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"Let's wake up! Let's wake up Humanity! There is no more time. Our consciences will be shaken by 

the fact that we are only contemplating self-destruction based on  

capitalist, racist and patriarchal depredation". 

̶Berta Caceres, Environmental activist 

       (1976-2016) 
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  Abstract 

Abstract 
 
Human-induced global change has driven drastic modifications of ecosystems that could lead to 

unexpected and unprecedented transformations in the present and future decades. Current systems 

modifications increased the need for more comprehensive and evenly distributed databases across 

ecosystems and spatio-temporal scales. Moreover, base knowledge that allows a better 

understanding of land-use trajectories and their impacts on the supply of multiple ecosystem 

services and thus supports the development of highly relevant guidelines for improving landscape 

management decisions. Hotspots of biodiversity are biogeographical areas identified as biodiversity 

reservoirs that have been recognized as under threat due to human impacts. These biodiversity 

reservoirs require further investigation to prevent the deterioration of their ecological functions. 

Hence, this dissertation aims to understand the impacts and effects of human activities in a 

biodiversity hotspot area, the Valdivian temperate rainforest by expanding the temporal resolution 

of land cover data and ecosystem services assessments. The Valdivian temperate rainforest is 

located in Southern Chile, Northern Chilean Patagonia (73°20’ W-39°25’ S - 71°59’ W-41° 14’ S). 

The area has been identified as a biodiversity hotspot due to a high number of endemic species (90% 

at the species level and 34% at the genus level for woody species), and its intense level of human 

appropriation. This dissertation addresses the following three objectives: 1) Uncovering landscape 

transformation by expanding the temporal resolution of analyses of landscape dynamics in a 

biodiversity hotspot area; 2) Understanding the spatio-temporal dynamics of the supply of multiple 

ecosystems services at the landscape scale; 3) Assessing the contribution of an integrated landscape 

management strategy to reconnect fragmented ecosystems, on ecosystem services supply and its 

beneficiaries. 

The integration of different types of biophysical and socioeconomic data, as well as methodologies 

from diverse fields such as remote sensing, ecological modeling, and landscape ecology, were 

included to answer the main questions of the dissertation. A higher temporal resolution of land-

cover dynamics was investigated by using all Landsat scenes available for the study area from 1985 

to 2011 (7 periods) and a spatial resolution of 30 meters. An automatic classification with random 

forest and local ground information allowed to uncover the dynamic of land-cover composition and 

configuration in the area. Based on this analysis and additional biophysical and socioeconomic data, 

the trajectory of the ecosystem services supply in the area was revealed at the same temporal scale 

(7 periods) but with a spatial differentiation between the main four geomorphological units. All 

these datasets and the methodological procedure of this thesis resulted in the development of 

landscape planning recommendations that were assessed in the final chapter of this dissertation. The 

assessed landscape planning strategy builds on the protection of structural connectivity areas (SCA) 

—defined as the integration of linear (riparian corridors) and patchy (national conservation units) 
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landscape elements— and its contribution to ecosystem services supply as well as its beneficiaries 

across the landscape.  

Results from the land-cover dynamics analysis revealed a highly dynamic and transformed 

landscape influenced by processes such as clear-cuts of exotic forest plantations, regrowth of 

secondary forest, afforestation with exotic tree species, together with deforestation and 

fragmentation of native forest. These modifications impacted both the composition and 

configuration of the landscape. Areas with exotic forest plantation drastically increase especially 

from 1985 until 1999 with the highest net increase of 706% from 1985 until 2011. Old-growth 

forests showed a continuous decrease over time, with the highest deforestation rate of 1.2% - net 

loss - between 1985 and 1999, this deforestation rate tends to slow down in the last study period 

(2010-2011). Moreover, the fragmentation of old-growth forest rose especially between 1985-1999 

with the decline of patch size and an increase of the total edge length. Secondary forest showed an 

increase over time but with small and fragmented patches across the landscape. In the case of the 

ecosystem services supply, the different geomorphological units revealed a diverse pattern with 

higher regulation services in the Andes and Coastal range in comparison with provisioning services 

mostly allocated in the Central Valley. The ecosystem services supply trajectory uncovered a 

decrease of carbon stocks in both mountain ranges as well as an increase in the Central Valley. 

Regulating services such as sediment and phosphorous retention showed irregular trends which 

reflected the diverse management strategies used in the area in addition to the low compliance of 

stream buffer protection, that highlighted the importance of protecting riparian areas. Cultural 

ecosystem services also declined, for example, the case of aesthetic value that decreased (degree of 

naturalness) over time and across the study area. In the case of recreational services, even though 

there is an increase in the service during the study period, these areas are isolated with low or limited 

access, and a low type of ecosystems represented. Concerning the recommended landscape planning 

strategy (SCA) assessed in the last chapter, the results reported a positive contribution —

maintaining and enhancing— not only to ecosystem services supply but also to the conservation in 

the area. The assessment revealed the high potential of SCA  as a conservation strategy by 

reconnecting this fragmented landscape and protecting vulnerable areas (riparian corridors); due to 

the high amount of services that they supply  (more than 60%), with an also a higher density of 

beneficiaries, even when SCA only account for 40% of the total study area. 

 

The results of this dissertation confirm the relevance of integrated research by combining various 

techniques, disciplines and the consideration of different spatio-temporal scales to achieve better 

awareness of the functioning of socio-ecological systems by using the ecosystem services concept 

as a framework. Furthermore, the results highlight the necessity of an expanded temporal resolution 

in land-cover and ecosystem service assessments to provide more targeted and grounded 

recommendations for landscape planning.



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Zusammenfassung 

Zusammenfassung 
 
Der vom Menschen verursachte globale Wandel hat zu drastischen Veränderungen der Ökosysteme 

geführt, die in den gegenwärtigen und zukünftigen Jahrzehnten zu unerwarteten und beispiellosen 

Veränderungen führen könnten. Aktuelle Systemänderungen erhöhten den Bedarf an 

umfassenderen und gleichmäßig verteilten Informationenen (Datenbanken) über verschiedene 

Ökosysteme und raumzeitliche Skalen hinweg. Darüber hinaus trägt das Basiswissen, das ein 

besseres Verständnis der Landnutzungstrajektorie und ihrer Auswirkungen auf die Bereitstellung 

mehrerer Ökosystemdienstleistungen ermöglicht, zur Ableitung hochrelevanter Leitlinien für die 

Verbesserung von Entscheidungen im Landschaftsplanung. Hotspots der Biodiversität sind 

biogeografische Gebiete, die als Biodiversitätsreservoirs identifiziert wurden und als durch 

menschliche Einflüsse gefährdet gelten. Diese Biodiversitätsreservoire bedürfen weiterer 

Untersuchungen, um eine Verschlechterung ihrer ökologischen Funktionen zu verhindern. Daher 

zielt diese Dissertation darauf ab, die Auswirkungen menschlicher Aktivitäten in einem 

Biodiversitäts-Hotspot-Gebiet, dem Valdivianischen gemäßigten Regenwald, zu verstehen, indem 

die zeitliche Auflösung von Landbedeckungdaten und Ökosystemdienstleistungsbewertungn erhöht 

wird. Der gemäßigte Regenwald von Valdivian liegt im Süden Chiles, im nördlichen chilenischen 

Patagonien (73°20' W-39°25' S - 71°59' W-41° 14' S). Das Gebiet wurde aufgrund einer hohen 

Anzahl endemischer Arten (90% auf Artenebene und 34% auf Gattungsebene für holzige Arten) 

und seiner intensiven Nutzung durch den Menschen als Hotspot für die Biodiversität identifiziert. 

Diese Dissertation befasst sich mit den folgenden drei Zielen: 1) Analyse der 

Landschaftsveränderungen durch Erhöhung der zeitlichen Auflösung von Analysen der 

Landschaftsdynamik in einem Biodiversitäts-Hotspot-Gebiet; 2) Verständnis der räumlich-

zeitlichen Dynamik der Bereitstellung mehrerer Ökosystemdienstleistungen im 

Landschaftsmaßstab; 3) Bewertung des Beitrags einer integrierten 

Landschaftsmanagementstrategie, die auf die Wiederanbindung fragmentierter Ökosysteme 

ausgerichtet ist, zur Versorgung mit Ökosystemdienstleistungen und ihren Nutznießern. 

Die Integration verschiedener Arten von biophysikalischen und sozioökonomischen Daten sowie 

von Methoden aus verschiedenen Bereichen wie Fernerkundung, ökologischer Modellierung und 

Landschaftsökologie wurden zur Beantwortung der wichtigsten Fragen der Dissertation 

einbezogen. Eine höhere zeitliche Auflösung der Landbedeckungsdynamik wurde unter 

Verwendung aller für das Untersuchungsgebiet von 1985 bis 2011 verfügbaren Landsat-Szenen (7 

Perioden) und einer räumlichen Auflösung von 30 Metern untersucht. Die automatische 

Klassifizierung mit zufälligen Wald- und lokalen Bodeninformationen ermöglichte es, die Dynamik 

der Zusammensetzung und Konfiguration der Landbedeckung in dem Gebiet aufzudecken. 

Basierend auf dieser Analyse und zusätzlichen biophysikalischen und sozioökonomischen Daten 

wurde die Trajektorie der Versorgung mit Ökosystemdienstleistungen in dem Gebiet auf der 
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gleichen zeitlichen Skala (7 Perioden), aber räumlichen differenziert in den vier wichtigsten 

geomorphologischen Einheiten, aufgezeigt. Alle diese Datensätze und das methodische Vorgehen 

dieser Arbeit ermöglichten die Entwicklung von landschaftsplanerischen Empfehlungen, die im 

letzten Kapitel dieser Arbeit bewertet wurden. Die Strategie der bewerteten Landschaftsplanung 

baut auf dem Schutz von strukturellen Konnektivitätsgebiete (SCA) auf - definiert als die 

Integration von linearen (Uferkorridore) und patchy (nationale Naturschutzeinheiten) 

Landschaftselementen - und ihrem Beitrag zur Versorgung mit Ökosystemdienstleistungen sowie 

ihren Nutznießern in der gesamten Landschaft. 

Die Ergebnisse der Analyse der Landbedeckungsdynamik zeigten eine hochdynamische und 

transformierte Landschaft, die von Prozessen wie dem Kahlschlag von exotischen 

Waldpflanzungen, dem Nachwachsen von Sekundärwald, der Aufforstung mit exotischen 

Baumarten sowie der Entwaldung und Fragmentierung von Urwald beeinflusst wurde. Diese 

Änderungen betrafen sowohl die Zusammensetzung als auch die Konfiguration der Landschaft. 

Flächen mit exotischen Forstplantagen nehmen vor allem von 1985 bis 1999 drastisch zu, mit dem 

höchsten Nettozuwachs von 706% von 1985 bis 2011. Alte Wälder zeigten im Laufe der Zeit einen 

kontinuierlichen Rückgang, mit der höchsten Entwaldungsrate von 1,2% - Nettoverlust - zwischen 

1985 und 1999, diese Entwaldungsrate verlangsamt sich in der letzten Untersuchungsperiode (2010-

2011). Darüber hinaus stieg die Fragmentierung des Altwaldes vor allem zwischen 1985-1999 mit 

dem Rückgang der Flächengröße und einer Erhöhung der gesamten Kantenlänge. Der 

Sekundärwald zeigte im Laufe der Zeit einen Anstieg, jedoch mit kleinen und fragmentierten Stellen 

in der Landschaft. Im Falle der Versorgung mit Ökosystemdienstleistungen zeigten die 

verschiedenen geomorphologischen Einheiten ein unterschiedliches Muster mit höheren 

Regulierungsleistungen im Anden- und Küstenbereich im Vergleich zu den meist im Zentraltal 

zugewiesenen Versorgungsleistungen. Die Versorgungswege der Ökosystemdienstleistungen 

enthüllten einen Rückgang der Kohlenstoffbestände in beiden Gebirgszügen sowie einen Anstieg 

im Zentraltal. Die Regulierung von Dienstleistungen wie Sediment- und Phosphorrückhaltung 

zeigte unregelmäßige Trends, die die unterschiedlichen Bewirtschaftungsstrategien in dem Gebiet 

widerspiegelten, ebenso wie die geringe Einhaltung des Schutzes vor Strompuffern, die die 

Bedeutung des Schutzes von Ufergebieten hervorhoben. Auch die kulturellen Ökosystemleistungen 

nahmen ab, wie z.B. der Fall des ästhetischen Werts, der abnahm (Grad der Natürlichkeit). Im Falle 

von Freizeitdienstleistungen sind diese Gebiete trotz einer Zunahme des Angebots während des 

Untersuchungszeitraums isoliert und haben einen geringen oder begrenzten Zugang sowie eine 

geringe Art von Ökosystemen. Bezüglich der im letzten Kapitel bewerteten empfohlenen 

Landschaftsplanungsstrategie (SCA) berichteten die Ergebnisse über einen positiven Beitrag - 

Erhaltung und Verbesserung - nicht nur zur Versorgung mit Ökosystemdienstleistungen, sondern 

auch zum Schutz in dem Gebiet. Die Bewertung ergab das hohe Potenzial von SCA als 

Schutzstrategie durch die Wiederanbindung dieser fragmentierten Landschaft und den Schutz 
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gefährdeter Gebiete (Uferkorridore); aufgrund der hohen Anzahl von Dienstleistungen, die sie 

erbringen (mehr als 60%), mit einer ebenfalls höheren Dichte an Begünstigten, auch wenn SCA nur 

40% des gesamten Untersuchungsgebietes ausmacht. 

 

Die Dissertation bestätigt die Relevanz der integrierten Forschung durch die Kombination 

verschiedener Techniken, Disziplinen und die Berücksichtigung verschiedener raumzeitlicher 

Skalen, um ein besseres funktionales Verständnis von sozial-ökologischen Systemen zu erreichen, 

indem das Konzept der Ökosystemdienstleistungen als Rahmen verwendet wird. Darüber hinaus 

verdeutlichen die Ergebnisse die Notwendigkeit einer erhöhten zeitlichen Auflösung bei 

Landbedeckungs- und Ökosystemleistungsbewertungen, um gezieltere und fundierte 

Empfehlungen für die Landschaftsplanung zu geben. 
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1 Introduction 

1.1 Motivation and conceptual background 
 
The increasing global demand for natural resources has led to severe modifications in landscapes 

and ecosystems at different spatio-temporal scales (Butchart et al., 2010; Foley et al., 2005; 

Meyfroidt and Lambin, 2011). For example, negative impacts on human and environmental health 

have intensified until unprecedented limits due to factors such as the increase of the global 

population, changing consumption patterns, water scarcity, and the unsustainable use of resources 

(Ellis et al., 2013; Foley et al., 2005; Rockström et al., 2009). Scientific evidence of human 

alterations is large; for example Ellis and Ramankutty et al. (2008), reported in 2008 that more than 

75% of ice-free land has some degree of modification and Haberl et al. (2007) showed that 

approximately 30% of the global terrestrial net primary production shows signs of human 

appropriation. One of the most important forces that drive land degradation, biodiversity loss, and 

the ability of the biological system to support human needs is land use/cover human-influenced 

transformations (Foley et al., 2005; Lambin and Meyfroidt, 2011). Changes in land use/cover have 

significant consequences, not only at the local but also at the regional, continental and global scale, 

affecting climate, biogeochemical cycles, and ecosystems in general (Ellis et al., 2010; Klein 

Goldewijk and Ramankutty, 2004; Lambin et al., 2001). Correspondingly, modifications on the 

landscapes structure or spatial pattern, respectively, triggers effects that are sometimes difficult to 

predict (i.e., deforestation, habitat fragmentation, biodiversity loss), due to the diverse range of 

functions and process that it supports (Hersperger et al., 2012; Lambin and Meyfroidt, 2010; 

Verburg et al., 2009). Landscapes are complex interconnected systems characterized by their 

composition and structure at a specific-spatio-temporal scale (Gergel and Turner, 2002; Mcgarigal, 

2001; Turner, 1989a). Landscape planning requires robust base information to meet not only society 

demands but also to maintain the delicate balance of the different ecosystems (de Groot et al., 2010; 

Goldstein et al., 2012). For that reason, integrated approaches that combine biophysical and 

socioeconomic information are highly required, as is the case of the ecosystem services approach, 

that addresses the interconnection between ecosystem services supply and societal demands. 

Ecosystem services are defined as the benefits that humans obtain from ecosystems (Millennium 

Ecosystem Assessment, 2005). Furthermore, the approach seeks for a better understanding of the 

components and functions of socioecological systems, by separating the multiples services and 

benefits from ecosystems as well as and linkages between them (Folke, 2006; Olsson et al., 2006; 

Rockström et al., 2009).  Although the concept is not new (Wilson and Matthews 1970, Ehrlich and 

Mooney 1983), the frame rapidly expanded since the release of the Millennium Ecosystem 

Assessment (Millennium Ecosystem Assessment, 2005). Ecosystem services supply is divided into 

three major groups: provisioning (i.e., industrial forest plantations for pulp production), regulating 

(i.e., carbon storage), and cultural (i.e., forest recreation) and the demand or beneficiaries of these 
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services (Haines-Young and Potschin, 2018). Considerations of the spatial and temporal scale are 

also crucial since landscape processes, and functions are scale dependent (Grêt-Regamey et al., 

2014; Müller et al., 2010; Raudsepp-Hearne and Peterson, 2016). Likewise, other global initiatives 

(i.e., TEEB, IPCC, IPBES, Natural Capital) helped to put on value the importance of ecosystem 

services for the human well-being (de Groot et al., 2010; Roy Haines-Young and Potschin, 2013; 

Turner and Daily, 2008). At the global level governments have agreed to implement the concept of 

ecosystem services in their national assessments. They get increasingly integrated into their 

planning and decision-making process (Lele et al., 2013; Wong et al., 2015). For example, Joppa et 

al., 2016 pointed out that U.S. federal agencies were required to integrate ecosystem services into 

their planning and decision-making by “conducting decision-relevant and scale-specific ecosystem-

services assessments, as well as plans for effective monitoring and evaluation.” 

Measuring these land cover and ecosystem services modifications requires careful consideration of 

the spatial and temporal scale at which the landscape process or function occur (N. M. Haddad et 

al., 2015; Turner, 1989b). Regional land use/cover change processes are often monitored at 

relatively coarse temporal resolutions (snapshots from 5 to 15 years), reducing considerably the 

ability to identify and understand regional and local impacts across the landscape (Lunetta et al., 

2006; Pflugmacher et al., 2012a; O E Sala et al., 2000). Moreover, it also decreases the potential to 

link land use change to policies, and market-oriented decision as well as the availability to react to 

them (Barnett et al., 2016; Hein et al., 2006; Rodríguez et al., 2006). The increasing availability of 

high spatio-temporal earth observation products, together with the improvement of big data 

management technologies provide a considerable potential to expand the resolution of information 

related to land use/cover change research and thus to improve the understanding of related patterns 

and process at different scales (J Hansen et al., 2000; Zhu and Woodcock, 2014). At the regional 

scale, the free-release of the Landsat archive opened the potential to continuous landscape dynamics 

observations (Wulder et al., 2012). The integration of earth observation, ground data with time-

series image processing and change detection techniques offer considerable improvements 

especially in areas with low data accessibility (i.e., cloud, poor quality images), high levels of 

biodiversity, and rapid land use change processes. Likewise, much more than solely land cover 

mapping is needed to be able to understand landscape dynamics and manage socio-ecological 

systems. Considering that human societies highly depend on natural and managed systems to 

prosper (Pecl et al. 2017), a more inclusive approach is required that accounts for the 

natural/managed systems and its beneficiaries across the landscape (Balvanera et al., 2015; Bennett 

et al., 2009; Ellis and Ramankutty, 2008). The previously discussed ecosystem service concept 

offers this integrated approach by including biophysical or ecological aspects of landscapes (supply) 

together with the society demands (demand) (Bennett et al., 2015; de Groot et al., 2012; Díaz et al., 

2006; Mach et al., 2015). Despite its relevance of including the ecosystem services demand (i.e., 

beneficiaries of the services) there is a strong bias towards supply ecosystem services assessments 
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(de Groot et al., 2010; Reyers et al., 2013; Seppelt et al., 2011). Bagstad et al., 2014 argue that the 

conflict mainly remains in difficulty to identify and map the beneficiaries of the different ecosystem 

services, understanding that often ecosystem services and its beneficiaries are not co-located (spatial 

mismatch). In many regions, ecosystem services assessments that integrates multi-scale mapping 

and monitories are still missing or are underrepresented as in the case of Latin America and Southern 

Chile (Balvanera et al., 2012; Malinga et al., 2015). 

This also applies to the unique relict of Temperate Rainforest in South America, the Valdivian 

Rainforest (73°20’ W-39°25’ S - 71°59’ W-41° 14’ S). The Valdivian Rainforest has been identified 

as a biodiversity hotspot due it is high level of endemism, with 90% at the species level and 34% at 

the genes level for woody species (J. Armesto et al., 1998; Arroyo et al., 1996). Despite its 

ecological relevance the region has experienced rapid deforestation and fragmentations processes 

(Echeverria et al., 2006c; Locher-Krause et al., 2017b) due to historical and actual economic 

demands (Armesto et al., 2010; Niklitschek, 2007). Reported land use change in the area provided 

information regarding deforestation and fragmentation trends but lacks the temporal resolution to 

understand land use modifications as a dynamic process interlinked to the regional and global 

demands (Altamirano et al., 2013; Echeverria et al., 2006c; Miranda et al., 2017; Laura Nahuelhual 

et al., 2013a; Zamorano-Elgueta et al., 2015). In this region due to the high climatic variability —
with high precipitation amounts and cloud cover— an automatic multitemporal land cover analysis 

offers improvements of spectral variation, as well as enhancement of cloud, obscured images (Canty 

and Nielsen, 2008; Gao and Masek, 2008). The extended temporal information —by using all the 

available Landsat scenes for the area— allows not only a better understanding of landscape 

dynamics but also the mapping and modeling of ecosystem services to close the knowledge gap 

regarding human modifications and state of ecosystems in the area. This is particularly relevant such 

hotspot biodiversity areas as the Valdivian temperate forest, in which dynamic land use/cover 

information together with ecosystem services assessments can support landscape planning. 

Moreover, management strategies that highlight the benefits of the ecosystem services approach for 

landscape planning can contribute largely to maintain the flow of ecosystem services in our study 

area, such as the case of planning strategies oriented to reconnect fragmented landscapes. Pringle, 

2017 suggested that landscape strategies that look for expanding and restoring current landscape 

elements by reconnecting existing protected areas and corridors improve conservation efforts. 

Research exercises that integrate such management strategies provide valuable information to 

provide the knowledge needed for the implementation of desirable socioecological future scenarios. 
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1.2 Knowledge gaps and main research objectives 
 
Land use/cover change is one of the most important drivers of environmental and ecosystem 

transformations. Under the current global scenario, with unexpected and unprecedented system 

modifications due to climate change and anthropogenic demand, information on land use/cover and 

ecosystem services dynamics is highly required (Bennett and Chaplin-Kramer, 2016; Foley et al., 

2011; N. M. Haddad et al., 2015). However, while current global initiatives enhance the relevance 

of scale-oriented research to improve sustainable landscape planning, integrative assessments that 

include the three main pillars of sustainability (ecological, economic and social) are limited 

(Burkhard et al., 2014; Clec’h et al., 2016; Costanza et al., 2017; Hicks et al., 2016). Nowadays the 

increasing free access to datasets, models, and tools represent a considerable potential to understand 

processes and functions at the different temporal and spatial scales (Cord et al., 2017b; Hansen and 

Loveland, 2012; Ju and Roy, 2008; Roy et al., 2014; Wulder et al., 2012). At the regional level, 

these tools and datasets are crucial for providing comprehensive and consistent base information to 

policymakers and the society in general. This dissertation aims to understand the impacts and effects 

of human activities on selected ecosystem services in a biodiversity hotspot area, by expanding the 

temporal resolution of land cover data (composition and configuration) under the umbrella of the 

ecosystem services approach (supply and beneficiaries assessment). The spatially-explicit approach 

integrates not only biophysical but also socioeconomic variables providing concrete landscape 

planning strategies (i.e., connectivity areas), that focus on enhancing and maintaining the benefits 

and flow of ecosystem services across the landscape. Specifically, this dissertation addresses three 

main research objectives and its knowledge gaps:  

 

Objective 1. Expand the temporal resolution of landscape transformations in a biodiversity 

hotspot area. The Valdivian temperate rainforest is located in an area in which previous studies 

have reported drastic land cover transformations linked to political and economic governmental 

decisions (Armesto et al., 2010; Echeverria et al., 2006c; Niklitschek, 2007). These decisions have 

led to changes in composition and configuration of the forest ecosystems (Altamirano and Lara, 

2010; Miranda et al., 2017; Zamorano-Elgueta et al., 2015) impacting in a not yet fully understood 

way the socioecological systems of the area. Despite the relevance of these studies, landscape 

transformations are reported at a low temporal resolution (described only in two or three snapshots) 

missing crucial information regarding the periodicity, continuity, and magnitude of these changes 

over time and across the landscape. To close this gap, an approach that integrates high spatial-

temporal density dataset is applied by:  
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• Revealing patterns of land cover change processes at a high temporal scale based on all 

suitable Landsat scenes available for the study area in the south of Chile from 1985 to 2011, 

with a particular focus on forest cover changes.  

• Analyzing changes in land cover composition and configuration across a geomorphological 

gradient –from the Coastal mountain range, over the Central Valley to the Andes mountain 

range– in southern Chile.  

Objective 2. Spatio-temporal assessment to understand the dynamics of multiple ecosystems 

services supply across the landscape.  

Multi-scale ecosystem services mapping and monitoring are still far from being regularly integrated 

into landscape planning, and this gap is even more significant in Latin America (Balvanera et al., 

2012). Regardless of the ecological importance of the area, not only at the national but the global 

level, there is fragmented information regarding ecosystem services. Spatio-temporal ecosystem 

services assessments in this area could contribute to understanding functions, process and its 

benefits to the society. In Central-South Chile, ecosystems services assessments are few and rely 

only on the comparison of two or three periods that could lead to a misperception about the 

magnitude of change (Lara et al., 2009; Little et al., 2014, 2009; L. Nahuelhual et al., 2013; Núñez 

et al., 2006). To fill the knowledge gap on the dynamics of ecosystem services supply in regions 

under threat such as the study area, different data and techniques are needed. The analysis builds on 

the integration of land cover information derived from remote sensing data with spatially explicit 

models, official statistics and field measurements, addressing the following questions:  

 

• How were the supplies of selected individual ecosystem services distributed across the 

landscape and over time?  

• How did the spatial distribution of selected individual ecosystem services supply change 

over time?  

• What are the implications for the ecosystem and landscape management that aim to balance 

natural resources utilization and conservation in the region.  
 
Objective 3. Ecosystem services beneficiary’s assessment integrating landscape management 
strategies to reconnect fragmented ecosystem.  
 
An integrated ecosystem services assessment should include not only the biophysical aspect of 

services but also its beneficiaries to make explicit the interconnection among them (Bennett et al., 

2015; Liu et al., 2010). Therefore, the third objective of this dissertation integrates the beneficiaries 

of the selected forest ecosystem services. Furthermore, this objective also includes the evaluation 

of one specific landscape management strategy oriented to reconnect this fragmented landscape to 
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make visible the impact of the ecosystem services approach on landscape planning. The assessed 

landscape planning strategy builds on the protection of structural connectivity areas (from now on 

SCA), quantifying its effects and impacts on ecosystem services supply and its beneficiaries, to 

address the following questions:  

 

• How much does SCA contribute to forest ecosystem services supply over time? 

• Where are the highest density of ecosystem services beneficiaries located across the 

landscape and which is their linkage with SCA?  

• How much the SCA, consider as landscape planning strategy under different protection 

status, could contribute to maintaining the balance between production and conservation 

 

1.3 Overview of dissertation structure 
 
This dissertation comprises six chapters. Chapters 1 and 2 provide the scientific and methodological 

frame applied in this accumulative dissertation. Chapters 3, 4 and 5 cover the published papers or 

manuscripts submitted to ISI-listed journals. 

  

 
Figure 1.1 Overview of the dissertation structure, showing the chapters that comprise the related journal 
papers. In the left side of the figure, the temporal resolution of the overall research is included (from 1985 
until 2011), the regional spatial resolution is constant within the different chapters (30 meters). The letters a, 
b, c represents the major research topics developed through the different assessments, described in detail in 
Figure 2.1. The different grey tones illustrate the interconnection among the chapters and the research topic 
addressed in this dissertation.  
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Chapter 3 addresses objective 1 of this research by using remote sensing and ground data to expand 

the temporal resolution of land cover change analysis, describing the changes in landscape 

composition and configuration. Chapter 4 addresses objective 2. This study uses dynamic landscape 

data plus biophysical and socioeconomic data to model multiple ecosystem services supply in the 

area at different temporal scales. Chapter 5 addresses objective 3, by assessing the beneficiaries of 

the services identified and modeled in chapter 4. In this chapter, the relevance of potential landscape 

planning strategies oriented to reconnect this fragmented landscape is also assessed.  

Finally, chapter 6 discusses the scientific significance of the results of each chapter. Furthermore, 

conclusions and recommendation for future work are also provided in this chapter. 
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2 Methods and Data 

2.1 Study area 
 
The study was focused on a biodiversity hotspot area located in Southern Chile, Northern Chilean 

Patagonia (73°20’ W-39°25’ S - 71°59’ W-41° 14’ S). The area is characterized by the Valdivian 

temperate rainforest, one of the largest relicts of temperate rainforest in the world with a high 

amount of endemic and threatened species (Armesto et al., 1996; Myers et al., 2000; Olson et al., 

2001). Geomorphologically the area is divided into three units, the Coastal Mountain range (up to 

900 m), (2) the Central Valley (up to 250 m), and Precordillera and the Andes mountain range (up 

to 2,422m).  

 The area is home to circa 381.720 inhabitants, distributed mainly in the Central (INE Instituto 

Nacional de Estadística, 2012). From these inhabitants 68.3% are urban, and 31.3% rural residents; 

17% describe themselves as Mapuches, a group of Chilean indigenous inhabitants. Principal 

economic activities are closely related to natural resources utilization, particularly in the forest 

industry and the agricultural sector. The forest industry mainly focuses on exotic plantations (e.g., 

pulp, shipyard, and paper industry) as well as on wood processing factories for wood and paper 

products. This strong economic focus oriented to natural resources together with historical 

unsustainable management practices have triggered environmental conflicts in the area (i.e., soil 

erosion due to poor management standards, river pollution, loss of biodiversity) (Armesto et al., 

2010; Echeverria et al., 2006c; Lara et al., 2009). 

2.2 Overview of the data and methods used in the dissertation 
 
Studies that aim at a comprehensive and integrative landscape dynamics assessment are requested 

to evaluate not only composition and configuration elements but also to address function and 

processes at the suitable spatio-temporal scale (Cord et al., 2017a; Holland et al., 2011; Scholes et 

al., 2013). In this dissertation, different types of data and techniques are used to evaluate historical 

landscape dynamics, emphasizing on the use of the ecosystem services framework as a tool for 

sustainable landscape planning (Balvanera et al., 2015; Bennett et al., 2015; Spake et al., 2017). The 

approach followed in this dissertation is characterized by methodological steps as is shown in Figure 

2.1. The first step (a) is used in chapter 3 and provided a continuous land cover trajectory 

(composition and configuration) by integrating earth observations (Landsat) and remote sensing 

techniques (Figure 2.2). The second (b) and third (c) steps include the mapping and modeling of 

ecosystem services (Figure 2.3 and Figure 2.4). The mapping and modeling of multiple ecosystem 

services (supply and its beneficiaries) built on the data generated in the first step (a) plus biophysical 

and socio-economic regional data. In the last stage, data from the previously described analyses (a, 

b, c) were integrated to exemplify a suggested landscape planning initiative that aims to reconnect 
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this fragmented landscape, balancing conservation, ecosystem services supply and beneficiaries 

needs. A more detailed description of the data and methods is provided in the following sections. 

 

 
 
Figure 2.1 Overview of the data and methods used in the dissertation. The landscape dynamics assessment is 
based on the temporally continuous land cover analysis and the ecosystem services assessment. The ecosystem 
services mapping and modeling (supply and its beneficiaries) was performed at a regional scale and set the 
bases for regional landscape planning.   

 
2.2.1 Spatio-temporal land cover transformations 
The temporally continuous land cover analysis was based on earth observations and ground data as 

is shown in Figure 2.2. To reduce and eliminate atmospheric, cloud and radiometric distortions 

corrections to all selected images were done by using different protocols (LEDAPS, Fmask, and IR-

MAD) (Canty and Nielsen, 2008; J. Masek et al., 2006; Zhu and Woodcock, 2012). These protocols 

are explained in detail in chapter 3. The land cover classification was done using a non-parametric 

machine-learning classifier to automatize the classification process. The random forest algorithm in 

R offers a robust alternative to traditional imagine classification methods (Gislason et al., 2006; Pal, 

2005; Waske et al., 2012). Post-processing was performed to ensure the quality and to provide error 

and uncertainties of the classification process.  

Based on the continuous land cover dataset, landscape configuration indexes were calculated using 

the software FRAGSTAT v.4 (Mcgarigal, 2014).  
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Figure 2.2 Overview of the data and methods used in the first stage (a) of the dissertation. This step (a) 
integrate remote sensing and data analysis techniques to extend the temporal resolution of landscape 
transformation in the area. 

 
2.2.2 Ecosystem services assessments (supply and its beneficiaries)  
The mapping and quantification of ecosystem services were divided into two parts, one that 

describes the modeling and analysis of the ecosystem services supply and the second that deals with 

its beneficiaries (Figure 2.3 and Figure 2.4). Six forest ecosystem services were selected based on a 

literature review, information obtained from the first stage of this research and also from 

communication with regional government. The selected ecosystem services were: forest plantation 

production (provisioning), carbon storage (regulating), nitrogen retention (regulating), phosphorous 

retention (regulating), aesthetic value (cultural), and forest recreation (cultural). The supply of the 

six forest ecosystem services selected was quantified at a spatial scale of 30 meters, and for the case 

of ecosystem, services supply at the same temporal resolution of the land cover analysis. Due to the 

lack of data the ecosystem services beneficiaries were mapped only for the final period (2010-2011). 

Also, in the case of beneficiaries, the services nitrogen and phosphorous retention were merged as 

water regulating services to identify drinking water beneficiaries. 
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Figure 2.3 Overview of the data and methods used in the second step (b) of this dissertation. This step (b) 
integrate remote sensing and modeling techniques to quantify and estimate the trajectory of ecosystem 
services supply in the area. 

 
Figure 2.4 Overview of the data and methods used in the third step (c) of this dissertation. This step (c) 
integrate remote sensing and socioeconomic data to quantify and estimate the ecosystem services 
beneficiaries in the area. 

 
2.2.3 Landscape planning strategies 
In this dissertation, areas that offer solutions to reconnect these fragmented landscapes (Echeverría 

et al., 2007; Locher-Krause et al., 2017b) were integrated. Structural connectivity areas (SCA) were 

defined based on different types of landscape elements: linear elements (riparian corridors) and 

patchy elements (protected areas in the Andes and Coastal range). These SCA were identified based 

on of the first and second steps of this research and intended to connect the two-main old-growth 
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forest (in the Andes and Coastal range) through riparian areas. We integrated three protected areas 

located in the Andes (National parks Puyehue, Vicente Perez Rosales and National reserve Mocho 

Choshuenco) and three in the Coastal Mountain rage (National park Alerce Costero, National 

reserve Valdivia and the Private reserve Costera Valdiviana). These protected units were connected 

by a 300 meters buffer area surrounding the main rivers that flow from the Andes range to the sea 

(San Pedro, Calle Calle, and Rio Bueno rivers). Two areas identified as relevant to support 

ecological processes at the regional level and considered crucial as the potential habitat of 

endangered species were also added the SCA. These areas are located in the Central Valley —the 

San Pedro river valley (658 km2) and Llollenhue (246.3 km2).  
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3 Expanding temporal resolution in landscape transformations: 
Insights from a Landsat-based case study in Southern Chile. 
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Journal: Ecological indicators  
Submitted: 4 December 2015 
Accepted: 17 December 2016 
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3.1 Abstract  
 
Understanding temporal and spatial dimensions of land cover dynamics is a critical factor to link 

ecosystem transformation to land and environmental management. The trajectory of land cover 

change is not a simple difference between two conditions, but a continuous process. Therefore, there 

is a need to integrate multiple periods to identify slow and rapid transformations over time. We 

mapped land cover composition and configuration changes using time series of Landsat TM/ETM+ 

images (1985-2011) in Southern Chile to understand the transformation process of a temperate 

rainforest relict and biodiversity hotspot. Our analysis builds on 28 Landsat scenes from 1985 to 

2011 that have been classified using a random forests approach. Base on the high temporal data set 

we quantify land cover change and fragmentation indices to fully understand landscape 

transformation in this area. Our results show a high deforestation process for old growth forest 

strongest at the beginning of the study period (1985-1986-1998-1999) followed by a progressive 

slowdown until 2011. Within different study periods, deforestation rates were much larger than the 

average rate over the complete study period (0.65%), with the highest annual deforestation rate of 

1.2% in 1998-1999. The deforestation resulted in low connectivity between native forest patches. 

Old-growth forest was less fragmented but was concentrated mainly in two large regions (the Andes 

and Coastal mountain range) with almost no connection in between. Secondary forest located in 

more intensively used areas was highly fragmented. Exotic forest plantation areas, one of the most 

important economic activities in the area, increased sevenfold (from 12,836 to 103,540 ha), 

especially during the first periods at the expense of shrubland, secondary forest, grassland/arable 

land and old grown forest. Our analysis underlines the importance of expanding temporal resolution 

in land cover/use change studies to guide sustainable ecosystem management strategies as increase 

landscape connectivity and integrate landscape planning to economic activities. The study is 

highlighting the key role of remote sensing in the sustainable management of human-influenced 

ecosystems.  

Keywords: Land cover change; deforestation, forest fragmentation; Southern Chile; Landsat. 
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Highlights 
 

• Expand the temporal scale contributed to identify different intensities transformations 
within the study period. 

• Deforestation process differs in intensity within the study period. 
• Old growth forest was converted into more intensive land cover. 
• Native forest shows continuous fragmentation patterns over time. 

 

3.2 Introduction  
 
The high anthropogenic pressure on land utilization widely transformed ecosystem patterns and 

processes across a range of temporal and spatial scales (Ellis et al., 2013; Hietel et al., 2004; Turner, 

1989b; Vitousek, 1997). Therefore, land use/cover is recognized as an important driver of global 

environmental change (Foley et al., 2005; IPCC and Barker, 2007; Lambin and Meyfroidt, 2011; B. 

L. Turner et al., 2007). Land use/cover transformation has serious impacts on biodiversity as well 

as on ecosystem goods and services essential for human well-being (Diaz et al., 2007; Millennium 

Ecosystem Assessment, 2005). Furthermore, the frequency and intensity of these changes influence 

the current status of ecological systems impacting vegetation composition, biodiversity, 

biogeochemical cycles, and soil degradation (Lambin et al., 2003; Osvaldo E. Sala et al., 2000; B. 

L. L. Turner et al., 2007; Vitousek et al., 1997). Understanding landscape change trajectories in a 

higher temporal frequency enable the identification of natural and anthropogenic disturbances 

especially in dynamic systems (Lunetta et al., 2006; Pflugmacher et al., 2012b). As land use/cover 

change is neither uniform nor random remote sensing has become an important and widely used 

technique for managers and researchers, to map and monitor ecosystem modification over time 

(James Hansen et al., 2000; Loveland et al., 2000; Zhu and Woodcock, 2012). In order to map the 

earth's surface, a wide range of satellites is available with different spectral, spatial and temporal 

characteristics (Kennedy et al., 2009; Stow et al., 2004). The Landsat program provides the largest 

temporal record of space-based land observations, with more than 40 years of multispectral imagery 

(Hansen and Loveland, 2012; Ju and Roy, 2008). In 2008, NASA (National Aeronautics and Space 

Administration) and USGS (U.S. Geological Survey) opened the Landsat achieve revolutionizing 

the use of remote sensing data (Wulder et al., 2012), offering a huge potential to monitor landscape 

dynamics by continuous time series analysis (Griffiths et al., 2013; Huang et al., 2010; Kennedy, 

Yang, & Cohen, 2010; Lambin & Geist, 2006; M. G. Turner et al., 2012, Zhu & Woodcok 2014). 

The spatial resolution (30 meters) of the Landsat sensors together with its sample frequency of 16 

days and the availability of relatively homogeneous measurements over a long period, make it a 

crucial dataset for monitoring dynamic landscapes (Goodwin et al., 2013; Wulder et al., 2008). A 

significant problem for land use/cover change detection is clouds and cloud shadow contamination, 

in particular in areas with high climatic variability. In these areas, the multi-temporal analysis offers 
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several advantages, including improvement of spectral variations (i.e., from topology and 

phenology) and allows quality enhancement of cloud- obscured images (Canty and Nielsen, 2008; 

Ju et al., 2012; J. G. Masek et al., 2006). However, the huge amount of information available through 

time series brings also methodological challenges in image processing and change detection 

(Rodriguez-Galiano et al., 2012). Non-parametric machine learning methods such as random forests 

(Breiman, 2001) provide a robust alternative to traditional image classification methods (Gislason 

et al., 2006; Pal, 2005; Waske and Braun, 2009). Integration of machine-learning classifier offers 

considerable advantages for land cover analysis, especially in dynamic systems with high cloud 

covers, low amount of cloud-free scenes as the south of Chile. Southern Chile is a biological hotspot 

– it is of particular importance to conserve and protect the Valdivian temperate rain forest with its 

high levels of endemism (90% at species level and 34% at the genus level for woody species) and 

endangered species (J. J. Armesto et al., 1998; Arroyo et al., 1996). The region also has been 

characterized by WWF and the World Bank (Myers et al., 2000; Olson et al., 2001) as one of the 

most threatened eco-regions in the world. Despite its high biological importance, the area has 

undergone a strong land use/cover transformation similar to most regions in Chile (J. J. Armesto et 

al., 1998; Echeverria et al., 2006a; Lara et al., 2011, 2009; Rozzi et al., 1994). In Chile - as in entire 

South America - the colonization period sets the starting point of strong natural resource utilization. 

Agricultural conversion and the commercial logging of valuable native species were the main 

processes that shaped the large native ecosystem conversion from mid-1800 (Armesto et al., 2010). 

This land transformation resulted in one of the most rapid deforestation events in Latin America and 

led to severe soil erosion especially on the coastal mountain range where 59% of the surface eroded 

(Armesto et al., 2010; Otero, 2006; Salazar et al., 2015; Siebert, 2003). In an attempt to control the 

intense erosion processes, exotic forest plantations were introduced in the second half of the 20th 

century. However, it took until the 1970s until the forestry industry rapidly expanded, focusing on 

commercial plantations of Pinus radiata, Eucalyptus globulus, and Eucalyptus nitens. Trade 

reforms implemented in Chile in the 1970s created large economic incentives for exotic forest 

plantations. Governmental economic subsidies, i.e., Law Decree 701 (DL 701), which reimbursed 

75% of the afforestation expenses to the landowners after certifying an adequate rate of survival, 

resulted in a substitution of native ecosystems due to the economic benefits (Niklitschek, 2007). 

The increase of planted areas caused a dynamic land use/cover transformation that has been 

recognized as one of the most important drivers of deforestation in the Central-South of Chile (Díaz 

et al., 2011; Echeverria et al., 2008, 2006b; Lara et al., 2011; Nahuelhual et al., 2012). This 

transformation also led to a change in the composition and configuration of native forest ecosystems 

(Echeverría et al., 2007; Little et al., 2009; Nahuelhual et al., 2012). Even though existing studies 

created an important base of knowledge with respect to the human utilization of natural resources, 

they are restricted by their limited temporal resolution with only two or three snapshots over time 

(Altamirano et al., 2013; Echeverria et al., 2008, 2006b; Miranda et al., 2015; Schulz et al., 2010; 
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Zamorano-Elgueta et al., 2015). This discrete information does not allow us to identify whether the 

transformation is continuous or specific, and its magnitude over time. An analysis that integrates 

data sets of high spatial-temporal density - which could improve the understanding of the historic 

impact and its influence on the current state of the ecosystem in this region has been missing so far.  

Our study aims at closing this gap by investigating land cover dynamics at a high temporal scale to 

better understand the historic transformation of the ecosystem over time. Our objectives are: 

• to reveal patterns of land cover change processes at a high temporal scale based on all 

suitable Landsat scenes available for the study area in the south of Chile from 1985 to 2011, 

with a special focus on forest cover changes.  

• to analyze the changes in land cover composition and land cover configuration across a 

geomorphological gradient (from the Coastal mountain range, over the Central Valley to 

the Andes mountain range) in southern Chile.  

 

3.3 Material and Methods 
 
3.3.1 Study area 
The study area is located in Southern Chile, Northern Chilean Patagonia (73°20’ W-39°25’ S - 

71°59’ W-41° 14’ S) covering 16,625.7 km² (c.f. Figure 3.1). Administratively it belongs mainly to 

the Los Rios region - the remaining part belongs to the North of Los Lagos administrative region. 

The climate is temperate oceanic with a Mediterranean influence, showing an annual mean 

temperature of 11.9⁰C. Annual rainfall is about 2,500mm, with the highest values in the winter 

season (June-September) (CIREN, 1994; di Castri & Hajek, 1976 ). Altitude ranges from sea level 

to 2,422 m in the study area. The most important morphological units from west to east are the 

Coastal mountain range (up to 900 m), the Central Valley (up to 250 m) and the Andes mountain 

range (up to 2,422m). Vegetation is characterized by Valdivian temperate rainforest, a temperate 

broadleaf and mixed forest that is subdivided into four vegetation zones: deciduous forests, 

Valdivian laurel-leaved forests, Northern Patagonian and Evergreen forests (Gajardo, 1994; Veblen 

et al., 1983). 

The area is home to circa 381.720 inhabitants, which represent 2.2% of the population of Chile (INE 

Instituto Nacional de Estadística, 2012). From these inhabitants 68.3% are urban, and 31.3% rural 

residents; 17% describe themselves as Mapuches, a group of Chilean indigenous inhabitants. The 

Los Rios region was established in 2007 as a new administrative region. This resulted in an increase 

in the urban population, partly caused by internal migration from rural areas. The most important 

economic activities in the region are related to the forest industry and the agricultural sector. The 

forest sector mainly focuses on exotic plantations (e.g., pulp, shipyard, and paper industry) as well 

as on wood processing factories triggered by the high global demand for wood and paper products. 

These products are targeted to external markets, indicating a spatial decoupling or land 
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teleconnection (Friis et al., 2015), of land use/cover change processes due to global market trends. 

Agricultural activities are focused on livestock and crop and berries production. 

 

 
Figure 3.1 Study area location within Southern Chile and South America. Topography shows the 
three major morphological units: Coastal mountain range, Central Valley and the Andes mountain 
range (from West to East). Lakes are shown in black.  

 
3.3.2 Data 
3.3.2.1 Remote sensing data 
We used all available Landsat images (path 233/row 088) that fulfilled our quality criteria for the 

analysis. We aimed for scenes during the growing season (September-February) with less than 20% 

cloud cover (cf.  Table 3.1). This constraint was an important limitation due to the low amount of 

cloud-free scenes per year – the non-availability of cloud-free Landsat scenes during the growing 

season led to a data gap between 1986 and 1998. We downloaded the data from the USGS at an 

L1T processing level, which includes radiometric correction, systematic geometric correction, 

precision correction using ground control points, and parallax correction due to local topographic 

relief. 
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Table 3.1 Landsat scenes together with training and validation data used for the analysis. 

Date Season Sensor Cloud 
Cover (%) 

Train/validate 
data 

1/25/1985 Summer L4-5 TM 0 Orthophoto 
9/25/1986 Spring L4-5 TM 0 Orthophoto 
2/14/1998 Summer L4-5 TM 12 Aerial photography 

11/16/1999 Spring L4-5 TM 0 Aerial photography 
10/25/2000 Spring L7 ETM+ on 4 Field data 
11/29/2001 Spring L7 ETM+ on 0 Field data 
10/10/2003 Spring L4-5 TM 0 Field data 
2/15/2004 Summer L4-5 TM 8 Field data 
2/1/2005 Summer L4-5 TM 0 Field data 

11/19/2006 Spring L4-5 TM 3 Field data 
12/10/2008 Spring L4-5 TM 8 Aerial photography 
2/28/2009 Summer L4-5 TM 18         Aerial photography 
1/14/2010 Summer L4-5 TM 6 Field data 
1/1/2011 Summer L4-5 TM 10 Field data 

 

3.3.2.2 Land cover reference data 
Land cover image classification and posterior accuracy assessment were based on a total of 800 

training and 260-validation ground points independently selected and randomly distributed in each 

scene. Ground points for 2010-2011 were collected during the growing season. Ground points for 

older dataset were based on the following data: i) land cover information from the national inventory 

of native resources (Catastro Nacional) together with thematic maps derived from the interpretation 

of aerial photography from 1994-1996 (CONAF-CONAMA-BIRF, 1999) and its update (2007; 

2013); ii) a set of panchromatic orthophotographs, (1:20.000, IGM) from the year 1985-1994, 

provided by the Laboratory of Geomatics, Universidad Austral de Chile; iii) complemented with 

field data provided by the Laboratory of Geomatics, Universidad Austral de Chile collected in the 

same study area (2000 to 2006). Based on this information we created homogenous land cover 

polygons to train and validate each image during the classification process. 

We based our analysis on nine land cover classes, representing the dominant land cover and land 

cover categories present in the study area (cf. Table 3.2) 
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Table 3.2 Description of land cover categories defined in the study area. 

Category Description 
Urban Urban and industrial areas, roads and other anthropogenic surfaces 
Grassland/Arable land Natural and artificial annual pastures, agricultural areas with different crops 

such as wheat or oats. 
Shrubland Areas with vegetation dominated by shrub species with < 10% tree cover, the 

result of natural succession or native forest logging. 
Secondary forest Areas with secondary growth native forest result of natural succession or 

native forest logging. 

Old-growth forest Areas with pristine or almost intact mature native forest 

Forest exotic plantation Areas planted with exotic forest species mainly Pinus radiata and Eucalyptus 
sp. 

Bare land Areas temporally or permanently without vegetation 

Water Water bodies such as river, lakes, ponds 

No information Areas without land cover information due to clouds and shadows, masked by 

Fmask. 

 

3.3.3 Data preprocessing and analysis 
3.3.3.1 Image preprocessing 
The preprocessing chain consists of two steps. First, we performed an atmospheric correction using 

the radiative transfer based Landsat Ecosystem Disturbance Adaptive Processing System tool 

(LEDAPS) (Kaufman et al., 1997; J. G. Masek et al., 2006). LEDAPS uses information on the sea 

level atmospheric pressure, water vapor characterization, ozone level and aerosol optical thickness 

(AOT). Sea level atmospheric pressure and water vapor characterization were taken from the 

National Center for Environmental Prediction (NCEP) and the National Center for Atmospheric 

Research (NCAR). Information on ozone came from the NASA Earth Probe Total Ozone Mapping 

Spectrometer (EP TOMS). A static global 0.05° digital elevation model was used by LEDAPS to 

adjust the atmospheric pressure from sea level to surface level (Ju et al., 2012). The estimation of 

aerosol optical thickness (AOT) was based on the dense dark vegetation (DDV) approach and 

assuming a fixed “continental” aerosol model.  

In the second step, we produced a suitable cloud, cloud shadow and snow mask using Fmask to 

avoid or to reduce the brightening effect of clouds and their shadows. This two-step masking 

algorithm has been shown to improve the level of accuracy by avoiding misclassification in the time 

series (Zhu and Woodcock, 2012). 

 

3.3.3.2 Land cover classification 
We performed a supervised image classification using random forest machine learning approach 

(Breiman, 2001). The algorithm was trained based on the land cover reference data (previously 

described) to discriminate between different land cover classes. The analysis was carried out using 

R (R Development Core Team, 2013) and the randomForest package (Liaw and Wiener, 2002). 

Random forest classifier has been applied successfully in a number of remote sensing studies 
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(Doktor et al., 2014; Gislason et al., 2006; Pal, 2005; Waske and Braun, 2009), where it showed 

that the approach is superior to the widely used maximum likelihood approach. The algorithm builds 

on classification and regression trees but overcomes their sensitivity towards noise in the data 

instead of relying on a single decision tree, using the majority vote of a forest of decision trees fit 

to bootstrap samples from the original data. While individual decision trees suffer from a high 

variance of estimates, the averaging across the bootstrap sample leads to a significant variance 

reduction (Hastie et al., 2009; James et al., 2013). In addition to bagging approaches, random forests 

decorrelate the trees by using only a random sample of the variables (i.e., spectral bands) for each 

split. We trained the random forest classifier algorithm and selected 500 decision trees with two 

variables for each split.  

To improve classification and avoid implausible land cover change events, we include constraints 

to land cover transformations. These constraints were based on the ecological characteristics of 

native and exotic species and ecosystems dominant in the study area (i.e., growth rates). Posteriori 

to the classification process, we validated the accuracy of the classification of each Landsat-derived 

map individually with an independent set of 260 control polygons. We derived confusion matrixes 

and calculated indicators such as the producer’s and user’s accuracy as well as the overall accuracy 

to evaluate the classification performance (Foody, 2002; Pontius et al., 2011, 2004) (cf. Table 3.3). 

 

3.3.3.3 Land cover change analysis  
To perform land cover change analysis, we merged land cover information from two consecutive 

years to avoid large areas without information due to clouds and cloud shadows. This resulted in 

seven combined land cover maps for the following years: T1=1985-1986; T2=1998-1999; 

T3=2000-2001; T4=2003-2004; T5=2005-2006; T6=2008-2009; T7=2010-2011. To analyze the 

land cover information, we calculated the extent, net change, gain and losses of each land cover 

class between consecutive periods over time. We generated cross-tabulation matrixes using IDRISI 

SELVA (Eastman, 2012) to derive and analyze the different land cover trajectories. The frequency 

of land cover change was identified by combining binary maps of change/no change events between 

the seven combined land cover maps.  

We estimated the annual deforestation for the native forest (old-growth forest and secondary forest) 

with the compound-interest-rate formula proposed by Puyravaud (2003): 

 

)/100()/(ln 1212 ttAAr −×= ;  

 

where 1A  and 2A  are the areas of native forest at the beginning (t1) and the end of each period (t2). 

r  is percentage per year. 
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3.3.3.4 Landscape pattern analysis 
 In addition to land cover composition, we also identified changes in land cover configuration for 

native forests and exotic forest plantations. We calculated five landscape pattern indices for 

secondary forest, old-growth forest and exotic forest plantation, separately. These indices provide 

crucial information to characterize and monitor the spatial configuration of natural and cultural 

landscapes (i.e., regrowth due to natural succession, clear-cut logging, afforestation, reforestation) 

(Gergel and Turner, 2002; Jiang et al., 2014; Mcgarigal, 2014; Walz, 2015). We quantified the 

following indices using FRAGSTATS v4 (Mcgarigal, 2014): 

 

• mean patch size (MPS), the average size of a patch of a land cover class. An increase in 

mean patch sizes typically indicates a reduced fragmentation. 

• largest patch index (LPI), the percentage of the total landscape area covered by the largest 

patch of a land cover class. Higher values indicate typically less fragmentation.  

• total edge length (TE) [km] for each class as an indicator of patch shape– the larger the 

total edge length, the higher the complexity of the shape of the patch. Increasing edge 

length indicates a loss of core area and typically an increase in fragmentation. 

• mean proximity index (MPI), a measure of the degree of patch isolation and class 

fragmentation; it measures for each patch the size of and the distance to all neighboring 

patches of the same class. A patch with lots of other large patches in close proximity will 

have a large index value (Gustafson and Parker, 1992). 

• total core area (TCA), which is calculated as the sum of the core area of all patches of a 

land cover class. A decrease in the total core area indicates a reduction of high-quality 

interior habitat area. We calculated the total core area with a 500m buffer. 

 

3.4 Results 
 
3.4.1 Land cover classification  
The land cover classification overall accuracy ranged from 91.4 to 96.4% (cf. Table 3.3), with the 

lowest values in 2000-2001 and highest value in 1998-1999, respectively. Regarding the individual 

land cover classes, shrubland shows the lowest producer’s accuracy, with intermediate accuracy 

values in 1998-1999 and 2003-2004. (Cf. Table 3.3 and online appendix). These intermediate 

accuracy values were presumably caused due to the short successional gradient between secondary 

forest and shrubland.  

Old-growth forest was the land cover class with the highest accuracy for each land cover map with 

values from 96% to 99% (producer’s accuracy) and 85% to 98% (user’s accuracy). Exotic forest 
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plantations were also classified with a good performance (producer’s accuracy: 65%-92%) with low 

values only in 1985-1986. 

 
Table 3.3 Performance indicators for each land cover map and land cover category (P: Producer’s accuracy, 
U: User’s accuracy, both in percentage). 
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T1: 1985/86 96 85 98 97 99 76 85 87 66 98 98 65 98 100 97 100 100 

T2: 1998/99 94 97 100 98 99 65 71 84 70 98 96 90 100 100 99 100 100 

T3: 2000/01 91 99 99 99 98 67 83 65 77 99 85 84 100 99 99 100 100 

T4: 2003/04 94 98 99 87 86 65 70 78 70 98 92 92 100 97 98 100 100 

T5: 2005/06 95 99 100 89 98 96 66 84 81 97 93 92 99 99 100 100 100 

T6: 2008/09 95 10

0 

87 97 99 66 74 81 80 99 90 91 100 98 99 100 100 

T7: 2010/11  94 10

0 

97 94 96 70 74 72 74 98 87 87 100 99 99 100 100 

 

3.4.2 Changes in land cover composition over time 
The magnitudes and trajectories of change for the different land cover classes changed over time – 

a finding that would not have been revealed at a coarser temporal resolution.  

Old-growth forest decreased continuously, but in different magnitude over the 26 years from 32 (to 

27% 5,310.9 km² to 4,624.4 km²), with a 4.8% net loss and an annual deforestation rate of 0.65% 

for the whole period. Between 1985-1999 results showed the highest deforestation rate with 1.2% 

net loss, followed by a slowdown to 0.8% in 2003-2004 (compared with the previous period). These 

rates were remarkably higher than the average loss over the complete period. 

Exotic forest plantation covered only a small part (0.7%) of the area in 1985 - this changed 

drastically after 1998 (4%) when the area covered by plantations expanded, reaching its maximal 

extension of 6% (1036.7 km²) in 2005-2006. This land cover class also showed the highest net 

change increase for a single class of 706% in 26 years, more concentrated in 1985-2004 (with a 

maximum of 80% and 15.2% minimum).  

Secondary forest increased over time from 7.5% in 1985-1986 to 13% in 2010-2011 (1,477 km² to 

2,603 km²) with an average net loss of 2.1% per year, reaching the highest net change in 1999-2001 

(3.9%). Shrubland areas showed mixed trends over time, with a net loss of 0.8% for the total period. 

As mentioned above, the similarity within shrubland and secondary forest might have led to 

confusion between the two classes for single periods. Since we enforced transformation rules that 

prevent unrealistic changes between shrubland and secondary forest the uncertainty of the changes 

can be considered lower than indicated by the accuracy values. For the whole period, we can assume 

that the change rates are not affected strongly. 
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Grassland/arable land and old-growth forest were the predominant land cover classes during the 

entire analysis period covering around 25% and 30% of the total study area respectively, but with 

important differences among them. Grasslands/arable land moderately decreased over the whole 

period from 4,782.7 km² to 4,348.2 km² (28% to 26% of the total area) with an intermediate increase 

in 2005-2006. The main decrease in grassland/arable land occurred within 2001-2004 and 2006-

2009 (Figure 3.2 to Figure 3.3). 

 

 

Figure 3.2 Change in land cover composition (T1:1985-1986; T2:1998-1999; T3:2000-2001; T4:2003-2004; 
T5:2005-2006; T6:2008-2009; T7:2010-2011). 

 
The categories without vegetation such as urban, bare land and water covered about 15% of the 

study area. Urban areas showed a small increase over time from 1.03% to 1.3%, with an overall net 

change of 0.3%. The area without vegetation cover showed oscillations, mainly driven by human-

related modifications as clear-cut and the regrowth of exotic forest plantations. 

Urba
n

Gras
sla

nd
/ar

ab
le 

lan
d

Shru
bla

nd

Sec
on

da
ry 

for
es

t

Old-
gro

wth 
for

es
t

Exo
tic

 fo
res

t p
lan

tat
ion

Bare
 la

nd
W

ate
r

A
re

a 
[s

qk
m

]

0

1000

2000

3000

4000

5000

6000

T1 
T2 
T3 
T4 
T5 
T6 
T7 



Expanding temporal resolution in landscape transformations 

27 
 

 

Figure 3.3 Net changes (gain minus losses) for each land cover class over time (T1:1985-1986; T2:1998-
1999; T3:2000-2001; T4:2003-2004; T5:2005-2006; T6:2008-2009; T7:2010-2011). 

 

 
Figure 3.4 Overview of landcover change. Land cover maps for the initial and last period together with a 
detailed example of land cover transformation over time in the Coastal mountain range. 

 

The areas strongest affected by human activities were located in the Central Valley, the coastal areas 

and close to water bodies (Figure 3.4) – all areas easily accessible using transport. The Andes 

Mountains, which are more difficult to access, show fewer changes than the other geographic areas 

over time. Within the study period (1985-2011), our results reveal that land cover in most areas 

changed one or twice (14.1% and 13.6% of the total study area), areas with three land cover changes 
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were less frequent (8.9%) while areas with more than 4 land cover changes were rare (Figure 3.5). 

The areas with no change (56.1%) correspond mainly to old-growth forest in the coastal and the 

Andes mountain range. 

 

 

Figure 3.5 Spatial distribution and persistence of land cover changes over the whole study periods (1985-
2011). The different colors indicate how often the lands cover pixels changed over time (i.e., one, two, three 
or more times) while the grey areas indicate the areas that remained without change. 

 

3.4.3 Land cover transitions 
Secondary forest and exotic forest plantation were the categories with the highest net gain within 

periods and for the whole study period - 93,164 ha and 90,676 ha respectively. The largest old-

growth forest loss occurred during 1985-1999 with 38,148 ha when the area was converted mainly 

to shrubland, exotic forest plantation; secondary forest and grassland/arable land (Figure 3.6e). 

Grassland/arable land loss and gained areas mainly to and from two land cover classes, bare land, 

and shrubland (Figure 3.6a). However, in 1985-1986 grassland/arable land was also converted into 

exotic forest plantations (0.7%). Shrubland gained area from grassland/arable, bare land and old-

growth forest and lost area to secondary forest, exotic forest plantation and grassland/arable land 

(Figure 3.6b).   

Between 1985 and 1999, secondary forest gained area mainly from shrubland with the highest 

conversion rate (3.6%). The area that secondary forest continuously gained from old-growth forest 

(1985 – 2006) might be attributed to a degradation process. Secondary forest was converted 

especially to exotic forest plantation (1985 to 2009) and to bare land (1985-1999; 2004-2009). 
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Transition patterns of old-growth forest changed distinctively across time: between 1985 and 1999: 

the transformation to shrubland (1.3%), exotic forest plantations (0.2%) and bare land (0.3%) was 

the dominant process during this period. The conversion to secondary forest gained more 

importance between 1998 and 2009 (Figure 3.6e).  

The transformation rate for exotic forest plantations changed during the study period. Between 1985 

and 1999, exotic forest plantations revealed the largest conversion from all vegetation related land 

cover classes: secondary forest (0.9%), shrubland (0.8%), grassland/arable land (0.7%), bare land 

(0.3%), and old-growth forest (0.2%). The only losses from exotic forest plantations were 

conversions to bare land (2008 to 2011) that might be a result of the clear-cutting harvesting process; 

a common practice in the forest industry. 

 

                   

Figure 3.6 Transition between land cover in the different period (percentage of the study area) (T1:1985-
1986; T2:1998-1999; T3:2000-2001; T4:2003-2004; T5:2005-2006; T6:2008-2009; T7:2010-2011). 
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3.4.4 Changes of landscape indices over time 
Land cover configuration differed significantly among the three-different forest/plantation land 

cover classes (Figure 3.7). The high values of old-growth forest for the total core area, largest patch 

index, mean proximity index and mean patch size, were caused by larger, more connected and 

compact patches, which remained in more remote areas with low or difficult access (Figure 3.7). 

Old-growth forest showed a strong decrease in the mean patch size index and total core area between 

1985 and 1999 with a relative change of -22.2% and -9.34%, respectively. The total core area and 

the mean proximity index decreased to a lower degree during the next periods while the total edge 

length increased slightly. After 1999, landscape indices for old-growth forest remained almost 

constant, with the exception of total edge length that slightly decreased. This indicates that the 

largest patches of old-growth forest were fragmented at the edges especially between 1985 and 

1999. Afterward, the largest patches seem to have stayed relatively intact while fragmentation at the 

edges of smaller forest patches leads to a continuous loss of core area, a key element to preserve 

ecological processes and species (Echeverria et al., 2006a).   

In comparison to old growth forest, the secondary forest was characterized by much smaller and 

more disconnected patches which were mainly allocated in the Coastal and Central Valley (Figure 

3.5), in more intensive production areas (where primary forest was substituted during the 

colonization time, due agricultural production). The mean patch size changed markedly, first 

decreasing and afterward increasing with a relative change of -31.5% and 42.7%. The same pattern 

is identifiable in the total core area indicator with a relative change of -12.5% and 75.2%. Total edge 

length of secondary forest increased strongly from 1985 to 2001 and remained relatively constant 

afterward. The largest patch index and the mean proximity index barely changed over time, with a 

small decrease until 1999. This indicates that secondary forest patches were combined, forming 

larger patches that led to an increase in the core area. Still, compared to old growth-forest patches 

are smaller and much stronger isolated. Partly this higher fragmentation of secondary forest might 

be attributed to the fuzzy class boundary towards regrowing shrubland.   
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Figure 3.7 Landscape indices change over time for old-growth forest, secondary forest, and exotic 
plantations. Total core area, total edge, largest patch index and mean proximity index graphs include a scale 
break to show the three-land cover categories over time. 

 
In contrast to old–growth forest and secondary forest exotic forest plantations mean patch size 

increased strongly (relative change of 199.4 %) with a slight decrease in 2006 (relative change of -

3.3 %). Total core areas, total edge length and the large patch index increased over time. From 1985 

to 2006, the mean proximity index increased twofold followed by a continuous decrease afterward. 
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These indices revealed that exotic forest plantations increased their dominance in the landscape, 

with larger, more connected and compact patches indicating large homogeneous areas used as 

plantations.  

 

3.5 Discussion 
 
Identification and reporting errors during the land cover classification are the base for a reliable 

landscape pattern analysis (Foody, 2010; Kennedy et al., 2009; Shao & Wu, 2008). Our overall 

accuracy values showed high reliability of classifications in each land cover map, with slight 

variations ranging from 91.4% (2000-2001) to 96.5% (1998-1999). Such variations in accuracy can 

be attributed to seasonal differences and characteristics of the input data especially cloud cover. 

While only summer scenes were available for 2000-2001, a summer and a spring scene had been 

used in 1998-1999. In addition, we faced methodological difficulties such as high cloud cover and 

low-quality images. An option for (future) improvement might be the fusion of data from different 

sensors. Multi-sensor techniques, including, i.e., additional MODIS data (launched 1999) and aerial 

photography (especially important to extent temporal resolution before satellite era) are interesting 

options to increase the amount of information to enable the use of multi-seasonal data. (Hilker et 

al., 2009; Senf et al., 2015; Walker et al., 2006; Xin et al., 2013). The accuracy of the classification 

of some land use classes were intermediate, especially between shrubland and secondary forest. 

However, it should be kept in mind that the ecological difference between shrubland misclassified 

as secondary forest and secondary forest is presumably not too strong since the misclassified 

shrubland presumably was already in a transition state towards to open secondary forest. Therefore, 

assessed ecological impacts of land use change in the region should still be reliable after taking this 

shortcoming into account. 

Based on the high temporal land cover information, we identified a highly dynamic system. The 

area is under a continuous transformation process between land cover categories over the six 

temporal periods, as well as dominated by an irregular but intense deforestation. The identification 

of the magnitudes of land cover change trajectories has been recognized as a key element to establish 

sound management and conservation strategies, which especially applies in threatened and 

conservation priority areas (Andrew et al., 2015; Vogelmann et al., 2012). Such trends are 

particularly relevant considering the large magnitude of the deforestation process, especially from 

1985 to 1999.   

Recent studies also recognized the significant dynamics of these systems, demonstrating the 

relevance of more dense information to address and fully understand the transformation process 

(Altamirano et al., 2013). Zamorano-Elgueta (2015) reported a similar trend with 5.1% net loss of 

native forest and annual net deforestation by 0.2%, for two periods (1985-1999-2011) in the Coastal 

mountain range. Other studies that were carried out in close areas of the Central-South of Chile 
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reported a native forest annual deforestation rate of 4.5% for 1975-1990-2000 and 1.60% for the 

period 1986-1999-2008, both in the Coastal mountain range (Altamirano et al., 2013; Echeverria et 

al., 2006a). Our study helps to understand old-growth forest deforestation trends in the area better. 

We revealed that the deforestation process was not static over time, but a dynamic process over time 

- stronger at the beginning of the study period, followed by a slowdown afterward until 2003 and a 

gradual decrease until 2011. These results stress the importance of quantifying the different 

magnitudes of land cover transformations across time. The higher the temporal resolution, the easier 

it gets to spot such dynamics. A high temporal resolution also enables a deeper analysis of the 

dynamics at a higher temporal resolution and identified areas that were transformed repeatedly. This 

has been the case for the Coastal mountain range and the Central Valley, where the transformation 

process was more intense presumably due to the better accessibility and conditions to establish 

exotic forest plantation (Echeverría et al., 2007; Schlatter and Gerding, 1995).  

Old-growth and secondary forest composition and configuration patterns differed remarkably in 

different periods and over the whole study. Even though it is possible to observe an increase in the 

total area of old growth-forest and secondary forest combined, it is important to emphasize that they 

cannot be treated equally because they support diverse ecological functions and processes (Donoso, 

1993; Donoso and Lara, 1999; Hobbs et al., 2009, 2006). We observed two main patterns regarding 

native forest configuration over time: i) old-growth forest shows a low number of bigger patches, 

more connected and compact than secondary forest. The areas of these patches decreased over time 

and became less compact and connected, with mainly two remaining populations (one in each 

mountain range) which have low or no connection between them. ii) Secondary forest was highly 

fragmented and occurred dominantly in more intensively used areas (Central Valley and Coastal 

range). This low connectivity across the landscape contributes to the isolation of species (plants, 

mammals, amphibians, etc.) with the consequent reduction of gene flow between populations and 

risk for the long-term survival of some species (Andren, 1994; Cushman, 2006; Echeverria et al., 

2008; Nick M. Haddad et al., 2015; Lara et al., 2011; Prugh et al., 2008). It is also important to 

consider that patch size influence the ability to support different ecological functions as, i.e., plant 

species richness is reported to be dependent on the size of the patch and its core area (shade-tolerant 

and shade intolerant species) (Donoso and Lara, 1999; Echeverría et al., 2007; Gutiérrez et al., 

2009). Even though secondary forest can play an important ecological role, small forest fragments 

are more threatened to change their species composition and structure due to alien species invasion 

and loss of species niche (Bustamante and Simonetti, 2005; Pauchard and Alaback, 2004; Torres et 

al., 2015). We were able to identify a large, but disconnected area of secondary forest in between 

the exotic forest plantations, especially in the land strip between the Central Valley and the Coastal 

mountain range. Those areas experienced increases and decreases in almost every period, i.e., buffer 

areas near to the small streams, and between exotic forest plantation stands. These fragmented areas 

are under threat of change to more intense land cover with larger profitable economic activities. 
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This situation also triggers degradation mainly due to exotic forest plantation harvesting process 

and illegal logging. This makes it difficult to predict the likelihood of these fragments to remain as 

native forest. 

We observed an increase of exotic forest plantations over time that has also been reported in Central 

and Central South Chile (Altamirano et al., 2013; Echeverria et al., 2006a; Nahuelhual et al., 2012; 

Zamorano-Elgueta et al., 2015). This increase is not constant in time and takes place mainly between 

1985-1999 and 2000-2004. The subsidy for exotic forest plantations (DL 701) together with the 

market-oriented strategy adopted by the government triggered the substitution of extensive areas of 

secondary forest and degraded old-growth forest. Native forest substitution was exacerbated mainly 

because subsidies did not differentiate between exotic forest plantation established on abandoned 

farmland/degraded forest and the ones on old-growth forest areas (Armesto et al., 2010; Lara and 

Veblen, 1993; Niklitschek, 2007). The increase of exotic forest plantations in Central and Central-

Southern Chile has been linked to changes in hydrological regimes, deforestation, native forest 

fragmentation, biodiversity loss, soil erosion, decrease in nitrogen and phosphorus retention, and 

poverty of the adjacent communities (Brockerhoff et al., 2008; Bustamante and Simonetti, 2005; 

Lara et al., 2009; Little et al., 2009; Nahuelhual et al., 2012; Oyarzun et al., 2007). All these potential 

transformations affect the way in which the environment supports human existence and wellbeing 

(Millennium Ecosystem Assessment, 2005). In addition, considering the large economic importance 

of exotic forest plantations in the country, it is becoming crucial to find a balance between the supply 

of different ecosystem services. Innovative, improved land use planning is necessary to integrate 

socioeconomic activities and ecosystem conservation. Future research should focus on integrated 

ecosystem services assessments in order to provide knowledge that allows policy makers to 

optimize the utilization and protection of natural resources (Seppelt et al., 2013). 

The high temporal resolution also enabled us to observe one of the most important land cover 

transformation in the period 1985/1986-1998/1999: during that period, a large transition from old-

growth forest to shrubland - clustered in the coastal mountain range - took place. These areas were 

converted to shrubland, fragmented forest or exotic forest plantations (Figure 3.4). The degraded 

areas were more likely to change further, either by natural succession (abandonment of agricultural 

areas) or by reforestation with fast-growing tree species (Pinus radiata, eucalyptus sp.) (Figure 3.6f). 

Shrubland was one of the land cover categories that changed frequently, mainly because of its 

nonproductive importance, being either replaced by more intensive land cover classes or being given 

the opportunity to regrow triggered by the abandonment of farmlands (Figure 3.6e) (Carmona et al., 

2010; Díaz et al., 2011; Izquierdo and Grau, 2009; Schulz et al., 2010). After 2008, shrubland gained 

area again, mainly from grassland/arable land. This transformation allowed us to recognize a 

possible pattern of land cover change associated with agricultural land abandonment, taking into 

account that the old forest cover area remains almost constant during the same period. The land 

cover dynamics detected in our study area support the idea that the area is in an initial state of forest 
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transition (the shift from net deforestation to net reforestation). The continuous land cover 

information from our study provides evidence for this process during the last two study periods. 

Before that, the old-growth forest deforestation rate remained stable over time. This statement is 

based only on the development of old-growth forest and shrubland. We did not include exotic forest 

plantation in the assessment of a transition from net deforestation to reforestation as other studies 

do (Meyfroidt et al., 2010) because they are industrializing and intensely managed and do not 

provide the same ecological benefits as native forest ecosystems. Secondary forests were also not 

considered due to the highly fragmented distribution shown in our results. More research is needed 

to identify the ecological viability of these areas. 

The decision to split different successional states (shrubland - secondary forest - old-growth forest) 

into separate land cover categories is a methodological challenge and adds an additional degree of 

uncertainty to the classification. But from our perspective the high - and in a few cases - moderate 

to high accuracies indicate a high-quality representation of the medium scale landscape patterns. An 

integration of the successional stages in a common forestry class potentially leads to a 

misinterpretation of pattern and process that took place in the area.  

 

3.6 Conclusions 
 
Our analysis shows the advantages to integrate multi-annual trajectories with automatized remote 

sensing techniques, contributing to the identification of historic transformations that led to a better 

understanding of current landscape configuration and composition. This high temporal resolution 

allowed us to identify strong relations between the different processes that occurred in the landscape 

(clear-cutting, regrowth, afforestation, reforestation, deforestation), confirming the dynamic 

transformation due to pressure convert them into more intensive land cover. Even though some 

landscape processes as deforestation are normally monitored with 5-10-year frequency, we want to 

highlight the potential to increase the temporal resolution of the landscape studies, especially in 

highly dynamic areas. These detailed trajectories provide crucial information that would otherwise 

be lost such as the peaks of conversion from native forest to exotic forest plantations. Our outcomes 

suggest important progress to conservation and landscape planning, considering the dense amount 

of Landsat information available and the opportunity to automatize change detection. 

Differentiation between successional states (shrubland - secondary forest - old-growth forest) 

provided important information needed to identify spatial land cover dynamics. An aggregated 

analysis would fail to achieve important information from the perspective of ecosystem service 

provisioning and biodiversity. Spatial planning in the region needs to consider that remaining 

secondary forest patches play an important role in landscape connectivity, especially between the 

two largest remaining areas of old-growth forest in the Andes but also as step stones in areas 

dominated by exotic forest plantations. The integration of landscape research into local planning 
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processes adds base knowledge to balance economic, social and environmental dimensions in the 

area. Future research should aim at assessing the value of different landscape parts for ecosystem 

service provisioning and will potentially help to prioritize forest areas for conservation under 

consideration of trade-offs with goods and services provided by exotic forest plantations. 
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3.8 Supplementary Material 
 
3 S Table 1 Confusion matrix for all periods 

 

 

User's Commision
Urban Grassland Shrubland Secondary forest Old growth forest Forest plantation Bare soil Water accuracy  (%) error (%)

T1
Urban 642600 8100 0 0 0 0 0 0 98.8 1.2
Grassland 4500 5121900 18900 35100 0 0 0 0 98.9 1.1
Shrubland 0 65700 716400 64800 0 900 0 0 84.5 15.5
Secondary forest 0 0 202500 1062900 429100 6300 0 0 62.5 37.5
Old growth forest 0 0 0 55800 16985700 258900 0 0 98.2 1.8
Forest plantation 0 0 0 8100 0 498600 0 0 98.4 1.6
Bare soil 108000 60300 0 0 0 0 5056200 0 96.8 3.2
Water 0 0 0 0 0 0 24280 100.0 0.0
Total 755100 5256000 937800 1226700 17414800 764700 5056200 24280

Producer's accuracy (%) 85.1 97.4 76.4 86.6 97.5 65.2 100.0 100.0
Omission error (%) 14.9 2.6 23.6 13.4 2.5 34.8 0.0 0.0
Overall accuraccy (%) 95.8

T2 Urban Grassland Shrubland Secondary forest Primary forest Forest plantation Bare soil Water
Urban 686700 0 0 0 0 0 0 0 100.0 0.0
Grassland 0 2881800 0 31500 0 0 0 0 98.9 1.1
Shrubland 0 3960 293400 104600 12000 0 0 0 70.9 29.1
Secondary forest 0 68400 148700 1371600 362700 12600 0 0 69.8 30.2
Old growth forest 0 0 8100 117900 19648800 657000 0 0 96.2 3.8
Forest plantation 0 0 0 0 0 5786100 0 0 100.0 0.0
Bare soil 21600 900 0 0 0 0 10964700 0 99.8 0.2
Water 0 0 0 0 0 0 0 20189 100.0 0.0
Total 708300 2955060 450200 1625600 20023500 6455700 10964700 20189
Producer's accuracy (%) 97.0 97.5 65.2 84.4 98.1 89.6 100.0 100.0
Omission error (%) 3.0 2.5 34.8 15.6 1.9 10.4 0.0 0.0
Overall accuraccy (%) 96.4

T3 Urban Grassland Shrubland Secondary forest Primary forest Forest plantation Bare soil Water
Urban 696600 0 0 0 0 0 6300 0 99.1 0.9
Grassland 0 3174300 2700 29700 0 0 19800 0 98.4 1.6
Shrubland 0 0 811800 72000 0 1800 93600 0 82.9 17.1
Secondary forest 0 0 279000 995400 12600 900 0 0 77.3 22.7
Old growth forest 0 0 126900 445900 11034000 1367100 0 0 85.0 15.0
Forest plantation 0 0 0 0 0 7105500 0 0 100.0 0.0
Bare soil 6300 28800 0 0 0 0 11098800 0 99.7 0.3
Water 0 0 0 0 0 0 0 243519 100.0 0.0
Total 702900 3203100 1220400 1543000 11046600 8475300 11218500 243519
Producer's accuracy (%) 99.1 99.1 66.5 64.5 99.9 83.8 98.9 100.0
Omission error (%) 0.9 0.9 33.5 35.5 0.1 16.2 1.1 0.0
Overall accuraccy (%) 91.4

T4 Urban Grassland Shrubland Secondary forest Primary forest Forest plantation Bare soil Water
Urban 726300 0 0 0 0 900 0 99.9 0.1
Grassland 2700 2836800 35100 21600 0 0 398700 0 86.1 13.9
Shrubland 0 118800 603900 97200 9900 0 33300 0 70.0 30.0
Secondary forest 0 55800 269100 1215900 182700 10530 0 0 70.1 29.9
Old growth forest 0 0 21600 219600 8809200 558000 0 0 91.7 8.3
Forest plantation 0 0 0 0 0 6786900 0 0 100.0 0.0
Bare soil 11700 259200 0 0 8100 15557400 0 98.2 1.8
Water 0 0 0 0 0 0 243289 100.0 0.0
Total 740700 3270600 929700 1554300 9001800 7363530 15990300 243289
Producer's accuracy (%) 98.1 86.7 65.0 78.2 97.9 92.2 97.3 100.0
Omission error (%) 1.9 13.3 35.0 21.8 2.1 7.8 2.7 0.0
Overall accuraccy (%) 94.0

Classified data Reference data
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User's Commision
Urban Grassland Shrubland Secondary forest Old growth forest Forest plantation Bare soil Water accuracy  (%) error (%)

T5 Urban Grassland Schrubland Secondary forest Primary forest Forest plantation Bare soil Water
Urban 847800 0 0 0 0 0 0 0 100.0 0.0
Grassland 1800 1918800 1800 6300 0 900 20700 0 98.4 1.6
Shrubland 0 229500 743400 112500 101700 8100 0 0 62.2 37.8
Secondary forest 0 0 25200 1246500 173700 90900 0 0 81.1 18.9
Old growth forest 0 0 8100 108000 8558100 636300 0 0 91.9 8.1
Forest plantation 0 0 0 4500 900 7862400 0 0 99.9 0.1
Bare soil 3600 0 0 0 0 0 9453600 0 100.0 0.0
Water 0 0 0 0 0 0 0 218673 100.0 0.0
Total 853200 2148300 778500 1477800 8834400 8598600 9474300 218673
Producer's accuracy (%) 99.4 89.3 95.5 84.3 96.9 91.4 99.8 100.0
Omission error (%) 0.6 10.7 4.5 15.7 3.1 8.6 0.2 0.0
Overall accuraccy (%) 95.3

T6 Urban Grassland Shrubland Secondary forest Primary forest Forest plantation Bare soil Water
Urban 739800 0 0 0 0 111600 0 86.9 13.1
Grassland 0 2979900 11700 4500 0 0 2700 0 99.4 0.6
Shrubland 0 12600 500400 148500 5400 8100 0 0 74.1 25.9
Secondary forest 0 36000 234000 1161000 7200 9000 0 0 80.2 19.8
Old growth forest 0 44100 7200 123300 8440200 811800 0 0 89.5 10.5
Forest plantation 0 0 0 900 0 8728200 0 0 100.0 0.0
Bare soil 0 5400 0 0 0 7418700 0 99.9 0.1
Water 0 0 0 0 0 0 230944 100.0 0.0
Total 739800 3078000 753300 1438200 8452800 9557100 7533000 230944
Producer's accuracy (%) 100.0 96.8 66.4 80.7 99.9 91.3 98.5 100.0
Omission error (%) 0.0 3.2 33.6 19.3 0.1 8.7 1.5 0.0
Overall accuraccy (%) 95.0

T7 Urban Grassland Shrubland Secondary forest Primary forest Forest plantation Bare soil Water
Urban 770400 0 0 0 0 25200 0 96.8 3.2
Grassland 0 3077100 14400 99000 0 0 0 0 96.4 3.6
Shrubland 0 54900 583200 144900 2700 0 0 0 74.2 25.8
Secondary forest 0 6300 181800 1188900 211500 18900 0 0 74.0 26.0
Old growth forest 0 0 54900 226800 9746100 1161000 0 0 87.1 12.9
Forest plantation 0 0 0 0 0 9055800 0 0 100.0 0.0
Bare soil 900 126900 0 0 0 8734500 0 98.6 1.4
Water 0 0 0 0 0 0 0 242553 100.0 0.0
Total 771300 3265200 834300 1659600 9960300 10235700 8759700 242553
Producer's accuracy (%) 99.9 94.2 69.9 71.6 97.8 88.5 99.7 100.0
Omission error (%) 0.1 5.8 30.1 28.4 2.2 11.5 0.3 0.0
Overall accuraccy (%) 93.5

Classified data Reference data
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3 S Table 2 Transition matrices between land cover in the different period (% of the study area) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Grassland/arable land T1-T2 T2-T3 T3-T4 T4-T5 T5-T6 T6-T7
Shrubland -0.705 -0.236 -1.085 1.001 -1.869 -0.814
Secondary forest 0.000 0.000 0.000 0.000 0.277 0.000
Old-growth forest 0.082 0.003 0.000 0.000 0.000 0.001
Forest exotic plantation -0.725 -0.024 -0.023 0.002 -0.056 -0.044
Bare land 1.279 0.514 -1.333 1.171 -0.509 0.704

Shrubland T1-T2 T2-T3 T3-T4 T4-T5 T5-T6 T6-T7
Grassland/arable land 0.705 0.236 1.085 -1.001 1.869 0.814
Secondary forest -1.815 -3.602 -0.966 -0.702 0.185 -0.366
Old-growth forest 1.336 0.235 0.019 0.237 0.113 0.000
Forest exotic plantation -0.767 -0.386 -0.670 -0.300 -0.051 -0.310
Bare land 1.121 -0.048 0.741 0.148 0.609 0.733

Secondary forest T1-T2 T2-T3 T3-T4 T4-T5 T5-T6 T6-T7
Grassland/arable land 0.000 0.000 0.000 0.000 -0.477 0.000
Shrubland 1.815 3.602 0.966 0.702 -0.185 0.366
Old-growth forest 0.315 0.723 0.585 0.404 0.132 0.000
Forest exotic plantation -0.940 -0.284 -0.743 -0.177 -0.188 0.000
Bare land -0.537 -0.065 0.000 0.000 -0.433 -0.240

Old-growth forest T1-T2 T2-T3 T3-T4 T4-T5 T5-T6 T6-T7
Grassland/arable land -0.082 -0.003 0.000 0.000 0.000 -0.001
Shrubland -1.336 -0.235 -0.019 -0.237 -0.113 0.000
Secondary forest -0.315 -0.723 -0.585 -0.404 -0.132 0.000
Forest exotic plantation -0.186 -0.004 -0.016 -0.030 0.000 0.000
Bare land -0.269 -0.104 0.000 0.000 0.000 -0.001

Forest exotic plantation T1-T2 T2-T3 T3-T4 T4-T5 T5-T6 T6-T7
Grassland/arable land 0.725 0.024 0.023 -0.002 0.056 0.044
Shrubland 0.767 0.386 0.670 0.300 0.051 0.310
Secondary forest 0.940 0.284 0.743 0.177 0.188 0.000
Old-growth forest 0.186 0.004 0.016 0.030 0.000 0.000
Bare land 0.329 -0.039 -0.043 -0.088 -0.551 -0.328

Bare land T1-T2 T2-T3 T3-T4 T4-T5 T5-T6 T6-T7
Grassland/arable land -1.279 -0.514 1.333 -1.171 0.509 -0.704
Shrubland -1.121 0.048 -0.741 -0.148 -0.609 -0.733
Secondary forest 0.537 0.065 0.000 0.000 0.433 0.240
Old-growth forest 0.269 0.104 0.000 0.000 0.000 0.001
Forest exotic plantation -0.329 0.039 0.043 0.088 0.551 0.328
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4.1 Abstract 
 
The understanding of how ecosystem services are distributed across the landscape and their change 

over time provides key information to manage multifunctional landscapes. To balance the 

conflicting demands on multiscale land assessments are highly relevant, especially in biodiversity 

hotspot areas as the Valdivian temperate rain forest. We quantified six ecosystem services linked to 

forest ecosystems over six temporal periods (1985 - 2011): three regulating (carbon storage, 

sediment retention, phosphorous retention), one provisioning (plantation site productivity) and two 

cultural services (landscape aesthetics, forest recreation). The study area is divided into four 

geomorphological units (Coastal mountain range, Central Valley, Pre-Andean and Andes mountain 

range). Our results show a high spatial and temporal variability of ecosystem service supply in these 

units. We observed a strong increase of plantation production (Coastal range and Central Valley) as 

well as of forest recreation services over time (Coastal and Andes ranges); remaining services trends 

varied across units and time. Recommendations for landscape management are: (i) an increase of 

buffer strips to reduce diffuse emissions into the river network and to enhance ecological 

connectivity, (ii) an increase of protected areas in the Central Valley and (iii) a rethinking of the 

role of exotic forest plantations.  
 
Keywords 
Landscape multi-functionality, spatio-temporal analysis, mapping of ecosystem services, 

deforestation, exotic forest plantations, land use change, South America. 

 

4.2 Introduction 
 
Land use change and especially deforestation decrease the ability of many ecosystems to supply 

services, which are the base to support human needs and well-being (Bennett et al., 2009; Díaz et 

al., 2006; Millennium Ecosystem Assessment, 2005). The high pressure of natural resource 

utilization has led to important changes in ecosystem functions and processes at different scales 
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(Costanza et al., 1997; Ellis et al., 2013; Foley et al., 2011). As many ecosystem services may rely 

on the same ecosystem process external factors might affect several ecosystem services at the same 

time (Bennett et al., 2009; Mouchet et al., 2015). Hence, mapping and monitoring ecosystem 

services dynamics at different scales plays an important role in landscape management and spatial 

planning, since it aggregates complex information about the effect of ecosystem service utilization 

on the supply of the services (Dallimer et al., 2015; Renard et al., 2015; Schröter et al., 2015). 

Several studies have shown that an expansion of the temporal and spatial extent and of the resolution 

of ecosystem services assessment allows a better representation of the heterogeneity in ecosystem 

services supply (Birkhofer et al., 2015; Lautenbach et al., 2011; Rodríguez et al., 2006; Syrbe and 

Walz, 2012). Furthermore, it delivers information about the magnitude and recurrence interval at 

which ecosystem service supply changes over time which is crucial for landscape planning, 

environmental management and decision-making (Burkhard et al., 2014; Daily et al., 2009; de Groot 

et al., 2012; Haines-Young, 2009; Millennium Ecosystem Assessment, 2005; Seppelt et al., 2011).  

Land use change processes in Southern Chile – a region recognized as a biodiversity hotspot (Myers 

et al., 2000; Olson et al., 2001) - deserve special attention: Despite its relevance as a relic of 

temperate rain forest, the region has experienced a continuous process of land cover transformation 

and fragmentation (Donoso and Lara, 1999; Echeverría et al., 2012, 2007; Locher-Krause et al., 

2017b). These transformations and fragmentation processes have led to an increase in biodiversity 

loss and ecosystem degradation, which is strongly linked to the fast-growing export-oriented 

Chilean economy (Balvanera et al., 2012; Díaz et al., 2006; Siebert, 2003; UNEP, 2010). Large 

landscape transformations in the area date back to forest clearance; first due to the colonization 

process (16th to 17th century) and second as a result of the boom of wheat crops for domestic use 

and export in the middle of the 20th century (Armesto et al., 2010; Echeverria et al., 2006). Since 

the 1970’s exotic forest plantations have been playing an important role in the regional and national 

economy due to their importance for the forest industry (i.e., the pulp, shipyard, and paper industry). 

These activities have been recognized as one of the most important drivers of deforestation and 

biodiversity loss in Southern Chile (Lara et al., 2011; Nahuelhual et al., 2012), with range of annual 

rate of forest loss between 0 and 5.8% (Miranda et al., 2017) and a net loss of 4.8% for our study 

area (Locher-Krause et al., 2017b). The forest industry has thereby focused mainly on the production 

of fast-growing exotic species such as Pinus radiata and Eucalyptus sp. (Echeverría et al., 2007; 

Lara and Veblen, 1993), causing enormous pressure on the native ecosystems.  

Especially in highly transformed landscapes such as Southern Chile ecosystem services assessments 

considering several services in a multi-scale approach are highly relevant to understand and 

implement conservation and management strategies (Echeverria et al., 2006c; Locher-Krause et al., 

2017b; Miranda et al., 2015). If important services are missing negative impacts of land use changes 

such as an increase of forest plantations for the paper industry would be neglected in the analysis. 

Since land use change, and its effects on ecosystem service supply, is in many cases not 
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unidirectional, assessment and mapping of ecosystem service supply at an adequate temporal 

resolution is highly relevant. In southern Chile, the clearcut-regrowth cycle of forestry is an 

important process that leads to a cyclic change of land cover (Patterson and Hoalst-Pullen, 2011). 

Assessment of ecosystem services at a low temporal resolution might under- or overestimate trends 

since they rely on a linear interpolation between two or three sample periods. 

However, multi-scale mapping and monitoring are still far from being integrated regularly in 

ecosystem services assessments wide, and this gap is even larger in Latin America (Balvanera et al., 

2012). In Chile, existing studies regarding ecosystem services supply have been focused mainly on 

the effects of forest management on water provision and soil loss and assessed only one or two 

ecosystem services in combination (Lara et al., 2009; Little et al., 2014, 2009). Núñez et al. (2006) 

used production functions to evaluate changes in water availability in the context of forest 

management and conservation. Nahuelhual et al. (2013) mapped the cultural ecosystem services 

recreation and ecotourism at Chiloe Island to allow their integration in local planning.  Even 

considering the importance of these studies the fact of relying on a comparison of two or three 

periods might lead to a misperception about the magnitude of change.  

We seek to fill this knowledge gap on ecosystem services supply dynamics in the region. We are 

thereby providing essential information for spatial planning in the region, especially for areas under 

threat such as the Valdivian temperate rainforest (Myers et al., 2000; Olson et al., 2001). Our study 

addresses the following research questions: a) how were the supplies of individual ecosystem 

services distributed across the landscape? b) how did the spatial distribution of individual ecosystem 

services supply change over time, c) what are the implications for the ecosystem and landscape 

management seeking to balance natural resources utilization and conservation in the region. Our 

analysis builds on an integration of remote sensing derived land cover data with spatially explicit 

models, administrative statistics and field measurements. Based on this information we mapped and 

analyzed the spatio-temporal changes in ecosystem services supply.  

 

4.3 Material and Methods 
 
4.3.1 Study area  
The study area is located in southern Chile (Northern Chilean Patagonia - 73°20’ W-39°25’ S - 

71°59’ W-41° 14’ S) and covers 16,625.7 km², belonging administratively to the Los Rios and Los 

Lagos regions (c.f. Figure 4.1). This area is home to 2.2% of the population of Chile, circa 380.700 

inhabitants, which live mainly in urban areas (68.3%) (INE Instituto Nacional de Estadística, 2012). 

Around 17% of the inhabitants describe themselves as Mapuches, Chilean indigenous inhabitants. 

The annual mean temperature is around 11.9 ⁰C, and rainfall is about 2,500 mm per year, 

concentrated during the winter season (June-September), with a temperate oceanic climate with 

Mediterranean influence (CIREN, 1994; Di Castri and Hajek, 1976).  
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The area is recognized as biodiversity hotspot due to the number of species associated with the 

temperate rain forest (Armesto et al., 1996; Myers et al., 2000; Olson et al., 2001). This temperate 

broadleaf and mixed forest is subdivided into four vegetation zones: deciduous forests, Valdivian 

laurel-leaved forests, Northern Patagonian and Evergreen forests (Gajardo, 1994; Veblen et al., 

1983). The area is divided into four geomorphological units from the West to the East: the Coastal 

mountain range (up to 900 m), the Central Valley (up to 250 m), the Precordillera (up to 1,000 m) 

and the Andes mountain range (up to 2,422 m). These units show a different degree of human 

utilization and degradation: the majority of the agricultural areas are located in the Central Valley 

while the Valdivian temperate rain forest is mainly distributed across the Andes and the coastal 

range.  

 

 
Figure 4.1 Study area location in South America (a) and Southern Chile (b). The map shows land cover 
information for 2011 as well as the four most important geomorphological units(c): Coastal mountain range, 
Central Valley, Pre-Andean and Andes mountain range (from west to east); shown in the inset to the lower 
right.     

 
4.3.2 Methods  
We selected six ecosystem services for our assessment based on the following criteria: (1) the 

service was related to managed or unmanaged forest ecosystems (natural or planted), (2) the service 

had a recognized importance for the case study region, we based this statement on the most 

documented and critical ecosystem services for the mid-southern Chile (Balvanera et al., 2012; Lara 

et al., 2009; Little et al., 2014; Laura Nahuelhual et al., 2013a; Oyarzún and Hervé-Fernandez, 

2015); and (3) data to estimate the service indicators were available in the desired spatial and 

temporal resolution, extent and scale. The following six services were selected: three regulating 

(carbon storage, sediment, and phosphorous retention), one provisioning (plantation production 

index) and two cultural (landscape aesthetic and forest recreation) services. The calculation and 
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mapping of the services were based on different InVEST 3.2.0 (Integrated Valuation of 

Environmental Services and Tradeoffs, www.naturalcapital.org) models (Sharp et al., 2015), 

productivity functions, field data, and biophysical data. After the ecosystem services mapping, we 

quantified the spatio-temporal change of the selected ecosystem services. Additionally, we analyzed 

the relationship between ecosystem services and the land cover classes in the case study area.   

4.3.2.1 Ecosystem services mapping 
To map and assess the ecosystem services remote sensing data, model results and field data were 

integrated at a 30mx30m resolution for six periods in time. Land cover information was obtained 

from Landsat satellite images (L4-5 TM, L7 ETM+ on; 30 m x 30 m). We derived a time series of 

land cover data from 1985 to 2011 based on all the images available for the study area with L1T 

processing level (USGS). These scenes were atmospherically corrected using radiative transfer 

based Landsat Ecosystem Disturbance Adaptive Processing System tool (LEDAPS) (Kaufman et 

al., 1997; J. G. Masek et al., 2006). Clouds and cloud shadows were masked by the two-step 

algorithm Fmask to improve the levels of accuracy, avoiding misclassification in the time series 

(Zhu et al., 2012). Land cover was classified by a random forest classifier (Breiman, 2001) 

implemented in R (Liaw and Wiener, 2002; R Development Core Team, 2013), using a total of 800 

control ground polygons to train the model and 260 to validate the result of the classification. The 

classifier was trained and applied to nine land cover categories: urban, grassland/arable land, 

shrubland, secondary forest, old-growth forest, exotic forest plantation, bare land, water bodies and 

areas without information (4 S-A Table 1). To obtain land cover maps not affected by the frequent 

cloud cover in the region, we merged land cover information from two consecutive years. This 

resulted in seven combined land cover maps for the following years: T1=1985-1986; T2=1998-

1999; T3=2000-2001; T4=2003-2004; T5=2005-2006; T6=2008-2009; T7=2010-2011 (4 S-B Table 

1). More details on the analysis can be found in Locher-Krause et al. (2017). 

 

Table 4.1 summarizes the selected ecosystem service, units and the biophysical indicator or model 

used to quantify it for each period for which land cover information was available. 

 

 

 

 

 

 

 

 

 

http://www.naturalcapital.org/
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Table 4.1 Ecosystem services, biophysical indicator or model and units for the six ecosystem services 
mapped and quantified for the six periods (1985-2011) for each geomorphological unit. 

Selected Ecosystem service Biophysical indicator/model Unit 
Provisioning services     
Plantation site productivity Site productivity index Index 
Regulation services     
Carbon storage  InVEST carbon storage model Mg/ha 

Sediment retention  
InVEST sediment delivery ratio 
model Mg/ha 

Phosphorous retention  InVEST nutrient retention model Kg/ha 
Cultural services     

Landscape aesthetics  
Areas high aesthetic 
Value/recreational interest 
points/degree of naturalness 

Degree of 
naturalness 

Forest recreation  Forest protected areas Area % 
 

4.3.2.1.1 Provisioning services 
4.3.2.1.1.1 Plantation site productivity 
The estimation of plantation productivity was based on a plantation production site index. The site 

index is a quantitative measure of the potential of an area to produce plant biomass, in terms of the 

capacity of a particular tree species to produce aboveground timber volume under specific soil and 

climatic conditions (Skovsgaard and Vanclay, 2008). The index integrates information regarding 

the specific species as well as physical and climatic characteristics data (soil depth, texture, nutrient 

load, precipitation, temperature, slope, elevation, and aspect) to estimate the potential growth rate 

of each species (Nyland, 2002). The plantation production site index was obtained from the National 

Forest Research Institute (García, 1970; INFOR, 1999; Pinilla S., 1998; Schlatter and Gerding, 

1995). The national forest research agency developed the index from an extensive (national level) 

and intensive (frequency of measurement) forest inventory. Based on the inventory results a 

regression model was used to derive a consistent index based on an empirical height - age 

relationship in predefined growing zones (stratified based on homogenous soil and climatic zones 

area characteristics) - more information is provided in the Supplementary material S1. The index 

was index especially developed for the most relevant economic tree species used in forest 

plantations (Pinus radiata and Eucalyptus sp). Through the site productivity index, we mapped and 

assessed the spatial variation of the productivity in the study area over time. 

 

4.3.2.1.2 Regulation services  
4.3.2.1.2.1 Carbon storage (Mg/ha) 
The amount of carbon stored in the landscape was estimated with the InVEST 3.2.0 carbon module1. 

The module is based on a simplified carbon cycle, which integrates land cover information and the 

                                                      
1 http://www.naturalcapitalproject.org/invest-releases/documentation/3_2_0/carbonstorage 
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amount of carbon stored on four main carbon pools: aboveground biomass, belowground biomass, 

soil, and dead organic matter. We calculated the carbon stored in 30 m x 30 m cells based on land 

cover data together with estimates for the four major carbon pools. Values for the major carbon 

pools were obtained from the region and species-specific allometric equations developed by local 

studies (4 S-A Table 2). These equations were developed on the base of a carbon inventory to estimate 

the carbon stocks for the main native species by destructive sampling (tree harvesting) and tree roots 

extraction (A and C, 2005; Gayoso, 2001; Gayoso and Schlegel, 2003; Gonzalez and Gayoso, 2005; 

Keith et al., 2009; Schlegel, 2001; Schlegel and Donoso, 2008) (4 S-A Table 2). 

 

4.3.2.1.2.2 Sediment retention (Mg/ha) 
We quantified sediment export and retention with the InVEST 3.2.0 sediment delivery ratio 

module2. The module is based on the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 

1978) and uses geomorphological and climatic information together with information on the 

hydrological connectivity of the landscape (Hamel et al., 2015). The main inputs are land cover, a 

digital elevation model (DEM) and the USLE parameters (R, K, LS, C, and S, see explanation 

below). We used the digital elevation model by Lehner et al. (2008) (3 sec), which we resampled to 

30 m x 30 m resolution. The rainfall erosivity R (MJ mm ha ̄¹ yr ̄¹) was calculated by the following 

formula for locations with mean annual precipitation greater than 850 mm (Renard and Freimund, 

1994) applicable for the case study region: 

 

𝑅𝑅 = 587.8− 1.219𝑃𝑃 + 0.004105 𝑃𝑃²  

where P is the annual precipitation in mm, which we obtained from the WorldClim database 

(Hijmans et al., 2005). We estimated the soil erodibility parameter K (tons ha ̄¹ MJ ¹̄ mm ̄¹) based 

on the HWSD (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and a local soils database (SINIA, 2015). 

The land cover management factor (C) and the supporting practice factor (S) for the different land 

cover categories were obtained from Bonilla et al. (2010) and Olivares et al. (2011). We validated 

the simulation results against suspended sediment concentration data from the Chilean monitoring 

agency gauging stations in the study area (DGA-SINIA) (4 S-A Table 3). 

 

4.3.2.1.2.3 Phosphorous retention (tons/ha) 
We estimated phosphorus export and retention with InVEST 3.2.0, nutrient retention module3. This 

model calculates export and retention capacity per pixel based on biophysical variables. The 

phosphorous retention module is built on the assumption that phosphorous retention depends on the 

potential inflow of phosphorus. Based on this, the module assumes that forest areas around streams 

provide much more retention than large forested continuous upstream areas (Sharp et al., 2015). 

                                                      
2 http://www.naturalcapitalproject.org/invest-releases/documentation/3_2_0/sdr 
3 http://www.naturalcapitalproject.org/invest-releases/documentation/3_2_0/waterpurification 
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The same land cover, annual precipitation, and DEM data as used for modeling sediment retention 

were used for phosphorus retention modeling. Additionally, annual average reference 

evapotranspiration, obtained from Mu et al. (2011, 2007) and Zomer et al. (2008, 2007), as well as 

information on maximal root depth and plant available water fraction, obtained from 

FAO/IIASA/ISRIC/ISSCAS/JRC, (2012) were used. We applied region specific parameter values 

for the evapotranspiration index, root depth, phosphorus export and phosphorus retention efficiency 

in each land cover class (values taken from Cuevas et al., 2006; Donoso and Lara, 1999; Jackson et 

al., 1996; Little et al., 2014; Oyarzun et al., 2007, 2015) (4 S-A Table 4 and 4 S-A Table 5).  

To check the performance of the model, we contrasted predicted values with literature values 

(Alvarez-Cobelas et al., 2009; Cuevas et al., 2006; Huygens et al., 2011; Iroume, 2003; Little et al., 

2014; Oyarzun et al., 2015, 1997, Oyarzún et al., 2007, 2004) due to a lack of applicable 

phosphorous concentration measurements in the study area. 

 

4.3.2.1.3 Cultural services 
4.3.2.1.3.1 Landscape aesthetics (degree of naturalness) 
Landscape aesthetics was estimated in three steps. First, we selected areas with high aesthetic value 

based on a viewpoint database of the tourist agency (SERNATUR and GORE Region de los Rios, 

2014). In a second step, this dataset was augmented with information on recreational use based on 

the number of geo-tagged digital images in a cell. Flickr (www.flickr.com), Google Earth 

(earth.google.com) and Panoramio (www.panoramio.com) were used for that analysis. This 

procedure – using images from these hosting websites - has been reported to provide good proxies 

for recreational interest points (Grêt-Regamey et al., 2014; Martínez Pastur et al., 2016; Laura 

Nahuelhual et al., 2013a; Sharp et al., 2015). In a third step, the visible area around each viewpoint 

was derived by a viewshed analysis performed in ArcGIS (ESRI, 2011) using the digital elevation 

model described above as auxiliary information. In order to understand how much valuable 

recreational areas were affected by human activities, we included information on the degree of 

naturalness based on land cover information (Machado, 2004; Walz and Stein, 2014) classified into 

artificial, semi-natural and natural landscapes (4 S-A Table 6). This last step was used to determine 

how strong the visual qualities of the landscape were influenced by human utilization over time.  

4.3.2.1.3.2 Forest recreation (protected area in each geomorphological unit) 
In Chile, it is not allowed to enter natural private areas without permission by the owner. Protected 

areas provide therefore the only opportunity for forest recreation activities such as outdoor sports 

activities or birdwatching. Our estimation of the forest recreation service was therefore based on the 

opportunity to access and use forest areas which was estimated by the area covered by protected 

forest. This proxy for forest recreation has already been used in other studies (Qiu and Turner, 2013; 

Raudsepp-Hearne et al., 2010). 

http://www.flickr.com/
http://www.panoramio.com/
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We used all areas that were registered in the protected areas national database: national parks, 

national reserves, national monuments as well as private protected areas. Historic and current data 

on the development of the protected area network were available from the National Environmental 

Information System (SINIA). The number of visitors could not be taken into account since no long-

term information was available for the region.  

 

4.3.2.2 Spatio-temporal changes  

We identified and quantified the supply of the six individual ecosystem services over 26 years (1985 

to 2011) for six periods in the four geomorphological units. We calculated the arithmetic mean for 

each ecosystem service in each geomorphological unit and period to identify the changes in their 

individual supply. We furthermore calculated crosstables for the supply of each ecosystem service 

for each geomorphological unit and period against the different land cover classes. This allowed us 

to follow the importance of the different land cover classes for each service and unit over time. This 

information is the base towards establishing a connection between the ecosystem services supply 

trajectory and economic/political decisions in the study area. 

4.4 Results and discussion 
 
Ecosystem services supply differed considerably over the six periods analyzed, both across time 

and across the geomorphological units (Figure 4.2). Plantation production increased strongly over 

time in two geomorphological regions (with a relative change of 377 % and 917% for the Coastal 

range and Central Valley, respectively). Forest recreation showed the highest relative increase over 

time in two of the four regions (Figure 4.2). Sediment retention peaked in 2000-2001 followed by a 

decrease. The speed and magnitude of changes in the mean supply of individual ecosystem services 

differed both over time and across the geomorphological units.  

 

4.4.1 Spatio-temporal analysis of individual ecosystem services  
Trends in carbon stocks differed markedly across the geomorphological units. The Andes mountain 

range, with the largest relict of old-growth forest, always stored the highest total amount of carbon. 

Carbon stocks in the Andes mountain range showed a slight decrease by 2.1% from 1985 to 2011 

while for the Coastal and Pre-Andean areas the values decreased by 6.4% and 3.1% per year 

respectively (Figure 4.2). The reduction of carbon stocks in the Coastal and Pre-Andean areas was 

linked to the intense deforestation process that is also reported by other studies (Echeverria et al., 

2006c; Locher-Krause et al., 2017b; Miranda et al., 2017; Zamorano-Elgueta et al., 2015). An 

opposite trend was observed in the Central Valley, where carbon stocks increased on average by 

6.2% between 1985 and 2011, but also showed an uneven pattern over time. This increase can be 

explained by the rapid development of the forest industry and the related increase of exotic forest 
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plantations (Pinus radiata and Eucalyptus sp.) as of one of the main economic activities in the study 

area - as reported by Armesto et al. (2010), Lara et al. (2011) and Nahuelhual et al. (2012). The 

uneven pattern over time can be explained on the one hand by a continuous increase in forest cover 

over the first two periods from 1985 to 2001 due to the ongoing establishment of exotic forest 

plantations (artificial afforestation) (4 S-B Table 1). Afterward, carbon stocks in the Central Valley 

fluctuated due to the harvesting practices for exotic forest plantations which consist of clear-cuts 

every 10 to 20 years.  

The plantation productivity index showed the highest service values in the Coastal range and the 

Central Valley (Figure 4.2b). The index increased strongly particularly in these units, with a relative 

change of 370% and 900% between 1985 and 2011, respectively. This increase is clearly continuous 

until 2005-2006 and when levels off (last two periods). In the Andes and Pre-Andean range the 

same trend is visible - less pronounced but nevertheless important, suggesting that conversion of 

natural forests to exotic forest plantations still play a role in the area (Figure 4.2, 4 S-B Table 1) 

(Locher-Krause et al., 2017b). Our results were in line with high rates of land cover transformation 

to exotic forest plantations reported by different studies in the south of Chile, all in the context of 

the rapid development of the forest industry (Echeverria et al., 2006c; Echeverría et al., 2012; 

Miranda et al., 2015; Nahuelhual et al., 2012). This is also supported by results from local studies, 

such as by Zamorano-Elgueta et al. (2015) which reported an increment of 168% of the area covered 

by exotic forest plantations for a smaller region in the Coastal. This large and rapid transformation 

to exotic forest plantations has been explained by the success of the Chilean forest policy, especially 

by a subsidy passed by the military regime in 1975, the Law Decree 701 (Armesto et al., 2010; Lara 

and Veblen, 1993; Niklitschek, 2007). The development of the forest industry has been crucial for 

the economic growth of Chile, leading to the second largest export commodities after the mining 

sector (Central Bank of Chile, 2016). However, exotic forest plantations have long been under 

scientific and public scrutiny due to their environmental and socioeconomic impacts (Andersson et 

al., 2016; Salas et al., 2016). Global and local studies in different ecosystems have already reported 

the effect of fast-growing trees that leads to the decrease of water yields, especially related to 

eucalyptus species (Albaugh et al., 2013; Farley et al., 2005; Huber et al., 2008; Jackson et al., 

2005). Little et al. (2009) documented a decreasing trend of summer runoff in landscapes dominated 

by Pinus radiate plantations compared to native forest in South-Central Chile.  
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Figure 4.2 Change in the supply of six ecosystem services over time. The values represent their arithmetic 
mean values for each geomorphological unit in the study area (Coastal range, Central Valley, Pre-Andean 
range and Andes range).  

 
Overall sediment retention (Figure 4.2c) decreased between 1985 and 2011 by 27%, 53%, 36% and 

34% for the Coastal range, Central Valley, Pre-Andean and Andes range, respectively. However, 

development has been highly dynamic. The development of sediment retention is characterized by 

a strong peak in 2000-2001 followed by a strong decrease and a smaller peak in 2005-2006. 

Sediment transportation and thereby sediment retention as well is influenced by strong rainfall 

events and differs therefore between the years the rivers especially for pluvial flow regimes such as 

in the case study region (Oyarzún and Hervé-Fernandez, 2015). This highlights the importance of a 

multi-temporal analysis of ecosystem service provisioning in the case study region. Areas covered 

by dense vegetation - especially natural forest and exotic plantations - had the highest retention 

values (Figure 4.3), particularly important in areas with high elevation and steep slopes. Land use 
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change led to a decrease in sediment retention, particularly caused by the transition from tree-based 

vegetation systems to more open land cover as shrubland, grassland and bare land (Figure 4.4). The 

importance of maintaining a continuous vegetation cover for erosion control has been already 

reported in several studies (Lara et al., 2009; León-Muñoz et al., 2013; Little et al., 2009), with the 

highest relevance in areas with high pluviometry and steep slopes, as in our study area (Bathurst et 

al., 2011; Cuevas et al., 2006). Furthermore, the combination of medium to high deforestation rates 

in the region (Locher-Krause et al., 2017b; Zamorano-Elgueta et al., 2015) with the large clear-cuts 

used in regular exotic forest plantation management led to the decrease in the ability of the 

ecosystem to retain sediment (Figure 4.3). The lowest retention values were located in areas with 

low vegetation cover. 

For phosphorous retention, the highest values were estimated in the Central Valley especially in 

downstream areas close to water bodies. The retention values of these areas increased from the 

beginning of the study period, with the exception of the Central Valley that showed a slight decrease. 

The lowest phosphorous retention values were reported for the Pre-Andean areas. As high values of 

phosphorus retention are associated with smaller vegetation patches downstream near the water 

bodies, the low retention in the Central Valley (Figure 4.3d) is related to the high landscape 

fragmentation in this region (Locher-Krause et al. 2017). Overall the decrease in phosphorus 

retention indicates an increasing fragmentation of the landscape which also has been reported in 

other studies in Southern Chile (Echeverría et al., 2007; Locher-Krause et al., 2017b; Miranda et 

al., 2017). This fragmentation process might lead to a strong and non-linear effect on ecosystem 

services supply (both negative and positive), increasing the complexity of the ecological system 

(Andrieu et al., 2015; Mitchell et al., 2014). While this service is similar to sediment retention driven 

by strong precipitation events strong peaks such as for sediment retention were missing. This is due 

to the location of arable fields on flat areas downstream as the main source of diffuse phosphorus 

retention. 

Landscape aesthetic values showed an important decrease over time in the Coastal range and Central 

Valley, especially from 1985 to 2006. Presumably, the decrease of landscape aesthetics in these 

areas (Coastal range and the Central Valley) (Figure 4.3e) was related to the increase of roads, urban 

areas and other artificial landscape elements in the areas with higher population density. In the 

Andes and Pre-Andean, the values remained more and less constant over the study period, indicating 

a lower impact of human activities (Figure 4.2). 

Protected areas in Chile were historically established in non-productive remote areas with high 

scenic beauty (Armesto et al., 2010). Over time, recreational forest areas showed a drastic increase 

especially between 2003-2004 and 2005-2006 (Figure 4.2 and Figure 4.4). This increase reflects an 

arising concern about conservation in the region, triggered by NGO’s, universities and the local 

government. However, as Figure 4.3 indicates, protected areas were unevenly distributed across the 

different geomorphological units: these areas were mainly located in remote locations with low 



Spatio-temporal change of ecosystem services  

53 
 

accessibility in the Andes and Coastal range instead of the more productive areas in the Central 

Valley. The Central Valley had no protected areas until 2005, when private protected areas were 

introduced due to the cooperation between public institutions and private associations, leading to an 

increase of 283 km2. 
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Figure 4.3 Map of selected ecosystem services in three-time periods (T1: 1985-1986, T4:2003-2004, 
T7:2010-2011). Only three-time slots are depicted due to space restriction; all the maps are available in the 
supplementary material S2). For phosphorous and sediment retention results are shown for a zoom-in area. 
The location of the zoom-in area is shown in the main figure (The zoom-in area has been placed in a region 
with highest service values/high variability of service values, located in between the coastal range and the 
central valley). 
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4.4.2 Effects of land use change in space and time 
The importance of considering landscape heterogeneity in landscape planning and management has 

been pointed out by Lambin et al., (2001) and Turner et al., (2012).  In our case study region, 

geomorphological units strongly differ in soil and climatic properties, which also influence 

vegetation composition and diversity. Based on these differences, we would like to highlight the 

importance of considering these different characteristics in an adequate landscape planning and 

management.  

Figure 4.3 shows that regulating services fluctuated in time and space overall geomorphological 

units. This pattern was closely related to the variation in land cover composition (Figure 4.4) (4 S-B 

Table 1). Changes in carbon stocks for example clearly differed among geomorphological units and 

over time, especially in the Coastal range and the central valley (relative change from 1985/86 to 

2010/11 of 6.4% and 6.2%, respectively). In the case of the plantation production index (Figure 

4.3b), dissimilar productivity rates were identified due to the different climatic, soil and species 

characteristics. High productivity areas were mostly located in the Central Valley, mainly caused 

by deeper soils in addition to soil textures and climatic conditions that are more favorable for the 

development of Pinus radiata. Landscape aesthetics – as a cultural ecosystem service – also showed 

an uneven distribution across the different geomorphological units. Higher aesthetic values were 

mainly identified next to water bodies (lakes, rivers and the ocean) together with areas surrounded 

by volcanoes, especially in the Andes and Pre-Andean mountain range areas (Figure 4.3).  

Overall, the relationship between the cover classes and the selected ecosystem services varied due 

to land use change (Figure 4.4). However, the sensitivity of the landscape towards land use change 

differed in space. The same amount of land cover change triggered different changes in ecosystem 

services supply in the four geomorphological units (Figure 4.4). Changes in carbon stocks were 

mainly linked to old-growth forest in the Andes ranges which provided more than 52% of the total 

changes in carbon stocks in 1985-1986. The importance of the old-growth forest in the Andes ranges 

for carbon storage decreased over time to 46% in 2010-2011. Old-growth forest in the Coastal range 

provided 15% of the changes in carbon stocks in 1985-1986. The contribution of changes in carbon 

stocks by the Coastal range decreased by about 11% in 2010-2011. In the case of the plantation 

productivity index, exotic forest plantation is the only land cover integrated into this index.  

Shrubland and the Andes old-growth forest provided the highest sediment retention supply. The 

importance of these land cover classes slightly decreased over time in contrast to secondary forest 

and exotic forest plantation that increased in area over the study period. For phosphorous retention 

grassland/arable land were of most importance, followed by shrubland. 

The Andean old-growth forest and water bodies provided the largest share of landscape aesthetic 

value for all points in time. Forest recreational services were mainly provided by protected forest 

areas. Other land cover classes such as water areas inside the protected areas also contributed to the 

provisioning – however, their contribution was relatively low. This is shown in Figure 4.4, were the 
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importance of this service is reflected across the different forest classes, also important for shrubland 

and bare land especially in high mountainous areas.  

 

 
Figure 4.4 Proportion of selected ecosystem services in each land cover class over time. Each graph shows 
for a one-time period the relationship between land cover classes and ecosystem service. Plantation index was 
not included because this service corresponds hundred percent to the land cover Exotic forest plantations. 

 
4.4.3 Implications for management 
Managing multiple ecosystem services at a landscape scale is a key challenge in natural resources 

utilization (Bennett et al., 2015; Foley et al., 2011; Rodríguez et al., 2006). Multi-temporal and 

spatial ecosystem services analysis provide the understanding needed to propose management 

guides in line with the local requirements.  

Our results indicate that sediment and phosphorous retention supply were strongly influenced by 

the presence of riparian forests. Based on their change over time, we conclude that prioritization of 

buffer protection zones is highly needed in the case study region- particularly forest buffer stripes 

downstream of disturbed human areas such as in large parts of the Central Valley. Figure 4.3 and 

Figure 4.4 show that even small areas of secondary forest helped to retain a large amount of sediment 

and phosphorus – they reveal furthermore that service supply changed strongly over time due to 
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land cover change. These buffer strip zones are important to ensure an adequate water quality over 

time (Echeverria et al., 2008; Nick M. Haddad et al., 2015; Little et al., 2014; Prugh et al., 2008). 

Hence, we suggest that stream/river buffers should be kept as natural forest corridors to ensure 

landscape connectivity and ecosystem services supply. Landscape connectivity has not only a 

positive influence on regulating ecosystem services but is also important to cultural services that 

could enhance forest recreational services, especially in the Central Valley. Likewise, a decrease of 

connectivity is particularly relevant in these disturbed human areas, with complex topography and 

high pluviometry, due to the high erosion risk (López-Vicente et al., 2013) and the higher pressure 

for endangered species (Mitchell et al., 2013; Prugh et al., 2008).  

Changes in carbon stocks is one of the most visible ecosystem services related to climate change 

mitigation mechanisms (i.e., carbon market and payment for ecosystem services) (IPCC and Barker, 

2007). These carbon markets treat forest composed of natural and exotic species similarly without 

considering ecological processes related to the function of the different ecosystems. Even though 

our results show the high relevance of native forest for carbon stocks, the service supply summed 

over the whole region increased mainly due to the increase of exotic forest plantation areas 

especially in the Central Valley. As mentioned before, plantations have high economic relevance 

for the region and also provide some ecological benefits due to sediment and nutrient retention. 

However, the delivery of this service showed a discontinuous pattern in time mainly due to clear-

cuts (Figure 4.3). Plantation logging practices such as large clear-cuts lead to trade-offs with other 

ecosystem services such as sediment and nutrient retention, water availability (quality and quantity) 

and asthenic beauty (Andersson et al., 2016; Armesto et al., 2010; Echeverría et al., 2007; Little et 

al., 2009; Manuschevich, 2016; Nahuelhual et al., 2012). These trade-offs and their effects in the 

ecosystem functions need to be taken into account to be able to balance the benefits of exotic forest 

plantation in the landscape (Cunningham et al., 2015).  

The observed temporal and spatial fluctuations in the supply of ecosystem services in the case study 

region indicate that the socio-ecological system is highly dynamic at spatial and temporal scales 

(Locher-Krause et al., 2017b). This variability needs to be addressed by regional planning strategies 

– it is not sufficient to look only at the current state to be able to understand the dynamics of 

ecosystem services supply. Instead, it is important to integrate space and time perspectives to assess 

the effects of human activities on the landscapes, adding information about pattern/process 

frequency and magnitude (Bennett et al., 2015; Dallimer et al., 2015; Renard et al., 2015; Tomscha 

et al., 2016). Our analysis revealed differences in ecosystem services supply among the 

geomorphological units and indicated the sensitivity of certain areas to management decisions 

which varied over time. The consideration of the time dimension in the areas under pressure (such 

as the Central Valley and the Coastal Range) could be used to reconfigure landscapes to balance 

ecosystem services supply and demand at a regional scale. This information can be used to improve 

the type and location of management practices such as native species plantation, mixed forest 
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plantation, smaller clear-cut areas, etc., to reduce negative effects of current exotic plantation 

management. However, future research regarding trade-offs between land use, ecosystem services, 

and biodiversity is further needed in order to understand and analyze the system as a whole (Seppelt 

et al., 2011; Volk, 2013). 

 

4.4.4 Limitations and uncertainties 
One of the major challenges of mapping ecosystem services supply in the area is the scarcity of 

spatially explicit and temporally concordant data. Mapping ecosystem services based on Landsat 

scenes and land cover maps bring several advantages to overcome long term data availability and 

reliability limitations (Tomscha et al., 2016). However, the use of purely land cover based proxies 

for ecosystem service mapping leads potentially to simplifications (Clec’h et al., 2016; Eigenbrod 

et al., 2010). The InVEST models are spatially explicit and require an intermediate level of input 

data that has been recognized as suitable for regional planning and management (Bagstad et al., 

2013b; Goldstein et al., 2008; Nelson et al., 2009).   

Results are influenced both by uncertainties of data and of the model structure - that simplifies the 

description of ecological and physical processes (Sharp et al., 2015). Calibration of the models to 

local conditions and validation with independent data increase the reliability of model predictions 

but is limited by data availability. Based on the data obtained from the water national monitoring 

program we were able to validate the modeled sediment retention. We compared available 

observations on Total Suspended Solids (TSS) at the catchment level with simulations with 

InVEST. Therefore the TSS data had to be converted to annual loads with the Load Estimator 

LOADEST (Runkel et al., 2004) to the units of the InVEST model (Mg per year). The model results 

explained approximately 90 % of the observed sediment loads across the case study region and all 

periods (4 S-A Figure 1). 

 
For the other ecosystem services an exhaustive literature review as well as an analysis of available 

administrative data was performed (for more information see Supplementary material 1) to obtain 

data for comparison with the modeled values. Changes in carbon stocks and plantation site 

productivity modeled values were discussed with local experts (Professor Gayoso and Sandoval, 

Personal communication) to corroborate plausibility of the modeled results. Our modeled results 

were in line with the results from local measurements. Phosphorous export values predicted by 

InVEST were in the range of local measurements (Cuevas et al., 2006; Oyarzun et al., 1997) - more 

information is provided in the Supplementary material S1.   

Due to the presence of extended cloud cover, we were unfortunately not able to cover the period 

between 1986 and 1998. Therefore, temporal dynamics could only be assessed properly for the 

periods after 1998. We can only speculate about the dynamics between 1986 and 1998 at a higher 

temporal resolution. For the periods after 1998 the temporal resolution seems to be adequate to 
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capture the processes of land use change by forest management, expansion of plantations and to a 

lower degree by urban expansion gave the temporal scale at which these processes manifest at the 

landscape. 

4.5 Conclusions  
 
The presented analysis has demonstrated the relevance of quantifying and mapping ecosystem 

services over time, integrating knowledge about its frequency and magnitude of change. Our results 

support the statement that more multi-scale ecosystem service assessment is needed to understand 

this dynamic process. This is clear for the fast changes in plantation production and forest recreation. 

The omission of dynamic periods would have led to a different perception about the speed and 

extent of the changes in carbon stocks, plantation production, and forest recreation service supply. 

The strong temporal differences in sediment retention highlight that average conditions across a 

longer period do not capture the importance of regulating services with high sensitivity towards 

peak events well. For phosphorus retention and landscape aesthetics services, an omission of single 

periods would have been less dramatic – but the analysis still would have missed important 

dynamics in the trajectory of ecosystem services supply (i.e., a discontinuous increase of 

phosphorous retention and landscape aesthetic). Thereby, our results also highlight the potential of 

using the freely available Landsat time series for ecosystem service mapping.  

Our findings further underline the importance of deforestation and exotic forest plantations 

expansion for ecosystem services supply in the South of Chile. Furthermore, the importance of 

distinguishing the processes in different regions became clear. While agricultural and exotic forest 

plantations expansion has been of important in the Central Valley, natural forest logging, as well as 

exotic forest plantations, have been of central concern in the other regions. We found that while 

changes in carbon stocks in the Central Valley increased - mainly due to the exotic forest 

plantations- changes in carbon stocks in other regions such as the Coastal range decreased due to 

the loss of old growth and secondary forest. The changes in sediment and phosphorous retention 

supply over time underline existing findings of the high relevance of forest vegetation, especially 

riparian buffers. This highlights the huge importance to protect and enhance buffer areas close to 

streams and the relevance of further research to identify areas to maintain a balance between 

ecosystem services supply and demand at a regional scale. Land use planning in the region should, 

therefore, pay attention to conserve and enhance these valuable ecosystems. Such a strategy could 

be combined with the goal of biodiversity conservation if riparian forest could be established as 

corridors to enhance landscape connectivity. While the number of protected forest areas increased 

over time, landscape aesthetics showed a contrasting pattern – with a decline in its natural degree 

over time. This decrease is due to the fact that the new protected areas were created in remote areas 

far from the anthropic pressure of recreational interest points. Especially the lack of protected areas 

in the Central Valley should be of concern for land use planners since this has negative effects on 
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the supply of regulating and cultural services. Consequently, we want to highlight the importance 

of our results for further research on ecosystem services trade-offs and synergies by using spatio-

temporal approaches to support management strategies in multi-functional landscapes.  
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4.7 Supplementary Material 
 
4.7.1 Supplementary Material A 
 
4 S-A Table 1 Land use land cover classifications product. 

LULC 
Code LULC Description 

  
1 Artificial surfaces and associated areas (Urban areas >50%) 
2 Closed to open (>15%) herbaceous vegetation (natural and artificial 

annual pastures, agricultural areas with different crops such as wheat 
or oats) 

3 Closed to open (>15%) shrubland (< 10% tree cover, result of natural 
succession or native forest logging). 

4 Closed to open secondary forest, (>15%) broadleaved evergreen or 
semi-deciduous forest (>5m) secondary growth native. 

5 Closed to open old-growth forest (>15%) broadleaved evergreen or 
semi-deciduous forest from Coastal areas.  

6 Closed to open old-growth forest (>15%) broadleaved evergreen or 
semi-deciduous forest from Andes areas. 

7 Productive exotic forest plantation (Pinus radiata and Eucalyptus 
sp.) 

8 Bare areas 
9 Water bodies 
10 Areas without land cover information due to clouds and shadows, 

masked by Fmask 
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4 S-A Table 2 Carbon model input for aboveground biomass, belowground biomass, soil organic carbon and 
dead organic matter carbon by LULC type (A and C, 2005; Gayoso, 2001; Gayoso and Schlegel, 2003; 
Gonzalez and Gayoso, 2005; Keith et al., 2009; Schlegel, 2001; Schlegel and Donoso, 2008) 

LULC Description Aboveground 
Biomass 

Belowground 
Biomass 

Soil 
Organic 
Carbon 

Dead 
Organic 
Matter 

  Mg ha-1 
 
 
Artificial surfaces and associated areas (Urban 
areas >50%) 

5.5 0.6 15.0 0.5 

Closed to open (>15%) herbaceous vegetation 
(natural and artificial annual pastures, agricultural 
areas with different crops such as wheat or oats) 

4.0 5.0 166.0 2.0 

Closed to open (>15%) shrubland (< 10% tree 
cover, result of natural succession or native forest 
logging). 

8.0 48.0 164.0 20.0 

Closed to open secondary forest, (>15%) 
broadleaved evergreen or semi-deciduous forest 
(>5m) secondary growth native. 

161.2 43.6 148.5 50.5 

Closed to open old-growth forest (>15%) 
broadleaved evergreen or semi-deciduous forest 
from Coastal areas.  

284.9 79.5 180.91 59.4 

Closed to open old-growth forest (>15%) 
broadleaved evergreen or semi-deciduous forest 
from Andes areas. 

387.3 103.8 149.7 102.8 

Productive exotic forest plantation (Pinus radiata 
and Eucalyptus sp.) 133.7 33.7 117.9 14.7 

Bare areas 2.3 0.5 21.7 0.5 
Water bodies 0.0  0.0 0.0 0.0 
Areas without land cover information due clouds 
and shadows 0.0  0.0 0.0 0.0 
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4 S-A Table 3 Sediment retention input table. USLE cover and management factor (C) and USLE support 
practice factor (P) and Sediment filtration by LULC type (Bonilla et al., 2010; Bonilla and Johnson, 2012; 
Renard and Freimund, 1994). 

LULC Description USLE 
C 

USLE 
P 

 
Artificial surfaces and associated areas (Urban areas >50%) 
 

0.01 1 

Closed to open (>15%) herbaceous vegetation (natural and artificial annual 
pastures, agricultural areas with different crops such as wheat or oats) 0.038 1 

Closed to open (>15%) shrubland (< 10% tree cover, result of natural 
succession or native forest logging). 0.13 1 

Closed to open secondary forest, (>15%) broadleaved evergreen or semi-
deciduous forest (>5m) secondary growth native. 0.004 1 

Closed to open old-growth forest (>15%) broadleaved evergreen or semi-
deciduous forest from Coastal areas.  0.003 1 

Closed to open old-growth forest (>15%) broadleaved evergreen or semi-
deciduous forest from Andes areas. 0.003 1 

Productive exotic forest plantation (Pinus radiata and Eucalyptus sp.) 0.006 1 
Bare areas 1 1 
Water bodies 0.0  1 
Areas without land cover information due to clouds 
and shadows 0.0  1 
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4 S-A Table 4 Phosphorous retention input table.  Evapotranspiration coefficient (ETcoeff), Rooting depth, 
P export coefficients and vegetation filtration by LULC type (Cuevas et al., 2014, 2006, Oyarzun et al., 2015, 
1997; Oyarzún et al., 2007). 

LULC Description ETcoef 
 

Root 
depth 
(mm) 

Load P      
(kg ha -1 yr-

1) 

Filtering 
Capacity 

(%)  
 
 
Artificial surfaces and associated areas (Urban 
areas >50%) 

0.3 1 0.1 5 

Closed to open (>15%) herbaceous vegetation 
(natural and artificial annual pastures, agricultural 
areas with different crops such as wheat or oats) 

0.65 2000 0.05 40 

Closed to open (>15%) shrubland (< 10% tree 
cover, result of natural succession or native forest 
logging). 

0.7 2500 0.05 75 

Closed to open secondary forest, (>15%) 
broadleaved evergreen or semi-deciduous forest 
(>5m) secondary growth native. 

0.8 6000 0.05 75 

Closed to open old-growth forest (>15%) 
broadleaved evergreen or semi-deciduous forest 
from Coastal areas.  

1 7000 0.011 80 

Closed to open old-growth forest (>15%) 
broadleaved evergreen or semi-deciduous forest 
from Andes areas. 

1 7000 0.011 80 

Productive exotic forest plantation (Pinus radiata 
and Eucalyptus sp.) 1 7000 0.011 75 

Bare areas 0.2 1 0.001 5 
Water bodies 1 1 0.001 5 
Areas without land cover information due clouds 
and shadows 0.3  1 0.0 0.0 

     
 
 
4 S-A Table 5 Annual export (sediment + solution) of phosphorous (mg m-2 yr-1) from watersheds of the 
Rupanco lake (1994-1995) (modified from Oyarzun et al. 1997) 

Watershed  Land use in the watershed (%) PO4-P Ptot 
Forest Grassland Agricultural Shrubland Lake 

Forest 98.4 0.0 0.0 1.6 0.0 16.3 64.8 
Forest 100.0 0.0 0.0 0.0 0.0 14.3 104.5 
Shrubland-grassland 0.0 54.8 2.0 27.5 15.7 12.6 66.0 
Grassland 17.0 72.5 6.9 3.6 0.0 12.3 117.9 
Grassland 31.0 67.5 1.5 0.0 0.0 19.3 118.5 
Agricultural 
grassland 23.3 56.2 18.5 1.8 0.0 12.9 93.5 
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4 S-A Table 6 Description of the degree of naturalness used no assess Aesthetic value (modified from 
(Machado, 2004). 

Degree of naturalness 
code Degree of naturalness description LULC code 

1 

Artificial surfaces and associated 
areas were the vegetation has been 
deliberately determined by humans 
with loss of the previous habitat 

1-7 

2 
Semi-natural areas with changes but 
the structure of the vegetation is 
basically the same 

2-3-4 

3 

Natural areas with no or minimal 
disturbance by human activities 
(maintain structure and species 
composition) 

5-6-9 

no apply   8-10 
 
 
4.7.1.1 Site index description 
 
We use the site index developed by the Forest Research Institute in Chile. The index was obtained 

from extensive and intensive forest inventory were basic data from height and age were measured 

in different geographic areas. The geographical areas were stratified considering homogeneous soil 

and climatic areas to avoid distortions on estimators due to different age distributions. The empirical 

equations for the site index were fitted base on a regression model (height and age variables) for the 

species (García, 1970; INFOR, 1999; Pinilla S., 1998; Schlatter and Gerding, 1995). The equation 

obtains for the index curves were: 

Ln A =  a +  b/E,  

Where A is the mean height of dominant and codominant trees and E is the age, for Pinus radiata 

and 

H=75.3 (l-e-bt) 1/0.863  

Where H is the height dominant in meters T is the age in years, b depends on the site quality, for 
Eucalyptus sp. (Garcia, 1995).  
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4 S-A Figure 1 Validation of modeled sediment export InVEST (black bars) versus field data obtained from 
the Chilean national water agency (DGA, Dirección Nacional de Aguas, grey bars). 
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4.7.2 Supplementary Material B 
 
4.7.2.1 Maps of selected ecosystem services and its zoom to clearly visualize changes on 

ecosystem services supply over time. 
 

4 S-B Figure 1 Carbon storage (Mg haˉ¹) 
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4 S-B Figure 2  Zoom area, carbon storage (Mg haˉ¹) 
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4 S-B Figure 3 Plantation production index 
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4 S-B Figure 4  Zoom area, the Plantation production index 
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4 S-B Figure 5  Sediment retention (Mg haˉ¹) 
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4 S-B Figure 6  Zoom area, sediment retention (Mg haˉ¹) 
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4 S-B Figure 7 Phosphorous retention (Kg haˉ¹) 
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4 S-B Figure 8 Zoom area, phosphorous retention (Kg haˉ¹) 
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4 S-B Figure 9 Landscape aesthetic (unitless) 
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4 S-B Figure 10 Zoom area, Landscape aesthetic (unitless) 
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4 S-B Figure 11 Forest recreation (% of the area) 
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4 S-B Figure 12 Zoom area, forest recreation (% of the area) 
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4 S-B Table 1 Land cover composition.  Percentage of the four geomorphological units covered by the 
different land covers classes. The area of the four regions was constant across time.  

 
 

 

Land cover Andes range Pre-andean Central valley Coastal range Andes range Pre-andean Central valley Coastal range Andes range Pre-andean Central valley Coastal range
Urban 0.3 0.5 1.7 0.7 0.3 0.5 1.8 0.9 0.3 0.5 1.9 0.9
Grassland/arable land 3.7 9.5 51.3 7.0 4.1 10.7 51.1 4.5 4.0 10.4 51.6 5.2
Shrubland 5.9 7.3 16.6 11.8 9.0 9.2 14.7 14.9 6.2 6.4 10.0 13.0
Secondary 0.9 1.2 10.1 17.9 1.8 2.3 11.5 14.7 6.0 5.5 16.4 16.7
Old-growth forest 60.2 50.7 5.3 53.0 58.1 47.6 4.3 48.1 56.0 46.5 3.8 46.7
Plantations 0.0 0.0 0.9 2.4 0.0 0.2 5.8 7.4 0.0 0.5 6.8 8.4
Bare land 6.8 3.4 12.7 4.0 4.4 2.2 9.4 6.3 5.4 2.8 8.2 5.9
Water 4.4 23.4 1.1 2.8 4.4 23.4 1.1 2.8 4.4 23.5 1.1 2.8
Areas without information 17.7 4.0 0.2 0.3 17.7 4.0 0.2 0.3 17.7 4.0 0.2 0.3

Land cover Andes range Pre-andean Central valley Coastal range Andes range Pre-andean Central valley Coastal range Andes range Pre-andean Central valley Coastal range
Urban 0.3 0.5 2.0 1.0 0.3 0.6 2.0 1.0 0.3 0.6 2.0 1.1
Grassland/arable land 3.4 9.5 47.2 4.4 3.6 10.4 51.3 4.8 3.6 8.4 48.0 4.3
Shrubland 7.8 7.6 9.2 13.0 7.7 6.5 6.7 10.9 7.3 8.1 11.7 12.5
Secondary 6.7 6.6 16.6 19.2 7.3 7.5 16.9 22.5 7.3 7.3 14.7 22.0
Old-growth forest 55.7 46.1 3.3 44.8 55.1 45.4 3.1 42.4 55.0 45.1 3.0 41.7
Plantations 0.0 0.8 9.0 10.7 0.0 0.9 9.6 11.6 0.0 1.0 9.2 11.0
Bare land 3.9 1.5 11.4 3.8 3.6 1.2 9.0 3.5 4.2 2.0 10.0 4.2
Water 4.4 23.4 1.1 2.8 4.4 23.5 1.2 2.8 4.4 23.5 1.2 2.9
Areas without information 17.8 4.0 0.2 0.3 17.8 4.0 0.3 0.4 17.8 4.0 0.3 0.4

Land cover Andes range Pre-andean Central valley Coastal range
Urban 0.3 0.6 2.1 1.1
Grassland/arable land 3.2 8.6 47.9 3.8
Shrubland 7.6 7.6 13.4 13.3
Secondary 7.4 7.7 14.8 21.8
Old-growth forest 55.0 45.1 3.0 41.7
Plantations 0.0 1.1 9.2 11.0
Bare land 4.3 1.9 8.2 4.0
Water 4.5 23.5 1.2 2.9
Areas without information 17.7 3.9 0.2 0.3

T7: 2010-2011

T1: 1985-1986 T2: 1998-1999 T3: 2000-2001

T4: 2003-2004 T5: 2005-2006 T6: 2008-2009
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5 Reconnecting fragmented Patagonian landscapes: Insights from an 
ecosystem services supply and beneficiaries’ assessment. 
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5.1 Abstract 
 
Landscape management strategies oriented to reconnect highly fragmented landscapes play a crucial 

role in maintaining ecosystem services supply and materials flow in socio-ecological systems. At a 

regional scale, the integration of different structural landscape elements and types of protected areas 

show a huge potential to improve ecosystem services and conservation efforts. We analyzed the 

contribution of structural connectivity areas (SCA), defined as the integration of riparian corridors 

(linear elements) and national conservation units (patch elements) at the regional level, on 

ecosystem service supply and beneficiaries in a highly fragmented area hotspot of biodiversity in 

Southern Chile. Based on a spatially explicit approach, we mapped and identified the beneficiaries 

of selected forest ecosystem services (carbon storage, sediment retention, phosphorous retention, 

plantation site productivity, landscape aesthetics, and forest recreation). Our results show that the 

SCA provided more than 60% of the total ecosystem service supply of the whole the study area in 

the region —especially for regulating services, even when SCA accounts only for the 40% of the 

total study area. Furthermore, the highest density of beneficiaries was located in or surrounding the 

SCA. The spatial identification of beneficiaries revealed a spatial mismatch between ecosystem 

services supply and their beneficiaries: beneficiaries were mainly allocated in the Central Valley 

while high ecosystem services provision was located in the Andes and Pre-Andes range. Our 

research highlight the need for accounting for the interconnection between ecosystem services and 

its beneficiaries to improve landscape management. Moreover, SCA reveals its potential as a 

landscape planning strategy enhancing ecosystem services supply in areas with a high density of 

beneficiaries (especially in the Central Valley).  

 

Keywords 
Forest ecosystem services, modeling, structural connectivity areas (SCA), ecosystem service 

supply, beneficiaries, Southern Chile. 
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5.2 Introduction 
 
Landscape connectivity is based on the complex interaction between functional and structural 

elements, playing a crucial role in maintaining ecosystem functions and services at different spatio-

temporal scales (Beier and Noss, 1998; Fischer and Lindenmayer, 2007; Mitchell et al., 2013; 

Taylor et al., 1993). Spatio-temporal changes in landscape composition and configuration 

drastically impair the ability of ecosystems to provide multiple services (Lamy et al., 2016; Mitchell 

et al., 2015). Nowadays, habitat fragmentation is a pressing concern in many socio-ecological 

systems because it leads to an increased vulnerability of the landscape systems to external influences 

such as invasive species (Kawasaki et al., 2017; Yates et al., 2004), modifications of the local 

climate (i.e., evapotranspiration, wind) (Agosta et al., 2017; Laurance et al., 2018), alter water flow 

(Brauman et al., 2007), among others impacts. Despite the relevance of landscape planning 

strategies oriented to reconnect strongly fragmented landscapes –especially in high biodiversity 

regions–conservation areas are still commonly isolated between each other (Watson et al., 2014). 

Pringle (2017) highlighted the huge potential to improve conservation efforts by overhaul protected 

areas current management strategies through the expansion and restoration of current landscape 

elements (i.e., degraded riparian corridors). Likewise, several studies have shown that the 

implementation of landscape elements such as corridors can balance and mitigate landscape 

fragmentation impacts and thus support landscape planning (Garcia et al., 2017; Hofman et al., 

2018; Naidoo et al., 2018; Newmark et al., 2017). Corridors, defined as structural linear landscape 

features, promote conservation and at the same time maintain system complexity (Hess and Fisher, 

2001; Hobbs, 1992; Lindenmayer et al., 2006). Furthermore, riparian corridors are widely 

recognized as an interface between terrestrial and aquatic systems, controlling diverse ecosystem 

functions and services (Lyon and Gross, 2005; Naiman et al., 1993). These areas might impact the 

supply of several ecosystem services such as water and flood regulation, habitat provision for 

pollinators, birds, fish and mammals, carbon sequestration, and recreation (Cole et al., 2015; Díaz 

et al., 2006; Gillies and St. Clair, 2008; Turner et al., 2012). Additionally, landscape management 

programs oriented to combine linear (i.e., riparian corridors) and patchy landscape elements such 

as conservation areas in highly fragmented landscapes offer a potential solution to maintain/ensure 

ecosystem services provisioning and biodiversity protection over time.  

In this study, we analyze the relevance of combining linear and patchy landscape elements (from 

now on structural connectivity areas—SCA) in a highly fragmented region in Southern Chile based 

on its contribution to the provisioning of forest ecosystems services to different beneficiaries. We 

defined SCA as the integration of riparian corridors (surrounding the main rivers that flow from the 

Andes to the Coastal range) and the national conservation units at the regional level. These 

conservation areas protect the Valdivian temperate rainforest ecosystem, one of the largest relict of 

the temperate forest in the world (J. Armesto et al., 1998) with high rates of endemic flora and fauna 



Reconnecting fragmented Patagonian landscapes 

83 
 

(Armesto et al., 1996). One important characteristic of the national conservation areas is that they 

are highly disconnected. Even if we consider other private conservation initiatives in the area the 

main conservation areas are located in the mountain ranges (the Andes and Coastal range), 

representing only a few ecosystems and using remote areas with poor accessibility (Durán et al., 

2013). Furthermore, the region has undergone a large landscape transformation process (Echeverría 

et al., 2007; Locher-Krause et al., 2017b; Miranda et al., 2015) that altered the ability of the system 

to provide benefits to society (Locher-Krause et al., 2017a, 2017b).  

It has been stated that the ecosystem services approach has a great potential to understand socio-

ecological systems in a multidisciplinary way, allowing the development of better planning in 

landscapes that provide multiple services (Bennett et al., 2009; Renard et al., 2015). Despite the 

importance of identifying ecosystem services and its beneficiaries –and the complex spatio-

temporal mismatches between supply-demand— a clear knowledge gap exists in how to integrate 

beneficiaries needs and demands in landscape planning strategies (Bagstad et al., 2013a; Fisher et 

al., 2009; García-Nieto et al., 2013; Mach et al., 2015; Rodríguez et al., 2006). We seek to close this 

gap by combining an ecosystem service assessment with an analysis of beneficiaries across the 

landscape, which has been rarely done so far (Syrbe and Grunewald, 2017; Wei et al., 2017). 

Thereby, we want to answer the following questions: (1) how much do SCA contribute to forest 

ecosystem services supply, (2) where is the highest density of ecosystem services beneficiaries 

located across the landscape and which is their linkage with SCA?, (3) how much beneficiaries 

would profit if the SCA would be designated with a different protection status for further restoration.  

 

5.3 Material and Methods 
 
5.3.1 Study area  
The study region covers an area of 16,625.7 km² and is located in Southern Chile, Northern Chilean 

Patagonia (73°20’ W-39°25’ S - 71°59’ W-41° 14’ S) (c.f. Figure 5.1). The region is characterized 

by high precipitation, with an average of 2,500 mm per year concentrated mainly in the winter 

season (June-September). The region shows a (temperate oceanic climate with a Mediterranean 

influence with an annual mean temperature of around 11.9⁰C (CIREN, 1994; Di Castri and Hajek, 

1976). The altitudes range between sea level in the West and 2500 m in the East, in the different 

geomorphological units: (1) the Coastal Mountain range (up to 900 m), (2) the Central Valley (up 

to 250 m), and (3) Precordillera and the Andes mountain range (up to 2,422m). Historically, the 

area went through an intense and diverse process of landscape transformation. Different type of 

historical and economic processes triggered these modifications as for example the convention of 

native forest to agricultural land during the European colonization back in the XVI-XVII century. 

In the XX century, the clearing of the native forest continued due to the boom of crop production 

(Armesto et al., 2010; Echeverria et al., 2006) and later on because of the fast expansion of exotic 
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forest plantations since the 70s. All these processes led to a significant deforestation and reduction 

of biodiversity in Southern Chile (Lara et al., 2011; Nahuelhual et al., 2012).  

The area has a population of circa 356.000 inhabitants (2.4% of the total national population) with 

a density of 19.3 inhabit/km2. The population is mainly concentrated in urban areas (68.3%) 

compared to 31.7% of the inhabitants that live in rural areas. However, the study region has a high 

proportion of rural population compared to the national rate of 13%. From the total population of 

the region, 11.3% recognized themselves ethnically as Mapuches, Chilean indigenous inhabitants, 

considerably higher than the national average of 4.6%, living mainly in areas near to the Andes and 

the Coastal range. The poverty rate in the study area reaches 16.8% with an illiteracy rate of 6.9% 

(Casen, 2015). The primary economic activities are based on natural resources utilization from the 

forestry sector (pulp, shipyard and paper industry), the agricultural sector (livestock, crop, and 

berries production) and from the non-industrial fishing in the areas near to the seaside (INE Instituto 

Nacional de Estadística, 2012). The primary economic focus, oriented to natural resources 

extraction, have led to a degradation of the natural ecosystems and with it a decrease in the supply 

of benefits for the local society which depend on them. This economic focus has caused severe 

conflicts between production and nature conservation in the area (i.e., soil erosion due to poor 

management standards, river pollution, loss of biodiversity) (Locher-Krause et al., 2017b, 2017a).   

 

 
Figure 5.1 Study area location in South America (a) and Southern Chile (b). The map shows the SCA (see 
section 2.2.1) defined for the study as well as the most important geomorphological units (c): Coastal 
mountain range, Central Valley, Pre-Andes and Andes mountain range (from west to east).     

 
5.3.2 Methods  
We selected six forest ecosystem services that are recognized as critical in several studies in the 

area (Balvanera et al., 2012; Lara et al., 2009; Little et al., 2014; Locher-Krause et al., 2017a; Laura 

Nahuelhual et al., 2013a; Oyarzún and Hervé-Fernandez, 2015). The selected forest ecosystem 
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services were: (1) carbon storage (regulation service); (2) plantation production (provisioning 

service); (3) phosphorous retention (regulation service); (4) nitrogen retention (regulation service); 

(5) aesthetic value (cultural service); and (6) forest recreation (cultural service). We use information 

derived in previous study  Locher-Krause et al., 2017a to we estimate the contribution of ecosystem 

services supply to the SCA. Details of the approach used to model the ecosystem service supply can 

be found in Locher-Krause et al., 2017a. 

In the case of ecosystem services beneficiaries, they were mapped to identify the demand side of 

forest ecosystem services at the regional scale (2.2.2). We used the ecosystems services previously 

selected for supply, except for nitrogen and phosphorous retention services which were merged as 

water regulation services. These water regulation services were the base to identify the drinking 

water beneficiaries in the area. 

5.3.2.1 Defining structural connectivity areas (SCA) 
We defined areas that potentially contribute to the structural and functional reconnection of the 

landscape based on vulnerable areas identified in previous research (Locher-Krause et al., 2017a, 

2017b). We identified and assessed SCA as a first attempt to reconnect the highly fragmented 

landscapes in the case study region. The SCA include different types of landscape elements such as 

linear elements (riparian corridors) as well as patches of protected areas located in each mountain 

range, the Andes and Central Valley. Following this approach, we were able to connect the two 

largest native forest fragments effectively through the riparian zones. We integrated three protected 

areas located in the Andes (National parks Puyehue, Vicente Perez Rosales and National reserve 

Mocho Choshuenco) and three in the Coastal Mountain rage (National park Alerce Costero, 

National reserve Valdivia and the Private reserve Costera Valdiviana). To connect these protected 

units, we defined a 300 meters buffer area surrounding the main rivers that flow from the Andes 

range to the sea (San Pedro, Calle Calle, and Rio Bueno rivers). Also, two areas located in the 

Central Valley —the San Pedro river valley (658 km2) and Llollenhue (246.3 km2) — were 

integrated (c.f. Figure 5.1). These areas have been recognized as relevant to support ecological 

processes at the regional level and considered crucial as the potential habitat of endangered species 

(Centro de Estudios Agrarios y Ambientales, 2010, and Patricio Romero, personal communication).  

For the previously defined areas, we estimated the proportion of the different land cover classes and 

their trajectory over time (from 1985 until 2011) using the land cover information generated from a 

supervised Random forest classification of Landsat scenes (Locher-Krause et al., 2017b).  To 

evaluate the relevance of protecting the SCA to allow regrowth of natural vegetation, we calculated 

the ecosystem services supply trajectory for the selected forest ecosystem services in both areas —

SCA and remaining areas—, based on Locher-Krause et al. (2017a). 
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5.3.2.2 Mapping ecosystem services beneficiaries  
We used different proxies and data sources to map potential ecosystem services beneficiaries as 

presented in (Table A.1 S1). These proxies were: (1) population density for carbon sequestration, 

(2) land ownership for timber/pulp provisioning, (3) upstream catchment area of each population 

center for water regulating services, (4) beneficiaries of the aesthetic value service identified based 

on a touristic viewshed analysis (Locher-Krause et al., 2017a), and (5) forest recreation beneficiaries 

(have been calculated based on the number of visitors). 

For carbon sequestration, the population of the whole planet could be considered as service 

beneficiaries. From a regional perspective, all inhabitants of the region benefit from that service. 

Therefore, we estimated the beneficiaries by generating a local population density raster based on 

the urban and rural statistics from national and regional population census (INE Instituto Nacional 

de Estadística, 2012). For timber/pulp provisioning areas, we evaluated the number of exotic forest 

plantations by landholding ownership to identify the related main beneficiaries at the regional scale 

(Locher-Krause et al., 2017a; SII 2000). The upstream catchment area of each population center 

that supplies water to the river or streams nearest to each settlement in rural and urban areas was 

used as a proxy of the drinking water provisioning service (MOP, 2012). To be able to identify the 

locations of beneficiaries we integrated information on drinking water extraction points in the 

watershed (MOP, 2012) with the population density map. The ArcSWAT watershed delineation 

tool (ArcSWAT 2012.10.19) was used together with a digital elevation model (Lehner et al., 2008) 

to delineate the watersheds of the drinking water extraction points. The delineated areas were 

intersected with spatial information of rural and urban population density to address the number of 

people that benefit from each water extraction point per watershed. For our analysis, we excluded 

coastal areas (Figure 5.4) due to a lack of official data regarding rural drinking water sources.  

The beneficiaries of the aesthetic value service were identified based on Locher-Krause et al. 

(2017a). This dataset aggregated spatial information of a viewpoint database from the national 

tourist agency (SERNATUR and GORE Region de Los Rios, 2014) and geo-tagged digital images 

from different photo-sharing platforms (Flickr, www.flickr.com, Google Earth, earth.google.com 

and Panoramio, www.panoramio.com) into a viewshed analysis in ArcGIS (ESRI, 2011). The forest 

recreation beneficiaries were estimated by the number of local and foreign visitors per year in each 

protected area (SERNATUR, 2004-2013). We considered only the national protected areas (national 

parks, national reserves, national monuments) due to the lack of public and continuous information 

about visitors of private protected areas.  

 

5.3.2.3 Matching SCA and its beneficiaries 
After mapping the distribution of ecosystem services beneficiaries across the landscape, we 

calculated the proportion of beneficiaries that profit from one of the selected ecosystem services in 

the total area, the SCA and remaining areas. For the forest exotic plantation and forest recreation 

http://www.flickr.com/
http://www.panoramio.com/
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services, we were able to distinguish different types of beneficiaries: private owners, companies, 

communities/cooperatives, and governmental institutions.  

Areas in the proximity of densely populated or intensively production-oriented areas are at increased 

risk of being transform. Therefore, we also calculated service provisioning separately of SCA in a 

300m buffer in the proximity of the SCA or around densely populated areas. 

We identified hot and cold spots of ecosystem services supply and number of beneficiaries by a 

weighted overlay of the ecosystem services or beneficiaries’ layers. First, each ecosystem service 

supply and each beneficiaries layer were scaled between 0 and 1. Percentiles were calculated for 

each normalized ecosystem service, and beneficiaries layer and all areas below the 20th percentile 

and above the 80th percentile were marked. Afterward, all ecosystem service layers and all 

beneficiaries’ layers were intersected. For the hotspot analysis, the presence of individual services 

or beneficiaries above the 80th percentile in each of the remaining polygons were counted while for 

the cold spot analysis the presence of services or beneficiaries below the 20th percentile was counted. 

 

5.4 Results 
 
5.4.1 Spatial land cover distribution 
The land cover distribution varied substantially across the SCA and remaining areas (Figure 5.2). 

The SCA were dominated by old growth forest (in the Andes and Coastal mountain ranges) followed 

by secondary forest. The situation was different in the remaining areas, in which grassland / arable 

land, shrubland, secondary forest, and exotic forest plantations were the most frequent land cover 

classes. Furthermore, large differences in land cover trajectory were identified in both areas (Figure 

5.2). In the SCA, secondary forest increased over time, in contrast to the remaining areas where 

secondary forest primarily increased, and then decreased during the last two periods. Old growth 

forest declined in both SCA and remaining areas over time, but in the SCA, the magnitude of the 

loss was higher than in the remaining areas, especially between 1985 and 2004. Exotic forest 

plantations showed a steep increase over time, especially in the remaining areas. 
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Figure 5.2 Distribution of land cover classes in each area: a) SCA, b) remaining area, and in the different 
periods: T1:1985-1986, T2: 1998-1999, T3: 2000-2001, T4: 2003-2004, T5: 2005-2006, T6:2008-2009, 
T7:2010-2011. 

 
5.4.2 Ecosystem services supply in the SCA and remaining areas 
The ecosystem services supply showed, both spatially and over time, an uneven trajectory in the 

SCA and remaining areas. Areas of high ecosystem services supply were not concordant between 

SCA and remaining areas. SCA showed higher ecosystem services supply values for carbon storage, 

sediment retention, aesthetic value, and forest recreation. In contrast, the plantation production 

index and phosphorous retention were higher in the remaining areas than in the SCA (Figure 5.3).  
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Figure 5.3 Ecosystem services supply trajectory over time in the SCA and remaining area: a) carbon storage, 
b) plantation productivity index, c) sediment retention, d) phosphorous retention, e) aesthetic value, f) forest 
recreation. The values represent arithmetic mean values for each area. 

 
About 60% of the carbon storage service was provided by the SCA, with a slight fluctuation over 

time (Figure 5.3a). In contrast, the variation in the remaining areas was larger - likely due to the 

increasing of exotic forest plantations in the area.  

Plantation production index differed strongly between both areas, with more than 80% of the exotic 

forest plantations service allocated in the remaining areas (Figure 5.3b). Exotic plantations and the 

services provided by them increased strongly over time in the remaining areas, especially from 1985 

to 2006. This trend was also noticeable in the SCA, although at a much lower rate. 

The supply of water quality regulation services (sediment and phosphorous retention) varied 

substantially in different areas (Figure 5.3c and d). Sediment retention revealed higher peaks in the 

years 2000-2001 (T3) and 2005-2006 (T5), with higher values in the SCA than in the remaining 
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areas; with values that reached 60% of the total supply of sediment retention for the SCA. 

Phosphorous retention showed higher values in the remaining areas (approx. 60% of the total 

supply), with an increase over time for both areas. 

For the cultural services aesthetic value and forest recreation the highest supply occurred in the SCA 

(Figure 5.3e and f). For aesthetic value, the areas with the greater provisioning values (approx. 63%) 

were allocated in the SCA with a slightly decreasing trend over time. Forest recreational areas were 

primarily located in the SCA and coincided with the location of the national protected areas (see 

methods section 2.2.2). Over time forest recreation service increased largely, especially in the period 

between 2003 and 2006. 

 

5.4.3 Spatial allocation of ecosystem services beneficiaries 
The distribution of ecosystem services beneficiaries differed between the different areas and for 

each ecosystems service (Figure 5.4). Carbon storage beneficiaries were mainly concentrated in the 

Central Valley, except for the densely populated northern part of the study area near the seaside) 

(Figure 5.4a). The mountainous regions showed a lower number of service beneficiaries.  

Beneficiaries of water regulation (drinking water) and provisioning services were mainly located in 

the central-western part of the study area (Figure 5.4b). The coastal area could not be included in the 

analysis due to a lack of official data regarding rural drinking water sources. However, given the 

low population density of this area, it is unlikely that their inclusion would have changed the overall 

pattern. 
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Figure 5.4 Spatial distribution of beneficiaries for the selected ecosystem services in the study area: a) carbon 
storage beneficiaries, b) drinking water beneficiaries, c) plantation productivity beneficiaries, d) landscape 
aesthetic beneficiaries, e) forest recreation beneficiaries. For carbon storage, drinking water beneficiaries, and 
cultural services high values indicate areas with high densities of beneficiaries of that services, and low values 
low density of beneficiaries. In the case of plantation productivity, the colors also show the different 
landholding ownership. 

 
Plantation beneficiaries were almost exclusively concentrated in the Central Valley. However, some 

beneficiaries were also located in the proximity of the Coastal range, especially in the central-
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northern part of the study area. The resulting maps also reveal that forestry companies and private 

owners were the most frequent type of exotic forest plantations beneficiaries (Figure 5.4c). 

Beneficiaries of landscape aesthetics were highly concentrated in proximity to water bodies (lakes, 

rivers, see), mountains (especially volcanoes), and in areas in the central valley close to the main 

roads (Figure 5.4d). Forest recreational beneficiaries were spatially concordant to the national parks 

(Figure 5.4e) – mainly due to the fact that it is illegal to access private areas for recreational purposes 

in Chile.  

 

5.4.4 SCA and beneficiaries  
Similarly, to our ecosystem services supply results, ecosystem services beneficiaries were unevenly 

distributed across SCA and the remaining areas. Also, spatial patterns of service supply and related 

beneficiaries differed clearly. For carbon storage beneficiaries, the mean population density was 

slightly higher in the SCA (27.3 inhab/km2) compared to the remaining areas (26.4 inhab/km2). 

However, SCA accounted for a much smaller fraction of the total study area with only 40% of the 

total. Figure 5.5 depicts that the areas in the SCA most likely to face land use change due to urban 

and forest plantation/agricultural expansion also showed a high number of beneficiaries. These areas 

were distributed mainly in the North-West and South-West of the region. Other areas likely to be 

transformed were allocated in the central areas and the proximity of the big lakes. 

 
Figure 5.5 Distribution of the carbon storage beneficiaries in the SCA and remaining areas, the values 
represent the mean values obtained from the population density values for urban and rural areas. The sensitive 
areas located in the proximity of the SCA are shown. 

 
The location of forest exotic plantation beneficiaries coincided with the location of high supply of 

the services (long distance beneficiaries where not include it in this study). In the SCA, the forestry 

companies owned most of the plantation areas, followed by the private owners and regions in which 

the owner could not be identified (Figure 5.6). These results were similar for the remaining areas in 

which the forestry companies owned more than 50% of the total plantation areas, followed by the 
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private owners (38 %). Areas with a high density of beneficiaries in the sensitive areas were mainly 

located in the North-West area near to the seaside. 

 
Figure 5.6 Distribution of the forest exotic plantation beneficiaries in the SCA and remaining areas, the values 
represent the percentage of types of owners in each area. The sensitive areas located in the proximity of the 
SCA are shown (% of the remaining areas). 

 
Drinking water beneficiaries showed a different spatial pattern than the supply the regulation of 

ecosystem services (Figure 5.3). In the SCA, the beneficiaries of the drinking water services were 

mainly located in a small portion of the Central-East study area and the riparian zones in the Central 

Valley. For the remaining areas, the areas with more beneficiaries were located in the Central 

Valley, especially in the South-West and in the surrounding of the riparian zones that belong to the 

SCA (Figure 5.7). Areas with a high density of beneficiaries in the proximities of the SCA were 

mainly concentrated in the riparian zones located through the Central Valley and in the North-West 

side of the study area. 
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Figure 5.7 Distribution of the drinking water beneficiaries in the SCA and remaining areas, the values 
represent the mean population density values in each area. The sensitive areas located in the proximity of the 
SCA are also shown. 

The beneficiaries of aesthetic value services were mainly distributed in the remaining areas, close 

to populated zones in areas with high landscape beauty. Also, a high number of beneficiaries were 

located near water bodies (lakes, rivers and see), volcanoes and mountains, especially in the 

proximity to the Andes mountain range (Figure 5.8). However, some of these beneficiaries were also 

located in the SCA, especially in the central valley in the proximity of the riparian zones. For this 

service, sensitivity areas were distributed mainly in three areas: in the surrounding of the Andes 

Mountains (close to the lakes), the Central Valley in the proximity of to the SCA and the 

northwestern part of the study area.  

 
Figure 5.8 Distribution of the landscape aesthetic beneficiaries in the SCA and remaining areas, the values 
represent the percentage of inhabitants in each area. The sensitive areas located in the proximity of the SCA 
are also shown. 
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For forest recreation beneficiaries, Figure 5.9 shows the number of people that accessed the protected 

areas during the year 2011. The highest number of beneficiaries of forest recreation service accessed 

the regions located in the Andes mountain range, considering national and foreigner visitors (Figure 

5.9a). Concerning the rates of changes, the two more visited protected areas - P.N Vicente Perez 

Rosales and P.N. Puyehue - showed a different trend over time, especially during the last periods 

(Figure 5.9b). Although both protected areas experienced an abrupt decrease in the number of visitors 

after 2009, in the Vicente Perez Rosales P.N the number of visitors increased after 2010 in contrast 

to P.N. Puyehue that showed a steady decrease over time. 

 
Figure 5.9 Distribution of the forest recreation beneficiaries in the SCA and remaining areas, the values 
represent the number of people which have had accessed these areas. The rate of change of SCA over time is 
also shown (the areas that are not shown in the graph had no record of visitors as well as not change over 
time). The different colors also showed the different national parks, dark red: P.N. Vicente Perez Rosales, 
red: P.N. Puyehue, dark orange: R.N. Choshuenco, orange: P.N. Alerce Costero, yellow: R.N. Valdivia. 

 
5.4.5 Ecosystem services supply and beneficiaries  
The spatial distribution of areas with a high supply of ecosystem services and a high density of 

beneficiaries differed between the geomorphological units (Figure 5.10). In the Andes mountain 

range, we identified large continuous areas with higher values in comparison to the Central Valley. 

In contrast to the Coastal range in which areas with higher values were more dispersed (Figure 5.10).  

Regions with a higher supply of ecosystem services and a high number of beneficiaries were more 

frequent in the SCA (54%) than in the remaining areas (46%). Areas with high supply and high 

beneficiaries were mainly located in the Andes and Coastal ranges. Other areas with higher values 

were located in the riparian zones, especially in the southern and northern part of the study area. 
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In the remaining areas, hotspots of service supply and beneficiaries were concentrated mainly in 

patches in the northern and western regions of the Central Valley. Areas with medium values were 

identified in the southern (Central Valley) and the eastern (Andes range) part. 

 
Figure 5.10 Map of the spatial distribution of areas with high values for ecosystem services supply and a high 
number of beneficiaries across the study area. High values areas indicate maximum values for the supply of 
six ecosystem services and the highest density of its beneficiaries in the upper 20th percentile, after their 
normalization. 

 

5.5 Discussion  
 
5.5.1 Ecosystem services supply and its beneficiaries  
The spatially explicit identification of ecosystems services beneficiaries at the local scale has been 

recognized as a critical element to understanding socioecological systems (Bagstad et al., 2014; 

Bennett et al., 2015; Syrbe and Walz, 2012). However, evident gaps persist in the process of 

mapping, essential metrics definition, and assessment of the interconnection among ecosystem 

services and their beneficiaries at the landscape scale (Rieb et al., 2017). Our approach using 

spatially explicit data and simple GIS-based models attempt to uncover the interlinkages among 

ecosystems services and its beneficiaries in the area. The integration of different types of approaches 

and data allowed us to understand the low data availability area but is associated with challenges 

such as higher data uncertainty.  

As the validity of the results widely depends on the quality of the data used for the beneficiaries’ 

assessment, we cross-checked information from different agencies and performed an exhaustive 

literature review to ensure the consistency of our findings (National Water Agency, DGA; National 

Statistical Institute, INE; National Tourism Service, SERNATUR).  In the case of ecosystem 

services supply the data was already validated in Locher-Krause et al., 2017a. The results of the 

beneficiaries’ assessment were in line with socioecological information available for the area (DGA, 
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2017; INE Instituto Nacional de Estadística, 2012, 2007; SERNATUR and GORE Region de los 

Rios, 2014). The most important challenge to identify the different beneficiaries of the services was 

the low temporal scale of socioeconomic data in Chile. Although the national population census and 

socioeconomic statistics are updated every ten years, we used information of the population census 

from 2002 (for rural and urban areas) as the last reliable census of the country. The release of the 

recently conducted census (2017) in 2018 will provide additional data. For drinking water 

beneficiaries missing information / poor-quality data from the Coastal range limited our results to 

the other geomorphological units.  

Future research activities should integrate socio-cultural techniques such as interviews or 

questioners as an additional source of information to expand the understanding of the demand side 

of the system (Harrison et al., 2017). To better link management strategies and the interest/values 

of the different stakeholders, participatory approaches are a promising option (Gómez-Baggethun 

and Naredo, 2015; Hein et al., 2006; Jax et al., 2013). 

The results showed a substantial spatial variation and mismatch between ecosystem services 

beneficiaries and supply areas. This supply-demand mismatch reveals to be particularly crucial for 

regulating ecosystem services in the area — mainly carbon storage and drinking water. In the case 

of the drinking water and forest plantation beneficiaries, both were concentrated primarily on the 

Central Valley depending directly and indirectly on the water resources coming from the Andes 

range. In our study area, several studies have reported continuous and abrupt changes in water 

availability, especially during the summer season (Hervé-Fernández et al., 2016; Huber et al., 2008; 

Little et al., 2009; Oyarzun et al., 2007). These changes in water availability are especially alarming 

when we consider that the most substantial number of drinking water beneficiaries overlap with or 

are located in the proximities of areas used for forest exotic plantation production, which highly 

increased over time (Figure 5.2).  The rise of trade-offs among drinking water demands and 

utilization for exotic forest plantations production on the other side have been widely reported as a 

severe problem in various countries and ecosystems (Comte et al., 2012; Grau et al., 2013; Wallace 

et al., 2003; Young et al., 2005). For instance, Zhang et al., 2015 report a decreasing water 

availability in dryland areas caused by afforestation restoration strategies. The different spatial 

patterns of supply and demand for drinking water provisioning shows that the valuation of 

ecosystems has to consider distant beneficiaries.  The uneven spatial distribution of beneficiaries 

across the landscape indicates the relevance of ecosystem services assessments to identify potential 

conflicts caused by locally high demands for specific services (Balvanera et al., 2012; Bennett et 

al., 2015). 

While our results showed that the most cultural ecosystem services beneficiaries were located in the 

Central Valley (Figure 5.4), its supply was provided by the SCA that were mainly distributed in the 

Andes and Coastal range (Figure 5.8, Figure 5.9). This spatial mismatch corroborates the importance 

and big potential of planning strategies oriented to restore degraded riparian areas (SCA among the 
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two ranges) in zones with a high density of beneficiaries. Furthermore, Martinez-Harms et al., 2018 

emphasized inequalities with regard to access to cultural services in Chile. They provide evidence 

that wealthier citizens travel longer distances to protected areas while people with lower incomes 

tend to visit protected areas closer to their homes. This suggests that integrating riparian zones as 

SCA would provide access to recreational sides for lower-income beneficiaries. 

 

5.5.2 The role of SCA for landscape planning and management 
Our analysis showed that SCA supplied more than half of the ecosystem services compared to the 

remaining areas –particularly for regulating and cultural services– while it accounts only 40% of 

the total study area (Figure 5.3). Likewise, beneficiaries of the services were highly concentrated 

nearby or in the SCA (Figure 5.4). The high supply of ecosystem services together with the high 

concentration of population in the SCA highlight the relevance of a suitable landscape planning 

strategy to avoid natural resources deterioration. The protection of the SCA seems, therefore, a 

promising landscape management option to maintain ecosystem services supply and potentially also 

biodiversity. As has been shown in conservation areas in Costa Rica, this strategy helps not only by 

upsizing protected areas but also to increase the flow of material and organisms through the 

landscape (Pringle 2017).  

In our case, protecting SCA would also reconnect the two largest relicts of old growth forest, located 

in the Coastal and the Andes range. Reconnecting these two relicts offer the opportunity to maintain 

and enhance areas that deliver a high amount of ecosystem services, especially regulating services 

—carbon and water-related services— but also critical cultural services. In addition, the protection 

of SCA in the Central Valley with a different protection status —focused on the restoration of the 

riparian areas— offers the potential to connect a highly fragmented landscape characterized by 

patches of secondary forest distributed across the landscape (Locher-Krause et al., 2017b; 

Zamorano-Elgueta et al., 2015).  

Based on the current need to maintain and enhance ecosystem services supply and at the same time 

ensure the best balance among conservation and nature resources utilization, questions such as 

where and how to prioritize investments are crucial. Landscape planning strategies that start by 

identifying current protected areas and the potential for connecting them across the landscape should 

be a priority. Likewise, the definition of areas in which intensive productive activities area restricted 

is crucial for the maintenance of the flow of ecosystem services to their beneficiaries across the 

landscape. Furthermore, watershed/soil protection programs that limit inappropriate management 

activities in vulnerable areas (i.e., riparian areas, slopes) primarily in the upstream watershed areas 

improve and sustain the drinking water quality and quantity (Guerry et al., 2015).   
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5.6 Conclusions 
 
The current study has shown that ecosystem services provision can be enhanced by the integration 

of SCA, especially if we consider that this area contributes to more than half of the total ecosystem 

services of the area and account only for 40% of the area. Furthermore, the beneficiaries’ assessment 

also highlights how important SCA are for the population. Our study shows that 41% of the 

ecosystem services beneficiaries depend directly on these SCA to obtain benefits from the selected 

forest ecosystem services. This percentage rise if we consider services like drinking water which 

depends on conservation areas located in the Andes range. This crucial information is frequently 

missing in current ecosystem services assessment, in which the interlinkage among the ecosystem 

services supply and its beneficiaries it is rarely included (Bagstad et al., 2014; Syrbe and Grunewald, 

2017; Wei et al., 2017).   

In our case study, SCA were of high importance from the perspective of the supply of services and 

the perspective of the density of beneficiaries. Nevertheless, the identification of the mismatch 

between the location of service supply and related beneficiaries is necessary for future landscape 

planning, especially in cases when the beneficiaries are in a different location as the services supply 

as in the case of drinking water services. 

From our research, it is also possible to conclude that landscape strategies oriented to improve 

conservation in the region could benefit from using our approach. This approach of enhancing 

landscape connectivity by starting with the already protected areas and integrating currently 

degraded landscape elements such as riparian corridors could provide essential benefits to improve 

the vulnerable state of temperate rainforest in the area.  Restauration initiatives as well as the 

implementation of conservation categories that allow a less intense and more sustainable use of the 

degraded riparian corridors located in the Central Valley will help to ensure ecosystem services 

supply in the area. 

While our results help to address the gap of the interconnection between ecosystem services supply 

and its beneficiaries these results are not transferable to other regions and other scales. 

Consequently, we want to highlight the relevance of our SCA as a landscape planning strategy 

especially under the ecosystem services approach to understand the interconnection between supply 

and its beneficiaries better as well as maintain the flow of services across the landscape. 
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6 Conclusions and Outlook  
 

6.1 Dissertation contribution 
 
In this research high temporal resolution datasets of land cover dynamics and ecosystems services 

(supply and its beneficiaries) have been produced for a hotspot of biodiversity area in Southern 

Chile. This information allowed the identification of the trajectory and the effects of the human 

impact on ecosystem services and biodiversity in this region. The integrated approach that combines 

remote sensing, modeling techniques and methods from different disciplines such as social and 

natural sciences captured the land cover dynamic, ecosystem services supply trajectory and its 

beneficiaries across the landscape. Results revealed that land use and cover change in the area is 

highly dynamic and indicate a human appropriation at different spatio-temporal scales. For example, 

the highly productive areas in the central Valley showed a dynamic transformation to exotic forest 

plantation areas, with an increase in provisioning services but a decline in the supply of regulating 

ecosystem services. This situation can impact the availability of the system to maintain ecosystem 

services functions in the future.  

Main past and ongoing trends of deforestation, afforestation, fragmentation and ecosystem services 

supply together with its beneficiaries were successfully identified and analyzed using a step by step 

approach that is summarized below. The first step of the procedure started is a landscape analysis 

at an expanded temporal resolution (Chapter 3) and continued with the ecosystem services modeling 

assessment (supply and its beneficiaries) over time and across the landscape (Chapters 4 and 5). 

This base information allowed the development and evaluation of a recommended landscape 

planning strategy seeking for a comprehensive investigation of the area (Chapter 5).  

The conclusions of the related work are discussed in the following subsections. 

 

Expand the temporal resolution of landscape transformations in a biodiversity hotspot area.  

Chapter 3 uncovered the land cover dynamics in the area by expanding its temporal scale. This 

extended temporal resolution —with seven periods, from 1985-2011, using all Landsat scenes 

available for the area— revealed a highly dynamic and disturbed area, dominated by processes such 

as clear-cuts of exotic forest plantations, regrowth of secondary forest, afforestation with exotic 

species, and deforestation of native forest. The hotspot of biodiversity area evidenced a dynamic 

spatio-temporal transformation of both land cover composition and configuration. According to the 

random forest and remote sensing analysis (Chapter 3) landscape composition shows a clear and 

drastic increase of exotic forest plantations in the area, especially from 1985 until 1999 with the 

highest net change for a single class of 706% in 26 years.  All land cover classes in the area 

transitioned in some proportion to exotic forest plantation. However secondary forest, shrublands, 
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grassland/arable land are the ones that had the highest area loss, followed in lower proportion from 

the old growth forest. Old growth forest showed a continuous decrease over time, with the highest 

deforestation rate of 1.2% (net loss) between 1985 and 1999. This deforestation rate tended to slow 

down in the last study period. Land cover classes as secondary forest showed an increase over time 

especially coming from shrublands areas, which is part of the natural process of succession. 

However secondary forest also gained area from old growth forest, a clear sign of forest degradation.  

Shrublands showed a more mixed trend mainly due to the fact that these areas can be easily changed 

to more productive land use classes. Moreover, the procedure for shrublands classification shows 

higher uncertainties due to the difficulty to differentiate between closer successional stages as is the 

case of shrublands and secondary forest. According to the calculated landscape indices, 

fragmentation increased over time, with a decrease of large patches and an increase of the total edge 

length especially in the period from 1985 -1999. After that, the old growth forest patches remain 

more continuous, but fragmentation at the edges of smaller forest patches is observed, leading to a 

continuous loss of the core area crucial to maintaining ecological functions (i.e., regulation of 

microclimatic conditions) and species habitat. In the case of secondary forest, even when the results 

of Chapter 3 revealed an increase of this land cover class, landscape indices showed a high 

fragmentation with smaller and disconnected patches. These secondary forest patches are mainly 

located in the central valley, an area with high pressure due to human-influenced activities and 

where most of the settlements are located (Chapter 5). Furthermore, results showed a highly 

fragmented secondary forest located mainly in areas used for intensive production. This situation 

uncovered the stage of degradation of this type of forest which has crucial relevance to maintain 

forest ecosystems in the area. To summarize, the data analysis revealed an irregular, but intense 

deforestation and fragmentation process linked both to the old growth forest and the secondary 

forest. The results of this chapter highlight the advantage of expanding the temporal resolution of 

landscape studies, allowing the identification of internal trajectories of land use dynamic and 

providing baseline data for the following step. 

 

Spatio-temporal assessment to understand the dynamics of multiple ecosystems services 

supply across the landscape.  

On the base of the work done in Chapter 3, Chapter 4 documented the biophysical and 

socioeconomic data analysis revealing the dynamic and modification of the ecosystems services 

supply in the area. The model and proxies used confirmed the diverse pattern of ecosystem services 

supply depending on the specific temporal (7 periods), and spatial scale (geomorphological units) 

assessed. The differentiation between the four main geomorphological units, Coastal mountain 

range, Central Valley, Pre-Andean and Andes mountain range allowed the uncovering of contrasting 

patterns within the study area. In the case of carbon stocks, there are contrasting trends in the 

different geomorphological units, with higher stocks in the Andes and the Coastal mountain range. 
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Despite its higher stocks, the supply decreased in these areas (the Andes and Coastal range) over 

time in contrast to the clear increase of the provision of this service in the Central Valley, mainly 

linked to deforestation and afforestation processes identified in Chapter 3. Likewise, the calculation 

of the plantation productivity index, which represents a  provisioning service, revealed a strong 

increase with a relative change of 370 and 900% (1985 to 2011) in the Central Valley and Coastal 

range units. The quantification of the irregular trends reported mainly for regulation ecosystem 

services as such sediment and phosphorous retention underline the importance of vegetation in the 

riparian areas, especially forest. The forested areas identified in chapter 3 showed higher values of 

regulating services and play a crucial role to maintain the supply in the area, particularly in the 

Central Valley (chapter 4). The cultural ecosystem services modeled in chapter 4 showed an increase 

in forest recreation services supply over time. However, these areas are isolated and mainly located 

in regions with low accessibility in the Andes and the Coastal range. In addition, aesthetic supply 

areas decreased over time; if we consider that this service is based on the degree of naturalness of 

the area, this result indicated a higher impact of human activities and impairments due to economic 

pressure.  

In summary, the land use change and fragmentation information generated in chapter 3 set the base 

for modeling of the trajectory of ecosystem services supply produced in chapter 4. Furthermore, the 

ecosystem services assessment provided clear guidelines for the development of land use planning 

recommendations to protect and enhance areas recognized as vulnerable (Chapter 4). These areas 

are mainly riparian buffers close to streams and also areas in both mountain range which showed a 

high amount of services but that are clearly disconnected and isolated in the landscape. 

Recommendations such as the reconnection of this highly fragmented landscape to improve the 

management of multiple ecosystem services in the area is a topic discussed of the next step (chapter 

5). 

 

Ecosystem services beneficiary’s assessment integrating landscape management strategies to 

reconnect fragmented ecosystems. 

Chapter 5 assessed the recommendations derived from chapter 4, by analyzing the potential 

contribution of a landscape planning strategy — areas with differentiated protection status oriented 

to reconnect the landscape— to ecosystem services supply and its beneficiaries. These structural 

connectivity areas (SCA) were defined as the integration of linear (riparian corridors) and patchy 

(national conservation units) landscape elements. The combination of socioeconomic data and 

proxies together with the ecosystem services supply data modeled in chapter 4 showed a clear spatial 

mismatch between ecosystem services and its beneficiaries across the landscape. This mismatch 

uncovered the relevance of identifying potentially threatened areas caused by high demands of 

services such as provisioning and regulating services, which lead to a decrease in the supply of the 

service. Results from chapter 5 confirmed that SCA have the potential to improve ecosystem 



Conclusions and Outlook  

104 
 

services supply and biodiversity conservation in the area. SCA showed higher values for the supply 

of regulation (60%) and cultural ecosystem services (63%) in comparison to the remaining 

landscape, even when only account for 40% of the total study area. 

Additionally, local data used to identify ecosystem services beneficiaries also showed that in or in 

the proximities of the SCA is where the highest number of the beneficiaries are located. 

The trends identified in chapter 5 emphasize the findings towards the relevance of the SCA as an 

area that supplies a high amount of services but is under high pressure which could impair future 

ecosystem functioning.  

On the other hand, the results showed that provisioning ecosystem services are “offered” mainly by 

the remaining areas instead of being in the SCA. Moreover, SCA are also showed to be an effective 

planning strategy oriented to reconnect the two main old-growth forests in the area (in the Andes 

and the Coastal range) to ensure genetic flow between them. Hence, the data analyzed in chapter 5 

suggest that planning initiatives oriented to assign different protection categories to promote 

restoration of native forest (old growth and secondary forest) in riparian areas could help to maintain 

the flow and supply of ecosystem services in the area. Furthermore, the results of this dissertation 

confirm the assumption that conservation initiatives aiming at enlarging existing conservation units 

highly contribute to conservation minimizing the socioeconomic cost of creating new units. 

 

6.2 General conclusion and final remarks  
 
The main objective of this dissertation was to improve the understanding of the impacts and effects 

of human activities in a biodiversity hotspot area by expanding the temporal resolution of land cover 

and ecosystem services assessments. The study used a step-by-step approach integrating different 

types of data and methodologies benefiting from the current technological advances (i.e., the 

opening of the Landsat archive, improved computational techniques) seeking to close knowledge 

gaps in an area highly relevant for conservation. Furthermore, the increasing availability of big data 

such as earth observation products (chapter 3) together with extended biophysical and 

socioeconomic databases (chapter 4 and 5) increase the potential to support the design of sustainable 

policies (chapter 5). However, the related advantages and big opportunities also come with new 

challenges. For instance, uncertainties arising from the quantity and quality of local data especially 

regarding hydrological monitoring were one of the difficulties for mapping water-related ecosystem 

services. Likewise, the low temporal resolution of local socioeconomic data decreased the 

timeframe to understand historical processes, dismissing the projection of future scenarios. Future 

policy strategies oriented to the implementation of continuous and more detailed monitoring 

programs to expand the spatio-temporal resolution of the local data such as hydrological databases, 

nutrients, species, etc. will play an essential role in estimating the impact of uncertainties on the 

accuracy of environmental impact analysis. Such monitoring systems should focus not only on 
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biophysical data but also on socioeconomic information to enhance the knowledge of their 

interconnection. This type of information is particularly relevant to balance society needs and its 

impacts in biogeographical areas described as biodiversity reservoirs as the Valdivian temperate 

rainforest. 

Additionally, landscape planning strategies designed to manage the territory in a more integrated 

way with the commitment of the different agencies working on it together is urgently needed, 

especially in terms of protecting ecologically relevant areas. Ecologically relevant areas such as 

riparian corridors, steep slopes, and areas with a high amount of endangered species among others 

should have stricter, legally bounding protection standards, limiting unsuitable types of 

management (i.e., large clear cuts) to avoid environmental impacts. Moreover, the landscape 

planning recommendations as the one assessed in chapter 5 could greatly benefit not only from 

implementing the ecosystem services concept but also from expanding existing conservation units 

such as national parks, by connecting the riparian areas that are vulnerable to human impact 

considering different protection categories. 

 

One challenge that came clear from this research was the uncertainties associated with some of the 

model simplifications, especially for those models simulating biophysical processes (see chapter 4). 

These simplifications were related to the type of the model selected for this study (InVEST) that 

requires a moderate amount of input data, appropriate for regions with data scarcity. Further 

improvements for future research may be achieved by using more intensive data-driven models once 

data availability has been improved in the area. Although this dissertation shows the magnitude and 

trajectory of human impacts in the region and provides landscape planning recommendations, the 

study does not include a more extensive selection of ecosystem services. Moreover, the selection of 

the modeled ecosystem services was based on literature reviews, expert consultations and the 

personal knowledge of the researcher. Further research should involve policymakers and 

stakeholders already in the process of selection of ecosystems and their services, expanding the type 

of services and data to be considered. The involvement of different types of stakeholders could 

contribute to integrate different types of knowledge such as traditional knowledge and different 

cosmovision as the one from Mapuches, one of the indigenous population from southern Chile. 

Moreover, as is reported in chapter 4 and 5 ecosystem services mapping and quantification could 

support the design of mechanisms towards an integrated landscape planning, considering the 

multifunctionality of these systems under current climatic scenarios. 
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