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Optimization of point grids in regional satellite gravity analysis
using a Bayesian approach

Summary

The subject of this thesis is the global and regional gravity field determination from GOCE data using the
short arc approach. The focus is on the extension of the regional method regarding an adaption of the
model resolution to the data by estimating an optimal nodal point configuration for the arrangement of
the radial basis functions. Estimating the positions of the basis functions is a nonlinear problem, which is
not easy to solve with the means of classical adjustment theory. This is especially true if the number of
basis functions is to be determined from the data as well. It is for this reason that the point grid has been
fixed so far, and only the linear problem, that is the determination of the scaling coefficients for a given
point grid, has been solved. Here, the problem is formulated within the framework of Bayesian statistics by
specifying a joint posterior density for the number of the basis functions and the rest of the parameters. For
the practical solution, the reversible jump Markov chain Monte Carlo sampling algorithm is employed, which
allows simulating this kind of variable dimension problem. Key points in the implementation of the approach
are the marginalization of the scaling coefficients from the target density, which enables me to limit the chain
to the sampling of the point grid, and the use of a proposal distribution derived from a gravity field model.
The final gravity field solution is taken to be the average of the generated gravity field solutions and thus
takes into account the uncertainty about the choice of the model. The method is applied to real GOCE data
and compared with the global spherical harmonic model ITG-Goce02 and a regional solution that makes
use of a regular distribution of basis functions. Being a part of this work, the comparison models are based
on the same processing strategy. It turns out that the optimization of the point grid enormously reduces
the required number of basis functions, and that the distribution of the grid points becomes adapted to the
structures of the gravity field signal. The solution becomes more stable and better reflects the characteristics
of the signal. This entails an improvement of up to 13% over the mentioned comparison models.

Optimierung von Punktgittern in der regionalen Schwerefeldanalyse
unter Verwendung eines Bayesschen Ansatzes

Zusammenfassung

Thema dieser Arbeit ist die globale und regionale Schwerefeldbestimmung aus GOCE Daten durch die Ana-
lyse kurzer Bahnbögen. Der Schwerpunkt liegt dabei auf der Weiterentwicklung der regionalen Methode
hinsichtlich der Anpassung der Modellauflösung an die Daten durch Schätzung einer optimalen Punktkonfi-
guration für die Anordnung der radialen Basisfunktionen. Die Schätzung der Positionen der Basisfunktionen
ist ein nicht-lineares Problem und mit den Mitteln der klassischen Ausgleichungsrechnung nicht einfach zu
lösen. Dies gilt insbesondere dann, wenn auch die Anzahl an Basisfunktionen aus den Daten zu bestimmen
ist. Aus diesem Grund wurde das Punktgitter bislang fixiert und nur das lineare Problem, die Bestimmung
der Skalierungskoeffizienten bei gegebenem Punktgitter, gelöst. Hier wird die Aufgabe im Rahmen der Bayes
Statistik formuliert und eine gemeinsame a posteriori Dichte für die Zahl der Basisfunktionen und die übri-
gen Parameter angesetzt. Die Lösung erfolgt über den reversible jump Markov chain Monte Carlo Sampling
Algorithmus, der es erlaubt, Probleme dieser Art von variabler Dimension zu simulieren. Besonderheiten bei
der Umsetzung des Verfahrens sind die Marginalisierung der Skalierungskoeffizienten aus der Zieldichte, die
es ermöglicht, sich auf das Sampling des Punktgitters zu beschränken, und die Verwendung einer Vorschlags-
verteilung abgeleitet aus einem Schwerefeldmodell. Die finale Schwerefeldlösung wird durch Mittelbildung
aus den generierten Schwerefeldlösungen abgeleitet und berücksichtigt somit die Unsicherheit über die Wahl
des Modells. Die Methode wird auf GOCE Echtdaten angewendet und mit dem globalen Kugelfunktionsmo-
dell ITG-Goce02 und einer regionalen Lösung basierend auf einer gleichmäßigen Punktverteilung verglichen.
Die Vergleichsmodelle sind Teil dieser Arbeit und verwenden dieselbe Prozessierungsstrategie. Es zeigt sich,
dass die Optimierung des Punktgitters die Zahl der benötigten Basisfunktionen enorm reduziert und die
Verteilung der Punkte sich an die Strukturen des Schwerefeldsignals anpasst. Die Lösung ist stabiler und
spiegelt die Charakteristiken des Signals besser wider. Damit einher geht eine Verbesserung von bis zu 13%
gegenüber den genannten Vergleichsmodellen.
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1. Introduction

1.1 Motivation

The deviation of the physical shape of the Earth from a sphere, the irregular structure of the
Earth’s interior and its topography appear as spatial variations in the gravity field. Mass transports,
mostly water redistribution, cause further temporal variations. The gravity field thus contains
valuable information about the actual mass distribution of the Earth, making gravity observations
interesting for many applications from the field of Earth sciences. In solid Earth geophysics, for
example, the gravity field provides a constraint in crust and lithosphere modeling from seismic
and other data. Knowledge of the geoid, which is an equilibrium surface of the gravity field,
allows determining the mean dynamic ocean topography from altimeter observations. Classical
geodetic applications are the unification of height systems over continental boundaries and the
possibility to derive physical heights by referencing GPS-based height measurements to the geoid.
Most of what is known about the global gravity field today has been discovered by means of the
satellite missions CHAMP, GRACE and GOCE. These satellites were equipped with innovative
sensor technology realizing the concepts of Satellite to Satellite Tracking and Satellite Gravity
Gradiometry. The satellite observations are usually not used directly, but they are inverted into
a three-dimensional model using adapted evaluation strategies. The operational analysis centers
almost exclusively use spherical harmonics for representation. Even if today many groups work on
alternative representations, they are not often used for applications. One reason might be that the
dissemination as a data product is more difficult for regional models, which is due to the variety
of methodologies and a lack of standards. Notwithstanding this, regional models offer a number of
advantages compared to spherical harmonics (see also Jekeli, 2005):

Spherical harmonics are different from zero almost everywhere on the sphere. As a consequence, any
observation is related to the entire spherical harmonic series expansion. By contrast, space-localizing
basis functions concentrate their energy in a small portion of the sphere. A single observation can
therefore be described by only a few basis functions, and only data in the area of influence of the
basis functions are required to adjust them. This reduces the computational burden and thereby
enables to rigorously compute regionally high-resolution gravity field models; it facilitates the work
on local data sets and helps to handle gaps in the data.

Moreover, spherical harmonics realize a globally uniform resolution. But the resolution that can
actually be obtained from the data depends on down to which scale the signal is still sufficiently
large compared to the noise, which is not uniform. On the one hand, the gravity signal is not
equally smooth in every geographical region. This is especially true for the higher frequencies,
which the GOCE mission is specifically sensitive to. On the other hand, the noise is not equally
high everywhere either, because the satellite altitude varies along the eccentric orbit and with it
the amount of amplification of the measurement noise in the downward continuation process. Also,
because of the convergence of the satellite tracks, there are comparatively many observations in the
polar regions, leading to more precise estimates, so that even smaller signals can still be resolved.
The two effects (i.e. the influence of eccentricity and convergence) can also be observed in the
maps of propagated geoid errors of GOCE gravity field models (see Bingham et al., 2011). To sum
up, for spherical harmonics the model resolution is uniform, but the achievable resolution is not.
Accordingly, when the maximum degree of the spherical harmonic expansion is chosen high enough
to capture local signal in areas of rough topography (e.g. in mountain areas or in the area of a deep
sea trench), this will lead to overfitting of noise in the smoother oceanic regions. To reduce the
noise and to stabilize the solution, one can use regularization. In the context of global gravity field
determination, mostly Kaula regularization is used. Here the coefficients are constraint towards zero
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according to the global average signal-to-noise ratio. In this way, the local signal will finally get lost,
while over the oceans a certain degree of noise might remain. By contrast, in regional analysis the
model resolution can be chosen suitable for the local study area, and the prior information can be
adapted to some extent to the local signal by estimating a variance factor from the data restricted
to this region, leading to an improvement in the regularization.

The feasibility to adapt the resolution of a regional model is frequently mentioned to motivate
regional modeling, as was also done here. However, most of the approaches for regional gravity field
analysis, such as the one implemented in Bonn, do not (fully) take advantage of this yet. The reason
is that the model resolution is closely connected to the choice of the point grid for the arrangement
of the nodal points of the basis functions. Adapting the point grid to the data in terms of a formal
optimization is not a trivial task because this problem is nonlinear and variable in dimension. Most
of the time, the point grid is therefore simply defined in advance. For example, in Bonn we make use
of a dense and uniform grid with an additional margin to avoid edge effects. Even though this choice
may enable us to adapt the model resolution better to the local conditions in a particular region
than would be possible with spherical harmonics, we thereby disregard possible variations within
the region with all the before mentioned disadvantages. Furthermore, the huge number of basis
functions, in particular in the edge region, represents an overparameterization of the problem and
leads to instabilities. In the current state, we cannot even solve a problem without regularization,
also when working on terrestrial data, where is no problem for downward continuation. By an
adaption of the model resolution, which is certainly connected with a reduction of the number of
basis functions, the stability will hopefully improve, so that the solution is less dependent on the
prior information.

1.2 State of research

When estimating the scaling coefficients of the basis functions in regional gravity field analysis, the
linear relationship leads to a quadratic and hence convex objective function with only one overall
(global) minimum. However, the problem of estimating the locations of the basis functions jointly
with the scaling coefficients is nonlinear. For a nonlinear problem, the objective function is in
general not convex (Boyd and Vandenberghe, 2004); it is rather a mountainous landscape with
several (local) minima. When choosing the estimation technique, one should have in mind that
the widely used method of least squares from classical adjustment theory involves linearization.
It is thus only advisable if sufficiently good approximate values are available, because otherwise
the gradient at the point of linearization might be misleading, so that the algorithm would run
in the wrong direction and into a local minimum. For the locations of the basis functions, there
is no general rule on how to derive adequate approximate values. Even if the concept of point
masses, which are often introduced via the discretization of Newton’s law of gravitation, might
suggest that one can deduce them from prior knowledge of the mass distribution, this knowledge
is rather limited. In summary, finding approximate values for our problem is at least not obvious,
and the use of local optimization techniques therefore not sensible. Furthermore, with a better
arrangement an equally good data fit can certainly be achieved with fewer basis functions. But the
right number is not known in advance. We thus find ourselves in the unusual situation that the
number of things we don’t know is one of the things we don’t know, to use the words of Green and
Hastie (2009). Although one could use e.g. hypothesis tests to decide whether an individual basis
function is necessary or not, they are not suitable for the simultaneous estimation of the number of
model parameters and the parameters themselves. In summary, the presented problem is difficult
to solve with the tools of classical statistics, and different approaches deal with these difficulties in
different ways:
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The first and by far the largest group of approaches define the point grid prior to the actual analysis
and solve for the linear scaling coefficients only. An early example is Balmino, who proposed in 1972
to arrange point masses according to the extreme values of a map of gravity anomalies at various
depths. He regarded this as superior to a uniform distribution. The Federal Agency for Cartography
and Geodesy (in German: Bundesamt für Kartographie und Geodäsie, BKG), the solution of which
enters the official geoid model for Germany, employs point masses at different heights on uniform
grids of different resolution (Liebsch et al., 2006). In Bonn, we make use of radial basis functions,
which similar to spherical splines incorporate prior information on the smoothness of the gravity
field. This representation was developed by Eicker (2008), who also compared different grids on their
regularity using criteria such as the size and shape of the area elements or the distance of the grid
points. She found that the Reuter grid and the triangular vertex grid do best. Notwithstanding, she
decided on the triangular grid for numerical experiments, as it has nearly spherical area elements,
which matches well with the radial symmetry of the basis functions. The resolution of the grid was
chosen so that the global number of the grid points corresponds to at least the number of spherical
harmonic coefficients that would be considered appropriate for the actual scenario. The triangular
vertex grid will be used for comparison purposes also in this work. Further, Bentel (2013) and
Naeimi (2013) both published a comprehensive study of radial basis functions, which among other
aspects of regional modeling also includes the choice of the point grid. They came to the conclusion
that the actual point grid only plays a minor role as long as it is uniform.

Wavelet functions, another sort of radial basis functions, concentrate in a specific frequency band;
they are thus well suited for multiresolution techniques. Wavelets are usually set on a uniform
grid. The resolution of the grid varies within the approach depending on the resolution of the
wavelets. For example, Schmidt et al. (2008) made use of Blackman scaling and wavelet functions
on a Reuter grid. Poisson wavelets, which can be transferred to multipoles and are therefore also
known as Poisson multipole wavelets, were used by Holschneider et al. (2003), Chambodut et al.
(2005) or Panet et al. (2011). Their grid choice is based on hierarchically subdividing a cube or
icosahedron and then projecting the corresponding points onto the sphere. Apparently, efforts have
also been made to adapt the shape and positions of the wavelets (or the tree-dimensional positions
of the multipoles) to the signal using an iterative approach (c.f. Hayn et al., 2013). Least squares
collocation requires no basis functions actually, but under certain conditions it can be reduced to a
parametric approach with radial basis functions, the locations of which are specified by the locations
of the observations (see Barthelmes, 1989, and references there). The same type of arrangement
was also chosen by other approaches (e.g. Dampney, 1969).

Up to here, all the aforementioned approaches were based on radial basis functions. But also for
other representations, such as mascons, one has to specify the arrangement of the basis functions.
A mascon, short for mass concentration, is a layer of mass put on the surface of the sphere in
a particular region. The gravitation-generating mass is determined by the thickness of the layer
and stated in terms of equivalent water height. The shape of a mascon is variable; it can refer to
an arbitrary geographical region, such as a drainage basin (c.f. Luthcke et al., 2006). However,
more often regularly shaped mascons are applied. For example, the NASA GSFC GRACE solution
is based on equal-area rectangular mascons with a uniform arrangement (Luthcke et al., 2013;
Rowlands et al., 2010). The NASA Jet Propulsion Laboratory makes use of spherical cap mascons
being either individual in size and position (e.g. tied to individual glaciers, see Ivins et al., 2011)
or equally large and globally uniformly distributed (Watkins et al., 2015).

The second group of approaches build the point grid in a stepwise manner and in each step select
the grid point that is particularly useful in the sense of reducing the objective function value. Thus,
the arrangement of the basis functions is adapted to the data. However, once a grid point has been
introduced, it is not changed anymore during the course of the algorithm. This can therefore not lead
to the optimal solution. The majority of the approaches considers the point of the largest absolute
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value of the data to be useful and iterates the procedure until either a certain number of iterations
or a stop criterion, such as the desired approximation accuracy, is reached. This approach was, for
example, also taken by Cordell (1992) and Antunes et al. (2003) for the positioning of point masses;
the remaining model parameters were set by means of simple empirical rules. Another example
is Marchenko and Abrikosov (1995), who worked with radial multipoles, which among others also
incorporate the concept of point masses. After having fixed the horizontal position of a new basis
function as has just been described, they estimated the multipole parameters degree and depth,
which together define the shape, and the moment, which corresponds to the scaling coefficient, best
adapting in comparison with a local empirical covariance function. Finally, all multipole moments
were once again estimated in a total adjustment. Marchenko et al. (2001) employed the approach
for geoid determination from airborne data in the Skagerrak and summarized that the multipole
analysis yields a similar accuracy as collocation with only 10-20% of the basis functions.

At TU Delft the so-called data-adaptive network design (DAND) was developed (Klees and Wittwer,
2007). It can be realized by removing all points from an initial grid with too few or too little
observations around. This type of grid was used for the positioning of multipole wavelets in the
analysis of airborne data. As a result, the number of basis functions was approximately 30% of
the observations. The equation system had a better condition, making regularization sometimes
superfluous. And the solution was described as qualitatively better compared to using standard
networks. Moreover, in 2008 Klees et al. proposed to further refine the result of a standard regional
analysis by sequentially introducing new basis functions at the position of the highest residual. But
in contrast to the two approaches mentioned before, Klees made further restrictions: the residual
must be large enough, the number of observations in the neighborhood not too small and the next
basis function not too far. The shape or bandwidth of the new function was adjusted by means of
general cross validation, which is a tool for model comparison based on the leave-one-out principle;
the scaling coefficient was estimated on the basis of the surrounding observations. After all data
points had been processed, all coefficients were estimated again in a joint adjustment and on the
basis of all observations. Klees reported that this kind of data-adaptive positioning is more efficient
than a real optimization but at the price of a higher number of basis functions. However, he expected
problems to arise if the number of data points goes to infinity, since the number of basis functions
is determined by the number of observations and, apart from that, by a series of threshold values.
Both approaches were used in combination by Wittwer (2009).

A fundamentally other approach, the regularized functional matching pursuit, was proposed by
Fischer and Michel (2012) (see also Fischer, 2011). As part of this approach, a dictionary with
global and different local basis functions is defined along with a point grid of possible positions.
A basis function is then selected from the dictionary and so positioned that after the related
scaling coefficient has been estimated, the residual sum of squares becomes minimal. Fischer and
Michel demonstrated the advantage of this approach over wavelets and splines when applied to
heterogeneous data or big amounts of data. Their results suggest that the resulting distribution
of points reflects the continental boundaries and further topographic structures. A drawback is
that after a new basis function has been introduced, the set of scaling coefficients is no longer
optimal. According to Michel and Telschow (2016), this leads to the algorithm selecting the same
basis functions several times to improve the corresponding coefficients. Therefore, they proposed
an enhancement of the method including an adjustment of all coefficients in every step, which was
implemented by a sophisticated orthogonal projection. This led to even fewer basis functions and
thus to a sparser solution than what had been obtained without transformation. In gravity field
analysis from satellite data with heterogeneous distribution, equally good results were achieved but
with much fewer basis functions compared to an approach with splines under the data points.

And finally, the third and last group of approaches aim at real optimization of the point grid. An
early example is the concept of free-positioned point masses proposed by Barthelmes (1986) (see
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also Barthelmes, 1989; Barthelmes et al., 1991). He introduced new basis functions iteratively at
the place of the highest remaining signal because this was shown to be the optimal position if
the basis functions were orthogonal. Since they are not, a nonlinear least squares adjustment is
performed to improve the position together with those of the other point masses, which are also
not optimal anymore once the new point mass has been added. According to Barthelmes, they are
good enough to be used as starting values, though. Because of this approximation, apart from some
others to reduce the computing time, the method might not definitely yield the globally optimal
solution. Anyway, the accuracy can be improved at any time just by adding further basis functions,
as was noted by Barthelmes. Indeed, the number of functions in this approach is determined by the
specification of the desired approximation accuracy. The method was used for the approximation of
boundary values calculated from the long-wave part of a spherical harmonic model; in comparison to
a uniform distribution, the same accuracy was reached much earlier, i.e. with fewer basis functions.

Since then, the approach of Barthelmes has been replicated several times (e.g. Lehmann, 1993;
Claessens et al., 2001). Recently, it has been picked up again by M. Lin (Lin et al., 2014; Lin, 2016).
In his version, a quasi-Newton method was used for the nonlinear optimization, which promises a
better convergence by the use of second order derivatives and further allows imposing boundary
constraints on the parameters. In addition to the specification of a stop criterion, there are thus
a number of other settings to be made. Lin tested his approach intensively on synthetic and real
data. He compared, for example, least squares collocation to point masses arranged according to a
geographical grid and to the free-positioned point masses and found that the latter yield similarly
good results as collocation and even better results than the regular distribution, while using fewer
basis functions. Like already Barthelmes et al. (1991) before him, he demonstrated that the resultant
distribution follows the structures of the gravity field; in other words, there are more functions where
the gravity field is rough. He reported that an optimization of the horizontal position and depth
yields better results than a purely radial optimization but also evokes problems in the presence of
data gaps. The basis functions move to the center of the gaps or, alternatively, towards the border
of the investigated area to minimize the data misfit. Like Barthelmes (1989), Lin therefore preferred
the radial optimization, which also in this situation led to reasonable results.

Yet another example for the use of optimization techniques in the context of the given problem is
Antoni (2012), who tested both global and local optimization strategies. For instance, he applied
genetic algorithms, which are a class of algorithms that utilize the concepts of the theory of
evolution, such as natural selection or random mutation, to find their way to the global optimum.
However, the number of basis functions has to be set before the start of the algorithm. Therefore,
and also because he could not exactly reproduce the results of the random algorithm, Antoni
preferred a local optimization approach. Again, the basis for the approach was the approach of
Barthelmes. But in contrast to him, Antoni made use of bandlimited radial basis functions, the
horizontal position and shape of which were estimated; he introduced several basis functions at
the same time and applied the trust region algorithm as a powerful alternative to the least squares
optimization technique. The starting values were specified as the maxima of the observational data,
which were determined by procedures of image processing. The decision about the number of basis
functions was driven by a number of threshold values, whereas basis functions that were poorly
determined were removed at the end of the algorithm. Like in the present work, the applicability of
the approach was tested in an easy simulation scenario with only few basis functions. The algorithm
produced a good reconstruction of the signal but with considerably more basis functions. Also for
a realistic scenario, Antoni reported good reconstruction results, without however comparing them
with the results of a standard approach.



6 1. Introduction

1.3 Thesis objectives and the scientific context

The aim of this thesis is to develop, implement and apply an approach to optimize the point grid
in a radial basis function framework, i.e. the number and locations of the basis functions, together
with the usual model parameters, namely the scaling coefficients and a regularization parameter.
The approach is tailored to the determination of the gravity field from satellite observations, but in
principle it can be used for the approximation of any data set with some modifications.

As said earlier, we face a nonlinear problem where no approximate values are available, which makes
the use of local optimization strategies difficult. To overcome these difficulties, global optimization
is applied, where the success is not dependent on the availability of good approximate values. The
optimization of the point grid also involves the number of basis functions, which is inconvenient
in that the number of parameters itself is actually a parameter. Therefore, I apply a method to
model selection from the field of Bayesian statistics, which enables me to estimate the number of
parameters in analogy to an ordinary parameter from the data. All the other approaches mentioned
in the previous section either define the number of basis functions in advance or stop the algorithm
when a desired approximation accuracy is reached or certain threshold values are exceeded. Apart
from the choice of the stop criterion, many of the mentioned approaches have to make a number
of further settings and define threshold values. In the present approach, only few specifications are
required, which mostly influence the convergence of the procedure rather than the results. However,
as usual in the context of Bayesian statistics, I have to define prior densities, and although I
made efforts to not introduce subjective prior knowledge by the choice of non-informative densities,
complete ignorance cannot be expressed with a prior density (Robert, 2007, p. 127). Moreover,
the local optimization techniques of the third group all provide also an estimate for the covariance
matrix of the positions of the basis functions. They all involve simplifications such that they linearize
the problem, and a description of the uncertainty of nonlinear parameters only by variances and
covariances is at least not complete (Barthelmes et al., 1991). I use a random sampling algorithm,
which does not only yield estimates for the parameters, as it is the case e.g. for evolutionary or
genetic algorithms, but theoretically the entire probability distribution and with it also a complete
error description. In summary, the approach pursued here differs from existing work in that (1)
it allows finding the global optimal solution including the number of basis functions, (2) it yields
accuracy information for the estimated parameters in the form of the sampled posterior distribution,
and (3) it does not require many specifications.

The optimization only refers to the horizontal positions of the basis functions. The vertical posi-
tion or depth of a basis function can better be associated with the shape of the function, and an
optimization of the shape is not part of this work. In the literature, there are different opinions to
whether this is reasonable, ranging from believing that shape coefficients and positions are indepen-
dent (Carlson and Foley, 1991) to recommending that the two aspects, since they are interrelated,
should be considered simultaneously (Klees and Wittwer, 2007). I would intuitively assume that
the shape of the basis functions on the one side and their number and positions on the other side
are strongly correlated, and fixing the shape will greatly simplify the optimization of the point
grid. Therefore, in this work, the parameters determining the shape are specified beforehand in
such a manner that the basis functions are well adapted to the gravity observations to be approxi-
mated. In other words, just one type of kernel function is employed for the moment. An additional
optimization of the shape is envisaged at a later stage.

The gravity field models generated in the course of this thesis are based on the short arc approach.
This approach was developed and implemented by T. Mayer-Gürr to process the data of the satellite
missions CHAMP and GRACE (Mayer-Gürr et al., 2005; Mayer-Gürr, 2006). Shortly after, A. Eicker
introduced the alternative representation by means of space-localizing basis functions and embedded
it into the programming system (Eicker, 2008). The present work is in some sense a continuation of
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their work. Here, I computed a global GOCE model to prove that, with the same data, I can produce
a model that is comparable to others. This global model also serves as comparison model for the
results of the regional analysis, which basically relies on the same processing strategy. To this end,
the software had to be adapted in some points, e.g. for the pre-processing of the GOCE observations
and the estimation of the covariance function. My main contribution is the refinement of the regional
method with respect to the optimization of the point grid, for which the methodological framework
is provided in this thesis. The formulation of the approach allowed integrating the regional analysis
with fixed point grid, while the new parts related to the optimization of the point grid have just
been built around. However, some fundamental changes in the original software were also necessary
in order to augment the efficiency of the procedure, for example in setting up the normal equations.
The most important publications resulting from this work are Schall et al. (2014) for the global
gravity field determination from GOCE data and Eicker et al. (2014) for the regional gravity field
determination from GOCE data.

This thesis is built along the following lines. In Ch. 2, I will provide the theoretical background for
global and regional gravity field determination from GOCE data by means of the short arc approach.
In particular, Sec. 2.4.5 summarizes the explanation for the choice of the regional basis functions,
which was the key point in the work of A. Eicker. Moreover in Sec. 2.5.2, the determination of a
covariance function for the stochastic modeling of the GOCE gradients is described, which makes
use of the Fourier transform to guarantee positiv definiteness.

In Ch. 3, the Bayesian framework is presented, in which the new approach for the optimization
of the point grid is embedded. The first three sections introduce necessary basic terms and ex-
plain the Bayesian way of parameter estimation (the Bayes inference) for an analytically tractable
problem. Sec. 3.4 presents random sampling algorithms, which can be applied when an analytical
solution is not available. Particularly, Sec. 3.4.5 derives the Metropolis-Hastings-Green algorithm
(also reversible jump Markov chain Monte Carlo) implemented in this thesis. The following section
3.5 defines the probability distributions that are used in the present approach as prior or proposal
distributions. Finally, Sec. 3.6 discusses several points which I think are important for the under-
standing and the implementation of the procedure.

Ch. 4 describes the new approach for the optimization of the point grid and illustrates the main
points by means of an easy simulation example. The sections 4.3 and 4.4 specify the two main
ingredients for the implementation of the reversible jump algorithm, which are the posterior density
and the move types. One of the key points of the present implementation, the marginalization of
the scaling coefficients from the target density, is formulated in Sec. 4.3.1. Sec. 4.7 presents the
estimators tested in this thesis. And finally, Sec. 4.9 shows how to extend the approach for the
simulation of the variance factor, which is important for real data applications.

Ch. 5 presents the results of the global analysis (Sec. 5.1), the results of the regional analysis with
the standard regular grid (Sec. 5.2), and the results of the optimization of the point grid (Sec. 5.3).
In the latter section, the convergence and mixing behavior of the simulated chains is considered,
and the question is answered where the chain converges. Moreover, it is tested how a change in
the shape of the basis functions affects the algorithm. Sec. 5.3.8 presents the gravity field models
resulting from the optimization of the point grid, and Sec. 5.3.9 demonstrates how the stability of
the normal equation system changes during the run of the Markov chain. In the final discussion
part, the outcomes of the different variants (global, regional with fixed grid, regional with optimized
grid) are compared to each other and interpreted.

The final chapter 6 includes concluding remarks and ideas for future work.



8

2. Global and regional gravity field analysis
from GOCE data

2.1 The gravity field and its functionals

According to Newton, the gravitational potential caused by a solid body of volume V and evaluated
at point r is

V (r) = G

∫∫∫
V

ρ(rQ)

|r − rQ|
dV (2.1)

with G being the gravitational constant and rQ a vector pointing to the volume element dV of
density ρ(rQ). Outside the attracting masses, the gravitational potential can be shown to satisfy
the Laplace equation:

∆V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0. (2.2)

Furthermore, it vanishes when going towards infinity and therefore fulfills the conditions imposed
on an harmonic function. Every harmonic function is also analytic, which means that it is con-
tinuous and has continuous derivatives of any order (e.g. Hofmann-Wellenhof and Moritz, 2006, p. 8).

An observer on Earth is influenced not only by the gravitational potential but also by the centrifugal
potential Φ, which add up to the gravity potential W :

W = V + Φ. (2.3)

The geoid is defined as the equipotential surface of the gravity potential with potential value W0.
The gravity potential is usually split up into a normal part U and a disturbing part T :

W = U + T. (2.4)

As the normal potential also includes a centrifugal part, it cancels in the difference, which results in
the disturbing potential also being an harmonic function. The equipotential surface of the normal
field with the same potential as the geoid, i.e. U0 = W0, is used as geometric reference ellipsoid.
The search for the geoid is now looking for all points which have the same potential as the level
ellipsoid, i.e.

W (N,λ, ϕ) = U(0, ϕ) = U0 (2.5)

(Barthelmes, 2013). An approximation in terms of the disturbing potential known as Bruns’ formula
is

N =
T

γ
. (2.6)

The gravity anomaly vector is defined as

δg = ∇W −∇U. (2.7)

The gravity anomaly is derived by

δg = |∇W | − |∇U |. (2.8)
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Note that this is the classical definition of gravity anomalies. Here again, an approximation in terms
of the disturbing potential is usual, bringing us to the fundamental formula of geodesy:

δg =
∂T

∂r
− 2

r
T. (2.9)

The difference in direction is represented by the deflection of the vertical:

dN = −ε ds (2.10)

ε = −dN
ds

. (2.11)

Division into a north-south and an east-west component leads to

ξ = −dN
dx

= − 1

R

dN

dϕ
(2.12)

η = −dN
dy

= − 1

R cosϕ

dN

dλ
. (2.13)

2.2 Overview of the satellite mission GOCE

The satellite mission GOCE (Gravity field and steady-state Ocean Circulation Explorer; Rummel
et al., 2011; Drinkwater et al., 2007) was launched on March 17th, 2009 and completed its mission
at the end of 2013. It was primarily designed to map the time-mean part of the gravitational field
of the Earth. It is thus complementary to the predecessor mission GRACE, which mainly aimed
at the temporal variations. ESA realized GOCE as first Earth Explorer within their Living Planet
program. The series of Earth Explorers consists of small and specialized missions developed in close
cooperation with the scientific community. GOCE was expected to see short wavelengths with high
accuracy or, in other words, to achieve high spatial resolution. The mission objectives were 1−2 cm
in terms of cumulative error in geoid heights and 1− 2 mGal in terms of cumulative error in gravity
anomalies, both with respect to a spatial resolution of 100 km half wavelength. Today, after mission
completion, global mean accuracies of 2.4 cm and 0.7 mGal could be achieved respectively for geoid
and gravity anomalies (Brockmann et al., 2014). Applications for GOCE data can be found in
various disciplines. For example, GOCE gravity field models are used to derive a high resolution
model of the geodetic ocean topography when combined with altimetry data. An other example is
the improvement in the realization of national height references surfaces as needed for using GNSS
for height determination in the ordnance survey. The ability of GOCE to see the small features in
the gravity field can be explained by the innovative measuring concept, which consists of measuring
the second derivatives of the gravity potential, making the signal rougher and details better visible.
Another reason is the orbit height of approximately 250 km, which is very low when compared
with other missions, such as GRACE with 500 km. The attenuation of the gravity signal, which
increases with the orbit height, is therefore less. To realize the concept of gravity gradiometry,
a gradiometer was used for the first time in orbit. To prevent the satellite from sinking and to
enable accurate gradients, drag had to be continuously compensated. To cover the high power
requirement of especially the propulsion system, the satellite was set into a sun synchronous orbit,
which contradicts a polar orbit and is the reason for the so called polar gap in GOCE data. GOCE
was further equipped with a GPS system, which provided the precise positions for geolocating the
gravity gradients and for determining the long-wave part of the gravity field. The star cameras
provided important information for the inertial orientation of the gradients.
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2.3 The short-arc approach

In the early days of satellite geodesy, there were only few—mainly optical and laser ranging—
observations available. As the number of simultaneous laser ranging observations was not sufficient
to determine the three-dimensional position of the satellite, the position was represented by the
force function, and only few parameters were estimated to improve the force field. Thus, orbit
determination and gravity field estimation were rather close. As the orbit was a-priori not known,
the orbit had to be integrated, which is summarized as the differential orbit improvement method.
In view of the sparse observations along the orbit, long arcs of days to weeks had to be used to
improve redundancy (Ilk et al., 2008).

With the advent of the new satellite missions CHAMP, GRACE and GOCE, which were among
others equipped with a GPS device, the data situation has fundamentally improved. Today, the orbit
can be determined pointwise independent of the gravity field. As the positions are now comparatively
well-known a-priori, they can be introduced into the force function, and the observation equations
can be set up. Thus, besides the classical technique, a bundle of alternative methods became
possible, which mainly differ in the number of differentiations of the satellite position vector or
respectively in the number of integrations of the equation of motion (see Löcher, 2010 for a systematic
overview). The integral equation approach, also referred to as short arc approach, has been one of
these new approaches. It is based on the solution of Newton’s equation of motion as boundary
value problem, which takes the form of an integral equation of Fredholm type. It was Schneider
who first proposed this solution for the purposes of satellite geodesy (Schneider, 1968). The original
approach was substantially modified (cf. Mayer-Gürr, 2006) and has been frequently applied in the
Astronomical, Physical and Mathematical Geodesy group of Bonn University: Mayer-Gürr et al.
(2005) used this approach for the calculation of gravity field models from CHAMP data. In Mayer-
Gürr (2006) it was adapted to be applied for GRACE data analysis. It was applied for the calculation
of the gravity field model ITG-Grace2010. Finally, it was used for many simulations to plan for
future missions, documented in Elsaka (2010).

Furthermore, the new missions are equipped with sensors to measure the gravity field in-situ. This
is obvious for GOCE because the gradiometer measures pointwise the second derivatives of the
gravity potential. Thus also for new types of observation, there is no need for long arcs, as the
gravity field is measured directly (Ilk et al., 2008). In case of GOCE, the use of short arcs is one
of several approaches to make the huge problem manageable in the first place: with a 1 sec data
sampling, GOCE gathers 30 million observations per tensor component and year. Because of the
characteristics of the measuring device, the gravity gradients are highly correlated, which would be
reflected in a full covariance matrix. Knowing that GOCE enables to recover the gravity field with
high spatial resolution, e.g. up to degree and order 250, that would result in 63,000 parameters.
This situation leads to a design matrix of 2TByte, a covariance matrix of 3,000TByte and a system
of normal equations with a size of 30GByte. Even if those matrices would fit into the main storage
of a computer, already from a computational point of view, it would be sensible to apply certain
algorithms to reduce the problem. In the short arc approach, the observation equations are set
up per arc, and the normal equations are calculated per arc and subsequently accumulated. This
procedure can be nicely parallelized. When using the addition theorem of normal equations, it is
implicitly assumed that the observations of different arcs are uncorrelated. As for GOCE, there are
correlations with periods that exceed the length of a short arc; thus, when applying the short arc
approach for the analysis of GOCE data, one obviously neglects this in the stochastic model. This
is mitigated by introducing additional parameters into the deterministic model. Short arcs for the
processing of gradiometer observations has been used by Eicker in several simulations. Schall et al.
(2011) reported the first application to real data, and Schall et al. (2014) presented a complete GOCE
model calculated using the short arc approach with the SST part following the integral equation
approach. Eicker et al. (2014) compared the global model to results from regional analysis.
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Generally, independent of the type of observation, the short arc approach has some properties that
are worth mentioning: it allows to make use of a full covariance matrix per orbit arc and offers a
nice possibility to handle outliers through arcwise weighting. Also, the short arc approach, which
is obviously capable to deal with short pieces of the satellite orbit, is suitable to be applied in the
frame of regional gravity field analysis. Here, one would cut the satellite observations to the region
of interest, as only these data are necessary to adjust the scaling coefficients of the regional basis
functions.

2.4 Representation by global or local basis functions

In the following, we work on the two-dimensional unit sphere Ω, which is the set of all points in
three-dimensional Euclidean space that have a distance of one from the origin. A point on Ω is
specified by its Cartesian coordinates x, where x ∈ R3 and |x| = 1. One can alternatively use
spherical polar coordinates, (λ, ϑ), where λ ∈ [0, 2π], ϑ ∈ [0, π]. On the contrary, an arbitrary point
of the three-dimensional Euclidean space is denoted by r or (λ, ϑ, r).

2.4.1 Spherical harmonics

Any function F on the unit sphere can be expanded into a series of surface spherical harmonics:

F (x) =

∞∑
n=0

n∑
m=−n

fnmYnm(x), (2.14)

where the fnm denote the spherical harmonic coefficients, and the Ynm denote the (surface) spherical
harmonics of degree n and order m. Herein,

Ynm(λ, ϑ) =

{
Pnm(cosϑ) cosmλ for m ≥ 0

Pn|m|(cosϑ) sin |m|λ for m < 0
(2.15)

with the Pnm being fully (4π-) normalized associated Legendre functions of the first kind. Spherical
harmonics form a set of orthogonal base functions. The orthogonality relations fulfilled by fully
normalized spherical harmonics read∫

Ω
YnmYn′m′dΩ = 4π δnn′δmm′ . (2.16)

The addition theorem,

1√
2n+ 1

n∑
m=−n

Ynm(λ, ϑ)Ynm(λ′, ϑ′) = Pn(cosψ), (2.17)

relates spherical harmonics and Legendre polynomials, the latter being the Legendre functions of
order zero.

For geodetic applications, (solid) spherical harmonics are used, which are the solutions of the Laplace
equation and therefore harmonic. In combination, they can represent any harmonic function, e.g.
also the gravitational potential:

V (λ, ϑ, r) =
∞∑
n=0

1

rn+1

n∑
m=−n

vnmYnm(λ, ϑ). (2.18)
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Here, the spherical harmonic coefficients have been named as vnm. More often, one finds the
following form:

V (λ, ϑ, r) =
GM

R

∞∑
n=0

n∑
m=−n

(
R

r

)n+1

vnmYnm(λ, ϑ), (2.19)

which differs by the factor GM · Rn with GM being the Earth’s gravitational constant and R
the equatorial radius of the Earth, making the coefficients small and unitless. For the following
calculation, a change in the way of writing is needed:

V (λ, ϑ, r) =
GM

R

∞∑
n=0

n∑
m=0

(
R

r

)n+1 (
cnmCnm(λ, ϑ) + snmSnm(λ, ϑ)

)
. (2.20)

Here, vnm was replaced by the coefficients cnm and snm, and the sum starts at order zero. As
already mentioned earlier, the disturbing potential like the gravitational potential is an harmonic
function and can be written in terms of spherical harmonics. The expression is equivalent to that
of the gravitational potential (e.g. Eq. (2.20)) but with another set of spherical harmonic coefficients.

With this in hand, geoid heights can easily be calculated according to the equations given in Sec. 2.1.
Also gravity anomalies can be computed by taking the radial derivative of the disturbing potential.
For the calculation of the deflections of the vertical, Cartesian derivatives in a local north oriented
reference frame have to be calculated. This is often approached by using the chain rule. In this
work, we formulate the Cartesian derivatives directly as linear combination of spherical harmonics
in an Earth fixed reference frame (following Ilk (1983)). To get the derivatives in the local frame,
a transformation has to be done subsequently. The derivative of the potential written in terms of
fully normalized quantities reads

g = ∇V (λ, ϑ, r) = GM

∞∑
n=0

n∑
m=0

Rn
(
cnm∇

( 1

rn+1
Cnm(λ, ϑ)

)
+ snm∇

( 1

rn+1
Snm(λ, ϑ)

))
, (2.21)

where

∇
( 1

rn+1
Cnm(λ, ϑ)

)
=

√
2n+ 1

2n+ 3

1

2rn+2

 αn+1,m−1Cn+1,m−1 − αn+1,m+1Cn+1,m+1

−αn+1,m−1Sn+1,m−1 − αn+1,m+1Sn+1,m+1

−2αn+1,mCn+1,m

 (2.22)

∇
( 1

rn+1
Snm(λ, ϑ)

)
=

√
2n+ 1

2n+ 3

1

2rn+2

αn+1,m−1Sn+1,m−1 − αn+1,m+1Sn+1,m+1

αn+1,m−1Cn+1,m−1 + αn+1,m+1Cn+1,m+1

−2αn+1,mSn+1,m

 . (2.23)

The unknown quantities are explained later on. Setting up the GOCE observation equations requires
the second Cartesian derivatives, which can be built following the same strategy:

M = ∇∇V (λ, ϑ, r) = GM

∞∑
n=0

n∑
m=0

Rn
(
cnm∇∇

( 1

rn+1
Cnm(λ, ϑ)

)
+ snm∇∇

( 1

rn+1
Snm(λ, ϑ)

))
,

(2.24)

where

∇∇
( 1

rn+1
Cnm(λ, ϑ)

)
=

√
2n+ 1

2n+ 5

1

4rn+3

Acxx Acxy Acxz
Acyx Acyy Acyz
Aczx Aczy Aczz

 (2.25)

∇∇
( 1

rn+1
Snm(λ, ϑ)

)
=

√
2n+ 1

2n+ 5

1

4rn+3

Asxx Asxy Asxz
Asyx Asyy Asyz
Aszx Aszy Aszz

 (2.26)
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and

Acxx = αn+2,m−2Cn+2,m−2 − (2 + δ1m)αn+2,mCn+2,m + αn+2,m+2Cn+2,m+2

Acxy = Acyx = −αn+2,m−2Sn+2,m−2 − δ1mαn+2,mSn+2,m + αn+2,m+2Sn+2,m+2

Acxz = Aczx = −2αn+2,m−1Cn+2,m−1 + 2αn+2,m+1Cn+2,m+1

Acyy = −αn+2,m−2Cn+2,m−2 − (2− δ1m)αn+2,mCn+2,m − αn+2,m+2Cn+2,m+2

Acyz = Aczy = 2αn+2,m−1Sn+2,m−1 + 2αn+2,m+1Sn+2,m+1

Aczz = 4αn+2,mCn+2,m

Asxx = αn+2,m−2Sn+2,m−2 − (2− δ1m)αn+2,mSn+2,m + αn+2,m+2Sn+2,m+2

Asxy = Asyx = αn+2,m−2Cn+2,m−2 − δ1mαn+2,mCn+2,m − αn+2,m+2Cn+2,m+2

Asxz = Aszx = −2αn+2,m−1Sn+2,m−1 + 2αn+2,m+1Sn+2,m+1

Asyy = −αn+2,m−2Sn+2,m−2 − (2 + δ1m)αn+2,mSn+2,m − αn+2,m+2Sn+2,m+2

Asyz = Aszy = −2αn+2,m−1Cn+2,m−1 − 2αn+2,m+1Cn+2,m+1

Aszz = 4αn+2,mSn+2,m

(2.27)

and

αn+1,m−1 =
√

(n−m+ 2)(n−m+ 1)(1 + δ1m)

αn+1,m =
√

(n+m+ 1)(n−m+ 1)

αn+1,m+1 =
√

(n+m+ 2)(n+m+ 1)(1 + δ0m)

αn+2,m−2 =
√

(n−m+ 4)(n−m+ 3)(n−m+ 2)(n−m+ 1)(1 + δ2m)

αn+2,m−1 =
√

(n+m+ 1)(n−m+ 3)(n−m+ 2)(n−m+ 1)(1 + δ1m)

αn+2,m =
√

(n+m+ 2)(n+m+ 1)(n−m+ 2)(n−m+ 1)

αn+2,m+1 =
√

(n−m+ 1)(n+m+ 3)(n+m+ 2)(n+m+ 1)(1 + δ0m)

αn+2,m+2 =
√

(n+m+ 4)(n+m+ 3)(n+m+ 2)(n+m+ 1)(1 + δ0m)

(2.28)

Here, it was agreed on Cnm = 0 if m < 0, and Snm = 0 if m ≤ 0. And snm = 0 if m = 0 as usual.

For the evaluation of gravity field models, i.e. different sets of spherical harmonic coefficients, it is
interesting to have a look onto the degree variances. The signal degree amplitude

σ(n) =

√√√√ n∑
m=0

c2
nm + s2

nm (2.29)

is the square root of the signal degree variance and indicates how much energy is contained in the
specific degree. The given degree amplitude is in terms of unitless coefficients, but other definitions
in terms of physical units are also possible, for example

σN (n) = R · σ(n) (2.30)

for the degree amplitude in geoid heights. Kaula’s rule of thumb,

σ(n) ≈
√

(2n+ 1) · 10−10

n4
, (2.31)

is an approximation for the signal content in the different degrees. Furthermore, there are the
difference degree amplitudes, which give a hint onto the strength of the difference signal. If one of
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the gravity models dominates the error, the difference degree amplitudes can be thought of as error
of this specific solution. If the formal errors of a model are known from the estimation procedure,
error degree amplitudes can be calculated as

σσ(n) =

√√√√ n∑
m=0

σ2
cnm + σ2

snm . (2.32)

If the comparison to the difference degree variances gives a good result, the stochastic model that
was used in the estimation procedure can be assumed to work well. As a consequence of the polar
gap, the near zonal spherical harmonic coefficients of GOCE-only models are highly correlated and,
taken individually, not very meaningful. They are thus often left out in the calculation of degree
variances. A rule of thumb derived by van Gelderen and Kopp (1997) (see also Sneeuw and van
Gelderen (1997)) indicates up to which order the coefficients are affected by the polar gap:

mmax =
∣∣∣π
2
− i
∣∣∣n (2.33)

with i being the inclination of the satellite orbit, i.e. i = 96.7◦ for GOCE, to be inserted in radians.
As an alternative, one can use the median of the coefficients per degree, which is not affected by
the polar gap as well. Note that the degree amplitude calculated by leaving out specific coefficients
has to be scaled in order to make the signal content comparable to other models.

2.4.2 Radial basis functions

In gravity field analysis, one often has to cope with heterogeneous data. A regional representation
is then in many cases more suitable than a representation in terms of global base functions, as
stated earlier in Sec. 1.1. A variety of different space localizing base functions has been proposed
for representation. Schmidt et al. (2007) gives an overview of splines and wavelets, which are both
derived from radial base functions or, as he calls them, spherical base functions. Wavelets are used
e.g. by Chambodut et al. (2005), Panet et al. (2011), Schmidt et al. (2008), Klees et al. (2008). Here
the signal is decomposed in a smoothed part and additional detail signals, which are represented
by so called scaling and wavelet functions. By doing so, one gets a representation of multiple
resolution. Another type of base functions, the Slepians, are as concentrated as possible in both
the space and frequency domain. They can, for example, be obtained by maximizing the power of
a bandlimited function within a certain spatial region, see e.g. Wieczorek and Simons (2005). A
mascon is a regional surface mass. In gravity field recovery, the gravity effect of individual mascons
is superimposed, and the mass, or in other words, the height of water with equivalent mass is
estimated (cf. Rowlands et al., 2010). In this thesis, radial basis functions are used; see Freeden
et al. (1998) for a comprehensive review.
As an alternative to spherical harmonics, the function F on the unit sphere can also be represented
as a linear combination of radial basis functions:

F (x) =

∞∑
k=0

akΦk(x). (2.34)

Here, Φk denotes the kth basis function being located at the nodal point xk, and ak is the respective
scaling coefficient. As a consequence of the symmetry, the basis function can be expressed as series
expansion in terms of Legendre polynomials:

Φk(x) =

∞∑
n=0

√
2n+ 1 ϕnPn(x · xk) (2.35)

=
∞∑
n=0

n∑
m=−n

ϕnYnm(x)Ynm(xk), (2.36)
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where the shape coefficients ϕn determine the appearance of the function, and Eqs. (2.35) and
(2.36) are related by the addition theorem Eq. (2.17).

The gravitational potential in terms of radial basis functions reads

V (r) =

∞∑
k=0

akΦk(r). (2.37)

Note that the basis function, though indicated by using the same notation, is not the same as the
basis function in Eq. (2.34) but contains the upwards continuation operator as already known from
the spherical harmonics:

Φk(r) =
GM

R

∞∑
n=0

(
R

r

)n+1√
2n+ 1 ϕnPn(cos^(r, rk)), (2.38)

where cos^(r, rk) = r
r ·

rk
R . Here, the basis functions are arranged on a sphere with radius R at

nodal points rk.

The second derivatives of the gravity potential, which are available from the observations of the
gravity mission GOCE, can be related to the RBFs by

M = ∇∇V (r) =
∞∑
k=0

ak∇∇Φk(r) (2.39)

with

∇∇Φk(r) =


∂2Φ
∂x2

∂2Φ
∂x∂y

∂2Φ
∂x∂z

∂2Φ
∂y∂x

∂2Φ
∂y2

∂2Φ
∂y∂z

∂2Φ
∂z∂x

∂2Φ
∂z∂y

∂2Φ
∂z2

 (2.40)

(Eicker, 2008). The basis functions can be interpreted as functions of the radial distance r =√
x2 + y2 + z3 and the quantity t = xxk+yyk+zzk

rR , which is the cosine of the opening angle. Applying
the chain rule twice leads to the second derivatives in the global system:

∂2Φ

∂α∂β
=

∂

∂β

(
∂Φ

∂r

∂r

∂α
+
∂Φ

∂t

∂t

∂α

)
=
∂2Φ

∂r2

∂r

∂β

∂r

∂α
+
∂2Φ

∂r∂t

∂t

∂β

∂r

∂α
+
∂Φ

∂r

∂2r

∂α∂β

+
∂2Φ

∂t2
∂t

∂β

∂t

∂α
+
∂2Φ

∂t∂r

∂r

∂β

∂t

∂α
+
∂Φ

∂t

∂2t

∂α∂β

(2.41)

with
∂Φ

∂r
=
GM

R

∞∑
n=0

−(n+ 1)

r

(
R

r

)n+1√
2n+ 1 ϕnPn(t)

∂Φ

∂t
=
GM

R

∞∑
n=0

(
R

r

)n+1√
2n+ 1 ϕn

∂Pn(t)

∂t

∂2Φ

∂r2
=
GM

R

∞∑
n=0

(n+ 1)(n+ 2)

r2

(
R

r

)n+1√
2n+ 1 ϕnPn(t)

∂2Φ

∂t2
=
GM

R

∞∑
n=0

(
R

r

)n+1√
2n+ 1 ϕn

∂2Pn(t)

∂t2

∂2Φ

∂r∂t
=
∂2Φ

∂t∂r

GM

R

∞∑
n=0

−(n+ 1)

r

(
R

r

)n+1√
2n+ 1 ϕn

∂Pn(t)

∂t

(2.42)



16 2. Global and regional gravity field analysis from GOCE data

and

∂r

∂α
=
α

r

∂2r

∂α∂β
=

1

r
δαβ −

αβ

r3

∂t

∂α
=
αk
rR
− αt

r2

∂2t

∂α∂β
= − t

r2
δαβ −

αkβ + αβk
r3R

+
3αβt

r4

(2.43)

2.4.3 Predefined point grids

To set up the RBFs as defined in Eq. (2.38), one has to define the shape coefficients and the nodal
point grid. Here, we will start with the latter. This section presents different point grids, which are
all defined prior to the gravity field estimation step and independent of the observations. In contrast
to the optimization of point grids being described later on, this approach is easy to implement and
rather flexible, i.e. suitable for any application.

The geographical grid

The geographical grid is defined by the points of intersection of the meridians of longitude (λ = const,
ϑ = var) and parallels of latitude (λ = var, ϑ = const) with constant angular distances ∆λ, ∆ϑ.

The triangular vertex grid

This grid is created by the subdivision of an icosahedron. The icosahedron is one of the five Platonic
solids. These are a special type of polyhedron, whose faces are regular (equilateral, equiangular),
they all look the same (congruent) and they are evenly arranged. Thus, the Platonic solids are very
symmetric, and since their nodes have equal distances and lie on the surface of a sphere, they provide
a good starting point for a uniform segmentation of the sphere. Depending on the polyhedron chosen
and the technique applied, and depending on whether the grid points are identified with the nodes
or with the centers of the triangles, various kinds of point grids are created. An overview with great
illustrations is given by Popko (2012). The icosahedron is the most important polyhedron for the
subdivision of the sphere. An advantage is that an icosahedral grid can be easily subdivided for
multiresolution or multigrid approaches. In the variant of Eicker (2008) (see also Kusche et al.,
2001), the sides of the spherical triangles are evenly covered with points. The points are connected
by lines running parallel to the sides of the triangles. Since these lines do not intersect in a single
point, the mean of the intersection points is used to define the nodes of the new triangles. The nodes
of all triangles taken together form the basis for the definition of the point grid. This implementation
of the triangular grid is what Popko calls the class 1 version 3 type (Popko, 2012, pp. 199–219). The
level of densification is controlled by the level parameter n. Depending on n, the global number of
grid points I is given by I = 10(n+ 1)2 + 2.

The quasi-random grid

Quasi-random numbers are not truly random, but they have a better coverage than real random
numbers and are therefore sometimes used instead of them. For the quasi-random grid, the
longitude of the grid points is divided into equal angular intervals. The z-coordinate is defined
by a quasi-random sequence. For this, the interval (−1, 1) is cut into halves several times, and
the resulting numbers are set one after the other in a prescribed order. For details see Eicker (2008).
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Figure 2.1: Geographical grid of ∆λ=∆ϑ=
5◦ spacing. In addition to the
grid points, grid net lines are
plotted with a spacing of 30◦.
This type of grid is obviously not
uniform at all, which is due to
the convergence of meridians.

Figure 2.2: Triangular grid of level 16, which
corresponds to 2892 grid points
globally.

Figure 2.3: Quasi random grid

Figs. 2.1 to 2.3 show the three point grids at approximately the same resolution. These are only a
few examples for possible point grids. Another example is the Reuter grid, which is frequently used
in gravity field analysis (Reuter, 1982). Less common are the hexagonal grid and the Fibonacci grid
(used by Bentel (2013) and Naeimi (2013), respectively).

In regional gravity field analysis, it is often claimed for a point grid that is as uniform as possible.
Since the choice of the point grid is closely connected to the model resolution, one does probably
not want to treat some regions differently without a reason. A uniform point distribution generates
a uniform model resolution just like when using spherical harmonics. Moreover, the equal overlap
of the radially symmetric basis functions is good for the stability of the normal equation system.
As for the geographical grid, the grid net lines defining the locations of the grid points converge
at the poles. For this reason, it is not used for the arrangement of the basis functions. Thus the
geographical grid, although being equiangular, is obviously not what we mean when asking for a
uniform distribution. But what exactly does it mean? The term is not clearly defined. For example,
it is used for a grid with equal area elements as well as for one with equal distances. Accordingly,
there are different criteria for the uniformity of a point grid and measures to assess how well they
are fulfilled. Eicker (2008) compared different point grids by means of different criteria considering
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the area and shape of the area elements and the distance of the points. She found that the Reuter
grid and the triangular vertex grid do best. In her opinion, the test concerning the maximum of the
distances of all points of the sphere to the nearest grid point is of particular importance. The shorter
this distance, the closer the area element is to a spherical cap. The other way around, the distance
can be used to measure the deviation from the ideal of a spherical cap. Such a circular segmentation
would be perfectly suitable for being used with radial basis functions, which are isotropic and thus
also have a circular shape in some sense. Following this line of reasoning, Eicker finally decided to
use the triangular vertex grid, which in the present work is used again for comparison with the new
approach.

2.4.4 A glance at reproducing kernel Hilbert spaces

We will begin with some information about functional spaces on the sphere to an extent that is
needed to understand the choice of basis functions; further details about (general) Hilbert and
Reproduction Kernel Hilbert Spaces can be found e.g. in Meschkowski (1962).

Hilbert spaces are vector spaces equipped with a norm that is derived from an inner product via
‖·‖ = 〈·, ·〉1/2. Furthermore, a Hilbert space H is required to be complete, i.e. every Cauchy sequence
of elements of H has to converge to an element of H. The Euclidean space, which is basically the
Rn supplemented by the inner product 〈v,w〉 =

∑
k vkwk, is a familiar example of a Hilbert space.

Another example is the space of square integrable functions, L2(R), which can be thought of as the
generalization of the Euclidean space in the sense that the elements are no longer finite dimensional
vectors but functions on the real line. The inner product here turns into 〈f, g〉L2(R) =

∫
f(x)g(x)dx

inducing the norm ‖f‖2L2(R) =
∫
f(x)2dx. To become an element of L2(R), the function f has to

possess finite norm, a requirement that is obviously met by functions whose square is integrable.

As in this thesis we are concerned with the approximation of spherical data, it is sensible to introduce
the space of square integrable functions on the sphere, here denoted by L2(Ω). For two functions
f(x) and g(x) on the unit sphere, i.e. ‖x‖ = 1 using the Euclidean norm, the inner product and
norm are defined as

〈f, g〉L2(Ω) =
1

4π

∫
f(x)g(x)dΩ (2.44)

‖f‖2L2(Ω) = 〈f, f〉L2(Ω), (2.45)

respectively. When we express f and g by spherical harmonics according to Eq. (2.14) with coeffi-
cients fnm and gnm, (2.44) and (2.45) can be rewritten as

〈f, g〉L2(Ω) =

∞∑
n=0

n∑
m=−n

fnmgnm (2.46)

‖f‖2L2(Ω) =
∞∑
n=0

n∑
m=−n

f2
nm, (2.47)

which can be shown in consideration of the orthogonality relations, Eq. (2.16). It is also because we
decided on using 4π-orthogonal spherical harmonics that the additional coefficient 1

4π was introduced
in Eq. (2.44). Note that RBFs, in contrast to spherical harmonics, are not orthogonal with respect
to the L2-norm, which is clear from the inner product

〈Φi,Φj〉L2(Ω) =
∞∑
n=0

ϕ2
n

n∑
m=−n

Ynm(xi)Ynm(xj). (2.48)
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The concept of reproducing kernel Hilbert spaces (RKHS) enables us to define a space that only
includes functions with a certain smoothness. The RKHS is a special Hilbert space equipped with a
kernel, which by multiplying with a function reproduces this function. The inner product is defined
slightly different as

〈f, g〉2H(Ω) =

∞∑
n=0

n∑
m=−n

fnmgnm
λn

(2.49)

‖f‖2H(Ω) =
∞∑
n=0

n∑
m=−n

f2
nm

λn
, (2.50)

where λn denote the eigenvalues of the kernel. As already stated earlier, for the function f to be
an element of H(Ω), the norm has to be finite. This criterion is only met if the spherical harmonic
coefficients, fnm, approach zero sufficiently fast, which can be associated with f showing a certain
degree of smoothness. Comparing Eq. (2.50) to Eq. (2.47), we see that the coefficients, for they
are additionally divided by λn, should decrease even faster than it is necessary in L2. Generally,
the functions have to be smoother than those belonging to the L2, while the degree of smoothness
depends on the kernel. The more restrictive the kernel, the smoother the functions. When we build
the inner product of the radial basis functions, this time with respect to the norm induced by the
kernel, we find

〈Φi,Φj〉H(Ω) =
∞∑
n=0

ϕ2
n

λn

n∑
m=−n

Ynm(xi)Ynm(xj). (2.51)

2.4.5 The choice of basis functions in Eicker (2008)

In the frame of data modeling, one usually searches for a comparatively simple model that is still
adequate to explain the data. This is also what is postulated by Occam’s razor, a principle that will
become important later on in this thesis. To restrict the solution space to those simple models using
the concepts that has been introduced in the last section, the problem breaks down to just choosing
the appropriate norm. If the task is to approximate a function with abrupt changes and jumps,
the L2-norm, which also allows for non-continuous functions, might be a good choice. However, the
gravity potential is continuous, so that the L2 might not be suitable.

Within this thesis, I generally use the regional approach as was introduced by Eicker (2008) and
described concisely in Eicker et al. (2014). Eicker formulates the problem of regional gravity analysis
within the frame of the theory of reproducing kernel Hilbert spaces, where the norm is induced by
the choice of the kernel, as explained earlier. Particularly, Eicker uses the covariance function of the
gravity potential,

C(ei, ek) =

∞∑
n=0

σ2
n

2n+ 1

n∑
m=−n

Ynm(ei)Ynm(ek), (2.52)

as kernel function with the eigenvalues λn = σ2
n

2n+1 , which is quite common in geodesy (Tscherning,
1977). The covariance function describes the similarity of neighboring points; it is thus appropriate
to make assumptions on the smoothness of the field. However, if the covariance function of the
gravity potential is introduced as reproducing kernel, the gravity potential itself will not be a part
of the space that is associated with the kernel (Tscherning, 1977). According to Moritz (1980, Ch.
25), this problem is primarily a theoretical one because on the one hand side the degree variances
are not perfectly known and on the other side they could be modified to make the kernel slightly
rougher. Eicker (2008) tested this approach by adapting the regularization matrix accordingly but
did not notice an effect in the practical application.
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As already described above in Sec. 2.4.4, the functions to be part of a RKHS are forced in that their
Legendre coefficients go towards zero faster than the eigenvalues of the kernel; the functions have
to be at least as smooth as the kernel. In fact, the kernel function is the roughest function that still
belongs to the space and is therefore a straightforward choice as basis function because this way the
space can fully be exploited. If the kernel function is used as basis function, the basis functions are
referred to as spherical splines. Eicker follows a different way: with a look onto the inner product
of the RBFs, she chooses the coefficients in such a way that the basis functions become decorrelated
with respect to the norm induced by the kernel, which will be exploited later in the regularization
step. Thus, she chooses the shape coefficients according to

ϕn =
σn√

2n+ 1
, (2.53)

which causes the inner product of the basis functions, Eq. (2.51), to become the Dirac impulse:

∞∑
n=0

ϕ2
n

λn

n∑
m=−n

Ynm(xi)Ynm(xj) = δ(xi,xj) (2.54)

(c.f. Eicker, 2008, Eq. (5.3.1)). In the above equation, σ2
n =

n∑
m=−n

f2
nm are the degree variances. The

appearance of the basis functions is thus optimally adapted to the spectral characteristics of the
gravity field, the representation of which they are constructed for, e.g. the RBFs reflect the decrease
of the gravity field towards the higher degrees.

2.5 Gravity field adjustment in the Gauss-Markov model

In the current section, it is shown how to derive the spherical harmonic coefficients or the scaling
coefficients of the radial basis functions from the analysis of GOCE data. The processing of Satellite
to Satellite Tracking (SST) data was extensively described by Mayer-Gürr (2006), and the same
approach was applied here without modification. In this section, we are therefore mainly occupied
with the Satellite Gravity Gradiometry (SGG) part. However, in the last part of the section, which
is about the combined solution, the SST part is assumed to be available in the form of normal
equations. For further processing details, it is referred to the results, Ch. 5.

2.5.1 Setting up the observation equations

The gravity gradients provided by GOCE serve as observations. What we are looking for are the
coefficients of the expansion of the potential into spherical harmonics or radial basis functions.
The gravity gradients correspond to the second Cartesian derivatives of the gravity potential. The
expansion of the potential has thus only to be differentiated twice:

M = GM

∞∑
n=0

n∑
m=0

Rn
(
cnm∇∇

( 1

rn+1
Cnm(λ, ϑ)

)
+ snm∇∇

( 1

rn+1
Snm(λ, ϑ)

))
. (2.55)

Even if the signal content of the gravity gradients is unlimited in theory, in practice, to do numerical
calculations, the problem has to be chosen smaller, and the number of basis functions has to be
limited. Moreover, the sensor is only sensitive within a limited frequency range, i.e. the actual
signal content of the data is limited. Because of the differential measuring principle, the coefficient
of spherical harmonic degree n = 0 cannot be determined accurately. As common in gravity field
adjustment, the coefficient is set to a constant value instead of being estimated. The same is true
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for the coefficients of degree n = 1, where it is assumed that it becomes zero because of a particular
choice of the reference system. With these limitations, the functional relationship is better written
as

M −M0 = GM
N∑
n=2

n∑
m=0

Rn
(
cnm∇∇

( 1

rn+1
Cnm(λ, ϑ)

)
+ snm∇∇

( 1

rn+1
Snm(λ, ϑ)

))
. (2.56)

Equivalently, the functional relationship in terms of RBFs reads

M −M0 =
K∑
k=1

ak∇∇
(
GM

R

N∑
n=2

(
R

r

)n+1√
2n+ 1 ϕnPn(cos^(r, rk))︸ ︷︷ ︸
=Φk(r)

)
. (2.57)

As above, the expansion starts from degree n = 2, and the model resolution, i.e. the number of basis
functions and the expansion degree of the kernel, has been limited. Vice versa, any signal that is
contained in the data but not in the model has to be removed from the data. Besides the central
term, this also includes time variations, which however are not very important for GOCE. Although
gravity field determination from GOCE data in the above form is a linear problem, one frequently
reduces not only the central term but an entire reference field. When working with regional basis
functions on a regionally restricted area, this is particularly important, as structures that are large
compared to the size of the area cannot be captured adequately.

At this point, only the scaling coefficients are searched for. The remaining quantities, i.e. the point
grid and the shape coefficients, have to be specified prior to the gravity field adjustment. There
are some criteria that help to decide about the proper resolution: strength and characteristic of
the measurement noise, signal strength which varies because of the sensor used, the orbit height
and the region. As stated above, the RBFs are always applied to model residual fields. The shape
coefficients should be chosen in such a way that they adequately represent the signal content to
be modeled. For the lower degrees, the formal errors of the reference solution may be chosen, as
they represent how much energy is left after the reference field was substracted. For the higher
degrees, Kaula’s rule can be used. For the sake of completeness, it should be added that at this
stage of the work the grid is chosen uniformly. Having chosen all these parameters, we get a linear
relationship between observations and parameters, and the observation equations can be directly
derived according to

y + v = Aβ (2.58)

with y including the gravity gradients arranged in vector format. Because of their higher quality,
only 4 of 6 gradients are worth being considered in gravity field adjustment. The design matrix A
includes the partial derivatives of the parameters being included in the parameter vector β. As the
measurements are taken within the gradiometer reference system, the observation equations have
yet to be transformed from the Earth fixed frame to this frame. This is realized by using the star
camera data to set up the corresponding rotation matrix. The observations itselves should not be
transformed because, in this way, gradients of different accuracy would be mixed. To make the
problem of GOCE gravity field recovery manageable in the first place, the observation equations are
set up separately for every arc. We divide the observations in arcs yi and set up the corresponding
design matrices. When accumulating the normal equations from the individual arcs later on, it is
assumed that individual arcs do not have correlations. This is certainly not true when dealing with
GOCE data. To hold the error as small as possible, further empirical parameters are introduced.
To give an example, if an offset per arc and tensor element is chosen, the design matrix for that
particular arc has to be expanded by as many columns as different tensor elements are used, every
column containing a one for the particular gradient and zero everywhere else.



22 2. Global and regional gravity field analysis from GOCE data

2.5.2 Stochastic modeling for the gravity gradients

In the following, the stochastic modeling for the gravity gradients is described in detail, as it is not
explained in Mayer-Gürr (2006) or Eicker (2008) but very important for real data analysis. The
GOCE accelerometers possess a complex error behavior and so do the gravity gradients, which are
derived from the accelerometer measurements. To take this adequately into account, a covariance
function was estimated directly from the observations.

To do so, the observation time series, which can also be interpreted as the realization of a random
process, has to be stationary and ergodic. Then one single realization of finite length would be
enough to derive statistical values. Stationarity requires that the probability distribution does not
change over the observation period, meaning that the moments of the distribution remain the same.
To ensure that the expectation value—the first statistical moment—remains constant over time,
any deterministic trend inherent in the time series must be removed. To this end, residuals were
calculated from the gravity gradients by subtracting a model for the time averaged gravity field and
further background models for time variable effects. Also the linear trend present in the gradiometer
data was eliminated.

The computation of variances and co-variances in the classical manner, i.e. as convolution in the
time domain, may yield an empirical covariance function that is not positive definite. An analytical
function which is positive definite by definition is often adjusted to the empirical function to remedy
this problem. I opted for a different approach and calculated the covariance function as the inverse
Fourier transform of the power spectral density of the residuals. In this way, positive definiteness of
the empirical covariance function is guaranteed. The approach is thus much closer to the original
observations.

The discrete Fourier transform,

Hk =
N−1∑
n=0

hn exp (i 2πnk/N), (2.59)

maps the complex functional values hn onto the complex Fourier coefficients Hk, both being of
length N (see e.g. Press et al., 2007, p. 607). When N is even, which is assumed throughout
this derivation, then k = −(N/2 − 1), ..,N/2. The term k/N, which is part of the argument of the
exponential function, denotes the frequency in units of cycles per number of samples. It is linked
to an ordinary frequency by

fk =
k

N∆t
(2.60)

with ∆t being the sampling interval. The power spectrum (or power spectral density, PSD) can
now be computed by taking the absolute square of the Fourier coefficients (Press et al., 2007, pp.
602–603):

PSD(fk) = |Hk|2. (2.61)

Frequently, one is only interested in how much energy is concentrated in a specific frequency range.
Then one does no longer distinguish between positive and negative frequencies but folds the PSD in
half and sums up the two sides. This leads to the so-called one-sided power spectrum. If the input
signal is real, the usual case, both sides are equal, so we get

PSD(fk) =

{
|Hk|2 for k = 0 or k = N/2

2 |Hk|2 for 0 < k < N/2.
(2.62)
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So far, nothing has been said about the normalization constant, which still has to be applied to the
PSD. There are plenty of different conventions to normalize a PSD, and the Parseval theorem,∑

n

|hn|2 =
1

N

∑
k

|Hk|2, (2.63)

here given in its discrete form, might be helpful for the interpretation (Press et al., 2007, p. 608).
When for example the PSD is normalized by 1

N2 , then adding the values of the PSD together yields
the variance of the signal. However, these values might be difficult to understand because they
depend on the length of the input signal. But when it is additionally divided by ∆f = 1

N∆t , which
corresponds to a normalization factor of ∆t

N , then one can directly read the variance per frequency
interval of unit length. Finally, the PSD is transformed back to the time domain. By taking the
absolute square in the formula for the PSD, the imaginary part of the Fourier coefficients vanishes,
and only cosine coefficients remain. As the real part of the inverse Fourier transform is identical to
the cosine transform, I directly use the latter (Press et al., 2007, p. 624):

Cov =

N/2∑
k=0

PSD(fk) cos (2πkn/N). (2.64)

The variance is specified by the first value of the covariance function. The first value is calculated
by adding up the PSD, as is clear from Eq. (2.64). In order that this value becomes the variance, the
proper normalization constant has to be applied, as already discussed earlier. The cross covariance
function can be determined in a very similar way (cf. Press et al., 2007, pp. 648–649).

If f1, .., fn are positive definite functions, and ci ≤ 0, then f(x) =
∑

i cifi(x) is again positive definite
(Stewart, 1976). The covariance function that was obtained in Eq. (2.64) is a linear combination of
cosine functions with the coefficients being the entries of the PSD. According to Stewart (1976), the
cosine is a positive definite function, and the PSD is not negative by definition; see Eq. (2.61). Or
in other words: if a function results from the inverse Fourier transform, and the Fourier coefficients
are at least not negative, then f is positive definite (Stewart, 1976). The covariance function that is
calculated using the PSD as intermediate step is thus not less than positive definite. A real-valued
function f is positive definite if it fulfills

n∑
i=1

n∑
j=1

f(xi − xj)ξiξj ≥ 0 (2.65)

for every choice of ξi. From this, some elementary properties can be derived:

0 ≤ f(0) (2.66)
|f(x)| ≤ f(0) (2.67)

(Koch et al., 2010). Apart from a few pathological cases, the covariance function calculated by our
approach is even strictly positive definite, i.e. it fulfills the above formulas with the greater-than
sign only. We now set up a matrix A with the elements aij = f(xi − xj) and i, j = 1, .., n. We
further define ξ = [ξi]. The matrix is positive definite when

ξ′Aξ > 0 (2.68)

and zero only if ξ1, .., ξn = 0. If the above formula, Eq. (2.68), is fulfilled for all vectors except the
zero vector, then it is also fulfilled for the subspace of vectors with some ξi = 0, which means that
also the principle submatrix of the corresponding indices is positive definite. Thus, when using only
a part of our strictly positive definite covariance function to set up the covariance matrix, we still
get the desired positive definite matrix.
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In frequency domain, large outliers behave very similar to the Dirac delta function, i.e. they spread
over the entire range of frequencies and must therefore be eliminated beforehand. I used a simple
highpass filter in order to eliminate the long-wavelength noise and then removed large outliers using
a threshold value. Moreover, the finite input sequence is in fact the product of an infinite sequence
and a square window function. In order to mitigate leakage resulting from any act of windowing, the
choice of an alternative window function is suitable although it is not particularly important which
window is actually used. However, when choosing another window function, also the normalization
of the PSD changes. It is important that the input signal contains neither a mean nor a trend. This
is because during the process of windowing, the edges of the signal are pulled towards zero, which
would result in spurious signal.

The disadvantage of this approach compared to the classical approach is that the input data have to
be equidistant in time and without any gaps. Therefore not the entire observation time series can be
used. To estimate a covariance function with the length of one orbit arc, strictly speaking only data
of twice the length are needed. Nevertheless, the longest continuous piece of data was used, as it gives
a PSD that is as representative as possible and highly resolved. Alternatively, one could average over
individual bins or equivalently split up the data time series into several segments, transform them
individually and average over the resulting PSDs. Using either approach would yield a smoother
type of PSD. The influence of minor outliers would thereby probably decrease. Connected with this,
one could use segments with a certain amount of overlap, which would counteract the signal loss as
a result of windowing.

The procedure must be repeated in an iterative manner because the residuals are not sufficiently
well known from the beginning. Convergence will however be fast, as deviations in the covariance
matrix mainly affect the stochastic model of the parameters.

In practice, several covariance functions are estimated to account for possible changes in the stochas-
tic behavior, e.g. after the calibration shaking of the satellite.

2.5.3 Least-squares solution & regularization

Having set up the observation equations and the stochastic model in the previous sections, we still
have to decide on an objective function to be minimized. Typically, the sum of squared residuals is
chosen for this purpose:

J(β) = v(β)TQ−1
y v(β) (2.69)

= (Aβ − y)TQ−1
y (Aβ − y) (2.70)

= βTATQ−1
y Aβ − 2βTATQ−1

y y + yTQ−1
y y (2.71)

= βTNβ − 2βTn+ yTQ−1
y y (2.72)

with the substitutes

N = ATQ−1
y A, (2.73)

n = ATQ−1
y y. (2.74)

To find the minimum of the objective function, the gradient of the function is set equal to zero:

∇βJ(β) = 2Nβ − 2n = 0. (2.75)

This leads to the normal equations

Nβ = n, (2.76)
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and finally, after inversion, to the well-known least-squares estimator in the Gauss-Markov model:

β̂ = N−1n = (ATQ−1
y A)−1ATQ−1

y y. (2.77)

The corresponding covariance matrix of the parameters comes out to

Qβ = N−1 = (ATQ−1
y A)−1. (2.78)

As mentioned earlier in Sec. 2.3, there are huge matrices involved in GOCE gravity field analysis,
and the normal equations can certainly not be calculated as indicated by Eqs. (2.73) and (2.74). In
the frame of the short arc approach, the satellite orbit is divided up into arcs, whose observations are
assumed to be uncorrelated. This simplifies the problem considerably in that it allows to accumulate
the normal equations from the individual arcs according to

N =
∑
i

Ni =
∑
i

AT
i Q
−1
i Ai (2.79)

n =
∑
i

ni =
∑
i

AT
i Q
−1
i yi. (2.80)

As a characteristic of the measurement device, GOCE gradiometry is strong in the high frequencies
only. Therefore, one would not use a SGG-only solution but always combine with SST. When dealing
with spherical harmonics, SST and SGG parts are combined on the level of normal equations under
exactly the same principle as mentioned above. For the regional analysis, the SST part might rather
be (part of) the reference model, against which the solution is regularized.

Determining the coefficients of a gravity field model from measurements taken at satellite altitude
represents an inverse problem, and as most of the inverse problems, it is ill-posed. This means that
the solution reacts sensitively, in the form of strongly oscillating base functions, to errors in the
data. More mathematically spoken, although having a unique minimal value, the objective function
will be rather flat, so that many different parameter combinations might get similar low values.
The parameters are thus weakly determined and strongly correlated. In case of GOCE, besides the
attenuation of the gravity field signal with orbit height, ill-posedness is also caused by the polar
gap. To deal with the ill-posedness, the problem is regularized. The Tychonov regularization is
widely used for this purpose. Here, the objective function is manipulated in that a penalty term is
added to it:

J(β) = (Aβ − y)TQ−1
y (Aβ − y) + βTRβ. (2.81)

By doing so, the objective function is sharpened so that the variance of the estimate decreases. R is
the so-called regularization matrix, which is often diagonal. The new objective function, Eq. (2.81),
leads to the estimator

β̂ = (ATQ−1
y A+R)−1ATQ−1

y y (2.82)

and the corresponding covariance matrix

Qβ = (ATQ−1
y A+R)−1. (2.83)

One might ask if there is also some kind of physical interpretation for the regularization term. To
answer that, let us have a look onto the norm of the gravity potential built in the RKHS H. When
dealing with spherical harmonics, it becomes

||V ||2H(Ω) =

∞∑
n=0

n∑
m=−n

v2
nm

λn
. (2.84)
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The discrete approximations is

N∑
n=0

n∑
m=−n

v2
nm

λn
= βTRβ (2.85)

with β including the unknown parameters and R the reciprocal eigenvalues of the kernel. Thus, the
regularization term can be interpreted as to be the norm of the potential built in a certain RKHS,
which should be minimized together with the residual squared sum of the observations. If the kernel
is chosen to be the covariance function of the gravity potential, a choice that has been motivated
earlier, and the degree variances are approximated by Kaula’s rule of thumb, this leads to the well-
known Kaula regularization. Here, the coefficients are forced towards zero the more the higher the
degree. A similar type of spectral weighting can also be incorporated into the regularization process
of the RBFs. When using the same approach that led to the Kaula regularization of spherical
harmonics onto the RBFs, we get

||V ||2H(Ω) = 〈V, V 〉H(Ω) (2.86)

=

〈∑
i

aiΦi,
∑
j

ajΦj

〉
H(Ω)

(2.87)

=
∑
i

∑
j

aiaj 〈Φi,Φj〉H(Ω) (2.88)

= βTRβ (2.89)

with β being the RBF parameters and R including the inner products of the base functions. As
shown earlier, the inner product corresponds to the Dirac impulse. R is thus approximated by the
unitary matrix, which is all the more an approximation because in the discrete case we do not sum
over all frequencies with equal weight so that we do not strictly get a diagonal matrix. Eicker (2008)
showed, however, that this fact does not pose any problem in practical calculations. The objective
function is often written including an additional weighting factor α in front of the regularization
term, which is subject to further optimization. From my point of view, the great strength of the
regional approach is the ability to regularize optimally for the study area. With the above choice
of the regularization matrix being the unit matrix, this can even be amplified, as we can split up
the regularization matrix and thus define different regularization areas within the same regional
patch. There exists different strategies to determine the regularization factor. One of them is the
L-curve method, for which both terms of the objective function are calculated for different values of
the regularization parameter. Another possibility would be to interprete the regularization factor
as variance component and to determine it in an iterative manner known as variance component
estimation.
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3. Topics of Bayesian statistics

Estimating the point grid for the arrangement of the basis functions in regional gravity field analysis
is a nonlinear problem and variable in dimension. The Bayesian statistic provides a practical solution
for this problem. Therefore, in the following chapter, the theoretical background is introduced, in
which the new approach is embedded later on in Ch. 4.

3.1 Fundamentals of probability theory

In frequentist statistics, a random variable is understood as wildcard for the outcomes of a random
experiment, and the associated probability distribution has to be interpreted as to reflect the fre-
quency of outcomes. In Bayesian statistics, on the contrary, probability is a measure for certainty,
and probability distributions are specified for any variable. The term random variable is neverthe-
less retained in this work, as is done in Koch (2007). In the following, a random variable is denoted
by a capital letter. A specific value, which is referred to as realization, is denoted by a small letter.
For the sake of clarity, I deviate from this standard convention when using Greek letters as variable
names or when talking about multivariate distributions.

A discrete-time stochastic process is a sequence of random variables X1, X2, . . . , Xn on a fixed
set called state space. It is said to be stationary if the joint distribution of the subset
Xn, Xn+1, . . . , Xn+k does not depend on n for each fixed k.

One can consider probability theory as a special case of the so-called measure theory. As the
Metropolis-Hastings-Green algorithm, which is applied in this thesis, involves measure theory, a few
measure-theoretic notions shall be introduced here. Suppose S is a set, and B is a family of subsets
of S or, to be precise, a σ-field for S, then (S,B) is said to form a measurable space. Now a measure
on this space is a function mapping B onto the set of real numbers and satisfying certain axioms,
which will not be further discussed at this point. If µ and ν are measures on the same measurable
space, and µ is absolutely continuous with respect to ν, which means that both have the same null
set, then there exists a function f such that

µ(B) =

∫
B
f(x)ν(dx), B ∈ B. (3.1)

The function f is called density or, alternatively, Radon-Nikodym derivative of µ with respect to ν.
Another notation for Eq. (3.1) would be

µ(B) =

∫
B
µ(dx), (3.2)

which avoids using densities. If µ has integral one, it is called probability measure and f the
corresponding probability density function. Furthermore, if the probability distribution is defined
on the set of real numbers, then ν is just the familiar Lebesgue measure dx, and Eq. (3.1) becomes

P (a < X < b) =

∫ b

a
p(x)dx. (3.3)

In this formula, the standard notation in terms of the random variable X was used, and P , p and
[a, b] replace µ, f and B, respectively. P can be understood as to specify the probability for X
taking on a value in the range between a and b. For a distribution living on the unit sphere, ν is
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spherical measure. Some examples of this type will be given at the end of this chapter, Sec. 3.5. In
the discrete case, the counting measure applies, and equivalent to Eq. (3.3) one defines

P (X ∈ B) =
∑
B

p(x). (3.4)

In contrast to the continuous case, where density must be comprehended as probability per unit
interval, here density can be interpreted directly as probability; a fact that is often emphasized by
using the term (probability) mass function instead of density function. A probability distribution can
also be related to a mixed measure, for example one that is composed of a discrete and continuous
measure. Then the probability is

P (X ∈ A, Y ∈ B) =
∑
A

∫
B
p(x, y)dy. (3.5)

Such a kind of mixed density will be defined later on to specify the joint density of the (discrete)
number, the locations (being continuously distributed over the sphere) and the scaling coefficients
of the base functions; the latter being just continuous on the real line. For the sake of brevity
and because most of the following explanations can easily be transferred to the other types of
distribution, I will subsequently restrict myself to the continuous setting.

A proper probability density function has to fulfill the conditions

p(x) ≥ 0 (3.6)
and ∫

p(x)dx = 1, (3.7)

which partly correspond to the above mentioned axioms. These conditions can likewise be for-
mulated with respect to the distribution function, which has to be increasing and to satisfy
0 ≤ F (x) ≤ 1.

Transforming a random variable does not change its probability distribution, but it changes the
appearance of the corresponding density function. If the random variable X with distribution
function F (x) is transformed according to y = g(x), in which g is strictly increasing and thus
invertible, then the resulting random variable Y possesses the distribution function F (h(y)), wherein
h(y) = g−1(y). Differentiation yields

dF (h(y))

dy
=
dF

dh

dh

dy
= p(h(y))

dh

dy
= p(y), (3.8)

in which p(h(y)) and p(y) are, respectively, the continuous density functions of X and Y , and h is
continuously differentiable (Koch, 1999; Devroye, 1986). It should be noted that absolute value bars
have to be added around the derivative when the transformation function is not strictly increasing
but only injective. Eq. (3.8) can be generalized to multiple dimensions:

p(y1, . . . , yn) = p(h1(y1, . . . , yn), . . . , hn(y1, . . . , yn)) |detJ | (3.9)

with the Jacobian matrix

J =


∂h1/∂y1 ∂h1/∂y2 . . . ∂h1/∂yn
∂h2/∂y1 ∂h2/∂y2 . . . ∂h2/∂yn

...
...

. . .
...

∂hn/∂y1 ∂hn/∂y2 . . . ∂hn/∂yn

 . (3.10)
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Eq. (3.3) can be generalized to

P (X1 < x1, . . . , Xn < xn) = F (x1, . . . , xn) =

x1∫
−∞

. . .

xn∫
−∞

p(x1, . . . , xn)dx1 . . . dxn, (3.11)

which applies to a multidimensional continuous random variable summarized as random vector
x = (X1, . . . , Xn)T with values x = (x1, . . . , xn)T defined on the domain of real numbers, i.e.
x ∈ Rn.

Suppose that one is not interested in the random vector (x1,x2) with the joint density function
p(x1,x2) but only in the subset x1. The corresponding density for x1, the so-called marginal density,
then follows by integration over x2:

p(x1) =

∫
p(x1,x2)dx2. (3.12)

As is the case for the marginal density, the conditional density is a function of x1 only:

p(x1|x2) =
p(x1,x2)

p(x2)
. (3.13)

The conditional density is however subject to the condition that x2 takes on a particular value.
From Eq. (3.13) also follows that if x1 and x2 are independent, their joint density can be written
as product of their marginal densities:

p(x1,x2) = p(x1)p(x2). (3.14)

3.2 Bayesian inference, point estimates & credible regions

In Bayesian statistics, any piece of information, e.g. the uncertainty about the outcome of a mea-
surement or the value of a parameter, is formulated as probability density function. Bayes’ theorem,

p(β|y) =
p(y|β)p(β)

p(y)
, (3.15)

forms the basis for Bayesian inference. It is frequently written as proportionality relation:

p(β|y) ∝ p(y|β)p(β). (3.16)

The prior probability density function p(β) (in the following just prior) formalizes knowledge about
the parameters available before measurements are taken. It is then modified by the sampling
density p(y|β), which quantifies how well a parameter set can predict the given observations. The
observations are fixed by measurement, whereas the unknown parameters are subject to adjustment.
For this reason, the sampling density is commonly taken as a function of the unknowns and, in this
form, denoted as likelihood function. The denominator of (3.15), p(y) =

∫
p(y|β)p(β)dβ, is referred

to as the marginal likelihood or evidence. It simply acts as normalization constant and, since it
does not depend on β, is often ignored in studies where one is only interested in determining
parameter values. However, it is the essential quantity when dealing with model comparison and
model selection, as we will see later on in Sec. 4.7.1. The posterior p(β|y) is the target of Bayesian
inference. Knowing the posterior makes it possible to derive all kinds of characteristic values, i.e.
estimates for the unknown parameters or accuracy information.

In Bayesian statistics, parameter estimation is a problem of decision theory. Decisions are made
on the numerical values of the parameters. Of course, these decisions are not arbitrary, but they
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are evaluated by means of the resulting loss. Obviously, it is sensible to select values with minimal
expected loss. If a quadratic loss function is applied, the decision is made on the Bayes estimate

β̂B =

∫
βp(β|y)dβ, (3.17)

which is the expected value of the posterior. Correspondingly, the Bayes estimate for a function of
the parameters reads

f̂B(β) =

∫
f(β)p(β|y)dβ. (3.18)

A more robust loss function gives the MAP estimate

β̂M = argmax
β

p(β|y), (3.19)

which is the mode, i.e. the value that maximizes the posterior. An estimate without accuracy
information is only little meaningful. The posterior density provides full information and should be
incorporated in further applications. Where this is not possible, e.g. for graphical display, credible
or highest posterior density (HPD) regions are used. A HPD region is a subspace of the parameter
space, BS ⊂ B, which contains the parameters with a given probability:

P (β ∈ BS |y) =

∫
BS
p(β|y)dβ = 1− α, (3.20)

where the probability density of an inner point is higher or equal than that of an outer point:

p(β1|y) > p(β2|y) for β1 ∈ BS ,β2 /∈ BS . (3.21)

The calculation of characteristic values involves mathematical operations which are most of the time
not analytically feasible, e.g. integration for the Bayes estimate or the search for extremal values
in case of the MAP estimate. A special case is the linear problem with data and prior knowledge
being normally distributed, for which the analytic solution is possible and presented in the following
section 3.3. The general approach, however, is to sample from the posterior, i.e. to create random
values from its density function, and to approximate the estimates numerically. For example, the
estimates (3.17) to (3.19) become

β̂B =
1

N

∑
i

βi (3.22)

f̂B(β) =
1

N

∑
i

f(βi) (3.23)

β̂M = argmax
β∈β(i)

p(β|y). (3.24)

3.3 The linear problem with Gaussian likelihood and prior

Let the observations y be distributed according to a normal distribution with unknown expected
value Aβ and known covariance matrix Qy, i.e. y|β ∼ N(Aβ,Qy). In this thesis, with a view
on analyzing gradiometric data for an unknown gravity field (source) configuration, we will follow
the custom in geodesy to consider the observations to be Gaussian. This is usually done because
the total measuring error is a superposition of many elementary errors and thus, according to the
central limit theorem, to a good approximation Gaussian distributed. Further suppose that also the
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prior knowledge can be summarized by a normal distribution with expected value µ0 and covariance
matrix Q0, i.e. β ∼ N(µ0,Q0). For the above defined likelihood, this is a conjugate prior, which
means that it leads to a posterior of the same kind, as will be demonstrated in the following.

Applying the Bayes theorem, Eq. (3.15), to the density functions of likelihood and prior,

p(y|β) ∝ exp {−1/2 [(y −Aβ)TQ−1
y (y −Aβ)]} (3.25)

p(β) ∝ exp {−1/2 [(β − µ0)TQ−1
0 (β − µ0)]}, (3.26)

we find the following expression for the posterior:

p(β|y) ∝ exp {−1/2 [(y −Aβ)TQ−1
y (y −Aβ) + (β − µ0)TQ−1

0 (β − µ0)]}. (3.27)

The inner part of the exponent can be rewritten as

(y −Aβ)TQ−1
y (y −Aβ) + (β − µ0)TQ−1

0 (β − µ0)

= yTQ−1
y y + µT0Q

−1
0 µ0 + βT (ATQ−1

y A+Q−1
0 )β − 2βT (ATQ−1

y y +Q−1
0 µ0︸ ︷︷ ︸

= (ATQ−1
y A+Q−1

0 )µ = Q−1µ

)

= yTQ−1
y y + µT0Q

−1
0 µ0 + (β − µ)TQ−1(β − µ)− µTQ−1µ,

(3.28)

where the quantities µ andQ were introduced as abbreviations. As the posterior density is a function
of β only, any term being independent of β is constant and can be neglected. The resulting posterior,

p(β|y) ∝ exp {−1/2 [(β − µ)TQ−1(β − µ)]}, (3.29)

is obviously Gaussian, i.e. β|y ∼ N(µ,Q) with expected value and covariance matrix according to

µ = (ATQ−1
y A+Q−1

0 )−1(ATQ−1
y y +Q−1

0 µ0) (3.30)

Q = (ATQ−1
y A+Q−1

0 )−1. (3.31)

In accordance with the definition, the Bayes estimator is given by the expected value. For the
specific problem considered in this section, the MAP estimator appears to be equal to the Bayes
estimator, which is due to the symmetry of the normal distribution (Koch, 2007, p. 104). When
associating Q−1

0 with the matrix R, which has been introduced in Sec. 2.5.3 as initially arbitrary
regularization matrix, and µ0 with the zero vector, it becomes obvious that also the method of
least-squares from traditional statistics comes to exactly the same result. Yet, the meaning differs
on a philosophical basis.

3.4 Random sampling algorithms

3.4.1 (Inverse) transform sampling

Transform sampling (Press et al., 2007, pp. 362–363; Koch, 2007, pp. 194–196) is based on the
fact that the density of a probability distribution is not invariant against a transformation. If
realizations of a distribution are required, for which a random generator is not already implemented,
one can instead draw samples from an easier distribution and transform the outcomes so that they
become members of the desired distribution. The crucial point is, however, to find an appropriate
transformation formula.
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Consider the case that p(x) and p(y) are respectively the density functions of the sampling distri-
bution and the target distribution, and the former is chosen to be uniform, i.e. p(x) = 1, then the
transformation rule (3.9) simplifies to

p(y) =
dx

dy
. (3.32)

Integration leads to

F (y) = x, (3.33)

and inversion finally gives

y = F−1(x). (3.34)

The functional values of the distribution function F (y) are obviously uniformly distributed. The
other way round, applying the inverse distribution function to the uniform random numbers gives
samples of the desired distribution. This particular case of transform sampling is referred to as
inverse transform sampling. The prerequisite for using this technique is the ability to compute the
inverted distribution function either analytically or at least numerically. This does not pose any
problem in case of a discrete distribution. In general, however, integration of the density function
is not feasible, which is particularly true for multivariate distributions. Then rejection sampling
might be an alternative.

3.4.2 Rejection sampling

The rejection sampling algorithm (Press et al., 2007, pp. 365–367; Koch, 2007, p. 196) distributes
points uniformly over the area under the graph of a density function and takes their x-values as
realizations of the corresponding distribution. As a result, the number of samples that fall into a
specific interval is proportional to the area as it should be because the area is equal to the probability
by definition.

To get uniform random points from the area under the target density p(x), random values x and u
are generated from the proposal distribution with density f(x) and from the uniform distribution
U(0, 1), respectively. The combined samples (x, uf(x)) represent random points from under the
proposal. From those, every sample is discarded that does not also lie under the target density. In
other words, a potential new sample is accepted if

uf(x) < p(x) (3.35)

and otherwise rejected. It should be pointed out that neither f(x) nor p(x) has to be a density
function in the strict sense. It is sufficient if they are only known up to a normalization constant.
Yet, the proposal must be at least as high as the target density over the entire domain; otherwise,
some regions would not be sufficiently covered. See Fig. 3.1 for an illustration of the procedure.

Rejection sampling is more generally applicable than inverse transform sampling, as it applies irre-
spective of whether or not the cumulative distribution function is known. It might, however, need
a lot of rejections before one sample is accepted. The rate of acceptance is related to the area ratio
between target density and proposal. If the target density has a complicated form, one might have
difficulties to find a proposal that is a good envelope, and the algorithm becomes rather inefficient.
The situation gets even worse when rejection sampling is applied to a multivariate distribution. This
is because the acceptance probability decreases exponentially with the dimension of the problem.
In those cases, the simulation of a Markov chain might be more advisable.



3.4. Random sampling algorithms 33

p(x)
f(x)

x

u f(x) < p(x)

→ accept

→ reject

alternative proposal f̄(x)

Figure 3.1: Illustration of rejection sampling: points are generated uniformly distributed under the
proposal (grayish colored area). They are accepted or rejected according to a simple
decision rule so that the remainder of the points is uniformly distributed under the
target density (hatched area). The proposal must lie over the target density and should
ideally build a close envelope. In the picture, this is obviously better fulfilled by the
proposal f(x) than by the rectangular density f̄(x).

3.4.3 Sampling by the simulation of a Markov chain

Markov chain Monte Carlo (MCMC) denotes a class of algorithms that gain information about
a probability distribution from the simulation of a Markov chain. Making only few demands on
the target distribution, these algorithms are universally applicable even to high-dimensional distri-
butions. Broadly speaking, MCMC consists of randomly changing the actual state of the chain,
thereby defining a new state, which then again is modified and so on. In this, it is similar to global
optimization algorithms like the evolutionary or genetic algorithms. The difference is, however, that
the individual samples do represent not only the way to the maximum but the entire probability
distribution. In this way, we do not only get a point estimate but also stochastic information. In
contrast to the elementary sampling algorithms such as inverse-transform or rejection sampling, the
samples resulting from a Markov chain are correlated. Depending on the problem, it might therefore
be necessary to reduce the correlations.

In order to really understand how MCMC works, some technical terms have to be clarified first.
A comprehensive reference for the technical details is Geyer (2005). First of all, a Markov chain
denotes a discrete-time stochastic process, X1, . . . , Xn, defined on an arbitrary state space that has
the Markov property and stationary transition probabilities. Thus, the conditional probability of
going to Xn+1 having visited Xn, . . . , X1 first does only depend on Xn and second is constant. Next,
it should be specified what a stationary Markov chain is. For a stochastic process to be stationary,
remember from Sec. 3.1 that the joint distribution of Xn, Xn+1, . . . , Xn+k must not depend on n.
The joint distribution can be written in terms of the marginal times the conditionals, and for a
Markov chain the latter is constant by definition. So for a Markov chain to be stationary, it suffices
when the distribution of Xn does not depend on n. In other words, the underlying distribution does
not change, which gives it the name invariant, equilibrium or also simply stationary distribution. If
we now simulate a stationary Markov chain, then the individual states of the chain can be taken
as realizations of the invariant distribution. And if we achieve to simulate a Markov chain whose
invariant distribution is equal to the target distribution, we finally get the desired samples. But how
can we simulate a Markov chain with a specific invariant distribution? The general procedure is to
repeatedly apply an update mechanism, which changes the state of the chain according to a certain
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transition probability. So the problem boils down to finding an update with transition probability
kernel P that does not change the target distribution π when being applied to it:∫

π(dx)P (x,B) = π(B). (3.36)

This is the so-called equilibrium equation. Satisfying Eq. (3.36), P is said to preserve π. In the above
equation, the general notation in terms of probability measures was used in the way it had been
introduced in Sec. 3.1. Of course, in the case that P was simply a discrete probability distribution,
one could just use the corresponding probability mass function. But as we will see in the following
two sections, the transition kernel might become very complex, and it is not always possible to
express it in terms of a density function. So the more general notation seems to be appropriate.
Further note that, although the transition kernel being a conditional probability, we wrote P (x,B)
instead of P (B|x), which is in accordance with the literature from the field of Markov chain theory.

To simplify the search for an adequate transition kernel, one often defines the Markov chain to
be reversible. This means that the chain could just as well be run in opposite direction without
changing the underlying distribution. Mathematically, this is expressed by∫

A
π(dx)P (x,B) =

∫
B
π(dx′)P (x′, A), (3.37)

which is the so-called detailed balance condition in a continuous version. If P is reversible with
respect to π, then P also preserves π. This becomes immediately clear when the integral is built
over the whole state space, which again yields Eq. (3.36). So one can equivalently look for a kernel
that fulfills detailed balance, Eq. (3.37), which in general is easier to show.

Fortunately, there are already adequate update mechanisms available, e.g. the Gibbs or the
Metropolis-Hastings update, so that one does not have to seek for it oneself. In the following section,
we will take a look at the Metropolis-Hastings algorithm because it has recently been extended to
distributions of variable dimension.

3.4.4 The Metropolis-Hastings update

In the course of the Metropolis-Hastings update, samples are generated from a proposal distribution.
Some samples will thus appear too often with respect to the target distribution, while others appear
not often enough. To regulate this imbalance, a proposed sample is not readily accepted. Instead,
an acceptance probability is introduced according to which the proposals are decided on. So the
whole transition probability kernel of the Metropolis-Hastings update takes this form:

P (x,B) = r(x)I(x,B) +

∫
B∗
q(x, x′∗)α(x, x′)µ(dx′∗). (3.38)

P is the probability of going from x to a state inside the region B. q is the (normalized) proposal
density; it denotes the probability to propose the step and α to accept it. Furthermore, we must
also consider the probability that the sample is rejected independent of what has been proposed,

r(x) = 1−
∫
q(x, x′∗)α(x, x′)µ(dx′∗), (3.39)

while x is already an element of B. I is the identity kernel, which becomes one in this case. The
notation x′∗ was used to indicate that not necessarily the entire new state has to be generated.
x′ could be a completely new vector x′∗, but it could also be the vector x with just one new
component x′∗ (one-at-a-time-Metropolis-Hastings) or something in between. Note that depending
on the dimension of the proposal, also the measure µ(dx′∗) is always an other one. The transition
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kernel looks rather complicated, and now it is obvious why the notation in terms of probability
measures is reasonable. When we insert the transition kernel, Eq. (3.38), into the integrated detailed
balance condition, Eq. (3.37), and assume that the target distribution π has density p, which is not
necessarily normalized, we get∫

A
p(x)

∫
B∗
q(x, x′∗)α(x, x′)µ(dx′∗)µ(dx) +

∫
A∩B

p(x)r(x)µ(dx)

=

∫
B
p(x′)

∫
A∗
q(x′, x∗)α(x′, x)µ(dx∗)µ(dx′) +

∫
A∩B

p(x′)r(x′)µ(dx′). (3.40)

The last term on both sides is equal, so that Eq. (3.40) reduces to∫
A

∫
B∗
p(x)q(x, x′∗)α(x, x′)µ(dx′∗)µ(dx) =

∫
B

∫
A∗
p(x′)q(x′, x∗)α(x′, x)µ(dx∗)µ(dx′). (3.41)

At this point, the target distribution in the forward and backward step is defined on the same domain
and has a density with respect to the same underlying measure. The same is true for the proposal
distribution. This means that µ(dx) = µ(dx′), and µ(dx∗) = µ(dx′∗). Under these conditions, the
acceptance probability that maintains detailed balance can easily be deduced from Eq. (3.41):

α(x, x′) = min(1, R) (3.42)

with the so-called odds ratio

R =
p(x′)q(x′, x∗)

p(x)q(x, x′∗)
. (3.43)

In summary, the whole algorithm works as follows: a potentially new state is generated from the
proposal distribution. The proposed state is then compared to the last state of the chain on the
basis of the odds ratio. If this is larger than one, the proposal is adopted as the new state of the
Markov chain. If it is less than one, the proposal is accepted with the probability given by the odds
ratio or otherwise rejected. In the case of rejection, the new state of the chain is set equal to the
old state.

The algorithm goes back to Metropolis et al. (1953). This early version made use of a symmetric
proposal distribution, so that the proposal density values of the forward and backward step cancel
each other out in the odds ratio. The odds ratio then simply becomes the ratio of the target density
values. The algorithm in this form is also designated as random walk Metropolis. Later on in 1970,
Hastings generalized the approach to apply for arbitrary proposal distributions. Even proposals
being independent of the current state were possible, which earned it the name independent walk.
The most recent version was published in Green (1995). It is a very general formulation, which
also includes the two aforementioned earlier versions. The so-called Metropolis-Hastings-Green
algorithm will be subject of the next section, Sec. 3.4.5.

3.4.5 The Metropolis-Hastings-Green update

In the odds ratio in the form it was presented in the last section, Eq. (3.43), subsequent states of the
chain are compared by means of their density values. But this fails when the states have different
dimensions. Then the measures in Eq. (3.41) are all different and do not vanish in the ratio anymore.
In summary, comparing probability distributions of different dimension on the basis of probability
densities does not make any sense. Instead, one has to make use of probability measures. In a
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nutshell, "Metropolis-Hastings-Green is just like Metropolis-Hastings except that measures replace
densities", to use the words of Geyer (2005). Consequently, the odds ratio must be written as

R =
π(dx′)Q(x′, dx)

π(dx)Q(x, dx′)
. (3.44)

It is, however, not immediately clear how to evaluate the probability measures in practical calcula-
tions. To get around this, Green assumed in his seminal work from 1995 that the product measure
of the individual measures of the target and the proposal distribution is symmetric for the forward
and backward step. This symmetric product measure does cancel when building the ratio, so we
end up with the odds ratio

R =
p(x′)q(x′, x)

p(x)q(x, x′)
(3.45)

again, which only contains ordinary density functions. But to apply this formula, the prerequisite
is to ensure that the product measure is symmetric—more on this later on in this section.

Bayes inference is most of the time not analytically feasible. The way out is to draw samples and
to determine the parameters numerically. Frequently, MCMC techniques are employed for this
purpose. Then the posterior density is associated with the target density of the Markov chain, and
the sought-for parameters are the states of the chain. Simulating a Markov chain yields a sample
of parameters, from which the best in some sense is selected as final estimate. In this context, the
Metropolis-Hastings-Green algorithm presented in this section is of particular interest, because it
allows for model determination, where different models in general have different dimensions. The
model is simply treated as further unknown parameter. The chain wanders around the parameter
space visiting different parameter combinations and, at the same time, jumps between different
dimensional models. These jumps are reversible by definition, which earned the algorithm the name
reversible jump Markov chain Monte Carlo (RJMCMC). Using the same notation as Green, which is
Mk for the model with k being the model identifier and θk for the corresponding parameter vector,
the odds ratio can be written in more detail:

R =
p(k′, θ′k′ |y)q(k′, k)q(θ′k′ , θk)

p(k, θk|y)q(k, k′)q(θk, θ
′
k′)

. (3.46)

q(k, k′) is the probability to propose a move from Mk to Mk′
1. If there is more than just one move

type available to realize this transition, the probability to choose the specific move type must be
multiplied into this probability. q(θk, θ′k′) is the proposal for the parameter vector. The selection of
the proposal distribution is crucial to establish the above-mentioned symmetry between the steps.
For example, when in the forward step the proposal is made to drop one of the model parameters,
then in the backward step it must be added again. This would fulfill what Green also calls the
dimension matching criterion. Often dimension matching can easily be realized, which is also true
for the move types presented in the course of this thesis. But there are other moves that cannot
easily be put into formulas. If for example the dimension of a model shall be augmented by one, and
thus one random number is generated, by means of which more than just one variable is modified
as is e.g. the case for the split-and-merge move, then this cannot any longer be expressed by the
proposal. Instead, Green suggested an alternative way of writing. He directly introduces the density
p(u) (respectively p(u′) for the backward step), from which the random values are actually generated.

1Although it might be intuitive to think of p(k, k′) as the proposal for the model, it actually is a so-called mixing
probability. As one of his innovations, Green showed that the mixing probability is permitted to depend on the actual
state of the chain, i.e. on (k, θk). In this thesis, a possible dependence on the model parameters θk is not taken into
consideration and thus neglected.
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As a result, the corresponding measures would not cancel any more and must be taken into account
in the odds ratio:

R =
p(k′, θ′k′ |y)q(k′, k)q(u′)

p(k, θk|y)q(k, k′)q(u)

∣∣∣∣∂(θ′k′ , u
′)

∂(θk, u)

∣∣∣∣. (3.47)

The last term is the Jacobi determinant for the transformation from (θk, u) to (θ′k′ , u
′). In this way

of writing, the dimension matching criterion is as easy as dim(θk) + dim(u) = dim(θ′k′) + dim(u′).

3.5 Probability distributions on the line and unit sphere

3.5.1 Discrete and continuous uniform distribution

The discrete uniform distribution assigns equal probabilities to all possible realizations x of a random
variable:

p(x) =


1

b− a+ 1
for x ∈ {a, a+ 1, . . . , b}

0 otherwise
(3.48)

with a and b being integers and a < b. The domain is commonly chosen to be the set of integers,
as was also done here, though there might have been other options.

The continuous uniform distribution is characterized by a density function that is constant over a
specific range of the real line:

p(x) =


1

b− a
for x ∈ [a, b]

0 otherwise
(3.49)

with the values x and the parameters a, b being real numbers and a < b (Koch, 2007, p. 20). In the
following, the continuous uniform distribution is shortly denoted as U(a, b).

Uniform random number generators are available in any programming language. For details con-
cerning their functionality, see Press et al. (2007, pp. 341–358).

3.5.2 Normal distribution

The random vector x with values x ∈ Rn has multivariate normal distribution if its density function
is given by

p(x) =
1

(2π)n/2(detQ)1/2
exp {−1

2
[(x− µ)′Q−1(x− µ)]} (3.50)

with the vector of expected values µ and the positive definite covariance matrix Q (Koch, 2007, p.
51). In what follows, the normal distribution is shortly denoted by N(µ,Q). For the univariate
normal distribution, the density function simplifies to

p(x) =
1√

2π σ
exp {−1

2
[(x− µ)2/σ2]} (3.51)

with the positive standard deviation σ.
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An easy approach to generate samples from the normal distribution is the Box-Muller algorithm
(Box and Muller, 1958; Press et al., 2007, p. 364). The algorithm relies on the strategy of transform
sampling. Uniform random numbers x1, x2 are transformed to quantities y1, y2 by

y1 =
√
−2 lnx1 cos 2πx2 (3.52)

y2 =
√
−2 lnx1 sin 2πx2. (3.53)

Applying the transformation law for probability distributions, Eq. (3.9), yields

p(y1, y2) =

[
1√
2π

exp (−y2
1/2)

] [
1√
2π

exp (−y2
2/2)

]
. (3.54)

The quantities y1, y2 can thus be taken as independent realizations of the standard normal distri-
bution. Note that there are faster alternatives to the Box-Muller algorithm, which e.g. avoid to
evaluate the trigonometric expressions.

3.5.3 Cauchy distribution

The random variable X with values x ∈ R has Cauchy distribution if its pdf is given by

p(x) =
γ

π

(
1

(x− x0)2 + γ2

)
(3.55)

with the location parameter x0 and the positive scale parameter γ specifying the half width at half
maximum.

A possible way to sample from the Cauchy distribution is based on the observation that the ratio of
two independent normally distributed random variables is standard Cauchy distributed. Considering
the Box-Muller transform, Eqs. (3.52) and (3.53), we get

x =
y2

y1
= tan 2π x2. (3.56)

So x can be determined from the uniform random number x2 by transformation.

The half-Cauchy distribution corresponds to the positive half of the Cauchy distribution centered
at zero. It is frequently used as prior for the variance parameter in hierarchical models, as was also
done in the present work.

3.5.4 Geometric distribution

The discrete random variable X with values x from the set of integers has geometric distribution if
its pdf is given by

p(x) =

{
(1− p)xp for x ∈ {0, 1, 2, . . .}
0 otherwise

(3.57)

(Devroye, 1986, p. 498); see Fig. 3.2 for an illustration. The tuning parameter has thereby to
satisfy 0 < p ≤ 1. The density specifies the number x of failures that may occur before a success
in a random experiment with probability p. This leads directly to the following sampling scheme:
generate random numbers between 0 and 1, stop when a number occurs that is less than p, i.e. a
success, and count the preceding unsuccessful trials. The resulting count can be taken as realization
of the geometric distribution. For p > 1/3 the method is probably unbeaten in terms of efficiency
(Devroye, 1986, p. 498). However, if p is small, many random numbers might be necessary for one
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Figure 3.2: Probability mass function of the geo-
metric distribution for three different
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Figure 3.3: Probability mass function of the Pois-
son distribution for three different val-
ues of the tuning parameter.

single realization, and the method will thus decelerate considerably. Alternatively, inverse transform
sampling can be applied, which requires one random number per realization only. Note that the
geometric distribution is the discrete counterpart of the continuous exponential distribution. This
becomes clear when inserting p = 1−e−λ into (3.57). Instead of applying inverse transform sampling
to the geometric distribution, it would be more elegant to use it for the exponential distribution.
Samples of the geometric distribution can afterwards be achieved by truncation to the integer part
(Devroye, 1986, pp. 499–500).

3.5.5 Poisson distribution

The discrete random variable X with values x from the set of integers has Poisson distribution if
its pdf is given by

p(x) =

{
λx

x! exp {−λ} for x ∈ {0, 1, 2, . . .}
0 otherwise

(3.58)

(Devroye, 1986, p. 501); see Fig. 3.3 for an illustration. The parameter λ has to fulfill 0 < λ. Values
x can be obtained by standard inverse transform sampling (Devroye, 1986, p. 505). However, if λ
is large, there might be more efficient ways of proceeding.

3.5.6 Spherical uniform distribution

The following distributions are defined on the two-dimensional unit sphere, S2, which is the set of
all points in three-dimensional Euclidean space that have a distance of one from the origin. A point
of S2 is specified by its Cartesian coordinates x, where x ∈ R3 and |x| = 1. One can alternatively
use spherical polar coordinates, (λ, ϑ, r), where λ ∈ [0, 2π], ϑ ∈ [0, π] and r = 1. As the radius
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is obviously always equal to one, the notation (λ, ϑ) is also possible. The two representations are
related via

x =

cosλ sinϑ
sinλ sinϑ

cosϑ

 . (3.59)

The above concept generalizes straightforwardly to arbitrary dimension. If needed, the sphere
embedded in Rn is called Sm-sphere, where m = n − 1. Nevertheless, whenever the term ’sphere’
appears in the following, it refers to the ordinary S2-sphere.

The spherical uniform distribution is characterized by the fact that equal probabilities are assigned
to equally sized area elements. Alternatively, one can also ask for a constant density with respect
to the spherical area element. As stated earlier in Eq. (3.7), a probability density function has to
have integral one. If the density function is initially set to an arbitrary constant, e.g. p(x) = 1, then
integration over the unit sphere,∫∫

1 sinϑdλdϑ = 4π, (3.60)

yields the normalization constant that is needed to derive the proper density function:

p(x) =
1

4π
. (3.61)

If in Eq. (3.60) the sin-term is assigned to the density function instead of being assigned to the area
element, the density function is obtained in its most usual form (Mardia and Jupp, 1999, p. 160):

p(λ, ϑ) =
sinϑ

4π
. (3.62)

Note that this step is actually a change of variables, which requires the application of the trans-
formation law for probability distributions, Eq. (3.9). In fact, the additional sin-term represents
the Jacobian determinant of the transformation from spherical to Cartesian coordinates, Eq. (3.59).
Finally, there is a special version of the uniform distribution that is different from zero only within
a limited part of the sphere. If this particular region is denoted by S and its area by A, then the
density function for the area limited uniform distribution reads

p(λ, ϑ) =


sinϑ

A
for (λ, ϑ) ∈ S

0 otherwise
(3.63)

(Fraiture, 2012). For a spherical rectangular and a spherical cap, A can be calculated analytically
according to

A = (λmax − λmin)(cosϑmin − cosϑmax) (3.64)
and

A = 2π(1− cosψ), (3.65)

respectively. Here, λmin, λmax, ϑmin and ϑmax are used for the boundaries of the rectangle, and
ψ is the opening angle of the spherical cap. For an arbitrarily shaped region, the approximate
normalization constant can be achieved by numerical integration.

There are several approaches to sample from the spherical uniform distribution (e.g. von Neumann,
1951, Cook, 1957, Muller, 1959, Knop, 1970). The most intuitive approach might be that of von
Neumann. He proposed to pick samples from inside the unit square and then to throw away those
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that do not fall into the unit circle. The rest of the samples after normalization is distributed
uniformly on the circle line. This idea also applies to any other dimension. Each of the approaches
listed above is suitable if random points with global coverage are needed. Random points limited
to a specific area can then be achieved by an additional rejection step. An algorithm that avoids
rejection is described with some more detail in the following. The only source that was identified
on that subject is Fraiture (2012). Two random variables are independent if their joint density can
be written as product of the individual marginal densities, as was seen before in Eq. (3.14). As this
is possible in the present case,

p(λ, ϑ) =
sinϑ

4π
=

1

2π

sinϑ

2
= p(λ)p(ϑ), (3.66)

λ and ϑ can be simulated individually. While λ can easily be generated from the uniform distribution
U(0, 2π), inverse transform sampling is applied for ϑ. This results in the transformation from the
uniform random number u to the angle ϑ according to

ϑ = arccos (1− 2u). (3.67)

As the algorithm works with spherical coordinates, it can easily be adapted to apply for limited
areas. For this purpose, λ is limited to the range [λmin, λmax], and the term (1− 2u) in Eq. (3.67),
which corresponds to a random number on the interval [−1, 1] in the global case, is limited to
[cosϑmax, cosϑmin]. If random points are required in an area that is not bounded by the great and
small circles of longitude and latitude, the points can be generated in a bounding box surrounding
the region of interest, and unwanted samples can just be thrown away. Alternatively, a complex
algorithm that allows to sample directly from an arbitrarily shaped region can be found in Fraiture
(2012).

3.5.7 Fisher distribution and approximations

The Fisher distribution on the sphere is the analogue to the isotropic, bivariate normal distribution
in the plane (Kent, 1982). It is defined on the S2-sphere and belongs to the general von Mises-Fisher
distribution, which is valid for any dimension. The special about the von Mises-Fisher distribution
is the linear argument of the exponential distribution, as will be seen later. Distributions with a
more complex argument are summarized in the general Fisher-Bingham family. Besides the von
Mises-Fisher distribution, this also includes the so-called Kent distribution, which is a distribution
with elliptic isodensity lines.

The Fisher distribution belongs to the field of directional statistics, where it is used to model the
uncertainties of directional data. In the geodetic community, the Fisher distribution has been of
little interest so far. This might be surprising, as geodesists often have to deal with directional
data. The reason is probably that the spherical normal distribution can be approximated by a
planar normal distribution in case of small errors, which can normally be expected in geodetic
applications. In fact, if the concentration parameter of the von Mises distribution goes towards
infinity, then the von Mises distribution goes towards the normal distribution (Mardia and Jupp,
1999, p. 38). As there exists no geodetic literature on that subject, with the only exception being
the publications of the group of Prof. Graferend from the University in Stuttgart (Grafarend and
Awange, 2012; Cai and Grafarend, 2007), distributions of Fisher-type will be treated with some
detail in this section.

The pdf of the Fisher distribution with respect to Cartesian coordinates reads

p(x) =
κ

4π sinhκ
exp {κµTx}, (3.68)
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where x is a point of S2, and µ and κ are called mean direction and concentration parameter,
respectively. Both x and µ are unit vectors, and κ has to fulfill κ ≥ 0. Introducing the spherical
polar coordinates (λ, ϑ) for x and (λ0, ϑ0) for µ, we get

p(λ, ϑ) =
κ sinϑ

4π sinhκ
exp {κ[sinϑ sinϑ0 cos (λ− λ0) + cosϑ cosϑ0]}. (3.69)

Ulrich (1984) published an approach, which was updated by Wood (1994) later on, to sample from
a general class of distributions on the Sm-sphere. These distributions, which are not necessarily
exponential but possess a linear argument, include the von Mises-Fisher distribution as a special
case. Wood (1987) also published an approach for the Fisher-Bingham family restricted to the
S2-sphere. Both approaches made use of a decomposition in normal and tangential components.
The same technique was also described by Mardia and Jupp (1999, p. 169) for the von Mises-Fisher
distribution. As a result of the mentioned decomposition, the two components become independent,
and the latter, i.e. the tangential component, is found to be uniformly distributed on the S(m−1)-
sphere. Simulation is thus straightforward: draw the normal component from the marginal density
and the tangential component from the uniform distribution, and then combine both. In three
dimensions, i.e. in case of the Fisher distribution, with the z-axis being oriented in direction to
the mode, the angular coordinates λ and ϑ itselves can be interpreted as tangential and normal
components. Further, the density function (3.69) simplifies to

p(λ, ϑ) =
κ sinϑ

4π sinhκ
exp {κ cosϑ}, (3.70)

where the above notation has been retained for simplicity. Integration over λ gives the marginal for
ϑ,

p(ϑ) =
κ sinϑ

2 sinhκ
exp {κ cosϑ}, (3.71)

and dividing the joint density by this term leads to the conditional density for λ given ϑ,

p(λ) =
1

2π
, (3.72)

which is actually the marginal for λ. Both quantities are obviously independent, and λ follows the
uniform distribution, as was already announced earlier.

Samples of ϑ can be achieved by inverse transform sampling. This results in the following transfor-
mation:

cosϑ =
log(−u(exp {κ} − exp {−κ}+ exp {κ}))

κ
(3.73)

with the uniform random number u. At this moment, the created random sample (λ, ϑ) is given in
a local coordinate system. To get samples from the general Fisher distribution with an arbitrary
oriented mean direction, one can rotate the local system back to the global one. Note that this
transformation has Jacobian determinant one, so that the density function, Eq. (3.70), is not
modified (see also Mardia and Jupp, 1999, p. 169). Further, expressing the old coordinates by the
new coordinates yields the density of the general Fisher distribution, either Eq. (3.68) or (3.69).

Wenzel (2012) proposed modifications for both the density function and the sampling procedure.
The reason is that in the original versions stability problems arise already for moderate values of
the concentration parameter. Using the relation

sinhκ =
exp {κ} − exp {−κ}

2
, (3.74)
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Figure 3.4: Illustration of the stereographic projection

one finds after some simple calculations an improved expression for the density function:

p(λ, ϑ) =
κ sinϑ

2π(1− exp {−2κ})
exp {κ[sinϑ sinϑ0 cos (λ− λ0) + cosϑ cosϑ0 − 1]}. (3.75)

Regarding the sampling process, Wenzel proposed to use

cosϑ = 1 +
1

κ

(
lnu+ ln

(
1− exp {−2κ}u− 1

u

))
(3.76)

instead of Eq. (3.73).

There is yet another possibility to obtain samples from the Fisher distribution. Suppose that x
belongs to the Fisher distribution, and λ, ϑ are the spherical polar coordinates of x. Then y with

y1 = cosλϑ (3.77)
y2 = sinλϑ (3.78)

is approximately normally distributed (Mardia and Jupp, 1999, pp. 172–173). Vice versa, if y is
sampled from the bivariate normal distribution on the plane and transformed back by

λ = atan2 (y1, y2) (3.79)

ϑ =
√
y2

1 + y2
2 (3.80)

with

atan2 (y1, y2) =


arctan y2

y1
if y1 > 0

arctan y2

y1
+ π if y1 < 0, y2 > 0

arctan y2

y1
− π if y1 < 0, y2 < 0,

(3.81)

then the point defined by the above angular coordinates is Fisher distributed. This holds true for
highly concentrated distributions and small angles. The Eqs. (3.79) and (3.80) can be interpreted
as wrapping of the tangential plane around the sphere.

Various other useful distributions arise by projection. Dortet-Bernadet and Wicker (2008), for
example, use inverse stereographic projections of general multivariate normal distributions to model
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clusters on the sphere. For reasons that will become clear later, I look at the isotropic bivariate
normal distribution only.

The stereographic projection is basically a mapping from the sphere onto the plane. For a selected
direction µ and a point of the sphere x, the stereographic projection is defined by the intersection
of a straight line through x and the opposite pole −µ with a plane orthogonal to µ. To simplify
matters, I introduce a local coordinate system, whose z-axis is aligned with µ; for a sketch of the
situation, see Fig. 3.4. I also use the tangential plane to the sphere at µ, i.e. at the ’north pole’,
as image plane. The projection is thus slightly different from that defined by Dortet-Bernadet and
Wicker, who make use of the ’equatorial plane’. Applying the theorem of intersecting lines on the
situation in Fig. 3.4, we get the formulas for the stereographic projection:

y1 =
2x1

1 + x3
=

2 sinϑ cosλ

1 + cosϑ
(3.82)

y2 =
2x2

1 + x3
=

2 sinϑ sinλ

1 + cosϑ
(3.83)

with x and y being corresponding points on the sphere and the plane respectively and λ, ϑ being
the angular coordinates of x. Inversion of the Eqs. (3.82) and (3.83) yields the inverse stereographic
projection,

λ = atan2 (y1, y2) (3.84)

ϑ = 2 arctan

√
y2

1 + y2
2

2
, (3.85)

which maps the plane onto the sphere. To obtain samples of the ’spherical normal distribution’, one
might come up with the idea of taking y1 and y2 from the planar normal distribution and projecting
them back to the sphere by (3.84) and (3.85). The thus created distribution will obviously be
slightly different from the Fisher distribution. Its density function can be derived by analysing the
projection. The corresponding Jacobian matrix is

J =

(
∂y1

∂ϑ
∂y1

∂λ
∂y2

∂ϑ
∂y2

∂λ

)
=

(
2 cosλ

1+cosϑ
−2 sinϑ sinλ

1+cosϑ
2 sinλ

1+cosϑ
2 sinϑ cosλ

1+cosϑ

)
(3.86)

with the Jacobian determinant

|J | = 4 sinϑ

(1 + cosϑ)2
. (3.87)

The final density is composed of the original density written in terms of the new coordinates and
the Jacobian. With respect to Cartesian coordinates, it becomes

p(x) =
1

2πσ2
exp {−1

2
[(2x1/1+x3)

2 + (2x2/1+x3)
2]/σ2} 4

(1 + x3)2
. (3.88)

Note that up to this point we are still working in a local coordinate system. To overcome this
limitation, i.e. to allow the mean direction to be directed in any direction, the samples can be
simply rotated, as was already described earlier in this chapter. As before, the density function is
not affected by the rotation.

The central projection is very similar to the stereographic projection. The only difference is the
projection center, which is no longer the point opposite to the mode but the center of the sphere.
In formulas, the central projection reads

y1 =
x1

x3
=

sinϑ cosλ

cosϑ
(3.89)

y2 =
x2

x3
=

sinϑ sinλ

cosϑ
. (3.90)
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The inverse central projection then follows to

λ = atan2 (y1, y2) (3.91)

ϑ = arctan
√
y2

1 + y2
2 . (3.92)

Just as in the above case, random points of a distribution which is close to the Fisher distribution
can be achieved by inverse central projection of y1 and y2, which belong to the bivariate normal
distribution on the plane. Note that due to the choice of the projection center, the resulting points
will cover the northern part of the sphere only. To derive the corresponding density function, again
the Jacobian matrix is calculated:

J =

(
∂y1

∂ϑ
∂y1

∂λ
∂y2

∂ϑ
∂y2

∂λ

)
=

(
cosλ
cosϑ2

− sinϑ sinλ
cosϑ

sinλ
cosϑ2

sinϑ cosλ
cosϑ

)
(3.93)

with the Jacobian determinant

|J | = sinϑ

cosϑ3
. (3.94)

Written in terms of Cartesian coordinates, the resulting density function reads

p(x) =
1

2πσ2
exp {−1

2
[(x1/x3)

2 + (x2/x3)
2]/σ2} 1

x3
3

. (3.95)

3.6 Discussion

3.6.1 Remark on random number generators

The today available random number generators differ considerably in terms of quality (Press et al.,
2007, pp. 341–342). Some of them are actually outdated; others are over-engineered at least for
typical applications. It is particularly warned against using the generators of the C++ Standard
Library, as they are implementation-dependent and might have a relatively short return period.
In my software, I decided to integrate the Boost Random Number Library2, which offers a bundle
of different random generators. I chose the solid generator by Matsumoto and Nishimura (1998),
which is said to be both fast and sufficient in quality.

A random number generator requires an initial seed before use. Often simply the system time is
utilized for this purpose. Note that in my work an iterative procedure was employed, which was
implemented by running the same program repeatedly. This also means, however, that the random
generator must be initialized more than just once, namely in each iteration. The system time seems
to be no longer adequate, particularly for small problems with short computing time. One possible
solution would be to increment the random generator seed in each iteration. Alternatively, one
could remember the actual state of the generator at the end of one iteration and reuse it for the
next. This is how the problem was tackled in my implementation. By avoiding the incrementation,
one does not need to think about whether the sequences of random numbers initiated by the seeds
i, i+ 1, . . . are truly independent. Note that the possibility to set a seed that is different from the
system time is the only way to come to reproducible results, which I think are important for further
analyses or for debugging.

2http://www.boost.org/
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3.6.2 Remark on the sin-term

As written earlier in the Preliminaries, Sec. 3.1, changing the parametrization of a probability
distribution only affects the appearance of the associated density function. The same is true for the
transition from Cartesian to spherical polar coordinates or vice versa. The density function with
respect to the differential in angular coordinates, dλdϑ, looks different in that it has an additional
sinϑ-term. This term corresponds to the Jacobian determinant of the transformation from angular
to Cartesian coordinates, as can be verified easily by means of the transformation law for probability
distributions, Eq. (3.9). Remember that density can be understood as probability per unit interval.
The deviation of the density function from unity can be explained by the fact that the area of a
surface element that is caused by a uniform change in the angular coordinates varies over the globe.
Nevertheless, for the major part of this work, it does not matter whether the one or the other density
function is used. Attention must be paid when calculating the MAP estimator, as the point where
a density function reaches its maximum is not invariant against transformation.

3.6.3 Probability distribution adapted to the gravity field

For the basis functions in regional gravity field analysis, the optimal locations are often assumed
intuitively at places where the gravity field shows prominent structures or distinctive points. For
example, Balmino (1972) located the basis functions under the extreme values taken from a map
of gravity anomalies. To make available knowledge of the gravity field usable in this work, an
additional type of spherical distribution was designed, which is adapted to the gravity field.

As stated earlier, a probability density function has to fulfill the conditions (3.6) and (3.7), namely
it has to be positive and to integrate to one. It should further be easy to evaluate the density
and to generate realizations of the corresponding distribution. The new distribution is constructed
on the basis of a gravity field model, which can be evaluated continuously all over the globe. A
density value is calculated by first evaluating the desired functional of the gravity field model at
a specific point. Next, the absolute value is taken, and the result is normalized. An approximate
normalization constant can be calculated by numerical integration. If a geographical grid with
spacing ∆λ, ∆ϑ is chosen for discretization, the normalization constant becomes∫∫

S
|f(λ, ϑ)| sinϑdλdϑ ≈

∑
i

∑
j

|f(λi, ϑj)|∆λ(2 sinϑj sin
∆ϑ

2
), (3.96)

where S is the support of the density function, and f is the desired functional (geoid height,
gravity anomaly, deflection of the vertical or similar). In summary, the density function of the new
distribution reads

p(λ, ϑ) =


|f(λ,ϑ)| sinϑ∑

i

∑
j f(λi,ϑj)∆λ(2 sinϑj sin ∆ϑ

2
)

for (λ, ϑ) ∈ S

0 otherwise.
(3.97)

Samples can be obtained by rejection sampling with the spherical uniform distribution being used
as proposal. The factor, which is needed to scale the proposal function to the level of the target
density, can be determined jointly with the normalization constant.
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4. Optimization of point grids in regional
gravity field analysis

4.1 Description of the problem

In Ch. 2, the approach for regional gravity field analysis was presented that is used in the Astro-
nomical, Physical and Mathematical Geodesy Group of Bonn University. In the standard form, a
dense and uniform point grid is used to define the nodal points of the basis functions with an extra
margin around the region of the observations (cf. Sec. 2.5.1). The present work aims at optimizing
the nodal point grid.

Determining the locations of the basis functions jointly with their scaling coefficients represents
a nonlinear problem. But if the positions are specified in advance, the problem becomes linear,
and it can be written in simple matrix-vector notation. This is the case that has been considered
so far (cf. Ch. 2). For this type of problem, where only a subset of the sought-for parameters is
nonlinear, I use the term quasi-linear. This term is taken from Gundlich and Kusche (2008), who
used Monte Carlo methods for the problem while solving a part of it analytically—an idea that
was picked up again in the present work. Using the method of least-squares for nonlinear problems
yields, except for few special cases, a non-convex objective function, i.e. a function with more than
just one extreme value (Boyd and Vandenberghe, 2004). Local optimization strategies linearize
the functional relationship at a certain point and this way try to approximate the non-convex by
a convex function. However, this does not necessarily lead to the global optimum. The crucial
point is whether there are sufficiently good approximate values available. As mentioned earlier, the
optimization of the point positions will also affect the required number of basis functions. But the
correct number will not be known in advance. We thus find ourselves in the unusual situation that
the number of unknowns is one of the unknowns (Hastie and Green, 2012). Technically, this leads
to a design matrix with a variable number of columns, which can not be dealt with by means of
ordinary statistical tools.

To tackle these challenges, I use global optimization in the context of Bayesian statistics. Here
sampling algorithms are used when the problem cannot be solved analytically. The amount of
randomness helps to avoid sticking to local minima, making us less dependent on the approximate
values. Moreover, as we know from Sec. 3.4.5, there is a solution available that can deal with the
problem of variable dimension.

In the remainder of the section, it is described how reversible jumps are used for the optimization of
point grids. For the sake of clear arrangement, the unknowns are collected in the following vectors

β1 =


...
ak
...

 , β2 =


...
xk
...

 , β3 = K. (4.1)

4.2 The problem at the example of 8 hidden basis functions

A simple closed-loop simulation scenario will be used at different places throughout the chapter to
visualize selected parts of the algorithm. The fact that the true RBF model is known facilitates
the evaluation of the algorithm when compared to the work with real data or simulated data from
a spherical harmonic model. The model consists of 8 RBFs, which were distributed across an area
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of 15◦ × 15◦. When selecting the locations and scaling coefficients of the basis functions, it was
taken care that they are neither too close nor too small to be found again also in the presence of
noise. The individual basis functions were set up from harmonic degree 30 to 250, and the shape
coefficients were specified using the degree variances of the gravity field approximated by Kaula’s
rule of thumb. The model was forward simulated, and observations of the type radial gravity
gradients were calculated (Eq. (2.42)), being close to the gravity gradients in zz-direction, though
without the need for being rotated. The field was evaluated along a sub-cycle of the real GOCE
orbit (1.11.2009–11.12.2009) using a 5 sec sampling interval. White noise with a standard deviation
of 40mE was added, which is indeed a multiple of the actual noise of the real gradients. However,
since correlations were not taken into account, a higher value was considered to be useful. For the
generated signal and the derived observations, see Figs. 4.1(a) and 4.1(b).

As motivated earlier in Sec. 1.1, I expect that adapting the model resolution in the form of the
optimization of the point grid will reduce overfitting and thereby naturally leads to a stabilization
of the problem, so that the solution is less affected by simplified assumptions in the prior information.
This way of thinking should be illustrated again by means of the 8-point example. A set of basis
functions was defined, and the scaling coefficients were calculated from the simulated observations
in the usual way described in Ch. 2. The same kernel function was used as it was already done
for the simulation of the data. The positions of the basis functions were specified in the area of
the observations by means of the points of a regular triangular grid (triangular vertex, level 79); an
additional margin was not considered because of the small signal in the edge region. In the course of
solving the normal equations, a regularization term was taken into account, and the regularization
parameter was estimated with the help of variance component estimation to about 0.007. The
rms of the differences to the true solution in the study area is 0.37m in terms of geoid heights
(Tab. 4.1, see also Fig. 4.1(c)). For comparison, when the true nodal point grid was employed,
the regularization parameter was estimated to 0.062, and the rms amounts to 0.032m (Tab. 4.1,
see also Fig. 4.1(d)). The model based on the standard grid thus performed worse by an order of
magnitude. It is not that the model is not able to adequately represent the observations. As can
be seen from the approximation results of error-free data in Tab. 4.1, the pure model error is very
small (see also Fig. 4.1(e)). The actual reason is the ill-posedness of the problem. The model based
on the standard grid reacts very sensitively to errors in the data. This is also clear from the high
rms value that results from solving the normal equations without regularization (see Tab. 4.1). So
using regularization is necessary, and because of the high uncertainty involved in the inversion of the
normal equations, the solution is rather receptive for it, i.e. the prior information in this scenario
has a high impact. With perfect prior knowledge of the signal in the respective area, one could
basically also come to a perfect solution. However, by using the signal degree variances to describe
the accuracy of the prior knowledge, one only prescribes a certain signal content per wavelength
without any concrete spatial reference. In this way, possible spatial differences in the smoothness
of the field can not be taken into consideration. By contrast, no regularization is required for the
true grid, and when using regularization, the solution is comparatively resistant to changes of the
regularization parameter (cf. the solution with the fixed variance component in Tab. 4.1).

4.3 The joint posterior density function

The joint distribution of the sought-for parameters can be described by the mixed density

p(β1,β2, β3|y) ∝ p(y|β1,β2, β3)p(β1,β2, β3) (4.2)
∝ p(y|β1,β2, β3)p(β1|β2, β3)p(β2|β3)p(β3). (4.3)

Only in few simple cases, the posterior density can be derived from the above expression in proper
form; more often, it has to be simulated. Although this does in principle also hold for our problem,
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Figure 4.1: (a) Signal generated by the 8 hidden basis functions, (b) observations, (c) differences
from the signal for the regular grid (σ = 0.007 with VCE), (d) differences for the true
grid (σ = 0.06 with VCE), (e) differences for the regular grid (error free data), (f)
differences for the true grid (error free data)

Table 4.1: Statistics for the 8-point example: rms of the differences in geoid heights between gravity
field solutions based on different processing variants and the input field. Note that the
modeling errors for the variant with the regular grid in the error free scenario could be
further reduced down to 1e−5 when choosing a larger, denser or simply other type of
grid.

regular grid true grid
variant rms [m] variant rms [m]

σ = 0.007 (with VCE) 0.37 σ = 0.062 (with VCE) 0.032
error free data 1e−2 error free data 1e−13
w/o regularization 7.75 w/o regularization 0.032
σ = 0.062 (fixed) 0.81 σ = 0.007 (fixed) 0.059



50 4. Optimization of point grids in regional gravity field analysis

at least a part of it can be obtained analytically. Specifically, we can benefit from the quasi-linearity
introduced in Sec. 4.1 because determining the scaling coefficients for a given point grid is a linear
problem and, under certain conditions, the posterior density can be specified directly. So we do not
have to sample from the scaling coefficients, but we can integrate them out and run the chain for
the marginalized distribution. DiMatteo et al. (2001) proceeded in a similar way for the positioning
of the basis functions in a spline approach. The marginal posterior is presented in the next section
followed by a description of the individual quantities.

4.3.1 Integrating out the scaling coefficients

For the two first terms of Eq. (4.3), one can again apply Bayes’ theorem:

p(y|β1,β2, β3)p(β1|β2, β3) = p(β1|β2, β3,y)p(y|β2, β3). (4.4)

Introducing this in the original expression, it becomes clear that there is no term left that is condi-
tional dependent on β1, so that it can be integrated out:

p(β2, β3|y) ∝ p(y|β2, β3)p(β2|β3)p(β3). (4.5)

The term on the left hand side is the marginal density for the point grid. When we want to
work with this marginalized form, we have to know the marginalized likelihood. Under the usual
assumptions of normality for the observations, y|β1,β2, β3 ∼ N(Aβ1,Qy), and the prior knowledge,
β1|β2, β3 ∼ N(µ0β1 ,Q0β1), we can, as the determination of the scaling coefficients for a given point
grid is a linear problem, compute the corresponding density analytically:

p(y|β1,β2, β3) =
1

(2π)n/2(detQy)
1/2

exp {−1

2
[(y −Aβ1)TQ−1

y (y −Aβ1)]} (4.6)

p(β1|β2, β3) =
1

(2π)K/2(detQ0β1)1/2
exp {−1

2
[(β1 − µ0β1)TQ−1

0β1
(β1 − µ0β1)]}. (4.7)

For reasons of clarity, we set A = Aβ2,β3 , µ0β1 = µ0β1|β2,β3
, and Q0β1 = Q0β1|β2,β3

. Combining Eq.
(4.6) and Eq. (4.7) yields

(y −Aβ1)TQ−1
y (y −Aβ1) + (β1 − µ0β1)TQ−1

0β1
(β1 − µ0β1)

= yTQ−1
y y + µT0β1

Q−1
0β1
µ0β1 + βT1 (ATQ−1

y A+Q−1
0β1

)β1 − 2βT1 (ATQ−1
y y +Q−1

0β1
µ0β1︸ ︷︷ ︸

= (ATQ−1
y A+Q−1

0β1
)β̂1 = Q−1

β1
β̂1

)

= yTQ−1
y y + µT0β1

Q−1
0β1
µ0β1 + (β1 − β̂1)TQ−1

β1
(β1 − β̂1)− β̂T1 Q−1

β1
β̂1.

(4.8)

Again dependencies have not been mentioned explicitly, i.e. β̂1 = β̂1|β2,β3
, and Qβ1 = Qβ1|β2,β3

.
When we omit constant terms, we find

β1|β2, β3,y ∼ N(β̂1,Qβ1). (4.9)

Any part of Eq. (4.8) that is not a part of the posterior for the scaling coefficients is now assigned
to the marginal likelihood:

p(y|β2, β3) ∝ exp (−1

2
E) (4.10)

E = (y −Aβ̂1)′Q−1
y (y −Aβ̂1) + (µ0β1 − β̂1)′Q−1

0β1
(µ0β1 − β̂1). (4.11)

For the prefactor of the marginal likelihood, the prefactor of the two original densities,

1

(2π)n/2(detQy)1/2
· 1

(2π)K/2(detQ0β1)1/2
, (4.12)
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is divided by the factor of the posterior for the scaling coefficients, resulting in

(detQβ1)1/2

(2π)n/2(detQy)1/2(detQ0β1)1/2
. (4.13)

Instead of simulating the chain for the whole set of the parameters, it is sufficient to simulate
over the marginal posterior for the point grid. In each step, only the point grid is simulated,
and the associated scaling coefficients are calculated in a least squares adjustment as usual. By
integrating out the parameters, one obviously reduces the sampling dimension. One saves sampling
one third of the parameters on the price of having to set up and solve a normal equation system in
every sampling step. It is difficult to assess which way is faster, as it additionally depends on the
implementation and the platform, where the computations are performed. An obvious benefit is
that one can integrate the usually available software package for regional gravity field analysis in a
black-box manner; the Markov chain algorithm can be just built around the standard code. Finally,
integrating the analytical solution in the proposal process helps the chain to move because it leads
to good acceptance probabilities—details will follow in Sec. 4.4.1.

4.3.2 The prior on the number of basis functions

The prior on the number might be chosen to be uniform or to a priori put more weight onto fewer
basis function, as realized by the Poisson or geometric distribution. When choosing the uniform
distribution, the parameters a and b, which represent the minimum and maximum number of basis
functions, have to be defined. It would be sensible to choose a = 1 and b according to the number
of basis functions of the standard grid. Also for the other distributions, one has to define a feasible
range. The resulting density functions do not have to be normalized, as a missing factor would
cancel in the ratio. In addition, one has to define the free parameters, i.e. the slope of the curve in
form of the parameter p for the geometric distribution, where the larger p the larger the descent, and
the shape of the Poisson distribution, which can be adapted by the parameter λ. Both parameters
are tuning parameters and can be set by experience.

4.3.3 The prior on the point grid

As little prior information as possible shall be put onto the point grid. It is assumed that an
individual point is uniformly distributed over the sphere. In the context of regional applications
dealing with regional data, only basis functions are important that are close to the observational
data. It thus makes sense to limit the feasible area. This is implemented by using the limited
uniform distribution introduced in Sec. 3.5.6. It is further assumed that the points are independently
distributed. The joint distribution for all points to be used as prior for the point grid follows from
multiplying the individual densities:

p(β2|β3) =

K∏
k=1

p(xk) =

(
1

A

)K
. (4.14)

A is the normalization constant, which corresponds to the feasible area.

4.3.4 The prior on the scaling coefficients

The marginal likelihood has been received in the Sec. 4.3.1. Here, we want to talk about how the
individual quantities should be set. Qy is the covariance matrix of the observations. The stochastic
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Figure 4.2: Algorithm overview

modeling for the GOCE gradients is done by estimating an empirical covariance function. It is set
constant for the whole time of the chain. As was already discussed in Sec. 3.3, in the context of
Bayesian statistics, the regularization matrix R can be associated with the inverse of the covariance
matrix of the prior information, and µ0β1 is the zero vector. Applying an equivalent to Kaula
regularization to the parameterization in RBFs leads in our approach to the regularization matrix
being the unit matrix (cf. Sec. 2.5.3). Thus we getQ0β1 = σ2

0β1
I, where the variance component σ0β1

is usually determined by some kind of optimization procedure to get an optimal trade-off between
a good data fit and a smooth solution. The optimization of the point grid applied in this thesis will
lead to a more stable solution, which is additionally less sensitive to changes of the regularization
parameter. This might lead to the idea that it is sufficient to set σ0β1 constant. How the Markov
chain is affected by this assumption and if there are better alternatives will be subject of Sec. 4.9.

4.4 Implementation of reversible jumps for the optimization of
point grids

4.4.1 Designing a well-mixing chain

The RJMCMC sampling algorithm applied in this thesis yields samples from the target distribution,
i.e. the empirical density of the generated samples approximates the target distribution. Depending
on the implementation, the number of samples required to visit the whole domain of the target
distribution will differ. For our problem, we are limited in the number of samples, as in every step
an adjustment problem has to be solved, which is time consuming. So we want our chain to visit all
the interesting places in as few steps as possible; in other words, we want many accepted samples
while proposing large steps.

To let the chain move, we need the acceptance probability to be high. This would be the case
if the proposal had a similar high posterior support as the actual sample, i.e. if the sample had
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a similar high posterior density value. For a move step, where a proposal is achieved by random
variation of the actual parameter set, this can be easily achieved by proposing the new parameter
values sufficiently close to the actual values. In contrast, when the proposal step is too large, we get
potentially far, but the proposal will never be accepted, as it has a poor posterior support. On the
other hand, one might not want to perform too small steps either, as although having a huge number
of acceptances, the chain will move rather slowly, and the really interesting places might never be
reached. In a nutshell, good proposals perform steps that are as large as possible while having a high
acceptance rate. This would end up in what Andrieu et al. (2003) call a well-mixing chain. As a rule
of thumb for a one dimensional example with samples being generated from a normal distribution,
the spread of the proposal should be chosen in a way that 45% of the proposals are accepted.
When the number of dimensions approaches infinity, it should be approximately 23% (Chib and
Greenberg, 1995). Instead of randomly changing all parameters at the same time, one can also
change a single parameter slightly stronger, which leads to the one-variable-at-a-time Metropolis-
Hastings algorithm. In presence of correlations between the parameters, it would be sensible to
aggregate the variables and change them together. As for our problem, at least one point on the
unit sphere is changed, i.e. two coordinates together. Hastings (1970) adds that when only few
parameters are changed, one should apply some kind of recurrence formula to take advantage of the
calculations already performed in the step before. As for our problem, one could set up the normal
equations in every step completely but only compute the entries that were changed by the change
of the point positions. If the calculations are very time consuming, Hastings (1970) also advises to
better vary all coordinates to a small amount in every step.

When doing a jump that changes dimension, the concept of close proposals can not be readily
applied. The reason is that when adding a new parameter, there is nothing to which it should be
close to. To nevertheless retain a high acceptance probability, we try to propose samples that have a
high posterior density by themselves, not only compared to the previous sample. Therefore, I propose
grid points at places which I think are probable, which is where the signal changes rapidly. This
idea has been implemented in two different move types. Finally, using the analytically determined
scaling coefficients facilitates considerably the jumps between dimensions, as they provide for the
particular point the highest density value. In this way, a complicated setting of the coefficients and
careful balancing with the other basis functions as is necessary in other approaches can be neglected
(DiMatteo et al., 2001).

4.4.2 Move types and probabilities

In Sec. 3.4.5, p(K,K ′) was introduced, which is the probability to propose a move to the model
MK′ when currently being at the model MK . The representation of the gravity potential by RBFs
is a nested model, which means that any subset of model components represents itself a model,
and in every model the components have the same meaning. To create a new model, one just
has to add basis functions to the current model or to delete them, leaving the rest of the model
unchanged. Thus randomly choosing the model boils down to choosing one of, in the simplest case,
three different move types: birth of a basis function, death of a basis function and update of the
current model, which consists of a change in the positions of the basis functions. The individual
move types are attempted with the probabilities qb, qd and qm, respectively. If one is still far from the
optimum, and even a large change in the model would not change the likelihood function strongly,
so that one nevertheless retains a high acceptance probability, it might be sensible to also allow for
a birth or death of κ basis functions. This would be also useful when the target density for K is
multimodal because changing several functions at the same time could facilitate the jumps between
the models. The corresponding move probabilities are denoted as qbκ and qdκ with κ being the
number of functions to be updated. The move probabilities must satisfy

∑
q = 1, and further the

conditions qdκ(κ) = 0 and qbκ(Kmax − κ + 1) = 0 have to be fulfilled, which is in accordance with
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Figure 4.3: Probability for different move types derived from the Poisson distribution (λ = 6) pre-
sented as a function of K. The constants have been chosen as c1 = 0.25, c2 = 0.02 to
realize at any state a high probability for a move and to guarantee a minimum probabil-
ity for every move type, respectively. In particular, the minimum probability has been
set to be by a factor of ten smaller than if the probability would have been distributed
uniformly over the five move types. Blue: qd2(K), red: qd1(K), black: qm(K), green:
qb1(K), orange: qb2(K), gray: pdf of the Poisson distribution for comparison.

the prior on K. The probabilities can either be prescribed, e.g. one can specify qm and distribute
the probability 1 − qm on the other move types, which is e.g. followed by Lindstrom (2002), or
we can use a method proposed by Green (1995), making use of the prior on K. In this approach,
death steps are proposed particularly often when according to the prior the actual number of basis
functions is too high, and birth steps are proposed often when the prior predicts more functions.
This is implemented by choosing

qbκ(K) = c1 min {1, p(K + κ)/p(K)}, qdκ(K) = c1 min {1, p(K − κ)/p(K)} (4.15)

with c1 being set so that the sum of the probabilities is less than one. Then the probability for a
move step is set to qm = 1−

∑
κ(qbκ + qdκ). I have slightly changed this approach to assure that a

minimal probability c2 for every move type remains by adding a further condition:

qbκ = max {c2, qbκ}, qdκ = max {c2, qdκ}. (4.16)

An example for the resulting move probabilities in dependence of the actual model is presented in
Fig. 4.3. When more than one move type is available for the transition to a particular model, the
probability is distributed uniformly. When e.g. a local and a global birth step are realized within the
same Markov chain, which might be sensible as it improves mixing, the individual steps would be
attempted with 1

2qb. The choice between the available move types is made at random using inverse
transform sampling. Assuming that the three basic move types are available, a uniform random
number u is generated, and the death is adopted if u < pd, else a move is adopted if u < pd + pm,
and a birth is adopted otherwise.

4.4.3 Move

This move type is an ordinary move in the sense of the random walk Metropolis algorithm, i.e. the
new sample is generated in dependence of the previous sample with the help of a symmetric proposal
distribution. That way, the chain can move freely across the feasible area, which is important to
actually find the optimum. For the proposal, the isotropic Fisher distribution is used being the
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equivalent to the normal distribution on the sphere. As part of the move, one firstly proposes a
point to be moved, sets up the Fisher distribution and generates a new point, which then replaces
the original point. For this step, the proposal reads

q(β2,β
′∗
2 ) = q(β2,x

′
k) =

1

K
pF (xk,x

′
k). (4.17)

As the nodal point of the Fisher distribution varies for every proposal, the notation was slightly
changed by taking up the nodal point coordinates into the argument of the Fisher distribution. For
the backward step, one finds

q(β′2,β
∗
2) = q(β′2,xk) =

1

K
pF (x′k,xk). (4.18)

Because of the symmetry of the Fisher distribution, both terms are equal and cancel each other out
in the ratio.

More generally, to move κ grid points dependent on the current grid, the proposal density is

q(β2,β
′∗
2 ) = q(β2;x′k,x

′
l)

=
1

K
pF (xk,x

′
k)

1

K − 1
pF (xl,x

′
l) +

1

K
pF (xl,x

′
l)

1

K − 1
pF (xk,x

′
k)

=
2

K(K − 1)
pF (xk,x

′
k)pF (xl,x

′
l)

(4.19)

for the example of κ = 2. The factor can be identified with a binomial coefficient. Suppose
that κ points are to be selected randomly from K available points. One does not wish to draw
the same point for a second time, which is said to be ’without putting back’ in the jargon of
combinatorics. One further is not interested in which point is chosen at the beginning as long as the
same configuration is received (’without order’). Then the number of possibilities to choose κ out
of K is specified by the binomial coefficient. The reciprocal of this with κ = 2 is just the factor that
we have noticed in Eq. (4.19). In the backwards step, the two new points are chosen, the Fisher
distribution is set up, and the original points are generated. As was the case above, because of the
symmetry of the Fisher distribution, this is equal to Eq. (4.19) with the tick marks being switched.

For the limiting case of moving one basis function, although being the same for any other choice,
the probability of accepting this step boils down to the marginal likelihood ratio:

R =
p(y|β′2, β′3)p(β′2|β′3)p(β′3)q(β′3, β3)q(β′2,β

∗
2)

p(y|β2, β3)p(β2|β3)p(β3)q(β3, β′3)q(β2,β′∗2 )

=

(detQ′β1
)1/2

(2π)n/2(detQy)1/2(σ′0β1
)K

exp (−1
2E
′)
(

1
A

)K
p(K)qm(K) 1

K pF (x′k,xk)

(detQβ1
)1/2

(2π)n/2(detQy)1/2(σ0β1
)K

exp (−1
2E)

(
1
A

)K
p(K)qm(K) 1

K pF (xk,x
′
k)

=
(detQ′β1

)1/2(σ0β1)K exp (−1
2E
′)

(detQβ1)1/2(σ′0β1
)K exp (−1

2E)
.

(4.20)

Note that we put dashes on quantities that, although not being sampled itselves, depend on sampled
quantities.

4.4.4 Global birth

In order to jump to a model with a higher number of parameters, a birth move is required. Here,
we propose a global birth, meaning that new points are inserted independent of the current grid
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over the whole feasible area. The number of basis functions to be inserted is a tuning parameter of
the approach and should be adapted so that a reasonable number of proposals is accepted.

One intuitively assumes that the point grid for the arrangement of the basis functions should be
oriented at the structures of the gravity field. This idea was already applied in earlier approaches.
An early example is Balmino (1972), who set point masses to extremal points that were selected
from a map of gravity anomalies. Another example is Antoni (2012), who chose places with large
disturbing potential values as starting positions for his optimization algorithm. A number of other
optimization or greedy approaches, which were summarized in the introductory part to this thesis
(e.g. Barthelmes, 1986; Marchenko and Abrikosov, 1995; Wittwer, 2009), realize this principle indi-
rectly by setting points at places where the largest residuals occur, so depending on the functional
at places of large gravity anomalies or gravity disturbances. To exploit prior knowledge on the
structure of the gravity field also in the present approach, I integrate the gravity field signal into
the proposal process hoping that this will yield good proposals and a high acceptance rate. For this
purpose, a special probability density function is derived from a gravity field model (see Sec. 3.6.3).
Theoretically, any gravity field functional could be used to define a density function. For example,
when choosing the geoid, this would mean that comparatively many points are proposed where the
geoid height is large. Proposal distributions based on different gravity field functionals are tested
later on in the results chapter, Sec. 5.3.3.

To perform the global birth step, the desired number of points is sampled from the density function
here denoted by pG. Working with an unsorted vector, new points are simply added at the end in
the order of their occurrence. Individual samples are taken as independent, so that the full proposal
density is achieved by multiplication:

q(β′∗2 ) = q(x′K+1, . . . ,x
′
K+κ) =

κ∏
k=1

pG(x′K+k). (4.21)

To define the acceptance probability, we need the corresponding death step, which still has to
be defined. The death step is performed by deleting the required number of basis functions. In
consideration of how the birth step was defined, namely by just putting the new points at the end
of the vector, this step is purely deterministic. It requires neither to sample random numbers nor
to evaluate a proposal density. This detail has often been a source of errors in previous studies
(Jannink and Fernando, 2004). Roodaki et al. (2012) uncovered that Andrieu and Doucet (1999),
using the same birth step as we do, introduced the term 1/K + 1 as proposal probability for the
death of one model component. The additional term would affect the acceptance probability in the
same way as if an additional prior on the number would have been introduced with a preference for
smaller models. The correct expression for the acceptance probability is

R =

(detQ′β1
)1/2

(2π)n/2(detQy)1/2(σ′0β1
)K+κ exp (−1

2E
′)
(

1
A

)K+κ
p(K+ κ)qdκ(K+ κ)

(detQβ1
)1/2

(2π)n/2(detQy)1/2(σ0β1
)K

exp (−1
2E)

(
1
A

)K
p(K)qbκ(K)

∏κ
k=1 pG(x′K+k)

=
(detQ′β1

)1/2(σ0β1)K exp (−1
2E
′)
(

1
A

)κ
p(K+ κ)qdκ(K+ κ)

(detQβ1)1/2(σ′0β1
)K+κ exp (−1

2E)p(K)qbκ(K)
∏κ
k=1 pG(x′K+k)

.

(4.22)

As explained earlier, one has to realize equal dimensions in the forward and backward step to
compare samples of different dimension by means of their density values. This is one of the key
points of the Metropolis-Hastings-Green algorithm. In the above ratio, the proposed state consists
of K plus κ points. The actual state has K points. κ additional points are generated using the
proposal. The dimension matching criterion is therefore fulfilled, and the term 1/κ, which is the
prior ratio, is balanced by the proposal. This is still more evident when the proposal is chosen as
uniform distribution, as in this case the terms would cancel each other out.
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4.4.5 Local birth

As an alternative to the global birth, one could also use a local birth, which introduces many basis
functions at places where already many basis functions lie. Assuming that many points have already
been accepted in areas of rough gravity field signal, the local birth step proceeds according to the
same principle as the global birth. A point is chosen uniformly from the available points; thus, one
naturally picks often those in rough areas. The Fisher distribution is set up, and a new point is
drawn in the neighborhood.

The proposal density to generate κ new points this way reads

q(β2,β
′∗
2 ) = q(β2;x′K+1, . . . ,x

′
K+κ) =

1

Kκ

K∑
k=1

pF (xk,x
′
K+1) · ... ·

K∑
k=1

pF (xk,x
′
K+κ). (4.23)

Here it is also allowed to repeatedly propose the same point as origin. Note that every new point
could have been generated from any available point, which is taken into account by summing up
over the individual density values. Kκ is the number of possibilities to choose κ out of K if one is
interested in the order of arrival and repetitions are allowed.

With this proposal, the odds ratio follows to

R =
(detQ′β1

)1/2(σ0β1)K exp (−1
2E
′)
(

1
A

)κ
p(K+ κ)qdκ(K+ κ)

(detQβ1)1/2(σ′0β1
)K+κ exp (−1

2E)p(K)qbκ(K)

· 1
Kκ

∑K
k=1 pF (xk,x

′
K+1) · ... ·

∑K
k=1 pF (xk,x

′
K+κ)

. (4.24)

When the local birth is not used as an alternative to the global birth but in addition to it, which
might improve the mixing, the death move has no unique revers move anymore, which is necessary
to formulate the odds ratio for each move type individually (Roodaki et al., 2012). We have to
consider the move types together, as we could get the same constellation from both. Consequently,
we have to sum up the expressions for both moves while dividing up the move probability according
to

R =
(detQ′β1

)1/2(σ0β1)K exp (−1
2E
′)
(

1
A

)κ
p(K+ κ)qdκ(K+ κ)

(detQβ1)1/2(σ′0β1
)K+κ exp (−1

2E)p(K)
(

1
2qbκ(K)

∏κ
k=1 pG(x′K+k)

+ 1
2qbκ(K) 1

Kκ

∑K
k=1 pF (xk,x

′
K+1) · ... ·

∑K
k=1 pF (xk,x

′
K+κ)

) . (4.25)

4.4.6 Death

Within the death step, the model dimension is reduced. It thus represents the backward step for the
birth steps mentioned before. When performing a death step, 1 to κ basis functions are randomly
deleted, where we use a small κ when changing the number of basis functions has a large effect on
the value of the likelihood function and a large κ in the opposite case.

The probability of accepting a death step is just the reciprocal value of the acceptance probability
for the corresponding birth step; one just has to slightly adapt the notation from K +κ to K. This
is clear from the definition of the acceptance probability. For the death step, with the backward
step being defined uniquely to be the global birth, this would be

R =
(detQ′β1

)1/2(σ0β1)K exp (−1
2E
′)p(K− κ)qbκ(K− κ)

∏κ
k=1 pG(xK−κ+k)

(detQβ1)1/2(σ′0β1
)K−κ exp (−1

2E)
(

1
A

)κ
p(K)qdκ(K)

(4.26)

and correspondingly for the local birth.
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The birth and death as defined before always add or delete the last point, which is not what
we really want. To overcome this shortcome, we can just introduce another update performing a
uniform choice between the different permutations of the point vector (Geyer, 2005). This step is
always accepted, as the different permutations represent the same model and thus have the same
probability. We must not even really perform the permutation; the only effect this update has is
that a random point rather than the last point can be deleted within the death step. Another still
easier explanation would be that we now choose from among the K points randomly which one to
delete. This however goes along with not only choosing a new point during the birth step but also a
random position, which again adds a factor 1/K. Both terms cancel, which leads to the odds ratio
being exactly the one given above (Roodaki et al., 2012).

4.5 The 8-point example revisited: demonstration of the validity of
the procedure

A nice way to check whether the different steps were properly designed and implemented is to
set the likelihood equal to one and run a Markov chain (see e.g. Sambridge et al., 2006). Then
the algorithm should produce samples of the prior distribution, which can easily be verified. In
the course of this thesis, a uniform prior is used for the number of basis functions, here limited
to the range 1–10. Conditional to the number, the positions of the grid points are regarded as
independent uniformly distributed over the model domain. All possibilities for determining the
move types and move probabilities were tested. The results are presented exemplarily for one
of the constellations. Fig. 4.4 shows the marginal posterior for the number of basis functions.
Fig. 4.5 shows the distribution of the point positions for the grids with five points displayed in a
common histogram. Both distributions reflect the chosen prior distribution, thereby demonstrating
the validity of the procedure.

I want to say a few words about the idea of calculating a closed-loop simulation with error-free data.
This would involve setting up a model, simulating the data from this model and then retrieving the
model parameters in an inverse calculation, which should work up to numerical errors. It is difficult
to perform such a calculation in the present case. This is for two reasons. First, the residual sum
of squares, which is part of the argument of the marginal likelihood, is currently derived from the
normal equations according to vTv = yTy − βTn. The residual sum of squares, vTv, is naturally
much smaller than the square sum of the observations, yTy. So here a small value is determined as
difference of two large values. This only works in the presence of errors when the remaining residuals
are still sufficiently large. For error-free data, this difference has no meaning, as numerically it does
not differ from zero. The best we can hope to achieve is to find a model that cannot be distinguished
from the true model, and in our case this approximation would be rather crude. Second, I find it
difficult to specify a meaningful likelihood function for a problem with error-free data. If we used
the same likelihood function as for the data containing errors, we would not be able to retrieve the
true model within a limited amount of time, for there would be many possible models in the range
of the specified accuracy. Alternatively, one might consider choosing a standard deviation close to
zero. However, the resulting likelihood function is very peaky, causing the algorithm to get stuck
in a local maximum, since a step increasing the residual sum of squares will practically never be
accepted. To conclude, a closed-loop scenario with error-free data does not make sense. Anyway,
such a calculation would only show if the procedure was properly conceived and implemented, which
has already been shown by the previous calculation with the likelihood function having been set to
one, but it does not say anything about the performance in a realistic framework in the presence of
measurement noise.
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Figure 4.4: Marginal density of the number for the Markov chain with the likelihood being set to 1

Figure 4.5: Distribution of the point positions for the grids with 5 points for the Markov chain with
the likelihood being set to 1

4.6 The 8-point example revisited: convergence issues

After having been proven to work properly in the last section, the algorithm shall now be applied
to simulate the probability distribution of the point grid for the example with the 8 hidden basis
functions. To not express a preference for any configuration of basis functions, the prior for the
number was chosen to be uniformly distributed in the range 1–650, and the prior for the point
positions was defined by means of a spherical uniform distribution in the area of the observations.
The variance factor that specifies the prior for the scaling coefficients was defined as 0.062—the
variance factor of the true grid—and retained for the whole run of the random algorithm. The
standard grid with 632 points was used as initial grid, and as before the same kernel function was
used as for the simulation of the data. Coming from the start model, the algorithm chooses between
a birth, death or move of one or more basis functions (see Fig. 4.2). At the beginning, the chain
is still far away from the mode of the distribution in an area of flat density. If the proposal is not
far enough away from the actual state of the chain, nearly every proposal would also be accepted.
The chain would wander around, and even if in the end the number of accepted death steps is
higher, it would take the chain a long time to reduce the number of basis functions in this way.
For test purposes, I simulated such a Markov chain that allows for a birth or death of one basis
function only. The acceptance rate lay at respectively 59% or 95%, and 4705 steps were required
to reduce the number of basis functions to 52. For comparison, a simultaneous birth/death of 5
basis functions led to lower acceptance rates of respectively 15% or 82%, and the number of basis
functions reduced to 52 already after 475 steps. Moreover, since death steps are obviously accepted
particularly frequently in the initial stage of the chain, it makes sense to also propose them more
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frequently. Therefore, not a uniform distribution was used as proposal for the number as was done
for the two test runs, but the move probabilities were derived from a Poisson distribution with λ = 8
and c1 = 0.5555, c2 = 0.1111 in the way described in Sec. 4.4.2. In this way, the convergence of the
chain was accelerated again, so that 52 basis functions were reached already after 295 steps. For the
acceptance rates of different parts of the simulated chain, see Tab. 4.2. When the algorithm decided
for a birth step, the new points were sampled globally with the help of a uniform distribution in the
feasible area. In a death step, 5 points were chosen randomly from the available points and deleted.
In a move step, 25 functions were moved, which in this stage of the chain is a sensible number in the
sense of a fast convergence. After approximately 300 steps, the acceptance of the steps decreased
(cf. Tab. 4.2). The number of basis functions was in this time reduced from 632 in the beginning to
20 basis functions. The chain finally arrived in a steeper part of the target density, where already
small changes in the parameters change the target density value strongly. The proposal process
was therefore adapted so that during a birth, death or move step only one single basis function was
added, deleted or moved. For the move step, this resulted in an acceptance rate of 23%, which in
the sense of mixing is considered to be ideal. Moreover, the individual move types were also selected
with equal probabilities from there on.

In the following, the output of the chain shall be analyzed with regard to the convergence and mixing
behavior of the chain. In practice, “it is not possible to say with certainty that a finite sample from
an MCMC algorithm is representative of an underlying stationary distribution” (Cowles and Carlin,
1996). Yet, there are numerous methods that at least provide an indication. Graphical methods
like time series plots or histograms have been used a lot; for an assessment of the dependencies
within the chain, also autocorrelation plots are valuable. Frequently the Gelman-Rubin tool for
convergence diagnostics is used (Gelman and Rubin, 1992). Several chains are simulated, and it is
evaluated if the variance across the chains is equal to the variance within the chains, which would
point to the convergence of the chain. An overview of tools to assess convergence and mixing is
given by Mengersen et al. (1999) or Sinharay (2003). Both publications are restricted to tools for
fixed dimensional MCMC. In RJMCMC convergence monitoring is still more difficult because the
parameters might have a different meaning in different models or simply take on different values.
Some people gave consideration to that and designed tools specifically for transdimensional prob-
lems, among them Brooks and Giudici (2000), who proposed a generalized version of the approach
of Gelman and Rubin. They further proposed to monitor functions of the parameters that allow for
a meaningful comparison across models. In a similar approach, Castelloe and Zimmerman (2002)
made allowance for a multivariate convergence. In contrast, Brooks et al. (2003) applied test statis-
tics mainly concentrating on marginal convergence of the model indicator. Finally, Sisson and Fan
(2007) developed an approach that is specifically designed for models that are similar to the random
point process, where the monitored function is e.g. the distance of a random point to the closest
point.

In the present work, only the simple tools were applied. Timeseries plots enable to assess the
convergence graphically. If the samples follow the target density, the moments of the distribution
should not change over time. In this sense, a trend or jump in the timeseries plot or a long-term-
change in the spread would indicate that the distribution of the samples does still converge in the
direction of the target distribution. Fig. 4.6 shows timeseries plots for the number of the basis
functions for different parts of the chain. In the initial phase of the chain, one can see the movement
from 632 basis functions in the beginning to 8 basis functions after almost 1600 steps. Apart from
the first several thousand samples, the chain looks stationary; there is no apparent trend. Looking
at the zoom of the samples 300,000–400,000, one sees that the chain got stuck in certain areas over
a long period of time, when the chain was e.g. in the area of the larger models, the number 8 was
sometimes not visited for up to several thousand steps. The chain also visited the number 7 only in
large time intervals to stay there for a couple of time afterwards. This leads to correlations among
the samples. Hence, one can already learn a lot about the dependencies within the chain by just
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looking at the wavelength of the dominant cycles in a time series plot. Accepting a birth/death step
is in general more difficult and therefore less likely. For the 8-point example, the acceptance rate was
about 6%; others reported similar low values, e.g. 7–21% were mentioned for a birth/death of one
function by Lindstrom (2002) or 4–18% by Richardson and Green (1997). Against this background,
I would say that the chain demonstrates a reasonably good mixing behavior also in comparison to
examples from the literature (e.g. Lindstrom, 2002 or Gallagher et al., 2009).

The number of RBFs is only one of the parameters. As said above, it is not advisable to assess
the convergence and mixing of the chain by standard tools, like time series plots, for the rest of
the parameters because they are dependent on the model. As an alternative, I consider the rms
of the differences to the true field. It is a function of all parameters and should therefore provide
a comprehensive picture of the correlations; it is comparable across different models and invariant
against the sorting of the parameters.

Fig. 4.7 shows the traceplots for the rms. In the initial part of the chain, one can see the rms
converge from the relatively high initial value of 0.8m in the direction of better solutions, which
on average have a rms of 0.16m. A burn-in period was chosen using the point in time where the
chain reaches the mean rms. So one can be sure to have reached at least an area of medium high
density. On this basis, I chose a burn-in period of 5,000 steps, and the first 5,000 samples were
disregarded in all subsequent calculations. As for the number, no change in the stochastic behavior
is visible in the timeseries plot for the full chain. Moreover, statistical values were calculated for
any 100,000 samples, which did not give an indication of a still continuing convergence of the chain.
With respect to the mixing of the chain, in comparison with the traceplots for the number, the
cycles turn out broader, which points to larger correlations.

If the generated samples belong all to the same distribution, namely to the target distribution,
the distribution would also look alike for any sufficiently long stretch of the samples. This can be
tested easily by dividing the samples up and compare them on the basis of histogram plots. For
the number, the two histograms calculated from half of the samples each look the same and have
the same statistical values (Fig. 4.9). This also applies for a histogram based on the first 200,000
samples. The chain thus seems to be converged and produces samples from the target distribution.
The corresponding histograms for the rms look similar but slightly differ from each other also in
the statistical values (Fig. 4.10). This is not surprising because the rms reflects the mixing of all
parameters.

The autocorrelation function specifies how strongly the samples depend on each other after a given
number of steps. This is relevant because dependent samples do not contain as much information
as they would if they were independent. So to achieve the same accuracy in parameter estimation,
much more samples might possibly be necessary. Fig. 4.8 shows the autocorrelation function for the
number and the rms both for the full chain and for the subset of samples that belongs to the range
of typical models with 8–10 basis functions. For the number, correlations are weaker than for the
rms, as could have been expected since the rms is affected by the mixing of all model parameters.
With regard to the matter of an appropriate duration of the chain, Geyer (2011) states that “you
need to run a large multiple of the time it takes the autocovariances to decay to nearly zero”, which
in this scenario is fulfilled in any case.

4.7 Derivation of various estimates

4.7.1 Model comparison with Bayes factors and the question of parsimony

Bayes factors form the basis for model selection in Bayesian statistics. They can be derived directly
from the output of the RJMCMC algorithm, making them particularly interesting in the course of
this thesis.
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Table 4.2: Number of proposed (prop.) and accepted (acc.) death, move and birth steps for different
parts of the chain

up to ∼300 up to 500 from 500
prop. acc. % prop. acc. % prop. acc. %

death 167 138 82.64 264 144 54.55 333697 20973 6.29
move 94 38 40.43 171 38 21.84 332118 81442 24.52
birth 34 22 64.71 61 23 37.71 333685 20955 6.28
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Figure 4.6: Time series plots for the number of RBFs for the beginning of the chain (top), the full
chain (center), and the samples 300,000 to 400,000 (bottom)
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Figure 4.7: Time series plots for the rms between the individual solutions and the true field in terms
of geoid heights in meter for the beginning of the chain (top), the full chain (center),
and the samples 300,000 to 400,000 (bottom)
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Figure 4.8: Autocorrelation function for the time series of the number of basis functions and the
time series of rms values, both for the full chain and for a variant that is limited to the
models with 8 to 10 basis functions
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Figure 4.9: Histogram plots for the number of RBFs for (a) the first half of the chain, (b) the second
half of the chain, and (c) the first 200,000 samples
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Figure 4.10: Histogram plots for the rms between the individual solutions and the true field in terms
of geoid heights for (a) the first half of the chain, (b) the second half of the chain, and
(c) the first 200,000 samples
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Applying the Bayes theorem to the marginal density of the number, and building the ratio between
the models β3 = K1 and β3 = K2, we get

p(K1|y)

p(K2|y)
=
p(y|K1)

p(y|K2)

p(K1)

p(K2)
(4.27)

with the Bayes factor B12 = p(y|K1)
p(y|K2) . In words, the posterior odds is equal to the Bayes factor

times the prior odds. The Bayes factor is the ratio of the evidences, where the evidence specifies
how probable the data are for a given model. If B12 > 1, this means that the data are more
likely to occur under model 1 than under model 2; one could also say the data support model 1.
Some authors (among them Jeffreys, 1961; Robert et al., 2009; Kass and Raftery, 1995; Jarosz and
Wiley, 2014) have categorized the range of values of the Bayes factor and stated how strong in
their opinion the support for the particular model is. This is summarized in Tab. 4.3.

Table 4.3: Classification of the values of the Bayes factor and judgement of how large for a specific
value the support for the particular model is according to Jeffreys (1961, Appx. B) and
Kass and Raftery (1995).

Bayes factor to Jeffreys means to Kass & Raftery mean

1–3 worth a bare mention worth a bare mention
3–10 substantial positive
10–20 strong positive
20–30 strong strong
30–100 very strong strong
100–150 decisive strong
>150 decisive very strong

In the prior, one can formalize his own preference for a model. For example, to avoid an accumulation
of basis functions, we could choose a prior like the geometric or Poisson distribution, which give
small models with few parameters a high probability. But even if we choose a uniform distribution as
prior, simple models are favored over complex ones. As said above, the evidence is the probability of
getting the observations under the assumption of K basis functions taking all possible combinations
of parameters into account. Models with many parameters are very flexible and can represent any
possible set of observations, so their probability mass will spread over a large area. In the small area,
where also the simple model yields a good prediction, it is thus more probable after normalization;
see Fig. 4.11. Herein the principle of parsimony in the sense of Occam’s razor is realized in a
natural way, and overparameterization is counteracted. Note that this is completely independent of
a possible preference for simpler models being expressed by the prior.

For a better idea of which type of model is preferred in the Bayesian approach, we have to look at
the formulas. I follow a similar line of reasoning as MacKay (2005). Let us assume for a moment
that we are only interested in the number and scaling factors of the basis functions, while the point
grid is fixed. The evidence for this problem is proportional to

p(y|β3) ∝
( σβ1

σ0β1

)K
exp {−1

2
(vTv +

1

σ2
0β1

βT1 β1)}. (4.28)

This is a simplified version of Eq. (4.10), in which it was assumed that the prior and posterior are
determined by their standard deviation σ0β1 and σβ1 only. Further, vTv is the sum of squares of
the decorrelated residuals, and βT1 β1 is the regularization term. The evidence is the probability of
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p(y|K2)

p(y|K1)

y

Figure 4.11: Illustration of how the principle of parsimony is incorporated in Bayesian model com-
parison (taken from MacKay, 2005, and modified). The figure shows the evidence of
the observations for the model K1 being simple in the sense that it has only few pa-
rameters and for the model K2 being more complex. K2 can be adapted to a wide
range of different observations. As a consequence, it has less predictive power at the
place where the observations actually lie.

the data given the model. For a high value of the evidence, the model has to describe the data well
in the first place. What is meant is a good data fit and a smooth solution. If two models describe
the data equally well, the Bayesian approach prefers simple models; very flexible models, whose
parameters can vary a priori over a large range (large σ0β1), get a small evidence. The same is true
for models which yield a good approximation only when their parameters are precisely adjusted.
For instance, in the regional analysis with the regular grid, the solution depends heavily on the
choice of the regularization parameter. Such a solution would be penalized. Solutions for which the
parameters need to be known only coarsely (large σβ1) are supported. For large models (large K),
this preference for stiff models and vague parameters is even stronger.

4.7.2 The label switching problem

The label switching problem arises when a model is invariant to permutations in the labeling of the
model components. A prominent example is mixture modeling, where one tries to explain the data
of a complicated distribution by a mixture of simpler distributions of the same kind. This is similar
to our problem, as we also want to approximate data by a linear combination of equally-typed basis
functions. Label switching may cause problems in the inference of parameter values. Consider the
toy example of only two basis functions that shall be arranged on the real line. Switching the basis
functions or switching the labels being assigned to the basis functions, which is totally the same,
does not change the values of the likelihood function, as the model remains basically the same. The
likelihood function will thus have two symmetric modes. If one assumes all values to be a priori
equally probable, which is done here (cf. Sec. 4.3.3), and do so for each of the parameters, then
also the posterior will be multimodal and symmetric. Having simulated the density by for example
MCMC techniques, calculation of the Bayes estimate by averaging over the marginal distributions
as usual will fail. The reason lies in the symmetry of the posterior, which has identical marginals
and leads to identical estimates, which are useless for inference.

To solve for the labeling problem, one could define a special type of prior distribution, which
enforces a specific order and thereby precludes label switching from the beginning (e.g. Richardson
and Green, 1997). One could also sort the output of the sampling algorithm according to e.g.
the numerical values of the parameters, which boils down to the same thing (Jasra et al., 2005).
However, it is not always obvious how one should sort the parameters, for example when one works
with points on a multidimensional surface instead just on the real line. Moreover, Stephens states
that using identifibility constrains does not always completely solve the problem (Stephens, 2000).
He proposed to use more sophisticated ways of relabeling.
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An easy way out is to simply use the MAP instead of the Bayes estimator, that is to choose the
parameter combination with the highest density. By summarizing the posterior density by the
MAP estimator, some characteristics will get lost, such as a possible multimodality that cannot be
explained by the permutation of labels. So using the MAP estimator cannot be considered as the
general solution (Jasra et al., 2005).

Yet another way is to not work on parameter level but to use a function of the parameters that is
invariant under the permutation of the basis functions; here, the labeling problem is not an issue.

4.7.3 The Bayes estimator

As explained in Sec. 4.7.2, the determination of the Bayes estimate requires the sorting of the random
grids and the associated scaling coefficients. This is realized by sorting the points of the random
grids in such a way that their absolute distance to the grid points of the MAP estimate becomes
minimal; the scaling coefficients are then reordered accordingly. In the current implementation,
after the obvious matches have been assigned, any permutation of the remaining points is tested in
a brute force manner. However, this method turned out to be very time-consuming and also led to
errors in case of multimodal densities.

Since it is not possible to average over vectors of different lengths, the Bayes estimator is determined
conditional to a specific numberK of basis functions. K can be specified by the mode of the marginal
distribution of the number like for the MAP estimator, or one could identify adequate models by
means of their Bayes factors. In contrast to the MAP, however, all samples of the selected number
are used to derive the estimates.

As stated in the fundamentals chapter, Eqs. (3.17) and (3.22), the Bayes estimator corresponds to
the expected value and can be approximated by the sample mean:

β̂2,B =

∫
B2

β2 p(β2|y)dβ2 (4.29)

≈ 1

N

N∑
i=1

β
(i)
2 . (4.30)

Here N is the number of samples for which β3 = K. The calculation of the mean is realized by
summing over the position vectors in Cartesian coordinates and back-projection onto the reference
sphere.

To take advantage of the linearity of the scaling coefficients, let us write the expected value in the
slightly different form

β̂1,B =

∫∫
B1B2

β1 p(β1,β2|y)dβ1dβ2, (4.31)

which can be understood as special case of Eq. (3.18). Applying the definition of conditional density,
p(β1,β2|y) = p(β1|β2,y)p(β2|y), yields

β̂1,B =

∫
B2

p(β2|y)

∫
B1

β1 p(β1|β2,y)dβ1dβ2. (4.32)

For a given point grid, i.e. conditional to β2, determining the scaling coefficients is a linear problem.
Further, since it was decided on a conjugate prior, the problem becomes tractable. Specifically this
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means that the expected value β̂1|β2
, which corresponds to the second integral equation, can be

calculated analytically. This was derived in Sec. 3.3. Inserting this into the above equation, we get

β̂1,B =

∫
B2

β̂1|β2
p(β2|y)dβ2 (4.33)

≈ 1

N

N∑
i=1

β̂1|β2
(i) . (4.34)

So for the Bayes estimator, we do not need random samples of the scaling coefficients, but we
can take the mean of the analytical solutions of the random grids. Note that this is just another
argument for the marginalization of the posterior density performed in Sec. 4.3.1, which allowed us
to avoid sampling of the scaling coefficients.

4.7.4 The MAP estimator

The RJMCMC algorithm as formulated in this work yields samples of the marginal distribution
of the point grid. What we are actually looking for is, however, the MAP estimate of the joint
distribution, i.e. the sample that maximizes the joint density. We therefore recompose the density
as follows:

p(β1,β2, β3|y) = p(β1|β2, β3,y)p(β2, β3|y). (4.35)

Remember from Sec. 4.3.1 that the posterior of the scaling coefficients given the point grid is a
normal distribution, the expected value of which being β̂1. As we lack the required samples, we just
insert the β̂1 into Eq. (4.35). This has the added benefit that for this specific point grid they give
the highest density value under all possible values.

However, the computation of the MAP estimator for a problem of variable dimension is not straight-
forward. As explained earlier in Sec. 3.4.5, one must not compare densities of different dimension.
Suppose we draw one or two random points from the uniform distribution on the unit sphere in
a specific region. Then the density value for two points will be higher even if choosing one point
from an infinite number of possible points is intuitively more probable. Depending on the size of
the area, this ratio can be readily reversed. However, what has not been payed attention on is
the fact that when comparing different dimensions the density value is totally meaningless. When
the comparison is made on the basis of probability values, the outcome is in accordance with our
intuition.

Instead of relying on equation (3.19), one could use histogram techniques to find the MAP estimator.
For every parameter, the feasible region is divided into bins, the samples are assigned to the bins,
and the bin with the highest number of samples is chosen as MAP estimator. In view of the size
of the problem, the histogram would be huge and the calculation expensive. Moreover, in this
specific context, the labeling problem would again lead to problems. A certain set of parameters
has a certain probability, and according to this probability samples are allocated. As a result of
the implementation of the sampling algorithm, the order of the parameters in the parameter vector
will change over time. The total number of samples for a specific model will consequently be spread
over K! clusters, where K is the dimension of the model at which the algorithm is at the actual
point in time. Using the histogram method would yield difficulties because for another model with
larger K, the samples would be distributed over a larger number of clusters; the absolute number
would thus decrease.

I simplify the problem by splitting up the joint density according to

p(β1,β2, β3|y) = p(β3|y)p(β1,β2|β3,y). (4.36)
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Based on this formula, model choice and parameter choice will be done separately. I look at the
marginal density for the number being calculated from the samples, i.e. I ignore the other parameters
and set up a histogram, which is very easy, as it is a discrete parameter. The MAP is then the
model that occurs the most often:

β̂3,M ≈ modeβ(i)
3 . (4.37)

This is justified by the fact that the label switching problem does not affect the total number of
samples for a model. Then the MAP of the parameter vector conditional on K is derived again
using

β̂1/2,M ≈ argmax
β

1/2
∈β(i)

1/2

p(β1,β2|β3,y). (4.38)

This is possible because within one and the same dimension, one can again compare the samples by
means of their density values.

4.7.5 HPD regions for the point positions

When summarizing the a posteriori distribution of the parameters, one should also specifiy the
uncertainty of the point estimate, e.g. in the form of an interval that contains the parameters
with a certain probability. If the parameters represent position coordinates, one often displays the
uncertainty graphically. This is what we also want to achieve here. For this purpose, I look at
the marginal distribution per point and model only, i.e. p(xk|K,y), which is a two-dimensional
distribution and thus easy to display. Dependencies between the points, which are represented by
the joint distribution of the grid points, will of course be disregarded this way. To get a complete
picture, the marginal distributions of the individual points are superimposed; this is comparable to
the usual approach of displaying geodetic networks, where the error ellipses for all points are shown
in a single plot.

To represent the uncertainties, HPD regions are used (cf. Sec. 3.2). An HPD region is a region
that contains the value of a quantity with a specific probability, while every point within the region
has probability density higher or equally high than every point without the region. HPD regions
are well suited for general (also multimodal) distributions. They always contain the point of the
highest density and therefore seem a straightforward choice to specify the uncertainty of the MAP
estimator. To calculate the HPD region for a distribution that has been simulated or, in other
words, for which a sample of random values is available, one has to sort the samples corresponding
to their probability density and choose the highest 1 − α% (see Hyndman, 1996; Chen and Shao,
1999). As the marginal density for the individual points is not known as closed form expression,
we approximate the density function by the histogram of the samples. The HPD region is then
calculated by collecting the highest bins while accumulating the corresponding probability until the
accumulated value exceeds the chosen level of confidence. The x-values of the bins taken together
then define the HPD region.

4.7.6 The Bayes estimator on solution level

The Bayes estimator for the gravity field functional f is defined as

f̂B(β) =

∫∫∫
B1B2B3

f(β1,β2, β3)p(β1,β2, β3|y)dβ1dβ2dβ3 (4.39)
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(cf. Eq. (3.18)). Applying p(β1,β2, β3|y) = p(β1|β2, β3,y)p(β2, β3|y), we have

f̂B(β) =

∫∫
B2B3

p(β2, β3|y)h(β2, β3,y)dβ2dβ3 (4.40)

with

h(β2, β3,y) =

∫
B1

f(β1,β2, β3)p(β1|β2, β3,y)dβ1. (4.41)

Because of the linearity of the scaling coefficients, f(β1,β2, β3) = Aβ1. When we further consider
that for a linear function g, E(g(x)) = g(E(x)), we can write

h(β2, β3,y) = A

∫
B1

β1 p(β1|β2, β3,y)dβ1 (4.42)

= f(β̂1,β2, β3). (4.43)

For the last step it was considered again that the expected value of the scaling coefficients given the
point grid, β̂1|β2,β3

, here just β̂1, can be calculated analytically. Substituting this into Eq. (4.40),

f̂B(β) =

∫∫
B2B3

f(β̂1,β2, β3)p(β2, β3|y)dβ2dβ3 (4.44)

≈ 1

N

N∑
i=1

f(β̂
(i)
1 ,β

(i)
2 , β

(i)
3 ), (4.45)

we see that the Bayes estimator for f boils down to just the mean of the gravity field solutions
generated from the individual samples of the point grid, β(i)

2 , β
(i)
3 , and the corresponding analytically

derived scaling coefficients, β̂
1|β(i)

2 ,β
(i)
3

, here just β̂(i)
1 . This time N equals the full number of samples.

The Bayes estimator on solution level is different from the gravity field solution for the Bayes
estimator on parameter level, i.e. f̂B(β) 6= f(β̂B). The reason is that f is nonlinear in the point
grid, so that the above mentioned linearity of the expected value does not hold. Moreover, in making
use of the entire sample, the Bayes estimator on solution level also accounts for the uncertainty in
the choice of the model.

4.8 The 8-point example revisited: point estimates, model averag-
ing & credible regions

The estimators described in the previous sections were tested on the 8-point example; the results
are presented in the following. Note that only 200,000 samples of the chain simulated in Sec. 4.6
were used for the present results, which was shown to be a representative sample of the target
distribution. For the MAP as well as for the Bayes estimator, the estimate for the number of
the basis functions has to be determined separately from the other parameters on the basis of the
marginal distribution. The marginal distribution for the number of the basis functions indicates
that 8 RBFs are most likely, although 9 and 10 RBFs are almost equally likely regarding their Bayes
factors of respectively 1.22 and 2.67 in relation to the MAP model (Fig. 4.12(a)). Exemplarily for
the models with 8 and 9 RBFs, Fig. 4.13 shows the probability distribution of the grid points by
means of the marginal distributions of the individual points together with the 95%-HPD regions
and the true and estimated point positions. As one can see in Fig. 4.13(a), the algorithm retrieves
the true point positions within the range of accuracy; for the question of why I did not test the
algorithm in an error-free scenario, see Sec. 4.5.
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Table 4.4: Results for the 8-point example: differences of various estimates to the true field in terms
of geoid heights [m]

8-point example second data set
K=8 9 8–10 all K=8 9 8–10 all

MAP estimator 0.141 0.141 0.153 0.188
Bayes estimator 0.126 0.149 0.155 0.193
+ least squares 0.123 0.137 0.134 0.158
on solution level 0.123 0.125 0.124 0.124 0.135 0.143 0.140 0.142
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Figure 4.12: Marginal posterior of the number of RBFs for (a) the original data set and (b) the
alternative data set

For comparison, a second data set was considered, which differs from the previous one in that
another realization of noise was added. As a result, the marginal distribution for the number has its
maximum not longer at the true number of 8 but at 9 RBFs (Fig. 4.12(b)). This might be surprising
at first; however, the estimated number of basis functions, like any other ordinary model parameter,
can of course deviate from the true value as a result of working with erroneous data. The 95%-HPD
interval encloses the models with 8 to 10 RBFs, so the true value lies at least within the given limits
of accuracy. Again, Fig. 4.14 shows the distribution of points for the models with 8 and 9 RBFs
and the corresponding estimates. The results look very different from the previous example. While
previously the 9th point occurred approximately uniformly distributed (Fig. 4.13(b)), it is now part
of a constellation of 3 RBFs, which together represent the signal of actually 2 RBFs (Fig. 4.14(b)).
Furthermore, sorting the random grids was not successful for this example. Because the true position
of the point to the right lies halfway between the two points of the MAP, the random points were
alternatively assigned to the one or to the other, whereas the respective other point was assigned the
remaining uniformly distributed random point. Such kind of mixture distribution causes problems
in calculating HPD regions or the Bayes estimator. Therefore, the MAP estimator conditional on 8
RBFs has been utilized for generating the results presented in Fig. 4.14(b). This way, sorting was
indeed more successful, as by now the uniformly distributed random points were always assigned
to the upper of the two MAP points. However, the multimodality of the posterior distribution is
not fully remedied by the different sorting strategy but necessarily occurs when several different
parameter constellations explain the observations well.

Apart from the MAP estimator and the Bayes estimator on parameter level, the Bayes estimator
on solution level was computed for different (combinations of) models. Moreover, for the Bayes
estimator on parameter level, an additional variant was considered, where the coefficients were
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Figure 4.13: Marginal density for the position of a point in a common graph for all points. Sup-
plementary, the black contour lines show the 95%-HPD regions, and the yellow cross,
red dot and blue triangle mark the true point, MAP estimate and Bayes estimate,
respectively.
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Figure 4.14: As Fig. 4.13 but for the second data set
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estimated from the observations in a least-squares sense. The estimates were compared to the true
model in terms of differences in geoid heights; the rms values can be found in Tab. 4.4. In the
documented results as well as in a number of further calculations, the MAP estimator did most of
the time comparatively poorly. The Bayes estimator normally shows the smaller rms. The reason is
that a Markov chain is not the appropriate procedure to find the highest point of a density function.
It is, by contrast, a sampling approach, which generates samples according to the probability over
the entire domain of the density function. Indeed, most samples fall into the area around the MAP
compared to other areas of the same size. But in comparison to the entire domain, it is only a small
portion of the samples, and one cannot expect to catch the point of the highest density precisely.
The Bayes estimator corresponds to the expectation value of a probability distribution and can be
approximated by the mean of the samples, which is what MCMC is typically used for. It is easy
to see that in case of a normal distribution, where the expectation value matches the point of the
highest density, the Bayes estimator is more precise because of the inherent averaging, while the
MAP is only a snapshot, which comprises the whole uncertainty of an individual sample. As a test,
I calculated the value of the density function for the Bayes estimator conditional to 8 RBFs and
found that it would have been chosen instead of the MAP if it had been part of the sample. This is
no surprise, as the density functions in the Figs. 4.13 and 4.14 resemble the normal distribution. To
conclude, the fact that the Bayes estimator is superior to the MAP is indeed primarily a problem
of the sampling being too sparse.

For 8 RBFs, where the sorting of the grid points succeeded without any problems, the Bayes esti-
mator on parameter level is better than for 9 RBFs; here the rms values are higher (cf. Tab. 4.4).
The reason lies probably in the process of sorting. The sorting was done according to the small-
est absolute distance to the MAP. Where the assignment between the random grid points and the
MAP grid points was unique or particularly clear, the points were assigned directly. All other points
were considered in a brute force optimization, in which every permutation was tested, and the one
with the smallest distance selected. Thereby it may happen that a point is assigned incorrectly
and with it the corresponding scaling coefficient. Accordingly, the solution improved considerably,
when for the Bayes estimator of the point grid, a new set of scaling coefficients was determined in
the least- squares sense. So the degenerated accuracy might indeed be a problem of the sorting
and should improve with a better sorting strategy. Moreover, for the second data set and 9 RBFs,
the multimodality of the posterior because of the missing order of the basis functions could not
be completely dissolved by sorting the way described above. Even when using the modified grid
for sorting, as proposed earlier, we still get a mixture distribution, which is due to the nature of
the problem where two completely different constellations of parameters give sensible results. The
Bayes estimator on parameter level takes the mean of the probability distribution and thus ends
up at a not very meaningful position (Fig. 4.14(b)). On the contrary, for the Bayes estimator on
solution level, neither the order of parameters nor a possible mixture distribution matters. However
different the parameters may be, they all provide a good (and thus also similar) solution, otherwise
they would not have been chosen.

For the Bayes estimator on solution level, calculating the average over the 8-point model alone
yields a slightly better rms value than the other variants for both data sets (Tab. 4.4). Admittingly,
it is the true number of basis functions that has been used to generate the data of the simulation
scenario, and the situation might change for real data applications, where a true model does not
exist. For real data, the parameter space is much bigger, and much more samples would be required
to get a representative picture of the target distribution. At the same time, autocorrelation is high,
which decreases the effective sample size. As a consequence, it would be good to not rely on a single
model but to average over e.g. the models which according to the theory of Bayes factors are almost
equally likely.

To sum up, it is problematic to derive the MAP estimator from the output of a Markov chain.
The problem will become even worse in a more realistic framework. Here even fewer samples would
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fall into the area around the MAP if it is found at all. This phenomenon is referred to as the
curse of dimensionality and can be visualized nicely by means of a normal distribution, where the
majority of the probability mass concentrates in a certain radius at some distance from the origin
as the dimension increases. A better way to find the MAP is to use a simulated annealing algorithm
instead, which could easily be implemented in the frame of the present approach by just a small
change in the target density. The Bayes estimator, on the contrary, has disadvantages in cases
where the posterior distribution is multimodal. This problem might occur frequently for real data,
as there will certainly be many different configurations of basis functions that explain the data
similarly well. Moreover, sorting the random grids by testing any possible permutation in a brute
force manner is very expensive. The problem to find the permutation that minimizes the distance
to the MAP is very similar to the traveling sales man problem, for the solution of which efficient
algorithms exist. In the form of the current implementation, however, it is not applicable in real
data examples because of the enormous computational time effort. An attractive way out is to use
the Bayes estimator on solution level, which unfortunately also has a drawback in that it does not
yield a parametric solution. For computing another gravity field functional or to evaluate the field
at another place, one has to make use of the entire probability distribution, i.e. the whole sample.
Although being totally in line with the idea of the Bayesian approach, this is not very practical,
e.g. for dissemination as a data product.

4.9 Adaption for real data application—the variance factor

The determination of the variance factor in the prior of the scaling coefficients—or the reciprocal
regularization factor in the least-squares method—has occupied me from the beginning. I have
always been concerned that a good point grid will get a low marginal likelihood value if the variance
factor is not adequately determined. On the other hand, we saw that the solution for the true
grid was not sensitive to changes of the regularization parameter. This led me to believe that the
value of the regularization parameter is not so important after all. Therefore, it was treated up to
this point as a constant in all derivations, and in the previous calculations the variance component
from the variance component estimation for the true grid was used. This approach shall now be
examined. To this end, different values for the variance factor were specified, and a Markov chain of
50,000 steps was simulated for each. The result was that changing the variance factor changes the
distribution of the number both the mode and variability (see Fig. 4.15). For a change in direction
of the variance component for the standard grid, i.e. for a smaller σ, the algorithm chooses a larger
model, and the uncertainty increases. For a larger σ, it is the other way around. One possible
interpretation is that when the uncertainty of the prior information is higher, the algorithm deals
with the complexity of the model in another way by reducing the number of unknowns. To sum
up, even if the solution after optimization is largely unaffected by the choice of the regularization
parameter, this does not apply for the optimization itself because the target density may change
considerably. So if one wants to optimize the model, one has to determine σ in a clever way or to
estimate it together with the model parameter. Otherwise, if one sets σ to an arbitrary value and
lets the algorithm choose the number, there is not much of a difference compared to the case that
one chooses the number and optimizes the regularization parameter as usual.

σ is estimated in the classical way using a hierarchical approach. This means σ is simply treated
as further unknown parameter, called hyperparameter, and the prior of the scaling coefficients
is extended by another prior, the hyperprior: p(β1|σ)p(σ). The extended target density after
marginalization reads p(β2, β3, σ|y) = p(y|β2, β3, σ)p(β2|β3)p(β3)p(σ). Apart from the additional
prior, it differs from the original expression, Eq. (4.5), in that the variance factor in the prefactor
and in the argument of the marginal likelihood is now variable. The sampling is adapted as follows:
in addition to the random grid, a new variance factor is proposed in each step; it is considered in
the estimation of the scaling coefficients and in the evaluation of the sample by means of the odds
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ratio. The form of the Bayes estimator does not change (the estimate however does). For the joint
MAP estimator with σ, we have to look for the highest density value of the joint target density,
p(β1|β2, β3, σ|y)p(β2, β3, σ|y), using the two-step procedure introduced earlier.

Like Gelman (2006), I prefer to work with σ rather than with the precision parameter τ , which is
often used in Bayesian statistics. Since I do not know much about the variance, I would like to use a
non-informative prior. The inverse gamma prior, which is often used for this purpose, has problems
with data sets in which small values of the variance factor may occur, as recognized by Gelman. He
recommends using a uniform distribution for the standard deviation instead or, for few parameters
and in regression, what he calls a weakly informative prior, such as the half-Cauchy distribution.
This kind of prior is intended to suppress completely unreasonable solutions, but beyond that it is not
very informative. Polson and Scott (2012) even advise to consider the half-Cauchy distribution as
default prior for scale parameters in Bayesian hierarchical models. Following these recommendations,
it is also applied here. For the scale parameter of the half-Cauchy distribution, Gelman recommends
choosing a value that is slightly higher than what is expected for the standard deviation. The scale
parameter corresponds to the width of the distribution at half of its height, so that larger values for
σ are still possible.

σ is simulated in a random walk. To accelerate the sampling, only positive values are proposed
using a normal proposal truncated at zero. This is easy to implement by sampling values from
the non-truncated normal distribution until a value greater than zero comes out. The truncated
density is equal to the non-truncated density apart from the different support and a normalization
constant. Since the proposal is placed at different positions in the forward and backward step, the
normalization constant does not cancel in the ratio and has to be considered to get the correct
odds ratio. An alternative to this is to sample from a joint proposal for σ and the number. In this
way, possible correlations would be taken into account. Since I do not want to change the proposal
process for the number, I think of the proposal for σ as conditional distribution with mean and
standard deviation depending on the given number. This would result in an independent step. In
an independent step, the proposal does not cancel in the ratio. So here we have to account for both
the normalization constant and the differing density values.
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Figure 4.15: Distribution of the model parameter obtained with different values of the variance
factor
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5. Computations and results

In this chapter, gravity field models from GOCE data are presented, which were determined by
means of the described three different techniques for gravity field recovery. The sections 5.1 and 5.2
show the results of using the global and regional parametrization as described in Ch. 2, and Sec.
5.3 shows the results of the reversible jump algorithm for the adaption of the resolution in regional
modeling as described in Ch. 4.

5.1 The global gravity field model ITG-Goce02

This section is about the spherical harmonic analysis of GOCE data based on the short arc approach
as described in Ch. 2. The resulting gravity field model was published under the name ITG-Goce02.
The following sections are largely taken from the associated paper Schall et al. (2014). Only, some
explanations were shortened to avoid repetition, and more recent comparison models were included.

5.1.1 Introduction

The GOCE (Gravity field and steady-state Ocean Circulation Explorer, Drinkwater et al. (2007))
satellite mission was launched in March 2009, with the goal to accurately measure the Earth’s
mean global gravity field with high spatial resolution. Its onboard satellite gravity gradiometer
(SGG) observes the second derivatives of the gravitational potential, and GPS satellite-to-satellite
tracking (SST) measurements are used for geo-locating the gradiometer observations as well as for
the determination of the long-wavelength part of the gravity field. Since begin of the mission,
several global GOCE gravity field models have been published by ESA’s High-level Processing
Facility (HPF, Rummel et al. (2004)) using three different processing strategies; an overview of
the first results obtained by the three methods can be found in Pail et al. (2011). In principle,
determining the coefficients of a spherical harmonic gravity field expansion from the linearly related
gravity gradients is a straightforward procedure. However, GOCE gravity field analysis techniques
have to deal with problems such as colored observation noise, instabilities due to signal attenuation
and the polar gap, outliers, data gaps, and they have to be able to process a large amount of
observations and solve for many parameters. Different analysis strategies cope with these challenges
in different ways. We briefly review the second release of the official ESA models, as they cover
almost the same time span of GOCE observations as the present study and will therefore be used
for comparison in Section 5.1.3.

The direct approach (DIR, Bruinsma et al., 2010) is based on a least-squares solution with the SST
part of the solution being calculated by the classical orbit perturbation approach (see, e.g. Reigber
(1995)). SGG observations are bandpass filtered to include only frequencies within the gradiometer
measurement bandwidth. To avoid instabilities in the gravity field solution caused by the polar
gap problem, spherical cap regularization (Metzler and Pail, 2005) is applied using the GRACE
gravity field model ITG-Grace2010s. As a result, prior gravity field information is introduced into
the resulting GOCE model, such that it should not be regarded as a GOCE-only solution. The
time-wise approach (TIM, Pail et al., 2010) considers the gradient and orbit observations as time-
series measured along the satellite orbit and assembles and solves the full normal equation system;
the energy integral approach (see O’Keefe (1957)) is applied for orbit analysis. For the gradiometer
observations, full data decorrelation in the entire measurement spectrum is achieved by ARMA
filtering. Instabilities are counteracted by applying Kaula regularization towards a zero model to
the zonal and near-zonal coefficients and to the very high-degree coefficients. The resulting gravity
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field solution thus represents a pure GOCE-only model, as no prior gravity field information is
introduced. This is also the case for the space-wise approach (SPW, Migliaccio et al., 2011), which
utilizes the spatial correlation of the gravity field. After applying Wiener filtering along the orbit to
reduce the highly time-correlated noise, least-squares collocation is used to interpolate the gradient
observations onto a spherical grid in mean satellite altitude. Regularization is implicitly included
in this method by the choice of the covariance function applied in the collocation step. Afterwards
the gravity field coefficients are derived by numerical integration. The SST part of the model is
determined via the energy integral approach.

Here we have implemented a completely independent data analysis technique, the short arc ap-
proach. The concept of this approach was developed by Schneider (1968) for orbit determination
and modified by Reigber (1969) to be applied in gravity field estimation. The approach was used by
Mayer-Gürr et al. (2005) for the processing of CHAMP observations and then adapted by Mayer-
Gürr (2006) for the computation of GRACE gravity field models. It was successfully applied in
the determination of the ITG-Grace time series (Mayer-Gürr et al., 2010). Simulation studies using
this approach for GOCE in the context of regional modeling were carried out by Eicker (2008), and
Schall et al. (2011) reported the first application of the short arc approach to real GOCE gradi-
ent observations. Here, for the first time, we applied the approach to compute a full GOCE-only
gravity field solution. The GOCE SST and SGG data are considered as time series along the orbit
and are subsequently subdivided into short arcs. We then assemble a normal equation matrix in-
dividually for each arc, allowing for an effective decorrelation of the correlated observations, since
it is possible to set up a full empirical covariance matrix for each individual arc. Moreover, the
possibility to start a new arc after each data gap compensates for the problem of discontinuities
in the observation series to some extent. No additional data is discarded after data gaps, as the
determination of the empirical covariance matrix does not require any warm-up time, as is the case
when using ARMA filtering. By arc-wise re-weighting of the observations, the influence of outliers
can be reduced, as suggested by Kusche (2003) and applied by Mayer-Gürr (2006). Furthermore,
the subdivision of the satellite observations into short arcs offers a straightforward possibility for
parallelization and therefore has advantages for handling of the large amount of GOCE data. For
the processing of the SST data, we applied the integral equation approach (Mayer-Gürr, 2006) to
short arcs of the kinematic orbit data. Kaula regularization towards a zero model was introduced
to account for the instabilities due to the polar gap problem. The combination of the different ob-
servation groups and the regularization was performed on the basis of the normal equations, while
determining the relative weighting by variance component estimation (Koch and Kusche, 2002). A
reasonable weighting requires a comprehensive description of the individual error behavior of both
SST and SGG observations, which we believe to have achieved by the empirical covariance matrices.

In the following, we report the application of the short arc approach to GOCE gradiometer and
orbit data, resulting in the global GOCE-only gravity field model ITG-Goce02 estimated from
effectively 7.5 months of data. It is evaluated in space and frequency domain against the official
ESA models covering the same time span (release 2), by comparison to global gravity field models
(EGM2008 (Pavlis et al., 2012) and GOCE time-wise solution of release 4) and to independent data
sets (GNSS/levelling data and altimetry observations).

5.1.2 Processing strategy

5.1.2.1 Data sets

The model presented here is based on GOCE observations from within the data period 2009/11/01
to 2010/06/30. Input data sets are specified as follows:
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• EGG_NOM_1b: gravity gradients in the gradiometer frame (EGG_GGT), attitude infor-
mation (EGG_IAQ), common mode accelerations (EGG_CCD),

• SST_PSO_2 (Bock et al., 2011): kinematic precise science orbits (SST_PKI_2) used as ob-
servations, epoch-wise covariance matrices for the positions (SST_PCV_2), reduced dynamic
precise science orbits (SST_PRD_2) for geo-locating the gravity gradients.

The same models for tidal effects and non-tidal atmospheric and ocean variations were applied to
reduce time variable gravity effects as suggested by the GOCE processing standards (European
GOCE Gravity Consortium (EGG-C), 2010), but without additionally reducing time variations
observed by GRACE. As we did not reduce the permanent part of the Earth tides, our model is
computed in a zero tide system. Non-gravitational forces were derived from the common mode
acceleration observations of the gradiometer.

5.1.2.2 Noise model

Since both the orbit position errors and the gradiometer observation errors are highly correlated in
time, the treatment of the observation errors is crucial for GOCE data analysis. We set-up a full
variance-covariance matrix for each arc, by estimating an empirical covariance function from the ob-
servation residuals referred to a reference model. The covariance function is computed as the inverse
Fourier transform of the power spectrum of the residuals to guarantee positive definiteness. We use
the Cholesky decomposition of the covariance matrix to decorrelate the observation equations. The
reference model should represent a good approximation of the signal in the relevant frequency band,
we therefore applied ITG-Grace2010s for the SST part and a preliminary in-house GOCE model
for the SGG part. It has to be pointed out, that these reference models are only utilized for a
realistic estimation of the error behavior but not for regularization, to keep the final solution as
independent of non-GOCE information as possible. In order to take into account possible changes
in the error behavior over time, a new covariance function is estimated for each of the four GOCE
calibration periods (for SGG data) and for each month (for SST). The use of arc-wise covariance
matrices implicitly assumes independence of neighboring arcs, which is not strictly valid. Therefore,
further empirical parameters are introduced into the SGG noise model. These account for the long
term error behavior and effectively decorrelate subsequent orbit arcs. In our approach an unknown
constant per arc and gradient tensor element is estimated. For the SST part of the solution, one
constant offset per arc is co-estimated for each of the elements of the common mode acceleration vec-
tor. Furthermore, arc-wise weight factors resulting in a down-weighting of arcs containing outliers
or groups of outliers are determined using variance component estimation.

5.1.2.3 Analysis of orbit data

Kinematic orbit positions, representing a purely geometrical orbit solution without containing any
gravitational force model, were used in a 10 sec sampling after low pass filtering (Mayer-Gürr, 2006)
from the original 1 sec sampling rate in order to determine the SST part of the GOCE gravity field
model up to spherical harmonic degree n = 130. For each of the short arcs of maximum 30 min
length an observation equation was established, following the integral equation approach. Regarding
the length of the arcs we rely on the experiences made in the CHAMP and GRACE processing, see
Mayer-Gürr (2006). The epoch-wise covariance matrices of the individual satellite positions, which
are provided together with the orbit product, are introduced into the estimation of the empirical
covariance function explained in Section 5.1.2.2.
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5.1.2.4 Analysis of gradiometer data

The three main diagonal components of the gravitational tensor (Vxx , Vyy and Vzz ) are used as
observations after being resampled to a 5 sec rate to reduce the amount of data. The observations
are then grouped into arcs of 15 min length. The arc length represents a compromise between
modeling the noise as good as possible and not losing too much of the signal through introducing
too many empirical parameters. We prefer the reduced dynamic orbit product (interpolated to the
same 5 sec sampling interval) for geo-locating the SGG measurements in the observation equations
to avoid data gaps present in the kinematic orbit product. Attitude observations, together with
an Earth rotation model according to the IERS2003 conventions (McCarthy and Petit, 2004), are
used to rotate the observation equations from the Earth fixed frame to the gradiometer frame. The
normal equation for the SGG part of the gravity field model is then set up for spherical harmonic
coefficients up to degree n = 240.

5.1.2.5 Combination and regularization

To account for instabilities of the normal equation system caused by the downward continuation
process and the polar gap problem, Kaula regularization towards a zero model is introduced for the
spherical harmonic degrees n = 5 . . . 240. The Kaula regularization acts primarily on the higher
spherical harmonic degrees and its contribution to the solution can be quantified as less than 2% up
to degree 190. No prior information from an exterior gravity field solution is included, therefore our
model can be regarded as a GOCE-only solution. The relative weighting of the two observation types
(SST and SGG) and the regularization is optimally determined by variance component estimation
as proposed by Koch and Kusche (2002).

5.1.3 Results

Using the data set and processing strategy described above, the global GOCE gravity field model
ITG-Goce02 was determined up to degree n = 240. The solution is available via the International
Centre for Global Earth Models (ICGEM). In the following, this model will be compared to the
official ESA GOCE models of release 2 (GO_CONS_GCF_2_DIR_R2, GO_CONS_GCF_2_-
TIM_R2, and GO_ CONS_GCF_2_SPW_R2), using almost the same data period, by evaluation
against global reference models (EGM2008 and GOCE time-wise solution of release 4) and against
independent data sets (GNSS/levelling data and altimetry observations).

5.1.3.1 Global comparison in frequency domain

Fig. 5.1 evaluates the different GOCE models in terms of difference degree amplitudes compared
to the gravity field model EGM2008, which is based on a GRACE model combined with various
terrestrial data sets and can therefore be assumed as having superior accuracy in the low and high
degrees of the frequency spectrum. The lower degrees (below n = 70) appear to be dominated
by errors in the SST data. Here ITG-Goce02 features smaller errors compared to TIM_R2 and
SPW_R2, which we ascribe to the better performance of the integral equation analysis procedure
compared to the energy integral approach, because the latter method reduces the amount of available
orbit information, as also discussed in Ditmar and van Eck van der Sluijs (2004) and Pail et al.
(2011). The low error in the low-degree range of DIR_R2 is a direct effect of the reference model,
which results in the low degrees being more accurate compared to GOCE-only models. In the
higher degrees (see zoom-in in Fig. 5.2), above approximately n = 160, ITG-Goce02 performs very
similarly to the time-wise model, whereas the direct and especially the space-wise approach show
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Figure 5.1: Comparison of different GOCE models to
EGM2008 in terms of difference degree am-
plitudes (solid lines), omitting near zonal
coefficients to exclude the effect of the po-
lar gap (Sneeuw and van Gelderen, 1997).
Corresponding formal errors are plotted as
dashed lines. Figure taken from Schall
et al. (2014, Fig. 1).

Figure 5.2: The same as Fig. 5.1, but zoomed-in into
degrees above n = 150 (taken from Schall
et al., 2014, Fig. 2).
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slightly larger differences. The formal errors of ITG-Goce02 match the difference to EGM2008 very
well in the frequency range n = 30 . . . 60 and above n = 200, which is probably due to our use
of full empirical covariance matrices for each short arc. In the frequency band n = 60 . . . 180 the
differences in the degree amplitudes are dominated by errors in EGM2008, caused by low-accuracy
terrestrial data in some regions, which is also supported by the large formal errors of the reference
model in this part of the spectrum (see also Hashemi Farahani et al. (2013)). The ARMA filtering
process applied in the time-wise approach and a Monte Carlo approximation of the estimation errors
carried out in SPW_R2 lead to a similarly realistic formal error spectrum. In the direct approach
there is no agreement between formal errors and differences to the reference field, which could be
related to an insufficient modeling of the observation noise.

5.1.3.2 Global comparison in space domain

For each of the GOCE models, differences were calculated compared to the GOCE-only model of
release 4 following the time-wise approach (GO_CONS_GCF_2_TIM_R4). This model covers a
significantly larger time span with an effective data volume of approximately 26.5 months and can
therefore be regarded as reference solution of superior accuracy. It should be mentioned that for
TIM_R4 also the integral equation approach has been applied to derive the SST part of the solution.
The global differences excluding the polar gap (i.e. −80◦ < ϕ < 80◦) were calculated up to degree
n = 200 and are displayed in Fig. 5.3. A comparison of the different plots shows smaller differences
for ITG-Goce02 and TIM_R2 than for SPW_R2 and DIR_R2. RMS values were derived for the
global differences and for specific regions in the Himalayan (70◦ < λ < 100◦, 20◦ < ϕ < 40◦), in the
Pacific (−150◦ < λ < −90◦,−60◦ < ϕ < 0◦), and in the Indian Ocean (60◦ < λ < 105◦,−45◦ < ϕ <
−15◦). The results in Tab. 5.1 again show smaller differences for ITG-Goce02 and TIM_R2 with
TIM_R2 being slightly better in the Himalayan and ITG-Goce02 featuring smaller discrepancies in
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Figure 5.3: Differences in terms of gravity anomalies between the different GOCE models and the
release 5 GOCE model GO_CONS_GCF_2_TIM_R5. Models are evaluated up to
degree n = 200. Figure updated from Schall et al. (2014, Fig. 3).

the oceanic areas. This can be related to the slightly stronger regularization of ITG-Goce02 which
allows a better fit to the smooth ocean signal and results in a marginal signal loss in the rough
mountainous regions. Very similar results are obtained when the release 4 model computed by the
direct approach (GO_CONS_GCF_2_ DIR_R4) is used as reference model (not shown here).

Area ITG-Goce02 TIM_R2 SPW_R2 DIR_R2
global 1.93 1.99 2.90 2.35
Himalaya 1.77 1.74 3.72 3.91
Pacific Ocean 2.01 2.19 2.20 2.49
Indian Ocean 1.94 2.08 2.32 2.50

Table 5.1: RMS of differences between different GOCE solutions (release 2) and the release 5 GOCE
model GO_CONS_GCF_2_TIM_R5. Models are evaluated in terms of gravity anoma-
lies [mGal] up to degree n = 200. Table updated from Schall et al. (2014, Tab. 1).

5.1.3.3 Comparison to independent data sets

GNSS/levelling data

Fig. 5.4 shows the RMS differences between height anomalies, derived from the different GOCE
gravity field models and 924 GNSS/levelling point measurements over Germany (Rülke et al., 2013)
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after removal of a constant bias, displayed as a function of model resolution (expansion degree).
GOCE models were truncated at different spherical harmonic degrees in 5-degree steps and filled up
with coefficients of EGM2008 up to degree n = 2190. This investigation shows again a good agree-
ment of ITG-Goce02 with the time-wise model, while DIR_R2 and SPW_R2 exhibit significantly
larger differences above approximately degree n = 140. Tab. 5.2 shows the RMS values between the
GOCE solutions and different international GNSS/levelling data sets provided by ICGEM (2013).
Here the models were not filled up with EGM2008 coefficients; the values thus include the full
omission error of the GOCE models. Results are broadly in agreement with the Germany data set
and confirm the closeness of ITG-Goce02 and TIM_R2.

Area ITG-Goce02 TIM_R2 SPW_R2 DIR_R2
USA (6169 pts.) 0.429 0.436 0.457 0.443
Canada (1930 pts.) 0.354 0.355 0.376 0.374
Europe (1235 pts.) 0.434 0.434 0.473 0.449
Australia (201 pts.) 0.371 0.375 0.376 0.391
Japan (816 pts.) 0.511 0.515 0.553 0.519

Table 5.2: RMS of differences between different GOCE solutions and GNSS/levelling points in terms
of geoid heights [m]. Table taken from Schall et al. (2014, Tab. 2).
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Figure 5.4: Comparison of different GOCE models to GPS/levelling data in Germany. Truncation
degree of models is given on the abscissa, above this degree each model is filled up with
coefficients of EGM2008. Figure taken from Schall et al. (2014, Fig. 4).

Altimetry observations in the North Sea

Geoid heights computed from the different GOCE models were compared to altimetrically observed
sea surface heights at 112 cross-over points of ERS-2 and ENVISAT in the North Sea. To account for
the time-varying dynamic topography and tides, water heights from the numerical ocean circulation
and tide model BSHcmod (Dick et al., 2001) were removed from the altimetry sea surface heights.
BSHcmod exhibits a higher spatial resolution compared to global ocean models and includes also
non-linear tides, which play an important role in the North Sea. The RMS values of the differences
between GOCE and altimetrically observed geoid heights, after reducing a constant offset, are again
plotted as a function of model cut-off degree in Fig. 5.5 (with higher degrees having been filled up
with EGM2008). The level of disagreement between satellite-derived geoid and in-situ observations
is higher than in the GPS/levelling experiments, owing to the limitations of the technique and
the possibly insufficient reduction of time-variable effects. But results point in the same direction:
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ITG-Goce02 has similar differences as TIM_R2 in the higher degrees above approximately n = 140.
While DIR_R2 shows larger discrepancies, SPW_R2 has significantly smaller differences in the
very high degrees above n = 220, which may be related to an over-regularization as indicated in
Migliaccio et al. (2011).
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Figure 5.5: Comparison of different GOCE models to altimetry data in the North Sea. Truncation
degree of models is given on the abscissa, above this degree each model is filled up with
coefficients of EGM2008. Figure taken from Schall et al. (2014, Fig. 5).

5.2 Regional models with a uniform arrangement of basis functions

Having shown in the previous section that our global GOCE solution is competitive in the sense
that it has comparable accuracy to the official ESA products, in this section the gain of the regional
method following Eicker (2008) is demonstrated as compared with the global spherical harmonic
solution. The results were already published in Eicker et al. (2014), where the regional method was
applied for the first time and to the best of my knowledge as first regional approach in general to
GOCE-level-1b data. The article included the results of three different test sites. Here I shall limit
myself only to the one in the area of the South Sandwich deep sea trench (−45/−20/−60/−35; cf.
Eicker et al. 2014, Sec. 3.3.2), because due to the inhomogeneous signal content, it is a challenge even
for regional modeling and therefore suitable to demonstrate the value of using several regularization
areas on the one side and of adapting the model resolution as in the following section on the other
side. The validation is carried out by comparing with EGM08.

5.2.1 Processing strategy

The regional approach described in Ch. 2 was applied to GOCE gradiometer data. The same data
and background models were used as for the calculation of the SGG-part of the global spherical
harmonic solution ITG-Goce02 (see Sec. 5.1), and in principle also the same processing was applied
except that the parametrization was changed from spherical harmonics to radial basis functions.
ITG-Goce02 was reduced as reference field up to d/o 160. The truncation degree was chosen
relatively high to avoid that oscillating signal enters the observations as a result of an early truncation
within the degrees affected by the GOCE polar gap. The expansion of the RBF-kernel was limited to
degree 240 corresponding to the maximum degree of the spherical harmonic solution. Up to degree
160, the shape coefficients were determined by the formal error degree variances of the reference
field ITG-Goce02 and above by Kaula’s rule of thumb. As proposed by Eicker (2008), a triangular
vertex grid of level 81 was employed as point grid for the arrangement of the basis functions, which
is approximately equivalent to the resolution of the global solution. I want to point out that in
practice this choice is somewhat arbitrary. Often the best level of resolution is tested by comparing
with a model of superior accuracy, so that the standard uniform point grid in some sense can be
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regarded as being optimized by hand. Only GOCE data within the area of interest were used plus
an additional margin of 3 degree to mitigate edge effects. For the same reason, the point grid was
set up in an area that overlaps the area of the observations by another 3 degrees.

5.2.2 Results

While Kaula regularization in spherical harmonic analysis suggests a global mean signal content as
prior information and thereby leads to errors in rather smooth or rough areas, in regional analysis
the prior information can be adapted for the investigated area. The use of a regional mean signal
content as prior information may improve the solution e.g. by about 50% for a homogeneous area
in the open ocean (cf. Eicker et al., 2014, Sec. 3.3.1). In contrast, the chosen test site in the
area around the South Sandwich Trench in the South Atlantic Ocean exhibits very inhomogeneous
signal characteristics; the southern part of the region shows a strongly high frequency gravity field
signal along the deep sea trench, and in the northern part the signal is rather smooth. In such an
inhomogeneous region, in principle the same problems occur in regional analysis as when applying
Kaula regularization on the spherical harmonic solution, and indeed the regional solution with only
one regularization term did not improve with respect to the global solution ITG-Goce02. The
signal of the global solution is presented in Fig. 5.6(a) and the differences to EGM08 in Fig. 5.6(c)
with an rms of 6.30mGal. To get more out of the given data, the region was subdivided into two
regularization areas north and south of 51 degree, and a variance component was estimated for
each of the two subregions (as was proposed by Eicker 2008). The resulting gravity field model is
presented in Fig. 5.6(b) and the differences to EGM08 in Fig. 5.6(d). The rms of the differences
amounts to 5.10mGal, which is an improvement of 19% compared to the global solution. Looking at
the two regularization areas individually, the rms improves from 8.17 to 7.59mGal in the southern
part (7%) and from 5.28 to 3.51mGal in the northern part (34%). To sum up, the regional method
following Eicker (2008) causes an improvement of the prior information—with the division into
distinct regions, this also applies to inhomogeneous areas—and thereby leads to an improvement in
the individual subregions.

Table 5.3: RMS in terms of gravity anomalies and geoid heights of the differences between GOCE
solutions and EGM2008 for the South Sandwich Trench separately for the complete patch
(N+S), the northern part (N) and the southern part (S). For each functional the relative
improvement achieved by the regional refinement is given. Taken and adapted from
Eicker et al. (2014).

ITG-Goce02 Regional Improve
∆g N ∆g N ∆g N

Area [mGal] [cm] [mGal] [cm] [%] [%]
N+S 6.30 19.14 5.10 15.51 19 19
N 5.28 16.35 3.51 11.07 34 32
S 8.17 24.36 7.59 22.61 7 7

5.3 Regional models from the optimization of point grids

We saw in the foregoing section that in regional gravity field analysis a better adaption of the
prior information can be achieved, thereby reducing errors that are related to an inappropriate
regularization. With the division into several regularization areas as proposed by Eicker, this also
works for inhomogeneous areas. However, the division has to be specified explicitly, which is not
always easy like for the southern part of the patch—the new study area used in the following. I
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Figure 5.6: South Sandwich Trench: Signal (top) and differences compared with EGM2008 (bottom)
of the global model ITG-Goce02 (left, RMS: 6.30 mGal) and the regional refinement
using two different regularization parameters for the northern and southern part (right,
RMS: 5.10 mGal), taken from Eicker et al. (2014).
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chose a completely different approach. I do not try to improve the prior information by a further
questionable division of the study area, but I adapt the model resolution and thereby hopefully
stabilize the problem, which should make the solution less dependent on the prior information.

For the purpose of adapting the model resolution, in this chapter the number and positions of the
basis functions are estimated in addition to the usual model parameters (i.e. scaling coefficients and
variance factor). In contrast with the previous chapter, the point grid for the arrangement of the
basis functions is thus not simply defined in advance but simulated in the course of a Markov chain.
Furthermore, the variance factor is not determined by means of variance component estimation
but simulated along with the point grid. However, estimating the scaling coefficients for a (fixed)
random grid in a particular step of the chain works basically the same as before. Only, the area of
the RBFs was chosen slightly smaller using an additional margin of 1.5◦ with respect to the area
of the observations instead of 3◦ as before. The additional margin is meant to avoid edge effects,
but these I think are comparatively small in satellite data analysis anyway. Moreover, the basis
functions used in this scenario are relatively narrow, so that also a narrower margin is sufficient, as
was confirmed by a test computation. Therefore, it makes sense to further restrict the feasible area
of the RBFs (and to adapt the proposal accordingly), because meaningless proposals are rejected
with high probability, slowing down the simulation of the chain.

Again the same data were used as in the calculation of the other models. However, as already
mentioned, the new method was applied only to a small part of the previous study area, so the
data were cut to a slightly different region. The reason is that an equation system has to be
set up and solved in every step. This is time-consuming considering that a good Markov chain
often requires several hundred thousand steps. Setting up the design matrix and, in this context,
adding up the Legendre polynomials is the most time-intensive part. A larger study area would
mean more observations and parameters and thus a larger design matrix, which would increase
the computational time effort. Therefore, I have to content myself with an area of moderate size,
although there is certainly still room for improvements in the implementation.

5.3.1 Processing of the 1st Markov chain and its convergence

In the following, the settings for the simulation of the first Markov chain are specified. Any configu-
ration of basis functions was assumed a priori to be equally likely, provided that the nodal points lie
within a reasonable distance from the observations and there are not too many of them. Accordingly,
the prior of the locations of the basis functions was defined with the help of a spherical uniform
distribution limited to the area of the observations plus 1.5◦. For the prior on the number of basis
functions, a uniform distribution in the range of 1–708 was chosen, whereby 708 is the size of the
standard grid when using the wider margin of 3◦. The hyperparameter σ in the prior of the scaling
coefficients was simulated along with the other parameters, and I assigned a prior in the form of
a half-Cauchy distribution. The included tuning parameter γ, which is recommended to be chosen
slightly higher than what would be expected, was set to 0.02, which is slightly higher than the factor
estimated in Ch. 5.2 for the southern part of the patch. This makes sense because the same kernel
function was used as for the regional analysis in the last chapter and the prior information will not
fundamentally change.

The first simulated chain was started from a triangular vertex grid of level 81—the same as also used
for the calculation of the regional models in the previous chapter. Cutting the grid to the feasible
area resulted in a uniform arrangement of 562 points. In the first step of the implemented approach,
a random perturbation of the initial grid was proposed choosing from among three different move
types with equal probability. The choice was made between a birth of 10 RBFs, the corresponding
death of 10 RBFs and a move (i.e. a change in the position) of 30 RBFs. In a birth step, the positions
of the new basis functions were simply proposed independently of the current configuration uniformly
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distributed over the feasible area. In a move step, a Fisher distribution with a spread of 0.1◦ was
applied. Additionally, in every step a new variance factor was proposed using a Gaussian proposal
centered at the current value with a standard deviation of 0.001◦. The aforementioned settings
were determined in a series of trial runs so that an appropriate number of samples were accepted.
In particular, a simultaneous birth/death of several basis functions proved to be necessary for a
reasonable mixing. In a move step, the step width can generally be adjusted by either the number
of functions moved or the amount of movement. Here it was decided to move many functions just
a bit, as recommended for computing time intensive problems. After the random grid had been
created, the normal equations were set up and solved in a regularized least squares adjustment using
the proposed variance factor for regularization. Then it was decided whether to accept the proposed
sample or to proceed with the current one on the basis of the odds ratio, and the whole procedure
started again from the random perturbation of the point grid. This was repeated for overall 800,000
iterations.

Having been started from a regular point distribution, the chain may require some time to reach
an area of at least moderate density. Nevertheless, there is no obvious running-in effect, like the
exponential decrease in the simulations, in the time series plots for the number, variance factor and
rms (Fig. 5.7). One can see, however, that the stochastic behavior changes over time. The sinusoidal
oscillations at the beginning of the time series plots vanish, and after around 350,000 steps the chain
looks more or less homogeneous. This is only interrupted by a systematic effect around the sample
600,000, which may be explained by the fact that at this point the lowest number of the entire
chain—that is 182 RBFs—was adopted and the chain needed some time to find the way back
from this improbable constellation to the right point positions. Thus, regardless of the mentioned
distortion, it was decided to use a burn-in phase of 400,000 steps, in the hope of thereby removing
the dependency on the start position.
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Figure 5.7: Time series plots for the number of basis functions (top), the variance factor (center)
and the rms of the differences between the individual solutions and EGM08 in terms of
gravity anomalies (bottom) for the 800,000 samples of the first simulated Markov chain

5.3.2 Does the point grid align with the gravity field structures?

In the introduction of this thesis, the question has been raised whether the point grid for the
arrangement of the basis functions in regional gravity field analysis should not optimally be aligned
with the structures of the gravity field. In the following, the question will be answered on the basis
of the optimization results using the output of the first Markov chain. It should be emphasized
again that the first chain was started from the uniform standard grid and a uniform distribution
was used to propose the positions of new basis functions during a birth step. Hence, the chain was
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not forced against the gravity field neither by the initial grid nor by the proposal process, although
these settings only influence the convergence and mixing of the chain and not the actual target
distribution anyway. Fig. 5.8 shows the distribution of the grid points for the example of 362 points
as the result of sorting all grids with the corresponding number of points into a common histogram
and applying the normalization of a probability density function. The reason for considering only
grids with a specific number of points is that the distribution of the grid points may differ for
different numbers. One can easily imagine that in the case of many basis functions, the actual
position of a function is less important, and the probability distribution accordingly flatter, since
errors can be compensated for by other functions. The resulting distribution of the grid points
is obviously correlated with the gravity field signal. There is a close resemblance to Fig. 5.9,
showing a probability density function derived from a geoid model in the way described in Sec.
3.6.3. Thus, the point grids that can predict the observations within their limits of accuracy follow
the structures of the gravity field, i.e. the points concentrate at places where the signal is strong.
This naturally also applies to the optimal grid, which lies somewhere in between. From this it can
be concluded that a signal-adapted point grid is indeed the best choice for the arrangement of
the basis functions in regional analysis, at least for our RBF model and the given data of nearly
uniform coverage and accuracy.

(min=0, max=96.898, mean=9.49544, rms=11.8105)

−45˚

−45˚

−40˚

−40˚

−35˚

−35˚

−30˚

−30˚

−25˚

−25˚

−20˚

−20˚

−60˚ −60˚

−55˚ −55˚

−50˚ −50˚

0 3 6 9 12 15 18 21 24 27

probability density

Figure 5.8: Empirical density for the distribution of the grid points with respect to the unit sphere
(statistics: min=0, max=96.90, mean=9.50, rms=11.81)
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Figure 5.9: Model-based density on the unit sphere calculated using geoid heights from EGM08
in the range n = 161..240 evaluated on a sphere of radius R = 6378 km (statistics:
min=1.76e-05, max=81.40, mean=9.51, rms=13.76)
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5.3.3 Test of different proposal densities

As we saw in the previous section, the distribution of the grid points bears some similarity with
the gravity field signal. It therefore seems to be obvious to exploit available information about the
gravity field to improve the proposal process. It was with this in mind that a new proposal distri-
bution for the positions of new functions in a birth step was developed, which involves information
from a gravity field model (see Sec. 3.6.3 for the definition). In the following, it will be examined
how well this new proposal distribution works in comparison with the uniform distribution used so
far.

First, I tested the density that looked so similar to the distribution of the grid points (see Fig. 5.9).
I started a short test run of 50,000 steps from the MAP estimate of the first chain. In this way, I
started from a sample that is typical for the target distribution, thereby avoiding further running-
in effects. As said earlier, a gravity-based distribution (model: EGM2008, range: n = 161..240
corresponding to the residual signal content, functional: geoid) was applied as proposal for the
birth step in replacement of the uniform distribution; all other settings remained unchanged. The
result was that the proposals got a much higher marginal likelihood value on average than when
using the uniform distribution (Tab. 5.4). This shows that the new proposal process inspired by
the gravity field creates point grids, with the help of which the observations can be approximated
comparatively well. However, despite the higher likelihood values, which should actually encourage
acceptance as can easily be seen from the odds ratio, the acceptance was much worse than with the
uniform distribution. This may be explained by the fact that the proposal density values were even
higher, indicating that the proposals, although in principle being reasonable, occurred too often
with respect to the target distribution. For an independent chain in order to get a good mixing,
one would ideally sample from the target distribution itself. Since in the current implementation
only a few points are added in every step, it would be ideal to sample from the conditional density
given the actual point distribution. This would yield a high acceptance of birth and death steps
according to the ratio of the model probabilities. Although this is rather a theoretical reasoning, I
expect a supposedly better proposal distribution to achieve a high acceptance—but at least a higher
acceptance than the uniform distribution. The tested proposal distribution is therefore by no means
optimal.

The problem is that after the convergence of the chain the point grid does not change fundamentally
anymore but only as far as allowed by the accuracy of the observations. Although the tested proposal
density contains information about where a point should generally be located, it does not consider
whether a point already exists at this place. Therefore, in order to dampen the peaks of the proposal,
I considered a linear combination of a gravity-derived and a uniform distribution as proposal. This is
easy to implement by just setting up two alternative birth steps, leading to the formulas in Sec. 4.4.5.
I tested two different linear combinations with a gravity-derived distribution using geoid heights.
Moreover, vertical deflections were tested as another gravity field functional for comparison. The
average likelihood values for the combined proposal distributions came out to be smaller than for the
purely gravity-derived distribution but were still higher than for the uniform distribution (Tab. 5.4).
One can see from the variants where the distribution derived from geoid heights entered with 1/2 or
1/3 that the likelihood values become the smaller the lower the contribution of the gravity-derived
distribution. While the acceptance of the 1/2-variant was not yet satisfactory, the acceptance of
the 1/3-variant was reliably higher than for the uniform distribution. Using the other gravity field
functional did however not constitute an improvement.

Based on the experience gained from the test runs, another long Markov chain of 400,000 steps
was simulated for the most promising proposal 1/3 g. Instead of simulating the variance factor in a
random walk process as before, it was simulated independently making use of the knowledge already
available about the distribution. Knowing that the variance factor and the number of RBFs are
correlated, which will become obvious later on in this chapter in Fig. 5.15, a Gaussian proposal
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Table 5.4: Statistics on the average marginal likelihood ratio value (likelihood ratio) and the accep-
tance rate (acceptance) for a birth coming from the indicated model (#) using different
proposal densities. The median was used as robust measure of average, and the ac-
ceptance is given in percent. The following proposal densities were tested: a uniform
proposal (u), a purely gravity-derived proposal based on geoid heights from the gravity
field model EGM08 in the range n = 161..240 (g), the linear combination 1/2u + 1/2 g
(short: 1/2 g), the linear combination 2/3u+1/3 g (short: 1/3 g), and the linear combination
2/3u+ 1/3 d with d being an alternative gravity-derived distribution based on vertical de-
flections (1/3 d). Moreover, an additional run was performed for the proposal 1/3 g, where
the variance factor was simulated by means of an independent chain (ind). Note that
only the first and last chain consist of 400,000 samples; with 50,000 samples all other
chains are considerably shorter and the related numbers thus less reliable. Therefore,
only those models were considered in the table that were visited sufficiently often by all
chains.

likelihood ratio acceptance
# u g 1/2 g 1/3 g 1/3d ind u g 1/2 g 1/3 g 1/3 d ind

272 0.014 0.036 0.027 0.022 0.012 0.023 7.9 4.0 4.9 6.8 7.1 8.1
282 0.015 0.053 0.031 0.021 0.013 0.029 8.1 5.0 8.4 7.9 5.7 9.3
292 0.019 0.089 0.033 0.027 0.022 0.035 9.1 2.1 7.6 9.3 9.2 10.0
302 0.021 0.132 0.045 0.039 0.020 0.039 9.7 4.0 9.8 10.8 9.5 11.5
312 0.025 0.123 0.049 0.045 0.033 0.050 12.0 4.9 10.7 14.2 9.5 12.8
322 0.030 0.143 0.052 0.050 0.036 0.056 12.3 5.2 11.0 12.7 11.2 13.4
332 0.036 0.171 0.074 0.070 0.032 0.069 14.0 5.5 14.5 14.1 11.9 14.9
342 0.039 0.184 0.083 0.081 0.052 0.083 14.9 6.3 15.4 15.4 13.0 16.4
352 0.045 0.215 0.116 0.079 0.056 0.090 15.9 6.0 15.9 17.7 15.1 17.7
362 0.050 0.248 0.118 0.071 0.062 0.110 16.8 5.7 15.6 17.0 17.0 18.9
372 0.056 0.327 0.125 0.075 0.067 0.114 17.7 8.5 17.5 19.7 17.1 19.4
382 0.058 0.312 0.120 0.091 0.073 0.129 18.6 7.1 17.8 17.6 17.7 21.5
392 0.061 0.327 0.141 0.114 0.077 0.151 19.2 8.4 19.5 20.6 19.4 23.4
402 0.072 0.322 0.161 0.132 0.097 0.156 19.7 8.4 23.1 21.7 20.8 24.2
412 0.078 0.424 0.202 0.121 0.084 0.180 22.4 6.6 21.2 23.6 16.8 25.9
422 0.084 0.472 0.224 0.161 0.096 0.184 22.5 9.6 22.5 26.7 23.1 26.7
432 0.089 0.480 0.191 0.156 0.120 0.205 23.8 8.1 22.4 24.9 23.1 27.7
442 0.096 0.481 0.193 0.155 0.121 0.206 23.7 9.0 22.3 24.1 21.3 28.0
452 0.110 0.572 0.189 0.158 0.104 0.235 25.2 7.6 24.8 27.5 22.4 29.1
462 0.105 0.471 0.235 0.205 0.130 0.260 25.5 9.5 25.7 29.5 24.6 30.5
472 0.110 0.701 0.211 0.173 0.140 0.286 26.2 11.6 26.3 25.7 25.5 31.8
482 0.116 0.760 0.247 0.208 0.140 0.274 26.4 12.3 23.4 27.1 26.1 31.9
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distribution was used, whose parameters were determined as a function of the number of RBFs with
the help of the results of the first simulated Markov chain. By applying this alternative approach in
the simulation of the variance factor, the acceptance could be improved once again (cf. ind in Tab.
5.4).

To sum up, the proposal density inspired by the gravity field represents an improvement over the
use of a uniform proposal. In connection with the improved simulation of the variance factor, the
likelihood values were up to two times higher, and the acceptance increased by 1-5%.

5.3.4 Modification of the kernel function

An alternative kernel function has been derived to see how a change in the shape of the basis
function affects the algorithm. In the regional approach developed by Annette Eicker, the shape
coefficients are defined as a function of the degree variances. However, degree variances represent
the variance of the signal over the whole sphere; hence, they have global character. Even if the
stochastic description of the signal can be adjusted for a desired region by estimating a variance
factor from the data restricted to this region, which exactly is what constitutes the benefit of the
regional method, the adjustment only refers to a missing scaling coefficient. Moreover, error degree
variances of the global GOCE solution were applied to model the uncertainty of the reference field
in the low to medium degrees. In doing so, correlations are lost, which for GOCE is particularly
unpleasant because of the polar gap problem causing the bump in the representation of the degree
variances.

I tried to tackle these issues by simple means: I multiplicated the individual sections of the degree
variances curve by a factor that I derived from the comparison between the global variance and
the regional variance in the study area. I also eliminated the bump in the range of the low to
medium degrees by leaving out the (near) zonal coefficients in the calculation of the degree variances.
Furthermore, I no longer used error degree variances but changed to difference degree variances with
respect to the GRACE/GOCE combination model GOCO, since the error description of the global
GOCE solution following the short arc approach is not reliable in the very low degrees.

An estimated variance component of approximately 1 is often regarded as an indicator of an ap-
propriate stochastic modeling. Unfortunately, this can not be used as a criterion for the regional
method applied here, because due to the derivation of the method, the size of the variance compo-
nent can no longer be interpreted. In order to evaluate the changes made to the kernel function,
I have to go one step further claiming that if the stochastic description of the signal was perfect,
the variance component would be the same no matter how far the reference field was reduced. In
this sense, a kernel function made up from difference degree variances between ITG-Goce02 and
GOCO05 multiplicated by the factor 0.98 in the range n = 2 − 160, and EGM08 scaled by 1.62
above has proven to be the best of the tested combinations. Note that I did not intend to im-
prove the kernel function in the first place or to provide guidance on how to do it, but I wanted
to demonstrate the impact of the improvement on the algorithm also in view of a potential future
optimization. In this connection, it is not important that GOCE/EGM information was already
incorporated in the construction of the kernel function. Anyway, a correspondingly adjusted kernel
function based on Kaula’s rule and the formal errors showed similar good results.

With the alternative kernel function, another Markov chain of 400,000 steps was simulated and
further 400,000 steps with σ being simulated independently. Since using another kernel function
can be expected to be accompanied by another estimation for σ, the prior and proposal were adapted
accordingly; the other settings remained unchanged.
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Figure 5.10: Usual (black) and modified (red) kernel function in frequency domain (left) and space
domain (right)

5.3.5 Overview of the processing of the four chains

Tab. 5.5 summarizes the differences in the processing of the four simulated Markov chains. Common
to all chains is the use of a uniform distribution as prior for the number and positions of the grid
points. Furthermore, for all chains the same move type probabilities were chosen for a birth, death or
move step. An inclusion of the a posteriori model probabilities would certainly further improve the
mixing and could be a subject of future investigations. Also death and move steps were implemented
the same for all chains according to the descriptions in Ch. 4. Note that the proposal densities listed
in Tab. 5.5 for the birth step both realize a global birth, meaning that they propose points over the
whole feasible area. The local birth with the help of the Fisher distribution was not used in the final
calculations, as it produced many points outside the feasible area, slowing the chain down. The
reason is that the Fisher distribution cannot simply be cut to a specific area, since the normalization
constant, which would have to be applied, changes constantly with its position.

Table 5.5: Settings in the processing of four different Markov chains

# starting grid birth step simulation of σ RBF-kernel no. of steps

1 triangular vertex
of level 81 cut to
the feasible area
resulting in 562
points

uniform
proposal

proposal: dependent,
q(σ, σ′) = N(σ, 0.001),
prior: half Cauchy
with γ = 0.02

n = 2..240, formal
errors of ITG-Goce02
up to 160, Kaula’s
rule above

400,000
+ 400,000

2 MAP of the 1st
chain with 362
points

gravity-based
proposal
(2/3u+ 1/3 g)

proposal: indep.,
q(σ′) = p(σ|K, y)
from the 1st chain,
prior: half Cauchy
with γ = 0.02

" 400,000

3 last sample of
the 2nd chain
with 612 points

" proposal: dependent,
q(σ, σ′) = N(σ, 0.0005),
prior: half Cauchy
with γ = 0.01

diff. degree variances
between ITG-Goce02
and GOCO05 w/o
(near) zonal coeff. up
to 160, EGM08 ×1.62
above

400,000

4 MAP of the 3rd
chain with 212
points

" proposal: indep.,
q(σ′) = p(σ|K, y)
from the 3rd chain,
prior: half Cauchy
with γ = 0.01

" 400,000
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5.3.6 Mixing behavior

In this section, we will look at the mixing of the simulated chains. When a chain is said to mix
well, it is moving fast across the parameter space, leading to low correlations between the samples
and thus to numerical efficiency. The lower the correlations, the better the samples can reflect the
target distribution after a limited number of steps. To assess the mixing, we thus look at the time
series plots, autocorrelation functions and histograms for each the number of basis functions, the
variance factor and the rms of the differences to EGM08. To save computing time in the evaluation
of the individual solutions, the rms was computed for every 10th sample only. This should not make
a difference to the appearance of the time series plots and histograms. However, the values of the
autocorrelation functions for the rms would still have to be scaled by a factor of 10 to make them
comparable.

In general one can say that the correlations for the rms are much smaller than for the number and
the variance factor. This can be seen from the shorter oscillation period in the time series plots for
the rms. This can also be seen from the histogram plots, where a better picture of the distribution
is obtained with the same amount of samples, or from the faster decrease of the autocorrelation
functions. This is the opposite of what we saw in the simulations and all the more surprising because
the rms is a function of all parameters and as such it is also affected by the mixing of all parameters.
In fact, the correlations in the time series of the rms values are even smaller than in the simulations.
This is particularly advantageous when calculating the Bayes estimator on solution level, which is
based on taking the average of the solutions. In case of small correlations between the solutions, a
good estimate might therefore be achieved already with a moderate number of samples.

Moreover, one can see that the histogram plots look worse for the alternative proposal process used
for the chains 2 and 4 (as compared with the results for the chains 1 and 3, see Fig. 5.12). This points
to higher correlations and a poorer mixing. This was not to be expected because the alternative
proposal process was specifically designed to improve the mixing. As we saw in Sec. 5.3.3, a higher
acceptance was achieved by the use of the gravity derived proposal for the point positions and the
independent proposal for sigma. Although the acceptance was still moderate for the models listed
in Tab. 5.4, we could already see that the acceptance increased with the number of basis functions
used. So it is apparently less important where exactly new basis functions are introduced when
there is a sufficient number of functions to capture the major part of the signal. In the range of the
larger models, the acceptance was up to 35 and 45% for the chains 1 and 2, respectively. For the
chains 5 and 6, which both make use of the EGM kernel function and otherwise differ only in the
proposal distribution for sigma, the acceptance was up to 50 or even 60%. The higher acceptance is
indeed an indication that the proposal for the point positions is better in the sense that it is closer
to the target distribution. However, the model parameter is simulated in a random walk procedure,
and here a too high acceptance rate is rather detrimental to the mixing. So the reason for the poorer
mixing is the higher acceptance especially in the range of the larger models. When we leave out
these models, limiting ourselves to the models in the HPD region, the histogram plots improve as
shown by the example of chain 4 (Fig. 5.12). Looking at the values of the autocorrelation functions
for the models in the HPD region, one can see that the correlations for the alternative proposal
process even seem to be somewhat smaller, which would point to a slightly better mixing. However,
to truly evaluate the gain of the alternative proposal process, one would have to choose a larger step
width in the simulation of the model parameter in accordance with the increased acceptance rate.

While it is difficult to see from the present results whether the mixing has really improved by the
use of the alternative proposal process, it is very obvious that limiting the range of models to the
HPD region does reduce the correlations considerably. It would therefore probably make sense to
limit the range of the feasible models more strictly in future calculations.
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Figure 5.11: Time series plots for the number of the basis functions K, the variance factor σ and
the rms of the differences of the individual solutions to EGM08 in terms of gravity
anomalies for the four simulated chains.

Table 5.6: Number of steps until the correlation decreased to the indicated value (autocorr.) for the
number of the basis functions K, the variance factor σ and the rms of the differences to
EGM08 for the four simulated chains. The numbers for the rms were calculated from a
time series made up of every 10th sample and therefore still need to be multiplied by 10.

chain no. 1 chain no. 2 chain no. 3 chain no. 4
autocorr. K σ rms K σ rms K σ rms K σ rms

0.3 3440 2888 59 2695 2624 72 4667 4017 83 3280 2576 95
0.2 4829 3734 92 6729 5902 109 5895 5373 163 3883 3255 182
0.1 8605 7650 151 7941 7613 340 8604 7500 380 5296 3983 325
0 17264 17394 764 31571 32062 732 15003 15539 1564 10977 5707 408

Table 5.7: The same as Tab. 5.6 but restricted to the models in the HPD region.

chain no. 1 chain no. 2 chain no. 3 chain no. 4
autocorr. K σ rms K σ rms K σ rms K σ rms

0.3 1431 1079 42 1349 1090 40 2204 2099 43 1419 1020 39
0.2 1905 1518 63 1773 1610 57 2940 2713 68 1886 1536 61
0.1 2788 2431 113 2484 2360 82 3933 3391 104 2494 2224 130
0 4076 4016 173 6051 5826 204 7183 6306 362 3057 2959 233
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Figure 5.12: Histogram plots for the number of the basis functions K, the variance factor σ and
the rms of the differences to EGM08 for the four simulated chains and for chain no. 4
restricted to the models in the HPD region. There is a histogram for the entire chain
(filled) and one for both the first half (gray outline) and the second half (black outline).



5.3. Regional models from the optimization of point grids 95

5.3.7 Analysing the output of the chains

In this section, the results of the chains are presented. The focus is on the differences in the target
distributions, as opposed to the previous section, which was only about the speed of convergence.

Fig. 5.13(a) shows the histogram of the model indicator (i.e. the number of basis functions) based
on the output of the chains 1 and 2, which only differ in the proposal process applied but not in
the target distribution itself. The point of the highest density, the MAP, is at 342 basis functions
(cf. 708 for the standard regular grid and 562 for the initial grid with the smaller margin). The
range of models with a Bayes factor p(342)/p(K) of not greater than 3, which in the sense of the
interpretation of the Bayes factors are just as likely as the MAP model, is K = 272..512. This
corresponds to a 83% HPD interval. The HPD interval comprises 25 models or 250 basis functions;
hence, there is a lot of uncertainty about the optimal number of basis functions. One reason for this
is that the number of basis functions is strongly correlated with the variance factor, and as always
with correlations, the uncertainty appears to be larger in the marginal distribution than it actually
is. But also for a particular σ, the distribution is still wide. So the observations are obviously not
very informative about the model. The addition of further basis functions seems to improve the
sum of squared residuals over a wide range to such an extent that it outweights the degradation of
the density due to the higher number.

Fig. 5.13(b) shows the histograms for the chains 3 and 4, both making use of the alternative kernel
function from chapter 5.3.4. Here the MAP is at 202 basis functions; the models with a Bayes factor
of up to 3 are 152..312, i.e. 17 models, which corresponds to a 79% HPD interval. Thus the type
of kernel function used has a strong effect on the distribution of the number of the basis functions.
In particular, a better kernel function in the sense of a better stochastic description of the signal,
which I think I have achieved by the adaption to the local signal content, leads to a shift towards
simpler models and to a narrower density function. It is intuitively clear that fewer basis functions
are needed when using the adequate type of function. And since no artificial signal is introduced,
further basis functions are very unlikely, leading to the steep descent of the density function.

In addition to the histogram plots, the Figs. 5.14(a) and 5.14(b) show the rms values of the samples
depending on the number of the basis functions. All medium and large models can reach the same
good data fit, as one can see from the good rms values reported for these models. From a certain
point, however, the basis functions are no longer sufficient for a good approximation. The MAP lies
at the point of intersection of the imaginary lines through the low rms values on the one hand and
the increasing rms values on the other hand. It may therefore be interpreted as the lowest number
of basis functions that still yields a good data fit. This is in accordance with the findings from
chapter Sec. 4.7.1, in which the evidence was used to explain which models receive a high density
value within the procedure.

Fig. 5.15 shows the relation between the number and the variance factor with different colors in-
dicating different kernel functions. Obviously, the variance factor has a different size depending
on the kernel function used. The variance factor has to be understood as a scaling factor to the
kernel function. Thus the reason for the different size is simply that the two kernel functions differ
on average, and another scaling factor is therefore necessary for the optimal adaption to the local
signal content. Independent of the effect of the kernel function, one sees that the number and the
variance factor are strongly correlated. Small models are associated with a large variance factor,
that is with a low weight on the regularization term. This is clear because the prior information,
which says that the coefficients are zero, is more accurate for many basis functions than for few.
Here the coefficients will have to be larger to realize the same signal, resulting in a small value
of the regularization parameter. Moreover, one can see that the smaller the number of the basis
functions, the wider the distribution of the variance factor. This is probably due to the stabilization
of the system caused by the reduction of the parameters (cf. Sec. 5.3.9). In a stable system, the
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regularization has less influence on the solution, so that the regularization parameter can vary more
widely within the limits of accuracy. The 3-dimensional representation of the distribution, Fig. 5.16,
shows once again that if the variance factor was set to a specific value, the choice of the value would
greatly influence the distribution of the number.
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Figure 5.13: Posterior distribution for the number of basis functions

(a) for the chains 1+2 (b) for the chains 3+4

Figure 5.14: Scatter plot showing the rms of the samples as a function of the number of RBFs

5.3.8 Resulting gravity field models

5.3.8.1 The MAP estimator

The MAP estimator was determined for all models in the HPD region of the respective Markov
chain. The resulting gravity field models were compared with EGM2008; the rms of the differences
in terms of gravity anomalies fluctuates between 7.62 and 10.81mGal, whereby the majority of the
values lie in the range of 8 to 10mGal. This is much larger than what had been achieved by the
standard approach, which was 7.59mGal. Earlier on, in the simulations, we had already seen that
the MAP estimator yielded slightly worse results compared with the other estimates. This was
explained by the fact that the sample with the highest density is not a very precise guess for the
point of the highest density since the number of samples falling into the area of the MAP is small
with respect to the total number. In a more realistic framework, the sampling is still far worse,
which is because the size of the parameter space increases exponentially with the dimension. This
phenomenon is known as the curse of dimensionality. In a nutshell, it is not useful to derive the
MAP from the output of a Markov chain. It would be better to use a real approach for optimization
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Figure 5.15: Scatter plot showing the relation between the variance factor and the number of RBFs
for the chains 1+2 (black) and 3+4 (red)

instead like simulated annealing, which by the way could easily be implemented in the frame of the
present approach by just a small modification in the expression of the target density.

5.3.8.2 The Bayes estimator on the level of the parameters

The calculation of the Bayes estimator on the level of the parameters involves the sorting of the
random grids (cf. Sec. 4.7.3). This sorting is actually implemented by testing any possible permu-
tation in a brute force manner, which is very time-consuming and could therefore not be applied
to real data. The problem of finding the permutation that minimizes the distances to the MAP is
very similar to the traveling salesman problem, for the solution of which efficient algorithms exist.
This could be part of future work.

5.3.8.3 The Bayes estimator on solution level

The Bayes estimator on the solution level was calculated for the four simulated Markov chains; the
results are shown in Tab. 5.8. Only every 10th sample was considered in the calculation of the
mean in order to keep the computational effort in the evaluation of the individual solutions within
acceptable limits. This does not affect the accuracy of the solution because the thinning of the
chain does not only reduce the number of samples but also the correlations. Or in other words, in
the presence of strong correlations, a single sample hardly contains any new information, so leaving
it out should not make a difference to the solution. To demonstrate this, another solution based
on every 20th sample was calculated exemplarily for the second chain, and the result was almost
exactly equal (Tab. 5.8). In principle, the chains number 1 and 2 differ only in the proposal process
applied to explore the target distribution, but the actual distribution is the same. This is also
true for the chains 3 and 4, for the simulation of which a modified kernel function was employed.
Markov chains for the same target distribution should obviously also come to the same conclusions.
Deviations arise from errors in the numerical approximation of the moments of the distribution. For
the chains number 1 and 2, the deviation in the rms values of the differences to EGM2008 in terms
of gravity anomalies is 0.031mGal. For the chains 3 and 4, the deviation is 0.076mGal. This is a
lot, indicating that the chains should probably have been simulated longer. It does not, however,
affect the significance of the conclusions about the comparison with the standard approach later
on, especially since the errors will still become less when taking the mean for the final results. The
results of the chains 3 and 4 match worse. The reason could be that the correlations between the
solutions are higher for the modified kernel function, as we saw in Sec. 5.3.6. Moreover, as was
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Figure 5.16: 3d histogram for the relation between the variance factor and the number of RBFs at
the example of the chains 1+2

also done in the simulation scenario, the calculation of the mean was limited to the HPD region
and the MAP model. Unfortunately, the effect of this manipulation of the distribution on the
expectation value cannot be properly assessed because of the size of the numerical errors (see Tab.
5.8 exemplarily for the second chain).

In the following, the final results, which were generated by taking the mean of the individual results
of the chains 1 and 2, and 3 and 4, are compared with the global spherical harmonic solution ITG-
Goce02 and the regional solution based on the standard approach. It should be emphasized that
the regional solution described in Ch. 5.2 having been calculated for the complete patch consisting
of northern and southern part is utilized for the comparison, cut to the particular comparison area
needed. The reason is that for the current smaller study area, which corresponds to the former
southern part, the regional analysis did not yield satisfactory results because of difficulties in the
variance component estimation. Additionally, a further regional solution based on the standard
regular grid but using the modified kernel function is taken into account.

As already discussed at the beginning of this chapter, even in the study area considered here, the
signal is not truly homogeneous. A uniform model resolution and regularization according to the
mean signal content will therefore probably lead to noise remaining in smooth areas and a loss of
signal in rough areas. To test for a possible improvement by the adaption of the model resolution,
I divided the area into two comparison areas of rather smooth or rough signal. The division was
done visually on the basis of a map of vertical deflections reflecting the slope of the geoid (cf. Fig.
5.17). As the smooth portion of the study area is small, I evaluate the models additionally in the
area of the observations. The choice of another smaller comparison area should serve to reduce edge
effects, which I think are small in satellite data analysis anyway. Tab. 5.9 shows the statistics for
the signal of the models in the different areas, Tab. 5.10 for the differences to EGM2008, both in
terms of gravity anomalies. Numbers in terms of geoid heights are not provided because of their
similar meaning. In the smooth areas, the regional solution resulting from the optimization of the
point grid is smoother than ITG-Goce02 and the regional solution from the standard approach. For
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example, the rms of the signal in the area of the observations decreases from 18.35mGal for ITG-
Goce02 to 18.23mGal for the regional solution with the standard grid and further to 17.85mGal
with the optimization of the grid. This is an improvement as one can see from the comparison with
EGM2008, in which the rms of the differences decreases from 6.84 to 6.45 and further to 5.97mGal.
Note that the numbers for the regional method following the standard approach are too optimistic
since in the considered region the solution benefits from the stronger regularization in the northern
regularization area. Actually, a computation limited to the study area yielded worse results than
the global approach. In the rough area, in contrast, the energy increases. For instance, the mean of
the signal in the study area increases from 6.27mGal for ITG-Goce02 or the regional solution with
the standard grid to 6.41mGal for the mean of the chains 3 and 4. At the same time the mean of
the differences to EGM2008 is reduced by a factor of 3. Moreover, the min/max values raise from
−204.99/158.44 for ITG-Goce02 to −216.54/173.29 for the mean of the chains 3 and 4, which is up
to 15mGal more signal at certain points. Fig. 5.18 shows the differences to EGM2008 in the space
domain. For the regional solutions only the variant with the modified kernel function is included.
Comparing the regional solution from the standard approach, Fig. 5.18(b), to the global spherical
harmonic solution, Fig. 5.18(a), one sees that in the rough area the systematic differences along
the trench decrease, whereas in the smooth south the differences grow. In the smooth north the
solution probably still benefits from the stronger regularization in the northern regularization area,
as pointed out before. In the regional solution resulting from the optimization of the point grid,
Fig. 5.18(c), there is a clear decrease of the systematic signal-correlated structures but also a visible
reduction of noise in the south or next to the trench in the East.

Tab. 5.11 shows the final results for the entire study area. The rms of the regional solutions improve
from 7.59mGal with the standard grid to 7.37mGal with the optimization of the grid, both for
the usual kernel function. As one can see, the modified kernel function yields better results, that
is 7.42mGal with the standard grid and 7.14mGal with the optimization of the grid. In total, the
optimization approach thus leads to an improvement of 13% over the global solution, which is almost
twice the improvement of 7% reported for the regional method following the standard approach. In
terms of geoid heights, the improvement is slightly less. This is not surprising given the fact that
the benefit is mainly in the higher frequencies, and these are given greater weight in the evaluation
of the anomalies.

Table 5.8: Rms of the differences between the Bayes estimator on solution level in different vari-
ants and EGM08 for the four simulated chains. The numbers in parentheses indicate
differences between the chains 1 and 2 and between the chains 3 and 4.

∆g [mGal] N [m]

chain no. 1 7.353 0.2213
chain no. 2 7.384 (0.031) 0.2223 (0.0010)
every 20th 7.384 (0.000) 0.2223 (0.0000)

HPD 7.390 (0.006) 0.2225 (0.0002)
MAP 7.424 (0.040) 0.2236 (0.0013)

chain no. 3 7.103 0.2144
chain no. 4 7.179 (0.076) 0.2163 (0.0019)

5.3.9 Stability issues

Gravity field determination is an ill-posed problem. As explained in Sec. 2.5.3, the reasons are the
downward continuation process and, specifically for GOCE, the polar gap. But the stability is also
affected by the representation, which for RBFs depends on the choice of the maximum resolution,
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Figure 5.17: Division of the test site into smooth and rough areas with the help of the map of
vertical deflections shown in the background

Table 5.9: Statistics (min/max/mean/rms) for the gravity field signal of the calculated GOCE mod-
els evaluated in different areas in terms of gravity anomalies [mGal]

smooth part rough part
study area (small) data area (med) study area (small) data area (med)

ITG-Goce02 -16.76/56.83/14.17/20.38 -38.66/56.83/7.57/18.35 -204.99/158.44/6.27/52.10 -204.99/158.44/6.74/47.81
regional -14.18/56.51/13.96/19.81 -33.47/56.51/7.61/18.23 -205.48/159.96/6.27/52.34 -205.48/159.96/6.71/47.79

+mod. kernel -14.55/58.70/13.90/19.95 -34.84/58.70/7.57/18.32 -208.22/162.14/6.29/52.56 -208.22/162.14/6.76/48.04
chain no. 1+2 -16.85/59.48/13.70/19.69 -34.47/59.48/7.49/17.85 -213.52/171.46/6.40/52.72 -213.52/171.46/6.80/48.16
chain no. 3+4 -16.99/59.74/13.58/19.61 -34.66/59.74/7.45/17.93 -216.54/173.29/6.41/53.03 -216.54/173.29/6.86/48.49

Table 5.10: Statistics (mean/rms) for the differences of the computed gravity field models to
EGM2008 in terms of gravity anomalies [mGal]

total smooth part rough part
small med small med small med

ITG-Goce02 0.07/8.17 0.00/7.52 1.89/6.99 0.23/6.84 -0.19 /8.32 -0.15/7.91
regional 0.04/7.59 0.00/7.27 1.69/6.66 0.28/6.45 -0.19 /7.71 -0.17/7.73

+mod. kernel 0.05/7.42 0.01/7.25 1.63/6.44 0.24/6.51 -0.17 /7.55 -0.12/7.66
chain no. 1+2 0.13/7.37 0.01/7.04 1.42/5.61 0.16/5.97 -0.06 /7.58 -0.08/7.61
chain no. 3+4 0.11/7.14 0.02/6.95 1.31/5.56 0.11/5.95 -0.05 /7.34 -0.03/7.49

Table 5.11: Rms (and improvement with respect to ITG-Goce02) of the differences between the
calculated GOCE models and EGM2008

∆g [mGal] N [m]

ITG-Goce02 8.17 0.244
regional 7.59 (7%) 0.226 (7%)

+mod. kernel 7.42 (9%) 0.221 (9%)
chain no. 1+2 7.37 (10%) 0.222 (9%)
chain no. 3+4 7.14 (13%) 0.215 (12%)
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(a) ITG-Goce02
(min=−24.5423, max=27.7288, mean=−0.00494992, rms=7.52312)
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(b) regular grid
(min=−26.2115, max=27.272, mean=0.0146238, rms=7.24835)
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(c) optimization of the grid
(min=−26.4534, max=30.4831, mean=0.0246522, rms=6.94811)
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(d) best sample
(min=−23.4779, max=25.6038, mean=−0.0188346, rms=6.94239)
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(e) best sample, σ = 0.01
(min=−27.2681, max=28.8769, mean=−0.0161191, rms=7.85905)
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(f) regular grid, σ = 0.01
(min=−35.3012, max=43.5864, mean=0.00935175, rms=9.00698)
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Figure 5.18: Differences between the calculated gravity field models and EGM08. The following
models were considered: (a) the global spherical harmonic model ITG-Goce02, (b)
the regional solution using the standard regular grid, (c) the regional solution resulting
from the optimization of the grid, (d) the sample with the best agreement with EGM08,
(e) the same as (d) but using a smaller variance factor, and (f) the same as (b) but
using a smaller variance factor.
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Figure 5.19: Stability over the run of the 1st Markov chain

the shape of the basis functions and their nodal point distribution. Kusche examined these factors
under ideal conditions using the condition number as a measure of ill-posedness (cf. Kusche, 2002).
He found that the geometry of the point grid is important for the condition of the normal equation
matrix. According to him, the ideal point grid in the sense of the best stability is the uniform
grid derived from the Platonic solids. However, it was also noted that reducing the number of
basis functions has a strongly regularizing effect. So one might expect that the use of fewer well-
distributed basis functions also leads to a stabilization of the problem. This shall be verified in the
following.

To this end, condition numbers for the non-regularized normal equation matrices were calculated
for the samples of the chains 1 (from the start model) and 2. In accordance with what was stated
above, the condition depends on the number of RBFs and decreases when the number is reduced
(Fig. 5.19). For the same number, the condition may vary depending on the actual arrangement
of the basis functions by several orders of magnitude. To check for the impact of regularization, I
decided to use the best sample in the sense of having the best agreement with EGM2008. I think
this is in line with what is usually done in the standard approach, where the resolution of the point
grid is chosen so that the solution fits best to a reference model. The chosen sample with 462 RBFs
has a condition number that is smaller by a factor of about 50 than the condition of the initial
solution based on the standard regular grid with 562 RBFs, though the initial solution is almost the
best among the samples with the corresponding number.

The best solution is thus more stable than the standard solution. To show how this changes the
degree the solutions being affected by regularization, I modified the regularization parameter by
the same amount for both solutions and compared the results. A variance factor that is larger by
a factor of about 2 yields rms values with respect to the data area of 8.51 and 9.99mGal for the
best solution and the standard solution, thus a smaller change for the best solution (Tab. 5.12).
Accordingly, a variance factor that is smaller by a factor of 2, which corresponds to a stronger
regularization, yields rms values of 7.86 and 9.01mGal. As one can see in Figs. 5.18(e) and 5.18(f),
the strong systematic, signal-correlated errors caused by giving too much weight to the erroneous
prior information are smaller for the best solution with the optimized grid.
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Table 5.12: Rms for different values of the variance factor

σ ≈ 0.02 σ = 0.05 σ = 0.01
small med small med small med

best solution 7.01 6.94 8.27 8.51 8.78 7.86
standard solution 7.58 7.58 9.00 9.99 10.48 9.01

5.4 Discussion

The applied approach was developed for the processing of satellite observations divided into short
arcs. It is therefore equally well suited for global and regional gravity field analysis. It should be
emphasized that the same data and data preprocessing, and the same standards and background
models were used for all generated gravity field models. All calculations were made with the same
software package, and where possible also the same program settings were used. I therefore believe
that the comparison is fair and that different results point to differences in the underlying processing
strategies.

In Sec. 5.1 we saw that the global GOCE solution is of comparable quality as the official ESA models
of the second generation. In Sec. 5.2 we saw that the regional method with uniform point distribution
applied with exactly the same data can still improve this result by for example 7% in the southern
part of the South Sandwich deep sea trench test area. At the beginning of this work, there was the
hope that the adaption of the model resolution helps to prevent overparameterization and thereby
leads to a stabilization of the problem, so that the solution is less affected by the imperfections of the
prior information. Indeed, the number of the basis functions decreased drastically from 708 for the
regular standard grid (or 562 for the grid with the smaller margin) to 202 for the variant with the
alternative kernel function. In Sec. 5.3.9 I showed that at the same time the normal equation system
becomes more stable and the prior information has less influence. Moreover, we saw that the smaller
the number, the larger the variance factor, that is the lower the weight on the regularization term,
which might even further reduce the influence (see Fig. 5.15). With regard to the resulting gravity
field solutions, one can say that the adaption of the point grid leads to more energy in rough areas
and a smoother solution in smooth areas and altogether to smaller errors than ITG-Goce02 or the
regional solution with the standard grid (Sec. 5.3.8). Thus deficiencies of the solution, which I think
are the result of an inappropriate prior information, become less. I want to add that, no matter
which settings I tried in the regional analysis with standard grid, I could not achieve an equally
good solution in both areas. All in all one can say that the procedure for the optimization of the
point grid works and yields up to 6% better results than the standard approach; the improvement
over the global solution is thus twice as large.
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6. Conclusions and outlook

The aim of this thesis was to estimate an optimal point grid for the arrangement of the basis
functions in a radial basis function approach to regional gravity field analysis in addition to the
usual model parameters, which are the scaling coefficients and a variance factor. To achieve this,
the RJMCMC algorithm of Green (1995) was implemented, which allows sampling from a posterior
distribution that contains the number of parameters as one of its parameters. In this way, the
number of the basis functions can be estimated from the data like an ordinary model parameter.
This is a great advantage over existing approaches since I do not have to specify any kind of stop
criterion to prevent the algorithm from introducing more and more basis functions in order to further
reduce the residual sum of squares. In fact, I do not even have to specify a preference for specific
models in the prior, but the tendency for simple, uncomplicated models is inherent in the Bayesian
approach to model comparison.

The key points in the implementation of the approach are as follows: (1) I make use of the least
squares estimate for the linear problem of determining the scaling coefficients for a given point
grid. Thereby the sampling dimension is reduced, and I am able to integrate available software
for the regional analysis into the procedure. Furthermore, it improves the acceptance of steps that
change dimension and is therefore important for a fast mixing. (2) To further improve the mixing, I
invented a proposal density for the birth step that is derived from a gravity field model. Using it, I
could slightly increase the acceptance. However, the mixing of the chain is still a problematic issue.
(3) Since I am mainly interested in the resulting gravity field model, I do not calculate the estimates
on parameter level, but I formulate the Bayes estimator on the basis of the gravity field solutions
constructed from the sampled parameters. In this way, the labeling problem is solved without the
need for sorting the parameters.

Applying the method in regional gravity field analysis from GOCE data resulted in a significant
reduction of the required number of basis functions compared to the use of a standard network,
and the spatial distribution of the basis functions resembled the structures of the gravity field
signal. The solutions showed less noise and more signal respectively in smooth and rough areas and
improvements of up to 13% in comparison to competitive global and regional models based on the
same processing strategy. As hypothesized in the introduction, I attribute this to the stabilization of
the normal equation system resulting from the reduction of the number, making the solution more
resistant to simplified assumptions in the prior information, which was confirmed by the results.
Generally, one can conclude that it makes sense to concentrate on improving the model in regional
analysis, and that information about the optimal model can be revealed from the data.

These findings (see also the results chapter) suggest the following extensions/improvements of the
methods, and alternative ideas and applications for future research:

• With a few simple adaptions of the degree variances curve determining the shape of the basis
functions, the acceptance was higher, the number of basis functions smaller, the uncertainty
about the number lower, and the solution was better. Accordingly, I expect that really adapt-
ing the shape to the data is likely to bring further improvements. For this, one would have to
introduce an additional parameter per basis function, controlling the shape of the function,
and design a new move type to simulate it. For example, this could be the depth of the func-
tion under the reference sphere. Alternatively, one could also choose from among a discrete
number of different types of basis functions.

• The adjustment of the variance factor in regional analysis allows to adapt the prior information
to some extent to the signal in the local study area. In the present approach, the prior
information about the smoothness of the field is already incorporated in the construction of
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the basis function by choosing the shape coefficients as the degree variances according to
Kaula’s rule. Estimating the shape of the basis functions from the data might therefore be
interpreted as a further adaption of the prior information to the local conditions. As an
alternative to that, there are other ways to improve the prior information. A. Eicker already
proposed earlier to split up the study area and estimate several regularization parameters for
the individual sub-regions (Eicker, 2008). This could be easily combined with the RJMCMC
approach developed in this thesis. Future work could also aim at a completely different
construction of the regularization matrix using local constraints on the scaling coefficients of
neighboring functions like Rowlands et al. (2010) or Watkins et al. (2015).

• In this work, the approach for optimizing the point grid was applied to data of the satellite
mission GOCE. Although in principle the approach can be applied to any data, the benefit
might be greatest for heterogeneous data. In this context, it would be interesting to use it
for the analysis of GRACE(-like) observations. Because of the mission design, the highly
accurate inter-satellite range measurements are only available along the polar satellite orbit;
across this direction, the sensitivity is lower. The uniform model resolution connected with the
use of spherical harmonics leads to correlations between sectorial coefficients, which manifest
themselves in the well-known striping pattern of GRACE solutions. The optimization of the
point grid in the framework of regional gravity field analysis would allow adapting the model
resolution to the data, thereby counteracting these effects already in the data processing step.
Compared to the use for GOCE data, using the approach for the calculation of monthly
GRACE solutions would have the advantage that because of the lower number of observations
and the lower resolution achievable, the individual steps would be faster, and we probably
require less. It is conceivable to estimate the optimal grid on the basis of one month of data
and then to re-use it for the processing of the other data, assuming that the spatial structures
remain the same over time.

• However, to re-use the point grid for further tasks, a parametric solution would have to be
available, which currently is not. The RJMCMC algorithm implemented here arranges the
basis function-specific parameters in an unsorted vector. Determining the Bayes estimator as
the mean of the parameter vectors therefore requires the sorting of the parameters. In my
view, it would be sensible to sort the points of a random grid in such a way that the distance
to a specific point grid (e.g. the MAP grid) becomes minimal. When the number of basis
functions is high, this is not an easy task. But the problem is similar to the traveling salesman
problem for which solution algorithms exist.

• The applicability of the approach is limited by the rather large numerical errors in the so-
lutions. These errors are caused by the fact that the number of generated samples is not
sufficiently large, as in every iteration of the algorithm, an equation system has to be set up
and solved, which is time-consuming. The current version of the algorithm already considers
that always only a few points change within a step by updating only the part of the normal
equations that has changed compared to the previous step. However, in a birth or move step
always the whole observation equations are set up again. Since the accumulation of the basis
functions takes a significant amount of time, also the observation equations should be stored
in future calculations, and/or function tables should be used to interpolate the values of the
basis functions depending on the height and the opening angle.

• Moreover, correlations between the samples reduce the effective sample size. We saw that in
the range of large/small models the acceptance probability was rather high/low, leading to
a bad mixing and high correlations. It is thus advisable to further restrict the prior on the
number in future calculations, for example to the models in the HPD region. This would only
slightly change the target density and thus the derived estimates, but it would considerably
reduce the correlations, as was very clear from the test computations.
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