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Abstract 

African indigenous vegetables (AIV) are essential for dietary diversification and ensuring 
nutritional requirements for people in sub-Sahara Africa. AIV have been largely marginalized by 

agriculture research, yet they are hardy and tolerant to varying environmental conditions. Plant-

parasitic nematodes particularly root-knot nematodes (RKN: Meloidogyne spp.) and cyst nematodes 

(CN: Globodera and Heterodera spp.) cause severe yield reduction on most cultivated crops and are 
of high economic importance. Despite the significance of nematode surveys and diagnosis, the 

occurrence and correct identity of RKN and potato cyst nematodes (PCN) on AIV such as African 

nightshade (Solanum spp.) and African spinach (Amaranthus spp.) remains largely unknown. In 
Chapter 2 and 3, a survey was conducted in Kenya and a DNA barcode based assay was used to 

identify RKN and PCN species. Our survey revealed that S. villosum exhibited high root galling 

whereas on S. scabrum, A. cruentus, and A. dubius root galling was rare or very low. Moreover, soil 
collected from the rhizosphere of S. villosum and S. scabrum contained few cysts of PCN and no 

developing PCN females were observed on the roots of growing plants. The resulting RKN and 

PCN mitochondrial DNA haplotypes are globally distributed, indicating that areas of high native 

nematode species richness (RKN species) are not resistant to colonization by alien nematode 
species (PCN species). In this context we detected RKN - PCN co-infection in potato and RKN - 

RKN co-infection in tomato and Parthenium hysterophorus (an invasive weed in Africa). In 

Chapter 3, the dynamics of RKN and PCN on A. dubius, A. cruentus, S. scabrum, and S. villosum 
over 2 years was studied in a field experiment at KALRO, Kenya. The effects of AIV crop species 

on RKN and PCN soil infestation were evaluated using susceptible S. lycopersicum or S. tuberosum. 

After the successive cultivation of A. dubius and S. scabrum our results show that RKN soil 

infestation decreased by 85%, whereas S. scabrum and S. villosum decreased PCN by more than 
80%. When cropping susceptible crops, after three seasons of successive cultivation of these AIV, 

galling index and number of developing PCN females measured on susceptible crops decreased by 

more than 75%. Wilting incidences and RKN-PCN co-infection incidences also decreased 
significantly. In Chapter 4, the resistance mechanism of African nightshade and African spinach to 

RKN and PCN species was studied. We showed that successful parasitism was impaired by 

localized root tissue necrosis and disintegration during the early stages of nematode infection in 
resistant African nightshade and African spinach. Notably, A. dubius (broad leaf) showed full 

resistance to M. enterolobii, a highly pathogenic nematode known for overcoming plant resistance 

in most cultivated crops. For PCN, both S. scabrum and S. villosum stimulated PCN hatching but 

not their reproduction with a similar mechanism of resistance as proposed before. These findings 
reveal that nematode resistant AIV evolved cellular self-destruction of root tissue as a mechanism 

for defense against RKN and PCN. In that way, a cell suicide process orchestrates the containment, 

starving, and expulsion of parasitic nematodes. Inevitably, the information generated in this study is 
important in breeding programmes, designing crop rotation schemes, and cropping systems in order 

to avoid yield losses caused by high RKN and PCN soil infestation. This will help to support the 

implementation of a productive and effective integrated pest management strategy that is needed to 
meet the nutritional requirements of people in sub-Saharan Africa. 
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Zusammenfassung 
 
In Afrika heimische Blattgemüse (AIV) sind essentielle Komponenten einer reichhaltigen und 

ausreichenden Ernährung der Einwohner sub-Sahara Afrikas. Obwohl AIV ausdauernd und tolerant 

gegen wechselnde Umweltbedingungen sind, wurden sie von der agrarwissenschaftlichen Forschung 
bisher weitgehend ignoriert. Pflanzenparasitäre Nematoden, insbesondere Wurzelgallennematoden 

(RKN: Meloidogyne spec.) und Zystennematoden (CN: Globodera and Heterodera spp.) verursachen 

schwerwiegende Schäden an einer Vielzahl von Nutzpflanzen und sind von hoher ökonomischer 
Bedeutung.Trotz der wichtigen Rolle, die Untersuchungen zum Vorkommen von Nematoden und 

diagnostischen Ansätze spielen, ist bisher wenig über das Vorkommen und die korrekte Identität von 

RKN und CN an AIV wie z.B. dem Afrikanischen Nachtschatten (Solanum spec.) und Afrikanischem 

Spinat (Amaranthus spec.) bekannt. In Kapitel 2 und 3 der vorliegenden Arbeit wird eine Studie 
beschrieben, in der Zysten- und Wurzelgallennematoden in Kenia in einem Barcode-System 

identifiziert wurden. Die Studie ergab, dass S. villosum stark von Wurzelgallennematoden (RKN) 

befallen wurde, während S. scabrum und A. dubius nur wenig infiziert war. Boden aus der 
Rhizosphäre von S. villosum und S. scabrum enthielt nur wenige Zysten von 

Kartoffelzystennematoden (PCN) und es wurde keine Neuentwicklung von Zysten an Wurzeln dieser 

Pflanzen beobachtet. Die analysierten RKN und PCN Haplotypen mitochondrialer DNA sind weltweit 

verbreitet, was darauf schließen lässt, dass Gebiete, in denen viele Arten von RKN heimisch sind, 
dennoch von nicht-heimischen PCN invadiert werden können. In diesem Zusammenhang wurde auch 

beobachtet, dass RKN-PCN Koinfektionen an Kartoffel und RKN-RKN Koinfektionen an Tomate 

und Parthenium hysterophorus, einem invasiven Neophyten in Afrika auftraten. In Kapitel 3 der 
Arbeit wurde in einem Feldversuch am KALRO, Kenia, die Populationsdynamik von RKN und PCN 

an A. dubius, A. cruentus, S. scabrum, and S. villosum über 2 Jahre hinweg untersucht. Der Effekt des 

Anbaus von AIV auf die Bodenverseuchung durch RKN und PCN wurde durch den Anbau und die 
Befallsanalyse anfälliger Tomate und Kartoffeln analysiert. Nach wiederholtem Anbau von A. dubius 

and S. scabrum reduzierte sich die Bodenverseuchung durch RKN um 85%, die Werte von PCN fielen 

durch Anbau von S. scabrum and S. villosum um mehr als 80%. Die Entwicklung von PCN Weibchen 

an anfälligen Pflanzen reduzierte sich durch den dreimal wiederholten Anbau von resistenten AIV um 
75%. Auch der Welkeindex und RKN-PCN Koinfektionen gingen deutlich zurück. In Kapitel 4 wurde 

der Resistenzmechanismus von Afrikanischem Nachtschatten  und Afrikanischem Spinat gegenüber 

RKN und PCN Spezies untersucht. Es konnte gezeigt werden, dass die parasitäre Entwicklung der 
Nematoden durch lokale Nekrosen und Gewebeauflösung während der frühen Phasen des 

Infektionsverlaufs in den resistenten Pflanzen blockiert wurde. Interessanterweise zeigte A. dubius 

(breitblättrig) vollkommene Resistenz gegenüber M. enterolobii, einem hoch pathogenen Nematoden, 

gegen den die allermeisten Nutzpflanzenarten keine Resistenz aufweisen. S. scabrum and S. villosum 
stimulierten den Schlupf von PCN Larven, boten ihnen jedoch aufgrund des beschriebenen 

Resistenzmechanismus keine Grundlage für eine Weiterentwicklung. Die Untersuchungen ergaben, 

dass nematodenresistente AIV über einen zellulären Mechanismus verfügen, der bei 
Resistenzreaktionen gegen RKN und PCN zur Selbstzerstörung von Wurzelgewebe führt. Dieser 

Mechanismus führt zur Abwehr und zum Verhungern der Nematodenlarven. Zweifellos sind diese 

Informationen wichtig für Zuchtprogramme und die Entwicklung von Fruchtfolgen und 
Anbausystemen, um künftig die Ertragsverluste durch RKN und PCN zu reduzieren. Auf diesem 

Wege kann einerseits die Implementierung von produktiven und effektiven Systemen für integrierte 

Bekämpfung, die notwendig sind, um den Nahrungsbedarf für die Menschen in sub-Sahara Afrika 

decken zu können. 
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1. The role of AIV in combating malnutrition and diseases 

The reliance on a very few crop species for energy, with 84% of calories coming from just 

17 crops (West et al., 2014), is the primary reason for the dual burden of malnutrition. The 

national food supplies have become more homogenous, with South/Southeast Asian regions 

diets dominated by white rice. Micronutrient deficiency prevalence is at around 30% (Beal 

et al., 2017). In Africa, the adoption of calorie-dense but nutrient-poor foods (e.g. maize, 

wheat, and rice)  during 1979−1993 resulted in marked declines in micronutrient in diets 

(Beal et al., 2017; Forouzanfar et al., 2015). The massive success of the Green Revolution 

was as a result of package deal of seeds, fertilizers, and energy, but with very few crop 

species. It is now clear that a new package is urgently needed to deal with future agriculture 

challenges, one that is tailored across different environmental, social, and health outcomes. 

This will require diversifying our current cropping systems currently dominated by limited 

crop species and to demonstrate that diversified farming can be financially competitive with 

the current monocultures. The cultivation and consumption of traditional crops is one 

successful way of adapting to numerous challenges facing our food systems. Traditional 

crop species can act as a safety net against various agro-ecological stresses. Nutrition 

strategies are required in order to have healthy and capable farming families so that they 

can contribute to the world’s dietary diversity. 

Nutrients from fruits and vegetables form an essential component of the diet. The World 

Health Organization (WHO) report on global strategy on diet, physical activity, and health 

strongly encouraged the consumption of more fruits and vegetables. For a healthy lifestyle 

a minimum daily intake of 400 g of fruits and vegetables is recommended (WHO, 2006). In 

sub-Saharan Africa the production of fruit and vegetables remains very low making Africa 

a hotspot for food insecurity and malnutrition. In Africa over 50 million children are 

emaciated and the majority of undernourished is found in sub-Saharan Africa. Every year 

an additional of 3 million children die from undernutrition associated causes (Black et al., 

2013; IFPRI, 2017). Simultaneously, of recent sub-Saharan Africa is experiencing a rise of 

chronic diseases such as cardiovascular disease, obesity, and various forms of cancer 

(Forouzanfar et al., 2015). In response to that the international community has set up 

ambitious goals to eliminate malnutrition in all its forms. Consequently, this saw 2016 the 

start of a UN Decade of Action on Nutrition designed to implement the global effort to 

fight malnutrition (Bhutta, 2016). 
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In some parts of Africa some families relies on the lesser appreciated and little known 

indigenous vegetables as well as other native food plants as their diet (Guarino, 1997). 

These indigenous vegetable crops are popularly known as African indigenous vegetables 

(AIV) and they are mainly associated with smallholder farmers. Neglecting these crop 

plants has compromised sustainable food production and human health in Africa. AIV are 

cheap source of a variety of nutrients and phytochemicals that are important for human 

health. These include vitamins, minerals, proteins, low GI (glycaemic index) carbohydrate, 

carotenoids, fibre, antioxidants, and other nutraceuticals with health-promoting benefits 

(Al-Gubory, 2017; Massawe et al., 2016; Uusiku et al., 2010). Dietary improvement 

through the consumption of AIV have been suggested as an effective strategy for reducing 

micronutrient deficiency because they are readily available and cheap source of nutrients. 

In fact AIV such as African nightshade (locally known as mnavu or managu in East Africa) 

and African spinach (locally known as dodo or terere in East Africa) are more nutritious 

than some of the recently introduced exotic vegetables (Table 1 and 2). 

 

1.1 Nutritional composition of AIV 

AIV such as African nightshade (422 µg/100 g), African spinach (537 µg/100 g), jew 

mellow (329 µg/100 g), cowpea (537 µg/100 g), spider flower (434 µg/100 g) are rich in 

vitamin A which is normally of animal origin (Van Jaarsveld et al., 2014; Jimoh et al., 

2018). In Northen Ghana the consumption of AIV (Ceiba spp. and Manihot spp.) increased 

the preschool children attendance due to significant increase of retinol status (Takyi, 1999). 

Some AIV are rich in folic acid which is present in smaller amounts in grain and cereal 

crops commonly cultivated in Africa. They include African eggplant (118 μg/100 g), 

cowpea (129 μg/100 g), spiderflower (121 µg/100 g), African spinach (75 µg/100 g), 

cassava (118 μg/100 g), and jute mallow (118 μg/100 g). Their folic acid is comparable or 

more to the introduced commercial vegetables such as broccoli and spinach (Stadlmayr et 

al., 2012). AIV such as cowpea (57 mg/100 g), African eggplant (79 mg/100 g), taro (52 

mg/100 g), African nightshade (120 mg/100 g), baobab (47 mg/100 g), and African spinach 

(60 mg/100 g) are the best source of vitamin C (Abukutsa-Onyango, 2003; Jimoh et al., 

2018; Stadlmayr et al., 2012). In fact their vitamin C content is comparable to tropical fruits 

such as oranges which are considered to be excellent source of vitamin C (Phillips et al., 

2018). 

Apart from vitamins, AIV are also a rich source of essential minerals. In a preliminary 
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assessment of AIV collected in KwaZulu-Natal, South Africa to establish their mineral 

content (Ca, Fe, Na, Mn, Mg, Zn and P) and antioxidant levels. Twelve AIV namely M. 

balsamina, Amaranthus dubius, Amaranthus hybridus, Amaranthus spinosus, Cucumis 

metuliferus, Cleome monophylla, Asystasia gangetica, Cucurbita tribola, Solunum 

scabrum, and Physalis viscosa had mineral concentrations exceeding 1% of plant dry 

weight and these were much higher than typical mineral concentrations in exotic leafy 

vegetables (Odhav et al., 2007). In many parts of Africa nursing women, pregnant, and 

young children are at high risk of Ca malnutrition. Calcium deficiency in the same 

population of elderly people leads to osteoporosis and osteopenia. Some AIV contributes 

significantly to the daily intake of Ca (Stadlmayr et al., 2012; Uusiku et al., 2010). These 

are African eggplant (332 mg/100 g), moringa (434 mg/100 g), baobab (313 mg/100 g), 

goose foot (226 mg/100 g), jute (291 mg/100 g) and cowpea (265 mg/100 g). Iron 

deficiency, anaemia, and infections causes high morbidity and mortality in children under 

the age of 5 (Jonker et al., 2017). This is especially more prevalent in poor families because 

they cannot afford animal based protein. These include African nightshade (7.2 mg/100 g), 

amaranth (5.1 mg/100 g), cassava (6 mg/100 g), goose foot (6 mg/100 g) and cowpea (5 

mg/100 g). Recently a study revealed that there is inadequate intakes of zinc ranging from 

51% to 99% in both younger and older children (Harika et al., 2017). Some AIV such as 

goose foot with zinc content of 19 mg/100 g may contribute substantially in many parts of 

Africa (Uusiku et al., 2010).  

AIV are a rich source of plant-based bioactive compounds phytonutrient and natural 

antioxidants with potent antioxidative activities. A wide array of phytochemicals including 

alkaloids, flavonoids, tannins, saponins, steroids, and phenols are found in AIV such as 

Solanum scabrum, Corchorus olitorius, Cleome gynandra, Amaranthus dubius, and 

Crotalaria ochroleuca. Their leaf extract have high free radical scavenging properties 

(Mibei et al., 2017; Ndhlala et al., 2017; Neugart et al., 2017), thus these bioactive 

antioxidant compounds can protect biological organs and tissues against free radicals 

induced oxidative stress. The protection of biological organs from free radicals is crucial 

for cell redox homeostasis and organ structural integrity and function. Thus, their 

consumption promotes health and prevents the onset of the risk of development and 

progression of noncommunicable human illness such as cancer, cardiovascular, 

autoimmune, inflammatory, and neurodegenerative diseases (Al-Gubory, 2017; Ndhlala et 

al., 2017). 
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Table 1. Nutritional value of raw and cooked (boiled and drained) African spinach 

(amaranth) leaves, compared to other leafy vegetables commonly grown in sub-Saharan 

Africa 

 

 

Nutrients/Leafy 

vegetable 

Green cabbage Chinese cabbage English spinach African spinach 

Cabbage, raw Cabbage, raw Spinach, raw Amaranth, raw Amaranth, 

cooked 

Value per 100 g Value per 100 g Value per 100 g Value per 100 g Value per 100 g 

Protein (g) 1.28 1.20 2.86 2.46 2.11 

Minerals      

Calcium (Ca; mg) 40 77 99 215 209 

Iron (Fe; mg) 0.47 0.31 2.71 2.32 2.26 

Magnesium 

(Mg; mg) 

12 13 79 55 55 

Phosphorus (P; 

mg) 

26 29 49 50 72 

Potassium (K; mg) 170 238 558 611 641 

Sodium (Na; mg) 18 9 79 20 21 

Zinc (Zn; mg) 0.18 0.23 0.53 0.90 0.88 

Copper (Cu; mg) 0.019 0.036 0.130 0.162 0.158 

Manganese 

(Mn; mg) 

0.160 0.190 0.897 0.885 0.861 

Vitamins      

Vitamin C (mg) 36.6 27.0 28.1 43.3 41.1 

Riboflavin (mg) 0.040 0.050 0.189 0.158 0.134 

Niacin (mg) 0.234 0.400 0.724 0.658 0.559 

Vitamin B-6 (mg) 0.124 0.232 0.195 0.192 0.177 

Folate (total; mcg) 43 79 194 85 57 

Vitamin A, RAE1 

(mcg) 

5 16 469 146 139 

Vitamin K (mcg) 76 42.9 482.9 1140 - 

Lipids      

Fatty acids 

(total saturated; g) 

0.034 0.043 0.063 0.091 0.050 

Cholesterol (mg) 0 0 0 0 0 

Source: USDA National Nutrient Database for Standard Reference, Release 23 (2010) 

http://www.nal.usda.gov/fnic/foodcomp/search/ 1The recommended dietary allowance (RDA) for vitamin A is 

measured in retinol activity equivalents (RAE).The body obtains vitamin A from retinol and carotenoids. One 

RAE is equal to 1 mcg of retinol; 12 mcg of beta-carotene; 24 mcg of other vitamin-A precursor carotenoids  

http://www.nal.usda.gov/fnic/foodcomp/search/
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Table 2. Nutritional leafy value of African nightshade in comparison to other leafy vegetables 

commonly grown in sub-Saharan Africa 

Nutrients\Leafy 

vegetable 

Green cabbage English spinach African spinach African 

nightshade 

Southern pea 

Cabbagea Spinacha Amarantha Mnavuab Cowpeaa 

Protein (g) 1.28 2.86 2.46 4.3 1.5 

Minerals      

Ca (mg) 41 133 380 194 265 

Fe (mg) 0.6 3.1 6.2 3.5 5.1 

Mg (mg) 12 53 93 25 60 

P (mg) 37 45 58 75 61 

K (mg) 317 502 602 430 475 

Na (mg) 12 87 13 3 6 

Zn (mg) 0.2 0.53 0.72 0.8 0.5 

Vitamins      

Vit A (µg) 8 409 241 5.8 150 

Vit E (mg) 0.15 2.31 0.24 2.3 2.36 

Folate (µg) 48 176 79 70 129 

Vit C (mg) 54 36 45 75 57 

Cholesterol (mg) 0 0 0 0 0 

Values per 100 g fresh leaves from: aStadlmayr et al., 2012, bKeding and Yang, 2009 

 

2. Biology of African spinach 

African spinach (Amaranthaceae: Amaranthus spp.) are herbaceous, short-lived annuals. 

Plants are upright and sparsely branched with thick and fleshy grooved stems. African 

spinach varieties cultivated as leafy vegetables have relatively large leafy area compared to 

other varieties. The shape and colour of the leaf shows high variability: from green or red to 

purplish with the pigment betalain. The genus Amaranthus is highly diverse consisting of 

more than 70 species. Commonly cultivated species in Africa are A. dubius and A. cruentus 

(Figure 1A and B), but other species such as A. tricolor and A. viridis are also cultivated 

(Mureithi et al., 2017).  African spinach belongs to the fast growing plants and its 

photosynthesis is very efficient. The photosynthetic pathway is C4 and it can achieve 

higher yield under drought conditions. A recent study demonstrated that the yield and 

nutritional composition of amaranth is less affected by future rise in summer temperatures 

compared to other crops (Hwang et al., 2018). African spinach is one of the crop that has 

been earmarked for utilization to support food security and climate change mitigation 

(Alemayehu et al., 2015). In fact a recent study showed that drought stress enhances 
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nutritional and bioactive compounds, phenolic acids and antioxidant capacity of A. tricolor 

leafy vegetable (Sarker & Oba, 2018). African spinach can be grown in marginal areas, 

with the ability to grow in various soil type and some varieties can tolerate pH as high as 

8.5 as well as acidic soils. However the ideal pH is 5.5-7.5. The crop requires less nitrogen 

compared to maize but it response very well to fertilization. Most of the African spinach 

species are day neutral. African spinach is rich in morphological diversity and frequent 

hybridization, a variety of morphotypes are recognized. Thus, morphological, biochemical, 

molecular, and cytogenetical parameters are required for proper identification and 

understanding species/variety relationships (Das, 2016). African spinach is monoecious, but 

interspecific hybrids occur frequently as a result of cross pollination of two different 

species. However, 90% of the hybrids between grain and leaf amaranth are sterile 

suggesting a big genetic difference (Das, 2016). In Africa, little effort has been devoted 

towards the development of hybrids with desirable traits. The desirable traits in African 

spinach of significance are: time of flowering, determinate vs indeterminate growth pattern, 

leaf characteristics, taste and nutritive value, pest and disease tolerance, stress tolerant and 

seed pigment. Propagation of African spinach is mainly by direct seeding of small black or 

brown seeds. A seeding rate of 2 g per m
2
 is recommended. Growth is rapid under humid 

and warm weather conditions. After 3 – 4 weeks seedlings are big enough for consumption 

or for transplanting. 

 

3. Biology of African nightshade 

African nightshade (Solanaceae: Solanum spp.) is a group of AIV with a wide distribution 

across Africa. Inaccurate identification lead to confusion over the species (Ogg et al., 

1981). For example the commonly used term “S. nigrum agg.” in describing African 

nightshade is misleading in the absence of specimen vouchers. Like most Solanum spp, 

flowers of members of the African nightshade are insect-pollinated mainly by bees (De 

Luca & Vallejo-Marín, 2013). In Africa, the leaves and berries of African nightshades are 

eaten as spinach and fruits respectively (Keding & Yang, 2009) (Figure 1D). The fruits 

have a thin skin and a juicy berry and are bird-dispersed (Knapp, 2002; Särkinen et al., 

2018). Steroidal glycoalkaloid are very high in unripe fruits and very low in the ripe berries 

(Cipollini & Levey, 1997a, 1997b). This makes the unripe fruits unattractive to frugivores, 

insects, and other pathogens (Cipollini & Levey, 1997a). Thus, pests and pathogens 
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invasion on unripe fruits is restricted. This increases the chances of consumption by 

animals or birds at maturity stage and dispersal (Särkinen et al., 2018). There are extensive 

cases of ploidy within Solanum spp. The ploidy level in potatoes has been extensively 

investigated due to their economic importance. The ploidy in potatoes varies: they can be 

diploid, tetraploid or hexaploid, with the cultivated potato itself (S. tuberosum L.) 

consisting of both diploid and tetraploid populations (Spooner et al., 2007). African 

nightshades have been the focus of the recent studies and some studies have verified the 

and vouchered chromosome counts (Edmonds & Glidewell, 1977; Ronoh et al., 2018). The 

species of African nightshade are self-compatible (Edmonds, 1979; Olet et al., 2011). 

Natural hybridization between diploids, polyploids, and between polyploids has been 

reported (Table 3). There is still a lot of confusion regarding the chemistry and toxicity of 

African nightshade as they do contain nortropane alkaloids known as calystegines (Pigatto 

et al., 2015). However these compounds like in other Solanaceae plants are only toxic under 

laboratory experiments with rats (Stegelmeier et al., 2008). A chemical survey study survey 

indicated that toxic glycoalkaloids are only available in unripe fruits  (Cipollini et al., 

2002), while these compounds are not found in the leaf and stem (Voss et al., 1993). 

African nightshade does not tolerate drought conditions as much as African spinach, but 

they can grow in different soil types. Efforts are on-going to develop varieties that can 

tolerate drought conditions (Dinssa et al., 2016).  

 

  
 

Figure 1. African indigenous vegetables. (A – C ) Amaranthus dubius – edible leaf, (D) A. 

cruentus – fluorescent flower, (E) Solanum scabrum – edible leaf, (F) S. villosum – edible 

leaf, (G) S. scabrum – nonedible black berries,  and (H) S. villosum – edible orange berries. 

A B C D 

E F G H 
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Table 3. Combinations of Solanum spp. crosses from various studies summarizing possible and 

unsuccessful hybridizations (Ganapathi, 1986; Heiser et al., 1965; Jacoby & Labuschagne, 2006; 

Olet et al., 2015; Ronoh et al., 2018). 

♀   ♂     = 1 2 3 4 5 6 7 8 9 10 11 12 

Diploids             

1.S. americanum ++ − − + + + + + + + ++  

2.S. chenopodioides + ++ − + + + + + + + ++  

3.S. sarrachoides − − ++ − − − − − −    

4.S. nodiflorum +  +          

Tetraploids             

5.S. retroflexum + + −  ++ ++    + +  

6.S. burbankii + + −  ++   ++     

7.S. florulentum + + −    ++ − − − ++  

8.S. villosum ++ + −    ++ ++  ++ ++  

9.S. tarderemotum + + −    ++ ++ ++  ++  

10.S. memphiticum ++ + −    ++ ++ ++ ++ ++  

Hexaploids             

11.S. scabrum           ++  

12.S. nigrum +           ++ 

++ = fertile progeny; + = sterile progeny; − = unsuccessful crossing (seedless berries produced). 

 

4.  Importance of AIV 

AIV are underutilized and neglected crops with useful properties, but regarded less 

important than major world crops. However, they play a significant role in many low-

income countries, providing food security and nutrition to consumers, as well as income to 

resource-poor farmers. Healthy diets provided by AIV give rise to a variety of outcomes.  

These relate not only to nutrition and health, but also to all the dimensions of sustainability, 

which in turn link back to the food system drivers. AIV can; (1) prevent malnutrition in all 

its forms (undernutrition, micronutrient, deficiencies, overweight and obesity), (2) reduce 

environmental impact - because the demand for certain diets influences water and land use, 

biodiversity etc., (3) improve the income of smallholders and poor people - because 97 % 
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of people employed in agriculture lives in low-income countries, (4) improve health for the 

most vulnerable and, therefore, enhance social equity, which may positively impact 

vulnerable groups such as those living in poverty, women, children and smallholders. 

Unhealthy diets and malnutrition slow economic growth and perpetuate poverty via three 

main routes: direct losses in productivity from poor physical status; indirect losses from 

poor cognitive function and deficits in schooling; and losses owing to heavy burden health 

care costs. The economic cost is transgenerational because malnourished mothers are more 

likely to give birth to malnourished babies, who are in turn more likely to grow up to be 

malnourished adults (Delisle, 2008; Reinhardt & Fanzo, 2014). Although traditional crops 

such as AIV contain important macro- and micronutrients, such crops have been largely 

neglected by both researchers and industry due to their limited economic importance in the 

global market, but they are still important in traditional farming systems. In Kenya, a low-

income country, the production and consumption of AIV have increased greatly in the 

recent years due to increasing consumer awareness about their health and nutritional 

benefits (Schippers, 2000). In fact the area under AIV production expanded by 25 % 

(Cernansky, 2015). Most food retail outlets including supermarkets sell AIV leaves (Ngugi 

et al., 2007). The increasing awareness about AIV nutritional qualities, changes in lifestyle 

and availability of cooling-storage facilities have also boosted their consumption levels in 

urban dwellers. 

In Africa, specifically in Kenya and many parts of East Africa, AIV such as African 

nightshade (S. scabrum and S. villosum) and African spinach (A. dubius and A. cruentus) 

are commonly cultivated by smallholder farmers. Distinctive attributes of African 

nightshade and African spinach are their adaptation to adverse local climatic conditions, 

requiring very minimal inputs and superior nutritional properties (Achigan-Dako et al., 

2014; Jimoh et al., 2018; Ndhlala et al., 2017; Neugart et al., 2017; Traoré et al., 2017).  

They are an invaluable plant genetic resource for the agriculture which is currentlly facing 

an uncertain future. Their cultivation is a way of creating multifunctionality in cropping 

systems. These functionalities includes microclimate control, yield optimization, erosion 

control, water and nutrient-use efficient and increased pest and disease control. The rapid 

growth and all season growth habit makes them compartible with most cropping systems 

and thus they can be utilized as trap, catch or relay crop.   

More recently new challenges have emerged in low-income farming systems further 

threatening the sustainability of food production in Africa. Reports of introduced pests and 
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diseases attacking important food crops were reported in Africa. The fall armyworm 

(Spodoptera frugiperda) is rapidly spreading across Africa with an astonishing speed 

devouring on the main staple crop, maize (CABI, 2017). An outbreak of maize lethal 

necrosis disease was reported on maize in several African countries (Mahuku et al., 2015). 

Highly damaging plant-parasitic nematodes such as  potato cyst nematodes (PCN: 

Globodera spp.) were recently reported in Kenya parasitizing potato (Mburu et al., 2018; 

Mwangi et al., 2015) as well as root-knot nematodes (RKN: Meloidogyne spp.) which is a 

chronic problem on several vegetable crops in Africa. Thus, farmers across Africa grapple 

with many challenges ranging from environmental change, migration, pests, and disease 

outbreaks. Therefore, it is important for the smallholder farmers to adopt cropping systems 

that offers adequate nutrition and health, reduce dependence on external inputs, such as 

chemical pesticides and fertilizers, and environmental  stress-resilience and resistance to 

emerging pests and diseases. African nightshade and African spinach are nutritious crops 

offering many health benefits and they are adapted to the local conditions.  

 

5. Plant-parasitic nematodes 

Nematodes are non-segmented roundworms that are most abundant and speciose existing 

group of metazoan organisms. Up to now, approximately 23000 nematode species have 

already been described, but there is still more than one million species yet to be described 

(Blaxter, 2011). The ubiquitous nature of nematodes put them as key players in crop 

production, animal, and human health as well as ecosystem equilibrium. Indeed, certain 

free-living nematodes can be used as environmental indicators to monitor pollution, and 

play important role in decomposition process in soils (Bongers & Bongers, 1998). Free-

living nematodes such as Caenorhabditis elegans have become an excellent model 

organism to study various biological processes in human beings. Next to their usefulness, 

some nematodes have a strong impact on public health. Intestinal parasites are classified as 

neglected tropical diseases that infect low-income populations and decrease productivity of 

young aged generation. More than 1 billion people worldwide are infected by helminth 

species Ascaris lumbricoides, Trichuris trichiura, hookworm species Necator americanus 

and Ancylostoma duodenale, and Strongyloides stercoralis causing malnutrition and bowel 

obstruction (Pullan et al., 2014). Other species of parasitic nematodes belonging to the 

Strongylidae family cause economic losses in ruminant livestock production by inducing 
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gastroenteritis (Roeber et al., 2013). In this thesis the nematodes that affect vascular plants 

are dealt with. Globally, plant-parasitic nematodes affect numerous plant families. More 

than 4100 species plant-parasitic nematodes are known, they cause agricultural losses 

estimated at $80 billion per year (Nicol et al., 2011). This estimation could be an 

underestimation, as many growers especially in low-income countries are ignorant about 

the damage caused by plant-parasitic nematodes. The problem is aggravated by the fact that 

these nematodes are microscopic soil pathogens and the above-ground symptoms they 

cause on plants are very unspecific.  

 

Plant parasitic nematodes are obligate parasites of plants that have a worldwide distribution. 

They are capable of parasitizing roots, leaves, tubers, and corms of thousands of plant 

species, resulting in poor quality and reduced yield of crops. The most damaging plant 

parasitic nematodes species are found in the tropical and warm temperate regions. In these 

regions subsistence agriculture systems predominate. Phylogenetic analyses show that 

nematodes have evolved independently to be plant-parasites on several occasions in their 

evolutionary history, within four clades as biotrophic pathogens (Bert et al., 2011; Van 

Megen et al., 2009) (Figure 3). Plant-parasitic nematodes display diverse interactions with 

their host plants. All enter the host with the aid of a hollow, protrusible stylet, or mouth 

spear. The possession of an oral stylet by nematodes is an example of convergent evolution. 

This oral stylet is used to penetrate cells and injecting some secretions into plant cells. The 

nematode secreted molecules are the key interface between plant and nematode interactions 

in order to facilitate feeding. Since nematodes have evolved parasitism on multiple different 

occasions, different feeding behaviors are observed that range from short term to long term. 

Migratory ectoparasitic nematodes are short term feeding nematodes and do not enter the 

host, they only feed briefly on plant roots as they encounter them while roaming in the soil. 

Nematodes belonging to this group include Trichodorus spp., and Longidorus spp. are also 

capable of transmitting plant viruses (Van Hoof, 1968). Migratory endoparasitic causes 

extensive damage to host tissue as they enter the host and migrate. Such nematode 

including Pratylenchus spp. and Radopholus spp. causes massive root tissue necrosis and 

toppling of banana plants (De Waele & Elsen, 2002). Some nematodes are semi-

endoparasites i.e. they have migratory stages, but at some stage of the life cycle they 

penetrate the host in order to feed. These nematodes induce a feeding site within their host 

at the sedentary stage e.g. Rotylenchulus reniformis. However, the most economically 
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important nematodes, root-knot nematodes (RKN) and cyst nematodes (CN) are sedentary 

endoparasites parasites complex feeding structures in the roots. In contrast to migratory 

ectoparasitic and endoparasitic nematodes, which establish a short term relationship with 

their host, the sedentary endoparasitic life styles of RKN and CN evolved to have a 

prolonged dialogue with the host plant. Thus, plant-parasitic nematodes collectively share 

the capacity to manipulate their host plants during the entire parasitic life stages (Figure 3). 

 

5.1 Root-knot nematodes (RKN: Meloidogyne spp.) 

Root-knot nematodes are a group of sedentary obligate plant parasites with a global 

distribution. They have successfully acquired all the necessary tools required to parasitize a 

wide range of plant families. In former times root-knot nematodes were placed within 

Heteroderidae, the same as cyst-forming nematodes. Now, with increasing use of molecular 

markers in systematics it became clear that both groups of sedentary endoparasites were the 

result of convergent evolution (De Ley & Blaxter, 2004). Consequently the genus 

Meloidogyne is now a standalone subfamily, the Meloidogyninae Skarbilovich, 1959. 

Currently, there are 101 described species of Meloidogyne, although the species status of 

several species is highly debated (Karssen et al., 2012). The genus is mainly composed of 3 

clades (Tigano et al., 2005). The most damaging Meloidogyne spp. the so called M. 

incognita group and M. enterolobii belongs to clade I (Pagan et al., 2015) . Meloidogyne 

incognita group include the following M. javanica, M. incognita, and M. arenaria. Clade II 

consists of M. hapla, a species restricted to temperate climate, whereas clade III is 

composed of; M. fallax, M. chitwoodi, M. naasi, M. graminicola, and M. minor (Holterman 

et al., 2009). Apart from the main 3 clades the genus includes several early diverging 

lineages such as; M. camelliae, M. baetica, M. coffeicola, M. mali, M. ichinohei, and M. 

africana (Holterman et al., 2009; Janssen et al., 2017). It is worth to mention that the M. 

incognita group species abandoned sex long time ago, yet it is composed of the species 

with wider geographical distribution and greater agriculture impact (Figure 3). Specifically, 

M. incognita, M. javanica, M. arenaria, and M. enterolobii reproduce clonally using mitotic 

parthenogenesis. Remarkably, species belonging to this group can overcome host resistance 

quickly than their sexual relatives. 

The life cycle of a RKN includes 4 juvenile stages and an adult life stage and takes 3 to 6 

weeks to complete depending on the species and environmental conditions (Castagnone-
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Sereno et al., 2013). The 4 stages are separated by molts, during which a new 

developmental stage is attained through cuticle replacement (Figure 4). During parasitism, 

the nematode maintains a constant dialogue with their host. After embryogenesis the first-

stage juvenile develops and second-stage juvenile hatches. The motile second-stage 

juvenile invades the root in the zone of elongation. The second-stage burrows into the host 

root tissue causing no obvious damage (Castagnone-Sereno et al., 2013). The second-stage 

migrate intercellularly into the differentiating vascular cylinder (Wyss et al., 1992). The 

feeding of the second-stage will transform protoxylem and protophloem permanent feeding 

site called giant cells. The giant cells will selfishly withdraw nutrients from their 

neighboring cells and function as the sole food source to the nematode. As a result of 

feeding the second-stage will moult into third-stage, fourth stage and adult stage. The adult 

females will produce hundreds of eggs enclosed in a gelatinous matrix. When present, 

males do not actively feeds on plant tissue. 

 

 

Figure 2. Geographical distribution of root-knot nematode (RKN) and potato cyst nematode 

(PCN). RKN species: (A) Meloidogyne incognita, (B) M. javanica (C) M. arenaria, PCN 

species: (D) Globodera rostochiensis. Information from the Cookies on Invasive Species 

Compendium (CABI) data sheet (https://www.cabi.org/isc/datasheet/33245; accessed 31 

March 2018).       

                

A B
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Figure 3. Above: overview of the phylogenetic relationships within the phylum Nematoda. 

Below: simplified phylogeny of the infraorder Tylenchomorpha, showing the phylogenetic 

position of the genera Meloidogyne and Globodera. The different origins of parasitism are 

shown besides the branches of both trees. Figure modified from Bert et al. (2011). 
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Figure 4. A schematic representation of the life cycle and symptoms of root-knot nematode 

(RKN) and potato cyst nematode (PCN) on infected plants. (A) RKN life cycle, (B) PCN 

life cycle, showing various developmental stages, (C) Above-ground symptoms caused by 

high soil infestations of RKN and PCN on cultivated crops, (D and E) Below-ground 

symptoms caused by RKN on tomato and carrot respectively, and (F) Below-ground 

symptoms caused by PCN on potato. Life cycles adapted from Siddique and Grundler 

(2018). 

 

5.2 Cyst nematodes (CN: Globodera  spp. and Heterodera spp.) 

CN are sedentary obligate plant parasites of several crops. They belong to the family 

Heteroderidae. A total of 6 genera and a total of 99 species are documented, with the largest 

genera Heterodera contributing 82 species and Globodera contributing 12 species. These 

two genera are composed of species of global agriculture importance. Cyst nematodes of 

great agriculture importance are; Heterodera glycines, the soybean cyst nematode and H. 

schachtii, the sugar beet cyst nematode, potato cyst nematodes (PCN) Globodera  

rostochiensis and G. pallida (Jones et al., 2013; Nicol et al., 2011). PCN such as G. 

rostochiensis  and G. pallida are quarantine organisms in the EU (EC Directive 

2000/29/EC) (EPPO, 2014). Despite the quarantine regulations potato cyst nematode are 

now distributed globally (Figure 4). Other cysts of agriculture crops are; H. sacchari, H. 

oryzicola, H. elachista, and H. oryzae on rice and H. zeae and H. avenae on maize. In 

A C 

B 

D E 
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wheat-producing countries cereal cyst nematodes are a major problem. Cereal cyst 

nematode consists of closely related species forming what is referred to as cereal cyst 

nematode complex, these species includes H. latipons, H. filipjevi, and H. avenae (Nicol et 

al., 2007). 

The life cycle of a cyst nematode starts with hatching of the second-stage juvenile and this 

can be stimulated by root exudates (also called leachates or diffusates) from a suitable host 

plant. The dependence on root exudate for hatching varies between cyst nematode species 

and is tied to the host range. Thus, species such as H. schachtii and H. avenae with wide 

host range hatches to a larger extend freely in water. Some species such as H. glycine 

partially depend on root exudates for hatching stimulation. Globodera rostochiensis  and G. 

pallida are almost entirely dependent on root exudates for hatching (Clarke & Perry, 1977), 

but a small fraction of second-stage juvenile can hatch spontaneously in the absence of 

suitable root exudates (Devine et al., 1996). Once the second-stage juvenile hatches it 

invades the root behind the root tip at the zone of cell elongation. Supported by the 

secretions the second-stage juvenile pierce cells and enter the cells, thus they migrate 

intracellularly as opposed to RKN which move intercellularly (Wyss & Zunke, 1986). The 

second-stage juvenile continue to migrate until it reaches the central cylinder where it 

selects a cambial or procambial cell to initiate feeding site formation called syncytium 

(Wyss & Zunke, 1986). After successful formation of a feeding site the nematode continues 

feeding and molts into third-juvenile and fourth-juvenile, a final moult to become the adult 

female and male nematodes. The adult females will produce hundreds of eggs inside its 

body or secreted in a gelatinous matrix (Figure 4E). 

  

6. Economic importance of plant-parasitic nematodes 

In 2000, United Nations Millennium Declaration was signed by 189 countries, eight 

millennium development goals were established for development and poverty eradication. 

(UN General Assembly, 2000). In particular, the 2nd Sustainable Development Goal 

(SDG2) targets the end of malnutrition in all forms by 2030. Although, by 2010 

undernutrition dropped in other countries, it remained the main contributor to the burden of 

disease and disability in sub-Saharan Africa. Conceivably, the underlying factors involved 

are many, nematology can partially contribute to this issue (Ciancio, 2015). Indeed, plant-

parasitic nematodes have been reported causing yield losses to many cultivated crops 
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(Jones et al., 2013; Nicol et al., 2011). Even more worrisome is that plant-parasitic 

nematodes have adapted to parasitize the majority of cultivated vegetable crops leading to 

significant yield losses. Yet nutritional recommendations emphasize vegetable consumption 

for health-benefits associated with their bioactive nutritive molecules such as vitamins, 

minerals, and anti-oxidants. 

While the damage symptoms on host crops by plant-parasitic nematodes is well 

documented, the data on the economic impact is estimated to be 77-80 billion dollars 

annually (Jones et al., 2013; Nicol et al., 2011). This figure is underestimation and it does 

not represent the actual situation on the ground for many reasons (Ciancio, 2015; Jones et 

al., 2013; Sikora & Fernandez, 2005): (i) plant-parasitic nematodes are microscopic 

belowground pathogens that causes unspecific aboveground symptoms, that can be 

confused with abiotic stress symptoms such as drought, nutrient, etc. Other pathogens such 

as fungi and bacteria cause distinctive aboveground symptoms on their host plants; (ii) 

plant-parasitic nematodes can enhance replication and transmission of other pathogens such 

as fungi, bacteria, and viruses (Khan & Siddiqui, 2017; Kyndt et al., 2017), as well as some 

pests such as aphids (Hoysted et al., 2017), through several mechanisms such as increase 

infectivity of pathogens by aiding attachment to host cells and dampening plant innate 

immune response; (iii) In most sub-Saharan Africa the majority of the farmers are unaware 

of the nematode problem, thus the impact of plant-parasitic nematodes is high in low-

income countries (Onkendi et al., 2014), where farmers grapple with many other challenges 

including other pests and diseases. 

In terms of economic loss the two genera dealt with in this thesis, root-knot and cyst 

nematodes rank first and second respectively (Jones et al., 2013). Root-knot and cyst 

nematodes infection is a major constraint on efficient crop production. Co-evolution of 

these nematodes with their hosts led to the emergence of a striking variety of strategies 

aiming at the evasion of host defenses, colonization of host tissues and, eventually, the 

formation of a feeding site. RKN and PCN use their host cells as safe houses, providing 

shelter from a harsh environment, to access nutrients as well as reproduction. The rapid 

multiplication of nematodes inside root tissues leads to the development of disease 

symptoms such as root galling and cyst formation on host plants (Bartlem et al., 2013; 

Perry, 1989; Sijmons et al., 1991). The disease symptoms on host plants may impair 

efficient water and nutrient uptake by the plant, thus the damage caused by RKN and cyst 

nematodes is partly dependent on environmental conditions. RKN are difficult to manage: 
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(i) they are highly polyphagous virtually able to parasitize the majority of flowering plants 

(ii) the existence of resistance breaking populations, and cyst nematodes have a restricted 

host range but hatching stimulation host specific. PCN are almost entirely dependent on 

root exudates for hatching (Clarke & Perry, 1977).  

Most of farmers in low-income countries lack reliable crop protection products, insufficient 

control strategies, and a lack of awareness of plant-parasitic nematodes leaving most 

farmers unable to implement effective management strategies. Plant-parasitic nematodes 

crop damage can destroy crop yields completely, leaving low-income farming families 

vulnerable to food, nutritional, and livelihood insecurity. Therefore, the management of 

polyphagous RKN and host specific PCN is a major challenge to most farmers, hence 

innovative control strategies to diminish the yield loss caused by nematodes is urgently 

required. The implementation of a successful nematode management strategy requires a 

proper nematode diagnosis and surveillance mechanisms. 

 

7. Management of plant-parasitic nematodes 

7.1 Surveys and identification of plant-parasitic nematodes  

Surveying of pests is an indispensable component of crop protection. The nematode 

surveillance activity is important for (i) implementing an effective nematode management 

strategy (ii) early detection and prevention of spread of indigenous and exotic nematodes 

(iii) identifying nematode free areas that can meet the national and international trade 

requirements. Therefore, a typical nematode survey falls into one of the three categories of 

detection, monitoring, and delimiting surveys. A detection survey is carried to establish if 

certain nematode species are present. Detection survey will therefore establish nematode 

species present and their respect host plants. This information can be used to establish 

nematode free areas as production sites. Early detection of highly pathogenic nematode 

pests can minimize their further spread through various management strategies. Monitoring 

surveys will help to assist in maintaining areas of low nematode prevalence through various 

nematode management strategies. Delimiting surveys will help to establish the boundaries 

of an area considered to be infested by or free from a nematode pest. This information is 

important to establish the nematode invasion or if the nematode pest can be eradicated. It is 

important to note that failure to detect targeted nematodes does not necessarily mean their 

absence but it could mean their population density is too low.  Nematode detection in such 
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populations requires an increase in the sample size (Jones, 1955).  

Correct nematode diagnosis is a cornerstone for the implementation of a successful 

nematode management strategy (Onkendi et al., 2014; Sasser et al., 1983). The 

identification of RKN and CN remains problematic. Although galls of Meloidogyne spp., 

cysts of Globodera spp., and Heterodera spp. are visible to the naked eye their precise 

species identity requires morphological and molecular analysis in the laboratory. The 

analysis is time consuming because it requires nematode extraction from the soil or root 

tissues before morphological and molecular analysis. Historically, morphology and 

morphometric characters were used to identify the species from the different genus, giving 

many problems because both genera are highly conserved in morphology (Hunt & Handoo, 

2009). For the genus Globodera frequently used morphological characters include mature 

female and cyst, lateral field morphology and shape of the second stage juvenile tail; a 

detailed account on the use of morphological characters in Globodera can be found in 

(Subbotin et al., 2010). Within the genus Meloidogyne species diagnosis is carried out using 

the cuticle pattern around the vulva so called perineal pattern. A comprehensive 

morphological deviation in perineal pattern is described in Whitehead (1968) and Karssen 

(2002). Taxonomists have also used Transmission Electron Microscopy and Scanning 

Electron Microscopy (SEM) due to lack of sufficient taxonomic characters in search for 

more informative features (Ragsdale & Baldwin, 2010). In RKN SEM of the perennial 

pattern and head morphology allowed a more detailed study (Eisenback, 1985; Karssen, 

2002). 

Despite the monumental work carried out by several taxonomists in studying nematode 

morphology, morphological identification remains greatly influenced by the ability of 

individual nematode genotypes to produce different phenotypes when exposed to different 

environmental conditions.  This includes the possibility of the same nematode species to 

change phenotypic state  in response to environmental change hence morphological 

identification is hampered by phenotypic plasticity and interspecific similarities (Fusco & 

Minelli, 2010; Hunt & Handoo, 2009). Morphological characters are dependent on the 

reproductive strategy of a population. A recent study revealed the presence of different 

morphotypes within a single species from different locations (Troccoli et al., 2016). 

Although morphological identification of RKN and CN is sometimes necessary, it is time 

consuming and it requires great amount of experience as well as reliable and high quality 

reference material. 
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In order to complement morphology based identification, numerous nematode identification 

procedures have been proposed. The differential host preferences tests were used to classify 

races of RKN and CN species (Cloud et al., 1988; Hartman & Sasser, 1985). Until now 

there is no cytological or genetic basis to confirm these different host races, suggesting 

evidence of homological speciation (Castagnone-Sereno et al., 2013). Evidently, it is now 

widely accepted that epigenetics is at the forefront as the mechanism underlying the success 

of RKN (Perfus-Barbeoch et al., 2014), thus rendering differential host test unreliable for 

nematode diagnosis.  

Biochemical based diagnostic technique that relies on isozyme profiles are also available. 

Specifically, Esbenshade and Triantaphyllou (1987) used esterase and malate 

dehydrogenase isozyme profiles profile variation to differentiate common RKN species. 

Later, esterase and malate dehydrogenase isozyme profiles variation was used to 

differentiate other Meloidogyne species (Carneiro et al., 2000; Karssen, 2002). Although 

the isozyme electrophoresis was very useful during the old days, this technique is time 

consuming and is dependent on stage specific of the nematode. Nevertheless, improvement 

on biochemical techniques that exploits the use of antibodies either monoclonal or 

polyclonal may offer a possibility for a cheaper and quicker nematode diagnosis. 

Rooted in the recognition that the above mentioned methods are not effective and reliable, 

PCR based methods targeted DNA sequence molecules are now widely used for the 

identification of nematodes. Blaxter (1998), pointed out that morphological characters were 

not enough to give a clear resolution of nematode taxonomy. Therefore several molecular 

approaches were developed such as restriction length polymorphisms (RFLP) of genomic 

DNA, satellite DNA, restriction fragment analysis, species specific primers to amplify the 

sequence-characterized amplified regions (SCAR) in combination with gel electrophoresis, 

duplex PCR (Adam et al., 2007; Castagnone-Sereno et al., 1999; Fullaondo et al., 1999; 

Waeyenberge et al., 2009; Zijlstra et al., 2000). With the fast, affordable and accessible 

sequencing technology now available around the world, DNA barcoding can replace the 

above mentioned methods. Thus, PCR methods based on informative mitochondrial and 

ribosomal DNA fragments, coupled with Sanger sequencing are widely used for nematode 

diagnosis and phylogenetic analyses. In this context a ribosomal gene cluster (18S, ITS, and 

28S), mitochondrial genes including COX1 and COXII and the noncoding region between 

16S and COXII have been used for phylogenetic analyses and identification (Holterman et 

al., 2006, 2009; Kiewnick et al., 2014; Pagan et al., 2015). Given that nematode problems 
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exists mainly in low-income countries with minimal laboratory capacity, novel technologies 

for rapid diagnosis, continuous surveillance, and real-time tracking of emerging nematode 

species is required. Thus the significance of accurate nematode species identification as an 

indispensable tool to inform an effective nematode management strategy is discussed in this 

thesis. 

 

7.2 Regulatory control to minimize nematode infestations 

RKN and CN can be spread easily by human activities such as transfer of infested soil, 

water and plant debris. At local farm level, it is recommended that all soil attached to 

agricultural machines and tools must be cleaned to avoid transferring nematodes to the 

other fields. Quarantine strategy is a very effective preventive  approach of most important 

plant-parasitic nematodes nematode but it is not a curative approach (Nyczepir & Thomas, 

2009). Phytosanitary measures are available for the most damaging nematode species in 

order to reduce their spread. To avoid the introduction of RKN and CN into a field, 

awareness and regulation are required (Wesemael et al., 2011). Temperate RKN species of 

M. chitwoodi and M. fallax and PCN species of G. rostochiensis and G. pallida are 

quarantine organisms in the EU (EC Directive 2000/29/EC) whereas a tropical RKN 

species of M. enterolobii is classified under EPPO A2 list  (EPPO, 2014). Despite the strict 

regulations, nematodes with great impact on yield are continuing to expand their territory. 

Recently, G. rostochiensis was reported in Kenya parasitizing potato (Mwangi et al., 2015).  

The current advisory programmes on plant-parasitic nematodes do not rely on precise 

information due to lack of research articles on the impact of preventive approach. 

Nematode introduction to new farms can occur undetected because nematodes are 

extremely difficult to detect when in low numbers. In most cases detection can only happen 

when the soil infestations are already high and with high chances of spread to new fields. 

All of this establishes a vicious circle between new nematode detection and plant damage. 

Lack of awareness of nematode presence and damage leaves farmers unprepared and ill-

equipped to implement proper management strategies. The approach is more applicable in 

protected environments since new nematode infestation is only possible through the 

entrance provided nematode free planting material and water is used. These observations 

motivated several growers to install airlocks fitted with foot baths at the point of entrance. 

Nematodes that can survive in planting material (e.g., seeds, bulbs, corms, tubers and 
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cuttings) thus they can be prevented by several methods such as heating, coating or 

spraying the planting material with natural nematicides, or using tissue culture to get the 

planting material when applicable (Bridge, 2000). On the contrary, eliminating nematodes 

in irrigation water can be a difficult task for the farmer.  

 

7.3 Physical control of plant-parasitic nematodes 

This approach is aimed at killing the nematodes by exposing them to irradiation, heat and 

osmotic pressure etc. Steaming is widely investigated and involves injecting steam into the 

soil resulting in soil sterilization. During this process most nematodes including other 

microorganisms found in the steaming layers are killed (Katan, 2000). The effectiveness of 

this technique depends on soil preparation. The soil must allow deep and uniform 

penetration of the steam. The application of the steam into the soil requires a boiler and an 

injecting device. This technique can inject steam under a fleece placed on the soil for up to 

20 – 30 cm soil at over 80 
0
C (Collange et al., 2011). A solid hood placed on the soil can be 

used as an alternative to fleece method. This method is only suitable for smaller areas but 

sealing is not required. Another approach is to use negative pressure technique and this 

provides better results as steam is forced to enter the soil (Runia, 1983). This technique 

requires that the pipes are installed permanently in the field. Steaming reduces natural 

biocontrol processes by indiscriminately killing microorganisms (including non-pathogen 

ones) (Mcsorley et al., 2006). This technique also requires a lot of heat energy and 

equipment investment which might not be accessible to the resource poor farmers. Another 

approach is solarization, this technique makes use of transparent plastics films that will trap 

solar radiation and converts it into heat energy in the soil. This technique has been widely 

studied. In warm climatic conditions solarization can increase soil temperature by between 

2 – 15 
0
C. Therefore its efficacy depends on temperature and duration. Wang and McSorley 

(2008), established that in a water bath heated above 38 
0
C all M. incognita second-stage 

juveniles were completely killed; but it requires less time at 42 
0
C than at 39 

0
C (48 h at 39 

0
C, but only 14 h at 42 

0
C). Degree-day is the appropriate measure as temperature alone is 

not a good measure of efficacy. Thus, more than 75 degree days were required to kill all 

nematodes at 40 
0
C, whereas only 24 

0
C were required at 43 

0
C (Wang & McSorley, 2008). 

Because of its dependent on solar energy, solarization must be practiced during the periods 

with maximum solar radiation in order to achieve maximum soil temperature and duration. 
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In tropical climates such as in sub Saharan Africa these conditions are fulfilled easily and 

soil temperatures above 45 
0
C can be achieved for longer durations. Although this 

technique is promising for nematode control (Ozores-Hampton et al., 2004), some failures 

have been reported (Chellemi, 2002). These failures can be attributed to (i) the majority of 

nematode eggs are heat resistant (ii) different climatic conditions that can be influenced by 

soil type and moisture during the solarization period (iii) reintroduction of nematodes after 

solarization. In the latter case, the upper soil can be re-infested by nematodes from lower 

soil surface as a result of deep soil tillage practices, nematodes can also be introduced from 

the planting material, equipment and irrigation water. This renders this technique expensive 

and not economically viable for the poor small scale farmer. 

 

7.4 Biological control of plant-parasitic nematodes 

Natural enemies are promising for plant-parasitic nematodes control. Several nematode 

antagonists have been reported including fungi and bacteria that parasitize and feed on 

nematodes, and compounds released by microorganisms, like bacteria, fungi and 

nematicidal plants. Fungi and bacteria can be classified on their nematophagous and 

antagonistic characteristics. Some fungi are endoparasites, trappers, toxin producers and 

egg parasites thus they are called nematophagous fungi. Purpureocillium lilacinum 

(formerly Paecilomyces lilacinus) reduces root galling caused by M. incognita and M. 

javanica on tomato crops by parasitizing the nematode eggs (Goswami et al., 2006). 

Kiewnick and Sikora (2006) reported a 66% reduction in root galling and 74% reduction of 

egg mass formation after a pre-plant application of fungus P. lilacinum strain 251 on 

tomato plants. Later this product was commercialized in several countries for the control of 

different nematodes. A one application of the egg-parasitic fungi Pochonia chlamydosporia 

(formerly Verticillium chlamydosporium) was able to reduce the reproduction of M. 

javanica in lettuce and tomato rotations in glasshouse (Van Damme et al., 2005). A recent 

study showed the ability of Purpureocillium lilacinum and Verticillium leptobactrum to 

reduce the development of Globodera spp. in roots by 76% and 83% and in the soil by 61% 

and 66% respectively (Hajji et al., 2017). The egg parasitic fungi Purpureocillium lilacinum 

and Pochonia chlamydosporia are globally distributed with a saprophytic lifestyle and they 

are commonly found in cultivated soils as well as root surfaces and some invertebrates. 

Their ability to successfully colonize the rhizosphere and mass production feasibility (Kerry 

& Hidalgo-Diaz, 2004; Rumbos & Kiewnick, 2006) makes the two fungi species as 
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potential commercial bionematicides. Arbuscular mycorrhizal fungi (AMF) are obligate 

root symbionts, capable of colonizing more that 80% of plant species. They are capable of 

protecting their colonized host plants from biotic stress such as plant-parasitic nematodes 

(Schouteden et al., 2015). In a split-root experimental set-up, Vos et al., (2012) observed a 

significant decrease in M. incognita or Pratylenchus penetrans infection in tomato roots 

colonized by AMF (Funneliformis mosseae). A systemic suppression of Radopholus similis 

and Pratylenchus coffeae was also observed in roots colonized by AMF (Rhizophagus 

irregularis) (Elsen et al., 2008). Other fungi such as Aspergillus spp. and Trichoderma spp. 

have toxic effect on the nematodes. For example species of Aspergillus (Aspergillus 

terreus, Aspergillus niger and Aspergillus fumigates) demonstrated high toxicity on second 

stage juveniles of M. incognita (Goswami & Tiwari, 2007; Tripathi et al., 2006). Many 

studies have also reported the use of Trichoderma spp to control cyst nematodes such as 

Heterodera avenae and Heterodera filipjevi (Zhang et al., 2016). A recent study suggests 

that when high endospore concentrations of obligate endoparasitic bacteria Pasteuria 

penetrans are in the root zone they reduce the reproduction of Meloidogyne spp. (Bhuiyan 

et al., 2018). 

The above literature suggests that biological control has secured a position among the most 

sustainable and effective approaches to control nematodes and other pests. However despite 

its potential, the success of biocontrol of nematodes and other pests remains largely 

fragmented. A recent study showed that a commercialized product BioAct WG 

(Purpureocillium lilacinum strain 251, Pl251) was not effective at egg parasitism of M. 

incognita eggs at field level in spite of high egg parasitism in vitro (Giné & Sorribas, 2017). 

Another study showed that the application of entomopathogenic fungus (Beauveria 

bassiana) increases the reproduction of Ditylenchus destructor and D. dipsaci nematodes 

on potato (Mwaura et al., 2017). In yet another study the application of  biocontrol-strain 

Bacillus sp. JC12GB43 promote the growth of potato pathogens Phytophthora infestans 

and Fusarium coeruleum depending on environmental conditions (Cray et al., 2016). These 

findings suggest complex interactions between biocontrol agent and their environment. In 

order to improve the efficacy of biocontrol agents there is need for better understanding of 

abiotic factors (temperature, humidity, soil physical, and chemical properties etc.) and 

biotic factors (microbial community, biocontrol agent, and host compatibility etc.). The 

efficacy of most biocontrol agents will remain very low and not economic justified for a 

farmer to adopt as a control measure until the above factors are taken into consideration. 
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Another major problem with microbial biocontrol agents is that the pathogen or pest can 

also develop resistance (Melo et al., 2016; Tabashnik et al., 2013). However these problems 

can be solved by integrating biocontrol agents and other management strategy elements. 

 

7.5 Chemical control of plant-parasitic nematodes 

Historically, chemical control has been the most effective strategy to reduce plant-parasitic 

nematodes populations in the soil (Jones, 2017; Nyczepir & Thomas, 2009). However, the 

majority of nematides were banned due to their unprecedented health and environmental 

outcomes.  In some parts of the world specifically on large commercial farms located in 

low-income countries chemical control is still used to combat nematode and other soil 

borne pests (Table 3). In South Africa there are more than 50 crop related nematicidal 

products registered. The following chemical nematicides are still commonly used as soil 

fumigants in South Africa: dazomet, EDB, furfural, metam potassium and sodium and 

methyl bromide/chloropicrin (Jones, 2017). In Kenya 1,3-Dichloropropene (Telone
®
 II) is 

used as a soil fumigant to control nematodes in commercial pineapple fields. Although, the 

use of soil fumigants by commercial farms have succeeded in controlling nematodes and 

other soil borne pests to  maintain a constant supply of large volumes of foods to local and 

global markets. However, such practices are generating negative outcomes on multiple 

fronts: (i) biodiversity losses, (ii) environmental degradation, and groundwater 

contamination, (iii) human excessive exposure to very toxic chemicals. The majority of 

commercial farms in these low-income countries are owned by multinational companies 

where crop uniformity is at the heart of production leading to heavy dependent on chemical 

inputs. What is required is thus a new approach in agriculture in order to replace the heavy 

reliance on chemical inputs in order to control nematodes and other pests. Thus several 

efforts have been made to replace chemical control. These efforts utilize the ability of some 

alternative approaches to kill nematodes, enhancing the in-soil competitions and interfering 

with nematode life cycle. 
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Table 3. Some common chemical nematicides used in Africa (Jones, 2017). 

Crop Active substances registered 

Cotton, cruciferae, cucurbit, deciduous fruit, 

ginger, bean (green), papaya, lawns, and turf 

Ethoprophos, Fenamiphos
1
 

Banana Cadusafos, fenamiphos, fosthiazate and 

oxamyl
1
 

Citrus Cadusafos, ethoprophos, fenamiphos, 

fosthiazate and terbufos
1
 

Grape Cadusafos and fenamiphos
1
 

Groundnut Fenamiphos, furfural, oxamyl and terbufos
1
 

Lettuce, onion and flowers Ethoprophos and furfural
1
 

Paprika and green chilli Furfural
1
 

Peach Cadusafos, fenamiphos and oxamyl
1
 

Pea Ethoprophos and fenamiphos
1
 

Sorghum Carbofuran
1
 

Roses Fenamiphos, fosthiazate, furfural, foshiazole, 

cadusafos, fluopyram and azadirachtin
2
 

Roses, French beans,  Azadirachtin
2
 

Maize Carbosulfan
2
 

Bananas, maize, tobacco, 

ornamentals, potatoes, pyrethrum, 

sugarcane, vegetables 

Ethoprophos and abamectin
2
 

Pineapple, ornamentals 1,3-Dichloropropene and oxamyl
2
 

1South Africa, 2Kenya 

7.6 Cultural control of plant-parasitic nematodes 

These are agronomic practices that are implemented by a farmer in order to reduce 

nematode problem. A grower can achieve this either by one or combining the following 

approaches: (1) selection of healthy seed material: by elimination of nematode infested 

planting material to control problematic nematodes such as PCN, the spiral nematode, the 

burrowing nematode, root lesion nematode, wheat gall nematode and rice white tip 

nematode (2) adjusting the time of planting: a nematode requires suitable climatic factors in 

order to complete its life cycle for example crops planted during the cold season when 

nematodes are less active are less susceptible to nematode damage (3) fallowing: although 
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this approach is not economic leaving fields without growing plants exposes nematodes to 

starvation. (4) manuring: this approach involves the use of farm yard manure, oil seed cake 

of neem and castor, cultivation of green manure crops promotes nematode suppression 

through various mechanisms. (5) antagonistic crops: such crops contains some chemicals 

e.g. marigold (Tagetes spp.) plants contains the α – terthinyl and bithinyl  that kills 

nematodes, mustard contains allyl isothiocyanate which kills the nematodes. (6) resistant 

crops: probably the most economical way controlling nematodes (7) trap/cover/relay crops: 

resistant crops can be used as trap, cover, relay or rotational crops in order to suppress 

nematode soil populations. Resistant crop species/cultivars used as rotational crops appear 

more promising. A highly resistant crop allows the target nematode to hatch and penetrate 

the root tissue but later the host plant interferes with the formation of a functional nematode 

feeding site. In recent years, Solanum sisymbriifolium was selected as a potential trap crop 

for PCN (Globodera spp.). This plant species showed hatch stimulation comparable to 

susceptible potato crop, but no progeny PCN are formed (Scholte, 2000; Timmermans et 

al., 2006). Recently a resistant pepper was used as a trap cover crop in vegetable production 

and it reduces RKN infestation in soil by more than 80% (Navarrete et al., 2016). Both 

plants acts as dead-end traps, attracting Globodera spp. (in the case of S. sisymbriifolium) 

and Meloidogyne spp. (in the case of pepper) juveniles in the soil, and preventing their 

progeny from developing. Nevertheless, the two strategies have some limitations (i) apart 

from reducing PCN soil population densities a trap crop such as S. sisymbriifolium does not 

give any economic value to the farmer (ii) the resistant pepper crop does not imply 

resistance to all Meloidogyne spp. In fact resistance of pepper was only reported to M. 

incognita, M. javanica and M. arenaria only. In future Meloidogyne spp. such as M. 

enterolobii will be a major problem and this must be addressed urgently (iii) the 

contribution to nutritional security by both trap plants is insignificant. Therefore, holistic 

strategies are required in order to build long term nematode and other pest management 

measures whilst securing a healthy agro-ecosystem and securing the livelihoods. Thus this 

thesis focused on the dynamics of RKN and PCN on African nightshade (Solanum spp.) 

and African spinach (Amaranthus spp.), and as potential cover or relay crops to control 

Globodera spp. and Meloidogyne spp. Integrating these crop plants in the existing cropping 

systems is a crop diversification strategy that may promote nematode suppression and at the 

same time promoting healthy diets. The approach is multidisciplinary that in future it will 

bring together scientists from different ideology and pedagogy in order to address the 

current and future food system challenges in low-income countries.  
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8. Aims  

We have chosen RKN and PCN as a subject of this thesis because both nematode groups 

are known to exist in various farming systems including smallholder farms. The spread of 

these nematodes has substantially increased due to transport networks and the globalization 

of agriculture since the beginning of industrial revolution, a pattern likely to continue. 

Many of these introduced plant-parasitic nematode species causes economic yield losses on 

important cultivated crops. Despite the economic significance of these plant-parasitic 

nematodes their identity and dynamics on African nightshade and African spinach remains 

far from established especially under African conditions. As a result the main aim of this 

thesis was to identify RKN and PCN species and to study the impact of African nightshade 

and African spinach on these nematodes in Kenya. In order to achieve this several aspects 

have to be studied, specifically: 

a. As RKN and PCN are known to parasitize several cultivated crops including some 

African nightshade and African spinach, their identity and damage levels have to be 

documented particularly under African conditions. 

b. As African nightshade and African spinach are important leafy vegetables their 

effects on RKN and PCN dynamics have to be documented as well as the impact on 

the subsequent susceptible crops.  

c. RKN and PCN infection process on African nightshade and African spinach have to 

be studied. This will help to understand their nematode resistance mechanism. 

The proposed strategy will generate comprehensive data and new insights that will allow 

evaluating and revising current pest and disease management strategies in Africa and 

improve the sustainability of agriculture. This should significantly contribute to the 

management of plant-parasitic nematodes under smallholder settings. 
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1. Abstract 

Surveys and correct diagnosis of plant-parasitic nematodes are considered to be the 

cornerstones for the implementation of an integrated pest management. However, the 

occurrence and identity of root-knot nematodes (RKN: Meloidogyne spp.) is under reported 

in some countries. We therefore conducted a survey in Kenya to study the occurrence and 

identity of RKN species. We detected M. enterolobii parasitizing African nightshade for the 

first time in Kenya. Meloidogyne enterolobii is considered to be a highly pathogenic plant-

parasitic nematode species because it is able to reproduce on varieties of tomato, tobacco, 

watermelon, and pepper that are resistant to other RKN species. In addition, the 

pathogenicity and reproductive potential of M. enterolobii is higher when compared with 

other tropical RKN such as M. javanica, M. incognita, and M. arenaria. The resulting 

mitochondrial haplotypes revealed a human aided dispersal of M. enterolobii and other 

RKN species through agricultural activities. In this context we also detected M. hapla and 

M. javanica co-infection on Parthenium hysterophorus (an invasive weed in Africa) in 

Kenya indicating that these nematodes are continuing to spread and they can coexist. We 

argued that introduced plant-parasitic nematodes might benefit from the naivety of new 

neighbors or release from natural enemies or new enemies that have not learn to encounter 

them. 
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2. Introduction 

A hallmark of the Anthropocene is the transportation of species including plant-parasitic 

nematode beyond their native ranges. During the last century the rate at which humans have 

spread  species from their native ranges have significantly increased (Hulme et al., 2009; 

Tittensor et al., 2014). The spread of plant-parasitic nematodes has substantially increased 

due to transport networks and the globalization of agriculture since the beginning of 

industrial revolution. Many of these introduced plant-parasitic nematode species causes 

economic yield losses on important cultivated crops (Coyne et al., 2018; Nicol et al., 2011).   

Plant-parasitic nematodes such as root-knot nematodes (RKN: Meloidogyne spp.)  are 

known to have a global distribution (Sasser, 1977). There are nearly 100 valid RKN species 

that are recognized. For example, M. incognita, M. javanica, and M. arenaria are known to 

occur in tropical regions whereas M. hapla is restricted to temperate regions (Moens et al., 

2009). In Africa, M. incognita, M. javanica, and M. arenaria are regarded as the dominant 

species causing economic damage on crop plants such as potato, tomato, and pineapple 

(Coyne et al., 2018; Onkendi et al., 2014). In contrast typical tropical RKN species are 

increasingly being detected in European countries (Maleita et al., 2018; Wesemael et al., 

2011) and temperate climate loving species such as M. hapla have also been isolated from 

tropical regions (Meressa et al., 2014; Onkendi et al., 2014). This suggests that agriculture 

trade and travel is breaking down nematode biogeographic barriers, causing the global 

distribution of plant-parasitic nematode such as RKN. Emerging species such as M. 

enterolobii have also been reported from Africa (Onkendi & Moleleki, 2013), some 

European countries (Kiewnick et al., 2008), and South America (Luquine et al., 2018) . In 

Africa, the resistance breaking M. enterolobii has been isolated from Togo, Malawi, 

Senegal, Nigeria, Democratic Republic of Congo, South Africa, and Burkina Faso 

(Onkendi et al., 2014). The global distribution of certain RKN species is likely to increase 

as globalization of the world's economy continues. The establishment of these native 

species is going to be supported by global climate change by making hostile regions 

favorable for certain RKN species reproduction. 

Despite the economic importance of RKN, most of the information to date is from high-

income countries (Wesemael et al., 2011), with relatively little data from low-income 

farming systems. Until now there are no reports of M. enterolobii from East-Africa yet it is 

very likely to be present. Moreover, the impact of RKN species multiple infections is not 
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reported. Lack of such information makes low-farming income farming systems more 

vulnerable to RKN. This is because farmers in low-income countries are highly depended 

upon the harvest for their livelihoods, nutrition, and food security (Perrings, 2005; Wiggins 

et al., 2010), therefore the unprecedented spread of RKN is profoundly worrying. This 

poses a significant challenge to the ongoing management strategies. In this study we carried 

a survey to document the presence and impact of emerging RKN species. Documenting the 

impact of emerging RKN species is pivotal to improving management, prevention, and risk 

assessment tools. The implementation of prevention and risk assessment tools will allow 

scientific based policies to be put in place, thus minimizing the spread of plant-parasitic 

nematodes and support efficient management strategies. 

 

 

3. Results and discussion 
 

3.1 First report of the root-knot nematode Meloidogyne enterolobii parasitizing African 

nightshade in Kenya 

African nightshades (Solanum spp.) are important leafy vegetables in many parts of eastern, 

western, central, and southern Africa (Keding et al. 2007). In Kenya, sustainable production 

of African nightshades faces a twin challenge from both above- and belowground pests. 

Root-knot nematodes (RKN; Meloidogyne spp.) are belowground pests capable of 

parasitizing many hosts including African nightshade, leading to severe yield loss and 

sometimes total crop failure. A survey was carried out in Kenya between May and July 

2015 to determine the presence and incidences of RKN infecting the African 

nightshade Solanum scabrum. In the field, this nightshade exhibited the following 

symptoms: leaf yellowing, leaf drop, and stunted growth. Symptomatic African nightshade 

plants isolated from Yatta, Machakos County showed very large galls in comparison with 

those commonly associated with Meloidogyne incognita and M. javanica infected African 

nightshade plants. Population densities of infective second stage juveniles in the soil ranged 

from 100 to 750 individuals per 100 cm
3
 soil. To characterize the Meloidogyne species, 

single adult females (n = 20) were picked from galled nightshade roots for morphological 

analysis. Female perineal patterns were similar to those in the first description of M. 

enterolobii (Yang and Eisenback 1983); however, some samples deviated from the original 

description by showing a moderately high to high dorsal arch. Therefore, DNA was 

javascript:popRefFull('b2')
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extracted separately from 10 single females and PCR was used to amplify a 420-bp 

fragment of cytochrome oxidase I (COI) of the mitochondria (Derycke et al. 2010). The 

PCR products (represented by accession no. KT936633) were sequenced and aligned with 

sequences in GenBank. BLAST analysis resulted in 100% identity to the sequence of an M. 

enterolobii isolate from China (GenBank Accession No. JX683714). Using DNA of the 

same females, species identification was also confirmed using PCR species-specific SCAR 

primer set MK7-F/MK7-R (Tigano et al. 2010). No amplification was produced with the 

specific primers for other tropical species (M. javanica, M. incognita, and M. arenaria). 

The same results were obtained from females cultured on S. scabrum in the greenhouse. M. 

enterolobii is considered to be a highly pathogenic plant-parasitic nematode species 

because it is able to reproduce on varieties of tomato, tobacco, watermelon, and pepper that 

are resistant to other RKN species. In addition, the pathogenicity and reproductive potential 

of M. enterolobii is higher when compared with other tropical RKN such as M. 

javanica, M. incognita, and M. arenaria (Kiewnick et al. 2009). To our knowledge, this is 

the first report of M. enterolobii in Kenya. 

 

 

3.2 First Report of Meloidogyne hapla and Meloidogyne javanica co-infection on 

Parthenium hysterophorus in Kenya 

Parthenium hysterophorus L. (Asteraceae), is an annual or short-lived perennial herbaceous 

noxious weed native to North and South America. Since its introduction in Kenya, 

Parthenium has spread across many parts of the country and has become a menace to 

agriculture. Stunted and wilted Parthenium plants with globular galled roots marked with 

profuse roots were observed in a field in Tigoni, Kiambu County (average temperature 

15.3°C, Koeppen-Geiger Climate Classification Cfb). Nematodes were extracted from root 

zone soil using the Baermann tray and population densities of infective second stage 

juveniles ranged from 300 to 980 individuals per 100 ccm soil. Mature females and their 

corresponding egg masses were handpicked from a single infected plant root. The posterior 

part of 20 adult Meloidogyne females was used for morphological analysis, while the 

respective anterior part was carefully stored in ethanol for molecular analysis. Analysis of 

perineal patterns (Eisenback et al. 1980) revealed 13 (65 %) females of Meloidogyne hapla 

and 7 (35 %) females of M. javanica. To confirm pathogenicity, infection assays with one 

or two species were performed. Egg masses from pure cultures each containing between 

410 - 530 eggs were inoculated onto individual Parthenium plants growing in sterile soil in 

javascript:popRefFull('b1')
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a greenhouse maintained at an average temperature of about 25 °C. For mono-infection two 

egg masses from one species, for co-infection one egg mass of M. hapla and one of M. 

javanica were used. Fifteen plants per treatment were inoculated. At 45 days post-infection, 

the number of egg masses developed on Parthenium inoculated with M. hapla only was 129 

± 19.5 per root system, while this number was 188 ± 23.6 when M. hapla + M. javanica 

were co-inoculated. On Parthenium plants inoculated with M. javanica only, no egg masses 

or galls were observed, indicating that M. hapla facilitates infection of M. javanica on this 

plant. There was no clear difference in root galling on the mono-infected and co-infected 

plants. To confirm species identification of M. hapla and M. javanica, molecular analysis 

was performed on females extracted from the field and the green house. DNA was extracted 

from ethanol-preserved females (n = 10), and PCR carried out using species-specific SCAR 

(sequence-characterized amplified region) primer set JMV1(5′-

GGATGGCGTGCTTTCAAC-3′/JMV (5′- AAAAATCCCCTCGAAAAATCCACC-3′) for 

M. hapla  and Fjav (GGTGCGCGATTGAACTGAGC) /Rjav 

(CAGGCCCTTCAGTGGAACTATAC) for M. javanica (Zijlstra et al. 2000), which 

produced the expected fragments length of 440 bp and 670 bp, respectively. To further 

confirm species identification of M. hapla, the same DNA (n = 10) was amplified targeting 

the mitochondrial DNA region between COII and 16S rRNA gene and sequenced using 

primers C2F3 (GGTCAATGTTCAGAAATTTGTGG) / 1108 

(TACCTTTGACCAATCACGCT) (Powers and Harris 1993). Species identification M. 

javanica was re-confirmed by amplifying the mitochondrial NAD5 gene and sequenced 

using primers NAD5F2 (TATTTTTTGTTTGAGATATATTAG)/NAD5RI 

(CGTGAATCTTGATTTTCCATTTTT) (Janssen, et al. 2016). The PCR products 

(represented by Accession No. KX137039 and KY436071) were sequenced and aligned 

with sequences in GenBank. BLAST analysis resulted in 99 - 100% identity to the sequence 

of M. hapla and M. javanica respectively. The same perineal pattern and PCR results were 

obtained from females isolated from the greenhouse experiment. There were no differences 

in the appearance of the galls between the treatments. To our knowledge, this is the first 

report of co-infection by M. hapla and M. javanica on Parthenium. We showed that M. 

hapla is able to infect Parthenium and facilitates infection by M. javanica. Our findings hint 

on the complexity of the interaction of Meloidogyne spp. and their hosts. Since Parthenium 

is drought tolerant and can aggressively colonize disturbed sites, it will facilitate survival 

and further spread of both nematode species. Co-infections amongst Meloidogyne spp. and 

other plant parasitic nematodes will be a subject of further research in order to precisely 
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understand the disease severity and the evolutionary trajectories of virulent nematode 

populations. 

 

Figure 1. Morphological and molecular identification of M. hapla and M. javanica on 

Parthenium. Photomicrographs of female perineal pattern of M. hapla (A) and M. javanica 

(B) isolated from single Parthenium. The same perineal pattern results were obtained from 

females isolated from the greenhouse experiment. C, PCR DNA bands of sequence-

characterized amplified regions (SCAR) of M. javanica and M. hapla isolated from single 

parthenium weed plant. The same SCAR-PCR results were obtained from females isolated 

from the greenhouse experiment. D, PCR DNA bands of NAD5 and the noncoding region 

between 16S and CoxII of females isolated from parthenium weed plant. E, 16S and CoxII 

DNA sequence alignment confirming M. hapla isolated from coinfected plants and 

monoinfected plants. F, NAD5 DNA sequence alignment confirming M. javanica isolated 

from coinfected parthenium plants. The same DNA sequences were obtained from females 

isolated from the greenhouse experiment. Scale bar = 25 µm. 
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1. Abstract  

Plant-parasitic nematodes, particularly root-knot nematodes (RKN: Meloidogyne spp.) and 

cyst nematodes (CN: Globodera and Heterodera spp.) cause severe yield reduction in most 

cultivated crops and are of high economic importance. African nightshade (Solanum spp.) 

and African spinach (Amaranthus spp.) are important African indigenous vegetables (AIV) 

as a rich source of nutrition and income. However, their host status to plant-parasitic 

nematodes remains largely speculative. Therefore,  a survey was conducted which revealed 

that S. villosum exhibited high root galling whereas on S. scabrum, A. cruentus, and A. 

dubius root galling was rare or very low. Additionally, soil collected from S. villosum and 

S. scabrum root rhizosphere contained few cysts of potato cyst nematodes (PCN) and no 

developing PCN females were observed on the roots of growing plants. Therefore, we 

studied the dynamics of RKN and PCN on A. dubius, A. cruentus, S. scabrum, and S. 

villosum over 2 years in field experiment. The effects of AIV crop species on RKN and 

PCN soil infestation were evaluated using susceptible S. lycopersicum or S. tuberosum. 

After first, second and third cultivation of A. dubius, A. cruentus, and S. scabrum. RKN 

infestation of the soil decreased by more than 85%, whereas S. scabrum and S. villosum 

decreased PCN densities by more than 80%. When cropping susceptible crops, after three 

seasons of successive cultivation of these AIV, galling index and number of developing 

PCN females measured on susceptible crops decreased by more than 75%. Wilting 

incidences and RKN-PCN co-infection incidences also decreased significantly. Here, we 

present data that support the development of a novel cropping system including African 

spinach and African nightshade, which reveals a high potential to manage RKN and PCN in 

an environmentally friendly, effective, and productive way.   
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2. Introduction 

Plant parasitic nematodes, particularly tropical root-knot nematodes (RKN: Meloidogyne 

spp.) and cyst nematodes (CN: Globodera and Heterodera spp.) are plant pathogens of high 

economic importance causing severe yield losses in most cultivated crops. The life cycle of 

RKN and CN includes phases of survival in the soil, invasion of plant roots, and 

development inside root tissues. On susceptible host plants, rapid multiplication of 

nematodes inside root tissues leads to the development of disease symptoms such as root 

galling and cyst formation, respectively (Bartlem et al. 2013; Huang 1985; Perry 1989; 

Sijmons et al. 1991). This is associated with the formation of specific feeding cells from 

which they withdraw nutrients for the entire parasitic phase. As nematode-induced disease 

symptoms may impair water and nutrient uptake by the plant (Jones 1981), yield losses of 

up to 30% have been reported on several crops such as potato, tomato, eggplant, and melon 

(Nicol et al. 2011). Yield loss caused by RKN and CN compromise the sustainability of 

crop production and is an obstacle for attaining food security. 

RKN and CN are obligate root parasites that have evolved highly sophisticated parasitic 

relationships with their host plants which are based on the formation of specific feeding 

sites (Hussey and Grundler 1998). The biology of RKN and CN is similar consisting of 

developmental stages, egg, four juvenile stages, and the adult stage. However, potato cyst 

nematodes (PCN) tend to be much more host specific and require host stimulus for egg 

hatching (Clarke and Perry 1977). The parasitic stage of RKN and PCN is entirely 

dependent on a suitable host plant and is highly vulnerable to the risk of starvation in the 

absence of a suitable host plant. 

Numerous factors have contributed to the widespread occurrence of RKN and PCN in 

smallholder cropping systems. In Africa, smallholder cropping systems are complicated and 

often characterized by a simultaneous cultivation of crop species that supports development 

of RKN and PCN. This is aggravated by lack of awareness coupled with lack of proper 

nematode diagnostics. Thus, most farmers are unprepared and ill-equipped to respond 

effectively to RKN and PCN problem. Consequently, RKN and PCN population densities 

have increased and their spread facilitated through the distribution of contaminated planting 

material, irrigation water, rainfall runoff, soil attached to farming implements, animal 

hooves, and footwear. In addition, intercontinental exchange of propagating material and 

trade has facilitated the global spread of highly damaging nematode species. This is well 
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illustrated by the introduction of G. rostochiensis and G. pallida into Kenya (Mburu et al. 

2018; Mwangi et al. 2015). Human aided distribution of nematodes is further supported by 

the wide spread of RKN such as M. arenaria, M. incognita, and M. javanica in Africa and 

across the world (Onkendi et al. 2014; Wesemael et al. 2011). In addition, reports of some 

RKN species such as M. enterolobii are also on the rise (Chitambo et al. 2016; Coyne et al. 

2018; Onkendi et al. 2014). The occurrence of PCN in smallholder farms is worrisome 

because RKN is already a heavy burden (Coyne et al. 2018). Accordingly, the presence of 

RKN and PCN threatens low-income farming systems which are essential for food 

production and livelihood. 

Considering the above-mentioned situation, diminishing the yield loss caused by RKN and 

PCN is urgently required. The use of nematicides to control plant-parasitic nematodes has 

been gradually restricted due to undesirable effects on health and environment (Zasada et 

al. 2010). Nevertheless, several techniques such as soil tillage, plant-derived nematicidal 

compounds, sanitation, heat-based methods, biological control, green manure, trap crops 

cover crops and host resistance, are available to support the management of RKN and PCN 

(Collange et al. 2011; Bélair et al. 2016; Pickup 2016; Trudgill et al. 2014; Zasada et al. 

2010). However, implementing these control methods alone is often not sufficient. RKN 

that are capable of multiplying on resistant tomato and pepper varieties (Djian-Caporalino 

et al. 2011; Kiewnick et al. 2009) and certain populations of PCN are capable of 

multiplying on resistant potato varieties (Fournet et al. 2018). Recently, biological control 

products have been released to combat nematode problems, but their effects are not always 

reliable and consistent (Cray et al. 2016; Mwaura et al. 2017; Ward et al. 2012). Innovative 

strategies to control RKN and PCN are therefore urgently required. 

In some African countries, there is renewed interest in African indigenous vegetables (AIV) 

because of their role in food and nutrition security. AIV such as African spinach 

(Amaranthaceae: Amaranthus spp.) and African nightshade (Solanaceae: Solanum spp.) are 

produced by farmers for food, nutrition, and livelihood security (Cernansky 2015; Dinssa et 

al. 2016; Gruber 2017; Ukam et al. 2016; Moyo et al. 2017; Neugart et al. 2017). The host 

status of African spinach and African nightshade to RKN and PCN varies in response to 

infestation by a range of species and environmental conditions. Several studies 

demonstrated that Amaranthus species such as A. cruentus are poor hosts for RKN (Ferris 

et al. 1993; Nchore et al. 2013; Rodríguez Kábana et al. 1988). A screening of non-tuber 

bearing Solanaceous plants showed that S. nigrum species were resistant to PCN (Scholte 
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2000). Meanwhile, some studies indicate that species of African nightshade and African 

spinach might act as alternative hosts for RKN and PCN (Boydston et al. 2010; Kokalis-

Burelle et al. 2012; Rott et al. 2011). This created a conundrum regarding the precise host 

status of Amaranthus spp. and Solanum spp. to RKN and PCN particularly under African 

conditions. 

Here, we performed a field survey and detailed field trials to study the impact of nematodes 

on cultivation of AIV. The objectives of the current work were (1) to determine if Solanum 

spp. and Amaranthus spp. are hosts for RKN and PCN, (2) to determine the identity of 

RKN and PCN parasitizing Solanum spp. and Amaranthus spp., (3) to determine the 

population dynamics of RKN and PCN on Solanum spp. and Amaranthus spp., and (4) to 

determine the potential of Solanum spp. and Amaranthus spp. to manage RKN and PCN.  

 

 

3. Materials and methods 

3.1 Plant-parasitic nematode survey of AIV in Kenya 

 African nightshade and African spinach are amongst the key AIV that have been targeted 

for promotion in Africa for smallholder farmer agroecosystems. We therefore conducted a 

survey during the period in June and August of 2015 to study RKN and PCN root 

symptoms and soil infestation. Soil and root samples were collected from a total of 25 

farms. At each farm, approximately 0.2 ha of land used for vegetable production was 

sampled. The following numbers of farms were visited in different counties: 4 farms in 

Kiambu county, 3 farms in Nyandarua county, 4 farms in Machakos county, 6 farms in 

Kakamega county, 5 farms in Murang'a county, and 3 farms in Busia county. The following 

crops were sampled; African nightshade (S. villosum and S. scabrum), African spinach (A. 

dubius and A. cruentus) potato (S. tuberosum), and tomato (S. lycopersicum). Root and soil 

samples collected from different counties were analyzed for occurrence of RKN and PCN. 

Crop damage levels were also determined. 

RKN and PCN associated with each crop species were determined by uprooting the entire 

plants. Twelve plants for each crop species at each farm. From this material, 12 samples of 

roots and adhering soil were taken from a root zone at about 15 cm depth. RKN infestation 

was assessed as number of galls per plant  and it was described on a scale of 0 to 5, (Taylor 

and Sasser 1978), where 0 = no galls; 1 = 1 to 2; 2 = 3 to 10; 3 = 11 to 30; 4 = 31 to 100; 
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and 5 = more than 100 galls. PCN infestation was assessed by counting the number of 

females developed on the roots. Soil samples were mixed thoroughly and sieved before 

collecting five 100 cm³ subsamples for nematode extraction. RKN J2 were extracted 

immediately, for PCN, the soil was air dried before cyst extraction. For RKN J2 extraction 

a modified Baermann technique was used. RKN J2 were distinguished from other plant-

parasitic nematodes by their typical morphology (Jepson 1987). RKN J2 were counted in 5 

cm³ counting chambers under a 50× magnification stereo microscope (Leica MZ12, 

Nussloch, Germany). PCN were extracted using a Fenwick can. Briefly individual 

subsamples of 100 cm³ of soil were rinsed and cysts collected on the second sieve (250 µm) 

were transferred to a filter paper. After drying, cysts were counted using a magnification 

len. Cysts, 10, from different crop species were crushed separately in water, and three 

aliquots of each egg suspension were enumerated under a dissecting microscope at 25-50× 

magnification.Viability of eggs per cyst was assessed visually according to a standard 

protocol (Anonymous 2017). 

Samples for RKN morphological analysis were analyzed within 72 hours after field 

collection. Identity of RKN females was assessed using the perennial pattern (Eisenback et 

al. 1980). Perennial pattern were prepared from 20 females per county. For PCN cysts, cyst 

shape and colour were used to discriminate PCN from other cyst nematodes. Mature 

females of RKN and PCN stored in absolute ethanol (99%) were used for molecular 

analysis. In order to confirm the morphological results NADH dehydrogenase subunit 5 

(NAD5), and Cytochrome c oxidase I (COX1) were amplified and sequenced to determine 

species identity of RKN and PCN Amplification and sequencing of RKN and PCN was 

carried out on 15 samples per crop. Briefly, genomic DNA extracted from females. A single 

adult female nematode was immersed in 60µl of sterile water and it was thoroughly crushed 

using a sterile tooth pick. Thereafter, DNA was extracted using worm lysis buffer (WLB, 

10 mM Tris HCL pH 8.0, 50 mM KCl, 1.5 mM MgCl2, 1 mM DDT, 0.45% Tween 20) and 

proteinase K. PCR amplification was carried out using Taq DNA polymerase (Qiagen, 

Germany), with 3µl of extracted nematode genomic DNA and 0.5mM of each primer. 

Primers NAD5F2 (TATTTTTTGTTTGAGATATATTAG) and NAD5R1 

(CGTGAATCTTGATTTTCCATTTTT) were used to amplify the NAD5 gene (Janssen et 

al. 2016). COI gene was amplified using primers JB3 

(TTTTTTGGGCATCCTGAGGTTTAT) and JB4.5 

(TAAAGAAAGAACATAATGAAAATG) (Derycke et al. 2010). The PCR amplification 
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conditions were as follows: initial denaturation 94°C for 2 min, followed by 35 cycles of 94 

°C for 30 s, 55 °C for 30 s and 72 °C for 2 min, with a final extension at 72°C for 7 min. 

The PCR product was visualized on 1% gel stained with GelGreen (Biotium, USA). Each 

PCR amplicon was purified and subsequently submitted for direct Sanger sequencing 

(GATC Biotech, Germany). 

 

3.2 Impact of AIV cultivation on population dynamics of RKN and PCN and subsequent 

nematode management in tomato and potato 

The field trials were carried out at an experimental station at Kenya Agricultural & 

Livestock Research Organization (KALRO 1.1518°S; 36.6852°E) from 2015 to 2017. This 

site has a climate classified as warm and temperate. The climate at KALRO is considered to 

be Cfb according to the last revision of Köppen-Geiger climate classification (Kottek et al. 

2006). The average temperature is 15.3 °C and the average annual rainfall is 1263 mm. The 

sites had natural infestation of PCN and RKN. At the RKN site the following species were 

present: M. incognita, M. javanica, M. arenaria, M. enterolobii and M. hapla as well as 

undescribed Meloidogyne. At the PCN site, G. rostochiensis and G. pallida were present, as 

well as undescribed Globodera. Both field trials had similar experimental parameters and 

were conducted across the following seasons: 1
st
 growing season August to November 

2015, 2
nd

 growing season February to May 2016, 3
rd

 growing season August to November 

2016, 4
th
 growing season March to June 2017. 

The experiment was a randomized complete block design with main plots measuring 10 × 

10 m. The main plots were subdivided into subplots of 3 × 3 m. The plots were maintained 

and used in each growing season. AIV and tomato seeds were sourced from Simlaw Seeds 

Company Ltd, (Nairobi, Kenya). Seed potatoes were sourced from the seed production unit 

of KARLO (Tigoni, Kenya). AIV and tomato seeds were sown and raised in a nursery bed 

for one month before being transplanted in the field at a planting density of 14 plants/m². 

Chitted potato tubers were planted at 10 plants/m². Well decomposed cow manure was 

incorporated at a rate of 4 kg/m² before planting. The seedlings were irrigated after 

transplanting to enhance their establishment. Thereafter, the crop was managed in 

accordance to the normal farmer’s practices. During the dry spell, supplemental irrigation 

was applied.  

The experiment consisted of two phases. In the first phase, the impact of AIV on the 
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population dynamics of RKN and PCN was considered. African nightshade (S. scabrum, 

and S. villosum) and African spinach (A. dubius and A. cruentus) were selected for 

inclusion in the experiment because of their widespread cultivation in the region. The crops 

were grown for three successive seasons in main plots (i.e first, second, and third growing 

seasons). In the second phase of the experiment the effect of cultivating AIV for three 

successive seasons on RKN and PCN management was assessed by the cultivation of 

susceptible crops (S. lycopersicum cv. Moneymaker and S. tuberosum cv. Shangi) in the 

fourth growing season. The following cropping sequences were adopted to assess effects of 

AIV cropping system on RKN: (1) 3 seaseons A. dubius -followed by- S. lycopersicum (2) 

3 seasons S. villosum -followed by S. lycopersicum and (3) 3 seasons S. scabrum –followed  

by S. lycopersicum. The following cropping sequences were adopted to assess the effects of 

AIV cropping system on PCN: (1) 3 seasons fallow -followed by S. tuberosum, (2) 

3seasons A. dubius -followed by S. tuberosum (3) 3 seasons S. villosum -followed by S. 

tuberosum and (4) 3 seasons  S. scabrum –followed by S. tuberosum. Plots that were 

previously under A. cruentus were not included in second phase. Collection of data on J2 

soil population density, galling index, and number of viable cysts was determined as 

described above. Visual assessment on plant health was also collected. Plants were 

considered wilted if they are slightly wilted, wilted, severely wilted or nearly dead. To 

confirm the presence of bacterial wilt (Ralstonia solanacearum) on the wilted plants we 

placed the cut crown in water. Bacteria ooze from the exposed vascular elements of wilted 

plants in 8 - 12 min, forming milky strands flowing into water confirmed the presence of 

Ralstonia solanacearum (Riley et al. 2002). The presence of galls and developing PCN 

females on the same plant was used to assess RKN-PCN co-infection. Plants were 

considered co-infected if RKN and PCN females were observed on the roots of the same 

plant. The number of flowers per plant was counted from the same treatments after 

assessing wilting and co-infection incidences.  

 

3.3 Data and statistical analysis  

During the survey RKN crop damage was categorized as a proportion of plants with galling 

index ≤ 1 and > 1. For PCN, crop damage was expressed as proportion of plants with 

developing PCN female nematodes and those without. RKN and PCN crop damage was 

then expressed as a percentage of total number of plants sampled per individual crop 

species. Visited farms were analyzed at county level. Wilting incidences were calculated for 
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each treatment as the proportion of wilted plants expressed as a percentage of total number 

of plants sampled. RKN-PCN co-infection incidence was calculated as the proportion of 

plant roots simultaneously infected by both RKN and PCN expressed as a percentage of a 

total number of plants sampled. Nematode density data was log10 (x+1) transformed before 

analysis in order to meet normality and constant variance assumptions. Repeated measures 

analysis of variance was used to test the effect of AIV on abundance of J2 of RKN and 

PCN viable eggs and galling index. Analyses of variance (ANOVA) were conducted to 

assess the impact of AIV on developing PCN female nematodes, wilting incidences, galling 

index and number of flowers on subsequent susceptible crop. A P value ≤ 0.05 was 

considered statistically significant. All statistical analyses were performed using SigmaPlot 

v. 12.5 (Systat Software, San Jose, CA, USA). 

Nematode DNA sequences were first queried via Standard Nucleotide BLAST search  

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) in order to examine whether the sequence would 

match any species in the database (Altschul et al. 1990). ClustalW 

(www.ebi.ac.uk/Tools/msa/clustalo/) was used for a detailed comparison of obtained DNA 

sequences with related reference sequences of related species. Phylogenetic analyses were 

conducted using MEGA version 6 and maximum likelihood analyses were conducted with 

5000 bootstrap replicates under the GTR + I + G model according to Tamura et al. (2013).  

 

4. Results 

4.1 Plant-parasitic nematode survey of AIV in Kenya 

Galling index and number of adult PCN females were used to assess nematode severity on 

different crop species. Consistently, S. lycopersicum, S. villosum, and S. tuberosum plants 

were associated with galling index of > 1, whereas for A. dubius, A. cruentus, and S. 

scabrum plants were associated with galling index of ≤ 1 across the Counties studied (Fig. 

1A - C). A further examination of the soil collected from the crop root rhizosphere across 

the Counties showed no statistical differences in RKN J2 population densities (Fig. 1D - F). 

There was low number of RKN J2 in soil extracted from the root rhizosphere of A. dubius, 

A. cruentus, and S. scabrum despite a consistent galling index of ≤ 1 across the Counties. 

Similarly across the Counties, S. tuberosum and S. lycopersicum plants were associated 

with developing PCN females on their roots and in contrast no developing PCN females 

were recorded on A. dubius, A. cruentus, S. scabrum, and S. villosum (Fig. 2A - C). There 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/Tools/msa/clustalo/
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was no statistical difference in the number of viable PCN eggs/cyst extracted from the root 

rhizosphere of S. tuberosum, S. lycopersicum, S. scabrum, and S. villosum (2D - F). 

Although, no developing PCN females were observed on A. dubius and A. cruentus the 

number of viable PCN eggs/cyst extracted from their respective root rhizosphere was high. 

 

 

Figure 1: Root galling proportion (A) Murang’a county (B) Machakos county, and (C) 

Kakamega county. The corresponding root-knot nematode (RKN) soil infestation levels of 

second-stage infective juveniles (J2) isolated from rhizosphere of different crops (D) 

Muranga County (E) Machakos County, and (F) Kakamega County. Values of the bars with 

different letters are significantly different at P ≤ 0.05. A - Amaranthus, S - Solanum, RKN -  

root-knot nematodes, J2 - second-stage infective juveniles.  
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Figure 2: The proportion of plants with developing potato cyst nematodes (PCN) females 

(A) Kiambu county, (B) Murang’a county, and (C) Nyandarua county. The corresponding 

PCN soil infestation levels isolated from rhizosphere of different crops (D) Murang’a 

County (E) Kiambu county, and (F) Nyandarua County. Values of the bars with different 

letters are significantly different at P ≤ 0.05. A - Amaranthus, S - Solanum, PCN -  potato 

cyst nematodes. 

 

A morphological comparison of female perineal pattern was used to differentiate RKN 

isolated from different crop species. There was no clear morphological difference between 

some RKN female perineal patterns. Specifically, there was morphological overlap between 

M. javanica, M. arenaria, and M. incognita perineal patterns. RKN female perineal patterns 

from pure cultured samples ranged from the general lateral ridges that divide the dorsal and 

ventral striae observed on M. javanica to high, squarish dorsal arch that is normally 

observed on M. incognita (Fig. 3A - C). Meloidogyne hapla female patterns were 

characterized by flattened ovoidal shape and subcuticular punctations in the smooth tail 

terminal area and the lateral ridges were absent (Fig. 3D). Female perineal patterns of M. 
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enterolobii were round to dorso-ventrally ovoid. Lateral lines were not distinguishable (Fig. 

3E). Some of the perineal patterns of a sample of RKN females from S. villosum and S. 

lycopersicum did not conform to the normal description of other RKN. These perineal 

patterns were characterized by very fine striae and very low dorsal arch (Fig. 3F); it could 

not be assigned to a described species. The spherical brown cysts isolated from the soil and 

pale yellow females observed on the roots were identified as G. rostochiensis or G. pallida. 

In some samples the cysts were light brown to brown in color and subspherical raising the 

possibility of an undescribed Globodera sp. which did not conform to the normal 

description of G. rostochiensis or G. pallida. 

DNA sequence blasting and sequence alignment of COI gene identified the following RKN 

species (Table 1; Fig. 3H); M. hapla parasitizing S. lycopersicum, S. tuberosum, S. 

villosum, and S. scabrum (accession No. KX137039, MH399800 - MH399802), M. 

enterolobii parasitizing S. lycopersicum, S. tuberosum, S. villosum, and S. scabrum 

(accession No. KT936633, MH399803 - MH399805) and an associated Meloidogyne sp. 

parasitizing S. lycopersicum, and S. villosum (accession No. MF351699). This region failed 

to differentiate M. javanica, M. incognita, and M. arenaria. Therefore DNA sequence 

blasting and sequence alignment of NAD5 gene was used to differentiate these species. The 

sequence alignment of NAD5 gene identified M. javanica parasitizing S. lycopersicum, S. 

tuberosum, S. villosum, and S. scabrum (accession No. KY436071, MH399831 - 

MH399837), M. arenaria parasitizing S. lycopersicum, S. tuberosum, S. villosum, and S. 

scabrum (accession No. MH399824 - MH399830), and M. incognita parasitizing S. 

lycopersicum, S. tuberosum, S. villosum, S. scabrum, A. dubius, and A. cruentus (accession 

No. MH005027, MH399838 - MH399845). Phylogenetic analysis based on the COI gene 

sequence revealed an associated Meloidogyne sp. closely related to M. africana (Fig. 3H). 

Three PCN species were identified based on COI DNA analysis (Table 1; Fig. 3G), G. 

rostochiensis (accession No. MF773722, MH399815 - MH399817), G. pallida (accession 

No. MH399818 - MH399820), and an associated Globodera sp. (accession No. MG438286, 

MH399821 - MH399823), which is closely related to G. ellingtonae.  
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Table 1. Root-knot nematodes (RKN) and potato cyst nematodes (PCN) species identified 

from different crops using mtDNA-based technique 

 African spinach Tomato Potato African nightshade Sequences (NAD5/COI) 

Crop 

species 

A. 

dubius 

A. 

cruentus 

S. 

lycopersicum
a

 

S. 

tuberosum
b

 

S. scabrum S. 

villosum
a

 

 

 

County 

       

Nematode species
c
 Accession numbers 

Kakamega × × Ma, Mi, and 

Mj 

- × Ma, Mi, and Mj  MH399836, MH399835, 

MH399834, MH399833, 

MH399843, MH399842, 

MH399841, MH399825  

Kiambu Mi Mi Ma, Me, Mh, 

Mi, Mj, Msp., 

and Gr 

Ma, Me, 

Mh, Mi, 

Mj, Gr, Gp, 

and Gsp. 

Me and Mj  Ma, Me, Mh, Mi, 

Mj, and Msp. 

MH005023, MH005027, 

MH005026, MH005025, 

MH399805, MH399832, 

MH399802, MH399817, 

MH399820, MH399823, 

MH399822, MF322782 

Machakos × × Ma, Me, Mi, 

and Mj 

- Me and Mi  Ma, Me, Mi, and 

Mj 

MH399837, MH399845, 

MH399844, MH399824 

Murang’a × Mi Ma, Me, Mh, 

Mi, Mj, and 

Gr 

Ma, Me, 

Mh, Mi, 

Mj, and Gr 

Mj  Ma, Me, Mh, Mi, 

and Mj  

MH399832, MH399831, 

MH399829, MH399828, 

MH399839, MH399838, 

MH399803, MH399801, 

MH399816, MF773722 

Nyandarua × × Ma, Mh, Mi, 

Mj, and Gr  

Ma, Mh, 

Mi, Mj, Gr, 

and Gp 

× Ma, Mh, Mi, and 

Mj 

MH399827, MH005024, 

MH399830, MH399800, 

MH399815, MH399818 

a
RKN multiple species infection were detected. 

b
RKN-PCN co-infection were detected. 

c
Ma = Meloidogyne arenaria, Me = M. enterolobii, Mh = M. hapla, Mi = M. incognita, Mj = M. javanica, Msp. = Meloidogyne sp, Gr = 

Globodera rostochiensis, Gp = G. pallida, Gsp. = Globodera sp. Species in bold were detected in combination from a single plant. 

× = no RKN or PCN were detected from the roots. 

-  = no crop was observed. 

S = Solanum 

A = Amaranthus 
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Figure 3: Determination of root-knot nematodes (RKN) and potato cyst nematode (PCN). 

(A-F) Perineal pattern of RKN isolated from different crop species: (A-C) Meloidogyne 

incognita, M. javanica, and M. arenaria (D) M. hapla, (E) M. enterolobii and (F) 

Meloidogyne sp. (G) Phylogenetic tree based on mitochondrial cytochrome oxidase I (COI) 

sequences of Globodera and Heterodera spp., an associated Globodera sp. is marked by 

underline. (H) Phylogenetic tree based on mitochondrial COI sequences of RKN; an 

undescribed Meloidogyne sp. is underline. Values above branches are Maximum 

Likelihood bootstrap values. For details on phylogenetic reconstruction see Materials and 

Methods. The following symbols represent the host plant from which the adult nematodes 

were extracted: ○ S. tuberosum, □ S. villosum, ■ A. dubius, ● S. scabrum and ∆ S. 

lycopersicum. A - Amaranthus, S - Solanum. Scale bar = 25 µm. 

 

4.2 Impact of AIV cultivation on population dynamics of RKN and PCN and subsequent 

nematode management in tomato and potato 

Our survey results showed that RKN parasitism was very low on A. dubius, A. cruentus, 

and S. scabrum. A field trial was conducted at a site that had natural soil infestation of M. 

incognita, M. javanica, M. hapla, M. enterolobii, and an associated Meloidogyne sp. At the 

beginning of the experiment no significant differences in RKN population densities existed 
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among the plots assigned to different crop treatments (Fig. 4A). By the end of the first 

season, population densities of RKN were significantly increased under S. villosum and 

were significantly reduced under A. dubius, A. cruentus, and S. scabrum (Fig. 4A). In 

season 2 and 3, these dynamics continued. However the successive cultivation of 

susceptible S. villosum promoted RKN soil infestation and root galling (Fig. 4A and B) and 

severe wilting and root galling (s 1D and E). The two species of African spinach achieved a 

similar RKN suppressive effect therefore plots under A. cruentus were not considered in the 

next experiment. After three successive seasons of cultivating AIV, a RKN susceptible S. 

lycopersicum cv. money maker planted under AIV plots showed different galling index and 

number of flowers at 6 weeks after planting. The galling index was lower in S. scabrum and 

A. dubius and the number of flowers was higher compared to S. villosum (Fig. 4C).  

 

 

Figure 4: Impact of African indigenous vegetables (AIV) cultivation on population 

dynamics of root-knot nematodes (RKN) and subsequent nematode management in tomato. 

(A) RKN population densities under AIV cultivation for three successive seasons; (B) Root 

galling on AIV crops; (C) Galling index and the number of flowers on S. lycopersicum at 6 

weeks after planting following three successive (3S) cultivation of AIV. Values of the bars 

with different letters are significantly different at P ≤ 0.05 using Tukey post-hoc multiple 

comparisons test. Error bars represent standard deviation of mean. In section C dark bars 

represent primary axis and light bars represent secondary axis. A - Amaranthus, S - 

Solanum. 
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In our survey, no adult PCN females were observed on S. scabrum and S. villosum, and 

very few viable PCN eggs were found in cysts extracted from the soil surrounding the roots 

of these plants. A field trial was conducted at a site that had natural soil infestation of G. 

rostochiensis, G. pallida, and an undescribed Globodera sp. The same site also had a 

natural infestation of RKN. At the beginning of the experiment (season 1), no significant 

differences in PCN population densities existed among the test plots assigned to different 

crops. By the end of season 1, population densities of PCN (measured as viable eggs/cyst) 

were significantly lower on S. scabrum and S. villosum compared under A. dubius and A. 

cruentus or fallow (Fig. 5A). In season 2 and 3, these dynamics continued. After three 

successive seasons of cultivation of AIV, a PCN susceptible S. tuberosum cv. Shangi 

showed different responses in wilting incidences, number of PCN females and number of 

flowers at 6 weeks after planting. The incidences of wilting on S. tuberosum was 

significantly reduced in S. scabrum and S. villosum test plots (Fig. 5B and s1A), but wilted 

and stunted S. tuberosum plants were observed under fallow and A. dubius (S 1B). The 

number of PCN females was lower in S. scabrum and S. villosum compared to A. dubius 

and fallow (Fig. 5C). The effect of AIV on RKN-PCN co-infection also varied. Potato 

plants with both root galls and PCN females were observed (S 1C). RKN-PCN co-infection 

on S. tuberosum was significantly reduced in S. scabrum, S. villosum, and A. dubius and the 

number of flowers was higher in S. scabrum (Fig. 5D). 
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Figure 5: Impact of African indigenous vegetables (AIV) cultivation on population 

dynamics of potato cyst nematodes (PCN) and subsequent nematode management in potato. 

(A) PCN population densities under AIV cultivation for three successive seasons; (B) PCN 

population densities and wilting incidences on S. tuberosum at 6 weeks after planting 

following three successive (3S) cultivation of AIV; (C) Number of developed PCN females 

and the number of flowers on S. tuberosum at 6 weeks after planting following three 

successive (3S) cultivation of AIV; (D). Co-infection incidences and the number of flowers 

on S. tuberosum at 6 weeks after planting following three successive (3S) cultivation of 

AIV. Values of the bars with different letters are significantly different at P ≤ 0.05 using 

Tukey post-hoc multiple comparisons test. Error bars represent standard deviation of mean. 

In section B, C and D dark bars represent primary axis and light bars represent secondary 

axis. A - Amaranthus, S - Solanum. 

 

5. Discussion 

Parasitism of crops by RKN and PCN is a major constraint for food production. In Africa, 

smallholder cropping systems are complicated and often characterized by simultaneous 

cultivation of crop species that support development of RKN and PCN. Hence, the current 

farming system increases the economic impact of these nematodes. 

AIV including African nightshade (S. scabrum and S. villosum) and African spinach (A. 
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dubius and A. cruentus) are neglected and underutilized crops, but have been a part of 

farming practices and nutrition in traditional societies in Africa. However, there is a lack of 

information on their host status to RKN and PCN, and so far no study has focused on the 

impact of these crops on RKN and PCN dynamics. Here, we demonstrate that 

reintroduction of African nightshade and African spinach into cropping systems can be 

used to reduce RKN and PCN populations and yield effects on following susceptible crop 

species. 

Implementation of an effective management strategy to control plant-parasitic nematodes 

requires accurate nematode species identification and their respective host plants (Taylor 

and Sasser 1978). Thus, in this study we first characterized the different RKN and PCN 

infecting S. scabrum, S. villosum, S. lycopersicum, S. tuberosum, A. dubius, and A. 

cruentus. We employed both morphological and molecular approaches to identify the RKN 

and PCN species. Current morphological identification procedures were able to 

differentiate some, but not all of the RKN. Despite morphological identification failing to 

give a clear resolution to separate tropical RKN species such as M. javanica, M. arenaria 

and M. incognita, the other RKN, M. hapla, M. enterolobii, and an associated Meloidogyne 

sp. were clearly separated from each other by using the perineal patterns (Eisenback et al. 

1980). The widely used barcode gene COI reliably differentiated M. hapla, M. enterolobii, 

and Meloidogyne sp. from the other tropical RKN. The recently identified NAD5 gene 

fragment DNA marker (Janssen et al. 2016), allowed a reliable identification of the most 

common tropical RKN, M. javanica, M. arenaria, and M. incognita. The phylogenetic 

position of an undescribed Meloidogyne sp. indicates a closer relationship with M. africana 

which was previously reported on coffee (Janssen et al. 2017). Furthermore, COI gene 

sequence identified G. rostochiensis and G. pallida and reliably differentiates the 

undescribed Globodera sp. from the other PCN. The presence of G. rostochiensis and G. 

pallida parasitizing S. tuberosum was recently reported in Kenya (Mburu et al. 2018; 

Mwangi et al. 2015). The phylogenetic position of the undescribed Globodera sp. indicates 

a closer relationship with G. ellingtonae which was previously reported on potato (Handoo 

et al. 2012). Remarkably, most RKN and PCN lineages identified in the current study have 

a global distribution favoring the hypothesis that spread was aided by humans through 

agriculture (Castagnone-Sereno et al. 2013). 

We detected nematode species such as M. hapla, G. rostochiensis, and G. pallida, which 

are usually found in temperate climates, in a moderate tropical climate. It shows that these 
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nematode species have ability to successfully compete with tropical species. It underlines 

that temperate nematode species have to be considered as pathogens in tropical and sub-

tropical management systems. Temperate RKN such as M. hapla have already been 

reported in sub-tropical conditions (Chitambo et al. 2018; Meressa et al. 2014) indicating 

the ability of these nematodes to change their temperature or climate preferences. This 

underpins the need for a proper nematode diagnosis and that plant resistance to several 

species of RKN and PCN is necessary for an effective nematode control under the current 

situation in many parts of Africa. 

RKN were mainly associated with S. villosum, S. lycopersicum, and S. tuberosum indicating 

that RKN are capable of causing damage on these crop species. In fact, they had been 

previously reported as good hosts for RKN (Nchore et al. 2012; Onkendi et al. 2014; Sikora 

and Fernandez 2005; Sikora et al. 2018). By contrast, A. dubius and A. cruentus showed 

resistance to the studied RKN species and only M. incognita were able to induce very few 

galls on these species. In the literature, the host status of Amaranthus spp. to RKN is not 

clear. Previously, it was shown that several Amaranthus species were resistant to RKN 

(Babatola and Awoderu 1986; Reddy et al. 1980). Later, Ferris et al. (1993) found that A. 

caudatus, A. hypochondriacus, and A. cruentus were non-hosts to M. chitwoodi, and A. 

retroflexus was rated as a poor host for M. chitwoodi. In contrast, a recent study indicated 

that A. tricolor supports M. incognita reproduction (Vaingankar et al. 2018). This suggests 

that the genus Amaranthus is highly diverse and is composed of many species and possibly 

varieties that vary in response to Meloidogyne infection. In principle, there are three types 

of plant responses to Meloidogyne infection (i) susceptibility – indicated by nematode 

development and plant damage; (ii) resistance – causing low root galling in A. dubius and 

A. cruentus resulting in low nematode reproduction; (iii) tolerance – showing low reduction 

of root and shoot traits but strongly supporting nematode development. The latter was 

described in a recent study which demonstrated that A. tricolor genotype IC-0598184 

performed well after infection by M incognita but remained with a high burden of M. 

incognita infection (Vaingankar et al. 2018). The fact that A. dubius and A cruentus were 

resistant to RKN identified in this study make them ideal candidates for RKN management.  

PCN identified in this study were only associated with S. lycopersicum and S. tuberosum, 

but not S. scabrum and S. villosum indicating resistance in these crops. Solanum scabrum 

and S. villosum belongs to the Solanaceae family and Scholte (2000) reported the ability of 

non-tuber bearing Solanaceae plants to stimulate PCN hatching. In contrast, non-
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Solanaceae plants such as A. dubius and A. cruentus do not have an effect on PCN hatching. 

Thus, after successive cultivation of African nightshade the number of developing PCN 

observed on S. tuberosum was reduced. Dandurand et al. (2013) used a resistant trap crop, 

Solanum sisymbriifolium to control PCN, and this approach decreased PCN cyst infestation 

in the soil by more than 90%. Related nightshade belonging to the non-tuber bearing 

species in the Solanum genus have demostrated the ability to stimulate PCN hatching and to 

prevent further development of PCN. We found a similar effect of the analyzed nightshades 

in our study. 

Simultaneous occurrence of two or more different nematode species renders host resistance 

deployed against one species ineffective, because another species can overcome the 

resistance. It is known that tomato cultivars carrying Mi-1.2 gene introgressed from 

Solanum peruvianum are resistant to M. incognita, M. javanica and M. aranaria, but not M. 

enterolobii (Kiewnick et al. 2009). In Africa, multiple species of RKN infections have been 

reported (Chitambo et al., 2018; Kolombia et al., 2017), indicating that nematode multiple 

infections are ubiquitous in Africa, but too often ignored. Our results indicate that A. dubius 

and A. cruentus are resistant to the studied RKN species including M. enterolobii. This 

species has been reported to overcome resistance of most cultivated crops carrying 

resistance genes against other RKN, including resistant cotton, sweet potato, tomatoes (Mi-

1 gene), soybean (Mir1 gene), potato (Mh gene), sweetpepper (Tabasco gene), bell pepper 

(N gene), and cowpea (Rk gene) (Berthou et al. 2003; Brito et al. 2007; Castagnone-Sereno 

2012; Cetintas et al. 2008; Yang and Eisenback 1983).  

Our studies indicate that AIV resistant to  RKN and/or PCN are ideal cover crops for 

management of both of the groups of nematodes or can be used as rotational crops, relay 

crops etc. as well. Integrating these crops in smallholder cropping system as cover crops, 

rotational crops or relay crops has several advantages including nematode control and 

dietary diversification. Elsewhere, cover crops are used in various production systems to 

provide many benefits such as pest and disease management, addition of organic matter to 

soil, and increased productivity of cash crops. For example the use of cover crops in the 

Brassicaceae family such as oilseed radish, white mustard, and winter rapeseed decreased 

sugar beet cyst nematode population densities (Lelivelt and Hoogendoorn 1993; Wen et al. 

2017). 

In summary, we have shown that accurate diagnosis of RKN and PCN will help provide 
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proper implementation of an effective management decision. We identified A. dubius and S. 

scabrum with the ability to suppress RKN species identified in this study, whereas S. 

scabrum and S. villosum suppress the identified PCN species. Solanum scabrum suppresses 

both RKN and PCN identified in this study. According to our results these crop species can 

be used to manage RKN and PCN. We recommend that growers intending to 

simultaneously control PCN and RKN should use S. scabrum. Although S. villosum was 

able to suppress PCN, it is highly susceptible to RKN and should not be used where RKN 

are detected. This finding is a major relief to the resource constrained smallholder farmers 

who are overburdened by plant-parasitic nematodes, pests and diseases as well as 

nutritional challenges. The reintroduction of AIV species into the existing cropping systems 

may be a way of promoting agro-biodiversity to improve resilience to plant-parasitic 

nematodes, pests and diseases as well as dietary diversification in Africa. Therefore, this 

approach can be used as a simple management strategy for RKN and PCN in an 

environmentally friendly, effective, and productive way. 
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7. Supplementary information Chapter 3 

 

Figure S1: The effect of cultivating African nightshade on the subsequent potato crop; (A) 

healthy potato plants on the plot previously planted with Solanum scabrum; (B) wilting and 

stunted plants due to potato cyst nematodes (PCN) infection on plots that were previously 

fallow; (C) Root-knot nematodes - potato cyst nematodes (RKN-PCN) co-infection on 

potato root. Scale bar = 1 cm. Effects of continuous cultivation of susceptible crops; (D) 

aboveground symptoms on S. villosum showing severe wilting; (E) belowground symptoms 

showing severe root galling on S. villosum root system Scale bar = 5 cm. Insert: RKN 

females stained with Sodium hypochlorite solution - acid fuchsin-glycerin technique in root 

galls at higher magnification Scale bar = 1 cm. The appearance of selected crop species; (F 

and G) African spinach (A. dubius and A. cruentus) and (H) African nightshade (S. 

scabrum). A - Amaranthus, S - Solanum.  + = root galls induced by RKN, * = adult female 

of PCN. 
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Chapter 4 
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1. Abstract 

Plant parasitic nematodes particularly root-knot nematodes (RKN: Meloidogyne spp.) and 

cyst nematodes (Globodera spp. and Heterodera spp.) require suitable host plants for 

nutrition and completion of their life cycle. They cause economic damage on the parasitized 

plants. African nightshade (Solanum spp.) and African spinach (Amaranthus spp.) are 

important leafy vegetables in many parts of Africa for food, nutrition, and livelihood 

security. Although RKN and potato cyst nematode (PCN: Globodera spp.) resistance has 

been observed in some species of African nightshade and African spinach, how these plants 

interfere with nematode infection process is still unknown. Here, we show that successful 

parasitism was impaired by localized root tissue disintegration during the early stages of 

nematode infection in resistant African nightshade and African spinach. Nematode infected 

roots of S. scabrum (broad leaf) and A. dubius (broad leaf) exhibited high localized root 

tissue disintegration and were resistant to all species of RKN used in this study. Notably, A. 

dubius (broad leaf) showed full resistance against highly pathogenic M. enterolobii. For 

PCN, both S. scabrum and S. villosum stimulated PCN hatching but not their reproduction 

with a similar resistance mechanism as before. We propose that during the course of 

evolution plants including AIV evolved to direct root tissue necrosis and disintegration to 

orchestrate the containment, starving, and expulsion of nematodes. The ability of resistant 

AIV to autonomously induce localized root necrosis and disintegration reveals that 

maintaining root tissue integrity is very important for successful nematode parasitism. Thus 

AIV-protective responses to RKN and PCN include two equally significant tasks: expulsion 

of nematode and root tissue repair. Inevitably, the information generated in this study is 

important in breeding programmes, designing crop rotation schemes, and cropping systems 

to avoid yield losses caused by high RKN and PCN soil infestation.  
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2. Introduction 

Root-knot nematodes (RKN: Meloidogyne spp.) and cyst nematodes (Globodera spp. and 

Heterodera spp.) are the most economically damaging group of plant-parasitic nematodes 

(Jones et al., 2013), because of the negative impact their parasitism has on farming systems. 

Vegetables crops are the most susceptible host plants (Collange et al., 2011). RKN and 

potato cyst nematodes (PCN) are known to occur in farming systems in Africa, posing a 

significant threat to crop production by small-holder farmers (Coyne et al., 2018; Onkendi 

et al., 2014). The restriction of certain chemical nematicides due to their environmental 

impact and on human and animal health (for example in Europe, Directive 2009/128/EC), 

has intensified research on alternative nematode management. Integrated pest management 

practices which combine cultural methods and host plant resistance are the most promising 

options for nematode management under small-holder farms.  

RKN and PCN have a similar biology consisting of a distinct egg, juvenile stages (J1), (J2) 

the infective stage, (J3), (J4) and adult stages. However, PCN tend to be much more host 

specific and require host stimulus for egg hatching. The J2 of RKN and PCN are attracted 

to stimuli from suitable host roots and they penetrate the root through the cortex where they 

enter the vascular cylinder. In the vascular cylinder, RKN become sedentary and select five 

to eight vascular cells to differentiate into their feeding cells, termed giant cells, whereas 

PCN induce the formation of multicellular feeding sites called syncytia (Jones, 1981; 

Steinbach, 1974; Wyss et al., 1992). The ability of RKN and PCN to survive in the host 

plant is the result of adaptation or co-evolution between host plant and the nematode 

(Hussey & Grundler, 1998), thus despite their large size (compared to other pathogens) they 

are able to survive inside root tissue. It is therefore necessary for these nematodes to locate 

a suitable host plant and install an immunoregulatory environment (Goverse & Smant, 

2014). Otherwise, the host plant would be able to generate an effective anti-nematode 

response that will result in containment, starving, and expulsion of nematodes. 

The African nightshade (Solanaceae: Solanum spp.) and African spinach (Amaranthaceae: 

Amaranthus spp.)  are nutritious crops cultivated in tropical sub-Saharan Africa that 

represent the bulk of African indigenous vegetables (AIV) (Cernansky, 2015; Gido et al., 

2017; Maundu et al., 2009). These crops are traditionally grown by small holder farmers 

and continue to be maintained by sociocultural preferences, however their response to RKN 

remains not well documented and to some extend neglected by formal research. The degree 



62 
 

of susceptibility among African nightshade and African spinach varies in response to 

infestation by a range of species and races of RKN. Susceptibility to RKN among African 

nightshade (S. villosum and S. nigrum) has been reported in previous studies (Nchore et al., 

2013). In a field trial contacted in Kenya, S. villosum increased RKN soil infestation and 

root galling on the subsequent susceptible crop, but S. scabrum was found to have an 

opposite effect. Susceptibility to RKN was reported in A. caudatus, A. hypochondriacus 

and A. tricolor (Reddy et al., 1980). A. retroflexus was more susceptible to M. javanica than 

to M. incognita and M. arenaria (Kokalis-Burelle & Rosskopf, 2012). In contrast A. 

cruentus was found to be a poor host for several RKN (Nchore et al., 2013; Ntidi et al., 

2016; Rodriguez-Kabana et al., 1988). In Kenya, our recent study showed that A. dubius 

significantly reduced RKN soil infestation and root galling on the subsequent susceptible 

crop. 

PCN are more host specific thus trap crops which are non-host crops have been 

successfully used to reduce their population densities. PCN trap crops stimulate egg 

hatching but do not support nematode reproduction because the J2 cannot successfully 

parasitize plant roots. Scholte (2000), showed that Solanum sisymbriifolium Lam. was 

effective as potato at inducing PCN egg hatching but not the subsequent nematode 

development and reproduction. The screening of 90 accessions of Solanaceae (non-tuber 

bearing) demonstrated PCN egg hatching stimulatory effect and resistance (Scholte, 2000). 

Thus, PCN egg hatching stimulatory effect by Solanaceae (non-tuber bearing) is well 

documented. In an experiment contacted in Kenya African nightshade decreased PCN soil 

infestation and infection on the subsequent susceptible potato crop.  

Studying the host status and resistance mechanism against nematodes on AIV is of great 

importance because it enables the selection of suitable varieties in crop rotations and helps 

breeders to select for a desired feature for the breeding programme. So far the mechanism 

of AIV resistance against RKN and PCN remains unknown, although much work has been 

done to elucidate them in other plants (Cai et al., 1997; Vos et al., 1998; Williamson & 

Hussey, 1996; Williamson & Kumar, 2006). Here we performed laboratory and pot 

experiments to study nematode development and reproduction. This was achieved by (1) 

evaluating the AIV early response to RKN and PCN infection (2) studying the reproduction 

of RKN and PCN on AIV. 
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3. Materials and methods 

3.1 Nematode inoculum and planting material 

Pure RKN cultures of M. incognita, M. javanica, M. arenaria, M. enterolobii and M. hapla 

were maintained on susceptible tomato cv. Money maker. These cultures were used in all 

experiments. Forty eight hours old second stage juveniles (J2s) of the nematodes were 

extracted by a method according to (Whitehead & Hemming, 1965), standardized, 

concentrated and used for inoculating the test plants. Briefly, nematode eggs were extracted 

by cutting the tomato roots into10 - 20 mm sections and ground them in 0.5% NaOC1 for 

four minutes. The homogenate was then washed with distilled water through a series of 

mesh sieves and the nematode eggs were collected on a 25 µm sieve. For G. rostochiensis, 

cysts were obtained from stock cultures maintained on potato cv. Shangi in a greenhouse 

maintained at25 ± 4 
o
C. Cysts were extracted from the soil according to (Seinhorst, 1964). 

For hatching the cysts were soaked for one week in tap water and egg suspensions were 

made. The eggs were then exposed to hatching agent extracted from young African 

nightshade plants. Five widely cultivated AIV in Kenya; S. scabrum branched (S.cb), S. 

scabrum non-branched (S.cn), S. villosum (S.v), A. dubius broad leaf (A.db), and A. dubius 

narrow leaf (A.dn) were used in this experiment in order to study their response to RKN 

and PCN. Susceptible tomato cv. Money maker and potato cv. Shangi were used as positive 

controls. 

 

3.2 Laboratory experiment 

AIV seeds were disinfected with 0.05% (w/v) sodium hypochlorite (NaOCl) for 10 minutes 

and  70% (v/v) ethanol for 1 minute followed thorough rinsing (4 times) with autoclaved 

distilled water. Before planting the sterile seeds were allowed to dry on filter paper. Sterile 

seeds of AIV were cultivated on Murashige and Skoog (MS) medium with a 16hr light and 

8hr dark cycle at 25 °C. Two seeds were planted per petri dish (9cm).  At 20 days after 

planting, the seedlings were inoculated with sterilized 300 - 320 freshly hatched J2 

nematodes per plant. The nematodes were inoculated onto the surface of MS medium in 

petri dishes (9 cm).  
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3.3 Pot experiment 

Eighteen days old seedling of each AIV was transplanted into a 15 cm diameter pot 

containing autoclaved sand: soil (2: 1). Five days later 2000 J2 of RKN were introduced at 

the rhizosphere by making three holes with glass rod and immediately covered to prevent 

desiccation. The treatments were replicated six times and arranged in completely 

randomized design. The treatments were watered lightly with about 200 ml of water as 

required and maintained at 25 ± 4 
o
C for 60 days. 

 

3.4 Evaluation for nematode parasitism and AIV response 

The plant early response to nematode infection was recorded at different time points (12, 

48, and 72 hours post inoculation) by counting the number of disintegrating infected root 

tip segments expressed as percentage of the non-disintegrated infected root tips. The 

development of nematodes inside root samples and external egg masses were visualized by 

the acid fuschin according to (Bybd et al., 1983). The number of adult female nematodes, 

egg masses and galls per plant was recorded at 20 days and 60 days post infection. Egg 

masses were visualized by the acid fuschin staining as before. Female nematodes, egg 

masses and galls were counted with a DM2000 dissection microscope (Leica 

Microsystems) and imaging was carried out using Leica DM4000 inverted microscope 

(Leica Microsystems) fitted with an Olympus C-5050 digital camera.  

 

3.5 Statistical analysis 

Data from each experiment were analysed separately by analysis of variance using 

SigmaPlot 12.5.  Means for percentage root disintegration, counts of egg masses, eggs and 

number of galls were transformed by log 10(x+1) before statistical analysis, and means were 

separated using the Tukey–Kramer honest significant difference test (P ≤ 0.05). 
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4. Results 

4.1 Root tip disintegration and reduced root penetration interferes with RKN and PCN 

parasitism on AIV 

To characterize the early response of AIV to RKN infection, an in vitro nematode infection 

system was used which allowed us to follow nematode development under the light 

microscope (Figure 2A and B). Plant response to J2 invasion of AIV root was assessed at 

12, 48 and 96 hours post infection. Percentage of disintegrated root tips was significantly 

high on A. dubius broad leaf, S. scabrum broad leaf and S. scabrum narrow leaf compared 

to A. dubius narrow leaf and S. villosum. Although not statistically different, at 96 hours 

post infection the percentage of disintegrated root tips was higher on A. dubius broad leaf, 

S. scabrum broad leaf and S. scabrum narrow leaf whereas on A. dubius narrow leaf and S. 

villosum the percentage of disintegrated root tips was reduced (Figure 2C - F). As a result 

the AIV that showed high percentage of disintegrated root tips had reduced number of 

nematodes inside their roots (Figure 2). 

 

Figure 1. Percent of disintegrated root tips of African indigenous vegetables (AIV) at 48 

hours post infection by Meloidogyne incognita. Values of the bars with different letters are 

significantly different at P ≤ 0.05 using Tukey post-hoc multiple comparisons test. Error bars 

represent standard deviation of mean. A.db = A. dubius broad leaf, A.dn = A. dubius narrow 

leaf, S.cb = Solanum scabrum broad leaf, S.cn = Solanum scabrum narrow leaf and S.v = 

Solanum villosum. 
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Figure  2. African indigenous vegetables response to root-knot nematode (RKN) infection: 

(A) Uninfected roots of S.cn cultured on MS medium, (B) Development of root galls induced 

by M. incognita at 20 days post inoculation on S.v, (C) Uninfected root of S.cb, (D) M. 

incognita J2 attracted to S.cb roots 8 hours post inoculation, (E) S.cb root tip disintegration 

48 hours post infection with M. incognita, (F) Intact root tip of S.v 48 hours post infection by 

M. incognita. S.cb = Solanum scabrum broad leaf, S.cn = Solanum scabrum narrow leaf and 

S.v = Solanum villosum. 
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Figure 3. Number of juveniles penetrating the five African indigenous vegetables (AIV) at 

48 hours post inoculated with 300 infective juveniles (J2) of different root-knot nematode 

(RKN). Values of the bars with different letters are significantly different at P ≤ 0.05 using 

Tukey post-hoc multiple comparisons test. Error bars represent standard deviation of mean. 

A.db = Amaranthus dubius broad leaf, A.dn = Amaranthus dubius narrow leaf, S.cb = 

Solanum scabrum broad leaf, S.cn = Solanum scabrum narrow leaf and S.v = Solanum 

villosum. 

 

4.2 Specific genotypes of AIV species hinders RKN reproduction 

In order to assess the impact of AIV on RKN reproduction a pot experiment was carried 

out. The level of reproduction was measured as the number of egg masses per plant. S. 

villosum supported the highest reproduction of all RKN species used in this study (Figure 

4).  However, the reproduction of RKN was genotype dependent on the other AIV. The 

number of M. enterolobii egg masses was significantly high on S. scabrum (narrow leaf) 

compared to S. scabrum (broad leaf) and the response was the same with M. javanica 

(Figure 4). The two genotypes of A. dubius (narrow leaf and broad leaf) showed a similar 

trend. Consistently with nematode reproduction (number of egg masses), the galling index 

(RKN root symptoms) was high on S. villosum. Galling index was genotype dependent on 

the other AIV, with the other genotypes showed no signs of root galling (Figure 5). Typical 

root galling on susceptible AIV is shown on below (Figure 7B and C) 
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Figure 4. Number of root-knot nematode (RKN) egg masses per plant at 60 days post 

inoculation on African indigenous vegetables (AIV). Values of the bars with different 

letters are significantly different at P ≤ 0.05 using Tukey post-hoc multiple comparisons 

test. Error bars represent standard deviation of mean. A.db = Amaranthus dubius broad leaf, 

A.dn = Amaranthus dubius narrow leaf, S.cb = Solanum scabrum broad leaf, S.cn = 

Solanum scabrum narrow leaf and S.v = Solanum villosum. 

 

 

Figure 5. Galling index at 60 days post inoculation on African indigenous vegetables 

(AIV). Values of the bars with different letters are significantly different at P ≤ 0.05 using 

Tukey post-hoc multiple comparisons test. Error bars represent standard deviation of mean. 

A.db = Amaranthus dubius broad leaf, A.dn = Amaranthus dubius narrow leaf, S.cb = 

Solanum scabrum broad leaf, S.cn = Solanum scabrum narrow leaf and S.v = Solanum 
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villosum. 

 

4.3 African nightshade blocks PCN reproduction 

In order to assess the impact of AIV on RKN and PCN reproduction a pot experiment was 

carried out. African nightshade (S. scabrum and S. villosum) used in this study stimulated 

PCN hatching comparable to potato (data not shown). At 48 hours post infection the 

number of nematodes inside the African nightshade roots was significantly low compared 

to potato. At 60 days post infection there was no adult female nematodes or cysts attached 

to the African nightshade roots (Figure 6). No cysts were found in African nightshade 

posts. Adult PCN female nematodes and cysts attached to potato root are shown below 

(Figure 7D). 

 

 

 

Figure 6. Number of Globodera rostochiensis infective juveniles penetrating at 48 hours post 

inoculation and adult G. rostochiensis at 50 days post inoculation on African nightshade 

(Solanum scabrum and S. villosum) and potato (S. tuberosum). Values of the bars with 

different letters are significantly different at P ≤ 0.05 using Tukey post-hoc multiple 

comparisons test. Error bars represent standard deviation of mean. 
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Figure 7. Nematode induced symptoms on susceptible host plants at 90 days post infection; 

(A) resistant plant root system, (B) galls on S.cn induced by M. javanica, (C) galls induced 

by M. incognita on A.dn, (D) G. rostochiensis females and cysts on potato roots. A.dn = 

Amaranthus dubius narrow leaf, S.cb = Solanum scabrum broad leaf, S.cn = Solanum 

scabrum narrow leaf. 

 

5. Discussion 

Use of resistant cultivars as nematode management tool in low-income farming systems is 

very promising because of its affordability and no hazardous effects on human health and 

the environment. The present research reports on the reaction and host status of AIV to 

RKN and PCN based on the ability of nematode to reproduce on different species and 

genotypes. The AIV species and genotypes showed significant variations in their response 

to nematode infection.  

Several of the tested AIV had varying degrees of resistance against the selected species of 

RKN. Solanum scabrum (broad leaf) and A. dubius (broad leaf) has shown a spectrum of 

resistance against the four RKN species tested. However, the other AIV showed a variation 

in resistance emphasizing the importance of nematode species and population identification 

when implementing a management strategy. Analysis of AIV early response to RKN and 

PCN infection showed that root tip disintegration perturbs the nematode infection process. 

It is well documented that RKN root invasion is achieved, in most cases, by destroying 

epidermal and subepidermal cells, while intercellular invasion between epidermal cells is 

less frequent. However, inside the root the J2 orients themselves always in the direction of 

the root-tip and migrates towards it between cortical and meristematic cells without causing 

any damage (Wyss et al., 1992). In this study we observed severe root tip disintegration 

when nematodes were inside the root tissue of resistant AIV. This suggests that some 

factors within AIV roots interfere with the orientation of J2 during the migration phase or a 

strong defence response is mounted after the detection of nematode secretions by plant 

surveillance mechanism.  
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Fargette et al. (1994) proposed that variations in gall formation and reproduction of RKN 

on different plant species and genotypes are due to differences in their genetic makeup or 

due to presence of genes which confer resistance or susceptibility. In resistant AIV 

nematodes were unable to cause infection and reproduce properly. In order to allow the 

formation of a feeding site in the vascular parenchyma, the host plant must attract, allow 

penetration of the epidermis and migration through the cortex. The feeding site would 

ensure uninterrupted supply of essential nutrients for the developing nematodes to allow 

reproduction (Abad et al., 2009; Wyss et al., 1992). Resistant AIV could harbour various 

resistant genes that would interfere with one or more critical steps required for successful 

parasitism of nematodes. Thus, we observed high nematode reproduction on susceptible 

AIV compared to resistant AIV. Resistant AIV could also have an elegant way to detect 

deviations from the root tissue integrity in order to deal with present onslaughts and avoid it 

in the future, if possible. The management of root tissue disintegration due to nematode 

infection in resistant AIV is central to their evolutional success, and arguably root tissue 

disintegration exists to forestall successive assaults by the same or related nematode. We 

thus propose that during the course of evolution plants including AIV evolved to direct root 

tissue repair machinery not only to repair disintegrated root tissues but also to orchestrate 

the containment, killing and expulsion of nematodes. 

African nightshade (S. villosum) cultivated by some small-scale farmers in Kenya was 

found to highly susceptible to all RKN species used in this study. Previous studies 

identified S. villosum and other related African nightshade that support high RKN 

reproduction (Nchore et al., 2013; Sikora et al., 2018). Care should be given not to grow 

such AIV species in RKN infested although African nightshade are resistant to PCN tested 

in this study. Solanum scabrum (narrow leaf) was found to be resistant against M. incognita 

but surprisingly it was found highly susceptible to M. javanica. This may indicate that the 

M. javanica population used in this study might have been dominated by virulent 

individuals which were able to overcome the contained resistance genes. This might be also 

responsible for the high reproduction of M. javanica on S. scabrum (narrow leaf). African 

spinach species used in this study were found to be resistant against several RKN species. 

The absence of egg masses on some AIV indicates that some of them are immune for the 

tested species of RKN. Interestingly, A. dubius (broad leaf) was found to be immune to the 

tested population of M. enterolobii. Meloidogyne enterolobii is notoriously known for its 

ability to reproduce on host plants carrying resistance genes against other RKN, including 
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resistant cotton, sweet potato, tomatoes (Mi-1 gene), soybean (Mir1 gene), potato (Mh 

gene), sweetpepper (Tabasco gene), bell pepper (N gene), and cowpea (Rk gene) (Berthou 

et al., 2003; Brito et al., 2007; Castagnone-Sereno, 2012; Cetintas et al., 2008; Fargette & 

Braaksma, 1990; Yang & Eisenback, 1983). To date very few non-hosts for M. enterolobii 

are have been documented, including sour orange, peanut, grapefruit and garlic (Brito et al., 

2004). It is now widely known that non-tuber bearing Solanaceae plants have the ability to 

stimulate PCN hatching. In fact, Scholte (2000) reported the ability of non-tuber bearing 

species in the Solanum genus to stimulate PCN hatching and to prevent further 

development of PCN. 

RKN are highly polyphagous in nature and PCN tend to be persistent in the soil, hence it is 

often very difficult to come up with an effective crop rotations in infested fields and such 

decision must be taken carefully (Wesemael et al., 2011). Our data showed that the tested 

AIV were poor to very good hosts to RKN species used. The studied AIV have been 

simultaneously grown by small-holder farmers including the RKN susceptible ones. Over 

time this encouraged built up of RKN in the soil. Therefore, the information generated by 

this study is important in designing crop rotation schemes and cropping systems to avoid 

yield losses caused by high RKN and PCN soil infestation. 
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1. Diagnosis of plant-parasitic nematodes  

Farmers in every region of the world struggle to protect their crops from plant-parasitic 

nematodes as well as other pests and diseases. In low-income countries the situation is direr 

due to inconsistent diagnostic procedures, insufficient knowledge of consistent 

management strategies, and unreliable access to crop protection products. Thus, most 

farmers are unprepared and ill-equipped to respond effectively to nematode problem. 

Hence, the economic impact of plant-parasitic nematodes is huge in low-income farming 

families who rely mostly upon harvest for their livelihoods and food. Accurate diagnosis of 

plant-parasitic nematodes is a pre-requisite for a successful implementation of management 

options. The limited ability to accurately identify plant-parasitic nematodes is likely to 

result in the inappropriate use and misuse of control measures, such as crop rotation, 

genetic resistance, or synthetic chemicals. However, the morphology of RKN and PCN is 

extremely conserved. The majority of nematode morphological traits are not taxonomically 

informative and they are associated with feeding and reproduction mechanism. Nematode 

morphology is rather dynamic, convergent evolution is widespread in nematodes rendering 

the determination of homological nematode morphological traits extremely difficult and 

impossible (Ragsdale & Baldwin, 2010). Consequently, morphological identification of 

nematodes specifically from the genera Meloidogyne is a time consuming task, requiring a 

great amount of expertise and high quality reference material. Morphological identification 

of nematode from the genera Globodera can also be challenging. To illustrate this the two 

species of genera Globodera were classified as one species until the 1970s, when they were 

divided into two species (Stone, 1972). With a trend towards cheap and rapid molecular 

approaches were introduced to complement morphological diagnosis (Powers, 2004). Thus 

in this thesis DNA barcoding was used to identify nematodes from the genera Meloidogyne 

and Globodera (Chapter 2 and 3). This information is important as it forms the basal tier of 

the integrated nematode management. This involves nematode surveillance actions before 

and after planting. Effective surveillance and diagnosis allows the farmers to prepare and 

equip effectively in order to respond effectively to potential nematode problem as our study 

have shown that M. enterolobii was not known in Kenya before as well as the new record 

of PCN in Kenya. 
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2. Mitochondrial genes and nematode identification 

In this study mitochondrial DNA barcoding proved to be very reliable for RKN and PCN 

(Chapter 2 and 3). The following barcode genes (i) cytochrome oxidase I (COI) and (ii) 

NADH dehydrogenase subunit 5 (NAD5) were used throughout this study. Mitochondrial 

DNA is often referred to as workhorse for evolutionary studies. Using mitochondrial DNA 

as barcode genes have the following advantages (i) ease of isolation and manipulation 

because the ratio of its copies to nuclear genome is high (ii) increased range of evolutionary 

rates due to protein genes + ribosomal genes + AT rich region (iii)  clonal and hence 

genetics simple because they are maternally inherited (iv) rapid change accommodates 

examining closely related organisms due to high mutation rate (v) clonal and hence genetics 

simple because genetic recombination is rare. Specifically, the ability of mitochondrial 

genes such as COI to give a clear nematode species resolution was also demonstrated in 

other eukaryotes (Hebert et al., 2003). Recently, it was demonstrated that COI can be used 

as a universal barcode gene for several nematodes (Derycke et al., 2010; Janssen et al., 

2017; Troccoli et al., 2016). More importantly mitochondrial NAD5 was successful used to 

identify root-knot nematodes belonging to the M. incognita complex (Janssen et al., 2016). 

 

3. Global distribution of plant-parasitic nematodes 

This research generated several mitochondrial haplotypes of RKN and PCN that revealed 

the geographical widespread of these nematodes. The mitochondrial haplotypes of RKN 

such as M. incognita, M. javanica, M. arenaria, M. enterolobii, and M. hapla were found to 

have a worldwide distribution (Chapter 2 and 3). Similarly, Janssen et al. (2016) found that 

RKN COI/NAD5 haplotypes were globally distributed. Within PCN a similar trend was 

observed. The global distribution of identical mitochondrial haplotypes favors the 

hypothesis that the global distribution was aided by human through agriculture practices 

and global trade networks, and most likely does not predate agriculture development 

(Castagnone-Sereno et al., 2013). We argued that if global distribution predates agriculture 

development then we would expect a much bigger variation in mitochondrial haplotypes 

from distant locations. For RKN reproducing by mitotic parthenogenesis this will be very 

true because different populations that have single nucleotide polymorphism would have 

remained. In sexual reproducing species, such as PCN, similar mitochondrial haplotypes 

indicates that the populations are not reproductively isolated. The distribution patterns of 
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PCN was previously reported to be mainly facilitated by anthropogenic activities including 

agriculture development (Banks et al., 2012; Blacket et al., 2018; Boucher et al., 2013; 

Plantard et al., 2008). Thus, globalization can impose major plant health challenges and 

plant-parasitic nematodes are emerging as the winners. Because of agriculture development 

activities such as international crop exchange, human aided dispersal has contributed to 

observed global distribution of many species of RKN and PCN. For example, PCN has 

become a concern in some parts of sub-Saharan Africa such as Kenya (Coyne et al., 2018; 

Mburu et al., 2018; Mwangi et al., 2015), threatening low-income farming families who 

depend upon the harvest for their livelihoods, nutrition, and food security. At continental 

level, mitochondrial haplotypes of highly damaging nematode species such as M. 

enterolobii are widespread (Chitambo et al., 2016; Coyne et al., 2018; Kolombia et al., 

2016; Onkendi et al., 2014), including RKN species such as M. paranaensis (Terra et al., 

2018), emphasizing the importance of human aided dispersal of plant-parasitic nematodes. 

On the other hand, typical tropical RKN are increasingly found in Europe and other cooler 

places (Bellé et al., 2016; Gerič Stare et al., 2017, 2018; Maleita et al., 2018; Wesemael et 

al., 2011). With the rapid globalization and the continued burden of imported cases of RKN 

and PCN to non-endemic countries, prioritizing nematode diagnosis, surveillance and 

control efforts is required. Many countries have adopted strict pest surveillance techniques 

for detecting quarantine nematodes. The aim of surveillance is to facilitate early detection 

of nematode incursions, so that their further spread is restricted and timely measures can be 

taken for their eradication. This approach has helped to reduce further spread of some 

nematode species in some parts of the world through careful trade control, but not in low-

income countries (Nicol et al., 2011). Farmers in low-income countries lack awareness of 

new nematode pest and effective management strategies, leaving them ill-equipped to 

respond effectively to existing and new nematode pests.  

 

4. Human aided nematode breaking down of biogeographical barriers as 

the main driver of multiple infections  

Biological invasions by alien nematode species are one of the primary ways in which 

human activities are contributing towards human-induced environmental change. Our 

research indicates that alien nematode species richness is a consequence of a combination 

of anthropogenic factors and biotic acceptance of introduced nematodes into areas already 
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rich in native nematode species. We detected alien nematode species such as M. hapla, G. 

rostochiensis, and G. pallida, which are usually found in temperate climates, in a moderate 

tropical climate. This indicates that areas of high native nematode species richness are not 

resistant to colonization by alien nematode species. In this context alien nematode species 

are capable of establishing viable populations and subsequently spread in their new 

location. This is well-illustrated  by the recent reports of alien PCN nematode species in 

many parts of Kenya (Coyne et al., 2018; Mwangi et al., 2015). In literature it is reported 

that alien species can adversely affect the native species to extinction (Clavero & García-

Berthou, 2005), however our research indicates that alien and native nematode species can 

coexist. This is well supported by the global distribution of mitochondrial haplotypes of 

RKN and PCN, implying that multiple nematode infections are plausible (Chapter 2 and 3). 

Given the often inconspicuous nature of the plant-parasitic nematode symptoms on plants 

and lack of clear morphological differentiation among the species, nematode multiple 

infections are underestimated. However, with molecular tools available to study plant-

parasitic nematodes (Seesao et al., 2017), we now know that multiple infection exists 

(Chitambo et al., 2018; Kolombia et al., 2017), and may alter the within-host parasitism. 

Changes in within-host infection dynamics under multiple infection (Mideo, 2009; de 

Roode et al., 2005), may have significant impact for between-host dynamics and spread of 

nematodes. To support this we reported that M. hapla facilitates the establishment and 

reproduction of M. javanica on a host plant Parthenium hysterophorus (Chitambo et al., 

2018). Since our data demonstrates that introduced nematode species can establish in new 

environment, these established nematode populations can therefore act as the source of 

additional secondary introductions making the nematode invasion process a self-reinforcing 

process. Thus access to consistent and effective plant-parasitic nematode protection 

products is required. . Our research indicates that the mitochondrial haplotypes generated in 

this study are widespread underpinning the need for an effective nematode surveillance and 

control efforts in low-income countries. 

 

5. Borderless plant-parasitic nematodes meet AIV 

AIV including African nightshade (S. scabrum and S. villosum) and African spinach (A. 

dubius and A. cruentus) are neglected and underutilized crops, but have been a part of 

farming practices and nutrition in traditional societies in Africa. In low-income countries 
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nutritional imbalances are increasing, characterized by growing diet-related, non-

communicable diseases and persistent undernutrition (NCD Risk Factor Collaboration, 

2016; Stevens et al., 2012). In these countries small-scale farmers faces structural 

inequalities that results in marginalization and oppression that have contributed to the 

destruction of indigenous food systems and favors global agribusiness interests and 

commodity speculation. AIV have been downgraded to neglected and underutilized by 

modern agricultural systems that promote cultivation of a very limited number of crop 

species; in fact four crops - maize, soybean, rice, and wheat - account for ~56% of the 

protein and ~60% of the calories that humans consume directly from plants (Jacobsen et al., 

2015; Lenne & Wood, 2011). AIV are indispensable in reducing food and nutrition 

insecurity in low-income farming families (Gahukar, 2014; Gido et al., 2017; Mayes et al., 

2011), but have been relegated to the sidelines. Thus, there has been public awareness of 

these species through organizations such as the Global Plan of Action and Convention on 

Biological Diversity in 1992 (Virchow, 2003). A number of organizations, including 

Federal Ministry for Economic Cooperation and Development (BMZ), funded the projects 

“Horticultural Innovation and Learning for Improved Nutrition and Livelihood in East 

Africa” and “AIV-IPM Project” which focused on investigating, and promoting these crops 

as a strategy to improve livelihoods and nutrition of low-income countries. It’s a timely 

quest.  More recently new challenges have emerged in low-income farming systems further 

threatening the sustainability of food production in Africa. Reports of introduced pests and 

diseases attacking important food crops were reported in Africa. The fall armyworm 

(Spodoptera frugiperda) is rapidly spreading across Africa with an astonishing speed 

devouring on staple crops such as  maize (Day et al., 2017). An outbreak of Maize Lethal 

Necrosis disease was reported on maize in several African countries (Mahuku et al., 2015). 

For example the economic impacts of alien species: Maize Lethal Necrosis, Chilo partellus, 

Parthenium hysterophorus, Tuta absoluta and Liriomyza spp. in six low-income countries 

under mixed maize is estimated at annual losses of US$0.9-1.1 billion; and future annual 

losses are expected to increase (Pratt et al., 2017). Highly damaging plant-parasitic 

nematodes such as PCN (G. rostochiensis and G. pallida) were recently reported in Kenya 

parasitizing potato (Mburu et al., 2018; Mwangi et al., 2015). PCN are considered 

quarantine pests of potatoes in many parts of the world and are subject of stringent 

regulations in most countries (EPPO/CABI, 1997). More worringly, polyphagous RKN 

including M. enterolobii continues to expand into new regions rapidly (Chitambo et al., 

2016; Coyne et al., 2018; Onkendi et al., 2014), threatening to destroy crop yields 
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completely. Thus, farmers in low-income countries grapple with many challenges ranging 

from environmental change, migration, pest and disease outbreaks. Therefore, it is 

important for the smallholder farmers to adopt cropping systems that offers adequate 

nutrition and health, reduce dependence on external inputs, such as chemical pesticides and 

fertilizers, and environmental  stress-resilience and resistance to emerging pests and 

diseases. African nightshade and African spinach are nutritious crops offering many health 

benefits and they are adapted to the local conditions. However, their host status to plant-

parasitic nematodes was unknown. Thus, this research was carried out within “AIV-IPM 

Project” after the realization that plant-parasitic nematode problem in low-income farming 

systems is intractable and is a major constraint to attaining food and nutrition security. 

There was a lack of information on identity of RKN and PCN species on these AIV, their 

host status to RKN and PCN, and the impact of these crops on RKN and PCN dynamics. 

Traditionally these interlinked components are studied in a siloed context. This undermines 

the importance of nematode diagnosis and its link to the implementation of an effective 

management strategy. Our research has shown that accurate diagnosis of RKN and PCN 

will help provide proper implementation of an effective management decision. We 

identified A. dubius and S. scabrum with the ability to suppress RKN species identified in 

this study, whereas S. scabrum and S. villosum suppress the identified PCN species 

(Chapter 3). Solanum scabrum suppress both RKN and PCN identified in this study (Figure 

6). Therefore, AIV that showed RKN and PCN suppression can be used as ideal cover 

crops for management of both of these groups of nematodes or rotational crops, or relay 

crops etc. Integrating these crops in low-income cropping system as cover crops, rotational 

crops or relay crops has several advantages including nematode control and dietary 

diversification. Elsewhere, cover crops are used in various production systems to provide 

many benefits such as pest and disease management, addition of organic matter to soil, and 

increased productivity of cash crops. For example the use of cover crops in the 

Brassicaceae family such as oilseed radish, white mustard, and winter rapeseed decreased 

sugar beet cyst nematode population densities (Lelivelt and Hoogendoorn 1993; Wen et al. 

2017). Moreover, it is now well established that intercropping increases parasitism of pests 

(Khan et al., 1997; Turlings & Erb, 2018). AIV with the ability to suppress nematodes 

allows the smallholder farmers to manage plant-parasitic nematodes in a productive way 

while meeting the nutrition requirements in low-income countries where large inequalities 

in food availability exist. The cultivation AIV is a way of promoting locally adapted crop 

species that will lead to sustainable intensification (figure 6).  
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Figure 6. The impact of African indigenous vegetables (AIV: African nightshade and 

African spinach) cultivation under low-income farming system. AIV such as Amaranthus 

dubius, A. cruentus, and Solanum scabrum can suppresses root-knot nematodes (RKN) 

whereas S. scabrum and S. villosum can suppress potato cyst nematodes (PCN). The 

mechanistic of nematode suppression can be bottom-up through the direct interference with 

nematode lifecycle (this study) or top-down through conservation of nematode natural 

enemies (not investigated). The outcomes are RKN and/or PCN suppression and enhanced 

yield that can lead to sustainable intensification. This sustainable intensification is strongly 

linked to nutrition performance by the cultivation of nutrient dense AIV. The cultivation of 

AIV is a way of strengthening agro-biodiversity in order to enhance the resilience of 

cropping systems thereby promoting balanced and healthy diet to local consumers.  

 

6. AIV root tissue necrosis and disintegration orchestrate the 

containment, starving, and expulsion of parasitic nematodes 

 The ability of RKN and PCN to survive in the host plant is the result of adaptation or co-

evolution between host plant and the nematode (Hussey & Grundler, 1998), thus despite 

their large size (compared to other pathogens) they are able to survive inside root tissue. It 

is therefore necessary for these nematodes to locate a suitable host plant and establish an 

immunoregulatory environment which ensures their survival and reproduction (Goverse & 

Smant, 2014). Otherwise, the host plant would be able to generate an effective anti-

nematode response that will result in containment, starving, and expulsion of nematodes. 
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Root tissue necrosis and disintegration observed on resistant AIV species is an indication of 

plant cell death in response to nematode infection (Chapter 4). The potential beneficial 

outcomes of root necrosis and disintegration could be: (1) the removal of an intracellular 

environment for nematodes, (2) direct nematicidal activity of released components and (3) 

the amplification and propagation of anti-nematode response. The removal of intracellular 

niche for the nematode mean that a functional feeding site cannot be established hence the 

nematode cannot obtain the necessary nutrients it needs for development and survival. The 

removal of intracellular environment could be initiated by the presence of intracellular 

receptors which contain nucleotide-binding site (NBS) and a C-terminal leucine rich repeat 

(LRR) region. There are a number of NB-LRR disease resistance (R) genes that are known 

to protect plants against a myriad of pathogens including nematodes (Vos et al., 1998; 

Williamson & Hussey, 1996; Williamson & Kumar, 2006). Tomato genes Hero A and Mi- 

1 confer broad spectrum against several RKN species (Milligan et al., 1998; Vos et al., 

1998) including several pathotypes of PCN species (Ernst et al., 2002). In contrast, Gpa and 

Gro- 4 isolated from potato (Paal et al., 2004), confers resistance to limited range of 

pathotypes of a single PCN species. In our study one species of African nightshade, S. 

scabrum showed full resistance against RKN and PCN species. Recent mapping studies 

have indicated that genes conferring resistance to various pathogens, including RKN and 

PCN are often organized in clusters. For example, genes conferring resistance to RKN 

species (N and the Me genes), bacterium Xanthomonas campestris pv. vesicatoria and 

potyviruses PVY (0) and PVY and Phytophthora capsici (two QTLs) have been mapped to 

the same region of the pepper P9 chromosome (Djian-Caporalino et al., 2007; Tai et al., 

1999; Thabuis et al., 2003). Thus in our study resistant AIV may contain several R genes 

which are involved plant innate immune response that serve as surveillance proteins to 

protect them from several nematode species and other pathogens (chapter 4). Several 

studies have demonstrated that R genes initiate an early hypersensitive response like 

reaction that can prevent the successful formation of a functional nematode feeding site 

(Dropkin et al., 1969; Goverse & Smant, 2014; Kyndt et al., 2014; Postma et al., 2012; 

Williamson & Kumar, 2006). The possibility of anti-nematode activity of intracellular 

components released during root necrosis is possible. The AIV used in this study are known 

to have high concentrations of secondary plant metabolites (Neugart et al., 2017; Ronoh et 

al., 2018), and it known that such compounds e.g. pyrrolizidine alkaloids and steroid 

glycoalkaloides possess antimicrobial, insecticidal, and nematicidal properties (Chowański 

et al., 2016; Jared et al., 2016; Thoden et al., 2007, 2009; Tingey, 1984). Root tissue 
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necrosis inevitably release intracellular damage-associated molecular patterns (DAMPs) 

which can amplify and propagate anti-nematode response. DAMPs activate innate immune 

cell receptors acting similarly to pathogen-associated molecular patterns (PAMPs) when 

exposed to the extracellular environment. Damage-associated responses of the host is 

known to contribute to defence against nematodes (Holbein et al., 2016; Shah et al., 2017). 

Hence, a vicious loop might be created whereby root necrosis generates DAMPs and 

DAMPs create pro-necrosis state. Our study has shown that resistant AIV have the ability 

to induce localized root tissue necrosis and disintegration thereby thwarting nematode 

infection. 

 

7. General conclusion 

The transport of plant-parasitic nematode species beyond their native ranges by human 

activities is violating biogeographical boundaries and resulting in the global reorganization 

of plant-parasitic nematodes. The resulting plant-parasitic nematode invasion have plagued 

farmers and is a major threat to crop yields of low-income families who depend upon the 

harvest for their livelihoods and food. The problem is aggravated by the reliance on a very 

limited number of crop species that support the reproduction of theses nematodes. Thus, 

RKN and PCN are increasingly becoming a global plant health concern due to their rapid 

geographical spread and increasing yield loss on most cultivated crops. Our research 

demonstrated that alien PCN and RKN are capable of establishing viable populations and 

subsequently spread in their new location. We established that areas of high native 

nematode species richness are not resistant to colonization by alien nematode species and 

highlight the possible outcomes to global environments from introduced nematode species. 

The global distribution of mitochondrial haplotypes show that patterns of nematode 

invasion are governed to a large extent by agricultural activities connecting source areas for 

non-native species and the dispersal of those species through human activities e.g. the 

recent introduction of PCN and first report of RKN; M. enterolobii in Kenya. In the 

globalized economy, it is very difficult to avoid the transportation of quarantine nematodes. 

Thus the current strategy to minimize the transportation of quarantine nematodes has not 

been effective enough to keep up with the mobile society. For instance, it is highly probable 

that PCN species detected in Kenya managed to invade one place, survive, and then were 

transported to other places within the country. Similarly RKN species such as M. hapla and 
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M. enterolobii could have been introduced via the same pathway. This indicates that a 

bridgehead effect is a major driver for parasitic nematode transportation to new geographic 

locations e.g. through trading and exchanging of planting materials such as potato seeds. 

This underpins the need for developing a prognostic framework to improve risk assessment, 

diagnosis, surveillance, and biosecurity for quarantine nematodes invasions in low-income 

countries. The current study demonstrated that nematode diagnosis of RKN and PCN will 

help provide proper implementation of an effective management decision. Accurate 

nematode identification, maintaining surveillance, and establishing rigorous monitoring 

will allow appropriate quarantine actions to be taken. For example, the detection of 

damaging nematode species such as M. enterolobii and G. rostochiensis in Kenya will 

require the implementation of timely scientific, technical, and policy responses. Thereafter, 

actions leading to effective management to prevent further spread and limit the impacts of 

these nematodes are required. We identified A. dubius and S. scabrum with the ability to 

suppress RKN species identified in this study, whereas S. scabrum and S. villosum suppress 

the identified PCN species. Solanum scabrum suppress both RKN and PCN identified in 

this study. According to our results these crop species can be used to manage RKN and 

PCN. We recommend that growers intending to simultaneously control PCN and RKN 

should use S. scabrum. Although S. villosum was able to suppress PCN it is highly 

susceptible to RKN and should not be used where RKN are detected. This finding is a 

major relief to the resource constrained smallholder farmers who are overburdened by 

plant-parasitic nematodes, pests and diseases as well as nutritional challenges. The 

reintroduction of AIV species into the existing cropping systems is a way of promoting 

agro-biodiversity to improve resilience to plant-parasitic nematodes, pests and diseases as 

well as dietary diversification in low-income farming systems. AIV such as African spinach 

and African nightshade is a representation of the many untapped local varieties that can be 

exploited as resource-efficient, resilient food value chains that can provide safe, affordable, 

and nutritious food. Therefore, this approach can be used as a simple management strategy 

for RKN and PCN in an environmentally friendly, effective, and productive way.  

 

8. Outlook 

 Improved diagnosis, monitoring, and surveillance is urgently needed as it will 

reveal greater levels of parasitic nematode invasion especially that the risks of 

invasion are shifting rapidly owing to growing transportation networks, landscape 
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transformation, new agriculture technology, climate change, and geopolitical 

events. This will provide a strong incentive to study and predict future nematode 

distributions as well as their impact on crop production. This requires 

development of interdisciplinary coordination of expertise and response at local, 

regional, and global level. 

 Although plant-parasitic nematodes co-infections have been established, the 

implication of this co-existence on nematode establishment, spread, and host plant 

damage in the new environment remains largely unknown. It is important to 

understand the life history traits of RKN and PCN and how they interact with each 

other and the impact on crop yields. 

 Genomics-assisted breeding can be used to introgress loci of nematode resistance 

into other related crop species that are susceptible to parasitic nematodes. 

Genomics-assisted breeding techniques can also be used to improve the traits of 

AIV such as leaf yield and grain yield.  

 Multi-environmental participatory testing and end-user evaluation of the resistant 

AIV in order to address the persistent problem of plant-parasitic nematodes while 

simultaneously tackling the problem of food and nutritional security and soil and 

water conservation under low-income farming systems. 

 To preserve AIV biodiversity and enhance their utilization, participatory approach 

in the form of dialogue among farmers, researchers and final consumers is needed. 

This will help to address the current challenges in low-income farming systems 

that range from biotic stress (e.g. plant-parasitic nematodes), abiotic stress, and 

malnutrition as stated above. However this scenario requires an accurate 

identification and knowledge of the involved AIV species. AIV identified by their 

common name (e.g., African nightshade or African spinach or amaranth) could 

comprise of a number of species, hybrids, and varieties. Efficient and effective 

analytical tools such as DNA-based methods can be used to accomplish this 

mission. This will lead to commercialization and support AIV traceability along 

the entire supply chain resulting in new market opportunities for novel food 

products at local and global scale. DNA based identification of AIV will also 

support the fair and equitable sharing of benefits of genetic resources arising from 

their exploitation. 
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