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Abstract

The landscape of machine learning applications is changing rapidly: large centralized datasets
are replaced by high volume, high velocity data streams generated by a vast number of ge-
ographically distributed, loosely connected devices, such as mobile phones, smart sensors,
autonomous vehicles or industrial machines. Current learning approaches centralize the data
and process it in parallel in a cluster or computing center. This has three major disadvantages:
(i) it does not scale well with the number of data-generating devices since their growth ex-
ceeds that of computing centers, (ii) the communication costs for centralizing the data are
prohibitive in many applications, and (iii) it requires sharing potentially privacy-sensitive data.
Pushing computation towards the data-generating devices alleviates these problems and allows
to employ their otherwise unused computing power. However, current parallel learning ap-
proaches are designed for tightly integrated systems with low latency and high bandwidth, not
for loosely connected distributed devices. Therefore, I propose a new paradigm for paralleliza-
tion that treats the learning algorithm as a black box, training local models on distributed
devices and aggregating them into a single strong one. Since this requires only exchanging
models instead of actual data, the approach is highly scalable, communication-efficient, and
privacy-preserving.

Following this paradigm, this thesis develops black-box parallelizations for two broad classes
of learning algorithms. One approach can be applied to incremental learning algorithms, i.e.,
those that improve a model in iterations. Based on the utility of aggregations it schedules
communication dynamically, adapting it to the hardness of the learning problem. In practice,
this leads to a reduction in communication by orders of magnitude. It is analyzed for (i) online
learning, in particular in the context of in-stream learning, which allows to guarantee optimal
regret and for (ii) batch learning based on empirical risk minimization where optimal con-
vergence can be guaranteed. The other approach is applicable to non-incremental algorithms
as well. It uses a novel aggregation method based on the Radon point that allows to achieve
provably high model quality with only a single aggregation. This is achieved in polylogarith-
mic runtime on quasi-polynomially many processors. This relates parallel machine learning
to Nick’s class of parallel decision problems and is a step towards answering a fundamental
open problem about the abilities and limitations of efficient parallel learning algorithms. An
empirical study on real distributed systems confirms the potential of the approaches in realistic
application scenarios.
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1. Introduction

“There can be no center in infinity.” (Titus Lucretius Carus, De rerum natura)

1.1. Requirements for Black-Box Parallelizations . . . . . . . . . . . . . . . . 5

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4. Previously Published Work . . . . . . . . . . . . . . . . . . . . . . . . . 10

Machine learning refers to a class of algorithms that automatically improve their perfor-
mance for solving a given task based on data. It extracts information from large datasets to
produce or improve a model describing the relations governing the data. With the widespread
adoption of smart phones and other mobile devices, the instrumentation of our world with
smart sensors, the automation of manufacturing machines, and the advent of autonomous
driving in the 2010s, the majority of data is generated by a vast amount of loosely connected
distributed devices—a phenomenon that has been called the Internet of Things with an esti-
mate of 50.1 ⋅109 connected devices by 2020 (Mohan and Kangasharju, 2016)). This data is too
large and generated too fast to be processed centrally in a system like a cluster or computing
cloud, since the network connection often has too low bandwidth and too high latency. For
example, an autonomous car generates over 1 Gigabyte of sensor data per second (Shi et al.,
2016), but the bandwidth of current mobile connections (e.g., 4G with 300 Mbps) only allows
to transmit 37.5 Megabyte in that time. For real-time applications over high velocity data-
streams such as online advertisement (Muthukrishnan, 2009) and financial predictions (Kearns
and Nevmyvaka, 2013), the time required for communicating the data and receiving a result is
prohibitive: In 2010, a fiber-optics cable was constructed between the financial markets in New
York and Chicago for $300 million, just to reduce the round-trip communication time from 16
to 13 milliseconds (the cable was later replaced by microwave transmission technology, reduc-
ing round-trip time to 8.1 milliseconds) (Budish et al., 2015). Communication furthermore
consumes a lot of power and thereby substantially reduces the runtime of battery-powered
devices. Moreover, a lot of the data should not be shared since it is privacy-sensitive: sharing
audio and video recordings from mobiles violate the user’s privacy, and extracting sensor data
from industrial machines infringes company secrets.
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At the same time, the data-generating devices often have computing power on their own.
In order to harness this power, computation is pushed from the cluster towards the devices—
an approach termed in-situ processing, edge or fog computing. It avoids the communication
bottleneck and allows to handle data for which centralization is infeasible. Only sharing results
of locally processed data furthermore can preserve its privacy.
In order to perform machine learning on, or close to the data-generating devices, ex-

isting learning algorithms need to be transformed into distributed ones, a process called
parallelization1. In distributed computing, an algorithm is parallelized by analyzing it care-
fully, identifying independent parts, and reimplementing it in such a way that these parts are
executed in parallel. The result of the parallel algorithm is up to machine precision identical to
one computed by the serial one. I refer to this form as classical parallelization. Typically, the
parallel algorithm requires a high amount of communication to exchange data and intermedi-
ate results between the processors. Thus, this form of parallelization requires a tightly coupled
system—such as a clusters or computing cloud—so that the communication does not stall the
algorithm. Since current distributed learning approaches are typically designed for such tightly
coupled systems (Coates et al., 2013; Dekel et al., 2012; Dennis et al., 2018; Hardy et al., 2017;
Sparks et al., 2013), they are not suitable for learning on the data-generating devices.
An approach to handle loosely connected distributed systems with low bandwidth and

high latency is to run the learning algorithm close to the data-generating devices. The mod-
els produced locally are then communicated and aggregated into a single (hopefully better)
model (e.g., Lin et al., 2017; Mcdonald et al., 2009; McMahan et al., 2017; Zinkevich et al.,
2010). For example in autonomous driving with a fleet ofm ∈ N vehicles, each vehicle i ∈ [m]

records sensor readings that form local datasetsEi. The learning algorithmA is applied within
the vehicle to its local dataset to produce a local model f i = A(Ei). Since the local dataset is
only a fraction of the entire data, the quality of the local model is typically low. By sending the
local models f1, . . . , fm to a central computing system and aggregating them, a single, high
quality model can be obtained. In contrast to classical parallelizations, this approach does not
necessarily result in the same output as the serial execution of the learning algorithm. The
goal is to find an aggregation technique that is generally applicable and achieves high model
quality at the same time.

To emphasize the necessity of such generic parallelizations, the following example illustrates
the differences between classical and black-box parallelizations. A simple learning algorithm is
ordinary least squares regression (OLS). Given a set of instances x ∈ Rd from a d-dimensional
real-valued vector space, the goal is to predict labels y ∈ R using a model fw parameterized by
a vector w ∈ Rd , i.e., y = fw(x) = ⟨w,x⟩. Given a dataset

E = {(x1, y1), . . . , (xN , yN)} ,

the goal is to find the parameters w ∈ Rd of the model such that it minimizes the squared error

w = arg min
w′∈Rd

N

∑
j=1

(⟨w′, xj⟩ − y)
2
. (1.1)

1 Since the goal is to train on data-generating devices, parallelization here refers only to data parallelism. In
contrast, in model parallelism all data is available to all processing nodes and different parts of the model are
optimized in parallel.
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Algorithm 1 Parallel QR-Decomposition (Demmel et al., 2012) (simplified)
Input:m = 2n processors for some n ∈ N, local datasets X1, . . . ,Xm

at each learner i ∈ [m]:

compute QR-decomposition Xi = Qi,0Ri,0

for k from 1 to logm do
if i mod 2k = 2k−1 then
send Qi,k−1 and Ri,k−1 to processor i + 2k−1

end if
if i mod 2k = 0 then
receive Ri−2k−1,k−1

stack into the matrix Ci,k = (Ri−2k−1,k−1,Ri,k−1)

compute QR-decomposition Ci,k = Qi,kRi,k

end if
end for
if i =m then

for all k ∈ [m] set Qk ← (Q1⋅2k−1,k,Q2⋅2k−12,k, . . . ,Qm,k)

compute Q← Πlogm
k=1 I2logm−k+1Qk

return Q,Rm,logm

end if

Let X = (x1, . . . , xN) be the matrix of instances and y = (y1, . . . , yN)⊺ the vector of labels.
The ordinary least squares approach solves

w = [X⊺X]
−1X⊺y.

This can be solved using the QR-decomposition of X, i.e., X = QR with orthogonal matrix Q
and upper triangular matrix R, so that the solution is given by w = R−1Q⊺y.

Now assume that this dataset is evenly distributed over m ∈ N processing units with each
i ∈ [m] holding a dataset Xi, yi. Demmel et al. (2012) propose an efficient parallelization
of the QR-decomposition, given in Algorithm 1. The resulting QR-decomposition is up to
machine precision identical to one obtained by serial QR-decomposition. The method requires
log2m parallel QR-decompositions and is communication heavy, sendingm−1 messages, each
containing a matrix of size (N/m) × d.

Algorithm 2 Averaging-At-The-End
Input: learning algorithm A,m processors, local datasets X1, . . . ,Xm

compute wi ← A(Xi) at processor i ∈ [m] in parallel
return w ← 1

m ∑
m
i=1w

i

3
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Figure 1.1.: Averaging-at-the-end (Algorithm 2) for two partitions of the dataset X =

(0.1,0.2,4.8,5.0)⊺, y = (0.17,0.18,2.51,2.59), where y was generated by a function f(x) =
w∗

0x +w
∗
1 plus noise with w∗ = (0.5,0.1).

Instead, consider the following simple black-box parallelization: Obtain local model param-
eters wi from the local datasets Xi, yi using an arbitrary learning algorithm A (e.g., using
QR-decompositions, or gradient descent) and average the parameters (see Algorithm 2). The
approach communicates model parameters once at the end, thus requiring only little commu-
nication. Since all computation is performed locally, except for the averaging at the end, the
speedup is higher than that of the parallel QR-decomposition. However, it does not result in
the same parameters as the serial application of the algorithm. On the contrary, averaging
once at the end is susceptible to the quality of local models: Figure 1.1 shows the results of
averaging for two different partitions of the data, one that provides good results (Figure 1.1(a)),
the other (Figure 1.1(b)) for which the resulting model is bad.

This averaging-at-the-end approach was introduced to achieve high speedup and communi-
cation efficiency (Mcdonald et al., 2009; Zinkevich et al., 2010), but it turned out that it can
lead to arbitrarily bad results (Shamir and Srebro, 2014). However, guarantees on the model
quality are crucial for the confident application of these approaches in practice. Therefor, a
parallelization is required that is applicable to a broad class of learning algorithms with the-
oretical guarantees on the quality of their output. At the same time, the speedup through
parallelization should scale well with the number of employed processing units. Moreover,
it needs to be communication-efficient to be run on the loosely-connected data-generating
devices. Given the vast amount of existing, specialized machine learning algorithms, being
able to parallelize them for those devices in such a generic way could enable a technology leap.

The remainder of the introduction motivates black-box parallelization and formulates these
requirements. It then surveys the contributions of this thesis.
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1.1. Requirements for Black-Box Parallelizations

This thesis proposes black-box parallelization as a novel paradigm for distributed machine
learning. Such parallelizations aggregate local models generated by a learning algorithm in
parallel. The aggregation can be performed once at the end, or scheduled multiple times dur-
ing the training process. A specific combination of the type of aggregation and its scheduling
defines an approach within the paradigm and is later called a distributed learning protocol.
The advantage of these protocols is that they can be readily applied to a wide range of learning
algorithms without re-implementing them. The protocols should have only minimal con-
straints on the learning algorithms they can be applied to, such as: (i) the models used have
a representation that allows for aggregation, (ii) the nature of the learning problem is benign
(e.g., it can be formulated as a convex optimization problem), and (iii) the learning algorithm
must produce reasonable outputs (e.g., models that are good with high probability, or model
updates that change proportional to their errors). With this, the learning performance of a
protocol can be theoretically assessed2.
As mentioned above, such a protocol does not necessarily produce the same output as the

serial execution of the learning algorithm. Instead, the goal is to obtain a model with similar
quality. However, this quality is often unobservable, e.g., the generalization error of a model.
For batch learning, i.e., learning from a given dataset with random access to its elements, the
empirical riskminimization model (see Shalev-Shwartz and Ben-David, 2014) allows to provide
high-probability guarantees on the model quality. Similarly, the online learning model (see
Cesa-Bianchi and Lugosi, 2006), i.e., learning from a sequence of examples presented to the
algorithm, allows to provide worst-case guarantees on the in-place performance of a model.
Thus, in cases the model quality is unobservable, black-box parallelizations should achieve the
same guarantees on model quality as the serial execution of the learning algorithm.
At the same time, the speedup through parallelization needs to scale well with the number

of employed processing units. The best theoretical speedup is linear in the number of proces-
sors, but can rarely be achieved: Amdahl’s law (Amdahl, 1967) states that with an increasing
number of processors, the parts of the algorithm that cannot be parallelized dominate the
runtime. A more realistic speedup is given by Nick’s class NC (Greenlaw et al., 1995). It
contains decision problems that can be decided in polynomial time, for which a parallelization
exists that has polylogarithmic runtime on polynomially many processing units. Similarly,
PAC learning problems with such parallelizations are denoted NC-learnable (Long and Serve-
dio, 2011; Vitter and Lin, 1992). A slight relaxation allows to use quasi-polynomially many
processors. Consequently, the goal for black-box parallelizations is to achieve polylogarithmic
runtime on (quasi-)polynomially many processors

Moreover, the parallelization should achieve high quality and speedup in a communication-
efficient way. The amount of communication is given by the amount required for each ag-
gregation and the number of aggregations. Using a dedicated coordinator, local models can
be collected and aggregated with only one message per processing unit; aggregation using a
tree-like network requires the same amount of messages. Thus, the communication per aggre-

2 To determine the communication and speedup of a protocol, in addition the network topology of the distributed
system and algorithmic details have to be taken into account.
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gation should scales at most linearly with the number of processing units. For some learning
problems it suffices to aggregate models once and the communication-efficiency only depends
on the cost for the aggregation. Others require many iterations over the local datasets to im-
prove local models with multiple aggregations during those iterations. Given that aggregations
are beneficial, communication can be invested to improve the models by aggregating more
frequently. To be communication-efficient, the amount of communication should depend on
its utility: the harder the learning problem, the more communication should be invested. Con-
versely, for a very simple problem only little communication should be necessary. Therefore,
the goal is that the communication is also bounded in the hardness of the learning task.

It is an open problem, whether it is possible to parallelize a broad class of machine learning
algorithms in a generic way such that

(R1) the model trained in parallel has a quality similar to one obtained by the serial application
of the learning algorithm,

(R2) the parallel algorithm achieves high speedup; ideally it has polylogarithmic runtime on
(quasi-)polynomially many processing units, and

(R3) the parallel execution requires communication that is at most linear in the number of
nodes and adaptive to the hardness of the learning problem.

Existing black-box parallelizations so far fail to achieve all three goals at once: some provide a
good speedup and low communication (e.g., Mcdonald et al., 2009; McMahan et al., 2017), but
no theoretical guarantees on the solution quality; others do provide a theoretical analysis (e.g.,
Lin et al., 2017; Zhang et al., 2013) but their speedup is so low that it is doubted whether they
have any benefit over learning on a single chunk (Shamir and Srebro, 2014). Moreover, none
of them is able to adapt the communication to the hardness of the learning problem. This
thesis develops black-box parallelizations with the goal to achieve all three requirements at
once. The following section outlines these contributions.

1.2. Contributions

The main contributions of this thesis are two protocols. The first can be applied to incre-
mental learning algorithms. Based on the utility of aggregations it schedules communication
dynamically. It is analyzed for (i) online learning, in particular in the context of in-stream
learning and for (ii) batch learning seen as empirical risk minimization. The other one is appli-
cable to non-incremental algorithms as well. It includes a novel aggregation method based on
the Radon point (Radon, 1921) that allows to achieve high model quality with only a single
aggregation. In addition, a distributed online learning framework was implemented on top of
Apache Storm (Apache Software Foundation, 2017) using the first protocol (see Chapter 3),
as well as an extension to Apache Spark (Sparks et al., 2013) that uses the second protocol
(see Chapter 5). These implementations are presented in Appendix A. In the following, the
individual contributions are detailed. After that, some additional contributions are presented
that are a byproduct of the main results.
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Communication-Efficient Distributed Online Learning: In distributed online learning a
set of local processing nodes runs an online learning algorithm in parallel and individually pro-
vides predictions. Their quality can be increased by aggregating local models and redistributing
the aggregate. The idea is to only aggregate in states where local models have a high divergence,
measured by the average distance of local models to their aggregate. If this distance is high,
aggregation is most impactful. Monitoring it directly would require constant communication.
Instead, by choosing an aggregation method that minimizes this average distance, local condi-
tions can be constructed that allow to monitor the divergence in a communication-efficient
way. This approach is studied for averaging as aggregation operator.

The approach, denoted dynamic averaging, allows to dynamically adjust communication to
the current hardness of the learning problem. This property is denoted adaptivity. It is shown
that no periodic protocol can be efficient, i.e., achieve optimal predictive performance and
adaptivity at the same time. Analyzing dynamic averaging in the online learning model allows
to show that its regret—that is, its excess in-place error over the best model in hindsight—is
in the same order as any periodically averaging protocol. This even holds for scenarios with
concept drifts. By furthermore showing that periodic averaging achieves optimal regret for
specific learning algorithms it follows that dynamic averaging indeed can achieve the predictive
performance of the serial learning algorithm. At the same time, its communication can
be bounded in the cumulative error of all processing nodes, thereby showing that dynamic
averaging is efficient. The approach is applied to linear and kernel models, as well as neural
networks. It is discussed in Chapter 3.

Dynamic Distributed Batch Learning with Incremental Algorithms: In batch learning,
the goal is to produce a single model that performs well on unseen data. Incremental learning
algorithms update a model in rounds, improving its quality with each iteration. Applying
dynamic averaging to incremental algorithms allows to obtain a model with quality similar to
a serially computed one in a communication-efficient way. For that, it is shown that dynamic
averaging retains optimal convergence rates for certain incremental learning algorithms. Ana-
lyzing the resulting model in the empirical risk minimization model then allows to provide
generalization bounds for it. The speedup of dynamic averaging over the serial application
of the learning algorithm scales well with the number of processing units, i.e., the speedup is
in O(m/logm), where m ∈ N is the number of processors. However, this only holds if m is
sublinear in the number of iterations. Thus, the amount of nodes cannot be increased enough
to achieve polylogarithmic runtime.
Recently, averaging models was investigated empirically for training (deep) neural net-

works (McMahan et al., 2017) showing promising results. Studying dynamic averaging for this
case poses particular challenges due to the non-convex nature of the training objective. In this
case it has to be assumed that local models remain in a locally convex environment in order to
proof optimal convergence. An empirical study indicates that by a careful initialization of the
networks this assumption holds in practice. The approach is discussed in Chapter 4.

Effective Parallel Batch Learning: In order to parallelize generic algorithm for batch
learning—including non-incremental ones—a novel aggregation operator is introduced that
provides strong guarantees on the model quality. The idea is to combine models produced by
learning algorithms on local datasets by calculating their Radon point.

7



The Radon point lies within the convex hull of the local models and is more robust to
outliers than the average—at least two models have a worse performance than the Radon
point, whereas for the average this can be guaranteed only for one. By iteratively replacing
sets of models by their Radon point until a single point remains, the number of models with
a performance worse than the remaining Radon point grows exponentially.

Given a probabilistic error guarantee for each local model, e.g., provided by the empirical
risk minimization model, it can be shown that this aggregation reduces the error probability
doubly exponentially in the number of iterations. For that, the protocol requires only a
single aggregation, rendering it highly communication-efficient. This approach is denoted
the Radon machine. In order to achieve the same probabilistic error guarantee as the serial
application of the learning algorithm, it requires more training data. Thus, in theory the
speedup is worse than that of dynamic averaging, i.e., it is in O(m

κ/logd), wherem ∈ N is again
the number of processing units, κ ∈ N depends on the sample and runtime complexity of the
learning algorithm and d ∈ N is the dimension of the model space. However, since there is
no restriction on the number of processing units, choosingm quasi-polynomially in the input
size N ∈ N of the serial algorithm, i.e., m ∈ O(N log d), achieves polylogarithmic runtime,
i.e., in O(logκN + d3 logN). Thus, the Radon machine achieves optimal model quality with
minimal communication in polylogarithmic runtime on quasi-polynomially many processing
units. It is the first generic approach to achieve all three requirements (R1, R2, and R3 in
Section 1.1) at the same time. It is discussed in Chapter 5.

Additional Contributions: In addition to those main points, this thesis contains two
additional contributions. The first contribution concerns the application of dynamic averaging
with kernel methods. For that, the average of kernel models has to be defined. It is given by the
union of the support vectors of all local models and an average of their respective weights. This
aggravates the general problem of model sizes for kernel methods: even in the centralized case
the number of support vectors is up to linear in the dataset size; this is a particular challenge
when applying them to potentially infinite data streams. Averaging kernel models increases
their size substantially, up to linear in the size of the union of all local datasets. As a solution,
model compression techniques have been proposed for the centralized case that limit the
number of support vectors, such as truncation (Kivinen et al., 2004) and projection (Orabona
et al., 2009; Wang and Vucetic, 2010). It can be shown that the compression error of these
techniques does not deteriorate the model quality for dynamic averaging.

The second contribution concerns the privacy of local datasets. If the data is privacy-
sensitive, its centralization should be avoided. Black-box parallelizations only communicate
a model trained on that data, effectively reducing the privacy-sensitive information that can
be learned. However, if an attacker has access to two consecutive model updates, she can
still infer information about the local data. In particular, if linear models are updated by
stochastic gradient descent with hinge loss, an attacker can reconstruct the local data from the
model update. Applying noise to local data before training (Balcan et al., 2012), or to local
models (Chaudhuri et al., 2011), allows to achieve ε-differential privacy (Dwork et al., 2006)
which bounds the loss in privacy through publication of the models.
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1.3. Outline

The remainder of this thesis is structured as follows.

Chapter 2 starts with a formal description of machine learning as optimization, introducing
both the empirical risk minimization model for batch learning and the online learning
model. In contrast to standard exposition of batch and online learning, here, both are
viewed from the perspective of optimization algorithms. That allows to analyze the
parallelization of algorithms from both learning setups in a unified way. Subsequently,
state-of-the-art parallelizations of such algorithms are discussed. The chapter concludes
by introducing black-box parallelizations in a unified framework.

Chapter 3 presents a black-box parallelization for a broad class of incremental learning algo-
rithms and analyzes it in the online learning model. It is shown that the approach is able
to retain the predictive performance of the serial application of the learning algorithm,
adapting the communication to the hardness of the learning problem.

Chapter 4 applies the previously presented approach to incremental learning algorithms for
batch learning and analyzes it in the empirical risk minimization model. The analysis
shows that the approach retains the convergence rate of the underlying learning algo-
rithm, producing models with a predictive performance comparable to that obtained by
the serial application of the learning algorithm. At the same time it achieves a substantial
speedup with the number of employed processing units.

Chapter 5 presents a novel parallelization scheme for a broad class of incremental and non-
incremental batch learning algorithms. The scheme maintains theoretical performance
guarantees while reducing the runtime of many algorithms from polynomial to polylog-
arithmic on quasi-polynomially many processing units. This is a significant step towards
a general answer to an open question on efficient parallelization of machine learning in
the sense of Nick’s class (NC ).

9



1.4. Previously Published Work

Parts of this dissertation have already been published in conference and workshop proceedings.

1. Michael Kamp, Mario Boley, Michael Mock, Daniel Keren, Assaf Schuster, and Izchak
Sharfman. Adaptive communication bounds for distributed online learning. In 7th NIPS
Workshop on Optimization for Machine Learning (OPT), 2014.

2. Michael Kamp, Mario Boley, Thomas Gärtner. Beating Human Analysts in Nowcasting
Corporate Earnings by using Publicly Available Stock Price and Correlation Features.
In Proceedings of the SIAM International Conference on Data Mining, 2014.

3. Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak Sharfman.
Communication-efficient distributed online prediction by dynamic model synchroniza-
tion. In Machine Learning and Knowledge Discovery in Databases - ECML PKDD, pages
623-639, 2014.

4. Michael Kamp, Mario Boley, and Thomas Gärtner. Parallelizing randomized convex
optimization. In 8th NIPS Workshop on Optimization for Machine Learning (OPT), 2015.

5. Michael Kamp, Sebastian Bothe, Mario Boley, and Michael Mock. Communication-
efficient distributed online learning with kernels. In Machine Learning and Knowledge
Discovery in Databases - ECML PKDD, pages 805-819, 2016.

6. Michael Kamp, Mario Boley, Olana Missura, and Thomas Gärtner. Effective parallelisa-
tion for machine learning. In Advances in Neural Information Processing Systems - NIPS,
pages 6459-6470, 2017.

7. Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht, Tim
Wirtz, Stefan Wrobel. Efficient Decentralized Deep Learning by Dynamic Model Aver-
aging. Machine Learning and Knowledge Discovery in Databases - ECML PKDD, 2018.

10



2. Black-Box Parallel Machine Learning
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This thesis focuses on machine learning as optimization. This means, a loss function is
optimized over training data. This defines a broad family of machine learning algorithms,
including batch learning algorithms such as least squares and LASSO regression, support
vector machines, and many deep learning algorithms, as well as online learning algorithms,
such as stochastic gradient descent and passive aggressive updates. The training data that is
either available as a batch and the algorithm has random access to all elements of the training
data, or as a stream of data instances, i.e., only the current data example—or a finite moving
window of examples—is available to the learning algorithm. In both cases, the data either is
inherently distributed, or is distributed in the course of parallelization.

Batch algorithms can be theoretically analyzed using the empirical risk minimization (ERM)
model. This allows to provide theoretical guarantees on the generalization error, i.e., the error
on unseen data from the same target distribution. However, this model requires that the
training data is drawn independently and identically distributed (iid) from a fixed target dis-
tribution. For online algorithms, this assumption rarely holds. Instead, they can be analyzed
in the online learning model which allows to provide worst-case guarantees on the cumulative
error on arbitrary sequences of examples. The goal of this thesis is to investigate black-box
parallelizations for which such guarantees can be provided, both for batch and online learning.
Classical parallelization strategies find parts in an algorithm that can be computed inde-

pendently, and thus in parallel. The black-box approach instead applies the algorithm as is
on subsets of the training data in parallel and combines the results of each instance of the
algorithm. Thus for a black-box parallelization, two essential questions have to be answered:
(i) how to combine the outputs of the instances of the algorithm, and (ii) when to combine
them. The goal is to combine the results in such a way that the combination has a quality
similar to the result of the algorithm applied serially to all data on a single processing unit. At
the same time, the runtime of the parallelized algorithm and the amount of communication
between the parallel instances of the algorithm should be minimal.
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This chapter first introduces machine learning as optimization, followed by the empirical
risk minimization and online learning model in Section 2.1. This is followed by a review
on existing parallelizations of such algorithms in Section 2.2. The black-box parallelization
approach is described in Section 2.3 which then proposes a formal framework that allows to
describe and analyze such parallelization.

2.1. Machine Learning as Optimization

Machine learning aims at modeling an unknown dependence between instances and their labels.
The instances are elements of an input space X , labels are elements of an output space Y . The
unknown dependence is reflected in an unknown joint target distribution D∶ X × Y → R+
over the input and output space. A machine learning algorithm A aims at representing this
dependence by a model chosen from a model space F of functions f ∶ X → Y . For that, the
algorithm has access to a training set of size N ∈ N, i.e., a finite sequence of examples

E = {(x1, y1), . . . , (xN , yN)} ⊆ X × Y .

The deviation of a prediction f(x) to the correct label y is measured by a loss function
l ∶ F × X × Y → R.
Modeling the target distribution can be stated as an optimization problem by crafting an

objective function over the model space for which the optimum corresponds to the best model
with respect to the loss function. However, there is a difference between learning settings: in
batch learning the algorithm can process large amounts of data before outputting a model
and the goal is for that final model to perform well on new data. That is, the algorithm aims
at finding a model that minimizes the expected error

E
(x,y)∼D

l (f, x, y) ; (2.1)

in contrast, in online learning the algorithm has to respond during the learning process
and the goal is to minimize the loss suffered in the process. That is, the algorithm aims at
minimizing the cumulative loss

L(T ) =
T

∑
t=1
`(ft, xt, yt) . (2.2)

In both cases, to solve such optimization problems efficiently it is typically required that
the model space can be parametrized in a fixed, finite dimensional Euclidean space Rd. The
following gives examples of such model spaces.

2.1.1. Classes of Model Spaces

Model spaces can be divided into groups, where each group forms amodel class, or hypothesis
class (in machine learning, the terms model and hypothesis are often used interchangeably).
Popular classes of model spaces used throughout this thesis are: (i) the class of linear models,
( ii) the class of non-linear models from reproducing kernel Hilbert spaces in their support
vector representation, in the following denoted kernel models, and (iii) the class of (deep)
neural networks.

12



This division in classes allows to jointly address the common peculiarities of each model
space. For example, linear models usually allow to efficiently solve the optimization objective,
especially if the loss is convex, however their predictive power is limited. Kernel models allow
for efficient optimization, as well, since they are also linear models from the corresponding
reproducing kernel Hilbert space. Moreover, they can have a much higher predictive power.
However, the size of their representation can be as large as the training set which can be
problematic for large data sets or potentially infinite data streams. For both linear and kernel
models, it is often possible to find an (approximation to an) optimal model efficiently. Neural
networks have a fixed representation size and high predictive power, but the optimization
objective is often non-convex, complicating the optimization. We discuss these and other
peculiarities and their consequences for parallelizations in the following chapters. In the
following, these model classes are formally defined.

Linear Models

The class of linear models consists of linear functions from the input to the output space. If
the input space is a Euclidean vector space of dimension d ∈ N and the output space is R, the
respective model space can be represented as a subset of the same Euclidean vector space. The
function f ∈ F is given implicitly by a vector w ∈ Rd with fw(x) = ⟨w,x⟩ for x ∈ X . Here,
⟨⋅, ⋅⟩ denotes the standard inner product in Rd. Thus, the model space is defined as

F = {fw∣w ∈ Rd} .

With a slight abuse of notation, the function fw is identified with its representation: We
abbreviate fw ∈ F with w ∈ Rd as f ∈ F ⊆ Rd, where f denotes the linear function as well
as its representation as a vector in Rd. If the output space is instead binary, i.e., Y = {−1,1},
then the function can be represented by f(x) = sign ⟨w,x⟩. In order to represent functions
f(x) = ⟨w,x⟩ + b for some intercept b ∈ R, a standard trick in machine learning is to extend
the input space by one dimension which is always set to 1, i.e., for X ⊆ Rd we define

X
′
= {x′ = (

x

1
) ∈ Rd+1

∣x ∈ X} .

The corresponding linear model space is given by

F
′
= {fw′ ∶ w

′
= (

w

b
) ∈ Rd+1

∣fw ∈ F ,w ∈ Rd, b ∈ R} ,

and a model fw′ ∈ F ′ is given by

fw′(x) = ⟨w′, x′⟩ = ⟨w,x⟩ + b .

Kernel Models

The class of kernel models consists of functions from a reproducing kernel Hilbert space

Hk =

⎧⎪⎪
⎨
⎪⎪⎩

f ∶ X → R∣f(⋅) =
dimF

∑
j=1

wjφj(⋅)

⎫⎪⎪
⎬
⎪⎪⎭
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with positive definite kernel function k ∶ X × X → R, feature space F , and a mapping
φ ∶ X → F into the feature space (Scholkopf and Smola, 2001). The kernel function corre-
sponds to an inner product of input points mapped into the feature space, i.e.,

k(x,x′) =
dimF

∑
j=1

ξjφj(x)φj(x
′
)

for constants ξ1, ξ2, ⋅ ⋅ ⋅ ∈ R. Thus, we can express the model in its support vector expansion,
or dual representation

f(⋅) = ∑
x∈S

αxk(x, ⋅)

with a set of support vectors
S = {x1, x2, . . .} ⊆ X

and corresponding coefficients αx ∈ R for each x ∈ S. This implies that f is a linear
function over the feature space F with weights w = (w1,w2, . . . ) ∈ F defining f given by
wi = ∑x∈S ξiαxφi(x). If the model is a solution to a regularized risk minimization problem
for a given training set (x1, y1), . . . , (xN , yN) ⊂ X × Y (where Y ⊆ R) of size N ∈ N, then the
following representer theorem guarantees that the model can be represented by N support
vectors from the training set.

Theorem 2.3 (Nonparametric Representer Theorem (Schölkopf et al., 2001; Wahba, 1990)).
Given a non-empty set X , a set Y ⊆ R, a positive definite real-valued kernel k on X ×X , a training
set

(x1, y1), . . . , (xN , yN) ⊂ X × Y ,

a strictly monotonically increasing real-valued function Ω on [0,∞[, an arbitrary loss function
` ∶ Y × Y → R ∪ {∞}, and a class of functions

F = {f ∶ X → R∣f(⋅) = ∑
x∈X

αxk(⋅, x), x ∈ X , αx ∈ R, ∥f∥ < ∞} .

Here, ∥⋅∥ denotes the norm inHk associated with k, i.e., for any x ∈ X , αx ∈ R,

∥∑
x∈X

αxk(⋅, x)∥ = ∑
x∈X

∑
x′∈X

αxαx′k(x,x
′
) .

Then any f ∈ F minimizing the regularized risk functional (see Section 2.1.3)

argmin
f∈F

N

∑
i=1
` (f, xi, yi) +Ω(f) .

admits a representation of the form

f(⋅) =
N

∑
i=1
αxik(xi, ⋅) .
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The theorem guarantees that the optimal model lies on the span of the kernel functions on
the training examples, i.e.,

f(⋅) ∈ span{k(x1, ⋅), . . . , k(xN , ⋅)}

for the training set (x1, y1), . . . , (xN , yN). This implies that, even ifH is infinite-dimensional,
f is from an N -dimensional subspace of Hk and thus can be efficiently computed.

Neural Networks

The class of neural networks for Y ⊆ R can be represented by a weighted composition of a set
of k ∈ N functions gi ∶ R→ R1, i.e.,

f(x) = a(
k

∑
i=1
wigi(x)) ,

where a ∶ R → R is referred to as activation function and w1, . . . ,wk are weights. The gi are
referred to as neurons. If the neuron gi is a weighted sum of the input x ∈ X , it is referred to
as input neuron. If instead it is defined as a weighted composition of functions itself, i.e.,

gi(x) = a
⎛

⎝
∑
j≠i
wijgj(x)

⎞

⎠
,

it is referred to as hidden neuron. The neuron associated with f is denoted output neuron. If
Y = {−1,1}, the neural network can again be represented as the sign of the activation function.
The neural networks can also be represented as a directed graph G = (V,E), where each

neuron gi is represented by a vertex vi ∈ V . Each edge e = (vi, vj ,wij) ∈ E is a weighted
connection between the neurons gi and gj with weight wij ∈ R. If the neural network can
be represented by an acyclic graph, is is called a feed forward network, if not, it is called a
recurrent neural network.
Often, neurons are organized in layers, i.e., the set of neurons is partitioned into subsets

g1, . . . ,gl, each subset being referred to as a layer. For these layers, the following constraint is
imposed on the weights: For two neurons, one from layer gi and one from layer gj it holds that
wij = 0 if j ≠ i + 1, i.e., only neurons in consecutive layers are connected2. Neural networks
with a large number of layers are referred to as deep neural networks, machine learning
algorithms for training such networks are summarized under the term deep learning.

This thesis presents black-box parallelizations for a wide range of learning algorithms using
these three classes of model spaces. The performance of a model from such a model space is
measured by a loss function. The following subsection gives a few examples of popular ones.

1 We assume neurons to be representable by functions to simplify notation. This does not take into account
techniques like dropout (Srivastava et al., 2014), where the output of a neuron is probabilistic.

2 This definition of layers only holds for feed-forward networks. In practice, recurrent neural networks are also
visualized in layers to better highlight their structure, even though there can be arbitrary connections between
layers.
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2.1.2. Examples of Loss Functions

In case of a classification problem where Y = {−1,1}, a common loss function is the 0-1-loss,
i.e.,

l(f, x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

0, if f(x) = y
1, otherwise

.

Since this function is neither continuous nor convex, optimizing over it is difficult. Thus, it is
often replaced by a convex upper bound, e.g., the logistic loss

`log(f, x, y) = log (1 + e−yf(x)) ,

or the hinge loss
`hinge(f, x, y) = max{0,1 − yf(x)} .

For regression problems where Y = R, the deviation of prediction and label can be measured
by the absolute loss

l(f, x, y) = ∣f(x) − y∣

which is convex, but unsuitable for gradient-based solvers (the gradient is the same for large
and small losses, so that gradient-based solvers require many steps to reach the minimum).
More common loss functions are the squared loss

`sq(f, x, y) = (f(x) − y)2

and the ε-insensitive loss

`eps(f, x, y) = max{0, ∣f(x) − y∣ − ε} .

The goal in both batch and online learning is to optimize this loss. In the following, we discuss
the case of batch learning, followed by online learning.

2.1.3. Empirical Risk Minimization

In batch learning, the algorithm can optimize an objective over large amounts of data. The goal
is to find a model that minimizes the expected error (Equation 2.1). However, this cannot be
computed as the distribution D is unknown. To obtain efficient machine learning algorithms,
a common strategy is to craft an objective function that is derived from a high probability
upper bound on the expected error. In the following, this approach is detailed.
In order to craft an objective function whose optimum is close to the minimizer of the

expected error that can also be efficiently optimized, the expected error is replaced by its
empirical counterpart computed from a sample training set of size N ∈ N:

E = {(x1, y1), . . . , (xN , yN)} ⊆ X × Y

that is drawn independent and identically distributed (iid) from D. Moreover, the loss is
replaced by a convex upper bound ` ∶ F × X × Y → R (see the previous Section 2.1.2), and
complex models are penalized by a convex regularization term Ω ∶ F → R.
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Machine learning algorithms are thus often defined by a regularized empirical risk mini-
mization problem

argmin
f∈F

N

∑
i=1
` (f, xi, yi) +Ω(f) . (2.4)

where the objective function is denoted the empirical risk3

Lemp(f) =
N

∑
i=1
` (f, xi, yi) +Ω(f) . (2.5)

The expected error with respect to the loss function employed in the empirical risk minimiza-
tion problem is called the risk

LD(f) = E
(x,y)∼D

` (f, x, y) .

The ERM model allows to provide strong guarantees on models that minimize Equation 2.4.

Generalization Bounds for Empirical Risk Minimization

Given a model that minimizes Equation 2.4, a generalization bound is a probabilistic guar-
antee on its risk. That is, for a given ε > 0 and δ ∈ (0,1], with probability 1 − δ it holds for a
training set E ⊂ X × Y drawn iid from D and the model f = A(E) that

LD(f) ≤ min
f ′∈F
LD(f

′
) + ε .

Here, the first component, minf ′∈F LD(f ′), denotes the error of the best model from the
model space which is often termed approximation error or bias of the algorithm. The
second component ε is the error due to a lack of training data, denoted estimation error. An
equivalent form of guarantees is to bound the difference between risk and approximation error,
denoted the regret

R(f) = LD(f) −min
f ′∈F
LD(f

′
) .

For most learning algorithms, the generalization bound improves monotonically with the size
of E. Such learning algorithms are consistent if there is a functionNF ∶ R+×(0,1] → R+ such
that for all ε > 0, δ ∈ (0,1],N ≥ NF(ε, δ), and a training set E ∼ DN of sizeN , the probability
of A outputting a model with regret larger than ε is smaller than δ, i.e.,

P (R(A(E)) > ε) ≤ δ , (2.6)

3 Note that in the literature, empirical risk often refers only to the loss, not the regularization term. In this case,
the objective with regularization is denoted structural risk (Shalev-Shwartz and Ben-David, 2014) or regularized
risk (Von Luxburg and Schölkopf, 2009).
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The function NF ∶ R+ × (0,1] → R+ is called the sample complexity of A4. For an empirical
risk minimization algorithmA with 0-1-loss function and a model space F ∶ X → {−1,1} with
finite Vapnik-Chervonenkis dimension V Cdim(F) ∈ N and finite Rademacher complexity, the
sample complexity is (Shalev-Shwartz and Ben-David, 2014)5

NF(ε, δ) ≥ C
V Cdim(F) + ln (1

δ
)

ε2
.

for a constant C ∈ R+.
Both, VC-dimension and Rademacher complexity are measures for the capacity of a model

space. The VC-dimension of a model space F ∶ X → {−1,1} is defined (Von Luxburg and
Schölkopf, 2009) as

V Cdim(F) = max{n ∈ N∣∃Zn ⊂ X , ∣Zn∣ = n s.t. ∣FZn ∣ = 2n} .

Here ∣FZn ∣ denotes the number of labellings of the instances in Zn that can be realized by F ,
i.e., for Zn = {x1, . . . , xn}

FZn = {y1, . . . , yn ∈ {−1,1}∣∃ft ∈ F ∶ f(xi) = yi for all i ∈ [n]} .

The Rademacher complexity of a model space F ∶ X → {−1,1} is defined as

RadN(F) = E sup
f∈F

1
N

N

∑
i=1
σif(Xi) ,

where Xi are random variables drawn iid from X and σi are independent binary random
variables drawn from the Rademacher distribution, i.e., P (σi = 1) = P (σi = −1) = 1/2. The
expectation is both over the Xi and σi. If a consistent learning algorithm exists for a model
space F , then it is agnostic PAC learnable.

Definition 2.7 (Agnostic PAC Learnability (Shalev-Shwartz and Ben-David, 2014)). A model
space F is agnostic PAC learnable if there exist a functionNF ∶ (0,1) × (0,1) → N and a learning
algorithm A with the following property: For every ε, δ ∈ (0,1) and for every distribution D over
X × Y , when running the learning algorithm on N ≥ NF(ε, δ) many examples drawn iid from
D, A returns a model f ∈ F such that, with probability of at least 1 − δ (over the choice of the N
training examples), its risk is bounded by

LD(f) ≤ min
f ′∈F
LD(f

′
) + ε .

These guarantees hold for all instances of the ERM objective. For batch learning, this
thesis considers agnostic PAC learnable problems. A particular learning algorithm for such
a problem is defined by the optimization objective (Equation 2.5), i.e., the model space, loss
function, and regularization term. In the following, a few examples are given.
4 In the literature, the sample complexity is defined with respect to the model space F , assuming that A outputs
the empirical risk minimizer. Here, the algorithm and model space are

5 Shalev-Shwartz and Ben-David (2014) show in Chapter 28 that any empirical risk minimization algorithm using
a model space F with finite VC-dimension d ∈ N achieves an (ε, δ)-guarantee (Equation 2.6) using a dataset of
size N ≥ 128d/ε2 log(64d/ε2

) + 8/ε2
(8d log(e/d) + 2 log(4/δ)).
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Examples of Empirical Risk Minimization Algorithms

As an example, assume a binary classification problem, i.e., Y = {1,−1}, over a d-dimensional
vector space, i.e., X ⊆ Rd. Furthermore, assume a linear model space

F = {fw ∶ Rd → {1,−1}∣w ∈ Rd, fw(x) = sign(⟨w,x⟩)} ,

and the logistic loss
`log(fw, x, y) = log (1 + e−y⟨w,x⟩) .

The algorithm solving the corresponding empirical risk minimization problem

argmin
f∈F

N

∑
i=1
`log(fw, x, y) = argmin

f∈F

N

∑
i=1

log (1 + e−y⟨w,x⟩)

is known as logistic regression which finds the maximum likelihood estimator for the classi-
fication problem.

For such a classification problem, kernel models

F = Hk =

⎧⎪⎪
⎨
⎪⎪⎩

f ∶ X → R∣f(⋅) =
dimF

∑
j=1

wjφj(⋅)

⎫⎪⎪
⎬
⎪⎪⎭

with kernel function k can be used. Together with the hinge loss

`hinge(f, x, y) = max{0,1 − yf(x)} .

and L2-regularization, the corresponding ERM problem is

argmin
f∈Hk

N

∑
i=1
`hinge(fw, x, y) + ∥f∥2

Hk .

The algorithm solving this problem is known as support vector machine (SVM).
As another example, assume a regression problem, i.e., Y =⊆ R over X ⊆ Rd. For a linear

model space the loss can be measured by the squared loss `sq(fw, x, y) = (fw(x) − y)
2. The

corresponding algorithm solving

argmin
f∈F

N

∑
i=1

(fw(x) − y)
2

is least-squares regression. Adding an L2-regularization Ω(fw) = ∥w∥2, i.e.,

argmin
f∈F

N

∑
i=1

(fw(x) − y)
2
+ ∥w∥2

yields the ridge regression algorithm. Instead usingL1-regularization Ω(fw) = ∥w∥1 is known
as LASSO regression. The support vector machine described above can also be applied to
regression problems by using the ε-insensitive loss

`eps(f, x, y) = max{0, ∣f(x) − y∣ − ε} .

instead of the hinge loss, yielding support vector regression (SVR). These objective functions
can be optimized using standard (convex) optimization algorithms.
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Examples of Optimization Algorithms

Since the model space allows a representation in the Euclidean space, the empirical risk can be
regarded as a function Lemp ∶ Rd → R for some d ∈ N. If the model space F is convex, i.e., for
every f, f ′ ∈ F and any α ∈ [0,1] it holds that αf + (1−α)f ′ ∈ F , and the loss function Lemp
is differentiable and convex in f , i.e.,

Lemp(αf + (1 − α)f ′) ≤ αLemp(f) + (1 − α)Lemp(f ′) ,

then this instance of ERM is denoted a convex learning problem (Shalev-Shwartz and Ben-
David, 2014) that can be solved by a convex optimization algorithm. An example are first-order
optimization algorithms that incrementally update the solution based on the gradient of the
objective function: The gradient descent (GD) algorithm in each round t ∈ N takes a step in
the direction of the negative gradient at the current model. That is, the update rule is

ft+1 = ft − η∇Lemp(ft) = ft − η∇(
N

∑
i=1
` (f, xi, yi) +Ω(f)) ,

where∇Lemp(ft) denotes the gradient ofLemp and η ∈ R+ is the learning rate. For each update,
GD requires to calculate the gradient with respect to the entire training set. In stochastic
gradient descent (SGD) (Robbins and Monro, 1951), instead only the gradient at a single
data point is used which in expectation is in the direction of the gradient over all data. That is,
in each round SGD picks an example (xt, yt) from the training set and updates

ft+1 = ft − η∇(` (t, xt, yt) +Ω(ft)) .

A middle-ground between GD and SGD is the mini-batch SGD algorithm (Dekel et al.,
2012). This algorithms draws B ∈ N examples from the training set and uses the gradient of
this mini-batch in each update, i.e.,

ft+1 = ft − η∇(
B

∑
i=1
` (t, xi, yi) +Ω(ft)) .

These approaches can be generalized to non-differentiable objectives by using a subgradient,
instead of the gradient (see, e.g., Shalev-Shwartz and Ben-David (2014), Chapter 14.2).

Another family of optimization algorithms are quasi-Newton methods which not only use
the gradient, but also (an approximation to) the Hessian of the objective. An example is
the limited-memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) algorithm (Broyden, 1970)
that performs updates in the direction

pt = −B
−1
t ∇Lemp(ft) ,

where Bt is the current approximation of the Hessian.
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2.1.4. Incremental and Non-Incremental Learning Algorithms

Empirical risk minimization (ERM) algorithms process a dataset and output a model. If the
dataset is altered, e.g., by adding new examples, many ERM algorithms are not able to update
the model, but have to process the entire dataset again (e.g., because they require random
access to the entire dataset). These algorithms are thus non-incremental. Examples for non-
incremental learning algorithms are support vector machines (Scholkopf and Smola, 2001),
Gaussian processes (Rasmussen, 2004), and decision trees (Quinlan, 1986).

If instead the algorithm can be represented as a sequence of model updates, it is denoted
incremental. That is, given a training set E, the algorithm starts with a model f0 ∈ F and in
each round t ∈ N draws a subsetEt ofE and the current model ft is updated to ft+1 = A(Et, ft).
The sequence ft then converges to the minimizer f∗ of the ERM problem. The optimization
algorithms presented above can be regarded as examples of incremental learning algorithms.
Let Lemp denote the empirical risk (see Equation 2.5). The error ε̂ = ∥Lemp(fT ) −
Lemp(f

∗)∥ after T ∈ N rounds of the incremental learning algorithm is denoted the opti-
mization error6. The rate at which the optimization error decreases with the number of
rounds is called the convergence rate. It is desirable to have a fast convergence rate so that
the incremental algorithm reaches the ERM solution with as few passes over the entire dataset,
denoted epochs, as possible.
As an example, SGD can be viewed as an incremental learning algorithm ASGD for a given

ERM objective (see Chapter 14 in Shalev-Shwartz and Ben-David (2014)), i.e.,

A
SGD

((xt, yt), ft) = ft − η∇(` (t, xt, yt) +Ω(ft))

It has a convergence rate of ε̂ ∈ O(1/
√
T) for convex loss functions with bounded gradient and

bounded models.
If instead of a fixed training set E the algorithm A processes a stream of datasets Et ⊂ X ×Y

for rounds t ∈ N drawn iid according to D, the setting is referred to as in-stream learning.
Since the stream of datasets is potentially infinite, a common assumption on A is that its
runtime and memory for processing Et is in O(∣Et∣). As long as the data is drawn iid from a
fixed target distribution, a generalization bound can be given also for in-stream learning: Since
the learner observed

N =
T

∑
t=1

∣Et∣

many examples in round T , for a given δ ∈ (0,1] the estimation error ε is given by solving
N = NF(ε, δ) for ε. Let ε̂ be the optimization error in round T , then the risk of the model fT
can be bounded by

LD(fT ) ≤ min
f ′∈F
LD(f

′
) + ε + ε̂ .

Note that the stochastic gradient descent algorithm discussed above has the particular property
that in a streaming setting, it can optimize the risk directly. If in each round t ∈ N the example
(xt, yt) is freshly drawn iid from the target distribution, then by the linearity of the gradient
6 Optimization error sometimes also refers to the difference between the risk and the expected error (Shalev-
Shwartz and Ben-David, 2014). This error is a result of the inability to minimize the empirical risk with respect
to the original loss function. Its size depends on the specific loss functions and target distribution.
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it holds that

E
(x,y)∼D

∇ft`(ft, xt, yt) = ∇ft E
(x,y)∼D

`(ft, xt, yt) = ∇ftLD(ft) .

The gradient of the loss function is therefore an unbiased estimate of the gradient of the risk.
For batch learning, both incremental and non-incremental algorithms can be used. Note

that in-stream learning can also be regarded a batch learning case and analyzed in the ERM
model, if the model is not continuously evaluated and only its performance after processing a
number of examples is of interest. However, incremental algorithms can also be used when the
model is evaluated in each round and the goal is to optimize the performance over all rounds.
Such a scenario can be analyzed in the online learning model. This model is introduced in the
following section.

2.1.5. Online Learning

In online learning it is assumed that in each round t ∈ N the learner observers an instance
xt ∈ X and makes a prediction ŷt ∈ Y using its current model ft. After that, it observes the
correct label yt ∈ Y . An online learning algorithm A then updates the current model

ft+1 = A(ft, xt, yt)

with the goal to make as few mistakes as possible during this process.
In principle, any incremental learning (and optimization) algorithm can be applied in this

setting. However, generalization bounds for in-stream learning obtained by the ERM model
only hold if data is drawn iid from a fixed target distribution. In case the data distribution
varies over time or data is not drawn iid, these bounds do not hold. Moreover, they only
bound the expected error after a certain training time, not taking into account the loss suffered
during the training.
In the online learning model, no assumption is made on the target distribution. The

sequence of examples can be deterministic, drawn from a fixed, or time-variant target distribu-
tion, or generated by an adversary. In contrast to the PAC case, here the in-place performance
of the algorithm is of interest which can be measured by the cumulative loss (Equation 2.2)

L(T ) =
T

∑
t=1
`(ft, xt, yt) .

While it is possible to provide probabilistic guarantees on the risk of online learning algo-
rithms (Cesa-Bianchi and Lugosi, 2006), it is more common to give a worst-case bound on the
cumulative loss, denoted loss bound LA(T ). That is, for all sequences (x1, y1), . . . , (xT , yT )
it holds that

LA(T ) =
T

∑
t=1
`(ft(xt), yt) ≤ LA(T ) .

For binary classification, one can analyze the cumulative 0-1-loss of an online learning al-
gorithm, i.e., the number of mistakes it makes. In the realizable case (Shalev-Shwartz and
Ben-David, 2014), i.e., for some arbitrary instance x ∈ X , the label is generated by an element
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f∗ ∈ F of the model space, the number of mistakes can be bounded in the Littlestone’s Di-
mension Ldim of the hypothesis class. Ldim is a measure similar to the VC-dimension and is
defined as follows. A shattered tree of depth T is a binary tree of depth T , i.e., it has 2T+1 − 1
nodes, where each node is associated with an instance vi ∈ {v1, . . . , v2T+1−1}. A sequence of
examples is generated by setting x1 = v1, and in round t ∈ [T ], xt = vit where it is the current
node. After round t, the next node is the left child of it if yt = −1 and the right one if yt = 1.
That is, it+1 = 2it + y1t, or without the recursion

it = 2t−1
+
t−1
∑
j=1

yj2t−1−j .

A F -shattered tree is a shattered tree such that for every labeling y1, . . . , yT ∈ {−1,1} there
exists a f ∈ F such that for all t ∈ [T ] it holds that f(vit) = yt where it = 2t−1 +∑t−1

j=1 yj2t−1−j .

Definition 2.8 (Littlestone’s Dimension Ldim (Shalev-Shwartz and Ben-David, 2014)).
Ldim(F) is the maximal T ∈ N such that there exists an F -shattered tree.

The standard optimal algorithm (SOA) for a model space F sets V1 = F and in each
round t receives an instance xt, partitions Vt into two sets V r

t = {f ∈ Vt ∶ f(xt) = r} for
r ∈ {−1,1} and predicts ŷt = arg maxr∈{−1,1}Ldim(V r

t ). After receiving the true label yt it
updates Vt+1 = {f ∈ Vt ∶ f(xt) = yt}. That is, in each round it predicts according to the class
with larger Ldim and discards all models that make a mistake. For this algorithm, it can be
shown that the number of mistakes is bounded by Ldim(F) and no other algorithm can have
a smaller mistake bound (see Corollary 21.8 in Shalev-Shwartz and Ben-David (2014)). In the
unrealizable case, i.e., when the labels are not generated by a member of the model space, no
mistake bound sublinear in the number of rounds can be given (an adversary may chose to
present always the opposite label to what the learner predicted). Instead, the performance is
measured with respect to a reference model. This is captured by the online regret

RA (T ) =
T

∑
t=1
`(ft, xt, yt) − `(f

∗, xt, yt) ,

where f∗ is the reference model. Note that typically, the optimal model in hindsight

f∗ = arg min
f∈F

T

∑
t=1
`(f, xt, yt) .

is used as reference model.
Both online regret and the regret in the ERM model measure the excess loss over the best

model from the model space. The difference is only that the regret in the ERM setting
considers the expected loss on an unseen training example, whereas the online regret considers
the cumulative regret for a given sequence of examples. In online learning, guarantees are
often given as worst-case bounds on this regret.
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Online Regret Bounds

A regret bound RA (T ) is a worst-case guarantee on the regret that holds for all possible
sequences of examples, i.e.,

RA (T ) ≤ RA (T ) = sup
(x1,y1),...,(xT ,yT )

[
T

∑
t=1
`(ft, xt, yt) − `(f

∗, xt, yt)]

Since the regret bound is a worst-case upper bound, it holds for all reference models, including
the best model in hindsight.
The definition of regret can be generalized to time variant target distributions. For that,

given a sequence of reference models U = u1, . . . , uT the shifting regret (Herbster and War-
muth, 2001) with respect to this sequence of reference models is defined as

RA (T,U) =
T

∑
t=1
`(ft, xt, yt) − `(ut, xt, yt) .

A shifting regret bound is a worst-case upper bound on the shifting regret for all sequences
of reference models, including the optimal sequence of models. Shifting regret bounds are
typically given in the total shift of the reference sequence

T

∑
t=2

∥ut − ut−1∥
2
2 .

Without further assumptions, no regret bound can be given that is better than linear in
T (Cover, 1965). However, if we assume the model space to be convex and the loss function
to be a convex function in the model, then sub-linear regret bounds can be achieved. In the
following, a few example algorithms are introduced which have sub-linear regret bounds.

Examples of Online Learning Algorithms

The first example is SGD which can be applied in the online setting as well. Let ` be a convex
loss function. In round t ∈ N, the algorithm observes xt ∈ X , makes a prediction ŷt = ft(xt),
then observes yt and suffers loss `(ft, xt, yt). As before, SGD with learning rate η ∈ R+ then
updates the model to

ft+1 = ft − η∇ft`(ft, xt, yt) .

The regret bound for SGD is (Shalev-Shwartz and Ben-David, 2014)

RASGD (T ) =
∥f∗∥2

2η
+
η

2

T

∑
t=1

∥∇ft`(ft, xt, yt)∥
2 .

A common assumption is that F is bounded, i.e., for all f ∈ F it holds that ∥f∥ ≤ ρ for a data
radius ρ ∈ R+. In order to relate the distance between models to the difference in their losses,
another common assumption is that ` is ι-Lipschitz, i.e., for all f, f ′ ∈ F and all x ∈ X , y ∈ Y

∣` (f, x, y) − ` (f ′, x, y)∣ ≤ ι ∥f − f ′∥ .
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Using these two assumptions and setting η = ρ/ι
√
T results in a regret bound of

RASGD (T ) =
ρι

2
√
T ∈ O (

√
T) .

Another example is the passive aggressive algorithm (PA) (Crammer et al., 2006). It
is defined for a variety of learning tasks including classification, regression, and uni-class
prediction and can be uniformly described by

A
PA

(f, x, y) = arg min
f ′∈F

1
2
∥f − f ′∥2 s.t. `(f ′, x, y) = 0 (2.9)

where for classification ` is the hinge loss, for regression the ε-insensitive loss, and for uni-class
prediction (where no x is observed and y = F ) the loss is given by `(f, y) = max(∣f −y∣ − ε,0).
For all three variants, a closed form solution of Equation 2.9 can be given. E.g., in case of
classification it is

A
PA

(f, x, y) = f +
`(f, x, y)

∥x∥2 yx .

In this case, the regret bound of PA is in O(
√
T ) (Orabona et al., 2015).

Note that there is a simple connection between the convergence rate of an optimization
algorithm and its online regret bound, if data is drawn iid from a fixed target distribution.

Lemma 2.10. Let A be an optimization algorithm with convergence rate g ∶ N → R for a loss
function `, i.e., after T ∈ N examples the optimization error ε̂T is inO(g(T )), where g is a strictly
monotonic decreasing function. Then for a sequence of examples drawn iid from a fixed target
distribution the regret bound of A is in

O(
T

∑
t=1
g(t)) .

Proof. Since A has a convergence rate of g(t) it holds that

`(ft) − `(f
∗
) ≤ ε̂t ∈ O(g(t)) ,

where ft ∈ F is the model in round t and f∗ ∈ F is the optimal model. Thus, the online regret
can be bounded by

RA (T ) =
T

∑
t=1
`(ft) − `(f

∗
) ≤

T

∑
t=1
ε̂t ∈ O (

T

∑
t=1
g(t)) .

For example, if A has a convergence rate of g(T ) = 1/T , then the regret bound is

RA (T ) ∈ O(
T

∑
t=1

1
t
) = O(lnT ) .
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The last equality comes from the standard asymptotic formula for the harmonic sum. If instead
A has a convergence rate of g(T ) = 1/

√
T , then

RA (T ) ∈ O(
T

∑
t=1

1
√
t
) .

Since it holds that

2
√
T − 2 ≤

T

∑
t=1

1
√
t
≤ 2

√
T

it follows that RA (T ) ∈ O(
√
T )

This concludes the introduction of online learning and machine learning as optimization
in general. The following section describes distributed machine learning approaches for both
batch and online learning.

2.2. Distributed Machine Learning

Traditional learning algorithms are designed to be executed serially on a single processing
node. This serial approach becomes infeasible, if (i) the training process on the entire data set
takes too much time (for a given application scenario), if (ii) the data is too large to fit into
the memory of a processing node, or if (iii) the cost of communication required to centralize
distributed data sources is too high. Distributed learning makes use of several processing nodes
to circumvent some, or all of these problems. For that, each learner processes parts of the data
locally and communicates intermediate results to other nodes 7.
The goal is to obtain a model with a similar quality compared to the model learned (hypo-

thetically) by the serial algorithm on a single processing node with a speedup proportional
to the number of employed nodes. At the same time, the amount of communication be-
tween nodes must not exceed the capacities of the communication infrastructure. A common
approach is to parallelize existing learning algorithms.

2.2.1. Embarrassingly Parallel Algorithms

First-order optimization algorithms allow to efficiently compute the gradients of the loss
function in parallel. As an example, the SGD algorithm that can be employed both for
batch and online learning can be efficiently parallelized. Assuming m ∈ N processing nodes,
in round t ∈ N parallel SGD draws m examples (x1

t , y
1
t ), . . . , (x

m
t , y

m
t ) and computes the

gradients git = ∇ft`(ft, xit, yit) for each example in parallel on them nodes. Then, the gradients
are collected, summed up, and an update step

ft+1 = ft − η
m

∑
i=1
git

7 Thus, this thesis only considers data parallelism. A different approach is model parallelism, where all processing
nodes share the same data but update different parameters of the model.
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is performed. The resulting model is equivalent to one computed centrally on a mini-batch of
m examples (see mini-batch SGD in Section 2.1.3). Parallelizations of these type are referred
to as “embarrassingly parallel" (Cevher et al., 2014; Moler, 1986, 1987). The model quality
is optimal in this case and the speedup is high—only the averaging of gradients requires an
overhead each round. This comes at the expense of having to centralize all gradients in each
iteration, i.e., massive communication. This strategy of distributing the gradient computation
can also be applied to GD (Mcdonald et al., 2009). GD has a convergence rate in O(1/T),
whereas the one of SGD is in O(1/

√
T). So while GD converges faster, each round is more

computationally expensive, since it requires calculating the gradients for all data points. SGD
instead converges slower but only requires calculating a single local gradient per round. Note
that, since parallel SGD onm learners is equivalent to mini-batch SGD with a mini-batch size
ofm, the convergence rate of parallel SGD is actually in between SGD and GD. In serial mini-
batch SGD, the mini-batch size B ∈ N controls the trade-off between a full GD (i.e., choosing
B equal to the dataset size) and SGD (i.e., B = 1). The serial algorithm has a convergence rate
ofO(1/

√
BT +1/T). Thus, parallel SGD onm learners has a convergence rate ofO(1/

√
mT +1/T)

which is similar to SGD form = 1 and approaches that of GD with growingm.
The middle ground between parallel GD and parallel SGD is the distributed mini-batch

SGD algorithm (DMB) (Dekel et al., 2012) which performs mini-batch SGD on each node.
Given local mini-batches Eit ⊂ X × Y of size B ∈ N at processing node i ∈ [m], the DMB
algorithm calculates local gradients

git = ∑
(x,y)∈Eit

∇`(ft, x, y)

and updates the model similar to parallel SGD. Note that, similar to SGD, DMB with param-
eter B onm nodes is equivalent to serial mini-batch SGD with B′ =mB. The regret of DMB
can be given with respect to the regret of serial online learning algorithm (i.e., SGD). Let
σ2 denote a bound on the variance of the gradient of the loss function `, i.e., it hods for all
f ∈ F and all x ∈ X , y ∈ Y that ∥∇f `(f, x, y)∥ ≤ σ2. The regret bound of many online learning
algorithms, including SGD, depends on this bound of the gradient variance. Therefore, Dekel
et al. (2012) consider the regret bound with respect to both the number of rounds T ∈ N and
σ2, i.e., a regret boundR (T,σ2). However, instead of a classic worst case bound on the online
regret (as defined in Section 2.1.5), they consider a bound on the expected regret

exp [R (T )] ≤ R (T,σ2) .

Furthermore, they consider a streaming setting where examples are lost because of message
passing times (examples received while an update step is performed are lost). Given a bounded
message passing time µ ∈ R, Dekel et al. (2012) provide the following result on the expected
regret.

Theorem 2.11 (Dekel et al. (2012)). Let ` ∶ F × X × Y → R be a Lipschitz-smooth convex
loss function with σ2-bounded gradient variance. Let the message passing time be bounded by
µ ∈ R. If the expected regret of the serial online learning algorithm is bounded by R (T,σ2), then
the expected regret of the distributed mini-batch algorithm with mini-batch size B ∈ N over T
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examples is at most

(B + µ)R (⌈
T

B + µ
⌉ ,
σ2

B
) .

This result implies that for SGD, the DMB algorithm retains the (expected) regret of the
serial online learning algorithm.
Using a small B (i.e., similar to parallel SGD) results in low computational costs per iter-

ation, but a higher total amount of iteration and more consequently communication (each
learner sends its local gradient per iteration). A large B (i.e., similar to parallel GD) results
in high computational costs per iteration, but a lower number of iterations and less commu-
nication. In practice, DMB allows to chose a good trade-off between local computation costs
and communication, rendering it favorable to both GD and SGD. Common to all variants is
that they require a tightly coupled system with a low-latency and high-bandwidth network in
order to not stall the iterations (McMahan et al., 2017).

2.2.2. Classical Parallelization of Optimization and Learning Algorithms

Quasi-Newton methods, like l-BFGS (Byrd et al., 1995), can be parallelized by computing the
gradients in each iteration in parallel and summing them in the end, as well. Moreover, the
approximation of the Hessian, i.e., the matrix of second order derivatives, can be parallelized.
For MapReduce systems, there exist efficient parallelizations that require an alteration of
the original algorithm in order to avoid constant map-reduce steps in each iteration (Chen
et al., 2014). This altered algorithm parallelizes several computation steps in the original
one so that the model obtained is similar to a centrally computed model, at the cost of high
communication.
Moreover, a combination of first-order online methods and quasi-Newton methods can be

used to process large amounts of data without the communication and computation overhead
of parallel l-BFGS but with a similar performance. For that, the model generated by parallel
SGD is used as starting point for the serial l-BFGS algorithm (Agarwal et al., 2014). Given that
the starting point obtained by the first-order method is in a good neighborhood, the l-BFGS
solver will converge much faster than with a random starting point.

A more systematic approach to this kind of parallelization is to identify calculations in sum-
mation form, i.e., sums over independent terms, and parallelize them using MapReduce (Chu
et al., 2006). However, the locally computed terms (or gradients) have to be communicated
across nodes in each iteration, which slows down the algorithms in practice. Moreover, all
these approaches require an adapted parallel implementation of the learning algorithm. Practi-
cal implementations within a parallel computing framework require expert knowledge in the
framework and are typically heavily tweaked (Meng et al., 2016).
Ensemble methods often also allow for parallelization. There, a set of models is trained

using data from either different target distributions, different (sub-)sets of features, or different
labels (Dietterich, 2000). In principle, each member of the ensemble can even be from a
different model space. The prediction is obtained by aggregating the individual predictions of
the models in the ensemble, e.g., by majority vote or weighted average. For example, bagging
can be parallelized efficiently by computing local models in parallel on local data sampled from
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a common large dataset (with replacement) (Breiman, 1996). The performance of bagging can
be improved by adaptive boosting (AdaBoost) (Lazarevic and Obradovic, 2002), i.e., iteratively
sampling local datasets and changing the sample distribution in each iteration based on the
performance of the local learners. However, it requires an exchange of local predictions and
data (Chan et al., 1993).

2.2.3. Parallel Machine Learning Frameworks

The aforementioned parallel learning algorithms can be implemented using scalable paral-
lelization frameworks. This allows to run them efficiently on clusters and clouds. A basic
framework is the parameter server (Li et al., 2013) which provides a shared memory of the
current model to a set of processing nodes, together with a large set of convenience functions.
This also allows for asynchronous model updates (Recht et al., 2011).

Another basic framework is MapReduce (Chu et al., 2006). In this framework, the inputs
are distributed to the processing nodes which perform a function on the inputs, denoted map
operation. The results of the map function are then combined (in a potential tree-like manner)
which is called the reduce operation8. As an example, assume a dataset E ⊂ Rd and the goal
is to calculate the average Euclidean norm of all vectors in E. This takes time O(d∣E∣). In
the MapReduce framework on m ∈ N processing nodes, the dataset is partitioned into local
dataset Ei ⊂ Rd at node i ∈ [m]. The map function is the average Euclidean norm

Ei =
1

∣Ei∣
∑
x∈Ei

∥x∥2

of the local dataset. The reduce operation given two nodes i, j ∈ [m] is 1/2(Ei + Ej). For
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Figure 2.1.: Illustration of the binary aggregation tree in MapReduce. The leaves are associated
with the result of the map operation. Each inner node computes the reduce operation on its
children. The root node also corresponds to the output of the MapReduce operation.

8 In an extended version of MapReduce, the output of the map operations is grouped by a so called shuffle
operation and the reduce operation is applied per group.
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simplicity assume that the size of E is a multiple of m and thus ∣Ei∣ = 1/m∣E∣. Then the
cost for the map operation, i.e., calculating the Ei in parallel, is in O(d1/m∣E∣). The reduce
operation can be performed in the form of a binary (or n-ary) aggregation tree (see Figure 2.1
for an illustration), where the leaves contain Ei and each inner node corresponds to a reduce
operation of its two children. Since this tree is of height log(m), the cost of the reduce
operation is in O(d logm). The overall runtime for the calculation thus is in O(d(1/m∣E∣ +

log(m))).
A more sophisticated framework based on MapReduce is Apache Spark. Its machine learn-

ing library MLI on Spark (Sparks et al., 2013; Zaharia et al., 2012) has implemented efficient
variants of parallel SGD and distributed mini-batch SGD as base solvers for a set of machine
learning algorithms (e.g., the ones described in Section 2.1.3). An implementation of the
Radon machine which is presented in Chapter 5 in Apache Spark is described in Appendix A.2.
While these frameworks are intended for batch learning, handling data streams requires a

framework that allows real-time processing of distributed data streams. Popular frameworks
are Apache Storm (Apache Software Foundation, 2017) and Apache Flink (Carbone et al.,
2015). An implementation of dynamic averaging that is presented in Chapter 3 in Apache
Storm is described in Appendix A.1.

2.2.4. Towards Black-Box Parallelizations: Averaging Models

In a survey on distributed learning algorithms, Shamir and Srebro (2014) found that for
algorithms based on SGD the best so far known algorithm is the distributed mini-batch
algorithm (Dekel et al., 2012). It performs well in terms of runtime and model quality on
tightly connected distributed systems (Chen et al., 2016), e.g., data centers and clusters. For
many applications, however, centralization or even periodic sharing of gradients between local
devices becomes infeasible due to the large amount of necessary communication. Moreover,
the distribution of gradient computation requires low latency networks and are thus not
suitable for highly distributed systems or MapReduce-style computations (McMahan et al.,
2017).

Instead of sharing gradients, it was suggested to perform local updates and average the
models. This model averaging can be performed once at the end (Zinkevich et al., 2010),
or periodically (McDonald et al., 2010; McMahan et al., 2017; Zhang et al., 2015), allow-
ing to further reduce communication (Li et al., 2014). Even though, averaging once at the
end requires the least amount of communication, the result can be arbitrarily bad (Shamir
and Srebro, 2014). Thus, typically periodic averaging of model parameters is used in convex
optimization (Mcdonald et al., 2009; Shamir, 2016; Zhang et al., 2012). For convex optimiza-
tion problems, the objective can also be adapted for faster convergence (Li et al., 2014). In
the context of deep learning, periodic averaging is empirically analyzed in McMahan et al.
(2017). For decentralized setups it was termed Federated Learning (McMahan et al., 2017) (see
Section 4.3.1 for a discussion of Federated Learning).
Averaging model parameters—instead of communicating intermediate results—points to-

wards a more general principle for distributed machine learning: run multiple instances of
a machine learning algorithm in parallel and aggregate the resulting models. Aggregating
models has three major advantages: (i) sending only the model parameters instead of a set
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of data reduces communication; (ii) it allows to train a joint model without exchanging or
centralizing privacy-sensitive data; (iii) it can be readily applied to a wide range of learning
algorithms, since it treats the underlying algorithm as a black-box. The following section
defines this general principle, which I term black-box parallelization, and defines a formal
framework to analyze such black-box parallelizations.

2.3. Black-Box Distributed Machine Learning

A particular approach to distributed machine learning is black-box parallelization. In this
approach, an existing learning algorithm—referred to as base learning algorithm—is applied
in parallel on distributed data to produce a set of models. These models are then aggregated
into a single one. The goal for this single aggregated model is to achieve a similar quality
compared to one produced by the serial application of base learning algorithm on all data
centrally. Since the aggregation is independent of the base learning algorithm, it does not have
to be altered or reimplemented—it can be regarded as a black box.

The major difference to ensemble methods—where several models are trained as well—is that
the set of models is not maintained, but aggregated into a single model. A single model requires
less memory and less computational power for evaluation which is an important advantage in
applications with restricted resources. This is an important property in practice: for example,
in autonomous driving, individual models are often deep neural networks (Chen et al., 2015)
and the computing power within the vehicle is limited. Maintaining and executing an ensemble
of multiple deep neural networks within the vehicle is infeasible (Berger and Dukaczewski,
2014). Moreover, in online learning scenarios with real-time constraints, the execution of an
ensemble might require too much time. For example in online advertisement, the advertiser
has only 100 milliseconds to apply the model to the auctioned ad-placement and make a
bid, including message passing time (Muthukrishnan, 2009). Such scenarios require very low
computational complexity of the model application. Thus, in such scenarios a method that
yields a single strong model is required.
The major difference to existing distributed learning approaches is that the parallelization

is decoupled from the learning process. Apart from the generality of such an approach, this
has the advantage that the learning process is not stalled by unresponsive learners: either
the aggregation of models is delayed or unresponsive learners are simply excluded from the
aggregation. This is beneficial in massively distributed or decentralized systems. For example,
in autonomous driving on electric cars, vehicles might only communicate when parked or
charged. In learning on mobile phones, devices can be frequently disconnected from the
network, out of battery, or on slow or expensive connections. Moreover, the data generated
on the devices can be privacy-sensitive. In these scenarios, classical parallelizations are not
applicable (McMahan et al., 2017).
Black-box parallelizations allow to tackle these difficulties: they produce a single strong

model, are able to deal with limited connectivity and network capacity, and do not require
to share data. For that, an aggregation method is required that improves locally trained
models, as well as a scheduling of this aggregation. Based on this, a framework for black-box
parallelizations is formally defined in the following section.
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2.3.1. Distributed Learning Protocol

We assume a distributed learning system ofm ∈ N processing nodes, referred to as local learn-
ers. These can be the machines in a cluster, or cloud, but also other devices with processing
power, such as mobile phones, smart sensors, or vehicles.
Let A ∶ X × Y → F be a learning algorithm that, given a dataset E ⊂ X × Y , generates a

model f ∈ F . Each learner i ∈ [m] runs the learning algorithmA on a local datasetEi ⊂ X ×Y
and obtains a local model f i ∈ F . The tuple of local models forms a model configuration
f = (f1, . . . , fm). An aggregation operator a ∶ Fm → F aggregates a model configuration
f = (f1, . . . , fm) into a single model f = a(f).
The most commonly used aggregation operator is the (weighted) average of local mod-

els (e.g., (Liu and Ihler, 2014; McMahan et al., 2017; Polyak and Juditsky, 1992; Shamir, 2016;
Zinkevich et al., 2010)), i.e.,

a(f1, . . . , fm) =
m

∑
i=1

wif i

∑
m
j=1w

j
,

where w1, . . . ,wm ∈ R are arbitrary weights, and the case w1 = ⋅ ⋅ ⋅ = wm = 1/m is the standard
average. An aggregation operator more robust to outliers is the (geometric) median (Hsu and
Sabato, 2016; Minsker et al., 2015)

a(f1, . . . , fm) = arg min
f∈F

m

∑
i=1

∥f i − f∥2 .

Chapter 5 presents an aggregation operator based on the Radon point (Radon, 1921) that
shares robustness properties with the median and provides strong guarantees on the model
regret.
The aggregation operator defines how models are combined; for a parallel learning algo-

rithm it remains to be defined when the aggregation is performed. That is, in a distributed
system withm learners, each running algorithm A, and respective local models f1, . . . , fm, a
synchronization operator σ ∶ Fm → Fm schedules the aggregation of some, or all local mod-
els. This is called a synchronization. Thus, σ has two purposes: it decides when to aggregate
and which models are included in the aggregation. Note that σ and a are not independent, but
some σ can be used with multiple a.
The question when to aggregate depends on whether the employed learning algorithm is

incremental or not. If it is non-incremental, the aggregation can only be performed after
training is completed. That is, σ leaves the models unaltered until all local data is processed
and then executes a on all, or a subset of them. This synchronization strategy is referred to
as aggregation-at-the-end (e.g., (Mcdonald et al., 2009; Zinkevich et al., 2010)). If instead
the algorithm is incremental, aggregations can be performed during the training process. For
incremental learning algorithms, a viable strategy is to aggregate models periodically. That is,
each local learner trains for a fixed number of rounds in which the synchronization operator
leaves the models unaltered. After this number of rounds, the synchronization operator applies
the aggregation operator to all locally generated models and the global aggregate is used as a
starting point for the next round (Li et al., 2014; McMahan et al., 2017).
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Since the aggregation and synchronization operators only require the output of the base
learning algorithm A, this form of parallelization treats A as a black box. I propose to
use the synchronization and aggregation operators as a generic framework to describe black-
box parallelizations of learning algorithms. In this framework, a particular combination
of learning algorithm, synchronization, and aggregation operator is denoted a distributed
learning protocol.

Definition 2.12. Let A be a learning algorithm, σ ∶ Fm → Fm be a synchronization operator
and a ∶ Fm → F be an aggregation operator. Given a distributed system withm ∈ N learners, a
distributed learning protocol Π = (A, σ,a,m) executesA in parallel on them nodes and applies
σ to the locally generated models using the aggregation operator a.

When the aggregation operator and the number of learners are obvious, the distributed
learning protocol can be abbreviated as Π = (A, σ).

Note that the learning performance of using specific synchronization and aggregation opera-
tors can be theoretically analyzed without considering their actual implementation (including
the network topology they are used in). In order to assess the communication and speedup,
however, their implementation has to be taken into account. Thus, in the following the imple-
mentation of a distributed learning protocol is provided when it is introduced. A discussion of
the impact of network topologies on communication and speedup is provided in Section 3.4.
In case the implementation is clear, the operators are identified with their implementation.
In the following section, the notion of speedup of such distributed learning protocols is

introduced.

2.3.2. Speedup of Distributed Learning Protocols

A major goal in parallelization is to decrease the runtime of an algorithm by using multiple
processing units. The speedup of a parallelization on m processing units is defined as the
runtime of the serial algorithm divided by the runtime of the parallelization (Kruskal et al.,
1990). Classical parallelizations of machine learning algorithms produce the same result as the
serial algorithm. In order to determine their speedup it suffices to analyze the runtime of the
parallelization with respect to the number of learners.

Black-box parallelizations often do not produce the same output as the serial execution of the
base learning algorithm. For example, executing stochastic gradient descent form rounds is not
equivalent to executing it for one round in parallel onm learners and averaging or summing
the models. The reason is that serial SGD calculates the gradient of the t-th example using the
model ft, whereas the parallel execution determines the gradient for all examples using the
initial model f0. So while for black-box parallelizations of machine learning algorithms it is
often not possible to obtain the same output, the parallelization may yet obtain a model of
the same quality.

Definition 2.13. Let A be a machine learning algorithm using a model space F and Π =

(A, σ,a,m) be a distributed learning protocol. Let Q ∶ F → R+ be some quality function. Given
a desired quality q ∈ R, let TA denote the runtime of A to produce a model f ∈ F with Q(f) = q.

33



Let TΠ(m) denote the minimal runtime of the distributed learning protocol onm ∈ N learners to
produce a model f ′ ∈ F of at least the same quality, i.e., Q(f ′) ≥ q. Then the speedup of Π onm
learners is defined as TA/TΠ(m).

The quality function Q can be arbitrarily defined. For example, given an ε > 0, the quality
could be measured by the confidence δ ∈ (0,1] of a generalization bound achieved by an
algorithm. In online learning, the quality is higher the less loss an algorithm suffers, so a
natural choice would be the negative (or inverse) cumulative loss.
The runtime of the distributed learning protocol can be decomposed into the runtime of

the base learning algorithm executed in parallel and the runtime of all synchronization. As an
example, in the following the periodically averaging approach is discussed and its speedup is
analyzed.

2.3.3. An Example: Periodic Averaging

Assume an incremental learning algorithm A for linear models, i.e., F = Rd for some d ∈ N
(see Section 2.1.1). As learning algorithm assume mini-batch SGD AmSGD (see Section 2.1.3).
This serial learning algorithm is parallelized using averaging as aggregation operation, i.e.,

aAV G(f
1, . . . , fm) = f = 1

m

m

∑
i=1
f i .

For linear models the average of m ∈ N models f1, . . . , fm is the standard vector average in
Rd—recall that we identify the model f i with its parameterization w ∈ Rd. With this, the
periodic averaging operator with period b ∈ N for a model configuration ft = (f1

t , . . . , f
m
t ) in

round t ∈ N is defined as

σb(ft) =
⎧⎪⎪
⎨
⎪⎪⎩

(f t, . . . , f t) , if b ∣ t
ft, otherwise

.

Here, b ∣ t means b divides t. The periodic averaging protocol using mini-batch SGD is
then given by P = (AmSGD, σb,aAV G,m). The protocol can be implemented using a sin-
gle designated coordinator node to perform the averaging. This implementation is given in
Algorithm 3. This implementation communicates 2m models every b rounds.

In terms of communication cost, every distributed learning protocol lies between two ex-
treme baselines—continuously communicating and quiescence, i.e., no communication at all.
Intuitively, investing more communication leads to a better model quality: If the aggregation
operator leads to an improvement in model quality over the individual ones (in expectation),
the overall quality increases with the number of synchronizations. For incremental learn-
ing algorithms, a good trade-off between predictive performance and communication can be
achieved by communicating periodically (for non-incremental algorithms, the only viable
strategy is aggregation-at-the-end).

To illustrate the trade-off between predictive performance and communication with respect
to the parameter b, an experiment was conducted usingm = 256 learners jointly learning from
a synthetic dataset in an online fashion. That is, each learner observes an instance, performs a
prediction, receives the true label and updates its local model accordingly. The performance
of the learners is measured by their cumulative loss.
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Algorithm 3 Periodic Averaging Protocol
Input: learning algorithm A, parameter b,m learners
Initialization:

local models f1
1 , . . . , f

m
1 ← one random f

Round t at learner i:

observe Eit ⊂ X × Y

update f it−1 using the learning algorithm A
if t mod b = 0 then

send f it to coordinator
end if

At coordinator every b rounds:

receive local models ft = (f1
t , . . . , f

m
t )

for all i ∈ [m] do
set f it ← σb(ft)i and send to learner i

end for

Figure 2.2 shows the results for multiple instances of P with different periods b ∈ N, com-
pared to a protocol that doesn’t communicate, denoted nosync, and the serial application of
AmSGD on all data. Figure 2.2(a) shows the cumulative loss and cumulative communication
after processing all data, while Figure 2.2(b) shows the development of cumulative zero-one
loss over time with communication indicated by crosses.
As expected, the serial application of AmSGD has the lowest cumulative loss. However, it

requires centralizing all data and processing it on a single processor. The nosync baseline
instead processes the data distributedly and does not communicate at all, but has the highest
loss. The performance of periodic averaging increases with the amount of communication
invested (i.e., with smaller period b) up to a performance similar to the serial baseline. To
achieve this, however, it has to average every other round, requiring a substantial amount of
communication. Increasing the communication period allows to trade communication for
predictive performance and adapt it to the desired trade-off.
After having seen that periodic averaging allows to train models of high quality in parallel,

it remains to analyze its speedup. The speedup of periodic averaging depends on how many
examples the system withm ∈ N learners needs to process to achieve the same model quality
as the serial baseline. Here, quality is defined in terms of cumulative loss. The results for
b = 2 and b = 8 indicate that periodic averaging run for T ∈ N rounds, thus processing Tm
examples, achieves a model quality comparable to the serial baseline run for Tm rounds,
processing the same amount of examples (the following chapter will investigate this conjecture
both theoretically and empirically). For this example, assume that indeed periodic averaging
achieves the same model quality processing the same number of examples. Then, the runtime
TP(T ) for T rounds can be divided into the runtime TAmSGD of AmSGD in parallel on the m
learners, each processing T examples, and the time required for each synchronization times the
number of synchronizations. Mini-batch SGD is a linear time algorithm, thus its runtime for
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(a) cumulative loss and communication (b) development of cumulative loss

Figure 2.2.: Experiment with periodic averaging onm = 256 learners after training on a dataset
of size ∣E∣ = 2 560 000 (i.e., 10 000 examples per learner) from a synthetic classification dataset.
The dataset is generated by applying a randomly chosen disjunction to 50-dimensional random
binary vectors. Note that the serial baseline observes only 1 example per round, while the
distributed approaches jointly process m = 256 examples. To align the plots, for each round
the sum of 256 rounds of the serial baseline is shown.

processing T examples is in Θ(T ). The time for calculating the average ofmmodels is in Θ(m).
Note that the time for calculating the average can be straight-forwardly reduced to Θ(logm)

by calculating the average in a MapReduce fashion without additional communication (see
Section 2.2). Periodic averaging with parameter b ∈ N synchronizes T/b times in T rounds.
Thus, viewing b as a constant, the runtime of periodic averaging is

TP ∈ Θ(TAmSGD(T ) +
T

b
logm) = Θ (T + T logm) = Θ (T logm) .

At the same time, mini-batch SGD processing Tm examples has a runtime of

TAmSGD ∈ Θ (Tm) .

Thus, the speedup of periodic averaging onm learners using mini-batch SGD is

TAmSGD

TP
∈ Θ(

Tm

T logm
) = Θ(

m

logm
) .

The overhead of averaging is reducing the achievable speedup substantially—averaging models
naively would even lead to no theoretical speedup at all. There are two ways of reducing the
overhead costs of synchronizations: (i) to further reduce the runtime cost of averaging, or (ii)
to decrease the number of synchronizations.
Further reducing the runtime cost of averaging can be achieved by averaging models block-

wise in a peer-to-peer fashion. The model parameters are divided in as many blocks as there
are learners. Each learner broadcasts its model to all other learners. Each learner then averages
the block assigned to it and broadcasts the result. This way, the average can be computed
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in time O(1) at the expense of 2m2 messages per synchronization (that are only 1/m of the
size of a normal averaging message). However, this approach is only applicable if the number
of model parameters is larger than the number of learners. Instead, sending all models to a
central coordinator and broadcasting the average back requires 2m full size messages, the same
holds for map-reduce-like averaging. Moreover, both approaches can be applied independently
of the number of model parameters.
Decreasing the number of synchronizations can be achieved by increasing the parameter b,

but as Figure 2.2 shows that leads to substantially worse model quality. For any choice of b,
the amount of communication is independent of its utility. In particular, when local learners
do not suffer loss at all, communication is unnecessary and should be avoided; similarly, when
they suffer large losses, an increased amount of communication should be invested to improve
their performances. Ideally, the synchronization operator would invest a lot of communication
in the beginning and save communication as soon as the model sufficiently converged. The
next chapter presents a dynamic approach that tackles these shortcomings. This approach is
first applied to online learning in Chapter 3 and then to batch learning in Chapter 4.
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This chapter investigates black-box parallelizations for online learning algorithms. Recall
that in online learning it is assumed that in each round t ∈ N the learner observers an instance
xt ∈ X and makes a prediction ŷt ∈ Y using its current model ft. After that, it observes
the correct label yt ∈ Y . An online learning algorithm A then updates the current model
ft+1 = A(ft, xt, yt) with the goal to make as few mistakes as possible during this process. In
the distributed case, all local learners aim at minimizing their mistakes. Section 3.1 formally
defines distributed online learning and provides two criteria for the efficiency of distributed
learning protocols: (i) they should be consistent, i.e., retain the in-place performance of the
serial online learning algorithm and (ii) they should be adaptive, i.e., invest communication
relative to the current hardness of the learning problem. It will be shown that periodically
communicating protocols are non-adaptive.
The goal of this chapter is to develop a distributed learning protocol that provides high

performance for all local models in each round while explicitly minimizing communication.
At the same time, the distribution should yield substantial speedup. The protocol should be
theoretically sound, i.e., with strong loss bounds and bounds on the communication.
In the previous chapter, periodic averaging was presented as an example of a distributed

learning protocol. With a sufficient amount of communication, this protocol is able to achieve
a cumulative loss comparable to the serial execution of the base learning algorithm. However,
the amount of communication required for that grows linearly with the number of rounds,
independent of the utility of the communication. The main idea to address this problem is
to perform model synchronizations only in system states that show a high divergence among
the local models, where divergence is defined as the distance to the aggregate of the models.
A high divergence indicates that a synchronization would be most effective in terms of its
correcting effect on the model quality.
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The divergence can be defined with respect to arbitrary distance functions between models
and arbitrary aggregation operators. Since the model divergence is a non-linear function in
the global system, it cannot be monitored trivially without communicating. However, by
decomposing it into local conditions, it can be monitored locally in a communication-efficient
way. For specific aggregation operators, i.e., those that minimize the divergence, I derive
a general set of local conditions that allow to devise a communication-efficient distributed
learning protocol for online learning. This protocol is described and analyzed with respect
to averaging as aggregation operator in Section 3.2 and denoted dynamic averaging. It allows
communicative quiescence in stable phases, while, in hard phases where divergence reduction
is crucial, invests more communication.
Particularly interesting application scenarios for online learning are real-time services on

data streams, i.e, timely predictions on arrival of each example from distributed, potentially
high-frequency data streams. Each individual learner processes its corresponding data stream
and updates its local model accordingly. The synchronizations should improve the in-place
performance of the local learners and thus the overall performance of the system—Section 3.3
analyses under which conditions synchronizations provably improve the performance. Such
real-time services are of high importance in practice, e.g., in online ad-placement (Muthukrish-
nan, 2009; Yuan et al., 2013), stock market investment recommendations (Kamp et al., 2013),
network intrusion detection for cyber security (Buczak and Guven, 2016), and anomaly detec-
tion in sensor networks for, e.g., for health care (Alemdar and Ersoy, 2010). Such applications
require a responsive learning system. As discussed in the example of periodic averaging (Sec-
tion 2.3.3), communication can stall a learning system, reducing not only the achievable
speedup but also the responsiveness. Thus, reducing communication is imperative for these
applications.

Figure 3.1.: Cumulative error of nosync, serial, and periodic averaging (b = 50) using SGD
on a synthetic classification task. The task is to learn a random disjunction dis ∶ {−1,1}d →
{−1,1}. That is, a random disjunction dis over d binary inputs is generated; then, random
binary vectors x ∈ {−1,1}d are generated as input with the respective label y = dis(x). The
crosses indicate synchronizations. The vertical lines indicate a concept drift, simulated by
randomly choosing a new disjunction.
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Moreover, when learning from potentially infinite data streams, the underlying target distri-
bution may change1. Such a change is referred to as concept drift. Formally, assume training
sets Et drawn iid from a time-variant distribution Dt ∶ X × Y → R+, then a concept drift
occurs in round t ∈ N if Dt−1 ≠ Dt. Periodic approaches cannot react adequately to such
drifts, since they either communicate so rarely that the models adapt too slowly to the change,
or they communicate so frequently that they generate an immense amount of unnecessary
communication in-between drifts (see Figure 3.1 for an illustrative example).

Section 3.3 analyzes the in-place performance of dynamic averaging and the required amount
of communication, showing that for particular learning algorithms, dynamic averaging is
indeed efficient, i.e., consistent and adaptive. Moreover, its speedup over the serial application
of the learning algorithm is shown to be at least as high as that of periodic averaging.

The protocol can be applied to various network topologies, a few of which are discussed in
Section 3.4. The theoretical findings are substantiated by an empirical evaluation in Section 3.5.
The results, as well as some practical aspects of dynamic averaging are discussed in Section 3.6.

3.1. Efficient Distributed Online Learning

This chapter considers distributed online learning, where m ∈ N local learners each run an
online learning algorithm A that maintains a local model f i from a common model space F .
Similar to serial online learning (see Section 2.1.5), in each round t ∈ N each learner i ∈ [m]

observes a local instance xit ∈ X and makes a prediction ŷit = f it (xit). Upon observing the true
label2 yit ∈ Y , the quality of the prediction is measured by a loss function ` and the local model
is updated using A.
The goal of such a distributed learning system is to provide accurate predictions in each

round. The quality of the predictions is measured—similar to classical online learning—by the
cumulative loss over all learners (see 2.1.5 in the previous chapter)

L(T,m) =
T

∑
t=1

m

∑
i=1
` (f it , x

i
t, y

i
t) .

A synchronization operator σ is used to improve the system’s performance. An illustration
of such a setting is shown in Figure 3.2, in which σ is executed in a network topology with
a dedicated node for running it, called the coordinator. Different network topologies are
discussed in Section 3.4. The performance in terms of communication is measured by its
cumulative communication

C(T,m) =
T

∑
t=1
c(ft) ,

1 The online learning model does not require assumptions on the target distribution. However, if a fixed target
distribution is assumed—which is natural, e.g., in a non-streaming setting— and data is drawn iid from it, then
the cumulative loss of a distributed learning system is related to its convergence rate in the batch setting (see
Lemma 2.10 in Section 2.1.5)

2 Here it is assumed that the true label is available right after the prediction has been made. In practice, however,
this feedback can be delayed severely. In this case, the online learning algorithm has to store instances in memory
until the true output arrives. Moreover, the delay in feedback decreases the in-place performance. See Joulani
et al. (2013) for a detailed discussion on delayed feedback in online learning.
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Figure 3.2.: Illustration of of a distributed real-time service: m ∈ N learners receive input from
individual data streams, each learner i ∈ [m] running an online learning algorithmA that main-
tains a local model f i which is used to provide a real-time service (e.g., a prediction for each
incoming input). Local models are synchronized via a coordinator using a synchronization
operator σ to improve the overall service quality.

where c ∶ Fm → N denotes the number of bytes required to synchronize models ft =

(f1
t , . . . , f

m
t ) in round t. The following section discusses the trade-off between communi-

cation and predictive performance and provides an efficiency criterion for distributed online
learning protocols.

3.1.1. Efficiency Criterion

There is a natural trade-off between communication and loss of a distributed online learning
system. On the one hand, a loss similar to a serial setting can often be achieved by continuous
synchronization. On the other hand, communication can be entirely omitted. For these two
extreme protocols, the trade-off can be quantified.
If the cumulative loss of an online learning algorithm A is given by LA(T ), the loss of a

continuously communicating system, i.e., one that centralizes all data from the m learners
and applies A serially is LC(T,m) = LA(mT ). This is equivalent to the loss of a serial
online learning algorithm processing mT inputs. The same holds for distributed mini-batch
SGD (Dekel et al., 2012) with batch size b = 1 and for periodic averaging with SGD and B = 1
(the latter is shown in Section 3.3.3). The protocol transmits O(m) messages in every of the
T rounds. The size of the messages depends on whether data, or models, or gradients are
centralized. For data and gradient centralization, the message size is in O(1). Similarly, for
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model centralization using linear models, or neural networks. For kernel models, the message
size is in O(t) in round t ∈ N, because the number of support vectors grows with the number
of observed examples.

The loss bound of a distributed systemwithout any synchronization is given by Lnosync(T,m) =

mLA(T ), i.e., the loss bound ofm independent learners processing T examples. At the same
time, the communication is C(T,m) = 0.
Since the loss is typically sublinear in T , not communicating leads to substantially higher

cumulative loss. Consider SGD as an example for which not the cumulative loss but the online
regret, i.e.,

RA (T ) =
T

∑
t=1
`(ft, xt, yt) − `(f

∗, xt, yt) ,

(see Equation 2.1.5 in Section 2.1.5) can be bounded: for SGD the online regret is in O(
√
T ).

Thus, the regret bound of a continuously communicating protocol is inRC (T,m) ∈ O(
√
mT )

and that of a non-synchronizing one is in Rnosync (T,m) ∈ O(m
√
T ). It follows that not

communicating leads to a regret bound worse by a factor of
√
m.

As seen in the example in Section 2.3.3, periodic averaging allows to tune a learning system
to a middle ground between these two extremes. However, it invests communication indepen-
dent of its utility, synchronizing too little when it could substantially improve performance or
too much when it does not—a disadvantage that is even more severe when concept drifts occur.
An efficient protocol should be adaptive to the utility of synchronizations. That implies that
the communication of an adaptive protocol should only depend on LA(T ) (as a proxy for
the hardness of the learning problem) and not on T , while at the same time retaining the loss
bound of the serial setting. In the following definition, this intuition is formalized in order to
provide a strong criterion for efficiency of distributed online learning protocols.

Definition 3.1. A distributed online learning protocol Π = (A, σ,a,m) processingmT inputs is
consistent if it retains the cumulative loss of the serial online learning algorithm A, i.e.,

LΠ(T,m) ∈ O (LA(mT )) .

The protocol is adaptive if its communication is linear in the number of local learnersm and the
cumulative loss LA(mT ) of the serial online learning algorithm, i.e.,

CΠ(T,m) ∈ O (mLA(mT )) .

An efficient protocol is adaptive and consistent at the same time.

A periodically communicating protocol cannot be efficient, because it cannot be adaptive:
If a serial learner can achieve zero loss, then for a consistent periodic protocol LA(mT ) is in
O(1). However, the communication CΠ(T,m) is in O(mT ), and not in O(m ⋅ 1).

The following section introduces dynamic averaging, a protocol that adapts communication
to the current hardness of the learning problem. In Section 3.3 it is then shown that for
particular online learning algorithms, dynamic averaging is indeed efficient as in Definition 3.1.
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3.2. Dynamic Averaging Protocol

Intuitively, the communication for performing model averaging is not well invested in situ-
ations where all models are already approximately equal—either because they were updated
to similar models or have merely changed at all since the last synchronization. Especially, if
all local models have already converged to the optimal model, averaging will hardly change
the models and their performance. A periodic protocol still averages in such cases (recall
Figure 3.1 for an illustration). Ideally, a protocol should only perform model averaging when
this communication has a substantial effect.

3.2.1. Partial Synchronization

A simple measure to quantify the effect of synchronizations is given by the divergence of the
current local model configuration.

Definition 3.2. Let f = (f1, . . . , fm) ∈ Fm be a model configuration ofmmodels from a model
space F , d ∶ F × F → R+ a distance function on F , and a an aggregation operator. Then the
divergence of f is defined as

δ(f) = 1
m

m

∑
i=1
d (f i,a(f)) .

The following definition provides a generic synchronization operator that schedules the
aggregation of models based on the model divergence. This operator is a relaxation of periodic
aggregation operators, such as periodic averaging.

Definition 3.3. A partial synchronization operator with positive divergence threshold ∆ ∈ R+
and batch size b ∈ N is a synchronization operator σ∆,b such that in round t ∈ N it holds that
σ∆,b(ft) = ft if t mod b ≠ 0 and otherwise: (i) a(ft) = a(σ∆,b(ft)), i.e., it leaves the aggregated
model invariant, and (ii) δ(σ∆,b(ft)) ≤ ∆, i.e., after its application the model divergence is
bounded by ∆.

Note that the divergence threshold ∆ ∈ R+ can be chosen fixed, or variable, e.g., ∆t = 1/t.
This partial synchronization is a relaxation of the synchronization operator in two ways: (i)
it allows to schedule aggregation in a data-dependent way and (ii) it allows to aggregate only
a subset of the models. In particular it allows to leave all models untouched as long as the
divergence remains below the threshold ∆.
To efficiently reduce communication, both relaxations are important. For example, the

Federated Averaging (FedAvg) approach by McMahan et al. (2017) tackles communication-
efficiency by averaging only a random fraction of the models. However, this averaging is
scheduled periodically, thus reducing communication only by a fixed fraction. A partial
synchronization operator instead allows to adjust communication both through dynamic
scheduling and partial aggregation. This is the basis for our dynamic averaging protocol.
Every distributed learning algorithm that implements a partial synchronization operator

has to implicitly control the divergence of the model configuration. However, the divergence
cannot simply be computed by centralizing all local models, because this would require con-
tinuous communication.
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A strategy to overcome this problem is to first decompose the global condition δ(f) ≤

∆ into a set of local conditions that can be monitored at their respective learners without
communication (see, e.g., Gabel et al. (2014); Giatrakos et al. (2012); Sharfman et al. (2007)
for a more general description of this method). Then, a resolution protocol is defined that
transfers the system back into a valid state whenever one or more of these local conditions
are violated. This includes carrying out a sufficient amount of synchronization to reduce the
divergence to be less or equal to ∆.

For deriving local conditions the domain of the divergence function is considered restricted
to an individual model. Here, a condition is identified such that the global divergence can not
cross the ∆-threshold as long as all local models satisfy that condition. Since this condition
defines a subset of the input space to the divergence, it is referred to as a safe-zone (similar
to, e.g., Keren et al. (2012, 2014); Lazerson et al. (2015); Sharfman et al. (2008)). Note that a
direct distribution of the threshold across the local learners (e.g., setting the local thresholds to
∆/m as in Keralapura et al. (2006)) is infeasible, because the divergence function is non-linear.

For certain aggregation operators, a generic set of local conditions can be constructed. For
these operators, the aggregate is a centroid (Nielsen and Nock, 2009) of the model configura-
tion with respect to the distance used in the divergence. This is characterized as follows.

Definition 3.4. Let a be an aggregation operator and d the distance function over F used to
compute the divergence as in Definition 3.2. Then a is central if for all f = (f1, . . . , fm) ∈ Fm it
holds that

a(f) = arg min
f ′∈F

1
m

m

∑
i=1
d (f ′, f i) .

If the model space has a representation in the Euclidean space, then a natural distance
function is the squared Euclidean distance d(f, f ′) = ∥f − f ′∥2

2. The minimizer of this is the
average, i.e.,

f = 1
m

m

∑
i=1
f i = arg min

f ′∈F

1
m

m

∑
i=1

∥f ′ − f i∥
2
2 .

If the standard Euclidean distance d(f, f ′) = ∥f − f ′∥ is used, the minimizer is the geometric
median (Minsker et al., 2015).
For central aggregation operators, the distance of each local model to the actual aggregate

is always smaller than to any common reference point. With this, the following simple set of
local conditions can be given.

Proposition 3.5. Let f = (f1, . . . , fm) ∈ Fm be a model configuration and r ∈ F some reference
model. Let a be a central aggregation operator and d a distance function over F . If for all i ∈ [m]

the local condition d (f i, r) ≤ ∆ holds, then the global divergence is bounded by ∆, i.e.,

1
m

m

∑
i=1
d (f i,a(f)) ≤ ∆ .
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Proof. The theorem follows directly from the centrality of the aggregation operator, i.e., the
fact that a(f) minimizes the distances to all f i, i.e.,

1
m

m

∑
i=1
d (f i,a(f)) ≤ 1

m

m

∑
i=1
d (f i, r) ≤ ∆

For the local conditions to hold it has to be guaranteed that at any times all learners use the
same reference model r. The closer the reference model is to the true aggregate of all local
models, the tighter are the local conditions.

3.2.2. Dynamic Averaging

A natural choice for the aggregation operator is the average aAV G, since it is central as in Defi-
nition 3.4. The corresponding distance is the squared Euclidean distance d(f, f ′) = ∥f − f ′∥2

2.
Averaging also adheres to the first condition in Definition 3.3: averaging a subset of models
leaves the global average unchanged so that aAV G(f) = aAV G(σ∆,b(f)). The corresponding
local conditions for learner i ∈ [m] are given by

∥f i − r∥2
2 ≤ ∆ .

Thus in the following, the norm ∥ ⋅ ∥ refers to the Euclidean norm.
In order to craft a partial synchronization operator, also the second condition of Defini-

tion 3.3 needs to be fulfilled, i.e., after synchronization the divergence is smaller than ∆. For
that, it remains to design a resolution protocol that specifies how to react when one or several
of the local conditions are violated. A direct solution is to average all local models and update
the reference model on each violation, denoted a full synchronization. Then the divergence
is 0 and the second condition holds. The first choice for the reference model then is the average
model from the last full synchronization step, which is the same for all local learners. This
approach, however, does not scale well with the number of learners in cases where model up-
dates have a non-zero probability even in the asymptotic regime of the learning process. When
well-performing models for the current target distribution are present at all local learners, the
probability of an individual local violation is very low. However, the probability of having a
violation in a round increases exponentially with the number of learners. That is, let p denote
the probability of a single learner having a violation and (1 − p) to not have one. Then the
probability of allm ∈ N not having a violation is (1 − p)m.
A more elaborate approach that scales well with the number of learners is to perform a

local balancing procedure: On a violation, the learner tries to balance it by incrementally
querying other learners for their models. If the mean of all received models lies within the
safe zone, it is transferred back as new model to all participating learners, and the resolution
is finished. If all learners have been queried, the result is equivalent to a full synchronization
and the reference vector is updated. In both cases, the divergence of the model configuration
is bounded by ∆ at the end of the balancing process, because all local conditions hold. Thus,
the second condition holds. Since partial averaging leaves the global average model unchanged,
the first condition holds, as well. Hence, this approach is complying to Definition 3.3. The
corresponding synchronization operator is denoted dynamic averaging σ∆,b.
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Algorithm 4 Dynamic Averaging Protocol
Input: learning algorithm A, divergence threshold ∆, parameter b,m learners
Initialization:

local models f1
1 , . . . , f

m
1 ← one random f

reference vector r ← f
violation counter v ← 0

Round t at learner i:

observe Eit ⊂ X × Y

update f it−1 using the learning algorithm A
if t mod b = 0 and ∥f it − r∥

2 > ∆ then
send f it to coordinator (violation)

end if
At coordinator on violation:

let B be the set of learners with violation
v ← v + ∣B∣

if v =m then B ← [m], v ← 0
while B ≠ [m] and ∥ 1

B ∑i∈B f
i
t − r∥

2
> ∆ do

augment B by augmentation strategy
receive models from learners added to B

end while
send model f = 1

B ∑i∈B f
i
t to learners in B

if B = [m] also set new reference vector r ← f

While balancing can achieve a high communication reduction over full synchronizations,
particularly for a large number of learners it potentially degenerates in certain special situations.
One can end up in a stable regime in which local violations are likely to be balanced by a subset
of the learners; however a full synchronization would strongly reduce the expected number of
violations in future rounds. In other words: balancing can delay crucial reference point updates
indefinitely. A simple hedging mechanism can be employed in order to avoid this situation:
The number of local violations while using the current reference model are counted and a
full synchronization is triggered whenever this number exceeds the total number of learners.
This concludes our dynamic averaging protocol D = (A, σ∆,b,aAV G,m). All components are
summarized in Algorithm 4.

3.2.3. Averaging of Kernel Models and Neural Networks

The dynamic averaging protocol can be readily applied to learning linear models, i.e., where
F = Rd for some model dimension d ∈ N, and aAV G is the standard vector average. In the
following it is described how dynamic averaging can be applied to kernel models and neural
networks.
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Kernel Models

In order to apply dynamic averaging to kernel models it is necessary to define their average
and distance. Recall that for kernel models, the model space is a reproducing kernel Hilbert
space

Hk = {f ∶ X → R∣f(⋅) =
dimF

∑
j=1

wjΦj(⋅)}

with kernel function k ∶ X ×X → R, feature space F , and a mapping Φ ∶ X → F into the feature
space. As described in Section 2.1.1, the kernel function corresponds to an inner product of
input points mapped into feature space, i.e.,

k(x,x′) =
dimF

∑
j=1

ξjΦj(x)
⊺Φj(x

′
) (3.6)

for constants ξ1, ξ2, ⋅ ⋅ ⋅ ∈ R+. The model can be expressed in its support vector expansion, or
dual representation

f(⋅) = ∑
x∈S

αxk(x, ⋅)

with a set of support vectors S = {x1, . . . , x∣S∣} ⊂ X and corresponding coefficients αx ∈ R for
all x ∈ S. This implies that the linear weights w = (w1,w2, . . . ) ∈ RdimF defining f are given
implicitly by

wi = ∑
x∈S

ξiαxΦi(x) .

The following defines the average of kernel models. For that, let f = (f1, . . . , fm) ⊂ Hk be a
model configuration with corresponding weight vectors (w1, . . . ,wm) ⊂ F , where each model
i ∈ [m] has support vectors Si = {xi1, . . . , x

i
∣Si∣} ⊂ X and coefficients αix for all x ∈ Si. The

average is given by

f(⋅) = 1
m

m

∑
i=1
f i(⋅) =

1
m

m

∑
i=1

dimF

∑
j=1

wijΦj(⋅) =
1
m

m

∑
i=1

dimF

∑
j=1

∑
x∈Si

ξjα
i
xΦj(x)

⊺Φj(⋅) .

Using the definition of the kernel function (Equation 3.6), the above equation can be simplified
to

f(⋅) = 1
m

m

∑
i=1
∑
x∈Si

αixk(x, ⋅) .

Using the union of support vectors S = ⋃i∈[m] S
i = {s1, . . . , s∣S∣} and augmented coefficients

αis ∈ R, which are given by

αis =

⎧⎪⎪
⎨
⎪⎪⎩

αix, if x = s
0, otherwise

,

the dual representation of the average directly follows.
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Proposition 3.7. For a model configuration f = (f1, . . . , fm) ⊂ Hk, where each model i ∈ [m]

has augmented coefficients αis for s ∈ S, the average f ∈ H is given by

f(⋅) = ∑
s∈S

(
1
m

m

∑
i=1
αis)k(s, ⋅) ,

with support vectors S and coefficients

αs =
1
m

m

∑
i=1
αis

for all s ∈ S.

The inner product in Hk induces a norm ∥f∥2
Hk = ⟨f, f⟩Hk = ∑x∈S (αx)

2 k(x,x) for f ∈ H

with support vectors S ⊂ X and corresponding weights αx ∈ R for x ∈ S. Thus, using he defi-
nition of the average, the distance between an individual model f i from a model configuration
f and the average f is given by ∥f i − f∥2

Hk
= ⟨f i, f i⟩ + ⟨f , f⟩ − 2 ⟨f i, f⟩, i.e.,

∥f i − f∥2
Hk

= ∑
x∈Si

(αix)
2
k(x,x) + ∑

s∈S
(αs)

2 k(s, s) − 2 ∑
x∈Si

∑

s∈S
αixαsk(x, s) .

Using this distance, we can compute the divergence for models from a reproducing kernel
Hilbert space as in Definition 3.2 and the local conditions as in Proposition 3.5.

Neural Networks

In order to define the average and divergence for neural networks, recall from Section 2.1.1 that
a neural network can be represented by a directed weighted graph G = (V,E), also referred to
as the architecture. The vertices in V represent the neurons, the edges in E the connections,
where each connection between two neurons is associated with a weight.

Given an architecture, i.e., a graphG = (V,E), the training of a neural network is performed
by adapting the edge weights. These weights can be represented by a vector w ∈ R∣E∣. If
the architecture G is equal for all local learners, we can represent each model f ∈ F by its
corresponding weight vector w ∈ R∣E∣. Then the average and distance between models is the
average and Euclidean distance of their corresponding weight vectors, similar to linear models.

However, in contrast to linear models, the loss function is non-convex in the weight vector—
even a single neuron with logistic activation can lead to exponentially many local minima of
the squared loss (Auer et al., 1996). For non-convex objectives, a particular problem is that
the average of a set of models can have a worse performance than any model in the set (see
Figure 3.3 for an illustration).

In the context of deep learning, averaging models was introduced by McMahan et al. (2017).
While in general, averaging neural networks can be detrimental (see Figure 3.3(c)), they found
that if all local models are initialized to the same starting model, averaging often works in
practice. An explanation could be that models with a common initialization remain in the
vicinity of the same local minimum, despite using different training data. Since in this case the
local models would remain in a locally convex environment, averaging would work similar to
the standard convex case. Chapter 4 analyzes this in more detail.
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(a) (b) (c)

Figure 3.3.: (a) Illustration of an exemplary convex error surface. The x-axis represents the
model space, i.e., the space of possible model parameters. The y-axis represents the expected
error, or quality, of the respective model. The average f of a set of models f1, f2, f3 ∈ F has
a lower expected error—and therefore a better quality—than the individual models. (b) In
general, the average does not have better quality than all individual models. However, for a
convex error surface the average is always at least as good as one of the models in the set. (c)
In case of a non-convex error surface, the average can be arbitrarily bad. In particular, if the
individual models are scattered around multiple local minima, the average may lie on a local
maximum between the minima.

After having shown how to apply dynamic averaging to machine learning algorithms using
linear models, kernel methods, and neural networks, the following sections theoretically
analyze dynamic averaging in terms of online regret, communication, and speedup.

3.3. Efficiency of Dynamic Averaging

This section aims at analyzing the efficiency of dynamic averaging and its speedup. That is,
in which cases it is at the same time (i) consistent, i.e., retains the loss bound of the serial
application of the base learning algorithm, and (ii) adaptive, i.e., the communication is tied
to the loss (see Definition 3.1). To that end, first the online regret of dynamic averaging is
bounded, followed by a bound on the communication.
In order to bound the online regret of dynamic averaging, I consider a class of incremental

base learning algorithms that perform regret-proportional convex updates, which is defined in
the following.

3.3.1. Regret-Proportional Convex Updates

In principle, dynamic averaging can be applied to a wide range of incremental machine learning
algorithms (e.g., SGD, passive aggressive (PA) (Crammer et al., 2006), ADAM (Kingma and
Ba, 2014), RMSPROP (Mukkamala and Hein, 2017), or regularized dual averaging (Xiao,
2010)). For the formal results in this thesis, however, some general properties are required.

The first property bounds the distance between two models after they have been updated
with the same examples. Since most incremental learning algorithms update a model in the
direction of a convex set depending only on the training examples, e.g., in the direction of
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the training example itself in case of SGD and PA updates, we can bound the distance after
updates using properties of orthogonal projections. For F with norm ∥ ⋅ ∥, the orthogonal
projection ΠE (f) of a point f ∈ F onto a convex set ΓE ⊆ F is defined as

ΠE (f) = arg min
g∈ΓE

∥f − g∥ .

This first property is formalized in the following definition.

Definition 3.8. The update performed by an incremental learning algorithm A is a convex
update for a loss function ` if for all f ∈ F and E ⊂ X × Y there is a closed convex set ΓE ⊆

F ,ΓE ≠ ∅, and τE ∈ (0,1] such that

A(E,f) = f + τE (ΠE (f) − f) ,

where ΠE (f) denotes the orthogonal projection of f onto ΓE . That is, the update direction is
identical to the direction of a convex projection that only depends on the training set.

The second property relates the loss value to the update magnitude. The difficulty here is
that some incremental learning algorithms might still suffer loss even if they do not update
the model any more. For example, gradient-based methods have a zero gradient at the optimal
model but the optimal model can still suffer loss. The updates can, however, be related to the
regret suffered, i.e., the difference of the loss suffered to the loss of the optimal model. This is
formalized as follows.

Definition 3.9. The update performed by an incremental learning algorithm A is a regret-
proportional update for a loss function ` if there are a constant γ > 0 such that for all f ∈ F

and E ⊂ X × Y it holds that the update magnitude is a true fraction of the regret incurred, i.e.,

∥f −A(E,f)∥ ≥ γ
⎛

⎝
∑

(x,y)∈E
`(f, x, y) − `(f∗, x, y)

⎞

⎠
,

where f∗ = arg minf ′∈F ∑(x,y)∈E `(f
′, x, y).

Note that it trivially follows that every incremental learning algorithm with an update
length proportional to the loss is also a regret-proportional update.

Corollary 3.10. If for an incremental learning algorithmA, a loss function `, and a constant γ > 0
it holds for all f ∈ F andE ⊂ X ×Y drawn iid according to a target distributionD∶ X ×Y → [0,1]
that the update magnitude is proportional to the loss, i.e.,

∥f −A(E,f)∥ ≥ γ
⎛

⎝
∑

(x,y)∈E
`(f, x, y)

⎞

⎠
,

then the update performed by A is also a regret-proportional update.
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Proof. Let f∗ = arg minf∈F E(x,y)∼D `(f, x, y) denote the optimal model. Since for all (x, y) ∈
X × Y it holds that `(f∗, x, y) ≥ 0, it follows that `(f, x, y) ≥ `(f, x, y) − `(f∗, x, y) and thus

∥f −A(E,f)∥ ≥ γ
⎛

⎝
∑

(x,y)∈E
`(f, x, y)

⎞

⎠
≥ γ

⎛

⎝
∑

(x,y)∈E
`(f, x, y) − `(f∗, x, y)

⎞

⎠
.

An incremental learning algorithm performs regret-proportional convex updates if both
Definition 3.8 and Definition 3.9 hold.

The following shows that machine learning algorithms based on stochastic gradient descent
(SGD), as well as those based on passive aggressive updates (Crammer et al., 2006) using linear
models and kernel methods perform regret-proportional convex updates.
First, I want to show that incremental learning algorithms based on stochastic gradient

descent (SGD), mini-batch SGD (Dekel et al., 2012), and gradient descent (GD) using linear
models and kernel models perform regret-proportional convex updates. To see that, recall that
these learning algorithms in each round t ∈ N perform updates of the form

ft+1 = ft − η ∑
(x,y)∈Et

∇ft`(ft, x, y)

for a dataset Et ⊂ X ×Y and a positive learning rate η > 0 (for SGD, ∣Et∣ = 1, for GD, Et = E ).
For loss functions that depend on the prediction score (for linear models this is the

inner product of a linear model with the instance ⟨f, x⟩) the derivative of the loss func-
tion points in the direction of x, or −x. Examples of such loss functions are the hinge-
loss `(f, x, y) = max{1 − yf(x),0}, the squared loss `(f, x, y) = 1/2∥f(x) − y∥2, and the ε-
insensitive loss `(f, x, y) = max(∣f(x) − y∣ − ε,0). For example, if one uses the hinge loss for
classification with a linear model, i.e., Y = {−1,1} and `(f, x, y) = max{1 − y ⟨f, x⟩ ,0},
we have ∇f `(f, x, y) = −yx. Thus, the convex set Γ{x,y} is defined by the half-space
Γ = {w ∈ F∣ ⟨w,x⟩ y ≥ 0}. In case ∣E∣ > 1, ΓE is defined by the intersection of the
Γ{x,y} for all (x, y) ∈ E. This also holds for kernel methods, but here the convex set is in the
kernel Hilbert space. Thus, Definition 3.8 is fulfilled. Note that for projected SGD

ft+1 = ΠW
⎛

⎝
ft − η ∑

(x,y)∈Et
∇ft`(ft, x, y)

⎞

⎠

with a feasible setW ⊂ X the update is either in the direction of x, if the resulting model is in
the feasible setW , or in the direction of the feasible setW , which is typically convex. Thus
also for projected SGD with a convex feasible set Definition 3.8 is fulfilled.

Let ρ ∈ R be the data radius, i.e., for all x ∈ X it holds that ∥x∥ ≤ ρ. Then these learning algo-
rithms perform regret-proportional updates with γ = ηρ/1 + ρ2. The same holds for regression
using squared loss, ε-insensitive loss. These results are summarized in the following corollary.

Corollary 3.11. Stochastic gradient descent (SGD), mini-batch SGD, and gradient descent (GD)
using the hinge loss, squared loss, and ε-insensitive loss perform regret-proportional convex updates.
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The same can be checked for many other of loss functions and many variants of SGD.
Another example for regret-proportional convex updates is the passive aggressive algo-

rithm (Crammer et al., 2006). Recall from Equation 2.9 that it is defined for a variety of
learning tasks including classification, regression, and uni-class prediction and can be uni-
formly described by

A(f, (x, y)) = arg min
f ′∈F

1
2
∥f − f ′∥2 s.t. `(f ′, x, y) = 0

where for classification ` is the hinge loss, for regression the ε-insensitive loss, and for uni-
class prediction (where no x is observed and y = F ) the uni-class loss is given by `(f, y) =

max(∣f − y∣ − ε,0). It can be observed immediately that for linear models and kernel methods,
in all three cases these update rules are an actual projection on the convex set Γ{x,y} = {f ∈

F ∶ `(f, x, y) = 0}, which corresponds to a half-space, a 2ε-strip, and an ε-ball, respectively.
Hence, Definition 3.8 follows immediately with τx,y = 1. Definition 3.9 can then be verified
from the closed form solution of Eq. 2.9, which in case of classification is given by

A(f, (x, y)) = f +
`(f, x, y)

∥x∥2 yx .

Given a data radius ρ > 0, the update magnitude can be bounded from below by ∥f −
ϕ(f, x, y)∥ ≥ ρ−1`(f, x, y), and with Lemma 3.10 the definition holds with γ = ρ−1. The
other cases follow similarly. Crammer et al. (2006) also give other variants of passive aggres-
sive updates that have a reduced learning rate determined by an aggressiveness parameterC > 0.
These rules also satisfy the conditions of Definition 3.9. For example the rule for classification
then becomes

A(f, (x, y)) = f +
`(f, x, y)

∥x∥2 + 1
2C
yx .

Using ∥x∥ ∈ [1/dimX , ρ], one can show that this variant remains hinge-loss proportional
with γ = dimX −1(ρ2 + 1/(2C))−1, and the update direction is identical to the same convex
projection as in the standard case. Again, these results are summarized in the following
corollary.

Corollary 3.12. Passive aggressive updates (PA) and regularized passive aggressive updates (PA-I)
with hingle loss, ε-insensitive, and uni-class loss perform regret-proportional convex updates.

Using these properties of regret-proportional convex updates, the following section bounds
the online regret of dynamic averaging in relation to that of periodic averaging.

3.3.2. Relating the Online Regret of Dynamic to Periodic Averaging

In the following, the impact on the learning performance of using dynamic averaging instead
of periodic averaging is analyzed. Recall that periodic averaging uses the synchronization
operator

σb(f
1, . . . , fm) =

⎧⎪⎪
⎨
⎪⎪⎩

(f t, . . . , f t) , if b ∣ t
ft = (f1

t , . . . , f
m
t ), otherwise

.
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Thus, every b ∈ N rounds, it replaces all local models by their joint average (for more details,
see the example in Section 2.3.3).
In order to relate the convergence of dynamic averaging to that of periodic averaging, the

following synchronization lemma bounds the difference in each round t ∈ N between the
model configuration dt = (d1

t , . . . , d
m
t ) maintained by dynamic averaging and the model

configuration st = (s1
t , . . . , s

m
t ) maintained by periodic averaging. Note that the result is given

for a variable divergence threshold ∆t which includes the fixed threshold setting, i.e., ∆t = ∆
for all t ∈ N.

Lemma 3.13. Let dt = (d1
t , . . . , d

m
t ) ∈ Fm be a model configuration in round t ∈ Nmaintained

by dynamic averaging with parameters ∆t ∈ R and b ∈ N in round t ∈ N and st = (s1
t , . . . , s

m
t ) ∈

Fm a model configuration maintained by periodic averaging with parameter b. Then it holds that

1
m

m

∑
i=1

∥σ∆,b(dt)i − σb(st)i∥2
≤

1
m

m

∑
i=1

∥dit − s
i
t∥

2
+∆t .

Proof. We consider the case b ∣ t (i.e, t mod b = 0), otherwise the claim follows immediately.
Expressing the pairwise squared distances via the difference to dt and using the definitions of
σb and σ∆,b we can bound

1
m

m

∑
i=1

∥σ∆,b(dt)l − σ(st)l∥
2
=

1
m

m

∑
i=1

∥σ∆,b(dt)l − dt + dt − st∥
2

=
1
m

m

∑
i=1

∥σ∆,b(dt)l − dt∥
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∆t, by (ii) of Def. 3.3

+2 ⟨
1
m

m

∑
i=1
σ∆,b(dt)l − dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0, by (i) of Def. 3.3

,dt − st⟩ + ∥dt − st∥
2

≤∆t + ∥
1
m

m

∑
i=1

(dit − s
i
t)∥

2
≤ ∆t +

1
m

m

∑
i=1

∥dit − s
i
t∥

2
.

The last inequality follows from Jensen’s inequality.

While the synchronization lemma bounds the increase in distance from each synchroniza-
tion, it needs to be shown that this increase in distance cannot separate model configurations
too far during the learning process. For that, the following update lemma shows that regret-
proportional convex updates are contractions and that they reduce the distance between a pair
of models proportional to their loss difference.

Lemma 3.14. Let the updates of an incremental learning algorithm A be regret-proportional
convex updates with γ > 0. Then for all models d, s ∈ F and all examples (x, y) ∈ X × Y it holds
that

∥A(d, x, y) −A(s, x, y)∥2
≤ ∥d − s∥2

− γ2
(`(d, x, y) − `(s, x, y))2 .
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Proof. For f ∈ F we write Π(x,y)(f) = Π(f) for the projection of f on Γ(x,y) and f ′ =
A(f, x, y). Since Π(⋅) is a projection on a convex set, it holds for all v,w ∈ F that

∥Π(v) −Π(w) ∥
2
≤ ∥v −w∥

2
− ∥v −Π(v) −w +Π(w) ∥

2

(see Proposition A.1 in the Appendix Section B). Applying this to the models d, s gives

∥Π(d) −Π(s) ∥2
≤ ∥d − s∥2

− ∥d −Π(d) − s +Π(s) ∥2 . (3.15)

Applying it to the updated models d′, s′ yields

∥Π(d′) −Π(s′) ∥2
≤ ∥d′ − s′∥2

− ∥d′ −Π(d′) − s′ +Π(s′) ∥2

and, since f ′ = τ(x,y)ΠE (f) + (1 − τ(x,y))f by (ii) of the definition of regret-proportional
convex updates, the idempotence of Π(⋅) implies that Π(f) = Π(f ′), this also yields

∥Π(d) −Π(s) ∥2
≤ ∥d′ − s′∥2

− ∥d′ −Π(d) − s′ +Π(s) ∥2 (3.16)

By Proposition A.2 in Appendix Section B it holds that

∥d′ − s′∥2
− ∥d′ −Π(d) − s′ +Π(s) ∥2

≤ ∥d − s∥2
− ∥d −Π(d) − s +Π(s) ∥2 ,

and it is possible to subtract Eq. 3.16 from Eq. 3.15 to obtain

0 ≤ ∥d − s∥2
− ∥d′ − s′∥2

− ∥d −Π(d) − s +Π(s) ∥2
+ ∥d′ −Π(d) − s′ +Π(s) ∥2

⇔∥d′ − s′∥2
≤ ∥d − s∥2

− ∥d −Π(d) − s +Π(s) ∥2
+ ∥d′ −Π(d) − s′ +Π(s) ∥2 .

(3.17)

Using f ′ = f + τ(x,y) (Π(f) − f) for both d′ and s′ gives

∥d′ −Π(d) − s′ +Π(s) ∥2
≤ (1 − τ(x,y))2

∥(d −Π(d)) − s +Π(s) ∥2 .

Inserting this into Equation 3.17 yields

∥d′ − s′∥2
≤∥d − s∥2

− ∥(d −Π(d)) − s +Π(s) ∥2

+ (1 − τ(x,y))2
∥(d −Π(d)) − s +Π(s) ∥2

≤∥d − s∥2
− τ(x,y) (∥d −Π(d) ∥ − ∥s −Π(s) ∥)2 .

(3.18)

This shows that the distance between models is reduced by an update proportional to the
update magnitude. It remains to relate the update magnitude to the loss. For that, observe
that it follows from condition (i) of the definition of regret-proportionality that

∥f −Π(f) ∥ =
1

τ(x,y)
∥f − (f + τ(x,y)(Π(f) − f))∥ =

∥f − f ′∥

τ(x,y)
≥

γ

τ(x,y)
`(f, x, y) .

Since τ(x,y) ∈ (0,1] this yields

∥f −Π(f) ∥ ≥ γ`(f, x, y) .

Finally, inserting this into Equation 3.18 yields the claim

∥d′ − s′∥2
≤ ∥d − s∥2

− γ2
(`(d, x, y) − `(s, x, y))2 .
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From the two lemmas above we see that, while each synchronization increases the distance
between the static and the dynamic model by at most ∆, with each update step, the distance is
decreased proportional to the loss difference. Using this, we can bound the loss of our protocol.
For that, the following abbreviations are used. For a model ft in round t ∈ N the application of
A is A(ft) = A(ft, xt, yt). Furthermore, for a model configuration ft the abbreviation A(ft)
is used for (A(f1

t ), . . . ,A(fmt )). Moreover, let d1, . . .dT and s1, . . . , sT be two sequences
of model configurations such that d1 = s1 and the sequence dt is maintained by dynamic
averaging D = (A, σ∆,b,aAV G,m) with ∆ ∈ R+ and b ∈ N and the sequence st is maintained
by periodic averaging P = (A, σb,aAV G,m) with the same b. That is, for t = 1, . . . , T the
sequence is defined by dt+1 = σ∆,b (A(dt)), and st+1 = σb (A(st)) respectively.

Theorem 3.19. Let A be an online learning algorithm that performs regret-proportional convex
updates withγ > 0. For m ∈ N learners, let d1, . . .dT and s1, . . . , sT be two sequences of model
configurations with d1 = s1 and dt is maintained by dynamic averagingD = (A, σ∆,b,aAV G,m)

with ∆ ∈ R+ and b ∈ N and st is maintained by periodic averaging P = (A, σb,aAV G,m) with
the same b. Then it holds that

LD(T,m) ≤ LP(T,m) +
T

bγ2 ∆ .

Proof. Combining the synchronization lemma (Lemma 3.13) with the update lemma
(Lemma 3.14) yields for all t ∈ [T ] that

m

∑
i=1

∥dit+1 − s
i
t+1∥

2
≤
m

∑
i=1

∥dit − s
i
t∥

2
− γ2

m

∑
i=1

(`(dit) − `(s
i
t))

2
+∆ .

By applying this inequality recursively for t = 1, . . . , T it follows that

m

∑
i=1

∥diT+1 − s
i
T+1∥

2
≤
m

∑
i=1

∥di1 − p
i
1∥

2
+ ⌊

T

b
⌋∆ − γ2

T

∑
t=1

m

∑
i=1

(`(dit) − `(s
i
t))

2
.

Using d1 = s1, we conclude that

T

∑
t=1

m

∑
i=1

(`(dit) − `(s
i
t))

2
≤

1
γ2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⌊
T

b
⌋∆ −

m

∑
i=1

∥diT+1 − s
i
T+1∥

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

≤
1
γ2
T

b
∆

⇔ LD(T,m) −LP(T,m) ≤
T

bγ2 ∆

Theorem 3.19 shows that dynamic averaging retains the regret of periodic averaging. Thus,
if periodic averaging is consistent as in Definition 3.1, i.e., it retains the loss of the serial
application of the base learning algorithm, then dynamic averaging is consistent, as well. In
the following Section 3.3.3 it is shown that periodic averaging is consistent for SGD and
mini-batch SGD.
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Theorem 3.19 also implies that dynamic averaging retains the optimality of the static mini-
batch algorithm of Dekel et al. (2012) for the case of stationary targets3: by using a time-
dependent variance threshold based on ∆t ∈ O(1/

√
t) the bound of O(

√
T ) follows.

Furthermore, from Theorem 3.19 it can be followed that if a shifting regret bound—as
defined in Section 2.1.5—exists for periodic averaging, then this bound also applies to dynamic
averaging. For that, we consider shifting regret bounds of the form

RA (T,U) = c1
T

∑
t=1

m

∑
i=1

∥uit − u
i
t−1∥

2
+ c2 , (3.20)

for a reference sequence U and positive constants c1, c2 ∈ R+ (as in Herbster and Warmuth
(2001)).

Theorem 3.21. Let the shifting regret RP (T,U) of using periodic averaging be bounded by
RA (T,U) as in Equation 3.20 for a reference sequence U and positive constants c1, c2 ∈ R+. Then
the shifting regret of using dynamic averaging is bounded by

RD (T,U) ≤ c1
T

∑
t=1

m

∑
i=1

∥uit − u
i
t−1∥

2
+ c2 +

1
bγ2 (∆ + 2ε2) = RA (T,U) +

1
bγ2 ∆ ,

Proof. For the proof let dt and st denote the sequence of model configurations produced by
σ∆,b and σb, respectively. Abbreviating `(ft, xt, yt) as `(ft) and using the definition of shifting
regret yields

RD (T,U) =
1
T

T

∑
t=1

1
m

m

∑
i=1

(`(dit) − `(u
i
t))

2

=
1
T

T

∑
t=1

1
m

m

∑
i=1

((`(dit) − `(s
i
t)) + (`(sit) − `(u

i
t)))

2

Thm.3.19
©
≤

1
bγ2 ∆ +

1
T

T

∑
t=1

1
m

m

∑
i=1

(`(sit) − `(u
i
t))

2

≤
1
bγ2 ∆ + c1

T

∑
t=1

m

∑
i=1

∥uit − ut−1,l∥
2
2 + c2 =

1
bγ2 ∆ +RA (T,U) .

Intuitively, this means that the dynamic protocol only adds a constant to any shifting bound
of periodic averaging.

3 Dekel et al. (2012) consider a slightly modified version of periodic averaging which accumulates updates and
then only applies them delayed at the end of a batch. However, the expected loss of eager updates (as used in
periodic averaging) is bounded by the expected loss of delayed updates in the stationary setting (as used in Dekel
et al. (2012)) as long as the updates reduce the distance to a loss minimizer on average (which is the case for
sufficient regularization, see Zhang (2004, Eq. 5)).
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3.3.3. Optimal Online Regret of Periodic Averaging

In order to proof the consistency of dynamic averaging using a learning algorithmA, it follows
from Theorem 3.19—and using a decreasing divergence threshold—that it suffices to show that
periodic averaging using the same learning algorithm is consistent.

A special case of periodic averaging is the continuous averaging protocol C = (A, σ1,aAV G,m),
synchronizing every round, i.e.,

σ1 (f) = (f , . . . , f) .

As base learning algorithm assume the mini-batch SGD algorithm AmSGD
B,η (Dekel et al., 2012)

with mini-batch size B ∈ N and learning rate η ∈ R. A special case of this with B = 1 is the
standard SGD algorithm. Recall that one step of this learning algorithm given the model
f ∈ F and a dataset E = ((x1, y1), . . . , (xB, yB)) ⊂ X × Y of size B can be expressed as

A
mSGD
B,η (E,f) = f − η

B

∑
j=1

∇`(f, xj , yj) .

Let CmSGD = (AmSGD
B,η , σ1,aAV G,m) denote continuous averaging with mini-batch SGD. For

m ∈ N learners and mini-batch size B ∈ N, a training set of sizemB, i.e.,

E = {(x1, y1), . . . , (xmB, ymB)}

can be split into local training sets of size B such that for learner i ∈ [m] it yields

Ei = {(x(i−1)B+1, y(i−1)B+1), . . . , (x(i−1)B+B, y(i−1)B+B)} .

Given learning rate η ∈ R+, and a model configuration f = (f, . . . , f), one step of CmSGD can
then be expressed as

σ1 ((A
mSGD
B,η (E1, f), . . . ,A

mSGD
B,η (Ei, f))) =

1
m

m

∑
i=1

(f − η∑Bj=1∇`(f, x(i−1)B+j , y(i−1)B+j)) .

Note that in every round all local models are replaced by their joint average so that all local
models are equal. We compare CmSGD to the serial application of mini-batch SGD. It can be
observed that continuous averaging with mini-batch SGD onm ∈ N learners with mini-batch
size B is equivalent to serial mini-batch SGD with a mini-batch size ofmB and a learning rate
that ism times smaller.

Proposition 3.22. For m ∈ N learners, a learning rate η ∈ R+, a mini-batch size B ∈ N, mB
training samples (x1, y1), . . . , (xmB, ymB), corresponding loss functions `i(⋅) = `(⋅, xi, yi), and a
model f ∈ F , it holds that

σ1 ((A
mSGD
B,η (f), . . . ,AmSGD

B,η (f))) = AmSGD
mB,η/m(f) .
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Proof.

σ1 ((A
mSGD
B,η (f), . . . ,AmSGD

B,η (f))) =
1
m

m

∑
i=1

⎛

⎝
f − η

B

∑
j=1

∇`(i−1)B+j
(f)

⎞

⎠

=
1
m
mf −

1
m
η
m

∑
i=1

B

∑
j=1

∇`(i−1)B+j
(f) = f −

1
m
η
mB

∑
j=1

∇`j(f) = AmSGD
mB,η/m(f)

Since continuous averaging for SGD, mini-batch SGD, and GD is equivalent to the serial
application of the algorithms it also has the same loss. It follows that dynamic averaging with
b = 1 and the same base learning algorithm is consistent.
For periodic averaging (with b > 1), it follows from Equation 5 in Zhang (2004) that—as

long as the updates reduce the distance to the optimal model on average—the expected loss
of periodic averaging is bounded by the expected loss of distributed mini-batch SGD. Since
this retains the loss of serial mini-batch SGD (Dekel et al., 2012) (as well as SGD, and GD,
depending on the setting of B ), periodic averaging with b > 1 is consistent as well. Thus, also
dynamic averaging with b > 1 is consistent.
The empirical evaluation in Section 3.5 shows that in practice, dynamic averaging indeed

achieves the same model quality with substantially less communication. The amount of
communication dynamic averaging requires is bounded by the amount that periodic averaging
requires, since the local condition is only checked every b ∈ N rounds. In conclusion, dynamic
averaging retains the optimality of periodic averaging using at most as much communication.
After bounding the cumulative loss of dynamic averaging and having shown that it is con-

sistent for SGD and mini-batch SGD, in the following its communication is analyzed.

3.3.4. Communication Bounds

In the following it is analyzed under which conditions dynamic averaging is adaptive. For that,
the communication is bounded for models of fixed size.

Proposition 3.23. Let A be an online learning algorithm performing regret-proportional convex
updates with γ > 0 and for all f ∈ F , x ∈ X , and y ∈ Y it holds that

∥f −A(f, x, y)∥ ≤ C`(f, x, y)

for a constant C ∈ R+. The communication CD(T,m) of dynamic averaging with ∆ ∈ R+ using
A is bounded by

CD(T,m) = cm
C

√
∆
LD(T,m)

where cm is an upper bound on the amount of communication per round t ∈ [T ].

Proof. Dynamic averaging communicates only if a violation of a local condition ∥f it −rt∥
2 ≤ ∆

occurs. By assumption, at each time point with at least one violation, dynamic averaging has
communication costs of at most cm, i.e., the cost of a full synchronization. Thus, we can bound
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the amount of communication by bounding the number of violations. That is, we derive a
bound for V i(T ), the number of time points t ∈ [T ] where the local condition of learner l is
violated. For that, assume that at t = 1 all models are initialized with f1

1 = ⋅ ⋅ ⋅ = fm1 and r1 = f1,
i.e., for all local conditions it holds that ∥f i1 − r1∥ = 0. A violation, i.e., ∥f it − rt∥ >

√
∆, occurs

if one local learner drifts away from rt by more than
√

∆. In the worst case, each violation
requires a full synchronization. After a full synchronization, rt = f t, hence ∥f it − rt∥ = 0 and
the situation is again similar to the initial setup for t = 1. Again in the worst case, a local
learner drifts continuously in one direction until a violation occurs. Hence, the number of
violations V i(T ) can be bound by the sum of its drifts divided by

√
∆:

V i
(T ) ≤

1
√

∆

T

∑
t=1

∥f it − f
i
t+1∥ =

1
√

∆

T

∑
t=1

∥f it −A(f it , x
i
t, y

i
t) ∥ ≤

1
√

∆

T

∑
t=1
C` (f it , x

i
t, y

i
t) .

To bound the communication it is necessary to bound the number of rounds t ∈ [T ] where at
least one learner i has a violation, denoted V (T ). In the worst case, all violations at all local
learners occur in different rounds, so that V (T ) can be upper bounded by the sum of local
violations V i(T ) which is again upper bounded by the cumulative sum of drifts of all local
models:

V (T ) ≤
m

∑
i=1
V i

(T ) ≤
1

√
∆

T

∑
t=1

m

∑
i=1
C`(f it , x

i
t, y

i
t) =

C
√

∆
LD(T,m) .

Since dynamic averaging has communication costs of at most cm per round, the total amount
of communication is

CD(T,m) = cmV (T ) ≤ cm
C

√
∆
LD(T,m) .

From this follows that if cm ∈ O(m) and dynamic averaging is consistent, then it is also
adaptive.

Theorem 3.24. Let dynamic averagingD onA be consistent and cm ∈ O(m), then the cumulative
communication bound is

CD(T,m) ∈ O (mLA(mT )) ,

i.e., it is adaptive. Thus, dynamic averaging is efficient.

Proof. From cm ∈ O(m) it follows that

CD(T,m) ≤ cm
C

√
∆
LD(T,m) ≤ cm

¯
∈O(m)

C
√

∆
LD(T,m) ∈ O (mLD(T,m)) .

Since D is consistent it holds that LD(T,m) ∈ O(LA(mT )) and thus

CD(T,m) ∈ O (mLA(mT )) .
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The loss bounds for online learning algorithms are typically sublinear in T , e.g., optimal
regret bounds are in

√
T . In these cases, dynamic averaging has an amount of communication

in (m
√
T ) which is smaller than O(mT ) of periodic averaging by a factor of

√
T .

For linear models and neural networks, cm is in O(m). For kernel models, however, both
the weights α and the support vectors have to be communicated and the number of support
vectors can grow with the number of examples observed. In the following, it is shown that
dynamic averaging with kernel models can still be efficient.
For that, assume that the m learners maintain models in their support vector expansion.

Let Sit ⊂ X denote the set of support vectors of learner i ∈ [m] at time t and αit ∈ R∣Sit ∣ the
corresponding coefficients. Let Bx ∈ O(dimX) be the number of bytes required to transmit
one support vector and Bα ∈ O(1) be the number of bytes required for the corresponding
weight. Furthermore, let I ∶ N × [m] → {0,1} be an indicator function that is 1 if for learner
i at time t a new support vector has been added during the update.
Again assume that a designated coordinator node performs the synchronizations, i.e., all

local learners transmit their models to the coordinator which in turn sends the synchronized
model back to each learner. Furthermore, assume that all protocols apply the following trivial
communication reduction strategy. Let t′ be the time of last synchronization. Assume the
coordinator stored the support vectors of the last average model St′ . Whenever a learner i has
to send its model to the coordinator, it sends all support vector coefficients α but only the new
support vectors, i.e., only Sit ∖Sit′ . This avoids redundant communication at the cost of higher
memory usage at the coordinator side. In turn, after averaging the models, the coordinator
sends to learner i all support vector coefficients, but only the support vectors St ∖ Sit .

We start by bounding the communication of a continuous protocol C, i.e., one that transmits
all models from each learner in each round. The trivial communication reduction technique
discussed above implies that in each round, a learner transmits its full set of support vector
coefficients and potentially one support vector—depending on whether a new support vector
was added in this round. Thus, at time t learner i submits

∣Sit ∣Bα + I(t, i)Bx (3.25)

bytes to the coordinator. The coordinator transmits to learner i ∈ m all support vector
coefficients of the average model and all its support vectors, except the support vectors Sit of
the local model at learner i. Thus, it transmits the following amount of bytes.

∣St∣Bα + ∣St ∖ S
i
t ∣Bx =

RRRRRRRRRRR

m

⋃
j=1

Sjt

RRRRRRRRRRR

Bα +
RRRRRRRRRRR

m

⋃
j=1

Sjt / S
i
t

RRRRRRRRRRR

Bx . (3.26)

With this we can derive the following communication bound.

Proposition 3.27. The communication of the continuous protocol C using kernel models onm ∈ N
learners until time T ∈ N is bound by

CC(T,m) ≤ Tm2∣ST ∣Bα +m∣ST ∣Bx ≤m
2T 2Bα +m

2TBx ∈ O (m2T 2) .
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Proof. The constantly synchronizing protocol transmits at each time step from each learner a
set of support vector coefficients and potentially one support vector to the coordinator. The
amount of bytes is given in Eq. 3.25. The coordinator transmits the averaged model back to
each learner with an amount of bytes as given in Eq. 3.26. Summing up the communication
over T ∈ N time points andm learners yields

CC(T,m) =
T

∑
t=1

m

∑
i=1

⎛

⎝
∣Sit ∣Bα + I(t, i)Bx +

RRRRRRRRRRR

m

⋃
j=1

Sjt

RRRRRRRRRRR

Bα +
RRRRRRRRRRR

m

⋃
j=1

Sjt / S
i
t

RRRRRRRRRRR

Bx
⎞

⎠

=
T

∑
t=1

m

∑
i=1

(∣Sit ∣Bα + ∣St∣Bα + I(t, i)Bx + ∣St ∖ S
i
t ∣Bx) .

We analyze this sum separately in terms of bytes required for sending the support vectors and
bytes for sending the coefficients. The amount of bytes for sending the support vectors is
bounded bym∣SiT ∣Bx, as we show in the following.

T

∑
t=1

m

∑
i=1
I(t, i)Bx + ∣St ∖ S

i
t ∣Bx =

T

∑
t=1

m

∑
i=1
I(t, i)Bx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣ST ∣Bx

+
T

∑
t=1

m

∑
i=1

∣St ∖ S
i
t ∣Bx

=∣ST ∣Bx +
T

∑
t=1

m

∑
i=1

RRRRRRRRRRR

⎛

⎝

m

⋃
j=1

Sjt /
m

⋃
j=1

Sjt−1
⎞

⎠
/ (Sit ∖ St−1)

RRRRRRRRRRR

Bx

≤∣ST ∣Bx +
T

∑
t=1

m

∑
i=1

m

∑
j=1
j≠i

I(t, i)Bx ≤ ∣ST ∣Bx +
T

∑
t=1

m

∑
i=1

(m − 1)I(t, i)Bx

≤∣ST ∣Bx + (m − 1)∣ST ∣Bx =m∣ST ∣Bx .

We now bound the amount of bytes required for sending the support vector coefficients.

T

∑
t=1

m

∑
i=1

∣Sit ∣
°
≤∣ST ∣

Bα + ∣St∣
°
≤∣ST ∣

Bα ≤
T

∑
t=1

m

∑
i=1

2∣ST ∣Bα = Tm2∣ST ∣Bα .

From ∣ST ∣ ≤mT and the fact that we regard Bα ∈ O(1) and Bx ∈ O(dimX) as constants we
can follow that

CC(T,m) ≤ 2Tm∣ST ∣Bα +m∣ST ∣Bx ≤m
2T 2Bα +m

2TBx ∈ O(m2T 2
) .

Note that this communication bound implies that—unlike for linear models—synchronizing
models in their support vector expansion requires even more communication than central-
izing the input data. However, in real-time prediction applications, the latency induced by
central computation can exceed the time constraints, rendering continuous averaging a viable
approach nonetheless.
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Similarly, the communication of periodic averaging P that communicates every b ∈ N
rounds can be bounded by

CP(T,m) ≤
T

b
2m∣ST ∣Bα +m∣ST ∣Bx ≤

T

b
m2TBα +m

2TBx ∈ O (
1
b
m2T 2

) .

With this, now a communication bound for the dynamic protocol D is provided.
In the following theorem the overall communication is bounded by combining the bound

on the number of synchronizations from Proposition 3.23 with an analysis of the amount of
bytes transferred per synchronization.

Theorem 3.28. Let A be an online learning algorithm using kernel models that is performing
regret-proportional updates with γ > 0 for which holds that

∥f −A(f, x, y)∥ ≤ C`(f, x, y)

for C > 0. The amount of communication CD(T,m) of the dynamic protocol D running A in
parallel onm ∈ N nodes until time T ∈ N with ∆ ∈ R and b ∈ N is bounded by

CD(T,m) ≤
C

√
∆
LD(T,m) (2m ∣ST ∣Bα) +m ∣ST ∣Bx

Proof. Assume that at time T , the dynamic protocol performs a synchronization. Then,
similar to the argument for the continuous protocol, the set of support vectors at time T is
the same for all learners and independent of the number of synchronization steps before. In
particular, it is the same if a synchronization was performed in every time step. Thus, again
the amount of bytes required for sending the support vectors is bounded by m ∣ST ∣Bx. Let
θ ∶ N→ {0,1} be an indicator function such that θ(t) = 1 if at time t the dynamic protocol
performed a synchronization and θ(t) = 0 otherwise. Then, the amount of bytes required to
send all the support vector coefficients until time T is

T

∑
t=1
θ(t)

m

∑
i=1

(∣Sit ∣ + ∣St∣)Bα ≤
T

∑
t=1
θ(t)

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=VD(T )

m

∑
i=1

2∣ST ∣Bα ≤
η

√
∆
LD(T,m)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Prop. 3.23

(2m∣ST ∣Bα)

Together with the amount of bytes required for exchanging all support vectors this yields

CD(T,m) ≤
η

√
∆
LD(T,m) (2m∣ST ∣Bα) +m ∣ST ∣Bx .

As mentioned before, loss bounds for online learning algorithms are typically sub-linear
in T , e.g., in O(

√
T ). In these cases, dynamic averaging with kernel models has an amount

of communication in O(m2T
√
T ) which is smaller than O(m2T 2) of the continuously and

periodic protocols again by a factor of
√
T .
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From Theorem 3.28 in combination with Theorem 3.24 follows that if the size of kernel
models could be kept constant, then dynamic averaging would be efficient as well. Unfortu-
nately this is usually not the case, because the size of kernel models increases with the examples
observed. Even more so in the distributed case, because the average of kernel models contains
the union of the support vectors of all local models. In order to render dynamic averaging
efficient, the size of the kernel models needs to be restricted. The following section investigates
approaches from serial in-stream learning with kernel models that compress the model to a
fixed size and shows that using these techniques, dynamic averaging with kernel models is
indeed efficient.

3.3.5. Dynamic Averaging for Kernel Methods with Model Compression

In order to bound the size of kernel models, methods from serial kernelized in-stream learn-
ing approaches can be applied. These approaches perform model compression by reducing
the number of support vectors, e.g., by truncating individual support vectors with small
weights (Kivinen et al., 2004), or by projecting a single support vector on the span of the
remaining ones (Orabona et al., 2009; Wang and Vucetic, 2010). In the following, some of
these techniques are described.

Model Compression for Kernel Models

The goal of model compression is to bound the size of kernel models f by limiting the number
of support vectors S in its support vector representation

f(⋅) = ∑
x∈S

αxk(x, ⋅) .

Given a limit ζ ∈ N to the number of support vectors, a simple technique to compress a model
is to discard the support vector with the smallest weight. That is, in each round, if the number
of support vectors exceeds ζ, the support vector x ∈ S with αxr = min{αx∣x ∈ S} is discarded.
Let f̃ denote the truncated model, then the error of this truncation strategy is as follows.

Lemma 3.29. Let f ∈ H be a model in its support vector representation with kernel function k,
support vectors S ⊂ X , and corresponding weights {αx ∈ R∣x ∈ S} and let xr ∈ S be the support
vector with minimal weight, i.e.,

αxr = min{αx∣x ∈ S} .

Let f̃ denote truncated model with support vectors S ∖ {xr} and corresponding weights. Then, the
error of truncation is

∥f − f̃∥
2
= α2

xrk(xr, xr) .
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Proof.

∥f − f̃∥
2
= ⟨f, f⟩ − 2 ⟨f, f̃⟩ + ⟨f̃ , f̃⟩

= ∑
x∈S

∑
x′∈S

αxαx′k(x,x
′
) − 2 ∑

x∈S
∑

x′∈S∖{xr}
αxαx′k(x,x

′
) + ⟨f̃ , f̃⟩

= ∑
x∈S

∑
x′∈S∖{xr}

αxαx′k(x,x
′
)

+ αxrαxrk(xr, xr) + ∑
x′∈S∖{xr}

αxrαx′k(xr, x
′
)

− 2 ∑
x∈S

∑
x′∈S∖{xr}

αxαx′k(x,x
′
) + ⟨f̃ , f̃⟩

=α2
xrk(xr, xr) − ∑

x∈S
∑

x′∈S∖{xr}
αxαx′k(x,x

′
)

+ ∑
x′∈S∖{xr}

αxrαx′k(xr, x
′
) + ∑

x∈S∖{xr}
∑

x′∈S∖{xr}
αxαx′k(x,x

′
)

=α2
xrk(xr, xr) − ∑

x∈S
∑

x′∈S∖{xr}
αxαx′k(x,x

′
) + ∑

x∈S
∑

x′∈S∖{xr}
αxαx′k(x,x

′
)

If k is the Gaussian kernel kσ(x,x′) = exp(−∥x − x′∥2/(2σ2)), then k(xr, xr) = 1 and the
error of truncation is α2

xr . Kivinen et al. (2004) have shown that for SGD with regularization
term λ ∈ R+ this truncation error is in O(λ−1(1 − λ)ζ).

Another approach to limiting the number of support vectors is to omit one support vector
and express is approximately by the remaining ones. That is, if the number of support vectors
exceeds the limit ζ, then the support vector xr ∈ S with smallest weight αxr is projected on
the set of remaining support vectors (see, e.g., Orabona et al. (2009)). That is, for weights

{∆αx∣x ∈ S ∖ {xr}} = arg min
{∆αx∣x∈S∖{xr}}⊂R∣S∣−1

XXXXXXXXXXXX

αxr − ∑
x∈S∖{xr}

∆αxx
XXXXXXXXXXXX

2

(3.30)

the compressed model is given by

f̃(⋅) = ∑
x∈S∖{xr}

(αx +∆αx)x .

Setting the derivative of Equation 3.30 to zero and solving for ∆α yields

∆α = αxrK
−1
xr kxr ,

where ∆α denotes the vector of ∆αx for x ∈ S ∖ {xr}, Kxr denotes the kernel matrix
(k(x,x′))x∈S,x′∈S∖{xr} and kxr denotes the vector (k(x,x

′))x′∈S∖{xr}.
However, model updates using these compression techniques are no longer regret-proportional

convex updates. Therefore, the class of possible algorithms is extended to approximately regret-
proportional convex updates.
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Definition 3.31. Let A be an incremental learning algorithm that performs regret-proportional
convex updates, then Ã performs approximately loss-proportional convex updates if for all
f ∈ F , x ∈ X , and y ∈ Y it holds that

∥Ã(f, x, y) −A(f, x, y)∥ ≤ ε .

From Lemma 3.29 follows that if A performs regret-proportional convex updates using ker-
nel models, then using truncation leads to approximately regret-proportional convex updates.

Online Regret under Model Compression

This section shows that dynamic averaging remains efficient under model compression. To
that extend, Lemma 3.14 is extended to approximately regret-proportional updates.

Lemma 3.32. For two models f, g ∈ F and an incremental learning algorithm Ã performing
approximately regret-proportional convex updates, with ∥Ã(f, x, y) − A(f, x, y)∥ ≤ ε for the
corresponding incremental learning algorithm A performing regret-proportional convex updates
with γ ∈ R, it holds that

∥Ã(f, x, y) − Ã(g, x, y)∥2
≤ ∥f − g∥2

− γ2
(`(f, x, y) − `(g, x, y))2

+ 2ε2 .

Proof. We abbreviate A(f, x, y) as A(f). Then ∥Ã(f) − A(f)∥ ≤ ε implies for f, g ∈ F that
∥Ã(f) − Ã(g)∥2 ≤ ∥A(f) −A(g)∥2 + 2ε2. Together with the result from Lemma 3.14, i.e.,

∥A(f) −A(g)∥2
≤ ∥f − g∥2

− γ2
(`(f) − `(g))2 ,

follows the result.

Using this property of approximately regret-proportional convex updates, the loss of dy-
namic averaging can be tied to that of periodic averaging.

Corollary 3.33. Let A be an online learning algorithm that performs approximately regret-
proportional convex update rule with loss proportionality γ ∈ R+ and approximation error ε ∈ R+.
Let d1, . . .dT and s1, . . . , sT be as in Theorem 3.19. Then it holds that

LD(T,m) ≤ LP(T,m) +
T

bγ2 (∆ + 2ε2) .

Proof. The proof is analogous to that of Theorem 3.19. We combine Lemma 3.32 with
Lemma 3.13 which states that

1
m

m

∑
i=1

∥σ∆(d)
i
− σb(s)i∥2

≤
1
m

m

∑
i=1

∥di − si∥2
+∆ .
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This yields for all t ∈ [T ] that
m

∑
i=1

∥dit+1 − s
i
t+1∥

2
≤
m

∑
i=1

∥dit − s
i
t∥

2
− γ2

m

∑
i=1

(`(dit) − `(s
i
t))

2
+∆ + 2ε2 .

By applying this inequality recursively for t = 1, . . . , T it follows that
m

∑
i=1

∥dit+1 − s
i
t+1∥

2
≤
m

∑
i=1

∥di1 − p
i
1∥

2
+ ⌊

T

b
⌋ (∆ + 2ε2) − γ2

T

∑
t=1

m

∑
i=1

(`(dit) − `(s
i
t))

2
.

Using d1 = s1, we conclude that
T

∑
t=1

m

∑
i=1

(`(dit) − `(s
i
t))

2
≤

1
γ2 (⌊

T

b
⌋ (∆ + 2ε2) −

m

∑
i=1

∥dit+1 − s
i
t+1∥

2
) ≤

1
γ2
T

b
(∆ + 2ε2)

⇔ LD(T )
m
−LP(T )

m
≤
T

bγ2 (∆ + 2ε2)

Corollary 3.33 shows that model compression only adds a constant to the online regret of
dynamic averaging. It remains to analyze the communication under model compression.

Communication Bounds under Model Compression

In order to show that dynamic averaging with kernel methods can be efficient, it has to be
shown that the communication is bounded in the loss of the serial algorithm. For that, first
the number of violations is bounded. Let Ã be an incremental learning algorithm performing
approximately regret-proportional convex updates, with ∥Ã(f, x, y) −A(f, x, y)∥ ≤ ε for the
corresponding algorithm A performing regret-proportional convex updates. Let C̃ ∈ R+ be a
constant such that ∥f − Ã(f, x, y)∥ ≤ C̃`(f, x, y), then Proposition 3.23 can be applied to Ã
as well. Thus, Theorem 3.28 holds also for kernel models using model compression. Since in
this case cm is in O(m), it follows from Theorem 3.24 that it is efficient for SGD, mini-batch
SGD and GD.
This concludes the theoretical analysis of both cumulative loss and communication of

dynamic averaging. So far, no assumption on the network topology have been made. The
following section discusses the application of dynamic averaging in various network topologies
in relation to this theoretical analysis.

3.4. Network Topologies

Dynamic averaging as a protocol can be applied to various network topologies. This section
discusses a few examples and how dynamic averaging can be applied there.
The most straight-forward architecture is a star topology with a coordinator at the center,

i.e., a dedicated computation node that performs the model aggregation (see Figure 3.4(a)). In
this topology, learners send violations to the coordinator, which performs the local balancing
and sends the average model to the local learners. A full synchronization in this topology
requires cm = 2m messages form ∈ N learners learners.
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Figure 3.4.: Network topologies of learners with dedicated coordinator nodes: (a) single coor-
dinator as in Federated Learning; (b) hierarchical structure of coordinators.

The star topology can be extended using multiple, hierarchical coordinator nodes. Each
coordinator node receives violations from its children—either learners or coordinators. Each
local coordinator may perform local balancing, the coordinator at the root performs full
synchronizations. Let c ∈ N denote the number of coordinators, then a full synchronization
in this setup requires O(cm) messages. Treating c as a constant, then cm ∈ O(m). If the
hierarchical topology is a perfect r-ary tree, then this tree has

rm − 1
r − 1

many nodes and
rm − 1
r − 1

− 1

many edges. Since the number of messages for a full synchronization is twice the number of
edges, again cm ∈ O(m).
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Figure 3.5.: Decentralized network topology of learners without coordinator; (a) only near-
est neighbors are connected, (b) 2-nearest neighbors are connected, and (c) all learners are
connected.

Dynamic averaging can also be applied to topologies without a dedicated coordinator node
(see Figure 3.5 for an illustration). That is, the network topology is a connected undirected
graph withm vertices. In this case, learners communicate in a peer-to-peer fashion. For that,
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a gossip-like protocol can be applied (Kempe et al., 2003) to perform synchronizations. For
example, for a full synchronization the learner with the first violation requests all local models
from its neighbors. These then also request the local models of their neighbors. Each learner
averages all received local models and sends the average to the neighbor that first requested it.
At the end, the learner with the first violation can compute the average of all models. This
is then send to all learners in a similar fashion. Not counting the requests for models 4, the
overall number of messages is twice the number of edges of a spanning tree of the network.
Since the number of edges in any tree withm vertices ism − 1, again cm ∈ O(m). In all cases
cm ∈ O(m) and thus Corollary 3.24 holds, i.e., if dynamic averaging is consistent, then it is
efficient.

In the following, dynamic averaging is empirically evaluated. For that, a star topology with
a dedicated coordinator node in its center is assumed.

3.5. Empirical Evaluation

This section investigates the practical performance of dynamic averaging for settings ranging
from clean linearly separable data, over inseparable data with a reasonable linear approxi-
mation, up to real-world data without any guarantee. All experiments are conducted on a
simulated distributed environment which allows to ignore practical problems, such as asyn-
chronicity of learners, message passing times and message loss 5. An implementation of the
algorithmwithin a real distributed online learning framework using Apache Storm is presented
in Appendix A.1.

3.5.1. Linearly Separable Data

To investigate the performance of dynamic averaging it is first compared to periodic averag-
ing using linear models on a linearly separable synthetic dataset, denoted disjunctions. The
dataset is generated by choosing a random disjunction over d ∈ N literals. The input space
consists of binary vectors of dimension d ∈ N, i.e., X = {0,1}d. The label is given by the value
of the disjunction over the random sample, i.e., Y = {−1,1}. Formally, a target disjunction
is identified with a binary vector z ∈ {0,1}d. A data point x ∈ X is labeled positively y = 1
if ⟨x, z⟩ ≥ 1 and otherwise receives a negative label y = −1. The target disjunction is drawn
randomly at the beginning of the learning process. In order to have balanced classes, the dis-
junctions as well as the data points are generated such that each coordinate is set independently
to 1 with probability

√
1 − 2−1/d.

4 The number of model requests in this setup can be up to the number of edges in the graph which is at mostm2

for a fully connected graph. At the same time, these messages can be very small. Still, taking them into account,
the cost of each synchronization can be in O(m2

).
5 The implementation of the experimental framework in python is open source and can be found at https:

//bitbucket.org/Michael_Kamp/decentralized-machine-learning.
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Figure 3.6.: Trade-off between cumulative hinge loss and cumulative communication after
processing T = 10 000 rounds for several distributed learning systems with m = 128 learners
jointly learning disjunctions with d = 50 using SGD as base learning algorithm.

(a) (b)

Figure 3.7.: Cumulative hinge loss (a) and cumulative communication (b) (in log-scale) over
T = 10 000 rounds of several distributed learning systems with m = 128 learners. A synchro-
nization is indicated by a cross in the cumulative loss plot (a).

The experiment is conducted on a distributed system withm = 128 learners using multiple
distributed learning protocols. The base learning algorithm is regularized SGD with learning
rate η = 10.0 and regularization parameter λ = 1.0. The loss function used is hinge loss, i.e.,

`(f, x, y) = max(1 − yf(x),0) ,
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for which the derivative with respect to f is given by

∇f `(f, x, y)

⎧⎪⎪
⎨
⎪⎪⎩

−yx, if yf(x) < 1
0, else .

Dynamic averaging is compared to periodic averaging (see Table 3.1 for the configurations),
as well as two baselines: serial denotes the serial application of the base learning algorithm,
nosync denotes a distributed setup in which the learners run independently without com-
munication. All protocols are run for T = 10 000—for the serial baseline this means that
Tm = 1 280 000 examples are processed. For the target disjunction the number of literals, and
thus the dimension of the input space, is d = 50.

Figure 3.6 shows the trade-off between cumulative loss and cumulative communication after
processing T = 10 000 rounds. It shows that periodic averaging with b = 2 indeed is able
to achieve a cumulative loss similar to the serial application of the base learning algorithm.

protocol configurations
name parameters

periodic protocol σb

b = 2
b = 4
b = 8
b = 16
b = 32
b = 64
b = 128
b = 256

dynamic protocol σ∆,b

b = 2,∆ = 0.1
b = 2,∆ = 1.0
b = 2,∆ = 2.0
b = 2,∆ = 10.0
b = 2,∆ = 20.0
b = 2,∆ = 40.0

Table 3.1.: Overview of protocol configura-
tions for the disjunction dataset using linear
models. Except for ∆ and b, all parameters are
kept constant between configurations.

For that, it requires a substantial amount of
communication. This can be reduced by
increasing b at the cost of higher cumula-
tive loss. Dynamic averaging with ∆ = 0.1
achieves the same loss as the best periodic one
with an order of magnitude less communica-
tion. Increasing ∆ further reduces communi-
cation at the cost of cumulative loss. How-
ever, the increase in loss is far lower than for
periodic averaging. For example, dynamic av-
eraging with ∆ = 10.0 still achieves a cumu-
lative loss comparable to serial with two or-
ders of magnitude less communication than
periodic with b = 2. Moreover, for every de-
sired trade-off between loss and communica-
tion, there is a setting for dynamic averaging
which outperforms periodic averaging.

To illustrate the behavior of dynamic av-
eraging, Figure 3.7 shows the development
of cumulative hinge loss and communica-
tion over time. The cumulative loss (Fig-
ure 3.7(a)) of serial and the periodic averag-
ing variants increases strongly in the begin-
ning and then plateaus after the learners con-
verged to the optimal model. The same holds
for the nosync baseline, only that the loss is
still increasing after 10 000 rounds (recall that at the end each individual learner has seen 10 000
examples, while the serial baseline has seen 10 000 examples already after round t = 78). The
cumulative loss of dynamic averaging does not behave as regularly, since it depends on the
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time and amount of synchronizations. For ∆ = 40.0, in phases where less loss is suffered, the
amount of synchronizations is reduced (as can be observed from the lower number of crosses
indicating the synchronizations).

Moreover, as soon as the loss plateaus for dynamic averaging, the communication is reduced
substantially, as can be seen in Figure 3.7(b). In particular for ∆ = 0.1, dynamic averaging
invests as much communication as periodic averaging with b = 2 in the first 2 000 rounds,
leading to a quick convergence to the optimal model. After that, communication is sub-
stantially reduced, up to the point where it reaches quiescence. This confirms that dynamic
averaging indeed invests communication in hard phases, where it is most useful and reduces
it when it is not necessary anymore. Moreover, the experiment shows that it indeed retains
the performance of periodic averaging with substantially less communication and can achieve
a performance similar to serial.

Figure 3.8.: Performance of static and dynamic synchronization for tracking a rapidly drifting
disjunction over 100-dimensional data withm = 512 learners.

To furthermore show that dynamic averaging is capable of handling concept drift, the data
is generated by rapidly drifting random disjunction. That is, the target disjunction is drawn
randomly at the beginning of the learning process and is randomly re-set after each round
with a fixed drift probability of 0.000001. Figure 3.8 presents the result for dimensionality
d = 100, withm = 512 nodes, processing 12.8M data points through T = 100 000 rounds. For
divergence thresholds up to 0.3, dynamic averaging can retain the error of periodic averaging
with b = 8. At the same time the communication is reduced to 9.8% of the original number of
messages. An approximately similar amount of communication reduction can also be achieved
using periodic averaging with b = 96. This approach, however, only retains 61.0% of the
accuracy of periodic averaging with b = 8.
Figure 3.9(a) and (b) provide some insight into how the two evaluation metrics develop

over time. Target drifts are marked with vertical lines that frame episodes of a stable target dis-
junction. At the beginning of each episode there is a relatively short phase in which additional
errors are accumulated and the communicative protocols acquire an advantage over the baseline
of never synchronizing. This is followed by a phase during which no additional error is made.
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(a) (b)

Figure 3.9.: Cumulative loss (a) and cumulative communication (b) over time for tracking a
rapidly drifting disjunction for different synchronization protocols; vertical lines depict drifts.

protocol configurations
name parameters

periodic protocol σb

b = 8
b = 12
b = 16
b = 24
b = 32
b = 48
b = 64

dynamic protocol σ∆,b

b = 8,∆ = 0.005
b = 8,∆ = 0.05
b = 8,∆ = 0.08
b = 8,∆ = 0.1
b = 8,∆ = 0.15
b = 8,∆ = 0.18
b = 8,∆ = 0.2
b = 8,∆ = 0.25

Table 3.2.: Overview of the different communi-
cation protocol configurations for the disjunc-
tion dataset using linear models. Except for pro-
tocol parameters ∆ and b, all other parameters
are kept constant between configurations.

Here, the communication curve of the dy-
namic protocols remain constant acquiring
a gain over the static protocols in terms of
communication.

3.5.2. Non-separable
Data with Noise

We now turn to a harder experimental set-
ting, in which the target distribution is given
by a rapidly drifting two-layer neural net-
work. For this target even the Bayes opti-
mal classifier per episode has a non-zero er-
ror, and, in particular, the generated data
is not linearly separable. Intuitively, it is
harder in this setting to save communica-
tion, because a non-zero residual error can
cause the linear models to periodically fluctu-
ate around a local loss minimizer—resulting
in crossings of the variance threshold even
when the learning processes have reached
their asymptotic regime. We choose the net-
work structure and parameter ranges in a way
that allow for a relatively good approxima-
tion by linear models (see Bshouty and Long
(2012)). The process for generating a single
labeled data point is as follows: First, the la-
bel y ∈ Y = {−1,1} is drawn uniformly from
Y . Then, values are determined for hidden
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variablesHi with 1 ≤ i ≤ ⌈logn⌉ based on a Bernoulli distribution P [Hi = ⋅ ∣Y = y] = Ber(phi,y).
Finally, x ∈ X = {−1,1}n is determined by drawing xi for 1 ≤ i ≤ n according to
P [Xi = xi, ∣Hp(i) = h] = Ber(poi,h) where p(i) denotes the unique hidden layer parent of
xi. In order to ensure that the data can be linearly approximated, the parameters of the output
layer are drawn such that ∣poi,−1 − p

o
i,1∣ ≥ 0.9, i.e., their values have a high relevance in determin-

ing the hidden values. As in the disjunction case all parameters are re-set randomly after each
round with a fixed drift probability (here, 0.01).

Linear Models

As a first experiment, linear models are used with regularized passive aggressive updates with
hinge loss and C = 10.0 as base learning algorithm. The configurations for periodic and dy-
namic averaging are summarized in Table 3.2. Fig. 3.10 contains the results for dimensionality

Figure 3.10.: Performance of periodic and dynamic averaging protocols that track a neural
network with one hidden layer and 150 output variables using 1024 nodes.

150, with k = 1024 nodes, processingm = 2.56M data points through T = 10000 rounds. For
variance thresholds up to 0.08, dynamic synchronization can retain the error of the baseline.
At the same time, the communication is reduced to 45% of the original number of messages.
Moreover, even for thresholds up to 0.2, the dynamic protocol retains more than 90% of the
accuracy of static synchronization with only 20% of its communication.

Kernel Models

After having seen that dynamic averaging performs well for linear models, the next exper-
iment investigates how using kernel models improves the cumulative loss. As discussed
in Section 3.3.5, using kernel models comes at the price of substantially higher computa-
tion. The experiment compares nosync, serial, periodic and dynamic averaging for lin-
ear and kernel methods on m = 4 learners. The learning algorithm used is SGD with
η = 1.0 and λ = 0.1 using hinge loss. For the kernel models, a Gaussian kernel with
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(a) (b)

Figure 3.11.: Comparison of periodic and dynamic averaging on m = 4 learners that track a
neural network with one hidden layer and 150, comparing (a) linear and kernel models, as
well as (b) kernel models with and without model compression.

σ = 0.2 is used. Figure 3.11(a) shows the trade-off between cumulative loss and commu-
nication for periodic and dynamic averaging once with linear and once with kernel mod-
els. The results indicate that using kernel models substantially reduces the loss to nearly
half of the serial baseline using linear models. For that, the amount of communication re-
quired is orders of magnitudes larger (periodic averaging kernel (b = 1) requires 3 orders
of magnitude more communication than periodic averaging (b = 1) using linear models).

protocol configurations
name parameters

periodic protocol σb
b = 1
b = 2
b = 4

dynamic protocol σ∆,b

b = 1,∆ = 0.3
b = 1,∆ = 0.7
b = 1,∆ = 1.0

Table 3.3.: Overview of the different commu-
nication protocol configurations for the anal-
ysis of concept drift with neural networks.
Except for protocol parameters ∆ and b, all
other parameters are kept constant between
configurations.

However, whether using linear or kernel
models, dynamic averaging allows to reach
the same cumulative loss as periodic averag-
ing with substantially less communication.
In order to show the effect of model com-

pression, Figure 3.11(b) compares kernel
models without model compression to a sup-
port vector truncation approach that only
keeps the 50 support vectors with the high-
est weights. The results show that model
compression substantially reduces the com-
munication at the cost of predictive perfor-
mance. However, using dynamic averaging
with ∆ = 1.0 and kernel compression only re-
quires an amount of communication compa-
rable to periodic averaging with linear mod-
els while suffering significantly fewer loss.
The experiments support the claim that

for application scenarios that can be solved
better by non-linear models, using periodic
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averaging with kernel models achieves good predictive performance at the cost of a pro-
hibitively large amount of communication. By using dynamic averaging the amount of com-
munication can be substantial reduced. Combining this with model compression allows to
achieve similar predictive performance with an amount of communication comparable to that
of using linear models.

Neural Networks

After having analyzed the performance on linear and kernel models, the following experiment
evaluates dynamic averaging using neural networks. For that, a fully connected multi-layer
perceptron (MLP) is used. Table 3.4 provides an overview of the network layers and the
amount of neurons used. The settings of periodic and dynamic averaging are listed in Table 3.3.
Figure 3.12(a) shows that in terms of predictive performance, dynamic and periodic averaging

Figure 3.12.: Experiment with periodic and dynamic averaging protocols onm = 100 learner
after training on 5000 samples per learner from a synthetic dataset with concept drifts.

Layer Type Output Shape #Weights
Dense (256) 38 400

Dropout (256) 65 536
Dense (64) 16 384

Dropout (64) 4 096
Dense (1) 64

Total 124 480

Table 3.4.: The architecture of the neural network used for the non-separable dataset.

perform similarly. At the same time, dynamic averaging requires up to an order of magnitude
less communication to achieve it. Figure 3.13, that shows the development of cumulative
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(a) cumulative loss (b) cumulative communication

Figure 3.13.: Development of cumulative loss and communication during training on 5000
examples per node from a synthetic dataset with concept drifts (indicated by vertical lines).

loss and communication over time, confirms that dynamic averaging adapts the amount of
communication: right after a concept drift the number of synchronizations (indicated by
a cross mark) is high and decreases as soon as the instantaneous loss of the learners—i.e.,
observable as the growth of the cumulative error—decreases. This indicates that dynamic
averaging invests communication when it is most impactful and can thereby save a substantial
amount of communication in between drifts.

3.5.3. Real-world Data

The experimental section is concluded with tests on three real-world datasets containing,
Twitter short messages, data from the LHC Atlas experiment on supersymmetric particles
(SUSY) (Baldi et al., 2014), and stock prices, respectively.

The data from Twitter has been gathered via its streaming API (https://dev.twitter.
com/docs/streaming-apis) during a period of 3 weeks (Sep 26 through Oct 15 2012). In-
spired by the content recommendation task, the problem considered is predicting whether a
given tweet will be re-tweeted within one hour after its posting—for a number of times that lies
below or above the median hourly re-tweet number of the specific Twitter user. The feature
space are the top-1000 textual features (stemmed 1-gram, 2-gram) ranked by information gain,
i.e., X = {0,1}1000. The base learning algorithm used is regularized passive aggressive (PA-I)
with aggressiveness parameter C = 0.25.

In Fig. 3.14 we present the result for dimensionality n = 100, with k = 512 nodes, processing
m = 12.8M data points through T = 100000 rounds. For divergence thresholds up to 0.3,
dynamic synchronization can retain the error number of statically synchronizing every 8
rounds. At the same time the communication is reduced to 9.8% of the original number of
messages. An approximately similar amount of communication reduction can also be achieved
using static synchronization by increasing the batch size to 96. This approach, however, only
retains 61.0% of the accuracy of statically synchronizing every 8 rounds.
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Figure 3.14.: Performance of static and dynamic synchronization with 256 nodes that predict
Twitter retweets over 1000 textual features.

For the next set of experiments, the task is to predict the class of instances drawn from the
SUSY dataset from the UCI machine learning repository (Lichman, 2013). The first experi-
ment compares linear to kernel models, the latter with and without model compression. The

(a) (b)

Figure 3.15.: (a) Trade-off between cumulative error and cumulative communication, and (b)
detailed view on the cumulative communication over time of dynamic averaging withm = 4
learners, each processing 1000 examples. The learning task is classifying instances from the
UCI SUSY dataset. Parameters of the learners are optimized on a separate set of 200 instances
per learner. The compression technique for kernel models is truncation with a support vector
limit of 50.

results are presented in Figure. 3.15. The comparison of cumulative loss and communication
in Figure 3.15(a) shows that dynamic averaging using linear models suffers the highest amount

78



of loss, but since the linear models are small compared to support vector expansions, the cumu-
lative communication is small. A continuously synchronizing protocol using support vector
expansions has a significantly smaller loss at the cost of very high communication, since each
synchronization requires to send models with a growing number of support vectors. Using
dynamic averaging, the communication can be reduced without losing in prediction quality.
In addition, when using model compression the communication can be further reduced to an
amount similar to the linear model, but at the cost of higher cumulative loss.
These results indicate that linear models are not suitable for the SUSY dataset. Kernel

models perform substantially better, at the cost of higher communication. Moreover, making
a prediction with a model with high number of support vectors has a larger runtime. The same
holds for calculating the distance to the reference point for the local conditions of dynamic
averaging, as well as the averaging of kernel models. That is why the experiments on SUSY
were only conducted using 4 learners.

(a) (b)

Figure 3.16.: (a) Trade-off between cumulative error and cumulative communication, and (b)
detailed view on the cumulative communication over time of dynamic averaging withm = 50
learners each processing 2000 examples from the UCI SUSY dataset. Parameters of the learners
are optimized on a separate set of 200 instances per learner.

Similarly to kernel models, neural networks allow to model non-linear dependencies, but
have a fixed model size. Figure 3.16 shows the results of an experiment with neural networks
on the SUSY dataset. Table 3.5 provides an overview of the network layers and the amount of
weights used. The network used is a fully connected MLP using rectified linear units (ReLU)
as activation function and softmax at the output neuron. Comparing the cumulative loss to
the cumulative communication in Figure 3.16(a) shows that, again, dynamic averaging allows
to achieve a performance similar to periodic averaging with substantially less communica-
tion. Looking at the development of cumulative communication over time in Figure 3.16(b)
shows that also on SUSY, dynamic averaging invests more communication in the beginning—
comparable to the most frequently communicating periodic averaging protocol—and reduces
the amount of communication during the learning process.
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Layer Type Output Shape #Weights
Dense (64) 1 152
Dense (32) 2 048
Dense (16) 512
Dense (1) 16

Total 3 728

Table 3.5.: The architecture of the neural network used for the SUSY.

Figure 3.17.: Performance of dynamic and periodic averaging using linear models with 256
learners that predict stock prices based on prices and sliding averages of the stock itself and all
other stocks from the S&P100 index.

The last experiment is conducted on a stock price dataset. The data is gathered from Google
Finance (http://www.google.com/finance) and contains the daily closing stock prices of
the S&P100 stocks between 2004 and 2012. Inspired by algorithmic trading, the task is to
predict tomorrow’s closing price of a single target stock based on all stock prices and their
moving averages (11, 50, and 200 days) of today, i.e., X = R400 and Y = R. The target stock
is switched with probability 0.001. Here, regularized passive aggressive updates with linear
models, the epsilon insensitive loss, ε = 0.1, and a regression parameter of C = 1.0 are used.
The results for 1.28M data points distributed to k = 256 nodes are presented in Fig. 3.17.

Again, the gap between no synchronization and the baseline is well preserved by partial
synchronizations. A threshold of 0.005 preserves 99% of the predictive gain using 54% of
communication. The trade-off is even more beneficial for threshold 0.01 which preserves 92%
of the gain using only 36% communication.
Figure 3.18 shows a comparison of kernel to linear models on the financial data, where 32

learners predicted the stock price of a target stock. We can see that for this difficult learning
task linear models perform poorly compared to non-linear models using a Gaussian kernel
function. Simultaneously, the communication required to periodically synchronize these
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non-linear models is larger than for linear models by more than two orders of magnitude.
Using the dynamic protocol with kernel models we could reduce the error by an order of
magnitude compared to using linear models (a reduction by a factor of 18). At the same
time, the communication is reduced by more than three orders of magnitude compared to
the static protocol (by a factor of 2433), which is yet an order of magnitude smaller than the
communication when using linear models (by a factor of 10). Moreover, within less than 2000
rounds, the dynamic protocol reaches quiescence, as it is implied by the efficiency criterion.

(a) (b)

Figure 3.18.: (a) Trade-off between cumulative error and cumulative communication, and (b)
detailed view on the cumulative communication over time of the dynamic protocol versus a
periodic protocol. 32 learners perform a stock price prediction task using SGD (learning rate
η and regularization parameter λ optimized over 200 instances, with η = 10−10, λ = 1.0 for the
periodic protocol, and η = 1.0, λ = 0.01 for the dynamic protocol) updates, either with linear
models or with non-linear models (Gaussian kernel with number of support vectors limited
to 50 using the truncation approach of Kivinen et al. (2004)).

3.6. Discussion

This chapter has proposed a novel type of synchronization operator that allows to aggregate
only subsets of models and schedule the aggregation dynamically, based on the model di-
vergence. This partial synchronization operator was analyzed for averaging as aggregation
operator. The resulting dynamic averaging protocol is the first ever efficient protocol, i.e., it is
consistent and adaptive at the same time. It has been shown both theoretically and practically
that dynamic averaging outperforms periodic protocols, in some cases reducing communica-
tion by orders of magnitude.

In the following, properties and limitations of the proposed protocol are discussed.
Finding the right divergence threshold for the dynamic protocol, i.e., one that suits the

desired trade-off between service quality and communication, is in practice a neither intuitive
nor trivial task. How can the right ∆ be determined? The threshold can be selected using
a small data sample, but the communication for a given threshold can vary over time and is
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also influenced by other parameters of the learner. Thus, a direction for future research is
to investigate an adaptive divergence threshold. That is, a scheme for updating the threshold
based on the number of violation could be employed. E.g., for every round without a full
synchronization, each local learner reduces ∆ by a constant factor. In case of a full synchro-
nization, ∆ is increased again. This way, all local ∆ are equal. Such schemes for ∆ could allow
for a more direct selection of the desired trade-off between service quality (i.e., predictive
performance) and communication.

A limit of the employed notion of efficiency is that it only takes into account the sum of
messages. What about the peak communication? In large data centers, where the distributed
learning system is run next to other processes, the main bottleneck is the overall amount of
transmitted bytes and a high peak in communication can often be handled by the commu-
nication infrastructure or evened out by a load balancer. In smaller systems, however, high
peak communication can become a serious problem for the infrastructure and it remains an
open problem how it can be reduced. Note that the frequency of synchronizations in a short
time interval can actually be bounded by a trivial modification of the dynamic protocol: local
conditions are only checked after a mini-batch of examples have been observed. Thus, the
peak communication is upper bounded in the same way as with a periodic protocol, while
still dynamically reducing the overall amount of communication.

In order to use dynamic averaging with kernel models, model compression has proven
to be a crucial factor. Not only does storing and evaluating models with large numbers of
support vectors can become infeasible (even in serial settings), but communicating the ever
growing models renders the protocol inefficient. In a distributed setting, transmitting large
models furthermore induce high communication costs, which is aggravated by averaging local
models, because the synchronized model consists of the union of all local support vectors.
Which model compression is suitable for dynamic averaging with kernel models? For the
model truncation approach of Kivinen et al. (2004), the theoretical analysis has shown that the
efficiency criterion is satisfied, but other model compression approaches might be favorable in
certain scenarios. Thus, an interesting direction for future research is to study the relationship
between loss and model size of those model compression techniques in order to extend the
results on efficiency.

Also, alternative approaches to ensuring constant model size could be investigated. What
about finite dimensional approximations of kernel models? A finite dimensional approx-
imation of the feature map Φ ∶ X → Hk of a reproducing kernel Hilbert space Hk, such as
random Fourier features (Rahimi and Recht, 2007), allows to represent a kernel model as linear
model. It remains an open problem how tight loss bounds combined with communication
bounds can be derived in these settings. Moreover, initial experiments (see Figure 3.19) on a
serial outlier detection task using random Fourier features shows that compression techniques
(e.g., support vector truncation) perform consistently better with the same amount of memory
usage.
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Figure 3.19.: Rank distribution of different approximation techniques over various outlier de-
tection datasets and algorithms using the samememory budget for eachmodel. Approximation
techniques are random Fourier features (rff), support vector truncation (discard), projecting a
support vector on the span of the remaining ones (projection), merging a new support vector
with its nearest neighbor in feature space (merge), and in input space (input). The datasets
used are outlier detection datasets from the UCI machine learning repository (Lichman, 2013)
containing instances labels as inliers or outliers (adult, annthyroid, arrythmia, ionosphere,
pima, wilt). Algorithms used are pegasos (Shalev-Shwartz et al., 2011), passive aggressive for
uni-class prediction, and kernel stochastic gradient descent (Kivinen et al., 2004). The perfor-
mance is measured using the F1-score. The picture shows the ranking of the approximation
technique over all combinations of datasets and algorithms.

Dynamic averaging is a partial synchronization operator using averaging as aggregation
operator. What about other aggregation operators? As mentioned in Section 3.2, another
central aggregation operator is the geometric median

fmed = arg min
f ′∈F

m

∑
i=1

∥f i − f ′∥2 ,

of a model configuration f = (f1, . . . , fm). The corresponding distance is the Euclidean
distance and the divergence is given my

δ(f) =
m

∑
i=1

∥f i − fmed∥2 .

It has the advantage that it is more robust to outliers and has been applied to online learning
from noisy data (Feng et al., 2017). The theoretical analysis of the loss of dynamic averaging
can be extended to the geometric median: The synchronization lemma (Lemma 3.13) only
requires the synchronization to comply with Definition 3.3, the update lemma (Lemma 3.14)
has no requirements on the synchronization. Thus, the regret bound in Theorem 3.19 holds
for the geometric median as well, i.e., a partial synchronization operator using the geometric
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median retains the loss of a periodic one. However, it remains an open question whether
periodically applying the geometric median is consistent. Even though the communication
analysis holds for the geometric median as well, Theorem 3.24 requires it to be consistent in
order to proof its adaptivity. Therefore, to show that the geometric median also leads to an
efficient protocol, it has to be shown that periodically applying it leads to a consistent one.

The analysis of dynamic averaging constitutes a first example of a setting in which adaptivity
and consistency can be achieved at the same time. The following chapter, it is applied to batch
learning and analyzed in the ERM model.
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After having introduced dynamic averaging for online learning, this chapter investigates
its application to incremental algorithms for batch learning. The focus in batch learning is
not on the loss suffered during training but on the performance of the final output of the
learning algorithm on unseen data. Using the empirical risk minimization model introduced
in Chapter 2 allows to give guarantees on this performance in the form of generalization
bounds (see Section 2.1.3). Recall that for incremental learning algorithms these bounds
guarantee that with probability δ ∈ (0,1] it holds for a model f ∈ F trained on a training set
E drawn iid from a target distribution D that

LD(f) ≤ min
f ′∈F
LD(f

′
) + ε + ε̂ ,

where ε ∈ R+ depends on δ, F , and the size of the training setN = ∣E∣. The optimization error
ε̂ ∈ R+ is an additional error induced by the incremental learning algorithm, because it does
not output the actual minimizer of the objective function but an approximation to it. This
approximation gets better, and thus ε̂ gets smaller, with the amount of rounds the algorithm
is run. That the rate at which ε̂ decreases is called the convergence rate.
Thus, instead of the cumulative loss this chapter analyzes the convergence rate of dynamic

averaging. For linear and kernel models, standard incremental optimization algorithms used in
batch learning (e.g., SGD and mini-batch SGD) perform regret-proportional convex updates.
With this, the analysis for online regret in the previous chapter can be extended to the con-
vergence rate of batch learning. For most neural networks, however, these algorithms do not
perform convex updates anymore. For those networks I show that if the learning algorithm
has a contraction property, a result on the convergence rate similar to that for linear and kernel
models can be obtained. Using these two results, this chapter shows that dynamic averaging
retains the convergence rate of SGD, mini-batch SGD, and GD for linear and kernel models,
as well as neural networks.
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Section 4.1 theoretically analyzes the convergence of dynamic averaging for linear and kernel
models followed by an extended analysis for neural networks. Section 4.3 then discusses
practical aspects of dynamic averaging. The protocol is empirically evaluated on various batch
learning tasks, including autonomous driving, in Section 4.4. The chapter concludes with a
discussion in Section 4.5.

4.1. Convergence Rate of Dynamic Averaging

The convergence rate of a distributed learning protocol should in the optimal case be similar
to that of the base learning algorithm. To that end, this section will provide a convergence
rate analysis for dynamic averaging that relates its convergence to that of periodic averaging.
Similar to the online regret result from Chapter 3.6, if periodic averaging has an optimal
convergence rate (i.e., the same as the base learning algorithm) then dynamic averaging has an
optimal convergence rate for that base learning algorithm as well.

4.1.1. Relating the Convergence of Dynamic to Periodic Averaging

To relate the convergence of dynamic to periodic averaging, the proof for online regret from
Section 3.3.2 is adapted to the batch setting. For this, the update lemma (Lemma 3.14) is
extended from single examples per round to datasets.

Lemma 4.1. Let the updates of an incremental learning algorithmA be regret-proportional convex
updates with γ > 0. Then for all models d, s ∈ F and all datasets E ⊂ X × Y it holds that

∥A(E,d) −A(E, s)∥2
≤ ∥d − s∥2

− γ2
∑

(x,y)∈E
(`(d, x, y) − `(s, x, y))2 .

The proof is straight-forward and is provided in Appendix B.2.
Using this adapted update lemma together with the synchronization lemma (Lemma 3.13)

from Section 3.3.2 it is possible to tie the convergence rate of dynamic averaging to that of
periodic averaging. For that it is required that ∆t is either static or decreasing with t.

Theorem 4.2. Let A be a learning algorithm that performs regret-proportional convex updates
with γ > 0 and a Lipschitz-continuous loss function ` with Lipschitz constant ι ∈ R. Let D =

(A, σ∆,b,aAV G,m) the dynamic averaging protocol and P = (A, σb,aAV G,m) denote the peri-
odic averaging protocol both maintaining models on the same distributed learning system with
m ∈ N learners. In round t ∈ N, each learner samples a dataset Eit ⊂ X × Y with ∣Eit ∣ ≥ (γ2ι)−1.
Let furthermore dt = (d1

t , . . . , d
m
t ) ∈ Fm be a model configuration maintained byD at time t ∈ N

using divergence threshold ∆t ∈ R with ∆t ≥ ∆t+1 for all t ∈ N and st = (s1
t , . . . , s

m
t ) ∈ Fm be a

model configuration maintained by P . Then it holds that

1
m

m

∑
i=1

∥dit − s
i
t∥

2
≤ ∆t .
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Proof. Similar to the proof of Theorem 3.19 in Section 3.3.2, Lemma 3.13 and Lemma 4.1 can
be combined to show that

1
m

m

∑
i=1

∥dit − s
i
t∥

2
=

1
m

m

∑
i=1

∥σ∆,b(dt)i − σb(st)i∥2

≤
®

Lemma 3.13

1
m

m

∑
i=1

∥dit − s
i
t∥

2
+∆t

=
1
m

∥A(Et−1, d
i
t−1) −A(Et−1, s

i
t−1)∥

2
+∆t

≤
®

Lemma 3.14

1
m

m

∑
i=1

∥dit−1 − s
i
t−1∥

2
+∆t

− γ2 1
m

m

∑
i=1

∑
(x,y)∈Eit−1

(`(dit−1, x, y) − `(s
i
t−1, x, y))

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤ι∥dit−1−s

i
t−1∥2

≤
®

` is ι-Lipschitz

1
m

m

∑
i=1

∥dit−1 − s
i
t−1∥

2
+∆t − γ

2 1
m

m

∑
i=1

∑
(x,y)∈Eit−1

ι∥dit−1 − s
i
t−1∥

2

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 − γ2ι
1
m

m

∑
i=1

∣Eit−1∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

1
m

m

∑
i=1

∥dit−1 − s
i
t−1∥

2
+∆t+1 ≤ ∆t .

From Theorem 4.2 it follows that, using a decreasing divergence threshold ∆t → 0, dynamic
averaging achieves the same convergence rate as periodic averaging.
Theorem 4.2 holds for machine learning algorithms that perform regret-proportional con-

vex updates, such as SGD, mini-batch SGD, and passive aggressive updates for linear models
and kernel methods. However, for (deep) neural networks, these algorithms do not perform
convex updates. Thus, the following section provides an alternative result that ties the con-
vergence rate of dynamic averaging to periodic averaging for machine learning algorithms
that fulfill a contraction criterion. It then shows that stochastic gradient descent for neural
networks fulfills this contraction criterion.

4.1.2. Convergence of Dynamic Averaging for Deep Learning

Theorem 4.2 shows that for regret-proportional convex updates, dynamic averaging retains the
convergence rate of periodic averaging. However, the result does not apply to deep learning.
For example, a learning algorithm well-suited for training deep neural networks is stochastic
gradient descent (Zhang et al., 2017), which is indeed performing regret-proportional convex
updates for linear models and kernel methods, as shown above. However, for deep learning
SGD does not perform convex updates: The weights of each layer are updated in the direction
of the input to that layer. Only for the first layer this is in the direction of the training sample.
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For all other layers, the update direction depends on the weights on the previous layer. Thus,
even if the update is in the direction of a convex set, this set is not independent of the model.
Thus SGD for deep learning does not fulfill Definition 3.8.

In the following it is shown that nonetheless dynamic averaging retains the convergence
rate of periodic averaging using SGD for deep learning. For that the notion of contractions is
required.

Definition 4.3. An incremental learning algorithm A is a contraction with constant c ∈ R+ if
for a dataset E ⊂ X × Y and models f, f ′ ∈ F it holds that

∥A(E,f) −A(E,f ′)∥ ≤ c ∥f − f ′∥ .

Using this notion of contraction the following theorem bounds the average loss difference
between dynamic and periodic averaging.

Theorem 4.4. Let ` be an ι-Lipschitz loss function and the incremental learning algorithmA be
a contraction with constant c ∈ R. Then, for batch sizes b ≥ log−1

2 c−1 and divergence thresholds
∆ ≤ ε(2ι)−1, the average loss difference between using a partial synchronization operator σ∆,b and
using σb is bounded by ε, i.e., for all rounds t ∈ N and all examples (xit, yit)i∈[m] ⊂ X × Y it holds
that

1
m

m

∑
i=1

∣`t(d
i
t, x

i
t, y

i
t) − `t(s

i
t, x

i
t, y

i
t)∣ ≤ ε ,

where d and s denote the models at learner i and time tmaintained by σ∆,b and σb, respectively.

Proof. The claim is proven within two steps. First note that a loss bound is induced by a
bound on the average distances between pairs of models at the local learners because of the
Lipschitz continuity of `. Then it is shown that such a bound is retained between the local
model pairs resulting from static and dynamic synchronization.
Using the Lipschitz continuity of `, the loss difference at round t is bounded by

∣∣`t(d
i
t, x

i
t, y

i
t) − `t(s

i
t, x

i
t, y

i
t)∣∣ ≤ ι∥d

i
t − s

i
t∥ .

Hence, for the desired difference in convergence of ε it is sufficient to show that at all times
t ∈ N it holds that the average pair-wise model distance at the local learners is bounded by
2∆ = ε/ι, i.e.,

1
m

m

∑
l=1

∥dit − s
i
t∥ ≤ 2∆ . (4.5)

In the following it is shown that Eq. (4.5) is retained throughout all rounds t ∈ N. This is done
by induction over t, assuming that for t = 0, all models are initialized identically. Before the
first synchronization, i.e., for t ≤ b, both weight sequences are identical and the bound, i.e, the
induction hypothesis (IH), holds. Moreover, if t − 1 is not a synchronization step, i.e., t − 1
mod b ≠ 0, the bound is preserved for dt and st due to A being a contraction. Hence, the
crucial case is t > b with (t − 1) mod b = 0. Using Lemma 3.13 yields that

1
m

m

∑
i=1

∥σ∆,b(dt)i − σb(st)i∥2
≤

1
m

m

∑
i=1

∥dit − s
i
t∥

2
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(∗)

+∆ .
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Applying the contraction property of A on (∗) yields

1
m

m

∑
i=1

∥dit − s
i
t∥

2
≤ cb

1
m

m

∑
i=1

∥dit−b − s
i
t∥

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∆ by IH

≤ cb∆ +∆ ≤ 2∆ .

The last inequality follows from the fact that b ≥ log−1
2 c−1 = logc 1/2.

Assume that periodic averaging with learning algorithm A has a convergence rate in
O(1/g(T )), where T ∈ N denotes the number of rounds and g ∶ N → R is an arbitrary
function. Then it follows from Theorem 4.4 that dynamic averaging has a convergence rate in
O(1/g(T ) + ε). By setting ∆t = 1/g(t) in each round t ∈ [T ] it follows that ε ∈ O(1/g(T ))

so that dynamic averaging has a convergence rate in O(1/g(T )). That is, dynamic averaging
retains the convergence rate of periodic averaging.
It remains to show that SGD is a contraction. For convex loss functions, one can

show (Zinkevich et al., 2010) that SGD is a contraction for sufficiently small constant
learning rates: for η ≤ (ρι + λ)−1 the updates do contract with constant c = 1 − ηλ. Here,
η, λ ∈ R+ denote the learning rate and regularization parameter, ι ∈ R+ the Lipschitz constant
of the loss function, and ρ ∈ R+ the data radius (i.e., for all x ∈ X it holds that ∥x∥2 ≤ ρ).
Since this argument is independent of the actual gradient, it also holds for the gradient descent
(GD) algorithm that computes the gradient over the entire dataset and the mini-batch SGD
algorithm that computes the gradient over a mini-batch of examples. That is, both GD and
mini-batch SGD are contractions, as well.
This also holds for the non-convex case if for any round t ∈ [T ] the loss function is locally

convex in a bounded region around the span of the models in dt and st. Since the distance
of all models in dt to the models in st is bounded by 2∆ and the distance of all models in
dt to their average dt is bounded by ∆, all models lie in a 3∆ bounded region around dt. If
moreover the update magnitude is bounded by R, then all models remain in a 3∆R bounded
region. Since the update magnitude for SGD is given by the norm of the gradient and the
learning rate, the update magnitude can be bounded by R = ηι. Thus for all models, if in
any round t ∈ N the loss function is locally convex in a 3∆ηι-radius around dt, then SGD
is a contraction. To see that this is a non-trivial but realistic assumption, see Sanghavi et al.
(2017); Wang and Srebro (2017) on local convexity and Keskar et al. (2017); Nguyen and Hein
(2017) on the loss surface of deep learning. It follows that under these assumptions, dynamic
averaging with SGD retains the convergence rate of periodic averaging.

Corollary 4.6. Let ` be an L-Lipschitz loss function, λ ∈ R a regularization parameter, η ≤

(ρι+λ)−1 a learning rate, ρ ∈ R+ the data radius, b ≥ log−1
2 (1−ηλ)−1 the batch sizes and ∆ ≤ ε/2ιt

the divergence threshold in round t ∈ N. Let dt and st denote the models maintained by dynamic
and periodic averaging, respectively. If in all rounds t ∈ N the loss function is locally convex
in a 3∆ηι-radius around dt, then dynamic averaging with stochastic gradient descent retains the
convergence rate of periodic averaging.

From Proposition 3.22 in Chapter 3.6 it follows that periodic averaging with b = 1 onm ∈ N
learners for mini-batch SGD with mini-batch size B ∈ N and classic SGD has an optimal
convergence rate—that is, it is equivalent to serial mini-batch SGD with a batch sizemB. The
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convergence rate of serial mini-batch SGD is in O(1/BT) (Li et al., 2014). Thus, running
periodic averaging onm ∈ N learners using mini-batch SGD with mini-batch size B ∈ N has a
convergence rate in O(1/mBT). It follows that dynamic averaging with the same base learning
algorithm has an optimal convergence rate, as well. For that it invests communication only
when beneficial, effectively reducing the overall amount of communication load.

The empirical evaluation in Section 4.4 shows that in practice, dynamic averaging indeed
achieves the same model quality with substantially less communication. The convergence
result for neural networks (Corollary 4.6) requires a local convexity around the model in each
round. This assumption holds, if all local models remain in the same local minimum during
the entire training process. McMahan et al. (2017) argue that in practice this is often the
case if all neural network models are initialized to the same initial model. This is investigated
empirically in Section 4.4.2. The results in this thesis support the argument of McMahan et al.
(2017), i.e., equal initialization leads to good convergence results, whereas a highly different
initialization deteriorates it. At the same time, the results extend the findings of McMahan
et al. (2017), because they also show that for periodic communication, having slight variations
in the initialization is actually beneficial to the convergence.

After having analyzed that dynamic averaging retains optimal convergence rates (for certain
algorithms), the next section analyzes its speedup in those cases.

4.2. Speedup of Dynamic Averaging

Assessing the speedup of dynamic averaging requires determining the runtime for a given incre-
mental learning algorithm. That is, for a dynamic averaging protocol D = (A, σ∆,b,aAV G,m)

with learning algorithm A onm ∈ N learners, with parameters ∆ ∈ R+ and b ∈ N, its runtime
TD(T ) with respect to the runtime TA and the number of learnersm needs to be determined.
This runtime TD(T ) for processing T rounds can be decomposed into the runtime TA of A in
parallel onm learners, each processing T examples, and the time required for the synchroniza-
tions. For dynamic averaging (ignoring message passing times), each synchronization takes at
most as much time as a full synchronization. Thus, we can estimate the actual time required
for synchronization as the number of synchronizations times the time required for averaging
all models.
Assuming a constant model size (i.e., linear models, neural networks, and kernel models

with compression), the time for calculating the average of m models on a single machine is
in Θ(m). Note that the time for calculating the average can be straight-forwardly reduced
to Θ(logm) by calculating the average in a map-reduce fashion without additional communi-
cation (see the example on periodic averaging in Section 2.3.3). The impact of the network
topology on this runtime is discussed in the following section. For the remainder of this
section, assume that the runtime of averaging is in Θ(logm).

Let S ∈ N be the number of synchronizations until round T . Then, the runtime of dynamic
averaging is

TD(T ) = TA(T ) + S ⋅Θ(logm) .

Note that since S ≤ T /b, the runtime of dynamic averaging is upper bounded by the runtime
of periodic averaging.
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Let T ′ ∈ N denote the number of rounds required by the serial application of A to achieve
the same model quality as D after T rounds. Then the serial application of A has runtime
TA (T ′) and the speedup of dynamic averaging is

TA(T
′)

TD(T )
=

TA(T
′)

TA(T ) + SΘ(logm)
.

The previous section has shown that dynamic averaging retains the convergence rate of specific
incremental machine learning algorithms. For such algorithms, Θ(T ′) = Θ(Tm). Assuming
that A has linear runtime, i.e., TA(T ) ∈ Θ(T ), leads to a speedup in

Θ(
Tm

T + S logm
) .

In the worst case, S = T /b ∈ Θ(T ) and thus the worst-case speedup is in

Θ(
m

logm
) , (4.7)

similar to periodic averaging. Note that the number of processing units used is larger than
m: In order to compute the average in time logrm, additional processors are required (see
the MapReduce example in Section 2.2). The number of additional processors is equal to the
amount of inner nodes of a perfect r-ary tree with m leafs which is rm − 1/r − 1 −m, and thus
the total number of processing units (including the learners) is rm − 1/r − 1. Since the speedup
is usually given as a function of the total number of employed processing units, Equation 4.7
becomes

m

logrm
=

cr−c+1
r

logr cr−c+1
r

≥

c
r

logr crr
=

c

r logr c
.

In caseA has polynomial runtime, i.e., TA(T ) ∈ Θ(T κ) for κ ∈ N, the speedup is even larger
than for linear time algorithms. In this case, the speedup is in

Θ(
(Tm)κ

T κ +m logm
) = Θ

⎛

⎝
mκ ⎛

⎝

1
1 + logm

Tκ−1

⎞

⎠

⎞

⎠

for S ∈ O(m).
Note that the speedup is influenced by the network topology used. If the star topology

is used (as discussed in Section 3.4), the coordinator requires time Θ(m) to compute the
average of all local models. This implies that the speedup does not grow with m. Using a
hierarchical topology instead allows computing the average in a MapReduce fashion, requiring
only time logarithmic inm which is necessary to achieve the speedup of Θ (m/logm). For the
decentralized setup, the runtime for calculating the average depends on the actual topology.
In the worst case, the network is (close to) a star topology and thus the runtime is in O(m).
The closer the topology is to a perfect r-ary tree, the closer the runtime is to O(logrm). The
same holds if the spanning tree implicitly generated by the model request is close to a perfect
r-ary tree.
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4.2.1. Efficient Parallel Runtime

As stated in the introductory chapter, a parallelization is considered to be efficient if it achieves
polylogarithmic runtime on (quasi-)polynomially many processing units (see requirement R2
in Chapter 1). For that, assume for simplicity that in each round, each learner samples a new
example iid from the target distribution. Then, dynamic averaging on m ∈ N learners after
T ∈ N rounds observed N = mT examples. The runtime of dynamic averaging in the input
size N is in

Θ(
N

m
+
N

m
logm) .

If we could chose m = T (which is even less than polynomial in N ), then the runtime
would be in Θ(logN), i.e., polylogarithmic in N . However, m cannot be chosen arbitrary
large: Optimal convergence has been shown for SGD and mini-batch SGD. However, these
algorithms require that the learning rate in round t ∈ N is in O(1/

√
t) in order to achieve

their convergence rate. Averaging with m reduces the learning rate by a factor of 1/m (see
Proposition 3.22). Thus, in order to obtain a similar model as the serial algorithm, the
learning rate must be chosenm times larger. It follows that the number of learners has to be in
O(

√
T ), because otherwise the learning rate is larger than O(1/

√
t). Now, ifm is in O(

√
T ),

the runtime cannot be reduced to polylogarithmic in N = mT . Therefore, even though
dynamic averaging allows for a large speedup per learner it does not achieve polylogarithmic
runtime on (quasi-)polynomially many processing units.
After having analyzed the speedup of dynamic averaging, the following section discusses

practical aspects, such as non-iid training data and different local training set sizes, as well as
privacy aspects of black-box parallelizations.

4.3. Practical Aspects of Dynamic Averaging

Dynamic averaging can be applied to a wide range of learning algorithms. In practice, several
aspects need to be addressed, such as non-iid training data and different sampling rates. On
the other hand, black-box parallelizations do not require to share privacy-sensitive data. In the
following, these practical aspects are discussed.

4.3.1. Federated Learning: Different Sampling Rates and Non-IID Data

In order to derive generalization bounds using the ERM model, local datasets are assumed to
be drawn iid from a common target distribution. This does not necessarily hold in practice.
Moreover, the data rate at each local learner, i.e., the size of the local datasets Eit , is assumed
to be fixed. In contrast, McMahan et al. (2017) introduced federated learning, a distributed
learning task with (i) non-iid data, (ii) unbalanced data sampling rates, (iii) massively dis-
tributed systems, and (iv) limited communication infrastructure. The section discusses to
what extend dynamic averaging already fits to that problem setup and how it can be extended
to better suit it.
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Algorithm 5 Federated Averaging (McMahan et al., 2017)
Input: Number of epochs e, mini-batch size B, fraction C
Server executes:

1. initialize f0
2. for each round t = 1,2, . . . do
3. k ←max{Cm,1}
4. St ← random set of k learners
5. for each learner i ∈ St in parallel do do
6. f it+1 ← ClientUpdate(i, ft)
7. end for
8. N i ← ∣Ei∣

9. N ← ∑it∈StN
i

10. ft+1 ← ∑i∈St
N i

N f it+1
11. end for
ClientUpdate(i, f) //run on client i

split Ei into mini-batches Ei1,E
i
2, . . . of size B

for each epoch from 1 to e do
for each mini-batch Eij do
f ← ASGD(Eij , f)

end for
end for
return f to the server

McMahan et al. (2017) propose a black-box approach for distributed deep learning to address
these issues. This approach assumes a dedicated coordinator node that synchronizes locally
trained neural networks and is termed Federated Learning. They propose a modified periodic
averaging protocol, denoted Federated Averaging (FedAvg), that is able to handle massively
distributed systems with limited communication infrastructure by communicating only the
parameters of neural networks. The major difference to periodic averaging is that FedAvg only
synchronizes a fraction C ∈ (0,1] of the learners. This reduces communication by C at the
cost of a loss in predictive performance.

McMahan et al. (2017) found that in practice it is beneficial to train the local neural networks
for multiple epochs on the local training data. Let all local learners have a local dataset of
the same size n. Then locally running mini-batch SGD with a mini-batch size B ∈ N and
training for e ∈ N epochs before synchronizing as suggested by McMahan et al. (2017) is
equivalent to running periodic averaging with b = ⌈n/B⌉e. The pseudo-code of FedAvg is given
in Algorithm 5.
Both dynamic averaging and FedAvg may only synchronize a subset of learners. Still,

FedAvg is not a partial synchronization operator as in Definition 3.3. While FedAvg fulfills
condition (i) of the definition, because averaging only a subset of the local models leaves the
global average invariant, it does not fulfill condition (ii): for any given threshold ∆, averaging a
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random subset does not guarantee that the divergence over all models is below ∆. For example,
if the divergence before averaging is above ∆, the random sample could consist of a set of equal
models. Then averaging them does not change the divergence, so it remains above ∆ after
synchronization.
Dynamic averaging addresses the issues of massively distributed systems and limited com-

munication infrastructure. In the worst case it performs similar to periodic averaging, in the
best case it has similar predictive performance with orders of magnitude less communication.
As will be shown in the empirical evaluation in Section 4.4.2, it substantially outperforms
FedAvg in terms of communication while achieving a similar predictive performance.

Regarding non-iid data, McMahan et al. (2017) provide empirical indications that differences
in local data distributions do not significantly deteriorate the learning process. Note that by
losing the iid assumption on the local datasets the ERM guarantees on the generalization error
do not hold anymore. McMahan et al. (2017) show that FedAvg achieves a high predictive
performance even if local datasets deviate strongly from the target distribution: In an exper-
iment on MNIST (where the task is to classify images of hand-written digits), local datasets
only contained examples from two out of ten digits. Still, FedAvg was able to train a model
that is capable of classifying all digits with high accuracy. This result indicates that averaging
models is robust to non-iid data. Thus, these results should hold for dynamic averaging as well.
However, further research is required to substantiate this claim, both for FedAvg and dynamic
averaging (cf. Smith et al. (2017)).
FedAvg tackles the problem of unbalanced sampling rates by weighting each local model

with the amount of examples it has processed (line 10 of Algorithm 5). This approach can be
used with dynamic averaging as well. For that, assume that each local learner i ∈ [m] observes
ni ∈ N samples. Similar to FedAvg, a weighted average is used where the weight depends on
the number of observed examples. Let N = ∑

m
i=1 n

i be the total number of samples observed
in each round. Then, the weighted average of models is given by

f = 1
N

m

∑
i=1
nif i .

Note that this can be generalized analogously to time-dependent sampling rates nit. Using
this weighted average, dynamic averaging for unbalanced data is given in Algorithm 6. Since
black-box parallelizations like FedAvg and dynamic averaging only share models, they do not
directly share privacy-sensitive data. In the following, this aspect is analyzed in more detail.

4.3.2. Privacy Aspects of Black-Box Parallelizations

Sharing only models and not data between learners substantially reduces the privacy
risks (McMahan et al., 2017). However, the level of privacy depends on many factors,
including the model class and distributed learning protocol.

For linear models it is possible to reconstruct the local gradients from the set of local models,
if learners are synchronized every round (Yan et al., 2013). From these gradients, local data
can be partially reconstructed. To see that, consider the following simple example. Assume a
classification task from d-dimension binary vectors, i.e., X = {0,1}d and Y = {−1,1}. Using
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Algorithm 6 Dynamic Averaging Protocol for Unbalanced Data
Input: divergence threshold ∆, batch size b
Initialization:

local models f1
1 , . . . , f

m
1 ← one random f

reference vector r ← f
violation counter v ← 0

Round t at node i:

observe Eit ⊂ X × Y with ∣Eit ∣ = n
i

update f it−1 using the learning algorithm ϕ
if t mod b = 0 and ∥f it − r∥

2 > ∆ then
send f it and ni to coordinator (violation)

end if
At coordinator on violation:

let B be the set of nodes with violation
v ← v + ∣B∣

if v =m then B ← [m], v ← 0
N ← ∑i∈B n

i

while B ≠ [m] and ∥ 1
N ∑i∈B n

if it − r∥
2
> ∆ do

augment B by augmentation strategy
receive models from nodes added to B
N ← ∑i∈B n

i

end while
send model f = 1

N ∑i∈B n
if it to nodes in B

if B = [m] also set new reference vector r ← f

the continuous averaging protocol C = (ASGD, σ1,aAV G,m) with SGD allows to reconstruct
local data if local models are known to an attacker. To see this, the following result shows how
to reconstruct a binary vector from a model update.

Proposition 4.8. Assume stochastic gradient descent with hinge loss `hinge is applied to a learning
task with X = {0,1}d and Y = {−1,1} using linear models. If in round t ∈ N an attacker has
access to ft and ft+1 and ft ≠ ft+1, then she can reconstruct xt ∈ X and yt ∈ Y .

Proof. The gradient of the hinge loss is given by

∇f `hinge(f, x, y) = ∇f max{0,1 − yf(x)} =
®

f is linear model

∇f max{0,1 − y ⟨f, x⟩} .

Since ft ≠ ft+1 it follows that

∇f `hinge(f, x, y) = ∇f(1 − y ⟨f, x⟩) = −yx .
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Since SGD is used as learning algorithm with some learning rate η ∈ R+ it follows that

ft+1 = ft − η∇f `hinge(f, x, y) = ft + ηyx

⇔ x =
1
ηy

(ft+1 − ft) .

Since y ∈ {−1,1} and η > 0 it holds for the j-th component of x that xj = 0⇔ (ft+1 −ft)j = 0.
Similarly xj = 1⇔ (ft+1−ft)j ≠ 0. Thus, x can be reconstructed. Since η > 0 and x ≥ 0 it also
follows that if for all components j ∈ [d] it holds that (ft+1 − ft)j > 0 then y = 1. Otherwise,
if (ft+1 − ft)j < 0 then y = −1.

From this it follows that if an attacker knows the model configuration in a distributed
learning system for two consecutive rounds, she can reconstruct local data.

Corollary 4.9. Assume a distributed learning system running stochastic gradient descent with
hinge loss `hinge on X = {0,1}d and Y = {−1,1}. If in rounds t and t + 1 an attacker has access to
the model configuration ft and ft+1, then for every learner i ∈ [m] with f it+1 ≠ f

i
t , the attacker can

reconstruct the local example (xit, yit).

Note that this result also holds for a subset of the model configuration. Using the contin-
uous averaging protocol with a dedicated coordinator node, an attacker that infiltrates the
coordinator has access to the entire model configuration. Thus, she can reconstruct local data
as in Proposition 4.8.

Corollary 4.10. Let C = (ASGD, σ1,aAV G,m) be executed in a network topology with dedicated
coordinator node. If in rounds t and t + 1 an attacker has access to the coordinator node, she can
reconstruct the local example

(xit, y
i
t)

at learner i if f it+1 ≠ f
i
t .

If instead of SGD a mini-batch SGD is used, or the attacker only knows ft and ft+b for
some b > 1 (e.g., because periodic averaging with b > 1 is used), then the local data cannot be
reconstructed in this manner. For kernel models, the problem of inferring local data is even
larger since the model itself consists of data instances (the support vectors) and thus sharing
the model is inherently non-private.
It follows from this example that in certain scenarios it does not suffice to protect the

local data, it is also necessary to protect the local updates (e.g., the gradients in case of SGD).
However, gradients can be reconstructed even if the attacker does not have access to a dedicated
coordinator node but only a subset of learners, or a partial average (Yan et al., 2013). These
privacy issues can be tackled by randomly perturbing models, or model updates, e.g., by
adding zero-mean noise to the gradient. Chaudhuri et al. (2011) have shown that adding zero-
mean noise to the output of an empirical risk minimization algorithm achieves εp-differential
privacy. This notion of privacy demands that for two datasets only differing in a single
example, the outputs of the learning algorithm on the two datasets do not differ much.
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Definition 4.11 (Dwork et al. (2006)). An algorithmA∶ X → F provides εp-differential privacy
if for any two datasets E,E′ ⊆ X that differ in a single element and for any set S ⊆ F it holds that

e−εpP (A(E′
) ∈ S) ≤ P (A(E) ∈ S) ≤ eεpP (A(E′

) ∈ S) .

In particular, adding a noise vector v ∈ F to the outputA(E) of an empirical risk minimiza-
tion algorithm A with density

p(v) = e−
λ∣E∣εp

2 ∥v∥2

achieves εp-differential privacy without changing the order of the generalization error of the
resulting model. Here λ ∈ R+ is the regularization parameter of the regularized ERM objective.
Similarly, adding noise to the gradient of SGD achieves εp-differential privacy when training
neural networks (Abadi et al., 2016).
Adding noise to the data also allows to achieve εp-differential privacy: Balcan et al. (2012)

have shown that using so-called statistical queries instead of standard access to the local dataset
guarantees that the model obtained is εp-differentially private. Such statistical queries can be
simulated by input noise (Kearns, 1998).
Another way of tackling the privacy issues is by computing the average in a privacy-

preserving manner, i.e., using secure multi-party computation protocols (cf. (Kairouz et al.,
2016; Lindell, 2005)). They guarantee that an attacker can at most learn about the model and
data of a learner it has gained access to.

These techniques can be combined with dynamic averaging. Especially adding input noise or
adding noise to local models can be straight-forwardly applied. Using secure multi-party com-
putation to compute the average, however, requires a change in the communication protocol
and leads to an increased amount of communication.
After having discussed these practical issues, the following section empirically evaluates

dynamic averaging. This includes a comparison with periodic averaging, as well as FedAvg,
and an evaluation on a real-world use-case from autonomous driving.

4.4. Empirical Evaluation

This section empirically evaluates dynamic averaging and compares it to periodic averaging, as
well as two baselines: the serial execution of the base learning algorithm on the dataset, again
denoted serial, and a distributed learning protocol that does not communicate at all, denoted
nosync. In order to control the execution and exclude side effects of a real distributed system,
the experiments are conducted in the simulated environment used in Chapter 3.
In order to analyze the convergence of dynamic averaging with respect to the amount of

communication it uses, a set of experiments using linear models, kernel models, and neural
networks is applied to multiple datasets. As a proxy for the convergence rate the cumulative
error is reported—its slope indicates convergence and the final value allows to compare the
convergence rates: the higher the final value, the slower the convergence. For each experiment,
the cumulative error is contrasted to the cumulative communication.

As an estimate of the generalization error of the resulting model, the predictive performance
on an independent test set with respect to the amount of communication is depicted. Moreover,
the development over time of these measures is analyzed in detail.
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As an example for a real-world application that fits naturally to dynamic averaging, in-fleet
learning of autonomous driving functionalities is investigated. In this scenario, each vehicle
constitutes a learner and the goal is to jointly learn a driving functionality, such as predicting
the steering angle from front-camera images. In this scenario, concept drifts occur naturally,
since properties central for the modeling task may change—changing traffic behavior both over
time and different countries or regions introduce constant and unforeseeable concept drifts.
Moreover, large high-frequency data streams generated by multiple sensors per vehicle renders
data centralization prohibitive in large fleets.

4.4.1. Linear and Kernel Models

In order to study the convergence and generalization error of dynamic averaging, it is first
compared to periodic averaging on the synthetic disjunctions dataset (see Section 3.5.1). Again,
a random disjunction over d = 50 literals is drawn randomly at the beginning of the learning
process, and in order to have balanced classes, the disjunctions as well as the samples x ∈

X = {0,1}d are generated such that each coordinate is set independently to 1 with probability
√

1 − 2−1/d, and the label is set to y = 1 if the disjunction over the sample is true and y = −1
otherwise. The prediction error of a model is measured by its zero-one-loss, i.e.,

`01(f, x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

0, if f(x) = yi
1, else

.

The model space F = Rd is the space of linear models in Rd. Recall that the model f ∈ F is a
function f ∶ X → Y that is identified with its representation as a vector in Rd. The function
value is given by (the sign of) the inner product of the vector with the sample x ∈ X .

The incremental learning algorithm used in the experiments is stochastic gradient descent
(SGD) ASGD with learning rate η ∈ R+ and hinge loss. For the disjunction experiment,
m = 128 learners ran for T = 10 000 rounds using the distributed learning protocols periodic
averaging with b ∈ {2,4,8,16,32,64,128,256} and dynamic averaging with b = 2 and ∆ ∈

{0.1,1.0,2.0,10.0,20.0,40.0}, as well as the nosync and the serial baseline.
Figure 4.1(a) shows the cumulative training error in contrast to the cumulative communi-

cation, with serial having the best predictive performance and nosync having the worst. The
instances of periodic averaging vary in their trade-off between predictive performance and
communication depending on the batch size b (see Table 4.1 for details). Protocols that com-
municate less than every b = 16 rounds have a high cumulative error, with b = 256 being close
to nosync already. Periodic averaging which communicates more, i.e., with b = 16 and b = 8,
achieves a low cumulative error (a zero one loss of less than 20.000 on a total of 1 280 000
means that roughly 1.5% of examples are misclassified, i.e., a training accuracy of 98.5%).
The training performance gets even closer to that of the serial baseline (which misclassifies
only 3 877 examples and thus has a training accuracy of 99.7%) with lower batch sizes, up to
b = 2 which achieves a training accuracy of 99.4%. This comes at the cost of a comparatively
huge amount of communication: Periodic averaging with b = 2 sends a total of 640 000 mes-
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Figure 4.1.: Cumulative error (zero-one-loss) and cumulative communication of several in-
stances of periodic and dynamic averaging, as well as the serial and nosync baseline. Figure (a)
shows the cumulative training error after T = 10 000 rounds of training (i.e., each instance
processing 1 280 000 examples), Figure (b) shows the cumulative error of the final model fT
on an independent test set of size 10 000.

sages, each consisting of a 50-dimensional vector, resulting in a cumulative communication
of 122MB. In contrast, periodic averaging with b = 16 achieves a training accuracy of 98.5%
with only 80 000 messages and thus a cumulative communication of only 15MB.

At the same time, dynamic averaging allows to achieve similar results to periodic averaging
with substantially less communication. Dynamic averaging with ∆ = 10.0 achieves a training
error of 15,782 (i.e., an accuracy of 98.8%)—which is even better than periodic averaging with
b = 16—with only 13 707 messages, that is roughly 6 times less communication. With a similar
amount of communication (dynamic averaging with ∆ = 1.0 uses 82 592 messages), dynamic
averaging achieves an error of 11,466 (that is 42% less error compared to periodic averaging
with b = 16). Comparing periodic averaging with b = 2 to dynamic averaging with ∆ = 1.0
shows that, while periodic averaging with b = 2 achieves a training error of 7 287 using 640 000
messages, dynamic averaging with ∆ = 0.1 achieves a slightly higher training error of 9,099,
but to achieve this it only requires 164.224. That is roughly 4 times less communication.

Thus, for every setup of periodic averaging (associated with a specific trade-off between error
and communication) a setup of dynamic averaging can be found that achieves a comparable
error with substantially less communication. These results also translate to the generalization
error of the final model obtained after training for T = 10.000 rounds. Figure 4.1(b) shows
that all protocols, except for nosync achieve a very high test accuracy (over 99% accuracy, with
dynamic averaging with ∆ = 40.0 being the worst with an accuracy of 99.56%). Such high
accuracies are to be expected, since the synthetic dataset was designed to be easily learnable by
linear models—even the nosync baseline achieves a test accuracy of 97.68%.
The convergence of the protocols in relation to the employed amount of communication

over time is detailed in Figure 4.2. The cumulative error of periodic averaging increases
substantially in the beginning of the learning process, even more so the less the protocols
communicate (see Figure 4.2(a)). By investing substantially more communication in the
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Protocol Cumulative Error Total Messages Total Comm.

serial 3 877 1 280 000 244.14MB
nosync 150 200 0 0MB

periodic averaging (b = 2) 7 287 640 000 122.07MB
periodic averaging (b = 4) 10 247 320 000 61.04MB
periodic averaging (b = 8) 14 472 160 000 30.52MB
periodic averaging (b = 16) 19 798 80 000 15.26MB
periodic averaging (b = 32) 38 955 40 000 7.63MB
periodic averaging (b = 64) 58 659 20 000 3.82MB
periodic averaging (b = 128) 80 305 10 000 1.92MB
periodic averaging (b = 256) 102 543 5 000 0.95MB

dynamic averaging (∆ = 0.1) 9 099 164224 31.32MB
dynamic averaging (∆ = 1.0) 11 466 82592 15.75MB
dynamic averaging (∆ = 2.0) 11 229 65840 12.56MB
dynamic averaging (∆ = 10.0) 15 782 13707 2.61MB
dynamic averaging (∆ = 20.0) 26 187 11491 2.19MB
dynamic averaging (∆ = 40.0) 66 301 5086 0.97MB

Table 4.1.: Cumulative training zero-one-loss and and cumulative communication of the dis-
junction experiment.

beginning (see Figure 4.2(b)), the dynamic averaging variants suffer less loss in that phase
compared to periodic averaging, resulting in an overall lower cumulative loss. This is achieved
by investing substantially more communication in the beginning. As soon as the models
converge, dynamic averaging reduces communication substantially, so that the overall amount
of communication is low. It should be noted though that dynamic averaging with large ∆
tends to not synchronize, even though it might have been beneficial, as indicated by the sudden
jumps in cumulative error during the later training process.

The results from the disjunction experiment suggest that indeed dynamic averaging achieves
a substantial improvement both in terms of convergence and communication by investing
communication when necessary. In order to test whether these results hold for more challeng-
ing datasets as well, the protocols are evaluated on the real-world dataset SUSY (Baldi et al.,
2014) from the UCI machine learning repository (Lichman, 2013). The dataset consists of
features derived from a Monte Carlo simulation of the sensor values of particle detectors for a
particle collision within the LHC experiment at CERN. The label for each collision indicates
whether a supersymmetric particle has been produced in that collision or not. The dataset
contains 4 999 999 examples with d = 18 features, which have been normalized to zero mean
and unit variance for this experiment.

Figure 4.3 shows the results of several periodic and dynamic averaging protocols withm = 10
learners after T = 5 000 rounds. The training is lower the more communication is invested with
dynamic averaging being more communication-efficient. The performance on an independent
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Figure 4.2.: Cumulative error (zero-one-loss) in log-scale over time (a) and cumulative commu-
nication in log-scale over time (b) of the disjunction experiment for a subset of the protocols.

test set of size 5 000 shows that dynamic averaging results in better models that periodic
averaging with less communication. Surprisingly, the models obtained by periodic averaging
with b = 32, as well as dynamic averaging with ∆ = 10 and ∆ = 20 achieve better performance
than the serial baseline.

In the following it is investigated, whether kernel methods achieve higher prediction quality
and how large the additional communication is. Figure 4.4 shows the results on the same
SUSY dataset with the same number of learners, rounds, and the same protocols. The training
error of all protocols shown in Figure 4.4(a) is similar, with dynamic averaging with ∆ = 40
and ∆ = 1.0, as well as periodic averaging with b = 2 achieving a performance comparable
to serial learning. Moreover, the error is an order of magnitude smaller than that of linear
models. On the test set, dynamic averaging with ∆ ∈ {1,10,40} achieves lower error than
all periodic protocols, for ∆ = 10 it performs even better than the serial baseline. Moreover,
its error is only half of the error of the best performing protocol with linear models. This
comes at the price of an amount of communication that is two orders of magnitude higher
than that for linear models. As discussed in Chapter 3 the reason for the high amount of
communication is the model size, which is up to linear in the dataset size. Another model
class that is able to model non-linear dependencies is the class of neural networks. Even though
those networks have a larger amount of parameters than linear models, the amount is fixed
and thus the communication does not depend on the dataset size. The following section
investigates dynamic averaging for neural networks.

4.4.2. Dynamic Averaging for Training Deep Neural Networks

After having studied dynamic averaging for batch learning in convex settings, it is now eval-
uated for the non-convex setting of training neural networks. To emphasize the theoretical
result from Section 4.1, it is shown that dynamic averaging indeed retains the performance of
periodic averaging with substantially less communication. This is followed by a comparison

101



(a) (b)

Figure 4.3.: Cumulative error (zero-one-loss) and cumulative communication with m = 10
learners on the SUSY dataset using linear models. Figure (a) shows results T = 5 000 rounds
of training (i.e., each instance processing 50 000 examples), Figure (b) shows the cumulative
error of the final model fT on an independent test set of size 5 000.

of the approach with Federated Averaging (FedAvg) which poses a state-of-the-art communi-
cation approach. The protocol to is then evaluated in a realistic application scenario from
autonomous driving1.

Figure 4.5.: Cumulative loss and communica-
tion of distributed learning protocols withm =

100 learners with mini-batch size B = 10, each
observing T = 14000 samples (corresponding
to 20 epochs for the serial baseline).

Throughout this section, if not speci-
fied separately, we consider mini-batch SGD
AmSGD
B,η as learning algorithm, since recent

studies indicate that it is particularly suited
for training deep neural networks (Zhang
et al., 2017). That is, we consider communi-
cation protocols Π = (AmSGD

B,η , σ,aAV G,m)

with various synchronization operators σ, av-
eraging aAV G as aggregation, and a number
of learners m ∈ N. The hyper-parameters of
the protocols and the mini-batch SGD have
been optimized on an independent dataset.
To evaluate the performance of dynamic

averaging in deep learning, it is first com-
pared to periodic averaging for training a
convolutional neural network (CNN) on the
MNIST classification dataset (LeCun, 1998).
The chosen architecture of a network is a sim-
ple convolutional network with two convolutional layers, a max pooling layer, and two dense
layers with final softmax activation. The overview of the network layers and the amount of

1 The code of the experiments is available at https://bitbucket.org/Michael_Kamp/
decentralized-machine-learning.
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(a) (b)

Figure 4.4.: Cumulative error (zero-one-loss) and cumulative communication with m = 10
learners on the SUSY dataset using kernel models with Gaussian kernel (σ = 2.4). Figure (a)
shows results T = 5 000 rounds of training, Figure (b) shows the cumulative error of the final
model fT on an independent test set of size 5 000.

weights are described in the Table 4.3. The employed loss function is categorical cross-entropy:

Hy(ŷ) ∶= −∑
i

yi log(ŷi)

where ŷi is the predicted probability for the class i and yi is 1 if the correct class is i and
0 otherwise. The optimal parameters are a batch size of B = 10 samples and learning rate
η = 0.1 for the serial learner. For the local learners the optimal learning rate is η = 0.25. The
experiment is performed in a setup withm = 100 learners.

Figure 4.6.: (a) The cumulative loss development during the training on MNIST dataset for
40 epochs with one dynamic and one periodic protocols. (b) The cumulative communication
development during the training on MNIST dataset for 40 epochs using dynamic averaging
(∆ = 0.3, b = 1) and periodic averaging (b = 1).
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protocol configurations
type parameters

periodic protocol (σb)
b = 1
b = 2
b = 4

dynamic protocol (σ∆,b)
b = 1,∆ = 0.3
b = 1,∆ = 0.7
b = 1,∆ = 1.0

Table 4.2.: Overview of the different communication protocol configurations used for MNIST
experiment. Except for protocol parameters ∆ and b, all other parameters are kept constant
between configurations.

Layer Type Output Shape #Weights
Conv2D (None, 26, 26, 32) 320
Conv2D (None, 24, 24, 64) 18,496

MaxPooling2D (None, 12, 12, 64) 0
Dropout (None, 12, 12, 64) 0
Flatten (None, 9216) 0
Dense (None, 128) 1,179,776

Dropout (None, 128) 0
Dense (None, 10) 1,290

Total 1,199,882

Table 4.3.: The architecture of the Convolutional Neural Network used for MNIST dataset.
Printout of the parameters made via Keras library.

Figure 4.5 shows the cumulative error of several setups of dynamic and periodic averaging,
as well as the nosync and serial baselines. In this experiment the amount of examples shown to
each ofm = 100 learners was fixed to 14 000. Thus the amount of epochs that serial baseline
model was trained for is 20, since the overall size of the dataset is 70 000. All the considered
protocols can be seen from Table 4.2. The experiment confirms that for each setup of the
periodic averaging protocol a setup of dynamic averaging can be found that reaches a similar
predictive performance with substantially less communication (e.g., a dynamic protocol with
σ∆=0.7 reaches a performance comparable to a periodic protocol with σb=1 using only half of
the communication). The more learners communicate, the lower their cumulative loss, with
the serial baseline performing the best.

The advantage of the dynamic protocols over the periodic ones in terms of communication
is in accordance with the convex case. For large synchronization periods, however, synchroniz-
ing protocols (σb=4) have even larger cumulative loss than the nosync baseline. This behavior
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Figure 4.7.: Evolution of cumulative commu-
nication for different dynamic averaging and
FedAvg protocols onm = 30 learners using a
mini-batch size B = 10.

Figure 4.8.: Comparison of the best perform-
ing settings of the dynamic averaging proto-
col with their FedAvg counterparts.

cannot happen in the convex case, where averaging is always superior to not synchronizing.
In contrast, in the non-convex case this behavior can be explained by the convergence of the
local models to different local minima. Then their average might have a higher loss value than
each one of the local models (recall Figure 4.14 for an illustration).
Figure 4.6 gives further details on the experiment, showing the development over time

of the cumulative loss and the cumulative communication for σ∆=0.3 and σb=1 in the setup
with m = 200 learners. In the beginning, dynamic averaging invests a lot of communication
(Figure 4.6(b)), but once the learners are trained on a larger amount of examples the dynamic
protocol does not require much communication anymore keeping almost the same level of
cumulative loss (Figure 4.6(a)).

Comparison of the Dynamic Averaging Protocol with FedAvg

Having shown that dynamic averaging outperforms standard periodic averaging, it is now
compared to a highly communication-efficient variant of periodic averaging, denoted Fe-
dAvg (McMahan et al., 2017) (see Section 4.3.1), which poses a state-of-the-art for decen-
tralized deep learning under communication-cost constraints—more recent approaches are
interesting from a theoretical perspective but show no practical improvement (Jiang et al.,
2017), or tackle other aspects of federated learning, such as non-iid data (Smith et al., 2017) or
privacy aspects (McMahan et al., 2018).
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Using the terminology of this thesis, FedAvg is a periodic averaging protocol that uses only
a randomly sampled subset of nodes in each communication round. This subsampling leads
to a reduction of total communication by a constant factor compared to standard periodic
averaging. In order to compare dynamic averaging to FedAvg, the MNIST classification is
repeated using CNNs and multiple configurations of dynamic averaging and FedAvg.
Table 4.4 shows the settings of dynamic averaging and FedAvg used for their comparison.

The experiment runs with m = 30 learners, mini-batch size B = 10 and b = 5. The FedAvg
parameter C ∈ (0,1] McMahan et al. (2017) is the fraction of learners involved in a particular
model synchronization and their parameter E, the number of local batches, corresponds to
the parameter b. Each learner is trained on 8000 training examples. Accuracy is calculated on
the last 100 training examples.

protocol configurations
type parameters
periodic protocol (σb) b = 5

dynamic protocol (σ∆,b)

b = 5,∆ = 0.1
b = 5,∆ = 0.2
b = 5,∆ = 0.4
b = 5,∆ = 0.6
b = 5,∆ = 0.8

FedAvg (σFedAvg)
b = 5,C = 0.3
b = 5,C = 0.5
b = 5,C = 0.7

Table 4.4.: Overview of the different communication protocol configurations for the compar-
ison with FedAvg. Except for protocol parameters ∆ and C, all other parameters are kept
constant between configurations.

Figure 4.7 shows the evolution of cumulative communication during model training com-
paring dynamic averaging to the optimal configuration of FedAvg with b = 5 and C = 0.3
for MNIST (see Section 3 in McMahan et al. (2017)) and variants of this configuration. Be-
tween the communication curves a noteworthy spread can be found, while all approaches
have comparable losses. The communication amounts of all FedAvg variants increase linearly
during training. The smaller the fraction of learners, C ∈ (0,1], involved in synchronization,
the smaller the amount of communication. In contrast, the curves for all dynamic averaging
protocols increase step-wise which reflect their inherent irregularity of communication. Dy-
namic averaging with ∆ = 0.6 and ∆ = 0.8 beat the strongest FedAvg configuration in terms
of cumulative communication, the one with ∆ = 0.8 even with a remarkable margin. These
improvements in communication efficiency come at virtually no cost: Figure 4.8 compares
the three strongest configurations of dynamic averaging to the best performing FedAvg ones,
showing a reduction of over 50% in communication with an increase in cumulative loss by
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Figure 4.9.: Evolution of (a) total communication and (b) cumulative error during training
for different dynamic averaging and FedSGD protocols.

only 8.3%. The difference in terms of classification accuracy is even smaller, dynamic averag-
ing is only worse by 1.9%. Allowing for more communication improves the loss of dynamic
averaging to the point where dynamic averaging has virtually the same accuracy as FedAvg
with 16.9% less communication.

Black-Box Property

(a) ADAM (b) RMSprop

Figure 4.10.: The averaged loss and the cumulative communication of the synchronization
protocols form = 10 learners. Training is performed on MNIST for 2 epochs.
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Figure 4.11.: The cumulative loss and the cumulative communication of the same synchro-
nization protocols for a different amount of learners. Training is performed on MNIST for 2,
20 and 40 epochs form = 10,m = 100,m = 200 setups correspondingly.

In comparison with distributed mini-batch SGD (Chen et al., 2016; Dekel et al., 2012),
dynamic averaging allows to treat the optimization algorithm as a black-box. To show this,
the MNIST experiments are repeated with the ADAM optimizer (Kingma and Ba, 2014) and
RMSprop (Tieleman and Hinton, 2012). The experiments show similar behavior for the same
synchronization operators, i.e., σb=1, σb=2, σb=4, σ∆=0.3, σ∆=0.7, σ∆=1 (see Figure 4.10).

Scale-out Experiments

Communication size grows when the amount of the local learners is becoming larger, while
it is still bounded for periodic and dynamic synchronization protocols (Section 4.1). In order
to see the behavior of periodic and dynamic synchronization while changing the number of
learners an experiment that included setup withm = 10,m = 100 andm = 200 was executed.
The same synchronization operators were used in all three setups and the same number of
examples was presented to each of the learners.
When the amount of examples per learner is fixed the larger number of synchronizing

learners leads to a larger training dataset and, as a consequence, to a better performance of
all the models. When the models are saturated due to the long training and do not differ
significantly enough to trigger the local conditions (see Section 3.2), the advantage of the
dynamic protocols over the periodic ones becomes more pronounced. The plot depicted in
Figure 4.11 shows the performance of two dynamic and two periodic protocols for the three
scaling setups. In order to make the cumulative loss comparable it was divided by the number
of learners, i.e., the cumulative loss ofm = 100 learners is the sum of cumulative losses of all of
them that is 10 times more than the sum form = 10 learners—thus the first sum divided by 100
is comparable to the second one divided by 10. The plot shows that in the setup withm = 10
learners σ∆=0.7 shows a comparable result to σb=2 by the price of the same communication.
At the same time withm = 100 learners it already reaches much smaller cumulative loss. With
m = 200 learners σ∆=0.3 requires less communication than σb=1 that was not the case for the
previous setups.
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Case Study on Deep Driving

After having studied dynamic averaging in contrast to periodic approaches and FedAvg on
MNIST, it is analyzed how it performs in the realistic application scenario of in-fleet training
for autonomous driving. That is, every vehicle continuously trains a local model based on its
observations in shadow mode. This requires to infer the correct output locally for training.
For that, the label is inferred from a human driver by mimicking her driving behavior using a
frontal view camera as input (Bojarski et al., 2016; Fernando et al., 2017; Pomerleau, 1989).
Using only vehicles in a specific region, the data seen by an individual local learner has in

good approximation a low variability and heterogeneity, because people driving cars tend to
stay close to their base. Thus, data from cars from a similar region can be assumed to be fairly
homogeneously distributed.
In order to mimic this scenario for the experiments, human driving behavior is recorded

in a simulation for multiple drivers on a single track. However, data of cars from different
base locations, collected at different times or in different cars will underlie different (local)
approximations of the actual distribution. This actual distribution has in contrast to its local
approximations a large variability and heterogeneity, even if one considers only the minor
set of tasks solved by machine learning. Thus, for in-fleet training over various regions the
data cannot be assumed iid anymore. However, empirical results (McMahan et al., 2017) and
recent extensions to the federated learning (Smith et al., 2017) suggest that the approach is
capable of handling non-iid data. One of the approaches in autonomous driving is direct
steering control of a constantly moving car via a neural network that predicts a steering angle
given an input from the front view camera. Since one network fully controls the car this
approach is termed deep driving. Deep driving neural networks can be trained on a dataset
generated by recording human driver control and corresponding frontal view (Bojarski et al.,
2016; Fernando et al., 2017; Pomerleau, 1989).

For the experiments, a neural network architecture is used that is suggested for deep driving
by Bojarski et al. (2016). The architecture of its layers are given in Table 4.5. The employed loss
function is squared error as it is implemented in Keras “mean_squared_error”. The network
is optimized using mini-batch SGD. The experiments were run with training batch size of
B = 10 and learning rate η = 0.1 both for the baselines and local learners. The input to the
network is the front camera view from a car driven in a simulator2. The output of the network
is a steering angle that allows to control the car in the autonomous mode in the simulator
when the speed is kept on a constant level.

The learners are evaluated by their driving ability following the qualitative evaluation made
by Bojarski et al. (2016) or Pomerleau (1989) as well as techniques used in the automotive
industry. For that, a custom loss was developed together with experts for autonomous driving:
During the evaluation a trained model has been loaded to drive the car in the autonomous
regime in the simulator. The time that the model is able to control the car without going
off the road or crashing is measured. The longest time tmax is the time for the model that
is able to keep going for 2 laps on the track or the maximum time of all the models in one
experiment. Also the amount of times the car has touched the sideline of the road is counted
together with the time duration while car is still on the sideline tline. Then a frequency c of
2 https://github.com/udacity/self-driving-car-sim
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Layer Type Output Shape #Weights
Conv2D (32, 158, 24) 1 824
Conv2D (14, 77, 36) 21 636
Conv2D (5, 37, 48) 43 248
Conv2D (3, 35, 64) 27 712
Conv2D (1, 33, 64) 36 928
Flatten (2 112) 0
Dense (100) 211 300
Dense (50) 5 050
Dense (10) 510
Dense (1) 11

Total 348 219

Table 4.5.: The architecture of the Convolutional Neural Network used for deep driving. Print-
out of the parameters made via Keras library.

sideline crossings is calculated in a form #crossings
t , where t is the time before going off road

or crash, and the maximal frequency among all the models is assigned to cmax. The overall
formula for the custom loss is:

Ldd = λ
tmax − t

tmax
+ µ

c

cmax
+ (1 − µ − λ) tline

t

where t is the time that the model is able to drive on the road, λ,µ ∈ [0; 1] are weighting
coefficients. For the experiment λ = 0.8 and µ = 0.15 were used.

The amount of examples shown to each of them = 10 learners is 25000, i.e., the dataset was
shown to the serial learner approximately 5 times (the overall size of the dataset is ≈ 48000).
The list of the considered communication protocols can be seen from Table 4.6.

Figure 4.12(a) shows the measurements of the custom loss against the cumulative commu-
nication. The principal difference from the previous experiments is the evaluation of the
resulting models without taking into account cumulative training loss. All the resulting mod-
els as well as baseline models were loaded to the simulator and driven with a constant speed.
The plot shows that each periodic communication protocol can be outperformed by a dy-
namic protocol. Examining the evolution of cumulative communication (see Figure 4.12(b))
shows that—similar to the results on MNIST—dynamic averaging invests a large amount of
communication in the beginning and then considerably reduces communication. This pattern
is most apparent for dynamic averaging with ∆ = 0.1.
Similar to our previous experiments, too little communication leads to bad performance,

but for deep driving, very high communication (σb=1 and σ∆=0.01) results in a bad performance
as well. On the other hand, proper setups achieve performance similar to the performance of
the serial model (e.g. dynamic averaging with ∆ = 0.1 or ∆ = 0.3). This raises the question,
how much diversity is beneficial in-between averaging steps and how diverse models should
be initialized. We discuss this question and other properties of dynamic averaging in the
following section.
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protocol configurations
type parameters

periodic protocol (σb)

b = 1
b = 2
b = 4
b = 8

dynamic protocol (σ∆,b)

b = 1,∆ = 0.01
b = 1,∆ = 0.05
b = 1,∆ = 0.1
b = 1,∆ = 0.3

Table 4.6.: Overview of the different communication protocol configurations used for deep
driving experiment. Except for protocol parameters ∆ and b, all other parameters are kept
constant between configurations.

Impact of Model Initialization for Distributed Deep Learning

A general question when using averaging is how local models should be initialized. McMahan
et al. (2017) suggest using the same initialization for all local models and report that different
initializations deteriorate the learning process when models are averaged only once at the end.
Studying the transition from homogeneously initialized and converging model configurations
to heterogeneously initialized and failing ones reveals that, surprisingly, for multiple rounds of
averaging different initializations can indeed be beneficial. Figure 4.13 shows the performances
of dynamic and periodic averaging for different numbers of rounds of averaging and different
levels of inhomogeneity in the initializations. The results confirm that for one round of
averaging, strongly inhomogeneous initializations deteriorate the learning process, but for
more frequent rounds of averaging mild inhomogeneity actually improves training. For large
heterogeneities, however, model averaging fails as expected. This raises an interesting question
about the regularizing effects of averaging and its potential advantages over serial learning in
case of non-convex objectives.
To parameterize the transition from homogeneous to heterogeneous initializations, the

setup starts with a homogeneous initialization according to Xavier Glorot (2010) and imposes
noise at different scales ε on the homogeneous initialization. The noise scale ε is measured
relative to the scale of the homogeneous initialization. Experiments are conducted withm = 10
learners, B = 10 and 500 training examples per learner for a grid of ε and b combinations. In
Fig. 4.13, each point corresponds to the average model performance after running one such
experiment. The b dependency of the averaged model performance is shown on the abscissa,
noise scale ε serves as curve parameter. Fig. 4.13(a) shows the results for periodic averaging,
Fig. 4.13 (a) for dynamic model averaging. The averaged model accuracies are not shown as
absolute values but relative to the configuration with ε = 0 and b = 1 which corresponds to
homogeneously initialized models which communicate after processing one mini-batch.
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(a) (b)

Figure 4.12.: Performance in the terms of the custom loss for the models trained according to
a set of communication protocols and baseline models, showing the (a) trade-off between loss
and communication and the (b) development of communication.

For homogeneously initialized models, i.e., ε = 0, a weak dependence can be found of result-
ing model performance on the number of local mini-batches. Even configurations with very
large numbers of local batches between two subsequent model averagings lead to convergence
(see McMahan et al. (2017)). However, this finding can be extended to the heterogeneous case,
if the scales of these heterogeneities are at the scale of the underlying homogeneous initializa-
tion, e.g., ε ∈ {1,2,3}. For large heterogeneities, however, model averaging fails, e.g. for ε = 20.
The transition between these two regimes occurs between ε = 5 and ε = 10, which show a
strong dependency of model convergence on the number of local mini-batches. This critical
scale of heterogeneity imposes a constrain on the choice of the dynamic protocol parameter ∆
which indirectly determines the average distances between the different weight vectors before
model averaging.

4.5. Discussion

In this chapter, dynamic averaging was applied to incremental learning algorithms for batch
learning. For learning algorithms that perform regret-proportional convex updates it was
shown that dynamic averaging retains the convergence rate of periodic averaging. This includes
SGD, mini-batch SGD, GD, and passive aggressive updates for linear and kernel models. Since
periodic averaging for SGD and mini-batch SGD has an optimal convergence rate it follows
that dynamic averaging for those base learning algorithms has an optimal convergence rate as
well. Moreover, the communication bounds from Chapter 3 apply here as well.

A shortcoming of this analysis is that these algorithms do not perform regret-proportional
convex updates when applied to neural networks. However, it can be shown that SGD, mini-
batch SGD, and GD with neural networks perform updates that are contractions in case the
models are in a locally convex environment. For this case, the convergence result has been
extended to learning algorithms that perform updates which are contractions. Thus, under
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(a) static averaging protocols (b) dynamic averaging protocols

Figure 4.13.: Relative performances of averaged models on MNIST obtained from various
heterogeneous model initializations parameterized by ε and various b ∈ N. All averaged model
performances are compared to an experiment with homogeneous model initializations (ε = 0)
and b = 1.

the assumption that the region of the loss surface around the neural network models is locally
convex, it can be shown that dynamic averaging has optimal convergence for SGD, mini-batch
SGD, and GD.

Using this result on the convergence rate, the generalization error of using dynamic averag-
ing for batch learning can be bounded using the ERM model. Assume that each of them ∈ N
local learners i ∈ [m] has a local dataset Ei. Since the model obtained from dynamic averaging
converges to the minimizer over all local datasets, the number of examples observed is given
by

N =
m

∑
i=1

∣Ei∣ .

If the learning algorithm has a sample complexity ofNF(ε, δ), then given δ ∈ (0,1] and setting
N = NF(ε, δ) allows to solve for ε. Thus, the risk can be bounded by

LD(fT ) ≤ min
f ′∈F
LD(f

′
) + ε + ε̂ ,

where ε̂ ∈ R+ denotes the optimization error after T ∈ N rounds (see Section 2.1.4 in Chapter 2).
Since dynamic averaging retains the convergence rate of several base learning algorithms,
the optimization error can be quantified as well: If such a base learning algorithm has a
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convergence rate in O(g(T )) (e.g., recall that for SGD the convergence rate is in O(1/
√
T)),

then the convergence rate of dynamic averaging is in O(g(mT )). For example, for dynamic
averaging with SGD it follows that ε̂ ∈ O (1/mT).

When using dynamic averaging with neural networks, a major problem both in theory and
in practice is that models are assumed to be in a locally convex environment. As mentioned
already in Section 3.2.3 in Chapter 3, averaging models for non-convex objectives can deteri-
orate the learning process. For example, all local models can be converged to different local
minima so that their average performs worse than any local model (see Figure 4.14 for an
illustration). McMahan et al. (2017) argue that, in practice, by initializing all local models

Figure 4.14.: Illustration of the problem of averaging models in non-convex problems: each
of the models f1, . . . , f4 has reached a local minimum, but their average f has a higher error
than each of them.

to the same initial model averaging works for (deep) neural networks. The experiments in
Section 4.4.2 confirm this. In addition, they show that mildly inhomogeneous initialization
even improves the training. Of course, strongly heterogeneous initialization leads the training
to fail. This supports the assumption that models initialized in the same neighborhood with
high probability remain in the same locally convex environment. This indicates that the as-
sumption in Theorem 4.4, i.e., in each round local models are in a locally convex environment,
is not entirely unrealistic.
This chapter has shown that dynamic averaging is indeed suitable to batch learning with

incremental learning algorithms. It retains the convergence rate of several popular learning
algorithms, scaling well with the number of learners, and reducing communication substan-
tially compared to periodic scheme, such as periodic averaging and FedAvg. However, it does
not achieve polylogarithmic runtime on quasi-polynomially many processing units. Moreover,
it is not applicable to non-incremental algorithms.

The next chapter presents a novel aggregation operator based on the Radon point that can be
used in an aggregation-at-the-end parallelization. The resulting distributed learning protocol
allows to parallelize a broad class of machine learning algorithms—including non-incremental
ones–with minimal communication and substantial speedup. At the same time it achieves the
same model quality as the serial application of the base learning algorithm.
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In the Chapters 3 and 4 I have presented an efficient distributed learning protocol for
incremental learning algorithms. Since this protocol requires multiple aggregation steps during
the training process, it is not suitable for non-incremental algorithms. For them algorithms,
the only viable strategy is to aggregate models at the end of the training process. Such an
aggregation-at-the-end protocol runs the non-incremental learning algorithm A in parallel on
m learners withm local datasets E1, . . . ,Em to obtainm weak models f1, . . . fm. Here, weak
means that the quality of these models is substantially lower than that of a model trained on the
union of all local datasets. The goal is to aggregate them into a single model f = a(f1, . . . fm)

with a quality similar to one trained on the union of local datasets. A natural choice for the
aggregation operator would be the average. However, no strong guarantees on the model
quality can be given for averaging-at-the-end: Shamir and Srebro (2014) have shown that
averaging-at-the-end can be arbitrarily bad.
The goal of this chapter is to derive a novel and provably effective parallelization scheme

for a broad class of learning algorithms, including non-incremental ones. The significance of
this result is to allow the confident application of machine learning algorithms with growing
amounts of data. In critical application scenarios, i.e., when errors have almost prohibitively
high cost, this confidence is essential (Nouretdinov et al., 2011; Sommer and Paxson, 2010).
To this end, the parallelization of an algorithm is considered to be effective if it achieves
the same confidence and error bounds as the sequential execution of that algorithm in much
shorter time. Indeed, the proposed parallelization scheme can reduce the runtime of learning
algorithms from polynomial to polylogarithmic. For that, it consumes more data and is
executed on a quasi-polynomial number of processing units. The amount of communication
required only depends on the amount of processing units.
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Section 5.1 recapitulates the learning setting. Section 5.2 introduces the aggregation operator
and the distributed learning protocol, denoted Radon machine, and provides probabilistic
error guarantees. Section 5.3 then analyzes the sample complexity and runtime of Radon
machine to achieve a given error guarantee, followed by an analysis of its speedup. The
approach is empirically evaluated in Section 5.4. The chapter concludes with a discussion of
the advantages and limitations of the approach in Section 5.5.

5.1. Non-Incremental Batch Learning Algorithms

In order to analyze the parallelization of a batch learning algorithm, this chapter again uses the
empirical risk minimization model (see Section 2.1.3). That is, for a fixed but unknown joint
probability distribution D over the input space X and the output space Y , a dataset E ⊆ X ×Y

of size N ∈ N drawn iid from D, a convex model space F of functions f ∶ X → Y , a loss
function ` ∶ F × X × Y → R that is convex in F , and a convex regularization term Ω ∶ F → R,
(regularised) empirical risk minimization algorithms solve

A(E) = argmin
f∈F

∑
(x,y)∈E

` (f, x, y) +Ω(f) .

Recall that the aim is to obtain a model f ∈ F with small regret

R(f) = LD(f) −min
f ′∈F
LD(f

′
) .

Empirical risk minimization algorithms are typically designed to be consistent1, i.e., there is
a function NF ∶ R+ ×R+ → R+ such that for all ε > 0, ∆ ∈ (0,1], N ∈ N with N ≥ NF(ε,∆),
and training data E ∼ DN , the probability of generating an ε-bad model is smaller than ∆, i.e.,

P (R(A(E)) > ε) ≤ ∆ .

Such algorithms are efficient2 if the sample complexity NF(ε,∆) is polynomial in 1/ε, log 1/∆

and the runtime complexity TA is polynomial in the sample complexity.
The main theoretical contribution of this chapter is to show that algorithms satisfying

the above conditions, e.g., support vector machines, regularized least squares regression, and
logistic regression, can be parallelized effectively. We consider a parallelization to be effective
if the (ε,∆)-guarantees (Equation 2.6) are achieved in time polylogarithmic in NF(ε,∆). To
achieve that it is furthermore assumed that data is abundant and that F can be parameterized
in a fixed, finite dimensional Euclidean space Rd such that the convexity of the empirical
risk minimization problem is preserved. The cost for achieving this reduction in runtime
comes in the form of an increased data size and through the number of processing units used.
For the distributed learning protocol presented in this chapter, this cost can be bound by a
quasi-polynomial in 1/ε and log 1/∆.
1 The notion of consistency differs from the consistency of a distributed learning protocol: the consistency of an
empirical risk minimization algorithm denotes a particular probabilistic error guarantee, whereas a consistent
distributed learning protocol retains a particular error guarantee of the base learning algorithm.

2 Efficiency here means that an empirical risk minimization algorithm achieves a probabilistic error guarantee
in polynomial time, whereas a distributed learning protocol is efficient if it retains error guarantees of its base
learning algorithm with bounded communication.
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The synchronization operator used in this chapter is aggregation at the end

σend(f
1, . . . , fm) = a(f1, . . . , fm) .

Asmentioned above, averaging is not a suitable aggregation operator, since averaging-at-the-end
can be arbitrarily bad (Shamir and Srebro, 2014). Therefore, in this Chapter I propose to use
an aggregation operator based on the Radon point (Radon, 1921). Similar to averaging-at-the-
end-based parallelizations (Rosenblatt and Nadler, 2016; Zhang et al., 2013; Zinkevich et al.,
2010), the resulting distributed learning protocol applies the underlying learning algorithm
in parallel to random subsets of the data. Each resulting model is assigned to a leaf of an
aggregation tree which is then traversed bottom-up. Each inner node computes a new model
that is a Radon point (Radon, 1921) of its children’s hypotheses. In contrast to aggregation
by averaging, the Radon point increases the confidence in the aggregate doubly-exponentially
with the height of the aggregation tree.

5.2. From Radon Points to Radon Machines

This section introduces a distributed learning protocol R = (σend,ar), denoted Radon ma-
chine, that aggregates models at the end using an aggregation operator ar based on the Radon
point (Radon, 1921). The Radon point of a set of points is defined as follows.

Definition 5.1. A Radon partition of a set S ⊂ F is a pair A,B ⊂ S such that A ∩B = ∅ but
⟨A⟩ ∩ ⟨B⟩ ≠ ∅, where ⟨⋅⟩ denotes the convex hull. The Radon number of a space F is the smallest
r ∈ N such that for all S ⊂ F with ∣S∣ ≥ r there is a Radon partition; or∞ if no Radon partition
exists. A Radon point of a set S with Radon partition A,B is any r ∈ ⟨A⟩ ∩ ⟨B⟩.

See Figure 5.1 for an illustration of the Radon point in R2. For the Euclidean space Rd, a
simple construction of a system of linear equations can be given with which a Radon point
of a set can be determined. In his main theorem, Radon (Radon, 1921) gives the following
construction of a Radon point for a set S = {s1, ..., sr} ⊆ Rd with r > d + 1. Find a non-zero
solution λ ∈ R∣S∣ for the following linear equations

r

∑
i=1
λisi = (0, . . . ,0) ,

r

∑
i=1
λi = 0 .

Such a solution exists, since ∣S∣ > d + 1 implies that S is linearly dependent. Then, let I, J
be index sets such that for all i ∈ I ∶ λi ≥ 0 and for all j ∈ J ∶ λj < 0. Then a Radon point is
defined by

r(λ) = ∑
i∈I

λi
Λ
si = ∑

j∈J

λj

Λ
sj , (5.2)

where Λ = ∑i∈I λi = −∑j∈J λj . Any solution to this linear system of equations is a Radon
point. The equation system can be solved in time r3. By setting the first element of λ to
one, we obtain a unique solution of the system of linear equations. Using this solution λ, we
define the Radon point of a set S as r(S) = r(λ) in order to resolve ambiguity. With this, the
distributed learning protocol R, denoted Radon machine, can be defined.
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Figure 5.1.: Illustration of a Radon point in R2 for different locations of points f1, . . . , f4:
points in general position (a) with Radon partitioning A = {f1, f3},B = {f2, f4}, one point
in the convex hull of the other three (b) with Radon partitioning A = {f1, f2, f3},B = {f4},
and collinear points (c) with Radon partition A = {f1, f2},B = {f3, f4}. A Radon point is
any point in the intersection of the Radon partition A,B. In (a) and (b) the Radon point
is unique, in (c) infinitely many points on the line segment from f3 to f2 are Radon points,
with one arbitrary Radon point depicted in the figure.

The Radon machine, as described in Algorithm 7, first executes the base learning algorithm
on random subsets of the data to quickly achieve weak models and then iteratively aggregates
them to stronger ones. Both the generation of weak models and the aggregation can be
executed in parallel. To aggregate models, we follow along the lines of the iterated Radon
point algorithm which was originally devised to approximate the center point of a finite set of
points (Clarkson et al., 1996).

Input to the Radon machine is a learning algorithm A on a model space F , a dataset
E ⊆ X × Y , the Radon number r ∈ N of the model space F , and a parameter h ∈ N. It divides
the dataset into rh subsets E1, . . . ,Erh (line 1) and runs the algorithm A on each subset in
parallel (line 2). Then, the set of models (line 3) is iteratively aggregated to form better sets of
models (line 4-8). For that the set is partitioned into subsets of size r (line 5) and the Radon
point of each subset is calculated in parallel (line 6). The final step of each iteration is to replace
the set of models by the set of Radon points (line 7).

The Radon machine requires a model space with a valid notion of convexity and finite
Radon number. While other notions of convexity are possible (Kay and Womble, 1971;
Rubinov, 2013), this chapter restricts its consideration to Euclidean spaces with the usual
notion of convexity. Radon’s theorem (Radon, 1921) states that the Euclidean space Rd has
Radon number r = d + 2. Radon points can then be obtained by solving a system of linear
equations of size r×r (see Equation 5.2). The next proposition gives a guarantee on the quality
of Radon points of models.
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Algorithm 7 Radon Machine
Require: learning algorithm A, dataset E ⊆ X × Y , Radon number r ∈ N, and parameter

h ∈ N
Ensure: model f ∈ F

1. divide E into rh iid subsets Ei of roughly equal size
2. run A in parallel to obtain fi = A(Ei)
3. S ← {f1, . . . , frh}
4. for i = h − 1, . . . ,1 do
5. partition S into iid subsets S1, . . . , Sri of size r each
6. calculate Radon points r(S1), . . . , r(Sri) in parallel # see Definition 5.1
7. S ← {r(S1), . . . , r(Sri)}
8. end for
9. return r(S)

Proposition 5.3. Given a probability measure P over a model space F with finite Radon number
r, let F denote a random variable with distribution P . Furthermore, let r be the random variable
obtained by computing the Radon point of r random points drawn according to P r. Then it holds
for the expected regretR and all ε ∈ R that

P (R(r) > ε) ≤ (rP (R(F ) > ε))2 .

Proposition 5.3 is proven together with Theorem 5.4. A direct consequence of Proposi-
tion 5.3 is a bound on the probability that the output of the Radon machine with parameter
h is bad:

Theorem 5.4. Given a probability measure P over a model space F with finite Radon number r,
letF denote a random variable with distribution P . Denote by r1 the random variable obtained by
computing the Radon point of r random points drawn iid according to P and by P1 its distribution.
Denote by rh the Radon point of r random points drawn iid from Ph−1 and by Ph its distribution.
Then for any convex functionR ∶ F → R and all ε ∈ R it holds that

P (R(rh) > ε) ≤ (rP (R(F ) > ε))2h .

In order to prove Proposition 5.3 and consecutively Theorem 5.4, the following properties
of Radon points and convex functions are required. These properties are proven for the more
general case of quasi-convex functions. Since every convex function is also quasi-convex, the
results hold for convex functions as well. A quasi-convex function is defined as follows.

Definition 5.5. A function R ∶ F → R is called quasi-convex if all its sublevel sets are convex,
i.e.,

∀θ ∈ R ∶ {f ∈ F ∣ R(f) < θ} is convex.

First, a different characterization of quasi-convex functions is given.
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Proposition 5.6. A function R ∶ F → R is quasi-convex if and only if for all S ⊆ F and all
s′ ∈ ⟨S⟩ there exists an s ∈ S withR(s) ≥ R(s′).

Proof.

(⇒) Suppose this direction does not hold. Then there is a quasi-convex function R, a set
S ⊆ F , and an s′ ∈ ⟨S⟩ such that for all s ∈ S it holds that R(s) < R(s′) (therefore
s′ ∉ S ). Let C = {c ∈ F ∣ R(c) < R(s′)}. As S ⊆ C = ⟨C⟩ we also have that ⟨S⟩ ⊆ ⟨C⟩

which contradicts ⟨S⟩ ∋ s′ ∉ C.

(⇐) Suppose this direction does not hold. Then there exists an ε such thatS = {s ∈ F ∣ R(s) < ε}
is not convex and therefore there is an s′ ∈ ⟨S⟩ ∖ S. By assumption ∃s ∈ S ∶ R (s) ≥
R(s′). Hence R(s′) < ε and we have a contradiction since this would imply s′ ∈ S.

The next proposition concerns the value of any convex function at a Radon point.

Proposition 5.7. For every set S with Radon point r and every quasi-convex functionR it holds
that ∣{s ∈ S ∣ R (s) ≥ R(r)}∣ ≥ 2.

Proof. We show a slightly stronger result: Take any family of pairwise disjoint sets Ai with
⋂i ⟨Ai⟩ ≠ ∅ and r ∈ ⋂i ⟨Ai⟩. From proposition 5.6 follows directly the existence of an ai ∈ Ai
such that R(ai) ≥ R(r). The desired result follows then from ai ≠ aj ⇐ i ≠ j.

Using this property, Proposition 5.3 and Theorem 5.4 can be proven.

Proof of Proposition 5.3 and Theorem 5.4. By proposition 5.7, for any Radon point r of a set
S there must be two points a, b ∈ S with R(a) ,R(b) ≥ R(r). Henceforth, the probability
of R(r) > ε is smaller or equal than the probability of the pair a, b having R(a) ,R(b) > ε.
Proposition 5.3 follows by an application of the union bound on all pairs from S. Repeated
application of the proposition proves Theorem 5.4.

Note that this proof also shows the robustness of the Radon point compared to the average:
if only one of r points is ε-bad, the Radon point is still ε-good, while the average may or may
not be; indeed, in a linear space with any set of ε-good models and any ε′ ≥ ε, one can always
find a single ε′-bad model such that the average of all these models is ε′-bad.
For the Radon machine with parameter h, Theorem 5.4 shows that the probability of

obtaining an ε-bad model is doubly exponentially reduced: with a bound δ on this probability
for the base learning algorithm, the bound ∆ on this probability for the Radon machine is

∆ = (rδ)2h . (5.8)

The next section will use this relation between ∆ and δ to compare the Radon machine to a
sequential application of the base learning algorithm for the same ε and ∆.
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5.3. Sample and Runtime Complexity

This section first derives the sample and runtime complexity of the Radon machineR from the
sample and runtime complexity of the base learning algorithm A. It then relates the runtime
complexity of the Radon machine to a sequential application of the base learning algorithm
when both achieve the same (ε,∆)-guarantee. For that, consistent and efficient base learning
algorithms are considered with a sample complexity of the formNA0 (ε, δ) = (αε + βε log2 1/δ)k,
for some3 αε, βε ∈ R, and k ∈ N. From now on, it is also assumed that δ ≤ 1/2r for the base
learning algorithm.
The Radon machine creates rh base models and, with ∆ as in Equation 5.8, has sample

complexity

NR0 (ε,∆) = rhNA0 (ε, δ) = rh ⋅ (αε + βε log2
1
δ
)
k

. (5.9)

Theorem 5.4 then implies that the Radon machine with base learning algorithmA is consistent:
with N ≥ NR0 (ε,∆) samples it achieves an (ε,∆)-guarantee.

To achieve the same guarantee as the Radon machine, the application of the base learning
algorithm A itself (sequentially) would requireM ≥ NA0 (ε,∆) samples, where

NA0 (ε,∆) = NA0 (ε, (rδ)2h
) = (αε + 2h ⋅ βε log2

1
rδ

)
k

. (5.10)

For base learning algorithms A with runtime TA(n) polynomial in the data size n ∈ N,
i.e., TA(n) ∈ O (nκ) with κ ∈ N, we now determine the runtime TR,h(N) of the Radon
machine with h iterations and c = rh processing units on N ∈ N samples. In this case all
base learning algorithms can be executed in parallel. In practical applications fewer physical
processors can be used to simulate rh processing units—we discuss this case in Section 5.5.

The runtime of the Radon machine can be decomposed into the runtime of the base learning
algorithm and the runtime for the aggregation. The base learning algorithm requires n ≥

NA0 (ε, δ) samples and can be executed on rh processors in parallel in time TA(n). The Radon
point in each of the h iterations can then be calculated in parallel in time r3. Thus, the runtime
of the Radon machine with N = rhn samples is

TR,h(N) = TA (n) + hr3 . (5.11)

In contrast, the runtime of the base learning algorithm for achieving the same guarantee is
TA(M) with M ≥ NA0 (ε,∆). Ignoring logarithmic and constant terms, NA0 (ε,∆) behaves
as 2hNA0 (ε, δ). To obtain polylogarithmic runtime of R compared to TA(M), we choose
the parameter h ≈ log2M − log2 log2M such that n ≈ M/2h = log2M . Thus, the runtime
of the Radon machine is in O(logκ2 M + r3 log2M). This result is formally summarized in
Theorem 5.12.

Theorem 5.12. The Radon machine with a consistent and efficient regularized risk minimization
algorithm on a model space with finite Radon number has polylogarithmic runtime on quasi-
polynomially many processing units if the Radon number is upper bounded by a function polyloga-
rithmic in the sample complexity of the efficient regularized risk minimization algorithm.
3 We derive αε, βε for model spaces with finite VC (Vapnik and Chervonenkis, 1971) and Rademacher (Bartlett
and Mendelson, 2003) complexity in Appendix B.3.
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Proof. We assume the base learning algorithm A to be a consistent and efficient regularized
risk minimization algorithm on a model space with finite Radon number. Let r ∈ N be the
Radon number of the model space and

NA0 (ε, δ) = (αε + βε log2
1
δ
)
k

be its sample complexity with αε, βε ≥ 0. In the following, we want to compare the runtime
of the Radon machine for achieving an (ε,∆)-guarantee to the runtime of the sequential
application of the base learning algorithm for achieving the same (ε,∆)-guarantee.

To achieve an (ε,∆)-guarantee, the Radon machine with parameter h ∈ N requires N = nrh

examples (i.e., with rh processing units), where n denotes the size of the data subset available
to each parallel instance of the base learning algorithm. Since ∆ = (rδ)2h , each base learning
algorithm needs to achieve an (ε, δ)-guarantee and thus requires

n = ⌈NA0 (ε, δ)⌉ ≤ (αε + βε log2
1
δ
)
k

+ 1 (5.13)

examples. The sequential application of the base learning algorithm requires at least (cf.
Equation 5.10)

M = ⌈NA0 (ε,∆)⌉ = ⌈(αε + 2h ⋅ βε log2
1
rδ

)
k

⌉ = ⌈(αε + 2h (βε log2
1
δ
− βε log2 r))

k

⌉ .

(5.14)
Solving Equation 5.13 for βε log2 1/δ yields

βε log2
1
δ
≤ (n − 1)

1
k − αε .

By inserting this into Equation 5.14 we obtain

M ≥ ⌈(αε + 2h ((n − 1)
1
k − αε − βε log2 r))

k
⌉ ∈ O (2h (n − log2 r)) . (5.15)

In the following, we show that for the choice of

h = ⌈
1
k
(log2M − log2 log2M)⌉ , (5.16)

the runtime of the Radon machine is polylogarithmic in M , i.e., polylogarithmic in the
number of examples the sequential application of the base learner requires to achieve an (ε,∆)-
guarantee. For that, the Radon machine requires quasi-polynomially many processors in
M . Note that the Radon machine processes N ≥ M many samples to achieve that (ε,∆)-
guarantee, which is more than the sequential application of the base learner requires with
N ∈ O (rh/2hkM).

Thus, we need to express the runtime of the Radon machine, which is

TR,h(N) = TA (
N

rh
) + r3 logr rh = TA (n) + r3 logr rh ,

122



in terms ofM instead of N . First, we express n in terms ofM , by solving Equation 5.15 for
n which yields

n ≤ ((αε (1 − 1
2h

) + βε log2 r +
1
2h
M

1
k )

k

+ 1) ∈ O (logk2 r +
1

2hk
M) . (5.17)

Since A is efficient, TA(n) ∈ O(nκ) and thus the runtime of the Radon machine in terms of
M , denoted T MR , is

T
M
R = TA (n) + r3 logr rh ∈ O ((logk2 r +

1
2hk

M)
κ

+ r3 log2 r
h
) .

Inserting h as in Equation 5.16 yields

(logk2 r +
1

2hk
M)

κ

+ r3 log2
M

log2M
=(logk2 r +

M

2k
1
k

log2
M

log2M
)

κ

+ r3 log2
M

log2M

=
⎛

⎝
logk2 r +

M
M

log2M

⎞

⎠

κ

+ r3 log2
M

log2M

=(logk2 r + log2M)
κ
+ r3 log2

M

log2M
.

This shows that
T
M
R ∈ O (logκ2 M + logkκ2 r + r3 log2M) .

Thus, the runtime of the Radon machine to achieve an (ε,∆)-guarantee in terms ofM (i.e.,
the number of samples required by the sequential application of the base learning algorithm)
is in O(logκ2 M + logkκ2 r + r3 log2M) and thus polylogarithmic inM .

We now determine the number of processing units c = rh in terms ofM . For that, observe
that h as in Equation 5.16 can be expressed as

h = ⌈
1
k
(log2M − log2 log2M)⌉ = ⌈

1
k
(log2

M

log2M
)⌉ = ⌈

log2 r

k
logr

M

log2M
⌉ ,

and thus the number of processing units is

c = rh ∈ O (M log2 r) .

As mentioned above, for the Radon machine to achieve an (ε,∆)-guarantee the base learn-
ing algorithm has to achieve δ ≤ 1/2r. Thus, the sample size with respect to M has to be
large enough so that each base learner achieves this minimum confidence. The base learning
algorithm achieves the minimum confidence forM ≥ 2kβε(αε+1): Equation 5.14 implies that
for each instance of the base learning algorithm to achieve δ ≤ 1/2r it is required that

M ≥ (αε + 2h ⋅ βε log2
1
r 1

2r
)

k

= (αε + 2hβε)
k
=
⎛

⎝
αε + (

M

log2M
)

1
k

βε
⎞

⎠

k

. (5.18)

123



WithM ≥ 2kβε(αε+1) ≥ 2kβε we have

(
M

log2M
)

1
k

βε ≥ 1 ,

and thus we can upper bound the right hand side of Equation 5.18 by

⎛

⎝
αε + (

M

log2M
)

1
k

βε
⎞

⎠

k

=

⎛
⎜
⎜
⎝

(
M

log2M
)

1
k

βε

⎛
⎜
⎜
⎝

αε

( M
log2M

)

1
k
βε

+ 1
⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

k

≤
M

log2M
βkε (αε + 1)k ≤

®
log2M≥βkε (αε+1)k

M .

The proof of Theorem 5.12 relates to Nick’s Class (Arora and Barak, 2009): A decision prob-
lem can be solved efficiently in parallel in the sense of Nick’s Class, if it can be decided by an
algorithm in polylogarithmic time on polynomially many processors (assuming, e.g., PRAM
model). For the class of decision problems that are the hardest in P , i.e., for P -complete
problems, it is believed that there is no efficient parallel algorithm for solving them in this
sense. Theorem 5.12 provides a step towards finding efficient parallelisations of regularised
risk minimisers and towards answering the open question: is consistent regularised risk min-
imisation possible in polylogarithmic time on polynomially many processors. While Nick’s
Class as a notion of efficiency has been criticized (Kruskal et al., 1990), it is the only notion
of efficiency that forms a proper complexity class in the sense of Blum (1967). To overcome
the weakness of using only this notion, Kruskal et al. (1990) suggested to consider also the
inefficiency of simulating the parallel algorithm on a single processing unit.
The following section analyses the inefficiency and speedup of the Radon machine.

5.3.1. Speedup and Inefficiency

This section determines the speedup of the Radon machine over the sequential execution of
the base learning algorithm when both achieve the same (ε,∆)-guarantee. For that, recall that
the sample complexity of the base learning algorithm for a given ε > 0, 0 < ∆ < 1 is

NA0 (ε,∆) = (αε + βε log2
1
∆

)
k

.

Assuming that αε ∈ Θ(ε−1) and βε ∈ Θ(ε−1) (see for example Lemma A.4 and Lemma A.5),
and following the notion of Hanneke (2016) the sample complexity can be expressed as

NA0 (ε,∆) ∈ Θ((
1
ε
+

1
ε

log2
1
∆

)
k

) = Θ((
1
ε

log2
1
∆

)
k

) . (5.19)

Similar to Kruskal et al. (1990), we assume the base algorithm to have a runtime polynomial
in N , i.e.,

TA ∈ Θ (Nκ
) = Θ((

1
ε

log2
1
∆

)
kκ

) . (5.20)
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The Radon machine runs A in parallel on c processors to obtain rh weak models with (ε, δ)-
guarantee. It then combines the obtained solutions h times—level-wise in parallel—calculating
the Radon point (which takes time r3). In this paper we assume the number of available
processors to be abundant and thus set c = rh. With this, the runtime of the Radon machine is

TR ∈ Θ((
1
ε

log2
1
δ
)
kκ

+ hr3
) . (5.21)

We now provide an analysis on the speed-up for c = rh and arbitrary h ∈ N.

Proposition 5.22. Given a polynomial time consistent regularized risk minimization algorithm
A using a model space with finite Radon number r ∈ N and runtime as in Equation 5.20, the Radon
machine run with parameter h ∈ N on rh processors. Then, the ratio of the runtime of the base
learner over the runtime of the Radon machine, denoted the speed-up (Kruskal et al., 1990)

TA
TR

,

is in

Θ
⎛
⎜
⎜
⎝

2hkκ

1 + hr3

( 1
ε

log2
1
δ
)kκ

⎞
⎟
⎟
⎠

.

Proof. In order to achieve an (ε,∆)-guarantee, the Radon machine runs rh parallel instances
of the the base learning algorithm on n = ⌈NA0 (δ)⌉ examples with δ ≤ 1/2r so that ∆ = (rδ)2h .
To achieve the same (ε,∆)-guarantee, the sequential execution of the base learning algorithm
requires

M = ⌈NA0 (∆)⌉ = ⌈(2h ⋅ 1
ε

log2
1
rδ

)
k

⌉ ∈ Θ((2h 1
ε

log2
1
rδ

)
k

) = Θ((2h 1
ε

log2
1
δ
)
k

) .

The last step follows from the fact that, since δ ≤ 1/2r, we have 1/rδ ≥ 2r/r ≥ r and thus

log2
1
rδ

≤ log2
1
rδ

+ log2 r = log2
1
δ
≤ 2 log2

1
rδ

⇒ log2
1
δ
∈ Θ(log2

1
rδ

) ⇔ log2
1
rδ

∈ Θ(log2
1
δ
) ,

To achieve the (ε,∆)-guarantee, the base learning algorithm has a runtime of

TA ∈ Θ (Mκ
) = Θ((2h 1

ε
log2

1
δ
)
kκ

) .

Using TR from Equation 5.21, we get that
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The speed-up then is

TA
TR

∈ Θ
⎛
⎜
⎜
⎝

2hkκ

1 + hr3

( 1
ε

log2
1
δ
)kκ

⎞
⎟
⎟
⎠

.

Note that the runtime of the Radon machine for the case that 1 ≤ c ≤ rh is given by

TR ∈ Θ(
rh

c
((

1
ε

log2
1
δ
)
kκ

) + r3
h

∑
i=1

⌈
ri

c
⌉) .

In this case, the speed-up is lower by a factor of rh/c.
In the following, we analyse the inefficiency (Kruskal et al., 1990) of the Radon machine,

i.e., the ratio between the total number of operations executed by all processors, and the work
of the sequential algorithm.

Proposition 5.23. The Radon machine with a consistent and efficient regularized risk minimiza-
tion algorithm on a model space with finite Radon number has quasi-polynomial inefficiency if the
Radon number is upper bounded by a function polylogarithmic in the sample complexity of the
efficient regularised risk minimisation algorithm.

Proof. Let A be a consistent and efficient regularised risk minimisation algorithm on a model
space with finite Radon number r ∈ N. Since A is efficient, its runtime TA(M) is in O(Mκ).
From the proof of Theorem 5.12 follows that, when choosing h = ⌈ 1

k (log2M − log2 log2M)⌉

the Radon machine has a runtime in O(logκ2 M + logkκ2 r + r3 log2M) using O(M log2 r) pro-
cessing units. The inefficiency of the Radon machine then is in

O
⎛

⎝

M log2 r (logκ2 M + logkκ2 r + r3 log2M)

Mκ

⎞

⎠
∈ O (M (log2 r)−κ logκ2 M) = O (M log2 r) .

Thus, the inefficiency of the Radon machine is quasi-polynomially bounded or, for short, it
has quasi-polynomial inefficiency.

In order to achieve the same (ε,∆)-guarantee as the base learning algorithm, the Radon
machine requires more data. In the following, we analyze the data inefficiency, i.e., the ratio of
the data required by the Radon machine over the data required by the base learning algorithm
NR(ε,∆)/NA(ε,∆).

Proposition 5.24. The Radon machine with a consistent and efficient regularized risk minimiza-
tion algorithm A with sample complexityNA(ε,∆) on a model space with finite Radon number
r ∈ N has a data inefficiency in

Θ
⎛
⎜
⎝
(

M

log2M
)

log2 r
k ⎞

⎟
⎠
,

whereM = ⌈NA(ε,∆)⌉.
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Proof. We assume the sample complexity can be expressed as in Equation 5.19. For ∆ = (rδ)2h

we have that

NR(ε,∆) =rhNA(ε, δ) ∈ Θ(rh (
1
ε

log2
1
δ
)
k

)
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Thus, the data inefficiency is in

Θ(
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) .

Choosing h = ⌈k−1(log2M − log2 log2M)⌉ as in the proof of Theorem 5.12, this is in
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After having determined the speed-up for achieving the same theoretical guarantees, the fol-
lowing section empirically studies the predictive quality and speedup of the Radon machine in
scenarios with a fixed, finite dataset in realistic scenarios.

5.4. Empirical Evaluation

This empirical study compares the Radon machine to state-of-the-art parallel machine learning
algorithms from the Spark machine learning library (Meng et al., 2016), as well as the natural
baseline of averaging models instead of calculating their Radon point, denoted averaging-at-the-
end (Avg). In this study, we use base learning algorithms from WEKA (Witten et al., 2016)
and scikit-learn (Pedregosa et al., 2011). We compare the Radon machine to the base learning
algorithms on moderately sized datasets, due to scalability limitations of the base learners,
and reserve larger datasets for the comparison with parallel learners. The experiments are
executed on a Spark cluster (5 worker nodes, 25 processors per node)4. In this study, we apply
the Radon machine with parameter h = 1 and the maximal parameter h (denoted h = max)
such that each instance of the base learning algorithm is executed on a subset of size at least
100. Averaging-at-the-end uses the same parameter h and executes the base learning algorithm
on rh subsets, i.e., the same number as the Radon machine with that parameter.

4 The source code implementation in Spark can be found in the bitbucket repository
https://bitbucket.org/Michael_Kamp/radonmachine.
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What is the speed-up of our scheme in practice? In Figure 5.2(a), we compare the Radon
machine to its base learners on moderately sized datasets (details on the datasets are provided
in Table 5.1). There, the Radon machine is between 80 and around 700-times faster than
the base learner using 150 processors. The speed-up is detailed in Figure 5.3. On the SUSY
dataset (with 5 000 000 instances and 18 features), the Radon machine on 150 processors with
h = 3 is 721 times faster than its base learning algorithms. At the same time, their practical
performances, measured by the area under the ROC curve (AUC) on an independent test
dataset, are comparable.
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Figure 5.2.: (a) Runtime (log-scale) and AUC of base learners and their parallelisation using
the Radon machine (PRM) for 6 datasets withN ∈ [488 565,5 000 000], d ∈ [3,18]. Each point
represents the average runtime (upper part) and AUC (lower part) over 10 folds of a learner—
or its parallelization—on one datasets. (b) Runtime and AUC of the Radon machine compared
to the averaging-at-the-end baseline (Avg) on 5 datasets with N ∈ [5 000 000,32 000 000],
d ∈ [18,2 331]. (c) Runtime and AUC of several Spark machine learning library algorithms
and the Radon machine using base learners that are comparable to the Spark algorithms on
the same datasets as in Figure 5.2(b).
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Figure 5.3.: Speed-up (log-scale) of
the Radon machine over its base learn-
ers per dataset from the same experiment as
in Figure 5.2(a).
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Figure 5.5.: Representation of the results in Fig-
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chine (PRM) and averaging-at-the-end (Avg),
both with parameter h =max, and parallel ma-
chine learning algorithms in Spark.

How does the scheme compare to
averaging-at-the-end? In Figure 5.2(b) we
compare the runtime and AUC of the par-
allelisation scheme against the averaging-at-
the-end baseline (Avg). Since averaging is
less computationally expensive than calcu-
lating the Radon point, the runtimes of
the averaging-at-the-end baselines are slightly
lower than the ones of the Radon machine.
However, compared to the computational
complexity of executing the base learner, this
advantage becomes negligible. In terms of
AUC, the Radon machine outperforms the
averaging-at-the-end baseline on all datasets
by at least 10%.
How does our scheme compare to state-

of-the-art Spark machine learning algo-
rithms? We compare the Radon machine to
various Spark machine learning algorithms
on 5 large datasets. The results in Fig-
ure 5.2(c) indicate that the proposed paral-
lelization scheme with h =max has a significantly smaller runtime than the Spark algorithms
on all datasets. On the SUSY and HIGGS dataset, the Radon machine is one order of magni-
tude faster than the Spark implementations—here the comparatively small number of features
allows for a high level of parallelism. On the CASP9 dataset, the Radon machine is 15%
faster than the fastest Spark algorithm. The performance in terms of AUC of the Radon ma-
chine is similar to the Spark algorithms. In particular, when using WekaLogReg with h =max,
the Radon machine outperforms the Spark algorithms in terms of AUC and runtime on the
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datasets SUSY, wikidata, and CASP9. Details are given in the following Section 5.4.1. A sum-
marizing comparison of the parallel approaches in terms of their trade-off between runtime
and predictive performance is depicted in Figure 5.5. Here, results are shown for the Radon
machine and averaging-at-the-end with parameter h =max and for the two Spark algorithms
most similar to the base learning algorithms. Note that it is unclear, what caused the consis-
tently weak performance of all algorithms on wikidata. Nonetheless, the results show that on
all datasets the Radon machine has comparable predictive performance to the Spark algorithms
and substantially higher predictive performance than averaging-at-the-end. At the same time,
the Radon machine has a runtime comparable to averaging-at-the-end on all datasets, both are
substantially faster than the Spark algorithms.
How does the runtime depend on the dataset size in a real-world system? In Figure 5.4

we compare the runtimes of all base learning algorithms per dataset size to the Radon machines.
Results indicate that, while the runtimes of the base learning algorithms depends on the dataset
size with an average exponent of 1.57, the runtime of the Radon machine depends on the
dataset size with an exponent of only 1.17. This is plausible because with enough processors
the generation of weak models can be done completely in parallel. Moreover, the time for
aggregating the models does not depend on the number of instances in the dataset, but only
on the number of iterations and the dimension of the model space.
How generally applicable is the scheme? As an indication of the general applicability in

practice, we apply the scheme to a Scikit-learn implementation of regularized least squares
regression (Pedregosa et al., 2011). On the dataset YearPredictionMSD, regularized least squares
regression achieves an RMSE of 12.57, whereas the Radon machine achieved an RMSE of
13.64. At the same time, the Radon machine is 197-times faster. We also compare the Radon
machine on a multi-class prediction problem using conditional maximum entropy models. We
use the implementation described in Mcdonald et al. (2009), who also propose to use averaging-
at-the-end for distributed training. We compare the Radon machine to averaging-at-the-end
with conditional maximum entropy models on two large multi-class datasets (drift and spoken-
arabic-digit). On average, our scheme performs 4% better with only 0.2% longer runtime. The
minimal difference in runtime can be explained—similar to the results in Figure 5.2(b)—by the
smaller complexity of calculating the average instead of the Radon point.

5.4.1. Additional Details

This section provides additional details on the experiments conducted. All experiments are
performed on a Spark cluster with a master node, 5 worker nodes, 25 processors and 64GB of
RAM per node. The Radon machine is applied with parameter h = 1 and with the maximal
h for a given dataset. Recall, that the number of iterations h is limited by the dataset size
(i.e., number of instances) and the Radon number of the model space, since the dataset is
partitioned into rh parts of size n. Thus, given a data set of size N , the maximal h is given by

hmax = ⌊logr
N

nmin
⌋ ,
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where nmin denotes the minimum size of the local subset of data that each instance of the base
learner is executed on. The experiments have been carried out with nmin = 100. If rh is larger
than the actual number of processing units, some instances of the base learner are executed
sequentially.
As base learning algorithms we use the WEKA (Witten et al., 2016) implementation of

Stochastic Gradient Descent (WekaSGD), and Logistic Regression (WekaLogReg), as well
as a the Scikit-learn implementation of the linear support vector machine (LinearSVM )
with pyspark. The parallelizations of a base learner using the Radon machine is de-
noted PRM(h=?)[<base learner>].

We compare the Radon machine to the natural baseline of aggregating models by calculating
their average, denoted averaging-at-the-end (Avg(h=?)[<base learner>]). Given a parameter
h ∈ N, averaging-at-the-end executes the base learning algorithm on rh subsets of the data, i.e.,
on the same number of subsets as the Radon machine. Accordingly, the runtime for obtaining
the set of models is similar, but the time for aggregating the models is shorter, since averaging
is less computationally expensive than calculating the Radon point.

Name Instances Dimensions Output
click_prediction 1 496 391 11 Y = {−1,1}
poker 1 025 010 10 Y = {−1,1}
SUSY 5 000 000 18 Y = {−1,1}
Stagger1 1 000 000 9 Y = {−1,1}
HIGGS 11 000 000 28 Y = {−1,1}
SEA_50 1 000 000 3 Y = {−1,1}
codrna 488 565 8 Y = {−1,1}
CASP9 31 993 555 631 Y = {−1,1}
wikidata 19 254 100 2331 Y = {−1,1}
20_newsgroups 399 940 1002 Y = {−1,1}
YearPredictionMSD 515 345 90 Y ⊆ R
drift 13 991 90 Y = {1, . . . ,89}
spoken-arabic-digit 263 256 15 Y = {1, . . . ,10}

Table 5.1.: Description of the datasets used in our experiments.

We compare the Radon machine to parallel machine learning algorithms from the Spark
machine learning library, as well. That is, we compare it to SparkMLLibLogisticRegres-
sionWithLBFGS (SparkLogRegwLBFGS), SparkMLLibLogisticRegressionWithSGD (SparkLo-
gRegwSGD), SparkMLLibSVMWithSGD (SparkSVMwSGD), and SparkMLLogisticRegression
(SparkLogReg).
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Figure 5.6.: AUC vs. training time for base learning algorithms and their parallelisation with
the Radon machine per dataset from the same experiment as in Figure 5.2(a).

The properties of the datasets used in the empirical evaluation are presented in Table 5.1.
Datasets have been acquired from OpenML (Vanschoren et al., 2013), the UCI machine learn-
ing repository (Lichman, 2013), and Big Data competition of the ECDBL’14 workshop5.
Experiments on moderately sized datasets—on which we compared the Radon machine to the
base learning algorithms executed on the entire dataset have been conducted on the datasets
click_prediction, poker, SUSY, Stagger1, SEA_50, and codrna. The comparison of Radon
machine and Spark ML learners has been executed on the datasets CASP9, HIGGS, wikidata,
20_newsgroups, and SUSY. The regression experiment was conducted using the YearPredic-
tionMSD dataset, multiclass-prediction experiments using the drift, and spoken-arabic-digit
datasets.
In the following, we provide more details on the experiments presented in Figures 5.2(a),

5.2(b), and 5.2(c). In particular, we analysis the trade-off between training time and AUC per
dataset.

Figure 5.6 shows the trade-off between training time and AUC for base learning algorithms
and their parallelization using the Radon machine. It confirms that the training time for
the Radon machine is orders of magnitude smaller than the base learning algorithms on all
datasets. Moreover, the training time is substantially smaller for the Radon machine with
maximal height (h =max), compared to a height of 1. In terms of AUC, the performance of

5 Big Data Competition 2014: http://cruncher.ncl.ac.uk/bdcomp/
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Figure 5.7.: AUC vs. training time for the parallelisation of base learning algorithms using
the averaging-at-the-end baseline (Avg) and the Radon machine per dataset from the same
experiment as in Figure 5.2(b).

the parallelization is comparable to the base learner for WekaLogReg and LinearSVC on all
datasets. For the base learner WekaSGD, its parallelization with the Radon machine only has
substantially lower AUC on the dataset codrna with parameter h = 1.

Figure 5.7 presents the trade-off for the Radon machine compared to the averging-at-the-
end baseline. It confirms that the Radon machine has substantially higher AUC than a
parallelisation of the same base learning algorithm using the averaging-at-the-end baseline. The
schemes only differ in the aggregation operation at the end, so that the difference in training
time follows from the faster computation of the average, compared to the iterated Radon point
computation.

In Figure 5.8, the trade-off between training time and AUC of the Radon machine compared
to the Spark learners is plotted. While it confirms that the Radon machine is always favorable
in terms of training time, in terms of AUC the results are mixed. For the base learner WekaLo-
gReg, its parallelization is always among the best in terms of AUC. The parallelization of
WekaSGD, however, has worse performance than the Spark learners on 2 out of 5 datasets. It
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also confirms that for the datasets SUSY and HIGGS, the runtime of the Radon machine with
h = 1 is substantially larger than for h = max. Thus, for the best performance in terms of
runtime and AUC, the height should be maximal.
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Figure 5.8.: AUC vs. training time for Spark learners and parallelisations of comparable base
learning algorithms with the Radon machine per dataset from the same experiment as in
Figure 5.2(c).

In order to investigate the results depicted in Figure 5.8 more closely, we provide the training
times and AUCs in detail in Table 5.2. As mentioned above, the Radon machine using
WekaLogReg as base learner has better runtime than all Spark algorithms. At the same time,
this version of the Radon machine outperforms the Spark algorithms in terms of AUC on
all datasets but 20_newsgroups—there it is 2.2% worse than the best Spark algorithm. In
particular, on the largest dataset in the experiments—the CASP9 dataset with 32 million
instances and 631 features—the Radon machine is 15% faster and 2.6% better in terms of AUC
than the best Spark algorithm.

Note that for HIGGS and SUSY, the Radon machine with h = 1 is an order of magnitude
slower than with h =max as well as the Spark algorithms. This follows from the low degree
of parallelization, since for h = 1 only 20 (for SUSY), respectively 30 (for HIGGS) models
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Figure 5.9.: (a) Runtime of the Radon machine together with the time required for repar-
titioning the data to fit the parallelisation scheme. (b) Runtime and AUC of several Spark
machine learning library algorithms and the Radon machine including the time required for
repartitioning the data before training.

have to be generated. Thus, only 20, or 30 of the 150 available processors are used in parallel.
At the same time, the amount of data each processor has to process is orders of magnitude
larger than for h =max.

For the above experiments we assume that the data is already distributed over the nodes
in the cluster so that it can directly be processed by the Radon machine. When loading
data in Spark, this data is distributed over the worker nodes in subsets, but not necessarily
in rh subsets. In Spark, distributed data is organized in partitions, where each partition
corresponds to the subset of data available to one instance of the base learning algorithm.
In order to apply the Radon machine to a dataset within the Spark framework, the data
needs to re-distributed and partitioned into rh partitions which is achieved by a method called
repartition. In the experiments, it is assumed that the data is already partitioned to make a fair
comparison to the Spark learning algorithms which do not require repartitioning. Figure 5.9(a)
illustrates the time required for repartitioning a dataset in contrast to the runtime of the Radon
machine. Unfortunately, repartitioning in Spark always includes a complete shuffling of the
data, requiring communication to redistribute the dataset. This is rather inefficient in our
context. Nonetheless, the time required for repartitioning is small compared to the overall
runtime—in the worst case it takes 14% of the runtime of the Radon machine. Still, taking into
account the time for repartitioning the data shrinks the runtime advantage of the proposed
scheme over the Spark algorithms. Figure 5.9(b) shows the runtimes of the Spark algorithms
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Dataset Runtime

SparkLogReg
wSGD

SparkSVM
wSGD

PRM(h=1)
[WekaSGD]

PRM(h=max)
[WekaSGD]

SparkLogReg
wLBFGS

SparkLogReg PRM(h=1)
[WekaLogReg]

PRM(h=max)
[WekaLogReg]

20_newsgroups 317.7 256.2 163.4 162.5 282.9 208.5 152.8 155.4
SUSY 7 439.5 5 961.8 27 781.6 1 363.7 6 526.3 4 516.8 26 299.6 1259.7
HIGGS 19 815.1 16 071.9 61 429.5 2 029.7 17 617.4 12 783.6 56 394.2 1876.2
wikidata 40 645.8 32 288.5 13 575.7 13 677.3 36 060.1 23 702.0 13 039.5 12845.5
CASP9 75 782.4 59 864.7 49 711.5 50 430.6 67 367.3 55 523.5 47 085.1 47070.1

AUC

20_newsgroups 0.6098 0.6075 0.4893 0.5063 0.63 0.6165 0.601 0.6226
SUSY 0.7454 0.7585 0.7134 0.7033 0.76 0.7652 0.7697 0.7814
HIGGS 0.5506 0.631 0.5753 0.5717 0.6257 0.6181 0.6237 0.6256
wikidata 0.1505 0.1004 0.0494 0.1002 0.1983 0.1489 0.1615 0.1974
CASP9 0.6181 0.6037 0.641 0.6514 0.6579 0.6454 0.6464 0.6622

Table 5.2.: Runtime and AUC of Spark machine learning library algorithms and the Radon
machine using WekaSGD and WekaLogReg as base learning algorithms. The results, reported
for each dataset, are the average over all folds in a 10-fold cross-validation. These results
correspond to the ones presented in Figure 5.2(c).

compared to the Radon machine—similar to Figure 5.2(c)—but with the time required for
repartitioning the data added to the runtime of the Radon machines. The Radon machine with
h =max remains superior to the Spark algorithms in terms of runtime.

5.5. Discussion

In this chapter we provided a step towards answering an open problem: Is parallel machine
learning possible in polylogarithmic time using a polynomial number of processors only? This
question has been posed for half-spaces by Long and Servedio (2013) and called “a fundamen-
tal open problem about the abilities and limitations of efficient parallel learning algorithms”.
It relates machine learning to Nick’s Class of parallelizable decision problems and its vari-
ants (Greenlaw et al., 1995). Early theoretical treatments of parallel learning with respect
to NC considered probably approximately correct (PAC) (Blumer et al., 1989; Valiant, 1984)
concept learning. Vitter and Lin (1992) introduced the notion of NC-learnable for concept
classes for which there is an algorithm that outputs a probably approximately correct model
in polylogarithmic time using a polynomial number of processors. In this setting, they proved
positive and negative learnability results for a number of concept classes that were previously
known to be PAC-learnable in polynomial time. More recently, the special case of learning half
spaces in parallel was considered by Long and Servedio (2013) who gave an algorithm for this
case that runs on polynomially many processors in time that depends polylogarithmically on
the size of the instances but is inversely proportional to a parameter of the learning problem.
Some parallelization schemes also train learning algorithms on small chunks of data and

average the found models. While this approach has advantages (Freund et al., 2001; Rosen-
blatt and Nadler, 2016), current error bounds do not allow a derivation of polylogarithmic
runtime (Lin et al., 2017; Shamir et al., 2014; Zhang et al., 2013) and it has been doubted to
have any benefit over learning on a single chunk (Shamir and Srebro, 2014). Another popular
class of parallel learning algorithms is based on stochastic gradient descent, targeting expected

136



risk minimization directly (Shamir and Srebro, 2014, and references therein). The best so
far known algorithm in this class (Shamir and Srebro, 2014) is the distributed mini-batch
algorithm (Dekel et al., 2012). This algorithm still runs for a number of rounds inversely
proportional to the desired optimization error, hence not in polylogarithmic time. A more
traditional approach is to minimize the empirical risk, i.e., an empirical sample-based approxi-
mation of the expected risk, using any, deterministic or randomized, optimization algorithm.
This approach relies on generalization guarantees relating the expected and empirical risk min-
imization as well as a guarantee on the optimization error introduced by the optimization
algorithm. The approach is readily parallelizable by employing available parallel optimization
algorithms (e.g., Boyd et al., 2011). It is worth noting that these algorithms solve a harder than
necessary optimization problem and often come with prohibitively high communication cost
in distributed settings (Shamir and Srebro, 2014). Recent results improve over these (Ma et al.,
2017) but cannot achieve polylogarithmic time as the number of iterations depends linearly
on the number of processors.

In the following we discuss properties and limitations of the proposed parallelization
scheme.

In the experiments we considered datasets where the number of dimensions is much smaller
than the number of instances. What about high-dimensional models? The basic version
of the parallelization scheme presented in this paper cannot directly be applied to cases in
which the size of the dataset is not at least a multiple of the Radon number of the model
space. For various types of data such as text, this might cause concerns. However, random
projections (Johnson and Lindenstrauss, 1984) or low-rank approximations (Balcan et al., 2016;
Oglic and Gärtner, 2017b) can alleviate this problem and are already frequently employed in
machine learning. An alternative might be to combine our parallelization scheme with block
coordinate descent (Sra et al., 2012). In this case, the scheme can be applied iteratively to
subsets of the features.

In the experiments we considered only linear models. What about non-linear models?
Learning non-linear models causes similar problems to learning high-dimensional ones. In
non-parametric methods like kernel methods, for instance, the dimensionality of the opti-
mization problem is equal to the number of instances, thus prohibiting the application of
our parallelization scheme. However, similar low-rank approximation techniques as described
above have been applied with non-linear kernels (Fine and Scheinberg, 2002). Furthermore,
novel methods for speeding up the learning process for non-linear models rely on explicitly
constructing an embedding in which a linear model can be learned (Rahimi and Recht, 2007).
Using explicitly constructed feature spaces, Radon machines can directly be applied to non-
linear models.

We have theoretically analyzed our parallelization scheme for the case that there are enough
processors available to find each weak model on a separate processor. What if there are less
than rh processors? The parallelization scheme can quite naturally be de-parallelized and par-
tially executed in sequence. For the runtime this implies an additional factor of max{1, rh/c}.
Thus, the Radon machine can be applied with any number of processors.
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The scheme improves the confidence ∆ doubly exponentially in its parameter h but for
that it requires the weak models to already achieve a base confidence of 1 − δ > 1 − 1/2r. Is the
scheme only applicable in high-confidence domains? Many application scenarios require
high-confidence error bounds, e.g., in the medical domain (Nouretdinov et al., 2011) or in
intrusion detection (Sommer and Paxson, 2010). In practice our scheme achieves similar
predictive quality much faster than its base learner.
Besides runtime, communication plays an essential role in parallel learning. What is the

communication complexity of the scheme? As for all aggregation at the end strategies, the
overall amount of communication is low compared to periodically communicating schemes.
For the parallel aggregation of models, the scheme requires O(rh+1) messages each containing
a single model of size O(d). Furthermore, only a fraction of the data has to be transferred to
each processor. Our scheme is ideally suited for inherently distributed data.
Since in a lot of applications data is no longer available as a batch but in the form of data

streams, as future work it would be interesting to investigate how the scheme can be applied
to distributed data streams. A promising approach is to aggregate models periodically using
the Radon machine, similar to the federated learning approach proposed by McMahan et al.
(2017). In order to use it as an aggregation operator with dynamic averaging, it has to be shown
that the Radon point is central with respect to a distance measure. However, it is an open
question which distance measure fulfills this property. Another direction for future work is to
apply the scheme to general randomized convex optimization algorithms with unobservable
target function.
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6. Conclusion
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This chapter summarizes the main results on a high-level and gives a final discussion of their
character and value. The chapter concludes with an outlook for potential follow-up research.

6.1. Summary

The goal of this thesis is to provide communication-efficient parallelization schemes for a broad
class of machine learning algorithms that scale well with the number of employed processing
units. This is motivated by the increasing number of distributed, loosely connected data-
generating devices and the observation that centralizing all their data is infeasible. As specified
in the introductory chapter, these parallelizations should be theoretically sound, i.e., with
guaranteed model quality, bounded communication, and high speedup per employed processor
(see requirements (R1), (R2), and (R3) in Section 1). To that end, Chapter 2 introduced black-
box parallelization as a general framework to craft such schemes by defining an aggregation and
synchronization operator that together form a distributed learning protocol. The Chapters 3-5
then presented two protocols that fulfill these requirements, one applicable to incremental
learning algorithms, the other also applicable to non-incremental ones.
As seen in Chapters 3 and 4, the approach for incremental learning algorithms allows to

achieve optimal model quality, as measured by the regret in case of online learning and by
the convergence rate (and subsequently generalization bounds) in case of batch learning. At
the same time, by dynamically scheduling the aggregation, the amount of communication
required to achieve this quality is bounded linearly in the number of learners and the hardness
of the learning problem. This is a non-trivial property, since it requires to jointly monitor
a measure of that hardness over all learners without communicating. Using divergence as
a proxy for the hardness, local conditions can be designed that allow monitoring it in a
communication-efficient way. This is applicable to a broad class of learning algorithms that
perform (approximately) regret-proportional convex updates, including SGD, mini-batch
SGD, and PA updates, using linear and kernel models, as well as neural networks. For SGD
and mini-batch SGD, it could be shown that the speedup is nearly linear in the number of
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processing units c ∈ N. That is, the speedup is in Θ(c/log c). However, the number of processing
units can not be arbitrarily increased, i.e., it should be sublinear in the number of rounds T .
Thus, this approach cannot achieve polylogarithmic runtime.

Chapter 5 presents an approach for parallelizing batch learning that is applicable to all em-
pirical risk minimization algorithms with models that have a finite-dimensional representation
in the Euclidean space. This scheme also achieves optimal model quality in terms of general-
ization bounds, using only one round of communication at the end. Since averaging model
parameters once at the end cannot achieve this, a novel aggregation operator was introduced,
based on iteratively replacing sets of models by their Radon point. This operator allows to
improve generalization bounds doubly exponentially in the number of iterations. The speedup
scales with Θ(c

κ/logd) for a base learning algorithm with runtime of Θ(Nκ) in the sample size
N ∈ N. Here, d ∈ N is the dimension of the model space. For learning algorithms with poly-
nomial runtime, this parallelization achieves polylogarithmic runtime on quasi-polynomially
many processing units, thus fulfilling requirements formulated above.

6.2. Discussion

The contributions of this thesis are primarily of a theoretical nature, i.e., they provide tight
bounds for the model quality, communication, and speedup of the presented approaches.
These contributions are relevant for understanding whether machine learning algorithms can
be efficiently parallelized in the sense of Nick’s class and its learning-related variants (Greenlaw
et al., 1995). The results in this thesis indicate that it is indeed possible to parallelize certain
classes of polynomial-time learning algorithms efficiently, i.e., with polylogarithmic runtime
on polynomially many processors. The Radon machine achieves polylogarithmic runtime on
quasi-polynomially many processors. That is, the number of processors is inO(N log d), where
N ∈ N is the sample size and d ∈ N is the dimension of the model space. Since the dimension
of the model space often depends on the dataset (e.g., for linear models the dimension of the
model space is equal to that of the data, for neural networks the number of input neurons
equals the data dimension, and for kernel models the dimension is equal to the dataset size), it
depends on the input size and thus cannot be treated as a constant. Fixed-dimensional models
can be achieved, e.g., by kernel approximations, such as random Fourier features (Rahimi
and Recht, 2007) or Nyström approximations (Oglic and Gärtner, 2017a). However, for
the approximations to be accurate—and thus the error guarantees to hold—their dimension
has to be chosen again with respect to the dataset size. Thus, also in this case the Radon
machine requires quasi-polynomially many processing units. It remains an open question
whether a generic parallelization for learning algorithms exists that achieves polylogarithmic
runtime on polynomially many processing units.
The proposed framework of distributed learning protocols consisting of aggregation and

synchronization operators emphasizes the generality of the approach. The presented protocols,
together with the existing parallelization approaches that fit this framework (e.g., periodic
averaging (Li et al., 2014), federated averaging (McMahan et al., 2017)) indicate that the right
choice of aggregation operator allows to achieve strong guarantees on the model quality. The
right choice of synchronization operator then allows for communication efficiency. It has yet
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to be seen how useful this framework is and if it constitutes a novel paradigm for parallelization,
i.e., whether aggregation and synchronization operators are indeed a rich source for novel
parallelization schemes.
The analysis of the presented protocols relies on geometrical properties of the models and

the loss surface, such as convexity. This poses a major challenge for non-convex optimization
objectives, such as training neural networks. The analysis in Chapter 4 provides quality
guarantees under the assumption that local models remain in a locally convex environment.
Recent studies on the error surface of neural networks suggest that in many cases, the error
surface consists of larger, locally convex regions (e.g., wide local minima) (Dinh et al., 2017;
Nguyen and Hein, 2017). Together with the empirical analysis of McMahan et al. (2017)
and the experiments in this thesis, this suggests that by careful initialization neural networks
remain within locally convex regions for most parts of the training process. The theoretical
findings on the loss surface also indicate that it becomes more benign for very deep and wide
network architectures (Choromanska et al., 2015; Nguyen and Hein, 2017). This makes it
challenging to apply the Radon machine to deep learning, since for a network with d ∈ N
parameters it requires (d + 2)h learners with h ≥ 1 being the number of iterations. For
example, parallelizing the training of ResNet-50 (He et al., 2016) with 25.6M parameters
requires roughly 25.6M processors for h = 1 to apply the Radon machine which is already
infeasible in most cases, and 655 ⋅ 1012 processors for h = 2. Thus, even though the error
surface of deep neural networks might be benign, the Radon machine is not suitable (in its
vanilla form) for parallelizing their training.

In addition to the theoretical contributions, the results of this thesis have practical signifi-
cance as well. The empirical evaluation has shown that the proposed approaches are relevant,
e.g., for maintaining high in-place performance of real-time services, and training of neural
networks. A challenge in practice is that the approaches are only applicable in scenarios where
training data—including the label—can be inferred locally. This can be a limiting factor, e.g.,
for speech recognition on mobile phones, where users rarely provide a transcript of their voice
recording, so that no label is locally available. Similarly, in object detection for autonomous
driving, it is difficult to label objects on the camera images within the car. However, in ap-
plication scenarios where the label is revealed shortly after a prediction, or it can be inferred,
e.g., from user behavior, the approaches are applicable and, as indicated by the experiments,
outperform state-of-the-art approaches.

6.3. Outlook

After having discussed the contributions of this thesis, this section highlights potential research
topics that might emerge from them. Note that several open research questions that specifically
relate to certain parts of this thesis are discussed at the end of the respective chapters. Here, I
want to conclude with two major directions for future research.

As discussed in the previous section, the training of neural network poses several challenges
to black-box parallelizations: the non-convex loss surface makes it hard to provide guaran-
tees on the model quality and the large dimension of the model space complicates geometric
operations. Further studying the nature of the loss surface can lead to a more profound un-
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derstanding, how and when the aggregation of neural networks improves their quality. In
that regard, one interesting finding is that the loss surface contains connected local minima
with a non-increasing path towards a global optimum (Draxler et al., 2018; Fukumizu and
Amari, 2000; Wessels and Barnard, 1992). It is speculated that the randomness in SGD helps
escaping such local minima (Draxler et al., 2018). A natural question is whether black-box
parallelization reinforces that effect, since local models spread across the local minimum. More-
over, adding noise to the local models can further strengthen this effect (Adilova et al., 2018).
Instead of analyzing the loss surface, Tishby and Zaslavsky (2015) propose to analyze the
development of mutual information of neural network layers with the data instances and with
the label, conjecturing that a well-trained network filters all information not related to the
label through the layers so that the last layers represent a minimal sufficient statistics of the
instances. Applying this approach to black-box parallelizations, a natural question is how
much mutual information about the label is preserved by aggregation. This might lead to the
design of novel aggregation operators that maximize the preserved mutual information. Since
mutual information is measured level-wise, this might also lead to an understanding, to what
extend a layer-wise aggregation is possible, e.g., by computing the Radon point of each layer
individually, thereby alleviating the problem of the required number of learners discussed in
the previous section.
The goal of parallelizations is to achieve a good model quality with substantial speedup.

To that end, a parallelization of a polynomial time algorithm is considered efficient in the
sense of Nick’s class NC and its variants (Greenlaw et al., 1995), if it has polylogarithmic
runtime on polynomially many processing units. For decision problems, it was conjectured
that P ≠ NC (Arora and Barak, 2009), more precisely, there are decision problems in P that
cannot be parallelized efficiently. Through black-box parallelization it might be possible to
show that a broad class of learning algorithms can be efficiently parallelized. To that end,
powerful aggregation operators have to be developed. The aggregation operators used so
far replace local models by a point in their convex hull (e.g., the average (Zinkevich et al.,
2010), the Radon point (see Chapter 5), or the geometric median (Minsker et al., 2015)).
Gilad-Bachrach et al. (2004) provide a motivation for that: they show for linear models that
the Bayes point (Herbrich et al., 2001) has a generalization error close to the Bayes optimal
classifier and that furthermore the Bayes point is almost identical to the Tukey median (Tukey,
1975) which in turn is a center point of the models. The aggregation of the Radon machine is
based on the iterated Radon point algorithm (Clarkson et al., 1996) that approximates the
center point. A natural first question is whether computing the Tukey median directly is
a better aggregation operator than that used by the Radon machine. The Tukey median of
N ∈ N points in Rd can be computed in time O(Nd−1 +N logN) (Chan, 2004) which does
not allow for polylogarithmic runtime. It remains an open problem whether the exact Tukey
median can be efficiently computed in parallel. A middle ground between the Radon point and
computing the Tukey median exactly is the Tverberg point (Tverberg, 1981) which is closer
to the Tukey median than the Radon point but is more computationally expensive. Further
investigating the connection between these geometric properties and machine learning might
lead to a deeper understanding of the capabilities of black-box parallelization.
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Notation

X – The input space, i.e., the space of instances of a machine learning problem.
x – An instance from the input space X .
Y – The output space, i.e., the space of labels assigned to each instance.
y – A label from the output space Y .
D – A target distribution over the input and output space.
E – A training dataset E = {(x1, y1), . . . , (xN , yN)} ⊆ X × Y

F – A model space.
f – A model from the model space F .
w – A parameterization of a model fw from the Euclidean space.
f – A set of models from the model space, i.e., f ⊂ F .
f – The average of a set of models.
f∗ – The optimal model from F for a given learning problem.
l – A general loss function l ∶ Y × Y → R
` – A convex loss function.
L – A risk functional.
R – The regret of a model f ∈ F .
H – A reproducing kernel Hilbert space.
k – A kernel function.
S – The set of support vectors of the dual representation of a model from H.
α – The coefficients corresponding to the support vectors S of a model from H.
P – A probability distribution.
A – A machine learning algorithm.
m – The number of learners.
i – One of them learners.
N – The overall size of the training data set E.
NF – The sample complexity for the model space F .
n – The size of the training dataset available to each parallel instance of A.
T – The runtime of an algorithm, depending on the input size.
c – The number of processing units available for parallel computation of A.
ε – An error bound in a probabilistic guarantee on hypothesis quality.

∆ – The confidence for the error bound to hold in a probabilistic guarantee.
δ – The confidence achieved by each parallel instance of A.
r – A Radon point.

rh – A Radon point obtained by the iterated Radon point algorithm with h iterations.
T – The total number of rounds processed by an online learning algorithm.
t – A specific round processed by an online learning algorithm.

[n] – For a natural number n ∈ N, [n] abbreviates the set {1, . . . , n}.
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A. Appendix

A. Implementations of the Protocols

This section presents two implementations of the protocols presented in this thesis.

A.1. Dynamic Averaging: An Open-Source Learning Framework in STORM

The dynamic averaging approach developed in this thesis has been implemented as part of an
distributed online learning framework based on Apache STORM. The learning framework
was developed in the EU project FERARI as part of an open-source big-data in-stream complex
event processing (CEP) architecture. The architecture can be obtained under Apache License
2.0 at https://bitbucket.org/sbothe-iais/ferari.

The architecture allows to flexibly set up a communication-efficient, distributed complex
event processing architecture, including distributed online learners. These learners generate
predictions based on complex events detected in the system which can either be send to an
external site or used as further input for the event processing engine. Given a configura-
tion of the CEP—including online learning—an optimizer component derives the optimal
distribution of components over physically distributed sites, starts the respective components
and re-optimizes its plan according to incoming statistics from the sites. These statistics are
estimated using the variant of distributed kernel density estimation proposed in this thesis.
In addition to the implementation within the FERARI architecture, a version suitable

for execution on a single cluster or cloud system as a single STORM topology has been
implemented. This version is derived from the original FERARI version but stripped from
the components required for complex event processing, query optimization and multiple
STORM topology support. It is available as open source under Apache License 2.0 at https:
//bitbucket.org/Michael_Kamp/distributedonlinelearning.

The framework implements the dynamic averaging approach, periodic averaging, and mini-
batching, for linear and kernel models. It supports classification, regression, outlier detection
and kernel density estimation.

A.2. Radon Machine: An Open Source Implementation in SPARK

The parallel Radon machine is implemented both in python and Scala. Both implementations
build on the distributed computation framework Apache Spark. , while the Scala variant
natively integrates with the Spark framework. The implementation is open source under the
Apache License 2.0 at https://bitbucket.org/Michael_Kamp/radonmachine.
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A Python Implementation

The Radon machine has been implemented as a python class that parallelizes machine learn-
ing algorithms using a wrapper to allow integrating novel algorithms. It uses the PySpark
interfaces to interact with the Spark framework. For a quick start with the parallel Radon
machine, wrappers for machine learning algorithms from the popular scikit-learn machine
learning library (Pedregosa et al., 2011) are provided. Example experiments allow to quickly
get familiar with the implementation, as well as offer reproducibility of empirical results.
Python allows for rapid prototyping and easy implementation of experiments and new

learning algorithms. A major drawback of the python implementation is that it is slow. This
stems on the one hand from the innate low performance of python itself due to the fact that
it is an interpreted language. On the other hand, data has to be transfered from the Spark
framework, which is implemented in Java, to the python learners. Spark transfers this data
from its Java classes to the PySpark interfaces using sockets. That is, the data is first serialized,
then sent over sockets, and finally de-serialized. This process is very time consuming and
seems to be the main reason for the low performance of the python implementation. In order
to overcome this drawback, I implemented the Radon machine in Scala.

A Scala Implementation

The Scala implementation of the Radon machine is similar to the python implementation in
that it is applicable to all machine learning algorithms that implement a Learner trait (in Scala,
a trait is similar to an interface). The implementation provides wrappers for a large set of
machine learning algorithms from the Apache SPARK machine learning library (Meng et al.,
2016), as well as algorithms from the WEKA library (Witten et al., 2016).

B. Additional Theoretical Results

B.1. Properties of Convex Projections

Proposition A.1. Let Π(⋅) be a projection on a non-empty closed convex set and v,w ∈ F for a
Hilbert space F . Then it holds that

∥Π(v) −Π(w) ∥
2
≤ ∥v −w∥

2
− ∥v −Π(v) −w +Π(w) ∥

2

Proof. We have that

∥v −w∥
2
=∥Π(v) −Π(w) + v −Π(v) −w +Π(w) ∥

2

=∥Π(v) −Π(w) ∥
2
+ ∥v −Π(v) −w +Π(w) ∥

2

+ 2 ⟨Π(v) −Π(w) , v −Π(v) −w +Π(w)⟩ .

We can rewrite the inner product as

⟨Π(v) −Π(w) , v −Π(v) −w +Π(w)⟩ = ⟨Π(v) −Π(w) , v −Π(v)⟩+⟨Π(w) −Π(v) ,w −Π(w)⟩ .
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From lemma 3.1.4 in Nesterov (2003) it follows that

⟨Π(v) −Π(w) , v −Π(v)⟩ ≥ 0 and ⟨Π(w) −Π(v) ,w −Π(w)⟩ ≥ 0 .

Thus we have that

∥v −w∥
2
≥ ∥Π(v) −Π(w) ∥

2
+ ∥v −Π(v) −w +Π(w) ∥

2 .

Proposition A.2. Let F be a convex Hilbert space, Π(⋅) be a projection on a non-empty closed
convex set Γ and d, s, d′, s′ ∈ F . Then it holds that

∥d′ − s′∥2
− ∥d′ −Π(d) − s′ +Π(s) ∥2

≤ ∥d − s∥2
− ∥d −Π(d) − s +Π(s) ∥2 ,

Proof. The proof is technical and relies on the fact that the projections on the left side are not
on d′ and s′ but on d and s. Using the triangle inequality yields

∥d′ − s′∥2
− ∥d′ −Π(d) − s′ +Π(s) ∥2

≤ ∥d − s∥2
− ∥d −Π(d) − s +Π(s) ∥2

⇔ ∥d′ − s′∥2
− ∥d − s∥2

≤∥d′ −Π(d) − s′ +Π(s) ∥2
− ∥d −Π(d) − s +Π(s) ∥2

=(∥d′ − s′ +Π(s) −Π(d) ∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤∥d′−s′∥+∥Π(s)−Π(d)∥

)
2
− (∥d − s +Π(s) −Π(d) ∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥∣∥d−s∥−∥Π(s)−Π(d)∥∣

)
2

≤(∥d′ − s′∥2
+ ∥Π(s) −Π(d) ∥2

+ 2∥d′ − s′∥∥Π(s) −Π(d) ∥)

− (∥d − s∥2
+ ∥Π(s) −Π(d) ∥2

− 2∥d − s∥∥Π(s) −Π(d) ∥)

=∥d′ − s′∥2
− ∥d − s∥2

+ 2∥d′ − s′∥∥Π(s) −Π(d) ∥ + 2∥d − s∥∥Π(s) −Π(d) ∥

⇔ 0 ≤2∥d′ − s′∥∥Π(s) −Π(d) ∥ + 2∥d − s∥∥Π(s) −Π(d) ∥

=2∥Π(s) −Π(d) ∥ (∥d′ − s′∥ + ∥d − s∥)

By definition, ∥ ⋅ ∥ ≥ 0 ands the above inequality holds. Thus it holds that

∥d′ − s′∥2
− ∥d′ −Π(d) − s′ +Π(s) ∥2

≤ ∥d − s∥2
− ∥d −Π(d) − s +Π(s) ∥2 ,

B.2. Proof of Lemma 4.1

This section proofs the extension of the update lemma to mini-batches of data. For conve-
nience, the lemma is re-stated:

Lemma A.3 (re-stating Lemma 4.1). Let the updates of an incremental learning algorithm A
be regret-proportional convex updates with γ > 0. Then for all models d, s ∈ F and all datasets
E ⊂ X × Y it holds that

∥A(E,d) −A(E, s)∥2
≤ ∥d − s∥2

− γ2
∑

(x,y)∈E
(`(d, x, y) − `(s, x, y))2 .
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Proof. From Equation 3.18 from Lemma 3.14 in Chapter 3 it is known that

∥d′ − s′∥2
≤∥d − s∥2

− τE (∥d −Π(d) ∥ − ∥s −Π(s) ∥)2 ,

i.e., that the distance between models is reduced by an update proportional to the update
magnitude. It remains to relate the update magnitude to the loss over the dataset E. For that,
observe that it follows from condition (i) of the definition of regret-proportionality that

∥f −Π(f) ∥ =
1
τE

∥f − (f + τE(Π(f) − f))∥ =
∥f − f ′∥

τE
≥
γ

τE
∑

(x,y)∈E
`(f, x, y) .

Since τE ∈ (0,1] this yields

∥f −Π(f) ∥ ≥ γ ∑
(x,y)∈E

`(f, x, y) .

Finally, inserting this into Equation 3.18 yields the claim

∥d′ − s′∥2
≤ ∥d − s∥2

− γ2
∑

(x,y)∈E
(`(d, x, y) − `(s, x, y))2 .

B.3. Consistency Results for Empirical Risk Minimisation

In this section we provide some technical results on the consistency of empirical risk minimi-
sation algorithms.

Lemma A.4. For consistent empirical risk minimisers with a model space of finite Vapnik-
Chervonenkis (VC) dimension the sample size required to achieve an (ε,∆)-guarantee is given by
N(∆) = (αε + βε log2 1/∆)k with αε = 4 ln 21/ε2, βε = 4/ε2 log2 e and k = 2.

Proof. For consistent empirical risk minimisers with finite VC-dimension, the confidence
1 − ∆ for a given N and ε is ∆ = 2N(F ,N) exp(−Nε2/4) (Von Luxburg and Schölkopf,
2009), where the shattering coefficientN(F ,N) is a polynomial inN for finite VC-dimension.
Solving for N yields that the algorithm run with

N ≥
1
ε2

(ln 2 + 4 1
log2(e)

log2
1
∆

)

achieves a confidence larger or equal to the desired 1 −∆.

Lemma A.5. For consistent empirical risk minimisers with a model space of finite Rademacher
complexity the sample size required to achieve an (ε,∆)-guarantee is given by N(∆) = (αε +
βε log2 1/∆)k with αε = 0, βε = 1/2(ε + 2ρ)2 and k = 1, where ρ denotes the Rademacher complexity.

Proof. For consistent empirical risk minimisers with a model space of finite Rademacher
complexity ρ, a given ∆ andN the error bound is given by ε = 2ρ+

√
log2

1/δ/2N (Von Luxburg
and Schölkopf, 2009). Solving for N yields the above result.
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B.4. A Result on Strong Convexity

In this section we present a result that extends the definition of µ-strong convexity to an
arbitrary number of points. For that, we first recapitulate the definition of strong convexity.

Definition A.6. A functionR∶ Rd → R is µ-strongly convex with µ ∈ R if for all τ ∈ [0,1] and
all f, g ∈ Rd it holds that

R(τf + (1 − τ)g) ≤ τR(f) + (1 − τ)R(g) −
µ

2
τ(1 − τ)∥f − g∥2

2 .

We extend this result to a set ofm ∈ N points f1, . . . , fm and their weighted average fw.

Proposition A.7. For a µ-strongly convex function R∶ Rd → R, m ∈ N points f1, . . . , fm ∈ Rd
and arbitrary weights w1, . . . ,wm ∈ R+ with∑i∈[m]wi = 1 it holds that

R(fw) ≤ ∑
i∈[m]

wiR(fi) −
µ

2
max
j∈[m]

wj

1 −wj
∥fw − fj∥

2
2 ,

with fw = ∑i∈[m]wifi.

Proof. Given a set ofm ∈ N points f1, . . . , fm, it holds for all permutations of the set that

R(f) = R(
m

∑
i=1
wifi) = R(

m−1
∑
i=1

wifi +wmfm) = R((1 −wm)
1

1 −wm

m−1
∑
i=1

wifi +wmfm) .

From the µ-strong convexity follows that

R(fw) ≤(1 −wm)R(
1

1 −wm

m−1
∑
i=1

wifi) +wmR(fm)

−
µ

2
wm(1 −wm) ∥

1
1 −wm

m−1
∑
i=1

wifi − fm∥

2

2

=(1 −wm)R(
∑
m−1
i=1 wifi

∑
m−1
i=1 wi

) +wmR(fm)

−
µ

2
wm(1 −wm) ∥

1
1 −wm

m−1
∑
i=1

wifi − fm∥

2

2
.

(A.8)

Applying Jensen’s inequality, we can bound

R(
∑
m−1
i=1 wifi

∑
m−1
i=1 wi

) ≤
∑
m−1
i=1 wiR(fi)

∑
m−1
i=1 wi

=
1

1 −wm

m−1
∑
i=1

wiR(fi)
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which yields together with Equation A.8

R(fw) ≤(1 −wm)
1

1 −wm

m−1
∑
i=1

wiR(fi) +wmR(fm)

−
µ

2
wm(1 −wm) ∥

1
1 −wm

m−1
∑
i=1

wifi − fm∥

2

2

=
m

∑
i=1
wiR(fi) −

µ

2
wm(1 −wm) ∥

1
1 −wm

m−1
∑
i=1

wifi − fm∥

2

2

=
m

∑
i=1
wiR(fi) −

µ

2
wm(1 −wm) ∥

1
1 −wm

m−1
∑
i=1

wifi −
1 −wm
1 −wm

fm∥

2

2

=
m

∑
i=1
wiR(fi) −

µ

2
wm(1 −wm)

1
(1 −wm)2 ∥

m−1
∑
i=1

wifi − (1 −wm)fm∥

2

2

=
m

∑
i=1
wiR(fi) −

µ

2
wm

(1 −wm)
∥
m−1
∑
i=1

wifi +wmfm − fm∥

2

2

=
m

∑
i=1
wiR(fi) −

µ

2
wm

(1 −wm)
∥
m

∑
i=1
wifi − fm∥

2

2
.

Since this result holds for all permutations of f1, . . . , fm it holds in particular for

j = arg max
j∈[m]

wj

(1 −wj)
∥
m

∑
i=1
wifi − fj∥

2

2

From the fact that fw = ∑
m
i=1wifi follows the result.

For m = 2, this result is equal to the definition of µ-strong convexity. From this directly
follows a result on the standard average f .

Lemma A.9. For a µ-strongly convex functionR∶ Rd → R andm ∈ N points f1, . . . , fm ∈ Rd it
holds that

R(f) ≤
1
m

m

∑
i=1
fi −

µ

2
max
j∈[m]

1
m − 1

∥f − fj∥
2
2 ,

with f = 1/m∑i∈[m] fi.
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