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Summary

We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Mod-
ified Korteweg-de-Vries Equation (mKdV) in the one-dimensional, focusing
case. For the mKdV, we also restrict ourselves to the case of real-valued
solutions. The Lax formalism for the Nonlinear Schrödinger Hierarchy gives
rise to a Bäcklund transformation, which connects the trivial zero solution
to the elementary soliton solution for both equations.

Following an approach pioneered by Mizumachi and Pelinovsky, this the-
sis uses the Bäcklund transformation to prove asymptotic stability of NLS-
and mKdV-solitons by showing that known stability properties of the zero
solution transfer to the solitons. An important feature of the argument pre-
sented here is that it proceeds by relatively elementary techniques, without
invoking the Riemann-Hilbert-formalism of inverse scattering theory.

For the essential asymptotic stability of the zero solution, we will invoke
results by Ifrim and Tataru and by Harrop-Griffiths, which also provide
asymptotic expressions for the potentials under consideration. This will
enable us to understand the behaviour of the Jost solutions for the corre-
sponding Lax systems as the time t→∞. Our asymptotic stability results
contain time-dependent position, and in the NLS case, phase shift functions,
which we will show to converge to constant values as t → ∞ on the basis
of these findings. It is a particularly notable point that we will be able
to show quantitative estimates for how fast position and phase will go to
their respective limits. In the mKdV case, we will actually be able to show
convergence properties of the Jost solutions beyond what is necessary for
our stability arguments, which could potentially be useful in applying the
methods of this thesis to other special mKdV-solutions.

A large portion of the arguments given should generalize to other equa-
tions in the NLS hierarchy, provided a suitable asymptotic stability result
for the zero solution is available.
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Chapter 1

Introduction

The family of Nonlinear Schrödinger Equations is used to model a wide vari-
ety of wave phenomena, ranging from the theory of water waves to nonlinear
optics (compare e.g. [2], [10], [17]). In the following we will concern our-
selves with the initial value problem for the one-dimensional, cubic, focusing
equation

iut + uxx + 2|u|2u = 0, (1.1)

with u = u(t, x) : R+×R→ C a complex-valued function with u(0, ·) = u0
1.

Unless otherwise indicated, we will use the abbreviation ”NLS” exclusively
to refer to this case.

The formalism of inverse scattering theory, originally developed in [1], gives
rise to a map that will send any solution of NLS to another solution of the
same equation, called a Bäcklund transformation. Bäcklund transformations
are intimately connected to a class of particle-like solutions called solitons.
In [22], Mizumachi and Pelinovsky used the Bäcklund transformation for
NLS to show L2-stability of soliton solutions. Their proof was based on
reduction of the problem to the L2-stability of the zero solution (which is
known by conversation of L2-energy). There are also several asymptotic sta-
bility results for the zero solution available (e.g. [13], [16] and several others).
It is therefore a natural question if these, too, transfer to soliton solutions
via the Bäcklund transformation, which Mizumachi and Pelinovsky left open
at the end of their paper. In [8], Cuccagna and Pelinovsky gave one such
proof. Their argument is partially based on an asymptotic stability result
for the zero solution of their own, which at the same time provides greater
generality in the sense that it applies to all pure radiation solutions. To do
so, they rely on an explicit analysis of the Riemann-Hilbert problem from
inverse scattering theory.

1For simplicity, we restrict ourselves to positive times t in the first argument.
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LetH0,1(R) be the function space defined by the norm ‖f‖H0,1(R) = ‖f‖L2(R)+
‖xf‖L2(R). In Theorem 5.2 of this thesis, we will give a proof of asymptotic
stability of NLS solitons with initially small H0,1-norm that does not rely
on analysis of the Riemann-Hilbert problem2 and thus provides a more el-
ementary alternative to [8]. (It should be emphasized that, while we are
going to restrict ourselves to H0,1(R) for simplicity, similar arguments work
for all other spaces to which Remark 2.4 applies.)

In order to achieve this (in Theorem 5.2), we will follow in the footsteps
of [22] in analyzing the properties of the Jost solutions3 for the spatial part
of the Lax system from inverse scattering theory (see (3.1), (3.2) and the
following discussion in Chapter 3):

∂x

(
ψ1

ψ2

)
=

(
−iζ u
−u iζ

)(
ψ1

ψ2

)
, (1.2)

where ζ ∈ C with Im(ζ) > 0, ψ = ψ(x) : R → C × C (actually ψ(t, x) :
R+ ×R→ C×C, considered at a fixed timepoint t ∈ R+ here), and we are
mostly concerned with the case that the potential u is a solution of NLS in
an appropriate function space. The Jost solutions behave like free solutions
for potential u = 0 as x → ∞ or −∞: The left Jost solution behaves like

e−iζx
(

1
0

)
for x→ −∞, the right Jost solution like eiζx

(
0
1

)
as x→∞.

We will show that in the case of a small L∞-norm of u ∈ L2(R), the ”large”
component that dominates the Jost solution at +∞ or −∞ dominates ev-
erywhere, in a manner controlled by the L∞-norm. The decisive arguments
are in Proposition 5.8 and Claim 5.9, the latter of which plays a similar role
to Lemma 4.3 in [8]. While Cuccagna and Pelinovsky employ their detailed
analysis of pure radiation NLS solutions, we will use an argument that em-
ploys Gronwall’s inequality and the boundedness of the Jost solutions on
one side to show Claim 5.9. An interesting point to note is that Claim 5.9
only depends on the L∞-smallness of the potential. Again using Gronwall’s
inequality, we will utilize this result to understand a suitable sense in which
the left and right Jost solution behave like exponential functions (see espe-
cially (5.27) and (5.28)).

The arguments outlined in the previous paragraph yield a preliminary result
where our limit still includes time-dependent position and phase parameters,
which we can characterize in terms of the absolute values of the Jost solu-
tions on the real line. A particularly important feature of Theorem 5.2 is
that we show convergence (as t→∞) of these parameters with quantitative

2Another difference to [8] is how the pullback at t = 0 is established in Lemma 5.3.
3Although Mizumachi and Pelinovsky define the solutions slightly differently than we

are going to do in the following. For clarification, see Remark 4.2.
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estimates for the rate, given in (5.3) and (5.4). To do so, we will make use
of [16], where Tataru and Ifrim derived an asymptotic stability result for
solutions with small H0,1-norms at t = 0 without the aid of inverse scat-
tering theory, and especially, they obtained an asymptotic expression for
the solution (we give their findings in Theorem 2.3). This can be used to
understand the behaviour of the Jost solutions as t→∞ (Lemma 5.10) and
show the desired convergence properties of position and phase.

Another nonlinear partial differential equation which admits a family of soli-
ton solutions is the modified Korteweg-de-Vries equation (mKdV in the fol-
lowing) which we pose for a real-valued4 function u = u(t, x) : R+×R→ R:

ut + uxxx + 2(u3)x = 0, (1.3)

where u(0, ·) = u0.

This equation, too, has an associated Lax system, with the spatial part
(1.2) the same as in the NLS case. And just like for the NLS, asymptotic
stability results for the zero solution are available, see [12], [14], [15]. We will
employ the main theorem from [12], in which Harrop-Griffiths showed such a
result without relying on inverse scattering theory, including an asymptotic
expression. This can be used for an asymptotic stability argument similar
to the NLS case, as we will do in Theorem 6.1. While we have to treat a
phase and a position shift when showing the asymptotic stability of (1.1),
we only have to deal with a time dependent position shift function in the
mKdV case. Showing convergence of this function to a constant value as
t→∞ turns out to be easier than in the proof for NLS (once again, note the
quantitative estimate for the rate of convergence, in this case given by (6.2)).
This is because the center of an mKdV soliton is near x = t on the real line,
where Theorem 2.5 provides particularly sharp bounds. Unlike in the NLS
result Theorem 5.2, we therefore do not need to show pointwise convergence
of the Jost solutions to a ”long term profile” as t → ∞. However, such
convergence does hold, as will be proved in Proposition 6.2. Some other
results concerning the asymptotic stability of mKdV solitons have recently
been published by Chen and Liu ([5], [6]). Similarly to [8], they make use
of the Riemann-Hilbert formalism and the steepest descent method. It also
appears that their proof needs stronger assumptions than the one presented
in this thesis.

As we will discuss in Chapter 3, the systems of (1.1), (1.3) are connected
with a multitude of other equations via the NLS hierarchy, and indeed, a
significant part of the argument presented in Chapter 5 (particularly the

4The reason we restrict ourselves to the real-valued case is that Theorem 2.5 is only
available for real-valued solutions.
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proof of Proposition 5.8) would transfer to other NLS hierarchy equations
with little modification, provided a suitable stability result for the zero solu-
tion is available, and particularly if asymptotic expressions as in Theorems
2.3 and 2.5 are given.

This thesis is organized as follows: The second chapter will introduce the
results for asymptotic stability of zero solutions for NLS and mKdV, as
well as give a brief introduction to the stability problem for soliton solu-
tions. The third chapter will explain the NLS hierarchy and the Bäcklund
transformation for NLS and mKdV, while the fourth chapter will expand
on some basic facts about Jost solutions we are going to need, which will
immediately put us in a position to understand some useful properties of
Bäcklund transformations. Chapter 5 will show asymptotic stability of the
NLS soliton solution in the manner sketched above. Chapter 6 will deal
with the application of our stability arguments to mKdV and give a proof
of Proposition 6.2. The latter might potentially be useful in the application
of our methods to other mKdV solutions, such as breather solutions which
can be constructed via two iterations of a Bäcklund transformation (see [19],
Chapter 5).
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Chapter 2

The Stability Problem for
special NLS and mKdV
Solutions

This chapter will provide some basic facts about the stability of soliton so-
lutions. Our goal is to analyze the stability of NLS and mKdV on the line
by using Bäcklund transformations. This is accomplished by linking soli-
ton stability to known stability theorems for the trivial zero solution. As
already discussed in the Introduction, we will use the results from [12] and
[16], which we will provide at the end of this chapter in Theorems 2.3 and 2.5.

One solution of the NLS equation:

iut + uxx + 2|u|2u = 0

is the elementary soliton

u(t, x) = eit sech(x) (2.1)

The original motivation for the theory of solitons was the observation by
John Scott Russel in the 19th century that certain localized water waves in
a narrow channel retain their form for an extended amount of time. Russel
dubbed his discovery a ”wave of translation”, although the term solitary
wave is more common today. It is called a soliton if it additionally retains
its form after collision with other solitary waves or radiation (see [24]). In
a nonlinear setting, a soliton is generally a solution for which (attractive)
nonlinear effects and dispersion of wave solutions cancel out.

Two well-known symmetries of the NLS are under scaling

u(t, x)→ ku(k2t, kx), k ∈ R (2.2)
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and the Galilei transform

u(t, x)→ eivx−iv
2tu(t, x− 2vt), v ∈ R, (2.3)

i.e. if u is a solution, so are the above transformations of u. These symme-
tries generate a whole family of soliton solutions from (2.1):

Qk,v(t, x) = k sech(k(x− vt))ei
vx
2

+i(k2− v
2

4
)t, k ∈ R, v ∈ R (2.4)

A (not quite sharply defined, see [24]) conjecture or general expectation on
soliton solutions is that they exhibit stability properties, i.e. ”closeness”
of a solution to a soliton at t = 0 implies closeness at any other t ∈ R+

(orbital stability) or even convergence in some function norm (asymptotic
stability) - of course, the definition of ”closeness” must be specified. For
(2.4), the Bäcklund transform was used in [22] to show orbital stability in
the following, particularly strong sense:1

Theorem 2.1. (Mizumachi/Pelinovsky) Let (k, v) ∈ R+×R. If a solu-
tion u(t, x) ∈ C(R, L2(R))∩L8

loc(R, L4(R)) of the NLS equation (1.1) satis-
fies ‖u(0, ·)−Qk,v(0, ·)‖L2(R) ≤ ε for sufficiently small ε, then for all t ∈ R,
we have constants (k0, v0, t0, x0) ∈ R+ × R× R+ × R such that

‖u(t+ t0, ·+ x0)−Qk0,v0‖L2 . ‖u(0, ·)−Qk,v(0, ·)‖L2(R),

and

|k0 − k|+ |v − v0|+ |t0|+ |x0| . ‖u(0, ·)−Qk,v(0, ·)‖L2(R) (2.5)

holds.

Notice that the soliton that the NLS solution u in Theorem 2.1 remains
”close” to is different from the soliton that it is close to at t = 0. Instead
it has, and needs to have, slightly different parameters k0, v0, t0 and x0

(which depend on the specific u under consideration), to incorporate the
symmetries (2.2) and (2.3). However, we can control the closeness of these
parameters to the original soliton parameters by (2.5). While the optimiza-
tion over small t0 and x0 is, strictly speaking, unnecessary in Theorem 2.1,
phase and position shifts will be relevant for our treatment of asymptotic
stability.

The mKdV (for a real-valued2 function u)

ut + uxxx + 2(u3)x = 0

1Mizumachi and Pelinovsky formulate Theorem 2.1 specifically for v = 0, from which
the statement for the full soliton group can easily be obtained by translation invariance
of integrals and additivity properties of the Galilei transform.

2The more general form for a complex-valued u is

ut + uxxx + 6|u|2ux = 0
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has an elementary soliton solution

u(t, x) = sech(x− t) (2.6)

Similar to the NLS case, the symmetry under the scaling

u(t, x)→ ku(k3t, kx), k ∈ R (2.7)

as well as shifts in position u(t, x)→ u(t, x+x0), x0 ∈ R, generates a family
of solitons from (2.6):

Qk,x0(t, x) = k sech(kx− k3t+ x0), k ∈ R, x0 ∈ R, (2.8)

for which, again, we ask the stability question.

It is trivial that u = 0 is a solution of both NLS and mKdV. The L2-
norm of any NLS and mKdV solution is conserved, as can be seen formally
by differentiating

∫
|u|2dx under the integral sign ([4] and[20] are standard

references here), which establishes that the zero solution is orbitally stable
in L2 in a very straightforward sense: If the initial data u(0, x) = u0 are L2-
close to 0, so is u(t, x) at any time t > 0. Additionally, various asymptotic
stability results for NLS exist, i.e. if u0 is close to zero in certain spaces,
its L∞-norm will decay to zero as t → ∞. The formulation most relevant
to this thesis is due to Ifrim and Tataru in [16] (we leave out some of their
findings):

Definition 2.2. The function space Hr,s(R) is the closure of C∞0 (R) under
the norm ‖f‖Hr,s(R) = ‖(1 + | · |2)

r
2 f̂(·)‖L2(R) + ‖(1 + | · |2)

s
2 f(·)‖L2(R)

On H0,1(R), we mostly use the equivalent norm ‖f‖H0,1(R) = ‖f‖L2(R) +
‖xf‖L2(R) for f = f(x) ∈ H0,1(R).

Theorem 2.3. (Ifrim/Tataru) There is ε > 0 such that for an initial
datum u0 ∈ H0,1(R) with ‖u0‖H0,1(R) ≤ ε, we have a unique solution u :

R+ × R → C with e−
it
2
∂2xu ∈ C(R, H0,1(R)) of the Nonlinear Schrödinger

Equation (1.1) such that u(0, ·) = u0. This solution satisfies the estimate

‖u(t, ·)‖L∞(R) . ε|t|−
1
2

for all t > 0. Moreover, there is an asymptotic expression

u(t, x) = t−
1
2 ei

x2

2tW
(x
t

)
ei log(t)|W (x

t
)|2 + errx(t, x) (2.9)

with a complex-valued function W ∈ H1−Cε2(R) satisfying ‖W‖
H1−Cε2 (R)

. ε

for a fixed C > 0 and errx(t, ·) ∈ OL∞(R)

(
(1 + t)−

3
4

+Cε2
)
∩ OL2(R)

(
(1 +

t)−1+Cε2
)

.
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Remark 2.4. As per Remark 1.1 in [16], an analogue to Theorem 2.3 can
be shown for initial data in all spaces H0,s(R) with s ∈ (1

2 , 1].

For the mKdV (real-valued case)

ut + uxxx + 2(u3)x = 0, (2.10)

we have by [12]:

Theorem 2.5. (Harrop-Griffiths) There is an ε > 0 such that if an initial
datum u0 ∈ H1,1(R) satisfies ‖u0‖H1,1(R) ≤ ε, there exists a unique global
solution u(t, x) of (2.10) with u(0, ·) = u0 and3

‖u(t, ·)‖L∞(R) . εt−
1
3 〈t−

1
3x〉−

1
4 ,

as well as asymptotics as t→∞ (with any real number ρ ∈ [0, 1
3(1

6 −Cε
2)]):

‖t
1
3 (t−

1
3x)

3
4u‖L∞(Ω+

ρ ) . ε ‖t
1
6 (t−

1
3x)u‖L2(Ω+

ρ ) . ε (2.11)

on Ω+
ρ = {x > 0 : t−

1
3x & t2ρ}, called the decaying region,

u(t, x) = t−
1
3Q(t−

1
3x) + err(x), (2.12)

on the self-similar region Ω0
ρ = {x ∈ R : t−

1
3 |x| . t2ρ}, where Q : R → R

with |Q| . ε is a solution of the Painlevé II equation yQ − Qyy − 3Q3 = 0
and

err(x) ∈ OL∞(Ω0
ρ)

(
εt−

1
2

( 5
6
−Cε2)

)
∩OL2(Ω0

ρ)

(
εt−

2
3

( 5
12
−Cε2)

)
, (2.13)

Finally, on the oscillatory region Ω−ρ = {x < 0 : t−
1
3 |x| & t2ρ}:

u(t, x) = π−
1
2 t−

1
3 (t−

1
3 |x|)−

1
4 ·

· Re
(
eiα(t,x)+ 3iσ

4π
|W (t−

1
2 |x|

1
2 )|2 log(t−

1
2 |x|

1
2 )W (t−

1
2 |x|

1
2 )
)

+ E(x),

(2.14)

with W ∈ H1−Cε2,1(R) a complex-valued function on the reals satisfying

‖W‖
H1−Cε2,1∩L∞(R)

. ε and α(t, x) = −2
3 t
− 1

2 |x|
3
2 + π

4 . The error function E

satisfies the estimates

‖t
1
3 (t−

1
3 |x|)

3
8E(x)‖L∞(Ω−ρ ) . ε, ‖t

1
6 (t−

1
3 |x|)

1
4E(x)‖L2(Ω−ρ ) . ε

The leading terms of the asymptotic expressions in both Theorem 2.3
and Theorem 2.5 relate to analysis of the corresponding linearized equations.

3〈·〉 := (1 + | · |2)
1
2 denotes the usual Japanese brackets.
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Chapter 3

The NLS Hierarchy and the
Bäcklund Transformation

In the following two chapters, we will review the basic facts associated to
Bäcklund transformations for the Nonlinear Schrödinger hierarchy which are
of interest in this thesis. This theory is standard in the relevant literature.
For reference, see particularly [11], [19], [21] and also e.g. [8], [18] or [22].

Consider the following system of first order PDEs for a function1 ψ =
ψ(t, x) : R+ × R→ C× C, referred to as a Lax system in the following:

∂x

(
ψ1

ψ2

)
=

(
−iζ u
−u iζ

)(
ψ1

ψ2

)
(3.1)

and

∂t

(
ψ1

ψ2

)
= i

(
−2ζ2 + |u|2 ∂xu− 2iζu
−∂xu+ 2iζu 2ζ2 − |u|2

)(
ψ1

ψ2

)
(3.2)

with a parameter ζ ∈ C and a potential u = u(t, x) : R+ × R → C. Some
other ways of writing this system can be found in the literature, e.g. with
parameter η := iζ, or as two equivalent Riccati equations for γ := ψ1

ψ2

(see [22]). Solutions of (3.1) and (3.2), or just solutions of (3.1), consid-
ered at a fixed time t, are often referred to as wave functions. When we
consider (3.1) at a fixed time (or just in isolation as an ODE system for
ψ = ψ(t, x) : R→ C× C), we often suppress the t-dependence in our nota-
tion.

Let us assume that a sufficiently regular solution ψ exists, so that we have
to demand interchangeability of the order of differentiation:

∂t∂xψ = ∂x∂tψ. (3.3)

1As mentioned before, we restrict ourselves to positive times for simplicity and physi-
cality, which is not necessarily done in other literature on the topic.
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From this compatibility condition, it can be shown that u must be a solution
of the NLS equation. For ∂xψ = Aψ and ∂tψ = Bψ, this is equivalent to
the zero curvature condition:

∂xB − ∂tA− [A,B] = 0, (3.4)

where [·, ·] denotes the commutator of two operators.

The previous statements hold for mKdV if we replace (3.2) by

∂t

(
ψ1

ψ2

)
= B(u, ζ)

(
ψ1

ψ2

)
, (3.5)

with

B(u, ζ) =

 −4iζ3 + 2iζ|u|2 − 2i Im(uxu) 4ζ2u+ 2iζux − (uxx + 2|u|2u)
−4ζ2u+ 2iζux + (uxx + 2|u|2u) 4iζ3 − 2iζ|u|2 + 2i Im(uxu)


(3.6)

When u is real-valued, (3.6) reduces to:

B(u, ζ) =

(
−4iζ3 + 2iζu2 4ζ2u+ 2iζux − (uxx + 2u3)

−4ζ2u+ 2iζux + (uxx + 2u3) 4iζ3 − 2iζu2

)
(3.7)

This is part of a more general framework known as the (focusing) NLS
hierarchy. We follow [18], Appendix C in this brief outline: Suppose we
have the equation

∂x

(
ψ1

ψ2

)
=

(
−iζ u
−u iζ

)(
ψ1

ψ2

)
, (3.8)

with potential u and parameter ζ ∈ C. We then look for a matrix B(u, ζ)
such that the compatibility condition (3.3) arising from (3.8) and

∂t

(
ψ1

ψ2

)
= B(u, ζ)

(
ψ1

ψ2

)
(3.9)

is a partial differential equation for u. This will be true if we have[
∂t −B(u, ζ), ∂x −

(
−iζ u
−u iζ

)]
=

(
0 ∂tu− F

−(∂tu− F ) 0

)
!

= 0, (3.10)

with [A,B] = AB − BA denoting the commutator of two operators A and
B and the function F being a polynomial in the derivatives of u and u.
Indeed, when inserting the equations (3.8) and (3.9) into (3.3) it follows
quickly that the left-hand side of (3.10) must be zero, so we would obtain

13



∂tu − F (u) = 0 as our desired partial differential equation. We make the

ansatz B(ζ, u) = βk(ζ, u) =
k∑
j=0

ζk−jQj(u) for k ∈ N0, where each Qj is a

2× 2 matrix in the special unitary group SU(2). By inserting this into the
commutator in (3.10), we get

∂t

(
−iζ u
−u iζ

)
− ∂x

k∑
j=0

ζk−jQj(u) +

[(
−iζ u
−u iζ

)
,

k∑
j=0

ζk−jQj(u)

]
!

= 0

We want to have the left side depend only on u, not ζ. To achieve this, it is
sufficient to demand

Q0 =

(
−i 0
0 i

)
,

a recursive relation:[(
−i 0
0 i

)
, Qj+1

]
= ∂xQj +

[
Qj ,

(
0 u
−u 0

)]
, 0 ≤ j ≤ k − 1

and that

∂xQk +

[
Qk,

(
0 u
−u 0

)]

is off-diagonal. Thus, we can write Qk =

(
−irk pk
−pk irk

)
with

pk+1 =
i

2
p′k + rku

r′k = i(pku− pku)

It can be shown that r can, for any k, be expressed as a polynomial in the
derivatives of u and u. The first few steps of the recursion give r0 = 1,
p0 = 0, p1 = u, r1 = 0, p2 = i

2u
′, r2 = −1

2 |u|
2, p3 = −1

4(u′′ + 2|u|2u),
r3 = − i

4(u′u− uu′). The cases k = 2 and k = 3 correspond to the NLS and
mKdV case, respectively2. (We get (3.2) by demanding u to be real-valued.)
By u → −u we would have obtained the defocusing NLS hierarchy and by
u→ 1 the KdV hierarchy. We note once again that the stability arguments
for NLS and mKdV would largely transfer to any equation in the NLS hi-
erarchy, provided one had the analogue of Theorem 2.3 and 2.5 for the zero
solution.

2Strictly speaking, the versions of NLS and mKdV obtained with these pk, rk are
rescaled in the time parameter compared to how we have stated these equations. We
choose simplicity over consistency in our notation here.
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If

(
ψ1

ψ2

)
is a solution of (3.1) and (3.2), or respectively, (3.5) with parameter

ζ and a potential u that is a solution of NLS or mKdV (depending on the

matrix in the ”time part” of the system), then

(
ψ̃1

ψ̃2

)
with

ψ̃1 =
ψ2

‖ψ‖2
ψ̃2 = − ψ1

‖ψ‖2
(3.11)

is a solution of the analogous system with parameter ζ and potential

ũ(t, x) = u(t, x) + 4 Im(ζ)
ψ1ψ2

‖ψ‖2
(3.12)

The mapping u→ ũ defined by (3.12) is called an (auto-)Bäcklund transfor-
mation of u. The term ”Bäcklund transformation” is used in various con-
texts to denote mappings between solutions of various partial differential
equations - e.g. if v is a solution of the Laplace equation and φ the (unique)
holomorphic function with Re(φ) = v, the mapping v → ṽ := Im(φ) is some-
times (e.g. in [23]) referred to as a Bäcklund transformation for the Laplace
equation, which ṽ solves. Indeed, since we have shown that the Lax system
for NLS (or mKdV, respectively) is only solvable if its potential is a solution
of NLS (respectively mKdV) by (3.4). Thus, (3.12) must necessarily map a
solution of the partial differential equation arising as a compability condi-
tion for the Lax system to another such solution.

Writing the transformation (3.12) with potential u, parameter ζ and so-
lution ψ of (3.1) and (3.2) as B(u, ζ, ψ)(t, x), we first note the elementary,
but useful, property

B(u, ζ, cψ)(t, x) = B(u, ζ, ψ)(t, x), ∀c ∈ C\{0} (3.13)

i.e. the transformation is invariant under multiplication of the wave function
with a constant. Moreover, with B(u, ζ, ψ)(t, x) =: ũ(t, x), the Bäcklund
transformation satisfies the reiteration relation

u(t, x) = B(ũ, ζ, ψ̃)(t, x) (3.14)

with ψ̃ defined by (3.11), which allows us to recover the original potential
u from ũ. Similarly to what we remarked following (3.1) and (3.2), we may
also suppress the t-dependence of the Bäcklund transformation in the fol-
lowing, whenever we consider (3.1) at a fixed time t ∈ R+ (or in isolation),
or leave the (t, x)-argument out entirely in our notation.

As already discussed, our goal is to use the Bäcklund transformation to
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transfer stability properties of the trivial zero solution of NLS and mKdV
to the soliton solutions. For the NLS system, (3.1) and (3.2) with u = 0 and
parameter ζ become:

∂x

(
ψ1

ψ2

)
=

(
−iζ 0

0 iζ

)(
ψ1

ψ2

)
(3.15)

and

∂t

(
ψ1

ψ2

)
= i

(
−2ζ2 0

0 2ζ2

)(
ψ1

ψ2

)
(3.16)

Now, (3.15) has a fundamental system of solutions consisting of(
e−iζx

0

)
(3.17)

and (
0
eiζx

)
, (3.18)

and in particular,

(
e−iζx

eiζx

)
is a solution. For a given initial value ψ(0, ·),

equation (3.16) is solved by ψ(t, x) =

(
e−2iζ2tψ1(0, x)

e2iζ2tψ2(0, x)

)
. Together, this

gives one solution:

ψ(t, x) =

(
e−2iζ2te−iζx

e2iζ2teiζx

)

of (3.15) and (3.16). If ζ = i
2

(
k + iv

)
with k ∈ R+, v ∈ R, plugging this ψ

and u = 0 into (3.12) gives the solution

Qk,v(t, x) = k sech(k(x− vt))ei
vx
2

+i(k2− v
2

4
)t,

recovering the soliton group (2.4). Similarly, we obtain the soliton group
(2.8) for mKdV from the solution

ψ(t, x) =

(
e−4iζ3te−iζx

e4iζ3teiζx

)

if −2iζ = k ∈ R+. In particular, notice that for ζ = i
2 , we get mappings

of the zero function to the elementary soliton solutions (2.1) and (2.6) (and
most basically, the hyperbolic secant function sech(·) at t = 0).
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As shown in [3], if a parameter ζ is not already an eigenvalue for potential
u, it will be for the Bäcklund transformed potential ũ, i.e. the effect of the
Bäcklund transformation on the spectrum is that of inserting an eigenvalue.
(”Eigenvalue” to be understood in the sense that there is an L2-solution ψ

of (3.1), which would be an ζ-eigenfunction of the operator i

(
∂x −u
−u −∂x

)
.)

For the cases close to a soliton solution that interest us, the existence of L2

eigenfunctions can be shown more explicitly (cf. [22], Lemma 3.1), and we
will elaborate on this in the next chapter.

More generally, if we just consider the spatial part of the Lax system (at a
fixed time, suppressing the time variable), a potential u(·) ∈ H1(R) would
satisfy lim

R→∞
‖u‖L∞({|x|>R}) = 0, i.e. we might expect the system to behave

like (3.15) as the space variable |x| → ∞. This leads one to seek solutions
that behave like (3.17) or (3.18) at +∞ or −∞, called Jost solutions. re-
stricting ourselves to the case where the complex parameter ζ is in the upper
half-space, we give a more rigorous definition:

Definition 3.1. For Im(ζ) > 0 and a given potential, the left Jost solu-
tion is a differentiable function ψl solving the spatial part (3.1) such that

lim
x→−∞

eiζxψl(x) =

(
1
0

)
. The right Jost solution is a differentiable solution

of (3.1) which, correspondingly, satisfies lim
x→∞

e−iζxψr(x) =

(
0
1

)
.

Thus, the left resp. right Jost solution is defined by exponentially de-
caying at −∞ resp. +∞. Of course, to justify the above definition, one has
to show that such solutions exist and are unique in the first place. We will
do so in the next chapter, as well as collect all properties of Jost solutions
that are of interest for our purposes.
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Chapter 4

Properties of Jost Solutions

Our first task is to show that the left and right Jost solutions exist for
u ∈ L2(R). If ‖u‖L2(R) is very small, this follows from a standard fixed
point argument. In general, we divide the real line into a finite number of
intervals and iterate over them. The following statement is similar to [22],
Lemma 4.1, but with no restriction on the L2-norm of the potential.

Lemma 4.1. If u ∈ L2 and Im(ζ) > 0, the spatial part (3.1) of the Lax
system for NLS and mKdV possesses unique differentiable solutions ψl and
ψr satisfying Definition 3.1 The left solution ψl satisfies

‖eiζxψl,1 − 1‖L∞(R) ≤ C(ζ, ‖u‖L2(R))‖u‖L2(R) (4.1)

and

‖eiζxψl,2‖L2(R)∩L∞(R) ≤ C(ζ, ‖u‖L2(R))‖u‖L2(R), (4.2)

and for the right Jost solution ψr corresponding estimates

‖e−iζxψr,1‖L2(R)∩L∞(R) ≤ C(ζ, ‖u‖L2(R))‖u‖L2(R) (4.3)

and

‖e−iζxψr,2 − 1‖L∞(R) ≤ C(ζ, ‖u‖L2(R))‖u‖L2(R) (4.4)

hold. Moreover, the derivatives satisfy the estimates

‖(eiζxψl,1)′‖L2(R) ≤ C(ζ, ‖u‖L2(R))‖u‖2L2(R)

and, assuming u ∈ L∞(R),

‖(eiζxψl,1)′‖L∞ ≤ C(ζ, ‖u‖L2(R))‖u‖L2(R)‖u‖L∞(R)

as well as

‖(eiζxψl,2)′‖L2(R) ≤ C̃(ζ, ‖u‖L2(R))‖u‖L2(R)
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and, again assuming u ∈ L∞(R),

‖(eiζxψl,2)′‖L∞(R) ≤ C̃(ζ, ‖u‖L2(R))‖u‖L∞(R)

With the role of the first and second component exchanged, analogous esti-
mates on the derivatives hold for the right Jost solution. C(ζ, ‖u‖L2(R)) and

C̃(ζ, ‖u‖L2(R)) denote constants depending on ζ and ‖u‖L2(R), which remain
bounded for bounded ‖u‖L2(R).

Proof. We will explicitly treat the left Jost solution, the argument for the

right Jost solution is similar. We set ϕ(x) =

(
ϕ1(x)
ϕ2(x)

)
:= eiζxψl(x) (we

suppress t-dependence in our notation), and plugging ψ = e−iζxϕ(x) into
(3.1), we get:

ϕ′1(x) = u(x)ϕ2(x)

ϕ′2(x) = −u(x)ϕ1(x) + 2iζϕ2(x) (4.5)

We pose the problem on a half-open (or open, in which case the argument
would proceed in the same way) interval (a, b] ⊂ R with boundary val-

ues lim
x↓a

ϕ1(x)
!

= k1, lim
x↓a

ϕ2(x)
!

= k2. (4.5) can be transformed into inte-

gral equations e.g. by variation of constants (writing (4.5) as ∂xϕ(x) =

A(x)ϕ(x) +

(
u(x)ϕ2(x)
−u(x)ϕ1(x)

)
). We obtain:

ϕ1(x) = k1 +

x∫
a

u(y)ϕ2(y)dy

ϕ2(x) = e2iζ(x−a)k2 −
x∫
a

e2iζ(x−y)u(y)ϕ1(y)dy (4.6)

for x ∈ (a, b]. Now, M =
{(ϕ1

ϕ2

)
∈ L∞ × L2 ∩ L∞

(
(a, b]

)
: lim
x↓a

ϕ1(x) =

k1, lim
x↓a

ϕ2(x) = k2

}
is a closed subset of L∞×L2 ∩L∞

(
(a, b]

)
. By Hölder’s

and Young’s inequality, we can define S : M →M by

S

((
ϕ1

ϕ2

))
=

 k1 +
x∫
a
u(y)ϕ2(y)dy

e2iζ(x−a)k2 −
x∫
a
e2iζ(x−y)u(y)ϕ1(y)dy


For ϕ, ϕ̃ ∈M , set S(ϕ)−S(ϕ̃) =

(
s1(x)
s2(x)

)
. Because the boundary values of

all functions in M are the same, we can use Hölder’s and Young inequality
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once again to obtain (recall Im(ζ) > 0):

‖s1‖L∞(a,b] ≤ ‖u‖L2(a,b]‖ϕ2 − ϕ̃2‖L2(a,b],

and:

‖s2‖L2∩L∞(a,b] ≤ ‖e−2iζ·‖L1∩L∞(R−)‖u‖L2(a,b]‖ϕ1 − ϕ̃‖L∞(a,b]

≤ cζ‖u‖L2(a,b]‖ϕ1 − ϕ̃‖L∞(a,b]

with cζ depending only on ζ. Hence, S is a contraction whenever ‖u‖L2(a,b] <

max(1, c−1
ζ ) and the Banach fixed point theorem implies there exists a unique

solution of (4.6) in M . Therefore, we can establish global existence by par-
titioning R into N ∼ ‖u‖2L2(R) intervals I1 = (−∞, x1], I2 = (x1, x2], ...,

IN = (xN−1,∞) with ‖u‖L2(Ik) < max(1, c−1
ζ ) for all 1 ≤ k ≤ N . We can

then proceed in the standard way, applying our argument iteratively on each
interval and getting the boundary values for Ik from the previously obtained

solution on Ik−1 (the boundary values

(
1
0

)
on I1, of course, given by the

definition of the left Jost solution).

We now turn to the estimates (4.1) and (4.2). Assume we have picked our
sequence of N ∼ ‖u‖L2(R) intervals Ik from above with N ≥

√
2cζ‖u‖L2(R)

and consequently cζ‖u‖2L2(Ik) ≤
1
2 for every k. By inserting the second equa-

tion of (4.6) into the first:

‖ϕ1 − 1‖L∞(Ik) ≤ |ϕ1(xk−1)− 1|+ cζ‖u‖L2(Ik)|ϕ2(xk−1)|+
+ cζ‖u‖2L2(Ik)‖ϕ1‖L∞(Ik)

With a→ −∞ in (4.6), we also get:

‖ϕ2‖L∞(−∞,xk−1] ≤ cζ‖u‖L2(R)‖ϕ1 − 1‖L∞(−∞,xk−1] + cζ‖u‖L2(R)

Taken together:

1

2
‖ϕ1 − 1‖L∞(−∞,xk] ≤ (1 + c2

ζ‖u‖2L2(R))‖ϕ1 − 1‖L∞(−∞,xk−1]

+ cζ(cζ + 1)‖u‖L2(R)‖u‖L2(Ik)

Iteratively applying this to IN , IN−1, ..., I1, we get:

‖ϕ1 − 1‖L∞(R) ≤ cζ(cζ + 1)‖u‖L2(R)

N∑
k=1

2k+1(1 + c2
ζ‖u‖2L2(R))

k

≤ 2N+2(1 + c2
ζ‖u‖2L2(R))

N+1cζ(cζ + 1)‖u‖L2(R),

together with our choice of N , this implies (4.1), and (4.2) follows from (4.1)
by, again, using (4.6) with a = −∞ and applying Young’s inequality. The
estimates on the derivatives given in Lemma 4.1 are now an easy consequence
of (4.1), (4.2) and (4.5).
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If ‖u‖L2(R) ≤ ε for sufficiently small ε, iteration over several intervals

is not necessary and we get C(ζ, ‖u‖L2(R)) =
cζ

1−cζ‖u‖2L2(R)
in Lemma 4.1,

similar to Lemma 4.1 in [22], which is explicitly proved for ζ = i
2 (or, in

their notation, η = 1
2).

Remark 4.2. Some further comments on the relationship between the solu-
tions derived in [22] and the right and left Jost solution of Lemma 4.1 will
serve both to elucidate the relationship between our argument and theirs, as
well as clear up the behaviour of ψl,1 as x→∞ and ψr,2 as x→ −∞. With
parameter ζ = i

2 , Mizumachi and Pelinovsky give the proof that, under the
assumption of small ‖u‖L2(R), solutions ψ+ and ψ− to (3.1) exist such that

lim
x→−∞

e
x
2ψ+,2(x) = 0 lim

x→∞
e−

x
2ψ+,1(x) = 1

lim
x→−∞

e
x
2ψ−,2(x) = 1 lim

x→∞
e−

x
2ψ−,1(x) = 0 (4.7)

From the integral equation (47) in [22] (which is similar to (4.6)) and the
corresponding equation for ψ−, it is immediate that lim

x→∞
e−

x
2ψ+,2(x) = 0

and lim
x→−∞

e
x
2ψ−,1(x) = 0, i.e.

ψ−(x) ∼
(

0

e−
x
2

)
, x→ −∞ ψ+(x) ∼

(
e
x
2

0

)
, x→∞,

so while ψl is the solution with characteristic exponent +1
2 at −∞, ψ−

corresponds to the characteristic exponent −1
2 . In particular, ψl and ψ−

are linearly independent and form a basis of the solution space, and the
same holds for ψr and ψ+. If we consider the basis representation e

x
2ψ+ =

se
x
2ψ− + te

x
2ψl, s, t ∈ C and let x → −∞, the behaviour of e

x
2ψ+,2 in

(4.7) enforces s = 0, and thus ψ+(x) = tψl(x), t ∈ C \ {0} and, similarly,
ψ− = t̃ψr, t̃ ∈ C \ {0}. The Wronskian det(ψ+, ψ−) = det(te−

x
2ψl, e

x
2ψ−) =

det(e−
x
2ψ+, t̃e

x
2ψr) is constant in x by Abel’s theorem, from which we get

t = t̃ by taking limits at ±∞. It now follows from (4.7) that

lim
x→∞

e−
x
2ψl,1(x) = t−1 lim

x→−∞
e
x
2ψr,2(x) = t−1

This argument does, of course, easily apply to other parameters than i
2 . In-

deed, it is well-known in inverse scattering theory that, with T (ζ) the trans-
mission coefficient and a(ζ) := T−1(ζ) the inverse transmission coefficient
for (3.1):

lim
x→∞

eiζxψl(x) = a(ζ)

(
1
0

)
lim

x→−∞
e−iζxψr(x) = a(ζ)

(
0
1

)
, (4.8)

with ψl, ψr the left and right Jost solution of (3.1) with parameter ζ ∈ C,
u ∈ L2(R).
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Remark 4.3. With a = −∞ in (4.6), we get the following integral equations
for the left Jost solution (with ϕl = eiζxψl), which we include for further
reference:

ϕl,1(x) = 1 +

x∫
−∞

u(y)ϕl,2(y)dy (4.9)

and

ϕl,2(x) = −
x∫

−∞

e2iζ(x−y)u(y)ϕl,1(y)dy (4.10)

Plugging (4.10) into (4.9), we get an implicit representation for ϕl,1

ϕl,1(x) = 1−
x∫

−∞

y∫
−∞

u(y)e2iζ(y−z)u(z)ϕl,1(z)dzdy, (4.11)

Differentiating (4.11) and applying Young’s inequality and (4.1), we get an-
other estimate for the derivative beyond what we stated in Lemma 4.1

‖ϕ′l,1‖ ≤ cζ‖u‖2L∞(R) (4.12)

Similarly, it is straightforward to obtain for the right Jost solution (with
ϕr = e−iζxψr)

ϕr,1(x) = −
∞∫
x

e−2iζ(x−y)u(y)ϕr,2(y)dy (4.13)

and

ϕr,2(x) = 1 +

∞∫
x

u(y)ϕr,1(y)dy (4.14)

Similarly to (4.11), we get

ϕr,2(x) = 1−
∞∫
x

∞∫
y

u(y)e−2iζ(y−z)u(z)ϕr,2(z)dzdy (4.15)

and

‖ϕ′r,2‖L∞(R) ≤ cζ‖u‖2L∞(R) (4.16)

22



Remark 4.4. If the parameter ζ is an eigenvalue, it is worth noting that
it necessarily has a geometric multiplicity of 1. That holds true because a
geometric multiplicity of 2 would be excluded by the existence of one char-
acteristic exponent with negative real part at −∞, corresponding to an ex-
ponential growth. Thus, there are two possible cases:

Case 1: The parameter ζ is an eigenvalue, and there is some constant
c ∈ C such that ψl = cψr, and ψl is an eigenfunction. By Remark 4.2,
this implies a(ζ) = 0, i.e. eigenvalues are zeroes of the inverse transmission
coefficient.

Case 2: ψl and ψr form a basis of the solution space.

Using the instruments introduced so far, one can show:

Corollary 4.5. Let u ∈ L2(R), a ζ-wavefunction ψ be given as a linear
combination of left and right Jost solution, and ũ = B(u, ζ, ψ) the Bäcklund
transformation as in (3.12). Then ũ ∈ L2(R).

Proof. For u ∈ L2(R), ζ ∈ C with Im(ζ) > 0 and ψ = clψl + crψr a wave
function of the corresponding system (3.1) expressed as a combination of the
right and left Jost solution, cl, cr ∈ C. If cr = 0 - which, in particular, we can
assume whenever a(ζ) = 0 by Remark 4.4 -, inequalities (4.1) and (4.2) in
Lemma 4.1 imply that |ψl,1| . |e−iζx|(1+‖u‖L2(R)) and, as eiζxψl,2 ∈ L2(R),

|ψl,1ψl,2|
‖ψl‖2

≤
|ψl,1ψl,2|
|ψl,1|2

. |e2iζx||ψl,1ψl,2| ∈ L2(R)

Hence, B(u, ζ, ψ) ∈ L2(R).

For a(ζ) 6= 0, cr 6= 0, we show that B(u, ζ, ψ) ∈ L2(R−), the proof that
it is in L2(R+) is similar. By (4.8) and the arguments developed in Lemma
4.1, we have:

‖eiζxψr,2(x)− a(ζ)‖L∞((−∞,−R]) . ‖u‖L2((−∞,−R]) (4.17)

for R > 0. If a(ζ) 6= 0 and we set ‖u‖L2((−∞,−R]) = α ≥ 0, (4.17) and
Lemma 4.1 imply (with β := Im(ζ) > 0)

|ψ2(x)|2 ≥ |cr|2|ψl,2(x)|2 − 2|cl||cr||ψl,2(x)||ψr,2(x)|
≥ |cr|2|ψl,2(x)|2 − 2|cl||cr||ψl,2(x)||ψr,2(x)|
= |cr|2e−2βx(|a(ζ)| − |r2(x)|)2

− 2|cl||cr|eβxe−βx(1 + |r1(x)|)(|a(ζ)|+ |r2(x)|)
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for x ∈ (−∞,−R], where |r1(x)|+ |r2(x)| ≤ 2α. For sufficiently large R (and
hence sufficiently small α), this implies |ψ(x)|2 & e−βx. Therefore, again for
x ∈ (−∞,−R],∣∣∣∣∣ψ1(x)ψ2(x)

‖ψ(x)‖2

∣∣∣∣∣ . e2βx|ψ1(x)ψ2(x)|

. e2βx(|ψl,1(x)||ψl,2(x)|+ |ψl,1(x)||ψr,2(x)|+
+ |ψr,2(x)||ψl,1(x)|+ |ψr,2(x)||ψl,2(x)|),

by (4.1)-(4.4), this is an L2-function. Therefore, we get that B(u, ζ, ψ) ∈
L2((−∞,−R]), and B(u, ζ, ψ) ∈ L2((−R, 0]) easily follows from

∣∣∣ψ1ψ2
‖ψ‖2

∣∣∣ ≤
1.

Let u(x) = sech(x) be the potential in the spatial part of the Lax system
(3.1) with parameter ζ = i

2 . Then the solution space is spanned by the
eigenfunction

Ψ(1)(x) =
1

2

(
−e−

x
2

e
x
2

)
sech(x) (4.18)

and the unbounded function

Ψ(2)(x) =
1

2

(
e
x
2 [ex + 2(1 + x)e−x]

e−
x
2 (e−x + 2xex)

)
sech(x)

We use a standard argument to show that if we perturb sech(x) slightly,
another eigenvalue close to i

2 with the corresponding eigenfunction close to
(4.18) can be found (compare [22], Lemma 3.1., although our technique of
proof is slightly different):

Lemma 4.6. If ‖u − sech(x)‖L2(R) ≤ ε for a sufficiently small constant
ε > 0, there exists a unique ζ ∈ C such that the spatial part (3.1) of the Lax
system with potential u and parameter ζ has a solution Ψ ∈ L2×L2(R) and
we have, for a fixed constant C:∣∣∣ζ − i

2

∣∣∣+ ‖Ψ−Ψ1‖H1(R) ≤ C‖u− sech(x)‖L2(R)

If u is a real-valued function, we can get the same result with a purely imag-
inary eigenvalue ζ and a correspondingly real-valued eigenfunction.

Proof. For v ∈ L2(R), define A(v) : H1(R)→ L2(R) by:

A(v) := i

(
∂x − 1

2 −(sech(x) + v(x))
−(sech(x) + v(x)) −∂x − 1

2

)
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As in [22], Lemma 3.1, we can see that the unperturbed A(0) is a Fredholm
operator: D defined by

D := i

(
∂x − 1

2 0
0 −∂x − 1

2

)
is a closed operator with domain H1(R)×H1(R) and its inverse is given by

D−1

(
f
g

)
= −i


x∫
−∞

e−
x−y
2 g(y)

∞∫
x
e
x−y
2 f(y)dy

 (4.19)

Thus, we have:

A(0) =

[
I −

(
0 sech(x)

sech(x) 0

)
D−1

]
D =: (I −K)D, (4.20)

and by (4.19), K is a Hilbert-Schmidt integral operator and hence compact.
As D is closed and I − K a compact perturbation of the identity, A(0) is
indeed Fredholm with index 0.

We now consider the function (with L2, H1 to be understood as L2(R)
and H1(R))

F : L2 × C× C(R, H1 ×H1)→ C(R, L2 × L2)× C

(v, λ, ψ)→
(

(A(v)− λ)ψ
〈ψ,Θ〉L2 − 1

)
,

where Θ =

(
−e

x
2 sech(x)

e
x
2 sech(x)

)
spans ker(A(0)∗). In (0, i2 ,Ψ

(1)), differentiation

by the second and third argument gives

∂(λ,ψ)F (0, λ, ψ) =

(
−Ψ(1) A(0)

0 〈Θ|

)
, (4.21)

where 〈Θ| is to be understood in the sense of the bra-ket notation for the
scalar product in L2. If we now consider the equation(

−Ψ(1) A(0)
0 〈Θ|

)(
λ
ψ

)
=

(
f
α

)
with f ∈ L2(R) × L2(R), α ∈ C. Because A(0) is a Fredholm operator, it
has closed range, so ran(A(0)) = ran(A(0)) = ker(A(0)∗)⊥ and a solution
ψ ∈ L2(R)× L2(R) of

−λΨ(1) +A(0)ψ = f (4.22)
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exists if and only if f + λΨ(1) ∈ ker(A(0)∗)⊥, i.e. λ〈Θ,Ψ(1)〉 !
= −〈Θ, f〉.

Because 〈Θ,Ψ(1)〉 = 1 6= 0, we can always find λ such that this condition is
satisfied. Moreover, if ψ0 is a solution of (4.22), so is ψ := ψ0 + sΨ(1) for
any s ∈ C. There is a unique s so that

〈Θ, ψ〉 = 〈Θ, ψ0〉+ s
!

= α

is satisfied. It follows that (4.21) is an invertible operator and we can apply
extended versions of the implicit function theorem such as [9], Corollary

15.1. to find small r > 0 and a unique T : B
L2(R)
r (0) → C × (L2(R,C2))

such that F (v, T (v)) = 0 for ‖v‖L2(R) < r and T ∈ C1, from which the
lemma follows. Our argument can obviously be restricted to the real-valued
case.

Finally, we have now discussed all necessary preliminaries to show a
continuity property of the Bäcklund transform near the sech(x)-potential:

Lemma 4.7. Let ũ ∈ BL2(R)
r (sech(·)) be a potential for (3.1), where r > 0

such that it satisfies the assumptions of Lemma 4.6.
Let

• ζ be the corresponding eigenvalue which exists and is unique by Lemma
4.6 and ψ̃ = cψ̃l a ζ-eigenfunction, given as the left Jost solution
multiplied by a normalization constant c ∈ C

• u := B(ũ, ζ, ψ̃l), with B the Bäcklund transform of ũ with parameter
ζ and wave function ψ̃l (the constant c does not matter for the result
by (3.13))

• αl ∈ C be defined via the reiteration relation (3.14), by which the
system (3.1) with potential u has a wave function ψ for parameter ζ
given by (3.11). With ψl and ψr the right and left Jost solution of (3.1)
with potential u and parameter ζ, there are unique complex numbers
αl, αr such that

ψ = αlψl + αrψr, (4.23)

and we choose the normalization constant c such that αr = 1.

The mapping

B : Br(sech(·))→ C× C× L2(R)

ũ→ (ζ, αl, B(ũ, ζ, ψ̃l)) (4.24)

is continuous and injective. The inverse mapping B−1 which we can define
on ran(B) is also continuous.
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Proof. By uniqueness of the initial value problem (3.1) (compare the proof
of Lemma 4.1), we know that ψ̃l(x) 6= 0 ∀x ∈ R. Since it is also continuous,
this implies that, for R > 0 to be chosen later

‖ψ̃l‖−2 ≤ C (4.25)

on a bounded interval [−R,R]. We also know from the proof of Lemma 4.6

that the eigenfunction mapping ũ→ ψ̃(ũ) is continuous as aB
L2(R)
r (sech(·))→

L2(R)-map, and hence, so is the Bäcklund transform ũ→ B(ũ, ζ, ψ̃l) (again

as a function from B
L2(R)
r (sech(·))→ L2(R)). Indeed, similarly to the proof

we sketched for Corollary 4.5, we can choose sufficiently large R > 0 with
‖u‖L2({|x|>R}) ≤ ε� 1. To show that∣∣∣∣∣ ψ̃l,1(u1)ψ̃l,2(u1)

|ψ̃l(u1)|2
−
ψ̃l,1(u2)ψ̃l,2(u2)

|ψ̃l(u2)|2

∣∣∣∣∣
= |ψ̃l(u1)|−2|ψ̃l(u2)|−2[|ψ̃l(u2)|2ψ̃l,1(u1)ψ̃l,2(u1)− |ψ̃l(u1)|2ψ̃l,1(u2)ψ̃l,2(u2)]

(4.26)

converges to zero in L2([−R,R]) as ‖u1 − u2‖L2([−R,R]) → 0, we can use
(4.25) and the fact that ψl ∼ ψr ∈ L2 ∩ L∞([−R,R]). For (−∞,−R], we
utilize

ψ̃l =

(
e−iζx(1 +O(ε))
e−iζxO(ε)

)
,

which follows from the choice of R and the proof of Lemma 4.1. This means
|ψ̃l(u1)|−2|ψ̃l(u2)|−2 . |e4iζx| in (4.26). Continuity in L2((−∞,−R]) now
follows from (4.9) and (4.10), and similarly for L2([R,∞)). It is also imme-
diate from the proof of Lemma 4.6 that the eigenvalue mapping ũ → ζ(ũ)
defined in the obvious manner from (4.24) is continuous.

Concerning ũ → αl(ũ) (defined as implicit in (4.24)), we have established
that ũ → u = B(ũ, ζ, ψ̃l) is continuous, and arguing similarly as for the
Bäcklund transform in the previous paragraph, (3.14) implies that ψ in
(4.23), considered as an L2-function on any bounded interval, continuously

depends on ũ ∈ B
L2(R)
r (sech(·)). Therefore, writing ψ(ũ) = ψ(u(ũ)) and

with a sequence ũn such that ũn → ũ in L2(R) and a bounded interval
(a, b), we get

0 = lim
n→∞

‖ψ(ũ)− ψ(ũn)‖L2(a,b)

= lim
n→∞

‖αl(ũ)ψl(ũ) + ψr(ũ)− αl(ũn)ψl(ũn)− ψr(ũn)‖L2(a,b) (4.27)

Equations (4.9)-(4.10) give us that, considered as L2-functions on bounded
intervals, the right and left Jost solution of the corresponding system (3.1)
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continuously depend on its potential u ∈ L2(R), so (4.27) implies

0 = lim
n→∞

‖(αl(ũ)− αl(ũn))ψl(ũ) + ψr(ũ)‖L2(a,b)

Because ψl and ψr are linearly independent, this implies we have lim
n→∞

(αl(ũ)−
αl(ũn)) = 0 and hence continuity of αl(ũ).

Finally, the reiteration relation (3.14) gives us an inverse mapping B−1 :

ran(B) → B
L2(R)
r (sech(·)) and hence the injectivity of B. We obtain conti-

nuity as above.
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Chapter 5

Asymptotic Stability of the
NLS Soliton Solutions

As in [8] and [22], we use the following well-posedness result due to Tsutsumi,
originally shown in [25]:

Theorem 5.1. For u0 ∈ L2(R), there is a unique solution u : R × R → C
with u ∈ C(R, L2(R)) ∩ L4

loc(R, L∞(R)) of

u(t, ·) = eit∂
2
xu0(t, ·) + 2i

t∫
0

ei(t−s)∂
2
x |u(s, ·)|2u(s)ds, (5.1)

(i.e. the integral equation formulation of the NLS (1.1)).
This solution satisfies energy conservation ‖u(t, ·)‖L2(R) = ‖u0‖L2(R) ∀t ∈ R.
If there is a sequence u0n ∈ L2(R) ∀n ∈ N with u0n → u0 in L2(R) and
un(t, ·) denote the unique solutions of (5.1) with initial data u0n, respec-
tively, we have un(t, ·)→ u(t, ·) ∀t ∈ R in the L2-sense.

When we refer to the unique solution of the NLS (1.1) with initial datum
u0 ∈ L2 in this chapter, it is to be understood in the sense of Theorem 5.1.
Of course, if the assumptions of Theorem 2.3 are satisfied, the solutions of
Theorem 2.3 coincide with those of Theorem 5.1.

We now want to prove the following asymptotic stability result:

Theorem 5.2. Given ũ0 ∈ H0,1(R) with ‖ũ0 − sech(x)‖H0,1(R) = ε for a
sufficiently small ε, let ũ = ũ(t, x) : R+×R→ C be a solution of the focusing
NLS (1.1) in one dimension with ũ(0, ·) = ũ0(·) (as in Theorem 5.1). Then
we have asymptotic stability in the sense that for any large enough t ∈ R+,
there are k, v ∈ R and functions x̃0 : R+ → R, θ̃ : R+ → R:

‖ei
vx
2

+i(k2− v
2

4
)tkũ(k2t, k(· − vt))− ei(t+θ̃(t)) sech(·−x̃0(t))‖L∞(R) . εt−

1
2

(5.2)
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And, for all such t, |θ̃(t)| . ε and |x̃0(t)| . ε and |k − 1| . ε, |v| . ε. The
functions θ̃(t) and x̃0(t) satisfy lim

t→∞
θ̃0(t) = θ0 ∈ R and lim

t→∞
x̃0(t) = x0 ∈ R.

Quantitatively,

|x̃0(t)− x0| . ε2 log(t)t−1+Cε2 (5.3)

and

|θ̃0(t)− θ0| . ε2 log(t)t−1+Cε2 , (5.4)

with C as in Theorem 2.3, give us estimates for the rate of convergence.

For the sake of simplicity, we only explicitly formulate Theorem 5.2 for
the elementary soliton. Using the symmetries of NLS (2.2) and (2.3) it is,
however, relatively straightforward to see how it generalizes to a similar
statement for the entire soliton group. As mentioned before, the restriction
to H0,1(R) is another simplification, and the following argument can be ex-
tended to all spaces covered by Remark 2.4 with little change.

For the moment, we assume that ũ0 ∈ H3(R). We will use an approxi-
mation argument to generalize later, similar to [22]. This assumption and
Lemma 5.3 will ensure that the system (3.2) is well-defined and Lemma 5.6
and 5.7 which we will state and prove below hold.

We give a rough sketch of the essential steps of the following proof for
Theorem 5.2. The overall structure is close to [22]: Pull initial data close
to sech(·) back to initial data in a neighbourhood of the zero solution via
the Bäcklund transformation, evolve in time, recover the original NLS solu-
tion, again via the Bäcklund transformation, and show that it transfers the
stability properties of the zero solution.

1. Fixing the eigenvalue:
Starting with our ũ0 ∼ sech(·), we exploit the symmetries of the NLS
equation to generate a ”modified” potential such that the eigenvalue
of the corresponding system (3.1) (the spatial part of the Lax system)
at t = 0 is set to ζ = i

2 . This transformation is where the parameters
k, v in (5.2) come in. By a slight abuse of notation, we will continue
to write the ”new” potential (given in (5.5)) as ũ0.

2. Pullback to a neighbourhood of the zero solution:
Now, we are in a position to ”pull back” ũ0 from a H0,1-neighbourhood
of sech(·) to a potential u0 ∼ 0 in an H0,1-neighbourhood of the zero
solution (Lemma 5.3) via the Bäcklund transformation (3.12). In the
case ζ = i

2 , it is given by

u0 = B(ũ0,
i

2
, ψ̃0) = ũ0 + 2

ψ̃0,1ψ̃0,2

‖ψ̃0‖2
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(ψ̃0 as in Lemma 5.3.)

3. The wave function at t = 0:
A solution ψ0 for the system (3.1) with potential u0 and parame-
ter ζ = i

2 can be generated from the relation (3.11), and be repre-
sented in terms of the left and right Jost solutions. For a potential
of (3.1) L2-close to zero and with parameter i

2 , the left Jost solution

is ”close” (compare Lemma 4.1) to

(
e
x
2

0

)
and the right solution to(

0

e−
x
2

)
. Because of the reiteration relation (3.14) and (by assump-

tion) ũ0 ∼ sech(·), this implies that ψ0 ≈ c

(
e
x
2

e−
x
2

)
with c ∈ C, as we

will see in Lemma 5.5.

4. Time evolution of the wave function:
By Theorem 2.3, the initial datum u0 can be evolved into an NLS-
solution u(t, ·) with ‖u(t, ·)‖L∞(R) . εt−

1
2 for sufficiently large t > 0.

In Lemma 5.6 and 5.7, we will give the corresponding time evolution
of ψ0 into a simultaneous solution ψ of (3.1) and (3.2) with potential
u(t, x) and parameter i

2 . We represent this ψ in terms of the left and
right Jost solution of (3.1) at time t > 0 (with the corresponding poten-

tial u(t, ·)). Using the previous step, we will have ψ ≈ c

(
e
it
2 e

x
2

e−
it
2 e−

x
2

)
.

Recall from the discussion following (3.15) and (3.16) that this is pre-
cisely the wave function that is mapped to the elementary soliton solu-
tion via an appropriate Bäcklund transformation (the constant c ∈ C
does not change this by (3.13)).

5. Recovering the original NLS solution via the Bäcklund transformation:
The reiteration relation (3.14) gives us that at t = 0, ũ0 = B(u0,

i
2 , ψ0).

By the defining property of the Bäcklund transformation (discussed in
the text following (3.12)), (t, x) → B(u, i2 , ψ)(t, x) is thus an NLS-
solution with initial datum ũ0. By uniqueness of solutions, this im-
plies ũ(t, x) = B(u, i2 , ψ)(t, x), and by the previously sketched step we
would, indeed, expect ũ(t, x) ≈ eit sech(x) for all (or sufficiently large)
t > 0.

6. L∞-estimates The decisive point in showing the stability results in
[22] and the present thesis is to bound the error in this approximation
in terms of the appropriate function norm of u (the L2-norm in [22]
and the L∞-norm here), transferring stability properties from the zero
solution to the soliton solution. This is achieved in Proposition 5.8.
An essential step in the proof of this proposition is marked by (5.27),
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(5.28), by which, if we choose a ”reference point” x̃0 = x̃0(t) ∈ R,

we have |ψl,1(t, x)| = |ψl,1(t, x̃0)|e
x−x̃0

2
+r(x) with |r(x)| . ‖u‖2L∞(R)|x−

x̃0|, and similarly for |ψr,2(t, x)|. An appropriate choice of x̃0(t) for
Proposition 5.8 to hold, depending on the left and right Jost solution
at time t, gives the position shift function in (5.2), and also gives rise
to the phase shift θ̃(t).

7. Convergence of Jost solutions:
To understand the behaviour of x̃0(t) and θ̃0(t) as t→∞, we want to
exploit the fact that both are characterized in terms of the right and
left Jost solution of (3.1) (still with potential u and parameter i

2) at
time t. A necessary preliminary to do so is Proposition 5.10, where
we will utilize the asymptotic expression (2.9) from Theorem 2.3 to
establish convergence properties of the Jost solutions as t → ∞, and
give quantitative estimates for the rates of convergence.

8. Proof of Theorem 5.2: Approximation of lower-regularity solutions and
convergence of position and phase shift:
At the end of the chapter, we will finally be in a position to prove
Theorem 5.2. The two things that we still have to do at this point
are a) provide an approximation argument which extends our results
(including the characterization of x̃0 and θ̃0) to NLS solutions whose
initial value has a lower regularity than H3(R) but still satisfy the
assumptions of Theorem 5.2 and b) show that Proposition 5.10 does,
indeed, imply the convergence of x̃0 and θ̃0, and we have the quanti-
tative estimates (5.3) and (5.4) for the rate of convergence. We will
use Lemma 4.7 to accomplish the former task, and utilize (5.27) and
(5.28) for the latter, finishing the proof.

We now give the details of the proof outlined above. With the exception of
the fifth, which we will repeat near the end of the chapter, we will follow
the order in which these steps are given above:

Fixing the eigenvalue

By Lemma 4.6, the spatial part (3.1) of the Lax system with potential ũ0 has
an eigenvalue ζ ∈ C close to i

2 . We can transform the potential to fix this
eigenvalue at ζ = i

2 . This can be achieved by performing the same change
of variables as in [22], Remark 3.2: If the potential ũ0(·), the parameter

ζ = i
2(k̃ + iṽ) and the function

(
ψ1(·)
ψ2(·)

)
satisfy

∂x

(
ψ1(x)
ψ2(x)

)
=

(
−iζ ũ0

−ũ0 iζ

)(
ψ1(x)
ψ2(x)

)
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then for

ψ̃1(x) = e−
i
2
ṽk̃−1xψ1(k̃−1x)

ψ̃2(x) = e
i
2
ṽk̃−1xψ2(k̃−1x)

v0(x) = k̃−1e−
i
2
ṽk̃−1xũ0(k̃−1x), (5.5)

we have

∂x

(
ψ̃1(x)

ψ̃2(x)

)
=

(
1
2 v0

−v0 −1
2

)(
ψ̃1(x)

ψ̃2(x)

)
Scaling (2.2) and Galilei transform (2.3) of the NLS solution with initial
value ũ0 gives an NLS solution with initial value v0. This use of the NLS
symmetries is what gives rise to the parameters k = k̃−1 and v = −ṽk̃−1 in
Theorem 5.2, and the estimates on these parameters are a consequence of
Lemma 4.6. From now on, it suffices to treat ũ0 such that ζ = i

2 .

Pullback to a neighbourhood of the zero solution

Next, we use a Bäcklund transformation employing the i
2 -eigensolutions to

pull back our H0,1-neighbourhood of sech(·) to a H0,1-neighbourhood of 0.
It is possible to adapt the argument from [22] to this purpose, but we will
use a variation-of-constants approach instead:

Lemma 5.3. Let ũ0 ∈ H0,1(R) satisfy ‖ũ0 − sech(·)‖H0,1(R) ≤ ε for some
small ε > 0. Assume that the spatial part (3.1) of the Lax system has an
eigenvalue in ζ = i

2 and ψ̃0 is an associated eigenfunction of (3.1) (which
can be normalized to be both the right and left Jost solution by Remark 4.4).
Then B(ũ0,

i
2 , ψ̃0) =: u0 satisfies ‖u0‖H0,1(R) . ε. Moreover, if ũ0 ∈ H3(R),

then u0 ∈ H3(R).

Proof. Write ũ0(x) = sech(x) + v(x) with ‖v‖H0,1(R) ≤ ε for ε small enough.
Consider the (spatial part (3.1) of the) Lax system,

∂x

(
ψ1

ψ2

)
=

(
1
2 ũ0

−ũ0 −1
2

)(
ψ1

ψ2

)
,

with parameter i
2 . For v = 0, i.e., the unperturbed system, this has an L2-,

and, in fact, H0,1-solution1

ψ(0) =
1

2
sech(x)

(
e−

x
2

−e
x
2

)
(5.6)

We normalized (5.6) to be the left Jost solution in the unperturbed case.

Step 1: Our first goal is to show the following claim:

1The superscript notation here is not to be confused with the superscript notation used
later in this chapter to indicate dependency of (3.1)-solutions on the potential.
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Claim 5.4. The left Jost solution ψl(x) for x < 0 satisfies ψl(x) = ψ(0)(x)+
φ(x) with ψ(0) as in (5.6) and

‖(1 + | · |)e−
·
2φ(·)‖L∞(R−)×L2∩L∞(R−) . ‖v‖H0,1(R) (5.7)

On R+, with the corresponding right Jost solution ψr(x) = −ψ(0)(x) + φ̃(x),
we have a similar estimate to (5.7) for (1 + | · |)e+ ·

2 φ̃(·).

As we will see (5.7) and its analogue for the right solution on R+ suffice
to show that the Bäcklund transform maps to a potential that is H0,1-close
to 0.

Proof of Claim. We only explicitly show the estimate (5.7) for the left Jost
solution. Rewrite the system:

∂x

(
ψ1

ψ2

)
=

(
1
2 sech(x)

− sech(x) −1
2

)(
ψ1

ψ2

)
+

(
0 v
−v 0

)(
ψ1

ψ2

)
=:

(
1
2 sech(x)

− sech(x) −1
2

)(
ψ1

ψ2

)
+

(
f1

f2

)
(5.8)

For v = 0, there is a fundamental solution matrix:

U(x) = −1

2
sech(x)

(
−e−

x
2 e

x
2 [ex + 2(1 + x)e−x]

e
x
2 e−

x
2 (e−x − 2xex)

)
with inverse

U(y)−1 =
1

2
sech(y)

(
e
y
2 (e−2y − 2y) e−

y
2 (e2y + 2y + 2)

e
y
2 −e−

y
2

)

By the Lemma 4.1, the left Jost solution

ψl(y) = ψ(0)(y) + φ(y) (5.9)

satisfies the estimate

‖e−
y
2ψl(y)‖L∞×L2∩L∞(R) ≤ C‖ũ0‖L2(R)

(5.10)

where C‖ũ0‖L2(R)
is bounded for bounded ‖ũ0‖L2 (compare Lemma 4.1).

Moreover, lim
y→−∞

e−
y
2φ(y) = 0, and in particular, lim

y→−∞
φ(y) = 0 by the

definition of ψl. Plugging (5.9) into (5.8) and using that ψ(0) is a solution
for v = 0, we get:

∂x

(
φ1

φ2

)
=

(
1
2 sech(x)

− sech(x) −1
2

)(
φ1

φ2

)
+

(
f1

f2

)
(5.11)
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This yields a variation of constants formula:(
φ1

φ2

)
=

x∫
−∞

U(x)U(y)−1

(
f1(y)
f2(y)

)
dy

Calculate:

U(x)U(y)−1 = −1

4
sech(x) sech(y)

(
u11(x, y) u12(x, y)
u21(x, y) u22(x, y)

)
with

u11(x, y) = −e
y−x
2 (e−2y − 2y) + e

x+y
2 [ex + 2(1 + x)e−x]

u12(x, y) = −e−
x+y
2 (e2y + 2y + 2)− e

x−y
2 [ex + 2(1 + x)e−x]

u21(x, y) = e
x+y
2 (e−2y − 2y) + e

y−x
2 (e−x − 2xex)

u22(x, y) = e
x−y
2 (e2y + 2y + 2)− e−

x+y
2 (e−x − 2xex)

For two matrices A and B, write |A| ≤ B whenever the absolute value of
every matrix entry of A is smaller or equal than the corresponding entry
of B. restricting ourselves to the case y ≤ x ≤ 0 and dropping all but the
largest terms from the above matrix:

e−
x
2 |U(x)U(y)−1| . e−

x
2 exey

(
e−

3
2
ye−

x
2 (1 + |y|)e−

x+y
2

e
x
2 e−

3
2
y (1 + |y|)e

x−y
2 + e−

3
2
xe−

y
2

)

=

(
e−

y
2 (1 + |y|)e

y
2

exe−
y
2 (1 + |y|)exe

y
2 + e−xe

y
2

)

Moreover, in the same notation, whenever y ≤ 0:∣∣∣∣∣
(
f1(y)
f2(y)

) ∣∣∣∣∣ =

∣∣∣∣∣
(
v(y)ψ

(0)
2 (y) + v(y)φ2(y)

−v(y)ψ
(0)
1 (y)− v(y)φ1(y)

)∣∣∣∣∣
.

(
|v(y)|e

3
2
y + |v(y)||φ2(y)|

|v(y)|e
y
2 + |v(y)||φ1(y)|

)

Thus, with

w1(y) = e−
y
2 (|v(y)|e

3
2
y + |v(y)||φ2(y)|)

+ (1 + |y|)e
y
2 (|v(y)|e

y
2 + |v(y)||φ1(y)|)

= |v(y)|
[
ey + e−

y
2 |φ2(y)|+ (1 + |y|)ey(1 + e−

y
2 |φ1(y)|)

]
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and

w2(y) = exe−
y
2 (|v(y)|e

3
2
y + |v(y)||φ2(y)|)

+ [(1 + |y|)exe
y
2 + e−xe

y
2 ](|v(y)|e

y
2 + |v(y)||φ1(y)|)

= |v(y)|
[
ex[ey + e−

y
2 |φ2(y)|+ (1 + |y|)ey(1 + e−

y
2 |φ1(y)|)]

+ e−xey(1 + e−
y
2 |φ1(y)|)

]
we have

e−
x
2 |U(x)U(y)−1f(y)| .

(
w1(y)
w2(y)

)
. |v(y)|

(
ey + e−

y
2 |φ2(y)|+ (1 + |y|)ey

ex[ey + e−
y
2 |φ2(y)|+ (1 + |y|)ey]

)
+ |v(y)|

(
0

ey−x

)
,

We used (5.10) (and (5.9)) for the last inequality. Again by (5.10), we
have thus shown the existence of L2(R−)-functions g, h, with L2(R−)-norms
below a uniform bound, such that:

e−
x
2 |U(x)U(y)−1f(y)| . |v(y)|

(
|g(y)|
ex|h(y)|

)
+ |v(y)|

(
0

ey−x

)
Hence, whenever x ≤ 0

e−
x
2 |φ(x)| =

∣∣∣∣∣e−x2
x∫

−∞

U(x)U(y)−1

(
f1(y)
f2(y)

)
dy

∣∣∣∣∣
.

x∫
−∞

|v(y)|
(
|g(y)|
ex|h(y)|

)
dy +

x∫
−∞

|v(y)|
(

0
ey−x

)
dy

Hölder’s inequality (for the first summand) and Young’s inequality (for the
second) give us ‖e−

·
2φ(·)‖L∞(R−)×L2∩L∞(R−) . ‖v‖L2(R). Using the estimate

|x|
x∫
−∞
|r(y)|dy ≤

x∫
−∞
|y||r(y)|dy for x < 0, we can finally get the desired

H0,1-result (5.7).

Step 2: With Claim 5.4 established, it is now straightforward to show
that, for x ≤ 0, we have

ψl,1(x)ψl,2(x)

‖ψl(x)‖2
= −1

2
sech(x) +R(x),

with ‖R‖H0,1(R) ≤ ‖v‖H0,1(R). Because we have

u0 = B(ũ0,
i

2
, ψ̃0) = ũ0 + 2

ψ̃0,1ψ̃0,2

‖ψ̃0‖2
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in our situation, and ψ̃0 ∼ ψl by Remark 4.4, this suffices to establish the
H0,1-bound on u0 of Lemma 5.3 on R−. Notice first that we can use

−1

2
sech(x) =

ψ
(0)
1 (x)ψ

(0)
2 (x)

‖ψ(0)(x)‖2

to get:

R(x) =
[ψ

(0)
1 (x) + φ1(x)][ψ

(0)
2 (x) + φ2(x)]

[ψ
(0)
1 (x) + φ1(x)]2 + [ψ

(0)
2 (x) + φ2(x)]2

− ψ
(0)
1 (x)ψ

(0)
2 (x)

‖ψ(0)(x)‖2

=
[ψ

(0)
1 (x) + φ1(x)][ψ

(0)
2 (x) + φ2(x)]− ψ(0)

1 ψ0
2

[ψ
(0)
1 (x) + φ1(x)]2 + [ψ

(0)
2 (x) + φ2(x)]2

+ ψ
(0)
1 ψ

(0)
2

[
[(ψ

(0)
1 (x) + φ1(x))2 + (ψ

(0)
2 (x) + φ2(x))2]−1

− [ψ
(0)
1 (x)2 + ψ

(0)
2 (x)2]−1

]
(5.12)

Now, ψ
(0)
1 (x) +φ1(x) = e

x
2 [e−x sech(x) + e−

x
2 φ1(x)], so the first summand is

bounded by

e−x

(1 + ‖v‖H0,1(R))
2
(|ψ(0)

1 φ2|+ |ψ
(0)
2 φ1|+ |φ1φ2|)

while the absolute value of the second can similarly be bounded by

e−2x sech2(x)

(1 + ‖v‖H0,1(R))
2
(2|ψ(0)

1 φ1|+ |φ1|2 + 2|ψ(0)
2 φ2|+ |φ2|2)

and by (5.7), both can be estimated against ‖v‖H0,1(R) for x ≤ 0. The
argument for x > 0 proceeds similarly. Finally, if ũ0 ∈ H3(R) in Lemma
5.3, (5.11) and (5.12) imply u0 ∈ H3(R) by standard arguments.

The wave function at t = 0

For ũ0 ∼ sech(·) the initial value of NLS in Theorem 5.2, let ψ̃0 and u0 ∼ 0
be as in Lemma 5.3. By (3.11), a solution ψ0 of the spatial part (3.1) of the
Lax system with parameter i

2 and potential u0 is given by

ψ1(x) =
ψ̃2

|ψ̃|2
ψ2(x) = − ψ̃1

|ψ̃|2
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We can represent

ψ0 = clψ
(u0)
l + crψ

(u0)
r (5.13)

with ψl and ψr the left and right Jost functions of the system (3.1) with
potential u0 and parameter ζ = i

2 . We indicate the dependency of the Jost
solutions on the potential by a superscript. We next use the reiteration
relation (3.14) to show

Lemma 5.5. For the coefficients cl ∈ C and cr ∈ C from (5.13), we have∣∣∣ clcr − 1
∣∣∣ . ε.

Proof. We momentarily drop the superscript for ease of notation. Moreover,
we can assume cl = c, cr = 1 by (3.13). We also assume that |c| > 1, and
a similar argument to the following can be made for |c| < 1 by exchanging
the role of the left and right Jost solution:

We first consider that on 1 ≤ x ≤ 8:∣∣∣∣∣ sech(x)− 2c

|c|2ex + e−x

∣∣∣∣∣ = 2

∣∣∣∣∣(|c|2 − c)ex − (c− 1)e−x

(ex + e−x)(|c|2ex + e−x)

∣∣∣∣∣
≥ 1

2

|c− 1|
|c|

e−x − |c− 1|
|c|2

e−3x

≥ 1

2

|c− 1|
|c|

e−x − 1

2

|c− 1|
|c|

e−2x,

which implies ∥∥∥∥∥ sech(x)− 2c

|c|2ex + e−x

∥∥∥∥∥
L2([1,8])

≥ 1

20

|c− 1|
|c|

We have, by Lemma 4.1:

‖e−
x
2ψ

(u0)
l,1 − 1‖L∞(R) . ‖u0‖L2(R) ‖e−

x
2ψ

(u0)
l,2 ‖L2∩L∞(R) . ‖u0‖L2(R)

(5.14)

‖e
x
2ψ

(u0)
r,1 ‖L2∩L∞(R) . ‖u0‖L2(R) ‖e

x
2ψ

(u0)
r,2 − 1‖L∞(R) . ‖u0‖L2(R)

(5.15)

We use this to estimate∣∣∣∣∣ c

‖ψ0‖2
− c

|c|2ex + e−x

∣∣∣∣∣ = |c|

∣∣∣∣∣(|c|2ex + e−x)− ‖ψ0‖2

‖ψ0‖2(|c|2ex + e−x)

∣∣∣∣∣
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We have ‖ψ0‖2 = |cψ(u0)
l,1 +ψ

(u0)
r,1 |2 +|cψ(u0)

l,2 +ψ
(u0)
r,2 |2 and for sufficiently small

ε,

0 < |c|2r(ε)ex + r(ε)e−x − 4|c|ε(1 + ε) ≤‖ψ0‖2 ≤
≤|c|2r(ε)ex + r(ε)e−x + 4|c|ε(1 + ε),

where r(ε) = ε2 + (1 + ε)2. Hence, by (5.14) and (5.15), we have, for x > 0,∣∣∣(|c|2ex + e−x)− ‖ψ0‖2
∣∣∣ . |c|2εex + εe−x + |c|ε,

as well as:

‖ψ0‖2(|c|2ex + e−x) & |c|4e2x

Because |c| > 1, we have∥∥∥∥∥ c

‖ψ0‖2
− c

|c|2ex + e−x

∥∥∥∥∥
L2([1,8])

. ε (5.16)

Finally, by similar arguments:∣∣∣∣∣(ψ0)1(ψ0)2

‖ψ0‖2
− c

‖ψ0‖2

∣∣∣∣∣ . |c||ψ
(u0)
l,1 ψ

(u0)
r,2 − 1|+ |c|2εex + |c|ε2 + ε2e−x

|c|2ex

. ε,

and ∥∥∥∥∥(ψ0)1(ψ0)2

‖ψ0‖2
− c

‖ψ0‖2

∥∥∥∥∥
L2([1,8])

. 7ε (5.17)

If ε small enough, (5.16) and (5.17) and the assumption from Lemma 5.3
give us:

ε &

∥∥∥∥∥ sech(x)− 2(ψ0)1(ψ0)2

‖ψ0‖2

∥∥∥∥∥
L2(R)

≥

∥∥∥∥∥ sech(x)− 2(ψ0)1(ψ0)2

‖ψ0‖2

∥∥∥∥∥
L2([1,8])

≥

∥∥∥∥∥ sech(x)− 2c

|c|2ex + e−x

∥∥∥∥∥
L2([1,8])

−

∥∥∥∥∥2(ψ0)1(ψ0)2

‖ψ0‖2
− 2c

‖ψ0‖2

∥∥∥∥∥
L2([1,8])

−

∥∥∥∥∥ 2c

‖ψ0‖2
− 2c

|c|2ex + e−x

∥∥∥∥∥
L2([1,8])

&
|c− 1|
|c|

− ε

Thus, we obtain |c−1|
|c| . ε, which implies |c− 1| . ε.

39



Time evolution of the wave function

Because ‖u0‖H0,1(R) . ε, by Theorem 2.3 we have a unique NLS solution u :
R+×R→ C with initial data u(0, ·) = u0(·) which satisfies ‖u(t, ·)‖L∞(R) .

ε|t|−
1
2 . Because we showed u0 ∈ H3(R) in Lemma 5.3, by standard theory

of NLS (compare [4] and [20], Chapter 5) we have u ∈ C(R+, H
3(R)). We

can now consider the full Lax system (3.1) and (3.2) with potential u. We
follow [22] in the proof of the following two lemmas:

Lemma 5.6. There are solutions ψl(t, x) and ψr(t, x) of the full Lax system
(3.1) and (3.2) (spatial and temporal part) with potential u and parameter

ζ = i
2 such that ψl(0, x) = ψ

(u0)
l and ψr(0, x) = ψ

(u0)
r . Thus, we obtain

ψ(t, x) = clψl(t, x) + crψr(t, x) (5.18)

as a simultaneous solution of (3.1) and (3.2) with initial value ψ(0, ·) =
ψ0(·), where ψ0 as in (5.13).

Sketch of Proof. Let ψ(t, x) be a solution of the temporal part (3.2) of the
Lax system that satisfies the spatial part at t = 0. By the assumption on
regularity of the potential and bootstrapping arguments, the mixed deriva-
tives ∂t∂xψ(t, x) and ∂x∂tψ(t, x) exist and are continuous, and thus equal.
Because the potential u satisfies the NLS, if we write the spatial part (3.1)
of our Lax system as ∂xψ = Aψ and ∂tψ = Bψ for the temporal part (3.2),
the zero curvature condition (3.4) discussed in Chapter 3

∂xB − ∂tA− [A,B] = 0

holds. If we now consider the function F (t, x) = ∂xψ(t, x) − A(t, x)ψ(t, x),
we get

∂tF (t, x) = ∂t∂xψ − (∂tA)ψ −A∂tψ = ∂x∂tψ − (∂tA)ψ −ABψ
= ∂x(Bψ)− (∂tA)ψ −ABψ
= (∂xB − ∂tA− [A,B])ψ −BAψ +B∂xψ = BF

Because the potential is in C(R, H3(R)), this implies |∂tF (t)| ≤ k(t)|F (0)|
with k(t) bounded on bounded (in t) intervals. Since F (0) = 0, Gronwall’s
equality now yields F (t) = 0 ∀t > 0 and thus the claim.

Lemma 5.7. For ψl = ψl(t, x) and ψr = ψr(t, x) as in Lemma 5.6, we have

lim
x→−∞

e−
x
2ψl(t, x) = e

it
2 (5.19)

and

lim
x→∞

e
x
2ψr(t, x) = e−

it
2 , (5.20)

implying that ψl(t, x) = e
it
2 ψ

(u(t,x))
l and ψl(t, x) = e−

it
2 ψ

(u(t,x))
r , with the

superscript notation as introduced before Lemma 5.5.
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Proof. Let

σ =

(
1 0
0 −1

)
be the third Pauli matrix. The solution for the temporal system (3.2) can
be implicitly represented by the following integral equation:

ψl(t, x) = ei
σ
2
tψl(0, x) +

t∫
0

ei
σ(t−s)

2 (B(s, x)− iσ
2

)ψl(s, x)ds (5.21)

We have |∂t(e−x‖ψl‖2)| = 4| Im(e−xqψl,1ψl,2)| . ‖q(t, ·)‖L∞(R)e
−x‖ψl‖2, so

Gronwall’s inequality and the fact that ψ(0, ·) ∈ L∞ × L∞(R) shows that
e−

x
2ψl ∈ C([0, t], L∞ × L∞(R)) for any t > 0. The regularity assumption

that q ∈ C(R, H3(R)) also implies that B has bounded operator norm on
bounded t-intervals. Lebesgue’s bounded convergence theorem therefore
implies

lim
x→−∞

(e−
x
2ψl(t, x)) = ei

σ
2
t lim
x→−∞

(e−
x
2ψl(0, x)) = ei

σ
2
t

(
1
0

)
,

by the definition of the left Jost solution, this yields (5.19), and for ψr, we
can obtain (5.20) in the same way.

L∞-estimates

The following Proposition 5.8 is decisive for showing our asymptotic stabil-
ity result Theorem 5.2. Nevertheless, we now temporarily switch notation
and denote the potential of (3.1) by φ to emphasize its universality and
independence from any other assumptions except L∞-smallness of φ and
existence of the left and right Jost solution. By Lemma 4.1, finiteness of the
L2-norm is sufficient for the latter assumption to hold, smallness of ‖φ‖L2(R)

is not needed. Moreover, Proposition 5.8 only depends on properties of the
spatial part (3.1) of the Lax system and can thus be immediately employed
in the soliton stability analysis for other equations in the NLS hierarchy
(see Chapter 3), unlike Proposition 5.10, which depends on the asymptotic
expression given in Theorem 2.3.

Proposition 5.8. Let φ ∈ L2(R), so that the left and right Jost solutions
of the Lax system (3.1) with potential φ and parameter i

2 exist by Lemma
4.1, and let ‖φ‖L∞(R) be sufficiently small. Let al, ar ∈ C. Then there exists

and is unique a point x0 where |alψ
(φ)
l,1 (x0)| = |arψ(φ)

r,2 (x0)|. If θ is the phase

of alarψ
(φ)
l,1 ψ

(φ)
r,2 in that point, i.e. alarψ

(φ)
l,1 ψ

(φ)
r,2 (x0) = eiθ|alarψ

(φ)
l,1 ψ

(φ)
r,2 (x0)|,

‖B(φ,
i

2
, alψ

(φ)
l + arψ

(φ)
r )− eiθ sech(x− x0)‖L∞(R) . ‖φ‖L∞(R) (5.22)

holds.
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For ease of calculation, we can rewrite2 the spatial part of the Lax system
(3.1) with potential φ and parameter i

2 :

d

dx
(e−

x
2ψ1(x)) = φ(x)e−

x
2ψ2(x) (5.23)

d

dx
(e

x
2ψ2(x)) = −φ(x)e

x
2ψ1(x) (5.24)

To show Proposition 5.8, we first prove the following Claim 5.9, which will
put us in a position to appropriately control the ”smaller” components of
the Jost solutions in terms of the ”larger” ones (equations (5.25) and (5.26)).
This will enable us to approximate ψ1ψ2 by ψl,1ψr,2 (compare (5.29)). Via
Gronwall’s inequality, (5.25) and (5.26) also imply (5.27) and (5.28), which
already suggest that the absolute values of the Jost solutions’ large compo-
nents behave like ”recentered” exponential functions, with an appropriately
chosen center x̃0. In (5.30), we will basically split up the task of prov-
ing (5.22) into two subtasks: Bounding the deviation of the phase (which
concerns the first summand on the right side of (5.30)) and bounding the
deviation of the absolute value (which concerns the second). The former will
be accomplished by another application of Gronwall’s inequality (see (5.31)
and (5.32)), the latter by suitable bounds on the norm of ψ in terms of the
sech(·)-function (see (5.34)).3

Claim 5.9. Let ψ(x) = (ψ1(x), ψ2(x))T be a solution of (5.23), (5.24) that
is absolutely continuous and satisfies ψ ∈ L∞((−∞, r]) for some r ∈ R.
Then for any real number m > 2, we have the pointwise estimate

|ψ2(x)|
|ψ1(x)|

≤ 2‖φ‖L∞(R) ∀x ∈ R

whenever ‖φ‖L∞(R) <
1
4 . A similar statement, with the roles of the first and

second component of ψ exchanged, holds when ψ ∈ L∞([r,∞)), r ∈ R.

Proof. The case ‖φ‖L∞(R) = 0 is clear (see Chapter 4). For ‖φ‖L∞(R) > 0,
pick any real number m > 2 and assume there was some u and ψ so that
‖φ‖L∞(R) <

1−m−1

m and |ψ2(x1)| > m‖φ‖L∞(R)|ψ1(x1)| for some x1 < r.
Our first step is to prove by contradiction that in this case, |ψ2(x)| ≥
m‖φ‖L∞(R)|ψ1(x)| for all x ≤ x1. In a second (easy) step, we will see that
this leads to a contradiction, establishing that such an x1 can not exist:

Step 1: Suppose that in the above situation, there was some x0 < x1 such
that |ψ2(x0)| < m‖φ‖L∞(R)|ψ1(x0)| and consider

x̃ = inf{x ∈ [x0, x1] : |ψ2(x)| > m‖φ‖L∞(R)|ψ1(x)|}
2Using this form of the equations is inspired by [21].
3Also recall for the following proof that the absolute value of an absolutely continuous

function is absolutely continuous and hence differentiable almost everywhere.
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By continuity, we have x̃ > x0 and |ψ2(x̃)| = m‖φ‖L∞(R)|ψ1(x̃)|. Moreover,
|ψ2(x)| ≤ m‖φ‖L∞(R)|ψ1(x)| on [x0, x̃]. Therefore, if ψ2(x̃) = ψ1(x̃) = 0,
(5.23) and Gronwall’s inequality would imply that ψ1(x) = 0 for any x ∈
[x0, x̃], and together with (5.24) this would mean ψ2(x0) = 0. However, this
possibility is excluded by the assumption that |ψ2(x0)| ist strictly smaller
than m‖φ‖L∞(R)|ψ1(x0)|.

By picking a sufficiently small neighbourhood of x̃, we can thus obtain an
interval I := [a, b] such that:

a) 0 < ψ2(x)
ψ1(x) <∞ is absolutely continuous on [a, b].

b) (m − δ)‖φ‖L∞(R) <
|ψ2(x)|
|ψ1(x)| < (m + δ)‖φ‖L∞(R) for some small δ > 0

(which can be made arbitrarily small).

c) |ψ2(a)|
|ψ1(a)| ≤ m‖φ‖L∞(R) and |ψ2(b)|

|ψ1(b)| > m‖φ‖L∞(R). (Notice that this is not
necessarily true for all b > x̃ close to x̃, but there are such real points arbi-
trarily close to x̃ for which it is.)

For ease of notation, assume a = −ε, b = 0.

From (5.24) and property b) of I, we get d
dx(e

x
2 |ψ2(x)|) ≤ ‖φ‖L∞(R)e

x
2 |ψ1(x)| ≤

(m− δ)−1e
x
2 |ψ2(x)| on [−ε, 0]. Gronwall’s inequality now yields e0|ψ2(0)| ≤

e(m−δ)−1εe−
ε
2 |ψ2(−ε)| or

|ψ2(−ε)| ≥ e( 1
2
−(m−δ)−1)ε|ψ2(0)|

Similarly,
∣∣∣ ddx(e−

x
2 |ψ1(x)|)

∣∣∣ ≤ (m + δ)‖φ‖2L∞(R)e
−x

2 |ψ1(x)| on [−ε, 0], which

we obtain using (5.23), implies that e
ε
2 |ψ1(−ε)| ≤ e(m+δ)‖φ‖2

L∞(R)ε|ψ1(0)| or

|ψ1(−ε)| ≤ e[(m+δ)‖φ‖2
L∞(R)−

1
2

]ε|ψ1(0)|

Together, these estimates give us:

|ψ2(−ε)|
|ψ1(−ε)|

≥ |ψ2(0)|
|ψ1(0)|

exp

[[1

2
− (m− δ)−1

]
ε−

[
(m+ δ)‖φ‖2L∞(R) −

1

2

]
ε

]

=
|ψ2(0)|
|ψ1(0)|

exp((1− (m− δ)−1 − (m+ δ)‖φ‖2L∞(R))ε)

Now, if 1 − (m − δ)−1 − (m + δ)‖φ‖2L∞(R) > 0, which is equivalent to

‖φ‖L∞(R) <
√

1−(m−δ)−1

m+δ , this yields |ψ2(−ε)|
|ψ1(−ε)| >

|ψ2(0)|
|ψ1(0)| , in contradiction to

property c) of our interval. As δ can be made arbitrarily small, we can

obtain this contradiction whenever m > 1, ‖φ‖2L∞(R) <
1−m−1

m .
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Step 2: Now that we have established |ψ2(x)| ≥ m‖φ‖L∞(R)|ψ1(x)| on
(−∞, x1], assume for simplicity that x1 = 0. By (5.24), we know that
d
dx(e

x
2 |ψ2(x)|) ≤ m−1e

x
2 |ψ2(x)| for any x < 0, and Gronwall’s inequal-

ity gives us |ψ2(x)| ≥ e−
x
2

+m−1x|ψ2(0)|, leading to a contradiction with
ψ2 ∈ L∞(R) whenever m > 2. Because m can be chosen arbitrarily close to
2, we are done.

Proof of Proposition 5.8: First, it is relatively easy to see that x0 as defined
in Proposition 5.8 exists, because the ”large” first component of the left Jost
solution goes to infinity as x → ∞, and the ”large” second component of
the right Jost solution tends to infinity as x→ −∞.

Moreover, since r in the statement of Claim 5.9 is arbitrary, the left Jost
solution of (5.23), (5.24) (which is equivalent to (3.1) in our situation) sat-
isfies4

|ψl,2(x)|
|ψl,1(x)|

≤ 2‖φ‖L∞(R) (5.25)

and a similar argument for the right Jost solution gives us

|ψr,1(x)|
|ψr,2(x)|

≤ 2‖φ‖L∞(R) (5.26)

whenever ‖φ‖L∞(R) small enough. In particular, because the left side of
(5.25) and the inverse of the left side of (5.26) would otherwise have to be
related by a constant factor, the spatial part (5.23) and (5.24) of the Lax
system does not have an eigenvalue in i

2 .

We consider ψ =

(
ψ1

ψ2

)
= alψl + arψr. Because the Bäcklund transfor-

mation (3.12) is, in this case, given by

B(φ,
i

2
, ψ) = φ+

2ψ1ψ2

‖ψ‖2

we need to show that∣∣∣∣∣2ψ1ψ2

‖ψ‖2
− eiθ sech(x− x0)

∣∣∣∣∣ . ‖φ‖L∞(R)

By (5.23), (5.24), (5.25) and (5.26):∣∣∣ d
dx
|e−

x
2ψl,1(x)|

∣∣∣ ≤ ‖φ‖L∞(R)e
−x

2 |ψl,2(x)| ≤ 2‖φ‖2L∞(R)e
−x

2 |ψl,1(x)|,

4In the context of this proof, we omit the superscript φ. It is used for emphasis when
we apply Proposition 5.8 in the proof of Theorem 5.2.
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and ∣∣∣ d
dx
|e
x
2ψr,2(x)|

∣∣∣ ≤ ‖φ‖L∞(R)e
x
2 |ψr,1(x)| ≤ 2‖φ‖2L∞(R)e

x
2 |ψr,2(x)|.

Using Gronwall’s inequality, we get:

e−
y
2 |ψl,1(y)|

e−
ỹ
2 |ψl,1(ỹ)|

≤ e2‖φ‖2
L∞(R)|y−ỹ| (5.27)

and

e
y
2 |ψr,2(y)|
e
ỹ
2 |ψr,2(ỹ)|

≤ e2‖φ‖2
L∞(R)|y−ỹ| (5.28)

for any y, ỹ ∈ R. Notice that as a consequence of (5.27) and (5.28), |ψl| is
strictly monotone increasing and |ψr| is strictly monotone decreasing. This
implies the uniqueness of x0.

By (5.25) and (5.26), we can see that |ψ1ψ2−alarψl,1ψr,2| . ‖φ‖L∞(R)‖ψ‖2.
Indeed,

max{|alψl,1|, |arψr,2|} ≤ (1− ‖φ‖L∞(R))
−1[|al||ψl,1| − |ar||ψr,1|+

+ |ar||ψr,2| − |al||ψl,2|]
≤ (1− ‖φ‖L∞(R))

−1[|ψ1|+ |ψ2|]

≤ (1− ||φ||L∞)−1
√

2‖ψ‖

from which we get the desired estimate because

|ψ1ψ2 − alarψl,1ψr,2| =

∣∣∣∣∣|al|2ψl,1ψl,2 + aralψr,1ψl,2 + |ar|2ψr,1ψr,2

∣∣∣∣∣ ≤
≤ |al|2‖φ‖L∞(R)|ψl,1|2 + |aral|‖φ‖L∞(R)|ψr,2||ψl,1|

+ |ar|2‖φ‖L∞(R)|ψr,2|2

≤ 2

(1− ‖φ‖L∞(R))2
‖φ‖L∞(R)‖ψ‖2

Thus, we have, with x0, θ as specified in Proposition 5.8,∣∣∣∣∣2ψ1ψ2

‖ψ‖2
− eiθ sech(x− x0)

∣∣∣∣∣
. ‖φ‖L∞(R) +

∣∣∣∣∣2alarψl,1ψr,2‖ψ‖2
− eiθ sech(x− x0)

∣∣∣∣∣, (5.29)

45



In the following, we only treat the estimate in the case x ≥ x0, as x < x0 is
similar. We employ the definition of x0 to get:∣∣∣∣∣2alarψl,1ψr,2‖ψ‖2

− eiθ

cosh(x− x0)

∣∣∣∣∣
≤

∣∣∣∣∣2alarψl,1ψr,2‖ψ‖2
−

2eiθ|al||ar||ψl,1(x0)||ψr,2(x0)|
‖ψ‖2

∣∣∣∣∣
+

∣∣∣∣∣2|al|2|ψl,1(x0)|2

‖ψ‖2
− 1

cosh(x− x0)

∣∣∣∣∣
(5.30)

By (5.23) and (5.24), we have

d

dx
(ψl,1ψr,2 − ψl,1(x0)ψr,2(x0)) =

d

dx
(ψl,1ψr,2)

= φ(x)[ψl,2(x)ψr,2(x)− ψl,1(x)ψr,1(x)]

Using (5.25) and (5.26), we get:∣∣∣∣∣ ddx |ψl,1ψr,2 − ψl,1(x0)ψr,2(x0)|

∣∣∣∣∣
. ‖φ‖2L∞(R)|ψl,1ψr,2|

≤ ‖φ‖2L∞(R)|ψl,1ψr,2 − ψl,1(x0)ψr,2(x0)|+ ‖φ‖2L∞(R)|ψl,1(x0)||ψr,2(x0)|
(5.31)

With Gronwall’s inequality and the definitions of θ and x0, this gives us:

|alarψl,1ψr,2(x)− eiθ|alar|ψl,1(x0)||ψr,2(x0)|
= |alarψl,1ψr,2(x)− alarψl,1(x0)ψr,2(x0)|
= |alar||ψl,1ψr,2(x)− ψl,1(x0)ψr,2(x0)|

≤ ‖φ‖2L∞(R)(x− x0)e
‖φ‖2

L∞(R)(x−x0)|alar||ψl,1(x0)||ψr,2(x0)|

= ‖φ‖2L∞(R)(x− x0)e
‖φ‖2

L∞(R)(x−x0)|al|2|ψl,1(x0)|2 (5.32)

With (5.25)-(5.28), we also get:

‖ψ‖2 ≥ (1− ‖φ‖L∞(R))
2(|al|2|ψl,1|2 + |ar|2|ψr,2|2)

≥ (1− ‖φ‖L∞(R))
2|al|2|ψl,1(x0)|2(ex−x0 + e−(x−x0))e

−‖φ‖2
L∞(R)(x−x0)

(5.33)
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From these estimates, it is immediate that the first summand on the right
side of (5.30) is . ‖φ‖L∞(R).

For the second term, consider that besides (5.33), (5.25)-(5.28) also imply
an upper bound for ‖ψ‖2, and thus

(1− ‖φ‖L∞(R))
2|al|2|ψl,1(x0)|2(ex−x0 + e−(x−x0))e

−‖φ‖2
L∞(R)(x−x0) ≤ ‖ψ‖2 ≤

≤ (1 + ‖φ‖L∞(R))
2|al|2|ψl,1(x0)|2(ex−x0 + e−(x−x0))e

‖φ‖2
L∞(R)(x−x0)

(5.34)

Therefore:∣∣∣∣∣2|al|2|ψl,1(x0)|2

‖ψ‖2
− 1

cosh(x− x0)

∣∣∣∣∣
. ‖φ‖L∞(R)

+ max{(e‖φ‖
2
L∞(R)(x−x0) − 1), (1− e−‖φ‖

2
L∞(R)(x−x0)

)} sech((x− x0))

≤ ‖φ‖L∞(R) + max{(e‖φ‖
2
L∞(R)(x−x0) − 1), (1− e−‖φ‖

2
L∞(R)(x−x0)

)}e−(x−x0)

By differentiating and evaluating at a = 0 the function a → ε2aeε
2a − eε2a,

we get the inequality eε
2a − 1 ≤ ε2aeε2a for a ≥ 0. For x ≥ x0, this gives

max{(e‖φ‖
2
L∞(R)(x−x0) − 1), (1− e−‖φ‖

2
L∞(R)(x−x0)

)}

≤ max{‖φ‖2L∞(R)(x− x0)e
‖φ‖2

L∞(R)(x−x0)
, ‖φ‖2L∞(R)(x− x0)},

from which the desired estimate on (5.30) follows.

Convergence of Jost solutions

On its own, Proposition 5.8 would not suffice to show the convergence of the
position and phase shift functions x̃0(t) and θ̃0(t). In order to do so, we show
convergence of the left, respectively right, Jost solution’s ”large” compo-
nents to a monotone increasing, respectively decreasing, function as t→∞.
More precisely, we will establish uniform convergence for rescaled versions
of ψl and ψr, quantitatively controlled by (5.35), from which pointwise con-
vergence of the original Jost functions follows, quantitatively controlled by
(5.37). If W in Theorem 2.3 was slightly more regular, partial integration
would, in fact, suffice to prove Proposition 5.10 (see discussion after (5.42)),
and we generalize to the lower regularity actually given in Theorem 2.3:

Proposition 5.10. Let u ∈ H0,1(R) with ‖u(0, ·)‖H0,1(R) ≤ ε be a solution

of the NLS (1.1) as in Theorem 2.3. Let ψ
(u(t,·))
l : R+×R→ C and ψ

(u(t,·))
r :

R+ × R → C be the left and right Jost solutions of the spatial part (3.1)
of the corresponding Lax system with parameter ζ = i

2 at time t, using the
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same superscript notation as above. If we set ϕl(t, x) := e−
x
2ψ

(u(t,·))
l (t, x)

and ϕ̃(t, x) := ϕl,1(t, tx), we have, for all sufficiently large t > 0,

|ϕ̃(t, x)− Pl(x)| . ε2 log(t)t−1+Cε2 , (5.35)

uniformly as t→∞, where

Pl(x) := exp

(
−

x∫
−∞

|W (y)|2

1− iy
dy

)
, (5.36)

with W ∈ H1−Cε2(R), C > 0 as in Theorem 2.3.
In particular, this implies the pointwise convergence of ϕl,1(t, x)→ Pl(0) as
t→∞ with an estimate

|ϕl,1(t, x)− Pl(0)| . ε2|x|t−1 + ε2 log(t)t−1+Cε2 (5.37)

Similar statements hold for the second component of the right Jost solution
ψr(t, x) =: e−

x
2ϕr(t, x), with ϕ̃ replaced by φ̃(t, x) := ϕr,2(t, tx) and Pl by

Pr(x) := exp

(
−
∞∫
x

|W (y)|2

1− iy
dy

)
(5.38)

Proof. By Theorem 2.3, an asymptotic expression (2.9) for an NLS-potential
u(t, x) : R× R→ C with small ‖u(0, ·)‖H0,1(R) ≤ ε is given by

u(t, x) = t−
1
2 ei

x2

2tW
(x
t

)
ei log(t)|W (x

t
)| + errx, (5.39)

where W ∈ H1−Cε2(R) and

errx ∈ εOL∞(R)((1 + t)−
3
4

+Cε2) ∩OL2(R)((1 + t)−1+Cε2) (5.40)

For ease of notation we will modify ε to set C = 1.

We use the formula (4.11) from Remark 4.3. Then an easy change of vari-
ables gives us, with w(t, x) = ei log(t)|W (x)|W (x),

ϕ̃(t, x) = 1−
x∫

−∞

w(t, y)

y∫
−∞

te−t(y−z)e
it
2

(y2−z2)w(t, z)ϕ̃(t, z)dzdy + e(t, x),

(5.41)

where we set e(t, x) := e1(t, x) + e2(t, x) + e3(t, x) with

e1(t, x) =

tx∫
−∞

y∫
−∞

t−
1
2 ei

y2

2tW
(y
t

)
ei log(t)|W ( y

t
)|e−(y−z)errx(z)ϕ1(t, z)dzdy
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and

e2(t, x) =

tx∫
−∞

y∫
−∞

errx(y)e−(y−z)t−
1
2 e−i

z2

2tW
(z
t

)
e−i log(t)|W ( z

t
)|ϕ1(t, z)dzdy,

as well as

e3(x) =

tx∫
−∞

y∫
−∞

errx(y)e−(y−z)errx(z)ϕ1(t, z)dzdy

Young’s inequality and (5.40) immmediately give:

‖e1‖L∞(R) . ‖t−
1
2W (t−1·)‖L2(R)‖e−t·‖L1(R+)‖errx‖L2(R)

= ‖W‖L2(R)‖errx‖L2(R) . ε2(1 + t)−1+ε2 ,

and similarly

‖e2‖L∞(R) . ε2(1 + t)−1+ε2 ,

as well as

‖e3‖L∞(R) ≤ ‖e−t·‖L1(R+)‖errx‖2L2(R) . ε2(1 + t)−2+2ε2

Hence, showing that (5.41) does, indeed, behave like (5.35) depends on the
main term

x∫
−∞

w(t, y)

y∫
−∞

te−t(y−z)e
it
2

(y2−z2)w(t, z)ϕ̃(t, z)dzdy (5.42)

Applying a partial integration argument to (5.42) under the stronger as-
sumption that W ∈ H1(R) with

‖W‖H1(R) . ε (5.43)

(and, for simplicity, also that |W | is differentiable everywhere) does, as we

claimed, suggest that lim
t→∞

ϕ̃(t, x) = exp
(
−

x∫
−∞

|W (y)|2
1−iy dy

)
uniformly at the

desired rate. Indeed, set the function

φ(t, z) :=
ϕ̃(t, z)

1− iz
(5.44)

Using e−t(y−z) = t−1∂ze
−t(y−z), we get

x∫
−∞

w(t, y)

y∫
−∞

te−t(y−z)e
it
2

(y2−z2)w(t, z)φ(t, z)dzdy

=

x∫
−∞

w(t, y)

y∫
−∞

∂ze
−t(y−z)e

it
2

(y2−z2)w(t, z)φ(t, z)dzdy
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=

x∫
−∞

w(t, y)

[
e−t(y−z)e

it
2

(y2−z2)w(t, z)φ(t, z)

]y
z=−∞

dy

+

x∫
−∞

w(t, y)

y∫
−∞

e−t(y−z)itze
it
2

(y2−z2)w(t, z)φ(t, z)dzdy

+

x∫
−∞

w(t, y)

y∫
−∞

e−t(y−z)e
it
2

(y2−z2)∂zw(t, z)φ(t, z)dzdy

+

x∫
−∞

w(t, y)

y∫
−∞

e−t(y−z)e
it
2

(y2−z2)w(t, z)∂zφ(t, z)dzdy, (5.45)

and, using |w| = |W |,

w(t, y)

[
e−t(y−z)e

it
2

(y2−z2)w(t, z)φ(t, z)

]y
z=−∞

=
|W (y)|2

1− iz
ϕ̃(t, y),

as well as (1 − iz)φ(t, z) = ϕ(t, z) by (5.44). Moreover, |∂zw(t, z)| .
log(t)|W ′(z)| for sufficiently large t > 0, as well as |∂zφ(t, z)| . t|∂2ϕl,1(t, tz)|+
|ϕl,1(t, tz)|. The boundedness of t|∂2ϕl,1(t, tz)| is a consequence of (4.12) and
Theorem 2.3 (compare text after (5.56)), and the boundedness of |ϕl,1(t, z)|
is, of course, known by Lemma 4.1. Using Young’s inequality and (5.43), we
can therefore bound the last two summands in (6.31) by ε2t−1 log(t), and
thus

ϕ̃(t, x) = 1−
x∫

−∞

|W (y)|2

1− iy
ϕ̃(t, y)dy +O(ε2 log(t)t−1) (5.46)

It seems natural that, for a slightly lower regularity than W ∈ H1(R), we
get a loss in the rate of convergence of (5.46) as given in (5.35).

Thus, we know proceed with the general case of Theorem 2.3 that W ∈
H1−ε2(R). We can now show (5.35) by proving that

x∫
−∞

∣∣∣∣∣ |W (y)|2

1− iy
ϕ̃(t, y)−

− w(t, y)

y∫
−∞

te−t(y−z)e
it
2

(y2−z2)w(t, z)ϕ̃(t, z)dz

∣∣∣∣∣dy . ε2 log(t)t−1+ε2

(5.47)
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Before we show (5.47), we briefly establish that it does, indeed, imply (5.35).
For, differentiating (5.41), we get

∂xϕ̃(t, x) = −|W (x)|2

1− ix
ϕ̃(t, x) + α(t, x), (5.48)

with

α(t, x) =
|W (x)|2

1− ix
ϕ̃(t, x)−

− w(t, x)

x∫
−∞

te−t(x−z)e
it
2

(x2−z2)w(t, z)ϕ̃(t, z)dzdy + ∂xe(t, x),

so if (5.47) holds, we have
x∫
−∞
|α(t, y)|dy . ε log(t)t−1+ε2 . By variation of

constants, (5.48) has the general solution

C exp

(
−

x∫
−∞

|W (y)|2

1− iy
dy

)
+

x∫
−∞

exp

(
−

x∫
y

|W (y)|2

1− iy
dy

)
α(t, y)dy

Because exp
(
−

x∫
y

|W (y)|2
1−iy dy

)
≤ exp(‖W‖2L2(R)) is bounded by a finite value,

the second summand is . ε log(t)t−1+ε2 . The definition of the left Jost so-
lution ψl enforces C = 1, and hence we get (5.35).

To prove (5.47), notice that a partial integration of
x∫
−∞

te−t(y−z)e
it
2

(y2−z2)dz

gives us

x∫
−∞

t
(

1− iz
)
e−t(y−z)e

it
2

(y2−z2)dz = 1 (5.49)

Inserting (5.49) into the left side of (5.47) gives us that it is equal to

x∫
−∞

∣∣∣∣∣|w(t, y)|2ϕ̃(t, y)

y∫
−∞

1− iz
1− iy

te−t(y−z)e
it
2

(y2−z2)dz

− w(t, y)

y∫
−∞

te−t(y−z)e
it
2

(y2−z2)w(t, z)ϕ̃(t, z)dz

∣∣∣∣∣dy
=

x∫
−∞

∣∣∣∣∣|w(t, y)|2ϕ̃(t, y)

y∫
−∞

1− iz
1− iy

te−t(y−z)e
it
2

(y2−z2)dz−
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− w(t, y)

y∫
−∞

te−t(y−z)e
it
2

(y2−z2)w(t, z)ϕ̃(t, y)dz

+ w(t, y)

y∫
−∞

te−t(y−z)e
it
2

(y2−z2)w(t, z)(ϕ̃(t, y)− ϕ̃(t, z))dz

∣∣∣∣∣dy,
which is bounded by the following term:

x∫
−∞

|w(t, y)|2|ϕ̃(t, y)|
y∫

−∞

∣∣∣∣∣ i(y − z)1− iy
te−t(y−z)e

it
2

(y2−z2)

∣∣∣∣∣dzdy
+

x∫
−∞

|w(t, y)|
y∫

−∞

∣∣∣∣∣1− iy1− iy
te−t(y−z)e

it
2

(y2−z2)(w(t, y)− w(t, z))ϕ̃(t, y)

∣∣∣∣∣dzdy
+

x∫
−∞

|w(t, y)|
y∫

−∞

∣∣∣∣∣te−t(y−z)e it2 (y2−z2)w(t, z)(ϕ̃(t, y)− ϕ̃(t, z))

∣∣∣∣∣dzdy
=: (I) + (II) + (III) (5.50)

Using (5.14), Young’s inequality and |w| = |W | (we suppress the explicit
t-dependence of w in the following estimates):

(I) .

x∫
−∞

|w(y)|2
y∫

−∞

t(y − z)e−t(y−z)dzdy =
1

t

x∫
−∞

|w(y)|2
∞∫

0

ze−zdzdy

.
1

t
‖w‖2L2 =

1

t
‖W‖2L2 (5.51)

Moreover:

(II) ≤
x∫

−∞

|w(y)||ϕ̃(t, y)|
y∫

−∞

te−t(y−z)|w(y)− w(z)|dzdy

.

x∫
−∞

|w(y)|
∞∫

0

e−z
∣∣∣w(y)− w

(
y − z

t

)∣∣∣dzdy
≤ ‖w‖L2(R)

∥∥∥∥∥
∞∫

0

e−z
∣∣∣w(y)− w

(
y − z

t

)∣∣∣dz∥∥∥∥∥
L2(R,dy)

(5.52)

Notice that the derivative of α → ei log(t)α has its absolute value bounded
by log(t), so for y, ỹ ∈ R, we have

|w(y)− w(ỹ)| ≤ (1 + log(t))|W (y)−W (ỹ)| (5.53)
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by the definition of w. Furthermore, µ(z) = e−zdz, we get µ(R+) = 1, so by
Jensen’s inequality:∥∥∥∥∥
∞∫

0

e−z
∣∣∣W (y)−W

(
y − z

t

)∣∣∣dz∥∥∥∥∥
2

L2(dy)

≤
∫
R

∞∫
0

e−z
∣∣∣W (y)−W

(
y − z

t

)∣∣∣2dzdy
=

∞∫
0

∫
R

e−z
∣∣∣W (y)−W

(
y − z

t

)∣∣∣2dydz
=

∞∫
0

e−z
∥∥∥W (y)−W

(
y − z

t

)∥∥∥2

L2(dy)
dz

≤
∞∫

0

e−z
(z
t

)2(1−ε2)
‖W‖2

H1−ε2 (R)
dz

. t2(ε2−1)‖W‖2
H1−ε2 (R)

, (5.54)

by a standard estimate on Hs-functions. Combined, (5.52), (5.53) and (5.54)
give us that

|(II)| . log(t)t−1+ε2‖W‖
H1−ε2 (R)

‖W‖L2(R) (5.55)

As for (III), by (4.12), we have

‖∂xϕl,1(t, x)‖L∞ . ‖u‖2L∞(R) (5.56)

And by (5.56), the definition of ϕ̃, and the asymptotic stability of Theorem
2.3:

|ϕ̃(t, y)− ϕ̃(t, z)| ≤ t‖∂xϕl,1‖L∞(R)|y − z|
. tε2t−1|y − z| = ε2|y − z|

Similarly to (I), this implies that we can control (III) by the estimate

|(III)| . 1

t
ε2‖w‖2L2(R) =

1

t
ε2‖W‖2L2(R) (5.57)

Together, (5.51), (5.55) and (5.57) give us (5.47), as desired. The pointwise
convergence estimate (5.37) is now an easy consequence of (5.35), the fact
that ϕ̃(t, 0) = ϕl,1(t, 0) ∀t > 0 by definition, and the bound ‖∂xϕl,1‖L∞(R) .
ε2t−1 which holds by (5.56) and Theorem 2.3.

Remark 5.11. Like Lemma 5.6 and 5.7 and Proposition 5.8, Proposition
5.10 is formulated specifically for ζ = i

2 here, but it is easy to see that
similar statements hold for any other ζ ∈ C with Im(ζ) > 0. In this case,
it might be of particular interest to explicitly give the version of (5.36) and

53



(5.38) for general ζ in the upper halfspace. In that case, (5.49) is replaced

by
y∫
−∞

t(−2iζ − iz)e
it
2

(y2−z2)e2iζt(y−z)dz = 1, and hence we would have

Pl(x) = exp

( x∫
−∞

|W (y)|2

2iζ + iy
dy

)

and

Pr(x) = exp

( ∞∫
x

|W (y)|2

2iζ + iy
dy

)
,

for which similar estimates as in Proposition 5.10 hold, with constants in
the estimates depending on Im(ζ).

Proof of Theorem 5.2: Approximation of lower-regularity solu-
tions and convergence of position and phase shift

We can now turn to the proof of our main theorem:

Proof of Theorem 5.2: We start with the assumption ũ ∈ C(R, H3(R)). Our
previous considerations imply that, for sufficiently large t > 0,∥∥∥∥∥B(u(t, ·), i

2
, ψ(t, x)

)
− ei(t+θ(t)) sech(x− x0(t))

∥∥∥∥∥
L∞(R)

. ε|t|−
1
2 , (5.58)

for ψ as in (5.18), x̃0(t) the point where |clψ
(u(t,x))
l,1 (t, x)| = |crψ(u(t,x))

r,2 (t, x)|

and θ̃(t) the phase of clcrψ
(u(t,x))
l,1 (t, x̃0(t))ψ

(u(t,x))
r,2 (t, x̃0(t)). Indeed, by Lemma

5.6 and 5.7 and the asymptotic stability result for the zero solution Theorem
2.3, estimate (5.58) follows as a special case of Proposition 5.8, with φ = u,
and

al = e
it
2 cl ar = e−

it
2 cr (5.59)

for all large enough t ∈ R+. By well-posedness of the NLS,B(u(0, ·), i2 , ψ(0, x)) =
ũ(0, ·) implies that we have B(u(t, ·), i2 , ψ(t, x)) = ũ(t, ·) ∀t > 0, so (5.2)
holds for the original NLS solution ũ.

We now drop the assumption ũ0 ∈ H3(R)5. Let ũ0 ∈ H0,1(R) but /∈ H3(R)
satisfy the assumptions of Theorem 5.2 and approximate it in L2(R) by a

5Alternatively to the following argument, it is also possible to proceed similarly as in
[8] at the end of Sections 3.1.2 and 4 here.
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sequence of H3(R)-functions ũ0n ∈ BH0,1(R)
ε (sech(·)). By Theorem 5.1, at

any time t ≥ 0

ũn(t, ·)→ ũ(t, ·)

in the L2-sense, with ũn, ũ the NLS-solutions with initial data ũ0n and ũ0.

Let n ∈ N, the coefficients a
(n)
l (t) and a

(n)
r (t) defined in the obvious manner

from (5.59) and the mapping B as in Lemma 4.7. Remember that by the
remarks surrounding (5.5), we assume that the eigenvalue of the Lax system
(3.1) with potential ũ0n is fixed at i

2 . Moreover, the proof of Lemma 4.7 es-
tablished that B−1 is precisely given as the Bäcklund transformation arising
from the reiteration relation (3.14) - the same Bäcklund transformation we
used to analyse the regular case. Our previous analysis for ũ0 ∈ H3(R) thus
gives us that for

B(ũ0n) =
( i

2
, a(n)
r (0)−1a

(n)
l (0), u0n

)
and un(t, ·) the unique NLS solution of Theorem 2.3 with un(0, ·) = u0n, we
have

B(ũn(t, ·)) =
( i

2
, a(n)
r (t)−1a

(n)
l (t), un(t, ·)

)
(To understand the second component, compare (3.13) and the statement
of Lemma 4.7.) Continuity of B now gives us that, as n→∞,

B(ũ0n) =
( i

2
, a(n)
r (0)−1a

(n)
l (0), u0n

)
→ B(ũ0) =

( i
2
, αl(0), u0

)
and, for t > 0,

B(ũn(t, ·)) =
( i

2
, a(n)
r (t)−1a

(n)
l (t), un(t, ·)

)
→B(ũ(t, ·)) =

( i
2
, αl(t), u(t, ·)

)
(5.60)

in C×C×L2(R). Recall here that a
(n)
r (t) 6= 0 for all t > 0 as a consequence

of Lemma 5.5, so all terms are well-defined.

Since the ũn are regular, Lemma 5.6 and 5.7 apply, i.e. a
(n)
l (t) = a

(n)
l (0)e

i
2
t

and a
(n)
r (t) = a

(n)
r (0)e−

i
2
t. In particular, (5.60) therefore implies

αl(t) = lim
n→∞

a(n)
r (0)−1e

i
2
t · a(n)

l (0)e
i
2
t = eita(n)

r (0)−1a
(n)
l (0) = eitαl(0)

Because

ũ(t, ·) = B−1
( i

2
, αl(t), u(t, ·)

)
(t, ·),
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we know, again by Lemma 4.7 and (3.13), that ũ is given as a Bäcklund

transformation ũ(t, ·) = B
(
u(t, ·), i2 , cle

i
2
tψ

(u(t,·))
l + cre

− i
2
tψ

(u(t,·))
r

)
with cl =

αl(0) and cr = 1. Notice that by(5.60)

cl
cr
∼ 1 (5.61)

still holds in the sense of Lemma 5.5. By Proposition 5.8, for sufficiently
large t > 0:

‖ũ(t, ·)− ei(t+θ̃(t)) sech(·+ x̃0(t))‖L∞(R) . εt−
1
2 ,

where the position and phase shift functions are still characterized by

|clψ
(u(t,·))
l (x̃0(t))| = |crψ(u(t,·))

r (x̃0(t))|

and

θ̃(t) = arg(clψ
(u(t,·))
l (x̃0(t))crψ

(u(t,·))
r (x̃0(t)))

It now remains to prove the boundedness and the convergence (5.3) and
(5.4) for the phase and position shift functions θ̃, x̃0. To do so, first consider
the position shift x̃0(t) for a fixed t > 0. The estimates (5.14) and (5.15)
imply

(1− ε)e
x
2 ≤ |ψl,1(x)| ≤ (1 + ε)e

x
2 (5.62)

and

(1− ε)e−
x
2 ≤ |ψr,2(x)| ≤ (1 + ε)e−

x
2 (5.63)

With this and cl, cr as above, we get that |cl||ψl,1(x̃0(t))| = |cr||ψr,2(x̃0(t))|
implies log

(
|cr|
|cl|

1−ε
1+ε

)
≤ x̃0(t) ≤ log

(
|cl|
|cr|

1+ε
1−ε

)
. By (5.61), |cl||cr| ∼ 1, so |x̃0(t)| .

ε holds.

For θ̃, consider that for all x ∈ R, (5.14) and (5.15) give us:

|ψl,1(x)ψr,2(x)− 1| = |(ψl,1(x)− e
x
2 )ψr,2(x) + e

x
2ψr,2(x)− 1|

≤ ‖(e−
x
2ψl,1(x)− 1)‖L∞(R)‖e

x
2ψr,2(x)‖L∞(R)

+ ‖e
x
2ψr,2(x)− 1‖L∞(R)

≤ (1 + ε)ε+ ε

Moreover, Lemma 5.5 implies that arg(clcr) = arg(clc
−1
r ) . ε. Together,

this gives us arg(clcrψl,1(x)ψr,2(x)) . ε for all x ∈ R, and thus in particular,

|θ̃(t)| . ε.
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For the convergence of position and phase x̃0(t), θ̃(t) as t→∞, we know by
Proposition 5.10 that there are constants Pl(0) and Pr(0) ∈ C such that

|ψl,1(t, x)− e
x
2Pl(0)| . ε2|x|e

x
2 t−1 + ε2e

x
2 log(t)t−1+Cε2 (5.64)

and

|ψr,2(t, x)− e−
x
2Pr(0)| . ε2|x|e−

x
2 t−1 + ε2e−

x
2 log(t)t−1+Cε2 (5.65)

We have, of course,

|Pl(0)− 1| . ε (5.66)

and

|Pr(0)− 1| . ε (5.67)

Define x0 by |cl||e
x0
2 Pl(0)| = |cr||e−

x0
2 Pr(0)|. By Lemma 5.5, (5.66) and

(5.67), we have |x0| . ε. Setting y = x̃0(t) and ỹ = x0 in (5.27) and (5.28),
we obtain

|ψl,1(x̃0(t))|
|ψl,1(x0)|

≥ e
x̃0(t)−x0

2
−2ε2t−1|x0−x̃0(t)| (5.68)

and

|ψr,2(x0)|
|ψr,2(x̃0(t))|

≥ e
x̃0(t)−x0

2
−2ε2t−1|x0−x̃0(t)| (5.69)

Similarly:

|ψl,1(x0)|
|ψl,1(x̃0(t))|

≥ e
x0−x̃0(t)

2
−2ε2t−1|x0−x̃0(t)| (5.70)

and

|ψr,2(x̃0(t))|
|ψr,2(x0)|

≥ e
x0−x̃0(t)

2
−2ε2t−1|x0−x̃0(t)| (5.71)

Multiplying first the inequalities (5.68) and (5.69), letting t→∞, and then
doing the same for (5.70) and (5.71) gives, for sufficiently large t,

|x̃0(t)− x0| − 4ε2t−1|x̃0(t)− x0| .
∣∣∣ log

( |ψl,1(x0)|
e
x0
2 |Pl(0)|

)
− log

(e−x02 |Pr(0)|
|ψr,2(x0)|

)∣∣∣
≤ log

(
1 +
|ψl,1(x0)− e

x0
2 Pl(0)|

e
x0
2 |Pl(0)|

)
+ log

(
1 +
|ψr,2(x0)− e−

x0
2 Pr(0)|

e−
x0
2 |Pr(0)|

)
,

(5.72)
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Because of (5.66), (5.67) and |x0| . ε, the right side of (5.72) is . |ψl,1(x0)−
e
x0
2 Pl(0)| + |ψr,2(x0) − e−

x0
2 Pr(0)|. By (5.64), (5.65) and, again, |x0| . ε,

this implies

|x̃0(t)− x0| . ε2|x0|ex0t−1 + ε2e
x0
2 log(t)t−1+Cε2

. ε3eεt−1 + ε2e
ε
2 log(t)t−1+Cε2

. ε2e
ε
2 log(t)t−1+Cε2 ,

for ε small and t large enough, proving (5.3).

Finally, the estimates (5.14) and (5.15) already establish that ψl,1 and ψr,2
are both Lipschitz continuous. Since we have x̃0(t)→ x0, it follows that

alarψl,1(x̃0(t))ψr,2(x̃0(t))− alarψl,1(x0)ψr,2(x0)→ 0,

where, as before, al = e
it
2 cl and ar = e−

it
2 cr. This yields convergence of the

phase shift θ̃(t) to θ0 = arg(clcrPl(x0)Pr(x0)), with a rate of convergence at
least as good as x0(t), which shows (5.4).
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Chapter 6

The mKdV Case

The spatial part (3.1) of the Lax system for mKdV is the same as for NLS,
and as discussed in Chapter 2, we can use the Bäcklund transformation to
map the zero solution to solitons similarly to the NLS case. It is thus natural
to apply our methods from the previous chapter to the asymptotic stability
of mKdV solitons. The well-posedness of mKdV in H1 follows, e.g., from
Theorem 3 in [7], which will take the place of Theorem 5.1 in the following.
Similarly to Chapter 5, the solutions given by this result trivially have to
coincide with the solutions of Theorem 2.5 whenever its assumptions are
satisfied.

Theorem 6.1. Given a real-valued ũ0 ∈ H1,1(R) with ‖ũ0−sech(x)‖H1,1(R) =
ε for a sufficiently small ε > 0, let ũ = ũ(t, x) : R+×R→ R be a real-valued
solution of the focusing mKdV (1.3) in one dimension with ũ(0, ·) = ũ0(·).
Then we have asymptotic stability in the sense that there is a constant λ ∈ R
such that for large enough t ∈ R+:

‖λũ(λ3t, λ·)− sech(· − x̃0(t))‖L∞(R) . ε|t|−
1
3 , (6.1)

where |λ − 1| . ε and |x̃0(t) − t| . ε for all t > 0. Moreover, the function
x̃0(t) satisfies lim

t→∞
x̃0(t)− t = x0 ∈ R with

|x̃0(t)− t− x0| . ε2t−
5
3 (6.2)

holding.

As with Theorem 5.2, while we only state Theorem 6.1 for the elementary
soliton to keep our argument simple, it generalizes to a similar statement
for the entire mKdV soliton group (2.8) via (2.7).

Proof. The Lax system for mKdV has the same spatial part as the NLS
system, so Lemma 5.3 and Proposition 5.8 still apply. Furthermore, if the
potential is a solution of mKdV, the zero curvature condition (3.4) holds in
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the mKdV case, too, i.e. ∂xB − ∂tA − [A,B] = 0, where A is the matrix
for the spatial part (3.1) and B for the temporal part (3.5) as given in
(3.7). Thus, most arguments from the previous chapter can be repeated in
a similar manner for the present proof, with the following modifications:

• The spatial part (3.1) with the real-valued potential ũ0 has a purely
imaginary eigenvalue ζ close to i

2 by Lemma 4.6. Because at t = 0 the
scaling symmetry for mKdV (2.7) is the same as the scaling symmetry
for the NLS (2.2) at t = 0, we can fix the eigenvalue at ζ = i

2 by
employing the change of variables (5.5) with v = 0 (and, still, k =
2 Im(ζ)).

• For the time evolution (5.21) for the left Jost solution at t = 0, which
is now given by

ψl(t, x) = e−
σ
2
tψl(0, x) +

t∫
0

e−
σ(t−s)

2 (B(s, x) +
σ

2
)ψl(s, x)ds,

which, arguing as in Lemma 5.6 and 5.7, yields ψl(t, x) = e−
t
2ψ

(u(t,x))
l (x)

for the time evolution of the left and ψr(t, x) = e
t
2ψ

(u(t,x))
r (x) for the

right Jost solution. This gives rise to the time evolution of mKdV
solitons (given as sech(x − t) for the elementary soliton) rather than

NLS solitons (given by e
it
2 sech(x)).

What remains to be shown is the convergence of the position function x̃0(t).
Just as we used the asymptotic expression in Theorem 2.3 to this end for
the NLS system, we will use the asymptotics in Theorem 2.5 for mKdV:

By Lemma 5.8, x̃0 = x̃0(t) is characterized as the point where (with cl
and cr as in the previous chapter):

|cl|e−
t
2 |ψ(u(t))

l,1 (x̃0)| = |cr|e
t
2 |ψ(u(t))

r,2 (x̃0)|, (6.3)

We can write1 (compare (4.15) from Remark 4.2 and (4.8), from which the
second equation can be obtained in a similar way to (4.11) and (4.15)):

e
x
2ψ

(u(t))
r,2 (x) =: ϕr(x) = 1−

∞∫
x

∞∫
y

u(y)e−(z−y)u(z)ϕr(z)dzdy

e−
x
2ψ

(u(t))
l,1 (x) =: ϕl(x) = a

( i
2

)
+

∞∫
x

y∫
−∞

u(y)e−(y−z)u(z)ϕl(z)dzdy, (6.4)

1Notice that u = u because we are considering real-valued solutions.
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where a denotes the inverse transmission coefficient. As in (5.62) and (5.63),
ϕl(x) ∈ [(1 − ε)e

x
2 , (1 + ε)e

x
2 ] and ϕr(x) ∈ [(1 − ε)e−

x
2 , (1 + ε)e−

x
2 ], which

entails |x̃0(t)− t| . ε. Hence, for ε small enough, 1
2 x̃0 will be in the decaying

region Ω+
0 of Theorem 2.5, assume e.g. x̃0 ≥ (1 − ε)t. By the same result,

‖t
1
6 (t−

1
3x)u‖L2(Ω+

0 ) . ε, so by Young’s inequality

|ϕr(x̃0)− 1| =
∞∫
x̃0

∞∫
y

u(y)e−(z−y)u(z)ϕr(z)dzdy . ‖u‖2
L2(Ω+

0 )

. ε2(t−
1
6 (t−

1
3 t)−1)2 = ε2t−

5
3

and (remember x̃0 > 0 by assumption):

|ϕl(x)− a
( i

2

)
| =

∣∣∣∣∣
∞∫
x̃0

y∫
−∞

u(y)e−(y−z)u(z)ϕl(z)dzdy

∣∣∣∣∣ ≤
≤

∣∣∣∣∣
∞∫
x̃0

y
2∫

−∞

u(y)e−(y−z)u(z)ϕl(z)dzdy

∣∣∣∣∣+

∣∣∣∣∣
∞∫
x̃0

y∫
y
2

u(y)e−(y−z)u(z)ϕl(z)dzdy

∣∣∣∣∣
. e−ct

∣∣∣∣∣
∞∫
x̃0

y
2∫

−∞

u(y)e−
1
2

(y−z)u(z)ϕl(z)dzdy

∣∣∣∣∣+ ‖u‖2
L2(Ω+

0 )

. e−ct‖u‖2L2(R) + ε2t−
5
3 ,

with c > 0. Thus, in (6.3) we equate

|cl|e−
t
2 e

x̃0
2

∣∣∣a( i
2

)
+O(ε2t−

5
3 )
∣∣∣ = |cr|e

t
2 e−

x̃0
2

∣∣∣1 +O(ε2t−
5
3 )
∣∣∣

From this, we get

x̃0(t)− t→ log

(
|cr|
|cl|

a−1
( i

2

))
= log

(
|cr|
|cl|

T
( i

2

))
=: x0,

and

|x̃0(t)− t− x0| . ε2t−
5
3

as claimed in (6.2).

Unlike in the previous chapter, we did not establish any analogue of
Proposition 5.10 in the above proof. This was not necessary, as the center
of the soliton is near +t and thus in the decaying region. Still, it remains
an interesting question if some kind of convergence of the right and left
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Jost solution does hold as t → ∞. We will show so in the following. As
discussed in Chapter 1, this result might be useful in applying the methods
of this thesis to other special mKdV solutions that can be constructed via
the Bäcklund transformation:

Proposition 6.2. Let u = u(t, x) : R+ × R → C with ‖u(0, ·)‖H1,1(R) ≤ ε,
ε > 0 small, be a real-valued solution of the mKdV (1.3) that satisfies

the assumptions of Theorem 2.5 and let ψ
(u(t,x))
l and ψ

(u(t,·))
r be the cor-

responding right and left Jost solutions for the Lax system with parameter
ζ such that Im(ζ) > 0 (and the usual superscript notation). Let ϕl(t, x) :=

e−iζxψ
(u(t,x))
l (x), and writing the region Ω−0 defined in Theorem 2.5 as Ω−0 =

(−∞,−Kt
1
3 ], K > 0, define

ϕ̃ : R+ × [K
1
2 t−

1
3 ,∞)→ C

ϕ̃(t, x) = ϕl,1(t,−tx2)

Then

‖ϕ̃(t, x)− Pl(x)‖
L∞([K

1
2 t−

1
3 ,∞))

. εt−
1
6 , (6.5)

where (with W as in Theorem 2.5) Pl : [K
1
2 t−

1
3 ,∞)→ R is given by

Pl(x) = exp

(
− 2 Im(ζ)π−1

∞∫
x

|W (y)|2

4|ζ|2 + 4 Re(ζ)y + y2
dy

)
,

as well as

|ϕl,1(t, x)− Pl(t−
1
3 )| . εt−

1
6 (6.6)

for any x /∈ Ω−0 .

For ϕr(t, x) := eiζxψ
u(t,x)
l (x), let

φ̃ : R+ × [K
1
2 t−

1
3 ,∞)→ C

φ̃(t, x) = ϕr,2(t,−tx2)

Then we have

‖φ̃(t, x)− Pr(x)‖
L∞([K

1
2 t−

1
3 ,∞))

. εt−
1
6 (6.7)

with Pr : [K
1
2 t−

1
3 ,∞)→ R given by

Pr(x) = exp

(
− 2 Im(ζ)π−1

x∫
t−

1
3

|W (y)|2

4|ζ|2 + 4 Re(ζ)y + y2
dy

)
,
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as well as

|ϕr,2(t, x)− 1| . ε2t−
1
3 (6.8)

for any x /∈ Ω−0 .

The basic structure of our proof of Proposition 6.2 is as follows:

• It is relatively easy to show (6.8) and that, provided (6.5) holds, (6.6)
is also true. We will do so in Step 1 and Step 2 of the proof.

• In Step 3, we will show (6.5), which requires more work: Similar to the
proof of Proposition 5.10, we will use the asymptotic expression on the
oscillatory region of Theorem 2.5 to give the implicit representation
of ϕ̃ as the sum of a main term (6.12) and an error term which is
under control by Theorem 2.5. We will then further decompose (6.12)
into four summands, which we will dub ”ab-part”, ”ab-part”, ”ab-
part” and ”ab-part” (Step 3a)). As suggested by these names, the
latter two parts are given as complex conjugates of the former, so it
suffices to understand the behaviour of just the ”ab-part” and ”ab-
part”. In Step 3b), we will treat the ”ab-part”, which is closest to the
analysis undertaken in Proposition 5.10: Partial integration under the
assumption of slightly higher regularity suggests convergence to a time-
independent integral as t → ∞, and we will estimate the difference
to this putative limit in the general case. In Step 3c), applying these
methods to the ”ab-part” will give us that it behaves like an oscillatory
integral (6.30), which, as we will show, converges to zero with an
appropriate rate as t→∞. Step 3d) will summarize these results.

• Finally, we will sketch how a similar treatment of φ̃ gives us (6.7) in
Step 4.

Proof. For ease of notation, we will set ρ = 0 and use a ”toy version” of the
regions introduced in Theorem 2.5, where we replace ”.” in the definition

of Ω
{+,0,−}
0 by ≤, e.g. Ω0

0 = {x ∈ R : |x| ≤ t
1
3 }. For the same reason, we

restrict ourselves to ζ = i
2 , the general case is a relatively straightforward

extension (compare Remark 5.11, (6.18) and (6.39)). Our final simplification
will be to modify ε so that C = 1 in Theorem 2.5, i.e. W ∈ H1−ε2,1∩L∞(R)
with ‖W‖

H1−ε2,1∩L∞(R)
. ε.

Step 1: Proof of (6.8)
The estimate (6.8) is the simplest to show: We have

ϕr,2(t, x) := e
x
2ψr,2(t, x) = 1−

∞∫
x

∞∫
y

u(t, y)e−(z−y)u(t, z)ϕr,2(t, z)dzdy,
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and we consider the case that [x,∞) ⊂ Ω0
0 ∪Ω+

0 . Now, by (2.11), (2.12) and
(2.13), Theorem 2.5 entails that

‖u‖L2(Ω+
0 ∪Ω0

0) . εt−
1
6 + ‖Q(t−

1
3 ·)‖L2(Ω0

0)t
− 1

3 + εt−
5
18

+ 2
3
Cε2

. εt−
1
6 + ‖ε‖L2(Ω0

0)t
− 1

3 + εt−
5
18

+ 2
3
Cε2

. εt−
1
6 , (6.9)

where Q is the L∞-function on R specified in the same theorem, and, by
definition, |Ω0

0| ∼ t
1
3 . Young’s inequality yields:

|ϕr,2(t, x)− 1| ≤

∣∣∣∣∣
∫

Ω+
0 ∪Ω0

0

∞∫
y

u(t, y)e−(z−y)u(t, z)ϕr,2(t, z)dzdy

∣∣∣∣∣
. ‖u‖2

L2(Ω+
0 ∪Ω0

0)
. ε2t−

1
3

for any x ∈ Ω0
0 ∪ Ω+

0 .

Step 2: (6.5) implies (6.6)
Before we show the estimate (6.5), we will first establish that (6.6) follows
from (6.5). We consider

ϕl,1(t, x) := e−
x
2ψl,1(t, x) = 1−

x∫
−∞

y∫
−∞

u(t, y)e−(y−z)u(t, z)ϕl,1(t, z)dzdy,

(6.10)

for x /∈ Ω−0 . We need to show that the contribution of Ω0
0 ∪ Ω+

0 × R to the
above integral goes to zero as t → ∞, with a rate of convergence that is
. εt−

1
6 , from which (6.6) will follow. In particular, Ω−0 × Ω−0 is thus only

region to make a nonzero contribution to the limit of ϕl,1 as t→∞. Indeed,
this is an easy implication of (6.9), which gives us∣∣∣∣∣

∫
(−∞,x]∩(Ω0

0∪Ω+
0 )

y∫
−∞

u(t, y)e−(y−z)u(t, z)ϕl,1(t, z)dzdy

∣∣∣∣∣
. ‖u‖L2(Ω0

0∪Ω+
0 )‖u‖L2(R) . ε2t−

1
6

with Young’s inequality, and hence, for

ϕl,1(t, x) = 1−
x∫

−∞

y∫
−∞

u(t, y)e−(y−z)u(t, z)ϕl,1(t, z)dzdy

= ϕl,1(t,−t
1
3 )−

x∫
−t

1
3

y∫
−∞

u(t, y)e−(y−z)u(t, z)ϕl,1(t, z)dzdy
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=: ϕ̃(t, t−
1
3 ) + I(x)

we have |I(x)| . ε2t−
1
6 . If (6.5) holds, this implies (6.6). All other rates

of convergence we are going to establish in this proof are at least as fast as
ε2t−

1
6 .

Step 3: Proof of (6.5)
To show (6.5), consider

ϕ̃(t, x) = ϕl,1(t,−tx2) = 1−
∫

(−∞,−tx2]

∫
(−∞,y]

u(y)e−(y−z)u(z)dzdy, (6.11)

for x ≥ t−
1
3 (which is equivalent to (−∞,−tx2] ∈ Ω−0 ). On Ω−0 × Ω−0 , we

know by (2.14) that the potential is given by:

u(t, x) =π−
1
2 t−

1
3 (t−

1
3 |x|)−

1
4 ·

· Re

(
e

[
iα(t,x)− 3i

4π
|W (t−

1
2 |x|

1
2 )|2 log(t−

1
2 |x|

1
2 )

]
W (t−

1
2 |x|

1
2 )

)
+ E(x),

where α(t, x) = −2
3 t
− 1

2 |x|
3
2 + π

4 , W : R→ C with ‖W‖H1−ε,1∩L∞(R) . ε and
the error term E as in Theorem 2.5.

Step 3a): Decomposition of (6.11)
We first estimate the contribution of all terms containing E to (6.11). By

Theorem 2.5, we have ‖E‖L2(Ω−0 ) . εt−
1
6 , so Young’s inequality gives, for

x∗ ∈ Ω−0
x∗∫
−∞

y∫
−∞

|E(y)|e−(y−z)|u(z)|dzdy +

x∗∫
−∞

y∫
−∞

|u(y)|e−(y−z)|E(z)|dzdy . ε2t−
1
6 ,

as well as
x∗∫
−∞

y∫
−∞

|E(y)|e−(y−z)|E(z)|dzdy . ε2t−
1
3

Thus we are, similarly to the proof of Proposition 5.10, left to consider the
main term given at the end of the following calculation:

π(1− ϕl,1(−tx2)) =

=

∞∫
tx2

∞∫
y

t−
1
2 y−

1
4 z−

1
4 ey−zϕl,1(−z)·

· Re

[
eiα(t,y)− 3i

4π
log(t−

1
2 y

3
2 )|W (t−

1
2 y

1
2 )|W (t−

1
2 y

1
2 )

]
·
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· Re

[
eiα(t,z)− 3i

4π
log(t−

1
2 z

3
2 )|W (t−

1
2 z

1
2 )|W (t−

1
2 z

1
2 )

]
dzdy

+O(ε2t−
1
6 )

≈ 4

∞∫
x

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)ϕ̃(z) Re

[
eiα(ty2)− 3i

4π
log(ty3)|W (y)|2W (y)

]
·

· Re

[
eiα(tz2)− 3i

4π
log(tz3)|W (z)|2W (z)

]
dzdy,

(6.12)

using symmetry in the first equality and then a change of variables. As
complex numbers a and b generally satisfy

Re(ab) =
1

4
(ab+ ab+ ab+ ab), (6.13)

we can split the last integral (6.12) into four parts: An ”ab-part”

∞∫
x

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)ϕ̃(z)eiα(ty2)−iα(tz2)+ 3i
4π

log(tz3)|W (z)|2− 3i
4π

log(ty3)|W (y)|2 ·

·W (y)W (z)dzdy,
(6.14)

an ”ab-part”

∞∫
x

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)ϕ̃(z)eiα(ty2)+iα(tz2)− 3i
4π

log(ty3)|W (y)|2− 3i
4π

log(tz3)|W (z)|2 ·

·W (y)W (z)dzdy,
(6.15)

and an ”ab”- and ”ab”-part of (6.12) defined in the obvious way. It is, of
course, sufficient to understand the behaviour of (6.15) and (6.14), the other
two summands just being the complex conjugates.

We will show that (6.14) (and hence its conjugate) goes to an integral of ϕ̃
multiplied by a time-independent function, while (6.15) (and its conjugate)

goes to 0, all with the rate of convergence appropriately bounded by ε2t−
1
6 .

Step 3b): The ”ab”-part
First, we consider the ”ab”-part (6.14), which we will show goes to

∞∫
x

|W (y)|2

2(1− iy)
ϕ̃(t, y)dy (6.16)
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To this end, we will proceed similarly to the NLS case in the last chapter.
The difference of the ab-part from its putative limit (6.16) is bounded by

∞∫
x

∣∣∣∣∣ |W (y)|2

2(1− iy)
ϕ̃(y)− w̃(t, y)

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)e
2
3
it(z3−y3)w̃(z)ϕ̃(z)dz

∣∣∣∣∣dy
(6.17)

with w̃(t, x) := e−
3i
4π

log(tx3)|W (x)|2W (x). Now note that by partial integra-
tion

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)e
2
3
it(z3−y3)dz =

1

2(1− iy)
+m(t, y) + n(t, y), (6.18)

where

m(t, y) = −1

4

∞∫
y

y
1
2 z−

3
2 e−t(z

2−y2)e
2
3
it(z3−y3)dz (6.19)

and

n(t, y) =

∞∫
y

ity
1
2 z

1
2 (z − y)e−t(z

2−y2)e
2
3
it(z3−y3)dz (6.20)

By definition, we have z ≥ y ≥ t−
1
3 on the domain of integration, and

|z2 − y2| = |(z + y)(z − y)| ≥ 2t−
1
3 |z − y|, which we can utilize to show that

the L∞([t−
1
3 ,∞)) norm of m(t, ·) goes to zero as t→∞ with a rate of t−

1
3 .

For (6.20), consider that, if y ≥ t−
1
3 ,

∞∫
y

ty
1
2 z

1
2 (z − y)e−t(z

2−y2)dz =

∞∫
0

ty
1
2 (z + y)

1
2 ze−t(z+2y)zdz

.

y∫
0

tyze−2tyzdz +

∞∫
y

tz2e−tz
2
dz

≤ t−1

∞∫
0

ze−2zdz + te−
1
2
t
1
3

∞∫
y

z2e−
1
2
tz2dz,

(6.21)

so (6.20) is . t−1.
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Because ‖W‖L2(R) . ε, inserting (6.18) into (6.17), these estimates give

us that the latter differs by O(ε2t−
1
3 ) from

∞∫
x

∣∣∣∣∣w̃(t, y)w̃(t, y)ϕ̃(y)

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)e
2
3
it(z3−y3)dz

− w̃(t, y)

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)e
2
3
it(z3−y3)w̃(t, z)ϕ̃(z)dz

∣∣∣∣∣dy,
(6.22)

(Recall the definition of α here.) To get an appropriate bound for (6.22),
notice that, for z > y > 0, by (4.12) and the chain rule (compare the
estimate of term (III) from (5.50) in the last chapter),

|ϕ̃(t, y)− ϕ̃(t, z)| . ε2t
1
3 z(z − y) (6.23)

Moreover, utilizing the derivatives of the functions z → eiC log(tz3) and
|W (y)| → eiC log(tz3)|W (y)|2 , we get2:

|w̃(t, y)− w̃(t, z)| . log(t)
∣∣∣|W (t, y)|2 − |W (t, z)|2

∣∣∣+ |W (y)−W (z)|

+ log(z)
∣∣∣|W (t, y)|2 − |W (t, z)|2

∣∣∣+ ε2t
1
3 (z − y), (6.24)

for large t (and, again, z > y > 0). By (6.23) and (6.24) (and, of course,
L∞-boundedness of ϕ̃), (6.22) is smaller or equal to a constant times the
sum of

∞∫
x

|W (y)|
∞∫
y

log(t)ty
1
2 z

1
2 e−t(z

2−y2)
∣∣∣|W (y)|2 − |W (z)|2

∣∣∣dzdy (6.25)

and

∞∫
x

|W (y)|
∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)|W (y)−W (z)|dzdy (6.26)

and

∞∫
x

|W (y)|
∞∫
y

log(z)ty
1
2 z

1
2 e−t(z

2−y2)
∣∣∣|W (y)|2 − |W (z)|2

∣∣∣dzdy (6.27)

2E.g., the last summand in (6.24) bounds the contribution of
∣∣∣e 3i

4π
log(ty3)|W (y)|2W (y)−

e
3i
4π

log(tz3)|W (y)|2W (y)
∣∣∣, since

∣∣∣∂z log(tz3)
∣∣∣ =

∣∣∣ 3tz2tz3

∣∣∣ . t
1
3 for z ≥ t−

1
3 .

68



and

ε2
∞∫
x

|W (y)|
∞∫
y

t
4
3 y

1
2 z

1
2 (1 + z)(z − y)e−t(z

2−y2)dzdy (6.28)

Because W is both bounded and Hölder continuous with exponent 1−ε2
2 ,

(6.25) can be estimated by

∞∫
x

|W (y)|
∞∫
y

log(t)ty
1
2 z

1
2 e−t(z

2−y2)|W (y)−W (z)|dzdy

. ε

∞∫
x

|W (y)|
∞∫
y

log(t)ty
1
2 z

1
2 e−t(z

2−y2)|y − z|
1−ε2

2 dzdy,

from which we can proceed with a similar change of variables and calculation
to (6.21):

= ε

∞∫
x

|W (y)|
∞∫

0

log(t)ty
1
2 (z + y)

1
2 e−t(z+2y)zz

1−ε2
2 dzdy

. ε

∞∫
x

|W (y)|
y∫

0

log(t)tye−2tyzz
1−ε2

2 dzdy+

+ ε

∞∫
x

|W (y)|
∞∫
y

ty
1
2 e−tz

2
z

3−ε2
2 dzdy

= ε

∞∫
x

|W (y)|
ty2∫
0

log(t)tye−2z
( z
ty

) 1−ε2
2 1

ty
dzdy+

+ ε

∞∫
x

|W (y)|
∞∫
y

log(t)ty
1
2 e−tz

2
z

3−ε2
2 dzdy

. ε log(t)t−
1−ε2

2 ‖W‖L1(R)+

+ ε log(t)te−
1
3
tx2

∞∫
x

y
1
2 e−

1
3
ty2 |W (y)|

∞∫
y

e−
1
3
tz2z

3−ε2
2 dzdy

. ε log(t)(t−
1−ε2

2 + te−
1
3
t
1
3 )‖W‖L1(R) (6.29)

Notice that ‖W‖L1(R) . ‖W‖H0,1(R) . ε, so the right-hand side of (6.29) is

. ε2 log(t)t−
1−ε2

2 . The integral (6.26) can be shown to be . ε2t−
1−ε2

2 by a
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similar, but simpler calculation. Now,

∞∫
x

log(y)|W (y)|dy =

∞∫
x

log(y)

y
|y||W (y)|dy . ‖yW‖L2(R)

∥∥∥ log(y)

y

∥∥∥
L2(R)

. ‖W‖H0,1(R),

so a minor modification of the argument for (6.25) gives us for (6.27):

∞∫
x

|W (y)|
∞∫
y

log(z)ty
1
2 z

1
2 e−t(z

2−y2)
∣∣∣|W (y)|2 − |W (z)|2

∣∣∣dzdy
. ε

∞∫
x

|W (y)|
∞∫

0

log(z + y)ty
1
2 (z + y)

1
2 e−t(z+2y)zz

1−ε2
2 dzdy

. ε

∞∫
x

|W (y)|
y∫

0

log(y)tye−z
( z

2ty

) 1−ε2
2 1

2ty
dzdy

+ ε

∞∫
x

|W (y)|
∞∫
y

log(z)ty
1
2 e−tz

2
z

3−ε2
2 dzdy

. εt−
1−ε2

2 ‖W‖H0,1(R) + εte−
1
3
t
1
3 ‖W‖L1(R)

Finally, for (6.28),

ε2

∣∣∣∣∣
∞∫
x

|W (y)|
∞∫
y

t
4
3 y

1
2 z

1
2 (1 + z)(z − y)e−t(z

2−y2)dzdy

∣∣∣∣∣ . ε2t−
1
3 ,

also follows by spliting the integral and changing variables as in (6.21) and
(6.29), for we get

∞∫
y

t
4
3 y

1
2 z

1
2 (1 + z)(z − y)e−t(z

2−y2)dz .

t−1y−1y∫
0

t
4
3 y(1 + y)

z

ty

1

ty
e−2zdz+

+

∞∫
y

t
4
3 z2(1 + z)e−tz

2
dz,

which, for y ≥ t−
1
3 , gives the desired estimate in the same way as before.

It follows that (6.22), and hence (6.17) does indeed go to zero with a rate

of convergence . ε2t−
1
3 .
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Step 3c): The ”ab”-part
Let us now deal with the second summand indicated by (6.13), i.e. the
”ab-part” (6.15):

∞∫
x

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)W (y)W (z)ϕ̃(z)

· ei(α(ty2)+α(tz2))− 3i
4π

(log(ty3)|W (y)|2+log(tz3)|W (z)|2)dzdy

We are going to show that the absolute value of (6.15) is . ε2t−
1
3

+2ε2 . In
order to do so, we first show that for large t, this behaves like

∞∫
x

−iϕ̃(y)

2(1 + iy)
W (y)2e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy. (6.30)

We use:

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)e−
2
3
it(y3+z3)+iπ

2 dz =
i

2

1

1 + iy
e−

4
3
ity3 + r(t, y)

where our same considerations for (6.19), (6.20) apply to r. Thus, the
difference of (6.15) to (6.30) (w̃ as in (6.17))∣∣∣∣∣

∞∫
x

−iϕ̃(y)

2(1 + iy)
W (y)2e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy

−
∞∫
x

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)w̃(y)w̃(z)ϕ̃(z)e
2
3
it(y3+z3)dzdy

∣∣∣∣∣
is, except for an error of O(ε2t−

1
3 ), given by∣∣∣∣∣

∞∫
x

∞∫
y

ty
1
2 z

1
2 e−t(z

2−y2)e
2
3
it(y3+z3)w̃(t, y)[ϕ̃(y)w̃(t, y)− ϕ̃(z)w̃(t, z)]dzdy

∣∣∣∣∣
This can be shown to be . ε2t−

1
3 by the same estimates we used for (6.22).

(Notice that these estimates only used the absolute values of the integrands,

and |e
2
3
it(y3+z3)| = |e

2
3
it(y3−z3)| = 1.)

Now, we want to show that (6.30) goes to 0 with a sufficiently fast rate
as t→∞. Let us first work with the stronger assumption W ∈ H1(R) and
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‖W‖H1 . ε, so that partial integration yields:

∞∫
x

−iϕ̃(y)W (y)2

2(1 + iy)
e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy =

=

∞∫
x

ϕ̃(y)W (y)2

2(1 + iy)

∂ye
− 4

3
ity3

4ty2
e−

3i
2π

log(ty3)|W (y)|2dy

=
ϕ̃(x)W (x)2

2(1 + ix)

e−
4
3
itx3

4tx2
e−

3i
2π

log(tx3)|W (x)|2

−
∞∫
x

∂yϕ̃(y)W (y)2

2(1 + iy)

e−
4
3
ity3

4ty2
e−

3i
2π

log(ty3)|W (y)|2dy

−
∞∫
x

ϕ̃(y)W (y)2∂y

[
1

8y2(1 + iy)

]
e−

4
3
ity3

t
e−

3i
2π

log(ty3)|W (y)|2dy

−
∞∫
x

2W (y)∂yW (y)
ϕ̃(y)

2(1 + iy)

e−
4
3
ity3

4ty2
e−

3i
2π

log(ty3)|W (y)|2dy

+

∞∫
x

ϕ̃(y)W (y)2

2(1 + iy)

e−
4
3
ity3

4ty2

3i

2π

3

y
|W (y)|2e−

3i
2π

log(ty3)|W (y)|2dy

+

∞∫
x

ϕ̃(y)W (y)2

2(1 + iy)

e−
4
3
ity3

4ty2
|W (y)|2 3i

π
log(ty3)·

· Re

[
W (y)∂yW (y)

]
e−

3i
2π

log(ty3)|W (y)|2dy (6.31)

Because x ≥ t−
1
3 , ‖W‖L2∩L∞(R) ≤ ε, ‖∂yW (y)‖L2(R) and (as can be seen

from (6.23)) |∂yϕ̃(y)| . ε|y|t−
1
3 , each of these summands can be bounded

by a term that is . ε2t−
1
3 .

Finally, we use an approximation argument to prove that (6.30) is . ε2t−
1
3

+2ε2

in the general case of Theorem 2.5, i.e. just ‖W‖
H1−ε2,1∩L∞(R)

. ε. Re-

call that Hs(Rn) is an algebra with respect to multiplication of functions
whenever s ≥ n

2 , and ‖fg‖Hs . ‖f‖Hs‖g‖Hs in that case. Therefore,

W ∈ H1−ε2(R) implies V := |W |2 ∈ H1−ε(R) for ε small enough, and
‖V ‖

H1−ε2 (R)
. ‖W‖2

H1−ε2 (R)
. Pick a smooth cutoff function φ : R→ R with

72



Fourier transformation φ̂(ξ) = 1 for |ξ| ≤ 1 and φ̂(ξ) = 0 for |ξ| ≥ 2. In that
case, with δ = δ(t) > 0 to be chosen later:∥∥∥F−1

[
φ̂
( ·
δ

)
V̂
]∥∥∥2

H1
∼
∫
R

(1 + |ξ|2)
∣∣∣φ̂(ξ

δ

)∣∣∣2|V̂ (ξ)|2dξ

. (1 + |δ|2)ε
2‖V ‖2

H1−ε2 (R)
(6.32)

and ∥∥∥F−1
[(

1− φ
( ·
δ

))
V̂
]∥∥∥2

H
3
4
∼
∫
R

(1 + |ξ|2)
3
4

∣∣∣1− φ̂(ξ
δ

)∣∣∣2|V̂ (ξ)|2dξ

≤ (1 + |δ|2)−
1
4

+ε2‖V ‖2
H1−ε2 (R)

(6.33)

Thus, we can write |W (y)|2 = G(y)+H(y) withG ∈ C∞0 (R) and itsH1-norm

controlled by (6.32), while H’s H
3
4 -norm and thus its L∞-norm is bounded

by (6.33). We can construct a similar decomposition W 2(y) = M(y)+N(y).
We obtain:
∞∫
x

−iϕ̃(y)

2(1 + iy)
W (y)2e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy

=

∞∫
x

−iϕ̃(y)

2(1 + iy)
M(y)e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy

+

∞∫
x

−iϕ̃(y)

2(1 + iy)
N(y)e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy

=

∞∫
x

−iϕ̃(y)

2(1 + iy)
M(y)e−

4
3
ity3e−

3i
2π

log(ty3)[G(y)+H(y)]dy

+

∞∫
x

−iϕ̃(y)

2(1 + iy)
N(y)e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy

=

∞∫
x

−iϕ̃(y)

2(1 + iy)
M(y)e−

4
3
ity3e−

3i
2π

log(ty3)G(y)dy

+

∞∫
x

−iϕ̃(y)

2(1 + iy)
M(y)e−

4
3
ity3e−

3i
2π

log(ty3)G(y)(e−
3i
2π

log(ty3)H(y) − 1)dy

+

∞∫
x

−iϕ̃(y)

2(1 + iy)
N(y)e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy

=: (A) + (B) + (C) (6.34)
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The obvious modification of the partial integration (6.31) for more regular
W , combined with (6.32), gives us for the first term:

|(A)| . ‖W‖2
H1−ε2 (R)

(1 + δ(t)2)
ε2

2 · t−
1
3 , (6.35)

while the analogue to (6.33) for the function N shows

|(C)| . ‖W‖2
H1−ε2 (R)

(1 + δ(t)2)−
1
8

+ ε2

2 (6.36)

For the second term (B), we have∣∣∣∣∣
∞∫
x

−iϕ̃(y)

2(1 + iy)
M(y)e−

4
3
ity3e−

3i
2π

log(ty3)G(y)(e−
3i
2π

log(ty3)H(y) − 1)dy

∣∣∣∣∣ .

.

∞∫
x

1

|1 + iy|
|M(y)|| log(ty3)H(y)|dy

. log(t)(1 + |δ|2)−
1
8

+ ε2

2

∞∫
x

1

|1 + iy|
|M(y)|dy

+ (1 + |δ|2)−
1
8

+ ε2

2

∞∫
x

log(y)

|1 + iy|
|M(y)|dy

(6.37)

Because M ∈ L2(R) with ‖M‖L2(R) . (1 + δ(t)2)
ε2

2 ‖W‖2
H1−ε2 (R)

(similar to

(6.32)), choosing

δ(t) ∼ t2 (6.38)

with appropriate α > 1
8−ε2 therefore gives us:

|(B)| . ‖W‖2
H1−ε2 (R)

log(t)t−
1
2

+4ε2 ,

while (6.35) and (6.36) become:

|(A)| . ‖W‖2
H1−ε2 (R)

t−
1
3

+2ε2

and

|(C)| . ‖W‖2
H1−ε2 (R)

t−
1
2

+2ε2
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which, if ε is small enough, shows that (6.34) is . ε2t−
1
3

+2ε.

Step 3d): Result
We can now apply our results for (6.14) and (6.15) to their complex conju-
gates ”ab”-part and ”ab”-part of (6.13). Putting all of this together gives
us, with (6.16) and

1

2(1 + iy)
+

1

2(1− iy)
=

1

1 + y2
(6.39)

that

ϕ̃(t, x) = 1−
∞∫

max{t−
1
3 ,x}

|W (y)|2

1 + y2
ϕ̃(t, y)dy +R(t, x)

where |R(t, x)| . ε2t−
1
6 . Arguing as we did in the previous chapter after

(5.48), (6.5) follows.

Step 4: Sketch of proof of (6.7)
For the proof of (6.7), we can repeat many arguments from the proof of
(6.5). For the right Jost solution, we consider

φ̃(t, x) = ϕ
(r)
2 (t,−tx2) = 1 +

∞∫
−tx2

∞∫
y

u(t, y)e−(z−y)u(t, z)ϕ
(r)
2 (t, z)dzdy

for x ∈ [t−
1
3 ,∞) (and hence −tx2 ∈ Ω−0 by our setting C = 1). We can

control
∞∫

−t
1
3

∞∫
y

u(t, y)e−(z−y)u(t, z)ϕr,2(t, z)dzdy

and
∞∫

−tx2

∞∫
−t

1
3

u(t, y)e−(z−y)u(t, z)ϕr,2(t, z)dzdy

by ε2t−
1
6 because of (6.9) and Young’s inequality. Similarly as in (6.12), we

obtain

φ̃(t, x) = O(ε2t−
1
6 )+

+ 4π−1

x∫
t−

1
3

y∫
t−

1
3

ty
1
2 z

1
2 e−t(z

2−y2)ϕ̃(z) Re

[
eiα(ty2)− 3i

4π
log(ty3)|W (y)|2W (y)

]
·
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· Re

[
eiα(tz2)− 3i

4π
log(tz3)|W (z)|2W (z)

]
dzdy,

(6.40)

with α as in Theorem 2.5. We can, again, use (6.13) to decompose the last
integral into four summands. The analogue of the ”ab”-part (6.14) is

x∫
t−

1
3

y∫
t−

1
3

ty
1
2 z

1
2 et(z

2−y2)e
2
3
it(z3−y3)w̃(t, y)w̃(z)ϕ̃(z)dzdy (6.41)

with w̃(t, x) = e−
3i
4π

log(tx3)|W (x)|2W (x), as in Step 3. Partial integration
gives

(1 + iy)

y∫
t−

1
3

ty
1
2 z

1
2 et(z

2−y2)e
2
3
it(z3−y3)dz

=
1

2
− 1

2
y

1
2 t

1
6 et(t

− 2
3−y2)e

2
3
it(t−1−y3) + m̃(t, y) + ñ(t, y) (6.42)

with

m̃(t, y) =
1

4

y∫
t−

1
3

y
1
2 z−

3
2 et(z

2−y2)e
2
3
it(z3−y3)dz (6.43)

and

ñ(t, y) =

y∫
t−

1
3

ity
1
2 z

1
2 (y − z)et(z2−y2)e

2
3
it(z3−y3)dz, (6.44)

Equation (6.42) plays the same role here as (6.18) did for the left Jost
solution, and (6.43) and (6.44) can be bounded in the same way as (6.19)
and (6.20). Moreover

x∫
t−

1
3

∣∣∣1
2
y

1
2 t

1
6 et(t

− 2
3−y2)e

2
3
it(t−1−y3)W (y)2

∣∣∣dy ≤ 1

2

x∫
t−

1
3

|y|
1
2 t

1
6 et

2
3 (t−

1
3−y)|W (y)|2dy

≤ εt
1
6 ‖e−t

2
3 ·‖L1(R+)‖W (y)‖H0,1(R)

≤ ε2t−
1
2

So we get, similarly to our treatment of (6.17)

x∫
t−

1
3

∣∣∣∣∣ |W (y)|2

2(1 + iy)
ϕ̃(y)− w̃(t, y)

y∫
t−

1
3

ty
1
2 z

1
2 et(z

2−y2)e
2
3
it(z3−y3)w̃(z)ϕ̃(z)dz

∣∣∣∣∣dy

76



=

x∫
t−

1
3

∣∣∣∣∣w̃(t, y)w̃(t, y)ϕ̃(y)

y∫
t−

1
3

ty
1
2 z

1
2 et(z

2−y2)e
2
3
it(z3−y3)dz

− w̃(t, y)

y∫
t−

1
3

ty
1
2 z

1
2 et(z

2−y2)e
2
3
it(z3−y3)w̃(t, z)ϕ̃(z)dz

∣∣∣∣∣dy
+O(ε2t−

1
3 ),

on which similar estimates as for (6.22) can be used to show that (6.41)
converges at the desired rate. E.g., in place of (6.25), we get

x∫
t−

1
3

|W (y)|
y∫

t−
1
3

log(t)ty
1
2 z

1
2 e−t(z

2−y2)
∣∣∣|W (y)|2 − |W (z)|2

∣∣∣dzdy
.

x∫
t−

1
3

|W (y)|
y∫

t−
1
3

log(t)ty
1
2 z

1
2 e−t(z

2−y2)|y − z|
1−ε
2 dzdy

=

x∫
t−

1
3

|W (y)|
y−t−

1
3∫

0

t log(t)y
1
2 (y − z)

1
2 e−t(2y−z)zz

1−ε
2 dzdy

≤
x∫

t−
1
3

|W (y)|
y−t−

1
3∫

0

t log(t)ye−tyzz
1−ε
2 dzdy,

and this is . ε2 log(t)t−
1−ε
2 by the calculation (6.29). Terms (6.26), (6.27)

and (6.28) can be bounded in a very similar manner. The analogue of the
”ab-part” can also be treated similarly as we did (6.15) in Step 3b). In
particular, notice that in place of (6.30), we get

x∫
t−

1
3

−iϕ̃(y)

2(1 + iy)
W (y)2e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy

=

∞∫
t−

1
3

−iϕ̃(y)

2(1 + iy)
W (y)2e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy−

−
∞∫
x

−iϕ̃(y)

2(1 + iy)
W (y)2e−

4
3
ity3e−

3i
2π

log(ty3)|W (y)|2dy,

so our estimates for (6.30) also cover this case.
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