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Abstract

Lattice quantum chromodynamics (QCD) is a powerful tool to calculate the dynamics of low-energy,
non-perturbative QCD. It has made great strides in numerically evaluating hadronic observables by
simulating the interactions of quarks and gluons on a lattice in finite volume. However, the evaluation of
disconnected diagrams, which are Wick contraction diagrams containing quark propagators beginning
and ending at the same time coordinates, has consistently proven to be a challenge. These diagrams
have a low signal-to-noise ratio, and extracting the discrete energy shifts from the simulations of
these diagrams is consequently either difficult, expensive or both. In this thesis, we devise a way of
separating, analysing and evaluating the different connected and disconnected diagrams contributing
to the process of ππ scattering. We use partially quenched chiral perturbation theory, an effective
field theory of the enlarged, partially quenched QCD to perform this separation of connected and
disconnected diagrams. This procedure is inherently unphysical, and requires the trick of partial
quenching wherein extra, unphysical quarks are added to QCD. Using the extra mesons that are
generated by these quarks, we construct single-channel amplitudes for the individual connected and
disconnected diagrams. We derive fully analytical expressions for their scattering lengths and effective
ranges. These expressions are then used to accurately determine certain unphysical low-energy
constants, which are fed back into the Lüscher equation to provide concrete, numerical predictions of
energy shifts of certain combinations of the connected and disconnected diagrams. These predictions
are stringent bounds that any future lattice collaboration studying ππ scattering must adhere to. This
thesis thus provides an exemplary formalism to study disconnected contributions in various hadronic
processes, and displays the benefits of the interplay between effective field theory and lattice QCD
studies.
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CHAPTER 1

Introduction

The Standard Model of particle physics has been immensely successful in describing the fundamental
constituents of nature at an unprecedented level of precision. However, one of its foremost shortcomings
is that it does not provide a qualitative and foundational understanding of certain aspects of the strong
sector. The Standard Model cannot yet offer a practically convenient and analytical, first-principles
description of the phenomenology - a bountiful proliferation of quark-composite states called hadrons
- of low-energy Quantum Chromodynamics (QCD). This is due to the non-perturbative nature of the
strong coupling constant αs at energies below 1 GeV and the phenomenon of quark confinement.
Traditional perturbative approaches are, thus, invalid at these scales and the complex structure of
hadrons and their dynamics need to be developed and comprehended via non-perturbative means or
numerical methods.
Great progress in this regard has been made by two of the theoretical techniques exemplified in

this work. Firstly, Chiral Perturbation Theory (ChPT), an Effective Field Theory (EFT), has not just
unpeeled the low-energy hadronic spectrum, but has also yielded unprecedented insights into the
complicated structure of the QCD vacuum. On the other hand, lattice QCD is a computational tool that
allows the realisation of the hadronic spectrum via simulations of the QCD path integral on powerful
computers. It is then only natural that, as these techniques mature, synergy and interplay between
them become significant in the progression towards an era of precision and depth in calculations.
It is this juxtaposition between chiral effective field theory and lattice QCD that this thesis aims

to exploit. Lattice QCD relies upon the ability to compute a large number of simulations on a
finite-sized lattice, and this requires aspects such as cost and efficiency to be taken into consideration.
The computation of numerous configurations of the QCD path integral on the lattice translates into
the direct computation of multiple quark contraction diagrams for each process of interest, and the
extraction of signals corresponding to these diagrams that can then be related to physical observables.
It is in this evolving procedure that virtually all the lattice QCD collaborations have repeatedly found
it either difficult, expensive or both to compute disconnected diagrams.
Disconnected diagrams are simply any Wick contraction diagrams that contain quark propagators

that begin and end on the same time coordinates on the lattice. Almost every physical process
computed on the lattice necessarily contains contributions from disconnected diagrams. While their
computations have been improving steadily, extracting good signal-to-noise ratios or performing
simulations quickly and efficiently is still a considerable technical challenge. It would then be
invaluable to glean insights about disconnected diagrams and their relative contributions to physical
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Chapter 1 Introduction

observables from other sources.
In this work, we employ effective field theoretical methods to, firstly, separate and then evaluate

the different contributing diagrams appearing in the computation of ππ scattering on the lattice. The
concept of EFTs has usually been used towards understanding physical processes, but here, this
separation of connected and disconnected Wick contractions is an inherently unphysical process. In
order to accomplish this, we extend ChPT into a larger, unphysical domain via a technique called
partial quenching, to develop Partially Quenched ChPT (PQChPT). This enlarged theory contains
unphysical mesons, and the different connected and disconnected diagrams are described via scattering
processes of these mesons. We also chart a mechanism to relate these quantities, evaluated in the
infinite volume, to the finite volume discrete energy levels computed on the lattice.

Since EFT is founded on the tested, immutable principles of quantum field theory - locality, causality,
unitarity, cluster decomposition and renormalisability - the analytical and numerical results obtained
via this method are a clear and precise guiding light to future lattice QCD investigations of this process.
We also provide a general, predictive framework of separating, analysing and evaluating disconnected
diagrams, which can be extended to other processes, depending on the status and requirements of
lattice calculations in those processes. We, thus, deliver both a complementary analysis to lattice
computations of ππ scattering, as well as specific, numerical bounds for energy levels for future lattice
collaborations to heed.
This work begins with an overview of QCD in Chapter 2, and then describes the low-energy

effective field theory of QCD, ChPT, in Chapter 3. In Chapter 4, we provide an explanation of partial
quenching and the essentials of the unphysical effective theory of PQChPT. In Chapter 5, we perform
the separation of connected and disconnected diagrams using PQChPT and provide analytical and
numerical infinite volume results. The connection to specific lattice QCD data and finite volume
results and predictions are provided in Chapter 6. The work concludes with a discussion of the results
in Chapter 7.

1.1 Units and Conventions

Natural units are used in the entirety of this thesis,

~ = c = 1. (1.1)

Repeated Lorentz and colour indices are summed, and the Feynman slash notation is used,

/D = γµDµ . (1.2)

1.2 List of Publications

Substantial sections of this thesis (in particular, Chapters 5 and 6) have been published in the following
articles:

1. N. R. Acharya et al., Connected and disconnected contractions in pion–pion scattering, Nucl.
Phys. B922 (2017) 480, arXiv: 1704.06754 [hep-lat].

2. N. R. Acharya et al., Constraints on disconnected contributions in ππ scattering, JHEP 04
(2019) 165, arXiv: 1902.10290 [hep-lat].

2

http://dx.doi.org/10.1016/j.nuclphysb.2017.07.012
http://dx.doi.org/10.1016/j.nuclphysb.2017.07.012
http://arxiv.org/abs/1704.06754
http://dx.doi.org/10.1007/JHEP04(2019)165
http://dx.doi.org/10.1007/JHEP04(2019)165
http://arxiv.org/abs/1902.10290


1.2 List of Publications

The following article was also published during the period of this thesis:

3. N. R. Acharya et al., Theta-dependence of the lightest meson resonances in QCD, Phys. Rev.
D92 (2015) 054023, arXiv: 1507.08570 [hep-ph].
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CHAPTER 2

Quantum Chromodynamics

2.1 The Standard Model

Quantum field theory (QFT) has been one of the most successful theories in the natural sciences.
By extending the ancient notions of matter and forces to mathematically sound quantum fields, QFT
enables us to comprehend nature at a fundamental, scrupulous level. The Standard Model of particle
physics is the QFT that describes the fundamental matter and force particles [4–6]. Remarkably, the
Standard Model appears to be valid across a broad energy range, and was conceived from a relatively
small number of assumptions and principles. The central tenets of QFT - locality, causality, unitarity,
cluster decomposition and renormalisability - when reinforced with certain symmetry properties,
almost automatically yield a substantially predictive as well as extensively applicable theory. Though
a glaring drawback of the theory is the nineteen input parameters the Standard Model requires, it has
repeatedly survived intense experimental scrutiny over the last century1.
The principles of locality, unitarity, analyticity and cluster decomposition are erected on firm

foundations: they are imposed by the requirements of special relativity, quantum mechanics and their
conjunction; renormalisability is essential if we aim to realise meaningful predictions at arbitrary
energies that can be experimentally tested. Considerations due to principles of symmetry, historically,
arose in concert with a host of experimental discoveries of new particles. The imposition of invariance
under gauge symmetry, and the associated symmetry breaking scenarios, ineluctably explained
unanticipated particles or predicted missing elements.

It is most convenient to express the dynamics of the Standard Model in the Lagrangian formalism,
so that Lorentz invariance is manifest. The degrees of freedom of the Standard Model Lagrangian
are embedded in the Lie group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The spin-1

2 fermion fields and the spin-1
gauge boson fields, together with their antiparticles, interact with each other to induce the strong, weak
and electromagnetic forces (Fig. 2.1). The fermions are comprised of quarks and leptons, which are
organised in triplicate families by virtue of their hierarchical mass and flavour structure. Each force is
accompanied by mediating gauge bosons - eight gluons for the strong force, the W± and the Z bosons
for the weak force, and the photon γ for the electromagnetic force. The gluons and the photon are
massless, while the W± and Z bosons are rendered massive due to Spontaneous Symmetry Breaking

1 Outstanding success notwithstanding, we are now certain that the Standard Model is, if not incorrect, definitely incomplete.
The discovery of neutrino masses, astrophysical evidence of dark matter and several niggling inconsistencies in the flavour
sector indicate that the Standard Model is deficient (for reviews, see [7–9]).
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Chapter 2 Quantum Chromodynamics

Figure 2.1: The fundamental constituents of the Standard Model. The lines indicate interactions, including
self-interactions of the non-Abelian gauge bosons and the Higgs boson.

(SSB) of the electroweak gauge group into the electromagnetic group due to the vacuum,

SU(2)L ⊗ U(1)Y
SSB
−→ U(1)QED.

This SSB engenders the Higgs boson via Goldstone’s Theorem, which in turn generates fermion
masses and mixing in the Standard Model via the Yukawa terms [10, 11].

2.2 Symmetries of QCD

Quantum Chromodynamics (QCD) is the gauge theory that describes strong force interactions in
the Standard Model. It is an enormously rich theory, with vastly different phenomena at low- and
high-energy scales. It is also replete with myriad symmetries which lend it an abundant phenomenology.

2.2.1 Poincaré: Local ISO(3, 1)

QCD is necessarily invariant under transformations belonging to the Poincaré group, which is the Lie
group ISO(3, 1), since it is a relativistic QFT. The Poincaré group (or the inhomogeneous Lorentz
group) is essentially the set of all constant translations added to the Lorentz group. It is a ten parameter
group, and contains rotations and boosts due to the Lorentz transformations, in addition to translations.
Thus, the QCD Lagrangian is invariant under the following transformations of the spacetime coordinate

6



2.2 Symmetries of QCD

x:
x ′ = T(Λ, a)x = Λx + a, (2.1)

where T(Λ, a) is a ISO(3, 1) group element, and Λ represents Lorentz transformations which leaves
the scalar product invariant,

(Λx) · (Λy) = x · y, (2.2)

and has the specific properties of detΛ = 1 and Λ0
0 ≥ 1 for the proper orthochronous Lorentz group

SO(3, 1).
QCD is also invariant under CPT - charge conjugation (C), parity (P) and time-reversal (T ) -

since it is a relativistic, Lorentz invariant QFT and is subject to the CPT theorem [12].

2.2.2 Colour: Local SU(3)C
The fundamental degrees of freedom of QCD are quarks and gluons,

LQCD =

N f∑
f=1

q f

[
i /D − mq

]
qf −

1
4

Ga
µνGµν

a , (2.3)

where

• qf are the Dirac spinors representing quarks, which make up the matter content of the strong
sector. Quarks belong to the Dirac representation of the Lorentz group SO(3, 1) and the
fundamental representation 3 of the gauge group SU(3)C . Quarks are thus SU(3)C triplets and
are said to carry colour charges, which are usually denoted as red (R), green (G) or blue (B).

• Nf is the number of quark flavors. It is accepted that there are six flavors of quark: up, down,
strange, charm, beauty and top.

• Dµ
= ∂µ + igtaAa,µ is the covariant derivative, which transforms in exactly the same way under

gauge transformations as the Dirac spinor. The quark masses are denoted by mq, while g is
the coupling constant of the strong force. The interactions between quarks and gluons are thus
contained in the covariant derivative.

• Ga
µv = ∂µAa

v − ∂vAa
µ + g f abcAb

µAc
v is the gauge field strength tensor and a is the colour index

carried by the gluon fields Aµ.

•
[
ta, tb

]
= i f abctc illustrates the non-Abelian nature of SU(3)C , with f abc the structure constant

of the Lie group responsible for the gluon self-interactions.

The non-Abelian characteristic of SU(3)C also throws up a curious addition to Eq. (2.3),

Lθ = −
θ

64π2 ε
µνρσGa

µνGa
ρσ . (2.4)

The effects of the inclusion of this term, which occurs due to the topological nature of the non-Abelian
gauge group, are parity (P) and charge-parity (CP) violating effects in QCD, leading to, for example,
a neutron electric dipole moment (EDM) [13]. The latest bounds on the neutron EDM indicate that

7



Chapter 2 Quantum Chromodynamics

the parameter θ is minuscule [14, 15]. That it is virtually zero, although allowed by gauge invariance,
is an open fine-tuning question in the Standard Model [16]. We will ignore this term in this work.

2.2.3 Chiral: Global SU(2)R × SU(2)L
In the limit of massless quarks mq → 0, Eq. (2.3) becomes

L
0
QCD =

N f∑
f=1

q f [i /D]qf −
1
4

Ga
µνGµν

a . (2.5)

Defining a new ‘chirality’ matrix γ5 = γ
5
= iγ0γ1γ2γ3, we can introduce the projection operators,

PR =
1
2
(
1 + γ5

)
,

PL =
1
2
(
1 − γ5

)
,

(2.6)

where R and L stand for ‘right-’ and ‘left-handed’. The projection operators are 4 × 4 idempotent
matrices which satisfy the usual completeness and orthogonality relations,

P2
R/L = PR/L,

PR + PL = 1,
PRPL = PLPR = 0.

(2.7)

These operators can be used to project the Dirac spinors into their ‘chiral’ components,

PRq = qR,
PLq = qL,

(2.8)

and use this to decouple the left- and right-handed quark components,

qΓiq =
{

qRΓ1qR + qLΓ1qL for Γ1 ∈
{
γµ, γµγ5

}
qRΓ2qL + qLΓ2qR for Γ2 ∈

{
1, γ5, σ

µν} . (2.9)

Applying this to the first term of Eq. (2.5) gives

L
0
QCD =

N f∑
f=1

qR, f [i /D]qR, f + qL, f [i /D]qL, f −
1
4

Ga
µνGµν

a . (2.10)

The quark masses are determined from experiments and lattice simulations. There is a clear hierarchy
in the masses of the different quark flavors [17],

©«
mu ≈ 0.002 GeV
md ≈ 0.005 GeV
ms ≈ 0.095 GeV

ª®¬ � 1 GeV ≤ ©«
mc ≈ 1.28 GeV
mb ≈ 4.18 GeV
mt ≈ 173 GeV

ª®¬ , (2.11)

where the up, down and strange quarks are much lighter than the charm, beauty and top quarks. Here,
the light quarks have been measured at a renormalisation scale ∼ 2 GeV. This scale separation allows

8



2.2 Symmetries of QCD

us to explore the physics in the sub-1 GeV regime without having to explicitly consider the effects of
the heavy quarks. In this work, we will go one step further and separate the up and down quarks from
the strange quark, since mu,md � ms. The flavor-independence of the covariant derivative means
that there is now a chiral symmetry in Eq. (2.10). The chiral Lagrangian L0

QCD is invariant under
independent transformations of the decoupled quark fields of the form(

uR

dR

)
7→ UR

(
uR,

dR

)
(

uL

dL

)
7→ UL

(
uL

dL

)
,

(2.12)

where the UR/L are 2 × 2 unitary matrices which are group elements of U(2)R/L . These can be
parameterised as (see Appendix B)

UR = exp

(
−i

3∑
a=1

Θ
R
a

τa

2

)
,

UL = exp

(
−i

3∑
a=1

Θ
L
a

τa

2

)
.

(2.13)

The parameters ΘR/L
a are independent of the spacetime manifold, and this symmetry is a global

U(2)R ×U(2)L symmetry of the the massless QCD Lagrangian. This parameterisation implies that
the Lagrangian is actually invariant under the transformations,(

uR

dR

)
7→ UR

(
uR

dR

)
= exp

(
−i

3∑
a=1

ΘRa

τa
2

)
e−iΘR

(
uR

dR

)
,(

uL

dL

)
7→ UL

(
uL

dL

)
= exp

(
−i

3∑
a=1

ΘLa

τa
2

)
e−iΘL

(
uL

dL

)
,

(2.14)

which indicates that we have decomposed the symmetry as

U(2)R ×U(2)L
↓

SU(2)R × SU(2)L ×U(1)V ×U(1)A
,

with the new definitions V = R+ L and A = R− L, which stand for vector and axial vector respectively.
The SU(2)R × SU(2)L symmetry is usually known as the chiral symmetry of QCD. We can promote
this global U(2)R ×U(2)L symmetry into a local one, by introducing spacetime dependence of the
parameters ΘR/L

a . This allows us to apply Noether’s theorem (Appendix A) to obtain eight conserved
Noether currents at the classical level. For SU(2)R/L , there are three currents each,

Rµ,a = qRγ
µ τ

a

2
qR, ∂µRµ,a = 0

Lµ,a = qLγ
µ τ

a

2
qL, ∂µLµ,a = 0.

(2.15)

9



Chapter 2 Quantum Chromodynamics

The currents Rµ,a and Lµ,a transform as (2,1) and (1,2) under SU(2)R × SU(2)L respectively. It is
convenient to redefine these currents using the vector and axial vector nomenclature,

Vµ,a
= qγµ

τa

2
q,

Aµ,a = qγµγ5
τa

2
q.

(2.16)

The U(1)V/A also generate a singlet current each,

Vµ
= qγµq,

Aµ = qγµγ5q,
(2.17)

where ∂µVµ
= 0 and the vector singlet current is conserved. This conserved vector current corresponds

to baryon number (B) conservation and enables a definition of mesons (B = 0) and baryons (B = 1).
However, the axial vector current is not conserved at the quantum level due to an anomaly [18, 19],

∂µAµ =
g2
s

16π2 ε
µνρσGa

µνGa
ρσ, (2.18)

which is related to the topological θ-term in Eq. (2.4), and its effects are virtually irrelevant to the
contents of this work.

2.3 Symmetry Breaking in QCD

A striking feature of the Standard Model is not just the cohort of symmetries that seem to command
its structure, but the multitude of symmetry breaking patterns it exhibits. By itself, QCD illustrates
spontaneous symmetry breaking (SSB) as well as explicit symmetry breaking which are directly
responsible for the huge number of composite quark states that have been experimentally detected.

2.3.1 Spontaneous Symmetry Breaking

Noether’s theorem allows us to derive conserved charges for the different currents in Eq. (2.15),

Qa
R(t) =

∫
d3xq†R

τa

2
qR,

Qa
L(t) =

∫
d3xq†L

τa

2
qL .

(2.19)

Since they are conserved charges, they commute with the massless QCD Hamiltonian,[
Qa

R/L,H0

]
= 0. (2.20)

Similarly to Eq. (2.16), we can construct the linear combinations of the right- and left-handed
currents, vector Qa

V = Qa
R +Qa

L and axial vector charges Qa
A = Qa

R −Qa
L , which have opposite parity

10



2.3 Symmetry Breaking in QCD

transformations,
PQa

V P−1
= Qa

V,

PQa
AP−1

= −Qa
A.

(2.21)

This directly implies a parity doubling for eigenstates of the QCD Hamiltonian H0, where each positive
parity state |φ〉 is accompanied by a degenerate negative parity state [20]:

H0 |φ〉 = E |φ〉, (2.22)

where E is the eigenvalue and P |φ〉 = +|φ〉. The commutativity of the charge operator Qa
A with the

Hamiltonian gives,
H0Qa

A|φ〉 = Qa
AH0 |φ〉 = EQa

A|φ〉, (2.23)

leading to
PQa

A|φ〉 = PQa
AP−1P |φ〉 = −EQa

A|φ〉. (2.24)

Thus, the hadronic spectrum must contain a degenerate, negative parity state for each |φ〉. It is clear,
however, from empirical results that this parity doubling is not realised in nature, which indicates a
fault in the above reasoning.

In the arguments presented above, we have made an implicit assumption that Qa
A annihilates the

vacuum. To illustrate this, consider a positive parity state |φ,+〉 produced by a creation operator
a†φ and its corresponding negative parity state |ψ,−〉 created by a†ψ. Both these states belong to an
irreducible representation of the symmetry group SU(2)R × SU(2)L , leading to an interdependence of
the creation operators, [

Qa
A, a
†

φ

]
= −taφψa†ψ, (2.25)

where taφψ is a constant denoting the mixing of the two states. The action of the charge operator on the
positive parity state gives,

Qa
A|φ,+〉 = Qa

Aa†φ |0〉

=
[
Qa

A, a
†

φ

]
|0〉 + a†φQa

A|0〉

= −taφψa†ψ |0〉 + a†φQa
A|0〉.

(2.26)

The existence of the negative parity state |ψ,−〉 then requires that Qa
A|0〉 = 0. The members of the

hadronic spectrum with the lowest masses are the pions, which form a triplet and exhibit isospin
symmetry, which implies an SU(2) symmetry. This means Qa

A|0〉 , 0 and a spontaneous symmetry
breaking [21],

SU(2)R × SU(2)L
↓

SU(2)V .
(2.27)

In the case of Nf = 3, the inclusion of the strange quark results in an octet for the lowest-lying hadronic
states, indicating an SU(3)V symmetry of the theory.

The ground state of QCD is shown to be invariant under SU(3)V ×U(1)V , with the three vector
charges and the baryon number operator all annihilating the ground state,

Qa
V |0〉 = QV |0〉 = 0. (2.28)
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Meson Quark Content Mass (MeV)
π+/π− ud / du 140
π0

(uu − dd)/
√

2 135
K+/K− us / su 494
K0
/K

0
ds / sd 498

η (uu + dd − 2ss)/
√

6 548
η′ (uu + dd + ss)/

√
3 958

Table 2.1: The masses of the lightest mesons [17]. The pions in the triplet {π0, π±} all have almost exactly the
same mass, and the differences arise only due to isospin breaking and electromagnetic effects. The mesons
containing a strange quark are all much heavier than the pions, indicating that SU(3)V is not as strong as the
SU(2)V symmetry, justifying the discussion after Eq. (2.11).

The Coleman-Mandula theorem asserts that the symmetry of the vacuum state is necessarily the
symmetry of the Hamiltonian, and it is this symmetry that, consequently, determines the spectrum of
the theory [22]. Thus, given the pion triplet as the lowest-lying members of the hadronic spectrum in
the isospin limit (mu = md � ms), the assumption of Eq. (2.27) is validated. In Table 2.1, we show
the masses of the lowest-lying mesons.

The triplet charge operators Qa
V and Qa

A do not form a closed algebra,[
Qa

A,Q
b
A

]
= i f abcQc

V,[
Qa
V,Q

b
A

]
= i f abcQc

A.
(2.29)

According to Goldstone’s theorem, then, for each axial vector generator Qa
A which does not annihilate

the vacuum, there exists a corresponding Nambu-Goldstone boson (NGB) field φa, leading to a triplet
of NGBs: the pions {π0, π±} [23–25]. This is consistent with the expectation that, according to the
SSB pattern in Eq. (2.27), there need to be N2

− 1 = 3 NGBs for SU(2). These fields are massless,

ma
α =

〈
0
���e−iαaQa

AH0eiα
aQa

A

��� 0〉 = 0. (2.30)

The properties of these NGBs are defined by the symmetry properties of the axial vector generators,
and thus are pseudoscalar, with negative parity,

φa(t, ®x)
P
7−→ −φa(t,−®x). (2.31)

The NGBs tranform linearly under the subgroup SU(2)V of the group SU(2)R × SU(2)L ,[
Qa
V, φ

b
(x)

]
= i f abcφc(x). (2.32)

Explicit Symmetry Breaking

The pseudoscalar NGBs are massless, according to Goldstone’s theorem. However, in reality, the chiral
limit is not exactly realised and the up and down quarks have small, non-zero masses. Introducing
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quark masses induces an additional term in Eq. (2.10) which mixes the left- and right-handed quarks,

L
m
QCD = −qRMqL − qLM

†qR, (2.33)

with
M =

(
mu 0
0 md

)
. (2.34)

This term explicitly breaks chiral symmetry in QCD. However, since the quark masses, especially in
the case of just the up and down quarks, are much smaller than the pion masses (≈ 0.135 GeV), the
chiral symmetry SU(2)R × SU(2)L is broken only weakly. It will be shown in the next chapter how
these quark masses contribute to finite pion masses.

2.4 Running Coupling Constant and Asymptotic Freedom

As mentioned earlier, QCD exhibits vastly different phenomena at the lower and higher ends of its
energy spectrum. This can most easily be charted by evaluating the beta function of the QCD coupling
constant g from Eq. (2.3),

β(g) =
d

d(ln µ)
g(µ), (2.35)

where µ is the relevant energy scale. Specifically, for the case of non-Abelian SU(3)C [26, 27],

β(g) = −

(
11 −

2Nf

3

)
g3

16π2 + O
(
g5

)
. (2.36)

For the physical case of six fermions, Nf = 6, the beta function remains negative, indicating that
the coupling constant becomes weaker at smaller distances. Thus, at higher energies, the weaker
coupling constant allows the usage of perturbation theory to evaluate the dynamics of the theory. This
phenomenon of the diminishing strength of the strong force at higher energies is called asymptotic
freedom. Conversely, at low energies (≤ 1 GeV), the coupling constant is too strong to meaningfully
carry out perturbation theory. The solution of Eq. (2.35) at the lowest order is

αs(µ) ≡
g2
(µ)

4π
=

12π(
33 − 2Nf

)
ln

(
µ2

Λ
2

) , (2.37)

with Λ an integration constant, which is a dimensionful parameter and replaces the dimensionless
coupling constant g. Λ characterises the scale at which the coupling constant diverges, signalling the
onset of the non-perturbative regime. Λ ∼ 211 MeV when calculated in the MS scheme with Nf = 5
and a renormalisation scale µ = 2 GeV [28]. At these energies, the only vestiges of quarks and gluons
are hadrons due to the little-understood phenomenon of confinement. Any satisfactory description of
the dynamics of the quark-composite hadrons thus requires alternative, non-perturbative techniques.
In this work, we will focus on two of the most prominent and successful tools applied towards this end
- Chiral Perturbation Theory and lattice QCD.
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CHAPTER 3

Chiral Perturbation Theory

3.1 Effective Field Theories

The concept of an Effective Field Theory (EFT) has been the cornerstone of our endeavour to
understand nature via physics. While the ultimate objective of physics has persistently been an ultimate
theory that describes nature, across all energy ranges, in a single, singular formalism with minimal
input parameters, the sheer magnitude of length scales pervading the universe has rendered this
objective still inconceivable. It is fortuitous, then, that it is possible for us to separate the dynamics
at, say, the longer length scales, without explicitly detailing the physics at shorter lengths. This
scale separation has essentially endowed physics with the unprecedented predictive power that it has
demonstrated in the last century. The method of effective field theories emphasises, formalises and
exploits this ubiquitous feature of physics in a coherent and organised manner.

The notion and efficacy of EFTs is best illustrated by elucidating Chiral Perturbation Theory (ChPT),
one of the most fruitful EFTs of the last few decades. It was mentioned earlier that confinement and
the non-perturbative nature of QCD at low energies imply that an analytical first-principles description
of hadron physics using quarks and gluons is practically impossible. The energy scales at which
quarks and gluons, as fundamental degrees of freedom, explicitly affect dynamics are far-removed
from the sub-1 GeV regime we are interested in. Scale separation, then, allows us to conjure up an
EFT with the asymptotic hadron states as the fundamental degrees of freedom. Formally, this can be
accomplished by invoking Weinberg’s theorem [29],
“If one writes down the most general possible Lagrangian, including all terms consistent with

assumed symmetry principles, and then calculates matrix elements with this Lagrangian to any given
order of perturbation theory, the result will simply be the most general possible S-matrix consistent
with analyticity, perturbative unitarity, cluster decomposition and the assumed symmetry principles".
To apply Weinberg’s theorem in a productive and rigorous way, we need a cogent scheme to

assemble, organise and order the possible terms in the effective Lagrangian. The salient features that
need to be considered and executed in our expected theory of hadrons are:

• As mentioned, scale separation is crucial. In our theory with two light quarks and pions as
asymptotic states, we encounter three distinct scales:

1. Energies� 10 GeV, at which quarks and gluons are virtually independent states, which
are beyond the reach of the “low-energy" experimental probes relevant to the light hadrons.
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2. Energies of ∼ 1 GeV ≡ Λ, which marks the onset of the non-perturbative phase of QCD.
Hadrons inhabit this energy regime as the observable states.

3. The light quark masses, ∼ few MeV, which are minuscule compared to the scale of physics
but need to be incorporated since they are responsible for the light pion masses via explicit
symmetry breaking.

• Weinberg’s theorem refers to “...all terms consistent with assumed symmetry principles...". This
requires us to incorporate the symmetry principles of the parent theory, QCD, in our effective
theory.
1. The ChPT Lagrangian needs to integrate chiral symmetry and the symmetry breaking

patterns exhibited in QCD. The Nambu-Goldstone bosons engendered by Spontaneous
Symmetry Breaking (SSB) of chiral symmetry, which are the primary observable states at
the relevant energy scales, are taken to be fundamental degrees of freedom in our EFT.
Thus, ChPT is known as a non-decoupling EFT, since the degrees of freedom in ChPT are
different from the underlying theory, QCD.

2. It is also vital to ensure Lorentz invariance of the terms in the Lagrangian, in order to
maintain a physically meaningful causal and analytical structure of the resulting S-matrix.

• In order to “write down the most general possible Lagrangian", it is necessary to formulate a
scheme to organise the allowed terms of the Lagrangian - which are infinite in number.
1. A perturbative expansion of the terms in the Lagrangian requires suitable expansion

parameters. Since the dynamics of the theory are commanded by the energy regime within
which the theory is valid, momentum is a pertinent expansion parameter. An expansion in
momentum is also beneficial when evaluating Feynman diagrams: spacetime derivatives
correspond to four-momenta in the derivation of Feynman rules. Given that mu,md � Λ

and quark masses explicitly break chiral symmetry, quark masses are also a credible
expansion parameter. Thus, a perturbative expansion in p/Λ and mq/Λ is carried out to
generate the infinite series of terms.

2. The expansion parameters need to be accompanied by a power counting scheme that orders
the infinite terms of the Lagrangian. Weinberg’s power counting scheme, which orders a
term by evaluating its chiral dimension, is used for ChPT.

3. Using the chiral counting scheme, we can assign a chiral dimension to the building blocks
of the ChPT Lagrangian - derivatives, Goldstone boson fields, external fields and mass
terms.

4. Lorentz invariance imposes another constraint on the successive terms in the perturbative
expansion: Lorentz indices of the derivatives are always contracted with either the metric
ηµν or the Levi-Civita connection εµνρσ , which means that the chiral Lagrangian for
mesons can only contain terms of even chiral order,

LChPT = L0 + L2 + L4 + L6 + . . . . (3.1)

5. Carrying out this procedure ensures that there are only a finite number of terms at each
order, and delving deeper by evaluating observables order by order naturally increases the
accuracy of our results.
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• The infinite terms in the perturbative expansion of ChPT are accompanied by coefficients called
Low-Energy Constants (LECs). The symmetry principles that constrain the terms themselves
do not provide any restrictions on the nature of the LECs. The LECs contain the inherent
information of QCD, and, in principle, can be evaluated by matching to the fundamental theory.
In practice, however, in the case of QCD, such a matching procedure is impractical and the
LECs are determined by fitting to experimental or lattice QCD data.

• The perturbative nature of the expansion of parameters, with an energy ‘cut-off’ Λ governing
the scale of validity of the theory, also portends differences in unitarity and renormalisability.
Unitarity is only satisfied perturbatively in ChPT, where successively higher order contributions
are required to satisfy S-matrix unitarity. This naturally necessitates an infinite series of terms.
Similarly, ChPT is non-renormalisable in the traditional sense, since it contains operators with
mass dimension higher than four. The cancellation of divergences at a certain order requires
contributions from the next order, and this procedure can be carried out successively until the
required degree of accuracy is met.

ChPT is thus a model-independent perturbation theory for non-perturbative QCD rooted in the
founding principles of QFT, which means that predictions of ChPT are stringent and reliable, within
the valid energy regime [30]. On the other hand, traversing to higher orders becomes very complicated
very quickly, since the number of unknown parameters increases drastically [31].

Weinberg’s Power Counting Scheme

Weinberg’s power counting scheme proffers a definition of the chiral dimension and allows the
classification of different Feynman diagrams, using which the ChPTLagrangian can be constructed [29].
For a specific diagram with Vn vertices from the Ln term in the Lagrangian, L independent loops and
I internal lines, the chiral dimension is calculated as,

D = 4L − 2I +
∑
n

nVn. (3.2)

Using L = I −
∑

n Vn + 1, the dependence on the number of internal lines can be eliminated,

D =
∑
n

Vn(n − 2) + 2L + 2. (3.3)

To illustrate the applicability of the chiral dimension D, as a theoretical instrument, consider a rescaling
of the expansion parameters in the following way: the external momenta rescaled as pi → tpi and
the light-quark masses rescaled as mq → t2mq1. This results in a rescaling of the amplitude of the
diagram,

M(tpi, t
2mq) = tDM(pi,mq). (3.4)

While there are infinite terms in the perturbative series expansion of the ChPT Lagrangian, Eq. (3.3)
assures us that there is only a finite number of contributing terms at a given chiral dimension D,
since there are finite combinations of loops and vertices. The application of momentum and quark
masses as expansion parameters in ChPT is justified as it ensures that for small momenta and masses,

1 The reason for these rescaling choices will become evident in the following section, from Eq. (3.40).
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only diagrams with correspondingly small chiral dimension contribute to a certain process, with
suppression of diagrams with higher D. This in turn automatically suppresses loop diagrams as
evident from Eq. (3.3).

3.2 The Leading Order Lagrangian

The ChPT Lagrangian needs to be invariant under the chiral symmetry (SU(2)R × SU(2)L ×U(1)V )
transformation of the NGBs, with the three NGBs - {π0, π±} - transforming as a triplet under the
subgroup H = SU(2)V . SSB dictates that the ground state must be invariant under SU(2)V ×U(1)V .
Using the results from Appendix B, we can parameterise the pseudoscalar NGBs in the exponential
representation,

U(x) = exp

(
i
√

2Φ
F

)
, (3.5)

where F is a dimensionful constant and,

Φ =

2∑
i=1

τiφi(x) =
1
√

2

(
π0 √

2π+
√

2π− −π0

)
. (3.6)

U(x) is the fundamental degree of freedom of the ChPT Lagrangian, and transforms non-linearly in
the (3, 3) representation of global SU(2)R × SU(2)L ,

U(x) 7→ RU(x)L†, (3.7)

with R and L belonging to SU(2)R and SU(2)L respectively. After SSB, R = L and U(x) thus
transforms linearly under transformations of SU(2)V ,

U(x) 7→ LU(x)L†, (3.8)

leaving the ground state Φ = 0, U0 = 1 invariant under vector transformations as required by SSB,

U0 7→ LU0L† = LL† = 1,

U0 7→ A†U0 A† = A†A† , 1.
(3.9)

The chiral transformations of the remaining elementary blocks required for the kinetic terms in the
Lagrangian follow,

∂µU 7→ R∂µUL†,

U† 7→ LU†R†,

∂µU 7→ L∂µU†R†.

(3.10)

The NGBs in the ChPT Lagrangian require a derivative coupling, since the pions do not interact
with each other at vanishing momenta. Thus, noting that the lowest order term in the Lagrangian,
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corresponding to L0, is trivial since UU† = 1, the first consequential term in the ChPT Lagrangian is:

LK =
F2

4

〈
∂µU†∂µU

〉
, (3.11)

where 〈. . .〉 = Tr [. . .] is the trace in flavour space. The different building blocks are chirally counted
as,

U = O(p0
), ∂µU = O(p1

). (3.12)

Using the cyclic property of the trace, it is easy to show that this term is indeed invariant under chiral
transformations:

LK 7→
F2

4

〈
L∂µU†R†R∂µUL†

〉
=

F2

4

〈
L†L∂µU†1∂µU

〉
=

F2

4

〈
∂µU†∂µU

〉
. (3.13)

Along with chiral symmetry invariance, we have ensured that the other symmetries of QCD - Poincaré
invariance, charge conjugation C, parity P and time reversal T invariance (in the limit of vanishing
θ-term Eq. (2.4)) - are all respected by this LO Lagrangian.

It is now possible to evaluate the Noether currents generated by chiral symmetry for this Lagrangian.
In order to calculate the Noether currents, we first need to promote the global parameters Θa

R and Θa
L

from Eq. (2.13) to local parameters with spacetime dependence. Setting Θa
R = 0, to first order in Θa

L ,
we obtain,

U 7→ RUL† = U
(
1 + iΘL

a

τa

2

)
,

U† 7→
(
1 − iΘL

a

τa

2

)
U†,

∂µU 7→ ∂µU
(
1 + iΘL

a

τa

2

)
+Ui∂µΘ

L
a

τa

2
,

∂µU† 7→
(
1 − iΘL

a

τa

2

)
∂µU† − i∂µΘ

L
a

τa

2
U†.

(3.14)

Applying these to LK , the variation of the Lagrangian is,

δLK =
F2

4

〈
U∂µΘ

L
a

τa

2
∂µU† + ∂µU

(
−i∂µΘ

L
a

τa

2
U†

)〉
,

δLK =
F2

4
i∂µΘ

L
a

〈
τa∂µU†U

〉
.

(3.15)

The left-handed Noether currents LK are:

Ja,µ
L =

∂
(
δL2

)
∂(∂µΘ

L
a )
= i

F2

4

〈
τa∂µU†U

〉
. (3.16)

Similarly, we obtain the right-handed currents,

Ja,µ
R =

∂
(
δL2

)
∂(∂µΘ

R
a )
= −i

F2

4

〈
τaU∂µU†

〉
. (3.17)
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The vector and axial vector currents are then just the linear combinations of the left- and right-handed
currents,

Ja,µ
V = Ja,µ

R + Ja,µ
L = −i F4

〈
τa

[
U, ∂µU†

]〉
,

Ja,µ
A
= Ja,µ

R − Ja,µ
L = −i F

2

4

〈
τa

{
U, ∂µU†

}〉
.

(3.18)

We can expand the field U(x) in terms of the pion fields,

U = 1 +
i
√

2Φ
F
−
Φ

2

F2 + . . . . (3.19)

The axial vector current Ja,µ
A

contains terms with odd numbers of NGBs, and the leading term of this
current is,

Ja,µ
A
= −F∂µφa . (3.20)

The current Ja,µ
A

, when contractedwith the vacuum and aGoldstone boson state, returns a non-vanishing
matrix element: 〈

0
��Ja,µ

A
(x)

�� φb(p)〉 = ipµFe−ip · xδab . (3.21)

This relation shows that the constant F is related to physical pion-decay, and hence is called the
“pion-decay constant" (in the chiral limit, F = Fπ). It has been measured in the leptonic decay of the
pion in the process π+ → `+ν` to be Fπ = 92.2 MeV [17].

3.2.1 Including Masses

As already mentioned, finite quark masses break chiral symmetry explicitly and lead to finite NGB
masses. In order to incorporate these quark masses in the ChPT Lagrangian, we employ a technique
called the spurion trick [32]. In our case, the spurion trick involves the following steps:

• The quark mass term is introduced as a spurion field that transforms appropriately in the
fundamental theory, QCD,

L
m
QCD = −qRMqL − qLM

†qR, (3.22)

whereM is the spurion field,

M =

(
mu 0
0 md

)
. (3.23)

• The transformation of the complex spurion fieldM under chiral symmetry,

M 7→ RML†, (3.24)

allows its insertion as an operator in the ChPT Lagrangian along with the other building blocks.
Chiral symmetry in the ChPT Lagrangian is, thus, broken in exactly the same way as in QCD.

• Once the invariant Lagrangian is constructed, the spurion field is set to its correct value - here,
the physical quark masses, in the ensuing calculations.

Taking these steps into account, the form of the mass term to be added to the chiral Lagrangian
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is [33],

LM =
F2

4

〈
χU† + χ†U

〉
, (3.25)

where a new parameter has been introduced:

χ = 2BM . (3.26)

The parameter B is related to the scalar quark condensate as,

Σ = 2F2B = −〈qq〉. (3.27)

Chiral symmetry also allows a term of the form
〈
χU† − χ†U

〉
to be included in the lowest non-trivial

Lagrangian, but this term has an opposite transformation under parity and is thus excluded.
Reading off the coefficients of the quadratic pion terms in the expansion of Eq. (3.25),

F2

4

〈
χU† + χ†U

〉
=

F2B
2

〈
MU† +M†U

〉
= F2B

(
mu + md

) (
1 −

π · π
2F2 + . . .

) (3.28)

gives us the pion masses, which is the famous Gell-Mann–Oakes–Renner (GMOR) relation (m =
1
2 (mu + md)) [34]:

M2
= B

(
mu + md

)
= 2Bm. (3.29)

The GMOR relation clarifies how the pion masses must be counted in the chiral power counting
scheme,

mq = O(p
2
), (3.30)

leading to
χ = O(p2

). (3.31)

Thus, we have formulated a complete leading order ChPT Lagrangian for the global, chiral
SU(2)R × SU(2)L symmetry. In order to derive the Ward identities for ChPT, analogous to QCD, in
the functional formalism, we require a locally invariant generating functional expansion of ChPT.
The generating functional of QCD, with vector (v), axial vector (a), scalar (s) and pseudoscalar
(p) external sources, ZQCD[v, a, s, p] must reproduce the ChPT generating functional in a series
Z (2)[v, a, s, p] + Z (4)[v, a, s, p] + . . . . This allows us to easily introduce any necessary external fields
coupled with the NGBs in ChPT [33].

The building blocks for the complete, perturbatively expanded Lagrangian can be organised, then,
based on their compliance with local, chiral symmetry, with the SU(2)R × SU(2)L group elements
R(x) and L(x) now spacetime dependent.

• The pion field is most conveniently represented in the exponential parameterisation,

U = exp

(
i
√

2Φ
F

)
, (3.32)
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and a local, chiral transformation of the NGBs encoded in

U(x) 7→ R(x)U(x ′)L†(x). (3.33)

• The covariant derivative is defined analogously to QCD,

DµU ≡ ∂µU − irµU + iUlµ, (3.34)

and transforms identically to the NGB,

DµU 7→ R(DµU)L†. (3.35)

• The gauge boson fields of the theory are defined via the field strength tensors,

f Rµν ≡ ∂µrv − ∂vrµ + i
[
rµ, rv

]
,

f Lµν ≡ ∂µlv − ∂vlµ + i
[
lµ, lv

]
,

(3.36)

and the left- and right-handed gauge bosons are combined linearly to give us the vector
vµ =

1
2 (rµ + lµ) and axial vector aµ =

1
2 (rµ − lµ) gauge bosons in Eq. (3.34). The field strength

tensors transform as,
f Rµν 7→ R f RµνR†,
f Lµν 7→ L f LµνL†.

(3.37)

• The spurion trick is now elevated to include the external scalar and pseudoscalar sources,

χ ≡ 2B(s + ip) = 2BM, (3.38)

so that χ transforms similarly to the field U,

χ 7→ RχL†. (3.39)

Applying the chiral counting scheme to our building blocks,

U = O(p0
),

DµU = O(p1
),

rµ, lµ = O(p
1
),

f R/Lµν = O(p2
),

χ = O(p2
).

(3.40)

In concert with the discrete symmetries of charge conjugation (C), parity (P) and time-reversal
invariance (T ) and Lorentz invariance, the effective chiral Lagrangian, with manifest local, chiral
invariance, can be constructed order by order. Given any objects A, B,C and D transforming as RXL†
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3.3 Next-to-Leading Order

(X = A, B,C,D) under SU(2)R × SU(2)L , chirally invariant terms are constructed as〈
AB†

〉
,〈

AB†CD†
〉
,〈

AB†
〉

·
〈
CD†

〉
and so on,

(3.41)

where the cyclic property of the flavour trace has been exploited. The argument of Lorentz invariance
impelling only terms in the Lagrangian of even chiral order still holds, and combining all the above
constraints finally gives us the leading order (LO), locally invariant ChPT Lagrangian,

L2 =
F2

4

〈
DµU†DµU

〉
+

F2

4

〈
χU† + χ†U

〉
. (3.42)

The two free parameters of L2 are the pion-decay constant F and B, which is associated with the
scalar quark condensate. This LO Lagrangian may be expanded in terms of the physical pion fields to
calculate physical results such as the pion masses and LO scattering amplitudes,

L2 =
1
2

[
∂µπ · ∂µπ − M2π · π

]
+

1
6F2

[(
π · ∂µπ

) (
π · ∂µπ

)
− (π · π)

(
∂µπ · ∂µπ

)]
+

1
24F2

[
M2
(π · π)2

]
+ O

(
π6

)
,

(3.43)

where π · π = πaπa is the vector product, and the GMOR relation of Eq. (3.29) has been applied
to make the pion masses explicit. The LO ππ scattering amplitude is easily evaluated from this
expansion [29],

A(s, t, u) =
s − M2

F2 , (3.44)

where s = (p1+ p2)
2, t = (p1− p3)

2 and s = (p1− p4)
2 are the usual Mandelstam variables constructed

to present a Lorentz-invariant scattering amplitude.
The ππ scattering amplitude is analytic on the complex s-plane, which follows from Weinberg’s

theorem, and this property manifests as crossing symmetry of the scattering amplitudes. Utilising this
in the isospin limit (mu = md), we obtain simple relations for the different isospin (I) projected ππ
scattering amplitudes [35]:

T I=0
= 3A(s, t, u) + A(t, u, s) + A(u, s, t),

T I=1
= A(t, u, s) − A(u, s, t),

T I=2
= A(t, u, s) + A(u, s, t).

(3.45)

3.3 Next-to-Leading Order

3.3.1 Unitarity and Renormalisability

We now expound upon the need to progress to higher orders of the ChPT Lagrangian. As mentioned
in Section 3.1, due to the perturbative nature and construction of ChPT, the essential requirements of
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Chapter 3 Chiral Perturbation Theory

unitarity and renormalisability require the inclusion of successive, higher-order terms in the chiral
expansion. Unitarity is one of the core principles of QFTs, and satisfaction of unitarity constraints in
the theory is crucial to maintain the physical validity of the resulting S-matrix elements. S-matrix
unitarity can be written simply as [36],

SS† = S†S = 1, (3.46)

which translates for the T-matrix (S = 1 + iT) as,

T − T† = iTT†. (3.47)

For any partial wave-projected amplitude Tl, this relation takes the form,

Im Tl(s) = σ(s)
��Tl(s)��2 , (3.48)

where σ(s) is the two-body phase space factor. However, the LO scattering amplitude Eq. (3.44)
clearly does not contain an imaginary part and unitarity is broken. Unitarity, then, is only satisfied
perturbatively, and the inclusion of successively higher-order terms are thus necessary,

lm T (2)
l
(s) = 0,

lm T (4)
l
(s) = σ(s)

���T (2)l
(s)

���2 , . . . . (3.49)

In order for these relations to quantitatively work, it is also necessary for there to be enough
counterterms at each successive order to cancel the ultraviolet divergences arising from loop diagrams,
which provide the requisite imaginary parts to satisfy Eq. (3.48) at each order. Thus, including all
the possible terms in the Lagrangian, according to Weinberg’s theorem, would ensure that we have a
complete, unitary and renormalisable theory.

3.3.2 The NLO Lagrangian

The Next-to-Leading Order (NLO) Lagrangian is constructed analogously to the LO Lagrangian, by
assembling all possible operators to make up O(p4

) terms. This is not an entirely straightforward
procedure, as minimising the basis of terms to obtain the most general, minimal Lagrangian requires
careful handling of each term. The process of utilising the equations of motion of L2 to eliminate
redundant terms in the expressions has been outlined in [33], and the final form of the L4 is:

L4 =
l1
4

〈
DµU†DµU

〉2
+

l2
4

〈
DµU†DvU

〉 〈
DµU†DvU

〉
+

l3
16

〈
χ†U + χU†

〉2

+
l4
4

〈
Dµ χ

†DµU + Dµ χDµU†
〉
+

l5
4

〈
U† f RµνU fµν

〉
+

il6
2

〈
f RfνDµUDνU† + f LµνDµU†DνU

〉
−

l7
16

〈
χ†U − χU†

〉2

+
h1 + h3

4

〈
χ†χ

〉
+

h1 − h3
2

Re(det χ) − h2

〈
f Lµν′J

L,µν
+ f Rµν f R,µν

〉
.

(3.50)
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3.3 Next-to-Leading Order

The seven coefficients li are known as the Low-Energy Constants (LECs), and the hi are the so-
called High-Energy Constants, which accompany only external fields and are irrelevant for our
investigations into meson-meson scattering. This SU(2) NLO Lagrangian has three fewer terms than
the corresponding NLO Lagrangian in the SU(3) Lagrangian [37]. This is due to the implementation
of the Cayley-Hamilton theorem for SU(2) matrices that renders some of the terms redundant.

We can now use Weinberg’s power counting scheme to classify the diagrams contributing to the ππ
scattering amplitude up to NLO:

D =
∑
n

Vn(n − 2) + 2L + 2. (3.51)

At leading order, we have D = 2, n = 2, leaving us with no loops, L = 0, and only the tree-level
diagram of the L2 contributes to the amplitude (Fig. 3.1).

Figure 3.1: Leading-order tree level diagram, from the L2 vertex (circle, red).

At next-to-leading order, the chiral dimension is D = 4 and this leaves us with two possibilities:

• n = 4: this gives L = 0, so we have a tree-level diagram with the L4 vertex (Fig. 3.2).

Figure 3.2: Next-to-leading order tree level diagram from the L4 vertex (square, blue).

• n = 2: here, L = 1, and the one-loop diagrams - two-point loop, tadpole contribution and
external leg correction - due to L2 contribute to the amplitude (Fig. 3.3, Fig. 3.4 and Fig. 3.5).

Figure 3.3: Two-point loop from L2.

These loop diagrams from the LO Lagrangian contain divergences that need to be renormalised. As
alluded to earlier in this chapter, the inclusion of the NLO Lagrangian is necessary for the absorption
of the infinities arising from the loops: the LECs li are modified by counterterms to absorb the
divergences,

li = lri + γiλ, i = 1, . . . , 7, (3.52)
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Chapter 3 Chiral Perturbation Theory

Figure 3.4: Tadpole vertex correction from L2.

Figure 3.5: External leg correction from L2.

where the γi are coefficients given in Appendix C. The pole is contained in λ,

λ =
1

4π2 µ
d−4

[
1

d − 4
−

1
2

(
ln 4π + Γ′(1) + 1

) ]
, (3.53)

with µ the renormalisation scale, Γ′(1) is the Euler-Mascheroni constant and lri , the renormalised
LECs, are finite and scale-dependent. The scale-dependence of the renormalised LECs cancels
with the scale dependence of the loop integrals, leaving the physical observables scale-independent.
The lri are independent of the quark masses as well, rendering them impossible to determine from
the fundamental properties of QCD, such as symmetries, and need to be extracted from fitting to
experimental or lattice QCD data.

3.3.3 Mass, Wavefunction and Pion-decay Constant Renormalisation

As a first application of the NLO Lagrangian, we evaluate its corrections to the pion mass. The pion
mass is evaluated from the two-point correlation function, with the pionic operators time-ordered (T),

iδab∆(p) =
∫

d4x e−ip · x 〈
0
���T[πaπb]��� 0〉 . (3.54)

The pole of the Fourier transform of this correlator gives the lowest order pion mass,

i∆(p) =
i

p2
− M2

+ iε
, (3.55)

with M the pion mass from Eq. (3.29).

Figure 3.6: The unrenormalised propagator is a sum of self-energy diagrams. Here, the dark shaded vertices
represent one-particle irreducible (1PI) diagrams. The infinite sum of higher order propagators can be
represented as a geometric series.

The inclusion of diagrams from the NLO Lagrangian will induce corrections to the pion mass due
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3.3 Next-to-Leading Order

to self-energy factors from higher order propagators (Fig. 3.6):

i∆(p) =
i

p2
− M2

+ iε
+

i

p2
− M2

+ iε

(
−iΣ(p2

)

) i

p2
− M2

+ iε
+ . . .

=
i

p2
− M2

− Σ(p2
) + iε

.

(3.56)

Thus, the pion mass is renormalised by the higher order contributions, and the physical pion mass is
given by the pole of Eq. (3.56):

M2
π − M2

− Σ(M2
π) = 0. (3.57)

Figure 3.7: Diagrams contributing to the self-energy at D = 4.

The diagrams contributing to pion mass renormalisation up to NLO, obtained from the application
of the chiral power counting arguments as before, are shown in Fig. 3.7. Here, we have two external
lines (since it is a two-point correlator), and the pertinent Lagrangian terms are,

LSE = L
4π
2 + L

2π
4 . (3.58)

The physical pion mass, thus, is a sum of a loop contribution from L2 and the tree-level propagator
from L4. From Eq. (3.50), the only terms contributing to the tree-level pion propagator are the l3 and
l7 terms,

L
2π
4 = −

2l3
F2 M4

(π · π) +
2l7
F2 B2 (

md − mu

)2
(π0π0

). (3.59)

Clearly, the l7 term contribution vanishes in the isospin limit mu = md, and contributes to the difference
in masses of the charged and neutral pions. Using dimensional regularisation (Appendix C) and
renormalising the divergences using the modified MS scheme (MS stands for Minimal Subtraction),
the pion masses are evaluated to be [33],

M2
π+
= M2

+
M4

F2

(
2lr3 + ln

M2

µ2

)
,

M2
π0 = M2

π+
−

2l7B2

F2

(
md − mu

)2
.

(3.60)

These relations can be framed in a scale invariant way by redefining the LECs using

lri =
γi

32π2

(
li + ln

M2

µ2

)
, i = 1, . . . , 6. (3.61)
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Chapter 3 Chiral Perturbation Theory

The neutral and charged pion masses up to one-loop in ChPT are,

M2
π+
= M2

+
M4

32π2F2 l3,

M2
π0 = M2

π+
−

2l7B2

F2

(
md − mu

)2
,

(3.62)

which simplify in the isospin limit to,

M2
π = M2

+
M4

32π2F2 l3. (3.63)

A similar procedure can be used to calculate the wave-function renormalisation Zπ [33],

Zπ = 1 +
4
3
µπ −

2M2
π

F2
π

lr4 −
8M2

π

3F2
π

λ, (3.64)

and the renormalisation of the pion-decay constant [33],

Fπ = F

(
1 +

M2
π

16π2F2
π

l4

)
. (3.65)

Here, we have introduced µπ , which is dependent on the chiral logarithm,

µπ ≡ −
M2
π

32π2F2
π

ln
µ2

M2
π

. (3.66)

Thus, all scale dependence and infinities are absent in the expressions for the pion masses and the
pion-decay constant, which are both physically relevant quantities.

3.3.4 ππ Scattering

Evaluating the contributions of all the relevant diagrams (Figs. 3.1 to 3.5), then, gives us the final ππ
scattering amplitude up to NLO, A(s, t, u) = A

π+π−→π0π0(s, t, u), in SU(2) ChPT [33]:

A2(s, t, u) =
s − M2

F2 ,

A4(s, t, u) =B(s, t, u) + C(s, t, u),

B(s, t, u) =
1

6F2

{
3(s2
− M4

)J(s) +
[
t(t − u) − 2M2t + 4M2u − 2M4

]
J(t)

}
+

[
u(u − t) − 2M2u + 4M2t − 2M4

]
J(u)

}
,

C(s, t, u) =
1

96π2F4

{
2
(
l1 −

4
3

)
(s − 2M2

)
2
+

(
l2 −

5
6

) [
s2
+ (t − u)2

]
− 12M2s + 15M4

}
,

(3.67)
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3.3 Next-to-Leading Order

where s, t, u are theMandelstam variables and J(s) is a representation of the loop integral (Appendix C),

J(s) =
1

16π2

[
σ(s) ln

σ(s) − 1
σ(s) + 1

+ 2
]
,

σ(s) =

√
1 −

4M2

q2 .

(3.68)

Thus, the full amplitude in the isospin limit contains only four low-energy constants: F, M, l1 and
l2. The amplitude A2(s, t, u) in Eq. (3.67), is again the LO scattering amplitude in Eq. (3.44) and the
contributions due to the loops from L2 are contained in B(s, t, u). C(s, t, u) contains the contributions
from the tree-level L4 diagram, Fig. 3.2. In this representation, the parameters F and M are simply
the bare parameters, defined by Eq. (3.21) and Eq. (3.29) respectively [33].
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CHAPTER 4

Partial Quenching

The goal of this work is to gain a better understanding of disconnected diagrams arising in lattice
QCD calculations of mesonic processes, using effective field theoretical methods. The process of
separating and calculating the effects of these disconnected diagrams is inherently unphysical, and this
requires a modification of Chiral Perturbation Theory.

4.1 Partially Quenched QCD

Partial quenching is the process of setting the “sea" or “dynamical" quark masses different from the
“valence" quark masses in a QCD correlation function [38–40]. This is possible since the quark masses
appear in two distinct ways in the correlation function - in the determinant and in the propagators,

Cπ(τ) = −

〈∑
®x

uγ5d(®x, τ)dγ5u(0)

〉
≡ −

1
Z

∫
DU

∏
q

DqDq e−Sgauge−
∫
x

∑
q q( /D+mq )q

∑
®x

uγ5d(®x, τ)dγ5u(0)

=
1
Z

∫
DU

∏
q

det( /D + mq)e
−Sgauge

∑
®x

tr
[
γ5

(
1

/D + md

)
x0
γ5

(
1

/D + mu

)
0x

]
.

(4.1)

Here, we have used the pion correlator to illustrate the two ways the quark masses appear in the
correlation function in Euclidean space [41, 42]. u, d are the quark spinor fields, mi are the respective
quark masses and Z is the QCD generating functional. In going from the second line to the third in
Eq. (4.1), the functional integral for the quarks has been evaluated to give the determinant, det( /D+mq).
While the calculation of physical observables and the preservation of unitarity require mS = mV , we
have the freedom to set these masses to be different and deviate from the physical domain. Concurrently,
we also retain the ability to revert back to the physical realm by setting the sea and valence quark
masses to be equal.
Our aim is to develop an EFT of partially quenched quantum chromodynamics (PQQCD), so that

this EFT can then be quantitatively related to QCD. This requires a PQQCD that has its symmetries
explicitly manifest, since it is these symmetries that drive the formulation of the EFT. To this end, we
begin by employing Morel’s trick and introduce commuting fermion fields called ‘ghost’ quarks into
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our PQQCD [43], ∫
Dq̃†Dq̃e−q̃

†
( /D+mq )q̃ =

1
det( /D + mq)

, (4.2)

since their determinant cancels out the determinant due to the valence quark,∫
DqDqe−q( /D+mq )q = det( /D + mq). (4.3)

This means that PQQCD has three distinct types of quarks, which can be compactly organised into
N + 2M-dimensional vectors (N = number of sea quarks, M = number of valence/ghost quarks),

Q = (qS1, . . . , qSN︸          ︷︷          ︸
sea

, qV1, . . . , qVM︸           ︷︷           ︸
valence

, q̃†V1
, . . . , q̃†VM︸          ︷︷          ︸
ghost

). (4.4)

The masses may be arranged similarly,

M = (mS1, . . . ,mSN︸           ︷︷           ︸
sea

,mV1, . . . ,mVM︸            ︷︷            ︸
valence

,mV1, . . . ,mVM︸            ︷︷            ︸
ghost

). (4.5)

The QCD Lagrangian then is the same as in Eq. (2.3), with the modification in the fermionic part of
the Lagrangian,

Q( /D +M)Q =
N∑
j=1

qS j( /D + mS j)qS j +
M∑
i=1

qVi( /D + mVi)qVi

+

M∑
k=1

q̃†
Vk
( /D + mVk)q̃Vk .

(4.6)

This procedure, however, returns the QCD generating functional since

ZPQ =

∫
DUDQDQe−SPQ

=

∫
DUe−Sgauge

M∏
i=1

(
det( /D + mVi)

det( /D + mVi)

) N∏
j=1

det( /D + mS j)

=

∫
DUe−Sgauge

N∏
j=1

det( /D + mS j)

= ZQCD,

(4.7)

where a modification to the functional integral measure has been induced,

DQDQ ≡
M∏
i=1

(
DqViDqViDq̃†ViDq̃Vi

) N∏
j=1

(
DqS jDqS j

)
. (4.8)
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The application of partial quenching to the pion correlator from Eq. (4.1) then gives,

CPQ
π (τ) ≡

−1
ZPQ

DUDQDQe−SPQ
∑
®x

uVγ5dV (®x, τ)dVγ5uV (0)

=
−1
ZPQ

∫
DU

N∏
j=1

det( /D + mS j)e
−Sgauge

∑
®x

tr
[
γ5

(
1

/D + mVd

)
x0
γ5

(
1

/D + mVu

)
0x

]
,

(4.9)

where the difference in sea and valence quark masses is now explicit. It is also useful to confirm that
setting mS = mV returns the QCD result for the pion correlator,

CPQ
π (τ) =

−1
ZPQ

∫
DUDQDQe−SPQ

∑
®x

uVγ5dV (®x, τ)dVγ5uV (0)

=
−1
ZPQ

∫
DUDQDQe−SPQ

∑
®x

uSγ5dS(®x, τ)dSγ5uS(0)

=
−1
ZPQ

∫
DUDqDqe−SQCD

∑
®x

uSγ5dS(®x, τ)dSγ5uS(0)

=CQCD
π (τ).

(4.10)

The second line follows since the propagators of the sea and valence quarks are the same when the
quark masses are all equal.

4.2 SU(4|2) Partially Quenched ChPT

It is evident from numerous lattice simulations of PQQCD that it exhibits qualitatively very similar
behaviour to QCD at different energy scales. In particular, the pion correlation function from Eq. (4.1)
behaves in PQQCD, at both the lower- and higher-energy scales, similarly to that in QCD. It has
an exponential decay (∼ exp(−Mπ)t) at long-distance scales, and the pion mass in PQQCD obeys
the GMOR relation (Eq. (3.29)), m2

π ∝
(
mVu + mVd

)
, almost exactly [41]. Other indicators such as

unphysical double poles arise only in exceptional conditions, barring which PQQCD has an analogous
infrared (IR) or low-energy structure to that of QCD. There is thus a separation of energy scales
exhibited in PQQCD, which is the primary condition for the construction of an EFT. In addition to the
fact that QCD is a sub-theory of PQQCD, stringent Ward identities can be derived for PQQCD for
different correlation functions. These conditions provide sufficient motivation for us to assume that a
low-energy EFT of PQQCD exists, and proceed to detail its construction.
In order to formulate an EFT of PQQCD, we need to first elucidate the symmetries of Eq. (4.6).

Perhaps the most obvious difference between PQQCD and QCD originates from the inclusion of the
ghost quarks: PQQCD has a graded chiral symmetry, which is evident after chirally projecting the
partially quenched quark vector Eq. (4.4), leading to invariance under transformations of the kind [44,
45],

QL,R −→ UL,RQL,R,

QL,R −→ QL,RU†L,R,
(4.11)

with UL,R ∈ SU(N + M |M), the graded Lie group (Appendix C).
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Thus, the PQQCD Lagrangian possesses a chiral SU(N + M |M)L × SU(N + M |M)R × U(1)V
symmetry in the chiral limit (M = 0). We thus expect a non-linear realisation of the graded
chiral symmetry for the Nambu-Goldstone bosons arising from the assumed spontaneous symmetry
breaking [45],

SU(N + M |M)R × SU(N + M |M)L
↓

SU(N + M |M)V .
(4.12)

For our work, specifically, we require two additional quarks to be added to the original SU(2) ChPT.
We thus include two additional valence quarks, and hence two ghost quarks via Morel’s trick above,
leading to a graded, chiral group of SU(4|2). We proceed to analogously define the fundamental
degrees of freedom of partially quenched chiral perturbation theory (PQChPT) as in ChPT,

U = exp

{
2i
F0

35∑
a=1

φaTa

}
. (4.13)

Following from the definition of the s(uper)trace (Eq. (B.8)) in Appendix B, we construct the
effective Lagrangian according to the now-familiar rules from Chapter 3 - by creating building blocks
that are invariant under the graded chiral symmetry group SU(N + M |M)V ×U(1)V and ordering
them according to the chiral power counting scheme. We, thus, obtain the leading order SU(4|2)
PQChPT Lagrangian,

L
(2)
=

F2

4
Str

[
∂µU†∂µU

]
+

F2

2
Str

[
χU† +U χ†

]
. (4.14)

It is immediately evident that this Lagrangian looks identical to the usual LO SU(2) ChPT Lagrangian
from Eq. (3.42). Here, in Eq. (4.14), we have suppressed the covariant derivative and included meson
masses via the addition of the spurion field, χ. The mass matrix contained within is comprised of the
quark masses of the sea, valence and ghost quarks,

M = diag(mS,mS,mV,mV,mV,mV ). (4.15)

For the rest of this work, it is sufficient to set all the quark masses to be degenerate, mS = mV . This
also ensures that we easily recover the SU(2) ChPT results from PQChPT.

The next-to-leading order Lagrangian follows via a similar procedure [46],

L
(4)
=LPQ

0 Str
[
∂µU†∂νU∂µU†∂νU

]
+ (LPQ

1 −
1
2

LPQ
0 )Str

[
∂µU†∂µU

]
Str

[
∂νU†∂νU

]
+ (LPQ

2 − LPQ
0 )Str

[
∂µU†(∂νU

]
Str

[
∂µU†∂νU

]
+ (LPQ

3 + 2LPQ
0 )Str

[
∂µU†∂νU†∂νU

]
+ 2LPQ

4 Str
[
∂µU†∂µU

]
Str

[
U†χ + χ†U

]
+ 2LPQ

5 Str
[
∂µU†∂µUU†χ + χ†U

]
+ 4LPQ

6

(
Str

[
U†χ + χ†U

] )2
+ 4LPQ

7

(
Str

[
U†χ − χ†U

] )2

+ 4LPQ
8 Str

[
χU†χU† + χ†U χ†U

]
.

(4.16)
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The low-energy constants (LECs) of this Lagrangian are denoted by a superscript PQ, to indicate
that they are different from the physical LECs appearing in the NLO Lagrangian of physical ChPT,
Eq. (3.50). The PQ LECs appearing here, however, are all the same as the LECs that appear in SU(3)
ChPT [37], since physical QCD (or ChPT) is contained within PQQCD (PQChPT) as a sub-theory.
Any calculations in PQChPT involving only the physical mesons are dependent only on the physical
LECs and return the results of physical ChPT. In comparison with the SU(3) ChPT NLO Lagrangian,
though, one glaring difference stands out - the terms with the coefficient LPQ

0 . These terms are
eliminated from physical ChPT by virtue of the Cayley-Hamilton theorem, which was mentioned in the
context of SU(2) ChPT in Chapter 3. However, the Cayley-Hamilton theorem is invalid for matrices
with dimension > 3, and the LPQ

0 LEC persists in the NLO SU(4|2) PQChPT Lagrangian [47].
The physical LECs from Eq. (3.50) can be related to the unphysical LECs from Eq. (4.16) via the

following well-known relations [33, 37]:

l1 ≡ 2(2LPQ
1 + LPQ

3 ),

l2 ≡ 4LPQ
2 ,

l3 ≡ −4(2LPQ
4 + LPQ

5 − 4LPQ
6 − 2LPQ

8 ),

l4 ≡ 4(2LPQ
4 + LPQ

5 ),

l7 ≡ −8(2LPQ
7 + LPQ

8 ).

(4.17)

Thus, any calculation of physical observables, as mentioned, can be made dependent only on the
physical LECs by using these LEC relations. The full set of independent LECs we shall use in our
ensuing calculations are {l1, l2, l3, l4, l7, LPQ

0 , LPQ
3 , LPQ

5 , LPQ
8 }. Unphysical outputs, hence, will naturally

be dependent on the partially quenched LECs {LPQ
0 , LPQ

3 , LPQ
5 , LPQ

8 }, or linear combinations of them,
and thus it is imperative to gain a precise knowledge of these LECs from experimental or lattice QCD
data.
In order to demonstrate the validity of our statement that the physical, SU(2) ChPT is contained

within SU(4|2) PQChPT as a sub-theory, we performed calculations of the mass, wavefunction and
pion-decay constant renormalisation and the physical ππ scattering amplitude using only the SU(2)
quarks and their resulting mesons within Eq. (4.14) and Eq. (4.16). The results agree exactly with Eqs.
(3.63), (3.64), (3.65) and (3.67) [1].
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CHAPTER 5

Disconnected Contributions to ππ Scattering

Lattice quantum chromodynamics has been an immensely rewarding technique to calculate hadron
properties from the first principles of QCD, wherein the QCD action is evaluated on a Euclidean
spacetime lattice in a finite volume. It involves the direct evaluation of the QCD path integral and
hence requires minimal input parameters to determine a large number of hadronic observables. The
biggest drawback of lattice QCD is the dependence of the accuracy of its calculations on the lattice
spacing (smaller is better) and lattice volume (larger is better). This means that systematic uncertainties
are dependent on the available computational resources, since a greater number of simulations of the
path integral on a lattice with smaller lattice spacing and larger volume would yield better resources.
While great advancements in computational power have been made in the last few decades, certain
processes require calculations that have been hampered due to limits on processing power and costs.
One such important bugbear of lattice studies has been the calculation of disconnected diagrams in
various hadronic processes.

Hadronic observables for a certain process are calculated in lattice QCD by evaluating n-point
correlation functions with interpolating field operators corresponding to the external states of interest.
In the case of pion-pion scattering, this correlation function is of the form

Cππππ(t) =
〈
Oππ(t)O

′†
ππ

(
t ′
)〉
, (5.1)

where the interpolating operator here is qΓiq(x, t)qΓ jq(y, t), with the quark fields comprised of
the light quarks. The exponential decay of this correlation function, with the appropriate quantum
numbers, will lead to the energy of the ππ state, which can then be related to the scattering length for
the process via Lüscher equation. Numerous lattice studies have already explored different aspects
of ππ scattering, to varying degrees of success [48–77]. There are broadly two ways in which the
quark fields of these correlation functions can be Wick contracted. Any contraction diagrams that
involve quark propagators beginning and ending at the same time slice or coordinates are known as
disconnected diagrams, and all the others are known as connected diagrams. The computations of
these diagrams on the lattice have proven to be difficult since the evaluated lattice signals are noisy
and difficult to siphon.
It is important, then, to understand the qualitative and quantitative effects of these disconnected

diagrams in different processes. In this work, we use effective field theoretical methods to provide a
way to separate and understand the influence of these diagrams on lattice QCD results in pion-pion
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Chapter 5 Disconnected Contributions to ππ Scattering

scattering. The separation of connected and disconnected contributions of a physical, mesonic
scattering processes is inherently unphysical, and this requires careful treatment and a modification of
the usual EFT methods. Partial quenching of QCD allows us to deviate from the physical domain,
and using PQChPT enables us to perform this unphysical separation of connected and disconnected
diagrams in ππ scattering [1]. This procedure using EFTs was first carried out in [78], along with an
analysis of the disconnected diagrams in the large-NC limit for exotic mesons and was also employed
in [79, 80] for other processes. It will be formalised here for mesonic scattering.

5.1 Classification of Diagrams in ππ Scattering

The aim of this section is to classify the connected and disconnected Wick contraction diagrams
contributing to the scattering process π(p1)π(p2) → π(k1)π(k2). As mentioned in Section 3, we
operate under the assumption of isospin symmetry (mu = md), which means that only one independent
amplitude is required to derive all isospin projected amplitudes, π+(p1)π

−
(p2) → π0

(k1)π
0
(k2). Thus,

using just the single amplitude T(s, t, u) and crossing symmetry, the isospin-projected amplitudes are
obtained. They are repeated here,

T I=0
(s, t, u) = 3T(s, t, u) + T(t, s, u) + T(u, t, s),

T I=1
(s, t, u) = T(t, s, u) − T(u, t, s),

T I=2
(s, t, u) = T(t, s, u) + T(u, t, s).

(5.2)

We can draw all the independent Wick contraction diagrams emanating from Eq. (5.1). The
following points are pertinent:

• We are evaluating ππ scattering up to one loop (NLO). Each closed quark loop in a Wick
contraction diagram corresponds to a flavour trace in the corresponding PQChPT Lagrangian.
This implies that, drawing from the form of the NLO Lagrangian in Eq. (4.16), the relevant
diagrams can have at most two quark loops up to NLO.

• Any diagram, such as Fig. 5.1, which contains a flavour-diagonal qq loop at the upper right vertex,
vanishes when all the sea, valence and ghost quark masses are degenerate. The SU(N |NV )

generators are straceless and a strace over such a loop in the isospin limit gives zero.

Figure 5.1: Any diagram that contains a flavour-diagonal loop vanishes due to the straceless SU(N |NV )

generators in the isospin limit.

Given these constraints, there are only two independent Wick contracted quark propagator diagrams,
shown in Fig. 5.2. These are labelled as T1(s, t, u) and T2(s, t, u) respectively. Setting π

+
= ud, π− =
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5.1 Classification of Diagrams in ππ Scattering

du, π0
= (1/

√
2)(uu − dd), the full amplitude for the process π+(p1)π

−
(p2) → π0

(k1)π
0
(k2) is written

entirely in terms of T1(s, t, u) and T2(s, t, u) and their crossed amplitudes,

T(s, t, u) = T1(s, t, u) + T1(s, u, t) − T1(u, t, s) + T2(t, s, u). (5.3)

Figure 5.2: The Wick contraction diagrams contributing to the independent amplitudes T1(s, t, u) and T2(s, t, u)
respectively.

The reason for our emphasis on SU(4|2) PQChPT is now evident: a separation of the two diagrams
in Fig. 5.2 requires an addition of two valence quarks to SU(2) ChPT, and this in turn requires the
addition of two ghost quarks to ensure that the determinants due to the valence quarks are cancelled in
the generating functional. This also ensures that the number of dynamical degrees of freedom in the
SU(4|2) PQChPT matches the number in SU(2) ChPT, which is two. Thus, we can now write the two
independent amplitudes in terms of scattering of SU(4|2) PQChPT mesons,

T1(s, t, u) = T
(ud)(dj)→(uk)(k j)

(s, t, u),
T2(s, t, u) = T

(ud)(jk)→(ud)(jk)
(s, t, u),

(5.4)

In order to relate the separated Wick contracted quark diagrams to the various, physical isospin
projected amplitudes evaluated on the lattice, we need to express all the different Wick contraction
diagrams appearing in ππ scattering in terms of the amplitudes T1(s, t, u) and T2(s, t, u). According
to lattice QCD nomenclature, they are classified as connected, singly disconnected and doubly
disconnected diagrams.

Figure 5.3: This diagram is connected and called ‘Crossed’ (C). It is represented by the amplitude T1(u, t, s).

The diagrams in Figs. 5.3 and 5.4 are connected diagrams, since they have both quark–anti-quark
pairs propagating from the initial state to the final state, and have no quark propagators ending on the
same time slice. In lattice QCD parlance [50], Fig. 5.3 is known as ‘Crossed’ (C), while the diagrams
in Fig. 5.4 are called ‘Direct’ (D). While the former is given by T1(u, t, s), the latter are represented by
T2(s, t, u) and T2(s, u, t) respectively.

Analogously, diagrams in Figs. 5.5 and 5.6 are the disconnected diagrams. Fig. 5.5 contains
diagrams that are singly disconnected, where one quark–anti-quark pair propagates to the final state,
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Chapter 5 Disconnected Contributions to ππ Scattering

Figure 5.4: These two diagrams are both connected, and are known as ‘Direct’ (D). They are given by the
amplitudes T2(s, t, u) and T2(s, u, t) respectively.

Figure 5.5: These diagrams are singly disconnected and are called ‘Rectangular’ (R). They are given by the
amplitudes T1(s, t, u) and T1(s, u, t) respectively.

Figure 5.6: This diagram is the hardest to compute on the lattice since it is doubly disconnected. It is called the
‘Vacuum’ (V) diagram and is given by T1(u, t, s).

and they are called ‘Rectangular’ (R). The diagram in Fig. 5.6 is doubly disconnected, since both
quark–anti-quark pairs begin and end on the same time slice, and is called the ‘Vacuum’ (V) diagram.
The rectangular diagrams correspond to the amplitudes T1(s, t, u) and T1(s, u, t) respectively, and the
vacuum diagram is given by the amplitude T2(t, s, u).

Combining Eq. (5.2) with the Wick contraction diagrams, the isospin projected amplitudes can be
written in terms of the independent amplitudes T1(s, t, u) and T2(s, t, u) and their crossed amplitudes,

T I=0
(s, t, u) =

[
−T1(u, t, s)

]
+

[
T2(s, t, u) + T2(s, u, t)

]
+

[
3
(
T1(s, t, u) + T1(s, u, t)

) ]
+

[
3T2(t, s, u)

]
≡ T I=0

C (s, t, u) + T I=0
D (s, t, u) + T I=0

R (s, t, u) + T I=0
V (s, t, u),

T I=1
(s, t, u) =

[
T2(s, t, u) − T2(s, u, t)

]
+

[
2
(
T1(s, t, u) − T1(s, u, t)

) ]
≡ T I=1

D (s, t, u) + T I=1
R (s, t, u),

T I=2
(s, t, u) =

[
2T1(u, t, s)

]
+

[
T2(s, t, u) + T2(s, u, t)

]
≡ T I=2

C (s, t, u) + T I=2
D (s, t, u).

(5.5)
Here, the individual amplitude of each diagram has been defined as {T I

X(s, t, u)}(X = D,C, R,V).
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5.2 Amplitudes of Connected and Disconnected Diagrams

Certain conclusions can already be made about the different connected and disconnected diagrams:

• It is clear that the I = 0 amplitude is the most difficult amplitude to evaluate on the lattice, since
it contains contributions from the connected, singly disconnected and doubly disconnected
diagrams. The lattice computations improve with increase in isospin, since the I = 1 amplitude
has contributions from the connected and singly disconnected diagrams, and the I = 2 amplitude
has contributions only from the connected diagram.

• As observed in [78], the contribution of the doubly disconnected vacuum (V) diagram is a purely
NLO effect due to the two quark loop contractions, while the singly disconnected contributions
are present at LO.

• Following from this, the I = 0 ππ scattering amplitude is more heavily dependent on the
calculation of the singly disconnected diagram than the doubly disconnected diagram, and
neglecting the latter in a lattice QCD computation would not cause a massive drop in accuracy
since it is an NLO effect.

• However, for the I = 1 amplitude, the singly disconnected diagram contributes more substantially
than the connected diagram, since the connected diagram here (direct D) has two quark loops
and is an NLO effect.

5.2 Amplitudes of Connected and Disconnected Diagrams

We now evaluate the scattering amplitudes T1(s, t, u) and T2(s, t, u) in SU(4|2) PQChPT:

T1(s, t, u) =
2M2

π − u

2F2
π

+

(
3u − 4M2

π

3F2
π

)
µπ +

(
2M4

π − 4M2
π(s + t) + s(2s + t)

12F4
π

)
Jrππ(s)

+

(
2M4

π − 4M2
π(s + t) + t(2t + s)

12F4
π

)
Jrππ(t) +

4
F4
π

(
s2
+ t2
+ u2
− 4M4

π

)
LPQ,r

0

+
2

F4
π

(
4M2

πu + s2
+ t2
− 8M4

π

)
LPQ,r

3 −
4M2

πu

F4
π

LPQ,r
5 +

16M4
π

F4
π

LPQ,r
8

−
M4
π

72π2F4
π

+
M2
πu

96π2F4
π

+
2u2
− s2
− t2

576π2F4
π

,

(5.6)

T2(s, t, u) =

(
s − 2Mπ

)2

4F4
π

Jrππ(s) +

(
u − 2Mπ

)2

4F4
π

Jrππ(u) +

(
2M4

π + t2

4F4
π

)
Jrππ(t)

+
4

F4
π

(
4M4

π − s2
− t2
− u2

)
LPQ,r

0 +
2

F4
π

(
t − 2M2

π

)2 (
lr1 − 2LPQ,r

3

)
+

1
F4
π

(
s2
+ u2

+ 4M2
π t − 8M4

π

)
lr2 +

2M2
π

F4
π

(
t − 2M2

π

) (
lr4 − 4LPQ,r

5

)
+

2M4
π

F4
π

(
lr3 + lr4 − 8LPQ,r

8

)
,

(5.7)
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i 0 1 2 3 4 5 6 7 8
Γi

1
24

1
12

1
6 0 1

8
1
4

3
32 0 0

Table 5.1: Coefficients of the UV divergence in the SU(4|2) PQChPT.

where the following quantities have been defined,

• The ultraviolet (UV) divergences and chiral logarithms, as in SU(2) ChPT in Chapter 3, are
contained in

λ ≡ −
1

32π2

(
2

4 − d
+ ln 4π − γ + 1

)
,

µπ ≡ −
M2
π

32π2F2
π

ln
µ2

M2
π

.

(5.8)

• The Passarino-Veltman two-point function [81],

B0(p
2,m2

1,m
2
2) ≡

(2π)4−d

iπ2

∫
ddk

1
(k2
− m2

1 + iε)((k + p)2 − m2
2 + iε)

, (5.9)

which has a simplified version due to the presence of just one mass Mπ in this work:

Jππ(p
2
) ≡

1
16π2 B0

(
p2, M2

π, M2
π

)
. (5.10)

We can separate the finite and infinite parts of Jππ(p
2
),

Jππ
(
p2

)
= −2λ + Jrππ

(
p2

)
. (5.11)

• The renormalised SU(4|2) PQChPT LECs are defined via the bare LECs appearing in the
Lagrangian Eq. (4.16),

LPQ
i = LPQ,r

i + λΓi, (5.12)

where the coefficients Γi are given in Table 5.1. The physical SU(2) ChPT LECs are defined
here, again, in terms of their scale-independent counterparts (Chapter 3),

lri = γi

(
li

32π2 +
F2
π

M2
π

µπ

)
, (5.13)

for i=1,...,4 only, and γ1 = 1/3, γ2 = 2/3, γ3 = −1/2 and γ4 = 2.

The amplitudes T1(s, t, u) and T2(s, t, u) warrant a few observations,

• Both the amplitudes are finite and scale-independent.

• T1(s, t, u), as evident from Fig. 5.5, has a LO, O(p2
) contribution, while T2(s, t, u), due to its two

closed quark loops (Fig. 5.4), has only an NLO O(p4
) contribution.

• T1(s, t, u) is symmetrical under s↔ t and T2(s, t, u) is symmetrical under s↔ u.
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5.2 Amplitudes of Connected and Disconnected Diagrams

• A crucial observation is that both the amplitudes have an explicit dependence on the unphysical
PQChPT LECs. This indicates that the separation of Wick contractions into connected and
disconnected diagrams is an intrinsically unphysical or artificial process.

5.2.1 Partial Wave Amplitudes

We now proceed to project the amplitudes for different Wick contraction diagrams into their partial
waves:

T Il
X (s) ≡

1
64π

∫ +1

−1
T I
X(s, t(s, cos θ), u(s, cos θ))Pl(cos θ) d cos θ, (5.14)

where X = D,C, R,V stands for the different diagrams and Pl(x) is the Legendre polynomial. It is
convenient to express the imaginary parts of the different partial waves in the physical region, s ≥ 4M2

π ,
since they are independent of LECs and constitute direct PQChPT predictions at one loop order. The
partial waves with imaginary parts that do not vanish are,

Im T00
D (s) =

(
s − 2M2

π

)2

64πF4
π

Im Jrππ(s),

Im T00
R (s) =

3
(
s2
− 4M4

π

)
128πF4

π

Im Jrππ(s),

Im T00
V (s) =

3
(
s2
+ 2M4

π

)
128πF4

π

Im Jrππ(s),

Im T11
R (s) =

(
s − 4M2

π

)2

576πF4
π

Im Jrππ(s),

Im T20
D (s) =

(
s − 2M2

π

)2

64πF4
π

Im Jrππ(s),

(5.15)

with the imaginary part of the loop function,

Im Jrππ(s) = Θ(s − 4M2
π)

1
16π

√
s − 4M2

π

s
. (5.16)

The physical ππ scattering partial wave and isospin projected amplitudes obey the single-channel
perturbative unitarity relation,

Im T Il
NLO(s) =

2| ®p|
√

s

���T Il
LO(s)

���2 , (5.17)

where | ®p| is the centre-of-mass momentum. However, the same amplitudes for a particular Wick
contraction diagram do not satisfy similar single-channel relations since they cannot have specific
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isospins. This means that they do satisfy a multi-channel perturbative unitarity condition,

Im T l
NLO,ab→cd(s) =

∑
e, f

αe f
2| ®p|
√

s
T l

LO,e f→cd(s)T
l∗
LO,ab→e f (s), (5.18)

where αe f = 1(2) if e and f are (are not) identical particles.

5.3 Predictions of Scattering Lengths

In order to compare our results with lattice data for the different contractions, we need to derive the
scattering lengths for each type of diagram, which can then be related to the lattice studies via Lüscher
equation (Chapter 6). The scattering lengths are evaluated via the partial wave projected amplitudes,

aIl
X = lim

q2
→0

Re T Il
X

(
4M2

π + 4q2
)

(q2
)
l

, (5.19)

where the Mandelstam variable s, near the threshold, has been replaced by (4M2
π + 4q2

). Thus,
combining isospin projection (Eq. (5.5)) and the amplitudes from Eqs. (5.6) and (5.7), we can calculate
the scattering length contributions for each individual Wick contraction diagram X . The results for
the l = 0, 1, 2 scattering lengths for each contraction X are listed below.

I = 0, l = 0:

a00
D = −

M2
π

8πF2
π

[
µπ +

M2
π

F2
π

(
−

l1

24π2 −
l2

12π2 +
l3

64π2 +
l4

16π2 + 24LPQ,r
0 + 8LPQ,r

3 − 8LPQ,r
5

+8LPQ,r
8 +

1
64π2

)]
,

a00
C =

M2
π

32πF2
π

[
1 − 2µπ +

M2
π

F2
π

(
−48LPQ,r

0 − 16LPQ,r
3 + 16LPQ,r

5 − 16LPQ,r
8 −

1
16π2

)]
,

a00
R =

3M2
π

16πF2
π

[
1 − 2µπ +

M2
π

F2
π

(
48LPQ,r

0 + 16LPQ,r
3 + 16LPQ,r

8 +
1

8π2

)]
,

a00
V =

9M2
π

16πF2
π

[
µπ +

M2
π

F2
π

(
l1

72π2 +
l2

36π2 −
l3

192π2 +
l4

16π2 − 8LPQ,r
0 −

8LPQ,r
3
3
−

8LPQ,r
5
3

−
8LPQ,r

8
3
+

5
192π2

)]
.

(5.20)
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I = 2, l = 0:

a20
D = a00

D ,

a20
C = −2a00

C ,

a20
tot = −

M2
π

16πF2
π

[
1 +

M2
π

π2F2
π

(
−

l1
12
−

l2
6
+

l3
32
+

l4
8
−

1
32

)]
.

(5.21)

I = 1, l = 1:

a11
D =

1
12πF2

π

[
µπ +

M2
π

F2
π

(
−

l1

24π2 +
l2

24π2 +
l4

16π2 + 8LPQ,r
3 − 4LPQ,r

5 −
13

384π2

)]
,

a11
R =

1
24πF2

π

[
1 − 2µπ +

M2
π

F2
π

(
−16LPQ,r

3 + 8LPQ,r
5 −

13
288π2

)]
.

(5.22)

I = 0, l = 2:

a02
D =

1
90πF4

π

[
F2
π

M2
π

µπ +
l1

16π2 +
l2

16π2 − 24π2LPQ,r
0 − 12π2LPQ,r

3 −
77

640π2

]
,

a02
C =

1
180πF4

π

[
F2
π

M2
π

µπ − 24π2LPQ,r
0 − 12π2LPQ,r

3 +
13

320π2

]
,

a02
R =

1
30πF4

π

[
−

F2
π

M2
π

µπ + 24LPQ,r
0 + 6LPQ,r

3 −
57

1920π2

]
,

a02
V =

1
60πF4

π

[
F2
π

M2
π

µπ +
l2

8π2 − 24LPQ,r
0 −

3
20π2

]
.

(5.23)

I = 2, l = 2:

a22
D = a02

D ,

a22
C = −2a02

C .
(5.24)

These expressions are specific predictions of SU(4|2) PQChPT for the different connected and
disconnected diagrams of ππ scattering. However, some of the aIl

X are dependent on LECs such as l3,
LPQ

0 and LPQ
3 , which are riddled with very large uncertainties (Table 5.2) [82–84]. The fitting of these

scattering lengths to data would thus be problematic, and we circumvent this issue by creating linear
combinations of the aIl

X that are dependent only on the LECs that are known more precisely. These
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LECs Values
l̄1 −0.4(6)
l̄2 4.3(1)
l̄3 3.0(8)
l̄4 4.4(2)

103LPQ,r
0 1.0(1.1)

103
(LPQ,r

3 + 2LPQ,r
0 ) −1.56(87)

103LPQ,r
5 0.501(43)

103LPQ,r
8 0.581(22)

Table 5.2: The LECs used in this analysis: the values of {l̄i} are obtained from [82] and [83], while the PQ LEC
values of {LPQ,r

5 , LPQ,r
8 } and {LPQ,r

0 , LPQ,r
3 } are obtained from the NLO and NNLO fits to lattice data, respectively,

in [84] at µ = 1 GeV.

combinations are:

a00
V −

3
2

a00
D =

M4
π

πF4
π

[
3l4

64π2 − 3LPQ,r
5 +

9
512π2 +
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4M2
π

µπ

]
,

a00
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3M2

π

8πF2
π

=
M4
π

πF4
π
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3LPQ,r
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3

256π2 −
3F2

π

4M2
π

µπ

]
,

M2
πa11

R +
8
3

a00
C − 30M4

πa02
C −

M2
π

8πF2
π

=
M4
π

πF4
π

[
5LPQ,r

5
3
−

4LPQ,r
8

34560π2 −
5F2

π

12M2
π

µπ

]
,

M4
πa02

R − 3M4
πa02

C +
4
5

a00
C −

M2
π

40πF2
π

=
M4
π

πF4
π

[
2LPQ,r

5
5
−

2LPQ,r
8
5
−

31
9600π2 −

F2
π

10M2
π

µπ

]
.

(5.25)

These linear combinations are also constructed such that the LO (O(p2
)) contributions are subtracted,

so that there is no suppression due to trivial power counting. On the lattice, the connected diagrams
are computed most accurately, and their contributions aD and aC are related to the trickier diagrams
(constituting the scattering lengths aR and aV ) in the above expressions. Thus, these relations can be
used to gauge the accuracy of lattice contributions via comparison of the better- and lesser-known
components of ππ scattering.

We also list the total, physical scattering lengths aIl
tot =

∑
X aIl

X for each partial wave:

I = 0, l = 0:

a00
tot =

7M2
π

32πF2
π

[
1 +

M2
π

π2F2
π

(
5l1
84
+

5l2
42
−

5l3
224
+

l4
8
+

5
32

)]
. (5.26)

I = 2, l = 0:

a20
tot = −

M2
π

16πF2
π

[
1 +

M2
π

π2F2
π

(
−

l1
12
−

l2
6
+

l3
32
+

l4
8
−

1
32

)]
. (5.27)
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I = 1, l = 1:

a11
tot =

1
24πF2

π

[
1 +

M2
π

π2F2
π

(
−

l1
12
+

l2
12
+

l4
8
−

65
576

)]
. (5.28)

I = 0, l = 2:

a02
tot =

1
1440π3F4

π

[
l1 + 4l2 −

53
8

]
. (5.29)

I = 2, l = 2:

a22
tot =

1
1440π3F4

π

[
l1 + l2 −

103
40

]
. (5.30)

The total scattering lengths correspond to those in [33]. The unphysical PQChPT LECs cancel
out in these expressions and hence they are only dependent on the physical, SU(2) LECs. These
expressions thus serve as a verification of the validity of our computation.

5.4 Numerical Results

We now proceed to provide quantitative predictions of the scattering lengths of the different connected
and disconnected diagrams. This requires the insertion of the numerical values of the LECs involved.
Since our expressions require both the physical and unphysical LECs, these values have been included
from estimations from a variety of experimental and lattice data.

• l1, l2 and l4 are physical LECs that are well-known from analysis of ππ scattering data [82].
However, l3 in [82] has a much larger uncertainty, which has since been reduced by the
incorporation of lattice data [83]. Thus, for the physical LECs, we use the scale-independent
LEC values from [84] that combines experimental data and lattice calculations.

• The unphysical LECs were estimated from lattice results fitted to the pion mass and pion-decay
constant calculated from Nf = 2 + 1 domain wall QCD at NLO and next-to-next-to-leading
order (NNLO) PQChPT, including finite volume corrections due to NLO, by the RBC-UKQCD
Collaboration [84]. The collaboration used partially quenched QCD, by separately varying the
sea and valence quark masses on the lattice, and matched with PQChPT results to perform the
required fits. The LPQ,r

5 and LPQ,r
8 LECs were fitted to a reasonable precision (Table 5.2) at

NLO, but LPQ,r
0 and LPQ,r

3 were obtained only by a NNLO fit since the NLO mass and decay
constant are independent of these LECs. They thus have a larger uncertainty than the other
quantities involved in our expressions.

• We choose the renormalisation scale to be µ = 1 GeV. The results for the LECs obtained in [84]
used two different mass cuts for the heaviest unitary pion included in their fits: 370 MeV and
450 MeV. We chose the latter value of 450 MeV, since the experimental values of the physical
LECs li were reproduced to a higher accuracy with this cut.
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102a00
X 102a20

X 102M2
πa11

X 104M4
πa02

X 104M4
πa22

X

D 0.35 ± 0.24 0.35 ± 0.24 0.02 ± 0.26 3.5 ± 2.0 3.5 ± 2.0
C 2.41 ± 0.12 −4.81 ± 0.23 0 0.95 ± 0.96 −1.9 ± 1.9
R 14.8 ± 0.7 0 3.59 ± 0.26 6.7 ± 7.8 0
V 2.48 ± 0.38 0 0 0.8 ± 7.3 0

Total 20.0 ± 0.2 −4.46 ± 0.07 3.61 ± 0.04 11.9 ± 0.8 1.54 ± 0.71

Table 5.3: PQChPT predictions of the scattering lengths of each type of contraction diagram.

We provide the PQChPT predictions of the different scattering lengths aIl
X in Table 5.3. The

uncertainties of the LECs from Table 5.2 are the only contributing errors, and our final uncertainties
were determined by an error formula that uses uncorrelated LEC errors and combined in a quadrature.
Clearly, the poorly estimated LECs l3, LPQ,r

0 and LPQ,r
3 contribute to the large uncertainty of each of

the scattering lengths. As designed, the values of the linear combinations of the scattering lengths
given in Eq. (5.25) are much more precise,

a00
V −

3
2

a00
D = (1.96 ± 0.16) × 10−2,

a00
R + 6a00

C −
3M2

π

8πF2
π

= (2.00 ± 0.02) × 10−2,

M2
πa11

R +
8
3

a00
C − 30M4

πa02
C −

M2
π

8πF2
π

= (6.38 ± 0.13) × 10−3,

M4
πa02

R − 3M4
πa02

C +
4
5

a00
C −

M2
π

40πF2
π

= (1.47 ± 0.03) × 10−3,

M4
πa02

V + 6M4
πa02

C −
4
5

a00
C +

M2
π

40πF2
π

= (−4.39 ± 0.47) × 10−4.

(5.31)

The numerical results in Eq. (5.31) serve a two-fold purpose. Firstly, the various linear combinations
of the connected and disconnected contributions can be directly checked with lattice results to estimate
the accuracy of lattice calculations of these diagrams. Secondly, since the connected contributions can
be computed on the lattice rather precisely, a better estimate of the unphysical LECs LPQ,r

0 and LPQ,r
3

can be gleaned via NLO fits of the aIl
D and aIl

C from Eq. (5.25). This is especially relevant because
these LECs, as mentioned, do not appear in the expressions of the NLO corrections to the pion mass
and pion-decay constant. Such an improved evaluation of the unphysical LECs will be beneficial to
any mesonic PQChPT studies at NLO, and particularly improve the accuracy of observables involved
in ππ scattering and disconnected contributions to this process.
It is also insightful to examine the full energy (s) dependence of the partial waves evaluated in

Section 5.2.1. Unlike for the case of scattering lengths, there is no simple linear combination of partial
wave amplitudes that eliminates their dependence on the LECs l3, LPQ,r

0 and LPQ,r
3 , which also rise

with increasing s. However, it is useful to present the imaginary parts of these partial wave amplitudes,
since, as mentioned, they do not depend on the LECs (Fig. 5.7). In the physical region, it is evident
that the imaginary part of the I = 0 amplitude receives contributions from the direct (D), rectangular
(R) as well as the vacuum (V) diagrams. The imaginary parts of the I = 1 and the I = 2 in the physical
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Figure 5.7: The imaginary parts of the direct (red, dashed), rectangular (black, dash-dotted), vacuum (green,
dotted) and total (blue, solid, for T00 only) contributions to the isospin and partial wave projected amplitudes
T00, T11 and T20.
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region receive contributions from only the rectangular (R) and the direct (D) diagrams respectively.

5.5 Summary

The efforts of this chapter were aimed towards a more coherent, concerted understanding of ππ
scattering from the interplay between effective field theoretical methods and lattice QCD. Certain
specific suggestions of how the quantitative results of this chapter may be utilised by lattice QCD
studies to, for example, better nail down the poorly known LECs l3, LPQ,r

0 and LPQ,r
3 have already been

mentioned. A better understanding of these LECs, needless to say, will have far-reaching consequences
in our overall understanding of mesonic scattering processes, both theoretically and on the lattice. We
would also like to mention the possibility of lattice studies determining the scattering lengths for the
individual connected and disconnected contractions directly. This would lead the way to joint EFT
and lattice studies to calculate the relevant observables involving disconnected diagrams, which would
prove to be more economical and efficient than current methods. For example, such an effort would
entail the precise estimation of the unphysical LECs LPQ,r

0 and LPQ,r
3 from lattice calculations of the

connected contributions fitted to our formulae at NLO, and then a feedback of these now-precise LECs
into our EFT-derived expressions to quantitatively clarify the exact size of disconnected contributions
to various processes and amplitudes.
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CHAPTER 6

Constraints on Disconnected Contributions in
ππ Scattering

We concluded the previous chapter by noting how our analytical and numerical results of the scattering
lengths of the different connected and disconnected diagrams may be used to compare and guide
lattice QCD studies of ππ scattering. In particular, it was shown how certain linear combinations of
the individual scattering lengths were dependent only on well known LECs, and these could be directly
contrasted with lattice QCD results to ensure that the lattice studies were evaluating different diagrams
accurately. However, such a comparison faces an important barrier - lattice QCD simulations are
performed in finite volume to derive discrete energy levels, whereas our effective field theory results
were derived in infinite volume. We thus need to extend our partially quenched chiral perturbation
theory formalism of separating connected and disconnected diagrams to include finite volume effects.
The standard method used to relate infinite volume scattering lengths to the lattice QCD evaluated
finite volume energy levels is Lüscher’s formalism.

6.1 Single-Channel Lüscher equation

We have already derived the essential mechanism to isolate the disconnected Wick contractions from
the full ππ scattering amplitude for different isospins and partial waves by implementing PQChPT in
infinite volume. Lüscher developed a method to relate physical observables such as scattering lengths
of a process to their finite volume counterparts - which, in lattice QCD are discrete energy levels of
different correlation functions [85, 86].

To see this explicitly, we begin with the expression for the centre-of-mass (CM)momentum expressed
in terms of the CM energy, E =

√
s, using the Källén function, λ(x, y, z) = x2

+y2
+z2
−2xy−2yz−2zx,

as [87],

pa =
λ1/2
(E2,m2

a1,m
2
a2)

2E
. (6.1)

For the case of a single-channel scattering process, the scattering amplitude may be expanded in terms
of its partial wave amplitudes,

T(s, t, u) =
∞∑
l=0
(2l + 1)Tl(E)Pl(cos θ), (6.2)
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where the
{
Tl(E)

}
are the partial wave amplitudes with angular momentum l, Pl(cos θ) are the

Legendre polynomials and θ is the scattering angle. This definition of the partial wave amplitudes
differs from Eq. (5.14) by a normalisation factor of 32π. Subject to this normalisation factor, we have
already mentioned that the partial wave amplitudes in a single channel obey the following unitarity
condition:

Im Tl(E) = Θ
(
E − m1 − m2

) p
8πE

��Tl(E)��2 . (6.3)

This condition allows us to parameterise the single-channel partial wave amplitudes as,

Tl(E) =
8πE

p cot δl(E) − ip
, (6.4)

where δl(E) are the respective phase shifts. Since we are working in degenerate PQChPT, we shall

choose m1 = m2 = Mπ , leading to a more simplified derivation and p =
√

E2
− 4M2

π/2.

Until now, we have been working with dimensional regularisation to regularise UV-divergent
integrals. The s-channel two-point scalar loop function G(E), in the CM frame, is defined as,

G(E) = i
∫

d4q

(2π)4
1

(q2
− M2

π + iε)

1
((P − q)2 − M2

π + iε)
, (6.5)

which is regularised using dimensional regularisation,

G(E) → iµε
∫

ddq

(2π)d
1

(q2
− M2

π + iε)

1
((P − q)2 − M2

π + iε)
, (6.6)

where ε = 4 − d. We now revert to a hard cut-off regularisation for this function,

G(E) =
∫
| ®q |<Λ

d3q

(2π)3ωπ

1
E2
− 4ω2

π + iε
, (6.7)

with Λ the cut-off momentum and we have defined ωπ =
√

M2
π + ®q

2. These two techniques are
equivalent and the regularisation parameters may be matched via

Λ = µ exp
1
2

{
2
ε
− γE + ln π + 2

}
. (6.8)

The imaginary part of G(E) is finite:

Im G(E) = −
p

8πE
Θ

(
E2
− (4M)2

)
. (6.9)

The scalar two-point loop function is modified in the finite volume, for degenerate masses, as,

G̃(E) =
1
L3

∑
| ®q |<Λ

1
ωπ

1
E2
− 4ω2

π

, (6.10)
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where the loop momentum in the finite volume loop function is discretised,

®q = (2π/L)®n, ®n ∈ Z3. (6.11)

The finite volume in which lattice QCD simulations are performed are characterised by the lattice
size L and the lattice spacing a. The correlation functions are computed in this lattice, leading to the
measured quantities that correspond to poles of the T-matrix in finite volume. Lüscher derived the
relation between the discrete energy levels and the infinite volume observables by bridging them via
the finite volume T-matrix and relating it to its infinite volume counterpart.

We begin with the Bethe-Salpeter equation [88], used in the context of chiral effective field theory
for coupled channels in [89], and later adapted to the unitarised finite volume T-matrix in [90, 91] as,

T̃l(E) =
−Vl(E)

1 − Vl(E)G̃(E)
. (6.12)

The matrix Vl(E) does not require a finite volume counterpart. This function does not possess a
singularity in the physical region, which implies that the integral and discrete sums present in Vl(E)
can only differ by exponentially suppressed terms at large lattice size L [90]. Vl(E) can thus be
eliminated by using,

T−1
l = − V−1

l + G,

T̃−1
l = − V−1

l + G̃,
(6.13)

to obtain,
T̃−1
l (E) = T−1

l (E) + ∆G(E), (6.14)

where we have introduced the difference between the infinite volume (Eq. (6.7)) and finite volume
(Eq. (6.10)) scalar two-point loop functions,

∆G(E) = G̃(E) − G(E). (6.15)

Cut-off regularisation ensures that the function ∆G(E) is UV-finite as long as Λ � Mπ , since the UV
contributions are cancelled due to G̃(E) − G(E). In Eq. (6.14), each of T̃−1

l (E), T−1
l (E) and ∆G(E)

are UV finite as well as scale-independent.

The discrete energy level on the lattice is recovered through the decay of the finite volume correlation
function C̃l(τ) in Euclidean time [92],

C̃l(τ) ∼ exp
{
−E i

l τ
}
. (6.16)

This energy level, as mentioned, is a pole in the finite volume T-matrix, leading to

T̃−1
0 (E

i
0) =T−1

0 (E
i
0) + ∆G(E i

0) = 0,

T−1
0 (E0) = − ∆G(E0),

(6.17)

where we have considered just the S-wave (corresponding to the index 0) for the two-particle
eigenenergies in finite volume, which are denoted by E0 here.
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For small centre-of-mass momenta p, p cot δ0 has the effective range expansion [87],

p cot δ0 = −
1
a0
+

1
2

r0p2
+ O

(
p4

)
, (6.18)

which extends to both above and below the threshold (when p2 < 0). The coefficients a0 and r0 are
the scattering length and effective range for the S-wave, respectively. Using Eq. (6.4), Eq. (6.17) and
Eq. (6.18), we can thus relate the scattering lengths and effective ranges to finite volume quantities [2],

−
1
a0
+

1
2

r0p2
+ . . . = −8πE0∆G

(
E0

)
+ ip. (6.19)

Here, the right hand side is always ensured to be real since, above threshold, the imaginary part of
the first term −8πE0∆G

(
E0

)
cancels the second term ip, and an analytic continuation of p can be

performed below the threshold as p = i
√

4M2
π − E2

0/2. This Eq. (6.19) is essential for our objectives
laid out at the beginning of the chapter:

• Multiple discrete energy levels E0 may be extracted for different values of the lattice size L,
which can then be used to fit the scattering lengths and effective ranges {a0, r0} in order to
estimate the PQChPT parameters, the LECs that appear in the expressions of the scattering
lengths and effective ranges.

• Conversely, the values of {a0, r0} can be evaluated from PQChPT, as we showed in the previous
chapter for the scattering lengths, and applied in Eq. (6.19) to predict the discrete energy levels
E0. Comparing these predicted energy levels would test the veracity of the corresponding lattice
computation.

6.2 Effective Single-Channel S-Wave Amplitudes

It is clear from our analysis in the previous chapter that the complexity of lattice computations of ππ
scattering increases with decreasing isospin. The I = 0 scattering amplitude requires the evaluation
of all the four different types of Wick contraction diagrams and thus is the most expensive one to
carry out on the lattice. In particular, the rectangular (R, singly disconnected) and the vacuum (V,
doubly disconnected) diagrams have high signal-to-noise ratios and are difficult to extract, while the
crossed (C, connected) and direct (D, connected) diagrams can be computed very accurately. Using
the methods of the previous chapter, we express the individual Wick contraction amplitudes in terms
of specific scattering processes of mesons in SU(4|2) PQChPT [1]:

TD
(s, t, u) ≡ T

(ud)(jk)→(ud)(jk)
(s, t, u),

TC
(s, t, u) ≡ T

(ud)(jk)→(uk)(jd)
(s, t, u)

TR
(s, t, u) ≡ T

(ju)(uk)→(jd)(dk)
(s, t, u),

TV
(s, t, u) ≡ T

(ud)(du)→(jk)(k j)
(s, t, u).

(6.20)

These amplitudes TX
(s, t, u) all obey the multi-channel unitarity relation Eq. (5.18) and are thus

not independent single-channel amplitudes. We can, however, construct linear combinations of

54



6.2 Effective Single-Channel S-Wave Amplitudes

these amplitudes to obtain effectively single-channel amplitudes that can then be directly analysed
using the Lüscher equation (Eq. (6.19)). In order to illustrate the formalism to construct such linear
combinations, we first consider a multi-channel scattering process that contains the crossed (C),
direct (D) and rectangular (R) Wick contractions only, and their amplitudes from Eq. (6.20). The
minimal basis required to resolve this process into single-channel linear combinations is five channels:
( ju)(uk), ( jd)(dk), π0

( j k), η̃( j k) and φ̃( j k), where the neutral mesons are defined in flavour space as,

π0
=

1
√

2
(uu − dd),

η̃ =
1
√

6
(uu + dd − 2 j j),

φ̃ =
1
√

12
(uu + dd + j j − 3kk).

(6.21)

The different S-wave amplitudes of this coupled five-channel process are represented in a 5 × 5
symmetrical matrix,

T0 =

©«

TD
0 + TR

0 TR
0

1√
2
TC

0
1√
6

(
TC

0 − 2TR
0

)
1

2
√

3
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)
TR
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0 − 1√
2
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0
1√
6

(
TC

0 − 2TR
0

)
1

2
√

3

(
TC

0 − 2TR
0

)
1√
2
TC

0 − 1√
2
TC

0 TD
0 0 0

1√
6

(
TC

0 − 2TR
0

)
1√
6

(
TC

0 − 2TR
0

)
0 TD

0 +
2
3

(
TC

0 + TR
0

)
1

3
√

2

(
2TR

0 − TC
0

)
1

2
√

3

(
TC

0 − 2TR
0

)
1

2
√

3

(
TC

0 − 2TR
0

)
0 1

3
√

2

(
2TR

0 − TC
0

)
TD

0 +
5
6TC

0 +
1
3TR

0

ª®®®®®®®®®®¬
.

(6.22)
This matrix is diagonalised via an orthogonal transformation,

T ′0 = UT0UT
= diag

(
TD

0 + TC
0 ,T

D
0 + TC

0 ,T
D
0 + TC

0 ,T
D
0 − TC

0 ,T
D
0 −

1
2

TC
0 + 3TR

0

)
, (6.23)

where each diagonal entry is now an effective single-channel S-wave amplitude that complies with the
single channel unitarity condition in Eq. (6.3) and can now be parameterised via Eq. (6.4). We also
note that since TC , TD and TR are dependent on each other, only three of the diagonal entries of T ′0
are independent.

In order to generalise this formalism to include the vacuum diagram, we need a minimal basis of
twelve channels, which requires the diagonalisation of a 12 × 12 matrix. This extension, however, is
unnecessary since the fourth linear combination including the vacuum diagram is already familiar to
us - it is just the full I = 0 S-wave ππ scattering amplitude,

T I=0
0 = 2TD

0 − TC
0 + 6TR

0 + 3TV
0 . (6.24)

The normalisation utilised in Eq. (5.5), however, requires a rescaling of this amplitude by a factor of 1
2

since T I=0
0 has identical particles. Thus, we have constructed four, SU(4|2) linear combinations of
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single-channel S-wave amplitudes [2]:

Tα0 = TD
0 + TC

0 ,

Tβ0 = TD
0 − TC

0 ,

Tγ0 = TD
0 −

1
2

TC
0 + 3TR

0 ,

T δ0 = TD
0 −

1
2

TC
0 + 3TR

0 +
3
2

TV
0 .

(6.25)

As alluded to earlier, the T δ0 is simply the I = 0 scattering amplitude and the Tα0 is the I = 2
amplitude, both exact up to a factor of 2. The four linear combinations correspond to the irreducible
representations of the symmetric product of two 15-plets in SU(4),

(15 ⊗ 15)symm = 1 ⊕ 15 ⊕ 20 ⊕ 84, (6.26)

arising from the scattering of two SU(4) mesons.

It has also been verified that these single-channel amplitudes fulfil the single-channel unitarity
constraints from Eq. (6.3):

Im(TD
0 + TC

0 ) =
p

8πE

���TD
0 + TC

0

���2 ,
Im(TD

0 − TC
0 ) =

p
8πE

���TD
0 − TC

0

���2 ,
Im(TD

0 −
1
2

TC
0 + 3TR

0 ) =
p

8πE

����TD
0 −

1
2

TC
0 + 3TR

0

����2 ,
Im(TD

0 −
1
2

TC
0 + 3TR

0 +
3
2

TV
0 ) =

p
8πE

����TD
0 −

1
2

TC
0 + 3TR

0 +
3
2

TV
0

����2 .
(6.27)

Thus, in finite volume, each of these amplitudes independently satisfies the single-channel Lüscher
equation Eq. (6.17), (

TD
0

(
Eα

0
)
+ TC

0
(
Eα

0
) )−1
= −∆G

(
Eα

0
)
,(

TD
0

(
Eβ

0

)
− TC

0

(
Eβ

0

))−1
= −∆G

(
Eβ

0

)
,(

TD
0

(
Eγ0

)
−

1
2

TC
0

(
Eγ0

)
+ 3TR

0

(
Eγ0

))−1
= −∆G

(
Eγ0

)
,(

TD
0

(
Eδ

0

)
−

1
2

TC
0

(
Eδ

0

)
+ 3TR

0

(
Eδ

0

)
+

3
2

TV
0

(
Eδ

0

))−1
= −∆G

(
Eδ

0

)
.

(6.28)

Let the discrete energy levels E i
0(i = α, β, γ, δ) correspond to the poles of the respective finite volume

T-matrix, T i
0(E). Then the linear combinations of correlation functions C̃X

(τ)(X = D,C, R,V) all
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decay as a single exponential function at large Euclidean time τ,

C̃α
(τ) ≡ 2C̃D

(τ) + 2C̃C
(τ) ∼ exp

{
−Eα

0 τ
}
,

C̃β
(τ) ≡ 2C̃D

(τ) − 2C̃C
(τ) ∼ exp

{
−Eβ

0 τ
}
,

C̃γ
(τ) ≡ 2C̃D

(τ) − C̃C
(τ) + 6C̃R

(τ) ∼ exp
{
−Eγ0 τ

}
,

C̃δ
(τ) ≡ 2C̃D

(τ) − C̃C
(τ) + 6C̃R

(τ) + 3C̃V
(τ) ∼ exp

{
−Eδ

0 τ
}
.

(6.29)

6.3 Scattering Lengths and Effective Ranges

We now provide the SU(4|2) PQChPT predictions of the scattering lengths and effective ranges,
which are extensions of the derivations in the Chapter 5. These are obtained via an expansion of

Re
[(

T i
0(E)

)−1
]
around the ππ threshold, for each i = α, β, γ, δ. The analytical results are [2],

aα0 =
Mπ

16πF2
π

[
1 +

M2
π

π2F2
π

(
−

l1
12
−

l2
6
+

l3
32
+

l4
8
−

1
32

)]
,

rα0 =
48πF2

π

M3
π

[
1 +

M2
π

π2F2
π

(
l1
12
+

l2
18
−

7l3
96
−

l4
8
+

31
288

)]
,

(6.30)

aβ0 = −
Mπ

16πF2
π

[
1 − 4µπ +

M2
π

F2
π

(
l1

12π2 +
l2

6π2 −
l3

32π2 −
l4

8π2 − 96LPQ,r
0

−32LPQ,r
3 + 32LPQ,r

5 − 32LPQ,r
8 −

3
32π2

)]
,

rβ0 = −
48πF2

π

M3
π

[
1 +

100
9
µπ +

M2
π

F2
π

(
−

l1

12π2 −
l2

18π2 +
7l3

96π2 +
l4

8π2 +
160
3

LPQ,r
0

+32LPQ,r
3 −

160
3

LPQ,r
5 +

224
3

LPQ,r
8 +

61
288π2

)]
,

(6.31)

aγ0 = −
7Mπ

32πF2
π

[
1 −

18
7
µπ +

M2
π

F2
π

(
l1

42π2 +
l2

21π2 −
l3

112π2 −
l4

28π2 +
144
7

LPQ,r
0

+
48
7

LPQ,r
3 +

48
7

LPQ,r
5 +

48
7

LPQ,r
8 +

5
56π2

)]
,

rγ0 = −
288πF2

π

49M3
π

[
1 −

110
63

µπ +
M2
π

F2
π

(
l1

126π2 +
17l2

189π2 +
25l3

1008π2 −
l4

84π2

+
592
21

LPQ,r
0 +

496
21

LPQ,r
3 +

16
7

LPQ,r
5 −

400
21

LPQ,r
8 −

25
189π2

)]
,

(6.32)

57



Chapter 6 Constraints on Disconnected Contributions in ππ Scattering

aδ0 = −
7Mπ

32πF2
π

[
1 +

M2
π

π2F2
π

(
5l1
84
+

5l2
42
−

5l3
224
+

l4
8
+

5
32

)]
,

rδ0 = −
288πF2

π

49M2
π

[
1 +

M2
π

π2F2
π

(
11l1
84
+

43l2
378
+

125l3
2016

−
l4
8
−

479
864

)]
.

(6.33)

Here, µπ =
(
M2
π/

(
32π2F2

π

))
ln

(
M2
π/µ

2
)
, with the renormalisation scale µ from Eq. (5.8), and the

scale-independent physical pion mass and pion decay constant are Mπ and Fπ . As in Eq. (5.13) and
Eq. (5.12), the {li} and the {L

PQ,r
i } are the LECs from the SU(4|2) PQChPT Lagrangian.

We have now completed the construction of the formalism required to carry out the analysis outlined
in Chapter 5. The discrete, finite volume energy levels {Eα

0 , E
β
0 }, determined precisely on the lattice

since they are only dependent on the connected Wick contraction diagrams C and D, can be used
to accurately determine several physical and unphysical LECs of the theory via the fitting of the
predicted

{
aα,β0 , rα,β0

}
. This is especially useful in the case of

{
aβ0 , r

β
0

}
since these are dependent upon

the unphysical LECs LPQ,r
0 and LPQ,r

3 , which have high uncertainties. Multiple lattice computations of
Eβ

0 for different lattice sizes L can be utilised for better fitting and, ultimately, a better estimation of
these LECs.
Using these more precise values of LPQ,r

0 and LPQ,r
3 and the PQChPT predicted values of

{
aγ0, r

γ
0
}
,

the energy level Eγ0 can be predicted using the single-channel Lüscher equation Eq. (6.19). Thus, the
theoretical prediction combined with the lattice QCD calculated Eγ0 will provide a detailed inspection
of the accuracy of lattice QCD computations of the rectangular (R), singly disconnected diagram. This
method may also be extended to the fourth energy level Eδ

0 , but since it is just the I = 0 energy level
and is independent of unphysical LECs, it is straightforward to compute the theoretical prediction
using SU(2) ChPT.

6.4 Numerical Analysis

We shall now perform the numerical analysis to complete the procedure outlined in the previous
section. We use the lattice QCD data of ππ scattering provided to us by the European Twisted Mass
collaboration that uses Nf = 2 + 1 + 1 and lattice spacing a = 0.086 fm [76, 93]. We also use
data from two different ensembles that have the same bare QCD parameters, but different volumes,
corresponding to different lattice sizes. They are called A40.32 and A40.24, which correspond to
(L/a)3 × T/a = 323

× 64 and 243
× 48 respectively. As already elucidated, we are first required

to extract the energy levels {Eα
0 , E

β
0 } using the connected (crossed (C) and direct (D)) correlation

functions. We follow the technique described in [58], in order to minimise pollution from thermal
states, and define,

Ri(τ + a/2) ≡
C̃i
(τ) − C̃i

(τ + a)

C2
π(τ) − C2

π(τ + a)
, (6.34)

where Cπ(τ) is the single pion two-point correlation function and i = α, β. Next, we fit the data to a
functional form of this function

Ri(τ + a/2) = A
(
cosh

(
δE i

0τ
′
)
+ sinh

(
δE i

0τ
′
)

coth
(
2Mπτ

′) ) , (6.35)
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Figure 6.1: Fit to the function Ri(τ + a/2) defined in Eq. (6.35) for i = α (top) and β (bottom). The blue and
red dots represent the data from the ensembles A40.24 and A40.32 of [76], respectively.

with τ′ = τ + a/2 − T/2 and the energy shift δE i
0 is to be extracted,

δE i
0 = E i

0 − 2Mπ . (6.36)

The pion masses used in [76] at finite volume are aMπ = 0.1415(2) and 0.1446(3) for the ensembles
A40.32 and A40.24 respectively. The relation of these finite volume values to the infinite volume
values we require is outlined in Appendix D, along with the error analysis implemented in this fitting
procedure.
We use the bootstrap method for estimating the errors of the fitted discrete energy levels [2]. In

Fig. 6.1, we plot the distribution of the mean values for 1500 bootstrap samples, wherein the error is
taken as the standard deviation of this distribution. The accuracy of results from data fitting depends
on the fit range, and it is preferable to consider a large number of fit ranges and average over the
results using a carefully chosen weight [70]. Here, however, we compromise and perform a single
fit for each ensemble over a specific fit range, and the best-fit curves are shown in Fig 6.1. This fit
range, 16a ≤ τ ≤ 31a for A40.32 and 16a ≤ τ ≤ 23a for A40.24, is chosen since it best reproduces
the I = 2 energy shifts in [70].
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Correlation function a δE0 (A40.32) a δE0 (A40.24) a0/a r0/a
C̃I=2 0.0033(1) 0.0082(3) 1.09(6) 53(107)

C̃I=2, SU(2) ChPT 1.300(19) 83(2)
C̃α 0.0034(1) 0.0083(3) 1.124(54) 41(97)
C̃β

−0.0036(1) −0.0086(3) −1.429(77) 140(85)

Table 6.1: The fitted energy shifts, the extracted inverse scattering lengths and effective ranges (with an infinite
volume pion mass of about 323 MeV) obtained using the connected ππ correlation functions. For comparison,
we list the I = 2 values with the corresponding errors from the original lattice paper [76] in the second row, and
include the NLO ChPT predictions of the I = 2 threshold parameters in the third row.

The different fitted energy levels and the resulting threshold parameters are displayed in Table 6.1.
It is evident that the scattering lengths are determined to a high accuracy, whereas the effective ranges
are riddled with high errors. This conforms with our expectations since the effective range is the
second term in the effective range expansion Eq. (6.18), and affects the discrete energy levels to a much
smaller degree (Eq. (6.19)). This phenomenon has already been observed in [70]. We also quote the
I = 2 scattering length and effective range predicted by ChPT at NLO obtained from Eq. (6.30). There
is a small discrepancy of about 2.4σ between the scattering length of NLO ChPT and the performed
fit to lattice data. This discrepancy probably arises due to the lattice fitting of l

phys
1 and l

phys
2 , since

these quantities are absent in the pion mass and pion-decay constant in infinite volume NLO ChPT,
and are only estimated via finite size effects. Here, we introduce the ‘physical’ LECs l̄phyi as,

l̄i
(
Mπ

)
= l̄phyi − ln

(
M2
π/M

2
π, phy

)
, (6.37)

where the physical pion mass is, Mπ,phy ≈ 138 MeV.

The next step of our process involves the fitting of the unphysical LECs
{
LPQ,r

0 , LPQ,r
3

}
by modifying

the expressions for aβ0 and rβ0 :

3LPQ,r
0 + LPQ,r

3 = −
1

512πMπaβ0
−

F2
π

32M2
π

(
1 + 4µπ

)
+

l1

384π2 +
l2

192π2 −
l3

1024π2 −
l4

256π2

+ LPQ,r
5 − LPQ,r

8 −
3

1024π2

LPQ,r
0 =

1
2048π

(
−

3
Mπaβ0

+ Mπrβ0

)
+

F2
π µπ

6M2
π

+
l2

384π2 +
l3

1024π2 −
1
2

LPQ,r
5

+ LPQ,r
8 +

17
6144π2 .

(6.38)

It is particularly beneficial to obtain a precise value of the linear combination 3LPQ,r
0 + LPQ,r

3 since it
is independent of the effective range rβ0 and the large uncertainty that accompanies it, and it appears in
the scattering lengths

{
aβ0 , a

γ
0

}
. Our estimation of this linear combination agrees well with the NNLO

fit mentioned in the previous chapter [84], and also has the advantage of being determined with a
lower uncertainty. However, there is a disparity of about 1.6σ in the values of LPQ

0 extracted by us and
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Parameters Previous This Work
F0 [MeV] 85.58(38)

l̄phy
1 −0.309(139)

l̄phy
2 4.325(10)

l̄phy
3 3.537(47)

l̄phy
4 4.735(17)

103LPQ,r
5 0.501(43)

103LPQ,r
8 0.581(22)

103
(3LPQ,r

0 + LPQ,r
3 ) −0.6(1.4) −0.70(18)

103LPQ,r
0 1.0(1.1) 5.7(1.9)

Table 6.2: The SU(2) ChPT and SU(4|2) PQChPT LECs relevant for our analysis. Values for the pion decay
constant F0 in the chiral limit and the physical LECs {l̄phy

i } are taken from [93]. The LECs {LPQ,r
5 , LPQ,r

8 } and
the combination {3LPQ,r

0 + LPQ,r
3 , LPQ,r

0 } are obtained from [84] via NLO and NNLO fits respectively. In the
third column, our fitted values of {3LPQ,r

0 + LPQ,r
3 , LPQ,r

0 } are listed. The renormalisation scale of the unphysical
LECs is 1 GeV.

the values obtained in [84]. Since our analysis has been entirely performed at NLO and the analysis
in [84] required more unstable fits at NNLO, which are very sensitive to the fitting procedure, we
assert that our result of LPQ

0 is more realistic and well-founded.

We now turn to the next step in our procedure - prediction of the energy shifts
{
δEγ0 , δEδ

0

}
as

functions of the lattice size L. We are now able to utilise our estimations of the LECs in Table 6.2 and
calculate the scattering lengths and effective ranges in Eq. (6.32) and Eq. (6.33). Since the scattering
length aγ0 depends on the linear combination 3LPQ,r

0 + LPQ,r
3 , which has been determined reasonably

precisely above, the value of the scattering length is estimated accurately. However, the expression for
rγ0 contains LPQ

0 that has a large uncertainty, particularly for the larger pion mass that increases effects
from the counterterms. As mentioned already, the scattering length and effective range

{
aδ0 , r

δ
0

}
for

the I = 0 amplitude depend only on physical LECs and are accurately estimated. The energy shift
δEδ

0 is then determined via a numerical solution of Eq. (6.19). The energy shifts are plotted in Fig. 6.2
for 3 < LMπ < 5, using three different pion masses, Mπ = 138, 236 and 330 MeV. These results
warrant a few observations:

• Both the γ and δ channels have negative energy shifts, indicating that they are attractive in
nature. Their magnitudes also increase with increasing pion mass and decreasing lattice size.

• The majority of the uncertainty of δEγ0 is due to rγ0 , which has a higher impact as δEγ0 gets
larger. This indicates that the effective range expansion is breaking down in this limit.

• This leads to the error bar for δEγ0 diminishing even at a relatively large pion mass Mπ of
330 MeV, with LMπ > 4, providing us with a controlled and accurate prediction of this energy
shift.

We thus provide specific, concrete predictions of energy shifts that can act as consistency checks
for lattice QCD calculations of disconnected diagrams in mesonic scattering.
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Figure 6.2: Prediction of the energy shifts δEγ0 and δEδ
0 as a function of the lattice size L at Mπ = 138 MeV

(blue), 236 MeV (red) and 330 MeV (purple).

6.5 Summary

It was essential, after the derivation of infinite volume results for the different connected and
disconnected Wick contraction diagrams in Chapter 5, to chart a meaningful path towards relating
these results to the lattice QCD calculated observables in the finite volume. In this chapter, we have
shown how the threshold parameters of ππ scattering, obtained via a deft construction of single-channel
amplitudes containing different combinations of connected and disconnected diagrams, may be related
to the discrete energy levels calculated in the finite volume.

Our strategy to accomplish this began with an elaborate mechanism to derive an adapted version of
the famed Lüscher equation that directly compared the infinite volume scattering length and effective
range with the discrete energy shift in the finite volume for a particular diagram. The effective
single-channel S-wave amplitudes that we constructed laid the path for a multi-step approach to
provide exact predictions for the calculation of two specific correlation functions on the lattice. Firstly,
we developed single-channel amplitudes that contained only connected contributions. We utilised
accurate lattice data for these connected contributions to fit our threshold parameters and obtained a
new level of precision of the LECs LPQ

0 and LPQ
3 and their linear combination. We then input these

parameters into amplitudes containing disconnected contributions to provide stringent predictions of
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the corresponding energy levels, which any future lattice QCD calculation must adhere to, since these
predictions are founded in a concrete, unitary EFT.
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CHAPTER 7

Conclusion

In this work, we illustrated a method to relate effective field theoretical methods to specific, finite
volume quantities computed on the lattice. We began with a description of QCD and its low-energy
effective field theory, ChPT, and provided the theoretical context for our investigations. In particular,
we detailed the complex symmetry structure of the QCD vacuum, the resulting hadronic spectrum and,
in particular, the dynamics of the lightest mesons, the pions. Using SU(2) ChPT, we replicated the
most significant quantities related to the pions up to next-to-leading order [33] - mass renormalisation
(Eq. (3.63)), wavefunction renormalisation (Eq. (3.64)), the renormalisation of the pion-decay constant
(Eq. (3.65)) and the full scattering amplitude (Eq. (3.67)).

In order to execute the stated goal of separating the different connected and disconnected diagrams
and evaluating their individual contributions to ππ scattering, we were required to enlarge ChPT
via the trick of partial quenching. We developed SU(4|2) partially quenched ChPT, resulting in the
inclusion of unphysical mesons. Certain scattering processes of these mesons corresponded to the
different connected and disconnected Wick contractions of quarks (Eq. (6.20)). This allowed us to
provide infinite volume predictions of (the imaginary parts of) the partial-wave projected amplitudes
(Fig. 5.7) and scattering lengths (Eq. (5.25) and (Eq. (5.31)) [1]. These predictions are dependent on
the low-energy constants appearing in the NLO SU(4|2) PQChPT Lagrangian (Eq. (4.16)), some of
which (and their linear combinations) had been determined to a poor accuracy (Table 5.2) by previous
works.

We then proceeded to outline a strategy to directly contrast our PQChPT-derived predictions
with definite lattice QCD calculations of the different diagrams. Since, on the lattice, the eval-
uated quantities are discrete energy levels in the finite volume, a relation to the infinite volume
threshold parameters required the usage of the Lüscher equation. We derived a modified form of
the famous Lüscher equation that related the single-channel S-wave scattering lengths and effective
ranges to the specific discrete energy shifts (Eq. (6.19)). This was followed by a diagonalisation
procedure to obtain different, single-channel linear combinations of the connected and disconnected
diagram amplitudes, from which we derived fully analytical expressions for the threshold parameters
(Eqs. (6.30), (6.31), (6.32) and (6.33)) [2].

The scattering lengths and effective ranges in these four equations are dependent on different
combinations of the connected and disconnected diagrams. The threshold parameters of Eq. (6.30)
are obtained from the I = 2 ππ scattering amplitude, and are thus dependent only on the physical
LECs from SU(2) ChPT. The {aβ0 , r

β
0 } of Eq. (6.31), however, are dependent on the linear combination
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of unphysical LECs 3LPQ,r
0 + LPQ,r

3 and the LEC LPQ
0 , and also contain only connected (crossed, C

and direct, D) diagram contributions. This allowed us to fit our analytical expressions for {aβ0 , r
β
0 } to

actual lattice data for these connected contributions (Table 6.1) and obtain newer, more precise values
for the aforementioned LECs (Table 6.2) [2].

This increase in precision of the unphysical LECs 3LPQ,r
0 + LPQ,r

3 and LPQ
0 enabled us to plug them

back into the expressions for the {aγ0, r
γ
0 }, which contain contributions from the singly-disconnected

(rectangular, R) diagram. This allowed us to use the Lüscher equation (Eq. 6.19)) to obtain precise
bounds for the discrete energy shift δEγ0 , which forms a concrete, stringent prediction for future
lattice QCD explorations of ππ scattering (Fig. 6.2). We also provided a similar prediction for the
energy shift δEδ

0 , which simply corresponds to the total I = 0 ππ scattering amplitude and contains
contributions from all the different types of Wick contraction diagrams.

The various predictions of this work - the numerical estimations of the unphysical PQChPT LECs,
and the energy shifts corresponding to different connected and disconnected diagrams - highlight
the efficacy of combining EFT methods with the computational prowess of lattice QCD. It enabled
us to obtain LECs at a higher precision, while also providing numerical bounds for future lattice
QCD studies of ππ scattering. We stress that such a synergy and interplay between chiral effective
field theories and lattice QCD is going to be vitally important for all future explorations of hadronic
processes. The extension of this work, in particular, to include the strange quark in SU(6|3) PQChPT
and evaluate πK scattering processes is already underway. Another exciting avenue of future research
is the employment of the framework detailed in this work to evaluate the disconnected contributions
to the πN σ-term, which is a crucial ingredient in various nucleon matrix elements involved in dark
matter direct detection experiments.
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APPENDIX A

Noether’s Theorem

Noether’s theorem provides the connection between continuous symmetries and conserved quantities
of a physical system [94]. We apply Noether’s theorem to evaluate conserved currents and charges of
QCD in Chapter 2 [95]. In order to formalise Noether’s theorem, we start with a general Lagrangian
which depends on fields Φi and their partial derivatives, ∂µΦi (i = 1, . . . , n),

L = L
(
Φ, ∂µΦ

)
, (A.1)

where the index i has been suppressed. It is straightforward to obtain the equations of motion for this
Lagrangian,

∂L

∂Φi

− ∂µ
∂L

∂∂µΦi

= 0, i = 1, . . . , n. (A.2)

We now assume that the Lagrangian is invariant under a global symmetry transformation of the
constituent fields. This global symmetry can be promoted to a local one in order to derive the Noether
currents. The tranformations, in this case, depend on r , real, local parameters εa(x),

Φi(x) 7→ Φ
′
i(x) = Φi(x) + δΦi(x) = Φi(x) − iεa(x)Fai[Φ(x)], (A.3)

leading to a variation of the Lagrangian (up to order ε2),

δL =L
(
Φ
′, ∂µΦ

′
)
− L

(
Φ, ∂µΦ

)
=
∂L

∂Φi

δΦi +
∂L

∂∂µΦi

∂µδΦi

= −i∂µεaFai − iεa∂µFai

= εa

(
−i
∂L

∂Φi

Fai − i
∂L

∂∂µΦi

∂µFai

)
+ ∂µεa

(
−i

∂L

∂∂µΦi

Fai

)
≡ εa∂µJµa + ∂µεaJµa .

(A.4)
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Here, we have defined a four-current density for each infinitesimal transformation of the fields,

Jµa = −i
∂L

∂∂µΦi

Fai . (A.5)

Next, we can calculate the divergence of this four-current,

∂µJµa = −i

(
∂µ

∂L

∂∂µΦi

)
Fai − i

∂L

∂∂µΦi

∂µFai

= −i
∂L

∂Φi

Fai − i
∂L

∂∂µΦi

∂µFai

(A.6)

where the equations of motion have been utilised and Eq. (A.4) has thus been verified. The four-currents
and their divergences can be obtained from Eq. (A.4) as,

Jµa =
∂δL

∂∂µεa
,

∂µJµa =
∂δL

∂εa
.

(A.7)

Since the parameters εa have been chosen to be local, but the Lagrangian was assumed to be invariant
only under global transformations, the term ∂µεa vanishes and the four-current is conserved since the
divergence also disappears. We can define the charge for this conserved current as,

Qa(t) =
∫

d3xJ0
a(t, ®x), (A.8)

which is a constant of motion as it is time-independent. This procedure can then be applied to chiral
symmetry in QCD as explained in Chapter 2.
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APPENDIX B

The Groups SU(N) and SU(N + M |M)

We will provide a brief introduction to the Lie groups relevant to this work, the special unitary groups.
In particular, SU(2) and the graded group SU(4|2) are crucial ingredients in the construction of Chiral
Perturbation Theory and Partially Quenched Chiral Perturbation Theory, respectively.

The group SU(N) is the set of all unitary, unimodular N × N matrices U with unit determinant,
which act on CN [96]:

UU† = 1N×N, det U = 1. (B.1)

The simply connected, compact Lie algebra su(N) of the group SU(N) has (n2
− 1) independent

generators which satisfy the Lie bracket,[
Ta,Tb

]
= f abcTc, (B.2)

where Ta are N × N matrices which form the basis of the algebra in the fundamental representation
and the f abc are the structure constants which encode the local properties of the group.

B.1 SU(2)

The basis of SU(2) thus has three elements, which are given by the Pauli matrices,

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
, (B.3)

and the structure constants, [ τa
2
,
τb
2

]
= iεabc

τc
2
. (B.4)

They have the usual trace properties,

Tr
{
τa

}
= 0, Tr

{
τaτb

}
= 2δab . (B.5)
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Every SU(2) group element is generated by these matrices and thus a group element U may be
parameterised as

U = exp

(
−i

3∑
a=1

Θa

τa

2

)
, (B.6)

where the Θa are three real, independent parameters. The identity is given by Θ = 0, U = 12×2 and
can be reached by smooth, infinitesimal transformations in the parameter space, and thus defines
SU(2) as being simply connected.

‘Graded’ indicates that the group element U of SU(N + M |M) contains both commuting and
anticommuting elements [97, 98]

U =
(

A1 A2
A3 A4

)
, (B.7)

where A1, A4 are (a × a), (b× b) blocks of commuting c-numbers and A2, A3 are (a × b), (b× a) blocks
of anticommuting Grassmann numbers. The matrix U is unitary and belongs to U(N + M |M) if
UU† = U†U = 1, as in the usual case, but this requires complex conjugation of the anticommuting
variables,

(
η1η2

)∗
≡ η∗2η

∗
1.

We also define a ‘supertrace’ so that the cyclic property is retained,

Str[U] ≡
a∑
i=1

Uii −

a+b∑
i=a+1

Uii ⇒ Str
(
U1U2

)
= Str

(
U2U1

)
. (B.8)

Similarly, a ‘superdeterminant’ is defined as,

Sdet U ≡ exp [Str (ln U)] =
det(A − BD−1C)

det(D)
(B.9)

with Sdet
(
U1U2

)
= Sdet

(
U1

)
Sdet

(
U2

)
. Thus, U ∈ SU (N + M |M) is an unitary graded matrix with

unit superdeterminant.

B.2 SU(4|2)

Specifically for the case of SU(4|2), the group element A with gradation (a|b) has the form,

U =
(

A1 A2
A3 A4

)
(B.10)

where A1
(
A4

)
is a 4 × 4 (2 × 2) matrix of c -numbers while A2

(
A3

)
is a 4 × 2 (2 × 4).

The non-linear representation of the Nambu-Goldstone bosons of PQChPT is given by

U = exp

{
2i
F0

35∑
a=1

φaTa

}
, (B.11)
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B.2 SU(4|2)

with the normalisation of the supertraceless generators

Str
[
TaTb

]
=

1
2
gab (B.12)

and the metric is a 35-dimensional matrix (with In the n -dimensional identity matrix),

g = diag
(
I15,−τ

2,−τ2,−τ2,−τ2,−1,−τ2,−τ2,−τ2,−τ2,−I3

)
. (B.13)
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APPENDIX C

Dimensional Regularisation

In the calculations of the pion mass, wavefunction and pion-decay constant renormalisation, up to
Next-to-Leading Order, a quadratically divergent integral such as in the one-point loop of Fig. 3.7
is encountered. The calculation of the external leg correction in the ππ scattering amplitude due to
Fig. 3.4 also requires the evaluation of such a loop diagram. In d spacetime dimensions, this has the
form,

A0(M
2
) = µ4−d

∫
ddk

(2π)d
i

k2
− M2

+ iε
, (C.1)

where k is the loop momentum and µ is the renormalisation scale. The renormalisation scale is
included to ensure that the integral has the correct dimension for arbitrary d. Since the integral is
analytic in Euclidean space, we can perform a Wick rotation k0

7→ ik0. The integral measure can be
rewritten in terms of polar coordinates,∫

ddk =

∞∫
0

dk kd−1
2π∫

0

dφ

π∫
0

dθd−2 sin(θd−2)...

π∫
0

dθ1sin2
(θ1). (C.2)

The angular integration is via the formula,

π∫
0

dθ sinn θ =
Γ(n+1

2 ) Γ(
1
2 )

Γ(n2 + 1)
, n ∈ N, (C.3)

and along with the following representation of the beta-function,

B(a + 1, b + 1) =
∞∫

0

dt ta (t + 1)−2−a−b
=
Γ(a + 1) Γ(b + 1)
Γ(a + b + 2)

, for Re(x),Re(y) > 0 (C.4)

we find the following expression for the loop integral [99],

A0(M
2
) = (M2

)
d
2 −1 µ4−d

(4π)
d
2
Γ

(
1 −

d
2

)
. (C.5)
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Appendix C Dimensional Regularisation

At d 7→ 4, the Γ function contains a pole. The properties of the Γ function can be used to expand the
right hand side of the above expression in 1

d−4 , to obtain

A0(M
2
) =

M2

16π2

[
2λ + ln

(
M2

µ2

)
+ O(d − 4)

]
, (C.6)

where Γ′(1) = γE is the Euler-Mascheroni constant. The pole is contained in λ,

λ =
1

4π2 µd−4
[

1
d − 4

−
1
2

(
ln 4π + Γ′(1) + 1

) ]
. (C.7)

This motivates the definition of the renormalised LECs in Eq. (3.52):

li = lri + γiλ, i = 1, ..., 7
hi = hri + δiλ, i = 1, 2, 3 ,

and the coefficients γi are given by

γ1 =
1
3
, γ2 =

2
3
, γ3 = −

1
2
, γ4 = 2. (C.8)

Next, we require the scalar two-point loop integral for the calculation of the diagram Fig. 3.3. This
loop integral is logarithmically divergent and has the form,

B0 (q
2, M2

) = µ4−d
∫

ddk

(2π)d
i(

k2
− M2

) [
(k + q)2 − M2

] , (C.9)

where q is the loop momentum. Firstly, we apply Feynman’s trick is applied to combine the
denominator:

1
A · B

=

1∫
0

dx
1

[Ax + B(1 − x)]2
, (C.10)

which gives

B0 (q
2, M2

) = µ4−d
∫

ddk

(2π)d

1∫
0

dx
i[

k2
+ x(q2

− 2k · q) − M2
]2 . (C.11)

Now, with a variable shift k → k + xq,

B0 (q
2, M2

) = µ4−d
∫

ddk

(2π)d

1∫
0

dx
i[

k2
+ x(x − 1)q2

− M2
]2 . (C.12)
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We can Wick rotate the momentum variable k, then perform the angular integration and expand in
(d − 4) as in the previous case to obtain,

B0 (q
2, M2

) =
1

16π2

[
2λ + ln

(
M2

µ2

)
+ 1 + J̄(q2

) + O(d − 4)

]
. (C.13)

where the loop function is given by,

J̄(q2
) =

1∫
0

dx
1[

M2
+ x(1 − x)q2

]d−4

=

1∫
0

dx exp

{
(d − 4)ln

(
M2
+ x(1 − x)q2

4πµ2

)}
=

1
16π2

[
σ(q2
) ln

σ(q2
) − 1

σ(q2
) + 1

+ 2

]
, x > 4M2

(C.14)

with the phase space factor,

σ(q2
) =

√
1 −

4M2

q2 . (C.15)
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APPENDIX D

Numerical Quantities

D.1 Error Analysis

The errors in our fitting procedure outlined in Chapter 6 are calculcated via the simple procedure
described here. For any quantity F which is a function of variables {ai}, each variable contains its
known central value and an assumed symmetric error,

ai = ac
i ± δai . (D.1)

These errors of the different variables are assumed to be uncorrelated. In this case, the error of the
function F is given by the quadrature formula [100],

δF =

√√∑
i

(
∂F
∂ai

δai

)2
. (D.2)

Since F may depend upon the variables {ai} in a complicated manner, we approximate the partial
derivative as,

∂F
∂ai
≈

F
(
ac
i + δai,

{
ac
j

}
j,i

)
− F

(
ac
i − δai,

{
ac
j

}
j,i

)
2δai

. (D.3)

This allows us to rewrite the uncertainty of F as,

δF ≈
1
2

√∑
i

(
F

(
ac
i + δai,

{
ac
j

}
j,i

)
− F

(
ac
i − δai,

{
ac
j

}
j,i

))2
, (D.4)

which is then implemented numerically in our calculations.

D.2 Quantities at Infinite Volume

As mentioned in Chapter 6, we use the lattice ensembles A40.32 and A40.24 provided to us by
the European Twisted Mass (ETM) Collaboration [76, 93]. In order to carry out the fitting of our
analytical threshold parameters with the discrete energy level data for the correlation functions of the
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Appendix D Numerical Quantities

connected diagrams, we need to relate the infinite volume pion mass and pion-decay constant to the
finite volume values used by the collaboration. This involves a simple correction to the finite volume
values, depending on the lattice spacing a and the lattice size L.

• Values in the finite volume ( fπ =
√

2Fπ):

1. A40.32: Mπ = 0.1415(2), Mπ

fπ
= 2.068(08).

2. A40.24: Mπ = 0.1446(3), Mπ

fπ
= 2.202(13) .

• The relation between the finite and infinite volume values is provided by the finite volume factor:

O
∞
=
O

FV

K
. (D.5)

Thus, we obtain for the pion mass and pion-decay constant,

M∞π =
MFV
π

KMπ

M∞π
fπ
=

(
M∞π
fπ

)FV K fπ

KMπ

. (D.6)

• The correction factors are given to be:

1. A40.32: KMπ
= 1.0039(28), K fπ

= 0.9874(24).

2. A40.24: KMπ
= 1.0206(95), K fπ

= 0.9406(84) .

• Pion mass and pion-decay constant at infinite volume: Computing the errors using the quadrature
formula in the previous section, we obtain for L 7→ ∞,

1. A40.32: M∞π = 0.14095(44),
(
Mπ

fπ

)∞
= 2.034(11) .

2. A40.24: M∞π = 0.14168(135),
(
Mπ

fπ

)∞
= 2.029(29) .

The values from the two ensembles A40.32 and A40.24 are combined by using a weighted mean,

x =
∑

i xiσ
−2
i∑

i σ
−2
i

, (D.7)

where the standard deviation σ is,

σx =

√
1∑

i σ
−2
i

. (D.8)

We finally obtain our values:

M∞π = 0.14102(42),
(

Mπ

Fπ

)∞
= 2.876(14). (D.9)
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