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Abstract

This thesis presents studies of the strong interaction in the non-perturbative regime by analyzing
the properties of hadronic resonances. The basis for this research is the world’s largest dataset on
diffractive reactions, especially the π− p→ π−π+π− p channel with about 50M events, measured
with a high-energy pion beam by the COMPASS experiment at the CERN Super Proton Synchrotron.
The three-pion final state couples to a variety of light isovector resonances, many of which are
still poorly understood. Among these are a ground axial-vector state a1(1260), and the spin-exotic
π1(1600) that is a prime candidate for the lightest hybrid meson with explicit gluonic degrees of
freedom. Recently, a new resonance-like signal with axial-vector quantum numbers was reported by
COMPASS at a mass of 1420 MeV and called a1(1420). This state, if confirmed, is to be regarded
as a candidate for a light tetraquark or molecular state because of its proximity to the a1(1260)
ground state. In order to disentangle the different spin-parity contributions to a given final state, a
partial-wave analysis (PWA) of the data in small bins of the 3π invariant mass and of the momentum
transfer squared t is performed. The results of this analysis are spin-density matrix elements, whose
mass and t-dependences are subjected to phenomenological analysis to extract resonance parameters.
We introduce the PWA technique and discuss several methods to obtain the resonance parameters.
Instead of the traditional approach of coherently adding Breit-Wigner amplitudes, which violate the
fundamental principle of unitarity, we study models that incorporate the unitarity constraints by
construction and enable us to minimize systematic uncertainties of the pole positions of resonances.
Other effects which are traditionally ignored in the analyses are final-state interactions of the

hadrons produced in the reaction. Due to the high energy of the beam particle, these effects are usually
considered negligible. We show, however, that they do become important given the large datasets
available. A distinct feature of the three-hadron final state that is not present in two-hadron final states
is cross-channel rescattering. We find that a peculiar rescattering fromK∗K̄ → f0π in a triangle loop
produces a resonance-like signal with exactly the mass and width of the new a1(1420). We calculate
the amplitude for this and other rescattering processes using different techniques and demonstrate
that the final-state-interaction hypothesis is consistent with the COMPASS observations. A simple
approach applied to the data is matched to the unitarity-based dispersive framework, known as the
Khuri-Treiman model, which gives access to the “higher orders” of the rescattering corrections beyond
the triangle graph.
In diffractive reactions, an additional complication arises from a coherent physical background

due to non-resonant production of the 3π system, the main part of which is the so-called Deck effect.
We reveal its features using the COMPASS data and compare several theoretical models to describe
it. This background accounts for a large fraction of the intensity in several important waves and
has been one of the reasons for the poor knowledge of the a1(1260) from diffractive reactions. In
order to obtain an independent extraction of a1 pole parameters, we study the hadronic decays of
τ -leptons from e+e− collisions, τ → π−π+π− ντ , using data of the ALEPH experiment. In this case,
the 3π-interaction is dominated by the a1(1260). Applying our unitarity approach we construct a
K-matrix-based model and successfully extract the pole position of the a1(1260) for the first time.

Finally, using the S-matrix unitarity constraints for the system of three particles we derive a unified
framework which combines the resonance physics (the short-range interaction) and the rescattering
phenomena (the long-range exchanges). A factorization inspired by the Khuri-Treiman approach leads
to a simplification of the three-body unitarity constraints and permits us to build a K-matrix-like
model for the resonance physics with the rescattering terms entering the self-energy function.
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CHAPTER 1

Introduction

The strong interaction is one of four fundamental interactions which govern the laws of nature.
The universally established theory of strong interactions is Quantum Chromodynamics (QCD). It is
responsible for generating all hadronic matter, hadrons, e.g. protons and neutrons. It is clear that
the hadrons are confined bound states of elementary Quantum Chromodynamics (QCD) particles,
quarks and gluons. However, a detailed understanding of internal QCD dynamics which leads to the
emergence of hadrons is still missing. How exactly the intrinsic QCD degrees of freedom, quarks and
gluons manifest themselves in a variety of the hadronic states puzzles several generation of physicists
already.

One of the first clue for the fundamental theory of the strong interaction was observed in proton-
proton and proton-electron collisions at high energies. On the one hand, pions produced in the
proton-proton collisions did not have the phase-space like distribution, the momentum directions
collinear to the initial proton were preferred (see Ref. [19], also an extensive review [20]). The
production of pions with high transferred momentum were suppressed. On the other hand, in
electron-proton scattering experiments, a large contribution to the total cross section was given by
high transferred momentum, i.e. in hard scattering processes [21]. Moreover, at high momentum
transferred the proton gets destroyed by the interaction, and many hadrons are produced. The parton
model [22, 23] suggested by J. Bjorken and R. Feynman offered a simple reconciliation of the
two observations. Protons are built of quarks, which carry electric charge, and gluons, which are
responsible for gluing the quarks together. It was assumed that the quarks cannot exchange a high
momentum in strong interactions. However, as they have an electric charge, the quarks can obtain
a large transferred momentum from the scattered electrons. The kicked quark interacts with the
remaining part of the proton and produces a hadronic jet in the direction of the original proton. The
phenomena of quasi-free partons at a small distance, corresponding to large momentum transfers,
was called asymptotic freedom. Several years later, asymptotic freedom was realized as a natural
consequence in the non-abelian gauge theories by D. Gross, F. Wilczek, and D. Politzer [24, 25]. For
the SUc(3) gauge group with nf massless fermions (quarks) in the fundamental representation, the
coupling αs, called the color-charge, runs with the transferred momentum Q as

αs(Q
2) =

αs(µ
2)

1 + αs(µ
2
)

12π (33− 2nf) log(Q2/µ2)
, (1.1)

1



Chapter 1 Introduction

with µ being the scale where αs(µ) is measured [26]. The coupling αs(Q
2) vanishes at high energies

for nf < 16 and especially for nf = 6, which is suggested by all experimental observations at the
moment. In the opposite limit, for Q2 < 1 GeV2, 1 the strength of the interaction becomes very
large which leads to the phenomenon of confinement. In this region, the interacting systems are
confined to a very small distance scale, of about ∼ 10−15 m, staying color-neutral as a whole. Those
color-neutral objects are the hadrons. Due to the strong coupling, the probability to exchange single
gluons between quarks is negligibly smaller than the probability to exchange any large numbers of
gluons. Therefore, the interaction between the quarks cannot be separated from the collective behavior
of the gluons and quark-antiquark pairs, produced and absorbed incessantly. The main method applied
in field-theoretical calculations, the method of perturbations, becomes untenable in this regime. No
simple approach to calculate the net effect of the interaction between quarks has yet been found. In
the non-perturbative regime, a representation of hadrons as simple objects composed of quarks and
antiquarks becomes questionable, however, such an approach turned out to be constructive. Given
that the quarks are transformed under the fundamental representation of SUc(3) the color-neutral
combinations can be constructed as qq̄, qqq, qq̄qq̄, qqqqq̄, etc as suggested by M. Gell-Mann [27],
where q stands for the quark, and q̄ for the antiquark constituent. One can also construct new states
by adding to the latter constituent gluons, i.e. qq̄g, qqqg, etc. 2 Surprisingly, the majority of the
observed hadrons falls into two sets only: the conventional mesons, regarded as a qq̄-system, and the
conventional baryons, composed of three quarks, i.e. qqq or q̄q̄q̄. This raised the question of why the
states which contain a higher number of quark and/or gluonic components are not diversely present.
Is there a principle emerging from the unsolved equations of QCD which excludes (suppresses) such
states from existence or was the identification of the observed states not done correctly?

Those questions drive hadron spectroscopy. There is a global experimental effort aiming to establish
the spectrum of hadrons. Many theoretical groups around the world are working on predictions and
descriptions of the spectrum. However, as a simple direct connection between the hadronic spectrum
and the fundamental theory is blocked by the confinement issue, establishing the nature of the observed
states becomes very challenging. The main approaches over the last decades were phenomenological
models adopted from solvable theories, like QED, which suggest a certain pattern to be recognized
in the spectrum. For hadronic bosons, i.e. particles with integer spin, deviations from the assigned
qq̄ pattern become candidates for exotic mesons, which is a collective term for the non-conventional
states. Following the simplistic picture, the exotic states are also classified to be e.g. tetraquarks qq̄qq̄,
hybrids, qq̄g, etc. The ideal, abstract, exotic hadrons are expected to form their own spectroscopic
pattern which is attempted to be recognized in the experimental spectrum (e.g. see a spectrum of
hadronic molecules in Ref. [30–32], a pattern of the exotic states in the light meson sector is discussed
e.g. in Ref. [33–36]).
There are six quark types (flavors) distributed in three generations in pairs. The quarks u, d

(first generation) and s (second generation) are referred to as the light quarks. The others c (second
generation), also t and b (third generation) are called heavy quarks. The strong interaction is blind to
flavor, i.e. invariant under flavor symmetry. Since the light quarks are nearly degenerate in mass [26],
one can expect similarities in the spectrum of a ud̄ system and a sd̄ system (i.e. the mass degeneracy
of the mesons as a consequence of the flavor symmetry group, SUf(3)). This symmetry was noticed

1 Throughout this thesis we use natural units, c = ~ = 1.
2 The constituent gluons are introduced in quark models as an additional degrees of freedom associated with gluons
(gluelump, glueballs) which contribute to the quantum numbers, see e.g. Ref. [28, 29].

2
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Figure 1.1: Light scalar (left) and vector (right) nonets of mesons. Flavor symmetry, i.e. the group SUf(3),
transforms states to each other. The x axis gives the isospin quantum number, the hypercharge Y is shown along
the y axis. Three common rotation axes that correspond to action of isospin, V -spin and U -spin generators
are presented by dashed lines. Under exact symmetry, the properties of hadrons, with respect to the strong
interaction, are degenerate.

π−
P

π

π
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π

ρ

a1

0−+ 1−− 1++

π

π
ρ→ ππ

Figure 1.2: An analogy of the hadron scattering with an atomic spectroscopy setup. We consider an elementary
hadron π− as an isolated system. The system is excited by a gluonic field and relaxes by emitting particles. The
excitation spectrum is obtained by measuring of the invariant mass spectrum of emitted particles.

first by M. Gell-Mann [27] and G. Zweig [37] and allowed them to guess the existence of quarks based
on an emerging symmetry in the observed hadron multiplets as shown in Fig. 1.1. One important
consequence of flavor SUf(3) symmetry is, that if the qq̄ system permits an excitation, the whole
nonet of excited states should emerge in the spectrum.
We label hadrons by their masses and quantum numbers JPC where J is the total spin, P and

C are the spatial parity and charge conjugation parity, respectively. Those properties are directly
observable and assigned in the experiment. The quantum numbers JPC are usually deduced from the
hadron decay character, the mass is determined from the energy of the decay products. The other
properties, as the internal composition, cannot be measured and must be inferred. Studies of the
hadronic spectrum are performed in scattering experiments discussed in detail in this thesis. The
excited states are often called resonances, due to the way they appear in the scattering experiment.
The principle of the excitation can be viewed analogously to a setup of atomic spectroscopy as shown
in Fig. 1.2. Identification of hadrons and extraction of their masses, however, becomes an extremely
difficult problem for the excited states due to their short lifetime and, hence, large uncertainty on the
total energy, called width of a hadron. By current understanding, the pattern of conventional qq̄ states
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Figure 1.3: The plot shows the spectrum of a charged pion measured by excitation in a gluonic field at the
COMPASS experiment [3]. The excited states are observed in decays to three charged pions. The lines indicate
the estimated mass of the hadrons with the uncertainty shown by the filled colored box, while the transparent
colored area shows the resonance width. The additional gray levels are possible intermediate two-pion states
which can be seen in the decays.

roughly corresponds to the pattern of the hydrogen atom with its radial and orbital excitations. Fig. 1.3
shows the excitation spectrum of negatively charged pions measured at the COMPASS experiment [3].
The state π1(1600) falls out of the correspondence due to its quantum numbers, JPC = 1−+, i.e.,
neither orbital nor radial excitation of a qq̄ system can have this combination of spin and parities, as
can be realized from simple algebra. 3 The other state suspected to be exotic is the π2(1880): this
energy region is found to be too densely populated by resonances. The a1(1420) is another example
of an interesting signal discovered by COMPASS. If it is a genuine state, it does not fit the qq̄ pattern,
however, it likely has a different origin [1] as discussed in this thesis.
Modern experiments have collected huge data samples, however, the identification of hadronic

states and the extraction of their properties for light mesons became an essential difficulty. The
main reason is the absence of a rigorous theoretical framework which would allow to address all
complications of the non-perturbative hadronic interaction. The first complication as mentioned
already is the short lifetime of hadronic excitations. Overlapping states which share the same JPC

interfere freely, hence, making it difficult to even count the number of resonances. As one generally
cannot characterize the state by the peak position and width at half maximum, a revision of methods
to extract resonance parameters is required. The decay of an excited hadron can proceed to multiple
different final states. For various transitions, a resonance often manifests itself differently. One reason
for this is the final-state interaction of hadrons, which is specific for every final state. In the system
of three and more hadrons, the final-state interaction plays a very important role. If the transition
3 The allowed quantum number for the conventional mesons are calculated by combining a quark state with the quantum
numbers JP = (1/2)

− and an antiquark state with JP = (1/2)
+. Hence, the combined parity is equal to (−1)

l+1,
where l is the orbital angular momentum of the qq̄ state. The charge conjugation, or C-parity is strictly defined for the
neutral states only, C = (−1)

l+s. For the charge state (not an eigenstate of the charge conjugation), the C-parity of its
neutral partner in the charge multiplet is attributed, it is found convenient in many situations.
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from excited to the final state of three hadrons can proceed via two different decay chains as shown in
Fig. 1.4, it is reminiscent of the double slit experiment due to the interference of several quantum
outcomes. The hadronic interaction at the final state leads to an infinite repetition of the two chain
bifurcation, as if in the double slit experiment, an infinite number of double-slit screens were installed.
The approach pushed forward in this thesis is based on the general requirements of analytic S-matrix
theory. A deductive S-matrix approach [38, 39] does not offer ab initio calculations. However, it gives
a set of constraints, valid under the postulates of causality and probability conservation, and allows for
an input which parametrizes internal QCD degrees of freedom. In this framework, the characteristics
of the hadronic states are defined unambiguously. The approach to the problem of the final-state
interaction based on the probability conservation offered by the S-matrix seems very promising.
In this thesis, we focus on the problems of the light-meson spectrum measured by the COMPASS

experiment. Chapter 2 introduces the global theoretical framework of the analytic S-matrix. Using
the example of ηπ/ρπ scattering we outline the main concepts of the scattering and the production
amplitude, the partial-wave expansion, dispersion relations and the resonance-pole search technique.
In the further sections we depart from the two-particle scattering problem and discuss the three-
pion system inferring and applying the consequences of the S-matrix postulates. Chapter 3 is
dedicated to the partial-wave analysis technique used at COMPASS to study the following reaction:
π− p → π−π+π− p. We guide the reader through the ideas of the isobar model, the extended
likelihood fit, and the freed-isobar analysis. We summarize the classical method of extracting
parameters of hadron states based on an approximation of the isolated resonances (Breit-Wigner
approach). The physics of the resonance-like phenomenon a1(1420) is discussed in Chapter 4. We
consider singularities of the scattering amplitude and show how the logarithmic branching point due
to the final-state interaction unavoidably emerges and leads to a consistent description of the a1(1420)
signal. In Chapter 5, we address a known difficulty in the peripheral production of hadronic states,
the so-called Deck process (after R. Deck [40]). The process functions as a coherent background
which interferes with resonances and may mimic their appearance. Three approaches which model the
one-pion exchange process differently are projected to partial waves and compared with COMPASS
data. We discard one model and establish uncertainties on the partial wave projections. The Deck
process is significant for nearly all JPC sectors, however, its effects are largest for the JPC = 1++

sector, where the a1(1260) and a1(1420) were observed. Due to the Deck effect, the mass and
the width of the axial ground state a1(1260) cannot be measured precisely. Therefore, we perform
an analysis of the decay τ → 3π ντ , where the same hadronic state a1(1260) appears in a clean

5



Chapter 1 Introduction

environment. The extraction of the mass and width of the a1(1260) in a model based on analyticity
and unitarity is performed for the first time. The last Chapter (Chapter 7) is dedicated to a proposal
for a model which bridges the phenomenon of final-state interactions with the physics of three-body
resonances. Starting from the general three-body unitarity requirements, we construct the 3→ 3
scattering amplitude, which enables to incorporate separately the long-range interactions as a reason
of the final-state interaction and the short-range QCD dynamics which is expected to govern the
resonance formation. The unified model can be reduced to the approaches used for the investigation of
the a1(1420) effect, as well as the analysis of the a1(1260) properties in its limiting cases. The Deck
effect can be incorporated to the production amplitude consistently fulfilling probability conservation.
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CHAPTER 2

S-matrix constraints to the scattering amplitude

As perturbation theory was found not to be applicable for the strong interaction at the low energies,
an alternative approach was required. Active attempts to construct a consistent theory based on
the general principles of the S-matrix were made the 60s [38]. The S-matrix theory, suggested by
Heisenberg [41–43] in 1943, grew up from the idea that the interacting fields themselves are of
little interest; the main objects of the theory are the transition amplitudes, i.e. the elements of the
S-matrix. Based on the general properties of the scattering theory the transition amplitudes were tried
to be calculated directly. A consistent self-contained formalism has not been found: although the
consequences of the S-matrix requirements are fundamental, the theory requires an input attributed
to the internal QCD dynamics (e.g. see discussion about Castillejo-Dalitz-Dyson poles in Ref. [44],
chapter 8, section 3.3). The modern approach goes along these lines and uses the properties and
consequences of the S-matrix theory as a set of constrains which restrict a possible functional form of
the amplitude. The remaining freedom is fixed using experimental observations.

The scattering matrix is defined as the expectation value of the transition operator, S:

Sif ≡ 〈f |S |i〉 , (2.1)

where |i〉 and 〈f | = |f〉† are non-interacting asymptotic initial and final states of the reaction i→ f
which contain several particles. The S-matrix element, 〈f |S |i〉 is an amplitude for the initially
prepared state |i〉 to be observed in the final state in a configuration |f〉. There are two distinct
ways how the transition can happen: first, particles do not interact (disconnected transition), and the
probability is given by an overlap of the states, 〈f |i〉. The other way is through an actual interaction
introduced by the operator T (connected transition); the transition amplitude is written as i 〈f |T |i〉.
The basic splitting of the S-matrix operator reads: 1

S = 1 + iT, (2.2)

where 1 is the identity operator, 1 |i〉 = |i〉.
As suggested in Ref. [38], important assumptions (postulates) to the S-matrix theory are Lorentz

invariance, conservation of probability (related to unitarity of S), causality (related to analyticity of

1 The connectedness structure is believed to be a sure assumption as stated in Ref. [38]. It is further explored for the 3→ 3
process in Sec. 7.
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Chapter 2 S-matrix constraints to the scattering amplitude

the transition amplitude), the short-range character of strong force 2 and the superposition principle of
quantum mechanics. The most nontrivial consequences are derived from the unitarity and analyticity
principles. On the one hand, the unitarity constraint ensures that no single reaction channel exceeds
the limit set by the probability conservation, while on the other hand, it is used as a principle that
enables to identify peaks and dips in cross-sections with the hadronic resonances, as we introduce
below.

The unitarity constraint to the operator S, S†S = 1, leads to a relation for the operator T ,

T − T † = iT †T, (2.3)

which becomes very practical as soon and it is sandwiched by the initial and the final states, 〈f | and
|i〉. In the next two sections we consider two most important examples: first, in Sec. 2.1 we discuss
the elastic scattering amplitude, that is a transition matrix between a few strongly coupled channels.
Second, an amplitude for one of these channels being produced in a more complex reaction, the
production amplitude is discussed in Sec. 2.2.

2.1 The elastic scattering amplitude

To introduce a concept of the unitary model and the theoretical framework we follow a general
discussion with a concrete example of a scattering problem in a system of two coupled channels, ηπ
and ρπ (this model was developed for studies of Ref. [4]). As an example, we focus on interactions
with the JPC = 2++ quantum numbers known to contain the a2(1320) resonance. The considered
model can be further simplified by assuming the ρ-meson to be a stable, scalar particle. 3 The 2→2
scattering reaction reads,

ξ(q)π−(p)→ ξ′(q′)π−(p′), (2.4)

where ξ refers to either ρ0 or η, q and p are the four-momenta of ξ and π, respectively. The primed
(unprimed) momenta denote to the final- (initial-) state quantities. The matrix element Tif is defined
as follows,

〈f |T |i〉 = Tif (s, t) (2π)4δ4(P − P ′), (2.5)

where P and P ′ are the total momenta in the initial and the final states, i, f are either ηπ or ρπ
in the case at hand. Due to the Lorentz invariance and the energy-momentum conservation, the
matrix element can be expressed via two independent kinematic variables. A convenient choice for
these variables is the Mandelstam variables s and t: s = (p+ q)2 and t = (q − q′)2. The variable
u = (q − p′)2 is not independent, since u = m2

ξ +m2
ξ
′ + 2m2

π − t− s. For brevity of notations we
introduce T (s, t) ≡ Tif (s, t), meaning that T (s, t) is a matrix in the channel space.
The considered reaction ξπ− → ξ′π− is called the s-channel process. The t-channel process

2 According to Eden et at. [38], there is at present no S-matrix theory which properly includes photons. Authors point that
the essential problem is related to the infrared divergence of perturbation theory and unmeasurable number of photons. It
does not mean, however, that the S-matrix is not applicable to reactions which involve the electromagnetic interaction.
For example, one finds many useful consequences the S-matrix principles to the electromagnetic form factors as well as
dip inelastic scattering processes (see Ref. [39]).

3 Formation of the JP = 2
+ state from ρ and π, with quantum numbers JP = 1

− and 0
−, is only possible in D-wave.

The same orbital angular momentum (D-wave) is required for the scalar ρ-meson. The spin and finite width of the ρ are
critical below and close to the nominal ρπ threshold. Above 1 GeV, the simplification is well justified.
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2.1 The elastic scattering amplitude

ηπ → ρπ

ηπ → ηπ

ηπ → ηπ

ρπ → ηπ

ηη → ππ

t

s

u

Figure 2.1: The Mandelstam plane for the reaction ηπ → ηπ in s-channel. The u-channel for the ηπ → ηπ is
the same reaction since π and η coincide with their anti-particles, it is shown by the blue area. The kinematic
border of the t-channel scattering (ηη → ππ) is shown by blue region. The phase space for the reaction
ηπ → ρπ present in the s-, and u-channels is shown by the dashed line.

corresponds to ξξ′ → π+π− scattering. 4 The u-channel process is the same as the s-channel process
despite that the pion charge must be flipped (ξπ+ → ξ′π+). For the s-channel reaction, the physical
values of t and u are below zero as shown in the Fig. 2.1. There is a domain of the amplitude when s
is negative and t is positive which is unphysical for the s-channel, however, it represents the physical
region of the t-channel reaction.

The analyticity of the scattering amplitude states that the s-, t-, and u- cross-channel amplitudes in
their physical domains are analytically connected, i.e. the analytic amplitude (if exists) describes a
complete Mandelstam plane. Moreover, this amplitude is analytic in the upper part of the complex
plane (positive imaginary part) of the variables s or t (a proof of this fact is cumbersome, see e.g.
Ref. [45]). An extension of the analyticity domain to the lower part of complex plane (negative
imaginary part) is done using the Schwarz reflection principle (see the mathematical statement for a
single-variable analytic function in Ref. [46], discussions about application to the physical processes
in Ref. [47]). In the s-channel physical region (there are no t-channel-related singularities), it states:

T ∗(s, t) = T (s∗, t) (2.6)

Particularly, Eq. (2.6) means, that as soon as the amplitude has an imaginary part, it is not continuous
on the real axis of the complex s-plane. As we will see below, the unitarity principle requires the
scattering amplitude to have a finite imaginary part in the physical region, hence, a discontinuity. We
use a common +iε prescription, which suggests that the physical value of the amplitude is calculate

4 Strictly speaking, the particles have to be replaced with antiparticles when applying crossing symmetry, however, meson
antiparticles belongs to the same isospin multiplet, hence, those are essentially the same particles.

9



Chapter 2 S-matrix constraints to the scattering amplitude

above the unitarity cut.

s
s+ iε

s− iε

T (s, t) = lim
ε→0

T (s+ iε, t) ≡ T (s+, t), (2.7a)

T (s∗, t) = lim
ε→0

T (s− iε, t) ≡ T (s−, t), (2.7b)

where the boundary of the complex function is indicated by the ± sign. For the s-channel physical
region we assume that there are no singularities in the variable t.

The expectation value of the operator T † is calculated using the hermitian property of the operator
T : 〈f |T † |i〉 = 〈i|T |f〉∗. Using the time-reversal symmetry, Tif (s, t) = Tfi(s, t), we obtain

5

〈f |T † |i〉 = T (s∗, t) (2π)4δ4(P − P ′). (2.10)

An application of the unitarity relation of Eq. (2.3) to the amplitude T (s, t) reads,

〈f |T − T † |i〉 = i
∑

m

∫ m∏

j=1

d3pj

(2π)32Ej
〈f |T † |m〉 〈m|T |i〉 , (2.11)

where
∑

m denotes a sum over all possible on-shell intermediate states withm particles, all momentum
states have to be integrated over. Substituting Eq. (2.5) we see that on the right-hand side, the delta
functions ensure energy momentum conservation between the initial, the intermediate and the final
state. Due to the delta functions, the integral over intermediate momenta gets reduced to the phase
space.

dΦm ≡
∫ m∏

j=1

d3pj

(2π)32Ej
(2π)4δ4(Pm − P ), (2.12)

where Pm is the total momentum of the intermediate state equal to the sum of momenta qm, and P is
an external total momentum.
In our example of the two coupled channels, the intermediate state contains either a ρπ or an ηπ

state. Therefore, Eq. (2.3) gives a constraint to the matrix T (s, t).

T (s+, t)− T (s−, t) = i
∑

m

∫
dΦ2 T (s−, t

′
m)T (s+, tm)θ(s− s(m)

th ), (2.13)

where tm = (q− qm)2, and t′m = (q′− qm)2. We dropped the channel indices for brevity of notations.
s

(m)
th is a physical threshold for the channelm.
It is convenient to expand the amplitude T (s, t) into partial waves

5 Eq. (2.10) holds in the more general context of the field theory without requiring the time-reversal symmetry, As proven
by D. Olive [48] (see also a later work of J. Miramontes [49]), “If the function Tif is a boundary value of the analytic
function of complex invariants, then T ∗fi is an opposite boundary value.” It means,

〈f |T † |i〉 = T (s
∗
, t
∗
) (2π)

4
δ

4
(P − P ′). (2.8)

This condition is known as the hermitial analyticity. If follows that for the scattering of scalar particles, under the
time-reversal symmetry,

T
∗
(s, t) = T (s

∗
, t
∗
). (2.9)

Eq. (2.9) extends the Eq. (2.6) to the region where s- and t-channel-related singularities overlap.

10



2.1 The elastic scattering amplitude

ξ π
ξ′

π

θ T (s, t) =
∞∑

l=0

(2l + 1)Tl(s)Pl(cos θ), (2.14)

where θ is a scattering angle in the s-channel rest frame, Pl(cos θ) is the Legendre Polynomial of l-th
order, and Tl(s) is a matrix (in the channel space) of the scattering amplitudes projected to the partial
waves. The two-body phase space integral in Eq. (B.3) includes an integral over directions of qm.
In the partial wave basis the angular integral can be solved analytically ensuring orthogonality of
different partial waves 6.

Tl(s+)− Tl(s−) = i Tl(s−) ρ(s)Tl(s+), (2.15)

where ρ(s) = diag(ρ1, ρ2) is a matrix of the phase-space factors with ρi = λ1/2(s,m2
i ,m

2
π)/(8πs),

mi ∈ {mη,mρ}. The left part of Eq. (2.15) is often written as the discontinuity of the amplitude
dsTl(s) ≡ Tl(s+)− Tl(s−). Using the Schwarz reflection principle we obtain Tl(s−) = T ∗(s). The
unitarity relation then reads:

2 Im Tl(s) = T ∗l (s) ρ(s)Tl(s). (2.16)

We showed that the unitarity of the S-operator inferred a constraint to the partial wave amplitude
Tl(s). The matrix Sif , however, contains a delta-function from the disconnected term, 〈f |i〉. The
unitary matrix for the partial wave amplitude Sl(s), can also be defined as follows [26],

Sl(s) = 1 + i
√
ρ(s)Tl(s)

√
ρ(s). (2.17)

Sl is indeed unitary since the constraint S
†
l Sl = 1 leads to the condition (2.15). In our example, Sl

belongs to the U(2) group. Hence, a general expression for Sl is

Sl = eiφ
(
a b
−b∗ a∗

)
, (2.18)

where |a|2 + |b|2 = 1. When time-reversal symmetry holds, the Tl(s) as well as the Sl matrix are
both symmetric. Hence, b is purely imaginary. A common parametrization of the Sl-matrix in terms
of the inelasticity η = |a| and phases, φ1 and φ2, reads,

Sl =


 ηeiφ1 i

√
1− η2eiφ

i

√
1− η2eiφ ηeiφ2


 , (2.19)

where φ1 and φ2 are scattering phases of the diagonal elements of the Sl(s), φ = (φ1 + φ2)/2.
Fig. 2.2 shows the Argand diagrams for the diagonal elements of the coupled-channel amplitude

T2(s) for the ηπ, ρπ scattering inD-wave (see details of the model in Appendix A.1). For convenience
the amplitude multiplied to the phase space is plotted; in this representation the shaded area in
Fig. 2.2 is forbidden by the unitarity condition in Eq. (2.16). Due to the phase-space factors, the

amplitude curves start at 0 at the corresponding thresholds,
√
s

(1)
th = mη +mπ (for the left panel)

6 The derivation is straightforward and can be found e.g. in any of the classical books [39, 44, 47]
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Figure 2.2: The Argand diagrams of the ηπ/ρπ scattering model obtained with the COMPASS data (see details
in Appendix A.1): the left (or right) plot shows a trajectory of the ρηπTηπ,ηπ (or ρρπTρπ,ρπ) amplitude as a
function of the invariant mass, mξπ ≡

√
s, ξ ∈ {η, ρ}. The labeled dots indicate the values of the invariant

mass of the system in GeV. The gray area represents the region of the complex plane which is forbidden by
unitarity.

and
√
s

(2)
th = mρ + mπ (for the right panel). The model for the scattering amplitude contains two

resonances, a2(1320) and a2(1700). Both amplitudes in Fig. 2.2, Tηπ,ηπ and Tρπ,ρπ show a double
peak structure in the absolute vales as the invariant mass of the system is varied (one can see it in
the Argand diagram as a distance of the points on the orange lines to zero). One other important
indication of a resonance is a motion of the scattering phase. As well seen on the right panel of
Fig. 2.2 the amplitude develops two circles, the phase of the amplitude Tρπ,ρπ(s) has two regions
of a fast movement, when the orange line crosses the imaginary axis; it decreases in between. The
left panel of Fig. 2.2 shows an example of more complicated behavior, the phase of the scattering
amplitude Tηπ,ηπ(s) rises although it does not have a classical circular behavior.

2.2 Analytic continuation and pole search

The analytic structure of the partial wave amplitude is more complicated since all physical singularities
of the cross channels (thresholds openings, bound states) get projected to the complex s-plane. However,
the analytic structure around the physical region is still simple as it is controlled by unitarity (2.16).
The right-hand-side singularities are branch points related to thresholds. Since the left-hand-side
singularities are cumbersome, for practical applications, they are often artificially modeled [4, 12,
50]. Eq. (2.16) does not fully determine the scattering amplitude, however, it gives a robust constraint.
To obtain the unitary model, the constraint (2.16) is built in using one of a few known approaches.
Here we comment on theK-matrix approach [47, 51–53], a complementary N-over-D approach is
discussed in Ref. [47, 54, 55].

The unitarity condition (2.15) gets simpler for the inverse amplitude. When Eq. (2.15) is multiplied
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2.2 Analytic continuation and pole search

by Tl(s−)−1 from the left side and by T−1
l (s+) from the right side, it becomes,

T−1
l (s+)− T−1

l (s−) = −iρ(s)θ(s− sth). (2.20)

Eq. (2.20) is fulfilled for the model:

T−1
l = K−1 − iρ/2, (2.21)

whereK−1 must be a real function on the real axis above the threshold. Possible singularities ofK
are poles on the real axis and left-hand-side singularities. The function ρ defined below Eq. (2.15) has
a square-root singularity. By drawing the cut from the threshold to the positive real axis, we make the
function iρ hermitian analytic (see Eq. (2.8)). iρ flips the sign when one crosses the cut, therefore, the
discontinuity matches Eq. (2.20). The expression for Tl obtained by an inversion of Eq. (2.22),

Tl = K [1− iρK/2]−1 = K + K(iρ/2)K + K(iρ/2)K(iρ/2)K + . . . , (2.22)

= + + + . . . (2.23)

where we also provide a correspondence with a simple diagrammatic interpretation. We notice that in
this form of Eq. (2.22), the rank of the matrixK is not restricted. Often the rank ofK is less than its
dimension, henceK is degenerate. WhenK describes a single interaction between two particles, the
function iρ/2 stands for a loop as shown in Eq. (2.23). A common form of the K-matrix is a sum of
pole terms,

Kij =
∑

r

g
(r)
i g

(r)
j

m2
r − s

, (2.24)

which are called bare poles. The bare pole positionm2
r and the bare couplings g

(r)
l do not have any

physical meaning. They are used as a flexible parametrization.
One disadvantage of the parametrization in Eq. (2.22), is that the Tl contains left-hand-side

singularities which are artistically penetrated in the model via the phase-space factor ρ. Indeed, the
factor ρ(s) can be written as (the definition of the Källén function)

ρ(s) =

√
(s− (mξ +mπ)2)(s− (mξ −mπ)2)

8πs
, (2.25)

wherewe clearly identify the square-root branch point at so-called pseudo-threshold, spth = (mξ−mπ)2

and a pole at s = 0 in addition to the threshold singularity, sth = (mξ +mπ)2. In the diagrammatic
correspondence in Eq. (2.22), iρ/2 represents a loop, however, it is precisely equal to the imaginary
part of a bubble loop integral [39]: As it can be shown by direct calculations, the expression for the
scalar two-particle loop has only the right-hand cut and its imaginary part coincides with ρ/2. Using
the knowledge of the analytic structure and the expression for the imaginary part, a complete function
for the scattering loop can be recovered by means of the dispersion relations.

The dispersion relations establish a relation between the scattering amplitude and its discontinuities,
and residuals of the non-analytic structures by use of Cauchy’s integral theorem. In order to derive the
relation one equates a value of the function, f(s) to an integral of f(s′)/(s′ − s) over s′, along the
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Chapter 2 S-matrix constraints to the scattering amplitude

circular contour in the vicinity of s, which encloses s. Then, the circular integration contour is blown
to an infinity wrapping around all non-analytic structures. As soon as the contribution to the integral
from the blown circle is negligible, the value of the function f(s) is equal to the sum of integrals
around the non-analytic structures which we stumbled upon while blowing the contour. For example,
if a function contains a single channel branch point at sth, and the cut attached to it goes to +∞ along
the real axis, it admits a representation,

s dsf(s)
f(s) =

1

2πi

∫ ∞

sth

dsf(s′)

s′ − s
ds′, (2.26)

where dsf(s) ≡ f(s+)− f(s−) is a discontinuity of the function f(s) on the cut. In order to drop
the circular part of the integral we have assumed that the function f(s) vanishes at s→∞ faster than
1/s. If the function does not vanish at s→∞, and it still does not grow faster than a polynomial of
the order (n− 1), the relation (2.26) can still be used for the n-times subtracted function,

f̃(s) =
1

(s− s0)n

(
f(s)−

n∑

k=0

(s− s0)k

k!
f (k)(s0)

)
, (2.27)

where f (k)(s0) is the k-th derivative of the function f(s) calculated at the subtraction point s0. Using
Eq. (2.26) for the function f̃ , one can obtain an expression for f(s), which, however, requires an
input on the derivatives at the subtraction point, f (k)(s0). The most practically used case is the
once-subtracted relation. For a function with a single cut from sth to∞, it reads,

f(s) = f(0) +
s

2πi

∫ ∞

sth

dsf(s′)

s′(s′ − s)
ds′, (2.28)

where we used s0 = 0 as the subtraction point. As we see, Eq. (2.26) and Eq. (2.28) are purely
mathematical consequences of analyticity. It was first applied to a physical system by Kronig [56]
and Kramers [57] who were studying analytic properties of the refractive index for the passage of
electromagnetic radiation through matter as a function of frequency. From that time, they are called
the Kramers-Kronig relations of the dispersion relation [47, 58].

Returning to the scalar two particle loop function we use the dispersion relations from Eq. (2.28) to
write

C1(s) =
s

2π

∫ ∞

(mξ+mπ)
2

ρ(s′)

s′(s′ − s)
ds′, (2.29)

where the once subtracted dispersion integral converges since the function ρ(s) from Eq. (2.25)
approaches a constraint value when s → ∞. The subtraction constant ρ̃(0) is set to 0. Eq. (2.29)
gives an exact expression for a scalar bubble diagram up to a renormalization constant related to
the ultraviolet divergence (constant in Eq. (2.28)) [59]. The integral (2.29), also known as Chew-
Mandelstam function [60–62], or Self-Energy function [26] can be analytically solved and expressed
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2.2 Analytic continuation and pole search

Figure 2.3: Complex plane of the elastic scattering amplitude which contains a single isolated resonance. The
left plot shows the imaginary part of the amplitude in the complex plane on the first Riemann sheet (green
surface). By means of analytic continuation the amplitude is calculated on the second sheet as shown on the
right plot. One finds the origin of the resonance enhancement on the real axis in the pole located on the second
sheet.

through elementary functions as shown in Ref. [61].

C1(s) =
1

16π2

[
λ1/2(s,m2

ξ ,m
2
π)

s
log

m2
ξ +m2

π − s+ λ1/2(s,m2
ξ ,m

2
π)

2mξmπ

+
m2
ξ +m2

π

m2
ξ −m2

π

log
mξ

mπ
− m2

ξ −m2
π

s
log

mξ

mπ
− 1

]
. (2.30)

The imaginary part of the function C1(s) above the threshold s > (mξ +mπ)2 comes from the first
term of Eq. (2.30) for which the imaginary part of the logarithmic expression is simply iπ, since the
argument of the log is negative, and hence, Im C1(s+) = iρ/2. The Chew-Mandelstam function is
often used in the construction of the amplitude in Eq. (2.22) instead of iρ/2. In that case the amplitude
Tl(s), has only the right-hand cut. It is still a model because the “correct” amplitude must contain
the left singularities from the cross-channel physical processes. However, this model is somewhat
better since the first Riemann sheet does not contain the pseudo-threshold branch point singularity, the
presence of which cannot be motivated.

The unitarity cut which starts at the threshold and goes to real +∞ splits the complex plane and
introduces the Riemann sheets [46]. As we can see from Eq. (2.20), the two particle threshold is a
square-root singularity and, hence, it defines the two-sheet Riemann surface. The causality principle
forbids additional singularities to be present on the first Riemann sheet (an accessible derivation can
be found in Sec. 5.3 of Ref. [45]). Hence, the singularities which rule the amplitude behavior along
the real axis are located on the higher lying Riemann sheets. Fig. 2.3 displays the Riemann sheet
structure for the amplitude which describes an isolated two particle resonance. An analysis of the
singularities of the unphysical sheets, leads to a unambiguous definition of the hadronic resonances.
The resonances are identified with the poles of the amplitude T (s), i.e. terms 1/(s−sp) in the Laurent
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Chapter 2 S-matrix constraints to the scattering amplitude

expansion [39]. The locations of the poles are related to the mass and width of the resonances,

sp = (mp − iΓp/2)2. (2.31)

The analytic continuation of the model, which is constructed based on the unitarity requirement,
straightforwardly follows from Eq. (2.20). We consider the function T−1

II (s) = T−1(s) − iρ and
notice that T−1(s+ iε) = T−1

II (s− iε), where ε is an infinitesimal positive number. Since the function
T−1
II (s) match T−1(s) along the real axis above the threshold, it gives a unique analytic continuation

to the unphysical sheet [46]. The expression for the amplitude TII(s) reads,

TII(s) = T (s) [1− iρ(s)T (s)]−1. (2.32)

One can realize that ρ(s), which previously served as the imaginary part only has to be analytically
continued, i.e. evaluated for the complex argument. Therefore, even when the pseudo-threshold
branch point is removed from the first sheet using Eq. (2.30), it appears on the higher lying Riemann
sheets. The question of extracting resonance parameters of the amplitude T , is reduced to a numerical
problem of identifying poles of Eq. (2.32), which is equivalent to finding zeros of 1/detTII(s) in the
coupled channel case.

2.3 The production amplitude

A pure meson-meson scattering reaction is in practice difficult to observe and reproduce in laboratory
conditions since there are no stable (enough) mesons. However, this interaction can be studied as a
subprocess of more complicated reactions. The matrix element of the reaction, in which the meson
system is produced, can be related to the elastic scattering amplitude using the unitarity principle. The
meson pair ηπ from our example can be seen in the reaction π p→ ηπ p measured at the COMPASS
experiment [63] or in the reaction γ p → ηπ p measured at the GlueX experiment [64]. For both
reactions, there is a kinematic domain when the ηπ system is well isolated from the recoiling proton
(e.g. peripheral production: high energy in the center of mass, low transferred momentum between
the beam to the target). In that case the meson interaction can be factorized [65] and considered as
produced from a source. Schematically the production amplitude is introduced as follows.

〈ξπ|T |source〉 = F (s, t) (2π)4δ4(four-momentum conservation), (2.33)

where in general F might depend on more variables as the production reaction can have more degrees
of freedom (see discussion in Sec. 3.2).

Using Eq. (2.3) with the corresponding initial and final states from Eq. (2.33), we obtain the unitarity
constraint for the production amplitude. For a complete set of states which we insert in Eq. (2.11) we
include only the strongly coupled channels to the sum. Then, the partial-wave expansion is introduced
in the same way as in Eq. (2.14). Omitting the straightforward calculations, we arrive at the unitarity
equation for the partial wave production amplitude.

Fl(s)− F ∗l (s) = i T ∗l (s) ρ(s)Fl(s) θ(s− sth), (2.34)

where Fl is a vector of the partial wave amplitudes which, for the example of ηπ/ρπ production, has
two components. Tl is the elastic scattering matrix (2.14).
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2.3 The production amplitude

Eq. (2.34) establishes an important relation with the scattering amplitude Tl, which allows us to
extract the resonance physics, an attribute of the scattering amplitude, from the production process
accessible in the experiment. There are two common methods to express the production amplitude
Fl through the scattering amplitude Tl: the method of the production vector with slight variations
of P -vector and Q-vector [52, 66] and the approach to which we refer as the unitarized background
construction (a.k.a. Deck-type production [66]).

The simplest construction of the production amplitude reads:

Fl(s) = Tl(s)α(s), (2.35)

where α is a vector of functions which does not have a right-hand cut, i.e. α(s) − α∗(s) = 0 for
s > sthr.

7 To demonstrate that the constraint (2.34) is satisfied we just need to plug Eq. (2.35) into
Eq. (2.34) and use dsFl(s) = dsTl(s)α(s) and the unitarity of Tl, i.e. Eq. (2.15). The functions αi
are customarily parameterized by a polynomial [66], a combination of left poles [4] or a set of the
left-hand cuts [68].

The second method was proposed in a way we consider it here in Ref. [62]. The amplitude Fl can
be written as a sum of two terms: the first one, Gl(s) contains the right-hand cut, and the second one,
Bl(s) which has only the left-hand cuts/singularities,

Fl(s) = Gl(s) +Bl(s). (2.36)

Bl(s) could be a given vector of the ‘background‘ terms. In order to satisfy unitarity Gl(s) should
obey the following equation.

dsGl(s) = i T ∗l (s)ρ(s) (Gl(s) +Bl(s)), (2.37)

which is known as the Riemann-Hilbert problem [46], or in particular Omnès problem [69]. The
amplitudeGl(s) is constructed in the formGl(s) = Tl(s)cl(s) where cl(s) is a production vector.

8 In
contrast to the previous case, cl(s) is not arbitrary, its right-hand cut is constrained by unitarity (2.34).
To find the constraint we related the discontinuity of Gl to the discontinuity of cl(s) as follows.

Gl(s)−G∗l (s) = Tl(s)cl(s)− T ∗l (s)c∗l (s) (2.38)
= (Tl(s)− T ∗l (s))cl(s) + T ∗l (s)(cl(s)− c∗l (s))
= i T ∗l (s)ρ(s)Tl(s)cl(s) + T ∗l (s)(cl(s)− c∗l (s))
= i T ∗l (s)ρ(s)Gl(s) + T ∗l (s)(cl(s)− c∗l (s)).

where we used a zero addition (0 = T ∗l (s)cl(s)− T ∗l (s)cl(s)) in the second line and the unitarity of
the matrix Tl at the third line. Then, by comparing Eq. (2.38) to the left part of Eq. (2.37), we find:

cl(s)− c∗l (s) = i ρ(s)Bl(s). (2.39)

7 Since α(s) is real above the threshold, the phase of Fl is the same as the phase of Tl(s). It is known as the Watson’s
theorem after Ref. [67].

8 We notice that the solution is not unique since the left-hand cut of Gl is not constrained. In Ref. [69] R. Omnès presented
a construction of Gl that is required to contain only the right-hand cut. This solution is determined up to an arbitrary
polynomial.
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Chapter 2 S-matrix constraints to the scattering amplitude

This equation can be satisfied by the dispersive-integral construction,

cl(s) = β(s) +
1

2π

∫ ∞

sth

ρ(s′)Bl(s
′)

s′ − s
ds′, (2.40)

where β(s) is a function without the left-hand cut as in Eq. (2.35). We see that for a specific background
amplitudeBl(s), the function cl(s) contains a compensating dispersive term, which keeps the unitarity
constraint satisfied. For the final form of the model we indicate a common terminology used to refer
to the different terms:

Fl(s) = Bl(s)︸ ︷︷ ︸
Background

+
Tl(s)

2π

∫ ∞

sth

ρ(s′)Bl(s
′)

s′ − s
ds′

︸ ︷︷ ︸
Unitarization

+ Tl(s)β(s)︸ ︷︷ ︸
Direct production

, (2.41)

It is important to mention that a separation between the “background” and the “direct production”
does not have a strict physical meaning, the amplitude is equivalent to Eq. (2.35) as can be shown by
simple algebraic manipulations [70]. However, the parametrization (2.41) has an interesting property
emphasized in Ref. [62]: in the limit Tl → 0 the amplitude Fl reduces to Bl.
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CHAPTER 3

Studies of the three-pion system at COMPASS

3.1 Introduction to the COMPASS experiment

The COMPASS experiment is a fixed-target experiment located at CERN, aiming to develop a better
understanding of the structure and dynamics of hadrons. The experiment operates with a pion or a
muon beamwith energies up to 190GeVwhich is scattered off a liquid hydrogen or solid nuclear targets.
The hadronic program of COMPASS includes precision spectroscopy of light mesons, identification
and studies of exotic states with gluonic degrees of freedom or multiquark configurations as well as
tests of chiral dynamics. Tracking over a wide angular and momentum range and hermetic calorimetry
allows for exclusive measurements of the mutli-hadron final states. Due to high beam energy the
production reaction is clean: the excited meson system is boosted forward, it is kinematically separated
from the baryon vertex, the recoil proton occupies a rapidity domain disjoint with the final state mesons.
The muon program is focused on the investigation of the spin structure of nucleon via measurements
of the Deep Inelastic Scattering (DIS) processes. 1

The setup is modified as per the demands of the physical program. Fig. 3.1 shows the setup
for measurements with hadron beams starting in 2008, an extensive description of the COMPASS
instrumentation can be found in Ref. [72], specifically for physics with hadron beams in Ref. [73].
The 50m long apparatus starts with the beam section where the beam particle is tracked by silicon
microstrip detectors and identified by a pair of differential Cherenkov counters (CEDAR). The Beam
Momentum Station (BMS), dedicated to determination of the incident momentum for studies with
the muon beam, is moved out of the beam line to minimize amount of material along the beam path.
The following target region contains the target filled with liquid hydrogen and the time-of-flight
detector that is called Recoil Proton Detector (RPD). The RPD plays an important role in both the
trigger formation and offline analyses to ensure exclusivity of the reactions under investigation. One
unique feature of COMPASS is that the spectrometer has two stages which cover different ranges
of momenta and scattering angles of the produced particles. Essentially, the classical sequence of
particle detectors (dipole magnet surrounded by the tracking devices, also calorimetry, and muon ID
systems) is replicated twice. The first stage, named Large Angle Spectrometer, serves to measure
particles which leave the target region with large angles up to 180mrad (mostly particles with low

1 COMPASS experiment was upgraded in 2010-2012 years and named COMPASS-II [71]. In addition to the measurements
of the DIS processes and tests of chiral dynamics, the physical program included studies of the Deeply Virtual Compton
Scattering processes with the muon beam, and the Drell-Yan muon pair production processes with the pion beam.
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Figure 3.1: A schematic view of the COMPASS experiment setup of 2008. The 3D-model is exported from the GEANT4-based simulation program, TGeant
described in details in Ref. [74, 75]. The panoramic photos can be found in the CERN PhotoLab, see Ref. [76].
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3.1 Introduction to the COMPASS experiment

momenta). It is also equipped with the Ring-Imaging Cherenkov detector (RICH) where changed
particles with the momentum up to 50GeV can be identified as pions, kaons or antiproton. The
calorimeters and muon filters of the first stage have large windows in the middle, so particles with
small angles less than approximately 70mrad can pass through. The second stage is called Small Angle
Spectrometer, it covers the largest part of the experiment acceptance. The significant longitudinal scale
of COMPASS facilitates a good momentum resolution for the charged particles. The calorimeters
have a fine granularity: the central regions of the ECAL1 and ECAL2 contain the lead glass and the
shashlik type modules, respectively, with the cell size, 3.8 cm.
A large data set with a 190GeV pion beam was collected during the summer of 2008. The 40 cm

long liquid hydrogen target was installed used. A key advantage of COMPASS over the previous
experiments is a high beam intensity of up to 108 particles per spill of 9.6 s. The physical events were
recorded with a dedicated DT0 trigger which required: a beam signal determined by a coincidence
of scintillating fiber detectors (SciFi) with a small scintillating disc (Beam Counter), a signal in
the RPD (scintillator slabs surrounding the target), and a signal from Veto System. This system
contains three components: three hodoscopes upstream the target, large lead-scintillator detector, and
two scintillating counters, located exactly on the track of the non-interacting beam at the end of the
experiment. With this trigger setup the recorded data was enriched with the diffractive scattering
events. A rate of approximately 180 000 events per 10 s spill was reached [73]. The measured final
states mostly contain charged pions, kaons, as well as photons from the decay of neutral pion and
eta-mesons. The target recoil proton takes up the momentum transferred from the beam. In order to
produce a trigger signal, this recoil proton needs to pass through the target material and the cryostat
pipe and cross both scintillator rings of RPD. It limits the momentum of observable recoil protons to
values larger than 250MeV, which is equivalent to a proton kinetic energy of 30MeV. The associated
transferred momentum squared, t is defined as the squared difference between four-momentum of the
target proton pt and recoil proton pr, t = (pr − pt)

2. It is limited to t < −0.065 GeV2.
The elastic π− p scattering has the highest cross section and dominates the collected data set. The

diffractive production π− p→ 3π p has the second largest cross section. The COMPASS experiment
has a large acceptance and a high efficiency for the charge configuration π−π+π−: the efficiency
for tracking and vertexing for particles with momentum above 3GeV is above 94% as shown in
Ref. [73], the averaged acceptance for the reaction π− p→ π−π+π− p is 50% (see Ref. [77]). The
pions are reconstructed using tracking detectors. The interaction vertex position is determined by
track extrapolation to the target area. The recoil proton is measured in the RPD, however, since the
reaction is over-constrained, the RPD measurements are used to suppress non-exclusive background.

The analysis is based on 109 events recorded during four two-weeks periods of beam time in 2008.
A set of selection criteria is employed to isolate a clean sample of exclusive π− p → π−π+π− p
events. The details of the event selection are described in Ref. [77] and just briefly listed below:

1. DT0 trigger bit must be set.

2. The event must contain exactly three outgoing particles with a total charge of −1.

3. The position of the interaction vertex found by the reconstruction algorithm must be located
inside the fiducial volume of the target (38 cm×�3.2 cm).

4. The energy of the beam calculated from the energies and momenta of the outgoing particles
is required to be within a window of ±3.78 GeV around the nominal beam momentum of
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Chapter 3 Studies of the three-pion system at COMPASS

191GeV, which corresponds to two standard deviations (see Fig. 3.2). 2

5. The event must have exactly one recoil particle detected by the RPD whose the azimuthal
coordinate is required to be opposite to the one for the outgoing 3π system within the azimuthal
resolution of the RPD (In Ref. [77] it was found in the range from 5◦ to 9◦ depending on the
crossed slab of the RPD rings).

6. The event is rejected if the beam particle is identified as a kaon by the two beam Cherenkov
detectors or if at least one of the outgoing particles is identified as a kaon, proton, electron, or
the “noise” by the forward RICH detector [78].

7. In order to suppress the background from central production reactions π− p → π−fast π
+π− p

the event is required to have a Feynman-x below 0.9, where x is defined by the ratio of the
longitudinal momentum of the fast negatively charged pion in the beam-target rest frame to it
maximal value approximated by√s0/2.

x =
2|(~pfast)(CM0)

z |√
s0

,

where the z-direction in set by the beam particle.

Approximately 50× 106 events passed all selection cuts and were used in the further analysis.

3.2 Physics of the three-pion system

The reaction π− p → π−π+π− p has a 2 → 4 signature. Therefore, it is completely defined by
8 quantities. 3 These 8 quantities can be either invariant variables or any other frame-dependent
observables, as long as the frame is unambiguously specified. To facilitate further discussions on
the 3π angular analysis we parametrize the kinematics by the invariant mass squared of the 3π
system denoted by s = (p1 + p2 + p3)2, 5 variables which completely describe the orientation of
the three pions (5 = 9 − 4, three particles with three d.o.f. and four constraints for the energy-
momentum conservation), and the two Mandelstam variables related to the 2→2 production reaction
(π− p → X− p with X = 3π), which are the total invariant mass squared s0 = (pb + pt)

2 and the
transferred momentum squared, t = (pr − pt)

2, as introduced above. We also use t′ = |t| − |t|min,
the reduced transferred momentum squared beyond the kinematic limit.

Fig. 3.3 shows the general diagram for a 2→4 reaction where the shaded interaction area contains
all possible dynamics. The COMPASS experiment is set up to study a specific kinematic region of
the reaction with its dominant production mechanism as shown in Fig. 3.4. Due to the high value
of the total invariant mass, the reaction is dominated by long-range exchange processes between the
2 The energy of the beam particle is calculated based on the constraint on the mass of the recoil particle as follows. The
recoil four-vector is fully defined by pb + pt − pX , where pb is the beam vector for which the magnitude is unknown, the
target proton four vector pt, is assumed to be (mp, 0, 0, 0), and pX is the sum of the pion four-momenta. By imposing the
constraint p2

r = m
2
p, the energy of the beam can be calculated. A check of exclusivity is done by restricting the energy

sum of pions. The deviation from the expected energy of the beam cannot be large since the recoil energy is small and has
an exponentially falling spectrum (see Fig. 3.2, t′ ≈ −t = 2mTr , where Tr is the recoil kinetic energy).

3 Six particles with fixed masses have 6 · 3 = 18 degrees of freedom, which are constrained by four energy-momentum
conservation laws, the other six degrees of freedom are taken out by fixing the frame (three rotations and three boosts).
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Figure 3.2: Kinematic distributions for the reaction π− p→ π−π+π− p. The left plot shows the exclusivity
check, the calculated energy of the beam is restricted in the range indicated by the red lines. The right plot
presents the spectrum of the reduced transferred momentum squared beyond the kinematic limit, t′ = |t|−|t|min;
the red lines show a range used in the discussed analysis. The plots are from Ref. [78]
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Figure 3.3: A general schematic diagram for the reaction π− p→ π−π+π− p. The beam momentum is denoted
by pb, while pt and pr are the four-momenta of the target proton and the recoil proton, respectively. The pion
four-momenta are pi, where i = 1, 2, 3. The invariants are shown by curly braces, s0 is the total invariant mass
of the reaction, s is the invariant mass of the three-pion system, t stands for the transferred momentum square.
The invariant masses in the two pion subchannels are defined in a circular convention σk = (pi + pj)

2, where
(ijk) are ∈ {(123), (231), (312)}.

23



Chapter 3 Studies of the three-pion system at COMPASS

p pr

π−
π−

π+

π−
P

p pr

π−
π−

π+

π−
P

p pr

π−
π−

π+

π−
P

Figure 3.4: Production regimes for the reaction π− p→ π−π+π− p. The left diagram represents diffractive
reaction, where the proton stays intact. The reaction is the dominant process at COMPASS due to the high
energy of the beam,√s0 ≈ 19 GeV and the RPD-based COMPASS trigger. The middle and the right diagrams
show further specification of the dynamics: when the invariant mass of the 3π system is relatively small,√
s ≡ m3π < 3 GeV the production is dominated by resonances (middle plot), for high values of

√
s exchange

dynamics dominated by pion the exchange takes over (right plot).

pion beam and the target proton. Further insight into the exchange dynamics can be obtained in the
framework of Regge theory [39, 79]. The exchange particles are classified by Regge trajectories α(t)
(approximately linear relation between the angular momentum of the exchange particle, J = α, and
its mass squared t), and there is a simple asymptotic expression for the amplitude of the reaction
π− p→ π−π+π− p at high energies:

A(s0, t) ∝ sα(t)
0 , (3.1)

where one assumes the dominance of a single trajectory α(t). For the COMPASS setup, s0 ≈
360 GeV2, the Pomeron trajectory is supposed to dominate. The Pomeron is a special flavorless
gluonic object which was introduced to describe the elastic scattering at high energies, e.g. pp,
pp̄, pπ, πp̄ [26] as well as diffractive dissociation [80]. The trajectory has the highest intercept,
α(0) ≈ 1, hence the fastest rise of the forward (t → 0) scattering amplitude. The conventional
Reggeon-exchange trajectories are suppressed for processes with low transferred momentum squared,
t. The Pomeron dominance leads to the decomposition shown in the left plot of Fig. 3.4, where the 3π
production dynamics is reduced to the πP→ 3π interaction blob. For the latter, analogously, there
are two distinguishable production mechanisms: low energies

√
s ≡ m3π < 3 GeV governed by the

short-range interaction in the system π P (hadronic resonances as in the middle plot of Fig. 3.4), and
at high energies

√
s > 3 GeV ruled by the long-range exchange forces as shown in the right plot of

Fig. 3.4.
The spectrum of the low-energy region is very rich. The 3π invariant mass distribution shown in

Fig. 3.5 (right) exhibits many peaks, which correspond to different resonance excitations. Resonances
are also present in the π+π− subchannels, as can be seen in Fig 3.5 (left). These are later referred to as
ξ. While looking at the raw spectrum, one can already identify a few well-known mesons ρ(770) and
f2(1270). Less evidently, f0(980) enhances the right tail of the ρ(770). The kinematics of the system
of three particles is completely determined by 5 variables which are chosen to be the π+π− invariant
mass squared, σ, and two pairs of spherical angles as shown in Fig. 3.6. The vectors pb, pt define the
production plane in the 3π rest frame. The orientation of the frame is fixed by the Gottfried-Jackson
(GJ)-convention [81]: The beam vector defines the zGJ-axis, the yGJ-axis is oriented along the normal
to the production plane ( ~yGJ = ~pt × ~pb). The pion momenta are pk, where k ∈ {1, 2, 3}, the pions are
labeled as π−1 π

+
2 π
−
3 as shown in Fig. 3.3. We adopt the spectator notation (also called “odd-man-out”

notation in Ref. [82]), where the pion pair associated with the spectator πk is labeled by the index k.
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Figure 3.5: A representation of the correlation between the π+π− invariant mass and the 3π invariant mass for
the final event sample after all selection cuts (the sample was selected by F. Haas, see Ref. [77]). For the left
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π
+
π
− spectrum is presented in slices ofm3π invariant mass. The centers of some slices are shown
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π
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− are used to present them3π invariant

mass spectrum. The central value of them
π
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Figure 3.6: Definition of angles in the GJ and the (23)-helicity frames

Thus, σk = (pi + pj)
2 is the (ij)-subchannel invariant mass squared where the indices (ijk) stand for

the even permutations of (123), i.e. (ijk) ∈ {(123), (231), (312)}. It allows us to define the set of
kinematic variables τk unambiguously for any chosen spectator index k ∈ {1, 2, 3}.

τk = (σk,Ωk,Ωij), (3.2)

the angles Ωk = (θk, φk) are the polar and the azimuthal angles of the pion pair momentum, i.e.
~pi + ~pj , in the 3π Center-of-Momentum (CM)-frame; the Ωij = (θij , φij) are the spherical angles
of the pion i in the helicity frame of the pion pair (ij). It is important to realize that the sets of
variables τ1, τ2, and τ3 are completely equivalent and can be transformed to each other as shown
in Appendix C.3. Nevertheless, a formulation of the amplitude dominated by interaction in π−1 π

+
2

(π+
2 π
−
3 ) subchannel is extremely convenient in terms of τ3 (τ1).

4 For illustration, the observed
distributions of the angular variables Ω1, Ω23 for events with 3π invariant mass near a1(1260) are
shown in Fig. 3.7. The intensity, indicated by the color of the plots is proportional to the square of the
amplitude integrated over the remaining kinematic variables. The dominant decay chain in the mass
range 1.26 < m3π < 1.28 GeV selected for Fig. 3.7 is ρπ S-wave, where the ρ decays to two pions
in a P -wave. However, it is difficult to recognize a simple angular dependence due to the identity
of the two negatively charged pions. Indeed, the π+

2 π
−
1 -distribution, dominated by a ρ-meson being

projected to the cos θ23-axis produces an intensity enhancement around 0 along this variable on the
right panel of Fig. 3.7.

There are no evident resonance peaks form3π > 2 GeV (see right panel of Fig. 3.5), the high-energy
region exhibits new phenomena induced by the long-range exchange shown on the right plot of Fig 3.4.
As the π+π− spectrum is still dominated by the resonances (see Fig. 3.9), one of these can be selected
for the investigation of the scattering angle distribution in quasi-two-body kinematics πP → ξπ.
Fig. 3.8 shows the distribution of the scattering angle cos θk, for the production of ρπ (ξ = ρ selected
by a cut over the π+π− invariant mass |mρ −mπ

+
π
− | < 0.2 GeV) against the invariant mass of

the ξπ system. For high 3π masses, the events are concentrated in the forward region, cos θk ≈ 1

4 We notice that the set τ2 would useful to study the π−π− interaction with isospin I ≥ 2, however, this studies are not
practical in the system π

−
π

+
π
− since the π+

π
− interaction significantly dominates the process.
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Figure 3.7: Angular distribution of the 3π system selected in the range 1.26 < m3π < 1.28 GeV. The left plot
shows the distribution of Ω1 = (cos θ1, φ1), i.e. the direction of the subsystem π+π− in the GJ frame. The
right plot shows the distribution of Ω23 = (cos θ23, φ23), those are the angles of the π+ in the π+π− helicity
frame. Since the two negative pions are experimentally indistinguishable, the distributions of the τ1 variables
cannot be viewed separately from τ3 variables, thus, there are two entries per event in each histogram.

(π+π−-system goes forward in GJ-frame and has high momentum in the laboratory frame in contrast
to the bachelor pion which goes backward in the GJ-frame and is therefore rather slow in the laboratory
frame), and in the backward region with cos θk ≈ −1 (fast π− and slow (π+π−)).

The forward scattering has a rather clear explanation. The pion exchange production shown on the
right plot of Fig 3.4 has a high cross section due to the small mass of the pion and contributes exactly
to the forward region [40, 83]. The squared transferred momentum between the beam pion and the
π+π−-system, tk = (pb − pi − pj)2, can be expressed as a function of the scattering angle as

tk = σk +m2
π −

(s+ σk −m2
π)(s+m2

π − t)
2s

+
λ1/2(s, σk,m

2
π)λ1/2(s,m2

π, t)

2s
cos θk

≈ −s
2

(1− cos θk), s� m2, σk, t (3.3)

where λ(x, y, z) is the Källén function. The pion exchange produces a pole in the scattering amplitude
by the exchange propagator 1/(m2

π − tk). While tk is smaller than zero, it is very close to the pole,
tk = m2

π in the forward region. A quantitative analysis of the pion exchange process is performed
in Sec. 5. The backward region is more complicated as it has two structures as shown in Fig. 3.8 (a
dip between the broader peak and the narrow spike is made by the selection cut on the Feynman-x
variable) and does not have a straightforward interpretation. The possible explanation of the backward
events are ρ-exchange processes as well as the central production of the π+π− system, i.e. a double
diffractive process [84]. In addition, the backward region contains a background from the forward
region scattering due to π− symmetrization, although, its fraction is reduced by the cut on the invariant
mass of the pion pair (see caption of Fig. 3.8). It can be understood as follows: for events with forward
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Figure 3.8: A distribution of the events in the variables cos θk, k = 1, 3 (denoted on the plot as cos θGJ) and√
s ≡ m3π . There are two entries per event due to the indistinguishable negative pions. The ρ-meson is isolated

by cutting on the π+π−-invariant mass, |mρ −
√
σk| < 0.2 GeV, where k = 1, 3. The upper panel shows the

projection of the distribution to the s-variable. The events above 5 GeV (see dashed line) are projected to the
cos θk-variable and are shown in the right panel.

ρ(→ π+
2 π
−
3 ), the vector of the pion pair (π−1 π

+
2 ) might happen to point backward, however, the

invariant mass squared σ3 is high in this case, therefore, background is significantly diminished by the
restriction of√σ3 to be in the region of the ρ-meson resonance mass. Fig. 3.9 shows the invariant mass
of the π+π− system in three regions of the scattering angles with a band indicating the cut. All plots
demonstrate a significant resonance content which confirms that there are forward-backward physical
scattering processes. The exchange processes dominate at high energies, moreover, their contribution
to the resonance region is significant. The resonance signals are always “sitting” on the coherent
irremovable background. Precise studies of the resonances properties require a deep understanding of
the exchange dynamics. Therefore, Sec. 5 returns to the subject for a detailed discussion of the pion
exchange process shown on the right plot of Fig. 3.4.

3.3 COMPASS Partial Wave Analysis

The Angular analysis, Dalitz plot analysis and the Partial Wave Analysis (PWA) are the main tools in
spectroscopy studies. They exploit the same technique of decomposing the reaction amplitude to a set
of partial waves based on angular distributions and differ by number of the explored dimensions (a
separation is not strict). The partial-wave decomposition helps to identify hadronic resonances and
to establish their quantum numbers. These techniques are used by nearly all hadron-spectroscopy
experiments (see a few examples from BaBar [85, 86], LHCb [87, 88], CLEO [89]).

The development of the partial-wave analysis technique for the three-pion final state goes back to the
70s to the Brookhaven National Laboratory, bubble chamber experiments and the works of the Illinois
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Figure 3.9: Double entered histograms of the π+π− invariant mass in the high-energy rangem3π > 5 GeV for
the different changes of the scattering angles cos θk. The green area indicates the cut applied to select ρ-meson,
|mρ−

√
σk| < 0.2 GeV. Left plot: events in the forward region cos θ > 0.5, one finds the resonances ρ, f2 and

ρ3, the pile above 2.5 GeV is a reflection of the cross channel backward events. Middle plot: events which lead
to the broad backward structure in Fig. 3.8, −0.92 < cos θ < −0.6. Right plot: events in the narrow backward
region cos θ < −0.97. The ρ-meson contribution is small and the f2 peak is well pronounced. The additional
narrow structure at 0.9 GeV cannot be assigned to known resonances. It requires a dedicated investigation.

group [90, 91]. Both the formalism and the model are quite complicated at first glance, there are many
details and aspects to it which we will see in Sec. 3.3.1. However, the main idea is straightforward and
can be demonstrated in a rather compact way (see an example of the implementation in Ref. [92]).
The three-pion state is characterized by a set of quantum numbers w = (JPM . . . ), which includes
the total spin and parity of the state JP , the spin projectionM , and the relative angular momenta
between the pions. Since the 3π resonances appear in states with well defined JPC , the matrix element
for the reaction π− p → π−π+π− p contains a coherent composition of the three-pion states with
these quantum numbers projected into kinematic variables. The essence of the PWA technique is an
estimation of the relative contribution of the individual states by a fit to the data. We make a model for
the matrix element in a way that,

A(t, s, τ) =
∑

w

Fw(t, s)Ψw(τ), (3.4)

where Ψw(τ) is a known function of the kinematic variables τ , which are naively the matrix elements
of the cascade reaction shown in Fig. 3.10, Fw(t, s) are the weights 5 to be estimated for every value
of t and s (the data is binned in s and t). We notice that this expansion (3.4) maps the continuous
angular variables τ to the discrete indices w, similarly to the Fourier transformation or an expansion
in the Legendre series. The square of the amplitudes Fw(t, s) determines the fraction of the pion
states with quantum numbers w in the observed events. In order to find Fw(t, s), the amplitude is
squared and fitted to the data using the event-based Likelihood method. The resonances properties
are then extracted by detailed analysis of the intensities Iw ∼ |Fw(t, s)|2 and relative phase motions
e∆φwq ∼ F ∗w(t, s)Fq(t, s) as discussed in Sec. 3.3.3.

5 Strictly speaking these coefficients are allowed to be complex. The complex phases are very significant bits of extracted
information as discussed later in the text.
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L

Figure 3.10: A notation of the JPCM ε ξπ L quantum numbers for the cascade decayX → 3π. The subchannel
π+π− is set in the intermediate state denoted by ξ with spin S. The orbital angular momentum between the
Isobar ξ and the bachelor pion is L.

3.3.1 Partial-wave analysis technique of π−
p→ π

−
π

+
π

−
p

The amplitude Aλ′λ(t′, s, τ1) characterizes the transition from π− p to π−π+π− p. In principle, it
depends on s0, however, this variable is fixed by the beam momentum to s0 ≈ (19 GeV)2, it will be
omitted in the further discussions. Aλ′λ(t′, s, τ1) is given by the matrix element:

〈
3π, p, λ′

∣∣T |π, p, λ〉 = Aλ′λ(t′, s, τ1) (2π)4δ4(pb + pt − p1 − p2 − p3 − pr), (3.5)

where T is the strong interaction operator, λ (λ′) is the helicity of the target (recoil) proton. The
helicities are not measured but rather averaged (summed) incoherently.

In the isospin limit the pions are identical particles. The most general decomposition of the |3π〉 state
is provided in Appendix C.1. It is very helpful to compare various charge configurations. However,
for the π−π+π− system, the interaction dynamics is only significant in the π+π− subsystem, hence,
the amplitude is only symmetric with respect to permutations of the π−-momentum. The General
Isobar Model explicitly incorporates the π−1 π

−
3 Bose-symmetry.

Aλ′λ(s, τ) = A
(3)

λ
′
λ
(s, τ3) +A

(1)

λ
′
λ
(s, τ1). (3.6)

The amplitude A(k)

λ
′
λ
, i.e. the isobar amplitude, includes only the subchannel interaction in the πiπj

leaving the pion indexed k as a bachelor pion. In Eq. (3.6), we did not add the term for the (31)-system
because the interaction in the π−π− subchannel is known to be weak. The kinematic variables τ , in
the argument of the full amplitude refers to any τi, i ∈ {1, 2, 3} as those are equivalent, while there
are certain advantages of using the variables τk for A

(k)

λ
′
λ
.

Partial-wave expansion

The A(k)

λ
′
λ
are projected to the partial waves in the canonical basis as described in Appendix C.1 (see

also Ref. [47, 79]),

A
(k)

λ
′
λ

=
∑

JMLS,I

1 + (−1)S+I

2
C

(k)
I ZJMLS (Ωk,Ωij) (Aλ′λ)JMLS (t, s, σk), (3.7)

where J andM are the total spin of the state and the spin projection, respectively, S is the orbital
angular momentum in the two-pion subsystem (also is equal to spin of isobar), and L is the orbital
angular momentum in the isobar-bachelor system. C(k)

I is the isospin factor for the coupling of two
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3.3 COMPASS Partial Wave Analysis

pions to the Isobar isospin state, and the Isobar and the bachelor to the state |1,−1〉:

C
(k)
I =

〈
1, µi; 1µj |I, 0〉 〈I, 0; 1,−1 |1,−1〉 , (3.8)

where µi and µj are the isospin projections of the pions πi and πj , respectively. The Isobar is
always neutral, so its isospin state is |I, 0〉. The total π−π+π− state is assumed to be of isospin 1,
since states with higher values have not been observed and can thus be safely neglected. The isobar
projected amplitude AJMLS (s, σk) does not contain the isospin index I for simplicity. Due to the factor
1 + (−1)S+I , the odd waves contain only isovector interactions, while the even waves contain the
isoscalar isobars. The function ZJMLS is the angular decay function for the decay chain shown in
Fig. 3.10

ZJMLS (Ωk,Ωij) =
√

(2L+ 1)(2S + 1)
∑

λ

〈L, 0;S, λ |J, λ〉DJ∗
Mλ(Ωk)D

S∗
λ0 (Ωij), (3.9)

The Clebsch-Gordan coefficient in Eq. (3.9) reflects the recoupling of the system from the helicity
basis to the canonical basis. The Wigner functions, DJ

m1m2
of two angles Ω = (θ, φ) are defined by

DJ
m1m2

(Ω) = DJ
m1m2

(φ, θ, 0) (see more details in Appendix C.2).

Parity constraints

Before proceeding to the final expression, we explore the parity conservation of the three-pion state
|3π〉 expanded in the canonical basis |JMLS〉 (see Appendix C.1). We perform a linear transformation
of the three-pion state vectors |JMLS〉 introducing the reflectivity index ε,

∣∣∣JPMε, . . .
〉

= θ(M)
[∣∣∣JPM, . . .

〉
− εP (−1)J−M

∣∣∣JP −M, . . .
〉]
, (3.10)

where ε is either (+1) or (−1), the dots stand for other quantum numbers of the state, θ(M) is zero
for negative M , while it is equal to 1/2 for M = 0 and 1/

√
2 for positive M . The basis has two

advantages: Firstly, in the high-energy limit, the reflectivity in the GJ-frame is related to the naturality
of the exchange [93, 94]. Secondly, different reflectivities are forbidden to interfere by the parity of
the production reaction [95]. The reflectivity representation of the Wigner D-functions is given by

εDJ
Mλ(Ω) = θ(M)

[
DJ
Mλ(Ω)− εP (−1)J−MDJ

−Mλ(Ω)
]
. (3.11)

The decay function ZJMε
LS (Ωk,Ωij) is introduced analogously to Eq. (3.9) with the replacement

DJ
Mλ(Ω)→ εDJ

Mλ(Ω). The parity reflection in the new basis relates different helicities (see equation
3.10 of Ref. [96]),

(Aε
λ
′
λ
)JMLS = Pε (−1)1+λ

′
+λ(Aε−λ′−λ)JMLS , (3.12)

however, it does not change the other quantum numbers. There are only two independent configurations
(λ′λ) = (++) or (+−), where ± stands for the spin projection ±1/2. The amplitudes for the
configurations are referred to as the helicity flip and the helicity non-flip amplitudes.
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Isobar dynamics

The COMPASS model of the Isobar decay dynamics assumes factorization in the variables s and σ,

(Aλ′λ)JMε
LS (s, σ) = (Aλ′λ)JMε

LS (s)fS(σ)hL(s, σ), (3.13)

where we introduce the amputated amplitude (Aλ′λ)JMε
LS (s), and the Isobar decay function fS(σ),

which is customarily parametrized by Breit-Wigner propagators; hL(s, σ) is a function which combines
the threshold factor for the ξπ L-wave state and the barrier (centrifugal) factor which regularizes the
high-energy behavior. In the COMPASS analysis, we use the Blatt-Weisskopf factors for hL [97, 98]
which are discussed in Appendix E.3.

The final expression for the amplitude expansion is found by combining Eq. (3.6) and Eq. (3.7).

Aλ′λ =
∑

ε

∑

JMLS

(Aε
λ
′
λ
)JMLS (t, s)ΨJMε

LS (s, τ). (3.14)

where the basis functions ΨJMε
LS reads,

ΨJMε
LS (s, τ) = C

(1)
I ZJMε

LS (Ω1,Ω23)hL(s, σ1)fS(σ1)

+ C
(3)
I ZJMε

LS (Ω3,Ω12)hL(s, σ3)fS(σ3).

We can explicitly demonstrate that this basis function respects the permutation symmetry of the
negatively charged pions. From the symmetry of the Clebsch-Gordan coefficients in Eq. (3.8), we derive
a relation between the isospin coefficients: C(3)

I = (−1)IC
(1)
I . Using the properties of the Wigner

D-functions discussed in Appendix C.2, we can show that ZJMLS (Ω3,Ω12) = (−1)SZJMLS (Ω3,Ω21).
Since only waves with even sum (S + I) are allowed in Eq. (3.7), the phase factors from the isospin
coefficient and the angular dependence cancel each other.

The COMPASS analysis [78] uses Ψ, written in the form,

ΨJMε
LS (s, τ) = ZJMε

LS (Ω1,Ω32)hL(s, σ1)fS(σ1) + ZJMε
LS (Ω3,Ω12)hL(s, σ3)fS(σ3), (3.15)

where the numerical factor C(1)
I is dropped, the positive pion is used to determine the spherical angles

for the decay of the isobar in both chains, k = 1, 3. We note, however, that this convention leads
to a shift in the relative phases of the waves with different spin of isobars due to the sign of C(1)

I ,
signC(1)

I = (−1)I .

Partial-waves intensities

The expression for the squared amplitude averaged over the spin projection of the target proton reads

1

2

∑

λ
′
λ

|Aλ′λ|
2 =

1

2

∑

λ
′
λ

∑

ε

∣∣∣∣∣
∑

JMLS

(Aε
λ
′
λ
)JMLS ΨJMε

LS

∣∣∣∣∣

2

≡
∑

b

∣∣∣∣∣
∑

w

AbwΨw

∣∣∣∣∣

2

, (3.16)

where for brevity of notation we introduce a short wave lower index w = (JMεLS), and the upper
index b for the non-interfering blocks of the waves, i.e. independent helicity configurations (due to the
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factor 1/2) and the two reflectivities, ε = ±1.
Investigating the three-pion spectrum for a fixed value of the squared transferred momentum we

define the intensity distribution as the most convenient representation. The intensity is defined as the
differential cross-section normalized by the number of observed events,

I(t, s) ≡ d2N

dt ds
= cN

∫
dΦ3

∑

b

∣∣∣∣∣
∑

w

AbwΨw

∣∣∣∣∣

2

, (3.17)

Im3π
(t,
√
s) ≡ d2N

dt d
√
s

= 2
√
s cN

∫
dΦ3

∑

b

∣∣∣∣∣
∑

w

AbwΨw

∣∣∣∣∣

2

, (3.18)

dΦ3 is the differential three-body phase space, cN accounts for luminosity and kinematic s0-dependence
(cf. Appendix B); it does not depend on s and t. The intensity in the variable

√
s ≡ m3π is more

presentative, but it has an additional Jacobian factor 2
√
s with respect to the simple Eq. (3.17) for the

differential intensity I(t, s).

Binning

When we consider a narrow bin in s× t, the total number of events can be calculated by integrating
Eq. (3.17), and is denoted as the number of produced events, I(bin)

prd , i.e. events which would have
happened for a given cross section and integrated luminosity. Clearly, it is different to the number of
events expected to be registered, I(bin)

exp , due to acceptance effects and efficiencies of the experimental
setup denoted by the function η(t, s, τ).

I
(bin)
prd = c∆s∆t

∑

wq

A∗w(t̄, s̄)Aq(t̄, s̄)
∫

Ψ∗w(τ)Ψq(τ) dΦ3, (3.19a)

I(bin)
exp = c∆s∆t

∑

wq

A∗w(t̄, s̄)Aq(t̄, s̄)
∫

Ψ∗w(τ)Ψq(τ)η(t, s, τ) dΦ3, (3.19b)

where the amplitude squared integrated over the s × t bin is written as the averaged value
A∗w(t̄, s̄)Aq(t̄, s̄) multiplied by the bin size ∆s∆t. The bins in m3π are narrow, therefore one
can assume that s̄ corresponds to the center of the bin. For t̄, however, one has to indeed average due
to the rapid behavior of the amplitude. The acceptance function η(t, s, τ) gives a number between 0
and 1 as the probability to observe an event described by variables t, s, and τ . Practically the integrals
are calculated using the Monte-Carlo (MC) method. In the narrow s × t bin, the product of basis
functions is averaged over a wider set of observables including the vertex position, the beam energy
and direction as well as the remaining s and t dependence inside of the bin. We introduce the matrices
Bwq and B

(η)
wq as the matrices of integrals over the basis functions,

Bwq =

∫
Ψ∗w(τ)Ψq(τ) dΦ3 ≈

Φ3(s)

NMC

NMC∑

e=1

Ψ∗w(τe)Ψq(τe), (3.20a)

B(η)
wq =

∫
Ψ∗w(τ)Ψq(τ)η(t, s, τ) dΦ3 ≈

Φ3(s)

NMC

NMC acc∑

e=1

Ψ∗w(τe)Ψq(τe), (3.20b)
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Chapter 3 Studies of the three-pion system at COMPASS

where the sum in the second line includes only MC events which passed the reconstruction and the data
selection chain. B(η)

wq gives the averaged value of the COMPASS acceptance for the π− p→ π−π+π− p
reaction with pions in a specific angular combination, it is of the order of 0.5 for most of the waves.

Likelihood fit

After the data have been binned in t × s, the angular analysis (PWA) is performed on the selected
sample of events independently bin-by-bin. The expected number of events in the bin according to the
model is denoted µ. The normalization c∆s∆t can be absorbed into the amplitude Aw(t, s),

aw(t̄, s̄) = Aw(t̄, s̄)/
√
c∆s∆t, ⇒ I(bin)

exp =
∑

wq

a∗wB
(η)
wq aq, (3.21)

such that the expression for I(bin)
prd is a simple bilinear form of amplitude values aw, which make a

vector of parameters for a given bin. For a data set of N events we define the likelihood function
which estimates our model specified by a vector of parameters aw.

L0 =

N∏

e=1

P(τe), P(τe) =
∑

wq

a∗wΨ∗w(τe) aqΨq(τe) η(τe)∑
wq a

∗
w B

(η)
wq aq

, (3.22)

where τe is the set of kinematic variables specified in Eq. (3.2) for the eth event in the set. By
maximizing the function L0 we can obtain an estimate for the parameters aw. However, the estimator
L0 has a little disadvantage: a normalization of parameters aw is set. Indeed, the likelihood function
in Eq. (3.22) is invariant under simultaneous scaling of all parameters, aw → αaw. Hence, after the
parameters are estimated by maximizing L0 one has to adjust the scale α to enforce I(bin)

exp → N. The
Extended Likelihood estimator is defined by adding the Poisson distribution function which achieves
the maximum only when the constraint I(bin)

exp = N is satisfied [99].

L =
e−µµN

N!

N∏

e=1

P(τe), (3.23)

where we use the Poisson mean value µ = I(bin)
exp for brevity. The Poisson factor is justified as a

probability to observe exactly N events with the mean µ in the model. Practically, we minimize the
Negative Log-likelihood Function, which reads,

− logL = −
N∑

e=1

log

∣∣∣∣∣
∑

w

awΨw(τe)

∣∣∣∣∣

2

+
∑

wq

a∗wB
(η)
wq aq + const. (3.24)

The terms which do not have a dependence on aw are pulled to the irrelevant constant as they play no
role in finding the minimum. The minimum is found by running the gradient minimization provided
by external packages as Minuit [100] or NLopt [101]. The estimated parameters are used to calculate
the number of events which can be attributed to the individual wave, the wave intensity, using the
integral matrix, as a∗wBwwaw. The Spin Density Matrix (SDM) is defined by the outer product of
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3.3 COMPASS Partial Wave Analysis

parameter vectors normalized by the integrals Bwq,

(SDM)wq = a∗waq
√
BwwBqq. (3.25)

The diagonal elements of the SDM are the wave intensities, and the off-diagonal elements are referred
to as the interference terms. The matrix defined in Eq. (3.25) is degenerate. It becomes clear if we
notice that all column (also rows) of this matrix are proportional to the vector aq

√
Bqq. Rank of

such matrix is 1 since the space of the column vectors can be spanned by a single basis vector. A
simple example of rank-2 matrix is v∗wvq + v′∗wv

′
q: the basis of the column vectors is spanned now by

two vectors, vq and v
′
q. For the complete SDM defined with respect to Eq. (3.16), the total rank is

given by the number of terms in the sum over the index b. Since the different reflectivities, ε = (±1)
form orthogonal spaces of parameter vectors, it is reasonable to speak about the rank of the positive
reflectivity sector and the negative reflectivity sector separately. The maximal value of the rank
motivated by the sum over proton helicity configurations in Eq. (3.16) is 2. However, there is no
reason for a difference between the helicity flip and the helicity non-flip amplitudes for the fixed value
of t′ under assumption of the Pomeron exchange. Therefore, the rank-1 approach is expected to be a
good approximation.

Error estimation

Errors for the aw parameters are estimated using the Hessian matrix, i.e. the matrix of second
derivatives in the minimum [99, 102, 103].

Cstat = H−1, Hwq = − d2 logL

dawdaq

∣∣∣∣∣
min

, (3.26)

where Cstat is the covariance matrix for the parameter vector a. The crude assumption of a
parabolic shape of the minimum made in the hessian approach is a known issue of the current PWA
procedure [104]. The propagation of the errors of aw to the SDM is done numerically by generating a
sample of variables aMC

w with the mean aw|min and the covariance Cstat using a multidimensional
Gaussian (see Cholesky decomposition [99]). The mean and the root mean square of the obtained
distributions for the SDM elements are used as main uncertainties of the PWA results.

3.3.2 The main COMPASS model and results

The main model includes 88waves.

aw = (a1, a2, . . . a81, a82, . . . , a88, a′82, . . . , a
′
88)

Ψw = ( Ψ1︸︷︷︸
FLAT

, Ψ2, . . .Ψ81︸ ︷︷ ︸
ε=(+1)

, Ψ82, . . . ,Ψ88︸ ︷︷ ︸
ε=(−1)

, Ψ82, . . . ,Ψ88︸ ︷︷ ︸
ε=(−1)

),

where aw and a′w are complex numbers which are fixed by a fit to data. The block of positive
reflectivities is the main physical component of the model. The basis function for the FLAT wave
is constant ΨFLAT = 1, it represents an incoherent background distributed according to the phase
space in all kinematic variables τ . In addition, the model includes 7 waves with negative reflectivity
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Figure 3.11: The parametrization of the ππ isobars used in COMPASS analysis. Plots in the top row show
the absolute value of the amplitude fS(σ), plots on the bottom present the phases. The amplitudes for the
non-scalar waves, S > 0, are shown in the left column. Components of the [ππ]S parametrization are shown on
the right. The intensities are normalized by a total integral as shown in Eq. (D.3).

which are incorporated with the rank-2, i.e. the basis functions are repeated twice with different sets
of parameters. Practically, those three blocks (FLAT and ε = (−1)) serve to account parasitic effects
such as a lack of acceptance description, resolution effects, and a background e.g. from the central
production. They make the fit more stable, and the intensity which goes to those blocks does not
exceed 10 %. The waves between different blocks are forbidden to interfere. The parameters ai are
complex in general. The overall phase freedom at every non-interfering block is removed by fixing the
phase of one wave to zero. The total number of the free parameters is 186 for every t× s bin. 6

The waves are labeled by the set JPCM ε ξπ L, where ξ shows the resonance in the π+π−

subchannel. A list of all waves is given in the Appendix D. J varies between 0 and 6, for both
parities P (except JPC = 0+ and 5−). The change states are not eigenstates of C parity, however,
C = (+) can be inferred from the G-parity and the total isospin 1; it corresponds to the proper
C-parity eigenvalue of the neutral component in the isospin triplet. The projectionM is less than 2.
The analysis include six π+π− isobars, which are shown in Fig. 3.11, the expressions are given in
Appendix D. The ρ(770) parametrizes the [ππ]P -wave, the [ππ]D-wave contains the f2(1270), the
ρ3(1670) Breit-Wigner-amplitude is a model for the [ππ]F -wave. The S-wave interaction is split
into 3 resonances which are incorporated independently: the f0(500) is parametrized by I. Kachaev’s
modification of the Au-Morgan-Pennington solution [105, 106], while the f0(980) is parametrized by
the Flatté formula [107] and f0(1500) is given by the Breit-Wigner amplitude. The basis does not
include f0(1370) and ρ(1700) as these resonances are not significantly seen in the COMPASS data.
The big data sample of 50× 106 events is divided in 11 slices in t′ such that each slice contains

6 Strictly speaking, for bins with lowm3π the number of free parameters is less since some coefficients are enforced to be
zero. The parameters aw, a

′
w are related above the individual thresholds indicated in Table D.1.
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Figure 3.12: The results of the PWA in a single bin (the first t′ bin, and 1.54 <
√
s < 1.56 GeV) in the

polar representation. The plotted quantities are (SDM)w0,i
/(SDM)1/2w0,w0

where w0 is the reference wave
1++0+ ρπ S fpr i = 1, . . . , 88. The square root of intensities determines the distance from zero, the angle is
given by the relative phase. The phase of the reference wave 1++0+ ρπ S is 0; this error ellipse is degenerate
and not visible at the plot. The ellipses represent 1σ contours of the statistical uncertainty.

roughly the same number of events, and in 100 equidistant
√
s ≡ m3π bins with a width of 20 MeV.

The results of a single PWA (i.e. in a single t× s bin) are intensities and relative phases of the waves
as shown in Fig. 3.12.
Repeating the fit bin-by-bin, the PWA is performed on all 11× 100 bins independently. Fig. 3.13

shows the expansion of the total intensity into intensities of the individual waves. Using the PWA
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Figure 3.13: Results of the mass-independent PWA (the data are from Ref. [78]). The plots show intensity in
20MeV bins of the main JPC sectors as functions of the 3π invariant mass for two different t′ slices indicated
in the panels.

technique we disentangle the contributions of different waves making further resonance analysis
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possible. The largest contribution comes from the waves with JPC = 1++ where the ρπ S-wave
dominants. The broad resonance-like structure is known as the a1(1260). The blue filled area is
the intensity of the JPC = 2−+ where a detailed analysis allows us to observe three π2 resonances
(see Appendix A.2). The 2++ sector shown by the yellow distribution presents a clean and narrow
a2(1320) resonance. The 0−+ structure shown in green is likely a composition of a broad non-resonant
scattering atm3π ≈ 1.3 GeV which dies out at high t′ (in the analysis [3] the state π(1300) has not
been found), and the hadronic state π(1800) which is seen as the second bump in the intensity. The
4++ clearly shows the highly excited axial fourth-order tensor state a4(2040). The wave with exotic
quantum numbers 1−+ obtains a significant intensity. The resonance signal was confirmed in the
recent analysis [3, 108, 109].

3.3.3 Extraction of the resonance parameters

To interpret the s and t′-dependence of the partial waves, a dynamical model is introduced and fitted
to the data [3]. From the pool of 88 waves used in the mass-independent analysis, a subset of 14
major waves are selected, amounting to ∼ 57% of the total intensity (see Table II of Ref. [3]). The
simultaneous fit of all 88 waves was not possible due to poor understanding of physics in high partial
waves which do not manifest a resonance pattern. In addition the fit has technical limitations because
the number of free parameters rapidly grows and this makes the fit unstable and computationally
expensive. For the selected subset of the data all t′-slices were fitted simultaneously; the resonance
parameters were assumed to be independent of the production mechanism. The model includes 11
resonances in 6 orthogonal JPC sectors which are required for a good description of the data

0−+ : π(1800),

1−+ : π1(1600),

1++ : a1(1260), a1(1420), a1(1640),

2−+ : π2(1670), π2(1880), π2(2005),

2++ : a2(1320), a1(1700),

4++ : a4(2040),

where the well-known resonances are written in black, the less known states (which are still in the
PDG [26]) are shown in gray. The resonance-like signal a1(1420) is shown in red and discussed in
detail in Chapter 4 of this thesis.

A model for the partial-wave-Isobar amplitude is written as a sum of the resonance component and
the coherent background.

A(s) =
∑

i

CiD
R
i (s) + CNRD

NR(s), (3.27)

where Ci, CNR are complex constants, which are free parameters of the fit, DR
i (s) parametrizes the

resonance term, and DNR(s) is an amplitude for the non-resonant term. A simple Breit-Wigner
amplitude with a constant width is used for all resonances, except a few exceptions discussed below.

DR(s) =
1

m2 − s− imΓ
, (3.28)
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3.3 COMPASS Partial Wave Analysis

where the massm and the width Γ are left free in the fit. The non-resonant term reads

DNR(s) =

(√
s−mthr
mthr

)b
e−(c0+c1t

′
+c2t

′2
) q̃

2
w(s) (3.29)

where mthr is empirically fixed to 0.5 GeV, the parameters b, c0, c1, c2 are free parameters of
the fit7, q̃w is a quantity inspired by the break-up momentum between the isobar and the bachelor
which is smooth and non-zero below the nominal isobar-bachelor threshold. The expression for q̃w,
q̃w(s) = 4π

√
sBww(s) is simply found by equating the effective phase space Bww, that is calculated

numerically as the diagonal element of the integral matrix in Eq. (3.20a), to the expression for the
two-body phase space.

Bww(s) =
1

8π

2q̃w(s)√
s

The analysis attempts to describe the spectrum in partial waves in a mass range as large as possible
having minimal number of resonances. Hence, the mass range for every partial wave is adjusted
individually, however it is kept the same for different t′-slices. The low limit is set around 1 GeV
depending on the two-body threshold for the nominal masses,mπ +mξ. The high range is pushed
to high values of the 3π invariant mass as far as possible until the non-resonant background starts
dominating or the fit curve departs significantly from the data due to higher resonances which are not
included in the model. The detailed discussion about the fit threshold is given in the original Ref. [78].
The fit is performed by minimizing the deviations of the model from the values of the SDM. For all
waves in the selected subset, the intensities, real and imaginary parts of all possible interference terms
are used in construction of the penalty function χ2-inspired representing the deviation of the model
from the SDM-data.
We present here a selected part of the fit results that is closely related to the further discussion in

this thesis. The resonance a1(1260) dominates the JPCM ε = 1++0+ ρπ S-wave. The JPCM ε =
2++1+ ρπD-wave contains the narrow a2(1320) resonance as shown in Fig. 3.14. The relative
phase between the D-wave and the S-wave goes down at first, below 1.25 GeV, due to the a1

resonance. The a2 resonance is responsible for the fast positive phase motion around 1.3 GeV. The
a1 state is parametrized by a Breit-Wigner amplitude with energy-dependent width, as suggested by
M.G. Bowler [110].

Da1
(s) =

1

m2
a1
− s− imΓ(s)

, Γ(s) = Γa1

ma1
ρa(s)√

sρa(m
2
a1

)
, (3.30)

where the mass ma1
and the width Γa1

are free parameters in the fit, ρa = Bw0w0
for w0 being

the 1++0+ ρπ S-wave. The a2 energy-dependent width takes into account the two dominant decay
channels: ρπ and ηπ D-waves.

Γ(s) = Γa2

ma2√
s

[
(1− x)

qρπ(
√
s)

qρπ(ma2
)

h2
2(qρπ(

√
s)R)

h2
2(qρπ(ma2

)R)
+ x

qηπ(
√
s)

qηπ(ma2
)

h2
2(qηπ(

√
s)R)

h2
2(qηπ(ma2

)R2)

]
, (3.31)

7 for most of the waves b = c1 = c2 = 0. The exceptions are waves with high intensity or/and strong non-resonant
component: JPCM ε

= 1
++

0
+
ρπ S-wave with a1(1260), JPCM ε

= 2
++

1
+
ρπD-wave with a2(1320), JPCM ε

=
2
−+

0
+
f2π S-wave with π2(1670), JPCM ε

= 1
−+

1
+
ρπ P -wave with π1(1600)
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Figure 3.14: Selected results of the COMPASS mass-dependent fit from Ref. [3]: the intensity of
JPCM ε = 1++0+ ρπ S-wave, the relative phase between JPCM ε = 2++1+ ρπD-wave and JPCM ε =
1++0+ ρπ S-wave, and the intensity of JPCM ε = 2++1+ ρπD-wave are presented in the panels from left to
right, respectively. The red curve presents the complete model in Eq. (3.27), the blue (green) line shows the
intensity of the resonance signal (background).

where x is the relative branching fraction of ηπ fixed to 20%. qξπ, ξ ∈ {η, ρ} is a break-up momenta,
qξπ(s) = λ1/2(s,m2

ξ ,m
2
π)/(2

√
s), where λ(x, y, z) is the Källén function,mξ is a nominal mass of

the state ξ. h2 are the Blatt-Weisskopf factors discussed in E.3.
All 11 t′ slices are fitted simultaneously. Since the resonance parameters are kept independent of t′,

changes in the intensity distribution and the phase are forced to be adjusted by the background term.
This strong constraint significantly reduces the uncertainties of the obtained resonance parameters.
However, the large systematic uncertainties due to the unconstrained intensity of the non-resonant
component remain.
The analysis [3] developed the most comprehensive resonance model for π−π+π− system. The

Breit-Wigner parameter of the a1(1420), a2(1320), a4(2040), π(1800), π2(1670) were reliably
extracted with relatively small uncertainties. The extracted Breit-Wigner parameters of the a2(1320)
resonance,

m
(a2)
BW = (1314.5+4

−3.3) MeV, Γ
(a2)
BW = (106.6+3.4

−7 ) MeV,

are consistent with previous measurements [26]. The parameters of the a1(1260),

m
(a1)
BW = (1299+12

−28) MeV, Γ
(a1)
BW = (380± 80) MeV,

have large systematic uncertainties due the crucial importance of the non-resonant background.

Pole positions of the resonances

One essential difficulty of hadron spectroscopy is that the line shape of the resonance depends on
the specific production mechanism and the observed final state.Various functional forms can be used
to parametrize the resonance phenomena, but being dependent on a specific set of parameters, they
cannot give a common knowledge about the resonance nature for various reactions. An alternative
approach to characterize a resonance structure discussed in Sec. 2.2, is to find out the position of the
resonance pole at the complex plane of the scattering energy (see also Ref. [39, 79]). The resonance
poles are expected to be located in the region below the real axis, which is smoothly attached to it.
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3.3 COMPASS Partial Wave Analysis

The position of the pole in the complex energy plane gives a natural characterization of the resonance
phenomenon. The mass and width of the hadronic state from the pole position is defined by Eq. (2.31).
An important property analytic functions is that, if two functions are exactly equal on an open set

(e.g. the real axis), they are equal everywhere in the domain of analyticity. It tells that as soon as
an exact analytic parametrization is given on the real axis, the function is known in the domain of
analyticity, together with the positions of its singularities. However, in practical applications this
is never the case, since the scattering amplitude is never known exactly. Nevertheless, the closer
the explored complex region to the real axis is, the smaller are the uncertainties caused by variation
of the function along the real axis. The amplitude in Eq. (3.27) is written as a sum of the resonant
terms and the non-resonant background. Therefore, the expression for the sum contains at most all
singularities of individual terms. The non-resonant term does not have any pole-like singularities:
since it is written as a product of a polynomial and an exponential, the equation 1/DNR(s) = 0 can
only have a solution at complex infinity. The Breit-Wigner amplitudes used for the resonance part
have pole singularities which are straightforward to find.

The majority of the resonances are parametrized by the Breit-Wigner formula with a constant width
shown in Eq. (3.28), which has a pole at sp = m2 − imΓ. Comparing this to Eq. (2.31) we find:

mp = Re

√
m2 − imΓ, Γp = −2 Im

√
m2 − imΓ, (3.32)

Systematic uncertainties dominate the errors, hence we only propagate them. The systematic error for
pole positions is found based on the image of the rectangular error box in them× Γ space as shown
in Fig. 3.15.

We see that the pole position listed in Table 3.1 does not coincide with the Breit-Wigner parameters,
however the difference is rather small and lies within the errors. A difference between the Breit-Wigner

Table 3.1: The pole positions of the resonances studied in Ref. [3]. The results for all resonances except a2(1320)
are found using Eq. (3.32). The pole position of the a2(1320) is obtained using a dedicated procedure of the
analytic continuation described in the text.

state m, GeV Γ, GeV mp, GeV Γp, GeV

π(1800) 1804+6
−9 220+8

−11 1807+6
−9 220+8

−11

π1(1600) 1600+110
−60 580+100

−230 1625+117
−75 571+96

−223

π2(1670) 1642+12
−1 311+12

−23 1649+13
−2 310+12

−23

π2(1880) 1847+20
−3 246+33

−28 1851+21
−4 245+33

−28

π2(2005) 1962+17
−29 371+16

−120 1971+18
−34 369+16

−119

a1(1420) 1411+4
−5 161+11

−14 1413+4
−5 161+11

−14

a1(1640) 1700+35
−130 510+170

−90 1719+48
−135 504+163

−88

a2(1700) 1681+22
−35 436+20

−16 1695+23
−36 432+20

−16

a4(2040) 1935+11
−13 333+16

−21 1942+12
−14 332+16

−21

a2(1320) 1315+4
−3 107+3

−7 1307+4
−3 105+3

−7

mass and the pole mass is the larger, the wider the resonance is, since m2 = m2
p − Γ2

p/4. The
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Figure 3.15: Parameters of the π1(1600): the Breit-Wigner mass and width found in the analysis [3] are shown
in the left panel, the corresponding pole parameters are shown on the right plot. The blue dots show the central
values (labeled by “3π” on the right panel). The black rectangle on the left panel presents the systematic
uncertainties (see Ref. [3]). The systematic uncertainty of the pole position presented on the right panel by the
orange rectangle are found by drawing a minimal rectangular area which includes an image of the error from the
left panel. The pole position of π1(1600) obtained in the recent analysis of η(′)π systems [12] is shown by the
gray dot with the gray rectangle representing the systematic uncertainty (labeled by “η(′)π”).

pole mass is always bigger than the Breit-Wigner mass; For the width, the following relation holds:
mΓ = mpΓp. Hence, the relative shift of the mass and width is approximately the same with the
opposite sign, ∆Γ/Γ ≈ −∆m/m, i.e. the Breit-Wigner pole width is usually smaller than the width
parameter.

The energy-dependent width of the a2 resonance is given by Eq. (3.31). The analytic continuation
is performed by calculating the amplitude with complex values for the energy. One does not need to
add a discontinuity as discussed in Sec. 2.2 since the Breit-Wigner amplitude with the width from
Eq. (3.31) does not have discontinuity on the real axis above the thresholds. 8 By minimizing the
expression |m2 − (x+ iy/2)2 − imΓ((x+ iy/2)2)|2 in the domain x ∈ [1, 2], y ∈ [−1, 0] we find a
single pole, which is identified with the a2 resonance. The result is shown in Table 3.1. Since the
a2(1320) is quite narrow, we observe again that the Breit-Wigner parameters are very close to the
pole position. Interestingly, the pole mass is slightly smaller than the Breit-Wigner mass in contrast to
the other parametrization.

We have performed a formal exercise: for given analytic parametrizations on the real axis, we found

8 To avoid a possible confusion, we would like to stress that the construction in Eq. (3.31) does have branch points at
both thresholds, s = (mξ +mπ)

2, ξ ∈ {η, ρ} which produce cuts. However, in the standard definition of the break-up

momentum, qξπ(s) =
√
λ(s,m

2
ξ,m

2
π)/(2

√
s), the cuts are directed to the left. To transform the complex structure of the

a2 propagator to the conventional representation (unitarity cut goes to the right from the threshold branch point), we could
modify the break-up momentum definition, qξπ(s) = i

√
−λ(s,m

2
ξ,m

2
π)/(2

√
s). It would introduce a discontinuity

and would hide poles on the second Riemann sheet. The analytic continuation in this case would require adding the
discontinuity to the amplitude as discussed in Sec. 2.2.
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Figure 3.16: The real and imaginary part of the scattering amplitude ππ → ππ (left) and KK̄ → ππ (right)
extracted in the analysis of Ref. [115]. For comparison the dashed line shows the commonly used parametrization
from Ref. [116] which is claimed to be valid up to 1.2GeV.

the poles in the complex plane. One might argue that the original model is not unitary, and is suited
for the description of the data along the real axis only. However, we put forward an argument of
uniqueness of the analytic continuation which is difficult to oppose. Indeed, the unitarity condition is
not incorporated into the model, manifestly; it can be shown that the sum of Breit-Wigner functions
violate unitarity requirement for the scattering amplitude (see Eq. (2.16)). But, the amplitude, we are
dealing with, is supposed to obey the production unitarity constraint (see Eq. (2.34)), which is not easy
to validate. In this respect, when resonances are studied far from relevant thresholds, there is nothing
immediately wrong in writing the production amplitude as a sum of several Breit-Wigner functions.
On the other side, the unitarity conditions (Eq. (2.16) and Eq. (2.34)) give a clear way to incorporate
new open-channel thresholds and constrain the relative strengths of the production amplitudes in
coupled-channel problems assuming that all significant channels are known. There is a hope that
using the unitarity constrains, one is able to reduce the systematic errors for the pole positions.

3.4 Remaining questions and further improvements

f0(500)/f0(980) separation

The partial-wave model with fixed shapes of the isobars has difficulties describing the ππ interaction
in the S-wave which is actually important for most JPC-sectors of the 3π data. A part of the problem
comes from the strong coupling between the ππ and KK̄ systems. The ππ scattering amplitude
known from CERN-Munich studies [111–113], has a sharp dip at 1GeV representing the f0(980)
resonance. However, even the raw ππ spectrum in Fig. 3.5 measured by COMPASS shows a shoulder,
not a depletion, around 1GeV. One mechanism of turning the f0(980) peak into a dip is related to
the production process [114, 115]. When the source of the ππ interaction is a light quark-antiquark
current, nn̄ = (uū+ dd̄)/2, the amplitude exhibits a dip, while when the pion pair is produced by
an ss̄ current, the production amplitude looks like a narrow peak as shown in Fig. 3.16. Often, it is
convenient to formulate the production amplitude in terms of form factors (see Ref. [114]) which are
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Figure 3.17: Examples of the π+π− spectrum for different ratios of the strange and the non-strange currents.
Intensity defined in Eq. (3.36) are calculated using the amplitude from Eq. (3.34) for the different source vectors
c(i) where i ∈ {(ππ), (KK̄)}. The relative strength and the phase of c(i) are indicated on the plot. For this
exercise instead of Ω0 in Eq. (3.34) we used the scattering matrix t0 extracted in the analysis of Ref. [115]
which is presented in Fig. 3.16.

introduced as,

Γqπ(σ) ∝ 〈π+π−|nn̄|0〉,
ΓqK(σ) ∝ 〈KK̄|ss̄|0〉,

where σ is the squared invariant mass of the system, nn̄ and ss̄ are the isoscalar scalar currents for the
light non-strange and the strange quarks, respectively. Since the form factors possess the right-hand
cut only (there is no cross channel which would produce the left-hand cut), they are expressed in the
following form, using the unitarity constraints in the form of Eq. (2.34):

(
Γqπ(σ)
ΓqK(σ)

)
=

(
Ω

(ππ,ππ)
0 (σ) Ω

(ππ,KK̄)
0 (σ)

Ω
(KK̄,ππ)
0 (σ) Ω

(KK̄,KK̄)
0 (σ)

)(
c(ππ)(σ)

c(KK̄)(σ)

)
, (3.34)

where the matrix Ω0, known as the Omnès-matrix, is a construction which satisfies unitarity Eq. (2.34)
and has only the right had cut [69, 114], c(i)(σ) are polynomials in σ. When the left singularities
of the scattering matrix are far away from the physical region, the Omnès matrix, resembles the
scattering matrix t0 (we use the scattering matrix instead of the Omnès matrix, Ω0 for simplicity in
the numerical exercise in Fig. 3.17). For the ππ,KK̄ scattering in S-wave the approximation is rather
crude, however, it will allow us to demonstrate the scale of variations of the measured ππ line shape.
A slight admixture of the strange source leads to a large variation of the ππ production amplitude.
Changing the couplings c(ππ) and c(KK̄), and the relative phase between them, one obtains a set of
various shapes of the ππ spectrum as shown in Fig. 3.17.

Clearly, the S-wave parametrization requires a flexibility in order to describe the data. In COMPASS
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3.4 Remaining questions and further improvements

basis, it consists of three components: a broad (ππ)S amplitude with slow phase motion, a sharp
structure at 1GeV parameterized by the Flatté model, which is referred to as the f0(980) component,
and a Breit-Wigner amplitude for the f0(1500) (see Appendix D). This choice of the basis leads to
systematic uncertainties discussed in Ref. [77] which cannot be removed in the current model of the
PWA.

Freed-isobar fit

The problem of the fixed isobar shape is solved with an advanced analysis method, called freed-
isobar PWA [117]. It was realized that the line shape of the isobars can be extracted from the
data by parameterizing the general partial amplitude (Aλ′λ)JMLS (t, s, σ) introduced in Eq. (3.7) as a
combination of independent complex amplitudes, each of which is nonzero only in a finite bin in σ.
For a single s× t′ bin we have

Abw(s, t′, σ) =
∑

β

ωw,bβ (s, t′)Iβ(σ), (3.35)

where w and b are combined indices (see Eq. (3.16)), the label β numbers successive bins of the
two-pion mass range, ωw,bβ (s, t′) is the value of the amplitude for the given t× s× σ bin, Iβ(σ) is an
indicator function which is 1 if σ is inside the bin and zero otherwise.

The waves, for which the continuous fixed shape is replaced by the combination of ωw,bβ , are called
freed-isobar waves. In Ref. [78] the three waves with scalar isobars were freed and the line shape of
the [ππ]S-wave was extracted. Recently, a fit with 11 freed-isobar waves was performed [118].

For convenience the freed-isobar amplitude is also normalized by the number of events, cf. Eq. (3.18),

Im3π×m2π
(t,
√
s,
√
σ) ≡ d3N

dt d
√
s d
√
σ
∝ 4
√
σ s
∣∣∣Abw(s, t′, σ)

∣∣∣
2 λ1/2(σ,m2

π,m
2
π)λ1/2(s, σ)

σs
.

(3.36)
The intensity correlations betweenm2π andm3π extracted from the freed-isobar fit are shown in

Fig. 3.18 (left column). The distribution for the JPCM ε = 1++0+ [ππ]
0

++π P -wave (the upper row)
is dominated by a broad spot around s× σ = 1.2× 0.6 GeV2. Naively, it could be entirely attributed
to the a1(1260) resonance decaying into the (ππ)S π P -wave. But, in Sec. 5, we will demonstrate
that a significant part of this intensity spot should be associated with the non-resonant production.
As a function of the π+π− invariant mass, the intensity also has a spectacular behavior: there is a
broad peak structure around 0.7 GeV, that reminds of ππ → ππ scattering amplitude from Fig. 3.16;
it is followed by a sharp peak at 1GeV, that indicates a non-trivial ππ ↔ KK̄ scattering (compare to
the left plot of Fig. 3.17). The analogous distributions for the JPCM ε = 0−+0+ [ππ]

0
++π P -wave

(the lower row) look significantly different. The 3π spectrum is dominated by the π(1800) resonance;
the π+π− invariant mass distribution in addition to the non-trivial interplay around 1GeV indicates
f0(1500) as a little enhancement around 1.45GeV (compare to the right plot of Fig. 3.17).

Questions to the dynamic model

The mass-dependent fit of the SDM describes the data rather well, however, it leaves a list of questions
about the model used. The Breit-Wigner amplitude is a good model for a single isolated two-particle
resonance which is far from threshold. In the COMPASS analysis, none of the waves are isolated
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Figure 3.18: The results of the freed-isobar analysis from Ref. [78] for two selected waves. Intensity of the
[ππ]S π P -wave of the J

PCM ε = 1++0− (upper row) and the JPCM ε = 0−+0− (lower row) freed-isobar
waves obtained in the fits in a single t′-slice as indicated on the plots. Left column: two-dimensional
representation of the intensity of the wave as a function of

√
σ ≡ mππ and

√
s ≡ m3π. Middle column: the

intensity as a function ofmππ for them3π-bin indicated by the vertical line in the left plot. Right column: the
intensity as a function ofm3π summed over a range of severalmππ-bins indicated by horizontal lines in the left
plot. The ππ mass is binned in 10 MeV wide intervals around the f0(980) and 40 MeV otherwise.

due to the presence of a coherent non-resonant background, there are multiple thresholds related
to different 3π-waves and inelastic channels, the 1++ ρπ S-wave serves as a good example of the
former point. The performed mass-dependent analysis suggests a nearly equal contribution of the
background and the resonance signal. These effects make the extracted resonance parameters model-
and process-dependent. Nevertheless, the discussed approach is a common practice established in
the past; the results can be directly compared with the previous studies of diffractive three-pion
production [108, 119–121]. The Breit-Wigner parameters for various resonances dominate the PDG
listings [26]. Going beyond the “Breit-Wigner + Background” parametrization and constructing a
more theoretically-sound approach is one of the goals of this thesis.
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CHAPTER 4

Rescattering corrections:
the a1(1420) phenomenon 1

Identification of hadronic states in the invariant mass spectrum of particles produced in the experiments
can be a simple problem. If one observes a narrow isolated peak in the spectrum, it most likely
corresponds to a resonance, i.e. a hadronic state. More often, however, the situation is more
complicated: many broad resonances largely overlap and interfere. It is a problem especially in the
light-quark sector. But even in the charmonium region, the interpretation of X , Y , Z as hadronic
states is not straightforward. The second very prominent feature of a resonance is, that the phase of the
transition amplitude develops a rapid motion near the resonance. In case of an isolated resonance, the
phase rises approximately by π as a function of energy and passes π/2 at the mass of the resonance
(the isobar amplitudes for S > 0 shown in Fig. 3.11 serve as good examples). The phase differences
between several transition amplitudes are often observable, and they can be used for the investigation
of resonance phenomena (one example is discussed in Sec. 3.3.3 and shown in Fig. 3.14). The
information on the intensity and the phase helps to identify the resonance states in complex situations
like, for example, S-wave interaction of two pions where the f0(980) is seen as a dip (see Fig. 3.16).
For many years, it was commonly accepted that a combination of a rather narrow structure in the
spectrum (either a peak or a dip) and a rapidly changing phase is a clear sign of a hadronic state in the
scattering process [122, 123]. The a1(1420) phenomenon discussed in this chapter seems to bring in
a spectacular exception to this rule.

4.1 First observation of the a1(1420) and interpretations

One unexpected result of the conventional PWA performed by the COMPASS collaboration was the
observation of a resonance-like behavior in the JPCM ε = 1++0+ f0π P -wave near 1.4GeV [124].
The results were confirmed by the VES collaboration [125] shortly after. A clear peak structure and
a rapid phase motion, with respect to the JPCM ε = 1++0+ ρπ S-wave, suggested the presence of
a new resonance in the JPC = 1++ sector, different to the well-known a1(1260). Following the
nomenclature, the resonance-like signal was called a1(1420) due to its quantum numbers. Although
the signal contributes just a tiny fraction to the total intensity as shown in Fig. 4.1, the observation has

1 A part of this chapter has been published in Ref. [1] in the collaboration with Andrey Sarantsev and Bernhard Ketzer.
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statistical significance far above 5σ (see discussion in Ref. [124]). It was found to be stable under
various model modifications (the list of systematic studies can be found in Ref. [78]), and confirmed in
the advanced freed-isobar analysis [126] as well as in a simple cut-based analysis as discussed below.
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Figure 4.1: The plots summarize the results of the PWA for the JPCM ε = 1++0+ sector in the second (left)
and the sixth (right) t′-bin: the total intensity as a function of 3π-invariant mass is shown by the orange filled
area, the blue area presents the JPCM ε = 1++0+ (ππ)Sπ P -wave, the green distribution is the intensity of
the JPCM ε = 1++0+ f0π P -wave. The inset plot makes a zoom to emphasize the a1(1420) signal.

In the conventional PWA, the mass-dependent fit with the model described in Sec. 3.3.3 was
performed for a subset of three waves [124]. This subset includes the JPCM ε = 1++0+ f0π P -wave
with the resonance assumption for thea1(1420), and twowaveswith a very lowbackground contribution:
the JPCM ε = 2++1+ ρπD-wave with two a2-resonances and the JPCM ε = 4++1+ ρπ G-wave
with one a4-resonance. The last two waves are rather well described by the resonance model with
a small coherent background, hence, they serve as a good reference. The resonance model for the
JPCM ε = 1++0+ f0π P -wave is well supported by the phase motion observed in the interference
of this set of waves (see Fig. 4.2). The intensity and the phase is rather well reproduced by the
mass-dependent fit suggesting the presence of a new, previously unobserved a1(1420) axial-vector
resonance. The Breit-Wigner parameters obtained from the fit are ma1(1420) = 1411+15

−13MeV, and
Γa1(1420) = 153+8

−23MeV [3].
Potential issues of the conventional PWA due to the limited basis and the fixed parametrization of

the S-wave isobars has been addressed by the freed-isobar analysis discussed in Sec. 3.4. Fig. 3.18
shows the results for the JPCM ε = 1++0+[ππ]

0
++π P -wave. The selected interval around f0(980),

projected to the 3π-mass, is shown in the middle panel of Fig. 3.18. The intensity distribution
projected to the 3π-mass for a selected interval around f0(980) has the same feature (a narrow isolated
peak around 1.4GeV) as the JPCM ε = 1++0+ f0π P -wave spectrum in the conventional PWA (see
Fig. 3.13). This demonstrates that the observed a1(1420) signal is not an artifact of the model used
in the analysis. Looking at the intensity distribution as a function of the ππ invariant mass form3π

around 1.4 GeV, as shown in the middle plot of Fig. 3.18, we notice that the f0(980) resonance
shows up as a peak. One possible reason for this behavior, as we discussed in Sec. 3.4, is a dominant
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Figure 4.2: Results of the PWA inm3π bins (the PWA technique is introduced in Sec. 3.3.1) The left plot shows
the intensity distributions of the JPCM ε = 1++0+ f0π P -wave incoherently summed over all 11 t′-slices
(black crosses). The fit with the a1(1420) resonance model is shown by the red line. The model for the
JPCM ε = 1++0+ f0π P -wave includes two components: the Breit-Wigner amplitude for which the intensity
is shown by the blue line, and the non-resonance component with the intensity shown by the green line. The
right plot shows the relative phase between JPCM ε = 1++0+ f0π P -wave and J

PCM ε = 4++1+ ρπ G-wave
by the black crosses together with the model curves for different t′-slices as indicated in the plots’ legend. The
plots are from Ref. [124].

KK̄-source of the ππ pair in this wave.
We have also found that the enhancement of the a1(1420) can be seen by applying simple cuts

to the Dalitz plot of 3π. A quick analysis might be useful for a first rough check, e.g. for the
τ → 3π ντ -reaction. The idea is to select the f0 band in the Dalitz plot and exclude the dominating
ρ-meson in the cross channel as shown in Fig. 4.3. The strength of the bump in the right panel
roughly matches the height of the a1(1420) signal, which is approximately 1% of the height of the
total intensity in the 1++ sector. Having the partial-wave analysis results at hand, we validate that the
enhancement seen in the data is indeed caused by the JPCM ε = 1++0+ f0π P -wave, while the other
87 waves give a smooth background in this mass region.

There are several issues which make the observation of this structure extremely interesting:

• The a1(1420) is very close to the ground axial-vector state a1(1260). The difference in the
mass is only roughly 150MeV.

• The width of the a1(1420) is much smaller than the width of the a1(1260) which contradicts
the expectation for ordinary mesons (the excited states are expected to have larger width).

• The a1(1420) does not appear in lattice calculations [127] of excited hadronic states.

• There is no indication of the a1(1260) in the JPCM ε = 1++0+ f0π P -wave, although the
a1(1260) is allowed to decay to the this wave.

• The position of the peak is very close to theK∗K̄ threshold, which is approximately at 1.39GeV
for the nominal mass of theK∗.
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Figure 4.3: A recipe to produce the a1(1420) enhancement using a simple dissection analysis. The left panel
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masses squared) integrated over t′. The red lines indicate the cuts applied. The f0 band is selected in the range
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650 < σi < 950 MeV is excluded. The right panel shows the 3π spectrum obtained for the selected region.
The black crosses show the number of event perm3π-mass bin which passed the selection. The colored areas
represent the event rate of the phase-space MC events selected analogously and weighted with a specific model.
The model for the blue area is taken from the PWA but excludes the JPCM ε = 1++0+ f0π P -wave (the wave
amplitude is set to zero). The model for the red area includes only the JPCM ε = 1++0+ f0π P -wave, the
other waves are set to zero.

All these items suggest that the a1(1420) is an exceptional phenomenon which does not fit the
conventional qq̄ pattern. Several interpretations have been suggested in the scientific community
shortly after the release of the a1(1420) observation. We comment on the possible explanations in the
following paragraphs.

Genuine state: qq̄, hadronic molecule, tetraquark

The unconventional nature of the potential state is supported by a more indirect argument. Most of
the conventional resonances lie on the radial excitation trajectory (the principle quantum number of
the excitation level against its mass squared) as well as on the Regge trajectory (the total angular
momentum of the excitation level against its the mass squared). The trajectories with light isovector
states with unnatural parities from Refs. [128, 129] are shown in Fig. 4.4. There is obviously no room
for the a1(1420).

An interpretation of the a1(1420) as a counter-partner of the f1(1420) was suggested in the original
COMPASS paper [124]. The microscopic nature could not be addressed based on the experimental
data, however, it was suspected to be either a tetraquark or a hadronic molecule. The molecular
interpretation of the a1(1420) was supposed since the mass of the peak is found relatively close to the
K∗K̄ threshold. Let’s suppose thatK∗K̄ are bound by a pion exchange potential. Such molecules
would decay to the π[ππ] final state by rearrangement of the strangeness via kaon exchange. The
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Figure 4.4: Left plot: the radial excitation trajectory of axial-vector states from Ref. [129]. n along the x-axis is
the principle quantum number of the excited state (since n is cannot measured, the known states are ordered by
their masses. Then, the numbers are assigned). Right plot: the Regge trajectories for the light isovector mesons
with unnatural parity from Ref. [128]. J along the x-axis is the total angular momentum (simply spin) of the
state. The invariant mass squared along the y-axis is given in unites of GeV2.

first problem of the molecular interpretation is the fact that the a1(1420) is above the nominalK∗K̄
threshold, while the positive binding energy requires the level to be below the threshold. If we ignore
this problem in the molecular interpretation for a moment (one can agrue that the a1(1420) peak
actually overlaps with the nominalK∗K̄ threshold, theK∗ is not stable) we can discuss a possibility
for such a molecule to be bound. 2 It is known that the pion exchange, which would be a dominant
interaction mechanism between K∗ and K̄, creates an attractive potential [130]. This force is also
partially responsible for binding a proton and a neutron to a deuteron [131, 132]. It is also suggested to
be responsible for the forming ofD∗D̄-molecules observed as theX(3872) [133–135]. The binding in
theK∗K̄ system is expected to be even weaker for the following reason. Assuming a molecular nature
of the X(3872), the binding energy in the D0∗D̄0-system is measured to be at most a few hundred
KeV [26]. In the classical picture of an attractive potential binding two mesons, the momentum of the
mesons, p is of the order of the inverse size of the potential well, 1/a (since pa = π/2 + πn, with
n ∈ N, see e.g. Ref. [136]). Hence, it does not depend on the meson mass, m. The energy given
by p2/2m is the larger the lighter the particles are. And since the binding energy is the difference
between the attractive energy and the kinetic energy of the mesons, the binding in the strange sector
should be less than in the charm sector. Therefore, it is very unlikely that the binding is sufficiently
strong. The two arguments we have listed remove the molecular interpretation from the list of main
hypotheses.

The tetraquark state proposed in Ref. [137–139] is not easy to rule out or support since the existence
of the tetraquark states has not been established yet. However, we notice a practical difficulty in
validating this hypothesis. A manifestation of a state (including the tetraquark state) would be an
observation of a pole in the f0π scattering amplitude. Due to the strong coupling of the f0 to kaons,
the coupled-channel problem of KK̄π and 3π has to be considered and analyzed for a presence of
the resonant pole. Moreover, this possible resonant pole is not the only singularity which might be
present in the amplitude. In the next section, we find that the other “strong” singularities (logarithmic
branch points) due to various exchanges have to be located close to the physical sheet. They already

2 Thanks to conversation with Marek Karliner whom I met at the ICNFP2017 conference.
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Chapter 4 Rescattering corrections: the a1(1420) phenomenon

produce an enhancement in the amplitude even without the necessity of an additional pole singularity.

Basdevant-Berger: interference with the background

The observation of the a1(1420) phenomenon was quickly followed by the work of J.-L. Basdevant
and Ed. Berger [140] who suggested a very peculiar dynamic interpretation. A key component of
their explanation was the non-resonant production term, known as the Deck amplitude. The model
developed by the same authors in 1977 includes a possible additional background in a way to satisfy
the quasi-two-body unitarity requirement [62, 141]. This method is described in Sec. 2.3 as the
unitarized background method (see Eq. (2.41)).
In the Basdevant-Berger approach, the scattering matrix Tl is considered to be elastic in the space

of two channels, ρπ S-wave and f0π P -wave. The interaction is parameterized by a single resonance,
a1(1260), incorporated via a single-poleK-matrix of dimension 2 (see Eq. (2.22)). The phase-space
factors are calculated in an approximation with stable ρ and f0 particles as two-body phase space.
The Deck amplitude (see details in Chapter 5) was approximated in the limit of small transferred
momentum allowing the authors to carry out the partial-wave projection integrals analytically as
shown in Ref. [142]. According to authors of Ref. [140], “a major clue” to the investigation is the fact
that the background amplitude projected to the P -wave, being real, crosses zero at 1.38 GeV. When
the projection changes the sign, the phase jumps from −180◦ to 0◦ and makes a sudden change of
the relative phase between the S-wave and the P -wave projections. The full production amplitude
is constructed from the background projections and the scattering matrix using the unitarization
procedure as given in Eq. (2.41). Authors show that the peak in the intensity of the f0π P -wave
calculated from the full amplitude can be adjusted to 1.4 GeV, to the place of a1(1420). However, the
unitarization changes a location of the phase movement. The relative phase of the two production
amplitudes still has a large motion but approximately at the position of theK-matrix pole, which is
fixed by the a1(1260) peak at ρπ S-wave at approximately 1.3GeV. There is a clear contradicts the
COMPASS observation, which authors have not solved. Moreover, as we demonstrate in Chapter 5,
the model of the Deck process used by the authors (we call it the “Standard Deck”) in not supported
by the COMPASS data at the high energies. Hence, the “major clue” is likely invalid.

The triangle singularity

In Ref. [1], we suggested a dynamic explanation of the phenomenon which does not require a genuine
resonance. The key mechanism for the explanation is the final-state interaction between the 3π and
KK̄π systems. We showed that a scatteringK∗K̄ → f0(980)π viaK exchange has a very peculiar
resonance-like behavior exactly at the mass of the observed a1(1420) signal. When in the K∗K̄
system is produced in the decay of a1(1260), the simplest diagram the rescattering process contains
a triangle loop. One finds that by integrating over the loop momentum the amplitude contain a
logarithmic singularity. In honor of the leading singularity of the triangle diagram, the effect is often
called the triangle singularity(TS). The following section is dedicated to a detailed discussion of the
rescattering effect and the interpretation of the a1(1420).
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Figure 4.5: Left plot: the decay a1 → f0π proceeding via the triangle diagram with kaons. The four-momenta
of the external particles are q1, q2, and q3, the intermediate particle momenta are k1, k2, and k3. Right plot: a
diagram representing a general decay R→ Hh where G, g, and r are intermediate particles in the loop. G and
H stand for subchannel resonances.

4.2 The rescattering interpretation 3

Our primary goal is to understand the dynamics which are relevant for the partial-wave isobar
amplitude Fw(s, t) where the wave index w ∼ JPC = 1++ f0π P . As we announced already, we will
primarily focus on the triangle diagram shown in Fig. 4.5, 4 addressing the first corrections to the naive
model of the decay to non-interacting particles. The simplest way to investigate loop diagrams is the
method of Feynman parameters and Wick rotation [59]. Using this method we calculate the loop and
identify its singularities following the work of L. Landau [144]. R. Cutkosky developed a technique
which permits us to calculate the imaginary part of a loop diagram based on the discontinuities
across the cuts in the complex plane, related to the particle thresholds [145]. The studies of the
discontinuities will lead us to the dispersive representations of the amplitude and allow us to relate
the perturbative methods of Feynman diagrams with the non-perturbative relations of the S-matrix
theory. The Feynman-diagrams-based method can be motivated in effective theories based on Chiral
Lagrangians (e.g. Ref. [146]). However, in the energy region of the a1(1420) their applicability
becomes questionable. Using the S-matrix principles we consider the unitarity-based approach and
perspectives on calculating the complete rescattering series.

4.2.1 Kinematic conditions for a triangle singularity

It is well known that a logarithmic singularity arises in the triangle loop diagram [38, 39]. As was
shown by a general analysis of singularities in scalar theory [144], the amplitude behavior near the
branching point of a cut is ∝ log(s − s0), where s is an external invariant. The position of the
singularity s0 can be obtained from the simple condition that all intermediate particles are on mass
shell and collinear to each other. This is given by the system of Landau equations:





k2
i = m2

i , i = 1 . . . 3,
x k1µ + y k2µ + z k3µ = 0, x, y, z ∈ [0, 1],
x+ y + z = 1,

(4.1)

3 A large part of this chapter has been published in Ref. [1].
4 We restrict consideration to the process with the charge kaon exchange. The isospin-conjugated processK∗−K̄0 → f0π

−

viaK0 exchange is also possible. However, the calculation of the loop diagram with theK−∗K0
K̄

0 internal particles is
analogous to case presented in this chapter. More details can be found in Ref. [1, 143].

53



Chapter 4 Rescattering corrections: the a1(1420) phenomenon

a1(1260)
K

K
π

K *

1.42 1.44 1.46 1.48 1.50
M(a1)

0.988

0.990

0.992

0.994

0.996

M(f0)

M(KK )||

pK<pK
_pK>pK

_

Figure 4.6: The kinematics of the decay a1 → K∗[→ Kπ] K̄. Left plot: the possible directions ofK in the a1
rest frame, with respect to the decay a1 → K∗K̄ are shown by the dashed ellipse. The energy of the system,√
s2 = 1.41 GeV. An alignment of K̄ and K momenta is kinematically allowed, moreover, the K is faster

than K̄. Right Plot: the invariant mass of theKK̄ pair as a function of the a1 invariant mass for the situation
when theK vector is aligned with the K̄ vector. The horizontal line indicates the f0(980) mass. In the yellow
(brown) regionK is faster (slower) than K̄.

where ki andmi are the 4-momenta and masses of intermediate particles, respectively (see Fig. 4.5).
x, y, and z are the Feynman parameters which are unknown variables in this system of equations.
By multiplying the second equation with ki (i = 1, 2, 3) and expressing the scalar products (ki kj)

through the invariant variables s1 = q2
1 , s2 = q2

2 , and s3 = q2
3 , we obtain three equations, which,

together with the condition x+ y + z = 1, make the system of equations overdetermined:



k2
1 k1k2 k1k3

k2k1 k2
2 k2k3

k3k1 k3k2 k2
3

1 1 1






x
y
z


 =




0
0
0
1


 (4.2)

where kikj = (sn −m2
i −m2

j )/2 with (ijn) being even permutations of the numbers (123). The
system is solvable only in exceptional cases, under the adjustment of the external parameters si andmi.
When a solution exists, the condition x, y, z > 0 has to be checked in addition. Equivalently, we can
check that the pair (x, y) belongs to the triangle domain (x > 0, y > 0, x+ y < 1) shown in Fig. 4.7.

For the decay a−1 (1260)→ f0(980)π− through intermediate kaons, as shown in Fig. 4.5, we fix the
invariant masses of the external particles with momenta q1 and q3 to the pion mass and the nominal
mass of the f0(980), respectively, and study the solutions of Eq. (4.2) while varying the invariant
mass s2. Using a set of algebraic manipulations we find that the system (4.2) is solvable only for two
values of s2, namely√s2 = m

(ts)
1,2 , wherem

(ts)
1 = 1.42 GeV, andm(ts)

2 = 1.46 GeV. The points are
shown as dots in the right bottom panel of Fig. 4.7. However, the condition x, y, z ∈ [0, 1] is only
satisfied for the first solution as can be seen in this figure.

There is a simple kinematic explanation for the appearance of the singularity illustrated on Fig. 4.6.
The initial state a1(1260) with JPC = 1++ can decayK∗K̄ on mass shell starting from the threshold√
s2 = 1.39 GeV. Then,K∗ decays toK and π on mass shell. We notice that theK fromK∗ decay

can go to the same direction as the K̄, the ratio of velocities of K̄ andK is a function of√s2. The
invariant mass of the K̄K system, when the kaons vectors are aligned, is only equal to the mass of f0

if√s2 = m
(ts)
1,2 . For

√
s2 = m

(ts)
2 , however, K̄ is faster thanK and thusK cannot catch up with K̄
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to form f0. Only for
√
s2 = m

(ts)
1 , isK faster than the K̄. The discussed kinematics demonstrate a

very peculiar situation in the decay of the a1(1260) toK∗K̄: just above the two-body threshold, the
rescattering in the triangle can happen with particles on mass shell. The relation between on-shellness
of the process and the singularities of loop diagrams was noticed by Coleman and Norton in Ref. [147].

4.2.2 Feynman method

Once the positions of the singularities are established we can calculate and plot the amplitude and
validate the findings. We start from the simple case of scalar particles, and discuss the spin in Sec. 4.5.
For simplicity we use a scalar coupling g for all vertices

M(sc)
a1→f0π

= g3
∫

d4k1

(2π)4i

1

(m2
1 − k2

1 − iε)(m2
2 − (q2 − k1)2 − iε)(m2

3 − (k1 − q1)2 − iε)
. (4.3)

We calculate the integral using the technique of Feynman parameters [38, 39]

M(sc)
a1→f0π

=
g3

16π2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz
δ(x+ y + z − 1)

∆(x, y, z)− iε (4.4a)

=
g3

16π2

∫ 1

0
dx

∫ 1−x

0

dy

∆xy − iε
, (4.4b)

=
g3

16π2

∫ 1

0

dx

s1(y+(x)− y−(x))

(
log

1− x− y+(x)

−y+(x)
− log

1− x− y−(x)

−y−(x)

)
, (4.4c)

where ∆(x, y, z) is a polynomial in x, y and z which parametrically depends on invariant masses

∆(x, y, z) = xm2
1 + ym2

2 + zm2
3 − xys3 − yzs1 − zxs2, (4.5)

the z-integral is solved using the delta function. Using the condition x + y + z = 1, we define
∆xy = ∆(x, y, 1 − x − y). The curve ∆xy = 0 shown in Fig. 4.7 gives the singularities of the
integrand in Eq. (4.4b). The y integral is evaluated using a partial fraction decomposition, since ∆xy

is a second order polynomial in y. The y± are the solutions of the equation ∆xy = 0, i.e.

s1y
2 + (m2

2 −m2
3 − s1 + xs2 − xs3 + xs1) y + xm2

1 + (1− x)m2
3 − x(1− x)s2 = 0.

Eq. (4.4c) is evaluated numerically; the real and imaginary parts are shown in Fig. 4.8. The imaginary
part starts to grow rapidly from theK∗K̄ threshold sth

2 (sth
2 = mK +mK

∗); it goes to infinity when
√
s2 = m

(ts)
1 . The real part has a cusp at the threshold, then sharply drops below zero at

√
s = m

(ts)
1

and becomes stable for higher values of
√
s. To take the finite width of the intermediate particles

into account, we shift the masses to the complex plane by substituting m2
j → m2

j − imjΓj . Such
substitutions do not lead to a correct analytic structure of the amplitude in the variables si, however, it
gives a good estimation of the smearing due to the finite width. The changes of theK∗ propagator in
Eq. (4.3) results in a smoother behavior of the amplitude, as shown in the right panel of Fig. 4.8. The
effect singularity at

√
s = m

(ts)
1 = 1.42 GeV is now limited, the amplitude scales proportionally to

log ΓK∗ .
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4.2.3 Dispersive approach

The amplitude M(sc)
a1→f0π

(s1, s2, s3) in Eq. (4.4c) is an analytic function with a rather simple analytic
structure: there is a unitarity cut in each variable si related to the production of intermediate particles
in the triangle qn → ki, kj (as before (ijn) are even permutations of (123)) [38, 145]. Hence, in order
to recover the complete amplitude, one needs to only know the discontinuity on the cut. The latter can
be calculated by a simple method developed by Cutkosky [145]. The representation of the amplitude
via the Cauchy integral is referred to as the dispersive representation. This representation helps us to
relate the model based on the single triangle rescattering to the more general approach discussed in
Sec. 4.5 and Sec. 7.

Imaginary part of the amplitude

Expressions for the Feynman loop diagrams are real analytic functions, i.e. they obey the Schwarz
reflection principle and stay real when all variables si are below the corresponding thresholds. In the
kinematic domain of our interest s2 is above theK∗K̄ threshold, and s1 is above theKK̄ threshold
therefore the amplitude is complex. The imaginary part of the amplitude M of the diagram in Fig. 4.5

57



Chapter 4 Rescattering corrections: the a1(1420) phenomenon

is related to the discontinuity across the cuts shown in Fig. 4.9 by [145]

ImM(sc)
a1→f0π

=
1

2i

(
Disc

(sc)
KK̄

+ Disc
(sc)
K
∗
K̄

)
. (4.6)

To calculate the discontinuities, we use the following expression

Disc =

∫ ∏

cut

d3ki

(2π)32E
(k)
i

×


 ∑

polarization

M1 ·M∗2


× (2π)4δ4(mom.cons.), (4.7)

whereM1,2 are the matrix elements for processes on the left- and right-hand side of the cutting line,
respectively (see Fig. 4.9). We are calling particles which are crossed by the cutting line cut particles.
The integration is performed over the total momentum space of the cut particles, ki are the momenta
of the cut particles, and E(k)

i are the corresponding energies.

Simple model with scalar intermediate particles

For the case of scalar intermediate particles, the expressions for the discontinuities are:

Disc
(sc)
K
∗
K̄

= g3
∫

d3k1

(2π)32Ek1

d3k3

(2π)32Ek3
× 1

m2
2 − k2

2 + iε
× (2π)4δ4(q2 + k1 − k3), (4.8)

Disc
(sc)
KK̄

= g3
∫

d3k2

(2π)32Ek2

d3k3

(2π)32Ek3
× 1

m2
1 − k2

1 − iε
× (2π)4δ4(q1 + k3 − k2), (4.9)

where the products of matrix elements M1 ·M∗2 are given by the coupling constants at the three
vertices, which are set to g, and the propagator, which is a function of the angle between ~k1 and ~q3 in
(4.8) and a function of the angle between ~k3 and ~q3 in (4.9). For both discontinuities, the cut particles
(K∗, K− and K+, K−, respectively) are set on their mass shells. The integration with the delta
function in (4.9) is performed in the f0 rest frame. After carrying out the integration we arrive at the
following expression:

ImM(sc)
a1→f0π

=
g3

16πλ1/2(s2, s3, s1)

[
log

Ã+ 1 + iε

Ã− 1 + iε︸ ︷︷ ︸
from Disc

(sc)
K
∗
K̄

+ log
C̃ + 1− iε
C̃ − 1− iε︸ ︷︷ ︸

from Disc
(sc)
KK̄

]
, (4.10)

where the coefficients Ã, C̃ originate from the propagators,

Ã =
2s2(m2

2 −m2
1 − s3) + (s2 +m2

1 −m2
3)(s2 + s3 − s1)

λ1/2(s2,m
2
3,m

2
1)λ1/2(s2, s3, s1)

, (4.11)

C̃ =
2s1(m2

1 −m2
3 − s2) + (s1 +m2

3 −m2
2)(s1 + s2 − s3)

λ1/2(s1,m
2
2,m

2
3)λ1/2(s1, s2, s3)

. (4.12)

Here, q2
i = si, k

2
i = m2

i , and λ(x, y, z) is the Källén function. In the denominators of Eq. (4.11) and
Eq. (4.12) one can recognize the break-up momenta calculated in the a1 rest frame for Ã, and in the
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is shown by the black line. The contributions of the discontinuities forK∗K̄ andKK̄ are shown by the orange
and the green lines, respectively.

f0 rest frame for C̃. The products of two expressions in parentheses in the numerators come from
the product of energies of the particles with momenta k1 and q3 in Eq. (4.11) and the particles with
momenta k3 and q3 in Eq. (4.12) calculated in the corresponding frames. The real parts of expressions
(4.8) and (4.9) compensate each other and consequently the expression for the imaginary part (4.10) is
real.
The imaginary part of the amplitude, ImM(sc)

a1→f0π
(s), and the contributions from the individual

discontinuities are shown in Fig. 4.10. One can clearly see two singularities at √s2 = m
(ts)
1,2 for

the discontinuities. The imaginary part, however, is smooth at √s2 = m
(ts)
2 as expected from the

kinematic analysis of Sec. 4.2.1. One can also notice that the imaginary part is not zero below the
K∗K̄ threshold. This contribution comes from Disc

(sc)
KK̄

, because the massmf0
is above the 2m

K
±

threshold.

Recovering the full amplitude using the dispersive integral

As we stated before, the amplitude of the triangle diagram can be recovered using the knowledge
of the analytic structure and the discontinuities calculated in Eq. (4.8) and (4.9). Assuming that the
analytic structure in s1 is a cut, which starts at threshold sth

1 = 4m2
K and runs to infinity, we write the

dispersive integral (see Eq. (2.26)) as follows,

M(sc)
a1→f0π

(s1, s2) =
1

2πi

∫ ∞

4m
2
K

Disc
(sc)
KK̄

(s′1, s2)

s′1 − s1 − iε
ds′1. (4.13)

Similarly, we can write the expression for the amplitude using the s2-discontinuity.

M(sc)
a1→f0π

(s1, s2) =
1

2πi

∫ ∞

(m
K
∗+mK)

2

Disc
(sc)
K
∗
K̄

(s1, s
′
2)

s′2 − s2 − iε
ds′2. (4.14)
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Chapter 4 Rescattering corrections: the a1(1420) phenomenon

As we validate by direct calculation, both Eq. (4.13) and Eq. (4.14) reproduce Eq. (4.4) as a function of
s2 when s1 is fixed to the f0 invariant mass squared as shown in Fig. 4.8. The two methods, Eq. (4.13)
and Eq. (4.14) look algebraically the same, however, they turn out to have very different extension
beyond perturbation theory.
The first method presented by Eq. (4.13) exploits the analytic structure in the subchannel variable

(σ ≡ m2
KK̄ in that case). The diagram on the left panel of Fig. 4.9 is reminiscent of the unitarity

equation for the production process where theKK̄ appear from a decay. Using the terminology of
Sec. 2.3 (see Eq. (2.41)), Eq. (4.13) is the “unitarization” of the “background” term which is given
by the projection of the K∗ resonance to the KK̄ channel. In exactly the same way our triangle
diagram appears in the iteration series of Khuri-Treiman (KT) equations [148, 149], which we discuss
in Sec. 4.5. In order to account for the finite width of K∗, one can replace the K∗ propagator in
Eq. (4.9) by a completeKπP -wave scattering amplitude.
The second approach (Eq. (4.14)) addresses the s-dependence (m2

3π), which is controlled by
three-body unitarity [5, 14, 150]. The triangle diagram also appears iteratively when the one-pion
exchange diagram is attached to the production vertex similar to the left panel of Fig. 4.9. In order
to take into account the width ofK∗ one would need to insert aKπ loop and put those particles on
mass shell integrating over theK∗ invariant mass (i.e. Kπ invariant mass) leading to a convolution of
Eq. (4.14) with the function t∗Kπ(σ′)ρ(σ′)tKπ(σ′).
Using the example of the triangle diagram we established the interesting fact that the rescattering

effects lead to a clear connection between the subchannel two-body unitarity and the overall dynamics
of the system controlled by the three-body unitarity. In Ref. [5] we clarify the connection and show
how the s-discontinuity, present due to the final-state interaction, helps to isolate genuine three-body
effects.

4.2.4 Schmid’s cancellation and conservation of probability

Along the lines of the kinematic explanations of the triangle singularity given in Sec. 4.2.1 we can
discuss the rescattering mechanism using the Dalitz plot representation shown in Fig. 4.11. A decay
1→ 3 is considered in the center-of-mass frame. Points at the border of the Dalitz plot correspond
to a situation when momenta of the final-state particles are aligned parallel to each other. For the
quasi-stable “resonance” which decays to particles with momentum q3 and k2 on the left panel of
Fig. 4.11, the particle with the momentum k2 is collinear to ~k3 and it faster than k3 only on the red
arc. It is easy to see if we realize that the value q2

1 is minimal (left tip of the red arc), when ~k2 = ~k3

such that they are both at rest their center-of-momentum; when the value of (q3 + k2)2 approaches
maximum (top tip of the red arc), ~k2 = ~q3, ~k3 = 0. On the other part of the Dalitz plot border either
|~k2| < |~k3|, or the momenta point to opposite directions. The logarithmic divergence in the interaction
amplitude as a function of s1 ≡ q2

1 appears exactly at the place where the “resonance” touches the
red arc [151]. The band produced by the triangle singularity on the Dalitz plot (find TS line on the
left panel of Fig. 4.11) can be observed in principle. However, it is extremely difficult to find a clean
reaction where the initial state has well-defined quantum numbers, and a relatively narrow resonance
touches the red arc.
The interesting question, if one can see the effect of the triangle singularity in the projection of

the Dalitz plot, was addressed by Ch. Schmid [151]. He noticed that projections of a quasi-stable
“resonance” (the width is infinitely small) to the two-body partial waves in the subchannel (k2, k3) is
singular at those points where the resonance touches the Dalitz plot border. For the S-wave projection
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Figure 4.11: The left plot shows the kinematics of the rescattering which lead to the triangle singularity (see
discussion in the text). Right plot: Dalitz plots for the 3π (blue) and theKK̄π (orange) systems atw = 1.4 GeV.
The invariant mass squared of the π+π− orKK̄ subsystem is along the x axis, the invariant mass squared of
the other pion pair, π+π−, or theKπ subsystem is along the y axis. The horizontal dashed line indicates the
K∗ resonance, and the vertical dashed line shows the position of the f0(980) resonance for both theKK̄ and
ππ subsystems.

it reads,

f
(proj)
0 (s1) =

∫
dz
2

1

m2
r − k2

1

=
s1

λ1/2(s1,m
2
2,m

2
3)λ1/2(s1, s2, s3)

log
C̃ + 1

C̃ − 1
. (4.15)

where as before, k1 = k2 + q3, z = cos θ, and θ is the scattering angle in the center of momentum
of the (k2, k3) pair. C̃ is given by Eq. (4.12). Schmid demonstrated that when the projection of the
“resonance” from Eq. (4.15) is added to the amplitude calculated from the triangle diagram, the last
term leads to a modification of the projection phase. In the vicinity of the singularity point,

f0(s1) = f
(proj)
0 (s1) + f

(tr)
0 (s1) (4.16)

= f
(proj)
0 (s1) + iρ(s1)t(s1)f

(proj)
0 (s1) = eiδ0 f

(proj)
0 (s1).

The projection of the Dalitz plot is found as an incoherent sum of the squared partial-wave amplitudes,
i.e.

∑
(2l + 1)|fl(s1)|2. The phase factor drops the Dalitz plot projection does not show the effect

of the triangle singularities as it was concluded by Ch. Schmid. He also showed that the final-state
interaction cannot produce an enhancement in the total invariant mass of the system (s1 ≡ q2

1 in
Fig. 4.11) as a consequence of probability conservation.
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Figure 4.12: Two contributions to the partial-wave projection f0 in Eq. (4.16). The left diagram shows a
projection of the cross-channel resonance, while the right plot demonstrates the triangle loop diagram for the
rescattering via an interaction t(s1) from the cross channel to the considered channel indicated in the plot by
the curly bracket.

In 1995, V. Anisovich and A. Anisovich noticed that the Schmid theorem does not hold in the case
of coupled channels [152]. The cancellation 1 + iρ(s1)t(s1) = eiδ0 does not happen in presence of
an inelasticity. The work [151] was generalized by A. Szczepaniak [153] who explicitly demonstrated
that probability is still conserved and shared between the two channels. Recently, the influence of the
“resonance” width was investigated (see Ref. [154]) in relation with the Schmid theorem. The authors
concluded that the cancellation does not hold strictly in that case even for a single channel.
The general discussion on the Dalitz plot dynamics from Ref. [153] can be applied to a coupled

system of 3π andKK̄π. It gives a schematic explanation of the a1(1420) effect which is consistent
with probability conservation. The Dalitz plot for π+π−π− superimposed on the one for KK̄π is
shown in Fig. 4.11. The rescattering process from theK∗-resonance, being enhanced by the triangle
singularity, leads to a “migration” of events from the KK̄π final state to the 3π final state. When
we move the invariant mass √s2, the sizes of both Dalitz plots change, so do the positions of their
borders with respect to the subchannel resonances indicated in Fig. 4.11. When √s2 = 1.4 GeV the
intersection of the dashed lines coincides with the border of the kaon Dalitz plot, i.e. the 3-momentum
vectors of the decay products are aligned. In this case, events are redistributed from the intersection
point along the f0(980) vertical dashed line. Since f0 has both a ππ and aKK̄ decay channel, this
results in a migration of events from theKK̄π Dalitz plot to the 3π Dalitz plot.

4.2.5 Other triangles

Clearly, the rescattering processK∗K̄ → f0π is not the only one contributing to the observed final state.
All final states sharing the same quantum numbers 1++0+ are coupled. Therefore, a valid question
is whether the rescattering from theK∗K̄ decay channel of the a1(1260) (i.e. “(K∗KK̄)-triangle”)
indeed produces the closest singularity to the physical region. We demonstrate this by calculating
the intensity and the phase motion of the JPCM ε = 1++0+ f0π P -wave rescattered via the triangle
diagram from the other possible decay channels of the a1(1260).
Fig. 4.13 shows the intensities and relative phases for the six different triangles, which might

contribute to the JPCM ε = 1++0+ f0π P -wave. All plots feature a rise at threshold and a fall at
high energies: the rise reflects the opening of the f0π-channel, the fall comes from the a1(1260)
propagator. The very narrow peak in the (K∗KK̄) is accompanied by an extremely sharp phase
motion nearM3π = 1.4 GeV. It indicates the presence of the triangle singularity close to the physical
region. For other channels, the phase moves as well but at different places and not as rapid. We find
that the scattering-on-shell condition is not fulfilled for the remaining five configurations presented in
Fig. 4.13. The motion of the phase corresponds to the threshold in the considered decay channel of a1

which rescatters to the JPCM ε = 1++0+ f0π P -wave.
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Chapter 4 Rescattering corrections: the a1(1420) phenomenon
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Figure 4.14: Simplistic diagrams representing decays a1(1260) → ρπ and a1(1260) → f0π via K∗K̄
rescattering. The vertex couplings discussed in the text are indicated by red dots.

The strength of the rescattering corrections can be read from Fig. 4.13. In these calculations no
extra couplings were used (e.g. a1(1260) branching ratio). Hence, the strength indicates how close the
triangle singularity is. As one would expect, the process with kaons is one order of magnitude stronger
than the others. We conclude that other rescattering processes give a rather smooth contribution in the
energy range of interest. The background used in the fit below is supposed to effectively account for
these effects.

4.2.6 Strength of the effect

In order to estimate the intensity of the signal expected in the f0(980)π− channel we calculate its
intensity and phase difference with respect to the dominant a−1 (1260)→ ρ0π− decay, assuming that
the signal in f0π

− is entirely due to the triangle singularity in the a−1 (1260) → f0(980)π− decay.
Then, the decay rate of a1 → f0(980)π− P -wave is proportional to three squared couplings in the
triangle vertices, ga1K

∗
K̄ , gf0KK̄

and gK∗πK as indicated in Fig. 4.14, as well as to the squared
amplitude for the triangle diagram and the branching ratio of f0 → ππ. The decay rate of the
a1 → ρπ S-wave is related to the coupling constant ga1ρπ

. We estimated the strength of the couplings
and the branching ratios based on world-average data. The detailed discussion can be found in Ref. [1].
We will now briefly summarize the results. We estimated gK∗πK from the K∗ decay width, the
coupling constants gf0KK̄

and gf0ππ
were extracted from results of Ref. [155]. The ratio of the

constants ga1K
∗
K̄ and ga1ρπ

was estimated from the branching fractions of theKK̄π and ρπ S-wave
decay channels of a1(1260) measured in hadronic τ -decays [156–158]. Due to the poor knowledge of
the a1(1260) couplings we were only able to give an order-of-magnitude estimate for the strength
of the JPCM ε = 1++0+ f0π P -wave with respect to JPCM ε = 1++0+ ρπ S-wave. The obtained
peak-to-peak ratio, approximately 10−2, agreed with the experimental result.

The estimation has large systematic uncertainties:

• In the calculations we assume that the decay of the a1(1260) resonance is the origin of ρπ and
K∗K̄, which are rescattered to f0π. However, there may be other processes which contribute
to the same final state, e.g. non-resonant Deck-like processes [83]. We expect a rather large
contribution of the Deck-like background to the ρπ S-wave signal [83] as well as to theK∗K̄
channel [159]. It might lead to a different branching ratio of ρπ and K∗K̄ channels than the
one measured in τ -decays.

• A large uncertainty comes from the definition and the line shape of the f0. As we discussed
already in Sec. 3.4, the separation of f0(980) out of the ππ interaction in the S-wave is
not well justified from the theory side. Therefore, the coupling constants used in the Flatté
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4.3 Validation using the COMPASS data

parametrization are not well established. The relative intensity is proportional to (g2
f0ππ

RK/π)2,
therefore, it could easily change by a factor of 4 depending on the input values. The systematic
uncertainty of the f0π P -wave due to the isobar parametrization is of the order of 20%, based
on systematic studies of Ref. [78].

• Lastly, we neglected other possible contributions to the f0π final states such as various
rescattering processes ξπ → f0π as well as the non-resonant production of f0π via e.g. the
Deck process. As shown in Fig. 4.13 the other rescattering processes are smooth and the phase
motion is slow in the energy range under study. There is no reason to expect sharp enhancements
in the projections due to the Deck process, however it might change the strength and shape
of the signal by interference. From the fact that a clean a1(1420) signal has been seen in the
f0π P -wave, we conclude that the other contributions are small. A factor of 2 uncertainty to the
signal strength can be estimated from the amount of the intensity required by the background
and interference in the mass-depend fit (e.g. compare the red and the blue line in Fig. 4.2).

4.3 Validation using the COMPASS data

To check our interpretation of the a1(1420) signal we performed a fit of the theoretical model presented
above to the COMPASS SDM simultaneously for all bins of t′. A minimal set of waves is selected:
the JPCM ε = 1++0+ f0π P -wave with the a1(1420) signal, the JPCM ε = 1++0+ ρπ S-wave as
an important reference wave for our interpretation, and the nearly background-free stable JPCM ε =
2++1+ ρπD-wave incorporated in order to keep an external phase anchor. The models for the
JPCM ε = 2++1+ ρπD-wave and the JPCM ε = 1++0+ ρπ S-wave are the same as in the fits of
Ref. [3, 124]: they are described in Sec. 3.3.3 by Eq. (3.30) for the JPCM ε = 1++0+ ρπ S-wave and
Eq. (3.31) for the JPCM ε = 2++1+ ρπD-wave. In our model, compared to the model of Ref. [3],
the Breit-Wigner amplitude for the JPCM ε = 1++0+ f0π P -wave is replaced by a product of the
a1(1260) propagator from the JPCM ε = 1++0+ ρπ S-wave shown in Eq. (3.30) and the amplitude
calculated for the triangle diagram (4.4). A coherent background in the parametrization of Eq. (3.29) is
added to all waves, however, the background in the JPCM ε = 1++0+ f0π P -wave is simplified with
b = c1 = c2 = 0. The models for different t′-slices are coupled via the resonance parameters of a1

and a2 common for all slices. The strength of the signal and the background components are left free
and complex in the fit. The fit model contained 134 free parameters. The range of the data is selected
individually of all three waves to include relevant points around the studied a1(1420) phenomena as
discussed. The fit procedure, studies of stability and uncertainties were performed by Mathias Wagner
as his master project (find detailed discussion of the fit in Mathias’ master thesis [143]). The analysis
was summarized in the COMPASS Release Note [160]. A single slice of the fit model overlapping the
data points from COMPASS SDM is presented in Fig. 4.15. We notice a very good agreement of the
model with the data given the simplicity of the approach and the size of the error bars. The solid bulks
of the fit are the JPCM ε = 1++0+ ρπ S-wave and the JPCM ε = 2++1+ ρπD-wave for which the
description is similar to the other studies [3, 161]. Although all parameters are released in the fit
simultaneously, the model of the JPCM ε = 1++0+ f0π P -wave seems to adjust in the fit based on
the intensity (plot [2, 2] of Fig. 4.15) and the relative phases (plots [1, 2] and [2, 3] of Fig. 4.15, which
are however correlated through the phase in plot [1, 3]) for nearly fixed JPCM ε = 1++0+ ρπ S-wave
and JPCM ε = 2++1+ ρπD-wave models. The calculated rescattering amplitude shown by the blue
curve in plot [2, 2] requires a little shift to higher energy provided through the interference with the
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Figure 4.15: The combined plot of the fit results for the first slice in t′ from Ref. [160]. The intensities of the
JPCM ε = 1++0+ ρπ S-wave, the JPCM ε = 1++0+ f0π P -wave, and the JPCM ε = 2++1+ ρπD-wave
are shown along the diagonal of the plot matrix. The off-diagonal plot [i, j] show the phases difference
ArgAj −ArgAi. The data points are results of the mass-independent PWA with statistical errors only. The
red line presents the complete model adjusted to the data while the blue and green lines show the signal and the
background components.

background shown by green curve. However the phase rise in the plot [1, 2] of the blue curve matches
the place where the rapid motion is seen in the data points. We realize how exactly the interference
with the background helps to change the motion of the phase looking at the Argand diagram in
Fig. 4.16. There, the rescattering amplitude develops a circle which closely reminds the classical
resonance circle. The background signal added coherently shifts every point collinearly as the phase
of it does not depend on the energy

√
s. The total sum of the fit residuals is approximately 17 000,

which on the largest extend comes from the description of the JPCM ε = 1++0+ ρπ S-wave and the
JPCM ε = 2++1+ ρπD-wave. To exclude these contributions from the estimation of the fit quality
we sum up the weighted residuals for the JPCM ε = 1++0+ f0π P -wave intensity and the phase
difference with respect to the JPCM ε = 1++0+ ρπ S-wave over all t′-slices. The degrees of freedom
are calculated counting for parameters of the JPCM ε = 1++0+ f0π P -wave only. We obtained the
ratio of the residuals divided by n.d.f , R(tr.)

red = 4.19. The number is high, however, the result cannot
be interpreted in a sense of probability due to the fact that the data points themselves have systematic
uncertainties that are not included in the fit.
The quality, though, can be estimated by a comparison with a similar fit in the alternative model.

The genuine resonance model similar to the one presented in Ref. [124] is considered. For this
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Figure 4.16: The Argand diagram for the JPCM ε = 1++0+ f0π P -wave. The phase is measured with
respect to the JPCM ε = 1++0+ ρπ S-wave. Two hypotheses are tested: the left plot is the result of the
fit with the rescattering amplitude to describe the signal, the right plot the result with the Breit-Wigner
parameterization of the signal. The data points are the result of the PWA in mass and t′ bins preformed by
COMPASS. The ones printed in black have been used for both fits while the grey ones are further away from the
signal region and have not been taken into account. The full amplitude from the fit of the intensities of the
JPCM ε = 1++0+ f0π P -wave and the J

PCM ε = 1++0+ ρπ S-wave waves and their relative phase is shown
as red curve. The signal contribution is shown in blue for both fits, the non-resonant background by green
arrows. It does not exhibit a phase motion but shifts the amplitude for both fits.

we replaced the rescattering amplitude by a relativistic Breit-Wigner amplitude and perform a fit
analogous to Fig. 4.15. In that case the model for the JPCM ε = 1++0+ f0π P -wave has two more
parameters, the mass and the width of the a1(1420) resonance, which adjust the position of the peak
in the signal amplitude. However, the quality of the fit did not improve, R(BW)

red = 4.3, due to a slightly
worse phase description in this case.

4.4 Conclusions

The a1(1420) is changing the way we identify hadronic states in the spectrum. The signal has all
attributes of the resonance: it was discovered in a PWA as an isolated peak with a significant motion
of the phase with respect to other waves. However, based on the performed studies we conclude that
the rescattering model is consistent with the observed features of the a1(1420). We find no need for
the new resonance signal a1(1420).
Nevertheless, given a simplicity of the approach on the side of the theoretical calculations as well

as the problems of the PWA model discussed in Sec. 3.4, we cannot completely exclude the existence
of an exotic a1(1420) state. In this respect, we outline further important steps of the investigation:

• The freed-isobar results, i.e. Fig. 3.18, open an extra dimension in the problem. Since the
rescattering effects influence the Dalitz plot distribution at the first place, it is extremely
important to look for effects predicated by the rescattering in the subchannel invariant mass
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distribution.

• The decay of τ → 3π ντ is a clear complementary experiment which allows us to study the
a1(1420) effect. An observation of the JPCM ε = 1++0+ f0π P -wave would clean up the list
of interpretations at the first place, e.g. the Basdevant-Berger model [140] requires Deck-process
which is absent in the τ -decay. Due to the simple production mechanism the dynamical models
of the partial waves are simpler.

• The framework of the rescattering corrections has been further developed in order to make
qualitative predictions and comparisons. Two main questions, which have not been addressed
rigorously yet, are effects of the particles’ spin and relative orbital angular momentum, and the
importance of the higher order rescattering.

4.5 Outlook: Systematic approach to the rescattering

In this section we present a construction of the theoretical framework based on unitarity and analytic
continuation which will allow to systematically address the final-state interaction (rescattering) in a
system of three particles. The approach was named after Khuri and Treiman who first applied it for
the decayK → 3π [148]. The formalism was further developed in Ref. [53, 149, 162–164]. The idea
of the approach is to enforce the two-body unitarity relation to the subchannel interactions. Starting
with the general isobar ansatz (3.7) we are going to relate the discontinuity of the isobar partial wave
amplitude to the cross channel projections. A construction based on the dispersive relations leads to
integral equations for the isobar amplitude. The total invariant mass is used as a tuning parameter
which connects the physical scattering domain when s is small with the decay domain when s goes
above the three-particle threshold.
The KT technique has been already applied to many decays: ω/φ [165, 166], η → 3π [167–169],

η′ → ηππ [170], D+ → K−π+π+ [171], D+ → KSπ
0π+ [172]. However, it remains a state of art

since for every individual case the formalism differs a little bit due to a different total JPC of the
system and different sets of isobar partial waves contributing to the final state. Here, we demonstrate
how the formalism can be generalized using the advantages of helicity basis and LS-decomposition.
We calculate the cross channel projections for arbitrary partial waves in a system of three pions under
exact isospin symmetry.
A common procedure to build the model for the decay amplitude starts by writing all possible

covariant structures which contract the polarization tensor of the decaying particle momenta of the
final-state particles. Every covariant construction is supplied with a scalar amplitude which is a subject
for the unitarity constraints. For example [9, 165, 173]:

Aω→3π = A(σ1, σ2, σ3) εαβγδε
α
ωp

β
1p

γ
2p
δ
3, (4.17)

Aa1→3π = B(σ1, σ2, σ3) εµa1
(p1 − p2)µ + C(σ1, σ2, σ3) εµa1

(p2 − p3)µ, (4.18)

where A, B, and C are scalar functions. The main reason of complications in the customary
construction is that one needs to calculate the partial wave projections for every tensor structure which
appears in the covariant amplitude.

As a rather general case, we consider a three-pion production amplitude, where possible values of
the total angular momentum J of the 3π system, with a projectionM , are allowed. (The diffractive
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production π p→ 3π p′, measured at COMPASS is a good example of the reaction where all values
of J andM are allowed) We use the same notations for the three-particle partial waves as discussed in
Sec. 3.3.1, and in Appendix C.1: S is the orbital angular momentum of ππ, L stands for the relative
orbital momentum between the ππ subsystem and the remaining pion. We will, however, drop the
isospin coefficients for simplicity. These coefficients are presented in Appendix C.1, and it is not
difficult to bring them back. The production amplitude is denoted by A(τ) (cf. Eq. (3.5)), where
the kinematic variables τ are the subchannel invariant mass squared, σi and two pairs of spherical
angles as discussed in Eq. (3.2). We will omit the t and s dependence of the amplitude A as these
quantities enter as parameters in the formalism. The general constraint on the s dependence is subject
of Chapter 7.

An expansion of the three-particle state leads to the general isobar decomposition (the decomposition
for the π−π+π− system was discussed in Sec. 3.3.1, see Eq. (6.6) with Eq. (3.7) and Eq. (3.7)):

A(τ) =
∑

JMLS

[
F JMLS (σ1)ZJM∗LS (Ω1,Ω23)

+ F JMLS (σ2)ZJM∗LS (Ω2,Ω31) + F JMLS (σ3)ZJM∗LS (Ω3,Ω12)

]
, (4.19)

where the angular function ZJMLS is given by Eq. (3.9). Every isobar partial wave series is truncated
for all channels (1), (2), and (3). We notice here that the full amplitude includes an infinite number of
partial waves whatever channel is considered due to the cross-channel projections of the isobar partial
wave. In Eq. (4.19), the same partial wave projected isobar amplitude F JMLS enters to all channels
since the final-state particles are identical.
The projection of the full amplitude to the channel (1) partial waves is found by integrating over

two pairs of the spherical angles, Ω1 and Ω23:

AJMLS (σ1) =

∫
dΩ1

4π

dΩ23

4π
ZJMLS A(τ) (4.20)

= F JMLS (σ1) +

∫
dΩ1

4π

dΩ23

4π
ZJMLS

∑

J
′
M
′
L
′
S
′

[
F J
′
M
′

L
′
S
′ (σ2)ZJ

′
M
′∗

L
′
S
′ (Ω2,Ω31) + (

−→
123)

]

︸ ︷︷ ︸
F̂
JM
LS (σ1)

,

where F̂ JMLS is a projection of cross channels, (
−→
123) indicates a symmetric term obtained by the

1→ 2→ 3→ 1 permutation from the first term in the square bracket. The integral in Eq. (4.20) can
be simplified using properties of the Wigner D-functions and relations between rotations which are
discussed in Ref. [91, 96] and are detailed in Appendix C.3. It reads:

∑

λ

DJ
Mλ(φ3, θ3, 0)DS

λ0(φ12, θ12, 0) =
∑

λ

DJ
Mλ(φ3, θ3, φ12)dSλ0(θ12)

=
∑

λν

DJ
Mν(φ1, θ1, φ23)dJνλ(θ̂3)dSλ0(θ12)

=
∑

λν

DJ
Mλ(φ1, θ1, φ23)dJλν(θ̂3)dSν0(θ12). (4.21)
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The integrals over dθ1, dφ1, and dφ23 in Eq. (4.20) drop due to orthogonality of the D-functions. 5

We can also immediately conclude that only waves with the same J ′ = J ,M ′ = M contribute to the
inhomogeneous term of F̂ JMLS .

F̂ JMLS (σ1) =
∑

L
′
S
′

∑

λν

√
(2L+ 1)(2S + 1)(2L′ + 1)(2S′ + 1)

(2J + 1)2 〈L, 0;S, λ |J, λ〉
〈
L′, 0;S′, ν |J, ν〉

×
∫

d cos θ23

2

[
F JM
L
′
S
′(σ3) dSλ0(θ23)dJλν(θ̂3)dS

′

ν0(θ12)

+ (−1)λ+νF JM
L
′
S
′(σ2) dSλ0(θ23)dJλν(θ̂2)dS

′

ν0(θ31)

]
, (4.23)

where the angles θ̂3, θ12, θ̂2, and θ31 can be expressed as functions of σ1 and θ23, or equivalently as
functions of invariants σ1, σ2 and σ3 as shown in Appendix C.3.

The unitarity constraint for the amplitude AJMLS analytically continued from the scattering domain
reads:

dσA
JM
LS (s, σ) = t†S(σ) ρ(σ)AJMLS (s, σ), (4.24)

where tS(σ) is the partial wave projected ππ scattering amplitude (to avoid confusion with the
(S = 0)-wave we remind the reader that S stands for the (ππ)-orbital angular momentum). Eq. (4.24)
is nothing else but the production unitarity equation discussed in Sec. 2.3, cf. Eq. (2.34).

To relate the discontinuity of the amplitudeAJMLS to dσF
JM
LS we need to make one assumption on the

analytic structure of F JMLS : the inhomogeneous term F̂ JMLS does not contribute to the right-hand-side
discontinuity of AJMLS . The unitarity equation for the isobar partial wave becomes, (cf. Eq. (2.37))

dσF
JM
LS (σ) = i t†S(σ) ρ(σ) (F JMLS (σ) + F̂ JMLS (σ)). (4.25)

This equation can be inverted the same way as we demonstrated in Sec. 2.3. As a demonstration, we
make a few unnecessary assumptions and write the final form of the integral equation.

1. tS(σ) does not have a left-hand cut.

2. F̂ JMLS (σ) vanishes faster than 1/σ when σ →∞.

3. For the demonstration purposes, we are going to ignore the kinematic singularities of the of the
function F JMLS (σ) and tS(σ). 6

5 As a remark we notice that by applying a transformation from Eq. (4.21) to the original decomposition in Eq. (4.19), a
common rotation functionDJ∗

Mλ(φ1, θ1, φ23) can be pulled out of the square bracket:

A(τ) =
∑
JMLS

√
(2L+ 1)(2S + 1)

∑
λν

D
J∗
Mλ(φ1, θ1, φ23)×

[
F
JM
LS (σ1) 〈L, 0;S, λ |J, λ〉 δλνd

S
ν0(θ23)

+ F
JM
LS (σ2) 〈L, 0;S, ν |J, ν〉 dSλν(θ̂3)d

S
ν0(θ12)

+ F
JM
LS (σ3)(−1)

λ+ν 〈L, 0;S, ν |J, ν〉 dSλν(θ̂2)d
S
ν0(θ31)

]
. (4.22)

When the orientation of the 3π production plane is not measured, the common rotation factor can be omitted.
6 A consistent treatment of these singularities is, perhaps, the most tedious part of the problem (e.g. see the analysis of the
kinematic singularities in B decays [2] and Λb decays [13])
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Figure 4.17: Diagrammatic representation of the KT equations (see Eq. (4.26)). The thick red line represents
the amplitude F JMLS , the green double line denotes tS(σ), the large black circle replaces CJMLS .

The equation for the amplitude F JMLS then reads:

F JMLS (σ) = tS(σ)

[
CJMLS (σ) +

1

2π

∫ ∞

4m
2
π

ρ(σ′)F̂ JMLS (σ′)

σ′ − σ
dσ′
]
, (4.26)

where CJMLS (σ) is an entire function of σ. The inhomogeneous term, F̂ JMLS , which stands under the
integral, is related to F JMLS itself by Eq. (4.23) (see also Fig. 4.17), therefore, Eq. (4.26) is an integral
equation. We see that these equations have a recursive form, and hence, can be solved by iterations.
Let us suppose thatCJMLS = 1, then, on the first interaction (F JMLS )(0) takes the form of the known (ππ)
amplitude, tS(σ), for all subchannels. The partial wave projection to one of the channels, however,
includes not only the direct channel tS(σ), but also cross channel projections, Eq. (4.20). Such a
partial wave projection amplitude cannot satisfy the unitary since tS(σ) by itself does. Hence, we have
to modify the amplitude (F JMLS )(0) in order to compensate (see discussion about Schmid cancellation
in Sec. 4.2.4) for the cross channel projections, by adding a triangle diagram (second iteration). Since
the cross channel amplitudes are modified accordingly, the projections of them change and we have to
add the compensation term again which leads to the third iteration, and so on.
By a simple comparison, one can validate that the expression for the triangle diagram, calculated

using the dispersive approach in Sec. 4.2.3, matches the first iteration of Eq. (4.26). The inhomogeneous
term is a partial wave projection to theKK̄-channel of the cross channel, withKπ amplitude in the
πKK̄ system.
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CHAPTER 5

Coherent background: non-resonance reactions

5.1 One pion exchange process
in diffractive production of a three-pion system

Exchange processes, especially the one-pion exchange, play very important roles for the 3π diffractive
production at COMPASS. We have already noticed in Fig. 3.8 that the physics regime for the 3π
production changes for s ≡ m3π > 3 GeV. In this region, the cross-section is dominated by near-to-
forward and the near-to-backward scattering in the system of the ξπ− where ξ is a π+π−-resonance
(e.g. the system ρπ selected for the Fig. 3.8). For the process where π− scatters backwards in the CM
frame of ξπ−, it is straightforward to identify the closest singularity of the amplitude which governs
the scattering. The one-pion exchange process embedded in the reaction π− p→ π−π+π− p shown
in Fig. 5.1 contains a pole in the transferred momentum. Since the transferred momentum is bounded
to be negative, the pion pole singularity is located outside of the physical region, however, still in
the close proximity due to the small mass of the pion. The dominance of the exchange leads to the
increase of the number of significant partial waves. A qualitative discussion of the relation is given by
V. Gribov in his lecture series [39]. Considering the four-point reaction (which would be πP→ ξπ in
our case), the mass of the exchange particle can be related to the interaction radius ρ0 as ρ0 ≈ 1/mπ.
It determines the total cross section as σ0 ≈ 2πρ2

0. From the other side, we can find an upper limit to
the cross-section which includes J0-partial waves in the inelastic limit (assumed to the equal to 8π, i.e.
in the center of the unitary Argand circle) as σ0 / 4πJ2

0/s [39]. It gives an estimate for the number
of partial waves one can expect to be significant:

J0 '
√
s/(2mπ). (5.1)

For
√
s = 3 GeV, the limit J0 is already 10 which roughly matches our observation with the

COMPASS data. In order to study the physics of resonances observed in partial waves, we are bound
to understand the partial-wave projections of this exchange process. Our goal in this chapter is to
construct a realistic model of the pion exchange for the reaction π− p → π−π+π− p (see Fig. 3.8)
and estimate its contribution to the COMPASS partial-wave results in the resonance region. The
importance of this process for the diffractive reactions was first pointed out by R. Deck [40]. Later,
extensive studies of the Deck model and the partial wave projections were performed by Ascoli et
al. [91], which we closely follow here, and the ACCMOR collaboration [119]. The interplay between
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the “direct” resonance production and the Deck process was discussed in Ref. [62, 174–178] using the
unitarization method presented in Sec. 2.3. The latter is left outside of the scope of this chapter and we
focus on the studies of the process shown in Fig. 5.1, which will be generally called the Deck process.
We present a systematic study of the Deck amplitude in the kinematic domain of the COMPASS

experiment concentrating on the relevance of this process to the resonance region in the 3π system. In
Sec. 5.2 we build the amplitude using the known ππ interaction in partial waves and the πp scattering
amplitude in the high energy limit. In Sec. 5.3 we perform an analytic projection of the amplitude to
the partial waves. The integrated intensities of waves are compared to the intensities extracted from
the COMPASS data [78]. In Sec. 5.4 we investigate an expansion of the Deck amplitude in a truncated
partial wave basis used for COMPASS PWA. We discuss effects of the fixed predetermined Isobar
parametrization as well as an artificial “leakage” between waves caused by the cross-correlations
between the waves due to the π−-symmetrization of the π−π+π− production amplitude.

5.2 The Deck amplitude

p, pt p′, pr

π−b , pb π−3 , p3

π+2 , p2

π−1 , p1

t

π+e , pe

σ1

sπ1p

s0

t1

IP

π− ξ

π−
1

π+ ←− FF (t1)
m2

π−t1

dS0λ(ψ(s, σ1, t1))

TMpπ (t, s, t1)

Figure 5.1: Left plot: One-pion-exchange diagram for the diffractive peripheral production of the three pion final
state in the pion beam. Right plot: A schematic representation of the reduced Deck amplitude (cf. Eq. (5.23)).
The ππ-scattering amplitude is amputated, and Tπp is projected to the states with a defined magnetic quantum
numberM . The remaining components of the amplitude factors can be identified with the vertices and the
propagator.

The amplitude for the process is written as a product of three parts: the pion-proton scattering
amplitude, the pion-pion scattering amplitude, and the pion propagator.

B
(1)

λ
′
λ

= (Tπ1p
)λ′λ

FF (t1)

m2
π − t1

Tππ (5.2)

where λ and λ′ are helicities of the target proton and the recoil respectively, FF (t1) stands for the
form-factor which modifies the behavior of the pion propagator far away from the pion pole. The
superscript in the amplitude B(1)

λ
′
λ
indicates the index of the pion, that is produced in the proton-pion

subprocess. Tππ denotes the π−b π
+
e → π−π+ scattering amplitude (see Fig. 5.1). For the calculation

of the ππ scattering and the πp scattering with a virtual pion, we use on-shell dynamic amplitudes
since the off-shell parametrizations are more complicated in general, and are not well established.
Modifications to the simple pion propagator, which account for off-shellness and other exchanges, are
discussed in Sec. 5.2.3.
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Due to the Bose symmetry between the two π− in the final state, the total amplitude of the process
is symmetrized:

Bλ
′
λ = B

(1)

λ
′
λ

+ B
(3)

λ
′
λ
. (5.3)

We focus on the construction of the first term B
(1)

λ
′
λ
. Thus, in the following discussion of this section

the variable sπp refers to the invariant mass of the recoil proton p′ and the bachelor pion π1 which is
used in the amplitude in Eq. (5.2) and in Fig. 5.1.

5.2.1 Pion-pion scattering

The ππ scattering amplitude at low energy is well described by a sum of a few partial waves: we are
using S ≤ 2, with S being the orbital angular momentum.

Tππ(σ, cos θππ) =
∑

S

C2
S(2S + 1)tS(σ)PS(cos θππ), (5.4)

where tS(σ) is the partial wave amplitudes. Although the exchange pion is off-shell (i.e. t1 6= m2
π), we

neglect the dependence on the virtuality of the exchange pion and consider the off-shell parametrizations.
The angle θππ is defined as an angle between vectors of pions π−b and π− in the ππ rest frame,
CS = 〈1,−1; 1,+1 |I, 0〉 is an isospin Clebsch-Gordan coefficient where the negative pion appears
first, consistently with the angular decomposition. The partial wave amplitude tS(σ) at the threshold
is proportional to the break-up momentum k to the power (2S). It is incorporated explicitly to the
model:

tS(σ) = hS((kR)2) t̂S(σ)hS((kR)2), (5.5)

where t̂S(σ) is a singularity free partial-wave amplitude. The hS(z) function includes threshold factors

and the Blatt-Weisskopf factors (see Appendix E.3). k =

√
σ/2−m2

π is the break-up momentum for
the initial and the final pion pair. We use a standard value for the size parameter R = 5 GeV−1 [179].
The partial waves are parametrized as follows:

• [ππ]S-wave is from the analysis of Ref. [116]; it is shown in Fig. 3.16 by the dashed line.

• [ππ]P -wave is the ρ-meson represented by the relativistic Breit-Wigner amplitude; it is the same
as used in the COMPASS basis. It is described in Appendix (D) and plotted in Fig. 3.11.

• [ππ]D-wave is the f2-meson; it is parametrized by the Breit-Wigner amplitude with a constant
width as given in Eq. (D.2). The parameters are chosen consistently with the COMPASS PWA.
The absolute value squared and the phase of the amplitude are shown in Fig. 3.11.

We can already foresee some problem of decomposing those amplitude in the COMPASS basis: the
[ππ]S wave does not recall any of three scalar isobars used in the COMPASS basis. For the P -and
D-wave we select exactly the same parametrizations, nevertheless, they are modified by the pion
exchange propagator in Eq. (5.2). Therefore, the resulting line shapes do not match the partial-wave
basis functions.
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5.2.2 Proton-pion amplitude

As suggested in Ref. [83], the high energy limit of the helicity amplitudes in the Gottfried-Jackson
frame can be approximated as follows.

(Tπp)−+ = (Tπp)+− ≈ 0, (Tπp)++ = (Tπp)−− ≈ sπpe−βt, (5.6)

where the ± signs indicate proton helicities, ±1/2, t is a transferred momentum, t = (pt − pr)
2, and

β is a slope parameter. For the latter, we use the same value β = 8 GeV−2 as in Ref. [3], although this
value does not have any influence of the three-pion spectrum which we are investigating in this chapter.

We can realize the same expression by considering a simple model of the Pomeron exchange for the
πp scattering at high energy. The Pomeron trajectory, in coordinates of invariant mass squared t ≡M2

P
against angular momentum Je, crosses the smallest integer value Je = 1 atM2

P = 0. Therefore, in
the physical region t ≈ 0, we can view the Pomeron exchange as an exchange of the vector particle
(see more discussion about the Pomeron treatment in Ref. [80, 180, 181]). We write the πp elastic
scattering amplitude with a vector exchange as a product of the simplest spinor-spinor-vector vertex for
Pomeron-proton coupling, a tensor of second rank which is orthogonal to pP = pr − pt as the vector
propagator, and the simplest scalar-scalar-vector vertex for the pion-Pomeron coupling. Omitting
constant irrelevant factors, it reads,

(Tπp)λ′λ = ū(pr, λ
′)
[
γµF (t)

]
u(pt, λ)

[
gµν − pµPp

ν
P

p2
P

]
(p1 − pe)ν

2
, (5.7)

where u(ū) is a Dirac spinor of the target (recoil) proton, the momenta are defined in Fig. 5.1, and
F (t) accounts for the t-dependence dominated by the proton form-factor and approximated by an
exponential term, F (t) = exp(−βt). When we assume the scale hierarchy s0 � s � σ, t, t1, the
momenta in the GJ-frame are approximated by |~pt| ≈ |~pr| ∝

√
s0/2, and |~p1| ≈ |~pe| ∝

√
s/2. A

series of algebraic manipulations results into the simple asymptotic relation, ū(pr, λ
′)γµu(pt, λ) =

2pµt δλ′λ +O((ss0)1/2).

(Tπp)++ ≈ 2
(pt + pr)µ

2

[
gµν − pµPp

ν
P

p2
P

]
(p1 − pe)ν

2
F (t), (5.8)

where we replaced 2pt with pr + pt on the left side of the propagator by zero-addition pP = pr − pt

since the expression in the squared brackets is orthogonal to pP. We see that, in the high energy
limit, the structure of the expression is the same as if the proton were a scalar particle. Assuming the
particles to be massless, we express Eq. (5.8) through invariant variables.

(Tπp)++ ≈ −
(pr + p1)2 − (pt − p1)2

2
F (t) ≈ −sπp

2
F (t). (5.9)

Interestingly, Eq. (5.8) a matrix element for the scattering of scalar particles in s-channel via a vector
resonance, which gives (t− u)/2, with t and u being the corresponding Mandelstam variables [59].
The expression (5.9) matches Eq. (5.6), up to irrelevant numerical factor, and completes the example.
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5.2.3 Pion propagator

The simplest model for the pion exchange is a pole term 1/(m2
π − t1) used in Eq. (5.2). It is only good

approximation in the vicinity of this pole. In the kinematic domain of our diffractive reaction, the pion
propagator needs be modified in order to make the model more realistic [90, 119]. One problem with
the Standard Deck model is a dominance of S-wave at high energy [174, 178]. It can be seen in the
high energy approximation (cf. Eq. (5.19)),

sπp ≈
s0(m2

π − t1)

s−m2
π

(5.10)

which cancels the pion pole and remove the dependence on t1, i.e. the scattering angle (see also
Ref. [175]).

There are two common modifications of the pion propagator: reggezation and form-factors, which
we consider as two alternative models. The reggezation is discussed in Ref. [90, 177, 178]; it suggests
to modify the pion propagator as follows.

1

m2
π − t1

→ e−iπα(t1)/2

m2
π − t1

(
s′ − u′
2ssc

)α(t1)

, (5.11)

where α(t1) = t1−m2
π, ssc = 1 GeV2 is a scale parameter, s′, u′ are Mandelstam variables calculated

for the 2→ 2 kinematics, (s′−u′)/2 = s+m2
π + (t1− t− sπp). The phase factor exp(−iπα(t1)/2)

has a large impact to the line shape of the amplitude, as well as to the phases of partial waves.

A modification of the pion propagator by a form-factor was suggested in Ref. [119]. An additional
factor exp(b t1) is added to the numerator to damp the amplitude. In the original analysis of the
ACCMOR collaboration, the slope parameter bACCMOR = 2 GeV−2 was adjusted by comparison to
the data. We use a slightly different value b = 1.7 GeV−2 to be compatible with a model used in
Ref. [3].

To summarize we outline three models for the numerator of the pion propagator FF (t1):

Standard Deck FF (I) = 1, (5.12)

Reggeized Deck FF (II) = e−iπα(t1)/2

(
s′ − u′
2ssc

)α(t1)

,

Form-Factored Deck FF (III) = ebt1 , b = 1.7 GeV−2,

and the explicit expression for the amplitude in Eq. (5.2) is

B(1)(t, s, τ1) = sπpF (t)
FF (t1)

m2
π − t1

[
2

3
t(σ1,f0)(σ1) (5.13)

− 3 t(ρ)(σ1, t1)P1(cos θππ) +
10

3
t(f2)(σ1, t1)P2(cos θππ)

]
.

The differential distribution of the “Standard Deck” amplitude is shown in Fig. 5.2.
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The sum

S=1

S=2

S=0

Figure 5.2: The ππ spectrum in the Deck model. The distribution d3Γ/(dt ds dσ) is calculated using a single
non-symmetrized term B(1) from Eq. (5.2) for s = (1.5 GeV)2, t = 0.1 GeV2. The contributions from the
different isobars are shown by different colors. The differential distribution for the sum is shown by the blue
area.

5.3 The partial-wave expansion of the Deck amplitude

It is important to realize that the transferred momentum t1 determines the scattering angle of the
Isobar in the 3π rest frame, and, therefore, the pion pole 1/(m2

π − t1) produces an infinite series of
the partial waves. An important question is how many of those waves are significant.

The permutation symmetry of the Deck amplitude in Eq. (5.3) matches the symmetry of the basis
in Eq. (3.6). The expansion in the helicity basis takes the form:

B(t, s, τ) =
∑

JMSλ

[
BJM
Sλ (t, s, σ1)ZJMSλ (Ω1,Ω23) + BJM

Sλ (t, s, σ3)ZJMSλ (Ω3,Ω21)
]
, (5.14)

The projectionsBJM
Sλ can be found by integrating the non-symmetrized amplitude (5.13) over four

angles with basis angular functions ZJMSλ (Ω1,Ω23). It reads,

BJM
λS (t, s, σ1) =

∫
dΩ1

4π

dΩ23

4π
B(1)(t, s, σ1,Ω1,Ω23)ZJMλS (Ω1,Ω23), (5.15)

=
√

(2J + 1)(2S + 1)

∫
dΩ1

4π

dΩ23

4π
B(1)DJ

Mλ(Ω1)DS
λ0(Ω23), (5.16)

where the notations are the same as introduced in Eq. (3.2). The arguments of the angular functions
ZJMSλ are the spherical angles which describe the decay chain as shown in Fig. 5.3: Ωk (one index) are
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π+
2 , ~p2
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3 , ~p3

~pb

ψ

θ23φ23

xH

zH
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Figure 5.3: Definition of angles used in the calculations (cf. Fig. 3.3). The left plot presents the definitions of the
angles in the GJ-frame for the reaction π−b pt → π−1 π

+
2 π
−
3 pr. The double line shows a combined momentum of

particles 2 and 3, the spherical angles of which are denoted by Ω1 = (θ1, φ1). The right plot shows the helicity
frame of (23)-system where zH -axis is defined along −~p1, and the yH axis is set by the direction on ~p1 × ~pb.
The spherical angles of the of the vector ~p2 are denoted by Ω23 = (θ23, φ23).

angles of the Isobar in the 3π-rest frame (particularly, the GJ frame), and Ωij are angles of the a pion
from the Isobar decay in the two-pion rest frame (the helicity frame of the Isobar). The projections to
the canonical basis and the reflectivity basis used by the COMPASS analysis can be found by linear
compositions of BJM

λS according to Eq. (3.9) and Eq. (3.11). Since we are interested in a calculation
of the total intensity, it is easier to work with the helicity basis, the total intensity requires a sum over
all possible value of the Isobar helicity λ.
For the projections it is clear that the Isobar with spin S suppose to contribute to the partial

waves with the same orbital momentum S between two pions. However, it is not straightforward
to demonstrate the orthogonality since the expansion angles in ZJMSλ and Tππ are different: the
partial-wave expansion in Eq. (5.13) is performed using the angle θππ, between the beam pion and π−3 .
The projection angles, Ω23 in Eq. (5.15) are defined with respect to the z-axis in the same π+

2 π
−
3 rest

frame that is particularly oriented (zH ↑↑ −~p1, yH ↑↑ ( ~pb × zH), see Fig. 5.3). The relation between
the angular functions is found in Ref. [91]:

PS(cos θππ) = (−1)−SPS(− cos θππ) = (−1)−S
∑

λ

dS0λ(ψ)DS∗
λ0 (Ω23), (5.17)

where we changed the argument of the Legendre polynomial to a cosine of the angle between the beam
and the π+, that is π − θππ. The properties of the Wigner D-functions were used to relate this angle
with the variables of the basis. The additional angle ψ is the polar angle of pb in the (23)-rest frame
as shown in Fig. 5.3.

cosψ =
(s+ σ1 −m2

π)(t1 + σ1 −m2
π)− 2σ1(t+ σ1 − 2m2

π)

λ1/2(s, σ1,m
2
π)λ1/2(t1,m

2
π, σ1)

(5.18)

An integral over the angle φ1 in Eq. (5.15) projects the amplitude to the states M of the total
angular momentum J . This integral can be performed analytically because the angle φ1 enters only in
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Chapter 5 Coherent background: non-resonance reactions

the expression for sπp. Using the momenta and angles defined in the GJ frame (see the left plot of
Fig. 5.3), we write:

sπp = (pr + p1)2

= m2
p +m2

π + 2E′rE
′
3 − 2|~pr

′||~p′3|(sin θ1 cosφ1 sin γ + cos θ1 cos γ), (5.19)

where the energies areE′r = (s0−s−m2
p)/(2

√
s) andE′3 = (s+m2

π−σ1)/(2
√
s), as one can find by

computing the expressions s0 = (pr + p3π)2 and σ1 = (p3π− p1)2 in the GJ-frame. The momenta are
equal to |~pr

′| = λ1/2(s0, s,m
2
p)/(2

√
s), |~p′3| = λ1/2(s, σ1,m

2
π)/(2

√
s). The angle γ is an additional

angle to the polar angle of ~pr, it can be found using (pb − pr)
2 = u = 2m2

p + s + m2
π − s0 − t

evaluated in the GJ-frame,

cos γ =
2s(s0 + t− s−m2

p)− (s+m2
π − t)(s0 − s−m2

p)

λ1/2(s,m2
π, t)λ

1/2(s0, s,m
2
p)

−−−−−−−→
t,m

2�s�s0
1, (5.20)

where we indicated the limit of peripheral scattering at high energy. Now, the integral over the dφ1 is
straightforward to calculate: the amplitude Tπp can be written as T

0
πp + 2T 1

πp cosφ1;

TMπp =

∫
dφ1

2π
Tπp(φ1)e−iMφ1 =





T 0
πp, ifM = 0,

T 1
πp, ifM = ±1,

0, if |M | > 1.

(5.21)

We defined the projected amplitude TMπp , that follows from Eq. (5.19)

T 0
πp = (m2

p +m2
π + 2E′rE

′
3 − 2|~pr

′||~p′3| cos θ1 cos γ)F (t) −−−−−−−→
t,m

2�s�s0

s0

2
(1− cos θ1)F (t),

(5.22a)

T 1
πp = −|~pr

′||~p′3| sin θ1 sin γ F (t) −−−−−−−→
t,m

2�s�s0
0. (5.22b)

An interesting consequence of our high energy model for the pion-proton scattering is a vanishing of
M = 1 projections and an absence of the higher projections,M > 1. 1 In the high energy limit of T 0

πp,
we recognize the (1− cos θ1) term which supposedly cancels the pion pole as argued in Ref. [174].

The remaining expression for the partial wave projected Deck amplitudeBJM
Sλ includes a single

integral over the scattering angle θ1, that parametrizes the transferred momentum t1 as shown by
Eq. (3.3):

BJM
Sλ (t, s, σ1) = (−1)S CS t̂S(σ1)hS((kR)2)

√
2J + 1

∫
d cos θ1

2
dJMλ(θ1)B̂M

Sλ(t, s, σ1, t1),

(5.23)
where B̂M

Sλ denotes the amputated pion exchange process, hS((kR)2) is the Blatt-Weisskopf factors
introduced in Eq. (5.5). The amplitude B̂M

Sλ contains exactly the factors which one would naively

1 As a remark we notice that in the data of the COMPASS experiment the fraction of theM = 2 waves is less than 0.6%. It
mostly comes from the JPCM ε

= 2
++

2
+
ρπD-wave dominated by the a2 resonance (see intensity fractions in Table V

of Ref. [78]).
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5.3 The partial-wave expansion of the Deck amplitude
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Figure 5.4: Approximations of the Deck amplitude by a partial wave series using the analytic decomposition
from Sec. 5.3 calculated for fixed values of

√
s = 5 GeV,√σ1 = mρ, t = −0.1. The thick solid line (behind

the colored lines except the region cos θ1 ≈ 1) shows a full amplitude B̂M
Sλ for S = M = λ = 0, while the

colored lines present an approximation of the curve by a sum of J + 1 Legendre polynomials (cf. Eq. (5.23)
with dj00 = Pj). The inset plot shows the expansion coefficients BjM

Sλ for the first twenty projections.

expect considering a diagram on the right panel of Fig. 5.1,

B̂M
Sλ(t, s, σ1, t1) =

√
2S + 1CS hS((kR)2)dS0λ(ψ)

FF (t1)

m2
π − t1

TMπp . (5.24)

The partial-wave projections for different models reveal significant differences. Firstly, we look at
the amplitude at high energy where we have a better intuition for the results. Fig. 5.4 shows a typical
behavior of the expansion coefficients for the two models, I and III , from Eq. (5.12). We find that, for
the “Standard Deck” without modifications of the pion pole (model-I), the pion pole is not canceled
exactly (see the left panel of Fig. 5.4), i.e. the forward peak is well present. However, the amplitude
does not vanish away from the forward region. The J = 0 wave, which corresponds to a homogeneous
distribution, dominates over all other waves. The picture is very different for the model-III , with a
form-factor suppression, shown on the right panel of Fig. 5.4. The forward peak, seen in the angular
distributions, requires a large number of waves to be described. The sum of partial waves up to J = 5
is shown in Fig. 5.4 by the red line. It gives a sufficient description neither of Model-I on the left plot,
nor of Model-III on the right plot. The Model-II with the Reggeized pion propagator shows a similar
behavior as Model-III , however, the expansion coefficients are complex.

Having established the high energy behavior of partial wave projections we move to the low energy
region which is the most important for our ultimate goal of spectroscopy studies. We suspect that
many features found in the partial-wave analysis of the 3π dataset of the COMPASS experiment can
be identified with the projections of the Deck model. To perform a direct comparison, we calculate
the total intensity of the partial waves for different JPC sectors and overlap them with the data as
shown in Fig. 5.5. The total cross section is evaluated by squaring the amplitude and integrating over
the phase space. We calculate the intensity distribution according to Eq. (3.18) and split it into the
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Chapter 5 Coherent background: non-resonance reactions

contributions from the different waves:

IB3π(s, t) ≈ √s
∑

JMλS

∫ ∣∣∣BJM
λS Z

JM
λS

∣∣∣
2
dΦ3 (5.25)

=
∑

J

√
s

(8π)2s

∫ (
√
s−mπ)

2

4m
2
π

dσ
2π

λ1/2(σ, s,m2
π)λ1/2(σ,m2

π,m
2
π)

σ

∑

MλS

∣∣∣BJM
λS (t, s, σ)

∣∣∣
2
,

(5.26)

where we neglected interference terms to simplify the phase space integration. This approximation
affects the JPC = 0−+ sector the most, its impact to the other sectors is small (one sees it indirectly
by comparing the left and the middle panels of Fig. 5.6).
We normalize the models (a single normalization constant for every of the three models) to to

contribute a certain fraction of the total intensity of the COMPASS data. This normalization factors
scales all projections simultaneously. This fraction is set to 30% as a compromise between an
adjustment of the JPC = 4−+ and JPC = 3−+ as shown in Fig. 5.5.
All projections have a bump-like structure: there is a low-energy rise which is related to the

threshold behavior; the intensity distribution peaks at the region 1 . . . 2 GeV, as higher as bigger J is;
then, it starts falling and approaching its asymptotic limit. The “Standard Deck” model produces the
broadest structures for all projections. For this model, the sum of waves with J = 0 is huge above
2GeV, that clearly contradicts the data. A significance of the J = 0 would mean that intensity does
not vanish for the cos θ1 = 0 (as in Fig. 5.4), while it is the opposite in the data (see cos θGJ ×m3π

distribution in Fig. 3.8).
The models II and III have similar projections which suggest a reasonable background for

JPC = 1++, 2−+. They also give a good justification for the JPC = 4++ and 3−+ distributions.
For the JPC = 0−+, the enhancement in the data at 1.3 GeV could be suspected to be the π(1300),
previously observed in pp̄ and e+e− annihilation as well as in diffraction [26]. 2 However, we see that
a large fraction of this peak have to be attributed to the background. An interesting question for the
further investigation is a sensitivity of this intensity to the parameters of the model. A non-negligible
intensity of the Deck process is found in the exotic sector JPC = 1−+. It is in agreement with
the result of the mass-dependent fit in Ref. [3] where a phenomenological parametrization of the
background was used. The background intensity at 1.2GeV hinders precise extraction of the resonance
parameters of the exotic π1(1600).

5.4 Decomposition in the COMPASS basis

An expansion of the Deck amplitude using the COMPASS basis is not strictly equivalent to the
partial-wave projections. The main reason is a predetermined

√
σ ≡ mππ dependence of the basis

2 This state is not well established; measurements of the resonance parameters are controversial [182, 183]. In the
COMPASS analysis [3], the wave JPCM ε

= 0
−+

0
+

(ππ)Sπ S-wave was not included in the final fit due to the
difficulties in describing it either by a resonance or a background component. The wave does not contain a significant
phase motion around 1.3 GeV, the observed t-dependence of the broad structure, which is reminiscent of the π(1300),
differs to the one for other well established resonances.
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Figure 5.5: A comparison of intensities for the main JPC from the COMPASS PWA and the calculations in
three models for the Deck process. Partial wave intensities from the COMPASS PWA [78] summed for different
JPC sectors are overlapped by colored lines that correspond to the three Deck models discussed in the text.
Data points are presented by the black histograms with gray errors. The Deck models are normalized to have
30% of total intensity of the data.
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functions Ψw defined in Eq. (3.15). The approximation reads:

B(t, s, τ) '
∑

w

Bw(t, s)Ψw(s, τ). (5.27)

The sign ' implies that we need to find the coefficients Bw(t, s) which approximate the original
amplitude B the best. It is important to agree how the measure of the mismatch is defined. In the
PWA technique, the intensity is approximated: my minimizing likelihood, effectively the distance
between the absolute value between the left and the right part of Eq. (5.27) is minimized. This
numerical procedure is rather involved. 3 For the studies in this section we use another strategy,
algebraic-projection method, in which we approximate the amplitude directly from Eq. (5.27). A
system or linear equations for the coefficients Bw can be obtained by multiplying both parts of
Eq. (5.27) with Ψ∗q and integrating over the phase space. The coefficients are found by inverting the
integral matrix:

Bw(t, s) =
∑

q

B−1
wq (t, s)

∫
B(t, s, τ)Ψ∗q(s, τ) dΦ3, (5.28)

where dΦ3 is a three-body phase space integral, Bwq in the integral matrix defined in Eq. (3.20). The
main difference of this algebraic method to the analytic method discussed above is the treatment of
the subchannel energies. As for the PWA technique, we take the basis where the subchannel energy
dependence is fixed (by fS(σ) in Eq. (3.15)). There are still two methods to proceed which deal
differently with the symmetrization (see Eq. (5.3)) of the amplitude:

1. project the complete, symmetrized amplitude from Eq. (5.3) to the symmetrized basis from
Eq. (3.15);

2. project only one termB(1) to the part of the basis which contains the partial-wave expansion
in the corresponding subchannel. In this method, Eq. (5.28) have to be accordingly modified;
the integral matrix becomes orthogonal for waves with distinguishable JPCM ε, LS quantum
numbers.

We call the first method, the symmetrized projections, while the second is called non-symmetrized.
One may wonder what happens if the σk dependence of the amplitudeB(k) is different to the one

in our basis. For the non-symmetrized method, we obtain exactly the same projections since four
angular integrals in dΦ3 already guarantee orthogonality. However, the intensity are different since
the specific line shape of the subchannel resonances, modified by the pion exchange, is not captured
by the basis. In case of the symmetrized projections, the parasitic effects related to the fixed isobars
are magnified due to the absence of strict orthogonality.

We restrict the discussion to the “Standard Deck” (Model-I) and address effects which appear due
to the specific truncated basis. We can disentangle three issues:

1. A fixed shapes of the isobars in the basis lead to problems in description of the Deck model.
Significant artifacts appear for waves where the ππ subsystem is in the S-wave.

3 The partial-wave fit of the Deck process was pioneered by Ascoli et al. [83]. It was explored for the COMPASS kinematics
by F. Haas and D. Ryabchikov Ref. [3, 77, 184]. The most of effects discussed in this section are also present in results of
the fit method.
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2. Symmetrization of the amplitude and the basis leads to a correlation between waves with the
various L and S numbers within the same JPC .

3. “Threshold effects”: the number of waves in the PWA model changes from bin-to-bin, it results
in the discontinuities of the waves’ intensities.

To separate those problems we consider three procedures. The simplest and cleanest procedure is
the algebraic projection of the non-symmetrized amplitude to the non-symmetrized basis. Next, we
turn on the thresholds and check their influence. Lastly, we perform an expansion of the symmetrized
model by the symmetrized basis.
We use the MC method to calculate the integral on the right side of Eq. (5.28). The amplitude

Bw(t, s) is discretized in 100 bins for
√
s ≡ m3π in the interval from 0.5 GeV to 2.5 GeV, the value

of the transferred momentum is fixed, t = −0.1 GeV2. We generate 106 events distributed according
to the phase space in each m3π bin. For every event we calculate the value of the Deck amplitude
B(te, se, τe) as well as complex values for all basis functions Ψw(se, τe) where the subindex e points
to a specific event e. The integral is calculated analogously to Eq. (3.20a). The coefficientsBw are
found for every bin independently.
The partial wave intensities as a function of m3π are shown in Fig. 5.6 in the same fashion as

Fig. 3.13. As mentioned already, the intensities in the non-symmetrized projection method on the
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Figure 5.6: The intensities of the JPC-sectors summed over the partial waves in the COMPASS basis. The
left plot shows projections of the non-symmetrized Deck model to the non-symmetrized basis, the middle plot
shows the projections of the symmetrized Deck model to the symmetrized basis. The right plot shows the effect
of the “thresholding” while the amplitude as well as the basis is kept non-symmetrized.

middle panel of Fig. 5.6 agree with the analytic projections due to the orthogonality of the partial
waves with respect to the all quantum numbers (JMεLS). However, the basis contains several
waves with S = 0 which share exactly the same quantum numbers but differ by the line shape of the
ππ-amplitude. The line shape of the [ππ]S Deck amplitude (see Fig. 5.2) is similar to the ππ → ππ
amplitude shown in the left panel of Fig. 3.16 (the difference comes from the σ-dependence of the pion
propagator), while in the basis we have three functions with the predetermined line shapes: (ππ)S ,
f0(980), and f0(1500). The decomposition obtained in the algebraic-projection method is shown in
Fig. 5.7. The description is far from being perfect: the shape is tilted and contains artifacts. As we can
see on the left panel of the Fig. 5.7, the f0(1500) Breit-Wigner amplitude is eventually preferred over

85



Chapter 5 Coherent background: non-resonance reactions

0.2 0.4 0.6 0.8 1.0√
σ ≡ mπ+π− (GeV)

0

25

50

75

100

125

In
te

n
is

it
y
,

d
3
I
/
d
t
d
s

d
√
σ

(a
.u
.)

π+π− spectrum for m3π = 1.21 GeV

Sum

ρ

f2

f0(1500)

(ππ)S

f0(980)

ρ3

Total

0.3 0.6 0.9 1.2 1.5√
σ ≡ mπ+π− (GeV)

0

10

20

30

π+π− spectrum for m3π = 1.91 GeV

Figure 5.7: Description of the ππ-spectrum of the Deck amplitude by the partial-wave model in the COMPASS
basis that is found by the algebraic-projection method (the non-symmetrized Deck to the non-symmetrized
basis). The intensity of the coherent sums of the waves JPCM ε ξπ L with the same Isobar ξ are shown by
different colors. To plot the total intensity distributions we use the MC phase-space sample and weights we
calculated for every event. For the total intensity shown by the red line we = |B(te, se, τe)|2, while for the
other distributions we = |∑Bw(te, se, τe)Ψw(se, τe)|2.

the (ππ)S-Isobar for the description of the π
+π− spectrum of the Deck. It also causes a prominent

f0(1500) peak in the ππ spectrum which is not present in the original Deck model on the right panel
of the Fig. 5.7.

Problems in description of the amplitude lead to deviations of the integral intensity from the one
calculated in the model (in contrast to the PWA technique, the number over events per bin is not
constrained). The largest effect is observed in the JPC = 0−+ sector as can be seen by comparing
the green distribution in the middle panel of Fig. 5.5 with the orange line in the middle-top panel
of Fig. 5.7. The splitting of the total 0−+ intensity into contributions of the individual waves is
presented in Fig. 5.8. One finds a peak around 1GeV on the right panel in both f0(980)π S-wave
and f0(1500)π S-wave, however, not in the total intensity. These two waves largely interfere in the
expansion series. It has nothing to do with the physics: due to the pure model for the scalar waves, the
found decomposition is preferred in the numerical procedure. The left plot of Fig. 5.8 shows how the
decomposition changes when the wave with f0(1500) is artificially excluded from the basis below
1.7 GeV and the wave with the f0(980) is only added to the basis above 1.3GeV.

As we mention above, the symmetrization introduces a non-orthogonality in the basis. It causes a
“leakage” between waves. An example of this issue is shown in Fig. 5.9: S = 3 is not part of our Deck
model, however, the JPCM ε = 2−+0+ ρ3π P -wave gets non-zero weight, when the symmetrized
amplitude is expanded in the symmetrized basis.
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Figure 5.8: The decomposition of the 0−+-sector in the COMPASS-PW basis obtained by the apgebraic method.
The non-symmetrized Deck amplitude is projected to the non-symmetrized basis. Right plot: all 87 waves are
used through out the whole mass range m3π ∈ [0.5, 2.5] GeV, Left plot: waves are included in the analysis
only above the thresholds indicated in Table D.1.

5.5 Conclusions

We have explored three models for the Deck process which parametrize the exchange-pion propagator
differently; the partial-wave expansion have been performed. The analytic decomposition of the
amplitude allowed us to simplify the problem of the partial wave projection to a single integral over
one scattering angle. The model with a simple, scalar propagator for the exchanged pion, was found to
be inconsistent with the data at the high energy. The two models with a modified propagator look
closer to the partial waves obtained from the analysis of the COMPASS data, especially for the sectors
where no prominent resonances are known, e.g. JPC = 3−+ and JPC = 4−+. We have observed a
similarity between the Deck projections and the background-like structures of the COMPASS PWA
results for JPC = 0−+, 1−+, 2−+, and 3++ sectors. We saw that the Deck intensity for the 0−+

sector might develop a prominent peak structure around 1GeV. The relevance of this structure to an
observation of the π(1300) strongly motivates a further investigation. We found that the Deck process
also contributes significantly to 1−+, shading the exotic π1(1600) signal.

Possible problems of theDeck amplitude expansion in a truncated set ofwaveswith the predetermined
isobars was discussed. Using an algebraic projection method, we found that the summed intensities for
JPCM ε are rather well reproduced. However, a splitting the total intensity between the partial waves
with the same quantum numbers based on the Isobar parametrization might be misleading. The wave
thresholds partially cure the problem of unphysical intensities, however, they produce discontinuities
in the model curve. The numerical problems are magnified by the symmetrization of the wave basis
that relaxes of the basis orthogonality.

The results of the studies can be used to estimate the systematic uncertainties to our knowledge of
the Deck projections. It is clear that the model dependence dominates over the basis-related issues.
The shapes of the projections are rather ambiguous, while the relative strengths seem to be rather

87



Chapter 5 Coherent background: non-resonance reactions

0.5 1.0 1.5 2.0 2.5√
s ≡ m3π (GeV)

0.0

0.1

0.2

0.3

0.4

In
te

n
is

it
y
,

d
2
I
/
d
t
d
√
s

(a
.u
.)

JPC = 2−+ non-symmetrized

2−+ sum

f2π S

ρπ P

other

ρ3π P

0.5 1.0 1.5 2.0 2.5√
s ≡ m3π (GeV)

JPC = 2−+ symmetrized

Figure 5.9: The decomposition of the 2−+-sector in the COMPASS partial wave basis. The left plot shows the
projections of the non-symmetrized Deck amplitude to the non-symmetrized basis. The right plot presents the
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stable. The uncertainty can be estimated by comparing the Regge model with the Form-factor model.
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CHAPTER 6

Properties of the a1(1260) from tau decays 1

A large number of light meson resonances dominantly decay to three pions. This includes the enigmatic
a1(1260) resonance, which is the lightest axial-vector meson with JPC = 1++. The properties of the
a1 resonance are difficult to assess, due to its large width that is affected by the three-pion dynamics.
The ππ subchannel is dominated by the ρ resonance whose finite width is expected to be important for
the extraction of the a1 resonance properties. Indeed, a large part of the a1(1260) peak seen in the
invariant mass distribution of three pions lays below the nominal ρπ threshold. However, the pole of
the resonance was previously addressed in Lagrangian-based models [185, 186], assuming a stable
ρ-meson.
The JPC = 1++ three-pion state can be observed in the τ → 3π ντ decay as well as in pion

diffraction off a proton target π p → 3π p. There appears to be a discrepancy in the a1 resonance
parameters extracted from the two reactions [26, 187]. The problem may be related to the presence of a
large, coherent, non-resonant background, known as the Deck process in pion diffraction [3, 40, 62, 91].
This process happens to dominate in the JPC = 1++ partial wave and directly influences the extraction
of the a1(1260) resonance parameters in pion diffraction. Thus, an independent determination of the
a1(1260) resonance properties is not only relevant for a better understanding of this state but also to
constrain the Deck process, which contributes significantly to other partial waves including the ones
with the exotic quantum numbers 1−+ [3]. Therefore, we focus on the τ− → π−π+π− ντ decay with
the aim of extracting the a1(1260) resonance parameters.

6.1 The reaction model

We consider the reaction τ → 3π ντ and derive an expression for the differential width which
characterizes the 3π invariant mass spectrum [110, 188–191]. The differential width is calculated by
averaging (summing) over the τ (ντ ) polarizations and integrating the matrix element squared over the
final-state momenta,

dΓ =
1

2mτ
· 1

2

∑

λτλν

∣∣Aλν ,λτ
∣∣2 dΦ4, (6.1)

where mτ is the mass of the τ -lepton, mτ = 1 776 MeV [26], the neutrino is considered massless,
dΦ4 is the four-body differential phase space, and λx are the lepton helicities of the x = τ, ν. The
1 A large part of this chapter has been published in Ref. [2] in collaboration with JPAC colleagues.
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τ−

W−

ν

pτ pν

π−, p1
π+, p2

π−, p3
s

Figure 6.1: Diagram for the decay τ− → π−π+π− ντ . The momenta of the τ lepton and ντ are denoted by pτ
and pν . The pions momenta are labeled by pi, i = 1, 2, 3. s is the invariant mass of the three pions.

process is dominated by the emission of aW boson by the leptonic current,

〈3π ντ , λν |T |τ, λτ 〉 = −GF√
2
V ∗ud ū(pν , λν)γα(1− γ5)u(pτ , λτ ) 〈3π| J5−

α (0) |0〉 , (6.2)

where 〈3π ντ , λν |T |τ, λτ 〉 = Aλν ,λτ (2π)4δ4(pτ − pν − p3π), GFV
∗
ud/
√

2 is the Cabibbo-favored
weak coupling, p3π, pτ , and pν are the four-momenta of three-pion system and the leptons, u (ū)
are the Dirac spinors of the τ (ντ ), see Fig. 6.1. Because of G-parity conservation the π−π+π−

system has positive C-parity. Hence, the vector current ūγαu does not couple it, and can be removed.
Since theW− is heavily off-shell, one should also consider the timelike polarization, which carries
JPC = 0−+. However, the corresponding helicity amplitude is suppressed by the PCAC [188, 192].
This enables us to treat the off-shellW− as purely axial. The polarization of the realW− provides a
complete basis which we use to expand the hadronic current,

Aλν ,λτ =
GF√

2
V ∗ud ū(pν , λν)γαγ5u(pτ , λτ )

∑

Λ

εα(Λ)AΛ, (6.3)

where εα∗(Λ) 〈3π| J5−
α (0) |0〉 = AΛ (2π)4δ4(pτ − pν − p3π) is the helicity amplitude for the decay

of the axial current to three pions. The squared matrix element summed and averaged over the ντ and
τ helicities, respectively, is

1

2

∑

λτλν

∣∣Aλν ,λτ
∣∣2 = G2

F |Vud|2
(
pατ p

β
ν + pβτ p

α
ν − gαβ(pτ · pν)

)∑

Λ,Λ
′
εα(Λ)ε∗β(Λ′)AΛA

∗
Λ
′ . (6.4)

The explicit evaluation of the expression is performed in the τ -rest frame where pτ · ε(0) =
(m2

τ − s)/(2
√
s), and pτ · ε(±) = 0.

Using the recursive relation for the phase space, we split it into the τ− →W−ντ -phase space dΦ2,
and the three-pion phase space dΦ3: dΦ4 =

∫
dΦ2 dΦ3 ds/(2π), where

√
s is the invariant mass of

the hadronic system. To obtain the differential width dΓ/ds, we integrate explicitly over the neutrino
angles,

dΓ

ds
=
G2
F |Vud|2

64π2m3
τ

(m2
τ − s)2

∫
dΦ3

(
|A+|2 + |A−|2 +

m2
τ

s
|A0|2

)
. (6.5)

Here, one power of the factor (m2
τ − s) follows from the matrix element in Eq. (6.4), the other is

given by theW−ντ two-body phase space. The expression for the dΦ3 is given in Appendix B. The
integral is kept in the final expression to facilitate the further discussion on partial-wave expansion of
the amplitude AΛ.
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6.1 The reaction model

The helicity amplitude AΛ describes the coupling of the axial current to the three charged pions.
The pions are labeled as follows, π−1 π

+
2 π
−
3 (see Fig. 6.1). We use the isobar model to parametrize the

dynamics and explicitly incorporate the π−1 π
−
3 Bose symmetry,

AΛ = A
(3)
Λ +A

(1)
Λ , (6.6)

where the isobar amplitude A(k)
Λ includes only the subchannel interaction in a pion pair leaving the

pion indexed k as a bachelor. In Eq. (6.6), we disregard the π−π− interaction since it is negligible
compared to the dominant ρ-meson in the π+π− subchannel. The pion momenta are denoted by
pi where i = 1, 2, 3 as shown in Fig. 6.1 and the subchannel invariant mass squared is denoted as
σk = (pi + pj)

2. Here and below we use the circular convention, i.e. the bachelor pion has index k
such that the (ijk) are numbers (123), (231) or (312).
Each isobar amplitude receives different contributions, often referred to as decay channels [26].

The importance of different decay channels can be estimated by the relative branching fractions of
the a1(1260) decay. The latest measurements were carried out by the CLEO experiment from τ
decay [156, 157] and by the COMPASS experiment in diffractive production [78]. The extraction of
branching ratios is model-dependent and is influenced by the production mechanism; however, we get a
rough estimate of their relative importance. The ρπ S-wave channel is dominant with a branching ratio
of 60%− 80%. The second most important channel, f0(500)π P -wave, was estimated to contribute
less than 20%. The combined branching ratio to the remaining channels (ρπD-wave, f2π P -wave,
K∗K̄ S,D-waves) does not exceed 10%. We thus limit the analysis to the main ρπ S-wave channel.
Including other decay channels would require the introduction of additional parameters for couplings
and production strengths, which cannot be fixed by current publicly available data.

Therefore, we take the isobar amplitude to have the form,

A
(k)
Λ = C(k) a(s)fρ(σk)NΛ(Ωk,Ωij), (6.7)

where C(k) =
〈
1, µi; 1, µj |1, 0〉 = ±1/

√
2 is the Clebsch-Gordan coefficient relating the two pion

with isospin projection µi,j = ±1 to ρ0 isospin states, thus, the sign depends on the index k. The a(s)
denotes the dynamical part of the amplitude a1 → ρπ S-wave in the canonical basis [47, 79], fρ(σ) is
a parametrization for the ρ-meson decay amplitude, and NΛ(Ωk,Ωij) is the angular decay function
for the decay chain a1 → ρπ, ρ→ ππ,

NΛ(Ωk,Ωij) ≡ ZJΛ
10 (Ωk,Ωij) =

√
3
∑

λ

D1∗
Λλ(Ωk)D

1∗
λ0(Ωij), (6.8)

where ZJMLS is introduced in Eq. (3.9). The three-pion center-of-mass (CM) frame is oriented by
the direction of W in τ decay (W helicity frame). The momentum vector of the τ defines the xz
plane, a.k.a. the production plane. Ωk = (θk, φk) denotes the polar and azimuthal angles of the
vector ~pi + ~pj in the CM-frame. The Ωij = (θij , φij) are the spherical angles of the pion i in the
helicity frame of the isobar (ij). This helicity frame is obtained from the CM frame by active rotation
R−1(Ωk) and boost along the z-axis. Equivalently, we can notice that the boost does not change
azimuthal orientation, therefore, the y-axis direction ~ey in the helicity frame can be found by ~e ′z × ~ez ,
where ~e ′z is the original orientation of the CM z-axis.

The line shape of the ρ-meson is given by the customary Breit-Wigner amplitude with dynamical

91



Chapter 6 Properties of the a1(1260) from tau decays

width [78, 179]

fρ(σ) = N
F1

(
(p(σ)R)2

)

m2
ρ − σ − imρΓρ(σ)

, (6.9)

where p(σ) =

√
σ/4−m2

π is the pion break-up momentum, the function F1(pR) combines the
threshold factor p(σ) and the customary Blatt-Weisskopf barrier factor with size parameter R =
5 GeV−1. Energy dependent width is described by Eq. (D.5)We use in the analysismπ = 139.57 MeV,
mρ = 775.26 MeV [26]. For convenience we fix N so that the phase-space integral ρ(s) defined
below in Eq. (6.11a) approaches the two-body phase space asymptotic value, 1/8π, in the limit s→∞
as shown in Eq. (D.3) in the Appendix. The normalization for fρ(σ) fixes the normalization of a(s).

Using Eqs. (6.6),(6.7) to substitute the amplitude AΛ in Eq. (6.5), we get the expression for the
differential width in terms of the dynamic amplitude a(s).

dΓ

ds
=
G2
F |Vud|2

64π2m3
τ

(
2 +

m2
τ

s

)
(m2

τ − s)2 |a(s)|2ρ(s). (6.10)

where ρ(s) is the effective ρπ phase space. We will consider two models for ρ(s)’s:

ρSYMM(s) =
1

2

∫
dΦ3

∣∣fρ(σ1)N0(Ω1,Ω23)− fρ(σ3)N0(Ω3,Ω12)
∣∣2 , (6.11a)

ρQTB(s) =

∫
dΦ3|fρ(σ1)N0(Ω1,Ω23)|2. (6.11b)

The expression in Eq. (6.11a) strictly follows from Eqs. (6.6), (6.7), and (6.10). The label SYMM is
introduced to emphasize the symmetrization between the decay channels, i.e. the ρπ channels k = 1
and 3. The relative minus sign comes from the symmetry of the isospin coefficient in Eq. (6.7). The
integral in Eq. (6.11a) is the same for all helicities Λ due to the properties of the Wigner d-functions,
therefore we set Λ = 0 for simplicity. The interference term is only significant at low energy, where
the overlapping region of the two ρ-mesons contributes to a substantial fraction of the Dalitz plot.
The ρQTB (Quasi-Two-Body) in Eq. (6.11b) is a simplified phase space where the interference term is
neglected. In this case, the integrals of the two decay chains squared are identical, which cancels the
1/2 factor in front. This model treats the ρ-meson as quasi-stable and the interaction between the ρπ
as a two-body interaction. The simplification is suggested and discussed in Ref. [141] to treat the
multiparticle final states. The same approximation is commonly used to account for 4π channel in the
ππ/KK̄ coupled-channels problem [50, 193]). Finally, as shown in Fig. 6.2, the interference is rather
small. Since this model is simpler, we would like to test it as an alternative.

Our model for the decay amplitude is constrained by the approximate three-body unitary [62,
141]. Turning general 3-body unitarity into some practically useful equations is cumbersome and
not complete yet. A significant progress in this direction has been made in Refs. [38, 194–196]. In
particular, one can separate the genuine three-body unitary from the subchannel unitarity related
to rescattering between different isobars. These processes modify the line shape of the subchannel
amplitudes [165, 166, 168, 169, 171, 197, 198]. A good example is the ρπ-dynamics studied in the
1−− sector in the decay of ω/φ [165, 166], where the final-state interaction were found to shift and
skew the ρ-meson peak. Conversely, in our models we focus on the 3-body resonance dynamics,
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Figure 6.2: The phase space ρ(s) calculated for different models. The black solid line shows the symmetrized
ρSYMM from Eq. (6.11a). The dashed curve represents ρQTB from Eq. (6.11b), which neglects the inter-
ference between the two ρπ decay chains. For reference we draw the two-body ρπ phase space given by√

(s− (mρ +mπ)2)(s− (mρ −mπ)2)/(8πs) with a solid red line. Due to the chosen normalization in
Eq. (D.3), all functions approach the same asymptotic limit. The dotted line shows the difference in the
interference terms calculated in two different ways for s+ iε as discussed in Sec. 6.3.2.

and simplify the problem by neglecting the effects of the rescattering on the isobar line shapes. We
introduce the ρπ elastic scattering isobar amplitude t(s), to impose the unitarity constraints for the
amplitude a(s):

2 Im a(s) = t∗(s) ρ(s) a(s), (6.12a)
2 Im t(s) = t∗(s) ρ(s) t(s), (6.12b)

where ρ(s) is the effective phase space given by Eq. (6.11a) or Eq. (6.11b). The factor of 2 in the
left-hand-side of Eq. (6.12) is kept for convenience.

The unitarity equations (6.12) can be satisfied by a certain choice of the parametrization.

t(s) =
g2

m2 − s− ig2C(s)/2
, a(s) = α(s)t(s), (6.13)

where C(s) is an analytic function constrained by condition Im iC(s) = ρ(s). To describe the
amplitude dominated by a single resonance, we added a first order polynomial (m2 − s)/g2 to the
denominator of t(s), which is equivalent to have theK-matrix with a single pole [47]. The numerator
function α(s) is supposed to incorporate the singularities specific to the production process into the
amplitude a(s). The final-state interaction required by unitarity is accounted for by the multiplicative
form of the production amplitude in Eq. (6.13). It diminishes the differences between different possible
production mechanisms, e.g. resonant vs. non-resonant production of ρπ. In the case at hand we use
α = const. There are two common constructions for C(s) which both satisfy unitarity:

1. The models with C(s) = ρ(s) will be called non-dispersive. Twhese models have left-hand
singularities on the physical sheet inherited from the phase space, which are not motivated by
physics.
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Table 6.1: Summary of the models discussed for the 3π-scattered amplitudes in the τ decay. The numerator and
denominator refer to Eq. (6.15).

Model ρ(s) in Numer. C(s) in Denom. χ2/n.d.f. m (GeV) g (GeV)
SYMM−DISP ρSYMM(s) ρ̃SYMM(s) 94/100 1.205 6.64

SYMM ρSYMM(s) ρSYMM(s) 663/100 1.230 6.65
QTB−DISP ρQTB(s) ρ̃QTB(s) 68/100 1.223 7.45

QTB ρQTB(s) ρQTB(s) 344/100 1.236 7.42

2. The dispersive models have C(s) = ρ̃(s), with

iρ̃(s) = l0 +
s

π

∫ ∞

9m
2
π

ds′
ρ(s′)

s′(s′ − s− iε)
, (6.14)

where the subtraction constant l0 is chosen such that the real part of iρ̃(s) is zero at the point
(mρ +mπ)2. The function iρ̃(s) has no singularities other than the unitarity cut as guaranteed
by the Cauchy integral theorem. It is analogous to the Chew-Mandelstam function for the
two-body scattering amplitude [62].

We note that the first construction with C(s) = ρ(s) resembles the Breit-Wigner amplitude with a
dynamical width [26]. In contrast, the dispersive amplitudes do not have the unmotivated left-hand
cut generated by ρ in Eq. (6.11a). For all models, the structure of C(s) ensures unitarity and extends
the applicability of Eq. (6.13) from threshold to energy regions where higher-lying resonances or/and
non-elastic channels become significant.

To summarize, the final expression for the differential cross section is.

dΓ

ds
=

1

s

(
1− s

m2
τ

)2(
1 +

2s

m2
τ

)
cρ(s)

|m2 − s− ig2C(s)/2|2
. (6.15)

Eq. (6.15) follows from Eq. (6.10). The constant c absorbs all energy-independent numerical factors;
m, g, and c are real parameters which are fitted to data. The four models we are going to test are
summarized in Table 6.1. Our primary model is SYMM−DISP, which is the one that incorporates
the most of physical arguments. The SYMM model contains additional left-hand singularities with
respect to SYMM−DISP. The QTB and QTB−DISP models do not include the interference
between the two decay chains, but are much simpler to calculate on the real axis and continue to the
complex plane. The C(s) is calculated using the same ρ(s) as in the numerator of Eq. (6.15), which
is either ρQTB or ρSYMM as given in Table 6.1.

6.2 Fit results and resonance parameters

The largest public dataset for τ → 3π ντ was collected by the ALEPH experiment in 2005 [199].2 The
distribution dΓ/ds is binned in 0.025 GeV2 bins and normalized by the measured branching ratio. We
2 An updated analysis was published in 2014 [200]. The main difference is related to the use of a new method to unfold
detector effects from the mass spectra. However, the data were binned into wider bins with variable bin size, which makes
it less straightforward to use. For this reason we stick to data of [199].
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Figure 6.3: Fit to the ALEPH data with the four models described in the text. The models differ by either
including the effect of interference between two ρπ decay channels (SYMM) or not (QTB), and either using
the dispersive integral over the phase space (DISP), or not. The lower panels show the normalized residues.

fit 103 data points in the range 0.38 GeV2 ≤ s ≤ 2.94 GeV2. We minimize the χ2-function taking
into account the covariance matrix provided in Ref. [199],

χ2(c,m, g) = ( ~D − ~M(c,m, g))TC−1
stat( ~D − ~M(c,m, g)), (6.16)

where ~D is a vector of the ALEPH data points, ~M(c,m, g) is a vector of the model predictions
calculated for the centers of the bins. The matrix Cstat is the covariance matrix of the statistical errors.
The systematic uncertainties are smaller than the statistical ones by a factor 5, and can be neglected.
Nonzero correlations among different bins are introduced by the unfolding procedure. It is worth
noticing the 3π spectrum does not show the expected random noise. As discussed in the follow up
analysis of the ALEPH [200], the problem appears because the errors of the unfolding procedure were
not correctly propagated. Hence, the absolute value of χ2 we obtained does not have a strict statistical
meaning. However, we assume that for the model characterization based on relative χ2 values, the
problem should not be critical.

The gradient minimization is performed using the NLopt optimizer and the ND_MMA algorithm [101]
with the automatic differentiation provided by the ForwardDiff.jl-package [201]. The minimum
we find is always stable and isolated, as checked by repeating the minimization from different starting
values. Fits to the ALEPH dataset are shown in Figs. 6.3, and the fit parameters and χ2 values are
shown in Table 6.1. The non-dispersive models are not consistent with the data, with χ2 at least three
times worse than we have obtained for the dispersive models. In particular, they fail to reproduce the
line shape around the peak and in the threshold region, and we do not consider them any further. On
the other hand, the dispersive models show a good agreement with data, obtaining χ2/n.d.f. = 94/100
and χ2/n.d.f. = 61/100 for the SYMM−DISP and QTB−DISP, respectively.
In the next section we will perform the analytic continuation of the amplitude to the second sheet

and search for the a1(1260) resonance pole. For comparison with the PDG [26], we first provide the
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Chapter 6 Properties of the a1(1260) from tau decays

customary Breit-Wigner parameters, that can be extracted on the real axis. We remind the reader that
these are expected to be reaction-dependent, and do not provide an unambiguous characterization of the
resonance. We define the Breit-Wigner mass squaredm2

BW as the value of s when the denominator of
the amplitude t(s) in Eq. (6.13) becomes purely imaginary. The value of the denominator at this point
gives the Breit-Wigner width, as it is equal to−imBWΓBW. For QTB−DISP we get the Breit-Wigner
mass and width as (1246± 3) MeV and (394± 5) MeV; for SYMM−DISP, (1254± 3) MeV and
(461± 8) MeV, where the errors are statistical only.

6.3 Analytic continuation the pole position

Once the amplitude is fixed on the real axis, its analytic structure is unambiguously defined and can be
explored. Unitarity introduces a branch cut along the real axis from the 3π threshold to infinity, which
opens a non-trivial Riemann topology or sheet structure. The first Riemann sheet is the one containing
the physical values of the amplitude slightly above the real axis. By construction, the amplitudes in
the dispersive models contain no other singularity on the first sheet than the unitarity cut. Resonance
poles are expected to lie on the second sheet, which is connected to the physical axis from below. The
unitarity condition Eq. (6.12b) gives us a relation on the real axis that can be used to continue the
amplitude in the complex s-plane. The real-axis relation followed from Eq. (6.12) reads

t−1
I (s+ iε)−∆t−1(s) = t−1

I (s− iε) = t−1
II (s+ iε), (6.17)

where ∆t−1(s) ≡ t−1
I (s+ iε)− t−1

I (s− iε) = −iρ(s) is the discontinuity across the cut, s is real,
ε is an infinitesimal positive number, and the Roman subscript indicates the Riemann sheet. Thus,
t−1
II (s) = t−1

I (s) + iρ(s) and the pole positions are determined by t−1
II (s) = 0. The first sheet

amplitude, t−1
I (s), is straightforward to calculate in the complex plane using the dispersive integral in

Eq. (6.14). Continuation of the discontinuity, however, is more challenging since it is not explicitly
analytical expression, as Eq. (6.11a) contains a modulus operator. Therefore, we need to find an
analytic function which coincides with the discontinuity on the real axis. All singularities of the
discontinuity −iρ(s) will be present in the second sheet amplitude according to Eq. (6.17). Among
those, we expect the reflection of the ρπ unitarity cut, which is pushed into the second sheet due to the
unstable nature of the ρ-meson.
For the continuation to the complex s-plane, we need to evaluate fρ(σ) and f∗ρ (σ) in Eq. (6.11a)

and Eq. (6.11b) for complex argument σ. Along the physical axis fρ(σ) = f (I)
ρ (σ + iε) and the

analytic function f (II)
ρ (σ + iε) coincides with f∗ρ (σ) due to the Schwarz reflection principle and the

continuity of the Riemann sheet structure, since

f∗ρ (σ) = f (I)∗
ρ (σ + iε) = f (I)

ρ (σ − iε) = f (II)
ρ (σ + iε). (6.18)

6.3.1 Analytic continuation of the QTB−DISP model

We start with the QTB−DISP model, whose analytic continuation is simpler than the one of the
SYMM−DISP model. The discontinuity across the unitarity cut is given by −iρQTB in Eq. (6.11b).
The angular integrals in the phase space can be solved analytically due to the properties of the Wigner
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Figure 6.4: An illustration for the integral of the phase space from Eq. (6.19) in the complex plane. The left
plot shows the complex plane of the integrand for s = (0.6− 0.35i) GeV2. The red circular markers are the
square-root branch points, the crosses indicate positions of the poles. The integration paths from Eq. (6.20)
are shown by the solid lines with arrows. The right plot presents the location of the ρπ cut for the different
integration paths.

D-functions. We obtain

ρQTB(s) =
1

2π(8π)2s

∫ (
√
s−mπ)

2

4m
2
π

f (II)
ρ (σ1)f (I)

ρ (σ1)

√
λ1λs1
σ1

dσ1, (6.19)

where we used the definition λi = λ(σi,m
2
π,m

2
π), λsi = λ(s, σi,m

2
π), with λ being the Källén

function. Using Eq. (6.18), we replaced
∣∣fρ(σ1)

∣∣2 by the analytic expression f (II)
ρ (σ1)f (I)

ρ (σ1). The
function f (I)

ρ (σ1) does not have singularities apart form cuts on the real axis, while the f (II)
ρ (σ1)

contains the pole of the ρ-meson in the complex plane. For complex values of s, the integral for the
ρQTB(s) in Eq. (6.19) has the upper endpoint in the complex plane, which requires a prescription for the
path of integration. The value of the integral does not depend on the path of integration, unless there
are singularities of the integrand in the complex plane. The integrand is plotted for complex values of
σ1 in Fig. 6.4. It has four branch points in the σ1-variable: 0, σth = 4m2

π, σlim = (
√
s−mπ)2, and

(
√
s+mπ)2, coming from the product of the Källén functions,3 and the resonance pole of the ρ-meson

at σp = (m(pole)
ρ − iΓ(pole)

ρ /2)2.4 Singularities of the integral arise when the upper integration endpoint
touches one of the singularities of the integrand. The ρ-meson pole in the integrand transforms into
a branch singularity in the integral function. We find the branch point sρπ by checking when the
upper integration endpoint touches the ρ-meson pole; sρπ = (m(pole)

ρ +mπ − iΓ(pole)
ρ /2)2. It is indeed

a branch singularity, because for every s there are several ways to connect the integration limits in

3 The branch points are connected by cuts. Since the integral is calculated numerically it is important to make sure that the
integration path does not cross any cut between the integration end points. To illustrate the cut choice shown in Fig. 6.4,
we write

λ
1/2

(σ,m
2
π,m

2
π)λ

1/2
(s, σ,m

2
π) =

√
σ

√
σ − 4m

2
π

√
(
√
s−mπ)

2 − σ
√

(
√
s+mπ)

2 − σ.

For real values of s, this expression has two short branch cuts on the real axis: one between 0 and σth, and the other
between the points (

√
s±mπ)

2. When s is complex the first s-independent cut remains, while the second one splits into
two straight cuts to the right with the branching points (

√
s±mπ)

2 as shown in Fig. 6.4.
4 For the ρ-meson the pole parameters are very close to the Breit-Wigner parametersm(pole)

ρ ≈ mρ, Γ
(pole)
ρ ≈ Γρ.
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Figure 6.5: Analytic continuation of the amplitude t(s) in Eq. (6.13) for different models: QTB−DISP (Left
plot), SYMM−DISP (Right plot). Lines indicate the |t(s)| equipotential levels. The poles of the amplitude
are the bright spots. The red dots indicate branch points corresponding to the opening of decay channels.

Eq. (6.19) (see for example the solid and the dotted paths in the left panel of Fig. 6.4) which yield
integral values differing by the residual of integrand in the ρ-meson pole. Practically, the choice of the
integration path determines the location of the ρπ branch cut in the complex s-plane as the loci of s
values, for which the integration path goes through the pole. To demonstrate the evolution of the cut
in the s-plane we consider the three different paths given in Eq. (6.20a):

C(stra)
σ : σth → σlim (6.20a)

C(rect)
σ : σth → Reσlim → σlim, (6.20b)

C(hook)
σ : σth → 5 Reσlim → σlim. (6.20c)

The corresponding ρπ cut locations are shown in the right panel of Fig. 6.4. The path C(hook)
σ rotates

the ρπ cut such that it opens up a larger area of the closest unphysical sheet and is used in the following
for finding poles and illustration purposes.

The amplitude t(s) in the complex s-plane for the QTB−DISP model is shown in the left panel of
Fig. 6.5. Naively, one would expect a single pole in the complex plane, originating from the single
K-matrix pole, g2/(m2 − s), present in Eq. (6.13). In contrast to this expectation, two poles are
observed. Furthermore, both are rather close to the physical region. The correspondence between the
K-matrix poles and the complex poles can be established by varying the coupling g. In the limit g → 0
the complex poles should approach the real axis at the position of the correspondingK-matrix poles.
We find that the deep pole approaches the real axis at s = m2 = (1 223 MeV)2 (see Table 6.1 with
the fit results), while the left pole goes to s = 0. Due to these observations, we identify the deep pole
with a1(1260)-pole label, i.e. corresponding to a resonance, and the left pole with a “spurious”-pole,
i.e., an artifact from our parametrization in Eq. (6.13). This exercise also helps us to understand the
origin of the spurious pole: it is the 1/s singularity in ρQTB (see Eq. (6.19)). Clearly, this pole is an
integral part of the model. In Sec. 6.4.2 we consider variations of the model attempting to get rid of
the spurious pole. We show that its effect on the real axis is indeed required by the data. It effectively
parameterizes the unphysical sheet singularities, e.g. the left-hand cuts related to the cross channel
exchanges between pions in the final state. For now, we conclude by extracting the positions of the
a1(1260) resonance pole in the QTB−DISP model. We use the convention sp = (mp + iΓp/2)2,
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obtaining

QTB−DISP : m(a1(1260))
p = (1 166± 6) MeV, Γ(a1(1260))

p = (798± 26) MeV. (6.21)

For the error estimation we used the bootstrap technique [103, 202]: 1000 sets of pseudo data were
generated using the original data and the covariance matrices, with the correlations taken into account
in the Gaussian approximation. By refitting the pseudo datasets, we collect samples of the parameters,
which we use to estimate their uncertainties. The distributions of the mass and width of the pole
obtained from the bootstrap are Gaussian to a good approximation. The fit results and the calculated
error ellipses are shown in Fig. 6.9. The mean values of the bootstrap sample for the pole positions
differ from the real data fit results by < 0.2σ which indicate a good consistency and negligible bias of
the bootstrap method [202].

6.3.2 Analytic continuation of the SYMM−DISP model

The evaluation of the discontinuity given by Eq. (6.11a) for complex s is more complicated since the
angular integrals cannot be solved completely.

ρ(s) =
1

2

∫
dΦ3

∣∣fρ(σ1)N0(Ω1,Ω23)− fρ(σ3)N0(Ω3,Ω12)
∣∣2 , (6.22)

where the convenient form of the differential three-body phase space is Eq. (B.5). We expand the
squared expression in Eq. (6.22), use the normalization property, and combine the squared terms,

ρSYMM(s) =
1

2π(8π)2s

∫ ∣∣fρ(σ1)
∣∣2
√
λ1λs1
σ1

dσ1

︸ ︷︷ ︸
ρQTB(s)

−
∫

dΦ3fρ(σ1)f∗ρ (σ3)N0(Ω1,Ω23)N∗0 (Ω3,Ω12)

︸ ︷︷ ︸
ρINT(s)

,

(6.23)
where we used the observation that the last integral is real. Indeed, the term transforms to itself under
complex conjugation due to the 1 ↔ 3 symmetry of the differential phase space and the relation
N0(Ωk,Ωij) = −N0(Ωk,Ωji) following from Eq. (C.28) in Appendix C.2, precisely Eq. (C.28) for
l = 1, which needs to be applied for both terms N0(Ω3,Ω12) and N0(Ω1,Ω23).
The interference term can be further simplified by integrating over three angular variables using

Eq. (C.32) The expression for ρINT is simplified as follows:

ρINT(s) =
1

(8π)2s

∫
dσ1

2π

d cos θ23

2
f∗ρ (σ3)fρ(σ1)

√
λ1λs1
σ1

∑

λ,λ
′
d1
λ0(θ23)d1

λλ
′(θ̂3)d1

λ
′
0
(θ12). (6.24)

All angles expressed through the invariants are listed in Eq. (C.33). We combined the d-functions in
Eq. (6.24) and get the expressions for the angular part through invariant variables [203]:

∑

λ,λ
′
d1
λ0(θ23)d1

λλ
′(θ̂3)d1

λ
′
0
(θ12) = cos(θ12 + θ̂3 − θ23) =

H(
√
s,
√
σ1,
√
σ3)

λ
1/2
1 λ

1/2
3 λs1λs3

, (6.25)

whereH(
√
s,
√
σ1,
√
σ3) is a polynomial in√σ1,

√
σ3, and

√
s. The expression H(

√
s,
√
σ1,
√
σ3)
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is further factorized [204] and cancels terms zeros of the denominator which otherwise would be pole
singularities in the physical reason.

H(s, σ1, σ3) =
√
σ1σ3 (6.26)
× (
√
s−√σ1 −mπ)(

√
s−√σ1 +mπ)

× (
√
s−√σ3 −mπ)(

√
s−√σ3 +mπ)

×W (
√
s,
√
σ1,
√
σ3),

with the polynomialW (
√
s,
√
σ1,
√
σ3) given by

W (a, b, c) =− 4m6
π + 4m2

πs
2 − 4m4

πab+ 4m2
πa

3b− 4m4
πac (6.27)

+ 4m2
πa

3c− 9m4
πbc+ 8m2

πa
2bc+ a4bc

+ 14m2
πab

2c+ 2a3b2c+ 9m2
πb

3c− a2b3c

− 4ab4c− 2b5c+ 14m2
πabc

2 + 2a3bc2 + 12m2
πb

2c2

− 6ab3c2 − 4b4c2 + 9m2
πbc

3 − a2bc3 − 6ab2c3 − 5b3c3

− 4abc4 − 4b2c4 − 2bc5.

The final expression for the interference term is

ρINT(s) =
1

2π(8π)2s

∫ σlim

4m
2
π

dσ1

∫ σ
+
3 (σ1,s)

σ
−
3 (σ1,s)

dσ3

f∗ρ (σ1)√
σ1 − 4m2

π

fρ(σ3)√
σ3 − 4m2

π

× W (
√
s,
√
σ1,
√
σ3)

((
√
s+
√
σ1)2 −m2

π)((
√
s+
√
σ3)2 −m2

π)
. (6.28)

Our next step is to make Eq. (6.28) analytic. It can be made as simple as substituting fρ → f (I)
ρ and

f∗ρ → f (II)
ρ , however, the is one of the most complicated parts of the continuation as we explain on the

following page.

ρINT(s) =
1

2π(8π)2s

∫ σlim

4m
2
π

dσ1

∫ σ
+
3 (σ1,s)

σ
−
3 (σ1,s)

dσ3

f (II)
ρ (σ1)√
σ1 − 4m2

π

f (I)
ρ (σ3)√
σ3 − 4m2

π

× W (
√
s,
√
σ1,
√
σ3)

((
√
s+
√
σ1)2 −m2

π)((
√
s+
√
σ3)2 −m2

π)
. (6.29)

The functionW (a, b, c) is a multivariable polynomial defined in Eq. (6.27). Omitting constant factors,
the function fρ(σ) is given by

fρ(σ) ∝
√
F (σ)

m2
ρ − σ − imρΓ(σ)

, Γ(σ) ∝
i

√
4m2

π − σ√
σ

F (σ), F (σ) ∝ σ − 4m2
π

σ − 4m2
π + 4/R2 .

(6.30)
A right-hand cut is introduced by i

√
4m2

π − σ. In addition, there are two branch points: one at
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Figure 6.6: Integration paths in the complex σ-plane: while σ1 is moving along the path σth → σlim, the
integration endpoints σ+

3 (s, σ1)(σ−3 (s, σ1)) are traveling in the complex plane along the lines shown by black
solid (dashed) curve The left plot shows the integration ranges of σ1 and σ3 for a real value of s = 1.5 GeV2.
The red line is the straight integration path in σ1. The yellow circles indicate the border of the integration
domain when the integration endpoints in σ3 coincide. In the right plot, the same lines are shown in the complex
σ plane combined for σ1 and σ3 when s = (1.5− 0.6i) GeV2. The points 4m2

π and (
√
s−mπ)2 are shown by

the small orange dots. While σ1 moves along the contour C(hook) indicated by the red line, the integration limits
σ±3 follow the dashed and the solid lines analogously to the left plot. The shaded area indicates the additional
contribution to the phase-space integral discussed in Eq. (6.33).

σ = 0 from the phase space in the width Γ(σ), and another one at σ = 4m2
π − 4/R2 due to

the Blatt-Weisskopf factor in the numerator. The break-up momentum singularity
√
σ − 4m2

π in
the numerator of f(σ) is canceled by the same factor which arises from the angular function (see
Eq. (6.29)). The parametrization of fρ(s) in Eq. (6.30) contains 5 poles, as one can count by the
order of the polynomial which would give zeros of the denominator. They correspond to the ρ-meson
poles at (mρ ± iΓρ/2)2, and three spurious poles lying far away from the physical region as shown in
Fig. 6.4. The integration endpoints of the σ3 variable, σ±3 (σ1, s), describe the border of the Dalitz
plot for fixed value of s (Fig. 6.6, left panel),

σ±3 (σ1, s) =
s+ 3m2

π − σ1

2
±
√
λ1λs1
2σ1

. (6.31)

As soon as s becomes complex the endpoints depart from the real axis and move into the complex
plane. The trajectories of the σ±3 as functions of σ1 moving from 4m2

π to (
√
s−mπ)2 are non-trivial.

As shown in Fig. 6.6, while σ1 moves along the C(hook) path (see Eq. (6.20c)), the σ−3 circles around
the branch point 4m2

π. When σ3 crosses the unitarity cut, the sheet, on which it is evaluated, must be
changed. However, if the σ1 path goes exactly through the point (s−m2

π)/2, σ−3 just touches the
branch point 4m2

π, (indeed, σ
−
3 ((s−m2

π)/2, s) = 4m2
π). In that case we are allowed to stay on the

same sheet. Therefore, there are two ways to calculate ρINT for a complex argument (see Appendix E.1
for more details):

1. ρ(1)
INT: We choose a special path in σ1,

C(spec)
σ : σth → (s−m2

π)/2→ σlim, (6.32)
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Figure 6.7: The complex sheets of the isobar amplitude fρ(σ) and f∗ρ (σ). The left plot shows the analytic
continuation of the function fρ(σ) above and below the real axis. The function for positive imaginary part is the
same as f (I)ρ (σ); it is continuously connected to f (II)ρ (σ) plotted for the negative imaginary part of σ. The right
plot shows the analytic continuation of f∗ρ (σ), where the sheets are inverted. The lines are |fρ(σ)| equipotential
surfaces. The circular spots are the poles (see also red crosses in the left plot of Fig. 6.4). The markers on the
real axis are the branch points of the left-hand cuts: the square marker shows the branch point from the break-up
momentum located at σ = 4m2

π , the diamond marker the σ = 0 branch point, the circular marker indicates the
branch point related to the Blatt-Weisskopf factors in the numerator of the fρ(σ) in Eq. (6.30).

the σ±3 always stay on the same sheet and can be connected with a straight (undistorted) path.

2. ρ(2)
INT: We let σ−3 circle around the branch point, changing sheets of f(σ3) appropriately. When
σ1 = σth, the integration limits σ±3 coincide. For certain values of σ1, σ

−
3 changes the sheet

and, therefore, when σ1 is in its upper limit σlim, the positions of σ
±
3 coincide, but they are on

the different sheets. The integration path must be detoured around the branch point as shown in
Fig. 6.7.

The first option provides a unique continuation of Eq. (6.28), however, the integration contour is bound
to pass through (s−m2

π)/2 which is non-analytic point of the integrand (see Appendix E.1). The
integrand in the second option stays analytic on the integration contour, but in the limit of real s, the
function ρ(2)

INT deviates from the original expression in Eq. (6.28). For s = Re s+ iε, we change the
sheet of σ−3 when σ1 > (s −m2

π)/2, in contrast to the first option. The mismatch is calculated by
integrating the discontinuity across the σ3 unitarity cut over the shaded area of Fig. 6.6.

ρ
(1)
INT(s+ iε)− ρ(2)

INT(s+ iε) =

∫ (
√
s−mπ)

2

(s−m2
π)/2

dσ1

∫ σth

σ
−
3 (σ1,s)

dσ3

[
f (I)
ρ (σ3 + iε)− f (I)

ρ (σ3 − iε)
]

√
σ3 − 4m2

π

(6.33)

× f (II)
ρ (σ1)√
σ1 − 4m2

π

W (
√
s,
√
σ1,
√
σ3)

((
√
s+
√
σ1)2 −m2

π)((
√
s+
√
σ3)2 −m2

π)
.

The difference is practically negligible as shown in Fig. 6.2. The impact on the fit parameters and the
values of the amplitude in the complex plane is a few orders of magnitude smaller than the statistical
uncertainties. For the following discussion we use ρ(2)

INT(s) for the reason that the ρπ-cut can be rotated
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Figure 6.8: The change of the χ2 is plotted against the ρ-meson parameters in Eq. (6.9): the mass mρ, the
width Γρ and the Blatt-Weisskopf size parameter R. The vertical lines indicate the estimated values where the
minimum is found.

in the same way as before by using C(hook) path in σ1. Interestingly, an analogous problem appears in
relation to the Khuri-Treiman equations (see Appendix in Ref. [194], Sec. IV in Ref. [162]). Ref. [205]
gives arguments in favor of the first option.

As soon as the discontinuity is known for the whole complex plane, the amplitude on the unphysical
sheet can be computed according to Eq. (6.17). The contour plot on the right panel of Fig. 6.5 presents
the closest unphysical sheet of the amplitude, which is smoothly connected to the real axis. We find
two poles and identify them as the a1(1260) resonance pole and the left “spurious” pole as shown in
Fig. 6.5. for the same reasoning as in Sec. 6.3.1. The pole parameters are

SYMM−DISP : m(a1(1260))
p = (1 209± 4) MeV, Γ(a1(1260))

p = (576± 11) MeV. (6.34)

The statistical errors are obtained from a bootstrap analysis as described above in Sec. 6.3.1. The
combined results are presented in Fig. 6.9.

6.4 Systematic uncertainties

6.4.1 Scan over the fixed parameters

The description of three-particle resonances is a difficult problem because of the complicated
structure of final-state interactions, which induces an interplay between different decay channels. The
latter manifests itself in the modification of the isobar line shape and the presence of interference
terms. The importance of three-body effects is readily seen in the difference of SYMM−DISP and
QTB−DISP pole positions, cf. Eqs. (6.34) and (6.21). Knowing that the interference between two
ρπ decay channels must be present, we now focus on systematic studies of SYMM−DISP, keeping
QTB−DISP for a mere comparison. The largest systematic uncertainty is the dependence of the
a1(1260) pole position on the line shape of the subchannel resonance ρ. In principle, we know that
final-state interactions shift and skew the ρ peak. The scale of the ρ-meson mass shift can be estimated
from the studies of ω/φ decays using Khuri-Treiman equations [165, 166]. Fig. 3 of Ref. [165]
suggests a shift of the real and imaginary parts of the isobar amplitude of the order of 10 MeV
before and after final-state interactions are taken into account. To estimate the effect on the a1(1260)
pole position, we vary the parameters of fρ(σ) in Eq. (6.9), i.e. the massmρ, the width Γρ and the
Blatt-Weisskopf radius R, performing a χ2 scan over each parameter, while keeping the others at their
nominal values (Fig. 6.8). The new pole position obtained for the parameter value which minimizes
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Chapter 6 Properties of the a1(1260) from tau decays

Table 6.2: The valuesm, g and χ2 for fits described in Sec. 6.4. For scans over parametersmρ, R and Γp we
present the values ofm, g and χ2 obtained in the minimum in the profile χ2 plots shown in Fig. 6.8.

QTB−DISP SYMM−DISP

# Fit studies m, GeV g, GeV χ2/n.d.f. m, GeV g, GeV χ2/n.d.f.
1 s < 2 GeV2 1.232 7.6 53/62 1.200 6.57 81/62

2 R′ = 3 GeV−1 1.211 7.00 18/100

3 m′ρ = mρ + 10 MeV 1.207 6.85 83/100

4 m′ρ = mρ − 10 MeV 1.204 7.23 37/100

5 m′ρ = mρ − 20 MeV 1.217 7.01 30/100

6 Γ′ρ = Γρ + 5 MeV 1.223 7.45 66/100

7 Γ′ρ = Γρ − 30 MeV 1.205 6.79 36/100

the χ2 for each scan is then used to estimate the systematic error for the pole position of the main fit.
The results of these studies are summarized in Table 6.2 (see fit studies #2-7, were #4 was introduced
as an additional intermediate point outside of the minimum). The a1(1260) pole position is extracted,
the results for the pole mass and width are represented in Fig. 6.9 by open ellipses.

We perform an additional test of the influence of heavier resonances, as the a1(1640), by excluding
the region s > 2GeV2 from the fit. The fit quality does not change substantially, but get slightly worse
due to the reduction of the degrees of freedom (see #1 in Table 6.2). The values for the pole position
are shown in Fig. 6.9 and included to the systematic error of our final result.
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Figure 6.9: Extracted pole positions in the models QTB−DISP and SYMM−DISP: the resonance poles are
on the right, the spurious poles are on the left. The ellipses show the 2σ contours of the statistical uncertainties
obtained by the bootstrap method. The results of the systematic tests are shown by the open ellipses. The
numerical labels correspond to the indices of the systematic tests described in Table 6.2.

The final systematic uncertainties are found by assigning the maximal deviation of the pole position
in the systematic studies to the main fit SYMM−DISP:

m(a1(1260))
p = (1209± 4+12

−9 ) MeV, Γ(a1(1260))
p = (576± 11+89

−20) MeV.

where the first uncertainty is statistical and the second systematic.
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Figure 6.10: Analytic continuation of the amplitude 1/DBW(s) from Eq. (6.35). Lines indicate the |DBW|
equipotential levels. The poles of the amplitude are the bright spots. The red dots indicate branch points for
channel openings.

6.4.2 Studies of the spurious pole

Performing the analytical continuation in Sec. 6.3 we have shown that, in addition to the expected
a1(1260) pole, there is a spurious pole rather close to the physical region. At first, the spurious
pole looks surprising, however, it is clearly present in every Breit-Wigner-like model of a resonance
decaying to particles of different masses. Indeed, the denominator of the Breit-Wigner amplitude with
energy-dependent width decaying to two scalar particles in an S-wave reads:

DBW(s) = m2 − s− imΓ(s), Γ(s) =
g2

16πm

√
(s− (m1 +m2)2)(s− (m1 −m2)2)

s
. (6.35)

Whenm1 6= m2, the equation DBW(s) = 0 has 4 complex roots, which we can identify by the order
of the polynomial which gives those roots:

(
16πs(m2 − s)

)2
+ g4

(
s− (m1 +m2)2

)(
s− (m1 −m2)2

)
= 0 (6.36)

Since all coefficients of the polynomial are real, the poles appear in conjugated pairs above and below
the real axis. The two Breit-Wigner poles below the real axis are analogous to the a1(1260) and the
spurious pole. To demonstrate this further, we draw the complex plane of the 1/DBW(s) function with
m = 1.2 GeV, g = 7.8 GeV,m1 = mρ,m1 = mπ in Fig. 6.10. We find that the spurious pole has
no influence on the physical region as long as the resonance is far from threshold and rather narrow.
Both poles become important for the real axis physics when the studied resonance is close to threshold
or/and wider.

The spurious pole is a feature of Breit-Wigner-like models. It is generated by the 1/s singularity
of the phase space in Eq. (6.35), and Eq. (6.19). In order to remove it, we try to exclude the 1/s
factor from the dispersive term. Following the studies of QTB−DISP, we consider a new model
for scattering and production amplitudes t̂(s) = t(s)/s and â(s) = a(s)/s, and modify the unitarity
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Chapter 6 Properties of the a1(1260) from tau decays

Table 6.3: An extension of Table 6.1 with the additional models considered within the systematic studies. We
added the last column to present additional parameters which enter in the models.

Model ρ(s) in Numer. C(s) in Denom. χ2/n.d.f. m, MeV g, GeV h,m′2 GeV2

sQTB−DISP(2) ρQTB(s) ρ̃QTB(s) 979/100 1.915 17.94 –
sQTB−DISP(3) ρQTB(s) ρ̃QTB(s) 67/100 1.075 9.27 0.578

sQTB−DISP(4) ρQTB(s) ρ̃QTB(s) 42/100 1.229 6.01 −39.3, 0.0

equations accordingly.

2 Im t̂(s) = t̂∗(s) (sρQTB(s)) t̂(s), (6.37a)
2 Im â(s) = t̂∗(s) (sρQTB(s)) â(s), (6.37b)

where sρ(s) is free of the 1/s singularity. The parametrization which satisfies the unitarity constraints
is

âsQTB−DISP
(k)

(s) =
c′

K−1
k (s)− isρ̃QTB(s)/2

, (6.38)

where the index k gives the number of parameters in the function K−1
k (s), the models are labeled

sQTB−DISP(k). The function sρ(s) has a∼ s1 asymptotic behavior, therefore the dispersive integral
must be subtracted twice. The integrand is thus the same as in Eq. (6.14), but the integral is multiplied
by an extra factor of s as in Eq. (6.38). To make the dispersive integral independent of the subtraction
points we must consider a polynomial of order k ≥ 2. We consider three forms of functionsKk(s),

K2(s) = g2/(m2 − s), (6.39)

K3(s) = g2/(s(m2 − s) + h) (6.40)

K4(s) = g2/(m2 − s) + h′/(m′2 − s) (6.41)

The K2(s) and K4(s) are inspired by the K-matrix approach with one and two poles, respectively,
whileK3(s) is a special two-pole model which exactly coincides with QTB−DISP when h = 0.

In Fig. 6.11 we show the continuation of the sQTB−DISP(2) model, fitted to data. The spurious
pole is no longer present. However, the quality of the fit is not acceptable: the best χ2/n.d.f. is equal
to 979/100. When we increase the freedom by taking the model sQTB−DISP(3) the fit quality
significantly improves to yield a χ2/n.d.f. = 67/100. Quite spectacularly, the picture of the complex
plane is changed back: the place of the spurious pole is taken by the explicit pole introduced in the
K-function (see the right plot of Fig. 6.11). The next relaxation of the setup in sQTB−DISP(4)

overfits the data and gives χ2/n.d.f. = 42/100. However, the positions of the resonance and spurious
poles do not change much.

The position of the spurious pole was investigated for all systematic studies we performed in Sec. 6.4
as shown in Fig. 6.9.
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Figure 6.11: Analytic continuation of t(s) in the model sQTB−DISP(k). Lines indicate equipotential levels
for the |t̂sQTB−DISP

(k)

(s)| function from Eq. (6.38). The poles of the amplitude are the yellow spots. The red
dots indicate branch points for channel openings: 3π-branch point and ρπ-branch point. The complex plane for
the model sQTB−DISP(2) (the models model sQTB−DISP(3)) fitted to the data is shown in the left (right)
plot. The quality of the fit is indicated in the legend box on the right.

6.5 Conclusions

We have performed a new analysis of the lightest iso-vector axial-vector resonance a1(1260) decaying
to three charged pions. Despite the fact that the corresponding JPC = 1++ partial wave dominates the
hadronic weak decay of τ leptons as well as diffractive reactions of high-energy pions, the parameters
of the a1(1260) are still poorly known. While the latter reactions suffer from an irreducible background
due to non-resonant processes, the system of three pions produced in τ decay provides a very clean
access to axial-vector resonances. Compared to a two-particle system, however, the system of three
interacting particles exhibits additional phenomena, such as 3-particle rescattering or interference
between different decay chains. These 3-body effects are taken into account using reaction models
constraining the dynamics in the total invariant mass, however, without imposing subchannel unitarity.
We have considered four analytic models of an isolated resonance decaying to three pions via the
ρπ channel. All these models satisfied approximate three-body unitary, but differ by the left-hand
singularities and the treatment of the interference between the two ρπ decay channels. Using the
τ− → π−π+π− ντ data from ALEPH [199], we found that the dispersive models, having no left-hand
singularities on the physical sheet, fit the data clearly better.
In order to find the pole position corresponding to the a1(1260) resonance, we have explored the

analytic structure of the amplitude and performed its analytic continuation into the complex plane
of the three-pion invariant mass squared, a challenging, and technically demanding task, requiring
us to use a prescription for the integration paths in the two-pion invariant mass squared. We have
searched for the singularities in the closest unphysical sheet, and have identified a pole as the a1(1260)
resonance. The mass and width of the a1(1260) are given in terms of its pole position in the main
SYMM−DISP model:

m(a1(1260))
p = (1209± 4+12

−9 ) MeV, Γ(a1(1260))
p = (576± 11+89

−20) MeV.
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Chapter 6 Properties of the a1(1260) from tau decays

The dominant source of systematic errors is the sensitivity to the details of the subchannel interactions.
The simplified QTB−DISP model, which neglects the interference between the two ρπ-channels,
results in a significantly different pole position and a larger systematic uncertainty.
This analysis can be extended by further advancing the theoretical framework and constraining

the model by fitting the Dalitz decay variables. This will be possible when the data from BelleII or
BESIII become available. In addition, the results from this analysis will help to better constrain the
non-resonant background in diffractive reactions, as measured by the COMPASS experiment.
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CHAPTER 7

Unified picture: theoretical framework 1

The goal of this chapter is to construct a model for 3→ 3 scattering, which satisfies unitarity and
analyticity and enables to separate the long-range interactions from the short-range QCD dynamics.
While the former contain one particle exchange (OPE) processes germane to the three-particle system,
the latter govern resonance formation that is the main interest of our studies. Unitarity in three-particle
scattering has been extensively studied in the past in Ref. [38, 195, 196, 206–212] and here, in
particular, we closely follow Ref. [195] in deriving three-body unitarity equations. In Ref. [195, 196]
discontinuity relations for isobar-spectator partial waves were derived in all relevant variables and
the N/D equations (see Ref. [213]) were formulated in a narrow resonance approximation for the
underlying 2→ 2 amplitudes. Schematically, in the N/D approach the N function is determined by
components of the partial-wave amplitude, that are unconstrained by unitarity in the studied scattering
channel, often referred to as the driving terms. The D function is then constructed from N such that
the full amplitude satisfies unitarity. In contrast, in our approach, we obtain a solution to the unitarity
constraint without the need for solving the complicated N/D equations. Instead, for the long-range
part one can solve a linear integral equation of the type of Blankenbecler and Sugar [214] developed in
the context of the three-body problem in Ref. [150, 215–218]. We present a new method to incorporate
the short-range part where the driving term is dressed by initial and final-state interaction via exchange
processes. A complementary approach known as the Khuri-Treiman equations is developed, see
Ref. [148, 149, 162–164, 194, 197, 219–221]. The model exploits the two-body unitarity condition
to the system of three particles. The studies with Khuri-Treiman equations aimed to constrain the
final-state interactions and rescattering effects on a Dalitz plot, however, could not address the overall
three-body dynamics. In this work, we extend the investigation of Aitchison and Pasquier (Ref. [162,
194]) of a link between Khuri-Treiman equations and three-body unitarity and turn the former to a
useful tool to dress three-body resonances.

7.1 Building a general unitary model

In order to simplify the ensuing discussion, the presentation is restricted to the case of three identical,
scalar particles with unit mass for which interaction is only significant in the S-wave. The scattering

1 A part of this chapter has been published in Ref. [5] in the collaboration with Y. Wunderlich and the JPAC group
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matrix elementM is defined as the expectation value of the transition operator T ,
〈
p′1p
′
2p
′
3

∣∣T |p1p2p3〉 = (2π)4δ4(P − P ′)M(κ), (7.1)

where the initial (final) particle momenta are denoted by pi (p
′
i), i = 1, 2, 3, and the total momentum

is denoted P (P ′). In general, the 3→3 amplitude depends on 8 kinematic variables, indicated by κ.

Details of the state definition and normalization are given in Appendix C.1. It is shown that the
state of three identical particles can be written as,

|p1p2p3〉 =
1

3

∑

a

|a〉 , (7.2)

where |a〉 is a three particle state, symmetric under permutation of momenta pa2
and pa3

, with
(a, a2, a3) ∈ {(123), (231), (312)}. A subsystem of particles with these momenta is called subchannel.
The partial-wave expansion for the state |a〉 is done in two steps: First, the state is expanded in
variables of the subchannel, i.e. in the rest frame of pa2

pa3
, using the helicity basis (see Eq. (C.11)).

Second, the partial-wave expansion is performed in the center-of-mass frame for the quasi-two-body
system of the particle pair, and the remaining bachelor particle (see Eq. (C.17)).

Using the connectedness principle of S-matrix theory (e.g. see Ref. [38]), we split the interaction
operator T into the (fully) connected interaction Tc and the (partially) disconnected interaction Td:
T = Tc + 3Td, where the index 3 indicates three possible ways to choose the bachelor particle. For
the connected diagrams there are 9 configurations. The scattering matrix element reads,

M =
1

3

∑

a,b

[
(2π)3δ3(p′b − pa) (8π)t(σa) +

1

3
T (σ′a, s, σb)

]
, (7.3)

where s is the total invariant mass squared of the system s = (p1 + p2 + p3)2, the variable σa denotes
the subchannel invariant mass squared σa = (pa2

+ pa3
)2, with (a, a2, a3) ∈ {(123), (231), (312)},

the primed variables refer to the final-state invariant masses.
〈
b′
∣∣Td |a〉 = (2π)4δ4(P ′ − P )δ3(p′b − pa) (8π)t(σb), (7.4)

〈
b′
∣∣Tc |a〉 = (2π)4δ4(P ′ − P )T (σ′b, s, σa), (7.5)

The disconnected piece is a part of the interaction where only two particles interact while the remaining
third particle propagates through. A decomposition (7.3) falls under the name of the general isobar
model, where with isobar is referred to the subchannel interaction in a specific partial wave. Assuming
S-wave interaction in every channel the model is significantly simplified, however, we notice the
partial-wave series of the complete amplitudeM contains an infinite number of terms. In the S-wave
approximation the total number of variables (see κ in Eq. (7.1)) the amplitude depends on is reduced
to five: the total invariant mass of the system and two pairs of subchannel invariant masses squared,
for the initial and the final state.
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7.1.1 Unitarity relation

The unitarity condition for the interaction operator reads T − T † = iT †T . It translates to a constraint
for the scattering amplitudes T (σ′, s, σ) and t(σ) by calculating expectation values of the left-hand
and right-hand side of the operator relation between three-particle states. To transform the right-hand
part of the unitary equation we insert a resolution of the identity from Eq. (C.9) between the operators
T † and T .

〈b|T − T † |a〉 =
i

3

∫
(d̃p′′) 〈b|T †

∣∣1′′
〉 〈

1′′
∣∣T |a〉+

2i

3

∫
(d̃p′′) 〈b|T †

∣∣2′′
〉 〈

3′′
∣∣T |a〉 . (7.6)

Using the connectedness argument, the equation above is decomposed further. The left-hand side is
seen to be separable very easily in an additive way, since it is only linear in T (as well as T †). Due to
the product T †T , the right-hand side leads to different topologies [150] of the types “disconnected-
disconnected”, “disconnected-connected” and “connected-connected” (as well as their respective
hermitian conjugates). A part of the “disconnected-disconnected” terms contain the spectator delta
function and can be matched with the disconnected terms on the left-hand side. The remaining terms
match the difference expression for the connected amplitude.

〈b|Td − T †d |a〉 = i

∫
(d̃p′′) 〈b|T †d

∣∣1′′
〉 〈

1′′
∣∣Td |a〉 , (7.7)

〈b|Tc − T †c |a〉 = i

∫
(d̃p′′)

[1
3
〈b|T †c

∣∣1′′
〉 〈

1′′
∣∣Tc |a〉+

2

3
〈b|T †c

∣∣2′′
〉 〈

3′′
∣∣Tc |a〉 (7.8)

+ 〈b|T †d
∣∣1′′
〉 〈

1′′
∣∣Tc |a〉+ 2 〈b|T †d

∣∣2′′
〉 〈

3′′
∣∣Tc |a〉

+ 〈b|T †c
∣∣1′′
〉 〈

1′′
∣∣Td |a〉+ 2 〈b|T †c

∣∣2′′
〉 〈

3′′
∣∣Td |a〉

+ 6 〈b|T †d
∣∣2′′
〉 〈

3′′
∣∣Td |a〉

]

The disconnected constraint, Eq. (7.7), leads to the standard two-body unitarity equation.

t(σ)− t†(σ) = i t†(σ)ρ(σ)t(σ) θ(σ − 4). (7.9)

where ρ(σ) denotes the normalized two-body phase space ρ(σ) =
√

1− 4/σ. The amplitude
t†(σ) ≡ t∗(σ) is defined as an expectation value of the operator T † between S-wave projected
two-particle states.
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The three-body unitarity equation in the partial-wave projected form reads:

T (σ′, s, σ)− T †(σ′, s, σ) = (7.10)

i

3

∫ (
√
s−1)

2

4

dσ′′

2π
T †(σ′, s, σ′′)ρ(σ′′)ρs(σ

′′)T (σ′′, s, σ)

+
2i

3

x

φ(σ
′′
2 ,σ
′′
3 ,s)>0

dσ′′2dσ
′′
3

2πs
T †(σ′, s, σ′′2)T (σ′′3 , s, σ)

+ i t†(σ′)ρ(σ′)T (σ′, s, σ)

+ 2i
t†(σ′)

λ1/2
s (σ′)

∫ σ
+

(σ
′
,s)

σ
−

(σ
′
,s)

dσ′3T (σ′3, s, σ)

+ i T †(σ′, s, σ)ρ(σ)t(σ)

+ 2i
t(σ)

λ1/2
s (σ)

∫ σ
+

(σ,s)

σ
−

(σ,s)
dσ2T

†(σ′, s, σ2)

+ 6i
2πs t†(σ′)t(σ)

λ1/2
s (σ′)λ1/2

s (σ)
θ(φ(σ′, σ, s)).

where the function ρs(σ) = λ1/2
s (σ)/s parametrizes the normalized three-body phase space, with

λs(σ) = λ(s, σ, 1) being the Källén function, and T †(σ′, s, σ) = T ∗(σ, s, σ′) due to hermitian
propertied of T . 2 We notice that the unitarity equation (7.10) holds in the physical region, above
the thresholds σ, σ′ > 4 and s > 9. The term in the last line represent an exchange of real
particle between the initial and the final system and, hence, contributes only in the decay region
restricted by the condition φ(σ′, σ, s) > 0, where φ = σσ′(3 + s− σ − σ′)− (s− 1)2 is the Kibble
function [222]. This function parametrizes the borders of the Dalitz plot in σ as functions of the
variable σ′ (in case s is fixed), or vice versa. The integration limits in Eq. (7.10) are the boundaries
σ±(s, σ) = (s + 3 − σ)/2 ± λ1/2

s (σ)λ1/2(σ)/(2σ), that are the solutions of the Kibble equation
φ(σ±, σ, s) = 0.
To simplify equations we define an amputated amplitude T (σ′, s, σ), for which the two-body

interaction t(σ) is removed from both sides.

T (σ′, s, σ) = t(σ′)T (σ′, s, σ)t(σ). (7.11)

The terms on the left-hand side of Eq. (7.10) can be grouped as follows:

T (σ′, s, σ)− T †(σ′, s, σ) =
[
t(σ′)− t†(σ′)

]
T (σ′, s, σ)t(σ)+ (7.12)

+ t†(σ′)
[
T (σ′, s, σ)− T †(σ′, s, σ)

]
t(σ)+

+ t†(σ′)T †(σ′, s, σ)
[
t(σ)− t†(σ)

]
.

2 Under the time-reversal symmetry T † = T ∗, however, as shown by Olive in Ref. [48], T † can be consider as the opposite
value of the analytic function T †(σ′, s, σ), then, the difference T − T † gives the total discontinuity.
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The discontinuities in the first and third line can be exactly matched to the third and the fifth terms of
Eq. (7.10) due to the unitarity relation of t(σ), cf. Eq. (7.9).

The three-body unitarity equation for the S-wave T (σ′, s, σ) reads:

T (σ′, s, σ)− T †(σ′, s, σ) = (7.13a)

2i
1

λ1/2s (σ′)

∫ σ
+
(σ
′
,s)

σ
−
(σ
′
,s)

dσ′3 t(σ
′
3)T (σ′3, s, σ) (7.13b)

+
i

3

∫ (
√
s−1)2

4

dσ′′

2π
T †(σ′, s, σ′′) t(σ′′)t†(σ′′) ρ(σ′′)ρs(σ

′′) T (σ′′, s, σ) (7.13c)

+
2i

3

x

φ(σ
′′
2 ,σ
′′
3 ,s)>0

dσ′′2dσ
′′
3

2πs
T (σ′, s, σ′′2 )t (σ′′2 )t(σ′′3 )T (σ′′3 , s, σ) (7.13d)

+ 2i
1

λ1/2s (σ)

∫ σ
+
(σ,s)

σ
−
(σ,s)

dσ2 T †(σ′, s, σ2)t†(σ2) (7.13e)

+ 6i
2πs

λ1/2s (σ′)λ1/2s (σ)
θ(φ(σ′, σ, s)). (7.13f)

The three-body unitarity constraint is represented by a complicated integral equation. However,
one can apply a very intuitive shorthand notation in order to rewrite such integral-constraints in a
simpler form. In many cases, the underlying mathematical structure of the equations becomes more
transparent, once they are written in this abbreviated form.

T − T † = DτT + T †(τ − τ †)T + T †τ †DτT + T †τ †D +D, (7.14)

where we defined two additional functions, namely τ(σ) = t(σ)ρs(σ)/3 and

D
(
σ′, s, σ

)
= 12πi s/(λ1/2

s (σ′)λ1/2
s (σ)) θ(φ(σ′, σ, s)). (7.15)

The explicit indications of the variable dependencies of functions are suppressed in the shorthand
notation. The rules for transitioning from the shorthand notation to full integral-expressions, and vice
versa, are as follows. A multiplication by τ in the shorthand notation implies an integral over a energy
variable shared by τ and all functions in the product. For instance, in case τ is pre-multiplied by an
arbitrary function X and post-multiplied by an arbitrary function Y , the replacement rule becomes

XτY ↔
∫ (
√
s−1)

2

α

dσ
2π

X(. . . , s, σ)ρs(σ)t(σ)Y (σ, s, . . .), (7.16)

where the low limit of integral is not controlled by unitarity despite of a condition α < 4. All
integrals in (7.13) are truncated compared to Eq. (7.16). Such truncations are achieved by considering
additional factors of D, as well as the fact that the two-body unitarity constraint for τ (cf. Eq. (7.9))
also introduces a θ-function. Conventionally we fix α = −∞ for matching the forthcoming model
of Sec. 7.2. Note that, according to Eq. (7.16), multiple factors of τ in a product are tantamount
to multiple nested integrals. In the short form it is easy to notice that Eq. (7.14) matches unitarity
equations derived in Ref. [150].

In an early work of G. Fleming [195], an expression similar to Eq. (7.13) was derived. The author
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does not attempt to satisfy it as a whole but argues that it is allowed to split the total discontinuity
into the left-hand side to discontinuities in the individual variables σ′, s, σ and then match these
discontinuities to terms on the right-hand side. The discontinuities in σ′ and σ are matched to the
terms (7.13b) and (7.13e), respectively. The rest is discussed with respect to the complex structure in
the s-variable. The term (7.13f) arises from the u-channel pole singularity. However, the partial-wave
projection to the total angular momentum induces a complex singularity surface, which depends on all
three remaining variables σ′, s, σ. Hence, a short-cut term (7.13f) contributes to the discontinuity in
the subchannel variables, σ and σ′. Due to those general complications, we postpone the analytic
continuation until Sec. 7.2 and for now confine ourselves to the relations (7.13) valid on the real axis.

Splitting interaction ranges

Our goal is now to solve the unitarity constraint in Eq. (7.13) or Eq. (7.14) for the S-wave T of the
connected 3→3 amplitude. Although this constraint is represented by an involved integral equation
which embodies complicated 3-body physics, we desire to obtain a solution which is straightforward
and, in the end, simple. We found that a major step in this direction can be taken by decomposing the
amplitude T (σ′, s, σ) according to the following ansatz, which splits the long-range interactions, in
the following described by what we call the ladder amplitude L, as well as the short-range interactions
implemented via the residual amplitudeR, additively:

T (σ′, s, σ) = L(σ′, s, σ) +R(σ′, s, σ). (7.17)

In the remainder of this section, we will give meaning to the functions L andR, one after the other.
We show that, while the ladder L, satisfies the three-body unitary equation by itself, the short-range
partR, requires the initial and the final-state interaction which is related to the L.

7.1.2 The ladder amplitude

A straightforward and general model that satisfies three-body unitarity (Eq. (7.14)) was suggested in
Ref. [150]. It was shown that an analytic function L written in the form of a integral equation, with
kernel-function B ≡ B

(
σ′, s, σ

)
,

L = B + BτL, (7.18)

satisfies the unitary constraints (7.14), if the total discontinuity of the kernel B fulfills

B − B† = D, (7.19)

where the function D is defined in Eq. (7.15). The Eq. (7.18) was referred to as the Bethe-Salpeter
ansatz in Ref. [150], however, we find it more appropriate to call it the Blankenbecler-Sugar ansatz [214].
We extend the validity of the proof given in Ref. [150] by demonstrating, in a series of steps that
does not necessarily require operator inversions, that the relation follows from manipulations that are
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essentially algebraic:

L − L† = L†(τ − τ †)L+ (1 + L†τ †)L − L†(1 + τL) (7.20a)

= L†(τ − τ †)L+ (1 + L†τ †)B(1 + τL)− (1 + L†τ †)B†(1 + τL) (7.20b)

= L†(τ − τ †)L+ (1 + L†τ †)D (1 + τL) (7.20c)

= L†(τ − τ †)L+ L†τ †DτL+DτL+ L†τ †D +D. (7.20d)

In the derivation, the first step imposed zero-additions using suitably defined terms. In the second step,
we invoked the recursive definition of L (see Eq. (7.18)) and in the third step, we used our assumption
on the total discontinuity of B (Eq. (7.19)).
Despite of the generality of the ansatz (7.18), we use this construction to incorporate only the

long-range forces to our model. The amplitude L is defined entirely by the kernel function B. In case
B is given by an exchange process, the iterative definition (7.18) generates an infinite set of exchage
diagrams which, from the shape of the diagrams that occur in the resummation, validates denoting L
as a ladder amplitude.
One possible model for B that satisfies the condition B − B† = D is the one-particle-exchange

suggested in Ref. [150]. In Ref. [14], advantages and problems of this particular choice are discussed.
A very general and theoretically consistent class of unitary models emerges in case we only assume a
priori that the ‘ladder’ amplitude is set and contains nothing but the long-range forces. For a more
practical analysis method suggested later in this work, the ladder is generated by the Feynman triangle
diagram as shown in Sec. 7.2. In this case, in addition to the one particle exchange diagram, B contains
contributions from additional terms that generate a left-hand-side singularity.

7.1.3 Embodying the short-range physics

The short-range interaction contains all the resonance physics we are after and it is included via the
amplitudeR in our ansatz (7.17), as demonstrated in the following. Inserting the decomposition (7.17)
into the unitarity equation (7.14) and canceling terms from the discontinuity of the ladder L (cf.
eq. (7.20d)), we obtain the most general form of the unitarity constraint forR, which in the shorthand
notation reads

R−R† = R†(τ − τ †)R+R†τ †DτR (7.21a)

+DτR+ L†(τ − τ †)R+ L†τ †DτR (7.21b)

+R†τ †D +R†(τ − τ †)L+R†τ †DτL. (7.21c)

The structure of Eq. (7.21) is rather clear: the terms (7.21a) represent different intermediate states
between R, either with the matched isobar energies variable or with the recoupled ones. The
terms (7.21b) and (7.21c) resemble the unitarity relation of the ladder L, with the exchange interaction
attached to R from the left- and the right-hand side. It motivates an introduction of the reduced
amplitude R̂,

R = (1 + Lτ) R̂ (τL+ 1). (7.22)
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Indeed, a successive attachment of the exchange processes can be achieved by introducing an integral
over σ in the same way as it appears in the unitarity equation (7.13) (or a multiplication through τ in
the algebraic shorthand notation). For instance, for the attachment of all exchange processes from
the left, we can write: R̂+ Bτ R̂+ BτBτ R̂+ · · · = (1 + Lτ) R̂. Using the three-body unitarity
constraint for the ladder L (cf. Eq. (7.20d)), it is possible to demonstrate that

(1 + Lτ)r − (1 + L†τ †)r =
(
Dτ + L†(τ − τ †) + L†τ †Dτ

) [
(1 + Lτ)r

]
, (7.23)

which matches all terms in Eq. (7.21b). Thus, we see that by acting with (1 + Lτ) on R̂ from the left,
we can reproduce all terms in the overall unitarity constraint in Eq.(7.21) for R that have R on the
right. In exactly the same way, by applying the operator (1 +Lτ) or (Lτ + 1) to R̂ from the right, we
can obtain all the terms in Eq. (7.21c), i.e. all terms withR on the left. The function R̂(σ′, s, σ) is
denoted as the resonance kernel. A straightforward algebraic derivation, combining Eq. (7.21) with
the decomposition (7.22), leads to the condition for R̂:

R̂ − R̂† = R̂†(1 + τ †L†)
[
τ − τ † + τ †Dτ

]
(1 + Lτ) R̂ (7.24)

= R̂†
[
τ − τ † + τLτ − τ †L†τ †

]
R̂. (7.25)

This equation looks significantly much simpler than Eq. (7.14). It resembles a form of the two-body
unitary equation: the expressions in the square bracket is nothing but the integration over the phase
space of the two isobar-bachelor systems which are wither connected directly (isobar-to-isobar: τ − τ †)
as shown in the diagram in Eq. (7.13c) ot crossed (isobar-to-bachelor: τ †D) as shown in Eq. (7.13d).

The Eq. (7.24) and Eq. (7.25) are the first important result of this chapter: a valid unitary amplitude
that includes the long-range interaction can be extended by a function R in the form of Eq. (7.22)
with the exchange processes dress amplitude R̂. Then, the unitarity requirement for R̂ can be written
either as in Eq. (7.24), or as in Eq. (7.25). We notice that Eq. (7.25) admits a recursive solution for R̂,
which reads R̂ = X + X (τ + τLτ) R̂, where X (σ′, s, σ) does not have the right-hand-side cut and
plays the role of aK-matrix used for 2→ 2 scattering. The latter resembles equations independently
derived in Ref. [223] for purposes of lattice calculations on the 3→ 3 problem. We consider the
separation of the long- and the short-range interaction as a convenient trick that allows us to simplify
equations and emphasis the resonance physics. However, we would also like to stress that a separation
between the ranges is not entirely necessary in a sense that one could obtain an equivalent model by
including the kernel X into B as proposed in Ref. [14].
Despite of simplicity of Eq. (7.25) in what follows we demonstrate advantages of the form (7.24)

and show how it gives benefits and a new angle of view to the problem.

7.2 Factorization of final-state interaction

The class of unitary models outlined in section 7.1, while being general, is difficult to implement for
practical purposes. It still misses an important connection with the methods and tools of amplitude
analysis we have mastered with two-body reactions. In this section we fill the gap by considering a
plausible model for the long-range interaction inspired by the Khuri-Treiman approach. We also show
that as soon as the resonance kernel R̂ factorizes in variables σ′, s, and σ, the long-range interaction
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can be taken into account by modifying the line shape of subchannel amplitudes following the Khuri-
Treiman prescription, and the explicit calculation of the ladder amplitude, L, becomes unnecessary.
The three-body unitarity constraint given in Eq. (7.24) is obtaining an algebraic (multiplicative) form.

The the 3→3 scattering process cannot be observed experimentally. However, it is often the case that
the system of three particles is produced in 2→ 3 scattering [224] or as a part of a 2→ 4 process [78].
On the other hand, the Dalitz plot analysis is a common task nowadays, due to an abundance of data on
the three-particle states observed in the decay of narrow heavy meson states. For those reactions, the
total invariant mass is fixed and the main dynamics accessible in the studies are given by the formation
of subchannel resonances and the final-state interactions. Due to the non-perturbative character of
the interaction, an approach based on unitarity and analyticity via dispersion relations becomes the
main tool for theoretical studies. The Khuri-Treiman model was introduced in Sec. 4.5. We explore it
further following the earlier studies by Aitchison and Pasquier [162, 194]. We demonstrate that a
particular model for the ladder amplitude is generated implicitly by the form of the equations. Hence,
we clearly identify the (1 + Lτ) operator with the final-state interaction via long-range exchanges that
built the ladder L.

7.2.1 A ladder from Khuri-Treiman equations

We consider a general production reaction, where the 3π-state is produced from some |source〉 state.
The T -matrix element for the production is defined and approximated in the isobar model as

〈3π|T |source〉 = (2π)4δ4(P − P ′)F (s, σ1, σ2, σ3) (7.26)

= (2π)4δ4(P − P ′)
3∑

i=1

F(s, σi)t(σi), (7.27)

where we follow the same level of simplification as before, i.e. the discussion is restricted to a system
of three identical particles with unit masses. In Eq. (7.27), we write the decay amplitude F as a
sum of a truncated partial-wave series which is stopped after the S-wave in all these subchannels,
and introduce the amputated amplitude F(s, σi). The s-dependence of the amplitude F(s, σi) is not
controlled in the formalism, instead, it is used as a tuning parameter: the reaction is considered in the
scattering domain for a small value of s, the established relations are then used in the 1→3 decay
domain by means of an analytic continuation [194].

We follow the same derivation of the Khuri-Treiman equations as in Sec. 4.5, however, the equations
are much simpler due to our assumptions. Two-body unitarity for a given subchannel with invariant
mass squared σi contains the partial-wave projection of the amplitude F (s, σ1, σ2, σ3), which involves
a direct term F(σi)t(σi), as well as the partial-wave projections of the crossed channels, i.e. terms
of the same structure as Eq. (7.13b). Using dispersive integrals, one builds a relation between a
partial-wave amplitude F(σi) and the cross-channel projections (for the case in hand the cross-channel
projections in Eq. (4.22) are equal to each other).

F(s+, σ) = C(s, σ) +
1

π

∫ ∞

4

dσ′

(σ′ − σ)

1

λ1/2
s+

(σ′)

∫ σ
+

(σ
′
,s+)

σ
−

(σ
′
,s+)

dσ′′ t(σ′′)F(s, σ′′), (7.28)

where C(σ) is an entire function of σ. This might have a polynomial σ-dependence, which is not
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controlled by the formalism. It is important to note that since the dispersive integral in σ′ goes beyond
the physical domain 4 < σ′ < (

√
s− 1)2, the integration-limits σ±(σ′, s) require an iε-prescription

for the determination of their positions in the complex σ′′-plane. As was shown by Bronzan and
Kacser in Ref. [149], the determination using s+ ≡ s+ iε leads to a perfect match between the first
iteration of Eq. (7.28) and calculations performed in perturbation theory, i.e. the triangle loop diagram
from Eq. (4.4). Eq. (7.28) can be solved for a every specific source term (subtraction coefficient)
C = k(σ) by multiple iterations [165–167, 169] or the numerical inversion suggested in Ref. [171]
resulting in a function F(s, σ) = K(s, σ). Importantly, the s-dependence of the solution K(s, σ) in
case of the s-independent source k(σ) entirely appears due to the specific form of Eq. (7.28). This
s-dependence is not surprising since by iterating Eq. (7.28) one attaches further exchange processes.

For further analysis Eq. (7.28) is recast in the form of a so-called single variable representation
(SVR). It is obtained once the order of the integrals over σ′ and σ′′ is swapped. One method for
this transformation was suggested by I. Aitchison and R. Pasquier in Ref. [194] (we call it Aitchison
inversion); an alternative technique was developed in Ref. [162] by R. Pasquier and J. Pasquier
(Pasquier inversion). 3 In Appendix E.2 we clarify how the Pasquier inversion can be applied to
Eq. (7.28). It results in the following equation.

F(s, σ) = C(s, σ) +

∫ (
√
s−1)

2

−∞

dσ′′

2π
B0(σ, s, σ′′)τ(σ′′)F(s, σ′′). (7.29)

Here τ(σ) = t(σ)ρs(σ)/3, the function B0(σ, s, σ′′) is the Pasquier-kernel, which can be written as a
complex integral along a complex contour (C ′) (see details of the contour in the Appendix E.2 in
Fig. E.6).

B0(σ, s, σ′′) = 6

[
θ(σ′′)

∫ σ
−

(σ
′′
++,s)

σ
−

(σ
′′
+,s)
(C ′) − θ(−σ′′)

∫ ∞

σ
−

(σ
′′
++,s)
(C ′)

]
dσ′

(σ′ − σ)

1

λ1/2
s+

(σ′)
, (7.30)

where the function σ−(σ′′, s) is given in Eq. (E.6), the values σ′′+ and σ′′++ are the values slightly
shifted to the complex plane as shown in Fig E.6. The heaviside θ-functions separate two ranges of
the σ′′ integral in Eq. (7.29): 0 < σ′′ < (

√
s− 1)2 and σ′′ < 0.

The integral (7.30) and its analytic structure are rather involved, but they have been discussed in
detail in the references [162, 164, 194, 219, 226]. It was shown that B0 can be written as a sum of the
S-wave projection of the one particle exchange diagram, i.e. E =

∫
dz/(m2

π − u(s, σ, σ′, z)), where
u(s, σ, σ′, z) = 1 + σ′ − (s+ 1− σ)(s+ σ′ − 1)/(2s) + λ1/2

s (σ)λ1/2
s (σ′) z/(2s), and an extra term

E23 (referred to as ∆23(σ, s, σ′′) in the literature). Using the analytic form of B0 it can be shown that
the extra terms do not contribute to the s-discontinuity such that the condition B0 − B†0 holds (this
non-trivial fact requires the further studies and rigorous proof).

For our application, it is important that the kernel B0 satisfies the requirement (7.19) and, hence, it

3 We also found useful a recent work of Peng Guo [225] where the Pasquier inversion is discussed in details.

118



7.2 Factorization of final-state interaction

generates a valid ladder amplitude for the 3→3 interaction. The iteration of Eq. (7.29) leads to

F(σ′, s) = C(s, σ′) +

∫ (
√
s−1)

2

−∞

dσ′′

2π
L0(σ′, s, σ′′)τ(σ′′)C(s, σ′′) ↔ F = (1 + L0τ)C,

(7.31)

where L0(σ′, s, σ) is defined by the integral equation L0 = B0 + L0τB0 (written in the shorthand
notation). The validity of L0 as a 3→3 model was extensively discussed in Ref. [162, 194]. A known
problem of the kernel B0 = E + E23 pointed out in Ref. [162] 4 is the time reversal symmetry of the
generated ladder diagram. Looking at the definition of B0 in Eq. (7.30), one can suspect that B0 is not
symmetric on permutation of σ and σ′. It was shown that the time-reversal symmetry is explicitly
broken by the presence of E23(σ′, s, σ) term [219]. The scale of the violation is however unclear and
should be addressed in numerical studies.

We see that our ansatz for the resonance part of the model in Eq. (7.22) appears in a new light. One
realizes that the operator (1 +Lτ) attached to both sides of the resonance kernel R̂ indeed indicates a
necessity for the initial- and the final-state rescattering, in a similar way as it is performed in the KT
formalism.

7.2.2 The resonance kernel factorization

So far we have explored the two-body unitarity constraint to the production amplitude F which was a
rather artificial construction obtained by the means of analytic continuation. Now, we can derive the
three-body unitary constrains to the amplitude F . Following the derivation of Eq. (7.6) we get:

〈b|T − T † |source〉 =
i

3

∫
(d̃p′′) 〈b|T †

∣∣1′′
〉 〈

1′′
∣∣T |source〉

+
2i

3

∫
(d̃p′′) 〈b|T †

∣∣2′′
〉 〈

3′′
∣∣T |source〉 .. (7.32)

The derivation proceeds in a similar way as before, however, one realizes that the disconnected 3→3
scattering amplitude appears only on the right-hand side of the three-body unitarity equations.

F − F† = DτF + T †(τ − τ †)F + T †τ †DτF , (7.33)

where F†(s, σ) can be either related to the conjugated amplitude F∗ when time-reversal symmetry
holds, or related to the opposite border of analyticity function F(s, σ) [48]. The first term of Eq. 7.33
is associated with the σ-discontinuity of the function F(s, σ), leading to the Khuri-Treiman model as
well as the decomposition F = (1 + L0τ)C, where the has s-dependence C(s, σ) is not constrained
by the Khuri-Treiman equations, but rather by the three-body unitarity equations. We transform
Eq. 7.32 using the decomposition (7.17) for the amplitude T with a given model for the ladder, L0,
andR = (1 + L0τ)R̂(τL0 + 1). It results to:

C − C† = R̂†(1 + τ †L0
†)
[
τ − τ † + τ †Dτ

]
(1 + L0τ) C. (7.34)

4 Ref. [227, 228] are also supposed be very valuable for the question, however, Ref. [227] could not be found by the Orsay
Library, Ref. [228] is in French.

119



Chapter 7 Unified picture: theoretical framework

Although the equation is still complicated, we recognize the same construction as in Eq. (7.24).
The final and the most powerful assumption we make is factorization of the functions R̂ and C in the
variables s, σ, and σ′.

R̂(σ′, s, σ) = k(σ′)R(s)k(σ), (7.35)
C(s, σ) = F(s)k(σ). (7.36)

where k(σ) is an entire function of σ. 5 The factorization assumption seems to be a very natural given
the fact that the resuduals are factorized in the resonance pole in general [39]. To proceed, we use
K(σ, s) for a solution of the Khuri-Treiman equation (7.29) (or Eq. (7.28)) with a given source term
k(σ′), i.e. K(σ, s) = k(1 + τL0). We arrive to fairly simple algebraic unitarity equations for the
factorized kernels followed from Eq. (7.24) and Eq. (7.34).

R(s)−R†(s) = iR†(s)Σ(s)R(s), (7.37)

F(s)− F†(s) = iR†(s)Σ(s)F(s), (7.38)

where Σ(s) is a dressed isobar-bachelor loop (the self-energy function) that includes the series of
rescattering processes between three particles

Σ(s) = K†(τ − τ †)K +Kτ †DτK. (7.39)

The structure of the unitarity equation (7.37) is formally the same as that of the two-body unitarity
constraint (7.9). The two-body phase-space factor is replaced by the function Σ, which averages
rescattering contributions over the three-body phase space. The analogy with two-body unitary goes
further: when the two-body interaction amplitude t(σ) is dominated by an isolated narrow resonance,
the effect of the final-state interaction, which is included via attaching the ladder in the form (1 +Lτ),
becomes negligible. In this case,K(σ, s) is approximately equal to t(σ). The second term in Eq. (7.39),
which reflects the strength of the overlap of resonances in different crossed channels, vanishes, while
the first term yields simply the two-body phase space ρs(m

2
R), where mR is a mass of the narrow

resonance. If we only neglect the second term we arrive at the quasi-two-body approximation proposed
in Ref. [141].

As an example, we can construct a model for an isolated three-body resonance, for instance a1(1260)
observed in the system of 3π with JPC = 1++, which is fully consistent with three-body unitarity
requirements as follows. Since the function Σ(s) calculated along the real axis gives the imaginary
part of the loop diagram that includes the cross-channel exchanges, the real part can be recovered

5 It is important to mention usage of the same function k(σ)for both R̂ and C a convenient simplification, however, it is not
generally required. Perhaps, the most convenient practical approach is to expand of the functions C(s, σ) and R̂(σ

′
, s, σ)

in polynomials in σ keeping the expansion coefficients functions of s.

R̂(σ
′
, s, σ) = R00(s) + σ

′
R10(s) + R01(s)σ + σ

′
R11(s)σ + . . . ,

C(s, σ) = F0(s) + F1(s)σ + . . . .

In this case, one obtains a system of coupled equations.
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using a dispersive integral:

R(s) =
g2

m2 − s− ig2Σ̃(s)/4
, Σ̃(s) =

s

2πi

∫ ∞

9

Σ(s′)

s′(s′ − s)
ds′. (7.40)

It further extends the model used in Sec. (6) and includes the rescattering corrections consistently with
the three-body unitarity. Although the model excludes explicit t-channel exchange processes, as we
suppose, the effect of the latter can be incorporated effectively via left-hand-side singularities of the
function R(s), analogously to the common techniques used in analyses of two-body reactions. The
reader observes that the explicit expression of L does not enter. Instead, the effect of the final-state
interactions is absorbed into the functionK(s, σ), which can be investigated separately, e.g. by solving
the Khuri-Treiman equations.

7.3 Conclusions

We have outlined a general class of unitary models for the analysis of 3 → 3 processes based on a
specific approach for the separation of the descriptions of long- and short-range forces. At first, the
long-range interactions were introduced in terms of the ladder amplitude L, which is a solution of
an integral equation and iterates the kernel function B to all orders. The function B has been only
restricted by the condition B − B† = D, which is well satisfied by a one-particle exchange process, E .
It was shown that the ladder amplitude, L satisfies the three-particle unitarity constraint by itself.
The ladder amplitude has been extended additively by an a priori unknown functionR, which is

used to parametrize the remaining short-range interactions. Unitarity implies a particular constraint
on the total discontinuity of R. We have shown how the unitarity constraint can be respected by a
general ansatz forR introducing the resonance kernel R̂, dressed by initial- and final-state interaction
operators constructed from L. This dressing provides all relevant normal threshold singularities in the
two-body subenergy variables.
The general class of unitary models, while being fully consistent, have been simplified further

in order to be suitable for practical analyses. For this purpose, we introduced two further ideas.
First of all, it has been pointed out how the known Khuri-Treiman formalism gives a specific model
for the long-range kernel B0. Secondly, we have demonstrated how a factorization ansatz for the
resonance kernel R̂, leads to a simplification of the three-body unitarity equations. We have obtained
an algebraic equation in the for similar to the two-body unitary equation. The long-range interaction
and the induced final-state rescattering have got packed into the dressed isobar-bachelor loop function
(self-energy function). One of the main strengths of the final model is its analytic properties. Due
to the usage of the dispersive Khuri-Treiman approach, the amplitude only contains the unitarity
cuts the subchannel invariant mass squared. The analytic structure in the total invariant mass s is
not effected by the subchannel variables σ, it can be set using dispersive methods. The three-body
unitarity condition have been reduced to the form of the two-body unitary constraint therefore all
common technique discussed in Sec. 2.1 and Sec. 2.3 become applicable.

Our model is a proposal suitable for studies of the three-particle resonances. Using the relation of
the scattering amplitude and the production amplitude, the model can be applied to more complicated
hadronic reactions, as for example the process π− p→ π−π+π− p discussed in Sec 3, or in hadronic
tau decays, τ → 3π ντ discussed in Sec. 6.
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We have established an asymptotic limit of the formalism in the quasi-two-body unitarity ap-
proach [141] explored in Appendix (A.2) (final-state interaction is negligible), or, simply, the two-body
unitarity [39, 47] (the subchannel interaction contains infinitely narrow resonance).
We have illustrated the basic ideas in the rather artificial context of a restriction to S-waves only.

Thus, in the next step, the formalism should be extended for an arbitrary value of the total angular
momentum (the first steps in this direction are done in Sec. 4.5). The system of three pions require
also a consistent isospin treatment. The isospin symmetry seems to the straightforward to incorporate
using the decomposition method presented in Appendix C.1. An extension of this work to the
coupled-channel problem is required for further investigation of the a1(1420) phenomenon (see
Chapter 4) in the 3π −KK̄π coupled system. We have left aside a problem of the time-reversal
symmetry which would be important to address in the practical cases.
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Summary and Outlook

The studies of light-meson resonances are the main subject of this thesis. The central issue of this
research is that the interaction between hadrons cannot be calculated from first principles. Although
QCD is known and accepted to be the fundamental underlying theory of the strong interaction,
the consequences for the hadron spectrum cannot be inferred from it due to the complicated, non-
perturbative nature of this theory. Among several possible phenomenological treatments of hadron
spectroscopy, we attempt to pursue the most general approach which is based on basic properties of the
scattering amplitude: unitarity, analyticity and crossing symmetry. The approach allows us to strictly
define the resonance characteristics such as the mass and width and remove a large arbitrariness of the
phenomenological amplitude construction in other approaches.
The work is focused on the dynamics in the system of three charged pions (π−π+π−) from

measurements of diffractive reactions π− p→ π−π+π− p, performed at the COMPASS experiment.
In Sec. 3 we have introduce the main featured of the three-pion physics seen in the diffractive
production: The three-pion interaction incorporates numerous different excitations modes: the system
couples to a few tens of hadronic states that arise either as excitation of a subsystem (two pions) or
the excitation of the system as a whole. The identification, separation, and characterization of the
excited mesonic states is a very challenging problem that has been investigated by physicists around
the world for many years. Moreover, in addition to the hadronic excitations, the physics of the strong
interaction exhibits the quantum phenomena of final-state. Attempting to advance the customary
approach of modeling the energy dependence of the amplitude by several Breit-Wigner terms and
a phenomenological background, we have performed exploratory studies in both theoretical and
practical directions of research.
We have studied the origin of the new resonance-like phenomenon a1(1420), observed by the

COMPASS experiment in 2015 in the f0π P -wave. We have suggested and developed an interpretation
of the signals as a consequence of a peculiar 3π-KK̄π coupling. A close-to-mass-shell kaon exchange,
whenK∗K̄ scatters to f0π, has been found to produce an enhancement in the spectrum of f0π and
a significant motion of the scattering phase. All features of the phenomenon established by the
COMPASS data have been reproduced within a simple model (see Chapter 4). The understanding of
the rescattering effect might shine light to theXY Z states discovered in the charmonium sector as well
as the pentaquark states observed by LHCb. There are indications that some of these exotic-candidate
signal might originate from rescattering effects. In this sense, the a1(1420) signal is a gift: due to the
rather well-known interaction between light hadrons and thanks to high statistical precision of modern
experiments, we have a chance to illuminate this tricky feature of the strong interaction.

In addition to rescattering effects, we have also studied a second long-standing issue in spectroscopy:
how to formulate amplitudes in a theoretically cleaner way than the traditional approach of a sum
of the Breit-Wigner amplitude. Starting from the well-established unitarity-based technique (see
Chapter 2) for a system of two particles, we approach the 3π system where two pions are combined
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into a quasi-stable intermediate state, e.g. the ρ-meson, or the f2-meson. Since the diffractive
reactions exhibit complicated production mechanisms including non-resonant background processes,
we have applied our model to the hadronic decays of the τ -lepton, i.e. τ → 3π ντ . Using the publicly
available data of the ALEPH experiment, we succeeded to fix the model parameters and to perform an
analysis of the analytic structure of the scattering amplitude (see Chapter 6). The pole position of the
spin-partner of the ρ-meson, the ground axial vector a1(1260) has been extracted for the first time.
Using the ALEPH data we have tested our model which included the interference of two interaction
chains (ρ[→ π−1 π

+
2 ]π−3 and π−1 ρ[→ π+

2 π
−
3 ]) against the simpler one of the quasi-stable ρ-meson and

a bachelor pion resonating in the S-wave. The comparison has revealed a significant difference in the
results of the two models; it has emphasized the importance of the fact that the 3π-system is not just a
quasi-two-particle system.
A further important achievement of this thesis is the realization of a coherent framework which

puts both the final-state interactions and the three-particle resonances to the same footing (Chapter 7).
Using a simplified version of the 3π system (three identical scalar particles) we have derived the
three-body unitarity requirements and suggested a model which manifestly satisfies them. We show
that for a system with a significant subchannel interaction, the rescattering processes generate the
long-range interaction amplitude which is a sum of ladder-like diagrams (the two-particle resonances
in different subsystems are formed and decay via one-particle exchange). The three-particle resonances
are incorporated into the model by short-range terms (e.g. contact terms). In order to preserve
three-body unitarity, these terms need to be “dressed” with the ladder rescattering. A dedicated
publication is being drafted.
The framework unifies several approaches applied to a system of three particles: in the limit of a

stable subchannel resonance, it reduces to simple two-body unitarity-based constructions (e.g. the
K-matrix); under a slightly weaker approximation, the framework leads to the approach used in
the τ -decay analysis mentioned above. For a fixed value of the total invariant mass, the model for
the subchannel dynamics of our general framework is reminiscent of the Khuri-Treiman model (see
Sec. 4.5 and Sec. 7.2). It follows that the three-hadron scattering amplitude can be written and the
N -over-D function (see Eq. (7.35) and Eq. (7.36) with N = k(1 + τL0) and 1/D = R) where the
N includes the details of the production and decay chains, while the D describe the three-particle
resonances (bare poles dressed by the hadronic loops). The final-state interaction modifies the line
shape of the ππ-subchannel resonances; it influences the results for the pole position of three-particle
resonances (as we also found in the systematic studies of the τ -decay analysis in Sec. 6.4).

The framework is well suited for addressing the a1(1420) phenomenon, although it would require
an extension to accommodate two coupled channels (3π andKK̄π). The main question concerning
the nature of the a1(1420) is either if the rescattering effects incorporated by the N function are
sufficient to describe the data, or if the functionD requires (develops) poles in addition to the expected
axial states. It is important to notice, that the triangle singularity from the kaon exchange is present in
the N -function as a part for the decay process. An investigation using this approach is ongoing.

Along the path of the investigation on the a1(1420), an essential next step would be a comprehensive
analysis of the decay τ → 3π ντ . A simple test of the a1(1420) based on the dissection check
discussed in Sec. 4.1 (see Fig. 4.3) can be done on the τ -sample ahead of the PWA. The conventional
PWA (see Sec. 3.3.1) might be used to confirm the COMPASS observation of the a1(1420). The
freed-isobar PWA discussed in Sec. 3.4 would give a model-independent extraction of the Isobar line
shapes (π+π− interaction with S- and P -waves in this case), distorted by the final-state interaction.
Sequentially, these results have to be subjected to the dispersive unitarity-based approach such as the
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Khuri-Treiman model. Subtraction constants need to be fitted for every fixed value of the 3π invariant
mass. The final step of the “comprehensive analysis” is a dynamic description of the subtraction
constants as functions ofm3π, using the general framework developed in Chapter 7 and the analytic
continuation of the model to the complex plane. We admit that the project is ambitious: it would
require a lot of research as well as large computational resources for every step of the sketched plan. It
is not less important to have a sufficiently large and precise data sample. Belle and BaBar are the two
experiments which have collected over 108 τ -pair events produced in e+e− collisions [229, 230].
Studies of the 3π system in diffractive reactions are more complicated due to the production

mechanism. However, over the last years, COMPASS performed an outstanding work for breaking
down this complex data into separate intensities for different JPC sectors. With the recent result
of the freed-isobar analysis, one gets access to the subchannel spectra distorted by the rescattering
effects. Those results seems to be the best “data” to validate our understanding of the rescattering
physics. For example, the exotic sector with JPC = 1−+ is found to couple exclusively (among the
3π waves in the COMPASS PWA) to the ρπ P -wave. The Khuri-Treiman model in this case resembles
the model for ω → π+π−π0 studied in Ref. [165, 166] with a slight difference due to the total isospin
6 (an investigation has been started in collaboration with Tobias Isken and Bastian Kubis). We have
performed the first steps in generalizing the KT-formalism for arbitrary JPC quantum numbers of the
system. The application of this approach to JPC = 1++ based on the COMPASS freed-isobar results
is an ongoing JPAC project.
Combining the rescattering studies with the three-body resonance extraction is, however, difficult

given the COMPASS data. An additional challenge with respect to the τ analysis is the non-resonant
background process, the Deck process. The understanding of its effect on the three-particle spectrum
is still far from being quantitative. everal partial waves in the COMPASS analysis [78] are believed to
contain a significant contribution of this background. In Chapter 5 we have consider available models
for the Deck processes and sorted out an important parameters. We have found that the line shapes of
the partial-wave projections vary substantially depending on a model for the exchange-pion propagator.
An adjustment of the background parametrization using the COMPASS data is the next mandatory
step to move forward the understanding of diffractive reactions (this is an ongoing work).
An investigation of alternative production mechanisms, such as e.g. γ p→ 3π p, that are possible

at the CLAS12 and GlueX experiments, will provide complementary access to the meson excitation
spectrum. Interestingly, the CLAS partial-wave analysis of Ref. [231] reported no evidence for the
exotic π1(1600) signal in JPC = 1−+ as well as no evidence for the a1(1260) in the JPC = 1++

sector. In this respect, the data from the GlueX experiment are looked forward to [232]. The techniques
and methods developed in this thesis will be essential in the future analyses.

6 Essentially, the inhomogeneous term in theKT framework contains twoππ cross channels in case ofω-decay: JPC = 1
−−,

the total isospin is I = 0. For the 3π system with JPC = 1
−+, I = 1, there are two π+

π
− pairs.
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APPENDIX A

Other analyses

A.1 ηπ/ρπ coupled channel amplitude

A single channel analysis of the ηπD-wave was performed by the JPAC collaboration and published
in a JPAC-COMPASS combined paper [4]. The analysis was led by A. Jackura, I was responsible for
the cross check of the results and tests of the systematic uncertainties due to coupling to ρπ channel.
Details of the developed coupled-channel model are described below.

Parametrization of the scattering amplitude

The transition amplitude is denoted by Tij

〈f |T |i〉 = Mif (2π)4δ4(p1 + p2 − p′1 − p′2) (A.1)

where i, f are the initial and the final state. Those are considered to be either ηπ or ρπ. For the
convenience the channels are labeled by 1 (ηπ) and 2 (ρπ). First, we dissect out the threshold factors,

Mif = h2((piR)2)M̂ifh2((pfR)2), h2
2(z) =

z2

1 + z2 , (A.2)

where p1 = λ1/2(s,m2
η,m

2
π)/(2

√
s), and p2 = λ1/2(s,m2

ρ,m
2
π)/(2

√
s) with λ(x, y, z) = x2 + y2 +

z2 − 2xy − 2yz − 2zx being the Källén function. R is the Blatt-Weisskopf size parameter (see
Appendix E.3), we use R = 5 GeV−1. The reduced amplitude M̂ is parametrized in the matrix form

M̂(s) = K(s)[1− iρ̃(s)K(s)/2]−1 (A.3)

where ρ, andK are matrices given by

K =
1

m2
1 − s

(
g2

1 g1g2

g2g1 g2
2

)
+

1

m2
2 − s

(
h2

1 h1h2

h2h1 h2
2

)
, ρ̃(s) =

(
ρ̃1(s) 0

0 ρ̃2(s)

)
, (A.4)
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Table A.1: Values of the parameters in the ηπ/ρπ coupled-channel model for the scattering amplitude.
m2

1, GeV2 1.8089± 0.0013 m2
1, GeV2 2.950± 0.011

g1, GeV 1.345± 0.011 h1, GeV 2.51± 0.19
g2, GeV −3.381± 0.014 h2, GeV 4.893± 0.067

Table A.2: Values of the parameters in the model of the production amplitude. Since the parameters are strongly
correlated, we provide six significant digits for the main value.

parameters ηπ (i = 1) ρπ (i = 2)

c
(0)
i 59.20060± 3.02954 −61.65760± 1.05773
c

(1)
i −83.9214± 37.5529 −280.032± 30.772
c

(2)
i −8.82913± 160.63800 −2 231.93± 313.14
c

(3)
i 4 127.610± 411.796 −10 944.00± 1 207.15
c

(4)
i 10 412.000± 743.662 −16 693.80± 1 636.41

where ρi(s) denotes the reduced phase-space factor. The ρ̃ is the dispersive form of ρ given by

ρ̃i(s) =
s

πi

∫ ∞

sth

ρi(s
′)ds′

s′(s′ − s− iε)
, ρi(s) =

1

8π

2pi√
s
h2

2((piR)2)), (A.5)

where ε is very small positive number (take 10−5), sth is the threshold in the corresponding channel, i.e.
(mη +mπ)2 or (mρ +mπ)2. The masses of the particles aremπ = 0.13957 GeV,mη = 0.547 GeV,
mρ = 0.7755 GeV [26]. The values of parameters are given in the Table A.1.

Parametrization of the production amplitude

The production amplitude F (s) is defined in Sec. 2.3. It is a vector with two components: ηπ
production amplitude and the ρπ production amplitude. We use the method of production vector to
parametrize it:

Fi(s) = h2((piR)2)
∑

j

M̂if (s)αj(s), (A.6)

where the functions αj(s) is a two-component production vector. To model it, we use a polynomial
series of the conformal variable ω(s).

αi(s) =
4∑

k=0

c(k)
w ωk(s), ω(s) =

1−√s
1 +
√
s
, (A.7)

where c(i)
w are real coefficients given in the Table A.2. To adjust the model, we use the COMPASS

data. The ηπD-wave was extracted in Ref. [63]. The data are selected in the range of the squared
transferred momentum t′, 0.1 < t′ < 1 GeV2. The ρπD-wave was extracted in the PWA in Ref. [78].
To use the same kinematic domain, we sum the intensities of the JPCM ε = 1++0+ ρπ S-wave in 11
t′ slices incoherently.

A simultaneous fit of ηπ and ρπ channels is shown in Fig. A.1.
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Figure A.1: A fit of the ηπ/ρπ coupled-channel model to the COMPASS data The JPCM ε = 2++1+ ηπD-wave
is obtained in the PWA of the reaction π p→ ηπ p [63], The JPCM ε = 2++1+ JPCM ε = 2++1+ ρπD-wave
is from the PWA of the reaction π− p→ π−π+π− p [78]. The intensities are expressed in number of events.
The red line shows the model curve in the intervals used for the fit. The extrapolation of the model beyond the
fit range is shown by yellow line.

A.2 Mass-dependent fit of the 2−+ sector

This section summarizes an analysis aiming to extract the resonance parameters from the COMPASS
data with a unitary model. The project was started in summer 2015 in collaboration with A. Jackura.
Two years, 2016 and 2017, were dedicated to this problem in large extend. The intermediate results
were pre-released (a cross-check has not been done) by the COMPASS collaboration and presented
several times at conferences and workshops. Proceeding notes dedicated to the progress in the analysis
have been published [7, 233]. Due to a lack of theoretical basis and remaining questions on systematic
effects (particularly, the Deck effect) the analysis has not been finished. However, the project resulted
in several developments which have been completed as separate works. Among of those are studies of
the Deck model, i.e. Sec. 5, the a1(1260) investigation in Sec. 6, and the unified theory in Sec. 7.

JPC = 2−+ sector of the compass data

The main puzzle of the JPC = 2−+ sector is an interplay of the two states called π2(1670) and
π2(1880), which have been seen to decay predominantly into 3π [26]. Both have identical quantum
numbers, although, are only 200MeV apart. This does not fit with quark model radial excitation
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Figure A.2: A few partial waves in the JPCM ε = 2−+0+ used in the resonance analysis of Ref. [3]: f2π S-wave
(left), f2πD-wave (middle), and ρπ F -wave (right). The data points are the wave intensities, i.e. elements of
the SDM obtained as results of the mass-independent analysis of Ref. [78] for the first t′-slice (see the legends).
The red curve shows the model adjusted to the data. Intensity distributions of the Breit-Wigner components of
the model are shown by the blue curves. The green lines represent the intensity of the background component.
The plots are from the Ref. [3].

trajectories or Regge trajectories of hadrons. The second state, π2(1880), is suggested to be a hybrid
meson (see Ref. [234] and references therein). The parameters of those resonances are not well
established. The mass dependent fit of the COMPASS data in the 2−+ sector indicated a striking need
for a better dynamical model. In Ref. [3], it was found that the description of partial waves requires
actually three π2 resonances. Those states largely overlap and also require a coherent non-resonant
background underneath (see Fig. A.2). In the conventional approach, the amplitudes for the partial
waves are written as a sum of three resonance components parametrized by Breit-Wigner amplitudes
(cf. Eq. (3.28)), and the non-resonant background (cf. Eq. (3.29)).

We develop a coupled-channel model which is based on the requirement of unitarity in the system
of a subchannel resonance (Isobar) and the bachelor pion. The model was originally inspired by the
quasi-two-body unitarity constraints proposed by Basdevant and Berger in Ref. [141]. One can derive
this approach as a simplification of the general framework presented in Sec. 7.

Simplification 1: For the unitarity relation, we take into account only 3π intermediate states.
Moreover, in a basis of the partial waves, we restrict our model to a few significant waves. The
3π elasticity approximation is justified below 2GeV since the ground state π2(1670) decays to 3π
with 95% branching ratio [26]. As discussed in Sec. 3.3.2, the COMPASS PWA model consists
of 80 waves with positive reflectivity. The 2−+ consists of 17 waves. 8 waves contribute to
the JPCM ε = 2−+0+ sector, they are f2π S-, D-, H-waves, ρπ P -, F -waves, (ππ)SπD-wave,
f0πD-wave, and ρ3π P -wave. In our analysis, we use a set of up to five major waves .

Simplification 2: We approximate the 3π system by the isobar-pion interaction and neglect
interference terms in the rescattering. The |3π〉 state under the approximation is reduced to |ξπ〉,
where ξ is an unstable Isobar. The production amplitude is denoted by F (s, τ). The partial-wave
expansion reads,

F (s, τ) =
∑

JMεLS

∑

I

CI F
JMε
LS (s, σ)ZJMε

LS (Ω1,Ω23), (A.8)

where, with respect to Eq. (3.7), we dropped the helicity indices for the proton, assuming a dominance
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A.2 Mass-dependent fit of the 2−+ sector

of the helicity non-flip amplitude. The function ZJMε
LS is defined in Eq. (3.9) with the reflectivity

index introduced in Eq. (3.11). The isospin coefficient CI is given in Eq. (3.8).

Simplification 3: We assume a factorization and a simple σ dependence of F JMε
LS .

F JMε
LS (s, σ) = FJMε

LS (s)hL(s, σ)fS(σ), (A.9)

where FJLS(s) is an amputated dynamic production amplitude which does not depend on σ. The
function fS(σ) is the isobar line shape as shown in Appendix D. The hL(s, σ) is a factor which ensures
a correct threshold behavior and asymptotic limit. We use a simplified form of the Blatt-Weisskopf
factors,

h2
L =

(
R2q2

1 +R2q2

)L
, q = 4πρS

√
s. (A.10)

In order to use the unitarity constraint we need to introduce the 3→3 scattering amplitude (see
Sec. 7), which, under assumptions we made, reduces to ξπ → ξ′π scattering. In order to reduce
the general model discussed in Sec. 7 to the quasi-two-body scattering, the ladder interaction has to
be neglected. The full scattering amplitude T is parametrized by the short-range interaction. The
partial-wave expansion of T reads,

T =
∑

J

∑

L
′
S
′
LS

∑

Mε

ZJMε∗
LS (Ω′1,Ω

′
23)T J

L
′
S
′
LS

(σ1, s, σ23)ZJMε
L
′
S
′ (Ω′1,Ω

′
23), (A.11)

where we consistently use the factorization assumption,

T J
L
′
S
′
LS

(σ′, s, σ) = fS′(σ
′)hL′(s, σ

′) T J
L
′
S
′
LS

(s)hL(s, σ)fS(σ). (A.12)

The amplitude T is independent of the production process. The relation to the production amplitude
FJLS(s), is obtained through the unitarity relation:

2 ImFJMε
LS (s) = T ∗J

LSL
′
S
′(s) ΣL

′
S
′(s)FJMε

L
′
S
′ (s), (A.13)

2 Im T J
LSL

′
S
′(s) = T ∗J

LSL
′′
S
′′(s) ΣL

′′
S
′′(s) T J

L
′′
S
′′
L
′
S
′(s), (A.14)

where the quasi-two-body phase-space factor reads,

ΣLS(s) =
1

(8π)2

∫ (
√
s−mπ)

2

4m
2
π

dσ
2π
h2
L(s, σ)

λ1/2(s, σ,m2
π)λ1/2(σ,m2

π,m
2
π)

sσ
|fS(σ)|2 . (A.15)

Parametrization of the scattering matrix and the pole search

The unitarity constraint to the scattering amplitude T in Eq. (A.14) can be built in using theK-matrix
approach (see Sec. 2.2). In matrix notations over LS indices (J is fixed to 2), it reads,

T (s) = K(s)
[
1− i Σ̃(s)K(s)/2

]−1
, (A.16)
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whereK(s) is a matrix of functions which is parametrized by the sum of pole terms, Σ̃ is a diagonal
matrix with elements ρ̃LS , that are given by a dispersive integral (cf. Eq. (A.17)),

Σ̃LS(s) =
1

πi

∫ ∞

sth

ΣLS(s′)

s′ − s
ds′, KLSL

′
S
′(s) =

∑

R

gRLSg
R
L
′
S
′

sR − s
. (A.17)

The amplitude T , is an analytic function, defined in the complex s-plane. Resonances in the ξπ
system are found by identifying poles in the unphysical Riemann sheets. The physical unitarity cut
starts at the three pion threshold,

√
s = 3mπ. The sheet attached to the real axis from below is called

the second Riemann sheet. Every quasi-two body channel of T introduces an additional cut which
starts in the complex plane as demonstrated in details in Sec. 6.3.1. All those complex cuts need to be
rotated (see Fig. 6.4) to give access to the closest unphysical sheet.

The scattering amplitude at the second Riemann sheet, T−1
II , is calculated according to Eq. (2.32),

where Σ(s) used instead of the phase-space factor ρ(s). Instead of looking for poles in TII , we explore
the inverse function T−1

II , and find the point where it vanishes exactly. It is practically convenient to
search for the solution of the equation, det(T−1

II K) = 0, which is equivalent to

det
(

1 + i(Σ̃(s)/2 + Σ(s))K(s)
)

= 0. (A.18)

Candidates for the solutions are found by minimization of the modulus of the left part. The minima
are validated by a direct check of Eq. (A.18).

Two models of the production amplitude

Two production models, introduced in Sec. 2.3, are considered

• Model−I: production vector.
The production amplitude is written as the scattering matrix multiplied by an arbitrary source
vector, denoted by αJMε

LS (s),

FJMε
LS (s) =

∑

L
′
S
′
T J
LSL

′
S
′(s)αJMε

L
′
S
′ (s). (A.19)

The functions αJMε
LS (s), cannot have the a right-hand cut in order to preserve unitary. To model

these functions, polynomial series of the conformal variable ω(s), are used.

αw(s) = eiφw
∑

α(i)
w ω

i(s), ω(s) =

√
s1 −

√
s+ s0√

s1 +
√
s+ s0

, (A.20)

where we used a combined index w = (JMεLS) for brevity of notation. The variables s0 and
s1 are parameters of the conformal map: s0 gives the position of the left-hand cut, while s1

determines the slope of the s dependence. The expansion coefficients α(i)
w , are real, a single

complex phase φw, is a free parameter of the fit. For indication of the parameter space, we
introduce a superscript. Model−I(n,m,l) refers the n-channels amplitude withm poles in the
K-matrix and l terms in the polynomial series.
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• Model−II: unitarized background.
The second model uses an explicit background term BJMε

LS (s), which is incorporated according
to Eq. (2.41).

FJMε
LS (s) = BJMε

LS (s) +
∑

L
′
S
′
T J
LSL

′
S
′

(
cJMε
L
′
S
′ +

1

2π

∫ ∞

sth

BJMε
L
′
S
′ (s′) ΣL

′
S
′(s′)

s′ − s
ds′
)
, (A.21)

where cJMε
L
′
S
′ parametrizes the short-range interaction. These coefficients c, are complex constants

adjusted in the fit. Eq. (A.21) resembles the model suggested by Basdevant and Berger in
Ref. [62].

The background BJMε
LS (s), is calculated by projecting the “Standard Deck” amplitude (see

Sec. 5) to the partial waves. The projections, however, have σ dependence which cannot be
addressed with the approximations stated above. An artificial method is used to get rid of this
dependence. The subchannel invariant mass in those projections is set to the nominal mass of
the isobar above the isobar-pion threshold,√sth = mξ +mπ. Below the√sth, the projections
are evaluated for the value of σ that are on the interpolation between the nominam Isobar mass
and the two-pion threshold,√σth = 2mπ. This way of omitting the σ dependence makes the
background model unreliable (see the discussion on features of the projections in the COMPASS
basis in Sec. 5.4). Moreover, there are large uncertainties on the line shape of the partial wave
projections due to questions on the dynamic model for the pion propagator discussed in Sec. 5.3.
Nevertheless, the obtained projections have two simple features of the background observed
in the data. It rises near threshold sth, and falls at high energies. The projections are purely
real. Due to this large uncertainty, the relative strength of the background was not fixed. The
background couplings are free parameters for all waves and all t′ slices. Model−II(n,m) refers
the n-channels amplitude withm poles inK-matrix and the unitarized background.

Fit to the COMPASS data and extracted poles

Free parameters of the models are positions of the K-matrix poles, the expansion coefficients of
the production coefficients in Model−I and the strength of the “background” term and the “direct
production” term in the Model−II . The data points from the COMPASS PWA are given in slices of
t′. The differences in the intensity distributions for different t′ slices, are attributed to the variations
in the production mechanism. All data have to be fitted simultaneously using an independent set of
production parameters for every t′-slice and one production-independent set of parameters for the
scattering matrix.
To address the feasibility of the approach, many exploratory studies have been performed. The

Model−I was found very flexible due to the large freedom of adjusting the production parameters
(the model typically contains a few hundred free parameters). Due to the same reason, the model is
found to have stability problems. Many local minima are barely distinguishable, and the fit parameters
are largely correlated. Fig. A.3 and Fig. A.4 show the first t′-slice of the fit with Model−I(3,3,6) and
Model−I(4,4,7), respectively. The plots demonstrate that the intensities can be described rather well
within the Model−I . Most of the features seen in the data are reproduced in the fit. Namely, both
the main peak and the shoulder of the f2π S-wave are described. The structure at 1.8 GeV appears
differently in different waves: it is a dip in the (ππ)SπD-wave and a well pronounced peak in the
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Figure A.3: The results of the fit of the dynamic model Model−I(3,3,6) to the COMPASS SDM with JPCM ε =
2−+0+. The fit is performed simultaneously with all 11 t′ slices, the first slice, 0.1 < t′ < 0.112853 GeV2, is
shown. The columns and rows are numbered from left to right and from top to bottom: they refer to the following
waves: f2π S-wave, (ππ)SπD-wave, and ρπ F -wave. The wave intensities are shown on the diagonal of the
plot matrix. The off-diagonal elements are the real (upper triangle) and imaginary (lower triangle) parts of the
interference terms (see off-diagonal elements of the SDM in Eq. (3.25)). y-axis shows intensity of the waves and
the interference terms expresses in the number of events, x-axis is the invariant mass of the three-pion system in
GeV. The model includes three poles in the K-matrix and five expansion terms in the production vector for
every channel. The other colored lines illustrate projections of the model to the intensities and interference
terms when all but oneK-matrix poles are turned off (couplings in Eq. (2.24) are set to zero). The range where
the model has been fitted is indicated by solid lines, the dashed parts show the extrapolation of the model.

f2πD-wave as shown in Fig. A.6. The three hills of the ρπ F -wave are reproduced in both models,
however, we notice that the contribution of the K-matrix parameters is quite different for the two
models, Model−I(3,3,6) and Model−I(4,4,7). Parameters of theK-matrix are not physical, and only
the poles of T do identify hadronic resonances. However, there is an asymptotic correspondence
between theK-matrix poles and the poles of T -matrix. When theK-matrix couplings in Eq. (2.24)
are scaled simultaneously to zero, the T -matrix approaches K as seen in Eq. (A.16) (the inverted
matrix in Eq. (A.16) is an identity in the limit). Therefore, for every pole which is put in theK-matrix,
there is the corresponding pole in the complex plane.
The analytic continuation is presented in the Fig. A.5 for Model−I(3,3,6), and Fig. A.6 for the

Model−I(4,4,7). In both attempts, three poles of theK-matrix have converged to values close to the
range of the fit. The fourth K-matrix pole in Fig. A.6 ended up at higher energy outside of the fit
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Figure A.4: Same as Fig. A.3 but with the Model−I(4,4,7). The used waves are f2π S-wave, f2πD-wave,
ρπ F -wave and (ππ)SπD-wave. y-axis shows intensity of the waves and the interference terms expresses in
the number of events, x-axis is the invariant mass of the three-pion system in GeV.

range. We find three resonance poles, which would correspond to π2(1670), π2(1880), and π2(2005).
The positions of those poles, however, are not well determined.

The approach used in Model−II has much fewer parameters, the minimum is better determined. On
the other hand, it gives worse description of the data. Especially, the description of the ρπ P -wave and
f2πD-wave was found very problematic, possibly because these waves require a large background
fraction. The largest set of the data which is reasonably described within the Model−II is the three
waves set presented in Fig. A.7. The main problem of this approach seems to be the simplistic and
possibly incorrect background model. It is indirectly seen from the fact that the amplitude for the
background, drawn by a light-green line in Fig. A.7, is nearly zero for f2π S-wave and the ρπ F -wave.
It seems to be preferred by the fit procedure, to assign the whole amplitude to the short-range
component (“direct production”), because this part is more flexible, while the used background does
not necessarily represent the physics right. The resonant poles found for the Model−II(3,3) are seen
in Fig. A.8. The fit seems to prefer a narrow π2(1880) and a slightly lighter π2(1670). The distant
π2(2005) does not look reliable. An isolated contribution of this pole is seen on the intensity plot
for the (ππ)SπD-wave. Its interference to the other components and the background is important,
therefore, large correlations to the background shape are expected.
The results of the three models highlighted in the text are summarized in Table A.3. The poles

are ordered by their mass and assigned to π2(1670), π2(1880), and π2(2005). In the conventional
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Figure A.5: Analytic continuation of the scattering amplitude in Model−I(3,3,6) to the unphysical sheet. The
expression |det(T−1K)| is calculated in the complex s plane at the points s = (M − iΓ/2)2, whereM in the
units of GeV is given by the x coordinate, and Γ in the units of GeV is set by the y coordinate. For the positive
values of Γ (y-axis), the expression |det(T (s)−1K(s))| is presented by the color code, while for the negative
values of Γ (nagative values along y-axis), the values of the expression |det(TII(s)

−1K(s))| are presented.
The red spots in the plot are zeros of the plotted expression. Those are positions of theK-matrix poles. The
blue spots are resonance poles.

Table A.3: A summary of the limited systematic studies on the pole positions of the π2 resonances are shown
in black. The values state the limits for the pole parameters, they are found by comparing the three models
presented in the text: Model−I(3,3,6), Model−I(4,4,7), and Model−II(3,3). Those number can be compared to
the Breit-Wigner parameters obtained in the mass-dependent fit of Ref. [3] which are stated in gray. The pole
positions for these parametrization are discussed in Sec. 3.3.3.

mp, MeV Γp, MeV mBW, MeV ΓBW, MeV

π2(1670) 1640 . . . 1720 250 . . . 320 1642+12
−1 311+12

−23

π2(1880) 1810 . . . 1890 150 . . . 220 1847+20
−3 246+33

−28

π2(2005) 1950 . . . 2350 850 . . . 1050 1962+17
−29 269+16

−120

approach of Ref. [3] the amplitude is modeled by a sum of Breit-Wigner amplitudes. In Sec. 3.3.3
we showed that the pole positions estimated from the Breit-Wigner parameters are close to these
values,mBW and ΓBW. It makes it reasonable to compare it to our results from unitary based models.
Our results have much large systematic uncertainties. The parameters of π2(1670) agree within their
uncertainties, while we observe narrower π2(1880) and much wider π2(2005).
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Figure A.6: Same as Fig. A.5 but with the Model−I(4,4,7). M and Γ are the units of GeV.

Summary

We have performed fusibility studies of the unitarity based approach in the mass-dependent fit of the
COMPASS data. We made a set of approximations which were required by the current model of the
PWA: the final-state interaction was neglected in the production amplitude; we also neglected the
ladder interaction in the scattering amplitude. The analysis was performed under the assumption of
quasi-stable isobars.
We were able to describe a subset of 2−+ waves from the COMPASS PWA with a quality similar

to the conventional Breit-Wigner analysis of Ref. [3]. Using methods of analytic continuation we
extracted the pole position of the π2 states. In agreement with the current understanding of the
excited π2 states, we found three resonances. We encounter several problems with the fit stability and
multimodality of the solutions. In our model, the scattering isobar pion amplitude is well constraint,
however, due to the unknown details of the production mechanism, the obtained pole positions have
large systematic uncertainties. The preliminary results look promising and indicate a strong need for a
better understanding of the background processes.
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Figure A.7: Same as Fig. A.3 but with the Model−II(3,3). The used waves are f2π S-wave, ρπ F -wave and
(ππ)SπD-wave. y-axis shows intensity of the waves and the interference terms expresses in the number of
events, x-axis is the invariant mass of the three-pion system in GeV.
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Figure A.8: Same as Fig. A.5 but with the Model−II(3,3). M and Γ are the units of GeV.
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APPENDIX B

Phase space integrals

dΦn =
n∏

i=1

d3~pi

(2π)3 2Ei
(2π)4δ4(p0 −

n∑

i=1

pi), (B.1)

where p0 is a total momentum. The energy-momentum conservation conditions are presented by the
δ-functions. Four integrals can be trivially solved using the δ-functions.

Two-body phase space

The two-body phase space space has two degrees of freedom.

dΦ2 =
1

8π

2|~p∗|√
s

dΩ

4π
=

1

8π

λ1/2(s,m2
1,m

2
2)

s

dΩ

4π
, (B.2)

where dΩ = d cos θ dφ, the λ1/2(x, y, z) is a Källén function. For the 2→ 2 scattering, the integral
over cos θ can be related to the transferred momentum,

dΦ2 =
1

8π

2|~p∗|√
s

dt
4|~p∗||~q∗|

dφ
2π

=
1

8π

dt
λ1/2(s,m2

1,m
2
2)

dφ
2π
. (B.3)

Three-body phase space

The three body phase space is given by the five dimensional integral.

dΦ3 =
dσ
2π

dΦ2(s;σ,m2
3)dΦ2(σ;m2

1,m
2
2) (B.4)

=
dσ
2π

1

8π

λ1/2(s, σ,m2
3)

s

dΩ3

4π

1

8π

λ1/2(σ,m2
1,m

2
2)

σ

dΩ12

4π
(B.5)

=
dσ1dσ3

2π(8π)2s σ

dΩ3dφ12

8π2 . (B.6)
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Integrating over angles we find the expression for the three-body phase which is expressed as the
single integral, which, however, cannot be solved analytically.

Φ3(s) =
1

(8π)2

dσ
2π

λ1/2(s, σ,m2
3)

s

λ1/2(σ,m2
1,m

2
2)

σ
. (B.7)

Four body phase space

It is convenient to write the 8 dimensional integral through the variables t, φlab, s, τ , with τ introduced
in Eq. (3.2).

dΦ4 =
ds
2π

dΦ2(s0; s,m2
p) dΦ3(s;m2

1,m
2
2,m

2
3)

=
ds
2π

1

8π

dt
λ1/2(s0,m

2
b,m

2
t )

dφlab
2π

dΦ3(s;m2
1,m

2
2,m

2
3)

=
λ1/2(s, σ3,m

2
3)λ1/2(σ3,m

2
1,m

2
2)

λ1/2(s0,m
2
b,m

2
t )

ds dt dφlab dσ3

(2π)3(8π)3σs0sσ

dΩ3

4π

dΩ12

4π
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APPENDIX C

Manipulations with three-particle state

C.1 Definition of state vectors and partial-wave decomposition

Single-particle state

A single particle state is defined in the extension of the Hilbert space [47], it is written as a direct
product of the momentum vector |p〉, the irreducible representation of the rotation group |jλ〉, and the
isospin vector.

|p1〉 ⊗ |j1λ1〉 ⊗ |i1µ1〉 ∈ V, (C.1)

where the combined state is denoted by |1〉 for brevity of notations, the Hilbert space is denoted by V .
The pion is scalar (j = 0) and isovector (i = 1), therefore, the notation can be simplified to |pµ〉. The
state has the standard relativistic normalization,

〈
p′1µ
′
1 |p1µ1〉 = 2E1(2π)3δ3(p′1 − p1)δµ′1µ1

= δ̃(p′1 − p1)δµ′1µ1
= δ̃1

′
1, (C.2)

where we demonstrate the short notations that are important for the further discussion on three-particle
states.

Two-particle state and the partial-wave decomposition

A system of two identical particles has a state vector defined on the direct product of subspaces
VI ⊗ VII , where the spaces are identical VI ≡ VII ≡ V , roman indices label particles, i.e. we still
can label particles as I and II , however, the state must be symmetric with respect to permutation of
particle indices (pions are bosons).

|p2µ2; p3µ3〉 =
1

2

[
|p2µ2〉 ⊗ |p3µ3〉+ |p3µ3〉 ⊗ |p2µ2〉

]
∈ V ⊗ V. (C.3)

To perform a partial-wave expansion we first combine two isospin subspaces, then we expand direct
products of the momentum states in partial waves for both terms in the sum (C.3). Since the isospin
SU(2) group permits a decomposition 3⊗ 3 = 1⊕ 3⊕ 5, the total isospin is I ∈ {0, 1, 2}. Hence, we
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can choose a basis in the direct product which corresponds to irreducible representations of SU(2).

|p2µ2; p3µ3〉 =
1

2

∑

I,µI

CIµIµ2µ3

[
|p2〉 ⊗ |p3〉+ (−1)I |p3〉 ⊗ |p2〉

]
⊗ |IµI〉 (C.4a)

=
∑

I,µI

∑

S,λ

1 + (−1)S+I

2
CIµIµ2µ3

√
2S + 1DS

λ0(Ω23) |qSλ; IµI〉 . (C.4b)

here CIµIµ1µ2
is a Clebsch-Gordan coefficient 〈1, µ1; 1, µ2 |I, µI〉 with −I ≤ µI ≤ I . Orbital

angular momentum S is a non-negative integer number, and helicity of the system λ varies from
−S to S. The angular function,

√
2S + 1DS

λ0(φ23, θ23, 0) performs decomposition of the little
Hilbert space. To pull the common factor out, we use the symmetry of the Clebsch-Gordan
coefficients CIµIµ1µ2

= (−1)ICIµIµ2µ1
and a symmetry of the spherical harmonics, DS

λ0(φ32, θ32, 0) =

DS
λ0(π + φ23, π − θ23, 0) = (−1)SDS

λ0(φ23, θ23, 0). The inverse relation follows from Eq. (C.4b) if
we multiply both sides by

√
2S′ + 1DS

′

λ
′
0
(Ω23) and integrate over angles, and also use orthogonality

of the isospin indices.

|q1Sλ; IµI〉 =
∑

µ2µ3

CIµIµ2µ3

∫
dΩ23

4π
|p2µ2, p3µ3〉

√
2S + 1DS∗

λ0 (Ω23) (C.5)

We can find the normalization by acting on the state with a general identity operator.

〈
q′S′λ′I ′µ′I |qSλ; IµI〉 = (2π)4δ4(q′1 − q)δII′δµIµ′I

1

ρ(σ)
, (C.6)

〈
p′2µ
′
2; p′3µ

′
3 |qSλ; IµI〉 = (2π)4δ4(q′1 − q)CIµIµ2µ3

√
2S + 1DS

λ0(Ω)
1 + (−1)S+I

2

1

ρ(σ)
, (C.7)

where ρ(σ) =

√
σ − 4m2

π/(8π
√
σ).

Three-particle state

A state of three identical particles is symmetric under permutation of all particle indices.

|≡〉 =
1

3!
(|p1µ1〉 |p2µ2〉 |p3µ3〉+ symm.) (C.8a)

=
1

3

∑

a

∣∣pa1
µa1

〉 ∣∣pa2
µa2

pa3
µa3

〉
=

1

3

∑

a

|a〉 , (C.8b)

where we introduced the shorthand notation for a state symmetrized with respect to permutation of
two particles only, |a〉,

|a〉 ≡
∣∣pa1

µa1

〉 ∣∣pa2
µa2

pa3
µa3

〉

≡
∣∣(pa2

µa2
, pa3

µa3
); pa1

µa1

〉
,
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which is symmetrized over permutation of the momenta pa2
and pa3

with the 3-tuple, (a1a2a3) ∈
{(123), (312), (231)}. The semicolon used in the notation indicate a direct product of state components
from different subspaces. We notice that there is a freedom to choose the bachelor subspace from the
product V × V × V . The chosen one is denoted by VP, P ∈ {I, II, III}. For the brevity of notation
we will omit this index since it does not play an important role in the further calculations.

We consider I, the projection operator to the symmetrized three-particle space. Using the
decomposition defined in Eq. (C.8), it can be expressed in terms of states |a〉,

I =
∑

µ1µ2µ3

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3 |≡〉 〈≡| (C.9)

=
1

9

∑

µ1µ2µ3

∑

a,b

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3 |a〉 〈b|

=
1

3

∑

µ1µ2µ3

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3 |1〉 〈1|

+
2

3

∑

µ1µ2µ3

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3 |2〉 〈3|

=
1

3

∑

µ1µ2µ3

∫
(d̃p) |1〉 〈1|+ 2

3

∑

µ1µ2µ3

∫
(d̃p) |2〉 〈3| ,

where we used a short notation for the product of integrals over the 3-momenta in the last line. The
integral is fully symmetric under permutation of particle indices. Therefore, we are able to gather
terms that mix bachelor indices and those that do not. For instance, the term

∫
(d̃p) |1〉 〈1| translates

to
∫

(d̃p) |2〉 〈2| by interchanging the integration variables p1 ↔ p2 and using the symmetry of the
state in Eq. (C.8) as follows,

|(p2µ2, p3µ3); p1µ1〉
p1↔p2−−−−→ |(p1µ1, p3µ3); p2µ2〉 = |(p3µ3, p1µ1); p2µ2〉 . (C.10)

The state |a〉 can be related to the partial wave projected states, |qSλ; IµI〉, is a similar way as it
done in Eq. (C.4). For example, the decomposition for the (23)-pair follows.

|(p2µ2, p3µ3); p1µ1〉 ≡
1

2

[
|p2µ2〉 ⊗ |p3µ3〉+ |p3µ3〉 ⊗ |p2µ2〉

]
⊗ |p1µ1〉 =

∑

IµI

∑

Sλ

CIµIµ2µ3

1 + (−1)S+I

2

√
2S + 1DS

λ0(Ω23) |(q3Sλ; IµI); p3µ3〉 , (C.11)

The three-particle state is decomposed as,

|≡〉 =
1

3

∑

IµI

∑

Sλ

∑

a

1 + (−1)S+I

2
CIµIµa2

µa3

√
2S + 1DS

λ0 |(qiSλ; IµI); paµa〉 , (C.12)

with (a, a2, a3) ∈ {(123), (231), (312)}.
In order to combine the two-particle states |(qiSλ; IµI); piµi〉 with the bachelor state |piµi〉 to the
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basis of irreducible representation we follow the same steps as before in Eq. (C.4):

|(qSλ; IµI); pµ〉 =
∑

IµI

∑

JM

CIµIµIµ

√
2J + 1DJ

Mλ(Ω) |P ; JMSλ; IµI〉 , (C.13)

where P = q + p is a total momentum of the system, the total isospin state is |I, µI〉, J is the total
angular momentum, M is the momentum projection, and Ω = (θ, φ) are spherical angles of the
vector q. As introduced before λ is the helicity of the subchannel state formed by two pions in a
wave with orbital momentum S. The projection to basis |P ; JMSλ; IµI〉 is performed by the angular
integration analogously to Eq. (C.5)

|P ; JMSλ; IµI〉 =
∑

µIµ3

CIµIµIµ

∫
dΩ

4π

√
2J + 1DJ

Mλ(φ, θ, 0) |(qSλ; IµI); pµ〉 . (C.14)

Instead of working with the helicity basis it is often beneficial to introduce the LS-basis, related to
the former one by a linear transformation [47, 235, 236].

|JMLS〉 =

(
2L+ 1

2J + 1

)1/2∑

λ

〈L, 0;S, λ |J, λ〉 |JMSλ〉 (C.15)

The expansion in Eq. (C.13) becomes

|(qSλ; IµI); pµ〉 =
∑

I0µ0

∑

JML

CI0µ0
µIµ
〈L, 0;S, λ |Jλ〉

√
2L+ 1DJ

Mλ(φ, θ, 0) |P ; JMLS; I0µ0〉

(C.16)

Combining Eq. (C.4b) and (C.16) we provide the partial-wave expansion of the three pion state.

|(p2µ2, p3µ3); p1µ1〉 =
∑

JMLS

∑

I0µ0IµI

1 + (−1)S+I

2
CIµIµ2µ3

CI0µ0
µIµ1

ZJMLS (Ω1,Ω23) |P ; JMLS; Iµ〉 ,

(C.17)
where P is a total momentum, I0 is the total isospin, µ0 denotes the total isospin projection, the
function ZJMLS takes care about the angular dependence,

ZJMSλ (Ω3,Ω12) =
√

(2J + 1)(2S + 1)DJ
Mλ(Ω3)DS

λ0(Ω12), (C.18a)

ZJMLS (Ω3,Ω12) =
√

(2L+ 1)(2S + 1)
∑

λ

〈L, 0;S, λ |J, λ〉DJ
Mλ(Ω3)DS

λ0(Ω12). (C.18b)

For the angular variables we also use the circular notations or the spectator notations. For example,
the index 3 in the argument of theDJ

Mλ function is referred to the angles of the vector ~q3 = (~p1 + ~p2)
in the CM frame. As introduced before, Ω12 denotes spherical angles of particle 1 in the (12)-helicity
frame. The twice partial wave projected three-pion state reads,

|≡〉 =
1

3

∑

i

∑

JMLS

∑

I0µ0IµI

1 + (−1)S+I

2
CIµIµi2

µi3
CI0µ0
µIµi

ZJMLS (Ωi,Ωi2i3
) |P ; JMLS; I0µ0〉i,P ,

(C.19)
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C.2 Properties of the angular functions

where we broad back the bachelor subspace index P, and the bachelor momentum index, i. Importantly,
the fully projected states within the same expansion indices i,P are orthogonal.

i,P
〈
P ; J ′M ′;L′S′; I ′µ′I |P ; JMLS; I0µ0〉i,P =

= (2π)4δ4(P ′ − P )δJ ′JδM ′MδL′LδS′SδI′Iδµ′IµI
1

ρs(σ)

1

ρ(σ)
, (C.20)

where ρs(σ) = λ1/2(s, σ,m2
π)/(8πs) with λ referring to a Källén function, ρ(σ) is introduced below

Eq. (C.7).

C.2 Properties of the angular functions

We use definitions of the Wigner D-functions given in the Appendix A of the “Elementary Particle
Theory” book by Matrin and Spearman [47]. A few additional useful relations are inferred in what
follows.

The Wigner D-function is related to the small Wigner d-function as,

Dj
m1m2

(φ, θ, φ′) = e−im1φdjm1m2
(θ)e−im2φ

′
. (C.21)

The third angle is often zero, and the D-function is defined for a pair of arguments,

Dj
m1m2

(Ω) ≡ Dj
m1m2

(φ, θ, 0). (C.22)

The normalization and the orthogonality relations for Dj
m1m2

(Ω) follow:

∫
dΩ

4π
Dj∗
m1m2

(Ω)Dj
′

m
′
1m2

(Ω) =
δjj′ , δm1m

′
1

2j + 1
, (C.23)

where dΩ = d cos θ dφ. Since the third argument of D-function is set to zero, the orthogonality on
m2 is not ensured.

It is often needed to evaluate the Wigner d-functions with special arguments,

djm1m2
(0) = δm1,m2

, djm1m2
(π) = (−1)j−m1δm1,−m2

. (C.24)

The decay functions ZJMSλ and ZJMLS are defined in Eq. (C.18). The orthogonality ZJMSλ (Ω,Ω′)
follows straightforwardly from Eq. (C.23),

∫
dΩ

4π

dΩ′

4π
ZJM∗Sλ (Ω,Ω′)ZJ

′
M
′

S
′
λ
′ (Ω,Ω′) = δJJ ′δMM

′δSS′δλλ′ . (C.25)

The decay functions ZJMLS , in the canonical basis are also orthogonal,
∫

dΩ

4π

dΩ′

4π
ZJM∗LS (Ω,Ω′)ZJ

′
M
′

L
′
S
′ (Ω,Ω′) = δJJ ′δMM

′δSS′δLL′ . (C.26)
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Appendix C Manipulations with three-particle state

The proof of the latter requires an addition the orthogonality relation of Clebsch-Gordan coefficients.
√

(2L+ 1)(2L′ + 1)
∑

λ

〈L, 0;S, λ |J, λ〉
〈
L′, 0;S, λ |J, λ〉 = (2J + 1)δLL′ (C.27)

This identity can be derived from Eq. (A.17) and Eq. (A.18) of Ref. [47] or using properties of
3j-symbols [136]. We can notice a symmetry relation of the functions Z, with respact to a flip of the
second angle pair Ω = (θ, φ)→ (π − θ, π + φ) ≡ −Ω:

ZJMLS (Ω,−Ω′) = (−1)SZJMLS (Ω,Ω′), (C.28)

where we used that,

DS
λ0(π + φ, π − θ, 0) = e−iλ(π+φ)dSλ0(π − θ) (C.29)

= (−1)S+λdSλ0(θ) (−1)−λe−iλφ = (−1)SDS
λ0(φ, θ, 0). (C.30)

C.3 Relation between cross-channel angular functions

The kinematics of three particles is fully specified by five variables which are denoted by the combined
variable τ (Eq. (3.2)). The choice of the variables in not unique, however, for every expansion chain
there is the most convenient one,

τk = (σk,Ωk,Ωij).

The kinematic variables of the cross channels can be expressed through each other. The relations
between the kinematic variables lead to convenient properties of the angular function from the
channels.

Analytic approach

The product of Wigner D-functions from channel 3 is expressed through the angles of channel 1 as
follows:

DJ
Mλ(Ω3)DS

λ0(Ω12) = DJ
Mλ(φ3, θ3, φ12) dSλ0(θ12) =

∑

ν

DJ
Mν(φ1, θ1, φ23)dJνλ(θ̂3) dSλ0(θ12),

(C.31)
where θ̂3 is the angle between ~p1 and ~p3 in CM-frame. One can understand the relation in the following
way. The DJ

Mλ(Ω3) = DJ
Mλ(φ3, θ3, 0) and DS

λ0(Ω12) = DS
λ0(φ12, θ12, 0) represent the rotations

[Rz(φ3)Ry(θ3)]−1 and [Rz(φ12)Ry(θ12)]−1. The first transformation rotates the 3π system in the
CM-frame such that the momentum ~p1 + ~p2 = −~p3 is aligned to the z-axis as shown in Fig. C.1.
When the system is boosted to the (12)-rest frame (helicity frame), the second transformation aligns
~p1 to the z-axis (we remind that Ω12 stands for the spherical angles of particle 1 in the (12)-helicity
frame). Since the rotation Rz(φ12) commutes with the boost along z-axis, we can combine the
three rotations in CM-frame, R−1

z (φ12)R−1
y (θ3)R−1

z (φ3). The combined transformation has a clear
meaning: it brings the 3π system to the x × z plane such that ~p3 points to −z-direction. The
transformation R−1

z (φ23)R−1
y (θ1)R−1

z (φ1) also brings the 3π system to the xz-plane while ~p1 is
aligned with −z-direction. The difference between the results of the transformations is a rotation
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⇒
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⇒
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x
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1

⇒
β−1
31

z
x

2

3

1

θ31
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z

1

2
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CM(3π)

Figure C.1: The transformations of the three-pion decay plane. The left diagram shows pions momenta indicated
by numbers 1, 2, 3 in the overall CM-frame. Transformations indicated under⇒ sign are applied to the pions
momenta.

about y-axis, represented by dJνλ(θ̂3). The projection integral of the expansion chain of channel k = 3
to the channel k = 1 can be simplified analytically.
∫

dΩ1

4π

dΩ23

4π
ZJM∗Sλ (Ω1,Ω23)ZJ

′
M
′

S
′
ν

(Ω3,Ω12) =
δJ ′JδM ′M

2J + 1

∫
d cos θ23

2
dSλ0(θ23)dJλν(θ̂3)dS

′

ν0(θ12).

(C.32)
where all angles are functions of the invariants,

cos θ23 =
σ1(σ3 − σ2)√

λ1λs1
, sin θ23 =

2
√
σ1

√
φ(s, σ1, σ3)√
λ1λs1

, (C.33a)

cos θ12 =
σ3(σ2 − σ1)√

λ3λs3
, sin θ12 =

2
√
σ3

√
φ(s, σ1, σ3)√
λ3λs3

, (C.33b)

cos θ31 =
σ2(σ1 − σ3)√

λ2λs2
, sin θ31 =

2
√
σ2

√
φ(s, σ1, σ3)√
λ2λs2

, (C.33c)

cos θ̂3 =

√
1− sin2 θ̂3 sin θ̂3 =

2
√
s
√
φ(s, σ1, σ3)√
λs1λs3

, (C.33d)

cos θ̂2 =

√
1− sin2 θ̂2 sin θ̂2 =

2
√
s
√
φ(s, σ1, σ3)√
λs1λs2

. (C.33e)
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where we introduced the Kibble function φ as it enters all sin θ expressions [222],

φ(s, σ1, σ3) = σ1σ2σ3 −m2
π(s−m2

π)2, σ2 = s+ 3m2
π − σ1 − σ3. (C.34)

Analogously, the relations can be derived for the chain (2) with a small difference shown in Fig. C.1.
The system of three particles in CM frame orientated by the rotations R−1(φ1, θ1, φ23) (first plot in
the second row) needs to be rotated anti-clockwise (positive angle) to archive orientation required in
the decay chain 2 (the first plot of the third row). It is equivalent to the rotation R−1(π, θ̂2, π), which
gives an additional sign factor,

DJ
Mλ(Ω2)DS

λ0(Ω31) =
∑

ν

D1
Mν(φ1, θ1, φ23) (−1)ν+λ dJνλ(θ̂2) dSλ0(θ31). (C.35)

Kinematic approach

As mentioned, the sets of variables τi, i = 1, 2, 3 are equivalent to each other. We are going to
demonstrate explicitly how variables of one set can be expressed though the other using boosts and
rotations. The derivation is performed for a general system of three particles with massesm1,m2,m3.
The set of 5 variables τ1 = (σ1,Ω1,Ω23) completely define the decay kinematics. As an example

we show how to relate these variables to another set (σ3,Ω3,Ω12). We start in the (23)-helicity frame.
The particle 1 points to the negative direction of the z-axis. The particles 2 and 3 orientated at opposite
directions, the solid angle of the particle 2 is Ω23. The expression for σ3 is found in this frame by
explicit evaluation of σ3 = (p1 + p2)2:

σ3 = m2
1 +m2

2 +
1

2σ1
(σ1 +m2

2 −m2
3)(s−m2

1 − σ1) +
λ1/2(σ1,m

2
2,m

2
3)λ1/2(s, σ1,m

2
1)

2σ1
cos θ23,

(C.36)
The direction Ω3, is opposite to the particle 3 in the center of mass system. Therefore, we find it by a
boost and a rotation of the vector p(23)

3 = (E
(23)
3 , ~p

(23)
3 ), with E (23)

3 = (σ1 +m2
3 −m2

2)/(2
√
σ1) and

|~p (23)
3 | = λ1/2(σ1,m

2
2,m

2
3)/(2

√
σ1)

pCMS
3 =




1

Rz(φ1)Ry(θ1)







γ βγ
1

1
βγ γ







E
(23)
3

−~p (23)
3 sin θ23 cosφ23

−~p (23)
3 sin θ23 sinφ23

−~p (23)
3 cos θ23


 , (C.37)

where γ = (s+ σ1 −m2
1)/(2

√
sσ1) is a relativistic factor of the (23) isobar in the CM frame. the

minus sign in the vector components reflects that the angles Ω23 are measured by the direction of the
particle 2 which in the (23) frame goes opposite to the particle 3.

cos θ3 = − pCMS
3,z

|~pCMS
3 |

(C.38)

φ3 = atan2(−pCMS
3,y ,−pCMS

3,x ) (C.39)
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The variable cos θ12 can be directly related to the invariant σ3

cos θ12 =
2σ3(m2

2 +m2
3 − σ1) + (σ3 +m2

2 −m2
1)(s−m2

3 − σ2
3)

λ1/2(σ3,m
2
1,m

2
2)λ1/2(s, σ3,m

2
1)

(C.40)

The last angle φ12 is defined by the particle 1 in the (12) frame which is obtained from CM frame
by the rotation Rz(φ1)Ry(θ1) and the corresponding boost. The boost does not change azimuthal
angle of the particle 1, therefore, it can be measured in the CMS-frame after the rotation is applied.
Since the particle 1 is aligned with the z-axis in the (23)-helicity frame, its direction does not change
when the boost to CMS is performed.

~p 23
⊥1 =


 Ry(−θ3)Rz(−φ3)





− sin θ1 cosφ1

− sin θ1 sinφ1

− cos θ1


 , φ12 = atan2(p 23

⊥1,y, p
23
⊥1,x). (C.41)

We can define an operator OB.C. which acts on the set of variables τ1 and yields the set τ3. A good
check of the implementation of the basis transformation OB.C. is that being applied three times it
gives identity.

OB.C. (σ1,Ω1,Ω23) = (σ3,Ω3,Ω12), (C.42)

O2
B.C. (σ1,Ω1,Ω23) = (σ2,Ω2,Ω31), (C.43)

O3
B.C. (σ1,Ω1,Ω23) = (σ1,Ω1,Ω23). (C.44)
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APPENDIX D

Details on COMPASS partial waves

The model for the PWA is build using the isobar model presented in Eq. (3.6). Eq. (3.7) introduces
the partial-wave expansion. An assumption enters in Eq. (3.13) when the isobar amplitude is written
in the form,

(Aλ′λ)JMε
LS (s, σ) = (Aλ′λ)JMε

LS (s)fS(σ)hL(s, σ), (D.1)

where the amputated amplitude (Âλ′λ)JMε
LS (s) depends only on variable s, the functions fS(σ)

describe the line shape of the Isobar-s, they are the same for all m3π bins, hL(s, σ) are given in
Eq. (E.14) (in that case the break-up momentum is k = λ1/2(s, σ,m2

π)/(2
√
s), x = (kRL)2 with

RL = 1/(0.2024GeV)) combine the threshold factor for the ξπ L-wave state and the barrier factor.
In this appendix we provide an exact parametrization for fS(σ) used in the analysis and provide a
complete list of partial waves in Table D.1.

There are six isobars which used in the approach are motivated by the subchannel resonances.
Three isobars which corresponds to ρ(770), f2(1270), ρ3(1690), f0(1500) are parametrized by the
Breit-Wigner-amplitude,

fξ(σ) = Nξ
hS(σ)

m2
0 − σ − im0Γ(σ)

, (D.2)

where the factor hS(σ) in the numerator corresponding to a one decay vertex. Nξ is a normalization
constant fixed by equation,

∫ ∞

4m
2
π

√
1− 4m2

π/σ |fξ(σ)|2dσ = 16π2. (D.3)

The energy dependence of the width is different for various isobars. For f2(1270) the width is
proportional to the two-body phase space of the decay f2 → ππ and the factor h2

2 which is a squared
transition amplitude of the f2 → ππ.

Γ(σ) = Γ0
q(σ)

q0

m0√
σ

h2
2(q)

h2
2(q0)

, (D.4)

where the values of m0 and Γ0 are listed in Table D.2, q(σ) =

√
σ/4−m2

π, the constant q0 is
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Appendix D Details on COMPASS partial waves

Table D.1: A list of wave set used for mass-independent fit
A list of wave set used for mass-independent fit (from Ref. [78]): 80 waves with positive reflectivity,
7 with negative, and one incoherent isotropic wave (FLAT). The waves are only included in the

analysis above their artificial threshold indicated in the table.

J
PC

M
ε Isobar L Threshold [MeV]

FLAT —

0
−+

0
+

(ππ)S S —
0
−+

0
+

ρ(770) P —
0
−+

0
+

f0(980) S 1200
0
−+

0
+

f2(1270) D —
0
−+

0
+

f0(1500) S 1700

1
++

0
+

(ππ)S P —
1

++
1

+
(ππ)S P 1100

1
++

0
+

ρ(770) S —
1

++
1

+
ρ(770) S —

1
++

0
+

ρ(770) D —
1

++
1

+
ρ(770) D —

1
++

0
+

f0(980) P 1180
1

++
1

+
f0(980) P 1140

1
++

0
+

f2(1270) P 1220
1

++
1

+
f2(1270) P —

1
++

0
+

f2(1270) F —
1

++
0

+
ρ3(1690) D —

1
++

0
+

ρ3(1690) G —

1
−+

1
+

ρ(770) P —

2
++

1
+

ρ(770) D —
2

++
2

+
ρ(770) D —

2
++

1
+

f2(1270) P 1000
2

++
2

+
f2(1270) P 1400

2
++

1
+

ρ3(1690) D 800

2
−+

0
+

(ππ)S D —
2
−+

1
+

(ππ)S D —
2
−+

0
+

ρ(770) P —
2
−+

1
+

ρ(770) P —
2
−+

2
+

ρ(770) P —
2
−+

0
+

ρ(770) F —
2
−+

1
+

ρ(770) F —
2
−+

0
+

f0(980) D 1160
2
−+

0
+

f2(1270) S —
2
−+

1
+

f2(1270) S 1100
2
−+

2
+

f2(1270) S —
2
−+

0
+

f2(1270) D —
2
−+

1
+

f2(1270) D —
2
−+

2
+

f2(1270) D —
2
−+

0
+

f2(1270) G —
2
−+

0
+

ρ3(1690) P 1000
2
−+

1
+

ρ3(1690) P 1300

3
−+

1
+

ρ(770) F —
3
−+

1
+

f2(1270) D 1340

J
PC

M
ε Isobar L Threshold [MeV]

3
++

0
+

(ππ)S F 1380
3

++
1

+
(ππ)S F 1380

3
++

0
+

ρ(770) D —
3

++
1

+
ρ(770) D —

3
++

0
+

ρ(770) G —
3

++
1

+
ρ(770) G —

3
++

0
+

f2(1270) P 960
3

++
1

+
f2(1270) P 1140

3
++

0
+

ρ3(1690) S 1380
3

++
1

+
ρ3(1690) S 1380

3
++

0
+

ρ3(1690) I —

4
++

1
+

ρ(770) G —
4

++
2

+
ρ(770) G —

4
++

1
+

f2(1270) F —
4

++
2

+
f2(1270) F —

4
++

1
+

ρ3(1690) D 1700

4
−+

0
+

(ππ)S G 1400
4
−+

0
+

ρ(770) F —
4
−+

1
+

ρ(770) F —
4
−+

0
+

f2(1270) D —
4
−+

1
+

f2(1270) D —
4
−+

0
+

f2(1270) G 1600

5
++

0
+

(ππ)S H —
5

++
1

+
(ππ)S H —

5
++

0
+

ρ(770) G —
5

++
0

+
f2(1270) F 980

5
++

1
+

f2(1270) F —
5

++
0

+
f2(1270) H —

5
++

0
+

ρ3(1690) D 1360

6
++

1
+

ρ(770) I —
6

++
1

+
f2(1270) H —

6
−+

0
+

(ππ)S I —
6
−+

1
+

(ππ)S I —
6
−+

0
+

ρ(770) H —
6
−+

1
+

ρ(770) H —
6
−+

0
+

f2(1270) G —
6
−+

0
+

ρ3(1690) F —

1
++

1
−

ρ(770) S —

1
−+

0
−

ρ(770) P —
1
−+

1
−

ρ(770) P —

2
++

0
−

ρ(770) D —
2

++
0
−

f2(1270) P 1180
2

++
1
−

f2(1270) P 1300

2
−+

1
−

f2(1270) S —170



Table D.2: The Breit-Wigner parameters of the isobars. The size parameter of the Blatt-Weisskopf factors used
in hS(σ) factors in Eqs. (D.2, D.4) is Rξ = 4.94 GeV−1 (see Eq. (E.14) with x = (qR)2)

isobar mass width
ρ(770) m0 = 0.7685 GeV Γ0 = 0.1507 GeV
f2(1270) m0 = 1.274 GeV Γ0 = 0.185 GeV
ρ3(1690) m0 = 1.69 GeV Γ = 0.190 GeV
f0(1500) m0 = 1.507 GeV Γ = 0.109 GeV

Table D.3: Parameters of the (ππ)S parametrization.
a1 σp α0 α1 α2 α3 mK m

K
0

0.1131 −0.0074 0.0337 −0.3185 −0.0942 −0.5927 0.493677 0.497614

calculate at the mass, q0 = q(m2
0). For ρ-meson the expression is slightly modified by changing

asymptotic behavior of the width: the tail of the ρ-meson is dumped stronger.

Γ(σ) = Γ0
q(σ)

q0

h2
1(q)

h1
1(q0)

, (D.5)

with parameters from Table D.2. The widths of ρ3 and f0(1500) are constant values given in Table D.2.

The (ππ)S is the broad component of the scalar sector. Historically, we used a parametrization
which has never been explicitly suggested or published. It came from studies of I. Kachaev who
modified the Au-Morgan-Pennington (AMP) parametrization [105, 106]. The idea of I. Kachaev was
to get rid of the narrow dip and leave the shape of the broad component. It was achieved by setting
to zero some of coefficients of the AMP parametrization. The actual expression used in COMPASS
PWA is

f(ππ)S
(σ) =

N(ππ)S

M(σ)− i
√

1− 4m2
π/σ

, M(σ) =
a1

σ − σp
+

3∑

k=0

αk

(
σ

(mK +m
K

0)2 − 1

)k
,

(D.6)
where the values of the parameters are specified in Table D.3, the normalization constant N(ππ)S

is
calculated using Eq. (D.3).
The f0(980) is parametrized by the Flatté-formula, i.e. the energy-dependent width in Eq. (D.2)

includes two channels ππ andKK̄.

Γ(σ) =
gπ
m0



√

1− 4m2
π

σ
+ rK/π

√

1− 4m2
K

σ


 , (D.7)

where m0 = 0.965, gπ = 0.165, rK/π = 4.21. below KK̄ threshold the second square root
expression in Eq. (D.7) needs to be calculated for the negative argument. One has to use it the form
i

√
4m2

K/σ − 1, where the new argument is positive for σ < 4m2
K .
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APPENDIX E

Miscellaneous

E.1 The Dalitz plot integral in the complex plane

To address the issues of the evaluation of Eq. (6.28) for complex values of s, we consider a simplified
version of the problem:

X(s) =

∫ σlim

σth

dσ1

∫ σ
+
3 (σ1,s)

σ
−
3 (σ1,s)

dσ3
1√

σ3 − 4m2
π

, (E.1)

where σth = 4m2
π, σlim = (

√
s−mπ)2, σ±3 (σ1, s) = (s+ 3m2

π − σ1)/2± λ1/2
1 λ

1/2
s1 /(2σ1). Similar

to Eq. (6.28) this expression contains two nested integrals with the same limits. The integrand has
a branch point at 4m2

π, the integration paths have to be modified in order to avoid crossing the cut.
The position of the σ±3 are shown in Fig. E.1 for s = Re s+ iε. We observe that the σ+

3 has always
positive imaginary part and stays far from the branch point σ3 = 4m2

π. The σ
−
3 circles around the

branch point changing the sheet of the integrand. When σ1 = σlim, the σ3 endpoints nearly coincide,
σ±3 (σlim) = mπ(

√
s + mπ) ± iε, however, they are on the different sides of the integrand cut. In

other words, if a straight line integration in σ3 is done, we should observe a singularity related to the
circling in the complex σ1 plane. The inner integral can be solved analytically.

X(s) = 2

∫ σlim

σth

dσ1

(√
σ+

3 (σ1, s)− 4m2
π −

√
σ−3 (σ1, s)− 4m2

π

)
, (E.2)

where the first term does not give problems near the physical region since σ+
3 stays away from 4m2

π.
However, the second square root has two branch points at (s −m2

π)/2 in the σ1 plane. (Another
example of a simple function with two adjoined square root branch points is

√
z2.)

σ+
3 (σ1, s)− 4m2

π = 0 → (σ1 − (s−m2
π)/2)2 = 0 (E.3)

Fig. E.2 shows the σ1 plane, where we see that a straight connection between σth and σlim is not
allowed by the presence of the cut. Here, two options arise:

1. X(1): we draw the σ1 path directly through the branch point (s−m2
π)/2 (the point P in Fig. E.1
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Figure E.1: The left (right) plot presents the real (imaginary) part of the σ±3 as a function of σ1 for a fixed value
of s+ iε. The σ1 is changed linearly between the integration limits. The zoomed plots show how the σ−3 passes
the real axis first below the branch point σth = 4m2

π , then returns above the branch point performing the circling.
The red line indicates the closest point on the σ1-path to the (s− 1)/2 since it does not go exactly through it.
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Figure E.2: Analytical structure of the integrand in Eq. (E.2). The branch points are shown by the red dots with
the cuts indicated by the solid red lines. The arbitrary integration path σth → P→ σlim is shown by the dashed
green line.
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can be aligned with the branch point (s −m2
π)/2). The point σ1 = (s −m2

π)/2 is special
because when the path goes through it, the σ−3 does not circle the branch point but just touches
it.

2. X(2): we go analytically under the cut taking any arbitrary path. X(2) corresponds to the
function which we would obtain connecting the points σ±3 properly, i.e. avoiding 1/

√
σ3 − 4m2

π

cut.

The two options give two different analytical functions. Additional discussions on the subject can be
found in Ref. [162, 194].

E.2 The Pasquier-Aitchison inversion

This appendix demonstrates how the integral Khuri-Treiman equation (see Eq. (7.28)) can be
transformed into the single-variable representation, later referred as SVR (see Eq. (7.29)). Practically,
it requires changing the order of two integrals in the following equation (i.e. Eq. (7.28) of the main
text),

F(s+, σ) = C(s, σ) +
1

π

∫ ∞

4

dσ′

(σ′ − σ)

1

λ1/2
s+

(σ′)

∫ σ
+

(σ
′
,s+)

σ
−

(σ
′
,s+)

dσ′′ t(σ′′)F(s+, σ
′′), (E.4)

where λ1/2
s+

(σ′) =
√
λ(s, σ′, 1), σ±(σ′, s) = (s+ 3− σ′)/2± λ1/2

s (σ′)λ1/2(σ′)/(2σ′), λ1/2(σ′) =√
λ(σ′, 1, 1), t(σ) is a two-particle scattering amplitude, F(s, σ) is an amputated Isobar amplitude

(see Sec. 7.2.1), and C(s, σ) is an entire function in σ. The s-dependence of the functions F and
C is not important for the integral swapping since this transformation can be performed for a fixed
value of s. The value, s+ is set to be slightly imaginary to avoid that the integration ranges of the
second integral, σ± hit singularities of integrand, t(σ′′)F(s, σ′′). We assume that both t(σ′′) and
F(s, σ′′) have a discontinuity on the real axis in the σ′′ variable for σ′′ > 4, and that there are no other
singularities on the first Riemann sheet in σ′′. The positions of the integration limits σ±(σ′, s) are
shown in the right panel of Fig. E.3. Due to the presence of the cut in the σ′′ plane, these limits cannot
always be connected with a straight line. Hence, the integration path has to be modified to avoid
crossing of the cut. The analytic structure of the integrand in the σ′ plane is also non-trivial. It has a
pole, 1/(σ′ − σ) and four branch points at σ′ ∈ {0, 4, (√s± 1)2} due to the square-root expression
in the integration limits σ±(σ′, s) (see remarks in Ref. [237]). To define the internal integral on a path
σ′ ∈ (4,∞), the expression λ1/2

s (σ′) has to be defined for all σ′. We fix the orientation of the cuts by
writing, 1

λ1/2
s+

(σ′) = i

√
σ′ − (

√
s+ − 1)2

√
(
√
s+ + 1)2 − σ′, (E.5)

σ±(σ′, s+) =
s+ 3− σ′

2
∓
√
σ′ − (

√
s+ − 1)2

√
(
√
s+ + 1)2 − σ′

√
4− σ′

2
√
σ′

. (E.6)

1 We use a standard convention that the cut of
√
z function is oriented to the left, i.e.

√
−1 + iε = i, and

√
−1− iε = −i,

with ε being an infinitesimal positive number.
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Figure E.3: Left: The location of the integration limits of the second integral, σ±(σ′, s+) for s > 9, and
σ′ ∈ [4,∞] are shown by the thick black line. The small white circle show an example: when σ′ is outside of
the physical domain

√
s− 1 <

√
σ′ <

√
s+ 1, the values σ± are located in the complex plane. The red broken

line shows the cut along the real axis. Right: Location of the cuts of Eq. (E.6) in the σ′ plane.

The left panel of Fig. E.3 shows locations of the cuts of Eq. (E.6) in the σ′ plane.
There are two methods to transform Eq. (E.4) into the SVR, which we call the Aitchison inversion

proposed in Ref. [194] and the Pasquier inversion given in Ref. [162]. The first method involves
an additional integral, the dispersive representation of the integrand F(σ′′) t(σ′′) (see Eq. (2.26) in
the introductory section), while the second method exploits modifications of the integration paths.
Supposedly, both methods give the same result. We follow the Pasquier inversion method. It proceeds
in three steps:

1. We change the integration paths as follows.

∫ ∞+iε

4+iε

∫ σ
+

(σ
′
,s+)

σ
−

(σ
′
,s+)

=

∫ ∞+iε

4+iε

∫ σ
+

(σ
′
,s+)

0
−
∫ ∞+iε

4+iε

∫ σ
−

(σ
′
,s+)

0

=

∫ ∞+iε

4+iε

∫ σ
+

(σ
′
,s+)

0
−
∫ ∞−iε

4−iε

∫ σ
+

(σ
′
,s+)

0
(E.7)

=

(∫ 4−iε

∞−iε
+

∫ ∞+iε

4+iε

)∫ σ
+

(σ
′
,s+)

0
=

∫ +∞+iε

+∞−iε
(C)

∫ σ
+

(σ
′
,s+)

0
(Γ) , (E.8)

where the first integral is performed in the σ′ variable, the second one is is taken in the σ′′

varible; we omitted the integrand expressions for simplicity (they do not change). To make the
first step in Eq. (E.8), we noticed that σ−(σ′ + iε) = σ+(σ′ − iε), since the sign in Eq. (E.6) is
flipped by changing the side of the cut. The contours (C) and (Γ) are shown in Fig. E.5.

2. We change the order of the integrals. This step, in contrast to the first one, is well explained
in the original Ref. [162]. The integration paths are fixed: the first integral, in the σ′ plane is
taken along the path (C) around the cut [4,∞]; the second integral, in the σ′′ plane is taken
from 0 to σ+(σ′, s). The path for the second integral can be arbitrary, however, it is natural
to use a curve shown by the black thick line on the left panel of Fig. E.3 that connects 0 and
σ+(σ′, s). The path (C) is mapped into a variable x, x ∈ (−∞,∞) such that 0 corresponds to
the turning point, σ′ = 4. The path (Γ) is mapped into a variable y, y ∈ [0,∞). 2 σ+(σ′, s)

2 The coordinates x and y are called “cirvilinear abscissas” in the original work [162]
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−∞ +∞

y+(x)

x

y

0

y ∈ [0, y+(x)]

x ∈ [x−(y),∞)

Figure E.4: A domain of the integration in the variables x× y is shown by the orange area. The joint intervals
show ranges of integration over y (or x) by the vertical (or horizontal) line when this integral is the internal one.
The transformation is clarified in Eq. (E.9).

gives the range of integration in y, i.e. a monotonously increasing function y+(x) as shown in
Fig. E.4. The two integrals can be swapped:

∫ ∞

−∞
dx
∫ y

+
(x)

0
dy =

∫ ∞

0
dy
∫ ∞

x
−

(y)
dx, (E.9)

where x−(y) is the inverse function to y+(x). The inverse function for the σ′′ = σ+(σ′, s)
is, actually, σ′ = σ−(σ′′, s). This fact becomes clear based on the symmetry of the Kibble
equation [222],

σ′′σ′(3 + s− σ′′ − σ′)− (s− 1)2 = 0,

solutions of which are the functions σ±. Eq. (E.4) becomes:

F(s+, σ) = C(s, σ) +
1

π

∫ −∞

0
(Γ) dσ′′ t(σ′′)F(s+, σ

′′)
∫ +∞

σ
−

(σ
′′
,s+)

(C)
dσ′

(σ′ − σ)

1

λ1/2
s+

(σ′)
, (E.10)

By changing the order or integrals, we modified the analytic structure in the σ′′ variable. Since
one of the integral limits of the internal integral (i.e. in the σ′ plane) is given by σ−(σ′′, s),
there are four branch points in the σ′′ plane: 0, 4 and (

√
s± 1)2 (a remark about propagation of

singularities from the integration limit can be found in Ref. [237]). The cuts are directed in the
same way as shown on the right panel of Fig. E.3. The integration contours are kept the same:
(Γ) in the σ′′ plane and (C) in the σ′ plane (see Fig. E.5).

3. The integration contour (Γ) in the σ′′ plane is straighten to run around the cut that is made by
the (
√
s− 1)2 branch point. The integration contour in the σ′ plane is modified accordingly as

shown in Fig. E.6. As the contour (Γ) is continuously transformed into the contour (Γ′) by just
straightening the circular segments, the modification of the contour (C) into the (C ′) is also
continuous. The latter can be realized by pulling a part of the contour through the gap between
the branch points at σ′ = (

√
s− 1)2 (compare the right panels of Fig. E.5 and Fig. E.6).

The integral along the contour (Γ′) shown in the left panel of Fig. E.6 contain three intervals:
[0, (
√
s− 1)2] below the cut from the branch point σ′′ = (

√
s− 1)2, [0, (

√
s− 1)2] above this cut, and

an infinite peace (−∞, 0] above the same cut. The first two parts can be combined into a discontinuity,
i.e. a difference of the nested integral below and above the cut. Eq. (E.4) written in the final SVR
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Figure E.5: The complex σ′′ and σ′ planes are shown un the left and right panels. The thick likes indicate the
integration contours before the transformation described in the text as the third step of the Pasquier inversion.
The function σ−(σ′′, s) from Eq. (E.6) maps the points from the left panel to the right. The numbers label
corresponding points.
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Figure E.6: The complex σ′′ and σ′ planes are shown in the left and right panels. The thick lines indicate the
integration contours after the transformation described in the text as the third step of the Pasquier inversion. A
part of the contour (C ′) on the right panel that joints the point 2 arrives from∞. This contour also goes to the
complex infinity after it takes off from point 8. Then, it is back to turn around the branch point σ′ = (

√
s+ 1)2

and match the peace of contour (C) from Fig. E.5 on the last part between the cuts.

form reads,

F(s, σ) = C(s, σ) +

∫ (
√
s−1)

2

−∞
B0(σ, s, σ′′)t(σ′′)F(s, σ′′) dσ′′ (E.11)

with

B0(σ, s, σ′′) =
1

π

[
θ(σ′′)

∫ σ
−

(σ
′′
++,s)

σ
−

(σ
′′
+,s)
(C ′) − θ(−σ′′)

∫ ∞

σ
−

(σ
′′
++,s)
(C ′)

]
dσ′

(σ′ − σ)

1

λ1/2
s+

(σ′)
, (E.12)

where σ′′+ is the value with small positive imaginary part that is still below the cut from (
√
s− 1)2,

and σ′′++ is the value with small positive imaginary that is above both cuts as shown in the left panel
of Fig E.6. The heaviside θ-functions separate two ranges: 0 < σ′′ < (

√
s− 1)2 and σ′′ < 0.

E.3 A comment on the Blatt-Weisskopf factors

We discussed the threshold factors which are square-root type singularities arising in the partial
wave decomposition. The partial wave amplitudes for 2→ 2 scattering processes are proportional
to pL1qL2 , where p (q) are the initial (final) state break up momentum and the particles interact in
an L1(L2)-wave configuration. This property is purely kinematical in nature. It is valid also in
nonrelativistic potential scattering [136]. The behavior comes from the expansion of the amplitude
at low energy. It cannot be (should not be) extended at higher energies. Generally, the asymptotic
behavior of a scattering amplitude is bounded by the Froissart condition [238]. Thus, the amplitude
cannot grow indefinitely as pL1qL2 ∼ (

√
s)L1+L2 . Indeed, the asymptotic behavior is determined by
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the t-channel exchange processes, i.e. it depends on the actual details of the dynamics. To enforce the
correct threshold behavior and remove the problem at high energy, model-dependent form-factors are
usually used. The most popular model was introduced in meson decays by Hippel and Quigg [98],
based on the work of Blatt and Weisskopf [97] on α-particles emission from heavy nuclei. The latter
formulates the Schrödinger problem, with the equivalent potential

Ul(r) =

{
−V0 for r ≤ R
l(l+1)

2mr
2 for r > R

, (E.13)

where R is a well radius, V0 is a depth of the well. We notice that peculiar dependence of potential
on l makes it cumbersome: in order to compensate the centrifugal barrier for r < R, the original
potential cannot be isotropic.

However, the problem is exactly solvable, and the so-called Blatt-Weisskopf factors hl can be
determined for any l from the transition amplitude. The hl(x) are functions of the dimensionless
parameter x = (kR)2, with k being the kinetic momentum in the system. The functions hl(x) have
both the right threshold behavior and good asymptotics, hl ∝ kl, and hl

k→∞−−−→ 1.

h2
0(x) = 1

h2
1(x) = x/(1 + x)

h2
2(x) = x2/(9 + 3x+ x2)

h2
3(x) = x3/(225 + 45x+ 6x2 + x3) (E.14)

When the model is promoted to relativistic theory, the decay vertex form factor reads v1/2
L1

(p) (or
v

1/2
L2

(q)) for the initial (or final) state. From the point of analyticity in the s-variable, the factors v1/2
l

introduce left-hand singularities. The position of the singularities depend on the value of the range
parameter R. The customary choice is R = 1 fm, and the dependence of the results on this choice
is usually considered as a systematic uncertainty. However, we have to stress that these factors are
meaningful only in nonrelativistic potential theory. In addition to the behavior at thresholds and at
high energy, the factors are required to be smooth in the physical region. Since there is no universal
recipe to parameterize these factors, we have to accept some model dependence of the results. Here,
we suggest alternative models to be tested in addition to the Blatt-Weisskopf factors. In a relativistic
theory, the role of the potential is played by the exchange of resonances in the crossed channel. They
generate left-hand singularities in the s-variable. The naïve projection of a t-channel exchange over
s-channel partial waves gives an amplitude proportional to the Legendre function of the second kind
Ql [39, 44]. The projection is given by an expression as follows.

∫
dz
2

Pl(z)

M2 − t
=

1

4k2Ql

(
1 +

M2

2k2

)
. (E.15)

In this case the relevant scale is given by the mass of the exchanged particles. The Ql have the same
asymptotic behavior as the Blatt-Weisskopf factors. Since there is no theoretical obstruction for the
form factors to over-suppress the threshold behavior away from threshold one can also consider higher
order poles as a model for the left-hand cuts, as in [4]. Whatever model is used to constrain the
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high-energy behavior of the amplitude, we need to ensure that the singularities generated by them are
far from the physical region, and affect the asymptotic high energy behavior only.
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Glossary

Breit-Wigner amplitude or parametrization is commonly used approach to describe the resonance
phenomenon [26]. The general form of the amplitude reads:

ABW(s) =
1

m2 − s− imΓ(s)
. (16)

The forms of the Breit-Wigner amplitudes used in this thesis:
• Standard Breit-Wigner with a constant width: Γ(s) = Γ0,
• Breit-Wigner with a dynamic width is used for a resonance in a system of two particles
with massesm1 andm2 in L-wave:

Γ(s) = Γ0
p(s)m

p(m2)
√
s

h2
L(p(s)R)

h2
L(p(m2)R)

, (17)

where hL(z) are the Blatt-Weisskopf factors introduced by Hippel and Quigg, p is a
break-up momentum, p(s) = λ1/2(s,m2

1,m
2
2)/(2

√
s).

. 32, 36, 38–43, 45, 67, 75, 85, 146, 152, 153, 169, 171, 185

DT0 is a COMPASS trigger for the diffractive reactions. It is formed as a coincidence of several
independent signals:

• the beam trigger provided by scintillation detectors at the beam telescope,
• the signal from the recoil proton detector
• veto signal for particles leaving the target outside acceptance of the experiment
• veto signal for beam track downstream the spectrometer in order to suppress events without
interaction.

The trigger selects events where the target proton obtains a significant momentum to leave the
target material and cross two rings of the RPD detector.. 21

General Isobar Model A dynamic model for the decay amplitude which present the amplitude as a
sum of the several truncated series of the Partial waves in different channels. The model has
very natural intuitive meaning: it looks as the sum of various cascade reactions which proceed
via different intermediate states.. 30

Isobar is an intermediate state in the cascade reaction with the well defined quantum numbers, spin
and parity.. 30–32, 38, 74, 78, 79, 86, 87, 124, 146, 149, 169, 170, 175
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Glossary

Källén function is a commonly used function,

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx. (18)

It enters to the expression for the break-up momenta |~p∗| when a particle with massM decays
to particles with the massm1 andm2.

|~p∗| = λ1/2(M2,m2
1,m

2
2)

2M
(19)

. 13, 27, 40, 58, 97, 112, 143, 157, 163

Pomeron is an exchange trajectory introduced to describe the high energy pp and π+ scattering. This
quasi-particle is often referred to as a ladder of the gluonic exchanges [80].. 24, 76

production Production amplitude(reaction) is an amplitude of the process (or such a process) where
a considered system of particles is produced. The terminology appears in a context of unitarity
where in presence of a production channel with a negligible coupling the final-state interaction
can still be assumed elastic.. 52, 57, 60, 65, 68, 69, 73, 144, 148, 185
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Acronyms

CM Center-of-Momentum. 26, 73, 162, 165–167

GJ Gottfried-Jackson. 24, 26, 27, 31, 76, 79, 80, 181

KT Khuri-Treiman. 60, 71, 182

MC Monte-Carlo. 33, 34, 50, 85, 86

PWA Partial Wave Analysis. 28, 29, 34, 35, 37, 45, 47–50, 66, 67, 74, 75, 83–87, 124, 125, 144–146,
149, 153, 169, 171, 181, 182

QCD Quantum Chromodynamics. 1, 2, 5–7, 109, 123, 128, 129, 132, 135, 142

RPD Recoil Proton Detector. 19, 21, 22, 24, 187

SDM Spin Density Matrix. 34, 35, 39, 45, 65, 146, 150, 182, 183
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