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II. Abstract 

Water is the key to sustainable development, especially in sub-Saharan Africa (SSA), where a large 

part of the population lives on subsistence farming. Reliable knowledge of available water resources 

therefore is an indispensable component of sustainable water resource management. An important tool 

for the management of water resources is hydrological modeling, which, depending on the model type, 

is capable to quantify water quantities spatially explicit and to predict water availability under changing 

conditions. The bottleneck for these simulations often is the lack of data availability, especially in sub-

Saharan Africa. In recent decades, however, satellite data sources have been developed for hydrological 

modelling on different scales. The aim of this work is to develop a modeling framework for a meso-scale 

catchment area in Tanzania based on locally collected data and freely available satellite data sets. This 

model system should serve to better understand the hydrological processes in the catchment area with 

an emphasis on wetland-catchment interactions. At the same time the model should be able to estimate 

the availability of water resources under changing environmental conditions for the catchment area.  

The Soil and Water Assessment Tool (SWAT) was applied to the Kilombero Catchment area in 

Tanzania, which, like many other East African catchments, is characterized by a general data shortage. 

Due to the lack of current discharge data, the model was calibrated for the period 1958-1965 (R² = 0.86, 

NSE = 0.85, KGE = 0.93) and validated from 1966-1970 (R² = 0.80, NSE = 0.80, KGE = 0.89) with the 

sequential uncertainty fitting algorithm (SUFI-2) at a daily resolution. The model results show the water-

related dependency of the floodplain in the center of the catchment area on the base flow of the 

surrounding highland forests and savannas, especially in the dry season.  

In addition, this study investigates the influence of climate change on water resources in the 

catchment area. To account for these changes, regional climate models of the Coordinated Regional 

Downscaling Experiment (CORDEX) Africa project were applied to investigate changes in climate patterns 

up to 2060 according to the RCP4.5 (representative concentration paths) and RCP8.5 scenarios. The 

SWAT model was used to investigate the impacts of climate change on water resources under different 

scenarios and model combinations. The climate models show a clear temperature increase, especially in 

the hot dry season, which further reinforces the pronounced differences between the dry and rainy 

seasons. This, together with changing precipitation patterns, leads to an intensification of hydrological 

extremes in the catchment area, e.g., more pronounced flooding in the rainy season and decreasing low 

flows in the dry season. Overall, the annual average values of water yield and surface runoff within the 

simulations increase by up to 61.6% and 67.8%, respectively, by 2060 compared to the historical 

simulations. The changes of the hydrological processes show a heterogeneous spatial-temporal pattern 

within the catchment area. 

In many parts of sub-Saharan Africa and also in the study area, natural systems are being converted 

into agricultural land in order to feed the growing population. Therefore, this study additionally 

examines historical land use and land cover patterns as well as potential future land use and land cover 

patterns and their impacts on water resources in the catchment area. The Land Change Modeler (LCM) is 

used for the analysis and projection of land use patterns until 2030 and the SWAT model is then utilized 

to simulate the water balance under changing conditions. The results show that the low flow in the land 

use/land cover scenarios decreases by 6-8%, while the high flow in the combined land use/land cover 

scenarios increases by up to 84% considering also the climate scenarios. The impacts of climate change 

are therefore more pronounced than the impacts of changing land use/land cover patterns, but also 
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contain higher uncertainties and show different patterns in the climate model combinations applied in 

this study.  

Within this study, a methodological approach was developed to quantify the impacts of land 

use/land cover patterns and climate change for data-scarce regions. The results and the methodology 

from this study thus contribute to the sustainable management of the investigated catchment area, as 

they show the effects of environmental changes on hydrological extremes (low flows and high flows) and 

additionally identify particularly sensitive subcatchments that are of essential importance for the 

preservation of the social-ecological system. 
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III. Zusammenfassung 

Wasser ist der Schlüssel für eine nachhaltige Entwicklung. Das gilt insbesondere für Sub-Sahara 

Afrika (SSA), wo ein Großteil der Bevölkerung von der Subsistenzlandwirtschaft lebt. Verlässliche 

Kenntnisse zu verfügbaren Wasserressourcen sind daher unverzichtbarer Bestandteil eines nachhaltigen 

Wasserressourcenmanagements. Ein wichtiges Werkzeug zum Management von Wasserressourcen stellt 

die hydrologische Modellierung dar, welche, je nach Modelltyp, in der Lage ist, Wassermengen räumlich 

explizit zu quantifizieren und Prognosen für die Wasserverfügbarkeit unter sich verändernden 

Rahmenbedingungen zu stellen. Problematisch für die Modellierung ist jedoch die mangelhafte 

Verfügbarkeit von Daten, insbesondere in Sub-Sahara Afrika. In den letzten Jahrzenten sind jedoch 

vermehrt Datenquellen auf Satellitenbasis für die hydrologische Modellierung auf unterschiedlichen 

Skalen erschlossen worden. Ziel dieser Arbeit ist es, auf Basis von lokal erhobenen Daten und frei 

verfügbaren Datensätzen auf Satellitenbasis ein Modellsystem für ein mesoskaliges Einzugsgebiet in 

Tansania zu erstellen. Dieses Modellsystem soll dazu dienen, die hydrologischen Prozesse im 

Einzugsgebiet besser zu verstehen. Der Fokus liegt dabei insbesondere in der hydrologischen Interaktion 

der Überschwemmungsebene und dem umliegenden Hochland, die vom Großteil der Bevölkerung 

genutzt werden. Darüber hinaus soll die Verfügbarkeit von Wasserressourcen unter sich verändernden 

Umweltbedingungen für das Einzugsgebiet bewertet werden.  

Hierzu wurde das „Soil and Water Assessment Tool“ (SWAT) auf das Kilombero-Einzugsgebiet in 

Tansania angewendet, das wie viele andere ostafrikanische Einzugsgebiete durch eine allgemeine 

Datenknappheit gekennzeichnet ist. Aufgrund des Fehlens aktueller Abflussdaten wurde das Modell für 

den Zeitraum von 1958-1965 (R² = 0,86, NSE = 0,85, KGE = 0,93) kalibriert und von 1966-1970 (R² = 0,80, 

NSE = 0,80, KGE = 0,89) mit dem „sequential uncertainty fitting algorithm“ (SUFI-2) in einer täglichen 

Auflösung validiert. Die Modellergebnisse zeigen die hydrologische Abhängigkeit der 

Überschwemmungsebene im Zentrum des Einzugsgebietes vom Basisabfluss der umliegenden 

Hochlandwälder und Savannen, insbesondere in der Trockenzeit.  

Zusätzlich untersucht diese Studie den Einfluss des Klimawandels auf die Wasserressourcen im 

Einzugsgebiet. Um diesen Veränderungen Rechnung zu tragen, wurden regionale Klimamodelle des 

Coordinated Regional Downscaling Experiment (CORDEX) Africa Projekts angewandt, um Veränderungen 

der Klimamuster bis 2060 gemäß RCP4.5 (repräsentative Konzentrationswege) und RCP8.5 zu 

untersuchen. Das SWAT Modell wurde eingesetzt, um die Auswirkungen des Klimawandels auf die 

Wasserressourcen unter verschiedenen Szenarien und Klimamodellkombinationen zu untersuchen. Die 

Modellergebnisse zeigen einen klaren Temperaturanstieg, insbesondere in der heißen Trockenzeit, was 

die ausgeprägten Unterschiede der Trocken- und Regenzeit zusätzlich verstärkt. Dies führt, zusammen 

mit sich verändernden Niederschlagsmustern, zu einer Verschärfung hydrologischer Extreme im 

Einzugsgebiet, wie z.B. stärker ausgeprägten Überschwemmungen in der Regenzeit und abnehmenden 

Niedrigwassermengen in der Trockenzeit. Insgesamt erhöhen sich die jährlichen Durchschnittswerte des 

Gesamtabflusses und des Oberflächenabflusses innerhalb der Simulationen bis 2060 im Vergleich zu den 

historischen Simulationen um bis zu 61,6% bzw. 67,8%. Die Veränderungen der hydrologischen Prozesse 

zeigen insgesamt ein heterogenes räumlich-zeitliches Muster innerhalb des Einzugsgebietes auf.  

Eine weitere wichtige Randbedingung für die Simulation von Wasserressourcen sind Landnutzungs-

/Landbedeckungsmuster, die sich ebenfalls verändern. In vielen Teilen Sub-Sahara Afrikas und auch im 

Untersuchungsgebiet werden natürliche Systeme in landwirtschaftliche Flächen umgewandelt, um die 
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wachsende Bevölkerung zu ernähren. Diese Studie untersucht deshalb zusätzlich historische 

Landnutzungs-/Landbedeckungsmuster sowie potenzielle zukünftige Landnutzungs-

/Landbedeckungsmuster und deren Auswirkungen auf die Wasserressourcen im Einzugsgebiet. Der Land 

Change Modeler (LCM) wird zur Analyse und Projektion von Landnutzungs-/Landbedeckungsmustern bis 

2030 genutzt und das SWAT Modell anschließend zur Simulation des Wasserhaushalts unter den sich 

verändernden Bedingungen eingesetzt. Die Ergebnisse zeigen, dass die Niedrigabflüsse in den 

Landnutzungs-/Landbedeckungsmuster Szenarien um 6-8% zurückgehen, während die 

Hochwasserabflüsse in den kombinierten Landnutzungs-/Landbedeckungsmuster unter Einbezug der 

Klimaszenarien um bis zu 84% zunehmen. Die Auswirkungen des Klimawandels sind daher stärker 

ausgeprägt als die Auswirkungen von sich verändernden Landnutzungs-/Landbedeckungsmustern, 

enthalten aber auch höhere Unsicherheiten und zeigen, je nach Klimamodellkombination, auch 

unterschiedliche Muster bzgl. Niederschlag und resultierendem Abfluss.  

Innerhalb dieser Studie wurde eine Methodik zur Quantifizierung der Auswirkungen von sich 

ändernden Landnutzungs-/Landbedeckungsmustern, sowie des Klimawandels für datenarme Regionen 

entwickelt. Die Ergebnisse und die entwickelte methodische Vorgehensweise tragen damit zum 

nachhaltigen Management des untersuchten Einzugsgebiets bei, da sie die Auswirkungen von 

Umweltveränderungen auf hydrologische Extreme (Niedrigwasser und Überschwemmungen) aufzeigen. 

Zusätzlich können besonders sensitive Teileinzugsgebiete identifiziert werden, die für die Erhaltung des 

sozio-ökologischen Systems von essentieller Bedeutung sind.  
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1. General introduction  

1.1. Problem statement 

Water is a key resource to sustain life and ensure food security through agricultural production. 

However, water security is endangered, especially in less wealthy regions like Sub-Saharan Africa (SSA) 

(Vörösmarty et al., 2010) water scarcity is becoming increasingly important due to global change aspects 

like climate change, demographic growth accompanied by land use and land cover change (LULCC) and 

with agriculture as the largest water consumer accounting for 69% of the global annual water withdrawal 

(WWAP (UNESCO World Water Assessment Programme), 2019). Access to water is of utmost importance 

to people in SSA to sustain their livelihood and with increasing population pressure and the need for 

agricultural land, agricultural systems in East Africa are shifting from traditional upland cultivation into 

wetlands (Dixon and Wood, 2003). Wetlands are characterized by sufficient soil water availability and 

numerous ecosystem services throughout the year (Dixon and Wood, 2003; Heinkel, 2018; Rebelo et al., 

2010). 

The Ramsar secretariat (Ramsar Convention Secretariat, 2016) defines wetlands as “areas of marsh, 

fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or 

flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not 

exceed six metres”. Beside the human-made wetlands, five major wetland types are generally recognized 

(Ramsar Convention Secretariat, 2016): 

1. marine (coastal wetlands including coastal lagoons, rocky shores, seagrass beds and coral 

reefs);  

2. estuarine (including deltas, tidal marshes and mudflats, and mangrove swamps); 

3. lacustrine (wetlands associated with lakes); 

4. riverine (wetlands along rivers and streams); 

5. palustrine (meaning “marshy” – marshes, swamps and bogs).  

Mitsch and Gosselink (Mitsch and Gosselink, 2007) argue that there are several definitions of 

wetlands, but depending on the subject of interest, the definitions differ. This lack of a general definition 

is also attributed to the fact that wetlands have been drained until the 19th century and defining 

wetlands was of no particular interest. In the mid of the 20th century the term “wetland” became more 

common and in the late 1970s wetlands were being recognized for their ecological functions and the 

need for a proper definition became apparent. For this study the definition of the U.S. Army Corps of 

Engineers Definition is being used that fits well for ecological studies (Mitsch and Gosselink, 2007):  

“The term wetlands means those areas that are inundated or saturated by surface water or 

groundwater at a frequency and duration sufficient to support, and that under normal circumstances do 

support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands 

generally include swamps, marshes, bogs, and similar areas.” 

East Africa inhibits a huge amount of wetland types and an area of about 18 Mio ha are defined as 

wetlands (Leemhuis et al., 2016). However, the definition, identification and delineation of wetlands is 

still part of current research (Amler et al., 2015; Muro, 2019; Yeo et al., 2019a). Nevertheless, remote 

sensing techniques and new satellites allow for more detailed and consistent analysis with regard to the 
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designation of wetland areas (Muro, 2019). However, the various types of wetlands and the manifold 

definitions still allow for debates concerning the extent and distribution of wetlands. One aspect 

highlighted by Mitsch and Gosselink (Mitsch and Gosselink, 2007) concerning wetlands, is the wetland´s 

interaction with its surrounding catchment on the one hand and the wetland´s influence on downstream 

riparians as sources, sinks and transfomers of nutrients on the other hand. Consequently, wetlands are in 

a particular position at the interface of terrestrial systems such as upland forests or grasslands and the 

subsequent aquatic systems such as deep lakes or oceans. Still, wetlands are different to both of these 

systems and at the same time highly depend on both (Mitsch and Gosselink, 2007). This transmitting 

function of wetlands in between headwater catchments and aquatic systems such as oceans at the very 

end of the cascading system is of high importance due to the several ecosystem services that wetlands 

provide. For example, upland agriculture might affect water quality adversely, while wetlands might act 

as a buffer zone and increase water quality for downstream riparians (McCartney et al., 2010; Ramsar 

Convention Secretariat, 2016). Several studies on the various ecosystem services of wetlands on adjacent 

ecosystems exist (Heinkel, 2018; McCartney et al., 2010; Rebelo et al., 2010) and therefore, the 

knowledge of lateral and longitudinal interactions of wetlands with their surrounding ecosystems or the 

entire catchment is of essential importance to preserve the functioning of the system (Lee et al., 2019; 

Reis et al., 2019; Yeo et al., 2019b). Wetland systems are as any other human or natural system, moving 

through cycles of steady states, destabilization phases, reorganization phases and new phases of 

stability. The ability of the wetland system to provide its services relies on its state or health (Beuel et al., 

2016; Kotze et al., 2012) and this is depending on the vulnerability of the system and the susceptibility to 

external forces like climate change or anthropogenic interventions as e.g., LULCC (Elmqvist et al., 2003). 

This study deals with the Kilombero Catchment in Tanzania that contains a floodplain wetland 

embedded in a mountainous catchment. The Kilombero River forms a floodplain wetland and is the most 

important tributary for the Rufiji River, which is the biggest river system in Tanzania (Wilson et al., 2017). 

The Kilombero Catchment contains on the one hand a unique ecosystem with a high biodiversity and 

several endemic species (Andrew et al., 2015, 2012; Dinesen, 2016; Ntongani et al., 2013) and on the 

other hand it is progressively being utilized for agricultural production and envisioned as part of the 

Southern Agricultural Growth Corridor of Tanzania (SAGCOT) (Environmental Resources Management, 

2013). Hence, the reconciliation of environmental protection and food production is at the core for a 

sustainable development of the area, while “water resource management is seen as integral to poverty 

reduction and food security” for the Kilombero Catchment (Koutsouris et al., 2016). However, several 

interests are competing for natural resources such as water because the development of the catchment 

is highly dynamic and several internal and external factors are influencing the recent development of the 

local socio-ecological system. On the one hand migration into the valley, especially of pastoralists, in 

combination with investments of foreign investors as well as investors from the big cities of Tanzania 

e.g., Dar es Salaam and Morogoro push local farmers either into the wetland or towards the upland 

forest systems (Daconto et al., 2018; Nindi et al., 2014). Additionally, farming practices are changing with 

the introduction of new rice varieties (e.g. TXD 306) and the increasing utilization of herbicides, 

pesticides, and machinery like tractors. Furthermore, industrialization in the country is being pushed and 

several hydropower dams are planned in the catchment (WREM International Inc., 2015). On the other 

hand, several protected areas do exist in the catchment and national and international organizations 
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advocate to preserve these ecosystems either due to their intrinsic value, the ecosystem services they 

provide or for potential tourism developments (Daconto et al., 2018; Dinesen, 2016; Kolding et al., 2017). 

Potential risks of mismanagement in reconciling the economic development and environmental 

integrity are visible in the neighboring catchment of the Great Ruaha River, where the Great Ruaha has 

been drying up since 1993 with severe impacts on wildlife, tourism, irrigation and electricity generation 

(Economic Research Bureau University of Dar es Salaam, 2006). One key aspect for a sustainable 

management of water resources is a reliable data source, but unfortunately “some of the most valued 

natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete 

historical climate and runoff records“ (Mango et al., 2011). This is also true for the Kilombero Catchment, 

but despite this lack of measured data, these regions are commonly the regions that are most in need of 

adequate scientific guidance for decision makers and stakeholders in water resource management 

(Mango et al., 2011). On a larger scale it was already shown by Poméon (Poméon, 2018) that a 

combination of freely available products works well to account for water resources. However, some 

products that were used by Poméon do not work properly on a mesoscale like the Kilombero Catchment 

and do not work on management relevant scales for the Kilombero Catchment (e.g., data from the 

Gravity Recovery and Climate Experiment (GRACE) (Wahr et al., 1998)). Yet, a sound modelling 

framework for water resources is needed to understand and maintain the water-related processes 

within the catchment and to adequately support water resource managers with quantitative data. 

Additionally, this framework should also allow to incorporate scenario planning with regard to important 

development processes in the catchment like LULCC or climate change to account for changing 

conditions. 

 

1.2. Research questions 

The problem statement above raises several research questions that are addressed in this thesis: 

(i) How do the wetland and the catchment interact and what are the major 

hydrological processes? 

The first question deals with the overall hydrological understanding of the catchment. Until this 

study, there was no distributed hydrological model of the catchment available, although the hydrology is 

of major concern to the development of the region, due to the agricultural suitability of the catchment 

and the governmental growth corridor plans for the Kilombero Valley. Data scarcity in the region, 

especially with regard to hydrological data, complicates the task to setup a physically-based hydrological 

model. Nevertheless, a model setup based on freely available geodata and historic discharge and 

precipitation data allowed to simulate the historical hydrological situation with good results and remote 

sensing methods enabled the establishment of a time series for LULCC from the 1970s until 2014. 

Chapter 4 provides a detailed overview on the hydrology of the catchment as well as the impact of 

historic LULCC. 
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(ii) What are potential impacts of climate change on the hydrology of the catchment? 

The second question addresses the issue of climate change and its impact on the hydrology of the 

catchment. While temperatures are consistently increasing according to climate models for the region, 

the issue of rainfall variability is much more complex due to the manifold climatic driving forces and the 

topographical complexity of the region. Therefore, an ensemble of six bias-corrected RCM models forced 

by GCM models were used in combination with two RCP scenarios to account for the uncertainty with 

regard to climate change. Furthermore, changes in rainfall patterns do not linearly correlate with 

discharge, as the water interacts with the biosphere and pedosphere. Consequently, water can be 

(temporarily) stored within the catchment’s soils, vegetation or aquifers and contribute either as surface 

runoff, lateral flow or baseflow to the discharge of the catchment. The SWAT model was utilized with all 

GCM-RCM models and the RCP scenarios to estimate changes in the hydrology driven by climate change. 

Additionally, extreme flow situations were analyzed to account for changes in hydrological risks like 

floods and droughts. Chapter 5 addresses these issues in detail. 

(iii) What is the impact of LULCC on the hydrology of the catchment and what are 

potential future impacts and how do they interact with climate change? 

The third question focusses on the issue of LULCC. Nowadays the focus is on climate change impacts, 

while many studies neglect the impact of LULCC. LULCC have significant impacts on water resources and 

beside that, several ecosystem services might be lost in trade-offs to food production. Historical LULCC 

were analyzed and their impact on water resources on several spatio-temporal scales was assessed in 

order to identify hot spots of change and allow local water managers to prioritize their available 

resources. Potential future LULCC until 2030 were modeled to assist a wise planning for water 

management. All these changes were modeled for classifications with no specific categorization of 

cropland and additionally for a classification with rice as subdivision in order to assess the impact of rice 

intensification, due to the importance of rice cultivation for the catchment. For these analyses the 

impact of climate change was also considered to estimate the combined impact of climate change and 

LULCC on the catchment as a whole, but also for specific areas on subcatchment level. 

 

1.3. Objectives of the study 

The overall objective of this study is to acquire a decent understanding of the hydrology of this highly 

dynamic catchment, which is target to agricultural intensification plans on the one hand and a hot spot 

of biodiversity on the other hand (Ntongani et al., 2013; Wilson et al., 2017) and additionally livelihood 

for many smallholder farmers. Furthermore, the study explores the impact of global change scenarios, 

namely LULCC and climate change, on the hydrology of the catchment in order to ensure a sustainable 

use of the natural resources, but also to contribute to food security of the region by investigating the 

impact of agricultural development on water resources. Specifically, the objectives of this study are: 
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(i) Set up a distributed hydrological model suitable to simulate impacts of LULCC and 

climate change on the catchment’s hydrology; 

(ii) Assess the possible climatic future of the Kilombero Catchment; 

(iii) Estimate the impact of these climatic changes on hydrology by analyzing temporal 

and spatial changes in the water balance; 

(iv) Analyze the impact of climate change on hydrological risks; 

(v) Assess LULCC in the Kilombero Catchment since the 1970s; 

(vi) Analyze the impacts of LULCC on water balance components in the catchment; 

(vii) Develop LULC scenarios for the catchment; 

(viii) Analyze the impact of the different LULC scenarios on water resources at various 

temporal and spatial scales and on low flows and high flows;  

(ix) Assess the combined impact of LULCC and climate change on water resources. 

1.4. Research framework 

This study was conducted within the framework of the “GlobE – Wetlands in East Africa” (FKZ: 

031A250A‐H) project. The GlobE initiative was launched by the Federal Ministry of Education and 

Research of Germany (BMBF) and comprised several research initiatives with interdisciplinary 

approaches to tackle the central goal of the National Research Strategy BioEconomy 2030 (Federal 

Ministry of Education and Research (BMBF), 2011), which is to secure the global food supply. To achieve 

this goal, all GlobE initiatives did research on the African continent to investigate and support sustainable 

agricultural practices and economies with a consortium of African and German research partners.  

The GlobE – Wetlands project focused on wetland systems in East Africa (Kenya, Rwanda, Tanzania, 

Uganda) and explored the possibilities to reconcile future food production with environmental 

protection. Therefore, the overall GlobE – Wetlands in East Africa project was organized in five clusters 

(Figure 1.1). These clusters focused on the understanding of the wetland system (Cluster A), the 

exploration of management options (Cluster B) and the integration of several disciplines and the 

development of scenarios (Cluster C). Additional clusters focused on the extrapolation of the findings on 

a broader, regional scale to formulate recommendations from the findings. One overarching goal was 

capacity building within the four researched countries in order to consolidate the gathered knowledge 

on-site. This study is located in Cluster A, as it is trying to understand the hydrological processes of the 

wetland and the interaction of the wetland with its surrounding catchment. However, scenarios with 

regard to (LULCC) and climate change are a fundamental part of this study as well. 

Within the GlobE project this study is closely connected to the work of Dr. Sonja Burghof (Burghof, 

2017) and Dr. Geofrey Gabiri (Gabiri, 2018), who were PhD students in the project and analyzed the 

hydrogeology and hydrology on the local scale near the town of Ifakara in Tanzania (Figure 2.1). 

Furthermore, the work of the remote sensing group and the meteorology group of the project were 

essential for the baseline data of the scenario development regarding LULCC and climate change and the 

interdisciplinary work with regard to scenario analysis. 
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Figure 1.1 Conceptual overview on the five research clusters of the “GlobE – Wetlands in East Africa” project 

and their connections (GlobE Wetlands, 2013). 

 

1.5. Structure of the thesis 

This doctoral thesis is a cumulative dissertation and consists in total of 9 chapters. The first chapter is 

a general introduction to the thesis followed by a description of the study area focusing on the physical 

attributes and complemented by the socioeconomic background. The third chapter provides an overview 

on the model routines of the SWAT model and explains why it was chosen. The chapters 4 and 5 were 

both published in the journal “Water”, while chapter 6 is published in “Sustainability”. Table 1.1 provides 

a brief overview of the content of the three articles from chapter 4, 5 and 6. All articles were formatted 

to fit the style of this thesis. A general conclusion on the findings of the articles and this thesis is given in 

chapter 7, followed by references (chapter 8) and a publication list (chapter 9) of the author. 
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Table 1.1 Summary of the key points of the three articles within this thesis 

Chapter Publication Key points Main contribution 

4 

Näschen, K., Diekkrüger, B., 

Leemhuis, C., Steinbach, S., 

Seregina, L., Thonfeld, F., Linden, 

R. van der, 2018. Hydrological 

Modeling in Data-Scarce 

Catchments: The Kilombero 

Floodplain in Tanzania. Water 10, 

599. doi:10.3390/W10050599 

 Setup of a SWAT model 

 Assessment of LULCC from 1970s to 

2014 

 Analysis of the impact of historic 

LULCC on water resources 

 Scale dependency of water 

resources in the catchment was 

shown 

 Example how to utilize a mixture of 

local and freely available global 

data in a data scarce catchment in 

SSA 

Improved 

understanding and 

(semi-) distributed 

quantification of the 

hydrological 

processes in the 

catchment 

5 

Näschen, K., Diekkrüger, B., 

Leemhuis, C., Seregina, L.S., 

Linden, R. van der, 2019. Impact 

of Climate Change on Water 

Resources in the Kilombero 

Catchment in Tanzania. Water 11, 

859. doi:10.3390/W11040859 

 Assessment of possible future 

climatic conditions emphasizing on 

precipitation and temperature 

 Estimation of the impact of a broad 

range of climate change models on 

water resources 

 Extreme value analysis with regard 

to low flows and high flows 

 Shift of the peak flow in the next 

decades 

 Flood events are likely to increase, 

while more severe droughts are less 

pronounced 

Assessment of 

climate change 

effects on water 

resources in the 

catchment with 

regard to several 

climate models. 

6 

Näschen, K., Diekkrüger, B., Evers, 

M., Höllermann, B., Steinbach, S., 

Thonfeld, F., 2019. The Impact of 

Land Use/Land Cover Change 

(LULCC) on Water Resources in a 

Tropical Catchment in Tanzania 

under Different Climate Change 

Scenarios. Sustainability 2019, Vol. 

11, 7083. 

doi:10.3390/SU11247083 

 Development of potential LULCC 

distributions until 2030 

 Impact assessment of LULCC with 

regard to water resources with an 

emphasis on rice production 

 Combined effect of LULCC and 

climate change on water resources 

and low and high flows aggravate 

seasonalities 

 The impact of climate change on 

water resources is more 

pronounced, but has also higher 

uncertainties. 

Potential LULC 

distributions until 

2030 and their effect 

on water resources 

under different 

climate change 

scenarios.  

Modelling 

framework for global 

change impacts on 

water resources 

established. 
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2. Study area  

2.1. Location and Topography 

The Kilombero Catchment is located in the Morogoro region in south central Tanzania. It covers an 

area of 40,240 km², spanning from 7.68 °S to 10.03 °S latitude and 34.56 °E to 37.30 °E longitude. 

The Kilombero Catchment is part of the Rufiji River basin, which forms the largest river basin of 

Tanzania. For this study, the catchment was delineated with the outlet at the junction of Kilombero and 

Luwego River in the eastern part of the catchment. Downstream of this point, the river is called Rufiji and 

drains into the Indian Ocean south to Dar es Salaam. The catchment is encapsulated by the Udzungwa 

mountains in the northwest with altitudes ranging up to 2500 m and the Mbarika Mountains and 

Mahenge Highlands in the southwestern parts (Koutsouris, 2017). A broad seasonal floodplain with a size 

of 7,967 km² is in the center of the catchment, forming the biggest freshwater wetland in East Africa 

below 300 m (Mombo et al., 2011). An overview of the catchment is given in Figure 2.1. 

 
Figure 2.1 Overview map of the Kilombero Catchment, including locations of available precipitation stations 

and the utilized discharge station (Swero). The estimated floodplain area is based on visual 

interpretation of Landsat images by E. Amler (modified after (Näschen et al., 2019)). 
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2.2. Geology  

The catchment is situated at the foot of the Great Escarpment of East Africa and is a southern 

extension of the East African Rift System (Jätzold and Baum, 1968). The Kilombero Valley is described as 

a SW-NE trough-like depression between the Udzungwa Mountains in the north and the Mahenge 

Highlands in the south (Beck, 1964; Burghof, 2017). The Udzungwa Mountains are part of the 

Neoproterozoic Mozambique Belt and were formed during the collision of East and West Gondwana 

(Burghof, 2017; Reddy et al., 2003). The Udzungwa Mountains consist of metamorphic rocks, mainly 

gneisses with greenschist at the northwestern flank facing the Kilombero Valley (Burghof, 2017; Tenczer 

et al., 2007). The Mahenge Mountain Block in the south and the Mbarika Mountains belong to the 

Eastern Granulite Cabo Degado nappe of the Mozambique Belt and consist of complex igneous, 

metamorphic and sedimentary rocks of neoproterozoic age (Sommer et al., 2017). 

The valley itself is filled with sediments, however only little information about the thickness and 

composition of the sediments is available. In the area north of the Kilombero Valley 4,000 to 5,000 m 

thick formations of sandstones and conglomerates are deposited and it is assumed to be similar in large 

parts to the Kilombero Valley as well (Burghof, 2017). Beck (Beck, 1964) describes the valley as being 

covered with Pliocene, Pleistocene and alluvial deposits. Typical structures are alluvial fans, located at 

the fringes of the floodplain in the southern and northern parts, where tributaries of the Kilombero River 

enter the floodplain. The biggest settlement in the catchment, the city of Ifakara, is built on the alluvial 

fan of the Lumemo River. 

 

2.3. Climate 

The climate of the catchment can be described as a sub-humid tropical climate (Koutsouris et al., 

2016) and according to the updated Köppen-Geiger climate classification it is classified as a tropical 

savanna (Aw) climate (Peel et al., 2007) (s. Figure 2.2). The annual mean temperature in the lowlands is 

about 24 °C while the uplands mean annual temperature is about 17 °C. The annual areal precipitation 

within the catchment is about 1300 mm with a huge spatio-temporal variation of rainfall. The Udzungwa 

Mountains, as well as the Mahenge Highlands, act as water towers to the catchment with annual rainfall 

amounts exceeding 2000 mm, while some lowlands receive 1000 mm less rainfall within a year (Wilson 

et al., 2017). The intra- and interannual rainfall variability is markedly pronounced with a distinct dry and 

rainy season. The rainy season is divided into the Short Rains (locally called “Vuli”) from November to 

January and the Long Rains (“Masika”) from March to May (Camberlin and Philippon, 2002; Koutsouris et 

al., 2016; Wilson et al., 2017). However, this separation of the rainy season with a distinct bimodal 

distribution is more common for northern parts of Tanzania, inter alia due to the movement of the ITCZ 

(Intertropical Convergence Zone) (Camberlin and Philippon, 2002). Yet, Nicholson (Nicholson, 2017) 

showed that a monocausal argumentation for the northern parts of East Africa is inadequate to the 

complex system. The southern parts, like the Kilombero Catchment, typically show a unimodal rainfall 

distribution (Seregina et al., 2018). Nevertheless, the climate in East Africa is highly complex due to 

several teleconnections in combination with a complex topography and influences of the lakes on the 

local and regional climate (Nicholson, 2017). Therefore, it appears that many years still show a bimodal 

distribution of rainfall for the Kilombero Catchment with a short dry spell in February. Several studies 
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underlined the correlation of the Short Rains with El Niño–Southern Oscillation (ENSO) and the Indian 

Ocean zonal mode (IOZM) (Goddard and Graham, 1999; Hastenrath et al., 1993; Nicholson, 2017), while 

variations for the Long Rains are more complex to understand and show only weak correlations to ENSO, 

IOZM, ITCZ, the easterly wind anomalies over equatorial Africa and the energy gradient from the 

highlands of East Africa (Camberlin and Philippon, 2002; Koutsouris et al., 2016). Recent research 

recommends to consider each month of the Long Rains separately to better account for the various 

climatic influences, instead of analyzing the whole season as one (Nicholson, 2017; Seregina et al., 2018). 

 
Figure 2.2 Walter-Lieth climate diagram showing the precipitation and temperature conditions in the 

Kilombero Valley (based on precipitation data from the Kilombero Agriculture Training and 

Research Institute (KATRIN) from 1974 to 2005; Bias-corrected temperature data from the 

Coordinated Regional Downscaling Experiment (CORDEX) Africa project from 1979 to 2005 

(Gutowski et al., 2016; Näschen et al., 2019)).  

 

2.4. Soils 

Up to today there was no detailed soil exploration of the whole Kilombero Catchment. Nevertheless, 

several continental and global mapping approaches exist and are combined in the Harmonized World 

Soil Database (HWSD), which gives an overview on the distribution of soils (Figure 2.3).  

The steep and forested uplands of the Udzungwa Mountains are characterized by humic Nitisols. 

These soils are typical for tropical uplands and have > 1 % humus in the upper 18 cm due to the relatively 

cold and humid climate in higher altitudes. They are marked by a profound rootability and a high usable 

field capacity combined with a medium amount of available nutrients, which allows for the cultivation of 

demanding tropical plants like tea (Scheffer and Schachtschabel, 2010) e.g., in the northwestern parts of 

their distribution in the catchment. The western part of the catchment is dominated by Lixisols. These 

are heavily weathered soils with high shares of kaolinite, but rich in bases with a saturation > 50 %. 

Lixisols can be used for agricultural purposes e.g., cultivation of cassava, but they do need fertilization 
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due to their low nutrient pool (Scheffer and Schachtschabel, 2010). The distribution of Lixisols coincides 

well with the agricultural activities on the western parts of the catchment. The floodplain itself is 

typically characterized by Fluvisols. These are relatively young soils that receive fresh sediments and 

nutrients in regular flood events. Fluvisols are often used for annual crops and grazing (FAO, 2001). 

A study by Daniel et al. (Daniel et al., 2017) shows the heterogeneity in physical and chemical soil 

attributes along a transect near the city of Ifakara at the bottleneck of the floodplain. At the fringe of the 

floodplain patches of Arenosols can be found as well, which are less favorable for cultivation compared 

to the adjacent Fluvisols. The southern part of the floodplain is enclosed by a V-shaped distribution of 

ferric, haplic and humic Acrisols, which are similar to Lixisols in their characteristics, although they are 

less productive and furthermore susceptible for water erosion if utilized for agricultural cultivation 

(Scheffer and Schachtschabel, 2010). The vulnerability to water erosion is enhanced by the carved 

landscape and the steep slopes in the range of the Acrisols.  

The eastern part of the catchment, which mainly belongs to the Selous Game Reserve, is dominated 

by ferralic Cambisols, which are relatively poor in nutrients. However, they are still richer in nutrients 

than associated Acrisols and are characterized by a greater cation exchange capacity (FAO, 2001). 

 
Figure 2.3  Dominant soil types in the Kilombero Catchment according to the Harmonised World Soil 

Database (HWSD) (Dewitte et al., 2013) based on the World Reference Base (WRB) for Soil 

Resources classification system (modified after Näschen et al. (Näschen et al., 2019)). 
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2.5. Hydrology 

The catchment area till the junction of Kilombero River and Luwego River comprises 40,240 km². The 

river is called Kilombero River from the junction of Ruhudji, Pitu and Mnyera River onwards. These 

tributaries origin are the steep uplands of the Mbarika and Udzungwa Mountains in the southwestern 

part of the catchment (Figure 1.1). The river bifurcates and meanders as soon as it enters the flat valley 

bottom with a slope of 0,25‰ (Jätzold and Baum, 1968). Perennial (Figure 1.1) and seasonal tributaries 

from the northern and southern mountainous areas contribute to the SW-NE flowing Kilombero River. A 

bottleneck structure exists in the northeastern part near the city of Ifakara, from where the river turns 

and flows to a NW-SE direction into the Selous Game Reserve to enter the Rufiji River. The most 

important discharge gauging station to this study called Swero (Figure 1.1 and Figure 2.4) is also near the 

border of the Selous Game Reserve. The data at this station has a huge gap since the 1970s due to 

limited accessibility and lack of funds for the local authorities, but it was recently reconstructed by the 

Rufiji Basin Water Board (RBWB) and a new rating curve is being established. The Swero station 

comprises 34,000 km² of the catchment and therefore records crucial data indicating the hydrological 

processes within the catchment. 

 
Figure 2.4  Gauging station Swero and the Kilombero River at the end of the dry season in 2015 (pictures 

taken by the author). 

 

The average discharge at the Swero station is at 520 m³/s (Yawson et al., 2005) and the Kilombero 

River contributes 62% of the annual discharge amount of the Rufiji River, although it covers only 23% of 

the overall drainage area (Wilson et al., 2017). Main water source of the river is a year-round 

groundwater supply (Näschen et al., 2018) complemented by the tributaries inflow. This groundwater 

also is the major source of drinking water for the communities near the city of Ifakara and for many 

villages (Figure 2.5) (Burghof, 2017). Nevertheless, the use of surface water from rivers or open wells as 

drinking water is still common, especially for farmers in their agricultural fields (“shambas”) (Figure 2.5, 

right picture). Water management at the grassroot community level is done by Water User Associations 

(WUA). These associations manage, distribute and conserve water sources jointly with other members of 

the association. They are responsible for the acquisition and management of water use permits, solving 

conflicts among water users and to advocate for water related public purposes like the protection of 

water sources (WREM International Inc., 2015). 
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Figure 2.5  A modern and sealed pumping well in the city of Ifakara, which gathers groundwater at about 

30 m depth in the left picture. The right picture shows an open well in the surroundings of Ifakara 

that is prone to contamination from the surface. Both wells are typical examples for water 

sources in the city and its surroundings (pictures taken by the author). 

 

The rainy season is accompanied by heavy rains and a marked flooding in April or May with water 

level rising at the bottleneck in Ifakara by up to 4.5 m (Daconto et al., 2018) over the riverbanks. 

Although the annual flooding is important to the recession agriculture in the valley, it might also cause 

serious damages. A serious flooding event on April 1st 2011 in the Kilombero District affected 6,643 

people in total and destroyed 2,731.5 ha of farms, 6 bridges, 677 houses and several roads (National 

Bureau of Statistics. United Republic of Tanzania, 2017). Dams might buffer these impacts of floods, but 

they are attended by other environmental and social impacts (Duvail and Hamerlynck, 2007). Up to 

today only the Kihansi dam (180 MW) is established at the Kilombero River. However, the Integrated 

Water Resource Management Development Plan (IWRMDP) identified potential for further dams at 

Ruhudji (358 MW), Mpanga (144 MW) and the upper Kihansi (248 MW) (WREM International Inc., 2015) 

in the catchment. 

 

2.6. Vegetation, land use and land cover 

The Vegetation changes gradually from the lowlands, adjacent to the floodplain, up to the 

mountains. The floodplain is widely used for maize, rice and sugarcane cultivation and non-cultivated 

areas are covered by edaphic grasses such as Hyparrhenia spp., Panicum fluviicola Steud., Panicum 

maximum, Penisetum purpureum, Phragmites mauritianus Kunth. and some single trees of Ficus spp. and 

Kigelia africana (Behn et al., 2018; Dinesen, 2016; Kato, 2007; Msofe et al., 2019; Nindi et al., 2014). 

Annual fires occur between the months of August and October in these grasslands (Andrew et al., 2012). 

Another source of disturbance is grazing of about 300,000 cattle and goats and additional 43,000 sheep, 

which is accompanied by trampling, gap openings and nutrient inputs consequently leading to the 

destruction of critical habitats and the spreading of invasive species (Andrew et al., 2012). 

The valley is framed by a miombo woodland belt dominated by Brachystegia spp., whereas the 

uplands are covered by a mixture of broadleaved and evergreen forests, bush- and wooded grasslands 
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with patches of agricultural fields especially in the western part of the catchment (Zemandin et al., 

2011). 

An example of a typical transect profile taken near the city of Ifakara is shown in Figure 2.6.  

 
Figure 2.6  Transect starting at the Kilombero River, near the town of Ifakara, towards the Udzungwa 

Mountains at the northern border of the catchment. Pictures illustrate the typical vegetation 

along the transect and were taken during the dry season. The picture to the very right was taken 

at the Udzungwa Mountains National Park, further northeast of the transect. The visualization at 

the bottom displays the different hydrological zones along the floodplain (see also (Gabiri et al., 

2018)). Nevertheless, the flooding level and therefore the river extension varies greatly among 

the years and the longitudinal river profile positions from its source to its junction with the 

Luwego River.  

 

The floodplain of the Kilombero Valley was declared as a Ramsar site in 2002 to underline its 

importance in terms of ecology and biodiversity. It is seen as a source of water and nutrients for 

downstream riparians as well as for residents of the catchment. Additionally, the surrounding Miombo 

and evergreen forests are highlighted as integral parts of the designated Ramsar site (Ramsar, 2002). 

Without counting the overlapping areas, 22,343 km² of the 40,240 km² catchment area is listed in the 

World Database of Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2019) under different categories 

from a national park (Udzungwa Mountains), to a Ramsar site (Kilombero), a game reserve (Selous), a 

game controlled area (Kilombero), a wildlife management area (Mbanrang’andu) and several forest 

reserves and open areas (Figure 2.7, Thonfeld et al., unpublished). These habitats comprise several 

threatened species that are also listed in the red list of the International Union for Conservation of 

Nature (IUCN) like the blue duiker, cheetah, lion and birds like Kilombero Weaver (Ploceus burnieri), 

Stierling’s woodpecker (Dendropicos stierlingi) and Southern-banded snake eagle (Circaetus fasciolatus) 

among others (Ntongani et al., 2014). 
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Figure 2.7 The map (a) shows the Kilombero Catchment with its land use and land cover distribution 

according to the year 2014 (Näschen et al., 2018). (b) shows the same map overlaid by the areas 

under different protection categories according to WDPA in June 2019 (IUCN and UNEP-WCMC, 

2019). 

 

2.7. Socioeconomic background 

The National census from 2012 counted more than 670,000 people living in the administrative 

districts of Kilombero and Ulanga (Figure 2.8), which lie within the hydrologically delineated catchment 

(Leemhuis et al., 2017; National Bureau of Statistics. United Republic of Tanzania, 2012). Since 2000 the 

population in the valley has doubled and calculations estimate to reach 1.2 million inhabitants in the 

Kilombero Valley in the next 20 years due to natural growth and immigration (Daconto et al., 2018). The 

high pace of development in the last decades led to the establishment of hundreds of new villages and 

the administration struggles to keep pace. This resulted in an unregulated development of the valley in 

many areas, which is also a source of conflicts, especially among local farmers and pastoralists (Daconto 

et al., 2018; Nindi et al., 2014). Indigenous people of the Kilombero Valley descent mainly from Bantu 

origin. The most important ethnic groups are Ndamba, Mbunga and Ngindo, while Pogoro, Hehe and 

Bena are less represented. Pastoralists and agro-pastoralists migrating into the valley are mainly Maasai, 

Sukuma and Barbaigs. However, also business people from the whole country are moving into the 

Kilombero Valley (Nindi et al., 2014). 

The construction of the Tanzania-Zambia Railway (TAZARA) in the 1970s and their associated 

resettlement schemes (Daconto et al., 2018) as well as the “Ujamaa” plan of the first president Julius 

Nyerere were important milestones for the socioeconomic development of the area. They supported 

agricultural projects and acted as pull factor for the migration into the valley (Daconto et al., 2018; Kato, 
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2007; Sheikheldin, 2015). Recent initiatives like SAGCOT or “Big Results Now” still influence the 

socioeconomic setting. Infrastructure like the “Magufuli Bridge” near Ifakara and a tamarc road from 

Morogoro/ Mikumi to Ifakara is being developed to foster the trade into and out of the valley, but also to 

regulate the uncontrolled expansion (Daconto et al., 2018; Environmental Resources Management, 

2013). The contribution of agriculture to the gross domestic product (GDP) is about 29 % of Tanzania and 

employs 75 % of the total labor force underlining its importance for the whole country (National Bureau 

of Statistics. United Republic of Tanzania, 2017). 

 
Figure 2.8  Population size by age groups for the Ulanga and the Kilombero district. Total numbers increased 

for Ulanga district from 193,280 to 265,203 and for the Kilombero district from 321,611 to 

407,880 (National Bureau of Statistics. United Republic of Tanzania, 2012). 
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3. Modeling approach 

3.1. Model choice 

The purpose of this study was to evaluate the effects of climate change and LULCC on several spatio-

temporal scales in a data sparse catchment. These requirements were all fulfilled by the Soil and Water 

Assessment Tool (SWAT) (Arnold et al., 1998; Neitsch et al., 2011), which was already successfully 

applied in the region (Natkhin et al., 2015; Notter et al., 2012; Wambura et al., 2018). The SWAT model is 

able to continuously simulate the impact of climate on a daily time resolution and is therefore also able 

to analyze variations in the onset or offset of the dry or wet season. The semi-distributed hydrologic 

response unit (HRU) approach of the SWAT model balances well between the data demand of 

distributed and the limited spatial information of lumped models and allows to identify hot spots of 

change without the need for high resolution gridded data, which are rarely available in SSA (Mango et 

al., 2011). The HRU approach in combination with the dynamic vegetation growth module implemented 

in SWAT allows simulating the impact of LULCC on the hydrology of a catchment. Furthermore, the 

influence of management practices as well as sediment and nutrient dynamics can be simulated by 

SWAT. However, this study did not account for sediment and nutrient dynamics due to the lack of 

measured data to calibrate and validate the model. Finally, the HRU approach of the SWAT model is 

computationally efficient and allows for long term modelling of this complex and large catchment 

(40,240 km²) in a reasonable computation time. This was particularly important for the climate change 

impact study that simulated several climate models for a period from the 1950s up to 2060 on a daily 

time resolution (Chapter 5).  
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3.2. The SWAT model 

This chapter provides an overview on the general structure and the main processes of the SWAT 

model (s. Figure 3.1) based on the theoretical manual of the model (Neitsch et al., 2011). Further 

information on the basic model setup, it´s calibration and validation (Chapter 4) as well as the scenarios 

concerning climate change and LULCC are given in the respective chapters on climate change (Chapter 5) 

and LULCC impacts (Chapter 6). 

 

 
Figure 3.1 Catchment discretization and schematic overview of processes and storages simulated by the SWAT model. 

Applied methods to simulate evapotranspiration and water fluxes are shown in parentheses (taken from 

(Näschen et al., 2019) and modified after (Neitsch et al., 2011)). 

 

The SWAT model divides the hydrological cycle in two phases, that are the land phase and the 

routing phase. The land phase is partitioned into several storages and processes that are based on the 

water balance equation (equation 3.1): 

 

SW𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑖 − 𝑄𝑖 − 𝐸𝑇𝑎,𝑖 − 𝑊𝑠𝑒𝑒𝑝,𝑖 − 𝑄𝑔𝑤,𝑖)𝑡
𝑖=1      (Equation 3.1) 

where SWt is the final soil water content [mm], SW0 is the initial soil water content on day i [mm], t is the 

time [days], Ri is the net precipitation on day i [mm], Qi is the amount of surface runoff on day i [mm], 

ETa,i is the amount of actual evapotranspiration on day i [mm], Wseep,i is the amount of water entering the 

vadose zone from the soil profile on day i [mm], and Qgw,i is the amount of return flow on day i [mm]. 
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The first steps in the simulation process are the atmospheric processes. Daily values for the climate 

parameters are either provided by the modeler or simulated by the built-in WXGEN weather Generator 

(Sharpley and Williams, 1990),while evapotranspiration is calculated based on the formula of Penman-

Monteith (Penman, 1956), Hargreaves (Hargreaves et al., 1985) or Priestley-Taylor (Priestley and Taylor, 

1972). This study calculated evapotranspiration based on Penman-Monteith. 

Once precipitation occurs it reaches the ground and generates surface runoff or infiltrates the soil. 

Surface runoff is simulated based on a modified version of the Soil Conservation Service Curve Number 

(SCS CN) method (Mockus, 1972), developed within the United States Department of Agriculture (USDA) 

(equation 3.2). This method includes physical factors like the vegetation attributes, the hydrologic soil 

group, slope and soil moisture conditions. Additionally a retention parameter is given (equation 3.3.) that 

might vary with changing soil moisture conditions. If the Green and Ampt method (Green and Ampt, 

1911) is chosen over the SCS CN method, several processes are simulated differently e.g., the canopy 

storage has to be simulated separately. However, this is explained more in detail in (Neitsch et al., 2011), 

while this study here used the SCS CN method because rainfall data as required in a high temporal 

resolution for the Green and Ampt method is not available. 

 

𝑄 =
(R𝑑𝑎𝑦−0.2𝑠)

2

(𝑅𝑑𝑎𝑦+0.8𝑠)
 for R> 0.2s          

𝑄 = 0 for R≤ 0.2s          (Equation 3.2) 

𝑠 = 25.4 (
1000

𝐶𝑁
− 10)        (Equation 3.3) 

where Q is the daily surface runoff [mm], R is the daily rainfall [mm], and s is a retention parameter 

 

Percolation of water in SWAT is calculated for each soil layer individually and in total for up to ten 

soil layers using a storage routing technique (Equation 3.4). Once a soil layer reaches field capacity, 

water moves to the underlying soil layer based on equation 3.4 and controlled by the saturated 

conductivity. If all layers are saturated, the water will enter the vadose zone, from where it may move 

back to the surface as capillary rise or enter the shallow groundwater aquifer. To account for the amount 

of water that percolates to the next subsequent layer the following equation is used: 

 

SW𝑝𝑒𝑟𝑐,𝑙𝑦 = SW𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠 . (1 − exp ⌊
−∆𝑡

𝑇𝑇𝑝𝑒𝑟𝑐
⌋)      (Equation 3.4) 

where SWperc,ly is the amount of water percolating to the underlying soil layer on a given day [mm], 

SWly,excess is the drainable volume of water in the soil layer on a given day [mm], Δt is the length of the 

time step [h], and TTperc is the travel time for percolation [h] 

 

Groundwater is separated into two aquifers in SWAT, a shallow and a deep aquifer. Water percolating 

from the vadose zone enters the shallow aquifer from where it may rise back into the unsaturated zone 

depending on the evaporative demand of the vegetation. Otherwise water can contribute to the base 

flow using a linear storage approach and a recession coefficient or percolate into the deep aquifer. The 

deep aquifer water was originally treated in SWAT as lost for the water balance and assumed to 

contribute to other catchments outside the watershed. However, since revision 538 a new parameter 
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alpha_bf_d was introduced, that allows water from the deep aquifer to reenter the system and 

contribute e.g., as base flow. The water balance of the shallow aquifer is shown in equation 3.5 and 

equation 3.6 shows the water balance for the deep aquifer: 

 

aq𝑠ℎ,𝑖 = 𝑎𝑞𝑠ℎ,𝑖−1 + W𝑟𝑐ℎ𝑟𝑔,𝑠ℎ − 𝑄𝑔𝑤 − 𝑊𝑟𝑒𝑣𝑎𝑝 − 𝑊𝑝𝑢𝑚𝑝,𝑠ℎ    (Equation 3.5) 

where aq𝑠ℎ,𝑖 the amount of water is stored in the shallow aquifer on day i [mm], 𝑎𝑞𝑠ℎ,𝑖−1 is the amount 

of water stored in the shallow aquifer on day i-1 [mm], W𝑟𝑐ℎ𝑟𝑔,𝑠ℎ is the amount of recharge entering the 

shallow aquifer on day i [mm], Qgw is the groundwater flow, or base flow, into the main channel on 

day i [mm] , 𝑊𝑟𝑒𝑣𝑎𝑝 is the amount of water moving into the soil zone in response to water deficiencies on 

day i [mm] and 𝑊𝑝𝑢𝑚𝑝,𝑠ℎ  is the amount of water removed from the shallow aquifer by pumping on 

day i [mm]. 

 

aq𝑑𝑝,𝑖 = 𝑎𝑞𝑑𝑝,𝑖−1 + W𝑑𝑒𝑒𝑝 − 𝑊𝑝𝑢𝑚𝑝,𝑑𝑝      (Equation 3.6) 

where aq𝑑𝑝,𝑖 the amount of water is stored in the deep aquifer on day i [mm], 𝑎𝑞𝑑𝑝,𝑖−1 is the amount of 

water stored in the deep aquifer on day i-1 [mm], W𝑑𝑒𝑒𝑝 is the amount of water percolating from the 

shallow aquifer into the deep aquifer on day i [mm], 𝑊𝑝𝑢𝑚𝑝,𝑑𝑝 is the amount of water removed from the 

deep aquifer by pumping on day i [mm]. 

 

Lateral movements of water (equation 3.7) are also simulated by the SWAT model, besides these vertical 

movements explained before. Lateral flow occurs when an impermeable layer exists, parameterized by 

several factors like the hydraulic conductivity of the soil layers, the slope and it´s length. Lateral 

movement is simulated using a kinematic storage module by Sloan and Moore (Sloan and Moore, 1984).  

 

Q𝑙𝑎𝑡 = 0.024 . ( 
2.𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠  .  𝐾𝑠𝑎𝑡  .  𝑠𝑙𝑝

∅𝑑 .𝐿ℎ𝑖𝑙𝑙
)       (Equation 3.7) 

where Qlat  is the water discharged from the hillslope (mm H2O/day), SWly,excess  is the drainable volume of 

water in the saturated zone of the hillslope per unit area [mm], Ksat
  is the saturated hydraulic 

conductivity [mmh-1], slp is the slope as the increase in elevation per unit distance, ∅𝑑 is the drainable 

porosity of the soil layer [mm/mm], Lhill is the hillslope length [mm], and 0.024 is a conversion factor 

from meters to millimeter and hours to days 

 

Once SWAT has calculated the land phase, water, as well as sediments, nutrients and pesticides 

enter the routing phase. They are routed through the stream network of the catchment using a structure 

similar to HYMO (Williams and Hann, 1972), while additionally simulating transformation of chemicals in 

the stream and streambed. However, sediment processes, nutrient cycling and transportation as well as 

processes related to bacteria and pesticides are simulated by SWAT, but these processes are not the 

main interest of this study and are described in more detail in (Neitsch et al., 2011) 
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4. Hydrological Modeling in Data-Scarce Catchments - The Kilombero Floodplain in 

Tanzania  

 

This chapter has been published as: Näschen, K., Diekkrüger, B., Leemhuis, C., Steinbach, S., Seregina, L., 

Thonfeld, F. & R. van der Linden (2018): Hydrological Modeling in Data-Scarce Catchments - The 

Kilombero Floodplain in Tanzania. Water 2018, Vol. 10, Page 599 10, 599. doi:10.3390/W10050599. 

https://www.mdpi.com/2073-4441/10/5/599  

 

Abstract: Deterioration of upland soils, demographic growth, and climate change all lead to an 

increased utilization of wetlands in East Africa. This considerable pressure on wetland resources results 

in trade-offs between those resources and their related ecosystem services. Furthermore, relationships 

between catchment attributes and available wetland water resources are one of the key drivers that 

might lead to wetland degradation. To investigate the impacts of these developments on catchment-

wetland water resources, the Soil and Water Assessment Tool (SWAT) was applied to the Kilombero 

Catchment in Tanzania, which is like many other East African catchments, as it is characterized by overall 

data scarcity. Due to the lack of recent discharge data, the model was calibrated for the period from 

1958–1965 (R2 = 0.86, NSE = 0.85, KGE = 0.93) and validated from 1966–1970 (R2 = 0.80, NSE = 0.80, KGE 

= 0.89) with the sequential uncertainty fitting algorithm (SUFI-2) on a daily resolution. Results show the 

dependency of the wetland on baseflow contribution from the enclosing catchment, especially in dry 

season. Main contributions with regard to overall water yield arise from the northern mountains and the 

southeastern highlands, which are characterized by steep slopes and a high share of forest and savanna 

vegetation, respectively. Simulations of land use change effects, generated with Landsat images from the 

1970s up to 2014, show severe shifts in the water balance components on the subcatchment scale due 

to anthropogenic activities. Sustainable management of the investigated catchment should therefore 

account for the catchment–wetland interaction concerning water resources, with a special emphasis on 

groundwater fluxes to ensure future food production as well as the preservation of the wetland 

ecosystem.  

Keywords: SWAT model; hydrological modeling; East Africa; land use changes; water balance; 

wetlands 

 

4.1. Introduction 

Recent developments show an increasing trend to utilize wetlands in East Africa (Jew and 

Bonnington, 2011; Leemhuis et al., 2016; Sakané et al., 2011; Ulrich, 2014). This development is triggered 

by several issues, such as increasing food demand caused by demographic growth, climate change, and 

degradation of upland soils. Unlike the uplands, wetlands hold potential for year-round harvest, due to 

their fertile soils with a balanced soil water availability throughout the year (Gabiri et al., 2017). 

In Tanzania the “Kilimo Kwanza” (Agriculture First) policy of the government prioritizes agricultural 

development and leads to agricultural intensification and expansion (Munishi-Kongo, 2013). This 

increased utilization results in an intensive use of wetland resources, and may lead to a degradation of 

the wetland system (Beuel et al., 2016; McCartney et al., 2010). The understanding of the functioning of 

https://www.mdpi.com/2073-4441/10/5/599
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a wetland lies in the water budget, hence, information on water resources is essential to establish a 

sustainable land management system within a wetland. Without sufficient water, agricultural production 

deteriorates and food security is endangered (Godfray et al., 2010). For a holistic view on water 

resources and their fluxes, it is not sufficient to consider only processes within the wetland—one also 

has to consider the hydrological processes occurring within the entire catchment. 

A typical approach to adequately calculate and represent hydrological processes within a catchment 

is the application of a hydrological model. Process-based models like the water balance simulation model 

(WaSiM) (Schulla, 2017), SWAT (Arnold et al., 1998), or MIKE SHE (Refsgaard and Storm, 1995) are 

capable of simulating water resources under changing environmental conditions, such as climate change 

or land use and land cover changes (LULCC). A drawback of these models is the intensive data demand 

due to their physically-based approach. Unfortunately, data scarcity is an obstacle with regard to 

hydrological modeling in East Africa. Local water authorities face numerous challenges, like accessibility 

of discharge stations (especially in the rainy season), limited staff, and insufficient equipment due to 

restricted funds (Munishi-Kongo, 2013). This implies heterogeneous datasets, with a low quantity and 

quality of the available data with regard to spatial and temporal coverage. Besides the hydrological data, 

other geodata, like topography, land use/land cover (LULC), soil, or climate data is needed to simulate 

biophysical processes. Local biophysical data (e.g., vegetation, soil, climate) is rarely available, but these 

gaps can be closed by applying remote sensing data, when operating on meso- to macroscale 

catchments (Montzka et al., 2008; Poméon et al., 2017). 

Nevertheless, scientific guidance is particularly needed in data-scarce regions of East Africa, to assist 

with water resource management on the catchment scale (Mango et al., 2011). In particular, the 

increased pressure on wetlands and their surroundings might alter the distribution and amount of water 

resources through LULCC. Hence, a spatially-distributed hydrological model is needed, to simulate the 

water balance. The capability of SWAT to simulate the water balance in data-scarce tropical regions of 

different scales has been proven in various studies (Baker and Miller, 2013; Bossa et al., 2014; 

Cornelissen et al., 2013; Wagner et al., 2013), but only a few within East Africa (Alemayehu et al., 2017; 

Mango et al., 2011; Mashingia et al., 2014; Notter et al., 2013; Wambura et al., 2015). 

This study was undertaken in the Kilombero Catchment in Tanzania. Although there is an urgent 

need to gather a detailed understanding of the water resources in the Kilombero Catchment, only a few 

attempts have been made to understand the hydrological system. Yawson et al. (Yawson et al., 2005) 

applied lumped models and linear transfer approaches, while Lyon et al. (Lyon et al., 2015) investigated 

spatio-temporal drainage patterns. Subcatchments of the Kilombero Catchment were analyzed by 

Burghof et al. (Burghof et al., 2017), Koutsouris et al. (Koutsouris, 2017), and Daniel et al. (Daniel et al., 

2017), by developing a conceptual model, setting up an HBV (Hydrologiska Byråns Vattenavdelning) light 

model (Seibert and Vis, 2012) for two subcatchments and by analyzing soil hydrological properties in a 

floodplain transect. These studies investigated water-related relationships within the Kilombero 

Catchment, giving either a detailed insight into specific subcatchments without considering the entire 

catchment (Burghof et al., 2017; Koutsouris, 2017; Lyon et al., 2015)—or the entire catchment was 

analyzed, but without considering the spatial heterogeneity (Yawson et al., 2005). This spatial 

heterogeneity needs to be considered, according to Lyon et al. (Lyon et al., 2015), who demonstrated the 

importance of the spatio-temporal variations in hydrological processes within the catchment. 

Nevertheless, Lyon et al. (Lyon et al., 2015) applied recession analysis only as a kick-off for more detailed 
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hydrological modeling. Altogether these studies did very good preparatory work, but there is still a 

research gap concerning the understanding of the distributed hydrological processes in the entire 

Kilombero Catchment. This research tries to bridge this gap by establishing the semi-distributed SWAT 

model, to gather a better spatial understanding of the hydrological processes in the Kilombero 

Catchment. 

The main objective of this study is therefore to enhance the knowledge about the hydrological 

system of the Kilombero Catchment, in order to support water management in this changing 

environment (Leemhuis et al., 2017; Muro et al., 2016). Accordingly, three specific objectives were 

formulated: 

(i) Assessing LULCC in the Kilombero Catchment since the 1970s; 

(ii) Setting up a distributed hydrological model suitable to simulate impacts of LULCC; 

(iii) Analyzing the impacts of LULCC on water balance components in the catchment. 

These objectives are achieved by combining available local data with freely available global geodata, 

in order to adequately represent the hydrological system with the SWAT model. To obtain a better 

spatio-temporal understanding of the water balance components, the SWAT model is calibrated and 

validated against measured historical discharge data, and a spatio-temporally detailed water balance 

analysis on the catchment and subcatchment scale is presented. The observed impacts of LULCC from 

1970 to 2014 were analyzed by deriving land use maps from Landsat images and implementing them 

into the calibrated model (Leemhuis et al., 2017). 

 

4.2. Materials and Methods 

4.2.1. Study Site 

The Kilombero Catchment is located in south-central Tanzania (Figure 4.1). The catchment is 

characterized by high relief energy, with altitudes ranging from 200 m to 2500 m above sea level, and is 

surrounded by the Udzungwa Mountains in the north, as well as the Mbarika Mountains and the 

Mahenge Highlands in the southeast (Figure 4.1). In total, the catchment comprises 40,240 km2 up to 

the confluence of Kilombero and Rufiji River. Although the Kilombero Catchment only covers 23% of the 

drainage area of the Rufiji Basin, it contributes 62% of the annual runoff volume (Wilson et al., 2017). 

The floodplain system covers an area of 7967 km2 (Mombo et al., 2011), and contains the largest 

freshwater wetland within East Africa below a threshold of 300 m above mean sea level (Kangalawe and 

Liwenga, 2005). A big share of the floodplain is designated as a Ramsar site, which underlines the 

wetland’s international environmental importance (Ramsar, 2002; Wilson et al., 2017). 

The Kilombero River is the main tributary of the Rufiji River, representing the largest river basin in 

Tanzania. Water resources monitoring is scarce in the Kilombero Catchment, although it is prone to 

environmental changes with implications on water availability. Recent developments show an increase in 

population and agricultural land, and a decrease of natural landscapes, especially in the lower floodplain 

wetland of the catchment, while the upper catchment area is undergoing deforestation activities 

(Leemhuis et al., 2017; Wilson et al., 2017). Up to today, 9% of the national rice yield is produced in the 

Kilombero wetland, and the wetland area is characterized by patches of several land use activities, from 

small- and large-scale farmers to pastoralists and urban populations near the town of Ifakara at the 
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northeastern bottleneck of the wetland (Gabiri et al., 2018). All these anthropogenic activities, in 

combination with ongoing climate change, alter the hydrological regime of the Kilombero River. Future 

activities foresee the establishment of an agricultural growth corridor in the Kilombero Catchment 

(Environmental Resources Management, 2013), which will foster the pressure on water resources in 

terms of quantity and quality in the research area and for downstream riparians. 

The regional climate is defined as sub-humid tropical climate (Koutsouris et al., 2016), with distinct 

dry and rainy (November–May) seasons with a predominantly unimodal rainfall pattern (Kangalawe and 

Liwenga, 2005; Koutsouris et al., 2016). Nevertheless, many teleconnections influence the regional 

climate, resulting in shifts between unimodal and bimodal rainfall patterns among the years. Years with a 

unimodal distribution of rainfall lack the short rains (November–January), whereas the bimodal rainy 

seasons are characterized by short (November–January) and long rains (March–May) (Wilson et al., 

2017), which correspond mainly to the movement of the Intertropical Convergence Zone (ITCZ) 

(Camberlin and Philippon, 2002). The average annual precipitation is between 1200 and 1400 mm 

(Koutsouris et al., 2016), with strong interannual variability (Nicholson, 2000) and spatial variability 

between the mountainous area and the lowlands, with precipitation up to 2100 mm and 1100 mm, 

respectively (Wilson et al., 2017). The temperature mirrors this pattern inversely, with annual mean 

temperatures of 24°C in the valley and 17 °C in the uplands (Wilson et al., 2017). 

According to the Harmonized World Soil Database (HWSD) (Dewitte et al., 2013), the catchment is 

predominantly characterized by Fluvisols in the valley bottom, whereas the upland regions are 

dominated by Acrisols and Nitisols. The western upland soils are mainly described by Lixisols, and in the 

lower eastern part Cambisol is the dominant soil type (Figure 4.2). 

The land cover of the upper catchment embraces a mixture of natural vegetation like tropical 

rainforests, bush lands, and wooded grasslands, with some patches of agricultural fields (Zemandin et al., 

2011). The valley is surrounded by a Miombo woodland belt, whereas the floodplain itself is dominated 

by agricultural use and grassland (Kato, 2007; Nindi et al., 2014). 
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Figure 4.1 Overview map of the study area, including available precipitation and discharge stations as well 

as the 0.44° Coordinated Regional Downscaling Experiment (CORDEX) Africa grid. 
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Figure 4.2  Distribution of soils for the Kilombero Catchment, according to the Harmonized World Soil 

Database (Dewitte et al., 2013). 

 

4.2.2. Input Data 

Data scarcity is a major problem in East Africa, and therefore a mixture of freely available global geo 

datasets and local measurements were combined and processed to run the hydrological model, 

following the approach of Leemhuis et al. (Leemhuis et al., 2016). Model calibration and validation is 

difficult because of low data availability, caused by the challenges of installing and maintaining the 

hydrometeorological network (Munishi-Kongo, 2013) for the Rufiji Basin Water Board (RBWB). The 

longest period with good quality discharge data was monitored from 1958–1970. The station utilized in 

this study is named Swero (Figure 4.1) and comprises 34,000 km2
, representing roughly 84% of the entire 

catchment area. The discharge time series of the Swero station ends in 1970, and therefore excludes the 

application of precipitation estimates from satellites. Hence, available station data from that period was 

included in the model, although the spatial distribution of precipitation stations is limited (Figure 4.1). 

Nevertheless, the temporal availability of the precipitation data for this study was good, with only 5.15% 

missing data for all stations and the entire simulation period. The other climate variables (Table 4.1) 

were taken from the CORDEX (Coordinated Regional Downscaling Experiment) Africa (Gutowski et al., 

2016) regional climate models, with a spatial resolution of 0.44°. 

Temperature data was bias-corrected with the ERA-Interim reanalysis (Dee et al., 2011), by using the 

differences of the mean annual cycle of the 11-day running mean between each CORDEX model and the 
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reanalysis. To account for the different topography, due to the different horizontal resolutions of the 

ERA-Interim and CORDEX models (namely 0.75° versus 0.44°), the correction was based on potential 

temperatures on the 700-hPa level. All climate variables, except precipitation, were taken as an 

ensemble mean of six historic regional climate model runs (Table 4.2). These six models represent a 

broad range of precipitation signals, with increasing, decreasing, and constant precipitation patterns 

when comparing the periods from 1986 to 2005 with 2040 to 2059. 

Due to the lack of suitable Landsat images for one single year in the 1970s, a mosaic of eight Landsat 

pre-collection Level 1 images from the 1970s, downloaded from EarthExplorer (United States Geological 

Survey (USGS), n.d.), was classified using the supervised Random Forest classification (Breiman, 2001) to 

adequately represent the land cover characteristics for the simulation. The 1994, 2004, and 2014 LULC 

maps are based on Landsat TM, ETM+, and OLI Surface Reflectance Level 2 Science Product imagery 

(USGS Department of the Interior, n.d., n.d.). Due to recurrent extensive cloud cover, a year before and a 

year after the year in question were considered in addition. All scenes with <80% cloud coverage were 

cloud masked and additionally orthorectified where necessary, and the tasseled cap components 

wetness, greenness, and brightness (Crist, 1985; Crist and Cicone, 1984; Yamamoto and Finn, 2012), and 

the Normalized Difference Water Index (NDWI) (McFeeters, 1996) and Normalized Difference Vegetation 

Index (NDVI) (Tucker, 1979) were calculated to account for seasonal dynamics of specific land cover 

classes. Based on the 30 m resolution Shuttle Radar Topography Mission (SRTM) Digital Elevation Model 

(DEM) (Lehner et al., 2008), we calculated slope and four morphometric indices (the terrain ruggedness 

index (TRI) (Riley et al., 1999), slope variability (SV) (Ruszkiczay-Rüdiger et al., 2009), topographic 

position index (TPI) (Gallant and Wilson, 2000; Jenness, 2006), and the topographic wetness index (TWI) 

(Beven and Kirkby, 1979). The spectral multi-temporal metrics in combination with the DEM, slope, and 

topographic indices were classified using a random forest approach (Breiman, 2001). For the supervised 

classification, as well as for map validation, different reference datasets gathered on the ground in 

combination with high-resolution remotely-sensed data were used according to their availability. In 

order to complete the dataset, freely available data with varying spatial resolution were applied (Table 

4.2). The changes in land cover from 1970 to 2014 are shown in Figure 4.3. 
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Table 4.1  Applied datasets, their resolution, sources, and the required parameters in this study. 

Data set Resolution/Scale Source Required Parameters 

DEM 90 m SRTM (Lehner et al., 2008) Topographical data 

Soil map 1 km FAO (Dewitte et al., 2013) 
Soil classes and physical 

properties 

Land use 

maps 

60 m (1970s) 

30 m (1994, 2004, 

2014) 

Landsat pre-Collection Level-1 (United States 

Geological Survey (USGS), n.d.), Landsat TM, 

ETM+, OLI Surface Reflectance Level-2 Science 

Products (USGS Department of the Interior, n.d., 

n.d.), SRTM (Lehner et al., 2008) 

Land cover and use 

classes 

Precipitation Daily 

Personal communication: RBWB, University of 

Dar es Salaam (UDSM), Tanzania Meteorological 

Agency (TMA) 

Rainfall 

Climate Daily/0.44° CORDEX Africa (Gutowski et al., 2016) 

Temperature, humidity, 

solar radiation, wind 

speed 

Discharge Daily (1958–1970) RBWB (RBWB, 2014) Discharge 

 

Table 4.2 Overview of the applied Regional Climate Models (RCMs) and their driving Global Climate Models 

(GCMs). 

GCM RCM Institution URL 

CanESM2 CanRCM4_r2 
Canadian Centre for Climate Modelling and  

Analysis (CCCma) 
http://climate-modelling.canada.ca/ 

CanESM2 RCA4_v1 
Rossby Centre, Swedish Meteorological and  

Hydrological Institute (SMHI) 
https://esg-dn1.nsc.liu.se/ 

CNRM-CM5 
CCLM4- 

8-17_v1 

Climate Limited-area Modelling Community  

(CLMcom) 
https://esg-dn1.nsc.liu.se/ 

EC-EARTH CCLM4-817_v1 
Climate Limited-area Modelling Community  

(CLMcom) 
https://esg-dn1.nsc.liu.se/ 

EC-EARTH RCA4_v1 
Rossby Centre, Swedish Meteorological and  

Hydrological Institute (SMHI) 
https://esg-dn1.nsc.liu.se/ 

MIROC5 RCA4_v1 
Rossby Centre, Swedish Meteorological and  

Hydrological Institute (SMHI) 
https://esg-dn1.nsc.liu.se/ 
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Figure 4.3 Land use and land cover classifications for four time steps ranging from (a) 1970s, (b) 1994 and (c) 

2004 to (d) 2014 (modified after  (Leemhuis et al., 2017)). 

 

4.2.3. Model Description 

In this study, the SWAT model (Arnold et al., 1998) was applied to simulate the water balance for the 

chosen time period and under changing LULC conditions. SWAT is a semi-distributed and physically-

based catchment model for continuous simulations of discharge, sediments, nutrients, and pesticides on 

a daily basis. The model divides the catchment into subcatchments, which are generated from drainage 

patterns derived from the DEM, and by setting a threshold that defines the minimum drainage area to 
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form a stream. These subcatchments are further discretized into hydrologic response units (HRU) with 

unique combinations of LULC classes, soil types, and slope classes. LULC classes, soil types, and slope 

classes covering less than 10% of the area within the single subcatchments were neglected within the 

HRU generation. The model is divided into land phase and channel processes. Most of the processes 

within the land phase are simulated on the HRU level and summed up for each subcatchment, to 

calculate the overall water balance with the integration of climate station data and the channel 

processes (Neitsch et al., 2011). The most important processes simulated by the model are surface 

runoff, infiltration, lateral flow, baseflow, evapotranspiration, and groundwater recharge. Precipitation 

can either be intercepted by plants or hit the ground, where it may flow as surface runoff to the reach 

(Mockus, 1972), infiltrate into the soil, or evaporate from the ground (Monteith and Moss, 1977). If the 

water infiltrates into the soil, it is stored as soil moisture or percolates with a storage routing technique, 

which is based on the saturated hydraulic conductivity and the field capacity of the soil profile. Lateral 

flows are simulated with a kinematic storage model (Sloan and Moore, 1984). Once water percolates 

below the unsaturated zone, it reaches the shallow aquifer, which is treated as an unconfined aquifer. 

Once a certain threshold defined by the modeler is exceeded, baseflow contributes to the reach. Water 

may also move into a deeper confined aquifer, where the water is assumed to contribute to the 

discharge outside of the catchment and is treated as lost for the processes inside the catchment. 

Furthermore, the water can move from the shallow aquifer into the unsaturated zone, where it can be 

lost by evapotranspiration. This capillary rise and evapotranspiration are controlled by the water demand 

of the LULC and several parameters specified by the modeler. A detailed description of the model is 

given by Arnold et al. (Arnold et al., 1998) and Neitsch et al. (Neitsch et al., 2011)., and further 

information on the model parameters can be found in Arnold et al. (Arnold et al., 2012a). 

 

4.2.4. Model Setup and Evaluation 

In total the catchment was divided into 95 subcatchments and 1087 HRUs. Eight different soil types, 

seven LULC classes, and five slope classes were considered (Table 4.3). Due to the complex topography 

and the high relief energy, five elevation bands (Neitsch et al., 2011) were integrated to account for 

orographic precipitation patterns, as well as altitudinal temperature changes. These elevation bands 

divide each subcatchment into five elevation zones. Within these zones, precipitation and temperature 

are modified according to the altitudinal difference among the elevation of the nearest rainfall, 

respective climate station, and the average elevation of the elevation band. The exact modification is 

calculated with a certain factor called PLAPS or TLAPS, respectively (Table 4.4). Evapotranspiration was 

calculated after Penman–Monteith (Monteith and Moss, 1977), using historical runs of an ensemble 

mean of CORDEX Africa (Gutowski et al., 2016) data from six different models (Table 4.2), with a spatial 

resolution of 0.44° and 21 stations (Figure 4.1). Surface runoff and infiltration were calculated using the 

Soil Conservation Service (SCS) curve number method (Mockus, 1972). After setting up the model within 

ArcSWAT 2012 (revision664), the model was calibrated and validated using the SUFI-2 algorithm in 

SWAT-CUP (version 5.1.6.2)(Abbaspour, 2013), basically following the guidelines of Arnold et al. (Arnold 

et al., 2012b) and Abbaspour et al. (Abbaspour et al., 2015). As the SUFI-2 program within the SWAT-CUP 

software was utilized for parameter optimization, the Latin Hypercube sampling iteratively discarded the 

worst simulations by rejecting the 2.5th and 97.5th percentile of the cumulative distribution. Therefore, 
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the best 95% of simulations generated a parameter range (95% prediction uncertainty, 95PPU) instead of 

a single final parametrization. This uncertainty band represented by the 95PPU was used to account for 

the modeling uncertainty (Abbaspour, 2013), and is quantified as the P-factor, which measures the 

ability of the model to bracket the observed hydrograph with the 95PPU. Finally, the P-factor is simply 

the fraction enveloped by the 95PPU. Hence, the P-factor can be between 0 and 1, where 1 means a 

100% bracketing of the measured data. The width of the 95PPU is calculated by the R-factor (Equation 

4.1)). The R-factor divides the average distance between the lower and upper percentile with the 

standard deviation of the measured data (Abbaspour, 2013). The R-factor ranges from 0 to infinity, and 

should be below 1, implying a small uncertainty band (Abbaspour, 2013). The final parameter ranges are 

illustrated in Table 4.4, and a detailed description of the single parameters is given in Arnold et al. 

(Arnold et al., 2012a). The Kling–Gupta efficiency (KGE) (Equation 4.2)) (Gupta et al., 2009) was chosen as 

objective function. Ancillary criteria to assess the quality of the model were the Nash–Sutcliffe Efficiency 

(NSE) (Equation 4.3)) (Nash and Sutcliffe, 1970), coefficient of determination (R2) (Equation 4.4)), percent 

bias (PBIAS) (Equation 4.5)) (Gupta et al., 1999), standard deviation of measured data (RSR) (Equation 

4.6)), and the abovementioned P-factor and R-factor. Additionally, precipitation distribution was 

assessed with remote sensing products (Huffman et al., 2007; Koutsouris et al., 2016), a baseflow filter 

technique (Arnold et al., 1995) was utilized to estimate the share of surface runoff and baseflow, and 

literature research was performed (Burghof et al., 2017; Gabiri et al., 2018; Koutsouris, 2017; Lyon et al., 

2015; Nicholson, 2000, 1996; Nyenzi et al., 1981; Yawson et al., 2005) to evaluate the gathered water 

balance component values for plausibility. After calibration and validation, different land use maps 

(Figure 4.3) were utilized to simulate the impact of LULCC. In order to attribute all alterations to the 

LULCC, nothing was modified except for the land use maps. 

 

Table 4.3 Final spatial coverage with the different soil types, LULC classes, and slope classes of the study 

area after defining the HRUs. 

Soil Type 
Proportional  

Area (%) 

LULC Class  

(1970s Land Use) 

Proportional  

Area (%) 

Slope  

Classes 

Proportional  

Area (%) 

Haplic Acrisol 30.82% Savanna 45.30% 0–2% 22.45% 

Eutric Fluvisol 14.77% Range-Grasses 23.49% 2%–5% 12.09% 

Humic Nitisol 13.14% Forest-Mixed 22.05% 5%–8% 11.66% 

Ferric Lixisol 13.05% Forest-Evergreen 6.81% 8%–12% 13.96% 

Ferric Acrisol 9.08% Agricultural Land 1.20% >12% 39.85% 

Humic Acrisol 5.73% Water 0.95%   

Albic Arenosol 2.75% Barren 0.20%   

Eutric Leptosol 0.59%     
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Table 4.4  Ranking of the calibrated parameters, according to their sensitivity and significance. A “v” in 

Method implies a replacement of the initial parameter value with the given value in the final 

range, whereas an “r” indicates a relative change to the initial parameter value. 

Rank Parameter Description Final Range Method 

1 GWQMN.gw 
Threshold depth of water in the shallow aquifer  

for return flow to occur (mm). 
1400–2200 v 

2 ALPHA_BF.gw Base flow alpha factor (days). 0.15–0.26 v 

3 GW_REVAP.gw Groundwater “revap” coefficient. 0.15–0.2 v 

4 SURLAG.bsn Surface runoff lag coefficient. 2.8–5.3 v 

5 GW_DELAY.gw Groundwater delay time (days). 4–30 v 

6 SOL_K().sol Saturated hydraulic conductivity (mm/h). 0.4–0.7 r 

7 RCHRG_DP.gw Deep aquifer percolation fraction. 0.31–0.37 v 

8 SOL_Z().sol Depth from soil surface to bottom of layer (mm). 0.35–0.5 r 

9 SOL_AWC().sol 
Available water capacity of the soil layer  

(mm H2O/mm soil). 
−0.1–0.13 r 

10 R__OV_N.hru Manning’s “n” value for overland flow. 0.1–0.2 r 

11 R__CN2.mgt SCS runoff curve number for moisture condition II. −0.5–(−0.35) r 

12 CH_K1.sub 
Effective hydraulic conductivity  

in the tributary channel (mm/h). 
65–80 v 

13 ESCO.hru Soil evaporation compensation factor. 0–0.1 v 

14 CH_K2.rte 
Effective hydraulic conductivity  

in the main channel (mm/h) 
100–130 v 

15 REVAPMN.gw 
Threshold depth of water in the shallow  

aquifer for “revap” to occur (mm). 
13–30 v 

16 EPCO.hru Plant uptake compensation factor. 0.9–1 v 

17 PLAPS Precipitation lapse rate (mm H2O/km). 130 v 

18 TLAPS Temperature lapse rate (°C/km). −6 v 

 

𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 =  
1

𝑛𝜎𝑂
∑(

𝑛

𝑛=1

𝑆𝑈 − 𝑆𝐿) (Equation 4.1) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (Equation 4.2) 
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𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1
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𝑅𝑆𝑅 =
√∑ (𝑂 − 𝑆)𝑖

2𝑛
𝑖=1

√∑ (𝑂𝑖 − 𝑆̅)2𝑛
𝑖=1

 (Equation 4.6) 

where n is the number of observations, 𝜎𝑂 is the standard deviation of the observed discharge, with 

𝑆𝑈  and 𝑆𝐿  representing the upper 97.5th and lower 2.5th percentiles of the simulated 95PPU, 

respectively; r is the linear regression coefficient between observed and simulated data; α is the ratio of 

the standard deviation of simulated and observed data; β is the ratio of the means of simulated and 

observed data; 𝑂𝑖 and 𝑆𝑖  are the observed and simulated discharge values, respectively; and 𝑂̅ and 𝑆̅ are 

the mean of observed and simulated discharge values. 

 

4.3. Results 

4.3.1. Model Calibration and Validation 

Figure 4.4 illustrates the results of the calibration and validation for the modeled discharge, using the 

SUFI-2 calibration technique. The hydrograph generally indicates a good fit of the daily discharge 

dynamics by the SWAT model. This is also emphasized by the statistical quality of the model shown in 

Table 4.5. According to Moriasi et al. (Moriasi et al., 2015), PBIAS, NSE, and R2 perform very well for both 

the calibration and the validation period. Nevertheless, in some years (e.g., 1959, 1961) the model 

overestimates discharge, whereas in contrast, slight underestimations can be observed at the transitions 

from the dry to the rainy seasons (e.g., 1963/1964, 1964/1965, 1965/1966, 1966/1967, 1969/1970) 

(Figure 4.4). However, the general model performance shows a good agreement between simulated and 

observed discharge, which is also highlighted by the flow duration curve (FDC) (Figure 4.5). The FDC 

nearly indicates a perfect fit, with slight underestimations of the low flows and the upper 2%–3% of the 

exceedance probabilities by the model. These extreme flows account in total for about 11%–15% of the 

annual water yield. The uncertainty of the simulations represented by the 95PPU band are quite low for 

the low flows, whereas the uncertainty is highest for flows between 1000–2300 m3/s. This can be 

attributed to some overestimated peaks (1959, 1961) and also the model´s difficulties in simulating a 

small peak just before the main peak (e.g., 1963, 1964). The water balance values (Table 4.6) are 

consistent with other publications in this area with regard to the groundwater recharge (Gabiri et al., 

2018; MacDonald and Bonsor, 2010), precipitation (Koutsouris, 2017; Koutsouris et al., 2016; Yawson et 

al., 2005), evapotranspiration (Nyenzi et al., 1981), and potential evapotranspiration (Dagg et al., 1970). 

The ratio of surface runoff and baseflow coincides with the baseflow filter technique of Arnold et al. 

(Arnold et al., 1995). Precipitation data is the key driver of rainfall runoff models, but is also a source of 

uncertainty, especially in data-scarce regions (Beven, 2012). Due to the low number of precipitation 

stations and their distribution within the catchment in either low altitudes in the eastern part or high 

altitudes in the western part of the catchment, elevation bands (Neitsch et al., 2011) were implemented. 

The effect on the average precipitation among the subcatchments is shown in Figure 4.6. The figure 

clearly illustrates the variation of precipitation within the single subcatchments. This is particularly true 

in the eastern part, where the mountainous region of the Udzungwa Mountains in the north and the 

Mahenge Highlands in the south receive more than 50 mm of additional precipitation as measured in the 
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valley. In the western part of the catchment, a reverse effect is visible, with decreased precipitation in 

the low altitude subcatchments due to the high altitude of the precipitation stations. All these changes 

are attributed to the implementation of the elevation bands, as all parameters of the final parameter 

solution are unchanged except for the elevation bands. Due to the numerous solutions within the 

uncertainty band, this is only one representative example of the importance of orographic precipitation 

patterns in the Kilombero Catchment. 

 

Table 4.5 Summary of the quantitative model performance analysis for the calibration and validation 

period. P-factor is the percentage of measured data covered by the 95PPU uncertainty band, R-

factor is the relative width of the 95PPU uncertainty band, R
2
 is the coefficient of determination, 

NSE is the Nash–Sutcliffe efficiency, PBIAS is the percent bias, KGE is the Kling–Gupta efficiency, 

and RSR the standard deviation of measured data. 

Simulation Period (Daily)  P-Factor R-Factor R
2
 NSE PBIAS KGE RSR 

Calibration (1958–1965)  0.62 0.45 0.86 0.85 0.3 0.93 0.38 

Validation (1966–1970)  0.67 0.56 0.80 0.80 2.5 0.89 0.45 

 

Table 4.6  Water balance components for the entire simulation period (1958–1970). 

Water Balance Components in (mm) 

Precipitation 1344 

Actual evapotranspiration 788 

Potential evapotranspiration 1380 

Surface runoff 43 

Lateral flow 58 

Base flow 209 

Recharge to the deep aquifer 242 
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Figure 4.4 Hydrograph showing the observed and the simulated discharge for the calibration (1958–1965) 

and the validation period (1966–1970), separated by the vertical dashed line. Statistical measures 

are shown in Table 4.5. 

 
Figure 4.5 Flow duration curve for the simulated and observed discharge for the simulation period (1958–

1970). Additionally, the 95PPU is illustrated, which represents the modeling uncertainty by 

showing the cumulative distribution of flow between the 2.5th and 97.5th percentiles of all the 

simulation solutions. Statistical measures for the ranked simulated and observed values are 0.99 

for R
2
 and NSE, respectively. 
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Figure 4.6  Spatial variations in average precipitation (mm) between 1958–1970, due to the implementation 

of elevation bands. Positive values correspond to increased precipitation due to the 

implementation of elevation bands, and vice versa. 

 

4.3.2. Spatio-Temporal Analysis 

Precipitation is the main driver for hydrological processes (Tang et al., 2009), hence an overview of 

the temporal precipitation pattern (Figure 4.7) is crucial for the interpretation of the hydrological 

processes occurring in the catchment. Figure 4.7 underlines the distinction of wet and dry seasons by 

showing the monthly precipitation patterns for the entire catchment. The rainy season starts in 

November/December and lasts until April—and in some years up to May (1961, 1967, and 1968). 

Alterations with bimodal and unimodal patterns are also visible, whereas some years show pronounced 

monthly precipitation peaks in December or January, representing the irregular occurrence of the small 

rainy season (1961, 1967, and 1970) (Koutsouris et al., 2016). In March 1963, which was an exceptionally 

wet period over all East Africa (Nicholson, 1996), precipitation exceeded 400 mm. 
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Figure 4.7  Matrix illustrating the mean monthly areal precipitation (mm) patterns within the simulation 

period (1958–1970) for the Kilombero Catchment. 

 

The boxplots in Figure 4.8 illustrate the high (a) interannual and (b) intraannual variability of 

discharge. The clear distinction between the wet and dry seasons is obvious from the boxplots in Figure 

4.8b. The seasonal distinction of the overall discharge is deconstructed into the single water balance 

components on a monthly timescale in Figure 4.9. Lateral and surface runoff only occur in the rainy 

season, with peaks in March and April, whereas the more pronounced baseflow peaks in April and May 

result in the highest water yield in April. Evapotranspiration and potential evapotranspiration are almost 

identical from February to May, but differ by more than 150 mm in September and October, indicating a 

water deficit in the dry season. The potential evapotranspiration more or less follows an antithetical 

pattern compared to the precipitation pattern (Figure 4.9). 
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Figure 4.8 Boxplots for discharge on (a) daily and (b) monthly resolution, emphasizing the variation of 

discharge on different timescales and the distinction of wet and dry season. 
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Figure 4.9  Monthly averages of the water balance components for the Kilombero Catchment within the 

simulation period (1958–1970). 

 

Figure 4.10 illustrates the influence of single water balance components on the subcatchment scale. 

The spatial pattern of the water yield fluxes (Figure 4.10 a–d) mirrors the general picture of the 

precipitation, by showing a high contribution from the mountainous subcatchments compared to the 

contribution of water from the valley. The patterns of surface (Figure 4.10a), lateral (Figure 4.10b), and 

groundwater (Figure 4.10c) contribution also show contradictory patterns in several subcatchments. 

Surface runoff and lateral flow show some discharge hotspots, which mainly occur in steep areas with 

clayey (surface runoff) or sandy (lateral flow) topsoils. Figure 4.10d shows the overall water yield, 

underlining the contribution of water from the mountains to the valley, especially from the northern 

Udzungwa Mountains and the Mahenge Highlands. Vice versa, the evapotranspiration and potential 

evapotranspiration patterns exhibit high values in the valley compared to the mountainous parts of the 

catchment (Figure 4.10e, f). 



 

 

40 

 
Figure 4.10  Spatial mapping of mean annual values of (a) surface runoff contribution, (b) lateral flow 

contribution, (c) groundwater contribution, (d) the overall water yield, (e) actual 

evapotranspiration, and (f) the potential evapotranspiration for the subcatchments. 

 

4.3.3. Land Use and Land Cover Changes and their Impact on Water Resources 

Figure 4.11 shows the percentage shifts among the LULC classes from the 1970s up to 2014, as 

opposed to the classes’ spatial representation shown in Figure 4.3. In this case study, most parts of the 

wetland are classified as grassland and cropland, as it is a seasonally flooded grassland prone to 

conversions into cropland (Figure 4.3a–d). Noteworthy is the high share of savanna and grassland, as 

well as the shift among savanna, grassland, and agriculture, besides forest-mixed and forest-evergreen, 

which is mainly attributed to problems in the classification of the Landsat images. These 

misclassifications are mainly caused by spectral class similarity and lack of suitable data, especially in 

early dates. Nevertheless, the share of agricultural land increased significantly from 2004 to 2014, which 

is also reported by other studies (Leemhuis et al., 2017; Mombo et al., 2011). The fringe of the wetland 

and the western part of the catchment (Figure 4.3) are most strongly affected by an increase in 

agricultural land. 
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Figure 4.11  Percentage share of the land use/land cover (LULC) classes within the Kilombero Catchment from 

the 1970s up to 2014. 

 

Figure 4.12 shows the variations of surface runoff (Figure 4.12a), groundwater contribution (Figure 

4.12b), evapotranspiration (Figure 4.12c), and the overall water yield (Figure 4.12d) on subcatchment 

scale between the LULC setup from the 1970s to 2014. Evapotranspiration and groundwater contribution 

show decreasing trends in the floodplain, where grassland is turned into cropland and the share of water 

on the total land cover is reduced (Figure 4.3 and Figure 4.11). One subcatchment in the western part, 

where grassland was converted into either agricultural land or barren, indicates a strong decrease in 

groundwater contribution (Figure 4.3 and Figure 4.12b). This decrease in groundwater contribution 

coincides with higher evapotranspiration (agricultural land) and higher surface runoff (barren). However, 

many subcatchments in the mountainous parts show increasing groundwater contributions and water 

losses due to evapotranspiration. These higher values are mainly occurring in subcatchments with a 

rising share of evergreen forests or savanna in 2014. Between 1970 and 2014, in areas where savanna 

was converted into grassland or agricultural land, the development of surface runoff showed an inverted 

development, with increasing surface runoff amounts. This happened mainly in the eastern parts of the 

catchment and on the fringe of the floodplain (Figure 4.12a). The general picture indicates a decrease of 

water yield (Figure 4.12d) in the Kilombero Valley related to the lower evapotranspiration values, 

whereas some subcatchments in the Udzungwa Mountains and the Mahenge Highlands show increasing 

water contribution, which corresponds to the spatial pattern of the increased groundwater contribution 

(Figure 4.12b). 
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Figure 4.12  Average shifts in water balance components (in mm) for the simulation period, comparing 

changes from the 1970s land use map with the 2014 land use map. (a) Deviations in surface 

runoff, (b) groundwater contribution, (c) evapotranspiration, and (d) the overall water yield are 

displayed. 

 

Figure 4.13 shows the average hydrological impacts within the simulation period for the Kilombero 

Catchment, considering another temporal scale that shows the monthly changes for the single water 

balance components. Except for increasing groundwater flow and changes in evapotranspiration (Figure 

4.13b), the monthly changes within the entire catchment are rather small. The shift from 2004 to 2014 

(Figure 4.13d) seems to be negligible. However, Figure 4.14 shows more pronounced the effects of the 

LULCC from 2004 to 2014 on the subcatchment scale. Surface runoff contribution is increasing in almost 

the entire valley and in the eastern Udzungwa Mountains by up to 10 mm (Figure 4.14a), which is 23% 

higher surface runoff compared to the average catchment surface runoff (Table 4.6). This is due to 

accelerated conversion into agricultural land. In contrast, the groundwater contribution is decreasing by 

up to 20 mm within this area, reinforcing changes in the system’s hydrology (Figure 4.14b). The overall 

water yield patterns (Figure 4.14d) are more complex, with decreasing water fluxes in subcatchments 

prone to anthropogenic activities in the fringe of the wetland, due to the lower groundwater 

contribution. Hence, water yield in the upper western part of the catchment is increasing, because of the 

increasing surface runoff and the conversions into barren and cropland. Evapotranspiration (Figure 

4.14c) is slightly increasing within the wetland and in most of the mountainous subcatchments, resulting 

in a loss of water for the catchment. Only the fringe of the wetland shows coherent lower 

evapotranspiration values. The changes from 2004 to 2014 were exemplarily chosen to be shown here, 
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as their pattern of change with the distinct conversion into cropland (Figure 4.11) is the most probable 

future land use pattern for the Kilombero Catchment. 

 
Figure 4.13  Shifts in water balance components (in mm) for the entire catchment on a monthly time scale 

running the model with four different land use maps. (a) Shows the water balance of the 1970s 

land use map run, (b) displays a comparison of the 1970s map with the land use of 1994, (c) the 

changes from 1994 to 2004, and (d) illustrates the shifts from 2004 to 2014. All inputs except for 

land use maps are not modified. 
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Figure 4.14  Average shifts in water balance components (in mm) for the simulation period, while comparing 

changes from the 2004 land use map with the 2014 land use map. (a) Changes in surface runoff, 

(b) groundwater contribution, (c) evapotranspiration, and (d) the overall water yield. 

 

4.4. Discussion 

4.4.1. Model Evaluation and Spatio-Temporal Analysis 

Despite the low number of precipitation stations, the spatio-temporal precipitation pattern of the 

catchment is represented quite well with the implementation of elevation bands, which was crucial due 

to the high altitude of the precipitation stations in the western part and the low altitude of the stations 

in the eastern part of the catchment (Figure 4.6). A comparison of global precipitation datasets (GPDS) 

has already been published by Koutsouris et al. (Koutsouris et al., 2016), visualising the average spatial 

precipitation distribution for the Kilombero Catchment among frequently-utilized GPDS. As a result of 

their study, Koutsouris et al. (Koutsouris et al., 2016) showed large differences in the spatial precipitation 

patterns of eight different products in some areas within the catchment. What all GPDS have in common 

is the relatively high rainfall in the Udzungwa Mountains and Mahenge Highlands, which was also the 

case for the precipitation stations utilized in this study, due to the orographic correction factor 

implemented with the elevation bands (Figure 4.6). It should not be ignored that most of the GPDS 

estimated relatively high precipitation amounts for the southwestern part of the catchment, which 

contradicts with station data available within this study. However, it should be noted that the study of 

Koutsouris et al. (Koutsouris et al., 2016) applied satellite precipitation estimates that were not 

operational during our period of investigation, whereas our utilized precipitation stations stopped being 
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functional before the onset of the satellite products. This temporal mismatch aggravated further 

comparisons among the GPDS and station data, and we concentrated on the general spatial patterns of 

precipitation. Moreover, the GPDS pattern for the southwestern region can just be altered by ignoring all 

three available precipitation stations in this area. This is also not a suitable option, keeping in mind the 

generally high uncertainty with regard to precipitation patterns in that region, according to the GPDS, 

which has already been proven by Koutsouris et al. (Koutsouris et al., 2016). For example, the difference 

between the station data and the patterns of the GPDS in the southwestern catchment area is still 

smaller than the differences between certain GPDS, like the Global Precipitation and Climatology Center 

v6 data set (GPCC) (Becker et al., 2013) and the Modern Era Retrospective-Analysis for Research and 

Applications (MERRA) (Rienecker et al., 2011). These both show opposing results when comparing 

precipitation patterns from the Mahenge Highlands and the Udzungwa Mountains (Koutsouris et al., 

2016), and therefore much larger differences than the station data and the general picture of the GPDS 

in the southwestern Kilombero Catchment. Thus, in mountainous tropical regions, with persistent cloud 

coverage, an understanding of the strengths and limitations of remote sensing products are a 

prerequisite for an adequate application (Munishi-Kongo, 2013). In spite of these uncertainties, large-

scale precipitation patterns are captured quite well with remote sensing products (Adjei et al., 2014; 

Mashingia et al., 2014). 

The hydrograph (Figure 4.4), the flow duration curve (Figure 4.5), and the statistical model 

performance (Table 4.5) all indicate a good to very good performance of the SWAT model for the 

simulation period (Moriasi et al., 2015). However, some peaks are not captured well, and for some years 

the discharge is overestimated (1959, 1961 in Figure 4.4), which leads to the slightly lower NSE (Table 

4.5) compared to the other evaluation criteria, because of the high sensitivity of the NSE to peaks 

(Legates and McCabe Jr., 1999). For the model setup, this study followed the procedure and calibration 

techniques given by Arnold et al. (Arnold et al., 2012b) and Abbaspour et al. (Abbaspour et al., 2015), by 

keeping the model parametrization within the requirements of parsimony and robustness (Troch et al., 

2013). Although the number of parameters is quite large compared to other model applications in the 

tropics (Yira et al., 2016), it is still in the range of similar applications of the SWAT model under tropical 

conditions (Bossa et al., 2012; Mango et al., 2011; Ndomba et al., 2008; Strauch and Volk, 2013). Five out 

of the seven most sensitive parameters are related to groundwater (Table 4.4), which underlines the 

importance of baseflow for the catchments water yield. These parameters are typical parameters used in 

SWAT to calibrate baseflow, which was also demonstrated in a meta study by Arnold et al. (Arnold et al., 

2012b). In conclusion, these parameters mainly control the occurrence (GWQMN), recession (ALPHA_BF, 

GW_DELAY), and the vertical movement of groundwater (GW_REVAP, RCHRG_DP), and were calibrated 

within the default ranges given by SWAT-CUP. The relevance of baseflow in the Kilombero Catchment 

was already highlighted by Burghof et al. (Burghof et al., 2017). Figure 4.9 illustrates that baseflow 

contributes nearly 100% of the water yield from June to November on the catchment scale. 

Furthermore, Gabiri et al. (Gabiri et al., 2018) and Burghof et al. (Burghof, 2017) showed that the depth 

to the groundwater table is closer to the surface at the fringe of the floodplain compared to the riparian 

zone, due to the high influence of baseflow contribution from the mountains, especially in the dry 

season. This shallow groundwater affects plant growth patterns and agricultural activities within the 

valley, and transects from the river to the fringe with year-round water availability for deeply rooted 

plants (1–2 m) in the fringe of the floodplain (Gabiri et al., 2018). With regard to water management and 
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agricultural utilization of the floodplain (Environmental Resources Management, 2013), the findings of 

this research combined with the aforementioned information on groundwater contribution (Burghof et 

al., 2017; Gabiri et al., 2018) might raise awareness for the importance of the upland catchment, which is 

closely linked to the wetland system. This linkage is represented by the already highlighted influence of 

year-round groundwater contribution from the higher elevations into the valley bottom. Model results 

show that groundwater contribution is virtually the only water source from June to November (Figure 

4.9), and this groundwater is generated in the upper catchment (Figure 4.10d), whereas the wetland 

itself is prone to high evapotranspiration (Figure 4.10e) and contributes much less water to the stream 

(Figure 4.10d). 

 

4.4.2. Impact of Land Use and Land Cover Change 

Despite different technologies, there is high congruence between the Landsat 5, 7, and 8 sensors, 

which have the same spatial resolution of 30 m. Their band definitions differ only slightly for most bands, 

and the effect has been found to be negligible (Vogelmann et al., 2016). A stronger technical and 

methodological difference exists between the 1970s time step, using the Landsat pre-collection Level 1 

at 60 m spatial resolution, and using a conventional mosaicking method due to the lack of a sufficient 

number of images. The post-classification comparison (PCC) method was used for detecting change, as 

methodological and technological inter-classification differences are less important. More crucial is the 

respective classification accuracy, as with PCC errors are propagated (Hecheltjen et al., 2014). For the 

Kilombero Catchment, classes more prone to error were the natural classes: savanna, range grasses, 

wetland, and forest-mixed. Some confusion also exists among savanna, range grasses, and agriculture; 

however, our PCC results are mostly logically consistent and conform to historical maps. The conversion 

of natural classes to agriculture results in rather strong spectral changes, whereas the modification of 

forests by single tree extraction cannot be adequately resolved, neither with PCC nor with methods 

based on spectral bands. 

Due to the aforementioned circumstances, the conversion of forested areas and savanna in the 

upper catchment might significantly influence water quantity and the year-round water contribution to 

the stream. Deforestation activities in the entire catchment are already occurring (Leemhuis et al., 2017; 

Wilson et al., 2017), and may lead to a shift from slow groundwater contribution to fast surface water 

contribution from the uplands (Lal, 1997). The increased share of cropland, which results in a reduced 

retention capacity, will influence the flow regime, with declining low flows and aggravated flooding. This 

is especially important, as vulnerability to floods and droughts is already highlighted as a challenge for 

the floodplain area in the Integrated Water Resources Management and Development Plan (IWRMDP) 

(WREM International Inc., 2013). The conversion of forests and savanna into crop- and grassland and its 

subsequent hydrological impacts will aggravate this vulnerability. These relationships are visualized in 

Figure 4.13 and Figure 4.14. While interpreting Figure 4.13, one has to keep in mind that complex large 

river basins like the Kilombero could conceal small-scale effects (Wilk and Hughes, 2002), as already 

shown by Wagner et al. (Wagner, 2013). Furthermore, this figure illustrates monthly averages of a 13-

year simulation period, implying additional concealing effects and a too-broad time scale to account for 

daily events. Following the approach of Wagner et al. (Wagner, 2013), Figure 4.14 shows the impacts on 

subcatchment scale, with increasing surface runoff due to anthropogenic activities. The decreasing 
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evapotranspiration at the fringe of the floodplain (Figure 4.14c) can be attributed to the lower 

evapotranspiration of the agricultural land. For the envisioned large-scale rice schemes of the SAGCOT 

plans, the floodplain could be modified into rice instead of agricultural land use, which will influence 

evapotranspiration significantly. Figure 4.14generally shows a complex picture with regard to changes in 

water balance components (see section 3.3). This complex picture fosters the concealing effects of the 

large catchment. Furthermore, the different results from Figure 4.13 and Figure 4.14, as well as the 

temporal changes in water balance components (Figure 4.9) underline the scale dependency of the 

hydrological processes in both space and time within the Kilombero Catchment, and therefore the need 

to consider various spatio-temporal scales for water management plans. 

Apart from these scale effects, LULCC within the valley itself in relation to the implementation of a 

growth corridor are far from being negligible concerning water quantity. The especially high contribution 

of groundwater fluxes from the upper catchment throughout the whole year is important for the 

wetland, its vegetation, and also for the agricultural activities and the attached food security. The 

implicated conversion from grassland to cropland in the growth corridor (Leemhuis et al., 2017) 

additionally affects water quality negatively, which is another important aspect when investigating 

wetlands. Regarding the transport of sediments, nutrients, pesticides, and bacteria, data availability is 

insufficient. Nevertheless, this topic could be interesting for future investigations, especially with regard 

to the planned intensification of agricultural activities (Environmental Resources Management, 2013). 

These increased agricultural activities potentially result in economic benefits, consequently followed by 

increasing population through demographic growths and migration. This increasing population might 

lead to further encroachment of the uplands, and therefore increased pressure on savanna as well as 

upland forests, which will foster the aforementioned changes with regard to water resources. 

Considering these circumstances, the long-term effects might therefore imply increasing surface runoff 

contributions due to upland deforestation, and consequently lower retention potentials for flood 

mitigation in the rainy season, as well as decreased low flow supply in the dry season. Another aspect 

that needs more investigation from social science perspective, with regard to the planned large-scale 

utilization of the valley, are rising land use conflicts among farmers and pastoralists, which are often 

caused by a lack of sufficient pasture or water supplies (Benjaminsen et al., 2009). 

According to the IWRMDP, significant groundwater resources exist within the northeastern part of 

the Ramsar site (Kibasila Wetland). These groundwater resources are seen as a potential source for 

irrigation, although the overall potential of this aquifer is not yet explored and the implications on 

surface-groundwater interactions are uncertain (WREM International Inc., 2013). However, for some 

areas, a moderately low hydraulic conductivity towards the riparian zone has already been investigated 

(Bonarius, 1975; Gabiri et al., 2018). For a sustainable use of water resources in the Kilombero 

Catchment, future research should focus on the ongoing responses to anthropogenic impacts like land 

cover conversion and the impact of climate change, as well as management impacts, such as the 

construction of dams or the intensified utilization of nutrients and pesticides. 
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4.5. Conclusions 

A combination of local discharge and precipitation data, combined with multi-temporal Landsat 

images and freely available geo datasets, allowed a detailed and distributed analysis of the hydrological 

system of a topographical complex East African catchment. This is the first study with distributed 

information on the water balance in Kilombero Catchment, which is strongly affected by LULCC and will 

be further affected by climate change and more pronounced LULCC in the near future. As it also 

comprises a Ramsar site, many interests collide within the catchment. They need to be harmonized by 

sustainable water management, and therefore, well-informed decisions are needed. This study showed 

the scale dependency of water resources in the Kilombero Catchment and the need for distributed 

modeling. It was demonstrated that the wetland is severely dependent on mountainous water resources 

and year-round groundwater contribution. Therefore, we emphasize the necessity of protecting upland 

forests as one important factor to ensure a perennial water supply for the valley bottom, its embedded 

wetland, and the inherent ecosystem services provided by both the wetland and the upland forests. So 

far, LULCC occur predominantly within the Kilombero Valley, and has had rather local effects on the 

water balance components over the past years. At the same time, the mountainous areas that are the 

most important source of groundwater experienced much less LULCC. For future management of the 

Kilombero Catchment, it will be important to prevent these upland areas from extensive LULCC, in order 

to sustain water availability in the wetland. Apart from this case study, this article might serve as an 

example of how to utilize the available historic precipitation (Funk et al., 2015a) and discharge data 

(Tang and Oki, 2016), and how to combine them with historic climate model runs, global soil data, and 

LULC data gathered from earth observation images for meso- to large-scale applications, especially in 

data-sparse regions like Sub-Saharan Africa. 
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5. Impact of Climate Change on Water Resources in the Kilombero Catchment in 

Tanzania 

 

This chapter has been published as: Näschen, K., Diekkrüger, B., Leemhuis, C., Seregina, L.S. und R. van 

der Linden (2019): Impact of Climate Change on Water Resources in the Kilombero Catchment in 

Tanzania. Water 11, 859. doi:10.3390/W11040859. 

https://www.mdpi.com/2073-4441/11/4/859  

 

Abstract: This article illustrates the impact of potential future climate scenarios on water quantity in 

time and space for an East African floodplain catchment surrounded by mountainous areas. In East 

Africa, agricultural intensification is shifting from upland cultivation into the wetlands due to year-round 

water availability and fertile soils. These advantageous agricultural conditions might be hampered 

through climate change impacts. Additionally, water-related risks, like droughts and flooding events, are 

likely to increase. Hence, this study investigates future climate patterns and their impact on water 

resources in one production cluster in Tanzania. To account for these changes, a regional climate model 

ensemble of the Coordinated Regional Downscaling Experiment (CORDEX) Africa project was analyzed to 

investigate changes in climatic patterns until 2060, according to the RCP4.5 (representative 

concentration pathways) and RCP8.5 scenarios. The semi-distributed Soil and Water Assessment Tool 

(SWAT) was utilized to analyze the impacts on water resources according to all scenarios. Modeling 

results indicate increasing temperatures, especially in the hot dry season, intensifying the distinctive 

features of the dry and rainy season. This consequently aggravates hydrological extremes, such as more-

pronounced flooding and decreasing low flows. Overall, annual averages of water yield and surface 

runoff increase up to 61.6% and 67.8%, respectively, within the bias-corrected scenario simulations, 

compared to the historical simulations. However, changes in precipitation among the analyzed scenarios 

vary between −8.3% and +22.5% of the annual averages. Hydrological modeling results also show 

heterogeneous spatial patterns inside the catchment. These spatio-temporal patterns indicate the 

possibility of an aggravation for severe floods in wet seasons, as well as an increasing drought risk in dry 

seasons across the scenario simulations. Apart from that, the discharge peak, which is crucial for the 

flood recession agriculture in the floodplain, is likely to shift from April to May from the 2020s onwards.  

Keywords: SWAT model; climate change; scenario analysis; hydrology; return probabilities; 

hydrological extremes 

 

5.1. Introduction 

Wetlands in East Africa cover an area of approximately 180,000 km2 (Leemhuis et al., 2016; 

Stevenson and Frazier, 1999) and a share of about 10% of the land surface in Tanzania, although 

numbers vary regarding this (Amler et al., 2015). Nevertheless, the importance of wetlands in East Africa 

for the provision of numerous ecosystem services, ranging from the improvement of mental well-being 

(Heinkel, 2018) to water and climate regulation (Maltby and Acreman, 2011), is well proven. Yet, East 

African wetlands are endangered due to anthropogenic activities (Gardner and Finlayson, 2018). This 

pressure is driven by several push factors, such as population growth, degradation of upland soils, and 

https://www.mdpi.com/2073-4441/11/4/859
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increasing rainfall variability due to climate change. In contrast, wetlands have relatively fertile soils in 

combination with year-round water availability as pull factors for the conversion of wetlands into 

cropland (Behn et al., 2018; Beuel et al., 2016; Gabiri et al., 2017; Kirimi et al., 2018). This conversion in 

favor of food production consequently has negative trade-off effects on other ecosystem services. 

Policies attempting to protect wetlands have often been weakly enforced (Mombo et al., 2011). 

Furthermore, the government of Tanzania introduced the “Kilimo Kwanza” (agriculture first), prioritizing 

agricultural development (Munishi-Kongo, 2013), especially in designated growth corridors. In Tanzania, 

the SAGCOT (Southern Agricultural Growth Corridor of Tanzania) growth corridor plays a key role. It is 

composed of several clusters, including the Kilombero cluster, which contains an endangered Ramsar 

site with considerable biodiversity resources under a condition of high stress (Wilson et al., 2017). The 

most important cash crop is, and will be, according to the plans of SAGCOT, rice (Environmental 

Resources Management, 2013). Apart from potential ecological trade-offs due to large-scale rice 

production and outgrower schemes in the Kilombero area (Wilson et al., 2017), analysis of the 

availability of water resources is inevitable to sustainably manage the highly water-dependent rice 

schemes. Although some research was done on water resources (Burghof, 2017; Daniel et al., 2017; 

Gabiri et al., 2018; Koutsouris et al., 2016; Leemhuis et al., 2017; Lyon et al., 2015; Näschen et al., 2018; 

Yawson et al., 2005), the plans of SAGCOT outline future scenarios and demand wise planning, especially 

with regard to a changing and highly variable climate (Koutsouris, 2017; Seregina et al., 2018). 

This work tries to bridge this research gap by simulating possible future climate scenarios with 

regard to water availability according to the current knowledge (regional) of climate change and 

hydrological modeling. Hydrological modeling in combination with climate change scenarios allows 

assessment of potential impacts of climate change on water resources to enable wise planning in 

agricultural development, as in the SAGCOT corridor, as well as for long term infrastructure projects, 

such as the planned dam at Stiegler’s Gorge (Duvail et al., 2014), which relies to 62% on water from the 

Kilombero Catchment (Wilson et al., 2017). 

There are numerous studies worldwide on the effects of climate change on hydrology. For example, 

Schneider et al. (Schneider et al., 2013) analyzed large scale impacts of climate change on flow regimes in 

Europe and found considerable changes in specific regions. The Mediterranean region will become drier 

due to less precipitation, while the boreal zone of northern Europe will become drier due to rising 

temperatures and reduced snowmelt. Nevertheless, flood peaks might be aggravated in some northern 

European regions due to seasonal precipitation and temperature changes. An aggravation of seasonality 

in streamflow was also observed for two (out of eleven) large river basins in Europe and Australia by 

Eisner et al. (Eisner et al., 2017). Changes in hydrology are also reported for the western United States 

due to changing precipitation patterns and anthropogenically-induced impacts, leading to water 

shortages and aggravated seasonality (Barnett et al., 2008, 2005). Yira et al. (Yira et al., 2017) showed 

that opposing discharge trends might result from the impact analysis from six climate models in a 

catchment in West Africa. The findings of these exemplary studies demonstrate the potential impact of 

climate change on hydrology through the alteration of streamflow amount and seasonality in a global 

context and emphasizes the nonlinear rainfall-runoff behavior, although the example’s concrete results 

are site specific (Feng et al., 2019). Moreover, uncertainty and variability in climate projections, and 

therefore the impacts on hydrology, rise with the time horizon (Gelfan et al., 2017). 
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Several studies have also analyzed climate change in East Africa and specifically in Tanzania (Lalika et 

al., 2015; Natkhin et al., 2015; Seregina et al., 2018), but the implications for water resources due to 

climate change on a quantitative level are less well explored, particularly for the Kilombero Catchment 

and its surroundings. We hypothesize that the outcome of the study is helpful for water and agricultural 

management in the Kilombero Valley and the projections of the inflow to the planned Stiegler`s Gorge 

hydropower dam project. 

The main objectives arising from this contextual background are the following: 

(i) Assess the possible climatic future of the Kilombero Catchment with an emphasis on 

precipitation patterns and temperature variations; 

(ii) Estimate the impact of these climatic changes on hydrology by analyzing temporal and 

spatial changes in the water balance; 

(iii) Analyze the impact of climate change on hydrological risks, such as floods and droughts, 

through analyzing extreme flow situations. 

These objectives are achieved by applying the well-proven hydrological model SWAT (Soil and Water 

Assessment Tool) in combination with an ensemble of six regional climate model simulations from the 

Coordinated Regional Downscaling Experiment (CORDEX) Africa project (Gutowski et al., 2016). These 

model simulations, and furthermore different representative concentration pathways (RCPs), were 

utilized in the hydrological SWAT model to account for uncertainty with regard to future developments 

(Moss et al., 2010). The six regional climate models were bias-corrected using local measurements to 

adequately represent the conditions within the catchment. The results from the SWAT model runs were 

analyzed with regard to general hydroclimatic patterns and extreme values, concerning peak discharge 

as well as low flows. 

 

5.2. Materials and Methods 

5.2.1. Study Site 

The Kilombero Catchment is part of the Rufiji basin, which forms the largest river basin in Tanzania 

(Figure 5.1). The catchment is situated in the Morogoro region in southern Tanzania and comprises 

40,240 km2 until its confluence with the Rufiji River. The Udzungwa Mountains in the north, with 

elevation ranging up to 2500 m, as well as the Mbarika Mountains and the Mahenge Highlands in the 

south, demarcate the border of the catchment. The Kilombero River itself receives perennial inflow 

mainly from the Udzungwa Mountains forming a seasonal floodplain at around 200 m above sea level 

(Figure 5.1). The floodplain itself covers an area of 7967 km2 (Mombo et al., 2011), representing the 

biggest freshwater wetland in East Africa below 300 m above sea level (Mombo et al., 2011), and is listed 

as an endangered Ramsar site (Wilson et al., 2017). Intensive mountainous rainfall in combination with 

year-round groundwater supply (Näschen et al., 2018) ensure a contribution of 62% of the annual runoff 

volume of the Rufiji River, although the Kilombero Catchment covers only 23% of the drainage area 

(Wilson et al., 2017). 

The climate is sub-humid tropical (Wilson et al., 2017) with annual mean temperatures between 24 

°C in the valley and about 17 °C in the higher altitudes (Wilson et al., 2017). The areal annual 

precipitation amounts are between 1200 and 1400 mm (Koutsouris et al., 2016), with a high spatio-
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temporal variability. The mountainous area receives up to 2100 mm precipitation, and therefore up to 

1000 mm more precipitation compared to the valley (Näschen et al., 2018; Wilson et al., 2017). The 

temporal distribution of the annual precipitation is divided into a dry season from June to November and 

a rainy season from November to May. Additionally, the rainy season can be split into Short Rains from 

November to January and Long Rains from March to May (Wilson et al., 2017). However, the interannual 

variability is high (Nicholson, 2000) and the reliability of the Short Rains is not as pronounced as for the 

Long Rains (Näschen et al., 2018). Given that some parts of the catchment lack the Short Rains, the 

whole catchment can be characterized by a unimodal to bimodal rainfall distribution, depending on the 

year and the specific area (Kangalawe and Liwenga, 2005; Koutsouris et al., 2016). The main drivers of 

these rainfall patterns are the Intertropical Convergence Zone (ITCZ) (Camberlin and Philippon, 2002) 

and remote forcings, such as the Walker circulation and the Indian Ocean zonal mode (Nicholson, 2017). 

However, local and regional factors, such as topography and lakes, additionally influence the seasonal 

rainfall cycle (Seregina et al., 2018). When assessing the possible climatic future of the Kilombero 

Catchment, it should be noted that rainfall patterns all over East Africa are already changing at present. 

The long rains, which are influenced by multiple factors, such as local geographic factors, remote 

forcings, and regional circulations, have been declining in recent decades in eastern Africa, whereas 

droughts are becoming longer and increasingly stretch into the rainy seasons. Nevertheless, interannual 

climate variability overall for East Africa has increased in the last decades, resulting in drought periods 

but also unusual heavy flood events (Nicholson, 2017). 

The Harmonized World Soil Database (HWSD) (Dewitte et al., 2013) describes the dominating soils in 

the valley as Fluvisols and the uplands are predominantly covered by Acrisols and Nitisols (Figure 5.2). In 

the high altitudes of the western parts of the catchment Lixisols dominate, whereas in the lower 

altitudes of the eastern catchment mainly Cambisols are found, according to the HWSD. 

The upper catchment is dominated mainly by natural vegetation, such as tropical rainforests, 

bushlands, and wooded grasslands, with some patches of agricultural fields (Zemandin et al., 2011). The 

valley contains the seasonal floodplain (Figure 5.1), which is characterized by rainfed lowland rice 

cultivation during the rainy season, whereas agriculturally undisturbed areas are dominated by 

grassland, such as Hyparrhenia spp., Panicum fluviicola Steud., and Phragmites mauritianus Kunth (Behn 

et al., 2018). The fringes of the floodplain successively change from grassland to Miombo woodland 

towards the upper catchment. 

Recent developments demonstrate a strong increase in population, and therefore agricultural land in 

the area, whereas grassland, savanna, and forested land use are declining, especially at the fringe of the 

wetland (Leemhuis et al., 2017; Näschen et al., 2018; Wilson et al., 2017). These anthropogenically 

triggered land use changes in combination with ongoing climate change might alter the hydrological 

system of the catchment and also affect downstream riparians. Accordingly, small-scale farmers’ food 

production envisioned in the planned large-scale and outgrower rice schemes of the SAGCOT growth 

corridor (Environmental Resources Management, 2013), as well as the planned dam at Stiegler’s Gorge 

(Duvail et al., 2014), might presumably be influenced by changing water quantity and quality. 
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Figure 5.1  Overview map of the study area, including locations of available precipitation and discharge 

stations (Swero), as well as the 0.44° Coordinated Regional Downscaling Experiment (CORDEX) 

Africa grid. The estimated floodplain area is based on visual interpretation of Landsat images 

(modified after (Näschen et al., 2018)). 
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Figure 5.2  Soil map (a) and land use and land cover (LULC) map (b) of the study area. The distribution of soils 

is derived from the Harmonized World Soil Database (HWSD) (Dewitte et al., 2013) and the LULC 

map shows the LULC distribution derived from Landsat Level 1 images from 1970 (modified 

(Näschen et al., 2018) and Leemhuis et al. (Leemhuis et al., 2017)). 

 

5.2.2. Input Data 

This study is based on the study by Näschen et al. (Näschen et al., 2018) and follows the same 

approach as Leemhuis et al. (Leemhuis et al., 2017) to overcome data scarcity in the region through the 

application of freely available geo datasets in combination with data from local partners in Tanzania to 

run the hydrological model. The bottleneck to calibrate and validate the hydrological model is the 

discharge data for the Kilombero Catchment. Adequate discharge time series at the Swero station close 

to the main outlet of the catchment (Figure 5.1) are only available for the period of 1958–1970 (Table 

5.1), due to the logistic challenges of the local authority Rufiji Basin Water Board (RBWB) to maintain the 

hydrometeorological monitoring network (Munishi-Kongo, 2013). 

To gather a realistic representation of the LULC for this period, a mosaic of Landsat Level 1 images 

from the 1970s was classified with a supervised Random Forest classification (Breiman, 2001; Näschen et 

al., 2018). Images from the whole decade were utilized due to a lack of suitable images within one single 

year. 

Satellite rainfall estimates could not be applied in this study, due to the temporal mismatch of 

available discharge data (up to 1970) and satellite estimates. However, a combination of precipitation 

stations (Figure 5.1, Table 5.1) and modelled climate parameters from the CORDEX Africa project (Figure 

5.1, Table 5.1) with a spatial resolution of 0.44° were utilized for calibration and validation of the model.  

For the future climate scenarios, Regional Climate Models (RCMs) that were forced with different 

Global Climate Models (GCMs; Table 5.2) were additionally bias-corrected for precipitation and 

temperature to adequately represent potential changes in future climate patterns based on available 
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data (further information in chapter 2.5). To complete the dataset for running the hydrological model, 

freely available datasets for the Digital Elevation Model (DEM) and the soil map (Table 5.1) were applied. 

 

Table 5.1 Overview of the applied datasets, their resolution, sources, and the required parameters in this 

study. 

Data Set Resolution/Scale Source Required Parameters 

Digital Elevation 
Model DEM 

90 m 
Shuttle Radar Topography 
Mission (SRTM) (Lehner et 
al., 2008) 

Topographical data 

Soil map 1 km 

Food and Agriculture 
Organization of the United 
Nations (FAO) (Dewitte et al., 
2013) 

Soil classes and physical 
properties 

Land use map 60 m (1970s) 
Landsat pre-Collection Level-
1 (United States Geological 
Survey (USGS), n.d.)  

Land cover and use classes 

Precipitation Daily (1958–1970) 

Personal communication: 
RBWB, University of Dar es 
Salaam (UDSM), Tanzania 
Meteorological Agency 
(TMA) 

Measured precipitation 

Climate Daily/0.44° (1951–2060) 

Coordinated Regional 
Downscaling Experiment 
(CORDEX) Africa (Gutowski et 
al., 2016) 

Temperature, humidity,  
solar radiation, wind speed, 
precipitation 

Discharge Daily (1958–1970) RBWB (RBWB, 2014) Discharge 

 

Table 5.2 Overview of the Regional Climate Models (RCMs), their driving Global Climate Models (GCMs), 

and the assigned naming for the model combination within this study. 

GCM RCM Institution URL 
In this study 
referred to as 

CanESM2 CanRCM4_r2 
Canadian Centre for Climate  
Modelling and Analysis (CCCma) 

http://climate-
modelling.canada.ca/ 

Model 1 

CanESM2 RCA4_v1 
Rossby Centre, Swedish  
Meteorological and Hydrological 
Institute (SMHI) 

https://esg-dn1.nsc.liu.se/ Model 2 

CNRM-CM5 CCLM4-8-17_v1 
Climate Limited-area Modelling 
Community (CLMcom) 

https://esg-dn1.nsc.liu.se/ Model 3 

EC-EARTH CCLM4-8-17_v1 
Climate Limited-area Modelling 
Community (CLMcom) 

https://esg-dn1.nsc.liu.se/ Model 4 

EC-EARTH RCA4_v1 
Rossby Centre, Swedish 
Meteorological and Hydrological 
Institute (SMHI) 

https://esg-dn1.nsc.liu.se/ Model 5 

MIROC5 RCA4_v1 
Rossby Centre, Swedish  
Meteorological and Hydrological 
Institute (SMHI) 

https://esg-dn1.nsc.liu.se/ Model 6 
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5.2.3. Model Description (SWAT Model) 

The SWAT model (Arnold et al., 1998) was selected in this study due to the fact that it is able to 

simulate hydrological processes continuously- and physically-based. These features are necessary to 

simulate impacts of climate change on water resources. Additionally, SWAT was already successfully 

calibrated and validated for the study area (Näschen et al., 2018). The model follows a semi-distributed 

approach by dividing the catchment into subcatchments (Figure 5.3) based on a threshold defined by the 

modeler. This threshold defines the minimum drainage area needed to generate a stream. In 

combination with the drainage patterns calculated from the DEM, the stream network is calculated and a 

subcatchment is assigned to each stream, or whenever two streams merge. In the next step, Hydrologic 

Response Units (HRU) divide the subcatchments into unique combinations of soil types, slope, and land 

use. Again the modeler has to set a minimum threshold on the absolute or relative area covered by the 

HRU to be included. In this study each soil type, slope class, or land use unit covering less than 10% of 

the area within the single subcatchments was neglected, while discretizing the subcatchments into 

HRUs. The model is divided into two parts. Firstly, a land phase considering all the processes from the 

arrival of a raindrop on the land surface until it enters the reach. From here the second phase starts, 

considering the routing and in-stream processes of water, sediments, nutrients, and organic chemicals. 

Hence, most of the hydrological processes in SWAT are calculated at the HRU level and the spatial 

locations of the HRUs within the subcatchments are not considered any more, but are calculated as a 

lumped sum of all single HRU calculations to efficiently account computationally the processes within a 

subcatchment. 

In general, the SWAT model solves the water balance equation for each HRU and sums up the HRU 

calculations for each subcatchment, while integrating climate station data at the subcatchment level. 

The single subcatchments are linked through channel processes, which calculate the movement of water 

from the spatial units. Figure 5.3 illustrates the most important processes calculated by SWAT. For some 

processes such as evapotranspiration or surface runoff, SWAT has several calculation options, but here 

only the applied methods to calculate the water balance are described. Precipitation is taken from single 

precipitation stations and is either intercepted by plants or hits the ground where it is divided into 

surface runoff or infiltration water by utilizing the SCS (Soil Conservation Service) curve number (Soil 

Conservation Service (ed.), 1972). As long as water is near or on the surface it might evaporate according 

to the atmospheric conditions (Monteith and Moss, 1977). Once water enters the soil it might move 

vertically following a storage routing technique based on physical soil parameters, or laterally by using a 

kinematic storage model (Sloan and Moore, 1984). If water percolates, it passes by the unsaturated zone 

and enters an unconfined aquifer, from where it either leaves as capillary rise due to water demand of 

the surface plants, or it moves laterally as return flow into the reach. A third option is to percolate 

further into the confined aquifer from where the water is treated as a discharge contributor to other 

catchments. A more detailed description on the theoretical background is given by Neitsch et al. (Neitsch 

et al., 2011) and all the relevant model parameters are described in detail by Arnold et al. (Arnold et al., 

2012a). 
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Figure 5.3  Catchment discretization and schematic overview of processes and storages simulated by the 

SWAT model. Applied methods to simulate evapotranspiration and water fluxes are shown in 

parentheses (modified after (Neitsch et al., 2011)). 

 

5.2.4. Model Setup and Evaluation (SWAT Model) 

The model was setup with ArcSWAT 2012 (revision 664). Basically, the catchment was divided into 

95 subcatchments consisting of 1086 HRUs. Five elevation bands (Näschen et al., 2018; Neitsch et al., 

2011) were integrated into the model due to the complex topography in combination with the sparse 

distribution of precipitation stations (Figure 5.1). 

The model was calibrated and validated using SWAT-CUP (version 5.1.6.2) and the SUFI-2 algorithm 

(Abbaspour, 2013). Evaluation criteria were the coefficient of determination (R2; Equation 5.1)), the 

Nash-Sutcliffe efficiency (NSE; Equation 5.2)) and the Kling-Gupta efficiency (KGE; Equation 5.3)). R2 

ranged between 0 and 1 (perfect fit) and both NSE and KGE ranged from −∞ to 1 (perfect fit). In this 

study we focus on these three criteria, as they are well-known and provide a good assessment of the 

model. A full description of the model setup and evaluation procedure is given by Näschen et al., 2018 

(Näschen et al., 2018). 

R2 =
[∑ (𝑂𝑖 − 𝑂̅)(𝑆𝑖 − 𝑆̅)𝑛

𝑖=1 ]2

∑ (𝑂𝑖 − 𝑂̅)2 ∑ (𝑆𝑖 − 𝑆̅)2𝑛
𝑖=1

𝑛
𝑖=1

 (Equation 5.1) 

NSE = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2𝑁
𝑖=1

 (Equation 5.2) 
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KGE = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (Equation 5.3) 

Here n is the number of observations, 𝑂𝑖 and 𝑆𝑖 are the observed and simulated discharge values, 

respectively, and 𝑂̅ and 𝑆̅ are the mean of observed and simulated discharge values; r is the linear 

regression coefficient between observed and simulated data; α is the ratio of the standard deviation of 

simulated and observed data; β is the ratio of the means of simulated and observed data. 

 

5.2.5. Climate Change Scenarios and Bias-correction 

The simulations from six CORDEX Africa RCMs were used to quantify the influence of future changes 

in the regional climate on the hydrology in the Kilombero Catchment. The RCMs were selected to 

represent the range of possible changes in seasonal rainfall amounts. Additionally, for all models two 

different scenarios of the Representative Concentration Pathways (RCPs) were considered. RCP4.5 and 

RCP8.5 assume a radiative forcing of 4.5 and 8.5 W m−2 at the end of the twenty-first century in 

comparison to the preindustrial level in the middle of the 19th century, respectively. The radiative 

forcings result from different assumptions of changes in greenhouse gas concentrations. 

Systematic errors in RCM output require a comprehensive bias correction, which is based on an 

adjustment with respect to long-term observations. Constrained by the availability of adequate 

observation-based data, the bias correction could only be applied to minimum and maximum 

temperatures and rainfall. Due to different statistical properties and data availability, two different 

approaches were used for the bias correction of temperatures and rainfall. 

a. For the bias correction of minimum and maximum temperatures, the simple approach that 

was already used in a previous study (Näschen et al., 2018) was adopted. In this approach, 

temperatures from the ERA-Interim reanalysis (Dee et al., 2011) were used as reference. 

Using the differences in the mean annual cycles, which were calculated from the 11-day 

running means of individual years between observations and model data in the period 1979–

2005, model data was corrected towards observations. Due to the different representation 

of orography that results from the different horizontal resolutions of both datasets, i.e., 

0.75° for ERA-Interim and 0.44° for CORDEX Africa RCMs, the correction was carried out for 

700-hPa potential temperatures. After the correction, the RCM temperatures were 

transformed back to the initial level. 

b. Due to the non-linear statistical behavior of precipitation, a more comprehensive approach 

was needed for the bias correction of daily rainfall sums. All available data from seven 

stations in the Kilombero Catchment (Figure 5.1) in the historical period 1951–2005 were 

used as reference for an empirical quantile mapping approach. In this approach the 

cumulative distribution function (CDF) based on simulated precipitation is adjusted 

towards the observation-based CDF (Piani et al., 2010). The nearest CORDEX datagrid to the 

respective station was thereby utilized for the bias-correction. The usefulness of the 

distribution-independent quantile mapping method was demonstrated by various previous 

studies (Lafon et al., 2013; Themeßl et al., 2012; Yira et al., 2017). 
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Assuming that the detected bias between the times series of models and observations stays spatio-

temporally constant, the transfer functions found in a and b for the historical periods were applied to 

historical model data (1951–2005) and RCM projections (2006–2100).  

 

5.2.6. Flood Frequency and Low Flow Analysis 

A hydrological extreme value analysis was conducted for discharge simulated using bias-corrected 

RCM input to determine shifts in flood frequency and in low flows due to climatic changes. Therefore, 

the hydrological model was run with the historical bias-corrected RCM data for all six CORDEX Africa 

models (Table 5.2) from 1951 to 2005, as well as for the climatic projections based on the RCP 4.5 and 

RCP8.5 scenarios from 2010 to 2060. 

Subsequently, after the model simulations, the annual maximum discharge values of the simulation 

periods for the six historical simulations and the RCP scenarios were extracted for further statistical 

analysis with regard to flood frequencies, using the extRemes 2.0 package (Gilleland and Katz, 2016) in 

the statistical software R. The generalized extreme value (GEV, Equations 5.4 and 5.5) model covering 

Weibull, Fréchet, and Gumbel distributions was used in combination with the generalized maximum 

likelihood estimation (GMLE) method to estimate the return levels of flood events from 2-year return 

levels up to 100-year return levels. The return levels are utilized as a proxy for deviations in discharge 

due to climatic changes among the historical and the RCP scenarios later on. 

𝐹(𝑥) = 𝑒𝑥𝑝 [− {1 + 𝛾 (
𝑥 − 𝜇

𝛼
)}

−1/𝛾

] (Equation 5.4) 

where 𝛾 is the shape parameter, 𝜇  the location parameter, and 𝛼  the scale parameter of the 

probability distribution function with 𝛼 > 0 and (1 + 𝛾(𝑥 − 𝜇)/𝛼) > 0. If 𝛾 → 0, the function belongs to 

the Gumbel family and is as follows: 

𝐹(𝑥) = exp [−exp {− (
𝑥 − 𝜇

𝛼
)}] (Equation 5.5) 

For the low flow analysis, the Q90, being a widely-used index (Smakhtin, 2001; van Vliet et al., 2013), 

was used to estimate changes among the six models and the different RCP scenarios. The Q90 index is 

defined here as a daily discharge value, which is exceeded in 90% of the daily simulations. These 

simulations were performed on decadal timescales to account for the inherent uncertainties of the 

scenario simulations and to identify possible decadal trends. 

Additionally, the Q10 index was also calculated, which is defined here as a daily discharge value that 

is exceeded in 10% of the daily simulations to investigate the general flooding trend, additional to the 

annual maximum flooding approach based on the GEV model estimates described above. Q10 and Q90 

were calculated using the hydrostats package in R (Bond, 2018). The Q10 value was added to the flood 

frequency analysis because it is less sensitive to outliers, in contrast to the annual maximum value 

utilized in the GEV analysis (van Vliet et al., 2013). 
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5.3. Results 

5.3.1. Model Performance 

A detailed overview on the model performance is given by Näschen et al. (2018) (Näschen et al., 

2018). Nevertheless, the hydrograph for the calibration and validation period is shown in Figure 5.4 as an 

important indicator for the model performance. Furthermore, common hydrological statistical measures, 

such as R2, NSE and KGE, are provided for both periods (Equations 5.1–5.3, Figure 5.4). 

 
Figure 5.4  Hydrograph showing the observed and the simulated discharge for the calibration (1958–1965) 

and the validation period (1966–1970), separated by the dashed vertical line. Statistical measures 

are shown within the graph and refer to the coefficient of determination (R
2
, Equation 5.1), the 

Nash-Sutcliffe efficiency (NSE, Equation 5.2) and the Kling-Gupta efficiency (KGE, Equation 5.3). 

The values in the parentheses refer to the validation period (modified Figure after (Näschen et al., 

2018)). 

 

5.3.2. Bias-correction 

The bias-correction for all seven precipitation stations and the historic model runs for the six utilized 

regional climate models (Table 5.2) show very good results. Figure 5.5 shows the mean monthly 

precipitation for all stations and models within the period 1951–2005, with and without bias-correction. 

The deviation among non-bias-corrected data and the observed monthly precipitation is obvious, 

especially in the peak of the rainy season (March and April). Some stations indicate a shifting peak of the 

rainy season from April to March for all six RCMs (Figure 5.5c,d), in addition to these absolute deviations. 

Days with missing data were neglected in this analysis. In contrast to these strong deviations, Figure 

5.5h–n shows virtually no deviations at all for the mean monthly precipitation after bias-correction. 
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Furthermore, the exceedance probabilities for all stations and models were analyzed (Figure 5.6), 

demonstrating a good performance of the bias-correction with regard to the cumulative distribution of 

rainfall events. The ensemble mean of the six models is also shown here with a completely different 

distribution of the ranked rainfall events, revealing a high amount of rainfall events below 10 mm, but 

much less events with 10 mm or more rainfall, compared to all the single model results. However, the 

temporal distribution of the daily rainfall patterns still varies among the observed precipitation and each 

single CORDEX model, apart from this ranked illustration. 

 
Figure 5.5  Average monthly precipitation from 1951–2005 for the seven datagrids of CORDEX Africa before 

bias-correction in (a–g) and for the same stations after bias correction in (h–n). The lines 

representing the precipitation for the observed precipitation, as well as for models 1 to 5, are 

superimposed by the lines for model 6 due to their similar precipitation after bias correction (h–

n). Each graph shows the average monthly precipitation for all six models introduced in Table 5.2. 
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Figure 5.6  Exceedance probabilities for the seven utilized CORDEX Africa datagrids after bias-correction. 

Each graph shows the ranked precipitation for all six RCMs, their ensemble mean, and the 

observed precipitation at the corresponding datagrid (1951–2005). Missing values were neglected 

in this visualization. The lines representing the exceedance probabilities for the observed 

precipitation, as well as for models 1 to 5, are superimposed by the distribution of model 6 due to 

their similar exceedance probabilities after bias correction. 

 

A similar picture can be observed for the temperature before and after (Figure 5.7) bias-correction. 

The figure shows the mean monthly temperature for two of the 21 CORDEX datagrids (also see CORDEX 

datagrids in Figure 5.1 and 5.A1, 5.A2) and each graph illustrates the minimum (Tmin) and maximum 

(Tmax) temperature of the six regional climate models. Discrepancies among all models and stations for 

Tmin and Tmax are obvious in Figure 5.7a,b, while Figure 5.7c,d clearly show the strong impact of the 
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bias-correction on the mean monthly Tmin and Tmax. Only minor deviations occur in the months of April 

to June, which are negligible for the purpose of this study. The bias-corrected temperature data shows in 

general a drop in Tmin, starting with the Long Rains in March and April until the end of the rainy season 

in June and July. The average decrease during that time frame is about 5 °C (Table 5.3). From July 

onwards, Tmin constantly rises from about 14 °C up to 19 °C in November, and is stable henceforward 

until March and April again. In the dry season, Tmax increases by about 5 °C from July (23.8 °C) until 

November (29.3 °C) and the beginning of the Short Rains (Table 5.3). By then, Tmax drops again to about 

25°C on average until January and stays relatively constant between 24 and 25 °C until July (Table 5.3). 

 

 
Figure 5.7  Mean monthly minimum and maximum temperatures from 1979 to 2005 for two exemplary 

stations out of the 21 utilized CORDEX Africa datagrids before and after bias-correction. (a,b) 

Temperatures before bias correction. (c,d) The same stations after bias-correction. Each graph 

shows the average Tmin and Tmax monthly temperature for all six models introduced in Table 

5.2. (c,d) The last plotted lines from model 6 superimposed over the other models’ lines due to 

their similarity after bias correction. All 21 stations can be found in the appendix before (Figure 

5.A1) and after bias-correction (Figure 5.A2). 
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Table 5.3 Historical monthly average minimum (Tmin) and maximum temperature (Tmax) according to the 

bias-corrected RCM simulations (1979–2005). The given values represent the average of the 

monthly average Tmin and Tmax of all 21 utilized CORDEX Africa grids, respectively. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Tmin 19.2 19.1 19.2 18.5 16.4 14.3 14.0 14.6 15.9 17.7 19.0 19.5 
Tmax 25.4 25.4 24.8 24.3 24.5 23.9 23.8 25.2 27.6 29.0 29.3 27.2 

 

5.3.3. Climate Change Signal 

Two of the most important and commonly utilized climate parameters with regard to hydrological 

modeling of climate change impacts are precipitation and temperature. Figure 5.8 displays the climate 

change signal of both parameters for all six RCMs by comparing the bias-corrected historical model runs 

with the bias-corrected projections based on the RCP scenarios in a monthly time resolution. The 

temperature signal (Figure 5.8a) generally shows a clear trend of rising temperatures between 0.5 and 

2.5 °C, with the highest increase in August and September. Furthermore, the chart indicates a higher 

increase in the results based on the RCP8.5 projections, although model 1 and model 2, based on RCP4.5, 

simulate higher temperatures compared to several RCP8.5 based modeling results. Nevertheless, all 

model projections. except for model 6 in RCP8.5, show a constant increase of temperature throughout 

the year, whereas model 6 in RCP8.5 reveals an increase of less than 1 °C in January and the highest 

increase of about 2.5 °C in August and September, indicating the strong impact of the RCP scenarios on 

temperature in the dry season. 

Precipitation (Figure 5.8b) is projected to increase according to the mean change of precipitation of 

all models in the two RCP scenarios. The intra-annual precipitation pattern is unaffected in the dry 

season. The highest increase occurs in February with 157 mm (model 6, RCP8.5), whereas the highest 

decrease is −47 mm in April (model 2, RCP8.5). Although the precipitation changes within the rainy 

season appear more complex compared to the temperature signal, some patterns are clearly visible. The 

months of February and March receive additional rainfall in virtually all simulations except for model 2 

and 5 in RCP4.5, while the signal is much more diverse in January and April, where several models 

simulate decreasing rainfall. The months of May, November, and December can be seen as transition 

months with fewer changes in precipitation compared to the months of January to April. 
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Figure 5.8  Climate change signal among the bias-corrected historical model runs for (a) mean temperature 

(1979–2005) and the bias-corrected scenarios RCP4.5 and RCP8.5 (2010–2060), and (b) 

precipitation changes among the bias-corrected historical model runs (1951–2005) and the bias-

corrected scenarios RCP4.5 and RCP8.5 (2010–2060). All values represent the monthly spatial 

averaged temperature and precipitation for the given periods, respectively. 

 

5.3.4. Impacts of Climate Change on Water Resources 

5.3.4.1. General Trend Analysis 

The impact of the RCMs and the applied RCP scenarios on selected water balance components is 

shown in Table 5.4. The changes in precipitation indicate a dryer future according to models 2, 3, and 4, 

although there is a high variation with regard to these three RCMs and the two RCP scenarios, with 

deviations in precipitation from +22 to −109 mm per year. The projected wetter future is more 

consistent and pronounced with regard to models 1, 5, and 6, especially in the RCP8.5 scenario, with an 

annual average increase of up to 302 mm in model 6. Also, the ensemble mean scenario projects 68 mm 

(RCP4.5) or 88 mm additional rainfall in both RCP scenarios. The actual evapotranspiration ET0 and the 

water yield are also closely linked to the precipitation trends, including the surface runoff (Table 5.4). 

Hence, the trends are similar; nevertheless, the magnitude differs and is in generally more pronounced 

for changes in water yield in contrast to changes in ET0. The potential evapotranspiration ETp is 

increasing in all RCMs by 43 mm up to 136 mm. 
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Table 5.4 Historical annual average precipitation according to the bias-corrected RCM simulations (1951–

2005) and the absolute and relative changes of precipitation, and related impacts on selected 

water balance components in SWAT simulations (2010–2060) according to the projections based 

on RCP4.5 and RCP8.5 scenarios. Numbers in parentheses represent the changes in percentage. 

For each parameter (except for the historical precipitation) and RCP scenario, the lowest and 

highest values according to the absolute changes are highlighted in red and blue, respectively. EM 

represents the ensemble mean, ET0 the actual evapotranspiration, ETp the potential 

evapotranspiration, SQ the surface runoff, and WYLD the overall water yield. 

Climate 
Model 

Historical 
Precipitation 
(After bias 
correction) 

RCP  
Precipitation 
Changes in 
mm (%) 

RCP ET0 
Changes in 
mm (%) 

RCP ETp 
Changes in 
mm (%) 

RCP SQ 
Changes in 
mm (%) 

RCP WYLD 
changes in 
mm (%) 

Model 1 
(RCP4.5) 

1338 
195  
(14.5) 

39  
(4.4) 

73 
(4.7) 

23 
(40.2) 

124 
(28.7) 

Model 2 
(RCP4.5) 

1334 
3  
(0.2) 

−4 
(−0.4) 

94 
(5.3) 

7 
(12.0) 

−20 
(−4.9) 

Model 3 
(RCP4.5) 

1311 
−109 
(−8.3) 

−10 
(−1.4) 

66 
(5.1) 

−12 
(−18.3) 

−103 
(−19.8) 

Model 4 
(RCP4.5) 

1334 
22 
(1.7) 

−9 
(−1.3) 

43 
(3.8) 

7 
(10.8) 

23 
(3.6) 

Model 5 
(RCP4.5) 

1355 
75 
(5.5) 

11 
(1.2) 

54 
(3.3) 

11 
(19.7) 

52 
(12.4) 

Model 6 
(RCP4.5) 

1345 
218 
(16.2) 

14 
(1.5) 

81 
(4.5) 

25 
(42.1) 

163 
(42.1) 

EM (RCP4.5) 1335 
68 
(5.1) 

0 
(0.0) 

70 
(5.0) 

2 
(25.4) 

46 
(8.5) 

       

Model 1 
(RCP8.5) 

1338 
288 
(21.5) 

39 
(4.4) 

96 
(6.2) 

39 
(67.8) 

216 
(50.1) 

Model 2 
(RCP8.5) 

1334 
−83 
(−6.2) 

−16 
(−1.8) 

136 
(7.8) 

−5 
(−9.7) 

−91 
(−22.5) 

Model 3 
(RCP8.5) 

1311 
−76 
(−5.8) 

11 
(1.5) 

76 
(5.9) 

−6 
(−8.9) 

−85 
(−16.3) 

Model 4 
(RCP8.5) 

1334 
−33 
(−2.4) 

−28 
(−4.2) 

91 
(8.1) 

12 
(18.6) 

−28 
(−4.4) 

Model 5 
(RCP8.5) 

1355 
130 
(9.6) 

1 
(0.1) 

75 
(4.6) 

18 
(31.6) 

102 
(24.2) 

Model 6 
(RCP8.5) 

1345 
302 
(22.5) 

25 
(2.7) 

81 
(4.5) 

38 
(63.4) 

239 
(61.6) 

EM (RCP8.5) 1335 
88 
(6.6) 

−2 
(−0.2) 

101 
(7.2) 

3 
(34.6) 

60 
(10.9) 

 

A more detailed overview of discharge behavior in the single models and RCP scenarios is given in 

Figure 5.9 by displaying the average intra-annual discharge for the single decades from 2010 to 2060. A 

comparison of the single decades across the six models and two RCP scenarios displays various decades 

as either dry or wet. Hence, a clear signal for the discharge pattern over time is not obtained. 

Nevertheless, Figure 5.9 shows a shift of the discharge peak from April to May for all the models, except 

for model 3, with a shift of the peak to June, from 2020 onwards. 
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Figure 5.9  Changes in mean monthly discharge for the RCP4.5 and RCP8.5 scenarios for all utilized regional 

climate models introduced in Table 5.2. For each model and RCP scenario the average monthly 

discharge is visualized on a decadal resolution ranging from 2010 to 2059. Additionally, the mean 

monthly discharge of the observed discharge from 1958 to 1970 is shown. The dashed lines 

highlight the minimum and maximum values of the observed discharge for the period 1958–1970. 

 

5.3.4.2. Flood Frequency and Low Flow Analysis 

Figure 5.10 shows the return levels of flood events for all six models (Table 5.2) across all simulations 

(historical model run, RCP4.5, and RCP8.5), according to the bias-corrected CORDEX Africa data. The high 

variance across the six models is obvious, especially for the RCP8.5 scenarios, where the 100 year return 

level varies between 7782 m3 s−1 (model 5) and 20,707 m3 s−1 (model 1). Nevertheless, an increasing 

trend of return level values in the RCP8.5 scenario is apparent, particularly for the rare events (25 years 

up to 100 years), according to the simulation results. Model 5 is an exception for this finding, with rather 

constant return levels for a 100 year event among the scenarios. 
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Figure 5.10  Return levels of flood events for all six models (Table 5.2) and all three scenarios. For each model 

there are three columns representing the historical (left), the RCP4.5 (middle), and the RCP8.5 

scenario values. The discharge at the outlet for a 2-year, 5-year, 10-year, 25-year, 50-year, and 

100-year event are indicated according to the generalized extreme value (GEV) model and the 

generalized maximum likelihood estimation (GMLE) method. 

 

The aforementioned results are supported by Figure 5.11, which displays the arithmetic mean of all 

scenarios for each model (Figure 5.11a) and the arithmetic mean of all models for the specific scenarios 

(Figure 5.11b). According to these results, model 4 and model 5 incorporate the highest and lowest 

return levels, respectively, with regard to 25-year return levels or higher. Figure 5.11b indicates a rising 

intensity of flooding events for the RCP4.5 and RCP8.5 scenarios. 



 

 

69 

 
Figure 5.11  Arithmetic mean for each model across the two RCP scenarios for the return levels of discharge at 

the outlet (a) and arithmetic mean for each scenario across all six models for the return levels of 

discharge at the outlet (b). 

 

Table 5.5 confirms the finding that the impact of RCP scenarios regarding a rise of flood magnitudes 

increases with increasing return periods. The relative change of all models and RCP scenario runs in 

comparison to their respective historical simulations is shown for the single return periods. The 

arithmetic mean of the percentage increase of the return levels rises constantly, while the standard 

deviation rises from the 5 year return level upwards, even though relative changes with increasing 

discharge values are considered as a baseline in these calculations. 

 

Table 5.5 Arithmetic mean and standard deviation for the relative changes of the return levels across all six 

models and for the two RCP scenarios in comparison with the respective historical model runs. All 

values represent changes in %. 

Statistic Measure 2-Year 5-Year 10-Year 25-Year 50-Year 100-Year 

Arithmetic mean 8.60 9.58 13.19 20.47 27.89 37.19 
Standard deviation 21.79 16.31 18.64 28.72 39.75 53.21 

 

Figure 5.12 shows Q10 and Q90, representing the high flow and low flow conditions for the historic 

model runs and the future scenarios for each model. The historic model runs are only represented by 

one value (dashed lines) for the entire simulation period of each model, whereas the RCP scenario 

simulations contribute decadal values from 2010 to 2060 for both RCP scenarios, to concentrate on 
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future climate developments. The difference among the six models for Q10 and Q90 is obvious. Models 2 

and 3 have comparably low Q10 and Q90 values, while models 1, 4, and 6 have comparably high Q10 

values. Q90 values for models 1, 4, 5 and 6 are similar, and all simulated Q90 values are below the 

measured historical Q90. A more detailed analysis is given in Figure 5.13, which accounts for the decadal 

shifts of Q10 and Q90 in a Cartesian coordinate system. The changes in m3 s−1 for both RCP scenario 

simulations of the RCMs on a decadal basis are given in comparison to the historic Q10 and Q90 values of 

the respective model. For example, a red “2” in the bottom left quadrant refers to a RCP8.5 (red color) 

scenario simulation from 2020 to 2029 and represents decreasing Q90 (below zero line) and decreasing 

Q10 amounts (left to the zero line). A blue “5” in the top right quadrant refers to a RCP4.5 (blue color) 

scenario simulation from 2050 to 2059 and represents increasing Q90 (above zero line) and increasing 

Q10 amounts (right to the zero line). 

After integrating all results a linear trend is obvious, with coinciding trends of decreasing Q10 and 

Q90 or increasing Q10 and Q90. Nevertheless, a few examples are located in the top left quadrant of the 

coordinate system, representing slightly increasing Q90, whereas Q10 is decreasing. Both RCP scenarios 

and simulations from the 2020s, 2030s, and 2050s show this pattern (Figure 5.13; blue and red “2”, “3”, 

and “5” in top left quadrant). The most extreme simulations with the highest changes for Q10 and for 

Q90 are within the RCP8.5 scenario, with one exception. In the 2050s there is a huge reduction (−706 m3 

s−1) in Q10 for one of the RCP4.5 scenarios (model 3) simulated. In general, most of the scenarios show a 

wetter future, represented by the accumulation of changes in Q10 and Q90 in the top right quadrant 

(Figure 5.13). 

 
Figure 5.12  Boxplots showing the distribution of Q10 (a,b) and Q90 (c,d), representing the flow exceeded in 

10% or 90% of the time for Q10 and Q90, respectively. The data in the left columns (a,c) is based 

on the model runs within the RCP4.5 scenario from 2010 to 2060, whereas the right columns 

display the modeling results within the RCP8.5 scenario. The dashed blue lines represent the 

measured historical Q10 and Q90 from 1958 to 1970 and the dashed red line represent the 

modeled historical Q10 and Q90 according to CORDEX Africa from 1951 to 2005, respectively. 
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Figure 5.13  Scatterplot to visualize changes in Q10 and Q90 for each model and both RCP scenarios. Numbers 

represent the specific decades, whereas a “2” represents model simulations for the 2020s, 

continuing in this fashion up until the 2050s, represented with a “5”. Blue numbers represent 

RCP4.5 simulations and red numbers RCP8.5 scenario simulations. 

 

This general trend towards a wetter future is also represented in the results of smaller spatial scale 

(Figure 5.14). Figure 5.14 displays the comparison of the wettest and driest decade with their respective 

historical model run (1951–2005) for the overall water yield and evapotranspiration. Model 2 under the 

RCP8.5 scenario for the period 2020–2029 and model 6 under the RCP8.5 scenario for the period 2040–

2049 were identified as the driest and wettest decades with regard to changes in discharge. This finding 

is based on the general hydrograph analysis (Figure 5.9) and the behavior of extreme discharge 

represented by Q10 and Q90 (Figure 5.13). The very pronounced increase of the overall water yield in 

the “wet scenario” (Figure 5.14a) is obvious, whereas the decrease in the “dry scenario” (Figure 5.14b) is 

less pronounced. The difference between the wet and dry scenarios with regard to evapotranspiration 

(Figure 5.14c,d) is more balanced and has a smaller magnitude. The changes in water balance 

components are less distinctive in the western part of the catchment for both scenarios compared to the 

eastern part of the catchment. 
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Figure 5.14  Average shifts in total water yield (a,b) and evapotranspiration (c,d) for the wettest and driest 

decade in comparison to their historical average (1951–2005). (a,c) Changes between the 

historical annual average of model 6 and the RCP8.5 scenario from 2040 to 2049 of model 6; (b,d) 

Changes between the annual historical average of model 2 and the RCP8.5 scenario from 2020 to 

2029 of model 2. 

 

5.4. Discussion 

5.4.1. Model Performance and Bias-correction 

The performance of the model and the arising uncertainties due to the data scarcity in the region are 

discussed in detail by Näschen et al. (Näschen et al., 2018). Hence, only a brief discussion on model 

performance is given here, whereas the main interest is drawn to the bias correction of the climate data, 

namely precipitation and temperature data. 

The discharge pattern for the calibration and validation period (Figure 5.4) is captured well, with a 

good to very good statistical performance, according to Moriasi et al. (Moriasi et al., 2015). Deductions in 

statistical performance can be attributed to overestimations of discharge in some years (1959, 1961) and 

inaccuracies in simulating the discharge peaks (Näschen et al., 2018). During calibration, five out of the 

seven most sensitive parameters were related to groundwater (Näschen et al., 2018), indicating the 

importance of groundwater contribution for the catchment, which was also highlighted by other 

researchers (Burghof et al., 2017; Gabiri et al., 2018). 
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Bias-corrections with quantile mapping worked very well, as already proven by Teng et al. (Teng et 

al., 2015) in a comparison of several bias−correction methods. The seasonal variability for rainfall on 

monthly scale (Figure 5.5), as well as the exceedance probabilities of the bias-corrections, perform very 

well (Figure 5.6). The ensemble mean simulations of rainfall were neglected in this study due to their 

huge deviations compared to the single model outputs, with regard to the ranked rainfall distribution 

(Figure 5.6). Bias correction for temperature was also successful for all 21 CORDEX Africa datagrids, 

which is obvious by comparing Figure 5.7a–d, as well as Figures 5.A1 and 5.A2. The average annual 

temperature cycle (Table 5.3) displays a typical tropical daytime climate, indicated by more pronounced 

daily temperature amplitudes of up to 11.7 °C in September as an average of the whole period and all 

stations. However, the seasonal cycle is evident with Tmax and Tmin differences of up to 5.5 °C among 

the lowest and highest areal mean values within the considered period. Hence, it has to be considered 

that the bias correction was done from the period 2006 to 2100, but the analyses were only done until 

2060 to find a compromise between the statistical variability of climate change projections and planning 

time-frames, such as the Tanzania Vision 2025. 

The behavior of the areal mean monthly temperature of the catchment (Figure 5.7, Table 5.3) fits 

very well to the temporal precipitation patterns and the onset and ending of dry and rainy seasons 

(Koutsouris et al., 2016; Näschen et al., 2018). Minimum temperatures decrease from March until July, 

which can be attributed to cooling by evapotranspiration and shifts in the share of sensible and latent 

heat transport (Beven, 2012). In July, minimum temperature starts to rise again from about 14 °C to 19 

°C, while maximum temperatures simultaneously increase from July until November, which is the onset 

of the short rains, where again cooling is achieved via evapotranspiration as well as more pronounced 

cloud coverage, and therefore less solar radiation (Tang et al., 2009). The increase of minimum and 

maximum temperatures starting in July also fits well with the declining impact of cooling by 

evapotranspiration within the catchment. It was shown (Näschen et al., 2018) that actual 

evapotranspiration and potential evapotranspiration diverge from July onwards due to a water deficit. 

This is exactly the month where minimum and maximum temperatures begin to rise, due to an 

increasing share of sensible heat in combination with decreasing cloud coverage. The reduced cloud 

coverage also implies a higher radiation and a positive feedback with regard to temperature in a drying 

system (Pokorny, 2019). The bias-corrected climate data, therefore, represent a sound behavior of a 

seasonal sub-humid tropical system. Moreover, water availability in the system is indirectly well-

reflected by the shift in actual and potential evapotranspiration. 

 

5.4.2. Impact of Climate Change on Water Resources 

Overall, the modeled scenarios project a broad range of dry and wet conditions, whereas the 

distinction towards a wetter future for the catchment is more pronounced (Table 5.4, Figure 5.13). The 

annual average change in precipitation ranges between a reduction by 109 mm and an increase by 

302 mm with respect to historical model runs, with an annual mean of 1336 mm. The rising temperature 

in all models, due to the adopted RCP scenarios, leads to consistently increasing potential 

evapotranspiration, while water availability is a temporally limiting factor due to the distinct seasonality 

in the catchment (Koutsouris et al., 2016; Nicholson, 2000). 
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This limitation of water is visible by looking at the changes in actual and potential evapotranspiration 

in the RCM projections. Potential evapotranspiration is increasing in all projections (Table 5.4), whereas 

the development of the actual evapotranspiration is more variable, indicating a spatio-temporal water 

deficit. On the one hand, dry scenario simulations (e.g., model 3 in RCP8.5; see Table 5.4) show 

increasing actual evapotranspiration, although precipitation is decreasing. This can be attributed to both 

increasing potential evapotranspiration and decreasing water yields. On the other hand, the increase of 

actual evapotranspiration is less distinctive in the wet scenarios (models 1, 5, 6) in comparison to the 

increase of precipitation (e.g., models 1 and 6 in both scenarios; see Table 5.4). In these scenarios, 

surface runoff increases by up to 67.8% and the overall water yield by up to 61.6%, indicating a shift in 

water balance, favoring water yield instead of evapotranspiration. This shift might be attributed to the 

temporal distribution of the precipitation. Figure 5.8 shows the increase of rainfall within the rainy 

season, while the temperature, and therefore the potential evapotranspiration, rises, especially in the 

dry season. Additionally, the aforementioned models 1, 5, and 6 show comparably high values of Q10 

(Figure 5.12a,b), implying higher discharge peaks and heavy rainfall events. Furthermore, it was already 

shown that the system is energy limited throughout the rainy season, with actual evapotranspiration 

equal to potential evapotranspiration (Näschen et al., 2018). Otherwise, there is distinct water limitation 

throughout the dry season, with Q90 values below the historical measured value (Figure 5.12c,d).  

An overall aggravation of seasonality is particularly challenging in (East) African countries because of 

the already existing high spatial and temporal variability of available water resources (McClain, 2013) 

resources mc. Considering the climatic feedback described in chapters 3.4 and 4.1, including the rising 

temperatures in combination with decreasing low flow and water availability in the dry season, drought-

related risks might be aggravated in the region due to climate change. However, flooding intensity is 

more likely to increase (Figure 5.11b, Figure 5.13). This indicates an aggravation of severe floods in the 

rainy season in combination with the chance of an increasing drought risk in the dry season. Additionally, 

the discharge peak and the following inundation, which are important factors for the recession 

agriculture in the valley (CDM Smith, 2016; Koutsouris et al., 2016), are likely to shift from April to May 

from the 2020s onwards (Figure 5.9). This shift might be attributed to the changing precipitation 

patterns (Figure 5.8b) in combination with the comparably slow drainage for the overall catchment (Lyon 

et al., 2015). Therefore, wise catchment management is needed to adequately use and retain the 

potentially occurring water benefit in the rainy season and make it available during the more 

pronounced drought periods in the dry season. In contrast, poorly adapted catchment management will 

increase the risk of severe floods. Additionally, a shift in inundation dynamics needs to be communicated 

to ensure efficient agricultural production. 

Although results show no clear signal towards an extension or shortening of the dry or wet seasons 

across all models, precipitation amounts primarily increase within the rainy season. In contrast, the dry 

season from June to October is consistent with regard to very low precipitation amounts (<20 mm per 

month on average) and increasing potential evapotranspiration due to increasing temperatures, even 

though some regional climate models predict increasing rainfall in September (Figure 5.8). However, a 

general consistency within the single scenarios regarding extreme events is observed, with an 

antagonistic trend of either a decrease of both Q10 and Q90 or the opposite trend, with only a few less-

pronounced exceptions (Figure 5.13). 
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Nevertheless, the wide distribution of the decadal simulation results and also the RCM simulation 

results in Figure 5.13 show that the occurrence of a trend towards a wetter future with regard to Q10 

and Q90 is more likely. However, the spread of the different models and the decadal distribution indicate 

a high uncertainty and no clear temporal trend. Especially, the span for extreme events, e.g., the 100-

year return level, between the six models is extremely high (Figure 5.10, Table 5.5) and results have to be 

considered carefully. This span can be taken as a range of uncertainty, with a set of possible futures 

scenarios for the Kilombero Catchment. The knowledge of the performance of these climate scenarios 

and models can be very useful for management purposes of the catchment, e.g., the estimation of future 

inundation dynamics. Therefore, a hydraulic model for the agriculturally utilized parts of the catchment 

needs to be established to estimate the impacts of potential scenarios. The analyses in Figure 5.11a and 

Figure 5.12a,b suggest utilizing either model 1, 3, 4, or 6 in hydraulic flood models to prepare for possible 

future flooding events under wetter conditions and changing inundation dynamics, due to the high 

return levels and Q10 values. In contrast to that, model 2 and model 3 are suitable to prepare for dry 

conditions, for example in environmental flow assessments. 

A more detailed analysis has already been undertaken by investigating the impact of particular wet 

and dry decades and their impact on water balance components (Figure 5.14). There exists a distinctive 

increase of the overall water yield in the wet scenario, resulting in an increase of about 50% within 

nearly all subcatchments compared to the status quo (Näschen et al., 2018). This change will have a huge 

impact on the overall hydrology of the catchment and its management. On the one hand, this is only the 

annual average of a whole decade, and therefore conceals intra- and interannual dynamics, which are 

even more pronounced. On the other hand, one has to keep in mind that this is the most extreme 

scenario out of many possible future scenarios. Nevertheless, the comparison of these extreme scenarios 

provides a sense of the uncertainty that water management has to deal with. The distinct influence of 

both the driest and wettest simulated decades on the eastern part of the catchment (Figure 5.14) can be 

attributed to the fact that the eastern part is, in general, more important for the water yield of the 

catchment due to the precipitation patterns and also the direction of flow of the Kilombero River 

towards the east (Näschen et al., 2018). Natkhin et al. (Natkhin et al., 2015) give an overview of studies 

investigating the impact of climate on discharge regimes. They also show diverging effects of climate 

change on discharge regimes, but most of the studies imply a decrease of discharge in the dry season in 

contrast to an increasing total runoff, which is in line with the insights in this study. Reasons for changes 

in the discharge regimes are changes in precipitations patterns (Githui, 2008; Yanda and Munishi, 2007), 

increasing evapotranspiration due to higher temperature (Githui, 2008), LULC changes (Yanda and 

Munishi, 2007), water abstractions (Githui, 2008; Kashaigili, 2008), and dam constructions (Mwamila et 

al., 2008). 

These study results show that in addition to climate change analyses, manifold factors are 

influencing the hydrology within the catchment (Montanari et al., 2013). The method of land use and 

management, for example, exerts strong influence over soil hydraulic properties, and thus influences the 

amount of water retention, surface runoff, and flood generation (Giertz, 2004; Zimmermann et al., 

2006). Particularly, agricultural land is characterized by high degrees of soil cultivation and low soil 

coverage by vegetation during parts of the year, which in general leads to an increase of surface runoff 

generation. Thus, a growth of the share of agricultural land, which is promoted through the SAGCOT 

initiative (Environmental Resources Management, 2013), might lead to an aggravation of flood events, 
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and hence intensify the negative effects climate change might exert on the regional water balance. Apart 

from the presumable effects on water balance, an increment in agricultural area might also lead to 

biodiversity losses within the Ramsar site (Behn et al., 2018; Daconto et al., 2018). 

Still, the extent to which increasing agricultural production influences soil hydraulic properties 

depends on different regionally varying factors, such as soil type, cultivation, and irrigation schemes, and 

location within the catchment. The aforementioned factors need to be determined within proper field 

studies to assist in planning for the future water resource management of the Kilombero Catchment. 

In general, LULC change (Msofe et al., 2019) and management change scenarios should be 

developed and included in future analyses to investigate their combined impact in combination with 

climate change on water resources. Moreover, this study concentrates only on water quantity, due to 

the lack of data on water quality, but it was already demonstrated that the impact of climate change 

could be amplified by LULC change with regard to soil erosion and the accompanied nutrient input into 

surface waters (Danvi et al., 2017; Op de Hipt et al., 2019). 

 

5.5. Conclusions 

The study clearly showed the broad range of possible future climate scenarios for the Kilombero 

Catchment according to the bias-corrected CORDEX Africa projections. The climate impact analysis on 

hydrology recommends adapting to more distinct seasonality due to shifting rainfall patterns. These 

shifting patterns will probably result in changing inundation dynamics and more severe flooding, while 

the likelihood of decreasing low flows is less pronounced. The designation of suitable arable land for the 

recession agriculture has to be adjusted in accordance with the respective hydrological patterns. Future 

agricultural management strategies should also take into account a delay of approximately one month in 

the inundation of the floodplain within the next decades, because of the common delay signal across all 

simulations (Figure 5.9). The presented modeling results should be taken as a range of possible futures, 

which could be applied following the precautionary principle to assess and prepare for possible future 

conditions. However, it is strongly recommended to use these climate change scenarios in combination 

with LULC change scenarios and management scenarios to have a more realistic representation of the 

hydrological conditions. These hydrological model results should be implemented into a well-established 

hydraulic model to get a better understanding of their possible impact on inundation extent, depth, and 

timing. This will facilitate and enhance the management of the floodplain and might assist in the 

designation of suitable areas for either conservation measures or agricultural production zones, also with 

regard to downstream water users and water-related infrastructure, such as the planned hydropower 

dam at Stiegler`s Gorge. 
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5.6. Appendix A 

 
Figure 5.A1.  Temperature from 1979-2005 for the 21 utilized CORDEX Africa datagrids before bias-correction. 

Each graph shows the average monthly temperature for all six models introduced in Table 5.2. 

Tmin and Tmax represent the mean monthly minimum and maximum temperatures respectively. 



 

 

78 

 
Figure 5.A2.  Temperature from 1979-2005 for the 21 utilized CORDEX Africa datagrids after bias-correction 

with Era-Interim data. Each graph shows the average monthly temperature for all six models after 

bias-correction in Table 5.2. Tmin and Tmax represent the mean monthly minimum and 

maximum temperatures respectively.  
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6. The impact of land use/land cover change (LULCC) on water resources in a 

tropical catchment in Tanzania under different climate change scenarios 

 

This chapter has been published as: Näschen, K., Diekkrüger, B., Evers, M., Höllermann, B., Steinbach, S., 

Thonfeld, F., 2019. The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical 

Catchment in Tanzania under Different Climate Change Scenarios. Sustainability 2019, Vol. 11, 7083. 

doi:10.3390/SU11247083 

https://www.mdpi.com/2071-1050/11/24/7083 

 

Abstract: Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change 

(LULCC). In many cases, natural systems are converted into agricultural land to feed the growing 

population. However, despite climate change being a major focus nowadays, the impacts of these 

conversions on water resources, which are essential for agricultural production, is still often neglected, 

jeopardizing the sustainability of the socio-ecological system. This study investigates historic land 

use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a 

complex tropical catchment in Tanzania. It then compares the results using two climate change 

scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 

and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various 

LULC conditions. Results show decreasing low flows by 6%−8% for the LULC scenarios, whereas high 

flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate 

change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of 

LULCC are more distinct, although crop specific effects show diverging effects on water balance 

components. This study develops a methodology for quantifying the impact of land use and climate 

change and therefore contributes to the sustainable management of the investigated catchment, as it 

shows the impact of environmental change on hydrological extremes (low flow and floods) and 

determines hot spots, which are critical for environmental development. 

Keywords: SWAT model; Land Change Modeler; Scenario analysis; Extreme flows; Tanzania; 

Kilombero 

 

6.1. Introduction 

Recent developments in sub-Saharan Africa (SSA) show an increasing trend of conversion of natural 

land cover into arable land (Brink et al., 2014; Brink and Eva, 2009; Gabiri et al., 2019; Guzha et al., 2018; 

Leemhuis et al., 2017; Marchant et al., 2018; Mucova et al., 2018; Näschen et al., 2018; Op de Hipt, 2018; 

Rosa et al., 2018; Yira et al., 2016). Drivers of change are manifold and can be directly linked to human 

activities such as population growth, economic development, and globalization (Kleemann et al., 2017; 

Marchant et al., 2018). Natural processes like floods, landslides, droughts and climate change affect land 

use and land cover change (LULCC) (Brink and Eva, 2009), although they are induced by anthropogenic 

activities to a certain degree. These conversions into arable land have an adverse impact on several 

ecosystem services as a trade-off for increased agricultural outputs such as food and timber production 

(Brink and Eva, 2009; Meijer et al., 2018). Several water-related targets of the Sustainable Development 

https://www.mdpi.com/2071-1050/11/24/7083
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Goals (SDGs) are at risk due to land conversions into arable land, especially with regard to SDG 6 (Clean 

Water and Sanitation) and SDG 15 (Life on Land) (Meijer et al., 2018; Nhemachena et al., 2018).  

Several studies investigated the impact of LULCC and climate change on water resources separately 

(Faramarzi et al., 2013; Yira et al., 2016) or simultaneously (Notter et al., 2013; Op de Hipt et al., 2019). 

The results of the studies differ due to several reasons e.g., the type of LULCC, the regional focus, or the 

time period and model chosen to simulate climate change. However, many studies indicate an increased 

exposure to hydro-climatic extremes in Eastern Africa (Funk et al., 2008; Lyon and Dewitt, 2012; 

Shongwe et al., 2011; Williams and Funk, 2011). This study exemplarily analyzes LULCC compared to 

climate change in the Kilombero Catchment in Tanzania and how these affect water resources. The 

catchment itself is subject to aforementioned LULCC (Leemhuis et al., 2017; Meijer et al., 2018) and 

pressure on land resources in the valley is fostered by government plans to implement the Southern 

Agricultural Growth Corridor of Tanzania (SAGCOT) (Environmental Resources Management, 2013), 

which is accompanied by a growing population and migration of pastoralists into the valley (Msofe et al., 

2019). SAGCOT follows a green growth approach covering three development clusters in Kilombero, 

Ihemi, and Mbarali, comprising one third of the mainland of Tanzania (Leemhuis et al., 2017; Milder et 

al., 2013; Steffens et al., 2019). On the one hand the key clusters are characterized by great agricultural 

potential and on the other hand they contain extensive forests, protected areas, and their infrastructure 

is poorly developed (Leemhuis et al., 2017). One of the key features of the SAGCOT initiative for the 

Kilombero cluster is the establishment of a sustainable agricultural intensification with irrigation 

schemes for rice and sugarcane as well as integrated crop-livestock-aquaculture systems in the 

catchment’s wetland (Milder et al., 2013). These changes in LULC in combination with the effects of 

climate change complicate water resource management of the catchment. Yet, projections concerning 

water quantities are crucial to sustaining the socio-ecological system and long-term perspectives are 

especially essential for a responsible treatment of water resources under changing climatic conditions. 

The dominant LULCC in the catchment is from grassland to cropland, which mainly occurs in its 

floodplain area (Leemhuis et al., 2017; Muro et al., 2018). The most important crop for this conversion is 

rain-fed rice, that is grown in the lowland areas (Kangalawe and Liwenga, 2005; Meijer et al., 2018). 

However, deforestation is becoming more important with the increasing population and the growing 

demand for timber, fuelwood and charcoal production (Johansson and Abdi, 2019). Other drivers of 

change are economic development, foreign agricultural investments, agro-technological advancements, 

favorable biophysical factors, policies, the aforementioned population growth, and increased migration 

of pastoralists into the valley (Johansson and Abdi, 2019; Msofe et al., 2019). These LULCC will affect 

ecosystem services and water resources in the catchment and scientific guidance is needed in order to 

enable a sustainable development of the catchment (Leemhuis et al., 2017; Meijer et al., 2018). 

Inhabitants of the catchment already report changing water dynamics, such as lower water levels and 

consequently depleted fish stocks (Johansson and Abdi, 2019). Paddy rice plays a specific role in this 

study due to its large-scale suitability in the catchment according to the SAGCOT plans (Environmental 

Resources Management, 2013) and additionally due to its high water demand and the resulting 

implications on water resources (Duku et al., 2016). The following goals of the study arose from this 

context: 
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(i) Develop scenarios for the LULC distribution for the Kilombero Catchment until 2030; 

(ii) Analyze the impact of the different LULC scenarios on water resources at various temporal 

and spatial scales;  

(iii) Investigate the impact of LULCC on low flow and high flow regimes; 

(iv) Assess the combined impact of LULCC and climate change on water resources. 

In order to reach these goals, observed patterns of change were correlated with various spatial 

features of the catchment using the digital elevation model (DEM), and were projected until 2030 by 

using the Land Change Modeler (LCM) (Eastman, 2016a, 2016b; Mas et al., 2014). Furthermore, the 

SWAT model was utilized to simulate the impact of the different LULC setups on water resources. 

Subsequently, the selected Global Climate Model-Regional Climate Model (GCM-RCM) developed for a 

previous study (Näschen et al., 2019) was integrated to estimate the combined effect of LULCC and 

climate change. Results show huge deviations in water balance components on a subcatchment scale 

and that especially high flow patterns vary among the different LULC scenarios. 

An overview of abbreviations that are used within this study and their meanings is given in Table 6.1. 

 

Table 6.1  List of abbreviations used in this study and their meanings. 

Abbreviation Meaning Abbreviation Meaning 

CLMcom 
Climate Limited-area Modeling 
Community 

Q10 
Flow exceeded in 10% 
of the specified period 

CORDEX 
Coordinated Regional 
Downscaling Experiment 

Q90 
Flow exceeded in 90%  
of the specified period 

DEM Digital elevation model RCM Regional climate models 

EPIC 
Erosion-Productivity Impact 
Calculator 

RCP 
Representative Concentration 
Pathways 

GCM Global Climate Model RF Random Forest 

HRU Hydrologic response unit RBWB Rufiji Basin Water Board 

HWSD Harmonized World Soil Database SAGCOT 
Southern Agricultural Growth 
Corridor of Tanzania 

KGE Kling-Gupta efficiency SCS Soil conservation service 

LCM Land Change Modeler SDGs Sustainable Development Goals 

LULC Land use/ land cover SMHI 
Swedish Meteorological and 
Hydrological Institute 

LULCC Land use/ land cover change SRTM Shuttle Radar Topography Mission 

MLP Multi-Layer Perceptron SSA Sub-Saharan Africa 

MSS Multispectral scanner SWAT Soil and Water Assessment Tool 

NGO Non-Governmental Organisation TMA Tanzania Meteorological Agency 

NSE Nash-Sutcliffe-Efficiency UDSM University of Dar es Salaam 

PPP Public-private partnership   
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6.2.  Materials and Methods 

6.2.1. Study Site 

The study site is located in the Morogoro region in south central Tanzania (Figure 6.1). It is enclosed 

by the Udzungwa Mountains in the north and west, whereas the Mbarika Mountains and the Mahenge 

Highlands demarcate the southern boundary of the catchment. The catchment is drained by the 

eponymous Kilombero River and comprises a total of 40,240 km² up to the confluence of the Kilombero 

River and the Luwego River (Näschen et al., 2018). From here downstream, the river is called Rufiji River 

and refers to the Rufiji Basin, which is the most important river basin of Tanzania (Daconto et al., 2018). 

The Rufiji Basin consists of three major tributaries and their respective catchments, which are the Great 

Ruaha, the Luwego, and the Kilombero. The Kilombero itself covers only 23% of the Rufiji Basin´s area, 

but it contributes 62% of total discharge and is therefore of particular importance with regard to water 

resources (Wilson et al., 2017). The Kilombero River itself has several perennial and seasonal tributaries, 

which mainly contribute inflow from the upland areas. However, this system is at risk, due to LULCC and 

water abstractions that affect the inflow of several tributaries and the maintenance of the 

environmental flows (CDM Smith, 2016; Daconto et al., 2018). The Kilombero river forms a complex 

braided and meandering river network in the central floodplain, which covers 7,967 km² and constitutes 

one of the most important African lowland fresh water wetlands (Mombo et al., 2011; Wilson et al., 

2017). Since 2002 the floodplain has been designated as a Ramsar site and over 70% of the floodplain 

area is protected (Nindi et al., 2014). 

The climate is a sub-humid tropical climate with a distinctive seasonality, which is characterized by a 

dry and a rainy season. The rainy season itself can be differentiated into the short rainy season from 

October until December/January (locally called “Masika”) and the long rainy season from March until 

May (“Vuli”) (Camberlin and Philippon, 2002; Zorita and Tilya, 2002). Nevertheless, this bimodal pattern 

only applies for the northern parts of Tanzania, whereas the south-western parts of Tanzania are 

characterized by a unimodal rainfall distribution and therefore one rainy season (“Msimu”) (Seregina et 

al., 2018). However, there are huge interannual, intraannual, and also spatial variabilities in the 

distribution of precipitation for the Kilombero Catchment recorded (Koutsouris et al., 2016; Näschen et 

al., 2019, 2018). This high variability can be attributed to the manifold factors influencing the local 

climate, such as remote forcings (e.g., Walker Circulation, Indian Ocean Dipole), regional circulations 

(e.g., Tropical Easterly Jet), but also local geographic factors (e.g., windward and leeward effects) 

(Nicholson, 2017). Annual mean areal precipitation is between 1200 and 1400 mm, whereas the 

mountainous parts receive up to 2100 mm and the valley 1100 mm, respectively (Koutsouris et al., 2016; 

Wilson et al., 2017). The mean annual temperature has an antagonistic pattern and varies between 24° C 

in the valley and around 17° C in the uplands of the catchment (Wilson et al., 2017).  

Soils in the floodplain are largely heavy black cotton soils, with a good water content at field 

capacity, but also some patches of sandy soils (Msofe et al., 2019). According to the Harmonized World 

Soil Database (HWSD) most parts of the catchment are covered by acrisols, with some areas dominated 

by cambisols in the western part and nitisols in the Udzungwa mountains (Dewitte et al., 2013). 

The land cover of the upper catchment embraces a mixture of natural vegetation like tropical 

rainforests, bush lands, and wooded grasslands with some patches of agricultural fields (Zemandin et al., 

2011). The valley is surrounded by a miombo woodland belt with mainly Brachystegia spp., whereas the 
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floodplain itself is dominated by agricultural use and tall grasses such as Penisetum purpureum, Panicum 

maximum, Hyparrhenia spp., and Phragmites mauritianus with some isolated trees of Ficus spp. and 

Kigelia africana (Kato, 2007; Nindi et al., 2014). The most important crops grown in the valley are 

sugarcane (Saccharum officinarum), maize (Zea mays), paddy rice (Oryza sativa), and cassava (Manihot 

esculata) (Msofe et al., 2019). Rice production is dominated by small-scale farmers and rain-fed 

agriculture, although some small irrigations schemes do exist in the valley. Sugarcane is mainly grown as 

irrigated agriculture by a large-scale contractor (Kilombero Sugar Company) in the northeastern part of 

the catchment.  

Recent developments show an increasing trend of conversion of wetland, forested areas, and 

grassland into arable land in the Kilombero Valley (Leemhuis et al., 2017; Näschen et al., 2018). The 

Kilombero area has to cope with many immigrants, including a high number of pastoralists, causing a 

population growth rate for the Kilombero area of 3.4% according to the national population census from 

2012, which exceeded the national average of 2.8% (National Bureau of Statistics. United Republic of 

Tanzania, 2012). The SAGCOT growth corridor plans, including infrastructure developments like bridge 

construction and expansion of paved roads (Environmental Resources Management, 2013; Milder et al., 

2013), as well as the planning of the Stiegler´s Gorge hydropower dam in the Selous Game Reserve 

downstream, might have a huge impact on the development of the catchment (Daconto et al., 2018). 
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Figure 6.1 Overview map of the study area, including available precipitation and discharge stations (Swero). 

The estimated floodplain area is based on visual interpretation of Landsat images (modified after 

(Näschen et al., 2018)). 

6.2.2. Input Data 

The SWAT model for this study is based on the details already given by Näschen et al. (Näschen et al., 

2018). The issue of data scarcity in the study region is solved by using freely available geodata in 

combination with data gathered from local partners in Tanzania (Table 6.2, (RBWB, 2014)). The most 

crucial but also most limiting data is discharge data, which has the longest time series at a downstream 

station (“Swero”) near the outlet of the catchment but stretches in good quality only from 1958 to 1970. 

The station is currently being renewed and new stations are being set up in the catchment, nonetheless 

there is no time series and no rating curve for the new stations available up to today. Therefore, the 

historical discharge data was used to set up the hydrological model (Näschen et al., 2018). In addition, 
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LULC maps were produced from Landsat imagery for four different time steps. Due to extensive cloud 

cover, all available Landsat TM, ETM+, and OLI Surface Reflectance scenes within three-year periods 

around the years 1994, 2004, and 2014 were considered, and multi-temporal metrics (Mack et al., 2017) 

were calculated using different vegetation indices. Together with topographic indices based on the 

Shuttle Radar Topography Mission (SRTM) DEM, these were classified in a supervised Random Forest 

(RF) approach (Breiman, 2001; Näschen et al., 2018). The RF classifier was calibrated and validated using 

information from field visits, flight campaigns and Google Earth in a random sampling scheme. For the 

1970s LULC map, due to the lack of suitable images, Landsat pre-Collection Level 1 images from the 

whole decade were cloud-masked, corrected for corrupted image lines, normalized to one master image, 

mosaicked, and classified. The spatial resolution of the early Landsat images (1970s) from the 

multispectral scanner (MSS) instrument is 60 m. The resulting maps were resampled to a 30 m pixel size 

in order to be complementary to the other Landsat products. Figure 6.2 shows the LULC maps as 

reclassified into SWAT LULC classes. The left configurations (a-d) include a barren class and an 

undifferentiated cropland class, whereas the right configurations (e-h) differentiate between cropland 

and rice as a specific plant (named “cropland-rice”). SWAT classes besides barren, cropland, and 

cropland-rice comprise forest evergreen, forest mixed, grassland, savanna, wetland, open water, and 

built-up. 

Seven precipitation stations were used as input in combination with Coordinated Regional 

Downscaling Experiment (CORDEX) Africa data (Gutowski et al., 2016) for the other climate parameters 

(Table 6.2). For future climate scenarios GCM-RCM (Global Climate Models-Regional Climate Models) 

model combinations from CORDEX Africa were bias-corrected for temperature and precipitation. A more 

detailed description on the procedure can be found in Näschen et al. 2019 (Näschen et al., 2019). Two of 

these GCM-RCM scenario data sets were chosen for this study in order to represent a span of wet and 

dry scenarios covering increasing and decreasing annual precipitation amounts (Table 6.3, Table 6.4). Soil 

data was gathered from the Harmonized World Soil Database (HWSD) and the SRTM 90 m digital 

elevation model (DEM) was used for the SWAT model. A complete overview on all of the data sources 

utilized in this study is given in Table 6.2. 
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Table 6.2  Overview of the applied datasets, their resolution, sources, and the required parameters in this 

study. 

Data set Resolution/Scale Source Required Parameters 

Digital 
elevation 
model (DEM) 

90 m 
Shuttle Radar Topography Mission (SRTM) 
(Lehner et al., 2008) 

Topographical data 

Soil map 1 km FAO (Dewitte et al., 2013) 
Soil classes and 
physical properties 

Land use map 
60 m (1970s), 
30 m (1994, 2004, 
2014) 

Landsat Pre-Collection Level-1 (United States 
Geological Survey (USGS), n.d.), Landsat TM, ETM+, 
OLI Surface Reflectance Level-2 Science Products 
(USGS Department of the Interior, n.d., n.d.),   
SRTM (Lehner et al., 2008) 

Land use/cover classes 

Precipitation Daily 

Personal communication: 
Rufiji Basin Water Board (RBWB), University of Dar 
es Salaam (UDSM), Tanzania Meteorological 
Agency (TMA) 

Measured 
precipitation 

Climate 
Daily/0.44 ° (1951-
2060) 

CORDEX Africa (Gutowski et al., 2016) 

Temperature, 
humidity, solar 
radiation, wind speed, 
precipitation 

Discharge Daily (1958–1970) RBWB (RBWB, 2014) Discharge 

 

Table 6.3  Overview of the Regional Climate Models (RCMs), their driving Global Climate Models (GCMs), 

and the assigned naming for the model combination within this study. 

GCM RCM Institution URL 

In this 
study 
referred 
to as 

CNRM-CM5 CCLM4-8-17_v1 
Climate Limited-area 
Modeling Community 
(CLMcom) 

https://esg-dn1.nsc.liu.se/ Dry model 

MIROC5 RCA4_v1 

Rossby Centre, Swedish 
Meteorological and 
Hydrological Institute 
(SMHI) 

https://esg-dn1.nsc.liu.se/ Wet model 

 

Table 6.4  Historical annual average precipitation according to the bias-corrected RCM simulations (1951–

2005) and the absolute and relative changes of precipitation, actual evapotranspiration and 

overall water yield in SWAT simulations (2010–2060) according to the projections based on 

RCP4.5 and RCP8.5 scenarios. Numbers in parentheses represent the changes in percentage 

(modified after (Näschen et al., 2019)). 

Climate Model 

Historical 
Precipitation 
(after bias 
correction) in mm 

RCP 
Precipitation 
changes in 
mm (%) 

RCP actual 
evapotranspiration 
changes in mm (%) 

RCP overall water 
yield changes  
in mm (%) 

“Dry Model” (RCP4.5) 1311 −109 (−8.3) -10 (-1.4) -103 (-19.8) 
“Wet Model” (RCP4.5)  1345 218 (16.2) 14 (1.5) 163 (42.1) 

     
“Dry Model” (RCP8.5) 1311 −76 (−5.8) 11 (1.5) -85 (-16.3) 
“Wet Model” (RCP8.5) 1345 302 (22.5) 25 (2.7) 239 (61.6) 
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Figure 6.2  Land use and land cover classifications for four time steps ranging from the 1970s (a and e), 1994 

(b and f), and 2004 (c and g) up to 2014 (d and h). Some differences among the LULC maps in the 

right and in the left column exist due to the classification process: Only the maps in the left 

column contain “barren” as a land use class, but they have only one LULC ”cropland”, whereas 

the maps in the right column differentiate in between “cropland” and “cropland-rice” as a specific 

crop. 
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6.2.3.  Modeling Approach. 

6.2.3.1. The SWAT Model 

In this study the SWAT model (Arnold et al., 1998) was applied to simulate the hydrological 

processes on the catchment scale. SWAT is a semi-distributed and physically-based model which 

operates on a daily time-scale. The physically-based approach of SWAT with the incorporation of the 

Erosion-Productivity Impact Calculator (EPIC) model (Williams, 1995) allows to account for plant growth 

variations and is necessary to adequately simulate the impacts of land use changes on hydrological 

processes.  

In a first step the SWAT model discretizes the catchment into subcatchments based on a threshold 

that defines the minimum drainage area to form a stream. Furthermore, these subcatchments are 

discretized into hydrologic response units (HRU), which are unique combinations of soil, slope, and land 

use within each of the subcatchments. These HRUs are the most important spatial unit for the 

calculation of hydrological processes within SWAT.  

In general, the model differentiates between a land phase and a routing phase. The land phase 

considers most of the hydrological processes of the hydrological cycle, whereas the routing phase 

integrates the routing of water among the subcatchments and in-stream processes of water, sediments, 

nutrients, and organic chemicals. In the land phase the water balance equation is solved on HRU level 

and all HRU calculations are treated as the result of a subcatchment without considering routing among 

the single HRUs. Climate data input is given on the subcatchment scale, with the option to account for 

altitudinal effects on temperature or precipitation with so called elevation bands. These elevation bands 

modify temperature and precipitation to represent orographic effects in case of large altitudinal 

differences within the subcatchments (Neitsch et al., 2011). Precipitation can be intercepted by 

vegetation, enter the reach directly or hit the ground, where it might move as surface runoff, evaporate, 

or infiltrate into the soil based on the given physical conditions represented by the Soil Conservation 

Service (SCS) curve number and the climatic conditions (Monteith and Moss, 1977; Soil Conservation 

Service (ed.), 1972). Once water infiltrates into the soil, it is stored as soil moisture and can move among 

up to ten soil layers using a storage routing technique, which is based on the field capacity of the soil 

layers and the saturated hydraulic conductivity. Lateral flows in the soil are simulated with a kinematic 

storage model, which mainly depends on the slope of the area (Sloan and Moore, 1984). Groundwater is 

divided into two aquifers in SWAT: A shallow unconfined aquifer and a deeper confined aquifer. If water 

percolates from the soil through the unsaturated zone, it enters the shallow aquifer. From there, water 

might contribute as baseflow to the reach, move upwards as capillary rise due to LULC dependent water 

demand, or percolate deeper into the confined aquifer, where it is assumed to contribute to the regional 

water balance and is treated as being lost for the local catchment. However, both aquifers might 

contribute to the streamflow through different parameters (Liu et al., 2019). A detailed model 

description is given by (Arnold et al., 1998), (Neitsch et al., 2011), and (Arnold et al., 2012a). 
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6.2.3.2. Model Setup, Evaluation and Extreme Value Analysis (SWAT Model) 

The SWAT model setup was done with ArcSWAT 2012 (revision664), whereas calibration and 

validation were performed with SWAT-CUP (version 5.1.6.2) and the SUFI-2 algorithm (Abbaspour, 2013) 

using the Kling-Gupta efficiency (KGE) as an objective function. The catchment was divided into 95 

subcatchments and 1087 HRUs. Additionally elevation bands were integrated to adequately account for 

varying precipitation patterns due to high relief energy within the subcatchments (Näschen et al., 2018; 

Neitsch et al., 2011). The coefficient of determination (R²) (Equation 6.1), the Nash-Sutcliffe-Efficiency 

(NSE) (Equation 6.2), and the aforementioned KGE (Equation 6.3) were some of the utilized evaluation 

criteria. A more detailed overview on the SWAT model setup and additional evaluation criteria is given 

by (Näschen et al., 2018).  

𝑅2 =
[∑ (𝑂𝑖 − 𝑂̅)(𝑆𝑖 − 𝑆̅)𝑛

𝑖=1 ]2

∑ (𝑂𝑖 − 𝑂̅)2 ∑ (𝑆𝑖 − 𝑆̅)2𝑛
𝑖=1

𝑛
𝑖=1

 (Equation 6.1) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2𝑁
𝑖=1

 (Equation 6.2) 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝜎 − 1)2 + (𝛽 − 1)2 (Equation 6.3) 

where n is the number of observations, 𝑂𝑖 and 𝑆𝑖  are the observed and simulated discharge values, 

respectively, and 𝑂̅ and 𝑆̅ are the mean of observed and simulated discharge values. r is the coefficient 

of correlation between observed and simulated data, 𝜎 is the ratio of the standard deviation of 

simulated and observed data, and β is the ratio of the means of simulated and observed data. 

The results of the SWAT model were utilized to analyze changes in low flows and high flows for the 

different LULC setups separately and in combination with selected RCM-GCMs (Table 6.3). The extRemes 

2.0 package (Gilleland and Katz, 2016) was utilized to calculate return levels from 2-year up to 100-year 

return levels using the generalized extreme value distributions (GEV) (Equations (6.4) and (6.5)) and the 

generalized maximum likelihood estimation (GMLE) method: 

𝐹(𝑥) = 𝑒𝑥𝑝 [− {1 + 𝛾 (
𝑥 − 𝜇

𝛼
)}

−1/𝛾

] (Equation 6.4) 

where 𝛾 is the shape parameter, 𝜇  the location parameter, and 𝛼  the scale parameter of the 

probability distribution function with 𝛼 > 0 and (1 + 𝛾(𝑥 − 𝜇)/𝛼) > 0. If 𝛾 → 0, the function belongs to 

the Gumbel family and is as follows: 

𝐹(𝑥) = exp [−exp {− (
𝑥−𝜇

𝛼
)}]. (Equation 6.5) 

Additionally, the Q10 index was applied, because it is less sensitive to outliers compared to the 

generalized extreme value analysis. The Q10 is defined as the daily discharge that is exceeded in 10% of 

all the simulations here. Moreover, the Q90 (Smakhtin, 2001; van Vliet et al., 2013) index was used to 

analyze low flows. In contrast to the Q10 index, the Q90 index is defined as daily discharge that is 

exceeded in 90% of all the simulations here. The Hydrostats package (Bond, 2018) in the statistical 

software R was applied for these analyses. 

 



 

 

90 

6.2.3.3. Land Use and Land Cover Change (LULCC) Scenarios  

One of the main objectives of this article is to analyze the impact of LULCC on water resources until 

2030. Therefore, scenarios of LULC for 2030 were developed using a mixed method approach containing 

land use change modeling, expert interviews, and a participatory mapping exercise in the framework of a 

workshop with local experts (Figure 6.3). The main goal of developing the 2030 scenarios was to identify 

implications of potential future LULC distributions on water resources in order to determine hot spots of 

change regarding water resources. In a first step, the historical LULC distributions from the 1970s until 

2014 were derived from Landsat images (see chapter 2.2.). The Land Change Modeler LCM (Anand et al., 

2018; Eastman, 2016b; Gashaw et al., 2018; Mas et al., 2014), within the Terrset Software Version 18.31 

utilizing the IDRISI GIS System (Eastman, 2016b), was used to analyze the changes of LULC classes among 

the available historical products from the 1970s until 2014 (“Analysis of Change”, Figure 6.3). 

The next step consisted of a mixture of quantitative and qualitative methods to estimate potential 

drivers of change. The quantitative part analyzed the changes of all LULC classes between two time steps 

and finally identified potential explanatory factors for change. This was achieved by utilizing the evidence 

likelihood transformation integrated in the LCM to identify explanatory factors based on observed 

changes among the maps of 2004 and 2014. These time steps were identified as most suitable baseline 

for project changes for the period until 2030, because changes from the 1970s until 2004 are rather 

negligible (Figure 6.2). This procedure was done separately for the LULC maps covering cropland only, as 

well as for the maps that distinguish between cropland and cropland-rice (Figure 6.2c-d, and Figure 6.2g-

h). The scenario with specific attention to rice was established due to the importance of rice crops for 

the catchment (Nindi et al., 2014; Wilson et al., 2017) and to assess the differences among cropland and 

cropland-rice scenarios with regard to their impact on water resources. Differences in cropland and 

cropland-rice within SWAT involve, among other factors, the plant’s radiation-use efficiency, the growth 

rate, and the maximum leaf area index (Arnold et al., 2012). 

Simultaneously, a qualitative component was performed to complement the quantitative results. 

Several experts in the region were interviewed and a workshop was held to perform a participatory 

mapping exercise. In this exercise experts from various disciplines were asked about recent hot spots of 

land use change and possible hot spots of land use change within the next 10 –20 years. The information 

was used to identify explanatory factors as well as to evaluate, revise, and contextualize the final maps 

for 2030 (see also chapter 4.1). 

As spatial explanatory factors of change slope, elevation above sea level, distance to roads, rivers 

and settlements as well as the distance to former disturbances, so LULC conversions into cropland or rice 

were included in the modeling process. The processes involving distance to disturbances or settlements 

are driven by population growth in the valley and population growth is therefore integrated indirectly 

through these processes as a driver variable. Explanatory factors were also discussed within the 

workshop with local stakeholders from various fields (hydrology, ecology, social sciences, agronomy, 

district officers, NGO, and PPP representatives). On the baseline of these expert opinions and the 

observed patterns of historic LULCC (see Figure 6.2), it was assumed that conversion of a LULC class into 

cropland or rice is more likely close to roads, settlements, former conversions into agricultural land use 

or in flat areas, and lowlands that are especially suitable for rice production. Subsequently, the Multi-

Layer Perceptron (MLP) neural network (Eastman, 2016b) was utilized to create the transition potentials 

in a transition model that simulates potential future LULC distributions using the built-in Markov Chain 
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Model (Adhikari et al., 2012; Eastman, 2016b). Based on observed change patterns and expert judgment, 

the resulting maps estimate the spread of either cropland or cropland-rice until 2030 and are used as 

input for the SWAT model to analyze the impact on water resources. 

 

 
Figure 6.3  Flow chart indicating the major processes to generate the LULC maps for the 2030 scenarios. 

 

For the purpose of training and evaluation, the MLP was given a set of pixels that were included in 

the transition model. In this specific case, a set of 10,000 pixels from the LULC setup of 2004 was taken. 

These pixels were chosen randomly fulfilling the following requirements: One half of the pixels changed 

from one of the other LULC classes into either cropland or cropland-rice in the LULC 2014 setup. The 

other half of the pixels consisted of pixels from all LULC classes from 2004 that were suitable to change 

either into cropland or cropland-rice (e.g., flat terrain or proximity to settlements or roads), but did not 

experience such change until 2014.  

In a next step, these 10,000 pixels were randomly distributed into a training and a validation pixel 

group containing each half of the pixels. The training pixels were utilized to train the MLP and calculate 

the LULCC from 2004 to 2014, while the validation group was used to measure the accuracy of this 

training model to correctly predict persistence of LULC classes or their transition into cropland or 

cropland-rice from 2004 to 2014. Measure value for the performance of the transition model is the skill 

statistic with expected accuracy and skill measure (Equation 6 and 7):  

 

𝐸(𝐴) =
1

(𝑇 + 𝑃)
 (Equation 6.6) 

where E(A) is the expected accuracy, T is the number of transitions in the submodel, and P the 

number of persistent classes. 

𝑆 =
(𝐴 − 𝐸(𝐴))

(1 − 𝐸(𝐴))
 (Equation 6.7) 
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where S is the skill measure ranging from -1 to 1, with values smaller 0 indicating a model worse than 

random chance and with value +1 indicating a perfect fit, while A is the measured accuracy, which 

accounts for the percentage of correct predictions (Eastman, 2016a). 

The transition potentials for the single LULC classes gathered from this training and validation were 

later on transferred into a transition matrix, which was used to simulate the LULC maps for 2030. 

All LULC scenario analyses with the SWAT model were performed with identical climate data to 

decouple the climate influence on water resources from the influence of LULCC. The MIROC5-RCA4_v1 

model (Table 6.3) from 1958–2005 was chosen as baseline climatic data for the LULC analysis. The 

combined effects of climate change and LULC impacts on water resources are investigated in chapter 

6.3.4 with two GCM-RCM combinations that show either dry (CNRM-CM5-CCLM4-8-17_v1, Table 6.3, 

6.4) or wet (MIROC5-RCA4_v1, Table 6.3, 6.4) climatic conditions for the period of 2010–2060 (Näschen 

et al., 2019). The “dry model” is run with the RCP 4.5 scenario and the “wet model” with the RCP 8.5 

scenario to account for uncertainties in climatic conditions by choosing the driest and wettest model 

already tested and bias-corrected for the region in a previous study (Näschen et al., 2019). 

For the analyses on subcatchment scale (Figure 6.10, 6.12) the LULC setup of 1994 was used for the 

comparison instead of the setup of 1970. This was done because the setup of 2030 was projected based 

on changes to the setup from 2004 to 2014. Baseline data for the generation of these setups are Landsat 

5, 7 and 8 images. Their band definitions are similar with only negligible differences (Vogelmann et al., 

2016) and they all have the same resolution of 30 m. The 1970s setup is less suitable for comparison on 

subcatchment scale, since it was generated with pre-collection Level 1 60 m resolution data and 

conventional mosaicking (Näschen et al., 2018). The map from the 1970s is based on a decadal best pixel 

composite of images from different seasons and is therefore less consistent than the later maps, which 

are based on multi-seasonal multi-temporal metrics. 

 

6.3. Results 

6.3.1. Model Performances 

A detailed overview of the model performance for the SWAT model is given by (Näschen et al., 

2018). However, essential statistics on the model performance are presented in Table 6.5 and Table 6.6, 

referring to the equations stated in chapter 6.3.2.  

 

Table 6.5  Summary of the quantitative model performance analysis for the calibration and validation 

period. R
2
 is the coefficient of determination (Equation 1), NSE is the Nash–Sutcliffe efficiency 

(Equation 6.2) and KGE is the Kling-Gupta efficiency (Equation 6.3). A value of 1 indicates a 

perfect fit. 

Simulation Period (Daily) R² NSE KGE 

Calibration (1958–1965) 0.86 0.85 0.93 
Validation (1966–1970) 0.80 0.80 0.89 

 

The LCM performance is measured by the skill measure (Equation 6.7) and was satisfactory for both 

setups (Table 6.6). 
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Table 6.6  Skill measure (Equation 6.7) for both setups that modeled the transition of other LULC classes 

into cropland or into cropland-rice as a specific crop. Baseline data were observed transitions 

from 2004–2014, which were translated and extrapolated into LULC maps for the year 2030. 

Transition Skill measure 

to cropland 0.69 
to cropland-rice 0.77 

 

6.3.2.  Land Use Land Cover Change Scenarios 

Figure 6.4 shows the result of the LCM for the year 2030. The maps show increasing density of 

agricultural activities at the fringe of the floodplain and an agricultural encroachment towards the river, 

whereas the central part of the floodplain is not converted. Other hot spots of change are the western 

parts of the catchment and the central northern parts, especially in Figure 6.4c. Figure 6.4a and 6.4c also 

show agricultural activities in the eastern parts along the Kilombero River. 

 

 
Figure 6.4  Land use and land cover classifications as modeled by the Land Change Modeler for the year 

2030. For better comparison a) and b) show the setups for 2014 from Figure 6.2, c) displays the 

scenario based on the single cropland classification and d) illustrates the same scenario but 

distinguishes between cropland and cropland-rice land use class. 

 
The percent share for all LULC types in the maps of Figure 6.2 and Figure 6.4 are displayed in 

Figure 6.5. The generic cropland setup distributions are shown on the left-hand side of Figure 6.5a to e 

and the maps with the differentiation of cropland and cropland-rice are displayed to the right-hand side 

of Figure 6.5f to j. The increasing share of cropland and cropland-rice classes from 2004 onwards for both 
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setups is noteworthy. The share of forest classes is quite stable, although there are fluctuations in 

between forest mixed and forest evergreen. The decreasing trend of savanna in the cropland-rice setup 

from 2004 is remarkable and more pronounced than in the cropland setup. However, the cropland setup 

generally has a higher share of grassland and a strongly declining share of grassland from 2004 onwards. 

Other classes are much less represented or disappear in the final HRU setup like the built-up class. 

However, the distribution of the HRU setup reflects the original LULC distribution well. The 

disappearance of the built-up class in the HRU setups can be attributed to the low share of residential 

areas (< 0.6%) in the baseline LULC setups from 1970 to 2014. 

 
Figure 6.5  Observed and modeled (2030 (e and j)) share of the land use/land cover (LULC) classes within the 

Kilombero Catchment. (a) to (e) show the distribution from the 1970s to 2030 with a different 

classification method compared to (f) to (j). The built-up class dropped out in the final LULC 

distribution due to the low share of residential areas and the application of the HRU approach. 

 

6.3.3. Impact of Land Use/Cover Changes on Water Resources 

Figure 6.6a–b show that the overall annual discharge at the outlet is similar among all LULC setups. 

Nevertheless, a closer look at Figure 6.6c-d, which shows a zoom-in to the boxes, reveals differences 

between the two setups. On the one hand, the cropland setup (Figure 6.6c) shows an increasing trend 

for discharge from 1970 to 2030 with some fluctuations. These fluctuations are also reflected in 

fluctuations among the LULC classes in Figure 6.4. On the other hand, the setups that include rice 
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(Figure 6.6d) show a constantly decreasing trend of discharge at the outlet with an increasing share of 

rice (Figure 6.5).  

 
Figure 6.6  Box plots showing the annual discharge at the main outlet for the simulated period of 1958–2005. 

a) shows the discharge for the setups with cropland only and b) for the setup with the 

differentiation of cropland and cropland–rice. c) and d) show the very same information as a) and 

b), but zoom-in to the values of the boxes. 
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Figure 6.7 focuses on low flows (Figure 6.7a) and high flows (Figure 6.7b) for all setups. The general 

pattern for the low flows shows decreasing trends for the LULC setups including rice from the 1970s 

(Q90 of 119 m³/s) to 2030 (Q90 of 112 m³/s), which equals a drop of 6%. The cropland setups lack this 

trend, however the lowest Q90 value is again with the 2030 setup (114 m³/s). The values for Q10 show 

an analogous picture for the cropland-rice setup, with decreasing trends from the 1970s setup 

(1430 m³/s) to the 2030 setup (1320 m³/s). The absolute changes (110 m³/s) are more pronounced 

compared to the Q90 decrease, but the relative changes are comparable with 8%. The cropland setups 

show a different picture, with rather low absolute Q10 values from the 1970s (1118 m³/s) up to 2014 

(1169 m³/s) and a sharp increase for the 2030 setup (1358 m³/s), which equals an increase of 21% 

compared to the 1970s setup. 

Figure 6.8 shows the discharge amount for return levels for all setups based on the GEV-GMLE 

analysis of 48 annual maximum values from the period of 1958 to 2005. The distribution is similar to the 

Q10 values presented in Figure 6.7b. The discharge of 2-year and 5-year return levels for the cropland 

setups increase from the 1970s setup (3260 m³/s; 6310 m³/s) to the 2030 setup (3566 m³/s; 6595 m³/s), 

whereas the cropland-rice setups show an opposing trend (1970s: 3655 m³/s; 6663 m³/s ; 2030: 

3472 m³/s; 6437 m³/s). These trends are overcome by increasingly high return level values for both 2004 

and 2014 setups. Furthermore, the relation of increasing return levels for the comparison of the 1970s 

setup and the 2030 setup with cropland is inverted from the 25-year return level onwards. 

 
Figure 6.7  Distribution of Q90 (a) and Q10 (b), representing the flow exceeded in 90% or 10% of the time for 

Q90 and Q10, respectively. The reddish columns on the left represent the setups with cropland, 

whereas the blueish columns on the right display the modeling results for the setup with cropland 

and cropland-rice differentiated. Data is based on simulations from the period 1958–2005 and all 

inputs except for the LULC maps are not modified. 
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Figure 6.8  Return levels and respective discharge of flood events for all LULC setups. Return levels represent 

the discharge at the outlet for a 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year event 

according to the generalized extreme value (GEV) model and the generalized maximum likelihood 

estimation (GMLE) method from the period of 1958 to 2005. 

 

Figure 6.9 illustrates changes among LULC setups for selected water balance components, namely 

surface runoff, overall water yield and evapotranspiration on a monthly timescale for the whole 

simulation period from 1958–2005. All changes represent differences among the presented LULC setup 

and the basic setup from the 1970s. Hereby, all cropland setups (Figure 6.9a–d) are compared to the 

cropland 1970s setup and all cropland and cropland-rice setups (Figure 6.9e–h) are compared to the 

cropland and cropland-rice setup from the 1970s. Overall, the monthly changes are rather small, 

although water yield increases in the 2030 setup (Figure 6.9d) by an average of 22.3 mm per year in 

April, which equals 28.2% of the overall water yield for that month. Furthermore, evapotranspiration 

decreases nearly the whole year round (except for May and June) in that setup by up to 8.2 mm in 

average for the month of December, which equals 8.5% of the average evapotranspiration in that 

month. A different picture is shown for the rice scenarios (Figure 6.9e–h), where overall water yield 

decreases in the 2014 (Figure 6.9g) and 2030 (Figure 6.9h) setup for April and May. However, the 

average decrease ranges from 5.4 mm (5.1%; May, 2014 setup) to 8.1 mm (7.6%; May, 2030 setup) and 

is therefore less pronounced compared to the increases in the 2030 cropland setup. 
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Figure 6.9  Average shifts (in mm) in selected water balance components for the entire catchment within the 

period from 1958 to 2005 compared to the 1970s setup with cropland (a-d), or cropland-rice (e-

h). All inputs except for the LULC maps are not modified. 
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Variations of surface runoff, overall water yield, and evapotranspiration on subcatchment scale are 

shown in Figure 6.10. Figure 6.10(a–c) compares the annual water balance components’ averages from 

the 2030 setup with the 1994 setup with cropland and Figure 6.10(d–f) compares the same with the 

cropland-rice setups, respectively. An increase of surface runoff and overall water yield is apparent 

(Figure 6.10a–b). The northeastern parts, and also the floodplain show increasing surface runoff values 

of 10 to 20 mm and increase in total water yield of more than 50 mm. Hence, evapotranspiration is 

decreasing in nearly all subcatchments, especially in the mountainous northwestern parts. The 

differences in the rice setups (Figure 6.10d–f) from 1994 to 2030 show a different pattern. Changes in 

surface runoff are less pronounced and most subcatchments show a slightly decreasing trend. Overall 

water yield is decreasing in many subcatchments by 50 mm and more, especially in the fringe of the 

floodplain, but also in some of the northwestern mountainous subcatchments. Furthermore, 

evapotranspiration is decreasing in many subcatchments, especially on the fringe of the floodplain and 

the western parts. However, slightly increasing trends of evapotranspiration are apparent e.g., in the 

northeastern subcatchments. 

 

 
Figure 6.10  Average annual changes in selected water balance components on subcatchment scale. a–c) 

compares the cropland LULC maps of 1994 and 2030, while (d–f) compares the cropland-rice 

LULC maps of 1994 and 2030 on. All model runs used identic climate data from 1958 to 2005 and 

differences in water balance components refer only to changes in LULC. 

 

6.3.4. Combined Effect of Land Use/Cover And Climate Change on Water Resources 

The combined effect of LULCC and climate change on water resources is illustrated for a combination 

of distinctive wet and dry model combinations in Figure 6.11 and 6.12 in order to demonstrate the 

uncertainty and the span of possible future conditions according to the model combinations and their 

impact on water resources. Figure 6.11 displays the Q90 (Figure 6.11a) and Q10 (Figure 6.11b) modeling 

results for both LULC setups of 1994 and 2030, all driven by the climatic forcing of the “dry model” and 

the “wet model”. Apparently, the span for Q10 and Q90 of the “dry model” and the “wet model” is more 
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pronounced in comparison to the differences among the LULC setups. The range of Q90 straddles from 

101 m³/s (2030, rice, “dry model”) to 162 m³/s (1994, cropland, “wet model”). For Q10 the results span 

from 1310 m³/s (1994, cropland, “dry model”) to 2416 m³/s (1994, cropland-rice, “wet model”). These 

discrepancies represent a relative growth of 61% for Q90 and 84% for Q10, indicating a huge uncertainty 

for the future low flows and high flows with regard to a changing climate and LULCC. Furthermore, it is 

important to mention that all combined LULC and climate change scenarios for Q10 Figure 6.11b) show 

increasing values for Q10 compared to the LULC scenarios (Figure 6.7b), whereas Q90 values (Figure 

6.7a) are lower for the dry climate scenario and higher for the wet climate scenario (Figure 6.11a). 

Figure 6.12 illustrates a spatially more explicit dimension for the subcatchment scale by visualizing 

the deviations in surface runoff (Figure 6.12a), overall water yield (Figure 6.12b) and evapotranspiration 

(Figure 6.12c) between the cropland model setup of 1994 driven by the “dry model” and the cropland 

setup of 2030 driven by the “wet model”. The surface runoff component increases by more than 100 mm 

for some of the subcatchments in the annual average for the whole catchment and particularly for some 

of the subcatchments in the (north-) eastern part of the catchment. Unlike the western parts, which are 

mostly within the range of 0–20 mm increase. The pattern of the overall water yield is alike; however, it 

has another scale straddling from slightly decreasing trends in the western subcatchments to increasing 

values of nearly 600 mm in the eastern subcatchments. Water yield deviations increase towards the 

eastern parts, except for the floodplain, where this pattern is not as distinctive as for the surrounding 

mountainous areas. Evapotranspiration (Figure 6.12c) increases as well in the range of 100–200 mm for 

nearly all subcatchments and particularly for the northeastern floodplain and its fringe. 
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Figure 6.11  Bar plots showing the distribution of Q90 (a) and Q10 (b), representing the flow exceeded in 90% 

or 10% of the time for Q90 and Q10, respectively. The LULC setups of 1994 (cropland and 

cropland-rice) as well as the scenarios for 2030 (cropland and cropland-rice) are simulated with 

climate data of the period from 2010 to 2060 with the “dry” and the “wet” GCM-RCM model 

(Table 6.3). 

 

 
Figure 6.12  Average annual shifts in selected water balance components on subcatchment scale with a 

comparison of the LULC setup of 1994 and 2030 (both without consideration of rice). The LULC 

1994 is using the “dry model” (Table 6.3) climatic data with the RCP 4.5 scenario as input, 

whereas the 2030 LULC setup is driven by the “wet model” (Table 6.3) and the RCP 8.5 scenario 

data. All model runs were performed with climate data for the period of 2010 to 2060. 

Differences in water balance components refer to changes in both LULC and climate change. 
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6.4. Discussion 

6.4.1. Land Use Change Scenarios 

This study focuses on changes from all LULC classes except built-up areas to either cropland or 

cropland-rice, although local studies in the catchment indicate the problem of deforestation as well 

(Johansson and Abdi, 2019). However, deforestation is not as pronounced for the entire catchment 

(Figure 6.4) (Leemhuis et al., 2017) and therefore only changes into agricultural LULC classes were 

explicitly modeled. Nevertheless, difficulties in the classification scheme among the different forest 

classes and open forest areas or savanna were apparent (Näschen et al., 2018). Natural classes in 

particular were prone to errors due to gradual differences in reflectance characteristics, although post-

classification comparisons were mostly consistent and conform to historical maps. Yet, conversion into 

cropland was the focal LULCC and less prone to errors due to strong spectral changes (Näschen et al., 

2018). Skill measures (Table 6.6) for both transitions to cropland or rice were satisfactory, nevertheless 

the exact distribution of LULC pixels in the 2030 scenarios should be interpreted carefully for several 

reasons. Firstly, the computed rate of change from 2004 to 2014 was transferred linearly until 2030. 

Secondly, this analyzed pattern is based on explanatory spatial factors like the altitude above sea level. 

Therefore, a saturation effect might occur due to limited space, e.g., in the wetland fringes surrounding 

the floodplain. The wetland fringes are nearly completely used as agricultural land in the setups of 2014 

and 2030 (Figure 6.4). A growing demand for agricultural land in this area is a source of uncertainty, 

because the interaction with the enclosing landscape, and therefore agriculturally less suitable areas like 

upland forests or flood-prone areas, is a different process compared to the observed LULCC in the 

wetland fringes. Thirdly, alterations in demographic growth including natural birth rates and immigration 

are not included in this linear approach. However, the impacts of demographic growth on LULCC are 

indirectly integrated due to the transfer of observed changes from 2004 to 2014 to the year 2030. The 

demographic growth accelerated in the 90s and after 2000 due to the migration of mainly pastoralists 

into the valley (Msofe et al., 2019) and correlates with the growing share of cropland in the valley, which 

was increasingly converted from grassland and savanna into cropland to feed the growing population. 

We use these conversions into cropland as a proxy for demographic growth, due to the stagnating trends 

in rice yields in the area (Duvail and Hamerlynck, 2007; Kwesiga et al., 2019), although conversions into 

cropland might also be affected by investors from outside the valley and other factors. Lastly, the 

influence of politics and the economy is not included, but might change the LULC drastically by setting 

incentives for agricultural activities e.g., the SAGCOT initiative (Environmental Resources Management, 

2013), changing the allocation or status of conservation areas or by developing the infrastructure. 

Furthermore, the spatial structure of the SWAT model and its HRU approach, which summarizes results 

for HRUs and neglects interactions among neighboring grid-cells within a subcatchment (Rathjens and 

Oppelt, 2012), has structural limitations compared to a fully distributed grid-based solution. However, 

SWAT is a well proven tool to determine impacts on water resources due to LULCC (Cornelissen et al., 

2013; Martinez-Martinez et al., 2014; Niraula et al., 2015). Analysis of impacts on water resources on 

grid-cell scale is not the goal of this study, but rather to identify general trends of LULCC and their impact 

on specific areas prone to these LULCC in order to assist the local water resource management 

authorities to enable a sustainable use of the available water resources. Hence, a business as usual 
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scenario until 2030 was developed using the LCM and all analyses with regard to water resources were 

performed from catchment to the subcatchment scale.  

The general distribution and spread of the modeled cropland/rice production area is reasonable. The 

hot spot of change for both scenarios is the fringe of the wetland. However, the center of the wetland is 

not transformed to agricultural fields on both setups, which is also reasonable due to the extended 

flooding and the threat to lose the harvest (Gabiri et al., 2018). Other areas of agricultural expansion are 

the western parts and the central northern parts, near the cities of Makambako and Njombe, and the 

main roads A104 and B4 (Figure 6.1). Although some rice is grown in the Njombe region, it is mainly an 

important production region for maize, Irish potato, tea, and flowers and therefore it is rather unlikely to 

dispense the income within these agriculturally suitable value chains for less suitable large scale rice 

production in this region. The southern part, which expanded from 2014 to the 2030 setups, was already 

confirmed by local experts in a participatory mapping exercise as a recent rice growing area in the 

framework of a stakeholder workshop in February 2019. The transformation of cropland to cropland-rice 

in the very northeastern parts is unlikely due to the existing and growing sugarcane fields of the 

Kilombero Sugar Company. 

6.4.2. Land Use/Cover and Climate Change Impact Assessment on Water Resources  

The impact of LULCC on average stream discharge seems to be negligible at the first glance 

(Figure 6.5). This is also in line with a former study on historical LULCC on cropland (Näschen et al., 

2018), and was also observed in another catchment in Tanzania (Wambura et al., 2018) as well as in 

small catchments in West Africa with conversion of savanna into rice (Danvi et al., 2018). One important 

factor for the low impact at the main outlet is also the stable share and distribution of forest classes in 

the upland of the catchment (Figure 6.2, 6.4, 6.5 and (Näschen et al., 2018)). Yet, LULCC are still seen as 

the main driver for decreasing streamflow in Eastern and Southern Africa (Schäfer et al., 2015). These 

minor changes in streamflow at the main outlet due to LULCC detected in this study can be attributed to 

concealing effects for large catchments (Wagner et al., 2013) like the Kilombero Catchment. Therefore, it 

is important to analyze the water balance on several spatio-temporal scales like the subcatchment scale 

or monthly averages and also analyze changes in low- or high-flow patterns.  

The Q90 as representative index for the low flows decreases for both scenarios – the cropland and 

the cropland-rice scenarios – by 6% or 8%, respectively, from 1970s to 2030. An environmental flow 

assessment found several parts of the catchment to be differently vulnerable to decreases in mean 

annual flows (CDM Smith, 2016). The upstream margin of the floodplain with a monthly recommended 

flow of 82.3% of the mean annual flow was defined as highly vulnerable concerning environmental flows 

(CDM Smith, 2016). Therefore, these decreasing trends of 6% and 8% of the Q90 at the outlet should be 

considered carefully for further analyses. Stakeholder interviews and discussions with local farmers 

revealed, that perennial tributaries of the Kilombero in the northeastern part of the catchment turned 

into seasonal tributaries in the last decades. This change is attributed to deforestation activities and 

expansion of cropland, and therefore needs to be taken seriously to maintain the socio-ecological system 

that depends on continuous availability of water resources and the transported sediments and attached 

nutrients (Johansson and Abdi, 2019; Wilson et al., 2017).  

High flows are more distinct in the rice scenarios (Figure 6.6), although they decrease with an 

increasing share of rice (Figure 6.7b), especially in the months of April and May (Figure 6.9g–h). The 
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general differences among the cropland and cropland-rice scenarios arise from their different shares of 

all LULC classes (Figure 6.5). The rice setups have a lower share of forest classes for example and 

therefore a comparison that aims to determine the impact of a growing agricultural share should be 

done separately within the cropland-rice or cropland setups. Though, the decreasing high flows within 

the rice scenarios (Figure 6.6) can be attributed to the high water requirements of the rice plants (Duku 

et al., 2016). 

The cropland scenario for 2030 (Figure 6.7b) displays a strong increase in the discharge amount of 

Q10, which is distributed to the months of March to May (Figure 6.9d). This might lead to aggravated 

flooding events, which could either endanger the farmer’s harvest (Duvail and Hamerlynck, 2007; 

Kwesiga et al., 2019) their lives, critical infrastructure and their livelihood (National Bureau of Statistics. 

United Republic of Tanzania, 2017). Especially newly promoted, high yielding, but low growing improved 

varieties such as like SARO5 (TXD 306) might be negatively affected by these changes. These strong 

increases of water yield are accompanied by slightly decreasing evapotranspiration throughout the year 

(Figure 6.9d). These patterns with regard to LULCC and Q10 are aggravated by the effects of climate 

change. The combined effect of climate change and LULCC inherits an increase of 84% between the two 

scenarios comparing the lowest (LULC 1994, RCP4.5, dry model) and the highest (LULC 2030, RCP8.5, wet 

model) value for Q10 shown in Figure 6.11b. The effect of climate change outperforms the impact of 

LULCC, yet the contribution of LULCC to changes in Q10 is still substantial (Figure 6.7b). It is necessary to 

add that changes in management practices are not included in these LULCC, but several practices, like 

the establishment of year-round irrigation schedules, will further affect water resources (Reshmidevi et 

al., 2018; Reshmidevi and Nagesh Kumar, 2014). Furthermore, the uncertainty of the climate change 

signal, represented by the huge span in the GCM-RCM model runs (Näschen et al., 2019) (Figure 6.11), is 

much higher than in LULCC scenarios. While climate change models show diverging trends of more dry or 

more wet conditions and changes in the seasonality, the impact of conversion from natural LULC into 

agricultural utilized fields is more explicit (Danvi et al., 2018; Op de Hipt, 2018; Yira et al., 2016), although 

it still depends on the specific crops grown. Nevertheless, intensification of precipitation might foster 

groundwater recharge and therefore access to renewable water resources in the Kilombero Catchment 

as well as already described in other catchments in SSA (Cuthbert et al., 2019). This indicates a particular 

resilience to climate change and intensification of precipitation events. However, more observation-

driven research is needed on the relation of surface water and groundwater resources on this topic 

(Cuthbert et al., 2019). Moreover, data availability on the hydrogeology of the Kilombero Catchment is 

still poor to be modeled precisely, although some data and a local conceptual model exists (Burghof, 

2017; Burghof et al., 2017). Furthermore, the groundwater routines of the SWAT model are not sufficient 

for adequately modeling groundwater processes, because distributed parameters like the hydraulic 

conductivity and storage coefficients are disregarded in the linear reservoir approximations (Kim et al., 

2008). 

Overall, analyses on subcatchment scale (Figure 6.10, 6.12) show that the conversion into cropland 

leads to increasing surface runoff and overall water yield (Figure 6.10a–b), whereas a more diverse 

picture is shown for the rice setups (Figure 6.10d–e), due to the differences in LULC in the setups 

(Figure 6.5) and the aforementioned water demand of rice plants (Duku et al., 2016). Average annual 

evapotranspiration is decreasing in both agricultural setups in most of the subcatchments, especially 

where natural systems are converted into agricultural production zones, which is in line with other 
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studies from the tropics (Gabiri et al., 2019; Guzha et al., 2018; Yira et al., 2016). Still, there are studies 

that report increasing evapotranspiration due to conversion of forests to cropland (Mango et al., 2011). 

However, farming in the Kilombero Catchment is mainly done by low input rain-fed rice cultivation and 

only a few rice irrigation schemes do exist (Kashenge and Makoninde, 2017). Therefore, the rice setups 

were established using the default management plan from SWAT. A high input management setup would 

change the plant growth and consequently the evaporation of the plants (Danvi et al., 2018).  

The scale dependency of hydrological processes and the spatio-temporal heterogeneity of water 

movement within the catchment are apparent by comparing the different characteristics of selected 

water balance components in the subcatchments (Figure 6.10, 6.12) and their monthly deviations for the 

entire catchment (Figure 6.9 and (Näschen et al., 2018)). The deviations that include the effects of 

climate change (Figure 6.12) are substantial, even though they compare the extreme situations 

concerning LULCC and climate change scenarios. 

The manifold scenarios, inherited uncertainties and their implications on water resource 

management reveal the difficulties for local authorities and the need for further research in the area. 

The population in the catchment districts Kilombero and Ulanga has been and is currently increasing 

(National Bureau of Statistics. United Republic of Tanzania, 2012) and road infrastructure as well as the 

Stiegler’s Gorge power station are being constructed. This will lead to further LULCC, and locally rapid 

deforestation has already been reported (Johansson and Abdi, 2019; Munishi-Kongo, 2013), 

consequently affecting the water balance (Yang et al., 2019). Forest protection against unregulated 

degradation is still problematic in Tanzania. There is a need to understand the social-ecological system to 

strengthen strategies, that ensure socio-economic benefits of local people, while preventing ecosystem 

degradation to allow a sustainable utilization and protection of the resource base (Rosa et al., 2018). The 

local scale and the understanding of the local communities that depend on the wetland resources and 

their adjacent mountain forests and savannas could be the key for the development of management 

policies in the Kilombero Catchment (Msofe, 2019). These could be for example the promotion of 

environmentally friendly sources of livelihood such as beekeeping, a sustainable forestry system 

accompanied by education on the socio-ecological system and improvements in the agricultural practices 

(Msofe et al., 2019). Still, migration into the valley and population growth are critical factors for the 

pressure on the ecological system (Johansson and Isgren, 2017; Msofe, 2019; Msofe et al., 2019). Further 

information on the flooding extent, timing and duration using a hydraulic model with regard to the 

LULCC and climate change scenarios should support to manage the floodplain under future conditions. 

Beyond that, there is still not sufficient data on water quality, especially with regard to the emerging use 

of fertilizers, herbicides, and pesticides (Msofe, 2019; Wilson et al., 2017). 

 

6.5. Conclusions 

The study shows different methods to develop LULC maps and how to utilize these methods for 

further LULC scenario development. Differences among these scenarios and their effects on water 

resources are shown. However, implications of LULCC and climate change impacts on various spatio-

temporal scales are key aspects of this study. Results clearly show that it is not sufficient to analyze 

discharge only at the outlet in LULCC impact studies (Hrachowitz et al., 2013). It was shown that further 

analyses on different spatial scales and changes in low flows and high flow behavior are essential to 
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identify hot spots of change, obtain environmental flows and for flood protection. The scenario analysis 

shows a trend of decreasing low flows, especially until 2030 by 6% to 8%. These numbers should be 

taken seriously, as they represent only the catchment´s average, while several areas, e.g., the 

northwestern parts, show more pronounced declines in overall water yield and evapotranspiration. Since 

some rivers in the northwest that have already been subject to a shift from perennial to seasonal rivers 

management activities are crucial to maintaining and protecting the system. This study helps to identify 

areas that are essential for the maintenance of the social-ecological system with regard to water 

resources. However, these activities have to take part in collaboration with the involvement of local 

communities and might need the establishment of local management authorities to enable a sustainable 

management of the catchment (Daconto et al., 2018). Potential management activities could contain the 

protection of natural swamps within the valley or upland forests in combination with payment for 

ecosystem services to incentivize these protection zones for local communities. Other options include 

the exploration of more environmental friendly activities such as beekeeping or more sustainable 

forestry systems (Msofe et al., 2019). Additionally, information with regard to the endangered 

ecosystems and their importance for the farmer’s fields should be communicated e.g., through extension 

officers to create mutual acceptance for these protection zones. 

Conversely, high flows are more pronounced for the overall catchment with an increase of Q10 by up 

to 21% in 2030 compared to the 1970s due to LULCC only. These increases are associated with the 

months of March to May (the rainy season) and are remarkable for the town of Ifakara - a highly 

populated area with many small scale farmers, that frequently uses high yielding, but low growing rice 

varieties. Hence, the livelihood of the population in that area is at risk due to these LULCC, which are 

particularly fostered by climate change. Therefore, the retention capacities of natural systems like 

forests or swamps are indispensable for the maintenance of the social-ecological system. 

Further analysis with specific crop and rice management parameterizations are recommended for 

more accurate projections. These projections should be utilized to run a hydraulic model for the flood 

areas in order to assist sustainable management with regard to water resources. The results of this study 

indicate a strong impact of changing climate on the water cycle, whereas the conversion of 

predominantly savanna and grassland to agricultural areas is less dramatic, yet remains important at the 

subcatchment scale. 
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7. General conclusion 

The major challenges for water resource management in the area, which are presented in the 

general introduction, have been addressed in this study on the Kilombero Catchment in Tanzania. The 

distribution of water resources, a central part of food security management, was presented on several 

spatio-temporal scales and for several scenarios that are relevant to local stakeholders. The interaction 

and dependence of the wetland system to the uplands was presented clearly for the catchment. In depth 

discussions and conclusions on these aspects are presented in the respective chapter 4, 5 and 6. 

However, a summary with regard to the research questions from the general introduction is provided in 

the following section, followed by the embedment in the broader context, the limitations of this study 

and an outlook. 

 

7.1. Research questions and objectives 

(i) How do the wetland and the catchment interact and what are the major hydrological 

processes? 

A data base for the catchment was established in a first step to get a better understanding of the 

catchment’s hydrology. Suitable data that fits to the mesoscale catchment were identified, either from 

local authorities, if possible, or otherwise from freely available global datasets. Additionally, climate data 

were bias-corrected and a new LULC classification with 30 m and 60 m resolution was developed. These 

data were utilized to set up, calibrate and validate a SWAT model based on historic discharge data. The 

setup of the model was successful and therefore a semi-distributed hydrological model was available to 

analyze the wetland-catchment interaction and the dominant hydrological processes. It was shown, that 

year-round base flow contribution from the uplands into the wetland is the dominant hydrological 

process that also preserves the wetland system and shows its dependence on the natural upland system. 

A first analysis of historic LULC maps from the 1970s to 2014 illustrated the scale dependency of 

hydrological processes in the catchment. The response on historical LULCC at the outlet of the catchment 

was negligible, whereas an analysis on subcatchment scale clearly showed shifts in water balance 

components due to LULCC. The study serves well as an example on how to utilize and combine local 

measurement data with freely available geodata and also how to use freely available geodata and to 

develop new products like LULC maps. 

 

(ii) What are potential impacts of climate change on the hydrology of the catchment? 

To answer this question six GCM-RCM model combinations from CORDEX Africa were chosen and 

later on corrected for bias based on local rainfall measurements and ERA-Interim reanalysis temperature 

data. At a first step the climate signal of the six model combinations was investigated for two RCP 

scenarios. The temperature showed a clear trend towards higher temperature throughout all models, 

whereas the precipitation pattern was much more diverse and complex. In the next step these climate 

data were used as input for the SWAT model to evaluate the impact on the hydrology. These analyses 

concentrated on subcatchment to catchment scale and from daily to decadal analyses ranging from 1951 

to 2060. A general trend towards an aggravation of the seasonality was apparent, especially with regard 

to high flows (increase up to 67.8%), while decreasing low flows were less pronounced. Additionally, a 
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shift of the flooding season from April to May from 2020 onwards is a common signal across all 

simulations. Especially the shift in time and the changing magnitude of the flood is an essential 

information with regard to the agricultural utilization of the wetland for flood recession agricultural 

practices as well as for the risk assessment of flood prone areas. 

 

(iii) What is the impact of LULCC on the hydrology of the catchment and what are potential 

future impacts and how do they interact with climate change? 

As a first step the LCM was used in order to analyze the historical patterns of change from two sets 

of LULC classification maps ranging from 1970s until 2014. These classifications arise from different 

methodologies and concentrate either on generic cropland or additionally incorporate rice as a specific 

crop due to the importance of rice for the catchment. The spatial trends and the explanatory factors 

(e.g., altitude, slope or distance to disturbance) for these changes were identified and potential LULC 

distributions for 2030 were developed. Furthermore, these LULC distributions were contextualized and 

evaluated in the framework of a workshop and expert interviews with local stakeholders. Subsequently, 

the SWAT model was utilized to simulate the impact of these LULCC on hydrology on several spatio-

temporal scales. At the outlet of the catchment the low flow (Q90) decreased by up to 8%, which is 

mainly occurring in the rainy season and the rice setup scenario. On subcatchment scale these deviations 

are more pronounced and environmental flows could be endangered. High flows are generally 

increasing, especially in combination with climate change scenarios with Q10 aggravated by an increase 

of 84% at the outlet. Several subcatchments close to Ifakara, which represents the most populated area, 

show an even more pronounced rise in Q10. Another study by (Hounkpè et al., 2019) in West Africa 

showed that flood risk due to LULCC and conversion of natural vegetation to agricultural land was 

underestimated by SWAT compared to WaSIM. Therefore, it is crucial to maintain on the one hand 

environmental flows for specific areas and seasons, while on the other hand retention capacities of 

natural systems are crucial to protect the livelihood of downstream riparians and to enhance the 

management of the flood recession agriculture. Potential hot spots of LULCC were identified like the 

fringe of the wetland and the western part of the catchment Also subcatchments that are susceptible to 

changes in hydrology (e.g., the area close to Ifakara) were identified by the subcatchment scale analysis. 

 

7.2. Embedding in a broader context 

This study contributes to water resource management in the Kilombero Catchment but also assists 

water resource management and water-related issues on several scales reaching from the catchment 

scale (i) to the country scale (ii) and is also applicable to the regional and continental scale (iii). 

(i) Detailed and distributed information for the understanding of the hydrological system 

on the catchment level are presented, as well as an impact assessment of global change 

impacts on the catchment. 

(ii) The results of the study might assist to plan for water resources beyond the Kilombero 

Catchment itself. The Kilombero River contributes the largest share of water to the Rufiji 

River, the largest river system of the country. The knowledge on water quantities that 

are leaving the catchment is on the one hand essential for dam management, power 

generation and therefore the recently increasingly promoted industrialization of the 
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country (Magufuli, 2015). On the other hand knowledge on water resources and the 

accompanied agricultural production is crucial for food security of the country with the 

Kilombero Catchment as one of the most productive rice producing areas in the region. 

In summary, knowledge on water resources is the connecting link among two of the 

most important subjects in the country that are agricultural production and the 

accompanied food security as well as industrialization.  

Furthermore, water from the Kilombero River contributes to several unique ecosystems 

in the catchment, but also to downstream ecosystems that are internationally 

recognized for their high biodiversity and their endemic species (e.g., Selous Game 

Reserve). These systems serve beyond their intrinsic value as important factors to the 

tourism value chain and highly depend on water resources from the Kilombero 

Catchment. Therefore, quantitative analyses of the recent situation, but also for 

conditions under global change are essential to manage and preserve these ecosystems. 

A flexible approach for effective integral wetland-catchment conservation management 

was recently published by (Reis et al., 2019), which deals with the Amazon River basin 

and could serve as an example for further planning. 

(iii) The framework provided here might also assist to make better informed management 

decisions with regard to water resources in other data-scarce catchments. The approach 

presented in this study is applicable to numerous catchments in SSA and beyond - if 

other, freely available precipitation products are utilized and bias-corrected as presented 

in the methodology of this manuscript. There are several products available to fill the 

gap of measured precipitation data e.g., CHIRPS1 (1981-present) (Funk et al., 2015b), 

CMORPH1 (1998-present) (Joyce et al., 2004), TAMSAT1 (1983-present) (Tarnavsky et al., 

2014) or TRMM1 (1998-2015) (Huffman et al., 2007). An overview on the evaluation of 

precipitation products for Western Africa is provided by (Poméon et al., 2017). The 

interdisciplinary modeling framework of this study comprising methodologies from 

hydrology, meteorology and remote sensing allows to adequately represent a 

catchment’s hydrology for historical, recent and future conditions. The bottleneck in 

hydrological modelling usually is the availability of discharge data, however the Global 

Runoff Data Base (GRDB) provides a database of more than 9,500 gauging stations 

worldwide. Many of these data sets from GRDB stop at 1990 or even before, which is not 

an issue if the users follow the approach presented on the LULC classification that allows 

to setup a hydrological model back until 1970. Following the approach presented in this 

manuscript it is possible to overcome data scarcity issues and utilize a mixture of 

available local measurements and freely available geodata. However, for smaller 

catchments it is important to use adequate data e.g. to represent the heterogeneity of 

soils also on a smaller scale. Therefore, the approach presented here is mainly feasible 

for meso and large scale catchments. 

 

                                                           
1
 See chapter VII List of Abbreviations for the full name 
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7.3. Research limitations 

Nevertheless, this study still has some limitations that are within and beyond the common modeling 

uncertainties described by (Abbaspour et al., 2007) as “processes unknown to the modeler, processes 

not captured by the model and simplification of the processes by the model.” Processes that are not fully 

captured by the SWAT model are for example the routing routines from HRUs within and to the next 

subcatchment, because the spatial allocation within a subcatchment is not considered by the model. A 

grid-based approach is available (Rathjens and Oppelt, 2012), but computationally not efficient for such 

a huge catchment. Furthermore, the plant growth parameters were taken from the SWAT database, 

because no parameters for the local varieties were available. An important issue with regard to 

hydrological modeling, especially in SSA, is the lack of groundwater data and the simple linear 

approaches for groundwater processes. However, until now hydrological modeling is the only option to 

quantitatively assess (ground)water resources in a cost efficient and comprehensive way in the region. 

Indeed, one of the reasons for choosing the SWAT model was the more simplistic groundwater approach 

that is used by the model, compared to other (ground)water models. The study tried to keep the 

groundwater model simple due to the lack of data, without losing spatial heterogeneity where it could 

be reflected (e.g., land use/land cover, topography etc.). Nevertheless, neglecting groundwater 

processes was not an option, due to the importance of groundwater processes reflected in the available 

conceptual model for the northeastern part of the catchment (Burghof et al., 2017). Additionally, the 

modeled water balance components were compared to the work of (Gabiri et al., 2018) and discharge 

was calibrated and validated to a gauging station downstream, which also integrates the features of the 

slow contribution of groundwater.  

With regard to the scenario simulations presented in Chapter 5 clearly shows the inherent 

uncertainties with regard to climate change scenarios. Although the signal for temperature development 

is homogenous among the six model combinations, there are huge differences among the GCM-RCM 

combinations with regard to precipitation. Precise rainfall data as input for hydrological modeling in 

tropical regions is in any case a complicated issue due to the small-scale and patchy convectional rainfall 

events that are very difficult to represent accurately. Furthermore, it has to be considered, that SWAT 

does not model the evolution of the soil profile accurately e.g., the effect of soil erosion is not 

considered and could have huge impacts especially with regard to increasing surface runoff and 

aggravated soil erosion processes. Tipping points are another source of uncertainty. Following the 

principle of uniformitarianism potential tipping points or changes in the systems behavior that are not 

reflected in the modeling process, might be missed-out. This might include teleconnections and abrupt 

changes in the climate system, which are not covered by the GCM-RCM combinations in this study, 

feedbacks in the social-ecological system or water-related political decisions with extensive 

consequences. Therefore LULCC were modeled only until 2030 and until 2060 for climate change 

scenarios, as technological developments or other disruptures might affect these scenarios heavily and 

in unforeseen ways. Nevertheless, it is important for stakeholders to have scenario simulations available 

in order to plan for realistic future conditions, while considering intervention scenarios. 
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7.4. Outlook 

The water-related perspectives of the Kilombero Catchment are coupled to several steering factors. 

One important aspect is the political agenda, that changes more and more from the „Kilimo Kwanza“ 

(Agriculture first) philosophy of the former President Jakaya Mrisho Kikwete to a more industrialization 

focused agenda of President John Pombe Magufuli. The overall consequences for the catchment, it´s 

residents and ecosystems are difficult to predict from the hydrological perspective alone. However, this 

study already gives valuable insights with regard to water resources. Interestingly, a review of (Jätzold 

and Baum, 1968) describes the development issues of the Kilombero Valley very similar to recent 

studies. They state, that the valley has been praised for its fertility, although it´s potential has not been 

properly used so far. This statement is very similar to those of recent stakeholders e.g., the SAGCOT 

initiative (Environmental Resources Management, 2013). An important pillar to gain acceptance for 

management plans is a broad acceptance across disciplines. One way to enhance acceptance and the 

role of local stakeholders, is collaborative modelling (Evers et al., 2012). The integration of local 

stakeholders in the modelling process in a next step could sharpen the model results by increased 

integrative and holistic thinking. This holistic thinking might be supported by the integration or coupling 

of models from other disciplines. One solution could be the coupling of the hydrological model with an 

agent-based economic model (Gebrekidan, unpublished) in order to simulate the behavior of local actors 

(here: farmers) with regard to their management practices. Actors will adapt their management 

practices with changing hydrological conditions and this will influence the hydrology vice versa, resulting 

in a feedback loop that hasn´t been modeled explicitly so far. Furthermore, the impact of changes in 

hydrology will affect the pattern of flooding, which will have a huge impact on local farming practices 

and residents. Examples for the coupling of 1D hydrodynamic and 2D hydrological models in the flood 

risk analysis do exist (Falter, 2016; Komi et al., 2017; Teng et al., 2017). However, data availability, 

especially with regard to the DEM and the representation of the river cross sections is often a 

bottleneck. Nevertheless, data on inundation extent from remote sensing applications are available, as 

well as water level data from piezometers (Gabiri et al., 2018). Additionally, more than 20 cross section 

measurements of the Kilombero River near the town of Ifakara were conducted by the author in order to 

determine the river depths. Next steps should therefore involve the application of a hydrodynamic 

model, the involvement of local stakeholders in collaborative modelling, and the coupling of the 

hydrological model with an agent-based economic model.  

This study has shown, that the integration of remote sensing techniques in combination with 

hydrologic modeling allows to utilize historic discharge measurements for setting up a hydrologic model 

and also to simulate global change scenarios. However, the author emphasizes the need for in situ 

measurements and the importance of hydro-meteorological measurement networks. In situ 

measurements improve and guarantee the quality of remote sensing products and discharge data and 

additionally allow for small scale simulations and are therefore substantial part for all hydrological 

modeling activities. 
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