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1 Introduction 

During plant evolution, two major indispensable characteristics evolved in the 

process of land colonization, which took place around 450- 470 million years ago 

(Graham, 1993). For one, terrestrial plants are covered by a thin continuous layer, 

the cuticular membrane (CM). This plant–atmosphere interface evolved to protect 

plants from desiccation in their transition from an exclusively aquatic to a terrestrial 

lifestyle (Edwards et al., 1982). Simultaneously stomatal pores evolved, more than 

410 million years ago, disrupting the CM on the plants' surface (Edwards et al., 

1998). Stomata are not only crucial for CO2 uptake during photosynthesis but also 

essential in the control of water loss. The plant faces the trade-off between opening 

the stomata for the already mentioned necessary uptake of CO2 and the loss of 

transpired water at the same time. When environmental conditions are unfavorable, 

for instance during water stress, and hence stomata close, the plant's prevention 

from desiccation only relies on the cuticular membrane as the limiting barrier to 

water loss. To establish this efficient barrier the outer epidermal cell walls of upper 

and lower plant parts are equipped with the aliphatic biopolymers; cutin, suberin 

and their associated waxes. Cutin, along with its associated waxes, forms the 

cuticle, the already mentioned lipid and wax rich layer covering all aerial parts of 

plants in their primary developmental stage (Schönherr, 1982). Suberin exerts the 

same function and can be found in secondary shoots and roots of the plant. The 

cuticle, in general, is of high importance for protecting plants against biotic and 

abiotic stresses such as wind, rain and high UV radiation (Percy and Baker, 1990; 

Krauss et al., 1997). Additionally, it plays a fundamental role as a barrier against 

herbivores and pathogens attacks, as well as viruses, bacteria, and fungi (Mendgen, 

1996; Bird and Gray, 2003).  
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1.1 The cuticle: chemistry and structure  

The general structure of the cuticle can be divided into three different parts (Figure 

1). Starting from the physiological outer side of the cuticle, the cuticle proper (CP), 

with superimposed epicuticular and embedded intracuticular waxes, covers the 

outermost part of the cuticle. It is a pectin and cellulose free and often lamella-like 

structure. Underlying is the cuticular layer (CL), which is traversed with microfibrils 

and additionally contains intracuticular waxes as well. Finally, the pectin-rich, 

pectinaceous layer (PC) binds the cuticular layer to the epidermal cell walls (CW).  

 

Figure 1: Schematic drawing of the outer parts of the plant epidermis cells (modified after 

Jeffree, 1986) 

EW : Epicuticular wax, CP :  Cuticle proper with lamellate structure, CL:  Cuticular layer, PL:  

Pectinaceous layer and middle lamella, CW : Cell wall,  P :  Plasmalemma 

On the molecular level, the cuticle is mainly characterized by its' two major 

components: Soluble waxes and the biopolymer cutin. Cutin is constructed of 

esterified hydroxy fatty acids with chain lengths of C16 and C18. It provides a 

mechanically stable matrix (Espelie et al., 1980; Kolattukudy, 1984; Nawrath, 

2006), which is needed for the overall stability of the plant. Soluble waxes of the 

cuticular membrane constitute of aliphatic lipids and cyclic lipophilic constituents 

(Kunst and Samuels, 2003). They are not only embedded within the cutin polymer 
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(intracuticular waxes) but also on its surface (epicuticular waxes) (Baker, 1982; 

Holloway, 1982). Depending on the analyzed species the cuticle thickness can vary 

between approximately 30 nm in Arabidopsis thaliana (A. thaliana) leaves 

(Bonaventure et al., 2004) or 30 µm as it has been reported for the fruit of Malus 

domestica (Schreiber and Schönherr, 2009). 

The chemical composition of cuticular waxes is rather complex. Wax components 

have been intensively studied in the past and compromise a variety of long chained, 

aliphatic substance classes such as primary fatty acids, alkanes, aldehydes, and 

alcohols as well as secondary alcohols and alkyl esters. Also, cyclic triterpenoids 

have been analyzed for many plant species (Kunst and Samuels, 2003; Jeffree, 2006; 

Jetter et al., 2006). The wax composition can vary within different species or even 

between different organs in one species and during organ ontogeny (Holloway, 1971; 

Kolattukudy and Walton, 1972; Jeffree, 2006; Jetter et al., 2006). This variety of 

different wax components and their composition lead to diverse three-dimensional 

surface structures. Responsible for particular structures are mainly the epicuticular 

waxes, superimposed on the cuticle (Koch and Barthlott, 2009). These waxes are 

crystalline (Schreiber et al., 1997) and of various shapes of different sizes ranging 

from 0.2 µm to 100 µm (Koch and Barthlott, 2009). In the plant family of 

Pinaceae, for instance, nonacosane 10- ol, a secondary alcohol in the epicuticular 

wax, was identified to be responsible for the shape and morphology of wax 

aggregates and crystals in the form of tubules as three- dimensional wax structure 

on the cuticle surface (Matas et al., 2003). However, one of the most intensively 

studied surface structures of leaves is the leaf of the sacred lotus plant (Nelumbo 

nucifera) (Barthlott and Neinhuis, 1997). Its surface is considered to be 

superhydrophobic which results in a self-cleaning effect of the leaf. To classify the 

wettability of leaf surfaces contact angle measurements are used. The surfaces of 

leaves on which an applied water droplet tends to spread have a low contact angle 

and are hence better wettable and vice versa. In the particular case of the lotus leaf, 

the measured contact angle is high (162°) and the leaf therefore not wettable. As 

stated before the structure of the epicuticular wax on the lotus leaf surface is 
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suggested to be the main reason for its' water repellent behavior (Koch and 

Barthlott, 2009). Here the superimposed waxes are randomly distributed as small 

hydrophobic wax tubules on convex cell papillae (Barthlott and Neinhuis, 1997). 

This results in a reduced contact area and adhesion of applied water droplets which 

then immediately roll off the leaf's surface (Koch and Barthlott, 2009). The 

biopolymer cutin can also play a role in forming the surface structure of the cuticle. 

Folding or tubercular patterns, for instance, originate by the cuticle itself (Barthlott, 

1980). 

 

1.2 The cuticle as transport barrier 

The importance of cuticular waxes for the water barrier properties of the cuticle is 

widely studied (Schreiber, 2010). Results on water barrier properties of wax-free 

polymer matrix membranes showed that the water permeability of the cuticle 

increased between 100- 1000 fold in average (Schreiber and Schönherr, 2009) and 

therefore underlines the immense role of cuticular waxes as a transport barrier. In 

even more detail, Zeisler-Diehl et al., (2018) could show that epicuticular waxes do 

not establish the transport barrier but instead intracuticular waxes. Additionally, 

neither is the thickness nor the wax coverage of the cuticle correlated to the 

cuticular water permeability and is therefore not responsible for the effectiveness of 

its barrier to water loss (Riederer and Schreiber, 2001). However, it is known that 

certain sites on the leaf, such as trichomes, stomata, and anticlinal cell walls, are 

more permeable to polar compounds than areas on the leaf where the cuticle only 

covers pavement cells (Schlegel et al., 2005; Schönherr, 2006). Water as a small, 

uncharged and polar molecule is reported to be transported through the cuticle via 

two parallel pathways: Either through the lipophilic pathway formed by the 

lipophilic cutin and wax domains or via a polar transport pathway formed by polar 

pores (Schreiber et al., 2001; Schreiber, 2005). The polar pores are suggested to be 

formed by carbohydrate fibrils, located within the lipophilic cuticular membrane. 

Small amounts can extend from the epidermal cell wall through the cutin till up to 
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the outer cuticle surface enabling the permeance of polar compounds (Schreiber and 

Schönherr, 2009). The transport through the cuticle and hence the water 

permeability of the cuticle is affected by abiotic factors such as humidity and 

temperature (Schreiber and Schönherr, 1990; Schreiber et al., 2001). With 

increasing air humidity also the water permeability of the cuticle increases. High 

temperatures also lead to an increase of transpiration (Schreiber and Schönherr, 

1990). For instance, the increase of the temperature from 10 °C to 55 °C results in 

an increase of water permeability, depending on the species by a factor of 264 

(Hedera helix) (Schreiber, 2001). Besides the mentioned abiotic factors also 

industrial surfactants or bacterial produced biosurfactants are known to have an 

enhancing effect on the cuticle permeability (Riederer and Schönherr, 1990; Burch 

et al., 2014).  

1.3 Wax and cutin biosynthesis  

A rather complex process is the biosynthesis of waxes. Multiple cell compartments 

(plastids, cytoplasm and the endoplasmatic reticulum) are involved in wax synthesis. 

C16 and C18 fatty acids are built by an enzyme complex (fatty acid synthase) 

localized in the plastids. The elongation is catalyzed by fatty acid elongases, which 

are bound to the endoplasmatic reticulum. Here the chain length of fatty acids is 

extended with two carbon atoms and functionalized through hydroxylation and 

oxygenation. A following series of chemical reactions lead to different functionalized 

substances. The acyl-reduction pathway leads to aldehydes, primary alcohols, and 

their respective esters. Over the decarboxylation pathway odd-numbered carbon 

alkanes, as well as ketones and secondary alcohols are synthesized. Besides long 

chain aliphates, triterpenoids are present in the wax as well and are synthesized via 

the triterpenoid pathway (Kunst and Samuels, 2003; Jetter et al., 2006; Bernard 

and Joubès, 2013; Yeats and Rose, 2013; Joubès and Domergue, 2018), (Figure 2).  

The cutin monomer biosynthesis has been mainly investigated in the model plant 

A. thaliana: The de novo synthesis and the elongation of fatty acids are the same as 

in the wax biosynthesis. The path diverges in the ER where the synthetization of 
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acyl CoA intermediates, ω- hydroxylation and midchain hydroxylation, take place. 

The following enzymes that mainly convert the ω-hydroxy-fatty acids into the most 

abundant cutin monomer in Arabidopsis, dicarboxylic acid, remain unknown. 

Nevertheless, it is likely, that cytochrome P450 enzymes such as ABERRANT 

INDUCTION OF TYPE THREE 1 (ATT1) are responsible for the conversion. 

Following is the last step for the synthesis of the cutin monomers for the 

polymerization of the biopolyester, where glycerol 3-phosphate acyltransferase 

produces 2-monoacylglyceryl esters (Yeats and Rose, 2013; Joubès and Domergue, 

2018), (Figure 2). 

The transport of cuticular compounds from the cytoplasm through the plasma 

membrane, the cell wall and finally to the organ surface is not quite clear yet. In 

Arabidopsis, a series of studies suggest that through Golgi- and trans-Golgi network-

mediated vesicle trafficking the hydrophobic molecules are transported through the 

hydrophilic cytoplasm to the plasma membrane (McFarlane et al., 2014; Lee and 

Suh, 2015). Once the plasma membrane is reached the export is carried out by ABC 

transporters (ATP binding cassettes), (Bird et al., 2007), (Figure 2).  

 

Figure 2: Cuticle biosynthetic pathway (according to: Joubès and Domergue, (2018)) 

Schematic drawing of the biosynthetic pathways of cutin and cuticular waxes.  Starting from 

the plastids through the endoplasmatic reticulum. The intracel lular transport leads to the 

plasma membrane (green), through the cell wall (yel low) to the cuticle (divided into: Cutin 

with embedded intracuticular waxes and superimposed epicuticular wax es).  
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1.3.1 Cuticular mutants 

The gene At4g00630 which is involved in cutin biosynthesis codes for the protein 

ATT1, which functions as a catalyst for fatty acid elongation (Xiao et al., 2004). 

The gene is expressed in all plant tissues (Duan and Schuler, 2005). The mutant 

att1 shows no visible phenotype under normal growth conditions, but plants have a 

reduced amount of cutin (Xiao et al., 2004). Other than for the cutin biosynthesis 

many genes have been identified, which play important roles in the wax 

biosynthesis. Some details have only been understood recently. The specific 

biosynthesis for alkanes was successfully reconstructed for yeast by Bernard et al., 

(2012). This study makes clear that the ECERIFERUM1 (CER1) and 

ECERIFERUM3/WAX2 (CER3/WAX2) protein is needed to produce alkanes. 

CER3/WAX2 acts as fatty acyl reductase to produce the alkane precursor fatty 

aldehydes or other intermediates which are currently not known (Bernard et al., 

2012). Mutants (wax2- allele: cer3-5) with a defect in the Cer3/Wax2 (At5g57800) 

gene show reduced wax amounts in Arabidopsis leaves and stems, especially due to 

a reduction in the alkane amount (Chen et al., 2003; Rowland et al., 2007). On the 

other hand, plants that overexpress the transcription factor SHN3, exhibit higher 

wax amounts in leaves. SHN3 was found to be a transcription factor involved in the 

regulation of the production of wax monomers (Aharoni et al., 2004). 

Phenotypically the mutant shine3 (shn3) displays shiny, green leaf surfaces as well 

as leaf curling and a reduction in the trichome number.  

1.4 Physiological and morphological aspects of stomata 

Terrestrial plants are able to inhabit a range of different environments with 

fluctuating conditions. Key elements in the evolution of terrestrial life were stomatal 

pores and a cuticular membrane preventing non- stomatal water loss. Whereas the 

cuticle functions as a barrier to uncontrolled water loss (Schönherr, 1982) and is 

virtually impermeable to CO2 (Lendzian and Kerstiens, 1991), gas exchange and 

controlled water loss between the photosynthetic tissues and the atmosphere is 

regulated through stomatal pores. They actively keep the balance between the CO2 
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uptake for photosynthesis and the water lost through stomatal transpiration, which 

determines the water use efficiency (WUE), (Nobel, 1980). The stomatal 

transpiration depends on the opening and closing of the stomatal pores. Therefore 

when stomata are open water vapor simply follows its concentration gradient from 

the xylem inside the leaf, through the intercellular air space, across the substomatal 

cavity, through the stomata to the atmosphere, also known as transpiration stream 

(Biddulph et al., 1961). Stomatal opening and closing are managed over dynamic 

turgor changes in the guard cells (Gregory et al., 1950). In more detail, the fast 

response to open and close stomata on a physiological level is managed by ion 

channels in the guard cell membrane. Additionally, stomata can respond with 

closing under stress conditions. Here abscisic acid (ABA) for instance is the best-

known phytohormone to induce closing of stomata as a response to abiotic stress 

(Daszkowska-Golec and Szarejko, 2013). Morphologically stomata consist of a pore, 

flanked by two sister guard cells. Stomatal density and morphology, as well as their 

distribution, are usually a result of long term adaptation processes (Haworth et al., 

2011). They usually depend on the plants' habitat and fluctuating abiotic factors 

such as humidity, light intensity, and CO2 concentration and are therefore different 

for each species (Mott and Michaelson, 1991; Hronková et al., 2015; Muir, 2015). 

The stomatal patterning, on the other hand, is in most cases determined by a 

spatial regularity: The one- cell spacing rule states that stomatal guard cells are not 

in direct contact with each other (Sachs, 1991), which is thought to improve the 

efficiency of gas exchange (Nadeau and Sack, 2002).  

A commonly known method in science is to use mutants which all exhibit 

alterations in the property of interest and compare them to the corresponding wild 

type. For Arabidopsis, many stomatal mutants, which all exhibit diverse stomatal 

properties in their distribution, morphology or density, are known. Yang and Sack, 

(1995) identified the gene TOO MANY MOUTHS (Tmm) to be involved in the 

stomatal development. It regulates the production of stomata by controlling the 

formation of the stomatal precursor cell (meristemoid cell) and therefore ensures 

correct stomatal patterning. The tmm mutant, derived from EMS mutagenesis, 
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promotes stomatal initiation and therefore exhibits stomatal clustering, but is also 

expressed organ specific, contrary to the leaves, a mutated Tmm gen suppresses 

initiation of stomata in the inflorescence stem (Yang and Sack, 1995; Geisler et al., 

1998). Simultaneously to the gene Tmm the Four lips (Flp) gene was identified, 

which is involved in stomatal development. Loss of function in Flp leads to 

additional divisions of guard mother cells, which suggests the involvement of Flp in 

the cell division competence of those cells. The EMS-induced mutant flp primarily 

affects the production of guard mother cells, which leads to many paired stomata 

and a small percentage of unpaired guard cells (Yang and Sack, 1995). In addition 

to the previously mentioned mutants, which mainly show irregularities in their 

stomatal patterning, Sugano et al., (2010) generated an overexpression line (st-ox) 

and a silenced line (st-RNAi) which express different stomatal densities. St-ox shows 

significantly higher and st-RNAi lower stomatal density, when compared to the wild 

type. Responsible for inducing stomata activity in a dose dependent manner is a 

cysteine rich peptide, which is generated from a 102-amino- acid precursor protein: 

STOMAGEN. Additionally to a higher stomatal density in the overexpression line 

also many clustered stomata are formed in matured leaves. Contrarily the silencing 

of the gene with artificial microRNA leads to RNA interference lines with reduced 

stomatal densities in various organs (Sugano et al., 2010). 

1.5 Goals 

The cuticle as the plant atmosphere interface is interrupted by stomata which 

actively regulate the gas exchange of the plant. However, if stomata are closed 

during water stress, the cuticle is the most important barrier to prevent and reduce 

uncontrolled, passive water loss. This obvious interplay between stomata and 

cuticular membrane leads to the question if the cuticular membrane as leaf barrier is 

altered in its wax or cutin amount, composition and structure under the 

circumstances of high or low numbers and different patterning of stomata. Or if vice 

versa alterations in wax and cutin amounts have an influence on the production and 

distribution of stomata. Therefore the aim of this work was to elucidate whether 
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there is a relationship between wax or cutin amounts and stomatal density. Further, 

the physiological impact in terms of transpiration, either through the cuticular 

membrane or the stomata, and their possible relation is a central question of this 

work.  

In the past, many Arabidopsis mutants have led to the identification of different 

genes, which control stomatal development and likewise a lot is known about the 

cutin and wax synthesis pathways and involved genes. In this work, Arabidopsis 

stomatal mutants, which are all defective in the pathway of stomatal development 

as well as cuticular mutants which exhibit disruptions in their biosynthesis pathways 

should be investigated to answer the main questions of this work.  

To address those questions, alterations, and relationships between (i) the stomatal 

distribution, (ii) cuticular wax and cutin amounts as well as compositions and (iii) 

the physiological role in terms of transpiration either through the cuticular 

membrane or the stomata will be investigated. 

Phenotypical changes in the here investigated mutants compared to their wild types 

will be observed prior to all following experiments via FE-SEM. Potential alterations 

in wax and cutin amounts of Arabidopsis leaves and stems will be measured 

qualitatively and quantitatively by gas chromatography and mass spectrometry. 

Since Arabidopsis leaves show amphistomy, wax extraction will be precisely and 

separately investigated on the adaxial and abaxial leaf side. Consequently, stomata 

densities and indexes will be investigated for both leaf sides as well. Additionally to 

alterations in the stomatal distribution as well as cuticular wax and cutin amounts 

and compositions the physiological properties of the different mutants, such as 

transpiration, will be in the focus of this work. To further describe these alterations 

contact angles of water on the outer leaf surface will be measured. In the end, a 

possible relation between the stomatal densities, cutin and wax amounts and the 

cuticular transpiration will be discussed. 
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2 Material and Methods 

2.1  Material 

2.1.1 Plants 

All experiments in this work were carried out with plants with either the genetic 

background of Arabidopsis thaliana ecotype Columbia (Col-0) or ecotype 

Wassilewskija (Ws). The Arabidopsis stomatal mutants were kindly provided by 

prof. Jiří Šantrůček from the Faculty of Science, University of South Bohemia. 

Arabidopsis stomatal mutants:  

 tmm (SALK_011958 carries a point mutation at gene 

At1g80080.1),(Yang and Sack, 1995; Geisler et al., 1998). 

 flp (SALK_033970 carries a point mutation at gene At1g14350), 

(Yang and Sack, 1995; Geisler et al., 1998) 

 st-RNAi (At4g12970 known as STOMAGEN, RNA interference 

silencing), (Sugano et al., 2010) 

 st-ox (STOMAGEN overexpression; overexpression via vector with 

inserted promotor region and At4g12970), (Sugano et al., 2010)  

 

Arabidopsis wax and cutin mutants: 

 att1 (knockout At4g00360), (Xiao et al., 2004)  

 shn3 (overexpression: At5g25390), (Aharoni et al., 2004) 
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  wax2 (knockout At5g57800), (Chen et al., 2003; Kurata et al., 2003; 

Rowland et al., 2007) 

2.2 Methods 

2.2.1 Cultivation and growth conditions on soil 

The soil (Einheitserde Typ 1.5, Sinntal- Altengronau, Germany) was sterilized before 

usage. For the process of sterilization, the soil was moistured with tap water, filled 

into a STERILO 1K (Harter Elektrotechnik, Schenkenzell, Germany) and heated up 

to 65 °C. for 2 h. For imbibition, Arabidopsis seeds were kept in tap water. They 

were stored at 4 °C., overnight and in the dark to break dormancy. Next, for 

germination, the seeds were distributed on soil in a scheme of five seeds per pot. 

The trays were covered with transparent lids to ensure high humidity for 5 to 6 

days. For growth the pots were transferred to a growth chamber with long day 

conditions: 18/6 h day/night cycle at 23/20 °C., relative humidity of 50/65 % and 

light intensity of 150/0 µmol m-2s-1. Plants were watered with tap water twice per 

week. 

The plants were kept under these conditions until further usage. All experiments in 

this work were conducted with 4 weeks old plants.  

2.2.2 Field emission scanning electron microscopy (FE-SEM) 

Investigations of the leaf and stem surface morphology were performed by FE-SEM 

(Gemini Supra 40VP, Zeiss, Oberkochen Germany) at the Faculty of Life Science, 

Rhine-Waal University.  

2.2.2.1  Sample preparation 

Small cuttings of leaves (approx. 0.5 cm2) were prepared with a glycerol liquid 

substitution (Ensikat and Barthlott, 1993) to avoid alterations in cell shape and wax 

structure. Therefore the specimens were placed on a wet paper towel into a tilted 

petri dish. Over a time period of 21 h glycerol (90 %) was added dropwise to the 

petri dish. During the process, the tissue is slowly infiltrated with the glycerol and 
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water gets substituted. Unlike the leaves, the stems were cut in approximately 

1.25 cm2 long pieces and air dried.  

After preparation, the specimens were fixed on aluminum stubs (Plano, Wetzlar, 

Germany) with double-sided adhesive tape (Double-sided Tape Universal, Tesa, 

Hamburg, Germany). All cut edges were sealed with conductive carbon cement 

(Plano, Wetzlar, Germany). Specimens were sputter coated (108auto SE, 

Cressington, Watford, UK) with gold as conducting material. This inhibits the 

specimen from charging through the electron beam and vice versa increases 

electrical conduction. After 60 seconds sputtering at 30 mA and a pressure of 

0.1 mbar, the specimen was covered with an 8 nm gold layer. 

2.2.2.2  Sample investigation 

SEM micrographs of the leaves were taken with an In-lens detector and a secondary 

electron detector at 3 kV. The images of the stems were taken at 10 kV with the 

secondary electron detector only. 

2.2.3 Measurement of wetting properties 

To characterize the wettability of the leaf surfaces contact angle measurements 

were taken. Contact angle values vary not only with the surface properties (e.g. 

surface structure and chemistry) but also depend on the applied liquid 

(hydrophilicity or hydrophobicity). Here the contact angle of water (10 µl) on the 

leaf surface of the different Arabidopsis genotypes was measured. As a control 

contact angle measurements of 10µl water droplets were also performed on parafilm 

representing a homogenous, lipophilic surface, mainly consisting of CH2 groups. All 

contact angle measurements were performed with a fully automatically drop shape 

analyzer DSA 25 (Krüss GmbH, Hamburg, Germany). Leaves and parafilm were 

carefully attached onto cleaned glass slides using again adhesive tape. Care has been 

taken that the surface was not touched or disturbed during fixation At least three 

independent measurements were taken for each biological sample and leaf side (ab-

/adaxial) to determine the mean value and standard deviation.  
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Figure 3: Schematic drawing of a contact angle (α) on a solid surface (Knoll, 1998) 

Contact angle (α) of a water droplet on a solid surface (below 90 degrees); Surface: Either 

parafilm or Arabidopsis leaf . 

 

2.2.4 Chlorophyll content analysis 

The leaf chlorophyll content was measured using the Dualex Scientific+TM (Force 

A; Orsay, France; (Goulas et al., 2004)). Therefore a minimum of 6 rosette leaves 

from three plants for each genotype was measured. The measurements were taken 

on the adaxial leaf side, avoiding midribs. 

2.2.5 Chemical analysis of plant waxes 

For the analytical experiments glassware was cleaned with chloroform previously to 

all conducted experiments. This is necessary to prevent contamination of samples 

during the steps of sample preparation and extraction. To securely seal samples, lids 

were coated with polytetrafluoroethylene (PTFE) which is resistant to organic 

solvents. 

2.2.5.1 Sample preparation for total wax extraction 

Whole leaves and stems of Arabidopsis were used for total wax extraction. Further 

wax was extracted from ad- and abaxial sides of the leaves. For total wax extraction 

leaves (n = 10) and stems (n = 4) were dipped in chloroform for 10 seconds. The 

dipped leaves/ stems were consequently scanned for area determination and directly 

immersed in chloroform:methanol (1:1, v/v) for cutin analysis (2.2.5.2). To extract 

wax only from one leaf side, a vial with rolled edges was used. For extraction 

chloroform (1.3 ml) was filled into the vial, which was then closely pressed onto the 

leaf surface. On top, the vial was closely sealed with a PTFE coated lid. The vial 

was carefully inverted for 10 seconds. Because low amounts of extracted wax were 



Material and Methods 

 

15 

expected at least 15-20 leaves per biological replicate for extraction of one leaf side 

were used. In addition, the amount of the internal standard was always adjusted to 

expected wax amounts. Therefore subsequently to extraction 5 µg of an internal 

standard, Tetracosane (C24 alkane), was added to samples for ad- or abaxial leaf 

sides and 10 µg to samples for whole leaves or stem wax extractions. The wax 

containing chloroform volume was evaporated at 60 °C under a gentle nitrogen flow 

to a final volume of 200 µl.  

2.2.5.2 Sample preparation for cutin analysis  

After wax extraction Arabidopsis leaves and stems were also analyzed for cutin 

amount and composition. Therefore they were incubated in chloroform:methanol 

(1:1; v/v) at room temperature under continuous shaking for 2 weeks. Additionally 

they were kept in the dark to keep diacids from reacting. Remaining lipids were 

excluded by exchanging chloroform:methanol at least 5 times. To further analyze 

the plant material leaves and stems were air dried under the fume hood and weighed 

afterward. After that samples were ready to be transesterified (2.2.5.3).  

2.2.5.3  Transesterification 

For cutin analysis the biopolymer must be broken into its monomers. Therefore the 

samples need to be transesterified done by borontriflourid and methanol (BF3- 

MeOH; 1:1, v/v). Thus the samples were incubated for 16 h at 70 °C. (Kolattukudy 

and Agrawal, 1974). Directly after incubation 10 µg of Dotriacontan (C32- alkane) 

were added to the samples as an internal standard. The reaction was stopped by 

adding 2 ml of saturated sodium hydrogen carbonate and water (NaHCO3/H2O). 

To successfully extract the lipid phase out of the samples, they were washed three 

times with 2 ml chloroform. After mixing thoroughly the lower phase of each 

analyte was collected carefully with a pipette. Subsequently, the samples were 

washed with H2OHPLC. They were then dried with water free sodium sulfate 

(NaSO4). The remaining volume was evaporated at 60 °C under a gentle flow of 

nitrogen to a final volume of 200 µl. 
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2.2.5.4 Derivatization 

For chemical analysis, all samples needed to be derivatized to increase the volatility 

and mask polar functional groups being constituents in waxes and cutin. 

Accordingly 20 µl of bis(trimethylsilyl)trifluoroacetamide (BSTFA) and as a 

catalysator 20 µl of pyridine were added to each sample. BSTFA causes the polar 

functional groups to convert into their corresponding trimethylsilyl-esters (TMS,). 

After the addition of both substances, samples were mixed thoroughly and 

incubated at 70 °C for 45 minutes (Figure 4). 

 

Figure 4: Reaction of derivatization 

BSTFA and pyridine, as catalysator, convert the reactive groups into the corresponding 

trimethylsilyl-esters (created with ChemSketch; public domain, avai lable at acdlabs.com) 

 

2.2.5.5 Gas chromatography 

Following derivatization samples were arranged on to the gas chromatograph in 

random order. 1 µl of each sample was injected directly on the column. Here 

compounds of a sample were separated over a capillary column (stationary phase). 

Due to different size and polarity of individual components, separation takes place 

over time. For the analysis, a 6890N gas chromatograph (Agilent Technologies, 

Germany) with a capillary column (DB-1; 30 m x 0.32 mm, 0.1 µm (J&W, Agilent 

Technologies, Germany)) and H2 as carrier gas (mobile phase, flow rate 2 ml x min-

1) was used. For the quantitative analysis compounds were detected with a flame 

ionization detector (FID). At the detector side, the separated compounds were 

oxidized. The produced electrons induced voltage which was recognized as a signal 

by a connected computer. The analyses in this work were performed according to 

the temperature programs shown in Table 1. 
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Table 1: Temperature programs for GC analyses 

wax analysis cutin analysis acid standard 

Injection at 50 °C. Injection at 50 °C. Injection at 50 °C. 

2 min at 50 °C. 2 min at 50 °C. 1 min at 50 °C. 

40 °C/min up to 200 °C. 10 °C/min up to 150 °C. 40 °C/min up to 200 °C 

2 min at 200 °C. 1 min at 150 °C. 2 min at 200 °C. 

3 °C/min up to 310 °C. 3 °C/min up to 310 °C. 3 °C/min up to 310 °C. 

30 min at 310 °C. 15 min at 310 °C. 20 min at 310 °C. 

 

2.2.5.6 Mass spectrometry 

For the identification of the single compounds, a gas chromatograph coupled to a 

mass spectrometer was used. The compounds were separated over the length of the 

column. As they elute at different times they get ionized and separated according to 

their mass/charge ratio. Single compounds were fully identified by their typical ion 

fragmentation pattern. All analyses were carried out with a 5973 MS (Agilent 

Technologies, Germany). A DB-1-MS (30 m x 0.32 mm, 0.1 µm, (J&W Agilent 

Technologies, Germany)) column was used and Helium (He) served as the carrier 

gas. 

2.2.5.7 Maintenance of the column 

The condition of the GC- FID and GC- MS column was tested and maintained 

before and after each analysis. Due to residues of not fully volatile compounds on 

the column the detector signal can decrease after each analysis. The quality of the 

capillary column was tested with an acid standard. A mixture of C24 alkane and 

three monocarboxylic acids (C29, C30, C31) in equal amounts were derivatized and 

injected on to the column following the temperature program shown in Table 1. To 

confirm efficient maintenance the ratio of the peak areas of the alkane and the C31 

monocarboxylic acid had to be better than 1.4.  

If maintenance was necessary, the column was checked for irregularities on the inner 

coat. The areas exhibiting residues of prior run samples were cut off by using a 
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Teflon cutter. After cutting of the column, the system was heated up 310° C. and 

140 kPa to fully eliminate contaminations. The temperature and pressure were held 

until the baseline stayed at a constant level around 10 pA. To determine the 

accuracy of the cleaned column an acid standard was run again.  

2.2.5.8 Evaluation of the chemical analysis 

To evaluate the single chromatograms the GC-ChemStation (Hewlett Packard 

Corporation, U.S.A.) software was used. The different peaks received due to 

separation through GC-FID were integrated and the corresponding areas were 

assigned to the contained compounds in MS-Excel (Microsoft, U.S.A.). The 

compounds were identified by the fragmentation pattern of every single compound 

given through the analysis using mass spectrometry. The amount of the single 

compounds was calculated according to the known amount of the internal standard, 

which was added to each sample prior to all analytical steps (2.2.5.1, 2.2.5.3).  

                 (  )   
                                      (  )

                            (  )
 

Equation 1: Determination of the amount (µg) of the substances 

 

Wax and cutin amounts were referred to the leaf and stem surface areas. Whereas 

the area for wax extraction of leaf's ad- and abaxial side was determined through 

the surface area of the opening of the vial (0.38 cm²) they were extracted with. At 

least three biological replicates were analyzed in each experiment, therefore mean 

values and standard deviations were calculated in Excel (Microsoft, U.S.A.). All 

figures were created with OriginPro9 (OriginLab, U.S.A.). 

 

2.2.6 Stomatal density 

Stomatal density (SD) for ab- and adaxial leaf side or stem was determined with an 

axioplan universal microscope (Carl Zeiss, Jena, Germany). The imprints of the 

leaves and stems were prepared with nail polish (essence cosmetics, transparent, 

DM, Germany). Leaves and stems were applied onto double-sided tape mounted on 
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a piece of paper. The nail polish was gently brushed across the entire leaf/ stem 

surface and air dried for approximately 10 minutes. With adhesive tape the imprints 

were carefully transferred to a microscope slide. Stomata, as well as epidermal cells, 

were counted on leaves/ stems of three plants per mutant and wild type. In detail 

each side of the leaf/ stem was counted in ten fields of 0.09/0.37 mm2 randomly 

distributed across the leaf/ stem. Images were taken with the Canon EOS Utility 

program (Krefeld, Germany) and evaluated with Image J (public domain, available at 

ImageJ.net). The results were displayed as counts of stomata or pavement cells per 

mm
2
 of the projected leaf/ stem area. The stomatal index (SI) was calculated with 

SD and pavement cell density (PCD) in the following relation:  

   ( )     
  

         
      

Equat ion  2 :  D e t e rm ina t ion  o f  th e  s t om ata l inde x ,  a f t e r  (Salisbury E.J., 1927) 

 

2.2.7 Stomatal conductance 

To measure the stomatal conductance of the leaves a Porometer AP4 (Delta-T-

Devices Ltd, Cambridge, Great Britain) was used. The principle of measurement 

relies on measuring the difference in humidity between the leaf interior and the 

inside of a sensor head. In more detail: The leaf is clipped in a sealed chamber 

where its evaporation of water vapor increases the humidity within the chamber 

(Figure 5). The rate of increase is mostly dependent on the stomata diffusion 

resistance. With the help of a previously accomplished calibration curve, the 

stomatal conductance is calculated.  
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Figure 5: Schematic drawing of the used AP4 Porometer (modified after Jones, 2013) 

Air is pumped in cycles into the measur ing chamber to dry it out. Now the water vapor lost 

through the leaf is raising the humidity within the chamber again and is measured by the 

sensor. Additionally , two thermistors measure the accuracy of the temperature and resistance 

of leaf and chamber. Due to the obtained cal ibration curve the stomatal conductance is 

calculated.   

 

Stomatal conductance was measured on ad- and abaxial sides for at least four 

rosette leaves of all Arabidopsis genotypes. Samples were not combined samples, as 

leaves of Arabidopsis are too fragile to measure them more than once with the 

porometer. Measurements took place at day time and in the climate chamber to 

ensure stable temperature, and light intensity conditions as well as open stomata. 

Before each measurement, the porometer was newly calibrated to achieve the most 

exact measuring results.  

 

2.2.8 Chlorophyll-Fluorescence measurements 

To provide information on the cuticular permeability of intact Arabidopsis leaves, an 

assay with a chlorophyll fluorometer (Junior- PAM, Walz, Effeltrich, Germany) was 

performed. The uptake of herbicides, which act as photosynthesis inhibitors, across 

the cuticle indirectly, measures the cuticular permeability via the decrease of the 

photosynthesis rate. The non-invasive measurements are an advantage of the PAM 

(Pulse Amplitude Modulation) technique. Therefore it is especially useful for 

measurements on small and fragile plants where cuticles are not easily isolated. The 

measurements can be taken in the climate chamber directly. Consequently, abiotic 
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factors such as light and temperature stayed constant during the measurements 

(2.2.1). 

The PAM measures the fluorescence emitted by photosystem II (PS II) at two 

different time points. First, the constant emitted fluorescence yield (F') is measured. 

This was done emitting a low energetic measuring light at 450 nm wavelength and 

5 Hz to keep the reaction centers of PS II open. Secondly, a saturation pulse was 

emitted onto the leaf. Now all reaction centers in PS II are temporarily closed due 

to the strong light pulse. Due to the overcharge of the reaction centers maximal 

fluorescence (FM') can be measured. Alone with those two measurements the 

Photosynthetic Yield (Y (II)) can be calculated (Equation 3):  

 (  )     
        

   
  

Equation 3: Effective photochemical quantum yield of PS II (Genty et al., 1989) 

 

For measurements leaves were monitored with the PAM for six minutes without any 

application of herbicide. This served as a control, whether the saturating pulses 

themselves had any influence on the photosynthetic yield. Thereafter either a 50 µl 

droplet of the herbicide metribuzine [4-amino-6-tert-butyl-3-(methylthio)-as-triazine-

5(4H)-one], (100 µmolL-1; Bayer, Leverkusen, Germany) or a 50 µl droplet of water 

(control) were applied onto the adaxial leaf surface. The intensity of the saturating 

pulse was set to 1 as well, which resembles 7000 µmol*m-2*s-1 PAR at a duration of 

0.6 s. 

Not only the decrease of the photosynthetic yield was evaluated but also the times 

of half and full inhibition were calculated and generated with the curves of each 

parallel measured and it's corresponding decreasing Y (II).  

2.2.9  Measurement of the minimum conductance  

The water permeability of stomatous leaves of the different Arabidopsis genotypes 

was measured gravimetrically. Three to four rosette leaves per genotype were cut off 

and stored over dry silica gel (Roth, Karlsruhe, Germany) at 25 °C in a sealed box. 
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These conditions set relative humidity to 0 %, and the driving force to a maximum, 

during the duration of the experiment. The amount of water lost over time (Figure 

6) was measured with a balance which was precise to 0.01 mg (Sartorius, 

Göttingen, Germany). Detached leaves were weighed every 30 minutes over a total 

time of 6 hours. After the experiment leaves were stored in a 60 °C. heating cabinet 

overnight till a constant dry weight could be measured. To calculate the permeance 

P (ms -1) for water across the leaf cuticle Equation 4 was used. 

      
 

      
 

Equation 4: Determination of permeance 

P = Permeance; F = Flux, given by the slope of the regression line fitted through the 

gravimetric data (g*min
-1

); A = surface area of the leaf; Δc = driving force;  expressed as 

water concentration in the leaf  

 

 

Figure 6: Representative leaf drying curve for Arabidopsis wild type (Col-0)  

A representative result of a gravimetric measurement of water loss over t ime with a single  

leaf of Arabidopsis ecotype (Col-0).  

 

In order to measure the permeability of the cuticular membrane water loss through 

present stomata needed to be considered. Thus the exact point of maximum 
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stomatal closure was determined. Therefore the relative water loss (RWL) was 

calculated at each time point measured. It is based on the relation of fresh weight 

and complete dry weight of the leaf. Likewise, minimal conductance (Equation 4) 

for each leaf and at each time point was calculated by the slope of the regression 

line fitted through the gravimetric data (Figure 6). The minimal conductance 

plotted against the RWL calculated for each time point and every leaf of each 

genotype determines the point at which transpiration through the cuticle occurred 

(Figure 7). Respective figures (Figure 6, Figure 7) are representative for one 

replicate. For at least four replicates of each drying curve, mean values and standard 

deviations were calculated.  

 

Figure 7: Representative leaf drying curve for Col-0 Arabidopsis wild type 

The leaf minimal conductance was plotted against the relative water loss of the leaf. The 

initial minimal conductance is high with higher relative water loss it reaches a transition 

point (black arrow) from where on the conductance is constant. At this point, minimal 

conductance at total stomatal closure is reached  

 

2.2.10  Statistical analysis 

All data processing for this work was done with Microsoft Excel 2010 (Microsoft 

Corporation, Redmond, U.S.A.) and OriginPro9 (OriginLab, U.S.A.). Statistical 

tests for normal distribution of data were performed with the 'Shapiro Wilk' test. 
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To test for significant differences between the means 'One way ANOVA' with the 

'Fisher LSD' or student t-test was performed. The significance level for performed 

tests was set at p < 0.05. 

  



Results 

 

25 

3 Results 

3.1 Leaf and stem surface characterization of different 

Arabidopsis genotypes and mutants 

Field Emission scanning electron microscopy (FE-SEM) was used to study the leaf 

and stem surfaces of stomatal, wax and cutin mutants. With this approach 

described mutations in the literature of the here investigated Arabidopsis genotypes 

and mutants were observed. Mutants with prominent wax or stomatal appearance 

are shown. Cutin mutant att1 did not exhibit prominent wax or stomatal structure 

either on stem or leaf (data in supplementals, 7.1). 

3.1.1 Leaf surface morphology of wax and stomatal mutants 

The surface of all Arabidopsis leaves was covered with a hardly visible thin wax film, 

and wax granules close to stomata (Figure 8). In the wild type, Col-0, stomata are 

single-spaced and follow the one spacing rule (circle), hence they are separated from 

each other by at least one pavement cell (Figure 8 A, B). In the stomatal mutant 

tmm and flp, stomata are clustered (Figure 8 C, D). In the flp mutant clusters are 

smaller than in tmm and stomata appear as units in adjacent pairs (Figure 8 E, F).  
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Figure 8: FE-SEM micrographs of the leaves' surface morphology  

Overview (scale bars: 40 µm) and detail  (scale bars: 5 µm) of Arabidopsis wild type and 

different stomata l mutants on the abaxial leaf side.  

A , B :  Col-0; C ,  D :  tmm ; E ,  F :  f lp. The circle emphasizes on the one spacing rule in stomatal 

patterning. Arrows indicate mutations in the formation of stomata.  
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Also different from the wild type Col-0 (Figure 8 A) the stomatal mutants st-ox and 

st-RNAi show high and low stomatal density respectively (Figure 9, A; E). Whereas 

the wax mutant wax2 exhibits stomatal patterning not different from the wild type 

and therefore follows the one spacing rule (Figure 9 C). Unlike the wild type (Figure 

8 B) where wax granules accumulate around stomata and on guard cells, those are 

not visible in wax2 (Figure 9 D). Stomatal mutant st-RNAi does not show any 

abnormalities in stomatal appearance (Figure 9 F). 
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Figure 9: FE-SEM micrographs of the leaves' surface morphology  

Overview (scale bars: 40 µm) and detail (scale bars: 5 µm) of Arabidopsis stomatal mutants 

and wax mutant on the abaxial leaf side .  

A , B : st-ox ; C ,  D :  wax2 ; E .  F : st-RNAi 
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3.1.2 Stem surface of wax and stomatal mutants 

Epicuticular wax crystals can be found over the entire stem surface. The wild type 

Col-0 and the stomatal mutant tmm show polymorphism in their wax crystalloids: 

Tubules, as well as platelets and rodlets, are visible on the stem surface (Figure 

10 B, D). Flp, on the other hand, shows rarely tubules and rodlets but exhibits 

mostly platelets (Figure 10 F). Additionally, there seem to be fewer wax crystals in 

this mutant overall (Figure 10 E), when compared to the wild type Col-0 (Figure 10 

A). The stomatal mutation of the characteristic 'four lips' is not found in the stem 

surface (Figure 10 E, F). Tmm is completely lacking stomata on the stem but 

otherwise exhibits the same structure of wax crystals as the wild type (Figure 10 C, 

D).  
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Figure 10: FE-SEM micrographs of the stems' surface morphology 

Overview (scale bars: 20 µm) and detail  (scale bars: 5 µm) of Arabidopsis wild type and 

different stomata l mutants. 

A , B :  Col-0; C ,  D :  tmm ; E ,  F :  f lp  
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The stomatal mutant st-ox (Figure 11 A) shows more stomata on the stem surface 

compared to the wild type (Figure 10 A). Also in its wax morphology, it is different 

from the wild type exhibiting only platelets (Figure 11 B). Stomatal mutant st-RNAi 

(Figure 11 F) does not show different wax morphology when compared to the wild 

type (Figure 10 B). The wax mutant wax2 analogous to the leaf doesn't show any 

particular wax morphology and is instead covered with a thin wax film and few wax 

granules (Figure 11 C; D). 
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Figure 11: FE-SEM micrographs of the stems' surface morphology  

Overview (scale bar: 20 µm) and detail  (scale bar: 5 µm) of different Arabidopsis mutants. 

A , B :  st-ox ; C ,  D :  wax2 ; E ,  F :  st-RNAi 
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3.2 Measurement of wetting properties 

Contact angles of 10 µl water droplets on the different leaf surfaces were measured 

to provide more information on the wetting properties and hence the surface 

structure of the leaves. The wettability of different Arabidopsis genotypes was 

measured on leaf's ad- and abaxial side. Water droplets on parafilm served as an 

additional control. There was a tendency that all measured values were higher for 

contact angles on the abaxial side than on the adaxial side. Arabidopsis ecotype Col-

0 was the only exception with a higher contact angle on the adaxial leaf side than 

on the abaxial side. Further only the stomata mutants st- RNAi and tmm showed 

significant differences in the measured contact angle for both leaf sides compared to 

the wild type (Col-0) as did the cutin mutant att. Aside from those the other 

stomatal mutants only showed significant differences in the wettability of the 

abaxial leaf side, when compared to Col-0. The wax mutant wax2 did not show any 

difference in the wetting properties for different leaf sides but instead on the adaxial 

leaf side when compared to the wild type (Table 2). 
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Table 2: Contact angle measurements on Arabidopsis genotypes, mutants and on parafilm 

Taken contact angle measurements of the ad- and abaxial leaf sides and paraf i lm. Shown are 

means and standard deviation of at least three biological replicates . Asterisks indicate 

significant differences between means of mutants and corresponding wild type at a 

significance level of 0.05 in student's t -test.  

Genotype contact angle 

(°) 

 adaxial abaxial 

tmm 96.7 ± 4.1 * 109.8 ± 5.4 * 

flp 115.8 ± 9.5  105.9 ± 9.1 * 

st-ox 108.6 ± 16.5  112.5 ± 2.5 * 

st-RNAi 104.9 ± 5.9 * 118 ± 3.9 * 

Col-0 114.7 ± 8.8  90.1 ± 3.2 

wax2 89.42 ± 3.8 * 89.7 ± 0.7 

att1 96.7 ± 4.1 * 116.4 ± 10.6* 

Ws 106.7 ± 8.5 104.8 ± 3.3 

shn3 99.9 ± 1.7 106.9 ± 6.1 

parafilm 106.2±1.5 110±1.3 

 

3.3 Chemical analysis of plant waxes and cutin 

To corroborate a possible relationship between stomatal density and wax or cutin 

amount in Arabidopsis leaves or stems, chemical analyzes were performed according 

to (2.2.5). With special interest, the wax and cutin amounts of the chosen set of 

Arabidopsis stomatal mutants were compared to the wild type. 

Next to waxes of whole leaves also waxes of ab- and adaxial sides of the leaves of 

Arabidopsis were analyzed. Waxes were separately analyzed for both leaf sides, 

enabling for a subsequent comparison between stomatal density and wax content for 

both sides of the leaves. Additionally, stems of the chosen Arabidopsis mutants were 

chemically analyzed for wax and cutin amounts. Also, the biopolymer cutin was 

analyzed for both plant organs. The data for wax and cutin extraction is presented 
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in the following for at least 3 biological replicates with standard deviation for each 

Arabidopsis genotype.  

3.3.1 Chemical analysis of waxes for whole Arabidopsis leaves 

The total wax extraction for whole leaves was performed as described in 2.2.5.1. For 

the Arabidopsis ecotypes Col-0 and Ws the total wax amount was 

0.76 (±0.09) µg*cm-2 and 0.74 (±0.13) µg*cm-2 respectively. The wax mutant 

shn3, as well as the cutin mutant att1, did not show any significant differences 

compared to the corresponding wild types. From leaves of the wax mutant wax2, a 

significant lower wax amount was extracted (0.33±0.09 µg*cm-2). All stomatal 

mutants, except for st-ox, had significantly lower wax amounts extracted from 

whole leaves than the wild type. St-RNAi leaves had 46 % less wax compared to the 

control. The mutants tmm (0.44±0.1 µg*cm-2) and flp (0.54±0.08 µg*cm-

2) mutants showed a 1.73 and 1.4 fold decrease in wax amount compared to Col-0 

(Figure 12).  



Results 

 

36 

 

Figure 12: Total wax amount of whole Arabidopsis leaves 

Amounts of total wax extracted from whole Arabidopsis leaves. Stomatal, wax and cutin 

mutants with Col-0 background are plotted together. Wax mutant shn3 and corresponding 

wild type Ws are shown separately. Bars indicate mean values with standard deviation of a t 

least three biological repl icates. Asterisks indicate s ignificant differences between means of 

mutants and corresponding wild type at a significance level of 0.05 in One -Way ANOVA 

(Fisher LSD).  

 

3.3.2 Chemical analysis of waxes for ad- and abaxial Arabidopsis leaves 

Wax extraction for ad and abaxial sides of Arabidopsis leaves was performed 

according to 2.2.5.1. Overall wax amounts on the adaxial leaf side were lower than 

on the abaxial side (Figure 13). However, significant differences could only be 

analyzed for waxes extracted from both the adaxial and abaxial leaf sides of 

stomatal mutant st-RNAi (0.57±0.04 / 0.5±0.13 µg*cm
-2
) and wax mutant wax2 

(0.51±0.2 / 0.29±0.04 µg*cm-2) when compared to the corresponding wild type 

Col-0 (0.75±0.04/ 0.8±0.07 µg*cm-2), (Figure 13).  



Results 

 

37 

 

Figure 13: Wax amount of ad- and abaxial Arabidopsis leaves 

Amounts of wax extracted from the ad- (A )  and abaxial (B )  leaf sides. Stomatal, wax and 

cutin mutant with Col-0 background are plotted together. Wax mutant shn3 and 

corresponding wild type Ws are shown separately. Bars indicate mean values with standard 

deviation of at least three biological replicates. Asterisks indicate significant differences 

between means of mutants and corresponding wild type at a signif icance level of 0.05 in One -

Way ANOVA (Fisher LSD).  
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To show the differences in the total wax amount of Arabidopsis leaf's ad- and 

abaxial sides for the stomatal mutant st-RNAi in more detail, amounts of cuticular 

wax substances were plotted (Figure 14). Even though total amounts for the ad- 

and abaxial leaf sides were consistent in itself for both the wild type and the mutant 

(Figure 13), significant differences were analyzed for the amount of wax monomers 

between wild type and mutant.  

Within each substance class two to nine individual wax monomers could be 

identified. For the adaxial leaf side acids, aldehydes, primary and secondary alcohols 

were weakly affected. Acids ranging from chain lengths C16 to C34 made up 38.8 % 

(±5.05 %) of the total wax amount on the adaxial leaf side for the mutant st-RNAi. 

In the wild type Col-0, the substance class of acids was made up of 23.99 % 

(±6.37 %) wax and was, different from the mutant, not the most abundant 

substance class of the total wax. For the wild type alkanes were the most abundant 

substance class on the adaxial leaf surface (33.95±3.37 %). The main differences 

were found in the highest abundant monomer (C31 alkane) analyzed in Arabidopsis 

wax for both ad- and abaxial leaf sides (Figure 14). The mutant showed 

significantly fewer amounts of the C29- (0.03±0.004 µg*cm-2) and C31 alkane 

(0.06±0.01 µg*cm-2) extracted from the epicuticular wax of the adaxial leaf side. 

Higher amounts of 0.08±0.001 µg*cm-2 (C29-) and 0.12±0.01 µg*cm-2 (C31 alkane) 

were analyzed for the wild type. Additionally 6.6- fold less amount was extracted of 

the C29 secondary alcohol in the mutant (0.003±0.002 µg*cm-2) when compared to 

the wild type (0.02±0.008 µg*cm-2), (Figure 14 A). 

On the other hand, wax extracted from the abaxial side of the leaf showed overall 

lower amounts of wax monomers in all substance classes in the mutant. In the 

substance class of alkanes, C31 alkane with the highest abundance in wild type 

(0.12±0.02 µg*cm-2), was significantly decreased in the mutant st-RNAi (0.05±0.02 

µg*cm-2). As on the adaxial leaf, side acids are the most abundant substance class 

in the mutant st-RNAi with and 39 % (±6.95 %). Acids in the wax of Col-0 made 

up 29.78 % (±9.2 %). A significant difference was analyzed for the C16 and C18 

acid, which was not present in the wild type at all but detected in st-RNAi 
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(0.04±0.01 / 0.03±0.003 µg*cm-2). When comparing ad- and abaxial leaf sides an 

increase in the amount of the single monomers of C34 acid and C32 alcohol are 

evident for the abaxial leaf side of the wild type wax (Figure 14 B).  
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Figure 14: Amounts of wax monomers identified in Arabidopsis leaf sides  

Wax amounts of stomatal mutant st-RNAi of ad- (A )  and abaxial (B )  leaf side in comparison 

to the corresponding wild type Col -0 are shown in means of at least three biological replicates 

with standard deviation. Within each substance class ( ac id s :  primary fatty acids; a ld ehyde s :  

primary aldehydes; a lcoho ls :  primary alcohols; s e c .a lc . :  secondary alcohols; a lk ane s :  l inear 

alkanes) wax constituents  of different chain lengths were identified. Asterisks indicate 

significant differences between means  of mutant and the wild type at a s ignificance level of 

0.05 in student t-test.   
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3.3.3 Chemical analysis of cutin for whole Arabidopsis leaves 

In order to further elucidate the relationship between stomatal density and changes 

in cuticular chemistry, the biopolymer cutin was chemically analyzed for the 

different Arabidopsis mutants. Cutin extraction was performed as previously 

described in 2.2.5.2.  

Overall all stomatal mutants showed lower amounts of cutin extracted from the 

Arabidopsis leaves. Especially the flp mutant showed a significant lower cutin 

amount (0.8±0.08 µg*cm
-2
) compared to the wild type Col-0 (1.58±0.47 µg*cm

-2
). 

Likewise, the cutin mutant att1 showed a 46.2 % (0.81±0.05 µg*cm-2) decrease in 

cutin amount when compared to the wild type. The cutin amounts of shn3 

(1.52±1.04 µg*cm-2) were 1.46-fold higher than in the corresponding wild type 

(Figure 15). 
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Figure 15: Cutin amount of Arabidopsis leaves 

Amounts of cutin extracted f rom Arabidopsis leaves of different genotypes. Stomata l, wax and 

cutin mutants with Col-0 background are plotted together. Wax mutant shn3 and 

corresponding wild type Ws are shown separately. Bars indicate mean values with standard 

deviation of at least three biological replicates. Asterisks indicate significant differences 

between means of mutants and corresponding wild type at a signif icance level of 0.05 in One -

Way ANOVA (Fisher LSD).  

 

3.3.4 Chemical analysis of waxes for Arabidopsis stems 

Information about the possible impact of stomatal density on the wax amount in the 

stem of the plants was investigated (2.2.5). To compare the chosen set of 

Arabidopsis stomatal mutants the set of wax and cutin mutants was analyzed as 

well. All lines had significant higher wax amounts on the stems compared to the 

leaves (Figure 12, Figure 13, Figure 16). Further, all stomatal mutants showed 

significant differences compared to the wax amount of the wild type. Only the 

mutant tmm showed lesser wax amount (10.26±0.78 µg*cm-2) than the wild type 

Col-0 (14.5±2.51 µg*cm-2). For the flp, (22.99±5.3 µg*cm-2), st-ox 

(21.47±2.18 µg*cm-2) and st-RNAi (19.99±4.61 µg*cm-2) mutants significantly 

higher amounts of wax were revealed. The wax mutant wax2 had 3.02- fold less wax 
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extracted from the stem (4.84±0.7 µg*cm-2) than the wild type Col-0. The other 

mutants and the corresponding wild type did not show any significant differences in 

their wax amount (Figure 16). 

 

Figure 16: Wax amount of Arabidopsis stems 

Amounts of wax extracted from Arabidopsis stems of different genotypes. Stomata l, wax and 

cutin mutants with Col-0 background are plotted together. Wax mutant shn3 and 

corresponding wild type Ws are shown separately. Bars indicate mean values with standard 

deviation of at least three biological replicates. Asterisks indicate significant differences 

between means of mutants and corresponding wild type at a signif icance level of 0.05 in One -

Way ANOVA (Fisher LSD).  

 

3.3.5 Chemical analysis of cutin for Arabidopsis stems 

Information about the possible impact of stomatal mutations on the deposition of 

cutin in the stem was of particular interest. Therefore cutin was also extracted from 

the stem of different Arabidopsis mutants. Similar to wax all the Arabidopsis lines 

showed significant higher cutin amounts on the stems compared to leaves (Figure 

15). The stomatal mutants flp (6.69±1.04 µg*cm-2) and st-ox (6.52±1.64 µg*cm-2) 

had an increased amount of cutin extracted from the stems compared to the wild 
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type Col-0 (4.58 µg*cm-2). Vice versa the mutant tmm (2.36±0.82 µg*cm-2) 

showed a significantly lower amount of cutin. Additionally, the overall cutin 

coverage in the stem of the mutant att1 (1.25±0.37 µg*cm-2) was 27.3 % lesser 

than in Col-0 (Figure 17).  

 

Figure 17: Cutin amount of Arabidopsis stems 

Amounts of cutin extracted from Arabidopsis stems of different genotypes. Stomata l, wax and 

cutin mutants with Col-0 background are plotted together. Wax mutant shn3 and 

corresponding wild type Ws are shown separately. Bars indicate mean values with standard 

deviation of at least three biological replicates. Asterisks indicate significant differences 

between means of mutants and corresponding wild type at a signif icance level of 0.05 in One -

Way ANOVA (Fisher LSD).  

 

3.4 Stomatal density of Arabidopsis leaves and stems 

Stomatal density was determined to further investigate a possible correlation 

between the amounts of both leaves' and stems' wax and the stomatal density for 

both plant organs. Counting of stomata was conducted as described in 2.2.6.  
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3.4.1 Stomatal density of Arabidopsis leaves 

The total amount of stomata counted for Arabidopsis leaves showed significant 

differences between the control (196±38 mm-2) and all stomatal mutants except for 

tmm (210±24 mm-2). St-ox was the only mutant that showed a significantly higher 

amount of stomata (403±26 mm-2) than the wild type. The mutants flp 

(117±19 mm-2) and st-RNAi (35±13 mm-2) contrarily showed significantly lower 

stomatal density. Likewise, the wax mutant wax2 (93±5°mm-2), as well as the wax 

mutant shn3 (79±6 mm-2), had significantly lower amounts than the corresponding 

wild types Col-0 and Ws (166±8 mm-2) respectively (Figure 18). 

 

Figure 18: Density of stomata per mm
2
 of Arabidopsis leaves 

Stomatal density in Arabidopsis stomata l, wax and cutin mutants leaves. Stomata l, wax and 

cutin mutants with Col-0 background are plotted together. Wax mutant shn3 and 

corresponding wild type Ws are shown separately. Presented is the sum of adaxial and abaxial 

single values divided by two. The bars indicate mean values with standard deviation of at 

least three biological repl icates.  Asterisks indicate s ignificant differences between means of 

mutants and corresponding wild type at a significance level of 0.05 in One -Way ANOVA 

(Fisher LSD). 
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3.4.2 Stomatal density of ad- and abaxial leaf sides of Arabidopsis  

To differentiate between the two leaf sides and to further compare the number of 

stomata with the wax amount per leaf side, stomata were additionally counted for 

ad- and abaxial leaf sides. Overall fewer stomata were counted for the leaf's adaxial 

side (Figure 19 A). Tmm was the only mutant showing a decrease in stomatal 

density (SD) on the adaxial (78±17 mm-2) side and an increase on the abaxial 

(342±32 mm-2) leaf side when compared to the wild type (169±43 / 235±86 mm-

2). The amount of the wild type Col-0 for ad- and abaxial side was only slightly 

different from each other. However, the wild type values for SD compared to the 

values in corresponding stomatal mutant st-RNAi (20±7 / 51±23 mm-2) and wax 

mutant wax2 (88±3 / 98±7 mm-2) were significantly lower on both leaf sides for 

the mutants (Figure 19 A, B). Whereas the stomatal mutant st-ox only showed a 

significant increase in SD on the abaxial leaf side (577±43 mm-2), (Figure 19 B). 

The stomatal mutant flp instead decreased in SD on the adaxial side (87±41 mm-

2). The wax mutant shn3 also showed a decrease of SD (55±3 mm-2) on the adaxial 

leaf side when compared to the control Ws (141±16 mm-2).  
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Figure 19: Density of stomata per mm
2
 of Arabidopsis ad- and abaxial leaf sides 

A : Stomatal density in Arabidopsis stomata l, wax and cutin mutants of the adaxial leaf side.  

B : Stomatal density in Arabidopsis stomata l, wax and cutin mutants of the abaxial leaf side.  

Stomatal, wax and cutin mutant with Col -0 background are plotted together. Wax mutant 

shn3 and corresponding wild type Ws are shown separately. Bars indicate mean values with 

standard deviation of at least three biological repli cates. Asterisks indicate significant 

differences between means of mutants and corresponding wild type at a significance level of 

0.05 in One-Way ANOVA (Fisher LSD).  
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3.4.3 Stomatal index for ad- and abaxial leaf side 

The stomatal index (SI) for different Arabidopsis mutants and their corresponding 

wild types were calculated as described in 2.2.6. The SI sets pavement cell density 

and stomatal density in relative relation. Therefore results for different sets of 

mutants and wild types were calculated for both leaf sides, additionally to the 

absolute number of stomata per mm-2 (3.4.1). 

Overall the SI did not differ between the leaf's ad- and abaxial sides for the single 

genotypes. The only exceptions were the stomatal mutants tmm, st-RNAi and st-ox. 

The mutant tmm did not show a significant difference in the SI on the adaxial leaf 

side (26.01±5.82 %) compared to the wild type (21.42±1.79 %), but instead a 

significantly higher number on the abaxial side (50.29±3.58 %) than Col-0 

(19.71±5.82 %). A significant increase of SI could also be determined for st-ox but 

here on both leaf sides (38.21±1.29 / 54.5±2.31 %). The mutant st- RNAi had 

instead reduced amounts of the SI on both leaf sides, but only a significant 

reduction could be analyzed for the abaxial leaf side (12.95±2.2 %) when compared 

to the control.  
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Figure 20: Stomatal index of ad- and abaxial Arabidopsis leaves  

A : Stomatal index of Arabidopsis stomata l, wax and cutin mutants ' adaxial leaf side. B :  

Stomatal index of Arabidopsis stomata, wax and cutin mutants ' abaxial leaf side. Stomatal, 

wax and cutin mutants with Col-0 background are plotted together. Wax mutant shn3 and 

corresponding wild type Ws are shown separately. Bars indicate mean values with standard 

deviation of at least three biological replicates. Asterisks indi cate significant differences 

between means of mutants and corresponding wild type at a signif icance level of 0.05 in One -

Way ANOVA (Fisher LSD).  
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3.4.4 Stomatal density of stems 

The number of stomata counted for Arabidopsis stems showed significant 

differences between the Col-0 (135±39 mm-2) and stomatal mutants tmm which did 

not exhibit stomata on the stem at all, st-ox (202±15 mm-2) and st-RNAi (19±1 

mm-2). All cuticular mutants showed significantly lower numbers of stomata than 

their corresponding wild types. Wax2 (76±8 mm-2) and att1 (72±10 mm-2) showed 

56 % and 53 % less stomata on the stem than Col-0. Likewise, the wax mutant 

shn3 (48±14 mm-2) exhibited significantly fewer stomata on the stem than its 

corresponding wild type Ws (110±13 mm
-2
), (Figure 21).  
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Figure 21: Density of stomata per mm
2
 of Arabidopsis stems 

Stomatal density of Arabidopsis stomatal and cuticular mutants stems. Stomatal, wax and 

cutin mutants with Col-0 background are plotted together. Wax mutant shn3 and 

corresponding wild type Ws are shown separately. Bars indicate mean values with standard 

deviation of at least three biological replicates. Asterisks indicate significant differences 

between means of mutants and corresponding wild type at a signif icance level of 0.05 in One -

Way ANOVA (Fisher LSD).  

 

3.5 Correlation between stomatal density and wax coverage of 

Arabidopsis leaves and stems  

To combine analyzes of wax coverage in plant organs (leaf and stem), (3.3.1, 3.3.4) 

and in more detail on leaves ad- and abaxial side (3.3.2) data for stomatal density 

(3.4) and the wax amount was correlated per area (cm-2). When setting stomatal 

density and wax amount for whole leaves into relation no correlation of the amounts 

was determined (r = 0.19), (Figure 22 A). Likewise, the correlation between 

stomatal density and wax amount in Arabidopsis stems did not show a positive or 

negative correlation (Figure 22 B).  



Results 

 

52 

 

Figure 22: Correlation between stomatal density and the wax amount of different 

Arabidopsis genotypes 

A : Correlation between stomatal density and wax  amount of different Arabidopsis genotypes 

in the whole leaves projected to the leaf area in cm
-2

. The stomatal density was the mean of 

ad- and abaxial leaf sides.  B : Correlation between stomatal density and wax amount of 

different Arabidopsis genotypes in  the stems projected to the leaf area in cm
- 2

.r shows the 

correlation coefficient for negative ( -1) positive (+1) or no correlation (0). Squares represent 

the mean of stomatal density and wax amount with standard deviations for at least three 

biological repl icates.  

Since stomatal densities, as well as wax amount, differ on ad- and abaxial leaf sides 

correlation for the leaf sides with wax amount and stomatal density was performed 

(Figure 23). Neither numbers for stomatal density or wax amount on the adaxial (r 

= 0.26) nor on the abaxial leaf side (r = 0.5) correlated (Figure 23 A, B).  
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Figure 23: Correlation between stomatal density and the wax amount of different 

Arabidopsis genotypes 

A : Correlation between stomatal density and wax amount of different Arabidopsis genoty pes 

on the adaxial leaf side projected to the area in cm
-2

.  B :  Correlation between stomatal 

density and wax amount of different Arabidopsis genotypes on the abaxial leaf side projected 

to the area in cm
-2

.  r shows the correlation coefficient for negative (-1) posit ive (+1) or no 

correlation (0). Squares represent the mean of stomatal density and wax amount with 

standard deviations for at least three biological replicates.  

 

3.6 Stomatal conductance  

For further information on the physiology of the chosen Arabidopsis stomatal and 

cuticular mutant sets stomatal conductance was measured with a leaf porometer 

(2.2.7). The stomatal conductance for all genotypes was always higher on adaxial 

leaf sides than on the abaxial side. However, when mutants are compared to the 

corresponding wild type Col-0 (52.23±27.61 / mmol*m-2*s-1) stomatal conductance 

for the stomatal mutant st-ox (134.25±37.01 / 297.25±151.8 mmol*m-2*s-1) as 

well as the cutin mutant att1 (220.25±65.79 / 278.25±34.34 mmol*m-2*s-1) was 

significantly increased on both ad- and abaxial leaf sides. Additionally, stomatal 

mutants tmm (72.4±19.55 mmol*m-2*s-1) and st-RNAi (68.7±16 mmol*m-2*s-1) 

showed significantly decreased stomatal transpiration on the abaxial leaf side in 

comparison to Col-0. 
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Figure 24: Stomatal conductance of Arabidopsis genotypes 

A : Stomatal conductance of adaxial leaf side of Arab idopsis genotypes B : Stomatal 

conductance of the abaxial leaf side of Arab idopsis genotypes. Stomatal, wax and cutin 

mutants with Col-0 background are plotted together. Wax mutant shn3 and corresponding 

wild type Ws are shown separately. Bars indicate mean values with stan dard deviation of at 

least four biological replicates. Asterisks indicate s ignificant differences between means of 

mutants and corresponding wild type at a significance level of 0.05 in One -Way ANOVA 

(Fisher LSD). 
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3.7 Chlorophyll content analysis 

Chlorophyll measurements were conducted as described in 2.2.4. The chlorophyll 

content for all genotypes did not differ significantly when compared to the 

corresponding wild types Col-0 or Ws respectively.  

Table 3: Chlorophyll content of different Arabidopsis thaliana genotypes under normal 

ambient conditions 

Chlorophyll contents of Arabidopsis wild types and corresponding stomatal, wax and cutin 

mutants. Plants were four weeks old and grown under long day conditions with a light 

intensity of 150 / 0 µmol m
-2

s
-1

.  

Genotype Chlorophyll  

(µg*cm -2) 

tmm 17.0 ± 1.04 

flp 17.1 ± 1.3 

st-ox 15.9 ± 0.06 

st-RNAi 17.3 ± 0.6 

Col-0 16.1 ± 0.2 

wax2 18.6 ± 2.9 

att1 17.6 ± 1.70 

Ws 18.6 ± 3.5 

shn3 17.50 ± 0.9 

 

3.8 Chlorophyll-Fluorescence measurements 

Besides investigating the cuticular permeability of the Arabidopsis leaves via leaf 

desiccation (3.9) the herbicide metribuzine was used to further evaluate the 

cuticular barrier properties of the genotypes. For the indirect measurement of the 

cuticular permeability via pulse- amplitude modulation (PAM) the fluorometer 

monitored the photosynthetic yields (Y II) in the photosystem II as described in 

2.2.8. Before all conducted measurements with the herbicide, water, as control, was 

applied onto the adaxial leaf side and photosynthetic yield was measured. All plants 
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used for the experiments did not show a decrease in the photosynthetic yield after 

water application (data in supplemental, 7.2).  

The herbicide was applied on the adaxial leaf side after three consecutive 

measurements at which point all plants had a Y (II) between 0.7 and 0.79. In all 

investigated Arabidopsis ecotypes and mutants, the photosynthetic yield decreased 

non- linearly over time (Figure 25), (Figure 26). In all stomatal, wax and cutin 

mutants a complete inhibition of photosynthesis was obtained faster than in the 

wild type Col- 0, with the exception of the stomatal mutant flp, (Figure 25 b) which 

took longer for complete inhibition than Col-.0 (Figure 25). The decrease of the 

photosynthetic yield of shn3 was also obtained faster than in its corresponding wild 

type Ws (Figure 26). 
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Figure 25: Decrease of the photosynthetic yield in Arabidopsis genotypes 

Kinetics are shown for different Arabidopsis mutants ( a)  tmm , ( b)  f lp, (c )  st-ox , ( d)  st-

RNAi, ( e )  wax2 , ( f)  att1,  in comparison to the corresponding wild type (g )  Col-0. Arrows 

indicate the application of the herbicide on the ada xial leaf surface. Kinetics  represent the 

means calculated from single values of individual leaves used (n= at least 3 biological 

replicates).  
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Figure 26: Decrease of the photosynthetic yield in Arabidopsis genotypes  

Kinetics are shown for Arabidopsis mutant (a )  shn3 in comparison to the corresponding wild 

type (b )  Ws. Arrows indicate the application of the herbicide on the adaxial leaf surface. 

Kinetics represent the means calculated from single values of individual leaves used (n= at 

least 3 biological replicates).  

 

Half time and complete inhibition of photosynthesis were consecutively calculated 

for each replicate separately (2.2.8). The results are given in boxplots (Figure 27). 

The median for Col-0 for the time needed for 50 % inhibition of the photosynthesis 

was at 95 min. Except for the stomatal mutant flp (84 min.), half times for the 

other Arabidopsis mutants were shorter than for Col-0 or Ws (119 min.) respectively 

in the case of shn3 (21 min.). All the other mutants revealed faster uptake of 

metribuzine according to the half times of inhibition: The median for tmm was 21 

min. where the median for the cutin mutant att1 was 15 min. The half time 

inhibition for wax2 compared to Col-0 was the shortest with 12.5 min and st-ox also 

showed a faster uptake than Col-0 with 14 min. half time inhibition (Figure 27 A). 

Complete inhibitions of photosynthesis were obtained in shorter times for the 

mutants respectively when compared with the wild types Col-0 (230 min) and Ws 

(236 min.). Shn3 with Ws background had a photosynthetic yield of zero after 21 
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min. In the stomatal mutants tmm (52 min.), st-ox (40 min.) and st-RNAi 

(40 min.) photosynthesis was faster inhibited than in the wild type, whereas the 

inhibition of the photosynthesis of flp took 144 min.  
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Figure 27: Half time and complete inhibition of photosynthetic yield in Arabidopsis leaves 

after the application of the herbicide metribuzine (100 µMol).  

A : Half time inhibition shows the decrease in the photosynthetic yield at 50  % in min. B :  

Complete inhibition shows the decrease in the photosynthetic yield at 100  % in min. 

Stomatal, wax and cutin mutants with Col -0 background are plotted together. Wax mutant 

shn3 and corresponding wild type Ws are shown separately. The boxes range from 25 to 75 

percentiles. The black square in the box represents the mean value . Boxplots consist of at 

least 3 biological replicates. The whiskers range to the outliners.  
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3.9 Minimum conductance of Arabidopsis leaves 

The leaf's minimum conductance for different Arabidopsis genotypes was based on 

leaf drying curves. As stomata occurred on both the ad- and abaxial leaf surfaces 

the minimum conductance was calculated at the point of maximum stomatal closure 

(2.2.9). The minimum conductance for all mutants was increased when compared to 

the corresponding wild types. However significant differences were found in 

minimum conductance of the leaves of the stomatal mutants flp (4.88x10-

9±2.53x10-9 m*s-1), st-ox (6.63x10-9±2.29x10-9 m*s-1) and st-RNAi (4.55x10-

9±9.68x10-10 m*s-1) when compared to the control, Col-0 (2.1x10-9±3.6x10-10 m*s-

1). Additionally, wax mutant wax2 (4.32x10-9±1.71x10-10 m*s-1) and cutin mutant 

att (4.5x10-9±8.16x10-10 m*s-1) also had a significantly increased stomatal 

conduction in comparison to the wild type (Figure 28).  



Results 

 

62 

 

Figure 28: Minimum conductance of Arabidopsis leaves 

Stomatal, wax and cutin mutants with Col -0 background are plotted together. Wax mutant 

shn3 and corresponding wild type Ws are shown separately. Bars indicate mean values with 

standard deviation of at least four  biological replicates. Asterisks indicate s ignificant 

differences between means of mutants and corresponding wild type at a significance level of 

0.05 in One-Way ANOVA (Fishers LSD). 
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4 Discussion 

The cuticular membrane of plants mainly functions as a very effective barrier 

against uncontrolled water loss protecting the plant from desiccation (Schönherr, 

1982). Stomata, which disrupt the cuticle, are on the other hand responsible for the 

gas exchange and at the same time the accompanying controlled water loss of the 

plant when stomata are open. However, if stomata are closed for instance during 

water stress, the quality of the cuticle as the main barrier to uncontrolled water loss 

becomes even more important. The understanding of the interplay between stomata 

and the cuticle has been rarely studied in the past. Therefore putative changes in 

barrier properties of the cuticle were investigated by the comparison of Arabidopsis 

wild types to corresponding mutants that are either altered in their wax or cutin 

biosynthesis and therefore exhibit changes in their wax/ cutin amount and chemical 

composition or vice versa stomatal mutants with alterations in their stomatal 

distribution.  

4.1 Leaf and stem surface characterization of different 

Arabidopsis genotypes and mutants 

In the FE-SEM micrographs of Arabidopsis leaf sides, all genotypes exhibit a thin, 

smooth film of epicuticular waxes (3.1.1.) as also described by Jenks et al., (1995). 

The leaf surfaces of Arabidopsis are equipped with a thin cuticle of 22°nm in the 

leaf blades (Franke et al., 2005). The epicuticular waxes only make up a small 

portion of this layer and are therefore hardly visible by FE- SEM. Small wax 

granules close to stomata are the visible evidence of the barely observable wax film 

(Figure 8, Figure 9). It is known that epicuticular waxes accumulate around stomata 

on the leaf surface (Barthlott and Neinhuis, 1997) here they should hinder water 

from entering the intracellular air spaces (Lemieux, 1996). The structure of 

epicuticular waxes can be highly diverse (Jenks et al., 2002). Surface waxes can 

differ in structure and chemistry as well as in their appearance (Lemieux, 1996). A 
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glaucousness appearance or so-called waxy bloom, for example, characterizes the 

stems of Arabidopsis. Arabidopsis leaves on the other hand usually appear non- 

glaucous or glossy because they lack reflective wax crystals and instead are covered 

by a smooth thin wax film (Jenks et al., 1995, 2002). An exception of this finding is 

the mutant shn3. Its leaves also appear shiny but not because of less wax covering 

the leaf. The opposite is the case; the wax amount is increased compared to the 

wild type (Figure 12). This is due to the structure of the epicuticular waxes. 

Interestingly the waxes, observed in the FE-SEM, are orientated in platelets which 

are able to reflect the light, different from other waxy cuticles with superimposed 

wax crystals, or as already mentioned the waxy film usually covering Arabidopsis 

leaves (Sugano et al., 2010). This emphasizes the importance of the orientation of 

the epicuticular waxes on the leaf surface. The here investigated stomatal mutants 

exhibit the same wax orientation as the corresponding wild type. Defined wax 

structures are not visible in the leaves which were instead also covered by a thin 

waxy film (Figure 8, Figure 9). The stomatal patterning in the investigated wax and 

cutin mutants is the same as in the wild type. They all follow the one spacing rule, 

which is defined to guarantee the functioning of single stomata (Figure 8, Figure 9). 

The stomata are consistently patterned so that they are never adjacent to one 

another (Sachs, 1991). The mutations in the cutin and wax biosynthesis, for the 

here investigated cuticular mutants, do not have a visible effect on the stomatal 

morphology or patterning. In the stomatal mutants, on the other hand, the 

mutations in stomatal patterning could be confirmed morphologically for all 

mutants. The mutant tmm showed barely clustered stomata on the adaxial leaf side 

(7.1, Figure 30) however more and bigger clusters were detected on the abaxial leaf 

side (Figure 8 C). These defects in clustering originate in the regulation of spacing 

divisions by Tmm (Geisler et al., 2000). The described defect in the patterning of 

the mutant flp could be recognized for the leaf's ad- and abaxial side (Figure 8 E). 

The stomata build units with paired guard cells or so-called twinned stomata (Yang 

and Sack, 1995), (Figure 8 F). The overexpression of STOMAGEN in the mutant 

st-ox led to many stomata which also formed clusters (Figure 9 A). Sugano et al., 

(2010) also stated that cotyledons of the same line showed adjacent meristemoid 
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cells to stomata. This could not be confirmed for specimens in this work, but since 

the adjacent meristemoid cells were only observed in cotyledons the loss of those 

cells in rosette leaves during organ ontogeny can be a possible explanation.  

Completely different from the epicuticular waxes covering leaves of Arabidopsis the 

stems showed a variety of wax structures in the different mutants and the wild type 

(Figure 10, Figure 11). The cuticle of Arabidopsis stems (50 – 80 nm) is more than 

twice as thick as in the leaves (Nawrath, 2002). It therefore possibly consists also of 

a thicker layer of epicuticular waxes. Data however on the exact diameter of the 

epicuticular wax layer are missing in literature. Wax crystals on the stem usually 

appear as plates or tubules with approximately 0.3 to 3.9 µm in height and 0.2 to 

0.5 µm in width as investigated for Arabidopsis ecotype Ws in Jenks et al., (1995). 

The only mutant obvious in a lack of wax crystals was wax2 (Figure 11, C, D). Its 

stem appears weakly glaucous as it only inhabits few wax crystals (Jenks et al., 

2002). Besides the wax mutant wax2, the stomatal mutant flp showed fewer wax 

crystals in comparison to the wild type (Figure 10, E, and F). The appearance of 

the stem was also shinier compared to the wild type which could be due to the 

structure of the observed waxes: Fewer tubules but more platelets were observed 

(Figure 10 F), which again, as described before for shn3 could be the reason for the 

shiny appearance of the stem. Flp also lacked its stomatal mutation of adjacent 

guard cells, which are only visible and typical for the leaf (Yang and Sack, 1995). 

Jenks et al., (2002) investigated the epicuticular waxes of stems of 11 Arabidopsis 

mutants. They all belonged to the mutant line of eceriferum family meaning 

'without wax' however the wax crystals detected on the surface of the stems 

exhibited diverse appearance. Much as it is true for both stomatal and cuticular 

mutants in this study. For the investigated mutants tmm, st-RNAi, and att1, 

tubules were observed (Figure 10, Figure 11). But the already described mutants flp 

and wax2 and also, the overexpression line st-ox, which expresses more stomata 

than the wild type, had a different wax structure than the wild type. Only platelets 

were found in st-ox which again led to a shinier appearance of the stem (Figure 11 
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B). The structure of the superimposed waxes can differ due to the chemical 

composition (Gülz, 1994) and change its appearance under the influence of 

environmental factors (Baker, 1974) as well as during ontogeny (Bringe et al., 

2006). According to the here observed structures, they may also be organ dependent 

and exhibit different structures between leaves and stems.  

Interestingly the stomatal mutants flp and tmm did not express the described 

mutations of the leaf in the stems, which indicates differences in the regulation of 

the patterning for the stems. Stomatal mutant tmm even completely lacked stomata 

in the stems (Figure 10 C). Yang and Sack, (1995) suggest that the tmm- contrary 

to flp mutation prevents the pathway of stomatal precursor cells in the stem, which 

ultimately leads to an absence of stomata. St-ox on the other hand also showed 

more stomata in the stem than the wild type, as it was observed in the leaves as 

well (Figure 11 A), which underlines the expression of Stomagen in both organs of 

the plant (Sugano et al., 2010). 

The combination of chemical composition and structure of the waxes are known to 

play a role in the surface wettability of leaves (Holloway, 1970). In addition surface 

structures such as trichomes are responsible for the wettability of leaves (Koch and 

Barthlott, 2009). To further characterize the leaf surface the contact angle for both 

leaf sides was measured (3.2). A leaf/ surface is considered hydrophilic with a 

contact angle less than 90° and as hydrophobic when it is greater than 90° 

(Bhushan, 2003). Arabidopsis genotypes showed differences between the wettability 

of the different leaves sides as well as in between the mutant and the corresponding 

wild type (Table 2). However, all genotypes, except the wax mutant wax2, have 

contact angles greater than 90° and are therefore considered hydrophobic. 

Conspicuously contact angles for the adaxial leaf sides are for most of the genotypes 

lower than for the abaxial side. The structure of the epicuticular waxes does not 

differ in their appearance as they all have been detected as a smooth, thin film 

(3.1). Instead, other factors must be responsible. It is known that due to 

environmental factors the wettability is influenced on different leaf sides. Over time 

rain, wind or dust and dirt can influence the hydrophobicity of the more exposed 

https://www.linguee.de/englisch-deutsch/uebersetzung/conspicuously.html
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adaxial leaf surface and hence lower the wettability (Cape, 1983). Due to the 

erosion of the epicuticular waxes the contact angle would lower when droplets are 

applied. However, this finding can be excluded for the genotypes investigated in this 

study since they were all grown in a growth chamber. Instead, present trichomes 

can play a major role in the wettability of the surface of the leaf. Brewer et al., 

(1991) found, that in 38 tested plant species leaves that exhibited trichomes are 

more water repellent. They also state that the trichome density is a factor to be 

considered. Most of the Arabidopsis genotypes in the present study have trichomes 

on the ad- and abaxial leaf surface. The only exceptions are the stomatal mutants 

tmm, flp, and st-ox. In addition, shn3 exhibits a reduction in trichome number 

(Aharoni et al., 2004). However, the lower contact angle when compared to the 

wild type, which exhibits trichomes, is not true for all measurements. By comparing 

the data the high standard deviations can be recognized. This high variation can be 

explained by the heterogeneity of the surface of the leaf. However the relatively low 

contact angle in wax2, even though it exhibits trichomes, which are reduced in size 

(Nawrath, 2006), might be explained through the defective Cer3/Wax2 gene. 

CER3/WAX2 encode for enzymes in the alkane forming pathway (Chen et al., 

2003). Hegebarth et al., (2016) found high concentrations of alkanes in the 

epicuticular waxes covering trichomes. Also, the gene regulation in trichomes for 

Cer3/Wax2 was upregulated. The here investigated mutant wax2 is defective in 

those genes and completely lacks alkanes in its wax composition (data not shown). 

Hence a lower amount of not only the epicuticular waxes on the leaves but 

specifically on the trichomes is expected. This together with reduced trichome size 

results in better spreading of the water droplet, despite the present trichomes on the 

adaxial and abaxial leaf side and subsequently to a lower contact angle, when 

compared to the wild type.  
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4.2 Chemical analysis of the cuticular membrane and stomatal 

distribution 

In the course of chemical analysis, the potential relationship between stomatal 

density and changes in cuticular waxes or the biopolymer cutin should be 

investigated. Vice versa stomatal density and indexes were determined. Variations of 

extracted wax amounts from whole leaves did not tightly correlate with the stomatal 

density of the different genotypes (Figure 22 A). Only in the stomatal mutant st-

RNAi and flp as well as in the wax mutant wax2 coherence could be determined. 

While stomatal densities compared to the wild type, in the mentioned mutants, 

were significantly lower, likewise, the wax amount was significantly lowered (Figure 

12, Figure 18). For stomatal mutants, this work provides the first information on 

the amount and composition of the chemically analyzed cuticle. Hence the here 

analyzed data cannot be compared with other data in the literature. However much 

is known about the wax coverage in wax2. The decrease of 56.6 % in the total wax 

amount compared to the wild type is less than what has been analyzed before 

(Figure 12). In Chen et al., (2003) and Sadler et al., (2016) the total decrease of 

the total wax amount was around 80 %. In both studies, the corresponding wild 

type showed different absolute values than the wild type used in this work. When 

looking at the relative relations of substance classes to the total amount in the 

mutant wax2 the reductions analyzed in this study are confirmed by literature. 

Reduction of acids (31.65 %), alcohols (70.95 %), secondary alcohols (97.4 %) and 

a complete reduction of aldehydes and alkanes (data not shown) was also reported 

in Chen et al., (2003) and Sadler et al., (2016). Compared to the wild type the total 

wax amount of the stomatal mutants flp and st-RNAi were reduced by 30 % and 

56 % (Figure 12). Other mutants did not show any significant differences in their 

stomatal densities or wax amounts. All showed, as already described in the 

morphological appearance, the expected mutations in the data for stomatal density 

and wax amount respectively. The only exception was the mutant shn3, which 

according to literature shows a significant increase of the wax amount in absolute 
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number (Sadler et al., 2016), which was not the case in this study. However, if 

relative data is compared to the increase of wax amount in the cuticle of shn3 it is 

reported to be 126 % when compared to the corresponding wild type (Sadler et al., 

2016). In this study, the increase in the wax amount is 120 % and therefore within 

the range of the biological variability of the plants.  

Since the leaves of Arabidopsis exhibit dorsal- ventral asymmetries (Bowman, 2000) 

and in that course stomata show amphistomy it was necessary to rather determine 

and compare the stomatal density and wax coverage separately for both leaf sides 

than for the whole leaf. Here the significant reduction in the wax amount for st-

RNAi and wax2 was confirmed. However, flp did no longer show the reduction in 

wax amounts when separately analyzed for both leaf sides (Figure 13). When 

correlating the data of extracted wax for the discrimination of the ad- and abaxial 

sides of the leaves with counted stomata for both sides, again both variables did not 

tightly correlate with each other (Figure 23). Compared with data in literature the 

densities and indexes in this work all show the expected increase or decrease. The 

most obvious increase was found in the mutant st-ox for both ad- and abaxial leaf 

sides. However, the increase on the abaxial side (2.5- fold) was more pronounced 

than on the adaxial leaf side (1.3- fold) which was also found in Tanaka et al., 

(2013) and Hronková et al., (2015). The same authors also investigated the 

decrease of the suppressed STOMAGEN expression by RNA interference in st-RNAi 

and counted significantly lower numbers for stomata per area as it was also 

determined for the present study (Figure 19). Chen et al., (2003) also determined 

the stomatal density and index for wax2. They also found a reduction in the 

stomatal number per leaf area but present an increase in the index when compared 

to the corresponding wild type. Again the index for the wild type is not comparable 

to the determined index in this work. However, the stomatal index for wax2 alone 

(adaxial: 24.7± 2.2 %/ abaxial: 24.2 ± 1.5 %) is similar in this work (adaxial: 

25.72±2.68 %/ abaxial: 24.46±0.52 %, Figure 20). 
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The mutant tmm interestingly shows differences in stomatal density and at the 

same time anomaly in the appearance of clusters on the ad- and abaxial leaf sides 

(Figure 19, Figure 8, Figure 30). With barely observed stomatal clusters and 

decreasing density (78±17 mm-2) on the adaxial leaf side the density increases 

significantly (342±32 mm-2) and clusters arise on the abaxial side. This was also 

confirmed by Vráblová et al., (2017). The difference in the density of stomata in 

tmm on the ad- and abaxial side was expressed in a ratio of 4.3 more stomata 

occurring on the abaxial side. In the present study, the ratio is 4.3 as well. Even 

though the growth conditions slightly differed from the ones chosen for this study 

the overall result is comparable. This becomes even clearer when looking at the 

stomatal index. The index is the ratio of the number of stomata to the total number 

of pavement cells in a given area of the epidermis and is independent of cell size 

(Salisbury E.J., 1927). In the work of Vráblová et al., (2017) the stomatal index for 

the adaxial leaf side is 26±5 % and on the abaxial side 48±6 %. Similar data was 

collected in this study (26.01±5.82 % / 50.29±3.58 %). However, this surprising 

leaf side heterogeneity, which made it interesting to study for possible changes in 

wax coverage, induced by the mutation of Tmm has no specific impact on the wax 

amount (Figure 13) or composition (data not shown) of the mutant's cuticle either 

on ad- or abaxial side. The already mentioned mutant st-RNAi showed significant 

differences in its wax amount and stomatal densities as well as the stomatal index 

(Figure 13, Figure 19, Figure 20). This is why the detailed wax composition of 

single constitutes was shown in this work (Figure 14). However, from the detailed 

study of the wax monomers and chain lengths, a conclusion on significant changes, 

apart from the overall lower amount in waxes, cannot be drawn. This is also the 

case for the other stomatal mutants studied in this work and data is therefore not 

shown. When compared to the already mentioned reduced substance classes and 

single monomers in wax2, which at the same time also shows a lower stomatal 

density, no lack of substance classes such as alkanes or aldehydes could be analyzed 

for st-RNAi. Instead, an overall reduction takes place for the monomers in all 

substance classes. Nonetheless, the amount of the C31 alkane was significantly 

lowered for both leaf sides. Yang et al., (2011), studied the relation of accumulation 
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of epicuticular waxes upon drought stress. Therefore, the authors positively 

regulated the expression of the Win1/Shn1 gene which led to an overall increase of 

waxes but mostly alkanes. As a side effect, they noticed, that stomatal density was 

decreased in those mutants. This effect is contrary to the finding in this study 

where alkanes are significantly reduced in st-RNAi and wax2 with a simultaneous 

decrease in stomatal density. However, the effect of wax accumulation and at the 

same time a reduction in stomatal density could be confirmed in this study. The 

mutant shn3 showed the same effect (Figure 13, Figure 19). The total wax amount 

was increased by 120 % compared to the wild type Ws and especially the alkanes 

accumulated in the mutant by 166 % (data not shown). 

Since all aerial parts of plants in their primary developmental stage are covered with 

the cuticle (Schönherr, 1982) and are also equipped with stomata Arabidopsis stems 

were also investigated for wax amount and composition as well as cutin deposition 

and stomatal density. It is well known, that the frequencies of asymmetric cell 

division for stomatal development and hence stomatal density is environmental 

dependent and varies with organ type (Bergmann and Sack, 2007). The low 

frequencies are also responsible for fewer stomata in stems in general and therefore 

the need for patterning corrections as it is the case in leaves is lowered (Geisler et 

al., 2000; Bhave et al., 2009). In the terms of wax coverage in Arabidopsis stems it 

has been widely studied, that the wax amount is much higher than in the leaves 

(Jenks et al., 1995; Suh et al., 2005; Greer et al., 2007; Bourdenx et al., 2011) and 

therefore changes in wax amount or composition are more easily detected on the 

stem. In addition, the wax and cutin amount, as well as their composition, remain 

constant along the stem (Suh et al., 2005). Data collected for the cuticular 

components cutin and wax were correlated with stomatal densities. Again no 

correlation was determined. Instead when compared to the relation of stomatal 

densities and wax coverage in leaves the only mutant that showed the same 

behavior was the wax mutant wax2 (Figure 16, Figure 21). Here again, the wax 

amount in the stems, as well as the stomatal density in the stems, significantly 

decreased. Contrarily the stomatal mutant st-RNAi did not show decreased wax 
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amount in the stems upon low stomatal density but instead showed significantly 

increased wax amount in comparison to the wild type (Figure 16, Figure 21). Hence 

the conclusion that was drawn for leaves cannot be applied in stems for this specific 

mutant but is similar for the finding in the wax mutant shn3 in the leaves, where 

also wax amount increased and stomatal density was lowered. This arrangement 

could also be confirmed in the stems, where the wax amount was higher than in the 

wild type and stomatal density decreased. As it was also hypothesized by Yang et 

al., (2011). This effect only vice versa was also reported by Gray et al., (2000). 

Here investigated eceriferum mutant lines, which have decreased wax amounts and 

often compositional differences when compared to wild types, showed greatly 

increased stomatal indexes (proportion of epidermal cells that are stomata). 

However, this could not be observed in any of the investigated genotypes of this 

study. The only mutant constantly showing increased stomatal density was the 

Stomagen overexpression line st-ox. While wax in the leaves did not show any 

significant differences compared to the wild type in the stems on the other hand 

stomatal density increased as well as the wax amount. This is contrary to the 

above-described findings of Gray et al., (2000). An opposite effect showed the 

stomatal mutant tmm, which completely lacked stomata in the stems (Figure 21). 

Bhave et al., (2009) investigated this phenomenon and found regulatory reasons in 

the stomatal development that resulted in a lack of stomata in the stems of tmm. 

However, an increase of wax amount while stomata are missing is not the case. The 

wax even decreases when compared to the wild type Col-0 (Figure 16). Apart from 

waxes, the cuticle as an efficient barrier to mainly water loss of plants also consists 

of the biopolymer cutin (Schönherr, 1982; Kolattukudy, 1984). The function of 

cutin is mainly to provide a stable matrix but can also play a role as a physical and 

chemical barrier in plant-pathogen interaction (Wang et al., 2000; Nawrath, 2002). 

Therefore the potential impact of changes in the stomatal densities on the 

biopolymer cutin or an opposite effect of alteration in cutin on stomata was 

investigated in this study. Likewise as with waxes cutin amounts and compositions 

were investigated for leaves and stems. Collected data revealed no consistent 

pattern or relationship between the cutin amount in leaves and the counted 
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stomatal densities or indexes (Figure 15, Figure 18). Tendencies however in the 

trend, that mutants with fewer cutin amounts also exhibit less stomatal densities 

could be found for the stomatal mutants flp and st-RNAi. The cuticular mutants 

with the here analyzed increase in the cutin amount for the wax mutant shn3 is 

reported in the literature (Sadler et al., 2016). The cutin mutant att1 showed the 

expected reduction in the cutin amount when compared to the wild type. However, 

no correlation with the stomatal density was observed. Other than in shn3 the again 

tendency to an increase in the cuticular amount in means of cutin shows a 

significant decrease in stomatal density, analogically to the observation made in the 

leaves and stems for wax amounts. This trend could however not be observed for 

cutin amounts in the stems, where the amount was similar to the corresponding 

wild type Ws (Figure 17). Other mutants rather showed a consistent pattern in the 

cutin of the analyzed stem and the determined number of stomata. When the cutin 

amount was significantly lower compared to the wild type, likewise the stomatal 

density was significantly increased. This was observed for stomatal mutants tmm, 

and st- RNAi as well as for the cutin mutant att1.  

However, general conclusions from the comparison of stomatal densities and 

chemical analyzed cuticular substances (wax/cutin) in different genotypes and in 

different plant organs are difficult to obtain. No consequent patterns in either up- or 

down- regulated wax/ cutin amounts or compositions in response to higher or lower 

stomatal densities, or vice versa could be determined. However, tendencies are 

recognizable. Especially in a pattern where significantly or at least tending increased 

wax or cutin amounts in leaves, on the other hand, show decreased stomatal 

densities as it was shown for shn3. In addition wax mutant shn3 and stomatal 

mutant st-RNAi showed a consistent pattern in both organs when the wax amount 

was lower also stomatal density was decreased. 

4.3 Physiological properties of the leaf barrier 

To draw a conclusion on the possible impacts of alterations in stomatal distributions 

and on the other hand wax and cutin amounts or compositions physiological 
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experiments were conducted and the results taken into account. Transpiration 

through stomata and the cuticle were investigated for all genotypes (3.6, 3.8, 3.9). 

The stomatal conductance in the leaves of plants is predominantly determined by 

stomatal size and density. When stomatal pores are at their widest apertures, the 

maximum leaf diffusive conductance or stomatal conductance to CO2 and water 

vapor is reached (Franks et al., 2009). The values for stomatal conductances show a 

great variety throughout the entire kingdom of vascular plants and can vary over 

two orders of magnitude. Within one plant family, however, they are rather 

constant and remain in one range (Hetherington and Woodward, 2003). The 

stomatal conductances measured for Arabidopsis genotypes in this study, basically 

correlated with the stomatal density determined for ad- and abaxial leaf sides 

(Figure 19, Figure 24). Stomatal conductance was, in general, higher on the abaxial 

leaf sides where at the same time stomatal densities were increased. On the other 

hand, with decreasing stomatal density on the adaxial leaf side the conductance 

decreased likewise. An exception was the stomatal conductance for the stomatal 

mutant tmm. Stomatal density on the abaxial leaf side was significantly higher 

whereas stomatal conductance was significantly lower than in the wild type. The 

tmm mutant shows a higher number of stomatal clusters on the abaxial leaf side 

than on the adaxial side, where only very few small clusters can be detected (Figure 

8, Figure 30; (Yang and Sack, 1995)). The changes in the stomatal patterning may 

affect the functioning of an individual stoma and therefore the stomatal 

conductance. In Dow et al., (2014) the authors state that the mutant tmm is 

impaired from completely opening their stomatal pores, due to the formed clusters 

and results in a lower stomatal conductance. Apart from the stomatal mutant tmm 

also the cutin mutant att1 shows a disruption in the correlation of stomatal density 

and conductance. While stomatal densities were consistent for both leaf sides and 

not different from the wild type the stomatal conductance significantly increased on 

ad- and abaxial leaf side. This cannot easily be explained by the FE-SEM 

micrographs (Figure 30) or the determination of stomatal densities (Figure 19), 

which both did not show any abnormalities in the patterning or density of stomata 

in att1. The increase of the stomatal conductance in the overexpression mutant st-
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ox, however, is clearly correlated with the high stomatal density of the mutant. 

Vráblová et al., (2017) made similar observations in another stomatal mutant. The 

sdd1-1 mutant is phenotypically not different from the wild type (C24) but exhibits 

a difference in stomatal density and distribution. The stomatal density shows a 2.5 

fold increase when compared to the wild type and at the same time the stomatal 

conductance was significantly increased. Nonetheless, comparisons of results need to 

be taken carefully since the authors measured stomatal conductance by taking the 

area and depth of stomata into account. This was not possible in this work. 

However, results, shown here, are further underlined by investigations of Tanaka et 

al., (2013), which also confirmed the correlation of increase in stomatal density and 

likewise an increase in stomatal conductance for st-ox.  

Since a central question of this work was to investigate possible relations between 

the prevention of additional water loss through the cuticle when stomata are closed 

the effectiveness of the cuticular barrier was investigated. Therefore indirect 

measurements of the cuticular permeability were conducted (3.8) and minimum leaf 

conductances (3.9) were determined. To determine the cuticular permeability of 

leaves, it is common, to isolate astomatous cuticular membranes for appropriate 

transport experiments (Riederer and Schreiber, 2001). However, since Arabidopsis 

exhibits amphistomy and a thin cuticular membrane with many trichomes, the 

isolation of intact cuticular membranes is almost not possible. Different approaches, 

such as chlorophyll leaching (Lolle et al., 1997; Sieber et al., 2000; Schnurr et al., 

2002; Seo et al., 2011) or staining with toluidine blue (Tanaka et al., 2004) have 

been used to provide information on the permeability of Arabidopsis leaves. 

However, especially staining with toluidine blue rather serves as a screen for 

Arabidopsis leaves with a defect in the cuticular membrane. The hydrophilic dye 

binds to polysaccharides, in this case, the pectin of the cell walls of the leaves and 

therefore indicates a defect in the cuticular membrane (Tanaka et al., 2004; Mitra 

and Loqué, 2014). Ballmann et al., (2011) introduced a new method to provide 

more precise and foremost quantitative information on the permeability of 

Arabidopsis leaves. The author's approach was to measure cuticular permeability 
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with a radioactive transport assay using 14C labeled epoxyconazole as a tracer. 

Alternatively, chlorophyll fluorescence measurements can be performed (Sadler et 

al., 2016). The obtained rates of photosynthesis inhibitions correlated with the 14C 

epoxyconazole uptake through cuticles. Therefore the indirect measurement of 

cuticular permeability of Arabidopsis leaves via chlorophyll fluorescence 

measurements is an easy, rapid and non- invasive technique to provide information 

on the cuticular barrier properties of Arabidopsis leaves and was hence used in this 

study (2.2.8, 3.8). The inhibition of photosynthesis was investigated by applying 

metribuzine as a photosynthesis- inhibitor onto the leaf surface of the different 

Arabidopsis genotypes. Metribuzine is broadly used in agriculture, as an herbicide, 

which binds to the D1- protein in PS II and hence inhibits the electron transport. As 

a consequence the measured fluorescence increases and at the same time the 

photosynthetic yield decreases (Draber et al., 1991). The plant cuticle is the limiting 

barrier for the uptake of foliar applied solutes, therefore the measurement of the 

decrease in the photosynthetic yield is possible and provides information on the 

cuticular permeability (Schönherr and Riederer, 1989; Sadler et al., 2016). The 

uptake of metribuzine was faster in most of the mutants (tmm, st-RNAi, st-ox, 

wax2, att1, shn3) compared to the corresponding wild types (Col-0, Ws), (Figure 

25, Figure 26). Therefore it can be concluded, that the permeability in those 

mutants was higher than in the wild types. Which also corresponds to the here 

performed measurements for minimal leaf conductances, where the obtained results 

for the cuticular transpiration of the leaves, of the previously mentioned mutants 

was also increased compared to the wild types (Figure 28). The only mutant which 

did not take up the herbicide faster than the corresponding wild type Col-0 was the 

stomatal mutant flp. Since the uptake is accomplished strictly over the cuticle, the 

stomatal mutation cannot directly influence the uptake. In general, the infiltration 

of stomata is not possible since the metribuzine solution is aqueous and has a 

surface tension around 73.05 mN*m-1. Since the leaf is hydrophobic it must be 

lowered to at least 30 mN*m-1 to infiltrate stomata (Schönherr and Bukovac, 1972; 

Zeiger et al., 1987). The wax amount and composition on the adaxial leaf side is 

not affected either (Figure 13). This also has been postulated by Sadler et al., 
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(2016) the authors tested several mutants, that were altered in their wax or cutin 

biosynthesis and therefore exhibited more or less wax/ cutin loads and compositions. 

They were analyzed with the above mentioned radioactive transport assay, which 

revealed, no recognizable correlation between wax/ cutin amounts and the cuticular 

permeability as it was also suggested before by (Becker et al., 1986; Schreiber and 

Riederer, 1996; Riederer and Schreiber, 2001). In this study, the authors further 

suggest that the ultrastructure of the cuticle could be the reason for different 

permeability values in mutants compared to the wild type. Transmission electron 

microscopy (TEM) can provide insights on the layered structure of the cuticle. 

Therefore a thick but less reticulated cuticle could be the reason for a higher 

permeability as it was postulated for wax2, for example. For att1 the loose 

ultrastructure of the cuticular membrane was also identified with TEM and showed 

a less electron dense membrane when compared to the wild type (Xiao et al., 2004) 

and therefore underlines the here measured increased permeability of the cuticle. 

Other studies from Kim et al., (2017) also found differences in the cuticle structure 

via TEM when compared to the wild type. Arabidopsis plants were exposed to 

hypoxic stress treatments and tested for their permeability, wax composition and 

amount as well as further for their cuticular structure with TEM. They found 

changes in the cuticular proper and layer. The plants exposed to stress showed a 

more permeable cuticle with a thinner electron- translucent cuticle proper and an 

electron-dense cuticular layer. The control on the other side was less permeable and 

possessed a distinct electron translucent cuticle proper and a more electron dense 

cuticular layer. However, the wax amount was likewise lowered in the stress-exposed 

Arabidopsis plants. Nevertheless, the conclusion, that the cuticular ultrastructure is 

altered in response to different wax amounts and composition was proven. This 

might also be the case for changed wax amounts and compositions as well as 

changes in cutin in this study. Further, this can be the reason for different outcomes 

of the penetration of the herbicide and a resulting more or less permeable cuticle. 

As it was measured for flp in a less permeable membrane even though no decrease 

in wax amount was recognizable in the GC analysis or on the other hand all other 
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mutants (tmm, st-RNAi, st-ox, wax2, att1, and shn3) where the permeability was 

severely increased when compared to the wild type, but wax amount or composition 

was not significantly altered. Another question is, whether the stomatal density has 

an influence on the cuticular permeability, independent from wax load or 

composition. If data of the chlorophyll fluorescence measurements are related to the 

stomatal density of the adaxial leaf side, no specific correlation is recognizable. The 

mutant shn3, for instance, shows a low stomatal density and at the same time an 

increased permeability. This result can also be observed for the mutants st-RNAi 

and wax2. However, a less permeable cuticle when stomata density was significantly 

increased could not be measured. In the case of the stomatal mutant st-ox, for 

example, the permeability of the cuticle is increased whereas the stomatal density is 

also significantly increased. 

To investigate the question, whether mutations affecting the stomatal distribution, 

in turn affect the cuticular permeability in any way, not only chlorophyll 

fluorescence studies were performed, but also the minimum conductance for the 

Arabidopsis leaves was investigated. This was also the quantitative approach to 

determine leaf cuticular transpiration (3.9). In the measurements for minimum leaf 

conductance, a significant leap in the graph is striking (Figure 6, Figure 7). This is 

best explained by looking at the amount of water lost over time. In the exemplary 

graph, the leap appears after 240 min. After that, the amount of water lost is close 

to 100 %. It is suggested that, when epidermal cells die stomata are locked open, 

unable to close again, as observed by (Prats et al., 2006) after pathogen inoculation 

of barley leaves. In the results presented herein, stomata close after abscission, to 

prevent water loss. With increasing dehydration of the leaf at the point of cell death 

they lock open and therefore release the residual amount of water at once. Hence a 
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significant leap in the data appears (Figure 29).

 

Figure 29: Representative leaf drying curve for Arabidopsis wild type (Col-0)  

A representative result of a gravimetric measurement of water loss over t ime with a single 

leaf of Arabidopsis ecotype (Col-0). Arrow indicates the point of cracked open stomata.  

 

Due to the already mentioned amphistomy of Arabidopsis leaves the water loss 

through the cuticle was measured under conditions of maximum stomatal closure 

(2.2.9). As mentioned before the results mainly mirror the indirect approach to 

measure cuticular permeability with the chlorophyll fluorescence method: 

Permeances of the mutants flp, st-ox, st-RNAi, wax2, and att1 were significantly 

increased when compared to the wild type. The mutants shn3 and tmm also showed 

tendencies to higher permeabilites than the corresponding wild type (Figure 28). 

Permeances measured were one order of magnitude lower when compared to the 

suggested transpiration value of Ballmann et al., (2011). This could be due to the 

completely different approaches to determine the cuticular transpiration of the 

Arabidopsis leaves. As explained above Ballmann et al., (2011) estimated the 

transpiration through radioactive transport measurements. The measurements of co- 
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permeability experiments (14C-epoxyconazole/ 3H2O) revealed a high correlation 

between the permeability of the two substances through the cuticular membrane. 

Due to this correlation, the water permeance for Arabidopsis could be estimated 

as 4.55 x 10-8ms-1 for the wild type.  
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5 Summary  

Stomatal pores and the cuticular membrane are the two major key elements to 

regulate the gas exchange and water balance of plants. The hydrophobic cuticle 

covers all aerial parts of plants in their primary developmental stage (Schönherr, 

1982). It forms an effective barrier against uncontrolled water loss and thus prevents 

plants from desiccation (Edwards et al., 1982). Stomata perforate the cuticular 

membrane and are indispensable for the uptake of CO2 and the release of O2 to 

maintain photosynthesis. This gas exchange is accompanied by the controlled 

release of water vapor. If the plant is exposed to drought, stomata close. Under 

these conditions, the plant's survival depends on the amount of water lost through 

the cuticle. To further understand this important interplay between stomatal 

regulation and the permeability of the cuticular membrane a multifaceted approach 

investigating stomatal and cuticular mutants for (i) their stomatal distribution, (ii) 

cuticular wax and cutin amounts as well as compositions and (iii) the physiological 

role in terms of transpiration either through the cuticular membrane or the stomata 

has been accomplished. Chemical analyses for wax/ cutin amounts and compositions 

revealed no significant correlation with determined stomatal densities or indexes. 

Even though in a few mutants, such as st-RNAi and wax2 which showed lower 

stomatal densities and at the same time lower wax amounts, no clear pattern of 

such regularities could be observed for all the mutants. Inconsistencies, for instance, 

were underlined by observations for the wax mutant shn3, which exhibited higher 

wax amounts but a lower stomatal density than the wild type. Further 

measurements of the cuticular permeability and stomatal conductance could not be 

correlated to the determined wax/ cutin amounts or the stomatal densities and 

indexes. Cuticular transpiration was increased in all mutants independently from 

increased or decreased stomatal densities or cutin/ wax amounts.  

In summary, this data indicates that the simple assumption that stomatal density 

correlates with wax or cutin amounts may not always be true. Further physiological 
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data underline those findings because the permeability of the cuticle does not seem 

to be integrated with the density or pattern of the stomata and likewise, the 

conductance of stomata is not linked to the deposition of wax or cutin amounts.  
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7 Supplemental 

7.1 Leaf surface morphology of Arabidopsis cutin and stomatal 

mutant (FE-SEM) 

 

Figure 30: FE-SEM micrograph of the leaf surface morphology 

Overview (A+C) and detai led view (B )  of Arabidopsis mutants  

A , B :  att1, abaxial leaf side. C :  tmm, adaxial leaf side (a r row :  small stomatal cluster, 

remaining stomata without clustering) 
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7.2 Chlorophyll-Fluorescence measurements  

 

Figure 31: Photosynthetic yield in Arabidopsis genotypes 

Control kinetics shown for the Arabidopsis wild type ( a)  Col-0 and corresponding mutants (b )  

tmm , (c )  f lp, (d)  st-ox , ( e )  st-RNAi , ( f )  wax2 , (g )  att1.  Arrows indicate the application of a 

50µl water droplet on the adaxial leaf surface. Kinetics represent the means calculated from 

single values of individual leaves used (n= at least 3 biological repl icates).  
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Figure 32: Photosynthetic yield in Arabidopsis genotypes 

Control kinetics shown for the Arabidopsis wild type ( a)  Ws and corresponding mutant (b )  

shn3. Arrows indicate the application of a 50µl water droplet on the adaxial leaf surface. 

Kinetics represent the means calculated from single values of individual leaves used (n= at 

least 3 biological replicates).  
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