
Inaugural-Dissertation
zur Erlangung des Grades

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)
der Landwirtschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn
Institut für Geodäsie und Geoinformation

Visual PlaceRecognition
inChangingEnvironments

von

Olga Vysotska
aus

Kyjiw, Ukraine

Bonn 2019

Referent:
Prof. Dr. Cyrill Stachniss, Friedrich-Wilhelms-Universität Bonn

1. Korreferent:
Prof. Dr. Margarita Chli, Eidgenössische Technische Hochschule Zürich

2. Korreferent:
Prof. Dr. Wolfram Burgard, Albert-Ludwig Universität Freiburg

Tag der mündlichen Prüfung: 23 September 2019

Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe
Dritter und ohne Benutzung anderer als der angegebenenen Hilfsmittel angefer-
tigt habe; die aus fremdem Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähn-
licher Form in keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht
veröffentlicht.

Ort, Datum (Unterschrift)

Zusammenfassung

Mobile Roboter, selbstfahrende Autos und andere autonome mobile Systeme
müssen wissen wo sie sich in der Umgebung befinden, um effizient navigieren
zu können. Diese Fähigkeit bezeichnet man als Lokalisierung. Man unterscheidet
dabei zwischen Systemen, die Ihre Position ohne Vorwissen bestimmen können
und als globale Lokalisierungsmethoden bezeichnet werden, und Systemen, die
von einer gegebenen Startposition aus ein sogenanntes Verfolgen der Position
(Tracking) durchführen.

Diese Arbeit beschäftigt sich mit einer speziellen Form der globalen visuellen
Lokalisierung, die oft als Ortserkennung bezeichnet wird. Dabei geht es in er-
ster Linie nicht um die Bestimmung der Position des Roboters in Form einer
Koordinate in einem festen Koordinatensystem. Der Roboter soll stattdessen
basierend auf Kamerabildern einen Ort wiedererkennen, den er bereits in der Ver-
gangenheit besucht und wahrgenommen hat. Auch wenn sich dies für uns Men-
schen nach einem einfachen Problem anhört, stellt diese Aufgabe für technische
Systeme eine große Herausforderung dar. Einer der Gründe liegt dabei in der
kontinuierlichen Veränderung des Erscheinungsbilds eines Ortes, bedingt durch
Beleuchtung, Wetterbedingungen, Jahreszeiten oder andere auf Menschenhand
zurückführende Veränderungen. Auch haben starke Veränderungen der Aufnah-
meposition einen signifikanten Einfluss auf die aufgenommenen Bilder und daher
die Erkennung eines Ortes. All diese Effekte verändern die Art und Weise, wie
der gleiche Ort im Bild dargestellt wird und dies kann zu Situationen führen, in
denen es selbst für Menschen schwierig ist Orte wiederzuerkennen. Das zuverläs-
sige Wiedererkennen beliebiger Orte unter solchen Veränderungen ist daher ein
komplexes Problem.

In der Robotik spielen visuelle Sensoren oft eine zentrale Rolle, wenn es um die
Wahrnehmung der Umgebung geht. Sie sind neben Lasersensoren die vermutlich
am häufigsten genutzten Sensoren, was auf Preis, Größe und Gewicht zurück-
zuführen ist. Daher findet man auch eine Vielfalt an innovativen Anwendungen
aus dem Bereich der virtuellen und erweiterten Realität (Virtual and Augmented
Reality), des autonomen Fahrens oder der Logistik, die auf Kameras basieren.
Fast alle diese Anwendungen benötigen eine Lokalisierung, d.h. sie müssen wis-
sen, wo sich das System aktuell befindet. Daher ist diese Arbeit für autonome

v

Systeme relevant, die sich auch unter kontinuierlich ändernden Umweltbedingun-
gen zurechtfinden müssen.

Ein zentraler Beitrag dieser Arbeit ist der Ansatz sich von der Erkennung
aus Einzelbildern zu lösen und Bildsequenzen zu nutzen. Dies ist möglich, da
autonome Systeme ihre Sensordaten sequentiell erfassen und nicht in zufälliger
Reihenfolge. Daher formulieren wir in dieser Arbeit das Problem der visuellen
Ortserkennung unter starken optischen Veränderungen als das Problem Bildse-
quenzen, die zu verschiedenen Zeitpunkten aufgenommen wurde, zu registrieren.
Eine wichtige Erkenntnis ist, dass dadurch zeitweise Mehrdeutigkeiten in den
Datenzuordnungen reduziert oder sogar vollständig aufgelöst werden können. Um
die Suche nach Bildsequenzkorrespondenzen zu formulieren, nutzen wir gerichtete
azyklische Datenassoziationsgraphen. Die Knoten in einem solchen Graphen
modellieren potentielle Übereinstimmungen zwischen Bildern, während die Kan-
ten gleichzeitig die Ordnung der Aufnahmesequenz bewahren. Der kürzeste Weg
durch einen solchen Assoziationsgraphen liefert dann die besten Einzelbildkorres-
pondenzen gegeben die Sequenzinformation.

In dieser Arbeit betrachten wir verschiedene Varianten dieses Problems. Dies
beinhaltet Online-Verfahren, um zu jedem Zeitpunkt der Navigation die beste
Lokalisierungsschätzung zu berechnen, ohne alle Bilder erneut betrachten zu
müssen. Des Weiteren untersuchen wir in wie weit andere Lokalisierungsquellen
wie beispielsweise GNSS Informationen mit unserem Verfahren verknüpft werden
können. Eine Herausforderung bei der Lokalisierung mittels Datensequenzen ist
es, Orte online wiederzuerkennen, auch wenn der Roboter den bekannten Umge-
bungsbereich verlassen hat, d.h. eine gewisse Zeitlang nicht lokalisiert werden
konnte.

Fast alle visuellen oder auf Lasersensoren basierenden Lokalisierungssysteme
und so auch die von uns vorgeschlagenen Verfahren, haben den Nachteil, dass
Orte zwar wiedererkannt werden können, aber die Positionsbestimmung in einer
zuvor nicht befahrenen Umgebung nicht gut möglich ist. Um einen Roboter in die
Lage zu versetzen sich auch in großflächigen Umgebungen zu lokalizieren, ohne
das explizite Sammeln eines Referenzdatensatzes zu verlangen, schlagen wir des
Weiteren Verfahren vor, die auf öffentlich zugänglichem Bild- und Kartenmaterial
wie Google Street View oder OpenStreetMap Daten aufbauen. Dadurch kann
eine explizite Kartensammelphase durch den eigenen Roboter vermieden werden.
Unser Verfahren ermöglicht es, automatisch eine Ortserkennung auf dieser Art
von Daten durchzuführen.

Alle in dieser Arbeit beschriebenen Ansätze wurden in Form von peer-reviewed
Konferenzbeiträgen und Zeitschriftenartikeln veröffentlicht. Darüber hinaus wur-
den die meisten der präsentierten Beiträge als quelloffene Software veröffentlicht.

vi

Abstract

Localization is an essential capability of mobile robots and place recognition is an
important component of localization. Only having precise localization, robots can
reliably plan, navigate and understand the environment around them. The main
task of visual place recognition algorithms is to recognize based on the visual
input if the robot has seen previously a given place in the environment. Cameras
are one of the popular sensors robots get information from. They are lightweight,
affordable, and provide detailed descriptions of the environment in the form of
images. Cameras are shown to be useful for the vast variety of emerging appli-
cations, from virtual and augmented reality applications to autonomous cars or
even fleets of autonomous cars. All these applications need precise localization.
Nowadays, the state-of-the-art methods are able to reliably estimate the position
of the robots using image streams. One of the big challenges still is the ability
to localize a camera given an image stream in the presence of drastic visual ap-
pearance changes in the environment. Visual appearance changes may be caused
by a variety of different reasons, starting from camera-related factors, such as
changes in exposure time, camera position-related factors, e.g. the scene is ob-
served from a different position or viewing angle, occlusions, as well as factors
that stem from natural sources, for example seasonal changes, different weather
conditions, illumination changes, etc. These effects change the way the same
place in the environments appears in the image and can lead to situations where
it becomes hard even for humans to recognize the places. Also, the performance
of the traditional visual localization approaches, such as FABMAP or DBow,
decreases dramatically in the presence of strong visual appearance changes.

The techniques presented in this thesis aim at improving visual place recogni-
tion capabilities for robotic systems in the presence of dramatic visual appearance
changes. To reduce the effect of visual changes on image matching performance,
we exploit sequences of images rather than individual images. This becomes pos-
sible as robotic systems collect data sequentially and not in random order. We
formulate the visual place recognition problem under strong appearance changes
as a problem of matching image sequences collected by a robotic system at dif-
ferent points in time. A key insight here is the fact that matching sequences
reduces the ambiguities in the data associations. This allows us to establish im-

vii

age correspondences between different sequences and thus recognize if two images
represent the same place in the environment. To perform a search for image cor-
respondences, we construct a graph that encodes the potential matches between
the sequences and at the same time preserves the sequentiality of the data. The
shortest path through such a data association graph provides the valid image
correspondences between the sequences.

Robots operating reliably in an environment should be able to recognize a
place in an online manner and not after having recorded all data beforehand. As
opposed to collecting image sequences and then determining the associations be-
tween the sequences offline, a real-world system should be able to make a decision
for every incoming image. In this thesis, we therefore propose an algorithm that
is able to perform visual place recognition in changing environments in an on-
line fashion between the query and the previously recorded reference sequences.
Then, for every incoming query image, our algorithm checks if the robot is in
the previously seen environment, i.e. there exists a matching image in the refer-
ence sequence, as well as if the current measurement is consistent with previously
obtained query images.

Additionally, to be able to recognize places in an online manner, a robot
needs to recognize the fact that it has left the previously mapped area as well as
relocalize when it re-enters environment covered by the reference sequence. Thus,
we relax the assumption that the robot should always travel within the previously
mapped area and propose an improved graph-based matching procedure that
allows for visual place recognition in case of partially overlapping image sequences.

To achieve a long-term autonomy, we further increase the robustness of our
place recognition algorithm by incorporating information from multiple image se-
quences, collected along different overlapping and non-overlapping routes. This
allows us to grow the coverage of the environment in terms of area as well as
various scene appearances. The reference dataset then contains more images to
match against and this increases the probability of finding a matching image,
which can lead to improved localization. To be able to deploy a robot that per-
forms localization in large scaled environments over extended periods of time,
however, collecting a reference dataset may be a tedious, resource consuming and
in some cases intractable task. Avoiding an explicit map collection stage fosters
faster deployment of robotic systems in the real world since no map has to be
collected beforehand. By using our visual place recognition approach the map col-
lection stage can be skipped, as we are able to incorporate the information from
a publicly available source, e.g., from Google Street View, into our framework
due to its general formulation. This automatically enables us to perform place
recognition on already existing publicly available data and thus avoid costly map-
ping phase. In this thesis, we additionally show how to organize the images from

viii

the publicly available source into the sequences to perform out-of-the-box visual
place recognition without previously collecting the otherwise required reference
image sequences at city scale.

All approaches described in this thesis have been published in peer-reviewed
conference papers and journal articles. In addition to that, most of the presented
contributions have been released publicly as open source software.

ix

Acknowledgements

I would like to take time and explicitly thank people who made this exciting PhD
journey possible.

Firstly, I would like to thank my brilliant supervisor Cyrill Stachniss for his
guidance, patience, and support throughout these years. Without his care, this
amazing scientific journey would not be possible for me. He spotted me in times
no one else knew me, took me under his wing, educated me, and gave me the
opportunity to evolve as a researcher, a teacher, and a person by sharing his
priceless knowledge and experience. I thank him for the unconditional support
and kind words when the times got rough and providing an environment where
I could feel welcome, appreciated, and valued. I am extremely thankful for shar-
ing the funs and rushes of late night deadlines, conference trips, and scientific
discussions. Thank you, Cyrill, for believing in me and giving me a chance.

Secondly, I want to thank my dear friends that shared this experience with
me and were by my side in times of happiness and sorrows. I would like to thank
Nived Chebrolu for the infinite pleasant talks filled with science and flavored with
philosophies. Thank you for teaching me to cherish every moment in life, every
creature, and for making me a more optimistic and positive person. I am also
grateful to Lorenzo Nardi for being a friend every one wants to have, a friend I
could rely on in any situation. Furthermore, I want to thank my American friend
and supervisor David Rosen for showing me that math can be easy, answering
all my challenging questions and patience to explain things for me over and over
again in simpler and simpler English. I also would like to thank Raul Mur-Artal
for explaining me tips and tricks about the visual odometry. I am grateful also
to Maxim Tatarchenko for scientific and life encouragements and mental support
during my PhD. Moreover, I would like to thank my friends and lab mates Andres
Milioto, Emanuele Palazzolo, Philipp Lottes, Jens Behley, Thomas Läbe, Ignacio
Vizzo, Maren Bennewitz, and Ribana Roscher for making my time in the office a
pleasant one and for sharing the joys and funs at the various conferences. I would
also like to thank Susanne Wenzel for sharing the office with me and introducing
me to the world of photogrammetry. I would also like to express my sincere
gratitude to Birgit Klein, who supported me throughout this time in a battle
against administrative hassle and gave me the invaluable lessons on the German

xi

language no traditional courses could teach.
There are many more people with whom I collaborated and interacted through-

out these years and I would like to thank them for shaping my world in their own
unique ways: Giorgio Grisetti, Michael Ruhnke, Wolfram Burgard, Tim Caselitz,
Noha Radwan, Pratik Agarwal, Nichola Abdo, and Christoph Sprunk.

My family has a special place in my life and I would like to thank my parents
for their care and support since I can remember myself and a little bit before
that. Thank you for always have confidence in me, guiding me, and pushing me
towards new horizons and beyond.

Last but not least, I would like to thank Igor Bogoslavskyi for the years of
continuous, strong, comprehensive support, pure faith in me and my abilities,
kind and strong words of encouragement and a sane dose of criticism. Thank you
for always... always being there for me.

xii

Contents

Zusammenfassung v

Abstract vii

1 Introduction 1
1.1 Main contributions . 3
1.2 Publications . 4

2 Basic techniques 7
2.1 Matching a pair of images . 7
2.2 Evaluations of image matches . 9

2.2.1 Precision recall . 9
2.2.2 F1 score . 12
2.2.3 Accuracy . 13

I Visual place recognition 15

3 Image sequences matching as a graph search problem 17
3.1 Constructing a graph . 19

3.1.1 Real world example . 24
3.2 Efficient matching using pose priors 25

3.2.1 Edges . 27
3.2.2 Edge costs . 29
3.2.3 Normalization of the edge costs 30

3.3 Complexity . 31
3.4 Experiments . 31
3.5 Conclusion . 36

4 Lazy data associations for online image sequence matching 37
4.1 Lazy matching for online operation 38

4.1.1 Data association graph . 39

xiii

CONTENTS

4.1.2 Computing image similarity based on features from deep
convolutional neural networks 42

4.1.3 Image sequence matching through graph search 42
4.1.4 Exploiting location priors for online matching 46

4.2 Experimental evaluation . 47
4.2.1 Matching performance . 49
4.2.2 Node expansion . 51
4.2.3 Exploitation of additional location priors 53
4.2.4 OverFeat vs. HOG features 54
4.2.5 Timing . 54

4.3 Conclusion . 55

5 Hashing-based relocalization for place recognition with flexible
trajectories 57
5.1 Robust image matching costs with CNN features 58
5.2 Efficient relocalization . 59
5.3 Loopy reference sequences . 62
5.4 Experimental evaluation . 63

5.4.1 Matching performance and localization recovery 64
5.4.2 Hashing comparison . 69
5.4.3 Loops in reference sequences 71

5.5 Conclusion . 71

6 Visual place recognition against multi-sequence maps 73
6.1 Adapting the data association graph structure 75
6.2 Experimental evaluation . 77

6.2.1 Evaluation setup . 78
6.2.2 Datasets . 80
6.2.3 Experimental results . 80
6.2.4 Timings . 82
6.2.5 Limitations . 83

6.3 Conclusion . 83
6.4 Conclusion for Part I of this thesis 84

II Exploiting publicly available information 87

7 Visual place recognition against Street View data 89
7.1 Leveraging Google Street View for multi-trajectory visual place

recognition . 90
7.2 Extracting streets from OpenStreetMap 91

xiv

CONTENTS

7.3 Experimental evaluations . 94
7.4 Conclusion . 98

8 Improving robot localization using publicly available maps 101
8.1 Graph-based SLAM exploiting existing maps as background knowl-

edge . 103
8.2 Error function exploiting existing maps 105
8.3 Error function exploiting building information for robots equipped

with laser range scanners . 106
8.4 Error minimization . 108
8.5 Estimating localizability for actively reducing pose uncertainty . . 109
8.6 Experiments . 111

8.6.1 SLAM exploiting OpenStreetMap data 112
8.6.2 Map inconsistencies . 113
8.6.3 Execution time . 114
8.6.4 Active localization . 116

8.7 Conclusion . 117

9 Related work 121
9.1 Describing an image with features 121
9.2 Visual place recognition . 126
9.3 Improving localization of the robots using publicly available data 130

10 Conclusion 135

xv

Chapter 1

Introduction

Autonomy is one of the crucial prerequisites for the robots to become a part of
our daily lives. For a system to be truly autonomous it should fulfill the range
of the tasks: understanding where it is, reasoning about the environment, being
able to perform tasks and all of these without human intervention. The first
step for the mobile systems to achieve full autonomy is to be able to estimate
its location in the environment and understand how the environment looks like:
is it dynamic or static, are there buildings or people nearby, where the robot
can go, and where the environment is unfavorable for the robot to be in. The
process of estimating the robot’s pose or localization is only possible if there is a
representation of the environment, called a map. Therefore, before the robot can
start localization it needs the map, or to build a map to localize within. Typical
robot operations start with building a map of the environment and the localization
stage comes afterward. Another approach is to continuously perform localization
simultaneously to mapping and is known as the Simultaneous Localization and
Mapping (SLAM) problem. In both cases, localization is one of the main parts.
For the robots to reason if they are in location, where they have been previously,
they need to have an ability to recognize the place given the sensor inputs.

Nowadays, one of the popular sensors are the cameras due to the range of
attractive properties. The cameras have typically small size so that it can be
carried by a small drone, are easier to deploy in comparison to LiDAR, energy
efficient, and costs less. Another property of the camera sensor mounted on a
robotic system is the fact that the images come in sequential order in the form
of image streams. In particular, the approaches that perform visual localization
rely on the stream of images to estimate the robot’s pose based on visual input.

To be able to localize a robot within a given environment, the system should
be able to recognize a similar place given the sensor measurements. Visual place
recognition solves the problem of recognizing similar places based on visual data.
There exist a variety of approaches that perform visual place recognition from

1

Figure 1.1: The same place in the environment can undergo dramatic visual appearance changes
induced by seasons, time of day, and dynamic objects change. Left: Image taken in summer
afternoon. Right: Image taken during winter morning.

the visual input among others are ORB-SLAM by Mur-Artal et al. [95] and LSD-
SLAM by Engel et al. [40]. Both systems use local image feature descriptors to
match places and achieve persistent localization results. However, the problem
is far from being solved for robots to be deployed in outdoor environments for
extended periods of time. Nowadays, the main challenge of recognizing if two
images represent the same place comes from the fact that the visual appearance
of the places may change dramatically between the points in time when the
environment was mapped and the times the robot revisits the same place again.

Typical changes that make a place look differently are viewpoint changes, due
to rotated and shifted camera, illumination changes that come from the natural,
as well as artificial sources, seasonal changes or changes, caused by dynamic
objects. The visual appearance changes in outdoor environments have a bigger
effect on recognition because they tend to severely change the appearance of the
place. Figure 1.1 depicts an example of how seasonal changes as well as the
time of day changes influence the visual appearance of the same place. Another
particular challenge in this setup is the absence of a building in the winter image.
In this thesis, we investigate the problem of visual place recognition in changing
environments that experience dramatic visual appearance changes.

The task of recognizing if two images show the same place can be challenging
not just for the computer systems but also for humans, especially if the appear-
ance was influenced by substantial changes. For humans, the task of associating
images becomes simpler whenever the images come in the sequential order. In
that way, people first establish a data association between a pair of images and
later make a decision if the consecutive pairs also match.

In typical robotics applications, the information from the sensor also comes
in a sequential manner rather than in random order. We exploit this property
and approach the problem of visual place recognition as a problem of matching

2

CHAPTER 1. INTRODUCTION

image sequences. Ordering image into sequences diverges us from traditional
image retrieval approaches to visual place recognition but allows to robustly deal
with dramatic appearance changes.

1.1 Main contributions
Representing a place recognition as a sequence matching problem comes naturally
when considering a typical robot operation. First, the robot navigates through the
environment, collecting a sequence of images, which is typical serves as reference
or database sequence and later tries to match the current observations typically
referred to as query sequence.

To approach the problem of matching image sequence, we draw inspiration
from the work of Naseer et al. [99]. In their work, the authors propose to use
a graph structure that binds potential image correspondences between the se-
quences while preserving the sequential information within individual sequences,
i.e. reference and query. The estimated network flow through such a graph
results in potential image associations between the sequences and provide the
results for the place recognition system. In Chapter 3, we provide a detailed
explanation about the data associations graph structures. One of the weak sides
of the proposed graph search algorithm though is the necessity to instantiate a
cost matrix between all pairs of images between two sequences. One of the con-
tributions of this thesis is the incorporation of pose priors into the graph search
procedure that allows us to dramatically reduce the number of image-to-image
comparisons. Moreover, by adding information from such priors we eliminate the
need to formulate a network flow problem and solve the data association task
using the more efficient topological sorting method.

In Chapter 4, we bring our place recognition approach closer to the real world
application by turning the offline matching procedure from Chapter 3 into an
online approach for matching image sequences. In this way, we are able to make
the image associations decisions on the fly, i.e., for every incoming query image,
as opposed to the previous approach where the search can only be performed
whenever the complete sequences are collected.

The graph formulation from Chapter 3 and Chapter 4 imposes a constraint
for the image sequences. It assumes that the robot drives roughly similar trajec-
tories in the environment. This constraint, though, is easily violated in the real
world due to the variety of reasons. For example, if both sequences temporally
visit different places in the environment, the query sequences visits the place not
mapped with reference sequence, etc. Chapter 5 proposes a novel hashing based
technique that allows to robustly deal with different trajectories.

The techniques for visual place recognition described before taking into ac-

3

1.2. PUBLICATIONS

count only two image sequences. In Chapter 6, we extend the graph search idea
to account for multiple reference sequences that form a map of image sequences.

As mentioned before, the localization stage typically requires a map to localize
within. Collecting a map can be a resource consuming operation. As a further
contribution of this thesis, we show how to use publicly available information such
as Google Street View to avoid an expensive mapping phase and additionally be
able to localize within the global reference frame, see in Chapter 7.

Publicly available information can also enhance the SLAM systems, so that
in Chapter 8, we propose a novel approach to use the building information from
OpenStreetMap to maintain the consistency of the robot built maps especially in
the case of 2D laser range finder that is prone to accumulate a drift. Moreover,
we present an approach that facilitates better planning by estimating the local-
izability information on the map. This allows for planning better routes so that
the localization system is less likely to fail. This approach takes into account the
particular properties of the sensor. Thus, this thesis tackles several challenging
problems in the context of robot place recognition and localization.

1.2 Publications
Parts of this thesis have been published in the following peer-reviewed papers:

• O. Vysotska, T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Efficient
and Effective Matching of Image Sequences Under Substantial Appearance
Changes Exploiting GPS Prior. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2015

• O. Vysotska and C. Stachniss. Lazy Data Association for Image Sequences
Matching under Substantial Appearance Changes. IEEE Robotics and Au-
tomation Letters (RA-L), 2016

• O. Vysotska and C. Stachniss. Exploiting building information from pub-
licly available maps in graph-based slam. In Proc. of the IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2016

• O. Vysotska and C. Stachniss. Relocalization under substantial appear-
ance changes using hashing. In Proc. of the IROS Workshop on Planning,
Perception and Navigation for Intelligent Vehicles, 2017

• O. Vysotska and C. Stachniss. Improving slam by exploiting building in-
formation from publicly available maps and localization priors. Photogram-
metrie – Fernerkundung – Geoinformation (PFG), 85(1):53–65, 2017

4

CHAPTER 1. INTRODUCTION

• O. Vysotska and C. Stachniss. Effective Visual Place Recognition Using
Multi-Sequence Maps. IEEE Robotics and Automation Letters (RA-L),
2019

To facilitate further the research in place recognition, we have open-sourced
our code for the community:

• https://github.com/PRBonn/online_place_recognition

• https://github.com/PRBonn/vpr_relocalization

• https://github.com/ovysotska/image_sequence_matcher

We further published a dataset on visual place recognition in changing envi-
ronments at:
http://www.ipb.uni-bonn.de/data/visual-place-recognition-datasets/

5

Chapter 2

Basic techniques

2.1 Matching a pair of images

In this section, we will give a brief overview of how to compare two images. We
furthermore explain how we use to describe images throughout this thesis to be
able to perform robust visual place recognition in changing environments.

To reason if two images show the same place in the environment, an au-
tonomous system must be able to compare both images. One of the most intuitive
ways to do that is to compare the images on a pixel per pixel basis, i.e., comput-
ing the difference between corresponding pixels and summing up these differences
over all pixels. The drawback of this method, though, lies in the fact that a slight
difference in the pixel intensity values caused by illumination changes or by a
slight shift in pixels results in large total differences, even though the images
exhibit the same place in the environment and may even appear visually highly
similar to humans.

In the real world, however, most of the times the images taken from the same
place are effected by view-point changes with varying rotation, translation or tilt.
Thus, a more robust way to compare images under such conditions is to extract
local feature descriptors such as SIFT [82], SURF [20], or ORB [110]. Then,
two images can be compared by considering the corresponding local features
between the images and checking how many correspondences agree with each
other geometrically, for example, using RANSAC [42]. See Figure 2.1 for an
illustration.

A computationally more efficient way to compute a matching cost, i.e., a
similarity between the images, for a pair of images using local features is to
quantize an image into a histogram of so-called visual words, also known as bag-
of-words [122] and to compare two histograms using Euclidean or cosine distance.

As shown by Valgren et al. [136], local features tend to lose their descriptive
performance in the presence of dramatic visual appearance changes, like seasonal

7

2.1. MATCHING A PAIR OF IMAGES

pixel to pixel local features holistic descriptor cnn features

Figure 2.1: Approaches to compare a pair of images. From left to right: On per pixel bases;
describing image with local features and compare them; describing images using grid of local
descriptors and extracting feature vectors from the convolutional neural network. Red crosses
correspond to the extract local feature descriptors like SIFT, SUFT, etc.

changes, weather condition changes, illumination changes, etc. Holistic, or whole
image descriptors, tend to have a better performance under drastic photometric
changes, due to their better ability to disambiguate similar local feature descrip-
tors. A holistic descriptor defines a fixed grid over an image and extracts in every
cell a local descriptor, see Figure 2.1 3d column. In this way, we constraint the
area in which the correspondent local feature descriptors should be located in the
other image and thus successfully find feature matches which would be considered
as weak and discarded as outliers otherwise. Due to the superior performance
of holistic descriptors in visually challenging situations, we use tessellated HOG
descriptor [35] as an image description method in Chapter 3 of this thesis.

In recent years, the boost in the neural network developments for object de-
tections gave rise for improving image feature description. The features extracted
from the certain layers of convolutional neural networks have been shown to per-
form better for the place recognition tasks [130] than traditional local features
descriptors as well as their holistic grid counterparts. In Chapter 4, we show that
features from the Overfeat [119] convolutional network produce matching costs
that are more distinct than the costs obtained form tessellated HOG descriptors.
The matching costs are more distinct if they result in a broader range of values
between the perfect match (identical images) and images that exhibit different
places. We obtain a holistic descriptor by concatenating vectors from the feature
volume out of 10th layer of the Overfeat CNN, as sketched in Figure 2.1, 4th col-
umn. Afterward, we compare the images by computing a cosine distance between
the concatenated vectors. Concatenating the CNN feature vectors in a certain

8

CHAPTER 2. BASIC TECHNIQUES

order corresponds to fixing the position of that feature volume in a particular
part of the image, which may be seen as a form of a holistic descriptor.

Even though both holistic descriptors, i.e., those coming from a CNN or not,
tend to exhibit a better performance than traditional local feature descriptors in
presence of drastic visual appearance changes, their robustness is limited in cases
of changed viewpoint or large translations of the camera in between the images.
To perform visual place recognition under the drastic visual appearance changes
induced by environmental changes as well as provoked with camera motion, we use
in Chapter 6 features from the recently proposed NetVLAD [8] network. This
network was particularly trained for visual place recognition task using pairs
of images collected from different places, times of day, and seasons. The key
property that makes this network robust against viewpoint change in the idea of
integrating the VLAD [9] feature aggregation scheme on the upper layer of the
network. This allows combining the best of two worlds: powerful CNN features
and unconstrained feature location with an image.

2.2 Evaluations of image matches
A solid experimental evaluation is a key component to confirm the correctness,
relevance, and robustness of any approach. In this section, we describe the exper-
imental evaluation setup and metrics that we use through the thesis to analyze
the different properties of our visual place recognition approach.

2.2.1 Precision recall

Computing a precision-recall curve is one of the standard methods to estimate
the performance of a visual place recognition approach. The terms precision
and recall are frequently used in pattern recognition, information retrieval, and
classification. The precision is defined as a fraction of relevant instances among
the retrieved instances and recall is a fraction of relevant instances that have
been retrieved over the total amount of relevant instances, see Figure 2.2 for an
illustration. In context of classification, the dots (filled/unfilled) in the illustration
denote classification instances, which come from ground truth data. Consider a
task of determining whether there is a cat in the image, a filled dot represents the
fact that there is a cat in the image and unfilled dot corresponds to a fact that
there is no cat in the image. The area marked with a circle is the output of a
classifier which determines if there is a cat in the image. As can be seen from the
illustration, the classifier reports some images to contain a cat correctly (green
area) and some images wrongly, i.e., the classifier reports an image to contain
a cat but in fact there is no cat in the image (red area). These qualities are

9

2.2. EVALUATIONS OF IMAGE MATCHES

Figure 2.2: Illustrative example for estimating precision and recall. All the dots (filled /
unfilled) correspond to the items to be retrieved. The ones in the circle correspond to a result
of estimation, e.g., classification result. Courtesy: Wikipedia.

known as true positive (TP) and false positive (FP) respectively. Furthermore,
if a classifier fails to find some of the images that exhibit cats, these decisions
are called false negatives (FN) since it was a negative decision from a classifier
and it is a false decision. Additionally, one can measure in terms of how good is
the classifier of not finding irrelevant items, e.g., not finding a cat in the images
where there is no cat. This is called a true negative (TN). Precision answers the
question “how many of the retrieved items are relevant?”, whereas recall shows
“how many relevant items are selected?”. The term precision is defined as:

Precision =
TP

TP + FP
. (2.1)

The term recall is defined as:

Recall = TP

TP + FN
. (2.2)

Considering the previous cat classification example, the performance of the
classifier on a collection of images is determined using two values, precision and
recall. Since most of the approaches under evaluation depend on one or multiple
parameters, varying these parameters may lead to variations in the output, e.g.,
different precision and recall for the cat classifier. Precision recall curve is one
of the standard metrics to evaluate the behavior of an algorithm under changing
parameters. It is obtained by computing the individual precision and recall values
for varying input parameters of the system. An example of such curves can be

10

CHAPTER 2. BASIC TECHNIQUES

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

Figure 2.3: Examples of the precision recall curves to evaluate different approaches. The closer
the precision-recall curve to the upper right corner of the plot, the better is the performance
of an algorithm. Left: blue curve is closer to the top corner so the corresponding algorithm
performs better. Right: Example of near perfect performance of two methods (blue and red)
and poor performance of a light blue curve.

seen in Figure 2.3. Since both precision and recall are defined through a fraction,
the maximum value that they can obtain is 1, corresponding to perfect precision
and recall and the minimum value is 0. For example, a perfect cat classifier
would report 100% precision with 100% recall. In other words, the closer the
algorithm’s curve approaches the right upper corner of the plot, the better is
the performance of an algorithm, with perfect performance being exactly in the
upper right corner. The left image shows a typical precision recall curves for
three different algorithms. In this case, the blue algorithm performs better than
the others since it is closer to the upper right corner and it reaches 60% precision
over around 75% recall, whereas other algorithm reaches lower maximum recalls
of 63% and 40% with lower precision. In the right image, one can see other
examples of precision recall curves, where blue and red correspond to almost
perfect algorithms and black and light blue exhibit a poor performance for the
algorithms.

Precision recall curves are common tools to analyze the performance of the
algorithm and thus are used frequently in this thesis. It should be noted, however,
that depending on the requirements of algorithm the importance of the precision
and recall can matter differently. For example, if a system should be highly
conservative and only report true positives regardless of recall, e.g., only detect
actual cats, e.g., no dogs classified as cats allowed, then the green algorithm in
Figure 2.3 (left) is a better choice since it provides up to 15% recall on 100%
precision whereas other approaches do not provide a precision of 100%.

We can naturally adopt the precision-recall metric to evaluate the performance
of visual place recognition approaches by redefining the key terms. The typical
task of visual place recognition is given an input image find the corresponding

11

2.2. EVALUATIONS OF IMAGE MATCHES

0.5 0.6 0.7 0.8 0.9 1

F1
sc

or
e

0

0.5

1

algorithm 1
algorithm 2

Parameter

Figure 2.4: Example of two F1 curves generated by varying a Parameter in a given range.
Algorithm 1 performs better than Algorithm 2, since it has higher F1 scores.

image in the database of images or report that there is no similar image in the
database. In our work, we present a visual place recognition approach that reports
for every input query image if there exists a single image in the database that
represents the same place and which image it is. Whenever the algorithm makes a
decision and the ground truth supports it, we consider such an image association
as a true positive TP. If, however, the ground truth disagrees with this assignment
than the decision is considered as false positive (FP). Additionally, our algorithm
reports the cases where there was no similar image found in the database. If
the place indeed does not exist in the database, our algorithm made a correct
decision and we consider it as true negative (TN). If, on the other hand, the
place exists, but our algorithm failed to detect is, we mark this decision as false
negative (FN). Afterwards, we use the Equation (2.1) and Equation (2.2) to obtain
precision recall curves.

2.2.2 F1 score
Precision-recall metric gives an estimate about the performance of an algorithm in
terms of two quantities: precision and recall. As was noted before, depending on
the desired properties of the system one may prefer to weight precision over recall
or vice versa. One of the ways to evaluate an algorithm is to weight precision
and recall equally. In this thesis, we use F1 score, which is defined as a harmonic
mean of precision and recall, as:

F1 = 2 · Precision · RecallPrecision+ Recall . (2.3)

To make a more informative decision about the performance of an algorithm,
we evaluate the F1 score for a parameter range and then visualize the results in
form of F1 curve, as in Figure 2.4. The F1 score takes the value between 0 and
1. It is more appropriate to use the harmonic mean to combine precision and

12

CHAPTER 2. BASIC TECHNIQUES

0 5 10 15 20 25 30 35
Parameter

0.00

0.25

0.50

0.75

1.00
A

cc
u
ra

cy

alg. 1

alg. 2

alg. 3

Figure 2.5: Accuracy plot example. Alg. 2 performs better than Alg. 1 and 3 because it
achieves higher values of accuracy.

recall values, as oppose to the averaging, since both precision and recall are the
rates and not actual quantities. The higher the F1 score is the better the average
performance of an algorithm.

2.2.3 Accuracy
As stated before, precision-recall values as well as F1 score can be used to evalu-
ate a performance of a visual place recognition approach. Both of these measures,
however, do not include true negatives (TN) term. This means that these mea-
sures do not reward the algorithm for correctly not associating a place with a
wrong place in the environment. This, however, is an important property of a
robust place recognition approach and should be considered. We want our system
not just to correctly recognize the previously mapped places, but also be able to
estimate whenever a new place is being observed, i.e., that there exists no similar
image in the database. To account for true negatives, we further compute the
accuracy term as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.4)

Running an algorithm with varying parameter values result in obtaining ac-
curacy curves, see Figure 2.5 for an example. The accuracy takes the values from
0 to 1 with 1 being the maximum accuracy. As can be seen from Figure 2.5,
we compare three different algorithms and Algorithm 2 has a better performance
since it achieves higher accuracy in comparison to Algorithm 1 and 3.

13

Part I

Visual place recognition

15

Chapter 3

Image sequences matching as a
graph search problem

In robotics, the problem of visual place recognition plays an important role as
a part of localization, loop closure, and SLAM in general. A promising way
to approach this problem is by analyzing a stream of visual data rather than
individual images, since the robot continuously obtains data from its sensors in
temporal order. In this thesis, we approach a problem of recognizing similar
places by comparing streams, i.e., sequences, of images rather than individual
images of the places. This turns visual place recognition problem into a task of
matching image sequences. More precisely, given two sequences of images taken
in different points in time referred to as reference and query sequence, the task
is to decide for every image in the query sequence if there is a matching image in
the reference sequence and which one it is.

One of the approaches for finding a matching image from a database of ref-
erence images is to compare the query image to all images in the database. By
performing this operation for every image in the query sequence, we obtain a so-
called matching or cost matrix. An example of the cost matrix is depicted in the
Figure 3.1. Every element of this matrix stores the “matching cost”, cost defined
based on image similarity. For more details how to compute the matching cost
see Section 2.1. The brighter the squares in Figure 3.1 are, the smaller is the
corresponding matching cost, that means the more visually similar the images
are. Darker squares correspond to the fact that the images visually look dissimi-
lar. An example in Figure 3.1 (left) shows two image sequences, each containing
four images. Here, the reference sequence was collected in winter whereas the
query sequence was collected in summer. Visually both sequences appear quite
different. For example, in the winter sequence, the trees lack foliage in compari-
son to the summer one and we can the see the buildings behind the tree better.
This changes the visual appearance of the place together with different camera

17

reference
q
u
e
ry

Figure 3.1: Left: A toy example of a cost matrix. Brighter values correspond to the smaller
matching costs, darker values to the bigger matching cost. Right: Cost matrix from a real
world dataset with sequences consisting of 500 images both query and reference sequences.

placements and natural illumination changes. In this example the trajectories
are artificially synchronized, i.e., the first image of the query trajectory shows
the same place as the first image in the reference trajectory as well as second
image in query corresponds to the second image in the reference, etc until the
last. These image correspondences between the sequences lead to a brighter pat-
tern on a diagonal of the cost matrix. Thus, to solve the sequence matching
problem, we are interested in finding the bright patterns in the cost matrix, since
they are likely to correspond to the images that represent the same place. Fig-
ure 3.1 (right) shows a cost matrix from a real word dataset. In this dataset,
both image sequences are image-to-image synchronized, which should result in a
perfectly diagonal bright pattern as well as in the previous toy example. How-
ever, in addition to a diagonal pattern, we can also spot the brighter parts in the
cost matrix, particularly towards the right of the cost matrix. This indicates that
there are other images in the reference dataset that look visually similar to the
query image but do not actually correspond to the same place. This can happen
due to inability of a used image descriptor to unambiguously describe the images
or effects like glare or occlusion. Therefore, selecting an image from the reference
database with the smallest matching cost leads to poor results in visual place
recognition. For example, Figure 3.2 shows the result of selecting the best match
from the reference dataset based on the smallest matching cost. The right matrix
is constructed using the popular HOG features [35], which are less discriminative
for this example than features computed through a CNN from which the left ma-
trix is constructed. Even though it can be seen that the results in the left image
better than in the right, i.e., more red dots belong to the bright line pattern, in

18

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

Figure 3.2: The strategy of selecting an image match with the lowest matching cost (brightest
pixel in the row) fails to reliably find correct matches, especially when the features are not
discriminative enough, i.e., the difference between the correct pattern and the rest of the matrix
is not big enough, as can be seen in the right matrix. Red dots correspond to the an image pair
(query image, dataset image) that are found as matches.

general selecting the match with the smallest cost is not suitable for visual place
recognition in changing environments. To robustly establish correct image asso-
ciations under strong appearance changes, Naseer et al. [99] proposed to perform
a graph based search for image correspondences within the cost matrix. The au-
thors build a directed acyclic graph based on the precomputed cost matrix and
solve the image association problem through solving the network flow problem.
We approach the problem of visual place recognition in a similar way as Naseer
et al. [99] by constructing a graph and performing a shortest path search in this
graph. The shortest path in such a graph represent the set of image associations
between the image sequences with smallest accumulated matching cost. Thus,
the shortest path will prefer to go over the nodes with high similarity preserving
the sequentiality of the data as well as possible. We discuss the construction of
the graph in the following section.

3.1 Constructing a graph
In this section, we will describe how to formulate a pattern search in the cost
matrix as a graph search problem. To be able to perform the matching between
the reference and query sequence, we define the query image sequence to be an
ordered set of images Q = {qi}i=0,...,Q−1 and the reference D = {di}i=0,...,D−1 re-
spectively, where D = |D| and Q = |Q| are the number of images in the reference
and query sequence respectively. As a data structure, we use a directed acyclic

19

3.1. CONSTRUCTING A GRAPH

reference
q
u
e
ry

reference

q
u
e
ry

source

target

Figure 3.3: How to build a graph structure given a cost matrix. Yellow circles denote nodes in
the graph, arrows denote transition between the nodes.

graph G = (X,E), also called DAG. A node in the graph x ∈ X corresponds
to the fact that an image from a query sequence is compared to an image from
the reference sequence, see Figure 3.3 for visualization. The edges between the
nodes correspond to the possible transitions between the image pairs. These
transitions encode a possible movement of the robot that led to obtaining such
image sequences in the first place. Recognizing the correct transitioning between
the images leads to faster recognition of the next images in the query sequence.
Graph structure is an elegant way to preserve the sequential information while
comparing two sequences. The concept of edges can naturally connect the match-
ing decisions between image pairs. In this section, we present how to formulate
the task of matching image sequences as a graph search problem. The construc-
tion of the graph starts from a source node xs. In typical graph search problem
formulations, the source node marks the place, where the search should start.
The source node is connected to all possible pairs for the first image in the query
sequence, since in the beginning it is unknown what a potential image matching
pair could be. The source node gets connected to the matching nodes x0∗ through
the set of edges Es ∈ E:

Es = {(xs, x0j)}j=0,...,D−1. (3.1)

To mark the termination of the matching process, all the nodes that correspond
to the last query image qQ are connected to the target node xt through the set of
edges Et ∈ E:

Et = {(xQj, x
t)}j=0,...,D−1. (3.2)

The edges in between the nodes in the graph model possible transitions between
the matching image pairs. The following paragraph describes how establishing

20

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

1

2

1 2

1

2

1 2

1

2

2 31

Figure 3.4: Constructing the edges between the matching nodes based on the potential image
transition within the query and reference sequences. Left: query and reference cameras move
at the same speed. Middle: query camera is staying whereas reference is moving. Right: query
camera moves twice as fast than reference one.

edges between the nodes preserves the sequential information of two sequences.
There are several type of situations that we would like to capture:

(i) the cameras in query and reference sequences move with approximately the
same speed and frame rate, so that they capture roughly the same places
at similar relative index increment;

(ii) the camera in the query sequence is not moving whereas the camera in the
reference sequence is moving;

(iii) the speed (or frame rate) of the reference sequence is higher/lower than the
speed of the query sequence.

Consider type (i), when the cameras moving with the same speed, see Figure 3.4.
Let us assume that we know that image 1 in the query sequence was taken at the
same place as image 1 in the reference sequence. If we then move from image 1 to
image 2 in the query sequence, we can expect to move from image 1 to image 2 in
the reference sequence, given the sequentiality of the image stream is preserved.
The edge between the node x11 and x22 makes sure that this transition is possible
within the graph structure. Type (ii) situation, e.g. the camera is standing still
in the query sequence but moving in the reference sequence, can occur within
the normal city drive, for example, in presence of traffic lights or road crossings.
To capture this situation, we connect the nodes x11 with the node x21 as in the
Figure 3.4 (middle). The third situation (iii), which might happen if the camera
in the query sequence is moving faster than the camera in the reference sequence.
This leads to the effect that image 2 from the reference sequence does not have a
corresponding image in the query sequence, since going from image 1 to image 2 in
query corresponds to the transitioning from image 1 to 3 in reference sequence as
in Figure 3.4 (right). The more different speed or frame rate variations we would
like to capture, the more outgoing edges every node must have. The number
of outgoing edges is defined by a parameter K, which we refer to as the fanout

21

3.1. CONSTRUCTING A GRAPH

reference
q
u
e
ry

source

target

reference

q
u
e
ry

source

target

Figure 3.5: We establish correspondences between image sequences by searching for the shortest
path in the graph. Red nodes represent real matches, blue node represent a hidden node (the
image pair is not considered as a match).

throughout this work. In the graph shown in Figure 3.3 (right), one may also see
edges going to the left sides of the nodes. These edges cover situations, in which
the query camera is moving backwards with respect to the reference sequence.
To cover these situations, we connect the matching nodes with a set of edges
EX ∈ E:

EX = {(xij, x(i+1)k)}k=j−K,...,j+K . (3.3)

The sets EX , Es, Et form the whole set E of the edges in the graph E = Es ∪
EX ∪ Et. To compute the least-cost path on graphs from source to target, we
need to specify the weights on the edges. All edges from the set EX have the
weights that correspond to the entries of the cost matrix that correspond to the
node x(i+1)k in Equation (3.3). For example, if the entry (1, 2) of the cost matrix
has a value 0.2, then all incoming edges of the node x12 will have weight 0.2. This
weight represents the cost of matching the images 1 and 2. The edges in the set Et

have zero weight, since they are only used to model the termination of the search
process and every node that corresponds to the last image in the query sequence
should lead to a terminal node with the same cost. After the graph construction is
completed, we perform the search for the least-cost, here also called shortest path.
Since we work with directed acyclic graph with unbounded non-negative weights,
we can apply Dijkstra algorithm to find the shortest path from source node xs

to the target node xt. All nodes that belong to the shortest path, except source
and target nodes, represent established image correspondences. For example, if
the resulting path goes through the nodes x11, x22, x34 this means that image 1
from query corresponds to the image 1 from the reference sequence, query image
2 corresponds to reference image 2, and query image 3 corresponds to image 4

22

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

Figure 3.6: Up: Matching results that the proposed graph structure is able to obtain on a
challenging Nordland dataset. Down: Image pair that corresponds to a real node (red, left),
image pair that corresponds to the hidden node (blue, right).

from the reference sequence. Whenever we compare two images, we obtain a cost
representing how visually similar two images are. What this cost does not tell us
is whether the images actually represent the same place or not. To distinguish
between images that represent the same place from those that do not based on
matching cost, we use a cost threshold m to which we refer to as non-matching
cost. The non-matching cost specifies that every image pair where matching cost
is smaller than m is considered as a match, whereas if the matching cost exceeds
m, we consider that pair of images to be from different or visually dissimilar.
Sometimes it may happen that due to severe visual appearance changes, occlusion
or glare, the images that actually represent the same place, have matching cost
exceeding the non-matching threshold. To be able to consider the nodes that
support sequential information, but have high matching cost, we refer to those
nodes as hidden. Hidden means that they are the part of the shortest path,
however, they do not result in valid image correspondences. Figure 3.5 shows the
case, where the node x22 supports the path hypothesis, however the matching cost
is higher than m which makes it a hidden node. The result of the shortest path
search is x00, x11, x33, which means that the corresponding images are considered
to match and node x22 is skipped.

23

3.1. CONSTRUCTING A GRAPH

3.1.1 Real world example

By deploying the proposed graph structure, our image sequences matching al-
gorithm is able to establish data association between the image sequences that
exhibit dramatic visual appearance changes. To evaluate the performance of
our algorithm, we use a popular public dataset called Nordland dataset1. This
dataset consists of four videos collected by the Norwegian Broadcasting Cor-
poration NRK. Each video covers a 728 km train ride between two Norwegian
cities across four seasons, i.e., winter, summer, fall, and spring. The particular
feature of this dataset is that all four videos are time- and pixel-wise manually
synchronized, which never happens in reality, but makes this dataset valuable for
evaluations. For the first experiment, we sampled 500 images with 1 fps from the
summer and winter sequences respectively and computed the similarity matrix.
A couple of example images from this dataset are depicted in the Figure 3.6 in
the second row. Our algorithm takes as an input the cost matrix that is depicted
in Figure 3.6 (left), constructs the graph, and searches within it producing the
path hypothesis depicted in Figure 3.6 (right). Red pixels represent found image
correspondences and blue ones represent the fact that the data associations are
supported by the sequentiality of the data, however, reveal a high matching cost.
In the second row of the figure, one can see the image associations that result
from a reported match (red, left) and an image pair that was not found as cor-
respondence, i.e., corresponds to the hidden node (blue, right). The hidden pair
represents the same place, however, this fact is hard to recognize not just due to
the seasonal and lightning changes, but also due to the fact that an important
structure as a bridge is missing in the winter image. An additional factor that
increases the matching cost and thus makes the images dissimilar is the wiper
blade trace in the middle of the bottom right image.

In this section, we presented an approach to find image correspondences be-
tween two image sequences given a precomputed cost matrix based on ideas taken
from Naseer et al. [99]. By using the proposed graph structure, we are able to
preserve the sequentiality of the input data within the search procedure and ro-
bustly find the data associations despite strong visual changes. We construct a
full matching matrix from the two image sequences, since there is no additional
prior information available about the potential camera location. Adding this
additional prior information leads to narrowing the search space and reducing
the number of image matching operations, which can be an expensive operation
to perform. In the next section, we will describe how to incorporate the pose
prior information, that for example can come from a rough GPS prior, into the
graph construction procedure and thus to reduce a computational overhead of

1http://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute- season-by-season

24

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

Figure 3.7: Left: Full matching matrix. Right: Sparse matching matrix considering a 1 km
location prior.

constructing the full matching matrix.

3.2 Efficient matching using pose priors
In this section, we address one of the key limitations of the previous approach
when it comes to long term operation. The previous approach relies on a dense
image matching matrix with the size equal to the number of images in the refer-
ence sequence times the length of the query sequence. This is a bottleneck when
dealing with large scale datasets. In this section, we present a technique that
avoids building up the full matching matrix by exploiting a rough pose prior, for
example stemming from a low quality consumer GPS receiver. We achieve this
by proposing a modified version of the data association graph, which is used for
identifying the sequences of matched images. As a result of that, only a small
fraction of the computationally expensive image comparisons, at least if executed
in large quantities, needs to be conducted. As a by product of the new graph
topology, we can effectively deal with loops. This was not possible within a short-
est path search presented in the previous section. Furthermore, we do not need
to formulate a network flow problem to deal with loops as proposed by Naseer
et al. [99].

Throughout this section, we assume that a rough pose prior is available— from
any global pose prior source such as a GNSS system or similar. Given this pose
prior, we can avoid instantiating the majority of nodes in the graph — a node is
only needed if the distance between the sensor locations was less than the prior, for
example, dpose < 500m. As a result of that, only a fraction of the matching matrix
C needs to be computed, which substantially limits the total number of image

25

3.2. EFFICIENT MATCHING USING POSE PRIORS

Figure 3.8: Realistic scenario. The image sequences are not synchronized, which results in
disconnected components when considering a rough GPS prior.

comparisons that have to be conducted. Figure 3.7 shows a full cost matrix C

for the Nordland dataset and the respective sparse matrix C ′. The sparse matrix
is obtained by considering for every image image in the query sequences only
those reference images that are located within a 1 km radius. The black pixels
in the matrix visualizations represent the fact that an image pair has not been
compared, i.e., the node has not been instantiated. As can be seen, by adding
the pose priors, we are able to leave out a substantial amount of expensive image
matching operations and still preserve the desired pattern in the cost matrix. For
the image sequences of this type, where the query trajectory roughly follows the
reference one, the approach presented in previous section works well. Note that
when images are synchronized, i.e., the corresponding image identifiers in query
and reference sequences are the same, we expect a brighter diagonal pattern in
the cost matrix. However, if we consider more realistic scenarious, where it is
not guaranteed that the images in both trajectories are synchronized, adding the
pose priors and following the proposed graph construction procedure may lead
to the fact that the data association graph consists of unconnected components.
This prevents in turn the deployment of the shortest path algorithm. Exactly
this case is depicted in Figure 3.8. Here the vehicle in the reference dataset visits
the same place in the environment multiple times, which results in repeated
components along the columns, as well as query dataset, which results in the
repeating components along the rows. To robustly deal with such situations,
we propose an adapted graph construction scheme that is able to connect the
disjoint components and then allows us to proceed with the shortest path search.
Additionally, the use of the pose priors marks explicitly if the same place in
the environment was visited multiple times. This can be recognized whenever
there appears a repeating component along the rows of the cost matrix. We
determine multiple disjoint components along a row by treating a matrix row as
a continuous array of values. Then, we search for subparts of this array separated
to by zero values, which corresponds to the black pixels or no information in the
cost matrix. The subparts form a disjoint components and reveal similar places
within the reference dataset. We can directly consider this fact while constructing
the graph and in this way to robustly deal with loops.

Our main data structure is still a data association graph G = (X,E), where

26

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

X is a set of nodes and E is a set of edges. The set of nodes X consists of four
type of nodes: the start state xs, the goal state xt and the potential matching
nodes xij. A matching node xij represents the fact that the images i and j match,
whereas a hidden node models the fact that no matching between both images
could be found. Visiting a node comes at a cost, which is proportional to the
similarity of the images given the global HOG descriptor. Then, the localization
problem can be described as a search for the shortest path through the graph.

3.2.1 Edges
As in Section 3.1, the set of edges E specifies, in which way the nodes can be tra-
versed. In this extended approach, we also use the three types of edges Es, Et, EX ,
which are similar to those defined before. In addition to that, we define two fur-
ther types of edges (Ed and Eq) to appropriately exploit the pose priors, so that
E = {Es, Et, EX , Ed, Eq}. The construction of the graph starts with edges Es

that connect the start node xs with a set of matching and hidden nodes, defined
as

Es = {(xs, xfj)}j∈N(f). (3.4)

In Equation (3.4), f refers to the index of the first image in the query sequence
for which a database image exists that has been taken in a distance smaller than
dGPS from f . The term N(i) is a set of indices of neighbouring images from the
database sequence for a query image i and is defined as:

N(i) = {j | j ∈ D ∧ dist(i, j) < dpose}, (3.5)

where dist(i, j) is distance between the location at which the images with index
i and j have been taken according the pose prior. Intuitively, we connect the
source (or starting node) with ony those images from the reference sequence that
lie in direct proximity to the query image according to a rough pose prior. The
next set of edges is EX . It models the connection between the nodes as:

EX = {(xij, x(i+1)k))} i=0,...,Q−1,
j∈N(i),

k=j,...,(j+K) with k∈N(i+1)

. (3.6)

These edges model the potential transition from one image in the database se-
quence to another, where the transition between subsequent images in query
sequence occurs. This edges are similar to the the edges from set EX defined in
Section 3.1, however, only connects the nodes whenever the images agree with
the pose prior. The value of the fanout parameter K specifies the possible paths
that are exiting from a node. The difference to the previous formulation of EX

27

3.2. EFFICIENT MATCHING USING POSE PRIORS

is the fact that xij are only connected to those children nodes that are located
within a specified neighbourhood.

The set of edges, Et, connects nodes created for the last query image l for
which N(l) ̸= ∅ to the goal state xt:

Et = {(xlj, x
t)}j∈N(l). (3.7)

Traversing such an edge corresponds to the end of the matching process as the
goal state has been reached.

The presented graph structure considers the neighborhoods N(i) and encodes
the pose prior constraints. Exploiting pose information yields a serious reduction
in the number of image comparisons that have to be performed. In analogy to the
dense matching matrix C, this corresponds to a sparse matching matrix C ′. Thus,
the set EX in this formulation can be seen as a set of edges that connects the
consecutive rows of C ′ as this corresponds to the temporal order of the images in
the query image sequence. The proposed structure, however, can lead to multiple
disconnected components in C ′, see also Figure 3.9. These components in the
matrix lead to an unconnected data association graph. Thus, the current graph
topology may prevent to find the shortest path from the start to the goal.

In order to compute the matching sequence as a shortest path problem, we
need to connect the individual components so that every node has at least one
parent node and one child node. For this, we use the new sets of edges Ed and
Eq to connect the nodes among components. Two situations can occur in this
context.

First, a component can appear if the vehicle visited a place more than once
while recording the database images. This leads to nodes that have no parent. To
reconnect such components, we introduce a new hidden node x̆∗

i , see Figure 3.9.
This node serves as a connector node and does not correspond to any pair of
images, so it can only be in a hidden state. We re-connect the components via
x̆∗
i using edge set Ed defined as:

Ed = {(x(i−1)k, x̆
∗
i), (x̆

∗
i , xij)}k∈N(i−1)

∀xij with par(xij) = ∅, (3.8)

where par(x) is the set of parents of x, i.e., all nodes that have an outgoing edges
to x. The newly introduced node x̆∗

i exists once per row and connects all the
components, which represent the same place in a real world. See Figure 3.9 for
an illustration. Note that in such a situation there are nodes x in a component
that do not have any outgoing edges, i.e., child(xij) = ∅. We refer to nodes
without children as frontier nodes xF .

Second, a component can appear if the vehicle visits an area that has not been
mapped in the database and then returns to a known place. This situation can

28

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

Figure 3.9: Illustration of a sparse matching matrix C ′ and the process of connecting the
separate components using Ed and Eq.

easily be detected if an image i from the query set has no neighbors within the
range of the pose prior, i.e., N(i) = ∅. At the point in time when query images
are again close to database images, we connect them through a new hidden node
x̆∗ and the edge set Eq defined as:

Eq = {(xi′j′ , x̆∗), (x̆∗, xij)}xi′j′∈xF

∀xij with par(xij) = ∅. (3.9)

Intuitively, the edge set Eq connects the nodes from the frontier x ∈ F with the
nodes in the first row of the new component. Afterwards all the elements from
the set xF are removed as they now have a child node. The node x̆∗ exists for
every query break, i.e., subsequences, where query dataset deviates from the area
mapped in database.

3.2.2 Edge costs

So far, we defined the vertices and edges of the data association graph but have not
specified the cost associated to an edge. As finding the best matching sequence
will be approached using a shortest path, the costs are associated to the ability
to match two images.

The costs for sets Es, Et, EX stay the same as in the previous formulation.
Namely, the costs for Et are set to zero, since they are only needed to terminate
the search. The costs for Es and EX depend on the values of the entries in the
matrix C ′.

The edges Ed enable the graph search to treat multiple images from the same
places in database alike. Thus the costs for edges from any node to x̆∗

i is zero.
This enables free transition between the parts of the sequences that represent the

29

3.2. EFFICIENT MATCHING USING POSE PRIORS

same place in the environment. The costs for the edges from x̆∗
i are the values

from matrix C ′ that correspond to the entering node.
For the edges in Eq, we use the following cost

w = m(i− i′ − 1) + c′ij, (3.10)

where i′ is a row index of the node xi′j′ from the frontier set x ∈ F , i is a first
row index of the new component and c′ij is the value of the ij in the matrix C ′.
Intuitively, the weight w for an edge in Eq takes into account the number of query
images that were skipped, or in other words traversed through the hidden nodes
with the non-matching cost µ, and the cost c′ij of entering the node xij within
the new component, taken from the cost matrix C ′. This definition of the cost
replicates the cost that we would generate if using the dense matching matrix
and moving between the components through hidden nodes. Thus, the cost is
proportional to the distance in rows between the components times the cost of
traversing a hidden node.

3.2.3 Normalization of the edge costs

As mentioned by Milford and Wyeth in [92], it is important to normalize the
matching cost in the matrix C and thus C ′. We apply the normalization used
in the implementation by Naseer et al. [99], which normalizes the cost values by
the mean of cost values over each column. As we do not compute the full cost
matrix C due to the exploitation of the pose prior, we cannot compute the same
normalization. We therefore approximate it using sampling. In more detail, we
sample fixed number of additional image pairs (in our implementation, we use
30 additional image pairs) from the same column and use this for obtaining an
approximation of the normalization constant. We compute the normalization
constant by taking into account the mean µknown

j of the known values along each
column j from the matrix C ′ and the approximated mean µsampled

j of unknown
values for the column j. We compute the µsampled

j by computing a fixed number of
image comparisons from the unknown parts of column j. Then, the normalization
constant in our formulations is computed by:

zj =
µknown
j nj + µsampled

j (Q− nj)

Q
(3.11)

where nj is the number of known values in column j and Q the number of query
images. Afterwards, we normalize every column of matrix C ′ with the respective
normalization constant zj.

30

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

3.3 Complexity
For the complexity analysis, we assume that the covered areas are substantially
larger than the GPS range, so that for all query images, only a bounded num-
ber of elements from the database is within the dGPS. The highest complexity
is the task of finding the images in the database that have been taken near a
given location according to the pose prior. We achieve this through a kd-tree,
yielding a logarithmic complexity in the size of the database. Overall, this results
in O(Q logD). Due to the directed acyclic graph structure, the shortest path
can efficiently be computed via topological sorting. This yields a complexity of
O(|X|+ |E|).

3.4 Experiments
The evaluation is designed to illustrate the performance of our approach and to
support the following statements:

(i) we can exploit GPS pose priors to substantially reduce the computational
load of the image matching process;

(ii) we can naturally handle loops without the need of using network flow algo-
rithms as proposed by Naseer et al. [99], and

(iii) we can either improve the matching results or perform comparably to our
previous work.

All our experiments have been conducted using real world data, recorded
in summer and winter. The data has been obtained with a bumblebee camera
mounted in a regular car. The algorithm works with an image resolution of 1024×
768, where no cropping, undistortion or other preprocessing is done. Examples for
matching image pairs from the datasets can be seen in Figure 3.11. We evaluate
the performance of our algorithm by precision-recall curves, which are computed
based on manually labeled ground truth image matches. We calculate precision
as TP

TP+FP and recall as TP
TP+FN , see also Section 2.2. A match is considered as a

true positive (TP) if the found match and the manually provided match differs
by up to three images within the sequence. If an image pair is not within the
specified boundaries then it is considered as a false positive (FP). All the ground
truth pairs that were not found by algorithm are considered as false negatives
(FN). To obtain the precision-recall curves, we vary the parameter µ from small
to large values. If µ takes a value that is smaller than the smallest element in the
matrix, all potential matches will be rejected. With increasing values for µ more
and more potential matches will be accepted. We compare the performance of our

31

3.4. EXPERIMENTS

Database (winter)
0 100 200 300 400

Q
u

e
ry

 (
s
u

m
m

e
r)

0

100

200

300

400

500

600

700

Ground truth

Our approach

Naseer et al.

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

 Our approach (prior=50m)
 Our approach (prior=100m)
 Naseer et al.
 SeqSLAM
 HOG-bm

Database (winter)
0 100 200 300 400 500 600

Q
u

e
ry

 (
s
u

m
m

e
r)

0

200

400

600

800

1000

1200

1400

Ground truth
Our approach
Naseer et al.

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

 Our approach (prior=50m)
 Our approach (prior=100m)
 Our approach (prior=500m)
 Naseer et al.
 SeqSLAM
 HOG-bm

Database (winter)
0 500 1000 1500 2000 2500 3000

Q
u
e
ry

 (
s
u
m

m
e
r)

0

200

400

600

800

1000

1200

1400

Ground truth
Our approach
Naseer et al.

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

 Our approach (prior=50m)
 Our approach (prior=100m)
 Our approach (prior=500m)
 Naseer et al.

Figure 3.10: Experimental results on 3 datasets. The images in the first column show the
matches, including ground truth and the plots in the second column show the precision recall
plots. First row: Comparison of our approach the method Naseer et al. [99], openSeqSLAM
and a heuristic that always selects the best match in C on a dataset that consists of a sequence
of 3 km. Second row: Comparison between the same approaches on a dataset containing a loop
in a query sequence. Third row: Comparison to the method of Naseer et al. on a third dataset
containing several loops in database as well as in query.

32

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

Figure 3.11: Four example image pairs from the database and query set illustrating the per-
ceptual change over the seasons.

approach to the approach of Naseer et al. [99] that formulates the image sequence
matching problem as a network flow problem. Furthermore, we evaluate it with
respect to the state of the art method for visual place recognition in changing
environments SeqSLAM proposed by Milford et al. [92]. SeqSLAM finds the
pattern in the precomputed cost matrix by sequentially fitting the line. We use
the open source version OpenSeqSlam provided by the authors. The results are
labeled as ”SeqSlam”. Additionally, we compare our approach to brute force
search, where for every row of the cost matrix we select the image from the
database with the smallest matching cost, referred to as ”HOG-bm”.

The first experiment is designed to show that our approach performs compa-
rable to the approach [99], which constructs the full matching matrix and this
is computationally much more demanding. Figure 3.10 presents the matching
results for three datasets of different lengths and camera trajectories of different
complexity. The first dataset, depicted in the first row of the figure, consists of a
query image sequence of 676 images that roughly follows the trajectory reference
(database) trajectory of 361 images. The fact that a query sequence follows the
same trajectory as the reference one can be inferred from a roughly diagonal/
straight line pattern of the ground truth results, except for the part from 100 to
300 query image, when the car was staying on the traffic light, see right image.
The performance of our search approach achieves up to 95% precision for 95%
recall in case of 50m GPS prior, see left image, and 90% precision over approxi-
mately 90% recall for the 100m priors, which is the same performance as Naseer
et al.. Our approach, however, leads to 84% less operations of image comparisons
(creating nodes) than [99], since only 16% of nodes are computed, reducing for
this dataset from 244, 037 to 38, 334 image comparisons considering 100m GPS
pose prior. This reduction leads our approach to find the matching images 5

times faster than [99], reducing from 277 to 52. This can also be seen in the
Table 3.1 in the third column that corresponds to the dataset 2.

33

3.4. EXPERIMENTS

The second experiment shows a bigger and more challenging dataset that con-
tains a loop within a query sequences, i.e., the robot revisited twice places stored
in the database (approx. the first 200 images). This can be seen in Figure 3.10
second row, left image. From this plot, we can see that a query loop has oc-
curred because for the same values in database sequence there correspond two
values in the query sequence according to the ground truth labels. Additionally,
the query sequence here visits the places not covered by a reference sequences
at all. This can be seen by the absence of the ground truth labels for the query
images from around 750− 850 and 950− 1150. The same image also shows that
our approach—although solving the data association problem using topological
sorting—can handle the loops better than the network flow solution in [99], since
our image associations (blue) follow ground truth matchings (gray) better than
matchings from [99] (red). More quantitative results for this dataset is provided
by the right figure in the same row of Figure 3.10. By using 50m GPS prior, our
approach reaches 80% precision over 80% recall. For this dataset our approach
outperforms [99] given 50m, 100m, and 500m pose priors. As can also be seen
from the plots OpenSeqSLAMand a best match strategy based on the HOG de-
scriptors ignoring the sequence information (called “HOG-bm”) performs worse.
It should be noted, however, that SeqSLAM was not designed to handle loops
and blackouts within the image sequences. By using pose priors, we are able to
not just handle loops in the trajectories, but also substantially reduce the num-
ber of image-to-image comparisons also for this dataset. By using the GPS prior
of 50m, we can achieve the reduction of 94%, which leads processing 11 times
faster, reducing computation time from 798 s for [99] to 70. Further timings can
be found in Table 3.1 in the column corresponding to the dataset 3.

Finally, we used a third dataset, a more challenging one, since it contains
multiple loops in database and in query sequences. The database loops can be
seen in Figure 3.10 last row left, by noticing the fact the ground truth labels for
some query images correspond to several locations in the reference sequence. For
example for the query image 500 there are 3 corresponding (gray) areas within
the reference dataset. The sparse cost matrix corresponding to this dataset can
also be seen in Figure 3.8. Here, the car was driving in circles around perceptually
similar blocks. Similarly to before, the usage of a GPS prior enables us to better
match the corresponding parts of the query to database trajectory. Looking at
precision-recall curves for this dataset, we observe that our method with dGPS =

50m gives the best results. This is due to the fact that distance between the
parallel streets in the dataset is smaller then 100m and using dGPS = 50m leads
to clearly disconnected components in cost matrix. The reduction with respect
to the image-to-image comparisons is 94%, since only 6% of nodes are computed,
which is similar to previous dataset. However, on this dataset we are able to

34

CHAPTER 3. IMAGE SEQUENCES MATCHING AS A GRAPH SEARCH
PROBLEM

Table 3.1: Performance comparison between the approach of Naseer et al. [99] and our approach
with different GPS priors 500, 100 and 50m. Every cell stores the total number of image-to-
image comparisons that was computed, total time for finding image matches and time to search
a path given a constructed graph. Nodes used specifies the percentage of the nodes that were
computed in comparison to total possible nodes, as used in [99]; Times faster specifies how
many times faster is our approach in comparison to [99].

Dataset
1 2 3 4 5

Q 79 676 1,213 1,266 1,428
D 943 361 596 3,601 1,476

Naseer et al. 74,498 244,037 722,948 4,558,866 2,107,728
[99] 100s / 0.7s 277s / 2s 798s / 6s 4,843s / 55s 2,305s / 19s

GPS, 500m 74,498 134,791 298,432 2,620,748 1,102,689
100s / 0.7s 155s / 1s 325s / 2s 2,734s / 23s 1,283s / 10s

Nodes used 100% 55% 41% 58% 52%
Times faster 1.0 1.7 2.4 1.7 1.8
GPS, 100m 50,643 38,334 72,788 621,369 106,672

47s / 0.2s 52s / 0.23s 107s / 0.5s 660s / 4s 138s / 0.6s
Nodes used 68% 16% 10% 14% 5%
Times faster 2.0 5.3 7.4 7.3 16.7
GPS, 50m 38,313 26,841 45,457 288,312 76,171

33s / 0.1s 42s / 0.1s 70s / 0.2s 316s / 1s 100s / 0.25s
Nodes used 51% 11% 6% 6% 4%
Times faster 3.0 6.6 11.4 15.3 23.0

compute the image matching 15 times faster, by reducing the computational
time from 4, 843 s which is around 1 hour and 20 minutes to 316 s corresponding
to only 5 minutes. Further timings are presented in Table 3.1 dataset 4.

The next experiment is designed to illustrate that exploiting the GPS prior
can lead to a substantial reduction in the computational requirements. Table 3.1
summarizes the timing results of evaluating the algorithms on datasets of different
size and complexity. The table depicts timings and number of image comparisons
for five datasets of different sizes, where Q denotes the number of images in the
query sequence and D number of images in the reference/database sequence. An
image sequence is considered more complex if it has one or more loops inside.
Every entry of the table stores three values. On top of the cell, the number of
image-to-image comparisons that needed to be performed by a given algorithm.
The second row of each cell stores the total time in seconds needed to find the
matching image pairs between the image sequences and the time for the search to

35

3.5. CONCLUSION

find the image matchings given the fact that the graph was already constructed.
As can be seen from the table, the datasets of smaller size tend to show a smaller
gain in terms of the overall reduction of image comparisons and thus the number
of nodes in the data association graph compared to larger datasets. For example,
a smaller dataset 1 uses 51% of the nodes for the 50m prior whereas larger dataset
5 uses only 4% of the nodes. This is due to the fact that smaller datasets typically
cover more near-by places and thus yield a denser matching matrix. In general,
we can say that the larger the area that the dataset covers, the bigger the gain
of our method. For example, dataset 5 has more images than dataset 1 and
thus has a node reduction of 96% whereas the dataset 1 only has 100%− 51% =

49% reduction. However, not just the size of image sequences influences the
performance of the approach, but also the nature of the trajectories, i.e., the
number of loops the sequences have. For example, trajectory 4 has twice as many
potential node correspondences as dataset 5, but the number of created nodes is
3 times higher. This happens because the dataset 4 contains multiple loops and
thus more nodes need to be created to cover possible matching hypothesis.

Most of the computation time is spent on the comparison of the image de-
scriptors. The computation of the global HOG descriptor per image, described
in [99], takes around 23ms and matching two descriptor takes around 6ms—but
this has to be done often. The GPS priors help to reduce the overall number of
comparisons and thus lead to a substantial reduction of the computation times.

3.5 Conclusion
We proposed an approach to visual image matching under substantial appear-
ance changes by exploiting sequence information. We extended our recent ap-
proach [99] so that it can exploit noisy GPS pose priors and at the same time
substantially reduces the number of required image comparisons. This enables us
to run our method online. In addition to that, our approach can naturally handle
loops in the input image sequences. We implemented and tested our approach
using real world image and GPS data acquired in summer and in winter. Our
comparisons suggest that our approach can increase the matching performance
while reducing the computation time and in this way outperforms the existing
methods under consideration.

36

Chapter 4

Lazy data associations for online
image sequence matching

In the previous chapter, we have described our graph-based image sequence
matching strategy that is able to operate in outdoor environments that change
their visual appearance dramatically. This search procedure operates on the
given, i.e. precomputed, cost matrix. To match two image sequences, we first
match every image in query sequence with every image in the reference sequence.
Based on the cost matrix, in which every element encodes the information how
similar two images are, we proposed a graph structure that is able to natu-
rally incorporate the sequentiality of both data streams and to find the image
correspondences between the two sequences. One of the disadvantages of this
approach, however, is the necessity to build up the full cost matrix. As we have
shown in Chapter 3, we can partially overcome this problem in case a rough pose
prior is available. Even though, we have shown in our experimental evaluations
that we are able to dramatically reduce the number of required image-to-image
comparisons, the proposed approach still needs the complete query and reference
sequence to construct a graph, i.e., before being able to start the search. This
fact, makes the previously proposed approach an offline approach, i.e., it can only
operate when the complete sequences are available and there is no possibility to
add further query images whenever the graph construction reached the final node.
In context of place recognition for the robotic systems, this is a serious limitation,
since it is essential for the robot to get the localization information in a timely
manner, while it is operating in the environment.

In this chapter, we propose an algorithm for visual place recognition that is
able to operate in an online fashion. It makes an image-to-image association
decision for every incoming query image and thus making it applicable for the
real world robot localization applications. To target the problem of computing
the image comparisons to all reference images, we keep the number of image-to-

37

4.1. LAZY MATCHING FOR ONLINE OPERATION

image comparisons small by constructing the graph only around the current most
promising matching path hypothesis, i.e., around the brighter patterns similar to
the Figure 3.7 (right), but without any prior pose information. To be able to keep
track of multiple shortest path hypotheses, we took inspiration from the ideas of
the lazy data associations proposed by Hähnel et al. [61] in context of LiDAR
scan matching. In this way, we can revise previously made data association
decisions in case new information is available that allows us to make better, more
informed data association decisions. In the following section, we describe the
graph structure for the online matching as well as an efficient heuristic that allows
us to keep the number of image-to-image comparisons small. In Section 4.2, we
show the experimental evaluations that confirm the following claims:

(i) our approach has the ability to run in an incremental fashion so that only
few nodes are expanded so that online localization is possible,

(ii) our heuristic is well-suited to find a competitive solution in most real world
situations,

(iii) our algorithm is able to exploit additional location prior information and
can in this case also handle loops in robot’s trajectories.

4.1 Lazy matching for online operation
To turn our offline system into an online one, we need to ensure that we can
make image association decisions for every incoming query image. Namely, for
every incoming image, we want to know if there is a corresponding match in the
database and if so, to which image of the database it corresponds to. The database
itself is organized as a list fo regular files. The graph structure proposed for offline
matching builds on top of the full cost matrix (unless pose prior information is
available). This leads to instantiating a large number of nodes in the graph. As
a reminder, the image-to-image comparisons are costly operations and a large
number of them needs to be executed. To be able to do online matching, we
need to limit the number of those comparisons. We do so by analyzing at every
step if the currently considered node is ”worth expanding”, i.e., if adding the
children of this node to the graph will lead to finding the shortest path. The
decision of whether to expand the node or not is made based on an efficient
heuristic. This allows us to eliminate the instantiation of the majority of nodes
that are ”far away” from the shortest path hypothesis. Additionally, instead of
constructing the full graph and perform a search in it, as it was done for the offline
approach, we now build and search on-the-fly. We construct only a portion of
the graph relevant for the current best path hypothesis and update our search

38

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

...

...

...

... ...

database images

q
u
e
ry

 i
m

a
g
e
s

0:

1:

2:

source

:

Figure 4.1: Schematic illustration of the graph structure for the search. To perform an online
localization our algorithm compares only image pairs that correspond to the green nodes and
expands the green area on the fly. Red nodes correspond to matches of similar images along
the path through the data association graph and blue indicates matches along the path with a
low similarity.

after this construction. In this section, we provide more details about the graph
construction and search as well as about our efficient heuristic. Moreover, we
discuss how the ideas of lazy data associations are naturally incorporated in our
graph-based search procedure.

4.1.1 Data association graph
We start by describing the structure of the data association graph needed for on
the fly computations. Similar to the offline approach, we use a directed acyclic
graph G = (X,E) as our main data structure for modeling the data association
problem. We solve the sequential image matching task by finding a shortest
path in this data association graph G. To build up the data association graph
on the fly, we only need to compare images if our search algorithm expands the
corresponding node in G. The key idea of this data association graph is the
following. A node in the graph represents a potential match between two images.
We aim at finding the best combination of matching images by searching a path
through this graph, see Figure 4.1 for an illustration, where the cost of visiting
a node depends on the similarity of both images. In more detail, we propose the
following graph structure, which differs from the one used in Chapter 3.

Nodes. We have two types of nodes in X: the root or start node xs and
matching nodes. A matching node xij models a match of the image i ∈ Q with

39

4.1. LAZY MATCHING FOR ONLINE OPERATION

the image j ∈ D. The more similar two images are, the more likely is the fact
that they represent the same place. The similarity of an image pair is defined
as before as zij ∈ [0, 1], where zij = 1 means that both images appear identical.
The similarity zij is computed by comparing the images i ∈ Q and j ∈ D only
through their global image descriptor using the cosine distance.

As we are building the graph online, new nodes xij need to be created as soon
as a new image i is recorded. Adding a node xij to the graph, however, comes
at a computational cost as we need to compare images to compute zij. Thus, for
building up the graph, we seek to avoid instantiating unnecessary nodes xij, i.e.,
nodes, which are not part of the matching sequence. The ones that are unlikely
to be belong to the shortest path.

Edges. Similar to the nodes, we use two types of edges E = {Es, EX}
according to the types of nodes the edges connect. The set of edges Es connects
the source node xs with the matching nodes x0j corresponding to matching the
first query image with any database image j ∈ D, i.e.,

Es = {(xs, x0j)}j∈D. (4.1)

The second set of edges EX connects the matching nodes and are the same as in
Chapter 3, see Equation (3.3), i.e.,

EX = {(xij, x(i+1)k)}k=j−K,...,j+K , (4.2)

where K is a fanout parameter that influences the nodes that are connected
between the query images i and i+1. The fanout basically models that the robot
can move at different speeds through the environment or that the cameras can
operate at different frame rates. The larger the K, the larger is the branching
factor of the graph and, thus, the value of K impacts the speed of the search
as described in the following sections. In our current implementation, we use a
fanout parameter of K = 5. In the remainder of this chapter, the nodes x(i+1)k

are referred to as the children ch(xij) of the node xij.
Weights/Costs. Each edge e ∈ E has a weight or cost associated to it.

This weight w(e) is related to the similarity score zij. The weight of an edge
e = (xij, xi′j′) ∈ EX is inverse proportional to the similarity of the node to which
this edges leads to, i.e.,

w(e) =
1

zi′j′
, (4.3)

where zi′j′ is a similarity score computed when comparing image i′ and j′ using
the cosine distance.

40

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

Figure 4.2: Similarity matrix computed using tessellated HOGs as in [99] (left) and OverFeat
features (right). As can be seen in the first row, the OverFeat features yield more distinct
similarity values. This leads to a smaller number of nodes that are instantiated in the data
association graph (green), as depicted in the second row.

41

4.1. LAZY MATCHING FOR ONLINE OPERATION

4.1.2 Computing image similarity based on features from
deep convolutional neural networks

The similarity computation between the two images has to be done often and
thus we are in general interested in a fast computation. At the same time, the
quality of the similarity function is of high importance. The more distinct the
value of zij are for images taken from the same places vs. those from other places,
the easier is the data association problem. As a result, the more distinct such
values are, the better the performance of our graph search algorithm as less nodes
will need to be expanded.

In our initial approach, we computed the tessellated HOG descriptor for ev-
ery image and then compared them using the cosine distance. The obtained cost
difference between the best match and the worse match was sufficient to find
good solution with an exhaustive search. In the context of our lazy data associ-
ation approach with a search heuristic, we experience problems to find matching
sequences reliably without expanding the majority of the nodes in the graph.
Therefore, we changed the image descriptors in this work to the features from
the pre-trained deep convolutional neural network OverFeat as proposed by Ser-
manet et al. [119] due to its better matching performance. OverFeat is built
using a network trained on the ImageNet dataset consisting of 1.2 million images
and was published in 2016. We used the 10th layer as a global image feature as
suggested by Chen et al. [32]. Using OverFeat features instead of HOG directly
improves the performance of our algorithm and supports the lazy approach. To
give an intuition about the matching similarity, Figure 4.2 depicts the similarity
of comparing all possible combinations of images from database D and query
Q computed with the tessellated HOG descriptor (left) and OverFeat (right).
Brighter values indicate a higher similarity. As can be seen from the images, the
OverFeat features lead to more distinct values (higher contrast) and thus less
nodes need to be expanded during the search (green area).

4.1.3 Image sequence matching through graph search
The sequence of matching images between Q and D can be computed by a path
search from the start node xs to any node xl∗, with ∗ referring to any index in
D and l being the most recent image in Q. Every node that is a part of the
shortest path corresponds to a selected data association, i.e., a match. In our
implementation, we only keep an index of images and feature descriptor in the
memory and load individual images on demand from disk.

The computationally most demanding process for building and searching in
such a data association graph is instantiating all nodes as a large number of
possible matches has to be computed. For online localization, we are interested

42

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

pop expand match
found

heuristic

match unlikely

possible
 match

level
reached

yes

no

Figure 4.3: Illustration of searching for a match for an input image.

in keeping the computational efforts small and in avoiding the creation of nodes
that do not represent potential matches. To address this issue, we propose an
approach that limits the number of image comparisons and results in an efficient
algorithm siutable for online operation.

Our work is motivated by the ideas of lazy data associations in the context
of SLAM proposed by Hähnel et al. [61] for constructing pose graphs. Hähnel et
al. build up a data association tree and expand in each round the node with the
highest log likelihood of representing a match between laser range scans. This is
similar to a greedy search in a data association tree.

In our case, we go a step further and seek to performing an informed search
through the graph, while the graph is built on the fly. One popular way to
perform an informed search is the A* algorithm using a heuristic, which allows for
estimating the cost from the currently expanded node to the goal node. Defining
such a heuristic for path planning in a Euclidean space is trivial as the physical
Euclidean distance can always be estimated. In the space of image features,
however, defining such a heuristic is difficult. For our matching problem, defining
a heuristic means we need to predict how well the images that we will receive
in the future will match our database images —this is in general a difficult task.
Furthermore, A* requires that the heuristic is a predefined function and does
not change during the search. We, however, try to predict the matching cost
based on the images that we have received so far. This means, our heuristic is
updated during the search, which prevents the application of A*. Therefore, we
take a different approach to the search problem. Our search procedure takes into
account the estimated matching cost and works as follows.

Similar to A*, we use an open-list F of nodes that are still under considera-
tion. This open-list is realized through a priority queue. In contrast to A*, the
key of our priority queue for a node xij is the cost g(xij) of reaching xij from the
source xs. Our search and simultaneous graph construction starts with creating
the source node xs and connecting it to the matching nodes according to Equa-
tion (4.1). This step requires to instantiate |D| nodes if no further information
about the first possible match is provided.

For a new incoming image referred to as l, we use the following procedure
to update the graph as well as the matching sequence (see Figure 4.3 for a brief

43

4.1. LAZY MATCHING FOR ONLINE OPERATION

illustration): Whenever a new image is obtained, we pop a node from F . We
use our heuristic, which will be described in the remainder of this section, to
estimate if the popped node xij is worth expanding or if it is unlikely to be
part of the matching sequences. Thus, in contrast to A*, the heuristic is not
considered for the key computed for the priority queue. If the node is unlikely
to be part of the matching sequences, we continue with the next node in F .
Otherwise, we expand the node xij by computing the matching costs for its
children ch(xij) and by connecting the node xij with ch(xij) using the edges
define in EX , see Equation (4.2). If a node in ch(xij) lies on the lth level of the
graph, it represents the so far best match for the most recent image and the search
terminates for this input image. Otherwise, we proceed expanding nodes from F .
These steps are summarized in Algorithm 1, where the function updateGraph
adds the nodes from set ch(xij) to the graph.

In contrast to searching for the new path every time the graph gets updated,
we only update the found path. To perform a search update step, we only keep
track of the last node of the currently best hypothesis x̂ and not the full path. The
last node of the path is sufficient to retrieve the full path if required. Whenever
we have updated the graph structure, we would like to see if recently added
information changes our data association decisions. By obtaining a node from
ch(xij), we get an alternative hypothesis for the shortest path in the graph. To
update the search,we first check if the alternative path hypothesis has at least
the same length as the best current hypothesis, i.e., if it has reached the level l.
If not, the alternative hypothesis is neglected on this step. Then the alternative
path hypothesis becomes current best path hypothesis if its accumulated cost is
smaller than the accumulated cost of the current best hypothesis.

The above described heuristic must estimate the sum of the matching costs
for reaching the lth level (the most recent query image). The key problem here
is that defining an effective and admissible heuristic, properties that are needed
for optimal informed search [112], is hard due to the small amount of background
information that can be exploited to predict future image similarities.1 Therefore,
we take an alternative approach to come up with a heuristic that provides a
good estimate of the cost but is not guaranteed to be admissible in the sense
of A∗ search. A heuristic is admissible if it never overestimates the cost for
reaching a goal. We take a statistical approach and approximate an expected
lower bound for the average cost of the unexpanded and thus unknown nodes.
We do so by taking into account the average cost of the best path found so far as
a prediction of the expected cost of individual matches along a new path. This
is a reasonable assumption because opening of alternative path hypothesis is an

1 That is fundamentally different to planning in the 2D or 3D world where the Euclidean
distance can serve as an effective and admissible heuristic.

44

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

Algorithm 1 Constructing and searching step for an incoming image
1: ql - incoming image feature with index l

2: F - frontier of potential nodes to expand
3: row_reached = false
4: while F not empty and row_reached = false do
5: xij = F.top()
6: F.pop()
7: if !node_worth_expanding(xij) then
8: continue
9: // expand the node xij

10: ch(xij) = getSuccessors(xij)
11: updateGraph(ch(xij))
12: updateSearch(ch(xij))
13: if ch(xij) is in row l then
14: row_reached = true

expensive procedure, since it involves constructing parts of graph not seen before,
and to accept it as the alternative hypothesis has to be at least as good as our
current best matching hypothesis in terms of the accumulated cost. Furthermore,
we exploit the fact that we know the number of images obtained so far and we
know that the shortest path will have l + 1 nodes (start node plus one matching
node for each image). This allows us to formulate the expected cost f(xij) for a
node xij to a node on the lth level, i.e., xl∗, as the computed cost from xs to xij

expressed through g(xij) plus the estimate cost as:

f(xij) = g(xij) + α(l − i)µcost(x̂)︸ ︷︷ ︸
heuristic

, (4.4)

where α ∈ [0, 1] is a factor to trade off the quality of the solution and the number
of nodes that needs to be expanded. For α = 0, we obtain a greedy search
behavior and for α = 1, we may not expand enough nodes to find a good solution,
because the heuristic becomes very concervative and prevents expanding of many
hypothesis. The term (l− i) is the number of images that have to be matched to
end the sequence and µcost(x̂) is the average cost of the best path found so far,
see also Figure 4.4. By increasing α, the heuristic will prefer the nodes closer to
the furthest expanded row, since the bigger the α the bigger the contribution of
(l − i) rows to the predicted accumulated cost and our search procedure prefers
the path with the smallest accumulated cost.

In sum, the data association graph constructed in the proposed way using
robust features allows us to design a useful, but not guaranteed to be admissible
heuristic for the search for data associations. This in turn means that we are

45

4.1. LAZY MATCHING FOR ONLINE OPERATION

q
u
e
ry

database

level

level

Figure 4.4: Illustration for the graph expanding procedure. Orange nodes are nodes in the F .
The red square indicates that the element xij will be the next one in F . The dashed gray line
represent nodes and edges not computed yet.

Figure 4.5: Keeping connectivity though additional edges when using location priors. Green:
nodes that are expended and added to the graph; gray: potential neighboring nodes according
to the prior, but not encountered in the graph search and thus not instantiated.

not guaranteed to find the optimal solution but enables a fast search for image
matching across seasons that can be executed online.

4.1.4 Exploiting location priors for online matching

In case a rough location prior, for example from a noisy GPS, is available, we can
further improve the matching procedure and can also better deal with loops in
the database as well as query sequences, i.e., place revisits of the robot/vehicle.

The graph construction described in Section 4.1.1 can naturally be extended
to account for location prior information also for online matching. The overall
procedure of constructing the graph stays the same but an additional location
prior allows us to identify for every query image i the set of possible neighboring

46

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

images N(i) as
N(i) = {j | j ∈ D ∧ dist(i, j) < dmax}, (4.5)

where dist(i, j) is the distance between the position at which the images with
the indices i and j have been taken according to the location prior. All elements
not in N(i) will be discarded based on the prior information and thus several
matching hypotheses do not need to be computed.

As reported in Section 3.2, incorporating such location prior information may
lead to disconnected graph components. For an incremental search, it is however
easy to connect different components by extending the definition of the children
ch(xij) of a node by

ch(xij)← ch(xij) ∪ P1 ∪ . . . ∪ Pn, (4.6)

see Figure 4.5 for an intuitive definition of the components P1, . . . , Pn. The figure
depicts the situation, where for a query image i there exist several places in the
reference sequence that are within the distance dmax. In this situation, the “direct”
children ch(xij) of xij are getting connected to xij based on fanout relation using
set of edges EX as described previously. Since for other components P1, ..., Pn

the entry point is unknown xij gets connected to all nodes in the respective
components. Thus, we ensure that if the path stays in the same component, the
procedure of building the graph is not changed. If, however, the path “jumps”
to another component, we account for this possibility given the prior. In case of
a “jump”, the current best match hypothesis gets connected to all nodes from
other components as illustrated in Figure 4.5.

4.2 Experimental evaluation
Our evaluation is designed to illustrate the performance of our approach and to
support the following three claims:

(i) our approach has the ability to run in an incremental fashion so that only
few nodes are expanded so that online localization is possible,

(ii) our heuristic is well-suited to find a competitive solution in most real world
situations,

(iii) our algorithm is able to exploit additional location prior information and
can in this case also handle loops in robot’s trajectories.

Throughout our evaluation, we rely on multiple publicly available datasets, see
Figure 4.6. We use the summer-winter dataset as in previous chapters referred to
as Freiburg and the Nordland dataset, which is a four season train ride through

47

4.2. EXPERIMENTAL EVALUATION

Figure 4.6: Examples of typical image pairs taken at the same places within multiple datasets.
The image pairs are successively found by our approach. First row: Freiburg dataset; second
row: Alderley dataset; third row: Nordland dataset. Fourth row: day/night scene from the
VPRiCE’15 Challenge dataset.

48

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

Norway. We also use the Alderley dataset [92] recorded during a sunny day
and a rainy night. Finally, we used the datasets that have been selected for
the VPRiCE Challenge 20152. The challenge consists of 4, 022 query and 3, 756

database images organized as a single sequence although it resembles multiple
different datasets stitched together.

Besides setting the performance of our online method in relation to full offline
matching, we compare it to OpenSeqSLAM [92] as well as to a baseline approach
that uses approximate Euclidean nearest neighbor search to find the most similar
image according to the OverFeat features using the popular fast approximate
nearest neighbour approach called FLANN [94]. As we will see in the remainder of
this work FLANN approach is not well-suited to solve the across season matching
problem.

4.2.1 Matching performance

The first experiment is designed to illustrate the capabilities of our approach.
Figure 4.7 depicts the full matching matrix from a subset of the VPRiCE dataset
with strong seasonal changes. Our algorithm compares 29, 317 image pairs out
of 5, 693, 135 possible individual image comparisons that approaches such as [99]
need to compute. This yields a reduction of the computation time of 99.5%,
while obtaining a comparable matching performance. We obtain reductions by
more than 95% for most datasets. In general, the larger the dataset the bigger
the savings. Also the distinctiveness of the similarity score plays a role for our
algorithm. As it can be seen in Figure 4.8, the block of the similarity matrix
in the upper left corner shows no distinct matching pattern. This means that
several images appear similar when compared through the feature descriptor. As
a result, our approach expands a comparably large number of nodes, indicated by
the green elements in the right image. Note that our algorithm does not compute
the full similarity matrix as it is shown here, we depict it for visualization purposes
only.

The second set of experiments is designed to show how the proposed heuris-
tic influences the matching performance based on the Freiburg, Nordland, and
Alderley datasets. We compare the matches of our online method with those
of our previous offline approach Chapter 3 using the full matching matrix but
replacing the previously used HOG features by OverFeat. The results in Fig-
ure 4.9 and Figure 4.10 illustrate that our heuristic leads to matching results
comparable to offline search because the precision-recall curves mostly overlap,
while the number of image comparisons that need to be performed drops dra-

2https://roboticvision.atlassian.net/wiki/spaces/PUB/pages/14188617/The+VPRiCE+
Challenge+2015+Visual+Place+Recognition+in+Changing+Environments

49

4.2. EXPERIMENTAL EVALUATION

Expansion rate

0 0.5 1
N

o
d
e
 e

x
p
a
n
d
e
d
,
%

0

20

40

60

80

100
view point (suburbs)

day/night (bike)

seasons (Nordland)

Figure 4.7: Left: visualization of the graph structure for the dataset with dramatic seasonal
changes (Nordland sequence from VPRiCE). The algorithm compares the images only for the
nodes marked with green. Other nodes are computed for visualization only. Right: Plot of
the dependency between the expansion rate α and the number of matching cost computations,
expressed in percentage from total number of nodes.

Figure 4.8: Full matching matrix (left) and the nodes expanded by our algorithm (green nodes
in the right image). The similarity matrix is computed for visualization only. The squares
highlights an area in which most images are hard to distinguish, which leads to a larger node
expansion.

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

OpenSeqSLAM
FLANN

Our online
Our offline

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

OpenSeqSLAM
FLANN

Our online
Our offline

Figure 4.9: Precision-recall plots for the datasets Nordland (left) and Freiburg (right).

50

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

Online
Offline
OpenSeqSLAM
FLANN

Figure 4.10: Performance evaluation on the Alderley dataset.

matically from 100% for α = 0 to less than 10% for α = 0.6, see Figure 4.11. As
all precision-recall plots illustrate, we outperform OpenSeqSLAM as well as the
FLANN baseline. Our approach reaches around 90% precision for 90% recall for
Nordland and Freiburg datasets as well as around 90% precision for 80% recall for
more challenging Alderley dataset. As expected FLANN shows poor performance
on the proposed datasets due to poor feature discriminability under strong visual
appearance changes.

We also participated with our approach in the place recognition challenge
VPRiCE 2015 conducted at ICRA 2015 and CVPR 2015 workshops. The eval-
uation has been performed by the challenge organizers. Our online algorithm
achieved 3rd place with precision 0.680 and recall 0.755 in the test settings. The
approach that scored first [93] is an offline method, i.e., a method that must know
the whole dataset beforehand, and the second place [56] focuses on the design of
new features for image comparisons and thus could even be combined with our
method as they are rather orthogonal.

4.2.2 Node expansion

The third experiment is designed to evaluate the expansion of nodes in the data
association graph in more detail. The evaluation illustrates that we can achieve
online performance as only a comparably small number of nodes in the data
association graph get expanded in every step. The two major factors that in-
fluence how the graph expands are the distinctiveness of matching costs and
the expansion parameter α. We varied the expansion parameter of our heuris-
tic in Equation (4.4) between 0 and 1. Zero leads to a greedy search, while
α = 1 approximates the expected cost by the average cost of the best path. Fig-
ure 4.11 (middle) shows the dependency between the graph size and the applied

51

4.2. EXPERIMENTAL EVALUATION

α = 0.05 α = 0.6 α = 0.8

Expansion rate
0 0.2 0.4 0.6 0.8 1

N
od

e
ex

pa
nd

ed
, %

0

20

40

60

80

100
seasons (Freiburg)
seasons (Nordland)

Expansion rate
0.6 0.7 0.8

N
od

e
ex

pa
nd

ed
, %

2

4

6

8

Expansion rate

0.5 0.6 0.7 0.8 0.9 1

F
1

 s
c
o

re

0

0.5

1

seasons (Freiburg)

seasons (Nordland)

Figure 4.11: In overall selecting the bigger expansion parameter α leads to a decrease in node
expansion, while preserving the accuracy of the solution. The middle plot also shows that
constraining α close to 1 may prevent finding the correct path. It leads to degradation in
accuracy (bottom) and may lead to increase in node expansion, depending on the underlying
data (middle).

52

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

OpenSeqSLAM
FLANN

Expansion rate
0 0.5 1

N
od

e
ex

pa
nd

ed
, %

0

20

40

60

80

100
GPS prior 50m
GPS prior 100m
GPS prior 500m
No GPS

Our offline (100m)
Our online (100m)

Our offline (no gps)

Figure 4.12: Exploiting location priors enables handling the loops in image sequences. Right:
Example of the similarity matrix constrained with 100m GPS prior and overlaid graph search
results. Top left: comparison using precision-recall plots. Bottom left: node reductions relative
to the uncertainty of the location prior.

expansion rate for the Freiburg and Nordland dataset. Roughly speaking, the
closer the expansion parameter α is to 1, the smaller the resulting graph will be
and vice versa. Constraining α to the values close to 1, is likely to prevent the
algorithm from finding the optimal path, see Figure 4.11 (top, right) for an exam-
ple. In this figure, the matching nodes, which are computed using our approach,
are colored in green. All other are depicted for illustration purposes only and do
not need to be computed in practice. In these cases, the reductions in the number
of expanded nodes are {65%, 95.7%, 95%} (from left to right). The figure also
shows the F1 score illustrating that too large values for α can lead to a decay
in matching performance. As a result of this, in all our experiments, we select
α = 0.6 as a good trade off between matching performance and computational
savings.

4.2.3 Exploitation of additional location priors
The next experiment is designed to show that in presence of additional but po-
tentially noisy location priors, our algorithm is able to handle loops in the query
and database trajectories as well as deviations from the database, i.e., visiting un-
known areas. Figure 4.12 (right) depicts a similarity matrix between a query and

53

4.2. EXPERIMENTAL EVALUATION

database sequence for the scenario in which the location of the robot is known up
to 100m, for example obtained from a consumer GPS receiver operating under
suboptimal conditions. The green area corresponds to the nodes that are instan-
tiated in the graph construction and search, while black areas correspond to the
nodes excluded due to the location prior. Also in this settings, our algorithm is
able to avoid instantiating unnecessary nodes while correctly finding the path.
Figure 4.12 (top) shows that the expansion can be reduced to 20% in comparison
to the full offline method. Additionally, the figure shows that the the gain in
node reduction is smaller the better the pose is known from the prior, which is an
expected result. Exploiting location priors furthermore allows us to handle loops
better, see for example Figure 4.12 (bottom). As can be seen, there is almost no
decrease in performance of our approach in comparison to the offline method also
using OverFeat and GPS prior (Offline 100m). Moreover, this experiment shows
that we can deal with loop better than offline approach without pose prior (Of-
fline, no gps). We furthermore outperform SeqSLAM by reaching 60% precision
over 85% recall, while SeqSLAM for this dataset is reaching 70% recall with 40%
precision. It should be noted though that original SeqSLAM was not designed to
deal with loop in the sequences. Due to the low discriminative properties of the
features FLANN method shows a poor performance in these situations.

4.2.4 OverFeat vs. HOG features
We also analyzed the performance of the matching approaches using HOG fea-
tures, as used in previous chapters and the pre-trained OverFeat features by
Sermanet et al. [119]. We found that the OverFeat features outperform the HOG
features for place recognition under strong appearance changes as they provide
more distinctive matching scores, see also Figure 4.2. For the HOG features,
the ratio between the best match and the worse match using the cosine distance
is 1.46 compared to 4.28 for OverFeat. Thus, using HOGs is less effective for
the search method presented in this chapter as a larger number of nodes of the
data association graph would be expanded (see green area in the last row of Fig-
ure 4.2). In this sense, we confirm the results by Chen et al. [32] that the 10th

layer is well-suited for place recognition tasks.

4.2.5 Timing
Our approach can run online with around 1 fps on a standard notebook computer.
Breaking down the timings of the individual components shows that computing
the OverFeat descriptor takes the largest amount of time with approx. 500ms.
Expanding a single node, i.e., comparing two descriptors, takes 8ms. The incre-
mental update of the shortest path takes around 40ms on average.

54

CHAPTER 4. LAZY DATA ASSOCIATIONS FOR ONLINE IMAGE
SEQUENCE MATCHING

4.3 Conclusion
In this chapter, we proposed an incremental approach to visual image sequence
matching under substantial appearance changes for online operation. The key
idea is to apply a lazy data association approach and to define a heuristic for
the search in the data association graph that estimates the similarity of images.
This enables us to realize an online approach for image sequence matching under
substantial appearance changes. We furthermore illustrated that noisy location
priors can be exploited during online search. We implemented and tested our
approach using real world image sequences acquired in summer and in winter as
well as under different weather conditions. Our comparisons to other methods as
well as the results from the VPRiCE 2015 place recognition challenge suggest that
our approach provides competitive results and avoids expanding large portions of
the data association graph or building a large matching matrix.

55

Chapter 5

Hashing-based relocalization for
place recognition with flexible
trajectories

In previous chapter, we proposed a graph-based visual place recognition approach
which is able to establish image correspondences in online fashion. For every
incoming query image, the proposed approach finds the matching image in the
reference sequence while preserving the sequentiality of the input data. One of the
limitations of the previous approach that prohibits its real world application is an
assumption that image sequences should be “weakly” synchronized. By weakly
synchronized we mean that the image sequences should cover roughly the same
place in the environment, but do not need to be image-to-image synchronized.
The approach proposed in Chapter 4 can handle the loops in the trajectories only
in the presence of uncertain pose prior. In this chapter, we relax the assumption of
weakly synchronized image sequences and allow for ”flexible” robot trajectories,
the ones that contain loops in query and reference sequence, as well as the parts
of the query trajectory that deviates from the reference one recorded beforehand.
We therefore present an algorithm that matches image sequences collected by
cameras taken different, partially overlapping trajectories in the environment.

Localization under appearance changes is essential for robots during long-term
operation. Our approach builds upon the work presented in Chapter 4 on graph-
based image sequence matching and extends it by incorporating a hashing-based
image retrieval strategy in case of localization failures or the kidnapped robot
problem. In this chapter, we present a variant of hashing algorithm that allows
for fast retrieval of high-dimensional CNN features. Our experiments suggest
that our algorithm can reliably recover from localization errors by globally relo-
calizing the robot. At the same time, our hashing-based candidate selection is
substantially faster than state-of-the-art locality sensitive hashing.

57

5.1. ROBUST IMAGE MATCHING COSTS WITH CNN FEATURES

Figure 5.1: Challenging image pairs for place recognition systems. Both images have been
recorded at the same place but during different times resulting in strong appearance changes.
The approach presented in this paper identifies such corresponding images via sequence infor-
mation and can handle loops in the database sequences, recover from localization failures, as
well as deal with the kidnapped robot problem.

This chapter extends our previous approach along several dimensions. First,
we provide a way for dealing with loops in the reference or database sequences
and introduce new edges into the data association graph that is build up on the
fly. Second, we provide an efficient way for relocalizing the robot in case it got
lost. Both extensions naturally integrate with and extend Chapter 4 so that the
same search approach and heuristic is used to build upon. It furthermore does
not affect the online nature of the solution and the data association graph is still
built incrementally. The online graph construction procedure stays the same as
in Chapter 4 with proposed edge sets EX , Es. In this chapter, we only describe
the additional edges that allow for matching flexible trajectories. We design our
experimental evaluation section to support the following claims, our approach

(i) is able to quickly relocalize after entering mapped area without additional
pose prior,

(ii) can handle the kidnapped robot problem,

(iii) be executed in online fashion, and

(iv) robustly deals with loops in the reference sequence.

5.1 Robust image matching costs with CNN fea-
tures

To align image sequences, we need to match the individual images. Our ap-
proach represent each image by a single high-dimensional feature vector. In their
extensive study, Chen et al. suggest that the 10th layer of the convolutional neu-
ral network OverFeat [119] produces robust features for changing environments.
The size of the output feature vector depends on the size of the input image. We

58

CHAPTER 5. HASHING-BASED RELOCALIZATION FOR PLACE
RECOGNITION WITH FLEXIBLE TRAJECTORIES

A B C D

reference query lost

detour

Figure 5.2: Left: Sketch of a query detour during which the robot is lost. Right: An example
of a cost matrix, where the query trajectory makes two detours (marked with rectangles).

opted for the smallest acceptable size of 450× 250 pixels, which results in feature
vector of approx. 200, 000 dimensions. Note, however, that our algorithm is not
limited to this kind of features and is applicable with other alternatives as from
VGG-16 [121], Net-VLAD [8], or PoseNet [71].

5.2 Efficient relocalization

No localization system is free of failures. Thus, it can happen that a robot gets
lost, i.e, it cannot establish a correspondence between its current observations
and the model anymore. In our case, this means that the (sub-)sequence of
images, which the robot is currently acquiring, cannot be matched to a reference
sequence anymore. A common reason for that happening in practice is the fact
that the robot moves along a so far unseen trajectory, for example, when leaving
the previously mapped area. Figure 5.2 (left) shows a sketch of such a situation
and Figure 5.2 (right) depicts how a detour in the query sequence influences the
corresponding cost matrix. Whenever, the robot deviates from the mapped route,
the cost matrix does not show any bright pattern as in the areas highlighted
with pink rectangles. There exists no matching candidate and a robust place
recognition system should account for such a situation.

A good relocalization system should be able to detect whenever the robot
leaves as well as reenters the previously mapped area in order to resume or restart
localization. To detect whether the robot is lost, we analyze the nodes of the best
current matching hypothesis within the sliding window over time. If the per-
centage of the hidden nodes, i.e., images with low similarity, within this window
exceeds 80%, i.e., only 20% of the images can be matched to the reference se-
quence, we consider the robot as lost. The size of the window depends on the

59

5.2. EFFICIENT RELOCALIZATION

framerate of the camera and potentially also on the speed of the robot1.
A straightforward but computationally demanding way to find a reentry point

is a brute force search through the whole reference database. Instead, we propose
to use a hashing strategy for identifying potential reentry points. This results in
comparing a query image only to the subset of database images that are mapped
to the same hash key. Hashing techniques are known to be robust and efficient
to find image duplicates. In contrast to standard (cryptographic) hashing such
as MD5 or SHA1, hashing for image retrieval should assign similar features to
the same or neighbouring buckets of the hash table, i.e., to similar hash keys.
This property is referred to as locality sensitive. Locality sensitive hashing (LSH)
proposed by Gionis et al. [53] was one of the first approaches to apply hashing
for image retrieval problems.

We found that the use of an improved version of the LSH, called Multi-Probe
LSH proposed by Lv et al. [84] is better suited for image matching tasks than
LSH [53]. Multi-Probe LSH builds on top of the LSH but specifies an intelligent
strategy to probe specified buckets in multiple hash tables to get the higher
probability of finding similar images. In our work, we use Multi-Probe LSH in
the following way: The moment the robot is considered lost, the algorithm starts
to hash every incoming image qi and looks up candidates C(qi), stored in the hash
buckets, according to the probe strategy. More information about the probing
strategy can be found in [84]. After potential matching candidates are retrieved,
we add the corresponding nodes to the graph

Ereentry = {(x(i−1)j, xc)}c∈C(qi), (5.1)

where i is the id of the current query image qi, the term x(i−1)j corresponds to
a node representing current best matching hypothesis, and c refer to ids of the
images in the reference dataset that were retrieved as matching candidates based
on hashing.

Originally, Multi-Probe LSH was designed to match images that were taken
under similar conditions and was used with relatively low dimensional features,
e.g., 64 or 192 dimensions. In this work, however, we rely on high dimensional
features (around 200K dimensions) as they show a better matching performance
under changing conditions. This naturally leads to an increase in the querying
time for computing the potential candidates from the database.

To tackle this issue, we propose an alternative hashing algorithm designed to
explicitly take into account the high-dimensionality of the data and thus improve
the querying time without compromising matching performance.

As in every hashing algorithm, the first step is to construct the hash table H.
We start with binarizing the feature vectors that represent the images from the

1In our experiments using car in an urban environment, the size was set to 10 frames.

60

CHAPTER 5. HASHING-BASED RELOCALIZATION FOR PLACE
RECOGNITION WITH FLEXIBLE TRAJECTORIES

reference dataset. We inherit the binarization strategy for CNN features proposed
by Arroy et al. [11]. To receive the binary values, we first scale the feature
vector so that the dimension with largest spread lies in the interval [0, 255] and
afterwards all dimensions higher than a middle value 128 are assigned to 1, others
0. Formally:

f int = (f cnn −min(f cnn))
255

max(f cnn)−min(f cnn)
, (5.2)

fbin =

1, if f int >= 128

0, if f int < 128
(5.3)

where f cnn is a feature vector from a CNN, f int is normalized feature vector and
fbin is final binarized feature vector.

Let us assume we need to hash a dataset that consists with N features indexed
with n ∈ [0, N] and each of the feature has D dimensions indexed with d ∈ [0, D].
Then, every entry in the hash table H[d] stores the set of indices of all the features
that have a value of 1 in dimension d:

H[d] =
{
n | fbin

n [d] = 1
}
. (5.4)

In the query phase, the incoming image q gets binarized using the same pro-
cedure according to Equation (5.3). Afterwards, we extract a set of indices A(q)
of features dimensions that take the value of 1 for image q:

A(q) = {d | fbin
q [d] = 1}, (5.5)

where |A| = M < D and typically M ≪ D. We collect all feature indices from
the hash table that take a value of 1 for the dimension stored in A, i.e.,

H[A] = ∪̂a∈AH[a], (5.6)

where ∪̂ denotes the set union preserving duplicates. We intentionally keep
the duplicates in the set to further select those feature candidates that have high
number of occurrences in H[A]. This represents the fact that the query feature
q and candidate features from the database share a substantial set of feature
dimensions taking a value of 1. Thus, they are more likely to represent the same
place. For an illustration of the hashing procedure, consider the toy-example in
Figure 5.3. This small example exhibits the hashing of reference sequence as well
as querying the candidates given an image q. Here, for simplicity we consider
the reference dataset to consist of three feature vectors, i.e., images. Then we
construct a hash table H by considering the dimensions of the feature vectors.
The keys of H correspond to the dimension IDs and the buckets store the IDs
of the features that have a value 1 in the dimension corresponding to the key of

61

5.3. LOOPY REFERENCE SEQUENCES

1 1 1 0 0 0 0

1 1 1 0 0 1 1

0 0 0 0 1 0 1

0

1

2

0 1 2 3 4 5 6

0:
1:
2:
4:
5:
6:

0, 1
0, 1
0, 1
2
1
1, 2

1 1 1 0 1 0 0

0 1 2 3 4 5 6

Figure 5.3: Example of the proposed hashing algorithm. Here the dataset consists of 3 feature
vectors of dimension 7 each. An entry of hash table H[2] stores the IDs of the feature vectors
0 and 1, since for both of them, dimension 2 has the value of 1. For a query feature, the set
of dimensions that take a value of 1 is A = {0, 1, 2, 4}. By collecting the values from H, the
set of potential matching candidates is 0 with occurrence 3, 1 with occurrence 3 and 2 with
occurrence 1. The resulting matching candidates for query q are {0, 1}.

that bucket. The quering procedure starts with selecting a set of dimensions IDs
in the query feature that have a value 1, in this case the set is {0, 1, 2, 4} and
we collect the features from H that also have the following dimensions activated.
In this case, we count reference feature 0 and 1 three times and feature 2 once.
Thus, this results that the query candidates are image 0 and 1.

5.3 Loopy reference sequences
While recording the reference image sequence, it can happen that the robot moves
along the same route multiple times. In practice, this situation occurs frequently
when considering a typical urban mapping run using a car. In Figure 5.4 (left),
we provide a sketch of a trajectory that shows the situation in which reference
trajectory visits the same place in the environment twice from ’B’ to ’C’. The cost
matrix for a corresponding real world situation is depicted in Figure 5.4 (right).
In this case after visiting the place ’C’, there are two possibilities to proceed,
either visiting ’C-D’ or ’C-F’. As the query trajectory follows the ’C-F’ route,
we can see a brighter pattern on the right lower part of the cost matrix in the
Figure 5.4 (right), whereas if the query trajectory followed the ’C-D’ direction, the
pattern would appear in a left lower part of the matrix. The previous version of
our approach cannot handle such a situation flexibly, because the query sequence

62

CHAPTER 5. HASHING-BASED RELOCALIZATION FOR PLACE
RECOGNITION WITH FLEXIBLE TRAJECTORIES

DE

A B C F

reference

query

same place

Figure 5.4: Left: Sketch of similar places situation. Right: an example of the cost matrix with
a reference dataset visits the same place twice (marked with yellow rectangles).

is expected to roughly follow the reference one.
In this chapter, we extend the approach so that the search algorithm can

flexibly “jump” between similar places in the reference sequence visited multiple
times. The ability to “jump” is also established when later matching a query
sequence by creating the edges in the graph between the nodes that correspond
to the similar places in the environment. For example, if we know that image
a corresponds to image b within the reference sequence, then whenever the al-
gorithm is requested to expand the graph from the node xia, it will also expand
from the node xib

Esim = {(xia, x(i+1)k)}k=b−K,...,b+K , (5.7)

where K is the previously introduced fan-out parameter that compensates for
different robot speeds or camera frame rates. The same thoughts hold if the
graph gets expanded from the node xib.

To be able to establish such nodes, we need to identify which images in the
reference dataset represent the same place. Since the evaluations must only be
performed on the reference dataset, finding of the similar place can be done
offline using standard place recognition algorithm such as FABMAP2 [34] since
the images stem from the the same appearance within the reference trajectory.

5.4 Experimental evaluation
Our experiments are designed to show the capabilities of our method and to
support our key claims, which are: Our approach is able to

(i) quickly relocalize after entering mapped area without additional pose prior,

(ii) handle the kidnapped robot problem,

(iii) be executed in an online fashion, and

63

5.4. EXPERIMENTAL EVALUATION

ground truth

matching costs

expanded nodes

real match hidden match

Figure 5.5: Example of possible outputs in our experiments. The cost matrix stores the costs
of matching individual images (not used in our algorithm). Expanded nodes - matching costs
computed in our algorithm. Real matches - image pairs that represent the same place and
hidden match - image pairs that support the path hypothesis, but have low matching cost.
Ground truth matches that represent the same place in reality.

(iv) deal with loops in the reference images sequence.

We furthermore provide comparisons to the existing methods [99, 140, 92]. We
perform the evaluations on own datasets as well as on publicly available ones. To
support our claims, we have selected the datasets that explicitly represent a par-
ticular challenge for localization. Some of them stem from the Freiburg datasets
used in [138, 140] and others from the VPRICE Challenge dataset. Additionally,
we collected a more challenging dataset in terms of trajectory shapes. We col-
lected the data in Bonn with a car and a dashboard camera. The query as well
as reference trajectory contains several revisits of the same places. Here, we use
the datasets collected in the morning with slight rain and overcast as well as in
the evening and very late evening on different days. Example images can be seen
in Figure 5.1.

Note, that throughout all the experiments the cost matrix was only computed
for visualization purposes and is not needed for our algorithm. The matching
algorithm only computes the matching costs for the image pairs visualized in
green. To enhance the visualization of the cost matrix for larger datasets, we also
overlayed the ground truth results, see Figure 5.5 for further notations.

5.4.1 Matching performance and localization recovery
The first set of experiments is designed to show that our approach is able to
quickly relocalize after the system has identified that it cannot find matching

64

CHAPTER 5. HASHING-BASED RELOCALIZATION FOR PLACE
RECOGNITION WITH FLEXIBLE TRAJECTORIES

Figure 5.6: Example of a cost matrix for matching two trajectories, where the query trajectory
deviates from the reference one twice. Once at the beginning and then in the middle. The
places are marked with pink rectangles. Left: matching matrix. Middle: result of proposed
algorithm. Right: Result using previous approach. Note that the full cost matrix for matching
is only shown for visualization and does not need to be computed by our approach.

images for a certain amount of time. This typically has the reason that the robot
is navigating outside the mapped area or that the robot has been “kidnapped and
teleported” to a different location in the map. In our experimental evaluations,
we consider a robot to be on a detour whenever it is lost but its input query
images are consistent between each other. Whereas if the input data changes
rapidly, meaning the robot is rapidly in completely different location, we consider
this situation to be a “kidnapped or teleported” situation. Our search algorithm
though does not differentiate between these situation explicitly and is able to
perform robust place recognition in both cases. We provide different experiments
to support this claim.

The first experiment is designed to show how our approach can deal with
situations, in which the robot is navigating outside the mapped area, i.e., reference
sequence. This means that there are no corresponding images with respect to the
reference sequence. An example for that can be seen in Figure 5.6 (left) marked by
the large rectangles. Figure 5.6 (middle) illustrates that our approach localizes
the robot in such a situation (as can be seen from the red matched and blue
unmatched pixels). In contrast to that, our previous lazy DA approach finds the
matches only partially as is searches in the wrong area of the graph, see Figure 5.6
(right).

65

5.4. EXPERIMENTAL EVALUATION

Figure 5.7: Example of the trajectory matching from the VPRICE datasets. Here the query
trajectory follows the reference trajectory twice, once during the day time (upper matrix part)
and once during the night time (lower matrix part). Left: cost matrix. Middle: result of
proposed algorithm. Right: Result using previous approach.

Figure 5.8: Matching example from the Freiburg dataset. The trajectory contains partial
revisits of the reference sequence as well as detours in the query sequence. Left: cost matrix.
Middle: result of proposed algorithm. Right: Result using previous approach.

66

CHAPTER 5. HASHING-BASED RELOCALIZATION FOR PLACE
RECOGNITION WITH FLEXIBLE TRAJECTORIES

We further tested our system on the publicly available VPRICE Challenge
dataset to illustrate the handling of the kidnapped robot problem. We depict here
the part that contains images where a person is moving with a hand-held camera
during the day in the reference sequence and repeats the same path during the day
and at night within the query sequence. Since the image sequences between the
day and night runs are appended to each other, this corresponds to the kidnapped
robot situation, i.e., the robot was teleported from the current location (end of the
sequence) to another place (beginning of the sequence). As Figure 5.7 (middle)
suggests, also in this case we can dramatically improve the matching quality with
respect to our previous approach Figure 5.7 (right). Furthermore, we evaluated
our approach on a more challenging dataset that has multiple revisits of the same
places in query as well as reference sequence, see Figure 5.8.

We also ran multiple evaluations for the proposed approach. The results
are visualized through the precision-recall plots in Figure 5.9. The left image
depicts the precision-recall curve for the same dataset as in Figure 5.8 and as
can be seen the quality of the result is also better than in our previous approach
from Chapter 4 (here labeled as “RAL’16”) exactly due to the ability to detect
loops. Figure 5.9 (right) visualizes the results for a dataset with a query loop
and relocalization part, as in Figure 5.6 and it clearly outperforms the RAL’16
approach.

The next experiment is performed using more challenging shapes of trajecto-
ries, recorded in downtown Bonn. In Figure 5.10, the query sequence was collected
in the morning with a slight rain, whereas the reference in the late evening around
a week later. The trajectories overlap only partially, which results in the broken
up bright patterns in the cost matrix. As can be seen, our approach (middle)
is able to find the underlying pattern, i.e., find the matches, whereas our previ-
ous approach only performs reliably within the continuous pattern. Figure 5.11
shows the results for another pair of trajectories. The query sequence was col-
lected in the early evening, whereas the reference in the late evening. As can be
seen our proposed approach finds the underlying pattern as well as ignores the
areas, where the query trajectory deviates from the reference one, and thus no
matching images and minimal expansion are expected. Due to inability of our
previous method to handle the loops in the trajectories without pose priors, it
performs poorly on this dataset.

To evaluate the performance of our approach in a more quantitative way, we
compute precision recall as well as F1-score statistics for the given datasets, see
in the Table 5.1. As explained in Chapter 2, F1-score is a harmonic mean of the
precision and recall. It reaches its maximum value at 1 for perfect precision and
recall and worst at 0. We use F1 score as a way to summarize precision-recall with
one value to make the comparison between two methods more intuitive. As it can

67

5.4. EXPERIMENTAL EVALUATION

Recall

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

proposed

RAL‘16

OpenSeqSLAM

Recall

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0.4

0.5

0.6

0.7

0.8

0.9

1

proposed

RAL‘16

Figure 5.9: Precision recall plots for the dataset with multiple loops in query in references
sequences (left) and the dataset with a query connected through the similar places in the
reference sequence (right).

Figure 5.10: Matching example of trajectories from Bonn in which both trajectories contain
loops. The query also deviates for reference trajectory for a significant amount of time. Left:
cost matrix with ground truth overlayed. Middle: proposed approach; Right: Result using
previous approach, see Chapter 4.

Figure 5.11: Additional matching example from Bonn. Left: cost matrix with ground truth
overlayed. Middle: proposed approach; Right: Result using previous approach.

68

CHAPTER 5. HASHING-BASED RELOCALIZATION FOR PLACE
RECOGNITION WITH FLEXIBLE TRAJECTORIES

Table 5.1: Qualitative comparisons between the image sequence matching approach from [140]
(RAL’16) and proposed method. Trajectories of various shapes. Percentage of expanded nodes
with respect to the maximum possible expansion (exp), pr—precision; re—recall.

RAL’16 Proposed
exp pr; re F1 exp pr; re F1

1 7,3% 0.98; 0.35 0.51 6% 0.95; 0.92 0.93
2 12,6% 0.89; 0.63 0.74 11% 0.89; 0.91 0.86
3 10,3% 0.55; 0.64 0.59 4.2% 0.7; 0.71 0.70
4 2.9% 0.99; 0.31 0.48 1.5% 0.95; 0.76 0.84
5 2.7% 0.72; 0.35 0.46 1.8% 0.8; 0.81 0.80

be seen, by introducing the additional constraints and an efficient relocalization
strategy, we are able to increase the number of found image matches (recall) with
almost the same precision rate as in our previous chapter. This naturally leads
to an increase in accuracy in terms of F1-score.

5.4.2 Hashing comparison

The second experiments is designed to show that the performance of the proposed
relocalization strategy and the multi-probe locality sensitive hashing is compa-
rable. We also confirm that the proposed hashing algorithm runs faster for the
data with very high dimensional features. We select the following parameters for
all of the experiments: number of trees = 1, key size = 10, probe level = 2. From
our experience selecting a higher number of trees or key size does not improve the
performance of the algorithm, but dramatically increases the computation time.
Figure 5.12 depicts only small deviations of the precision recall curves between
the locality sensitive hashing (LSH) and the proposed dimension hashing (DH),
which indicates that both hashing algorithm perform equally good on multiple
datasets. On the other hand, the run time of the individual hashing strate-
gies differ dramatically. For querying a set of candidates the LSH on average
takes 120ms, whereas DH retrieves the candidates in on average in 600µs, which
makes the candidates extraction time around 200 times faster. This speedup has
a substantial impact on the overall timing.

Given the OverFeat feature vectors, we obtain the following timings. Pro-
cessing a single image while being localized takes 2 − 3ms. In contrast, pro-
cessing a single image while being lost takes 30 − 80ms using our DH hashing
and 150 − 200ms using LSH. Thus, our approach reduces the runtime for the
relocalization by a factor of 2.5 to 5 in our experiments.

69

5.4. EXPERIMENTAL EVALUATION

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

LSH
DH

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

LSH
DH

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

LSH
DH

Figure 5.12: Precision recall plots for different pairs of trajectories from Bonn dataset. LSH -
results for locality sensitive hashing, DH - proposed hashing algorithm (dimension hashing).

Figure 5.13: Example of trajectories, where the reference sequence traverses the same place in
the environment twice (marked with orange squares) and deviates in two difference direction
upon exiting similar area. The query trajectory then also passes the ”marked” area and follows
one of the direction in the reference sequence. Middle: result of proposed algorithm. Right:
Result using previous approach.

70

CHAPTER 5. HASHING-BASED RELOCALIZATION FOR PLACE
RECOGNITION WITH FLEXIBLE TRAJECTORIES

5.4.3 Loops in reference sequences
The last experiment is designed to show that taking into account the similarity
of the places in the reference sequence leads to better localization results. As
can be seen in Figure 5.13 (middle), our proposed approach finds the underlying
pattern since the green area overlays the bright pattern depicted in the left part.
On the contrary, our previous approach presented in Chapter 4 fails to detect a
loop, i.e., the green area does not cover the right part of the bright pattern, see
Figure 5.13 (right). Experiments with other datasets show similar results.

5.5 Conclusion
In this chapter, we presented a new approach for quickly finding correspondences
between a currently observed image stream and a previously recorded image se-
quence under strong appearance changes. Related to previous chapters, we build
a data association graph incrementally and search for a data association sequence
using an effective search heuristic. The work proposed here overcomes two key
limitations of our previous method. First, it provides an efficient way for re-
localizing the robot in situations, in which it got lost. For example, after the
robot has left the previously mapped areas and is reentering the known part of the
environment or to solve the kidnapped robot problem. Second, our new approach
can deal with loops in the reference sequences effectively without additional pose
priors, like consumer GPS. We implemented and evaluated our approach on dif-
ferent publicly available datasets. Our evaluations and comparisons show that
we can handle the above mentioned situations, which could not been solved with
the approach in Chapter 4. We furthermore show through the experiments that
the our approach runs online, provides an effective image matching, and supports
all claims made in this chapter.

71

Chapter 6

Visual place recognition against
multi-sequence maps

Our approach presented in previous chapters has proven to be a reliable solution
for visual place recognition in changing environments for sequence-to-sequence
matching. In most realistic scenarios, however, one reference trajectory is typi-
cally not sufficient to cover the operational environment of the vehicle. A more
realistic scenario is when the vehicle operates traveling over multiple routes over
extended periods of time. In this case, it is unlikely that the vehicle takes the
same routes all the time. This results in having a collection of multiple unsyn-
chronized image sequences as a reference dataset. All of those sequences exhibit
potentially different representation of the places and we would like to use this in-
formation to improve the chances of successful visual place recognition. Since we
had successfully applied our previous method to visual place recognition between
two sequences of images, the next natural step is to reformulate the sequence-
to-sequence matching to deal with multiple image sequences in parallel. In this
chapter, we describe an extension our approach to deal with multiple reference
trajectories and in this way allow our system to grow a map of places. This
improves the coverage of the environment both, in terms of space and different
appearances.

The particular challenge of the current setup of the reference dataset is that
our previous graph construction strategy is not directly applicable to work with
the map form of the reference dataset. We cannot use the same formulation for
the edges, since now we potentially have multiple reference sequences. In this
chapter, we describe how to adapt the construction of the graph structure so
that it is able to operate in online fashion with the reference dataset consisting
of the multiple sequences of images.

One of the key features that our search system should have is the ability to
alternate the search between multiple reference sequences, if required. We achieve

73

this ability by exploiting the relocalization strategy presented in Chapter 5. In
the previous chapter, we proposed a relocalization technique based on the feature
dimensionality analysis and inverted index structure. Inverted index is a data
structure that stores a mapping from the content, in our case the dimension of
the feature, to the location. i.e., the feature ID which has this dimension acti-
vated. This method works better and faster than Multi-Probe Locality Sensitive
hashing (LSH) [84] for very high-dimensional feature vectors, for example features
from OverFeat convolutional neural network [119] or VGG-16 [121] with around
200,000 and 25,000 dimensional feature vectors respectively. In this chapter, we
opted for newer smaller feature vectors, namely the feature vectors obtained from
NetVLAD convolutional neural network [8]. The advantages of these features are
comparably small size (4092) and robustness against visual appearance changes,
especially dramatic viewpoint changes. Due to the vector size, we selected Multi-
Probe Locality Sensitive hashing as a fast alternative to perform relocalization.
Whenever the robot is lost, defined by the fact that there are more than 80%
hidden nodes in the sliding window around current best match, we pick the top
candidates from all the images using Multi-Probe LSH and select the most promis-
ing one. This matching candidate becomes a real node if the respective matching
cost is lower than non-matching threshold m and a hidden node otherwise. Af-
terwards, we connect it to the current best matching hypothesis. We consider
the relocalization to be successful if no more than 80% of the nodes within the
sliding window of 5 frames in path hypothesis are hidden nodes.

The novelty of this work is the fact that the reference dataset can now be a
map of multiple sequences of the images that are collected in different points in
time, recorded from different viewpoints and with different frame rates. Example
of such a setup is depicted in the Figure 6.1, where the reference dataset consists
of three trajectories collected in the morning, day, and early evening as can be
seen from the images to the left. We color coded the trajectories with different
colors: red, blue, and purple. The query is marked with black and was collected
during the sunny day as can be seen from the top picture to the left. To the right,
you can see the overlayed GPS coordinates (used only for visualization purposes
here) of the collected images that have the corresponding color coding. Note that
the reference trajectories only partially overlap between each other and at the
same time the query trajectory passes a lot of places that were not covered by
any reference trajectory, i.e., the query trajectory makes a detour. In subsequent
sections, we describe how to adopt and reformulate the graph construction scheme
to be able to work with a map of multiple reference image sequences as well as
provide extensive qualitative and quantitative experiments that show that our
approach is able to perform a robust visual place recognition for the changing
outdoor environments by localizing against (i) multiple image sequences collected

74

CHAPTER 6. VISUAL PLACE RECOGNITION AGAINST
MULTI-SEQUENCE MAPS

Figure 6.1: Example dataset, where the map consists of three trajectories collected in different
points in time as well as in different weather conditions. The corresponding image sequences
cover also partially different routes. The query trajectory depicted in black.

with similar camera setup and (ii) imagery coming from different modalities,
sequences collected on bike as well as in the car.

6.1 Adapting the data association graph struc-
ture

In this section, we propose how to adapt the graph construction scheme to take
into account multiple reference sequences. As we assume that the reference image
sequences have been collected beforehand, we can execute a pre-processing step
to synchronize the sequences by performing the pairwise sequence-to-sequence
matching, i.e., using our approach described in previous chapters, for all refer-
ence sequences. From this matching information, we can define an in- reference
matching function M(j, t) that returns for the image j from reference trajectory
t all images (image index and trajectory index) that match to image j from t

among the other reference sequences. If there are no corresponding images, the
function returns the empty set. To enhance the localizability capabilities of the
system, we have changed the representation of the map in comparison to Chap-

75

6.1. ADAPTING THE DATA ASSOCIATION GRAPH STRUCTURE

ter 4 to be able to match against multiple image sequences. To incorporate a
map of multiple reference sequences into our search procedure, we need to rede-
fine the edges of the data association graph. This also leads to a slight change
into the notation. Here, every node in the “one-to-many” strategy is specified
as xi

jt, where i refers to the image id in the query sequence. The subscript jt

refers to the image with ID j in the reference sequence t, see Figure 6.2 (right)
for visualization.

The search starts with constructing the source node xs. Since from the begin-
ning the robot has no information about its location, we start with a relocalization
action. This includes hashing the first query image q0 and retrieving potential
candidates C(q0) from a hash table , forming the first type of edges called Es in
the data association graph, given by:

Es = {(xs, x0
c)}c∈C(q0). (6.1)

During the search, every node that is worth expanding given the heuristic proposed
in Chapter 4, Equation (4.4) is connected to its children within the same sequence
using the set of edges EX :

EX = {(xi
jt, x

i+1
kt)}k=j−K,...,j+K . (6.2)

At the same time, we allow for transitions between reference sequences given the
identified correspondences through the function M(). Thus, the set of edges Em

interconnects the images along the different reference trajectories, i.e.,

Em = {(xi
jt, x

i+1
γ)}γ=M(j,t)−K,...,M(j,t)+K . (6.3)

Finally, in case the vehicle looses track of its localization, either due to a failure
or due to the fact that it had left the previously mapped area, the last node of
the current best matching hypothesis xi

∗ is connected to the set of the candidates
obtained from our hashing scheme:

El = {(xi
∗, x

i+1
c)}c∈C(qi+1). (6.4)

Each edge e ∈ E, independently of type, has a weight w(e) assigned to it. The
weight is inverse proportional to the similarity score between the images. If an
edge connects two nodes (xi

jt, x
i+1
j′t′), the weight w(e) = 1/zi+1

j′t′ , where zi+1
j′t′ is the

cosine distance between query image feature i + 1 and reference image feature
(j′, t′). As mentioned before, we use NetVLAD features that were designed to be
compared with the Euclidean distance, so w(e) is given by the Euclidean distance
between two feature vectors within this chapter.

By introducing new edges and weights, we described how to adapt the graph
construction scheme, namely the update step from the matching algorithm pre-
sented in Chapter 4, to be able to account for multiple sequences. All other steps

76

CHAPTER 6. VISUAL PLACE RECOGNITION AGAINST
MULTI-SEQUENCE MAPS

q
u
e
ry

reference
map

reference
q
u
e
ry

TP

FN, FP

FP

FN

TN

0

1

2

3

4

Figure 6.2: Left: Evaluating per image data associations between query and reference sequences.
Blue crosses denote the matches found by our algorithm. Green squares denote the ground truth
solutions. TP-true positive, TN - true negative, FP - false positive, and FN - false negative.
Right: Es (pink circles) relocalization edges; Em - correspondence edges; M(j, t) (green arrow)
corresponds to the images that represent the same place from different image sequences.

remain the same, which shows how easy it is to extend our online graph based
sequence matching algorithm to more general cases.

Furthermore, the proposed approach operates also on the reference sequences
that are not synchronized. In this case, whenever the camera leaves the current
sequence it was localized against the relocalization step will be triggered. This
extended data association graph design is built up on the fly while new images are
obtained and allows us to consider multiple reference trajectories jointly. Only
the function M(), for synchronized case, is computed beforehand as it does not
depend on the query image sequence.

In sum, this leads to a sequence-based visual place recognition approach that
localizes against map consisting of multiple sequences. Our approach allows for
better localization in challenging environments, since we have more information
available through multiple sequences, while not imposing any restrictions on the
map data collections process.

6.2 Experimental evaluation
We designed the experimental evaluations to confirm the following properties:
Our approach is able to efficiently relocalize against

(i) multiple image sequences collected with similar camera setup, and

77

6.2. EXPERIMENTAL EVALUATION

(ii) imagery coming from different modalities, sequences collected on bike as
well as in the car.

Note, there are no constraints on shape, length, or visual change of the trajecto-
ries.

6.2.1 Evaluation setup
To describe our evaluation setup, we first analyze the output of the matching
algorithm. Our place recognition system reports for every query image if there is
a matching image in the reference dataset as well as what exactly that image is.
Additionally, we have an estimate about the ground truth matches. We consider
two images to match if their GPS coordinates lie within the 30 meters range.
There are 5 types of situations that can happen while evaluating a match for a
query image, see Figure 6.2.

• Case 1. True positive (TP) occurs when the algorithm found a match that
is in the set of ground truth matches as for the query image 0 in Figure 6.2.

• Case 2. False negative (FN) there is a match for a query image 3 in the
dataset, but the algorithm failed to detect it.

• Case 3. False positive (FP) when the algorithm has detected a match but
there should be no match for a query image, as for image 2. This typically
happens when the query trajectory makes a detour from the reference ones.

• Case 4. True negative (TN) there is no match in the ground truth set and
the algorithm has correctly not found one as it is the case for image 4.

• Case 5. A fifth possible situation is that there exists at least one ground
truth image correspondence for a query image but the algorithm failed to
detect it and found a wrong match instead as for image 1. Then, by our
definition this match is a false positive as well as false negative. To not
penalize this situation twice, we increment the set of FP and FN not by 1
as for the other cases but by 0.5.

Afterwards, we compute the accuracy for individual dataset as

acc = TP + TN
TP + TN + FP + FN . (6.5)

Since the performance of our search algorithm depends on the non-matching
parameter m, we vary this parameter to evaluate the behavior of the search. This
allows for obtaining the accuracy curve.

78

CHAPTER 6. VISUAL PLACE RECOGNITION AGAINST
MULTI-SEQUENCE MAPS

Figure 6.3: Left: Query trajectory drawn in black and shifted artificially for better visibility,
others are reference trajectory. Right: Query trajectory painted in the colors of the reference
trajectories it was matched to.

To provide comparative evaluations, we deploy an open-source version of
FABMAP [54] algorithm as well as open-source version of DBow2 [49]. To adjust
it to our setup, we trained the vocabulary for both approaches on several extra
datasets that exhibit similar visual conditions, like viewpoint changes, changes
in environmental appearance etc. We used the default provided parameters for
both approaches. Since FABMAP and DBow2 do not explicitly work with refer-
ence data represented with multiple trajectories, throughout all our experiments
we stacked reference trajectories into a single big trajectory. For FABMAP, we
select for every query image a matching image if it has the highest probability.
Whenever the probability exceeds the predefined matching threshold, then the
match is considered valid, otherwise the query match does not have a matching
image in the reference dataset. To obtain the accuracy curve, we vary the match-
ing probability threshold from 0 to 1. The same evaluation strategy holds for the
DBow2 but there we threshold by the score and not probability.

Additionally, we compare our search strategy against the algorithm that com-
pares every query image to every image in the reference dataset—a property that
an online approach cannot have. This algorithm operates with the same fea-
tures as ours, but selects the match with the smallest cost from all the reference
sequences, making it a “fully informed search”, labeled as FI in the plots, also
known as exhaustive search. As also for FABMAP, a match for a query image is
accepted if the matching cost is smaller than a non-matching cost parameter m.
The curve is generated by varying the non-match parameter.

79

6.2. EXPERIMENTAL EVALUATION

0 5 10 15 20 25 30 35
Parameter

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

our
FI
fabmap
dbow2
seqslam

0 5 10 15 20 25 30 35
Parameter

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

our
FI
fabmap
dbow2
seqslam

Figure 6.4: Left: Accuracy plot for the dataset in Figure 6.3. Right: accuracy for a larger query
sequence against three reference trajectories, depicted in Figure 6.1.

Furthermore, we have compared our approach to the state of the art ap-
proach in visual place recognition under dramatic visual appearance changes,
SeqSLAM [92]. Since SeqSLAM is designed to match two sequences of images,
we applied the same strategy as for FABMAP and DBow2 to convert our refer-
ence map of multiple sequences into one reference sequence. For clarification, the
x-axis ”Parameter” on all accuracy plots correspond to the non-matching cost m
for our algorithm and FI search and to the probability threshold for FABMAP.
The scale only shows how many parameters are used.

6.2.2 Datasets

To evaluate our approach we have collected several types of datasets. We used
goPro Hero 6 camera with additional GPS used for evaluations. We collected
sequences using a car as well as a bike. For the sequences collected from within a
car, the camera was mounted on the front window, and for the dataset obtained
with a bike, the camera was mounted on the helmet. Throughout our experi-
ments, we use the sequences of different length as well as sequences that exhibit
different environmental changes, for example rain, overcast, morning, evening,
different viewing direction etc. Throughout our experiments, the images were
extracted at 1 fps.

6.2.3 Experimental results

In the first experiment, we show that our system is able to recognize previously
visited places within multiple reference trajectories. The query trajectory consists
of 636 images and was collected during the evening. There are three reference tra-
jectories (around 3k images in total) of different shapes that were collected during
the rainy morning, early and late evening respectfully. Figure 6.3 shows the GPS

80

CHAPTER 6. VISUAL PLACE RECOGNITION AGAINST
MULTI-SEQUENCE MAPS

0 5 10 15 20 25 30 35
Parameter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A
cc
u
ra
cy

our

FI

fabmap

dbow2

seqslam

Figure 6.5: Left: Accuracy curve. Right: Matching image pair from query (bike) down and
reference (car) up.

trajectories of the reference sequences (pink, blue, cyan) as well as query (black)
sequence. Figure 6.3 (right) shows the trajectory of a query sequence drawn with
the color of reference trajectory it was localized against. Black corresponds to
the fact that no reference image was found. As can be seen, most of the time
the query sequence is localized successfully against reference trajectories (pink or
cyan) as well as almost no correct place associations made for the cases, where
query trajectory deviates from any reference trajectories, the part where black
trajectory deviates from all reference trajectories. Quantitative evaluations are
shown in Figure 6.4 (left). As can be seen, our approach shows similar accuracy
to the fully informed matching (FI) and outperforms the FAB-MAP and DBoW2
approaches, because the accuracy curve for our approach reaches 88%, whereas
accuracy curve for FABMAP reaches 40% at maximum and 35% for DBoW2
respectively. Figure 6.4 (right) depicts accuracy results for another dataset de-
picted in Figure 6.1 with query trajectory of 2,022 images and shows similar
performance of our algorithm.

The second experiment is designed to show that our search approach is able to
perform reliable visual place recognition for the cases when trajectories have been
collected using camera on the dashboard of a car and on a helmet of the bicyclist.
This setup imposes a particular viewpoint challenge, see Figure 6.5 (right) for
an example of a matching pair between a query (bike) image at the bottom
and a reference (car) image on the top, successfully found by our algorithm.
Figure 6.5 (left) shows that our approach has a comparable performance to the
FI with around 80% accuracy and they both outperform FAB-MAP, DBoW2,
and SeqSLAM for this dataset.

81

6.2. EXPERIMENTAL EVALUATION

0 2000 4000 6000 8000 10000 12000 14000
Reference dataset size [images]

0

20

40

60

80

100

120
Av

. q
ue

ry
 ti

m
e

[m
s]

our
FI

Figure 6.6: Comparison of the running time for the proposed algorithm (our) and for the fully
informed search (FI). Every point depicts the average time to find a match for a query image
for the reference datasets of various sizes.

6.2.4 Timings

In this experiment, we confirm that the proposed algorithm allows for faster image
matching than fully informed search. We performed the runtime measuring on the
mentioned datasets by averaging the performance of individual datasets within
the 10 runs and selecting the non-matching parameter that leads to the highest
accuracy. Figure 6.6 shows average matching time for a query image with respect
to the reference datasets of the different size, e.g., total number of images in
reference sequences. Since FI algorithm matches a query image to every image in
the reference dataset, the time needed for finding a match grows with increasing
dataset size, whereas our approach experiences only slight increase in running
time. In general, the performance of our algorithm is independent from the size
of the reference dataset. To show this, we augmented the dataset that had 10,000
images with 4,000 additional ones and leaving the query trajectory the same. As
can be seen, the runtime of the FI algorithm for the second dataset is increased
whereas for our algorithm stayed almost the same. The relocalization step in
our approach, however, may lead to an increase in runtime. Whenever the robot
is lost, querying the candidate locations in performed via a variant of hashing,
whose performance is directly influenced by the size of the dataset. Also matching
capability of the features influence the search speed. The more distinctive the
matching scores are, e.g., the bigger the score difference between the matching
pairs and non-matching pairs is, the faster the search will reject unpromising
candidates and thus runtime will decrease.

82

CHAPTER 6. VISUAL PLACE RECOGNITION AGAINST
MULTI-SEQUENCE MAPS

6.2.5 Limitations
Since the matching performance of our algorithm depends on the non-matching
parameter m, selecting it correctly may be not an obvious thing to do. Also
we observe a performance degradation whenever the visual appearance changes
within the query sequence. For example, if the sequence starts at the evening
and matching continues for a long time, so that it gets dark outside, the same
non-matching parameter that reasonably described the non-matchiness of the
sequence is no longer valid.

6.3 Conclusion
This chapter presented a novel approach for quickly finding correspondences be-
tween a currently observed image stream and a map of several previously recorded
image sequences given substantial appearance changes. Matching is performed
through an informed search in a data association graph that is built incremen-
tally. By deploying hashing technique, we are able to relocalize the robot if it is
lost as well as between multiple image sequences. Our evaluations show that we
can perform place recognition faster than offline, fully informed search with the
comparable or better matching performance.

83

6.4. CONCLUSION FOR PART I OF THIS THESIS

6.4 Conclusion for Part I of this thesis
In this first part, we have presented a novel approach for visual place recognition
in changing environments. We approach the visual place recognition problem as
an image sequence matching problem where the sequences can be collected at dif-
ferent points in time, under changing weather conditions, or other drastic visual
appearance changes induced by seasonal variations. One novelty lies in formulat-
ing and solving this sequence matching problem as a graph search problem. In
brief, the nodes in the graph represent potential image associations between two
sequences of images. The shortest path through such a data association graph
provides the image correspondences between two sequences, and thus automati-
cally reports which images in the query sequence correspond to which image in
the reference sequence. Thus, this solves the task of visual place recognition sys-
tems. In Chapter 3, we provided the required details about the construction of
the graph for the cases in which two complete image sequences are given. More-
over, we showed how incorporating the information about the robot’s pose prior
allows our graph-based place recognition system to efficiently handle loops in the
trajectories, which other state-of-the-art methods like SeqSLAM are not able to
do. By using either complete or sparse cost matrices, we are able to achieve
70 − 95% precision over 80 − 95% recall on various challenging datasets as well
as outperform state-of-the-art methods like SeqSlam and FABMAP.

In Chapter 4, the novelty is the extension of our graph-based search algo-
rithm to operate in an online fashion. This brings our approach closer to real
world applications as it enables us to make image association decisions for every
incoming query image online as opposed to the previous approach that requires
the complete query sequence to be given. The previous approach computes the
full matching matrix and only afterwards finds image correspondences between
the sequences. The main contribution of this chapter is the reformulation of
the graph construction process by using a lazy data association principle that
allows for simultaneously constructing and searching in the graph. Furthermore,
we propose an efficient search heuristic that results in dramatic computational
savings and enables the online operation of our place recognition approach. As
our results suggest, we are able to reduce the image comparisons by up to 99.5%
and at the same time can perform successful place recognition.

In Chapter 5, we relaxed the constraint that image sequences should be weakly
synchronized and allow for place recognition with flexible trajectories. The main
novelty of this chapter lies in proposing an efficient hashing algorithm for fast and
robust feature retrieval for very high-dimensional feature vectors. Deploying our
hashing technique for the relocalization actions allows us to successfully determine
when the robot re-enters previously mapped areas after a period of a detour as
well as handle the kidnapped robot problem. The ability to relocalize in arbitrary

84

CHAPTER 6. VISUAL PLACE RECOGNITION AGAINST
MULTI-SEQUENCE MAPS

situations enabled for performing robust place recognition with loopy trajectories
without additional information about pose priors.

In Chapter 6, we focused on place recognition in cases where there is more
than one reference trajectory provided. It frequently happens in the real world
that a vehicle travels not just along one route but through multiple different ones
with a various amount of overlap between them. The main contribution of this
chapter is the formulation of the graph definition to enable searching against the
map of reference sequences as opposed to a single reference sequence. This allows
for better map coverage and thus for better localization. The introduction of the
hashing-based relocalization strategy plays a major role in the search by providing
a smooth transitioning between the reference sequences also for the cases when
the reference sequences were not previously synchronized. As our experiments
suggest, by incorporating more reference sequences, we are able to achieve a
performance accuracy of 60 − 80% depending on the datasets and outperform
other state-of-the-art methods as SeqSLAM, FABMAP, and DBow.

To share our method with the community, to support open and reproducible
research, and to boost further research in the area of visual place recognition, we
have open sourced our software developments. The code can be found on GitHub
under:

• https://github.com/ovysotska/image_sequence_matcher

• https://github.com/PRBonn/online_place_recognition

• https://github.com/PRBonn/vpr_relocalization

Furthermore, we released our datasets at:
http://www.ipb.uni-bonn.de/data/visual-place-recognition-datasets/

85

Part II

Exploiting publicly available
information

87

Chapter 7

Visual place recognition against
Street View data

In part Part I of this thesis, we have shown how to approach the problem of visual
place recognition in changing environment by taking sequence information into
account. In Chapter 6 we have shown that having a map of reference sequences
as oppose to a single sequence improves the place recognition performance. By
incorporating multiple sequences, we are able to enhance our map by an additional
representation of places, in case trajectories overlap, or simply add more places
to the map, in case sequences pass through previously unseen places. In both
cases, we grow the map and thus the coverage of the environment in terms of
space and visual appearance. Basically, the more information we add the better
should be the performance of our matching algorithm. However, creating large
maps of the environment comes at the cost of explicitly collecting the sequences.
This may become a time and resource consuming operation.

Nowadays, there already exists a vast majority of maps, like Google Maps,
OpenStreetMap, Bing Maps, etc. Unfortunately, these maps are mainly created
for people and thus need adaptation to be suitable for robot operation. In this
part of the thesis, we focus on how to use the already available maps potentially
created with different sensors and a different purpose in mind within robotics.

In this chapter, we show how to use road information from OpenStreetMap [67]
in combination with Google Street View (GSV) [66] imagery to extend our map
of image sequences. This map can then successfully be deployed as a reference
dataset within visual place recognition approach using multi-sequence map pre-
sented in Chapter 6. Our approach is not limited to work with GSV imagery
only, it is generic enough to account for image sequences that come from differ-
ent publicly or commercially available sources.

89

7.1. LEVERAGING GOOGLE STREET VIEW FOR MULTI-TRAJECTORY
VISUAL PLACE RECOGNITION

7.1 Leveraging Google Street View for multi-
trajectory visual place recognition

In this section, we provide a detailed overview how to adapt the information avail-
able form OpenStreetMap and GSV to form a map of image sequences suitable
for our place recognition approach.

Google Street View is a technology within Google Maps that stores panoramic
imagery from positions along streets almost everywhere on the planet. Using the
Google Street View API, users can obtain a certain image of a street by providing
several parameters. We query images from GSV given a GPS coordinate as well
as a selected heading. With these parameters, one can obtain an image for a given
position and orientation in the world. The panoramas stored in GSV are only
partially ordered, since every queried image stores the identifier to the previous
and next panorama. This ordering enables the visually appealing warping from
one panorama image to the next one in the street view, which can be visualized
in the GSV browser, however, it does not explicitly form sequences. To exploit
GSV imagery within our place recognition framework, we perform a sequence
of transformations that turn a set of unordered images into the map of image
sequences. We form image sequences by combining the Street View Images along
streets. Then each individual street turns into a reference image sequence. The
synchronization of the reference sequences comes naturally from incorporating the
information about street crossings. Further, we will describe a way to arrange a
set of images into sequences.

As a first step, we extract the GPS coordinates of the streets from Open-
StreetMap. Obtaining the street coordinates from OpenStreetMap requires only
parsing the provided xml file. The OpenStreetMap API provides for every street
a set of GPS coordinates in form of street segments. The size of the line segment,
e.g., the distance between the GPS coordinates, depends on the shape and cur-
vature of the street. If the street is long and straight, we typically get a small
amount of GPS points with large distance between them and vice versa if the
street is curvy, we get a lot of small segments that describe the physical shape
of this street. For every segment, we compute the heading of this street with
respect to the North, since this is one of the parameters from Google Street View
API. The heading basically defines which way the car is facing the street. Since
the road segments can be quite long, we interpolate the points in between the
segment endpoints to get more locations to query a panorama image from, see
Figure 7.1 for details. Having GPS coordinates with associated headings for every
street allows us to directly query images into sequences.

Performing visual place recognition against Street View imagery imposes sev-
eral further challenges. In addition, to being collected at different point in time,

90

CHAPTER 7. VISUAL PLACE RECOGNITION AGAINST STREET VIEW
DATA

Figure 7.1: When extracting the street information from OSM, we get individual GPS points
(green) that describe the road curvature as depicted in the left figure. For every segment,
we then increase the number of points to query (blue) by interpolating between the boundary
points (green) and estimate the heading (pink arrow) of the street with respect to the North.

with respect to query sequence as well as within the panoramas sequences itself,
the frame rate of the panoramas is not constant. There are parts of a street where
the density of panorama images is higher, which gives better place coverage in
comparison to the places where the density is lower. Furthermore, the viewpoint
change can get severe, firstly because the camera on the Google car was mounted
on the poll on the rooftop, whereas the camera in our experiments is mounted
inside of the car. Secondly, it is not guaranteed that the cars have taken the same
lanes or have changed lanes. This becomes particularly challenging for carrying
out recognition tasks in the cities with wide streets (6 lanes), since the same place
may look substantially different from different sides of the street.

7.2 Extracting streets from OpenStreetMap
To organize the images into the sequences, we use the information from Open-
StreetMap about the GPS coordinates that define every individual street. Since
OpenStreetMap is an open source community driven project, everyone can add
information to it and it is hard to enforce particular rules to be followed for the
data collection. Due to this fact, it happens that the streets are not uniquely
and completely defined. Typically, a street is defined within an xml file as a
node that has a particular property, e.g., a tag “highway”. However, there are in-
stances when a street with the same name is stored in multiple nodes. As a result
of that, we obtain from the API way more image sequences than there is exists
streets and we end up having a lot of very small image sequences. This becomes
critical for our place recognition approach, since the search needs to frequently
change between the reference sequences. The change between the sequences is

91

7.2. EXTRACTING STREETS FROM OPENSTREETMAP

0

1
2

4

3

cur = 0
poten = {1,2,3,4}
p = 1

0

2
4

3

0

2
4

0

2

cur = 0
poten = {2,3,4}
p = 2

cur = 0
poten = {2,4}
p = 2, p=4

cur = 2
poten = {4}
p = 4

components = {0} components = {0,2}

Figure 7.2: From left to right. Steps to combine individual street segments. In this case,
due to geometrical structure of the street, there is no unique way to combine segments in one
street. So the merging algorithm return two components 0 and 2 representing 3 and 2 segments
respectively.

typically triggered by a relocalization, hence hashing action. We showed in the
previous chapter that a relocalization action takes more time than a regular graph
expansion and thus should be used in case the robot is actually lost, whereas the
search that follows an image sequence is preferable and faster. In this section,
we describe how to overcome the problem in situations when a street gets rep-
resented by multiple image sequences. We propose an algorithm that merges
different street segments and allows for computing a smaller number of longer
image sequences.

To merge street segments, we first parse the xml file and search for all the
nodes that represent a particular street. We store the respective segment co-
ordinates in a list and afterwards work with the list of segments. To make the
explanation more intuitive, let us consider the small example shown in Figure 7.2.
In this example, we have a street of a certain shape that is represented by 5 seg-
ments, where {0...4} are the segments IDs. Our segment matching algorithm
iteratively goes over the segments and checks if a pair of segments can be merged
or connected. We can make the decision on whether two segments can be merged
by checking the proximity of GPS coordinates of their boundary points. Two seg-
ments can be merged if a starting coordinate of a one segment is located in a close
proximity to the end coordinate of the second segments or another way around, if
the starting coordinate of second segment is located in close proximity to the end
point of first segment. In our example in Figure 7.2, segment 1 can be merged
with segment 2 or 0, but not with segment 3. The full algorithm is summarized
in the Algorithm 2. To provide a more intuitive explanation, we describe the
flow of our algorithm given a small example. Given a street defined by segments
in Figure 7.2, the algorithm starts with a segment with ID cur = 0 and checks
if other segments stored in a set poten can be merged with current segment, see
line 12. On first iteration, segment 1 gets connected to segment 0. This changes
the boundary points for the merged segment. Now we have a longer segment
with starting point from segment 1 and ending point from segment 0. The new
longer segment keeps the id of the current segment 0. On the next iteration, the
segment 0 is considered to be matched to segment 2 and since neither start nor

92

CHAPTER 7. VISUAL PLACE RECOGNITION AGAINST STREET VIEW
DATA

Algorithm 2 Merging street segments(lines)
1: lines // list of street segments
2: n = len(lines) // number of segments
3: if n == 1 then
4: // only one segment
5: return lines
6: cur = 0 // id of segment under consideration
7: poten = {1:n} // set of potential segment ids to match
8: components = []
9: process = True

10: while process do
11: for p in poten do
12: if canMerge(lines[cur], lines[p]) then
13: merge p to cur
14: poten.remove(p)
15: if len(poten) == 0 then
16: components.add(lines[cur])
17: process = False
18: break
19: // cur segment cannot be merged to anything
20: components.add(lines[cur])
21: cur = poten[0]
22: poten.pop(0)
23: return components

end lies close to the boundaries of segment 0, the segments can not be merged.
The algorithm proceeds with merging segment 3 to segment 0. Afterwards, since
the poten set is not empty, new subroad consisting of segment 2 and 4 will be
created, see line 20. In the end, our matching algorithm will either construct
one street or at least reduce the number of segments if unique streets can not be
constructed based on street topology.

Figure 7.3 depicts a small part of the city where several long streets were
stored correctly. i.e., as one street segment. However, street 1 and 2 are wrongly
subdivided in multiple small segments. This generates for our map obtaining ap-
proach a lot of small image sequences that have one or two images. By applying
the above proposed segment merging strategy, we obtain the right image in Fig-
ure 7.3, where the street segments were merged into longer streets, particularly
street 1 and 2. The colors of the streets are picked at random and do not cor-
respond in between the images. To further confirm the benefits of our segment

93

7.3. EXPERIMENTAL EVALUATIONS

50.444

50.446

50.448

50.450

50.452

50.454

50.456

1 1

2 2

Figure 7.3: Left: Street segments from OpenStreetMap data. Right: Merged street segments.
The colors are randomly selected for visualization and do not correspond between the images.

50.435

50.440

50.445

50.450

50.455

1 1

2 2

3 3

Figure 7.4: Left: Street segments from OpenStreetMap data. Right: Merged street segments.
The colors are randomly selected for visualization and do not correspond between the images.
Our algorithm reduces the number of street segments which is particularly visible for streets 1,
2, 3.

merging scheme, we selected a bigger area with streets with big variety of shapes.
As can be seen from Figure 7.4 the merged streets (right) are more homogeneous
in color than the street segments obtained originally from OpenStreetMap (left).
This indicates that we are able to reduce the number of street segments and thus
make the reference image sequences longer, which is beneficial for our visual place
recognition approach. The effect is particularly visible for the street 1, where we
reduce from 14 to 3 street segments. Similar result can be seen for street 2 and 3.

7.3 Experimental evaluations
Our experimental evaluations are designed to show that publicly available infor-
mation can be successfully used with our multi-sequence visual place recognition
approach. We demonstrate this with several experiments.

94

CHAPTER 7. VISUAL PLACE RECOGNITION AGAINST STREET VIEW
DATA

Figure 7.5: Experiment 1. An example of a matching image pair from the car perspective (left)
and from Google Street View (right). The images are subject to strong view point change as
well as seasonal changes.

0 5 10 15 20 25 30 35
Parameter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu
ra
cy

our
FI
fabmap

Figure 7.6: Experiment 1. Left: City streets for which panorama images were extracted (blue),
query trajectory driven by a car (pink). Right: Corresponding accuracy plot.

95

7.3. EXPERIMENTAL EVALUATIONS

Figure 7.7: Experiment 2. A matching example of a particularly challenging sequences to
match. The visual appearance of the image from the car (left) is substantially different to the
one from the street View (right).

The first experiment is designed to show that the ideas of place recogni-
tion against multiple trajectories can be successfully applied to relocalize against
Google Street View. As was noted before, place recognition against street view
is more challenging than recognition against multiple sequences due to irregular
frame rate of panorama images, partially drastic viewpoint changes on top of en-
vironmental visual appearance changes. In this experiment, we show that despite
the additional challenges our method is able to achieve accuracy from 34% to 55%
on various sequences. The first query image sequence consists of 3,800 images and
was collected inside the car in Kyiv city center, see Figure 7.6 (left) for visualiza-
tions of the trajectories. The total amount of extracted panorama images for the
reference trajectories is 10,272 and they form 247 streets or reference sequences.
Figure 7.5 shows a typical matching example successfully found by our approach
from query and Street View. As to qualitative evaluations, Figure 7.6 (right)
shows that taking sequence information into account (our approach) outperforms
the pure FI search and results at best with 58% accuracy versus 48% for informed
search. The left picture of the same figure shows the overlay of the trajectories
over Google Street Maps. Blue refers to the region extracted from Street View,
whereas pink depicts the trajectory of the query image sequence.

The second experiment consists of a query trajectory with 3107 images that
was recorded in the early till late winter evening, whereas the images from Street
View are typically recorded throughout the day. We use the same reference
dataset as in the previous experiment. The visual changes goes as extreme as
the one depicted in Figure 7.7. Let us look more closely what makes this pair
of images particularly challenging to match even for people. Firstly, the tilt be-
tween the camera positions changes the way parts of the environment are getting
projected into the images. For example, for the car image (left) the road occupies
a relatively small part of the image whereas in the street view image (right), the
road covers almost the third of the image. This results in the fact that parts
of the same object are clearly visible in one image and completely hidden in

96

CHAPTER 7. VISUAL PLACE RECOGNITION AGAINST STREET VIEW
DATA

0 5 10 15 20 25 30 35
Parameter

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu
ra
cy

our
FI
fabmap

Figure 7.8: Experiment 2. Right: accuracy evaluation. Out approach gives higher accuracy
than fully informed search (FI) and FABMAP. Left: The query trajectory depicted in pink, with
a particular challenge of visual appearance changes within the query trajectory from evening
to night.

the other one. The same holds for the buildings where we can clearly infer the
ninefloor building in the car image but only five floors are visible in the Street
View one. Additionally, to seeing parts of the environment that are not exhibit
in both images, the day- night illumination difference plays a role. The natural
and artificial lights highlight different textures and edges on the buildings, which
are typical robust features for matching. Furthermore, we can spot the effect of
seasonal changes, where the trees in the car images lack foliage and thus reveal
structured parts of the environment not visible in the street view image. How-
ever, these challenges fade away when considering the fact that not just the visual
appearance of the environment has changed but also the the structure of the en-
vironment itself. A ten floor building is presented in one image and is missing in
another one.

All these factors make the image matching process hard, but unfortunately are
part of our every day life. As can be seen from Figure 7.8 (right), our approach
outperforms the FI search and FABMAP with maximum achieved accuracy of
34%. The overall performance of all the algorithms though is lower than in
previous experiment due to combination of seasonal, view point, and stronger
natural illumination changes.

The last experiment is designed to illustrate that our approach can recognize
places from a random street drive footage taken from YouTube. The particular
challenge of this experiment lies in the fact that both query and reference se-
quences were collected with different cameras as well as a different and unknown
to us positioning setup. Figure 7.9 shows an example of a matching pair that
was successfully found by our approach. More examples of successfully found
pairs are depicted in Figure 7.10 and Figure 7.11. This experiment and the video

97

7.4. CONCLUSION

Figure 7.9: Experiment 3. A matching image pair found by our approach from a YouTube
video (left) and from Google Street View (right).

suggest that our algorithm is able to recognize places using images only from
unknown camera setups, although we do not provide the accuracy evaluations
for this experiment due to the lack of exact positioning information from the
YouTube video.

7.4 Conclusion
In this chapter, we have shown how our visual place recognition approach against
sequence maps can be deployed when having publicly available information, like
Google Street View or other image map sources. This is a step forward toward
deploying vehicles in new places without place-dependent setup or installation
procedures. Our system is also able to relocalize simultaneously in manually
collected sequences as well as image sequences from other sources. Moreover,
we have shown that our algorithm does not require knowledge about camera
calibration parameters and is able to robustly recognize the place from image
footages taken from a random video.

98

CHAPTER 7. VISUAL PLACE RECOGNITION AGAINST STREET VIEW
DATA

Figure 7.10: Example matches found by our visual place recognition approach. Left column:
images from a random YouTube video; right column: images from Google Street View.

99

7.4. CONCLUSION

Figure 7.11: More example matches found by our visual place recognition approach. Left
column: images from a random YouTube video; right column: images from Google Street
View.

100

Chapter 8

Improving robot localization
using publicly available maps

Maps are needed for a wide range of applications. In the context of mobile
robotics, the map learning problem under uncertainty is often referred to as the
simultaneous localization and mapping or SLAM problem. These maps are of-
ten used for path planning, navigation or localization. In previous chapter, we
showed how to use publicly available data to perform robust place recognition
and avoid costly mapping phase. In this chapter, we show another way how pub-
licly available maps can contribute to not just spare computationally expensive
mapping phase, but also enhance the localization capabilities of the robot for
graph-based SLAM approaches. Additionally, we select a 2D laser scanner as the
robot’s main sensor for localization and mapping, to provide means for robots
that are not equipped with cameras, as well as using OpenStreetMap as a source
for publicly available information. We achieve localization on OpenStreetMap by
relating the information about buildings with the perceptions of the robot and
generate constraints for the pose-graph-based formulation of the SLAM problem.
In addition to that, we present a way to select target locations for the robot so
that by going there, the robot can expect to reduce it’s own pose uncertainty.
This localizability information is generated directly from OpenStreetMap data to
support active localization. We implemented and evaluated our approach using
real world data taken in urban environments. Our experiments suggest that we
are able to relate the newly built maps with information from OpenStreetMap
with the laser range finder data from the robot and in this way improve the map
quality. The extension to graph-based SLAM provides better aligned maps and
adds only a marginal computational overhead. Furthermore, we illustrate that
the localizability information is useful to evaluate the ability to localize the robot
given a trajectory.

Most robot navigation systems require a map of the environment as well as

101

Figure 8.1: From left to right: Screenshot from OpenStreetMap; map that we render for
alignment; computed localizability map; resulting robot map.

the current pose of the vehicle in this map. Thus, having an online building
procedure for a consistent map of the robot’s surroundings is one of the essential
prerequisites for the reliable autonomous robot operation. As errors in the robot’s
pose accumulate over time, building large scale maps from odometry and laser
range information often leads to a drift in the trajectory estimate. GPS infor-
mation can be used to compensate for that drift. This works well if a sufficient
number of satellites is visible. In urban environments, however, narrow streets,
high buildings and trees can hinder the capabilities of the receiver and disturb the
GPS signals. This may result in a poor positioning performance. In addition to
that, performing loop closures reduces the drift, but it forces the robot to re-visit
places in the environment, e.g., re-entering the same street.

Recently, exploiting alternative information sources for enhancing outdoor
mapping are gaining attention in the various communities, such as coupling the
information from publicly available maps, like aerial photographs [77] or Open-
StreetMap (OSM) data with standard localization [64] or SLAM approaches. We
see exploiting such background information as orthogonal to using GPS informa-
tion as aligning sensor observations with publicly available maps works typically
well in GPS-denied environments. The ideas of incorporating additional prior
information about the environment are also explored in context of unmanned
aerial vehicles, see [51] and [135].

The main contribution of this chapter is a novel approach to align the robot’s
trajectory to OpenStreetMap data and to estimate vantage points that are likely
to reduce the pose uncertainty of the robot. We integrate the ability to relate the
obtained laser range measurements with the OSM data into a SLAM framework
using pose graphs. This approach uses buildings as landmarks for SLAM to align
the robots trajectory with existing maps. Not all places in an environment allow
for matching the onboard perceptions with the OSM data. In some areas, the
building structure is not distinctive enough for the robot to find an alignment. For
example the result of the localization is ambiguous when the robot is located in a
corridor-like environment, e.g., between two long buildings, see Figure 8.2 (left).
In this case, even obtaining ideal measurements, e.g., endpoints located on the

102

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

Figure 8.2: Uninformative (left) vs. informative (right) pose. In the left image the pose of
the robot (red) is not informative, because by applying the small transformation to the robot’s
pose (blue) the virtual measurement explains the surrounding as well as from the previous pose,
whereas in the second image the pose of the robot (red) is informative, since the transformations
of the pose (blue) decreases the likelihood of measurement.

walls, will not improve the localization, since the nearby poses explain the envi-
ronment as well as the actual location. To perform the alignment in a better way,
we would like to avoid navigating through the ambiguous regions and prefer the
regions with more distinctive structure like the one in Figure 8.2 (right), where
the ideal measurement originated from the query pose has a low likelihood of
being observed from nearby poses. Thus, we also propose a technique that turns
the information from publicly available maps into so-called localizability maps,
i.e., maps that indicate how well the robot is expected to establish the data asso-
ciations between its own sensor readings and the OSM information and thus can
localize itself.

8.1 Graph-based SLAM exploiting existing maps
as background knowledge

We start by introducing a general formulation of graph-based SLAM as defined
by Grisetti et al. [57]. In a pose graph, every node corresponds to the a robot
pose. Consequent nodes are connected through the edges that model spatial
constraints and arise from odometry measurements. Non consecutive nodes are
typically connected through the edges that arise from multiple observations from
the same place in the environment.

Considering X as the set of robot poses where xi describes a pose of the
node i. If the nodes xi and xj observe the same part of the environment, the
measurement zij can be obtained by performing a scan aligning between the

103

8.1. GRAPH-BASED SLAM EXPLOITING EXISTING MAPS AS
BACKGROUND KNOWLEDGE

corresponding sensor measurements obtained from node xi and xj. The expected
measurement f(xi, xj) is computed from the relative position of the node xi and
node xj and is expressed in the frame of reference on the node xi. Then,the
error eij(xi, xj) depends on the displacement between the expected ẑij and real
measurement zij:

eij(xi, xj) = zij − ẑij (8.1)

After defining the individual errors for the edges of the pose graph, our goal is
to find a configuration of nodes X that minimize the total error of system defined
as:

F (X) =
∑

(i,j)∈C

eTijΛijeij, (8.2)

where Λij is the information matrix of the constraint.
The optimization step in graph-based SLAM systems aims at finding the con-

figuration of the nodes that minimizes the error induced by observations. In gen-
eral the pose of the robot consists of the location of the robot and its orientation.
In this chapter, the pose representation of the robot’s pose is a 3 dimensional vec-
tor, consisting of two translational and one rotational components. This yields a
state vector X = (x1, . . . , xn)

⊤ where xi is the pose of node i. The error function
eij(X) for a single constraint between the nodes i and j is often the difference
between an expected measurement f(xi, xj) (relative pose between nodes i and
j) and the obtained measurement zij:

eij(X) = eij(xi, xj) = f(xi, xj)− zij. (8.3)

Note that alternative representations can be used to avoid problems resulting
from singularities in the angular components, see [58] for details. As the error
functions are typically non-linear, we linearize eij(X) around the current best
estimate

eij(X +∆X) ≃ eij(X) + Jij∆X. (8.4)

Here, Jij is the Jacobian of the non-linear error function computed in the current
state. Thus, the resulting minimization problem turns into

X∗ = argmin
X

∑
ij

eij(X)⊤Λijeij(X), (8.5)

where Λij is the information matrix, also referred to as weight matrix associated
to a constraint. Up to this point, this is the standard formulation of pose-graph
SLAM and Equation (8.5) can be solved as a least squares problem. To reduce
the impact of the outliers, we use a robust kernel function, namely dynamic
covariance scaling as proposed by Agarwal et al. [2]. This approach rescales
the error function eij(X) depending on its magnitude to reweight the impact

104

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

of potential outliers. This is, up to a parameter, equivalent to using a Geman-
McClure kernel. This scheme for down weighting the impact of outliers is also
often referred to as robust estimation, see [45] for an overview.

8.2 Error function exploiting existing maps
In order to incorporate additional knowledge into the optimization process and
relate the pose-graph to existing data, we extend the error function to

X∗ = argmin
X

∑
ij

eij(X)⊤Λijeij(X) + Fmap(X), (8.6)

where Fmap(X) is the error introduced by the mismatch between the robot’s
observation and the map information. Analogous to pose-pose constraints, we
split up the component Fmap(X) into individual constraints between robot poses
and the OpenStreetMap information:

Fmap(X) =
∑
i

emap
i (X)⊤Λie

map
i (X). (8.7)

The key elements in Equation (8.7) are the error function emap
i (X) and corre-

sponding information or weight matrix Λi. The remainder of this section describes
how to define such an error function and respective information matrix. Intu-
itively, the error function adds an additional constraint to the graph that anchors
a pose of the robot to a specific location in the map. The key challenge here is to
make the correct data association between the map and the robot’s own sensor
readings, obtained from the pose stored in the node of the pose-graph. Once this
data association is solved and the correct coordinate transformations between the
robot’s poses and the map are computed, least squares error minimization will
provide us with the global alignment.

To make the data association between the map and the robot’s poses, we use
the building information in the map and the data from a 2D or 3D laser range
finder installed on the robot. When aligning laser range data with the building
information from OSM, a central challenge is that the laser scanner observes a
large number of objects in the scene that are not stored in the map. Examples for
such objects, which are not present in the publicly available map, are trees, cars,
or pedestrians. In contrast to most other approaches that perform localization
on OSM data, we choose buildings as our features to make the data association
and to compute the alignment. The most approaches rely on the road network
to localize the robot [111, 64]. This is perfectly fine for cars or robots moving on
the roads, but often limits the application to robots that operate on sidewalks,

105

8.3. ERROR FUNCTION EXPLOITING BUILDING INFORMATION FOR
ROBOTS EQUIPPED WITH LASER RANGE SCANNERS

Figure 8.3: An example correction of the robot’s pose based on the aligning of the scan (blue)
to the buildings in the map (black); left image shows the robot pose before correction and right
afterwards.

foot paths, or in pedestrian zones and do not follow the road network, as no good
data association between the trajectory and the road network can be found in
such cases.

8.3 Error function exploiting building informa-
tion for robots equipped with laser range
scanners

In our work, we use the information about the buildings’ geo-locations rather than
a road network as for example done by Ruchti et al. [111] to enable the robot
to take paths independently from the road network. We obtain the building
information directly from OpenStreetMap, which can be downloaded in form
of an XML-file. Inside this file, the individual buildings are stored as separate
nodes. Each node is a closed polygon describing the geo-referenced walls of the
building, which directly yields a map of lines that shows the walls of the buildings
in the environment, for example see the black polygons in Figure 8.3. A laser
scanner typically provides the scan of the environment covering a large number
of objects that are not buildings and does so at a comparably high level of detail.
This may hinder the matching procedure to make the correct data association
between map and laser scan. Therefore, we filter the range scans so that most
of the non-building objects are removed. We investigated several techniques and
in the end opted for an unsupervised approach that performs filtering based on
line extraction. It does not require manually labeled training data and can be

106

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

executed efficiently. We employ the Douglas-Peuker algorithm [38] for converting
the raw 2D range scan into a polyline. We convert the polyline into a set of
potentially disconnected lines based on two parameters: the length of a line and
the number of laser end points assigned to each line. The problem of detecting
building structures has also been investigated in the context of reconstructing
the 3D structure. For example, Fischer et al. [41] use generic models to extract
3D buildings from the aerial images. Huber et al. [68] fuse the LIDAR data with
aerial imagery and apply polyhedral models to reconstruct the buildings. We,
on the other hand, detect buildings in the single 2D laser scan, not taking into
account the information from the maps.

Since our aim is to incorporate the knowledge about the environment from
the map into the graph optimization procedure to refine the robot’s trajectory,
the error function for this constraint should reflect the misalignment between the
current robot’s pose and the map. Intuitively, the bigger is the misalignment
between the scan and the buildings in the map, the bigger the error should be.
To estimate the (mis-)alignment, we use the Iterative Closest Point (ICP) algo-
rithm [23] to match the current laser scan and the map of building. For finding the
correspondences in ICP, standard nearest neighbor data association is applied.

More precisely, the error term emap
i (xi) is defined based on the difference

between the current robot’s pose xi and the pose x̂i, computed by aligning the
scan in the building map. The 2D state of the robot xi consists of translational
ti and rotational θi components, i.e., forms an element in SE(2), the special
Euclidean group for two dimensions. The same holds for the state x̂i. Thus, the
error function and its Jacobian turns into:

emap
i (xi) =

(
R̂⊤

i (ti − t̂i)

θi − θ̂i

)
and Ji =

∂emap(xi)

∂xi

=

(
R̂⊤

i 0

0 1

)
, (8.8)

with R̂i being the standard 2D rotation matrix corresponding to the angle θ̂i.
For the ICP algorithm to operate reliably, we need a good initial guess. In our
setup, the initial guess is achieved by either manually specifying the first pose
of the robot on the map or by using an initial guess from a consumer GPS
with an accuracy of a few meters. The initial guess of all successive poses is
then automatically obtained from the odometry constraints of the graph or by
incremental scan-to-scan alignment typically used in graph-based SLAM with
laser range finders.

Finally, we have to compute the weight matrix Λi of a map constraint, which
is the inverse of the covariance matrix of the ICP alignment, i.e., Λi = (ΣICP

i)−1.
We compute the covariance matrix ΣICP

i from the ICP result by using the Hessian
as described by Bengtsson et al. [21]. This assumes the error function eICP used
in the ICP algorithm to be quadratic near the optimal solution, i.e.,

107

8.4. ERROR MINIMIZATION

eicp =
∑
k

∥Tpk − qk∥2 , (8.9)

where pk is a point from a laser scanner that belongs to the detected buildings
and qk is a corresponding closest point in the buildings taken from the publicly
available map. The optimal transformation T that the ICP algorithm reports is
found by minimizing the function eicp with the covariance matrix of T as

Σicp
i = cov(T) = 2σ2

(
∂2

∂T 2
eicp
)−1

= 2σ2H−1
icp , (8.10)

where Hicp is the Hessian matrix of eicp and σ2 is the variance factor.
So far, we described how to obtain the error function for 2D range data such

as a horizontally mounted 3D range scanner, but it works analoguously on data
from a 3D laser scanner. In this work, we use 2D and 3D range data. In case of
3D data such as the one coming from a Velodyne scanner, for every individual
scan we construct a 3D point cloud and generate new virtual 2D laser scans given
the planar surfaces in the cloud. We basically follow the approach proposed by
Wulf et al. [145], which is also used by Bogoslavskyi et al. [25] and Hentschel
et al. [65].

8.4 Error minimization
Given the error function emap

i with corresponding information matrix Λmap
i and

Jacobian Ji, we use Levenberg-Marquardt optimization to solve the problem given
in Equation (8.5). This leads to iteratively solving a linear system of the form

(H + λI)∆X∗ = −b, (8.11)

with

H =
∑
ij

J⊤
ijΛijJij+

∑
i

J⊤
i ΛiJi and b =

∑
ij

J⊤
ijΛijeij+

∑
i

J⊤
i Λie

map
i . (8.12)

H and b are the key elements and are computed from the linearized error func-
tions and λ is the damping factor used in the Levenberg-Marquardt. The term
∆X∗ refers to the increments that are added to the graph configuration in order
to minimize our error function in the current iteration. In our implementation,
we use the g2o framework by Kümmerle et al. [76] to conduct the minimization
with dynamic covariance scaling by Agarwal et al. [2]. This yields an update of
the graph configuration in every iteration of the form:

108

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

X ← X +∆X∗. (8.13)

We do not execute this procedure in a batch fashion but selected the incremental
option of the g2o optimizer, which allows us to optimize the trajectory in chunks.
In our current implementation, we trigger an update whenever the robot drove
for 25m. This has two advantages. First, the data are available already online
during mapping. Second, the correction of the trajectory up to a point in time t1
will simplify the data association for the ICP step for subsequent matching with
t > t1 and, thus, has the potential to provide a better alignment. As a result of
that, we obtain an optimized pose-graph that is aligned with the provided map.

8.5 Estimating localizability for actively reduc-
ing pose uncertainty

By using publicly available maps such as OpenStreetMap, we are able to better
align the robot’s trajectory and, hence, the robot’s own map to the surrounding
environment. This approach, however, relies on the observations that the robot
obtains, which in turn depend on the local surroundings of the robot. The ability
to match the local perceptions to the OSM data depends on the visibility of
buildings and the local geometry or arrangement of the buildings. The goal of
this section is to describe an approach to estimate the ability of the robot to
align its perception with the OSM data before moving there. Thus, we aim at
estimating a visibility map from the OSM data and selecting the regions that
are expected to provide good vantage points that support the alignment. A
measurement will be informative for the robot if (i) the buildings can be detected
in the individual scans and (ii) the observed structure allows for reducing robot’s
pose uncertainty. Thus, we present a method that estimates the regions in the
environment, where the informative laser scans are likely to be obtained, given
the information from publicly available maps.

To reason about the informativeness of a particular pose on the map, we need
to specify the function, which measures the likelihood of obtaining a certain laser
scan given a pose. For our sensor model, we assume that individual beams zj in
the laser scan are independent and that the measurement noise for each beam is
Gaussian, i.e., p(zj) ∼ N (cj, σl), where cj are the closest points in the buildings
that correspond to the individual laser beam endpoints zj, for visualization see
Figure 8.4 (right).

The estimation begins by rendering the map M , as in Figure 8.1 (middle),
from the publicly available OSM xml file. Here we assume a simplistic representa-
tion of the world, where black pixels correspond to the boundaries of the existing

109

8.5. ESTIMATING LOCALIZABILITY FOR ACTIVELY REDUCING POSE
UNCERTAINTY

Figure 8.4: Left: An example of a localizability map. The darker the regions the bigger the
likelihood to obtain in informative measurement. The buildings are marked in blue. Right:
The total error of transforming virtual scan w.r.t the pose xi depends on the distances from
the measurement endpoints zj to corresponding closest points in the buildings cj .

buildings and every white pixel outside the buildings corresponds to the potential
robot’s pose. These assumptions are easily violated in real world, since not every
pixel outside the building can be reached by a robot due to fences, parked cars
or other unmarked structures. The assumptions are, however, sufficient for our
purposes, i.e., for coarsely estimating the regions for the informative measure-
ments. Reachability can later on be easily verified using Dijkstra algorithm or a
path planner such as A∗.

Our goal is to estimate for every potential robot pose the associated uncer-
tainty of the pose estimate based on the visibility of the building structures in
the scene. We start with simulating an ideal (virtual) laser scan at every po-
tential pose xi. This measurement assumes that only the buildings from OSM
data exist in the environment. This simulated scan is generated by performing a
ray-cast operation in the maps from OSM. We then estimate how well this ideal
measurement matches to the OSM maps under pose uncertainty. We estimate
this by applying small perturbations to the robot’s pose in x, y and θ. By doing
so, we form a set S of potentially similar pose configurations xj and estimate the
corresponding errors which arise by comparing the a virtual scan to the map in
the new robot configuration. We estimate an error for a pose configuration as a
sum of squared errors e(zj) of individual beams of the scan. We then perform an
approximation taking into account our assumption about the probability distri-
bution of an individual beam. We approximate the probability of taking a virtual
measurement at the pose xj as p(xj) ∼ exp (−

∑
e(zj)

2Nσ2
l
), where N is size of the scan

and e(zj) is a squared distance between measurement endpoint zj and closest
building in the map. In other words, by applying these actions, we approximate
the unknown probability distribution about the robot’s pose. Having the samples

110

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

Figure 8.5: Example of aligning the robot’s trajectory with the buildings on the map and as a
result of it improved loop closure, which also leads to more consistent robot map. The OSM
map is rendered with 0.3 meters per pixel resolution.

from a probability distribution, we obtain an estimated covariance matrix, i.e.,
the uncertainty of the pose, as follows:

cov(xi) =
∑
xj∈S

p(xj) (xj − qxi
)(xj − qxi

)⊤ (8.14)

where qxi
corresponds to the coordinates of the query pose.

To be able to reason about the informativeness of the different regions in a
more quantitative way, we compute the Eigenvalues/Eigenvectors of the respec-
tive covariance matrices and therefore obtain the information in which direction
we are most uncertain about the pose. Afterwards, we update our localizability
maps with the biggest Eigenvalue for every pose. This ensures that we take into
account the value of the biggest uncertainty across all dimensions. As a result,
the regions in the map with smaller values correspond to the places where the
largest uncertainty over individual dimensions is smaller in comparison to other
regions or, in other words, the regions where the informative measurements are
more likely, see Figure 8.4 for visualization.

8.6 Experiments
The evaluation is designed to illustrate the performance of our approach and to
support the following claims. These key claims are that (i) we improve the map
alignment with our approach, (ii) can handle situations in which the map data are
partially outdated, for example if buildings have been demolished or new buildings
have been built, (iii) all operations yield only a small computational overhead
compared to a standard graph-based SLAM system, and (iv) the localizability
maps provide information about the ability of the platform to localize along a
given trajectory. We performed our experiments in outdoor urban environments

111

8.6. EXPERIMENTS

Figure 8.6: Robots used in our experiments: robot equipped with Velodyne VLP-16 laser
scanner mounted parallel to the ground (left) and a Velodyne HDL-32E mounted on the head
of the Obelix robot from the AIS lab of the University of Freiburg (right).

using the odometry from two robots, Husky A200 and Obelix, both are depicted
in Figure 8.6 and are equipped with Velodyne VLP-16 and Velodyne HDL-32E
laser scanners respectively. For detecting lines in laser scans, we used Douglas-
Peuker algorithm and maintain only lines with a length of at least 5m containing
at least 100 laser end points (for a scanner with a 0.25◦ resolution). This clearly
eliminates also end-points belonging to walls, but overall, it keeps the number of
false-positives small — which is more important for us in order to obtain a robust
alignment between laser scan and map.

8.6.1 SLAM exploiting OpenStreetMap data
The first set of experiments is designed to illustrate that we use the information
from publicly available maps to locate the robot within these maps. By con-
sidering the individual laser scans obtained by the robot within the alignment
procedure, we even have the possibility to find loop closures that are partially
missed by the pose-graph SLAM otherwise. Figure 8.5 depicts a trajectory of
the robot overlayed on the map when using traditional 2D graph-based optimiza-
tion (red) without considering map information and when incorporating the map
structure into the optimization process (green). The map in this case is ren-
dered with 0.3m per pixel resolution and covers the area of 250m by 300m. As
can be seen, not only the robot’s own map is better aligned with the structure
of the environment, but also the loop closure was correctly detected due to the
aligning laser scans to the buildings. To provide a more quantitative evaluation,
we compute the error for the final pose of the robot, as a distance between the
optimized pose and manually specified ground truth position. The error of the
final pose without map information is about 5m, whereas using the map priors
lead to an error for the final pose of about 1m. Figure 8.7 represents another
example of the robot’s trajectory, here using 3D Velodyne data, which spans over

112

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

Figure 8.7: Left: overlayed trajectory before the optimization. Right: trajectory after opti-
mization. Bottom: Zoomed-in parts of the trajectory.

a significantly larger area than the previous example. For this experiment the
map represents the area of size 500m by 500m and thus is rendered with 0.5m

per pixel resolution. In Figure 8.7, only the laser end points that do not belong
to the ground plane are plotted. As can be seen, the map produced by the robot
is filled with substantial clutter in the environment, which makes the aligning
procedure more challenging. Nevertheless, our approach is able to fix the mis-
alignments that come from the inaccuracy of the initial position, see Figure 8.7
bottom row left and right image, as well as to find loop closures missed by the
pure pose-graph approach, see Figure 8.7 center. Using the same definition of the
localization error as for the previous experiment, the error of the last pose using
pure pose-graph formulation is 22m, whereas with OSM information it is 0.5m.

8.6.2 Map inconsistencies
The second experiment is designed to show that our approach is able to deal
with a certain amount of map inconsistencies. Such inconsistencies result from
different sources, for example wrongly mapped buildings, a demolished building
that is still present in the map or a building that was built after the time of
the map creation. The two examples for inconsistencies shown in Figure 8.8 are
real inconsistencies in OSM data and not artificially simulated. As we take the
matching-dependent uncertainty into account, the information about the incon-
sistencies is incorporated into the optimization process as well. For this exper-

113

8.6. EXPERIMENTS

Figure 8.8: To the right zoomed views of the map inconsistencies our system can deal with.
Detected buildings are marked with light blue.

iment we used the same trajectory as for the previous experiment. Figure 8.8
(second column) depicts two examples of the map inconsistencies that are suc-
cessfully handled by our approach. The upper image depicts a situation in which
the building is visible in the scan and not present in the map and the image in
the bottom shows a case where the building is wrongly mapped (building in the
map is too small). Our system deals with inconsistencies through the use of a
robust kernel function. Figure 8.9 shows the effect of disabling the robust kernel
function. As can be seen, the robot map gets distorted near the wrongly mapped
buildings, corresponding places are marked with circles.

8.6.3 Execution time

In this experiment, we show that our approach adds only a small computational
overhead to the simultaneous localization and mapping process. We ran our algo-
rithm on different datasets with various size and complexity and summarize the
runtime results in the Table 8.1. The datasets are obtained with the robot setup
specified before, namely using Husky A200 with Velodyne VLP-16 or Hokuyo
laser scanners. As can be seen, the time needed to process additional map knowl-
edge (OSM, 4th and 6th column) is almost negligible in comparison to the time
needed for the pose graph SLAM (pose-graph, 2nd and 5th column). This means
that we integrated our extension into the optimization procedure without adding
a significant computational overhead.

114

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

Figure 8.9: Enabling / Disabling robust kernel function (DCS). Left: optimization using DCS.
Right: optimization without robust kernel functions.

Table 8.1: Timing results for processing the whole dataset (full) and processing a chunk (per
chunk) of the dataset after driving for 25m; dist - length of the trajectory; pose-graph - process-
ing using standard pose-graph formulation only, OSM — processing time needed to optimize
additional edges introduced by OSM constraint.

full per chunk
dist pose-graph osm pose-graph osm

dataset 1 168m 9.89 s 0.9 s 1.75 s 0.16 s
dataset 2 336.6m 62 s 0.83 s 5.52 s 0.074 s
dataset 3 579.6m 41.5 s 4.93 s 2.14 s 0.25 s
dataset 4 1040m 86 s 4.1 s 2.48 s 0.11 s

115

8.6. EXPERIMENTS

8.6.4 Active localization

The last set of experiments is designed to show that the localizability maps pro-
vide information about the ability of the robot to reduce its pose uncertainty if
obtaining scans at given locations in the map. To show this, we initialized the
robot’s believe with a pose uncertainty of up to 5m and 20◦. Then, the robot had
to select a target location within a 100m range and to update the believe about
its own pose based on the measurements acquired on the way. Figure 8.10 illus-
trates this experiment for two initial locations. In one place, the robot localizes
already well given its initial pose (left image) while in the other case, the initial
pose does not offer good features for localization (right). For each location, we
sample possible target locations and evaluated the ability of the robot to improve
its pose estimate while approaching the sampled locations. Several of the selected
trajectories end in the likely regions (setup 1 the trajectories 1, 2, 5, 6; setup 2
the trajectories 2, 3), whereas others are located in unlikely regions (setup 1: 3,
4 and setup 2: 1, 4, 5).

We recorded the individual trajectories separately with our robot in Bonn
and measured the ground truth locations at the end of each trajectory. Thus,
we are able to compute the localization error as the absolute distance between
mean estimate and true location. For more quantitative results, we repeated this
experiment for randomly sampled starting locations in an area of 5m and 20◦

in orientation. The results are summarized in the Table 8.2. The table depicts
the number of runs in which the localization errors decreased, increased or even
diverged (error larger than 20m). As can be seen, trajectories that lead through
or end in likely regions result in a better localization on average, independent
from the starting pose. For the trajectories that lead through the likely regions
(setup 1: 1, 2, 5, 6 and setup 2: 2, 3) the localization error is reduced in 86−100%
of the cases, whereas for the trajectories that prefer unlikely regions (setup 1: 3,
4 and setup 2: 1, 5, 4) the localization error mostly increases. Additionally,
the need of navigating through the likely regions becomes more important if the
starting robot pose lies in the unlikely region as in setup 2. If the robot starts
in a region that supports localization (and thus it is well localized), the gain of
the localizability maps is obviously limited (setup 1: 3). Figure 8.11 shows the
distribution of the localization error for setups 1 and 2 respectively, left column
belong to setup 1 and right describes setup 2. As can be seen, if the trajectories
end up in the likely regions (upper row), the pose uncertainty decreases with
the errors less than 5m. However, if the trajectories end up in unlikely regions
for localization (bottom row) the pose uncertainty increases or even the solution
completely diverges.

The last experiment is designed to show that trajectories that lead through
likely regions in the localizability map lead more often to a decreased localization

116

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

Table 8.2: The distribution of the localization errors for the planned trajectories after the
execution.

Endpoint Localization error, %
region trajectory decreased increased diverged

se
tu
p
1 likely

1 94 0 6
2 100 0 0
5 86 0 14
6 98 2 0

¬likely 3 84 4 12
4 0 94 6

se
tu
p
2

likely 3 42 4 54
2 100 0 0

¬likely
1 0 100 0
5 0 84 16
4 0 100 0

error than the trajectories that that lead through less likely regions. To illustrate
this, we recorded the trajectories depicted in the Figure 8.10 (right). We recorded
the data using the robot Obelix equipped with a Velodyne HDL-32E in Freiburg.
The area depicted in Figure 8.10 (right) and Figure 8.12 is approximately 350m

by 320m. The first trajectory passes through the likely regions and leads to a
decrease in the localization error more often than the second trajectory on the
right, which leads through regions that do not support localization that well,
see Figure 8.12. We would like to point out that the start and end points in this
experiment were selected manually so that they either lead trough likely regions in
the localizability map or not. Thus, we investigate the relevance of the proposed
localizability information on the resulting localization performance of the robot
traveling along a path and not the performance of a specific planning or target
point selection algorithm.

8.7 Conclusion

In this chapter, we presented a novel approach to improve the quality of maps
built with mobile robots by exploiting information from publicly available maps
such as Open Street Map data. Our approach seeks to find an alignment between
the laser scanner data recorded in the mobile platform and the building informa-
tion from OpenStreetMap data. In addition to that, we estimate the ability of
the robot to localize itself in a given region of the map by computing a so-called
localizability map. As we have illustrated through a large set of real world exper-

117

8.7. CONCLUSION

iments, the exploitation of OSM data improves the map alignment process and
provides relevant information about the ability of the robot to localize itself in
certain locations.

118

CHAPTER 8. IMPROVING ROBOT LOCALIZATION USING PUBLICLY
AVAILABLE MAPS

1

5

4

3

2

6
1

4
2

3

5

Figure 8.10: Planned trajectories. Left: Robot starts in a location which supports an alignment
well (setup 1). Right: Robot starts in a location with low likelihood of being able to compute
the right data association between OSM information and its sensor readings (setup 2).

Error, m

0 5 10 15 20

#
 o

f
s
a
m

p
le

d
 p

o
s
e
s

0

10

20

30

40

50

Error, m

0 5 10 15 20

#
 o

f
s
a
m

p
le

d
 p

o
s
e
s

0

10

20

30

40

50

Error, m

0 5 10 15 20

#
 o

f
s
a
m

p
le

d
 p

o
s
e
s

0

10

20

30

40

50

Error, m

0 5 10 15 20

#
 o

f
s
a
m

p
le

d
 p

o
s
e
s

0

10

20

30

40

50

Figure 8.11: Localization error distribution. Left column Setup 1: trajectory 2 with the end-
point in likely region (up) and trajectory 3 with the endpoint in unlikely region (buttom).
Right row Setup 2: trajectory 2 with the endpoint in likely region (up) and trajectory 1 with
the endpoint in unlikely region (bottom).

119

8.7. CONCLUSION

Error, m
0 5 10 15 20

of

 s
am

pl
ed

 p
os

es

0

10

20

30

40

50
Error, m

0 5 10 15 20

of

 s
am

pl
ed

 p
os

es

0

10

20

30

40

50

1

2

1

2

Figure 8.12: Localization experiments in Freiburg. Upper left image shows the localizability
information on the campus and overlayed routes of the robot to navigate (1,2). Trajectory 1
passes through the zones with high localizability (black areas), whereas trajectory 2 passes also
through the zones of low localizability. The corresponding robot maps are depicted in lower
left and upper right images respectively. In the bottom right you can see the localization error
distribution for both routes. The plots were generated by applying translational and rotational
noise to the starting position of both trajectories. Since trajectory 1 passes through the zones of
good localizability, the inaccuracy of starting position is getting compensated by the localization
system, whereas the localization diverges for most of the cases for trajectory 2.

120

Chapter 9

Related work

At the core of every visual place recognition technique lies the fundamental step
of describing the images as well as methods for comparing them. In our work,
we rely on so-called whole image descriptors as HOGs, NetVLAD, and OverFeat
features, whereas other aproaches deploy other kinds of features. We furthermore
presented techniques using image sequences and scan alignment to perform place
recognition. In this chapter, we provide an overview of the related work in the
field of place recognition as well as discuss the advantages of our aproach with
respect to others.

9.1 Describing an image with features
Traditional approaches to visual place recognition typically rely on feature de-
scriptors that represent the content of an image and thus the visual appearance
of the place. Nowadays, there exists a large variety of feature descriptors that
are suitable for visual place recognition including visual place recognition under
challenging conditions. In this section, we discuss the features that are shown
to perform well for general visual place recognition, i.e., when the appearance of
the scene is only influenced by translation, in-plane rotation, and a reasonable
amount of tilt as well as modern features extracted from convolutional neural
networks.

To describe an image, there exist two main paradigms, except of using the
images as it is. The first one is to extract regions of interest in a single image
and compute descriptors for those regions. This allows for representing a place
as a collection of local feature descriptors. The second paradigm is to compute
a whole-image descriptor. These descriptors represent an image as a whole and
avoid representing them by specific regions.

The most popular local feature descriptors are scale-invariant feature trans-
form (SIFT) descriptors [82] and speeded-up robust features (SURF) [20]. Both

121

9.1. DESCRIBING AN IMAGE WITH FEATURES

of these feature descriptors are based on building histograms of oriented gra-
dients of the intensity values in a local neighborhood. SURF is a speeded-up
version of SIFT that produces a descriptor of smaller size and makes use of the
integral images. One can also opt for upright SURF only, which neglects the ori-
entation estimation, and results in a faster computation time. SIFT and SURF
are shown to be a powerful tool for place recognition especially within SLAM
frameworks [118, 125, 52, 7, 6]. An extensive evaluation of the different feature
descriptors performance can be found in the work of Mikolajczyk et al. [90]. The
authors test several feature descriptors like SIFT [82], PCA-SIFT [70] and pro-
pose a new descriptor Gradient location-orientation histogram GLOH. GLOH is
an extension of the SIFT descriptor designed to increase the robustness and dis-
tinctiveness of the descriptor. In their experiments, the authors show that GLOH
performs better than SIFT as well as other feature descriptors.

In order to extract meaningful feature descriptors, one needs to select the
regions of interest or a keypoint in the image, where the chosen descriptor should
be extracted. Several descriptors like SIFT and SURF already have a built-in
functionality to select regions of interest. For example, SIFT relies on a blob
detection scheme known as Difference of Gaussians (DoG). For those descriptors
that do not have a keypoint detector, there exist independent alternatives. One
of the most intuitive regions of interest are corner points, since the corner ele-
ments can be easily detected in the gradient space and are stable and repeatable
across the images. They can be detected using Harris corners [63], Shi and Tomas
features [120], the Förstner operator [44], or features from accelerated segment
test (FAST) [107, 108]. It is not uncommon to mix different keypoint and de-
scriptor strategies. For example Mei et al. [88] use FAST detection technique to
find keypoints and SIFT for further description.

As proposed by Lowe et al. [81], widely used parameters for SIFT descrip-
tors results in a 128 dimensional vector. Since it uses floating point numbers, a
descriptor vector requires 512 bytes. Similarly, SURF requires 256 bytes (for 64-
dim). Creating such a vector for thousands of features can take a lot of memory,
which is not desirable for resource-constraint applications. This led to the devel-
opment of more lightweight feature descriptors - binary descriptors, for example,
Binary Robust Independent Elementary Feature (BRIEF) [27]. This is one of the
most simplistic binary descriptors that describes an image patch by randomly
sampling pairs of image pixels and constructing a binary feature descriptor based
on relation of the sampled pixel intensities. The BRIEF descriptor is fast to
compute, however, in its plain form, is not robust to in-plane rotation and scale.
To come up with a descriptor that possesses these missing properties, Rublee
et al. [110] proposed the ORB descriptor, which stands for Oriented Fast and Ro-
tated BRIEF. Nowadays, ORB is almost the standard choice for a binary feature

122

CHAPTER 9. RELATED WORK

descriptor. Other researches also proposed BRIEF alternatives like BRISK [79]
and FREAK [4] that make binary descriptor rotation and scale invariant. The
main advantage of binary descriptors is that they are memory efficient and fast
to compute and compare. On the other hand, they provide a simplified represen-
tation of the local patches and thus may be not robust enough, especially in the
presence of visual appearance changes such as illumination changes.

Global image descriptors, on the other hand, have the potential to tolerate
strong illumination and dynamic changes better in comparison to local feature
descriptors. This capability comes from the fact that most whole image descrip-
tors preserve the spatial relation between the objects in the scene. In this way,
the relative position of the features is expected to be roughly similar between
the images. This property can improve the image matching process whenever the
scene experiences strong illumination changes. Under illumination changes the
intensities of the image gradient may change dramatically, so that local features
descriptors are not able to cope with. Global feature descriptors can be gener-
ated from local feature descriptors by predefining keypoint locations, for example
defining a grid-like structure for computing descriptors. Badino et al. [14] de-
ploys whole-image descriptor based on SURF for localization applications, while
Sünderhauf and Protzel [127] use BRIEF in a similar way to propose BRIEF-
Gist. Another popular whole image descriptor is Gist proposed by Oliva and
Torralba [102] to model the shape of the scene and was used for place recognition
in paper presented by Murillo et al. [96]. Since global image descriptors consider
an image as a whole, they are able to perform well under illumination changes
but their performance drops substantially in the presence of translational or ro-
tational effects, because the same features may not located in the same grid cells.
To preserve illumination invariance and to better tackle camera transformations,
Naseer et al. [99] proposed to use the global descriptor HOG [35] on an image grid
and Sünderhauf et al. [128] use Edge Boxes method for objects detection [146]
and extract features in the detected object regions. This allows for matching
features that correspond to particular objects across the images. For our visual
place recognition system presented in Chapter 3, we select to deploy holistic,
also called whole image or global descriptors, as they were known to show better
performance under photometric changes.

Since global image feature descriptors represent the whole image, we are able
to compute a matching score for two images directly by comparing individual
feature descriptors. In case of local feature descriptors, there might be thou-
sands of features generated per image and comparing two images in an all-to-all
manner can be a computationally expensive operation. The bag-of-words model
proposed by Sivic and Zisserman [122] for image retrieval increases efficiency of
place recognition by quantizing the local features in to a vocabulary. Effectively

123

9.1. DESCRIBING AN IMAGE WITH FEATURES

leading to the fact that every feature vectors is summarized by a visual word.
Afterwards, an image is described by the histogram of occurrences of vocabu-
lary words in it. This reduces the problem of matching images to a problem of
comparing image histograms, which is much more efficient. In their work, the au-
thors propose to combine the SIFT descriptor with affine covariant regions that
give a region description vectors which are invariant to affine transformations
of the image. Applying tf-idf ideas from the text retrieval community, allows
for down-weighting the frequently occurring visual words and for enhancing the
rare occurring ones. This leads to a better distinction between images and thus
better image retrieval properties. Another popular approach from the robotics
community that uses the concept of bag-of-words is FAB-MAP [34]. The authors
additionally propose to use inverted index structure to speed-up the retrieval
capabilities. The inverted index is a data structure that stores for every fea-
ture vector indices of the images it was detected in. Furthermore, FAB-MAP
uses a Chow Liu tree to learn offline the word’s co-visibility probabilities. These
improvements made FAB-MAP a standard appearance-only SLAM system that
is based on SIFT descriptors. As also noted previously, the SIFT descriptor is
robust against photometric image changes. This, however, comes at a computa-
tional cost. To bring image retrieval closer to real world applications that require
real time operation capabilities, Gálvez-López and Tardos [49] proposed the ap-
proach DBow that uses bag-of-words technique combined with binary features,
namely FAST and BRIEF. To speed up the retrieval capabilities even further,
the authors have proposed to perform a temporal consistency check as well as to
apply a direct index. Direct index is a data structure that stores for each image
the indices of the features that were extracted from it.

In context of binary feature descriptors, a further popular image retrieving
strategy is a locality sensitive hashing (LSH) [84]. In contrast to conventional
hash functions where hash collisions should to be avoided, it aims at maximizing
the probability of a collision for similar inputs. This results in the fact that similar
images are assigned to the same or near-by buckets of the hash tables. Selecting a
matching image simplifies the matching procedure by comparing only to a number
of candidate images as oppose to the whole dataset of images. In our work, we
use the ideas of locality sensitive hashing to tackle the kidnapped robot problem
as well as the problem of quickly finding the set of potential images candidates
for successful relocalization. We discuss this approach as well as details about
different hashing schemes in the subsequent sections of this thesis.

Recent advance in object recognition and detection using convolutional neu-
ral networks (CNN) led to new types of image descriptors. One of the first
researchers who explored the properties of CNN feature vectors in the context
of visual place recognition were Chen et al. [32]. They found that feature vector

124

CHAPTER 9. RELATED WORK

Figure 9.1: Illustration of the fact that SIFT features do not perform well under strong seasonal
variations. As a result of the seasonal changes, most SIFT matches illustrated by the lines
between the images are outliers as the lines do not connect corresponding points.

from certain layers of the convolutional neural network OverFeat [119] can be
successfully used as a holistic image descriptor. After this initial proposal, Sün-
derhauf et al. [130] published a comprehensive study on performance of ConvNet
features for visual place recognition in changing environments. In that paper,
the authors investigate, which layers of the AlexNet [75], originally proposed for
image classification, are suitable for particular visual appearance changes. Ad-
vances in neural networks spark the interest of creating new feature descriptors.
A recent comprehensive study of local feature descriptors by Balntas et al. [18]
reveals, however, that simple normalization of the traditional handcrafted fea-
tures can boost their performance to the level of deep learning based descriptors
within a realistic benchmarks evaluations.

In our approach, we opted for the CNN features that from our experience
show the best performance for the visual place recognition in changing environ-
ments. In Chapter 4, we use a feature vector from 10th layer of convolutional
neural network OverFeat [119]. We found those features to be more discrimina-
tive than tessellated HOG descriptors, which is the property that fosters better
place recognition. With increasing interest for the convolutional neural networks,
many more networks appeared in the community that proposed better results for
classification, object detection and networks for image recognition. All of these
networks were trained for the tasks different from place recognition but showed
to produce more discriminative descriptors for place recognition than traditional
feature descriptors. Even with such improved features, the place recognition task
was still considered far away from solved especially for the recognition in changing
environments. Arandjelovic et al. [8] propose a NetVLAD architecture, a con-
volutional neural network that was trained specifically for the place recognition
task. One of the properties of the NetVLAD network is its ability to aggregate
local features in the final layer. The network was inspired by ideas of Vector of

125

9.2. VISUAL PLACE RECOGNITION

Locally Aggregated Descriptors (VLAD) [9] encoding. This encoding can be seen
as an extension of the bag-of-words approach in which the feature descriptor also
stores the distances to the cluster (word). So, the NetVLAD network produces
a feature vector which is aggregated from features of a final layer. This brings
the ability for the feature vectors to be translational and rotational invariant,
the property that all CNN features were missing. Additionally, the NetVLAD
features are comparably low dimensional, which makes them suitable for the real
world application. So in the process of working on this thesis, in more detail in
Chapter 6, we change our feature descriptor to the features from NetVLAD net-
work and as a result we are able to better recognize places in presence of dramatic
view point change, e.g., by localizing against Street View images.

9.2 Visual place recognition
Pose estimation is a frequently studied problem in robotics and different ap-
proaches have been proposed for visual localization [3, 22, 34, 36, 47]. The ability
to localize is an essential prerequisite for most autonomous navigation systems.
Visual place recognition has received a significant amount of attention also in
computer vision community [10, 28, 30, 73, 114, 115, 116, 134, 133] as well as
robotics. Some approaches focus on autonomous driving [87] while others on ap-
plications for augmented reality [89] or geo-localizing archival images [12]. Dealing
with substantial variations in the visual input has been recognized as an obstacle
for persistent autonomous navigation and this problem has been investigated by
different researchers [34, 55, 80].

The majority of visual place recognition systems exploit features such as
SURF [20] or SIFT [82] and several approaches apply bag-of-words techniques,
i.e., they perform matching based on an appearance statistics of such features. To
improve the robustness of appearance-based place recognition, Stumm et al. [126]
consider the constellations of visual words and keeping track of their covisibil-
ity. Often, approaches using SIFT or SURF show a great performance if the
appearance of the environment does not change radically. As also noted before,
the matching performance of SIFT or SURF degrades under strong perceptual
changes. An example, which illustrates this fact, is shown in Figure 9.1. The
two images are taken from the same place and similar view points but during
different seasons. As can be seen from the matches illustrated through the yel-
low lines, most of the correspondences are outliers. This examples illustrates our
experience, that SIFT and SURF features are not well-suited for image matching
under strong seasonal variations. Across season matching using SIFT and SURF
has been investigated by Valgren and Lilienthal [136] by combining features and
geometric constraints, which can improve the matching. In Chapter 3, we de-

126

CHAPTER 9. RELATED WORK

ploy a tessellated HOG features following the ideas of Naseer et al. [99, 138]. In
contrast to that, in subsequent Chapter 4, Chapter 5 we apply deeply learned
features proposed by Sermanet et al. [119] and suggested for place recognition
by Chen et al. [32]. We use them as an alternative to tessellated HOG features
as they provide a better matching performance in our settings. Another recent
work [131] suggests a technique for place recognition, where features stem from
convolutional neural networks. The authors extract features from the landmark
proposals, construct the similarity matrix by comparing the landmark features
using the cosine distance and also take into account the size of the bounding
boxes for the matched landmarks. The recognition task is then performed by
selecting individual matches based on the highest similarity score.

Visual place recognition can also be formulated as a sequence matching prob-
lem. In terms of aligning image sequences, several approaches have been pro-
posed. For example, Matsumoto et al. [86] use the image sequences and direc-
tional relations between images to perform visual navigation in a corridor environ-
ment. SeqSLAM [92], which also aims at matching image sequences under strong
seasonal changes, computes an image-by-image matching matrix that stores dis-
similarity scores between all images in a query and database sequence. SeqSLAM
computes a straight-line path through the parts of a matching matrix and se-
lect the path with the smallest sum of dissimilarity scores across image pairs to
determine the matching route. Milford et al. [91] also present a comprehensive
study about the SeqSLAM performance on low resolution images. Related to
that, Naseer et al. [99] focus on offline sequence matching using a network flow
approach. If odometry is available, this approach can also be combined with a
least squares SLAM system to build metric maps [98]. Another way to perform
robust sequence matching is to create a notion of the place, by combining the
descriptors from couple of consecutive images in so called subsequence descriptor
as presented by Bampis et al. [19].

The approach by Neubert et al. [101] aims at predicting the change in ap-
pearance on top of a vocabulary. For the vocabulary, the method predicts the
change of the visual word over different seasons but the learning phase requires
an accurate image alignment over seasons. A subsequent approach by Johns
and Young [69] builds a statistic on the co-occurrence of features under different
conditions. It relies on the ability to detect stable and discriminative features
over different seasons. Finding such discriminative and stable features under
strong changes is however a challenge. To avoid addressing the problems of find-
ing features that are robust under extreme perceptual differences, Churchill and
Newman [33] store different appearances for each place. These so-called experi-
ences enable a robot to localize in previously learned experiences and associate
a new data to places. A recent extension of that paradigm targets vast-scale

127

9.2. VISUAL PLACE RECOGNITION

localization by exploiting a prioritized recollection of relevant experiences so that
the number of matches can be reduced [80].

Long-term place recognition has not only been addressed using cameras but
also other sensing modalities such as LiDARs. For exmaple, Biber and Duck-
ett [24] address the problem of dealing with changes in the environments by
representing maps at different time scales. Each map is maintained and up-
dated using the sensor data modeling short-term and long-term memories. This
enables handling variations. In contrast to that, Stachniss and Burgard [124]
model different instances of typical world states using clustering in the 2D grid
representations of the world. There are furthermore approaches combining laser
and visual information for large-scale localization at city scale. The approach of
Pascoe et al. [104] exploits laser data and vision information during the mapping
phase with a survey vehicle but can then localize a car only using a camera.

To achieve a visual localization in a long term autonomy setup, Furgale and
Barfoot [48] propose a teach and repeat system that is based on a stereo setup.
The approach exploits local submaps and enables a robot to navigate on long tra-
jectories but this method does not address large perceptual changes with respect
to the taught path.

Another set of approaches for visual place recognition rely on extracting the
3D geometry of the scene. Dubé et al. [39] propose a loop detection algorithm
based on the matching of 3D segments to be able to reliably detect and close
loop in real time. For environments that do not change their visual appearance
dramatically, loops can be detected with high precision by using a probabilistic
voting concept based on nearest neighbors descriptor voting proposed by Gehrig
et al. [50]. An approach by Caselitz et al. [29] also aims at localizing the monoc-
ular camera within the previously build 3D LiDAR maps. For fast loop closure
detection within a sequence that has been acquired through the continuous cam-
era movement, Schlegel and Grisetti [117] track binary features and present a
method for efficient similarity search using decision trees.

In Chapter 4, we introduced a lazy data association scheme inspired by the
work of Hähnel et al. [61] to come up with an online solution that can be executed
on a robot while navigating. A key goal is to reduce the number of image-to-image
comparisons with respect to existing methods such as [92, 99, 138]. In contrast
to the work by Hähnel et al., we use a heuristic that considers the cost of the
path taken so far in order to speed-up the search. As we showed in this thesis, it
allows us to dramatically reduce the number of image comparisons which is one
of the elements of realizing an online place recognition system.

In visual place recognition, relocalization after getting lost can be achieved
by a brute force approach to image retrieval such as comparing the query image
to all images in the reference dataset as it was used by Neubert et al. [100].

128

CHAPTER 9. RELATED WORK

To optimize the process of finding similar images in large datasets Gionis et
al. [53] propose using hashing algorithm, which was intensively used to solve text
retrieval problems, to search for duplicates and even similar images in the large
dataset, known as locality sensitive hashing (LSH). In LSH, slight variation in
the image domain should only lead to slight variations in the hash. This leads
to the fact that images with similar feature descriptors will land in the same
buckets. When using hashing technique, we obtain mostly constant query time
and small amount of candidate images to further refine the search. To achieve
good retrieval performance on real world data LSH requires a substantial amount
of different hash table to differentiate between the images with similar feature
vectors and different visual appearance. This may be seen as a disadvantage
of LSH, since requires a quite large number hash tables (> 100 is suggested in
practice) to obtain a high retrieval accuracy. To tackle this problem, Lv et al.
[84] propose an efficient indexing strategy, which allowed to reduce the number
of hash tables. The popularity of the CNNs resulted in learned features, which
are high-dimensional in comparison to those used by Lv et al. This slows down
multi-probe LSH when matching full image sequences. An alternative approach to
improve retrieval is spectral hashing [144], where a variant of spectral clustering is
performed on the database before the operation in order to find better hash codes.
Due to the high- dimensionality of CNN features, spectral clustering becomes
computationally intractable and thus we rely on a variant of LSH proposed by
Lv et al.

One of the particularly challenging branch of relocalization is the so-called
kidnapped robot problem. Here, the robot is said to be kidnapped when the
consecutive measurement that a robot records differ completely as if the robot
was instantly teleports in some other place in the environment. For the localiza-
tion systems that take the sequentiality of the sensor readings into account, this
situation breaks the localization process. One of the ways to tackle this issue by
deploying particle filter methods [46]. In our framework, we are able to deal with
kidnapped robot problem by performing efficient hashing based relocalization
step.

Visual place recognition plays a major role for robot localization. Typically, a
visual localization system finds the images that represent the same place and af-
terwards tries to estimate the 6-DoF transformation between them. This provides
an exact position of the camera in a given reference system, which is a typical final
goal of the localization systems. Instead of performing these two steps, Kendall
et al. [71] propose to train a so-called regression neural network PoseNet that
given an image returns the 6DoF pose of the camera directly. The advantage of
this approach is obtaining a precise pose estimate directly given an image. This,
however, is shown to be possible only for limited amount of the environments.

129

9.3. IMPROVING LOCALIZATION OF THE ROBOTS USING PUBLICLY
AVAILABLE DATA

Radwan et al. [106] propose an architecture that employs a multitask learning
approach to exploit the inter-task relationship between learning semantics and
not just regresses 6-DoF global pose but also produces an odometry estimate.

9.3 Improving localization of the robots using
publicly available data

Typical approaches to visual place recognition start with collecting the datasets,
sequences or experiences to recognize later on the places against. Collecting this
data is a time and resource consuming operation. Recently, there started to
appear several approaches in the literature that tried to overcome the burden
on collecting the reference dataset by exploiting already exciting sources, like
Google Street View or other publicly available sources. Badino et al. [13] pro-
posed a method for long-term vehicle localization that can localize a vehicle with
respect to previously collected topometric map as well as Google Street View.
Their method deploy local keypoint features U-SURF [20] and performs local-
ization and tracking by applying discrete Bayes filter. To implement the state
transition probability density function, the authors assume to know the velocity
of the robot at every point in time, whereas our approach only relies on max-
imal possible velocity or in other words maximum possible distance in frames
(fanout). Another approach by Majdik et al. [85] uses Google Street View to
localize a micro aerial vehicle. This setup imposes particular viewpoint challenge
which they overcome by generating virtual views and match them against the
street view images. Agarwal et al. [1] also use the imagery from Google Street
View to perform a metric robot localization. They compute rigid body transfor-
mation between input image stream from the monocular camera and geotagged
rectilinear panoramic views. Afterwards, they perform a two phase nonlinear
least square estimation to obtain the refined robot poses. The authors rely on
a rather inaccurate, consumer GPS device to preselect the set of panoramas to
perform metric localization against. In contrast to that, our approach can di-
rectly provide the matching street view image to perform a more precise metric
localization.

Besides localization, mapping also plays an important role in robotics. The
first work in robotics that addressed SLAM through least squares was the work
of Lu et al. [83]. Subsequently, Gutmann et al. [60] focused on means for con-
structing pose-graphs and for detecting loop closures. Over the last 15 years, a
large number of different approaches to graph-based SLAM have been proposed,
for an overview see [15, 16, 57, 113, 123].

One prominent example of graph-based SLAM approaches is the work by

130

CHAPTER 9. RELATED WORK

Konolige et al. [74] that describes a pose-graph implementation for building the
linearized system in an efficient way. Solving the linear system of equations
leads to optimizing the robot poses and thus map estimates. Olson et al. [103]
investigates the use of stochastic gradient descent and Grisetti et al. [59] proposed
an extension of Olson’s approach that uses a tree parametrization of the nodes
in 2D and 3D. Thrun’s GraphSLAM approach [132] applies variable elimination
techniques to reduce the dimensionality of the optimization problem as well as
hierarchical techniques. Most SLAM approaches assume Gaussian errors in the
constraints. This renders them sensitive to data association outliers. A number
of approaches has been proposed to overcome this problem. For example, the
approach of Sünderhauf et al. [129] scales the effect of potential outlier constraints
while [2] proposed dynamic covariance scaling as an alternative scaling approach
that does not increase the number of variables that need to be optimized. RRR,
short for Realizing Reversing Recovering, proposed by Latif et al. [78] tries to
identify outliers by searching for the set of edges that are consistent with each
other. It then rejects potentially wrong constraints.

Recently, several localization approaches were proposed that use the infor-
mation from OpenStreetMap [62] to improve robot localization. Most of them
incorporate this information into the observation model of the Monte Carlo local-
ization (MCL). For example, Hentschel et al. [65] represent buildings as 2D line
features. This line map is then used to calculate the expected range measurement
at a certain robot’s locations and combines MCL with a form of Kalman filter-
ing. In Chapter 8 of this thesis, we also use the information about buildings, but
integrate the correspondences through an ICP (Iterative Closest Point)-based
matching procedure into a graph-based SLAM framework. Another approach,
which is proposed by Floros et al. [43], uses chamfer matching to align robot’s
trajectory with the road network extracted from publicly available maps. Each
particle in MCL is weighted according to the reported chamfer matching cost.
In contrast to that, we select building information as this enables our system to
deviate from the exact structure of the road network. Also, typically the met-
rical information about the road size is missing. Moreover, buildings are easier
to detect in 2D range scans then the road surface. Ruchti et al. [111] also use
the information about the road network. Instead of relying on visual odometry
as in [43], they classify the 3D laser scans into road/non-road surfaces and the
classification result is incorporated into the weight of the particles in the Monte
Carlo localization. In contrast to that, our work incorporates building informa-
tion obtained from OpenStreetMap into graph-based SLAM as additional edge
constraints. The approach by Pink et al. [105] generates features like markings of
the street lanes from aerial images, matches them to the features extracted from
the camera mounted in the car, and uses this information in visual navigation

131

9.3. IMPROVING LOCALIZATION OF THE ROBOTS USING PUBLICLY
AVAILABLE DATA

framework. In our work, we use a laser scanner and thus are not bounded to
follow the road network. Similar to the other approaches, Brubaker et al. [26]
also consider the road network from the OpenStreetMap and a camera pair to
perform localization.

Another approach to maintain the global consistency of the robot’s maps was
proposed by Kummerle et al. [77]. The consistency is achieved by augmenting the
pose-graph formulation with additional constraints that come from the matching
the robot’s perceptions to the information from the aerial images. The aerial
images are transformed into a line map using the Canny edge detector, whereas
we render the map directly from the OSM information. Additionally, the authors
use a variant of Monte-Carlo localization for localizing the robot within the line-
map and then optimize the robot poses using a pose-graph SLAM formulation.
In contrast to that, we use the information about the building locations directly
from the publicly available data and incorporate this information directly into
the pose-graph formulation without deploying Monte-Carlo sampling techniques.

Computing likelihood maps for localization is a well studied problem, for ex-
ample in the field of active vision. The main focus of the work proposed in this
thesis is to find the suitable vantage points for the camera for better object de-
tection or to enhance the visual SLAM algorithms [17, 5, 31, 72]. In our work, we
are interested in the similar goal of finding regions where good vantage points are
located, but our primary sensor setup is a laser scanner. In the robotics commu-
nity, the problem of estimating the localization likelihood maps or localizability
maps has also been studied in context of Teach and Repeat paradigm. For ex-
ample, Furgale et al. [48] compute a teach corridor within which the robot can
localize well in a repeat phase. Dequaire et al. [37] deploy Gaussian Processes to
predict the localization envelope, the region around the taught trajectory, where
the robot obtains reliable visual features for localization in a repeat phase. The
authors use robust visual features as well as local path curvature to make the
predictions. Velez et al. [137] propose an approach to improve the object de-
tections by planning the navigation in that way that allows the detector to be
certain about the object. In the vicinity of each detectable object, they compute
a likelihood field that indicates locations where reliable measurements can be
taken. In our work we do not rely on any pre-trained detectors. An approach
of Nardi et al. [97] uses the localizability information developed in this thesis to
make uncertainty aware path planning in outdoor environments.

The work with which our approach for estimating localizability shares most
similarity is the work of Roy et al. [109]. In this work, the authors present an
approach for navigating a robot, called coastal navigation, which generates the
trajectories for the mobile robot that reduce the likelihood of localization errors.
They estimate the likelihood of a point in the map as the amount of information

132

CHAPTER 9. RELATED WORK

content. It is computed as the difference between the expected entropy of the
robot’s pose given a sensor measurement and the entropy of the prior belief about
the pose. The more information the cell in the map contains, the higher the
likelihood. In our case, we compute the eigenvalues of the covariance estimate of
the robot’s pose and consequently, the smaller the selected eigenvalue, the smaller
the uncertainty and the higher the likelihood will be. For the computational
reasons, Roy et al. [109] assume to have a map of the environment constructed
by a robot and the prior probability distribution about the robot’s position. In
our approach, we also consider to have a map of the environment, but in the form
of a coarse map, rendered from the OpenStreetMap data.

133

Chapter 10

Conclusion

In this thesis, we showed that visual place recognition in changing outdoor en-
vironments is a challenging and active research topic. There exist multiple ap-
proaches tackling this type of place recognition problem. In our approaches, we
consider sequence information and formulate the place recognition problem as
a graph-based sequence matching and search problem, which can be efficiently
solved using the approaches proposed in this thesis.

As a first contribution, we proposed an approach to visual image matching
under substantial appearance changes by exploiting sequence information. The
proposed approach is an extension for an approach by Naseer et al. [99] so that it
can exploit noisy GPS pose priors and at the same time substantially reduces the
number of required image comparisons. This enables us to find data associations
orders of magnitude faster than the previous approach. In addition to that, our
approach can naturally handle loops in the input image sequences. We imple-
mented and tested our approach using real-world image and GPS data acquired
in summer and in winter. Throughout our extensive experimental evaluation sec-
tion, we showed that our the approach can increase the matching performance
while reducing the computation time and in this way outperforms the existing
methods such as SeqSLAM [92] and others.

To further bring the matching approach to real-world application, we further
proposed an incremental approach to visual image sequence matching under sub-
stantial appearance changes that is able to operate in online fashion. The key
idea is to apply a lazy data association approach and to define a heuristic for
the search in the data association graph that estimates the similarity of images.
This enables us to achieve online performance for image sequence matching under
substantial appearance changes. We furthermore illustrated that noisy location
priors can be exploited during an online search. We implemented and tested our
approach using real-world image sequences acquired in summer and in winter as
well as under different weather conditions. Our comparisons to other methods as

135

well as the results from the VPRiCE 2015 place recognition challenge suggest that
our approach provides competitive results and avoids expanding large portions
of the data association graph or building a large matching matrix.

A further contribution is the image sequence matching approach that is able
to deal with flexible robot trajectories. It relaxes the assumption that the ref-
erence and query image sequences should be roughly synchronized. This allows
considering situations that frequently occur in everyday robot operation. For
example, the deviation of query trajectory from the previously mapped areas or
dealing with situations when reference trajectory visits the same place multiple
times. We build a data association graph incrementally and search for a data
association sequence using an effective search heuristic. This contribution over-
comes two key limitations of our previous method. First, we provide an efficient
way for re-localizing the robot in situations, in which it got lost after the robot
has left the previously mapped areas and is reentering the known part of the en-
vironment or to solve the kidnapped robot problem. Second, our new approach
can deal with loops in the reference sequences effectively without additional pose
priors, like GPS, while simultaneously avoiding expensive network flow search as
proposed by Naseer et al. [99]. We implemented and evaluated our approach on
different publicly available datasets. Our evaluations and comparisons show that
we can handle the above-mentioned situations, which could not be solved with
the approach in [140]. We furthermore show through our experiments that our
approach runs online, provides an effective image matching in the presence of
flexible robot trajectories.

Our final contribution to improving the visual place recognition is a novel
approach for finding image correspondences between a currently observed image
stream and a map consistuing of several previously recorded image sequences
under substantial appearance changes. Matching, in this setup, is also performed
through an informed search in a data association graph that is built incrementally.
By deploying the hashing technique, we are able to relocalize the robot if it is
lost as well as between multiple image sequences. Additionally, we showed how
to leverage publicly available Google Street View imagery within our framework.
Our evaluations show that we can perform place recognition faster than offline,
fully informed search with the comparable matching performance in presence of
drastic visual appearance changes as well as viewpoint changes.

In this thesis, we also contribute to improving the quality of maps built with
mobile robots by exploiting information from publicly available maps such as
Open Street Map data. Our approach seeks to find an alignment between the laser
scanner data recorded in the mobile platform and the building information from
OpenStreetMap data. In addition to that, we estimate the ability of the robot to
localize itself in a given region of the map by computing a so-called localizability

136

CHAPTER 10. CONCLUSION

map. As we have illustrated through a large set of real-world experiments, the
exploitation of Open Street Map data improves the map alignment process and
provides relevant information about the ability of the robot to localize itself in
certain locations.

Parts of this thesis are contributions to the European project EUROPA2,
grant number FP7-610603-EUROPA2, the DFG research unit FOR 1505 Map-
ping on Demand. Furthermore, we ontributed to the Excellence cluster Phe-
noRob supported by the German Research Foundation under Germany’s Excel-
lence Strategy, EXC-2070 - 390732324.

137

List of Figures

1.1 The same place in the environment can undergo dramatic visual
appearance changes induced by seasons, time of day, and dynamic
objects change. Left: Image taken in summer afternoon. Right:
Image taken during winter morning. 2

2.1 Approaches to compare a pair of images. From left to right: On
per pixel bases; describing image with local features and compare
them; describing images using grid of local descriptors and ex-
tracting feature vectors from the convolutional neural network.
Red crosses correspond to the extract local feature descriptors like
SIFT, SUFT, etc. 8

2.2 Illustrative example for estimating precision and recall. All the
dots (filled / unfilled) correspond to the items to be retrieved.
The ones in the circle correspond to a result of estimation, e.g.,
classification result. Courtesy: Wikipedia. 10

2.3 Examples of the precision recall curves to evaluate different ap-
proaches. The closer the precision-recall curve to the upper right
corner of the plot, the better is the performance of an algorithm.
Left: blue curve is closer to the top corner so the corresponding
algorithm performs better. Right: Example of near perfect per-
formance of two methods (blue and red) and poor performance of
a light blue curve. 11

2.4 Example of two F1 curves generated by varying a Parameter in a
given range. Algorithm 1 performs better than Algorithm 2, since
it has higher F1 scores. 12

2.5 Accuracy plot example. Alg. 2 performs better than Alg. 1 and 3
because it achieves higher values of accuracy. 13

3.1 Left: A toy example of a cost matrix. Brighter values correspond
to the smaller matching costs, darker values to the bigger matching
cost. Right: Cost matrix from a real world dataset with sequences
consisting of 500 images both query and reference sequences. . . . 18

139

LIST OF FIGURES

3.2 The strategy of selecting an image match with the lowest match-
ing cost (brightest pixel in the row) fails to reliably find cor-
rect matches, especially when the features are not discriminative
enough, i.e., the difference between the correct pattern and the
rest of the matrix is not big enough, as can be seen in the right
matrix. Red dots correspond to the an image pair (query image,
dataset image) that are found as matches. 19

3.3 How to build a graph structure given a cost matrix. Yellow circles
denote nodes in the graph, arrows denote transition between the
nodes. 20

3.4 Constructing the edges between the matching nodes based on
the potential image transition within the query and reference se-
quences. Left: query and reference cameras move at the same
speed. Middle: query camera is staying whereas reference is mov-
ing. Right: query camera moves twice as fast than reference one.
. 21

3.5 We establish correspondences between image sequences by search-
ing for the shortest path in the graph. Red nodes represent real
matches, blue node represent a hidden node (the image pair is not
considered as a match). 22

3.6 Up: Matching results that the proposed graph structure is able to
obtain on a challenging Nordland dataset. Down: Image pair that
corresponds to a real node (red, left), image pair that corresponds
to the hidden node (blue, right). 23

3.7 Left: Full matching matrix. Right: Sparse matching matrix con-
sidering a 1 km location prior. 25

3.8 Realistic scenario. The image sequences are not synchronized,
which results in disconnected components when considering a rough
GPS prior. 26

3.9 Illustration of a sparse matching matrix C ′ and the process of
connecting the separate components using Ed and Eq. 29

140

LIST OF FIGURES

3.10 Experimental results on 3 datasets. The images in the first column
show the matches, including ground truth and the plots in the sec-
ond column show the precision recall plots. First row: Comparison
of our approach the method Naseer et al. [99], openSeqSLAM and
a heuristic that always selects the best match in C on a dataset
that consists of a sequence of 3 km. Second row: Comparison be-
tween the same approaches on a dataset containing a loop in a
query sequence. Third row: Comparison to the method of Naseer
et al. on a third dataset containing several loops in database as
well as in query. 32

3.11 Four example image pairs from the database and query set illus-
trating the perceptual change over the seasons. 33

4.1 Schematic illustration of the graph structure for the search. To
perform an online localization our algorithm compares only image
pairs that correspond to the green nodes and expands the green
area on the fly. Red nodes correspond to matches of similar im-
ages along the path through the data association graph and blue
indicates matches along the path with a low similarity. 39

4.2 Similarity matrix computed using tessellated HOGs as in [99] (left)
and OverFeat features (right). As can be seen in the first row, the
OverFeat features yield more distinct similarity values. This leads
to a smaller number of nodes that are instantiated in the data
association graph (green), as depicted in the second row. 41

4.3 Illustration of searching for a match for an input image. 43

4.4 Illustration for the graph expanding procedure. Orange nodes are
nodes in the F . The red square indicates that the element xij will
be the next one in F . The dashed gray line represent nodes and
edges not computed yet. 46

4.5 Keeping connectivity though additional edges when using location
priors. Green: nodes that are expended and added to the graph;
gray: potential neighboring nodes according to the prior, but not
encountered in the graph search and thus not instantiated. 46

4.6 Examples of typical image pairs taken at the same places within
multiple datasets. The image pairs are successively found by our
approach. First row: Freiburg dataset; second row: Alderley
dataset; third row: Nordland dataset. Fourth row: day/night
scene from the VPRiCE’15 Challenge dataset. 48

141

LIST OF FIGURES

4.7 Left: visualization of the graph structure for the dataset with dra-
matic seasonal changes (Nordland sequence from VPRiCE). The
algorithm compares the images only for the nodes marked with
green. Other nodes are computed for visualization only. Right:
Plot of the dependency between the expansion rate α and the num-
ber of matching cost computations, expressed in percentage from
total number of nodes. 50

4.8 Full matching matrix (left) and the nodes expanded by our algo-
rithm (green nodes in the right image). The similarity matrix is
computed for visualization only. The squares highlights an area in
which most images are hard to distinguish, which leads to a larger
node expansion. 50

4.9 Precision-recall plots for the datasets Nordland (left) and Freiburg (right). 50

4.10 Performance evaluation on the Alderley dataset. 51

4.11 In overall selecting the bigger expansion parameter α leads to a
decrease in node expansion, while preserving the accuracy of the
solution. The middle plot also shows that constraining α close to
1 may prevent finding the correct path. It leads to degradation
in accuracy (bottom) and may lead to increase in node expansion,
depending on the underlying data (middle). 52

4.12 Exploiting location priors enables handling the loops in image se-
quences. Right: Example of the similarity matrix constrained with
100m GPS prior and overlaid graph search results. Top left: com-
parison using precision-recall plots. Bottom left: node reductions
relative to the uncertainty of the location prior. 53

5.1 Challenging image pairs for place recognition systems. Both im-
ages have been recorded at the same place but during different
times resulting in strong appearance changes. The approach pre-
sented in this paper identifies such corresponding images via se-
quence information and can handle loops in the database sequences,
recover from localization failures, as well as deal with the kid-
napped robot problem. 58

5.2 Left: Sketch of a query detour during which the robot is lost.
Right: An example of a cost matrix, where the query trajectory
makes two detours (marked with rectangles). 59

142

LIST OF FIGURES

5.3 Example of the proposed hashing algorithm. Here the dataset
consists of 3 feature vectors of dimension 7 each. An entry of hash
table H[2] stores the IDs of the feature vectors 0 and 1, since for
both of them, dimension 2 has the value of 1. For a query feature,
the set of dimensions that take a value of 1 is A = {0, 1, 2, 4}.
By collecting the values from H, the set of potential matching
candidates is 0 with occurrence 3, 1 with occurrence 3 and 2 with
occurrence 1. The resulting matching candidates for query q are
{0, 1}. 62

5.4 Left: Sketch of similar places situation. Right: an example of the
cost matrix with a reference dataset visits the same place twice
(marked with yellow rectangles). 63

5.5 Example of possible outputs in our experiments. The cost matrix
stores the costs of matching individual images (not used in our
algorithm). Expanded nodes - matching costs computed in our al-
gorithm. Real matches - image pairs that represent the same place
and hidden match - image pairs that support the path hypothesis,
but have low matching cost. Ground truth matches that represent
the same place in reality. 64

5.6 Example of a cost matrix for matching two trajectories, where the
query trajectory deviates from the reference one twice. Once at
the beginning and then in the middle. The places are marked
with pink rectangles. Left: matching matrix. Middle: result of
proposed algorithm. Right: Result using previous approach. Note
that the full cost matrix for matching is only shown for visualiza-
tion and does not need to be computed by our approach. 65

5.7 Example of the trajectory matching from the VPRICE datasets.
Here the query trajectory follows the reference trajectory twice,
once during the day time (upper matrix part) and once during the
night time (lower matrix part). Left: cost matrix. Middle: result
of proposed algorithm. Right: Result using previous approach. . . 66

5.8 Matching example from the Freiburg dataset. The trajectory con-
tains partial revisits of the reference sequence as well as detours in
the query sequence. Left: cost matrix. Middle: result of proposed
algorithm. Right: Result using previous approach. 66

5.9 Precision recall plots for the dataset with multiple loops in query in
references sequences (left) and the dataset with a query connected
through the similar places in the reference sequence (right). . . . 68

143

LIST OF FIGURES

5.10 Matching example of trajectories from Bonn in which both tra-
jectories contain loops. The query also deviates for reference tra-
jectory for a significant amount of time. Left: cost matrix with
ground truth overlayed. Middle: proposed approach; Right: Re-
sult using previous approach, see Chapter 4. 68

5.11 Additional matching example from Bonn. Left: cost matrix with
ground truth overlayed. Middle: proposed approach; Right: Re-
sult using previous approach. 68

5.12 Precision recall plots for different pairs of trajectories from Bonn
dataset. LSH - results for locality sensitive hashing, DH - proposed
hashing algorithm (dimension hashing). 70

5.13 Example of trajectories, where the reference sequence traverses the
same place in the environment twice (marked with orange squares)
and deviates in two difference direction upon exiting similar area.
The query trajectory then also passes the ”marked” area and fol-
lows one of the direction in the reference sequence. Middle: result
of proposed algorithm. Right: Result using previous approach. . . 70

6.1 Example dataset, where the map consists of three trajectories col-
lected in different points in time as well as in different weather
conditions. The corresponding image sequences cover also par-
tially different routes. The query trajectory depicted in black. . . 75

6.2 Left: Evaluating per image data associations between query and
reference sequences. Blue crosses denote the matches found by
our algorithm. Green squares denote the ground truth solutions.
TP-true positive, TN - true negative, FP - false positive, and FN
- false negative. Right: Es (pink circles) relocalization edges; Em

- correspondence edges; M(j, t) (green arrow) corresponds to the
images that represent the same place from different image sequences. 77

6.3 Left: Query trajectory drawn in black and shifted artificially for
better visibility, others are reference trajectory. Right: Query
trajectory painted in the colors of the reference trajectories it was
matched to. 79

6.4 Left: Accuracy plot for the dataset in Figure 6.3. Right: accuracy
for a larger query sequence against three reference trajectories,
depicted in Figure 6.1. 80

6.5 Left: Accuracy curve. Right: Matching image pair from query
(bike) down and reference (car) up. 81

144

LIST OF FIGURES

6.6 Comparison of the running time for the proposed algorithm (our)
and for the fully informed search (FI). Every point depicts the
average time to find a match for a query image for the reference
datasets of various sizes. 82

7.1 When extracting the street information from OSM, we get indi-
vidual GPS points (green) that describe the road curvature as
depicted in the left figure. For every segment, we then increase
the number of points to query (blue) by interpolating between the
boundary points (green) and estimate the heading (pink arrow) of
the street with respect to the North. 91

7.2 From left to right. Steps to combine individual street segments.
In this case, due to geometrical structure of the street, there is no
unique way to combine segments in one street. So the merging
algorithm return two components 0 and 2 representing 3 and 2

segments respectively. 92
7.3 Left: Street segments from OpenStreetMap data. Right: Merged

street segments. The colors are randomly selected for visualization
and do not correspond between the images. 94

7.4 Left: Street segments from OpenStreetMap data. Right: Merged
street segments. The colors are randomly selected for visualiza-
tion and do not correspond between the images. Our algorithm
reduces the number of street segments which is particularly visible
for streets 1, 2, 3. 94

7.5 Experiment 1. An example of a matching image pair from the
car perspective (left) and from Google Street View (right). The
images are subject to strong view point change as well as seasonal
changes. 95

7.6 Experiment 1. Left: City streets for which panorama images were
extracted (blue), query trajectory driven by a car (pink). Right:
Corresponding accuracy plot. 95

7.7 Experiment 2. A matching example of a particularly challenging
sequences to match. The visual appearance of the image from the
car (left) is substantially different to the one from the street View
(right). 96

7.8 Experiment 2. Right: accuracy evaluation. Out approach gives
higher accuracy than fully informed search (FI) and FABMAP.
Left: The query trajectory depicted in pink, with a particular
challenge of visual appearance changes within the query trajectory
from evening to night. 97

145

LIST OF FIGURES

7.9 Experiment 3. A matching image pair found by our approach from
a YouTube video (left) and from Google Street View (right). . . . 98

7.10 Example matches found by our visual place recognition approach.
Left column: images from a random YouTube video; right column:
images from Google Street View. 99

7.11 More example matches found by our visual place recognition ap-
proach. Left column: images from a random YouTube video; right
column: images from Google Street View. 100

8.1 From left to right: Screenshot from OpenStreetMap; map that we
render for alignment; computed localizability map; resulting robot
map. 102

8.2 Uninformative (left) vs. informative (right) pose. In the left image
the pose of the robot (red) is not informative, because by applying
the small transformation to the robot’s pose (blue) the virtual
measurement explains the surrounding as well as from the previous
pose, whereas in the second image the pose of the robot (red) is
informative, since the transformations of the pose (blue) decreases
the likelihood of measurement. 103

8.3 An example correction of the robot’s pose based on the aligning
of the scan (blue) to the buildings in the map (black); left image
shows the robot pose before correction and right afterwards. . . . 106

8.4 Left: An example of a localizability map. The darker the regions
the bigger the likelihood to obtain in informative measurement.
The buildings are marked in blue. Right: The total error of trans-
forming virtual scan w.r.t the pose xi depends on the distances
from the measurement endpoints zj to corresponding closest points
in the buildings cj. 110

8.5 Example of aligning the robot’s trajectory with the buildings on
the map and as a result of it improved loop closure, which also
leads to more consistent robot map. The OSM map is rendered
with 0.3 meters per pixel resolution. 111

8.6 Robots used in our experiments: robot equipped with Velodyne
VLP-16 laser scanner mounted parallel to the ground (left) and a
Velodyne HDL-32E mounted on the head of the Obelix robot from
the AIS lab of the University of Freiburg (right). 112

8.7 Left: overlayed trajectory before the optimization. Right: trajec-
tory after optimization. Bottom: Zoomed-in parts of the trajectory.113

8.8 To the right zoomed views of the map inconsistencies our system
can deal with. Detected buildings are marked with light blue. . . 114

146

LIST OF FIGURES

8.9 Enabling / Disabling robust kernel function (DCS). Left: opti-
mization using DCS. Right: optimization without robust kernel
functions. 115

8.10 Planned trajectories. Left: Robot starts in a location which sup-
ports an alignment well (setup 1). Right: Robot starts in a loca-
tion with low likelihood of being able to compute the right data as-
sociation between OSM information and its sensor readings (setup
2). 119

8.11 Localization error distribution. Left column Setup 1: trajectory
2 with the endpoint in likely region (up) and trajectory 3 with
the endpoint in unlikely region (buttom). Right row Setup 2:
trajectory 2 with the endpoint in likely region (up) and trajectory
1 with the endpoint in unlikely region (bottom). 119

8.12 Localization experiments in Freiburg. Upper left image shows the
localizability information on the campus and overlayed routes of
the robot to navigate (1,2). Trajectory 1 passes through the zones
with high localizability (black areas), whereas trajectory 2 passes
also through the zones of low localizability. The corresponding
robot maps are depicted in lower left and upper right images re-
spectively. In the bottom right you can see the localization error
distribution for both routes. The plots were generated by apply-
ing translational and rotational noise to the starting position of
both trajectories. Since trajectory 1 passes through the zones of
good localizability, the inaccuracy of starting position is getting
compensated by the localization system, whereas the localization
diverges for most of the cases for trajectory 2. 120

9.1 Illustration of the fact that SIFT features do not perform well un-
der strong seasonal variations. As a result of the seasonal changes,
most SIFT matches illustrated by the lines between the images are
outliers as the lines do not connect corresponding points. 125

147

List of Tables

3.1 Performance comparison between the approach of Naseer et al. [99]
and our approach with different GPS priors 500, 100 and 50m.
Every cell stores the total number of image-to-image comparisons
that was computed, total time for finding image matches and time
to search a path given a constructed graph. Nodes used specifies
the percentage of the nodes that were computed in comparison to
total possible nodes, as used in [99]; Times faster specifies how
many times faster is our approach in comparison to [99]. 35

5.1 Qualitative comparisons between the image sequence matching ap-
proach from [140] (RAL’16) and proposed method. Trajectories
of various shapes. Percentage of expanded nodes with respect to
the maximum possible expansion (exp), pr—precision; re—recall. 69

8.1 Timing results for processing the whole dataset (full) and process-
ing a chunk (per chunk) of the dataset after driving for 25m; dist
- length of the trajectory; pose-graph - processing using standard
pose-graph formulation only, OSM — processing time needed to
optimize additional edges introduced by OSM constraint. 115

8.2 The distribution of the localization errors for the planned trajec-
tories after the execution. 117

List of Algorithms

1 Constructing and searching step for an incoming image 45
2 Merging street segments(lines) 93

149

Bibliography

[1] P. Agarwal, W. Burgard, and L. Spinello. Metric Localization using Google
Street View. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), Hamburg, Germany, 2015.

[2] P. Agarwal, G.D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard. Ro-
bust Map Optimization using Dynamic Covariance Scaling. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), Karlsruhe, Germany,
2013.

[3] M. Agrawal and K. Konolige. FrameSLAM: From Bundle Adjustment to
Real-Time Visual Mapping. IEEE Trans. on Robotics (TRO), 24(5), 2008.

[4] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint.
In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 510–517, 2012.

[5] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. Intl. Jour-
nal of Computer Vision (IJCV), 1(4):333–356, 1988.

[6] H. Andreasson and T. Duckett. Topological localization for mobile robots
using omni-directional vision and local features. IFAC Proceedings Volumes,
37(8):36–41, 2004.

[7] A. Angeli, S. Doncieux, J.A. Meyer, and D. Filliat. Incremental vision-based
topological slam. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 1031–1036. ieee, 2008.

[8] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad:
Cnn architecture for weakly supervised place recognition. In Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages
5297–5307, 2016.

[9] R. Arandjelovic and A. Zisserman. All about vlad. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), June 2013.

151

BIBLIOGRAPHY

[10] R. Arandjelović and A. Zisserman. Dislocation: Scalable descriptor distinc-
tiveness for location recognition. In Proc. of the Asian Conf. on Computer
Vision (ACCV), pages 188–204. Springer, 2014.

[11] R. Arroyo, P.F. Alcantarilla, L.M. Bergasa, and E. Romera. Fusion and
Binarization of CNN Features for Robust Topological Localization across
Seasons. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2016.

[12] M. Aubry, B. Russell, and J. Sivic. Painting-to-3d model alignment via
discriminative visual elements. ACM Trans. on Graphics (TOG), 33(2):14,
2014.

[13] H. Badino, D. Huber, and T. Kanade. Visual topometric localization. In
2011 IEEE Intelligent Vehicles Symposium (IV), pages 794–799, 2011.

[14] H. Badino, D. Huber, and T. Kanade. Real-time topometric localization.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages
1635–1642. IEEE, 2012.

[15] T. Bailey and H.F. Durrant-Whyte. Simultaneous localisation and map-
ping (SLAM): Part I. IEEE Robotics and Automation Magazine (RAM),
13(2):99–110, June 2006.

[16] T. Bailey and H.F. Durrant-Whyte. Simultaneous localisation and map-
ping (SLAM): Part II. IEEE Robotics and Automation Magazine (RAM),
13(3):108 –117, September 2006.

[17] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):966–1005,
1988.

[18] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk. HPatches: A Bench-
mark and Evaluation of Handcrafted and Learned Local Descriptors. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[19] L. Bampis, A. Amanatiadis, and A. Gasteratos. Encoding the descrip-
tion of image sequences: A two-layered pipeline for loop closure detection.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 4530–4536. IEEE, 2016.

[20] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features
(SURF). Journal of Computer Vision and Image Understanding (CVIU),
110(3):346–359, 2008.

152

BIBLIOGRAPHY

[21] O. Bengtsson and A. Baerveldt. Robot Localization Based on Scan-
Matching – Estimating the Covariance Matrix for the IDC Algorithm. Jour-
nal on Robotics and Autonomous Systems (RAS), 44(1):29–40, 2003.

[22] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric Localiza-
tion with Scale-Invariant Visual Features using a Single Perspective Cam-
era. In H.I. Christiensen, editor, European Robotics Symposium 2006, vol-
ume 22 of STAR Springer Tracts in Advanced Robotics, pages 143–157.
Springer Verlag, 2006.

[23] P.J. Besl and N.D. McKay. A Method for Registration of 3-d Shapes.
IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
14(2):239–256, 1992.

[24] P. Biber and T. Duckett. Dynamic Maps for Long-Term Operation of
Mobile Service Robots. In Proc. of Robotics: Science and Systems (RSS),
pages 17–24, 2005.

[25] I. Bogoslavskyi, M. Mazuran, and C. Stachniss. Robust Homing for Au-
tonomous Robots. In Proc. of the IEEE Intl. Conf. on Robotics & Automa-
tion (ICRA), 2016.

[26] M. Brubaker, A. Geiger, and R. Urtasun. Map-based probabilistic visual
self-localization. IEEE Trans. on Pattern Analalysis and Machine Intelli-
gence (TPAMI), 38(4):652–665, 2016.

[27] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust
independent elementary features. In Proc. of the Europ. Conf. on Computer
Vision (ECCV), pages 778–792. Springer, 2010.

[28] S. Cao and N. Snavely. Graph-based discriminative learning for location
recognition. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 700–707, 2013.

[29] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard. Monocular Camera
Localization in 3D LiDAR Maps. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2016.

[30] D. Chen, G. Baatz, K. Köser, S. Tsai, R. Vedantham, T. Pylvänäinen,
K. Roimela, X. Chen, J. Bach, M. Pollefeys, B. Girod, and R. Grzezczuk.
City-scale landmark identification on mobile devices. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 737–
744. IEEE, 2011.

153

BIBLIOGRAPHY

[31] S. Chen, Y. Li, and N. M. Kwok. Active vision in robotic systems: A
survey of recent developments. Intl. Journal of Robotics Research (IJRR),
30(11):1343–1377, 2011.

[32] Z. Chen, O. Lam, A. Jacobson, and M.Milford. Convolutional neural
network-based place recognition. In Proc. of the Australasian Conf. on
Robotics and Automation (ACRA), 2014.

[33] W. Churchill and P. Newman. Experience-Based Navigation for Long-Term
Localisation. Intl. Journal of Robotics Research (IJRR), 2013.

[34] M. Cummins and P. Newman. Highly scalable appearance-only SLAM -
FAB-MAP 2.0. In Proc. of Robotics: Science and Systems (RSS), 2009.

[35] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 886–893. IEEE, 2005.

[36] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse. MonoSLAM: Real-
time single camera SLAM. IEEE Trans. on Pattern Analalysis and Machine
Intelligence (TPAMI), 29, 2007.

[37] J.M.M. Dequaire, C.H. Tong, W. Churchill, and I. Posner. Off the Beaten
Track: Predicting Localisation Performance in Visual Teach and Repeat.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[38] D. Douglas and T. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica:
The International Journal for Geographic Information and Geovisualiza-
tion, 10(2):112–122, 1973.

[39] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C.C. Lerma. Seg-
Match: Segment Based Place Recognition in 3D Point Clouds. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2017.

[40] J. Engel, J. Stückler, and D. Cremers. Large-scale direct slam with stereo
cameras. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2015.

[41] A. Fischer, T. Kolbe, A. Lang, F.and Cremers, W. Förstner, L. Plümer, and
V. Steinhage. Extracting buildings from aerial images using hierarchical
aggregation in 2d and 3d. Computer Vision and Image Understanding,
72(2):185–203, 1998.

154

BIBLIOGRAPHY

[42] M.A. Fischler and R.C. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography. Commun. ACM, 24(6):381–395, 1981.

[43] G. Floros, B. van der Zander, and B Leibe. Openstreetslam: Global vehicle
localization using openstreetmaps. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2013.

[44] W. Förstner and E. Gülch. A fast operator for detection and precise location
of distinct points, corners and centres of circular features. In ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
pages 281–305. Interlaken, 1987.

[45] W. Förstner and B. Wrobel. Photogrammetric Computer Vision, chapter
Robust estimation and outlier detection, pages 141–159. Springer Verlag,
2016.

[46] D. Fox, S. Thrun, W. Burgard, and F. Dellaert. Particle filters for mobile
robot localization. In Sequential Monte Carlo methods in practice, pages
401–428. Springer, 2001.

[47] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J.M. Rendón-Mancha. Visual
simultaneous localization and mapping: a survey. Artificial Intelligence
Review, pages 1–27, 2012.

[48] P.T. Furgale and T.D. Barfoot. Visual teach and repeat for long-range rover
autonomy. Journal of Field Robotics (JFR), 27:534–560, 2010.

[49] D. Galvez-Lopez and J. D. Tardos. Bags of binary words for fast place recog-
nition in image sequences. IEEE Trans. on Robotics (TRO), 28(5):1188–
1197, Oct 2012.

[50] M. Gehrig, E. Stumm, T. Hinzmann, and R. Siegwart. Visual Place Recog-
nition with Probabilistic Voting. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2017.

[51] M. Gerke. Using horizontal and vertical building structure to constrain
indirect sensor orientation. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 66(3):307–316, 2011.

[52] A. Gil, O. Reinoso, O. Martínez-Mozos, C. Stachniss, and W. Burgard. Im-
proving Data Association in Vision-based SLAM. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Beijing, China, 2006.

155

BIBLIOGRAPHY

[53] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions
via hashing. In VLDB, volume 99, pages 518–529, 1999.

[54] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford, and G. Wyeth.
Openfabmap: An open source toolbox for appearance-based loop closure
detection. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 4730–4735, 2012.

[55] A.J. Glover, W.P. Maddern, M. Milford, and G.F. Wyeth. FAB-MAP +
RatSLAM: Appearance-based slam for multiple times of day. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages 3507–3512,
2010.

[56] R. Gomez-Ojeda, M. Lopez-Antequera, N. Petkov, and J. Gonzalez-
Jimenez. Training a Convolutional Neural Network for Appearance-
Invariant Place Recognition. arXiv preprint, 2015.

[57] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on
graph-based SLAM. IEEE Trans. on Intelligent Transportation Systems
Magazine, 2:31–43, 2010.

[58] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg. Hi-
erarchical Optimization on Manifolds for Online 2D and 3D Mapping. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), Anchor-
age, Alaska, 2010.

[59] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear Constraint Net-
work Optimization for Efficient Map Learning. IEEE Trans. on Intelligent
Transportation Systems (ITS), 10(3):428–439, 2009.

[60] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic en-
vironments. In Proc. of the IEEE Intl. Symp. on Computer Intelligence in
Robotics and Automation (CIRA), pages 318–325, 2000.

[61] D. Hähnel, W. Burgard, B. Wegbreit, and S. Thrun. Towards lazy data
association in slam. In Proc. of the Intl. Symposium on Robotic Research
(ISRR), pages 421–431, Siena, Italy, 2003.

[62] M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
Pervasive Computing, IEEE, 7(4):12–18, 2008.

[63] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, pages 10–5244. Citeseer, 1988.

156

BIBLIOGRAPHY

[64] M. Hentschel and B. Wagner. Autonomous robot navigation based on open-
streetmap geodata. In IEEE Trans. on Intelligent Transportation Systems
(ITS), 2010.

[65] M. Hentschel, O. Wulf, and B. Wagner. A gps and laser-based localization
for urban and non-urban outdoor environments. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 149–154, 2008.

[66] https://mapstreetview.com.

[67] https://www.openstreetmap.org.

[68] M. Huber, W. Schickler, S. Hinz, and A. Baumgartner. Fusion of lidar data
and aerial imagery for automatic reconstruction of building surfaces. In Re-
mote Sensing and Data Fusion over Urban Areas, 2003. 2nd GRSS/ISPRS
Joint Workshop on, pages 82–86, May 2003.

[69] E. Johns and G.-Z. Yang. Feature Co-occurrence Maps: Appearance-Based
Localisation Throughout the Day. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2013.

[70] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for
local image descriptors. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), volume 2, pages II–II. IEEE, 2004.

[71] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A Convolutional Net-
work for Real-Time 6-DOF Camera Relocalization. In Proc. of the IEEE
Intl. Conf. on Computer Vision (ICCV), 2015.

[72] Ayoung Kim and Ryan M. Eustice. Active visual slam for robotic area cov-
erage: Theory and experiment. Intl. Journal of Robotics Research (IJRR),
34(4-5):457–475, April 2015.

[73] J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features in place
recognition. In Proc. of the Europ. Conf. on Computer Vision (ECCV),
pages 748–761. Springer, 2010.

[74] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and
R. Vincent. Sparse pose adjustment for 2d mapping. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
22 – 29, 2010.

[75] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

157

BIBLIOGRAPHY

[76] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 3607–3613, 2011.

[77] R. Kümmerle, B. Steder, C. Dornhege, G. Kleiner, A.and Grisetti, and
W. Burgard. Large scale graph-based slam using aerial images as prior
information. Autonomous Robots, 30(1):25–39, 2011.

[78] Y. Latif, C. Cadena, and J. Neira. Robust loop closing over time. Proc. of
Robotics: Science and Systems (RSS), 2012.

[79] S. Leutenegger, M. Chli, and R. Siegwart. Brisk: Binary robust invariant
scalable keypoints. In Proc. of the IEEE Intl. Conf. on Computer Vision
(ICCV), pages 2548–2555. IEEE, 2011.

[80] C. Linegar, W. Churchill, and P. Newman. Work Smart, Not Hard: Recall-
ing Relevant Experiences for Vast-Scale but Time-Constrained Localisation.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2015.

[81] D.G. Lowe. Object recognition from local scale-invariant features. In
Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), volume 2,
pages 1150–1157, 1999.

[82] D.G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
Intl. Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[83] F. Lu and E. Milios. Globally consistent range scan alignment for environ-
ment mapping. Autonomous Robots, 4:333–349, 1997.

[84] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh:
efficient indexing for high-dimensional similarity search. In VLDB, pages
950–961, 2007.

[85] A.L. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza. Mav urban
localization from google street view data. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 3979–3986,
2013.

[86] Y. Matsumoto, M. Inaba, and H. Inoue. Visual navigation using view-
sequenced route representation. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 1996.

[87] C. McManus, W. Churchill, W. Maddern, A. Stewart, and P. Newman.
Shady dealings: Robust, long-term visual localisation using illumination
invariance. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 901–906. IEEE, 2014.

158

BIBLIOGRAPHY

[88] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. A constant-time
efficient stereo slam system. In BMVC, pages 1–11, 2009.

[89] T. Middelberg, S.and Sattler, O. Untzelmann, and L. Kobbelt. Scalable 6-
dof localization on mobile devices. In Proc. of the Europ. Conf. on Computer
Vision (ECCV), pages 268–283. Springer, 2014.

[90] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-
scriptors. IEEE Trans. on Pattern Analalysis and Machine Intelligence
(TPAMI), 27(10):1615–1630, Oct 2005.

[91] M. Milford. Vision-based place recognition: how low can you go? Intl. Jour-
nal of Robotics Research (IJRR), 32(7):766–789, 2013.

[92] M. Milford and G.F. Wyeth. SeqSLAM: Visual route-based navigation
for sunny summer days and stormy winter nights. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2012.

[93] D. Mishkin, M. Perdoch, and J. Matas. Place recognition with wxbs re-
trieval. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2015.

[94] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high
dimensional data. IEEE Trans. on Pattern Analalysis and Machine Intel-
ligence (TPAMI), 36, 2014.

[95] R. Mur-Artal and J.D. Tardós. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. on
Robotics (TRO), 2017.

[96] A. Murillo and J. Kosecka. Experiments in place recognition using gist
panoramas. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),
pages 2196–2203. IEEE, 2009.

[97] L. Nardi and C. Stachniss. Uncertainty-Aware Path Planning for Naviga-
tion on Road Networks Using Augmented MDPs . In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2019.

[98] T. Naseer, M. Ruhnke, L. Spinello, C. Stachniss, and W. Burgard. Robust
Visual SLAM Across Seasons. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2015.

[99] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust Visual Robot
Localization Across Seasons using Network Flows. In Proc. of the Confer-
ence on Advancements of Artificial Intelligence (AAAI), 2014.

159

BIBLIOGRAPHY

[100] P. Neubert, S. Schubert, and P. Protzel. Exploiting intra database similar-
ities for selection of place recognition candidates in changing environments.
In Proc. of the CVPR Workshop on Visual Place Recognition in Changing
Environments, 2015.

[101] P. Neubert, N. Sunderhauf, and P. Protzel. Appearance Change Prediction
for Long-Term Navigation Across Seasons. In Proc. of the Europ. Conf. on
Mobile Robotics (ECMR), 2013.

[102] A. Oliva and A. Torralba. Building the gist of a scene: The role of global
image features in recognition. Progress in brain research, 155:23–36, 2006.

[103] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose
graphs with poor initial estimates. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), pages 2262–2269, 2006.

[104] G.M. Pascoe, W. Maddern, A. Stewart, and P. Newman. FARLAP:
Fast Robust Localisation Using Appearance Priors. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2015.

[105] O. Pink, F. Moosmann, and A. Bachmann. Visual features for vehicle local-
ization and ego-motion estimation. In IEEE Intelligent Vehicles Symposium,
pages 254–260, 2009.

[106] N. Radwan, A. Valada, and W. Burgard. Vlocnet++: Deep multitask
learning for semantic visual localization and odometry. IEEE Robotics and
Automation Letters (RA-L), September 2018.

[107] E. Rosten and T. Drummond. Fusing points and lines for high performance
tracking. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),
volume 2, pages 1508–1511, October 2005.

[108] E. Rosten and T. Drummond. Machine learning for high-speed corner detec-
tion. In Proc. of the Europ. Conf. on Computer Vision (ECCV), volume 1,
pages 430–443, May 2006.

[109] N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal navigation – robot
motion with uncertainty. In Proceedings of the AAAI Fall Symposium:
Planning with POMDPs, Stanford, CA, USA, 1998.

[110] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In Proc. of the IEEE Intl. Conf. on Computer
Vision (ICCV), pages 2564–2571. IEEE, 2011.

160

BIBLIOGRAPHY

[111] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard. Localization on open-
streetmap data using a 3d laser scanner. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), pages 5260–5265, 2015.

[112] S. Russell and P. Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited„ 2016.

[113] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. HJ Kelly, and A. J.
Davison. Slam++: Simultaneous localisation and mapping at the level
of objects. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1352–1359, 2013.

[114] T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and M. Pollefeys.
Hyperpoints and fine vocabularies for large-scale location recognition. In
Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), pages 2102–
2110, 2015.

[115] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using
direct 2d-to-3d matching. In Proc. of the IEEE Intl. Conf. on Computer
Vision (ICCV), pages 667–674. IEEE, 2011.

[116] G. Schindler, M. Brown, and R. Szeliski. City-scale location recognition.
In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 1–7. IEEE, 2007.

[117] D. Schlegel and G. Grisetti. Visual Localization and Loop Closing Using De-
cision Trees and Binary Features. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2016.

[118] S. Se, D. Lowe, and J. Little. Mobile robot localization and mapping with
uncertainty using scale-invariant visual landmarks. Intl. Journal of Robotics
Research (IJRR), 21(8):735–758, 2002.

[119] P. Sermanet, D. Eigen, Z. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
Overfeat: Integrated recognition, localization and detection using convolu-
tional networks. In Intl. Conf. on Learning Representations (ICLR), 2014.

[120] J. Shi and C. Tomasi. Good features to track. Technical report, Cornell
University, 1993.

[121] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint, abs/1409.1556, 2014.

[122] J. Sivic and A. Zisserman. Video google: a text retrieval approach to object
matching in videos. In Proc. of the IEEE Intl. Conf. on Computer Vision
(ICCV), pages 1470–1477 vol.2, Oct 2003.

161

BIBLIOGRAPHY

[123] C. Stachniss. Springer Handbook of Robotics, chapter Simultaneous Local-
ization and Mapping. Springer, 2016.

[124] C. Stachniss and W. Burgard. Mobile Robot Mapping and Localization in
Non-Static Environments. In Proc. of the National Conference on Artificial
Intelligence (AAAI), pages 1324–1329, Pittsburgh, PA, USA, 2005.

[125] E. Stumm, C. Mei, and S. Lacroix. Probabilistic place recognition with
covisibility maps. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pages 4158–4163. IEEE, 2013.

[126] E. Stumm, C. Mei, S. Lacroix, and M. Chli. Location Graphs for Visual
Place Recognition. In Proc. of the IEEE Intl. Conf. on Robotics & Automa-
tion (ICRA), 2015.

[127] N. Suenderhauf, T. Pham, Y. Latif, M.J. Milford, and I. Reid. Meaningful
Maps with Object-Oriented Semantic Mapping. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2017.

[128] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P.I. Corke,
G. Wyeth, B. Upcroft, and M. Milford. Place categorization and semantic
mapping on a mobile robot. arXiv preprint, abs/1507.02428, 2015.

[129] N. Sünderhauf and P. Protzel. Switchable constraints for robust pose graph
slam. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 1879–1884, 2012.

[130] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford. On
the performance of convnet features for place recognition. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
4297–4304. IEEE, 2015.

[131] N. Sünderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell, B. Up-
croft, and M. Milford. Place Recognition with ConvNet Landmarks :
Viewpoint-Robust, Condition-Robust, Training-Free. Proc. of Robotics:
Science and Systems (RSS), 2015.

[132] S. Thrun and M. Montemerlo. The graph SLAM algorithm with applica-
tions to large-scale mapping of urban structures. Intl. Journal of Robotics
Research (IJRR), 25(5-6):403, 2006.

[133] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla. 24/7 place
recognition by view synthesis. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1808–1817, 2015.

162

BIBLIOGRAPHY

[134] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi. Visual place recognition
with repetitive structures. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 883–890, 2013.

[135] J. Unger, F. Rottensteiner, and C. Heipke. Integration of a generalised
building model into the pose estimation of uas images. ISPRS Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLI-B1:1057–1064, 2016.

[136] C. Valgren and A.J. Lilienthal. SIFT, SURF & Seasons: Appearance-Based
Long-Term Localization in Outdoor Environments. Journal on Robotics and
Autonomous Systems (RAS), 85(2):149–156, 2010.

[137] J. Velez, G. Hemann, A. S Huang, I. Posner, and N. Roy. Planning to
perceive: Exploiting mobility for robust object detection. In Proc. of the
Intl. Conf. on Image Analysis and Processing (ICIAP), pages 266–273, 2011.

[138] O. Vysotska, T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Efficient
and Effective Matching of Image Sequences Under Substantial Appearance
Changes Exploiting GPS Prior. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2015.

[139] O. Vysotska and C. Stachniss. Exploiting building information from pub-
licly available maps in graph-based slam. In Proc. of the IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2016.

[140] O. Vysotska and C. Stachniss. Lazy Data Association for Image Sequences
Matching under Substantial Appearance Changes. IEEE Robotics and Au-
tomation Letters (RA-L), 2016.

[141] O. Vysotska and C. Stachniss. Improving slam by exploiting building in-
formation from publicly available maps and localization priors. Photogram-
metrie – Fernerkundung – Geoinformation (PFG), 85(1):53–65, 2017.

[142] O. Vysotska and C. Stachniss. Relocalization under substantial appear-
ance changes using hashing. In Proc. of the IROS Workshop on Planning,
Perception and Navigation for Intelligent Vehicles, 2017.

[143] O. Vysotska and C. Stachniss. Effective Visual Place Recognition Using
Multi-Sequence Maps. IEEE Robotics and Automation Letters (RA-L),
2019.

[144] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc. of the
Advances in Neural Information Processing Systems (NIPS), pages 1753–
1760, 2009.

163

BIBLIOGRAPHY

[145] O. Wulf, K. O Arras, H. I. Christensen, and B. Wagner. 2d mapping of
cluttered indoor environments by means of 3d perception. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), pages 4204–4209,
2004.

[146] C. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges.
In Proc. of the Europ. Conf. on Computer Vision (ECCV), pages 391–405.
Springer, 2014.

164

	Zusammenfassung
	Abstract
	Introduction
	Main contributions
	Publications

	Basic techniques
	Matching a pair of images
	Evaluations of image matches
	Precision recall
	F1 score
	Accuracy

	I Visual place recognition
	Image sequences matching as a graph search problem
	Constructing a graph
	Real world example

	Efficient matching using pose priors
	Edges
	Edge costs
	Normalization of the edge costs

	Complexity
	Experiments
	Conclusion

	Lazy data associations for online image sequence matching
	Lazy matching for online operation
	Data association graph
	Computing image similarity based on features from deep convolutional neural networks
	Image sequence matching through graph search
	Exploiting location priors for online matching

	Experimental evaluation
	Matching performance
	Node expansion
	Exploitation of additional location priors
	OverFeat vs. HOG features
	Timing

	Conclusion

	Hashing-based relocalization for place recognition with flexible trajectories
	Robust image matching costs with CNN features
	Efficient relocalization
	Loopy reference sequences
	Experimental evaluation
	Matching performance and localization recovery
	Hashing comparison
	Loops in reference sequences

	Conclusion

	Visual place recognition against multi-sequence maps
	Adapting the data association graph structure
	Experimental evaluation
	Evaluation setup
	Datasets
	Experimental results
	Timings
	Limitations

	Conclusion
	Conclusion for Part I of this thesis

	II Exploiting publicly available information
	Visual place recognition against Street View data
	Leveraging Google Street View for multi-trajectory visual place recognition
	Extracting streets from OpenStreetMap
	Experimental evaluations
	Conclusion

	Improving robot localization using publicly available maps
	Graph-based SLAM exploiting existing maps as background knowledge
	Error function exploiting existing maps
	Error function exploiting building information for robots equipped with laser range scanners
	Error minimization
	Estimating localizability for actively reducing pose uncertainty
	Experiments
	SLAM exploiting OpenStreetMap data
	Map inconsistencies
	Execution time
	Active localization

	Conclusion

	Related work
	Describing an image with features
	Visual place recognition
	Improving localization of the robots using publicly available data

	Conclusion

