipid II as a substrate and hydrolyzed the amide bond between MurNAc and L-Ala (Figure 50). 

 

Figure 50: AmiD
wMel

 can use lipid II as a substrate in vitro. Lipid II was incubated with AmiDwMel for 4 h at 
30 °C. The reaction products were analyzed by A) TLC and B) MALDI-TOF (m/z - lipid II: 1875.4; undecaprenyl-
pyrophosphoryl-MurNAc-GlcNAc: 1404.8; pentapeptide (sodium adduct): 511.3). MALDI-TOF analysis was 
performed by M. Josten, IMMIP. 

3.4.4.4 Inhibition of AmiDwMel activity in vitro 

Peptidoglycan cleavage by AmiDwMel was partially impaired in the presence of EDTA 

and the specific zinc-chelator 1,10-phenanthroline (Figure 51A), while lipid II cleavage was 

completely blocked in EDTA samples and decreased in the presence of 1,10-phenanthroline 

(Figure 51B). Consistently to the in vivo results (see chapter 3.4.3.3), the mutation of one of the 

residues involved in zinc-binding to alanine (H79A or D207A) resulted in decreased 

peptidoglycan cleavage and AmiDwMel D207A was not able to hydrolyze the MurNAc-L-Ala 

bond in lipid II.  
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Figure 51: Inhibition of AmiD
wMel

 activity. The zinc-dependent amidase activity was inhibited in the presence 
of 1 mM of the non-specific metal chelator EDTA and 5 mM of the Zn2+-specific chelator 1,10-phenanthroline as 
shown by A) Remazol Brilliant Blue dye-release assay on peptidoglycan and B) TLC on lipid II. Moreover, the 
exchange of one of the zinc-coordinating residues with alanine (H79A or D207A) decreased amidase activity. Bars 
represent means ± SD. The graph is representative of three experiments with different batches of purified enzyme.  

3.4.4.5 Cleavage of anhydromuropeptides 

AmiD from E. coli has a broad substrate specificity and can also cleave 

anhydroMurNAc-L-Ala-bonds produced by lytic transglycosylases during cell growth (Uehara 

and Park, 2007). Anhydromuropeptides (TetraAnh and TetraTetradiAnh) resulting from 

peptidoglycan digest with the E. coli lytic transglycosylase Slt70 were incubated with 

AmiDwMel. The products were separated by HPLC and confirmed by mass spectrometry. 

AmiDwMel hydrolyzed TetraAnh and TetraTetradiAnh in a dose-dependent manner (Figure 

52A), whereas the mutant protein AmiDwMel D207A was inactive (Figure 52B). The results 

were obtained and analyzed by Dr. Christian Otten in a cooperation project with the University 

of Newcastle, UK. 
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Figure 52: Cleavage of anhydromuropeptides by AmiD
wMel

 in vitro. A) Anhydromuropeptides (TetraAnh, 
TetraTetradiAnh) derived from peptidoglycan digested with the E. coli lytic transglycosylase Slt70 were incubated 
for 4 h at 30 °C with AmiDwMel or B) the amidase active site mutant AmiDwMel (D207A) at different concentrations. 
The samples were analyzed by HPLC and mass spectrometry. The main product was identified as GlcNAc-
MurNAcAnh (m/z = 479.1866, H+ form; theoretical value: 479.1877). C) Structures of the muropeptides and the 
reaction products analyzed in A) and B). * = unknown compound unrelated to the reaction. Data and graphs were 
prepared by C. Otten, University of Newcastle, UK. 

The data obtained from in vivo and in vitro assays demonstrated that AmiDwMel is 

capable of cleaving monomeric lipid II, polymeric intact peptidoglycan as well as soluble 

peptidoglycan fragments including the anhydro form. 

3.4.5 Characterization of a putative DD-carboxypeptidase activity of AmiDwMel 

Contrary to its E. coli homolog, AmiDwMel is a relatively big protein and harbors two 

SXXK, two SX(D/N) and one K(S/T)G motif typically found in PBPs, catalyzing the final steps 

in cell wall biosynthesis. Of note, an SXXK and SX(D/N) motif are also present in AmiA of 

Chlamydia pneumoniae, an amidase that has been shown to have additional 

DD-carboxypeptidase activity (Klöckner et al., 2014). In this thesis, it was tested whether 

AmiDwMel
 is also a bifunctional enzyme with additional DD-carboxypeptidase activity. 
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3.4.5.1 DD-carboxypeptidase activity of AmiDwMel in vivo 

To investigate the potential DD-carboxypeptidase activity of AmiDwMel in vivo, the 

temperature sensitive E. coli mutant strain MCI23 was used in complementation assays as 

described for PBP6awBm (see chapter 3.1.3). AmiDwMel D207 with impaired amidase activity 

was used to prevent hydrolysis of the exponentially growing E. coli cells. Cell division defects 

in the temperature sensitive E. coli mutant MCI23 overexpressing AmiDwMel D207 at 42 °C 

were partially rescued with 58 % (± 0.3 SD) of cells being short and 42 % (± 0.3 SD) 

filamentous (Figure 53A,D). Notably, in some experiments cells showed a granulous structure 

implicating that the recombinant AmiDwMel protein accumulated inclusion bodies. In contrast, 

96 % (± 2.6 SD) of cells expressing the empty vector control were elongated (Figure 53B,D). 

These differences were confirmed by statistical analysis of cell size. Here, cells expressing 

AmiDwMel D207 were significantly shorter than the empty vector control (Figure 53C).  

 

Figure 53: AmiD
wMel

 rescues cell division in a temperature sensitive E. coli MCI23 mutant. A) E. coli MCI23 
expressing recombinant AmiDwMel

 have a mixed set of phenotypes with short and dividing, but also filamentous 
cells. Scale bar = 20 µm. Arrows point to granulous structures inside the E. coli bacteria observed in some 
experiments. Scale bar of the zoomed picture = 5 µm. B) E. coli MCI23 expressing the empty vector pASK-IBA2C 
were unable to divide. Scale bar = 20 µm. C) At least 599 cells from 15 pictures taken from three independent 
assays per sample were measured by Image J. Boxes extend from the 25th to the 75th percentile. The line in the 
middle of the box is plotted at the median. Whiskers represent 1st and 99th percentiles. Statistical analysis was 
performed using Mann-Whitney test. *** = P ≤ 0.001. D) Columns represent relative occurrence of different 
phenotypes from five randomly chosen pictures in each experiment (n = 3). Error bars represent ± SD. 
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3.4.5.2 Active site analysis of DD-carboxypeptidase activity of AmiDwMel in vivo 

Amino acid exchange of the serine residue from S83TLK to alanine (S83A) did not 

abolish activity at 42 °C and E. coli MCI23 partially restored cell division with 48.3 % (± 2.5 

SD) of cells being short and able to divide (Figure 54). In contrast, 95 % (± 5.1 SD) of cells 

were elongated and unable to divide when the AmiDwMel S400LYK (S400A) mutant was 

expressed indicating that S400LYK harbors the active site serine. Analysis of cell size confirmed 

that cells expressing AmiDwMel D207A-S400A were significantly longer compared to cells 

expressing AmiDwMel S83A-D207A. Notably, S400LYK is found nearby the K417SG and S425LD 

motifs, suggesting that the DD-carboxypeptidase catalytic center of AmiDwMel might be 

assigned to the C-terminal part of the protein. 

 

Figure 54: Complementation assay to test for the ability of AmiD
wMel

 active site mutants to rescue cell 

division in a temperature sensitive E. coli MCI23 mutant. Phase-contrast micrographs show A) E. coli MCI23 
expressing AmiDwMel S83A partially rescue cell division at 42 °C, while B) cells expressing AmiDwMel S400A 
cannot restore division resulting in a filamentous phenotype. Scale bars = 20 µm. C) At least 385 cells from 15 
pictures taken from three independent assays per sample were measured by Image J. Boxes extend from the 25th 
to the 75th percentile. The line in the middle of the box is plotted at the median. Whiskers represent 1st and 99th 
percentiles. Statistical analysis was performed using Mann-Whitney test. *** = P ≤ 0.001. D) Columns represent 
relative occurrence of different phenotypes at 42 °C from 15 randomly chosen pictures in three independent 
experiments. Error bars represent ± SD. 

3.4.5.3 DD-carboxypeptidase activity of AmiDwMel in vitro 

In vivo results indicated DD-carboxypeptidase activity of AmiDwMel. However, the 

analysis of the reaction products of in vitro AmiDwMel activity assays by TLC or MALDI-TOF 

did not demonstrate the presence of lipid II with a tetrapeptide resulting from a cleaved D-Ala 
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(see chapter 3.4.4.3 and 3.4.4.4). Thus, a more sensitive fluorescent-linked activity assay using 

QuantaBlu substrate solution was used to quantify cleaved off D-Ala. As the empty vector 

control values were very high, DD-carboxypeptidase activity could not be evaluated under the 

conditions tested even with the positive control VanY from S. aureus (Figure 55). 

 

Figure 55: In vitro QuantaBlu DD-carboxypeptidase activity assay with VanY (S. aureus) and AmiD
wMel

. D-
Ala cleaved from lipid II after overnight incubation at 30 °C was detected by the activity of D-amino acid oxidase 
in the presence of QuantaBlu fluorescent substrate at 420 nm. Overexpressed VanY from S. aureus served as a 
positive control. Results show the mean ± SEM (n = 4–6). Statistical difference was determined using the Unpaired 
student’s t-test, two tailed, ns = not significant. 

3.4.5.4 Penicillin-binding assay of AmiDwMel 

Since AmiDwMel has penicillin-binding motifs in its sequence that are targets for 

β-lactam antibiotics, a binding of AmiDwMel to BocillinTM FL was tested. A weak binding was 

observed giving a hint that penicillin-binding motifs are accessible for β-lactam antibiotics at 

least in recombinant AmiDwMel (Figure 56).  

 

Figure 56: Detection of penicillin-sensitive PBP2 (S. aureus) and AmiD
wMel

 by Bocillin
TM

 FL binding assay. 
Purified AmiDwMel (4 and 8 µg) was incubated with 10 µM BocillinTM FL at 30 °C for 1 h and separated by SDS-
PAGE. PBP2 from S. aureus served as a positive control. A) Detection of proteins by Coomassie staining. The 
arrow points to expected protein size of AmiDwMel. B) Detection of proteins bound to BocillinTM FL by UV light.  
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3.4.5.5 In vivo β-lactamase activity assay of AmiDwMel 

To test if AmiDwMel has β-lactamase activity, the protein was expressed in E. coli JM83 

cultures supplemented with CENTATM and incubated for 16 h. Analysis of absorbance 

measurements showed an increase of λ405 from 0.48 (± 0.04 SEM) to 1.36 (± 0.15 SEM) in 

cultures containing the positive control E. coli ML-35 pYC in six independent experiments, 

indicating CENTATM hydrolysis (Figure 57). In contrast, cultures expressing AmiDwMel rarely 

increased from λ405 = 0.4 (±0.03 SEM) to 0.48 (± 0.09 SEM) in eight independent assays. 

Cultures expressing the empty vector control slightly increased from λ405 = 0.4 (± 0.03 SEM) to 

0.58 (± 0.07 SEM) in six independent assays. In conclusion, β-lactamase activity of AmiDwMel
 

was not observed under the conditions tested.  

 

Figure 57: β-lactamase activity assay of AmiD
wMel

 in vivo. E. coli JM83 with AmiDwMel in pASK-IBA2C were 
induced with 200 ng/ml AHT. E. coli ML35-pYC constitutively expressing a periplasmic β-lactamase were used 
as a positive control, pASK-IBA2C (empty vector) served as a negative control. AmiDwMel data represent means 
from eight independent assays, the positive and negative control were tested six times. Error bars represent ± SEM. 

3.5 Functional analysis of PBP3wMel
 

3.5.1 Primary structure analysis of PBP3wMel 

Genome analysis of wMel revealed the presence of two putative monofunctional DD-

transpeptidases PBP2 and PBP3. Part of this thesis was the investigation of the additional PBP3 

protein only found in Wolbachia residing in insect cells. PBP3wMel
 (NCBI: WP_010963147.1) 

consists of 515 amino acids and the protein has a predicted molecular weight of 58.24 kDa with 

26 % sequence identity to E. coli PBP3 (NCBI: ARB43848.1) (Figure 58). It possesses a set of 

four SXXK, five SX(D/N) and one K(S/T)G active site motifs. Like its E. coli homolog, 
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PBP3wMel consists of a predicted N-terminal transmembrane domain ranging from amino acids 

1–34, but no signal peptide (Supplementary Figure 14). 

PBP3 wMel ---------------MQALLKNKLRSLCFIVPLFIFYIIIIFR-IFSLTFDQLTT---SE 41 
PBP3 E. coli MKAAAKTQKPKRQEEHANFISWRFALLCGCILLALAFLLGRVAWLQVISPDMLVKEGDMR 60 
                   ::. ::  **  : * : :::  .  :  :: * *..    . 

 
 

PBP3 wMel NFRKDNIVHKQPDILDRNGVVIATNVPTTSLYIDATKVKNPESIAAQLCS-TL---HDLE 97 
PBP3 E. coli SLRVQQVSTSRGMITDRSGRPLAVSVPVKAIWADPKEVHDAGGISVGDRWKALANALNIP 120 
 .:* :::  .:  * **.*  :*..**..::: * .:*::  .*:.     :*    :: 

            
 

PBP3 wMel YKNL--YRVLTSEKKFAWIKRHLTPKELLAIKNAGVPGVNFDDDIKRIYPHSNLFSHVLG 155 
PBP3 E. coli LDQLSARINANPKGRFIYLARQVNPDMADYIKKLKLPGIHLREESRRYYPSGEVTAHLIG 180 
 .:*      . : :* :: *::.*.    **:  :**::: :: :* ** .:: :*::* 

 
 

PBP3 wMel YTDIDGNGIAGVEAYISKN--------------------------NEQEKPIILSLDTRV 189 
PBP3 E. coli FTNVDSQGIEGVEKSFDKWLTGQPGERIVRKDRYGRVIEDISSTDSQAAHNLALSIDERL 240 
 :*::*.:** ***  :.*                           .:  : : **:* *: 

 
 

PBP3 wMel QSIVHEELTKAVRRYQALGGVGIVLNVRNSEVISMVSLPDFNPNLQNKAEDVQKFNRASL 249 
PBP3 E. coli QALVYRELNNAVAFNKAESGSAVLVDVNTGEVLAMANSPSYNPNNLSGTPKEAMRNRTIT 300 
 *::*:.**.:**   :* .* .::::*...**::*.. *.:***  . : .    **:   

       
 

PBP3 wMel GVYEMGSVLKYFTIAAALDANATKTSDLYD---VSTPITIGKYKIQDFHKSKIPKITVQD 306 
PBP3 E. coli DVFEPGSTVKPMVVMTALQRGVVRENSVLNTIPYTIPYRINGHEIKDV--ARYSELTLTG 358 
 .*:* **.:* :.: :**: ...: ..: :    : *  *. ::*:*.  ::  ::*: . 

                                 
 

PBP3 wMel IFVKSSNIGAAKIAVKLGIEKQVEYFKAMKLFSPLKIEIPEKSTPI--IPDKWSETTLIT 364 
PBP3 E. coli VLQKSSNVGVSKLALAMPSSALVDTYSRFGLGKATNLGLVGERSGLYPQKQRWSDIERVT 418 
 :: ****:*.:*:*: :  .  *: :. : * .  :: :  : : :    ::**:   :* 

 
 

PBP3 wMel ASYGYGIAVTPIHLAQTAAALINNGIFHNATLMLNK-RSIGEQIISRRTSREMRK-LLRA 422 
PBP3 E. coli FSFGYGLMVTPLQLARVYATIGSYGIYRPLSITKVDPPVPGERVFPESIVRTVVHMMESV 478 
 *:***: ***::**:. *:: . **::  ::   .    **::: .   * : : :  . 

                       
 

PBP3 wMel AVTDGTGRKAKIKAYSIGGKTGSAEKVVDGKYSKDANIASFIGVLTMLDPRYIVLIAIDE 482 
PBP3 E. coli ALPGGGGVKAAIKGYRIAIKTGTAKKVGPDGRYINKYIAYTAGVAPASQPRFALVVVIND 538 
 *: .* * ** **.* *. ***:*:**  .    :  **   **    :**: :::.*:: 

 
 

PBP3 wMel PQGMHHTGGIIAAPIVKNIINRIAPILNVTPEM--------------------- 515 
PBP3 E. coli PQAGKYYGGAVSAPVFGAIMGGVLRTMNIEPDALTTGDKNEFVINQGEGTGGRS 592 
 **. :: ** ::**:.  *:. :   :*: *:                       

 
 

Figure 58: Amino acid alignment of PBP3
wMel

 and E. coli PBP3. PBP3wMel (WP_010963147.1) shares 26 % 
identity to E. coli PBP3 (ARB43848.1). Conserved SXXK, SX(D/N) and K(S/T)G motifs found in PBP3wMel

 are 
written in bold letters, motifs which align to E. coli PBP3 are additionally framed in black. The predicted 
transmembrane domain is highlighted gray. * fully conserved residue; : conservation between groups of strongly 
similar properties; . conservation between groups of weakly similar properties. 

3.5.2 Secondary structure analysis of PBP3wMel 

To get a deeper insight into the putative active site serine of the SXXK motif, secondary 

structure analysis was performed. Here, the three conserved motifs were localized based on 

sequence alignments to E. coli. The SXXK motifs S107EKK and S339PLK are predicted to be 

located outside the active site (Figure 59). S445AEK is located in a β-sheet next to the K442TG 

motif, while S256VLK is found in an α-helix. Thus, one of these SXXK motifs might build the 

catalytic center together with S311SN (α-helix and loop) and K442TG (β-sheet). The gene pbp3 

from wMel was cloned into pASK-IBA2C, transformed into different E. coli strains and tested 

in in vivo and in vitro activity assays. 
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Figure 59: Secondary structure of PBP3
wMel

 as predicted by Phyre
2
. S256VLK or S445AEK (blue) might, 

together with S311SN (green) and K442TG (red), build the catalytic center of the enzyme, while S107EKK, S339PLK 
are predicted to be located outside the active site (blue). The molecular structure was illustrated by Jmol. 

3.5.3 Characterization of PBP3wMel and active site analysis in vivo 

Since PBP3wMel
 is the homolog of E. coli PBP3, it was examined whether 

overexpression of PBP3wMel
 is sufficient to restore cell division in E. coli MCI23 at the non-

permissive temperature of 42 °C. To test dependency on functional SXXK motifs, site-directed 

mutagenesis was performed. Substitution of S107, S256, and S339 to alanine and in vivo 

activity assays of these mutants were part of a master thesis (Ritzmann, 2016). Mutagenesis 

PCR of serine from the fourth SXXK motif S445 was part of this thesis resulting in a PBP3wMel 

S107A-S256A-S339A-S445A quadruple mutant (Figure 60). Successful amino acid 

substitution was confirmed by nucleotide sequencing of the PBP3wMel gene (Supplementary 

Figure 15). 

 

Figure 60: Primary structure analysis of PBP3
wMel

 in pASK-IBA2C after site-directed mutagenesis. Serine 
residues from SXXK motifs were substituted by alanine (red bold letters). The amino acid sequence is shown in 
single-letter code, the predicted transmembrane domain is highlighted in gray. 
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PBP3wMel expression at 42 °C led to a mixed set of phenotypes of E. coli MCI23 (Figure 

61A). Quantitative analysis of six independent assays showed that 66.7 % (± 27.5 SD) of 

observed cells expressing PBP3wMel were single and dividing cells, while 33.3 % (± 27.5 SD) 

were elongated. Neither single nor simultaneous mutation of the serines S107, S256, and S339 

of SXXK motifs had an impact on PBP3wMel activity at 42 °C (Ritzmann, 2016). However, site-

directed mutagenesis of all four SXXK motifs including S445 showed a decrease of PBP3wMel 

in vivo activity resulting in 21.2 % (± 14.3 SD) single and dividing cells and concomitant 

increase of elongated cells to 78.8 % (± 14.3 SD) (Figure 61B,D). Statistical analysis of cell 

size showed that PBP3wMel expressing E. coli were significantly shorter than the quadruple 

SXXK mutant and the empty vector control (Figure 61E). 

 

Figure 61: Complementation assay to test for the ability of PBP3
wMel

 and PBP3
wMel

 active site mutants to 

rescue cell division in a temperature sensitive E. coli MCI23 mutant. E. coli MCI23 were grown in LB medium 
containing chloramphenicol until OD600 = 0.4. Cultures were induced with 100 ng/ml tetracycline and incubated 
for 120 min 42 °C. A) E. coli MCI23 expressing recombinant PBP3wMel are mainly short and dividing, while B) 
cells expressing PBP3wMel S107A-S256A-S339A-S445A are predominantly filamentous. C) E. coli MCI23 
expressing the empty vector pASK-IBA2C have filamentous cells. Scale bars = 20 µm. D) Cell size of at least 960 
cells from 30 pictures taken from six independent assays was measured by Image J. Boxes extend from the 25th to 
the 75th percentile of cell size distribution. The line in the middle of the box is the median. Whiskers represent 1st 
and 99th percentiles. Dots represents outliers. Statistical analysis was performed using Kruskal-Wallis test and 
Dunn’s comparison post-hoc test, *** = P ≤ 0.001. E) Columns represent the mean ± SD occurrence of different 
phenotypes at 42 °C from five randomly chosen pictures from each of the six experiments. 

Additionally, growth of E. coli was monitored to exclude that the different observed 

phenotypes resulted from potential cell arrests induced by protein induction. In three 

independent measurements, all cultures were growing exponentially after induction (Figure 62). 
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Figure 62: Growth kinetics of E. coli MCI23 during periplasmic expression of PBP3
wMel

. Protein expression 
was induced at an OD600 of 0.5 with 100 ng/ml tetracycline. OD600 was measured every hour. Each point represents 
mean ± SD (n = 3). 

3.5.4 Aztreonam treatment of PBP3wMel
 in vivo 

Aztreonam is a β-lactam with high affinity for PBP3 leading to arrested cell division 

and a filamentous phenotype (Weiss et al., 1997). To examine its effect on PBP3wMel activity, 

the antibiotic was added to exponentially growing E. coli MCI23 cultures at 30 °C. E. coli 

MCI23 overexpressing PBP3wMel were still able to partially maintain cell division in the 

presence of aztreonam indicating that PBP3wMel activity cannot be blocked by aztreonam 

(Figure 63A). In contrast, addition of aztreonam to E. coli MCI23 overexpressing the empty 

vector at 30 °C resulted in filamentous cells indicating inhibition of the native E. coli PBP3 

activity and divisome function (Figure 63B). Analysis of six independent assays revealed that 

untreated cells expressing PBP3wMel or the empty vector had similar cell sizes at 30 °C (Figure 

63C). In contrast, cells with the induced empty vector were significantly larger than cells 

expressing PBP3wMel in the presence of aztreonam.  
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Figure 63: Cell division of E. coli MCI23 expressing PBP3
wMel

 is not inhibited by aztreonam, a specific 

inhibitor of PBP3. E. coli MCI23 harboring either PBP3wMel or the empty vector were grown in LB medium at 
30 °C containing chloramphenicol until an OD600 of 0.4. Cultures were induced with 100 ng/ml tetracycline and 
after 30 min, 8 µg/ml aztreonam were added. A) PBP3wMel overexpressing cells partially divide in the presence of 
aztreonam, while B) cells expressing the empty vector pASK-IBA2C are elongated. Cultures without induction or 
without aztreonam served as controls. C) Cell size of at least 787 cells from 30 pictures taken from six independent 
assays was measured by Image J. Boxes extend from the 25th to the 75th percentile of cell size distribution. The 
line in the middle of the box is the median. Whiskers represent 1st and 99th percentiles, dots represent outliers. 
Statistical analysis was performed using Kruskal-Wallis test and Dunn’s comparison post-hoc test, ns = not 
significant, *** = P ≤ 0.001.  

3.5.5 In vivo β-lactamase activity assay of PBP3wMel
 

As PBP3wMel was resistant to aztreonam in vivo (see chapter 3.5.4) and no penicillin-

binding was observed in vitro (Ritzmann, 2016), a potential β-lactamase activity of this enzyme 

was examined. PBP3wMel was expressed in E. coli C43 cultures supplemented with CENTATM 

and incubated for 16 h. In six independent experiments, absorbance λ405 increased of from 0.48 

(± 0.04 SEM) to 1.36 (± 0.15 SEM) in cultures containing the positive control E. coli ML-35 

pYC in six independent experiments, indicating CENTATM hydrolysis (Figure 64). In contrast, 

cultures expressing PBP3wMel remained constant around λ405 = 0.49 (± 0.05 SEM). Cultures 

expressing the empty vector control slightly increased from λ405 = 0.4 (± 0.03 SEM) to 0.58 

(± 0.07 SEM). In conclusion, no β-lactamase activity of PBP3wMel was detected under the 

conditions tested. 
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Figure 64: β-lactamase activity assay of PBP3
wMel

 in vivo. E. coli C43 carrying PBP3wMel in pASK-IBA2C were 
induced with 200 ng/ml AHT. E. coli ML35-pYC constitutively expressing a periplasmic β-lactamase were used 
as a positive control, pASK-IBA2C (empty vector) served as a negative control. Data represent means from six 
independent assays. Error bars represent ± SEM. 

3.5.6 In silico modeling of PBP3wMel 

In silico analysis predicted a binding of the β-lactam antibiotic cefoxitin at two serines 

(S256 and S445) of the four SXXK motifs (Figure 65). In vivo activity assays implied that 

SXXK motifs can substitute each other and recombinant PBP3wMel was not impaired by the 

β-lactam aztreonam. Thus, PBP3wMel might be functional in Wolbachia even in the presence of 

a β-lactam. 

 

Figure 65: 3D structure of PBP3
wMel

 bound to cefoxitin as predicted by 3DLigandSite. The residues S256, 
K259, F294, K296, S311, N313, Y369, K442, T443, G444, S445, M486, H488 putatively involved in binding to 
cefoxitin (green) are marked in blue. Arrows point to the active site serines S256 and S445 of the SXXK motifs 
predicted to be involved in binding. 
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3.6 Fluorescent labeling of D-Ala-D-Ala dipeptides 

3.6.1 Dipeptide labeling of B. subtilis 168 and E. coli W3110 

A novel in vivo assay to fluorescently label lipid II using D-Ala-D-Ala dipeptide 

analogues revealed a ring-like peptidoglycan structure in Chlamydia, Orientia and 

Planctomycetes for the first time (Liechti et al., 2014; Jeske et al., 2015; Atwal et al., 2017). 

Ethynyl-D-Ala (EDA-DA) and Ethynyl-L-Ala (ELA-LA) dipeptides (synthesized by Pepmic 

Co., Ltd.) were applied to Gram-positive B. subtilis 168 and Gram-negative E. coli W3110 to 

verify that peptidoglycan was labeled specifically. In both strains, a binding of EDA-DA was 

observed, while ELA-LA labeled cells did not show a fluorescent signal (Figure 66A,B). 

Additionally, peptidoglycan sacculi from B. subtilis were prepared and digested with lysozyme 

resulting in a loss of the fluorescence signal (Figure 66C) providing further proof that the 

dipeptides were indeed specifically incorporated into peptidoglycan.  
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Figure 66: Dipeptide labeling in E. coli and B. subtilis. A) Fluorescent labeling of lipid II in E. coli. E. coli 

W3110 were incubated for 60 min in medium containing 1 mM of the dipeptide probe EDA-DA (top row) or ELA-
LA (bottom row), respectively. Subsequent binding of the probe to an azide-modified Alexa Fluor® 594 (red) was 
achieved by click chemistry. DAPI (blue) was used for nuclear staining. Scale bar = 5 µm. B) Fluorescent labeling 
of lipid II in B. subtilis. B. subtilis 168 were incubated for 60 min in medium containing 1 mM of the dipeptide 
probe EDA-DA (top row) or ELA-LA (bottom row), respectively. Subsequent binding of the probe to an azide-
modified Alexa Fluor® 594 (red) was achieved by click chemistry. DAPI (blue) was used for nuclear staining. 
Scale bar = 5 µm. C) Fluorescent labeling of lipid II in B. subtilis sacculi. B. subtilis 168 were incubated for 60 
min in medium containing 1 mM of the dipeptide probe EDA-DA. Afterwards, the peptidoglycan sacculi were 
prepared and binding of the probe to an azide-modified Alexa Fluor® 594 was achieved by click chemistry. The 
cell wall sacculi were digested with 200 ng lysozyme resulting in a loss of the dipeptide signal. Scale bar = 5 µm. 
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3.6.2 Dipeptide labeling of wAlbB 

A specific labeling of EDA-DA co-localized with Wolbachia specific antibodies wPal 

and FtsZ was observed (Figure 67A) visualizing a lipid II-containing peptidoglycan-like 

structure in Wolbachia for the first time. Moreover, ELA-LA cells did not show a fluorescent 

signal indicating that Wolbachia might contain D-Ala in their lipid II peptide chain as already 

concluded previously (Vollmer et al., 2013) (Figure 67B). Wolbachia had a cell size varying 

between 0.45–1.8 µm, thus a detailed distribution of the labeled lipid II could not be determined 

with the microscope used (ZeissAxio VertA.1, Carl Zeiss AG). Attempts with a confocal 

microscope using Z-stacks and advanced microscope technologies (Zeiss LSM800 Airyscan, 

Carl Zeiss AG) to gain a higher resolution did not reveal a ring-like structure of the labeled 

dipeptides as shown for Chlamydia (Figure 67C). Notably, EDA-DA was detected only in some 

Wolbachia cells and the whole bacterial surface was labeled, which was also observed in O. 

tsutsugamushi (Atwal et al., 2017). Negative controls with EDA-DA applied on C6/36 insect 

cells without wAlbB did not show a fluorescent signal (Supplementary Figure 16). 
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Figure 67: Fluorescent labeling of lipid II in Wolbachia. wAlbB infected C6/36 insect cells were incubated for 
72 h with 1 mM of EDA-DA or ELA-LA, respectively. Binding of the probe to Alexa Fluor® 594 azide (red) was 
achieved by click chemistry. wAlbB were stained with anti-FtsZ or anti-wPal antibody (green). DAPI (blue) was 
used for nuclear staining. A) Fluorescent labeling of lipid II by EDA-DA in wAlbB using anti-FtsZ antibody. Scale 
bar = 10 µm. B) Fluorescent labeling of lipid II by EDA-DA in one wAlbB infected C6/36 cell using anti-FtsZ 
antibody. Cells incubated with ELA-LA did not contain labeled lipid II. Scale bar = 5 µm, zoom: 2 µm. C) 
Fluorescent labeling of lipid II in one wAlbB infected C6/36 cell using anti-wPal antibody. Scale bar = 5 µm, zoom 
= 2 µm. A,B) were observed with an epifluorescence microscope (ZeissAxio VertA.1, Carl Zeiss AG). C) were 
visualized using a confocal microscope (Zeiss LSM800 Airyscan, Carl Zeiss AG). 
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3.6.3 Dipeptide labeling of fosfomycin-treated wAlbB 

To demonstrate specific incorporation of EDA-DA into Wolbachia, cells incubated with 

EDA-DA were pretreated with fosfomycin. This specific inhibitor of MurA, which catalyzes 

the first step of the lipid II biosynthesis from UDP-GlcNAc, was demonstrated to result in an 

enlarged phenotype in wAlbB due to inhibited cell division (Vollmer et al., 2013). Here, 

treatment with fosfomycin led to the expected enlarged Wolbachia phenotype and no 

incorporation of EDA-DA into the cells (Figure 68). 

 

Figure 68: Fluorescent labeling of lipid II in Wolbachia. C6/36 insect cells infected with wAlbB were treated 
daily with 512 µg/ml fosfomycin for twelve days and then incubated for 72 h with 1 mM of the dipeptide probe 
EDA-DA. Subsequent binding of the probe to an azide-modified Alexa Fluor® 594 (red) was achieved by click 
chemistry. Wolbachia were stained with an anti-wPAL antibody (green). DAPI was used for nuclear staining 
(blue). Scale bar = 5 µm. Cells were visualized using a confocal microscope (Zeiss LSM710, Carl Zeiss AG). 

3.6.4 Cell-free wAlbB viability in different media 

Wolbachia can temporarily survive in an extracellular environment (Dobson et al., 2002; 

Frydman et al., 2006; Rasgon et al., 2006). To further demonstrate that Wolbachia have some 

form of peptidoglycan-like structure, wAlbB were purified from the C6/36 insect cells and 

suspended in ultrapure water, PBS or Leibovitz medium. wAlbB remained intact and viable in 

all media for at least one hour (Figure 69) indicating the presence of a mechanical stress-bearing 

structure as recently shown for O. tsutsugamushi in a similar assay (Atwal et al., 2017). 
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Figure 69: Viability of isolated Wolbachia suspended in different media. wAlbB infecting C6/36 insect cells 
were purified and resuspended in PBS, ultrapure water, or Leibovitz medium. LIVE/DEAD® BacLight™ staining 
was added after 1 h incubation and cells were visualized under a fluorescence microscope. wAlbB remained viable 
in all media. A mock purification with uninfected C6/36 insect cells served as a negative control. Scale bar = 10 
µm. 

3.7 Cell-free wAlbB culture 

The requirements for Wolbachia strain wAlbB growth in a host cell-free in vitro culture 

system were characterized in a former project (Vollmer, 2012). Supplementation with cell 

lysate derived from Aedes albopictus C6/36 insect cells allowed extracellular wAlbB replication 

rates in a mean of 6.4-fold. An insect cell lysate fraction containing cell membranes was 

identified as requisite for cell-free replication of Wolbachia (Vollmer, 2012). The required 

factors from this fraction were dependent on cultivation of the insect cells in medium containing 

fetal bovine serum. The endobacteria replicated for up to twelve days and could infect 

uninfected C6/36 cells (Vollmer, 2012). Replication rates in the insect cell-free culture were 

lower compared to wAlbB grown inside insect cells (Vollmer, 2012). In this work, the cell-free 

wAlbB culture was further studied and growth conditions were altered (e.g. by supplementation 

with substances) in order to enhance stability and growth. Moreover, cell-free wAlbB were 



3 Results 

117 
 

incubated with different antibiotics to test the efficacy and impact on proliferation and 

morphology. 

3.7.1 Cell-free wAlbB with modified growth conditions 

3.7.1.1 Incubation on actin-coated streptavidin plates 

Cell-free wAlbB cells do not attach to the plate bottom impeding medium change of the 

culture. Centrifugation of the culture (18,400 g for 5 min) to separate Wolbachia from the cell 

culture medium harmed the bacteria (data not shown). To overcome this limiting factor of the 

cell-free culture, actin-coated streptavidin plates were used. PalwBm specifically binds to actin 

filaments of B. malayi and might be crucial in maintenance of endosymbiosis (Melnikow et al., 

2013). Cell-free wAlbB were seeded on coated plates and kept in culture for twelve days. 

Cell-free Wolbachia incubated on the actin-coated plates were slightly increasing up to day six, 

but then decreased. Additionally, it was tested whether a medium change might enhance growth 

of the potentially adherent cells. However, resuspension in fresh culture medium on day six led 

to a loss of bacteria instead of enhancing growth (Supplementary Figure 17). 

3.7.1.2 Cell-free growth in a lowered oxygen environment 

Oxygen levels inside the C6/36 cells are unknown and growth of wAlbB might be 

adapted to lower levels of oxygen compared to the earth atmosphere. Using a carbonic gas 

chamber, oxygen levels were decreased from 20.9 % to 3 %, and carbonic gas increased from 

0.004 % to 5 %. Additionally, cultures were maintained up to 15 days to test whether growth 

was enhanced in the carbonic gas chamber. Cell-free cultures incubated under lower levels of 

oxygen showed similar proliferation rates (6.9-fold ± 1 SD) compared to the standard cell-free 

wAlbB culture (7.2-fold ± 0.8 SD) and growth plateaued after twelve days (Supplementary 

Figure 18). 

3.7.1.3 Supplementation of cell-free wAlbB standard culture medium 

After 9–12 days of replication, cell-free wAlbB numbers decrease suggesting that 

substances necessary to replicate might be expended (Vollmer, 2012). To enhance growth, 

freshly prepared insect cell lysate (equivalent to 0.95 x 106 uninfected C6/36 cells) was applied 

to the culture and proliferation was monitored via qPCR. Proliferation rates were slightly higher 

after twelve days (4.9-fold ± 0.5 SD) compared to the standard cell-free culture (4-fold ± 0.3 

SD) in the conducted assays, but growth was not elongated (Supplementary Figure 19). 

Recent studies indicate that Wolbachia-infected insect cells might indeed incorporate 

cholesterol maybe as a substitute for lipopolysaccharide (Caragata et al., 2013; Geoghegan et 
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al., 2017). Therefore, insufficient amounts of cholesterol were considered as a potential limiting 

factor of cell-free Wolbachia growth. Freshly prepared water-soluble cholesterol was added to 

the cell-free culture, but no advantages regarding proliferation were observed compared to the 

standard conditions (Supplementary Figure 20). 

Lipid Mixture Solution (PeproTech) contains non-animal-derived fatty acids and lipids 

to improve cell growth in serum-free media. The lipid mixture solution was added to the cell-

free wAlbB culture to examine any beneficial effects, but supplementation inhibited cell-free 

growth rather than enhancing proliferation (Supplementary Figure 21). 

To enhance cell-free wAlbB growth, biotin, cystine, glucose, PLP, and sodium 

bicarbonate, which are present in an optimized cell-free medium designed for intracellular C. 

burnetii (Omsland et al., 2009), were added to the cell-free wAlbB standard medium. Higher 

proliferation rates were observed in cultures supplemented with glucose (9.03-fold ± 1.6 SD) 

compared to the standard conditions (7.8-fold ± 2.7 SD), but replication decreased after nine 

days (Supplementary Figure 22). None of the other applied substances enhanced cell-free 

proliferation and moreover, supplementation of biotin and sodium bicarbonate inhibited wAlbB 

replication. 

The co-cultivation of B. malayi and B. pahangi infective-stage L3 larvae with the yeast 

R. minuta supports molting to the fourth larval stage in vitro (Smith et al., 2000). It was 

suggested that the larvae are benefiting from an unknown secreted product of the yeast. This 

compound might also be beneficial for the growth of Wolbachia, thus R. minuta (104–107 

cells/ml) were co-cultured with cell-free wAlbB. However, the presence of R. minuta harmed 

the cell-free culture leading to a depletion of wAlbB in a concentration-dependent manner 

(Supplementary Figure 23). 

3.7.2 Growth of cell-free wAlbB in the presence of antibiotics 

3.7.2.1 Cell-free growth in the presence and absence of penicillin/streptomycin 

The standard insect cell culture medium includes the addition of 1 % penicillin and 

streptomycin to prevent growth of unwanted bacteria since Wolbachia were shown to be 

resistant to these two antibiotics (O'Neill et al., 1997). These experiments were never performed 

under cell-free conditions, thus it was tested whether penicillin or streptomycin potentially 

inhibit proliferation of cell-free wAlbB. Cell-free cultures were prepared as described in chapter 

2.11.3 with or without 1 % penicillin/streptomycin and growth was monitored via qPCR. The 

results showed similar wAlbB proliferation rates under cell-free conditions in the presence 
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(9-fold ± 1.7 SD) or absence (9.3-fold ± 3.8 SD) of penicillin or streptomycin (Figure 70). Thus, 

these antibiotics were further used to prevent growth of other bacteria strains in the culture. 

 

Figure 70: Cell-free wAlbB growth in the presence and absence of penicillin and streptomycin. Cell-free 

Wolbachia (cfwo) were incubated in medium with or without 1 % penicillin/streptomycin (Pen/Strep) for twelve 
days. Growth was monitored every three days by qPCR and data were normalized to day 0 (X-axis). For every 
time point the mean ± SEM of six samples from two independent experiments is shown. 

3.7.2.2 Cell-free growth in the presence of antibiotics effective against Wolbachia  

The extracellular cultivation of Wolbachia provides an excellent tool for understanding 

the biology and symbiosis of Wolbachia and allows treatment with antibiotics that do not pass 

the insect cell membranes. Cell-free growth in the presence and absence of corallopyronin A, 

doxycycline, fosfomycin and rifampicin was examined, four antibiotics which are known to 

affect Wolbachia (Volkmann et al., 2003; Schiefer et al., 2012; Vollmer et al., 2013). Untreated 

cell-free wAlbB cultures served as a positive control, wAlbB cultures incubated without cell 

lysate from insect cells only in culture medium served as a negative control, because this 

treatment does not facilitate cell-free replication. As growth rates showed a high variation in 

the conducted assays, one assay is exemplarily presented here (Figure 71). Untreated cell-free 

wAlbB cultures were able to replicate (4-fold ± 0.7 SD), while the growth rate of the medium 

control was low (1.2-fold ± 1 SD). All antibiotic-treated Wolbachia cultures replicated, albeit 

growth rates were decreased in rifampicin-treated cells (3.1-fold ± 1.5 SD). As no inhibition of 

cell-free wAlbB growth could be observed in the other three positive controls corallopyronin A 

(3.9-fold ± 1.1 SD), doxycycline (4.9-fold ± 1.2 SD) and fosfomycin (4.6-fold ± 0.2 SD), 

analysis of growth rates via gDNA and qPCR was considered as an improper tool to detect 

effects of antibiotics with unknown impact to Wolbachia. 
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Figure 71: Cell-free wAlbB growth in the presence and absence of corallopyronin A, doxycycline, fosfomycin 

and rifampicin. Cell-free Wolbachia (cfwo) were incubated in growth medium with or without corallopyronin A, 
doxycycline, fosfomycin or rifampicin for twelve days. Cfwo incubated in medium served as a negative control. 
Growth was monitored every three days by qPCR and data were normalized to day 0 (X-axis). The graph is 
representative for six independent experiments. For every time point the mean ± SEM of three samples is shown. 

A second approach to measure effects of antibiotics on cell-free wAlbB was the analysis 

of gene expression by isolation of total RNA of the culture, translation into cDNA and 

subsequent measurements via qPCR. Different experiments showed a high variance of 

expression levels of the 16S rRNA gene, thus the data from one experiment are exemplarily 

shown here (Figure 72). Since the 16S rRNA gene was not stably-expressed in untreated 

wAlbB, this attempt turned out as inappropriate and was rejected. Therefore, the effect of 

antibiotics on cell-free wAlbB was investigated by observing the phenotype of cells via 

microscopy. 

 

Figure 72: Levels of expressed 16S rRNA in cell-free wAlbB in the presence and absence of corallopyronin 

A, doxycycline and rifampicin. Cell-free Wolbachia (cfwo) were incubated with or without corallopyronin A, 
doxycycline, fosfomycin or rifampicin for twelve days. Cfwo incubated in medium without insect cell lysate served 
as a negative control. Every three days, RNA was extracted and transcribed into cDNA. Levels of 16S rRNA were 
monitored by qPCR of the transcribed cDNA. The graph is representative for six experiments. For every time point 
the mean ± SEM of three samples is shown. 
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3.7.3 Morphology of cell-free wAlbB in the presence of antibiotics 

Cell-free wAlbB cultures were incubated with different antibiotics (see Table 28). After 

twelve days, fosfomycin-treated Wolbachia were significantly larger around 3.69 µm (± 1.35 

SD) and wPal was detected as a punctate staining pattern, whereas untreated cell-free 

Wolbachia had an average size of 1.06 µm (± 0.35 SD) and evenly distributed wPal (Figure 73). 

These results confirm previous observations of enlarged fosfomycin-treated Wolbachia residing 

in host cells indicating sensitivity to this antibiotic (Vollmer et al., 2013).  

 

Figure 73: Cell-free cultured Wolbachia are sensitive to fosfomycin treatment. Cell-free Wolbachia cultures 
were incubated for twelve days without antibiotic or treated daily with 512 µg/ml fosfomycin. A) Cells were fixed 
and Wolbachia were visualized by immunofluorescence microscopy using wPAL anti-serum and an Alexa Fluor® 
488 conjugated secondary goat anti-rabbit antibody as well as DAPI for DNA staining. Scale bar = 5 µm. B) 
Statistical difference (n = 22) was determined using Mann-Whitney test, *** = P ≤ 0.001. Boxes extend from the 
25th to the 75th percentile. The line in the middle of the box is plotted at the median. Whiskers extend from the 
smallest to the largest value. 
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However, none of the other tested antibiotics showed an aberrant phenotype including 

those targeting lipid II or peptidoglycan synthesis (ampicillin, bacitracin, vancomycin) (Figure 

74). 

Figure 74: Cell-free Wolbachia morphology after antibiotic treatment. Cell-free Wolbachia cultures were 
incubated for twelve days with different antibiotics. Cells were fixed and Wolbachia visualized by 
immunofluorescence microscopy using wPAL anti-serum and an Alexa Fluor® 488 conjugated secondary goat 
anti-rabbit antibody. Scale bar = 5 µm. 
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4 Discussion 

Wolbachia are obligate intracellular bacteria with a reduced genome and it is 

hypothesized that all genes retained are essential for Wolbachia survival (Wu et al., 2004; Foster 

et al., 2005). Wolbachia are not challenged by osmotic pressure and a peptidoglycan structure 

as present in free-living bacteria has not been detected, but Wolbachia possess all genes 

required for the synthesis of the peptidoglycan precursor lipid II. These genes are expressed in 

vivo and Wolbachia membrane preparations synthesize lipid II ex vivo (Henrichfreise et al., 

2009). Furthermore, a crucial role of lipid II in the multi-enzyme machinery forming the 

divisome is estimated since inhibition of an early step of lipid II synthesis by fosfomycin leads 

to enlarged Wolbachia cells (Vollmer et al., 2013). The investigation of Wolbachia enzymes 

involved in lipid II metabolism does not only provide insight into Wolbachia biology but might 

identify novel targets for the development of antibiotics for use in depleting these essential 

endobacteria from filarial nematodes causing lymphatic filariasis and onchocerciasis in 

humans. Due to genetic intractability of Wolbachia, E. coli was used as surrogate host to 

investigate wolbachial enzyme activity in vivo. 

4.1 Functional characterization of PBP6awBm 

The final reaction in cell wall biosynthesis is the cleavage of the terminal D-Ala residue 

of the pentapeptide side chain accompanied by the formation of an interpeptide bridge (Peters 

et al., 2016). The degree of crosslinking is regulated by a monofunctional DD-carboxypeptidase 

cleaving the terminal D-Ala of the pentapeptide, thereby influencing the activities of the 

elongasome and the divisome due to their dependence on the presence of lipid II pentapeptide 

chains (Den Blaauwen et al., 2008). The function of the putative DD-carboxypeptidase PBP6a 

in Wolbachia is unknown thus far. In this thesis, a first insight into its role in wolbachial lipid II 

processing was gained by in silico analysis of the protein structure as well as in vivo and in vitro 

experiments. PBP6awBm is a homolog of the DD-carboxypeptidase PBP6 from E. coli. In silico 

secondary structure analysis of PBP6awBm predicted the presence of a putative active site center 

composed of SXXK, SX(D/N) and K(S/T)G motifs. However, it should be considered that this 

modeling was based on homologies to the presumed E. coli ortholog. Thus, the predicted 

structure can only give a hint of the putative protein architecture, but the exact structure of 

PBP6awBm remains unclear at this point.  
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In this thesis, the in vivo activity of recombinant PBP6awBm was investigated in E. coli. 

The deletion of PBP6 in E. coli does not result in a detectable altered phenotype (Nelson and 

Young, 2001; Chowdhury et al., 2010). Still, the effect of this DD-carboxypeptidase on cell 

shape can be analyzed in vivo by overproducing the enzyme in the temperature-dependent 

PBP3-deficient E. coli strain MCI23 which leads to partial restoration of the normal cell shape 

(Begg et al., 1990; Otten, 2014). DD-carboxypeptidases cleave the terminal D-Ala from the 

pentapeptide side-chain of lipid II, yielding lipid II with a tetrapeptide. The subsequent cleavage 

of the lipid II tetrapeptide by the LD-carboxypeptidase A results in high levels of lipid II 

tripeptide that shifts the product equilibrium, thus favoring transpeptidation reactions by PBP3 

(Beck and Park, 1977; Van Heijenoort, 2011). The high amount of lipid II tripeptide, which is 

the preferred substrate of PBP3, enables residual transpeptidation activity of this enzyme 

leading to partial complementation of cell division (Botta and Park, 1981; Pisabarro et al., 1986; 

Begg et al., 1990). Here, this assay was used to analyze the putative DD-carboxypeptidase 

activity of PBP6awBm. The growth defect of E. coli MCI23 at the non-permissive temperature 

of 42 °C was partially complemented in the presence of overexpressed recombinant PBP6awBm. 

Notably, long PBP6awBm expression of more than two hours resulted in formation of spherical 

cells and lysis (data not shown). Unregulated lipid II modification due to continuous 

overexpression of a DD-carboxypeptidase probably leads to an increased septation at the 

expense of elongation, resulting in spherical growth and cell lysis as shown during PBP3 and 

PBP5 overexpression in E. coli (Nelson and Young, 2001; Den Blaauwen et al., 2008). The 

observed mixture of phenotypes with variation in cell length of PBP6awBm expressing E. coli 

MCI23 might be due to lowered enzyme activity caused by the high temperature of 42 °C. As 

aforementioned, lipid II with a tripeptide is the preferred substrate of PBP3, but this enzyme is 

still impaired and only possesses residual activity at 42 °C. Additionally, it should be considered 

that peptidoglycan synthases are tightly regulated and show differential activity during different 

cell cycle stages. While the E. coli DD-carboxypeptidase PBP5 is highly active during 

exponential growth, PBP6a expression increases in the stationary phase (Sarkar et al., 2011). 

Hence, missing synchronization of cell cycles in this assay might lead to a mixture of 

phenotypes. Probably, single E. coli MCI23 cells might have been arrested during different cell 

cycle stages when the temperature was switched to 42 °C. This could have an influence on the 

degree of activity of recombinant PBP6awBm
 leading to mixed phenotypes. However, previous 

investigations on the activity of the DD-carboxypeptidase PBP5 in E. coli after synchronization 

of cell cycles revealed that synchronization was already lost after two divisions (Mirelman et 

al., 1977). Therefore, cell cycle synchronization was not reasonable for the complementation 
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assays and was neglected. Nevertheless, the results of the assays performed in this thesis 

provide a first hint that PBP6awBm
 is an active DD-carboxypeptidase in vivo. 

The general mechanism of DD-carboxypeptidase activity is based on the conserved 

motifs SXXK, SX(D/N), and K(S/T)G. Although details of the exact catalytic mechanism of 

serine-based PBPs have not been elucidated yet, a general mechanism consisting of acylation 

and deacylation of the peptide substrates under involvement of all three conserved motifs has 

been predicted (Dougherty and Pucci, 2011). This prediction is mainly based on studies of the 

DD-carboxypeptidase PBP5 of E. coli (Nelson and Young, 2001; Sauvage et al., 2008). In this 

enzyme, the nucleophilic properties of the active site serine of the SXXK motif are enhanced 

by the abstraction of a proton by the hydroxylgroup of lysine of the same motif, promoting the 

nucleophilic attack on the terminal D-Ala carbonyl group of a pentapeptide. This leads to an 

acyl-enzyme intermediate and cleavage of the terminal D-Ala from the pentapeptide chain 

(Sauvage and Terrak, 2016). Subsequent deacylation is catalyzed by serine of the SX(D/N) 

motif and polarized by lysine of the K(S/T)G motif (Dougherty and Pucci, 2011). Since the 

nucleophilic attack during the first reaction step of a DD-carboxypeptidase requires the 

polarized hydroxyl group of the active site serine, amino acid substitution of serine by alanine 

within SXXK motifs was expected to impair PBP6awBm activity. A dependence of 

DD-carboxypeptidase activity on functional SXXK motifs was already demonstrated in PBP6 

from C. pneumoniae (Otten, 2014). When PBP6awBm
 with a single mutated SXXK motif was 

expressed at the non-permissive temperature of 42 °C in E. coli MCI23, cell division was 

partially restored indicating that SXXK motifs can substitute each other. Mutation of both 

SXXK motifs present in PBP6awBm almost completely abolished enzyme activity resulting in 

filamentous E. coli MCI23 cells (mean: 91 %) unable to divide at 42 °C. However, more were 

filamentous (mean: 97 %) in the negative control with the induced empty vector. The remaining 

single and dividing cells in the double SXXK mutant of PBP6awBm were likely caused by 

expression stress as shown by control experiments with PalwBm.  

The in vitro activity assays analyzed by TLC and MALDI-TOF showed lipid II with a 

tetrapeptide further supporting that PBP6awBm is a functional DD-carboxypeptidase. Mutation 

of SXXK motifs led to abolished activity of PBP6awBm indicating that activity might depend on 

functional SXXK motifs as shown for the chlamydial ortholog PBP6 (Otten, 2014). Enzyme 

activity of PBP6awBm was slower compared to the positive control VanY from S. aureus, which 

might be a result of suboptimal in vitro conditions for the recombinant wolbachial enzyme. 

Apart from that, Wolbachia have a slower metabolism with a generation time in cell culture of 

14 h compared to free-living bacteria (e.g. less than one hour in E. coli and B. subtilis) and 
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therefore also enzyme activity might be slower (Fenollar et al., 2003; Taheri-Araghi et al., 

2015). PBPs are the targets of β-lactam antibiotics as high affinity acylation of the SXXK active 

site serine blocks the enzyme into an inactive form (Sauvage and Terrak, 2016). Inhibition 

assays using β-lactams were only performed in vitro, because there is no specific inhibitor 

known for PBP6a. The application of broad spectra β-lactam antibiotics in vivo would impair a 

variety of PBPs in E. coli MCI23 potentially leading to false positive results. The applied β-

lactams (ampicillin and penicillin G) did not inhibit PBP6awBm activity in vitro and moreover, 

the enzyme did not bind to fluorescent- or radiolabeled penicillin in binding assays. These 

results are in line with previous findings that Wolbachia are resistant to β-lactams (O'Neill et 

al., 1997). However, it should be considered that penicillin-binding assays were performed with 

purified recombinant enzymes. Due to a potential different folding of recombinant enzymes in 

E. coli, it is possible that the native PBP6awBm might bind β-lactams. In silico modeling 

predicted that the second and conserved SXXK binding motif of PBP6awBm might be accessible 

for β-lactams. As the first SXXK motif is not assumed to be involved in binding, PBP6awBm 

might still be active in the presence of a β-lactam, because in vivo assays indicate that one 

functional SXXK motif is sufficient to maintain activity of this enzyme. Further in vivo activity 

assays excluded that PBP6awBm resistance to β-lactams was caused by a potential β-lactamase 

activity of the enzyme. The conserved function of the PBP6awBm DD-carboxypeptidase activity 

provides first proof that wolbachial lipid II is further processed and this modification might be 

essential for the cell cycle in Wolbachia. In free-living bacteria, DD-carboxypeptidases regulate 

the degree of crosslinking of peptide stems to mature peptidoglycan, thus lipid II moieties in 

Wolbachia might at least be connected via peptide chains building a peptidoglycan-like 

structure. 

4.2 Functional characterization of PBP2wBm 

Identical to DD-carboxypeptidases, DD-transpeptidase activity is based on the 

conserved motifs SXXK, SX(D/N), and K(S/T)G (Sauvage and Terrak, 2016). The active site 

serine of the SXXK motif plays a crucial role in the two-step crosslinking reaction. Firstly, it 

performs a nucleophile attack on the carbonyl group of the terminal D-Ala-D-Ala amide bond 

of a pentapeptide which leads to the formation of an acyl-enzyme intermediate and subsequent 

release of the terminal D-Ala. Secondly, an amino group of a peptide from a neighboring glycan 

chain attacks this complex building a cross bridge connecting both peptides with concomitant 

release of the DD-transpeptidase (Sauvage and Terrak, 2016). The role of PBP2wBm in the cell 

cycle of Wolbachia is unknown and first assays to characterize this putative DD-transpeptidase 
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were performed in this thesis. Of note, PBP2wBm was re-annotated in NCBI to a putative PBP3, 

a DD-transpeptidase involved in cell division. However, based on sequence alignments, 

PBP2wBm
 showed a higher similarity to PBP2 from different species than to PBP3, thus the term 

PBP2wBm was kept as a description for this enzyme in this study. Secondary structure analysis 

revealed a putative functional active site with SXXK, SX(D/N), and K(S/T)G motifs. PBP2wBm 

was investigated in vivo using the temperature sensitive strain E. coli MCI23 with impaired 

PBP3 activity at 42 °C. Thereby, it was examined whether PBP2wBm exhibits activity in vivo 

and if it is involved in cell elongation or cell division. In rod-shaped E. coli, PBP2 is an essential 

component of the peptidoglycan biosynthesis multi-enzyme complex and promotes cell 

elongation as well as shape maintenance (Den Blaauwen et al., 2008; Typas et al., 2010). Thus, 

it was unsurprising that PBP2wBm with its native transmembrane domain was not active in the 

used E. coli MCI23 model. The transmembrane domain helps in the orientation of this enzyme 

and PBP2wBm is expected to be recruited to the elongasome rather than to the divisome. In 

contrast, PBP2∆TMwBm restored complementation of E. coli MCI23 at 42 °C indicating enzyme 

activity in vivo. PBP2ΔTMwBm without its native transmembrane domain might reach its target 

lipid II in the divisome due to solubility in the periplasm. PBP2∆TMwBm activity was 

presumably dependent on functional SXXK motifs as expression of the protein with mutated 

motifs led to decreased levels of E. coli MCI23 able to divide. Similar to PBP6awBm, an apparent 

remaining activity was observed, which was likely caused by protein expression stress. 

PBP2∆TMwBm was resistant to mecillinam showing wolbachial resistance to β-lactams on a 

molecular level. Further in vivo activity assays excluded that PBP2wBm resistance was caused 

by a potential β-lactamase activity of the enzyme. In silico analysis predicted a binding of 

β-lactams only by the serine residue of the second SXXK motif. In vivo assays with a single 

mutated SXXK motif confirmed activity PBP2∆TMwBm with only one functional active site. 

Summing up, the in vivo results suggest that PBP2wBm might be functional in the E. coli 

divisome or in the elongasome in a mecillinam-resistant manner. It should be noted that 

PBP2wBm might also have DD-carboxypeptidase activity as the in vivo complementation assay 

cannot clearly distinguish between DD-carboxy- and DD-transpeptidase activity. But because 

PBP2wBm was able to substitute for mecillinam-inhibited PBP2 from E. coli, it is likely that 

PBP2wBm indeed has DD-transpeptidase activity. Since there was no E. coli strain available with 

a PBP2 knock-out during the study, additional control experiments could not be performed. A 

putative PBP3 which might act as a DD-transpeptidase specifically in the divisome is disrupted 

by multiple frameshifts in the genome of wBm (Foster et al., 2005). Therefore, it might be 

speculated that PBP2wBm can substitute PBP3 DD-transpeptidase function during division. This 
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would not automatically exclude a participation of this enzyme in cell elongation as it might 

have taken over both tasks in Wolbachia due to genome reduction. This was shown for 

Chlamydia, which harbor PBP2 and PBP3, where both enzymes were shown to be involved in 

cell division (Ouellette et al., 2012). The fact that PBP2 is present in the genome of wBm and 

moreover, shows in vivo activity in assays with recombinant protein, strongly indicates that at 

least a rudimentary peptidoglycan might be present in Wolbachia of Brugia malayi. However, 

functional characterization of PBP2wBm in vitro did not clearly reveal transpeptidation activity. 

In general, the cross-linking of lipid II peptide moieties by monofunctional DD-transpeptidases 

is poorly characterized in vitro even in well investigated bacteria due to a lack of established 

assays (Dougherty and Pucci, 2011). Furthermore, analysis of DD-transpeptidases can be 

cumbersome as most of these enzymes are membrane-anchored and difficult to purify in 

sufficient quality for biochemical characterization (Egan et al., 2015). In this thesis, reaction 

products resulting from PBP2wBm
 in vitro activity were analyzed by TLC. A slight extinction of 

the lipid II band after incubation with PBP2wBm was observed, which can be a hint for 

DD-transpeptidase activity, but generally this assay cannot detect cross-linked polymers. It 

should be considered that recombinant PBP2wBm could only be stored for a couple of days after 

expression due to high instability and degradation of the protein. Thus, it cannot be excluded 

that some batches contained degraded protein, although they were used for activity assays 

immediately after purification. Still, the mechanism of DD-transpeptidase activity includes DD-

carboxypeptidase activity resulting in a cleaved D-Ala and a lipid II tetrapeptide which can be 

detected in vitro as shown in this study for PBP6awBm. Lipid II with a tetrapeptide was not 

detected in the performed in vitro assays, thus the putative DD-transpeptidase activity of 

PBP2wBm
 remains unclear and needs further study. In E. coli, peptidoglycan synthases were 

shown to be controlled by outer membrane proteins (Typas et al., 2010; Egan et al., 2014). 

Since an interaction between PBP2wBm and PalwBm was measured, it was hypothesized that lipid 

II mDAP monomers might be cross-linked by the action of PBP2wBm regulated by PalwBm. Thus, 

purified PalwBm was added to the in vitro DD-transpeptidase reaction mixture, but no activity of 

PBP2wBm was observed by TLC under these conditions (data not shown). PBP2wBm is predicted 

to be a monofunctional DD-transpeptidase suggesting that its activity might be dependent on 

the association with a bifunctional PBP with DD-transpeptidase and glycosyltransferase 

activity or with a monofunctional glycosyltransferase (Den Blaauwen et al., 2008). PBP2 from 

S. aureus is a bifunctional class A PBP (Barrett et al., 2005). A PBP2 mutant from S. aureus 

with knocked out DD-transpeptidase activity was kindly provided by Dr. Anna Müller (AG 

Tanja Schneider, University of Bonn) and in vitro DD-transpeptidase activity assays with 
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PBP2wBm were repeated in the presence of the active glycosyltransferase. However, activity of 

PBP2wBm was not observed under these conditions by TLC (data not shown). These results 

strongly indicate that PBP2wBm activity might be dependent on other molecules which are 

lacking under in vitro conditions. Interestingly, the monofunctional DD-transpeptidase PBP2 

from E. coli interacts with RodA, a transmembrane protein which was recently identified as a 

functional glycosyltransferase in E. coli and B. subtilis in absence of bifunctional PBPs (Cho et 

al., 2016; Meeske et al., 2016). The transmembrane protein FtsW, which builds a sub-complex 

with PBP3, is predicted to act as a glycosyltransferase in the divisome, but this hypothesis needs 

experimental validation (Cho et al., 2016; Meeske et al., 2016). FtsW and RodA belong to the 

so-called SEDS (shape, elongation, division and sporulation) cluster. Notably, SEDS proteins 

and monofunctional peptidoglycan DD-transpeptidases are spread wider among bacteria than 

bifunctional PBPs (Egan et al., 2015). Since RodA and FtsW interact with the monofunctional 

DD-transpeptidases PBP2 and PBP3, they might represent ancestral cognate enzyme pairs for 

peptidoglycan synthesis (Henrichfreise et al., 2016). In free-living bacteria, RodA-PBP2 and 

FtsW-PBP3 are specialized glycosyltransferase-transpeptidase pairs found in the elongasome 

or divisome, respectively (Henrichfreise et al., 2016). The absence of bifunctional PBPs for 

example in free-living Planctomycetes as well as in intracellular Chlamydia and Wolbachia 

suggests that monofunctional peptidoglycan SEDS-transpeptidase pairs might have been 

retained as principal peptidoglycan polymerase systems (Henrichfreise et al., 2016). A putative 

RodA protein is annotated in the wBm genome (NCBI: WP_011256217.1). In vitro activity 

assays with PBP2wBm in combination with RodAwBm and subsequent measurements by TLC and 

MALDI-TOF might be reasonable approaches to reveal glycosyltransferase and 

DD-transpeptidase activity and consequently to detect a peptidoglycan-like polymer. Notably, 

it was already demonstrated that Wolbachia strain wAlbB expresses FtsW and RodA (Vollmer 

et al., 2013). It remains to be seen if the RodA/FtsW homolog in Wolbachia has such an activity 

for the assembly of peptidoglycan together with a monofunctional DD-transpeptidase. 

4.3 Functional characterization of PBP3wMel
 

Filarial Wolbachia like wBm only harbor one putative monofunctional 

DD-transpeptidase, whereas Wolbachia residing in insect cells, e.g. wMel, encode both PBP2 

and PBP3. In free-living bacteria, PBP3 is part of the divisome driving the septation process by 

transpeptidation of lipid II with peptidoglycan at the septation site (Den Blaauwen et al., 2008), 

but the role of this enzyme in Wolbachia is unknown. In silico analysis of the primary and 

secondary structure predicted a putative active site for DD-transpeptidase activity. The 
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purification of recombinant PBP3wMel and functional characterization in vivo and in vitro were 

performed as part of a master thesis (Ritzmann, 2016). In this study, the in vivo activity of 

recombinant PBP3wMel was further investigated. Overexpressed PBP3wMel partially restored the 

growth defects of E. coli MCI23 at the non-permissive temperature. Although cell 

complementation was not restored completely, which might be explained by sub-optimal 

conditions for the wolbachial enzyme at 42 °C, the results indicate that PBP3wMel exhibits 

activity in vivo and is capable of lipid II modification. To provide evidence that PBP3wMel in 

vivo activity is based on the typical mode of action described for PBPs, the serine residues from 

all four SXXK motifs identified in PBP3wMel were substituted by alanine by site-directed 

mutagenesis. Single SXXK mutations did not result in an altered phenotype, indicating normal 

cell division of E. coli MCI23 (Ritzmann, 2016). Simultaneous mutation of all four SXXK 

motifs resulted in an increase of filamentous cells indicating impaired PBP3wMel activity. In 

PBP3 from C. pneumoniae, the ability to complement cell division of E. coli MCI23 at the non-

permissive temperature was dependent on all functional SXXK motifs, but in contrast, the 

single SXXK motifs were able to substitute each other in vitro (Otten, 2014). 

To confirm the mode of action of PBP3wMel as a DD-transpeptidase within the in vivo 

model, additional experiments using the specific PBP3 inhibitor aztreonam were conducted. 

This antibiotic leads to a filamentous phenotype due to impaired cell division 

(Georgopapadakou et al., 1982). When aztreonam was added to the exponentially growing 

E. coli MCI23 cells overexpressing PBP3wMel at the permissive temperature of 30 °C, cell sizes 

increased compared to the untreated controls. Of note, cell sizes (median: 6.9 µm) were similar 

to those observed in the complementation assays at 42 °C with overexpressed PBP3wMel 

(median: 6.1 µm). In contrast, cells expressing the empty vector were significantly larger 

(median: 11.5 µm) in the presence of aztreonam. This result confirms an inhibition of the E. 

coli PBP3 and supports the conclusion that partial restoration of division in cells overexpressing 

PBP3wMel originated from the wolbachial enzyme. Aztreonam is a β-lactam, thus the low 

affinity of aztreonam to PBP3wMel supports previous findings of Wolbachia resistance to this 

antibiotic class (O'Neill et al., 1997; Fenollar et al., 2003). Aztreonam resistance was shown in 

some E. coli strains which is manifested by a four-amino-acid insertion (YRIK or YRIN) in 

PBP3 (Alm et al., 2015). Structural analysis revealed that this insertion impacts the accessibility 

of some β-lactam drugs to the DD-transpeptidase pocket (Alm et al., 2015). Neither YRIK nor 

YRIN are present in PBP3wMel, but in silico analysis predicted a possible binding of the β-lactam 

cefoxitin only at two of the four active site serines of SXXK motifs. This indicates an 

inaccessibility of the other two SXXK motifs, which could maintain enzyme activity. Further 
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in vivo activity assays excluded that PBP3wMel resistance to β-lactams was caused by a potential 

β-lactamase activity of the enzyme. 

4.4 Interaction of PalwBm with lipid II and PBP2ΔTMwBm 

In Gram-negative bacteria, the predominantly single-layered peptidoglycan sacculus is 

connected to the outer membrane by covalent and noncovalent interactions with various outer 

membrane proteins (Typas et al., 2010). Pal is an outer membrane protein which binds 

specifically to uncross-linked mDAP and is part of the membrane-spanning Tol-Pal complex 

(Gerding et al., 2007; Yeh et al., 2010). The Tol-Pal complex is essential for proper constriction 

of the outer membrane during cell division and interacts with other outer membrane proteins to 

connect the outer membrane, peptidoglycan and the inner membrane, thus facilitating 

membrane integrity (Godlewska et al., 2009). Wolbachia lack peptidoglycan-binding proteins 

that promote the maintenance of the peptidoglycan sacculus in other Gram-negative bacteria 

except for Pal (Wu et al., 2004; Turner et al., 2009; Typas et al., 2012). Pal is one of two 

identified lipoproteins in Wolbachia (Voronin et al., 2014). In filarial infections, the 

pro-inflammatory capacity of B. malayi and O. volvulus is higher in the presence of Wolbachia 

and their lipoproteins have been identified as key ligands (Hise et al., 2007; Turner et al., 2009; 

Tamarozzi et al., 2011). In Wolbachia of B. malayi, PalwBm was found to be among the most 

abundant proteins and is localized in the outer membrane (Voronin et al., 2014). It is likely that 

wolbachial Pal is necessary to connect the inner and outer membrane, especially during cell 

division, and this interaction partner might be lipid II (Vollmer et al., 2013). First evidence for 

this was shown in the Wolbachia strain wAlbB which was treated with fosfomycin, an antibiotic 

blocking lipid II synthesis, resulting in a perturbed localization of wolbachial Pal and enlarged 

cells unable to divide (Vollmer et al., 2013). The protein-lipid II interaction studies shown in 

this thesis suggest that lipid II might be connected to the outer membrane via PalwBm. The 

preferred substrate of PalwBm was lipid II containing mDAP, giving a further hint of the 

Wolbachia lipid II composition. Noteworthy, Wolbachia retained the ability to synthesize 

mDAP de novo, indicating that mDAP is found at position three of the lipid II pentapeptide 

chain like in other Gram-negative bacteria as well as in Gram-positive bacteria of the genus 

Bacillus (Foster et al., 2005; Henrichfreise et al., 2009). During cell division, lipid II or a further 

processed form of the molecule possibly anchored in the inner membrane might be linked to 

the outer membrane by interacting with wolbachial Pal, forming a ring-like structure necessary 

for constriction of the outer membrane. A second potential interaction partner of the wolbachial 

Pal was PBP2. In E. coli, it was demonstrated that the outer membrane-anchored lipoproteins 
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LpoA and LpoB control peptidoglycan synthases (Paradis-Bleau et al., 2010; Typas et al., 

2010). Each Lpo protein stimulates the DD-transpeptidase activity of its cognate PBP by 

binding and concomitantly inducing conformational changes (Egan et al., 2014). The protein-

protein interaction studies conducted in this thesis revealed an interaction between the 

lipoprotein PalwBm and PBP2ΔTMwBm. The N-terminus containing the transmembrane domain 

of PBP2wBm might be anchored in the inner membrane, while the C-terminus harboring the 

active site might be stimulated by binding to PalwBm. Moreover, it can be speculated that the 

PBP2wBm-PalwBm complex might maintain membrane integrity by connecting the inner and 

outer membrane. 

4.5 Functional characterization of AmiDwMel
 

The genome of arthropod Wolbachia such as wMel encode one putative peptidoglycan 

hydrolase, homologous to the N-acetylmuramoyl-L-alanine amidase AmiD from E. coli, 

although a functional cell wall has not been detected (Wu et al., 2004). In contrast to all other 

characterized amidases (AmiA, AmiB, AmiC) from E. coli, AmiD has a broad substrate 

specificity and its exact role is unclear (Kerff et al., 2010). Park and Uehara (2007) proposed 

that the breakdown of cell wall fragments in the periplasm by AmiD is a secondary strategy to 

prevent immune responses in the host. The enzyme belongs to the amidase 2 family (PF01510 

in the Pfam database). Eukaryotic peptidoglycan recognition proteins (PGRPs) have at least 

one carboxyterminal PGRP domain, which is homologous to bacteriophage and bacterial type 

2 amidases (Dziarski and Gupta, 2006). PGRPs are involved in innate immune responses 

against bacteria (Dziarski and Gupta, 2006). Drosophila relies entirely on innate immunity and 

two pathways respond to different classes of microorganisms (Buchon et al., 2014). The Toll 

pathway is mainly activated in response to Gram-positive bacteria and fungi, whereas the 

immune deficiency (Imd) pathway is mostly triggered by Gram-negative bacteria. Here, 

recognition of bacteria is mostly achieved by PGRPs. The membrane anchored receptor 

PGRP-LC and the cytoplasmic receptor PGRP-LE upstream of the Imd pathway sense 

peptidoglycan fragments containing mDAP in the peptide side chains (Myllymäki et al., 2014). 

The minimum structure for recognition by PGRP-LC is a monomer of GlcNAc-MurNAc with 

an internal 1,6-anhydro-bond attached to a tripeptide (Stenbak et al., 2004). In this study, 

AmiDwMel was functionally characterized to better understand its role in insect Wolbachia 

biology. The presence of an N-terminal signal peptide predicted a periplasmic localization of 

AmiDwMel but no insertion into the outer membrane like its E. coli homolog (Uehara and Park, 

2007). The periplasmic localization was confirmed in vitro, and activity assays revealed that 
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AmiDwMel hydrolyzes the amide bond between MurNAc and L-alanine of the peptide stem of 

various substrates like monomeric lipid II, polymeric peptidoglycan and anhydromuropeptides. 

This activity was inhibited by the exchange of one of the zinc-coordinating residues as well as 

by the non-specific metal chelator EDTA and the zinc-specific inhibitor 1,10-phenanthroline. 

A zinc-dependent activity was also shown in AmiD from E. coli (Uehara and Park, 2007). In 

vivo assays using an E. coli strain with knocked-out AmiA, B and C demonstrated an 

involvement in cell division of AmiA from C. pneumoniae (Klöckner et al., 2014). Due to rapid 

degradation of AmiDwMel in the used E. coli strain, this assay was not suitable for this study. 

Thus, it cannot be ruled out that AmiDwMel is involved in the turnover of a rudimentary 

peptidoglycan-like structure as the recycling pathway of C55-P remains unclear in Wolbachia 

(Henrichfreise et al., 2009; Vollmer et al., 2013). However, the question remains why AmiD is 

only conserved in Wolbachia found in arthropods. AmiDwMel was able to hydrolyze 

anhydromuropeptides like its E. coli homolog (Uehara and Park, 2007). Notably, the 

1,6-anhydro bonds of anhydromuropeptides are generated by periplasmic lytic 

transglycosylases cleaving the glycosidic bond between MurNAc and GlcNAc units. The 

conservation of the capability to cleave anhydromuropeptides gives a first hint that Wolbachia 

may contain a peptidoglycan-like structure with connected glycan strands. However, neither a 

bifunctional PBP with DD-transpeptidase and peptidoglycan glycosyltransferase activity that 

could link the sugar moieties of lipid II nor a lytic transglycosylase that could catalyze glycan 

chain cleavage during bacterial growth have been identified in the Wolbachia genomes (Wu et 

al., 2004; Foster et al., 2005). Nevertheless, the aforementioned identification of RodA as a 

glycosyltransferase supports the hypothesis of a potential peptidoglycan structure in Wolbachia.  

The size of AmiDwMel with 497 amino acids is striking (AmiD from E. coli: 257 amino 

acids) leading to the assumption of a potential additional function of this enzyme. Contrary to 

homologs from free-living bacteria, AmiDwMel contains conserved SXXK, SX(D/N) and 

K(S/T)G motifs in its C-terminus typically found in PBPs and also in AmiA from 

C. pneumoniae. This chlamydial AmiA is an amidase involved in septum cleavage and 

additionally functions as a DD-carboxypeptidase (Klöckner et al., 2014). Thus, AmiDwMel was 

investigated for a putative additional DD-carboxypeptidase activity in vivo and in vitro. In vivo 

assays with E. coli MCI23 provided first hints of DD-carboxypeptidase activity, which was 

dependent on the functional active site serine S400. These results suggested that AmiDwMel is 

an enzyme with dual activity having N-acetylmuramoyl-L-alanine amidase activity in the N-

terminal and DD-carboxypeptidase activity in the C-terminal part of the protein. Additionally, 

an interaction between fluorescent penicillin and AmiDwMel was observed in vitro indicating 
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that the PBP active site motifs are indeed present in this enzyme and accessible to β-lactams. 

However, DD-carboxypeptidase activity was not confirmed in vitro. Analysis of the reaction 

products of AmiDwMel by TLC and MALDI-TOF did not reveal lipid II containing a 

tetrapeptide. Possibly, the DD-carboxypeptidase activity was too low which might explain why 

lipid II containing a tetrapeptide was not detected by these methods. Additional assays, in which 

free D-Ala is detected even in low concentrations, turned out to be inappropriate to reliably 

measure DD-carboxypeptidase activity as no significant differences between the negative and 

the positive control could be calculated. Thus, further assays are necessary to investigate and 

confirm the putative DD-carboxypeptidase activity of AmiDwMel. Nevertheless, the functional 

conservation of N-acetylmuramoyl-L-alanine amidase activity indicates that AmiDwMel plays 

an important role in the lifecycle of insect Wolbachia, but its involvement in cell division 

remains unclear. Likely, AmiDwMel might suppress host immune responses by removing the 

peptide chain from the sugar moieties. Because insect Wolbachia are parasites and can 

horizontally infect other insects (Werren et al., 2008), this enzyme may have been maintained 

for example in wMel, wRi and wPip to aid this specific endosymbiotic lifestyle and protect these 

endobacteria. In contrast, genomes of sequenced Wolbachia from filarial nematodes show that 

these strains have lost the ability to synthesize AmiD. Moreover, nematodes do not express 

homologs of PGRP-LC or Imd (Irazoqui et al., 2010; Ermolaeva and Schumacher, 2014) and 

thus would not recognize the same peptidoglycan metabolism/recycling products, allowing 

Wolbachia of filarial nematodes to lose AmiD during evolution as mutualistic endosymbionts. 

In conclusion, the enzymatic activity of AmiDwMel may have a crucial role in cleavage of a 

peptidoglycan-like structure and allow Wolbachia to avoid host organism immune responses 

by degrading cell wall fragments in the periplasm that could be recognized by innate immune 

receptors (Buchon et al., 2014). 

4.6 Growth requirements of Wolbachia wAlbB in a cell-free culture 

The examination of Wolbachia is challenging as they live well protected from the 

environment by four lipid membrane layers: the host cell membrane, the membrane of the 

vacuole in which Wolbachia reside in the cytoplasm and the bacterial outer and inner 

membrane. In vitro culture systems are few and attempts to culture Wolbachia of filarial 

nematodes have not been successful (Slatko et al., 2014). Only strains naturally occurring in 

arthropods have been established in cell cultures (O'Neill et al., 1997; Turner et al., 2006). 

Therefore, possibilities to investigate Wolbachia are limited. An extracellular culture system 

would open the door for the application of a broad spectrum of molecular biological techniques 
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and facilitate the elucidation of Wolbachia biology. For example, the efficacy of large 

antibiotics, which are not able to pass all four lipid membrane layers, could be examined. First 

steps towards a cell-free system were made by Rasgon et al. (2006). Wolbachia strain wAlbB 

purified from an insect cell line was maintained in a cell-free culture medium for up to one 

week, but could not proliferate outside the host cell. Further attempts regarding ex-vivo growth 

failed, but some components were advantageous regarding survival of Wolbachia, e.g. 

compatible solutes, actin and mammal blood (Uribe-Alvarez et al., 2018). A host cell-free 

culture of wAlbB with viable cells which were replicating and infective up to twelve days was 

established in a former project (Vollmer, 2012). An insect cell lysate fraction containing cell 

membranes was identified as requisite for cell-free replication of Wolbachia, but replication 

was limited to 9-12 days (Vollmer, 2012). Further experiments on single components of the 

membrane fraction were performed, for example with certain membrane lipids. However, the 

results were ambiguous and it was assumed that there are several positive and negative factors 

influencing the culture in a complex manner (J. Vollmer, pers. communication). Usage and 

insufficient supply of nutrients might be a reasonable explanation, but as Wolbachia replicate 

slowly, a competition for nutrients seems unlikely (Vollmer, 2012). 

Part of this thesis was to examine if additional supplemented substances that are not 

present in the standard cell culture medium might enhance growth and stability of cell-free 

wAlbB. The survival of Anaplasma phagocytophilum and Ehrlichia chaffeensis, which are 

closely related to Wolbachia, is dependent on the incorporation of cholesterol derived from 

their host to maintain membrane integrity (Lin and Rikihisa, 2003). Like Wolbachia, 

A. phagocytophilum and E. chaffeensis do not synthesize lipid A and it was proposed that 

cholesterol might be necessary to promote membrane stability as a substitute for 

lipopolysaccharide (Lin and Rikihisa, 2003; Wu et al., 2004). Recent studies indicate that 

Wolbachia-infected insect cells might indeed incorporate cholesterol (Caragata et al., 2013; 

Geoghegan et al., 2017). Further, Wolbachia reside in cholesterol-rich Golgi-related vesicles 

derived from the host forming a vacuole surrounding each bacterium (Cho et al., 2011). Insects 

assimilate cholesterol from their environment which is incorporated into the plasma membrane 

and into internal membranes like those from the Golgi apparatus (Rolls et al., 1997). Thus, 

cholesterol might be a limiting factor for cell-free wAlbB proliferation and supplementation 

with the membrane fraction of an insect cell lysate might not be sufficient to keep up growth 

for more than twelve days. The supplementation of water-soluble cholesterol did not lead to 

elongated replication of cell-free wAlbB. The application of fresh cell lysate after nine days 

showed higher cell-free wAlbB proliferation after twelve days compared to the standard culture 
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in the performed assays, but taken as a whole, proliferation rates were not higher than the 

observed mean of 6.4-fold from previous assays (see chapter 3.7). Based on these results, 

cholesterol and certain components from the insect cell membrane that are potentially taken up 

by Wolbachia were concluded not to be key factor for limited proliferation. Since Wolbachia 

replication was high between days 3–9, a complete medium change after nine days to supply 

Wolbachia with fresh culture medium was reasonable. This was challenging as the bacteria did 

not attach to the plate surface. Centrifugation of the culture to separate Wolbachia from the cell 

culture medium led to a loss of the bacteria. Thus, cell culture plates were coated with actin to 

allow attachment of the Wolbachia to the surface and to potentially facilitate medium change. 

Several studies demonstrate a close association of Wolbachia and other intracellular bacteria 

with the host cell cytoskeleton (Ferree et al., 2005; Galán and Cossart, 2005; Melnikow et al., 

2013; Landmann et al., 2014; Reed et al., 2014; Souza Santos and Orth, 2015). In Drosophila, 

Wolbachia localize at the anterior pole of the mosquito`s oocytes using microtubules, thus 

ensuring transmission to the next generation (Ferree et al., 2005). In B. malayi, wolbachial 

surface proteins form a complex with actin and tubulin and this binding is supposed to be crucial 

in maintenance of endosymbiosis (Melnikow et al., 2013). Moreover, the supplementation of 

actin was shown to improve survival of isolated Wolbachia (Uribe-Alvarez et al., 2018). In this 

thesis, cell-free wAlbB were cultured on an actin-coated streptavidin plate to examine if the 

bacteria benefit from actin and if they attach to the substrate, which would have facilitated 

medium change. However, cell-free growth on actin-coated plates was decreased compared to 

the standard conditions. It cannot be excluded that substances from the wash buffer used for 

actin-coating on the streptavidin plates were harmful to the bacteria, although plates were rinsed 

several times with culture medium before use. Medium change after six days led to a loss of 

bacteria leading to the conclusion that Wolbachia were not attached to the actin-coated plates. 

The binding of Wolbachia to actin might be more crucial to keep maintenance in the host cell 

culture rather than to be involved in replication itself. 

As shown for other intracellular bacteria, culturing in a lowered oxygen environment 

can increase cell-free growth (Omsland et al., 2009). Here, proliferation rates were similar in 

cell-free wAlbB incubated under a lower oxygen level compared to standard conditions. Thus, 

oxygen levels are presumably not the limiting factor of cell-free Wolbachia growth. Of note, 

the variance of wAlbB replication rates in cell-free cultures between different experiments was 

similar to those of Wolbachia cultured inside insect cells reflecting growth variability that might 

originate from variances in temperature, cell culture passage and culture medium. An optimized 

culture medium was already designed for cell-free growth of the obligate endobacteria 
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C. burnetii using expression microarrays, genomic reconstruction and metabolite typing 

(Omsland et al., 2009). The cell-free wAlbB medium was compared to the optimized cell-free 

medium for C. burnetii and substances, which were present in the medium for C. burnetii, were 

supplemented to the cell-free wAlbB medium. An increase of proliferation was observed in 

cultures supplemented with glucose. The glucose and glycogen metabolism in B. malayi is 

associated with Wolbachia symbiont fitness and it was shown that the disaccharide sucrose, 

consisting of glucose and fructose, improves survival of isolated Wolbachia (Voronin et al., 

2016; Uribe-Alvarez et al., 2018). Thus, this compound might be beneficial for wolbachial 

growth. Indeed, growth rates slightly increased in the presence of glucose, but proliferation 

could not be elongated. Moreover, biotin and sodium bicarbonate harmed the culture. To 

determine exact nutrient requirements and to design a Wolbachia-specific cell-free medium, 

differences in gene expression of Wolbachia cultured in insect cells and cell-free should be 

examined in a future project. 

Another possible explanation why cell-free Wolbachia replication stops after 9-12 days 

might be the regulation of Wolbachia densities by an unknown intrinsic or host-derived 

mechanism. It is striking that cell-free wAlbB were only proliferating at an initial concentration 

of 0.5 – 1 x 103 cells/µl. In contrast, in cell-free cultures containing higher densities of 

Wolbachia with 104 or 105 cells/µl, Wolbachia numbers rarely increased (Vollmer, 2012). This 

indicates that Wolbachia might sense cell densities and regulate cell division by internal 

communication patterns. The two-component regulatory system (TCS) is the predominant form 

of signaling used in a majority of prokaryotes, including bacteria (Beier and Gross, 2006). It is 

composed of a sensor histidine kinase and a paired response regulator (Mitrophanov and 

Groisman, 2008; Jung et al., 2012). Stimuli such as nutrients, osmolarity, oxygen, salinity and 

quorum sensing cues are recognized by sensor histidine kinases (Mascher et al., 2006). This 

activates cognate response regulators which for example coordinate induction of sporulation, 

regulation of bacterial differentiation or formation of biofilms (Stock et al., 2000). TCS genes 

are highly conserved in various Wolbachia strains, but very little is known about their function 

to date (Cheng et al., 2006; Brilli et al., 2010). A bioinformatic study showed that wolbachial 

TCS genes are consistently found clustered with metabolic genes within different Wolbachia 

strains including wAlbB and wBm (Christensen and Serbus, 2015). Considering these findings, 

it might be hypothesized that Wolbachia are able to sense for example nutrients or quorum 

sensing molecules and consequently regulate cell division. This could explain why cell-free 

Wolbachia growth stops after 9-12 days of incubation and could further explain the observation 

that Wolbachia cell numbers inside the C6/36 insect cells do not reach a density that would 
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negatively affect the survival of the insect cell. In Drosophila, Wolbachia replication was 

indicated to be tissue-dependent as growth rates differ significantly between head and ovaries 

(McGraw et al., 2002). Wolbachia replication is also dependent on the stage of the host life 

cycle. In A. albopictus, Wolbachia replication stops during the diapause of mosquito eggs in 

which no host cell division occurs, highlighting the dependence of Wolbachia proliferation on 

host cell division (Ruang-Areerate et al., 2004). In the filarial nematode B. malayi, Wolbachia 

numbers are low and remain constant in microfilaria and insect-borne larval stages, but 

proliferation increases suddenly after the infection of a vertebrate host (McGarry et al., 2004; 

Taylor et al., 2013). This seems to play an essential role in larval development as demonstrated 

by the arrested larval growth and development in response to antibiotic treatment (Taylor et al., 

2012). B. malayi and B. pahangi infective-stage larvae co-cultured in vitro with the yeast R. 

minuta have been shown to support consistent and reproducible molting to the fourth larval 

stage (Smith et al., 2000). It was suggested that the larvae are benefiting from an unknown 

secreted product of the yeast. Since proliferation rates of Wolbachia severely increase in this 

phase of the larvae (McGarry et al., 2004; Taylor et al., 2013), the bacteria might also benefit 

from secretion products of R. minuta. In this thesis, cell-free wAlbB were co-cultured with 

viable R. minuta. The co-cultivation harmed the Wolbachia leading to a concentration-

dependent decrease of bacteria rather than enhanced growth. Thus, it might be assumed that the 

secreted yeast product might be more beneficial for the viability of filarial larvae than for 

Wolbachia. In a future experiment, R. minuta lysate in different concentrations might be used. 

This would prevent that bacteria are overgrown by the yeast. Notably, it was recently shown 

that wAlbB is able to grow in artificially infected Saccharomyces cerevisiae (Uribe-Alvarez et 

al., 2018). Compared to controls, infected yeast lost viability early, but this system might 

potentially provide a promising future model of interactions that occur in a naturally infected 

eukaryote host (Uribe-Alvarez et al., 2018). 

Summing up, these findings provide insight into the complexity of Wolbachia 

replication and endosymbiont-host dependency. Further research will be necessary to elucidate 

the multiple mechanisms that influence and regulate Wolbachia replication and to enhance 

growth as well as stability of the wAlbB cell-free culture. 

4.7 Antibiotic treatment of Wolbachia wAlbB in a cell-free culture 

Several antibiotics tested in Wolbachia-infected cell cultures did not deplete the bacteria 

and it was a matter of debate whether they were ineffective because they could not reach their 



4 Discussion 

139 
 

target or because Wolbachia are indeed resistant. The cell-free system meets all requirements 

to examine antibiotics directly applied to Wolbachia. Thus, another part of this thesis was the 

application of antibiotics to the cell-free wAlbB culture. Different antibiotics were 

supplemented to the cell-free culture medium, gDNA was prepared and growth rates were 

monitored via qPCR of the 16S rRNA gene. To exclude that penicillin or streptomycin, which 

are supplements of the normal cell culture medium, have an inhibitory effect on cell-free wAlbB 

proliferation, cultures with and without these antibiotics were tested. Here, no differences in 

growth rates were observed supporting previous findings that Wolbachia are resistant to 

β-lactams (O'Neill et al., 1997). Proliferation rates were also examined with the 

Wolbachia-affecting antibiotics corallopyronin A, doxycycline, fosfomycin and rifampicin. 

However, cell-free wAlbB growth rates were not decreased in the presence of corallopyronin 

A, doxycycline or fosfomycin. Only treatment with rifampicin led to decreased cell-free 

growth, but a complete inhibition of growth was not observed here as well. It might be assumed 

that an effect on growth would only be observed using antibiotics with bactericidal activity like 

rifampicin, but this assumption does not hold true as fosfomycin also acts bactericidal 

(Michalopoulos et al., 2011). Generally, it should be considered that gDNA was prepared and 

measured from the whole culture and it is possible that DNases are lower or absent in the cell-

free culture. Thus, gDNA fragments of dead cells were potentially measured by qPCRs leading 

to a seemingly increase of Wolbachia. To solve this issue, expression levels of the 16S rRNA 

gene prepared from the cell-free culture were measured. However, no differences between 

antibiotic treated and untreated cultures were revealed due to low expression after twelve days 

also in untreated controls. A study in wMel confirmed that rRNA expression levels are high and 

variable among samples (Gutzwiller et al., 2015). Thus, this approach is not suitable to reliably 

compare antibiotic treated and untreated wAlbB cultures. 

Another approach to determine bacteria numbers is counting of cells under a microscope 

and discrimination between living and dead bacteria by LIVE/DEAD® staining. This was 

applied to the cell-free Wolbachia, but in the majority of experiments, only few cells were 

detected after twelve days also in the controls cultures without antibiotic treatment. Other 

previous attempts to count cell-free Wolbachia also turned out to be inappropriate as a high 

variance between measured cells per qPCR and actually counted cells was revealed (J. Vollmer, 

pers. communication). Therefore, this approach was rejected and the impact on the morphology 

of antibiotic-treated wAlbB was investigated to reveal potential antibiotic-effects on 

Wolbachia. Cell-free Wolbachia were fixed, stained and visualized under a microscope. In a 

previous study, wAlbB residing in C6/36 insect host cells were treated with the lipid II-synthesis 



4 Discussion 

140 
 

blocking antibiotic fosfomycin, which led to enlarged bacteria (Vollmer et al., 2013). This 

finding indicated that lipid II is essential for cell division in Wolbachia. Moreover, fosfomycin 

treatment on Wolbachia revealed a perturbed localization of wPal suggesting an interaction of 

this lipoprotein with lipid II or its processed form (Vollmer et al., 2013). This assumption is 

supported by the results of the interaction assays in this thesis (see chapter 4.4). The incubation 

of cell-free wAlbB with fosfomycin also showed an aberrant phenotype with enlarged cells and 

delocalized wPal appearing in a spot-like pattern. None of the other antibiotics tested revealed 

a visible aberrant phenotype. Ciprofloxacin, clindamycin, corallopyronin A, doxycycline, 

rifampicin, sulfamethoxazole and trimethoprim do not target cell wall biosynthesis, thus an 

impact on cell morphology was unlikely. For antibiotics targeting the cell wall or synthesis 

steps (ampicillin, bacitracin, vancomycin) an aberrant phenotype was more likely. For example, 

ampicillin-treated C. trachomatis have aberrant, enlarged reticulate bodies (Liechti et al., 2014). 

Here, no changes compared to the control cells were observed after twelve days of incubation 

with the respective antibiotic. On the one hand, it can be proposed that Wolbachia are indeed 

resistant to these antibiotics and therefore no change of morphology was detected. On the other 

hand, it might be assumed that antibiotics were unstable and thus ineffective. Since stability, 

solubility and shelf life of antibiotics were considered while preparing the assays, this 

possibility can be neglected. Another explanation for the inefficacy of the substances might be 

an inaccessibility of their targets. For instance, most Gram-negative bacteria are naturally 

resistant to vancomycin as this molecule cannot pass the outer membrane (Geraci, 1977). 

Wolbachia likely have an unusual outer membrane since they are unable to synthesize lipid A, 

a key moiety of lipopolysaccharide (Foster et al., 2005). Thus, certain compounds, which are 

too large to pass the outer membrane of Gram-negative bacteria, might pass the unique 

Wolbachia outer membrane. This was already demonstrated for corallopyronin A which 

normally depletes only Gram-positive bacteria, but is also highly active against Wolbachia 

(Schiefer et al., 2012). In contrast, it should be considered that compounds that normally pass 

the Gram-negative outer membrane might not be able to reach their target in Wolbachia due to 

their unique outer membrane. 

In conclusion, the investigation of Wolbachia cultures in terms of antibiotic 

susceptibility remains challenging. To establish rapid and reliable tools to analyze antibiotic 

assays, several attempts could be beneficial. The amplification of genes like the wolbachial 

surface protein (wsp) WD1063 might be more eligible than 16S rRNA to measure replication 

or depletion of cell-free Wolbachia. Wsp is stably-expressed in Wolbachia making it suitable 

to compare expression levels of antibiotic treated and untreated cells (Gutzwiller et al., 2015). 
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Wolbachia growth inside yeast cells can be determined by PCR of wsp and this approach might 

be applied to the cell-free wAlbB culture (Uribe-Alvarez et al., 2018). Additionally, Wolbachia 

replication or depletion can also be estimated by the detection of wsp by Western Blot and 

analysis of band intensity (Uribe-Alvarez et al., 2018). As another approach, fluorescence-

activated cell sorting of LIVE/DEAD® stained Wolbachia after antibiotic treatment might lead 

to more detailed and accurate results instead of analysis with a microscope.  

4.8 Lipid II labeling of wAlbB 

Wolbachia possess all genes to build the peptidoglycan precursor lipid II and a previous 

study confirmed that recombinant proteins and purified Wolbachia membranes synthesize 

lipid I and II in vitro and that the pathway is essential for Wolbachia cell division (Henrichfreise 

et al., 2009). It was proposed that Wolbachia might have a peptidoglycan-like molecule built 

of peptide cross-links and that lipid II might be needed for the coordination of cell division 

(Foster et al., 2005; Henrichfreise et al., 2009). However, the exact molecular structure and 

further processing of Wolbachia lipid II is unknown. Wolbachia have lost most genes for amino 

acid biosynthesis de novo, but retained the genes for mDAP biosynthesis (Foster et al., 2005). 

Wolbachia most likely maintained the mDAP pathway because this amino acid is essential for 

the synthesis of lipid II and cannot be provided by the eukaryotic host. In this thesis, PalwBm 

was shown to preferentially bind to lipid II containing mDAP, giving a hint that this amino acid 

is found in the peptide moiety. Although Wolbachia lack typical amino acid racemases, they 

express MetC, which was shown to have an alternative alanine racemase activity in E. coli 

(Kang et al., 2011). MetCwBm also possesses L-alanine racemase activity in vitro, giving a first 

hint that Wolbachia might provide D-Ala for the terminal dipeptide in the pentapeptide of 

lipid II (Vollmer et al., 2013). Wolbachia such as wBm harbor the gene for the D-Ala-D-Ala 

ligase Ddl required to synthesize the D-Ala dipeptide that is linked to the UDP-MurNAc-

tripeptide by MurF (Foster et al., 2005). The expression of Ddl has already been shown in 

wAlbB (Vollmer et al., 2013). An in vivo assay with fluorescently labeled lipid II using D-Ala-

D-Ala dipeptide analogues revealed a ring-like peptidoglycan structure for the first time in 

Chlamydia, Orientia and Planctomycetes (Liechti et al., 2014; Jeske et al., 2015; Atwal et al., 

2017). In this thesis, this technique was established in a C6/36 insect cell line infected with 

wAlbB. Fluorescent labeling showed a specific co-localization of anti-Wolbachia sera and the 

labeled D-amino acid dipeptide visualized a lipid II-containing and putative peptidoglycan-like 

structure in Wolbachia for the first time. The results further demonstrate that the cell wall 



4 Discussion 

142 
 

precursor lipid II is synthesized in vivo and most likely contains D-Ala-D-Ala. No labeling was 

monitored after fosfomycin treatment confirming the specific visualization of lipid II by 

EDA-DA. Isolated Wolbachia from the insect cell culture remained viable in different media 

(water, PBS and Leibovitz medium). Previous studies also demonstrated that Wolbachia can 

temporarily survive in an extracellular environment (Dobson et al., 2002; Frydman et al., 2006; 

Rasgon et al., 2006). The viability of isolated intracellular bacteria in different media has also 

been shown in O. tsutsugamushi and has been interpreted as an indicator for the presence of a 

mechanical stress-bearing structure as provided by peptidoglycan (Atwal et al., 2017).  

The examination of a dipeptide antibody via highly resolving transmission electron 

microscopy could provide further insights into cell wall localization and structure in Wolbachia. 

Similar to Orientia, only few Wolbachia cells contained detectable dipeptides leading to the 

speculation it might only be synthesized at division sites (Atwal et al., 2017). In free-living 

bacteria, FtsZ recruits divisome proteins and confers the inner contractile force for the cell, 

whilst the outer force is provided by the peptidoglycan sacculus (Ghosh and Sain, 2008). In 

Wolbachia, FtsZ might constitute the inner contractile force, but the outer contractile force is 

unknown. Concluding that the observed lipid II structure consists of a polymer, it might be 

postulated that this confers the outer force in cell division. This hypothesis is in accordance 

with previous findings that lipid II plays a crucial role during cell division in Wolbachia (Foster 

et al., 2005; Henrichfreise et al., 2009; Vollmer et al., 2013). 

4.9 Lipid II metabolism and its role in Wolbachia biology 

In free-living bacteria, synthesized lipid II is flipped across the cytoplasmic membrane 

into the periplasm (Ruiz, 2016). To date, the identity of the enzyme translocating lipid II across 

the cell membrane remains a matter of debate. Several enzymes (FtsW, MurJ and RodA) might 

function as flippases and are discussed controversially (Ruiz, 2016). As Wolbachia annotate all 

three potential flippases, it is likely that the wolbachial lipid II molecule is translocated across 

the cytoplasmic membrane into the periplasm by one of these enzymes (Vollmer et al., 2013). 

Recent studies indicate glycosyltransferase activity of RodA in E. coli and B. subtilis in absence 

of bifunctional PBPs, and FtsW is hypothesized to have similar activity (Cho et al., 2016; 

Meeske et al., 2016). Thus, FtsW and RodA might be glycosyltransferases rather than flippases 

concluding that lipid II is likely translocated into the periplasm by MurJ. Once in the periplasm, 

lipid II is incorporated into the growing peptidoglycan by glycosyltransferases, 

DD-carboxypeptidases and DD-transpeptidases in free-living bacteria. The genome from wMel 

contains the lipid II processing enzymes PBP2, PBP3, PBP6a, and AmiD, whereas filarial wBm 
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only encodes the genes for PBP2 and PBP6a. The results of this thesis are a first characterization 

of wolbachial lipid II processing enzymes and give a hint why they have been maintained in 

the genome. Lipid II of wBm is likely processed by the DD-transpeptidase PBP2 leading to 

connected peptide moieties. The degree of crosslinking might be regulated by the 

DD-carboxypeptidase PBP6a. In wMel, the DD-transpeptidase PBP3 might lead to additional 

amounts of connected lipid II peptide moieties during cell division which could be recycled by 

AmiD to suppress host immune responses. In E. coli, PBP2 is mainly involved in the 

elongasome building peptidoglycan, while PBP3 is only functional in the divisome (Goffin et 

al., 1996; Höltje, 1998). In case of Wolbachia, a distinct separation of these multi-enzyme 

complexes might not hold true. Here, orchestration of lipid II processing as well as cell division 

may be achieved by the formation of overlapping multi-enzyme complexes (Figure 75).  

 

Figure 75: Proposed model of lipid II processing in Wolbachia. Lipid II might be flipped into the periplasm by 
MurJ. Pal (wBm) might interact with lipid II and PBP2 (wBm). PBP2 DD-transpeptidase activity might be 
catalyzed by the putative glycosyltransferase RodA building glycan chains with concomitant cleavage of the 
undecaprenyl phosphate (C55-P) from MurNAc. The degree of crosslinking might be regulated by the DD-
carboxypeptidase PBP6a (wBm). PBP3 (wMel) might have DD-transpeptidase activity during cell division 
together with the putative glycosyltransferase FtsW in insect Wolbachia. Peptidoglycan is cleaved by an unknown 
lytic transglycosylase resulting in anhydromurepeptides. AmiD (wMel) cleaves the bond between peptide chain 
and sugars in peptidoglycan, lipid II and anhydromurepeptides. AmiD might furthermore have additional 
DD-carboxypeptidase activity. However, almost all peptidoglycan recycling enzymes are missing from annotated 
Wolbachia genomes and the further processing of C55-P remains unclear. 
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Pal might interact with lipid II and PBP2 connecting the inner and outer membrane (see 

chapter 4.4). Active monofunctional PBPs together with RodA and FtsW might synthesize at 

least a peptidoglycan-like macromolecule putatively essential for cell division, which would 

confirm previous hypotheses (Foster et al., 2005; Henrichfreise et al., 2009; Vollmer et al., 

2013). Investigating more enzymes involved in the orchestration of lipid II will further unravel 

cell wall metabolism in Wolbachia. In wBm, MurJ (NCBI: WP_011256323) and RodA are 

encoded, while the homolog of FtsW is disrupted by multiple frameshifts (Foster et al., 2005). 

In wMel, the sequences of MurJ, RodA and FtsW were found (Foster et al., 2005). The 

characterization of these enzymes is part of current and future studies. In Chlamydia, MreB is 

essential for growth and cell division (Ouellette et al., 2012). This rod shape-determining 

protein forms actin-like filaments and interacts with PBP2 to direct its synthesis of 

peptidoglycan as shown in free-living bacteria (Jones et al., 2001; Divakaruni et al., 2005). As 

MreB is present in wBm (NCBI: WP_011256355) and can specifically be inhibited by S-(3,4-

dichlorobenzyl) isothiourea, it might be a potential point of application to deplete Wolbachia 

(Noritaka et al., 2002). Thus, the characterization of wolbachial MreB might be reasonable. 

The lipid II processing enzymes of this study were also investigated regarding their 

potential as targets for antibiotics. β-lactams react with the serine of the SXXK motif forming 

a long-lived acyl-enzyme covalent complex, consequently blocking enzyme activity (Nicola et 

al., 2010). The results of this thesis demonstrated that the activity of wolbachial PBPs is 

dependent on functional SXXK motifs, but Wolbachia are resistant to β-lactam antibiotics 

(O'Neill et al., 1997). The application of β-lactams to cell-free Wolbachia and to wolbachial 

PBPs confirmed resistance to this class of antibiotics. The underlying molecular mechanism is 

probably an inaccessibility of some SXXK motifs to β-lactams. Wolbachia PBPs all have more 

SXXK motifs than their E. coli orthologs and the active site serines were demonstrated to 

potentially substitute each other in function. This might be an advantage in terms of resistance 

when a β-lactam is present and not bound to all SXXK motifs. Surprisingly, AmiDwMel showed 

binding to penicillin. Its putative additional DD-carboxypeptidase activity needs further 

validation (see chapter 4.5), and now it can only be speculated whether this activity is inhibited 

by β-lactams. However, as cells remained unaffected by applied β-lactams in the cell-free 

wAlbB culture, wolbachial PBPs and AmiD appear not to be suitable targets for β-lactam 

antibiotics. Apart from β-lactams, other antibiotics such as glycopeptides or lantibiotics inhibit 

the last stage of peptidoglycan polymerization by binding to the lipid II substrate (Sauvage and 

Terrak, 2016). Notably, a newly discovered natural product, teixobactin, isolated from 

Eleftheria terrae, inhibits cell wall synthesis in Gram-positive bacteria by binding to lipid II 
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and lipid III (precursor of teichoic acid) (Ling et al., 2015). Teixobactin is also active against 

an E. coli mutant with a defective outer membrane permeability barrier (Ling et al., 2015). 

Wolbachia most probably have an unusual outer membrane due to missing lipid A (Foster et 

al., 2005). Thus, antibiotics like teixobactin that are only active against Gram-positive bacteria 

might also be effective against Wolbachia and should be considered in antibiotic assays. 

wMel have two more enzymes (AmiD and PBP3) involved in cell wall metabolism that 

are absent in wBm, suggesting differences of a putative peptidoglycan structure (Foster et al., 

2005). These differences might reflect the occurrence of a mutualistic lifestyle and in contrast 

to a parasitic lifestyle (Foster et al., 2005). After the identification of RodA as an active 

glycosyltransferase (Cho et al., 2016; Meeske et al., 2016) it should be taken in account that 

Wolbachia might have a mature cell wall. Even more, the explanation that these bacteria have 

incomplete peptidoglycan machineries does not hold true anymore as the truly minimal maybe 

ancestral sets (RodA-PBP2 and FtsW-PBP3) remained concealed (Henrichfreise et al., 2016). 

Supporting this hypothesis, recent studies demonstrate that a peptidoglycan-like structure can 

be detected in intracellular Chlamydia and Orientia which also do not have all peptidoglycan 

synthesizing enzymes, but possess homologs of the SEDS proteins FtsW and RodA (Pilhofer 

et al., 2013; Liechti et al., 2014; Jeske et al., 2015; Van Teeseling et al., 2015; Atwal et al., 

2017). In this study, a lipid II-containing and putative peptidoglycan-like structure was detected 

in wAlbB for the first time (see chapter 4.8). Moreover, it was demonstrated that AmiDwMel is 

a peptidoglycan hydrolase capable of cleaving structures specifically obtained by lytic 

transglycosylases from glycan strands (see chapter 4.5). These results strongly indicate that at 

least insect Wolbachia may contain peptidoglycan with connected glycan strands. E. coli 

L-forms are assumed to lack peptidoglycan due to inhibited PBP1a and PBP1b (Joseleau-Petit 

et al., 2007). Still, they grow in isotonic medium which is blocked after additional inhibition of 

PBP2 or PBP3, suggesting that at least a basal level of peptidoglycan synthesis is essential for 

cell division (Joseleau-Petit et al., 2007). Presumably, cell wall biosynthesis and cell division 

are tightly connected and cannot be separately eliminated in the course of evolution (Otten, 

2014). Comparative analysis of major obligate intracellular bacteria predicted some sort of 

peptidoglycan-like structure in Wolbachia termed into a group of “peptidoglycan-intermediate” 

organisms along with Chlamydia, O. tsutsugamushi and Anaplasma marginale (Otten et al., 

2017). In conclusion, the results of this study together with latest research findings regarding 

peptidoglycan in intracellular bacteria and newly discovered SEDS glycosyltransferases 

support the assumption that Wolbachia are not cell wall-less bacteria, but rather have a physical 

structure composed of lipid II that can interact with outer membrane proteins.   
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PBP6a wBm      MLDKLVILLLVSTLPFSSYSYQFRTKAKQAVVLDLASDLFIFEHNSDEKMSPSSMSKLMT  60 
PBP6a wMel     MLSRLVILLLVFILPFSSYSYQFRTKAKQAVVLDLASDSFIFDHNSDEKMAPSSMSKLMT  60 
               **.:*******  ************************* ***:*******:********* 
 

PBP6a wBm      LYVAFDYLKAGIIDMKDKFRVSRKAWERKGSSMFLKEGQSVSVKELLEGVTTVSGNDACI 120 
PBP6a wMel     LYIAFDYLKAGIIHMEDKFRVSRKAWERRGSSMFLKEGQSVTVRELLEGITIVSGNDACI 120 
               **:**********.*:************:************:*:*****:* ******** 
PBP6a wBm      TLAEGIAGSEENFVVEMNEVAQNLNLSDSYFVNSSGWPDKDHFMSAKDLVVLAKRIFTDF 180 
PBP6a wMel     TLAEGIAGSEENFVAEMNEVAQNLNLNDSHFVNSSGWPDEDHFMNAKDLVMLAKRIFTDF 180 
               **************.***********.**:*********:****.*****:********* 
 

PBP6a wBm      PEYYDLFSKQYLTYNDIIQKNKNLLLFHDIGVDGLKTGYTNAGGYGIVISAKRNDRRIFA 240 
PBP6a wMel     PEYYDLFSEQYLTYNEIVQKNKNLLLFHDIGVDGLKTGYTNAGGYGIVASAKRNDRRIFA 240 
               ********:******:*:****************************** *********** 
PBP6a wBm      VVNGLNTEKERIEEAKRLIQYSFNHFNTKKIFAKDSVVEEINVLYGKERKVSATVANDVT 300 
PBP6a wMel     VVNGLNTEKERIEEAKRLIQYSLNHFNTKKIFVKDSVVEEVNVLYGKDRKVPITVANDVT 300 
               **********************:*********.*******:******:***  ******* 
PBP6a wBm      ITYNRNLRDKIKVRVEYKDMIPAPIKKGQEVGKIFIEIPGIEQQTIPLYAVNDVQELNYV 360 
PBP6a wMel     ITYNRKLHDQIKVRIEYKDMIPAPIKKGQEVGKVFVEIPGIEQQTTPLYAANDVQELNFV 360 
               *****:*:*:****:******************:*:********* ****.*******:* 
PBP6a wBm      EKFFRILF 368 
PBP6a wMel     EKFFRMLF 368 
               *****:** 

 

Supplementary Figure 1: Amino acid alignment of PBP6awBm and PBP6awMel. * fully conserved residue; : 
conservation between groups of strongly similar properties; . conservation between groups of weakly similar 
properties. Conserved SXXK, SX(D/N) and K(S/T)G motifs found in PBP6awBm

 and PBP6awMel are written in bold 
letters, motif alignments are framed in black. 

 
# Measure  Position  Value    Cutoff   signal peptide? 
  max. C    23       0.366 
  max. Y    23       0.487 
  max. S    19       0.751 
  mean S     1-22    0.619 
       D     1-22    0.549   0.420   YES 
Name = Sequence SP = 'YES' Cleavage site between pos. 22 and 23: SYS-YQ D = 0.549 
D-cutoff = 0.420 Networks = SignalP-noTM 
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# WEBSEQUENCE Length: 368 
# WEBSEQUENCE Number of predicted TMHs:  0 
# WEBSEQUENCE Exp number of AAs in TMHs: 1.17651 
# WEBSEQUENCE Exp number, first 60 AAs:  1.13184 
# WEBSEQUENCE Total prob of N-in:        0.05357 
# WEBSEQUENCE TMHMM2.0 outside      1   368 

 

Supplementary Figure 2: Prediction of a signal peptide in PBP6awBm (Signal P) for secretion in the periplasm, 
but no transmembrane domain (TMHMM). 

PBP6a         --------ATGA---------GTATATTAGACAAAT-------T----GGTAATCCTGCT 32 
PBP6a_SP      TCTAGATAACGAGGGCAAAAAATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCT 60 
                      * **         .*.:*::*****..*       *    *  ..:*  *** 
PBP6a         GTTAGTTTCTACGCTTCCTTTTTC--------TTCATATTCATACCAATTTAGAACTAAA 84 
PBP6a_SP      G------GTTTCGCTACCGTAGCGCAGGCCGGAGACCATGGTTACCAATTTAGAACTAAA 114 
              *        *:****:** *:           : .. **  :****************** 
PBP6a         GCAAAGCAAGCAGTAGTTTTAGATTTAGCCTCAGACTTGTTCATTTTTGAGCATAATTCC 144 
PBP6a_SP      GCAAAGCAAGCAGTAGTTTTAGATTTAGCCTCAGACTTGTTCATTTTTGAGCATAATTCC 174 
              ************************************************************ 
PBP6a         GACGAAAAGATGTCTCCATCTTCAATGAGCAAGCTAATGACTTTATATGTAGCCTTCGAT 204 
PBP6a_SP      GACGAAAAGATGTCTCCATCTTCAATGAGCAAGCTAATGACTTTATATGTAGCCTTCGAT 234 
              ************************************************************ 
PBP6a         TATTTAAAAGCTGGAATAATAGACATGAAGGATAAATTTCGAGTAAGTAGAAAAGCGTGG 264 
PBP6a_SP      TATTTAAAAGCTGGAATAATAGACATGAAGGATAAATTTCGAGTAAGTAGAAAAGCGTGG 294 
              ************************************************************ 
PBP6a         GAAAGAAAAGGCTCTTCTATGTTTTTAAAGGAAGGTCAATCTGTTTCGGTGAAAGAATTG 324 
PBP6a_SP      GAAAGAAAAGGCTCTTCTATGTTTTTAAAGGAAGGTCAATCTGTTTCGGTGAAAGAATTG 354 
              ************************************************************ 
PBP6a         CTTGAAGGAGTTACAACGGTCTCGGGTAACGATGCCTGCATAACGTTAGCTGAGGGCATT 384 
PBP6a_SP      CTTGAAGGAGTTACAACGGTCTCGGGTAACGATGCCTGCATAACGTTAGCTGAGGGCATT 414 
              ************************************************************ 
PBP6a         GCCGGGTCAGAAGAGAATTTCGTGGTTGAAATGAACGAAGTTGCACAAAATTTGAACCTA 444 
PBP6a_SP      GCCGGGTCAGAAGAGAATTTCGTGGTTGAAATGAACGAAGTTGCACAAAATTTGAACCTA 474 
              ************************************************************ 
PBP6a         AGCGACAGTTACTTTGTCAATTCAAGCGGGTGGCCAGATAAAGATCATTTCATGAGTGCA 504 
PBP6a_SP      AGCGACAGTTACTTTGTCAATTCAAGCGGGTGGCCAGATAAAGATCATTTCATGAGTGCA 534 
              ************************************************************ 
PBP6a         AAAGATTTGGTAGTACTAGCAAAAAGGATTTTTACTGATTTCCCTGAATATTATGATTTA 564 
PBP6a_SP      AAAGATTTGGTAGTACTAGCAAAAAGGATTTTTACTGATTTCCCTGAATATTATGATTTA 594 
              ************************************************************ 
PBP6a         TTTTCTAAACAATATCTAACATATAACGATATCATACAAAAAAATAAAAATCTTTTACTT 624 
PBP6a_SP      TTTTCTAAACAATATCTAACATATAACGATATCATACAAAAAAATAAAAATCTTTTACTT 654 
              ************************************************************ 
PBP6a         TTTCATGATATTGGAGTTGATGGCTTAAAGACCGGTTATACAAACGCTGGTGGTTACGGC 684 
PBP6a_SP      TTTCATGATATTGGAGTTGATGGCTTAAAGACCGGTTATACAAACGCTGGTGGTTACGGC 714 
              ************************************************************ 
PBP6a         ATTGTAATTTCTGCAAAACGAAACGATAGGAGAATTTTCGCTGTTGTAAATGGCTTAAAC 744 
PBP6a_SP      ATTGTAATTTCTGCAAAACGAAACGATAGGAGAATTTTCGCTGTTGTAAATGGCTTAAAC 774 
              ************************************************************ 
PBP6a         ACTGAAAAAGAGCGAATAGAAGAAGCAAAAAGACTGATACAATATTCCTTCAATCATTTT 804 
PBP6a_SP      ACTGAAAAAGAGCGAATAGAAGAAGCAAAAAGACTGATACAATATTCCTTCAATCATTTT 834 
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              ************************************************************ 
PBP6a         AATACTAAGAAGATATTTGCTAAGGATAGTGTAGTTGAGGAAATAAATGTTCTATACGGA 864 
PBP6a_SP      AATACTAAGAAGATATTTGCTAAGGATAGTGTAGTTGAGGAAATAAATGTTCTATACGGA 894 
              ************************************************************ 
PBP6a         AAGGAGAGAAAAGTATCTGCCACAGTTGCAAATGATGTCACCATAACTTATAACCGCAAT 924 
PBP6a_SP      AAGGAGAGAAAAGTATCTGCCACAGTTGCAAATGATGTCACCATAACTTATAACCGCAAT 954 
              ************************************************************ 
PBP6a         CTACGTGATAAAATTAAGGTGCGTGTTGAATATAAAGATATGATACCTGCACCTATTAAA 984 
PBP6a_SP      CTACGTGATAAAATTAAGGTGCGTGTTGAATATAAAGATATGATACCTGCACCTATTAAA 1014 
              ************************************************************ 
PBP6a         AAAGGGCAAGAAGTAGGTAAAATTTTTATAGAAATACCAGGTATAGAGCAGCAAACTATA 1044 
PBP6a_SP      AAAGGGCAAGAAGTAGGTAAAATTTTTATAGAAATACCAGGTATAGAGCAGCAAACTATA 1074 
              ************************************************************ 
PBP6a         CCACTTTATGCAGTGAATGATGTACAGGAATTAAATTACGTAGAAAAGTTTTTTAGAATA 1104 
PBP6a_SP      CCACTTTATGCAGTGAATGATGTACAGGAATTAAATTACGTAGAAAAGTTTTTTAGAATA 1134 
              ************************************************************ 
PBP6a         TTGTTTTAA--------------------------------------------------- 1113 
PBP6a_SP      TTGTTTGACCATGGTCTCAGCGCTTGGAGCCACCCGCAGTTCGAAAAATAATAAGCTTGA 1194 
              ****** *.                                                    
PBP6a         ----------- 1113 
PBP6a_SP      CCTGTGAAGTG 1205 
 

Supplementary Figure 3: Nucleic acid alignment of PBP6awBm and cloned PBP6awBm (_SP) in pASK-IBA2C. 

Mut12        CAANNTCTAGATMACGAGGGCAAAAAATGAAAAAGACAGCTATCGCGATTGCAGTGGCAC 
PBP6a        -------------ATGAG---------TATATTAGACAAAT-------T----GGTAATC 
                          * ***         *.:*::*****..*       *    *  ..:* 
Mut12        TGGCTG------GTTTCGCTACCGTAGCGCAGGCCGGAGACCATGGTTACCAATTTAGAA 
PBP6a        CTGCTGTTAGTTTCTACGCTTCCTTTTTC--------TTCATATTCATACCAATTTAGAA 
               ****        *:****:** *:           : .. **  :************* 
Mut12        CTAAAGCAAAGCAAGCAGTAGTTTTAGATTTAGCCTCAGACTTGTTCATTTTTGAGCATA 
PBP6a        CTAAAGCAAAGCAAGCAGTAGTTTTAGATTTAGCCTCAGACTTGTTCATTTTTGAGCATA 
             ************************************************************ 
Mut12        ATGCCGACGAAAAGATGTCTCCATCTGCAATGAGCAAGCTAATGACTTTATATGTAGCCT 
PBP6a        ATTCCGACGAAAAGATGTCTCCATCTTCAATGAGCAAGCTAATGACTTTATATGTAGCCT 
             ** *********************** ********************************* 
Mut12        TCGATTATTTAAAAGCTGGAATAATAGACATGAAGGATAAATTTCGAGTAAGTAGAAAAG 
PBP6a        TCGATTATTTAAAAGCTGGAATAATAGACATGAAGGATAAATTTCGAGTAAGTAGAAAAG 
             ************************************************************ 
Mut12        CGTGGGAAAGAAAAGGCTCTTCTATGTTTTTAAAGGAAGGTCAATCTGTTTCGGTGAAAG 
PBP6a        CGTGGGAAAGAAAAGGCTCTTCTATGTTTTTAAAGGAAGGTCAATCTGTTTCGGTGAAAG 
             ************************************************************ 
Mut12        AATTGCTTGAAGGAGTTACAACGGTCTCGGGTAACGATGCCTGCATAACGTTAGCTGAGG 
PBP6a        AATTGCTTGAAGGAGTTACAACGGTCTCGGGTAACGATGCCTGCATAACGTTAGCTGAGG 
             ************************************************************ 
Mut12        GCATTGCCGGGTCAGAAGAGAATTTCGTGGTTGAAATGAACGAAGTTGCACAAAATTTGA 
PBP6a        GCATTGCCGGGTCAGAAGAGAATTTCGTGGTTGAAATGAACGAAGTTGCACAAAATTTGA 
             ************************************************************ 
Mut12        ACCTAAGCGACAGTTACTTTGTCAATTCAAGCGGGTGGCCAGATAAAGATCATTTCATGA 
PBP6a        ACCTAAGCGACAGTTACTTTGTCAATTCAAGCGGGTGGCCAGATAAAGATCATTTCATGA 
             ************************************************************ 
Mut12        GTGCAAAAGATTTGGTAGTACTAGCAAAAAGGATTTTTACTGATTTCCCTGAATATTATG 
PBP6a        GTGCAAAAGATTTGGTAGTACTAGCAAAAAGGATTTTTACTGATTTCCCTGAATATTATG 
             ************************************************************ 
Mut12        ATTTATTTTCTAAACAATATCTAACATATAACGATATCATACAAAAAAATAAAAATCTTT 
PBP6a        ATTTATTTTCTAAACAATATCTAACATATAACGATATCATACAAAAAAATAAAAATCTTT 
             ************************************************************ 
Mut12        TACTTTTTCATGATATTGGAGTTGATGGCTTAAAGACCGGTTATACAAACGCTGGTGGTT 
PBP6a        TACTTTTTCATGATATTGGAGTTGATGGCTTAAAGACCGGTTATACAAACGCTGGTGGTT 
             ************************************************************ 
Mut12        ACGGCATTGTAATTTCTGCAAAACGAAACGATAGGAGAATTTTCGCTGTTGTAAATGGCT 
PBP6a        ACGGCATTGTAATTTCTGCAAAACGAAACGATAGGAGAATTTTCGCTGTTGTAAATGGCT 
             ************************************************************ 
Mut12        TAAACACTGAAAAAGAGCGAATAGAAGAAGCAAAAAGACTGATACAATATTCCTTCAATC 
PBP6a        TAAACACTGAAAAAGAGCGAATAGAAGAAGCAAAAAGACTGATACAATATTCCTTCAATC 
             ************************************************************ 
Mut12        ATTTTAATACTAAGAAGATATTTGCTAAGGATAGTGTAGTTGAGGAAATAAATGTTCTAT 
PBP6a        ATTTTAATACTAAGAAGATATTTGCTAAGGATAGTGTAGTTGAGGAAATAAATGTTCTAT 
             ************************************************************ 
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Mut12        ACGGAAAGGAGAGAAAAGTATCTGCCACAGTTGCAAATGATGTCACCATAACTTATAACC 
PBP6a        ACGGAAAGGAGAGAAAAGTATCTGCCACAGTTGCAAATGATGTCACCATAACTTATAACC 
             ************************************************************ 
Mut12        GCAATCTACGTGATAAAATTAAGGTGCGTGTTGAATATAAAGATATGATACCTGCACCTA 
PBP6a        GCAATCTACGTGATAAAATTAAGGTGCGTGTTGAATATAAAGATATGATACCTGCACCTA 
             ************************************************************ 
Mut12        TTAAAAAAGGGCAAGAAGTAGGTAAAATTTTTATAGAAATACCAGGTATAGAGCAGCAAA 
PBP6a        TTAAAAAAGGGCAAGAAGTAGGTAAAATTTTTATAGAAATACCAGGTATAGAGCAGCAAA 
             ************************************************************ 
Mut12        CTATACCACTTTATGCAGTGAATGATGTACAGGAATTAAATTACGTAGAAAAGTTTTTTA 
PBP6a        CTATACCACTTTATGCAGTGAATGATGTACAGGAATTAAATTACGTAGAAAAGTTTTTTA 
             ************************************************************ 
Mut12        GAATATTGTTTGACCATGGTCTCAGCGCTTGGAGCCACCCGCAGTTCGAAAAATAATAAG 
PBP6a        GAATATTGTTTTAA---------------------------------------------- 
             *********** *.                                               
Mut12        CTTGACCTGTGAAGTGAAAAA 
PBP6a        --------------------- 
                                   

Supplementary Figure 4: Nucleic acid alignment of PBP6awBm and cloned PBP6awBm active site mutant S48A-
S56A (Mut12) in pASK-IBA2C. Mutated bases are highlighted gray. 

 
Supplementary Figure 5: Penicillin-binding assay. PBP2wBm and PBP6awBm were incubated for 1 h, 2 h, 3 h or 
overnight (o/n) with BocillinTM FL. PBP2 from S. aureus served as a positive control. 

 
# Measure  Position  Value    Cutoff   signal peptide? 
  max. C    28       0.111 
  max. Y    13       0.150 
  max. S     3       0.289 
  mean S     1-12    0.232 
       D     1-12    0.180   0.420   NO 
Name = Sequence SP = 'NO' D = 0.180 D-cutoff = 0.420 Networks = SignalP-TM 
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# WEBSEQUENCE Length: 521 
# WEBSEQUENCE Number of predicted TMHs:  1 
# WEBSEQUENCE Exp number of AAs in TMHs: 20.64977 
# WEBSEQUENCE Exp number, first 60 AAs:  20.49195 
# WEBSEQUENCE Total prob of N-in:        0.93602 
# WEBSEQUENCE POSSIBLE N-term signal sequence 
WEBSEQUENCE TMHMM2.0 inside      1    12 
WEBSEQUENCE TMHMM2.0 TMhelix     13    35 
WEBSEQUENCE TMHMM2.0 outside     36   521 

 

Supplementary Figure 6: Prediction for a transmembrane domain in PBP3wBm by TMHMM, but not for a signal 
peptide as predicted by Signal P. 

PBP2 wBm      MWIKNKVFNRRAFILGGIQLTISTIFSCRLYSLQIRNRQKYEKLADNNRIRVAAIMPKRG 60 
PBP2 wMel     MWTKNKVFNRRAFILGGIQLTISAVFSCRLYNLQIRNRQKYEALSNSNRIRVATIMPKRG 60 
              ** ********************::******.********** *::.******:****** 
PBP2 wBm      RILDRNGIELAVDKISYIVLFDKQKISSEEVDWETLSEIESNVTKSSETKITALYKRHYP 120 
PBP2 wMel     KILDRNSIELAVNKISYVVLFDGS---GKEVDLQTLSEVESKIAKSS-EKITALYKRYYP 116 
              :*****.*****:****:**** .   .:*** :****:**:::***  ********:** 
PBP2 wBm      FGSICSHTLGYTKKQQGINEAGISGIEYTYDHILKGKPGRSEQEINSKKRIVRELSSIPQ 180 
PBP2 wMel     FGSMCSHVIGYTKRQQGISEVGISGIEYTYDHILKGKSGKSEQEINSKKRFIKELSSIPQ 176 
              ***:***.:****:****.*.**************** *:**********:::******* 
PBP2 wBm      QDGQDVQLTIDIDLQEKIAEIFKGHKGSVTAIDVGNGEILTLYNSPSYDNNLFANKLSNE 240 
PBP2 wMel     QDGQDVQLTIDINLQEKTAEVFKDHQGSAVVIDVNNGEILALYNSPSYDNNLFASRLSNE 236 
              ************:**** **:**.*:**...***.*****:*************.:**** 
 

PBP2 wBm      AWEGLNTPSLPLVNRALSYQIPPGSIFKIIVALAGLKDGIITPEEKFSCVGYMKIGERRF 300 
PBP2 wMel     TWESLNAPSLPLVNRALSYQIPPGSIFKVIVALAGLKDGIITPEEKFSCKGYMKIGERKF 296 
              :**.**:*********************:******************** ********:* 
 

PBP2 wBm      CCLKSKVHGYVSLNEAMALSCNTYFYNIGKKISVDSLVEMARKFGIGSGPLIGAFKEEAP 360 
PBP2 wMel     RCLKSKVHGYVSLNEAMALSCNTYFYNIGKKISVDSLVEMARKFGIGSGPLIGTFKEEAP 356 
               ****************************************************:****** 
PBP2 wBm      GLLPDKDWRTRKLYSEWYLGDTVNLVIGQGYVLTTPLQLAVLAARIATGKEVIPRIEMSK 420 
PBP2 wMel     GLLPDRDWRTRKLYSQWYLGDTINLVIGQGYMLTTPLQLAVLAARIATGKEVIPRIKMNE 416 
              *****:*********:******:********:************************:*.: 
 

PBP2 wBm      TMQDFPDIDIAHEHLSIVRKAMFNMVNIKAGTYRKGLSSIRIAGKTGTPEINSKGESHKL 480 
PBP2 wMel     TIQDFPDIDVDCEHLSIVRKAMFDVVNSKTGTYKKGLSGIQIAGKTGTPEINSKGESHKL 476 
              *:*******:  ***********::** *:***:****.*:******************* 
PBP2 wBm      FIAYGPYHDPRYAISVFIEYGKAPRQDVAMANEILRYMLKG------- 521 
PBP2 wMel     FIAYGPYHNPRYAISVFIEHGKAPRQDVAIANEIFQYMLETMSIKLLA 524 
              ********:**********:*********:****::***:         
 

Supplementary Figure 7: Amino acid alignment of PBP2wBm and PBP2wMel (WP_010962786.1). * fully 
conserved residue; : conservation between groups of strongly similar properties; . conservation between groups of 
weakly similar properties. Conserved SXXK, SX(D/N) and K(S/T)G motifs found in PBP2wBm and PBP2wMel are 
written in bold letters, motif alignments are framed in black. 

PBP2 wBm      --MWIKNKVFNRRAFILGGIQLTISTIFSCRLYSLQIRNRQKYEKLADNNRIRVAAIMPK 58 
PBP3 wMel     MQALLKNKL-RSLCFIVPLFIFY--IIIIFRIFSL------TFDQLTTSENFRKDNIVHK 51 
                  :***: .  .**:  : :    *:  *::**      .:::*: .:.:*   *: * 
PBP2 wBm      RGRILDRNGIELAVDKISYIVLFDKQKISS---------------------------EEV 91 
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PBP3 wMel     QPDILDRNGVVIATNVPTTSLYIDATKVKNPESIAAQLCSTLHDLEYKNLYRVLTSEKKF 111 
              :  ******: :*.:  :  : :*  *:..                           ::. 
PBP2 wBm      DWETLSEIESN-----VTKSSETKITALYKRHYPFGSICSHTLGYTKKQQGINEAGISGI 146 
PBP3 wMel     AWIKRHLTPKELLAIKNAGVPGVNFDDDIKRIYPHSNLFSHVLGYTDID----GNGIAGV 167 
               * .     .:      :    .::    ** **...: **.****. :      **:*: 
PBP2 wBm      EYTYDHILKGKPGRSEQEINSKKRIVRELSSIPQQDGQDVQLTIDIDLQEKIAEIFKGHK 206 
PBP3 wMel     EAYISKN-----N--EQ----EKPIILSLDT-------RVQSIVHEEL-TKAVRRYQALG 208 
              *   .:      .  **    :* *: .*.:        **  :. :*  * .. ::.   
 

PBP2 wBm      GSVTAIDVGNGEILTLYNSPSYDNNLFANKLSNEAWEGLNTPSLPLVNRALSYQIPPGSI 266 
PBP3 wMel     GVGIVLNVRNSEVISMVSLPDFNPNLQNKAEDVQKF---NRASLG--------VYEMGSV 257 
              *   .::* *.*:::: . *.:: **  :  . : :   *  **             **: 
 

PBP2 wBm      FKIIVALAGLKDGIITPEEKFSCVGYMKIGERRFCCLKSKVHGYVSLNEAMALSCNTYFY 326 
PBP3 wMel     LKYFTIAAALDANATKTSDLYDVSTPITIGKYKIQDFHKSKIPKITVQDIFVKSSNIGAA 317 
              :* :.  *.*. .  . .: :.    :.**: ::  ::..    ::::: :. *.*     
PBP2 wBm      NIGKKISVDSLVEMARKFGIGSGPLIGAFKEEAPGLLPDKDWRTRKLYSEWYLGDTVNLV 386 
PBP3 wMel     KIAVKLGIEKQVEYFKAMKL-FSPLKIEIPEKSTPIIPD-KWSETTLITA---------S 366 
              :*. *:.::. **  : : :  .**   : *::  ::** .*   .* :            
PBP2 wBm      IGQGYVLTTPLQLAVLAARIA----------------TGKEVIPRIEMSKTMQDFPDIDI 430 
PBP3 wMel     YGYGIA-VTPIHLAQTAAALINNGIFHNATLMLNKRSIGEQIISRRT-SREMR------- 417 
               * * . .**::**  ** :                  *:::* *   *: *:        
 

PBP2 wBm      AHEHLSIVRKAMFNMVNIKAGTY-RKGLSSIRIAGKTGTPEINSKGE-----SHKLFIAY 484 
PBP3 wMel     -----KLLRAA------VTDGTGRKAKIKAYSIGGKTGSAEKVVDGKYSKDANIASFIGV 466 
                   .::* *      :. **  :  :.:  *.****: *   .*:     .   **.  
PBP2 wBm      GPYHDPRYAISVFIEYGKAPRQDV-AMANEILRYMLKG----------- 521 
PBP3 wMel     LTMLDPRYIVLIAIDEPQGMHHTGGIIAAPIVKNIINRIAPILNVTPEM 515 
                  **** : : *:  :. ::    :*  *:: :::             
 

Supplementary Figure 8: Amino acid alignment of PBP2wBm and PBP3wMel (WP_010963147.1). * fully 
conserved residue; : conservation between groups of strongly similar properties; . conservation between groups of 
weakly similar properties. Conserved SXXK, SX(D/N) and K(S/T)G motifs found in PBP2wBm and PBP3wMel are 
written in bold letters, motif alignments are framed in black. 

PBP2_TM    AAAATCTAGATAACGAGGGCAAAAAATGAAAAAGACAGCTATCGCGATTGCAGTG-GCAC 
PBP2       ------------ATGTGGATAAA---AAACAAAGTCTTTAATCGTAG-GGCATTTATATT 
                       * *:**. ***   :.*.****:*:  :**** ..  *** *   .:  
PBP2_TM    TGGCTGGTTTCGCTACCGTAGCGCAGGCCGCTAGCTGGAGCCACCCGC------AGTTCG 
PBP2       AGGCGGTAT-----------------TCAGCTTACCATTTCCACAATTTTTAGTTGTAGG 
           :*** * :*                  *.***:.* . : ****..        :**: * 
PBP2_TM    AAA-AAATCGAAGGGCGCCGAAACAGACAAAAATACGAAAAGCTGGCTGACAATAACAGG 
PBP2       TTATATAGTTTACAAATACGAAACAGACAAAAATACGAAAAGCTGGCTGACAATAACAGG 
           ::* *:*   :* ... .****************************************** 
PBP2_TM    ATACGAGTTGCTGCTATTATGCCTAAGCGTGGCAGAATTTTAGATAGGAATGGCATTGAA 
PBP2       ATACGAGTTGCTGCTATTATGCCTAAGCGTGGCAGAATTTTAGATAGGAATGGCATTGAA 
           ************************************************************ 
PBP2_TM    CTTGCAGTAGACAAAATTTCGTACATTGTTTTGTTCGATAAGCAAAAAATTTCTAGTGAA 
PBP2       CTTGCAGTAGACAAAATTTCGTACATTGTTTTGTTCGATAAGCAAAAAATTTCTAGTGAA 
           ************************************************************ 
PBP2_TM    GAAGTTGATTGGGAAACATTATCAGAAATTGAATCTAATGTAACAAAATCGTCAGAAACA 
PBP2       GAAGTTGATTGGGAAACATTATCAGAAATTGAATCTAATGTAACAAAATCGTCAGAAACA 
           ************************************************************ 
PBP2_TM    AAAATAACCGCTCTTTATAAACGTCACTATCCGTTCGGTTCAATATGTTCTCATACACTA 
PBP2       AAAATAACCGCTCTTTATAAACGTCACTATCCGTTCGGTTCAATATGTTCTCATACACTA 
           ************************************************************ 
PBP2_TM    GGATATACGAAAAAACAGCAAGGCATAAACGAAGCAGGAATCAGTGGTATTGAATATACA 
PBP2       GGATATACGAAAAAACAGCAAGGCATAAACGAAGCAGGAATCAGTGGTATTGAATATACA 
           ************************************************************ 
PBP2_TM    TATGATCATATATTGAAAGGCAAGCCAGGGAGATCTGAGCAGGAAATAAATTCTAAAAAA 
PBP2       TATGATCATATATTGAAAGGCAAGCCAGGGAGATCTGAGCAGGAAATAAATTCTAAAAAA 
           ************************************************************ 
PBP2_TM    CGCATCGTGAGAGAATTATCAAGCATACCACAACAGGACGGACAAGATGTACAGCTAACA 
PBP2       CGCATCGTGAGAGAATTATCAAGCATACCACAACAGGACGGACAAGATGTACAGCTAACA 
           ************************************************************ 
PBP2_TM    ATTGATATTGATCTGCAAGAGAAAATTGCAGAGATATTTAAAGGTCACAAAGGTTCTGTA 
PBP2       ATTGATATTGATCTGCAAGAGAAAATTGCAGAGATATTTAAAGGTCACAAAGGTTCTGTA 
           ************************************************************ 
PBP2_TM    ACGGCGATTGATGTAGGTAACGGAGAAATTTTAACATTATATAATTCACCTTCTTACGAT 
PBP2       ACGGCGATTGATGTAGGTAACGGAGAAATTTTAACATTATATAATTCACCTTCTTACGAT 
           ************************************************************ 
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PBP2_TM    AATAACCTTTTTGCTAACAAACTATCAAATGAGGCTTGGGAAGGTTTAAATACTCCTTCA 
PBP2       AATAACCTTTTTGCTAACAAACTATCAAATGAGGCTTGGGAAGGTTTAAATACTCCTTCA 
           ************************************************************ 
PBP2_TM    TTACCACTTGTAAATCGTGCATTATCGTATCAAATTCCACCTGGTTCGATATTTAAAATA 
PBP2       TTACCACTTGTAAATCGTGCATTATCGTATCAAATTCCACCTGGTTCGATATTTAAAATA 
           ************************************************************ 
PBP2_TM    ATAGTTGCACTTGCGGGTCTAAAGGATGGAATAATCACTCCAGAAGAGAAATTTTCATGT 
PBP2       ATAGTTGCACTTGCGGGTCTAAAGGATGGAATAATCACTCCAGAAGAGAAATTTTCATGT 
           ************************************************************ 
PBP2_TM    GTAGGCTATATGAAAATAGGTGAGCGGAGGTTTTGTTGCTTGAAAAGCAAAGTCCATGGA 
PBP2       GTAGGCTATATGAAAATAGGTGAGCGGAGGTTTTGTTGCTTGAAAAGCAAAGTCCATGGA 
           ************************************************************ 
PBP2_TM    TATGTATCTTTAAATGAAGCAATGGCTTTATCATGTAACACTTACTTTTATAATATAGGA 
PBP2       TATGTATCTTTAAATGAAGCAATGGCTTTATCATGTAACACTTACTTTTATAATATAGGA 
           ************************************************************ 
PBP2_TM    AAAAAAATAAGTGTAGACTCTCTAGTAGAAATGGCAAGAAAATTTGGTATCGGAAGTGGG 
PBP2       AAAAAAATAAGTGTAGACTCTCTAGTAGAAATGGCAAGAAAATTTGGTATCGGAAGTGGG 
           ************************************************************ 
PBP2_TM    CCACTAATTGGAGCATTTAAAGAAGAAGCTCCAGGATTGTTGCCTGATAAAGATTGGCGT 
PBP2       CCACTAATTGGAGCATTTAAAGAAGAAGCTCCAGGATTGTTGCCTGATAAAGATTGGCGT 
           ************************************************************ 
PBP2_TM    ACACGAAAGCTATATTCGGAGTGGTATTTAGGTGACACTGTCAACTTAGTTATAGGGCAA 
PBP2       ACACGAAAGCTATATTCGGAGTGGTATTTAGGTGACACTGTCAACTTAGTTATAGGGCAA 
           ************************************************************ 
PBP2_TM    GGGTATGTGCTTACAACACCACTGCAGCTTGCAGTTCTTGCGGCAAGAATTGCAACAGGA 
PBP2       GGGTATGTGCTTACAACACCACTGCAGCTTGCAGTTCTTGCGGCAAGAATTGCAACAGGA 
           ************************************************************ 
PBP2_TM    AAGGAGGTGATTCCCCGCATTGAAATGAGTAAAACGATGCAAGATTTTCCTGATATTGAT 
PBP2       AAGGAGGTGATTCCCCGCATTGAAATGAGTAAAACGATGCAAGATTTTCCTGATATTGAT 
           ************************************************************ 
PBP2_TM    ATAGCTCATGAGCATCTCAGTATAGTTCGAAAAGCTATGTTTAACATGGTGAATATTAAA 
PBP2       ATAGCTCATGAGCATCTCAGTATAGTTCGAAAAGCTATGTTTAACATGGTGAATATTAAA 
           ************************************************************ 
PBP2_TM    GCTGGAACCTATAGAAAAGGGCTAAGCAGTATACGAATTGCCGGCAAAACCGGTACACCA 
PBP2       GCTGGAACCTATAGAAAAGGGCTAAGCAGTATACGAATTGCCGGCAAAACCGGTACACCA 
           ************************************************************ 
PBP2_TM    GAGATAAACTCTAAGGGTGAAAGTCATAAATTATTCATCGCTTATGGCCCTTACCATGAC 
PBP2       GAGATAAACTCTAAGGGTGAAAGTCATAAATTATTCATCGCTTATGGCCCTTACCATGAC 
           ************************************************************ 
PBP2_TM    CCGCGCTATGCAATCTCTGTATTCATAGAGTACGGCAAAGCCCCACGCCAAGATGTTGCT 
PBP2       CCGCGCTATGCAATCTCTGTATTCATAGAGTACGGCAAAGCCCCACGCCAAGATGTTGCT 
           ************************************************************ 
PBP2_TM    ATGGCCAATGAAATATTGCGGTATATGCTTAAAGGGTGATATCTAACTAAGCTTGA 
PBP2       ATGGCCAATGAAATATTGCGGTATATGCTTAAAGGGTGA----------------- 
           ***************************************   

 

Supplementary Figure 9: Nucleic acid alignment of PBP2wBm and cloned PBP2∆TMwBm in pASK-IBA6C. 

PBP2          CAAAAATCTAGATAACGAGGGCAAAAAATGAAAAAGACAGCTATCGCGATTGCAGTGGCA 60 
PBP2orig      ------------------------------------------------------------ 0 
                                                                           
PBP2          CTGGCTGGTTTCGCTACCGTAGCGCAGGCCGCTAGCTGGAGCCACCCGCAGTTCGAAAAA 120 
PBP2orig      ------------------------------------------------------------ 0 
                                                                           
PBP2          ATCGAAGGGCGCTGGATAAAAAACAAAGTCTTTAATCGTAGGGCATTTATATTAGGCGGT 180 
PBP2orig      ---------ATGTGGATAAAAAACAAAGTCTTTAATCGTAGGGCATTTATATTAGGCGGT 51 
                          ************************************************ 
PBP2          ATTCAGCTTACCATTTCCACAATTTTTAGTTGTAGGTTATATAGTTTACAAATACGAAAC 240 
PBP2orig      ATTCAGCTTACCATTTCCACAATTTTTAGTTGTAGGTTATATAGTTTACAAATACGAAAC 111 
              ************************************************************ 
PBP2          AGACAAAAATACGAAAAGCTGGCTGACAATAACAGGATACGAGTTGCTGCTATTATGCCT 300 
PBP2orig      AGACAAAAATACGAAAAGCTGGCTGACAATAACAGGATACGAGTTGCTGCTATTATGCCT 171 
              ************************************************************ 
PBP2          AAGCGTGGCAGAATTTTAGATAGGAATGGCATTGAACTTGCAGTAGACAAAATTTCGTAC 360 
PBP2orig      AAGCGTGGCAGAATTTTAGATAGGAATGGCATTGAACTTGCAGTAGACAAAATTTCGTAC 231 
              ************************************************************ 
PBP2          ATTGTTTTGTTCGATAAGCAAAAAATTTCTAGTGAAGAAGTTGATTGGGAAACATTATCA 420 
PBP2orig      ATTGTTTTGTTCGATAAGCAAAAAATTTCTAGTGAAGAAGTTGATTGGGAAACATTATCA 291 
              ************************************************************ 
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PBP2          GAAATTGAATCTAATGTAACAAAATCGTCAGAAACAAAAATAACCGCTCTTTATAAACGT 480 
PBP2orig      GAAATTGAATCTAATGTAACAAAATCGTCAGAAACAAAAATAACCGCTCTTTATAAACGT 351 
              ************************************************************ 
PBP2          CACTATCCGTTCGGTTCAATATGTTCTCATACACTAGGATATACGAAAAAACAGCAAGGC 540 
PBP2orig      CACTATCCGTTCGGTTCAATATGTTCTCATACACTAGGATATACGAAAAAACAGCAAGGC 411 
              ************************************************************ 
PBP2          ATAAACGAAGCAGGAATCAGTGGTATTGAATATACATATGATCATATATTGAAAGGCAAG 600 
PBP2orig      ATAAACGAAGCAGGAATCAGTGGTATTGAATATACATATGATCATATATTGAAAGGCAAG 471 
              ************************************************************ 
PBP2          CCAGGGAGATCTGAGCAGGAAATAAATTCTAAAAAACGCATCGTGAGAGAATTATCAAGC 660 
PBP2orig      CCAGGGAGATCTGAGCAGGAAATAAATTCTAAAAAACGCATCGTGAGAGAATTATCAAGC 531 
              ************************************************************ 
PBP2          ATACCACAACAGGACGGACAAGATGTACAGCTAACAATTGATATTGATCTGCAAGAGAAA 720 
PBP2orig      ATACCACAACAGGACGGACAAGATGTACAGCTAACAATTGATATTGATCTGCAAGAGAAA 591 
              ************************************************************ 
PBP2          ATTGCAGAGATATTTAAAGGTCACAAAGGTTCTGTAACGGCGATTGATGTAGGTAACGGA 780 
PBP2orig      ATTGCAGAGATATTTAAAGGTCACAAAGGTTCTGTAACGGCGATTGATGTAGGTAACGGA 651 
              ************************************************************ 
PBP2          GAAATTTTAACATTATATAATTCACCTTCTTACGATAATAACCTTTTTGCTAACAAACTA 840 
PBP2orig      GAAATTTTAACATTATATAATTCACCTTCTTACGATAATAACCTTTTTGCTAACAAACTA 711 
              ************************************************************ 
PBP2          TCAAATGAGGCTTGGGAAGGTTTAAATACTCCTTCATTACCACTTGTAAATCGTGCATTA 900 
PBP2orig      TCAAATGAGGCTTGGGAAGGTTTAAATACTCCTTCATTACCACTTGTAAATCGTGCATTA 771 
              ************************************************************ 
PBP2          TCGTATCAAATTCCACCTGGTTCGATATTTAAAATAATAGTTGCACTTGCGGGTCTAAAG 960 
PBP2orig      TCGTATCAAATTCCACCTGGTTCGATATTTAAAATAATAGTTGCACTTGCGGGTCTAAAG 831 
              ************************************************************ 
PBP2          GATGGAATAATCACTCCAGAAGAGAAATTTTCATGTGTAGGCTATATGAAAATAGGTGAG 1020 
PBP2orig      GATGGAATAATCACTCCAGAAGAGAAATTTTCATGTGTAGGCTATATGAAAATAGGTGAG 891 
              ************************************************************ 
PBP2          CGGAGGTTTTGTTGCTTGAAAAGCAAAGTCCATGGATATGTATCTTTAAATGAAGCAATG 1080 
PBP2orig      CGGAGGTTTTGTTGCTTGAAAAGCAAAGTCCATGGATATGTATCTTTAAATGAAGCAATG 951 
              ************************************************************ 
PBP2          GCTTTATCATGTAACACTTACTTTTATAATATAGGAAAAAAAATAAGTGTAGACTCTCTA 1140 
PBP2orig      GCTTTATCATGTAACACTTACTTTTATAATATAGGAAAAAAAATAAGTGTAGACTCTCTA 1011 
              ************************************************************ 
PBP2          GTAGAAATGGCAAGAAAATTTGGTATCGGAAGTGGGCCACTAATTGGAGCATTTAAAGAA 1200 
PBP2orig      GTAGAAATGGCAAGAAAATTTGGTATCGGAAGTGGGCCACTAATTGGAGCATTTAAAGAA 1071 
              ************************************************************ 
PBP2          GAAGCTCCAGGATTGTTGCCTGATAAAGATTGGCGTACACGAAAGCTATATTCGGAGTGG 1260 
PBP2orig      GAAGCTCCAGGATTGTTGCCTGATAAAGATTGGCGTACACGAAAGCTATATTCGGAGTGG 1131 
              ************************************************************ 
PBP2          TATTTAGGTGACACTGTCAACTTAGTTATAGGGCAAGGGTATGTGCTTACAACACCACTG 1320 
PBP2orig      TATTTAGGTGACACTGTCAACTTAGTTATAGGGCAAGGGTATGTGCTTACAACACCACTG 1191 
              ************************************************************ 
PBP2          CAGCTTGCAGTTCTTGCGGCAAGAATTGCAACAGGAAAGGAGGTGATTCCCCGCATTGAA 1380 
PBP2orig      CAGCTTGCAGTTCTTGCGGCAAGAATTGCAACAGGAAAGGAGGTGATTCCCCGCATTGAA 1251 
              ************************************************************ 
PBP2          ATGAGTAAAACGATGCAAGATTTTCCTGATATTGATATAGCTCATGAGCATCTCAGTATA 1440 
PBP2orig      ATGAGTAAAACGATGCAAGATTTTCCTGATATTGATATAGCTCATGAGCATCTCAGTATA 1311 
              ************************************************************ 
PBP2          GTTCGAAAAGCTATGTTTAACATGGTGAATATTAAAGCTGGAACCTATAGAAAAGGGCTA 1500 
PBP2orig      GTTCGAAAAGCTATGTTTAACATGGTGAATATTAAAGCTGGAACCTATAGAAAAGGGCTA 1371 
              ************************************************************ 
PBP2          AGCAGTATACGAATTGCCGGCAAAACCGGTACACCAGAGATAAACTCTAAGGGTGAAAGT 1560 
PBP2orig      AGCAGTATACGAATTGCCGGCAAAACCGGTACACCAGAGATAAACTCTAAGGGTGAAAGT 1431 
              ************************************************************ 
PBP2          CATAAATTATTCATCGCTTATGGCCCTTACCATGACCCGCGCTATGCAATCTCTGTATTC 1620 
PBP2orig      CATAAATTATTCATCGCTTATGGCCCTTACCATGACCCGCGCTATGCAATCTCTGTATTC 1491 
              ************************************************************ 
PBP2          ATAGAGTACGGCAAAGCCCCACGCCAAGATGTTGCTATGGCCAATGAAATATTGCGGTAT 1680 
PBP2orig      ATAGAGTACGGCAAAGCCCCACGCCAAGATGTTGCTATGGCCAATGAAATATTGCGGTAT 1551 
              ************************************************************ 
PBP2          ATGCTTAAAGGGTGATATCTAACTAAGCTTGACCTGTGAA 1720 
PBP2orig      ATGCTTAAAGGGTGA------------------------- 1566 
              ***************                          
 

Supplementary Figure 10: Nucleic acid alignment of PBP2wBm (PBP2orig) and cloned PBP2wBm in pASK-
IBA6C. 
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Mut12         ANNTAACGAGGGCAAAAAATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGT 
PBP2          -----ATGTGGAT---AAAAAACAAAGTCTTTAATCGT-AGGGCATTTATATT------- 
                   * * **     ***  * **** *    ****  *  *** *   * *        
Mut12         TTCGCTACCGTAGCGCAGGCCGCTAGCTGGAGCCACCCGCAGTTCGAAAAAATCGAAGGG 
PBP2          --AGGCGGTATTCAGCTTACCATTTCCACAATTTTTAGTTGTAGGTTATATAGTTTACAA 
                 *      *   **   **  *  *   *                * * *    *    
Mut12         CGCCGAAACAGACAAAAATACGAAAAGCTGGCTGACAATAACAGGATACGAGTTGCTGCT 
PBP2          ATACGAAACAGACAAAAATACGAAAAGCTGGCTGACAATAACAGGATACGAGTTGCTGCT 
                 ********************************************************* 
Mut12         ATTATGCCTAAGCGTGGCAGAATTTTAGATAGGAATGGCATTGAACTTGCAGTAGACAAA 
PBP2          ATTATGCCTAAGCGTGGCAGAATTTTAGATAGGAATGGCATTGAACTTGCAGTAGACAAA 
              ************************************************************ 
Mut12         ATTTCGTACATTGTTTTGTTCGATAAGCAAAAAATTTCTAGTGAAGAAGTTGATTGGGAA 
PBP2          ATTTCGTACATTGTTTTGTTCGATAAGCAAAAAATTTCTAGTGAAGAAGTTGATTGGGAA 
              ************************************************************ 
Mut12         ACATTATCAGAAATTGAATCTAATGTAACAAAATCGGCGGAAACAAAAATAACCGCTCTT 
PBP2          ACATTATCAGAAATTGAATCTAATGTAACAAAATCGTCAGAAACAAAAATAACCGCTCTT 
              ************************************ * ********************* 
Mut12         TATAAACGTCACTATCCGTTCGGTTCAATATGTTCTCATACACTAGGATATACGAAAAAA 
PBP2          TATAAACGTCACTATCCGTTCGGTTCAATATGTTCTCATACACTAGGATATACGAAAAAA 
              ************************************************************ 
Mut12         CAGCAAGGCATAAACGAAGCAGGAATCAGTGGTATTGAATATACATATGATCATATATTG 
PBP2          CAGCAAGGCATAAACGAAGCAGGAATCAGTGGTATTGAATATACATATGATCATATATTG 
              ************************************************************ 
Mut12         AAAGGCAAGCCAGGGAGATCTGAGCAGGAAATAAATTCTAAAAAACGCATCGTGAGAGAA 
PBP2          AAAGGCAAGCCAGGGAGATCTGAGCAGGAAATAAATTCTAAAAAACGCATCGTGAGAGAA 
              ************************************************************ 
Mut12         TTATCAAGCATACCACAACAGGACGGACAAGATGTACAGCTAACAATTGATATTGATCTG 
PBP2          TTATCAAGCATACCACAACAGGACGGACAAGATGTACAGCTAACAATTGATATTGATCTG 
              ************************************************************ 
Mut12         CAAGAGAAAATTGCAGAGATATTTAAAGGTCACAAAGGTTCTGTAACGGCGATTGATGTA 
PBP2          CAAGAGAAAATTGCAGAGATATTTAAAGGTCACAAAGGTTCTGTAACGGCGATTGATGTA 
              ************************************************************ 
Mut12         GGTAACGGAGAAATTTTAACATTATATAATTCACCTTCTTACGATAATAACCTTTTTGCT 
PBP2          GGTAACGGAGAAATTTTAACATTATATAATTCACCTTCTTACGATAATAACCTTTTTGCT 
              ************************************************************ 
Mut12         AACAAACTATCAAATGAGGCTTGGGAAGGTTTAAATACTCCTTCATTACCACTTGTAAAT 
PBP2          AACAAACTATCAAATGAGGCTTGGGAAGGTTTAAATACTCCTTCATTACCACTTGTAAAT 
              ************************************************************ 
Mut12         CGTGCATTATCGTATCAAATTCCACCTGGTGCGATATTTAAAATAATAGTTGCACTTGCG 
PBP2          CGTGCATTATCGTATCAAATTCCACCTGGTTCGATATTTAAAATAATAGTTGCACTTGCG 
              ****************************** ***************************** 
Mut12         GGTCTAAAGGATGGAATAATCACTCCAGAAGAGAAATTTTCATGTGTAGGCTATATGAAA 
PBP2          GGTCTAAAGGATGGAATAATCACTCCAGAAGAGAAATTTTCATGTGTAGGCTATATGAAA 
              ************************************************************ 
Mut12         ATAGGTGAGCGGAGGTTTTGTTGCTTGAAAAGCAAAGTCCATGGATATGTATCTTTAAAT 
PBP2          ATAGGTGAGCGGAGGTTTTGTTGCTTGAAAAGCAAAGTCCATGGATATGTATCTTTAAAT 
              ************************************************************ 
Mut12         GAAGCAATGGCTTTATCATGTAACACTTACTTTTATAATATAGGAAAAAAAATAAGTGTA 
PBP2          GAAGCAATGGCTTTATCATGTAACACTTACTTTTATAATATAGGAAAAAAAATAAGTGTA 
              ************************************************************                   
Mut12         GACTCTCTAGTAGAAATGGCAAGAAAATTTGGTATCGGAAGTGGGCCACTAATTGGAGCA 
PBP2          GACTCTCTAGTAGAAATGGCAAGAAAATTTGGTATCGGAAGTGGGCCACTAATTGGAGCA 
              ************************************************************                                                            
Mut12         TTTAAAGAAGAAGCTCCAGGATTGTTGCCTGATAAAGATTGGCGTACACGAAAGCTATAT 
PBP2          TTTAAAGAAGAAGCTCCAGGATTGTTGCCTGATAAAGATTGGCGTACACGAAAGCTATAT 
              ************************************************************                                                            
Mut12         TCGGAGTGGTATTTAGGTGACACTGTCAACTTAGTTATAGGGCAAGGGTATGTGCTTACA 
PBP2          TCGGAGTGGTATTTAGGTGACACTGTCAACTTAGTTATAGGGCAAGGGTATGTGCTTACA 
              ************************************************************                                                            
Mut12         ACACCACTGCAGCTTGCAGTTCTTGCGGCAAGAATTGCAACAGGAAAGGAGGTGATTCCC 
PBP2          ACACCACTGCAGCTTGCAGTTCTTGCGGCAAGAATTGCAACAGGAAAGGAGGTGATTCCC 
              ************************************************************                                                            
Mut12         CGCATTGAAATGAGTAAAACGATGCAAGATTTTCCTGATATTGATATAGCTCATGAGCAT 
PBP2          CGCATTGAAATGAGTAAAACGATGCAAGATTTTCCTGATATTGATATAGCTCATGAGCAT 
              ************************************************************                                                            
Mut12         CTCAGTATAGTTCGAAAAGCTATGTTTAACATGGTGAATATTAAAGCTGGAACCTATAGA 
PBP2          CTCAGTATAGTTCGAAAAGCTATGTTTAACATGGTGAATATTAAAGCTGGAACCTATAGA 
              ************************************************************                                     
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Mut12         AAAGGGCTAAGCAGTATACGAATTGCCGGCAAAACCGGTACACCAGAGATAAACTCTAAG 
PBP2          AAAGGGCTAAGCAGTATACGAATTGCCGGCAAAACCGGTACACCAGAGATAAACTCTAAG 
              ************************************************************                                                            
Mut12         GGTGAAAGTCATAAATTATTCATCGCTTATGGCCCTTACCATGACCCGCGCTATGCAATC 
PBP2          GGTGAAAGTCATAAATTATTCATCGCTTATGGCCCTTACCATGACCCGCGCTATGCAATC 
              ************************************************************                                                            
Mut12         TCTGTATTCATAGAGTACGGCAAAGCCCCACGCCAAGATGTTGCTATGGCCAATGAAATA 
PBP2          TCTGTATTCATAGAGTACGGCAAAGCCCCACGCCAAGATGTTGCTATGGCCAATGAAATA 
              ************************************************************                                                            
Mut12         TTGCGGTATATGCTTAAAGGGTGATATCTAACTAAG 
PBP2          TTGCGGTATATGCTTAAAGGGTGA------------ 
              ************************************ 
 

Supplementary Figure 11: Nucleic acid alignment of PBP2wBm and cloned PBP2wBm active site mutant 
S107A-S265A (Mut12) in pASK-IBA6C. Mutated bases are highlighted gray. 

 
# Measure  Position  Value    Cutoff   signal peptide? 
  max. C    29       0.257 
  max. Y    25       0.375 
  max. S     1       0.940 
  mean S     1-24    0.800 
       D     1-24    0.574   0.570   YES 
Name = Sequence SP = 'YES' Cleavage site between pos. 24 and 25: SKR-GV D = 0.574 
D-cutoff = 0.570 Networks = SignalP-noTM 

 

Supplementary Figure 12: Prediction for a signal peptide as predicted in PalwBm by Signal P. 
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# Measure  Position  Value    Cutoff   signal peptide? 
  max. C    31       0.363 
  max. Y    31       0.413 
  max. S    23       0.568 
  mean S     1-30    0.403 
       D     1-30    0.409   0.400   YES 
Name = Sequence SP = 'YES' Cleavage site between pos. 30 and 31: VSS-SS D = 0.409 
D-cutoff = 0.400 Networks = SignalP-TM 

 

Supplementary Figure 13: Prediction for a signal peptide as predicted in AmiDwMel by Signal P. 

 
# Measure  Position  Value    Cutoff   signal peptide? 
  max. C    45       0.106 
  max. Y    11       0.156 
  max. S     1       0.379 
  mean S     1-10    0.227 
       D     1-10    0.182   0.420   NO 
Name = Sequence SP = 'NO' D = 0.182 D-cutoff = 0.420 Networks = SignalP-TM 
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# WEBSEQUENCE Length: 515 
# WEBSEQUENCE Number of predicted TMHs:  1 
# WEBSEQUENCE Exp number of AAs in TMHs: 22.94915 
# WEBSEQUENCE Exp number, first 60 AAs:  21.68864 
# WEBSEQUENCE Total prob of N-in:        0.99859 
# WEBSEQUENCE POSSIBLE N-term signal sequence 
WEBSEQUENCE TMHMM2.0 inside      1    11 
WEBSEQUENCE TMHMM2.0 TMhelix     12    34 
WEBSEQUENCE TMHMM2.0 outside     35   515 

 

Supplementary Figure 14: Prediction for a transmembrane domain in PBP3wMel, but not for a signal peptide. 

PBP3     ------------------------------------------------------------ 
Mut1234  CAAAAATCTAGATAACGAGGGCAAAAAATGAAAAAGACAGCTATCGCGATTGCAGTGGCA 
  
PBP3     ---------------------------ATGCAAGCATTACTTAAAAATAAGCTCCGCTCA 
Mut1234  CTGGCTGGTTTCGCTACCGTAGCGCAGGCCCAAGCATTACTTAAAAATAAGCTCCGCTCA 
                              .        ****************************** 
PBP3     CTGTGTTTTATAGTACCATTATTTATATTTTATATAATAATTATTTTTCGCATATTCTCT 
Mut1234  CTGTGTTTTATAGTACCATTATTTATATTTTATATAATAATTATTTTTCGCATATTCTCT 
         ************************************************************ 
PBP3     TTAACATTTGATCAACTTACTACTTCAGAAAATTTTAGAAAAGATAATATAGTACATAAA 
Mut1234  TTAACATTTGATCAACTTACTACTTCAGAAAATTTTAGAAAAGATAATATAGTACATAAA 
         ************************************************************ 
PBP3     CAACCTGATATTTTAGATAGAAATGGAGTGGTAATAGCAACAAATGTGCCCACAACATCA 
Mut1234  CAACCTGATATTTTAGATAGAAATGGAGTGGTAATAGCAACAAATGTGCCCACAACATCA 
         ************************************************************ 
PBP3     CTATATATAGATGCAACCAAAGTAAAGAATCCGGAAAGTATAGCAGCACAACTGTGTTCT 
Mut1234  CTATATATAGATGCAACCAAAGTAAAGAATCCGGAAAGTATAGCAGCACAACTGTGTTCT 
         ************************************************************    
PBP3     ACTTTGCATGACCTCGAATACAAGAACTTATATAGAGTACTTACTTCAGAAAAGAAATTT 
Mut1234  ACTTTGCATGACCTCGAATACAAGAACTTATATAGAGTACTTACTGCCGAAAAGAAATTT 
         ********************************************* *.************ 
PBP3     GCTTGGATAAAGCGGCACTTGACTCCAAAAGAATTACTAGCGATCAAAAACGCTGGTGTA 
Mut1234  GCTTGGATAAAGCGGCACTTGACTCCAAAAGAATTACTAGCGATCAAAAACGCTGGTGTA 
         ************************************************************ 
PBP3     CCAGGAGTAAATTTTGATGACGACATAAAGCGTATATATCCTCACAGTAATTTATTTTCA 
Mut1234  CCAGGAGTAAATTTTGATGACGACATAAAGCGTATATATCCTCACAGTAATTTATTTTCA 
         ************************************************************ 
PBP3     CACGTGCTTGGTTACACTGACATAGATGGCAATGGTATTGCAGGAGTTGAGGCGTATATA 
Mut1234  CACGTGCTTGGTTACACTGACATAGATGGCAATGGTATTGCAGGAGTTGAGGCGTATATA 
         ************************************************************ 
PBP3     AGTAAAAACAATGAGCAAGAAAAGCCCATAATACTATCCTTAGATACACGAGTGCAAAGC 
Mut1234  AGTAAAAACAATGAGCAAGAAAAGCCCATAATACTATCCTTAGATACACGAGTGCAAAGC 
         ************************************************************ 
PBP3     ATAGTGCATGAAGAGCTAACTAAAGCTGTAAGAAGATATCAGGCACTTGGCGGAGTAGGA 
Mut1234  ATAGTGCATGAAGAGCTAACTAAAGCTGTAAGAAGATATCAGGCACTTGGCGGAGTAGGA 
         ************************************************************ 
PBP3     ATTGTTTTAAATGTGAGAAATAGTGAAGTTATCTCGATGGTCAGCCTACCTGATTTTAAT 
Mut1234  ATTGTTTTAAATGTGAGAAATAGTGAAGTTATCTCGATGGTCAGCCTACCTGATTTTAAT 
         ************************************************************ 
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PBP3     CCCAACTTACAGAATAAGGCAGAAGACGTACAAAAGTTTAATCGCGCCAGTCTTGGGGTA 
Mut1234  CCCAACTTACAGAATAAGGCAGAAGACGTACAAAAGTTTAATCGCGCCAGTCTTGGGGTA 
         ************************************************************ 
PBP3     TATGAGATGGGGTCGGTATTAAAATACTTTACAATAGCCGCAGCGCTTGATGCAAACGCT 
Mut1234  TATGAGATGGGGGCGGTATTAAAATACTTTACAATAGCCGCAGCGCTTGATGCAAACGCT 
         ************ *********************************************** 
PBP3     ACAAAAACTAGCGATTTATATGACGTATCAACACCAATCACCATCGGAAAGTATAAAATT 
Mut1234  ACAAAAACTAGCGATTTATATGACGTATCAACACCAATCACCATCGGAAAGTATAAAATT 
         ************************************************************ 
PBP3     CAGGATTTTCATAAATCTAAAATTCCAAAAATTACTGTGCAAGATATATTTGTAAAATCA 
Mut1234  CAGGATTTTCATAAATCTAAAATTCCAAAAATTACTGTGCAAGATATATTTGTAAAATCA 
         ************************************************************ 
PBP3     TCCAACATTGGTGCAGCAAAAATTGCAGTCAAACTAGGTATTGAAAAACAGGTAGAATAC 
Mut1234  TCCAACATTGGTGCAGCAAAAATTGCAGTCAAACTAGGTATTGAAAAACAGGTAGAATAC 
         ************************************************************ 
PBP3     TTTAAAGCTATGAAGCTATTTTCTCCTTTGAAAATAGAAATACCAGAAAAATCCACACCG 
Mut1234  TTTAAAGCTATGAAGCTATTTGCGCCTTTGAAAATAGAAATACCAGAAAAATCCACACCG 
         ********************* * ************************************ 
PBP3     ATAATCCCGGATAAATGGAGTGAAACCACTTTAATAACAGCATCTTATGGTTATGGCATA 
Mut1234  ATAATCCCGGATAAATGGAGTGAAACCACTTTAATAACAGCATCTTATGGTTATGGCATA 
         ************************************************************ 
PBP3     GCTGTAACTCCTATACATCTTGCACAAACTGCAGCAGCATTAATCAACAATGGGATATTT 
Mut1234  GCTGTAACTCCTATACATCTTGCACAAACTGCAGCAGCATTAATCAACAATGGGATATTT 
         ************************************************************ 
PBP3     CATAACGCAACCTTGATGTTGAATAAAAGAAGTATAGGAGAGCAAATTATCTCAAGAAGA 
Mut1234  CATAACGCAACCTTGATGTTGAATAAAAGAAGTATAGGAGAGCAAATTATCTCAAGAAGA 
         ************************************************************ 
PBP3     ACTTCCAGGGAAATGAGAAAATTATTACGTGCAGCAGTAACAGATGGCACTGGCAGAAAA 
Mut1234  ACTTCCAGGGAAATGAGAAAATTATTACGTGCAGCAGTAACAGATGGCACTGGCAGAAAA 
         ************************************************************ 
PBP3     GCAAAAATAAAGGCATATTCAATAGGAGGAAAAACTGGATCGGCGGAAAAAGTTGTAGAT 
Mut1234  GCAAAAATAAAGGCATATTCAATAGGAGGAAAAACTGGAGCGGCGGAAAAAGTTGTAGAT 
         *************************************** ******************** 
PBP3     GGTAAATATAGCAAAGATGCAAACATAGCATCATTTATAGGAGTGCTAACTATGCTTGAC 
Mut1234  GGTAAATATAGCAAAGATGCAAACATAGCATCATTTATAGGAGTGCTAACTATGCTTGAC 
         ************************************************************ 
PBP3     CCAAGGTACATAGTGCTAATTGCTATTGATGAGCCTCAAGGGATGCACCATACCGGGGGA 
Mut1234  CCAAGGTACATAGTGCTAATTGCTATTGATGAGCCTCAAGGGATGCACCATACCGGGGGA 
         ************************************************************ 
PBP3     ATAATTGCTGCGCCTATAGTAAAGAACATTATAAATAGAATAGCGCCTATACTAAATGTT 
Mut1234  ATAATTGCTGCGCCTATAGTAAAGAACATTATAAATAGAATAGCGCCTATACTAAATGTT 
         ************************************************************ 
PBP3     ACACCTGAGATGTAA------------------------------ 
Mut1234  ACACCTGAGATGAGCGCTTGGAGCCACCCGCAGTTCGAAAAATAA 

 

Supplementary Figure 15: Nucleic acid alignment of PBP3wMel and cloned PBP3wMel active site mutant 
S107A-S256A-S339A-S445A (Mut1234) in pASK-IBA2C. Mutated bases are highlighted gray. 
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Supplementary Figure 16: C6/36 insect cells without wAlbB were incubated for 72 h in medium containing 1 
mM of the dipeptide probe EDA-DA. Subsequent binding of the probe to an azide-modified Alexa Fluor 594 (red) 
was achieved by click chemistry. Wolbachia were stained with an anti-FtsZ antibody (green). DAPI (blue) was 
used for nuclear staining. Scale bar = 10 µm. 

 

 

Supplementary Figure 17: Cell-free wAlbB growth on actin-coated streptavidin plates. Cell-free Wolbachia 
(cfwo) were incubated in growth medium either on untreated or actin-coated 96-well plates for twelve days. 
Growth was monitored every three days by qPCR and data were normalized to day 0 (X-axis). The graph is 
representative for two experiments. For every time point the mean ± SEM of six samples is shown. 
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Supplementary Figure 18: Cell-free wAlbB growth in a lowered oxygen environment. Cell-free Wolbachia 
(cfwo) were incubated in growth medium under standard conditions or in a carbonic gas chamber for twelve days. 
Growth was monitored every three days by qPCR and data were normalized to day 0 (X-axis). The graph is 
representative for three experiments. For every time point the mean ± SEM of three samples is shown. 

 

 

 

 

 

Supplementary Figure 19: Addition of fresh insect cell lysate to cell-free wAlbB. Cell-free Wolbachia (cfwo) 
were incubated in growth medium for twelve days. One culture was supplemented with additional cell lysate 
(equivalent to 0.95 x 106 uninfected C6/36 cells) after nine days (d9). Growth was monitored every three days by 
qPCR and data were normalized to day 0 (X-axis). The graph is representative for two experiments. For every time 
point the mean ± SEM of three samples is shown. 
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Supplementary Figure 20: Cell-free Wolbachia growth supplemented with cholesterol. Cell-free Wolbachia 
(cfwo) were incubated in growth medium for twelve days in the presence or absence of water-soluble cholesterol 
(0.1 or 1 mg/ml). Growth was monitored every three days by qPCR and data were normalized to day 0 (X-axis). 
The graph is representative for two experiments. For every time point the mean ± SEM of six samples is shown. 

 

 

 

 

 

Supplementary Figure 21: Supplementation of culture medium with lipid mixture solution. Cell-free 

Wolbachia (cfwo) were incubated in growth medium for twelve days in the presence or absence of a lipid mixture 
solution (PeproTech). Growth was monitored every three days by qPCR and data were normalized to day 0 (X-
axis). The experiment was performed once. For every time point the mean ± SEM of three samples is shown. 
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Supplementary Figure 22: Addition of supplements to the cell-free wAlbB culture medium. Cell-free 

Wolbachia (cfwo) were incubated in growth medium for twelve days in the presence or absence of biotin, cystine, 
glucose, PLP, sodium bicarbonate. Growth was monitored every three days by qPCR and data were normalized to 
day 0 (X-axis). The graph is representative for two experiments. For every time point the mean ± SEM of three 
samples is shown. 

 

 

 

 

 
Supplementary Figure 23: Co-cultivation of Rhodotorula minuta and cell-free wAlbB. Cell-free Wolbachia 
(cfwo) were incubated in growth medium for twelve days in absence or presence of 1x104-1x107 Rhodotorula 

minuta cells/ml. Growth was monitored every three days by qPCR and data were normalized to day 0 (X-axis). 
The experiment was performed once. For every time point the mean ± SEM of six samples is shown. 
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List of abbreviations 

µg Microgram 

µl Microliter 

µm Micrometer, micron 

µM Micromolar 

ad Adjust volume to 

AHT Anhydrotetracycline 

AmiD
wMel

 N-acetylmuramoyl-L-alanine amidase from Wolbachia endosymbiont 

of Drosophila melanogaster 

Aqua dest. Aqua destillata 

BCIP (5-bromo-4-chloro-1H-indol-3-yl) dihydrogen phosphate 

BLI Biolayer interferometry 

bp Base pair(s) 

BSA Bovine serum albumin 

°C Degree Celsius 

C55-P Undecaprenyl phosphate 

d Day 

Da Dalton 

DAAO D-amino acid oxidase 

D-Ala D-alanine 

D-Ala-D-Ala D-alanyl-D-alanine 

DAPI 4′,6-Diamidin-2-phenylindol 

DMSO Diethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleotide triphosphate 

EDA-DA Ethynyl-D-alanyl-D-alanine 

EDTA Ethylenediaminetetraacetic acid  

ELA-LA Ethynyl-L-alanyl-L-alanine 

FCS Fetal calf serum 

g Gravimetric force 

GlcNAc N-acetylglucosamine 

h Hour 

HMW High molecular weight 
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HPLC High performance liquid chromatography 

kb Kilobase 

kDa Kilodalton 

l Liter 

L-Ala L-alanine 

LB-medium Lysogeny broth medium 

Lipid II Undecaprenyl-pyrophosphoryl-MurNAc-pentapeptide-GlcNAc 

L-Lys L-lysine 

LMW Low molecular weight 

M Molar 

MALDI-TOF  

MDA 

Matrix-assisted laser desorption/ionization time-of-flight 

Mass drug administration 

min Minute 

m-DAP Meso-diaminopimelic acid 

mg Milligram 

ml Milliliter 

mM Millimolar 

MurNAc N-acetylmuramic acid 

MW Molecular weight 

NaOH Sodium hydroxide 

NBT Nitro blue tetrazolium chloride 

NCBI National Center for Biotechnology Information 

ng Nanogram 

nm Nanometer 

nM Nanomolar 

NOD Nucleotide-binding oligomerization domain 

OD600 Optical density at 600nm 

Pal
wBm

 Peptidoglycan-associated outer membrane lipoprotein from Wolbachia 

endosymbionts of Brugia malayi 

PAMP Pathogen-associated molecular pattern 

PBP Penicillin-binding protein 

PBP2
wBm

 Penicillin-binding protein 2 from Wolbachia endosymbionts of Brugia malayi 

PBP3
wMel

 Penicillin-binding protein 3 from Wolbachia endosymbionts of  

Drosophila melanogaster 
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PBP6a
wBm

 Penicillin-binding protein 6a from Wolbachia endosymbionts of  

Brugia malayi 

PCR Polymerase chain reaction 

PFA Paraformaldehyde 

pH Pondus hydrogenii, hydrogen ion concentration 

Pi Inorganic phosphate 

PMA Phosphomolybdic acid 

qPCR Quantitative real-time PCR 

RBB Remazol brilliant blue 

RNA Ribonucleic acid 

rpm Rotations per minute 

RT Room temperature 

s Second 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM Standard error of the mean 

SPR Surface plasmon resonance 

TEMED Tetramethylethylenediamine 

TLC Thin layer chromatography 

TLR Toll-Like-Receptor 

Tris Tris(hydroxymethyl)aminomethan 

UDP Uridine diphosphate 

UDP-GlcNAc Uridine diphosphate N-acetylglucosamine 

UDP-MurNAc Uridine diphosphate N-acetylmuramic acid 

V Volt 

v/v Volume per volume 

wALB B Wolbachia pipientis strain Aedes albopictus B 

wBm Wolbachia endosymbionts of Brugia malayi 

WHO World Health Organization 

wMel Wolbachia endosymbionts of Drosophila melanogaster 

w/v Weight per volume 

  

	


