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Abstract

The last decades witnessed huge progress in understanding the large-scale structure of the Universe.
While homogeneous and isotropic on the largest scales, the matter and galaxy distributions display
complex patterns on smaller scales where we observe elongated filaments, compact clusters and
volume-filling underdense regions. These features are not captured by studies of two-point statistics
like the power spectrum that does not retain information on the phases of the Fourier modes of
the density field. Therefore, higher-order statistics like the bispectrum should provide additional
information. However, the exact gain has never been measured convincingly.

Current and forthcoming galaxy redshift surveys, such as Euclid, cover large enough volumes to
provide robust measurements of the bispectrum. For this reason, it is a perfect time to develop the
tools to interpret these measurements and extract cosmological information out of them. The main
goals of this work are to explore this field, to study the properties of the bispectrum, discover and
demonstrate advantages and di�culties of making the bispectrum a useful and applicable tool to learn
more about the Universe.

Historically the bispectrum has been considered a useful tool to learn about the statistical properties
of the primordial density perturbations that seeded structure formation, and to study non-linear
processes like gravitational dynamics and galaxy biasing. Since these processes generate di�erent
functional dependencies on the triangular configurations, they can be disentangled by fitting bispectrum
measurements with theoretical templates. This will ultimately remove the degeneracy between the
linear bias coe�cient and the amplitude of the dark matter perturbations found in power-spectrum
studies.

However, the potential of the bispectrum as a means to extract additional cosmological information
has never been explored. One part of my thesis has been devoted to quantifying this potential using
the Fisher-matrix formalism.

Firstly, it is necessary to understand the power of the bispectrum as a statistic for extracting
cosmological information and its advantages with respect to the classic power spectrum analysis. For
this research we developed a code for evaluating the Fisher matrix and the covariance matrix for the
power spectrum, the bispectrum and their combination with redshift space distortions considering
⇤CDM, FCDM and F0F0CDM models and using tree-level perturbation theory. As the result, the
Fisher matrix forecasts for all these cosmological parameters are presented. Our study shows that
there is a clear advantage in combining the power spectrum and the bispectrum to infer the galaxy bias
parameters and constrain the dark-energy equation of state.

Another significant problem is compressing the information contained in the bispectrum. In this
work, we are using all possible variants of triangles and it is necessary to combine them in a sensible
way, which from one hand will be possible to compare with observational data and from the other
hand provide a good statistics. The bispectrum is described by five variables: three of them fix the
shape of a triangle and two others fix the orientation in space. We explored the symmetry of the
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bispectrum with respect to its triangular bin spatial orientation. Results demonstrate that with a one
quarter of the original parameter space it is possible to describe all configurations. That helps saving
computation time and resources.

Finally, there is another issue related to compression of the bispectrum data. It is unclear how to
optimally bin the bispectrum and how to compute theoretical models for the binned data. Di�erent
strategies a�ect accuracy and computational cost. These research provide the golden mean between
computational resources and accuracy. We have developed several ways of calculating the bispectrum
for a given theoretical model by averaging di�erently the variables. The advantages and disadvantages
of this approach will depend on the specific purpose of the required task. The ultimate purpose of this
research is to demonstrate an optimal way of compressing the information to compare it against actual
observational data.
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CHAPTER 1

Introduction

Cosmology (from the Greek ^>́f`>e , kosmos – ‘world’ and _>W]U, logia – ‘discourse’) is the study
of the origin and evolution of the Universe. Since prehistoric times, people have been fascinated by
the night sky. Originating in ancient Egypt and Mesopotamia, Babylon and China, and evolving from
astrology to astronomy, cosmology became established as a science.

Today, cosmology is the science on a junction of astronomy, astrophysics, theoretical physics and
particle physics. It combines together theoretical studies, observations and computational simulations.
Cosmology describes and explains the origin of the Universe, its evolution in the past and current
times, and predicts its future development.

One pillar of modern cosmology is the cosmological principle, which is based on the fundemental
idea that there are no distinguished observers and that space appears uniform in all directions. The
combination of this statement together with the admission of isotropy of the Universe, results in the
assumption of homogeneity of the Universe.

Other pillars of cosmology are the Big Bang and inflation theories. The Universe formed ⇠ 13.7
billion years ago from a hot, dense singularity with radiation as the dominant form of energy. Then,
during 10�37 seconds, the Universe expanded more than 60 e-folds. This process is called inflation.
It is assumed that some scalar field q, the inflaton, characterised by negative pressure, caused rapid
expansion of the Universe. This sudden increase in size due to inflation distributes the small-scale
fluctuations of the initial scalar field to all points of the expanding Universe. This explains why some
parts of the Universe, at distances greater than the distance light can travel in ⇠ 13.7 billion years,
have the same properties. After the inflation period ended, the Universe continued expanding (but
with deceleration) and cooling. With the decreasing Universe temperature, firstly, free quarks and
gluons condensed into baryons. Then, at the recombination era, protons and electrons combined to
form neutral hydrogen atoms, and photons became free travel without interactions. Within the first
three minutes after the Big Bang, the lightest elements (hydrogen, helium and lithium) formed. If
we increase the time steps, later, dark matter formed haloes due to the gravitational force. Baryons
then gave rise to the first stars and later proto-galaxies. Nuclear fusion in the first stars formed heavy
elements. Up to the present day, galaxies continued to form. Finally, after ⇠ 13.7 from the moment of
origin, we see the Universe as it is now. However, it is necessary to mention, that current observations
show us the past of the Universe. The finite speed of light results in the phenomenon of always looking
back into the past as light needs time to travel form the source to the observer. At greater observed
distances, the Universe appears younger. This makes it impossible to see the current picture of the
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Chapter 1 Introduction

Universe, we always observe the past.
We do not know if our Universe is unique, or if other universes exist. The multiverse theory studies

a variety of possible universes. In this work, we study only our Universe. All assumptions are made
base on this fact, as we can observe only parts of our Universe. And finally, we live only in this
Universe.

The general concepts of cosmology presented in this Chapter, are based on the literature of Peebles
(1993); Peacock (1999); Barkana & Loeb (2001); Bernardeau et al. (2002); Dodelson (2003); Schneider
(2006); Gorbunov & Rubakov (2011a,b) if not stated otherwise.

1.1 Very brief history of cosmology

The key moments in the history of cosmology, which are relevant for the following work, are presented
here.

1915: Albert Einstein published the final version of the General Relativity (GR). This marks the
beginning of modern cosmology.

1917: Albert Einstein firstly introduced the concept of the cosmological constant. Originally, it
supposed to cancel the e�ects of gravity and achieve a static universe.

1922/1927: Cosmological solutions of the field equations of GR are presented by Alexander
Friedmann and Georges Lemaître. In 1935 Howard Robertson and Arthur Walker found geometrical
solution for the same problem. Because of this historical reason, the exact solution of Einstein’s field
equations of GR is called the Friedmann–Lemat̂re–Robertson–Walker (FLRW) metric.

1928: Edwin Hubble discovered the cosmic expansion and this finished the era of a static universe.
The Hubble law was formulated (Fig. 1.1)1.

1933: The measurement of the velocity dispersion with a virial theorem in the Coma Cluster made
by Fritz Zwicky demonstrated the evidence of unseen mass (‘dunkle Materie’/‘dark matter’).

1946: George Gamow predicted the Cosmic Microwave Background (CMB) with a temperature ⇠
5 K as a relict of the Big Bang.

1965: Arno Penzias and Robert Wilson discovered the CMB with a temperature ⇠ 3 K.F 1978:
Nobel Prize in physics.

1970 (1950-1970): The first galaxy redshift survey was made by Gerard de Vaucouleurs.
1970: Vera Rubin studied the rotation curves of spiral galaxies and demonstrated the necessity of

dark matter (Fig. 1.2).
1974: Bill Press and Paul Schechter estimated the abundance of massive gravitationally bound

objects.
1981: The first paper about inflation published by Alan Guth. The beginning of the inflation

cosmology era.
1981: Estimation that there are three neutrino families (according to the measurement of the helium

content of the Universe) (e.g. Yang et al., 1979; Schramm & Steigman, 1981).
1985 - current time: The era of the numerical cosmology. The Cold Dark Matter (CDM) model

became established (e.g. Davis et al., 1985).
1986: The first clear picture of the large scale structure (LSS) of the Universe done by the Center

for Astrophysics (CfA) redshift survey.
1992: RELIKT-1 satellite detected the anisotropy of the CMB.

1 1This Fig. is taken from the original paper (Hubble, 1929) and it has a typo on units of velocity. It should be :</B.
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1.1 Very brief history of cosmology

Figure 1.1: Velocity-distance relation among extra-galactic nebulae. Credit: Hubble (1929).

Figure 1.2: The comparison of observed rotation curves for Andromeda galaxy (M31) with theoretical predictions.
Credit: Rubin & Ford (1970).
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Figure 1.3: Observed magnitude versus redshift for well measured distant and (in the inset) nearby type Ia
supernovae. Credit: http://supernova.lbl.gov.

1992: The first map of the CMB made by the Cosmic Background Explorer (COBE) (1989-1993)
satellite. Detection of the CMB anisotropy, measurement of amplitude of the temperature fluctuations
(⇠ 10�5). F 2006: Nobel Prize in physics for John Mather and George Smoot.

1998: The Universe is expanding with acceleration! The observation of the supernovae type Ia
demonstrate the need of a non-zero cosmological constant to describe the expansion with accelerating
rate (Fig. 1.3). F 2011: Nobel Prize in physics for Saul Perlmutter, Brian Schmidt and Adam Riess.

2001: The launch of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite – the mission to
measure the CMB temperature fluctuations. The first results came in 2003 and confirmed the standard
cosmological model.

2001: The first results from the Two-degree Field Galaxy Redshift Survey (2dFGRS) came out and
confirmed that the matter density is only 30 per cent of critical density.

2002: The first catalog of galaxies and their spectra was released by the Sloan Digital Sky Survey
(SDSS).

2004: The Millennium Simulation (cosmological #-body simulation) finished and provided a
detailed picture of evolution of matter structure over time (Fig. 1.4).

2005: The baryonic acoustic oscillations (BAO) have been detected for the first time in CfA and
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1.1 Very brief history of cosmology

Figure 1.4: The Millennium cosmological simulation. This picture shows the dark matter density field. The
overlaid panels zoom in by factors of 4 in each case, enlarging the regions indicated by the white squares. Credit:
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium.
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Chapter 1 Introduction

Figure 1.5: The temperature fluctuations �)/) ⇠ 10�5 of the cosmic microwave background as observed by
European Space Agency (ESA) Planck mission. Credit: ESA/Planck Collaboration.

SDSS galaxy redshift surveys.
2009: The launch of the Planck mission. The latest measurements of CMB (Fig. 1.5). All current

constraints on cosmological parameters are based on the results of this mission.
2015: The first detection of the gravitational waves. The crucial confirmation of GR. F 2017:

Nobel Prize in physics for Rainer Weiss, Kip Thorne and Barry Barish.

1.2 Introduction to cosmology

Today we can confidently say that the Universe is homogeneous and isotropic on large scales. The
Universe is expanding and galaxies are moving away from each other. However, neither space nor
objects in this space are moving. The space itself, still being homogeneous and isotropic, is extending
in size like a rubber. According to Einstein’s theory of GR, the three dimensions of space and the one
dimension of time form a single four-dimensional space-time continuum. To quantify the e�ect of the
expanding, we define a scaling factor 0(C), which is set to be unity at the present time 00 = 0(C0) = 1
(here after the index 0 denotes the current value of a parameter) and is growing with time such that
0(C2) > 0(C1), where C2 > C1.

In the FLRW metric the distance (interval) in 4-dimensional space-time between two objects has
the form

dB2 = 22 dC2 � 02(C)
h
dj2 + 5 2 (j)

⇣
d\2 + sin2 \ dq2

⌘i
, (1.1)
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1.2 Introduction to cosmology

where 2 is the speed of light, and (j, \, q) are spatial spherical coordinates: j is the radial comoving
distance, \ and q are the angular coordinates, and 5 (j) is the comoving angular diameter distance,
which is dependent on the curvature parameter  as

5 (j) =

8>>>><
>>>>:

 �1/2 sin
�
 1/2j

�
 > 0

j  = 0 .

(� )�1/2 sinh
h
(� )�1/2 j

i
 < 0

(1.2)

The expansion rate of the Universe is characterized by the Hubble parameter � (0) (here after we
use equivalent notations for the Hubble parameter � (0) and � (C), where � (0) ⌘ � (C))

� (0) = §0(C)
0(C) . (1.3)

Conventionally, the current value of the Hubble constant �0 is expressed in the form

�0 = ⌘ 100
km

s Mpc
, (1.4)

where the most robust measurement value of ⌘ is 0.6766 ± 0.0042 (Table 1.1, Planck Collaboration
et al. (2018)).

Similarly to the expansion of a distance between objects in the Universe, the photon wavelength
increases too. If a photon was emitted at some moment C in the past with wavelength _, then today at
C0 the same photon has a new physical wavelength _0 with _0 > _,

_0
_

=
00
0(C) = 1 + I , (1.5)

where I is the cosmological redshift. The redshift can be directly measured by spectroscopy
observations, and it allows the distance to objects from the observer to be inferred.

The distance 2 dC that light can travel in the time interval dC describes the comoving distance interval
or comoving particle horizon as

j(0) =
π 1

0

2 d00

002(C)� (00) . (1.6)

The expansion of the Universe is described by the Einstein equation of GR

'`a �
1

2
6`a' + 6`a⇤6`a =

8c⌧

24
)`a , (1.7)

where '`a is the Ricci curvature tensor, 6`a is the metric tensor, ' is the scalar curvature, ⇤ is the
cosmological constant and )`a is the energy-momentum tensor. Because the Universe assumed to
be homogeneous, the matter content can be described as a uniform ideal fluid, characterized by its
density d(C) and pressure ?(C), with the equation-of-state

? = ? (d) . (1.8)

The energy-momentum tensor in this case is diagonal with components (d22, �?, �?, �?). The

7



Chapter 1 Introduction

(00)-component (`=0, a=0) of the Einstein equation of GR specified to FLRW metric is the first
Friedmann equation ✓ §0

0

◆2
=
8c⌧

3
d �  22

02
+ ⇤22

3
, (1.9)

where ⌧ is Newton’s gravitational constant. The second Friedmann equation is

•0
0
= �4c⌧

3

✓
d + 3?

22

◆
+ ⇤22

3
, (1.10)

From the first law of thermodynamics for ideal fluid one can get (we also took into account that the
volume of the matter depends on a scale factor)

d(d2203) = �? d03 . (1.11)

In the di�erentiated form this equation became the following

§d + 3
§0
0

⇣
d + ?

22

⌘
. (1.12)

The equations (1.8), (1.9) and (1.12) completely determine dynamics of the cosmological expansion.
It should be noted that if the Universe consists of di�erent types of matter, which do not interact with
each other, the equations (1.8) and (1.12) are true for each of the matter type separately. At the same
moment, d in equations (1.9) and (1.10) is the total matter-energy density in the Universe (here we
separate cosmological constant from the total matter-energy).

Let us introduce the critical density parameter dcrit. In the case where ⇤ and  are equal to 0

dcrit =
3

8c⌧
�2

0 ⇡ 10�26 kg/m3 . (1.13)

Thus one can define all present matter densities in the way ⌦8,0 = d8,0
dcrit

with
Õ
8 ⌦8,0 = 1, where 8 is

running over all forms of matter and energy. Now the Friedmann equation (1.9) can be rewritten in
the form

�2(0) =
✓ §0
0

◆2
= �2

0

⇣
⌦de(0) +⌦m0

�3 +⌦r0
�4 +⌦K0

�2
⌘
. (1.14)

The matter density parameter ⌦m consists of the dark matter ⌦dm, baryon ⌦b and neutrino ⌦a densities;
⌦de, ⌦r and ⌦K are dark energy, radiation and spatial curvature densities respectively. The relation
between spatial curvature density ⌦K and total matter-energy density ⌦0 is

⌦K = 1 �⌦0 . (1.15)

In this way, the evolution of the Universe depends on the values of density parameters, the definition
of the cosmological constant, the geometry of space-time and etc. All this information can be
structured in various cosmological models. The most popular models are described in the following
section.

8



1.3 Cold dark matter models

1.3 Cold dark matter models

In modern cosmology, it is assumed that the total matter-energy content of the Universe is composed
of baryonic matter, dark matter, neutrinos, radiation, dark energy and spatial curvature. According to
the latest observational data, the curvature of the Universe is very close to zero, ⌦K = 0.0007±0.0019
(Planck Collaboration et al., 2018). Therefore the total matter-energy density of the Universe is close
to unity. This is consistent with the predictions of standard model of inflation.

The most straightforward contribution to the total matter-energy of the Universe is given by baryonic
matter. This is the matter which form stars, planets, humans etc, and consist of non-relativistic (the
speed of a particle is much smaller than the speed of light) particles with non-zero masses. The
equation of state of baryonic matter gives ? = 0, and therefore the density is decreasing with cosmic
expansion as db(0) / 0�3. All components of ⌦m have the same dependence on the scaling factor.
Baryons contribute about 5 per cent to the present day matter density (Table 1.1).

Neutrinos are particles that interact only via the weak nuclear force and gravity. For a long time,
it was believed that neutrinos are massless. However, now the massive neutrino model consist
of three species (electron neutrino a4, muon neutrino a`, and tau neutrino ag) with total massÕ
8 <a,8 = 0.06 eV. Today, neutrinos are non-relativistic and contribute to the total matter-energy of

the Universe together with baryonic matter, although their contribution is very small. Though, in the
past, neutrinos behaved as radiation and contributed to ⌦r

2. The physics of neutrinos is still very
debatable question between astrophysicists and particle physicists, see Lesgourgues et al. (2013) for
example.

Another small contribution is provided by radiation ⌦r . 10�4, which consists mostly of photons
and massless neutrinos. Radiation has a stronger dependence on the scaling factor than matter, and
dr / 0�4, where the extra 0�1 comes from the dependence of the photon wavelength on redshift
(equation 1.5). It is also important to mention, that in earlier times when the scale factor was small,
the Universe was radiation dominated. This was due to the fact, that the term ⌦r0�4 was much bigger
than ⌦m0�3 and ⌦de(0). The transition from the radiation-dominated era to the matter-dominated era
occurs when ⌦m/03 = ⌦r/04, at redshift I ⇡ 3110.

The second biggest contribution to the total matter-energy budget is from the so-called dark matter.
The nature of dark matter is one of the most important questions in modern cosmology. Dark
matter interacts gravitationally with baryonic matter (e.g. Markevitch et al., 2006; Clowe et al., 2006;
Robertson et al., 2017), and there is no evidence of electromagnetic interaction. Most likely, dark
matter consist of an undiscovered elementary particle. There are three main possible types of dark
matter: cold, warm and hot. These are distinguished by the size of the free streaming length of the dark
matter particle (a free streaming length is an average distance travelled by a dark matter particle before
it falls into a potential well). Cold dark matter has a length much smaller than the size of a protogalaxy
(an object that later evolves into a dwarf galaxy), warm dark matter has a length of a similar order, and
hot dark matter has a much greater length than a protogalaxy. It has been proven observationally that
the structure of the Universe has a bottom-up formation. This means that galaxies formed first and
galaxy clusters later. This could happen only if dark matter is cold (this was demonstrated through
cosmological simulations (Davis et al., 1985)). In opposite, in a hot dark matter scenario, the top-down
formation scenario would be observed, large scale structure forms first, and then galaxies3.

2 In Chapters 2 and 3, the radiation component is neglected, and neutrinos contribute only to the total mass ⌦m.
3 There are also models with a combination of cold and warm dark matter, and even more exotic models, but they are not
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CDM contribute ⇠ 26 per cent (Table 1.1) to the total matter-energy composition of the Universe
and it is a fundamental component of all standard cosmological models. Thus, all cosmological
models which include cold dark matter, baryons, neutrinos, and radiation with densities as in Table 1.1
can be combined in a class of CDM cosmological models.

CDM models di�er in their definitions of dark energy. Presently, the origin and nature of dark
energy is one of the most important and challenging questions in cosmology. This substance does not
interact with any matter (at least no evidence has been found), does not clump, and is responsible for
the accelerated expansion of the Universe. Moreover, dark energy constitutes about 69 per cent of
the Universe and is the dominant factor in the current evolution of the Universe. The dark-energy
equation of state in a general case is

?de = F(0) 22dde , (1.16)

where F(0) is a dimensionless parameter which may or may not be constant, depending on the model.
Therefore, the evolution with the scale factor is

dde = dde,0 exp

�3

π 0

1

1 + F(00)
00

d00
�
. (1.17)

The fact that the Universe is expanding with acceleration ( •0 > 0) makes the constraint on the parameter
F(0). If we assume that all matter-energy density in equation (1.10) is dark energy (in this case there
is no ⇤ in the right part of the equation), the constraint is the following: F(0) < �1/3.

Several di�erent dark-energy model are described in the next subsections.

1.3.1 ⇤CDM model

The most basic and simple model which can describe the Universe and agrees well with a variety of
observational data is called the standard cosmological model or ⇤CDM model.

The best candidate for dark energy is Einstein’s cosmological constant ⇤, where the equation of
state is ?⇤ = �d⇤ = const with F = �1. It is also assumed that the cosmological constant is vacuum
energy. Moreover, various observations show that the value of F is very close to �1 (Table 1.1).

As mentioned earlier, the early Universe was radiation-dominated, before evolving to the matter-
dominated era. Recently, at redshifts I = (2⌦⇤/⌦m)1/3 � 1 ⇡ 0.65 (here, the radiation and the
curvature contributions are neglected), the Universe entered the dark energy dominated era. This is
why current observations show that the Universe started to expand with acceleration (it is necessary to
mention, that the Universe have been always expanding, and crucial moment is the transition from
decelerating to accelerating expansion).

1.3.2 wCDM model

The simplest extension to the ⇤CDM is FCDM model, where dark energy is a quintessence
(hypothetical scalar field) and F is a constant, but with a di�erent from �1 value, �1 < F < �1/34.
The density in this case changes as d34 / 0�3(1+F) .

considered in this work.
4 There is also a possibility, that dark energy is a phantom energy with the equation of state F < �1.
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1.3.3 w

0

w

a

CDM model

Naturally, the next step is to add time-dependency in the dark-energy equation of state (Sahni &
Starobinsky, 2006). The most popular choice is the linear model, where F(0) = F0 + F0 (1 � 0)
(Chevallier & Polarski, 2001; Linder, 2003). Here F0 is the present-day value of the equation of state
and F0 its rate of change. The dependence of density on the scale factor in this model is

d34 = d34,0 exp {�3 [F0 (1 � 0) + (1 + F0 + F0) ln 0]} . (1.18)

1.4 Modern cosmology

All cosmological models presented above would be pointless if there would be no observational
evidence for them. Many of the ground, space, and flying telescopes make observations which provide
constrains on cosmological parameters and models.

The CMB gives the picture of the Universe at the time of recombination (the moment when electrons
and protons combined to neutral atoms and photons became free to travel in space). The picture of
the CMB demonstrates the conditions which gave rise to the large scale structure of the present-day
Universe. Thus, CMB measurements constrain basic cosmological parameters with high accuracy.
The most resent CMB observations were carried out by the Planck satellite, and their data releases are
of great value to modern cosmology (Planck Collaboration et al., 2014, 2016, 2018).

However, some cosmological parameters are degenerate, and so one can only measure their
combination with high precision. The addition of other experiments and probes may resolve this
issue. For example, the observations of type Ia supernovae are useful in constraining cosmological
parameters connected to measurements of distance and the acceleration of the Universe, such as the
Hubble parameter. Observations of BAO (see Section 1.6 for details) provide important information
about the baryonic content.

The values with errors for the key cosmological parameters for ⇤CDM, FCDM and F0F0CDM
models obtain from the Planck mission are presented in Table 1.15.

1.5 Structure formation

The Universe is homogeneous and isotropic on very large scales. As soon as one zooms in to the
scales of ⇠ 200⌘�1Mpc, LSS became noticeable. The tiny matter fluctuations of order 10�5 observed
in the CMB, grow over several billion years and lead to the formation of the galaxies and the LSS.

The LSS is a web-like structure which consists of overdense regions such as galaxy clusters,
superclusters, sheets, walls and filaments, separated by underdense voids. It is also called ‘the cosmic
web’. Because dark matter cannot be observed, galaxies and clusters of galaxies are the only tracers of
the matter distribution, which form knots in LSS. The cosmic web started from the tiny fluctuations in
the gravitational potential, created during the time of inflation. The spatially deviating gravitational
tug on the surrounding matter, accordingly guided the clustering of matter into increasing overdensities
and away from regions with continuously decreasing densities – voids. Further the overdensities
merged among each other. Later, these overdensities collapsed into virialised matter haloes. Then, the
5 In Chapters 2 and 3, data from previous Planck release (Planck Collaboration et al., 2016) is used, as the current was not

yet available at the time of writing.
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Table 1.1: Cosmological parameters measured in the Planck survey (Planck Collaboration et al., 2018).
Description Parameter Value

⇤CDM model
Physical baryon density parameter ⌦b⌘2 0.02242 ± 0.00014
Physical cold dark matter density parameter ⌦cdm⌘2 0.11933 ± 0.00091
Scalar spectral index =s 0.9665 ± 0.0038
Hubble constant �0 67.66 ± 0.42
Dark energy density parameter ⌦⇤ 0.6889 ± 0.0056
Matter density parameter ⌦m 0.3111 ± 0.0056
Equation of state of the dark energy F -1
Matter variance of scales of 8 Mpc/h f8 0.8102 ± 0.0060
Spectral amplitude 109� 2.105 ± 0.030

F/F0F0CDM models
Normalization of the dark-energy equation of state F0 -1.028 ± 0.032
Slope of the dark-energy equation of state F0 fixed to 0

baryonic matter formed galaxies on the fundament of dark matter haloes. The evolution of the matter
distribution is a hierarchical process, where first the knots within the LSS have to form, then other
structures as galaxies can form, after which massive haloes can be created. LSS can be seen by eye on
the maps from surveys such as the CfA Redshift Survey (Geller & Huchra, 1989), 2dFGRS (Colless
et al., 2001), SDSS (Fig. 1.6) etc.

The growth of the fluctuations by gravitational instability is a complicated non-linear process, which
cannot be solved analytically. However, the small fluctuations of order 10�5 can be described by the
linear theory.

In the expanding Universe one can use two types of coordinates: fixed coordinate r and comoving
coordinate x, corresponding to each other as x = r/0(C). In the comoving frame, an object with the
coordinate x is not moving. However, in the fixed frame, this object moves with the Hubble flow
v(r, C) = � (C)r, where v(r, C) = dr/dC . The peculiar velocity is defined as u(r, C) = v(r, C) � � (C)r.
The relative density contrast is defined as

X(x, C) = d(x, C)
d̄(C) � 1 . (1.19)

As mentioned before, we treat matter as a fluid with zero pressure (this works only in a matter-dominated
era, but this assumption is fine for the described process). If the density contrast is small, one can
linearize equations. In this case, the continuity and Euler equations in comoving coordinates are

mX(x, C)
mC

+ 1

0(C)rG · {[1 + X(x, C)] u(x, C)} = 0 , (1.20)

mu(x, C)
mC

+ §0(C)
0(C) u(x, C) +

1

0(C) [u(x, C) · rG] u(x, C) = � 1

0(C)rG�(x, C) . (1.21)
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1.5 Structure formation

Figure 1.6: The LSS of the Universe observed by the SDSS. Each dot is a galaxy, where red points are galaxies
with more red star light, indicating older galaxies. The cosmic web structure can be seen by eye. Credit: M.
Blanton and SDSS www.sdss.org.
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The Poisson equation is

r2
G�(x, C) =

3�2
0⌦m

20(C) X(x, C) , (1.22)

which relates the gravitational potential �(x, C) and the density contrast X(x, C) in the expanding
Universe.

These equations form the set of partial di�erential non-linear equations which can not be solved
analytically. One option is to solve the set with some assumptions, e.g. using the linear approximation.
This method will be described in the following Section 1.6. Another variant is to solve the set
numerically, including non-linear e�ects. This will be discussed in Section 1.7.

1.6 Linear evolution

In the early Universe, according to CMB observations, density perturbations have been small
X(x, C) ⌧ 1. If one assumes the same for the peculiar velocity |u(x, C) |/2 ⌧ 1 and for the gravitational
potential �(x, C)/22 ⌧ 1, one can neglect any term of second order such as X2(x, C), D2(x, C) or
X(x, C)u(x, C), and rewrite equations (1.20, 1.21) for linear case

mX(x, C)
mC

+ 1

0(C)rG · u(x, C) = 0 , (1.23)

mu(x, C)
mC

+ §0(C)
0(C) u(x, C) = � 1

0(C)rG�(x, C) . (1.24)

The Poisson equation (1.22) is already linear. We now can combine all three equations (1.23, 1.24 and
1.22) together by taking the time derivative of equation (1.23) and the divergence of equation (1.24).
As a result one gets

m2X(x, C)
mC2

+ 2� (C) mX(x, C)
mC

�
3�2

0⌦m

203(C) X(x, C) = 0 . (1.25)

This equation does not contain x or derivatives of x. Thus this is ordinary second-order di�erential
equation, which can be solved as

X(x, C) = ⇡+(C)�+(x) + ⇡�(C)��(x) , (1.26)

where ⇡+(C) and ⇡�(C) are two linearly independent solutions of

•⇡ (C) + 2 §0(C)
0(C)

§⇡ (C) �
3�2

0⌦m

203(C) ⇡ (C) = 0 , (1.27)

and ⇡+(C) grows with time, while ⇡�(C) decreases. For the ⇤CDM case the linear growth factor
describing the time evolution of growing perturbations is

⇡+(0) =
5⌦m
2

� (0)
�0

π 0

0

d00⇥
⌦m/00 +⌦⇤002 +⌦r/002 + (⌦0 � 1)

⇤3/2 . (1.28)

Usually, the growth factor is normalized to unity at the time of today ⇡ (00) = 1. Now we can derive
the evolution of velocity perturbations using equations (1.23) and (1.26). Again, we are interested in
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1.6 Linear evolution

growing mode only, so §X =
� §⇡ (C)+/⇡ (C)+

�
X. The divergence of the velocity field is

rG · u(x, C) = �0(C)
§⇡+(C)
⇡+(C)

X = �0 §0 1

⇡+(0)
d⇡+(0)

d0
X = �0� (0) 5 (0)X , (1.29)

where 5 (0) is the growth-of-structure parameter, defined as

5 (0) = d ln⇡+(0)
d ln 0

⇡ ⌦0.55
m . (1.30)

Strictly speaking, the solutions above are true only for the Universe in a matter-dominated era and
within the GR formalism. But for the scale smaller than the Hubble radius 3� = 2/0� (0) one can
use Newtonian gravity, without GR e�ects. For the radiation and matter-dominated eras the Hubble
radius is di�erent from the comoving radius/horizon by a factor of order unity.

The growth of the perturbations depends on their length-scale and on which era the Universe is in.
On scales larger than the horizon (superhorizon scale) perturbations are always allowed to grow during
both radiation and matter-dominated eras. However, the growth of fluctuations with length smaller
than the horizon was prevented during the radiation-dominated era. In this case, the perturbations
which enter the horizon during the radiation-dominated era (with wavevector :), will be suppressed
later, compare with perturbations that entered during the matter-dominated era (with wavevector :s).
The transfer function ): describes the ratio of fluctuation amplitudes for di�erent wavevectors today,
normalized with respect to the initial density perturbations at 08

X(: , 00)
X(:s, 00)

= ):
X(: , 08)
X(:s, 08)

. (1.31)

For the universe consisting only of CDM, a fitting formula (Bardeen et al., 1986) is

): =
ln (1 + 2.34@)

2.34@

⇥
1 + 3.89@ + (16.1@)2 + (5.46@)3 + (6.71@)4

⇤�1/4
, (1.32)

where @ = :/⌦m⌘2Mpc�1. For a ⇤CDM universe the transfer function should be calculated
numerically, for example with the ���� (Code for Anisotropies in the Microwave Background) code
(https://camb.info, Lewis et al., 2000; Howlett et al., 2012), see examples in Fig. 1.7.

The linear matter power spectrum describes the growth of structures on the di�erent perturbation
scales as

%! (: , 0) = �:=s)2(:)⇡2
+ (0) , (1.33)

where =s is the power spectrum index, � is the amplitude of the initial perturbations. Instead of the
amplitude � one can use the standard deviation f(A) of the matter distribution within sphere of radius
of A = 8⌘�1Mpc, where f8 ⌘ f(A = 8⌘�1Mpc). It can be calculated as the integral over the power
spectrum

f2(A, 0) =
π 1

0

d3:
(2c)3 %! (: , 0) |,A (:) |

2 , (1.34)

where,A (:) is the window function (smoothing kernel) over scales of radius A . The window function
is defined as

,A (:) = 3
sin (:A) � :A cos (:A)

(:A)3 . (1.35)
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Figure 1.7: The power spectrum computed for di�erent cosmological models by ����. The default model is the
⇤CDM cosmology with Planck 2018 data. The rest of the models are the modifications of the default: ⇤CDM
with Harrison-Zel’dovich spectrum, default ⇤CDM at the higher redshift, variations of the matter component
fraction in the Universe. For all cases we assume flat cosmology.

The function of f8 plays an important role in cosmology and its constrain is given in Table 1.1.
In the Harrison-Zel’dovich theory (Harrison, 1970; Peebles & Yu, 1970; Zeldovich, 1972) the slope

of the spectrum of initial perturbations, =s, is unity, which gives a flat (it does not depend on scale :)
power spectrum. Observations of the CMB found that the value of the slope of the spectrum is very
close, but not exactly unity, =s = 0.9665 ± 0.0038 (Table 1.1). This is one of the main evidence for
the need for an inflation model in the history of the Universe. In various inflationary scenarios the
value of the slope of the spectrum of initial perturbations can be slightly di�erent.

Before the recombination, the initial fluctuations drive acoustic waves in the baryon-photon fluid
with the speed approaching the speed of light. Both the photons and the baryons moved outward
together. Then, at the recombination era, photons became free to travel without interactions and
continued to stream away and became almost completely uniform. On opposite, the baryons lost their
motive pressure and remained in overdensities. Later, baryons and dark matter eventually settle into
each other’s potentials, creating the BAO visible as wriggles in the power spectrum on scales smaller
than the horizon (see on scales of ⇠ 100 ⌘�1Mpc in Fig.1.7). That is why BAO provide important
cosmological information.
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1.7 Non-linear evolution

1.7 Non-linear evolution

The analytic solutions become inaccurate as soon as density perturbations become non-linear. One
possibility is to use higher-order terms in perturbation series to approximate fluctuations on next
orders. However, this method is also limited and stops being accurate as soon as fluctuations are
about unity X ⇠ 1. Another variant is to use cosmological simulations, where equations are solved
numerically with fewer approximations. Usually, simulations are computationally expensive and they
can take months when running on supercomputers. Nevertheless, simulations are the best option
currently to perform non-linear structure formation.

However, one specific case of non-linear density evolution still can be solved analytically – the
evolution of a spherical mass overdensity. Firstly, we consider a region smaller than the horizon to
use Newtonian gravity. Next, one consider the sphere of mass M with the radius A (C) which starts to
collapse at a time C8 . The spherical collapse can be described as

d2A
dC2

= �2
0⌦⇤A (C) �

⌧"

A2(C) . (1.36)

The enclosed fluctuations X grow initially as predicted by linear theory as XL = X8⇡ (C)/⇡ (C8) (here
after we use ⇡ (C) ⌘ ⇡+(C)). As soon as X grows above XL, the system collapses to a point and the
overdensity predicted by linear theory is XL = 1.686. In the Einstein-de Sitter (EdS) universe6 the
sphere collapse at redshift I if its linear overdensity extrapolated to the present day is

XL(I) =
1.686

⇡ (I) . (1.37)

These collapsed matter overdensities are the seeds for the matter haloes which will be part of the
LSS. The halo mass function is a mass distribution of dark matter halos within a certain mass range
depending on their mass and redshifts. The general form of the halo mass function is the following

d=
d"

(" , I) = d̄<,0

"

✓
�d lnf

d"

◆
5 (f) , (1.38)

where d̄m,0 = ⌦mdcrit,0 is the mean matter density today. Press & Schechter first developed in 1974
the simple analytic model (Press & Schechter, 1974) with

5 (f) =
r

2

c

XL
f

exp

 
�
X2L
2f2

!
. (1.39)

Nowadays there are plenty of models which match with simulations much better than Press-Schechter
mass function.

1.7.1 Standard Perturbation Theory

Now we will consider the non-linear evolution of density and velocity fields in equations (1.20) and
(1.21). It is convenient to work with these equations in a di�erent notation. Firstly, we replace the cosmic

6 EdS universe consist only from matter ⌦m = 1, ⌦⇤ and ⌦K are assumed to be zero.
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time C with the conformal time g and the Hubble function� (C) with the conformal expansion rateH(g),
where dC = 0(g) dg and H(g) ⌘ d ln 0(g) /dg = � (C)0(C) respectively. Secondly, one can replace
the divergence of the velocity field with the function \ (x, g) ⌘ r · u(x, g) = r · [v(x, g) �H(g)x].
Now we can rewrite equations (1.20) and (1.21) as

mX(x, g)
mg

+ r · {[1 + X(x, g)] u(x, g)} = 0 , (1.40)

mu(x, g)
mg

+ H (g)u(x, g) + u(x, g)r · u(x, g) = r�(x, g) . (1.41)

Compared to Section 1.6, now we will go further than the first order terms in perturbation series
and use Standard Perturbation Theory (SPT). The density and velocity are expanded about the linear
solutions and the variances of the linear fluctuations are assumed to be small. In this case, the density
and velocity fields can be written as

X(x, C) =
1’
==1

X (=) (x, C) , (1.42)

\ (x, C) =
1’
==1

\ (=) (x, C) , (1.43)

where X (1) and \ (1) are the linear (first order) perturbations, X (2) and \ (2) are second-order perturbations
etc. It is more convenient to work in Fourier space where we adopt the transformation in the form of

5̃ (k, g) =
π

5 (x, g) 4�8k ·x d3G , (1.44)

and the inverse transform is
5 (x, g) =

π
5̃ (k, g) 48k ·x d3:

(2c)3 . (1.45)

Taking into account non-linear terms and Fourier transforming equations (1.40) and (1.41) we get

mX̃(k, g)
mg

+ \̃ (k, g) = � 1

(2c)3
π

d3k1 d3k2 X⇡ (k � k12)U(k1, k2)\̃ (k1, g)X̃(k2, g) , (1.46)

m\̃ (k, g)
mg

+ H (g) \̃ (k, g) + 3

2
⌦mH2(g)X̃(k, g) = � 1

(2c)3
π

d3k1 d3k2 X⇡ (k � k12) ⇥

⇥V(k1, k2)\̃ (k1, g)\̃ (k2, g) , (1.47)

where X⇡ denotes the three-dimensional Dirac delta distribution, and k1 + k2 = k12. The functions

U(k1, k2) ⌘
k12 · k1
:21

, (1.48)

V(k1, k2) ⌘
:212(k1 · k2)

2:21 :
2
2

, (1.49)
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represent the non-linearity the mode coupling. The fluctuations can be expressed as

X̃(k, g) =
1’
==1

π
d3q1
(2c)3 . . .

d3q=
(2c)3 (2c)

3X⇡ (k � q1...=)�= (q1, . . . , q=, g)X̃1(q1, g) . . . X̃1(q=, g) ,

(1.50)

\̃ (k, g) = � 5 (g)H (g)
1’
==1

π
d3q1
(2c)3 . . .

d3q=
(2c)3 (2c)

3X⇡ (k � q1...=)⌧= (q1, . . . , q=, g) ⇥

⇥X̃1(q1, g) . . . X̃1(q=, g) , (1.51)

where �= and ⌧= are homogeneous functions of the wave vectors {q1, . . . , q=} with degree zero.
They are constructed from the fundamental mode coupling functions U(k1, k2) and V(k1, k2). In the
general case they are defined as

�= (q1, . . . , q=) =
=�1’
<=1

⌧<(q1, . . . , q<)
(2= + 3) (= � 1)

h
(2= + 1)U(k1, k2)�=�<(q<+1, . . . , q=) +

+2V(k1, k2)⌧=�<(q<+1, . . . , q=)
i
, (1.52)

⌧= (q1, . . . , q=) =
=�1’
<=1

⌧<(q1, . . . , q<)
(2= + 3) (= � 1)

h
3U(k1, k2)�=�<(q<+1, . . . , q=) +

+2=V(k1, k2)⌧=�<(q<+1, . . . , q=)
i
, (1.53)

where k1 ⌘ q1 + . . . + q<, k2 ⌘ q<+1 + . . . + q=, k ⌘ k1 + k2, and �1 = ⌧1 ⌘ 1. In a particular case
of EdS universe, for = = 2 we have:

�2(q1, q2) =
5

7
+ 1

2

q1 · q2
@1@2

( @1
@2

+ @2
@1

) + 2

7

(q1 · q2)2
@21 @

2
2

, (1.54)

⌧2(q1, q2) =
3

7
+ 1

2

q1 · q2
@1@2

( @1
@2

+ @2
@1

) + 4

7

(q1 · q2)2
@21 @

2
2

. (1.55)

1.7.2 Bias

We already know how a dark matter halo is formed. Then baryons fell down into a gravitational
potential well of a dark matter halo and formed a galaxy. Thus galaxies have to be located within
the dark matter haloes. In this case the distribution of galaxies has to follow the dark-matter-halo
distribution, predicted by cosmological simulations. In other words, if one put the map of the survey
on top of the map predicted by simulations (see Fig. 1.8), they should be identical. However, these
distributions are not the same. This di�erence is called dark matter haloes bias (Desjacques et al.,
2018).

The general concept of galaxy bias was formed in the 1980s. The analysis of redshift surveys
showed that the galaxy positions form a structure, and that areas with higher density are more likely to
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Figure 1.8: The maps of the galaxy distribution observed by SDSS and predicted by the Bolshoi Simulation.
Credit: Nina McCurdy and Joel Primack (University of California, Santa Cruz), Ralf Kaehler and Risa
Wechsler (Stanford University), Michael Busha (University of Zurich), SDSS www.sdss.org, Bolshoi simulation
http://hipacc.ucsc.edu/Bolshoi/index.html.

host more haloes than less-density regions (Huchra et al., 1983; Kirshner et al., 1981). The explanation
was found in 1984 by Nick Kaiser (Kaiser, 1987). He demonstrated that the high-density regions of a
Gaussian random field are more strongly correlated than the field itself. In simple words, galaxies are
forming in overdense regions, as soon as the gravitational potential is larger, more galaxies can be
formed in this area.

If one uses again the linear assumption of |X | ⌧ 1 (here this works for large volumes), the relation
between the galaxy and the mass density contrast is

Xg(x, C) =
’
O
1O (C)O(x, C) , (1.56)

where Xg is galaxies density contrast, O(x, C) is an operator, or statistical field, which describes
properties of the galaxies’ environment on which their density can depend, and 1O (C) is a corresponding
bias parameter (Fry & Gaztanaga, 1993; Desjacques et al., 2018). The simplest model, also know as
‘local bias expansion’, has operators which are power-law of the density contrast, O = X# , # � 1. In
this case, the corresponding bias parameters are 1# = #!Xg# . Study of #-body simulations shows
that the haloes tend to assemble faster in high-density regions (White et al., 1987). Therefore, the
linear bias assumption works well only on very large scale. If one zooms-in to smaller scales, it is
necessary to extend the bias expansion at least up to second order:

Xg(x) = 11 X(x) +
12
2

⇥
X2(x) � hX2(x)i

⇤
+ 1B2

2

⇥
B2(x) � hB2(x)i

⇤
, (1.57)

where 12 and 1B2 are the Eulerian non-linear and non-local (tidal) bias (Catelan et al., 1998). The
traceless tidal field has Cartesian components B8 9 (x) = (m8m 9 � X8 9 r2/3) q(x), where Kronecker
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symbol X8 9 and the gravitational potential q(x) satisfies the Poisson equation r2q = X. The tidal field
represents the stretching or compressing of the matter field due to a gradient of the gravitational force.
Tidal biases di�erent from zero have been found in the analysis of cosmological simulations (Baldauf
et al., 2012; Chan et al., 2012; Saito et al., 2014; Bel et al., 2015).

The issue of the galaxy bias is still one of the hottest topic today. There are many models of galaxy
bias, which partially agree and disagree with real observations and cosmological simulations (for
more details see McDonald & Roy (2009); Assassi et al. (2014); Desjacques et al. (2018)).

1.8 Statistics

In Sections 1.6, 1.7 and 1.7.1 we described the evolution of density fluctuations with time. However,
we do not know their initial conditions at earlier times C8. Unfortunately, no theories exist to predict
the function X(x, C8). Also, there is no way to have direct observations of the primordial fluctuations.
Even with the available observations, we see only the partial evolution of di�erent systems at di�erent
times. But one can predict the statistical properties of the initial fluctuation field. If at some fixed
time the fluctuations will be considered as a realizations of a random field, we can describe their
evolution later on. A random field is characterized by the probability that a specific realization X(x)
of the density fluctuations occurs. Let us assume that X(x) can be described at su�cient accuracy on
a regular grid of spatial coordinates x, where X(x8) are the values of the density contrast at x8. The
realization of the random field is described by the set of X(x8), and the random field is characterized
by the joint probability distribution

? [X(x1), . . . , X(x=)] dX(x1) . . . dX(x=) , (1.58)

where X(x8) lies within dX(x8) of X(x8). Consequently, the description of a random fields is basically
a joint probability distribution function (PDF) of discrete random variables. The =th-moment of a
random field is defined as

hX(x1) . . . X(x=)i =
π

dX(x1) . . . dX(x=) ? [X(x1), . . . , X(x=)] X(x1) . . . X(x=) , (1.59)

where hX(x1) . . . X(x=)i is the ensemble average over the whole set of realizations. The first moment
is the mean. The =th-moment of a random field can be decomposed into connected and disconnected
parts. The =-point correlation function is defined as connected part of the joint ensemble average of
the product of = fields and has a form of

hX(x1) . . . X(x=)ic ⌘ hX(x1) . . . X(x=)i � hX(x1)ichX(x2)ic . . . hX(x=)ic �
� hX(x1)ichX(x2) . . . X(x=)ic + cycl. � hX(x1)X(x2)ichX(x3) . . . X(x=)ic + cycl. � . . . (1.60)

� hX(x1) . . . X(x=�1)ichX(x=)ic + cycl. ,

where hX(x1)ic ⌘ hX(x1)i = 0.
The density field should reflect the fact that the Universe is homogeneous and isotropic. This is

true if all grid points are translated and rotated in the same way, x ! R(x + y), where R is a rotation
matrix and y is a translation vector, the probability density ? remains unchanged.
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1.8.1 Two-point correlation function

The two-point correlation function is defined as the joint ensemble average of the density at two
di�erent locations

hX(x)X(x + r)i = b (A) , (1.61)

which depends only on the distance A between the two points due to statistical homogeneity and
isotropy. We adopt the same Fourier transform as in equations (1.44) and (1.45), and now X(k) is a
complex random variable. As X(x) is real, it follows that

X(k) = X⇤(�k) . (1.62)

The density field is determined by the statistical properties of the random variable X(k). The two-point
correlation function in Fourier space is

hX̃(k)X̃(k 0)i = (2c)3
π

d3x d3r b (A)4�8 (k+k0) ·x�8k0 ·r =

= (2c)3X⇡ (k + k

0)
π

d3r b (A)48k ·r = (2c)3X⇡ (k + k

0)%(:) , (1.63)

where %(:) is the density power spectrum and : = |k |. The inverse relation between the two-point
correlation function and power spectrum is

b (A) =
π

d3k
(2c)3 %(:)4

8k ·r . (1.64)

Therefore, the power spectrum and the two-point correlation function are Fourier transform pairs.

1.8.2 Gaussian random fields

The power spectrum is well-defined for almost all homogeneous random fields. However, this concept
is extremely useful if a random field is Gaussian (Bardeen et al., 1986). In this case any joint
probability distribution ? [X(x1), . . . , X(x=)] of local densities X(x8) follows the Gaussian distribution.
A Gaussian random field has the following properties: the Fourier components X̃(k) are mutually
statistically independent, the probability density for X̃(k) is described by Gaussian, and the joint
probability distribution of a number of = of linear combinations of the random variables X(x8) is a
multivariate Gaussian. The Wick’s theorem says that any ensemble average of products of variables
can be calculated as a product of ensemble averages of pairs

hX̃(k1) . . . X̃(k2=+1)i = 0 , (1.65)

hX̃(k1) . . . X̃(k2=)i =
’

all pair associations

÷
= pairs(8, 9)

hX̃(k8)X̃(k 9)i . (1.66)

The correlator is vanishing for an odd number of variables, but for the even number it is fully specified
by the power spectrum

hX̃(k1) . . . X̃(k2=)i =
’

all pair associations

÷
= pairs(8, 9)

(2c)3%(:8)X⇡ (k8 + k 9) . (1.67)
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Figure 1.9: Di�erent triangular configurations of the bispectrum satisfying the condition :1 � :2 � :3. Credit:
Jeong & Komatsu (2009)

Therefore, the =-point correlation function can be presented as

hX̃(k1) . . . X̃(k=)i = (2c)3%= (:1, . . . , :=)X⇡ (k1 + . . . + k=) . (1.68)

1.8.3 Three-point correlation function

The bispectrum is the three-point correlation function defined as

hX̃(k1)X̃(k2)X̃(k3)i = (2c)3⌫(k1, k2, k3)X⇡ (k1 + k2 + k3) . (1.69)

The bispectrum is defined only for closed triangles of wavevectors, where k1 + k2 + k3 = 0. Hence,
the bispectrum is a function of two independent vectors. Di�erent triangular configurations of the
bispectrum are shown in Fig. 1.9.

1.8.4 Redshift-space distortions

We assume that the density field is statistically homogeneous and isotropic and the correlation function
b (r) depends only on the separation |r |. Also, the power spectrum depends only on |k |, but not
on the direction of the k-vector. We do not observe the true position of a galaxy. We observe its
angular position \ and its redshift. The measured redshift I is a superposition of the cosmic expansion
and the peculiar velocity u of an object. Therefore, the line-of-sight coordinate is di�erent in real
(r) and redshift (s) space, B3 = A3 + D3/�0 (here we align 3rd axis with line-of-sight s), while two
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other coordinates are the same in both spaces. This e�ect is called the redshift-space distortions
(RSD). The e�ects of RSD are presented in Fig. 1.10 (Hamilton, 1998). Here one can see what will
happen with galaxies (dots) falling down towards a spherical overdensity with some peculiar velocities
(arrows). At large scales, the peculiar velocity of an infalling shell is small compared to its radius, and
the shell appears squashed. At smaller scales, not only is the radius of a shell smaller, but also its
peculiar infall velocity tends to be larger. The shell that is just at turnaround, its peculiar velocity
just cancelling the general Hubble expansion, appears collapsed to a single velocity in redshift space.
At yet smaller scales, shells that are collapsing in proper coordinates appear inside out in redshift
space. The combination of collapsing shells with previously collapsed, virialized shells, gives rise to
finger-of-God e�ect. Finger-of-God is well-known features of redshift surveys (Fig.1.10).

Let us introduce the number density of galaxies, =(r) and =(s), the mean galaxy density, =̄(r) and
=̄(s), and fractional galaxy density contrast, Xg(r) and XBg (s), in real and redshift space respectively.
For galaxy number density is true that

=(r) = =̄(r)
⇥
1 + Xg(r)

⇤
,

=(s) = =̄(s)
⇥
1 + XBg (s)

⇤
. (1.70)

Because of the number of galaxies is conserved value

=̄(r)
⇥
1 + Xg(r)

⇤
d3r = =̄(s)

⇥
1 + XBg (s)

⇤
d3s , (1.71)

therefore
XBg (s) =

1 + Xg(r)
dB3 /dA3

� 1 . (1.72)

Taking into account the connection between real and redshift space coordinates and using only linear
terms, one gets the following

XBgr = Xg(r) �
1

�0

dD3
dA3

. (1.73)

If we present the peculiar velocity as the gradient of a potential

u(r) = rAk(r) , (1.74)

and taking into consideration equations (1.29) and (1.30), we obtain the following

r2
Ak =

1

02(C)r
2
Gk ⇡ ��0 5 X . (1.75)

The Fourier transform of this equation is

k̃(k) = �0 5

:2
X̃(k) . (1.76)

The line-of-sight component of the peculiar velocity in the Fourier space can be expressed as

D̃3(k) = � 8:3
:
�0 5 X̃(k) . (1.77)
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Real	space:

Linear	regime Turnaround Collapsing

Redshift	space:

Squashing	effect Collapsed Finger-of-God

Figure 1.10: RSD caused by peculiar velocities. Top panel: The dots are ‘galaxies’ and the arrows represent
their peculiar velocities. Depending on the relative locations of galaxies and peculiar velocities, the e�ect of
RSD is di�erent. Credit: Hamilton (1998). Bottom panel: The SDSS galaxy distribution before (left) and after
(right) finger-of-God compression. Credit: Subba Rao et al. (2008).
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Now, if one takes the Fourier transform of equation (1.73)

X̃Bg (k) = X̃g(k) +
8:3
�0

D̃3(k) , (1.78)

and combines with equation (1.77), then gets the following

X̃Bg (k) =
⇥
1 + V`2(k)

⇤
X̃g(k) , (1.79)

where V = ⌦0.55
m /11 (we are working here with linear terms only) and `(k) = k · ŝ/: is the cosine

between k-vector and line-of-sight s. It is necessary to mention, that it is the density contrast X of the
matter which rules the peculiar velocity, not the galaxies density contrast Xg = 11X.

Finally, we can derive how RSD a�ects the galaxy power spectrum in linear theory:

%(k) = /2
1 (k)%! (:) , (1.80)

where /1(k) = 11 + 5 `2.
In tree level SPT, the bispectrum can be expressed as multiplications of the power spectrum.

Including the RSD e�ect one gets the following

⌫(k1, k2, k3) = 2 [/2(k1, k2)/1(k1)/1(k2)%! (:1)%! (:2) + cycl.] , (1.81)

where the cyclic permutations runs over pairs of k1, k2 and k3. The second order kernel is

/2(k8 , k 9) =
12
2

+ 11�2(k8 , k 9) + 5 `28 9⌧2(k8 , k 9) +
5 `8 9 :8 9

2


`8
:8
/1(k 9) +

` 9
: 9
/1(k8)

�
+

+1B2
2
(2(k8 , k 9) . (1.82)

The second-order kernels are the same as in equations (1.54) and (1.55), and k8 9 = k8 + k 9 , and
`8 9 = k8 9 · ŝ/:8 9 . The tidal kernel is

(2(k8 , k 9) =
✓
k8 · k 9
:8: 9

◆2
� 1

3
. (1.83)

1.9 Fisher-matrix formalism

Since ancient times observations have been the driving force of astronomy and astrophysics. This has
not changed. At the beginning, observations were made using only the naked eye. Nowadays, we
have modern telescopes which are extremely expensive, and can make incredibly good observations
even in ranges inaccessible to the human eye. But still many astrophysical questions do not have clear
answers. On the one hand, more telescopes and satellites are needed for investigating the mysteries of
the Universe, and the technology is available to construct them. On the other hand, there is no way to
build all requested instruments. Nowadays, it is not enough just to mention what should be observed.
All new missions have to follow certain goals. Scientific groups have to present very detailed plans
of how astrophysics will benefit from a new telescope or satellite, and how one question or another
will be clarified. Therefore, it is necessary to demonstrate the power of the potential future mission.
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Basically, one has to show that a telescope with characteristics A, B and C will measure the parameters
D and E with accuracy F and G. Moreover, if a scientific group would like to measure some parameters
with a certain accuracy, scientists can make a request regarding mission specifications. To know how
well parameters can be measured, scientists do a forecast. There are several ways to make such kind of
forecast. The most popular and widely used is the Fisher matrix technique. This technique helps to
forecast the precision of a future mission while it is still in the design phase.

1.9.1 Likelihood function

In this work we follow Bayesian statistics (Heavens, 2009; March, 2013), since we can observe only
one universe. In Bayesian statistics only the data is real and known and the model has to be estimated
from this data. In this case, the probability is a measure of the degree of belief. Let us assume, that
there is an observed value G8, based on a model with some parameters ⇥ = \1, \2, . . . , \" . Some
model parameter values are more believable than others, depending on how well they reproduce the
data and on the prior knowledge on these parameters. In this way, the probability with which the data
is reproduced by the parameter set ⇥ defines the degree of belief of these model parameters. This
belief is described by the posterior probability distribution %(⇥|x). The Bayes’ theorem is

%(⇥|x) = %(⇥)
%(x) L(x |⇥) , (1.84)

where %(⇥) is the prior information about our parameters and %(x) is the evidence. The likelihood
function L(x |⇥) expresses the probability to obtain the observations x given a defined set of model
parameter values ⇥.

In case of Gaussian-distributed and independent data, the likelihood has the following form

L(x |⇥) =
÷
8

1q
2cf2

8

exp

"
� (G8 � `8)2

2f2
8

#
, (1.85)

where f2
8 is the variance in the observed data point G8, `8 is the expected value given the model

parameters ⇥. In order to obtain the best fit between observations and model parameters, the j2-value
has to be minimised, where

j2 =
’
8

✓ (G8 � `8)
f8

◆2
. (1.86)

This method is called the maximul likelihood estimation.

1.9.2 Fisher matrix and error covariance matrix

The Fisher formalism is a way of measuring the amount of information about an unknown parameter
that can be extracted from the set of observable known parameters. In other words, the Fisher
information can tell how accurately it is possible to estimate model parameters from a given data set.
The statistician Ronald Fisher developed this method in 1935 (Fisher, 1935) and since that time it has
been widely used in astrophysics (e.g Bunn, 1995; Vogeley & Szalay, 1996; Tegmark et al., 1997;
Heavens, 2009; March, 2013; Euclid Collaboration et al., 2019).
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In a general case, the Fisher matrix is defined as the expectation value of the second derivatives
of the logarithmic likelihood function (the Hessian matrix) at its maximum, averaged over the data
realizations:

�UV = �
⌧
m2 lnL(\)
m\Um\V

����
max

�
, (1.87)

where U and V label the parameters of interest \U and \V . The approximation with Taylor expansion
around the maximum likelihood is

lnL(?) ⇡ lnLmax �
1

2

’
UV

m2 lnL(\)
m\Um\V

����
max

(\U � \max
U ) (\V � \max

V ) , (1.88)

where Lmax is the maximum likelihood and \max
U,V are the values of \U,V which maximize the likelihood.

For data with Gaussian errors, the Fisher matrix has an analytic expression that depends only on the
expected mean and covariance of the data

�UV =
1

2
tr


mC
m\U

C�1 mC
m\V

C�1
�
+

’
8 9

m`8
m\U

(C�1)8 9
m` 9
m\V

, (1.89)

where - is the mean of the data vector x and C = h(x � -) (x � -)) i is the expected covariance of the
data. The trace and sum over U or V represent summations over the variables in the data vector. For
Gaussian distributed data hxi = `. The inverse of the Fisher matrix provides the full error covariance
matrix of the parameters of interests \UV

CovUV =
⇣
��1

⌘
UV

. (1.90)

The diagonal elements of the error covariance matrix are the marginalised errors of the parameters
\U,V . For instance, the expected marginalised 1f error of parameter \U is

fmarg
U =

p
CovUU . (1.91)

When we quoting uncertainties on parameter \U, the other parameters (e.g. \V , \a) have automatically
been marginalized over. That means their probabilities have been integrated over: these parameters
have been set free to hold any values while we calculate the range of acceptable value of \U. Conversely,
the unmarginalised expected error is just the square root of the diagonal element of the Fisher matrix
with the same index as parameter

funmarg
V =

1p
�VV

. (1.92)

The Cramer-Rao theorem states that for any unbiased estimator of a model parameter \U,V the
measurement error can not be smaller than the inverse of the Fisher matrix (the errors obtain from
equation 1.92). The non-diagonal element e.g. CovUV = dUVfUfV shows the correlation between the
errors of the parameters \U and \V . The parameters can be absolutely independent dUV = 0, partially
correlated 0 < dUV < 1 and completely correlated dUV = 1.

Marginalization over all parameters is equivalent to the full Fisher matrix inversion as in equation 1.90.
However, it may be that one desires to omit ’nuisance’ parameters in the final errors. In this case,
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Figure 1.11: The implementation of the Fisher matrix and the figure of merit by the Dark Energy Task Force
(DETF). Left panel: The DETF figure of merit is defined as the reciprocal of the area of the error ellipse in
the F0 � F0 plane that encloses the 95% confidence level contour. Right panel: Illustration of the power of
combining techniques. Technique #1 and Technique #2 have roughly equal DETF figure of merit. When results
are combined, the DETF figure of merit is substantially improved. Credit: Albrecht et al. (2006).

the first step is to invert original Fisher matrix �UV to CovUV . The second step is to remove the rows
and columns corresponding to the parameters that are to be marginalise-out. Finally, the smaller
covariance matrix gCovUV is inverted and the result will be new smaller Fisher matrix e�UV, which is
marginalised over the selected parameters.

It is also possible to make a combined constraint from multiple experiments (Albrecht et al., 2006;
Coe, 2009). One can just sum the Fisher matrices in a proper way: for the same parameters, rows
and columns are summed, and for the di�erent parameters extra rows and columns are added. For
example, the combination of two Fisher matrices �UVa and � 0

UV[ is

266664
�UU �UV �Ua
�VU �VV �Va
�aU �aV �aa

377775
+

2666664

� 0
UU � 0

UV � 0
U[

� 0
VU � 0

VV � 0
V[

� 0
[U � 0

[V � 0
[[

3777775
=

266666664

�UU + � 0
UU �UV + � 0

UV �Ua � 0
U[

�VU + � 0
VU �VV + � 0

VV �Va � 0
V[

�aU �aV �aa
� 0
[U � 0

[V � 0
[[

377777775
. (1.93)

The marginalization should be performed after the sum. The new marginalized errors are smaller
compare to the individual experiments, for instance see Fig. 1.11.

If the Fisher matrix is defined for one set of parameters \UV , it can be recalculated for the another
set \8 9 . In this case the new Fisher matrix (8 9 is defined as

(8 9 =
m?U
m\8

�UV
m?V
m\ 9

, (1.94)

where m?U/m\8 are the Jacobian matrices which relate the old and new sets of parameters.

In astrophysics, a popular implementation of the Fisher matrix is in providing an error ellipse
(contour plot, see Fig. 1.11). It shows how well two parameters can be measured together. The ellipse’s
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shape parameters are defined as

02 =
f2
U + f2

V

2
+

vut⇣
f2
U � f2

V

⌘2
4

+ f2
UV , (1.95)

12 =
f2
U + f2

V

2
�

vut⇣
f2
U � f2

V

⌘2
4

+ f2
UV , (1.96)

tan 2\ =
2fUV

f2
U � f2

V

. (1.97)

The semi-major and semi-minor axes 0 and 1 then need to be multiplied by a coe�cient UC.L. (where
UC.L. =

p
�j2) depending on the confidence level (C.L.) we are interested in. For 68.3% C.L. (1f),

�j2 ⇡ 2.3 and UC.L. ⇡ 1.52. For 95.4% C.L. (2f), �j2 ⇡ 6.17 and UC.L. ⇡ 2.48.
The Fisher matrix analysis is a straightforward and easily-implemented method. Due to this distinct

advantage it is widely used. However, it is necessary to work very carefully with the Fisher matrix
itself. If the matrix contains many degenerate parameters, the inversion operation may not be stable.
In this case, any small changes in any element of �UV may cause dramatic changes in the final errors.
Therefore, the parameters \UV have to be chosen carefully.

1.9.3 Figure of merit

The square root of a diagonal element of covariance matrix provides one-dimensional error, so it
is useful if one needs to know how well a specific parameter can be measured. However, for many
cosmological parameters, their one-dimensional errors are correlated. Therefore, the product of these
errors may not give the true value of the measurement of these parameters together. Thus, to know
how well the experiment can constrain two or more parameters together it is convenient to use a figure
of merit (FoM) (Albrecht et al., 2006; Wang, 2008; Mortonson et al., 2010). The definition of the
FoM is

FoMUV =
1

A
p

det CovUV
, (1.98)

where the coe�cient A depends on C.L. in the definition. Larger FoM indicates greater accuracy.
The FoM as a quantity to constrain dark energy became widely used after the DETF report (Albrecht
et al., 2006) (see Fig. 1.11). Currently, this is one of the most important targets of proposals for future
missions to study cosmology.

1.10 Galaxy clustering with the Euclid mission

Galaxy clustering is a cosmological probe which helps to measure many cosmological parameters.
Following the idea that structure formation initiated from a homogeneous and isotropic density field,
also the correlation function is expected to be isotropic. Respectively, studying the distribution of large
samples of galaxies allows to reconstruct this correlation function and thus the underlying cosmology
dependence (e.g. Laureijs (2009); Giannantonio et al. (2012)).
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The previous sections introduce various cosmological models and expansion history of the Universe,
the power spectrum, the bispectrum, RSD, galaxy bias, etc. To measure all of these features, one
needs to have a specific survey, which covers a large sky area and redshift range. In this section, we
describe a promising instrument for such observations - the Euclid7 satellite (Laureijs, 2009; Pozzetti
et al., 2016; Amendola et al., 2018; Euclid Collaboration et al., 2019). The main goal of Euclid is to
understand the physical origin of the accelerated expansion of the Universe. The mission will explore
the history of the Universe and the evolution of cosmic structures by measuring shapes and redshifts of
galaxies over a large fraction of the sky. Euclid plans to image a billion galaxies, and measure nearly
30 million galaxy redshifts.

This new probe is expected to improve the constraint on the dark-energy equation of state by a factor
of more than 300 for FoM(F0F0) compared to previous studies (Laureijs, 2009). The details of the
future mission are summarised in the following sections.

1.10.1 The Euclid mission and instrument specifications

Euclid is a medium-class mission of the ESA Cosmic Vision 2015-2025 programme. The satellite
will be launched by a Soyuz ST-2.1b rocket with a Fregat-MT space tug from the Kourou spaceport
and transferred to the Lagrange point L2 of the Sun-Earth System. The satellite is scheduled to launch
in 2022, and the planned mission lifetime is 6 years. The Euclid survey will cover 15000 deg2 of the
sky in a redshift range I ⇠ 0.9 � 1.8.

Euclid consists of a 1.2 meter Korsch telescope with a silicon carbide mirror, and three imaging
and spectroscopic instruments working in the visible (VIS) and the near-infrared (NISP) wavelength
ranges. The NISP contains a slitless spectrometer and a three bands photometer. The VIS and the
NISP have a common field-of-view of 0.53 deg2.

The VIS works in the wavelength range from 500 to 900 nm in the R+I+Z bands, has a pixel
resolution of 0.1 arcseconds, and consists of 6 ⇥ 6 Charged Coupled Devices. Euclid will make high
resolution images of billion galaxies, to measure the shapes of galaxies and to obtain the gravitational
lensing e�ects on distant background galaxies. As a main goal, the dark matter distribution and its
changes over the last 10 billion years will be reconstructed.

The NISP photometer consists of 16 HgCdTe near infra-red detectors working in the Y, J, and
H bands with 0.3 arcsecond pixel resolution. The wavelength range of the instrument is between
900 and 2000 nm. The near infrared photometry data will be combined with the VIS data to derive
photometric redshifts and rough estimates of distances of galaxies observed by the VIS. The near
infrared spectrometer will measure redshifts for ⇠ 30 million galaxies, their distances, and their
3-dimensional position in the Universe. These data will be used to describe the distribution and
clustering of galaxies and their changes over the last 10 billion years due to the e�ects of dark matter,
dark energy and gravity.

Euclid will measure the shear from galaxy ellipticities for weak gravitational lensing studies. BAO
will also be determined from a spectroscopic survey, with redshift precision greater than 0.001.
Additionally, two 20 deg2 deep field observations will be made in addition to the 15000 deg2 wide
survey.

Artistic view of the Euclid satellite is presented in Fig. 1.12, and the mission characteristics are
summarized in Table1.2.
7 https://www.Euclid-ec.org
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Figure 1.12: The artist view of the ESA medium class astronomy and astrophysics space mission Euclid. Credit:
ESA (https://www.Euclid-ec.org.)

Table 1.2: Main characteristics of the Euclid mission. Credit: ESA (https://www.euclid-ec.org), Laureijs (2009);
Amendola et al. (2018)

Mission ESA M-class
Launch date 2022
Mission lifetime 6.25 years
Wavelength coverage Visible in 550-900 nm and Near infrared in 900-2000 nm
Wide survey area 15000 deg2
Deep survey area 40 deg2
Instruments Visible imager (VIS) and

Near Infrared Spectrometer and Photometer (NISP)
Common VIS and NISP field of view 0.53 deg2
VIS filters Very broad band R+I+Z
NISP filters Broad band Y, J, H
Minimum and maximum redshift 0.9 – 1.8
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1.10.2 Science goals

Euclid is predominantly a cosmology and fundamental physics mission. The main aim of the mission
is to understand the nature of dark energy and the accelerating expansion of the Universe. With the
new observational data, we should be able to better understand the properties of dark energy, to test
models of the origin of dark energy, and to test GR on di�erent scales. It is hoped that the mission
will aid in understanding dark energy and predicting the future evolution of the Universe. Another
important goal is to explore the nature and properties of dark matter. A final goal is to reconstruct the
initial conditions which led to the present cosmic structure of the Universe.

The observation of gravitational lensing e�ect on galaxies, BAO and RSD will help to study dark
matter and dark energy via their impact on the expansion rate of the Universe, the growth of cosmic
structures and the properties of galaxy clustering. In particular, the e�ect of dark matter can be
detected by weak lensing observations. In combination with the angular distances, the expansion rate
will be probed. Moreover, BAO is also a direct distance-redshift measurement for the same study.
RSD probes the growth rate of cosmic structures and gravity. Therefore, the combination of these
three probes provides multifaceted knowledge about dark energy. Also, independent observations of
clusters of galaxies and the Integrated Sachs-Wolf e�ect (the e�ect caused by the gravitational redshift
of CMB photons which occurs between the surface of last scattering and the Earth) will be done.
They will be used to cross-check the results obtained from weak lensing, BAO and RSD and help to
better understand and control systematic errors. In addition to the primary science, there are other
questions which the Euclid mission will help to answer. The wide survey will provide observations of
a billion galaxies for various studies. The deep survey will provide several million sources that will be
unique samples for extragalactic and stellar astronomy. Also, many other issues as the CMB Euclid
galaxy survey cross-correlations, strong lensing statistics, galaxy-galaxy lensing, cool brown dwarfs,
large streams and merger histories of galaxies, stellar populations in the Galaxy, Galaxy evolution,
exoplanets, supernovae and transients can be investigated with the Euclid mission.

Finally, the groundwork and experience of the Euclid Consortium will help other space missions
and observatories e.g. GAIA8, e-ROSITA9, SKA10, JWST11, LSST12, ALMA13, WFIRST14 etc.

8 http://sci.esa.int/gaia/
9 extended ROentgen Survey with an Imaging Telescope Array (e-ROSITA), https://www.mpe.mpg.de/eROSITA

10 Square Kilometre Array (SKA), https://www.skatelescope.org
11 James Webb Space Telescope (JWST), https://www.jwst.nasa.gov
12 Large Synoptic Survey Telescope (LSST), https://www.lsst.org
13 Atacama Large Millimeter Array (ALMA), https://www.almaobservatory.org/en/home
14 Wide Field Infrared Survey Telescope (WFIRST), https://wfirst.gsfc.nasa.gov
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CHAPTER 2

Cosmological information in the redshift-space
bispectrum1

2.1 Introduction

The last decades have witnessed a tremendous increase in the size of galaxy redshift catalogues that
culminated in the completion of the 2dFGRS and the SDSS as well as their more recent extensions.
The scientific output of these e�orts have been unprecedented and contributed to fostering several
fields of astrophysics. The detection of BAO in the galaxy two-point statistics (Cole et al., 2005;
Eisenstein et al., 2005) was a major breakthrough in cosmology, as it allowed us to measure the
distance-redshift relation on large scales and thus reconstruct the expansion history of the Universe.

Still, there is need for conducting even wider and deeper observational campaigns to address several
key issues: (i) the nature of dark energy and dark matter, (ii) the neutrino masses, (iii) the statistical
properties of primordial density fluctuations. These are the main science drivers of the planned
next generation of surveys that will be conducted, for instance, with the Dark Energy Spectroscopic
Instrument (DESI) (DESI, DESI Collaboration et al., 2016a,b), the Euclid satellite (Laureijs, 2009)
and the SKA (SKA, Maartens et al., 2015).

It is customary to extract cosmological information from galaxy catalogues using the two-point
correlation function or its Fourier transform, the power spectrum. Either of these functions fully
characterize a zero-mean Gaussian random field. However, the galaxy distribution displays complex
patterns characterized by elongated filaments, compact clusters, and volume-filling underdense regions.
These features are not captured by two-point statistics that do not retain information on the phases of
the Fourier modes of the galaxy distribution. Therefore, if measured with su�cient accuracy and
precision, higher-order statistics like the =-point correlation functions (with = > 2) and their Fourier
transforms, the polyspectra, should contain additional information.

Until recently, galaxy redshift surveys could only provide rather noisy and imprecise measurements
of higher-order statistics (Jing & Börner, 1998; Frieman & Gaztañaga, 1999; Scoccimarro et al.,
2001; Verde et al., 2002; Croton et al., 2004; Jing & Börner, 2004; Kulkarni et al., 2007; Gaztañaga
et al., 2009; Marín, 2011). In fact, the presence or the absence of rare large-scale structures within
the surveyed volume can shift the estimated statistics significantly thus calling for the need to build

1This Chapter and Appendix A have been published in Yankelevich & Porciani (2019). The format has been adapted to
match the remaining thesis.
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statistically representative samples that cover larger volumes (Croton et al., 2004; Gaztañaga et al.,
2005; Nichol et al., 2006). For this reason, there is a lack of dedicated tools (theoretical predictions,
estimators, likelihood models) to analyse higher-order statistics with respect to those specifically
developed for the power spectrum. However, the situation is gradually changing as surveys cover
unprecedentedly large volumes sampled with high galaxy number densities (Gil-Marín et al., 2015,
2017; Slepian et al., 2017). In particular, the bispectrum will be robustly and accurately measured
with the advent of the above-mentioned experiments of the next generation. Developing techniques for
exploiting the galaxy bispectrum is thus necessary to maximize the scientific return of these missions.

Historically, the bispectrum has been considered as a useful tool to learn about the statistical
properties of the primordial density perturbations that seeded structure formation (their degree of
non-Gaussianity, in particular) and to study non-linear physical processes like gravitational dynamics
and galaxy biasing. Since these processes generate di�erent functional dependences on the triangular
configurations, they can be disentangled by fitting the measurements with theoretical templates. This
procedure, for instance, removes the degeneracy between the galaxy linear bias coe�cient and the
amplitude of the dark-matter perturbations invariably found in power-spectrum studies (e.g. Fry, 1994;
Matarrese et al., 1997; Sefusatti et al., 2006).

Forecasts for the constraining power of the galaxy bispectrum usually determine the expected
uncertainty for the bias and/or non-Gaussianity coe�cients by assuming the main cosmological
parameters are known exactly (Scoccimarro et al., 2004; Sefusatti & Komatsu, 2007; Song et al., 2015;
Tellarini et al., 2016; Yamauchi et al., 2017a; Karagiannis et al., 2018). This strategy has been recently
extended to modified theories of gravity (Yamauchi et al., 2017b). In this chapter, we follow a di�erent
approach and use the Fisher-matrix formalism to quantify the potential of the bispectrum as a means
to extract additional cosmological information with respect to traditional power-spectrum studies. For
surveys of the previous generation, a similar analysis has been presented by Sefusatti et al. (2006)
who made forecasts for the combination of galaxy-clustering data from SDSS North with the analysis
of the CMB performed by the WMAP. Given the substantially improved perspectives for studies of
galaxy clustering, it is imperative to update the prior investigation by utilizing the characteristics
of the forthcoming surveys. Recent related work focuses either on developing optimal compression
algorithms for three-point statistics (Byun et al., 2017; Gualdi et al., 2019) or on detecting primordial
non-Gaussianity due to the presence of massive spinning particles during inflation (Moradinezhad
Dizgah et al., 2018). Here, we discuss the advantages (or lack thereof) of combining measurements of
the galaxy power spectrum and bispectrum to constrain the standard cosmological parameters and,
in particular, the dark-energy equation of state. In order to provide a concrete example, we focus
on a Euclid-like survey and consider flat cosmological models dominated by dark energy and CDM
with Gaussian primordial perturbations. We also combine the constraints from the clustering data
with those from the CMB analysis by the Planck mission. Apart from considering datasets of current
interest, we improve upon Sefusatti et al. (2006) in multiple other ways. For instance, we (i) consider
the full galaxy bispectrum in redshift space instead of its monopole moment, (ii) make forecasts for
dynamical dark-energy models, and (iii) account for a more sophisticated bias expansion that also
depends on the tidal field and which represents the current state of the art. We are interested in the
constraining power of two- and three-point statistics of the actual galaxy distribution in redshift space.
Therefore, as a first step, we neglect observational limitations that will somewhat reshu�e and degrade
the information. For example, we only approximately take into account the survey geometry through
our binning strategy and neglect the Alcock-Paczynski e�ect (as in Sefusatti et al., 2006). These issues
will be accounted for in our future work.
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The Chapter is organized as follows. In Section 2.2, we introduce our notation and define the
relevant statistical quantities. In Section 2.3, we briefly summarize the Fisher-matrix formalism and
describe the set-up of our study. Our results are presented in Section 2.4 and discussed in Section 2.5.
Finally, in Section 2.6, we conclude.

2.2 Galaxy statistics

2.2.1 Power spectrum and bispectrum

Given a galaxy population, we model its spatial distribution at fixed time as the discrete sampling of a
continuous random field dg(x) which gives the local galaxy density per unit comoving volume in the
expanding Universe. We assume that Xg(x) is statistically homogeneous, i.e. that all its connected
=-point correlation functions are invariant under spatial translations. After defining the mean galaxy
density d̄g = hdg(x)i (the brackets here denote averages taken over an ideal ensemble of realisations),
we introduce the dimensionless overdensity as

Xg(x) =
dg(x)
d̄g

� 1 . (2.1)

We would like to decompose Xg(x) into simple oscillatory functions like plane waves. For a generic
absolutely integrable function 5 (x), we can write

5 (x) =
π

5̃ (k) 48k ·x d3:
(2c)3 , (2.2)

where
5̃ (k) =

π
5 (x) 4�8k ·x d3G (2.3)

denotes the Fourier transform of 5 (x). However, Xg(x) cannot be Fourier transformed as, in almost
all realisations, the integral

Ø
|Xg(x) | d3G diverges when taken over all space. Therefore, we consider

a finite region of volume + and define a ‘sample function’ X+ (x) such that X+ (x) = Xg(x) if x 2 +
and X+ (x) = 0 if x 8 + . The power spectral density of Xg(x) can be defined as

%(k) = lim
+!1

h|X̃+ (k) |2i
+

= lim
+!1

hX̃+ (k) X̃+ (�k)i
+

, (2.4)

where the limit exists only if it is performed after taking the ensemble average. In general, we can
write

hX̃+ (k) X̃+ (q)i =
π

b (A) 4�8k ·r d3A
π
+
4�8 (k+q) ·x d3G , (2.5)

where b (r) = hXg(x) Xg(x + r)i denotes the two-point correlation function of Xg(x) and the first
integral runs over all separation vectors r = y � x such that (x, y) 2 + ⇥ + . Taking the limit for
+ ! 1 and extending the definitions above to generalized functions, we obtain

lim
+!1

⌦
X̃+ (k) X̃+ (k 0)

↵
= (2c)3 %(k) XD(k + k

0) , (2.6)
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where XD(k) denotes the three dimensional Dirac delta distribution and the power spectrum %(k) is
the Fourier transform of b (r).

Similarly, at the three-point level we can write

⌫(k1, k2, k3) = lim
+!1

hX̃+ (k1) X̃+ (k2) X̃+ (�k1 � k2)i
+

, (2.7)

or, equivalently,

lim
+!1

⌦
X̃+ (k1) X̃+ (k2) X̃+ (k3)

↵
= (2c)3 ⌫(k1, k2, k3) XD(k123) , (2.8)

where ⌫(k1, k2, k3) defines the galaxy bispectrum (i.e. the Fourier transform of the connected
three-point correlation function) and k123 = k1 + k2 + k3, meaning that the bispectrum is defined only
for closed triangles of wavevectors.

Di�erent statistics (based on alternative expansions with respect to the Fourier decompositions)
need to be employed to analyse samples that cover a wide solid angle on the sky (e.g. Fisher et al.,
1994; Heavens & Taylor, 1995; Pápai & Szapudi, 2008).

2.2.2 Redshift-space distortions

We infer the comoving position of a galaxy by using two observables (position on the sky and redshift)
and by assuming that the photons we receive from it propagate in an unperturbed Friedmann-Robertson-
Walker model universe. The resulting galaxy distribution in this ‘redshift space’ provides a distorted
representation of the actual one in ‘real space’ due to the presence of inhomogeneities and peculiar
velocities. The latter generate the largest distortions (Jackson, 1972; Sargent & Turner, 1977; Kaiser,
1987; Hamilton, 1998) that dominate over other relativistic e�ects (see e.g. Borzyszkowski et al., 2017,
and references therein) that we will neglect in this work.

Although the galaxy distribution in real space is statistically isotropic (implying that %(k) only
depends on the magnitude : and ⌫(k1, k2, k3) on the three values :1, :2 and :3), RSD break this
isotropy and introduce some angular dependences. In the distant-observer approximation, when
galaxy separations are much smaller than the distance from the observer to the galaxies so that a single
line of sight ŝ can be defined for the whole sample, the power spectrum in redshift space depends
on : and ` = (k · ŝ)/: . This result derives from the fact that density and velocity perturbations
are correlated (Kaiser, 1987). Similarly, the redshift-space bispectrum depends on the line-of-sight
projections `1 and `2 of k1 and k2 (as k3 = �k1 � k2). Therefore, the bispectrum depends on five
variables, three of which determine the shape of the triangle of wavevectors while the remaining two
indicate its orientation with respect to the line of sight. In Appendix A.1 we discuss two di�erent
parameterizations of the coe�cients `1 and `2 in terms of convenient angular variables that here we
schematically denote by 0  \  c and 0  q < 2c.

To reduce the complexity of cosmological investigations, the `-dependence of the galaxy power
spectrum at fixed wavenumber is often expanded in a Fourier-Legendre series (Taylor & Hamilton,
1996)

%(k) =
1’
✓=0

%✓ (:) L✓ (`) , (2.9)
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where L✓ (`) denotes the Legendre polynomials and the functions

%✓ (:) =
2✓ + 1

2

π 1

�1
%(:) L✓ (`) d` (2.10)

are known as the ‘redshift-space multipoles’ of the power spectrum. In linear perturbation theory, only
the monopole (✓ = 0), quadrupole (✓ = 2) and hexadecapole (✓ = 4) do not vanish (see equation (2.18)
in Section 2.2.3 without the exponential term on the rhs). Recent studies show that these three
multipoles indeed contain the bulk of the information on the main cosmological parameters (e.g.
Taruya et al., 2011; Kazin et al., 2012; Beutler et al., 2014). Therefore, a simplified inference method
(with small information loss) can be engineered by only considering three functions of : instead
of a function of both : and `. This approach can be generalized to the galaxy bispectrum. In fact,
the dependence on the orientation of a triangle of wavevectors can be decomposed into spherical
harmonics (Scoccimarro et al., 1999a),

⌫(k1, k2, k3) =
1’
✓=0

✓’
<=�✓

⌫✓<(:1, :2, :3).✓<(\, q) , (2.11)

where
⌫✓<(:1, :2, :3) =

π +1

�1

π 2c

0
⌫(k1, k2, k3). ⇤

✓<(\, q) dcos(\) dq . (2.12)

A popular choice is to focus on the coe�cients with < = 0 which are often called the ‘redshift-space
multipoles’ of the bispectrum. They satisfy a relation similar to equation (2.9) for the q-averaged
bispectrum: π 2c

0
⌫(k1, k2, k3)

dq
2c

=
1’
✓=0

⌫✓0(:1, :2, :3) L✓ (cos \) . (2.13)

These multipoles are simple to estimate from a galaxy catalogue using fast Fourier transform-based
methods (Scoccimarro, 2015, see also Bianchi et al. (2015)) and provide a convenient procedure to
compress the bispectrum measurements into data structures of lower dimensionality. This, however,
unavoidably causes loss of information. For a fixed cosmological model, Gagrani & Samushia
(2017) show that constraints on the velocity linear growth factor, galaxy bias coe�cients and Alcock-
Paczinsky parameters based on ⌫00, ⌫20 and ⌫40 are quite similar to those derived from the full (\, q)
dependence of the bispectrum. This suggests that using only the lowest-order bispectrum multipoles
is not associated with a significant loss of information about (at least) some selected cosmological
parameters. We will revisit this issue using our own results in Section 2.5.3.

For the sake of completeness, in this work, we do not compress %(k) and ⌫(k1, k2, k3) into their
low-order multipoles and exploit their full angular dependence in redshift space. The price we pay for
doing this is dealing with large data sets and high-dimensional covariance matrices.

2.2.3 Perturbative models

We model the galaxy power spectrum and the bispectrum in redshift space by combining three
ingredients: (i) SPT for the growth of long-wavelength density and velocity perturbations in a
single-stream collisionless fluid (see Bernardeau et al., 2002, for a review), (ii) a galaxy bias model,
and (iii) a non-perturbative phenomenological model for RSD due to motions within virialized
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structures (‘finger-of-God’ e�ect). We only consider expressions to the lowest non-vanishing order in
the perturbations.

Definitions

We consider a flat FLRW background with expansion factor 0 and Hubble parameter �. The
present-day value of � is �0 = 100 ⌘ km s�1 Mpc�1. We model dark energy as a barotropic fluid with
equation of state ? = Fd22 where ? and d22 denote pressure and energy density, respectively, and F
is a dimensionless parameter that can, in principle, change with 0.

The evolution of 0 and � is regulated by Friedmann equations that can be expressed in terms
of the present-day value of the matter density parameter ⌦m and the dark-energy equation of state.
Neglecting the late-time contribution from radiation, we have

�2

�2
0

=
✓
⌦m

03
+ (1 �⌦m) exp

⇢⇢
�3

π 0

1
[1 + F(G)] d ln G

��◆
, (2.14)

and the condition for the accelerated expansion of the Universe is F < �1/3.
On sub-horizon scales, linear density perturbations in the matter component grow proportionally to

the growth factor ⇡+ that we compute by solving the ordinary di�erential equation

⇡ 00
+ +

✓
3

0
+ d ln�

d 0

◆
⇡ 0

+ �
3⌦m

205 (�2/�2
0)
⇡+ = 0 , (2.15)

where the symbol 0 denotes a derivative with respect to 0. In order to link linear density and velocity
perturbations, we introduce the growth-of-structure parameter

5 =
d ln⇡+
d ln 0

. (2.16)

Galaxy biasing

We adopt an Eulerian non-linear and non-local bias model to express the fluctuations in the galaxy
density in terms of the underlying matter perturbations, X(x), and the traceless tidal field with
Cartesian components B8 9 (x) = (m8m 9 � X8 9 r2/3) q(x) (where X8 9 denotes the Kronecker symbol and
the gravitational potential, q(x), satisfies the Poisson equation r2q = X). Namely, we write

X6 (x) = 11 X(x) +
12
2

⇥
X2(x) � hX2(x)i

⇤
+ 1B2

2

⇥
B2(x) � hB2(x)i

⇤
, (2.17)

where 11, 12 and 1B2 denote the linear, the non-linear and the tidal (non-local) bias parameters,
respectively. Equation (2.17) extends the local bias model introduced by Fry & Gaztanaga (1993)
to account for the anisotropy and environmental dependence of gravitational collapse (Catelan
et al., 1998). The tidal-bias term alters the dependence of the galaxy bispectrum on the triangular
configurations of the wavevectors (Catelan et al., 2000) and a non-vanishing 1B2 has been measured for
dark-matter haloes extracted from cosmological simulations (Baldauf et al., 2012; Chan et al., 2012;
Saito et al., 2014; Bel et al., 2015). The tidal bias is also required to ensure a proper renormalization
(in the field-theory sense) of the quadratic local bias that is otherwise sensitive to short-wavelength
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modes of the density field that are not suitable for a perturbative analysis (McDonald & Roy, 2009;
Assassi et al., 2014; Desjacques et al., 2018).

Equation (2.17) is nowadays the standard bias model for the galaxy bispectrum and is routinely used
to interpret observational data (Gil-Marín et al., 2015, 2017) and make forecasts for future missions
(Tellarini et al., 2016; Moradinezhad Dizgah et al., 2018; Karagiannis et al., 2018).

Galaxy power spectrum and bispectrum

We only consider expressions to the lowest non-vanishing order in the perturbations corrected with a
phenomenological model for non-linear RSD. For the galaxy power spectrum in redshift space we
thus write

%(k) = /2
1 (k) %L(:) exp

"
�
(: ` fp)2

2

#
, (2.18)

where %L is the power spectrum of linear matter-density fluctuations and

/1(k) = /1(: , `) = 11 + 5 `2 (2.19)

accounts for linear biasing and linear RSD. The exponential term, instead, provides a phenomenological
(non-perturbative) characterization of the suppression of power due to non-linear velocities. It
describes virialized motions as an incoherent Gaussian scatter with (scale-independent) pairwise
velocity dispersion 0 � fp (here fp is conveniently expressed in units of ⌘�1 M?2) and it has been
shown to approximately match the results of #-body simulations when fp is treated as a free parameter
(Peacock, 1992; Peacock & Dodds, 1994; Ballinger et al., 1996). Note that 0 � fp does not coincide
with the actual pairwise velocity dispersion of the galaxies (which is scale-dependent, e.g. Scoccimarro,
2004; Kuruvilla & Porciani, 2018) and should be merely considered as a nuisance parameter of
the same order of magnitude. It is also important to stress that, at the scales analysed in this work,
the exponential term in equation (2.18) is always very close to unity and can be approximated as
1 � (: ` fp)2/2. Therefore, our results do not depend on the assumption of a Gaussian (rather than a
Lorentzian) damping factor.

Similarly, for the galaxy bispectrum we get

⌫(k1, k2, k3) = 2 [/2(k1, k2) /1(k1) /1(k2) %L(:1)%L(:2) + cycl.] ⇥

⇥ exp

"
�(:21 `21 + :22`22 + :23`23)

f2
p

2

#
, (2.20)

where the cyclic permutation runs over pairs of k1, k2 and k3 and the second-order kernel describing
the e�ect of non-linearities due to dynamics, biasing and RSD is

/2(k8 , k 9) =
12
2

+ 11�2(k8 , k 9) + 5 `28 9⌧2(k8 , k 9)+

+
5 `8 9 :8 9

2


`8
:8
/1(k 9) +

` 9
: 9
/1(k8)

�
+ 1B2

2
(2(k8 , k 9) . (2.21)

Here, k8 9 = k8 + k 9 and `8 9 = k8 9 · ŝ/:8 9 , while �2 and ⌧2 denote the second-order kernels of the

41



Chapter 2 Cosmological information in the redshift-space bispectrum

density and the velocity fields, respectively,

�2(k8 , k 9) =
5

7
+
<8 9
2

✓
:8
: 9

+
: 9
:8

◆
+ 2

7
<2
8 9 , (2.22)

⌧2(k8 , k 9) =
3

7
+
<8 9
2

✓
:8
: 9

+
: 9
:8

◆
+ 4

7
<2
8 9 , (2.23)

where <8 9 =
�
k8 · k 9

�
/
�
:8: 9

�
. Finally, the tidal kernel

(2(k8 , k 9) = <2
8 9 �

1

3
. (2.24)

Although equations (2.22) and (2.23) hold true only in an Einstein-de Sitter universe, they provide
accurate approximations in the general case (Scoccimarro et al., 1998; Bernardeau et al., 2002; Fonseca
de la Bella et al., 2017). Consistently with the power-spectrum analysis, in equation (2.20), we adopt a
Gaussian damping function to describe non-perturbative contributions to RSD. This term depends on
the parameter fp that we also use for the power spectrum. Tests conducted against #-body simulations
show that this is a reasonable approximation for matter clustering on su�ciently large scales and for
redshifts I > 0.5 (Hashimoto et al., 2017). In this case, the best-fitting fp does not di�er much from
linear-theory predictions.

2.2.4 Discreteness e�ects

Galaxies are discrete objects and their clustering statistics are a�ected by shot noise. Assuming that
their distribution derives from Poisson sampling an underlying continuous density field allows us to
relate the observed spectra (denoted with a tilde) with those given in equations (2.18) and (2.20) (e.g.
Matarrese et al., 1997). In terms of the galaxy number density, =g,

%̃(k) = %(k) + %shot , (2.25)

⌫̃(k1, k2, k3) = ⌫(k1, k2, k3) + [%(k1) + %(k2) + %(k3)] %0
shot + ⌫shot , (2.26)

where %shot = %0
shot = =

�1
g and ⌫shot = =�2g .

2.3 Fisher matrix

2.3.1 Estimators and finite-volume e�ects

Actual redshift surveys cover finite comoving volumes and contain observational artefacts (gaps,
masked regions, variable depth, etc.). Clustering statistics are thus measured using specifically designed
estimators that minimize the impact of these features. An estimate for Xg(x) is usually computed
by weighing the contribution of each galaxy based on the selection criteria of the survey (Feldman
et al., 1994). Schematically, the observed galaxy overdensity can be written as Xobs(x) = Xg(x), (x)
(where, (x) is the window function of the survey) so that X̃obs(k) =

Ø
,̃ (q) X̃g(k � q) d3@/(2c)3.

Therefore, an estimator for the power spectrum in redshift space can be built by replacing the ensemble
average in equation (2.4) with a mean taken over a finite bin of wavevectors with similar values of :
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and ` in a single realization:

%̂8 = +�1
π
K8

X̃obs(k) X̃obs(�k)
d3:
 B

. (2.27)

Here, + =
Ø
, (x) d3G denotes the e�ective volume of the survey and  B is the :-space volume

covered by the bin k 2 K8 . The ensemble average of %̂8 is

h%̂8i =
π
,̃ (k8 � q) %(q) d3@

(2c)3 + shot noise terms , (2.28)

and thus %̂8 is a biased estimator. This reflects the fact that plane waves (the basis functions of the
Fourier expansion) are not orthonormal over a finite, non-periodic volume. Typically, ,̃ (k) shows
a prominent peak at k ' 0 with a width of �: ⇠ +�1/3 (if the surveyed volume is not elongated,
otherwise �: coincides with the inverse of the shortest dimension). Therefore, the power-spectrum
estimator in equation (2.27) mixes the contributions from Fourier modes with wavenumber di�erences
�: < +�1/3. This is a manifestation of the uncertainty principle between conjugate variables in
a Fourier transform: if the galaxy positions are confined to a region of linear size + 1/3, then the
wavenumbers of the Fourier modes are ‘uncertain’ within a range 2c/+ 1/3.

Likewise, after introducing an estimator for the bispectrum that averages over a set of triangular
configurations T8 centred around (k1, k2,�k1 � k2)

⌫̂8 = +�1
π
T8
X̃obs( p) X̃obs(q) X̃obs(� p � q) d3? d3@

 4
(2.29)

with
 4 =

π
T8
XD( p + q + k) d3? d3@ d3: , (2.30)

(Scoccimarro, 2000) one finds (e.g. Gil-Marín et al., 2015)

h⌫̂8i =
π
,̃ (k1 � q) ,̃ (k2 � q) ⌫(q1, q2,�q1 � q2)

d3@1
(2c)3

d3@2
(2c)3 + shot noise terms . (2.31)

Although the systematic shift of %̂8 and ⌫̂ 9 due to the window function is only noticeable on scales
comparable with the extension of the survey, it needs to be accounted for in order to make unbiased
inference about the cosmological parameters. One option is to deconvolve the window function from
the measured spectra (Lucy, 1974; Baugh & Efstathiou, 1993; Lin et al., 1996). Alternatively, the
theoretical models can be convolved with the window function of the survey before performing a fit
to the measured spectra. A third possibility is not to use the Fourier decomposition and expand the
galaxy density in orthonormal modes that maximize the signal-to-noise (S/N) ratio given the survey
geometry and the selection function (plus a fiducial model for the spectra) using the Karhunen-Loève
transform (Vogeley & Szalay, 1996; Tegmark et al., 1997).

For simplicity, in this work, we only approximately take into account the e�ects of the window
function by considering :-bins of size �: = 2c/+ 1/3 = :f (i.e. the expected broadening for the
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primary peak1 of ,̃ for a cubic survey volume of side ! = + 1/3). We thus compute the band-averaged
power spectra and bispectra by evaluating the mean over the set of configurations that contribute to
each bin. Note that most forecast papers instead just use one characteristic configuration per bin to
speed the calculation up.

2.3.2 Binning strategy and covariance matrices

Power spectrum

Within the distant-observer approximation, the galaxy power spectrum in redshift space is a function
of : and `2. Therefore, we define our power-spectrum estimator using bins that run over a spherical
shell of Fourier modes of widths �: and �` and central values :̄8 and ¯̀8 . In this case,

 B =
π
K8

d3@ = 2c�`

:̄2�: + (�:)3

12

�
' 2c�` :̄28 �: , (2.32)

where the last expression on the right-hand side is valid only for narrow bins with �: ⌧ :̄8 . Note that
the estimator in equation (2.27) is symmetric between k and �k meaning that, for every :̄8 , it su�ces
to consider the interval 0  `  1 and partition it over the bins of size �`.

The covariance matrix of an estimator encodes information regarding the precision to which
the estimand can be measured and the correlations between estimates corresponding to di�erent
configurations. The covariance matrix for the binned galaxy power spectrum is defined as

(⇠PP)8 9 = h(%̂8 � h%̂8i) (%̂ 9 � h%̂ 9i)i = h%̂8 %̂ 9i � h%̂8i h%̂ 9i (2.33)

and it can be decomposed in a disconnected (or Gaussian, since it is the only term present for
a Gaussian random field) contribution and a connected (or non-Gaussian) contribution that is
proportional to the trispectrum (the Fourier transform of the connected 4-point correlation function) of
the galaxy distribution. On the large scales, we are interested in, the Gaussian contribution dominates
(Scoccimarro et al., 1999b; Bertolini et al., 2016; Mohammed et al., 2017) and, for narrow bins, we
can write (Feldman et al., 1994; Meiksin & White, 1999)

(⇠PP)8 9 '
2 %̃2

8

#%
X8 9 , (2.34)

where
#% =

 B
:3f

' +

(2c)2 :̄
2
8 �: �` . (2.35)

The ratio #%/2 gives the number of independent fundamental Fourier cells contributing to the band
averaged power spectrum. The 2 at the denominator comes from the fact that the density field is real
valued and X̃(�k) = X̃(k)⇤. Note that the statistical noise of %̂8 reflects the survey size: larger surveys
contain more independent Fourier modes that contribute to a given bin and thus are associated with
smaller random errors. Strictly speaking, equation (2.34) is exact only for cubic volumes with periodic
boundary conditions but it is reasonable to expect that, to first approximation, the covariance does not

1 If , (x) = 1 within a cube of side ! and 0 otherwise, then ,̃ (k) = Œ3
8=1 (2/:8) sin(:8 !/2) and the main peak along

each Cartesian component extends for �: = 2c/! on the positive-frequency side.
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Figure 2.1: The panels on the left-hand side illustrate an example of how RSD a�ect the bispectrum. Shown is
the ratio between the redshift-space and real-space bispectrum for a fixed triangular configuration of wavevectors
with (:1, :2, :3) = (23, 14, 10) ⇥ 3.93 ⇥ 10�3 ⌘ Mpc�1. From top to bottom, three di�erent coordinate systems
are used to parameterize the relative orientation of the triangle and the line of sight (see the main text and
Appendix A.1 for details). The corresponding probability density of finding a triangle with a given orientation
is shown in the right-hand-side panels.

depend on the survey shape (especially for : � :f). It is also worth mentioning that only the Gaussian
part of ⇠PP is diagonal and non-linear couplings between Fourier modes generate non-vanishing
o�-diagonal terms.

Bispectrum

The galaxy bispectrum in redshift space depends on the triangular configuration of the wavevectors
and its orientation with respect to the line of sight. In this section, we show that the orientation
dependence severely complicates the analysis with respect to studies of the bispectrum in real space or
the monopole in redshift space.

We characterize the shape of a triangle using an ordered triplet of numbers that indicate the length
of its sides: :s  :m  : l. To describe its orientation, we need to use two angular variables that, for
the moment, we denote using a generic solid angle ⌦. Therefore, we define our bispectrum estimator
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Figure 2.2: RSD displayed in Fig. 2.1 are now plotted as a function of the optimal angular coordinates (l̃, j̃)
and (\̃, q̃). We adopt infinite resolution in the left-hand-side panels and partition parameter space into 12 bins
in the right-hand-side panels. The colour coding is the same as in Fig. 2.1.

using finite bins with central values :̄s, :̄m, :̄ l, ⌦̄ as well as widths �:s = �:m = �: l = �: and �⌦.
It follows that,

 4 ' 8c2 :̄ l :̄m :̄s (�:)3 ⌃(⌦̄) �⌦ , (2.36)

where ⌃(⌦̄) �⌦ denotes the fraction of triangles with fixed shape that populate a bin with solid angle
�⌦, i.e.

Ø
4c

⌃(⌦) d⌦ = 1. Note that the right-hand side of equation (2.36) should be divided by 2 for
degenerate triangular configurations contained in a line (Mehrem, 2009; Chan & Blot, 2017).

We now discuss more in detail how to parameterize the orientation of a triangle with respect to
the line of sight. To this end, in Appendix A.1, we introduce two di�erent coordinate systems that
we dub (l, j) and (\, q). They both define spherical coordinates but use di�erent polar axes: the
triangle’s normal for (l, j) and one of the legs of the triangle for (\, q). A third possibility that more
closely matches power-spectrum studies is to directly use `1 and `2 as indicators of the orientation of
the triangle (e.g. Song et al., 2015). We briefly discuss here advantages and disadvantages of these
three options. In the left column of Fig. 2.1, we show how RSD modify the shot-noise-subtracted
galaxy bispectrum for a fixed triangular configuration. From top to bottom we show the ratio between
the redshift-space bispectrum and its real-space counterpart as a function of (l, j), (\, q) and
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(`1, `2). Note that, for selected orientations, RSD enhance the clustering signal by more than an
order of magnitude. Obviously, the size of the distortions is the same in all panels but their overall
pattern appears very di�erent in the various coordinate systems that are connected by non-linear
transformations.

Another important quantity to analyse is the function ⌃(⌦) that determines the noise of the
bispectrum estimator as a function of the orientation of the triangles. By construction, the number
of triangles are uniformly distributed in d cosl dj and d cos \ dq, i.e. ⌃(l, j) = (4c)�1 sinl and
⌃(\, q) = (4c)�1 sin \. On the other hand, the distribution of orientations gets more complicated
when expressed in terms of the (`1, `2) coordinates. Using equations (A.7) and (A.8) to evaluate the
Jacobian determinant of the coordinate transformation, we obtain2

⌃(`1, `2) =
✓
2c

q
sin2 b12 � `21 � `22 + 2 cos b12 `1`2

◆�1
. (2.37)

The results of a Monte Carlo simulation obtained by randomly rotating the same triangle confirm our
analytical results (the bottom right-hand panel in Fig. 2.1). Triangles only populate a finite region
of the (`1, `2) plane bounded by an ellipse whose orientation depends on the shape of the triangles
as defined by the shortest rotation angle b12 between k1 and k2. The density of triangles increases
considerably towards the boundaries of the ellipse. Regrettably, this subtlety has been missed by Song
et al. (2015) who, in their equation (20), assume that triangles are uniformly distributed within the
entire (`1, `2) plane. Therefore, some care should be taken when interpreting their forecasts.

In the left column of Fig. 2.1, the symmetry between the triangles (k1, k2, k3) and (�k1,�k2,�k3)
is evident. This corresponds to the transformations (l, j) ! (l, c + j), (\, q) ! (c � \, 2c � q)
and (`1, `2) ! (�`1,�`2). In practical applications, it makes sense, then, to select bins that
combine these two configurations so that to reduce the size of the data and, as we are about to
show, also get a diagonal covariance matrix (to first approximation). Moreover, RSD also possess an
additional symmetry due to the fact that they only depend on sinl or sin q. It is possible to ‘fold’ the
original coordinate systems (l, j) and (\, q) so that to optimally exploit all these symmetries. We
separately discuss how to do this in Section A.1.4 so as not to interrupt the flow of the discussion
with technicalities. Here, it su�ces to say that we end up using two sets of variables, (l̃, j̃) or (\̃, q̃),
with the following range of variability: 0  l̃ < c/2, 0  j̃ < c, 0  \̃ < c/2, and c/2  q̃ < 3c/2.
Although they span a more compact range, the new coordinates fully cover the original parameter
space shown in Fig. 2.1. The left column of Fig. 2.2 illustrates how they optimally isolate the basic
pattern that repeats four times in Fig. 2.1. It is also worth stressing that random triangular orientations
are still uniformly distributed in terms of the variables (cos l̃, j̃) and (cos \̃, q̃). For this reason, we
partition parameter space into #p ⇥ #a identical bins of linear size 1/#p for the cosine of the polar
angle (i.e. cos l̃ or cos \̃) and c/#a for the azimuthal angle (i.e. j̃ or q̃). The right column of Fig. 2.2
shows an example of how RSD look like when #p = 4 and #a = 3.

The covariance matrix for the bispectrum estimator is

(⇠BB)8 9 = h(⌫̂8 � h⌫̂8i) (⌫̂ 9 � h⌫̂ 9i)i = h⌫̂8 ⌫̂ 9i � h⌫̂8i h⌫̂ 9i (2.38)

where the indices 8 and 9 label bins of triangular configurations and orientations for the wavevectors.

2 Since `2 only depends on sin q, there are two values of q that give the same `2. This explains the factor 2c in equation
(2.37).
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Also in this case, the covariance can be decomposed into Gaussian and non-Gaussian contributions
that include terms up to the pentaspectrum (i.e. the Fourier transform of the connected six-point
correlation function). The Gaussian part (which is expected to dominate on large scales) receives
non-vanishing contributions whenever any one of the sides of the triangle 8 is the opposite vector to
any one of the sides of the triangle 9 . Therefore, if the bispectrum bins are chosen such that a triangle
and its negative end up in the same bin, we obtain (Fry et al., 1993; Scoccimarro et al., 2004; Sefusatti
et al., 2006; Chan & Blot, 2017)

(⇠BB)8 9 '
BB+ %̃8l %̃8m %̃8s

#⌫
X8 9 , (2.39)

where the indices (8l, 8m, 8s) identify the lengths and orientations of the sides of the triangular
configuration 48 and

#⌫ '  4
:6f

' +2

8c4
:̄ l :̄m :̄s (�:)3 ⌃(⌦̄) �⌦ (2.40)

gives the number of triangles falling into a bin for shapes and orientations and the coe�cient BB = 6, 2, 1
for equilateral, isosceles and scalene bin configurations, respectively. This number counts the matching
pairs between the sides of the bins 48 and 4 9 . Note that the diagonal elements of the covariance matrix
are inversely proportional to the survey volume.

Finally, we consider the (rectangular) cross-covariance matrix between the estimators for the power
spectrum and the bispectrum,

(⇠PB)8 9 = h(%̂8 � h%̂8i) (⌫̂ 9 � h⌫̂ 9i)i = h%̂8 ⌫̂ 9i � h%̂8i h⌫̂ 9i (2.41)

which is composed of a disconnected part proportional to the product between % and ⌫ and a
connected part proportional to the quadrispectrum (the Fourier transform of the connected 5-point
correlation function). Sefusatti et al. (2006) report that, although this quantity does not have a Gaussian
contribution, it is non-negligible even on large scales where the disconnected part dominates. In
order to evaluate this term for our binning scheme, we need to generalize the expressions found in the
literature that do not consider the orientation of the triangles. A non-vanishing cross-covariance is
generated by configurations in which the wavevector k in the power-spectrum estimator, equation (2.27),
coincides with (or with the reverse of) one of the legs p, q and � p� q of the triangle in the bispectrum
estimator, equation (2.29). When the bins for the power spectrum (k 2 K8) and for the legs of the
bispectrum triangles, ( p, q,� p � q) 2 T9 , are taken with the same criterion (for instance by only
requiring that :̄8 � �:/2 < : < :̄8 + �:/2, so that the bispectrum estimator can be labelled with
three indices ⌫̂ 91 92 93) either zero or all triangles in T91 92 93 have, say, q 2 K8 and the cross-covariance
between %̂8 and ⌫̂ 91 92 93 is given by (⇠PB)8 9 ' 2 B%⌫ %̂8 ⌫̂ 9 (X8 91 + X8 92 + X8 93)/#% with B%⌫ = 3, 2, 1
for equilateral, isosceles and scalene triangles, respectively. However, to study the bispectrum in
redshift space, we also bin in ⌦ and we need to take into account that `m and `s also depend on the
angular variables. Because of this, the :-space volumes spanned by km and ks within a triangular bin
partially overlap with several power-spectrum bins. Let us denote by �8 9✓/#⌫ the fraction of triangles
in T9 that have k✓ 2 K8 (i.e. a bin for :✓ and `✓). Then,

(⇠PB)8 9 ' 2 B%⌫
%̂8 ⌫̂ 9
#% #⌫

�
�8 91 + �8 92 + �8 93

�
. (2.42)
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Table 2.1: Specifics of a Euclid-like survey in 14 non-overlapping redshift bins centred at I and of width
�I = 0.1. The comoving volume covered by the survey, + , the galaxy number density, =g, the characteristic
halo mass, "0, defined in equation (2.44), and the rescaled pairwise velocity dispersion, fp, are expressed in
units of ⌘�3 Gpc3, 10�3 ⌘3 Mpc�3, 1012⌘�1M�, and ⌘�1Mpc, respectively.

I + =6 11 12 1B2 "0 NHO fp
0.7 2.82 2.76 1.18 -0.76 -0.10 1.04 0.455 4.81
0.8 3.28 2.04 1.22 -0.76 -0.13 0.96 0.315 4.72
0.9 3.70 1.53 1.26 -0.75 -0.15 0.88 0.220 4.62
1.0 4.08 1.16 1.30 -0.74 -0.17 0.81 0.156 4.51
1.1 4.42 0.88 1.34 -0.72 -0.19 0.73 0.108 4.39
1.2 4.72 0.68 1.38 -0.70 -0.22 0.67 0.078 4.27
1.3 4.98 0.52 1.42 -0.68 -0.24 0.60 0.055 4.15
1.4 5.20 0.38 1.46 -0.66 -0.26 0.55 0.037 4.03
1.5 5.38 0.26 1.50 -0.63 -0.29 0.49 0.023 3.92
1.6 5.54 0.20 1.54 -0.60 -0.31 0.45 0.017 3.81
1.7 5.67 0.15 1.58 -0.57 -0.33 0.41 0.012 3.70
1.8 5.77 0.11 1.62 -0.53 -0.35 0.37 0.008 3.61
1.9 5.85 0.09 1.66 -0.49 -0.38 0.33 0.006 3.49
2.0 5.92 0.07 1.70 -0.45 -0.40 0.30 0.004 3.40

Note that
Õ
8 �8 9 = #⌫, where the sum is performed over all the bins for the power spectrum. For

infinitesimally narrow bins, we can derive the coe�cients �8 9 analytically starting from equations
(A.5) and (A.6) or (A.7) and (A.8). However, for the broad angular bins we consider in this work, we
determine them numerically.

2.3.3 Survey characteristics and fiducial values

As an example of the forthcoming next generation of galaxy redshift surveys, we consider a Euclid-like
mission. Within six years starting from 2021, the Euclid space telescope is expected to complete
a wide survey that will measure ⇠ 6 ⇥ 107 galaxy redshifts over 15000 square degrees on the sky
(Laureijs, 2009). Low-resolution (slitless) spectroscopy in the near infrared will target the emission
lines (mainly HU) of star-forming galaxies in the approximate redshift interval 0.7 < I < 2.0.

Since only relatively small samples have been observed so far (for a summary see, e.g., Pozzetti
et al., 2016), little is known about the population of emission-line galaxies at these redshifts. Therefore,
we must approximate the specifics of a Euclid-like survey by using theoretical models that have been
calibrated against the current data. In particular, we adopt model 1 in Pozzetti et al. (2016) for the
luminosity function of HU-selected galaxies and assume a limiting flux of �HU > 3 ⇥ 10�16 erg cm�2

s�1. In Table 2.1, we report the corresponding galaxy number densities, =g, as a function of redshift.
In order to facilitate comparison with previous work, we adopt the same binning strategy as in the
Euclid Definition Study Report (Laureijs, 2009) and in many other forecasts for this mission (e.g.
Amendola et al., 2018): 14 non-overlapping redshift bins of width �I = 0.1 whose central values are
linearly spaced between 0.7 and 2.0.

The clustering properties of HU emitters at I ⇠ 1 are also very poorly constrained. Semi-analytic
models of galaxy formation combined with #-body simulations suggest that the linear bias parameter
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of the emission-line galaxies that will be detected by Euclid should be slightly above unity at I ⇠ 0.7
and grow with redshift (Orsi et al., 2010). An approximate fit (that we adopt) for the e�ective
linear bias in each redshift bin is 11 = 0.9 + 0.4 I (see appendix A in Pozzetti et al., 2016) although
observations over two degree-sized fields at slightly higher redshifts indicate that 11 could be a bit
higher (11 = 2.4+0.1�0.2 at I = 2.23, Geach et al., 2012). Determining realistic fiducial values for the
quadratic and tidal bias coe�cients of Euclid galaxies requires making some additional assumptions.
It is a basic tenet of the standard cosmological model that galaxies lie within dark-matter haloes: a
central galaxy sits in the densest region of a halo while multiple satellites can be found in the outskirts.
The linear and quadratic bias coe�cients of the host haloes depend on the halo mass and redshift but
can be related to each other by using fitting functions calibrated against #-body simulations, typically
polynomials of second or third order (Lazeyras et al., 2016; Ho�mann et al., 2017). Similarly, if halo
formation is a local process in Lagrangian space and there is no initial tidal bias, then

1B2 =
4

7
(1 � 11) (2.43)

(Catelan et al., 1998, 2000; Baldauf et al., 2012; Chan et al., 2012). In brief, under some reasonable
assumptions, knowing 11 is su�cient to derive 12 and 1B2 for the host haloes. In order to extend this
method to the galaxies, we model their halo-occupation number h#g |"i that gives the mean number
of galaxies contained within a single dark-matter halo of mass " . Uncountable studies have shown
that, for galaxies selected by luminosity in a broadband optical filter (or by stellar mass), h#g |"i can
be well approximated by the sum of a step function (describing central galaxies and ranging between 0
and 1) and a power law (describing satellite galaxies). However, when galaxies are selected by the
intensity of an emission line (or by star-formation rate), h#g |"i is better described by a uni-modal
function that always assumes values smaller than one (for the central galaxies) plus a power law (for
the satellites). The latter parameterization has been used by Geach et al. (2012) to model the observed
clustering of HU emitters at I ⇠ 2.2 and by Gonzalez-Perez et al. (2018) to describe the population of
[OII] emitters in a semi-analytic model of galaxy formation. We approximate their results by using
a simple expression containing a free parameter ("0) that determines the typical halo mass and a
second one (NHO  0.95) that fixes the overall normalization:

h#g |"i = NHO (h#c |"i + h#s |"i) (2.44)

with

h#c |"i = exp

((
�10


log10

✓
"

"0

◆�2))
+ 0.05⇥

✓
"

"0

◆
, (2.45)

h#s |"i = 0.003
"

"0
⇥

✓
"

"0

◆
, (2.46)

and
⇥

✓
"

"0

◆
= 1 + erf


2 log10

✓
"

"0

◆�
. (2.47)

The first term on the right-hand side of equation (2.44) describes the halo occupation number of
central galaxies while the second one refers to satellite galaxies. Here, "0 denotes the halo mass at
which the mean number of central galaxies reaches its maximum. Given the halo mass function =(")
in each redshift bin (Sheth et al., 2001), we determine "0 by requiring that the e�ective linear bias of
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2.3 Fisher matrix

Figure 2.3: Halo-occupation number of the Euclid galaxies at di�erent redshifts.

the Euclid galaxies

1e 5 5 =

Ø
11(") =(") h#g |"i d"Ø

=(") h#g |"i d"
(2.48)

coincides with the fit given in Pozzetti et al. (2016). Using the resulting "0, we then determine the
e�ective value of 12 by averaging the quadratic halo bias with weights given by the mass function and
the halo occupation number as in equation (2.48). We have checked the stability of our results with
respect to the parameterization of the halo mass function (Bhattacharya et al., 2011, and references
therein). Note that, since the halo tidal bias depends linearly on 11, we can obtain 1B2 for the galaxies
directly from their linear bias. The complete set of the bias coe�cients we obtain is listed in Table 2.1.
It is worth stressing that the values of 12 are always slightly less negative than (but very close to) those
that would be obtained from 11 by straightforwardly applying the relation between the bias parameters
that holds for dark-matter haloes. This shows that the details of the halo-occupation model are not
very important for determining 12 and strengthen our confidence in the approximate methods we have
used. For the sake of completeness, in Fig. 2.3, we plot the halo-occupation number of the Euclid
galaxies at di�erent redshifts. The normalization constant NHO(unnecessary to determine the bias
coe�cients) is obtained by requiring that =6 =

Ø
=(") h#g |"i d" (see Table 2.1).

The last parameter we need to fix in order to build a fiducial model for the power spectrum and
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Chapter 2 Cosmological information in the redshift-space bispectrum

Table 2.2: Summary of the cosmological models considered in this chapter. Here, #par indicates the total
number of free parameters in the fit while the last column gives the name of the Monte Carlo generated Markov
chains for the Planck data we use to generate the prior.
Model #par Cosmology Bias Nuisance Planck sample

14 I-bins 14 I-bins
⇤CDM 61 ⌦cdm, ⌦b, ⌘, =s, � 11 (I), 12 (I), 1B2 (I) fp (I) base-plikHM-TTTEEE-lowTEB
FCDM 62 ⌦cdm, ⌦b, ⌘, =s, �, F 11 (I), 12 (I), 1B2 (I) fp (I) w-base-plikHM-TTTEEE-lowTEB
F0F0CDM 63 ⌦cdm, ⌦b, ⌘, =s, �, F0, F0 11 (I), 12 (I), 1B2 (I) fp (I) base-w-wa-plikHM-TT-lowTEB-BAO

the bispectrum of Euclid galaxies is the rescaled pairwise velocity dispersion, fp. As we briefly
mentioned above, #-body simulations suggest that, at the redshifts of interest here, fp can be well
approximated by linear-theory predictions (Hashimoto et al., 2017). Therefore, neglecting velocity
bias, we write f2

p = 2f2 (where 0 � f denotes the 1-dimensional velocity dispersion for the dark
matter) with

f2 =
5 2

3

π 1

0

%L(:)
:2

d3:
(2c)3 =

5 2

6c2

π 1

0
%L(:) d: . (2.49)

Our results are summarized in Table 2.1.

2.3.4 Cosmological models

Within the CDM scenario with Gaussian initial conditions, we consider three classes of cosmological
models characterized by di�erent parameterizations for the equation-of-state parameter of dark energy,
F.

We first examine plain vanilla CDM models with a cosmological constant, where F = �1 (⇤CDM).
They are controlled by 5 parameters. The present-day values of the density parameters for dark matter,
⌦cdm, and baryons, ⌦b, as well as the Hubble constant, ⌘, fully determine the background. At the
same time, we assume a power-law form for the power spectrum of primordial (scalar, adiabatic)
curvature perturbations

PR(:) = �
✓
:

:⇤

◆=s�1
, (2.50)

which is then completely determined by the spectral index =s and the amplitude � at the pivot scale
:⇤ = 0.05 Mpc�1.

The simplest extension to ⇤CDM we consider is a phenomenological model in which F stays
constant with time but can assume values di�erent from -1. We refer to this case, where F is treated
as a sixth cosmological parameter, as FCDM.

The next level of complexity is to use two parameters to describe a time-varying equation of state
(see e.g. Sahni & Starobinsky, 2006, for a review). We adopt the popular choice of assuming that F
evolves linearly with 0 and write

F = F0 + F0 (1 � 0) (2.51)

(Chevallier & Polarski, 2001; Linder, 2003). Here, F0 gives the present-day value of the equation-
of-state parameter while F0 describes its current rate of change. Although, these phenomenological
parameters provide a useful tool to detect deviations from a cosmological constant from experiments,
it is not straightforward to map them on to physical dark-energy models (e.g. Scherrer, 2015). Note
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that equation (2.51) describes a monotonic (and rather gentle) evolution from the primordial value of
F0 + F0 to F0.

In all cases, as a fiducial model we use the ⇤CDM solution with the best-fitting parameters for the
‘TT+lowP+lensing’ Planck 2015 results (Planck Collaboration et al., 2016): namely, ⌦cdm = 0.2596,
⌦b = 0.0484, ⌘ = 0.6781, =s = 0.9677, � = 2.139 ⇥ 10�9, and F = �1. Linear transfer functions for
the matter perturbations are computed using the ���� code (https://camb.info, Lewis et al., 2000;
Howlett et al., 2012).

2.3.5 Method

For each redshift interval, we build a data vector that combines the (shot-noise corrected) expec-
tation values for the galaxy power spectrum and the bispectrum in the selected configuration bins.
Schematically, we write D = (%, ⌫) and we compute the Fisher information matrix

�UV =
mD
m?U

· C�1 · mD)
m?V

, (2.52)

where ?U and ?V indicate two of the model parameters and C is the block covariance matrix

C =
✓

CPP CPB
CBP CBB

◆
, (2.53)

that can be conveniently inverted using

C�1 =
✓

CA �CACPBC�1
BB

�C�1
BBCBPCA C�1

BB + C�1
BBCBPCACPBC�1

BB

◆
, (2.54)

with CA = (CPP � CPBC�1
BBCBP)�1. We then sum the partial Fisher information matrices obtained for

the di�erent redshift intervals and invert the resulting matrix to make a forecast for the covariance
matrix of the model parameters.

As a reference case, we consider wavevectors with : < :max where :max = 0.15 ⌘ Mpc�1. This is
for three reasons. First, with the current state of the art, it is challenging to model non-linearities
in % and ⌫ for much larger wavenumbers with an accuracy that allows applications to precision
cosmology. Lazanu et al. (2016) have recently tested various models for the real-space bispectrum
of matter perturbations against #-body simulations. To the lowest non-vanishing order (tree level),
SPT statistically matches the numerical results to better than 5 per cent up to :max = 0.17 ⌘ Mpc�1
for I = 1 and :max = 0.20 ⌘ Mpc�1 for I = 2. Extending the calculation to next-to-leading order
(i.e. adding one-loop corrections) considerably broadens the range of validity of the theory at I ⇠ 2.
Substantially larger values for :max at all redshifts (by up to a factor of two, see table II in Lazanu
et al., 2016) can also be obtained by either reorganizing the perturbative expansion (e.g. Matsubara,
2008; Crocce et al., 2012) or by adopting an e�ective-field-theory approach in which the influence of
non-perturbative small-scale physics on to the large-scale perturbations is described with modified
fluid equations whose extra parameters are calibrated against numerical simulations (e.g. Baumann
et al., 2012; Carrasco et al., 2012; Angulo et al., 2014; Baldauf et al., 2015). However, accounting
for galaxy biasing, RSD and discreteness e�ects provide additional challenges for the perturbative
models and reduces their range of validity. Secondly, the numerical inversion of C becomes more
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and more demanding with increasing :max. In fact, since we use a minimal bin size of �: = :f ,
we end up dealing with very high-dimensional matrices mainly due to the large number of possible
triangle configurations for the bispectrum. Our default choice is to use 8 bins (i.e. #p = 4 and
#a = 2) for the triangle orientations with respect to the line of sight. In this case, we use between
approximately 31,200 and 65,500 bispectrum bins. Although the outcome of our study does not
depend on the adopted angular coordinate system, we only show results obtained by taking bins in
cos \̃ and q̃. A third motivation for limiting our study to :max = 0.15 ⌘ Mpc�1 is that non-linear e�ects
strongly enhance the non-Gaussian contributions for all the sub-matrices that form C (e.g. Chan &
Blot, 2017). In consequence, the information content of % and ⌫ strongly deviates from simplistic
expectations based on counting Fourier modes. For instance, when one analyses the power spectrum,
these e�ects lead to the so-called ‘translinear information plateau’ (Rimes & Hamilton, 2005; Neyrinck
& Szapudi, 2007; Takahashi et al., 2009). Basically, with increasing :max, the cumulative information
about a cosmological parameter grows until it saturates (for :max & 0.2 ⌘ Mpc�1). Only by analyzing
much smaller (non-perturbative) scales (:max � 1 ⌘ Mpc�1) can one retrieve useful information again.
Although there are indications that the cumulative information stored in the bispectrum might saturate
at smaller scales than for the power spectrum, it is also evident that, in the mildly non-linear regime, it
increases at a much smaller rate than in the Gaussian approximation (Kayo et al., 2013; Chan & Blot,
2017). These considerations, together with the fact that the hierarchy of correlation functions (and their
Fourier transforms) should be a rather ine�cient tool to retrieve information from perturbations on fully
non-linear scales (Carron, 2012; Carron & Neyrinck, 2012), have motivated alternative approaches
for retrieving the information based on non-linear transforms and Gaussianization procedures (e.g.
Carron & Szapudi, 2014, and references therein).

In Table 2.2 we summarize the cosmological and nuisance parameters used in our main investigation.
As detailed in Section 2.3.4, the cosmology is specified by fixing 5 to 7 variables depending on the
adopted parameterization of the dark-energy equation of state. In parallel, for each redshift bin, we
consider 3 bias parameters and the pairwise velocity dispersion, for a total of 56 nuisance parameters
that characterize the galaxy population under study. In Section 2.5, we will discuss some modifications
to this set-up and their implications.

2.3.6 Priors

Bayesian statistics requires adopting a prior probability distribution for the model parameters. In this
regard, we perform our analysis in two steps. First, we study the constraining power on cosmology of
a Euclid-like survey by itself. In this case, we use directly the Fisher matrix to produce our forecasts.
This procedure only uses information from the likelihood function and corresponds to adopting very
di�use priors on all the parameters. Subsequently, we combine the results of this first exercise with
the constraints coming from the study of cosmic-microwave-background anisotropies performed
by the Planck mission. To do this, we proceed as follows. For each of the cosmological models
introduced in Section 2.3.4, we download a Markov chain that samples the posterior distribution from
the Planck web-page3 and compute the corresponding covariance matrix for the subset of cosmological
parameters considered here. We then invert the covariance matrix and sum the result to the Euclid-like
Fisher matrix. In practice, we treat the Planck results as Gaussian priors for our study of galaxy
clustering. The exact names of the files we use are reported in Table 2.2. Note that, for the F0F0CDM

3 https://wiki.cosmos.esa.int/planckpla2015/index.php/ Cosmological_Parameters
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2.4 Results

Figure 2.4: Signal-to-noise ratio for measurements of the galaxy power spectrum and the bispectrum in a
Euclid-like survey as a function of redshift. We show results for the redshift-space power spectrum (dot-dashed),
the redshift-space bispectrum (dashed) and their combination (solid). For comparison, we also display the S/N
computed by neglecting the cross-covariance between % and ⌫ (dotted).

models, we use a combination of current CMB and galaxy-clustering data.

2.4 Results

2.4.1 Signal-to-noise ratio

In Fig. 2.4, we quantify the statistical significance with which the redshift-space power spectrum and
bispectrum of Euclid galaxies will be measured. We plot the S/N ratio

✓
(

#

◆2
= D · C�1 · D) , (2.55)

as a function of redshift (solid). We also show individual results for % (dot-dashed) and for ⌫ (dashed)
as well as for their combination when the cross-covariance C%⌫ is assumed to vanish (dotted). Thanks
to the huge volume covered by the Euclid-like survey, both the power spectrum and the bispectrum
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Chapter 2 Cosmological information in the redshift-space bispectrum

Figure 2.5: Joint 68.3 per cent credible regions for all pairs of cosmological parameters of the ⇤CDM model.
Di�erent linestyles indicate the forecast for a Euclid-like survey based on di�erent observables: namely, the
power spectrum (dot-dashed), the bispectrum (dashed), and their combination (solid). The numbers indicate
the ratio between the areas enclosed within the dot-dashed and the solid lines. The shaded areas highlight the
credible regions obtained by also considering the Planck priors introduced in Section 2.3.6. The colour coding
is indicated by the top labels. The panels below the diagonal o�er a panoramic view while those above the
diagonal zoom in for a close up of the central regions.
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Figure 2.6: As in Fig. 2.5 but for the FCDM model.
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Figure 2.7: As in Fig. 2.5 but for the F0F0CDM model.
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are clearly distinguishable from noise with high confidence (note that this is not true for the single
triangular configurations of the bispectrum whose measurement, given our narrow bins in : , is almost
always dominated by noise). The global (/# , however, rapidly drops for I > 1.2 mainly due to the
decreasing galaxy number density. In spite of the very large number of triangular configurations, we
consider that the S/N ratio for ⌫ is always a factor of 2.5-3 times smaller than for %. Finally, we note
that neglecting the cross-covariance between % and ⌫, as in some previous studies (e.g. Karagiannis
et al., 2018), only slightly overestimates the total (/# at the lowest redshifts (see also Song et al.,
2015). This is a consequence of the fact that we only consider quasi-linear scales where % and ⌫ are
weakly correlated. The di�erences become more marked if the analysis is extended to smaller scales
(Byun et al., 2017; Chan & Blot, 2017).

2.4.2 Cosmological parameters

In Figs. 2.5, 2.6, and 2.7, we show the results of our forecasts for the ⇤CDM, FCDM and F0F0CDM
models, respectively. Shown are the joint 68.3 per cent credible regions for all possible pairs of
cosmological parameters obtained after marginalizing over all the remaining model parameters. The
bottom-left area of the figures is tailored to display the likelihood contours obtained from a Euclid-like
survey. Dot-dashed, dashed, and solid lines show the constraints coming from the galaxy power
spectrum, the bispectrum, and their combination, respectively. In each panel, we report the ratio
between the areas enclosed within the dot-dashed and the solid curves. These numbers show that the
benefit of combining two- and three-point statistics becomes more marked for the models that include
a larger number of free parameters as there are more degeneracies to break. On the other hand, the
narrow-shaded regions highlight the credible regions obtained by also considering the Planck priors
introduced in Section 2.3.6. The top-right areas of the figures zoom in to display the combined results
more clearly.

The corresponding marginalized errors for each single variable are reported in Table 2.3. In general,
the bispectrum provides similar, but slightly worse, constraints than the power spectrum. Also,
the orientation of the likelihood contours is very similar between the two probes. Therefore, the
combination of these two- and three-point statistics leads to a non-negligible but moderate gain in the
determination of the cosmological parameters.

Adding the Planck prior breaks degeneracies in the models by imposing strong constraints on
=B, �, as well as on various combinations of ⌦b, ⌘. In consequence, the parameters that describe the
dark-energy equation of state are determined much more precisely. Once combined with Planck,
the galaxy power spectrum and the bispectrum give very similar constraints on the cosmological
parameters. In this case, combining two- and three-point statistics provides only minimal advantages
for the cosmology sector but yields a precise measurement of galaxy bias (see Section 2.4.3).

Table 2.3 also shows that the forecast obtained by neglecting the cross-covariance between % and ⌫
is only slightly optimistic with respect to the full analysis. This result validates previous studies that
do not consider CBP (provided that they focus on su�ciently large scales). Note that the numerically
challenging inversion of the covariance matrix in equation (2.52) becomes trivial when CBP = 0.

2.4.3 Galaxy bias

Being able to accurately measure non-linear galaxy bias is considered one of the classic advantages of
bispectrum studies. In Fig. 2.8, we present forecasts for the uncertainty with which an Euclid-like
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Table 2.3: Expected marginalized 1f errors (i.e. half of the 68.3 per cent credible-interval size) for the
cosmological parameters in the ⇤CDM, FCDM, and F0F0CDM models obtained considering a Euclid-like
survey (left) and its combination with Planck priors (right). The di�erent columns display results obtained
from the galaxy power spectrum, %, the bispectrum, ⌫, and their combination, % + ⌫. We also show forecasts
computed by neglecting the cross-covariance CBP that we indicate with the symbol %

d+ ⌫. Note that, to ease
the presentation of the results, the parameters have been rescaled by a multiplicative factor as indicated in the
leftmost column of each sector. The bottom row gives the FoM for the dark-energy parameters F0 and F0.

Euclid-like alone Euclid-like with Planck prior
% ⌫ %

d+ ⌫ % + ⌫ % ⌫ %
d+ ⌫ % + ⌫

⇤CDM
10 =s 0.72 1.17 0.53 0.56 103 =s 3.02 3.43 2.91 2.93
10 ⌘ 0.76 1.19 0.56 0.59 103 ⌘ 1.55 2.24 1.38 1.41
1010� 3.95 6.28 2.87 3.01 1011� 3.09 4.86 2.60 2.80
103⌦cdm 5.01 6.96 3.56 3.82 103⌦cdm 1.79 2.73 1.54 1.58
103⌦b 5.71 9.02 4.26 4.46 104⌦b 2.27 2.94 2.12 2.14

FCDM
10 =s 0.75 1.19 0.56 0.60 103 =s 3.96 4.35 3.78 3.81
10 ⌘ 0.79 1.21 0.59 0.63 103 ⌘ 4.61 7.64 4.27 4.35
1010� 3.99 6.58 2.87 3.01 1011� 5.73 6.52 5.08 5.14
103⌦cdm 5.28 7.14 3.83 4.17 103⌦cdm 1.86 2.68 1.61 1.64
103⌦b 5.87 9.13 4.45 4.74 104⌦b 3.69 5.13 3.45 3.49
10F 1.07 1.80 0.71 0.72 102 F 2.80 3.30 2.61 2.64

F0F0CDM
10 =s 0.86 1.26 0.58 0.62 103 =s 4.13 4.52 3.92 3.96
10 ⌘ 0.93 1.30 0.62 0.66 103 ⌘ 2.78 3.74 2.65 2.67
1010� 6.78 8.55 3.48 3.54 1011� 6.32 7.07 5.62 5.67
103⌦cdm 5.37 7.16 3.83 4.17 103⌦cdm 2.00 2.85 1.71 1.77
103⌦b 7.12 9.99 4.75 5.02 104⌦b 4.59 6.81 4.21 4.26
10F0 2.85 4.47 2.00 2.13 102 F0 8.61 9.88 8.28 8.38
F0 1.40 1.83 0.78 0.79 10F0 3.40 3.88 3.26 3.29
FoM(F0F0) 6.66 3.03 18.10 17.43 FoM(F0F0) 147.06 93.32 166.71 162.49
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Figure 2.8: Joint 68.3 per cent credible regions for pairs of bias parameters determined using the bispectrum
(dashed) and the combination between the power spectrum and the bispectrum (solid) for a Euclid-like survey.
To improve readability, we mark with crosses the fiducial values for all redshift bins but we show the credible
regions only for alternate bins. The mean redshift for the sample increases from left to right. The numerical
labels indicate the central value of each redshift bin and are located in proximity of the corresponding contours
to help identify them.

survey can determine the bias parameters in a ⇤CDM model (results are similar for the other cases
considered in this chapter). The bispectrum provides tight constraints on the bias coe�cients at low
redshift but it does not contain enough information to uniquely determine them at higher redshifts
where estimates of 11 and 12 (and, to a lesser degree, 11 and 1B2) are degenerate. Simultaneously
fitting the power spectrum and the bispectrum strongly improves the situation. In fact, the power
spectrum more tightly constraints 11 (see also Fig. 2.9) and this is enough to break the degeneracies
with 12 and 1B2 . Combining the two probes, leads to even smaller 11 errors, especially for the
F0F0CDM model (rightmost panel in Fig. 2.9). It is worth stressing that, in a power-spectrum
study, the error on 11 correlates with that on most cosmological parameters while cosmology-bias
cross-correlations are weaker for the bispectrum.

Fig. 2.8 shows that the combination of power spectrum and bispectrum should provide rather tight
constraints in the (11, 12, 1B2) space that could be used to derive the halo occupation properties of the
galaxies. In fact, empirically measuring deterministic relations between 11 and 12 as well as between
11 and 1B2 would shed light on the nature of the biasing process. For instance, measuring a negative
1B2 at all redshifts in accordance with equation (2.43) would provide evidence in favour of a local
biasing process in Lagrangian space.

2.4.4 Figure of merit for dark-energy constraints

Since the report of the DETF (DETF, Albrecht et al., 2006), it is customary to compare cosmological
probes in terms of a conveniently defined FoM, i.e. a single number summarizing the strength of the
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Figure 2.9: Forecast 1f errors for the linear bias parameter as a function of redshift. Shown are the results for
a Euclid-like survey (with and without Planck priors) based on the galaxy power spectrum (dot-dashed), the
bispectrum (dashed), and their combination (solid). Line style and thickness are indicated by the top labels.

constraints that can be set on to the model parameters that describe dynamic dark energy. For the
F0F0CDM model, we adopt the definition (Wang, 2008; Mortonson et al., 2010)

FoM =
1p

det Cov(F0,F0)
, (2.56)

where Cov(F0,F0) denotes the 2 ⇥ 2 covariance matrix for the errors on F0 and F0 (note that our
definition is a factor of 6.17c larger than the DETF FoM that is defined as the reciprocal of the area
in the F0-F0 plane that encloses the 95 per cent credible region). Our results are reported in the
last row of Table 2.3. We find that the galaxy power spectrum in a Euclid-like survey gives an FoM
that is more than two times larger than for the bispectrum. However, combining two- and three-point
statistics improves the FoM by a factor of 2.6 with respect to considering the power spectrum only4.
This promising result is, however, weakened by considering the current CMB+clustering constraints
as a prior. In this case, adding the bispectrum only improves the FoM by 11 per cent. The reason
4 The corresponding factors for other combinations of cosmological parameters can be directly read in the bottom left-hand

panels of Figs. 2.5, 2.6, and 2.7.
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for this behaviour is as follows. The improvement for the Euclid data mainly derives from partially
breaking the degeneracy between 11 and the amplitude of % and ⌫ for all redshift bins. As we have
shown in the previous Section, combining % and ⌫ allows a much better determination of the linear
bias parameters at all redshifts (the marginalized errors shrink by a factor between 2 and 3). These 14
parameters are degenerate with the amplitudes of the clustering signals that depend on both � and the
linear growth factors (thus on F0 and F0)5. Once the Planck’s data are taken into consideration, �
is extremely well determined and the constraints on 11,F0 and F0 do not improve significantly by
adding the galaxy bispectrum to the power spectrum.

2.5 Discussion

In this section, we study how modifications to our standard setup influence the forecast results. For
simplicity, we only consider the ⇤CDM model and focus on the redshift bin centred at I = 1.

2.5.1 Dependence on the bin width �k

So far, we have presented results obtained using narrow wavenumber bins with �: = :f. This choice
is motivated by the trade-o� between minimizing information loss and taking into account the e�ect
of the window function of the survey. However, it is di�cult to imagine that such narrow bins will be
ever used in actual observational studies. This is mainly because the large dimensionality of the data
makes the estimation of covariance matrices prohibitive, at least when it is done using a large number
of mock galaxy catalogues. Here, we quantify the influence of the bin size �: on the forecast results.
As a measure of information content, we generalize the definition of FoM given in equation (2.56) and
write

FoM =
1p

det Cov(?1, . . . , ?=)
, (2.57)

where (?1, . . . , ?=) denotes the set of model parameters that belong to a given sector (e.g. ‘cosmology’,
‘bias’, etc.). Note that the quantity FoM1/= gives an e�ective error estimate for a single parameter. In
Fig. 2.10, we illustrate how the forecast constraints from the analysis of the power spectrum and the
bispectrum degrade as the size of �: increases. Shown is the ratio FoM1/= (�:)/FoM1/= (�: = :f)
that provides an indication of the mean information loss per model parameter and allows us to easily
compare results obtained for di�erent sectors. In all cases, the deterioration of the constraints with
increasing �: is noticeable. For instance, using �: = 5:f typically leads to error bars on the model
parameters that are 20 per cent larger than in our reference case. Note that the recent analysis of
the bispectrum monopole from the BOSS DR12 CMASS6 sample (Gil-Marín et al., 2017) adopts
�: = 6:f due to the limited number of mock catalogues available to estimate the covariance matrix.
It is only by compressing the data vector with the Karhunen-Loève transform that Gualdi et al. (2018)
could employ thinner :-bins down to �: = 2:f.

5 We have checked that, if the linear bias coe�cients are kept fixed at their fiducial value, the FoM for the dark-energy
parameters only improves by a factor of 1.25 when % and ⌫ are combined.

6 Baryon Oscillation Spectroscopic Survey (BOSS), data reliase 12 (DR12), constant mass (CMASS)
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Figure 2.10: Typical information loss per model parameter as a function of the bin size �: . Shown is the
function FoM1/= (�:) normalized to one at �: = :f (the value we used in Section 2.4). Results for the power
spectrum and the bispectrum measured from a Euclid-like survey at 0.95 < I < 1.05 are shown with dashed
and solid lines, respectively. Model parameters are grouped in di�erent sectors as indicated by the labels. The
figure refers to the ⇤CDM model.

2.5.2 Dependence on kmax

The results presented in Section 2.4 have been obtained considering all Fourier modes with : < :max =
0.15 ⌘ Mpc�1. This choice was dictated primarily by theoretical limitations. In fact, it is challenging
to develop models for the galaxy bispectrum in redshift space that are su�ciently accurate on smaller
scales. However, it is di�cult to draw a precise line that marks where models lose their predictive
power. For this reason, here we explore how the Fisher-matrix forecast depends on the choice of
:max. An alternative approach would be to include ‘theoretical errors’ in the likelihood and extend the
analysis to large wavenumbers (Baldauf et al., 2016). Though, this would force us to always deal with
impractically large covariance matrices and, also, assumptions would have to be made in order to
estimate the size of the theoretical errors for the bispectrum in redshift space. For these reasons, we
prefer to use the more traditional method of varying :max. Our results are presented in Fig. 2.11. For
the cosmology sector, the quantity FoM1/= scales as :Umax with U ' 2.7 for the power spectrum and
U ' 3.6 for the bispectrum. If these scaling properties can be extrapolated beyond 0.2 ⌘ Mpc�1, our
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Figure 2.11: As in Fig. 2.10 but as a function of :max.

results imply that the bispectrum will achieve the same constraining power as the power spectrum for
:max ⇠ 0.43 ⌘ Mpc�1.

2.5.3 Binning of triangle orientations

In Fig. 2.12, we investigate how the quantity FoM1/= depends on the number of bins used to describe
the orientation of the triangular configurations for the bispectrum with respect to the line of sight.
For simplicity, we only show results for the complete fit including all cosmological and nuisance
parameters (that we labelled ‘total’ in Figs. 2.10 and 2.11) as the individual plots for the di�erent
sectors all appear very similar. The first important thing to mention is that just considering the
monopole of the bispectrum in redshift space (i.e. # q̃ = # ˜̀ l = 1) leads to a non-negligible loss of
information. In this case, individual parameter constraints degrade, on average, by ⇠ 30 per cent with
respect to our reference case (# q̃ = 2, # ˜̀ l = 4). Taking into account the lowest-order non-vanishing
multipoles with < = 0 (i.e. setting # q̃ = 1 but # ˜̀ l > 1) is already enough to recover most of the
lost information (see also Gagrani & Samushia, 2017). However, it is necessary to also consider
the variation of the bispectrum with respect to the azimuthal angle in order to further shrink the
parameter constraints by 7 (for ⌫) and 1.5 (for % and ⌫ combined) per cent. Note that our reference
case represents a good compromise between minimizing the number of bins and keeping most of the
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Figure 2.12: As in Fig. 2.10 but as a function of the number of bins used to describe the orientation of the
triangular configuration of wavevectors with respect to the line of sight. Here, # q̃ and # ˜̀ l denote the number
of bins in the azimuthal angle q̃ and in the cosine of the polar angle \̃ (measured with respect to the longest
wavevector), respectively. Shown is the quantity FoM1/= evaluated for a generic (# q̃ , # ˜̀ l ) pair divided by the
value it assumes for our reference case # q̃ = 2 and # ˜̀ l = 4.

information contained in the data.

2.5.4 Shot-noise subtraction

In line with previous theoretical work (e.g. Sefusatti et al., 2006; Song et al., 2015; Gualdi et al.,
2018), the results presented in Section 2.4 quantify the cosmological dependence of the actual galaxy-
clustering signal and thus assume that we can perfectly subtract the systematic shot-noise contributions
to the power spectrum and the bispectrum. In a real survey, however, the mean galaxy density and
the shot-noise corrections can only be estimated with some uncertainty (e.g. by using the selection
function and the mask, Feldman et al., 1994; Scoccimarro, 2000, 2015). Moreover, it is reasonable to
expect that shot noise is not exactly Poissonian as evidenced by the analysis of mock catalogues based
on #-body simulations (e.g. Mo & White, 1996; Hamaus et al., 2010; Baldauf et al., 2013). Therefore,
various approaches have been taken in the literature to generalize equations (2.25) and (2.26). For
instance, in their analysis of the BOSS survey, Gil-Marín et al. (2014) rescale the shot-noise terms
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%0
shot and ⌫shot by the same constant factor that is then fit to the data. Similarly, Schmittfull et al.

(2015) use two scale-independent factors to correct %0
shot and ⌫shot in order to fit the bispectrum of

dark-matter haloes extracted from #-body simulations. This phenomenological approach can be
motivated by writing a more general bias expansion that includes stochastic contributions (e.g. Dekel
& Lahav, 1999; Matsubara, 1999; Angulo et al., 2015; Senatore, 2015; Desjacques et al., 2018, and
references therein). In this case, the term n (x) + n1(x)X(x) should be added to the right-hand side
of equation (2.17). Here, n denotes the leading stochastic contribution to the bias relation while n1
is the random part of the linear bias. By definition, both these fields have zero mean. Within these
assumptions, it is straightforward to show that the power spectrum and the bispectrum of n replace
%shot and ⌫shot in equations (2.25) and (2.26), respectively. On the other hand, the cross-spectrum
between n and n1 takes the place of %0

shot in equation (2.26). A popular strategy is to assume that,
on large scales, these terms are approximately constant and somewhat close to the predictions of
Poisson sampling. In this Section, we explore the consequences of considering %shot, %0

shot, and ⌫shot
as three additional free parameters (using the fiducial values =�1g , =�1g , and =�2g , respectively). The
same approach has been adopted by Karagiannis et al. (2018) to study the constraining power of the
galaxy bispectrum on primordial non-Gaussianity.

For the power spectrum, we find that fitting the amplitude of the additional white noise term, %shot,
worsens the constraints on all cosmological parameters by between 21 and 32 per cent (the worst case
being for =s) while basically leaves the errors on 11 and fp unchanged.

A quick look at equation (2.26) shows that the situation is more complex for the bispectrum as the
shot-noise contribution also contains a scale-dependent part that is proportional to the sum of three
power spectra. For this reason, if we repeat the forecast presented in Section 2.4 by taking into account
shot noise and assuming that (i) equation (2.26) exactly applies and (ii) we perfectly know =̄, then
most of the constraints on the fit parameters improve. The largest upgrades take place for ⌦cdm (66
per cent), =s (47 per cent), and � (44 per cent) while the smallest one applies to fp (30 per cent). Only
the marginalized constraints in the non-linear bias parameters get slightly worse (by 7 per cent for 12
and by 3.5 per cent for 1B2).

We can now relax assumptions (i) and (ii) above by replacing =�1g and =�2g in equation (2.26) with
two independent free parameters, %0

shot and ⌫shot, that are then fit to the data including shot noise.
After marginalizing the posteriors over %0

shot and ⌫shot, we find that the constraints on 1s2 and fp
worsen by nearly 50 and 30 per cent, respectively, compared with our reference case while those on
the cosmological parameters improve nearly as much as in the example discussed in the previous
paragraph.

Similar outcomes are found when we combine the power spectrum and the bispectrum: the constraint
on ⌦cdm improves by 55 per cent with respect to the corresponding reference case in Table 2.3, those
on =s and � by nearly 30 per cent, while the error on 12 increases by a factor of 3. This happens
because 12 is degenerate with ⌫shot. Using the Planck prior mitigates the di�erences. In this case,
the uncertainties for all fit parameters deteriorate by less than 30–40 per cent with respect to the
corresponding reference case.

The tests presented above have been performed at I = 1 where the systematic shot-noise contribution
is ⇠ 10 per cent of the actual clustering signal for both % and ⌫. Of course, the impact of shot noise
becomes more marked at higher redshifts were the number density of galaxies drops significantly. At
I ⇠ 2, for instance, shot noise is comparable with the clustering signal.

Based on these results, we conclude that the treatment of shot noise in pure clustering studies (i.e.
without external priors) has an impact on the resulting cosmological constraints and can alter them
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significantly. The tests performed here also suggests that our main analysis might be conservative for
parameters like ⌦cdm, =s, and �.

2.5.5 Treatment of galaxy bias

In our main analysis, we have used 3 bias parameters per redshift bin (for a total of 42) and fit them
independently to the data. This is the safest approach as it does not rely on any other assumption
than the bias expansion given in equation (2.17). However, it is reasonable to expect that the bias
parameters change smoothly with redshift. In this case, it makes sense to approximate each of them
with with a simple fitting function that captures their variation. We consider here a quadratic function
of redshift for each bias coe�cient. This reduces the number of nuisance parameters with respect to
our standard treatment from 42 to 9. Our results show that implementing this simplified procedure
does not give any practical advantage as the errors on the cosmological parameters basically remain
unchanged with respect to our standard treatment.

2.6 Summary and conclusions

Galaxy clustering is a powerful cosmological probe. Two-point statistics in configuration and Fourier
space are routinely used to constrain models for our Universe. The question addressed in this chapter is
whether the galaxy bispectrum in redshift space contains additional information about the cosmological
parameters.

The literature about the galaxy bispectrum mostly focuses either on the real-space statistic or on
its redshift-space monopole. For this reason, in Section 2.3.2, we first illustrate the phenomenology
of RSD for the bispectrum and explore di�erent parameterizations for the spatial orientation of
the triangles of wavevectors with respect to the line of sight. We then generalize the expressions
found in the literature for the covariance matrix of bispectrum estimates and, in particular, for their
cross-covariance with measurements of the power spectrum – see equation (2.42).

We use the Fisher information matrix to forecast constraints on a large number of cosmological and
nuisance parameters from future measurements of the galaxy bispectrum and the power spectrum in
redshift space. We consider flat FLRW models dominated by dark energy and CDM with Gaussian
primordial perturbations. As an example of the forthcoming generation of experiments, we adopt the
specifications of a Euclid-like galaxy redshift survey (Table 2.1). In our principal analysis, we only
consider wavenumbers with :  :max = 0.15 ⌘ Mpc�1 that define mildly non-linear scales on which
fluctuations in the galaxy density can be treated perturbatively. Within this range, it should thus be
possible to build robust models for the galaxy power spectrum and bispectrum. The main conclusions
of our work are as follows:

(i) The galaxy bispectrum and the power spectrum in redshift space set constraints of similar
strength on the cosmological parameters (Table 2.3). Therefore the bispectrum can be used as a
consistency check for power-spectrum studies.

(ii) Posterior correlations between the model parameters derived from the bispectrum and the power
spectrum are, in most cases, very similar (Figs. 2.5–2.7). For this reason, combining the two probes
only moderately improves the cosmological constraints with respect to considering them individually.

(iii) For instance, considering both statistics together partially breaks the degeneracies between the
linear bias coe�cients and the galaxy-clustering amplitudes in all redshift bins. In consequence, the
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FoM for the dark-energy parameters F0 and F0 improves by a factor of 2.6 with respect to only using
the power spectrum.

(iv) This advantage, however, vanishes once priors based on the results of the Planck mission and of
current clustering studies are included in the analysis. In this case, combining the power spectrum with
the bispectrum does not give any appreciable benefit other than precisely determining the parameters
that describe galaxy bias.

(v) For wavenumbers : < 0.15 ⌘ Mpc�1, the cross-covariance between the power spectrum and the
bispectrum has a small influence on parameter estimation (Table 2.3) and may be safely neglected to
first approximation.

(vi) Taking broad bins for the legs of the triangles of wavevectors leads to some information loss for
the bispectrum (Fig. 2.10). For instance, using �: = 5:f gives cosmological constraints which are
suboptimal by 20 per cent.

(vii) Since the number of bins in the triangular configurations for the bispectrum grows more
rapidly with the maximum wavenumber than the number of bands in the power spectrum, the relative
importance of the two probes strongly depends on the value of :max that is considered (Fig. 2.11).
We find that, for :max = 0.15 ⌘ Mpc�1, the power spectrum provides slightly tighter constraints than
the bispectrum on most parameters. However, our results also suggest that the bispectrum becomes
the leading probe if the analysis is extended beyond :max ' 0.43 ⌘ Mpc�1 (assuming that an accurate
theoretical model is available at such wavenumbers).

(viii) RSD contain precious information about the cosmological parameters. Just considering
the monopole moment of the bispectrum leads to a non-negligible loss of information. Individual
error bars for the fit parameters typically grow by 50 per cent (Fig. 2.12). Taking into account the
lowest-order non-vanishing multipoles with < = 0 recovers most of the lost information. Considering
also variations of the bispectrum with the azimuthal angle further reduces the error bars by a few up to
10 per cent.

(ix) The way shot noise is handled in the clustering analysis influences the cosmological results
(especially for ⌦cdm, =s and �) as well as the non-linear bias parameter 12. However, this dependence
is significantly reduced by also considering CMB-based priors.

(x) Using a smooth function of redshift to describe the evolution of the bias coe�cients does not
lead to any practical advantage with respect to fitting individual parameters for every redshift bin.
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CHAPTER 3

Binning e�ects on cosmological constraints
from the bispectrum1

3.1 Introduction

The ultimate goal of many theoretical studies is to draw comparisons between predictions and
observational data. For future missions, such as Euclid, it is important to have planned such a
comparison well in advance of the actual data release. The actual observational data will be binned in
some way and theoretical models should be adapted to this issue. Thirdly, the bispectrum binning
method used in Chapter 2 (the full average of the wavevectors and the bispectrum) is computationally
expensive. Usually, other approaches are used to increase the speed of calculations, which unfortunately
comes at the cost of a loss in accuracy compared to using the full averaging. Additionally, the forecast
results are dependent on the choice of bispectrum binning. A widely-used technique is to use one
wavevector and respectively one value of the bispectrum per bin. This value can be taken to be the a
middle of the bin, or on some ‘e�ective’ point. Also a choice of logarithmic wavevector scale may be
used instead of a linear scale.

Therefore, in this Chapter we study several ways of the bispectrum binning. We compare the
methods, discuss their advantages and disadvantages in dependence of the required task. Finally, we
show how the binning strategy a�ects the forecast.

3.2 Method

In this Chapter we use the models of the redshift space power spectrum and the bispectrum, parameters
of the Euclid-like survey, estimators for Fisher and covariance matrices, which were used in Chapter 2.
However, here we present results only for the ⇤CDM and the F0F0CDM cosmological models.

1The paper Yankelevich & Porciani, Binning e�ects on cosmological constraints from the bispectrum will be submitted to
Monthly Notices of the Royal Astronomical Society.
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3.3 Binning strategy

3.3.1 Average model

The first method of calculating the values of the power spectrum and bispectrum (refered to as the
‘average’) is the same as that discussed in Chapter 2. In this method, all possible wavevectors are
generated within the range [:min, :max]. The values of the power spectrum are then calculated for
each wavevector : , as are the bispectrum values for each set of three wavevectors :s, :m, : l, which
form triangles. In this scenario, there are many di�erent triangles which fall into the same triangular
bin, each of them providing an associated value of the bispectrum. Finally, the wavevectors, power
spectrum, and bispectrum are averaged for each bin (or triangular bin). Since we are working in the
RSD framework, the same averaging process is performed for each of the parameters describing the
spatial orientation: ` and `1, q̃.

There are three main advantages of this method. Firstly, it provides more accurate values of the
power spectrum or the bispectrum, compared to those computed only at one set of : . Secondly, all
types of triangles are automatically generated, including degenerate and non-closed triangles1. Thirdly,
it is easy to incorporate a direct counter inside the code for generating the wavevectors. For example,
for the number of modes per bin #% and #⌫, and for the number of overlapping bins between the
power spectrum and the bispectrum for the full covariance combination �8 9; (for equation 2.42).

The main disadvantage of this method is its non-flexibility with respect to parameter changes. The
power spectrum and the bispectrum have to be recomputed from scratch with every combination of
parameters used in the model. Moreover, this method requires significant computational time, when
compared to simpler methods (the actual amount of time depends on the language and structure of the
code).

In the following study, we assume the results of this binning as the ‘true’ ones.

3.3.2 Middle of the bin method

The most straightforward method (here after called ‘middle’) is based on using only one characteristic
configuration of wavevector per bin and respectively one value of the power spectrum and bispectrum.
Here we use the bin center for each configuration. The indisputable advantages of the technique are
speed and easy implementation. However, this method is approximate, and as we will show, is not
accurate.

3.3.3 E�ective method

The e�ective method (hereafter referred to as ‘e�ective’) is a hybrid between the average and middle of
the bin techniques. Firstly, the wavevectors are generated and binned in the same way as the ‘average’
technique. These averaged values are the e�ective wavevectors for the following method. Then,
like in ‘middle’ technique, values for the power spectrum and the bispectrum are calculated for each
bin, using the characteristic configurations computed in the first step. The advantages of ‘e�ective’
compared to ‘average’ are the computational speed and the flexibility to input parameters changes.
Since the characteristic values of wavevectors depend only on :min, :max and �: , they need to be

1 For example, the configuration where wavevectors are :s = 3.4, :m = 4.4, :l = 7.8, but the triangular bin is (3, 4, 8).
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calculated only once. Also, as we will show, this technique yields a more accurate power spectrum
and bispectrum than the ‘middle’ model.

3.4 Results

3.4.1 Signal-to-noise ratio

In Fig. 3.1, we plot the di�erences in S/N that are computed using the ‘average’, ‘e�ective’ and
‘middle’ techniques of calculating the power spectrum and the bispectrum as a function of redshift for a
Euclid-like survey. To speed up the calculation, in this Chapter we use only the diagonal combination
of the power spectrum and the bispectrum covariance matrix. For the bispectrum, the di�erence
between methods ranges from 7 � 12 per cent, while the di�erence for the power spectrum and the
combination is negligible. In the case of wider bins, �: � :f, this e�ect will be larger.

3.4.2 Cosmological parameters

We present the forecast for cosmological parameters (marginalized over all redshift bins), for velocity
dispersion and galaxy bias for I = 1.0 and for normalized FoM obtained with the Euclid-like survey.
In Fig.3.2 it is shown the ratio for 1f errors and FoM between the average, e�ective and middle of the
bin methods for the forecast results for ⇤CDM and F0F0CDM models for the power spectrum, the
bispectrum and their combination.

The plot is divided into six main subsections by black bold lines. The first two (going from bottom
to top) are the results for the power spectrum within the F0F0CDM model (first subsection) and
within the ⇤CDM model (second subsection). Similarly, the third and the fourth subsections show
the bispectrum, and the fifth and the sixth present the combination of the power spectrum and the
bispectrum. In all subsections, each row gives the ratio between the results of the two models. The
first row I is the ratio between ‘e�ective’ and ‘average’; the second row II is the ratio between ‘middle’
and ‘average’; the third row III is the ratio of ‘middle’ and ‘e�ective’. In general, for all cases, the
biggest errors of cosmological parameters and accordingly smallest FoM is provided by the average
method. These errors decrease moving to e�ective technique, and the smallest errors and the highest
FoM are obtaining with the middle of the bin model. The di�erences in case I are smaller than in
case II, and case III is significantly smaller than the others. Let us look in details on some elements.
For example, for the parameter � obtained with the bispectrum, the relative di�erence between the
methods is 10–14 per cent for the case I, and 18-22 for the case II. While for the velocity dispersion, the
di�erences do not exceed 3 per cent. We can see, that the parameters, which a�ect the amplitude the
power spectrum, e.g. �, F0, F0 and 11 are more sensitive to the way of the wavevector binning rather
than the others. Particularly, in F0F0CDM model, because of a number of degeneracies between
cosmological parameters.

In Fig.3.3, we present the results of our forecast for the dark energy equation of state parameters
F0F0 in the F0F0CDM cosmology for the average, e�ective and middle of the bin models. The
likelihood contours obtained from a Euclid-like survey for the power spectrum (top-left subplot), the
bispectrum (bottom-left) and their combination (bottom-right) are displayed. Dashed, dot-dashed, and
solid lines show the 1f constraints coming from the average, e�ective and middle of the bin methods,
respectively. We also demonstrate in detail how the binning issue a�ects the forecast for galaxy bias
parameters. In Fig. 3.4, the forecast for the tidal bias parameter 1B2 as a function of redshift is shown.
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Figure 3.1: The di�erence in S/N for the average, e�ective and middle of the bin methods of calculating the
power spectrum (black), the bispectrum (blue) and their diagonal combination (orange) in a Euclid-like survey
as a function of redshift. We show the relative di�erence between average and e�ective (I), average and middle
of the bin (II), e�ective and middle of the bin (III) methods.
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Figure 3.2: Comparison of the three methods to generate sets of wavenumbers for the power spectrum and the
bispectrum. Shown is the ratio between 1f errors for cosmological parameters and normalized FoM for ⇤CDM
and F0F0CDM models within the Euclid-like survey. The symbols for the FoM are the following: 1 – total set
of parameters, 2 – cosmological parameters only, 3 – the dark-energy equation of state, 4 – galaxy bias. The
legend of comparison is the same as in Fig. 3.1. The value of the ratio is shown by the colorbar.
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Figure 3.3: Joint 68.3 per cent credible regions for dark-energy equation of state parameters F0 and F0 of
the F0F0CDM model for average (dashed), e�ective (dot-dashed) and middle of the bin (solid) models. The
subplots represent the power spectrum, the bispectrum and their diagonal combination forecast. A Euclid-like
survey is assumed.
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Figure 3.4: Forecast 1f errors for the tidal bias parameter as a function of redshift. Shown are the results for a
Euclid-like survey based on the galaxy bispectrum, calculated by three di�erent binning techniques: ‘average’
(blue), ‘e�ective’ (black) and ‘middle’ (orange). The Purple solid line indicates the fiducial values of the tidal
bias.

Presented are the 1f errors for a Euclid-like survey based on the galaxy bispectrum, calculated by the
three methods. The relative di�erences between the methods are about 9 � 11 per cent and 13 � 15 per
cent for the comparison between ‘average’-‘e�ective’ and ‘average’-‘middle’ respectively.

In Table 3.1, we report the FoM for F0 and F0 for the three techniques presented above. In general,
the ‘average’ provides the smallest FoM compared to the ‘e�ective’ (1.21, 1.41, and 1.16 times smaller
for the power spectrum, the bispectrum and, the combination, respectively) and the ‘middle’ ( 1.33,
1.60, and 1.27, accordingly) models. The FoM for average, e�ective and middle bin methods in
combination with the Planck prior have minimal di�erences that do not exceed 10 per cent. Thus, the
influence of the binning strategy only slightly a�ects the forecast obtained from combining results of
the two probes.
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Table 3.1: The FoM for the dark-energy parameters F0 and F0 obtained considering a Euclid-like survey (left)
and its combination with Planck priors (right) for average, e�ective and middle binning. The di�erent columns
display results obtained from the galaxy power spectrum, %, the bispectrum, ⌫, and their diagonal combination,
%

d+ ⌫.
Euclid-like alone Euclid-like with Planck prior
% ⌫ %

d+ ⌫ % ⌫ %
d+ ⌫

Average 6.66 3.02 18.10 147.06 93.90 166.95
E�ective 8.57 4.27 21.64 151.37 99.41 175.42
Middle 8.98 4.83 22.99 151.40 102.90 177.51

3.5 Discussion

In this section, we discuss how modifications to the average method influence the forecast results, in
the case of a F0F0CDM model.

3.5.1 Dependence on the definition of the ‘triangle bin’

In this chapter, for a ‘triangle bin’ we consider the configuration where the values of the bins satisfy the
triangle inequality 8s + 8m � 8l. Here we discuss how including non-closed triangular bins or excluding
degenerate triangular bins can change the forecast results. If we exclude degenerate triangles, the total
number of triangles decreases by 6 – 7 per cent, dependent on the redshift bin. Simultaneously, 1f
errors for cosmological parameters for the bispectrum ⌫ and the combination %

d+ ⌫ increase by 4.5 –
13 per cent and 1–15 per cent respectively. Using a di�erent approach, when one includes non-closed
triangles (the bin configuration satisfies the condition 8s + 8m + 1 � 8l), the total number of triangles
increases by 5 – 6 per cent, and the 1f errors for cosmological parameters decrease by 4.5 – 13 per cent
for the bispectrum and 1 – 15 per cent for the combination of the power spectrum and the bispectrum.
We used the same definition of the ‘triangular bin’ for the forecast presented in the Chapter 2.

3.5.2 Comparison of normal and log-scale binning

We also investigate the dependence of the obtained results on the choice of binning, from the fiducial
case with �: = :f to log-scale where � ln : = ln (:max/:min) /#bins.

Firstly, the 1f errors for the cosmological parameters become larger. For example, for the power
spectrum, for the parameters =s, ⌘, ⌦cdm, ⌦b and f?, errors increase by 2.6 – 8.8 per cent. Moreover,
for the parameters which a�ect the amplitude of the power spectrum, e.g. �, F0, F0 and 11, there is
a di�erence of 24, 37, 48, and 42 per cent respectively. Fortunately, in the case of the bispectrum,
changes in the errors only increase by 2.5 to 14 per cent (for the F0 parameter). For the combination
of the power spectrum and the bispectrum, the errors do not increase by more than 12 per cent (again,
for the F0 parameter).

3.5.3 Dependence on the bin width �k

In this chapter we always assume �: = :f. This is the ideal case, which produces the most accurate
forecast. However, the current observational data cannot be yet split in such narrow bins (see

78



3.6 Summary and conclusions

Section 2.5.1). Future studies on the e�ect of the binning strategy on the galaxy bispectrum forecast
for wider bins are needed.

3.6 Summary and conclusions

There are several ways of generating the sets of the wavevector for which the power spectrum and
the bispectrum will be calculated. These methods have di�erent advantages and disadvantages. The
question addressed in this chapter is how the choice of the binning e�ects the forecast results. In many
research, people use just one value of the wavevector per bin. This influences the results not in a
positive way. Therefore, we recommend to use the average method of binning, as the most reliable
from all models studied in the work.

The main conclusions of our work are as follows:
(i) The comparison of the average, e�ective and middle on the bin methods show 6 – 12 per cent

di�erence for the S/N for the bispectrum. However, all methods give approximately the same S/N for
the power spectrum and the joint probe up to 3 per cent level.

(ii) The cosmological parameters, which a�ect the amplitude of the power spectrum, are more
sensitive to the way of the wavevector binning rather than the others.

(iii) The average method provides more conservative constraints on the FoM for F0–F0 than the
e�ective and middle of the bin cases. For instance, for the bispectrum the errors are 1.4 – 1.6 times
bigger, for the combination probe they are bigger in 1.15 – 1.3 times. However, adding Planck priors
smooths this e�ect below 10 per cent.

(iv) Including the non-closed triangles into the Fisher forecast helps improve the parameters
constraints up to 15 per cent. On the contrary, excluding degenerate triangles results in the growth of
errors up to 15 per cent.

(v) Using a log-scale binning leads to increasing 1f errors for cosmological parameters up to
14 per cent for the bispectrum and up to 12 per cent for the combination probe. However, for the
parameters determining the amplitude of the power spectrum significant changes (up to 49 per cent for
F0 parameter) of the forecast result can happen.

(vi) The average method provide more accurate and more conservative forecast than the other
methods..
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CHAPTER 4

Conclusions and outlook

In the final chapter, we summarise the main results of this Ph.D. thesis. During this work, we studied
the galaxy bispectrum, its properties, and the way to extract new cosmological information from it.

4.1 Summary of the projects and results

For years the bispectrum has been mentioned as a useful tool to study cosmology (e.g Fry, 1994;
Matarrese et al., 1997; Scoccimarro et al., 1998). Until recently, surveys were not large enough to
make observations suitable for studying the bispectrum. Fortunately, now we have many tools to
investigate the bispectrum: new generations of telescopes have been commissioned and the necessary
computing power is easily available. For instance, the Euclid mission will observe a large volume
of the sky, which will enable precise measurements of the bispectrum to be performed. Therefore,
we decided to investigate the properties of the bispectrum, with the goal of estimating the e�ect of
implementing the bispectrum into the cosmological forecast for future missions, and to demonstrate
the benefits of the using tools such as the redshift-space bispectrum in many cosmological aspects.

First of all, we studied the properties of the galaxy bispectrum in redshift space. We explored
di�erent parametrizations for the spatial orientation of the triangles of wavevectors with respect to
the line of sight. This is the first time such a study has been attempted, and so we have documented
several di�erent approaches for the parametrizations, to aid in future research using this technique.
We demonstrate that with only one quarter of the full parameter space of the spatial orientation, the
RSD bispectrum can be fully determined. This result enables a significant decrease in computational
costs without loss of precision.

Secondly, we investigated the uses of the bispectrum as a statistical tool in measuring the cosmological
parameters. We present the Fisher matrix forecast for the set of cosmological parameters in ⇤CDM,
FCDM and F0F0CDM models for the Euclid-like surveys. The forecast was made for the power
spectrum, the bispectrum and their combination, with and without cross-covariance terms. From our
analysis of the forecast’s results, we demonstrate that the combination of the power spectrum and the
bispectrum gives much better constraints on cosmological parameters compared to a single probe. For
example, for the dark-energy equation of state, the joint forecast improves the FoM by a factor of 2.6.
We demonstrate that investing the computational time in adding the bispectrum yields much more
accurate constraints on cosmological parameters than previous studies where this was omitted.

Finally, we studied di�erent techniques for the bispectrum binning. Raw observations of galaxy
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clustering must be binned using an approach that is suitable for storage and data processing, and
the bispectrum binning should be adaptable for this comparison. We find that the average technique
produces the most accurate results, and we demonstrate that our results will be an extremely useful
reference for future comparisons of theoretical predictions with observational data.

The methods and results produced during this work are also very useful for the science working
groups of the Euclid consortium. First of all, the study of the bispectrum as a statistical tool to obtain
cosmological information is the foundation for several projects within the ‘Higher-order statistics’
work-package of the galaxy clustering science working group. One of the goals of the work-package is
to make a forecast, with the Euclid survey specifications, using the higher-order statistics and to see if
this can help to extract new cosmological information. This goal was reached in Chapter 2 of this
thesis. Also, the sets of wavevectors and the bispectrum obtained from di�erent binning methods
(they are presented in Chapter 3) are now being used in another project. The goal of this project
is to compare theoretical predictions for the matter bispectrum against measurements from a large
set of #-body simulations. The paper is now in preparation. The results have been presented at the
Euclid consortium meetings. Finally, the code for evaluating the Fisher matrix for the power spectrum
was modified to fit the specific requirements of the Euclid inter-science working group task force
for forecasting (IST:F). The modified Fisher matrix code was validated as an o�cial forecast Euclid
code and the results have been used in Euclid Collaboration et al. (2019). The paper is currently
under revision of the Euclid Consortium Editorial Board and after this will be submitted to the journal
Astronomy & Astrophysics.

4.2 Ongoing work and outlook

The first topic which we will be exploring soon is testing the e�ects of adding the non-Gaussian
contributions to the covariance matrices for the power spectrum, the bispectrum and especially for
their combination. In this thesis, the bispectrum covariance matrix always includes a non-Gaussian
term. For this reason, it is necessary to make the same extension to all covariance matrices. For
example, the addition of the trispectrum term is a very complicated process but it should help to make
the forecast more realistic. The most interesting and important aim of this work is to realize if we
actually need all these extensions or not. Most likely, the e�ect of adding the non-Gaussian terms can
play an important role for one task and can be neglected for others to speed up the calculations. In
general, this project will help us to understand more about the properties of the covariance matrices
which may be important for other topics in astrophysics as well.

The second goal will be to make a more accurate forecast using the Markov chain Monte Carlo
(MCMC) method for the same cosmological models as in Chapter 2 and extended ones. The
Fisher-matrix method works well only if the likelihood function is approximately Gaussian. Strictly
speaking, there is no guarantee that this is correct for all cosmological data sets. Also, the Fisher
matrix becomes unstable if a large amount of degenerate parameters are included in the model. This
sets constraints on number of parameters that can be used in one Fisher matrix. Therefore, MCMC
will provide more reliable forecasts for cosmological models with a large number of parameters.

Naturally, the next step will be to use the MCMC method based on mock data. In particular, we will
use the Euclid flagship mock galaxy catalogue (currently in final stage of preparation) to contribute to
the Euclid Consortium work.

The final goal will be to work with the real observational data. For this study it will be necessary to
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account for many additional e�ects, like the selection one, window function, survey configuration, etc.
Despite the cosmological constant problem has been known for a very long time, it is still one of

the hottest topics in cosmology and upcoming surveys can help us to understand more about it. That is
why the main goal of the future research is to contribute to the understanding of the origin of cosmic
acceleration, measuring neutrino masses and constrain the level of the primordial non-Gaussianity.
This will help us to push the boundaries of our knowledge about the Universe.
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APPENDIX A

Appendix for Chapter 2

A.1 Coordinate systems

We introduce here two di�erent coordinate systems in order to parameterize the relative orientation
between a triangle of wavevectors and the line of sight.

Figure A.1: Schematic showing the definition of the angles (l, j).
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A.1.1 Using the triangle’s normal as the polar axis

Let us consider a triangle of sides k1, k2 and k3 such that k1 + k2 + k3 = 0. The triangle lies on a
plane whose normal vector is parallel to n = k1 ⇥ k2. The orientation of the unit vector n̂ = n/| |n| |
with respect to the line-of-sight direction ŝ can be described in terms of a single rotation around the
axis w = n̂ ⇥ ŝ (see Fig. A.1). We want to build a right-handed orthonormal basis starting from ŝ

and ŵ. For the third element of the basis we pick a unit vector û parallel to ŝ ⇥ ŵ = n̂ � ( n̂ · ŝ) ŝ,
i.e. û = ( n̂ � ( n̂ · ŝ) ŝ)/

p
1 � ( n̂ · ŝ)2. In the base ŵ, û, ŝ, the rotation from n̂ to ŝ is described by the

matrix,

R = ©≠
´
1 0 0
0 n̂ · ŝ �| | n̂ ⇥ ŝ | |
0 | | n̂ ⇥ ŝ | | n̂ · ŝ

™Æ
¨
. (A.1)

In fact, n̂ is a column vector with coordinates

( n̂ · ŵ, n̂ · û, n̂ · ŝ) = (0,
p
1 � ( n̂ · ŝ)2, n̂ · ŝ) (A.2)

and applying the rotation to it one gets (0, 0, 1). This is a rotation by an angle 0  l < c such that
cosl = n̂ · ŝ and sinl = | | n̂⇥ ŝ | | = | |w | | (note than sinl � 0). This completely describes the relative
orientation of the plane of the triangle with respect to the line of sight.

Now, we only need to describe the orientation of the triangle on its plane. Note that, being
perpendicular to n̂, the basis element ŵ lies on the plane of the triangle. It is thus convenient to
measure the orientation of the triangle in its plane by looking at the orientation of, say, k1 with respect
to ŵ. In order to quantify this, we introduce the angle j (0  j < 2c) such that k̂1 · ŵ = cos j and
( k̂1 ⇥ ŵ) · n̂ = sin j. It is worth stressing that k̂1 ⇥ ŵ = k̂1 ⇥ ( n̂ ⇥ ŝ)/| |w | | = ( k̂1 · ŝ) n̂/| |w | | and
sin j = ( k̂1 · ŝ)/| |w | | = `1/sinl. The angle j denotes the rotation angle around n̂ from k̂1 to ŵ.

Let us now reverse the problem and determine the line-of-sight components of k1, k2, k3 for
given l and j. The shape and the handedness of the triangle matter. A common choice is to
parameterize the relative orientation of k1 and k2 in terms of the angle \12 such that k̂2 · k̂1 = cos \12
and | |n| | = | |k1 ⇥ k2 | | = | sin \12 |. In principle, 0  \12 < 2c and, for a fixed shape, triangles with
\12 and 2c � \12 have opposite handedness (see Fig. A.2). However, n̂, ŵ and û flip sign when the
handedness is switched. It is thus much more convenient to express the shape of the triangle in terms
of a rotation angle around n̂ and always use an angle b12 such that 0  b12 < c and sin b12 � 0. In
words, b12 = arccos

⇣
k̂1 · k̂2

⌘
is the (shortest) rotation angle around n̂ from k̂1 to k̂2. Triangles with

the same shape but opposite handedness have identical b12.
We recall that, using the vector basis we have introduced above, n̂ = (0, sinl, cosl) and

ŝ = (0, 0, 1), so that w = (sinl, 0, 0) and u = (0, sinl, 0). From the definitions k̂1 · ŵ = cos j and
( k̂1 ⇥ ŵ) · n̂ = sin j, it follows that

k1 = :1 (cos j,� cosl sin j, sinl sin j) . (A.3)

Since the vector k̂2 corresponds to a rotation of k̂1 by an angle b12 around n̂ while ŵ is rotated from
k̂1 by an angle j around n̂, it follows that

k2 = :2 (cos(j � b12),� cosl sin(j � b12), sinl sin(j � b12)) . (A.4)
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Figure A.2: Definition of the angles \12 and b12 for two triangles with the same shape but opposite handedness.

This univocally fixes the RSD:

`1 = sinl sin j , (A.5)
`2 = sinl sin(j � b12) . (A.6)

A.1.2 Using k

1

as the polar axis

Scoccimarro et al. (1999) use a di�erent parameterization in terms of the polar angle 0  \ < c and
the azimuthal angle 0  q < 2c that define the orientation of ŝ with respect to k̂1 (see Fig. A.3). In
order to link this approach to our previous discussion, let us build a right-handed orthonormal basis by
complementing n̂ and k̂1 with another unit vector ê lying in the plane of the triangle – i.e, ê is the unit

vector of e = n ⇥ k1 = :21 k2 � (k1 · k2) k1 or ê = [ k̂2 � ( k̂1 · k̂2) k̂1]/
q
1 � ( k̂1 · k̂2)2. In the basis

( k̂1, ê, n̂), k̂2 is a column vector of coordinates (cos b12, sin b12, 0) - note once again that both n̂ and
ê flip sign if the handedness of the triangle is changed and this is why we can use b12 instead of \12.
For the azimuth q, we use the angle between n̂ and the projection of ŝ on the plane defined by n̂ and ê.
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Figure A.3: Schematic showing the definition of the angles (\, q).

This means that cos q = 0 (i.e. q = c/2 or 3c/2) whenever ŝ lies on the plane of triangle. Given all
this, in the basis ( k̂1, ê, n̂), ŝ is the column vector of coordinates (cos \, sin \ sin q, sin \ cos q) so
that

`1 = cos \ , (A.7)
`2 = cos \ cos b12 + sin \ sin q sin b12 . (A.8)

For generic vectors k1, k2 and ŝ defined in an arbitrary basis (e.g. a Fourier grid used to measure
the bispectrum in a numerical simulation or for a galaxy catalogue), the angles \ and q can be
determined as follows. The polar angle is simply given by \ = arccos

⇣
k̂1 · ŝ

⌘
. For the azimuth,

instead, it is convenient to introduce the vector s? = ŝ � ( ŝ · k̂1) k̂1 (which gives the component
of ŝ perpendicular to k1) and calculate the real numbers cos q = ŝ? · n̂ = ( ŝ · n̂)/| |s? | | = f=
and sin q = ŝ? · ê = ( ŝ · ê)/| |s? | | = f4. If sin q > 0, then q = arccos(f=) while, if sin q < 0,
q = 2c � arccos(f=).

98



A.1 Coordinate systems

A.1.3 Matching the di�erent coordinate systems

Starting from the expressions for k1, k2 and s in the (\, q) coordinates and applying the definitions of
the angles l and j, one obtains:

cosl = sin \ cos q , (A.9)

sinl =
q
1 � sin2 \ cos2 q , (A.10)

cos j =
� sin \ sin qp
1 � sin2 \ cos2 q

, (A.11)

sin j =
cos \p

1 � sin2 \ cos2 q
. (A.12)

Vice versa, starting from the expressions in terms of (l, j), one derives:

cos \ = sinl sin j , (A.13)

sin \ =
q
1 � sin2 l sin2 j , (A.14)

cos q =
coslp

1 � sin2 l sin2 j
, (A.15)

sin q =
� sinl cos jp
1 � sin2 l sin2 j

. (A.16)

A.1.4 Symmetries

RSD are quadratic in the `8 and do not change if `1, `2 and `3 change sign simultaneously. In terms
of the (\, q) variables, this means that the galaxy bispectrum in redshift space is symmetric with
respect to the transformation (

\ ! c � \ ,
q ! 2c � q .

(A.17)

In fact, by considering equations (A.7) and (A.8), one can easily prove that this transformation changes
sign to `1, `2 and `3. This means that the (\, q) variables are somewhat redundant and not all the
parameter space they cover is necessary to describe the RSD. It is thus appealing to seek for new
angular coordinates that make the necessary region more compact and do not present duplications. In
fact, this helps reduce the number of bins needed to represent all possible configurations. For instance,
we can halve the size of parameter space by introducing a new set of coordinates (\̃, q0) such that
\̃ = min(\, c � \) and

q0 =

(
q , if \ < c/2 ,
2c � q , otherwise.

(A.18)

In this case, 0  \̃ < c/2 (or 0 < ˜̀ = cos \̃  1) and 0  q0 < 2c. However, RSD possess still
another symmetry deriving from the fact that they only depend on sin q (and, equivalently, on sin q0).
Since, sin(c � G) = sin G, we can further halve the area of parameter space by introducing the variable
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c/2  q̃ < 3c/2 defined as follows

q̃ =

8>>><
>>>:

c � q0 , if 0  q0 < c/2 ,
q0 , if c/2  q0 < 3c/2 ,
3c � q0 , if 3c/2  q0 < 2c .

(A.19)

The angular variables \̃ and q̃ are optimal in the sense that they su�ce to describe all possible
configurations while minimizing the size of parameter space.

Similarly, we can derive optimal variables also starting from the coordinates (l, j). Equations
(A.5) and (A.6) show that `1 and `2 change sign if j ! c + j while l is left unchanged. It follows
that considering the variable 0  j̃ < c defined as

j̃ =

(
j , if j < c ,

j � c , otherwise .
(A.20)

is su�cient to identify the configurations with opposite signs of `1 and `2. In fact, under the
transformation \ ! c � \ and q ! 2c � q, l is unchanged while both cos j and sin j change
sign that corresponds to the transformation j ! c + j. The second symmetry, in this case, derives
from the fact that the RSD only depend on sinl. Therefore, we can further reduce the extension
of parameter space by introducing the variable l̃ = min(l, c � l) so that cos l̃ = | cosl |. The set
(l̃, j̃) is optimal.

A.2 Bias parameters

In Table A.1, we report the forecast errors for the galaxy-bias parameters corresponding to our main
analysis presented in Section 2.4.
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Biasparam
eters

Table A.1: Expected marginalized 1f errors for the galaxy bias parameters 11, 12 and 1B2 in the ⇤CDM, FCDM and F0F0CDM models
obtained considering a Euclid-like survey. The di�erent rows display results obtained from the galaxy power spectrum (%, only for 11), the
bispectrum (⌫), and their combination (% + ⌫) for 14 redshift bins centred at redshift I (di�erent columns).

Probe Param. 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
⇤CDM model

% 11 0.014 0.014 0.015 0.016 0.017 0.017 0.018 0.019 0.020 0.021 0.022 0.023 0.024 0.026
⌫ 11 0.046 0.048 0.051 0.053 0.056 0.060 0.066 0.072 0.085 0.097 0.120 0.157 0.189 0.253

% + ⌫ 11 0.012 0.012 0.013 0.013 0.014 0.014 0.015 0.015 0.016 0.017 0.018 0.019 0.020 0.022
⌫ 12 0.062 0.064 0.070 0.073 0.080 0.089 0.105 0.125 0.164 0.203 0.272 0.384 0.488 0.684

% + ⌫ 12 0.014 0.015 0.016 0.016 0.017 0.019 0.023 0.027 0.035 0.043 0.057 0.079 0.099 0.137
⌫ 1B2 0.143 0.144 0.156 0.159 0.175 0.194 0.230 0.270 0.355 0.432 0.572 0.795 0.992 1.365

% + ⌫ 1B2 0.070 0.071 0.077 0.079 0.086 0.096 0.113 0.132 0.173 0.210 0.277 0.384 0.479 0.658
FCDM model

% 11 0.024 0.027 0.029 0.032 0.034 0.037 0.039 0.042 0.044 0.047 0.050 0.052 0.055 0.058
⌫ 11 0.071 0.077 0.084 0.091 0.099 0.108 0.117 0.127 0.142 0.155 0.176 0.209 0.239 0.296

% + ⌫ 11 0.016 0.017 0.019 0.020 0.022 0.023 0.025 0.027 0.028 0.030 0.032 0.034 0.036 0.038
⌫ 12 0.074 0.077 0.084 0.088 0.097 0.107 0.123 0.142 0.180 0.218 0.285 0.394 0.497 0.691

% + ⌫ 12 0.015 0.015 0.016 0.016 0.018 0.019 0.023 0.027 0.035 0.043 0.057 0.080 0.100 0.138
⌫ 1B2 0.146 0.147 0.158 0.160 0.175 0.194 0.230 0.270 0.355 0.433 0.573 0.795 0.993 1.366

% + ⌫ 1B2 0.073 0.075 0.081 0.084 0.092 0.102 0.119 0.138 0.178 0.215 0.282 0.388 0.483 0.661
F0F0CDM model

% 11 0.045 0.048 0.052 0.056 0.060 0.065 0.069 0.074 0.079 0.085 0.090 0.095 0.101 0.106
⌫ 11 0.090 0.095 0.101 0.107 0.115 0.124 0.134 0.145 0.160 0.175 0.196 0.228 0.259 0.315

% + ⌫ 11 0.019 0.020 0.022 0.023 0.025 0.027 0.029 0.031 0.033 0.035 0.038 0.040 0.043 0.045
⌫ 12 0.087 0.089 0.093 0.096 0.103 0.112 0.127 0.146 0.183 0.220 0.287 0.395 0.498 0.692

% + ⌫ 12 0.015 0.015 0.016 0.016 0.018 0.019 0.023 0.027 0.035 0.044 0.058 0.080 0.101 0.138
⌫ 1B2 0.147 0.147 0.158 0.161 0.176 0.195 0.231 0.271 0.356 0.434 0.574 0.796 0.993 1.366

% + ⌫ 1B2 0.077 0.078 0.084 0.087 0.095 0.105 0.122 0.141 0.181 0.218 0.284 0.389 0.484 0.663
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