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Abstract 
 Neuregulins and their cognate neuronal receptor tyrosine kinase ErbB4 (avian 

erythroblastosis virus oncogene B4) are genetically linked with an increased risk for 

schizophrenia. NRG/ErbB4 signaling regulates neurodevelopment, synaptic plasticity, 

network activity and modulates several neurotransmitter systems. Four ErbB4 isoforms are 

generated by alternative splicing in the juxtamembrane (JMa and JMb) and cytoplasmic region 

(Cyt-1 and Cyt-2). These isoforms mediate unique downstream signaling pathways exerting 

divergent biological functions. Although the expression of ErbB4 variants is altered in 

postmortem brains of schizophrenia patients, little is known about the distribution and 

functions of ErbB4 isoforms in the brain. This dissertation investigates the hypothesis that 

ErbB4 variants are differentially expressed in the central nervous system and uniquely 

contribute to ErbB4’s role in the brain. Using next-generation sequencing, major and rare 

ErbB4 variants in the mouse brain are first identified. Then, to analyze splice variants at the 

cellular level, a novel ultrasensitive exon-specific in situ hybridization approach is 

implemented and validated, and quantitation tools developed. I extensively describe the mRNA 

distribution of the four major ErbB4 variants in the mouse brain, identify spatiotemporal- and 

cell type-specific expression, and expand these findings to the human brain. The examination 

of subcellular distribution of ErbB4 protein in distinct neuronal cell types reveals that in 

contrast to the somatodendritic restriction of ErbB4 in cultured gamma-aminobutyric acid 

(GABA)ergic interneurons, ErbB4 is present on axonal projections of dopaminergic neurons, 

independent of the isoform. Finally, we generated isoform-specific Cyt-1 mutant mice to 

explore in vivo functions of this ErbB4 variant. Although Cyt-1 variants comprise 40% of all 

ErbB4 transcripts in the brain, extensive molecular, transcriptomic, neurodevelopmental, 

neurochemical and behavioral evaluation show modest phenotypic effects, suggesting a 

possible compensation throughout development or redundant functions of Cyt isoforms. These 

findings advance our understanding of the basic biology of ErbB4 isoforms and their 

pathophysiological changes in schizophrenia.





 III 

Zusammenfassung 
 Neureguline und ihr neuronaler Tyrosinkinaserezeptor ErbB4 (avian erythroblastosis virus 

oncogene B4) sind genetisch mit einem erhöhtem Risiko für Schizophrenie assoziiert. 

NRG/ErbB4 Signalübertragung reguliert unter anderem die Neuronalentwicklung, synaptische 

Plastizität, Netzwerkaktivität und moduliert verschiedene Neurotransmittersysteme. Vier 

ErbB4 Isoformen entstehen durch alternatives Spleißen in der juxtamembranen (JMa und JMb) 

und zytoplasmatischen Region (Cyt-1 und Cyt-2). Diese Isoformen vermitteln spezifische 

Signalwege und damit unterschiedliche biologische Funktionen. Obwohl die Expression von 

ErbB4-Spleißvarianten in postmortalen Gehirnen von Schizophrenie-Patienten verändert ist, 

ist wenig über ihre Verteilung oder Funktionen im Gehirn bekannt. Diese Dissertation 

untersucht die Hypothese, dass ErbB4-Spleißvarianten im zentralen Nervensystem 

differenziell exprimiert sind und auf spezifische Weise zu den bekannten ErbB4-Funktionen 

beitragen. Mit Sequenziermethoden der nächsten Generation werden zunächst Haupt- und 

seltene ErbB4-Spleißvarianten festgelegt. Um Spleißvarianten auf zellulärer Ebene zu 

analysieren, wird dann eine neue ultrasensitive und Exon-spezifische in situ 

Hybridisierungsmethode etabliert und validiert, sowie quantitative Hilfsmittel entwickelt. Ich 

beschreibe ausführlich die mRNA Verteilung der vier ErbB4 Hauptspleißvarianten im 

Mausgehirn, einschließlich ihrer neuroanatomischen, zeitlichen und Zelltyp-spezifischen 

Expression, und erweitere diese Erkenntnisse auf das menschliche Gehirn. Die Untersuchung 

der subzellulärer Verteilung von ErbB4 Protein in verschiedenen neuronalen Zelltypen ergibt, 

dass ErbB4 im Gegensatz zur somatodendritischen Beschränkung in kultivierten gamma-

Aminobuttersäure (GABA)ergen Interneuronen in axonalen Fortsätzen von dopaminergen 

Neuronen zu finden ist; unabhängig von der Isoform. Schließlich erzeugten wir eine Isoform-

spezifische Cyt-1 Mauslinie, um die in vivo Funktion dieser ErbB4-Spleißvariante zu 

charakterisieren. Obwohl Cyt-1 Isoformen 40% aller ErbB4-Transkripte im Gehirn darstellen, 

offenbaren die umfangreichen molekularen, transkriptomischen, entwicklungsbiologischen, 

neurochemischen und Verhaltensstudien kaum Phänotypen, möglicherweise als Resultat 

kompensatorischer Prozesse während der Entwicklung oder Redundanz von Cyt Isoformen. 

Diese Erkenntnisse vertiefen unser biologisches Grundlagenverständnis von ErbB4 Isoformen 

und ihrer pathophysiologischen Veränderungen in Schizophrenie.
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1  

Introduction 
1.1 The psychiatric disorder Schizophrenia 

 Symptoms, etiology and treatment 
Schizophrenia is a severe psychiatric disorder affecting about 0.5-1% of the population. 

Symptoms are chronic and can be subdivided into three groups: positive, negative and 

cognitive. Most commonly known positive symptoms involve a ‘false reality’ in patients’ mind 

and present as hallucinations, delusions, as well as thought and movement disorders. Negative 

symptoms are more difficult to diagnose but precede the first psychotic episode and include 

symptoms such as social withdrawal, apathy, anhedonia and emotional blunting. Cognitive 

deficits are the most incapacitating symptoms and demonstrate as defects in attention, 

concentration, working memory, organized speech and critical thinking1-3. Endophenotypes 

characteristic to schizophrenia are also observed in non-affected relatives and include deficits 

in sensorimotor gating, working memory, executive cognition and defects in eye movements4, 

5. The heterogeneity of phenotypes and similarity to other psychiatric disorders make the 

diagnosis challenging6, 7. 

Schizophrenia is largely genetically pre-dispositioned with an estimated heritability of 

~80%8; however, only a few copy number variations, chromosomal rearrangements and high 

penetrance rare variants have been associated with the disorder3. The risk to develop 

schizophrenia generally arises from a combination and functional convergence of several low 

penetrance common variants9. Genome-wide association studies (GWAS) have identified 

more than 100 susceptibility genes10, yet most mutations are de-novo and non-coding3. 

Environmental factors explain the non-heritable component of the disease and have been 
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associated with stress during development such as maternal malnutrition, obstetric 

complications and infections8, 11. 

To date, schizophrenia is incurable and current antipsychotic drugs are limited to 

controlling symptoms and preserving functionality but are accompanied by serious side effects. 

Most antipsychotic drugs target the dopamine system, typical antipsychotics are dopamine 

receptor D2 (D2DR) antagonists, whereas atypical antipsychotics also block the serotonin 

receptor 2A with lower incidence of extrapyramidal side effects. Clozapine is the most 

efficacious second-generation atypical antipsychotic; however, its use is limited due to the high 

risk of agranulocytosis. Therefore, other atypical antipsychotics, such as risperidone, are 

recommended as first-line monotherapy. Unfortunately, only a fraction of patients report 

favorable treatment outcomes and complete remission of their positive symptoms, while others 

respond poorly and continue to experience psychotic episodes and chronic symptoms – 

particularly treatment-resistant negative and cognitive symptoms12-14.  

 Pathophysiology: glutamate, GABA and dopamine neurotransmission 
Schizophrenia is considered a neurodevelopmental disorder caused by developmental 

alterations that precede the onset of psychotic symptoms in the second decade of life. These 

developmental neurobiological deficits include abnormal neuronal migration, excessive 

synapse pruning, altered maturation of neuronal processes and reduced myelination11. 

Additionally, prominent neurochemical alterations have been characterized such as changes of 

the neurotransmitters glutamate, gamma-aminobutyric acid (GABA) and dopamine, and are 

strongly implicated with the pathophysiology of schizophrenia15-21.  

The glutamate hypofunction theory of schizophrenia emerged after the two non-

competitive N-methyl D-aspartate (NMDA) receptor antagonists, ketamine and phencyclidine, 

were found to induce schizophrenia-like positive and negative symptoms, such as 

hallucinations and social withdrawal in healthy individuals. The reduction of NMDA receptor 

activity may selectively occur on GABAergic interneurons17. Consistently, GABAergic 

neurotransmission in schizophrenia patients is tempered. The expression of several 

GABAergic markers, including the rate limiting enzyme in the synthesis of GABA glutamate 

decarboxylase GAD67, and the calcium-binding protein Parvalbumin (PV), expressed by 

largest subclass of GABAergic interneurons, are reduced in postmortem brains of 



 3 

schizophrenia patients21. However, whether the density of interneurons is reduced or if 

interneurons lose their GABAergic phenotype is of debate21, 22. Ultimately, changes in the 

strength of either excitation by glutamate or inhibition by GABA result in an excitatory/ 

inhibitory imbalance that has been proposed to be causative for patient symptoms18. 

The hyperdopamine hypothesis of schizophrenia initially arose based on the observation 

that most effective antipsychotics block dopamine receptors, particularly D2DR. However, 

more recent studies indicate that although subcortical areas are hyperdopaminergic, cortical 

dopamine is reduced in subjects diagnosed with schizophrenia15, 19. This dopamine imbalance 

has been associated with positive motor symptoms (nigrostriatal dopamine excess), as well as 

negative and cognitive symptoms (mesocortical dopamine deficiency)20, 23. Importantly, the 

complex reciprocal interaction of the glutamate, GABA, and dopamine circuits, impedes the 

identification of one single causative neurotransmitter system or the assignment of particular 

neurochemical changes to symptoms in patients23. Moreover, at least in a subset of patients, 

other neurobiological processes such as inflammation, oxidative stress and immune 

dysfunction contribute to the complexity of the pathophysiology of schizophrenia7. 

Importantly, transcriptome studies have also identified changes in expression of genes related 

to synaptic function, GABA neurotransmission, oligodendrocytes, mitochondrial and energy 

metabolism, immunity and developmental genes consistent with these diverse neurobiological 

and neurochemical changes3. Specifically, these studies have also identified a particular 

enrichment of aberrant alternative splicing in the schizophrenic transcriptome24-26.  

 Association of Neuregulin and ErbB4 variants with schizophrenia 
Among the many risk factors for schizophrenia, polymorphisms in the genes encoding the 

neurotrophic factors Neuregulins (NRGs) and their cognate receptor ErbB4 (avian 

erythroblastosis virus oncogene B4) are associated with an increased risk for schizophrenia. 

NRG1 was the first gene of the family identified as genetically linked with schizophrenia in 

Icelandic patients27, followed by ERBB4 in Ashkenazi Jews28, and more recently NRG329. 

Most, but not all meta-analyses, GWAS and phenotype-based genetic studies in different 

populations, support the genetic association between NRG/ErbB4 and schizophrenia. In total, 

more than 40, 20 and 25 single nucleotide polymorphisms (SNPs) were identified in the genes 
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of NRG1, NRG3 and ERBB4, respectively, to predispose an individual to schizophrenia23, 30-32. 

Lastly, one study has also suggested NRG2 as susceptibility gene for schizophrenia29. 

Some of the identified SNPs have been found to correlate with endophenotypes of 

schizophrenia in both patients and unaffected controls, such as deficits in sensorimotor gating, 

cognitive function, unusual thoughts in conflict-related situations and psychotic symptoms. 

SNPs in NRG1, specifically, are linked with anatomical, myelin-related defects, such as 

reduced volume of white and gray matter, decreased white matter integrity, increased lateral 

ventricles and reduced structural connectivity, whereas SNPs in ERBB4 mainly relate to 

interneuron deficits and alterations in GABA levels30. Most identified SNPs are non-coding 

and correlate with alterations in transcript levels, primarily manifesting as increased RNA and 

protein levels. One coding SNP in the transmembrane domain of NRG1 type III variant has 

been shown to reduce the susceptibility to gamma-secretase-dependent cleavage33, and a rare 

de novo chromosomal variant encodes a truncated potentially dominant-negative ErbB4 

receptor34. Considering additional gene interactions among NRGs and ERBB4, but also with 

other schizophrenia susceptibility genes, these findings support a crucial role of NRG/ErbB4 

signaling at several levels in the etiology of schizophrenia23, 30, 32. 

1.2 Neuregulin/ErbB4 signaling 

 The Neuregulins and ErbB receptor family 

ErbB4 is a tyrosine kinase of the ErbB receptor family which comprises three other tyrosine 

kinase receptors: ErbB1 (also known as epidermal growth factor receptor (EGFR)), ErbB2 and 

ErbB3 (Fig 1.2). ErbB receptors are type I transmembrane glycoproteins with an apparent size 

of ~180kDa. ErbB receptors are activated by a diverse family of EGF-like ligands that can be 

classified into two groups, the EGF (epidermal growth factor) and the NRG family. The former 

comprises EGF itself, transforming growth factor-alpha (TGF-a), heparin-binding EGF (HB-

EGF), betacullin, epiregulin and amphiregulin. The EGF domain common to all ligands, is 

necessary and sufficient to bind and activate receptors of the ErbB family32, 35, 36.  

Here, I will review in depth the family of the neurotrophic NRGs that are abundantly 

expressed in the central nervous system (CNS). Six genes encode NRGs (NRG1-6) of which 

three (NRG1, NRG2, NRG3) are expressed in the brain. Alternate splicing of each NRG further 
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enhances the heterogeneity of one of the largest gene families. NRG1, the best-studied member 

of the family, is one of the largest mammalian genes and has over 30 isoforms32, 35. For 

instance, usage of different promoters results in different N-termini classified as six major 

NRG1 types (I-VI). NRG1 type I (also known as neu differentiation factor (NDF), heregulin 

or acetylcholine-receptor-inducing activity (ARIA)), type II (also referred to as glial growth 

factor (GGF)) and type III (or sensory and motor neuron-derived factor (SMDF) also termed 

cysteine-rich domain (CRD)-NRG) are best studied23, 32, 37. Although directly secreted splice 

variants have been described, most NRGs are synthesized as immature transmembrane 

proteins, or pro-NRGs. The active EGF-like moiety is exposed after proteolytic cleavage (Fig. 

1.1). Different extracellular proteases have been identified to process NRGs such as ADAM17 

(a disintegrin and metalloproteinase domain-containing protein 17) or TACE (tumor necrosis 

factor a-converting enzyme), ADAM19, BACE1 (b-site amyloid precursor protein cleaving 

enzyme), disintegrin and neuropsin30, 32, 35. Recently, our lab has shown that in neurons 

activity-dependent processing of Ig-NRGs is mediated by ADAM10 (Vullhorst et al. 2019, in 

revision). 

 

Figure 1.1 | Soluble and transmembrane Neuregulins. 
Neuregulin (NRGs) are synthesized as inactive transmembrane (blue) proteins. The EGF-like domain is activated 
(red circle) after metalloprotease-mediated cleavage (black arrow). Soluble NRGs (NRG1 type I, NRG1 type II 
and NRG2) contain an immunoglobulin (Ig) domain (green) and are released after cleavage. Membrane-anchored 
NRGs contain a second N-terminal transmembrane domain (yellow). Scheme adapted from38. 

NRGs can be subdivided into two classes (Fig.1.1): soluble immunoglobulin (Ig)-NRGs 

(NRG1 type I, NRG1 type II, NRG 1 type IV and NRG2) and membrane-bound NRGs (NRG1 

type III and NRG3). Soluble Ig-NRGs are single-pass transmembrane proteins that are 

diffusible after activity-dependent proteolytic cleavage. Ig-NRGs also contain an extracellular 
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heparin-binding immunoglobulin (Ig) domain. On the other hand, membrane-attached NRGs 

remain attached to the cell surface due to a second N-terminal transmembrane domain. 

Releasable Ig-NRGs therefore can signal in both an autocrine and paracrine manner, whereas 

transmembrane (TM)-NRGs are cell-contact-dependent (juxtacrine signaling)37-39. Subcellular 

targeting of Ig-NRGs and TM-NRGs fundamentally differs. While pro-Ig-NRGs accumulate 

at subsurface cisterna on the soma and proximal dendrites, processed TM-NRGs are targeted 

to axons and presynapses39, 40. The expression of NRGs in the CNS is tightly regulated – both 

temporally and spatially – and differs substantially between different NRGs and NRG1 

isoforms during development and in the adult brain41. Consistently, mutant mice of different 

NRG1 isoforms have been shown to exhibit differences in phenotypes. For instance, NRG1 

type I is required for neural crest-derived sensory neurons in cranial ganglia and heart 

trabeculation, whereas NRG1 type III is essential for the development of Schwann cells. Taken 

together, this suggests largely non-overlapping distinct functions of different NRG genes and 

splice variants23, 32, 35, 38, 41. 

 Neuregulin/ErbB4 signaling pathways 

Upon ligand binding, ErbB receptors can form homo- and heterodimers (Fig. 1.2). The 

unique 55 amino acid EGF-domain of NRGs preferentially binds to ErbB3 and ErbB4 

receptors but can build heterodimers with ErbB1 and ErbB2 to propagate signaling35. ErbB2 

harbors a constitutively active kinase domain, is unable to bind a ligand, and often acts as a co-

receptor42. On the other hand, ErbB3 receptor has no kinase activity and depends on 

heterodimerization43. ErbB4 is the only receptor that can both bind NRG and mediate 

downstream signaling autonomously32; therefore I will further concentrate on reviewing the 

role of Neuregulin signaling through ErbB4 receptors. 

As with other receptor tyrosine kinases, ligand binding induces tertiary structural changes 

and dimerization. Thereby, the tyrosine kinase is activated and cross-phosphorylates the 

dimerizing receptor. Phosphorylated sites serve as binding domains for adaptor proteins or 

kinases. The main downstream signaling pathways of ErbB4 are the Ras/mitogen-activated 

protein kinase (MAPK) and the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) 

pathways36 (Fig. 1.2). Both pathways regulate diverse and overlapping cellular functions. 

Signaling through MAPK promotes proliferation, differentiation and neuronal survival, and is 
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protective against oxidative stress. PI3K/Akt is also involved in cell proliferation, growth and 

survival, but additionally regulates nutrient uptake and metabolism, migration and 

autophagy44.  

Adaptor proteins such as growth factor receptor bound 2 (Grb2) and guanine nucleotide 

exchange factors like Son of Sevenless 1 (Sos1) are recruited to the phosphorylated tyrosine 

kinase receptor. Activated Sos1 induces the GDP/GTP exchange of membrane-bound Ras, 

which rapidly recruits accelerated fibrosarcoma (Raf) to the membrane and triggers sequential 

phosphorylation of Raf, MAP/Erk kinases 1/2 (Mek1/2) and extracellular signal regulated 

kinases 1/2 (Erk1/2, or MAPK). More than 200 downstream targets of Erk have been identified 

and include several transcription factors (e.g. fos, jun, myc)44.  

 

Figure 1.2 | ErbB receptor family and canonical signaling pathways. 
Neuregulins (NRGs; red circle) bind to the two cysteine-rich ligand binding domains of ErbB3 and ErbB4 
receptors (green). The kinase domain of ErbB3 is inactive (white cross), while the structure of ErbB2 (light blue) 
suggests that it does not bind any ligand. Upon ligand binding ErbB4 receptor homo- and heterodimerizes with 
other receptors of the ErbB family via its furin-like domains (light green). Tyrosine kinase cross-phosphorylation 
triggers downstream signaling pathways PI3K/Akt and MAPK. Scheme adapted after36. 

On the other hand, the regulatory p85 unit of PI3K binds to phosphorylated sites of the 

receptor via its Src homology 2 (SH2) domain, which then mediates the recruitment and 

activation of the p110 catalytic subunit. Activated PI3K phosphorylates phosphatidylinositol 
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4,5-biphosphates (PIP2) to form phosphatidylinositol (3,4,5)-triphosphate (PIP3). PIP3 then 

binds with high affinity to the pleckstrin homology domain of protein kinase B (known as Akt). 

The localization of Akt at the membrane allows its phosphorylation at Thr308 and Ser472 by 

phosphoinositide dependent kinase 1 (PDK1) and mammalian target of rapamycin complex 2 

(mTORC2), respectively. Fully-activated Akt then activates transcription factors, such as b-

catenin and cAMP response element binding protein (CREB), and inhibits the inactivating 

enzyme glycogen synthase kinase-3 beta (GSK-3b) and transcriptional repressors such as 

forkhead box transcription factors FOXO. Additionally, Akt also activates the mammalian 

target of rapamycin (mTOR), a key enzyme in the ribosomal protein synthesis enhancing cell 

growth44. 

Other ErbB4 downstream signaling pathways include janus kinase (JAK)/signal transducer 

and activator of transcription (STAT) and phospholipase C-g (PLC-g)/protein kinase C (PKC) 

pathways, which are particularly activated by ErbB4/ErbB1 heterodimers. Moreover, ErbB4 

interacts with cyclin dependent kinase 5 (Cdk5) and the tyrosine protein kinase Fyn, protein-

tyrosine kinase 2-beta (Ptk2b or Pyk2), Abelson tyrosine kinase c-Abl and c-Jun N-terminal 

kinase (JNK)32, 45. In addition, non-canonical kinase-independent ErbB4 functions have been 

described46 and the intracellular domain (ICD) of some receptor isoforms can initiate back 

signaling to the nucleus47-49 (see section 1.4.2). Retrograde signaling was also proposed for 

pro-NRG1 and NRG1 type III activated by soluble extracellular domain of ErbB4 and involves 

the cleavage of the intracellular domain of NRG132.  

1.3 Neuregulin/ErbB4 signaling in the central nervous system 

 Expression of ErbB4 in the brain 
In the CNS, ErbB4 expression is high in neurons, whereas ErbB3 expression is confined 

to glia and epithelial cells50-53. Thus, ErbB4 is the only neuronal Neuregulin receptor. ErbB4 

is expressed both in the developing embryonic and adult brain54, 55. In the adult neocortex, 

ErbB4 is expressed in scattered GABAergic interneurons with varying density across different 

cortical areas56, 57. Importantly, it has been unambiguously shown – using a variety of 

approaches (immunostaining, single-cell PCR, reporter mice, conditional knock-out mice) – 

that ErbB4 is absent from excitatory pyramidal neurons in the cortex and hippocampus57-62. 
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Among interneuron classes, ErbB4 is mainly expressed in parvalbumin (PV)-expressing 

interneurons, but also was described in other interneuron subtypes such as cholecystokinin 

(CCK)-, calretinin (CR)-, neuropeptide Y (NPY)-, vasoactive intestinal peptide (VIP)- and 

neuronal nitric oxide synthetase (nNOS)-positive interneurons; whereas only few somatostatin 

(SOM)-positive interneurons express ErbB454, 59, 60, 63, 64. Subcellular localization of ErbB4 in 

GABAergic interneurons has been characterized at post-and peri-synaptic clusters of 

excitatory synapses on soma and dendrites. ErbB4 is also present in detergent-soluble extra-

synaptic fractions and intracellular46, 58, 65-67. Most inhibitory axons and pre-synapses are 

devoid of ErbB4. However, ErbB4 has been detected on inhibitory boutons of a subset of 

GABAergic interneurons confined to some brain areas (e.g. CCK baskets in subiculum, frontal 

and entorhinal cortex)58, and functional evidence for ErbB4 at the presynaptic Chandelier 

boutons has been presented60, 68-70. 

ErbB4 is also expressed in several subcortical regions. High ErbB4 expression was 

described in the medial habenula and in GABAergic neurons in the reticular thalamic nucleus 

and in intercalated nuclei of the amygdala52, 56, 57. Almost all dopaminergic neurons in the 

substantia nigra compacta (SNc) and ventral tegmental area (VTA) and some serotonergic 

neurons in the dorsal raphe express ErbB450, 53, 57. ErbB4 is absent from norepinephrinergic 

neurons57, although this view was recently challenged71. In the basal ganglia, scattered ErbB4-

expressing interneurons have been described, whereas medium spiny neurons are largely 

ErbB4-negative57, 72. Besides, ErbB4 is expressed at high levels in some hypothalamic nuclei50, 

57 and lower ErbB4 expression levels have been described in the hindbrain, thalamus and 

cerebellum57. In the latter, ErbB4 expression has been specifically demonstrated in cerebellar 

granule cells and Bergmann glia52, 72-74. ErbB4 was detected in thalamic S100b-positive glia 

and in oligodendrocytes51, 57. Lastly, the ErbB4 expression described in rodents is generally 

conserved in the developing and adult brain of both monkeys and humans59, 75-77. 

 Regulation of neurodevelopment 
 GABAergic interneuron migration 

Telencephalic excitatory glutamatergic and inhibitory GABAergic neurons are generated 

by two fundamentally distinct processes. While excitatory neurons are born in the ventricular 

zone of the pallium and migrate radially to form the cortical plate, cortical and hippocampal 
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inhibitory neurons are derived from the subventricular zone (SVZ) of the subpallial ganglionic 

eminences (GE) and have to undergo long-range tangential migration. Upon entering the 

pallium, inhibitory neuroblasts disperse, switch to radial migration and invade the cortical plate 

to reach their final location and integrate into cortical circuits78. ErbB4 is expressed on 

progenitor cells in the SVZ of the medial ganglionic eminence (MGE) as early as embryonic 

day 12 (E12) in rats. Its expression is maintained on tangential migratory streams of 

GABAergic progenitors derived from the MGE and continued to be expressed by GABAergic 

interneurons after their integration into the cortical plate throughout life54, 55, 79.  

 

Figure 1.3 | Regulation of neurodevelopment by NRG/ErbB4. 
(A) NRG/ErbB4 signaling regulates interneuron migration during embryonic development. ErbB4+ neuroblasts 
(green) born in the medial ganglionic eminence (MGE) migrate tangentially and invade the cortex in two streams 
in the subventricular zone (SVZ) and the marginal zone (MZ). Migrating interneurons pass a permissive corridor 
generated by the expression of NRG1 type III (red) in the lateral ganglionic eminence (LGE) and are attracted to 
soluble Ig-NRG (red, plus symbol) expressed in the cortex. To reach their final allocation in the cortical plate 
(CP) interneurons switch to radial migration, a process regulated by NRG3 (red). (B) NRG/ErbB signaling is 
essential for myelination by peripheral Schwann cells (adapted from32). Axonal TM-NRG (red) initiates 
myelination by ErbB (green)-expressing Schwann cells. In contrast, NRG/ErbB is dispensable for central 
myelination by oligodendrocytes and regulates only a few aspects of oligodendrocyte development. VZ – 
ventricular zone.  

NRG/ErbB4 signaling plays a pivotal role in regulating the migration and allocation of 

GABAergic interneurons63, 79-81 (Fig. 1.3A). Membrane-bound NRG1 type III provides a 

permissive corridor for migrating ErbB4-positive neuroblasts in the developing striatum, 
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whereas diffusible NRG1 type I in the cortex is chemoattractive79 (a view challenged by80) and 

promotes the emergence of new better-aligned branches from the leading process82. NRG3, 

likewise a membrane-bound NRG39, is expressed in developing cortical plate and guides 

cortical interneurons to their final allocation81. In ErbB4 mutant mice, GABAergic 

interneurons fail to reach the developing cortex, as a consequence GABAergic interneuron 

numbers in the postnatal cortex and hippocampus are reduced63, 79, 80, 83. Reduction of 

hippocampal interneurons in ErbB4 KO mice predominantly affects PV- and nNOS-expressing 

interneurons, whereas CCK-positive interneurons are only slightly reduced, and ErbB4-

negative SOM interneurons are unaltered63. ErbB4 mutant mice in which ErbB4 was 

conditionally removed at post-mitotic stages (by the promoters distal-less homeobox 6 (Dlx6) 

or LIM homeobox 6 (Lhx6) expressed in the MGE) showed no alteration in GABAergic 

interneuron numbers, but laminar distribution of interneurons was shifted towards upper 

cortical layers resembling the phenotype in NRG3 mutants60, 68, 81. Deficits in interneuron 

numbers and placement are thought to ultimately affect the excitatory/inhibitory balance in 

NRG and ErbB4 mutant mice38. 

Adult neurogenesis occurs mainly in two brain regions: the hippocampus and the olfactory 

bulb (OB). Olfactory GABAergic interneurons are generated in the SVZ of the lateral ventricle. 

Tangentially-migrating neuroblasts to the OB form the rostral migratory stream (RMS) through 

which they move in organized chains84. ErbB4 is expressed in postnatally-generated neuronal 

progenitors in the SVZ, migrating neuroblasts in the RMS and in GABAergic interneurons in 

the destined OB55, 72, 85. NRG2 stimulation mediates the proliferation of neuronal progenitors 

in the SVZ86 and the loss of ErbB4 alters chain migration and results in reduced number and 

poorly differentiated interneurons in the OB85, 86. Recently, ErbB4 has also been proposed to 

promote survival and maturation of neuroblasts in the hippocampal subgranular zone87 .  

In addition to regulating the migration of interneurons, NRG/ErbB4 also controls axonal 

outgrowth and guidance. Accordingly, NRG promotes axon growth and arborization of 

GABAergic interneurons in vitro60, 88, and pathfinding of thalamocortical axons (TCAs) i.e. 

projections from the thalamus to the cortex, depends on NRG/ErbB4 as well. Reminiscent of 

the distinct chemoattractive properties of different NRG isoforms in the regulation of 

interneuron migration, soluble NRG1 type I stimulates axonal growth, and membrane-bound 
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NRG1 type III in the MGE allows ErbB4-expressing TCAs to pass through an otherwise non-

permissive area89.  

 Oligodendrocyte differentiation and myelination 

Axons of peripheral and central neurons can either be unmyelinated or myelinated, i.e. 

enveloped by a multilayer myelin sheath. Myelin is generated by non-neuronal glial cells, 

oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS) by 

wrapping their specialized plasma membranes around neuronal axons. Myelination provides 

electrical isolation and ensures fast propagation of nerve impulses. Myelin thickness is 

determined by the number of evenly-spaced myelin sheets around the axon and correlates with 

the thickness of the axon90, 91. NRG/ErbB signaling regulates the development of Schwann 

cells, including survival, proliferation, migration and differentiation, and is indispensable for 

the myelination of peripheral nerves by Schwann cells30, 92, 93. Importantly, axonal-derived 

NRG1 type III on the surface of peripheral axons dictates which nerves are myelinated93 and 

how thick the myelin envelops92 (Fig. 1.3B). ErbB2/ErbB3 heterodimers on Schwann cells 

were identified to mediate these effects94, 95. Consequently, the absence of ErbB receptors or 

the reduction or the complete loss of NRG1 type III result in thinner myelin and slower nerve 

conduction velocity92, 93, 95-97. 

In the CNS, myelinating oligodendrocytes express ErbB2, ErbB3 and ErbB498, 99. Based 

on the requirement of NRG/ErbB for myelination in the PNS, it was assumed that NRG/ErbB 

also plays a crucial role in oligodendrocyte development and myelination. In vitro as well as 

ex vivo explant studies have supported this idea and suggested that NRG promotes survival 

and proliferation of oligodendrocyte progenitor cells (OPCs), inhibits their differentiation and 

enhances myelination of mature oligodendrocytes94, 98-103. In vivo, however, NRG/ErbB 

signaling has been found to be largely dispensable for the development of oligodendrocytes104-

107. Thorough analyses of multiple NRG and ErbB mutant mice have determined that normal 

oligodendrocyte myelination in the CNS does not require NRG1, ErbB3 or ErbB4104. Based 

on the discrepancies between in vitro and in vivo studies, neuronal activity has been suggested 

to be required for initiating myelination104, in line with emerging evidence for activity-

dependent myelination108. Nevertheless, NRG/ErbB signaling regulates some aspects of glial 

development in the CNS. Transgenic overexpression of NRG1 can induce 

(hyper)myelination104, while late loss of ErbB3/ErbB4 interferes with oligodendrocyte 
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maturation and provokes hypomyelination deficits106, and early OPC migration in the optic 

nerve (~E16.5) is reduced in ErbB4 mutant mice but recovered perinatally105. Interestingly, 

oligodendroglia have also been proposed to play a role in the pathophysiology of 

schizophrenia109. Several genes associated with schizophrenia control oligodendrocyte 

function110, and schizophrenia patients suffer from dramatic white matter loss111 that has been 

correlated to SNPs in ErbB4112, 113.  

 Regulation of cortical and hippocampal circuits 

ErbB4 in GABAergic interneurons modulates both inhibitory and excitatory circuits in the 

cortex and hippocampus at different levels beginning with the assembly of synapses (see Fig. 

1.4). In line with the subcellular distribution of ErbB4 on GABAergic interneurons at 

glutamatergic postsynapses and GABAergic presynapses, ErbB4 regulates (1) glutamatergic 

input onto interneurons at postsynaptic densities (Fig. 1.4A, section 1.3.3.1) and (2) inhibitory 

synapse formation at presynaptic terminals in some subtypes (Fig. 1.4B, section 1.3.3.2). 

Moreover, secondary or indirect circuit effects of NRG/ErbB4 signaling affect (3) 

glutamatergic neurotransmission between excitatory neurons (Fig. 1.4C, section 1.3.3.3). By 

modulating synaptic GABAergic and glutamatergic neurotransmission, ErbB4 also regulates 

(4) plasticity and network activity of cortical and hippocampal circuits (Fig. 1.4.D, E, section 

1.3.3.4)114.  

 ErbB4 at glutamatergic post-synapses 

The postsynaptic density (PSD) at glutamatergic synapses serves as structural scaffold that 

anchors receptors, channels and signaling proteins to effectively regulate the postsynaptic 

response23. The PDZ domain at the C-terminal end of the ErbB4 receptor directly interacts 

with proteins of the membrane-associated guanylate kinase (MAGUK) family. Its association 

with the postsynaptic density protein 95 (PSD-95) stabilizes the receptor at glutamatergic 

postsynapses on GABAergic interneurons65-67 (Fig. 1.4A). Interestingly, the interaction of 

ErbB4 with PSD-95 is reduced in the postmortem prefrontal cortex (PFC) of schizophrenia 

patients115. ErbB4 accumulated at glutamatergic synapses on GABAergic interneurons has 

been suggested to be the primary target site of NRG/ErbB4 signaling23. 

ErbB4 promotes the assembly of glutamatergic synapses onto GABAergic interneurons. In 

the hippocampus of null and interneuron-specific ErbB4 mutant mice, somatic vesicular 
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glutamate transporter 1 (vGLUT-1)-positive presynaptic boutons and postsynaptic PSD-95-

labeled densities are reduced on both PV-positive basket and Chandelier cells60, 68, 70, 116 (Fig. 

1.4A). These anatomical changes are accompanied by reduced frequency but not amplitude of 

miniature excitatory postsynaptic currents (mEPSCs) on GABAergic interneurons60, 68, 70. In 

the prefrontal cortex, however, the final maturation rather than the initial formation of 

glutamatergic synapses on PV basket interneurons depends on ErbB4117. Consistent with the 

assembly and pruning of synapses being an early postnatal developmental process, the acute 

loss of ErbB4 in the adult brain neither changes the number of glutamatergic synapses on 

GABAergic interneurons nor the mEPSCs frequency; and the reduction of glutamatergic 

synapses onto GABAergic interneurons by the early loss of ErbB4 cannot be recovered by the 

reintroduction of ErbB4 at later stages118. ErbB4 on post-synapses has also been proposed to 

influence presynaptic differentiation by trans-synaptic interactions with NRGs or other binding 

partners119. 

Post- and extra-synaptic located ErbB4 triggers the internalization of diverse receptors. For 

instance, ErbB4 directly interacts with the NMDA receptor subunit 2B (GluN2B) and upon 

NRG activation rapidly decreases its surface localization40 (Fig. 1.4A). NRG/ErbB4 also 

promotes endocytosis of other neurotransmitter receptors such as alpha-7 nicotinic 

acetylcholine receptors (a7-nAChR) and GABA A receptor alpha 1 (GABAARa1)46, 120, 121, 

suggesting that the internalization of surface receptors is a common mechanism mediated by 

ErbB440. Moreover, NRG1 directly decreases voltage-gated sodium channels (NaV) activity, 

possibly through internalization, and thereby has been suggested to reduce the intrinsic 

excitability of hippocampal interneurons120; however others reported increased excitability of 

cortical fast-spiking PV interneurons elicited by NRG due to lowering the voltage threshold 

for action potentials through the voltage-gated potassium channel Kv1.1122. 

 ErbB4 at inhibitory pre-synapses 

ErbB4 has been proposed to play a role at the presynaptic terminals of inhibitory synapses 

of both major classes of PV interneurons, soma-innervating fast-spiking basket cells and axo-

axonic interneurons also known as Chandelier cells. The presence of the receptor on these cells 

has however not been demonstrated unambiguously60, 123. Whereas, ErbB4 on presynaptic 

boutons of Chandelier Cells regulating synapse development has been supported by several 
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reports60, 68-70, the presence of ErbB4 on terminals of PV basket cells is controversial58, 59, 68, 

117vs.60, 123, 124. Therefore, I will discuss these two interneuron classes separately.  

 

Figure 1.4 | Regulation of cortical and hippocampal circuits by Neuregulin/ErbB4 signaling.  
(A) ErbB4 (green) accumulates at excitatory synapses on soma and dendrites of GABAergic interneurons and 
interacts with postsynaptic density protein PSD-95 (dark grey) and NMDA receptors (yellow). Endocytosis of the 
latter is induced by NRG stimulation (left panel). Loss of ErbB4 signaling results in a reduction of excitatory 
input onto GABAergic interneurons (right panel). (B) Pre-synaptic ErbB4 on Chandelier cells (green) regulates 
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synapse assembly. (C) Dendritic spines on pyramidal neurons are reduced in ErbB4 mutant mice. (D) NRG/ErbB4 
signaling regulates long-term plasticity at Schaffer collateral CA3-CA1 excitatory synapses. NRG stimulates 
AMPA receptor (blue) internalization (left panel) and reverses long-term potentiation (right panel). (E) NRG 
increases the power of g-oscillations. Main panel adapted after114. 

First, ErbB4 cell-autonomously regulates the development of synaptic cartridges of 

Chandelier cells, uniquely targeting the axon initial segment (AIS) of pyramidal neurons with 

several boutons. ErbB4 knock-down in Chandelier cells, or interneuron-specific ErbB4 loss 

reduces the number and sizes of boutons (Fig. 1.4B). Concomitant with the reduction in 

inhibitory synapses, the frequency but not the amplitude of miniature inhibitory postsynaptic 

currents (mIPSCs) on postsynaptic pyramidal neurons is decreased in the hippocampus and 

prefrontal cortex of mutant mice, whereas release probability is unaltered60, 68, 70. Elegantly 

designed mutant mice allowed to distinguish between developmental and adult ErbB4 function 

and revealed that ErbB4 is essential for the development of Chandelier cartridges but not for 

their maintenance. Nevertheless, mIPSC frequency is reduced in mice that lose ErbB4 

postnatally118, 125. Behavioral significance of decreased inhibition due to the loss of Chandelier 

synapses has been demonstrated in mice that lack ErbB4 specifically in late-born Chandelier 

Cells70. These mice display impaired schizophrenia-relevant behaviors (locomotor activity, 

sensory motor gating, working memory and social novelty recognition) that are enhanced with 

an agonist for the GABAA receptor subunit a2 enriched at the postsynaptic AIS70, 126. Of note, 

the loss of chandelier cartridges has also been reported in the PFC of schizophrenia subjects127, 

128.  

Second, ErbB4 on presynaptic terminals of PV basket cells has been suggested to regulate 

activity-dependent GABAergic neurotransmission61, 118, 123, 124. While acute treatment with 

NRG1 does not affect basal GABAergic transmission, NRG increases evoked GABA 

release123, 129 and elicits increased inhibitory postsynaptic responses in pyramidal neurons 

mediated through GABAA receptors61, 124. Evoked inhibitory postsynaptic currents (eIPSCs) in 

pyramidal neurons are reduced in ErbB4 mutant mice and GABA release probability is 

compromised118. NRG1 suppresses the activity and firing of pyramidal neurons61, in line with 

increased firing rates of pyramidal neurons and decreased activity-dependent GABAergic 

transmission in ErbB4 mutant mice lacking ErbB4 specifically in interneurons68, 117. Moreover, 

ErbB4 on GABAergic terminals contacting the soma of pyramidal neurons has been implicated 

in synaptogenesis60 and somatic PV boutons have been reported to be reduced in ErbB4 mutant 
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mice118. Others, however, have reported no alteration in inhibitory synapses innervating the 

soma of pyramidal neurons68, 117. Further, mIPSCs in deep layer pyramidal neurons mainly 

targeted by PV basket interneurons were unchanged in the medial prefrontal cortex (mPFC) of 

interneuron-specific ErbB4 mutant mice, suggesting that ErbB4 is dispensable for the 

development of GABAergic synapses of fast-spiking basket cells, in contrast to Chandelier 

cells70, 117. Lastly, inhibitory synapses between interneurons form and mature independently of 

ErbB4116, 117.  

 Indirect effects on glutamatergic neurons 

ErbB4 is absent from pyramidal neurons58, 60 and deletion of ErbB4 in pyramidal neurons 

(using Ca2+/calmodulin-dependent protein kinase II (CaMKII) or neuronal basic helix-loop-

helix protein (Nex) promoter-driven Cre expression in ErbB4 floxed mice) has therefore no 

effects on neurotransmission, synaptic plasticity or animal behavior60, 62, 124. Nevertheless, 

ErbB4 on GABAergic interneurons affects glutamatergic pyramidal neurons and their 

neurotransmission non-cell autonomously23, 62. Dendritic spine morphology is regulated by 

ErbB4 on GABAergic interneurons. Reduced spine density in the cortex and hippocampus has 

been described in brain- and interneuron-specific ErbB4 mutant mice60, 62, 68, 118, 130, by viral 

ErbB4 knockdown in slice culture131, and in the subiculum of NRG1 type III heterozygote 

mutants132 (Fig. 1.4C). The reduction of spines particularly affects mushroom-shaped spines 

and is prominent in proximal dendrites, but absent from distal parts of the dendrites68, 118. On 

the other hand, in hippocampal culture chronic NRG1 treatment stimulates spine formation 

and enlargement133. Adult spine formation or maturation are independent of ErbB4 and 

postnatal defects due to the developmental loss of ErbB4 are irreversible118. Decreased spine 

density in ErbB4 mutant mice has been proposed to be a compensatory effect for the 

hyperactivity of pyramidal neurons provoked by the GABA hypofunction30. Interestingly, 

spine reduction has also been described in the PFC of schizophrenia patients134. Concomitant 

with a reduction in spine density, reduced mEPSCs in hippocampal pyramidal neurons suggest 

impaired basal glutamatergic transmission at CA3-CA1 Schaffer collateral (SC) synapses in 

ErbB4 mutant mice62, 118. However, GluN2B-mediated synaptic currents at SC are also 

augmented in NRG2 KO mice135. Taken together, these findings suggest that the long-term 

loss of NRG/ErbB4 signaling on GABAergic interneurons also indirectly affects glutamatergic 

neurotransmission between pyramidal neurons. 
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 Regulation of plasticity and network activity 

Synaptic plasticity changes the strength of synapses in an activity-dependent manner and 

is important for learning and memory. Long-term potentiation (LTP), depotentiation or LTP 

reversal as well as long-term depression (LTD) bidirectionally regulate glutamatergic 

synapses23. Hippocampal SC synapses have been the primary model system for LTP. Early 

LTP is mediated by CaMKII through the recruitment and stabilization of a-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) at the synapse136. While 

NRG1 does not alter basal glutamatergic neurotransmission or short-term plasticity of 

glutamatergic synapses, it prevents the induction of LTP at SC, and rapidly suppresses LTP in 

a time- and concentration-dependent manner65, 124, 137-141 (Fig. 1.4D). LTP depotentiation by 

Neuregulin is mediated by internalization of AMPAR137, and both dopaminergic and 

GABAergic transmission has been suggested to play a role124, 138. Importantly, LTP 

depotentiation induced by NRG is absent in ErbB4 mutant mice that lack ErbB4 in either all 

neurons or specifically in PV interneurons124, 139, 142. Interestingly, these mice also exhibit 

enhanced LTP124, 139, 142.  

While the output activity of the cortical and hippocampal network is mediated by excitatory 

neurons, GABAergic interneurons modulate and synchronize the activity of the network. Since 

NRG/ErbB4 regulates the glutamatergic drive onto GABAergic interneurons, it is not 

surprising that this pathway also controls neuronal synchrony and oscillatory activity23, 114. In 

hippocampal and cortical slices, NRG1 enhances the synchrony amongst pyramidal neurons 

and interneurons143 and dramatically increases kainite-induced gamma oscillations important 

for cognition, learning and memory 83, 144 (Fig 1.4E). Modulatory effects of NRG1 on gamma 

oscillations are blocked by ErbB inhibitors and are absent in ErbB4 mutant mice83, 144. Gamma 

oscillations are overall reduced in ErbB4-deficient mice and mice that lack neuropsin, one of 

the NRG-converting enzymes83, 145. In vivo, both in anaesthetized and freely moving mice, the 

power of gamma oscillations is however increased in mice that lack ErbB4 from interneurons 

or all cells68, 125. In these mice, the synchrony between hippocampal and prefrontal cortical 

oscillations in the theta and delta range is diminished during the resting state and top-down 

attention68, 125. Attention-associated hippocampal-prefrontal coherence is also impaired when 

ErbB4 activity is blocked acutely in adult mice using a chemic-genetic approach125. Of note, 

the power of gamma oscillations is reduced in patients with schizophrenia146, 147. 
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Recently, two independent studies have shown that NRG/ErbB4 signaling plays a role in 

critical period plasticity148, 149, a window of high plasticity during development that has been 

extensively studied in the visual cortex. Monocular deprivation during this period enhances 

thalamic afferents of the open eye and attenuates the input of the deprived eye, a phenomenon 

described as ocular dominance plasticity. Both the initiation and the closure of the critical 

period concomitant with the gain and loss of plasticity, depends on the excitatory-inhibitory 

balance and is by large controlled by the maturation of PV interneurons that receive direct 

thalamic input150. NRG/ErbB4 signaling on PV-positive interneurons regulates both the 

initiation and the closure of critical period plasticity by enhancing excitatory inputs onto PV 

interneurons148, 149, 151. Critical period plasticity is impaired in ErbB4 mutant mice lacking 

ErbB4 on PV interneurons149 and chronic injection of NRG1 inhibits ocular dominance 

plasticity during the critical period, but rescues plasticity in mice with hypoexcitable 

interneurons148. Interestingly, the administration of ErbB inhibitors rescues ocular dominance 

plasticity in adult mice suffering from amblyopia induced by chronic monocular deprivation148.  

 Behavioral deficits of Neuregulin and ErbB4 mutant mice 

Many of the described molecular and physiological functions of NRG/ErbB4 also influence 

animal behavior. Interestingly, mutations in both NRG and ErbB4 cause numerous behavioral 

deficits that are related to psychiatric disorders. Endophenotypes for positive symptoms of 

schizophrenia assessed in mice are drug-induced hyperactivity and sensorimotor gating152. 

Particularly the prepulse inhibition (PPI) task for sensorimotor gating is a reliable translational 

and robust preattentive assay153. The complexity of negative symptoms and the unique human 

characteristics (e.g. speech) are challenging to model accurately in an animal. Negative 

symptoms therefore are mainly studied using social behavior154. Lastly, cognitive function can 

be assessed in mice by a variety of different tasks, addressing attention, working and spatial 

memory, as well as short- and long-term memory (e.g. using water maze, radial arm maze, Y-

maze, T-maze, 5-choice serial reaction time task, conditioned fear memory and extinction, 

novel object recognition and delayed non-match to place tasks)153. 

Homozygous mutations of NRG1 and ErbB4 are lethal during embryonic development due 

to heart malformation155, 156. While ErbB4 mutants could be rescued by transgenic expression 

of ErbB4 in the heart157, NRG1 is also essential for myelination in the peripheral nervous 
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system and the development of the neuromuscular junction37. Postnatal behavior can therefore 

only be investigated in heterozygous NRG1 mutants. Different NRG1 variants (type I, type 

III) and domains (TM, Ig or EGF domain) have been targeted by mutation and mice exhibit 

similar, but not completely overlapping, behavioral deficits including hyperactivity in the open 

field test, sensorimotor-gating impairment in PPI, latent inhibition, reduced fear conditioning, 

reduced working and spatial memory, and abnormal social behaviors27, 132, 158-164. NRG2 

mutant mice are hyperactive in a novel environment, hypersensitive to amphetamine, and 

express impaired PPI, working memory, anxiety and social interactions135. Similar phenotypes 

have also been described for NRG3 mutants, such as novelty-induced locomotor hyperactivity, 

impaired PPI of the acoustic startle response, deficits in fear conditioning and impulsivity165, 

166. Consistent with conveying all neuronal NRG signaling, ErbB4 mutants are also 

hyperactive, and demonstrate reduced PPI and anxiety, as well as abnormal attention, learning, 

spatial/working memory and social behavior27, 61, 125, 130, 142. Interestingly, many of these 

phenotypes have been recapitulated in ErbB4 mutant mice that lack ErbB4 specifically from 

PV interneurons61, 68, 70, 124, 142, 167, suggesting that PV cells are the main target of NRG signaling 

in modulating animal behavior30. The adult loss of ErbB4 resulted in comparable, albeit less 

severe, behavioral alterations than the complete deletion of ErbB4118. On the other hand, 

restoring ErbB4 expression in adulthood can ameliorate but not fully rescue behavioral deficits 

provoked by its developmental deletion118, suggesting a more pronounced role of NRG/ErbB4 

during development than in the adult brain. Lastly, some behavioral phenotypes were 

ameliorated by the administration of the antipsychotic drug clozapine27, 130, 135, 168 and the 

GABA agonists diazepam61.  

On the contrary, transgenic overexpression of NRG1 type I (gain of function) causes 

similar behavioral phenotypes compared to NRG1 heterozygote mutants (loss of function); 

including hyperactivity in a novel environment, reduced PPI, abnormal fear and social 

behavior, and impaired working memory169-173. Based on these contrasting observations, an 

inverted U-shape model emerged in which alterations (both decrease and increase) from the 

optimal range of NRG1 concentration or signaling alters the excitatory/inhibitory balance and 

impairs proper brain development and function30, 114, 174, 175.  
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 Modulation of the dopamine system 
Most studies investigating NRG/ ErbB4 signaling have focused on the cell-autonomous 

role in ErbB4-expressing cortical and hippocampal GABAergic interneurons or the indirect 

regulation of glutamatergic synapse development and neurotransmission30, 114. ErbB4 is also 

expressed at high levels in most dopaminergic neurons (92-99%) in the substantia nigra pars 

compacta (SNc) and the ventral tegmental area (VTA), but absent from dopamine neurons in 

the retrorubal area50, 52, 53, 77, 176. Starting at E9, ErbB4 is detected in proliferating precursors in 

the ventral midbrain and expressed in mesencephalic dopamine neurons from E11 through 

adulthood. The absence of ErbB4 in brain-specific ErbB4 conditional mutant mice does not 

alter the development of dopamine neurons or their projections176, contrary to the regulation 

of interneuron development by NRG/ErbB479. However, neuroprotective properties of NRG 

on dopaminergic neurons have been described both in vitro and in vivo and neurite outgrowth 

is stimulated by NRG in vitro177-179. Chronic disruption of NRG/ErbB signaling has been 

implicated in altered extracellular dopamine levels or dopamine content, concomitant with 

changes in the expression of the dopamine-synthesizing enzyme, tyrosine hydroxylase and 

dopamine receptors135, 143, 169, 178, 180-183. Intriguingly, in ErbB4 and NRG2 mutant mice, inverse 

changes in basal extracellular levels are observed in the prefrontal cortex and the dorsal 

striatum, similar to the dopamine imbalance in schizophrenia patients19, 135, 184 (Skirzewski et 

al., in preparation). Moreover, acute delivery of NRG elicits the rapid increase of extracellular 

dopamine138, 185, metabotropic glutamate receptor 1 (mGluR1)-induced striatal dopamine 

release depends on ErbB activation186 and potassium-induced dopamine release in the mPFC 

is augmented in mice chronically injected with NRG1143. On the other hand, NRG1 type II has 

also been described to promote dopamine uptake in cultured dopamine neurons177. Neonatal 

chronic NRG1 treatment elevates burst firing through the disinhibition of dopamine neurons187; 

and NRG/ErbB4 signaling modulates glutamatergic transmission in dopaminergic neurons, 

enhancing mGluR1-dependent long-term depression188. In line with the described alterations 

in dopamine metabolism and firing, behaviors that involve dopaminergic signaling are 

impaired in these NRG and ErbB4 model mice (hedonic behavior, sensorimotor gating, 

working and reference memory, associative learning, social interaction and hypersensitivity to 

amphetamine)135, 143, 169, 182; some improve after antipsychotic dopamine-targeting drug 

treatment135, 143. Taken together, although many questions remain, evidence has emerged 
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implicating NRG/ErbB4 signaling in regulating dopamine homeostasis and function, 

positioning the pathway uniquely at the interplay between GABAergic/glutamatergic and 

dopaminergic neurotransmission in schizophrenia189.  

1.4 ErbB4 isoforms 

 Alternative splicing of ErbB4 
Four alternative isoforms of the ErbB4 receptor are generated by tissue-specific alternate 

splicing of single exons190, 191 (Fig. 1.5). In the juxtamembrane (JM) region, just upstream of 

the region encoding the transmembrane domain, ErbB4 variants include either the JMa (exon 

16b; 75bp) or the JMb exon (exon 16a; 45bp)190, 192, 193. Of note, the JMb exon is upstream to 

the JMa exon in the ErbB4 gene (on chromosome 1 in the mouse and chromosome 2 in 

humans), and only separated by an 121bp intron from the latter. On the other hand, the two 

cytoplasmic (Cyt) ErbB4 isoforms are the result of exon skipping in the cytoplasmic tail 

downstream to the region encoding the kinase domain. Cyt-1 and Cyt-2 ErbB4 transcripts 

differ by a 48bp exon (exon 26) that is included in Cyt-1 ErbB4 variants, but absent from Cyt-

2191. Combinatory alternative splicing at these two loci thus creates four ErbB4 receptors: 

JMa/Cyt-1, JMa/Cyt-2, JMb/Cyt-1 and JMb/Cyt-2.  
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Figure 1.5 | Alternative splicing of ErbB4 and isoform-specific downstream signaling. 
ErbB4 is alternatively spliced in the juxtamembrane (JM) and cytoplasmic (Cyt) region. JMa (light violet) and 
JMb (dark violet) exons encode juxtamembrane regions that are susceptible and resistant to metalloprotease-
mediated cleavage (light violet scissors), respectively. Subsequent intramembrane cleavage of JMa receptors by 
g-secretase (dark scissors) releases the intracellular domain that regulates transcription in the nucleus. The 
additional 48bp exon in cytoplasmic tail of Cyt-1 variants (light turquois) encodes a binding domain for 
phosphoinositide 3-kinase (PI3K) that allows Cyt-1 receptors to activate PI3K/Akt/mTOR downstream signaling 
in addition to mitogen-activated protein kinase (MAPK)/Erk signaling common to all ErbB4 receptors including 
Cyt-2 receptors (dark turquois) lacking the Cyt-1 exon. Akt – protein kinase B, Erk – extracellular signal regulated 
kinase, Grb2 – growth factor receptor bound protein 2, KD – kinase domain, Mek – MAPK/Erk kinase, mTOR- 
mammalian target of rapamycin, Raf – rapidly accelerated fibrosarcoma, TM – transmembrane. Scheme inspired 
by32. 

 Functional differences between ErbB4 isoforms 
While the alternatively spliced exons of ErbB4 are short, ranging between 45 and 75bp, 

ErbB4 receptors encoded by these variants have been shown to exert fundamentally different 

functions in heterologous culture systems due to their unique downstream signaling 

mechanisms (Fig. 1.5). The juxtamembrane encoded by JMa is susceptible to metalloprotease-

mediated cleavage, whereas JMb ErbB4 receptors are cleavage-resistant191, 194. In heterologous 

cell cultures TACE and BACE1 are responsible for this cleavage releasing a 120kDa ecto-

ErbB4 domain23, 194, 195, calpain has been suggested to promote ischemia-induced ErbB4 

breakdown196 and my work has recently demonstrated that, in neuronal cultures, ADAM10 is 

the main secretase converting full-length ErbB4 (L. Erben unpublished data). Subsequent 

presenilin-dependent cleavage by g-secretase within the transmembrane domain of the 

membrane-anchored 80kDa ErbB4 fragment releases a soluble 80kDa intracellular domain 

(ICD). Due to a nuclear localization signal the ErbB4 ICD is transported to the nucleus47, 49, 197 

and possess transcriptional activity as a coactivator or corepressor by interacting with various 

transcription factors198. For instance, ErbB4 ICD coregulates estrogen receptor a (ERa), 

associates with and activates STAT5A, and forms a complex with TGF-beta-activated kinase 

1 and MAP3K7-binding protein 2 (TAB2) and the nuclear receptor corepressor (NCoR)48, 198-

200. The interaction with the coactivator Yes-associated protein (YAP) is suppressed by 

competitive binding of WW domain-containing oxidoreductase (WWOX)201-203. Additionally, 

ErbB4 ICD enhances histone methylation by phosphorylating the histone methyltransferase 

SUV39H1204. Lastly, the ICD of ErbB4 also accumulates in mitochondria and acts as an 

apoptosis-promoting BH3-protein (B-cell lymphoma-2 homology domain 3)205 . 
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The 16 amino acid sequence encoded by Cyt-1 contains binding domains for 

phosphoinositide-3-kinase (PI3K) and for proteins containing a WW domain (PPXY)191, 202. 

Therefore, Cyt-1 ErbB4 receptors can directly activate PI3K/Akt signaling, whereas Cyt-2 

receptors only stimulate common MAPK-mediated downstream pathways and rely on 

heterodimerization with ErbB3 to activate PI3K206 (Fig. 1.5). The presence of a third WW 

domain binding motif in Cyt-1 ErbB4 receptors, has been suggested to imply a stronger 

coupling to a subset of WW domain proteins compared to Cyt-2 receptors, particularly to a 

couple of E3 ubiquitin ligases (e.g. Itch (Itchy E3 ubiquitin protein ligase), Nedd4 (neuronal 

precursor cell expressed developmentally downregulated protein 4), WWP1 (WW domain-

containing protein 1), and Nedl1 (Nedd4-like ubiquitin protein ligase 1)). Resulting mono- and 

poly-ubiquitinylation affects stability, endocytosis, proteasomal and lysosomal degradation 

and renders Cyt-1 ErbB4 receptors less stable than Cyt-2 receptors207-210. Differences in 

signaling capacities also exist between the ICD of cleavable JMa/Cyt-1 and JMa/Cyt-2 

receptors. Interaction of the Cyt-1-encoded ICD with the transcriptional coactivator YAP is 

more efficient compared to the Cyt-2-encoded ICD202, and a distinct set of genes are 

transcriptionally regulated by the two ICDs211.  

Based on the distinct downstream pathways activated by the four ErbB4 isoforms, 

convergent, divergent or even opposing functions have been described in heterologous and 

non-neuronal cell culture systems211, 212. Isoform-specific functions were characterized in a 

variety of processes such as survival and apoptosis; chemotaxis, mobility and migration; 

proliferation, growth and differentiation; ubiquitination and degradation; endocytosis and 

subcellular localization; and phosphorylation and kinase activity itself (reviewed in213). ErbB4 

isoforms have been more extensively studied with regard to the proliferation and progression 

of different cancer types. Both up- and downregulation as well as oncogenic and tumor 

suppressive roles have been described and the expression of ErbB4 variants correlates with 

survival and the prognostic outcome of various types of cancers213, 214 including brain 

cancers215. Lastly, the distinct activities exerted by different ErbB4 isoforms also highlight the 

importance for isoform-specific therapeutics to block or enhance ErbB4213. A JMa-specific 

antibody was developed and suppresses the growth of a breast cancer cell line216. Xenografted 

tumor growth has been shown to efficiently decrease by a splice-switching oligonucleotide that 

impedes the inclusion of the Cyt-1 exon favoring Cyt-2 variants217. 
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 Expression and role of ErbB4 isoforms in the central nervous system 
In the CNS, little data is available on the expression and role of distinct ErbB4 isoforms. 

Analyses of ErbB4 variant expression have been confined to a few well-studied brain areas 

(RMS, OB, cerebellum, cortex and hippocampus). All four ErbB4 variants have been detected, 

with JMb (~80%) and Cyt-2 (~70%) identified as the predominant ErbB4 isoforms in the adult 

brain, and conserved across several species (rodents, monkeys and humans)59, 67, 213, 218, 219. 

High expression of JMa and Cyt-1 variants, on the other hand, has been described during 

development and in migrating neuroblasts219-221. By Western blotting, the 80kDa ICD of JMa 

ErbB4 receptors has been detected in lysates of the cerebellum, but not in the cortex, consistent 

with the low expression of JMa ErbB4 in cortical tissue58. Most of these studies were however 

performed by techniques (e.g. PCR approaches) that require the homogenization of the tissue 

and therefore do not permit the analysis of the signal distribution nor single-cell expression. 

To overcome this limitation one study performed laser-micro-dissection from different cortical 

layers of human tissue (see below)218. Another study attempted to characterize JM variant 

expression in cerebellar sections using radioisotropic labeling, albeit with limited resolution, 

and suggested a differential expression of JM variants. JMa is preferentially expressed in 

cerebellar granule cells and JMb expression is high in oligodendrocytes190.  

Isoform-specific activities have been described by overexpression in vitro. In cultured 

neuronal progenitors, JMa/Cyt-2 and JMb/Cyt-1 ErbB4 receptor confer high migratory 

potential via particularly strong PI3K/Akt activation206, 220. In adrenal gland 

pheochromocytoma PC12 cells, proliferation and neurite outgrowth is promoted by Cyt-1 and 

Cyt-2 ErbB4, respectively213. Using transfected organotypic cultures, Cyt-1/PI3K signaling 

has been proposed to control the morphology and chemotaxis of migrating interneurons during 

embryonic development221. Only one study addressed ErbB4 isoform function in vivo. In utero 

electroporated JMa, but not JMb-expressing ErbB4 receptors, prevented precocious 

astrogenesis in ErbB4 knock-out mice48.  

Interestingly, levels of ErbB4 splice variants are changed in the dorsolateral prefrontal 

cortex (DLPFC) of postmortem brains of schizophrenics28, 218, 222-224. While changes in total 

expression levels of ErbB4 transcript and protein are controversial – described as either 

unchanged218 or increased28, 222-225 – four independent studies in different ethnic populations 
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congruently report increased expression of the two minor JMa and Cyt-1 transcripts and 

concomitant reduction of JMb and Cyt-2 transcripts28, 218, 222-224. Layer-specific changes were 

identified by laser-microdissection in layer IV of the DLPFC, where most PV-expressing 

basket cells reside, but not in the CR-rich layer II218. Imbalances in ErbB4 variant expression 

inversely correlate with PV levels218 and influence the severity of deficits in patients suffering 

from psychiatric disorders such as schizophrenia, bipolar disorder and major depressive 

disorder226. Inhibition of the Cyt-1 ErbB4 downstream target PI3K, itself increased in 

postmortem brains of patients with schizophrenia, improves amphetamine-induced 

hyperlocomotion and sensorimotor gating in a rat schizophrenia model224, conveying potential 

therapeutic value to Cyt-1/PI3K signaling.  

1.5 Aims and outline of the thesis 
The diverse roles of ErbB4 in regulating neurodevelopment, synaptic function and 

plasticity have been addressed by numerous studies and are fairly well understood (see section 

1.2). However, although experiments in heterologous systems have characterized 

fundamentally distinct signaling mechanisms and, consequently, functions of different ErbB4 

isoforms, the contribution of individual ErbB4 splice variants to ErbB4 receptor function in 

the CNS has been largely overlooked (see section 1.3).  

Therefore, this dissertation seeks to better understand the role of ErbB4 isoforms in the 

brain and elaborates on the central hypothesis that ErbB4 variants are differentially expressed 

in the brain and encoded receptors exert unique functions. Spatiotemporal and cell type-

specific regulation of ErbB4 variant expression may contribute to the variety of ErbB4 

functions already described and yet to be described. ErbB4 isoforms might further diversify 

the potential of ErbB4 to mediate cellular mechanisms by regulating the allocation of the 

receptor within the cell itself. Lastly, unique downstream mechanisms of individual ErbB4 

isoforms might mediate divergent biological processes, even at the same subcellular 

localization in the same cell. Therefore, this thesis aims to 1) characterize the expression of 

ErbB4 splice variants in different cell types and regions of the CNS, 2) describe subcellular 

distribution of ErbB4 and its isoforms in distinct neuronal cell types and 3) address the role of 

one ErbB4 variant (Cyt-1) in vivo using an isoform-specific mutant mouse.  
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Aim 1) Characterize the expression of ErbB4 splice variants in the CNS 

Based on deficiencies in genetic labeling studies, I hypothesize that in addition to the 

described four main ErbB4 splice variants and a few rare variants (see below), alternate 

splicing also occurs in the cytoplasmic or 3’ untranslated region (UTR) of the ErbB4 transcript 

in specific brain areas or cell types. In Chapter 2 (unpublished), using next-generation 

transcriptomics and PCR approaches, I therefore first examine the existence of novel variants 

and define the main ErbB4 splice variants in the brain to further focus on.  

Common in situ hybridization (ISH) approaches using colorimetric, fluorescent and 

radioisotropic-labeled probes lack either the sensitivity or resolution to detect short sequences 

at cellular level. Therefore, in order to study in situ expression of ErbB4 splice variants, that 

are distinguished by short (45-75bp) single exons, I implement a sensitive, histological and 

quantitative approach. Chapter 3 (Erben & Buonanno 2019) describes the application of a 

novel ultrasensitive fluorescent ISH technique called BaseScope (Advanced Cell Diagnostics) 

and the development of an automated quantification tool for ISH signal using the open source 

software CellProfiler227. I then further extensively characterize and validate the sensitivity and 

specificity of this assay using single exon mutant mice and determine its quantitative nature 

and conformity to standard PCR quantitation that lacks the same single-cell resolution (Chapter 

4; Erben et al. 2018). Finally, using these tools, I describe the expression of ErbB4 splice 

variants in many different brain areas and cell types of the mouse brain, as well as its relevance 

to the human (Chapter 4; Erben et al. 2018). 

Aim 2) Describe subcellular targeting of ErbB4 and its isoforms in distinct neuronal cell 
types 

Local infusion of NRG1 into the dorsal hippocampus, one of the target areas of dopamine 

projections, rapidly increases extracellular dopamine levels measured by reverse 

microdialysis138. I conclude and hypothesize that ErbB4 mediating extracellular dopamine 

levels are present on axonal projections of dopamine neurons. Importantly, this is in stark 

contrast to the described somatodendritic restriction of the ErbB4 receptor in GABAergic 

interneurons58. Using primary mesencephalic cultures and immunostainings, I confirm the 

presence of ErbB4 on dopaminergic axonal projections (Chapter 5; Skirzewski et al. 2018). 

Next, I ask if the targeting to axons and the difference in ErbB4 localization between 
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GABAergic and dopaminergic neurons is mediated by the differential targeting of ErbB4 

isoforms. I address this question by viral overexpression of all four ErbB4 isoforms in cultured 

neurons (Chapter 5; unpublished).  

Aim 3) Address the function of Cyt-1 ErbB4 in vivo using an isoform-specific mutant mouse 

Cyt-1 ErbB4 transcripts comprise about 40% in the brain and ErbB4 receptors encoded by 

Cyt-1 uniquely activate downstream signaling through PI3K/Akt, a pathway known to regulate 

neuronal metabolism, neurotransmission, and neurodevelopment228, 229. We therefore 

hypothesize that ErbB4 Cyt-1 receptors have an important role in ErbB4-mediated processes 

and phenotypes, and generated exon-specific mutant mice using site-specific recombination to 

investigate the role of Cyt-1 in vivo. We subject these mice to extensive molecular, behavioral, 

neurochemical and transcriptomic evaluation (Chapter 6; Erben et al., in preparation).
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2  

Characterization of ErbB4 splice variants in the 
central nervous system 

This chapter is unpublished. RNA sequencing was performed in collaboration with Paul Bible 
and Maria Morasso (NIAMS), as well as with the NICHD Molecular Genomics Core. L.E. 
designed all experiments, performed experiments (except RNA sequencing), and analyzed all 
data. 

2.1 Introduction 
Before we can analyze expression and functional implications of ErbB4 splice variants in 

the central nervous system (CNS), we must understand how many ErbB4 splice variants exist 

and which are the most frequent variants in the brain. In addition to the four well characterized 

ErbB4 variants JMa, JMb, Cyt-1 and Cyt-2, introduced above, other less common splice 

variants had been described in human tissue. JMc and JMd variants lack and include both JMa 

and JMb exons, respectively230-232 (Fig. 2.1). Due to the absence and presence of JMa-encoded 

sequence in JMc and JMd receptors, these isoforms are suggested to be resistant and 

susceptible to metalloprotease-mediated cleavage, respectively213. Prevalence of both variants 

has been shown in the context of medulloblastoma and pilocytic astrocytoma. JMd ErbB4 has 

also been detected in the fetal cerebellum230, 232. But no reports of JMc or JMd ErbB4 

expression in normal adult tissue have been published213. Moreover, an ErbB4 splice variant 

lacking exon 3 (del.3) producing a truncated receptor has been described in both fetal and adult 

human brain193 (Fig. 2.1), but so far has not been confirmed in other species. 

ErbB4 isoforms have been characterized using cloning and reverse transcription-PCR 

approaches confined to specific areas of the transcript190, 191, 193, 230, 232; thorough splice variant 
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analysis using next-generation sequencing approaches across the whole ErbB4 gene has not 

been reported. As outlined below in detail, inconsistent labeling of ErbB4 positive cells in an 

ErbB4 reporter mouse line, led us to hypothesize that further uncharacterized ErbB4 splice 

variants – presumably in the cytoplasmic or 3’ untranslated region (UTR) of the transcript – 

might exist, and we set out to clarify splicing of ErbB4 in the CNS by next-generation RNA 

sequencing.  

 

Figure 2.1 | Splicing scheme of ErbB4. 
ErbB4 is encoded by a total of 29 individual exons. Alternative splicing indicated by colored connecting lines 
was described for exon 3 (inclusion or omission), in the juxtamembrane (JM) region for the exons JMa (light 
purple) and JMb (dark purple) and the cytoplasmic (Cyt) region for the Cyt-1 exon 26 (light turquois; inclusion 
or omission). Note, that the JMb exon is encoded upstream to the JMa-encoding exon in the genome. Common 
JM splice variants are JMa (JMa exon only) and JMb (JMb exon only), whereas JMc (neither JMa nor JMb exon) 
and JMd (both JMa and JMb exons) are rare ErbB4 splice variants. 

Inconformity of labeled cells in ErbB4 reporter mice with ErbB4-expressing cells  

ErbB4::CreERT2 mice expressing inducible Cre recombinase under the control of endogenous 

ErbB4 promoter were generated to characterize the expression of ErbB4 in the mouse brain57. 

Tamoxifen-inducible estrogen receptor (ERT2) Cre recombinase fusion protein was inserted 

at the 3’coding end of ErbB4, directly downstream to the stop codon of ErbB4 and separated 

from ErbB4 by a ribosomal 2A skip, allowing ErbB4 and CreERT2 to be expressed as separate 

proteins57, 233. ErbB4 reporter mice were then obtained by crossing ErbB4::CreERT2 mice to 

Rosa::LSL-tdTomato mice and express tdTomato in ErbB4-expressing cells upon tamoxifen 

induction57, 233. In many brain regions (e.g. cortex, hippocampus, amygdala, thalamus), ErbB4 

reporter mice express tdTomato faithfully in previously characterized or co-labeled ErbB4-

expressing cells57, 233. However, only a fraction of dopaminergic neurons (7-22%) in the ventral 

tegmental area (VTA) and the substantia nigra pars compacta (SNc) was labeled by tdTomato 
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in these mice, in stark contrast to the previously observed 80-99% of dopaminergic neurons 

expressing ErbB4 mRNA53, 57, 77, 234. A similar discrepancy was observed in the reticular 

thalamic nucleus (Rtn) that has been shown to express high levels of ErbB450, 56, 123, 235, but 

only a few cells in the ventral tier appeared to be positive in the reporter mice57 (I. Karavanova 

unpublished data). While differences in the percentage of ErbB4-positive cells can result from 

different approaches used and ErbB4 reporter mouse might underestimate the number of 

ErbB4-positive cells57, 233, the disparities in the VTA/SNc and Rtn are dramatic and are 

unlikely the result of technical limitations of the approach. Differences in ErbB4 transcription 

or translation particularly in these two neuronal population, could result in a lower than 

expected percentage of positive cells. Among other possible explanations, the usage of an 

alternative stop codon would affect the transcription of Cre recombinase inserted downstream 

to the characterized stop codon and ultimately result in the absence of tdTomato signal. 

Therefore, we posited that one or multiple uncharacterized alternatively spliced transcripts in 

the 3’ region of ErbB4 exist in some cells, including dopaminergic neurons and GABAergic 

reticular thalamic neurons, and impede functional expression of Cre recombinase in ErbB4 

reporter mice. 

2.2 Methods 
Animals. Adult wild-type C57BL/6J mice were purchased from the Jackson laboratories. Cyt-

1 mutant mice were generated by site-specific recombination in embryonic stem cells on 

C57BL/6J background (see Chapter 6). Adult male and female C57BL6/J mice and wild-type 

(WT) littermates from heterozygote Cyt-1 mutant breeding pairs were used for ErbB4 splice 

variant analyses. All animals were housed on a 12–12h light-dark schedule with access to food 

and water ad libitum. Animal procedures were reviewed and approved by the NIH Animal 

Care and Use Committee. 

RNA isolation. RNA isolation as well as downstream RNA sequencing was conducted in two 

cohorts. Wild-type mice (male 2-14-months-old C57BL/6J; first cohort) and wild-type 

littermates of Cyt-1 mutant mice (on C57BL/6J background, male and female 10-week-old; 

second cohort) were euthanized by an overdose of isoflurane or cervical dislocation, 

respectively. Brains were dissected and briefly washed with 1x RNase-free phosphate-buffered 

saline (PBS; Gibco, Cat No. 100010-023). 2mm-thick sections were cut using a brain matrix 
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(Roboz Surgical Instrument Co., Cat No. AL-1175). Micro-tissue punches (1mm diameter; 

Harris Micro-Punch, US Pat No. 7093508 ) from prefrontal cortex (PFC), dorsal hippocampus 

(dHpp), reticular thalamic nucleus (Rtn) and ventral tegmental area (VTA) were collected 

bilaterally (one punch per area and hemisphere; ~1-2mg tissue per sample) and stored at -80°C 

until further processing. For the first cohort, samples were pooled from 4 (PFC and dHpp 

samples) or 10 (Rtn and VTA samples) animals to reduce inter-sample variability. RNA was 

isolated using 200 and 500μl of TRI Reagent (Thermo Fisher, Cat No. AM9738) according to 

manufacturer’s protocol, respectively. DNA was subsequently degraded using DNA-free DNA 

removal kit (Thermo Fisher, Cat No. AM1906). RNA yield was 4.2-8.5μg and RNA integrity 

was measured at an Agilent RNA 6000 Nano kit and bioanalyzer (Agilent Technologies, Cat 

No. 5067-1511) and ranged from 7.5 to 8.8. For the second cohort (wild-type littermates of 

Cyt-1 mutant mice on C57BL/6J background; 3 dHpp and 3 VTA samples), samples of three 

individual mice of both sexes and different collection days were pooled prior to RNA isolation. 

RNA was isolated using 500μl TRI Reagent Kit (Thermo Fisher, Cat No. AM9738) following 

manufacturer’s protocol until phase separation. ~80% of the aqueous phase was then mixed 

with one volume of 70% ethanol and transferred to RNeasy MinElute spin column (Qiagen; 

Cat No. 74004) to enrich for mRNAs >200 nucleotides excluding 5.8 ribosomal RNA (rRNA), 

5S RNA and transfer RNAs (tRNA). RNA was treated with DNase I and purified according to 

cleanup protocol from RNeasy Micro Kit (Qiagen, Cat No. 74004). RNA yield varied between 

2.0 and 4.9μg for dHpp samples and 1.3-2.0μg for VTA samples. RNA integrity measured 

using Agilent RNA 6000 Nano Kit (Agilent Technologies, Cat No. 5067-1511) ranged 

between 8.7 and 9.1. 

End-point reverse transcription PCR. Complementary DNA (cDNA) was synthesized in a total 

volume of 20μl according to manufacturer’s protocol, using 1μg RNA template, 200U 

SuperScript IV Reverse Transcriptase (Thermo Fisher, Cat No. 18090010), 40U RNaseOUT 

(Thermo Fisher, Cat No. 10777019), 0.5mM dNTPs, 2.5μM random hexamers, 5mM 

dichlorodiphenyltrichloroethane (DDT) in SuperScript IV (SSIV) buffer for 20min at 55°C. A 

gene specific primer (5’-CAGCTAACTTTG-3’; Integrated DNA technologies) binding to the 

3’UTR of ErbB4 was added at 0.2μM to favor amplification of the 3’UTR of ErbB4. Long 

template PCR was run with the Expand Long Template PCR system (Roche, Cat No. 

11681834001). 18.75ng of cDNA was amplified with 11.25U of polymerase, 0.5mM dNTPs 
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and 0.3μM of each primer (primer pairs listed in Table 2.1; Integrated DNA technologies) in 

buffer 3, containing 2.75mM magnesium, and a total volume of 15μl. After two minutes of 

initial denaturation at 95°C, 35 cycles of 20sec denaturation at 92°C, 30sec annealing at 60.7°C 

and 4min elongation at 68°C were performed, before a final 7min-elongation at 68°C. 5μl of 

PCR products were separated on a 1% agarose gel in tris-acetate-EDTA (TAE; Quality 

Biological, Cat No. 351-008-131) buffer at 100V and visualized with ethidium bromide 

(Invitrogen; Cat No. 15585-011) under UV light (Azure Biosystems c150 gel documentation 

imaged). Gene Ruler 1kb DNA ladder (Thermo Fisher, Cat No. SM0314) was used to identify 

band size.  

Table 2.1 | Primer pairs for end-point PCR 

 
Sequence of primer pairs amplifying 3’terminal regions of ErbB4 transcripts. Position in transcript 
relative to start codon in JMa/Cyt-2 transcript, if coding sequence exon (ex) number is indicated. 

RNA sequencing. For the first RNA sequencing cohort, poly-A-mRNA library was extracted 

from 1μg total RNA, fragmented and cDNA synthesized using NEBNext Ultra RNA Library 

Prep Kit for Illumina (New England BioLabs, Cat No. E7530). cDNA was amplified, adapter-

ligated using Mondrian Ovation SP Ultralow system (NuGEN, Cat No. 0344) and sequenced 

on an Illumina HiSeq2000. 30-60 million 50bp paired-end reads were obtained per sample and 

mapped to mouse genome mm10 using Tophat (version 2.1.0) software236. Expression in rpkm 

(reads per kilobase of transcript, per million mapped reads) was calculated with Partek 

Genomics Suite (version 6.6). The library for the second sequencing cohort was constructed 

from 1μg total RNA using TruSeq Standard mRNA Library Preparation kit (Illumina, Cat No. 

20020594) with polyA-enrichment. Each library was barcoded; equal amounts were combined 

and sequenced on an Illumina HiSeq 2500 system yielding 35-40 million paired-end reads 

(2x100b) per sample. Reads were aligned to the mouse genome (GENCODE mouse release 

 
 
 
Table 1 Primer pairs for end-point PCR 

Forward primer Reverse primer 
Position in 
transcript 

Amplicon 
size [bp] 

5’-GAAGACATGATGGATGCTGAGG-3’ 5’-CCACACAGAACTGTTTCTTAGC-3’ 3040 (ex25) – 4883 1843/1891 

5’-CCAATGCATGACAAGCCCAAAC-3’ 5’-CCACACAGAACTGTTTCTTAGC-3’ 3409 (ex27) – 4883 1474 

5’-TACTGGAGAAAGGAGAGCGTCT-3’ 5’-CTTGCATTCCTTCACACAGAGC-3’ 2795 (ex23) – 5291 2496/2545 

5’-GAAGACATGATGGATGCTGAGG-3’ 5’-CTTGCATTCCTTCACACAGAGC-3’ 3040 (ex25) – 5291 2251/2299 

5’- CCAATGCATGACAAGCCCAAAC-3’ 5’- CTTGCATTCCTTCACACAGAGC-3’ 3409 (ex27) – 5291 1883 

5’-GCTCTGTGTGAAGGAATGCAAG-3’ 5’-TGAATTGCCTGTTCCTTTCTGG-3’ 5269 – 9843 4574 

5’-CTAGTACATGTAGTTCGTACGG-3’ 5’-CATGTAACAAAAAGGCAGAACAG-3’ 7799 – 311673 3874 

 
Sequence of primer pairs amplifying 3’terminal regions of ErbB4 transcripts. Position n transcript relative to start codon in JMa/Cyt-2 
transcript, if coding sequence exon (ex) is indicated.  
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16) using RNA-STAR (version 2.6.1)237. Gene-based read quantitation was analyzed using 

featureCounts (version 1.6.3) with the following options (-O, -M, -g, gene_name)238. 

Integrative Genomics Viewer239 was used to visualize Sashimi Plots. Percent spliced in (Psi) 

was calculated as Ψ = #$
#$	&	'$

, where IR is inclusion reads and ER is exclusion reads. 

2.3 Results 

 Alternative splicing of ErbB4 transcripts is confined to previously 
characterized splice sites 

In order to explore the possibility of uncharacterized alternative ErbB4 splicing in the 3’ 

region of the gene, I isolated RNA from two brain regions with underrepresented labeling in 

ErbB4 reporter mice, the reticular thalamic nucleus (Rtn) and the dopaminergic ventral 

tegmental area (VTA), as well as from two control areas with well-characterized ErbB4 

expression on GABAergic interneurons that were faithfully labeled in ErbB4 reporter mice, 

the prefrontal cortex (PFC) and dorsal hippocampus (dHpp). As 3’ RACE (rapid amplification 

of cDNA ends), a common approach to identify transcript variants particularly at the 3’ end of 

transcripts, would have been challenging due to the large size of the ErbB4 transcript (12037bp 

JMa/Cyt-2 variant) and the 3’ untranslated region (UTR; 7855bp) itself, I resorted to end-point 

PCR and subsequent agarose gel analysis.  

cDNA was enriched for the 3’ end of ErbB4 transcripts using a mix of random hexamers 

and a gene-specific primer binding to the 3’UTR for reverse transcription. Multiple primer 

pairs designed to amplify ErbB4 transcripts spanning from exons 26, 27 or 28 into the 3’UTR 

were tested (see Table 2.1). Reverse primers targeting the 3’UTR were designed against 

evolutionary conserved regions (ECR; as defined by analysis with the ECR Browser240) that 

could potentially have functional importance (e.g. contain a coding exon). Using Expand Long 

template PCR, I was able to amplify fragments up to 4574bp in length. However, I did not 

observe shorter PCR products than those expected from the known untranslated 3’UTR, that 

would indicate a skipped intron and a potential new splice junction between the two primer-

targeted regions (example in Fig. 2.2; see full list of successfully tested primers in Table 2.1). 

No differences were detected between the four brain areas analyzed. A disadvantage of this 
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approach is that it only allows the identification of splice junctions if a primer pair is designed 

to target transcribed exons before and after the putative splice junction. 

  

To perform a global splice variant analysis for ErbB4, I therefore subjected the samples to 

whole genome RNA sequencing. Splice variant analysis of intron-spanning reads using 

Sashimi plots confirmed that there are no alternatively-spliced exons in the 3’ region other than 

differential Cyt-1/Cyt-2 splicing in any of the samples analyzed (Fig. 2.3B). Next, I analyzed 

exon junctions across the whole ErbB4 transcript. While most identified splice junctions (total 

>30.000 reads for ErbB4 in all samples) either indicated conserved splice junctions or known 

alternatively spliced variants, occasionally, exon skipping was observed (for exon 2, 9, 15 and 

19; total 7 reads from all samples) and a few reads were detected that aligned as intron-

spanning reads between known exons and intronic regions within the ErbB4 gene (total 13 

reads from all samples; see e.g. Fig. 2.3B third VTA sample). These reads were mostly 

individual events and did not reproduce between different samples. However, most intronic 

splice acceptor and donor sites of these intron-spanning reads were canonical (92%), likely 

excluding common sequencing artefacts introduced by reverse transcription or 

amplification241-243. The low prevalence of these splice sites (<0.05%) and no reproducibility 

between samples suggests that these are individual mis-spliced events, errors introduced by the 

spliceosome without functional significance244, rather than uncharacterized alternative splice 

sites.  

Figure 2.2 | Example of end-point PCR 
analysis of the 3’ end of the ErbB4 transcript. 
Amplification of an 1883bp region from exon 27 
spanning into 3’UTR, primer location indicated in 
scheme. dHpp – dorsal hippocampus, ECR – 
evolutionary conserved region, PFC – prefrontal 
cortex, Rtn – reticular thalamic nucleus, VTA – 
ventral tegmental area. 
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Figure 2.3 | Analysis of ErbB4 splice variants in the mouse brain by RNA sequencing.  
(A, B) Sashimi plot and read densities of ErbB4 juxtamembrane exons JMa and JMb (A) and the cytoplasmic 
region including 3’UTR (untranslated region) (B). RNA was isolated from tissue micro-punches from dorsal 
hippocampus (dHpp; blue; n=5), reticular thalamic nucleus (Rtn; red; n=1) and ventral tegmental area (VTA; 
green; n=4) and subjected to Illumina whole genome RNA sequencing. Sashimi plot of intron-spanning reads 
identifies JMc and JMd ErbB4 splice variants (A) and does not suggest for alternative splicing (other than Cyt-1. 
Cyt-2) at the C-terminal end or 3’UTR (B). (C) Sashimi plot and read densities of Erbb4 exon 3 confirms existence 
of del.3 variant. Scale indicated by grey numbers in upper right corner of tracks. (D, E) Per-sliced in (Psi, Y) of 
JMa/JMb (D) and Cyt-1/Cyt-2 (E) ErbB4 splice variants in dHpp (n=4,5), Rtn (n=1) and VTA (n=4). 
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 Detection of rare ErbB4 splice variants in the adult mouse brain 
Interestingly, the detailed analysis of ErbB4 splice junctions revealed evidence for the 

previously described juxtamembrane splice variants JMc and JMd (Fig. 2.3A), that omit and 

include both juxtamembrane exons JMa and JMb, respectively. These variants were rare, JMc 

and JMd variants only accounted for about 0.5 and 0.9% of all juxtamembrane splice variants. 

However, to my knowledge, this is the first report of JMc and JMd variants in the adult healthy 

brain213. Lastly, I also identified one read spanning the exon boundary exon 2/exon 4. This 

suggests that the del.3 variant previously described in the human brain, might also exist in the 

mouse brain, albeit at significant lower levels than the described (~37%) in the adult human 

brain193. 

 Ratios of juxtamembrane JMa/JMb and cytoplasmic Cyt-1/Cyt-2 variants 
I also explored the RNA sequencing data regarding differences in expression of the four 

common ErbB4 splice variants (JMa, JMb, Cyt-1 and Cyt-2) in distinct brain areas. Percent 

spliced in (Psi, Y) was calculated for the common ErbB4 splice variants JMa, JMb (Fig. 2.3D) 

and Cyt-1, Cyt-2 (Fig. 2.3E). No significant differences between the three brain areas analyzed 

(dHpp, Rtn, VTA) were detected. Cyt-2 was the prevalent isoform in all areas analyzed (dHpp 

Y=0.91±0.02, Rtn Y=0.72, VTA Y=0.86±0.05). JMb was predominant in both dHpp 

(Y=0.74±0.05) and VTA (Y=0.63±0.06), whereas more reads for the JMa than for the JMb 

splice variant were detected in the Rtn (Y=0.57). Of note only one Rtn sample has been tested 

and junction reads might not have been sufficient. In sum, ErbB4 JMa/JMb and Cyt-1/Cyt-2 

ratios analyzed by RNA sequencing are similar in the dHpp and VTA. 

2.4 Discussion 
In conclusion, my extensive studies using end-point PCR and RNA sequencing confirmed 

previously reported ErbB4 splice variants and showed first time evidence for the expression of 

the rare ErbB4 splice variants JMc, JMd and del.3 in the adult mouse brain. No additional 

variants in the 3’ region or elsewhere in the transcript were identified with this approach. As 

the detected rare ErbB4 splice variants account only for a small fraction of all ErbB4 transcripts 

(<1%), and JMc and JMd variants are functionally comparable to JMb and JMa variants213, 
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respectively, I will concentrate my further analyses regarding expression and functional 

contribution on the four main ErbB4 splice variants: JMa, JMb, Cyt-1 and Cyt-2.  

The data suggests that alternative splicing is not interfering with the expression of Cre 

recombinase in ErbB4 reporter mice. At this moment, we do not have a good explanation why 

in some neurons, most notably dopaminergic neurons and GABAergic neurons in the Rtn, the 

reporter mice fail to identify ErbB4-expressing cells. However, it is possible that 

bioavailability of tamoxifen, tdTomato protein stability, expression level, subcellular 

distribution of Cre recombinase or accessibility of floxed targets57, 233 might be different in 

these brain areas. Preliminary multiplex in situ hybridization experiments on sections from 

tamoxifen-injected ErbB4::CreERT2 mice identified expression of Cre mRNA, albeit low, in 

ErbB4-expressing tyrosine hydroxylase-positive dopaminergic neurons in the VTA (L. Erben, 

unpublished data). While the detected Cre transcripts could be out-of-frame, tracing 

experiments by stereotaxic injections of Cre-dependent adeno-associated viruses (AAVs) 

expressing fluorescent proteins, suggest the expression of functional Cre recombinase in VTA 

dopaminergic neurons of ErbB4::CreERT2 mice245. Therefore, recombination or stability 

issues of the target, tdTomato, are most conceivable. Of note, although in the Rtn and VTA the 

discrepancy between the reporter mice and previously observed expression levels are striking, 

expression is also inconsistent and underestimated in other areas. For instance, in the cortex 

and hippocampus, recent data suggests that almost all GABAergic interneurons are ErbB4-

positive60 (L. Erben & I. Karavanova unpublished data), whereas in the reporter mice only a 

subgroup of GAD-green fluorescent protein (GFP) cells (60-80%) were labeled with 

tdTomato57, 233. I also observed wide-spread ErbB4 mRNA expression in the corpus callosum 

and choroid plexus (see Chapter 4) exceeding that detected with the reporter mice. This suggest 

a general underestimation of ErbB4 expression in the ErbB4 reporter mice that appears to be 

more severe in some brain regions than in others.  

Interestingly, ratios of juxtamembrane and cytoplasmic ErbB4 splice variants were similar 

in the three areas analyzed. However, two important questions remain unanswered. Firstly, 

short-read sequencing does not allow any conclusion with regard to the combination of 

alternative spliced variants at the two splice sites JM and Cyt that are 1189bp apart. While 

tissue-specific ErbB4 isoform expression suggests that all combinations JMa/Cyt-1, JMa/Cyt-

2, JMb/Cyt-1 and JMb/Cyt-2 are possible213, little information is available if the regulation of 
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the two splice sites is coordinated or independent; or which JM/Cyt transcripts are generated 

in the brain. It would be interesting to perform costlier long-read RNA sequencing that allows 

for sequencing of up to 2000bp (Pacific Biosciences or Oxford Nanopore Technologies246, 247). 

Alternatively, specifically designed end-point PCRs could give insights193. Second, it is also 

unclear, how ErbB4 variants are distributed in distinct cell types expressing ErbB4 in the brain 

areas analyzed and if the two JM (JMa and JMb) and Cyt (Cyt-1 and Cyt-2) variants are co-

expressed in a single cell. In the hippocampus and cortex most ErbB4 expression arises from 

GABAergic interneurons54, 58 and the detected isoform ratios should be similar in GABAergic 

interneurons themselves. The VTA is a heterogenous region that includes ErbB4-expressing 

GABAergic and dopaminergic neurons53, 57. Both whole genome RNA sequencing from 

purified cell types (e.g. by panning or fluorescence activated cell sorting (FACS) from cell-

type specific transgenic GFP mice248) or single-cell RNA sequencing could provide 

information about alternative splicing in these distinct cell types. Single-cell RNA sequencing 

for splice variant analyses however is technologically limited especially for low abundance 

transcripts243. Moreover, sequencing approaches are in general either restricted to a small brain 

region or only provide unspecific global information; and importantly do not maintain tissue 

morphology. We were interested in understanding the distribution of ErbB4 isoforms beyond 

a few brain areas, and therefore resorted to a novel exon-specific in situ hybridization approach 

that allows the analysis of ErbB4 splice variants at a single-cell level across the whole brain 

(see Chapter 3 & 4).  





 41 

3  

Automated quantification of multiplex and exon-
specific in situ hybridization signals 

This chapter is the peer reviewed version of the following article: Erben Larissa & Andres 
Buonanno (2019) Detection and Quantification of Multiple RNA Sequences Using Emerging 
Ultrasensitive Fluorescent In Situ Hybridization Techniques. Curr Protoc Neurosci, 87(1) 
which has been published in final form at 
https://currentprotocols.onlinelibrary.wiley.com/doi/epdf/10.1002/cpns.63. This article may 
be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-
Archiving." 

Authors contributions: L.E. and A.B. designed research, L.E. performed research, L.E. 
analyzed the data, L.E. and A.B. wrote the paper. 

3.1 Abstract 
Fluorescent detection of transcripts using RNAscope has quickly become a standard in situ 

hybridization (ISH) approach in neuroscience with over 400 publications since its introduction 

in 2012. RNAscope’s sensitivity and specificity allow the simultaneously detection of up to 

three low abundance mRNAs (i.e., multiplexing) in single cells and, in contrast to other ISH 

techniques, RNAscope is performed in 1 day. BaseScope, a newer ultrasensitive platform, uses 

improved amplification chemistry of single oligonucleotide probe pairs (~50 bases). This 

technique allows discrimination of single nucleotide polymorphisms or splice variants that 

differ by short exons. A present limitation of BaseScope is that expression analysis is limited 

to a single gene (i.e., single-plexing). This article outlines detailed protocols for both 

RNAscope and BaseScope in neuronal tissue. We discuss how to perform ISH experiments 

using either fresh-frozen or formalin-fixed paraffin-embedded sections, as well as dissociated 
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cultured neurons. We also outline how to obtain quantitative data from hybridized tissue 

sections. 

3.2 Introduction 
The numerous in situ hybridization (ISH) approaches that have been used in the field of 

neuroscience for the past decade were predominantly based on the use of complementary 

oligonucleotides or RNA probes directly labeled with radionucleotides for radioactive 

detection or coupled to enzymes for colorimetric detection249. Those approaches had 

limitations, such as high background, lack of sensitivity for low abundance transcripts, long 

turnaround times, and analysis restricted to single gene products per section. A recent 

advancement to circumvent these limitations has been the development of novel chemical 

reagents and signal amplification techniques that, due to their nature (see Fig. 3.1), are highly 

specific, sensitive, easy to use, and simultaneously detect expression of several genes in single 

cells. The technology for these products, promoted by Thermo Fisher Scientific (ViewRNA) 

and Advanced Cell Diagnostics (ACD; RNAscope), is based on the hybridization of ~20 

“probe pair sets.” The sequential amplification via the tail region of the probe creates 

independent amplification branches or trees for the detection of several transcripts that are 

subsequently labeled with distinct fluorophores250. A second related recent advancement in 

signal amplification enhances sensitivity to the point that a single probe pair (~50 bases) can 

be used for detection. Using this novel ultrasensitive ISH approach, denoted as BaseScope 

(ACD), it is possible to investigate at the single-cell level in tissue the expression of previously 

undetectable RNAs that differ by short nucleotide stretches or single bases, such as splice 

variants that vary by short exons (<50 bases), non-coding RNAs, and single nucleotide 

polymorphisms234, 251. Because of the extreme heterogeneity of neural cells and transcriptome 

complexity of the brain, and the aforementioned simplicity and fast turnaround time of 

RNAscope/ ViewRNA, these approaches are rapidly becoming the methods of choice to study 

the co-expression of genes, RNA isoforms, and polymorphism in specific neural cell types. 

In this article, we describe protocols for both RNAscope (Basic Protocol 1) and BaseScope 

(Basic Protocol 2). These ISH assays comprise three sections: (1) pretreatment of sample 

depending on sample type, (2) the ISH assay itself (probe hybridization and signal 

amplification), and (3) detection and analysis using high-resolution fluorescent images (20 to 
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63x). Additionally, we provide a protocol for the combination of ISH and 

immunohistochemistry (Basic Protocol 3), and a detailed description of step-by-step analysis 

of ISH signal applicable for ISH assays beyond those described in this article (Basic Protocol 

4). An overview of the protocols (Fig. 3.1) and short print-out of the protocols covered in this 

article (Fig. 3.2) are provided as convenient guides to users.  

NOTE: All protocols using animal or human tissue must first be reviewed and approved by 

an Institutional Animal Care and Use Committee (IACUC) and must follow officially 

approved procedures for the care and use of animals. 

 

Figure 3.1 | Overview of protocols described in this article. 
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Multiplex fluorescent in situ hybridization, RNAscope (yellow box, Basic Protocol 1) and exon-specific in situ 
hybridization, BaseScope (purple box, Basic Protocol 2) use probe pairs (called “ZZ” pairs) each targeting about 
50 bases of target mRNA. While RNAscope uses 6-20 ZZ pairs (targeting ~300-1000 bases), improved signal 
amplification allows BaseScope assays to target short RNA sequences (50-300 bases) by using only 1-6 ZZ probe 
pairs. Signal amplification of both assays are schematically represented and involve 4 and 8 amplification steps, 
respectively. Fluorescent labels in RNAscope are detected using a fluorescent microscope (Basic Protocol 1). The 
FastRED dye used in BaseScope and converted by alkaline phosphatase is both visible under fluorescent and light 
microscope (Basic Protocol 2). Both RNAscope and BaseScope are compatible with different sample types: 10-
20μm thick fresh-frozen sections (Basic Protocol 1), 4-8μm thick formalin-fixed paraffin-embedded (FFPE) 
sections (Alternate Protocol 1) and adherent cell cultures such as neuronal cultures (Alternate Protocol 2). 
Pretreatment and permeabilization to allow the probes to perfuse into the tissue to the target RNA need to be 
adjusted accordingly. BaseScope assays require an additional pretreatment step with H2O2 to saturate endogenous 
peroxidase activity (purple circles). Protocols can be interrupted at optional stopping points during pretreatments 
(red stop sign). Post-assay immunostaining (Basic Protocol 3) is optional. 

3.3 Strategic Planning: Probe Design 
While probes are designed by the vendor, investigators need to consider a couple of 

important points, as discussed below, before requesting probes that are either synthesized by 

the vendor or purchased as an already existing probe from the catalog. First and foremost, both 

RNAscope and BaseScope probes need to be comprised of antisense sequences that perfectly 

match the RNA sequence of the species under investigation. No additional planning for 

channel consideration is required for single-plex BaseScope, but further steps are required to 

combine the different RNAscope probes effectively.  

The relative abundance of the targeted RNAs, the sensitivity of the different channels, and 

background fluorescence need to be considered (see Fig. 3.3). Probes designed for use in 

Channel 1 are most sensitive, closely followed by Channel 3. Hybridization signals, which 

appear as dots, are also slightly larger for Channel 1 probes relative to probes on other channels. 

For these reasons, we regularly assign probes targeting the lower abundance transcripts – 

frequently our genes of interest – to Channel 1. Probes on Channel 2 show the lowest sensitivity 

and we therefore assign probes targeting the most abundant transcripts to this channel (e.g., 

cell type-specific markers). Depending on which Amplification solution 4 is used, the 

assignment of three different fluorophores, Alexa488, Atto550, and Atto647, can be switched 

between the three channels (see Fig. 3.3). Based on our experience, we recommend using 

AMP4B for standard applications that result in detection of Atto550 (red fluorescence) on 

Channel 1, Alexa488 (green fluorescence) on Channel 2, and Atto6447 (far-red fluorescence) 

on Channel 3. However, it is important to remember that autofluorescence from accumulated 
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lipofuscin granules or fixatives is most prominent in the green fluorescent range252, 253. The use 

of tissue from younger animals ameliorates autofluorescence artifacts associated with 

lipofuscin accumulation254. 
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Figure 3.2 | Short print-out protocol for RNAscope and BaseScope assays on fresh-frozen and paraffin 
sections as well as on adherent cell culture samples. 
For detailed protocols please refer to the text. Drops illustrate washing steps of varying lengths with indicated 
solutions, and the pen indicates the drawing of the hydrophobic barrier. The BaseScope assay requires an 
additional H2O2 pretreatment step (highlighted in light violet in top panels). Protocols can be paused (red stop 
signs). RT, room temperature.  
 

 

Figure 3.3 | Multiplexing of the three channels in RNAscope. 
Detected fluorophores of the three channels (C1, C2, C3) can be adjusted by distinct amplification solution 4 
(AMP4A, AMP4B, AMP4C). The sensitivity of the three channels is C1>C2>>C3. Therefore, we recommend 
examining the expression of a target gene (lowest expected expression) in different cell types using a Channel 1 
(C1) probe against this gene of interest and cell type-specific marker genes in Channel 2 & 3. 

 

3.4 Basic Protocol 1: Multiplex Fluorescent In Situ Hybridization 
(RNAscope) using Fresh-Frozen Sections 

The extremely high sensitivity and specificity of RNAscope is based on the probe design 

and the amplification of the signal250. The probes for each RNA target are comprised of 6 to 

20 oligonucleotide pairs that are denoted as “ZZ pairs” (each oligonucleotide is 18 to 25 bases 

long) and each ZZ pair is complementary to ~50 contiguous bases in the targeted RNA. The 

hybridized ZZ probe pairs are bound by the preamplifier via a 28-base tail region that will be 

used for signal amplification (see Fig. 3.1). Importantly, hybridization conditions are such that 

stable binding of the preamplifier requires both Z probes of a pair to hybridize adjacent RNA 
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sequences; off-target hybridization to non-specific RNA sequences does not result in signal 

amplification and therefore does not contribute to non-specific hybridization. This 

requirement, for the physical proximity of two specific probes to generate signal, differentiates 

RNAscope from other traditional ISH hybridization protocols that use either labeled single 

oligonucleotides or cRNAs. Following binding of the preamplifiers to each of the pairs (6 to 

20 ZZ pairs per targeted RNA), signal amplification is achieved in the next steps: One 

preamplifier binds twenty amplifiers, and in turn, each amplifier has twenty binding sites for 

fluorescent labels. This sequential amplification scheme can theoretically yield an 8000-fold 

increase in signal per target, thus allowing detection of single transcripts. Multiplexing, ergo 

the simultaneous detection of several gene products, is possible because the reagents used for 

signal amplification in each channel are unique and are ultimately labeled with distinct 

fluorescent labels. Basic Protocol 1 describes the use of the RNAscope assay on 10- to 20-μm 

thick fresh-frozen sections; this is the preferred type of section because of its better 

preservation of RNA. Examples of RNAscope on fresh-frozen sections can be found in Figures 

3.4 and 3.5.  

NOTE: All steps up to the probe hybridization should be performed under RNase-free 

conditions. Channel 1 probes are provided in dropper bottles (3ml) and serve as diluent for the 

other channels. Channel 2 and 3 probes are provided as a 50x stock in Eppendorf tubes (60μl), 

and are diluted 50-fold into the Channel 1 probe mix.  

Materials 

× RNAscope reagents (ACD): 

RNAscope® fluorescent multiplex kit (ACD, cat. no. 320851) 

Pretreatment kit (ACD, cat. no. 322380) 

50x wash buffer (ACD, cat. no. 310091) 

Target probes in three different channels for manual RNAscope assay (C1, C2, 
C3 species-specific; ACD) 

Optional: Positive and negative probes (e.g., for mouse: 3-plex positive probe, 
ACD, cat. no. 320881; Polr2a-C1, Ppib-C2, Ubc-C3; 3-plex negative probe 
bacterial DapB, ACD, cat. no. 320871) 

Optional: Probe diluent (ACD, cat. no. 300041) 
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× 10- to 20-µm thick fresh-frozen sections on Superfrost slides (for preparation see255) 

× RNase AWAY (e.g., Molecular BioProducts, Thermo Fisher Scientific, cat. no. 
MBP#7000) 

× Paraformaldehyde (PFA; e.g., 16% PFA, Electron Microscopy Sciences, cat. no. 
15710) 

× 100% ethanol (200 proof), 50% and 70% ethanol prepared with RNase-free water 

× RNase-free water (e.g., DEPC-treated water; KD Medical, cat. no. RGF-3050) 

× 1x PBS (RNase-free) 

× Distilled water 

× Mowiol DABCO mounting medium (aqueous; see recipe) 

 
Figure 3.4 | Example for RNAscope on fresh-frozen section (Basic Protocol 1).  
Expression of ErbB4 (magenta; Channel 1) was analyzed in excitatory neurons labeled by vesicular glutamate 
transporter 1 (vGLUT1; green; Channel 2) and in GABAergic neurons labeled by glutamate decarboxylase 1 
(GAD1; white; Channel 3). (A) Overview of an adult coronal wild-type (WT; C57BL/6J) mouse brain section. 
(B) Magnification in the primary somatosensory cortex. Scale bars 500μm in A, 200μm in B. See Figure 3.5 for 
analysis. 

× 8 vertical glass Coplin jars (e.g., Ted Pella, cat. no. 432-1) 
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× Hydrophobic barrier pen (e.g., ImmEdge hydrophobic barrier pen; Vector 
Laboratories, cat. no. H-4000) 

× Absorbent paper (e.g., Whatman paper; GE Healthcare, cat. no. 10427804) 

× Humidifying chamber (e.g., ACD, cat. no. 310012) 

× Horizontal slide rack (e.g., ACD, cat. no. 310017) 

× Oven (40°C; e.g., HybEZTM/ HybEZTMII Oven, 110/220 V; ACD, cat. no. 321710/20) 

× Water bath (40°C) 

× 1.5-ml RNase-free Eppendorf tubes 

× Kimwipes (e.g., Kimtech Science Precision wipes; Kimberly-Clark Professional, cat. 
no. 05511) 

× Cover glass (24x50 mm; e.g., Thermo Fisher Scientific, cat. no. 12-548-5M) 

× Fluorescent microscope (e.g., Zeiss LSM710/780) 

 

Figure 3.5 | Quantitative analysis of an exemplary RNAscope experiment. 
(A) Inset for cellular resolution of ErbB4 (magenta; Channel 1) expression in the somatosensory cortex from 
Figure 3.4B. ErbB4 transcripts are confined to GABAergic interneurons (GAD1; white; Channel 3) in the cortex 
(arrowheads) and absent from glutamatergic neurons (vGLUT1; green; Channel 2; open arrowheads). (B-E) 
Quantification of ErbB4 expression in the somatosensory cortex using CellProfiler (see Understanding Results 
and Statistical Analyses; n=18429 cells; N=2 animals; bilateral). (B) ErbB4 transcript expression analyzed per 
area (right) and percentage of positive cells (left). (C) Fraction of ErbB4+ cells that overlap with glutamatergic 
(white), GABAergic (blue) signal or are none of both (yellow). (D) ErbB4 transcript levels per positive cell 
subdivided into the three cell populations. (E) Histogram analyses of ErbB4 expression in different cortical layers. 
Scale bar 20μm. 
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1. Prepare fresh 4% paraformaldehyde (PFA) in 1x PBS with RNase-free water and pre-chill 
in Coplin jar at 4°C the night before.  

Alternatively, 10% normal buffered formalin can be used. 

2. The day of the assay, preheat and equilibrate oven to 40°C. Assemble a humidifying 
chamber using absorbent paper and RNase-free water and pre-warm it in the oven. 

Pretreatment of fresh-frozen sections 

3. Transfer slides quickly from their slide box stored at -80°C directly into pre-chilled 4% 
PFA; sections should not be allowed to thaw and need to be completely submerged. 
Incubate 15min at 4°C. 

4. Wash slides in 1x PBS at room temperature by transferring slides to a Coplin jar filled with 
1x PBS. Move slides up and down five times and incubate 2min. Repeat wash once with 
fresh 1x PBS. 

5. To dehydrate sections, transfer slides to a Coplin jar filled with 50% ethanol. Move slides 
up and down five times and incubate 5min at room temperature. Repeat one time in 70% 
ethanol and twice with fresh 100% ethanol.  

Slides can be stored for up to 1 week at -20°C in 100% ethanol. Prolonged storage may 
result in RNA degradation and suboptimal results. 

6. Carefully dry the bottom side of the slide (i.e., side without section) with a Kimwipe and 
using a quick flick of the wrist remove excess liquid over the tissue; air dry slides with 
sections facing upwards on an even surface 5min at room temperature. 

7. Draw a circle or rectangle around each section with a hydrophobic barrier pen, leaving 
~5mm of space between the section and the barrier, and allow barrier to completely dry 
before continuing (~1min). 

8. Cover sections completely with protease IV pretreatment solution (provided with 
RNAscope pretreatment kit; e.g., 3 drops for coronal adult mouse brain section) and 
incubate 30min at room temperature. Cover sections with lid to avoid dust falling onto 
samples. 

9. During incubation of the protease pretreatment, prepare probe mix: 

a. Preheat probes 10min at 40°C in a water bath or oven. 

b. Swirl Channel 1 probe and briefly spin down Channel 2 and Channel 3 probes. 

c. Wipe down tubes with RNase AWAY  

d. In an RNase-free Eppendorf tube, prepare probe mix: Drip 2 drops of Channel 
1 (~50μl) per section into the tube and then mix in Channel 2 and Channel 3 
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probes at 1:50 (i.e., 1μl per section). For weaker probes, use 1.5μl Channel 2 or 
Channel 3 probes per section.  

The probe mix is prepared fresh for each experiment. 

10. Remove pretreatment solution by carefully blotting the side of the slide with absorbent 
paper and giving the slide a quick flick of the wrist. Transfer slides into a Coplin jar filled 
with 1x PBS at room temperature and wash by gently moving slides up and down in the 
solution five times then incubate 2min. Repeat wash with fresh 1x PBS. 

Incubate and amplify probe 

11. Remove slides from Coplin jar. Blot and remove excess 1x PBS wash from the slides as 
described above. Transfer each slide to a horizontal slide rack in the pre-warmed 
humidifying chamber, pipet onto each section ~50μl of probe mix (see step 9), being 
careful not to let the sections dry out. 

12. Hybridize sections 2hr at 40°C in the sealed humidified chamber in the oven. 

13. During incubation of the probes prepare 1x wash buffer: 

a. Incubate 50x wash buffer 10min at 40°C in a water bath or oven 

b. Prepare 1 liter of 1x wash buffer using distilled water.  

After the hybridization of the probes, it is no longer necessary to continue to 
work under RNase-free conditions. Unused 1x wash buffer can be stored at 
room temperature for up to 3 months. 

14. Remove excess hybridization solution as described above and transfer each slide to a 
Coplin jar filled with 1x wash buffer at room temperature. As before, wash sections by 
gently moving slides up and down five times and incubate 2min. Repeat wash once with 
fresh 1x wash buffer. 

15. To begin amplification process, sequentially remove from each slide excess 1x wash buffer 
(as described in step 10) and transfer it to the humidified chamber. Completely cover each 
section with the Amplification solution 1 (AMP1; provided with RNAscope fluorescent 
multiplex kit; ~3 drops for an adult coronal mouse brain section). Incubate in the 
humidified chamber 30min at 40°C. 

16. Wash slides twice in 1x wash buffer at room temperature, as in step 14.  

17. Remove excess wash, add Amplification solution 2 (AMP2; provided with RNAscope 
fluorescent multiplex kit), and incubate 15min at 40°C. 

18. Wash slides twice in 1x wash buffer at room temperature, as in step 14. 

19. Remove excess wash, add Amplification solution 3 (AMP3; provided with RNAscope 
fluorescent multiplex kit), and incubate 30min at 40°C. 
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20. Wash slides twice in 1x wash buffer at room temperature, as in step 14. 

21. To label the amplified hybridizations with fluorophores, add Amplification solution 4 
(AMP4A, AMP4B, or AMP4C; provided with RNAscope fluorescent multiplex kit) and 
incubate 15min at 40°C.  

The different AMP4 solutions assign different fluorophores to each channel (see 
Strategic Planning section). We recommend using AMP4B for standard applications. 

22. Wash slides twice in 1x wash buffer at room temperature, as in step 14. 

23. One slide at the time, counterstain cell nuclei by adding ~2 drops DAPI (provided with 
RNAscope fluorescent multiplex kit) and incubate 30sec at room temperature. 

24. Remove excess DAPI as described above, add aqueous mounting medium (~10μl per 
coronal section), and add a coverslip to each slide carefully to avoid trapping air bubbles. 
Store slides horizontally in the dark overnight at 4°C to dry. 

Detect and analyze 

25. Examine dried slides within a few days of preparation on a fluorescent (confocal) 
microscope (magnification 20 to 63x). 

The signals obtained from low abundance transcripts might be only visible at higher 
magnification (40 to 63x) and single dot resolution necessary for quantitative data 
analysis is only obtained at higher magnification (40 to 63x). Digital image analysis 
using a camera is highly recommended. 

26. Quantify signals by simple semi-quantitative scoring of the signal (ACD), using standard 
free image analysis software such as ImageJ (NIH) and CellProfiler (Carpenter et al., 
2006), or commercial image analysis software such as Imaris (Bitplane) or specific ISH 
quantification software such as HALO (Indica Labs) and Aperio (Leica).  

For more details on data interpretation and signal quantification refer to Basic 
Protocol 4 and the Commentary section Understanding Results and Statistical 
Analyses. 

 Alternate Protocol 1: Use of formalin-fixed paraffin-embedded sections 
The protocol described here is for ISH analysis using 4- to 8-μm thick formalin-fixed 

paraffin-embedded (FFPE) sections, which differs from Basic Protocol 1 (used to analyze 

fresh-frozen sections). Although fresh-frozen sections are generally thought to provide the 

highest sensitivity, because of better RNA preservation, there are instances that either 

experimental conditions or access to cryostats may preclude the use of fresh-frozen sections. 

Moreover, FFPE sections allow for consistent serial sectioning and have frequently been used 
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to archive human tissue because of easier long-term storage. Because the preparation of FFPE 

sections for RNAscope analysis requires different pretreatment steps than those described for 

fresh-frozen sections in Basic Protocol 1, here we provide an alternate protocol for FFPE 

sections. Probe hybridization and signal amplification, as well as detection, are the same as 

described in Basic Protocol 1. Figure 3.6A depicts an example of RNAscope on FFPE sections 

of embryos. 

Additional Materials (also see Basic Protocol 1) 

× 4- to 8-μm thick paraffin sections on Superfrost slides (for preparation see256) 

× Xylene (e.g., Macron, cat. no. 8668-16) 

× Optional: Thermometer (100°C) 

× Drying oven (60°C) 

× Forceps 

1. The day of the assay, preheat and equilibrate oven to 40°C. Assemble a humidifying 
chamber using absorbent paper and RNase-free water and pre-warm it in the oven.  

Pretreat formalin-fixed paraffin-embedded sections 

2. Bake sections 1hr in an oven at 60°C.  

This can be done up to 1 week in advance and slides can be stored at room temperature 
with desiccants.  

3. During baking of sections, prepare 1x antigen retrieval: Prepare 1x antigen retrieval from 
10x stock (pretreatment II; provided with the RNAscope pretreatment kit) with RNase-free 
water; unused 1x antigen retrieval can be stored at room temperature for up to 3 months. 
On a hot plate, preheat Coplin jar filled with 1x antigen retrieval in a water-filled beaker 
brought to boil.  

Temperature can be controlled with thermometer and should be between 98° and 
102°C. Alternatively, antigen retrieval can also be performed in a preheated steamer. 

4. In a fume hood, remove paraffin from sections in a Coplin jar filled with xylene. Move 
slides up and down five times and incubate 5min at room temperature. Repeat once with 
fresh xylene. 

5. Transfer slides to a Coplin jar filled with 100% ethanol. Move slides up and down five 
times and incubate 3min at room temperature. Repeat once with fresh 100% ethanol before 
drying. 
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6. After carefully drying the bottom side of the slice (i.e., side without section) with a 
Kimwipe and giving the slide a quick flick of the wrist, air dry slides with sections facing 
upwards on an even surface 5min at room temperature. 

7. With forceps, slowly place slides into preheated 1x antigen retrieval (see step 3) and 
incubate 15min. 

8. Carefully remove slides with forceps and transfer into a Coplin jar filled with RNase-free 
water at room temperature. Wash sections by gently moving slides up and down five times 
and incubate 2min. Repeat wash once with fresh RNase-free water. 

 

Figure 3.6 | Example for RNAscope on FFPE sections (Alternate Protocol 1) and adherent cell culture 
(Alternate Protocol 2).  
(A) Expression of ErbB4 (C1, cyan) and Nkx2.1 (magenta, C3) on a coronal paraffin section of an E14.5 wild-
type embryo. (A’) Magnification at the border between the medial and lateral ganglionic eminence. (B) 
Expression of ErbB4 (cyan, C1) in primary cultured dopaminergic neurons (prepared as in234) identified by 
tyrosine hydroxylase (Th, C3, magenta) at 13 days in vitro (DIV). Scale bars 500μm in A and 50μm in A’; 20μm 
in B. FFPE, formalin-fixed paraffin-embedded. 

9. Transfer slides into a Coplin jar filled with 100% ethanol, incubate ~15sec, and air dry 
5min as described above in step 6. 
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10. Draw a circle or rectangle around each section with a hydrophobic barrier pen, leaving 
~5mm of space between the section and the barrier, and allow barrier to completely dry 
before continuing (~1min). 

Optional: Dried slides can be stored overnight, and protocol continued the following 
day. 

11. Place slides on slide rack in the pre-warmed humidifying chamber and cover completely 
with protease treatment III (provided with RNAscope pretreatment kit; e.g., ~3 drops per 
section for coronal adult mouse brain section). Incubate 30min at 40°C in the sealed 
humidified chamber in the oven. 

12. During incubation of the protease pretreatment, prepare probe mix: 

a. Preheat probes 10min at 40°C in a water bath or oven. 

b. Swirl Channel 1 probe and briefly spin down Channel 2 and Channel 3 probes. 

c. Wipe down tubes with RNase AWAY. 

d. In an RNase-free Eppendorf tube, prepare probe mix: Drip 2 drops of Channel 
1 (~50μl) per section into the tube and then mix in Channel 2 and Channel 3 
probes at 1:50 (i.e., 1μl per section). For weaker probes, instead use 1.5μl of 
Channel 2 or Channel 3 probes per section.  

The probe mix is prepared fresh for each experiment. 

13. Remove pretreatment solution by carefully blotting the side of the slide with absorbent 
paper and giving the slide a quick flick of the wrist. Transfer each slide into a Coplin jar 
filled with RNase-free water at room temperature. As before, wash sections by gently 
moving slides up and down five times and incubating 2min. Repeat wash once with fresh 
RNase-free water.  

Amplify, detect, and analyze 

14. Continue with Basic Protocol 1, steps 11 to 26 for target probe incubation, signal 
amplification, and detection. 

 Alternate Protocol 2: In situ hybridization in cultured adherent cells 
Multiplex fluorescent ISH with RNAscope can also be performed on cultured adherent 

cells, such as established cell lines or primary neuronal cultures. Cells need to be plated on 

glass coverslips or alternatively chamber slides can be used. If mitotic active cultures are used, 

they should be 80% to 90% confluent at the time of fixation. As in the case of fresh-frozen and 

FFPE sections, cell culture samples need unique pretreatment conditions for performing 

RNAscope. The specific steps are described below; otherwise, the protocol follows closely 
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Basic Protocol 1. Examples for RNAscope in primary cultured neurons are presented in Figure 

3.6B. 

NOTE: General handling procedure: The use of coverslips involves some handling 

challenges. With the exception of the RNAscope reagents, all other steps (i.e., washes, fixation, 

dehydration) are performed by placing the coverslips inside a multi-well cell culture dish that 

is shaken on a horizontal shaker. Next, transfer the coverslips onto glass slides that were 

previously marked with circles using the hydrophobic barrier and completely cover with 

RNAscope reagents. Chamber slides can be used as an alternative to coverslips; drawing of 

the hydrophobic barrier is difficult. However, an advantage of using chamber slides is that the 

procedure can be performed in Coplin jars as described earlier. 

Additional Materials (also see Basic Protocol 1) 

× Adherent cell cultures (e.g., dissociated neurons) on glass coverslips 

× 10% normal buffered formalin (NBF; e.g., Sigma Aldrich; cat. no. HT5011) 

× Horizontal rocking plate 

× Glass slides (75x25 mm; e.g., C&A Scientific; cat. no. 8201) 

1. The day of the assay, preheat and equilibrate oven to 40°C. Assemble a humidifying 
chamber using absorbent paper and RNase-free water and pre-warm it in the oven. 

2. Prepare glass slides with hydrophobic barrier pen circles, with a diameter slightly 
exceeding the coverslip size used.  

Glass slides can be washed and dried between incubations and reused. Redraw 
hydrophobic barrier if necessary. 

Pretreat adherent cell culture sample 

3. Remove cell culture medium and rinse cultures carefully with 1x PBS. 

4. Replace PBS with 10% NBF and fix cultures by incubating 30min at room temperature 
while agitating on a horizontal shaker.  

All subsequent washes should be performed while agitating on shaker. 

5. Remove NBF and replace with 1x PBS for 5min at room temperature. Repeat wash once 
with fresh 1x PBS. 

6. To dehydrate cultures, remove PBS and substitute with 50% ethanol for 5min at room 
temperature, then with 70% ethanol once, and twice with fresh 100% ethanol.  
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Fixed cultures can be stored for up to 6 months at -20°C in 100% ethanol. 

7. To rehydrate culture samples, replace 100% ethanol with 70% ethanol and incubate 2min 
at room temperature. Repeat these steps with 50% ethanol and then wash in1x PBS at room 
temperature for 10min. 

8. Freshly prepare 1:15 protease III (provided with RNAscope pretreatment kit) in RNase-
free 1x PBS (~100μl per 12-mm coverslip). 

9. Remove coverslips one by one from cell culture plate and place cultures facing up onto the 
prepared glass slides that contain hydrophobic barrier circles (see step 2). Do not dry out 
samples. Cover immediately with prepared 1:15 dilution of protease III. Incubate 10min at 
room temperature. Cover sections with lid to avoid dust falling onto samples. 

10. During incubation of the protease pretreatment, prepare probe mix: 

a. Preheat probes 10min at 40°C in a water bath or oven. 

b. Swirl Channel 1 probe and briefly spin down Channel 2 and Channel 3 probes. 

c. Wipe down tubes with RNase AWAY. 

d. In an RNase-free Eppendorf tube, prepare probe mix: Add 2 drops of Channel 
1 (~50μl) per coverslip into the tube and then mix in Channel 2 and Channel 3 
probes at 1:50 (i.e., 1μl per section). For weaker probes, use 1.5μl of Channel 2 
or Channel 3 probes per section.  

The probe mix is prepared fresh for each experiment. 

11. Move coverslips back into culture well plate filled with 1x PBS and wash 2min at room 
temperature. Repeat once with fresh 1x PBS.  

Amplify, detect, and analyze 

12. Continue with steps 11 to 26 of Basic Protocol 1 for target probe incubation, signal 
amplification, and detection. Perform washes in cell culture plate and probe incubation 
(~50μl per 12-mm coverslip), as well as amplification steps (2 to 3 drops per 12-mm 
coverslip) with coverslips placed on glass slides with barrier circles to safe solutions. 
Mount samples on glass slides with ~10μl aqueous mounting medium per 12-mm 
coverslip. 

3.5 Basic Protocol 2: Single-Pair Probe In Situ Hybridization 
Single-pair probe ISH, BaseScope, is a novel approach that allows the use of a single probe 

pair (“ZZ”). BaseScope relies on the same probe design as RNAscope. However, due to the 

improved amplification chemistry, it is possible to use only a single-probe pair that hybridizes 

to ~50 bases of target RNA. Splice variants can be distinguished by targeting exon junctions192, 
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257, 258 (see Fig. 3.1). Other BaseScope applications include the detection of long non-coding 

RNAs, microRNAs, short or very similar sequences that can distinguish up to a single 

nucleotide, and the validation of short knockout sequences251, 259. BaseScope uses 1 to 6 “ZZ” 

probes and is currently only a single-plex assay; ergo only one target RNA can be detected at 

a time. The FastRED dye used can be visualized both by fluorescence and chromogenically 

when counterstained with DAPI and hematoxylin, respectively (see below). In practical terms, 

the amplification of the signal requires more amplification steps than RNAscope (four versus 

eight amplification steps) and an additional peroxide (H2O2) treatment step (during the 

pretreatment) to block intrinsic enzyme activity and allow the signal detection by alkaline 

phosphatase. Pretreatment conditions are described here for fresh-frozen and FFPE sections, 

as well as for adherent cultures. A representative BaseScope experiment on FFPE sections 

showing the high sensitivity and specificity is shown in Figure 3.7 and an example detected 

with light microscopy is shown in Figure 3.8A. 

 

Figure 3.7 | Exon-specific BaseScope experiment on FFPE sections (Basic Protocol 2). 
Exon 2 of the ErbB4 transcript was detected in coronal sections of adult C57BL/6J WT mice (A) but not in 
sections of ErbB4 mutant mice (ErbB4 KO; RRID: MGI:5318192) (B) that lack this exon157 (for details see192). 
The absence of signal in the single exon mutant confirms the high specificity of the assay. Scale bars 500μm. 
FFPE, formalin-fixed paraffin-embedded; WT, wild type. 
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NOTE: Even if reagents of RNAscope and BaseScope kits have the same name (e.g., 

AMP1) these reagents are not the same and not interchangeable! Only use reagents from one 

kit and do not mix. 

Materials 

× BaseScope reagents (ACD): 

1 to 6 ZZ target probes (ACD, C1, species-specific) 

BaseScopeTM reagent kit-RED (version 2, ACD, cat. no. 323910) 

Pretreatment kit (ACD, cat. no. 322380)  

50x wash buffer (ACD, cat. no. 310091) 

Optional: Positive and negative probes, e.g., for mouse: Positive probes Polr2a, 
ACD, cat. no. 701101 (1ZZ) or 701091 (3ZZ); negative probes bacterial DapB, 
ACD, cat. no. 701011 (1ZZ) or 701021 (3ZZ) 

× 10- to 20-μm thick fresh-frozen sections on Superfrost slides (for preparation see255) or 
4- to 8-μm thick paraffin sections on Superfrost slides (for preparation see256) or 
adherent cultures on glass coverslips 

× RNase AWAY (e.g., Molecular BioProducts, Thermo Fisher Scientific, cat. no. 
MBP#7000) 

× Paraformaldehyde (PFA; e.g., 16% PFA; Electron Microscopy Sciences, cat. 
no.15710) 

× 100% ethanol (200 proof) 

× 50% and 70% ethanol prepared with RNase-free water 

× RNase-free water (e.g., DEPC-treated water; KD Medical, cat. no. RGF-3050) 

× 1x PBS (RNase-free) 

× Distilled water 

× DAPI (e.g., Invitrogen brand, Thermo Fisher Scientific, cat. no. D3571) 

× Mowiol DABCO mounting medium (aqueous; see recipe) 

× Xylene (e.g., Macron, cat. no. 8668-16) 

× 10% normal buffered formalin (NBF; e.g., Sigma-Aldrich, cat. no. HT5011) 

× Hematoxylin (e.g., Electron Microscopy Sciences, cat. no. 26030-10) 

× 0.02% ammonium water (see recipe) 
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× Ammonium Hydroxide (e.g., Sigma-Aldrich, cat. no. 221228) 

× 12 vertical glass Coplin jars (e.g., Ted Pella, cat. no. 432-1) 

× Hydrophobic barrier pen (e.g., ImmEdge; Vector Laboratories, cat. no. H-4000) 

× Absorbent paper (e.g., Whatman paper; GE Healthcare, cat. no. 10427804) 

× Humidifying chamber (e.g., ACD, cat. no. 310012) 

× Horizontal slide rack (e.g., ACD, cat. no. 310017) 

× Oven (40°C; e.g., HybEZTM/ HybEZTMII oven, 110/220 V; ACD, cat. no.321710/20) 

× Waterbath (40°C) 

× 1.5-ml RNase-free Eppendorf tubes 

× Kimwipes (e.g., Kimtech Science Precision wipes; Kimberly-Clark Professional, cat. 
no. 05511) 

× Cover glass (24x50 mm; e.g., Thermo Fisher Scientific, cat. no. 12-548-5M) 

× Fluorescent microscope (e.g., Zeiss LSM710/780) 

× Optional: Thermometer (100°C) 

× Drying oven (60°C) 

× Horizontal rocking plate 

× Glass slides (75x25 mm; e.g., C & A Scientific, cat. no. 8201) 

× Parafilm 

× Light microscope 

1. The day of the assay, preheat and equilibrate oven to 40°C. Assemble a humidifying 
chamber using absorbent paper and RNase-free water and pre-warm it in the oven. 
Depending on sample type – fresh-frozen sections (steps 2a to 12a), formalin-fixed 
paraffin-embedded sections (steps 2b to 16b), or adherent cell culture (steps 2c to 13c) – 
perform one of the following pretreatment procedures, skip steps related to pretreatment of 
other sample types, and continue with step 17 (probe incubation). 

Pretreatment of fresh-frozen sections 

2a. Prepare fresh 4% paraformaldehyde (PFA) with RNase-free water and pre-chill in Coplin 
jar at 4°C the night before.  

Alternatively, 10% normal buffered formalin can be used. 
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3a. Transfer slides quickly from their slide box stored at -80°C directly into pre-chilled 4% 
PFA. Do not allow sections to thaw and ensure they are completely submerged. Incubate 
15min at 4°C. 

4a. Wash slides in 1x PBS at room temperature by transferring slides to a Coplin jar filled 
with 1x PBS. Move slides up and down five times and incubate 2min. Repeat wash once 
with fresh 1x PBS. 

5a. To dehydrate sections, transfer slides to a Coplin jar filled with 50% ethanol. Move slides 
up and down five times and incubate 5min at room temperature. Repeat one time in 70% 
ethanol and twice with fresh 100% ethanol. 

Slides can be stored for up to 1 week at -20°C in 100% ethanol. Prolonged storage may 
result in RNA degradation and suboptimal results. 

6a. Carefully dry the bottom side of the slide (i.e., side without section) with a Kimwipe and 
using a quick flick of the wrist, remove excess liquid over the tissue, then air dry slides 
with sections facing upwards on an even surface for 5min at room temperature. 

7a. Draw a circle or rectangle around each section with a hydrophobic barrier pen, leaving 
~5mm of space between the section and the barrier, and allow barrier to completely dry 
before continuing (~1min). 

8a. Cover section completely with 2 to 3 drops of H2O2 pretreatment (pretreatment 1 provided 
with pretreatment kit) and incubate 10min at room temperature. Cover sections with lid to 
avoid dust falling onto sections. 

9a. Remove pretreatment solution by carefully blotting the side of the slide with an absorbent 
paper and giving the slide a quick flick of the wrist. Transfer slides into a Coplin jar filled 
with 1x PBS at room temperature, wash by gently moving slides up and down in the 
solution five times, and incubate 2min. Repeat wash with fresh 1x PBS. 

10a. Remove excess PBS and cover sections completely with protease IV pretreatment solution 
(provided with pretreatment kit; e.g., 3 drops for coronal adult mouse brain section) and 
incubate 30min at room temperature. Cover sections with lid to avoid dust falling onto 
samples. 

11a. During incubation with protease pretreatment, preheat BaseScope probes provided in 
ready-to-use dropper bottle 10min at 40°C in a water bath or oven. Swirl probe to mix 

12a. Remove pretreatment solution and wash slides twice in 1x PBS at room temperature as 
described above. 

Pretreatment of formalin-fixed paraffin-embedded sections 

2b. Bake sections 1hr in an oven at 60°C. 



 62 

This can be done up to 1 week in advance and slides can be stored at room temperature 
in the presence of desiccants. 

3b. During baking of the sections, prepare 1x antigen retrieval: Prepare 1x antigen retrieval 
from 10x stock (pretreatment II; provided with the pretreatment kit) with RNase-free 
water. (Store unused 1x antigen retrieval at room temperature for up to 3 months.) On a 
hot plate, preheat Coplin jar filled with 1x antigen retrieval in a water-filled beaker brought 
to boil.  

Temperature can be controlled with thermometer and should be between 98° and 
102°C. Alternatively, antigen retrieval can also be performed in a preheated steamer. 

4b. In a fume hood, remove paraffin from sections in a Coplin jar filled with xylene. Move 
slides up and down five times and incubate 5min at room temperature. Repeat once with 
fresh xylene. 

5b. Transfer slides to a Coplin jar filled with 100% ethanol. Move slides up and down five 
times and incubate 3min at room temperature. Repeat once with fresh 100% ethanol 
drying. 

6b. After carefully drying the bottom side of the slice (i.e., side without section) with a 
Kimwipe and giving the slide a quick flick of the wrist, air dry slides with sections facing 
upwards on an even surface 5min at room temperature. 

7b. Draw a circle or rectangle around each section with a hydrophobic barrier pen, leaving 
~5mm of space between the section and the barrier, and allow barrier to completely dry 
before continuing (~1min). 

Optional: Dried slides can be stored overnight, and protocol continued the following 
day. 

8b. Cover section completely with 2 to 3 drops of H2O2 pretreatment (pretreatment 1 provided 
with pretreatment kit) and incubate 10min at room temperature. Cover sections with lid to 
avoid dust falling onto sections. 

9b. Remove pretreatment solution by carefully blotting the side of the slide with an absorbent 
paper and giving the slide a quick flick of the wrist. Transfer slides into a Coplin jar filled 
with RNase-free water at room temperature, wash by gently moving slides up and down 
in the solution five times, and incubate 2min. Repeat wash with fresh RNase-free water. 

10b. With forceps, slowly place slides into preheated 1×antigen retrieval solution (see step 3b) 
and incubate 15min. 

11b. Carefully remove slides with forceps and transfer into a Coplin jar filled with RNase-free 
water at room temperature. Wash sections by gently moving the slides up and down five 
times and incubate 2min. Repeat wash once with fresh RNase-free water. 



 63 

12b. Transfer slides into a Coplin jar filled with 100% ethanol, incubate ~15sec, and air dry 
5min as described above in step 6b. 

13b. If necessary, reapply hydrophobic barrier. 

14b. Place slides on slide rack in the pre-warmed humidifying chamber and cover completely 
with protease treatment III (provided with pretreatment kit; e.g., ~3 drops per section for 
coronal adult mouse brain section). Incubate 30min at 40°C in the sealed humidified 
chamber in the oven. 

15b. During incubation of the protease pretreatment, preheat BaseScope probes provided in 
ready-to-use dropper bottle 10min at 40°C in a water bath or oven. Swirl probe to mix. 

16b. Remove pretreatment solution and wash slides twice in RNase-free water at room 
temperature as described above. 

Pretreatment of adherent cell culture samples 

2c. Prepare glass slides with hydrophobic barrier pen circles with a diameter slightly 
exceeding the coverslip size used. 

Glass slides can be washed and dried between incubations and reused. Redraw 
hydrophobic barrier if necessary. 

3c. Remove cell culture medium and rinse cultures carefully with 1x PBS. 

4c. Replace PBS with 10% NBF and fix cultures by incubating 30min at room temperature 
while agitating on a horizontal shaker. 

All subsequent washes should be performed while agitating on shaker. 

5c. Remove NBF and replace with 1x PBS for 5min at room temperature. Repeat wash once 
with fresh 1x PBS. 

6c. To dehydrate cultures, remove PBS and substitute with 50% ethanol for 5min at room 
temperature, then with 70% ethanol once, and twice with fresh 100% ethanol.  

Fixed cultures can be stored for up to 6 months at -20°C in 100% ethanol. 

7c. To rehydrate culture samples, replace 100% ethanol with 70% ethanol and incubate 2min 
at room temperature. Repeat these steps with 50% ethanol and then wash in 1x PBS at 
room temperature 10min. 

8c. Remove coverslips one-by-one from cell culture plate and place cultures face up onto the 
prepared glass slides that contain hydrophobic barrier circles (see preparation step 2c). Do 
not allow samples to dry out. Cover immediately with 2 to 3 drops of H2O2 pretreatment 
(pretreatment 1; provided with pretreatment kit) and incubate 10min at room temperature. 
Cover coverslips with lid to avoid dust falling onto sections. 
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9c. Move coverslips back into culture well plate filled with 1x PBS and wash 2min at room 
temperature. Repeat once with fresh 1x PBS. 

10c. Freshly prepare 1:15 protease III (provided with pretreatment kit) in RNase-free1x PBS 
(~100 ml per 12-mm coverslip). 

11c. Place coverslip cultures face up onto the prepared glass slide (as described above) and 
cover immediately with prepared 1:15 dilution of protease III. Incubate 10min at room 
temperature. Cover sections with lid to avoid dust falling onto samples. 

12c. During incubation of protease pretreatment, preheat BaseScope probes provided in ready-
to-use dropper bottle 10min at 40°C in a water bath or oven. Swirl probe to mix. 

13c. Move coverslips back into culture well plate filled with 1x PBS and wash 2min at room 
temperature. Repeat once with fresh 1x PBS.  

Incubate and amplify probes (for all sample types) 

17. Individually transfer each slide (or coverslip) to a horizontal slide rack in the pre-warmed 
humidifying chamber, after blotting and removing the excess wash solution from the slides 
as described above. Carefully cover sections with target probe (~2 drops), being careful 
not to let the sections dry out. 

18. Hybridize sections 2hr at 40°C in the sealed humidified chamber in the oven. 

19. During incubation of the probes, prepare 1x wash buffer: Incubate 50x wash buffer 10min 
at 40°C in a water bath or oven. Prepare 2 liters of 1x wash buffer using distilled water. 

After hybridization of the probes, it is no longer necessary to continue to work under 
RNase-free conditions. Unused 1x wash buffer can be stored at room temperature for 
up to 3 months. 

20. Remove excess hybridization solution as described above and transfer each slide into a 
Coplin jar filled with 1x wash buffer at room temperature. Wash sections by gently moving 
slides up and down five times and incubate 2min. Repeat wash once with fresh 1x wash 
buffer. 

21. To begin the amplification process (amplification solutions AMP1-8 provided in 
BaseScope reagent kit-RED), sequentially remove from each slide excess 1x wash buffer 
and transfer slide to the humidified chamber. Completely cover each section with the 
Amplification solution 1 (AMP1; ~3 drops for an adult coronal mouse brain section). 
Incubate in the humidified chamber 30min at 40°C. 

22. Wash slides twice in 1x wash buffer at room temperature, as in step 20. 

23. Remove excess wash, add Amplification solution 2 (AMP2), and incubate 30min at 40°C. 

24. Wash slides twice in 1x wash buffer at room temperature, as in step 20. 
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25. Remove excess wash, add Amplification solution 3 (AMP3), and incubate 15min at 40°C. 

26. Wash slides twice in 1x wash buffer at room temperature, as in step 20. 

27. Remove excess wash, add Amplification solution 4 (AMP4), and incubate 30min at 40°C.  

28. Wash slides twice in 1x wash buffer at room temperature, as in step 20. 

29. Remove excess wash, add Amplification solution 5 (AMP5), and incubate 30min at 40°C. 

30. Wash slides twice in 1x wash buffer at room temperature, as in step 20. 

31. Remove excess wash, add Amplification solution 6 (AMP6), and incubate 15min at 40°C. 

32. Wash slides twice in 1x wash buffer at room temperature, as in step 20. 

33. Remove excess wash, add Amplification solution 7 (AMP7), and incubate 30min at room 
temperature. 

34. Wash slides twice in 1x wash buffer at room temperature, as in step 20. 

35. Remove excess wash, add Amplification solution 8 (AMP8), and incubate 15min at room 
temperature. 

36. Wash slides twice in 1x wash buffer at room temperature, as in step 20. 

37. Prepare fresh FastRED solution provided with BaseScope reagent kit-RED (~60μl per 
coronal section). Dilute FastRED-B 1:60 in FastRED-A (e.g., 1μl FastRED-B in 60μl 
FastRED-A). 

38. Remove excess wash buffer and cover sections completely with FastRED solution. 
Incubate 10min at room temperature and cover sections with lid to avoid dust falling onto 
sections. Remove excess FastRED solution and wash slides twice for 2min in tap water, as 
described in step 7a. 

The FastRED dye used in the BaseScope assay is visible both in fluorescent and light 
microscopes. For fluorescent visualization use DAPI (outlined below, step 39); for 
chromogenic detection, sections need to be counterstained with hematoxylin (skip to 
step 40). 

Counterstaining with DAPI 

39. One slide at the time, counterstain cell nuclei by carefully adding DAPI (1μg/ml in PBS; 
~100μl) and incubate 30sec at room temperature. Remove excess DAPI as described above. 
Proceed to step 45 for mounting.  

Counterstaining with hematoxylin 

40. Prepare 50% hematoxylin staining solution by mixing equal amounts of hematoxylin with 
distilled water in a Coplin jar. 
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41. Move slides into Coplin jar filled with 50% hematoxylin and incubate 2min at room 
temperature; sections will turn purple. 

42. Immediately wash slides in tap water by moving slides up and down. Repeat washes with 
fresh tap water until the water becomes clear. 

43. One-by-one incubate slides ~15sec in 0.02% ammonia water. Move slides up and down 
five times then place into fresh tap water; sections are observed turning blue. 

44. Replace with fresh tap water and wash 2min at room temperature. Remove excess solution. 

45. Add aqueous mounting medium (~10μl per coronal) and add a coverslip to each slide, 
while being careful to avoid trapping air bubbles. Store slides horizontally in the dark 
overnight at 4°C to dry. 

Detect and analyze 

46. Examine dried slides within a few days of preparation on a fluorescent (confocal) 
microscope for DAPI-counterstained sections and on a light microscope for hematoxylin-
counterstained sections (magnification 10 to 40x).  

Digital image analysis using a camera is highly recommended. For automated signal 
quantification, a magnification of at least 20x is recommended. 

47. Quantify signals by simple semi-quantitative scoring of the signal (ACD), using standard 
free image analysis software such as ImageJ (NIH) and CellProfiler (Carpenter et al., 
2006), or commercial image analysis software such as Imaris (Bitplane) or specific ISH 
quantification software such as HALO (Indica Labs) and Aperio (Leica). In the case of 
hematoxylin-counterstain samples, Spotstudio (ACD) software can be used to analyze 
specifically bright-field single-plex data.  

For more details of data interpretation and signal quantification refer to Basic 
Protocol 4 and the Commentary, Understanding Results and Statistical Analyses 
section. 

3.6 Basic Protocol 3: Post-hoc immunostainings 
In situations when it is important to identify cell types expressing the RNA of interest, the 

multiplexing nature of RNAscope is advantageous over BaseScope. Nevertheless, BaseScope 

can be combined with immunohistochemistry (IHC) to identify different cell types expressing 

the RNA of interest; immunostaining is also compatible with RNAscope. In our experience, 

the combination of BaseScope or RNAscope with immunohistochemistry only succeeds when 

the ISH is performed first, as the immunostaining interferes with the specificity and sensitivity 

of the ISH. However, this approach is challenging, as the success of the ISH depends on proper 
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permeabilization to allow the probes to access the target RNAs and changing the conditions 

results frequently in off-target signal or reduced sensitivity. The permeabilization is mainly 

achieved using proteases, which in turn can destroy antigens of the antibodies used in the 

immunostaining. In our hands, only about 10% of the antibodies tested were compatible with 

performing ISH using protease digestion, largely independent of section type and 

corresponding pretreatment conditions. This success rate is consistent with reports from others 

[dual in situ hybridization-immunohistochemistry (ISH-IHC); ACD]. In general, we had better 

success with antibodies against membrane-bound proteins than soluble proteins. If the 

combination with immunostaining is necessary, it may require a large number of different 

antibodies to identify one that is compatible with ISH.  

 

Figure 3.8 | Examples for chromogenic BaseScope detection (Basic Protocol 2) and ISH-IHC combination 
(Basic Protocol 3).  
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(A) Hippocampal section of an adult WT mice, labeled using BaseScope for ErbB4 with a single-probe pair 
targeting the exon boundary exon 1/exon 2. The section was counterstained with hematoxylin and signal detected 
with light microscopy. Arrowheads indicate ErbB4+ GABAergic interneurons. (B) Detection of one of the four 
ErbB4 splice variants (JMb; cyan) by BaseScope in GABAergic interneurons (GAD-GFP; green; arrowheads) 
in a section of an adult GAD-GFP mouse (kindly provided by Dr. Yuchio Yanagawa). GFP signal was amplified 
after the ISH assay with an anti-GFP antibody (NeuroMab; N86/8; RRID: AB_10671444). (C) ISH for ErbB4 
(C1; cyan) and Th (C3; magenta) was combined with IHC with an antibody against DAT (green; SantaCruz, sc-
32258; RRID: AB_627400) in a sagittal FFPE section from an adult WT mouse; depicted substantia nigra 
compacta (SNc) on the left and dopaminergic medial forebrain bundle. (C’) Magnification of ErbB4-
expressingdopaminergic neurons (arrowheads) in the SNc. (D) In primary mesencephalic cultures (DIV8; 
prepared as in234), DAT (green) immunostaining was performed post-hoc to RNAscope for ErbB4 (C1; cyan) 
and Th (C3; magenta). Scale bars 100μm in B, 20μm in other panels. Abbreviations: ISH-IHC, in situ 
hybridization-immunohistochemistry; GFP, green fluorescent protein; FFPE, formalin-fixed paraffin-
embedded; WT, wild type. 

However, we established a post-hoc immunohistochemistry protocol using cell-type-

specific transgenic green fluorescent protein (GFP) mice that allows for easy identification of 

cell-type-specific expression if transgenic GFP mice are available. GFP expression was 

destroyed and could not be observed directly after the ISH protocol but performing a post-hoc 

immunostaining using antibodies against GFP restored the signal. Of note, not all GFP 

antibodies tested retrieved the GFP expression. Here, we describe a BaseScope/RNAscope-

immunohistochemical protocol using a mouse monoclonal anti-GFP antibody from NeuroMab 

(clone N86/8; University of California, Davis). The protocol follows the ISH protocols for 

RNAscope (Basic Protocol 1) or BaseScope (Basic Protocol 2), but before counterstaining for 

DAPI continues with the post-hoc immunostaining. An example on sections of transgenic GFP 

mice is represented in Figure 3.8B. Figure 3.8C, D show examples of ISH-IHC combination 

with an antibody against the dopamine transporter DAT (clone 6-5G10; SantaCruz; sc-32258; 

1:200; RRID: AB_627400), where the epitope is not destroyed by the pretreatment.  

Another combinatory approach useful in neuroscience is to combine retrograde tracing 

with RNAscope and BaseScope. In this case, fluorescent ISH can be coupled with fluorescent 

RetroBeads or choleratoxin that are transported retrogradely because the fluorescent properties 

of these markers are not lost during sample preparation.  

Additional Materials (see also Basic Protocols 1 and 2) 

× In situ hybridization prepared samples (see Basic Protocol 1 or Basic Protocol 2) 
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× Blocking solution: 10% normal donkey/ goat serum (e.g., Sigma-Aldrich, cat. no. 
D9663), 0.3% Triton X-100 (diluted from 10% Triton X-100, e.g., Thermo Fisher 
Scientific, cat. no. 28314) in 1x PBS 

× Mouse monoclonal anti-GFP antibody (clone N86/8; NeuroMab, UC Davis, cat. no. 
73-131; RRID: AB_10671444) 

× Anti-mouse fluorescent-conjugated secondary antibody (e.g., donkey-anti mouse 
Alexa488; Invitrogen brand, Thermo Fisher Scientific, cat. no. A-21202; RRID: 
AB_141607) 

In situ hybridization 

1. Use samples from transgenic GFP mice that were hybridized as described in Basic Protocol 
1 or Basic Protocol 2 (see Fig. 1). Perform all steps up to counterstaining with DAPI before 
proceeding with the immunostaining (e.g., steps 1 through 22, Basic Protocol 1, 
RNAscope; or steps 1 through 38, Basic Protocol 2, BaseScope).  

Post-hoc immunostaining 

2. Immediately following ISH, place sections in blocking solution 1hr at room temperature.  

This is performed on the slide rack in the humidifying chamber. 

3. Slide by slide, remove excess solution and replace with 1μg/ml mouse monoclonal anti-
GFP antibody (clone N86/8, NeuroMab) in blocking solution. Place back in humidifying 
chamber and incubate overnight at 4°C. 

4. Wash sections in 1x PBS plus 0.25% Triton X-100 (diluted from commercial 10% Triton 
X-100) for 10min at room temperature. Repeat twice with fresh wash buffer; the washes 
can be performed in Coplin jars.  

The washes with Triton X-100 might dissolve the hydrophobic barrier pen. In this case 
the pen needs to be carefully reapplied without letting sections dry out. 

5. One-by-one remove excess solution, place slide in humidifying chamber, and cover with 
secondary antibody solution (e.g., 1μg/ml anti-mouse A488 in blocking solution). Incubate 
in the dark (closed humidifying chamber) for 2hr at room temperature. 

6. Wash sections in 1x PBS 10min at room temperature. Repeat twice with fresh wash buffer. 

7. One slide at the time, counterstain cell nuclei by covering sections with DAPI, either from 
RNAscope kit or 1μg/ml in 1x PBS (Invitrogen) and incubate 30sec at room temperature. 

8. Remove excess DAPI as described above, add aqueous mounting medium (~10μl per 
coronal section) and add cover slip to each slide; be careful to avoid trapping air bubbles. 
Store slides horizontally in the dark overnight at 4°C to dry. 
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Detect and analyze 

9. Examine dried slides within a few days of preparation on a fluorescent (confocal) 
microscope (magnification 20 to 63x). The signals obtained from low abundance 
transcripts might be only visible at higher magnification (40 to 63x).  

Digital image analysis using a camera is highly recommended. Signal can be quantified 
and analyzed as described in Basic Protocol 4 and the Commentary, Understanding 
Results and Statistical Analyses section. 

3.7 Basic Protocol 4: Automated Quantification of Fluorescent ISH 
Signal using CellProfiler 

It is often desirable to support qualitative image data with quantitative analysis to describe 

reproducibility between samples and distribution within the data or area analyzed, and to 

compare different signals and samples statistically. Automated quantification of the signal is 

an objective and accurate way to analyze the data. Different software, both commercial 

(HALO, Aperio, Spotstudio, Imaris) and freeware (ImageJ, CellProfiler), are available (see 

Table 3.1) and custom-made programs can be written for analysis260. The general principles 

used by all software are similar (see Fig. 9); i.e., the signal is filtered by intensity above a 

background threshold and this signal is assigned to cells that are designated as an area around 

the DAPI (or hematoxylin) nuclear staining to account for somatic localization of RNA 

transcripts. While commercial software is user friendly, it is expensive and often limited to 

certain applications. Therefore, we have routinely analyzed RNAscope and BaseScope data 

using the module-based free open-source software CellProfiler227 and below provide a step-

by-step explanation of how to use our custom-made pipeline (see Fig. 3.9).  
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Table 3.1 | Software to Analyze ISH Signal. 

 
Abbreviations: ISH: in situ hybridization; RRID: Research Resource Identifiers; NIH: National 
Institutes of Health. 

As an example, we are using RNAscope data from Figure 3.5 that corresponds to 

hybridization of ErbB4 transcripts expressed in vGLUT1+ pyramidal neurons and GAD1+ 

GABAergic interneurons in the adult mouse brain cortex. The example image shown in Figure 

3.9A was taken at 63x magnification. Of note, for single-dot resolution and successful 

performance of the quantification with these pipelines, magnification of at least 40x for 

RNAscope and 20x for BaseScope is required. Pipelines (macros) for RNAscope and 

BaseScope analysis similar to that used for this example are freely available on the website of 

CellProfiler (http://cellprofiler.org/examples/published_pipelines; see192).  

NOTE: The pipeline settings described in this protocol are optimized for this example only 

and will need to be adjusted for individual experiments depending on microscope 

magnification and settings, RNAscope probes, and the sample itself (e.g., age, section type, 

brain area analyzed). When setting up a pipeline, we recommend adjusting the pipeline with a 

variety of small cropped areas (similar to the example image in Fig. 9A) across the entire region 

of interest and different samples in the test mode before running the entire data set in the 

background mode (“Hide All Windows on Run”). 

 

software source website 
chromogenic/ 
fluorescent 
analysis 

download RRID 

HALO Indica Labs 
http://www.indicalab.com/products/mul
tiplex-fish/ 
http://www.indicalab.com/products/sish
-dual-cish-quantification/ 

both   

Aperio Leica https://www.leicabiosystems.com/digita
l-pathology/analyze/ish-fish/ both   

Spotstudio 
Advanced 
Cell 
Diagnostics 

https://acdbio.com/rnascope®-
spotstudio-software 

chromogenic 
only 

  

Imaris Bitplane http://www.bitplane.com/imaris both  SCR_007370 

ImageJ/ Fiji NIH http://fiji.sc both http://fiji.sc/#do
wnload SCR_002285 

CellProfiler 
Broad 
Institute 

http://cellprofiler.org both https://cellprofil
er.org/releases/ SCR_007358 
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Figure 3.9 | Quantification of multiplex fluorescent ISH signal (e.g., RNAscope) with CellProfiler. 
(A) Original RNAscope image analyzing ErbB4 expression (C1, magenta), in vGLUT1 (C2, green) and GAD1 
(C3, white) positive neurons in the somatosensory cortex (see Fig. 5). (B) For analysis with CellProfiler the image 
is split into individual fluorescent channels and converted to grayscale. (C) Objects, “nuclei” (blue) and “dots” in 
each channel (green, magenta, purple) are identified using the module “IdentifyPrimaryObjects” by intensity and 
size. (D) “Cells” (blue) are computed by increasing the size of the nuclei (“IdentifySecondaryObjects”). Cells 
positive for one of the signals are subsequently filtered based on the related number of dots. (E) Double- and 
triple-positive cells were analyzed for the subpopulation of ErbB4+ cells by filtering: Triple-positive cells (NA), 
vGLUT1+ and ErbB4+ cells (yellow), only ErbB4+ (NA) and GAD1+ and ErbB4+ (blue). (F) ErbB4 expression 
levels of these subpopulations were obtained after masking the signal on these different cell types. (G) Schematic 
overview of CellProfiler pipeline used. (H) Transcript expression levels analyzed per area for vGLUT1 (green), 
ErbB4 (magenta), and GAD1 (purple). (I) Percentage of positive cells relative to all cells. (J) Subpopulations of 
ErbB4+ cells: Double-positive for ErbB4 and vGLUT1 (yellow), and for ErbB4 and GAD1 (blue). (K) ErbB4 
transcripts expressed in these subpopulations. (L) Representation of the original image with ErbB4+/ vGLUT1+ 
in yellow, ErbB4+/ GAD1+ in blue, and ErbB4- in gray. The size of the symbols represents ErbB4 transcript 
levels in each individual cell. Numbers in the right upper corner indicate the number of objects identified (B-F). 
Scale bars 20μm. 

Materials 

× Computer 

× ImageJ or Fiji (http://fiji.sc/#download) 

× CellProfiler (https://cellprofiler.org/releases/) 
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× Digital images of fluorescent ISH (e.g., RNAscope, see Basic Protocol 1 or BaseScope, 
see Basic Protocol 2) 

File input 

1. Split different fluorescent channels (DAPI, green, red, far-red) of a multi-channel image 
using image-manipulating software (e.g., ImageJ) and save individually as.tiff files 
(recommended format).  

CellProfiler recognizes the different channels of an image by the name of the file (e.g., 
contains C1 for DAPI, C2 for green, C3 for red, C4 for far-red). 

2. Import image set (all channels of one image) into CellProfiler by simple drag-and-drop. 

3. With the module “ColorToGray”, convert image to grayscale (if not already pre-converted 
in ImageJ), see Figure 3.9B. 

4. Optional: Enhance intensity features relative to the background with the module 
“EnhanceOrSuppressFeatures”, which can help to identify objects. 

We recommend enhancing the RNAscope signal with the feature “Speckle”. The size 
of the “Speckles” is in pixel units, as are all subsequent objects, and therefore depends 
on the resolution of the image. 

Object identification 

This is the key of the pipeline to identify both the RNAscope signal as well as DAPI-

positive nuclei using the module “IdentifyPrimaryObjects” (Fig. 3.9C). Objects are identified 

by intensity threshold that can be a manual value (not recommended), based on a previous 

measurement or an algorithm. The signal can be additionally restricted in size (in pixels). 

Finally, clumped objects can be distinguished by shape or intensity. 

5. Measure background intensity of DAPI channel using the module 
“MeasureImageIntensity”. 

6. Use the module “IdentifyPrimaryObjects” to identify DAPI-positive nuclei. 

We recommend identifying “nuclei” based on the previous measured mean intensity of 
background. The size filter of the objects in our example was 50 to 300 pixels and 
declumping for nuclei was done based on shape. 

7. Identify RNAscope signal/ dots of one channel (e.g., green) using the same module. For 
dot identification in each channel both previous measurements or algorithm work generally 
well.  

For our example, we used the global Otsu algorithm, size exclusion of 2 to 20 pixels 
and distinguished clumped objects by intensity. 
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8. Repeat identification of objects for each RNAscope channel (e.g., red and white equals far-
red) signal using the module “IdentifyPrimaryObjects” as described in step 7.  

Identify cells and filter for single, double, and triple positive cells 

9. Enlarge the size of the nuclei using the module “IdentifySecondaryObjects”. This accounts 
for the somatic accumulation of RNAs. Use function “Distance – N” to increase the object 
size by a certain number of pixels until colliding with another object (Fig. 3.9D). 

We typically call these objects “cells.” In our example the nuclei were expanded by 25 
pixels. 

10. Relate the RNAscope signal (“children”) for one channel (e.g., green) to the cell (“parent”) 
with the module “RelateObjects”. 

11. Repeat step 10 for the remaining RNAscope signals (e.g., red and white channel). 

12. Filter positive cells for one channel (e.g., green) based on the number of dots assigned to 
this cell using the module “FilterObjects”. The threshold needs to be set based on 
expression levels of each probe to exclude false-positive cells. 

In our example, we were using a minimum of 10 dots for vGLUT1 (green), 5 dots for 
ErbB4 (red), and 25 dots for GAD1 (white). 

13. Repeat step 12 for the remaining channels (e.g., red and white). 

14. Relate RNAscope signals (“RelateObjects”) to the newly identified cell population (e.g., 
red cells) and filter (“FilterObjects”) into double-positive (e.g., “red and green cells,” “red 
and white cells”) and triple positive (green, red, and white) as in steps 10 to 13. 

In our example, we analyzed the population of ErbB4+ cells (red cells) for co-
expression of one of the other markers (Fig. 3.9E). 

Analyze transcript expression levels 

15. Re-relate signals back to the newly identified objects (single, double, and triple positive 
cells) using the “RelateObjects” module as described in steps 10 and 11 to identify single-
cell expression levels. 

16. Mask RNAscope signal with the positive cells to sort for transcripts expressed in the 
positive cells using the “MaskObjects” module (see Fig. 3.9F).  

Measurements and data export 

17. Optional: Use modules “MeasureObjectSizeShape” and “MeasureObjectIntensity” to 
measure size and intensity of objects. 
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18. Optional: With the module “ConvertObjectsToImage”, convert objects to an image for 
subsequent export using the module “SaveImages”. This can serve as a quality control, 
when the pipeline is run in the background mode. 

19. Export your data in csv format with the module “ExportToSpreadsheet”. The summary 
analysis is stored in the file titled “_Image”, whereas details about each individual object 
are found in the respective files (see Fig. 3.9G). 

Data representation: Typical values obtained with this analysis are: Expression levels 
per area (Fig. 3.9H; area measured, e.g., in ImageJ), percentage of positive cells per 
all cells analyzed (Fig. 3.9I), subpopulations of positive cells (Fig. 3.9J), and the 
average transcript expression level in different cell populations (Fig. 3.9K). Another 
advantage of this analysis is that values per individual object are exported. This 
information allows one to determine: Expression levels per cell, x or y positions of each 
cell, size, and intensity of each signal. This data can be used to plot the expression in 
one (e.g., cortical layer, see Fig. 3.5E) or two dimensions (Fig. 3.9L). In addition, the 
expression per cell data can be plotted either as a histogram/frequency distribution or 
cumulative probability to determine the cut-off between background and signal (see 
Erben et al., 2018). 

3.8 Reagents & Solutions 

Ammonium water, 0.02% (w/v) 

For the preparation of 50ml:  

× In a fume hood, add 33μl of 30% ammonium hydroxide (e.g., Sigma-Aldrich, cat.no. 
221228) to 50ml of distilled water in a Coplin jar.  

× Seal with Parafilm and mix by inverting five times.  

× Prepare fresh for each experiment. 

Mowiol DABCO mounting medium 

For preparation of 25 ml: 

× In a 50-ml Falcon tube, add slowly (over hours) 2.4 g Mowiol (Calbiochem, cat. no. 
3475904) to 6 g glycerol while mixing. Add 6 ml of water and mix at room temperature 
overnight. 

× Add 12ml of 0.2M Tris·HCl (pH 6.8) and warm up in a water bath (beaker) on a hot 
plate to 50°C while stirring.  

× After Mowiol is dissolved, add 0.625 g DABCO (Sigma-Aldrich, cat. no. D2522) to 
2.5% w/v. 
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× Clarify solution by centrifugation at 5000x g for 15min. 

× Aliquot supernatant and freeze at -20°C for up to 6 months. 

× Before use, warm up briefly to 37°C. Store and use aliquot at 4°C. 

3.9 Commentary 

 Background Information 
In situ hybridization (ISH) is a widely used technique to analyze gene expression. The high 

specificity and reproducibility of ISH techniques that allow multiplexing, such as RNAscope 

and ViewRNA, can be used to determine developmental and cellular patterns of protein 

expression before resorting to the more complicated immunological approaches. Expression 

of non-coding RNAs can also be analyzed by ISH261. In recent years numerous advancements 

in high throughput RNA sequencing from tissues and even from single cells has led to the 

identification of numerous neuronal subtypes, usually categorized by the neurotransmitter they 

synthesize, and a better understanding of the dynamic changes in transcriptomes during 

development and in disease262-264. These methods are extremely powerful for rapidly 

identifying biomarkers and differentially expressed genes. However, in contrast to ISH 

approaches, these methods fail to provide the expression of genes in single cells in the context 

of intact tissue. This is one reason that ISH approaches, like RNAscope, are frequently used to 

validate and supplement RNAseq data260, 265-267. Next-generation ISH techniques, such as 

BaseScope, are also useful to complement transcriptome sequencing data that identifies short 

RNA sequences, splice variants, and single nucleotide polymorphisms. Whereas quantitative 

real time reverse transcription (RT)-PCR is a faster and more quantitative method than 

BaseScope to analyze relative levels of distinct RNA splice variants, it also lacks cellular 

resolution in tissue. Importantly, we recently have shown that semi-quantitative analysis of 

splice variants using BaseScope provides similar results to quantitative real time RT-PCR, but 

with the added advantage of studying splice variants with cellular resolution in intact tissue192, 

258. 
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 Critical Parameters & Troubleshooting 

Preparing sections 

A critical parameter for successful results is the overall quality of the sections, as regards 

the preservation of RNA, cell morphology, and tears or wrinkles; see general recommendations 

for high-quality tissue section preparation255, 256. Avoid moisture and freeze-thawing cycles 

that are permissive for RNase activity and use RNase-free equipment and solutions where 

indicated. To reduce or avoid detachment of sections, which most commonly occurs during 

antigen retrieval, use charged Super-frost slides and increase the baking time. When using 

paraffin-embedded tissue, it is important to use fresh ethanol and xylene with agitation to fully 

remove paraffin; otherwise, residual wax can result in unspecific staining.  

Reducing edge artifacts and background 

To avoid edge artifacts and background, keep sections from drying out, unless where it is 

specified in the protocol. To avoid these problems, it is important to ensure that the 

humidifying tissue and the hybridization chamber used throughout the procedure remain moist 

at all times; preferably, use RNase-free water. In addition, to reduce the risk of sections drying 

out we recommend: (1) work on a single slide at a time, (2) maintain a manageable number of 

slides processed in a single experiment, (3) submerge every section with reagent on a slide 

before proceeding to the next slide, and (4) do not skimp on reagents; always use sufficient 

amounts to completely submerge each section (see also268). 

Optimization of conditions 

Follow the protocols with regards to incubation times and temperatures during probe 

hybridization and amplification, as these have been optimized for each reagent. On the other 

hand, pretreatment conditions may need to be optimized if samples are not properly prepared 

or fixed using other protocols (e.g., human tissue). In these cases, run preliminary assay(s) with 

negative and positive controls to evaluate morphology and staining. If the signals are weak, 

but the morphology of tissue is well preserved as indicated by strong nuclear staining, this 

could suggest that probe accessibility is impaired due to over fixation or underdigestion. To 

address this point, pretreatment conditions can be adjusted as follows: Increase incubation time 

in target retrieval by increments of 5min and/ or increase digestion time with protease treatment 
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by increments of 10min. On the other hand, if the preservation of morphology is poor (weak 

nuclear stain) and either high background staining or non-uniform signals are observed, it 

could suggest that tissue sections could have been over digested or under fixed. To address this 

point, decrease incubation times incrementally or dilute the protease268. 

Control probes and slides 

Positive and negative control probes (see protocols) and slides (e.g., mouse 3T3 pellet, 

ACD, cat. no. 310023) are available from the vendor and can help to evaluate signal-to-noise 

and trouble-shoot conditions. In cases where no signal is detected we direct the reader to follow 

the workflow suggested by the vendor (see recommended workflow in268). Once RNAscope 

and BaseScope are successfully set up, the hybridization of a well-known distinctively 

expressed gene can also be used as reference (e.g., GAD1/2, vGLUT1/2, TH). The signal 

should be positive in expected areas, but low/ no signal should be observed where the gene is 

not expected to be expressed. The best negative control is a transgenic mouse that lacks the 

transcript. However, the transgene needs to lack the whole target sequence (in the case of 

RNAscope ~1000 bases), otherwise residual transcript might result in signal. 

 Understanding Results & Statistical Analyses 
There are important differences between RNAscope and BaseScope that affect the 

interpretation of results; therefore, we begin by separately discussing these differences below. 

Under optimal conditions, RNAscope has single molecule resolution and one dot represents 

one transcript250. The number of dots therefore equals the number of transcripts expressed. 

However, the size and intensity of dots, which can vary between channels and the number of 

fluorescent labels and probe pairs bound to a transcript, are not related to the number of 

transcripts. A single dot per cell in RNAscope, especially when observed in only a few cells 

(<10%), is considered background (see Scoring Guidelines in268). Most house-keeping and cell 

marker genes are expressed at high levels (>10 dots per cell), to the extent that in some cases 

it is difficult to resolve single dots (clusters). 

In contrast to RNAscope, which uses fluorescent labels, BaseScope uses an enzymatic dye 

reaction to amplify the signal and results in bigger dot sizes that sometimes fuse. In addition, 

the single-probe pair used in BaseScope cannot guarantee the same single transcript resolution, 
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as compared to the six to twenty “ZZ” probes used in RNAscope. However, because the 

detection threshold in BaseScope is higher, in some cases single dots might represent actual 

signal and cannot be discarded as background in absence of additional evaluation. We have 

previously evaluated the background signal of BaseScope in single exon mutant mice and 

rarely observed cells that were positive for a single dot192. Finally, due to short target sequences 

in BaseScope, variability in hybridization efficiency can be observed between different probes 

targeting distinct transcripts or regions within a transcript. These differences originate from 

variations in nucleotide sequences and accessibility of the transcript (e.g., protein binding 

target sequence), and are not observed in RNAscope that targets longer sequences (~1000 

bases)192, 251. 

Considering these general differences in the nature of the hybridization signal, the overall 

evaluation and quantification approaches are similar for RNAscope and BaseScope. The 

vendor suggests a simple semi-quantitative scoring to evaluate the ISH staining. A score from 

0 to 4 is assigned depending on the average expression levels per cell (0: <1dot per 10 cells; 1: 

1 to 3 dots per cell; 2: 4 to 9 dots per cell; 3: 10 to 15 dots per cell; 4: >15 dots per cell) and 

can be compared to the expression levels of control genes (see Scoring Guidelines in268). While 

this method is helpful to quickly evaluate the overall hybridization success between samples 

and batches, it carries little quantitative information.  

Automated quantification results in less subjective quantitative data. Software specialized 

for ISH analysis (HALO, Aperio, Spotstudio) is available but similar analysis can be achieved 

using generic image analysis software (e.g., Imaris) and open-source software (e.g., ImageJ, 

CellProfiler; see Table 3.1). Basic Protocol 4 outlines step-by-step how to apply a freely 

available custom-made CellProfiler pipeline to analyze multiplex fluorescent ISH data. 

The described quantification approach can encounter a couple of issues that originate from 

the nature of the ISH technique itself. In brain areas where cells are very dense (e.g., 

hippocampal pyramidal cell layers), single-cell quantification can be difficult. Distinguishing 

single nuclei is not always possible, and even if successful, transcripts from one cell can often 

overlap with the next cell area, resulting in false positive cells. Similarly, RNA transcripts that 

are transported into neuronal dendrites or axons269, 270 are likely to be incorrectly assigned to 

the wrong cell. These short comings are common to all ISH techniques and practically cannot 
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be avoided unless, at a single-cell level, an entire cell and/ or neuron and its processes are 

counter labeled (e.g., filled with fluorophore). However, the transport of transcripts 

corresponds to a small fraction of the transcriptome and in most brain areas single-cell 

quantification works extremely well.  

For statistical analyses, multiple samples hybridized under the same conditions and imaged 

with the same parameters need to be compared. However, in histological analyses, such as ISH 

approaches, small sample numbers (n=2 to 4 animals; n=1 to 3 sections) are generally sufficient 

for statistical analyses192, 260, 271. Even with small sample numbers thousands of cells are 

analyzed in one region of interest, resulting in robust data. It is important to note that if different 

samples (e.g., animals) are compared, it is best to hybridize and analyze all samples at the same 

time to avoid inter-assay variability. If this is not possible because of a large number of 

samples, samples should be randomized (e.g., one control sample and one knock-out or 

treatment sample at a time) and imaging parameters kept identical. 

 Time Consideration 
A major advantage of multiplex (RNAscope) and single-plex (BaseScope), relative to other 

ISH techniques (i.e., using radioactivity), is their extremely fast turnaround time. The 

approaches are standardized for optimal signal detection and do not have varying developing 

times, as ISH techniques using radioactive labels and colorimetric substrates. In addition, the 

probes are custom made, designed, and generated by the vendor. Therefore, the hands-on time 

consists only of the ISH assay itself and the subsequent analysis. Depending on the sample 

type, pretreatment varies between ~1.5 and 2.5hr (see Fig. 3.1). There are optional stopping 

points during the pretreatment to split the assay into 2 days. The ISH assay needs to be 

completed in one session and takes 4hr for RNAscope and 6.5hr for BaseScope. Slides are 

dried overnight and can be imaged with a microscope the next day or within a few days. The 

time for detection and analysis varies depending on the application, from brief examination to 

overview scanning and detailed quantification with statistical analysis. If a post-hoc 

immunostaining is desired (Basic Protocol 3) an additional hour for blocking the day of the 

ISH assay needs to be considered with an overnight incubation and three additional hours the 

following day.  
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The use of ISH assays described in this article is relatively simple and does not pose major 

safety considerations (i.e., radiation exposure and contamination). Therefore, the intrinsic 

properties of these assays make them amenable not only to trained scientists but also to 

inexperienced trainees.
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4  

ErbB4 isoform expression in 
the mouse and human brain 

This chapter presents an extended version of the publication: Erben Larissa, Ming-Xiao He, 
Annelies Laeremans, Emily Park & Andres Buonanno (2018) A novel ultrasensitive in situ 
hybridization approach to detect short sequences and splice variants with cellular resolution. 
Mol Neurobiol, 55(7):6169-6181. Added sections are emphasized in dark grey italics.  

Authors contributions: L.E. and A.B. designed research, MX.H., A.L., E.P. designed & 
provided reagents, L.E. performed research, L.E. analyzed the data, L.E. and A.B. wrote the 
paper.  

4.1 Abstract 
Investigating the expression of RNAs that differ by short or single nucleotide sequences at 

a single-cell level in tissue has been limited by the sensitivity and specificity of in situ 

hybridization (ISH) techniques. Detection of short isoform-specific sequences requires RNA 

isolation for PCR analysis – an approach that loses the regional and cell-type-specific 

distribution of isoforms. Having the capability to distinguish the differential expression of 

RNA variants in tissue is critical because alterations in mRNA splicing and editing, as well as 

coding single nucleotide polymorphisms, have been associated with numerous cancers, 

neurological and psychiatric disorders. Here we introduce a novel highly sensitive single-probe 

colorimetric/fluorescent ISH approach that targets short exon/exon RNA splice junctions using 

single-pair oligonucleotide probes (~50bp). We use this approach to investigate, with single-

cell resolution, the expression of four transcripts encoding the Neuregulin (NRG) receptor 

ErbB4 that differ by alternative splicing of exons encoding two juxtamembrane (JMa/JMb) 

and two cytoplasmic (CYT-1/CYT-2) domains that alter receptor stability and signaling 
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modes, respectively. By comparing ErbB4 hybridization on sections from wild-type and ErbB4 

knockout mice (missing exon 2), we initially demonstrate that single-pair probes provide the 

sensitivity and specificity to visualize and quantify the differential expression of ErbB4 

isoforms. Using cell-type-specific GFP reporter mice, we go on to demonstrate that expression 

of ErbB4 isoforms differs between neurons and oligodendrocytes, and that this differential 

expression of ErbB4 isoforms is evolutionarily conserved to humans. This single-pair probe 

ISH approach, known as BaseScope, could serve as an invaluable diagnostic tool to detect 

alternative spliced isoforms, and potentially single base polymorphisms, associated with 

disease. 

4.2 Introduction 
Alternative mRNA splicing increases the functional complexity of the genome, with >90% 

of all human multi-exon genes being differentially spliced272. In the central nervous system 

(CNS) alternative splicing is tightly regulated in a spatiotemporal manner, as well as by 

neuronal activity248, 273, 274. Different mRNA isoforms encode for ion channels, 

neurotransmitter receptors, adhesion molecules, and signaling proteins with distinct functional 

properties32, 275-277. Splicing abnormalities are observed in different cancers and neurological 

diseases24, 278, but are particularly abundant in psychiatric disorders, such as affective and 

addictive disorders, schizophrenia (Scz) and autism spectrum disorders26. In the postmortem 

brain of Scz patients, splice variant expression of many at-risk alleles is altered25; including 

those that encode: trophic factors31, 279-284, neuronal migration and adhesion proteins285, 286, 

structural components of myelin and synapses287, 288 and isoforms associated with 

dopaminergic, GABAergic and glutamatergic neurotransmission and signaling289-293. 

The NRG/ErbB4 signaling pathway, which is reported to be associated with a risk for Scz27, 

28, 294, 295, and its endophenotypes 4, regulates neuronal differentiation, migration and plasticity 

in the CNS30, 35, 38. Alternative splicing of two exons encoding the extracellular juxtamembrane 

(JM) domain JMa (75bp exon) or JMb (45bp exon), and the inclusion or exclusion of a 48bp 

exon in the cytoplasmic (CYT) domain, generates four ErbB4 receptor isoforms: JMa/CYT-1, 

JMa/CYT-2, JMb/CYT-1 and JMb/CYT-2 (Fig. 4.1;190, 191). ErbB4 transcript levels 

comprising JMa and CYT-1 exons are increased in the dorsolateral prefrontal cortex (DLPFC) 
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of Scz subjects28, 218, 222, 223, and single nucleotide polymorphisms in ERBB4 correlate with 

changes in receptor isoform expression and risk for Scz28, 222, 223. 

The four ErbB4 isoforms differ functionally. JMa-containing ErbB4 isoforms, but not JMb 

variants, are susceptible to extracellular metalloprotease-mediated cleavage followed by 

gamma-secretase intramembranous cleavage that releases a transcriptionally-active 

intracellular domain (ICD) to regulate gene expression47, 48, 190, 194, 203. CYT-1-containing 

isoforms encode a site for phosphatidyl inositol 3-kinase recruitment that increases the 

downstream signaling capacities of CYT-1 variants191, 203.  

 

Figure 4.1 | Scheme summarizing ErbB4 isoforms and single-pair probe design. 
ErbB4 isoforms are generated by alternative splicing of exons encoding the extracellular juxtamembrane domain, 
resulting in mutually exclusive JMa (exon 16b, light purple, 75bp) or JMb (exon 16a, dark purple, 45bp) isoforms, 
and by inclusion or exclusion of exon 26 encoding a region of the cytoplasmic domain giving rise to CYT-1 (light 
cyan, 48bp) and CYT-2 (dark cyan) isoforms, respectively. Single-pair probes targeting all ErbB4 isoforms (pan 
1/2, pan 2/3 and pan 27/28) are illustrated in black, whereas isoform-specific single-pair probes targeting splice 
junctions are color-matched with their respective isoforms. JM: juxtamembrane region; TM: transmembrane 
domain; CYT: cytoplasmic region. 

Because of the different functions imparted by distinct splice variants, in this case ErbB4, 

it is critically important to identify the cells that express distinct isoforms. Whereas quantitative 

real-time PCR (qRT-PCR) and RNA sequencing (RNAseq) can be designed to detect specific 

RNA splice variants with high sensitivity in different brain regions, these methodologies 

require the disruption of dissected tissue to isolate RNA. The technical requirements of RNA 

isolation come at the expense of losing in vivo cell-type-specific resolution of splice variant 

expression. Traditionally, in situ hybridization (ISH) using radioactively- and fluorescently-

labeled complementary RNA probes have provided the sensitivity to detect abundant 
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transcripts at cellular level, but fail to unambiguously identify cells expressing rare splice 

variants. Recent advances in ISH using multiple non-radioisotropic oligonucleotide probe pairs 

targeting a single transcript, combined with chemical signal amplification250, 296, enable 

specific and sensitive co-detection of rare transcripts (known as “multiplexing”297). However, 

the optimal target lengths of these probes (>300bp) exceed the size of most alternative spliced 

variants. Due to these limitations, in the present study we implement a novel ISH approach 

based on an ultrasensitive amplification chemistry that allows the specific detection of mRNA 

exon junctions by a single pair of 18-25bp anti-sense oligonucleotide probes targeting adjacent 

mRNA sequences; hereafter denoted as “single-pair probe”. 

4.3 Materials and Methods 
For further details see Supplemental Information. 

Animals and Human Brain Samples. Homozygous ErbB4 knock-out (KO) mice lacking exon 

2157 will be hereafter designated as ErbB4-D2 KO mice. CNP-GFP298, NG2-GFP299 and wild-

type (WT) C57BL/6J mice were obtained from the Jackson Laboratory. GAD67-GFP mice300, 

were a kind gift from Yuchio Yanagawa (Gunma University, Japan). All procedures were 

approved by the NIH Animal Care and Use Committee. Ground frozen human brain samples 

from four male adult control individuals were obtained from the Human Brain Collection Core 

(National Institute of Mental Health, NIMH). 

ISH. The novel single-pair probe ISH approached used here (BaseScope, Advanced Cell 

Diagnostics, Newark, CA) is based on the well-established multiplex fluorescent ISH 

RNAscope® (Advanced Cell Diagnostics250). The high specificity and sensitivity of both ISH 

technologies are reached by a unique probe design using ‘ZZ’ probe pairs and signal 

amplification, respectively. Advances in signal amplification over RNAscope® allow for the 

use of a single-pair probe in the BaseScope assay, consisting of a pair of 18-25bp 

oligonucleotide sequences. To detect exon junctions, one oligonucleotide probe hybridizes to 

target sequences across the exon junction and the other probe to an immediately adjacent 

region. Targeted sequences of customized junction-specific ErbB4 ISH probes are listed in 

Table 4.1 and schematically illustrated in Fig. 4.1. RNAscope® probes were ErbB4 (Mm-

ErbB4; Cat No. 318721), GAD-2 (Mm-GAD2-C2; Cat No. 415071-C2) and MAG (Mm-

MAG-C3; Cat No. 446451-C3), ErbB3 (Mm-ErbB3-C2; Cat No. 441801-C2), PECAM-1 



 87 

(Mm-Pecam1-C3; Cat No. 3176721-C3) and PDGFRb (Mm-Pdgfrb-C3). Briefly, BaseScope 

ISH assay was performed on 8μm-thick formalin-fixed paraffin-embedded sections of ten-

week old adult mice; prepared as described by301. Briefly, sections were deparaffinized in 

xylene, endogenous peroxidase activity was blocked by H2O2 treatment (10min at RT) and 

sections were permeabilized by antigen retrieval (15min at 100°C) and a protease mixture 

(30min at 40°C). Probes were bound by incubation for 2h at 40°C, chemically amplified, and 

then labeled by fluorophores (multiplex ISH) or alkaline phosphatase conversion of FastRED 

dye (single-pair probe ISH).  

Table 4.1 | Exon junction-specific single-pair probes for the detection of distinct ErbB4 isoforms 

 
Name of ErbB4 single-pair probes correspond to the number of the targeted exon/exon junctions. All target 
sequences correspond to sense strand and exon junctions are indicated by the dash. *Juxtamembrane exons JMa 
and JMb are numbered for convenience as exon 16b and 16a, respectively, which correspond to exon 16 and 15b 
in213.  

Immunostainings. Post-hoc immunohistochemistry immediately following ISH was performed 

as previously published39 using 1µg/mL mouse monoclonal anti-GFP (isotype IgG2a, clone 

N86/8; NeuroMab, Davis CA).  

qRT-PCR. RNA was isolated from micro-dissected ROI of ten-week-old male WT mice or 

ground human brain tissue using TRIReagent Kit (ThermoFisher, Waltham MA). cDNA was 

synthesized with random hexamers from 1µg RNA using SuperScriptIV Reverse Transcriptase 

Probe name Exon junction Specificity Target sequence (5’ ® 3’) 

JMa* 15/16b E15/E16b JMa CCAGGG / GTGTAACGGTCCCACTAGTCATGACTGCATTTACTACCC 

JMa* 16b/17 E16b/E17 JMa GGACGGGCCATTCCACTTTACCACAACACGCTAG / AACTCCAC 

JMb* 15/16a E15/E16a JMb CCCAGGG / GTGCATAGGTTCAAGCATTGAAGACTGCATCGGC 

JMb* 16a/17 E16a/E17 JMb GTTCAAGCATTGAAGACTGCATCGGCCTGACGGATAG / AACTCCAC 

CYT-1 25/26 E25/E26 CYT-1 CATCTACACATCCAGAACAAGAATTGACTCCAATAGG / 
AGTGAAATTGGAC 

CYT-1 26/27 E26/E27 CYT-1 CCATGTCGGGA / AATCAGTTTGTGTACCAAGATGGGGGCTTT 

CYT-2 25/27 E25/E27 CYT-2 CCATCTACACATCCAGAACAAGAATTGACTCCAATAGG / AATCAGTTTGT 

pan 1/2 E1/E2 All 
isoforms TCTCAGTCAG / TGTGCGCAGGAACAGAGAACAAACTGAGCTCTCTCT 

pan 2/3 E2/E3 All 
isoforms GAGCACAACCGGGACCTCTCCTTCCTGCGG / TCTATCCGAG 

pan 27/28 E27/E28 All 
isoforms GCATGACAAGCCCAAACAAG / AATATCTGAATCCTGTGGAAGAGAACC 

JMa 2pairs E15/E16b & 
E16b/E17 JMa 

CACCCAGGG / 
GTGTAACGGTCCCACTAGTCATGACTGCATTTACTACCCATGGACGGGCCATTC
CACTTTACCACAACACGCTAG / AACTCCACTGAT 
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(ThermoFisher). Quantification of ErbB4 isoforms was performed as described302 using 

TaqMan assays (ThermoFisher).  

Imaging and Quantification. FastRED fluorescent signal was excited at 530nm and analyzed 

at 20x magnification. Unbiased automated signal detection and quantification was performed 

using CellProfiler 227. Intensity threshold was determined based on background intensity in 

ErbB4-D2 KO sections and dot diameter threshold (≥3 pixels) based on mean dot diameter in 

WT sections. Dots/ area, percentage of positive cells and average number of dots/ cell were 

calculated.  

Statistical Analysis. All data represent the mean±SEM and statistical significance was set at 

p<0.05. Statistical analyses were performed using one-way ANOVA and Tukey’s multiple 

comparison test. Statistical analyses are tabulated in Supplemental Tables.  

4.4 Results 

 Sensitivity and specificity of the novel single-pair probe ISH approach 
Initially, to determine if single-pair BaseScope probes targeting exon junctions provide the 

necessary sensitivity to detect ErbB4 transcripts, we hybridized sections of WT mice with two 

independent “panErbB4” single-pair probes that target mRNA junctions between exons 1/2 

(pan 1/2) and exons 2/3 (pan 2/3) that are present in all receptor isoforms (see Fig. 4.1). The 

amplified signal was detected following alkaline phosphatase and FastRED staining using 

fluorescence (Fig. 4.2A-C) and bright-field microscopy (Fig. 4.2D), or following horseradish 

peroxidase and diaminobenzidine treatment (Fig. 4.2E; Suppl. Fig. 4.8). In hippocampal 

sections from WT mice, both panErbB4 single-pair probes labeled scattered cells (Fig. 4.2A-

E). This pattern is consistent with the expression pattern of ErbB4 obtained by 20 probe pairs 

in multiplex fluorescent ISH (Suppl. Fig. 4.8N), the restricted expression of ErbB4 in 

GABAergic interneurons (Suppl. Fig. 4.8O) and its absence in pyramidal neurons58.  

To validate the specificity of the single-pair probes, we used as negative controls sections 

from ErbB4-D2 KO mice that lack exon 2157, and targeted the upstream and downstream 

junctions of exon 2 with probes pan 1/2 and pan 2/3, respectively. In contrast to the high 

cellular ErbB4 expression in hippocampal interneurons of WT mice (Fig. 4.2A-E), the signal 



 89 

was absent in the ErbB4-D2 KO (Fig. 4.2F-J, Suppl. Fig. 4.8). In summary, these results show 

the sensitivity and specificity of single-pair probes to visualize exon junctions.  

 

Figure 4.2 | Single-pair probes targeting unique exon junctions are specific and sensitive. 
The specificity and sensitivity of single-pair probes targeting exon-exon boundaries were determined by 
hybridizing sections from WT (A–E) and ErbB4-D2 KO mice (F–J). Probes targeting the exon 1/2 (pan1/2; 
A,B,D,E) or exon 2/3 (pan 2/3; C) junctions – common to all ErbB4 isoforms – labeled scattered cells in the WT 
hippocampus (arrowheads). (F-J) By contrast, neither probe generated signals in sections from ErbB4-D2 KO 
mice (background signal marked by open arrowheads). (B,G) Magnified insets in panels A and F are from area 
CA2. Signal can be detected by alkaline phosphatase and FastRED visible both in fluorescence (A-C,F-H) and 
bright field microscopy (D,I) or horseradish peroxidase and diaminobenzidine (E,J). in Scale bars: A, F 200 μm; 
J 20 μm.  

 Semi-quantitative analysis of junction-specific single-pair probe ISH 
To complement our qualitative analysis, we wrote a pipeline (macro) for the open-source 

software CellProfiler227 that allows for the unbiased quantification of signals. The pipeline, 

which is available online, identifies fluorescent FastRED signals above threshold and assigns 
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them to the closest DAPI-positive nuclei. The results are exported in Excel-format (for details 

see Supplemental Information). Using this approach on sections from WT mice, we found that 

ErbB4 expression is uniformly high in the medial habenula (mHab; Fig. 4.3A) and that its 

overall regional levels are low in the hippocampus (Hpp; Fig. 4.3B), consistent with prior 

studies52, 57. Despite the low regional expression in the hippocampus, signals on sections from 

WT mice were dramatically higher than in sections from ErbB4-D2 KO mice using probes that 

target either boundary of the deleted exon 2 (Fig. 4.3B,C; p<0.0001). Background levels in 

ErbB4-D2 KO (see open arrowheads in Fig. 4.2G,H,I) consisted mainly of single dots (Fig. 

4.3D), whereas all probes targeting distinct ErbB4 exon boundaries on sections from WT mice 

were expressed notably above these background levels.  

 

Figure 4.3 | Detection levels for independent probes targeting distinct exon junctions are similar and differ 
markedly from background in ErbB4-D2 KOs.  
In situ hybridization signals of single-pair probes pan1/2 and pan 2/3 are significantly lower in sections from 
ErbB4-D2 KO mice compared to WT mice in the (A) medial habenula (mHab) and (B) hippocampus (Hpp) (n=4; 
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one-way ANOVA, see Suppl. Table 4.3) and did not differ among pan 1/2, pan 2/3 and pan 27/28 probes in 
sections from WT mice. (C) Percentage of positive cells relative to all cells in WT hippocampus (CA1–CA3). 
(D) Histogram distribution of dots/ positive cell detected with single-pair panErbB4 probes in hippocampal CA1–
CA3 on sections from WT and ErbB4-D2 KO mice. Significance shown for comparisons between WT 1/2 vs. KO 
1/2 and WT 2/3 vs. KO 2/3, respectively (n=4; two-way ANOVA, see Suppl. Table 4.6). Adjusted p values 
according to Tukey’s multiple comparison test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

Expression analysis at a cellular level in the hippocampus indicate that approximately 20% 

of cell nuclei are labeled by single-pair panErbB4 probes (Fig. 4.3C), as was expected from 

the known restricted expression of ErbB4 in cortical and hippocampal GABAergic 

interneurons (Fig.S1; 58). While single-pair probes detecting all ErbB4 transcripts are sensitive 

enough to label similar numbers of positive cells compared to the 20 probe pairs in multiplex 

ISH (Suppl. Fig. 4.12B), they do not possess single transcript resolution and transcript levels 

per cell are lower (Supple. Fig. 4.12C; Suppl. Table 4.8). However, the detection of the low-

expressed splice variant ErbB4 JMa could be improved by hybridizing two probe pairs to the 

75bp exon (Suppl. Fig. 4.12D-G; Suppl. Table 4.9). Lastly, although hybridization efficiencies 

of small single-pair probes could theoretically vary depending on the targeted RNA sequence 

or be hindered by binding proteins or secondary structure, signals from single-pair probes 

targeting the 5’ end (pan 1/2, pan 2/3) and the 3’ end (pan 27/28; Suppl. Fig. 4.8M) of the 

ErbB4 mRNA coding sequences were not different (Fig. 4.3A-D; Suppl. Table 4.3-4.4). 

Moreover, signals from single-pair probes targeting either 5’ or 3’ boundaries of each 

alternatively spliced exon did not differ (Fig. 4.4; Suppl. Table 4.4), indicating sensitivities of 

single-pair probes are generally comparable; therefore, all subsequent analyses were performed 

with probes targeting the 5’ upstream exon boundaries of alternatively spliced exons. 

 Differential expression of ErbB4 isoforms in distinct regions of the adult 
brain 

Next, we used single-pair probes targeting JMa/JMb and CYT-1/CYT-2 exons to analyze 

ErbB4 isoform distribution in the adult mouse hippocampus. We found that the non-cleavable 

juxtamembrane isoform JMb (>85%) and the cytoplasmic isoform CYT-2 (~70%) are the 

predominant isoforms (Fig. 4.4J), consistent with qRT-PCR data (Suppl. Fig. 4.9A). As in the 

hippocampus, JMb and CYT-2 also are the predominant ErbB4 isoforms in most brain areas, 

including the retrosplenial cortex and the reticular thalamic nucleus (Suppl. Fig. 4.10). In stark 

contrast, in the corpus callosum, where total ErbB4 expression is relatively low compared to 
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the aforementioned regions52, 57, JMa (~75%) and CYT-1 (~55%) represent most of the 

receptor isoforms (Fig. 4.5). This novel observation is consistent with qRT-PCR using 

microdissected corpus callosal-enriched tissue (Suppl. Fig. 4.9B); a similar expression pattern 

is found in the thalamus (Suppl. Fig. 4.11); and JMa, but not CYT-1, was the predominant 

splice variant in the choroid plexus of the third ventricle (Suppl. Fig. 4.13). Interestingly, 

although in the corpus callosum the percentage of cells expressing JMa is higher than those 

expressing JMb (Fig. 4.5F; p=0.0382), we observed higher JMb/cell than JMa/cell (Fig. 4.5G; 

p=0.0006). Based on the varying expression patterns of JMa/JMb in the corpus callosum, we 

hypothesized that different cell-types in the corpus callosum express distinct ErbB4 JM 

isoforms.  

 

Figure 4.4 | JMb- and CYT-2-containing transcripts are the major ErbB4 isoforms expressed in adult 
hippocampus. 
(A-G) Hybridization of ErbB4 isoform-specific single-pair probes in hippocampal CA2 area of WT mice. 
Arrowheads indicate examples of positive cells. (H,I) Percentages of positive cells/ total cells and average dots/ 
cell in hippocampal CA1–CA3 areas were quantified for each isoform-specific probe using CellProfiler. Results 
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derived with probes targeting the same isoform were not significantly different (n=4; one-way ANOVA, see 
Suppl. Table 4.4). (J) Relative abundance of JMa/JMb (purple) and CYT-1/CYT-2 (cyan) isoforms in the 
hippocampus (n=4; one-way ANOVA, see Suppl. Table 4.4). Adjusted p values according to Tukey’s multiple 
comparison test: **p<0.01, ****p<0.0001. Scale bar: 20 μm. 

 

Figure 4.5 | Pattern of ErbB4 JMa and CYT-1 isoform expression in the corpus callosum differ markedly 
from other brain areas. 
(A-E) Representative in situ hybridization images hybridized with pan and isoform-specific probes in the corpus 
callosum (CC). Arrowheads indicate representative positive cells. The (F) percentage of positive cells, (G) 
average number of dots/ positive cell and (H) relative expression levels of ErbB4 JMa/JMb and CYT-1/CYT-2 
isoforms were quantified using CellProfiler (n=4; one-way ANOVA, *p<0.05, **p<0.01, ***p<0.001, see Suppl. 
Table 4.5). Scale bar: 20 μm. 

 Expression of the cleavable JMa isoform in cells of the oligodendrocyte 
lineage 

To investigate the aforementioned hypothesis, we began by using multiplex fluorescent 

ISH (RNAscope) to analyze the cell-type specific expression of ErbB4 in the corpus callosum 

and found that both GAD2-positive GABAergic neurons and MAG-positive oligodendrocytes 

express the receptor (Fig. 4.6A). Interestingly, oligodendrocytes comprised the majority 

(~85%) of ErbB4-expressing cells, but express lower amounts of ErbB4 than GABAergic 

neurons (Fig. 4.6B,C; p=0.0034).  
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Figure 4.6 | Oligodendrocytes and GABAergic neurons in the corpus callosum express different ErbB4 
juxtamembrane isoforms. 
(A) Multiplex fluorescent in situ hybridization shows that ErbB4 (white) is expressed in both GAD2-positive 
GABAergic neurons (green; open yellow arrowheads) and MAG-positive oligodendrocytes (magenta; yellow 
arrowheads) in the corpus callosum (arrow ErbB4-negative cell). Note that dots are smaller compared to single-
pair probe ISH, as signals are not enzymatically amplified. (B,C) Quantification of data shown in A (n=4). (B) 
The majority of ErbB4+ cells in the corpus callosum co-expresses the oligodendrocytes marker MAG (86.95 ± 
1.54%), whereas a small fraction is positive for the GABAergic marker GAD2 (1.40 ± 0.23%); 11.65 ± 1.48% of 
ErbB4+ cells were not labeled with either marker. (C) However, GABAergic neurons express higher levels of 
ErbB4 per cell than oligodendrocytes (19.65 ± 3.39 dots/ cell vs. 6.73 ± 0.61 dots/ cell, p=0.0034; GAD2 vs. other 
4.72 ± 0.23 dots/ cell, p=0.0013n=4; MAG vs. other p=0.7614; F(2,9)=16.53, p=0.001; one-way ANOVA; 
Tukey’s multiple comparisons test: **p<0.01). (D-M) Isoform-specific in situ hybridization using probes JMa 
15/16b (D,F,H,J,L) and JMb 15/16a (E,G,I,K,M) was combined with post-hoc immunohistochemistry for GFP 
(green) on sections from NG2-GFP (D-G), CNP-GFP (H,I) and GAD-GFP (J–M) transgenic mice. JM isoforms 
(white) were detected on GFP+ cells (red arrowheads), as well as on GFP negative cells (open red arrowheads) 
in the corpus callosum (CC) and the cortex (Ctx). Arrows depict GFP+ cells negative for JM probes. Note that 
the detection of JM isoforms in the corpus callosum of CNP-GFP mice was not possible because of the high 
density of GFP+ myelin sheaths298. Scale bar: 10 μm. 
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A present limitation of the novel single-pair probe ISH approach described here, in contrast 

to the multiplex system, is that its amplification chemistry is limited to one 

fluorescent/colorimetric channel per section and, does not allow for the simultaneous detection 

of independent probes with distinct fluorophores (e.g. ErbB4 exon-specific single-pair probe 

and cell marker probe such as MAG). To circumvent this limitation, first we had to develop a 

post-hoc immunohistochemical protocol because most of antibody cell markers tested were 

not compatible with the fixation and latter permeabilization protocol (i.e., protease treatment) 

necessary for ISH – even on fresh frozen sections that allow for milder pretreatment conditions 

than formalin-fixed paraffin sections. However, we identified a GFP antibody that is 

compatible with this ISH procedure and has the advantage that it is of broad use for other 

studies. Next, to unambiguously determine the cell-type expressing JMa transcripts, we used 

transgenic mice expressing GFP under specific promoters for GABAergic neurons (GAD) or 

for precursor (NG2) and mature (CNP) oligodendrocytes (details see Materials and Methods). 

Interestingly, we found that ErbB4 JMa isoforms are expressed in NG2+ oligodendrocyte 

precursor cells (OPCs) in the corpus callosum and cortex (Fig. 4.6D,F), as well as in CNP-

GFP+ oligodendrocytes in the cortex (Fig. 4.6H); JMb isoforms were not detected in neither 

of these cell-types (Fig. 4.6E,G,I). Consistent with our hypothesis, GABAergic neurons in the 

corpus callosum and neocortex expressed high levels of JMb (Fig. 4.6K,M), but low amounts 

of JMa isoforms (Fig. 4.6J,L). Taken together, these findings confirm that the cleavable 

juxtamembrane isoform JMa is the major, if not the sole, juxtamembrane isoform expressed in 

cells of the oligodendrocyte lineage, whereas JMb transcripts are predominant in GABAergic 

neurons. 

 Conservation of differential ErbB4 isoform expression in human cortex 
and corpus callosum 

Finally, to evaluate the relevance of the cell-type-specific expression of ErbB4 JM isoforms 

in humans, we analyzed the relative abundance of ErbB4 isoforms in the cingulate cortex and 

corpus callosum by qRT-PCR from human RNA samples. As in the adult mouse, ErbB4 JMb 

and CYT-2 were the major ErbB4 isoforms in the human cingulate cortex (~80% and ~70%, 

respectively; Fig. 4.7A). Importantly, in the corpus callosum JMa was predominant (~70%) 

and equal amounts of CYT were detected (Fig. 4.7B). This suggests that the cell-type-specific 
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ErbB4 isoform expression is conserved from mouse to human, and that cleavable JMa ErbB4 

is the predominant ErbB4 isoform in human oligodendrocytes.  

 

Figure 4.7 | Distinct patterns of ErbB4 JM and CYT isoforms in the grey and white matter are conserved 
between humans and mice.  
Relative abundance of JMa/JMb (purple) and CYT-1/CYT-2 (cyan) isoforms in the adult human cingulate cortex 
(A) and corpus callosum (B) was determined by TaqMan qRT-PCR (n=4; one-way ANOVA, see Suppl. Table 
4.7). Adjusted p values according to Tukey’s multiple comparison test: ***p<0.001, ****p<0.0001. 

4.5 Discussion 
Here, we demonstrate the use of a novel sensitive non-radioisotropic ISH approach, called 

BaseScope, to analyze exon junctions in tissue sections at a single-cell level that has universal 

applicability to study short RNA sequences - including splice variants in the brain and other 

tissues. We carefully validate the sensitivity and specificity of junction-specific probes used 

for this ISH approach, and show that single-pair probes are generally comparable. Moreover, 

the semi-quantitative results obtained are consistent with established isoform analyses using 

TaqMan qRT-PCR. By using this novel ISH approach that provides cellular resolution, we 

identified differential regional ErbB4 isoform expression in the adult mouse brain that is 

conserved in humans, and that results from the predominant cell-type-specific expression of 

juxtamembrane isoforms in neurons (JMb) and cells of the oligodendrocyte lineage (JMa). 

 Differential and cell-type-specific expression of ErbB4 isoforms in the 
adult CNS  

Our analyses identified ErbB4 transcripts harboring the JMb and CYT-2 exons as the two 

major isoforms in most adult mouse brain areas (e.g. hippocampus, cortex, reticular thalamic 
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nucleus); in line with other studies analyzing ErbB4 isoform expression in the different brain 

areas across species - including humans63, 67, 190, 191, 213, 218, 232; but see223. Taking advantage of 

the expression overview of ErbB4 isoforms by single-pair probe ISH, we identified brain 

regions where – although generally low – ErbB4 JMa and CYT-1 isoforms comprise most 

ErbB4 expressed, namely the corpus callosum, thalamus and choroid plexus. Of note, the 

exclusive detection of JMa ErbB4 isoforms in the oligodendrocyte lineage (Fig.6) is entirely 

consistent with a recent study that found this distribution of ErbB4 by using RNAseq from 

cell-sorted brain cells248. The fact that JMa, but not JMb, isoforms are cleaved by 

metalloproteases, which is a requirement for intramembranous gamma-secretase cleavage that 

releases a transcriptionally active ICD47, 190, 203, raises the possibility that NRG/ErbB4 signaling 

uniquely regulates oligodendrocyte maturation through ErbB4-dependent transcriptional 

mechanisms. Consistent with the expression of ErbB4 in oligodendrocytes, previous studies 

have reported a role of NRG/ErbB signaling in glial development and myelination92, 104, 105, 180. 

NRG has been proposed to cross the blood brain barrier (BBB) of adult mice by receptor-

mediated transport303, 304 and to decrease BBB permeability305, 306. In the choroid plexus which 

forms the blood-cerebrospinal fluid (CSF) barrier, high expression of ErbB457 - particularly 

the JMa variant - suggests that ErbB4 could play a role in maintaining and regulating the 

blood-CSF barrier and that this regulation could be transcriptional via the ICD of ErbB4. 

However, our preliminary multiplex ISH data shows the absence of both ErbB3 and ErbB4 

from endothelial cells in the BBB and blood-CSF barrier in the healthy adult mouse (Suppl. 

Fig. 4.13), which previously were suggested to mediate effects on the BBB via ErbB2 and 

ErbB3 after proinflammatory stimulation305-307. This discrepancy may indicate that ErbB 

expression may be activated under certain conditions in endothelial cells308 and further studies 

need to be conducted to elucidate the role of the detected ErbB4 JMa in the choroid plexus, 

presumably expressed by the choroidal epithelium.  

 Alterations of ErbB4 isoform expression in Scz 
Whereas JMa and CYT-1 are the minor ErbB4 isoforms in the adult brain (this study; 190, 

191), they have been repeatedly reported to play an important role during neurodevelopment219, 

221, 309 and higher expression of JMa and CYT-1 ErbB4 isoforms has been reported in 

postmortem DLPFC of Scz patients independently by several groups28, 218, 222, 223. This is 
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interesting considering the increased expression of disease-associated genes in 

neurodevelopmental disorders during fetal development310, 311 and high NRG1 expression at 

ages with highest risk for Scz onset312, 313. Further it raises the question whether the increased 

expression of JMa and Cyt-1 isoforms in the DLPFC of Scz results from alterations in the 

expression or number of cells from the oligodendrocyte lineage and/or a switch in ErbB4 

isoform expression in GABAergic neurons. A proposed role of oligodendrocytes and 

myelination deficits associated with Scz has been emerging (see314). An ErbB4 SNP was 

shown to affect brain white matter integrity113, subcortical white matter is lost in Scz 

patients109, 315, and genes related to oligodendrocyte function have been associated with Scz110, 

112. These observations are interesting in the context of our novel finding that OPCs and 

oligodendrocytes express predominantly or exclusively the ErbB4 JMa isoform. On the other 

hand numerous postmortem studies implicate alterations in GABAergic neurons in the DLPFC 

and hippocampus of persons with Scz316, 317, where a reduction of GABAergic neuron 

markers318 in particular those associated with fast-spiking interneurons319, 320, has been 

frequently reported. Interestingly, the changes have been proposed to occur in specific 

subtypes of interneurons218, 222. Future studies, using ErbB4 isoform-specific single-pair probes 

reported here, will be important to investigate ErbB4 JMa/JMb and CYT-1/CYT-2 ratios in 

postmortem human brains of Scz patients and controls to precisely identify the cell-type(s) that 

underlie the changes in ErbB4 isoforms. Because in addition to ErbB4 the alternative splice 

variants of many at-risk genes are frequently aberrant in Scz25 and affective, addictive and 

autism spectrum disorders26, single-pair probe ISH at a cellular level could generally advance 

our understanding of isoform changes in psychiatric disorders.  

 General considerations for the broad application of the single-pair probe 
ISH approach  

This study is the first to analyze exon junctions using a fluorescent ISH assay. This 

approach is not limited to splice variants studies, but could be generally used to analyze short 

mRNA sequences (e.g. pre-miRNAs and snoRNAs), highly homologous transcripts and 

circular RNAs, as well as point mutations. In addition, the freely-available automated analytic 

tool developed here renders this ISH approach a valuable semi-quantitative tool to analyze 

expression at a single-cell level, which complements other quantitative methodologies such as 
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qRT-PCR and RNAseq analysis to study splice variants. However, single-probe ISH 

(BaseScope) has the added benefit of post-assay analyses in morphological conserved tissue. 

Using post-hoc immunohistochemical analysis following hybridization of single-pair probes 

on sections of transgenic mice, we show how to overcome the current single-plex platform 

limitation to identify the cell-types expressing specific splice variants. Of note, the anti-GFP 

antibody used herewith is one of few antibodies (<10%) compatible with protease 

permeabilization.  

Altogether, the advances of this novel ISH approach in analyzing short sequences and 

isoforms at cellular resolution in the tissue environment by far outweigh a few limitations or 

difficulties of this technology that merit to be mentioned. Probes targeting highly abundant 

transcripts tend to produce signal accumulations (clumps) during the enzymatic conversion of 

FastRED (see Fig. 4.2B-E; Suppl. Fig. 4.8). As shown earlier (Figs. 4.3, 4.4), in our experience 

hybridization efficiencies between unrelated single-pair probes are in general extremely 

similar but on occasion, as was the case of CYT probes, can give weaker signals relative to the 

panErbB4 or juxtamembrane single-pair probes (compare Fig. 4.3A, 4.4H); the differences 

observed could have resulted from intrinsic differences of the targeted mRNA sequences (i.e., 

looping). Therefore, quantification using this novel single-pair ISH should be considered 

carefully. Nevertheless, the relative signals for CYT-1/CYT-2 isoforms were conserved as 

confirmed by qRT-PCR analysis (Fig. 4.4J, Suppl. Fig. 4.10A), supporting the semi-

quantitative nature of this approach.  

Taken together, our study underscores the important and unique utility of this novel single-

pair probe ISH technique to investigate, with cellular resolution in tissues, the expression of 

short and highly homologous RNA sequences. As discussed above, whilst BaseScope should 

be considered as semi-quantitative approach, it can be used to complement other traditionally 

used methodologies like qRT-PCR and RNAseq. Its numerous applications render the single-

pair probe ISH as an indispensable tool to advance studies on mRNA regulation and 

complexity, and their association with numerous neurological and psychiatric diseases. 
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4.6 Supplementary Materials 

Supplemental Materials and Methods 

Animals. Homozygous ErbB4 knock-out (KO) mice lacking exon 2 were rescued from 

embryonic lethality by transgenic ErbB4 overexpression in the heart157, and will be hereafter 

designated as ErbB4-D2 KO mice. CNP-mEGFP, hereafter referred to as CNP-GFP298 

(https://www.jax.org/strain/026105), NG2-mEGFP/ Cspg4-mEGFP, hereafter referred to as 

NG2-GFP299 (https://www.jax.org/strain/022735), and wild-type (WT) C57BL/6J mice 

(https://www.jax.org/strain/000664) were obtained from the Jackson Laboratory (Bar Harbor, 

ME). GAD67-GFP mice, hereafter referred as GAD-GFP mice300, were a kind gift from 

Yuchio Yanagawa (Gunma University, Japan). Mice were kept on a 12-12h light-dark schedule 

with access to food and water ad libitum and handled in accordance with the National Institutes 

of Health (NIH) Animal Welfare guidelines. All animal procedures were approved by the NIH 

Animal Care and Use Committee. Ground human brain samples from four male adult control 

individuals (age 44-53) were obtained from the Human Brain Collection Core at NIMH.  

Tissue preparation for in situ hybridization. Ten-week-old adult mice of both sexes were 

transcardially perfused with 4% paraformaldehyde (Electron Microscopy Sciences, Hartfield 

PA) in 0.1 M PBS, pH 7.4. Dissected brains were post-fixed overnight in 10% neutral buffered 

formalin (Sigma-Aldrich, St. Louis MO) at 4°C. Tissue was embedded in paraffin after ethanol 

dehydration steps followed by xylene. Serial coronal paraffin sections (8 μm) were mounted 

on Superfrost slides (Daigger, Vernon Hills IL) and baked for 10 min at 70°C. For the 

preparation of fresh frozen sections, the brain of a P17 C57BL/6J mouse was dissected, 

coronally trimmed, immediately frozen on dry ice and attached to the object holder with OCT 

(Optimal cutting temperature; Sakura Finetek, Torrance CA) compound. 12 μm-thick fresh 

frozen sections were prepared using a Leica Cryostat (Cryostat & object temperature -18°C). 

In situ hybridization (ISH). The novel junction-specific ISH approach, known as BaseScope, 

is based on the same principles than the well-established multiplex fluorescent ISH 

RNAscope®250 (Advanced Cell Diagnostics, Newark, CA). The high specificity of both ISH 

technologies is achieved from the unique design of probes, called ‘ZZ’ probe pairs, consisting 

of two 18-25bp antisense probes, a spacer region and a 14bp tail that is necessary for signal 

amplification. The tail region is recognized by a preamplifier that can only bind if both ‘Z’ 
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probes in a pair are hybridized directly adjacent to each other, suppressing off-target non-

specific hybridization and thus resulting in extremely low background250. The sensitivity of 

BaseScope is increased by several amplification steps generating an amplification ‘tree’. The 

additional enzymatic and amplification steps in BaseScope ISH allow the use of a single ‘ZZ’ 

probe pair, instead of the 6-20 ‘ZZ’ probe pairs necessary in RNAscope, for signal detection. 

It is these properties that make BaseScope suitable to detect short nucleotide sequences, such 

as exon junctions, to analyze expression of alternative spliced transcripts. BaseScope probes 

are comprised of 18-25bp oligonucleotide sequences designed by a proprietary algorithm to 

meet required melting temperature for assay hybridization conditions and to avoid cross-

hybridization. One oligonucleotide probe hybridizes target sequences across the exon junction 

and the other probe to immediately adjacent region. Targeted sequences of customized 

junction-specific ErbB4 ISH probes are listed in Table 4.1 and schematically illustrated in Fig. 

4.1. RNAscope® probes were ErbB4 (Mm-ErbB4; Cat No. 318721), GAD-2 (Mm-GAD2-C2; 

Cat No. 415071-C2), MAG (Mm-MAG-C3; Cat No. 446451-C3), ErbB3 (Mm-ErbB3-C2; Cat 

No. 441801-C2), PECAM-1 (Mm-Pecam1-C3; Cat No. 3176721-C3) and PDGFRb (Mm-

Pdgfrb-C3). RNAscope® was performed on 8 μm-thick paraffin sections (Fig. 4.6) and on 12 

μm-thick fresh frozen sections (Suppl. Fig. 4.13) following manufacturer’s protocol. 

BaseScope ISH assays was performed on 8 μm-thick formalin-fixed paraffin embedded 

(FFPE) sections. Briefly, FFPE sections were incubated for 1h at 60°C, subsequently 

deparaffinized by two washes in xylene for 5 min at room temperature (RT), and washed twice 

for 3 min in ethanol. To quench endogenous peroxidase activity, dried sections were incubated 

with H2O2 treatment for 10 min at RT. Target retrieval at 100°C for 15 min was found to be 

optimal for adult mouse brain sections, followed by treatment with Protease III for 30 min at 

40°C. After pretreatment, sections were thoroughly washed and incubated with probes for 2 h 

at 40°C. For multiplex fluorescent ISH, sections were incubated with amplification solutions 

(AMP) as follows: AMP1, 30 min at 40°C; AMP2, 15 min at 40°C; AMP3, 30 min at 40°C; 

and AMP4B, 15 min at 40°C. For FastRED detection of junction-specific ISH, sections were 

incubated as follows: AMP0, 30 min at 40°C; AMP1, 15 min at 40°C; AMP2, 30 min at 40°C; 

AMP3, 30 min at 40°C; AMP4, 15 min at 40°C; AMP5, 30 min at RT; AMP6, 15 min at RT; 

and FastRED (60:1 mixture of FastRED A and B solution), 10 min at RT. Sections were 

washed thoroughly twice for 2 min in-between steps with washing buffer. Sections were 
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counterstained with DAPI (1 μg/mL in PBS; Thermo Fisher, Waltham MA) for 30 sec and 

mounted with Mowiol-DABCO. Sections shown in Fig. 4.2D,I and Suppl. Fig. 4.8C,D,I,J were 

additionally counterstained with hematoxylin (Electron Microscopy Sciences).  

Immunostainings. Post-hoc GFP immunohistochemistry (IHC) was performed immediately 

following ISH as previously published39. Briefly, sections were washed three times in 0.1 M 

PBS for 5 min each and blocked with 10% normal donkey or goat serum (Sigma-Aldrich) in 

0.1 M PBS with 0.3% Triton X-100 (ThermoFisher) for 1h at RT. Sections were incubated 

with 1µg/mL mouse monoclonal anti-GFP (isotype IgG2a, clone N86/8; NeuroMab, Davis 

CA) in blocking solution overnight at 4°C. Following three washes with 0.1 M PBS + 0.25% 

Triton X-100, sections were incubated with donkey anti-mouse Alexa488 secondary antibody 

(Invitrogen A-21202, Thermo Fisher) in blocking solution for 2h at RT. Samples were 

extensively washed with 0.1 M PBS, counterstained with DAPI and mounted with Mowiol-

DABCO. 

Quantitative Real-Time PCR (qRT-PCR). RNA was isolated from micro-dissected tissue from 

hippocampus, thalamus and corpus callosum of five ten-week-old male WT mice, and from 

micro-dissected ground tissue of human cingulate cortex and corpus callosum from four 

individuals using the TRI Reagent Kit (Thermo Fisher). cDNA synthesis was synthesized in a 

total volume of 20μl according to manufacturer’s protocol, using 1 μg RNA template, 

SuperScript IV Reverse Transcriptase (Thermo Fisher) and random hexamers for 20 min at 

55°C. qRT-PCR of ErbB4 isoforms was performed using custom-made TaqMan assays 

(Thermo Fisher). Flanking primers and TaqMan probes were as follows (all sequences 

correspond to the sense strand): 
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Table 4.2 | TaqMan probes 

 

1ng cDNA was amplified using 0.25 μM isoform-specific FAM-labeled TaqMan probes and 

0.9 μM corresponding primers (Thermo Fisher) in a total volume of 10 μl total volume using 

TaqMan universal PCR Master Mix (Thermo Fisher). As reference, β-actin was detected with 

a custom-made VIC®-labeled probe. Cycling was performed in 384-well plates using a 

QuantStudio 6 Thermocycler (Thermo Fisher) and the following parameters: 2min at 50°C and 

10min at 92°C, followed by 40 cycles of 15s at 95°C, 1min at 60°C (for JM probes) or 65°C 

(for CYT probes). Standard curves (1fg–1ng) of cloned DNA for ErbB4 JMa/CYT-1 and 

JMb/CYT-2, as well for β-actin, were run beforehand to verify that sample values were in the 

linear range and that PCRs showed similar efficiency between isoform-specific assays. As 

negative controls, 100 pg DNA of non-matching isoforms were included to demonstrate assay 

specificity.  

Imaging and Quantification. FastRED fluorescent punctuate signal (syn: “dots” and “puncta”) 

was analyzed on a Zeiss LSM710 confocal microscope at 20x and 63x magnifications using a 

530 nm laser. Bright-field images were taken on a Zeiss Axiovert200 with an Axio Cam HRc 

at 63x magnification. For visualization, images were adjusted for overall brightness and 

contrast using Image J (http://imagej.nih.gov/ij/); fluorescent signal were converted into gray 

scale. For quantification, areas of interest were imaged in Z across the whole thickness of the 

section at 20x magnification and 1024x1024 resolution. Due to smaller puncta size, multiplex 

 Mouse Human 

Assay Primers TaqMan probe Primers TaqMan probe 

JMa 5’CCACCCTTGCCA
TCCAAA3’ 

5’CCAATGACTCCG
GCTGCAATCA3’ 

FAM-
ATGGACGGGCCATTCCACTTT
ACCA-MGB 

5’CCACCCATGCCA
TCCAAA3’ 

5’CCAATTACTCCA
GCTGCAATCA3’ 

FAM- 
ATGGACGGGCCATTCCACTTT
ACCA -MGB 

JMb 
FAM- 
TTCAAGCATTGAAGACTGCAT
CGGCCTGAC-MGB 

FAM- 
CTCAAGTATTGAAGACTGCAT
CGGCCTGAT-MGB 

CYT-1 5’CAACATACCTCC
TCCCATCTACAC3’ 

5’GCATTCCTTGTT
GTGTAGCAAA3’ 

FAM-
TGAAATTGGACACAGCCCTCC
TCCTG-MGB 

5’CAACATCCCACC
TCCCATCTATAC3’ 

5’ACACTCCTTGTT
CAGCAGCAAA 3’ 

FAM- 
TGAAATTGGACACAGCCCTCC
TCCTG-MGB 

CYT-2 
FAM-
AATTGACTCCAATAGGAATCA
GTTTGTGTACCAAGAT-MGB 

FAM- 
AATTGACTCGAATAGGAACC
AGTTTGTATACCGAGAT-MGB  

b-actin 

5’ATCTGGCACCAC
ACCTTCTACAAT3’ 

5’CCGTCTCCGGAG
TCCATCA3’ 

VIC-
TGACCCAGATCATGTTTGAGA
CCTTCAACAC-MGB 

5’ATCTGGCACCAC
ACCTTCTACAAT3’ 

5’CCGTCACCGGAG
TCCATCA3’ 

VIC- 
TGACCCAGATCATGTTTGAGA
CCTTCAACAC-MGB 
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fluorescent ISH analysis (Fig. 4.6A) was performed on images acquired at 63x magnification. 

Image stacks were projected in Z using the maximum intensity method and then converted to 

RGB format or single channel images in case of the multiplex fluorescent ISH. ROIs were 

manually defined and measured using Image J; area size did not differ between groups 

analyzed (see Suppl. Tables 4.3-4.5). Quantification was performed using CellProfiler227, the 

pipelines (macros) are available at the provider’s homepage 

(cellprofiler.org/examples/published_pipelines). Intensity threshold was set based on the mean 

background intensity in all ErbB4-D2 KO sections and defined as 10x mean intensity. Then, 

dot diameter threshold was set as ≥3 pixels based on the mean dot diameter from all WT 

hippocampi analyzed (3.9 pixels); these settings were found to faithfully identify dots as 

manually verified in a subset of ROIs from both WT and ErbB4-D2 KO sections. Percentage 

of positive cells ((positive cells/ all cells) x 100), average number of dots/ area (in mm2) or 

dots/ cell were calculated. For multiplex fluorescent ISH, percentage of ErbB4-positive cells 

also positive for GAD2 or MAG ((marker/ ErbB4+ cells) x 100) and ErbB4 dots/ cell was 

calculated (Fig. 4.6B,C). Overlapping neighboring cells were excluded from the analysis. 

Hippocampal dentate gyrus was excluded from quantification of cellular analyses because the 

density of granule cells prevented accurate designation of DAPI-labeled nuclei.  

Statistical Analysis. Population (n) in all analyses was defined as number of animals/humans 

analyzed. For histological analyses (Fig. 4.2-4.5), four 10-week old mice were analyzed per 

group (WT: 4 males; ErbB4-D2 KO: 2 males and 2 females), a population size consistent with 

earlier studies63. ROIs were analyzed bilaterally on one brain section and cellular analyses 

comprised, depending on cell density, between 750 cells and 15,000 single cells per animal 

and ROI. All data represent the mean ± SEM and statistical significance was set at p<0.05. 

Statistical analyses were performed with Graph Pad Prism 6 using one-way ANOVA and 

Tukey’s multiple comparison test. Statistical significance (p values) are stated in the text; all 

values (including means ± SEM, degrees of freedom and multiple comparisons) are listed in 

Suppl. Tables 4.3-4.7. Two-way ANOVA analysis was used for the dots/ cell histogram 

distribution analysis shown in Fig. 4.3D (see Suppl. Table 4.6).  



 105 

Supplemental Figures 

 

Figure 4.8 | Visualization of exon-specific and multiplex ISH signal by fluorescent and chromogenic dyes in 
hippocampal GABAergic interneurons. 
Hybridization of single-pair probes targeting exon 2 (pan 1/2 and pan 2/3) in sections from WT (A-F) and ErbB4-
D2 KO mice (G-L) was visualized using alkaline phosphatase and FastRED in fluorescence (A,B,G,H) or bright 
field microscopy (C,D,I,J) or horseradish peroxidase and diaminobenzidine (E,F,K,L). (M) Hybridization with 
probe pan 27/28 targeting the 3’ end of ErbB4 transcripts showed essentially the same pattern (arrowheads – 
positive cells; open arrowheads - background signal). (N,O) Multiplex fluorescent ISH (20 probe pairs) shows 
that (O) ErbB4 (white) is expressed in scattered cells in the hippocampus that correspond to GAD2-positive 
(green) GABAergic neurons (arrowheads). Note that more transcripts are detected by the multiplex fluorescent 
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ISH due to the increased sensitivity resulting from multiple probe pairs. Differences in dot sizes between the two 
assays are attributed to the differences in detection methodology (i.e. catalytic in the new junction-specific assay 
vs. fluorescent in the multiplex fluorescent ISH assay). Scale bars: N 200 μm; L,M,O 20 μm. 

 

Figure 4.9 | TaqMan qRT-PCR analysis of ErbB4 isoforms in the adult mouse hippocampus (Hpp) and 
corpus callosum (CC). 
Relative abundance of JMa/JMb (purple) and CYT-1/CYT-2 (cyan) isoforms was analyzed in the micro-dissected 
tissue of adult mouse hippocampus (A) and corpus callosum (B) by TaqMan qRT-PCR (n=5; one-way ANOVA, 
see Suppl. Tables 4.4-4.5). Adjusted p values according to Tukey’s multiple comparison test: **p<0.01, 
****p<0.0001 (Tukey’s multiple comparison test).  
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Figure 4.10 | ErbB4 isoform expression pattern in the retrosplenial cortex and the thalamic reticular nucleus 
are similar to the hippocampus. 
Representative images of pan and isoform-specific ErbB4 single-pair probe hybridizations in (A-E) the 
retrosplenial cortex (Rsc) and in (F-J) the thalamic reticular nucleus (Rtn); boxed areas are magnified in the insets 
shown on the bottom right of each panel. Representative positive cells are indicated (arrowheads). (K,L) 
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Percentages of positive cells and relative expression of ErbB4 JMa/JMb and CYT-1/CYT-2 isoforms are 
quantified in the (K) Rsc (n=3) and (L) Rtn (n=4; one-way ANOVA; *p<0.05; see also Suppl. Table 4.5). Scale 
bars: 50 μm (overviews); 10 μm (insets). 

 

Figure 4.11 | As in the corpus callosum, JMa and CYT-1 isoforms are the major ErbB4 variants expressed in 
the thalamus. 
(A-E) Representative in situ hybridization images hybridized with pan and isoform-specific single-pair probes in 
the medial thalamus (Thal). Arrowheads indicate representative positive cells. The (F) percentage of positive 
cells, (G) average number of dots/ positive cell and (H) relative expression levels of ErbB4 JMa/JMb and CYT-
1/CYT-2 isoforms were quantified using CellProfiler (n=4; one-way ANOVA, *p<0.05, ***p<0.001, see also 
Suppl. Table 4.5). Scale bar: 20 μm. 
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Figure 4.12 | Detection of low-abundant transcripts is increased when using multiple probe pairs. 
(A-C) Comparison of the sensitivity between single-pair probes and 20 probe pairs targeting ~1000bp used in 
multiplex ISH. The percentage of positive cells detected with single-pair probes targeting exon junctions 1/2, 2/3 
or 27/28 common for all ErbB4 transcripts (see Fig.1) is comparable to 20 probe pairs used in multiplex ISH (B; 
see Fig.S1) when analyzed on hippocampal sections of WT mice, but signals per area (A) and transcripts per cell 
(C) are lower (n=4; one-way ANOVA; ****p<0.0001; see also Suppl. Table 4.8). (D-G) The 75bp JMa exon 
allows for the use of two probe pairs targeting both exon junctions and enhancing transcript detection. (D) 
Representative hybridization (white) of the two probe pairs targeting the JMa exon (JMa 2pairs) in the CA2 
region of the hippocampus (red arrowheads indicate positive cells). (E-G) Compared to probes targeting a single 
exon junction (see Fig.4) more signal is detected per area (E), more positive cells are detected (F) and transcript 
detection in positive cells is slightly increased (G; n=4; one-way ANOVA; *p<0.05; see also Suppl. Table 4.9). 
Scale bar: 20 μm. 
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Figure 4.13 | In the choroid plexus, ErbB4 JMa is the predominant juxtamembrane splice variant. 
(A-D) Representative in situ hybridization images hybridized with isoform-specific single-pair probes in the 
choroid plexus (Cp). Arrowheads indicate representative positive cells. (E) The percentage of positive cells, and 
(F) relative expression levels of ErbB4 JMa/JMb and CYT-1/CYT-2 isoforms quantified with CellProfiler (n=4; 
one-way ANOVA, *p<0.05, ****p<0.0001, see also Suppl. Table 4.10). (G-J) Preliminary results of multiplex 
fluorescent ISH on fresh-frozen sections of adult WT mice show the absence of ErbB3 (green) and ErbB4 (white) 
in PECAM-1 (platelet and endothelial cell adhesion molecule-1)-positive endothelial cells (magenta; F,H) and 
PDGFRb (platelet derived growth factor receptor beta)-positive pericytes (magenta; G,I) in the choroid plexus 
as well as cortical (Ctx) microvessels forming the blood-brain barrier (H,I), suggesting expression of ErbB4 in 
the choroid plexus is confined to the choroidal epithelium. Arrowheads label ErbB4-positive cells, open 
arrowheads indicate endothelial cells and pericytes. Scale bars: 50 μm in D, 20 μm in H-J. 

Supplemental Tables 

Table 4.3 | Quantification and statistical analysis of ErbB4 expression in the medial habenula (mHab) 
and the hippocampus (Hpp) using pan ErbB4 single-pair probes. 

 
Values represent the mean ± SEM of analyzed areas, dots/ area and percentage of ErbB4-positive cells in sections 
of WT and ErbB4-D2 KO mice. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (n=4; one-way ANOVA with 
Tukey’s multiple comparison test). N/A: not applicable. 

  WT ErbB4-D2 KO Statistics 

ROI probes pan 1/2 pan 2/3 pan 27/28 pan 1/2 pan 2/3 one-way ANOVA WT vs. ErbB4-D2 KO 
(pan 1/2; pan 2/3) 

WT 1/2 vs 2/3; 
1/2 vs 27/28; 
2/3 vs 27/28 

mHab 

area [mm2] 0.1780 ± 
0.0043 

0.1687 ± 
0.0085 

0.1704 ± 
0.0081 

0.1616 ± 
0.0184 

0.1724 ± 
0.0259 

F(4,15)=0.1518 
p=0.9593 N/A N/A 

dots/ mm2 12603.9 ± 
2069.3 

11694.3 ± 
1878.5 

11894.0 ± 
2110.9 30.3 ± 11.0 41.6 ± 12.6 F(4,15)=17.73 

p<0.0001 
p=0.0004*** 
p=0.0008*** 

p=0.9934 
p=0.9975 
p>0.9999 

Hpp 

area [mm2] 4.56 ± 0.30 4.61 ± 0.31 4.42 ± 0.35 4.65 ± 0.54 4.55 ± 0.55 F(4,15)=0.0423 
p=0.9962 N/A N/A 

dots/ mm2 1282.1 ± 
112.3 955.3 ± 96.6 1360 ± 166.3 45.8 ± 16.3 27.9 ± 7.0 F(4,15)=42.92 

p<0.0001 
p<0.0001**** 
p<0.0001**** 

p=0.1944 
p=0.9799 
p=0.0753 

Hpp 
w/o 
DG 

area [mm2] 3.26 ± 0.19 3.33 ± 0.21 3.13 ± 0.22 3.24 ± 0.41 3.21 ± 0.42 F(4,15)=0.0543 
p=0.9939 N/A N/A 

dots/ mm2 1439.4 ± 
103.0 

1046.5± 
108.2 

1482.7 ± 
179.9 38.6± 13.1 23.1± 7.1 F(4,15)=48.25 

p<0.0001 
p<0.0001**** 
p<0.0001**** 

p=0.1100 
p=0.9982 
p=0.0652 

% ErbB4+ 23.27 ± 2.0 18.61 ±1.99 21.52 ± 1.91 1.51 ± 0.49 0.89 ± 0.26 F(4,15)=51.26 
p<0.0001 

p<0.0001**** 
p<0.0001**** 

p=0.2557 
p=0.9249 
p=0.6774 

dots/ cell 2.57 ± 0.12 2.34 ± 0.08 2.64 ±0.06 N/A N/A F(2,9)=2.90 
p=0.1068 N/A 

p=0.2264 
p=0.8748 
p=0.1090 
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Table 4.4 | Quantification and statistical analysis of ErbB4 expression in the adult hippocampus (Hpp) 
using isoform-specific single-pair probes. 

 
Relative isoform expression levels of JM and CYT isoforms (% isoform) in the Hpp (w/ or w/o the dentate gyrus 
(DG)), as determined by ISH and qPT-PCR. Values represent the mean ± SEM (n=4) of analyzed areas, dots/ 
area and percentage of ErbB4-positive cells, as well as dots/cell (analysis only performed for on hippocampus 
w/o DG). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (n=4; one-way ANOVA with Tukey’s multiple 
comparison test). N/A: not applicable. 

ROI probes JMa 
15/16b 

JMa 
16b/17 

JMb 
15/16a 

JMb 
16a/17 

CYT-1 
25/26 

CYT-1 
26/27 

CYT-2 
25/27 

one-way 
ANOVA 

JMa 15/16b vs. 
16b/17; JMb 15/16a 
vs. 16a/17; CYT-1 

25/26 vs. 26/27 

JMa vs. JMb 
(15/16; 16/17) 

CYT-1 vs. 
CYT-2 (25/26; 

26/27) 

Hpp 
w/o 
DG 

area [mm2] 3.22 ± 
0.35 

3.48 ± 
0.24 

3.14 ± 
0.35 

3.55 ± 
0.24 

3.29 ± 
0.25 

3.12 ± 
0.23 

3.31 ± 
0.23 

F(6,21)=0.3391 
p=0.9083 N/A N/A N/A 

dots/ mm2 143.5 ± 
34.2 

166.6 ± 
29.0 

1192.6± 
244.9 

995.3 ± 
108.8 

223.4 ± 
30.2 

205.3 ± 
30.2 

566.9 ± 
104.7 

F(6,21)=15.28 
p<0.0001**** 

p>0.9999 p=0.8637 
p>0.9999 

p<0.0001****
p=0.0005*** 

p=0.3426 
p=0.2882 

% ErbB4+ 4.86 ± 
1.16 

5.91 ± 
0.93 

17.78 ± 
2.75 

15.42 ± 
1.28 

6.57 ± 
0.58 

5.55 ± 
0.49 

11.00 ± 
1.75 

F(6,21)=12.76   
p<0.0001**** 

p=0.9985 p=0.9088 
p=0.9987 

p<0.0001**** 
p=0.0026** 

p=0.3670 
p=0.1669 

dots/ cell 1.19 ± 
0.04 

1.21 ± 
0.04 

2.36 ± 
0.30 

2.59 ± 
0.07 

1.41 ± 
0.03 

1.40 ± 
0.04 

2.28 ± 
0.12 

F(6,21)=20.94 
p<0.0001**** 

p>0.9999 p=0.8481 
p>0.9999 

p<0.0001**** 
p<0.0001**** 

p=0.0120* 
p=0.0108* 

Hpp 

area [mm2] 4.44 ± 
0.51 

4.83 ± 
0.38 

4.40 ± 
0.50 

4.93 ± 
0.40 

4.56 ± 
0.39 

4.38 ± 
0.34 

4.61 ± 
0.37 

F(6,21)=0.2666 
p=0.9464 N/A N/A N/A 

dots/ mm2 135.0 ± 
32.8 

157.4. ± 
26.3 

1103.3 
± 227.4 

907.8 ± 
103.2 

208.7 ± 
32.6 

185.4 ± 
18.5 

511.4 ± 
86.7 

F(6,21)=15.21 
p<0.0001**** 

p>0.9999 p=0.8193 
p>0.9999 

p<0.0001**** 
p=0.0006*** 

p=0.3905 
p=0.3095 

% isoform 10.79 ± 
1.24 

14.51 ± 
1.10 

89.21 ± 
1.24 

85.49 ± 
1.10 

30.70 ± 
7.44 

27.87 ± 
3.54 

69.30 ± 
7.44  

72.13 ± 
3.54 

F(7,24)=59.15 
p<0.0001**** 

p=0.9981 p=0.9981 
p=0.9997 

p<0.0001****
p<0.0001**** 

p<0.0001****
p<0.0001**** 

qRT-PCR 
% isoform 11.65 ± 0.94 88.35 ± 0.94 34.96 ± 0.80 65.04 ± 

0.80 
F(3,16)=1495 
p<0.0001**** N/A p<0.0001**** p<0.0001**** 
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Table 4.5 | Quantification and statistical analysis of ErbB4 isoform expression in various adult brain 
region using isoform-specific single-pair probes. 

 
Values represent the mean ± SEM (n=3, 4) of analyzed areas, dots/ area, percentage of ErbB4-positive cells, dots/ 
positive cell and relative isoform expression (% isoform) in the retrosplenial cortex (Rsc), reticular thalamic 
nucleus (Rtn), thalamus (Thal) and corpus callosum (CC) hybridized with pan and isoform-specific single-pair 
ErbB4 probes. Relative isoform expression in the CC was additionally performed by qRT-PCR using TaqMan 
probes. One-way ANOVA was performed to compare isoform expression (except for area) was performed and 
adjusted p values of Tukey’s multiple comparison test are listed, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
N/A: not applicable. 

 ROI probes pan 
27/28 

JMa 
15/16b 

JMb 
15/16a 

CYT-1 
25/26 

CYT-2 
25/27 

one-way 
ANOVA JMa vs. JMb CYT-1 vs. 

CYT-2 

Rsc 

area [mm2] 2.36 ± 
0.15 

2.28 ± 
0.15 

2.24 ± 
0.12 

2.40 ± 
0.13 

2.38 ± 
0.13 

F(4,10)=0.2492 
p=0.9037 N/A N/A 

dots/ mm2 2870.6 ± 
638.0 

2105.9 ± 
673.3 

256.7 ± 
107.0 

393.7 ± 
72.17 

1224.3 ± 
62.47 

F(3,8)=6.172 
p=0.0178* p=0.0218* p=0.3801 

% ErbB4+ 29.07 ± 
4.48 

6.05 ± 
2.55 

22.61 ± 
5.98 

7.86 ± 
0.91 

16.24 ± 
0.26 

F(3,8)=5.483 
p=0.0242* p=0.0301* p=0.3374 

dots/cell 2.53 ± 
0.10 

1.20 ± 
0.06 

2.29 ± 
0.35 

1.43 ± 
0.05 

2.15 ± 
0.11 

F(3,8)=7.985 
p=0.0086** p=0.0152* p=0.0998 

% isoform N/A 9.93 ± 
1.69 

90.07 ± 
1.69 

23.94 ± 
3.06 

76.06 ± 
3.06 

F(3,8)=249.5 
p<0.0001**** p<0.0001**** p<0.0001**** 

Rtn 

area [mm2] 0.654 ± 
0.067 

0.692 ± 
0.128 

0.590 ± 
0.099 

0.807 ± 
0.124 

0.669 ± 
0.128 

F(4,15)=0.5026 
p=0.7344 N/A N/A 

dots/ mm2 3410.4 ± 
760.2 

364.9 ± 
110.0 

2445.3 ± 
805.9 

276.0 ± 
44.3 

1135.0 ± 
225.3 

F(3,12)=5.642 
p=0.0120* p=0.0205* p=0.5015 

% ErbB4+ 47.48 ± 
5.56 

10.19 ± 
3.25 

34.29 ± 
9.42 

8.68 ± 
1.04 

25.88 ± 
4.64 

F(3,12)=5.061 
p=0.0171* p=0.0408* p=0.1776 

dots/ cell 2.05 ± 
0.26 

1.11 ± 
0.04 

1.80 ± 
0.33 

1.10 ± 
0.01 

1.41 ± 
0.07 

F(3,12)=3.714 
p=0.0424* p=0.0621 p=0.5812 

% isoform N/A 13.77 ± 
3.37 

86.23 ± 
3.37 

21.24 ± 
5.57 

78.76 ± 
5.57 

F(3,12)=67.30 
p<0.0001**** p<0.0001**** p<0.0001**** 

Thal 

area [mm2] 5.65 ± 
0.30 

5.44 ± 
0.59 

5.55 ± 
0.56 

5.27 ± 
0.39 

5.55 ± 
0.32 

F(4,15)=0.1055 
p=0.9788 N/A N/A 

dots/ mm2 703.4 ± 
111.8 

284.3 ± 
84.6 

73.4 ± 
12.9 

184.5 ± 
22.6 

156.6 ± 
33.4 

F(3,12)=3.380 
p=0.0543 p=0.0364* p=0.9744 

% ErbB4+ 20.57 ± 
3.00 

9.75 ± 
2.76 

2.30 ± 
0.45 

6.58 ± 
0.77 

5.62 ± 
1.27 

F(3,12)=3.751 
p=0.0413* p=0.0268* p=0.9726 

dots/ cell 1.21 ± 
0.04 

1.10 ± 
0.03 

1.12 ± 
0.02 

1.09 ± 
0.01 

1.09 ± 
0.01 

F(3,12)=0.8241 
p=0.5055 p=0.7643 p=0.9980 

% isoform N/A 77.41 ± 
2.66 

22.59 ± 
2.66 

55.10 ± 
7.62 

44.90 ± 
7.62 

F(3,12)=15.90 
p=0.0002*** p<0.0001**** p=0.6018 

CC 

area [mm2] 0.330 ± 
0.024 

0.363 ± 
0.275 

0.344 ± 
0.029 

0.347 ± 
0.021 

0.346 ± 
0.027 

F(4,15)=0.2049 
p=0.9317 N/A N/A 

dots/ mm2 1063.6 ± 
162.2 

632.8 ± 
231.6 

147.6 ± 
27.4 

312.6 ± 
49.2 

259.7 ± 
71.1 

F(3,12)=2.800 
p=0.0854 p=0.717 p=0.9900 

% ErbB4+ 21.95 ± 
3.51 

14.84 ± 
5.0 

2.64 ± 
0.62 

8.89 ± 
1.00 

7.21 ± 
2.02 

F(3,12)=3.34 
p=0.0562 p=0.0382* p=0.9722 

dots/ cell 1.42 ± 
0.04 

1.25 ± 
0.07 

1.56 ± 
0.01 

1.13 ± 
0.02 

1.12 ± 
0.02 

F(3,12)=25.93 
p<0.0001**** p=0.0006*** p=0.9973 

% isoform N/A 76.80 ± 
4.94 

23.20 ± 
4.94 

57.32 ± 
10.59 

42.68 ± 
10.59 

F(3,12)=7.535 
p=0.0043** p=0.0030** p=0.6075 

qRT-PCR 
% isoform N/A 68.33 ± 

3.56 
31.67 ± 

3.56 
58.62 ± 

1.29 
41.38 ± 

1.29 
F(3,16)=38.25 
p<0.0001**** p<0.0001**** p=0.0017** 
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Table 4.6 | Histogram distribution of number of cells with same amount of dots in 
hippocampus of WT and ErbB4-D2 KO mice.  

 
Mean values ± SEM are tabulated for the number of cells with between 1 and >10 dots/ 
cell. Adjusted p values are listed, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (n=4; 
two-way ANOVA with Tukey’s multiple comparison test).  

Table 4.7 | ErbB4 isoform expression in human cingulate cortex and corpus callosum. 

 
Relative abundance of ErbB4 isoforms in the human cingulate cortex and corpus callosum analyzed by TaqMan 
qRT-PCR. Values represent the mean ± SEM. Adjusted p values are listed, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 (n=4; one-way ANOVA with Tukey’s multiple comparison test). 

 
 
 
 

 
 
  
 

 WT ErbB4-D2 KO 
Statistics (two-way ANOVA: 

F(40,165)=41.03, p<0.0001****) 

Dots/ 
cell pan 1/2 pan 2/3 pan 

27/28 pan 1/2 pan 2/3 
WT vs. ErbB4-D2 
KO (pan 1/2; pan 

2/3) 

WT 1/2 vs 2/3; 
1/2 vs 27/28; 
2/3 vs 27/28 

1 839.75 ± 
46.11 

717.50 ± 
66.25 

835.50 ± 
94.03 

77.25 ± 
21.26 

45.25 ± 
9.13 

p<0.0001**** 
p<0.0001**** 

p<0.0001**** 
p=0.9847 

p<0.0001**** 

2 271.00 ± 
24.18 

217.00 ± 
26.52 

246.75 ± 
23.67 

3.00 ± 
1.68 

3.5 ± 
1.32 

p<0.0001**** 
p<0.0001**** 

p=0.2412 
p=0.8863 
p=0.7869 

3 137.25 ± 
7.18 

101.00 ± 
8.85 

117.50 ± 
11.49 

1.00 ± 
0.58 

0.25 ± 
0.25 

p<0.0001**** 
p=0.0016** 

p=0.6382 
p=0.9430 
p=0.9700 

4 84.00 ± 
2.35 

70.50 ± 
4.13 

68.25 ± 
6.50 

0.00 ± 
0.00 

1.00 ± 
0.41 

p=0.0137* 
p=0.0653 

p=0.9857 
p=0.9747 
p>0.9999 

5 56.75 ± 
6.64 

46.25 ± 
4.21 

50.25 ± 
4.96 

0.50 ± 
0.29 

0.00 ± 
0.00 

p=0.2046 
p=0.3110 

p=0.9945 
p=0.9992 
p=0.9999 

6 47.25 ± 
3.33 

32.75 ± 
2.50 

38.00 ± 
6.49 

0.25 ± 
0.25 

0.00 ± 
0.00 

p=0.3796 
p=0.7213 

p=0.9813 
p=0.9966 
p=0.9996 

7 34.00 ± 
2.42 

24.75 ± 
5.12 

34.00 ± 
5.02 

0.50 ± 
0.50 

0.00 ± 
0.00 

p=0.7039 
p=0.8786 

p=0.9966 
p>0.9999 
p=0.9966 

8 29.00 ± 
2.35 

18.00 ± 
2.16 

26.50 ± 
2.72 

0.25 ± 
0.25 

0.00 ± 
0.00 

p=0.8072 
p=0.9589 

p=0.9934 
p>0.9999 
p=0.9976 

9 20.25 ± 
1.32 

14.50 ± 
2.22 

21.50 ± 
2.22 

0.00 ± 
0.00 

0.00 ± 
0.00 

p=0.9379 
p=0.9813 

p=0.9995 
p>0.9999 
p=0.9989 

10 13.50 ± 
4.91 

10.25 ± 
2.39 

18.25 ± 
4.09 

0.00 ± 
0.00 

0.00 ± 
0.00 

p=0.9857 
p=0.9950 

p>0.9999 
p=0.9998 
p=0.9981 

>10 42.25 ± 
3.38 

21.50 ± 
10.18 

56.50 ± 
14.44 

0.25 ± 
0.25 

0.25 ± 
0.25 

p=0.4966 
p=0.2046 

p=0.9324 
p=0.9825 
p=0.6684 

ROI JMa JMb CYT-1 CYT-2 one-way ANOVA JMa vs. JMb CYT-1 vs. CYT-2 

Cingulate cortex 
18.81 ± 

4.60 
81.19 ± 

4.60 
29.22 ± 

5.34 
70.78 ± 

5.34 
F(3,12)= 37.21 
p<0.0001**** 

p<0.0001**** p=0.0004*** 

Corpus callosum 
70.29 ± 

4.73 
29.71 ± 

4.73 
44.92 ± 

3.86 
55.08 ± 

3.86 
F(3,12)= 15.64 
p=0.0002*** 

p=0.0001*** p=0.3824 
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Table 4.8 | Quantification and statistical analysis of ErbB4 expression in the 
hippocampus (Hpp) comparing single-pair probes to probes using 20 pairs. 

 
Values represent the mean ± SEM of analyzed areas, dots/ area and percentage of ErbB4-
positive cells analyzed with single-pair probes and 20 probe pairs in WT sections. 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (n=4; one-way ANOVA with Tukey’s 
multiple comparison test). N/A: not applicable. 

Table 4.9 | Quantification and statistical analysis of ErbB4 JMa expression in the 
hippocampus (Hpp) comparing probes using one or two probe pairs, respectively. 

 
Values represent the mean ± SEM (n=4) of analyzed areas, dots/ area and percentage of 
ErbB4-positive cells, as well as dots/cell. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 (n=4; one-way ANOVA with Tukey’s multiple comparison test). N/A: not 
applicable. 

  single-pair probe 20 
pairs 

Statistics 

ROI probes pan 1/2 pan 2/3 
pan 

27/28 pan 
one-way 
ANOVA 

1pair vs 20pairs 
1/2; 2/3; 27/28 

Hpp 

area [mm2] 
4.56 ± 
0.30 

4.61 ± 
0.31 

4.42 ± 
0.35 

4.71 ± 
0.41 

F(3,12)=0.121
8 p=0.9455 N/A 

dots/ mm2 1282.1 ± 
112.3 

955.3 ± 
96.6 

1360 ± 
166.3 

5007 ± 
516.0 

F(3,12)=46.30 
p<0.0001 

p<0.0001**** 
p<0.0001**** 
p<0.0001**** 

Hpp 
w/o 
DG 

area [mm2] 3.26 ± 
0.19 

3.33 ± 
0.21 

3.13 ± 
0.22 

3.37 ± 
0.25 

F(3,12)=0.221
9 p=0.8793 

N/A 

dots/ mm2 
1439.4 ± 

103.0 
1046.5± 

108.2 

1482.7 
± 

179.9 

5181 ± 
577.3 

F(3,12)=38.77 
p<0.0001 

p<0.0001**** 
p<0.0001**** 
p<0.0001**** 

% ErbB4+ 
23.27 ± 

2.0 
18.61 
±1.99 

21.52 
± 1.91 

17.20 ± 
2.19 

F(3,12)=1.845 
p=0.1928 

p=0.2013 
p=0.9591 
p=0.4632 

dots/ cell 2.57 ± 
0.12 

2.34 ± 
0.08 

2.64 
±0.06 

8.85 ± 
0.67 

F(3,12)=84.72 
p=0<0.0001 

p<0.0001**** 
p<0.0001**** 
p<0.0001**** 

 

ROI probes 
JMa 

15/16b 
JMa 

16b/17 
JMa 

2pairs 
one-way 
ANOVA 

15/16b vs. 
2pairs; 16b/17 

vs. 2pairs 

Hpp 
w/o 
DG 

area [mm2] 
3.22 ± 
0.35 

3.48 ± 
0.24 

3.22 ± 
0.30 

F(2,9)=0.238
7 p=0.7925 

N/A 

dots/ mm2 
143.5 ± 

34.2 
166.6 ± 

29.0 
348.3 ± 
47.10 

F(2,9)=8.921 
p=0.0073** 

p=0.0097** 
p=0.0188* 

% ErbB4+ 
4.86 ± 
1.16 

5.91 ± 
0.93 

10.28 ± 
1.48 

F(2,9)=5.634   
p=0.0259 

p=0.0280* 
p=0.0727 

dots/ cell 1.19 ± 
0.04 

1.21 ± 
0.04 

1.34 ± 
0.04 

F(2,9)=4.079 
p=0.0548 

p=0.0628 
p=0.1146 

Hpp 
area [mm2] 4.44 ± 

0.51 
4.83 ± 
0.38 

4.52 ± 
0.45 

F(2,9)=0.213
5 p=0.8118 

N/A 

dots/ mm2 135.0 ± 
32.8 

157.4. ± 
26.3 

336.5 ± 
52.33 

F(2,9)=8.110 
p=0.0097** 

p=0.0128* 
p=0.0240* 
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Table 4.10 | Quantification and statistical analysis of ErbB4 splice variants in the 
choroid plexus (Cp). 

 
Values represent the mean ± SEM (n=4). *p<0.05, ****p<0.0001 (n=4; one-way 
ANOVA with Tukey’s multiple comparison test). N/A: not applicable. #: One sample did 
not show any expression of JMb in the choroid plexus and therefore was excluded from 
the ‘dots per positive cell’ analysis (n=3 for JMb). 

 

ROI probes JMa 
15/16b 

JMb 
15/16a 

CYT-1 
25/26 

CYT-2 
25/27 

one-way 
ANOVA 

JMa vs. JMb CYT-1 vs. 
CYT-2 

Cp  area [mm2] 0.059 ± 
0.019 

0.064 ± 
0.020 

0.068 ± 
0.018 

0.066 ± 
0.018 

F(3,12)=0.045
8 p=0.9863 

N/A N/A 

dots/ mm2 4712 ± 
775.8 

105 ± 
66.39 

1026 ± 
198.0 

2227 ± 
484.0 

F(3,12)=18.10 
p<0.0001**** 

p<0.0001**** p=0.3153 

% ErbB4+ 55.07 ± 
4.41  

1.57 ± 
0.81 

15.63 ± 
1.05 

33.10 ± 
5.98 

F(2,9)=5.634   
p=0.0259 

 p=0.0280* 
p=0.0727 

dots/ cell 1.54 ± 
0.15 

1.14 ± 
0.14# 

1.27 ± 
0.15 

1.31 ± 
0.06 

F(3,11)=1.687 
p=0.2270 

p=0.1971 p=0.9953 

% isoform 98.18 ± 
0.90 

1.82 ± 
0.90 

36.82 ± 
8.81 

63.18 ± 
8.81 

F(3,12)=42.47 
p<0.0001**** 

p<0.0001**** p=0.0492* 
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5  

Subcellular expression of ErbB4 & its 
isoforms in distinct neurons 

Section 5.3.1 ‘Axonal expression of ErbB4 in dopaminergic neurons’ is part of the publication: 
Miguel Skirzewski, Irina Karavanova, Alon Shamir, Larissa Erben, Jennie Garcia-Olivares, 
Jung Hoon Shin, Detlef Vullhorst, Veronica A. Alvarez, Susan G. Amara and Andres Buonanno 
(2018) ErbB4 signaling in dopaminergic axonal projections increases extracellular dopamine 
levels and regulates spatial/working memory behavior. Mol Psychiatry (23), 2227-2237. 

L.E. designed and performed research, analyzed data for data shown in section 5.3.1 and all 
other unpublished sections of this chapter if not otherwise stated.  

5.1 Introduction 
ErbB4 function on GABAergic interneurons has been extensively studied. Limited 

attention has been dedicated on the other hand to its expression on dopaminergic neurons and 

the role of NRG/ErbB4 signaling in the dopamine system (see Introduction 1.3.5). 

Interestingly, previous studies from our lab have suggested, that NRG/ErbB4 regulates 

dopamine levels in the dorsal hippocampus, a target area of long-projecting dopaminergic 

neurons. Direct infusion of NRG1 by reverse microdialysis into the dorsal hippocampus of 

behaving rats, rapidly increases the extracellular dopamine concentration that lasts for about 

15min138. Conversely, the administration of ErbB inhibitors results in a small but significant 

reduction of extracellular dopamine levels189. Moreover, dopamine neurotransmission is also 

required to mediate the modulatory effects of NRG on LTP reversal and augmentation of g-

oscillations in the dorsal hippocampus. Both have been shown moreover to depend on 

dopamine receptor D4 (D4DR)138, 321, 322. Since in slice recordings axonal dopamine terminals 

are separated from their somas, we hypothesize that ErbB4 receptors mediating the modulatory 
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effects of NRG on LTP and g-oscillations by potentially increasing extracellular dopamine 

levels is present locally on dopaminergic fibers.  

Importantly, this proposed axonal expression of ErbB4 on dopaminergic neurons is in stark 

contrast to the confined somatodendritic localization of ErbB4 on most GABAergic 

interneurons including PV basket cells58, 59. The presence of ErbB4 on presynaptic boutons has 

been suggested for the interneuronal subclass of PV+ Chandelier cells based on the observed 

reduction of inhibitory cartridges upon loss of ErbB460, 68-70. In hippocampal cultures, despite 

the development of GABAergic synapses at the AIS323, as well as in immunohistochemistry, 

ErbB4 has not been detected on PV+ boutons with antibodies specific for ErbB4, but in vivo 

was found on a few CCK+ synapses (<9%) confined to a few brain areas58, 59. While the 

presynaptic localization in both dopaminergic neurons and Chandelier cells needs still to be 

confirmed, an interesting model emerges, in which in some neuronal cell types ErbB4 

expression is strictly restricted to the dendrites and cell body (most GABAergic interneurons, 

e.g. PV basket cells), whereas in other neurons in addition to the somatodendritic compartment 

ErbB4 is also located to axonal projections and synaptic terminals (e.g. dopaminergic neurons, 

Chandelier cells).  

Differential subcellular targeting of protein isoforms to neurites (dendrites and axon) has 

previously been demonstrated, e.g for the voltage-gated potassium channel Kv3.1 isoforms 

Kv3.1a and Kv3.1b324 and protein phosphatase 1 (PP1) variants PP1b and PP1g1325. 

Interestingly, targeting differs also between N-terminal isoforms of NRG1. While the TM-

NRG NRG1 type III localizes to axons, the soluble Ig-NRG isoforms NRG1 type I and type II 

are restricted to the soma and proximal dendrites39. Moreover, isoform-specific localization 

also arises from spatial restriction of mRNA variants and subsequent local translation. In 

particular, variants at the 3’ end of the transcript have been identified to regulate neurite 

localization. Gene distal alternative last exons and long 3’UTR variants are frequently enriched 

in the neuropil326-328. Therefore, I hypothesize that ErbB4 isoforms regulate the differential 

localization in distinct neuronal cell types. One (or several) ErbB4 isoforms might be 

anterogradely transported into axons. These splice variants could be specifically expressed in 

some neuronal types (i.e. Chandelier cells and dopaminergic neurons) but not in others (i.e. 

most classes of GABAergic interneurons). Our current understanding of ErbB4 variant 



 119 

expression only suggests that there are no fundamental regional differences in JM and Cyt 

expression between the dorsal hippocampus, cortex and the VTA, namely in all areas ErbB4 

receptors are predominantly JMb and Cyt-2 isoforms (see chapter 2 & 4). Moreover, all ErbB4 

variants have been detected in GABAergic interneurons (see Chapter 4, L. Erben unpublished 

data) and both Cyt variants have been detected in dopaminergic neurons (see Chapter 6). 

However, it remains unclear which variants are co-expressed in a single cell and if a subset of 

dopaminergic neurons and GABAergic interneurons (i.e. Chandelier cells) preferentially 

expresses one splice variant. On the other hand, differences in subcellular localization and 

trafficking of ErbB4 isoforms indeed have been previously described in non-neuronal cells. In 

fibroblast-like COS-7 (CV-1 origin with SV40) kidney cells, Cyt-2 receptors have been 

suggested to be endocytosis-impaired, whereas Cyt-1 ErbB4 were present on intracellular 

vesicles207. Surface distribution including targeting to neuronal neurites has not been 

interrogated.  

Here, to address if ErbB4 is present on axonal projections of dopaminergic neurons, I 

perform immunocytochemistry on primary mesencephalic tissue cultures to visualize 

endogenous receptors. Next, the subcellular localization of the four ErbB4 isoforms (JMa/Cyt-

1, JMa/Cyt-2, JMb/Cyt-1 and JMb/Cyt-2) is tested by viral transduction in cultured 

hippocampal GABAergic interneurons and subsequent immunostainings specific for the 

exogenous overexpressed receptor. 

5.2 Methods 
Animals. Full ErbB4 knock-out (KO) mice, lacking the second exon have been described 

previously156. Embryonic lethality of ErbB4-KO was rescued by transgenic ErbB4 

overexpression in the heart (ErbB4MHC-ErbB4)157, heart-rescued ErbB4-KO mice are hereafter 

referred to as ErbB4-KO. ErbB4-KO mice were backcrossed to C57BL/6J for >15 generations. 

Control adult wild-type C57BL/6J mice were purchased from the Jackson laboratories and 

Sprague Dawley rats from Charles River. Animals of both sexes were used for primary tissue 

culture. All animals were housed on a 12–12h light-dark schedule with access to food and 

water ad libitum. Animal procedures were reviewed and approved by the NIH Animal Care 

and Use Committee. 
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Primary neuronal cultures. Dissociated hippocampal neurons were prepared from E19 

Sprague Dawley rat embryos by the biologist in the laboratory, Irina Karavanova. Hippocampi 

were dissected in dissection buffer (1x HBSS (Gibco, Cat No. 14185-052), 10mM HEPES 

pH7.3 (Gibco, Cat No. 15630-080), 1x Penicillin/Streptomycin (Pen/Strep; Gibco, Cat No. 

15140122)), trypsinized with 0.25% trypsin (Gibco, Cat No. 15090-046) for 15min at 37°C, 

and carefully triturated in neurobasal medium (Gibco, Cat No. 15170-064) supplemented with 

1x B27 supplement (Gibco, Cat No. 17504-044), 1x Pen/Strep, 0.5mM glutamine (Gibco, Cat 

No. 25030-149) and 0.0125mM glutamate. 42.500 neurons were plated per 24well onto poly-

D-lysine (PDL; Sigma-Aldrich, Cat No. P7405-5mg)-covered (100µg/mL) 12mm coverslips 

(#1; Carolina Assistant-Brand, Cat No. 41001112). Half of the medium was changed every 

week starting on day 6 in vitro (DIV6). Feeding medium does contain all components of the 

plating medium but glutamate. Primary mouse mesencephalic cultures were grown on a layer 

of rat cortical astrocytes. Cortices were dissected from E19 rat embryos in dissection medium 

(1x HBSS, supplemented with 20mM sucrose (Sigma-Aldrich, Cat No. S7903), 28mM 

dextrose (Sigma-Aldrich, Cat No. G5767) and 4.2mM sodium bicarbonate (Sigma-Aldrich, 

Cat No. S5761)) and trypsinized with 0.25% trypsin in the same buffer for 15min at 37°C. 

Cells were triturated in advanced DMEM/F12 medium (Gibco, Cat No. 12634-010) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco, Cat No. 16140-063), 

2mM GlutaMAX (Gibco, Cat No. 35050-061), 10µg/mL gentamicin (Gibco, Cat No. 15170-

064) and plated in Nunc tissue culture flasks (Thermo Fisher Scientific, Cat No. 156499). At 

DIV7, neurons and oligodendrocytes were shaken off, astrocytes trypsinized and plated onto 

PDL-covered (100µg/mL) coverslips at a density of 50.000-100.000 cells per 24 well. 

Astrocytes were arrested with 10µM Floxuridine (FUDR; Sigma-Aldrich, Cat No. F0503) at 

confluency and mouse mesencephalic cultures plated on top of the astrocytic layer within 1-3 

days. The mesencephalic area was dissected from E15 C57BL/6J and ErbB4-KO mouse 

embryos in dissociation medium, trypsinized in 0.25% trypsin at 37ºC for 5min and triturated 

in culture medium (advanced DMEM/F12 (Gibco, Cat No. 35050-061), 1x N2 (Gibco, Cat No. 

17502-048), 200mM GlutaMAX and 2% heat-inactivated FBS, supplemented with 10µg/mL 

gentamicin and 10µM FUDR). 50.000 cells were plated per 24 well and 10ng/ml basic 

fibroblast growth factor (bFGF, R&D Systems, Cat No.4114-TC) added. Half medium changes 

were performed once a week starting on DIV3. 
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Cloning of ErbB4 isoforms. Gateway entry vector pENTR223.1 encoding mouse ErbB4 

JMa/Cyt-2 was purchased from Imagenes and a stop codon inserted at the end of the coding 

sequence. G-block cloning strategy was used to clone all other ErbB4 isoforms. Restriction 

enzymes EcoRI and KpnI (New England BioLabs, Cat No. R3101 & R3142) were used to 

insert 561bp Cyt-1 G-block (Integrated DNA Technologies) sequence to obtain 

pENTR223.1_mErbB4_JMa/Cyt-1. pENTR223.1_mErbB4_JMb/Cyt-2 was cloned with 

BsaBI (New England BioLabs, Cat No. R0537) and EcoRI and 909bp JMb G-block from dam-

/dcm- pENTR223.1_mErbB4_JMa/Cyt-2. Finally, pENTR223.1_mErbB4_JMb/Cyt-1 was 

cloned from JMb/Cyt-2 plasmid using EcoRI, KpnI and Cyt-1 encoding G-block as described 

above. Successful cloning was confirmed by DNA sequencing (Macrogen). pAAV Gateway 

destination vector was generated by Detlef Vullhorst by inserting a Gateway conversion 

cassette into pAAV(MCS) (Agilent, AAV Helper-Free System, Cat No. 240071) and replacing 

the cytomegalovirus (CMV) promoter by an human synapsin I (hSynI) promoter for confined 

neuronal expression. Gateway cloning (Gateway LR clonase II, ThermoFisher, Cat No. 

11791100) was used according to manufacturer’s protocol to shuttle ErbB4 coding sequences 

into destination pAAV-hSynI vector. Successful recombination was confirmed by SacI (New 

England BioLabs, Cat No. R3156) restriction digest and plasmid DNA was prepared using 

Qiagen Plasmid Midi kit (Qiagen, Cat No. 12145) for AAV transfection 

Preparation of adeno-associated viruses (AAV). AAV-293HEK (human embryonic kidney) 

cells (Agilent, Cat No. 240073) grown in DMEM (Gibco; Cat No. 105690-010)/10% FBS were 

used for AAV production. Cells between passages 3-5 were plated in 15cm dishes (2 dishes 

per AAV preparation; Falcon, Cat No. 353025). At 60-70% confluence, a complete medium 

change was performed 2h prior to transfection. Per 15cm dish, 6.6µg pHelper (Agilent, AAV 

Helper-Free System, Cat No. 240071), 4.4µg pAAV-RC1 (Cell Biolabs, Cat No. VPK-421) 

and 4.4µg recombinant pAAV-hSynI-ErbB4 transfer plasmid (1:1:1 mass ratio) were mixed 

with 60µl polyethyleneimine (1mg/mL; Polysciences Inc., Cat No. 23966) in 500µl DMEM 

medium without serum. After 10min incubation the DNA was added to the cells. Cells were 

fed with fresh medium after 48h and harvested 72h by scraping into 2mL (per dish) gradient 

buffer (150mM NaCl, 10mM MgCl2, 10mM Tris-Cl, pH 7.6). Cells were lysed by four freeze-

thaw cycles with intermediate trituration through a 23-gauge needle. DNA was degraded with 

250U benzonase (Sigma-Aldrich, Cat No. E1014) per preparation (~5mL) for 1h at 37ºC with 
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occasional agitation. The lysate was cleared by centrifugation at 3000g for 15min at 4ºC and 

the supernatant layered on top of an iodixanol gradient (Sigma-Aldrich, Cat No. D1556; 15%, 

25%, 40% and 58% (v/v) in gradient buffer) in a Beckman quick seal centrifuge tube 

(Beckman, Cat No. 344326). The remaining volume was filled with gradient buffer and the 

tubes sealed without trapping an air bubble. Ultracentrifugation was done at 48,000rpm in a 

type 70Ti fixed angle rotor (Beckman) for 2h at 18ºC. AAV was collected from the 40% 

iodixanol layer, aliquoted and stored at -80ºC for long-term storage or at 4ºC for immediate 

use. 4µl of each AAV1-hSynI-ErbB4 were transduced into primary hippocampal neurons and 

expression verified by Western using rabbit monoclonal Ab10 antibody58 with an apparent 

mass of ~180kDa. For immunostaining in hippocampal cultures, 0.25µl of AAV was mixed 

into the cell culture medium at DIV10-DIV13. 

Immunocytochemistry. Immunostaining was performed at DIV10 for mesencephalic cultures 

and at DIV20-DIV27 for hippocampal cultures. Cultures were fixed for 15min at RT in 4% 

paraformaldehyde (PFA; Electron Microscopy Sciences, Cat No. 15710), 4% sucrose in PBS 

pH-7.4. After extensive washes with PBS, cells were blocked and permeabilized with 2-3% 

normal donkey serum (NDS; Sigma-Aldrich, Cat No. D9663)/0.1% TX-100 (Thermo Fisher 

Scientific, Cat No. 28314) in PBS (blocking solution) and incubated overnight with primary 

antibodies (rat monoclonal anti-DAT (1:200; sc-32258 Santa Cruz, TX), mouse monoclonal 

anti-parvalbumin (isotype IgG1, 1:1000, Sigma, Cat No. P3088), mouse monoclonal anti-

ankyrinG (1:500-1000; clone N106/36 (isotype IgG2a) or clone N106/65 (isotype IgG2b), 

NeuroMab), guinea pig anti-tau (1:10000; Synaptic Systems, Cat No. 314004) or guinea pig 

anti-microtubule associated protein (MAP2; 1:2000; Synaptic Systems, Cat No. 188004), and 

rabbit monoclonal anti-ErbB4 antibodies (clone mAb-658, undiluted hybridomas supernatant 

or at 1µg/mL of affinity-purified antibody; clone mAb-1058 at 1µg/mL)) at 4ºC in blocking 

solution. After extensive washing in PBS, cells were incubated with secondary antibodies (all 

1:1000; goat anti-mouse IgG1-A488 (Life technologies, Cat No. A21121), goat anti-mouse 

(IgG2a or IgG2b)-A647 (Life technologies, Cat No. A21241/21242), donkey anti-rat A488 

(Invitrogen, Cat No. A21208), donkey anti-rabbit-DL549 or -Cy3 (Jackson ImmunoResearch 

Labs, Cat No. 111-485-144/ 711-165-153) and goat anti-guinea pig biotin conjugate (Life 

technologies, Cat No. A18779)) for 1h at RT in blocking solution. For biotin streptavidin 

conjugation, if applicable, cells were washed with PBS and incubated with streptavidin-pacific 
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blue (1:1000, Life technologies, Cat No. S11222) for 1h at RT in blocking solution. Washed 

coverslips were mounted on slides using Mowiol (Calbiochem, Cat No. 3475904)/DABCO 

(Sigma-Aldrich, Cat No. D2522) mounting medium and analyzed on a LSM710 confocal 

microscope at 63x magnification (Zeiss). Images were adjusted for overall brightness and 

contrast and mean fluorescent intensity was analyzed in manually-defined region of interest 

(ROI) based on PV, MAP2 and ankyrin G staining in ImageJ. Neurite expression was assessed 

in the first 200-400µm of one randomly-chosen neurite and confined to a single branch. Neurite 

enrichment was calculated as the ratio between mean fluorescent intensity in the axon and 

dendrite, normalizing for the total expression level per neuron. Somatic fluorescent ErbB4 

expression was normalized to the average intensity in each experiment.  

Brain membrane fractionation. Dorsal striatum was dissected from eight male rats (13-weeks 

old) yielding in 600mg tissue, immediately homogenized in 20 volumes of cold fractionation 

buffer (320mM sucrose, 10mM HEPES pH7.4, 1x protease inhibitor (cOmplete protease 

inhibitor cocktail, Roche, Cat No. 11697498001)) using at first a glass-glass Dounce 

homogenizer with a tight plunger (A), then a glass-Teflon homogenizer rotating at 900rpm on 

ice. Brain membrane fractionation was performed as briefly described40. Briefly, nuclei and 

unbroken cells were removed by centrifugation for 10min at 1,000g. Supernatant (S1) was 

centrifuged for 20min at 10,000g to obtain crude membrane pellet (P2) which was washed by 

resuspending in 10 volumes of fractionation buffer, homogenizing and centrifugating. After 

resuspending P2 in 5 volumes RIPA (radioimmunoprecipitation assay buffer; 50mM Tris-Cl 

pH7.5, 150mM NaCl, 1x protease inhibitor) the protein concentration was determined from a 

20-fold dilution using Bradford assay (Bio-Rad, Cat No. 500-0006) against bovine IgG 

standard curve (Bio-Rad, Cat No. 500-0208). 5mg protein was aliquoted, pelleted by 

centrifugation for 10min at 10,000g and resuspended in 1mL oxygenated Ringer’s solution 

(120mM NaCl, 5.6mM KCl, 2.2mM CaCl2. 1mM MgCl2, 25mM NaHCO3, 5.5mM HEPES, 

10mM glucose, pH7.4). P2 membranes were incubated with 12.5nM NRG2-ECD 

(extracellular domain; Genscript, custom-made in baculovirus), 12.5µM PD158780 

(Calbiochem, Cat No. 171179-06-9), both or under control conditions for 15min at 37°C. 

Samples were precipitated for 10min at 10,000g and solubilized in 1mL cold RIPA buffer 

containing 1% TritonX-100 and phosphatase inhibitor cocktail III (Calbiochem, Cat No. 
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524627). After incubation for 30min at 4°C on rotarod, soluble and insoluble P2 were separated 

by centrifugation at 32,000g for 20min (Beckman tabletop centrifuge TLS55.1).  

Immunoprecipitation. ErbB4 immunoprecipitation was performed from soluble (sol) P2 

fraction (see above). Resuspended insoluble fraction served as negative control (ins). Soluble 

fractions were pre-cleared with 50µl equilibrized protein A-agarose (Pierce, Cat No. A20421) 

for 1h at 4°C with agitation. ErbB4 and interacting proteins were immunoprecipitated with 

10µg monoclonal rabbit anti-ErbB4 antibody (mAb1058) overnight at 4°C. As negative control 

10µg normal rabbit IgG (nrbIgG; Santa Cruz Biotechnology, Cat No. sc2027) was used. 50µl 

equilibrized protein A-agarose was added and samples incubated for 1h at 4°C with agitation. 

Input and flow-through control were collected, agarose-beads washed in RIPA buffer 

containing 1% Triton X-100 and proteins eluted in 100µl RIPA buffer supplemented with 1x 

non-reducing LDS (lithium dodecyl sulfate) sample buffer (Thermo Fisher, Cat No. 84788, 

final concentration 1x) and 5% b-mercaptoethanol (Sigma-Aldrich, Cat No. M3148). Samples 

were 10-times enriched compared to input and were denatured for 10min at 80°C for ErbB4 

Western Blotting, whereas samples for DAT immunoblots were incubated at RT. Western 

Blotting was performed as described below.  

Microdissected protein samples. For immunoblotting, tissue was dissected from 9-week old 

male C57BL/6J and ErbB4 KO mice (n=3/genotype). Briefly, mice were euthanized by 

cervical dislocation, the brain was dissected and washed with cold PBS. Microdissection of 

the dorsal striatum was performed using 25-gauge needles in dissection buffer (20mM sucrose, 

8mM D-glucose, 4mM NaHCO3 in 1x HBSS) under a dissecting microscope from 2mm-thick 

coronal sections cut with the help of a brain matrix. Samples were immediately homogenized 

using a hand-held Ultraturrax with a 5mm probe in 300µl of cold RIPA buffer and further 

processed by Detlef Vullhorst. Homogenates were incubated on ice for 5-10min and 

centrifuged at 5,000rpm for 5min. Protein concentration was measured from 1:20 dilutions of 

the supernatant using Bradford assay against bovine IgG standard curve, ranged between 5-

7mg/mL and was adjusted with RIPA buffer to 1mg/mL. 1x non-reducing LDS and b-

mercaptoethanol (final concentration 5%) were added. Importantly, for successful DAT 

immunoblot with rat monoclonal anti-DAT antibody (clone 6-5G10; Santa Cruz 

Biotechnology, Cat No. sc-32258,) samples were not heated. 
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Western Blotting. 15µl of protein sample were loaded on 4-15% acrylamide gradient gels 

(Mini-PROTEAN TGX, Bio-Rad, Cat No. 456-1086), stacked at 80V and separated at 120V 

in Tris/Glycine buffer (BioRad, Cat No. 161-0732). Proteins were transferred onto 

nitrocellulose membrane using 7-min turbo transfer (Bio-Rad, Cat No.170-4270). The 

membrane was blocked for 1h at RT with 3% BSA (bovine serum albumin, Sigma-Aldrich, 

Cat No. A7906) in TBST (1x tris-buffered saline (Quality Biology, Cat No. 351-086-131) + 

0.05% Tween 20 (BioRad, Cat No. 161-0781)) and incubated with primary antibodies over 

night at 4°C. After extensive washes in TBST (5x 10min) the membrane was incubated with 

secondary horseradish peroxidase (HRP)-conjugated antibodies (1:2000-1:10000; Jackson 

Immuno Research; anti-rat-HRP, Cat No. 712-035-150; anti-rabbit-HRP, Cat No. 211-032-

171) in 5% (w/v) milk in TBST for 1h at RT. Blots were extensively washed in TBST and 

signals detected using chemiluminescence (Western Lightning Plus-ECL, Perkin Elmer, Cat 

No. NEL120E001EA) in a ChemiDoc MP imager (Bio-Rad, Universal Hood III). 

Densiometric analysis was performed using Image Lab software (Bio-Rad). For repeated 

analysis with other antibodies, the membrane was stripped for 15min at RT (Restore Western 

Blot Stripping Buffer, Thermo Fisher Scientific, Cat No. 21059), extensively washed with 

TBST and blocked with 3% BSA/TBST. Primary antibodies were analyzed in the following 

order: monoclonal rat anti-DAT antibody (1µg/mL, clone 6-5G10; Santa Cruz Biotechnology, 

Cat No. sc-32259), rhodamine conjugated anti-tubulin-rhodamine (1:5000, Bio-Rad, Cat No. 

AbD22584), monoclonal rabbit anti-ErbB4 (mAb1058; 2µg/mL). Of note, the fluorescent 

detection of the house-keeping gene tubulin does not require stripping.  

Statistical Analysis. All data represent the mean ± SEM and statistical significance was set at 

p<0.05. Outliers (ROUT, Q=1%) were excluded from analyses and statistical analysis was 

performed using Graph Pad Prism 8, unpaired non-parametric t-test (Fig. 5.2) and one-way 

ANOVA with Tukey’s multiple comparison test (Fig. 5.3).  

5.3 Results 

 Axonal expression of ErbB4 in dopaminergic neurons 
To explore the subcellular localization of ErbB4 protein in dopaminergic neurons, I 

cultured primary mesencephalic cells. Consistent with mRNA detection (Fig. 5.1A), ErbB4 
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receptor protein was found to be expressed in cultured DAT-positive primary midbrain 

neurons. Interestingly, in contrast to the somatodendritic pattern of ErbB4 immunoreactivity 

previously reported for GABAergic interneurons58, ErbB4 in dopaminergic neurons was found 

not only on somata and dendrites but also on axonal projections co-labeled with ankyrinG and 

tau antibodies (n=9; Fig. 5.1.A). Importantly, immunoreactive puncta for ErbB4 were absent 

from cultured DAT-positive neurons from ErbB4-KO mice, showing the specificity of the 

antibody (n=10; Fig. 5.1B).  

 

Figure 5.1 | ErbB4 mRNA and protein is expressed in soma and axons of midbrain dopaminergic neurons. 
(A) Double-fluorescence in situ hybridization (RNAscope) for ErbB4 (white) and TH (green) transcripts in 
midbrain coronal sections from wild-type C57BL/6J mice; anatomical region corresponds to area highlighted in 
green in the adjacent scheme. The boxed area in (A) is enlarged in the two panels on the right (aI-II) to visualize 
the numerous dopamine (DA) neurons abundantly expressing ErbB4 transcripts (arrowheads); nuclei were 
labeled by DAPI (blue). Panel A was generated by Irina Karavanova. (B, C) Representative immunofluorescence 
images of dissociated primary midbrain neurons isolated from (B) wild-type C57BL/6J or (C) ErbB4-KO mice. 
(bI-III) Higher magnification of the area demarked in (B) show that ErbB4 receptor puncta (arrowheads) distribute 
on the cell soma and along DAT-positive axonal processes that are positive for the axon hillock marker Ankyrin 
G (ankG). (bIV-VI) A second magnified area from the same neuron shows ErbB4 immunoreactive puncta along a 
more distal DAergic Tau-positive axonal process. The immunoreactivity for the receptor is specific, because the 
somatic (C) and axonal (cI-III, cIV-VI) puncta are absent from DAT-positive mesencephalic neurons isolated from 
ErbB4 KO mice. For panels (B) and (C), 9 DAT-positive neurons from C57BL/6J WT and 10 DAT-positive 
neurons from ErbB4-KO mice were analyzed in two independent cell culture preparations, respectively. Scale 
bars: 200µm in A, aI-II, 100µm in B, C, 10µm in bI-VI, cI-VI. 

In Skirzewski et al. (2018), we went on to show that ErbB4 present on axonal projections 

mediates rapid increases of extracellular dopamine after local NRG1 infusion into dopamine 
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target areas. NRG-induced dopamine accumulation was absent in mice lacking ErbB4 on 

dopamine neurons (Th-Cre; ErbB4fl/fl), but not in mice where ErbB4 was ablated from PV 

interneurons (PV-Cre; ErbB4fl/fl). Importantly, the development of dopamine terminals in 

general was not impaired in Th-Cre; ErbB4fl/fl mice as potassium-induced depotentiation 

efficiently release dopamine. Increases in dopamine levels elicited by NRG stimulation can be 

due to an augmentation of dopamine release and/ or a reduction in dopamine clearance. Using 

fast-scan cyclic voltammetry, we found that NRG has no effect on electrically evoked 

dopamine release in the striatum. Uptake assays of [3H] in differentiated LUHMES (Lund 

Human Mesencephalic) cells329, however, suggested that NRG increases dopamine levels – at 

least partially – by attenuating dopamine re-uptake via DAT. Besides, basal dopamine levels 

are imbalanced in dopamine target areas of Th-Cre; ErbB4fl/fl. Increased levels are detected in 

the mPFC and dorsal hippocampus, but hypodopaminergia in the striatum; reminiscent, but 

opposite to the dopamine imbalance in schizophrenia subjects19. Consistent with the 

hyperdopaminergic state in the mPFC and the hippocampus, Th-Cre; ErbB4fl/fl mice showed 

deficits in spatial reference and working memory. Interestingly, behavioral deficits in mice that 

lack ErbB4 in dopaminergic (Th+ neurons) and PV interneurons are complementary and 

additive when compared to phenotypes observed in null ErbB4 mutants lacking ErbB4 from 

all cells234.  

We then further followed up on how NRG/ErbB4 mediates reduced dopamine uptake 

through DAT. NRG/ErbB4 may alter the surface localization of DAT, as other channels and 

receptors endocytosed upon ErbB4 activation, some via direct interaction with ErbB440, 46, 121. 

However, immunoprecipitation experiments from rat striatal tissue, did not suggest an 

interaction between ErbB4 and DAT (Fig. 5.2.A), which was supported by the fact that ErbB4 

and DAT puncta are rather exclusive than overlapping in immunocytochemistry (see Fig. 5.1). 

We also did not find any evidence for NRG-mediated DAT internalization addressed by 

surface biotinylation in HEK293 cells stably expressing DAT234 (D. Vullhorst unpublished 

data). And lastly, DAT protein levels were not altered in the dorsal striatum of ErbB4 KO mice 

(Fig. 5.2B). Taken together, this suggests that DAT regulation by ErbB4 is not mediated by a 

direct interaction and independent of alterations in DAT surface expression. 
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Figure 5.2 | ErbB4 does not interact with DAT, and DAT expression is not altered in ErbB4 knock-out (KO) 
mice.  
(A) Immunoprecipitation of ErbB4 using monoclonal rabbit anti-ErbB4 antibody did not reveal an interaction 
with DAT (upper panel), although ErbB4 was successfully enriched in pull-down (PD) samples (lower panel). * 
– unspecific bands, arrow highlights 80kDa intracellular ErbB4 domain. (B) DAT protein is unaltered in ErbB4 
KO mice in the dorsal striatum. Western blot signal (left panel) was quantified using densiometric quantification 
(right panel). DAT signal normalized to the house-keeping gene tubulin was not different between age-mapped 
WT (wild-type; grey) and ErbB4 KO mice (green; n=3, Mann-Whitney test, p>0,9999). Of note, ErbB4 KO 
sample #2 was dissected from a slightly more anterior region yielding in lower DAT expression. aU – arbitrary 
units, both – NRG2 & PD158780, ctrl – control, FT – flow-through, ins – insoluble in 1% Triton X-100, nrbIgG 
– normal rabbit IgG, sol – soluble, P2 – crude membrane pellet, PD – pull-down.  

 None of the ErbB4 isoforms targets to axons of GABAergic interneurons 
As ErbB4 targets to axons of dopamine neurons, but not of GABAergic interneurons, I 

next assessed if the axonal targeting of the ErbB4 receptor is mediated by a particular isoform 

and analyzed the subcellular distribution of overexpressed ErbB4 isoforms in cultured 

GABAergic interneurons using immunocytochemistry. In accordance with previous reports58, 

endogenous ErbB4 expression was confined to the somatodendritic compartment of PV 

interneurons in primary rat hippocampal cultures; and ErbB4 was not detected on axonal 

projections, identified by the AIS marker ankyrinG, and on PV+ boutons (Fig. 5.3A). On somas 

and dendrites of GABAergic interneurons, ErbB4 accumulated in surface clusters (puncta) that 

previously were characterized as excitatory post-synapses66. To define the subcellular 

localization of each individual ErbB4 isoform, I overexpressed the four major ErbB4 isoforms 
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(JMa/Cyt-1, JMa/Cyt-2, JMb/Cyt-1 and JMb/Cyt-2) by viral induction. An antibody against 

ErbB4 (mAb6) that does not recognize the endogenous rat protein58 (Fig. 5.3B) was used to 

visualize exogenous mouse ErbB4 receptor. In contrast to transfection approaches that resulted 

in neurotoxic expression levels of ErbB4 (data not shown), moderate overexpression was 

achieved by viral infection and resulted in distribution of ErbB4 similar to the endogenous 

protein (e.g. ErbB4 clusters on the cell surface), validating adequate expression levels. 

Interestingly, ErbB4 was restricted to a small fraction of neurons, some co-expressing the 

interneuronal marker PV, suggesting that transduced ErbB4 specifically accumulates in 

GABAergic interneurons. 

Expression of ErbB4 was then further analyzed in PV interneurons, the main subclass of 

GABAergic interneurons expressing ErbB460. The receptor accumulated at higher levels when 

the two cleavage-resistant ErbB4 isoforms JMb/Cyt-1 (B1) and JMb/Cyt-2 (B2) were 

overexpressed compared to JMa/Cyt-1 (A1) and JMa/Cyt-2 (A2) ErbB4 receptors that are 

susceptible to metalloprotease-mediated cleavage (Fig. 5.3G; n=13-14 neurons/group, 

normalized mean fluorescent intensity: A1 0.62 ± 0.06, A2 0.70 ± 0.08, B1 1.17 ± 0.08, B2 

1.32 ± 0.17; Tukey’s multiple comparisons test A1 vs. B1 p=0.0047**, A1 vs. B2 

p=0.0001***, A2 vs. B1 p=0.0282*, A2 vs. B2 p=0.0011**). On the other hand, nuclear 

localization of the ICD of JMa receptors was not detected under these normal culture 

conditions.  
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Figure 5.3 | Subcellular targeting of ErbB4 isoforms in hippocamapl PV interneurons.  
(A-F) Representative images of endogenous and exogenous ErbB4 expression in cultured rat hippocampal PV 
interneurons at DIV27 show absence in axonal projections (yellow arrowheads). (A) Endogenous expression was 
visualized with rabbit monoclonal antibody mAb10. (B) Rabbit monoclonal antibody mAb6 is blind to the 
endogenous rat protein58, (C-F) but recognizes viral transduced mouse ErbB4. (G) Cleavage-resistant ErbB4 
isoforms JMb/Cyt-1 (B1) and JMb/Cyt-2 (B2) are expressed at higher levels than cleavable isoforms JMa/Cyt-1 
(A1) and JMa/Cyt-2 (A2) and in the soma of PV interneurons as assessed by normalized mean fluorescent 
intensity (n=2-8 control neurons/group, n=13-14 transduced neurons/group, N=3 independent cultures, one-way 
ANOVA, F(5,57)=12.15, p<0.0001****). (H) Somatic PV and ErbB4 intensity do not correlate (R2=0.0032). (I) 
Subcellular distribution of ErbB4 isoforms in PV interneurons measured as fluorescent intensity ratio between 
axon and dendrite (n=7-14 neurons/group, N=3 cultures; one-way ANOVA, F(4,53)=8.541, p<0.0001****). 
Scale bar 20µm. 

NRG/ErbB4 signaling was suggested to regulate the excitation and maturation of PV 

interneurons148, 149. Expression of PV itself is activity-dependent and increases during 

maturation of the neuron330. Varying expression levels of PV and ErbB4 prompt me to test if 

the expression intensity of PV is regulated by the expression level of ErbB4. In vitro somatic 

PV intensity does however not correlate with the expression of ErbB4 (n=63 neurons, Fig. 

5.3H). Importantly, regardless of the transduced isoform, subcellular localization of the ErbB4 

was restricted to the soma and dendrites of PV interneurons (Fig. 5.3C-F). Only in a few cells, 

that expressed particularly high levels of transduced ErbB4, a few dim puncta were observed 

in the axon beyond the AIS (see Fig. 5.3F), but absent from distal parts of the axon and 
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presynaptic boutons. This is consistent with the observation that endogenous protein in some 

cases (36%) is found up to four cell diameters into the axon, but never more distal58. The 

distribution of ErbB4 in neurites (ratio axon/dendrites) was similar to endogenous expression 

(Fig. 5.3I), albeit a bit increased due to higher background under overexpressing conditions 

and different antibodies used. Of note, fluorescent intensity analysis of ErbB4 in the axonal 

compartment was likely generally overestimated owing to background staining and overlap 

with other transduced neurons and dendrites. This probably also resulted in the varying and 

increased axonal/ dendritic ratios observed for the JMa/Cyt-1 isoform with low overall 

expression (see Fig. 5.3I), as immunofluorescent images do not show any axonal ErbB4 (Fig. 

5.3C). In sum, none of the ErbB4 isoforms is targeted to axons when expressed at physiological 

levels. The analyses moreover did not reveal any substantial differences in subcellular 

distribution of ErbB4 isoforms in GABAergic PV interneurons. I therefore concluded that 

restriction of ErbB4 to the somatodendritic compartment in hippocampal GABAergic 

interneurons is independent of the isoform and that differences in distinct targeting of ErbB4 

in GABAergic and dopaminergic neurons is rather due to divergent protein trafficking in these 

neuronal types than to the isoform expressed. 

Lastly, I also intended to address the subcellular localization of ErbB4 isoforms in 

dopaminergic neurons by immunocytochemistry of transduced primary mesencephalic 

cultures of ErbB4 KO mice. However, I was confronted with technical difficulties, as the 

cultured dopaminergic neurons did not transduce well with the same ErbB4-expressing AAV 

1 virus or the synthetic serotype AAV-DJ. With 3.9kb coding sequence, pAAV-hSynI-ErbB4 

is at the packing limit of ~5kb of AAVs and I reasoned that the titer could be too low to 

successfully transduce dopaminergic neurons that represent only about 5% of cells in these 

mixed mesencephalic culture conditions while infecting efficiently GABAergic interneurons 

in hippocampal cultures (10-20% of cells). Therefore, I plan to revisit the transduction of 

ErbB4 in dopaminergic neurons using a high capacity AAV vector generated by Detlef 

Vullhorst in the laboratory. This pAAV-hSynI Gateway vector additionally lacks the b-globin 

intron and the polyadenylation signal of human growth hormone was replaced by the shorter 

corresponding signal from the human simplex virus thymidine kinase gene (HSV-TK) 

reducing the size to 899bp flanking sequence between the inverted terminal repeats (ITR) after 

Gateway recombination. To achieve higher titers, we also reached out to commercially produce 
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and purify these AAVs. Alternatively, it is also possible that ErbB4 overexpression is not 

tolerated well by dopamine neurons compared to GABAergic interneurons. 

5.4 Discussion 
In conclusion, I provided first-time evidence for the axonal localization of ErbB4 receptors 

in cultured dopaminergic neurons (Fig. 5.1). Axonal targeting in dopamine neurons is in stark 

contrast to the somatodendritic expression of ErbB4 on most GABAergic interneurons (Fig. 

5.3). Moreover, none of the four ErbB4 isoforms when overexpressed is transported into 

axonal projections of cultured GABAergic. Taken together, I concluded that axonal targeting 

in different neuronal types is likely independent of the ErbB4 isoform, and rather due to 

differences in trafficking mechanisms between these neurons resulting in different localization 

of the same receptor.  

Axonal transport has been mainly studied in hippocampal cultures due to the relative 

homogeneity, ease of overexpression and suitability for live-cell imaging. On the other hand, 

biochemical studies are frequently conducted in cortical cultures with higher cell densities331. 

But only a few studies have addressed axonal transport in dopamine neurons332, 333 and the 

transport of dopamine-relevant cargos such as Parkinson’s disease-causing a-synuclein are 

predominantly analyzed in other systems including hippocampal cultures334. Further, 

comparative studies addressing the transport of one cargo or protein in different cell culture 

systems have rarely been performed335. In general, polarized transport has been found to be 

cargo-specific336, and previously described to differ for protein isoforms39, 324, 325. To my 

knowledge, trafficking of the same protein to different compartments in distinct neuronal cell 

types has not been reported yet. One study suggested that both GABA and glutamate can be 

similarly anterogradely transported in inhibitory and excitatory neurons335. Besides, the 

transport of synaptic vesicles depends on kinesin-3 (KIF1A, Unc104) in both Caenorhabditis 

elegans posterior deirid (PDE) dopamine neurons and in rat hippocampal culture337. Similar 

trafficking mechanisms for GABA and glutamate transporter are supported by the 

colocalization of vesicular GABA transporter (vGAT) and the two vesicular glutamate 

transporters vGLUT1/vGLUT2 in both excitatory and inhibitory synapses338, 339. However, 

vGLUT2 and vesicular monoamine transporter 2 (VMAT2) target to different microdomains 

of rodent mesoaccumbens axons340.  
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If a protein is located to the axonal compartment is regulated at the AIS and the adjacent 

pre-axonal exclusion zone (PAEZ). The dense cytoskeleton in these areas limit lateral 

diffusion, vesicular carriers with axonal proteins interact with specific adaptors and 

microtubules, and freely pass this filter, whereas somatodendritic carriers are blocked331, 341. In 

principle, the axonal localization of the same protein in one neuronal class but not in others, 

can be possibly attributed to two scenarios (1) a more stringent filter at the AIS/PAEZ in some 

neuronal cell types that restricts the protein to the somatodendritic compartment, and/or (2) the 

expression of specific transport proteins e.g. adaptor proteins or kinesins in only some neuronal 

cell types that allow for the axonal transport. While the first scenario is a rather passive 

retention from the axon, the second consists of active transport. In GABAergic neurons, in 

which ErbB4 was overexpressed to particularly high levels, a few dim ErbB4 puncta were 

observed beyond the AIS, but never in distal parts or presynaptic boutons. This suggests that 

the diffusion barrier at the AIS was saturated by the high expression levels and as a result 

ErbB4 receptor ‘leaked’ into the proximal axon but was not actively transported to more distal 

parts, portend to the second scenario. On the other hand, ErbB4 may be retained from the axons 

of GABAergic interneurons, but a more relaxed filter in long-projecting dopamine neurons 

allows the receptor to be transported into distal parts of the axon. However, this is purely 

speculative, and it will be interesting to see, if in the future comparative studies elucidate 

divergent and/or convergent trafficking mechanism of the same cargos in distinct neuronal cell 

types. If polarized transport differs between neuronal cell types is a very interesting but 

fundamental important question at the intersection between molecular biology and 

neuroscience that has been largely overlooked. Transport studies in dopamine neurons are 

particularly challenging as they only represent a fraction (<5%) of cells in primary 

mesencephalic cultures342 and dopaminergic cell lines such as LUHMES cells do not specify 

neurites329. 

While in GABAergic interneurons, none of the overexpressed ErbB4 isoforms located into 

axonal projections, it remains unclear if only a few or all ErbB4 isoforms are present in axonal 

projections of dopaminergic neurons. Preliminary experiments using multiplex fluorescent 

ISH, RNAscope, in primary dopaminergic neurons cultured in microfluidic chambers 

suggested that the protein and not the mRNA of ErbB4 is transported to the axon of 

dopaminergic neurons (L. Erben unpublished data). We are continuing to pursue the 
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overexpression of ErbB4 variants in primary mesencephalic cultures using commercially 

produced viruses. Of note, dopamine levels in target areas as well as cognitive function in Th-

Cre; ErbB4fl/fl was rescued by the viral overexpression of Cre-dependent ErbB4 JMb/Cyt-2 

receptors injected into the midbrain234, suggesting that at least JMb/Cyt-2 receptors do localize 

to axonal projections and are able to regulate extracellular dopamine levels.  

Lastly, it remains unresolved how ErbB4 modulates DAT activity to increase extracellular 

dopamine levels after NRG stimulation. While the DAT blocker GBR increases dopamine in 

the medium of LUHMES cell culture and occludes further NRG1-mediated increase, the 

uptake of DA is only attenuated about 20% by NRG1 stimulation234, suggesting that other 

mechanisms than the blockage of dopamine re-uptake are involved. Here, we could not present 

any evidence for a direct interaction between DAT and ErbB4 or NRG/ErbB4-mediated DAT 

endocytosis. Moreover, striatal DAT expression was unaltered in ErbB4 KO mice, suggesting 

that longer time scale transcription or translation of DAT are also independent of ErbB4. In 

contrast DAT was reported to be increased in the striatum, nucleus accumbens and cortex of 

transgenic mice expressing a dominant-negative ErbB4 variant in oligodendrocytes180. These 

discrepancies may arise as dominant negative ErbB4 may also interfere with ErbB3 and ErbB2 

signaling. Besides, DAT mediating the reuptake of dopamine, DAT independently mediates 

DA release. DA efflux via DAT can be elicited Ca2+-independent by NMDA and triggered by 

Gq-protein coupled receptors. Both pathways activate protein kinase C (PKC) that has been 

shown to phosphorylate DAT, activating outward flux and inhibiting at the same time inward 

flux343. PKC is downstream to ErbB4 receptor36, 45. On the other hand, Gbg subunits have been 

shown to inhibit DAT activity344 and amphetamine-induced DA efflux depends on 

Ca2+/calmodulin-dependent protein kinase-II (CaMKII)343. Although surface localization of 

DAT is unchanged after NRG stimulation, the transporter may be redistributed on the surface 

by NRG/ErbB4. DAT has been shown previously to be recruited to PKC-rich lipid drafts which 

could affect efflux345. Therefore, NRG/ErbB4 signaling besides attenuating dopamine uptake 

via DAT, could at the same time also regulate DAT-mediated dopamine efflux. Further studies 

will be necessary to clarify this hypothesis and signaling mechanisms. 
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6  

Neurodevelopmental, neurochemical and 
behavioral analyses of isoform-specific ErbB4 

Cyt-1 mutant mice 
This chapter presents an extended version of a manuscript currently in preparation: Larissa 
Erben, Marie Cronin, Ricardo Murphy, Miguel Skirzewski, Irina Karavanova, Detlef 
Vullhorst, Steven Carroll & Andres Buonanno (in preparation). Added sections are 
emphasized in dark grey italics.  

Authors contributions: L.E., M.S. & A.B. designed research, I.K., D.V., S.C. & A.B. designed 
& generated mutant mouse, L.E., M.C., R.M. & M.S. performed research, L.E., M.C. & M.S. 
analyzed the data, L.E. wrote the manuscript. 

6.1 Abstract 
The Neuregulins and their cognate neuronal tyrosine kinase receptor ErbB4 are associated 

with schizophrenia and the expression of the four ErbB4 splice variants is altered in 

postmortem brains of schizophrenia patients. Although ErbB4 mutant mice display a vast 

variety of phenotypes, including altered GABAergic migration, dopamine imbalances and 

impairments in behavioral tasks with relevance to schizophrenia, the contribution and function 

of individual ErbB4 splice variants in the central nervous system remains completely elusive. 

Here, we generated splice variant-specific mutant mice that lack the Cyt-1 exon, one of two 

cytoplasmic ErbB4 splice variants. Cyt-1 is increased in schizophrenia and encodes a receptor 

uniquely able to activate PI3K/Akt pathways over Cyt-2 ErbB4 receptors. Loss of Cyt-1 during 

development did not affect GABAergic interneuron development or show deficits in locomotor 

activity, anxiety, sensorimotor gating or cognitive behaviors. However, extracellular dopamine 

in the medial prefrontal cortex are increased in heterozygote Cyt-1 mutants that also exhibit 
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mild phenotypes. Taken together, we conclude that ErbB4 Cyt-1 receptor is largely dispensable 

for CNS development and function in vivo. 

6.2 Introduction 
The psychiatric disorder schizophrenia affects about 1% of the population and is 

characterized by positive (hallucinations, delusions), negative (social withdrawal, lack of 

motivation) and cognitive (attention and working memory deficits) symptoms. However, the 

pathophysiology of this heterogenous disease remains poorly understood despite the 

identification of many genetic risk factors3, 7. The neurotrophic factors Neuregulins (NRGs) 

and their cognate neuronal tyrosine kinase receptor ErbB4 are genetically linked to 

schizophrenia and its endophenotypes4, 27, 28, 30, 31. Remarkably, mice with mutations in NRG1, 

NRG2, NRG3 or ErbB4 exhibit schizophrenia-related behavioral phenotypes including 

hyperactivity, sensorimotor gating deficits, reduced anxiety, cognitive and social 

impairments61, 132, 135, 142, 165. NRG/ErbB4 signaling is best characterized in the cortex and 

hippocampus, where ErbB4 expression is confined to GABAergic interneurons58, 60. Among 

others, NRG/Erb4 regulates interneuron migration and allocation79, 81 and as a consequence, 

GABAergic interneurons are reduced in the cortex and hippocampus of ErbB4 mutant mice63, 

79. NRG/ErbB4 also regulates glutamatergic and GABAergic synapse development and 

neurotransmission60, 68, 70, 117, 123 and modulates synaptic plasticity65, 124, 137, 175, critical period 

plasticity148, 149 and network activity83, 322, 346. Moreover, ErbB4 is also expressed on 

dopaminergic neurons50, 53 and recently has been shown to play an important role in regulating 

dopamine homeostasis and cognitive function138, 234. Interestingly, conditional ErbB4 mutant 

mice that lack ErbB4 in tyrosine hydroxylase-expressing neurons including dopaminergic 

neurons (Th-Cre; ErbB4fl/fl) exhibit an imbalance of basal extracellular dopamine levels in 

distinct projection areas234, reminiscent of the described hyperdopaminergic state in dorsal 

striatum but hypodopaminergic state in the prefrontal cortex of patients19, 184.  

Four ErbB4 isoforms are generated by alternative splicing of single exons at two loci. At 

the juxtamembrane (JM), JMa and JMb variants arise by the inclusion of exon 16b and 16a, 

respectively, and regulate the receptor’s susceptibility to metalloprotease- and subsequent g-

protease-mediated cleavage and therefore its transcriptional potential47, 48, 190, 194, 203. In the 

cytoplasmic (Cyt) region of the receptor, inclusion or omission of the 48bp exon 26, generates 
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Cyt-1 and Cyt-2 variants, respectively191. The additional 16 amino acid-sequence in the Cyt-1 

ErbB4 receptor encodes both a binding domain for phosphatidylinositol-3-kinase (PI3K) and 

a recognition motif for WW domain proteins (PPXY)191, 202. As a result, Cyt-1-containing 

ErbB4 receptors can directly stimulate PI3K and Akt phosphorylation191, 212, whereas Cyt-2 

ErbB4 receptors rely on the heterodimerization with ErbB3 to activate PI3K206. The presence 

of a third WW domain binding motif in the Cyt-1 ErbB4 receptor implies a stronger coupling 

of a subset of WW domain proteins such as ubiquitin ligases which render Cyt-1 ErbB4 less 

stable compared to Cyt-2 ErbB4 receptors207-210.  

Both convergent and divergent functions have been described for the cytoplasmic ErbB4 

isoforms Cyt-1 and Cyt-2 211, 212. In heterologous and non-neuronal cell cultures isoform-

specific functions were described in survival and apoptosis, chemotaxis, mobility and 

migration, proliferation, growth and differentiation, ubiquitination and degradation, 

endocytosis and subcellular localization, as well as phosphorylation and kinase activity 

(reviewed in213). Moreover, proliferation, progression and prognostics of different cancer types 

depend on the ErbB4 Cyt isoform expressed (e.g. mammary gland cancer347-349, ovarian 

adenocarcinoma350, medulloblastoma215, colorectal cancer351, bladder cancer352, malignant 

melanoma353). In the central nervous system (CNS), Cyt-2 is the predominant ErbB4 isoform 

in most brain areas 192, 213, 218. However, few studies have addressed the different roles and 

contributions of ErbB4 isoforms to the characterized modulations by ErbB4 and phenotypes 

observed in ErbB4 mutant mice. In cultured neuronal progenitors, isoform-specific migratory 

activity has been described206, 220, 354, in PC12 (adrena gland pheochromocytoma) cells, 

proliferation and neurite outgrowth is promoted by Cyt-1 and Cyt-2 ErbB4, respectively213 and 

ErbB4/PI3K signaling was proposed to control interneuron migration in vivo221. Interestingly, 

in the postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia patients, ErbB4 

Cyt-1 variants and the downstream target PI3KCD are increased compared to healthy 

controls28, 218, 222-224. Moreover, inhibition of PI3K, improves amphetamine-induced 

hyperlocomotion and sensorimotor gating in a rat schizophrenia model224. 

ErbB4 Cyt-1 variants constitute about 40% of ErbB4 receptor in the adult brain and are 

increased in postmortem brains of schizophrenia. However, how ErbB4 Cyt-1 receptors are 

contributing to ErbB4 receptor functions in the CNS and which are its implications in the 

pathophysiology of schizophrenia, remains completely elusive. In order to better understand 
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the role of ErbB4 Cyt-1 receptors in the brain, we generated ErbB4 Cyt-1 mutant mice by site-

specific recombination to remove the Cyt-1 cassette (exon 26) and subjected these mice to an 

extensive evaluation of developmental, neurochemical, behavioral and expression studies.  

6.3 Methods 
Animals & generation of Cyt-1 KOs. Mice were kept on a 12-12h light-dark schedule with 

access to food and water ad libitum. All studies were conducted in female and male mice. 

Animals were handled in accordance with the NIH Animal Welfare guidelines and all animal 

procedures were approved by the NIH Animal Care and Use Committee. The Cyt-1 targeting 

construct, harboring loxP sites flanking ErbB4 exon 26, was generated by “recombineering” 

using vector pL253355 (Fig. 6.1A). Site-specific recombination of the erbb4 locus and 

generation of conditional Cyt-1 mutant mice was performed at the Transgenic & Genetically 

Engineered Models Core of the University of Alabama at Birmingham. Successfully targeted 

and PCR-validated embryonic stem (ES) cells derived from C57BL/6J mice were injected into 

blastocysts from albino C57BL/6J mice (JAX stock # 000058). Chimeric offspring was bred 

with albino C57BL/6J mice; only black F1 mice were used for further breeding. Mice were 

then crossed to FLP deleter strain B6;SJL-Tg(ACTFLPe)9205Dym/J (JAX stock # 003800) to 

remove the FRT site-flanked neomycin cassette used for ES cell selection. Null (germline) 

Cyt-1 mutant mice, hereafter referred as Cyt-1 mutant mice, were generated by crossing floxed 

Cyt-1 mice to mice expressing Cre recombinase under the control of ubiquitously active EIIa 

promoter (also on C57BL/6 background; JAX stock # 003724). Heterozygous Cyt-1 knockout 

mice were used for breeding and yielded normal litter sizes (6.4 pups ± 0.11, N=2 cohorts, 

n=648 mice; compared to C57BL/6J 6.2 ± 0.2 pups356), balanced sexes (52.9 ± 1.29% males, 

N=2 cohorts, n=648 mice), and Mendelian genotype frequencies (24.5 ± 0.03% +/+, 50.3 ± 

1.47%, 25.1 ± 1.44%, N=2 cohorts, n=648 mice). Routine genotyping was performed by PCR 

using forward primers 5’-AGTTTCCTTATTCCTAGCTCTCC-3’ and 5’-

TGTCTTAGATGTCTGTAACTTGG-3’ and reverse primer 5’-

GATGATCCAGCAATGCTACCCTC-3’ at 60°C annealing for 20s and 72°C elongation for 

10s. Primer binding sites are schematically illustrated in Fig. 6.1A and representative 

genotyping results are shown in Fig. 6.1B. Cyt-1 mutant mice were crossed to GAD67-GFP 

mice (kindly proved by Dr. Yuchio Yanagawa; Gunma University, Japan) to analyze 
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GABAergic interneuron density by immunohistochemistry in GFP+/- animals (denominated 

as Cyt-1 KO; GAD-GFP mice, see below). Adult wild-type C57BL/6J mice were purchased 

from the Jackson laboratories and bred overnight to obtain timed pregnancy. 

Isoform-specific in situ hybridization (ISH). Exon-specific ISH (BaseScope version 1 & 2; 

Advanced Cell Diagnostics) was performed on serial 8µm-thick coronal formalin-fixed 

paraffin-embedded sections of eight-to-eleven-week-old adult mice (C57BL/6J or Cyt-1 

homozygote/ heterozygote mutants and control littermates; both sexes) and E14.5 C57BL/6J 

embryos (sex undetermined) according to the vendor’s protocol and as previously described192, 

357. Custom-made ErbB4 Cyt-1 and Cyt-2 probes are targeting exon junctions 25/26 (5’-

CATCTACACATCCAGAACAAGAATTGACTCCAATAGG/AGTGAAATTGGAC-3’) 

and 25/27 (5’-

CCATCTACACATCCAGAACAAGAATTGACTCCAATAGG/AATCAGTTTGT-3’) of 

ErbB4 transcripts, respectively. Briefly, paraffin sections were deparaffinized with xylene and 

pretreated with hydrogen peroxide (10min at RT), antigen retrieval (15min at 100°C) and 

proteases (protease III, 30min at 40°C). Probes were incubated for 2h at 40°C, signal was 

chemically amplified with 7/8 amplification steps (BaseScope version 1/2) and subsequently 

detected using alkaline phosphatase and FastRED dye. For post-hoc immunostaining sections 

were immediately subjected to antibody staining with rat anti-dopamine transporter (DAT) 

antibody (clone 6-5G10; Santa Cruz; sc-32258; 1:200) and secondary donkey-anti-rat-

Alexa488 (1:1000, Invitrogen, Thermo Fisher) as described in detail in357 using standard 

immunofluorescence histochemistry (IHC) protocol (see below). 

Immunofluorescence histochemistry (IHC). Immunostaining of 50µm-thick free-floating 

sections of postnatal day 30 (P30) Cyt-1 KO; GAD-GFP and heterozygote/control littermates 

(n=4, both sexes) was performed as previously described39. Briefly, mice were transcardically 

perfused with 4% paraformaldehyde (PFA) in 0.1M PBS, pH 7.4. Dissected brains were post-

fixed overnight in the same fixative at 4°C and 50µm-thick sequential sections cut on a 

vibratome. Sections were blocked in 10% normal donkey serum, 0.3% Triton X-100 in 0.1M 

PBS for 1h at RT and incubated with primary antibodies in blocking solution overnight at 4°C. 

Following three 10-min washes in 0.1M PBS with 0.25% Triton X-100, secondary antibodies 

were incubated in blocking buffer for 2h at RT. Samples were extensively washed with 0.1M 
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PBS, counterstained with DAPI and mounted with Mowiol-DABCO. As primary antibodies 

rat monoclonal anti-GFP (clone GF090R, Nacalai Tesque, Japan; 1:2000) and and visualized 

with donkey secondary antibodies (Invitrogen, Thermo Fisher & Jackson Immuno Research). 

For GABAergic interneuron densities, bilateral cortical analyses were performed at the three 

different bregma levels (~+0.26, -0.46, -1.22), and bilateral hippocampal analyses at four 

different bregma levels (~-1.22, -1.82, -2.46, -3.08). Damaged sections were excluded from 

analysis.  

Image analysis. FastRED ISH signal were analyzed fluorescently at 20x magnification using 

Zeiss LSM710/800 confocal microscopes. Unbiased automated quantitative analysis of 

maximum intense projections obtained from Z-stack images was performed using 

CellProfiler227 as previously described192 and explained in detail in357. For ISH-IHC analyses 

(Fig. 6.5D,E) >30% overlap of the cell with DAT staining was defined as positive 

dopaminergic neuron. Similarly, IHC in GAD-GFP mice was analyzed using 10x 

magnification at a Zeiss LSM800 confocal microscope. Density of GABAergic interneurons 

was analyzed from maximum intense projections using a custom-made CellProfiler pipeline 

identifying GAD-GFP+ cells (size >25/50µm2 SSCtx/Hpp, threshold=1.5*median background 

intensity) and filtering by eccentricity (>0.94). Hippocampal subregions and cortical layers 

were defined based on morphology, DAPI stain and interneuron density. Injection sites in 

floxed Cyt-1 mutant mice were evaluated using 10x magnification using Zeiss LSM 710. In 

all analyses, analyzed areas were not different between transcripts and/or genotype or group.  

Quantitative reverse-transcription PCR (qPCR). Real-time qPCR using TaqMan probes was 

performed as previously described192. Briefly, RNA was isolated from whole brain of ten-

week-old Cyt-1 KO mice, and their heterozygote and control littermates (n=3/genotype; both 

male and female), from microdissected embryonic/perinatal/postnatal pallial/cortical and 

subpallial/striatal tissue (C57BL/6J; n=3-4/time-point; both male and female, sex 

undetermined until P10) and from micro-dissected mesencephalic tissue of three-month old 

floxed Cyt-1 mice injected with AAV (see below; n=3/group; both male and female) using TRI 

Reagent (Thermo Fisher). cDNA was synthesized from 1µg RNA (500ng RNA only for 

samples used in RNA sequencing, see below) using SuperScript IV Reverse Transcriptase 

(Thermo Fisher) and random hexamers for 20min at 55°C. Gene expression was subsequently 
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assessed using TaqMan universal PCR Master Mix (Thermo Fisher), 0.25µM FAM/VIC-

labeled TaqMan probes, and 0.9µM corresponding primers from 2.5-5ng cDNA in a total 

volume of 10µl. Cycling was performed in 384-well plates using a QuantStudio 6 

Thermocycler (Thermo Fisher) and the following parameter: 2min at 50°C and 10min at 92°C, 

followed by 40 cycles of 15s at 95°C, 1min at 65°C (for Cyt probes) or 60°C (for all other 

probes). Custom-made isoform-specific ErbB4 TaqMan probes (Thermo Fisher) were FAM-

ATGGACGGGCCATTCCACTTTACCA-MGB for JMa, FAM- 

TTCAAGCATTGAAGACTGCATCGGCCTGAC-MGB for JMb, FAM-

TGAAATTGGACACAGCCCTCCTCCTG-MGB for Cyt-1 and FAM-

AATTGACTCCAATAGGAATCAGTTTGTGTACCAAGAT-MGB for Cyt-2. Flanking 

primers used were 5’-CCACCCTTGCCATCCAAA-3’ and 5’-

CCAATGACTCCGGCTGCAATCA-3’ for JM isoforms, and 5’-

CAACATACCTCCTCCCATCTACAC-3’ and 5’-GCATTCCTTGTTGTGTAGCAAA-3’ 

for Cyt isoforms. ErbB3 (Thermo Fisher, Mm01159999_m1) and ErbB4 (Thermo Fisher, 

Mm01256793_m1) TaqMan probes are catalog probes and standard TaqMan assays (all 

Thermo Fisher) for Nkx2.1 (Mm00447558_m1), Nr2f2 (Mm00772789_m1), Slc5a7 

(Mm00452075_m1), Rin1 (Mm00455104_m1), Dbh (Mm00460472_m1), Dlx6 

(Mm01166201_m1), Slc17a7 (Mm00812886_m1), Foxg1 (Mm02059886_s1), Ngb 

(Mm00452101_m1) and Vip (Mm00660234_m1) were analyzed to confirm differential 

expressed genes identified in the RNA sequencing study. Normalization was done in all cases 

using a VIC-labeled TaqMan probe for GAPDH (Thermo Fisher, Mm9999915_g1). Standard 

curves (10ag–1ng) of cloned DNA for ErbB4 JMa/Cyt-1 and JMb/Cyt-2 and of synthesized 

DNA fragments for ErbB3, confirmed linearity and showed similar efficiency for isoform-

specific assays. Assay specificity was tested using 100pg DNA of non-matching ErbB4 

isoforms or ErbB receptor.  

RNA sequencing. For RNA sequencing and post-hoc qPCR analysis, RNA was isolated from 

dorsal hippocampal (Hpp) and the ventral tegmental area (VTA) micropunches (bilateral ~1µg 

per animal) from 10-week old Cyt-1 mutant mice, heterozygote and control littermates of both 

sexes. Three samples of both sexes were pooled prior to RNA isolation using TRI Reagent 

(Thermo Fisher) and purification with RNeasy Micro Kit (Qiagen). RNA yield varied between 

1.3-4.9µg and RNA integrity measured using Agilent RNA 6000 Nano Kit (Agilent 
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Technologies) ranged between 8.7 and 9.1. RNA sequencing library was constructed from 1μg 

total RNA using TruSeq Standard mRNA Library Preparation kit (Illumina) with polyA-

enrichment. Each library was barcoded; equal amounts were combined and sequenced on an 

Illumina HiSeq 2500 system (Illumina) yielding an average of 38.2 million paired-end reads 

(2x100b) per sample. Reads were aligned to the mouse genome (GENCODE mouse release 

16) using RNA-STAR (version 2.6.1; 237). Sample gene expression was quantitated using 

subread featureCounts (version 1.6.3) against GENCODE mouse release 16 with the following 

options (-O, -M, -g, gene_name; 238) and differential expression was tested across defined 

conditions using DESeq2 (v1.16.1; 358). Gene ontology analysis was done using gProfiler359 

and splice variant analyses performed in the Integrative Genomics Viewer239 with the Sashimi 

plot function. Expression of genes identified as differentially expressed (adjusted p<0.05) was 

analyzed by TaqMan qPCR (see above). Three pooled samples were analyzed by RNA 

sequencing, four pooled samples by TaqMan qPCR. 

Dopamine (DA) measurements. Measurements of basal extracellular DA levels in the medial 

prefrontal cortex (mPFC) of freely moving mice (n=6-7/genotype, both sexes, 2.5-4 months 

old) were performed by no-net flux (NNF) microdialysis approach as previously described 360. 

Briefly, counterbalanced unilateral stainless-steel guide shafts (21-gauge, 6mm-long) were 

chronically implanted into the mPFC (AP: 2.0mm, L:0.3mm, V:0.3 mm with respect to 

bregma, midsagittal sinus and brain surface361). After one-week post-operative recovery, mice 

underwent NNF procedure by lowering a laboratory-made microdialysis probe through the 

implanted guide shaft as previously described 362. The tip of the microdialysis probe consisted 

in a 2mm-long cellulose hollow fiber (18kDA MWCO, SpectrumLabs Inc) protruding from 

the tip of the guide shaft. Artificial cerebrospinal fluid (aCSF; 136mM NaCl, 3.7mM KCl, 

2.2mM CaCl2, 1mM MgCl2, and 10mM NaHCO3 at pH 7.4) was continuously perfused 

through the microdialysis probe at a flow rate of 1µl/min during 2 hours before sample 

collection. Five different DA standard concentrations (0, 0.5, 1.0, 1.5, and 2.0nM) were 

randomly perfused through the microdialysis probe during 60min and duplicate samples of 

30min each standard were collected in 10µl of 100mM HCl + 1mM EDTA to prevent 

catecholamine degradation. Samples were immediately frozen and stored at -80°C until 

posterior analysis no further than a week. Probe placements were verified by Nissl staining in 

50µm thick vibratome sections (Fig. 6.6G) and animals with misplaced probes excluded from 
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analysis. An autosampler (high performance liquid chromatograpy (HPLC) autosampler 

INSIGHT, Eicom) injected DA standards and samples into an isocratic HPLC system coupled 

to amperometric detection as described by the manufacturer (HTEC-510, Eicom). A regression 

curve was built up per genotype by subtracting the area under the curve of the corresponding 

standard (IN) minus the area under the curve of the dialysate sample (OUT) at this particular 

concentration of DA standard. The equation of each regression curve allowed us to estimate 

the NNF DA concentration for each animal (y=0). 

Battery of behavior tests. Behavioral testing of adult Cyt-1 mutant mice (3-7 months old; both 

sexes) was conducted in the following sequence: open field, elevated plus maze, prepulse 

inhibition and separately Y-maze, followed by Barnes maze testing. Different cohorts were 

tested and behaved similarly. Behavioral testing was performed during the light period of the 

day and all apparatuses were cleaned with 70% ethanol between trials. Tracking in the open 

field, elevated plus maze, Y-maze, and Barnes maze was conducted with ANY-maze software. 

The experimenter was blind to the genotypes.  

Open Field: Locomotor activity was tested in an open field assay (white chamber, 40cm x 

40cm x 30cm, center defined as 28cm x 28cm, 70-80lux in the perimeter, 80-90lux in the 

center). Mice (n=12-14/genotype) were habituated to the testing environment for 30min prior 

to testing. Mice were permitted to freely explore the maze for 30min. Center time and traveled 

distance were analyzed. 

Elevated plus maze: The elevated plus maze test for anxiety-like behavior was tested in a 

plus-shaped white plastic apparatus (30cm x 5cm arms) consisting of two closed arms (18cm-

high black walls, 60-70lux) and two open arms (130-140lux) which stood 40cm above the 

ground. Cyt-1 mutant mice and heterozygote and control littermates (n=11-14/genotype) were 

habituated for 30min to the room. Mice were permitted to explore the maze for 5min and time 

spent in the open and closed arms was analyzed. 

Prepulse inhibition (PPI): Startle response and prepulse inhibition testing was conducted 

using a standard startle response system (SR-LAB). Cyt-1 mutant mice (n=17-18/genotype) 

were acclimated to a 65dB background noise in the plexiglas tube of the testing chamber for 

5min on three consecutive days. Startle response in arbitrary units was determined by pseudo-

random presentations of tones ranging from 70 to 120db, in 5db increments (5 tones each) and 
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normalized to the average of 120db pulses of the cohort. During PPI testing on the following 

day, the animals were presented with a pseudorandom sequence of 20ms prepulse tones (PP; 

66, 70, 74, 78dB; 12 times each) and 40ms 120dB pulse pairings with variable inter-trial 

interval between 5 to 20s. A 120db no prepulse (NPP) presented 28 times was used to calculate 

percentage of prepulse inhibition of startle response as (average startle to NPP – (average 

startle to PP)/ average startle to NPP)*100.  

Y-maze: Working memory of Cyt-1 mutant mice (n=12-14/genotype) was tested in a Y-

Maze apparatus (30cm x 18cm x 9.5cm three-arm maze with opaque tan walls, 50lux). Mice 

were habituated for 30min to the testing environment and then permitted to explore the maze 

for 5min. Novel arm entries were identified manually as entries into the third arm different 

form the current and previously explored arm and percentage of alternation was calculated. 

Barnes maze: Barnes maze spatial learning and memory test was conducted as previously 

described234. The edge of the round elevated apparatus (Stoelting, 90cm diameter, 800lux, 

90cm above ground) is marked by 20 open holes (~10cm diameter) with a hidden escape 

chamber placed underneath of one of the holes (target, 0) and the rest of the holes were labeled 

as +1 to +10, and -1 to -9. The edges of the maze were covered with a wall providing spatial 

cues and 85db background white noise was played during all phases of the test. The conducted 

Barnes Maze consisted of three phases: training, probe test, and new escape test. During the 

training, mice (n=8-11/genotype) were allowed to explore the maze. The trail ended when the 

animal entered the escape chamber, the noise switched off automatically and aversive light 

was blocked. The mouse was held in the chamber for 1min. Mice that could not locate the 

chamber within 3min were manually guided to the escape hole. Training was conducted over 

four days (4 trials per day). Mice that failed to escape the maze in more than one trial on the 

fourth day of training were excluded from analysis. On the fifth day, the escape chamber was 

removed, and mice were tested for 90 s (probe test). Latency to escape and time in the correct 

zone were recorded in ANY-maze, target hole nose pokes and errors defined as non-target nose 

pokes were quantified by hand-scoring of collected videos. 48h after the probe test, mice were 

re-introduced to the testing apparatus in which the escape chamber has been moved from its 

original position to hole +8 (new target test). Mice were permitted to explore the maze until 

they located the new escape for up to 3min, at which point they were guided to the new escape 
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(see learning phase). Four subsequent trials were performed and latency to escape and errors 

were quantified as described above. 

Progressive Ratio: A progressive ratio task was used to test mice (n=11-16) for their 

motivation and willingness to work for palatable food rewards363. Mice were kept at 85% free-

feeding body weight and conditioning performed in sound-attenuated operant chambers (ENV-

300; Med Associates). Briefly, chambers were equipped with two nose-poke apertures on 

either side of the reward magazine dispensing palatable pellets (14mg dustless precision 

pellets, Bioserv), a house light that turned on (5s) during reward delivery, and a fan that 

provided white noise and ventilation during the experiment. One nose-poke aperture was set 

as active and the other as inactive, with the locations counterbalanced across animals. Nose 

poking in the active aperture resulted in the delivery of one reward pellet, while responses in 

the inactive port were recorded but had no consequence. Prior to the start of conditioning, 

mice were habituated to retrieve rewards delivered at variable interval schedule (range 5-

100s) for 30min and nose poke responses had no consequence. Then, mice were trained in a 

fixed ratio 1 (FR1) schedule of reinforcement where each nose poke in the active aperture 

resulted in the delivery of one reward. We considered mice to have reached a stable 

performance when thirty food pellets were collected under a 30min-long session during three 

consecutive days. Then, mice were progressively transferred to FR3 (three responses in active 

aperture – one reward) and FR5 (five responses in active aperture – one reward) schedules 

following the same criteria performance as FR1. Finally, a progressive ratio 7 (PR7) schedule 

was used to test for motivation to work for rewards. PR7 schedule consisted in record the total 

number of rewards collected (breaking point) and number of nose pokes in the active/inactive 

holes in a 3h-long test or until 60min of inactivity occurred (no recorded nose-poke), where 

the number of nose pokes in the active aperture to obtain a reward progressively increased by 

7 (7, 14, 21, 28, 35, etc.) with each subsequent pellet delivered. 

Locomotor activity in homecage: Mice (n=5-8) were independently located in a home cage 

(19.4cm x 18.1cm x 39.8cm) with regular bedding, free access to food and water, and regular 

12h light/dark schedule for 96 hours. To continuously record their horizontal locomotor 

activity, each home cage with one single mouse was placed in a square frame with infrared 

beams (43cm x 43cm; Columbus Instruments). 
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Experimental Design & Statistical Analyses. All data represent the mean ± SEM and statistical 

significance was set at p<0.05. Outliers (ROUT, Q=1%) were excluded from data analyses. 

Statistical analyses were performed using one-way ANOVA and Tukey’s multiple 

comparisons test (Fig. 6.1D-H; Fig. 6.4G,H, Fig. 6.6F, Fig. 6.7A,D,E, Fig. 6.8D), Mann-

Whitney test for comparison of two groups only (Fig. 5.2E,F, Fig. 6.6C,E, Fig. 6.8C) and two-

way ANOVA and Tukey’s multiple comparison test for comparisons of multiple variables 

(Fig. 6.4I-L, Fig. 6.5A-C, Fig. 6.7B,C,F,G, Fig. 6.8E) in Graph Pad Prism 8. 

6.4 Results 

 Generation of Cyt-1 mutant mice 
The lack of knowledge about ErbB4 Cyt-1 in vivo function prompt us to generate Cyt-1 

knockout mice that specifically lack the Cyt-1 exon (exon 26) (see Materials & Methods, Fig. 

6.1A). Successful ablation of Cyt-1 and flanking genomic sequence was confirmed by PCR 

from genomic DNA (Fig. 6.1B). Cyt-1-containing ErbB4 transcripts were absent in the brain 

as shown by exon-specific in situ hybridization192 (ISH; BaseScope; Fig. 6.1C,D, % Cyt-1, +/+ 

28.63 ± 0.98%, +/- 18.9 ± 2.86% -/- 2.36 ± 0.44%), TaqMan quantitative PCR (Fig. 6.1E, % 

Cyt-1, +/+ 38.66 ± 2.11 %, +/- 20.712 ± 1.42 %, -/- 0.00 ± 0.00 %; n=3, one-way ANOVA 

F(2,6)=174.4, ****p<0.0001) and RNA sequencing analyses (data not shown). Interestingly, 

Cyt-1 transcript levels were reduced to approximately half in heterozygote littermates 

compared to control littermates (Fig. 6.1D,E), suggesting that each ErbB4 allele contributes 

equally to ErbB4 expression. Moreover, as expected, all ErbB4 transcripts were ‘forced’ to 

splice as Cyt-2 transcripts in Cyt-1 mutant mice. Cyt-2 transcripts were augmented (% Cyt-

2/GAPDH, +/+ 0.46 ± 0.004%, +/- 0.52 ± 0.010%, -/- 0.62 ± 0.031%; n=3, one-way ANOVA, 

F(2,6)=18.13, p=0.0029), as total ErbB4 expression remained unchanged (Fig. 6.1G; % 

ErbB4/GAPDH, +/+ 2.85 ± 0.09%, +/- 2.90 ± 0.08%, -/- 2.82 ± 0.05%; n=3, one-way ANOVA, 

F(2,6)=0.2687, p=0.7731). Splicing at the second alternative splice site in the JM also was 

largely unaffected by the loss of Cyt-1 (Fig. 6.1F, % JMa, +/+ 18.16 ± 0.70%, +/- 18.97 ± 

0.52%, -/- 21.27 ± 0.78%; n=3, one-way ANOVA F(2,6)=5.725, *p=0.0407), providing for the 

first time evidence that splicing of ErbB4 at the two loci (JM and Cyt) is regulated 

independently.  
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Figure 6.1 | Generation and validation of isoform-specific ErbB4 Cyt-1 knock-out mice by transcript analyses.  
(A) Scheme illustrating strategy to generate Cyt-1 mutant mice (details see methods). Exon 26 (orange), encoding 
the Cyt-1 cassette, was targeted by site-specific recombination in C57BL/6J embryonic stem cells to insert 
flanking loxP sites (green). Subsequently, the FRT-pGK-neo-FRT (magenta) selection cassette was removed in 
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mice harboring the targeted allele by crossing to a FLP deleter strain. The Cyt-1 exon was then ablated in germline 
by crossing to mice expressing Cre recombinase under the control of ubiquitously active EIIa promoter. (B) 
Representative genotyping results using primers indicated in A. (C) Isoform-specific ISH shows absence of Cyt-
1 transcript in Cyt-1 homozygote (-/-) mutant mice and reduction of Cyt-1 transcript in heterozygote (+/-) mutant 
mice compared to control littermates. Examples from mesencephalic ventral tegmental area (VTA). (D) 
Quantification of data shown in C (n=3; one-way ANOVA, *p<0.05, ***p<0.001). (E-H) TaqMan qPCR 
analyses from whole brain (n=3/genotype). (E) Cyt-1 transcript was absent in Cyt-1 mutant mice (-/-) and reduced 
to approximately half in heterozygote (+/-) compared to control littermates (+/+). Expression of JM ErbB4 splice 
variants (F), and total ErbB4 (G) and ErbB3 (H) expression levels were unchanged (n=3; one-way ANOVA, 
*p<0.05, ***p<0.001, ****p<0.0001). Scale bar 50µm. 

Lastly, we addressed expression of ErbB3, as ErbB4 Cyt-2 receptor is able to activate PI3K 

through ErbB3/ErbB4 heterodimers206. ErbB3 expression is unchanged in Cyt-1 mutant mice 

(Fig. 6.1H; % ErbB3/GAPDH +/+ 0.426 ± 0.004%, +/- 0.423 ± 0.042%, -/- 0.485 ± 0.054%; 

n=3, one-way ANOVA, F(2,6)=0.8039, p=0.4906). Finally, Cyt-1 mutant mice were viable, 

had normal litter sizes (6.4 pups ± 0.11, N=2 cohorts; C57BL/6J 6.2 ± 0.2 pups356) and no 

obvious anatomical, developmental or behavioral deficits. 

 Cyt-1 is expressed in cortical and hippocampal GABAergic interneurons, 
but dispensable for GABAergic interneuron development 

Cortical and hippocampal GABAergic interneurons express high levels of ErbB458, 60, 63. 

ErbB4 functions on GABAergic interneurons have been extensively studied and identified to 

regulate many aspects of GABAergic and glutamatergic neurotransmission, directly or through 

indirect circuit effects, respectively124. In order to address if ErbB4 Cyt-1 may be involved in 

the modulation on GABAergic interneurons, we characterized the expression of Cyt-1 and Cyt-

2 ErbB4 splice variants in the adult mouse hippocampus (Hpp) and somatosensory cortex 

(SSCtx) using exon-specific ISH. Both Cyt variants were detected in a scattered pattern well-

known for GABAergic interneurons54, 56 (Fig. 6.2A-D). Consistent with previous reports59, 192, 

213, 218, Cyt-1 ErbB4 variants contributed ~40% of total ErbB4 in both areas (Fig. 6.2E,F; Hpp: 

Cyt-1 40.83 ± 0.9215%, Cyt-2 59.17 ± 0.9215%, n=4; Mann-Whitney test, p=0.0286; SSCtx: 

Cyt-1 37.28 ± 1.276%, Cyt-2 62.72 ± 1.276%, n=4; Mann-Whitney test, p=0.0286). This 

suggest that a significant portion of ErbB4 signaling in cortical and hippocampal GABAergic 

interneurons is mediated through ErbB4 Cyt-1 receptors and we next sorted to address in which 

processes regulated by ErbB4, Cyt-1 receptors are involved. 
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Figure 6.2 | Expression of ErbB4 Cyt variants in hippocampal and cortical interneurons. 
(A-D) Exon-junction-specific ISH for Cyt-1 and Cyt-2 ErbB4 splice variants on sections of C57BL/6J mice. (A,B) 
Representative expression of Cyt-1 and Cyt-2 in the dorsal mouse hippocampus (red area in scheme; A,B) and 
primary somatosensory cortex (barrel field, green area in scheme; C,D). (E,F) Quantitative analysis of Cyt splice 
variant expression in the hippocampus (Hpp; E) and the primary somatosensory cortex (SSCtx; F; *p<0.05; n=4; 
Mann-Whitney test). Scale bars 500µm in B, 100µm in D. 

During neurodevelopment, ErbB4 is expressed on tangentially migrating GABAergic 

neuroblasts54 and loss of ErbB4 results in the reduction of cortical and hippocampal 

interneurons in the adult as GABAergic neuroblasts fail to enter the developing cortex63, 79. 

ErbB4 Cyt-1 was previously reported to be expressed at particularly high levels in the 

ganglionic eminences, the origin of interneurons220, as well as in migrating GABAergic 

interneurons itself during both embryonic and postnatal development219, 221. Moreover, 

phosphorylation of Y1056 in the Cyt-1 encoded region was proposed to regulate directionality 

and polarity of migrating interneurons221. We first analyzed the expression of Cyt variants 

during development using exon-specific ISH and qPCR. Cyt-1 transcripts were present on 

tangentially migrating interneurons entering the cortical plate (Fig. 6.3A). Moreover, Cyt-1 

transcripts are relatively high expressed (40-60%) at all embryonic and perinatal time-points 

analyzed (E11.5-P10) compared to postnatal (P30) expression (~30%) in both pallial/cortical 
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and subpallial/striatal tissue (Fig. 6.3C). Of note, Cyt-1 expression peaked at birth (P0), 

particularly in the cortex, when interneurons are allocated in the cortical plate364.  

 

We hypothesized that Cyt-1 transcripts are involved in regulating interneuron migration 

and particularly their cortical allocation, and that potential deficit in tangential migration of 

GABAergic interneurons in Cyt-1 mutant mice could manifest in reduced interneuron numbers 

or altered distribution of interneurons in the postnatal cortex and hippocampus. To evaluate, 

GABAergic interneuron density and position, we crossed Cyt-1 mutant mice to transgenic 

GAD-GFP mice, that express GFP under the control of the GABAergic marker GAD1 

(glutamate decarboxylase). To our surprise, the number of GABAergic interneurons was 

unchanged compared to heterozygote and control littermates both in the SSCtx and the dorsal 

Hpp of young adult Cyt-1 mutant mice (Fig. 6.4; GAD-GFP cells in Hpp: Cyt-1 +/+ 180.8 ± 

7.73 cells/mm2, Cyt-1 +/- 178.1 ± 8.21 cells/mm2, Cyt-1 -/- 180.1 ± 3.54 cells/mm2; n=4, one-

way ANOVA, F(2,9)=0.04186, p=0.9592; in SSCtx: Cyt-1 +/+ 407.7 ± 10.71 cells/mm2, Cyt-

1 +/- 385.5 ± 7.10 cells/mm2; Cyt-1 -/- 392.0 ± 11.99 cells/mm2; n=4, one-way ANOVA 

F(2,9)=1.264, p=0.3283). Taken together, we conclude that ErbB4 Cyt-1 variants are 

dispensable for interneuron migration and allocation in contrast to previous suggestions221. 

Figure 6.3 | Expression of Cyt 
transcripts during development. 
(A,B) ISH for Cyt-1 (A) and Cyt-2 (B) 
transcripts on a coronal section of E14.5 
WT (C57BL/6J) embryos detects 
migrating interneurons form the 
ganglionic eminences invading the 
cortical plate in two streams in the 
marginal zone and subventricular zone 
(green arrows in scheme). (C) Cyt-1 
expression (% of Cyt transcripts) 
analyzed by TaqMan qPCR in 
pallial/cortical (Ctx; orange area in 
scheme) and subpallial/striatal (GE; 
magenta area in scheme) across different 
time points during embryonic, perinatal 
and postnatal development (n=3-4/time-
point). Scale bar 200µm. LGE – lateral 
ganglionic eminence, MGE – medial 
ganglionic eminence. 
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Figure 6.4 | GABAergic interneurons in the hippocampus and primary somatosensory cortex are unaltered 
in Cyt-1 mutant mice. 
(A-H) Analysis of GABAergic interneurons in the hippocampus and primary somatosensory cortex of Cyt-1 
mutant mice (-/-), heterozygote (+/-) and control (+/+) littermates crossed to GAD67-GFP mice at P30. 
Representative GFP-positive interneurons in the dorsal hippocampus (A-C) and the somatosensory cortex (D-F). 
(G,H) Quantification of GABAergic interneurons in the hippocampus (Hpp; G) and the somatosensory cortex 
(SSCtx; H) and (I-L) subregion-, layer-specific and rostro-caudal analyses (n=4; two-way ANOVA, *p=0.0325 
in K +/- vs. +/+ in layer I). Scale bars 500µm in C, 100µm in F. DG – dentate gyrus, sub – subiculum 
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 Cyt-1 mutant mice do not exhibit behavioral deficits  
Behavioral abnormalities pertinent to schizophrenia have been described in null ErbB4 

mutant mice142 and many are recapitulated in mice in which ErbB4 was conditionally ablated 

from parvalbumin (PV)-expressing interneurons (PV-Cre; ErbB4fl/fl)61, 142, one of the major 

GABAergic interneuron classes expressing ErbB458, 60, 63. For instance, both null ErbB4 mutant 

and PV-Cre;ErbB4fl/fl mice affecting all ErbB4 splice variants respond with locomotor 

hyperactivity to novelty and exhibit impaired sensorimotor gating and reduced anxiety61, 142, 

167. To determine if ErbB4 Cyt-1 receptor is contributing to these phenotypes, we subjected 

Cyt-1 mutant mice to a battery of behavioral tests previously shown to be regulated by ErbB4 

in interneurons. Contrary to our expectations, Cyt-1 mutant mice traveled similar distances in 

the open-field test with a trend to hypoactivity and faster habituation (Fig. 6.5A; n=10-

14/genotype, total distance traveled +/+ 101.7 ± 6.2m, +/- 91.3 ± 3.8m, -/- 85.6 ± 2.4m, one-

way ANOVA, F(2,34)=2.905, p=0.0684, Tukey’s multiple comparisons test +/+ vs. -/- 

p=0.0646). Of note, heterozygote Cyt-1 mutant mice were hypoactive when across all time 

points compared to their control littermates (Fig. 6.5A; distance traveled in 5min time blocks, 

two-way ANOVA, F(10,215)=0.5155, p=0.8783; Tukey’s multiple comparisons main column 

effect +/+ vs. +/- *p=0.0135, +/+ vs. -/- p=0.683, +/- vs. -/- p=0.8703). In the elevated plus 

maze, Cyt-1 mutant mice have unaltered anxiety levels, i.e. spent similar time in the open and 

closed arms of the elevated plus maze (Fig. 6.5B, n=11-14/genotype, two-way ANOVA, 

F(2,69)=0.1420, p=0.8679, open +/+ 27.04 ± 3.87s, +/- 28.59 ± 6.41s, -/- 25.07 ± 4.36s, closed 

+/+ 194.5 ± 9.82s, +/- 187.8 ± 9.81s, -/- 189.7 ± 11.21s). And finally, sensorimotor gating in 

the prepulse inhibition (PPI) task appeared normal in Cyt-1 mutant mice compared to control 

and heterozygote littermates (Fig. 6.5C, n=17-18/genotype, two-way ANOVA, 

F(6,100)=0.1108, p=0.9951; Tukey’s multiple comparisons test main column effect +/+ vs. +/- 

p=0.6833, +/+ vs. -/- p=0.9859, +/- vs/ -/- p=0.5836). However, male heterozygote Cyt-1 

mutant mice exhibit an increased startle response manifesting in an ameliorated PPI compared 

to their female counterparts and male control littermates, homozygote Cyt-1 mutants have an 

intermediate phenotype (two-way ANOVA, Tukey’s multiple comparisons test main column 

effect, startle response F(55,555)=1.131, p=0.2490, +/+ male vs. +/- male ****p<0.0001, +/+ 

male vs. -/- male ****p<0.0001, +/- male vs. -/-  male *p=0.0297, +/- male vs. +/- female 

****p<0.0001, -/- male vs. -/- female ***p=0.0001; PPI F(15,180)=0.2669, p=0.9974, +/+ 
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male vs. +/- male *p=0.0269, +/- male vs. +/- female ****p<0.0001). We also observed general 

sexual dimorphism in the total distance traveled and center time in the open-field task (n=5-

8/sex and genotype, one-way ANOVA, distance traveled, sex F(1,33)=5.781, *p=0.0220, 

center time, sex F(1,33)=8.949, **p=0.052), as well as in the time spent in the closed arms of 

the elevated plus maze (n=5-8/sex and genotype, one-way ANOVA, sex F(1,63)=6.875, 

*p=0.0109) consistent with previous reports suggesting increased locomotor activity, but 

increased anxiety in female mice163, 365. Taken together, Cyt-1 mutant mice show no behavioral 

impairments in tasks related to ErbB4 in interneurons. 

 

Figure 6.5 | Schizophrenia-related behaviors are unchanged in Cyt-1 mutant mice. 
Cyt-1 mutant mice (-/-; orange) do not exhibit deficits in the (A) open field, (B) elevated plus maze, and (C) 
prepulse inhibition compared to heterozygote (+/-; green) and wildtype (+/+; black) littermates (n=12-
18/genotype; two-way ANOVA, * in A Tukey’s multiple comparisons test main column effect +/+ vs. +/- 
*p=0.0135).  

 Cyt-1 expressed in dopaminergic neurons regulates extracellular 
dopamine levels 

ErbB4 is expressed in dopaminergic neurons in the substantia nigra compacta (SNc) and 

the VTA. Recently, ErbB4 on axonal projections of dopaminergic neurons has been shown to 

rapidly increase extracellular dopamine levels after NRG1 infusion in projecting areas138, 234. 

Moreover, conditional Th-Cre; ErbB4fl/fl mutant mice exhibit increased basal extracellular 

dopamine levels in the prefrontal cortex and dorsal hippocampus, but a reduction in dopamine 

in the striatum234. Changes in dopamine levels were accompanied by cognitive deficits in 

spatial working and reference memory234. To address a potential role of ErbB4 Cyt-1 in the 

regulation of dopamine function, we analyzed expression of ErbB4 Cyt splice variants by 

splice variant-specific ISH in the VTA and found that ErbB4 Cyt-1 contributes about 20% to 

ErbB4 expressed in this area (Fig. 6.6C; Cyt-1 19.86 ± 1.83%, Cyt-2 80.14 ± 1.83%, Mann-

Whitney test, n=4, *p=0.0286). Since ErbB4 is expressed on both dopaminergic and 
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GABAergic neurons in this area53, 57, we asked if there is a cell-type specific preference of Cyt 

variant expression and performed isoform-specific ISH with post-hoc immunohistochemical 

identification of dopaminergic neurons as previously described192, 357. Both ErbB4 Cyt variants 

are expressed in dopaminergic and non-dopaminergic, presumably GABAergic, neurons (Fig. 

6.6D). While, as expected, more ErbB4 Cyt-2 positive cells and higher Cyt-2 expression per 

cell compared to Cyt-1 are detected (data not shown), the percentage of Cyt-expressing cells 

that are dopaminergic are similar (Fig. 6.6E; % DA/Cyt, Cyt-1 39.27 ± 0.46%, Cyt-2 39.27 ± 

1.53%, n=3, Mann-Whitney test, p>0.9999), suggesting that dopaminergic and GABAergic 

neurons express similar ratios of Cyt splice variants.  

 

Figure 6.6 | ErbB4 Cyt variants in the ventral tegmental area (VTA).  
(A,B) Representative expression of Cyt-1 and Cyt-2 ErbB4 variants in the VTA analyzed by exon-junction-
specific ISH on sections of C57BL/6J mice. (C) Quantitative analysis of Cyt splice variant expression in the 
ventral tegmental area and substantia nigra compacta (*p<0.05; n=4; Mann-Whitney test). (D) Dopaminergic 
(dopamine transporter (DAT)-positive, green, arrowhead) and non-dopaminergic cells (open arrowhead) express 
Cyt ErbB4 variants (white) in the VTA. (E) Portion of dopaminergic Cyt-positive cells (n=3; Mann-Whitney test). 
(F) Extracellular dopamine (DA) levels were analyzed by unilateral no net-flux microdialysis in the medial 
prefrontal cortex (mPFC) of freely moving Cyt-1 mutant mice (-/-; orange), heterozygote (+/-; green) and control 
littermates (+/+; black; n=6-7; one-way ANOVA, **p<0.01). (G) Placement of 2mm-long microdialysis probes 
in the mPFC at bregma levels +2.22mm, +1.98mm and +1.78mm were evaluated in 50 µm-thick sections using 
Nissl staining. Scale bars 200µm in B, 20µm in D. 

To evaluate the role of ErbB4 Cyt-1 in modulating extracellular dopamine levels, we 

performed no-net flux microdialysis in the medial prefrontal cortex (mPFC) of freely moving 
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Cyt-1 mutant mice. To our surprise Cyt-1 heterozygote, but not homozygote mutant mice have 

increased basal extracellular dopamine levels in the mPFC (Fig. 6.6F; +/+ 0.546 ± 0.080nM, 

+/- 0.977 ± 0.103nM, +/+ 0.689 ± 0.085nM, n=6-7/genotype, one-way ANOVA, 

F(2,17)=5.863, *p=0.0116). In sum, Cyt-1 is expressed in dopaminergic neurons in the VTA 

albeit at lower levels than in the cortex and regulates some aspects of dopamine homeostasis 

as Cyt-1 heterozygote mutants exhibit increased extracellular dopamine concentration in the 

mPFC.  

 Cognitive function is normal in Cyt-1 mutant mice 
The alterations in extracellular dopamine levels in the mPFC in heterozygote mutant mice 

prompt us to investigate cognitive functions in Cyt-1 mutant mice found to be impaired in null 

ErbB4 and Th-Cre; ErbB4fl/fl mutants234. We subjected the mice to a Y-maze task for 

spontaneous alternation and spatial working memory, as well as to a Barnes maze test for 

learning abilities and spatial reference memory. Novel arm preference in the Y-maze (Fig.6. 

7A) was unaltered in Cyt-1 mutant mice compared to their littermate controls (n=12-

14/genotype, % alternation +/+ 51.64 ± 1.75%, +/- 48.65 ± 2.44%, +/+ 50.07 ± 2.04%, one-

way ANOVA, F(2,360)=0.4, p=0.6193), of note alternation was overall lower in female than 

in male mice as reported previously366 (two-way ANOVA, F(1,33)=6.619, *p=0.0148). Next, 

we tested acquisition and recall of spatial reference memory in the Barnes maze.  Cyt-1 mutant 

mice learned the task equally as their heterozygote and control littermates, as expressed by 

similar latency to escape (Fig. 6.7B; n=8-11/genotype, two-way ANOVA, F(6,108)=0.9364, 

p=0.4721) and number of errors committed during the four day training phase (Fig. 6.7C, n=8-

11/genotype, two-way ANOVA, F(6,107)=0.9876, p=0.4375). Cyt-1 mice performed similar 

to their heterozygote and control littermates in the probe test (n=8-11/genotype, number of 

errors, Fig. 6.7D, +/+ 17.5 ± 3.5, +/- 24.8 ± 3.5, 20.8 ± 3.8, one-way ANOVA, F(2,27)=0.9498, 

p=0.3994; time in correct zone Fig. 6.7E, +/+ 33.6 ± 4.7s, +/- 36.0 ± 3.0s, -/- 37.4 ± 3.4s, one-

way ANOVA, F(2,27)=0.2508, p=0.7799; number of nose pokes per hole, Fig. 6.7F, two-way 

ANOVA, F(38,540)=0.6784, p=0.9298, Tukey’s multiple comparisons test main column 

effect, +/+ vs. +/- *p=0.0242, +/+ vs. -/- p=0.6638, +/- vs. -/- p=0.1344). Finally, we tested 

cognitive flexibility and perseverance by moving the escape target in the Barnes maze to a new 

location. Cyt-1 mutant mice adapted equally to the new paradigm as heterozygote and control 
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littermates indicated by similar latencies to escape (Fig. 6.7G, n=8-11/genotype, two-way 

ANOVA, F(6,106)=0.4240, p=0.8616) and errors committed over the four trials (Fig. 6.7H, 

n=8-11/genotype, two-way ANOVA, F(6,105)=1.799, p=0.1063). Interestingly, consistent 

with change in dopamine in the heterozygote Cyt-1 mutant mice, heterozygote mice made 

more mistakes in the first trial (Fig. 6.7H, n=8-11/genotype, Tukey’s multiple comparisons 

test, # errors in trial 1 +/+ 20.25 ± 8.03, +/- 32.91 ± 1.17, -/- 16.45 ± 3.04, +/+ vs. +/- 

*p=0.0472, +/+ vs. -/- p=0.7523, +/- vs. -/- **p=0.0027). Taken together, cognitive function 

in Cyt-1 heterozygote and homozygote mutant mice was largely unaffected.  

 

Figure 6.7 | Cyt-1 mutant mice have unaltered working and reference memory, and cognitive flexibility. 
(A) Working memory expressed as percentage for novel arm preference in the Y-maze is normal in Cyt-1 mutant 
mice (-/-; orange) compared to heterozygote (+/-; green) and wildtype (+/+; black) littermates (n=12-
14/genotype; one-way ANOVA). (B-G) Spatial reference memory in the Barnes maze of Cyt-1 mutant mice is 
comparable to heterozygote and wild-type littermates during (B,C) initial training over four days, (D-F) testing 
on day five and (G) adapting to a new target location. (B) Latency to escape during training. (C) Number of errors 
committed during training. (D) Number of errors during testing. (E) Time spent in the correct quadrant/zone 
during testing. (F) Nose pokes in individual holes during testing (0 – target, 10 – opposite). (G) Latency to escape 
and (H) number of errors after moving target to a new position (cognitive flexibility; n=8-11/genotype; two-way 
ANOVA except for D,E one-way ANOVA, * in B Turkey’s multiple comparison test, Day 1 +/- vs. -/- *p=0.0327, 
*,** in H Tukey’s multiple comparison test, Trial 1 +/- vs. +/+ *p=0.0472, -/- vs. +/- **p=0.0027). 
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 Cyt-1 is enriched in the medial habenula, but does not regulate habenula-
associated behaviors 

 

Figure 6.8 | Cyt expression in the medial habenula and habenula-regulated behaviors. 
(A,B) Representative expression of Cyt-1 and Cyt-2 ErbB4 variants in the medial habenula (mHab) analyzed by 
exon-junction-specific ISH on sections of C57BL/6J mice. (C) Quantitative analysis of Cyt splice variant 
expression in the ventral tegmental area and substantia nigra compacta (n=4, Mann-Whitney test, p=0.0571). 
(D) Reward-seeking behavior of Cyt-1 mutant (orange) heterozygote (green) and control (black) littermates in 
the operant task (progressive ratio; n=11-16/genotype, one-way ANOVA, F(2,36)=0.1657, p=0.8479). (E) 
Homecage activity was assessed over three days (grey boxes indicate dark cycle; n=5-8/genotype, two-way 
ANOVA, F(190,1575)=0.6117, p>0.9999). Scale bar 100µm. 

Our efforts characterizing the function of Cyt-1 ErbB4 receptors based on phenotypes 

previously described to be altered in ErbB4 KO mice did not reveal any developmental, 

neurochemical or behavioral phenotypes in Cyt-1 mutant mice. Therefore, we next sought to 

analyze behaviors regulated by brain areas with particular enrichment of Cyt-1 expression. 

We identified high expression of Cyt-1 transcripts in the medial habenula (mHab; Fig. 6.8A-

C) that was previously reported to have notable ErbB4 expression56. Cyt-1 expression slightly 

exceeds Cyt-2 expression in this area (52.1 ± 1.2% Cyt-1, 47.9 ± 1.2% Cyt-2, Mann-Whitney 
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test, p=0.0571). Then, we addressed reward-seeking behavior in Cyt-1 mutant mice and 

littermates that previously were described to be regulated by the habenulo-interpeduncular 

pathway367. Reward-seeking and motivation was tested in food-deprived Cyt-1 mutant mice in 

an operant task using a progressive ratio for reward delivery. The breaking-point, i.e. the cycle 

number/ number of rewards obtained when mice give up to work (nose poke) for a reward due 

to the increasing difficultness (nose pokes required) to receive a reward, did not differ between 

genotypes (Fig. 6.8D; +/+ 20.75 ± 0.60, +/- 20.33 ± 0.36, -/- 20.27 ± 0.96), suggesting similar 

motivation and willingness to work for food. Of note, ErbB4 mutant mice have recently been 

tested to be more willing to work for palatable food (Skirzewski et al., in preparation).  

General locomotor activity in hamsters increased after the transection of the fascilculus 

retroflexus, the major output of the medial habenula368. We therefore assessed general 

locomotor activity in the homecage of Cyt-1 mutant mice. Locomotor activity over three days 

during light and dark cycle was not altered in Cyt-1 mutant mice (Fig. 6.8E). Of note, 

heterozygote mutants traveled more distance when compared to homozygote mutants across 

all time points (two-way ANOVA, Tukey’s multiple comparisons test, main column effect +/+ 

vs. +/- p=0.2037, +/+ vs. -/- p=0.3049, +/- vs. -/- **p=0.0093). In sum, although Cyt-1 is the 

predominant Cyt variant expressed in the medial habenula, habenula-regulated reward-

seeking/motivation and homecage activity are unaltered in Cyt-1 mutant mice.  

 Gene expression analysis reveals changes in transcription factors 
regulating development 

The absence of phenotypes in Cyt-1 homozygote mutant mice, despite the prevalence of 

Cyt-1 transcript in many brain areas (~40%), is unanticipated. It is plausible that during 

development a compensation occurred, and the system adapted to the loss of Cyt-1 resulting 

in little or no phenotypes. Therefore, to elucidate potential compensatory mechanisms, we 

performed gene expression analysis by RNA sequencing from the VTA and the dorsal Hpp of 

Cyt-1 mutant mice, heterozygote and control littermates. Consistent with initial TaqMan 

analyses (see Fig. 6.1E-H), no Cyt-1 transcript was detected in Cyt-1 mutant mice, Cyt-1 

transcript was reduced about 50% in heterozygote compared to control littermates, JM splicing 

was unaltered, and ErbB3 and ErbB4 expression levels were not changed. Differential gene 

expression analyses revealed that gene expression in the dorsal Hpp of the Cyt-1 mutant or the 
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heterozygote mutant is comparable to control littermates, in line with no observed 

hippocampal-related developmental or behavioral changes in Cyt-1 mutants.  

 

In the VTA, however, we identified few genes (total of 16 genes) with small but significant 

differences in expression (adjusted p<0.05) between the three genotypes (Fig. 6.9). Among 

others two genes from the solute carrier family, vesicular glutamate transporter 1 (Slc17a7), 

choline transporter 1 (Slc5a7), several homeobox genes (Nkx2-1, Lhx2, Dlx6, Arx) and genes 

related to dopamine functions (Dbh (dopamine beta-hydroxylase), Vip (vasoactive intestinal 

peptide), Pdyn (Prodynorphin)) were identified. Gene expression was found to be both 

increased and decreased in homozygote and heterozygote mutants compared to control 

littermates and standard TaqMan qPCR showed similar trends and changes for a subset of 

genes analyzed (Fig. 6.9). Heterozygote mutants showed expression levels similar to controls 

(Nkx2-1, Dlx6, Nr2f2, Dbh, Pdyn), homozygote mutants (Slc17a7, Lhx2, Foxg1, GM43517, 

Ptk2b, Ngb) or intermediate expression (Vip, Arx). Interestingly, expression of Scl5a7 (choline 

transporter 1), Npnt (Neprhonectin) and Rin1 (Ras and Rab interactor 1) was only altered in 

Figure 6.9 | Gene expression analysis in the VTA of 
Cyt-1 mutant mice.  
Gene expression analyses by whole genome RNA 
sequencing (RNAseq, n=3/genotype) and TaqMan 
quantitative PCR (qPCR, n=4) in the VTA of 
heterozygote (+/-) and homozygote (-/-) Cyt-1 mutant 
mice relative to control littermates. Plotted log2-fold 
change for all genes identified differentially expressed 
(adjusted p>0.05) in RNAseq. Gene ontology analyses 
and gene families are indicated. One box equals 3-4 
animals, white boxes – expression not analyzed by qPCR. 
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heterozygote, but not homozygote mutant mice reminiscent of the changes in dopamine levels 

observed in the mPFC. Moreover, the forkhead box protein G1 (Foxg1), a FOXO class 

transcription factor was described downstream to ErbB4 signaling and the protein-tyrosine 

kinase 2-beta (Ptk2b) interacts with ErbB432. Both were decreased in heterozygote and 

homozygote Cyt-1 mutants. Gene ontology analysis demonstrates significant enrichment of 

sequence-specific DNA binding (i.e. transcription factors; p=0.0022), the neuronal cell body 

in general (p=0.0136), and different developmental processes for instance axon guidance 

(p=0.0216), neuron migration (p=0.0072), forebrain neuron generation (p=0.0150), 

GABAergic interneuron differentiation (p=0.0496) and development of the cerebral cortex 

(p=0.0024) and the globus pallidus (p=0.0045). Taken together, gene expression in Cyt-1 

mutant mice is unaltered in the dorsal Hpp, but transcription factors associated with 

neurodevelopment are differentially expressed between Cyt-1 mutant mice and their 

heterozygote and control littermates, suggesting a potential developmental compensation of 

the system for the loss of Cyt-1. 

In conclusion, we addressed for the first-time isoform-specific function of ErbB4 receptors 

in vivo by generating Cyt-1-specific mutant mice. An array of conducted developmental, 

neurochemical, behavioral and expression studies suggest that ErbB4 Cyt-1 receptors are 

largely dispensable for CNS development and function. Transcriptomic analyses however 

suggest that the system might have adapted for the germline loss of Cyt-1. Therefore it will be 

interesting to investigate adult loss of function approaches (tamoxifen-inducible Cre 

recombinase or viral injection of Cre recombinase) to elucidate if Cyt-1 receptors regulate adult 

brain function, as the adult ablation of ErbB4 has recently been shown to regulate animal 

behavior118. 

6.5 Discussion 
To address the role of ErbB4 splice variants altered in postmortem schizophrenia patients, 

we generated the first splice variant-specific ErbB4 mutant mouse by removing the 

cytoplasmic Cyt-1 exon. Despite the prevalence of Cyt-1 in the brain (~40%) and essentiality 

of ErbB4 Cyt-1 to activate PI3K/Akt downstream signaling191, Cyt-1 mutant mice that lack 

Cyt-1 throughout development do not show schizophrenia-related developmental, 

neurochemical or behavioral impairments unlike different ErbB4 mutants lacking all splice 
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variants61, 68, 79, 118, 142, 234. Surprisingly, Cyt-1 heterozygote but not homozygote mutant mice 

showed mild phenotypes. We conclude that ErbB4 Cyt-1 receptors are largely dispensable 

developmental functions of ErbB4118 and/or the loss of Cyt-1 was compensated as also 

supported by our transcriptomic analyses. Therefore, it will be interesting to see if Cyt-1-

containing receptors play a crucial role in adult brain functions regulated by ErbB4118. 

 Mild phenotypes in heterozygote Cyt-1 mutant mice 
Interestingly, heterozygote but not homozygote Cyt-1 mutants have elevated basal 

extracellular dopamine levels in the mPFC (Fig. 6.6F). Cyt-1 heterozygote mutants also show 

small differences in GABAergic interneuron density in cortical layer I (Fig. 6.4K), are slightly 

hypoactive in a novel environment (Fig. 6.5A), hyperactive in a familiar environment (Fig. 

6.8E), commit less errors during the initial day of training in the Barnes maze (Fig. 6.7C), but 

are less flexible to adapt to a new paradigm (Fig. 6.7H). Strikingly, male but not female 

heterozygote mutants have an increased startle response and PPI. Gender differences in 

acoustic startle response and PPI were previously described in mice, rats and humans369-371. 

Consistent with a heterozygote-specific phenotype, gene expression analyses revealed genes 

that are only altered in heterozygote Cyt-1 mutants (Fig. 6.9).  

Allele-biased expression of ErbB4 has been suggested in humans372. However, our Cyt 

transcript analyses suggest that both ErbB4 alleles are contributing similar amounts of ErbB4 

transcripts in mice (Fig. 6.1D,E) and allelic expression would explain the phenotype in the 

heterozygote mutant, but not the absence of phenotype in the homozygote mutant. 

Heterozygote advantage or overdominance as a result of selective breeding in livestock and 

pets has been described in a handful of genes but is usually associated with disease in the 

homozygous mutants373. In the case of protein dimerization, homo- and heterodimers may 

differ in their stability and signaling374, but Cyt-1 and Cyt-2 homo-and heterodimers should 

occur both in the control as well as in the heterozygote mutant.  

Interestingly, heterozygote-specific phenotypes were previously described for mutations 

of dopamine-related genes375-377. Heterozygote dopamine transporter (DAT) mutant mice for 

instance show increased exploration and less anxiety than their WT and homozygote 

littermates376. Heterozygote mutations in the dopamine receptor D4 (D4DR) result in reduced 

locomotor activity and in increased impulsivity, whereas homozygote mutants are normal375, 
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377. These effects were suggested to depend on compensatory mechanism that are effective 

upon absolute ablation, but not when expression levels are only reduced375. In line with this 

hypothesis, it is feasible that compensation can occur when Cyt-1 is absent (Cyt-1 -/-) but is 

prevented by residual Cyt-1 in the heterozygote mutant (Cyt-1 +/-). One possible mechanism 

would be through transcriptional regulation that has been shown to be different between Cyt-

1 and Cyt-2 isoforms211.  

 Developmental loss of Cyt-1 may be compensated 

In contrast, homozygote ErbB4 Cyt-1 mutant mice, in which Cyt-1 transcripts were ablated 

in the early development under the control of the EIIa promoter, do not have abnormal 

behaviors or alterations in prefrontal extracellular dopamine levels. Moreover, GABAergic 

development in Cyt-1 mutant mice is normal, although Cyt-1 has been previously suggested 

to regulate GABAergic interneuron migration221. While, it is possible that ErbB4 Cyt-1 

isoforms and its downstream mediate signaling through PI3K/Akt or proteins containing a 

WW-binding domain do not play a role throughout development, several line of evidence 

suggest that the lack of phenotype in Cyt-1 mutant mice is due to compensatory mechanisms 

that accounted for the loss of Cyt-1 throughout development. Heterozygote mutant mice 

exhibit mild phenotypes and transcriptomic analyses unveiled changes in developmental 

transcription factors (Fig. 6.9). Compensation could occur through ErbB4 Cyt-2 receptors 

which do not possess the ability to directly activate PI3K unlike Cyt-1 receptors, but can 

dimerize with ErbB3 receptors to activate PI3K191, 206. However, first, transcript levels of 

ErbB3 are unaltered in Cyt-1 mutant mice (Fig. 6.1H) and second, ErbB3 is absent from 

neurons50, 51 e.g. GABAergic and dopaminergic neurons which are the primary cells to express 

ErbB4, mediate NRG/ErbB4 signaling and regulate animal behavior30, 60, 79, 142, 234. Besides, it 

has become clear that PI3K/Akt and MAPK-mediated pathways extensively cross-react. They 

regulate the same substrates and MAPK signaling positively regulates PI3K/Akt/mTOR378, 

providing another possible explanation how PI3K and downstream signaling could be activated 

by ErbB4 Cyt-2 receptors in the absence of Cyt-1-containing receptors. At this point, it 

however remains unclear if and how the system adapts to the developmental deletion of Cyt-

1.  
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Wang et al. (2018) have recently shown, that the ablation of ErbB4 in the postnatal brain 

causes similar deficits in behavior and neurotransmission compared to the loss of ErbB4 

throughout development. Importantly, abnormalities in GABAergic neurotransmission and 

behaviors caused by the germline loss of ErbB4 can be enhanced by the postnatal 

reintroduction of ErbB4118. Therefore, it will be interesting to investigate if Cyt-1 ErbB4 

receptors regulate adult brain function using acute loss of function approaches circumventing 

a potential compensation through developmental processes.  

 ErbB4 splice variants in schizophrenia 
Polymorphisms in the ErbB4 gene have been linked to an increased risk for schizophrenia. 

While changes to the expression levels of total ErbB4 transcript and receptor are controversial, 

described as unchanged218 or increased222, four independent studies have identified increased 

expression of the otherwise minor JMa and Cyt-1 transcripts in the DLPFC of schizophrenia 

patients, with a concomitant reduction in JMb and Cyt-2 transcripts28, 218, 222-224. And ErbB4 

polymorphisms were identified to correlate with increased Cyt-1 and PI3KCD expression223, 

224. Since the identification of NRG1 and ErbB4 as risk factors for schizophrenia, noticeable 

progress has been made in understanding the regulation of CNS circuits by NRG/ErbB4 

signaling. However, to our knowledge no study has been dedicated to the understanding of the 

role of ErbB4 Cyt splice variants in vivo. The here described Cyt-1 mutant mice, suggest that 

the developmental loss of ErbB4 Cyt-1 receptors does not generate behavioral phenotypes 

related to psychiatric disorders unlike the deletion of all ErbB4 transcripts142. We are still at 

the beginning of understanding the function of ErbB4 isoforms and in vivo studies dedicated 

to the acute postnatal loss of Cyt-1 to circumvent potential developmental compensation and 

the other three main splice variants Cyt-2, JMa and JMb will be necessary to better understand 

each ErbB4 isoforms’ unique function. This ultimately might advance the possibility for splice 

variant-specific treatment of psychiatric disorders using monoclonal antibodies or splice 

switching oligonucleotides216, 217.  
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7  

Discussion & Future Directions 
 The aim of my thesis was to better understand the expression and functions of ErbB4 

isoforms in the central nervous system. The work presented in this dissertation, indeed supports 

the hypothesis that ErbB4 splice variants differ in their spatiotemporal expression and between 

cell types in the brain (Aim 1). Moreover, subcellular targeting of ErbB4 differs in two neuronal 

cell populations, namely GABAergic and dopamine neurons; however appears to be 

independent of the ErbB4 isoform expressed (Aim 2). Lastly, evidence for unique biological 

roles of Cyt-1 ErbB4 receptors could not be presented, as the extensive molecular, 

developmental, anatomical, neurochemical, behavioral and transcriptomic analyses of 

isoform-specific (homozygote) Cyt-1 mutant mice did not exhibit altered phenotypes (Aim 3). 

In conclusion, this dissertation provides an extensive characterization of ErbB4 splice variant 

expression in the brain and provides first insights into the biology of distinct ErbB4 isoforms 

in the CNS that warrant further investigation. 

7.1 Expression and subcellular targeting of ErbB4 isoforms 
Although ErbB4 variants are altered in postmortem brains of schizophrenia patients28, 218, 

222, 223, little was known about ErbB4 isoform expression and function in the brain. The 

expression of ErbB4 variants has only been addressed in a few well-studied brain areas and 

studies largely disregarded signal distribution or cellular expression59, 67, 213, 218, 219, as sensitive 

tools to analyze short splice variants were not available. Therefore, in this dissertation, I first 

generated and extensively validated tools to perform and quantitatively analyze a novel 

ultrasensitive isoform-specific ISH approach (Chapter 3 & 4). This not only allows for the 

investigation of ErbB4 isoforms, but will also make rapid quantification of any splice variant 
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or even SNPs beyond ErbB4 and the brain possible. Moreover, the automated freely available 

quantification pipeline is useful for a variety of fluorescent dot/puncta quantification including 

multiplex ISH analyses or synapse quantitation. Using next-generation RNA sequencing, I 

conducted the first whole transcript splice variant analysis to unambiguously identify ErbB4 

splice variants expressed in the brain. Although no novel splice variants were detected, I 

provided first evidence for the expression of the rare variants JMc, JMd and del.3 in the adult 

mouse brain, previously only described during development, in disease, and the human 

brain193, 230, 232 (Fig. 2.2). Using the developed ISH tools, I then went on to study the expression 

of the four main ErbB4 variants (JMa, JMb, Cyt-1, Cyt-2) that account for ~99% of all ErbB4 

transcripts in the CNS. In this thesis, I describe the spatial expression of ErbB4 variants across 

many brain areas, advancing our understanding of ErbB4 isoforms in the CNS. Briefly, in most 

brain regions (Ctx, Hpp, Rtn, VTA) JMb and Cyt-2 variants are predominant, comprising about 

80-90% and 60-80% of ErbB4 transcripts, respectively. My work is first to also characterize 

brain areas that are enriched by JMa and Cyt-1 transcripts. For instance, JMa is the sole JM 

variant expressed in the choroid plexus with JMb transcripts completely absent; slightly more 

Cyt-1 than Cyt-2 was detected in the medial habenula; and both JMa and Cyt-1 are the major 

ErbB4 isoforms in the thalamus, the corpus callosum, as well as in other white matter areas 

(hippocampal fimbria, data not quantified; Chapter 4 & 6). I also uncovered temporal 

regulation of the expression of ErbB4 splice variants during development. Both JMa and Cyt-

1 variants are expressed at higher levels during early embryonic development and gradually 

decrease in the postnatal brain (Fig. 6.3; JM data not shown).  

Interestingly, owing to the single-cell resolution of the ISH approach, I identified 

differences in ErbB4 variants between cell types. While JMb ErbB4 is predominant in cortical 

and hippocampal GABAergic interneurons and GABAergic corpus callosal interstitial cells, 

JMa is the sole juxtamembrane variant expressed in mature oligodendrocytes and 

oligodendrocyte precursor cells, as well as in the choroidal epithelium (Fig. 4.6, Suppl. Fig. 

4.13). The unique capability of cleavable JMa receptors to regulate transcription48 enables a 

diverse signaling capacity even if expressed at low levels. In fact, in preliminary 

immunohistochemical experiments, I was not able to detect ErbB4 protein in any of these cells. 

However, NRG/ErbB4 signaling has been previously suggested to regulate BBB 

permeability305, 306 and oligodendrocyte progenitor migration105, maturation106 and some 
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aspects of myelination104. Therefore, my findings raise the question if these processes are 

kinase-mediated or rather depend on the transcriptional regulation by the ICD of ErbB4. 

Chromatin immunoprecipitation sequencing (ChIPseq) of cultured oligodendrocytes or 

isolated choroidal tissue could give valuable insights into genes potentially modulated by 

ErbB4 but was beyond the scope of this study. On the other hand, JMa transcripts are increased 

in the postmortem DLPFC of schizophrenia patients28, 218, 222, 223. It was assumed that these 

changes mainly occur in GABAergic interneurons or more specifically in PV-expressing 

interneurons218. However, given the enrichment of JMa transcripts in cells of the 

oligodendrocyte lineage, that are also present in the DLPFC, we must revisit this idea and 

analyze Erbb4 splice variant changes in schizophrenic brains with methods that allow the 

distinction of cell types (single-cell RNA sequencing or exon-specific ISH). Oligodendroglia 

were previously described to be involved in the pathophysiology of schizophrenia109; and it is 

crucial to elucidate for our comprehension of the disease in which cell type ErbB4 splice 

variant alterations occur, as this could have different biological implications.  

Although this thesis provides a detailed expression analysis of ErbB4 isoforms, a few 

interesting questions remain unresolved. First, despite unique signaling properties of each of 

the four isoforms (JMa/Cyt-1, JMa/Cyt-2, JMb/Cyt-1, JMb/Cyt-2), it is unclear how splice 

variants at the two splice sites in the juxtamembrane and cytoplasmic region are combined. 

Indirect evidence from cell type-specific analyses suggests that all four possible combinations 

are expressed in the brain, but direct evidence and exact ratios of these combinations remain 

to be presented. Long-read RNA sequencing spanning both alternative splice sites could give 

valuable insight246, 247. Second, the regulation of alternative splicing of ErbB4 constitutes a 

fascinating research direction. Splicing is regulated by regulatory factors that bind to cis 

regulatory splicing elements in intronic regions of the pre-mRNA and either enhance or 

suppress the inclusion of an alternative exon in mature mRNA transcripts24. Isoform analyses 

in Cyt-1 mutant mice suggest that the disruption of Cyt splicing does not affect JM splicing 

(Fig. 6.1). Independent alternative splicing at the two loci seems reasonable given the distance 

(1189bp); however, no information is available on the regulation of ErbB4 splicing. It would 

be very interesting to address how exon inclusion differs in cell types that are characterized by 

distinct isoform expression (e.g. oligodendrocytes, choroidal epithelium vs. GABAergic 

interneurons). One possible approach would be to analyze regulatory proteins bound to ErbB4 
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transcripts. A variety of different techniques are available to capture RNA binding proteins 

and analyze downstream by mass spectrometry379. The identification of splicing regulation 

could be even of potential therapeutic value, as ErbB4 splicing is dysregulated in 

schizophrenia28, 218, 222, 223. SNPs in the intron 12 and surrounding exon 3 have been previously 

associated with increased JMa and Cyt-1 transcript levels, respectively223. Although aberrant 

splicing was reported for many schizophrenia candidate genes and splicing alterations were 

previously suggested as potential underlying pathology for schizophrenia, molecular 

mechanisms remain largely unknown25, 289, 380. Third, although I analyzed splice variant 

expression at a cellular level, only one transcript at the time could be visualized, leaving the 

question open if different juxtamembrane and cytoplasmic variants are co-expressed in a single 

cell. While this work was ongoing, a new version of exon-specific ISH (Duplex BaseScope, 

ACD) was released, that permits theoretically the analysis of two splice variants at the same 

time. However, the assay is purely chromogenic and, in my hands, resulted in lower signal-to-

noise compared to the fluorescent detection that ultimately precluded the successful co-

detection of two low-abundance isoforms (e.g. Cyt-1 and Cyt-2). Technically challenging and 

costly single-cell RNA approaches such as single-cell RNA sequencing, microfluidic based 

RT-PCR or emerging Patch-Seq, that additionally conveys morphological and 

electrophysiological information, would be insightful in this regard243, 381, 382. Single-cell RNA 

approaches or RNA sequencing from purified cell populations also could give interesting 

information about population-specific ErbB4 splice variant expression248 similar to the already 

unrevealed cell type-specific JM expression between glia and neurons (Fig. 4.6). Of particular 

interest is the expression of ErbB4 splice variants in subclasses of interneurons or 

dopaminergic neurons383-385. Neuronal subgroups, that I was blind to in my studies, could differ 

in their isoform composition which could be intriguing with regard to divergent localization 

and receptor functions.  

Here, I presented first time evidence for the existence of ErbB4 on axons of dopaminergic 

neurons (Fig. 5.1). Axonal/ presynaptic localization of ErbB4 on dopaminergic projections is 

contrary to the established dogma of somatodendritic localization of the receptor in most 

GABAergic interneurons58 (see also Fig. 5.3) and has important implication for local 

(somatodendritic) versus distal (axonal) functions of ErbB4. For instance, ErbB4 on 

dopaminergic fibers in distal target areas such as the hippocampus can modulate locally 
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extracellular dopamine levels, g-oscillations and synaptic plasticity138, 234, 322 on a faster time 

scale than when mediated through distal soma and dendrites in the mesencephalon185. Despite 

previous reports on differential neurite targeting of isoforms, among others NRG1 isoforms39, 

324, 325, my data does not support the hypothesis of different subcellular localizations of ErbB4 

isoforms, as all four ErbB4 isoforms were confined to the somatodendritic compartment when 

overexpressed in cultured hippocampal PV+ interneurons (Fig. 5.3). While suggesting a very 

strict restriction of ErbB4 in PV+ basket cells, this does not exclude the possibility of isoform-

specific neurite targeting in other cell types such as PV+ Chandelier interneurons (previously 

suggested to be characterized by presynaptic ErbB4 accumulation60, 68, 69, 123) and dopaminergic 

neurons, and therefore requires further investigation. The question whether the expression of 

ErbB4 variants differs among subpopulations of dopamine neurons (e.g. in the VTA and SNc) 

is of particular interest considering the recently discovered opposing dopamine alterations in 

different target areas. In NRG2 and ErbB4 KO mice, basal extracellular dopamine levels are 

increased in the dorsal striatum and decreased in the mPFC and dHpp (the latter only analyzed 

in ErbB4 KO mice)135 (Skirzewski et al., in preparation). Interestingly, it is entirely unclear 

why in ErbB4 mice that only lack ErbB4 in Th+ (dopamine) neurons, dopamine imbalances 

occur in the opposite direction234. Regardless, taken together, this suggests that nigrostriatal 

and mesocorticolimbic dopamine pathways might be differentially regulated by ErbB4. This 

of course raises the question as to whether ErbB4 is targeted to different compartments or 

microdomains386 of SNc and VTA dopamine neurons and thus modulates these two 

dopaminergic populations in distinct ways. By immunohistochemistry, we could so far not 

unambiguously identify ErbB4 expression on dopaminergic fibers of either the SNc or VTA 

(L. Erben & I. Karavanova unpublished data). Divergence in targeting to the axon or axonal 

microdomains386 could be regulated by a difference in ErbB4 isoform expression between SNc 

and VTA dopamine neurons, alongside the potential unique downstream signaling pathways 

and functions that each isoform exerts. Preliminary analyses comparing ErbB4 variant 

expression in the SNc and VTA, however, did not suggest any obvious differences in isoform 

expression. Finally, the differences in altered dopamine levels in striatal and cortical projection 

areas might not be intrinsic to the dopamine neuron itself but regulated on the input, output 

and the circuit level. Differences exist for instance in the presence of ErbB4+ neurons in the 

projecting areas. Cortical and hippocampal interneurons express high levels of ErbB4, while 
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ErbB4+ GABAergic interneurons are sparse in the dorsal striatum (caudate putamen)57. On the 

other hand, VTA dopamine neurons are inhibited by ErbB4+ GABAergic interneurons in the 

VTA387. This could potentially also explain why extracellular dopamine concentrations are 

altered contradistinctively in Th-Cre; ErbB4fl/fl mice compared to NRG2 and ErbB4 KO mice 

that affect not only dopaminergic neurons but also GABAergic (and in the case of NRG2 also 

glutamatergic) neurons. The aforementioned imbalances in NRG and ErbB4 mutant mice are 

particularly interesting as schizophrenia patients suffer from similar dysregulations, 

hypodopaminergia in cortical areas versus hyperdopaminergia in the striatum19, 184. Further 

studies to comprehend the pathophysiology behind this imbalance and the involvement of 

ErbB4 will be necessary. 

7.2 ErbB4 isoform function in vivo 
 In order to address the function of ErbB4 in vivo, we generated the first isoform-specific 

ErbB4 mutant mouse that specifically lacks Cyt-1 variants. Cyt-1 ErbB4 receptors were of 

particular interest to us, as they possess the unique capability to directly activate PI3K/Akt 

signaling and both Cyt-1, as well as PI3K/Akt, have previously been described to be altered in 

schizophrenia patients28, 224, 388. Despite Cyt-1 comprising almost half of ErbB4 receptor 

transcripts, homozygote Cyt-1 mutant mice surprisingly show no phenotypes in our extensive 

neurodevelopmental analyses regarding GABAergic interneuron density, neurochemical 

assessment of extracellular dopamine levels in the mPFC and behavioral tests addressed (open 

field, elevated plus maze, PPI, Y-maze, Barnes maze, homecage activity, progressive ratio in 

operant task; Chapter 6). This could indicate that Cyt-1 and Cyt-2 ErbB4 receptors have 

redundant functions in the brain, although they were previously suggested to activate distinct 

downstream signaling and exert divergent functions in a variety of in vitro and ex vivo 

approaches213, 219-221. In germline deletions like the EIIa-mediated ablation of Cyt-1, long-term 

adaption and compensation of the system to the loss of the gene, also needs to be considered. 

Several mechanisms have been previously characterized to account for genetic compensation 

or transcriptional adaption. In many cases related genes are upregulated and compensate for 

the loss389. However, at least at the RNA level, total ErbB4 expression remains unchanged in 

Cyt-1 mutant mice and the only other NRG-binding ErbB receptor, ErbB3, is unaltered (Fig. 

6.1). Moreover, the transcriptome of Cyt-1 mutant mice is completely unchanged in the dorsal 
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hippocampus and whole genome RNA sequencing revealed only a dozen of altered genes in 

the mesencephalon (Fig. 6.7). Phenotypic discrepancies and compensatory mechanisms have 

been previously reported between knock-out and knock-down in mice and human models389. 

Similarly, compensation could be effective in homozygote Cyt-1 mutants, but not heterozygote 

Cyt-1 mutants resulting in mild phenotypes when Cyt-1 transcript levels are reduced but not 

absent. This could also be potentially interesting regarding ErbB4 variant changes in 

schizophrenia, as altered ratios were reported, but not the complete deficiency of one variant28, 

218, 223. Finally, global loss-of-functions can be compensated through embryonic development, 

whereas the conditional ablation at later time points result in phenotypes389. This is in line with 

the alterations of neurodevelopmental transcription factors that we observed in our 

transcriptomic analyses in the mesencephalon of Cyt-1 mutants (Fig. 6.7). Moreover, the adult 

ablation of ErbB4 recently has been shown to cause similar behavioral phenotypes with 

relevance to schizophrenia than the germline deletion118. Therefore, I am currently following 

up our study using adult and region-specific ablation methods that circumvent a possible 

compensation throughout development. First, I am in the process of generating tamoxifen-

inducible Cre; Cyt-1fl/fl mice to induce postnatal but global ablation of Cyt-1 transcripts as in118. 

Second, I am acutely deleting Cyt-1 transcripts by viral Cre recombinase injections into the 

VTA of adult Cyt-1fl/fl mice, where we observed potential compensatory transcriptional 

changes. In order to elucidate adult brain function of Cyt-1 ErbB4 receptors, these mice will 

be subjected to similar behavioral and neurochemical analyses than the germline ablation. 

 Here, we analyzed the role of Cyt-1 in the brain by generating isoform-specific mutant 

mice. ErbB4 is also expressed in other tissues (e.g. heart, lung, kidney, ovary)213. ErbB4 is 

essential for heart trabeculation and ErbB4 mutant embryo die midgestation (E10-E11) due to 

myocardiac deficits156. Although Cyt-1 comprises ~80% of ErbB4 transcripts in the heart213 

and Cyt-1 receptors are sufficient to rescue heart abnormalities in ErbB4 mutant mice157, Cyt-

1 mutant mice are viable and the Cyt-1 cassette therefore dispensable for heart trabeculation. 

Moreover, Cyt-1 receptors are described in the regulation of mammary gland development and 

carcinogenesis349. Splice-switching oligonucleotides suppressing Cyt-1 variants have been 

shown to decrease the growth of xenografted breast tumors217. Cyt-1 transcripts are also 

associated with poor survival and tumor grade in serous ovarian cancer350. It therefore would 

be interesting to address phenotypes of Cyt-1 mutant mice in tissues other than the brain. 
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Besides Cyt-1 ErbB4 receptors, it also would be intriguing to study the in vivo functions of the 

other three main ErbB4 variants in the brain by generating similar isoform-specific mutant 

mice. Of particular interest could be JMa receptors, due to their unique transcriptional activity48 

and augmentation in postmortem schizophrenic tissue218. Moreover, I characterized several 

cell types that exclusively express JMa variants. The successful generation of JMa or JMb 

mutant mice could be a challenge, as the exons encoding JMa and JMb are only separated by 

an 121bp intron, running the risk of interfering with regulatory sequences. Advances in 

generating mutant mice lines using CRISPR (Clustered Regulatory Interspaced Short 

Palindromic Repeats) at least can shorten generation time and the intron between the two JM 

exons harbors four potential PAM (protospacer adjacent motif) sequences with a specificity 

score greater than 80 (CRISPOR390) necessary for CRISPR/Cas9 editing. On the other hand, 

the generation of Cyt-2 mutants, i.e. forcing the spliceosome to always include the Cyt-1 exon 

could be achieved by removing the 1169bp intron between the Cyt-1 exon and the subsequent 

exon 27. In addition, more specific and local in vivo functions of ErbB4 could be addressed by 

overexpression, knockdown, isoform-specific antibodies or splice-switching 

oligonucleotides48, 216, 217. 

 In sum, my dissertation work provides novel quantitative in situ hybridization tools to 

analyze cellular expression of splice variants. Using the developed approaches an exhaustive 

expression analysis of ErbB4 splice variants in the mouse brain was conducted that describes 

regional and cell type-specific differences in expression. Surprisingly, ErbB4 isoforms do not 

play a role in directing ErbB4 receptors to their target location on dendrites and axons of 

distinct neuronal cell types, and the detailed examination of the first isoform-specific Cyt-1 

mutant mice did not uncover any phenotypes. Nevertheless, the presented work highlights the 

necessity for further isoform-specific studies to ultimately advance our understanding of ErbB4 

variant-specific pathophysiological changes observed in schizophrenia.  
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