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Abstract

In recent years, misinformation has caused widespread alarm and has become a global concern,
given the negative impact placed on society, democratic institutions and even computing systems
whose the primary objective is to serve as a reliable information channel, e.g., Knowledge
Bases (KBs). The proliferation of fake news has a wide range of characteristics and different
motivations. For instance, it can be produced unintentionally (e.g., the creation process of KBs
which is mostly based on automated information extraction methods, thus naturally error-prone)
or intentionally (e.g., the spread of misinformation through social media to persuade). Thus,
they differ considerably in complexity, structure and number of arguments and propositions. To
further exacerbate this problem, an ever-increasing amount of fake news on the Web has created
another challenge to drawing correct information. This huge sea of data makes it very difficult for
human fact checkers and journalists to assess all the information manually. Therefore, addressing
this problem is of utmost importance to minimize real-world circumstances which may provoke
a negative impact on the society, in general. Presently Fact-Checking has emerged as a branch
of natural language processing devoted to achieving this feat. Under this umbrella, Automated
Fact-Checking frameworks have been proposed to perform claim verification. However, given the
nature of the problem, different tasks need to be performed, from natural language understanding
to source trustworthiness analysis and credibility scoring. In this thesis, we tackle the problem of
fake news and underlying challenges related to the process of estimating the veracity of a given
claim, discussing challenges and proposing novel models to improve the current state of the art
on different sub-tasks. Thus, besides the principal task (i.e., performing automated fact-checking)
we also investigate: the recognition of entities on noisy data and the computation of web site
credibility. Ultimately, due to the challenging nature of the automated fact-checking task - which
requires a complex analysis over several perspectives - we also contribute towards reproducibility
of scientific experiments. First, we tackle the named entity recognition problem. We propose a
novel multi-level approach named HORUS which - given an input token - generates heuristics
based on computer vision and text mining techniques. These heuristics are then used to detect
and classify named entities on noisy data (e.g., The Web). Second, we propose WebCred, a
novel model to compute the credibility score of a given website, regardless of dependency on
search engine results, which is a limiting factor when dealing with real scenarios. WebCred
does not require any third-party service and is 100% open-source. Third, we conduct several
empirical evaluations and extend DeFacto, a fact-checking framework initially designed to verify
English claims in RDF format. DeFacto supports both structured claims (e.g., triple-like) as
well as complex claims (i.e., natural language sentences). Last, but not least, we consistently
contributed towards better reproducibility research tools, methods, and methodologies. We
proposed ontologies (MEX, ML-Schema) and tools (LOG4MEX, MEX-Interfaces, Web4MEX,
WASOTA) which turned into state of the art for better reproducibility of machine learning
experiments, becoming part of a global W3C community.
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CHAPTER 1

Introduction

With billions of individual pages on the web providing information on almost every conceivable
topic, we should have the ability to collect factual information (fact extraction) to confirm
a broad range of claims. However, only a small fraction of this information is contained in
structured sources (e.g., Knowledge Bases), which makes the verification process time-consuming
as the experts have to carry out several search processes and must often read several documents.
The fact-checking process of collecting evidence to validating input claims also becomes relevant
to knowledge-base population (KBP), since it mostly relies on automatic or semi-automatic
information extraction methods. The process of creating and managing large-scale knowledge
bases (KBs) has been the key to success of many applications [1–3]. However, if the quality
of such KBs is insufficient, this poses a significant obstacle to the uptake of data consumption
applications at large-scale [4].

Yet, there is another problem that has become the focus of a lot of recent research: misinformation
coming from unreliable sources [5, 6]. The problem of veracity estimation is also recognized as
one of the key challenges in building and maintaining large KBs [7]. Therefore, fact extraction
and fact validation algorithms are also very important to the knowledge base construction process.
Fact checking is studied in different communities (e.g., journalism, machine learning, semantic
web) and historically has being referred under various names such as truth finding, fact-checking,
claim verification and trustworthiness [5], for instance. Still, the research community still lacks
a more granular taxonomy of the related tasks. Broadly speaking, fact-checking is a complex
multi-disciplinary topic. It encompasses the intersection of different research fields, with the
emphasis being placed on Natural Language Processing (NLP), machine learning (ML) and
semantic web (SW). For instance, the following sub-tasks in NLP (i.e., mostly related to machine
reading and comprehension) can be performed in a fact-checking framework: (1) information
extraction methods (e.g. Named Entity Recognition and Dependency Parsing), (2) Natural
Language Generation, (3) Natural Language Understanding, (4) Argumentation Mining and
Textual Entailment and (5) Trustworthiness of Information Sources. A fact-checking system
typically takes a statement as input and then tries to find evidence to support of refute this
given claim by searching for textual information (proofs) in different data sources. The task can
be performed over free text (e.g., a claim existing in a web site) or structured information (e.g.,
RDF triples from a Knowledge Base). Typically the output of a fact-checking framework is a
confidence score that represents the level of trustworthiness w.r.t. the input claim. The task can
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Chapter 1 Introduction

be sub-divided as follows:

1. Plausibility Estimation: indicates whether the claim is plausible (e.g., "Barack Obama",
"birth place", "NYC") or not (e.g., "Barack Obama", "birth place", "Blue"). However, the
correctness of the input claim is not relevant.

2. Validation: indicates whether the claim is correct (true) or not (false).

3. Ranking: considering a number of input claims sharing the same subject and predicate,
the task is to ordering them w.r.t. their relevance relying on common-sense rules (e.g.,
"Barack Obama", "profession", "politician" should be higher ranked then "Barack Obama",
"profession", "lawyer", since he is mostly known as a politician.). In general, all claims
existing in the set are considered true.

In this thesis, we target to address the fact-validation task along with its challenges.

1.1 Motivation

With the increase in false fact circulation across different social media platforms, it has become
pertinent to validate the claims and statements released online [8, 9]. False statements are
mostly spread through the Web, but they can also exist in Knowledge Bases due to automatic
database population procedures [10, 11].

Over news on the web, false claims expressed in natural language are often referred as
fake-news or junk-news, for instance. These have gained importance in the last few years, mainly
in the context of electoral activities in North America and Western Europe. Celebrity death
hoaxes, misinformation about political leaders, political statements etc. are some of the most
common types of fake-news types1. The deceptive information can in general can be categorized
as misinformation (false or misleading information) and disinformation (false information that
is purposely spread to deceive people) [12]. These false facts (or rumors), in the past, have
led to situations like stock price drops and large scale investments [13]. Though social media
platforms are the most common breeding grounds for fake-news, it sometimes finds its way into
the mainstream media too [14]. The most effective methodology to consume news found on
unconventional news media is to check multiple resources. But most news-media consumers
cannot effectively validate the accuracy or may enjoy partisan views of the news [14]. In such
cases, these media consumers start an uncontrolled reaction of consuming and sharing of false
facts that spreads faster an epidemic in a demographic and sometimes throughout the world.

False claims stated in structured information sources (e.g., Knowledge Bases (KBs))
also are of utmost importance for many state of the art applications both in scientific research
and in-use industry projects. They are mainly designed to store complex structured information,
which depicts facts about the world. For instance, DBpedia, YAGO, Freebase, Wikidata and
Google Knowledge Graph are examples of successful KBs projects. However, only a small fraction
of the world information is contained in these structured sources. The creation process is mostly
1 https://www.statista.com/topics/3251/fake-news/
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1.2 Problem Specification and Challenges

based on automated information extraction (IE) methods which are error-prone. Therefore, the
quality of knowledge is of high importance. To this end, fact extraction and fact verification
algorithms are of utmost importance to the process of knowledge base population. Moreover, in
this respect, ranking triples (fact ranking) based on their relevance is another important task.
For instance, a person could have more than one profession or nationality, but among different
possibilities, one of them often is more relevant.

To deal with the above-introduced challenges, fact-checking algorithms for KBs have been
proposed and are classified in three different groups: validation, ranking and plausibility estima-
tion. In this thesis, we aim at exploring different techniques to automatize the validation task,
studying current limitations and developing novel solutions to overcome current state of the art
results.

1.2 Problem Specification and Challenges

In general, the task of automated fact-checking is considered as one of the most challenging
tasks in the natural language processing (NLP) field [15] requiring a multidisciplinary effort [16].
In the scope of automated fact-checking frameworks, Table 2.1 presents an overview of the
features of some state-of-the-art approaches for fact-checking over KBs. The decentralized and
autonomous nature of the Web along with the complexity of human languages allow for multiple
representations of the same information, which brings multiple challenges to solve the task. At
the conceptual level, we face (1) a knowledge retrieval problem, i.e., “search and integrate pieces
of knowledge about a given claim spread on several documents”. Also, (2) a natural language
understanding problem, i.e., "to understand and reason about diverse excerpts of texts obtained
from different sources". Furthermore, (3) a credibility challenge, i.e., "distinguish trustworthy
from doubtful information sources".

In the following section, we discuss the challenges that need to be addressed to produce an
automated fact-checking framework.

1.2.1 Challenge 1: Detecting Entities on Short-Text

The first challenge to overcome is the process of recognizing entities in a free-format text, which
is very challenging [17]. Named Entity Recognition (NER) is an important step in most of the
natural language processing (NLP) pipelines, including automated fact-checking frameworks.
However, most of the state-of-the-art solutions to detect objects in short and informal text (e.g.,
microblogs) still are not able to perform similarly to frameworks designed explicitly to formal
text (e.g., newswire) [18], which naturally imposes a barrier on developing high-performance
models. This is due to the lack of implicit linguistic formalism (e.g. punctuation, spelling,
spacing, formatting, unorthodox capitalisation, emoticons, abbreviations and hashtags) [17,
19–21]. Furthermore, the lack of external knowledge resources is an important gap in the process
regardless of writing style [22]. Thus, to perform language understanding we need an algorithm
able to perform the task in a noisy environment such as the Web.

3



Chapter 1 Introduction

1.2.2 Challenge 2: Computing Trustworthiness of Web pages

Apart from detecting entities, deciding which information provider should have more relevance
is yet another challenging task. Computing the trustworthiness of sources of information is a
crucial step to enhance the quality of fact-checking algorithms. However, existing trustworthiness
indicators are not freely available anymore2, including Google Pagerank. The solution proposed
by Nakamura [23] appears as an open-source alternative to compute web source trust indicator
values. They developed a prototype for enhancing the search results provided by a search engine
based on trustworthiness analysis. However, it is a graph-based model which calculates the
relevance among retrieved sources, and not a global trustworthiness indicator. For instance,
given a certain domain (e.g., bbc.com), how can we define its credibility measure. Moreover, how
can we automatically infer that an information coming from bbc.com should be more credible
than a claim obtained a random web blog?

1.2.3 Challenge 3: Automating the Fact-Checking Task

Fact-checking itself is especially hard due to the complexity inherent in creating and connecting
logical arguments that are used to either support or refute a given claims [24]. This is a
basis to communicate and defend opinions (or claims within this context), to understand new
problems and to perform scientific reasoning [25]. Thus, more powerful methods are required
(argumentation mining) other than standard information extraction methods (e.g., part-of-
speech tagging, named entity recognition and dependency parsing) for better understanding
text structures and relations among entities. Argumentation mining methods pose as next
generation of algorithms to processing free-format text in natural language to recover inferential
structure [26]. However, most of the proposed works are of a theoretical nature, lacking more
real-world applications.

Finally, the dependency on relation extraction methods tends to restrict the comprehensiveness
of fact-checking algorithms [27], since the verbalization of predicates is a crucial step to the
information extraction process. This process allows to generate distinct verbalizations which
have semantically the same meaning as the input claim. For instance, the relation “marriage”
can be represented by the following verbalizations: “X-wife-Y ”, “X-husband-Y ” as well as
“X-spouse-Y ”. Traditional approaches predict relations within some fixed and finite target
schema [28]. The strategies are described as follows: (1) hard-coded verbalization and rules
(fixed or ontology-based), which naturally restricts scalability; (2) standard machine learning
approaches which require manual annotation; (3) use distant supervision methods which very
often have a sub-optimal performance, since the method relies on the availability of a large
database that has the desired schema; or (4) use external linguistic corpora (e.g. lexical databases)
to obtain similar words (e.g. synonyms) to a given predicate. It can be observed that these
methods are rather self-limited and hence the verbalizations generated are either of a low quality
or have low precision and/or recall.

2 e.g., https://www.alexa.com/siteinfo
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1.3 Research Questions

1.2.4 Challenge 4: Reproducibility Issues

Every scientific experiment should be replicable, specially experiments performed in an attempt
to find answers to complex problems, such as fact-checking. The need for reproducibility is
increasing dramatically as data analyses become more complex, involving more sophisticated and
complex experimental configurations. Reproducibility allows for people to focus on the actual
content of a data analysis, instead of on superficial details reported in a written summary. Overall,
scientific experiments are still hard to be reproduced, because of these complex configurations,
because of lack of time to properly report scientific experiments.

1.3 Research Questions

Based on the main problem and associated challenges described in Section 1.2, we formulate
four research questions in the scope of this thesis. Each research question provides a solution
for a correspondent challenge.

RQ1: Can images along with news improve the performance of the named entity recogni-
tion models on noisy text?

To answer RQ1 we fully explore existing techniques to detect and extract named entities from
texts, in the context of the Web. The challenges to perform the task in such context are
manifolds, from the lack of grammatical rules to the noisy existing in the Web. Our hypothesis is
that images and related documents can help at boosting the task. In the scope of this thesis we
propose a novel methodology to extract heuristics for potential named entities using computer
vision and text mining techniques. The results of the research question RQ1 allow us to address
challenge three C1.

RQ2: How to calculate a credibility score for a given information source?

To address RQ2, we evaluate state-of-the-art web credibility approaches that can be used to
compute the trustworthiness of a given information source. We further propose a novel model
that automatically extracts source reputation cues and computes a credibility factor based on
metadata extracted from the source-code. The results of the research question RQ2 allow us to
address challenge two C2.

RQ3: How to determine the veracity of a given claim?

To answer RQ3 we investigate the state-of-the-art approaches for fact-checking, and detail steps
of the automation process. Particularly we analyze and evaluate the complex fact-checking task
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within three perspectives: (a) fact-checking over RDF triples (b) fact-checking over complex
claims and (c) evidence extraction methods for fact-checking. The results of the research question
RQ3 allow us to address challenge three C3.

RQ4: Are existing reproducible research methods sufficient to enable reproducibility?

Reproducibility is a serious problem in scientific experiments. To address RQ4 we investigate
several approaches to support the representation of machine learning experiments, from ontologies
and libraries to support the experimental process to repositories to storage the metadata. We
highlight the challenges and trade-offs to offer the ideal scenario and define new standards which
are more suitable to bridge this gap. As consequence, we have funded a new W3C group to
guide the community towards better representation of scientific experiments. The results of the
research question RQ4 allow us to address challenge four C4.

1.4 Thesis Overview

To prepare the reader for the rest of the document, in this section we present an overview of our
main contributions, the research areas investigated by this thesis, the references to scientific
publications covering this work, and an overview of the thesis structure.

1.4.1 Contributions

The contributions of this thesis are cross disciplinary around the fact-checking topic involving
Automated Fact-Checking, Named Entity Recognition, Web Credibility and Reproducible
Research fields. Firstly, as a focus of this thesis, we fully exploited the domain of fact-checking
in both simple as well as complex claims. Secondly, we advanced methods in necessary areas
of domain to improve the fact-checking task, namely: Information Retrieval, Trustworthiness
and Named Entity Recognition. Finally, we extensively contributed towards better reproducible
experiments in the machine learning domain. Figure 1.1 shows the overall contributions across
several levels of a scientific experiment.

Figure 1.2 shows the four main contributions of this thesis.

• Contrib. 1: Named Entity Framework designed for Noisy Data; to address the problem
of detecting and classifying named entities on noisy data, we develop HORUS, a novel
methodology that integrated computer vision and text mining techniques to perform
NER. HORUS implements a three-fold approach for both detecting and classifying named
entities. First it extracts image-based features and then in parallel performs a set of text
classifications over extracted documents. Using the produced heuristics, it then performs
a final classification using both decision trees methods as well as concatenating the vectors
and using more powerful architectures such as B-LSTM. Furthermore, we demonstrate that
this simple idea is able to outperforms state of the art without encoded rules. An empirical
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Scientific Experiments

Automated Fact-checking

Simple Claims Complex Claims

Trustworthiness Models

Natural Language Processing

Information Retrieval

Document and
Sentence
Retrieval

Named Entity
Recognition

Reproducibility Research

Figure 1.1: Academic Contributions: Natural Language Processing and Reproducible Research were
the principal areas of research

evaluation assesses the effectiveness of HORUS for the detection of named entities on noisy
data. The experiments are executed on Ritter, WNUT-15, WNUT-16 and WNUT-17
answering research question RQ1.

• Contrib. 2: A Trustworthiness Framework for the Web; defining the level of trustwor-
thiness of a given information source is crucial to perform fact-checking. We propose
a novel web credibility model based on a concept we call HTML2Seq. HTML2Seq the
transformation of HTML tags into sequences of integers. We thus evaluate websites w.r.t.
website metadata. Thus, we present WebCred, a web credibility model that performs
trustworthiness analisys based on metadata inspection through the transformation of
HTML tags into sequential vectors. We empirically study the performance of WebCred
with respect to state-of-the-art methods. The observed results show that WebCred is
very competitive in terms of precision and recall with respect to existing methods, with
the advantage that it works for any given website as well as it is completely open-source.
Experimental results answer our research question RQ2.

• Contrib. 3: An Automated Fact-Checking Framework; In order to tackle the fact-checking
problem, an automated fact-checking framework, dubbed DeFacto, has been designed and
extended to also perform claim verification over natural language. An empirical evaluation
of the quality of the proposed framework in comparison with triple-based approaches
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Figure 1.2: Contributions: Four are the main contributions of this thesis including: (1) an automated
fact-checking framework; (2) a web credibility model; (3) a named entity recognition algorithm for
noisy data; and (4) a set of tools and ontologies for enabling reproducible research on machine learning
experiments. In the bottom box, the number of related publications to a specific area of research (#)
during the development of this PhD thesis.

indicates that DeFacto approach accurately perform fact-validation for triple-like claims.
For complex claims (unstructured claims), DeFacto ranks among state-of-the-art solutions
when evaluated in a very selective fact-checking challenge, giving an answer to our research
question RQ3.

• Contrib. 4: Enabling Reproducible Research During the development of this thesis, we
faced a very common challenge when designing and executing scientific experiments: the
ability to manage and extract outcomes as well as turning them open to the scientific
community. The lack of patterns, standards and tools are the keystone to enable re-
producible research. We joint efforts to existing attempts and created a W3C working
group (ML-Schema) which aims to define standards to achieve this goal. Through the
development of this thesis we proposed several tools and vocabularies towards better
interpretability of machine learning experiments, answering our research question RQ4.

1.4.2 List of Publications

The development of this thesis has led to multiple scientific publications and three different
open-source projects: DeFacto, HORUS and MEX (enclosing 5 related projects). Appendix A
contains the complete list of 30 publications. However, the content of this thesis is based on the
aforementioned open-source projects and the following 23 related scientific publications:

• Journal Articles:

1. Gustavo Publio, Agnieska Ławrynowicz, Larisa Soldatova, Panče Panov, Diego
Esteves, Joaquin Vanschoren and Tommaso Soru. ML-Schema: An interchangeable
format for description of machine learning experiments In Journal of Web Semantics
(JWS), 2019 - submitted;.
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2. Diego Esteves, Anisa Rula, Aniketh Reddy, Jens Lehmann. Toward Veracity
Assessment in RDF Knowledge Bases: An Exploratory Analysis. In Journal of Data
and Information Quality (JDIQ), 2018.

3. Anisa Rula, Matteo Palmonari, Simone Rubbinaci, Axel Ngonga, Jens Lehmann,
Diego Esteves. TISCO: Temporal Scoping of Facts. In Journal of Web Semantics
(JWS), 2018.

4. Daniel Gerber, Diego Esteves, Jens Lehmann, Lorenz Bühmann, Ricardo Usbeck,
Axel-Cyrille Ngonga Ngomo, René Speck. DeFacto - Temporal and Multilingual Deep
Fact Validation. In Web Semantics: Science, Services and Agents on the World Wide
Web (SWJ), 2015.

• Conference and Workshop Papers:

5. Diego Esteves, Asja Fischer, Piyush Chwala, Saad Khan, Jens Lehmann and Rafael
Peres. Beyond Lexical Features: Named Entity Recognition on Noisy Data through
the Web. In Proceedings of the 2019 Conference of the Association for Computational
Linguistics (ACL’19) - submitted;

6. Piyush Chwala andDiego Esteves Automating Fact-Checking: Why is it so difficult?
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2019) - submitted;

7. Diego Esteves, Aniketh Janardhan Reddy, Piyush Chawla and Jens Lehmann.
Belittling the Source: Trustworthiness Indicators to Obfuscate Fake News on the
Web. In Proceedings of Fact Extraction and VERification (FEVER) co-located
with the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP-2018), Brussels, Belgium, 2018.

8. Aniketh Janardhan Reddy, Gil Rocha and Diego Esteves. DeFactoNLP: Fact
Verification using Entity Recognition, TFIDF Vector Comparison and Decomposable
Attention. In Proceedings of Fact Extraction and VERification (FEVER) co-located
with the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP-2018), Brussels, Belgium, 2018.

9. Gustavo Correa Publio, Diego Esteves, Agnieszka Ławrynowicz, Panče Panov,
Larisa Soldatova, Tommaso Soru, Joaquin Vanschoren and Hamid Zafar. ML-
Schema: Exposing the Semantics of Machine Learning with Schemas and Ontolo-
gies. In Proceedings of the 2nd Reproducibility in Machine Learning Workshop
(MLTRAIN@RML) co-located with the 2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP-2018), Stockholm Sweden, 2018.

10. Rafael Peres, Diego Esteves and Gaurav Maheshwari. Bidirectional LSTM with a
Context Input Window for Named Entity Recognition in Tweets. In Proceedings of
the 9th International Conference on Knowledge Capture (K-CAP 2017)

11. Julio Cesar Duarte, Maria Claudia Reis Cavalcanti, Igor de Souza Costa and Diego
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Esteves. An Interoperable Service for the Provenance of Machine Learning Experi-
ments. In Proceedings of the International Conference on Web Intelligence (WI2017)

12. Agnieszka Lawrynowicz,Diego Esteves, Pance Panov, Tommaso Soru, Sašo Dzeroski
and Joaquin Vanschoren. An Algorithm, Implementation and Execution Ontology
Design Pattern. In Proceedings of Advances in Ontology Design and Patterns 32
(2017) - co-located with the 15th International Semantic Web Conference (ISWC
2016) in Kobe, Japan.

13. Diego Esteves, Pablo N. Mendes, Diego Moussallem, Julio Cesar Duarte, Amrapali
Zaveri, Jens Lehmann and Ciro Baron Neto, Igor Costa and Maria Claudia Cavalcanti.
MEX Interfaces: Automating Machine Learning Metadata Generation. In Proceedings
of the 12th International Conference on Semantic Systems (SEMANTiCS 2016).

14. Diego Esteves, Diego Moussallem, Ciro Baron Neto, Tommaso Soru, Ricardo
Usbeck, Markus Ackermann and Jens Lehmann. MEX Vocabulary: A Lightweight
Interchange Format for Machine Learning Experiments. In Proceedings of the 11th
International Conference on Semantic Systems (SEMANTiCS 2015), 15-17 September
2015, Vienna, Austria.

15. Diego Esteves, Diego Moussallem, Tommaso Soru, Ciro Baron Neto, Jens Lehmann,
Axel-Cyrille Ngonga Ngomo and Julio Cesar Duarte. LOG4MEX: A Library to Export
Machine Learning Experiments. In Proceedings of the International Conference on
Web Intelligence (WI’17), Leipzig, Germany.

16. Diego Esteves, Rafael Peres, Jens Lehmann and Giulio Napolitano. Named Entity
Recognition in Twitter using Images and Text. In Proceedings of the 3rd International
Workshop on Natural Language Processing for Informal Text (NLPIT 2017), Rome,
Italy.

17. Ciro Baron Neto, Dimitris Kontokostas, Gustavo Publio, Diego Esteves, Amit
Kirschenbaum and Sebastian Hellmann. IDOL: Comprehensive & Complete LOD
Insights. In Proceedings of the 13th International Conference on Semantic Systems
(SEMANTiCS 2017), 11-14 September 2017, Amsterdam, Holland.

• Posters and Demos:

18. Diego Esteves. Named Entity Recognition on Noisy Data using Images and Text. In
Proceedings of The 4th Workshop on Noisy User-generated Text (W-NUT) co-located
with the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP-2018), Brussels, Belgium, 2018.

19. René Speck, Diego Esteves, Jens Lehmann, Axel-Cyrille Ngonga Ngomo. DeFacto
- A Multilingual Fact Validation Interface. In Proceedings of the 14th International
Semantic Web Conference (ISWC 2015, Semantic Web Challenge)

20. Diego Esteves, Diego Moussallem, Ciro Baron Neto, Jens Lehmann, Maria Claudia
Cavalcanti, Julio Cesar Duarte. Interoperable Machine Learning Metadata using
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MEX. In Proceedings of the 14th International Semantic Web Conference (ISWC
2015, Posters & Demos)

21. Sandro A. Coelho, Diego Moussallem, Gustavo C. Publio,Diego Esteves. TANKER:
Distributed Architecture for Named Entity Recognition and Disambiguation. In
Proceedings of the Posters and Demos Track of the 13th International Conference on
Semantic Systems - co-located with the 13th International Conference on Semantic
Systems (SEMANTiCS 2017), Amsterdam, The Netherlands, September 11-14, 2017.

22. Ciro Baron Neto, Diego Esteves, Tommaso Soru, Diego Moussallem, Andre Valdes-
tilhas and Edgard Marx. WASOTA: What Are the States of the Art? In Proceedings
of the 12th International Conference on Semantic Systems (SEMANTiCS 2016), 12-15
September 2016, Leipzig, Germany (Posters & Demos)

The following is the complete list of preprints submitted during the development of this Ph.D.
thesis.

• Technical Reports:

23. Diego Esteves, Agnieszka Lawrynowicz, Pance Panov, Larisa Soldatova, Tommaso
Soru and Joaquin Vanschoren. ML-Schema Core Specification. In Technical report,
World Wide Web Consortium (W3C), 2016.

The final Ph.D. contributions are summarized as follows:

Ph.D. Statistics From 07.2014 to 12.2018 (4.5 Years)

Accepted In Rev. Total Thesis Related
Journal 3 1 4 4 (100%)

Conference/Workshop 14 1 15 12 (80%)

Poster/Demo 7 0 7 5 (71%)

Arxiv 3 0 3 1 (33%)

Technical Report 1 0 1 1 (100%)

Nr. of Publications 28 02 30 23 (76%)

1.5 Thesis Structure

The remainder of this thesis is comprised by seven chapters organized as follows:

• Chapter 2 - Related Work; provides the state-of-the-art approaches related to this thesis.
Firstly, We give a complete view of the state-of-the-art approaches to fact-checking.
Secondly, web credibility models are introduced and discussed. Thirdly, we progress
to discuss the challenging task of named entity recognition on noisy data. Finally, we
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introduce challenges on enabling reproducible research.

• Chapter 3 - Named Entity Recognition on Noisy Data; presents a novel named entity
recognition for microblogs and informal text dubbed HORUS, which is crucial information
extraction task to perform fact-checking.

• Chapter 4 - Web Trustworthiness; presents our novel credibility model (WebCred) for
detecting trust and non-trust websites. We show limitations of existing approaches and
how this model can enhance the fact-checking task.

• Chapter 5 - Automated Fact-Validation; presents DeFacto, an automated fact-checking
framework for fact-validation. It is part of the final pipeline of the automation process.
DeFacto accepts both structured as well as non-structured claims as input and can be
customized according to the use case and domain.

• Chapter 6 - Reproducible Research; contextualizes reproducible issues in scientific experi-
ments, shedding light on current limitations, difficulties and proposing novel solutions to
make experiment more accessible and reproducible.

• Chapter 7 - Conclusion and Future Direction; finalizes this thesis with a summary of our
results and main contributions to the complex problem of automating fact-checking, and
defines the future directions of the research work.
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CHAPTER 2

Related Work

2.1 Automated Fact-checking

Fact-checking is a relatively new research area which focuses on classifying (and/or assigning
scores) a given statement [29]. In general, the task of automated fact-checking can be considered
as one of the most challenging tasks in natural language processing (NLP). Apart from designing
trustworthiness indicators associated with sources of information, the task is especially hard
due to the complexity inherent in creating and connecting logical arguments. This is a basis to
communicate and defend opinions (or claims within this context), to understand new problems
and to perform scientific reasoning [30]. Thus, argumentation mining methods pose as state
of the art solution for better understanding text structures and relations among entities, i.e.,
processing raw text in natural language to recover inferential structure [26]. However, it is still
a challenging task and most of the proposed works are of a theoretical nature, lacking useful
real-world applications.

We can divide the task in: fact-checking over structured (e.g., triples) and unstructured claims
(i.e., news). With respect to structured fact-checking, we can perform three different tasks:
validation, plausibility or ranking. Table 2.1 presents an overview of the features of some state
of the art approaches. Verification of unstructured claims generally involves the design of neural
architectures.

In the following, we present recent work in each area:

2.1.1 Triple Plausibility Estimation

Plausibility assessment of triples is another related problem. It deals with the measurement of
the plausibility of a certain subject type being linked to a certain object type through a given
predicate. It could be seen as a prior task to Triple Veracity Assessment. Hong et al [38] propose
PAUST, a three-phase system which determines the plausibility of a triple using both DBpedia and
Wikipedia as sources of information. Given a set of test triples, PAUST first generates unlabelled
training triples by changing the subject, object, predicate or a combination of the attributes
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Fact-Checking Frameworks
System Counter Real-Time Source Reliance Nr. Supported Predicate Open

Evidences Source Trust. on SEs Predicates Expansion Source

Triple Validation
[31] DeFacto Yes No Yes Yes 10 Library Yes
[32] OpenEval No No No Yes Any (upon training) Keywords No
[33] KnowItAll No No No Yes Many (ontology) Patterns No

Triple Ranking
[34] Bast et al. No No No No 2 No No
[35] Bokchoy No No No No 2 No Yes
[36] Cress No No No No 2 No Yes
[37] Goosefoot No No No No 2 Synonym-based Yes

Triple Plausibility
[38] PAUST No No No No Any (ext. resources) Lexical DBs No

Table 2.1: Features of triple assessment frameworks

above of the test triples. These changes are made in such a way that subjects, objects or
predicates are replaced with similar subjects, objects and predicates respectively. The similarity
between various entities is determined using features extracted from DBpedia. WordNet [39],
NOMLEX [40] and PreDic [41] are used to determine similarity between predicates. In the
second phase, the unlabelled training triples are labeled as plausible or not plausible using the
Wikipedia sentence corpus. Using statistical hypothesis testing, PAUST assigns a value between 0
and 1 to a triple denoting the distance between the test triple and the training triple. In the final
phase, PAUST determines the plausibility of the test triple by examining the k-nearest neighbors
of the test triple. If a majority of the nearest neighbors are plausible, then the test triple is also
determined to be plausible. Otherwise it is labeled not plausible. When the subjects, objects and
predicates of many triples belong to the same subject, object and predicate concepts respectively,
all such triples are given the label which is the majority among such triples.

2.1.2 Triple Validation

Triple Validation is a task in which an input triple is classified as positive or negative, i.e. true
or false. Thus, the process is often performed using supervised classification techniques. There
are many approaches and strategies for validating the facts represented by the triples. First,
one can search for the input triple on the web, and then apply some method to decide if the
triple is true based on the features extracted from the search results [42]. The keywords used
while querying the search engines are derived from the subject and the object of the triple. The
web pages retrieved are then ranked based on the calculated values of different features. After
determining the features values and ranks of the search results, the system finally outputs its
classification, saying whether the input triple is true or false. These approaches often apply
some method to obtain natural language representations (NLRs) of predicates (e.g., hard-coded
NLRs, string similarity measures or distant supervision techniques). A different solution is to
apply supervised knowledge extraction on the web, and consider a triple as verified if it can
be extracted. The approach described in [43] also searches for the triple on the Web where
it identifies relevant sources, extracts evidence from them, estimates source trustworthiness
and uses those trustworthiness scores for improving triple evaluation. The difference with the
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previous works is that it is completely machine learning based. A first a set of data is provided
for training the classifiers for each category of triples, instead of using just one classifier for
all the categories. This work classifies the set of unlabeled triples to either true or false and
provides a confidence value attached to the label. It considers IS-A relationships. Furthermore,
a third approach may first leverage both search-based and extraction-based techniques to find
supporting evidence for each triple, and subsequently, predict the correctness of each triple
based on the evidence. The extracted evidence may be from other knowledge bases, and further
enriched with evidence from the web and finally from query logs. In addition to the other
approaches data fusion techniques are applied for distinguishing correct triples from incorrect
ones [44].

One of the earliest systems which leveraged the World Wide Web to validate facts was
KnowItAll [33]. Soderland et al [45] describe how KnowItAll uses generic patterns and boot-
strapping to gauge the confidence of a certain fact. It uses search engine hits to approximate the
probability that a certain pattern is correct for detecting a fact which pertains to a given class
or relation (a predicate). This probability is estimated as the number of web pages returned by
a search engine which contain both the pattern and the given fact divided by the total number
of pages returned which contain the fact. Each class or relation has multiple patterns and
each pattern has an associated probability for a given fact. These probabilities are then fed as
features to a naive Bayes classifier which finally outputs the confidence score of the fact. The
main advantage of this method is that the system requires very little supervision because of its
bootstrapping capabilities, and can be applied to any generic relation. But a major shortcoming
of this approach is its sole reliance on search engines. Many search engines such as Google
have now stopped providing APIs which facilitate automatic querying, thereby debilitating this
approach. Another major shortcoming of this approach is that it is incapable of measuring the
trustworthiness of the source of the information.

DeFacto [31] is a system which scores RDF triples based on evidence found in web pages. Though
DeFacto uses search engines to find evidence, it overcomes the second shortcoming by using
a two-pronged approach which takes into account both the trustworthiness of the source and
the evidence which supports or contradicts the given fact, thereby improving the quality of its
predictions.

OpenEval [32] is another fact validation system which leverages Google results to determine the
confidence values of a given fact. The system is unique because of its ability to train classifiers
within a given time limit (online algorithm). The performance of the classifiers gets better
as more time is given for training. OpenEval takes as input a set of predicates, a set of seed
instances for each of the predicates and the set of mutually exclusive relationships between the
given predicates. For each seed instance, a Google query consisting of the subjects, objects and
the automatically inferred keywords for the predicate is generated. After querying Google, the
set of words which occur around the query in the top results is extracted. These sets, called
Context-Based Instances (CBIs), are used for training the Support Vector Machines (SVMs)
[46]. For each predicate, the set of CBIs generated using the seed instances of that predicate
are used as positive examples, and the set of CBIs generated using seed instances of predicates
which are mutually exclusive to the given predicate are used as negative examples while training
the SVM for that predicate. After training all the SVMs, if there is some time remaining, the
SVMs with the maximum entropy are re-trained by extracting new CBIs, so as to improve their
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performance. Another unique aspect is that the keywords used while querying are generated
automatically by selecting those words that have the highest weights in the SVMs as the set
of possible keywords which represent that predicate. The newly generated keywords are used
for generating new CBIs while re-training. While testing, the most important keywords are
first used to generate the CBIs. These CBIs are then fed to the appropriate SVM to determine
the confidence score of a test instance. If time remains, the keywords with lesser weights are
also used while determining the final score. Though this approach has many unique features,
it also suffers from its reliance on Google and it is incapable of measuring the trustworthiness
of the source of the information. An SVM needs to be trained for each predicate, making it
inefficient and time consuming because a set of seed instances and the set of relationships need
to be supplied to train each such SVM.

2.1.3 Triple Ranking (Relevance Scoring)

Triple Ranking is the task of ordering triples with the same subjects and similar objects according
to the relevance of the objects to the subjects. Bast et al [34] recently explored this problem
in detail. Their dataset consisted of manually scored triples whose predicates were either
“profession” or “nationality” and the triples were derived from Freebase. Each triple was scored
on a scale from 0 to 7 with 0 indicating least relevance and 7 indicating most relevance. They
assumed all triples to be true and built three different triple scoring mechanisms. All of the
systems used a related text corpus which was used to extract features for the classifiers. The
first system was based on logistic regression. They trained multiple binary classifiers, one for
each profession and one for each nation, which classified triples as primary or secondary. For
example, a classifier for the object “Actor” when the predicate is profession would classify
the triple having “Tom Hanks” as the subject as primary and would classify the triple having
“Barack Obama” as secondary. The second system computed a weighted sum which indicated
the degree of relevancy of that object to that subject, predicate pair. This sum was computed
by gathering the list of all words which indicated that a given profession/nationality was the
primary profession/nationality for that person and then computing a weighted sum of the
number of the occurrences of such words with the weights being the TF-IDF values of those
words in the related text corpus. The third system used a generative model to assign the
probabilities of the triple being relevant based on the related text corpus. The main advantage of
the approaches proposed by the authors is that most of the learning happens in an unsupervised
manner which lends the approaches to automation. An important observation is that all of
these classifiers require the range of the predicate to be known. Moreover, a classifier needs
to be trained for each predicate, object pair. This is not only time and resource intensive but
also unfeasible if the range of a predicate is not known or subject to variation. DeFacto, on the
other hand, does not need to know a priori the range of predicates. It uses a single classifier
for all triples, leveraging the more generic features mapped by its architecture, thus making it
more efficient. However, it is still dependent on a natural language library [47] to obtain the
verbalizations for each possible predicate, potentially limiting the approach. Moreover, all of the
approaches described in [34] require a related text corpus while training and also for evaluation.
This means that the systems cannot handle real-time queries which may need information which
is not contained in the related text corpus. DeFacto overcomes this major shortcoming by using
search engines which provide real-time results and their results are then used to score triples.
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The WSDM Cup 2017 had a challenge which required competitors to build triple ranking
models similar to the ones proposed by Bast et al [34]. Zmiycharov et al [37] (The Goosefoot
Triple Scorer) approached this problem by first downloading related Wikipedia, DeletionPedia
and DBpedia data regarding the persons mentioned in the dataset. They then obtain more
training data using distant supervision on the person files. The person files and training data
were then normalized using synonym lists for the professions and nationalities and other basic
transformations. Word2Vec embeddings, TF-IDF features and Type-like Occurrence Order
features were then extracted from the person files for each of the training instances and a linear
regression classifier was then trained using these features. This model was ranked the best
according to the Kendall Tau metric (tau). Though this approach is good for the given task, it
is incapable of scoring generic triples because it requires external person files which may not be
available.

Hasibi et al [36] (The Cress Triple Scorer) uses handcrafted features to train a Random
Forest model used to predict the relevance score. For each of the relations, these features are
extracted from the annotated Wikipedia sentences provided by the challenge. This simple
approach performed the best with respect to average score difference (avd) and was ranked
second concerning tau. Although this approach performs surprisingly well, it does not work for
any generic triple since the approach requires handcrafted features for each relation which is not
feasible to achieve given the huge number of possible relations.

Bokchoy [35] employed ensemble learning to combine the results of four base scorers, three
which used Wikipedia data and one which used Freebase. The three Wikipedia based classifiers
are those proposed in [34]. The main novelty of this scorer was the fourth classifier which
employed Freebase. It was a classifier which predicted the relevance score of a triple based
on the path between the subject and the object of the triple in the knowledge base. Positive
examples were obtained directly from Freebase and negative samples were generated by randomly
replacing real professions/nationalities1 with other ones and taking care that these replaced
professions/nationalities were not associated with the subject. A random forest binary classifier
was then trained which output the score indicating the likelihood of the given predicate connecting
the given subject and object. An ensemble was employed to obtain the combined score by
computing a weighted sum of the scores output by the base classifiers. The final step involved
detecting “trigger” words (manually defined) for a given profession/nationality in the related
text for a given person. If trigger words are found in the first paragraph of the Wikipedia text
related to that person, the score computed by the ensemble is refined. This approach was ranked
the best with respect to accuracy, second with respect to avd and third with respect to tau
index. Thus, Bokchoy was one of the best classifiers in the challenge. However, it also can not
be applied to any generic triple because it requires a trigger word based score tuning which is
not possible for all relations. It also suffers from the same shortcomings as those experienced by
the systems proposed by [34] since both use the same Wikipedia-based classifiers.

1 the two predicates supported/available in the challenge
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2.1.4 Natural Language Claim Verification

Apart from structured claims, fact-checking has also a more realistic facete: the verification
of claims written in natural language. Thorne et al. [48] give an overview of fact-checking
automation, bridging the gaps between fact-checking and related research areas. Starting with
the fact-checking in journalism, they define basic terminology and then go on drawing a parallel
between Fake news research, fact-checking, textual entailment etc. Fact-checking as a branch of
NLP is the main focus of this study. They also discuss input and output structures of well-known
fact-checking and validation systems and publicly available datasets. An important contribution
of their work is shedding light on the importance of evidence in fact-checking systems.

Vlachos and Riedel [9] define the problem of fact-checking as the truthfulness of claims, a
binary classification problem. They provide two datasets constructed from political fact-checking
websites PolitiFact and Channel-4. Their work tries to define the problem of fact-checking as a
one-to-one automation mapping of the human fact-checking process. But the work does not give
a concrete implementation of their pipeline hypothesis. Lee et. al. [49] propose a neural-ranker-
based evidence extraction method, an important part of the fact-checking pipeline, extending
the [50] baseline method. They propose a three-step (document retrieval, evidence selection, and
textual entailment) pipeline for the task. Taniguchi et al. [51] give a three-component pipeline
consisting of document retrieval, sentence selection and recognizing textual entailment (RTE).
Popat et al. [52] design an end2end model for fake-news detection. They use pre-retrieved
articles related to a single fact and aggregate the veracity score from each article to make the
final decision about the claim. They experiment on four political fact-checking datasets and
compare the performance of their model with baselines on Snopes and Politifact. Tosik et al. [53]
talk about the limitation of deep-learning in yielding interpretable results and the challenges
faced specifically in the case of fake-news detection. They model a feature based framework
for stance detection, outperforming the fake-news-challenge (FNC-1)2 baseline. Yang et al. [54]
propose a convolution neural network-based approach for fake news detection. They combine
the text in the articles with the image cues. Though this is an interesting variation of fake news
detection, no improvements over state-of-the-art were reported.

Recently many studies have proposed deep learning solutions to the fact-checking problem [52,
55–57]. DeclarE [52] combines the evidence extraction and claim classification in a single end2end
model. Sizhen et al [55] tackle the problem with a deep learning paradigm. They select relevant
Wikipedia entities using an online available tool, S-MART, and use their model to perform both
evidence selection and claim classification in a combined fashion using bi-directional attention.
The model reaches baseline results but does not perform well on evidence retrieval task. Conforti
et al. [56] propose a deep learning approach for fake-news detection by focusing on the stance
of the claims. They use the dataset from Fake-News-Challenge (FNC-1) to test their model.
The model yields better results than the top performers of FNC-1 but there is no comparison
with other end-to-end deep learning approaches. However, the approach handles cross-level
stance detection when the input corpus has a high variation in length. Yin and Roth [57], give a
two-wing-optimization strategy and combine the last two steps of Fact-Checking pipeline. Their
model beats the baseline [58] on evidence identification and claim verification by a good margin.
Karadzhov1 et al. [12] proposes a fully automated fact-checking system. Their model follows a

2 http://www.fakenewschallenge.org/
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three-component structure, named: External support retrieval, Text representation and veracity
prediction3.

Baly et al. [59] use the approach of bias detection in the news media and predict the "factuality"
in news reported by the media source. They divide the task of veracity assessment of information
into four classes: fact-checking (claim level), fake news detection (article level), troll detection
(user level) and source reliability estimation (medium level). Their work explains the subtle
difference in all these related areas. Popat et al. [60] add source trend and language to the
credibility assessment approach. Their model also provides user interpretable explanations of
the final decision. They use web for retrieving source documents a.k.a reporting articles from
using a search engine. Due to this method of retrieving source documents, they call their model
a content-aware model (an idea similar to the topical-evidence based approach).

Some previous works have focused on knowledge bases [9, 61] as a method for fact-checking.
Ciampaglia et al. [61] formulate the fact-checking problem as a special case of link prediction in
knowledge graphs. They use DBpedia4 database, a knowledge base derived from Wikipedia. The
fundamental limitation with this line of research is that the most commonly used knowledge
bases are outdated and they cannot leverage from the status-quo of the world, thus lacking the
external-evidences.

2.2 Named Entity Recognition on Noisy Text

Over the past few years, the problem of recognizing named entities in natural language texts
has been addressed by several approaches [62–66], reporting decent to very good performance
measures on newswire datasets [66, 67] (mostly CoNLL-20035), but failing to recognize entities
in microblogs and similar resources with little context or sentences which are not compliant
with grammatical norms (e.g. isolated snippets of search engine results and microblog posts).
Thus, the major disadvantage of most NER architectures is the domain-specific knowledge
dependency, which imposes a natural barrier to generalize over different contexts and datasets.
Designing hand-crafted features for each domain represents a major obstacle for generalization.
To bridge this gap, Collobert et al. [68] proposed a neural network (NN) model which required
little feature engineering using word embeddings. Al-Rfou et al. [69] also proposed a language
agnostic model that learns distributed word representations (i.e., word embeddings) which
encode semantic and syntactic features. Chiu and Nichols [70] minimized the NN known design
gap regarding long-term dependency with a RNN. In a similar architecture Lample et al. [71]
recently reported the performance for different languages (English, German, Dutch and Spanish),
showing F1 measures (on the CoNLL-2003 test set) similar to other state of the art NER models:
90.9, 78.7, 81.7 and 85.7 (respectively). They, however, focused on newswire data sets to improve
current state of the art systems and not on microblogs texts (e.g. WNUT datasets), which are
naturally harder to tackle due to the issues previously introduced. Shifting to this context,
approaches have emerged specifically designed to better perform on short and noisy texts, such
as T-NER [19] and TwiterIE [72]. The first performs tokenization, POS tagging and noun-phrase
3 although a different name convention, it is in line with the approach proposed by [50]
4 https://wiki.dbpedia.org/
5 http://www.cnts.ua.ac.be/conll2003/ner/
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chunking before using topic models to find named entities whereas the second – an extension of
GATE ANNIE [73] – implements an NLP pipeline customized to microblog texts at every stage
(including Twitter-specific data import and metadata handling). Also, Liu et al. [20] propose a
gradient-descent graph-based method for text normalization and recognition. Likewise, these
approaches are highly dependent on hand-crafted rules. Recently, in order to overcome this issue,
different models were proposed. Limsopatham and Collier [74] proposed a neural architecture for
NER on microblogs, which combines a bidirectional LSTM with an CRF achieving a F1 measure
of 52.41 for English text. Models supporting other languages were proposed, however, similar
performances (min-max F1 measure) have also been observed across different languages other
than English, such as French, Portuguese and Chinese, for instance ([75] - 21.28− 58.59, [76] -
24.40 − 52.78 and [77] - 44.29 − 54.50, respectively). [78] proposed a methodology to encode
image and news features into NER architectures, showing promising preliminary results. [79]
followed the same idea to detect entities in Twitter, but just analyzing existing images associated
to a given tweet, which drastically restricts the approach. Furthermore, in a period of three
years of a very famous workshop for NER in social media6, modest results have been reported
by a vast number of different NER architectures: 16.47− 56.41, 19.26− 52.41 and 39.98− 41.86
(min-max F1 in WNUT 2015, 2016, 2017, respectively) [80–82]. Therefore, although neural
architectures pose a good choice to outperform standard architectures (e.g. CRFs), the task is
still far from being solved for microblogs.

2.3 Web Credibility

Credibility is an important research subject in several different communities and has been the
subject of study over the past decades. Most of the research, however, focuses on theoretical
aspects of credibility and its persuasive effect on different fundamental problems, such as
economic theories [83]. Due to its fuzzy nature, the definition of credibility may be subject of
distinct interpretations [84].

2.3.1 Fundamental Research

A thorough examination of psychological aspects in evaluating documents credibility has been
studied [84–86], which reports numerous challenges. Apart from sociological experiments, Web
Credibility has a more practical perspective. Figure 2.1 depicts the main sides of credibility
assessment.

While our work falls into the category Automated Models - Website Scoring, we briefly introduce
related research (which, in turn, are relevant to validate important credibility factors in a
practical scenario) as follows:

Rating Systems, Simulations are mostly platform-based solutions to conduct experiments
(mostly using private data) in order to detect credibility factors. Nakamura et al. [87] surveyed
internet users from all age groups to understand how they identified trustworthy websites. Based
6 http://noisy-text.github.io
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Figure 2.1: Credibility models

on the results of this survey, they built a graph-based ranking method which helped users in
gauging the trustworthiness of search results retrieved by a search engine when issued a query
Q. A study by Stanford University revealed important factors that people notice when assessing
website credibility [86], mostly visual aspects (web site design, look and information design).
The writing style and bias of information play a small role as defining the level of credibility
(selected by approximately 10% of the comments). However, this process of evaluating the
credibility of web pages by users is impacted only by the number of heuristics they are aware
of [88], biasing the human evaluation w.r.t. a limited and specific set features. An important
factor considered by humans to judge credibility relies on the search engine results page (SERP).
The higher ranked a website is when compared to other retrieved websites the more credible
people judge a website to be [89]. Popularity is yet another major credibility factor [90]. Liu et
al. [91] proposed to integrate recommendation functionality into a Web Credibility Evaluation
System (WCES), focusing on the user’s feedback. Shah et al. [92] propose a full list of important
features for credibility aspects, such as 1) the quality of the design of the website and 2) how
well the information is structured. In particular, the perceived accuracy of the information
was ranked only in 6th place. Thus, superficial website characteristics as heuristics play a key
role in credibility evaluation. Dong et al [93] propose a different method (KBT) to estimate
the trustworthiness of a web source based on the information given by the source (i.e., applies
fact-checking to infer credibility). This information is represented in the form of triples extracted
from the web source. The trustworthiness of the source is determined by the correctness of the
triples extracted. Thus, the score is computed based on endogenous (e.g., correctness of facts)
signals rather then exogenous signals (e.g., links). Unfortunately, this research from Google does
not provide open data. It is worth mentioning that - surprisingly - their hypothesis (content is
more important than visual) contradicts previous research findings [86, 92]. While this might be
due to the dynamic characteristic of the Web, this contradiction highlights the need for more
research into the real use of web credibility factors w.r.t. automated web credibility models.
Similar to [87], Singal and Kohli [94] proposes a tool (dubbed TNM) to re-rank URLs extracted
from Google search engine according to the trust maintained by the actual users). Apart from
the search engine API, their tool uses several other APIs to collect website usage information
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(e.g., traffic and engagement info). [95] perform extensive crowdsourcing experiments that contain
credibility evaluations, textual comments, and labels for these comments.

SPAM/phishing detection: Abbasi et al. [96] propose a set of design guidelines which
advocated the development of SLT-based classification systems for fraudulent website detection,
i.e., despite seeming credible - websites that try to obtain private information and defraud
visitors. PhishZoo [97] is a phishing detection system which helps users in identifying phishing
websites which look similar to a given set of protected websites through the creation of profiles.
It first creates a set of profiles for the given set of protected web pages. These are web pages
which the user logs in to and hence wants to be warned of similar looking phishing websites. A
webpage profile is created by storing the SSL certificates, URL and content of the webpage. The
profile also stores the SIFT features [98] of user-selected logo of the webpage. Upon browsing,
when a webpage is being loaded, its SSL certificate and URL are matched with those of the
protected websites. If they do not match with any protected website, the page may be a phishing
website. To further examine the webpage, tokens from the website URL and body are extracted.
These tokens are matched with the keywords present in the protected websites. The keywords
are determined based on TF-IDF scores. The protected website with the most number of
matching keywords is chosen and the SIFT features of the logo of the protected website are
compared with the SIFT features of all the images present in the given webpage. If a high level
of similarity is discovered, the website is likely to be a phishing website and the system alerts
the user.

2.3.2 Automated Web Credibility

Automated Web Credibility models for website classification are not broadly explored, in
practice. The aim is to produce a predictive model given training data (annotated website ranks)
regardless of an input query Q. Existing gold standard data is generated from surveys and
simulations (see Rating Systems, Simulations related work). Currently, state of the art (SOTA)
experiments rely on the Microsoft Credibility dataset7 [89]. Recent research use the website
label (Likert scale) released in the Microsoft dataset as a gold standard to train automated web
credibility models, as follows:

Olteanu et al. [99] proposes a number of properties (37 linguistic and textual features) and
applies machine learning methods to recognize trust levels, obtaining 22 relevant features for
the task. Wawer et al. [100] improve this work using psychosocial and psycholinguistic features
(through The General Inquirer (GI) Lexical Database [101]) achieving state of the art results.

Finally, another resource is the Content Credibility Corpus (C3) [95], the largest Web credibility
Corpus publicity available so far. However, in this work authors did not perform experiments
w.r.t. automated credibility models using a standard measure (i.e., Likert scale), such as in
[99, 100]. Instead, they rather focused on evaluating the theories of web credibility in order to
produce a much larger and richer corpus.

7 It is worth mentioning that this survey is mostly based on confidential data and it is not available to the open
community (e.g., overall popularity, popularity among domain experts, geo-location of users and number of
awards)

22



2.4 Reproducible Research

2.4 Reproducible Research

When sharing experiment results, researchers often describe them in different language writing
style (which is possible to become ambiguous) in their manuscripts making it difficult to directly
compare results from different papers. Besides the interpretation issue, a major problem is the
difficult to confirm scientific findings. A relatively recent key term to face this lack of metadata
is Reproducible Research, which aims to make analytic data and code freely available so that
others will be able to reproduce findings, i.e., an environment where “provenance metadata”
is accessible and a “high interoperability” level is achievable, so anyone is able to reproduce
scientific achievements. Therefore, Reproducibility is one of the main principles of the scientific
methods (Figure 1.2). According to the IOM Report [102] the following rules should be applied:
1) data/metadata publicly available; 2) the computer code and all the computational procedures
should be available; 3) ideally the computer code will encompass all of the steps of computational
analysis. In the following we list different attempts to bridge this gap.

2.4.1 Workflow Systems

Managing the configurations, inputs and outputs of ML algorithms poses a huge challenge
for developers. Several machine learning experiments are performed through general purpose
programming languages, such as Java, C#, Python, C++, with or without use of libraries like
Weka8,scikit-learn9 or Shogun10. In this context, one of the requirements is to implement some
machine-readable way for interchanging results over distinct architectures. Examples of state-of-
the-art formats and patterns for interchanging are: Comma-Separated Values (CSV), eXtensible
Markup Language (XML), Value-Object (VO), Data-Transfer-Objects (DTO). However, the
drawbacks here are threefold: (1) the technology dependence for the implementation of the
certain design pattern; (2) the possible lack of schema information on the implementation of
certain format; (3) the lack of semantic information in both cases.

In order to bridge this gap, several research groups have developed in house frameworks for
managing their own workflows. Table 2.2 sums up the described related works on provenance
meta-data for scientific experiments.

Platform Description

MyExperiment [103] It is a collaborative environment where scientists can publish their workflows and
experiment plans

Wings [104] A Semantic Approach to creating very large scientific workflows
OpenTOX [105] An interoperable predictive toxicology framework
Open ML [106] A frictionless, collaborative environment for exploring machine learning

Table 2.2: The state-of-the-art platforms for e-science workflows

Although posing as a specific-solution for tackling the problem, they are not generic enough
to become a generic solution for representing any machine learning experiment. This results
8 http://www.cs.waikato.ac.nz/ml/weka/
9 http://scikit-learn.org/stable/

10 http://www.shogun-toolbox.org
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in redundancy and increased maintenance costs (often within the same institution). Instead,
state-of-the-art workflow approaches have been successfully developed to describe and manage
configurations and outcomes of specific problems which derived from the experimental process
in specific research communities (e.g., Bioinformatics) [103, 105, 107].

2.4.2 Vocabularies and Ontologies

Therefore, in order to bridge the gap between description of experiments and its reproducibility,
more rich and generic structures are required. Likewise, Table 2.3 shows the related works on
data mining ontology.

Platform Description

The Data Mining OPtimization Ontology (DMOP) [108] It supports informed decision-making at various
choice points of the data mining process

OntoDM-KDD [109] Ontology for representing the knowledge discovery
process

Exposé [110] An ontology for data mining experiments used in
conjunction with experiment databases (ExpDBs
[111])

Table 2.3: The related (heavy-weight) ontologies for data mining and their respective conceptualizations

2.4.3 Repositories for Machine Learning Metadata Experiments

Besides, a more generic machine learning platform and very interesting approach for representing
machine learning experiments is OpenML [106], which misses an ontology for representing the
metadata11 and runs over XML schema representation12.

11 https://github.com/openml/OpenML
12 http://www.openml.org/r/454640/output/description
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CHAPTER 3

Detecting Entities on Noisy Data

This chapter is dedicated to address one of the core challenges of this thesis, i.e., to identify
named entities in noisy data. The content of this chapter is based on the publications [18, 78,
112–114]. Over the past decade, different Named Entity Recognition frameworks have been
proposed, most of them based on handcrafted features and restricted to a particular dataset,
which imposes a natural restriction w.r.t. generalization. To bridge this gap, recent work
based on neural networks were proposed, achieving state-of-the-art performance in newswire
datasets, but still failing at performing similarly in microblogs. Thus, designing and exploring
new methods and architectures is highly necessary to overcome current challenges. In this
Section, we shift the focus to an entirely different perspective. We investigate the potential of
embedding word-level global features extracted from images and news.

The results of this chapter provide an answer to the following research question:

RQ1: Can images along with news improve the performance of the named entity recogni-
tion models on noisy text?

We performed a comprehensive study in order to validate the hypothesis that images and news
boost the task on noisy data. In the best configuration setting, we show that this approach
outperforms strong baselines.

First, in Section 3.1, we present a motivating example illustrating the problem of detecting
named entities in noisy text, i.e., informal domains. To address research question RQ1, we devise
HORUS, a multi-level NER Framework based on computer vision and data mining techniques.

Next, Section 3.2 describes our approach, including a formal problem statement as well as
the main steps HORUS performs. Overall, HORUS performs a two-steps approach to derive
heuristics which are relevant to perform the task. Training phases are detailed in Sections
3.3.1 and 3.3.2, for computer vision and text mining modules, respectively. Afterwards, a
comprehensive evaluation of the HORUS approach and analysis of the obtained results is
presented in Section 3.4. Observed results suggest that HORUS is able to boost the NER task in
noisy context. Finally, Section 3.5 presents the closing remarks of this chapter. We summarize
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the contributions of this chapter as follows:

• A novel methodology to extract relevant information from tokens which is based on the
concept of images and news.

• A novel NER Framework named HORUS, which implements the concepts behind this
methodology, generating a set of heuristics to boost the task.

• An empirical evaluation to assess the effectiveness of HORUS for the NER task on noisy
text. Experiments are executed over the most famous datasets for the task: Ritter,
WNUT-15, WNUT-16 and WNUT-17.

3.1 Named Entity Recognition for Noisy Text

While named entity recognition (NER) on newswire datasets (e.g., CoNLL datasets) has been
shown to be reasonably accurate – achieving average F1 measure up to 90% [115] – most of
the state-of-the-art approaches still heavily rely on carefully constructed orthographic features
and language-specific resources, such as gazetteers. To bridge this gap, more recent work have
proposed architectures based on LSTM networks. Although this not necessarily introduces state
of the art (SOTA) performance [71, 116], the trained networks achieved very similar performance
on a popular newswire corpora (respectively 88.83% and 90.94% on CoNLL-2003 test set).
Besides supporting different languages with low effort, the great advantage of such (end-to-end)
approaches lies in the fact that specific knowledge resources are not required (excepting for
specific embeddings, which are language dependent), alleviating the dependency on manually
annotated data and encoded rules.

However, unlike newswire, microblogs often deal with more informal languages, which do not
have such implicit linguistic formalism. Thus, they have more unstructured properties, are
shorter, they lack context and present more grammatical and spelling errors [19–21]. With
respect to that – not surprisingly – the performance of SOTA degrades significantly in microblogs,
evidencing the sensibility of the proposed models when dealing with noisy and out-of-domain
text. In recent work [19, 74, 117, 118] F1 ranging from 0.19 to 0.52 have been reported.

Hence, devising models to deal with linguistically complex contexts such as twitter remains an
open and very challenging problem to tackle, regardless of the architecture’s design.

3.2 The HORUS Approach

3.2.1 Problem Definition

Named-entity recognition (NER) is a subtask of information extraction that attempts to detect
and label named entity mentions in unstructured text accord to pre-defined categories. These
categories may vary from more classical entities, such as person, location and organisation
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to more specific classes such as species of plants. The NER algorithms receive as input an
unannotated excerpt of text (often a sentence) as input. For instance: “paris hilton was once
the toast of the town.” should ideally be annotated as “paris\PER hilton\PER was once the
toast of the town\LOC”. However, most of NER architectures still fails at correctly recognizing
when grammatical structure of some sentences may be incorrect. The difficult of the task
is accentuated when more informal language is used, e.g., “YOLO bro let s head to jacks!”
(“You\PER only live once brother, lets head to the Jacks\LOC!”).

3.2.2 Proposed Solution

In this section, we introduce the main idea of the proposed approach. The main motivation
behind our approach lies in the fact that linguistic features are proved to not be enough to
perform the NER task reasonably well. We argue that multi-model comprehension has a great
potential to boost the task, i.e., information extracted from related images and documents. Thus,
we develop a novel architecture that learns latent features from images and textual information
to detect named entities, without requiring further engineering effort.

Figure 3.1 exemplifies the approach. Given a sentence S, we perform tokenization (A) and, for
each (noun) token, query a corpus (in this example, the Web) in order to obtain documents
(website) and images (B). Afterwards, we cache the resulting metadata (C). The next step
involves the execution of a set of models to perform image classification (D.1) as well as text
classification (D.2). Finally, a supervised learning classifier is trained to obtain the final NER
class for a given token.

Figure 3.1: sadsa

In order to train the set of classifiers, first we define - for each category of interest - the most
representative content which should be identified. For instance, in images we train models
to detect faces if “PERSON” is the target class. Similarly, we train models to detect logos if
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“ORGANISATION” is the class to be discovered. We define this associations by common-sense,
given that a name of a person has a high correlation to images containing faces whereas a name
of a company has a high correlation to images containing logos, for instance. Thus, named
entities can be classified as belonging to a certain category by detecting these representative
objects in the related images. Table 3.1 overviews the object categories to be discovered.

NER Images Candidates (number of trained models)

LOC Building, Suburb, Street, City, Country, Mountain, Highway, Forest, Coast and Map (10)
ORG Company Logos (1)
PER Human Faces (1)

Table 3.1: NER classes and respective objects defined by common sense rules.

Therefore, for each token t ∈ T we extract a set of image and text feature vectors F =
(F1, . . . ,Fn) that serve as input features to a NER classifier. In the following sections, we
explain the two feature extraction modules we designed.

3.3 Framework Modules

3.3.1 Computer Vision Module

Given a set of images I, the basic idea behind this component is to detect a specific object
(denoted by a class c) in each image. Thus, we query the web for a given term t and then extract
the features from each image and try to detect a specific object, as introduced before, for the
top N images1 retrieved as source candidates.

For training our classifiers, we used a technique called SIFT (Scale Invariant Feature Transform)
features [119] for extracting image descriptors. In order to create the clusters of the extracted
features, we apply BoF (Bag of Features) [120, 121]. The clustering is possible by constructing
a large vocabulary of many visual words and representing each image as a histogram of the
frequency words that are in the image. We use k-means [122] to cluster the set of descriptors
to k clusters. The resulting clusters are compact and separated by similar characteristics. An
empirical analysis shows that some image groups are often related to certain named entities
(NE) classes when using search engines, as described in Table 3.1. For training purposes, we
used the Scene 13 dataset [123] to train our classifiers for location (LOC), “faces” from Caltech
101 Object Categories [124] to train our person (PER) and logos from METU dataset [125] for
organisation ORG object detection. These datasets produces the training data for our set of
supervised classifiers (1 for ORG, 1 for PER and 10 for LOC). We trained our classifiers using
Support Vector Machines [126] once they generalize reasonably enough for the task2.

1 We set N = 10 in our experiments and used Microsoft Bing as the search engine.
2 scikit-learn: svm.NuSVC(nu=0.5, kernel=’rbf’, gamma=0.1, probability=True).
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3.3.2 Text Mining Module

analogously to previous section, we perform clustering to group texts together that are “dis-
tributively” similar. Thus, for each retrieved web page (title and excerpt of its content), we
perform the classification based on the main NER classes. We extracted features using a classical
sparse vectorizer (Term frequency-Inverse document frequency - TF-IDF. In experiments, we
did not find a significant performance gain using HashingVectorizer) - Training (D.2): with
this objective in mind, we trained classifiers that rely on a bag-of-words technique. We collected
data using DBpedia instances to create our training dataset (N = 15000) and annotated each
instance with the respective MUC classes, i.e. PER, ORG and LOC. Listing 3.1 shows an
example of a query to obtain documents of organizations (ORG class). Thereafter, we used this
annotated dataset to train our model.

SELECT ?location, ?abstract FROM <http://dbpedia.org>
WHERE {?location rdf:type dbo:Location .

?location dbo:abstract ?abstract .
FILTER (lang(?abstract) = ’en’)} LIMIT 15000

Listing 3.1: SPARQL: an example of querying DBpedia to obtain LOC data for training

3.3.3 Final Classifier

We use the outcomes of (Sections 3.3.1 and 3.3.2) as part of the input to our final model. The
final set of indicators is defined as follows: let Ws be a set of tokens existing in a given sentence
s ∈ S. We extract the POS tag (using Stanford POS Tagger) for each token w and filter out any
token classified other than PROP-NOUN and existing compounds as entity candidates (t ∈ S′).
The result is a simple structure:

Mi = {j, t, ngpos, Cloc, Cper, Corg, Cdist, Cplc, Tloc, Tper, Torg, Tdist} (3.1)

where i and j represent the ith and jth position of s ∈ S and w ∈ Ws, respectively. ngpos

represents the n-gram3 of POS tag. Ck and Tk (k ∈ {loc, per, org}) represent the total objects
found by a classifier Φ for a given class k (

∑N
n=1 Φ(k, imgn))4 (where N is the total of retrieved

images I). Cdist and Tdist represent the distance between the two higher predictions (P =
{Ck∀K}), i.e. max(P)−max(P ′)|P ′ = P − {max(P)}. Finally, Cplc represents the sum of all
predictions made by all LOC classifiers CL (

∑L
l=1
∑N

n=1 CLl(loc, imgn))5. - Training (E): the
outcomes of D.1 and D.2 (M) are used as input features to our final classifier. We implemented
a simple Decision Tree6 (non-parametric supervised learning method) algorithm for learning
simple decision rules inferred from the data features (since it does not require any assumptions
of linearity in the data and also works well with outliers, which are expected to be found more
often in a noisy environment, such as the Web of Documents).
3 bigram, in our experiments.
4

pos = +1, neg = -1.
5

pos = +1, neg = 0.
6 scikit-learn: criterion=’entropy’, splitter=’best’.
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3.4 Experimental Setup

3.4.1 Datasets

In order to evaluate the models closer to a real use-case scenario, we performed training and test
across all dataset combinations. (e.g., [training = Ritter, test = WNUT-15], [training
= Ritter, test = WNUT-16] and etc.). In case of Ritter, we followed the proposed split [19],
since there is no specific training, dev and test splits. Finally, we also report performance
measure for all training sets using 3-fold cross-validation as sampling method. In the following
we briefly described the algorithms used in our experiments.

3.4.2 NER Algorithms

NER Architectures: We benchmark the methodology on top of different weak and strong
baselines, as follows:

Random Forests (RF) [127], a non-parametric (decision trees) supervised learning method for
classification and regression tasks. The goal is to create a model that classifies by learning simple
decision rules inferred from the data features. They are simple to understand and to interpret.
We chose Random Forests (RF) in order to gain further insight on the relation between the
heuristics we propose and the target (named entities) to predict.

Conditional Random Fields (CRFs) [128], a more classical solution to sequence labeling
problems. CRF is an undirected graphical models trained to achieve the maximization of a
conditional probability. A linear-chain CRF with parameters w defines a conditional probability
for a output sequence y = y1, y2, . . . , yn given an input sequence x = x1, x2, . . . , xn, as Pw(y|x) =

1
Zw

exp(wnφ(x, y)), where Zw is a normalization constant which ensures that the sum over all
possible outputs equals one. The major advantage is that this class of algorithms can take context
into account. We implemented the standard CRF (gradient descent with L-BFGS method) and
the CRF with passive-aggressive (PA) updates to overcome some social media noise [129].

Recurrent Neural Networks (RNNs) which are state of the art architecture for NER in
formal domains [71, 116] but have been shown to perform only reasonably in noisy data [130]. It
is unclear how traditional NNs could reasoning about past events7 to update later ones (i.e., what
they perceived one step back in time). Long Short Term Memory networks (LSTMs) [131] are a
special type of RNNs that are explicitly designed to avoid the long-term dependency problem,
which is an issue in standard RNNs. We implement a series of neural network-based architectures,
as follows: B-LSTM+CRF [116], Char+B-LSTM+CRF [71] and B-LSTM+CNN+CRF [132].

7 tokens in our context
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3.4.3 Experiments: Binary Classifiers Committee

In order to check the overall performance of the proposed technique, we ran our algorithm without
any further rule or apriori knowledge using a gold standard for NER in microblogs (Ritter
dataset [19]), achieving 0.59 F1. Table 3.2 details the performance measures per class. Table
3.3 presents current state-of-the-art results for the same dataset. The best model achieves 0.8
F1-measure, but uses encoded rules. Models which are not rule-based, achieve 0.49 and 0.56.
We argue that in combination with existing techniques (such as linguistic patterns), we can
potentially achieve even better results.

NER Class Precision Recall F-measure

Person (PER) 0.86 0.53 0.66
Location (LOC) 0.70 0.40 0.51
Organisation (ORG) 0.90 0.46 0.61
None 0.99 1.0 0.99

Average (PLO) 0.82 0.46 0.59

Table 3.2: Performance measure for our approach in Ritter dataset: 4-fold cross validation

NER System Description Precision Recall F-measure

Ritter et al., 2011 [19] LabeledLDA-Freebase 0.73 0.49 0.59
Bontcheva et al., 2013 [72] Gazetteer/JAPE 0.77 0.83 0.80
Bontcheva et al., 2013 [72] Stanford-twitter 0.54 0.45 0.49
Etter et al., 2013 [133] SVM-HMM 0.65 0.49 0.54
our approach Cluster (images and texts) + DT 0.82 0.46 0.59

Table 3.3: Performance measures (PER, ORG and LOC classes) of state-of-the-art NER for short texts
(Ritter dataset). Approaches which do not rely on hand-crafted rules and Gazetteers are highlighted in
gray. Etter et al., 2013 trained using 10 classes.

As an example, the sentence “paris hilton was once the toast of the town” can show the potential
of the proposed approach. The token “paris” with a LOC bias (0.6) and “hilton” (global brand
of hotels and resorts) with indicators leading to LOC (0.7) or ORG (0.1, less likely though).
Furthermore, “town” being correctly biased to LOC (0.7). The algorithm also suggests that
the compound “paris hilton” is more likely to be a PER instead (0.7) and updates (correctly)
the previous predictions. As a downside in this example, the algorithm misclassified “toast” as
LOC. However, in this same example, Stanford NER annotates (mistakenly) only “paris” as
LOC. It is worth noting also the ability of the algorithm to take advantage of search engine
capabilities. When searching for “miCRs0ft”, the returned values strongly indicate a bias for
ORG, as expected (Cloc = 0.2, Corg = 0.8, Cper = 0.0, Cdist = 6, Cplc = -56, Tloc = 0.0, Torg

= 0.5, Tper = 0.0, Tdist = 5). More local organisations are also recognized correctly, such as
“kaufland” (German supermarket), which returns the following metadata: Cloc = 0.2, Corg =
0.4, Cper = 0.0, Cdist = 2, Cplc = -50, Tloc = 0.1, Torg = 0.4, Tper = 0.0, Tdist = 3.

We further investigate the impact of basic lexical (S) features in the pipeline along with the
image CV (SIFT+K-means+SVM) and textual features T X (TF-IDF+SVM). For such, we
break the experiments into a set of distinct configurations. Table 3.4 depicts related features
sets as well as originally proposed features (cfg04).
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Cfg8 Features

cfg01 S
cfg02 S + T X (TF-IDF+SVM)
cfg03 S + CV (SIFT+K-means+SVM)
cfg04 S + T X + CV [78]
cfg05 S + Lemma
cfg06 S + Lemma + T X
cfg07 S + Lemma + CV
cfg08 S + Lemma + T X + CV

Table 3.4: Experiment Configurations (Exp): Previous work’s features expanded into different set of
features.

3.4.4 Experiments: Advanced Neural Network Techniques

In order to further investigate the potential of embedding visual and textual features in the
NER extraction task, we extended and performed a full investigation of the impact of such
features. First, we also included other relevant NER features, such as Brown Clusters [134].
Then we also adapted the proposed methodology implementing recent neural architectures (e.g.,
B-LSTM [116]). We detail modifications and configurations as follows:

Brown Clusters

The usefulness of Brown clusters (B) in NER [135] and the sensitivity of the number of clusters in
the NER task has been recently studied in [134]. We explore these findings altering the number
of clusters (320, 640 and 1000). In these configuration settings, the brown clusters are then used
as features along with Standard (S) and [78] features. Table 3.5 details the configurations.

Cfg Features

cfg09 S + Brown 64M c320
cfg10 S + Brown 64M c640 (Bbest)
cfg11 S + Brown 500M c1000
cfg12 S + Lemma + Brown 64M c320
cfg13 S + Lemma + Brown 64M c640
cfg14 S + Lemma + Brown 500M c1000
cfg15 S + Bbest + CV
cfg16 S + Bbest + T X
cfg17 S + Bbest + CV + T X

Table 3.5: Exploring Brown Clusters along with [78] features. Bbest stands for the best found number of
clusters (640).
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Neural Network-based Features

We finally explore and analyze the impact of several new proposed features considering state of
the art methods for image recognition and text classification. In order to evaluate the impact of
each new designed feature, we also split them into distinct experimental configurations (Table
3.6).

Cfg Features Cfg Features

cfg18 S+CVcnn cfg30 =18+Bbest

cfg19 S+T X cnn cfg31 =19+Bbest

cfg20 S+T X emb cfg32 =20+Bbest

cfg21 S+T X stats cfg33 =21+Bbest

cfg22 S+T X cnn+T X cfg34 =22+Bbest

cfg23 S+T X cnn+T X+T X e cfg35 =23+Bbest

+T X stats

cfg24 S+T X cnn+CVcnn cfg36 =24+Bbest

cfg25 S+T X cnn+T X+CV cfg37 =25+Bbest

cfg26 S+CVcnn+CV cfg38 =26+Bbest

cfg27 S+CVcnn+CV+T X cfg39 =27+Bbest

cfg28 S+CVcnn+CV+T X cnn cfg40 =28+Bbest

+T X
cfg29 S+CVcnn+CV+T X cnn cfg41 =29+Bbest

+T X+T X emb+T X stats

Table 3.6: The highlighted row depicts the best results w.r.t. Brown Clusters (“Brown Best”) (cfg10)

(a) “S” stands for Standard features; (b) “CNN CV” for state of the art neural network
computer vision); (c) “Standard CV” for traditional computer vision algorithms and techniques;
(d) “Brown” (xMcL) the Brown cluster configuration (x=vocabulary size and c=number of
clusters); (e) “Standard” means the classic NER features; (f) “CNN TX” for state of the
art text classification; (g) “TX Embeedings” calculates the intersection rate of a given word
embeeding and a common-sense set for a given NE class; (h) “Standard TX” for traditional text
classification algorithms and techniques; (i) “CNN TX Statistics” computes the basic statistics
per NE class (“sum”, “max”, “min” and “average”) from predictions of (f) and (g).

Results

The complete benchmark configuration has the following dimensions: cfg×(DStrain +(DStrain×
DStest))×A; where cfg is the total of feature sets (i.e., distinct configurations), Dtrain is the
total of training sets, Dtest is the total of test sets and finally A is the total number of algorithms.
This leads to the following number of experiments: 41×(4+(4×3))×9 = 5.9049. Demystifying
the impact of images and news: Figure 3.2 shows the performance of CRF in different
9 41 experiment configurations, 4 training sets (Ritter, WNUT-15, WNUT-16 and WNUT-17), 3 test sets (WNUT-15,

WNUT-16 and WNUT-17) and 9 NER architectures (DT, RF, CRF, CRF-PA, LSTM, B-LSTM+CRF, Char+B-
LSTM+CRF and B-LSTM+CNN+CRF)
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datasets/feature sets. The x-axis represents the different feature sets (Tables 3.4, 3.5 and 3.6),
while y-axis average of F1-measure10. To highlight the impact of the different groups of features,
we categorize F1‘s in four ascending scales, from worse to the best: red, yellow, gray and green.
Some patterns w.r.t. the addition of images and text as input features are clearly observable.
First, standard textual features (T X ) have often a much worse performance when compared to
standard image features (CV) as well as in the combination of both, as observed in the following
sets cfg02×cfg03×cfg04, cfg06×cfg07×cfg08 and cfg15×cfg16×cfg17. This is at some
extend expected since one-vs-all strategy to classify news data is not an easy task. In this sense,
a better solution might be taking into account probabilities instead of binary values. Moreover,
we notice our improvement in the T X component (cfg19, cfg20 and cfg21) outperform the
similar features proposed by [78]. Among those, it is worth noting that the text correlation
(T X stats) has a greater impact than any other textual feature. This is due to the higher level of
abstraction when computing word embedding distances across seeds in a distance supervision
fashion. Regarding the image detection component, introducing state-of-the-art computer vision
algorithms (CVcnn) has also been beneficial to beat previous strategy (CV), although without
bringing major improvements as in the T X . This is due to the common-sense rules proposed
by [78] in this layer. Brown Clusters: Finally, the inclusion of tuned Brown clusters (Bbest,
cfg30-41) along with proposed features shows to be beneficial to the performance. Overall,
the best results were obtained from the concatenation of the previous and proposed features
along with Brown clusters (cfg41). Architectures: We benchmark distinct NER architectures
comparing the following feature sets: cfg10 (weak baseline), cfg04 [78] as images-and-news
baseline and cfg41 (HORUS).Table 3.7 presents results. As expected, CRFs and state-of-the-art
NNs architectures performed best. The comparison shed light on the impact of our proposed
features (best configuration, cfg41) when compared to the broadly implemented NER features
(cfg10) and the architecture proposed by [78] (cfg04). We can see that overall the additional
features introduced in this work clearly improves the performance of the majority of the models
(DT, RF, CRF, B-LSTM+CRF) in all data sets.

Dataset Decision Trees Random Forest CRF B-LSTM B-LSTM B-LSTM
CRF C+CRF C+CRF+CNN
[116] [71] [132]

cfg −→ 10 04 41 10 04 41 10 04 41 10 04 41 10 04 41 10 04 41

P 0.48 +2% +4% 0.51 +1% +24% 0.73 +5% +7% 0.77 +1% −3% 0.81 −5% −1% 0.81 −5% −5%
Ritter R 0.49 +1% +3% 0.48 −1% −2% 0.58 −8% −2% 0.63 +5% +5% 0.59 +5% +4% 0.62 +3% +5%

F 0.49 +1% +3% 0.49 +4% +7% 0.58 +2% +7% 0.68 +1% +1% 0.67 +1% +1% 0.69 −1% +1%

P 0.49 +2% +5% 0.52 +7% +25% 0.72 +7% +9% 0.72 −4% −2% 0.77 −3% −4% 0.78 −4% −5%
WNUT-15 R 0.50 +0% +5% 0.49 +0% +1% 0.48 −1% +6% 0.69 +1% +1% 0.65 +2% +2% 0.66 +2% +2%

F 0.50 +0% +5% 0.50 +5% +9% 0.56 +2% +8% 0.68 +0% +0% 0.69 +0% −1% 0.71 −1% −2%

P 0.49 +1% +6% 0.52 +14% +23% 0.72 +7% +9% 0.72 −4% −2% 0.77 −3% −3% 0.78 −4% −6%
WNUT-16 R 0.50 +1% +6% 0.48 +0% +2% 0.48 −1% +6% 0.69 +0% +1% 0.65 +2% +2% 0.66 +2% +2%

F 0.49 +1% +6% 0.50 +5% +10% 0.56 +2% +8% 0.69 −1% +0% 0.69 +0% +0% 0.71 −1% −2%

P 0.44 +3% +7% 0.47 +13% +24% 0.76 +2% +1% 0.76 −2% −2% 0.76 +0% −2% 0.77 −3% −3%
WNUT-17 R 0.45 +4% +6% 0.44 +3% +4% 0.50 +0% +5% 0.63 +1% +1% 0.64 +0% +1% 0.62 +1% +1%

F 0.44 +4% +6% 0.45 +6% +12% 0.60 +0% +4% 0.67 +0% +0% 0.69 +0% −1% 0.67 +0% −1%

Table 3.7: The performance measure‘s improvements (green) and decreases (red) in different datasets,
feature sets (cfg) and architectures are represented in a color gradient of 5 points interval. 0% represents
a tiny improvement i (0.1% ≤ i ≤ 0.99%), which is not representative, although technically not zero.

Sampling sets: Figure 3.3 depicts the impact of images and news on F1-measure for the best
10 3-fold cross-validation.
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Figure 3.2: The CRF performance (cfg × F1) in different datasets/feature sets

architecture of a weak baseline (CRF) and a strong baseline (B-LSTM+CRF), defined according
to previous experiments (Table 3.7). The results confirm that the proposed features consistently
boost the performance of the models in the majority of the experiments. It is worth noting the
substantial impact in the CRF-based model. Our proposed features (cfg41) improves Lexical
+ Brown Cluster and [78] in more than 90% of the cases (and at least similar in 100% of the
cases).

The precision and recall trade-off : Moreover, we notice that a basic CRF architecture with
the best feature configuration (cfg41) outperforms a state-of-the-art B-LSTM architecture w.r.t.
precision. The same feature set also positively impacted recall of B-LSTM in all experiments.

Increasing training data: Finally we trained a B-LSTM+CRF architecture with an expanded
set created merging all data sets. We removed duplication from the union of the respective
training, dev and test sets, i.e., occurrences of overlap sentences. The results are presented in
Table 3.8, which support the claim that we can go beyond lexical features and further investigate
the use of images and news to benefit NER on noisy data.
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Figure 3.3: The positive impact of images and news through distinct training-test pairs sets. A comparison
between the best weak (CRF) and the best strong (B-LSTM+CRF) baselines.

+cfg10 +cfg04 +cfg41

B-LSTM+CRF 0.5217 0.5352 ↑ 0.5376 ↑

Table 3.8: B-LSTM+CRF F1-measure with expanded training/dev/test data over different feature sets.

3.5 Summary

We proposed a novel multi-model architecture based on computer vision and text mining
techniques to boost the NER task. This architecture, dubbed HORUS, has shown potential to
overcome existing challenges at recognizing entities on noisy data. Therefore, given the nature
of our work and its novelty, the outcomes of this work are of high relevance for NER on social
media.

First, we designed a more straightforward architecture based on binary classifiers to detect
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certain objects in images and classify a given textual input for a given text. This architecture
led to motivating results, beating state-of-the-art in the Ritter dataset. After, we modified and
extended the model to support neural network-based architectures. In a comprehensive study,
we observed that features extracted from images are of high relevance, whereas textual features
not necessary improve the task over regular NER features. However, the concatenation of the
features help to maximize the performance of the model. We compared several NER algorithms
along with the features we extract from HORUS, showing the benefit of the proposed method.
Several gold-standard datasets have been tested. HORUS exhibited competitive results, even
outperforming in some specific configurations. In traditional NER architectures (e.g. CRF),
the proposed features have proved feasible to notably improve its overall model performance
and, when compared to SOA, achieved a higher precision. SOA had improved in recall, but at
expense of precision. However, when benchmarking the models across different training-test
sets, the images and news also proved to be beneficial.

The advantages are summarized as follows:

1. A challenging (pre-processing) tasks, such as text normalization [80], is bypassed.

2. The proposed approach is language-agnostic.

3. It does not rely on gazetteers, lookups and normalization and also does not implement any
encoded rules.

4. As a result of our experiments, we released to the community a word-level feature database
for NER based on image and text. This database contains approx. 3 millions data features
for more than 72.000 distinct tokens and has been explored over 5.904 experiments in
different configurations.

As downside, we also shed light on existing problem which require further study, as follows:

1. The proposed architecture slows down the classification of named entities, performing
considerably slower than existing solutions. This tends to decrease due to caching, but
still might affects at production scale.

2. Using the Web as corpus implies in financial costs as well

3. Due to the existing noisy in the Web, performing text-classification from generic unseen
web content is a challenge.
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CHAPTER 4

Web Credibility

This chapter is dedicated to tackle yet one of the core challenges of this thesis, i.e., to assign cred-
ibility scores for information sources. The content of this chapter is based on the publications [31,
136].

With the growth of the internet, the number of fake-news online has been proliferating every
year. The consequences of such phenomena are manifold, ranging from lousy decision-making
process to bullying and violence episodes. Therefore, fact-checking algorithms became a valuable
asset. To this aim, an important step to detect fake-news is to have access to a credibility score
for a given information source. However, most of the widely used Web indicators have either
been shut-down to the public (e.g., Google PageRank) or are not free for use (Alexa Rank).
Further existing databases are short-manually curated lists of online sources, which do not scale.
Finally, most of the research on the topic is theoretical-based or explore confidential data in a
restricted simulation environment.

The results of this chapter provide an answer to the following research question:

RQ2: How to calculate a credibility score for a given information source?

First, in Section 4.1, we present a motivating example illustrating the problem of assigning
trustworthy scales for a given information source. To address research question RQ2, we devise
WebCred, the first 100% open-source web-based credibility model. WebCred extracts source
code metadata and computes scores of trustworthiness for a given website.

Next, Section 4.2 describes our approach. Overall, WebCred detects credibility patterns derived
from metadata extracted from source code of websites. Afterwards, a comprehensive evaluation
of the WebCred approach and analysis of the obtained results is presented in Section 4.3.
Observed results suggest that WebCred is able to generalize well to unseen websites. Finally,
Section 4.6 presents the closing remarks of this chapter. We summarize the contributions of this
chapter as follows:

• A novel methodology to compute trustworthiness indicators for websites.
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• A novel web credibility Framework named WebCred, which implements the concepts
behind this methodology and is 100% open-source.

• An empirical evaluation to assess the effectiveness of WebCred for the web credibility task.
Experiments are executed over the most famous datasets for the task: Microsoft and 3C
Corpus.

• An updated release of the Microsoft Credibility dataset.

4.1 How Credible is a Website

With the enormous daily growth of the Web, the number of fake-news sources have also been
increasing considerably [137]. This social network era has provoked a communication revolution
that boosted the spread of misinformation, hoaxes, lies and questionable claims. The proliferation
of unregulated sources of information allows any person to become an opinion provider with no
restrictions. For instance, websites spreading manipulative political content or hoaxes can be
persuasive. As introduced in previous sections, to tackle this problem, different fact-checking
tools and frameworks have been proposed [138]. Yet an important underlying fact-checking
step relies upon computing the credibility of sources of information, i.e. indicators that allow
answering the question: “How reliable is a given provider of information?”. Due to the obvious
importance of the Web and the negative impact that misinformation can cause, methods to
demote the importance of websites also become a valuable asset. In this sense the high number
of new websites appearing at everyday [139], make straightforward approaches - such as blacklists
and whitelists - impractical. Moreover, such approaches are not designed to compute credibility
scores for a given website but rather to binary label them. Thus, they aim at detecting mostly
“fake” (threatening) websites; e.g., phishing detection, which is out of scope of this work. Thus,
open credibility models have a great importance, especially due to the increase of fake news
being propagated. There is much research into credibility factors. However, they are mostly
grouped as follows: (1) theoretical research on psychological aspects of credibility and (2)
experiments performed over private and confidential users information, mostly from web browser
activities (strongly supported by private companies). Therefore, while (1) lacks practical results
(2) report findings which are not much appealing to the broad open-source community, given the
non-open characteristic of the conducted experiments and data privacy. Finally, recent research
on credibility has also pointed out important drawbacks, as follows:

1. Manual (human) annotation of credibility indicators for a set of websites is costly [140].

2. Search engine results page (SERP) do not provide more than few information cues (URL,
title and snippet) and the dominant heuristic happens to be the search engine (SE) rank
itself [140].

3. Only around 42.67% of the websites are covered by the credibility evaluation knowledge
base, where most domains have a low credibility confidence [91]

Therefore, automated credibility models play an important role in the community - although not
broadly explored yet, in practice. In this paper, we focus on designing computational models
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to predict the credibility of a given website rather than performing sociological experiments
or experiments with end users (simulations). In this scenario, we expect that a website from
a domain such as bbc.com receives a higher trustworthiness score compared to one from
wordpress.com, for instance.

4.2 The WebCred Approach

We propose a new supervised model to provide heuristics of a given website based on a sequence-
to-sequence approach which encodes URL content. The task is to learn that official news websites
should be more credible than opinions stated in web blogs and personal web sites which, in turn,
should be more credible than web sites flagged by blacklists. In other words, heuristics that
consequently could belittle or strengthen information in websites. Furthermore, we implement a
set of grounded measures specific to infer the trustworthiness of a website.

We introduce a new paradigm similar to bag-of-words: “bag-of-tags” (BoT). The idea behind
BoT is simple: to find patterns which may or may not be visible to an end-user. Thus, we
expect to capture not only visual information, but also patterns hidden in the web page code
which may or may not be related to the credibility of web sites. Apart from this method, we
also explore different textual features (e.g., Vader Lexicon). Figure 4.1 summarizes the method
in a nutshell.

Figure 4.1: The concept of bag-of-tags: extracting information from HTML tags.

As result of our experiments and research, we released an open-source tool dubbed WebCred
which calculates and provides heuristics to belittling or strengthening information in websites.
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4.3 Experimental Setup

4.3.1 State-of-the-art (SOTA) Features

Recent research on credibility factors for web sites [99] have initially divided the features into
the following logical groups:

1. Content-based (25 features): number of special characters in the text, spelling errors,
web site category and etc..

a) Text (20 features)

b) Appearance (4 features)

c) Meta-information (1 feature)

2. Social-based (12 features): Social Media Metadata (e.g., Facebook shares, Tweets
pointing to a certain URL, etc.), Page Rank, Alexa Rank and similar.

a) Social Popularity (9 features)

b) General Popularity (1 feature)

c) Link structure (2 features)

According to [99], a resultant number of 22 features (out of 37) were selected as most significant
(10 for content-based and all social-based features). Surprisingly (but also following [93]),
none from the sub-group Appearance, although studies have systematically shown the opposite,
i.e., that visual aspects are one of the most important features [86, 92, 140].

In this picture, we claim the most negative aspect is the reliance on Social-based features.
This dependency not only affects the final performance of the credibility model, but also implies
in financial costs as well as presenting high discriminative capacity, adding a strong bias to the
performance of the model1. The computation of these features relies heavily on external (e.g.,
Facebook API2 and AdBlock3) and commercial libraries (Alchemy4, PageRank5, Alexa Rank6.
Thus, engineering and financial costs are a must. Furthermore, popularity on Facebook or
Twitter can be measured only by data owners. Additionally, vendors may change the underlying
algorithms without further explanation. Therefore, also following Wawer et al. [100], in this
paper we have excluded Social-based features from our experimental setup.

On top of that, Wawer et al. [100] incremented the model, adding features extracted from the
General Inquirer (GI) Lexical Database, resulting in a vector of 183 extra categories, apart from
1 authors applied ANOVA test confirming this finding
2 https://developers.facebook.com/
3 https://adblockplus.org/
4 www.alchemyapi.com
5 excepting for heuristic computations, calculation of PageRank requires crawling the whole Internet
6 https://www.alexa.com/siteinfo
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the selected 22 base features, i.e. total of 205 features (However, this is subject to contradictions.
Please see Section 4.5 for more information).

4.3.2 Datasets

Website credibility evaluation

Microsoft Dataset [89] consists of thousands of URLs and their credibility ratings (five-
point Likert Scale7), ranging from 1 ("very non-credible") to 5 ("very credible"). In this study,
participants were asked to rate the websites as credible following the definition: “A credible
webpage is one whose information one can accept as the truth without needing to look elsewhere”.
Studies by [99, 100] use this dataset for evaluation. Content Credibility Corpus (C3)8 is
the most recent and the largest credibility dataset currently publicly available for research [95].
It contains 15.750 evaluations of 5.543 URLs from 2.041 participants with some additional
information about website characteristics and basic demographic features of users. Among many
metadata information existing in the dataset, in this work we are only interested in the URLs
and their respective five-point Likert scale, so that we obtain the same information available in
the Microsoft dataset.

Fact-checking influence

In order to verify the impact of our web credibility model in a real use-case scenario, we ran a
fact-checking framework to verify a set of input claims. Then we collected the sources (URLs)
containing proofs to support a given claim. We used this as a dataset to evaluate our web
credibility model.

The primary objective is to verify whether our model is able, on average, to assign lower scores
to the websites that contain proofs supporting claims which are labeled as false in the FactBench
dataset (i.e., the source is providing false information, thus should have a lower credibility score).
Similarly, we expect that websites that support positive claims are assigned with higher scores
(i.e., the source is supporting an accurate claim, thus should have a higher credibility score).

The (gold standard) input claims were obtained from the FactBench dataset9, a multilingual
benchmark for the evaluation of fact validation algorithms. It contains a set of RDF10 models
(10 different relations), where each model contains a singular fact expressed as a subject-predicate-
object triple. The data was automatically extracted from DBpedia and Freebase KBs, and
manually curated in order to generate true and false examples.

The website list extraction was carried out by DeFacto [31], a fact-checking framework designed
for RDF KBs. DeFacto returns a set of websites as pieces of evidence to support its prediction
7 https://en.wikipedia.org/wiki/Likert_scale
8 also known as Reconcile Corpus
9 https://github.com/DeFacto/FactBench

10 https://www.w3.org/RDF/
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(true or false) for a given input claim.

4.3.3 Final Features

We implemented a set of Content-based features (Section 4.3.1) adding more lexical and textual
based features. Social-based features were not considered due to financial costs associated
with paid APIs. The final set of features for each website w is defined as follows:

1. Web Archive: the temporal information w.r.t. cache and freshness. ∆b and ∆e correspond
to the temporal differences of the first and last 2 updates, respectively. ∆a represents the age
of w and finally ∆u represents the temporal difference for the last update to today. γ is a
penalization factor when the information is obtained from the domain of w (wd) instead w.

farc(w) = ([ 1
log(∆b ×∆e) + log(∆a) + 1

∆u
])× γ

2. Domain: refers to the (encoded) domain w (e.g. org)

3. Authority: searches for authoritative keywords within the page HTML content wc (e.g.,
contact email, business address, etc..)

4. Outbound Links: searches the number of different outbound links in w ∧ wd ∈ d, i.e.,∑P
n=1 φ(wc) where P is the number of web-based protocols.

5. Text Category: returns a vector containing the probabilities P for each pre-trained category
c of w w.r.t. the sentences of the website ws and page title wt:

∑ws
s=1 γ(s)_γ(wt). We trained

a set of binary multinomial Naive Bayes (NB) classifiers, one per class, as follows: business,
entertainment, politics, religion, sports and tech.

6. Text Category - LexRank: reduces the noisy of wb by classifying only top N sentences
generated by applying LexRank [141] over wb (S′ = Γ(wb, N)), which is a graph-based text
summarizing technique:

∑S′
s′=1 γ(s′)_γ(wt).

7. Text Category - LSA: similarly, we apply Latent Semantic Analysis (LSA) [142] to detect
semantically important sentences in wb (S′ = Ω(wb, N)):

∑S′
s′=1 γ(s′)_γ(wt).

8. Readability Metrics: returns a vector resulting of the concatenation of several R readability
metrics [143]

9. SPAM : detects whether the wb or wt are classified as spam: ψ(wb)
_ψ(wt)

10. Social Tags: returns the frequency of social tags in wb:
R⋃

i=1
ϕ(i, wb)
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11. OpenSources: returns the open-source classification (x) for a given website:

x =
{

1, if w ∈ O
0, if w 6∈ O

12. PageRankCC : PageRank information computed through the CommonCrawl11 Corpus

13. General Inquirer [101]: a 182-lenght vector containing several lexicons

14. Vader Lexicon: lexicon and rule-based sentiment analysis tool that is specifically attuned to
sentiments

15. HTML2Seq: we introduce the concept of bag-of-tags, where similarly to bag-of-words12 we
group the HTML tag occurrences in each web site. We additionally explore this concept along
with a sequence problem, i.e. we encode the tags and evaluate this considering a window size
(offset) from the header of the page.

4.4 Experiments

Previous research proposes two application settings w.r.t. the classification itself, as follows:
(A.1) casting the credibility problem as a classification problem and (A.2) evaluating the
credibility on a five-point Likert scale (regression). In the classification scenario, the models
are evaluated both w.r.t. the 2-classes as well as 3-classes. In the 2-classes scenario, websites
ranging from 1 to 3 are labeled as “low” whereas 4 and 5 are labeled as “high” (credibility).
Analogously, in the 3-classes scenario, websites labeled as 1 and 2 are converted to “low”, 3
remains as “medium” while 4 and 5 are grouped into the “high” class.

We first explore the impact of the bag-of-tags strategy. We encode and convert the tags
into a sequence of tags, similar to a sequence of sentences (looking for opening and closing
tags, e.g., <a>and </a>). Therefore, we perform document classification over the resulting
vectors. Figures 4.2(a) ,4.2(b), 4.2(c) and 4.2(d) show results of this strategy for both 2 and
3-classes scenarios. The x-axis is the log scale of the paddings (i.e., the offset of HTML tags
we retrieved from w, ranging from 25 to 10.000). The charts reveal an interesting pattern in
both gold-standard datasets (Microsoft Dataset and C3 Corpus): the first tags are the most
relevant to predict the credibility class. Although this strategy does not achieve state of the
art performance13, it presents reasonable performance by just inspecting website metadata:
F1-measures = 0.690 and 0.571 for the 2-classes and 3-classes settings, respectively. However, it
is worth mentioning that the main advantage of this approach lies in the fact that it is language
agnostic (while current research focuses on English) as well as less susceptible to overfitting.

We then evaluate the performance of the textual features (Section 4.3.3) isolated. Results for the
2-classes scenario are presented as follows: Figure 4.3(a) highlights the best models performance
11 http://commoncrawl.org/
12 https://en.wikipedia.org/wiki/Bag-of-words_model
13 F1 measures = 0.745 (2-classes) and 0.652 (3-classes).
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Microsoft Dataset
(Gradient Boosting, K = 25)

Class Precision Recall F1

low 0.851 0.588 0.695
high 0.752 0.924 0.829
weighted 0.794 0.781 0.772
micro 0.781 0.781 0.781
macro 0.801 0.756 0.762

C3 Corpus
(AdaBoost, K = 75)

Class Precision Recall F1

low 0.558 0.355 0.434
high 0.732 0.862 0.792
weighted 0.675 0.695 0.674
micro 0.695 0.695 0.695
macro 0.645 0.609 0.613

Table 4.1: Text+HTML2Seq features (2-class): best classifier performance

using textual features only. While this as a single feature does not outperform the lexical
features, when we combine the bag-of-tags approach (predictions of probabilities for each class)
we boost the performance (F1 from 0.738 to 0.772) and outperform state of the art (0.745), as
shown in Figure 4.3(b). Tables 4.1, 4.2 and 4.3 show detailed results for both datasets (2-classes,
3-classes and 5-classes configurations, respectively). For 5-class regression, we found that the
best pad = 100 for the Microsoft dataset and best pad = 175 for the C3 Corpus. We preceded
the computing of both classification and regression models with feature selection according to a
percentile of the highest scoring features (SelectKBest). We tested the choice of 3, 5, 10, 25, 50
75 and K=100 percentiles (thus, no selection) of features and did not find a unique K value
for every case. It is worth noticing that in general it is easy to detect high credible sources (F1
for “high” class around 0.80 in all experiments and both datasets) but recall of “low” credible
sources is still an issue.

Table 4.4 shows statistics on the data generated by the fact-checking algorithm. For 1500 claims,
it collected pieces of evidence for over 27.000 websites. Table 4.5 depicts the impact of the
credibility model in the fact-checking context. We collected a small subset of 186 URLs from
the FactBench dataset and manually annotated14 the credibility for each URL (following the
Likert scale). The model corrected labeled around 80% of the URLs associated with a positive
claim and, more importantly, 70% of non-credible websites linked to false claims were correctly
identified. This helps to minimize the number of non-credible information providers that contain
information that supports a false claim.

14 By four human annotators. In the event of a tie we exclude the URL from the final dataset.
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(a) HTML2Seq (F1): Microsoft dataset 2-classes
(b) HTML2Seq (F1-measure): Microsoft dataset 3-
classes

(c) HTML2Seq (F1): C3 Corpus 2-classes (d) HTML2Seq (F1): C3 Corpus 3-classes

Figure 4.2: HTML2Seq (F1-measure) over different padding sizes.

4.5 Discussion

Although the relevance of the research topic, very few work have proposed open work prototypes
and/or models to perform credibility evaluation. The available datasets and metadata are
scarce resources. In fact, reproducibility is still one of the cornerstones of science and scientific
projects [144]. In the following, we list some relevant issues encountered while performing our
experiments:

Experimental results: this gap is also observed w.r.t. results reported by [99], which is
acknowledged by [100], despite numerous attempts to replicate experiments. Authors [100]
believe this is due to the lack of parameters and hyperparameters explicitly cited in the previous
research [99].

Microsoft dataset: presents inconsistencies. Although all the web pages are cached (in theory)
in order to guarantee a deterministic environment, the dataset - in its original form15 - has a
15 The original dataset can be downloaded from http://research.microsoft.com/en-us/projects/
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Microsoft Dataset
(Gradient Boosting, K = 75)

Class Precision Recall F1

low 0.567 0.447 0.500
medium 0.467 0.237 0.315
high 0.714 0.916 0.803
weighted 0.626 0.662 0.626
micro 0.662 0.662 0.662
macro 0.583 0.534 0.539

C3 Corpus
(AdaBoost, K = 100)

Class Precision Recall F1

low 0.143 0.031 0.051
medium 0.410 0.177 0.247
high 0.701 0.916 0.794
weighted 0.583 0.660 0.598
micro 0.660 0.660 0.660
macro 0.418 0.375 0.364

Table 4.2: Text+HTML2Seq features (3-class): best classifier performance

Microsoft Dataset

model K R2 RMSE MAE EVar

SVR 3 0.232 0.861 0.691 0.238
Ridge 3 0.268 0.841 0.683 0.269

C3 Corpus

model K R2 RMSE MAE EVar

SVR 25 0.096 0.939 0.739 0.102
Ridge 25 0.133 0.920 0.750 0.134

Table 4.3: Text+HTML2Seq: regression measures (5-class). Selecting top K lexical features.

FactBench (Credibility Model)

label claims sites
true 750 14.638
false 750 13.186
- 1500 27.824

Table 4.4: FactBench: Web sites collected from claims.

credibility/
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(a) Textual Features. (b) Textual+HTML2Seq (best padding) Features.

Figure 4.3: Evaluating distinct classifiers in the 2-classes setting (Microsoft dataset): increasing almost
+3% (from 0.745 to 0.772) on average F1 (Gradient Boosting). Feature selection performed with ANOVA
SelectKBest method, K=0.25.

FactBench (Sample - Human Annotation)

label claims sites non-cred cred
true 5 96 57 39
false 5 80 48 32
- 10 186 105 71

FactBench (Sample - Credibility Model)

label non-cred % cred %
true 40 0.81 31 0.79
false 34 0.70 24 0.75

Table 4.5: FactBench Dataset: analyzing the performance of the credibility model in the fact-checking
task.

number of problems, as follows: (a) web pages not physically cached (b) URL not matching
(dataset links versus cached files) (c) Invalid file format (e.g., PDF). Even though these issues
have also been previously identified by related research [99] it is not clear what the URLs for
the final dataset (i.e., the support) are nor where this new version is available.

Contradictions: w.r.t. the divergence of the importance of visual features have drawn our
attention [93] and [88, 92] which corroborate to the need of more methods to solve the web
credibility problem, in practice. The main hypothesis that supports this contradiction relies on
the fact that feature-based credibility evaluation eventually ignites cat-and-mouse play between
scientists and people interested in manipulating the models. In this case, reinforcement learning
methods pose as a good alternative for adaptation.
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Proposed features: The acknowledgement made by authors in [100] that “solutions based
purely on external APIs are difficult to use beyond scientific application and are prone for
manipulation” confirming the need to exclude social features from research of [99] contradicts
itself. In the course of experiments, authors mention the usage of all features proposed by [99]:
“Table 1 presents regression results for the dataset described in [13] in its original version (37
features) and extended with 183 variables from the General Inquirer (to 221 features)”.

Therefore, due to the number of relevant issues presented w.r.t. reproducibility and contradiction
of arguments, the comparison to recent research becomes more difficult. In this work, we solved
the technical issues in the Microsoft dataset and released a new fixed version16. Also, since we
need to perform evaluations in a deterministic environment, we cached and released the websites
for the C3 corpus. After scraping, 2.977 URLs were used (out of 5.543). Others were left due
to processing errors (e.g., 404). The algorithms and its hyperparameters and further relevant
metadata are available through the MEX Interchange Format [145]. By doing this, we provide a
computational environment to perform safer comparisons, being engaged in recent discussions
about mechanisms to measure and enhance the reproducibility of scientific projects [146].

4.6 Summary

In this work, we discuss existing alternatives, gaps and current challenges to tackle the problem
of web credibility. More specifically, we focused on automated models to compute a credibility
factor for a given website. This research follows the former studies presented by [99, 100] and
presents several contributions. First, we propose different features to avoid the financial cost
imposed by external APIs in order to access website credibility indicators. This issue has become
even more relevant in the light of the challenges that have emerged after the shutdown of Google
PageRank, for instance. To bridge this gap, we have proposed the concept of bag-of-tags. Similar
to [100], we conduct experiments in a highly-dimensional feature space, but also considering web
page metadata, which outperforms state of the art results in the 2-classes and 5-classes settings.
Second, we identified and fixed several problems on a gold standard dataset for web credibility
(Microsoft), as well as indexed several web pages for the C3 Corpus. Finally, we evaluate the
impact of the model in a real fact-checking use-case. We show that the proposed model can help
in belittling and supporting different websites that contain evidence of true and false claims,
which helps the very challenging fact verification task. As future work, we plan to explore deep
learning methods over the HTML2Seq module.

16 more information at the project website: https://github.com/DeFacto/WebCredibility
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CHAPTER 5

DeFacto: An Automated Fact-Checking
Framework

This chapter is dedicated to solve the core challenge of this thesis, i.e., to compute the level of
veracity for a given claim. The content of this chapter is based on the publications [31, 147–150].

The results of this chapter provide an answer to the following research question:

RQ1: How to determine the veracity of a given claim?

First, in Section 5.1, we present a motivating example illustrating the problem of fact-checking.
To address research question RQ1, we consistently developed DeFacto, a fact-checking framework
firstly proposed by Lehmann et al [151].

Next, Section 5.3 highlights the problem and describes the solution: DeFacto, a fact-checking
framework able to perform claim validation over both structured and unstructured claims.
Afterwards, a comprehensive evaluation of the DeFacto approach and analysis of the obtained
results is presented in Section 5.3.3. Next, we extend the framework to perform verification
over natural language claims (5.4). Last, but not least, in Section 5.5 we dissect methods to
improve performance of the most critical component of an automated fact-checking approach:
the evidence retrieval component. Finally, Section 5.6 presents the closing remarks of this
chapter. We summarize the contributions of this chapter as follows:

• The development and extension of DeFacto, a RDF fact-checking framework .

• The extension of DeFacto to increase its coverage on the validation task w.r.t. the allowed
predicates.

• The extension of DeFacto to support triple ranking.

• The improvement of its architecture w.r.t. new evidence extraction methods.

• An empirical evaluation to assess the effectiveness of DeFacto for the fact-checking task in

51



Chapter 5 DeFacto: An Automated Fact-Checking Framework

the most important fact-checking challenge. Experiments performed validate the viability
of the framework on real-use cases scenarios.

5.1 Automating The Fact-Checking Task

Given a claim, the task of fact-checking consists at defining whether what is being said is close
to false or true, based on external evidence which supports the decision. The automation of
this process involves a pipeline which performs the task by (often) assigning a credibility score.
Most recent ideas in fact-checking revolve around automation of the human (or journalist)
fact-checking process. Currently, this is broadly translated into a 3-step process which involves
1) collecting articles about the claim, 2) selecting prospective evidence and finally 3) performing
a final judgment.

For the structured fact-validation task, we consider a claim as follows: a claim c existing in a
Knowledge Base K (denoted as c ∈ K) is represented by a triple (s, p, o), where s is the subject
uri, p is the predicate (or relation) uri and o is the object uri.

Claim: “dbr:Albert_Einstein”,“dbo:award”,“dbr:Nobel_Prize_in_Physics”
Evidence: “The Nobel Prize in Physics 1921 was awarded to Albert Einstein for his
services to Theoretical Physics, and especially for his discovery of the law of the...”

For the unstructured fact-validation task, we consider a claim as a sentence represented in
natural language.

Claim : “That ’70s Show is a sitcom”
Evidence: “That ’70s Show is an American television period sitcom that originally aired
on Fox from August 23, 1998, to May 18, 2006. The series focused on the lives of a group
of teenage friends living in the fictional suburban town of Point Place, Wisconsin, from
May 17, 1976, to December 31, 1979.”

Thorne et al. in their baseline on FEVER 2018 [152] give a good summary of a standard
automated fact-checking pipeline. In general, this automation is achieved by training the
machine learning models which benefit from information retrieval method and existing annotated
datasets. This pipeline is broken down into the following steps:

1. Document Retrieval: a first step focuses on obtaining relevant documents [50, 59]. A
document retrieval module selects documents from a large corpus that are related to a given claim.
The relatedness is determined by selecting a matching metric. Throne et al. [58] uses DrQA
[153] for document retrieval that selects documents from Wikipedia1 corpus based on TF-IDF.
An alternative approach could be using web search APIs [12, 31, 60, 154, 155] (e.g., Bing API2)
for collecting related webpages from the internet. This approach is a better approximation of
1 https://www.wikipedia.org/
2 https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
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the human fact-checking process, since human fact-checkers do not restrict their research to a
single corpus (like Wikipedia).

2. Evidence Selection: The next step of the pipeline is to select potential evidences from
the documents or collection of sentences that we retrieved in the first step. This step is called
evidence selection or proof extraction. This component does not differentiate a piece of evidence
that refutes the claim, from one that supports it. The main goal at this phase is to collect
sentences that could potentially be used to run inference on the veracity of the claim.

3. Source Classification: This step, although not strictly necessary in order to perform the
task, has major importance in order to weight all of the extracted claims (proofs) according to
the trustworthiness of hubs and authorities [60, 156].

4. Claim Classification: The last step is called claim classification. As the name suggests, in
this step the model makes final decision on the claim by taking all the collected information
into account [52] and produces scores for each evidence, and then makes the final decision on
aggregation of all the scores, [58] do textual entailment on the claim and a concatenation of all
pieces of evidence.

In the following we introduce our modules to perform fact-checking over both structured as well
as unstructured claims.

5.2 Automation Challenges

On the computational side, there are different fundamental challenges w.r.t. the execution
of the underlying tasks in this pipeline. We extend the definition of [15] (items 1 and 4) by
highlighting two more challenge (items 2 and 3) we argue that are crucial to bridge the gap
between automated fact-checking approaches and human fact-checkers, as follows:

1. to understand what one says [15] (NLU)

2. to have the ability to generate equivalent arguments and counter-arguments (NLG)

3. to have the ability to distinguish credible and non-credible information sources (Credibility)

4. to have the ability to obtain plausible evidence [15] (Argumentation Mining)

First, algorithms need to have the ability to understand what is being said. This refers to a
specific research area called Natural Language Understanding (NLU), which comprehends several
NLP sub-tasks, such as Named Entity Recognition (NER), and Part-of-speech (POS), for instance.
Although significant leaps and bounds have been made in this context, these technologies are
far from human performance, especially in more noisy contexts, such as microblogs [157].

Second, algorithms need to process similar content accordingly, i.e., to collect equivalent and
related content which are potentially useful in the fact-checking process. This is part of a branch
in NLP called Natural Language Generation (NLG) [158]. This is of utmost importance in
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order to have a broader coverage when checking claims. In structured fact-checking [31], this
is a crucial step towards interpreting and transforming the input claim into natural language.
Moreover, in free text, for instance, the sentences “he was born in USA.” and “he is a Yankee.”
share the same meaning. Given a claim “he is American.”, algorithms should be capable to
perceive that, in this context, “USA” and “Yankee” are synonyms for “American”, thus the
information extraction phase should generate similar content automatically in order to increase
recall.

Third, the level of trustworthiness of authorities and sources must be checked and taken into
account. This has been studied in a topic known as (Web) Credibility [156]. This step is
important both in assessing the credibility of sources isolated, as well as when confronting
opposite claims made by two or more authorities [159]. For instance, consider a scenario of
researching information about dietary which potentially helps in certain disease treatment.
One may find websites from reputable agencies (e.g., NCI USA) alongside sites from private
organizations which sell dietary supplements (which may serve as advice hub whilst pointing to
their own products). Discerning which sources are trustworthy and which are not is a crucial
step forward automated fact-checking systems [156].

Finally, besides collecting sufficient evidence for asserting a given claim, explicit and implicit
relations among extracted arguments (as well as possible counter-arguments) should (ideally) be
labeled and linked. This is studied in another branch of NLP called Argumentation Mining [160].
The generated graph allows achieving a richer level of metadata in order to better perform the
final fact-checking task [161]. In the following section, we categorize and introduce existing
fact-checking approaches.

5.3 The DeFacto Approach: Validating RDF Triples

DeFacto is the only open-source approach which supports simple counter-evidence searching3 and
also implements metrics to compute the trustworthiness of web sources. The major shortcoming
of the system is its dependence on search engines, leading to a higher cost of deployment.
However, this disadvantage is common to all triple validation architectures. Another major
disadvantage is its dependence on predicate expansion methods. Current approaches implement
either 1) hard-coded verbalization and rules (fixed or ontology-based), which naturally restricts
scalability; 2) use distant supervision methods which very often have a sub-optimal precision; or
3) use external linguistic corpora (e.g., lexical databases) to obtain similar words (e.g., synonyms)
to a given predicate. It can be observed that these methods are rather crude and hence the
verbalizations generated are of a low quality, making verbalization an unsolved task. In the
following sections, we describe each task.

3 we do not rely on complex arguments, but rather in simple evidence that can potentially negate an input claim.
For instance, “James was born in Seattle” as a counter-evidence to the input claim “James, born, Paris
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5.3.1 Proposed Solution

Given an input claim c, we first perform language verbalisation to generate similar claims, as
follows:

1. Natural Language Generation: the function γ(s, p, o,L) takes as input a triple (s, p, o)
and the set of languages L and returns a matrix V containing a set of triples. The function γ is
calculated as follows:

γ(s, p, o,L) = [φ(s, l1) × Γ(p, l1) × φ(o, l1)] ∪ [φ(s, l2) × Γ(p, l2) × φ(o, l2)], · · · ,∪[φ(s, ln) ×
Γ(p, ln) × φ(o, ln)] where:

1. φ(x, li) returns a set of m labels (x1, x2, ..., xm) that are similar to the label of the resource
x (s ∈ S and o ∈ O) which is extracted from the rdfs:labels predicate for a given
language li ∈ L.

2. Γ(p, li) returns a set of verbalized patterns P for a given predicate p and a language li ∈ L.

The function γ(s, p, o,L) returns a matrix V with number of elements (S × P ×O × L).

2. Information Retrieval: Afterwards a set of search engine queries (we call themmetaqueries)
are formalized by concatenating each ithterm (v1

i , v
2
i , v

3
i ) ∈ V without specific search engine

parameters (i.e., excepting from the option market which defines the location of the retrieved
websites and is defined by l, no further parameter is set). The complete retrieval process is
carried out by issuing these several queries (the total number of elements of V ) to a regular
search engine. In the next step, the highest ranked web pages associated to each metaquery are
retrieved (evidence sources candidates).

3. Web Page Evaluation: Once all the web pages have been retrieved, they are processed
further, as follows: a) HTML content is extracted; b) fact confirmation methods are applied
to the content extracted (in essence, the algorithm decides whether the web page contains a
natural language formulation of the input fact). In addition to fact confirmation, the system
computes different indicators for the trustworthiness of a web page4.

Figure 5.1 shows the DeFacto pipeline in a nutshell, from the verbalisation stage to the proof
extraction phase.

4. Final score: In addition to finding and displaying sources and their indicators, DeFacto
also outputs a general discrete confidence value for the input fact that ranges between 0 and
1.0. DeFacto uses features from textual evidence combined with trustworthiness measures to
compute the score [31]. It indicates the confidence level of the model for a given input claim.
The higher the value, the more likely the input claim is true.

4 Topic Terms, Topic Majority in the Web, Topic Majority in Search Results and Topic Coverage
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Relation

Verbalization

Verbalization
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Metaquery Proof 
Proof 

Metaquery

...

Relation

excerpt of texts

Lorem ipsum dolor sit 
amet, consectetur 

adipiscing elit, sed do 
eiusmod tempor incididunt 
ut labore et dolore magna 
aliqua. Ut enim ad minim 

veniam, quis nostrud 
exercitation

pattern in 
between

Figure 5.1: The Proof Extraction pipeline (Pattern Verbalization and Proof Searching): extracting excerpt
of texts (proof ) which represent a verbalization for a given triple.

5.3.2 Features

In order to obtain an estimate of the confidence that there is sufficient evidence to consider the
input triple to be true, we chose to train a supervised machine learning algorithm. Similar to
the above presented classifier for fact confirmation, this classifier also requires computing a set
of relevant features for the given task. In the following, we describe those features and why we
selected them.

First, we extend the score of single proofs to a score of web pages as follows: When interpreting
the score of a proof as the probability that a proof actually confirms the input fact, then we
can compute the probability that at least one of the proofs confirms the fact. This leads to the
following stochastic formula5, which allows us to obtain an overall score for proofs scw on a web
page w:

scw(w) = 1−
∏

pr∈prw(w)
(1− fc(pr)) . (5.1)

In this formula, fc (fact confirmation) is the classifier which takes a proof pr as input and
returns a value between 0 and 1. prw is a function taking a web page as input and returning all
possible proofs contained in it.

Combination of Trustworthiness and Textual Evidence In general, we assume that the trust-
worthiness of a web page and the textual evidence found in it are orthogonal features. Naturally,
web pages with high trustworthiness and a high score for its proofs should increase our confidence
in the input fact. We thus combine trustworthiness and textual evidence as features for the
underlying machine learning algorithm. This is achieved by multiplying both criteria and then

5 To be exact, it is the complementary even to the case that none of the proofs do actually confirm a fact.
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using their sum and maximum as two different features:

Ffsum(t) =
∑

w∈s(t)
(f(w) · scw(w)) (5.2)

Ffmax(t) = max
w∈s(t)

(f(w) · scw(w)) (5.3)

In this formula, f can be instantiated by all three trustworthiness measures: topic majority
on the the Web (tmweb), topic majority in search results (tmsr) and topic coverage (tc). s is a
function taking a triple t as argument, executing the search queries and returning a set of web
pages. Using the formula, we obtain 6 different features for our classifier, which combine textual
evidence and different trustworthiness measures.

Other Features In addition to the above described combinations of trustworthiness and fact
confirmation, we also defined other features:

1. The total number of proofs found.

2. The total number of proofs found above a relevance threshold of 0.5. In some
cases, a high number of proofs with low scores is generated, so the number of high scoring
proofs may be a relevant feature for learning algorithms. The thresholds mimics a simple
classifier.

3. The total evidence score, i.e., the probability that at least one of the proofs is correct,
which is defined analogously to scw above:

1−
∏

pr∈prt(t)
(1− fc(pr)) . (5.4)

where prt(t) is a function returning all proofs found for t from all web pages.

4. The total evidence score above a relevance threshold of 0.5. This is an adaption
of the above formula, which considers only proofs with a confidence higher than 0.5.

5. The total hit count, i.e., search engine’s estimate of the number of search results for an
input query. The total hit count is the sum of the estimated number of search results for
each query send by DeFacto for a given input triple.

6. A domain and range verification: If the subject of the input triple is not an instance
of the domain of the property of the input triple, this violates the underlying schema,
which should result in a lower confidence in the correctness of the triple. This feature is
0 if both domain and range are violated, 0.5 if exactly one of them is violated and 1 if
there is no domain or range violation. At the moment, we are only checking whether the
instance is asserted to be an instance of a class (or one of its subclasses) and do not use
reasoning for performance reasons.

7. Statistical triple evidence: Usually certain classes have a higher probability to cooccur
as type of subject and object in a given triple, e.g., there might be a higher probability that
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instances of dbo:Person and dbo:Film are related via triples than for instance dbo:Insect
and dbo:Film. This observation also holds for the cooccurence of classes and properties,
both for the types in subject and object position. This kind of semantic relatedness allows
for computing a score for the statistical evidence STE of a triple t = (s, p, o) by

STE(t) = max
cs∈cls(s)
os∈cls(o)

(PMI(cs, co) + PMI(cs, p) + PMI(p, co)) (5.5)

where cls denotes the types of the resource and PMI denotes the Pointwise Mutual
Information, which is a measure of association and defined by

PMI(a, b) = log

(
N · occ(a, b)

occ(a) · occ(b)

)
(5.6)

using occ(e) as number of occurrences of a given entity e in a specific position of a triple
and N as the total number of triples in the knowledge base.

5.3.3 Experimental Setup

The dataset used in our experiments is named FactBench, a multilingual dataset for the
evaluation of fact validation algorithms. All facts in FactBench are scoped with a timespan
in which they were true, enabling the validation of temporal relation extraction algorithms.
FactBench currently supports English, German and French. The current release V1 is freely
available (MIT License) at http://github.com/AKSW/FactBench. FactBench consists of a set
of RDF models. Each one of the 1500 models contains a singular fact and the time period
in which it holds true. Each fact was checked manually by three independent human quality
raters. In addition, the FactBench suite contains the SPARQL and MQL queries used to query
Freebase6 and DBpedia, a list of surface forms for English, French and German as well as the
number of incoming and outgoing links for the English wikipedia pages. FactBench provides
data for 10 well-known relations. The data was automatically extracted from DBpedia and
Freebase. A detailed description on what facts the benchmark contains is shown in Figure
5.2. The granularity of FactBench time information is year. This means that a timespan is an
interval of two years, e.g., 2008 - 2012. A time point is considered as a timespan with the same
start and end year, e.g., 2008 - 2008.

FactBench is divided in a training and a testing set (of facts). This strict separation avoids the
overfitting of machine learning algorithms to the training set, by providing unseen test instances.

The aim of our evaluation was three-fold. We wanted to quantify how well/much a) DeFacto
can distinguish between correct and wrong facts; b) DeFacto is able to find correct time points
or time periods for a given fact and if the year frequency distribution (1900 vs. 2013) does
influence the accuracy; and c) the use of multi-lingual patterns boost the results of DeFacto
with respect to fact validation and date detection. In the following, we describe how we set up
our evaluation system, present the experiments we devised and discuss our findings.
6 Since there are no incremental releases from Freebase we include the crawled training data
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Figure 5.2: FactBench provides data for 10 relations. The data was automatically extracted from
Wikipedia (DBpedia respectivly) and Freebase

In a first step, we computed all feature vectors for the training and test sets. DeFacto relies
heavily on web requests, which are not deterministic (i.e., the same search engine query does
not always return the same result). To achieve deterministic behavior and to increase the
performance as well as reduce load on the servers, all web requests were cached. The DeFacto
runtime for an input triple was on average slightly below four seconds per input triple7 when
using caches.

We stored the features in the ARFF file format and employed the WEKA machine learning
toolkit8 for training different classifiers. In particular, we were interested in classifiers which can
handle numeric values and output confidence values. Naturally, confidence values for facts such
as, e.g., 95%, are more useful for end users than just a binary response on whether DeFacto
considers the input triple to be true, since they allow a more fine-grained assessment. We
selected popular machine-learning algorithms satisfying those requirements. We focused our
experiments on the 10 relations from FactBench. The system can be extended easily to cover
more properties by extending the training set of BOA to those properties. Note that DeFacto
itself is also not limited to DBpedia or Freebase, i.e., while all of its components are trained on
these datasets, the algorithms can be applied to arbitrary URIs and knowledge bases.

5.3.4 Fact Scoring

For this evaluation task, we used each FactBench training set to build an independent classifier.
We then used the classifier on the corresponding test set to evaluate the built model on unseen
data. The results on this task can be seen in Table 5.1. The J48 algorithm, an implementation
of the C4.5 decision tree – shows the most promising results. Given the challenging tasks,
F-measures up to 84.9% for the mix test set appear to be very positive indicators that DeFacto
can be used to effectively distinguish between true and false statements, which was our primary
7 The performance is roughly equal on server machines and notebooks, since the web requests dominate.
8 http://www.cs.waikato.ac.nz/ml/weka/
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Table 2

English 55.5 %

Russian 6.1 %

German 5.9 %

Japanese 4.9 %

Spanish 4.5 %

French 3.9 %

Chinese 3.8 %

Portuguese 2.3 %

Other 13.1 %
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Table 1

Train Train (ml) Test Test (ml) Test (en)

award 74 98.6666666666667 75 100 72 96

birth 69 92 69 92 66 88

death 73 97.3333333333333 72 96 68 90.6666666666667

foundation 63 84 52 69.3333333333333 59 78.6666666666667

leader 72 96 73 97.3333333333333 66 88

team 70 93.3333333333333 67 89.3333333333333 64 85.3333333333333

publication 73 97.3333333333333 69 92 65 86.6666666666667

spouse 72 96 71 94.6666666666667 68 90.6666666666667

starring 70 93.3333333333333 58 77.3333333333333 61 81.3333333333333

subsidiary 63 84 63 84 60 80
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Table 3

Multi-Lingual English

< 1890 & 30 & 0 & 0.0 < 1890 & 27 & 3 & 0.1

1900 & 13 & 0 & 0.0 1900 & 13 & 0 & 0.0

1910 & 14 & 0 & 0.0 1910 & 14 & 0 & 0.0

1920 & 16 & 1 & 0.0 1920 & 16 & 1 & 0.0

1930 & 13 & 2 & 0.1 1930 & 12 & 3 & 0.1

1940 & 16 & 0 & 0.0 1940 & 14 & 2 & 0.1

1950 & 26 & 1 & 0.0 1950 & 24 & 3 & 0.1

1960 & 34 & 5 & 0.2 1960 & 33 & 6 & 0.2

1970 & 64 & 9 & 0.3 1970 & 61 & 12 & 0.3

1980 & 70 & 11 & 0.3 1980 & 68 & 13 & 0.4

1990 & 96 & 17 & 0.5 1990 & 95 & 18 & 0.5

2000 & 242 & 33 & 1.0 2000 & 236 & 38 & 1.0

2010 & 35 & 2 & 0.1 2010 & 36 & 1 & 0.0

0

0.5

1

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Table 3-1

Multi-Lingual English

< 1890 & 41 & 20 & 0.672 < 1890 & 34 & 27 & 0.557

1900 & 15 & 5 & 0.750 1900 & 14 & 6 & 0.700

1910 & 20 & 11 & 0.645 1910 & 17 & 14 & 0.548

1920 & 21 & 12 & 0.636 1920 & 20 & 14 & 0.588

1930 & 20 & 9 & 0.690 1930 & 14 & 15 & 0.483

1940 & 21 & 4 & 0.840 1940 & 15 & 10 & 0.600

1950 & 32 & 11 & 0.744 1950 & 32 & 11 & 0.744

1960 & 46 & 28 & 0.622 1960 & 40 & 34 & 0.541

1970 & 92 & 44 & 0.676 1970 & 78 & 58 & 0.574

1980 & 93 & 54 & 0.633 1980 & 83 & 64 & 0.565

1990 & 136 & 79 & 0.633 1990 & 115 & 100 & 0.535

2000 & 342 & 181 & 0.654 2000 & 280 & 242 & 0.536

2010 & 44 & 18 & 0.710 2010 & 40 & 22 & 0.645

0

0.1
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0.5
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Table 3-1-1
Jahr correct wrong total modified 

wald
Multi-
Lingual

Jahr correct wrong total modified 
wald

English

< 1890 29 1 30 0.0946 0.967 < 1890 27 3 30 0.1188 0.900
1900 13 0 13 0.1164 1.000 1900 13 0 13 0.1164 1.000
1910 14 0 14 0.1098 1.000 1910 14 0 14 0.1098 1.000
1920 17 0 17 0.0937 1.000 1920 16 1 17 0.1490 0.941
1930 15 0 15 0.1038 1.000 1930 12 3 15 0.1983 0.800
1940 16 0 16 0.0985 1.000 1940 14 2 16 0.1752 0.875
1950 25 1 26 0.1066 0.962 1950 24 3 27 0.1292 0.889
1960 37 2 39 0.0863 0.949 1960 33 6 39 0.1162 0.846
1970 69 4 73 0.0596 0.945 1970 61 12 73 0.0861 0.836
1980 76 5 81 0.0582 0.938 1980 68 13 81 0.0810 0.840
1990 106 7 113 0.0482 0.938 1990 95 18 113 0.0682 0.841
2000 256 19 275 0.0309 0.931 2000 236 38 274 0.0412 0.861
2010 35 2 37 0.0903 0.946 2010 36 1 37 0.0790 0.973

0.75

0.82

0.89

0.96

1.03

1.1

< 18901900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual English

Figure 5.3: Accuracy results for learned J48mix classifier on correct subset of the test set. The abbreviation
ml indicates that multi-lingual (English, French, German) search results and surface forms were used, en
is limited to English only.

Domain Range
C P R F1 AUC RMSE C P R F1 AUC RMSE

J48 89.7% 0.898 0.897 0.897 0.904 0.295 90.9% 0.909 0.909 0.909 0.954 0.271
SimpleLogistic 89.0% 0.890 0.890 0.890 0.949 0.298 88.0% 0.880 0.880 0.880 0.946 0.301

NaiveBayes 81.2% 0.837 0.812 0.808 0.930 0.415 83.3% 0.852 0.833 0.830 0.933 0.387
SMO 85.4% 0.861 0.854 0.853 0.854 0.382 83.3% 0.852 0.833 0.830 0.833 0.409

DomainRange Property
C P R F1 AUC RMSE C P R F1 AUC RMSE

J48 91.0% 0.910 0.910 0.910 0.953 0.270 70.8% 0.786 0.708 0.687 0.742 0.427
SimpleLogistic 88.9% 0.889 0.889 0.889 0.950 0.296 64.9% 0.653 0.649 0.646 0.726 0.460

NaiveBayes 84.5% 0.861 0.845 0.843 0.935 0.380 61.3% 0.620 0.613 0.608 0.698 0.488
SMO 83.6% 0.853 0.836 0.834 0.836 0.405 64.6% 0.673 0.646 0.632 0.646 0.595

Random Mix
C P R F1 AUC RMSE C P R F1 AUC RMSE

J48 90.9% 0.910 0.909 0.909 0.933 0.283 84.9% 0.850 0.849 0.849 0.868 0.358
SimpleLogistic 87.8% 0.879 0.878 0.878 0.954 0.293 80.2% 0.810 0.802 0.799 0.880 0.371

NaiveBayes 84.1% 0.851 0.841 0.839 0.942 0.375 78.7% 0.789 0.787 0.787 0.867 0.411
SMO 84.3% 0.864 0.843 0.841 0.843 0.396 76.9% 0.817 0.769 0.756 0.754 0.480

Table 5.1: Classification results for FactBench test sets (C = correctness, P = precision, R = recall, F1 =
F1 Score, AUC = area under the curve, RMSE = root mean squared error).

evaluation objective. In general, DeFacto also appears to be stable against the various negative
test sets given the F1 values ranging from 89.7% to 91% for the domain, range, domainrange
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and random test set. In particular, the algorithms with overall positive results also seem less
affected by the different variations. On the property test set, in our opinion the hardest task, we
achieved an F1 score of 68.7%. Due to the results achieved, we use J48 as the main classifier
in DeFacto and, more specifically, its results on the mix sets as this covers a wide range of
scenarios. We observe that the learned classifier has an error rate of 3% for correct facts, but
fails to classify 55.3% of the false test instances as incorrect.

We also performed an evaluation to measure the performance of the classifier for each of the
relations in FactBench. The results of the evaluation are shown in Figure 5.3. We used the
precision of the main classifier (J48 on the mix models) on the correct subset for this figure.9

The average precision for all relations is 89.2%. The worst precision for an individual relation,
i.e., 69%, is achieved on the foundation relation, which is by far the least frequent relation on
the Web with respect to search engine results.

5.3.5 Date Scoring

To estimate time scopes, we first needed to determine appropriate parameters for this challenging
task. To this end, we varied the context size from 25, 50, 100 and 150 characters to the left and
right of the proofs subject and object occurrence. Additionally, we also varied the used languages
which is discussed in more detail in Section 5.3.6. The final parameter in this evaluation was the
normalization approach. We used the occurrence (number of occurrences of years in the context
for all proofs of a fact), the domain and range approach. We performed a grid search for the given
parameters on the correct train set. As performance measures we choose precision10 P (shown
in Equation 5.7), recall R (shown in Equation 5.8) and F-measure, defined as F1 = 2 ∗ P∗R

P +R .

P = |relevant years ∩ retrieved years|
|retrieved years|

(5.7)

R = |relevant years ∩ retrieved years|
|relevant years|

(5.8)

If for example, for a single fact the correct time period is 2008 (a time point), the F1 score is
either 0 or 1. However, if the correct time period is 2011 – 2013 and the retrieved results are
2010 – 2013, we would achieve a precision P = 3

4 (three of the four retrieved years are correct)
and a recall R = 1 (all of the relevant years were found), resulting in an F1 score of 6

7 .

The final results for the train set are shown in Table 5.2. Please note that it is out of scope of this
paper to decide whether a given property requires a time period or a time point. As expected,
facts with time point show a higher F1 measure as facts with time period. Calculating the average
F1 score for the individual relations leads to F1 = 70.2% for time points and F1 = 65.8%F1 for
relations associated with time periods. The relations performing well on fact scoring also appear
to be better suited for year scoping, e.g., the award relation. In general, the training results
show that the domain normalization performs best and the optimal context size varies for each
relation. We now applied the learned parameters for each relation on the FactBench correct test
9 We are using the correct subset, since some negative examples are generated by replacing properties. For those,
it would not be clear, which property they refer to.

10 Finding no year candidate for a given fact only influences the recall.
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subset. The results are shown in Table 5.3. The average F1 score decreases by 2.5% to 67.7%
for time points and 4.6% to 61.2% for time period relations compared to the train set. Since it
is not possible to determine a correct time point or time period for all facts (the context does
not always include the correct year(s)) we also calculated DeFacto’s accuracy. We define the
accuracy acc for a time period tp as follows:

acc(tp) =
{

1 if tpfrom is correct ∧ tpto is correct

0 otherwise.
(5.9)

The average accuracy for time point (from and to are equal) relations is 76%. Since for time
periods we have to match both start and end year, which aggravates this task significantly, we
achieved an accuracy of 44% on this dataset. Finally, we wanted to see if DeFacto’s performance
is influenced by how recent a fact is. We grouped the time intervals in buckets of 10 years
and plotted the proportion of correctly classified facts within this interval. We did this for the
multilingual as well as the English-only setting of DeFacto. The results are shown in Figure 5.4.
In general, all values are between 80% and 100% for the English version and between 93% and
100% for the mulit-lingual version. While there is some variation, no obvious correlation can
be observed, i.e., DeFacto appears to be able to handle recent and older facts. In this figure,
it is interesting to note that the multilingual setting appears to be more stable and perform
better. We performed a paired t-test using all 750 facts and obtained that the improvement of
the multilingual setting is statistically very significant.
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Set C P R F MRR P75 A C P R F MRR P75 A C P R F MRR P75 A

awarden 25 100 98.7 99.3 100 74 100 25 98.6 97.3 98 100 74 98.6 100 100 98.7 99.3 100 74 100
awardml 25 100 98.7 99.3 100 74 100 25 100 98.7 99.3 100 74 100 25 100 98.7 99.3 100 74 100

birthen 25 83.3 80 81.6 92.9 69 87 50 91.7 88 89.8 91.8 70 94.3 50 76.4 73.3 74.8 91.8 70 78.6
birthml 50 93.2 92 92.6 96.6 73 94.5 25 94.6 93.3 94 96.2 73 95.9 25 89.2 88 88.6 96.2 73 90.4

deathen 50 74.3 73.3 73.8 85.7 69 79.7 25 61.1 58.7 59.9 86.6 68 64.7 25 80.6 77.3 78.9 86.6 68 85.3
deathml 25 77.3 77.3 77.3 86.8 75 77.3 25 66.7 66.7 66.7 86.8 75 66.7 25 84 84 84 86.8 75 84

foundationen 150 14.1 12 12.9 56.6 28 32.1 150 17.2 14.7 15.8 56.6 28 39.3 150 25 21.3 23 56.6 28 57.1
foundationml 25 16.4 13.3 14.7 57.3 23 43.5 150 21.7 20 20.8 46.7 41 36.6 150 26.1 24 25 46.7 41 43.9

publicationen 100 58.3 56 57.1 77.1 63 66.7 150 60.3 58.7 59.5 72.8 67 65.7 100 51.4 49.3 50.3 77.1 63 58.7
publicationml 25 70.8 68 69.4 86 68 75 150 74.7 74.7 74.7 79.4 72 77.8 50 60 60 60 81.8 70 64.3

starringen 25 64.4 38.7 48.3 90.4 35 82.9 50 67.9 48 56.3 83.7 40 90 100 59.3 46.7 52.2 75.9 46 76.1
starringml 25 59.6 45.3 51.5 87.5 44 77.3 50 58.1 48 52.6 80.4 48 75 100 62.7 56 59.2 75.5 57 73.7

subsidiaryen 100 63.5 44 52 81.9 45 73.3 50 63 38.7 47.9 86.5 39 74.4 150 64.8 46.7 54.3 80.7 46 76.1
subsidiaryml 25 70.8 45.3 55.3 87.6 43 79.1 25 68.8 44 53.7 87.6 43 76.7 25 70.8 45.3 55.3 87.6 43 79.1

spouseen 100 67.5 68 67.7 75 53 50.9 25 75.5 64.4 69.5 55.6 37 78.4 25 77.1 65.2 70.6 55.6 37 78.4
spouseml 25 69.6 66.5 68 70.4 49 59.2 25 70.8 65.6 68.1 70.4 49 55.1 25 75.2 67.2 71 70.4 49 61.2

nbateamen 100 54.2 47.4 50.6 68.6 44 34.1 100 57.8 47 51.9 68.6 44 34.1 150 59.1 48.4 53.2 61.1 53 28.3
nbateamml 50 60.2 58.1 59.1 69.1 58 25.9 100 62.1 55.4 58.6 58.4 63 23.8 25 65.2 58.7 61.8 67.8 53 32.1

leaderen 100 42.6 65.1 51.5 70.7 55 41.8 100 42.6 63.1 50.9 70.7 55 41.8 100 46.7 64.4 54.1 70.7 55 43.6
leaderml 100 53.6 75.4 62.6 72.6 72 44.4 100 53.3 75.6 62.5 72.6 72 44.4 100 55.9 76.7 64.7 72.6 72 45.8

timepointen 25 61 48 53.7 86.7 277 78 25 60.2 47.3 53 86.7 277 76.9 100 57.8 50 53.6 78.6 317 71
timepointml 25 65.9 56.7 60.9 86.8 326 78.2 25 64.1 55.1 59.3 86.8 326 76.1 150 61.6 58.2 59.9 74.7 373 70.2

timeperioden 100 54.7 60.2 57.3 70 152 42.8 100 54.9 60.3 57.4 70 152 42.8 100 58.7 60.6 59.7 70 152 44.7
timeperiodml 100 59 67.2 62.8 63.4 198 38.9 100 59.4 67.5 63.2 63.4 198 39.4 100 63 69 65.9 63.4 198 40.9

allen 50 61.3 56.2 58.6 86.8 496 72 25 64 54 58.6 88.5 460 75.4 100 62.7 58.1 60.3 82 543 67.6
allml 25 67.1 63.2 65.1 87.8 568 70.1 25 66.3 62.4 64.3 87.8 568 68.7 100 66.1 65.2 65.7 80.4 635 65.4

Table 5.2: Overview of the time-period detection task for the FactBench training set with respect to the different normalization methods. ml
(multi-lingual) indicates the use of all three languages (en,de,fr).
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Setcontext
language P R F MRR CS CE P75 Acc

award100
en 93.3 93.3 93.3 100 70 - 75 93.3

award25
ml 93.3 93.3 93.3 100 70 - 75 93.3

birth50
en 77.8 74.7 76.2 81.6 56 - 69 81.2

birth25
ml 93.2 92 92.6 93.3 69 - 73 94.5

death25
en 72 72 72 84.5 54 - 69 78.3

death25
ml 81.3 81.3 81.3 87.1 61 - 74 82.4

foundation150
en 22.2 18.7 20.3 66.1 14 - 20 70

foundation150
ml 20.3 18.7 19.4 48.1 14 - 33 42.4

publication150
en 62 58.7 60.3 77.8 44 - 68 64.7

publication150
ml 67.6 66.7 67.1 75.5 50 - 74 67.6

starring50
en 57.1 48 52.2 87.1 36 - 44 81.8

starring100
ml 61.4 57.3 59.3 73.6 43 - 60 71.7

subsidiary150
en 60.7 49.3 54.4 79.3 37 - 53 69.8

subsidiary25
ml 70.2 53.3 60.6 87.5 40 - 50 80

spouse25
en 69.2 59 63.6 - 34 35 34 76.5

spouse25
ml 73.7 61.4 67 - 36 36 42 59.5

team150
en 52.7 42.7 47.2 - 25 16 51 23.5

team25
ml 59.9 49.6 54.3 - 28 16 45 26.7

leader100
en 46.3 60.8 52.5 - 29 29 56 44.6

leader100
ml 55 71.5 62.2 - 38 37 72 45.8

timepoint25
en 62 52 56.6 85.8 273 273 356 76.7

timepoint25
ml 66.9 60.6 63.6 87.1 318 318 404 78.7

timeperiod100
en 55.7 55.6 55.7 - 92 82 159 41.5

timeperiod100
ml 59.6 60.1 59.8 - 102 91 195 38.5

all100
en 58.2 54.4 56.2 - 375 365 563 62

all100
ml 61.5 59.6 60.5 - 414 403 634 61

Table 5.3: Overview of the domain-normalization on the FactBench test set. ml (multi-lingual) indicates
the use of all three languages (en,de,fr). C(S|E) shows the number of correct start and end years, P75 is
the number of time-periods possible to detect correctly and A is the accuracy on P75.
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Table 2

English 55.5 %

Russian 6.1 %

German 5.9 %

Japanese 4.9 %

Spanish 4.5 %

French 3.9 %

Chinese 3.8 %

Portuguese 2.3 %

Other 13.1 %

English
Russian
German

Japanese
Spanish
French

Chinese
Portuguese

Other
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55.5 %

Table 1

Train Train (ml) Test Test (ml) Test (en)

award 74 98.6666666666667 75 100 72 96

birth 69 92 69 92 66 88

death 73 97.3333333333333 72 96 68 90.6666666666667

foundation 63 84 52 69.3333333333333 59 78.6666666666667

leader 72 96 73 97.3333333333333 66 88

team 70 93.3333333333333 67 89.3333333333333 64 85.3333333333333

publication 73 97.3333333333333 69 92 65 86.6666666666667

spouse 72 96 71 94.6666666666667 68 90.6666666666667

starring 70 93.3333333333333 58 77.3333333333333 61 81.3333333333333

subsidiary 63 84 63 84 60 80
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Table 3

Multi-Lingual English

< 1890 & 30 & 0 & 0.0 < 1890 & 27 & 3 & 0.1

1900 & 13 & 0 & 0.0 1900 & 13 & 0 & 0.0

1910 & 14 & 0 & 0.0 1910 & 14 & 0 & 0.0

1920 & 16 & 1 & 0.0 1920 & 16 & 1 & 0.0

1930 & 13 & 2 & 0.1 1930 & 12 & 3 & 0.1

1940 & 16 & 0 & 0.0 1940 & 14 & 2 & 0.1

1950 & 26 & 1 & 0.0 1950 & 24 & 3 & 0.1

1960 & 34 & 5 & 0.2 1960 & 33 & 6 & 0.2

1970 & 64 & 9 & 0.3 1970 & 61 & 12 & 0.3

1980 & 70 & 11 & 0.3 1980 & 68 & 13 & 0.4

1990 & 96 & 17 & 0.5 1990 & 95 & 18 & 0.5

2000 & 242 & 33 & 1.0 2000 & 236 & 38 & 1.0

2010 & 35 & 2 & 0.1 2010 & 36 & 1 & 0.0

0

0.5

1

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Table 3-1

Multi-Lingual English

< 1890 & 41 & 20 & 0.672 < 1890 & 34 & 27 & 0.557

1900 & 15 & 5 & 0.750 1900 & 14 & 6 & 0.700

1910 & 20 & 11 & 0.645 1910 & 17 & 14 & 0.548

1920 & 21 & 12 & 0.636 1920 & 20 & 14 & 0.588

1930 & 20 & 9 & 0.690 1930 & 14 & 15 & 0.483

1940 & 21 & 4 & 0.840 1940 & 15 & 10 & 0.600

1950 & 32 & 11 & 0.744 1950 & 32 & 11 & 0.744

1960 & 46 & 28 & 0.622 1960 & 40 & 34 & 0.541

1970 & 92 & 44 & 0.676 1970 & 78 & 58 & 0.574

1980 & 93 & 54 & 0.633 1980 & 83 & 64 & 0.565

1990 & 136 & 79 & 0.633 1990 & 115 & 100 & 0.535

2000 & 342 & 181 & 0.654 2000 & 280 & 242 & 0.536

2010 & 44 & 18 & 0.710 2010 & 40 & 22 & 0.645
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Table 3-1-1
Jahr correct wrong total modified 

wald
Multi-
Lingual

Jahr correct wrong total modified 
wald

English

< 1890 29 1 30 0.0946 0.967 < 1890 27 3 30 0.1188 0.900
1900 13 0 13 0.1164 1.000 1900 13 0 13 0.1164 1.000
1910 14 0 14 0.1098 1.000 1910 14 0 14 0.1098 1.000
1920 17 0 17 0.0937 1.000 1920 16 1 17 0.1490 0.941
1930 15 0 15 0.1038 1.000 1930 12 3 15 0.1983 0.800
1940 16 0 16 0.0985 1.000 1940 14 2 16 0.1752 0.875
1950 25 1 26 0.1066 0.962 1950 24 3 27 0.1292 0.889
1960 37 2 39 0.0863 0.949 1960 33 6 39 0.1162 0.846
1970 69 4 73 0.0596 0.945 1970 61 12 73 0.0861 0.836
1980 76 5 81 0.0582 0.938 1980 68 13 81 0.0810 0.840
1990 106 7 113 0.0482 0.938 1990 95 18 113 0.0682 0.841
2000 256 19 275 0.0309 0.931 2000 236 38 274 0.0412 0.861
2010 35 2 37 0.0903 0.946 2010 36 1 37 0.0790 0.973
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Figure 5.4: A plot showing the proportion of correctly classified facts (y-axis) for the FactBench mix-
correct-test-set using the J48 classifier. The time intervals (x-axis) are buckets of ten years, e.g., 1910
stands for all years from 1910 to 1919. Results for the multilingual and English-only setting of DeFacto
are shown.

C P R F1 AUC RMSE

J48 83.4% 0.834 0.834 0.834 0.877 0.361
SimpleLogistic 80.6% 0.811 0.806 0.804 0.884 0.368

NaiveBayes 78.1% 0.788 0.781 0.782 0.872 0.428
SMO 78.6% 0.816 0.786 0.777 0.773 0.463

Table 5.4: Classification results for FactBench mix test set on English language only.

5.3.6 Effect of Multi-lingual Patterns

The last question we wanted to answer in this evaluation is how much the use of the multi-lingual
patterns boosts the evidence scoring as well as the date scoping. For the fact scoring we trained
different classifiers on the mix training set. We only used English patterns and surface forms to
extract the feature vectors. As the results in Table 5.4 on the test set show, J48 is again the
highest scoring classifier, but is outperformed by the multi-lingual version shown in Table 5.1 by
1.5% F1 score.

The detailed analysis for the different relations in Figure 5.3 indicates a superiority of the
multi-lingual approach. We also performed the grid search as presented in Section 5.3.5 for
English patterns and surface forms only. As shown in Table 5.2 the multi-lingual date scoping
approach outperforms the English one significantly on the training set. The multi-lingual version
achieved an average 4.3% on the time point and a 6.5% better F1 measure on time period
relations. The difference is similar on the test set, where the difference is 6.5% for time points
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and 6.9% for time period relations. Finally, as shown in Figure 5.4, the English version performs
equally well on recent data, but performs worse for less recent dates, which is another indicator
that the use of a multilingual approach is preferable to an English-only setting.

5.3.7 Discussion

In this paper, we presented DeFacto, a multilingual and temporal approach for checking the
validity of RDF triples using the Web as corpus. In more detail, we explicated how multi-lingual
natural-language patterns for formal relations can be used for fact validation. In addition,
we presented an extension for detecting the temporal scope of RDF triples with the help of
pattern and frequency analysis. We support the endeavour of creating better fact validation
algorithms (and to that end also better relation extraction and named entity disambiguation
systems) by providing the full-fledged benchmark FactBench. This benchmarks consists of one
training and several test sets for fact validation as well as temporal scope detection. We showed
that our approach achieves an F1 measure of 84.9% on the most realistic fact validation test
set (FactBench mix) on DBpedia as well as Freebase data. The temporal extension shows a
promising average F1 measure of 70.2% for time point and 65.8% for time period relations. The
use of multi-lingual patterns increased the fact validation F1 by 1.5%. Moreover, it raised the
F1 for the date scoping task of up to 6.9%. Of importance is also that our approach is now fit
to be used on non-English knowledge bases.

5.4 The DeFactoNLP Approach: Validating Unstructured Claims

After designing a framework to validate RDF triples we then extended it and conceived a system
that can not only automatically assess the veracity of simple and structured but also complex
and unstructured claims. Instead of the Web, which is costly to query and collect documents,
we adapted the framework to retrieve evidence supporting the decision from Wikipedia. The
Wikipedia documents whose Term Frequency-Inverse Document Frequency (TFIDF) vectors
are most similar to the vector of the claim and those documents whose names are similar to
those of the named entities (NEs) mentioned in the claim are identified as the documents which
might contain evidence. One of the major limitations of our first framework is the dependency
on natural language generation tools (BOA), which rely on supervised learning methods. In
practice, a few number of predicates (in a sentence) are supported, which is a bottleneck.

To bridge this gap, we feed the sentences from the retrieved documents into textual entailment
recognition module. This module calculates the probability of each sentence supporting the
claim, contradicting the claim or not providing any relevant information to assess the veracity
of the claim. In the next steps we detail the implementation.
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Figure 5.5: The main steps of our extended approach

5.4.1 Proposed Solution

Our approach has four main steps: Relevant Document Retrieval, Relevant Sentence Retrieval,
Textual Entailment Recognition and Final Scoring and Classification. Given a claim, Named
Entity Recognition (NER) and TFIDF vector comparison are first used to retrieve the relevant
documents and sentences. The relevant sentences are then supplied to the textual entailment
recognition module that returns a set of probabilities. Finally, a Random Forest classifier [162]
is employed to assign a label to the claim using certain features derived from the probabilities
returned by the entailment model. The proposed architecture is depicted in Figure 5.5.
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5.4.2 Retrieval of Relevant Documents and Sentences

We used two methods to identify which Wikipedia documents may contain relevant evidences.
Information about the NEs mentioned in a claim can be helpful in determining the claim’s
veracity. In order to get the Wikipedia documents which describe them, the first method
initially uses the Conditional Random Fields-based Stanford NER software [163] to recognize
the NEs mentioned in the claim. Then, for every NE which is recognized, it finds the document
whose name has the least Levenshtein distance [164] to that of the NE. Hence, we obtain a
set of documents which contain information about the NEs mentioned in a claim. Since all of
the sentences in such documents might aid the verification, they are all returned as possible
evidences.

The second method used to retrieve candidate evidences is identical to that used in the baseline
system [165] and is based on the rationale that sentences which contain terms similar to those
present in the claim are likely to help the verification process. Directly evaluating all of the
sentences in the dump is computationally expensive. Hence, the system first retrieves the five
most similar documents based on the cosine similarity between binned unigram and bigram
TFIDF vectors of the documents and the claim using the DrQA system [153]. Of all the sentences
present in these documents, the five most similar sentences based on the cosine similarity between
the binned bigram TFIDF vectors of the sentences and the claim are finally chosen as possible
sources of evidence. The number of documents and sentences chosen is based on the analysis
presented in the aforementioned work by [165].

The sets of sentences returned by the two methods are combined and fed to the textual entailment
recognition module described in Section 5.4.3.

5.4.3 Textual Entailment Recognition Module

Recognizing Textual Entailment (RTE) is the process of determining whether a text fragment
(Hypothesis H) can be inferred from another fragment (Text T ) [166]. The RTE module receives
the claim and the set of possible evidential sentences from the previous step. Let there be n
possible sources of evidence for verifying a claim. For the ith possible evidence, let si denote the
probability of it entailing the claim, let ri denote the probability of it contradicting the claim,
and let ui be the probability of it being uninformative. The RTE module calculates each of
these probabilities.

The SNLI corpus [167] is used for training the RTE model. This corpus is composed of sentence
pairs 〈T,H〉, where T corresponds to the literal description of an image and H is a manually
created sentence. If H can be inferred from T , the “Entailment” label is assigned to the pair. If
H contradicts the information in T , the pair is labelled as “Contradiction”. Otherwise, the label
“Neutral” is assigned.

We chose to employ the state-of-the-art RTE model proposed by [168] which is a re-implementation
of the widely used decomposable attention model developed by [169]. The model achieves an
accuracy of 86.4% on the SNLI test set. We selected it because at the time of development of
this work, it was one of the best performing systems on the task with publicly available code.
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Split Entail. Contradiction Neutral
Training 122,892 48,825 147,588
Dev 4,685 4,921 8,184
Test 4,694 4,930 8,432

Table 5.5: FEVER SNLI-style Dataset split sizes for Entailment, Contradiction and Neutral
classes

Model Macro Entail. Contra. Neutral
Vanilla 0.45 0.54 0.44 0.37

Fine-tuned 0.70 0.70 0.64 0.77

Table 5.6: Macro and class-specific F1 scores achieved on the FEVER SNLI-style test set

Additionally, the usage of preprocessing parsing tools is not required and the model is faster to
train when compared to the other approaches we tried.

Although the model achieved good scores on the SNLI dataset, we noticed that it does not
generalize well when employed to predict the relationships between the candidate claim-evidence
pairs present in the FEVER data. In order to improve the generalization capabilities of the RTE
model, we decided to fine-tune it using a newly synthesized FEVER SNLI-style dataset [170].
This was accomplished in two steps: the RTE model was initially trained using the SNLI dataset
and then re-trained using the FEVER SNLI-style dataset.

The FEVER SNLI-style dataset was created using the information present in the FEVER
dataset while retaining the format of the SNLI dataset. Let us consider each learning instance
in the FEVER dataset of the form 〈c, l, E〉, where c is the claim, l ∈ {SUPPORTS, REFUTES,
NOT ENOUGH INFO} is the label and E is the set of evidences. While constructing the
FEVER SNLI-style dataset, we only considered the learning instances labeled as “SUPPORTS”
or “REFUTES” because these were the instances that provided us with evidences. Given such
an instance, we proceeded as follows: for each evidence e ∈ E, we created an SNLI-style example
〈c, e〉 labeled as “Entailment” if l = “SUPPORTS” or “Contradiction” if l = “REFUTES”. If e
contained more than one sentence, we made a simplifying assumption and only considered the
first sentence of e. For each “Entailment” or “Contradiction” which was added to this dataset,
a “Neutral” learning instance of the form 〈c, n〉 was also created. n is a randomly selected
sentence present the same document from which e was retrieved. We also ensured that n was
not included in any of the other evidences in E. Following this procedure, we obtain examples
that are similar (retrieved from the same document) but should be labeled differently. Thus, we
obtained a dataset with the characteristics depicted in Table 5.5. To correct the unbalanced
nature of the dataset, we performed random undersampling [171]. The fine-tuning had a huge
positive impact on the generalization capabilities of the model as shown in Table 5.6. Using the
fine-tuned model, the aforementioned set of probabilities are finally computed.
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5.4.4 Final Classification

Twelve features were derived using the probabilities computed by the RTE module. We define
the following variables for notational convenience:

csi =
{

1 if si ≥ ri and si ≥ ui

0 otherwise

cri =
{

1 if ri ≥ si and ri ≥ ui

0 otherwise

cui =
{

1 if ui ≥ si and ui ≥ ri

0 otherwise

The twelve features which were computed are:

f1 =
∑n

i=1 csi

f2 =
∑n

i=1 cri

f3 =
∑n

i=1 cui

f4 =
∑n

i=1(si × csi)

f5 =
∑n

i=1(ri × cri)

f6 =
∑n

i=1(ui × cui)

f7 = max(si) ∀i

f8 = max(ri) ∀i

f9 = max(ui) ∀i

f10 =


f4
f1

if f1 6= 0
0 otherwise

f11 =


f5
f2

if f2 6= 0
0 otherwise

f12 =


f6
f3

if f3 6= 0
0 otherwise

Each of the possible evidential sentences supports a certain label more than the other labels
(this can be determined by looking at the computed probabilities). The variables csi, cri and cui

are used to capture this fact. The most obvious way to label a claim would be to assign the label
with the highest support to the claim. Hence, we chose to use the features f1, f2 and f3 which
represent the number of possible evidential sentences which support each label. The amount
of support lent to a certain label by supporting sentences could also be useful in performing
the labelling. This motivated us to use the features f4, f5 and f6 which quantify the amount of
support for each label. If a certain sentence can strongly support a label, it might be prudent
to assign that label to the claim. Hence, we use the features f7, f8 and f9 which capture how
strongly a single sentence can support the claim. Finally, we used the features f10, f11 and f12
because the average strength of the support lent by supporting sentences to a given label could
also help the classifier.

These features were used by a Random Forest classifier [162] to determine the label to be
assigned to the claim. The classifier was composed of 50 decision trees and the maximum depth
of each tree was limited to 3. Information gain was used to measure the quality of a split. 3000
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claims labelled as "SUPPORTS", 3000 claims labelled as "REFUTES" and 4000 claims labelled
as "NOT ENOUGH INFO" were randomly sampled from the training set. Relevant sentences
were then retrieved as detailed in Section 5.4.2 and supplied to the RTE module (Section 5.4.3).
The probabilities calculated by this module were used to generate the aforementioned features.
The classifier was then trained using these features and the actual labels of the claims.

We used the trained classifier to label the claims in the test set. If the "SUPPORTS" label was
assigned to the claim, the five documents with the highest (si × csi) products were returned as
evidences. However, if csi = 0 ∀i, then the label was changed to "NOT ENOUGH INFO" and
a null set was returned as evidence. A similar process was employed when the "REFUTES"
label was assigned to a claim. If the "NOT ENOUGH INFO" label was assigned, a null set was
returned as evidence.

5.4.5 Experimental Setup

Our system was evaluated using a blind test set which contained 19,998 claims. Table 5.7
compares the performance of our system with that of the baseline system. It also lists the best
performance for each metric. The evidence precision of our system was 0.5191 and its evidence
recall was 0.3636. All of these results were obtained upon submitting our predictions to an
online evaluator. DeFactoNLP had the 5th best evidence F1 score, the 11th best label accuracy
and the 12th best FEVER score out of the 24 participating systems.

Metric DeFactoNLP Baseline Best
Label Accuracy 0.5136 0.4884 0.6821
Evidence F1 0.4277 0.1826 0.6485
FEVER Score 0.3833 0.2745 0.6421

Table 5.7: System Performance

The results show that the evidence F1 score of our system is much better than that of the
baseline system. However, the label accuracy of our system is only marginally better than
that of the baseline, suggesting that our final classifier is not very reliable. The low label
accuracy may have negatively affected the other scores. Our system’s low evidence recall can be
attributed to the primitive methods employed to retrieve the candidate documents and sentences.
Additionally, the RTE module can only detect entailment between two pairs of sentences. Hence,
claims which require more than one sentence to verify them cannot be easily labelled by our
system. This is another reason behind our low evidence recall, FEVER score and label accuracy.
We aim to study more sophisticated ways to combine the information obtained from the RTE
module in the near future.

To better assess the performance of the system, we performed a manual analysis of the predictions
made by the system. We observed that for some simple claims (ex.“Tilda Swinton is a vegan”)
which were labeled as “NOT ENOUGH INFO” in the gold-standard, the sentence retrieval
module found many sentences related to the NEs in the claim but none of them had any useful
information regarding the claim object (ex.“vegan”). In some of these cases, the RTE module
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would label certain sentences as either supporting or refuting the claim, even if they were not
relevant to the claim. In the future, we aim to address this shortcoming by exploring triple
extraction-based methods to weed out certain sentences [31].

We also noticed that the usage of coreference in the Wikipedia articles was responsible for the
system missing some evidences as the RTE module could not accurately assess the sentences
which used coreference. Employing a coreference resolution system at the article level is a
promising direction to address this problem.

The incorporation of named entity disambiguation into the sentence and document retrieval
modules could also boost performance. This is because we noticed that in some cases, the
system used information from unrelated Wikipedia pages whose names were similar to those
of the NEs mentioned in a claim to incorrectly label it (ex. a claim was related to the movie
“Soul Food” but some of the retrieved evidences were from the Wikipedia page related to the
soundtrack “Soul Food”).

5.4.6 Discussion

After analyzing our results, we have identified many ways of improving the system in the future.
For instance, triple extraction-based methods can be used to improve the sentence retrieval
component as well as to improve the identification of evidential sentences. We also wish to
explore more sophisticated methods to combine the information obtained from the RTE module.
Overall, the main challenge remains at correctly extracting the evidence to a given claim.

5.5 Boosting the Evidence Extraction

In this section we further explore methods to improve the fact-extraction module, i.e., the
evidence selection. Figure 5.6 exemplifies this in a nutshell, delineating these three components
in a computer science perspective: 1) document retrieval, 2) evidence selection and 3) claim
classification.

5.5.1 Features

We generate a set of eleven features that incorporate the morphological, syntactic and semantic
information of the claim and evidence pair. The features are generated by extracting claim
specific information from the evidence. We utilize subject, predicate and object (spo) triples
(pre-extracted from the claim) in our datasets. A claim like “That ’70s show is a sitcom” can be
broken down into a spo triple as shown below.

Given a spo triple for each claim, a simple method to find similarity between claim and evidence
is to find whether subject, predicate, and object (or their synonyms) appear in the sentence. We
generate eleven such features. The first eight features utilize the triples to extract morphological
information from evidence sentence. We later added semantic similarity, cosine similarity
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Figure 5.6: The figure shows three-component fact-checking pipeline: 1: document retrieval, 2: evidence
selection and 3: claim classification. A database is queried using information extracted from the claim
and top n documents are retrieved. In the second step, evidences (sentences or set of sentences similar
to the claim) are retrieved from these documents. Lastly, the selected evidences are used to make a
collective decision on the veracity of the claim.

and Jaccard similarity between the claim and evidence sentence as three features. These
features represent the similarity measure between the claim and the most similar statement
in the evidence. For Cosine Similarity, Jaccard Similarity and Semantic Similarity evidence
S is divided into sentences S1, S2, S3, ..., Sn and maximum similarity scores with the claim are
selected as the features.

Cosine distance: The claims and sentences are transformed into vectors as a function of token
counts. Let C and Si be the count vector for the claim and a statement in evidence respectively.
The cosine distance is calculated as:

CosineDistance = max

(
C.Si

|C||Si|

)
∀Si ∈ S

Jaccard Distance: If C and Si are the sets of tokens of claim and a sentence in the evidence
respectively, Jaccard distance is given by:

JaccardDistance = max

(
C ∩ Si

C ∪ Si

)
∀Si ∈ S

Pre-trained word embeddings were used to compute the similarity based metrics using spaCy11

python library. Table 5.8 gives details of all the features with an example illustrating all the
feature values extracted from evidence using the claim.

11 github.com/explosion/spaCy
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Num Feature Definition Feature Value

1 is sub Checks if the document contains subject 1
2 is obj Checks if the document contains object 1
3 is pred Checks if the document contains predicate 1
4 dist sub obj Text follows Distance between subject and object 48
5 pred between Does predicate occur between subject and object 1
6 sub relax Checks whether subject is present in partial form 1
7 obj relax Checks whether object is present in partial form 1
8 pred relax Checks whether predicate is present in partial form 1
9 Jaccard distance Maximum Jaccard coefficient 0.08
10 Cosine similarity Maximum cosine similarity 0.43
11 Semantic similarity Similarity score of most semantically similar sentence 0.69

Table 5.8: The table gives an example of a claim-evidence pair and corresponding feature values.

The extracted features are trained on three (weak) baseline classifier models: Support Vector
Machine (SVM), Random Forest (RF) and Multi-Layer Perceptron (MLP), further detailed in
Section 5.5.3.

5.5.2 SimpleLSTM

SimpleLSTM is a Long-Short-Term-Memory (LSTM) based model that extracts semantic inform-
ation from claims and evidences and then combines these representations. The combined layer
is then fed to a fully-connected neural network, where the final decision making (classification)
is done. We use stacked-LSTM layers for both, claim and evidence.

The last output at the end of LSTM stack gives the semantic encoding vector for both, the claim
(claimvec) and evidence (sentvec). These two vectors are merged and fed to a fully connected
layer. Since we use pre-trained word2vec embeddings, our first approach was to compute a
cosine distance between the sentvec and claimvec as a merging criterion. however, in practice
any binary function MERGE(setvec,claimvec) can be used to produce a merged representation.
We experimented with the following merging criteria:

1. Cosine distance: Computes the cosine distance between sentvec and claimvec vectors.

CosineDistance = C.D

|C||D|

2. Concatenation: Concatenation of the sentvec and claimvec vectors.

Concatenation = [CD]
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Figure 5.7: SimpleLSTM model. The diagram gives a schematic representation of the SimpleLSTM model.
The input are claim and evidence. Both, the evidence and the claim are fed to an embedding layer
(common for both) that outputs embedding representation for each word. These embeddings are then
passed through LSTM layers (Our implementation uses 2 stacked-LSTMs). The final output of LSTM,
sentvec and claimvec, are merged and fed to the fully connected layer.

3. Multiplication: Elementwise multiplication of the sentvec and claimvec vectors.

Multiplication = [C ∗D]

We found that out of cosine distance, element-wise multiplication, and plain concatenation,
element-wise multiplication works the best, so we decided to go with it. In light of the simplistic
design of our model, we call it SimpleLSTM.

The inputs to the model are a claim, evidence and a target label. The claim is represented
as [C1, C2, · · · , Cm] where m ranges from 10-20 words, and the evidence is represented as
[E1, E2, · · · , En] where n ranges from 100-200 words. The claim and evidence vectors are first
passed through a pre-trained embedding layer to get a corresponding d×m and d× n matrices
for claim and evidence respectively, where d is the size of each word embedding. It should
be noted that both the evidence and claim share the embedding layer which facilitates the
merging of claimvec and sentvec vectors. The embedding matrices are then fed to two parallel
stacked-LSTM layers. The last LSTM outputs for the both the LSTM modules give feature
representations for claim and evidence. We call them claimvec and sentvec. The feature vectors
are passed through a merge function that then feeds the combined vector to the fully connected
layer. Figure 5.7 gives a schematic representation of SimpleLSTM.

A common approach for training RNN models on textual data is to let the model train its
own word embeddings. This is done by adding an embedding layer at the start of the deep-
learning pipeline. Many studies have showed improved performance by using pre-trained word
embeddings [172–175]. Our experiments found that using pre-trained word embeddings from
models like Word2Vec [176], Glove [177], FastText [178] helps reducing the over-fitting and gives
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better overall performance. We use pre-trained word2vec embeddings to train our models.

5.5.3 Experimental Setup

For the experiments, we used the most relevant fact-checking dataset public available: FEVER [152].
In this work, we mainly focused on simple claims, i.e., claims which do not exceed one sentence.
Therefore, we extracted from FEVER only claims which are represented by a subject-predicate-
object triple. We refer to this extracted subset as FEVER-Simple. Given the FEVER-Simple
dataset, we further divide the problem into three: FEVER-Support, FEVER-Reject, and 3-Class.
The first two datasets transform the examples into a binary problem (respectively), i.e., sentences
either support/reject (Positive) or are not related (Negative) to the claim. The third dataset
(3-Class) is a multi-label dataset, containing support sentences (Positive), counter-argumentative
sentences (Negative) and finally sentences not related to the claim (NEI). Table 5.9 gives details
about the number of instances for each dataset. For training the models, we divide the datasets
into the train (80%), validation (10%) and test (10%) split. The next sub-section gives an
overview of the data processing steps and heuristics we used for obtaining the datasets.

Dataset Label Count
FEVER-Support Support 2761

NEI 2761
FEVER-Reject Reject 2955

NEI 2955
3-Class Support 2761

Reject 2847
NEI 2804

Table 5.9: FEVER-Simple Datasets

As introduced in above, we defined three weak and two strong baselines, as follows: XGBoost
model is trained on FeverSimple datasets the best hyperparameter settings for each model is
selected using a grid search with cross-validation on the training set. A max_depth of 8 and
1000 estimators provide the best performance overall on the three FeverSimple datasets. TE
represents the textual entailment model with decomposable attention [179] by AllenNLP [180].

Weak Baselines

1. Random Forest Classifier: As decision trees often suffer from the problems of over-fitting,
we decided to use the random forest classifier. It is an ensemble classifier in its own that trains
on a set of decision trees and provide an inference by aggregating the results yielded on a
randomly chosen subset of trained decision trees. The prediction accuracy mostly depends on
the number of decision trees along with pruning strategy for each tree. We cross-validate the
results on a random sample of data and tune the hyperparameters to obtain the best results.
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2. Support Vector Machine: SVMs are known to perform well even with non linearly
related data and hence are often used for classification tasks in NLP. We learned from our initial
experiments that a linear SVM wouldn’t yield any better results than a random forest classifier.
Hence the choice for a kernel method is obvious. In order to find the most suitable kernel
function among Linear, RBF, and polynomial kernel, we used the grid search cross-validation
technique on validation data. We found that RBF kernel yields the highest accuracy among the
three and hence we used this to further find the hyperparameters.

3. Multi-Layer Perceptron: MLP was also used to define the architecture of the FEVER
Baseline in the last Shared Task [152]. We use a simple neural network with two hidden layers.
Our experiments show that test accuracy gradually reduces with an increase in the number of
layers. We found two hidden layers to be optimal. We further apply cross-validation technique
to fine-tune our model.

Strong Baselines

4. Gradient Boosting Classifier (XGBoost)

Tosik et al. [53] propose a feature based model for stance detection. The model uses a gradient
boost method for classification which combines a number of weak learners into a single learner
on an iterative basis in the form of decision trees. The feature set contains twenty features based
on various distance measures such as cosine distance and hamming distance, relative entropy
between topic model probability distributions, sentiment scores of the claim and sentence (or
evidence) and etc.. We use this model as one of the baselines for the claim classification task.

5. Textual Entailment

Textual Entailment (TE) is under the umbrella of Argumentation Mining in NLP and is a
natural language processing task to find directional relation between texts [159]. Given a text
fragment, the task is to determine if this text is a consequence of another text. The first text
fragment is called a hypothesis and the second reference text entailing text, where the entailing
text and hypothesis can be seen as the evidence and the claim, respectively. We use the TE
model implementation by AllenNLP [180] as the second baseline for the claim classification
task. The model is an implementation of the decomposable attention model given by Parikh et.
la [179].

5.5.4 Results

The FeatureModel experiments involve tuning the hyper-parameters for all the three classifiers:
MLP, RF and SVM. We used cross-validation as sampling method with grid search for hyper-
parameter optimization12. According to our experiments, Random Forest yield the best results
with a maximum depth of 10 and entropy as splitting criterion. For SVM penalty of 100, gamma
0.001 and rbf kernel gave the best performance. The neural network has two hidden layers
12 GridSearchCV from scikit-learn to obtain the best hyper-parameters
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(a) FEVER-Support (b) FEVER-Reject (c) FEVER-3class

Figure 5.8: FeatureModel training graphs on different datasets

(a) FEVER-Support (b) FEVER-Reject (c) FEVER-3class

Figure 5.9: SimpleLSTM training graphs on different datasets

with 44 perceptrons in each. The model provides best results with Adam optimizer and ReLU
activation function.

The tables 5.10,5.11,5.12 depict the accuracy, precision, recall and F1 scores for all the models. It
can be observed that the our feature models outperform the gradient-boost (XGBoost) [53] and
TE [180]. The MLP models gives better performance than RF and SVM on the FEVER-Simple
datasets. The learning curves for three feature-based classifiers shown in figure 5.8. It shows a
plot of training accuracy and cross-validation accuracy versus sample number.

We observe a high variance from the training graphs for in Figure 5.8 (a), (b) and (c) on FEVER
dataset. We also observe a lower training accuracy implying a high bias situation. This indicates
that a larger dataset and a higher number of features could yield better results. This is one of
the factors that motivated us to come up with a deep learning model.
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Classifier Accuracy Precision Recall f1 Score
XGBoost [53] 0.766 0.766 0.766 0.762

TE [180] 0.691 0.835 0.655 0.734
FeatureModel RF 0.79 0.76 0.83 0.79

FeatureModel SVM 0.79 0.71 0.85 0.77
FeatureModel MLP 0.79 0.76 0.81 0.78

SimpleLSTM 0.850 0.834 0.856 0.845

Table 5.10: Performance comparison of different models on FEVER support Dataset

Classifier Accuracy Precision Recall f1 Score
XGBoost [53] 0.74 0.738 0.736 0.73

TE [180] 0.548 0.759 0.533 0.626
FeatureModel RF 0.73 0.73 0.81 0.76

FeatureModel SVM 0.642 0.73 0.78 0.75
FeatureModel MLP 0.74 0.69 0.78 0.73

SimpleLSTM 0.816 0.836 0.811 0.824

Table 5.11: Performance comparison of different models on FEVER reject Dataset

Classifier Accuracy Precision Recall f1 Score
XGBoost [53] 0.535 0.54 0.534 0.539

TE [180] 0.418 0.372 0.622 0.465
FeatureModel RF 0.55 0.60 0.61 0.60

FeatureModel SVM 0.55 0.54 0.56 0.53
FeatureModel MLP 0.59 0.61 0.62 0.61

SimpleLSTM 0.635 0.643 0.620 0.642

Table 5.12: Performance comparison of different models on FEVER 3-class Dataset

For SimpleLSTM, we chose GoogleNews vectorsGoogleNews vectors13 [181] for pre-trained word
embeddings. This is a word2vec [181] model has been trained on Google News dataset that has
about 100 billion words. It contains word embeddings of dimension 300 for 3 million words and
phrases. We fixed batch size of 64 and Adam Optimizer, with learning rate of 0.001, for all the
datasets. The loss is binary cross-entropy loss for binary classification tasks, and categorical
cross-entropy loss for the 3-class problem. The input size for LSTM stack is 300, and the output
size is 150 for FEVER-Support and FEVER-Reject, and 100 for 3-Class.

Figure 5.9 gives the graphs showing training and validation accuracy versus epochs for each
dataset. Tables 5.10,5.11,5.12 show that SimpleLSTM outperforms the baselines on all datasets.
13 https://code.google.com/archive/p/word2vec/
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5.6 Summary

In this section we presented our solution to tackle the fact-checking problem. More specifically,
we discussed the process of automation of the task, as well as detailed the three contributions we
achieved. First, we presented DeFacto, a multilingual and temporal approach for checking the
validity of RDF triples using the Web as corpus (Section 5.3). In more detail, we explicated how
multi-lingual natural-language patterns for formal relations can be used for fact validation. In
addition, we presented an extension for detecting the temporal scope of RDF triples with the help
of pattern and frequency analysis. We support the endeavour of creating better fact validation
algorithms (and to that end also better relation extraction and named entity disambiguation
systems) by providing the full-fledged benchmark FactBench. This benchmarks consists of one
training and several test sets for fact validation as well as temporal scope detection. We showed
that our approach achieves an F1 measure of 84.9% on the most realistic fact validation test set
(FactBench mix) on DBpedia as well as Freebase data. The temporal extension shows a promising
average F1 measure of 70.2% for time point and 65.8% for time period relations. However, the
main limitation of this first release of the framework was the dependency on external libraries
to verbalize predicates. Moreover, it was firstly designed to perform fact-validation on RDF-like
claims.

Then, as a second contribution we extended the framework to verify also complex claims, which
are expressed in natural language (Section 5.4). DeFactoNLP, an extension of DeFacto, was
designed and tested in the FEVER 2018 Shared Task. When supplied a claim, it makes use
of NER and TFIDF vector comparison to retrieve candidate Wikipedia sentences which might
help in the verification process. An RTE module and a Random Forest classifier are then used
to determine the veracity of the claim based on the information present in these sentences. The
proposed system achieved a 0.4277 evidence F1-score, a 0.5136 label accuracy and a 0.3833
FEVER score. During our experiments, we noticed that the main challenge remains at correctly
extracting evidence to support or refute a given claim.

Therefore, as a third contribution we investigated the impact of neural architectures in the
evidence extraction module (Section 5.5). We give an overview of the problem and its automation
in the context of natural language processing. In order to solve this task, we propose two new
models: SimpleLSTM and FeatureModel, comparing the results with two strong baselines.
Our experiments show that SimpleLSTM outperforms all the baselines. Compared to the best
baseline (XGBoost [53]), it outperforms it by 11%, 10.2% and 18.7% on the FEVER-Support,
FEVER-Reject and 3-Class tasks respectively. The advantage of such architecture, besides
the increased performance, is the ability to easily deal with an unlimited number of predicates
and languages, requiring only to update the pre-trained embeddings. Unlike, feature-based
architectures (FeatureModel) that tend to not scale in more complex scenarios.
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CHAPTER 6

The Quest for Reproducibility in the Context of
Machine Learning Experiments

The aim of this chapter is to shed light on reproducible challenges in scientific experiments
encountered throughout the development of this thesis. The content of this chapter is based on
the publications [182–185]

RQ4: Are existing reproducible research methods sufficient to enable reproducibility?

Machine learning (ML) experiments - as most of scientific experiments - are complex studies
involving many steps and iterations which require expert knowledge.

A relatively recent key term to face this lack of metadata is Reproducible Research, which aims to
make analytic data and code freely available so that others will be able to reproduce findings, i.e.,
an environment where “provenance metadata” is accessible and a “high interoperability” level is
achievable, so anyone is able to reproduce scientific achievements. Therefore, Reproducibility is
one of the main principles of the scientific methods. According to the IOM Report [102] the
following rules should be applied:

1. data/metadata publicly available;

2. the computer code and all the computational procedures should be available

3. ideally the computer code will encompass all of the steps of computational analysis

Ensuring that outcomes of scientific experiment are properly comparable, understandable,
interpretable, reusable and reproducible is a challenge [186]. Although most of the machine
learning libraries already provide some sort of machine readable meta-data, there is still no
consensus on data formats and interchange rules. Yet another challenge lies in the data
manipulation, i.e., the ability to manipulate and extract information out of a broad range of
distinct experiments which are designed to solve a specific problem. Therefore, the problem
in this case is the lack of common format, rules and standards to rapidly interchange data
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among different systems and frameworks as well as manipulating metadata. In order to do so,
scientist and developers are obliged to implement different wrappers, which is time-consuming
and implies in financial costs.

Just to shed light on the challenge, our named entity recognition architecture (Section 3) needed
more than 5.900 different experiments, producing an outcome of more than 3 million of data
features. The manual management of this amount of metadata is infeasible without proper tools
and schemata.

In order study the impact of different algorithm hyper-parameters and framework configurations
over the same population, a set of controlled experiments are executed. Each producing a set of
outcomes, which are further compared, usually under a certain metric. Finding the answer in
a proper environment which enables reproducibility can take as much as a query requires to
process, which usually is a matter of milliseconds (Section 6.2.2).

The proposed work introduced in this section aims to minimize the existing gap in this field by
defining standards and providing a methodology to automatically represent machine learning
experiments. Therefore, our motivation is to provide a decoupled and lightweight language-
independent format for achieving the higher level of interoperability as well as supporting
provenance.

6.1 Reproducing Machine Learning Experiments: An Open Problem

So far, we have seen a variety of publications involving Machine Learning (ML) topics, many
of them contributing to the state of the art in their respective fields. However, in the last
years we experienced a knowledge gap in the standardization of experiment results for scientific
publications. In particular, experimental results are often not delivered in a common machine-
readable way, causing the information extraction and processing to be tricky and burdensome.
Moreover, recurring issues regarding the experiment could benefit from the existence of a
public vocabulary. Reviewers of ML publications often need to investigate basic information on
experiments conducted, e.g., which implementation of an algorithm was used, its configuration
or choices for related hyper-parameters. Several questions may arise during the reviews, such as
“Which kernel method did the authors use?”, “What is the regularization constant value?”, “How
many folds were used for the cross-validation section?”, “Did they normalize the data?”, “Which
data distribution was used?”, “Have any hypothesis test been applied?”. This interpretation
and look-up process is time-consuming and introduces misinterpretations which affect both
comparability and reproducibility of scientific contributions.

6.1.1 Enabling Reproducibility: Challenges

Over the past years, different approaches have tried to address the reproducibility problem.
Wings [104], OpenTox [105] and MyExperiment [187] are examples of e-Science tools to bridge
this gap. Nevertheless, each of them dealing with a specific context (e.g., The toxicology
domain [105]), failing to address a generic scientific scenario, i.e., existing approaches were
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tailored as workflow systems for specific domains which do not offer a generic environment
for the management of ML experiments. Thus, despite their noted achievements, we still do
not have a consensus for a public format to achieve the interoperability for machine-learning
experiments over any system implementation in a lightweight and simple format.

To bridge this gap, in recent years ontologies - as formal machine readable knowledge represent-
ations - have been introduced. An ontology formally defines essential concepts, their properties,
and relevant axioms pertinent to a particular area of interest [188].

In the following we list the most notable contributions to propose generic ML schemata: Onto-
DM (an Ontology of Data Mining) provides generic representations of principle entities in the
area of data mining [189]. DMOP (Data Mining OPtimization ontology) has been developed to
support meta-mining, i.e. meta-learning from complete ML processes [190]. Exposé has been
designed to describe and reason about ML experiments [110]. It underpins OpenML [106], a
collaborative meta-learning platform for machine learning [106]. Table 6.1 overviews current
workflow systems whereas Table 6.2 depicts existing ontologies.

Platform Description

MyExperiment [187] It is a collaborative environment where scientists can publish their workflows and experiment plans
Wings [104] A Semantic Approach to creating very large scientific workflows
OpenTOX [105] An interoperable predictive toxicology framework
Open ML [106] A frictionless, collaborative environment for exploring machine learning

Table 6.1: The state-of-the-art platforms for e-science workflows

Figure 6.1 shows the overview of MEX classes and its relations. The diagram represents the
classical iterations for an execution of a machine learning problem (Classification, Regression
or Clustering). The white rounded rectangles representing a complete path for a Classification
problem as well as its input (Model, Corpus, Phase and Algorithm) and outputs variables
(Example Performance and Overall Performance).

Platform Description

DMOP [108] It supports informed decision-making at various choice points of the data mining process
OntoDM-KDD [109] Ontology for representing the knowledge discovery process
Exposé [110] An ontology for data mining experiments used in conjunction with experiment databases (ExpDBs [111])

Table 6.2: The related (heavy-weight) ontologies for data mining and their respective conceptualizations

While workflow systems were tailored to attack specific domains, proposed ontologies become
too complex to represent ML experiments in a generic format. Despite their noted achievements,
we still did not have a consensus for a public format to achieve the interoperability for machine-
learning experiments over any system implementation in a lightweight and simple format.

6.2 Proposed Solutions

In the following we introduce the proposed solutions to tackle different problems.
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Figure 6.1: The MEX Vocabulary at a glance.

1. First, we design the MEX Vocabulary, a lightweight schema to represent ML experi-
ments [185, 191];

2. Then we introduce LOG4MEX, a library to export ML experiment configurations based
on the proposed vocabulary in a transparent manner [184, 192];

3. Thereafter we propose a set of interfaces to automatically generate machine learning
metadata through MEX-Interfaces [193].

4. In order to improve scalability to different programming languages and tools, we propose
WEB4MEX, a REST Interface which connects to LOG4MEX in the backlog and generates
the metadata [194].

5. To allow metadata discovery and management, we further designed a metadata repository
dubbed WASOTA. WASOTA supports RDF files based on the MEX Vocabulary to be
stored and queried [195];

6. Last, but not least, we achieved the highest interoperability level in an international
community effort to create an upper-level ontology to connect all pieces of metadata within
the scope of the MLS Project [196]

6.2.1 The MEX Vocabulary

The MEX vocabulary has been designed to tackle the problem of sharing provenance information
particularly on the basic machine learning iterations in a lightweight format. We extended the
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W3C PROV Ontology (PROV-O) since it provides an excellent model for representing, capturing
and sharing provenance information on the Web. The PROV-O provides three main classes,
Entity, Agent and Activity, as well as other classes and properties enriching the provenance
representation. Also, is endorsed by W3C [197]. The MEX vocabulary is composed as three
sub-vocabularies:

1. MEX-Core: formalizes the key entities for representing the basic steps on machine
learning executions, as well as the provenance information for linking between the published
paper and the produced meta-data.

2. MEX-Algorithm: representing the context of machine learning algorithms and their
associated characteristics, such as learning methods, learning problem and class of the
algorithm.

3. MEX-Performance: provides the basic entities for representing the experimental results
of executions of machine learning algorithms.

The first release of MEX vocabulary (Figure 6.1) aims to provide an embracing formalization to
define the basics of a generic machine learning configuration (“the algorithm and its parameters,
the input features of given dataset, the sampling method and the hardware environment”) as well
as the representation of experiment outcomes (“measures”). We argue the standardization of
a vocabulary is not sufficient to enable reproducibility. The development of proper tools are
required in order to ensure that the process is transparent to data analysts and scientists. In
the next sections we progress to discuss related frameworks to manage ML metadata through
the vocabulary.

6.2.2 LOG4MEX

LOG4MEX [192] is a library based on MEX vocabulary [198] which aims at reducing ML
gaps by exporting ML outputs directly from source code independently of which ML library is
used. The conceptual ML entities are mapped to its structure, making the metadata generation
process easier to the end-user (once the process occurs in a transparent manner). The library
complies with the software engineering best practices, thus producing an enriched meta-data file
to share configurations of ML executions. LOG4MEX stands as a flexible and lightweight library
to represent executions of algorithms and the related variables. Hence, LOG4MEX covers an
important existing gap in standardization of ML approaches. Diverse areas which implement the
flow input(parameters) ⇒ algorithm(mode- ls) ⇒ outputs(measures) can benefit from the
proposed library, such as experiments in natural language processing or stock market predictions.
A description of the architecture components depicted by the figure 6.2 is available in table 6.3.

The library enables the generation of the experimental metadata without extra coding effort.
Figure 6.3 shows an example of the plotted metadata. The most relevant impact is the possibility
to efficiently perform queries over thousand of experiments in a fraction of second, boosting the
ability to explore and manage the data better. As a downside, this solution implies in extra code
to perform logging. In the next, we compare existing methods and develop a solution which
generates the metadata automatically through the definition of system interfaces [193].
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Figure 6.2: LOG4MEX component diagram: the modularization designed to keep the abstract concepts
of machine learning. Furthermore, the package ontology has been designed to allow further Data
Mining/Machine Learning schemata integrations.

Package Description
(org.aksw.mex.log4mex*)

*.algo Mappings to mex-algo vocabulary
*.core Mappings to mex-core vocabulary
*.perf Mappings to mex-perf vocabulary
*.perf.example Classes to represent performance of executions at

example level [mexcore:SingleExecution]
*.perf.overall Classes to represent performance of executions at

subset level [mexcore:OverallExecution]

*.util Static variables to map the vocabulary
and control variables

*.util.ontology Representation of diverse useful existing ontologies
*.util.ontology Basic MEX classes types

Table 6.3: LOG4MEX Architecture Components: MEX implementation.

6.2.3 Metadata Generation Frameworks

Despite recent efforts to achieve a high level of interoperability of Machine Learning (ML)
experiments, positively collaborating with the Reproducible Research context, we still run into
problems created due to the lack of automatic methods to generate the metadata properly. This
scenario leads to an extra coding-effort to achieve both the desired interoperability and a better
provenance level as well as a more automatized environment for obtaining the generated results.
Hence, when using ML libraries or platform, it is a common task to re-design specific data models
(schemata) and develop wrappers to manage the produced outputs. In this section, we discuss
this gap focusing on the solution for the question: “What is the cleanest and lowest-impact
solution, i.e., the minimal effort to achieve both higher interoperability and provenance metadata
levels?”. We introduce a novel and low-impact methodology specifically designed for code built
in that context, combining Semantic Web concepts and reflection in order to minimize the gap
for exporting ML metadata in a structured manner, allowing embedded code annotations that
are, in run-time, converted in one of the state-of-the-art ML schemas for the Semantic Web:
MEX Vocabulary.
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Figure 6.3: ML Metadata Exported through LOG4MEX

SWFS, MLF or MLL: A trade-off problem

Machine Learning has become an important tool for data scientists in research and business
contexts. Plenty of workbenches/environments (MLF), libraries (MLL)1 and workflow systems
(SWFS) have emerged to serve as platform for creating ML models and executing experiments.
Each of these provide a different level of implementation.

SWFS provides a good level of provenance metadata, data management, control of execution
and allows the interchange of experiment configurations between researchers that use the
same tool. However, they lead to a high level of dependency and the configurations are not
portable among other SWFS implementations. Moreover, they imply a high level of algorithm’s
implementation dependency only once available algorithms can be used. Primarily, they are not
commonly designed for specifically dealing with ML problems, but have either general scientific
workflow proposed [199] or too specific scientific workflows [105] as focus of their implementation.
Therefore, SWFS have the drawback which stands in the obligation of developing the solution
specifically following its rules and natural limitations.

Another alternative, MLF are specifically designed to deal with ML problems and commonly
provide a broad range of ML algorithm implementations. Some of them allow experiment
configurations [200] and do not require refined programming skills with its user interface. As
drawbacks, we can mention the lack of provenance and interoperability among implementations.

1 from this point on we are going to refer to MLL as the situation where a developer works with an API by
importing it into an IDE, instead of just referring to the library itself.
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Also, this kind of platform does not allow programming flexibility to the user, which is a reason
why APIs (MLL) are often released in order to be loaded into IDEs for developing specific and
flexible applications. Table 6.4 lists the characteristics and the main differences among each
platform. Also, Figure 6.4 depicts examples for the three different platforms discussed.

Platform Advantages Drawbacks

SWFS High Provenance No (High) Interoperability
Interoperability updates are dependent of
Workflow Management tool

MLF Front-end No (High) Interoperability
No updates delay No much code flexibility
(Low) Workflow
Management

MLL High code-flexibility Low Provenance
Low Interoperability

Table 6.4: Comparison of Machine Learning Platforms: Drawbacks and Advantages

Figure 6.4: Examples of common machine learning platforms: frameworks that often implement a front-
end interface (MLF), libraries to be imported into IDEs (MLL) and workflow systems which commonly
have ML components as features (SWFS).

MLL: The Current Gap and Recurrent Solutions

As introduced, the major problem in the MLL context refers to the lack of interoperability and
provenance metadata. Disregarding the possible lack of schema problem, the MLL context also
does not provide data management features, i.e., without a proper management system becomes
tricky to get and analyze different dimensions of the generated data.

As a result, the lack of automatized and straightforward solutions for data management requires
to develop wrappers and implement connectors for any Database Management Systems (DBMS),
for instance. This extra step brings the focus out of the main problem being investigated,
i.e., an extra code-effort is required to set up the desired environment. On the other hand,
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avoiding this stage means to deal with pure text files or stdout outputs, which are not the best
machine-readable solution and require a high level of effort to process and extract data, in
addition to the discussed lack of provenance and interoperability (Figure 6.5). In other words,
both situations are not welcome in terms of the implementation effort.

Figure 6.5: Managing output of machine learning executions in MLL: pure text (stdouts), self-schema
definitions (e.g.:JSON or XML) or data base integrations (DBMS)

The provenance normally limits itself to an excerpt of text written in natural language linked to
the produced data. Interoperability issues are commonly treated with self-schema definitions,
which are then shared among developers, e.g., by designing a particular simple structure using an
existing standard (e.g.: JSON2 or XML3) or just logging using an API (e.g.: LOG4J4). However,
this scenario has 1) the inconvenience to present a poor level of metadata 2) an inability to
represent the data semantically, abstracting specific implementation issues (e.g.: “logit function”
and “logistic regression”, which points out to the same concept) 3) the extra code-effort needed.
Here, the SW comes into play, offering a much more sophisticated approach to achieve a higher
level of provenance, but still allowing to achieve a decent level of interoperability. Endorsed
by W3C, RDF “has features that facilitate data merging even if the underlying schemas differ,
and it specifically supports the evolution of schemas over time without requiring all the data
consumers to be changed”5. In this paper we have developed a new methodology combining SW
tools, annotations and reflection in order to reduce the effort to generate good and inter-operable
metadata as well as to provide query features. Table 6.5 summarizes the different strategies
discussed to bridge the gap.

MEX-Interfaces

One step forward to simplify the annotation process is proposed in this chapter. The major
contribution is to allow metadata generation regardless of the IDE, machine-learning library
and context of the experiment. We argue developers dealing with machine learning problems
can directly benefit of the interfaces, automatizing the process of generating metadata of
machine learning experiments. Furthermore, the proposed interfaces provide guidance on the
2 http://www.json.org
3 http://www.w3schools.com/XML/xml_whatis.asp
4 http://logging.apache.org/log4j/2.x/
5 http://www.w3.org/RDF/
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Method Advantages Drawbacks

stdout No Extra Coding Effort Required Lack of Provenance
Lack of Interoperability
Lack of Data Query Feature

DBMS Data Query Feature Extra Coding Effort (Integration)
Lack of Provenance
Lack of Interoperability

Self-schema Definition Straightforward Solution Extra Coding Effort
Extra Analysis Effort (modeling)
Lack of Provenance
Lack of Interoperability

Annotations + SW Provenance Extra Processing Time
Interoperability Security Issues
Data Query Feature
Automatic Metadata Generation

Table 6.5: Comparison of strategies for representing machine learning metadata in MLL contexts

standardization of the generated metadata, once they are based on a state of the art vocabulary
for ML 6. Figure 6.6 depicts the general process of generating the metadata. In this example,
two annotated Java classes following the MEX annotation’s descriptions are passed by parameter
to the MetaGeneration class. The entire process occurs in a transparent manner and no further
step is required. By doing so, developers reach a clean solution to narrow down the issues
discussed before (Section 6.2.3)

Figure 6.6: MEX Interfaces at a glance: a low impact solution for generating machine learning metadata
from annotated classes

The produced metadata is based on MEX [198], a vocabulary specifically designed to deal with
inputs and outputs of machine learning executions and relies on three main layers: mexcore7

6 https://github.com/ML-Schema/core/wiki/Vocabulary
7 http://mex.aksw.org/mex-core
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for execution’s controlling, mexalgo8 for ML algorithms representations and mexperf 9 for
performance indicators. It is a lightweight format built upon W3C PROV-O10 - categorized as
a vocabulary - which abstracts the core machine learning concepts regarding the execution of an
algorithm. Further schemata - more focused on data mining flows - including OntoDM [109],
Exposé [110] and DMOP [201] are classified as Ontologies. The Predictive Model Markup
Language (PMML) [202] is a XML based schema and was conceived to represent (predictive
and descriptive) data models as well as pre and post-processing. In this scenario, MEX stands
as a flexible and lightweight solution for representing the basic triple - inputs, run and outputs -
for any machine learning algorithm. Figure 6.7 depicts current technologies and schemas for
representing machine learning metadata.

Figure 6.7: Open-source formats for representing ML metadata: from straightforward representations (1)
formats until more refined schema representations (2)(3). Note: (*) Although it can be - technically -
considered machine-readable, we assume that the effort to make it happen does not pays off.

Drawbacks and Limitations

Despite a more clean and less coupled solution (once a vocabulary provides a context-less list of
common terms), the proposed methodology faces some limitations, as follows:

Reflection and Annotations: programming-language must allow reflection and annotations.
As a use case, we have implemented Java examples, although other programming languages
could be used (as long as it implements reflection). In case reflection is not allowed,
LOG4MEX can be used for logging [184].

Performance Overhead and Security Restrictions: the use of Reflection directly impacts on
the execution-time, decreasing the overall performance as well as expose the code impacting
in security restrictions11. An impact analysis of performance is planned, although we argue
that the most costly steps in ML scripts are I/O operations and mathematical calculations
and not object creations.

8 http://mex.aksw.org/mex-algo
9 http://mex.aksw.org/mex-perf

10 http://www.w3.org/TR/prov-o/
11 https://docs.oracle.com/javase/tutorial/reflect/
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Methodology Coverage: The MEX Vocabulary covers just pure machine learning metadata
(an algorithm, its inputs and outputs for given execution). Pre-processing steps or data
mining tasks are not covered due to the complexity of the task.

Local Variables: reflection in Java does not allow to capture local variables, i.e., variables
that are not explicitly declared as class variables cannot be obtained via annotations and
reflection.

Advantages

The biggest benefit of the proposed methodology is to use a standard model which abstracts the
particular concepts existing into each ML environment/implementation and to create an upper
layer that is able to inter connect knowledge as easy as possible with the produced metadata.
The following list details the key advantages:

In-line Annotations: a Java class can be simply annotated and the metadata will be
generated in run-time.

More Abstraction: by using a vocabulary, developers can benefit of the high level of
abstraction provided. A Support Vector Machines algorithm for a classification problem
can be represented with a single reference: http://mex.aksw.org/ mex-algo#C-SVM,
there is no need to re-define a vocabulary.

Less Coding Effort and More Agreement Rate: there is no need to create and share the
structure of the schema for representing the output data.

Better Interoperability and Provenance Levels: a common schema allows higher levels of
data interchanging and RDF encourages better metadata descriptions.

Querying Capabilities: Once the vocabulary is RDF-based, developers can benefit from
SPARQL queries12.

Reproducible Research: the methodology collaborates with reproducible research rules,
following best practices for data publishing and code management.

6.2.4 WEB4MEX

WEB4MEX [194] is a concise, but important contribution to boost interoperability. WEB4MEX
is simply a HTTP service that is designed to work as an intermediate layer that receives
and manages the client‘s calls with experiment‘s data, so it is also responsible to realize
the interactions with the LOG4MEX API (that provides the MEX vocabulary). In order to
accomplish that, at least theoretically, any language that is capable of HTTP communication and
JSON data manipulation can use this service. This enables experiments in different languages
to generate, by the end of the execution, data that is formatted by the MEX vocabulary.
12 http://www.w3.org/TR/rdf-sparql-query/
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6.2.5 WASOTA

Recently, a few web repositories have been released to share general experiment configurations
and scientific workflows (e.g., RunMyCode, CodaLab, myExperiment and OpenML). None
of the above projects, however, provide a straightforward way to gather information about
the states of the art through an organized taxonomy of domains. Instead, they aim at being
platforms for sharing complex meta-information about an experiment. Although some of them
still allow users to get informed on how well different approaches perform on a given task, none
comes as a semantic, light-weight aggregator of such performance values. Moreover, the domain
scope of WASOTA [195] is wider than just Machine Learning or Natural Language Processing.
For instance, OpenML algorithms are evaluated on datasets where features have already been
engineered; whilst WASOTA considers an algorithm as a black box, which optionally contains
the feature engineering process and can process raw data, such as text, images, or RDF graphs.

Developer 3
{Java-ML Script}

Developer 2
{Weka Script}

LOG4MEX

API

Developer 1
{Weka Script}

SPARQL 
endpoint

Developer 4 
{JSAT Script}

http://mex.aksw.org/wasota

export runs and performances (*.ttl)

imports what are state of the art 
methods for {context}?

Figure 6.8: WASOTA: A blueprint of the WASOTA architecture. A simple solution to reduce the
searching time for state of the art methods and a central repository of metadata for ranking

Figure 6.8 depicts the overall system’s architecture where different researchers export metadata13

from their experiments to WASOTA, regardless programming-language or framework. The
system consolidates and groups the information automatically, providing a platform to readily
present best existing methods (based on a performance measure) for a specific domain. Further
indicators are also possible to be applied, such as “dataset”, for instance. Due to the metadata
be semantic enriched with linked data, more detailed information can also be discovered, e.g.:
the hardware configuration of given environment, if it is provided.

13 http://mex.aksw.org/
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6.2.6 ML-Schema

The development of ML ontologies (Section 6.1.1) is a significant step towards ensuring unam-
biguous interpretability and reproducibility of ML experiments. However, none of the existing
ontologies fully covers the area of machine learning and supports all the needs for the represent-
ation and encoding ML experiments. Instead of the development of a comprehensive general
purpose ML ontology, here we propose a more practical and flexible approach that involves the
development of ML-Schema – Machine Learning Schema (MLS) – for mapping of the existing
ML ontologies and to support a variety of useful extensions. To achieve this ambitious goal, in
September 2015 developers of several ML ontologies formed a W3C Community Group14. The
development of MLS has been initiated as an attempt to prevent a proliferation of incompatible
ML ontologies and to increase interoperability among existing ones. The MLS Community
Group (MLS-CG) is an open-source community comprehending over 50 international researchers.

The main challenge in the development of MLS is to align existing ML ontologies and other
relevant representations designed for a range of particular purposes following sometimes incom-
patible design principles, resulting in different not easily interoperable structures. Moreover, ML
experiments are run on different ML platforms; each of those having specific conceptualization
or schema for representing data and metadata.

To address the challenge, the members of the MLS-CG identified and aligned a set of principle
ML entities – a core ML vocabulary. The core vocabulary of MLS deals with ML algorithms.
The schema is focusing on the representation of the algorithms, the machine learning tasks
they address, their implementations and executions, as well as inputs (e.g., data), outputs (e.g.,
models), and performances. The schema also defines a relationship between machine learning
algorithms and their single executions (runs), experiments and studies encompassing them.

The terms in the core vocabulary were defined and manually mapped to the ML ontologies
participating in this endeavor through several rounds of consultations. In 2016, the MLS-CG
published an online proposal for MLS, and welcomed comments and suggestions from the
research community and wider [196].

Given the importance of the work to the Semantic Web community, next, we dedicate a chapter
to detail the work under the W3C Machine Learning Schema Group, presenting the results of
three years of MLS-CG efforts in standardization of the encoding of ML experiments.

6.3 The ML-Schema

In this section, we introduce the MLS ontology w.r.t. its aims and design principles. We also
describe the properties defined within the MLS ontology namespace.

14 See www.w3.org/community/ml-schema/
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Figure 6.9: Vertical and Horizontal Interoperability across ML Environments.

6.3.1 The MLS ontology

The main aim of MLS (or the MLS ontology) is to provide a high-level standard to represent ML
experiments in a concise, unambiguous and computationally processable manner. In particular,
it aims to align existing ML ontologies and to support development of more specific ontologies
for particular purposes and applications.

To serve its purposes, MLS ontology has to be compact but sufficiently comprehensive and
easily extendable. To achieve such an aim, we chose to design MLS ontology as a light-weight
ontology that can be used as a basis for ontology development projects, markup languages and
data exchange standards. We then show how the MLS ontology is open for further extensions
and mappings to other resources.

For example, MLS ontology can support vertical and horizontal interoperability across various
ML environments. Different ML platforms have different underlying schemes for representing
data and metadata (see Figure 6.9: items 3 and 4: vertical interoperability). This may lead to
an extra coding-effort (see Figure 6.9: item 2) if to achieve both the desired interoperability
and a better provenance level as well as a more automatized environment for obtaining the
generated results. To reduce the gap, ML vocabularies and ontologies have been proposed (see
Figure 6.9: item 5).

The gap can be further significantly reduced by achieving interoperability among state-of-the-art
(SOTA) schemata of those resources (see Figure 6.9: item 5) i.e. achieving the horizontal
interoperability (Figure 6.9: item 6). Therefore, different groups of researchers could exchange
SOTA metadata files in a transparent manner, e.g.: from OntoDM and MEX (MLS.Schemadata
=MLS.convert(’myfile.ttl’,MLS.Ontology.OntoDM,MLS.Ontology.MEX)).
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6.3.2 MLS Ontology properties

In the following we list and briefly describe the properties modelled in MLS:

achieves: A relation between a run and a task, where the run achieves specifications
formulated by the task.

definedOn: A relation between a task and either the data or an evaluation specification
pertinent to this task.

defines: The inverse relation of definedOn

executes: A relation between a run and an implemantation that is being executed during
the run.

hasHyperParameters: A relation between an implementation of a machine learning
algorithm and its hyperparameter..

hasInput: A relation between a run and data that is taken as input to the run.

hasOutput: A relation between a run and either a model or model evaluation that is
produced on it’s output.

hasPart: A relation which represents a part-whole relationship holding between an entity
and its part.

hasQuality: A relation between entities and their various characteristics.

implements: A relation between an information entity and a specification that it conforms
to.

realizes: A relation between a run and an algorithm, where the run realizes specifications
formulated by the algorithm.

specifiedBy: A relation between an entity and the information content entity that specifies
it.

6.3.3 Related ontologies

The following related ML ontologies are those that MLS is aligned to the moment. These
alignments will be further described in the Section 6.4.

The OntoDM-core ontology

For the domain of data mining there are several developed ontologies, with the aim of providing
formal descriptions of domain entities. One of the proposed ontologies is the OntoDM-core
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ontology. In one of the preliminary versions of the ontology, the authors decided to align the
proposed ontology with the Ontology of Biomedical Investigations (OBI) [203] and consequently
with the Basic Formal Ontology (BFO) at the top level15, in terms of top-level classes and the
set of relations. That was beneficial for structuring the domain in a more elegant way and the
basic differentiation of information entities, implementation entities and processual entities. In
this context, the authors proposed a horizontal description structure that includes three layers:
a specification layer, an implementation layer, and an application layer. The specification layer
in general contains information entities. In the domain of data mining, example classes are
data mining task and data mining algorithm. The implementation layer in general contains
qualities and entities that are realized in a process, such as parameters and implementations of
algorithms. The application layer contains processual classes, such as the execution of the data
mining algorithm.

The Exposé ontology

The main goal of Exposé is to describe (and reason about) machine learning experiments. It is
built on top of OntoDM, as well as top-level ontologies from bio-informatics. It is currently used
in OpenML, as a way to structure data (e.g. database design) and share data (APIs). MLS will
be used to export all OpenML data as linked open data (in RDF).

For the sake of simplicity and comprehension, we further refer to the Exposé ontology as the
OpenML vocabulary, or simply OpenML.

The DMOP ontology

The DMOP ontology has been developed with a primary use case in meta-mining, that is meta-
learning extended to an analysis of full DM processes. At the level of both single algorithms and
more complex workflows, it follows a very similar modeling pattern as described in the MLS. To
support meta-mining, DMOP contains a taxonomy of algorithms used in DM processes which
are described in detail in terms of their underlying assumptions, cost functions, optimization
strategies, generated models or pattern sets, and other properties. Such a "glass box" approach
which makes explicit internal algorithm characteristics allows meta-learners using DMOP to
generalize over algorithms and their properties, including those algorithms which were not used
for training meta-learners.

The MEX vocabulary

MEX has been designed to reuse existing ontologies (i.e., PROV-O, Dublin-Core16, and DOAP17)
for representing basic machine learning information. The aim is not to describe a complete
data-mining process, which can be modeled by more complex and semantically refined structures.
15 http://basic-formal-ontology.org/
16 http://dublincore.org
17 http://usefulinc.com/doap/
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Instead, MEX is designed to provide a simple and lightweight vocabulary for exchanging machine
learning metadata in order to achieve a high level of interoperability as well as supporting data
management for ML outcomes.

6.4 MLS core and alignments

MLS provides a model for expressing data mining and machine learning algorithms, datasets,
and experiments. This section introduces the related ontologies, the core of the MLS model
– namely the classes (types) that are used to represent the majority of the cases – and the
mappings with the existing ML ontologies. This mapping highlights how MLS is compatible
with prior ontologies and how resources currently described in other ontologies can be described
uniformly using MLS, hence allowing us to link currently detached machine learning resources.

6.4.1 Task

In MLS, the Task class represents a formal description of a process that needs to be completed
(e.g.based on inputs and outputs). A Task is any piece of work that needs to be addressed in
the data mining process. Table 6.6 depicts a synthesis of the alignments detailed below.

OpenML

OpenML differentiates a TaskType (e.g. classification, regression, clustering,. . . ) and Task
instances. The TaskType defines which types of inputs are given (e.g. a dataset, train-test splits,
optimization measures) and which outputs are expected (e.g. a model, predictions,. . . ). On the
other hand, a Task contains specific dataset, splits, etc. It can be seen as an individual of the
class.

DMOP

In DMOP, a task is any piece of work that is undertaken or attempted. A DM-Task is any
task that needs to be addressed in the data mining process. DMOP’s DM-Task hierarchy
models all the major task classes: CoreDM-Task, DataProcessingTask, HypothesisApplica-
tionTask, HypothesisEvaluationTask, HypothesisProcessingTask, InductionTask, ModelingTask,
DescriptiveModelingTask, PredictiveModelingTask, and PatternDiscoveryTask.

OntoDM

OntoDM defines a data mining task as an objective specification that specifies the objective
that a data mining algorithm needs to achieve when executed on a dataset to produce as output
a generalization. It is represented as a subclass of the IAO: objective specification class, where
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objective specification is a directive information entity that describes and intended process
endpoint. The data mining task is directly dependent of the datatypes of the data examples
on which the task is defined, and is included directly in the task representations. This allows
us to represent tasks defined on arbitrarily complex datatypes. The definition of data mining
algorithm and generalizations is strongly dependent on the task definition.

OntoDM contains a taxonomy of data mining tasks. At the first level, we differentiate between
four major task classes: predictive modelling task, pattern discovery task, clustering task, and
probability distribution estimation task. Predictive modelling task is worked out in more detail.
Since, a predictive modeling task is defined on a pair of datatypes (one describing the part of the
data example on the descriptive side and the other describing the part of the data example on
the target/output side), we differentiate between primitive output prediction tasks (that include
among others the traditional ML tasks such as classification and regression) and structured
output prediction tasks (that include among others tasks such as multi-label classification,
multi-target prediction, hierarchical multi-label classification).

MEX

MEX has a higher level of abstraction, designed for representing ML executions and related
metadata and not DM tasks. There are specific classes for representing specific ML standards.
This information could be obtained from Learning Problem + Learning Method + Algorithm
Class in a more concise level.

Learning Problem: Association, Classification, Clustering, Metaheuristic, Regression,
Summarization, . . .

Learning Method: Supervised Learning, Unsupervised Learning, Semi-supervised Learning,
Reinforcement Learning, . . .

Algorithm Class: ANN, ILP, Bagging, Bayes Theory, Boosting, Clustering, Decision Trees,
Genetic Algorithms, Logical Representations, Regression Functions, Rules, Support Vector
Networks, . . .

As an :ExperimentConfiguration may have many :Executions and an :Experiment may
have many :ExperimentConfigurations, these can be aligned to a mls:Task.

6.4.2 Algorithm

In MLS, the Algorithm class represents an algorithm regardless of its software implementation.
Table 6.7 summarizes the alignments described below.
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Property Value

Example Classes Classification, Regression, Clustering, Feature Selection,
Missing value imputation,. . .

Example Individuals Classification on Dataset Iris
OpenML TaskType
DMOP DM-Task
OntoDM “Data Mining Task”
MEX The closest concept is mexcore:ExperimentConfiguration

Table 6.6: The syntheses of the MLS Task class and its relation with aligned ontologies.

OpenML

OpenML currently does not abstract over algorithms anymore, it simply has ‘implementations’.
The underlying reasoning is that algorithms can come in endless variations, including hybrids that
combine multiple pre-existing algorithms. Classifying every implementation as a specific type of
algorithm is therefore not trivial and hard to maintain. Instead, to organize implementations,
OpenML has ‘tags’, so that anybody can tag algorithms with certain keywords, including the
type of algorithm that is implemented. Hence, hybrid algorithm can have multiple tags.

DMOP

An DM-Algorithm is a well-defined sequence of steps that specifies how to solve a problem or
perform a task. It typically accepts an input and produces an output. A DM-Algorithm is an
algorithm that has been designed to perform any of the DM tasks, such as feature selection,
missing value imputation, modeling, and induction. The higher-level classes of the DM-Algorithm
hierarchy correspond to DM-Task types. Immediately below are broad algorithm families or
what data miners more commonly call paradigms or approaches. The Algorithm hierarchy
bottoms out in individual algorithms such as CART, Lasso or ReliefF. A particular case of a
DM-Algorithm is a Modeling (or Learning) algorithm, which is a well-defined procedure that
takes data as input and produces output in the form of models or patterns.

OntoDM

In OntoDM, authors differentiate between three aspects of algorithms: algorithm as a spe-
cification, algorithm as an implementation, and the process of executing an algorithm. Data
mining algorithm (as a specification) is represented as a subclass of IAO: algorithm. In this
sense, a data mining algorithm is defined as an algorithm that solves a data mining task and
as a results outputs a generalization and is usually published/described in some document
(journal/conference/workshop publication or a technical report).

In OntoDM, it is given a higher level taxonomy of algorithms. At the first level, it is differentiated
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between single generalization algorithms (algorithms that produces a single generalization as
a result) and ensemble algorithms (algorithms that produce an ensemble of generalizations as
a result). At the second level, the taxonomy follows the taxonomy of tasks. This modular
and generic approach allows easy extensions to characterize each algorithm class with its own
distinctive set of characteristics that can be represented as qualities.

MEX

Sharing the problem stated by OpenML, MEX labels high levels of ML algorithms in Algorithm
class instead of specific algorithm characterisations. As much as more precise information is
needed, related classes could be instantiated, such as Learning Problem + Learning Method +
Algorithm Class + Implementation.

Property Value

Example Classes Algorithm
Example Individuals Linear Regression, Random Forest, AdaBoost. . .
OpenML None
DMOP DM-Algorithm
OntoDM “Data Mining Algorithm”
MEX mexalgo:Algorithm

Table 6.7: MLS Algorithm class alignments

6.4.3 Implementation

In MLS, the Implementation class represents an executable implementation of a machine learning
algorithm, script, or workflow. It is versioned, and sometimes belongs to a library (e.g. WEKA).
The alignments of this class against related ML ontologies are described following, and Table
6.8 summarizes them.

OpenML

OpenML does not distinguish between ‘operators’ and ‘workflows’, because the line is often
very blurry. Many algorithms have complex internal workflows to preprocess the input data
and make them more robust. Also, many environments (e.g. R, Matlab, etc.) do not have the
concept of operator; they just have function calls, which are part of scripts. Hence, in OpenML,
every implementation is called a Flow, which can be either atomic or composite.
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OntoDM

In OntoDM, authors represent a data mining algorithm implementation as a subclass of
OBI: plan is a concretization of a data mining algorithm. Data mining algorithms have as
qualities parameters that are described by a parameter specification. A parameter is a quality
of an algorithm implementation, and it refers the data provided as input to the algorithm
implementation that influences the flow of the execution of algorithm realized by a data mining
operator that has information about the specific parameter setting used in the execution process.

MEX

Implementation in MEX is meant to represent the Software Implementation and has no link to
the algorithm itself. Examples are Weka, SPSS, Octave, DL-Learner.

Property Value

Example Classes LearnerImplementation,DataProcessingImplementation,Ev
aluationProcedureImplementation

Example Individuals
SVMlib,weka.J48,rapidminer.RandomForest,weka.eval
uation.CrossValidation,weka.attributeSelection.Ga
inRatioAttributeEval

OpenML Flow / Implementation
DMOP DM-Operator / DM-Workflow
OntoDM “Data mining algorithm implementation”
MEX mexalgo:Implementation

Table 6.8: A syntheses of the MLS Implementation class and its alignments.

6.4.4 HyperParameter

The MLS HyperParameter class represents a a prior parameter of an implementation, i.e., a para-
meter which is set before its execution (e.g. C, the complexity parameter, in weka.SMO). As shown
in Table 6.9, this is directly aligned with OpenML’s Parameter, MEX’s AlgorithmParameter,
and DMOP’s OperatorParameter.

In OntoDM, however, a data mining algorithm execution is a subclass of SWO:information
processing, which is an OBI:planned process. Planned processes realize a plan which is a
concretization of a plan specification. A data mining algorithm execution realizes (executes) a
data mining operator, has as input a dataset, has as output a generalization, has as agent a
computer, and achieves as a planned objective a data mining task.

Data mining operator is a role of a data mining algorithm implementation that is realized
(executed) by a data mining algorithm execution process. The data mining operator has
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information about the specific parameter setting of the algorithm, in the context of the realization
of the operator in the process of execution. The parameter setting is an information entity
which is a quality specification of a parameter.

Property Value

Example Classes HyperParameter

Example Individuals weka.SMO_C,weka.J48_M,rapidminer.RandomForest_num
ber_of_trees

OpenML Parameter
DMOP OperatorParameter
OntoDM Parameter

MEX mexalgo:AlgorithmParameter(mexalgo:HyperParameter
under proposal)

Table 6.9: MLS HyperParameter class and its alignments

6.4.5 Data

In MLS, the Data class represents a data item composed of data examples and it may be of a
various level of granularity and complexity. With regard to granularity, it can be a whole dataset
(for instance, one main table and possibly other tables), or only a single table, or only a feature
(e.g., a column of a table), or only an instance (e.g., row of a table), or a single feature-value
pair. With regards to complexity, data examples are characterized by their datatype, which
may be arbitrarily complex (e.g., instead of a table it can be an arbitrary graph). OpenML
describes data at this level of granularity, while the alignment is more complex in other. Table
6.10 summarizes the alignments.

DMOP

DM-Data: In SUMO, Data is defined as an item of factual information derived from measurement
or research. In IAO, Data is an alternative term for ‘data item’: ‘an information content entity
that is intended to be a truthful statement about something (modulo, e.g., measurement precision
or other systematic errors) and is constructed/acquired by a method which reliably tends to
produce (approximately) truthful statements’. In the context of DMOP, DM-Data is the generic
term that encloses different levels of granularity: data can be a whole dataset (one main table
and possibly other tables), or only a table, or only a feature (column of a table), or only an
instance (row of a table), or even a single feature-value pair.

103



Chapter 6 The Quest for Reproducibility in the Context of Machine Learning Experiments

OntoDM

OntoDM imports the IAO class dataset (defined as ‘a data item that is an aggregate of other data
items of the same type that have something in common’) and extends it by further specifying that
a DM dataset has part data examples. OntoDM-core also defines the class dataset specification
to enable characterization of different dataset classes. It specifies the type of the dataset based
on the type of data it contains. In OntoDM, we model the data characteristics with a data
specification entity that describes the datatype of the underlying data examples. For this
purpose, we import the mechanism for representing arbitrarily complex datatypes from the
OntoDT ontology. Using data specifications and the taxonomy of datatypes from the OntoDT
ontology, in OntoDM-core have a taxonomy of datasets.

MEX

In MEX, it is possible to represent even each instance (mexcore:Example) and each feature
(mexcore:Feature) of the dataset.

Property Value

Example Classes Dataset, Train-test splits, Predictions
Example Individuals Iris, FaceScrub, IMDB-WIKI
OpenML Data
DMOP DM-Data
OntoDM Dataset specification, DM-dataset
MEX mexcore:Dataset (as metadata)

Table 6.10: MLS Data class and its alignments.

6.4.6 Model

We define Model as a generalization of a set of training data able to predict values for unseen
instances. It is an output from an execution of a data mining algorithm implementation. Models
have a dual nature: they can be treated as data structures and as such represented, stored and
manipulated; on the other hand, they act as functions and are executed, taking as input data
examples and giving as output the result of applying the function to a data example. Models
can also be divided into global or local ones. A global model has global coverage of a data set,
i.e., it generalizes the whole data set. A local model, such as a pattern set, is a set of local
hypotheses, i.e. each applies to a limited region of the data set.

Table ?? demonstrates the alignments of MLS Model class that are described in the following.
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Property Value

Example Classes Decision tree, Rule set, Clusterings, Pattern set, Bayesian
Network, Neural Net, Probability Distribution,. . .

Example Individuals Decision tree built on Iris
OpenML None

DMOP DM-Hypothesis (with main subclasses: DM-Model, DM-
PatternSet)

OntoDM Generalization
MEX None

Table 6.11: MLS Model class and its alignments

DMOP

By Hypothesis, DMOP actually meant roughly ML models. They introduced the concept of a
‘hypothesis’ to differentiate ML models from pattern sets. On the other hand, the DM-PatternSet
represents a pattern set, as opposed to a model which by definition has global coverage, is a set
of local hypotheses, i.e. each applies to a limited region of the sample space.

OntoDM

In OntoDM, authors take generalization to denote the outcome of a data mining task. They
consider and model three different aspects of generalizations: the specification of a generalization,
a generalization as a realizable entity, and the process of executing a generalization.

Generalizations have a dual nature. They can be treated as data structures and as such
represented, stored and manipulated. On the other hand, they act as functions and are executed,
taking as input data examples and giving as output the result of applying the function to a
data example. In OntoDM, a generalization is defined as a sub-class of the BFO class realizable
entity. It is an output from a data mining algorithm execution.

The dual nature of generalizations in OntoDM is represented with two classes that belong to two
different description layers: generalization representation, which is a sub-class of information
content entity and belongs to the specification layer, and generalization execution, which is a
subclass of planned process and belongs to the application layer.

In addition, a MLS ModelCharicteristic is a Generalization quality, while a MLS ModelEvaluation
is mapped to a Generalization evaluation.
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6.4.7 Run

An MLS run is an execution of an implementation on a machine (computer). It is limited in
time (has a start and end point), can be successful or failed. If successful, it often has a specific
result, such as a model and evaluations of that model’s performance. Although runs are called
very differently in the different existing ontologies, the semantics are the same. Table 6.12 shows
the alignments with them.

Property Value

Example Classes SimpleProcess, Execution

Example Individuals Process running SVMlib on Iris on Machine m on timestamp
t

OpenML Run
DMOP DM-Process (i.e., execution)
OntoDM Data mining algorithm execution

MEX mexcore:Execution (singly mexcore:SingleExecution,
collectively mexcore:OverallExecution)

Table 6.12: MLS Run class and its alignments

6.4.8 EvaluationMeasure

An MLS evaluation measure unique defines how to evaluate the performance of a model after it
has been trained in a specific run. As shown in table 6.13, this is directly aligned across the
different existing ontologies. In DMOP, however, there exist subclasses, such as Computational-
ComplexityMeasure, HypothesisEvaluationMeasure, and ModelComplexityMeasure.

6.4.9 Study

An MLS study is a collection of runs that belong together to perform some kind of analysis on
its results. This analysis can be general or very specific (e.g. an hypothesis test). It can also be
linked to files, data, that belong to it. Studies are often the most natural product of a scientific
investigation, and can be directly linked to certain claims and other products, such as research
papers. As shown in Table 6.14, existing ontologies call this either a study or an experiment,
although the semantics are the same.
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Property Value

Example Classes ClassificationMeasure,RegressionMeasure,Clusterin
gMeasure,RuntimeMeasure...

Example Individuals Predictive_accuracy,root_mean_squared_error,inter
_cluster_variance,cputime_training_milliseconds

OpenML EvaluationMeasure
DMOP Measure
OntoDM None
MEX mexperf:PerformanceMeasure

Table 6.13: MLS EvaluationMeasure class and its alignments

Property Value

Example Classes BenchmarkStudy
Example Individuals Specific collections of runs
OpenML Study

DMOP DM-Experiment (i.e., something that resembles a bundle in
PROV, e.g. prov:Bundle)

OntoDM None
MEX mexcore:Experiment

Table 6.14: MLS Study class and its alignments
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ML-Schema OntoDM-core DMOP OpenML/Exposé MEX Vocabulary
Task Data mining task DM-Task Task mexcore:ExperimentConfiguration
Algorithm Data mining algorithm DM-Algorithm Algorithm mexalgo:Algorithm
Software Data mining software DM-Software N/A mexalgo:Tool
Implementation Data mining algorithm implementation DM-Operator Algorithm implementation N/A mexalgo:Implementation
HyperParameter Parameter Parameter Parameter mexalgo:HyperParameter
HyperParameterSetting Parameter setting OpParameterSetting Parameter setting N/A
Study Investigation N/A N/A mexcore:Experiment
Experiment N/A DM-Experiment Experiment N/A
Run Data mining algorithm execution DM-Operation Algorithm execution mexcore:Execution
Data Data item DM-Data N/A mexcore:Example
Dataset DM dataset DataSet Dataset mexcore:Dataset
Feature N/A Feature N/A mexcore:Feature
DataCharacteristic Data specification DataCharacteristic Dataset specification N/A
DatasetCharacteristic Dataset specification DataSetCharacteristic Data quality N/A
FeatureCharacteristic Feature specification FeatureCharacteristic N/A N/A
Model Generalization DM-Hypothesis (DM-Model / DM-PatternSet) Model mexcore:Model
ModelCharacteristic Generalization quality HypothesisCharacteristic Model Structure, Parameter, . . . N/A
ModelEvaluation Generalization evaluation ModelPerformance Evaluation N/A
EvaluationMeasure Evaluation datum ModelEvaluationMeasure Evaluation measure mexperf:PerformanceMeasure
EvaluationProcedure Evaluation algorithm ModelEvaluationAlgorithm Performance Estimation N/A

Table 6.15: Final full comparison between the terms of ML-Schema and aligned vocabularies
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6.5 Use cases

To elucidate the benefits of MLS, we present three use cases where MLS can be utilized to
foster the reproducibility of experiments. In particular, we show how previous research can
benefit from the existence of an upper ontology which interlinks several vocabularies used for
the exchange of experiment data and metadata.

6.5.1 Open Provenance Model for Workflows and Research Objects

It is often crucial to know exactly which data was used to train a machine learning model, where
this data came from, and how it was processed before modelling. MLS is compatible with the
Open Provenance Model for Workflows (OPMW) [204] and Research Objects [205]. This allows
machine learning experiments to be described in a uniform way that preserves the provenance
of data and models.

The term provenance, in computer science and scientific research, means metadata about the
origin, derivation or history of data or thing. For instance, in biology or chemistry, we track
steps of experimental processes to enable their reproduction. In computer science, we track the
creation, editing and publication of data, including their reuse in further processes. The PROV
data model for provenance was created, founded on previous efforts such as Open Provenance
Model (OPM) [206], and later became recommended by W3C [207]. The PROV Ontology
(PROV-O), also recommended by W3C [208], expresses the PROV Data Model using the OWL
language. PROV-O provides a set of classes, properties, and restrictions that can be used
to represent and exchange provenance information generated in various systems. The Open
Provenance Model for Workflows (OPMW) is an ontology for describing workflow traces and
their templates which extends PROV-O and the ontology P-plan designed to represent plans
that guided the execution of processes [204]. Figure 6.10 presents the mapping of the MLS
directly to OPMW and indirectly to PROV-O and P-plan.

Belhajjame et al. [205] proposed a suite of ontologies for preserving workflow-centric Research
Objects. The ontologies use and extend existing widely used ontologies, including PROV-O.
Especially, the two ontologies from the suite, the Workflow Description Ontology (wfdesc),
used to describe the workflow specifications, and the Workflow Provenance Ontology (wfprov),
used to describe the provenance traces obtained by executing workflows, follow a very similar
conceptualization of workflows to that of OPMW and map to MLS.

6.5.2 OpenML

The OpenML platform contains millions of machine learning experiments, which were run using
thousands of machine learning workflows on thousands of datasets. However, in themselves,
these experiments form another island of data disconnected to the rest of the world. To remedy
this, we have used MLS to describe all of these experiments as linked open data, so that scientists
can connect their machine learning experiments to other knowledge sources, or build novel
knowledge bases for machine learning research.
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Figure 6.10: The mapping of MLS to OPMW, PROV-O and P-plan.

This is achieved through an export function that reads in OpenML’s current JSON descriptions
of datasets, tasks, workflows, and runs, and emits an RDF description using the MLS schema.
This functionality is available as an open source Java library18. OpenML also supports this
export functionality on the platform itself. In the web interface (openml.org) every dataset,
task, workflow (flow), and run page has an RDF export button that returns the RDF description
of that object, linked to other objects by their OpenML IDs. This functionality is also available
via predictable URLs in the format https://www.openml.org/{type}/{id}/rdf, where type
is either d (dataset), t (task), f (flow), or r (run), and id the OpenML ID of that object. Hence,
the RDF description of dataset 2 can be obtained via https://www.openml.org/d/2/rdf.

As such, OpenML data becomes part of the semantic web, which allows scientists to link it to
other data and reuse it in innovate new ways.

18 The library is available on https://github.com/ML-Schema/openml-rdf
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6.6 Summary

6.5.3 Deep Learning

This use case can also be described as a possible future work of MLS, where it is extended to
support Deep Learning (DL) models.

By initiative of Microsoft and Facebook, a recently created community group called Open Neural
Network Exchange (ONXX)19 aims to allow users to share their Neural Network models and
transfer them between frameworks. At the moment, it covers import/export to 3 different
frameworks, while libraries for other 5 frameworks are under development or have partial
support.

DL models have some requirements that MLS cannot describe at the moment – information
such as number of layers and neurons, weights, and pre-trained models – as it only contains the
HyperParameter class that is not able to store this additional information.

Unfortunately, the ONNX initiative does not provide an ontology; instead, their operators are
described in the project GitHub documentation, while their terms are hardly defined in C code.
On the other hand, the extension of the MLS ontology by adding new properties based on those
terms would benefit not only the MLS, but all the aligned ontologies described in this work,
that would instantly be able to use those properties to extend their models and support the
description of DL models and experiments.

6.6 Summary

Scientific experiments are often neither replicable nor reproducible, which go against beliefs of
“the scientific method” [209]. Among different reasons for that, the lack of standard ways to
represent scientific experiments is one of the key challenges to instigate reproducibility research.
In this chapter we presented ontologies and tools to enable reproducibility in the machine
learning context. We demonstrated the expressiveness in the work of ML-Schema and how the
MLS ontology was designed to be aligned with several ML ontologies, such as DMOP [190],
OntoDM [189], MEX [182], and Exposé [110]. It was also possible to elucidate through use cases
the capabilities of our work, such as the usage of MLS format for exporting ML experiments to
RDF format in the OpenML [106] framework, its extension of that provides direct support to
the OPMW and indirect to the PROV-O [208] ontology, as well as the possible extension to
elucidate the description of DL experiments.

19 https://onnx.ai/
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CHAPTER 7

Conclusion and Future Directions

This thesis studies the research problem of automatizing the fact-checking validation task.

In particular, we tackle the problems of Entity Recognition on noisy data (Chapter 3), Web
Credibility (Chapter 4), Automated Fact-Checking (Chapter 5), and Reproducible Research
(Chapter 6). In the following sections, we summarize our contributions and discuss the main
findings that corroborate our research questions.

7.1 Overall contributions and conclusions

To tackle the underlying challenges defined for this thesis we defined four research questions.

First, we tackled the problem of detection and classification of entities in a noisy environment,
and answer the following research question.

RQ1: Can images along with news improve the performance of the named entity recogni-
tion models on noisy text?

The Web often deals with more informal and colloquial languages, which lack implicit linguistic
formalism. Thus, they have more unstructured properties, are shorter, they lack context and
present more grammatical and spelling errors. With respect to that – not surprisingly – the
performance of SOTA degrades significantly on the Web content, evidencing the sensibility of
the proposed models when dealing with noisy and out-of-domain text. To answer RQ1, we
need a methodology that adapts itself better to the noisy scenario of Web. In consequence, we
proposed the HORUS approach, a novel named entity recognition approach based on computer
vision and text mining techniques. The HORUS approach is able to detect entities on noisy
data by extracting heuristics from images and text.

HORUS has been designed to exploit the semantics encoded in the data collected from web
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sources and produce global vectors to represent each entity. The key components that allows
HORUS to exploit semantics is its ability to process images and associated text, clustering
its vectors in a high-dimensional vector space. We empirically demonstrate the advantages of
using HORUS to detect named entities on microblogs, showing he benefits of this architecture.
Our theoretical and empirical findings indicate that – in comparison with the state-of-the-art
– our proposed integration approach HORUS is able to slightly outperform state of the art
architectures. Besides, the great advantage is that it does not require any kind of encoded rule
and is language-agnostic per nature. Additionally, the HORUS approach remains flexible and
applicable to a variety of applications, since its vectors can be embedded into other domains,
such as Entity Linking. We formally and empirically prove that the semantics encoded in
HORUS are useful resources to perform named entity on noisy data. Based on our findings, we
contribute to the state-of-the-art in the area of named entity recognition on noisy data:

We propose a novel methodology to extract relevant information from tokens which is
based on the concept of images and news.

We released a novel NER Framework named HORUS, which implements the concepts
behind this methodology, generating a set of heuristics to boost the task.

An empirical evaluation to assess the effectiveness of HORUS for the NER task on noisy
text. Experiments are executed over the most famous datasets for the task: Ritter,
WNUT-15, WNUT-16 and WNUT-17.

The second problem we tackle, it is determining the level of credibility of a given information
source and answers the following research question.

RQ2: How to calculate a credibility score for a given information source?

With the growth of the internet, the number of fake-news online has been proliferating every
year. The consequences of such phenomena are manifold, ranging from lousy decision-making
process to bullying and violence episodes. An important step to detect fake-news is to have
access to a credibility score for a given information source. However, most of the widely used
Web indicators have either been shut-down to the public (e.g., Google PageRank) or are not free
for use (Alexa Rank). To answer RQ2 first we review the state-of-the-art approaches and select
Likert as trustworthiness scale. The proposed model automatically extracts source reputation
cues by transforming HTML metadata into a sequence-to-sequence problem. It then computes a
credibility factor, providing valuable insights which can help in belittling dubious and confirming
trustful unknown websites. Although further credibility databases exist, they are short-manually
curated lists of online sources, which do not scale. Finally, most of the research on the topic
is theoretical-based or explore confidential data in a restricted simulation environment. To
avoid the need for an expert domain intervention, we propose WebCred, a novel web credibility
framework. The empirical evaluations demonstrate the benefits of using our approach to support
the problem of detecting fake-news. To test the accuracy of WebCred, we compared its results
with the state-of-the-art methods. The proposed model automatically extracts source reputation
cues and computes a credibility factor, providing valuable insights which can help in belittling
dubious and confirming trustful unknown websites. Experimental results outperform state of
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the art in the 2-classes and 5-classes setting. We formally and empirically prove that the use of
HTML metadata improves the accuracy of the task of detecting credibility scales for information
sources. Based on our findings, we provide the following contributions to the state-of-the-art:

A novel methodology to compute trustworthiness indicators for websites.

A novel web credibility Framework named WebCred, which implements the concepts
behind this methodology and is 100% open-source.

An empirical evaluation to assess the effectiveness of WebCred for the web credibility task.
Experiments are executed over the most famous datasets for the task: Microsoft and 3C
Corpus.

An updated release of the Microsoft Credibility dataset.

The third problem we solve in this thesis, it is the problem of automating the fact-checking task
itself. The research question we answer by solving this problem is the following:

RQ3: How to determine the veracity of a given claim?

Fake news is serious problem which has attracted global attention. The information on the
internet suffers from noise and corrupt knowledge that may arise due to human and mechanical
errors. To further exacerbate this problem, an ever-increasing amount of fake news on social
media, or internet in general, has created another challenge to drawing correct information from
the web. This huge sea of data makes it difficult for human fact checkers and journalists to assess
all the information manually. To answer question RQ3, first, we have proposed a multilingual
fact-validation framework named DeFacto to focus on simple claims over structured data.
DeFacto is a supervised learning approach which performs verification of triple-like claims using
the Web as information source. To perform natural language generation, it relies on a library to
perform multi-lingual natural-language patterns transformation. Besides, we manually annotated
and generated a gold standard dataset for structured claim, dubbed FactBench. FactBench is a
full-fledged multilingual1 benchmark for the evaluation of fact validation algorithms and is based
on FreeBase and DBpedia. All facts in FactBench are scoped with a timespan in which they
were true, enabling the validation of temporal relation extraction algorithms. Finally, we have
extended DeFacto to also perform verification in a more realistic setting, i.e. complex claims
(i.e., natural language). We demonstrate that our approach is able to perform fact-validation
over structured claims extracted from KBs. DeFacto achieves an F1 measure of 84.9% on the
most realistic fact validation test set (FactBench mix) on DBpedia as well as Freebase data.
The temporal extension shows a promising average F1 measure of 70.2% for time point and
65.8% for time period relations. The use of multi-lingual patterns increased the fact validation
F1 by 1.5%. We show that DeFacto is able to successfully perform triple validation. Results
of the empirical evaluation suggest that DeFacto is able to effectively validate wrong triples
existing across different KBs.

In order to explore further scenarios, we have extended DeFacto to also perform verification in a
1 FactBench currently supports English, German and French
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more realistic setting, i.e. complex claims (i.e., natural language). In this release, we also have
updated the natural language generation module to handle predicates without restriction, when
comparing to the first analysis, which had a limitation in the number of allowed predicates. The
experiments suggest that the new component based on word embeedings implemented in DeFacto
is able to comprehensively perform the fact-validation task. DeFacto can be applied in numerous
use cases, e.g., related to journalism or political debates. To validate the comprehensiveness of
DeFacto, we participated inn the most difficult and famous fact-checking challenge, FEVER:
Fact Extraction and VERification. It consists of 185,445 claims generated by altering sentences
extracted from Wikipedia and subsequently verified without knowledge of the sentence they
were derived from. DeFacto outperformed the neural-based baseline system by a decent margin:
(0.43 × 0.18), (0.51 × 0.48) and (0.38 × 0.27) for F1, accuracy and balanced FEVER Score,
respectively. Last, but not least, we explored methods to further improve the efficiency of the
model. In our last study, we focused on the evidence retrieval part, proposing a 2-connected
layer based on LSTM to merge the extracted proofs. We then compared this to classical and
state-of-the-art methods to perform the task. Our experiments show that our model outperforms
all the baselines. Compared to the best baseline(XGBoost), it outperforms it by 11%, 10.2%
and 18.7% on the FEVER-Support, FEVER-Reject and 3-Class tasks, respectively. We show
empirically that DeFacto is able to automatize the fact-checking task, both in structured
as well as unstructured scenarios. We enhanced the approach to allow the validation of a
variety of different claims, as well as studied and developed a new method to improve the
evidence extraction phase. Based on our findings, we provide the following contributions to the
state-of-the-art:

1. The development and extension of DeFacto, a RDF fact-checking framework .

2. The extension of DeFacto to increase its coverage on the validation task w.r.t. the allowed
predicates.

3. The extension of DeFacto to support triple ranking.

4. The improvement of its architecture w.r.t. new evidence extraction methods.

5. An empirical evaluation to assess the effectiveness of DeFacto for the fact-checking task in
the most important fact-checking challenge. Experiments performed validate the viability
of the framework on real-use cases scenarios.

The fourth and final question we want to answer in the scope of this thesis is the following:

RQ4: Are existing reproducible research methods sufficient to enable reproducibility?

Over the last decades diverse new scientific methods have been proposed, leading to a massive
amount of new articles. However, reproducing them is most of the time a tricky task. In order to
compare machine-learning experiment results, they need to be performed thoroughly on the same
computing environment, i.e., replication must be performed over the same configurations such
as datasets, algorithm and hyperparameters. With this respect, interoperability and metadata
management also play an important role. Still, practical experience shows that scientists
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and engineers tend to have large output data in their experiments, which is both difficult to
analyze and archive properly without provenance metadata. To answer RQ4 we studied existing
paradigms and approaches to enable 1) interoperability, 2) scalability and 3) interpretability.
These three pillars are the cornerstone to enable reproducible research. We first survey existing
attempts to bridge this gap, which were predominantly designed on a workflow-system base.
Due to the complexity of the scenario, these attempts imply in several constraints, allowing
its implementation only in specific domains (e.g., Bioinformatics). To tackle this problem,
ontologies were proposed. However, proposing a high level of granularity, which naturally comes
at a price of more complexity to represent the experiments. In order to enable reproducibility of
machine learning experiments, in general, we proposed MEX. MEX is a lightweight specification
based on Linked Data for interchanging machine-learning metadata over different architectures
to achieve a higher level of interoperability. To further foster the dissemination of the protocol,
we designed an extensive list of tools and frameworks.

1. We define the first lightweight standard to represent machine learning experiments, a
vocabulary dubbed MEX;

2. We design LOG4MEX - a library which allows to export configurations and experiment
outcomes;

3. Furthermore, we propose WEB4MEX, a REST interface to export configurations through
web calls;

4. Also, MEX-Interfaces is part of the project and defines a set of class interfaces that allow
machine learning metadata generation without explicit code implementations;

5. WASOTA has been proposed as a prototype to store experimental metadata online;

6. Finally, we propose ML-Schema, an upper level ontology which maps state-of-the-art
ontologies and adopts high level of provenance in a single representation, achieving the
maximum level of interoperablity and intepretability; possible.

Through the successful conclusion of these projects, we are able to answer RQ4 and conclude that
throught linked data technologies is possible to enable reproducibility of scientific experiments.
The proposed methodology and frameworks provide a prompt method to describe experiments
with a special focus on data provenance and fulfills the requirements for a long-term maintenance.

7.2 Outlook

In this final section, we describe what we envisage as the future directions for this work.

In the scope of this thesis, we focused on different underlying challenges to automatize the
validation task in the fact-checking context. Although very interesting findings have been
presented, there is still room to improve the results in each of the problems presented in
this thesis. In the following items we summarize the future directions on each of the main
contributions of this thesis.
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Regarding the challenge of recognizing named entities on noisy data (RQ1: HORUS), we see
the following directions to continue and improve the integration approach:

1. Extend HORUS approach to performing classification of other common entities beyond
PER, LOC and ORG (e.g., MISC); although the exploration of images and text mining
techniques have been extensively tackled in the scope of the thesis, the inclusion on new
target classes - especially specific emerging entities [82] - have not yet been explored.

2. Our proposed approach has a remarkable negative aspect w.r.t. performance. Currently,
its performance is close to 2-3 seconds per token, which is considerably slow and possibly
a significant issue in terms of the production environment. The bottleneck is the image
feature extraction pipeline. A distributed solution to cache the extracted features would
considerably speed up the model‘s response.

3. The metadata provided by HORUS has the potential to become an essential asset to several
other applications in NLP, such as entity linking and question answering, for instance.
This integration should be validated and may push the state of the art, especially in noisy
text.

4. Finally, to improve performance and reduce costs with search engine calls, we propose the
integration with open Knowledge Bases, such as DBpedia, YAGO. The trade-off might be
worth and shall be validated in terms of costs and performance.

Regarding the trustworthiness model (RQ2: WebCred), it can be extended with the following
ideas:

1. Integrate our new proposed method with graph-based solutions [23] to assess credibility in
order to improve user experience and give more insights to the end-user.

2. The concept of credibility strongly relies on the user‘s feedback. An interesting approach
would be extending the framework to an open crowdsource based architecture where users
could interact with the system, giving feedback to the model‘s response. This information
could be either used as a feature to a supervised model as well as to design a reinforcement
learning-based strategy to tackle the problem.

3. Documents which have a certain number of false statements should be automatically
labeled as non-credible sources. The idea of performing macro fact-checking over all
statements existing in a given information source can be an exciting approach to derive a
final credibility score.

Regarding our automated fact-checking approach (RQ3: DeFacto) we plan the following to the
future:

1. All new models proposed (HORUS and WebCred) have a high potential to improve the
performance of our fact-checking framework and thus should be validated in DeFacto.

2. An exciting line of research would be to study visual fake-news. Generative Adversarial
Networks (GANs) [210] have had massive success since they were first proposed in 2014.
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With the adoption of this technology, videos and photos can be used to spread fake-news
in a different level of difficulty for existing automated fact-checking models.

3. The usage of word embeddings to enhance the evidence extraction phase is a promising
research line. In this case, we suggest to continue and extend the evidence extraction
method we proposed in this thesis. Possible extensions could be considering not only the
explicit knowledge encoded available in related documents but the implicit knowledge too,
which can be acquired through common-sense frameworks. Transformers also have great
potential to boost the task.

4. In the document retrieval component, we incentive the study of entity-linking methods to
potentially improve recall. Our current architecture does not perform disambiguation of
entities, which is an important step in the pipeline.

5. Untimely, we also suggest integrating into DeFacto a feedback module, shifting the
architecture to a human-in-the-loop paradigm. Positive and negative feedback from
specialists (e.g., journalists) can be a great asset to improve the overall model‘s performance.

Future of reproducible research (RQ4: MEX and ML-Schema) should encompass more transpar-
ent methods to represent data and metadata:

1. The most challenging issue regarding this topic is indirectly related to time management.
Scientists face a never-ending competition to solve complex problems within the minimum
amount of time. They are thus constantly pushed to deliver more and faster, which implies
in the lack of proper representation of scientific experiments. In the engineering side,
one exciting solution would be integrating ML vocabularies and ontologies through the
proposed canonical format ML-Schema into famous ML frameworks, such as scikit-learn.

2. A very ambitious solution lies in constructing machines to automatically reading source-
code and generating metadata representation out of it, without human interference.

In terms of the applicability of the approaches we see a lot of opportunities to solve integration
problems on the following domains:

In the health domain, HORUS can be adopted as a novel solution to detect unusual
entities for NER models, e.g., products and ingredients. Due to its language-agnostic
characteristic, it may be applied to several languages without restrictions.

Furthermore, DeFacto can be applied to verify knowledge graphs containing information of
alimentary diet. For instance, by checking relationships among the food and diseases (e.g.,
“carrots are a weight loss friendly food and have been linked to lower cholesterol levels and
improved eye health.”

After most famous web credibility tools have been shut down to the public, WebCred can
stand as the only free solution to bring credibility information to internet users if deployed
in large scale.

All tools and frameworks designed under the MEX Project have a high potential to create
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a general controlled environment to foster reproducibility.

7.3 Closing Remarks

With the increase in false fact circulation across different social media platforms, it has become
pertinent to validate the claims and statements released online. In this thesis, we shed light
on existing challenges and propose solutions to automatize the fact-checking validation task.
Future research work can build upon the contributions presented in this thesis to devise more
accurate approaches. Additionally, the pieces of software produced during the development of
this thesis are impacting several application domains (trustworthiness, fact-checking, named
entity recognition and reproducible research). The results of this thesis have been appreciated
by the Semantic Web Research and Natural Language Processing Communities. Moreover, the
results of this thesis are part of further European Union research proposals and projects.
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