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Abstract

In this work the calculation of the ρ resonance’s decay parameters with Nf = 2 + 1 + 1 flavour
lattice QCD is presented. The calculation is performed based on gauge configuration ensembles
produced by the ETM collaboration which were generated with three different lattice spacing
values and pion masses ranging from 230 MeV to 500 MeV. The calculation of resonance
parameters with Lattice QCD requires correlation functions of all relevant decay channels in
multiple moving reference frames. In this work operators resembling a ρ meson as well as a
π+π−–system are used. The boost to moving frames breaks rotational symmetry and thereby
causes a level splitting. Operators which transform like basis states of the reduced symmetry
groups’ irreducible representations are constructed to determine each energy level individually.
Aided by the stochastic Laplacian Heaviside method correlation functions are calculated for all
lattice momenta up to (0, 0, 2) and all irreducible representations that emerge.

From these correlation functions energy levels are determined under consideration of systematic
error sources. Most notably the effect of thermal pollutions and bias from fit range selection
are taken into account. By applying the Lüscher method the energy spectra are translated
into phase shift curves on each ensemble separately. From a Breit-Wigner fit to the phase shift
curves the ρ meson mass and width on all ensembles are determined. The results are fed into a
combined fit of mass and width and extrapolated to the chiral and continuum limit.

The main result of this thesis are the continuum extrapolated values of Mρ and Γρ at the
physical point which were determined to

Mρ = 769(19) MeV , Γρ = 129(7) MeV .

Lattice artefacts could not be resolved within the statistical uncertainties of this work. While
the ρ-meson massis in very good agreement with experiment the corresponding decay width
differs by about two standard deviations from its experimental counterpart. The results of this
thesis were pre-published in [1].
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CHAPTER 1

Introduction

Physical phenomena have been observed from cosmologic down to subatomic scale. Just four
fundamental interactions are capable of describing the world over all these orders of magnitude:
Gravitation describes the attraction of mass. Electromagnetism describes the electric and
magnetic forces between electromagnetically charged objects. The strong interaction describes
the interaction between quarks and gluons it is responsible for the formation of nuclei and a
wealth of other particles called hadrons. Finally the weak interaction mediates certain transitions
that would not occur otherwise.

Each of these four interactions may be described as a field. With gavity as the exception,
electromagnetism and both, the weak and the strong force can be formulated as a quantum field
theory. The former two can be unified into the Glashow-Weinberg-Salam (GWS) or “electroweak”
theory. The latter is described by Quantum Chromodynamics (QCD). They are merged into
the standard model of particle physics which has been very successful in describing the physics
at subatomic scale. Still it is not complete and experimental results which differ from their
predicted value have become a hot topic in research as they could be the key to understand
physics beyond the standard model (BSM).

One of the most prominent of such observables is the muon g − 2 anomalous moment where
experiment and theory differ by 4 standard deviations [2]. On the theoretical side the uncertainty
is nowadays dominated by hadronic contributions which are mediated by the strong interaction.
This is due to the arguably most peculiar feature of QCD: The coupling constant increases
with decreasing energy. At the typical energy scale of a hadron, around 1GeV, perturbative
expansions in the coupling constant no longer converge. To describe the physical phenomena at
this energy scale effective field theories, in particular Chiral Perturbation Theory (χPT) [3–5]
and dispersion theory [6, 7] have been used to great success. However, χPT relies on unknown
low energy constants for its predictions and therefore requires experimental input.

With the advent of high performance computing it became possible to estimate physical
observables at low energies stochastically with a method named lattice QCD [8]. By approxi-
mating spacetimewith a hypercubic lattice, QCD is regulated in both, the ultraviolet and the
infrared regime. This regularization synergizes well with the path integral formalism as the
integral’s value may be estimated in a systematically improvable fashion by generating ensembles
with Monte Carlo methods. The computing power required to generate such an ensemble are
enormous but decrease drastically with increasing quark mass and coupling constant.1 Therefore
usually a set of (cheaper) ensembles with unphysical input parameters are generated and the
1 This is more commonly as decreasing β-value or equivalently increasing lattice spacing for practical reasons.
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Chapter 1 Introduction

connection to the real world is established by extrapolating to the physical values. At present
lattice QCD is the only method available at low energies that relies solely on first principles.

This thesis addresses the description of resonances, in particular the ρ resonance, with lattice
QCD. As the lightest vector meson the ρ resonance plays an important role in the standard
model. Among the aforementioned hadronic contributions to the muon g− 2 anamalous moment
the hadronic vacuum polarization and hadronic light-by-light contribution like many other
processes can be understood within the context of vector meson dominance which informally
states that the exchange of vector mesons is the dominating mechanism in electromagnetic and
final state interactions of hadrons. For a review see [9].

Experimentally the ρ resonance was established in the early 1960s [10–14]. Nowadays the
experimental accuracy is below the per mil level. As a resonance the ρ has a finite lifetime. It
is usually parametrized by the “phase shift” δ1(ECM) depicted in Figure 1.1. The curve as a

0

1

2

3

600 800 1000

ECM [MeV]

δ 1
[r
a
d
]

Figure 1.1: Experimental phase shift data for the ρ meson [15]. The characteristic S-shape of resonances
can be clearly observed.

function of the energy exhibits the characteristic “S”-shape of a resonance curve. This is an ideal
scenario which occurs because the ρ decays almost exclusively into pairs of pions and nearly
no background phase is observable. The absence of complications by multi-channel branching
ratios or background phase in addition to its importance makes the ρ meson is the logical first
candidate to attempt a study of resonances with lattice QCD.

The study of unstable particles with lattice QCD requires special care. The volume is finite
and in order to use Monte Carlo methods a Wick rotation to euclidean spacetime is required.
Therefore infinite volume scattering properties can only be computed indirectly using the by now
famous Lüscher method [16–18]. Since its conception the Lüscher method has been developed
further in many directions. For a review see [19]. In this work the extension to moving frames
will be used [20–22]. The finite lifetime of resonances manifests itself as a energy width. To
capture this feature the scattering properties must be determined over a range of different
energies. Moving frames allow one to map out the phase shift by using many different scattering
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momenta on a single ensemble rather than by using many different volumes which each require
the generation of a new ensemble.

For a long time the Lüscher method was difficult to apply to the ρ in realistic lattice calculations,
albeit some early attempts [23, 24]. By now, there are a number of investigations of the ρ
meson from lattice QCD using the Lüscher method [21, 25–33]. The first computation with light
dynamical up and down quarks can be found in the pioneering work of Ref. [21]. Subsequent
investigations focused on different aspects like large operator bases [34] or asymmetric boxes [31].
Recently, a first investigation involving different lattice spacings and a range of pion masses has
been performed [33]. However, in the latter reference chiral and continuum extrapolations could
not be taken.

In this thesis the ρ meson is computed applying the Lüscher method using gauge ensembles
generated with Nf = 2 + 1 + 1 dynamical quark flavours by the ETM collaboration at three
different lattice spacing values and a wide range of pion masses [35, 36]. This allows a controlled
chiral and continuum extrapolation of the ρ meson mass and width.

This thesis is structured as follows: In Chap. 2 the foundations for the remainder of this
work are laid. Scattering theory as well as Lattice QCD are briefly recapitulated. The Lüscher
formalism is introduced and finally the implications of moving reference frames are discussed.
The application to the ρ meson is discussed in Chap. 3 about operators and in Chap. 4 about
Wick contractions. In Chap. 5 the setup of the numerical calculation is bridging to the results
that are finally presented in Chap. 6.

Lastly many of the more technical details are deepened in the appendix.

3





CHAPTER 2

Theoretical Background

2.1 Scattering
The ρ meson appears as a resonance in ππ scattering. Therefore it will be useful to recapitulate
scattering in quantum field theory. This section closely follows [37]. Starting from asymptotic
quantum fields, the S-matrix introduced and parametrized by the phase shift. The characteristic
“S”-shape of the phase shift for resonant channels is motivated. Reproducing this feature from
first principles is one of the main goals of this thesis.

2.1.1 Asymptotic states
The starting point may be any quantum theory with Hamiltonian H and eigenstates Ψα such
that the Schrödinger equation

HΨα = (H0 + V )Ψα = EαΨα (2.1)

is fulfilled. The potential V contains the interaction terms which usually impede a closed solution
of Schrödinger’s equation. However, any interaction becomes negligible at a certain distance
and in a typical scattering experiment any observation takes place far beyond this distance.

Let the “incoming” fields Ψ+
α and “outgoing” fields Ψ−

α be at t → −∞ before and t → +∞
after a collision. Let Φα be solutions for the free Schrödinger equation

H0Φα = EαΦα (2.2)

where we assumed the same eigenvalues to appear as for the full solution.1

We may derive a formal solution for the Schrödinger equation by expressing Ψ±
α in terms of

the free fields. This leads to the Lippmann–Schwinger equation:

Ψ±
α = Φα +

∫
dβ

T±
βαΦβ

Eα − Eβ ± iε
(2.3)

where the T -matrix is given by

T±
βα =

〈
Φβ

∣∣∣ V ∣∣∣Ψ±
α

〉
(2.4)

1 This might require to absorb certain terms into V
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Chapter 2 Theoretical Background

In order to localize the incoming and outgoing fields in time, consider a wave packet

Ψ±
g (t) =

∫
dα e−iEαtg(α)Ψ±

α (2.5)

and analogously for Φg(t). By applying the Lippmann–Schwinger equation (2.3) to equation (2.5)
we obtain

Ψ±
g (t) = Φ±

g +
∫

dα
∫

dβ
e−iEαtg(α)T±

βαΦβ

Eα − Eβ ± iε (2.6)

= Φ±
g +

∫
dβ Φβ

∫
dα

e−iEαtg(α)T±
βα

Eα − Eβ ± iε . (2.7)

To solve the integral over α the standard approach is, to close the contour integral such that the
exponential e−iEαt vanishes for Im(Eα) 6= 0 and t → ±∞ and apply Cauchy’s integral theorem.
For in the upper (Ψ+

g ) or lower (Ψ−
g ) complex half-plane – depending on the sign of t.

In general g(α) and Tβα may have poles enclosed in the contour. Specifically a pole at

Eα = ER − iΓ2 (2.8)

would lead to a contribution proportional to e−Γt/2. The probability of such a state is given by
its absolute value squared and thus decays like e−Γt. We will revisit this result when introducing
resonances in section 2.1.3.

It also proves that wave packets of incoming and outgoing states approach a free wave packet
in the limit where t becomes very large∫

dα e−iEαtg(α)Ψ±
α →

∫
dα e−iEαtg(α)Φα . (2.9)

Therefore the fields Ψ±
α are also called “asymptotic states”.

2.1.2 The S-matrix

The asymptotic states describe the fields before and after a collision.The interaction might cause
a transition α → β. Let the S-matrix be the complex matrix of probability amplitudes

Sβα =
〈
Ψ−
β | Ψ+

α

∣∣∣Ψ−
β | Ψ+

α

〉
. (2.10)

In Equation (2.7) the asymptotic states were expressed in terms of free states and the T
-matrix. By using the S-matrix the outgoing states may as well be expressed in terms of the
incoming states

Ψ+
g (t) =

∫
dβ Ψ−

β e−iEβt
∫

dα g(α)Sβα (2.11)

and vice versa. Comparing both equations yields

Sβα = δ(β − α) − 2iπδ(Eα − Eβ)T+
βα (2.12)

6



2.1 Scattering

If only the connected part of the S-matrix is considered (that is there is no unchanged subsystem
of α still in β), the delta distributions may be factored out:

Sβα = −2πiδ(4)(pβ − pα)Mβα . (2.13)

The transition α → β is then completely parametrized by Mβα

2.1.3 Resonances

In many multi-particle collision processes, the participating particles can form an intermediate
state consisting of a single unstable particle R, that eventually decays into the particles observed
as finite state. If the total decay rate is relatively small with regard to the rate of oscillation of
the wave function in its rest frame ~/MR the cross section exhibits a rapid variation (usually
a peak) at the energy of the intermediate state R This is known as “resonance”. It will proof
useful to express S in a basis where all variables except for total momentum p and energy E
are denoted by a multiindex N .

SN ′
,N (E,p) = δN ′

,N − 2iπMN
′
,N (E,p) (2.14)

In the center-of-mass frame near the pole it becomes

SN ′
N (E,0) = S0N ′

N +
RN

′
N

E − ER + iΓ/2 ≡ SN ′
N (E) (2.15)

S0N ′
N denotes the non-resonant background S-matrix and is approximately constant over the

relevant energy range. The pole at ER + iΓ/2 procures the correct decay rate for the resonance
as already discussed section 2.1.1 and RN

′
N denotes the residue. In general S0 and R receive

contributions from all possible asymptotic states.

The result assumes a particularly simple form if only one channel couples to the resonance
because S is nonzero if and only if N ′ = N . In this case the non-resonant background may be
parametrized by a single number δ0N such that

S0N ′
N = exp(2iδ0N )δN ′

N . (2.16)

From the unitarity condition for S follows R = −iΓ exp(2iδ0N )δN ′
N . This yields

SN ′
N (E) = δN ′

N

(
1 − iΓ

E − ER + iΓ/2

)
exp(2iδ0N ) = δN ′

N exp(2iδN (E)) (2.17)

where we defined the phase shift

δN (E) = δ0N − arctan
( Γ/2
E − ER

)
. (2.18)

In the range from ER − Γ to ER + Γ the phase shift as a function of the energy is rising from
δ0N to δ0N + π following the characteristic “S”-shape which was already presented in Figure 1.1.
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Chapter 2 Theoretical Background

2.2 Quantum Chromodynamics: The theory of strong interaction

While the scattering theory discussed in section 2.1 holds quite generally, the decay ρ → ππ is
governed by the strong force. The accepted theory of strong force is Quantum Chromodynamics
(QCD). This chapter is intended to briefly summarize the features of QCD and lattice QCD
relevant for this work and for the most part leans on [38] and [39].

QCD describes the interaction of quarks and gluons. Its fundamental degrees of freedom are
the coupling constant αs (or coupling strength gs; αs = g2

s/4π) and the quark masses mq. One
prominent feature is the energy dependence of αs, often called “running coupling”. It is obeys
the renormalization group equation

µ2
R

dαs
dµ2

R

= −(b0α
2
s + b1α

3
s + b2α

4
s + . . . ) . (2.19)

When the renormalization scale µR decreases the coupling constant increases. For “soft processes”
with momentum transfers lower than ∼ 4 − 10 GeV, QCD becomes non-perturbative in the
coupling constant. The mass of the ρ meson given in Eq. (3.2) is well below this scale. There
exist several propositions how to calculate physical observables without relying on perturbation
theory. In this work we will use Lattice QCD a non-perturbative formulation which is derived
from first principles.

The Lagrangian of QCD is given by

LQCD =
∑
f

ψ̄f (x)
(
γµ(∂µ + iAµ(x)) +mf

)
ψf (x) + 1

2g2 tr
(
FµνF

µν) (2.20)

where as usual ψf denotes quark fields with flavor f , Aµ denotes the gluon field and Fµν =
∂µAν(x) − ∂νAµ(x) + i

[
Aµ(x), Aν(x)

]
is the field strength tensor. Additionally an explicitly

CP-violating term θ αs
16π ε

µνσρFAµνF
A
σρ would be possible. However if it is there, the coefficient

is very small. The most precise upper limit for θ stems from neutron electric dipole moment
measurements and constrains |θ| . 10−10. For the quantities relevant in this work, it may be
safely neglected.

Lattice QCD is naturally formulated in the path integral formalism. It describes the expecta-
tion value of an interpolating field operator O as the integral

〈O〉 = 1
Z

∫
Dψ Dψ̄ DA eiSQCD[ψ,ψ̄,A]O[ψ, ψ̄, A] (2.21)

where the partition function Z and action S are defined as

Z =
∫

Dψ Dψ̄ DA eiSQCD[ψ,ψ̄,A] , SQCD =
∫

d4x LQCD . (2.22)

Replacing spacetime by a finite lattice simultaneously regulates infrared as well as ultraviolet
divergences. It also makes finite the dimension of the path integral. By sampling the space of
possible field configurations the path integral and therefore the vacuum expectation value of an
operator may be estimated. To rewrite the path integral for a lattice, first a discretized version
of the action, the “lattice action”, is required.

8



2.2 Quantum Chromodynamics: The theory of strong interaction

2.2.1 Discretization of the action

The naive fermion action

The Lagrangian and therefore also the action of QCD is gauge invariant under the SU(3)color
gauge transformations

ψ(x) g.t.−−→ Ω(x)ψ(x) (2.23)

Aµ(x) g.t.−−→ Ω(x)Aµ(x)Ω(x)† + i(∂µΩ(x))Ω(x)† . (2.24)

Let Λ be the aforementioned four-dimension lattice

Λ = {n = (n0, n1, n2, n3) | 0 ≤ n0 ≤ T, 0 ≤ ni ≤ L } (2.25)

with extent L in spatial and T in temporal direction and in units of the lattice spacing a.
Integrals become sums and derivatives are discretized.∫

d4x → a4 ∑
n∈Λ

, ∂µψ(n) → ψ(n+ µ̂) − ψ(n− µ̂)
2a (2.26)

In the second equation, µ̂ denotes a translation by one in direction µ. With the derivative
defined in Eq. (2.26), the Lagrangian would obtain terms γµψ̄(n)ψ(n± µ̂) which violate gauge
invariance:

ψ̄(n)ψ(n+ µ̂) g.t.−−→ ψ̄(n)Ω(n)†Ω(n+ µ̂)ψ(n+ µ̂) 6= ψ̄(n)ψ(n+ µ̂) . (2.27)

To preserve gauge invariance change from the algebra-valued gauge fields Aµ(x) to group valued
gauge fields

Uµ(n) = exp
(
iaAµ(n)

)
(2.28)

which transform as

Uµ(n) g.t.−−→ Ω(n)Uµ(n)Ω(n+ µ̂)† + O
(
a2
)

(2.29)

under gauge transformations. They are the lattice equivalent of the parallel transporter in the
continuum. Upon replacing Eq. (2.26) by

∂µψ(n) →
Uµ(n)ψ(n+ µ̂) − Uµ(n− µ̂)†ψ(n− µ̂)

2a (2.26’)

it is straightforward to show that the gauge invariance of ψ̄∂µψ and therefore the kinetic part of
Eq. (2.20) is preserved. Furthermore holds up to lattice artifacts

Uµ(n) = 1 + iaAµ + O
(
a2
)
. (2.30)

9



Chapter 2 Theoretical Background

Therefore the kinetic term of the action is up lattice artifacts

SF[ψ, ψ̄, U ] = a4 ∑
n∈Λ

ψ̄(n)γµ
Uµ(n)ψ(n+ µ̂) − Uµ(n− µ̂)†ψ(n− µ̂)

2a +mψ̄(n)ψ(n) (2.31)

= a4 ∑
n∈Λ

ψ̄(n)γµ∂µψ(n) + ψ̄(n)γµ
iAµ(n)ψ(n+ µ̂) − iAµ(n− µ̂)ψ(n− µ̂)

2

+mψ̄(n)ψ(n) + O(a)
= a4 ∑

n∈Λ
ψ̄(n)(γµ(∂µ + iAµ(n)) +m)ψ(n) + O(a)

which already correctly approaches Eq. (2.20) in the continuum limit a → 0. Eq. (2.31) is called
naive fermion action. The gauge transporters Uµ(x) replace Aµ(x) as fundamental variables of
the lattice Lagrangian.

The second term of the Lagrangian emerges in the continuum limit from a closed chain of
gauge transporters. The smallest nontrivial closed loop on the lattice is the “plaquette”

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)† . (2.32)

Per construction the plaquette is gauge invariant. Inserting Eq. (2.28) for the factors of the
plaquette and the Baker-Campbell-Hausdorff formula give

Uµν(n) = exp
(
ia2(∂µAν(n) − ∂νAµ(n) + i

[
Aµ(n), Aν(n)

]
) + O

(
a3
))

= exp
(
ia2Fµν(n) + O

(
a3
))

With this, the “Wilson gauge action” may be defined as

SG[U ] = 2
g2
∑
n∈Λ

∑
µ<ν

Re tr
(
1 − Uµν(n)

)
(2.33)

= a4 ∑
n∈Λ

1
2g2

∑
µ,ν

tr
(
Fµν(n)2

)
+ O

(
a2
)

which is correctly approaches Eq. (2.20) in the continuum limit as well. In this work an improved
version of the gauge action, the Iwasaki action [40] is used.

The Wilson term

It will turn out in Sec. 2.2.2 that the integration over the fermion fields ψ and ψ̄ may be
separated from the rest of the path integral and performed analytically. Therefore it will prove
useful to make explicit the dependence ψ and ψ̄ already at this point. By introducing the “Dirac
matrix”

D(n|m) = D0(n|m) +mδn,m =
∑
µ

γµ
Uµ(n)δn+µ̂,m − U−µ(n)δn−µ̂,m

2a +mδn,m (2.34)

10



2.2 Quantum Chromodynamics: The theory of strong interaction

the action Eq. (2.31) may be reexpressed as

SF[ψ, ψ̄, U ] → a4 ∑
m,n∈Λ

ψ̄(n)D(n|m)ψ(m) . (2.35)

Applying a Fourier transformation to D(n|m) and inverting yields the the propagator

D̃(p)−1 =
m− ia−1∑

µ γµ sin
(
pµa

)
m2 + a−2∑

µ sin
(
pµa

) 2

(2.36)

in momentum space. While the propagator has the usual pole at p2 = m2, there are 15 additional
poles from the freedom to add π/a to each component of p without changing the value of the
sine. The existince of such unphysical solutions for the equations of motion of the naive fermion
action from Eq. (2.31) is called “fermion doubling problem”.

To remove these doublers one may add the “Wilson term”

−a

2 ψ̄∂µ∂
µψ → −a5 ∑

m,n∈Λ
ψ̄(n)

∑
µ

Uµ(n)δn+µ̂,m − 2δn,m + U−µ(n)δn−µ̂,m

2a2 ψ(m) (2.37)

to the naive fermion action. Because the Wilson term has dimension 5, it will vanish in the
continuum limit. The Dirac matrix from Eq. (2.34) becomes

D(n|m) = DW(n|m) +mδn,m (2.38)

where we defined the “Wilson Dirac matrix”

DW(n|m) = D0(n|m) − a
Uµ(n)δn+µ̂,m − 2δn,m + U−µ(n)δn−µ̂,m

2a2

= − 1
2a
∑
µ

(
(1 − γµ)Uµ(n)δn+µ̂,m + (1 + γµ)U−µ(n)δn−µ̂,m

)
+ 4
a
δn,m . (2.39)

The Wilson term acts like an additional mass term ∆m = 2/a for each nonvanishing component
of p. Therefore in the continuum limit the doubler’s mass becomes infinite and they decouple
from the theory while the physical solution remains unchanged.

The twisted mass

Introducing the Wilson term comes at a cost. The generators of axial transformations and
therefore chiral symmetry are explicitly broken. In fact, it has been shown that it is not
possible to find a doubler-free discretization in four dimensions without breaking either chiral
symmetry or Lorentz invariance [41]. Chiral symmetry can expressed by the non-homogeneous
anticommutator relation

Dγ5 + γ5D = aDγ5D (2.40)

for finite a. This is the “Ginsparg-Wilson equation”. In the continuum limit the right hand
side vanishes together with the Wilson term and the continuum anticommutator relation is
recovered.

11



Chapter 2 Theoretical Background

Assume an axial rotation

ψ = exp(i/2ωaAτaγ5)χ ψ̄ = χ̄ exp(i/2ωaAτaγ5) (2.41)

where ωaA are the Lie parameters of the axial transformation, τa are the Pauli-matrices and
everything will be formulated in terms of isospin doublets which are denoted by bold greek
symbols. The set of fields χ is called “twisted basis” whereas up to now we worked in the
“physical basis”.

In the continuum, the kinetic part of the fermion action

SF[ψ, ψ̄, A] =
∫

d4x ψ̄( /D +m)ψ (2.42)

is still chirally invariant and only the mass term transforms to

mψ̄ψ = mχ̄ exp(iωaAτaγ5)χ

= m cos(ωA)χ̄χ+ im sin(ωA)ω
a
A

ωA
χ̄τaγ5χ . (2.43)

On the lattice however, the Wilson term transforms as well and therefore applying the axial
rotation results in a different infrared regulator. The following discussion of twisted mass lattice
QCD is in addition to [39] inspired by [42].

One usally chooses ωA = (0, 0, αtmτ3) and flavor symmetry is reduced to an exact U(1)
symmetry with generator τ3. With the definitions m0 = m cos(αtm) and µ = m sin(αtm), the
mass term simplifies to

mψ̄ψ = m cos(αtm)χ̄χ+ im sin(αtm)χ̄γ5τ3χ

≡ m0χ̄χ+ iµχ̄γ5τ3χ . (2.44)

The real phase αtm is called “twist angle” and µ is called “twisted mass”. The transformation is
non-anomalous because tr{τ3} is traceless.

These modifications becomes relevant when the regulator like the Wilson Dirac matrix from
Eq. (2.39) breaks chiral symmetry. In this case reverting the axial transformation transforms
the regulator. Therefore the Wilson twisted mass action [43]

SF[χ, χ̄, U ] = a4 ∑
m,n∈Λ

χ̄(n) (DW(n|m) +m0 + iµγ5τ3)χ(m) . (2.45)

is a different infrared regulator for QCD.
The main advantage of twisted mass appears at “maximal twist”, that is αtm = π/2. The

dependence on a of the vacuum expectation value of any nonvanishing operator (this includes
hadron masses) must at least by O

(
a2
)

[44]!
The twisted action must obey the same symmetries as the original one, the transformation

prescriptions become dependent on ωA. The main disadvantage of twisted mass is that due to
the non-trivial flavor structure introduced in the twisted mass term parity P and total isospin I
are no longer good quantum numbers at maximal twist. In particular, states with all parameters
identical but P or I may mix. This has been observed for the π0 which has quantum number
indistinguishable from the vacuum and therefore acquires a mass different to its charged partners
[45]. One way to control this splitting is by performing a continuum extrapolation as with chiral
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2.2 Quantum Chromodynamics: The theory of strong interaction

symmetry also isospin conservation will be restored.
This concludes our discussion of the discretized action. With the lattice action in place, we

may now turn our attention to the the path integral introduced in Eq. (2.21).

2.2.2 Sampling of the path integral

For brevity, the path integral will be discussed for just a single flavor fermion field. The ideas
carry over to twisted mass.

Even in discretized spacetime, the configuration space of the path integral samples is still
large and an exact calculation is unfeasible. Nevertheless one may obtain an stochastic estimate
for the path integral with Monte Carlo methods.

The first step is to perform a Wick rotation t → itE and therefore work with the Euclidean
rather than the usual Minkowski metric. An immediate consequence is, that the phase factor in
the path integral becomes real:

exp
(
iSQCD

)
→ exp

(
−SE

QCD
)
. (2.46)

In the following we will throughout assume Euclidean spacetime and therefore drop any super-
script E’s.

We already mentioned that the integration over the fermion fields ψ and ψ̄ may be separated
from the rest of the path integral and performed analytically when introducing the Dirac matrix.
To this end we rewrite the path integral Eq. (2.21)

〈O〉 = 1
Z

∫
Dψ Dψ̄ DU e−SQCD[ψ,ψ̄,U ] O[ψ, ψ̄, U ]

= 1
Z

∫
DU e−SG[U ]

∫
Dψ Dψ̄ e−SF[ψ,ψ̄,U ] O[ψ, ψ̄, U ]

= 1
Z

∫
DU e−SG[U ] ZF [U ]

〈
O[ψ, ψ̄, U ]

〉
F

(2.47)

where we defined the fermionic partition function

ZF =
∫

Dψ Dψ̄e−SF[ψ,ψ̄,U ] (2.48)

and the fermionic expectation value 〈 〉F is the path integral over ψ and ψ̄ Because the fermion
fields may be represented as vector of Grassmann numbers we may rewrite the fermionic partition
function with the Matthews-Salam formula

∫
dηN dη̄N . . . dη1 dη̄1 exp

 N∑
i,j=1

η̄iMijηj

 = det(M) (2.49)

with η denote the Grassmann numbers. Upon inserting M = −a4D the exponent becomes the
fermion action Eq. (2.35) and

ZF = − det(D) . (2.50)
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Chapter 2 Theoretical Background

The path integral Eq. (2.47) becomes

〈O〉 = 1
Z

∫
DU e−SG[U ] (−1)Nf

∏
f

det
(
Df [U ]

) 〈
O[ψ1, ψ̄1, . . . ψNf

, ψ̄Nf
, U ]

〉
F

(2.51)

where a determinant appears for each of the Nf distinct flavors in O. Because squares of
Grassmann numbers vanish, every interpolating operator may be expressed by “n-point functions”〈
ηi1 η̄j1 . . . ηin η̄jn

〉
F

. These may be evaluated with Wick’s theorem

〈
ηi1 η̄j1 . . . ηin η̄jn

〉
F

=
∑
σ∈Sn

sign(σ)D−1
i1jσ(1)

D−1
i2jσ(2)

D−1
injσ(n)

(2.52)

where Sn is the permution group with n elements. The inverse fermion matrix D−1 is the
propagator. The concrete operators O used for the ρ channel in this work are constructed in
Chap. 3. Consequently we defer the calculations to Sec. 4.1. Because the fermionic degrees of
freedom are integrated out the only remaining dependence is on U .

Now, gauge field configurations for which the action becomes large are exponentially suppressed
and we may reinterpret

P = Z−1 exp(−SG[U ]) det
(
Df [U ]

)
(2.53)

as a probability weight.
Rather than evenly sampling potentially strongly suppressed field configurations, it is far

more efficient to sample from the distribution given by the action and give each the same weight
[46]. When generating the sample configurations with a Markov chain algorithm such as Hybrid
Monte Carlo [47] they are mathematically proven to approximate the target distribution and due
to the central limit theorem the approximation error is systematically improvable by increasing
the number of configurations.

Let Nconf by the number of such sample gauge field configurations generated with probabilty
distribution P . The estimate of the expectation value is simply the arithmetic mean over the
samples.

〈O〉 ≈ 1
Nconf

Nconf∑
r=1

〈O[Ur]〉F

= 1
Nconf

Nconf∑
r=1

∑
σ∈Sn

sign(σ) D−1
i1jσ(1)

[Ur] D
−1
i2jσ(2)

[Ur] D
−1
injσ(n)

[Ur] .
(2.54)

2.2.3 Resampling of gauge configurations

While Eq. (2.54) produces a value for the sample estimate, it does not make a statement about
the sampling distribution. A common way to infer the standard error on the estimate is by
resamling. In the boostrap method Nconf gauge configuration are drawn with replacement from
the original set and their mean is taken. This procedure is repeated Nboot times until. These
means obey the central limit theorem and therefore are gaussian distributed (provided the
statistics is sufficient and the original distribution is not too pathological). Their standard
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2.3 Scattering on the lattice

deviation estimates the standard error of the original sample estimate

SE(〈O〉) = SD

 1
Nconf

Nconf∑
r=1

〈
O[Ub,r]

〉
F

 (2.55)

where Ub,r is the rth element of the bth bootstrap sample.
One particular special case of the bootstrap is the jackknife method. Rather than emulated

samples like the original one by randomly drawing, for k < n all
(N
k

)
ways to choose a subset

with n− k elements are taken. In practice, almost always delete-1 jackknife is used. Historically
the jackknife preceeds bootstrap as the computation is far less demanding. It also is more robust
against outliers. The distribution of jackknife sample means is smaller than the bootstrap by a
factor n− 1:

SE(〈O〉) =
√
n− 1 SD

 1
Nconf − 1

Nconf−1∑
r=1

〈
O[Uj,r]

〉
F

 (2.56)

where this time Uj,r is the rth element of the jth jackknife sample. The jackknife requires certain
smoothness conditions to be fulfilled. It performs poorly compared to bootstrap if the estimated
quantity is not smooth or highly non-linear.

If reversely the error of an observable is known, but not the underlying distribution the
bootstrap may also be used to generate pseudosamples. Usually the distribution is assumed
to be gaussian where the expectation value and standard deviation are the given central value
and error. From this distribution Nboot values are drawn randomly and from there on they
may be treated the same way bootstrap samples would be. This approach is called “parametric
bootsrap”.

2.3 Scattering on the lattice
In Sec. 2.1 was established that scattering quantities by definition live in infinite volume
Minkowski spacetime. The theoretical description of scattering via S-matrix formalism relies on
asymptotic final and initial states and merely quantifies the transition between these.

We aim to describe the ρ resonance which to a very good approximation is only sensitive
to the strong interactions. The currently accepted theory of strong interactions, Quantum
Chromodynamic (QCD), is non-perturbative at the energy scale relevant here. In Sec. 2.2 we
introduced Lattice QCD which, systematically improvable and from first principles, approximates
the predictions of QCD. Unfortunately in order to sample the configuration space with Monte
Carlo methods it require a transition to Euclidean space. This renders a direct extraction of
scattering results in lattice QCD impossible [48].

Therefore an indirect aproach is taken. When two particles are confined to a finite volume their
interaction shifts the spectrum. In contrast to asymptotic states, the spectrum can be measured
in lattice QCD. Further details can be found in Sec. 2.6. By comparing the non-interacting
spectrum i.e. the masses of the free particles to the shifted spectrum, the effect of the interaction
can be measured in the form of energy shifts. These are related to infinite volume scattering
properties by the Lüscher formula [17, 18]. While originally derived for two identical stable
scalar particles in the rest frame, these limitations have largely been lifted by other authors.
See e.g. [49–53] for the Lüscher method in a three particle systems and [19] for a review.
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Chapter 2 Theoretical Background

In this section we illustrate the key concepts of the Lüscher formula and in doing so introduce
all the notation we need later on. We proceed by discussing the descent of symmetry to finite
volumes and the consequences for the Lüscher method. It will turn out that in order to map
out an energy region and extract the ρ width, a solid foundation in group theory as well as
finite representation theory is required. We will discuss everything necessary to understand
the “subduction” of continuum states to the lattice and close with the Lüscher formula for the
lattice.

2.3.1 Derivation of the Lüscher formula

The following derivation is quantum mechanical for simplicity. The extension to field theory is
rigorously established in Theorem 7.1 of [18]: “Up to terms which vanish exponentially at large
L, the relationship between the scattering phases and the two-particle spectrum in finite volume
is exactly the same as in quantun mechanics.” Furthermore assume continuous spacetime. The
discretization will be postponed to Sec. 2.3.4.

Consider two identical bosons of mass M in S-wave in a finite cube with periodic boundary
conditions. This is the topology of a three-dimensional torus.

Assume a spherically symmetric interaction potential V (r) that admits square-integrable
solution of the Klein-Gordan equation. The only requirement is the potential to be negligible
outside a finite range

V (r) ≈ 0 for r > R .

The extent of the cube has to be larger than R, so that there is an “exterior region” within the
cube where the wave function does not feel the potential. In this exterior region the relevant
equation of motion is the Helmholtz equation.

Now there is a one-to-one correspondence between wave functions in finite volume and the
solutions of the Helmholtz equation in the exterior region. This correspondence yields a relation
between scattering phase shift (from the wave functions) and the lattice energy levels (from the
Helmholtz equation). To see this, we follow three steps:

1. Calculate wave functions via partial wave decomposition

2. Construct solutions of the Helmholtz equation

3. Compare the coefficients of both solutions

1. Calculation of wave functions

The wave functions are the eigenfunction of Hamilton operator. Because we assumed a spherically
symmetric potential, angular momentum is a good quantum number and we may seperate any
wave function into a radial and an angular part and decompose the later into a basis of spherical
harmonics.

ψ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

Ylm(θ, φ)ψlm(r) (2.57)

As usual, l denotes the angular momentum and m the magnetic quantum number. The radial
part ψlm(r) solves the radial differential equation whose principal solutions are the spherical
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2.3 Scattering on the lattice

Bessel functions. Therefore ψlm(r) may be decomposed as

ψlm(r) = blm (αl(k)jl(kr) + βl(k)nl(kr)) . (2.58)

where the scattering momentum k is related to the energy E of the interacting two-particle
system by

k2 = E2

4 −M2 . (2.59)

The coefficients αl(k) and βl(k) are related to the scattering phase shift δl of the l-th partial
wave

e2iδl(k) = αl(k) + iβl(k)
αl(k) + iβl(k) . (2.60)

Solution of Helmholtz equation

The exterior region where the potential is negligible is given by the set

Ω =
{
r ∈ R3 , ∀ ~n ∈ Z3 : |~r + ~nL| > R

}
. (2.61)

In the exterior region, ψ(r) satisfies the Helmholtz equation

(∆ + k2)ψ(r) = 0 (2.62)

As long as k is not singular, a set of generalized Greens functions of the Helmholtz equation
Glm(r, k2) form a basis for the set of its solutions.

For the calculation a formal partial wave cutoff Λ must be introduced, that will be taken to
infinity in the end. The expansion of ψ(r) neglecting partial waves l ≥ Λ is given by

ψ(r) =
Λ∑
l=0

l∑
m=−l

4π(−1)lvlmGlm(r, k2) (2.63)

where vlm are just some coefficients and the expansion of the Greens function into spherical
harmonics leads to

Glm(~r, k2) = (−1)l

4π kl+1 ·

Ylm(θ, φ)nl(kr) +
∞∑
l
′=0

l
′∑

m
′=−l′

Mlm,l
′
m

′Yl′m′(θ, φ)jl′(kr)

 (2.64)

with the matrix elements of M given by

Mlm,l
′
m

′ = (−1)l

π
3/2

l+l′∑
j=|l−l′|

j∑
s=−j

il

qj+1 Zjs(1; q2)∗Clm,js,l′m′ , q = L

2π · k . (2.65)
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Here, Zlm denotes the Lüscher Zeta-function

Zlm(s, q2) =
∑
n∈Z3

Ylm(~n)
(n2 − q2)s

(2.66)

with the harmonic polynomials

Ylm(r, θ, φ) = rlYlm(θ, φ) (2.67)

and Clm,js,l′m′ may be expressed by Wigner 3j-symbols

Clm,js,l′m′ = (−1)m
′
il−j+j

′√
(2l + 1)(2j + 1)(2l′ + 1)

(
l j l′

m s m′

)(
l j l′

0 0 0

)
. (2.68)

For certain values of k, ψ(r) assumes a singularity. On the set of singular values

J =
{
k ∈ R , ∃ ~n ∈ Z3 : k = ±2π

L
|~n|
}
,

plane waves also solve the equations of motion. The Green functions no longer are singular
periodic solutions, but it is possible to construct modified Green functions with the same
properties as before. They may again be expanded into spherical harmonics and an analog result
may be found. However the physical relevance is questionable because the interaction typically
only causes a slight deviation from the non-interacting energy levels and therefore obtaining an
interacting energy levels that is in J is virtually impossible in a lattice simulation. Therefore in
this work we only discuss the case where k is real and k > 0.

Lüscher formula

The expansions Eq. (2.58) and Eq. (2.64) both contain the Bessel functions. In order to fulfill the
correspondence of solutions inside and outside the potential, the coefficients of both expansions
must coincide.

blmαl(k) =
Λ∑
l
′=0

l
′∑

m=−l′
vl′m′

(−1)l
′

4π kl
′+1Ml

′
m

′
,lm (2.69)

blmβl(k) = vlm
(−1)l

4π kl+1 (2.70)

The coefficients vlm may be eliminated and one finds that a solution to the resulting system of
equations in angular momentum space exists if and only if the determinant vanishes. Reexpressing
αl and βl by the phase shift δl with the help of Eq. (2.60) leads to the Lüscher formula

det
(
Mlm,l

′
m

′(k) − δll′δmm′ cot δl(k)
)

= 0 . (2.71)

Given an estimate for higher partial waves, the Lüscher formula provides the phase shift δl(k)
for each scattering momentum k obtained on the lattice.
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2.3.2 Moving reference frames

To meaningfully describe the functional form of the phase shift, a single point in the spectrum
is not sufficient. Because the argument of the Lüscher Zeta function Zjs(1; q2) is dependend on
the spatial lattice size L, it is possible to obtain different values of k by using multiple lattice
volumes. As this requires the generation of new gauge configurations for each volume, this
approach is very costly and additionally control over finite size effects is lost. However applying
a Lorentz boost to the operators changes the extracted energy values in the CM frame, similar to
the effect a different volume would have. In this section we illustrate the modifications necessary
to extend the Lüscher formula to moving reference frames [20, 22, 54]

However, the distinction of a particular direction as the CM momentum restricts the rotational
symmetry group even further than it already was by the discretization.

Let pcm by the CM momentum. Due to the finite volume it is quantized as

pcm = 2π
L

· d , d ∈ Z3 (2.72)

and the relativistic energy WL is given by the dispersion relation

WL =
√
p2

cm + E2
CM . (2.73)

Until now we worked in the rest frame and therefore E ≡ ECM.

The energy Eq. (2.73) is only dependent on the absolute value, not the direction of pcm.
Therefore we denote each “momentum sector” by the corresponding integer value d ≡ |d| from
Eq. (2.72). We discuss the relation between different representatives of the same momentum
sector in Sec. 2.5

The derivation of the Lüscher formula (2.71) relied on an expansion of ψ(r) in spherical
harmonics. This is only meaningful if the angular momentum is a good quantum number i.e. in
center-of-mass frame. Therefore a Lorentz boost must be applied. The boost factor is given by

γ = WL
ECM

= WL√
W 2

L − p2
cm

(2.74)

where ECM was replaced with Eq. (2.73).

The boost expands space in direction d for an observer in the CM frame. The boundary
conditions of the wave function ψ(r) and the potential V become d-periodic and compared to
Eq. (2.61) the exterior region

ΩCM =
{
r ∈ R3 , ∀ n ∈ Z3 : |~r − ~γ~nL| > R

}
(2.75)

where ψ(r) satisfies the Helmholtz equation becomes dependent on γ. However, the steps of the
derivation in Sec. 2.3.1 are still valid. In the CM frame the wave function may still be calculated.
The solution of the Helmholtz equation may be constructed in the basis of a set of generalized
Greens function Gd(~x, p) and their derivatives which now depend on the CM momentum and
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the expansion into spherical harmonics still works. Eq. (2.64) - (2.66) become

Gdlm(~r, k2) = (−1)l

4π kl+1 ·

Ylm(θ, φ)nl(kr) +
∞∑
l
′=0

l
′∑

m
′=−l′

Md
lm,l

′
m

′Yl′m′(θ, φ)jl′(kr)

 (2.76)

with the modified matrix elements Md given by

Md
lm,l

′
m

′(k) = (−1)lγ−1

π
3/2

l+l′∑
j=|l−l′|

j∑
s=−j

il

qj+1 Zd
js(1; q2)∗Clm,js,l′m′ , q = L

2π · k . (2.77)

and the generalized Lüscher Zeta-function

Zd
lm(s, q2) =

∑
~r∈Z3

d

Ylm(r)
(r2 − q2)s

. (2.78)

Except for the additional γ in the matrix elements, the only difference is that the singular values
of k and therefore poles of the Zeta-function appear dilated to an observer in the CM frame.
The set Z3

d is defined as

Z3
d =

{
r ∈ R , ∃ z ∈ Z3 : r = γ−1 (z − d/2)

}
. (2.79)

If d = 0, γ = 1 and our previous result is recovered.
Finally the dependence on d is encapsulated by introducing

wdjs =
Zd
js(1, q

2)
π3/2√

2j + 1γqj+1 , q = kL

2π (2.80)

to express the matrix Md as

Md
lm,l

′
m

′(k) = (−1)l
l+l′∑

j=
∣∣l−l′∣∣

j∑
s=−j

√
2j + 1 ijwdjsClm,js,l′m′ . (2.81)

2.3.3 Angular momentum on the Lattice

The lattice introduced in Eq. (2.25) is a four dimensional hypercube with identical edge lengths in
spatial directions. Other geometries are possible [31] but tremendously complicate the following
discussion.

In an infinte volume the rotational symmetry group is the special orthogonal group in three
dimensions, SO(3). It has exactly one 2l + 1 dimensional irreducible representation (“irrep”)
for all l ∈ N. Ascribing an angular momentum quantum number is equivalent to specifying the
irreducible representation of SO(3) an eigenvector of the Hamiltionian transforms under. The
magnetic quantum number −l ≤ m ≤ l is used to label each of those 2l + 1 states. To describe
fermions the symmetry considerations are more complicated2 but for this work considering just
2 Fermions have half-integer spin and therefore transform under an even-dimensional irrep. Mathematically this

may be expressed by taking the double cover group SO(3)D ∼= SU(2). As the name implies double covering is a
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2.3 Scattering on the lattice

the rotations in SO(3) is sufficient. The ρ is a boson and exclusively decays into bosons.
The symmetry group may be extended by including improper rotations: rotations followed

by a subsequent inversion. This is needed because parity is no longer conserved in moving
frames.3 Improper rotations have determinant −1 and therefore the full isometries of spacetime
are described by the orthogonal group O(3).

The rotational symmetry group of our lattice is restricted to the subset of rotations under
which the lattice remains invariant. In the rest frame this is the symmetry group of a cube, the
octahedral group Oh.4 After a Lorentz boost, due to length contraction this cube will appear
stretched in direction of the CM momentum pcm and unchanged in perpendicular directions
to an observer in the rest frame. Therefore the restricted symmetry group must additionally
conserve pcm.

As already discussed in Sec. 2.3.2 pcm is quantized as

pcm = 2π
L

· d , d ∈ Z3 (2.72)

due to the finite volume. If two vectors have the same absolute value they are connected by
an allowed lattice rotation from Oh and their symmetry groups are isomorphic. Furthermore,
rotations preserve length and the prefactor 2π/L is irrelevant here. Therefore it suffices to
characterize the groups by d2.

In this work all momenta with d2 ≤ 4 are used. To simplify notation we introduce the “little
group” LG(d) which will be explained further in Sec. 2.5. In addition to the group Oh for
d = (0, 0, 0), the little groups are C4v for all d with d2 = 1 or 4, C2v for d2 = 2 and C3v for
d2 = 3. For a detailed discussion of the groups relevant to this work we invite the reader to
take a look at Sec. A.1. We follow the conventions in [55] and stick to the Schönflies notation
[56] which nowadays is predominantly used in crystallography and molecular physics but has
become the norm for lattice QCD as well.

Let L denote the lth angular momentum irrep of O(3), LG(d) be one of the little groups and
Γ be an irrep of LG(d). All lattice groups finite and as an immediate consequence of the great
orthogonality theorem, so is the number of their irreps NΓ. The mapping from denumerable
angular momentum irreps of O(3) to a finite number of lattice irreps is surjective. Furthermore,
it is not even a mapping because the existence of a 2l + 1-dimensional lattice irrep is not
guaranteed and different m components of the same irrep L may be sent to different Γ. When
that happens, the degeneracy of energy eigenvalues withing a multiplet is lifted and each Γ have
their own energy levels which coalesce in the infinite volume limit. The decomposition of the
lowest partial waves into the octahedral group [57–59] as well as the other groups [60, 61] is well
established. We may write the decomposition as a direct product

L →
NΓ⊕
i=1

niΓi ,
∑
i

ni · dim(Γi) = 2l + 1 . (2.82)

The factor ni is called “multiplitiy”. ni = 0 means Γi does not appear in the decomposition of

one-to-two mapping and double cover groups have additional representations. For distinction the irreps of the
simply connected group are called vector representations while the addtional irreps of the double cover group
are named ray or projective representations.

3 In principle the twisted mass term breaks parity even in the rest frame but this could be neglected.
4 Because cubes and an octahedron are dual to each other, they share the same symmetry group and it was

named after the latter
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Chapter 2 Theoretical Background

the lth partial wave and ni > 1 points to an accidental degeneracy of energy levels.
In the remainder of this section we follow [22, 54] and express the basis vectors of a lattice

irrep Γ as a linear combination of L eigenstates |L,m〉. This is called “subduction” and the linear
coefficients which signify the m components exactly contributing to Γ are called “subduction
coefficients”.

Rotation of angular momentum states For all g ∈ LG(d) the corresponding rotation Rg ∈
O(3) is known. Because L is an irrep of O(3) the transformation of |L,m〉 under the operator
R̂g is well defined:

R̂g |L,m〉 =
∑
m

′

∣∣∣L,m′
〉 〈

L,m′
∣∣∣ R̂g ∣∣∣L,m〉 =

∑
m

′

DL(Rg)m′
m

∣∣∣L,m′
〉
. (2.83)

In the last step we used that in a given basis |L,m〉

∀ R ∈ O(3) : DL
m,m

′(R) =
〈
L,m′

∣∣∣ R̂ ∣∣∣L,m〉 . (2.84)

defines the matrix representation of L.
For proper rotations R the canonical coice are the Wigner D-matrices

DL(R) ≡ DL(α, β, γ) (2.85)

where we parametrized the rotation by the Euler angles α, β, γ.5 For the spatial inversion i we
use DL

m,m
′(i) = −1 · δm,m′ . The remaining improper rotations may by definition be written as a

product of inversion and a proper rotation R. Because the representation preserves the group
multiplication table, the matrices may be generated from the matrix product

DL(i ·R) = DL(i) ·DL(R) ≡ −DL(α, β, γ) . (2.86)

The matrix representations DΓ of Γ is conceptually much simpler because there is only a
finite number of matrices involved. As mentioned before we follow the conventions in [55] where
complete lists for all the group elements may be found

Projection operator We use the projection method that was already applied in [32] to calculate
the subduction coefficients. Let α, β ∈ { 1, . . . , dim(Γ) }.6 The operator

P̂Γ
αβ(d) = dim(Γ)

|LG(d)|
∑

g∈LG(d)
DΓ(g)∗

αβR̂g (2.87)

projects to a state that transforms like |Γ, α〉. By summing over all m, the expression of |Γ, α〉
as a linear combination of |L,m〉 is achieved. The result will obviously be different for each
momentum sector and the states still carry remembrance of the chosen L. Furthermore all linear
combinations of such projected states share the transformation properties and therefore a sum
5 Equivalently it can be expressed through a rotation axis n and an angle ϑ. This will lead to the same matrix

elements. If one considers the double cover, the generalize will be easier because rotations with by angles largen
than 2π are straightforward.

6 not to be confused with the Euler angles
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2.3 Scattering on the lattice

over different β and phases φm and φβ may be used to obtain a complete and orthonormal basis
labelled by α.

|Γ, α,L〉 =
∑
β

φβ
∑
m

φmP̂
Γ
αβ(d) |L,m〉 (2.88)

=
∑
β

φβ
∑
m,m

′

φm
dim(Γ)
|LG(d)|

∑
g∈LG(d)

DΓ(Rg)
∗
αβ D

L(Rg)m′
m

∣∣∣ L,m′
〉
. (2.89)

Because α was introduced as the row index of the matrix DΓ, the basis vectors of Γ are
called “rows”. Choosing different columns β yields the same basis states, only with their order
interchanged. Therefore in this work β = 1 and φβ = e1 was chosen throughout.

A more detailed discussion as well as proofs may be found in Sec. A.2. If the multiplicity of Γ
is larger than 1, the projected basis state is not unique. Instead, the resulting set of states may
also be orthonormalized by choosing different φm. and the projection yields a different basis
states for each occurrence of Γ. Therefore the new basis must also be labelled by a multiplicity
index n. The lattice basis expressed by angular momentum states is

|Γ, α,L, n〉 =
∑
m

sΓ,α,n
L,m |L,m〉 . (2.90)

where sΓn
L is the final set of subduction coefficients with appropriately chosen phases.

2.3.4 Subduction of the Lüscher formula

In Sec. 2.3.1 and 2.3.2 we derived the Lüscher formula

det
(
Md
lm,l

′
m

′(k) − δll′δmm′ cot δl(k)
)

= 0 (2.91)

with Md given by (2.81) and the determinant acting in angular momentum space. Furthermore
in Sec. 2.3.3 we established that angular momentum is no longer is a good quantum number on
the lattice and its role is taken by the irreps of finite symmetry groups. This chapter concludes
the discussion of scattering on the lattice by subducing the Lüscher formula into the basis given
in Eq. (2.90). We assume the direction of d to be arbitrary but fixed. The relation between
different representatives of the same momentum sector will be discussed in Sec. 2.5

In the new basis the matrix elements are〈
Γ, α,L, n

∣∣∣ M̂d
∣∣∣ Γ′, α′,L′, n′

〉
=
∑
m,m

′

sΓ,α,n
L,m

∗
sΓ′

,α
′
,n

′

L′
,m

′

〈
L,m

∣∣∣ M̂d
∣∣∣ L′,m′

〉
(2.92)

=
∑
m,m

′

sΓ,α,n
L,m

∗
sΓ′

,α
′
,n

′

L′
,m

′ Md
lm,l

′
m

′ (2.93)

Furthermore Γ and α are still good quantum numbers and as a consequence of Schur’s Lemma,
the matrix is blockdiagonal〈

Γ, α,L, n
∣∣∣ M̂d

∣∣∣ Γ, α,L′, n′
〉

= δΓΓ′δαα′

〈
Γ, α,L, n

∣∣∣ M̂d
∣∣∣ Γ, α,L′, n′

〉
≡ Md,Γ,α

ln,l
′
n

′ (2.94)

where we defined Md,Γ,α as the nontrivial block that belongs to Γ.
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Chapter 2 Theoretical Background

Upon inverting Eq. (2.94) one finds

Md,Γ,α
ln,l

′
n

′(k) = δΓΓ′δαα′
∑
m,m

′

sΓ,α,n
L,m

∗
sΓ,α,n′

L′
,m

′ M
d
lm,l

′
m

′(k) (2.95)

=
∑
m,m

′

sΓ,α,n
L,m

∗
sΓ,α,n′

L′
,m

′ (−1)l
l+l′∑

j=
∣∣l−l′∣∣

j∑
s=−j

√
2j + 1 ijwdjs(k)Clm,js,l′m′ . (2.96)

and Lüscher formula remains unchanged except for the space it acts in

det
(
Md,Γ,α
ln,l

′
n

′(k) − δll′δnn′ cot δl(k)
)

= 0 (2.97)

2.4 Angular momentum basis in moving frames
So far the only states with momenta were basis vectors of moving reference frames with
momentum pcm. The rotations that make up the projection operator in Eq. (2.87) are all the
elements of LG(pcm) which, as we repeatedly used already, leave the boost vector unchanged.
Therefore a last subtlety that could be ignored so far are nontrivial rotations of states with
momenta.

In continuous and infinite spacetime the full spatial symmetry group the subgroup

T 3 o O(3) (2.98)

of the Poincaré group.[60]. It is the semidirect product of the abelian Lie group of translations
T 3 and the rotation-reflection group O(3) already discussed above. The irreps of T 3 may be
labelled by three-dimensional wave number vectors p [62]. The eigenstates |L,m〉 generalize to

|p; L,m〉 ≡ |p〉 ⊗ |L,m〉 (2.99)

but this new states are variant under the action of O(3). Let R ∈ O(3):

R̂ |p; L,m〉 = R̂ |p〉 ⊗ R̂ |L,m〉

=
∣∣∣R̂p〉⊗

∑
m

′

DL(R)m′
m

∣∣∣L,m′
〉

=
∑
m

′

DL(R)m′
m

∣∣∣R̂p; L,m′
〉 (2.100)

where we used Eq. (2.83) for R̂ |L,m〉.
On the lattice defined in Eq. (2.25) T 3 must respect the boundary conditions and is therefore

restricted to translations by aL. The remaining irreps are given by those wave number vectors
whose components may be written as an integer multiple of 2π/L [63, 64] and there eigenstates
are

|p〉 , p = 2π
L

· d , d ∈ Z3 (2.101)

This is the origin of the quantization condition Eq. (2.72).
The states for an irrep Γ of LG(pcm) were labelled by α and therefore the lattice version of
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2.5 The relation between equivalent moving frames

Eq. (2.99) is

|p; Γ, α〉 ≡ |p〉 ⊗ |Γ, α〉 . (2.102)

In analogy to Eq. (2.100), the effect of a rotation Rg

R̂g |p; Γ, α〉 =
∑
α

′

DΓ(Rg)α′
α

∣∣∣R̂p; Γ, α′
〉
. (2.103)

is nontrivial as p may change. It is crucial that DΓ(Rg) and therefore R̂g |p; Γ, α〉 are only well
defined for g ∈ LG(pcm).

2.5 The relation between equivalent moving frames

The Lüscher formula Eq. (2.97) depends on the CM momentum but as already discussed in
Eq. (2.73) the energy levels and therefore k do not. Likewise, α still is a good quantum number
on the lattice and therefore the energy levels of Γ are degenerate. The values δl(k) from different
d and α will be identical up to statistical fluctuations. However the determination of k suffers
from large systematic errors that are alleviated with larger statistics as we will discuss in Sec. 6.2.
Compared to calculating δl(k) for all directions and rows, calculating only one energy level per
irrep by averaging over equivalent d and α and only applying the Lüscher formula once is more
robust. To achieve this, the basis states must be distinguished by pcm and the effect of the
projector Eq. (2.87) must be revised.

As mentioned before, if two boosts have the same absolute value they are connected by an
allowed lattice rotation from Oh and their symmetry groups are isomorphic. Let pcm be a boost
the obeys the quantization condition Eq. (2.72). We call the set of all allowed boosts with the
same absolute value “momentum sector” and denote it by

{ pcm } :−
{
p ∈ R3 , ∃ d ∈ Z3 : |2π/L · d| = |p|

}
. (2.104)

The restricted subgroups of O(3) have already been discussed in Sec. 2.3.3 and A.1. Depending
on the boost p these are the little groups

LG(p) :− { g ∈ Oh | R̂g p = p } (2.105)

comprised of all rotations in the octohedral group which leave p invariant. Even though for all
p ∈ { pcm } the little groups LG(p) are isomorphic, they consist of physically different rotations.
The existence of an isomorphism is not enough to identify the elements that share the same
representation matrix. Constructing the mapping is crucial to ensure the projection operators
from Eq. (2.87) are consistent.

In this section the relation between different little groups will be put on a firmer ground
by discussing them from a more formal perspective. The orbit stabilizer theorem will provide
another valuable point of view. On that basis the mapping between different little groups is
constructed and lastly the connection between different moving frames will be discussed.
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Chapter 2 Theoretical Background

2.5.1 The Orbit stabilizer theorem

Informally, the orbit stabilizer theorem states that the octahedral groups partitions into a set of
elements for each boost direction and the partition is given by the left cosets a little group in
Oh. In this section we will discuss the practical consequences of this statement as well as fix
consistent coset representatives that will be used throughout this work. The definitions and
proofs are adopted from [65].

In Eq. (2.105) the action of a group element g ∈ Oh on p ∈ { pcm } was already implicitly
defined by the mapping

g · p :− R̂g p (2.106)

and little group is just another name for the stabilizer of G with respect to p.
The orbit of pcm is defined as the image

Oh(pcm) :− Oh · pcm = { p , ∃ g ∈ Oh : g pcm = p } (2.107)

of Eq. (2.106). This is precisely the momentum sector {pcm } defined by Eq. (2.104). Furthermore
the first isomorphism theorem states, that the coimage of this mapping is canonically isomorphic
to the orbit. It is given by

Oh/LG(pcm) (2.108)

which is the set of all left cosets { g LG(pcm) , g ∈ Oh } of LG(pcm) in Oh . More formally the
orbit stabilizer theorem states that the concrete bijection between the orbit and the left cosets
of the stabilizer is given by

g · pcm ↔ gLG(pcm) . (2.109)

The use for this mapping is best illustrated by two examples:

1. If g in Eq. (2.109) is the identitiy element, the mapping becomes

pcm ↔ LG(pcm) . (2.110)

For pcm the orbit stabilizer theorem just yields the little group of pcm. This is how the little
group was originally introduced in Sec. 2.3.3 and therefore an important affirmation.

2. Let g̃ ∈ Oh : p̃ = g̃ · pcm Then Eq. (2.109) becomes

p̃ ↔ g̃ LG(pcm) . (2.111)

By definition pcm is invariant under its stabilizer. Therefore ∀g ∈ LG(pcm) : g̃gpcm = g̃pcm = p̃.
Because LG(pcm) forms a group it contains the identity and g̃ ∈ g̃ LG(pcm). In fact, the coset of
LG(pcm) in Oh with respect to g̃ are exactly all elements of Oh which transform pcm to p̃. This
means, that the decomposition into physically distinct momentum directions is mathematically
reflected by the decomposition into (by definition disjoint) cosets.

As the result is the same for all elements of the coset. Therefore it suffices to choose one pcm
for each momentum sector and one coset representative g̃ for each p ∈ {pcm }. For the sake of
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2.5 The relation between equivalent moving frames

LG(pcm) dcm g̃ d̃ α β γ i
Oh (0, 0, 0) E (0, 0, 0) 0 0 0 1

C4v (0, 0, 1)

E (0, 0, 1) 0 0 0 1
C4x+ (0, 1, 0) −π/2 π/2 π/2 1
C4y− (1, 0, 0) π π/2 π 1
i (0, 0,−1) 0 0 0 −1
C4x− (0,−1, 0) π/2 π/2 −π/2 1
C4y+ (−1, 0, 0) 0 π/2 0 1

C2v (1, 1, 0)

E (1, 1, 0) 0 0 0 1
σy (1,−1, 0) 0 π 0 −1
σx (−1, 1, 0) 0 π π −1
C2b‘ (−1,−1, 0) 0 π −π/2 1
σd6 (1, 0, 1) −π/2 π/2 −π/2 −1
σd4 (1, 0,−1) π/2 π/2 π/2 −1
C2d‘ (−1, 0, 1) π/2 π/2 π/2 1
C2f‘ (−1, 0,−1) −π/2 π/2 −π/2 1
σd5 (0, 1, 1) π π/2 0 −1
σd3 (0, 1,−1) 0 π/2 π −1
C2c‘ (0,−1, 1) 0 π/2 π 1
C2e‘ (0,−1,−1) π π/2 0 1

C3v (1, 1, 1)

E (1, 1, 1) 0 0 0 1
σz (1, 1.− 1) 0 0 π −1
σy (1,−1, 1) 0 π 0 −1
σx (−1, 1, 1) 0 π π −1
σd4 (1,−1,−1) π/2 π/2 π/2 −1
σd3 (−1, 1,−1) 0 π/2 π −1
σd1 (−1,−1, 1) 0 π π/2 −1
i (−1,−1,−1) 0 0 0 −1

C4v (0, 0, 2)

E (0, 0, 2) 0 0 0 1
C4x+ (0, 2, 0) −π/2 π/2 π/2 1
C4y− (2, 0, 0) π π/2 π 1
i (0, 0,−2) 0 0 0 −1
C4x− (0,−2, 0) π/2 π/2 −π/2 1
C4y+ (−2, 0, 0) 0 π/2 0 1

Table 2.1: Choice of reference vectors for the little groups and rotations chosen to relate reference frames
to all equivalent moving frames. The physical rotoflections are identified by the Euler angles α, β, γ of
the rotation part and the sign i under reflection.
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Chapter 2 Theoretical Background

notation we again drop the constant factors 2π/L by defining

dcm = L

2πpcm d̃ = L

2π p̃ . (2.112)

A complete list of our choices is given in Tab. 2.1.

2.5.2 Conjugation of little groups

Let again g̃ ∈ Oh : p̃ = g̃ · pcm be a coset representative. Furthermore let g′ ∈ LG(p̃).7 By
definition g′ · (g̃ · pcm) = g′ · p̃ = p̃ = g̃ · pcm. Applying g̃−1 to both sides of this equation yields
(g̃−1g′g̃) · pcm = pcm and therefore

g̃−1g′g̃ ∈ LG(pcm) . (2.113)

Analogously one also finds

g̃gg̃−1 ∈ LG(p̃) (2.114)

for g ∈ LG(pcm). The stabilizers of different elements in the orbit are conjugate to each other.
The group element in Eq. (2.114) is known as adjoint representation

Adg̃(g) :− g̃gg̃−1 (2.115)

Eq. (2.115) defines the mapping by which the consistent selection of physical rotations for each
p ∈ {pcm } is ensured.

Let Γ be an irreducible representation of LG(pcm). If p̃ ∈ {pcm }, LG(pcm) ∼= LG(p̃) and
therefore Γ is also an irrep of LG(p̃). Let g ∈ LG(p̃). The representation matrix of g may be
defined by

DΓ(g) = DΓ(Adg̃(g)) . (2.116)

By specify the matrix representation of DΓ for the elements of LG(pcm) it is specified for all
congruent little group equivalent little groups as well. The identification of elements from
different groups is fixed by the choice of coset representatives.

2.5.3 Projection operator

In Sec.2.3.3 we defined the projection operator

P̂Γ
αβ(d) = dim(Γ)

|LG(d)|
∑

g∈LG(d)
DΓ(g)∗

αβR̂g (2.87)

where like in Eq. (2.112) d is again connected to the elements of {pcm } via an irrelevant factor
2π/L. In order to consistently define P̂Γ

αβ(d) the elements g ∈ LG(d) must be related for all
equivalent directions. With the results from Sec. 2.5.1 and 2.5.2 this is straightforward as the

7 The little group, not the coset!
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needed relation is just the adjoint representation Eq. (2.115). The projection operator becomes

P̂Γ
αβ(d) = dim(Γ)

|LG(dcm)|
∑

g∈LG(dcm)
DΓ(Adg̃(g))∗

αβR̂Adg̃(g)

= dim(Γ)
|LG(dcm)|

∑
g∈LG(dcm)

DΓ(g)∗
αβR̂Adg̃(g) (2.117)

where in the last step Eq. (2.116) was used to simplify DΓ. dcm and g̃ are fixed in defined in
Tab. 2.1 by the condition d = g̃ · dcm.

2.6 Extraction of Energy Levels

The final missing link is how to obtain the energy levels k that enter the Lüscher formula
Eq. (2.97). The “correlation function”

C(t) =
〈
Osi(t)O

†
so(0)

〉
, (2.118)

in euclidean time serves this purpose. It describes the vacuum expectation value for creating a
state at (source) time 0 and annihilating it at (sink) time t. An immediate consequence is that
Eq. (2.54) applies, that is it can by estimated with Markov chain algorithms. Furthermore by a
simply inserting of a complete set of states and using the time evolution operator one finds

C(t) =
∑
k

〈0|Osi(0)|k〉 〈k|O†
so(0)|0〉 e−tEk . (2.119)

where Ek is the energy of the kth state in the spectrum. In the limit of large time seperations,
the correlation function relaxes into an exponential function of the ground state energy

C(t) ∝ e−tE0
(
1 + O

(
e−t(E1−E0)

))
. (2.120)

The contributions from higher states are suppressed by their energy’s difference to the ground
state. This allows to extract E0 directly from the correlation function. As the states k are
created and annihilated by the operators ~Osi,O

†
so, the only states that appear in Eq. (2.119) are

those with non-zero overlap to both operators. In reversal this means the ground state energy
of a certain channel may be calculated by choosing appropriate operators.

If one is interested in excited states in addition to E0, they can be extracted from a N ×N
correlator matrix

C(t) =
〈
~O(t) ~O†(0)

〉
. (2.121)

where the N components of ~O are different operators that couple to a common set of states.
With the standard variational method [66, 67], the eigenvalues λk(t, t0) of this correlator matrix
may be calculated. Here, t0 is a parameter of the method and will be referred to as “reference
time”. Very similar to Eq. (2.120) the eigenvalues approach [67]

λk(t, t0) ∝ exp(−Ek(t− t0)) + exp(−Ek(T − t+ t0)) + O(e−t(Ek−EN+1)) . . (2.122)
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when t becomes large enough. While the correction to Eq. (2.120) was dependent on the
energy difference to the first excited state, in Eq. (2.122) it becomes is the energy difference
to the first state not resolved by the correlation matrix. As this is generally larger, solving a
generalized eigenvalue problem (GEVP) not only yields multiple energy levels, but also increases
the precision of all but the highest extracted level. For a detailed discussion see Ref. [68].

For the Lüscher formula in moving frames operators that interpolate to the states |p,Γ, α〉
introduced in Sec. 2.4 are required. The explicit construction for the ρ resonance is one main
result of this thesis and the topic of section 3. For the moment we assume they have already
been found and denote the set by ~Oα

Γ(p).
Let Γ, Γ′ be irreps of LG(p) 1 ≤ α ≤ dim(Γ), ≤ α′ ≤ dim(Γ′) two of their rows. Because

both operators belong to the same group, the correlation function can be shown to behave like〈
Oα

Γ(t,p) Oα
′

Γ′ (0,p)†
〉

= 1
dim(Γ)δΓΓ′δαα′

∑
β,β

′

δββ′

〈
Oβ

Γ(p) Oβ
′

Γ′(p)†
〉

(2.123)

as a consequence of the great orthogonality theorem. Eq. (2.123) states that the correlation
function vanishes unless both operators interpolate to the same irrep and row.

Further on it must yield the same value for all rows of Γ. This proofs the statement claimed
in Sec. 2.5: The energies extracted from different quantized momenta p of the same momentum
sector d2 and rows α of the same irrep Γ are identical up to statistical fluctuations. By already
averaging the correlation functions, the susceptibility to statistical noise is reduced. We denote
the averaged correlation function by

CΓ,d2(t) = 1
|{pcm }|

∑
p∈{pcm }

1
dim(Γ)

dim(Γ)∑
α=1

〈
~Oα

Γ(t,p) · ~Oα
Γ(0,p)†

〉
. (2.124)
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CHAPTER 3

Operators for the ρ meson

3.1 The Rho meson

The ρ meson was first measured in [10, 11] and confirmed in [12–14, 69]. A nice summary of the
experimental work leading to its discovery is given in [70]. The measurement has since been
repeated at ever higher accuracy. In particular [71] tabulates recorded bin data for phase shifts.

It is an vector isovector, i.e. it has quantum numbers

IGJPC = 1+1−− (3.1)

the ρ decays almost exclusively (∼ 100%) into ππ [38]. In most experiments the favored
mechanism was one-pion exchange appearing in πN → ππN [10–14] or πp → ππ∆ [71] with
low momentum transfer to the nucleon / ∆ particle. This is enforced by a small-t cut, usually
around 3Mπ.

As a infrared and collinear safe definition of jets is chronically difficult, the most precise
measurements today stem from e+e− annihilation and τ decays. The current PDG average [72]
for the rho mass and width are

Mρ = 775.26(25) MeV (3.2)
Γρ = 149.1(8) MeV . (3.3)

At this level of accuracy even effects from isospin violation and ρ − γ mixing must be taken
into account [73]. As these effects are not mediated by the strong forces, this level of precision
cannot be expected from a lattice QCD simulation where all other forces are neglected.

We are going to study the decay ρ0 → π+π−. The decay ρ0 → π0π0 is forbidden because two
neutral pions cannot be coupled to p-wave. This may be inferred from bose symmetry or by the
fact that the Clebsch–Gordan coefficient for |1, 0〉I ⊗ |1, 0〉I → |1, 0〉I is zero.

On the lattice angular momentum is no longer a good quantum number and instead degen-
eracies are governed by the irreps Γ of little groups LG(d) which depend on the boost direction
d.

The decomposition of irrep L of the continuum rotation group O(3) may formally be expressed
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Chapter 3 Operators for the ρ meson

d2 LG(dcm) L = 0 L = 1 L = 2
0 Oh A1g T1u T2g ⊕ Eg
1 C4v A1 A1 ⊕ E A1 ⊕ B1 ⊕ B2 ⊕ E
2 C2v A1 A1 ⊕ B1 ⊕ B2 2A1 ⊕ A2 ⊕ B1 ⊕ B2
3 C3v A1 A1 ⊕ E A1 ⊕ 2E
4 C4v A1 A1 ⊕ E A1 ⊕ B1 ⊕ B2 ⊕ E

Table 3.1: Little groups for all momentum sectors d2 used in this work. Additionally the decomposition
of angular momentum irrep for L up to d-wave into irreps of the little group LG(dcm) is given. [22, 54]

as

L →
NΓ⊕
i=1

niΓi ,
∑
i

ni · dim(Γi) = 2l + 1 . (2.82)

Concretely for p-wave and d2 ≤ 4 and up to d-wave, the decompositions were for instance given
in [22, 54] and are reproduced in Tab. 3.1. It is immediately apparent that for non-zero d2, A1
receives contributions from all partial waves and depending on the moving frame E or B1 and
B2 from p- and d-wave.

For a ππ-system in the vector channel however, there are additional symmetries that
prevents such partial wave mixing. The only possible quantum numbers are IGJPC =
0+0++, 1−1−−, 2+0++, 2+2++ and therefore mixing of even and odd partial waves is forbidden
by isospin, parity and charge conjugation. If QCD is formulated using the twisted mass reg-
ularization introduced in Sec. 2.2.1 I and P are no longer good quantum numbers, although
violations are suppressed by O

(
a2
)

and for the ρ no significant isospin splitting has been
observed [74]. However C-symmetry is still exact and therefore mixing of even and odd partial
waves is forbidden also with twisted mass. Beyond that, the contributions from f wave have
been analysed and found to be negligible [29, 31].

Neglecting highr partial waves is in accordance with the experiments which almost exclusively
measured p-wave. For l = 1 all multiplicities are simply n = 1 and Eq. (2.97) simplifies to

δ1(k) = arccotMdcm,Γ,α
11,11 (k) . (3.4)

The matrix elements for dcm are calculated from Eq. (2.96) and are listed in Tab. 3.2. Due to
the degeneracies of different momenta and rows discussed in Sec. 2.6, the choice of dcm and α is
arbitrary. There are several symmetries of the zeta function Z ~d

lm which we ignored for simplicity.
They may be used to simplify the expressions for Md,Γ,α [22], but the result will be identical up
to numeric precision.

3.2 Operator construction

In Sec. 2.6 the existence of operators interpolating to lattice states |p; Γ, α〉 was assumed. This
chapter illustrates how these operators are constructed in practice. The construction will focus
on the ρ operators that are used in this work but the steps to generalize the procedure to other
physical processes will be covered as well.
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3.2 Operator construction

dcm Γ α M
dcm,Γ,α
11,11

(0, 0, 0) T1u 2 w0,0 − w2,0 − 3√
6w2,−2 − 3√

6 · w2,2

(0, 0, 1) A1 1 w0,0 + 2 · w2,0

(0, 0, 1) E 1 w0,0 − w2,0 + 3i√
6 · w2,−2 − 3i√

6 · w2,2

(1, 1, 0) A1 1 w0,0 − w2,0 + 3i√
6 · w2,−2 − 3i√

6 i · w2,2

(1, 1, 0) B1 1 w0,0 + 2 · w2,0

(1, 1, 0) B2 1 w0,0 − w2,0 − 3i√
6 · w2,−2 + 3i√

6 · w2,2

(1, 1, 1) A1 1 w0,0 + 2 · 1+i√
6 · w2,−1 − 2 · 1−i√

6 · w2,1 + 2i√
6 · w2,−2 − 2i√

6 · w2,2

(1, 1, 1) E 1 w0,0 − 1+i√
6 · w2,−1 + 1−i√

6 · w2,1 − i√
6 · w2,−2 + i√

6 · w2,2

(0, 0, 2) A1 1 w0,0 + 2 · w2,0

(0, 0, 2) E 1 w0,0 − w2,0 + 3i√
6 · w2,−2 − 3i√

6 · w2,2

Table 3.2: Matrix elements for all momentum sectors d2 and irreps Γ used in this work. Each momentum
sector is represented by a single choise dcm ∈ {d } and 1 < α < dim(Γ).

Any nontrivial state in a field theory can be created from the vacuum by an appropriate
interpolating field operator. In particular one can find an interpolating operator for each basis
state of the QCD Hamiltionian in angular momentum space. Let Om

L (p)† by such an operator
that creates

|p,L,m〉 = Om
L (p)† |0〉 (3.5)

where |0〉 denotes the vacuum. Operators may be used interchangeably with the basis states
themselves. This means that the projection discussed in Sec. 2.3.3 and discussion of momentum
in Sec. 2.4 also hold for operators.

3.2.1 Continuum operators

The arguably simplest operator that couples to the ρ channel is an antisymmetric quark bilinear
[75]

ρ(x) = 1√
2

(ū(x)cαγ
ρ
αβu(x)cβ − d̄(x)cαγ

ρ
αβd(x)cβ) (3.6)

which resembles the ρ0. α and β denote spin indices and c colour. It has isospin |1, 0〉I and
the Dirac matrix γρ must be chosen such that ρ transforms like JPC = 1−−. Without using
derivative operators the only options are γρ ∈ { iγi, γ0γi } and obviously linear combinations of
these.

The ρ channel is known to have two low-lying energy levels very close together. The separation
of these is obstructed by one of these states coupling only weakly to operators like in Eq. (3.6).
In practice, just single-meson operators are not sufficient to disentangle the states. In order to
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Chapter 3 Operators for the ρ meson

properly calculate the interacting energy levels, also two-meson operators are necessary. [27, 76]
In the rho channel the natural choice are operators composed of two pions. The physical states
are separated by solving a generalized eigenvalue problem as explained in Sec. 2.6.

The simplest operator that couples the π± channel is again a quark bilinear [75]

π+(x) = ψ̄d(x)cαγ
π
αβψu(x)cβ or π−(x) = ψ̄u(x)cαγ

π
αβψd(x)cβ , (3.7)

this time with definite isospin |1,±1〉I for π±. The Dirac matrix γπ must again be chosen such
that π± transform like JPC = 0−+. In this work we will always use γπ = iγ5. Except for
operators including derivatives, γ0γ5 would also have the right quantum numbers, but a worse
signal to noise ratio.

To obtain a two-pion operator that couples to the ρ channel, the π± operators must be coupled
to isospin |1, 0〉. In analogy to the Clebsch-Gordan decomposition

|1, 0〉 = 1√
2

(|1,+1〉 ⊗ |1,−1〉 − |1,−1〉 ⊗ |1,+1〉) (3.8)

the operator is

ππ(t,x1,x2) = 1√
2

(
π+(t,x1)π−(t,x2) − π−(t,x1)π+(t,x2)

)
= 1√

2

(
ψ̄d(x1)αγ

π
αβψu(x1)βψ̄u(x2)γγ

π
γδψd(x2)δ −

ψ̄u(x1)αγ
π
αβψd(x1)βψ̄d(x2)γγ

π
γδψu(x2)δ

)
.

(3.9)

Both pions are created and accordingly annihilated at different spatial lattice sites x1 and x2
but at the same time t. A temporal seperation of particles is possible but tremendously increases
the complexity of the calculation without measurable effects on the result.

In order to interpolate to a state |p,L,m〉, two more changes need to be implemented. The
first is to project the operators to momentum p. For the single-meson operators in position
space is done via a discrete Fourier transformation

O(t,p) =
∑
x

O(t,x) eixp . (3.10)

For two-meson operators, the Fourier transformation must be applied to each spatial lattice site,

O(t,p1,p2) =
∑
x1,x2

O(t,x1,x2) eix1p1 eix2p2 . (3.11)

The second change is to project the operators to definite magnetic quantum number m. This is
done by using the standard (covariant) spherical instead of the cartesian basis. Our conventions
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3.2 Operator construction

for Dirac matrices are given in Sec. A.3. The Dirac-matrices used in Eq. (3.6) are

γ+1 = − i√
2

(γ1 − iγ2)

γ0 = iγ3

γ−1 = i√
2

(γ1 + iγ2)

(3.12)

and analogously for γ0γi. For the pseudoscalars in Eq. (3.7), the basis is one-dimensional and
therefore the basis change is trivial. For consistency the Dirac matrix is also labelled by m

γ0 = iγ5 (3.13)

nevertheless.

3.2.2 Operators in the twisted basis

The chiral transformation to maximal twist might further change the gamma-matrices in
Eq. (3.12)-(3.13). In this section a dictionary between the used physical operators and their
twisted counterpart is created by explicitly carrying out the transformation.

The quark fields in the twisted basis are connected to the physical basis by (2.41). Inverting
the relation yields the back-transformation

ψ = e+iγ5τ3αtm/2χ . (3.14)

We may expand the exponential into sine and cosine to arrive at a much more applicable
expression at maximal twist. The general result is

e−iγ5τ3αtm/2 =
∞∑
n=0

1
(2n)!

(
iγ5τ3

αtm
2

)2n
+

∞∑
n=0

1
(2n+ 1)!

(
iγ5τ3

αtm
2

)2n+1

=
∞∑
n=0

(
1

(2n)! (−1)n
(
αtm

2

)2n
)

+ i
∞∑
n=0

(
1

(2n+ 1)!(−1)n
(
αtm

2

)2n+1
)
γ5τ3

= cos
(
αtm

2

)
+ i sin

(
αtm

2

)
γ5τ3

and at maximal twist i.e. αtm = π
2 it simplifies to

e−iγ5τ3π/4 = 1√
2

+ i√
2
γ5τ3 . (3.15)

Applying this transformation to a doublet of light quarks yields

ψ ≡
(
ψu
ψd

)
=
(

1√
2

(
1 0
0 1

)
+ i√

2
γ5

(
1 0
0 −1

))
·
(
χu
χd

)
=

( 1√
2 + i√

2γ5
)
χu(

1√
2 − i√

2γ5
)
χd

 . (3.16)
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Particle Physical basis Twisted basis
π± ψ̄d/uiγ5ψu/d χ̄d/uiγ5χu/d
π+ ψ̄dγ0γ5ψu χ̄diγ0χu
π− ψ̄uγ0γ5ψd - χ̄uiγ0χd
ρ0 ψ̄uiγiψu − ψ̄diγiψd χ̄uiγiχu − χ̄diγiχd
ρ0 ψ̄uγ0γiψu − ψ̄dγ0γiψd χ̄uiγ0γiγ5χu + χ̄diγ0γiγ5χd

Table 3.3: Juxtaposition of interpolating operators in the physical and twisted basis.

As an example the transformation is carried out for the π+ operator from Eq. (3.7):

ψ̄diγ5ψu = iψ†
dγ0γ5ψu

= iχ†
d

( 1√
2

− i√
2
γ5

)†
γ0γ5

( 1√
2

+ i√
2
γ5

)
χu

= i
2χ

†
dγ0γ5χu + i2

2 χ
†
dγ5γ0γ5χu + i2

2 χ
†
dγ0γ5γ5χu + i3

2 χ
†
dγ5γ0γ5γ5χu

= i
2χ

†
dγ0γ5χu + 1

2χ
†
dγ0χu − 1

2χ
†
dγ0χu + i

2χ
†
dγ0γ5χu

= iχ†
dγ0γ5χu

= χ̄diγ5χu .

(3.17)

For other operators the calculation works analogously. It should be noted, that the term
1/2χ†

dγ0χu canceled in the calculation. In general the operators in the twisted basis are linear
combinations of multiple different operators in the physical basis. The subsequent calculation
must be performed for each term that arises. In the case of the ρ meson it turns out that one
term always cancels, such that there is always a one-to-one correspondence between twisted and
physical basis, although the relation is not necessarily the identity as the gamma-matrix changes
for some operators. The results are summarized in Tab. 3.3. Furthermore isospin is broken by
twisted mass and indeed e.g. the neutral π and charged ρ mesons transform differently from
their counterparts. For more details on the relation between the physical and the twisted basis,
we refer to the original publications [77–79] as well as [80] for a review.

3.3 Projection of operators

In Sec. 2.3.3 the projection operator

P̂Γ
αβ(pcm) = dim(Γ)

|LG(pcm)|
∑

g∈LG(pcm)
DΓ(g)∗

αβR̂g (2.87)

was applied to an angular momentum state |L,m〉. The result was a linear combination of lattice
eigenstates with the subduction coefficients sΓ,α,n

L,m

|Γ, α, (L, n)〉 =
∑
m

sΓ,α,n
L,m |L,m〉 . (2.90)

36



3.3 Projection of operators

For the operators in this work the action of Eq. (2.87) on the linear momentum p must be
considered as well. In Sec. 2.4 the action of R̂g on a state with momentum was derived:

R̂ |p; L,m〉 = R̂ |p〉 ⊗ R̂ |L,m〉

=
∣∣∣R̂p〉⊗

∑
m

′

DL(R)m′
m

∣∣∣L,m′
〉

=
∑
m

′

DL(R)m′
m

∣∣∣R̂p; L,m′
〉
.

(2.100)

Single meson operator the momentum of a single meson is by definition the CM-momentum
of the system. Therefore the only relevant projection is∑

β

φβ
∑
m

φmP̂
Γ
αβ(pcm) Om

L (pcm)† (3.18)

with the momenta aligned. By definition all rotations in the projection operator are the elements
of LG(pcm) which leave pcm invariant and thus may be factored out from the projection.
Applying the projected operator onto a vacuum state

Oα
Γ(pcm)† |0〉 ≡

∑
β

φβ
∑
m

φmP̂
Γ
αβ(pcm) Om

L (pcm)† |0〉

= |pcm〉 ⊗
∑
β

φβ
∑
m

φmP̂
Γ
αβ(pcm) |L,m〉

= |pcm〉 ⊗
∑
m

sΓ,α,n
L,m |L,m〉

=
∑
m

sΓ,α,n
L,m Om

L (pcm)† |0〉

(3.19)

one indeed finds a relation in analogy to Eq. (2.90). As the state is arbitrary, Eq. (3.3) leads to
the general operator identity

Oα
Γ(pcm)† =

∑
m

sΓ,α,n
L,m Om

L (pcm)† Oα
Γ(pcm) =

∑
m

sΓ,α,n∗
L,m Om

L (pcm) . (3.20)

There is one lattice ρ operator

ραΓγ(pcm)† =
∑
m

sΓ,α,n
L,m

∑
x

eixpργ(x)† (3.21)

for each of γρ ∈ { iγm, γ0γi }. For brevity they will be denoted as ρm and ρ50m (in the twisted
basis).

Two-meson operators For more than one particle the action of the projection operator on
momenta becomes non-trivial.

Let O†
L1

(p1),O†
L2

(p2) be single-meson operators that belong to the L1- and L2-irrep of SO(3)
respectively and let p1 and p2 be the momenta of the individual pions. The CM momentum is
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the sum

pcm = p1 + p2 (3.22)

of both the particle’s individual momenta.

The two-meson operator interpolating to a state with |pcm,L,m〉 is

Om†
L (p1,p2) = Om1†

L1
(p1) ⊗ Om2†

L2
(p2)

=
∑

m1,m2

〈l,m |l1,m1; l2,m2〉 Om1†
l1

(p1)Om2†
l2

(p2) . (3.23)

In the last line the operator product was decomposed via Clebsch-Gordan decomposition where
〈l,m| l1,m1; l2,m2〉 denotes the Clebsch-Gordan coefficient for l1 ⊗ l2 coupling to l.

The individual momenta p1 and p2 no longer have to be aligned to pcm. If they are not, the
rotation must be explicitly carried out. It will turn out useful to introduce the (half) momentum
transfer

q = 1
2(p1 − p2) . (3.24)

Together with Eq. (3.22) p1 and p2 may be expressed as

p1 = 1
2pcm + q p2 = 1

2pcm − q . (3.25)

By definition pcm is invariant under the action of LG(pcm) and therefore only q transforms
under rotations. In this form by choosing different q one obtains different operators all of which
interpolate to |pcm; Γ, α〉. At this point, we reap the benefits of the preparations in Sec. 2.5.
Retroactively identifying which values of q are physically equivalent for different pcm is a tedious
task. By proactively using the projector defined in Eq. (2.117) it becomes straightforward. By
again applying the projected operator to a vacuum state

Oα†
Γ (pcm) |0〉 =

∑
β

φβ
∑
m

φmP̂
Γ,l
αβ (pcm)Om

L (pcm) |0〉

=
∑
β

φβ
∑
m

φm
∑

m1,m2

〈l,m| l1,m1; l2,m2〉

dim(Γ)
|LG(pcm)|

∑
g∈LG(pcm)

DΓ(Rg)
∗
αβ

∑
x1,x2

exp
(
ix1 · R̂Adg̃(g)p1 + ix2 · R̂Adg̃(g)p2

)
∑
m

′
1

D
L1
m

′
1m1

(RAdg̃(g)) Om
′
1†

L1
(x1)

∑
m

′
2

D
L2
m

′
2m2

(RAdg̃(g)) Om
′
2†

L2
(x2) |0〉

(3.26)

albeit far more complicated than Eq. (3.20) one again finds an operator identity. The global
rotation to another p ∈ {pcm } now only requires inserting the representative g̃ of another coset.
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dcm Γ p1 ⊗ p2

(0, 0, 0) T1u (0, 0, 1) ⊗ (0, 0,−1), (1, 0, 1) ⊗ (−1, 0,−1)
(0, 0, 1) A1 (0, 0, 1) ⊗ (0, 0, 0), (0, 0, 2) ⊗ (0, 0,−1), (1, 0, 1) ⊗ (−1, 0, 0), (1, 1, 1) ⊗ (−1,−1, 0)
(0, 0, 1) E (0, 1, 1) ⊗ (0,−1, 0), (1, 1, 1) ⊗ (−1,−1, 0)
(1, 1, 0) A1 (1, 1, 0) ⊗ (0, 0, 0), (1, 1, 1) ⊗ (0, 0,−1), (1,−1, 0) ⊗ (0, 2, 0)
(1, 1, 0) B1 (1, 1, 1) ⊗ (0, 0,−1), (1, 0, 1) ⊗ (0, 1,−1)
(1, 1, 0) B2 (1, 0, 0) ⊗ (0, 1, 0), (1, 0, 1) ⊗ (0, 1,−1), (2, 0, 0) ⊗ (−1, 1, 0)
(1, 1, 1) A1 (1, 1, 1) ⊗ (0, 0, 0), (1, 0, 1) ⊗ (0, 1, 0), (2, 0, 0) ⊗ (−1, 1, 1)
(1, 1, 1) E (1, 0, 1) ⊗ (0, 1, 0), (1,−1, 1) ⊗ (0, 2, 0)
(0, 0, 2) A1 (0, 0, 2) ⊗ (0, 0, 0)
(0, 0, 2) E (0, 1, 1) ⊗ (0,−1, 1)

Table 3.4: Momentum combinations p1 ⊗ p2 used in Eq. (3.27). We only give one representative CM
momentum pcm = 2π/Ld for each momentum sector. The other directions may be generated by a global
rotation. The momentum combinations depend on the irrep Γ because not all combinations couple to all
irreps in which case Eq. (3.27) simply adds up zero.

dcm Γ q

(0, 0, 0) T1u (0, 0, 1), (1, 0, 1)
(0, 0, 1) A1 (0, 0, 0.5), (0, 0, 1.5), (1, 0, 0.5), (1, 1, 0.5)
(0, 0, 1) E (0, 1, 0.5), (1, 1, 0.5)
(1, 1, 0) A1 (0.5, 0.5, 0), (0.5, 0.5, 1), (0.5,−1.5, 0)
(1, 1, 0) B1 (0.5, 0.5, 1), (0.5,−0.5, 1)
(1, 1, 0) B2 (0.5,−0.5, 0), (0.5,−0.5, 1), (1.5,−0.5, 0)
(1, 1, 1) A1 (0.5, 0.5, 0.5), (0.5,−0.5, 0.5), (1.5,−0.5,−0.5)
(1, 1, 1) E (0.5,−0.5, 0.5), (0.5,−1.5, 0.5)
(0, 0, 2) A1 (0, 0, 1)
(0, 0, 2) E (1, 0, 0)

Table 3.5: Same as 3.4 but expressed by q via Eq. (3.24).

Reexpressing the momenta with Eq. (3.25) we may write

Oα†
Γq(pcm) ≡ Oα

Γ(p1,p2)

=
∑
β

φβ
∑
m

φm
∑

m1,m2

〈l,m| l1,m1; l2,m2〉 dim(Γ)
|LG(pcm)|

∑
g∈LG(pcm)

DΓ(Rg)
∗
αβ

∑
x1,x2

exp
(

ix1 ·
(1

2pcm + R̂Adg̃(g)q

)
+ ix2 ·

(1
2pcm − R̂Adg̃(g)q

))
∑
m

′
1

D
L1
m

′
1m

′
1
(RAdg̃(g)) Om

′
1†

L1
(x1)

∑
m

′
2

D
L2
m

′
2m

′
2
(RAdg̃(g)) Om

′
2†

L2
(x2) .

(3.27)

If two values q and q′ are connected by a rotation R̂gq = q′ for some g ∈ LG(pcm), the
summands are only reordered due to the sum over all elements of LG(pcm). Up to a possible
phase the resulting operators are ambiguous. In Tab. 3.4 we give our lists of momentum
combinations p1 ⊗p2 for one representative combinations of each momentum sector. In Tab. 3.5
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we give the same lists but reexpressed by q using Eq. (3.24).

Two-pion operator The ππ operator is a special case as both single-meson operators are
(pseudo-)scalar and therefore invariant under rotations.1 The sums over m′

1 and m′
2 in Eq. (3.27)

drop out and the operator simplifies to

π+π−α†
Γq(pcm) =

∑
β

φβ
∑
m

φm
∑

m1,m2

〈l,m| l1,m1; l2,m2〉 dim(Γ)
|LG(pcm)|

∑
g∈LG(pcm)

DΓ(Rg)
∗
αβ

∑
x1,x2

exp
(

ix1 ·
(1

2pcm + R̂Adg̃(g)q

)
+ ix2 ·

(1
2pcm − R̂Adg̃(g)q

))
π+(x1)π−(x2) .

(3.28)

Finally the isospin projection Eq. (3.9) gives

ππα†
Γq(pcm) = 1√

2

(
π+π−α†

Γq(pcm) − π−π+α†
Γq(pcm)

)
= 1√

2
∑
β

φβ
∑
m

φm
∑

m1,m2

〈l,m| l1,m1; l2,m2〉 dim(Γ)
|LG(pcm)|

∑
g∈LG(pcm)

DΓ(Rg)
∗
αβ

∑
x1,x2

exp
(

ix1 ·
(1

2pcm + R̂Adg̃(g)q

)
+ ix2 ·

(1
2pcm − R̂Adg̃(g)q

))
(
π+†(x1)π−†(x2) − π−†(x1)π+†(x2)

)
.

(3.29)

3.3.1 Set of ρ operators
To sum up the results of this chapter in Eq. (3.21) and Eq. (3.29) we found operators that
coupled to the ρ channel. They form the set of operators ~Oα

Γ(p) from Sec. 2.6. We use two
ρ operators which differ by the choice of γρ and a number of ππ operators that are labeled
by different q. The exact number of which is different for each moving frame and irreducible
representation and can be extracted from Tab. 3.5.

The correlation functions
〈
~Oα

Γ(p) ~Oα
Γ(p)†

〉
F

are bilinear and may be therefore expressed
in terms of the continuum operators ργ(x) and π+(x1)π−(x2). This task boils down to fac-
torizing lengthy analytical expressions. This was carried out automatically with a Python
implementation.2

With this we reduced the correlation functions for all different moving frames and irre-
ducible representations to a linear combination of just three terms. Namely, the ρ correlator〈
ρ(y)ρ(x)†

〉
F

, the ππ correlator
〈
ππ(y, y′)ππ(x, x′)†

〉
F

and the cross-term
〈
ππ(y, y′)ρ(x)†

〉
F

.3

All three are continuum quantities and live in position space. Their analytic calculation is the
subject of the following chapter.

1 Strictly speaking they obtain a factor (−1) under improper rotations but it always enters to the power of two
and therefore cancels

2 https://github.com/HISKP-LQCD/sLapH-projection
3 The cross term is hermitian. Therefore specifying one of

〈
ππ ρ

†〉
F

and
〈
ρ

†
ππ

†〉
F

is sufficient.
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CHAPTER 4

Wick contractions

4.1 Wick contractions

At this point we can conclude the discussion that started with the path integral in Sec. 2.2.2.
We successfully seperated the fermionic from the gluonic degrees of freedom but deferred the
calculation of fermionic expection values〈

O[ψ1, ψ̄1, . . . ψNf
, ψ̄Nf

, U ]
〉
F

(4.1)

by making use of Wick’s theorem〈
ηi1 η̄j1 . . . ηin η̄jn

〉
F

=
∑
σ∈Sn

sign(σ) D−1
i1jσ(1)

D−1
i2jσ(2)

D−1
injσ(n)

. (2.52)

In the remainder of this thesis, the twisted basis is adopted. For ease of notation we adopt
the shorthand notation

χf (x)cα ≡ f(x)α (4.2)

where f denotes the quark flavor, the greek index is the Dirac component and the roman color
index is suppressed as there is no color change in mesons.

To demonstrate Wick’s theorem and introduce notation, the euclidean correlation function of
a pion annihilation operator π+(x) and a pion creation operator π+†(y) = π−(y) is calculated.
The pion operators introduced in Eq. (3.7) take the following shorthand form:

π+(x) = d̄(x)αγαβu(x)β or π−(x) = ū(x)αγαβd(x)β . (4.3)

where repeated indices are summed over.
The correlation function therefore is the vacuum expectation value

C
π

+(x|y) =
〈
π+(y) π+(x)†

〉
F

=
〈
d̄(y)αγαβu(y)βū(x)γγγδd(x)δ

〉
F
. (4.4)

The expectation value factorizes in flavor space. Therefore we group spinor and antispinors with
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Chapter 4 Wick contractions

the same flavor together and obtain〈
d̄(y)αγαβu(y)βū(x)γγγδd(x)δ

〉
F

= γαβγγδ
〈
u(y)βū(x)γ

〉
u

(−)3
〈
d(x)δd̄(y)α

〉
d

= γαβγγδ
〈
u(y)βū(x)γ

〉
u

(−)3
〈
d(x)δd̄(y)α

〉
d

= − tr
(
γD−1

u (y|x)γD−1
d (x|y)

)
, (4.5)

where the trace acts only in Dirac space and we introduced the quark propagator for flavor f

D−1
f (x|y) = f(x)f̄(y) . (4.6)

The minus signs in Eq. (4.5) stem from anticommuting Grassmann numbers in position and
flavor space. The square brackets are a convenient notation for the permutation σ ∈ Sn and
indicate which quark fields are merged into a propagator. While for the charged pion only one
permuation contributes, in general Wick’s theorem yields a sum of multiple terms with very
similar structure. All these terms consist of traces of propagators and operators. Calculations
like in Eq. (4.5) are usually referred to as “Wick contraction” They can be visualized with quark

γ γ

u

d

Figure 4.1: Quark line diagram for a charged pion correlation function.

flow diagrams. An operator is represented by a circle at some spacetime point and a propagator
by a line connecting to different spacetime points and therefore operators. Pictorially Wick’s
theorem states, that the correlation function is the sum of all closed quark flow diagrams. The
quark line diagram for Eq. (4.5) is depicted in Fig. 4.1.

4.1.1 Wick contractions for the ρ0 meson

The result of the Wick contractions for the ρ channel are qualitatively different for different
number of mesons involved. As explained in Sec. 3.3.1, the correlation functions in the Gevp
belong to one of three classes:

〈
ρ ρ†

〉
,
〈
ρ ππ†

〉
and

〈
ππ ππ†

〉
. According to the number of

mesons involved, they will be named 2-point, 3-point and 4-point function respectively.1 The
purpose of this section is to perform the Wick contractions relevant for the ρ0 meson and express
the result in terms of quark line diagrams. In Chapter 3.2 the operators interpolating to ρ- and
ππ-states where presented. These constitute correlation functions.

1 These terms are usually used for current insertion diagrams with operators at intermediate times tso < tc < tsi.
This is explicitly different here as two pions always are created or annihilated at the same time.
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4.1 Wick contractions

2-point function
〈
ρ ρ†

〉
The correlation function for creating and annihilating a ρ0 meson is

given by〈
ρ(y)ρ(x)†

〉
F

= 1
2〈(ū(y)αγ

ρ
αβu(y)β − d̄(y)αγ

ρ
αβd(y)β)(ū(x)γγ

ρ
γδu(x)δ − d̄(x)γγ

ρ
γδd(x)δ)〉F

= 1
2
(
〈ū(y)αγ

ρ
αβu(y)βū(x)γγ

ρ
γδu(x)δ〉F − 〈ū(y)αγ

ρ
αβu(y)β d̄(x)γγ

ρ
γδd(x)δ〉F

− 〈d̄(y)αγ
ρ
αβd(y)βū(x)γγ

ρ
γδu(x)δ〉F + 〈d̄(y)αγ

ρ
αβd(y)β d̄(x)γγ

ρ
γδd(x)δ〉F

)
(4.7)

According to Wick’s theorem, this expression may be rewritten as the sum of all possible
contractions. It suffices to calculate all contractions of the first two terms. The results for the
third and forth term can be obtained from the former two by interchanging u ↔ d.

The first term has two non-vanishing contractions. The first one is

γαβγ
ρ
γδ〈ū(y)αu(y)βū(x)γu(x)δ〉F

= γ
ρ
αβγ

ρ
γδ(−)〈u(y)βū(y)α〉F (−)〈u(x)δū(x)γ〉F

= γ
ρ
αβγ

ρ
γδD

−1
u (y|y)βαD

−1
u (x|x)δγ

= tr
(
γρD−1

u (y|y)
)

· tr
(
γρD−1

u (x|x)
)
. (4.8)

This is called a “disconnnected contribution”. The origin of this term becomes clear when

γ γ
u u

Figure 4.2: Quark line diagram the disconnected piece of a ρ correlation function.

looking at the quark flow diagram depicted in Fig. 4.2. There are no quark lines connecting the
source to the sink site.2

The second contraction is the “connecting contribution”. The calculation is analog to the
derivation of Eq. (4.5). The connected piece is

γαβγ
ρ
γδ〈ū(y)αu(y)βū(x)γu(x)δ〉F

= − tr
(
γρD−1

u (y|x)γρD−1
u (x|y)

)
. (4.9)

For the remaining contractions intermediate steps will be omitted and only the final results
given. While all calculations were performed by hand, they where verified with the QCT quark
contraction tool implemented in Mathematica.[81]

2 A more precise term would be fermionic disconnected as the sites are of course still connected by the gluon field
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Chapter 4 Wick contractions

Conjoined, Wick’s theorem for the first term of Eq. (4.7) reads

〈ū(y)αγ
ρ
αβu(y)βū(x)γγ

ρ
γδu(x)δ〉F

= tr
(
γρD−1

u (y|y)
)

tr
(
γρD−1

u (x|x)
)

− tr
(
γρD−1

u (y|x)γρD−1
u (x|y)

)
.

(4.10)

The second term of Eq. (4.7) only has one non-vanishing Wick contraction

〈ū(y)αγ
ρ
αβu(y)β d̄(x)γγ

ρ
γδd(x)δ〉F (4.11)

= γαβγ
ρ
γδ〈ū(y)αu(y)β d̄(x)γd(x)δ〉F

= tr
(
γρD−1

u (y|y)
)

· tr
(
γρD−1

d (x|x)
)
. (4.12)

Because the light flavors are degenerate in the action Eq. (2.45), γ5-hermiticity holds and the
d-quark propagators may be expressed by

D−1
d (y|x) = γ5D

−1
u (x|y)†γ5 (4.13)

and Eq. (4.12) becomes

〈ū(y)αγαβu(y)β d̄(x)γγγδd(x)δ〉F = tr
(
γρD−1

u (y|y)
)

· tr
(
γργ5D

−1
u (x|x)†γ5

)
(4.14)

which is the same as Eq. (4.8) up to a possible sign.
Using Eq. (4.8) - Eq. (4.14) the complete correlation function may be expressed as

〈ρ(y)ρ(x)†〉F

= −1
2
(
tr
(
γρD−1

u (x|x)
)

− tr
(
γργ5D

−1
u (x|x)†γ5

)) (
tr
(
γρD−1

u (y|y)
)

− tr
(
γργ5D

−1
u (y|y)†γ5

))
+ 1

2
(
tr
(
γργ5D

−1
u (y|x)†γ5γ

ργ5D
−1
u (x|y)†γ5

)
+ tr

(
γρD−1

u (y|x)γρD−1
u (x|y)

))
(4.15)

The correlation function may be further simplified for a fixed choice for γρ. Let γρ = γm as
defined in Eq. (3.12). Then

γ5γ
mγ5 = −γm

and because γm† = γm the terms in Eq. (4.15) become complex conjugates.〈
ρ(y) ρ(x)†

〉
F

= 1
2 tr

(
γm ·D−1

u (y|x)† · γm ·D−1
u (x|y)†

)
+ 1

2 tr
(
γm ·D−1

u (y|x) · γm ·D−1
u (x|y)

)
= 1

2
(
tr
(
γm ·D−1

u (y|x) · γm ·D−1
u (x|y)

)
+ h. c.

)
= Re tr

(
γm ·D−1

u (y|x) · γm ·D−1
u (x|y)

)
(4.16)

= Re{(C2n)} (4.17)

where disconnected diagrams where neglected.
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4.1 Wick contractions

The term C2n introduced in the end is a short hand notation for the connected 2-point
function with identical flavors. For different ρ operators the quark flow will be the same and
only the Dirac struct must be replaced. More on the different types of quark flow diagrams can
be found in Sec. A.4.

For ρ50m and cross correlators, the calculations are analog, but as

γ5γ5γ0γ
mγ5 = +γ5γ0γ

m

several signs changes must be taken into account. The result is:

〈ρ50m(y)ρ50m(x)†〉F = Re(C2n) (4.18)

〈ρ50m(y)ρm(x)†〉F = Im(C2n) (4.19)

〈ρm(y)ρ50m(x)†〉F = − Im(C2n) (4.20)

3-point function
〈
ππ ρ†

〉
With the two-pion operator from Eq. (3.9) the correlation function

is 〈
ππ(y, y′)ρ(x)†

〉
F

= 1
2
〈(
d̄(y)αγ

π
αβu(y)βū(y′)γγ

π
γδd(y′)δ − ū(y)αγ

π
αβd(y)β d̄(y′)γγ

π
γδu(y′)δ

)
(
ū(x)εγ

ρ
εζu(x)ζ − d̄(x)εγ

ρ
εζd(x)ζ

)〉
F

= 1
2

(〈
d̄(y)αγ

π
αβu(y)βū(y′)γγ

π
γδd(y′)δū(x)εγ

ρ
εζu(x)ζ

〉
F

−
〈
d̄(y)αγ

π
αβu(y)βū(y′)γγ

π
γδd(y′)δd̄(x)εγ

ρ
εζd(x)ζ

〉
F

−
〈
ū(y)αγ

π
αβd(y)β d̄(y′)γγ

π
γδu(y′)δū(x)εγ

ρ
εζu(x)ζ

〉
F

+
〈
ū(y)αγ

π
αβd(y)β d̄(y′)γγ

π
γδu(y′)δd̄(x)εγ

ρ
εζd(x)ζ

〉
F

)

(4.21)

where we already inserted γ5 for the pion operators. The Wick contractions for the first term
again yield a disconnected and a connected part. The disconnected diagram is

γ
π
αβγ

π
γδγ

ρ
εζ

〈
d̄(y)αu(y)βū(y′)γd(y′)δū(x)εu(x)ζ

〉
F

= tr
(
γπD−1

u (y|y′)γπD−1
d (y′|y)

)
tr
(
γρD−1

u (x|x)
) (4.22)

and the connected

γ
π
αβγ

π
γδγ

ρ
εζ

〈
d̄(y)αu(y)βū(y′)γd(y′)δū(x)εu(x)ζ

〉
F

= − tr
(
γπD−1

u (y|x)γρD−1
u (x|y′)γπD−1

d (y′|y)
)
.

(4.23)

45



Chapter 4 Wick contractions

Similar to the 2-point function the Wick contractions for all other terms can be obtained from
the first term by interchanging u ↔ d, y ↔ y′ or both. The complete correlation function
(neglecting disconnected contributions) is〈

ππ(y, y′)ρ(x)†
〉
F

= −1
2
(
tr
(
γπD−1

u (y|x)γρD−1
u (x|y′)γπD−1

d (y′|y)
)

− tr
(
γπD−1

d (y′|x)γρD−1
d (x|y)γπD−1

u (y|y′)
)

− tr
(
γπD−1

u (y′|x)γρD−1
u (x|y)γπD−1

d (y|y′)
)

+ tr
(
γπD−1

d (y|x)γρD−1
d (x|y′)γπD−1

u (y′|y)
))

(4.24)

This expression can again be simplified with γ5-hermiticity upon choosing a Dirac structure.
With γπ = iγ5 the result is〈

ππ(y, y′)ρm(x)†
〉
F

(4.25)

= −1
2
(
tr
(
iγ5D−1

u (y|x)γmD−1
u (x|y′)iγ5γ5D

−1
u (y|y′)†γ5

)
− h. c. (4.26)

− tr
(
iγ5D−1

u (y′|x)γmD−1
u (x|y)iγ5γ5D

−1
u (y′|y)†γ5

)
+ h. c. (4.27)

= i Im(C3c(y, γ5;x, γm; y′, γ5)) − i Im(C3c(y′, γ5;x, γm; y, γ5)) (4.28)

for ρm and〈
ππ(y, y′)ρ50m(x)†

〉
F

(4.29)

= − Re(C3c(y, γ5;x, γ5γ0γm; y′, γ5)) + Re(C3c(y′, γ5;x, γ5γ0γm; y, γ5)) (4.30)

for ρ50m.

4-point function
〈
ππ ππ†

〉
The correlation function for creating and subsequently annihi-

lating two pions has four terms.〈
ππ(y, y′)ππ(x, x′)†

〉
F

= 1
2
(〈
π+π−(y, y′)π+π−(x, x′)†

〉
F

−
〈
π+π−(y, y′)π+π−(x′, x)†

〉
F

−
〈
π+π−(y′, y)π+π−(x, x′)†

〉
F

+
〈
π+π−(y′, y)π+π−(x′, x)†

〉
F

) (4.31)

Again all contractions may be generated from the first by substituting x ↔ x′, y ↔ y′ or both.
Expressed by quark fields, the first term is〈

π+π−
〉

(y, y′) π+π−(x, x′)†〉F

=
〈
d̄(y)αiγ5

αβu(y)βū(y′)γ iγ5
γδd(y′)δū(x)εiγ

5
εζd(x)ζ d̄(x′)ηiγ

5
ηϑu(x′)ϑ

〉
F

= γ5
αβγ

5
γδγ

5
εζγ

5
ηϑ

〈
d̄(y)αu(y)βū(y′)γd(y′)δū(x)εd(x)ζ d̄(x′)ηu(x′)ϑ

〉
F

(4.32)
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4.1 Wick contractions

where again γ5 was already assumed.

Due to the increased number of quark fields, there are four non-vanishing Wick contractions.
They are

γ5
αβγ

5
γδγ

5
εζγ

5
ηϑ

〈
d̄(y)αu(y)βū(y′)γd(y′)δū(x)εd(x)ζ d̄(x′)ηu(x′)ϑ

〉
F

= − tr
(
γ5D−1

u (y|y′)γ5D−1
d (y′|x′)γ5D−1

u (x′|x)γ5D−1
d (x|y)

)
= − tr

(
γ5D−1

u (y|y′)γ5γ5D−1
u (x′|y′)†γ5γ5D−1

u (x′|x)γ5γ5D−1
u (y|x)†γ5

)
, (4.33)

γ5
αβγ

5
γδγ

5
εζγ

5
ηϑ

〈
d̄(y)αu(y)βū(y′)γd(y′)δū(x)εd(x)ζ d̄(x′)ηu(x′)ϑ

〉
F

= tr
(
γ5D−1

u (y|x)γ5D−1
d (x|y)

)
· tr
(
γ5D−1

u (x′|y′)γ5D−1
d (y′|x′)

)
= tr

(
γ5D−1

u (y|x)γ5γ5D−1
u (y|x)†γ5

)
· tr
(
γ5D−1

u (x′|y′)γ5γ5D−1
u (x′|y′)†γ5

)
, (4.34)

γ5
αβγ

5
γδγ

5
εζγ

5
ηϑ

〈
d̄(y)αu(y)βū(y′)γd(y′)δū(x)εd(x)ζ d̄(x′)ηu(x′)ϑ

〉
F

= tr
(
γ5D−1

u (y|y′)γ5D−1
d (y′|y)

)
· tr
(
γ5D−1

u (x′|x)γ5D−1
d (x|x′)

)
= tr

(
γ5D−1

u (y|y′)γ5γ5D−1
u (y|y′)†γ5

)
· tr
(
γ5D−1

u (x′|x)γ5γ5D−1
u (x′|x)†γ5

)
(4.35)

and

γ5
αβγ

5
γδγ

5
εζγ

5
ηϑ

〈
d̄(y)αu(y)βū(y′)γd(y′)δū(x)εd(x)ζ d̄(x′)ηu(x′)ϑ

〉
F

= − tr
(
γ5D−1

u (y|x)γ5D−1
d (x|x′)γ5D−1

u (x′|y′)γ5D−1
d (y′|y)

)
= − tr

(
γ5D−1

u (y|x)γ5γ5D−1
u (x′|x)†γ5γ5D−1

u (x′|y′)γ5γ5D−1
u (y|y′)†γ5

)
. (4.36)

When all terms in Eq. (4.31) are combined in addtition to the complex hermitian conjugate,
also the transpose and complex conjugate appear for each of the terms Eq. (4.33)-(4.36). The
latter two topologically give the same quark flow diagrams but the sites are permuted. Eq. (4.35)
is a disconnected contribution and will be again neglected. Furthermore Eq. (4.33) and Eq. (4.36)
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are already hermitian conjugates, they give the same contribution. The final result is〈
ππ(y, y′) ππ(x, x′)†

〉
F

= 1
2
(
tr
(
γ5D−1

u (y|x)γ5γ5D−1
u (y|x)†γ5

)
· tr
(
γ5D−1

u (x′|y′)γ5γ5D−1
u (x′|y′)†γ5

)
+ h. c.

− 2
(
tr
(
γ5D−1

u (y|x)γ5γ5D−1
u (x′|x)†γ5γ5D−1

u (x′|y′)γ5γ5D−1
u (y|y′)†γ5

)
+ h. c.

)
+ tr

(
γ5D−1

u (y′|x)γ5γ5D−1
u (y′|x)†γ5

)
· tr
(
γ5D−1

u (x′|y)γ5γ5D−1
u (x′|y)†γ5

)
+ h. c.

− 2
(
tr
(
γ5D−1

u (y′|x)γ5γ5D−1
u (x′|x)†γ5γ5D−1

u (x′|y)γ5γ5D−1
u (y′|y)†γ5

)
+ h. c.

))
= 2 Re(C4cD(y, γ5;x, γ5;x′, γ5; y′, γ5)) − 4 Re(C4cB(y, γ5;x, γ5;x′, γ5; y′, γ5))

+ 2 Re(C4cD(y′, γ5;x, γ5;x′, γ5; y, γ5)) − 4 Re(C4cB(y′, γ5;x, γ5;x′, γ5; y, γ5))
(4.37)

4.1.2 Thermal states

If at least two particles are involved, certain terms in the spectral decomposition pose non-
negligible artifacts even though they vanish in the infinite-T limit. These are called “thermal
states”.

A correlation function may generally be expressed as

C(t) =
〈
Osi(t) Oso(0)†

〉
=
∑
m,n

e−EnT e−(Em−En)t 〈n|Osi(0)|m〉 〈m|Oso(0)†|n〉 (4.38)

by inserting of a complete set of states and using the time evolution operator. Higher asymptotic
states n are usually neglected as all but |n〉 = |0〉 vanish in the limit T → ∞. In this case En is
simply the vacuum energy and on arrives at Eq. (2.120).

For the ππ operators defined in Eq. (3.9) however, this assumption is no longer justified. The
lightest states n may assume are | π〉 and | ππ〉. On the ensembles of Tab. 5.1 states involving
at least three pions in the initial or final state are so much suppressed by the factor exp(−EnT )
that they may still be safely neglected. As we already argued in Chap. 3 the lattice operator
Eq. (3.29) may be decomposed into linear combinations of continuum operators. Therefore the
calculation may be tremendously simplified by looking at the non-isospin projected continuum
operator in momentum space. The lowest orders of Eq. (4.38) for Osi = π+π−(t;p1,p2) and
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Oso = π+π−(t;p′
1,p

′
2)† are

C(t) =
∑
m

(
e−E0T e−(Em−E0)t 〈0 | π+(p′

1)π−(p′
2) | m〉 〈m | π+(p2)π−(p1) | 0〉

+ e−EπT e−(Em−Eπ)t
〈
π+

∣∣∣ π+(p′
1)π−(p′

2)
∣∣∣ m〉 〈m ∣∣∣ π+(p2)π−(p1)

∣∣∣ π+
〉

+ e−EπT e−(Em−Eπ)t
〈
π−

∣∣∣ π+(p′
1)π−(p′

2)
∣∣∣ m〉 〈m ∣∣∣ π+(p2)π−(p1)

∣∣∣ π−
〉

+ e−EππT e−(Em−Eππ)t
〈
π+π+

∣∣∣ π+(p′
1)π−(p′

2)
∣∣∣ m〉 〈m ∣∣∣ π+(p2)π−(p1)

∣∣∣ π+π+
〉

+ e−EππT e−(Em−Eππ)t
〈
π+π−

∣∣∣ π+(p′
1)π−(p′

2)
∣∣∣ m〉 〈m ∣∣∣ π+(p2)π−(p1)

∣∣∣ π+π−
〉

+ e−EππT e−(Em−Eππ)t
〈
π−π−

∣∣∣ π+(p′
1)π−(p′

2)
∣∣∣ m〉 〈m ∣∣∣ π+(p2)π−(p1)

∣∣∣ π−π−
〉)

+ O(3π)
(4.39)

The exponentials e−ET serve as a suppression factor. Terms within the spectral composition
with at least three particles are completely negligible. The same is true for terms with involve
at least two pions in both the asymptotic and intermediate state. The functional behavior when
| n〉 = | m〉 =

∣∣∣ π±π±
〉

is the same as from | n〉 = | m〉 =
∣∣∣ π±

〉
barring an additional spectator

pion. This causes a suppression by e−MπT which is in the order of 10−3.
From Eq. (4.39) four relevant terms remain. In this work the exact form of the amplitude is

not relevant and therefore not given explicitly.
The first term of Eq. (4.39) behaves like∑

m

e−E0T e−(Em−E0)t 〈0 | π+(p′
1)π−(p′

2) | m〉 〈m | π+(p2)π−(p1) | 0〉

∝ 2e−E0T + e−E0T
∑
m

e−(Em
ππ−E0)t

δp1p
′
1
δp2p

′
2

(4.40)

The first term vacuum expectation value and cancels in the projection to definite isospin. The
second term is often called “physical contribution” as it is the only one to survive in the limit
lim
T→∞

.

The second and third term of Eq. (4.39) are almost identical.∑
m

e−EπT e−(Em−Eπ)t
〈
π+

∣∣∣ π+(p′
1)π−(p′

2)
∣∣∣ m〉 〈m ∣∣∣ π+(p2)π−(p1)

∣∣∣ π+
〉

∝ e−Eπ(p1)T e−(Eπ(p2)−Eπ(p1))t
δp1p

′
1
δp2p

′
2

+ O(3π)
(4.41)

∑
m

e−EπT e−(Em−Eπ)t
〈
π−

∣∣∣ π+(p′
1)π−(p′

2)
∣∣∣ m〉 〈m ∣∣∣ π+(p2)π−(p1)

∣∣∣ π−
〉

∝ e−Eπ(p2)T e−(Eπ(p1)−Eπ(p2))t
δp1p

′
1
δp2p

′
2

+ O(3π)
(4.42)

The only difference is the sign of the second exponential as the momenta are interchanged. The
projection to definite isospin Eq. (3.9) contains both permutations. As one might suspect the
charge of the pion has no influence on the thermal state in theory with degenerate charged pions.

The forth and sixth term of Eq. (4.39) both require at least two pions in the intermediate
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state. Therefore the final relevant term is∑
m

e−EππT e−(Em−Eππ)t
〈
π+π−

∣∣∣ π+(p′
1)π−(p′

2)
∣∣∣ m〉 〈m ∣∣∣ π+(p2)π−(p1)

∣∣∣ π+π−
〉

∝ 2e−(Eπ(p′
1)+Eπ(p1))T +

∑
m

e−Em
ππT e−(E0−Em

ππ)t
δp1p

′
1
δp2p

′
2

+ O(2π)
(4.43)

Like in Eq. (4.40) the first term is a vacuum expectation value that cancels in the projection to
definite isospin. The second term structurally very much resembles the physical contribution.
Because the lattice has periodic boundary conditions in time there is no restriction for the
propagator to only run forward in time. The second term is the “backpropagating part”.

In one-particle correlation functions states like Eq. (4.41)-Eq. (4.42) do not appear. In this
case Eq. (4.43) may be accounted for analytically. Together with the physical contribution the
functional dependence may be expressed as

C(t) ∝ 2e−(E0
ππ−E0)T/2 cosh

(
(E0

ππ − E0)(T/2 − t)
)
. (4.44)

For small t the cosh is dominated by a single exponential. Around T/2 however, the backprop-
agating part is starting to become more relevant and for large t the cosh is again dominated
by a single exponential with positive sign. The contributions are (anti-)symmetrical under
t ↔ T/2 − t. Therefore we average the forward and backward parts to gain statistics. The trait
that the single exponential must be altered only at t ≈ T/2 i.e. the end of the signal is typical
of thermal states.

The final operator in Eq. (3.29) was projected to definite isospin as well a certain moving
frame momentum pcm and irrep Γ thereof. That certain terms cancel in the projection to definite
isospin has already been mentioned above. Additionally there is a dependence of the thermal
states on pcm and Γ because the momentum combinations p1,p2 listed in Tab. 3.5 survive the
projection are not projected to 0. With the momenta also Eπ(p1), Eπ(p2) and therefore the
thermal states are different for each p2

cm and Γ.

4.1.3 Weighting and Shifting

There are multiple ways to account for the lattice artifacts from thermal states [21, 82]. We will
show numerically in Sec. 6.2 that

εt(t,p1,p2) ∝ e−Eπ(p1)T e−(Eπ(p2)−Eπ(p1))t + e−Eπ(p2)T e−(Eπ(p1)−Eπ(p2))t
. (4.45)

is the leading thermal state. In the center-of-mass frame p1 = p2 and the time dependence
drops out. Without loss of generality let Eπ(p2) > Eπ(p1). It is sufficient to consider the
exponentially decreasing term in Eq. (4.45). This is sufficient because the signal in the relevant
correlator matrices is subject to exponential error growth. Therefore, we will only extract the
signal at relatively small t-values where the second term in εt is not yet relevant.

To remove the thermal pollution we will apply the so-called “weighting and shifting” procedure
[82]. which condenses into the transformation

C̃(t) = e−∆E t
(
C(t)e∆E t − C(t+ 1)e∆E (t+1)

)
, (4.46)

with ∆E = Eπ(p2) − Eπ(p1). It is straightforward to see that this transformation leaves the
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4.1 Wick contractions

leading, physical exponential dependence unchanged, while the leading thermal pollution is
removed. We have investigated subleading thermal pollutions thoroughly in [83]. As we will also
see in Sec. 6.2, the procedures were not applicable in this work signal to noise ratio increased
too fast to analyze the signal at large enough t-values.
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CHAPTER 5

Numerical Setup

5.1 Numerical Setup

The gauge in this work are generated with Wilson twisted mass fermions and the Iwasaki gauge
action. We use the Nf = 2 + 1 + 1 ensembles generated by the ETM Collaboration with a range
of pion masses, three values of the lattice spacing and multiple volumes. the action contains a
dynamical strange and charm sector in addition to two degenerate light flavor. The details are
not relevant for the light quantities discussed in this work. They are described in [35, 36, 84].

In Tab. 5.1 we compile the parameters used during the ensemble generation. The inverse
gauge coupling β = 6/g2 controls the renormalization group flow and therefore the β-values
1.90, 1.95 and 2.10 correspond to different regularization cutoffs and therefore different lattice
spacings. The bare values light quark mass µ` corresponds to µ in Eq.(2.45) for the quark mass
parameters. For completeness µσ and µδ for the strange and charm sector are also given. Because
the determinant in Eq. (2.53) is extremely costly to compute and becomes worse conditioned
the lower µ` is, the given parameters correspond to unphysically high pion masses in the range
Mπ = 230 − 510 MeV. Beyond the numerical cost this also has the advantage, that at these
pion masses other decay channels such as ρ → 4π or ρ → KK that are expected to be negligible
from experiment are actually energetically ruled out as the threshold moves above the ρ mass.
Finally, Tab. 5.1 contains the spatial and temporal lattice extent in units of a and the number
of gauge configurations used to estimate our results.

5.1.1 Scale Setting

The scale setting for the Nf = 2 + 1 + 1 twisted mass ensembles has been done in [85]. On these
ensembles the Sommer parameter was determined to

r0 = 0.474(11) fm (5.1)

in physical units. r0/a was used as an intermediate quantity to determine the lattice spacings
from the experimental values of the pion mass and decay constant. The results as well as the
values of r0/a for each β can be found in Tab. 5.3.

To translate lattice results to physical units in this work the Sommer parameter is used as
intermediate lattice scale as well. Beyond r0 in physical units, the physical pion mass value is
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Ensemble β aµ` aµσ aµδ (L/a)3 × T/a Nconf

A30.32 1.90 0.0030 0.150 0.190 323 × 64 623
A40.20 1.90 0.0040 0.150 0.190 203 × 48 531
A40.24 1.90 0.0040 0.150 0.190 243 × 48 997
A40.32 1.90 0.0040 0.150 0.190 323 × 64 493
A60.24 1.90 0.0060 0.150 0.190 243 × 48 618
A80.24 1.90 0.0080 0.150 0.190 243 × 48 611
A100.24 1.90 0.0100 0.150 0.190 243 × 48 307
B25.32 1.95 0.0025 0.135 0.170 323 × 64 197
B35.32 1.95 0.0035 0.135 0.170 323 × 64 493
B35.48 1.95 0.0035 0.135 0.170 483 × 96 265
B55.32 1.95 0.0055 0.135 0.170 323 × 64 613
B85.24 1.95 0.0085 0.135 0.170 243 × 48 586
D15.48 2.10 0.0015 0.120 0.1385 483 × 96 304
D30.48 2.10 0.0030 0.120 0.1385 483 × 96 241
D45.32 2.10 0.0045 0.0937 0.1077 323 × 64 588

Table 5.1: The gauge ensembles used in this study. The label is a letter for β followed by aµ` · 104, a dot
and L/a. In addition to the input parameters relevant for the ensemble generation, we give the spatial
and temporal lattice extent as well as the number of evaluated gauge configurations

needed as input. Like [85] we use

Mπ = 134.8(3) MeV (5.2)

determined with chiral perturbation theory [4, 86] in the isospin symmetric limit.
The quantities in this work were determined on a different set of gauge configurations than

was used to determine r0/a Therefore, we use the values and errors given in Tab. 5.3 and use
re-sampling. To reflect the statistical error the χ2-function needs to be augmented by a prior.

∑
β

(
pr0/a

(β) − Pr0/a
(β)

∆r0/a(β)

)2

(5.3)

where Pr0/a
(β) are the values from Tab. 5.3 and pr0/a

(β) and ∆r0/a(β) are fit parameters.
The same procedure is applied to Mπ and the errors on Mπ are likewise included in the fits

via a prior.

5.2 sLapH method

5.2.1 Laplacian Heaviside smearing

While the excited atates of the correlation function are exponentially suppressed by Eq. (2.120),
the signal decays as well and at some time slice disappears under statistical noise. If operators
that have high overlap with the ground state i.e. a large ground state amplitude the excited
states are suppressed further and therefore negligible earlier. The probably most useful technique
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ensemble L[fm] a[fm] Mπ[MeV]
A30.32 2.752 0.086 284
A40.20 1.720 0.086 342
A40.24 2.064 0.086 332
A40.32 2.752 0.086 324
A60.24 2.064 0.086 396
A80.24 2.064 0.086 456
A100.24 2.064 0.086 511
B25.32 2.496 0.078 273
B35.32 2.496 0.078 318
B35.48 3.744 0.078 313
B55.32 2.496 0.078 392
B85.24 1.872 0.078 490
D15.48 2.928 0.061 225
D30.48 2.928 0.061 316
D45.32 1.952 0.061 391

Table 5.2: The gauge ensembles used in this study. The label is a letter for β followed by aµ` · 104, a dot
and L/a. The most important features are replicated from [35, 36] in physical units.

β a [fm] r0/a

1.90 0.0885(36) 5.31(8)
1.95 0.0815(30) 5.77(6)
2.10 0.0619(18) 7.60(8)

Table 5.3: Values of the Sommer parameter r0/a and the lattice spacing a at the three values of β. See
Ref. [85] for more details.

to achieve this improvement is gauge field smearing.
Because short range modes only insignificantly contribute to the spectrum at low energies,

on can improve the overlap with the ground state emphasizing long distance modes. In this
work we apply the stochastic Laplacian-Heaviside smearing described in [87]. Therein space is
approximated by the span of the lowest eigenmodes of a Laplace operator applied to the quark
field [88]. It is much smaller and therefore calculating the propagators Eq. (4.6) is significantly
less expensive. In fact one big differentiator of the sLapH smearing is that storing propagators
to hard disk and thus reusing them for more than one correlation function becomes feasible.

The short range / high energy modes are described by the large eigenvalues of the gauge
invariant Laplace operator

∆(x, y;U) =
3∑

k=1
Uk̂(x)δ(x+ k̂, y) + Uk̂(x− k̂)†δ(x− k̂, y) − 2δ(x, y) (5.4)

The Laplace operator acts on quark field only in spatial directions. As usual the temporal
component is exempt, because the time dependence Eq. (2.120) would be obscured. The smearing

55



Chapter 5 Numerical Setup

L Nev

20 66
24 120
32 220
48 660

Table 5.4: Choices for number of eigenmodes in dependence of spatial volume

is done by replacing the quark fields with

ψ(x)α → θ
(
σ2
s + ∆(x, y)ψ(y)α

)
(5.5)

where θ is the Heaviside step function and the positive real number σ2
s is a cutoff parameter

for the eigenvalues of ∆. It is tuned such that the number of eigenvectors is the same for each
L. The density of eigenvalues scales with Lğ [88]. Therefore we our parameters are chosen
such that Nev(L) scales like L3 as well. The values are given in Tab. 5.4. As discussed in
Sec. 2.2.3 the estimates from a finite Markov chain of gauge configurations are subject to gauge
noise. The number of eigenvalues Nev is chosen such that the approximation causes no noticable
impediment of signal quality given the gauge noise. More details on the parameter choices can
be found in [89, 90].

We introduce the matrices V (x0) whose columns are the lowest Nev eigenvectors of the quark
fields at a given time t.Because the Laplace operator acts in color space as well, V is a matrix
with T ·Nev columns and T · L3 ·Nc rows. The space composed of time, eigenvectors and Dirac
space will below be referred to as “LapH space”.1 The eigenvectors V † act like projectors

V †(t) : L3 ×Nc ×Nd → NLapH (5.6)

from full space (with color and Dirac) to LapH space on each given timeslice.
Instead of directly calculating the inverse of the dirac kernel D−1

f (x|y) for all spacetime-pointsx,
y, one may use V to reduce the problem into the much smaller LapH-space

Pf (x|y) = V (x)†D−1
f V (y) . (5.7)

The projected inverted kernel Pf (x|y) is called “perambulator”. Its rank is several orders of
magnitude lower than the rank of D. Not only thus this significantly lower the computation cost,
but it also becomes feasible to save perambulators to hard disk and reuse them to “assemble”
correlation functions for other physical processes. Using V again, the propagator can be
estimated by projecting back to full space

D−1
f (x|y) ≈ V (x)Pf (x|y)V (y)† . (5.8)

Although numerical cost for calculating quark line estimates is considerably lower than for the
full propagators, the number of inversions is still proportional proportional to NLapH. Because
NLapH ∝ Nev ∝ L3, the cost of the LapH method increases rapidly for larger volumes.

1 Because the Laplacian is diagonal in Dirac space, the Dirac separated from the LapH space in [87]. It is however
very convenient to include it.
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5.2.2 Stochastic Estimation

Above we argued that an exact calculation of the propagator is unnecessary as the correlation
function is in any case subject to gauge noises. This argument may be extended by also
approximating the perambulator Pf while making sure the error has not measurable impact on
the correlation function. For this purpose random noise and dilution were proposed to estimate
the perambulator stochastically [87].

Random Noise Vectors Let {ρr, 1 ≤ r ≤ Nr } be a set of Nr Z2-random noise vectors in
LapH space where the index r denotes different random seeds. Empirically using Z2-random
vectors leads to comparatively low variance [87].

The expectation value of each random vector vanishes individually

1
Nr

∑
r

ρr = 0 (5.9)

and the vectors are mutually orthogonal

1
Nr

∑
r

1
Ns

∑
s

ρrρ
†
s = δr,s1LapH . (5.10)

These properties permit to perform the inversion of the Dirac matrix on a few random sources
rather than all unit vectors. Consider the the linear system of equations

A(xr) = (ρr)

Let i, j ∈ {1, . . . , NLapH}. With Eq. (5.11) one finds

1
Nr

∑
r

xirρ
j∗
r = 1

Nr

∑
r

A−1
i,kρ

k
rρ

j∗
r = 1

Nr

∑
r

A−1
i,kρ

k
rρ

j∗
r = A−1

i,k

1
Nr

∑
r

ρkrρ
j∗
r = A−1

i,k δk,j = A−1
i,j .

(5.11)

The matrix elements of A−1 are estimated by the expectation value of xirρ
j∗
r . This means that

the perambulator can be estimated by

Pf ≈ 1
Nr

Nr∑
r=1

xrρ
†
r

The variance of this estimate behaves like the variance of ρρ†. Therefore a large number of
random sources would be necessary to uphold the signal quality. By using dilution, the variance
and therefore the number of required random vectors may be considerably reduced.

Dilution Using dilution, reasonable statistical errors can be achieved with Nr = O(1) random
vectors.2 In Eq. (5.10) the off-diagonal elements are basically noise with a zero expectation value.
Dilution joins several components of the random vectors together and forces the off-diagonal
elements to the other to exact zeros. This improves the approximation to the unit matrix and
2 The lower bound is four random vectors all quarklines correlation function must be indepependent to avoid

bias and there are four quarklines in
〈
ππ ππ

†〉.
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(d) Full dilution

Figure 5.1: Visualization of different dilution schemes. Figure courtesy of Martin Ueding

L bT bD bE

20 B2 F I6
24 B2 F I6
32 B2 F I4
48 B3 F I4

Table 5.5: Dilution schemes used in this work for value L of the spatial volume.

thereby the variance. There are different “dilution schemes” which differ by which components
of the random vectors are joined. They are visualized in Fig. 5.1.

We denote dilution projectors by P (b) where b is a shorthand for the dilution scheme. The
common dilution schemes are

No dilution: P (b)
ij = δij

Block-J (BJ) dilution: P (b)
ij = δijδbbJ·i/Nc

Interlace-J (IJ) dilution: P (b)
ij = δijδbi mod J

Full (F ) dilution: P (b)
ij = δijδbi

where N is the dimension of the undiluted space. No dilution and full dilution can be interpreted
as the special cases B1/ IN and BN/ I1 respectively.

In the extreme case of full dilution the diluted space has the same dimension as the undiluted
one and all off-diagonal elements are exactly zero. For all other schemes there is still random
noise on some offdiagonal elements, but the dimension of the diluted space is reduced.

For objects in LapH-space like the perambulator Eq. (5.8) the dilution acts in time, Dirac
and eigenspace. The dilution projector factorizes to

P
(b)
tαv,t

′
α

′
v

′ = P
(bT )
t,t

′ P
(bD)
α,α

′ P
(bev)
v,v

′ .

where t, t′ ∈ {1, . . . T}, α, α′ ∈ {1, . . . 4} and v, v′ ∈ {1, . . . , NEv}. bT , bd and bev are the
respective dilution schemes. Like Nev they depend on the spatial volumes. Our choices are also
discussed in [89, 90] and summarized in Tab. 5.5.
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The blocksizes required in the dilution scheme are largely independent of the volume. Therefore
the projected LapH-spaces dimension is largely constant as well. When the dilution is applied
at the source time this property is bequested to the required number of inversions. This is the
reason the stochastic extension to the LapH-method facilitates the use of larger volumes.

The perambulator introduced in Eq. (5.7) now has an additional noise vector and dilution
projector.

P(b)
f ;r(x|y) = V †(x)D−1

f (x|y)V (y)P (b)ρr (5.12)

The same modification applies to the propagator estimate Eq. (5.8) which becomes

D−1
f (x|y) = 1

Nr

∑
r

V (x)P(b)
f ;r(x|y)

(
V (y)P (b)ρr

)†
. (5.13)

This approximation is also called “Quark line estimate”.
Like V †(t) in Eq. (5.6), (V (t)P (b)ρr)

† projects from full spacetime to a smaller space whose
dimension is given by the number of blocks the dilution scheme maps to. Compared to the
undiluted LapH method the projected spaces dimension is further reduced by several orders of
magnitudes.

5.3 Correlation functions with Quarkline estimates
The correlation functions of Chap. 4 were expressed in terms of propagators with the help
of Wick’s theorem. Replacing propagators by quarkline estimates has consequences that are
exemplary discussed for the pion correlation function Eq. (4.5).

In the pion correlation function the propagator D−1
u for an u-quark appears alongside its

counterpart for the d quark. In Sec. 4.1.1 γ5-hermiticity

D−1
d (y|x) = γ5D

−1
u (x|y)†γ5 (4.13)

has already been used to simplify the final results for the ρ meson.
Successively inserting Eq. (4.13) and (5.13) into the pion correlation function Eq. (4.5) and

using the cyclic property of the trace yields

C
π

+(x|y) = − 1
NrNs

∑
r,s

r 6=s

tr
(
γπV (y)V †(y)D−1

u (y|x)(V (x)P (br)ρr)(V (x)P (br)ρr)
†

γπγ5
(
V (y)V †(y)D−1

u (y|x)(V (x)P (bs)ρs)(V (x)P (bs)ρs)
†
)†
γ5

)
= − 1

NrNs

∑
r,s

r 6=s

tr
(
γπV (y)P(br)

u;r (y|x)(V (x)P (br)ρr)
†

γπγ5(V (x)P (bs)ρs)P
(bs)
u;s (y|x)†V (y)†γ5

)
= − 1

NrNs

∑
r,s

r 6=s

tr
((

P(bs)
u;s (y|x)†

(
V (y)†γ5γ

πV (y)
)

P(br)
u;r (y|x)

)
(
(V (x)P (br)ρr)

†γπγ5(V (x)P (bs)ρs)
))

.

(5.14)
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The condition r 6= s was imposed to avoid bias. In the last steps the terms were parenthesized
in a way that allows a numerically efficient computations. Because only the source is projected
to LapH space the peramubulators are non-square in contrast to the Dirac matrices. Matrix
multiplication scales with the third power of matrix size, The execution order defined by the
parentheses in Eq. (5.14) is chosen so that the most frequent multiplications run over the smallest
matrices.

Momentum space So far the Wick contractions were performed in position space. Yet, for
the Lüscher method in moving frames energy levels and therefore operators in momentum
space are required. The projection to definite (linear) momentum may be done by a Fourier
transformation as explained in Eq. (3.10). This Fourier factor can simply be factored out. The
correlation function in momentum space it becomes

C
π

+(t,p|0, q) =
〈
π+(t,p) π+(0, q)†

〉
F

= 1
L6
∑
x,y

ei(px−qy)
〈
π+(x) π+†(y)

〉
F

= 1
L6
∑
x,y

ei(px−qy)C
π

+(x|y)

= − 1
L6
∑
x,y

ei(px−qy) 1
NrNs

∑
r,s

r 6=s

tr
((

P(bs)
u;s (y|x)†

(
V (y)†γ5γ

πV (y)
)

P(br)
u;r (y|x)

)
(
(V (x)P (br)ρr)

†γπγ5(V (x)P (bs)ρs)
))

(5.15)

where in the last step Eq. (5.14) was inserted.
The generalization to two particles is straightforward. The steps to express the correlation

function in terms of quarkline estimates in position space stay the same. Like in Eq. (3.11) the
fourier transformation is then just applied to each spatial index. More details may be found in
[91].

In the special case p = q = 0, the exponentials become 1 for all x,y. Because the eigenvectors
of spanning LapH space are orthogonal, V †V = 1 and Eq. (5.15) simplifies to Eq. (5.14)

Apart from Dirac matrices and scalars for the momenta the final expression Eq. (5.15)
only consists of sLapH-eigenvectors V , perambulators P and randomvectors ρ. These same
constituents form every correlation function discussed in Chap. 4 and many more. Therefore the
numeric calculation of correlation functions given V , P and ρ is essentially a tensor contractions.
Within this thesis, an optimzied code to perform such tensor contractions was written.3 For
more details, a full documentation is available online4. A list of all implemented correlation
functions and the corresponding quark flow diagrams are given in Sec. A.4.

3 https://github.com/maowerner/sLapH-contractions
4 http://hiskp-lqcd.github.io/sLapH-contractions/
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CHAPTER 6

Results

In this chapter our results are presented. They are published in [1].

6.1 Pion Dispersion Relation
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a2p2

(a
W

π
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Figure 6.1: Dispersion relation of the pion for ensemble A40.32.

In Sec. 2.3.2 the Lüscher formula was extended to moving reference frames. This was done by
boosting the system to center-of-mass with the relativistic dispersion relation

WL =
√
p2

cm + E2
CM . (2.73)

The first step before calculating the energy shifts k that enter the Lüscher formula Eq. (2.97) is
checking the dispersion relation. This is usually done by computing the pion mass in moving
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reference frames and comparing to the value predicted from the zero momentum mass via

Eπ(p) =
√
p2 +M2

π . (6.1)

Note that in our formulation we have M
π

+ = M
π

− . An exemplary result for the A40.32 ensemble
is depicted in Figure 6.1. The values agree within errors is observed up to d2 = 4. This makes
us confident that using the dispersion relation is safe.

Furthermore the values Eπ(p) determined with the continuum dispersion relation are used as
an input for the weighting and shifting transformation Eq. (4.46).

6.2 Energy Levels
The next step is computing the energy spectrum in the presence of strong interaction. The
desired energy levels are directly obtainable from suitable correlation functions in the limit of
large time separation. Which correlation function are required specifically for the ρ channel has
been addressed in Chap. 3 and 4.

In practice the step from correlation functions to energy levels is subject to two major error
sources. The first major uncertainty has already been discussed in Sec. 4.1.2: Pollution from
thermal states. The other major uncertainty stems from the use of regression to determine the
energy levels. Higher states in the spectrum only decay exponentially when the time separation
increases whereas thermal states become relevant at large time separations. The fit range must
start late and end early enough to avert systematic errors caused the excited as well as thermal
states while still containing enough data to retain statistical significance. The fit range effectively
becomes a hyperparameter that must be controlled as well.

Thermal states

In Sec. 4.1.3 we already preempted the leading thermal state out of Eq. (4.40)-(4.43) is

e−Eπ(p1)T e−(Eπ(p2)−Eπ(p1))t (6.2)

assuming that Eπ(p2) > Eπ(p1). This is based on a numerical comparison with the values for
Eπ(p) determined from the continuum dispersion relation as in Sec. 6.1. For the comparison
we assumed all states to have the same amplitude and neglected the energy shift by replacing
Eππ(p1,p2) ≈ Eπ(p1)+Eπ(p2). In the same manner we arrived at the conclusion that pollutions
with two pions in the asymptotic and intermediate state or three pions in either are neglible.

The leading pollution was subtracted by weighting and shifting as described in Sec. 4.1.3.
To verify the procedure worked as intended we compared the weighted and shifted correlation

function with the original one. For the case of two pions with maximal isospin the thermal
pollutions and therefore the effect of the weighting and shifting is clearly visible [89]. However,
due to a much larger signal-to-noise ratio, this is not the case for the correlation functions
investigated in this work. Between the principal correlators λ(t, t0) derived from the original
correlation functions C(t, t0) and λ̃(t, t0) derived from C̃(t, t0) there is no qualitative difference
visible.

The extracted energy showed a strong dependence on the fit interval. To judge whether
thermal state removal worked we need to do this comparison keeping control over fit interval
and t0 for the Gevp because it heavily influences the two-state fit.
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Fit range selection
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Figure 6.2: In the left panel we show λ(t, t0)/Cth(t, t0) as a function of t/a for the ground state energy
level in irrep E. The reference time for the GEVP was set to t0/a = 3 and the ensemble is A40.32. The
horizontal line with error band indicates the fitted energy value with statistical uncertainty. The extent
of the line indicates the fit range. In the right panel we show the effective mass as a function of t/a and
the same fitted energy value for reference.

We perform the fitting to the principal correlator λ(t, t0) (and λ̃) by surveying multiple fit
ranges [tmin, tmax] and selecting a representative one. We enforce a plateau length of at least four
points, which must be compatible within errors and have relative errors below 50%. Additionally
we require no significant dependence on tmax as this would be a consequence of residual thermal
pollution. The dependence on tmin is very pronounced when tmin is in a region, where excited
states are still relevant. We increase tmin until this dependence vanishes. A p-value above 0.05
was preferred to ascertain that the data in the chosen range are described by our fit. In the
rare cases where multiple fit ranges gave competing and equally likely results, we chose an
intermediate range. The influence of varying t0 from 1 to the onset of the plateau was checked
and found to be negligible. Therefore, we chose t0 = 3 on the coarser two and t0 = 4 on the
finest lattice spacing, corresponding to approximately 0.25 fm in physical units. Finally, all
other qualities being equal, we preferred larger tmax.

In Figure 6.2 we show an example for the fit range chosen for ensemble A40.32 where d2 = 1
and irrep Γ = E without weighting and shifting. In the left panel, we show the ratio of principal
correlator λ(t, t0) and the single exponential fit model Cth(t, t0) = exp(−W (t− t0)). Compared
to the effective mass, the ratio is more robust numerically. By definition the error band is centred
around 1. The error band has a conic shape because the error of the fit result is constant, while
the value of the correlator decreases exponentially. In the right panel we show for illustration
the result of the correlator fit as a red band along with the effective mass

meff(t) = log C(t)
C(t+ 1) .
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Figure 6.3: the same as Figure 6.2, but for weighted and shifted λ̃.

As mentioned above, the effects of thermal states are not visible here. The energy level was
determined as aW = 0.4412(26).

In Figure 6.3 we show the same plots but this time with weighting and shifting. The size of
error bars is increased compared to without weighting and shifting, which can be explained by
the reduced correlation of neighbouring timeslices. For very large t, points are not depicted
because they were compatible with zero. For this reason, tmax was chosen smaller compared
to before. The fit model was modified as described in Eq. (4.46) and the calculation of the
effective mass in the right panel was changed accordingly. The fit result increased by roughly
one standard deviation to aW = 0.4463(23).

It remains unclear whether this difference is caused by small but barely significant thermal
states or is only the result from the independent choice of a fit range. In Figure 6.4 we show
all energy levels aECM for all irreps Γ and boosts d2 exemplary for ensemble A40.32. The red
circles are with weighting and shifting, the blue triangles without. The two kaon upper and two
pion lower thresholds are indicated by the dashed horizontal lines. For all d2-value and irrep
combinations, apart from two, we have two energy levels below the two kaon inelastic threshold.

Comparing energy levels with and without thermal state removal, we observe good agreement.
Statistical uncertainties are in general larger with weighting and shifting. However the difference
between energy levels can be statistically significant in some cases. Therefore, we perform the
full analysis with and without weighting and shifting. The result we quote will be the weighted
mean of both these results. We are confident that this way we keep control over both major
sources of systematic uncertainties.
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Figure 6.4: Example of all energy levels in lattice units for ensemble A40.32 for irrep Γ and pcm labeled
by d2. The two kaon and and two pion thresholds are indicated by the two dashed horizontal lines. The
two colours and symbols distinguish the estimate of ECM with and without thermal state removal.

6.3 Phase Shift Determination

The relation between energy levels and scattering momentum was defined in Eq. (2.59). For the
concrete energy levels above it reads

ak2 = (aW )2

4 − (aMπ)2 . (6.3)

With the help of Eq. (2.97) the phase shift values at each energy level may be determined. It is
worth noting, that the Lüscher ζ-function exhibits poles in the γ-q plane where noninteracting
energy levels are located. The data for γ and q is comprised by samples drawn from the
Monte-Carlo history of gauge configurations. It obeys a statistical distribution with a finite
width. A case that can numerically appear, but is physically impossible, is this distribution
crossing a pole. This is easiest demonstrated by the infinite-statics limit. The width of the
distribution is the error of the mean and approaches zero the more statistic becomes available.
Even if the distribution crosses at some finite statistics it will cease to do so at larger statistics.
Changing a systems relative position to a pole is might go as far as changing the sign of the
interaction. For this reason we require each distributions to be contained in a sector between
two poles and disregard points where this requirement is not met.

This requirement created problems when generating samples with the bootstrap procedure
introduced in Sec. 2.2.3. The standard deviation of the bootstrap distribution is the standard
error of the mean of the original data. Especially on the smallest lattice spacing the distribution is
too broad and by enforcing our requirement up to 80% of the points would have to be disregarded.
As explained in Sec. 2.2.3 the jackknife distribution narrower compared to bootstrap because by
the inverse of the number of samples. For this reasons we chose the jackknife procedure to draw
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Figure 6.5: Phase shift δ1 as a function of ECM in lattice units for ensemble A40.32. The solid line with
error band represents the fit result of Eq. (6.7) to all the data w/ thermal state removal. Colours encode
the different d2-values, while symbols distinguish the irreps.

samples which satisfy our requirement in almost all cases. Due to the non-linear nature of the
Lüscher formula one might be concerned that the sample error might not be estimated correctly
with the jackknife procedure. This was addressed by comparing the final error estimate of the
phase shift for bootstrap and jackknife 1. We found the numbers to be compatible and therefore
the jackknife procedure trustworthy in this case.

As discussed in Sec. 2.1.3, in the presence of a resonance like the ρ the phase shift δ1 as a
function of the centre-of-mass energy aECM is expected so follow a characteristic S-shape.

To obtain a parametrization of the phase shift, the non-resonant background is usually
approximated by the effective range expansion (ERE) [92]. Expanding the ππ scattering
amplitude from current algebra into partial waves yields the P -wave phase shift δ1

eiδ1 sin δ1 =
MρΓρ

(
p
pρ

)3 Mρ√
s

M2
ρ − s− iMρΓρ

(
p
pρ

)3 Mρ√
s

. (6.4)

where

p =
√
s/4 −M2

π , pρ = p |s=Mρ
(6.5)

1 for the on the points that survived the disregarding criterium
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and the width is related to the coupling constant gρππ via

Γρ = 2
3
g2
ρππ

4π
p3
ρ

M2
ρ

. (6.6)

Because the channel contains only one resonance and all other thresholds are kinematically
suppressed or open at far higher energies, Γρ is approximately constant. Inserting Eq. (6.6) into
Eq. (6.4) and a few lines of algebra yield

tan δ1 =
g2
ρππ

6π
p3

√
s(M2

ρ − s)
. (6.7)

We remark that Eq. (6.7) contains several approximations. tan δ1 has a pole at
√
s = Mρ

which was rewritten as by a rational function where the denominator is a first-order polynomial
in k2. For Mρ = 775 MeV the width predicted by Eq. (6.4) is Γρ ' 130 MeV; underestimating the
experimental width in Eq. (3.3). For the current level of experimental accuracy it is insufficient
because no form factor corrections were applied in the derivation of Eq. (6.6) and ωρπ-mixing is
neglected as well 3-body-forces, inelasticities and partial wave mixing. Nevertheless, Eq. (6.7)
has successfully been used in lattice calculations [21]. For higher-than-physical pion masses
the phase space shrinks and thus the width of the ρ0 meson decreases. With the modification
Eq. (6.6) that ascribes an energy dependence to the width, a Breit-Wigner function yields a
reasonable description of the resonance region. The resonance must be isolated and narrow
and ECM may not be at threshold. Additional modifications such as barrier terms, have been
observed to slightly improve fit quality, but had no significant effect on the final results [27, 28,
32].

In Figure 6.5 the phase shift for ensemble A40.32 is shown along with the two-parameter
fit of Eq. (6.7) to our data. Different moving frames d2 and irreps Γ are distinguished by
different colors and shapes respectively. Because δ1 is negatively correlated with aECM, showing
conventional x-y-errorbars would be misleading. To reflect the correlation x- and y-errors are
added vectorially, i.e. the length of the slanted error bars is the sum of x- and y-error added in
quadrature. The resulting errorbars are slanted. The slope is indicative of the strength of the
correlation and its negative sign reflects the negative correlation.

We have performed the fit to the phase shift data in several different ways.

To test whether the result is biased by our selection of moving frame momenta the fits were
done on the subset of all points for which d2 ≤ k with k = 1, 2, 3. While obviously the statistical
uncertainty changed, an Anova confirmed that there was no significant change of the sample
mean.

Sec. 6.2 already explained the necessity to perform the full analysis with (w/) and without
(w/o) thermal state removal. Indeed the fit parameters, in particular Mρ differed by up to 4
standard deviations w/ and w/o thermal state removal. We quote the weighted mean over results
w/o and w/ thermal state removal as our final results. In addition we include the difference ∆QY
between the weighted mean and w/o and w/ thermal state removal as systematic uncertainty in
our error budget. In order to carry this uncertainty through the following chiral and continuum
extrapolation, it is folded into the bootstrap distribution like we already did in [83]. This is
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implemented by rescaling the bootstrap distribution with a factor

s =

√√√√(∆x)2 +
∑
Y (∆QY )2

(∆x)2 . (6.8)

where ∆x is the statistical uncertainty of the weighted mean and Y ∈ {w/o,w/}.
All results for Mρ and gρππ determined by this procedure w/ and w/o thermal state removal

are compiled in Tab. 6.1. The width Γρ computed via Eq. (6.6) is tabulated in Tab. 6.2. In the
latter table we also give the reduced χ2-values of the Breit-Wigner fits and the values for the
(charged) pion mass in lattice units aMπ.

Ensemble aMw/o
ρ aMw/

ρ aMav
ρ gw/o

ρππ gw/
ρππ gav

ρππ

A30.32 0.3906(11) 0.3968(15) 0.3929(32) 6.0(2) 5.8(2) 6.0(2)
A40.24 0.4010(15) 0.4084(14) 0.4051(38) 5.7(1) 4.9(2) 5.4(4)
A40.32 0.3957(12) 0.3971(13) 0.3964(11) 5.7(1) 5.5(2) 5.6(1)
A60.24 0.4134(12) 0.4170(12) 0.4153(20) 5.4(1) 5.4(1) 5.4(1)
A80.24 0.4265(11) 0.4314(14) 0.4282(26) 5.3(1) 5.0(3) 5.2(2)
A100.24 0.4512(11) 0.4521(12) 0.4516(09) 4.7(2) 5.0(2) 4.9(2)
B25.32 0.3527(30) 0.3608(40) 0.3556(47) 6.3(3) 5.9(6) 6.2(4)
B35.32 0.3554(17) 0.3582(17) 0.3568(18) 6.3(2) 5.4(3) 6.0(5)
B35.48 0.3617(15) 0.3609(26) 0.3615(13) 5.8(2) 6.6(5) 6.0(4)
B55.32 0.3709(09) 0.3739(09) 0.3722(16) 5.6(1) 6.1(1) 5.8(3)
D15.48 0.2751(35) - 0.2751(35) 6.5(7) - 6.5(7)
D30.48 0.2747(16) 0.2926(22) 0.2811(91) 5.3(4) 5.1(5) 5.2(3)
D45.32 0.2866(09) 0.2948(14) 0.2890(42) 5.8(2) 4.6(5) 5.6(6)

Table 6.1: ρ mass aMρ and coupling gρππ for all ensembles w/ and w/o thermal state removal and the
weighted average including the systematic uncertainty as explained in the text.

In both these tables from the list Nf = 2 + 1 + 1 ensembles Tab. 5.2 the ensembles A40.20
and B85.25 were left out because the fits did not converge. A40.20 and B85.24 have the smallest
physical volume of all our ensembles. We conclude that the spatial extent should at least be
≈ 2 fm in order to determine scattering properties.

In order to quantify the residual finite volume effects in our results for Mρ and Γρ. we have two
groups of ensembles with all identical parameters apart from the volume. These are ensembles
A40.24 and A40.32 as well as B35.32 and B35.48.

In Figure 6.6 we directly compare the phase shift for the different volumes. In the left panel
the phase shift points for A40.24 (blue) with the ones for A40.32 (red), in the right panel B35.48
(red) with B35.32 (blue). Even though the Breit-Wigner fits happen to result in slightly different
values for the resonance parameters, the differences are below two standard deviations and do
not show a systematic ordering as one would expect from finite volume effects.

Thus, the weighted average with error including the systematic uncertainty from thermal
state removal should also safely include residual effects from finite volume.

Finally there are a few ensembles apart from A40.20 and B85.24 where the Breit-Wigner type
fits to the phase shift points are problematic. On the one hand this is the case for ensemble
with the heaviest pion mass A100.24. The width approaches zero, which leaves the fits little
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Ensemble aMπ KMπ
aΓw/o

ρ aΓw/
ρ aΓav

ρ χ2
w/o χ2

w/

A30.32 0.12392(13) 1.0081(52) 0.0435(23) 0.0427(30) 0.0432(19) 2.66 2.79
A40.24 0.14154(12) 1.0206(95) 0.0312(14) 0.0243(15) 0.0279(36) 1.77 1.43
A40.32 0.14429(20) 1.0039(28) 0.0287(15) 0.0271(18) 0.0280(14) 1.81 1.49
A60.24 0.17314(19) 1.0099(49) 0.0133(07) 0.0139(07) 0.0136(06) 2.53 1.11
A80.24 0.19909(17) 1.0057(29) 0.0036(03) 0.0040(05) 0.0037(03) 1.72 0.54
A100.24 0.22236(23) 1.0037(19) 0.0003(01) 0.0004(01) 0.0004(01) 0.41 8.14
B25.32 0.10850(32) 1.0136(60) 0.0454(50) 0.0427(89) 0.0447(46) 1.05 0.56
B35.32 0.12380(10) 1.0069(32) 0.0340(20) 0.0260(26) 0.0309(43) 0.97 0.90
B35.48 0.12486(14) - 0.0316(24) 0.0397(56) 0.0328(46) 1.35 0.88
B55.32 0.15551(12) 1.0027(14) 0.0123(05) 0.0156(07) 0.0136(17) 1.30 0.93
D15.48 0.07067(15) 1.0081(22) 0.0491(114) - 0.0491(114) 0.68 -
D30.48 0.09754(14) 1.0021(07) 0.0179(25) 0.0206(40) 0.0187(25) 1.03 2.79
D45.32 0.12046(19) 1.0047(14) 0.0102(06) 0.0079(15) 0.0098(13) 1.17 0.93

Table 6.2: We give aMπ, the finite size correction factor KMπ
, the ρ width aΓρ computed from aMρ and

gρππ using Eq. (6.6) w/ and w/o thermal state removal, and the weighted average as explained in the
text. In addition we give the reduced χ2-values of the corresponding fits to the phase shift data.

freedom; a fact reflected by the untrustworthy χ2.
On the other hand, unfortunately the fit on D15.48, our most chiral ensemble, is difficult,

however, for different reasons. For D15.48 statistical uncertainties on the energy levels are quite
large. As a consequence, the Breit-Wigner fit for the case w/ thermal state removal is not
converging. The fit for the case w/o thermal state removal gives large uncertainties. Combined
with the rather low lying inelastic threshold at 2MK , we do not consider this ensemble as
trustworthy for this calculation.

6.4 Pion Mass Dependence

In Ref. [93] the pion mass dependence of the ρ-meson mass has been computed using effective
field theory with infrared regularisation. Up to O(M3

π) plus the non-analytic term of order M4
π ,

the dependence reads

Mρ(M
2
π) = M0

ρ + c1M
2
π + c2M

3
π + c3M

4
π ln

(
M2
π

M2
ρ

)
+ O(M4

π) . (6.9)

To this order the formula contains four unknown parameters, the ρ mass in the chiral limit M0
ρ

and the parameters c1, c2 and c3. Using this mass dependence of Mρ and the KSFR relation [94,
95], we can try to relate gρππ to Mπ up to order M3

π using Eq. (6.9) and the SU(2) chiral
perturbation theory formula for fπ [4]

gρππ(M2
π) ≈

Mρ

fπ
≈ 1
f0

[
M0
ρ +M2

π

(
c1 + 2

16π2f2
0

(log ξ` − ¯̀4 − `π)
)

+ c2M
3
π

]
+O(M4

π) . (6.10)
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Figure 6.6: We show the phaseshift δ1 as a function of ECM in lattice units. Left we compare A40.24
(blue) with A40.32 (red) and right B35.48 (red) with B35.32 (blue). The lines with error bars represent
the corresponding fits with Eq. (6.7) to the data.

Here, fπ is the pion decay constant, f0 its value in the chiral limit and the parameters M0
ρ and

ci are the ones from Eq. (6.9). Note that we follow the convention with fπ ≈ 130 MeV [38]. In
addition we have used the definitions

`π = log
(
M

π
+

4πf0

)2

, ξ` = M2
π

16π2f2
0

and the usual low energy constant ¯̀4. Values for f0 and ¯̀4 have been computed on the ensembles
used here in Ref. [85]

f0 = 121.1(2) MeV , ¯̀4 = 4.7(1) .

In nature the KSFR relation [94, 95] gρππ ≈ Mρ/fπ is fulfilled to very good approximation.
However, it is not clear at all whether it can be extended beyond leading order in the pion mass.

In Ref. [96, 97], the pion mass dependence of the ρ-meson mass and width has been calculated
with the complex mass renormalisation scheme from an effective field theory with explicit
contributions corresponding to the ω-meson. It is based on the assumption of vector meson
dominance and, thus, model dependent; see also Ref. [98] for details on the model. However,
its advantage is that mass and width can be extrapolated in a combined fit. The squared pole
position of the ρ resonance, Z =

(
Mρ − i/2 Γρ

)2
has the following pion mass dependence

Z = Zχ + cχM
2
π −

g2
ωρπ

24π Z
1/2
χ M3

π + O
(
M4
π

)
, (6.11)

where Zχ is the pole position in the chiral limit and cχ, gωρπ are coupling constants. Higher
order corrections in Mπ are known in principle, which also include logarithmic terms. The
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Figure 6.7: In the left panel we show r0M
av
ρ as a function of (r0Mπ)2. Open symbols are not included

in the fit. In the right panel gav
ρππ is shown also as a fucntion of (r0Mπ)2. The lines with error bands

represent independent fits to the data.

non-analytic structure in Mρ is identical to the one of Eq. (6.9).
In order to apply this formula to our lattice data, we re-express it in units of the Sommer

parameter r0

r2
0Z = r2

0Zχ + Cχ(r0Mπ)2 −
g2
ωρπ

24πr2
0

(r2
0Zχ)1/2(r0Mπ)3 +

p
a

2

r2
0
a2 (6.12)

and add an a2 term, which represents the leading lattice artefacts for the twisted mass formulation
at maximal twist. p

a
2 is an unknown complex parameter.

We first consider Mρ and gρππ. In the left panel of Figure 6.7 we show r0M
av
ρ , in the right

one gav
ρππ, both as a function of (r0Mπ)2. Note that the error on r0/a is not included in the plot,

because it is 100% correlated for all data points of the same β-value. Colours and symbols encode
the three lattice spacing values. The black diamonds represent the corresponding experimental
values. The first observation is that lattice artefacts are not resolvable given our current level of
statistical uncertainty. Overall, Mρ appears to show a rather linear dependence on M2

π , a bit
less so gρππ. The values for aMπ can be found in Tab. 6.2. For the following extrapolations we
correct aMπ for finite size effects by applying a correction factor KMπ

computed in Ref. [85],
which can also be found in Tab. 6.2.

Next we have tried to fit the pion mass dependence of Mav
ρ and gav

ρππ combining Eqs. (6.9) and
(6.10) up to the order M3

π . However, such a fit did not result in convincing results. Even though
the chiral log in gav

ρππ stemming from fπ somewhat compensates the term c1M
2
π , a satisfactory

description of the data for both the mass and the coupling could not be achieved.
Therefore, we show in Figure 6.7 independent linear extrapolations for both Mρ and gρππ

in M2
π . As visible, the extrapolation overestimates both the ρ mass and the coupling at the

physical point compared to experiment.
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Data points with open symbols are not included in the fit.

Therefore, we turn now to fits of mass and width using Eq. (6.12) for the complex valued
variable Z. We extrapolate Mρ and Γρ to the physical point combined in r2

0Z = r2
0(Mρ+iΓρ/2)2.

As the number of configurations is different for each ensemble, they can not be combined directly.
The error analysis for this fit is performed using the parametric bootstrap procedure maintaining
the correlation among Mρ, Γρ and Mπ. The parameters are the result of the jackknife analysis.
The values for r0/a for the different lattice spacings were also resampled from the values compiled
in Tab. 5.3. As Nboot 1500 samples were chosen.

The actual fit function reads

a2Z = p−2
r0/a

(
(p1 + ip2) + p3

(
pr0/a

aMπ

)2
− p4

√
p1 + ip2

(
pr0/a

aMπ

)3
+ (p5 + ip6) p−2

r0/a

)
.

(6.13)

The fit parameters are the following: p1 and p2 represent the real and imaginary parts of r2
0Zχ

and p3 represents Cχ, furthermore p4 ≡ g2
ωρπ/(24πr2

0) and p5 and p6 parametrise the real and
imaginary part of the a2 lattice artefacts. pr0/a

is one fit parameter per lattice spacing value for
r0/a accompanied by a corresponding prior Pr0/a

. Thus, we have in total 6 real-valued free fit
parameters.

In the fit we include only the ensembles with the largest volume per pion mass value, i.e.
A40.24 and B35.32 are not included in the fit. We do not include ensemble D15.48 in the fit, for
reasons mentioned above. Moreover, we include only data points with Mπ ≤ 420 MeV, which
excludes ensembles A80.24 and A100.24.

The best fit parameters can be found in Tab. 6.3 together with the reduced χ2-value. We give
the best fit parameters for fits with and without lattice artefacts included. Clearly, p5 and p6,
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which parametrise the a2 effects in Z are compatible with zero. Also, the remaining parameters
do not change significantly with and without a2 artefact included in the fit.

Parameter incl. a2 excl. a2

p1 3.14(28) 2.99(07)
p2 -0.631(61) -0.592(26)
p3 4.75(24) 4.79(08)
p4 0.936(80) 0.991(34)
p5 -5(10) -
p6 1.3(1.8) -
χ2/d.o.f. 2.35 2.40

Table 6.3: Best fit parameters of the combined chiral fit in terms of Z with and without lattice artefacts
included in the fit.

The χ2-values for these fits are all a bit too large, indicating a tension in the data in particular
between Mρ and Γρ. It basically is a consequence of the invisible curvature in the data for Mρ.

The result of the fit can be seen in Figure 6.8, where we show in the left panel r0Mρ and in
the right panel r0Γρ both as functions of (r0Mπ)2. Note that the error on r0/a is not included
in the plot, because it is 100% correlated for all data points of the same β-value. The best fit
to the data is indicated by the solid lines with error bands. Data points with open symbols
are excluded from the fit. The fit range is indicated by the extent of the solid lines. The
experimental values are included in both plots as black diamonds, but not included in the fit.

Our final result for Mρ and Γρ taken from the fit without a a2 effects included reads

Mρ = 769(19) MeV , Γρ = 129(7) MeV , (6.14)

corresponding to

gρππ = 5.5(1) . (6.15)

In addition we find

M0
ρ = 723(20) MeV ,

Γ0
ρ = 142(7) MeV ,

|gωρπ| = 20.8(7) GeV−1
(6.16)

from our chiral and continuum fits.

6.5 Discussion

The final result for Mρ and Γρ we quote in Eq. (6.14) can be compared to the corresponding
PDG values [38] for mass and full width

M exp
ρ = 775.26(25) MeV (3.2)

Γexp
ρ = 149.1(8) MeV . (3.3)
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from our final results for Mρ and Γρ shown as red solid line. For illustration purposes we also show the
phase shift curve in a world with Mπ = 220 MeV as green dashed line, with Mπ = 305 MeV as blue
dot-dashed line and with 390 MeV as a purple two-dashed line.

While Mρ agrees rather well, the width is slightly too low. This is also visible in Figure 6.9,
where we plot the experimental phase shifts from Ref. [15] and compare them to the phase shift
curve we obtain by evaluating Eq. (6.7) at the final values Eq. (6.14).

However, this good agreement should be taken with caution. First of all our extrapolation
form for Mρ and Γρ is not model independent. This is in particular important, because the
curvature needed to obtain an Mρ-value close to the experimental one comes from constrains
due to Γρ. This, as discussed earlier, manifests itself also in a bit too large χ2-values in the
chiral and continuum fits. Moreover, the ensemble with the lightest pion mass included in the
fit is B35.48 with a pion mass of about 300 MeV. Thus, the extrapolation to the physical point
is quite long. In addition we have assumed that we can perform a Breit-Wigner type fit to all
the phase shift data, which is an approximation. This might also be the reason for the too low
value of Γρ compared to experiment. Our fitted value for gωρπ Eq. (6.16) is in the right ballpark,
when compared to the numbers given in Refs. [96, 97], where 16 GeV−1 is quoted. From Refs. [9,
99] one finds gωρπ = ±20.7 GeV−1 in very good agreement with our value.

Finally, our determinations of mass and width rest on the assumption that all partial waves
apart from ` = 1 are negligible. This assumption is supported by previous lattice investigations
of the ρ meson, but has not been checked by us yet.

On the other hand, this work is the first consistent extrapolation to the physical point and to
the continuum limit. Due to the comparatively high number of ensembles used in this work, we
were able to fully take into account lattice artifacts and partially evaluate the influence of finite
volume effects. We found no statistically significant evidence for a dependence on the lattice
spacing in our results. Furthermore we found reason to argue that finite volume effects are not
a dominant source of uncertainty in our results either.
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with all available results that had a dynamic strange quark: Alexandrou et al. [32], Andersen et al. [33],
Fu et al. [30], HadSpec [27, 29], PACS-CS [26] as well as the experimental value [38].

In Figure 6.10 we compare results for Mρ and gρππ from various lattice collaborations with
Nf = 2 + 1 or Nf = 2 + 1 + 1 dynamical quark flavours. We observe that there are probably
lattice artefacts in some of the results for Mρ, in particular in the results from Andersen et
al. [33] and from the Hadron Spectrum Collaboration [27]. For gρππ uncertainties are in general
larger and within these large uncertainties the agreement among different lattice collaborations
is reasonable.
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CHAPTER 7

Summary

In this thesis the ρ-meson properties were investigated using lattice QCD with Nf = 2 + 1 + 1
Wilson twisted mass quarks at maximal twist. The ρ-meson is one of the lightest and arguably
the simplest resonance in the standard model of particle physics and experimentally known to
very high precision. Nevertheless or maybe for this very reason reproducing the experimental
results is an important milestone on the way to investigate other resonances with lattice QCD.

The investigation of resonances entails several technical challenges. Utilizing arbitrary moving
frames causes a nontrivial splitting of spin multiplets. While this effect has been discussed
before, this work adds a group theoretical perspective and detailed derivations that hopefully
prove useful for future generalizations.

The phase shift curves have been determined applying Lüscher’s method using moving frames
up to d2 = 4 and all available lattice irreducible representations. With three values of the lattice
spacing and a range of pion mass values we could perform chiral and continuum extrapolations
of ρ-meson mass Mρ and width Γρ with better control than previously possible. Under the
assumption that partial waves with l ≥ 3 are negligible these two quantities have been determined
on our ensembles using a Breit-Wigner type fit to phase shift data.

From a combined continuum and chiral extrapolation of Mρ and Γρ the final results

Mρ = 769(19) MeV , gρππ = 5.5(1) , Γρ = 129(7) MeV

have been determined.
Systematic errors from thermal state pollutions, the chiral and the continuum extrapolation

were carefully examined and should be covered by the error we quote. Mρ is very close to its
experimental value but the width is about two sigma too low. The agreement of our data for
Mρ with previously published lattice results is satisfactory.

To further improve the calculation of resonances with lattice QCD, more work needs to be
done to better estimate the width. It likely suffers from e.g. the use of a Breit-Wigner type
fit to the phase shift data. More sophisticated models such as the inverse amplitude method
[100–104] would be capable to directly describe the pion mass dependence of the phase shift
curves. This will be the next step to alleviate systematic uncertainties in our current analysis
and therefore allow performing the chiral extrapolation even more reliably.
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APPENDIX A

Appendix

A.1 Point Group Theory Tables
There are 24 proper rotations, that leave a cube invariant. Amongst themselves they already
form group so-called chiral / rotational octahedral group O wich falls into NC = 5 conjugacy
classes.

E: Identity

3C2: Rotation about face-centered axes by π

8C3: Rotation about body diagonals (corner-centered axes) by 2π/3

6C4: Like 3C2, but by ±π/2

6C′2: Rotation about edge-centered axes by π

With the exception of E, the first number in the respective names decode the number of elements
belonging to a given conjugacy class. C(′) denotes a proper rotation axes and the last number
gives the rotation angle as a fraction of 2π. Implicitly the largest angle defines a principal axis
which is conventional chosen in the z direction. In this example it is a rotation by π about a
face-centered axis.

The number of irreducible representations (irreps) is equal to the number of conjugacy classes.
NΓ = NC . Their dimensions squared must partition the order of the group

24 =
NΓ∑
i=1

|Γi|
2

In conjunction with several orthogonality theorems yields one obtains the partition 24 =
12 + 12 + 22 + 32 + 32. There are two one-dimensional, one two-dimensional and two three-
dimension irreps labeled A1, A2, E, T1 and T2. The character table is given in Tab. A.1. A
always denotes singly-degenerate, E always doubly-degenerate and T always triply-degenerate
representations. In addition to A, B will denote singly-degenerate representations which are
antisymmetrical with respect to a rotation about the principal axis. A1 always is the trivial
representation.

The symmetry group of inversions is Ci. It contains only two elements and falls into NC = 2
conjugacy classes. The conjugacy classes are denoted

87



Appendix A Appendix

O E 3C2 8C3 6C4 6C′2
A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 2 −1 0 0
T1 3 −1 0 1 −1
T2 3 −1 0 −1 1

Table A.1: Character Table of O the group of proper rotations of an octahadron.

E: Identity

i: Inversion

Ci has two irreducible representations, Ag and Au. As suggested by the letter A both these

Ci E i
A 1 1
A2 1 −1

Table A.2: Character Table of Ci the group of inversion.

representations are one-dimensional. The index g and u of the irreps abbreviates “gerade” (even)
and “ungerade” (odd). In the matrix representation of Ag all elements are 1. An even state is
therefore invariant under spatial inversion. On the contrary the matrix representation of Au has
a −1 for the spatial inversion, thus odd states change sign under spatial inversion.

As there is only one group with two elements Ci is of course congruent to the mirror group
which will be denoted as Cs for distinction.

d2 = 0: The group Oh As mentioned before, the restricted symmetry group for the lattice in
the rest frame is the group of proper and improper rotations that leave a cube invariant. The
latter are also often called “rotoflections” and we use “full rotoflections” when we mean both. It
is the direct product of the rotation group O and reflection group Ctexti:

Oh = O ⊗ Ci .

In comparison to O it has twice as many elements |Oh| = 48. It consists of NC = 10 conjugacy
classes. The classes of O are retained and supplemented by

i: Inversion

3σ: Reflection in planes perpendicular to a face-centered axis

8S6: Rotoflections with rotation by π/6

6S4: Rotoflections with rotation by π/4

6σd: Reflection in planes perpendicular to an edge-centered axis

σ denotes mirror planes and S denotes improper rotation axes.
According to NC , the number of irreducible representations is NΓ = 10 as well. All irreps of

Tab: A.1 appear twice. The character table is given in Tab. A.3. As one would naively expect,
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Oh E 3C2 8C3 6C4 6C′2 i 3σ 8S6 6S4 6σd
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 −1 −1 1 1 1 −1 −1
Eg 2 2 −1 0 0 2 2 −1 0 0
T1g 3 −1 0 1 −1 3 −1 0 1 −1
T2g 3 −1 0 −1 1 3 −1 0 −1 1
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1
Eu 2 2 −1 0 0 −2 −2 1 0 0
T1u 3 −1 0 1 −1 −3 1 0 −1 1
T2u 3 −1 0 −1 1 −3 1 0 1 −1

Table A.3: Character Table of Oh the group of full rotoflections of an octahedron.

(a) d2 = 1, 4: Rectangular prism (b) d2 = 2: Right rhombic prism (c) d2 = 3: Truncated triangular
prism

Figure A.1: Distorted geometries for the different boosts applied in this work. The transparent color is
used to clarify thet reflection in the plane perpendicular to the CM momentum is not a symmetry of the
lattice

because parity is still conserved the odd irreps are just augmented by an additional minus sign
in all conjugacy classes that involve inversion.

d2 = 1, 4: The group C4v When d2 = 1 or 4 the cube is boosted along a face-centered axis e.g.
(0, 0, 1) or (0, 0, 2). To an observer in the rest frame the geometrical figure appears as rectangular
prism as shown in Fig. A.1(a) which is invariant under rotations from the dihedral group with
reflections perpendicular to the principal axis, D4h ⊂ Oh. However, the prism is oriented because
the direction of pcm would change under the reflection in the plane perpendicular to it. D4h
must be further restricted by taking the factor group C4v

∼= D4h/Cs without this reflection.1

1 As Cs
∼= Ci, C4v is congruent to the dihedral group of a rectangle D4 ≡ Dih4

∼= D4h/Ci. This distinction is
necessary because in the lattice community usually the double cover of C4v is denoted by the dicyclic group
Dic4 [60, 82]
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This is the point group of a ditetragonal pyramid [105]
C4v contains only four elements and falls into NC = 4 conjugacy classes.

E: Identity

2C4: Rotation about pcm by π/4

C2: Rotation about pcm by π/2

2σv: Reflection in planes perpendicular to a face-centered axis

2σd: Reflection in planes perpendicular to an edge-centered axis

According to NC , the number of irreducible representations is NΓ = 5 as well. The character
table is given in Tab. A.4.

O E 2C4 C2 2σv 2σd
A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

Table A.4: Character Table of C4v the group of full rotoflections of a ditetragonal pyramid.

d2 = 1, 4: The group C2v When d2 = 2 the cube is boosted along an edge-centered axis e.g.
(1, 1, 0). To an observer in the rest frame the geometrical figure appears as a right rhombic
prism as shown in Fig. A.1(b) which is invariant under D2h ⊂ Oh. Again a reflection in the
plane perpendicular to pcm would change its sign. The factor group C2v

∼= D2h/Cs without this
reflection is the point group of a rhombic pyramid [105]

C2v has only four elements and falls into NC = 4 conjugacy classes. The remaining reflections
in planes perpendicular to a face-centered axis (3σ of Oh) fall into a class of their own.

E: Identity

C2: Rotation about pcm by π/2

σx: Reflection in plane perpendicular to a face-centered axis

σy: Reflection in plane perpendicular to a face-centered axis

According to NC , the number of irreducible representations is NΓ = 4 as well. The character
table is given in Tab. A.5.

The symmetry group C3v When d2 = 3 the cube is boosted along a corner-centered axis e.g.
(1, 1, 1). To an observer in the rest frame the geometrical figure appears as an edge truncated
triangular prism as shown in Fig. A.1(c) which is invariant under C3v ⊂ Oh. This case is
special because even the cube is not invariant under reflections in planes perpendicular to
corner-centered axes and therefore no further restriction is necessary. C3v is the point group of
a ditrigonal pyramid, [105]

C3v falls into NC = 3 conjugacy classes.
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O E C2 2σx 2σy
A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1

Table A.5: Character Table of C2v the group of full rotoflections of a rhombic pyramid.

E: Identity

2C3: Rotation about pcm by π/3

3σv: Reflection in planes perpendicular to an edge-centered axis

According to NC , the number of irreducible representations is NΓ = 4 as well. The character
table is given in Tab. A.6.

O E 2C2 3σv
A1 1 1 1
A2 1 1 −1
E 2 −1 0

Table A.6: Character Table of C3v the group of full rotoflections of a ditrigonal pyramid.
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A.2 Subduction coefficients

Like before let |L,m〉 be a basis vector of the the lth angular momentum irrep of SO(3) and m
denote the magnetic quantum number. In Sec. 2.3.3 the operator

P̂Γ
αβ(p) = dim(Γ)

|LG(p)|
∑

g∈LG(p)
DΓ(g)∗

αβR̂g (2.87)

was introduced and it was stated in Eq. (2.89) that it acts as a projection operator from the span
of | L,m〉 to the αth basis state of the lattice irrep Γ (in a moving reference frame characterized
by p).

This can be proven by showing that P̂Γ
αβ(d) |L,m〉 transforms analogously to |p; L,m〉 in

Eq. (2.100)

zz R̂ | p; Γ, α〉 =
∑
γ

DΓ(R)γα
∣∣∣ R̂p; Γ, γ

〉
(2.100′)

under any allowed lattice transformation R.
Let h ∈ LG(p) so that Rh is an allowed lattice rotation. Let 1 ≤ β ≤ dim(Γ) and 1 ≤ m ≤ l

by arbitrary but fixed. Then

R̂h |p; Γ, α〉 =
∑
m

′

dim(Γ)
|LG(d)|

∑
g∈LG(d)

DΓ(Rg)
∗
αβ D

L(Rg)m′
mR̂h

∣∣∣R̂gp; L,m′
〉

=
∑
m

′

dim(Γ)
|LG(d)|

∑
g∈LG(d)

DΓ(Rg)
∗
αβ D

L(Rg)m′
m

∑
m

′′

DL(Rh)m′′
m

′

∣∣∣R̂hR̂gp; L,m′′
〉

=
∑
m

′′

dim(Γ)
|LG(d)|

∑
g∈LG(d)

DΓ(Rg)
∗
αβ D

L(Rh·g)m′′
m

∣∣∣R̂h·gp; L,m′′
〉

(A.1)

=
∑
m

′′

dim(Γ)
|LG(d)|

∑
k∈LG(d)

DΓ(R−1
h ·Rk)

∗
αβ D

L(Rk)m′′
m

∣∣∣R̂kp; L,m′′
〉

=
∑
m

′′

dim(Γ)
|LG(d)|

∑
k∈LG(d)

∑
γ

DΓ(R−1
h )∗

αγ D
Γ(Rk)

∗
γβ D

L(Rk)m′′
m

∣∣∣R̂kp; L,m′′
〉

=
∑
γ

DΓ(R−1
h )∗

αγ

∑
m

′′

(
PΓ,L
γβ

)
m

′′
m

∣∣∣p; L,m′′
〉

=
∑
γ

DΓ(R−1
h )∗

αγ |p; Γ, γ〉

=
∑
γ

DΓ(Rh)γα |p; Γ, γ〉
(A.2)

which proves the statement.
The essential reason why |Γ, α〉 defined in Eq. (2.89) transforms correctly under lattice

rotations is the interplay of the sum over all group elements and the matrix representation of Γ.
This becomes evident in Eq. (A.1). Every piece of the projection operator that has an angular
momentum index transforms under Rh like it would in the continuum. DΓ(Rg)

∗
αβ is the only

factor where this does not introduce the product h · g. Because LG is a group it is closed under
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multiplication all products h · g may be re-expressed by k. Because DΓ is a representation,

DΓ(Rg)
∗
αβ =

∑
γ

DΓ(R−1
h )∗

αγ D
Γ(Rk)

∗
γβ

which gives the required DΓ(R−1
h )∗

αγ . The sum over all group elements is crucial as it guarantees
the equality of both sums.

In the proof of Eq. (A.2) the labels β and M simply carried through and were absorbed into
| p; Γ, γ〉 in the final step. The projected states transform correctly independently of the values
chosen for β and m. In particular any linear combination is still transforming correctly. When
this freedom may be expressed by phases φβ, φm the projector becomes

P̂Γ
αβ(p;φβ, φm) = dim(Γ)

|LG(p)|
∑
β

φβ
∑
m

φm
∑

g∈LG(p)
DΓ(g)∗

αβR̂g . (A.3)

The projection can be interpreted as dim(Γ) × (2l + 1) matrix cΓ,α
L,m(β, φ) which describes the

distribution of 2l + 1 basis vectors of SO(3) into basis vectors of Γ.

| p; Γ, α〉 =
∑
m

′

(
P̂Γ
αβ(p;φβ, φm)

)
m

′
m

∣∣∣ p; L,m′
〉

(A.4)

≡
∑
m

′

cΓ,α
L,m′(p;φβ, φm)

∣∣∣ p; L,m′
〉

(A.5)

The coefficients cΓ,α
L,m(p;φβ, φm) may be interpreted as mapping

cΓ,α
L,m′(p;φβ, φm) : span (| L,m〉) → span (| Γ, α〉) . (A.6)

This prescription is often referred to as “subduction”. Note, that the mapping only acts in the
space of angular momenta. While the coefficients depend on the linear momentum, the linear
momentum itself is unchanged by the subduction process. The image of this mapping is a set
of dim(Γ) operators. They depend on the phases and in general may be linear dependent or
even zero. We use the phase freedom to orthonormalize the resulting set of operators. The
phase-fixed set of coefficients is denoted by sΓ

L(p) with the dependence on φβ and φm suppressed.

l∑
m=−l

sΓ,α
L,m(p)∗ sΓ,α

L,m(p) = 1 (A.7)

The coefficients sΓ
L(p) encapsulate the whole projection. The projection is condensed into a

single set coefficient, called “Subduction coefficients”
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A.3 Dirac matrix conventions
The ETMC ensembles were generated with the tmLQCD2 code. We follow the conventions for
the Dirac matrix chosen within. They are given by

γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (A.8)

γ1 =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 (A.9)

γ2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 (A.10)

and

γ3 =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 (A.11)

A.4 Implemented diagrams
C2c

C = 〈ΓOp0D
−1
Q0 (t|t′)ΓOp1γ5D

−1
Q1 (t|t′)†γ5〉 (A.12)

Op0 Op1

Q0

γ5Q
†
1γ5

C2+:Op0:Q0:Op1:Q1

Appears in: π±, K±, ρ±

C2n

C = 〈ΓOp0D
−1
Q0 (t′|t)ΓOp1D

−1
Q1 (t|t′)〉 (A.13)

2 https://github.com/etmc/tmLQCD
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A.4 Implemented diagrams

Op0 Op1

Q1

Q0

C20:Op0:Q0:Op1:Q1

Appears in: π0 , K0 , σ , ρ0

C2nV

C = 〈ΓOp0D
−1
Q0 (t|t)〉 · 〈ΓOp1D

−1
Q1 (t′|t′)〉 (A.14)

Op0 Op1

Q
0 Q 1

C2nV:Op0:Q0::Op1:Q1

Appears in: σ

C3c

C = 〈ΓOp0D
−1
Q0 (t|t′)ΓOp1D

−1
Q1 (t′|t)ΓOp2γ5D

−1
Q2 (t|t)†γ5〉 (A.15)

Op0

Op1

Op2

γ5Q
†
2γ5

Q
0

Q1

C3+:Op0:Q0:Op1:Q1:Op2:Q2

Appears in: π+π− → ρ0

C3n

C = 〈ΓOp0D
−1
Q0 (t|t′)ΓOp1D

−1
Q1 (t′|t)ΓOp2D

−1
Q2 (t|t)〉 (A.16)
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Op0

Op1

Op2

Q2

Q
0

Q1

C3n:Op0:Q0:Op1:Q1:Op2:Q2

Appears in: π0π0 → σ

C3nV

C = 〈ΓOp0D
−1
Q0 (t|t)ΓOp1D

−1
Q1 (t|t)〉 · 〈ΓOp2D

−1
Q2 (t′|t′)〉 (A.17)

Op0

Op1

Op2
Q1

Q0 Q 2

C2nV:Op0:Q0::Op1:Q1:Op2:Q2

Appears in: π0π0 → σ

C4cD

C = 〈ΓOp0D
−1
Q0 (t|t′)ΓOp1γ5D

−1
Q1 (t|t′)†γ5〉 · 〈ΓOp2D

−1
Q2 (t|t′)ΓOp3γ5D

−1
Q3 (t|t′)†γ5〉 (A.18)

Op0 Op1

Op2 Op3

γ5Q
†
1γ5

Q0

γ5Q
†
3γ5

Q2

C4+D:0p0:Q0:Op1:Q1:Op2:Q2:Op3:Q3

Apears in: π+ π−
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C4nD

C = 〈ΓOp0D
−1
Q0 (t′|t)ΓOp1D

−1
Q1 (t|t′)〉 · 〈D−1

Q2 (t′|t)ΓOp2D
−1
Q3 (t|t′)ΓOp3〉 (A.19)

Op0 Op1

Op2 Op3

Q1

Q0

Q3

Q2

C4nD:Op0:Q0:Op1:Q1:Op2:Q2:Op3:Q3

C4cV

C = 〈ΓOp0D
−1
Q0 (t|t)ΓOp1γ5D

−1
Q1 (t|t)†γ5〉 · 〈ΓOp2D

−1
Q2 (t′|t′)ΓOp3γ5D

−1
Q3 (t′|t′)†γ5〉 (A.20)

Op0

Op1

Op2

Op3

γ5Q
†
1γ5

Q0

γ5Q
†
3γ5

Q2

C4+V:Op0:Q0:Op1:Q1:Op2:Q2:Op3:Q3

C4nV

C = 〈ΓOp0D
−1
Q0 (t|t)ΓOp1D

−1
Q1 (t|t)〉 · 〈ΓOp2D

−1
Q2 (t′|t′)ΓOp3D

−1
Q3 (t′|t′)〉 (A.21)

Op0

Op1

Op2

Op3

Q1

Q0

Q3

Q2

C4nV:Op0:Q0:Op1:Q1:Op2:Q2:Op3:Q3
Apears in: π0 π0
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C4cB

C = 〈ΓOp0D
−1
Q0 (t|t′)ΓOp1γ5D

−1
Q1 (t′|t′)†γ5ΓOp2D

−1
Q2 (t′|t)ΓOp3γ5D

−1
Q3 (t|t)†γ5〉 (A.22)

Op0 Op1

Op2Op3

γ5Q
†
3γ5

Q0

γ5Q
†
1γ5

Q2

C4+B:Op0:Q0:Op1:Q1:Op2:Q2:Op3:Q3

Appears in: π+ π−

C4nB

C = 〈ΓOp0D
−1
Q0 (t|t′)ΓOp1D

−1
Q1 (t′|t′)ΓOp2D

−1
Q2 (t′|t)ΓOp3D

−1
Q3 (t|t)〉 (A.23)

Op0 Op1

Op2Op3

Q3

Q0

Q1

Q2

C4nB:Op0:Q0:Op1:Q1:Op2:Q2:Op3:Q3

Apears in: π0 π0

C4cC

C = 〈ΓOp0D
−1
Q0 (t|t′)ΓOp1γ5D

−1
Q1 (t|t′)†γ5ΓOp2D

−1
Q2 (t|t′)ΓOp3γ5D

−1
Q3 (t|t′)†γ5〉 (A.24)

Op0 Op1

Op2 Op3

γ
5 Q †3 γ

5

Q0

γ 5Q
† 1
γ 5

Q2

C4+C:Op0:Q0:Op1:Q1:Op2:Q2:Op3:Q3

98



A.4 Implemented diagrams

Appears in: π+ π−

C4nC

C = 〈ΓOp0D
−1
Q0 (t|t′)ΓOp1D

−1
Q1 (t′|t)ΓOp2D

−1
Q2 (t|t′)ΓOp3D

−1
Q3 (t′|t)〉 (A.25)

Op0 Op1

Op2 Op3
Q

3

Q0

Q
1

Q2

C4nC:Op0:Q0:Op1:Q1:Op:Q2:Op3:Q3

Apears in: π0 π0
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