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ABSTRACT 

Effective water management in inland valley catchments is crucial for 

adaptation to the adverse impact of climate change and land use and land cover change 

(LULCC) on smallholder farming systems, poverty reduction, attaining food security, and 

ecosystem preservations in the West African region.  

An intensive hydrological instrumentation of four sparse data catchments 

(Bankandi-Loffing, Mebar, Moutori, and Fafo in Dano, Burkina Faso) has been 

undertaken in order to better understand hydrological processes which control water 

availability, to calibrate and validate the physically-based and spatially distributed water 

balance simulation model WaSiM, to assess the impact of climate and land use and land 

cover change on water resources, and subsequently to derive strategies for improving 

the capacity of smallholder farmers to cope with water scarcity and climate variabilities. 

The instrumentation of the catchment helped to achieve three years (2014-

2016) of high temporal and spatial resolution data. The temporal resolutions of 

meteorological and stream flow data were 5 min to 10 min, six hours to a week for 

piezometric data, and 30 min to a week for soil moisture data. 

Five rain recorders, seven stream gauges, 64 piezometers in shallow 

groundwater (< 5 m deep), and 64 soil moisture measurements at three different depths 

(5 cm, 30 cm, and 50 cm) were installed and operated in the four catchments (total area: 

65 km²). Additionally, the groundwater tables of three relatively deep wells (6 m, 16 m, 

and 25 m deep) were monitored. 

The analyses of hydrographs and the flow duration curves (FDC) using 

observed discharge show less discharge in the headwater sub-catchments compared to 

the downstream sub-catchments. This is due to the low contribution of base flow in the 

headwater sub-catchments. The decomposition of total runoff using observed 

hydrographs and stream electric conductivity suggests that interflow is the major 

contributor to total discharge. 

The calibration and validation of the Bankandi-Loffing catchment achieved a 

good model performance using the coefficient of determination (R²), the Nash-Sutcliffe 

efficiency (NSE), the Kling-Gupta efficiency (KGE), and the percent bias (Pbias). The R² 

ranges from 0.47 to 0.95, NSE from 0.40 to 0.95, and KGE from 0.57 to 0.84 between the 

observed and simulated discharge. The numerical performance for soil moisture 

modeling is 0.70 for both R² and NSE, and 0.80 for KGE while for the groundwater table 

modeling the results are 0.30, 0.20, and 0.5 for R², NSE, and KGE, respectively. The fact 

that the transfer of the parameter set from Bankandi-Loffing to Mebar catchment 

without recalibration resulted in a good model performance (R²: 0.93, NSE: 0.92, and 

KGE: 0.84 in 2014-2015; R²: 0.65, NSE: 0.64, and KGE: 0.59) suggests the strong 

robustness of WaSiM in the investigated area. 
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The resulting water balance shows that evapotranspiration is quantitatively 

the most important hydrological process, physical evaporation dominates the 

evapotranspiration, and 14% of rainfall runs out of the catchment as discharge. Interflow 

dominates runoff at the headwater sub-catchments whereas base flow is the major 

runoff component in the downstream area where the inland valley bottoms are located. 

The conversion of savanna to cropland leads to an increase of surface runoff. 

This is potentially associated with an exacerbation of soil erosion and soil fertility loss. 

Therefore, supplementing the current erosion technique (stone-belt) with agroforestry 

and/or mulching will reduce the negative effects of land cover change. 

Two scenarios were considered during the impact assessment. The first 

scenario evaluated exclusively the climate change impact by utilizing five regional 

climate models (RCMs) using land use and land cover (LULC) of the year 2013 for both 

the reference period (1971-2000) and the projection period (2021-2050). Each RCM is 

composed of the representative concentration pathways (RCPs) 4.5 and 8.5. The results 

indicate large uncertainty in the discharge projection for the future. Three RCMs predict 

an increase of total runoff for the projection period compared to the reference period. 

The mean total runoff increase is +61% (standard deviation Std= 31%) compared to the 

reference period. However, two RCMs project a decrease of total runoff. The mean total 

runoff decrease is -34% (Std= 10%) compared to the reference period. 

The second scenario utilizes the five RCMs and LULC 2013 for the reference 

period and LULC 2030 for the projection period in order to assess the combined impact 

of climate change and LULCC. The results suggest that LULCC exacerbates the increase 

of total runoff in combination with the three RCMs with a mean increase in total runoff 

by +108% (Std= 38%) compared to the reference period (versus mean= +61% in the first 

scenario). However, for the two RCMs predicting a decrease of total runoff, LULCC 

reduces the decrease of total runoff. The mean decrease is -20% (Std= 10%) compared 

to the reference period (versus mean= -34% in the first scenario). 

The results of this study can be used as input to water management models in 

order to derive strategies to cope with present and future water scarcities for 

smallholder farming in the investigated area. 
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ZUSAMMENFASSUNG 

 

Modellierung der Wasserverfügbarkeit für die kleinbäuerliche 

Landwirtschaft in Talgrund-Feuchtgebieten unter Berücksichtigung von Klima- und 

Landnutzungswandel in Dano, Burkina Faso 

 

Eine effektive Wasserbewirtschaftung in den Einzugsgebieten von Talgrund-

Feuchtgebieten ist essentiell, um die negativen Auswirkungen des Klimawandels und der 

Landnutzungs- und der Landbedeckungssänderung (LULCC) auf die kleinbäuerlichen 

Anbausysteme, die Armutsbekämpfung, die Ernährungssicherheit und den Erhalt der 

Ökosysteme in Westafrika zu minimieren.  

Eine intensive hydrologische Instrumentierung von vier datenarmen 

Einzugsgebieten (Bankandi-Loffing, Mebar, Moutori und Fafo in Dano, Burkina Faso) 

wurde durchgeführt, um hydrologische Prozesse, die die Wasserverfügbarkeit steuern, 

besser zu verstehen, das physikalisch-basierte und räumlich gegliederte 

Wasserhaushaltssimulationsmodell WaSiM zu kalibrieren und zu validieren, die 

Auswirkungen von Klimawandel und LULCC auf die Wasserressourcen zu bewerten und 

anschließend Strategien zur Verbesserung der Kapazität von Kleinbauern mit 

Wasserknappheit und Klimaschwankungen umzugehen zu unterstützen. 

Die Instrumentierung des Einzugsgebiets trug dazu bei, dass Daten für drei 

Jahre (2014-2016) mit hoher zeitlicher und räumlicher Auflösung zur Verfügung stehen. 

Die zeitliche Auflösung der meteorologischen Daten und der Abflussdaten lag bei 5 min 

bis 10 min, bei piezometrischen Daten bei sechs Stunden bis zu einer Woche und bei 

Bodenfeuchtigkeitsdaten bei 30 min bis zu einer Woche.  

Fünf Niederschlagsschreiber, sieben Abflussmessstationen, 64 Piezometer im 

flachen Grundwasser (< 5 m tief) sowie 64 Bodenfeuchtemessungen in drei 

verschiedenen Tiefen (5 cm, 30 cm und 50 cm) wurden in den vier Einzugsgebieten 

(Gesamtfläche: 65 km²) installiert und in Betrieb genommen. Zusätzlich wurde der 

Grundwasserspiegel von drei tiefen Brunnen (6 m, 16 m und 25 m tief) überwacht. 

Die Analyse der Abflussganglinien und der Durchflussdauerlinien (FDC) mit 

beobachteten Abflüssen zeigen geringe Abflüsse in den Teileinzugsgebieten der 

Oberläufe im Vergleich zu den stromabwärts gelegenen Teileinzugsgebieten. Dies ist auf 

den geringeren Beitrag des Grundwasserzuflusses in den Oberläufen zurückzuführen. 

Die Dekonstruktion des Gesamtabflusses unter Verwendung von beobachteten 

Ganglinien und der elektrischen Leitfähigkeit des Abflusses deutet darauf hin, dass der 

Zwischenabfluss die wichtigste Komponente für den Gesamtabfluss ist. 

Die Kalibrierung und Validierung des Bankandi-Loffing-Einzugsgebiets ergab im 

Allgemeinen eine gute Modellgüte unter Verwendung des Bestimmtheitsmaßes (R²), der 
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Nash-Sutcliffe Efficiency (NSE), der Kling-Gupta Efficiency (KGE) und der prozentualen 

Abweichung (Pbias). R² reicht von 0,47 bis 0,95, NSE von 0,40 bis 0,95 und KGE von 0,57 

bis 0,84 beim Vergleich des beobachteten und simulierten Abflusses. Die Modellgüte für 

die Bodenfeuchtemodellierung beträgt 0,70 für R² und NSE und 0,80 für KGE. Die 

Modellierung des Grundwasserspiegels zeigt Ergebnisse von 0,30, 0,20 und 0,5 für R², 

NSE und KGE. Die Tatsache, dass die Übertragung des Parametersatzes vom Bankandi-

Loffing zum Mebar-Einzugsgebiet ohne Rekalibrierung zu einer guten Modellleistung 

führte (R²: 0,93, NSE: 0,92 und KGE: 0,84 in 2014-2015; R²: 0,65, NSE: 0,64 und KGE: 

0,59) deutet auf die Robustheit von WaSiM in der Region hin. 

Die Berechnung der Wasserbilanz zeigt, dass die Evapotranspiration 

quantitativ der wichtigste hydrologische Prozess ist, die physikalische Evaporation 

dominiert die Evapotranspiration, und 14% der Niederschläge verlassen als Abfluss das 

Einzugsgebiet. Der Zwischenabfluss dominiert den Abfluss in den Quellgebieten, 

während der Grundwasserabfluss die wichtigste Abflusskomponente im stromabwärts 

gelegenen Bereich ist, in dem sich die Talgrund-Feuchtgebiete befinden. 

Die Umwandlung von Savanne in Ackerland führt zu einer Zunahme der 

Oberflächenabflüsse. Dies ist potenziell mit einer Verschärfung der Bodenerosion und 

des Verlusts der Bodenfruchtbarkeit verbunden. Daher könnte eine Ergänzung der 

derzeitigen Erosionsschutzmaßnahmen (Steinbänder) durch Agroforstwirtschaft 

und/oder Mulchen die negativen Auswirkungen des Landnutzungswandels reduzieren. 

Bei der Folgenabschätzung wurden zwei Szenarien berücksichtigt. Das erste 

Szenario bewertete ausschließlich die Auswirkungen des Klimawandels, indem es fünf 

regionale Klimamodelle (RCMs) und die gleiche Landnutzung und Landbedeckung (LULC) 

des Jahres 2013 sowohl für den Bezugszeitraum (1971-2000) als auch für den 

Vorhersagezeitraum (2021-2050) verwendete. Für jedes RCM wurden zwei 

verschiedene repräsentative Konzentrationspfade (RCPs) 4.5 und 8.5 simuliert. Die 

Ergebnisse deuten auf eine große Unsicherheit für die Zukunft hin. Drei RCMs 

prognostizieren einen Anstieg des Gesamtabflusses für den Vorhersagezeitraum im 

Vergleich zum Referenzzeitraum. Der mittlere Anstieg der Abflüsse beträgt +61% 

(Standardabweichung = 31%) gegenüber de 

m Referenzzeitraum. Zwei RCMs gehen jedoch von einer Verringerung des 

Abflusses aus. Die mittlere Abnahme der Abflüsse beträgt für diese -34% 

(Standardabweichung= 10%) im Vergleich zum Referenzzeitraum. 

Das zweite Szenario verwendete die fünf RCMs und LULC 2013 für den 

Bezugszeitraum und LULC 2030 für den vorhergesagten Zeitraum, um die kombinierten 

Auswirkungen von Klimawandel und LULCC zu bewerten. Die Ergebnisse zeigen, dass 

LULCC die Zunahme des Gesamtabflusses im Vergleich zum ersten Szenario in 

Kombination mit den drei RCMs mit zunehmendem Abfluss verstärkt. Die mittlere 
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Zunahme der Abflüsse beträgt im Mittel +108% (Standardabweichung= 38%) gegenüber 

dem Referenzzeitraum (Mittelwert= +61% im ersten Szenario). Für die beiden RCMs, die 

eine Abnahme des Abflusses voraussagen, reduziert LULCC jedoch die Abnahme des 

Gesamtabflusses. Der mittlere Rückgang beträgt -20% (Standardabweichung= 10%) 

gegenüber dem Referenzzeitraum (gegenüber -34% im ersten Szenario). 

Die Ergebnisse dieser Studie können als Basis für wasserwirtschaftliche 

Modelle genutzt werden, um Strategien zur Bewältigung der gegenwärtigen und 

zukünftigen Wasserprobleme abzuleiten. 
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RESUME 

 

Modélisation de la disponibilité de l'eau pour les petites exploitations 

agricoles des bas-fonds sous l’influence du changement climatique, d’utilisation des 

sols / couverture végétale à Dano, Burkina Faso 

 

La gestion efficiente des ressources en eau dans les bassins versants des bas-

fonds est indispensable non seulement pour l’adaptation aux impacts néfastes du 

changement climatique, utilisation sols / couverture végétale sur les petites 

exploitations agricoles, mais aussi pour réduire la pauvreté, l’insécurité alimentaire et 

préserver les écosystèmes en Afrique de l’Ouest. 

Une instrumentation hydrologique intensive de quatre (04) bassins versants 

pourvus de très peu de données (Bankandi-Loffing, Mebar, Moutori et Fafo situés à 

Dano, Burkina Faso) a été entreprise afin de mieux comprendre les processus 

hydrologiques qui contrôlent la disponibilité en ressources hydrologiques. Le modèle 

WaSiM (modèle à base physique distribué) a été utilisé, pour évaluer les impacts du 

changement climatique, d’utilisation des sols et de couverture végétale sur les 

ressources en eau. Cette étude pourra aider à développer des stratégies d’amélioration 

de la capacité des petits exploitants agricoles à surmonter les problèmes de manque 

d’eau et de variabilités climatiques. 

L'équipement hydrologique des bassins versants a permis d'obtenir durant 

trois (03) années (2014-2016) de données de hautes précisions temporelles et spatiales. 

Les précisions temporelles des données météorologiques et des données de débit des 

cours d'eau étaient de 5 à 10 minutes. Ces précisions étaient de 6 heures à une semaine 

pour les données piézométriques et de 30 minutes et une semaine pour les données sur 

l'humidité du sol. 

Cinq (05) pluviomètres, sept (07) station limnimétriques, soixante-quatre (64) 

piézomètres captant la nappe phréatique (< 5 m de profondeur), soixante-quatre (64) 

points de mesures de l'humidité du sol à trois profondeurs (5 cm, 30 cm et 50 cm) ont 

été installés et rendus opérationnels sur les quatre bassins versants (leur superficie total 

est d’environ 65 km²). De plus, le niveau de la nappe phréatique a été régulièrement 

mesuré dans trois puits relativement profonds (6 m, 16 m et 25 m de profondeurs 

respectivement). 

Les analyses des hydrogrammes et des courbes de débits classés à partir des 

débits observés révèlent des débits plus faibles dans les sous-bassins en amont par 

rapport aux sous-bassins en aval. Cela s’explique en partie par la faible contribution des 

écoulements de base dans les sous-bassins en amont. La décomposition de l’écoulement 

à l'aide des hydrogrammes de débits observés et de la conductivité électrique des cours 
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d'eau suggère que l'écoulement hypodermique est le principal contributeur des 

écoulements. 

La calibration et la validation de WaSiM pour le bassin versant de Bankandi-

Loffing ont permis d'obtenir une bonne performance du modèle en utilisant le 

coefficient de détermination (R²), l'efficacité de Nash-Sutcliffe (NSE), l'efficacité de Kling-

Gupta (KGE), et le pourcentage de biais (Pbias). R² varie de 0,47 à 0,95, NSE de 0,40 à 

0,95 et KGE de 0,57 à 0,84 entre les débits observés et les débits simulés. La performance 

numérique pour la modélisation de l'humidité du sol est de 0,70 pour les deux 

paramètres de performance R² et NSE, et de 0,80 pour KGE. Concernant la modélisation 

du niveau de la nappe phréatique, les résultats sont de 0,30, 0,20 et 0,5 pour R², NSE et 

KGE, respectivement. Le fait que le transfert du jeu de paramètres de Bankandi-Loffing 

au bassin versant de Mebar sans recalibration ait donné lieu à une bonne performance 

du modèle (R²: 0,93, NSE: 0,92, et KGE: 0,84 en 2014-2015 ; R²: 0,65, NSE: 0,64, et KGE: 

0,59 en 2016) dénote une forte robustesse du modèle WaSiM pour la zone d’étude. 

Le bilan hydrique qui résulte de la modélisation montre que 

l'évapotranspiration est le processus hydrique le plus important quantitativement. 

L'évaporation physique est plus importante que la transpiration et 14% des 

précipitations s'écoulent du bassin versant sous forme d'écoulement de surface. Le 

ruissellement de surface domine les écoulements dans les sous-bassins en amont, tandis 

que l'écoulement de base est la principale composante des écoulements dans les sous-

bassins en aval où se situent les bas-fonds. 

La conversion des savanes en terres cultivées entraîne une augmentation du 

ruissellement de surface. Ceci est potentiellement associé à une exacerbation de 

l'érosion et à la perte de fertilité des sols. Par conséquent, il serait envisageable de 

compléter les techniques anti-érosives actuelles (ceinture de pierres) par de 

l'agroforesterie et/ou du paillage. 

Deux scénarii ont été considérés lors de l’étude d'impact. Le premier scénario 

a évalué uniquement l'impact du changement climatique en se servant de cinq (05) 

modèles climatiques régionaux (RCMs) et de la carte d’utilisation des sols / couverture 

végétale de l'année 2013 (LULC 2013) pour la période de référence (1971-2000) et pour 

les projections futures (2021-2050). Chaque RCM est composé de profils représentatifs 

d’évolution des concentrations (RCPs) 4.5 et 8.5.  Les résultats indiquent une grande 

incertitude des projections de débits d’écoulement pour l'avenir. Trois RCMs prévoient 

une augmentation moyenne annuelle de débits de +61% (écart-type Std = 31%) par 

rapport à la période de référence. En revanche deux RCMs prévoient une diminution des 

débits de -34% (Std = 10%) en moyenne par rapport à la période de référence. 

Le deuxième scénario a utilisé les cinq RCMs et le LULC 2013 pour la période 

de référence et le LULC 2030 pour le futur afin d'évaluer l'impact combiné du 
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changement climatique et de le LULCC. Les résultats suggèrent que le LULCC accentue 

l'augmentation des débits quand il est combiné avec les trois modèles prévoyant 

l’augmentation des débits. L'augmentation moyenne des débits est de +108% (Std = 

38%) par rapport à la période de référence (contre +61% en moyenne dans le premier 

scénario). Cependant, pour les deux RCMs qui prévoient une diminution des débits, le 

LULCC attenue le changement de débit. La diminution moyenne de débit est de -20% 

(Std = 10%) par rapport à la période de référence (contre –34% en moyenne dans le 

premier scénario). 

Les résultats de cette étude pourront servir de données d’entrée aux modèles 

de gestion des ressources en eau afin d’élaborer des stratégies pour faire face aux 

pénuries d’eau actuelles et futures pour les petites exploitations agricoles dans la zone 

d’étude.  
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1 GENERAL INTRODUCTION 

 

1.1 Problem statement 

Water resources availability for smallholder farmers in West Africa is a major 

concern for poverty alleviation, economic development and food security as the 

majority of the population practice rainfed agriculture (Denis et al., 2012). Agriculture 

contributes approximately 25% of the gross domestic product (GDP) of the Economic 

Community of West African States (ECOWAS) and account for more than a quarter of 

the region’s GDP growth (African Development Bank, 2019). The major part of the active 

labor force (60%) works in in agriculture (Jalloh et al., 2013). Smallholder farming is a 

mainstay of the agricultural economy and the main source of food production in the 

region (Denis et al., 2012). However, the majority of people (approximately 57%) live 

below the poverty line (INSD, 2014). 

Smallholder farmers are the most vulnerable to climate variabilities in West 

Africa due to the fact that they have a limited adaptation capacity to climate change 

impacts (Makate et al., 2017; Traore et al., 2015). The region experienced high variability 

of rainfall during the last five decades and is expected to be the most impacted 

worldwide by climate change in the twenty first century (Descroix et al., 2009; Frappart 

et al., 2009; Ibrahim et al., 2013a; Lebel et al., 2009; Lebel and Ali, 2009; Mougin et al., 

2009; Niang et al., 2014; Oguntunde et al., 2017). 

Inland valleys are estimated to cover 22-52 million ha in West Africa (Windmeijer 

and Andriesse, 1993). Due to the relatively wet characteristic of inland valleys and in 

order to cope with water scarcity, many development projects have focused on runoff 

in inland valleys by building small reservoirs, whereas basic information on groundwater 

resources is scarce (Eguavoen and McCartney, 2013; Sparacino, 2011). 

An implementation of efficient water management strategies is crucial for coping 

with adverse impacts of climate change and to preserve the ecosystems which 

contribute to the stability of the climate system (Baldocchi and Penuelas, 2019; Hessen 

et al., 2004; Lal, 2004). However, no management strategies can be developed without 

a robust observation network and the region has only limited in situ data (Poméon, 

2019). Therefore, one of the main objectives of the West African Service Center on 

Climate Change and Adapted Land Use (WASCAL, www.wascal.org) project is to improve 

in situ observation in the region through intensive instrumentation of experimental 

catchments. The three experimental catchments selected for this purpose include 

Dassari, Benin; Vea, Ghana; and Dano, Burkina Faso. The latter catchment is the focus 

of this study. 

Physically-based and spatially distributed hydrological modeling constitutes a 

challenge in the region because of limited availability of spatially distributed and time 

http://www.wascal.org/
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series data. The data limitation can be reduced with an appropriate instrumentation 

network (Cornelissen, 2016; Danvi et al., 2017; Op de Hipt, 2017; Yira, 2016). The Water 

balance Simulation Model (WaSiM) (Schulla, 2015) has been successfully applied in the 

region (Cornelissen et al., 2013; Kasei, 2010; Yira et al., 2016). Therefore, WaSiM was 

selected to compute hydrological processes and estimate the water balance in the study 

area. 

Regional climate models (RCMs) have increasingly been utilized to assess the 

hydrological impact of climate change due to their relatively high spatial resolutions 

(0.11° to 0.44°) compared to global climate models (GCMs) (Gutiérrez et al., 2019). 

Although it is shown that these climate models fairly represent the West African 

monsoon, a lot of uncertainties still exist in terms of the direction of future rainfall 

signals (Cook and Vizy, 2006; Dosio et al., 2015; Gbobaniyi et al., 2014; Paeth et al., 2011; 

Yira et al., 2017). 

Muerth et al. (2012) highlighted three major sources of uncertainties in climate 

modeling: imperfect climate models, uncertainties regarding future greenhouse gas 

emissions, and uncertainties about the natural variability of the climate system.  

RCMs are imperfect and need to be improved regarding process description, 

parameterization, and their boundary conditions that are defined using GCMs. Dosio et 

al. (2015) showed that the use of GCMs as boundary conditions for RCMs strongly 

influences RCMs seasonal precipitation projections. Moreover, Déqué et al. (2007) 

looked into the different sources of the uncertainties in climate model projections in the 

European spatial domain. They found that the uncertainty stemming from GCMs is 

larger than the other sources of uncertainties (greenhouse gas emission and natural 

variability of the climate systems). 

The uncertainty related to future greenhouse gas emissions is due to the fact 

that the future emission scenarios (such as representative concentration pathways, 

RCPs) are based on assumptions. This is because they might considerably change in the 

future depending on many factors including policies and technologies. Furthermore, the 

uncertainties originating from greenhouse gas emissions can be attributed to the fact 

that climate models have to make predictions based on greenhouse gas emissions which 

have never been recorded in the past. 

Natural climate variability in the West African region has been remarkable during 

the last few decades. There has been a succession of very wet years (1950-1970) and 

severe drought years (1970-1990) (Frappart et al., 2009; Le Barbé et al., 2002; Mahé, 

2009; Nicholson, 1980; Stanzel et al., 2018). The current period (since the 1990s) is said 

to be a recovery period from the drought (Lebel and Ali, 2009; Maidment et al., 2015). 

Additionally, rainfall variabilities were spatially highly distributed in the region and 

resulted in various spatial hydrological responses (Ali and Lebel, 2009; Lebel and Ali, 
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2009). Some sub-regions were experiencing decrease in surface and groundwater (e.g. 

Sudan Guinea zone of West Africa), while others were experiencing an increase in water 

resources (e.g. Sahelian zone)(Leduc et al., 2001; Mahé, 2009). 

In addition to the aforementioned sources of uncertainties, bias correction of 

climate variables, choice of the hydrological model, historical measured data availability, 

and the complexity of the West African monsoon contribute to the overall uncertainty 

of the impact of climate change on the hydrology in the region (Cornforth, 2011; Dosio 

et al., 2015; Klein et al., 2015; Muerth et al., 2012). Ensembles of hydrological models 

including lumped or distributed models and conceptual or physically-based models are 

often applied to account for uncertainties related to the hydrological model (Block et 

al., 2009; Cornelissen et al., 2013; Muerth et al., 2012; Seiller et al., 2012; Velázquez et 

al., 2013). 

In order to account for the large uncertainties in climate projections, it has 

been recommended to apply ensembles of multiple models and multiple runs (Bormann 

et al., 2009; Laux et al., 2017; Stanzel et al., 2018). 

Several studies have attempted to assess the impact of climate change on 

water resources in the region (Aich et al., 2014; Bossa et al., 2014; Kasei, 2010). 

However, few studies investigated impacts of climate change on hydrology at the local 

scale (Cornelissen et al., 2013; Op de Hipt et al., 2018; Yira et al., 2017). Apart from 

climate change impact studies land use and land cover change (LULCC) has been proven 

to significantly influence the hydrology of the region (Giertz et al., 2005; Yira et al., 

2016). Therefore, hydrological impact assessment studies might lack significant 

processes if LULCC are not included in the analyses. Moreover, local studies that 

combine impacts of climate change and LULCC change on hydrology with a focus on 

inland valleys are very rare in the West African region (Op de Hipt et al., 2019). 
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1.2 Objectives  

This study aims at: 

- Understanding the hydrology of the inland valley system. 

- Supporting strategies for efficient management of surface and groundwater 

resources at local scale for smallholder farming in inland valleys in the Dano 

catchment. 

- Improving adaptation capacities of smallholder farmers to future potential 

climate change. 

- Reducing poverty, improve food security, and preserve ecosystems. 

 

1.3 Research questions 

The following research questions have been addressed in order to achieve the 

objectives: 

 

1) To what extent can an intensive instrumentation combined with fundamental 

hydrological methods effectively improve the understanding of hydrological 

processes in four inland valley catchments? 

The instrumentation includes the installation and operationalization of five rainfall 

recorders, seven stream gauges, 64 piezometers in the shallow groundwater (<5 m 

deep), three points of relatively deep (6, 16, and 25 m) aquifer monitoring, and 64 points 

of soil moisture measurement at three different depths (5, 30 and 50 cm). The field 

research has been undertaken in four local catchments within the Dano catchment for 

three consecutive years. Additionally, rigorous field surveys such as slug tests, sub-

surface electrical resistivity, shallow groundwater use in agriculture, and ground surface 

leveling using a differential global positioning system (DGPS) have been conducted. 

The utilized analytical methods include, among others, flow duration curve (FDC), 

two different approaches of total runoff decomposition (hydrograph based and water 

electrical conductivity based), spatial and temporal representation of soil water and 

groundwater variations. 

 

2) How can a physically-based and a spatially distributed hydrological model be 

applied in a data limited environment to improve the understanding of 

hydrological processes in an inland valley catchment? 

The hydrological model WaSiM was parameterized, calibrated, and validated for the 

Bankandi-Loffing catchment in Dano. The model was calibrated in 2014-2015 and 

validated in 2016 preceded by a four-year warmup period. The multi-criteria approach 
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was utilized for model performance evaluation. WaSiM was chosen because it is mainly 

based on the quantification of physical hydrological processes at the catchment scale. 

Consequently, WaSiM may help to understand hydrological processes better than a 

conceptual model. Moreover, WaSiM is a grid based spatial discretization model, 

therefore it is adapted to small scale modeling. The model can be used without any 

financial charge and has already been successfully applied in West Africa. 

 

3) How will the performance of WaSiM develop when the resulting parameter set 

from calibration and validation of a catchment is applied without recalibration 

to another catchment in the study area? 

The parameter set stemming from the optimization of the Bankandi-Loffing model 

was directly transferred without recalibration to the Mebar catchment and the model 

performance was evaluated using multiple criteria. Although the Bankandi-Loffing and 

Mebar catchments are located in the same climate zone (Sudan Sahelian zone) and the 

model was evaluated for the same period (2014 to 2016), the successful transfer of the 

parameters without recalibration will show a hint on the robustness of the physically-

based WaSiM model to adequately describe hydrological processes in the study area. 

 

4) What is the impact of climate change and LULCC on water resources in an inland 

valley catchment? What are the implications of climate change on adaptation 

strategies? 

Five RCMs originating from the Coordinated Regional Climate Downscaling 

Experiment (CORDEX-Africa, www.cordex.org) project and four historical and three 

future predicted land use and land cover (LULC) data sets provided by Op de Hipt( 2017) 

were utilized for this purpose. Annual and seasonal change in water balance 

components were scrutinized. The implications of the future potential climate change 

on water management strategies were explored in order to set the base for policy 

oriented decision making. 

  

http://www.cordex.org/
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1.4 Structure of the thesis 

The study is divided in eight chapters from the general introduction to the 

general conclusion. 

After the general introduction in chapter 1, chapter 2 describes the physical 

aspects of the study area including the geomorphology of the investigated catchments 

and characteristics of inland valleys, the climate and the vegetation, characteristics of 

the soil, the geology, hydrogeology and groundwater use in agriculture. The WaSiM 

hydrological modeling approaches including numerical descriptions of the hydrological 

processes and the evaluation of the model performance are laid out in chapter 3. 

Chapter 4 is dedicated to the instrumentation of the selected catchments. The number 

and locations of the measurement devices, the measurement principles and the quality 

and the limitation of the measurements are illustrated in this chapter. Chapter 5 

characterizes runoff, groundwater and soil water using fundamental hydrological 

methods in order to set the base of the hydrological process understanding for further 

sophisticated analysis. Chapter 6 presents the hydrological modeling of an inland valley 

catchment (Bankandi-Loffing) using WaSiM and the transfer of a parameter set from the 

calibrated Bankandi-Loffing catchment to the uncalibrated Mebar catchment without 

recalibration. Chapter 7 deals with the hydrological impacts of climate change and 

LULCC and the implications of these changes for water resource management in the 

area. Finally, chapter 8 provides the overall conclusion of the study. 
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2 STUDY AREA 

 

2.1 Overview 

The Dano catchment is located in the south-west of Burkina Faso in West Africa 

(Fig. 2-1). Except for the western border, made up of the Ioba Mountains, the majority 

of the catchment is flat with a mean slope of 2° to 3° allowing the formation of inland 

valleys. The province of Dano consists of 22 villages and the town of Dano, with the 

province being home to around 55,000 people with 63% living in rural areas (Commune 

de Dano, 2013). Approximately 80% of the population are small-scale farmers who 

mainly practice rainfed subsistence agriculture (Pale and Da, 2013). The livelihood of 

farmers is jeopardized by the unstable climate potentially causing yield losses as a 

consequence of droughts or inundations. The last two decades have seen investments 

in building many small reservoirs in order to cope the impacts of climate variability on 

poor rural population. However, the efforts are far from meeting the necessary water 

demand for irrigation and especially for future challenges. Two reservoirs were built in 

the catchment, namely in Fafo in 1987, located in the northern part, and in Moutori in 

2002, located in the southern area of the catchment. Additionally, some initiatives have 

promoted shallow groundwater use for vegetable cultivation in the dry seasons. 

However, basic information on the shallow groundwater is insufficient or lacking 

(Eguavoen and McCartney, 2013).  

Hydrographically, Dano is drained by intermittent streams which are tributaries 

of the Black Volta or Mouhoun River. Black Volta is a transboundary river between three 

countries namely Burkina Faso, Côte d’Ivoire and Ghana. 
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Fig. 2-1. Location of the Dano catchment (A) with the investigated small catchments and 

the inland valleys (B) (data on inland valleys provided within the WASCAL project). 

 

This study focuses on four small catchments (Fig. 2-1), namely Bankandi-

Loffing, which covers an area of 30 km2, followed in size by Fafo (24 km2), Mebar (8 km2) 

and Moutori (8 km2). They were selected based on the management options already in 

place and the representative spatial distribution in Dano. On the one hand, Fafo and 

Moutori are reservoir based catchments. Therefore, they are characterized by a high 

water availability which enables cropping during the dry season. The farmers of these 

catchments have access to technical support and agricultural inputs including fertilizer. 

On the other hand, Mebar is a traditional used agricultural catchment. It is characterized 

by a completely rainfed cropping system which has low access to the agricultural inputs 

and uses local traditional knowledge. Consequently, there is no cropping during the dry 

season and productivity is lower compared to the other catchments. The third 

catchment is qualified as mixed management scheme and is represented by the 

Bankandi-Loffing catchment. In Bankandi-Loffing, traditional agriculture is practiced in 
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the upstream areas, while improved agricultural activities are observed in the 

downstream areas. For instance, some small concrete flumes were installed in order to 

control runoff, water distribution into the fields and drainage from the fields. These 

three management schemes are representative of agriculture practices in the region. 

 

2.2 Inland valleys 

Inland valleys are wetlands located at the upper reaches of main river systems 

(Windmeijer and Andriesse, 1993) with a significant contribution of groundwater to soil 

water (Mitsch and Gosselink, 2015). They include the valley bottoms and their 

hydromorphic fringes which may be submerged in the rainy seasons and some part of 

the dry season (Andriesse et al., 1994). More water, nutrients, and organic matter are 

available in the valley bottoms and hydromorphic fringes compared to the adjacent 

uplands. The low slopes of inland valleys reduce outflow from the valley bottoms, 

therefore increase infiltration when the conditions of soil allow it, and in turn increase 

groundwater recharge. In return, groundwater can supply inland valleys temporarily or 

during the complete dry season depending on the groundwater storage and extent. 

Inland valleys are estimated to cover 22-52 million ha in West Africa (Windmeijer and 

Andriesse, 1993) and approximately 1200 ha in the Dano catchment (Fig. 2-1). 

Longitudinally, inland valleys can be subdivided in three parts: the valley head, 

the midstream part, and the downstream part of the valley. The valley head, which is 

located at the upstream part of the valley, is characterized by a concave profile, an 

absent stream channel, and a soil dominated by colluvial processes. The midstream part 

is wider than the valley head and has an almost flat valley bottom, a shallow stream 

channel, and it is located at the central part of the valley. Finally, the downstream part 

of the valley is characterized by an alluvial soil, low slopes, and a flooding during high 

flows. These downstream areas are gradually converted to floodplains (Raunet, 1985). 

Kiepe (2006) defines a floodplain as a relatively flat and dry area made of recent alluvial 

deposits along a stream or a river undergoing periodic inundations. 

Inland valley soils are unique in the way that they are saturated during at least 

a few months in the wet season. They accumulate partially decayed plants and nutrients 

washed away from the adjacent uplands (Mitsch and Gosselink, 2015). Although the 

West African inland valleys soils are less fertile than the paddy soils in tropical Asia (Abe 

et al., 2010), an appropriate water management in combination with selection of 

adapted crops could help small hold farmers to reach food security (Carsky et al., 1993; 

Ogban and Babalola, 2003). 

 



Study area 

10 

 

2.3 Climate 

The climate is of Sudan Sahelian type with an annual rainfall of 800-1200 mm 

concentrated in a unimodal rainy season starting in May and ending in October (Fig. 

2-2a). The mean annual rainfall from 1970 to 2013 is 886 mm. More than 77% of annual 

rainfall occurs from June to September with August recording the highest rainfall (225 

mm or 25% of annual rainfall). The average daily minimum and maximum temperatures 

are 21°C and 32°C respectively with an overall daily mean temperature of 28°C from 

1970 to 2013. However, the West-African rainfall regime has been one of the most 

affected by climate variability and climate change during the last five decades with 

disastrous droughts (Sahel drought) in the 1970s and 1980s (Lebel and Ali, 2009). The 

Standardized Precipitation Index (SPI) (Hayes et al., 1999) and the Standardized 

Precipitation Evaporation index (SPEI) (Beguería et al., 2014; Vicente-Serrano et al., 

2010) were calculated for twelve month intervals (Fig. 2-2b) using monthly precipitation 

and temperature data from 1970 to 2016. The results show that the area experienced 

frequent occurrence of droughts ranging from a moderately dry (SPI – SPEI of -1.49 to -

1) to extremely dry climate (SPI-SPEI less than -2) conditions according to categorizations 

of Hayes et al. (1999) and Yu et al. (2014). 
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(a) 

 

(b) 

 

Fig. 2-2. Climate characteristics in the region: (a) mean monthly rainfall, minimum, 

maximum and mean temperature for 1970-2016, (b) 12 months Standardized 

Precipitation Index (SPI) and Standardized Precipitation Evaporation Index (SPEI) for the 

period 1970-2016. Rainfall data were measured in Dano and temperature data in 

Boromo (a town located approximately 70km north of Dano). Data source: DGM 

(Direction Nationale de la Météorologie du Burkina Faso). 

 

2.4 Geology and hydrogeology 

The geology of Burkina Faso consists of Precambrian formations which are part 

of the West-African craton. The paleoproteozoic basement, which is covered by 

sedimentary formations, is made of Birimian green stone belts (2238 to 2170 million 

years old), volcano-sedimentary and plutonic sequences (Giorgis et al., 2014). In West-

Africa, including Burkina Faso, Mali, and Ghana, the Birimian formations are known as 

the major source of gold and diamond deposits (Henry et al., 2004). In Dano, the Ante-

Birimian granites are found at the upstream areas of Bankandi-Loffing, Mebar, and Fafo 

(western area). Whereas, at the downstream areas (eastern area), the Birimian shists 

can be observed at Bankandi-Loffing and Mebar while green rocks at found at Fafo. 

Moutori is exclusively underlain of Ante-Birimian granite (Fig. 2-3).  

The regional geology is made of a crystalline type of rocks and therefore 

groundwater is mainly available in fractures or in the weathered rock layers called 

saprolites. The selected catchments are located in an area where the weathered aquifer 

is 10-30 m thick. The weathered aquifer is often saturated (Fig. 2-3). The geological 

transect shown in III-A‘ (Fig. 2-4) is located approximately 60 km north of Dano in the 

area of almost the same geological characteristics as in the Dano catchment. It shows 
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granites in the basement covered by the weathered profile whose thickness varies in 

the space with the maximum thickness reached around the major fractures and lowland 

areas. It highlights the role of water in accentuating the weathering process of rocks. 

Moreover, an overlain alluvial aquifer can be found in the valley bottoms of inland 

valleys. According to the information collected during the digging of the piezometers, 

the alluvial aquifers are made of loamy sand to sandy clay materials.  

 

 

 

 

 

 

Fig. 2-3. Geology and hydrogeology of Dano catchment; thickness of the weathered 

horizon data only cover the eastern area of the catchment (Data set: IWACO, 1993). 
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Fig. 2-4. Geological transect III-A‘ 60 km north of the Dano catchment (source: Bureau 

des Mines et de la Géologie du Burkina Faso). 

 

2.5 Soil characteristics 

The soil map (Fig. 2-5) was initially created in the French CPCS (Commission de 

Pédologie et de la Cartographie des Sols) system by BUNASOL (Bureau National des 

Sols)- Burkina Faso. It was then converted to the closest possible equivalence in the WRB 

(World Reference Base) system (WRB, 2006). Hence, the Umbric Gleysol (sol 

hydromorphe peu humifère à pseudogley de surface) is the major soil type in the valley 

bottoms whereas the Vertic Cambisol (sol brun eutrophe hydromorphe vertique) is 

dominant at the slopes in Moutori, Mebar, and Bankandi-Loffing. Concerning Fafo, the 

Plinthic Lixisol (sol ferrugineux tropical lessivé à tache et à concretion) is mainly found 

on the slopes instead. It has to be noted that this soil map was created at the country 

scale. Uncertainties are therefore high when the map is utilized for local scale analysis. 

A more accurate map after Hounkpatin (2017) in the WRB system was utilized for the 

southern catchments (Bankandi-Loffing, Mebar, and Moutori). 

A soil survey carried out by Hounkpatin (2017) was based on composite sampling 

per horizon down to 1m depth. In total, 1177 points were described in the Dano 
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catchment. The results show a similarity in terms of soil depth between the Plinthosols 

and the Cambisols. The average depth was 0.5 m for the Plinthosols and 0.58 m for the 

Cambisol. Gleysols and Lixisols are shallower in comparison to the previous soil types. 

Their average depths are 0.4 m for Gleysols and 0.45 m for Lixisols. Due to fast land use 

change, the soils are affected by erosion with soil organic matter loss (Op de Hipt et al., 

2017; Schmengler, 2011). Moreover, high coarse particle content was observed 

especially in Plinthosols (62% of total soil weight).  

The saturated volumetric soil water which was measured at the WASCAL 

laboratory in Dano by Yira (2016) proved that the Cambisols have the highest saturated 

soil water with an average of 46% and a maximum of 55%. The mean saturated soil water 

contents were 40%, 38%, and 37% for the Gleysols, Plinthosols, and Lixisols respectively. 

The mean measured saturated hydraulic conductivity for Plinthosols and Cambisols 

(approximately 10-4 m s-1) are higher than those recorded in Gleysols and Lixisols (10-5 m 

s-1) because of the higher clay (32% to 33%) and silt (50% to 57%) contents in Gleysols 

and Lixisols. Moreover, the mean bulk density was higher in Plinthosols (1.6 g cm-3) than 

in Gleysols (1.4 g cm-3), the Cambisols, and Lixisols (1.3  g cm-3). However, the average 

organic carbon content is almost equally low at 1% for the investigated soils (Yira 2016). 
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Fig. 2-5. Soil map of the Dano catchment (conversion from the CPCS map provided by 

BUNASOL to the WRB system). 

 

2.6 Land use and land cover (LULC)  

The LULC map of 2013 (Fig. 2-6) was created based on three satellite products, 

namely RapidEye, TerraSAR-X, and Landsat (Forkuor and Thiel, 2013). The overall 

accuracy and kappa coefficient (Congalton, 1991) were 78.4% and 0.75 respectively.  

Savanna (named mixed vegetation) is made of shrubs, trees, and herbs. It is the 

major land cover type in the area of Moutori (64% of catchment area), Mebar (41%), 

and Bankandi-Loffing (40%). In contrast, Fafo is mainly covered by forest (27%) while 

Mebar has the least forest coverage (7%). Millet (Pennisetum glaucum), sorghum 

(Sorghum bicolor) (named cereals on the LULC map), and maize (Zea mays) are the main 

food crops whereas cotton (Gossypium hirsutum) is the main cash crop. Rice is usually 

cultivated in areas with high water availability like in inland valleys or irrigated fields in 

reservoir-based catchments. Reservoirs allow for rice cropping in both rainy and dry 

seasons. On the land use map, the water bodies, which correspond to reservoirs in Fafo 

and Moutori, can be observed. About 56% of the area of Fafo and 51% of Mebar are 

under cultivation. The grasslands which are observed in Bankandi-Loffing and Mebar are 

used for grazing cattle. 
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                                                     (a) 

 

 

 

 

 

                                (b)                                                                                 (c) 

 

 

Percentage of catchment 
area (%) 

LULC Fo Ba-Lof Me Mo 

Cereals 20 11 19 16 

 Maize 17 8 10 2 

Cotton 16 11 9 2 

Rice 3 3 4 1 

Grassland 0 5 9 2 

Mixed Vegetation 13 40 41 64 

Forest 27 20 7 10 

Settlements 3 2 1 1 

Water bodies 1 0 0 2 
 

Fo: Fafo; Ba-Lof: Bankandi-Loffing; Me: Mebar; Mo: Moutori 

Fig. 2-6. Landuse and land cover (LULC) map of the year 2013 for Dano with the 

percentage of each LULC per selected catchment (Data set: Forkuor, 2014). 
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2.7 Groundwater use in agriculture 

Agriculture is mainly rainfed in the Dano catchment except for rice cultivation 

which is mostly irrigated. Two small reservoirs are in Moutori and Fafo, whereas 

Bankandi-Loffing has an improved management of discharge which is diverted to the 

fields using small concrete flumes (Fig. 2-7). Because of high water availability, rice 

production is practiced at these three locations. In Fafo, the reservoir water is sufficient 

for irrigation in both the rainy and the dry seasons, whereas in Moutori the reservoir 

water is insufficient. Therefore, farmers decide to use it only in the dry season. The 

Moutori reservoir with its storage capacity of 360,000 m3 is comparable in size with the 

Fafo reservoir (storage capacity of 480,000 m3) but the Fafo catchment (24 km2) is three 

times larger than that of Moutori. The comparison of the two catchments equipped with 

reservoirs proved a significant difference in terms of land use. In Moutori, savanna (or 

mixed vegetation) is largely dominant (64% of catchment area) whereas, in Fafo, forest 

has the highest share (27% of the catchment area) with savanna having only 13% of the 

catchment area. Moreover, more than half of the Fafo catchment is under cultivation 

(56% cropland) whereas in Moutori only 23% is cropland (see Fig. 2-6). This can 

contribute to higher infiltration and evapotranspiration in Moutori compared to Fafo, 

consequently, less surface water is provided to the reservoir in Moutori compared to 

Fafo. Concerning soils, Lixisols, the dominant soil type in Fafo, have finer material (33% 

clay and 57% silt) than Cambisol in Moutori (28% clay and 46% silt). The irrigated land in 

Moutori (20 ha) is slightly larger than the irrigated land in Fafo (15 ha), thus irrigation 

water demand in Moutori is higher compared to Fafo (Schmengler, 2011). The combined 

effect of soil properties, LULC, and the catchment sizes is the reason for the lower 

volume of water in the Moutori reservoir compared to Fafo. Hence, Moutori farmers 

opt not to practice supplementary irrigation in the rainy season using reservoir water. 

Instead, the reservoir water is exclusively kept for the dry season.  
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Fig. 2-7. Concrete flume (showed by the red arrow) for field water management in the 

Bankandi-Loffing catchment. 

 

In the last few years, the shallow groundwater has been used for vegetable 

cultivation. Shallow alluvial aquifers are often found in lowlands with depth to 

groundwater much less than 10 m. A survey conducted in order to investigate the 

current use of the shallow groundwater for agriculture sampled 50 wells of two types in 

Moutori, Loffing, and Mebar. The sample was composed of basic or unimproved wells 

and improved wells. The basic wells are characterized by shallow depths and a missing 

concrete structure stabilizing the edges while improved wells are equipped with a 

concrete tube and are deeper than the basic wells (Fig. 2-8). 

 

  

Basic well (December 23rd 2016) Improved well (December 24th 2016) 

Fig. 2-8. Pictures of the two types of investigated wells in Dano.  

 

The average depth of improved wells is approximately 7 m whereas it is only 

1.8 m for basic wells. The depth distribution of 41 basic wells in Moutori, Mebar and 

Bankandi-Loffing catchments shows depths ranging from 0.5 to 2 m with the majority 
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(56%) being 1 to 1.5 m deep and only 7% deeper than1.5 m. Moreover, at the time of 

the survey in late December 2016, two months after the end of rainy season, for 98% of 

the basic wells the groundwater table was less than 1 m below the ground level with 

51% of the values ranging from 0.5 to 1 m. Most of the shallow wells are not deeper 

than 1.5 m, thus the available water depth in the wells is only 0.5 to 1 m with a high 

probability of drying out before the end of the dry season in March-April. Few shallow 

wells and most of the deep wells are permanent, especially during the wet years.  

The sizes of the farms are rather small, ranging from 0.03 to 0.18 ha with an 

average size of 0.1 ha for the area equipped with improved wells. The field size range 

was 0.01 to 0.12 ha with an average of 0.06 ha for the area with the basic wells. The 

total cultivated area using basic wells (0.84 ha) is only slightly larger than the total area 

relying on improved wells (0.57 ha). A comparison with the total area under cultivation 

using surface water (20 ha for the Moutori reservoir) shows that the total area under 

cultivation using the shallow aquifer in the investigated area is far smaller (1.41 ha) than 

the area using surface water.  The distribution of field sizes (Fig. 2-9) using both 

improved and basic wells for irrigation shows that 66% of the fields are smaller or equal 

to 0.1 ha. 

 

 

Fig. 2-9. Size of irrigated fields. 

 

On average, the improved and basic wells have been used for irrigation for 9 

and 7 years respectively, mainly once every three days (43% of the cases) or daily (36% 

of the cases), although two irrigations per day are sometimes also applied. The main 

crops are vegetables (Fig. 2-10) but in addition fruits like banana and papaya are also 

irrigated at some locations. The most frequent vegetables are tomato, onion, and 

cabbage followed by eggplant and okra.  
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Fig. 2-10. Crops irrigated using shallow aquifer. 

  

The growing period in the dry season is between October-November to April-

May. It is important to point out that supplementary irrigation is not practiced using 

groundwater during the rainy season for annual crops and vegetables, even when 

farmers experience dry spells. Chapter 5 will investigate the potential of the shallow 

aquifer to support supplementary irrigation as an adaptation strategy to cope with 

climate variabilities. 
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3 THE HYDROLOGICAL MODEL WASIM  

 

3.1 Introduction  

WaSiM (Water balance Simulation Model) is a grid-based hydrological model which 

is deterministic and mainly physically-based (Schulla, 2015). In this study, WaSiM 

(version 9.10.01) was applied to simulate hydrological processes and the impact of 

climate and land use change on water resources in two inland valley catchments 

(Bankandi-Loffing and Mebar) in the Dano catchment. 

In the data limited environment of Dano, data driven models (conceptual or 

empirical) might not represent the hydrological processes well. A recent 

instrumentation in the catchment under the scope of this study helped to collect high 

resolution hydrological and soil data. Therefore, a physically-based model can be applied 

(Devia et al., 2015). WaSiM has been successfully applied in the West African region 

(Cornelissen, 2016; Kasei, 2010) and in the Dano catchment (Yira, 2016). Moreover, 

WaSiM is an open source software and is sufficiently documented thus can be employed 

by anyone without cost in the West African region. A grid-based model can be applied 

because the catchments are small. The aforementioned reasons motivated the selection 

of WaSiM to model hydrological processes in the study area. 

 

3.2 Numerical representation of hydrological processes 

3.2.1 Evapotranspiration 

Evapotranspiration is one of the most important hydrological processes in the West 

African region (Idrissou et al., 2015; Oguntunde et al., 2018). The annual potential 

evapotranspiration (ETp) exceeds 2000 mm and is approximately twice as much as 

rainfall in the region (Cornelissen et al., 2013; Yira et al., 2016). Therefore, the climate 

system is water limited not energy limited. Two evapotranspiration methods were 

applied in this study: Penman-Monteith method and Hamon method. The latter was 

used when only air temperature was available for ETp estimation.  

 

Penman-Monteith ETp 

The Penman-Monteith (Monteith, 1975) approach was applied to compute the 

ETp when the required climate variables (air temperature, relative humidity, global 

radiation, and wind speed) were available (Allen et al., 2006; Cai et al., 2007; Chiew et 

al., 1995; Gavilán et al., 2007).  

The potential transpiration from plant leaves (TP), the evaporation from the 

bare soil (EP), and the interception evaporation (EIP) are separately estimated in WaSiM. 

The potential evapotranspiration is expressed by equation (3-1). 
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𝜆𝐸 =

3.6 
Δ
𝛾𝑝

 (𝑅𝑛 − 𝐺) +
𝜌 𝐶𝑝

𝛾𝑝 𝑟𝑎
(𝑒𝑠 − 𝑒) 𝑡𝑖

Δ
𝛾𝑝

+ 1 +
𝑟𝑠
𝑟𝑎

 (3-1) 

With: 

    𝜆 latent vaporization heat, 𝜆 = (2500.8 − 2.372 𝑇) [kJ kg-1] 

T Temperature [°C] 

E latent heat flux  [mm m-2] 

    Δ slope of the saturated vapor pressure curve [hPa K-1] 

𝑅𝑛 net radiation [Wh m-2] 

G soil heat flux [Wh m-2] 

𝜌 density of dry air [kg m-3] 

Cp specific heat capacity of dry air at constant pressure [kJ kg-1 K-1] 

es saturation vapor pressure at the temperature T [hPa] 

e actual vapor pressure (observed) [hPa] 

ti number of seconds within a time step [s] 

𝛾𝑝 psychometric constant [hPa K-1] 

rs bulk surface resistance  [s m-1] 

ra bulk aerodynamic resistance [s m-1] 

 

The bright day potential transpiration (TPday) and night potential transpiration 

(TPnight) are estimated by replacing bulk surface resistance (rs) by the bright day surface 

resistance (rs.day) and the night surface resistance (rs.night), respectively. Equation (3-2) 

calculates rs.day and equation (3-3) calculates rs.night. 

 

𝑟𝑠 = 𝑟𝑠.𝑑𝑎𝑦 =
1

(
1 − 𝐴
𝑟𝑠𝑐

)
 (3-2) 

𝑟𝑠 = 𝑟𝑠.𝑛𝑖𝑔ℎ𝑡 =
1

(
𝐿𝐴𝐼 ∗ 𝑣𝑐𝑓

2500
)
 (3-3) 

Where: A = f LAI*vcf (f ~ 0.6-0.7); rsc=canopy surface resistance; LAI= leaf area 

index; and vcf=vegetation cover fraction. 

 

The potential evaporation from the soil (EP) employs evaporation surface 

resistance (rse) as bulk surface resistance and the potential interception evaporation 

(EIP) is computed using the interception surface resistance (rsi) in place of rs in the 

equation (3-1). Moreover, for bare soil (vcf=0 or LAI=0), the rs is set to                       2500 
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s m-1 whereas, rs is set to null value for an opened water in order to allow maximum 

evaporation. 

When the model is run at a daily time resolution, TP, EP, and EIP are 

automatically subdivided into day and night calculations of evapotranspiration. The 

equations (3-4) and (3-5) describe TPday and TPnight respectively. 

 

𝑇𝑃𝑑𝑎𝑦 =
∆𝑑𝑎𝑦(𝑅𝑛.𝑑𝑎𝑦 − 𝐺) + 𝜌 𝑐𝑝(𝑒𝑠.𝑑𝑎𝑦 − 𝑒𝑚)

∆𝑑𝑎𝑦 + 𝛾𝑝 (1 +
𝑟𝑠.𝑑𝑎𝑦

𝑟𝑎
)

 𝑑  

(3-4) 

𝑇𝑃𝑛𝑖𝑔ℎ𝑡 =
∆𝑛𝑖𝑔ℎ𝑡(𝑅𝑛.𝑛𝑖𝑔ℎ𝑡 − 𝐺) + 𝜌 𝑐𝑝(𝑒𝑠.𝑛𝑖𝑔ℎ𝑡 − 𝑒𝑚)

∆𝑛𝑖𝑔ℎ𝑡 + 𝛾𝑝 (1 +
𝑟𝑠.𝑛𝑖𝑔ℎ𝑡

𝑟𝑎
)

 (24 − 𝑑) (3-5) 

With: 

∆𝑑𝑎𝑦; ∆𝑛𝑖𝑔ℎ𝑡 Slope of the saturated vapor pressure 
curve for temperatures at day (Tday) at 
and night (Tnight) 

[hPa K-1] 

 

Rn.day; Rn.night Net radiation for day and night [Wh m-2] 

es.day; es.night Saturation vapor pressure as function of 
Tday and Tnight 

[hPa] 

em Mean daily saturation vapor pressure  [hPa] 

rs.day; rs.night Surface resistance of the vegetation for 
bright day and for the night after 
equations (3-2) and (3-3)  

[s m-1] 

d Relative duration of bright day [-] 

 

The other ETp components (EP and EIP) were calculated using the same 

equations (3-4) and (3-5) with rs replaced by rse for EPday, EPnight and by rsi for EIPday, and 

EIPnight (for more detail, see Schulla, 2015) 

 

Hamon ETp 

The Hamon method only uses temperature for ETp estimation (Hamon, 1963; 

Lu et al., 2005). This approach was needed when assessing the hydrological impact of 

climate change as other required climate variables (solar radiation, wind speed, air 

humidity) were not available for the Penman-Monteith ETp calculation. The equation 

(3-6) presents the Hamon ETp computation. 

𝐸𝑇𝑝 = 0.1651 𝑓𝑖  
ℎ𝑑

12
 
216.7 𝑒𝑠

𝑇 + 273.3
 (3-6) 

With: fi: empirical factor; hd: the day length [h]; es: the saturated vapor 

pressure at the temperature T [hPa]; and T: temperature [°C]. 
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The monthly empirical factor (fi) varies with the region. Therefore, the factor 

was first optimized for the study area during 2014-2016 in order to obtain good 

agreement between Hamon and Penman-Monteith ETp. The optimized fi was then 

applied to the hydrological impact assessment period (1971-2030). 

 

Actual evapotranspiration (ETa) 

The estimation of ETa depends on the actual soil water content. Equation (3-7) 

shows four different ranges of soil water content and the corresponding ETa 

calculations. Moreover, the reductions of transpiration resulting from water and oxygen 

stresses were considered as illustrated by Fig. 3-1 (Feddes and Zaradny, 1978; Schulla, 

2015). 

 

𝐸𝑇𝑎 = 0                                           𝑖𝑓  𝜃(𝜓) ≤ 𝜃𝑤𝑝 

𝐸𝑇𝑎 = 𝐸𝑇𝑝 
𝜃(𝜓) − 𝜃𝑤𝑝

𝜃𝜓𝑔 − 𝜃𝑤𝑝
             𝑖𝑓  𝜃𝑤𝑝 < 𝜃(𝜓) ≤ 𝜃𝜓𝑔 

𝐸𝑇𝑎 = 𝐸𝑇𝑝                                    𝑖𝑓  𝜃𝜓𝑔 < 𝜃(𝜓) ≤  𝜂𝜃𝑠𝑎𝑡  

𝐸𝑇𝑎 = 𝐸𝑇𝑝 
𝜃𝑠𝑎𝑡 − 𝜃(𝜓)

𝜃𝑠𝑎𝑡 − 𝜂𝜃𝑠𝑎𝑡
         𝑖𝑓  𝜂𝜃𝑠𝑎𝑡 < 𝜃(𝜓) ≤ 𝜃𝑠𝑎𝑡 

 

(3-7) 

 

With: 𝜃(𝜓): the soil water at the actual suction 𝜓; 𝜂𝜃𝑠𝑎𝑡: the maximum relative 

water content without partial or total anaerobic conditions; 𝜃𝑤𝑝: the soil water at the 

permanent wilting point; 𝜃𝜓𝑔: the soil water at a given suction 𝜓𝑔 determines the 

beginning of water stress; and 𝜃𝑠𝑎𝑡: the soil water at saturation. 
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Fig. 3-1. Variation of transpiration with soil water content (Schulla 2015). PAW: plant 

avalaible water; DW: drainable water; PWP: permanent wilting point; FC: field capacity; 

Sat: saturation; LimitReduWet: limite of transpiration reduction due to anaerobic 

conditions. 

 

3.2.2 Interception evaporation 

A bucket approach was used for the interception evaporation modeling. The 

maximum interception storage (SImax) was computed using equation (3-8). 

 

𝑆𝐼𝑚𝑎𝑥 = 𝑣𝑐𝑓 𝐿𝐴𝐼 ℎ𝑆𝐼  (3-8) 

 

Where SImax: maximum interception storage capacity [mm]; vcf: vegetation 

cover fraction; LAI: leave area index; and hSI: maximum height of water at the leaf 

surface. 

 

From equation (3-8), it is clear that no interception is computed for a bare soil 

(vcf=0 and/or LAI=0). During precipitation, interception storage must be filled before 

throughfall can be generated and the primary source of ETa extraction is interception 

storage. It is only when the interception storage is empty that the water can be 

evaporated from the soil. 

 

3.2.3 Unsaturated zone model and runoff generation 

Fig. 3-2 describes how WaSiM computes surface flow or overland flow (QD), 

interflow (QI), and base flow (QB) from grid cell level to the river that will transport water 

to the outlet of the catchment. 
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Fig. 3-2. Flow chart of soil and routing modeling (Schulla 2015). 

 

Vertical fluxes after Richards equation 

Vertical water fluxes or infiltration in the soil were modeled using the Richards 

equation (Richards, 1931; Richards and Weaver, 1944). The Richards equation gives one-

dimensional description of vertical water fluxes through unsaturated zone and is derived 

from the continuity equation (3-9). The discrete form between two soil layers of the 

Richards equation is presented by equation (3-10). This form is needed in order to use 

the finite difference method for the numerical solution of the differential equation. The 

van Genuchten equations (3-11) and (3-12) are then employed to solve the Richards 

equation (van Genuchten, 1980). The van Genuchten parameters (α, n, and m) and some 

of the required soil hydraulic properties such as saturated hydraulic conductivity, 

saturated soil water content and residual soil water content for the soil model were 

estimated by field measurements or pedotransfer functions (Brakensiek and Rawls, 

1994; Cosby et al., 1984; Patil and Singh, 2016; Rawls and Brakensiek, 1985; Saxton et 

al., 1986; Saxton and Rawls, 2006; Schaap et al., 2001; Vereecken et al., 1990).  
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𝜕𝜃

𝜕𝑡
=

𝜕𝑞

𝜕𝑧
=

𝜕

𝜕𝑧
(−𝐾(𝜃) ∗

𝜕𝜓(𝜃)

𝜕𝑧
) (3-9) 

𝑞 = 𝑘𝑒𝑓𝑓  
ℎ(𝜃𝑢) − ℎ(𝜃𝑙)

0.5 (𝑑𝑢 + 𝑑𝑙)
 (3-10) 

𝜃 = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟) ∗ (
1

1 + (𝜓𝛼)𝑛
)
𝑚

 (3-11) 

𝐾 (𝜃)

𝐾𝑠
= (

𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
)
1/2

∗  (1 − (1 − (
𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
)
1/𝑚

)

𝑚

)

2

 
(3-12) 

θ Actual soil water [-] 

t Time  [s] 

q Specific flux  [m s-1] 

z Vertical coordinate  [m]; 

K Actual soil hydraulic conductivity  [m s-1] 

θs Saturation soil water content [-] 

θr Residual soil water content [-] 

ψ Suction  [m] 

keff effective hydraulic conductivity  [m s-1] 

h Hydraulic head [m] 

u Upper discrete layer [-] 

l Lower discrete layer [-] 

d Thickness of considered layer [m] 

α  Empirical parameter [m-1] 

n  Empirical parameter [-] 

m Empirical parameter (m=1-1/n) [-] 

Ks Saturated hydraulic conductivity of the soil [m s-1] 

 

Each soil horizon was divided into 16 numerical layers with variable thickness 

of the layers. The parameterization of the soil model also includes among other 

parameters the precipitation capacity for triggering macropore runoff, macropore 

capacity, macropore reduction with depth, and reduction of the hydraulic conductivity 

with depth. Default values were used for all the macropore parameters (more detailed 

description of unsaturated zone model can be found in Schulla 2015). 

 

Surface flow 

Two main processes contribute to surface flow or overland flow generation: 

Infiltration excess and saturation excess. The infiltration excess occurs when rainfall 

intensity is higher than soil infiltration rate. In this case, the unsaturated zone still exists 

below the soil surface while surface flow is occurring. This is the typical surface runoff 
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in arid and semi-arid areas where groundwater table is relatively deep. On the other 

hand, the saturated excess runoff occurs when rainfall fails to infiltrate as result of the 

saturation in the soil due to groundwater table rise. This can also generate return flow 

as the subsurface water resurfaces at the slopes. According to Beven (1989), such a 

return flow is primarily expected to be pre-event water. 

The infiltration excess surface flow (QD) for an actual time step t is computed 

in WaSiM by equation (3-13). 

 

𝑄𝐷 (𝑡) = 𝑃(𝑡) + 𝑞𝑖𝑛(𝑡) − 𝐼𝑎(𝑡) (3-13) 

 

Where QD is surface flow [mm]; P is precipitation in the actual time step; qin is 

inflow from in the last time step [mm]; and Ia is the actual infiltration for the time step 

[mm]. The actual infiltration rate is the infiltration calculated using the Richards 

equation. 

Saturation excess runoff is generated in WaSiM groundwater model when the 

groundwater table is higher than ground surface. 

 

Interflow 

Interflow is defined by Beven (1989) as “the near surface flow of water within 

the soil profile resulting in seepage to the stream channel within the time frame of a 

storm hydrograph”. Translatory flow, macropore flow, and groundwater ridging are the 

mechanisms that contribute to interflow generation. 

The translatory flow is the interflow which stems from the displacement of 

water already stored in the soil mantle before a rainfall event (Hewlett and Hibbert, 

1967). This usually happens when the soil is within field capacity or saturated. It can 

occur in the Dano catchment around September, at the mid-rainy season. 

Macropore flow or non-capillary flow occurs through preferential pathways 

including root channels, wormholes, and soil cracks. Fig. 3-3 presents soil cracks in Dano 

during a dry season. The cracks occur in high clay content soils in the dry season. 

Therefore, their influence on water fluxes might be important at the beginning of rainy 

season. 

 



The hydrological model WASIM 

29 

 

 

Fig. 3-3. Photo of soil cracks in the Moutori catchment on October 29th 2014 (beginning 

of the dry season). 

 

Groundwater ridging mechanism of interflow is characterized by a large increase 

of hydraulic head of the groundwater during a storm followed by a significant release of 

water into the streams. It is caused by a quick conversion of near-surface capillary fringe 

into phreatic water (Sklash and Farvolden, 1979).  

In WaSiM, interflow is generated from a given soil layer if the suction in the layer 

is lower than 338 hPa (3.45 m H2O) and the local slope angle (β) is 0° < β ≤ 45°. If β=0 

there will be water logging. The maximum interflow (qifl.max) also called the drainable 

water content of an actual soil layer is computed by equation (3-14) and the actual 

interflow qifl by equation (3-15). 

 

𝑞𝑖𝑓𝑙.𝑚𝑎𝑥 = (𝜃(𝜓) − 𝜃𝜓=3.45) 
Δ𝑧

Δ𝑡
 (3-14) 

𝑞𝑖𝑓𝑙 = 𝑘𝑠 𝜃(𝜓) Δ𝑧 𝑑𝑟 tan𝛽  (3-15) 

Where θ(ψ) is actual soil water content at a given suction ψ [m3 m-3]; Δz is layer 

thickness [m]; Δt is duration of a time step [s]; ks is saturated hydraulic conductivity [m 

s-1]; dr, drainage density in [m-1]. 

 

3.2.4 Groundwater model 

Groundwater elevation 

The water content in a layer for hydrostatic equilibrium with the groundwater 

table is calculated by equation (3-16) and the interpolated groundwater table 

considering that it flows in a single layer is presented in equation (3-17). 
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𝜃𝐺𝑊,𝑚𝑖𝑛 = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟) (
1

1 + (0.5 𝑑 𝛼)𝑛
)
𝑚

 
(3-16) 

  

ℎ𝐺𝑊 = ℎ𝑔𝑒𝑜 + 𝑑 (𝜃𝑖 − 𝜃𝐺𝑊,𝑚𝑖𝑛) (𝜃𝑠 − 𝜃𝐺𝑊,𝑚𝑖𝑛) (3-17) 

With:  

θGW, min Water content at hydrostatic equilibrium [-] 
θs Saturated water content of the layer [-] 
θr Residual water content of the layer [-] 
θi Actual water content in a given layer i [-] 
α van Genuchten parameter [m-1] 
m, n van Genuchten parameters [-] 
d Thickness of the layer [m] 
hgw Groundwater level [m] 
hgeo Geodesic altitude of the lower limit of the lowest 

partly saturated layer 
[m] 

 

When the groundwater table drops to the next lower layer, the water content at 

the equilibrium is recalculated. If the groundwater table rises to the next upper layer, 

the last water content of the previous layer accounts in the groundwater table 

interpolation. 

 

Base flow 

A conceptual approach for the base flow calculation (equation (3-18) was 

applied. The parameters Q0 and kb were calibrated. 

 

𝑄𝑏 = 𝑄0  𝐾𝑠  𝑒
(ℎ𝐺𝑊−ℎ𝑔𝑒𝑜,0)/𝑘𝑏 (3-18) 

With: 

Qb Base flow  [m s-1] 

Q0 Maximum base flow if the soil is saturated [-] 

Ks Saturated hydraulic conductivity [m s-1] 

hGW Groundwater table [m a.s.l] 

hgeo, 0 Geodesic altitude of the first soil layer (upper limit 

surface)  

[m a.s.l] 

kb Recession factor for base flow [m] 

 

3.2.5 Discharge routing model 

The discharge routing is based on a kinematic wave approach which considers 

different water levels in a channel and the corresponding flow velocities. A single linear 
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storage is then utilized to account for the effects of diffusion and inertia. The three main 

steps in discharge routing include: translation, storage, and superposition of the 

discharge from different sub-catchments. 

The translation of the discharge in the channel is assumed to be stationary. The 

calculated flow velocity depends on channel properties such as slope, roughness, width, 

and depth. The spectrum of flow velocities is computed during the initialization of the 

model and stored in flow time table. The Manning-Strickler equation (3-19) is utilized to 

estimate the flow time. 

 

𝑣 = 𝑀 𝑅ℎ
2/3 𝐼1/2 (3-19) 

 

Where v: flow velocity [m s-1]; M: roughness parameter [m1/3 s-1]; Rh: hydraulic radius 

[m]; and I: slope in the direction flow [m m-1]. 

The wave flattening is done by the retention and diffusion of flow. The retention 

employs a single linear reservoir approach between the main channel flow and the flood 

plain flow. The resulting total retention constitutes an inflow to the next routing 

channel. 

Finally, the superposition of the discharge from different sub-catchments can be 

done by conveying discharge from the headwater sub-catchments to the intermediary 

ones and then to the outlet of the catchment. The upstream sub-catchment flows are 

considered as inflow to the lower sub-catchments.  

 

3.3 Model calibration and validation 

The Bankandi-Loffing and Mebar catchments were calibrated in years 2014-2015 

and validated in 2016 at hourly time step. The optimized parameters include LULC 

parameters such as rsc (canopy surface resistance) and rse (evaporation surface 

resistance). Monthly values of rsc and rse were calibrated for each land use type as 

effective values have to be used and no field measurements were available.  

In fact, surface resistance varies in the course of the day and between seasons 

(Beven, 1979; Lecina et al., 2003; Steduto and Hsiao, 1998; Todorovic, 1999). The 

variation in the day of surface resistance is characterized by a minimum rsc around mid-

day (Allen et al., 2006). This is the time of the day with maximum plant transpiration as 

plant leaf stomata are largely opened and plant water conductance is at its highest level 

of the day. Moreover, surface resistance increases with any environmental stress 

including water stress (Lecina et al., 2003). The most important weather parameters 

which influence surface resistance include intensity of solar radiation, air temperature, 

and vapor pressure deficit (Alves and Pereira, 2000).  
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The other land use parameters such as albedo, LAI, root depth were interpolated 

from previous studies (Bronstert, 2001; Charles-Dominique et al., 2009; Hansen, 1993; 

Kelley, n.d.; Kiniry et al., 2005; O’Siullivan, 2008). 

Three horizons per soil type were considered and their saturated hydraulic 

conductivity (Ks) and the reduction of hydraulic conductivity with depth (Kr) were 

calibrated. 

The following groundwater parameters were additionally calibrated: saturated 

hydraulic conductivity (Kx, Ky), coefficient of storage (So), leakage factor which control 

the exfiltration (base flow) from the groundwater to the river network (lk). When the 

conceptual base flow was applied, the parameters determining maximum base flow if 

the soil is saturated (Q0) and the recession factor for base flow (kb) were optimized. 

Finally, catchment characteristic parameters such as drainage density (dr) for 

interflow, storage coefficient for surface runoff (kD) and storage coefficient for interflow 

(kH) were also calibrated (more detail description of the parameterization of WaSiM can 

be seen in Schulla, 2015). 

The selection of the calibrated parameters and their range were based on the 

insights from Yira (2016) who studied their sensitivity and determined the most sensitive 

parameters for the area. The Latin Hypercube sampling was applied in order to ensure 

a fully stratified sampling of each parameter (Mckay et al., 1979; Schmalz and Fohrer, 

2009). The Simulation Environment for uncertainty and sensitivity analysis (SimLab 2.2; 

European Commission, 2016) software were utilized for the sampling and 200 

parameter sets were generated for each model. 

 

3.4 Model performance estimation 

A multi-criteria approach was applied for model performance estimation in order to 

account for the deficiency of single criterion approach (Weglarczyk, 1998). The objective 

functions include the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), the Kling-

Gupta Efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012), the coefficient of 

determination (R2) (Benesty et al., 2009), and the percent bias (Pbias) (Moriasi et al., 

2007).  

NSE, KGE, R², and Pbias were computed by equation (3-20), (3-21), (3-22), and 

(3-23) respectively. 
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𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑠,𝑡 − 𝑋𝑜,𝑡)

2𝑛
𝑡=1

∑ (𝑋𝑜,𝑡 − µ𝑜)
2𝑛

𝑡=1

 (3-20) 

𝐾𝐺𝐸 = 1 − √(𝑅 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

𝛽 =
𝜇𝑠

𝜇𝑜
 

𝛾 =
𝐶𝑉𝑠

𝐶𝑉𝑜
=

𝜎𝑠/𝜇𝑠

𝜎𝑜/𝜇𝑜
 

(3-21) 

𝑅2 =

[
 
 
 

∑ (𝑋𝑠,𝑡 − 𝜇𝑠)(𝑋𝑜,𝑡 − 𝜇𝑜)
𝑛
𝑡=1

√∑ (𝑋𝑠,𝑡 − 𝜇𝑠)
2
∑ (𝑋𝑜,𝑡 − 𝜇𝑜)

2𝑛
𝑡=1

𝑛
𝑡=1 ]

 
 
 
2

 (3-22) 

𝑃𝑏𝑖𝑎𝑠 =
∑ (𝑋𝑠,𝑡 − 𝑋𝑜,𝑡)

𝑛
𝑡=1

∑ (𝑋𝑜,𝑡)
𝑛
𝑡=1

∗ 100 (3-23) 

 

Where n is total number of time steps, Xs,t is simulated discharge at a time t; Xo,t 

is observed discharge at a time t, µs is mean of the simulated discharges; µo is mean of 

observed discharge; CVs is coefficient of variation of the simulated discharge; CVo is 

coefficient of variation of observed discharge; σs is standard deviation of simulated 

discharge; and σo is standard deviation of observed discharge. 

 

The optimization of the model is towards the maximizing each of the first three 

objective functions (R², NSE, and KGE) with perfect model yielding in a unity value for 

each of them. R² ranges from 0 to 1 whereas NSE and KGE range from -∞ to 1. 

Concerning Pbias, the optimal value is zero and it ranges from -∞ to +100%. The positive 

Pbias is equivalent to overestimation and the negative value is underestimation of the 

discharge by the model. A model starts being satisfactory from NSE> 0.5 and Pbias ≤ ±25 

for monthly time step (Moriasi et al., 2007). A lower satisfactory limit of 0.5 was also 

considered for KGE. 

The most optimal parameter set is assumed to be the one with the highest KGE. 

This is due to the fact that not only KGE incorporates R² in its equation, but also accounts 

for both conditional and unconditional biases (Gupta et al., 2009; Murphy, 1988). 

According to equation (3-21), maximizing each of the components of KGE will result to 

maximizing KGE (Kling et al., 2012).  

R² was not chosen to select the optimal simulation as it measures only the 

concentration of points around an imaginary line in a graph simulated against observed 

discharge. R² does not measure the concentration of points around 1:1 line (R² is 

susceptible for systematic errors). The use of only R² for model performance estimation 

might be misleading (Weglarczyk, 1998). 
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Although NSE is the most employed dimensionless objective function in 

hydrological modeling, it has been criticized for using mean observed discharge as 

baseline. This might lead to overestimation of model performance when a significant 

seasonal variation of runoff is observed (Gupta et al., 2009). 
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4 INSTRUMENTATION AND DATA AVAILABILTIY 

 

4.1 Introduction 

Hydrological data is limited in the Dano catchment. Historical stream, soil water, 

and piezometric data do not exist for the selected catchments. The only weather station 

with a satisfactory data set for four decades is located in Boromo (70km north of Dano 

catchment). The available weather stations in the vicinity of the selected catchments 

have only been operating since June 2012 (Yira, 2016). Basic characteristics of the 

aquifers can hardly be found (Eguavoen and McCartney, 2013). Therefore, for this study, 

an intensive catchment instrumentation was designed and carried out in four selected 

small catchments of the Dano catchment. Time series of data including weather (rainfall, 

air temperature, relative humidity, solar ration, and wind speed), discharge, and 

piezometric data were collected for three consecutive years (2014-2016). Spatially 

distributed data such as the land use and land cover, the dominant soil types, and the 

digital elevation model were obtained within the WASCAL (West African Service Center 

on Climate change and Adapted Land use, www.wascal.org) project. The thickness of 

sub-surface weathered layer and groundwater table depths at the moment of the 

installation of some local borehole were analyzed to gain knowledge on the local 

aquifer. Furthermore, a geo-electrical tomographic survey and a slug test were 

conducted to determine the spatial distribution of the aquifer and its hydraulic 

conductivity. 

This chapter thoroughly presents the instrumentation conducted under the 

scope of this study for the selected catchments and the subsequent data collected in the 

field. Fig. 4-1 and Fig. 4-2 illustrate the spatial distribution of the instrumentation in the 

field. 

  

http://www.wascal.org/
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                                    a) Moutori  

 

 

 

 

 

                                  b) Fafo  

 

 

 

 

 
 

Fig. 4-1. Elevation and instrumentation of the catchments equipped with reservoirs. 
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a) Bankandi-Loffing   

 

 

 

 

 

 

b) Mebar  

 

 

 

 

 

 

Fig. 4-2. Elevation and instrumentation of the catchments without reservoirs. 
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a) Piezometer in shallow aquifer b) Deep well 

  

c) Stream gauge d) Stream gauging 

  

e) Climate station f) Rainfall recorder 

  

Fig. 4-3. Piezometric, stream and weather instruments  

  



Instrumentation and data availabiltiy 

39 

 

a) Mobile soil moisture-meter b) Soil moisture station 

  

c) DGPS d) Geo-electrical survey 

 
 

Fig. 4-4. Soil water measurements, topographic and geo-electrical surveys (the DGPS 

pictures after Astech® ProMark® manual 2011). 

 

4.2 Time series data  

4.2.1 Piezometric data 

In order to investigate the hydrological processes, this study required the 

installation of a dense monitoring network in four small catchments in Dano (Fig. 4-1 

and Fig. 4-2). In total, 64 piezometers (Fig. 4-3a) were installed in the shallow aquifer 

and the groundwater level was manually measured using a level tape at weekly time 

steps. In addition to manual measurements, one site was equipped with a pressure 

sensor and logger recording the groundwater level every 6 hours.  

The relationship between deep and shallow aquifers (< 5 m deep) was 

determined by selecting 3 local deeper wells (6 to 25 m deep, Fig. 4-3b shows an 

example of a well located in deep aquifer) for monitoring the groundwater table. They 

underwent weekly manual measurements using groundwater tape.  

 

4.2.2 Discharge data 

The discharge was monitored at seven stream gauge stations. They include six 

station equipped with simple pressure sensors and one station with both pressure and 
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electrical conductivity sensors. In Bankandi-Loffing, two gauges (Bankandi-north and 

Bankandi-south) were installed in the upstream area and one gauge (Loffing) at the 

outlet. In the Mebar, one gauge at upstream area and one at the outlet were installed. 

However, only the latter gauge operated well. The former gauge malfunctioned (see Fig. 

4-2 for the locations of the stream stations). One gauge was installed in each of the Fafo 

and Moutori catchments. The water pressure sensors were installed in vertical pipes 

(Fig. 4-3c) to avoid water level fluctuations due to waves and turbulences during high 

flood events.  

For each stream station, a rating curve which establishes a relationship 

between water level and discharge was developed using measured discharges acquired 

during 2014 and 2015. The discharge measurements were carried out using an Acoustic 

Digital Current meter (ADC) of OTT Hydromet (2007). The discharge measurement 

method consists of dividing the stream cross section in to several flow segments (Fig. 

4-3d). For each flow segment, the velocity was measured using an ultrasonic sensor and 

the water depth using pressure sensor. The total discharge is the sum of the flow at all 

the flow segments like suggested by European standard EN ISO 748 (ISO, 2007). The 

discharge values were measured not only just after every rainfall that induces a 

significant flood but also regularly during dry seasons in order to account for high and 

low flows. For some stream stations, the low flow rating curve is significantly different 

to the high flow rating curve. Therefore, both low flow and high flow rating curves were 

developed for those stations. This was necessary to take into account the change of 

cross section shape with depth. In addition to the measured discharge, the Manning 

approach was utilized to calculate discharge (equation (4-1) for gauging stations with a 

limited number of measured discharges. This was the case of Mebar, Moutori, and 

Bankandi-south gauges. At the Bankandi-south, Manning calculated discharges were 

exclusively used in developing the rating curve due to a very few measured discharge 

values. The flows at this station are fast and stop immediately after a rainfall. I frequently 

arrived for discharge measurement at the station when the flows were already over. 

 

𝑄 = 𝐴𝑤  
1

𝑛
 (

𝐴𝑤

𝑃𝑤
)

2/3

𝑆1/2 (4-1) 

 

Where Q is the discharge, Aw is the cross sectional area of flow, n is the 

Manning roughness coefficient, Pw is the wetted perimeter, and S is the average slope 

of the river bed. The stream cross section area, the wetted perimeter, and the slope of 

river bed were assessed though leveling using a DGPS (Fig. 4-4c) (Ashtech, 2011). The 
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roughness coefficient for each cross section was estimated by calibrating the Manning 

equation employing the highest measured discharge as ground truth. 

 

All stream gauges operated at 5 min time step. This high resolution is needed 

because the small catchments are quick-flow dominant catchments, especially following 

high intensive rainfall events. Fig. 4-5 presents stream flow data availability for the three 

year field observation. Stream flow was not measured during the dry season (November 

to May) because these intermittent streams were dry (Raghunath, 2006). The 

measurements started with a short delay in July-August 2014 instead of June (beginning 

of the raining season). The delay was due to the installations of field equipment. In 2016, 

the gaps in the rainy season were mainly caused by the malfunctioned and vandalized 

stream stations. 

 

 

Fig. 4-5. Discharge data availability with stream station: no flow in dry season 

(November-May). 

 

4.2.3 Climate data 

Four climate stations (Fig. 4-3e) were installed since June 2012 in the 

investigated catchments and at their vicinities as part of the WASCAL project (Yira, 

2016). The recorded climate variables include rainfall, air temperature, relative air 

humidity, global radiation, and wind speed. However, a high spatial variability of rainfall 

which was estimated to 30-40% was observed in the region (Sivakumar, 1989). Thus, five 

additional rainfall recorders (Fig. 4-3f) were uniformly installed in the catchments 

allowing a representative spatial coverage of rainfall measurements in the study area 
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Time (Month-Year)
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(ten rain gauges for a total area of 65km²). The WMO (World Meteorological 

Organization) recommends a minimum network density of 575 km² per station for 

interior plains (WMO, 2008). The resolutions of rainfall measurement were 0.2 mm 

rainfall for rain recorders and 0.1 mm for the climate stations. The temporal resolution 

was 5-10 min for the climate stations and the rain recorders. 

 

4.2.4 Soil water data 

Soil moisture was manually measured weekly using a mobile Frequency 

Domain Reflectometry (FDR) sensor (Fig. 4-4a) at 64 points and for three different 

depths: topsoil (upper 5 cm), 30 cm and 50 cm. At each point, soil moisture at 30 and   

50 cm depths were measured through two access holes (6-7 cm in diameter). Each 

measurement was repeated three times and the average value was saved. The soil 

moisture sensor (ML2x Theta Probe) was calibrated according to the method described 

by the manufacturer (Delta-T Device Ltd 1999). The deviation of the sensor 

measurements compared to the gravimetric method (considered as a reference) was 

approximately ± 7%. 

Additionally, a soil moisture station (see Fig. 4-4b), was installed in a Plinthosol 

at Bankandi-south (Yira, 2016). It is equipped with a data logger which continuously 

records at a temporal resolution of 30 min. Three FDR sensors (EcoTech Umwelt-

Meßsysteme GmbH) were used at the first three soil horizons. 

The soil measurement points were classified into two groups. The first group 

of measurements are located in uplands and slopes and the second group includes 

measurements in lowlands or valley bottoms. The first group of points mainly belongs 

to plintosols or Cambisols whereas the second group is characterized by Gleysols. 

 

4.3 Digital elevation model (DEM) 

The SRTM (Shuttle Radar Topography Mission) of the USGS (United States 

Geological Survey) dataset with 30m resolution (NASA, 2014) was used to delineate the 

investigated catchments and to derive topographic based grid data including slope, flow 

direction and accumulation, aspect, and stream network. The topographic analysis 

program TANALYS (Schulla, 2015) was used to generate those topographic grid data. 

 

4.4 Characterization of the aquifer 

Crystalline rocks (migmatites, granites, shists) are dominant in the study area 

therefore aquifers can only located in weathered rocks, in faults, and fractures (Singhal 

and Gupta, 2010). The sub-surface investigation applied two sorts of methods including 

direct methods and indirect methods. The direct methods include among others, logs 
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analyses, pumping test and slugs test. The indirect methods mainly use geo-physical 

methods. 

In this section, data collected during the installation of many wells and 

boreholes (log, groundwater table, pumping rate etc.) are analyzed. The wells and 

borehole were installed in the local aquifer for drinking water. The criteria considered 

when defining a successful well / borehole include the yield (0.2 to 1 liter per second in 

rural domestic use with a hand pump in West Africa), water quality, and the cost of the 

construction of the well (Houston, 1992; Singhal and Gupta, 2013). For a low permeable 

crystalline-rock aquifer, the siting of well or borehole is important for the well or 

borehole to penetrate into water-bearing formation (weathered profile, fracture etc.) 

which increases the probability of successful well or borehole. Furthermore, a slug test 

was applied on the shallow groundwater to estimate its hydraulic conductivity. Finally, 

the method of geo-electrical resistivity survey was conducted during this study to gain 

more insight on the groundwater.  

 

4.4.1 Borehole general information 

This section explores available groundwater data collected during the 

installation of wells or boreholes by the Department of water resources of Burkina Faso 

(DGRE, www.mea.bf). The aim is to gain insights on groundwater characteristics. 

The analyses considered 104 boreholes and wells located in the Dano 

catchment. All the wells and boreholes are intended for rural domestic needs. 87% of 

the wells and boreholes were declared successful (water yields are equal or greater than 

0.2 l s-1 and water quality is fit for human consumption). The depths of the wells and 

boreholes range from 31 to 96 m. Thus, the investigated wells and boreholes are 

sufficiently deep to reach the saprolite and a part of the underlain igneous basement 

rock. The saprolite horizon thickness ranges from 14 to 51 m and the average saprolite 

thickness is 28 m. The thickness of the remained wells and boreholes (51 to 99 m) and 

their saprolite (5 to 48 m) are not significantly different from the successful wells and 

boreholes. This seems to suggest that the success of a well or borehole does not depend 

only on the depth and the thickness of the saprolite layer. Saprolites which are located 

at a steep slope with low storage coefficient and high hydraulic conductivity might lose 

water in favor of the valleys bottoms. Singhal and Gupta (2013) when studying fractured 

rocks, found out that wells / borehole located in valley bottoms produce greater yields 

than those located on steep slopes. This can be attributed to the usual groundwater flow 

from uplands to valleys bottoms. Moreover, the aquifers are usually thicker at the valley 

bottoms compared to the uplands due to sedimentation processes in the valley 

bottoms. Additionally, the water contained in the alluvial layers contributes in 

http://www.mea.bf/
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deepening the weathering of the underlain bedrock and faults or and fractures located 

in valley bottoms.  

The depth to groundwater table ranges from 2 to 31 m and the average 

groundwater table depth was 12 m. The yields of the wells and boreholes were 0.4 to 

18 m3 h-1 during pumping tests and the subsequent induced drawdown was 2 to 22 m 

with a mean drawdown of 10 m.  

The analyses of the data collected during the installation of wells and 

boreholes provided valuable information on the local aquifer thickness at the 

surroundings of the studied catchments. Furthermore, insights in the productivity of the 

wells and boreholes were gained. However, the information is retrieved on the point 

scale and the hydraulic conductivity of the aquifer was not available. Therefore, a slug 

test and a geo-electrical tomography surveys were conducted in the studied catchments 

in order to improve the knowledge on the aquifer. 

 

4.4.2 Slug test of the shallow aquifer 

The slug test method after Bouwer and Rice (Bouwer, 1989; Bouwer and Rice, 

1976) was used to estimate saturated hydraulic conductivity (Ks) of the unconfined 

aquifer of Dano catchment. It consisted of quickly raising water level from the 

equilibrium in a piezometer by adding some water. The subsequent rate of fall of 

groundwater table was measured using a water pressure sensor which records the 

water level at 2 min time step. The investigated piezometers were partial penetrating 

and partial screened with gravel pack in an unconfined aquifer (Fig. 4-6). 
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Fig. 4-6. Schematic presentation of the investigated piezometer (Bouwer, 1989). rc: 

radius of the investigated well; y: difference between groundwater level in well at a 

given time and the static groundwater table outside the well; Lw: groundwater level in 

the aquifer with the bottom of the well as reference point; H: groundwater level in the 

aquifer with the impermeable substratum of the aquifer as reference point; rw: radius 

of the gravel pack; and Le: length of the screened tube.  

 

The equation (4-2) presents the computation of the hydraulic conductivity (Ks). 

 

𝐾𝑠 =
𝑟𝑐

2 𝑙𝑛(𝑅𝑒/𝑟𝑤)

2𝐿𝑒
 
1

𝑡
 𝑙𝑛

𝑦0

𝑦
 (4-2) 

 

With: y: difference between groundwater level in well at a given time t and the 

static groundwater table outside the well, y0: y at time t=0; Re: effective radial distance 

over which y is dissipated can be expressed by the equation (4-3). 

 

𝑙𝑛
𝑅𝑒

𝑟𝑤
= [

1.1

ln (
𝐿𝑤

𝑟𝑤
)

+
𝐴 + 𝐵 𝑙𝑛[(𝐻 − 𝐿𝑤)/𝑟𝑤]

𝐿𝑒/𝑟𝑤
]

−1

 

(4-3) 
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The geometric characteristics (rc, rw, Le, Lw, and H) were described by the Fig. 

4-6 and y0 is the value of y at the time t=0. The dimensionless parameters A and B of the 

equation (4-3) were estimated using Fig. 4-7. 

 

 

Fig. 4-7. Dimensionless parameters A and B as a function of Le/rw. C is used only for full 

penetrating well (Bouwer, 1989). 

 

From equation (4-2), it appears that ln(y) versus t is a straight line and the slope 

(b) is expressed by the equation (4-4). 

 

𝑏 =
2𝐿𝑒 𝐾𝑠

𝑟𝑐2 ln (
𝑅𝑒

𝑟𝑤
)
 (4-4) 

 

The slope b is graphically determined by fitting ln(y) versus t in a semi-

logarithm plot. Ks was calculated using equation (4-5) after graphically estimation of Re 

using Fig. 4-7. 

 

𝐾𝑠 =
𝑟𝑐

2 ln (
𝑅𝑒

𝑟𝑤
)

2𝐿𝑒
 𝑏 (4-5) 

 

The slug test survey was carried out on 36 piezometers in all the four 

catchments (Bankandi-Loffing, Mebar, Moutori, and Fafo). The results were utilized for 

the parameterization of WaSiM. 
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4.4.3 Geo-electrical tomography 

Understanding the sub-surface geology is a key for a successful surface and 

groundwater availability study. Under the conditions of limited groundwater data 

availability, a geo-electrical resistivity survey is a relatively easy approach for 

characterizing the geometry of an aquifer. The geo-electrical resistivity method is often 

used to assess some of the most important geological and hydrological parameters such 

as rock or soil type, their degree of water saturation and the pore water solute content 

(Koch et al., 2009). For instance, Archie’s law establishes the relationship between the 

resistivity of a porous rocks and the porosity and the resistivity of pore water (Loke, 

2001). However, due to the wide range of resistivity corresponding to a rock or soil type, 

the use of absolute resistivity to characterize the sub-surface may be associated with 

significant uncertainties. Moreover, Archie’s Law can only be applied to porous 

materials with no significant amount of mineralogical clay, mineral ore, or graphite. 

Therefore, instead of the absolute resistivity, the relative resistivity was used in this 

study by comparing the measured resistivity of an area to the resistivity of surrounding 

hydrogeological structures.  

The overriding goal of the electrical resistivity survey was to characterize the 

geological structure of the sub-surface. The information is important for building a 

robust hydrological model. 

 A SYSCAL Pro switch-48 resistivity-meter (IRIS-Instruments, 2016) was used for 

field investigation (see Fig. 4-4d). The instrument is equipped with 48 electrodes with 5 

m spacing (Fig. 4-8). Two measurement approaches were used including Schlumberger 

array or pole-pole array (Fig. 4-8). 
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Fig. 4-8. Field setup of the SYSCAL Pro switch-48. A and B: current electrodes; M and N: 

potential electrodes; X : linear axe where the point A, B, M, and N can be located; AB: 

distance between point A and B; MN: distance between M and N; XCA: cordinate of A on 

the axe X; and XPI: cordinate of M on the axe X 

 

The measurement principle is based on the application of a potential (V) on the 

electrodes MN and the resulting current (I) is measured at the electrodes AB. The 

apparent resistivity (ρa) is calculated by equation (4-6). 

 

𝜌𝑎 = 𝐾 
𝑉

𝐼
 (4-6) 

 

The value of the constant K depends on the measurement array. Hence, for 

Schlumberger array, K was calculated by the equation (4-7) and for pole-pole array K is 

calculated by the equation (4-8). 
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𝐾 =
𝜋(𝑎2 − 𝑏2)

2𝑏
 (4-7) 

𝐾 =
2𝜋

(1/𝐴𝑀)
 (4-8) 

 

Where a=AB/2; b=MN/2; and a>b (see Fig. 4-8). The Schlumberger electrode 

array explored a maximum depth of 52 m whereas the pole-pole reached more than 

twice the maximum depth of the Schlumberger array (130 m). The pole-pole array was 

applied only at locations where there was a need to explore deeper because it is a labor 

and time consuming method. The field measurements were processed using a   2-D 

resistivity inversion software called RES2DINV (Geotomo Software, 2010). 

The measurements were carried out in collaboration with the National 

Department of Mining and Geology of Burkina Faso (BUMIGEB). They provided the 

measurement equipment and the technical support.  
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5 CHARACTERIZATION OF SURFACE AND GROUNDWATER RESOURCES IN 

FOUR INLAND VALLEY CATCHMENTS IN DANO 

 

5.1 Introduction 

The Dano catchment, located in south-east Burkina Faso, is one of the three 

focal catchments of the WASCAL project (West African Science Service Center on 

Climate Change and Adapted Land Use, www.wascal.org). The catchment is located in a 

region where approximately 57% of the population live under the poverty line 

(Coulombe et al., 2000). Nearly 90% of the labor force of the area work in agriculture 

(INSD, 2014). Therefore, many development projects intend to reduce poverty through 

improvements of the agricultural system especially in inland valleys (Sparacino, 2011). 

Yet, these projects were often purely based on surface runoff by building either small 

dams or flumes for canalizing directly water into fields. Although valley bottoms of 

inland valleys are flooded in the rainy season (Windmeijer and Andriesse, 1993), they 

dry out in the dry season when water gets scarce with no possibility to irrigate and to 

grow any crops with surface water without a reservoir. Since 1970s and 1980s, 

approximately 1700 small reservoirs were constructed in Burkina Faso as response to 

droughts and in order to alleviate the high water demand for agriculture in rural areas 

(Venot and Cecchi, 2011). Two reservoirs were constructed in the Dano catchment. One 

of the reservoirs frequently experiences complete depletion before the end of the dry 

season. This can be attributed not only to high water demand for food production for a 

fast growing human population but also to high evapotranspiration losses and 

insufficient rainfall (Mishra and Singh, 2010).  

Using the shallow aquifer for irrigation is an option which is already practiced 

by some farmers for irrigating vegetables. However, shallow wells are at risk to dry out 

very fast or before the end of the dry season due to very little knowledge on the 

appropriate locations to install wells and the depth needed to obtain sustainable water 

productivity. Increasing the use of shallow groundwater is hindered by the fact that basic 

information on the groundwater in the catchment is lacking (Eguavoen and McCartney, 

2013). Especially information on the extent of the aquifer, its spatial distribution and 

recharge are not available.  

Moreover, the irregular behavior of rainfall regime in the region (Ibrahim et al., 

2013b) lead to severe yield losses as agricultural systems are mainly rainfed and dry 

spells occur in the rainy season at periods when crops need water the most (Traore et 

al., 2013). This implies a need for supplementary irrigation in the rainy season.  

Given the limited adaptive capacity of smallholder farmers and the fact that 

they are highly vulnerable to climate variability and climate change (Makate et al., 2017; 

Traore et al., 2015), the aim of this research is (i) to understand the underlying 
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hydrological processes, (ii) to investigate not only the surface water resources but also 

the groundwater availability and the linkage in order to support strategies for better 

utilization of water at the local scale for small irrigation schemes, and (iii) to better 

understand hydrological processes which control the surface and groundwater 

availability in the area. 

Due to the local scale and the intention to provide reliable information to 

farmers, this research uses data collected at very high spatial and temporal resolutions. 

The data were analyzed using fundamental hydrological tools in order to set the base 

for further investigations with hydrological modeling and water management strategies. 

 

5.2 Material and methods 

5.2.1 Total runoff coefficient  

Annual total runoff was estimated by runoff coefficient (Cr) which is the ratio 

of the total runoff (Q) by the rainfall (P) (5-1). Because intermittent flows characterize 

the investigated catchments, most of the flows are concentrated in the rainy season. 

Thus, the analyses focused on rainy seasons. 

 

𝐶𝑟 =
𝑄

𝑃
∗ 100 

(5-1) 

 

With Q: seasonal total runoff; P: seasonal precipitation [mm], and Cr: runoff 

coefficient [%]. 

 

5.2.2 Flow duration curve 

The flow duration curve (FDC) was used to compare the four investigated 

catchments in the Dano catchment. For a given period, FDC can be defined a cumulative 

frequency curve which presents the percentage of time steps where discharges were 

equaled or exceeded (Searcy, 1959). The runoff is plotted versus the time exceedance 

probability in percent (Vogel and Fennessey, 1995). The variation of FDC provides 

information on catchment hydrological processes including its hydrogeologic 

characteristics (Peters and Driscoll, 1987).  

FDC was developed for the years 2014 and 2015 at a five minute time step. 

Periods of no-flow were excluded from the analysis as suggested by Croker et al. (2003). 

FDC was computed for the Bankandi-Loffing catchment using measured total runoff 

from a gauging station of headwater sub-catchment (Bankandi-north) and the outlet 

stream gauge. For each of Mebar and Fafo catchments, the stream gauge at their outlet 

were employed (Mebar-low and Fafo stream gauges, respectively). 
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5.2.3 Analytical runoff component estimation  

Total runoff was decomposed into its components using the measured water 

electric conductivity and the hydrograph. 

The electric conductivity-based estimation is utilizing the mass balance of 

water and solutes method (Stewart, 2015). In this case, the solutes are ions which 

naturally dissolve in stream water. The quick or fast flow (Qr) (surface runoff plus 

interflow) was estimated for each time step based on the variation of the electric 

conductivity of the stream discharge (Cd), total discharge (Qd), electric conductivity of 

base flow (Cb), and electric conductivity of rainfall (Cp) using equation (5-2) (Giertz et al., 

2006). The electric conductivity-based method was applied only at the outlet of 

Bankandi-Loffing. It is the only gauging station which was equipped with electric 

conductivity measurement at a five minute time step. 

Fig. 5-1 presents a schematic description of the main hydrological processes 

contributing to the variation of the electric conductivity of the stream. 

 

 

Fig. 5-1. Schematic representation of the main hydrological processes contributing to 

the electric conductivity of discharge water. 
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𝑄𝑟 = (𝐶𝑑 − 𝐶𝑏).
𝑄𝑑

(𝐶𝑝 − 𝐶𝑏)
 (5-2) 

 

The electric conductivity of the groundwater (Cb) is considered to be constant 

during the event therefore the pre-event mean value (120 µS cm-1) measured in the 

piezometer Lo23 located at the outlet of Bankandi-Loffing catchment was used for the 

calculations (see Fig. 4-2 for the location of the piezometer Lo23). Regarding the rainfall 

electric conductivity (Cp), the average measured electric conductivity of rainfall (19 µS 

cm-1) in the Nakambé basin (north of Burkina Faso) was utilized (Maïga-Yaleu, 2014). 

Base flow was calculated by the difference between the total runoff and the 

fast flow, therefore only these two runoff components can be determined by the electric 

conductivity method. 

 

Unlike the electric conductivity method, a hydrograph analysis allowed the 

estimation of three components of total runoff, namely surface runoff or overland flow, 

interflow, and base flow. 

The hydrograph in  

Fig. 5-2 shows two distinct peaks for one rainfall event, therefore the 

decomposition of the hydrograph is based on the assumption that the first peak (A) 

mainly consisted of surface runoff and the second peak (B) was essentially induced by 

interflow. The end of interflow was determined by plotting the recession limb of peak B 

with logarithmic scale for the Y-axis and linear scale for the X-axis. This is an adaptation 

of the method of  Roche (Cosandey and Robinson, 2007). The breaks of the curve allow 

the separation of fast flow (surface runoff plus interflow) from base flow. An average 

base flow was used for the duration of the stormflow. 

 

Fig. 5-2 shows that the stormflow starts at t0, the interflow starts at t1 and ends 

at t2, and the stormflow ends at t3. The volume of base flow (Vbase ) in equation (5-3) is 

computed using the average base flow rate (Qbase), and the time step duration (Tstep =5 

min). The volume of overland flow (Vs) and the interflow volume (Vi) were calculated 

using equations (5-4) and (5-5), with Qi being the discharge at the time step i. 
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Fig. 5-2. Decomposition of the hydrograph at 5min time steps on September 1-5, 2015 

at the main outlet of Bankandi-Loffing. A is surface runoff, B is interflow, and C is 

baseflow of the stormflow.  

 

𝑉𝐵𝑎𝑠𝑒 = ∑(𝑄𝑏𝑎𝑠𝑒 ∗ 𝑡𝑠𝑡𝑒𝑝)

𝑡3

𝑖=𝑡0

 (5-3) 

𝑉𝑠 = ∑[(𝑄𝑖 − 𝑄𝑏𝑎𝑠𝑒) ∗ 𝑡𝑠𝑡𝑒𝑝]

𝑡1

𝑖=𝑡0

 (5-4)  

𝑉𝑖 = ∑[(𝑄𝑖 − 𝑄𝑏𝑎𝑠𝑒) ∗ 𝑡𝑠𝑡𝑒𝑝]

𝑡2

𝑖=𝑡1

 (5-5) 

 

5.2.4 Groundwater recession  

Groundwater recession was estimated using base flow recession curve      (Fig. 

5-3) and the rate of groundwater level drop in dry seasons. The late base flow recession 

was separated from the early one in order to reduce the influence of quick flow on the 

characteristics of the base flow recession curve (Stewart, 2015). 
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Fig. 5-3. Base flow recession curve at the outlet of Bankandi-Loffing. 

 

An exponential recession of base flow was applied (Chapman, 1999; Stella, 

2013; Tallaksen, 1995; Wittenberg, 1994) using equation (5-6). 

 

𝑞𝑡 = 𝑞0 ∗ 𝑒−
𝑡
𝜏 

(5-6) 

 

Where: qt is the discharge at time t; q0 is the initial discharge at time t=0; and 

τ is the turnover time of base flow. 

If logarithm is applied to the two sides of the equation (5-6), the equation will 

result to a linear equation with -1/τ as slope (a) thus the turnover (replacement) time of 

base flow (τ) is expressed by equation (5-7). 

 

𝜏 =  −
1

𝑎
 

(5-7) 

 

5.2.5 Soil water characteristics 

Soil moisture was measured at three different depths of 64 different locations 

in the four investigated catchments (see chapter 4 for a detailed description). The 

measurement points were classified into two groups. The first group is made of 

measurements performed at uplands and slopes and the second group encompases 

points located in lowlands or valley bottoms. Plinthosols and Cambisols are the 

dominant soil types at uplands and slopes whereas Gleysols dominate valleys bottoms. 

The physical properties of those soil categories are presented in the Table 5-1. Soil 

hydraulic conductivity (Ks), soil water at saturation (θs), residual soil water (θr), van 

0

40

80

120

160

2000

0.5

1

1.5

2

2.5

3

3.5

2014-09-28 2014-10-03 2014-10-08 2014-10-13

D
ai

ly
 r

ai
n

fa
ll 

(m
m

)

D
ai

ly
 d

is
ca

rg
e 

(m
3

s-1
)

Rainfall Discharge

Early Late

Recession curve 



Characterization of surface and groundwater resources in Four inland valley 
catchments in Dano 

57 

 

Genuchten parametrs (α and n) were estimated by pedo-transfer functions (Brakensiek 

and Rawls, 1994; Cosby et al., 1984; Patil and Singh, 2016; Rawls and Brakensiek, 1985; 

Saxton et al., 1986; Saxton and Rawls, 2006; Schaap et al., 2001; van Genuchten, 1980; 

Vereecken et al., 1990). 

 

Table 5-1. Mean physical characteristics of Cambisols, Gleysols and Plintosols in Dano 

(Yira 2016). 

 

Horizon 
depth 
(cm) 

Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

BD  
(g cm-3) 

Ks  
(cm d-1) 

θs  
(vol. %) 

θr  
(vol. %) 

α  
(m-1) 

n  
(-) 

C
am

b
iso

ls 

0-16 25 45 30 1.3 953 46 10 3.5 1.3 

16-42 25 42 33 1.4 420 44 10 3.1 1.3 

42-86 18 54 28 1.5 278 43 10 2.1 1.3 

G
le

yso
ls 

0-18 26 55 19 1.4 545 42 6 2.7 1.3 

18-42 18 51 31 1.5 192 41 7 1.1 1.2 

42-86 18 50 32 1.6 163 40 3 0.5 1.2 

P
lin

th
o

so
ls 

0-15 34 46 20 1.5 958 36 8 2.8 1.3 

15-42 23 42 35 1.6 778 34 9 1.3 1.2 

42-86 20 36 44 1.6 700 35 8 1.1 1.2 

 BD: Bulk density; Ks: saturated hydraulic conductivity; θs: saturated soil moisture; θr: residual soil 
moisture; α and n: van Genuchten parameters. 

 

Soil moisture at the field capacity was computed using the van Genuchten 

retention curve (Cong et al., 2014; van Genuchten, 1980). Equation (5-8) presents the 

calculation of soil moisture at field capacity. 

 

𝜃𝑓𝑐 = [(−𝛼𝜓𝑓𝑐)
𝑛

+ 1]
−𝑚

(𝜃𝑠 − 𝜃𝑟) + 𝜃𝑟 (5-8) 

 

Where θfc is soil water at field capacity [vol. %]; ψfc is the corresponding matric 

potential [m of water column]; θs and θr are saturated and residual soil moisture 

respectively [vol. %]; α [m-1], n [-], and m [-] are van Genuchten parameters with m=1-

1/n. ψfc was assumed to be equal to -33 kPa or -3.4 m of watercolumn (Assouline and 

Or, 2014; Colman, 1947; Richards and Weaver, 1944). 

Equation (5-8) was applied for soil water at the permanent wilting point (θPWP) 

computation. This was done after replacing the matric potential at the field capacity 

(ψfc) by the matric potential at the permanent wilting point (ψPWP) which is      -1500 kPa 

or -153 m of water column (Kirkham, 2014). 
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The plant-available water (PAW) was estimated by the difference between soil 

water at the field capacity and soil water at the permanent wilting point when the 

groundwater table is below the rooting zone (Blume et al., 2016).  

 

5.3 Results and discussion 

5.3.1 Runoff characteristics 

Rating curves 

The univariate quadratic polynomial equations were used for interpolating the 

stage-discharge curves (Fig. 5-4 to Fig. 5-7). Power-law equations were sometimes 

utilized for very low stages (Fig. 5-4-a and Fig. 5-4-b). The coefficient of determination 

between measured stage and measured discharge range from 0.84 to 0.99. R² obtained 

from the Manning method is higher compared to R² of the measured method. This 

corresponds to very good interpolation performance of rating curves. However, the 

water level corresponding maximum measured discharge is approximately 0.85 to 0.88 

m. An extrapolation beyond maximum measured discharge was done for some gauging 

stations. Therefore, uncertainties of measured discharge increase when the recorded 

stage greater than 0.8 m (Leonard et al., 2000; Tomkins, 2014). It is recommended not 

to extrapolate a stage higher than 1.5 time the height of the highest measured discharge 

(ISO 1100-2, 2010). Overbank flows often occur during high flood events leading to 

relatively high uncertainties in observed discharge. The uncertainties might also 

originate from the number of gauged points, the function used for interpolation (power 

or polynomial equation type), the stage-of-zero flow used, and the discharge 

measurement during gauging (Birgand et al., 2013). 

Concerning the Manning method, the major uncertainty stem from the 

roughness coefficient. It varies significantly from the bottom of the stream cross section 

to the banks and is influenced in terms of magnitude over time by vegetation growth at 

the gauging station, sedimentation, and erosion of the stream bed.  
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a) Outlet Loffing 

 
b) Bankandi-north 

 
c) Bankandi-south 

 

Fig. 5-4. Rating curves in the Bankandi-Loffing catchment (Q: measured discharge, h: 

stage, R²: coefficient of determination). 
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a) Outlet Mebar 

 
b) Mebar-up 

 

Fig. 5-5. Rating curves of the Mebar stream gauges (Qma: Manning calculated discharge, 

Q: measured discharge, h: stage, R²: coefficient of determination). 
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Fig. 5-6. Rating curve of the Moutori stream gauge (Qma: Manning calculated discharge, 

Q: measured discharge, R²: coefficient of determination). 

 

 

Fig. 5-7. Rating curve of Fafo stream gauge (Qma: Manning calculated discharge, Q: 

measured discharge, R²: coefficient of determination). 
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of rainy seasons. At Bankandi-south and Mebar-up, rainfall is the only source of flows. 

Base flow does not contribute to the flows due to the fact that the groundwater table is 

always below the streambed. On the other hand in Loffing, groundwater table is above 

streambed during rainy season. Therefore, base flow and rainfall are the sources of 

flows. Based on the classification of Buttle et al. (2012), the flows at Bankandi-south and 

Mebar-up can be qualified as ephemeral streams while the flows at Loffing are 

intermittent seasonal stream.  

All the investigated streams fall into the temporary stream category as variable 

periods of no-flows can be observed. In contrast to temporary streams, perennial 

streams flow continuously during a hydrologic year and receive flows from temporary 

streams (Nadeau and Rains, 2007). 

 

 

Fig. 5-8. Hyetograph-hydrograph at the Loffing gauging station, outlet of the Bankandi-

Loffing catchment in 2014 and 2015 at 5 min time resolution. 

 

 

Fig. 5-9. Hyetograph-hydrograph at the Bankandi-south gauging station in 2014 and 

2015 at 5 min time resolution. 
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Fig. 5-10. Hyetograph-hydrograph at the Mebar-up gauging station in 2014 and 2015 at 

5 min time resolution. 

 

Runoff coefficient 

Table 5-2 summarizes some hydrological characteristics of the investigated 

catchments for the years 2014 and 2015 (see Fig. 4-1 and Fig. 4-2 for the locations of the 

catchments and their corresponding stream gauges). 

 

Table 5-2. Seasonal total runoff coefficients of the investigated sub-catchments for the 

observed periods (see Fig. 4-1 and Fig. 4-2 for the locations of the discharge stations). 

Discharge station Year Area (km²) P(mm) Q(mm) Cr (%) 

Loffing 
2014 30.23 680 54 8 

2015  778 149 19 

Bankandi- north 
2014 9.28 507 32 6 

2015  931 127 14 

Bankandi- south 
2014 2.32 656 53 8 

2015  1079 100 9 

Mebar-low 
2014 7.85 656 48 7 

2015  915 246 27 

Mebar-up 
2014 4.66 656 30 4 

2015  1043 66 6 

Fafo  
2014 11.32 554 75 14 

2015  1014 152 15 

P: Seasonal rainfall; Q: Total discharge; Cr: Total runoff coefficient 

 

The overall spatially weighted average runoff coefficient for the two seasons is 

13%. Using hydrological modelling, Yira et al. (2016) obtained a similar result (13.2%) in 

Batiara-1 which is a sub-catchment located in the southern Dano catchment. The 
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discharge stations of Moutori, Mebar (up and low), Bankandi (north and south), and 

Loffing are located upstream of Batiara-1.  

Although in the year 2015 precipitation was 163 mm higher than in 2014, the 

exceedance probability curves of rainfall (Fig. 5-11) present a slight difference of P10 

(rainfall that is equaled or exceeded for 10% of the hourly time step, computed from 

non-zero flow data) between the years 2015 (8.8 mm h-1) and 2014 (6.5 mm h-1). 

Consequently, runoff coefficients in 2015 were higher than in 2014 in most of the sub-

catchments. The average runoff coefficient almost doubled from 8% in 2014 to 15% in 

2015. 

 

 

Fig. 5-11. Exceedance probability of hourly rainfall in 2014 and 2015 (zero flow values 

excluded). 

 

The highest runoff coefficients were observed at Loffing and Mebar-Low 

gauging stations due to base flow contributions. The runoff coefficients of upstream sub-

catchments are low because the contribution of base flow to discharge is negligible. In 

those upstream sub-catchments, my hypothesis is that rainfall is quickly lost through 

infiltration to the groundwater which is deeper at these sites. The groundwater then 

flows to the downstream sub-catchments, where it contributes to total stream flow. This 

hypothesis is based on the fact that the difference in evapotranspiration between the 

upstream and downstream sub-catchments is not significant (Yira et al., 2016). 
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Flow duration curves (FDC) 

Throughout this chapter, Qn will refer to a runoff which is equal or exceeds n% 

of the time steps. Fig. 5-12 shows a similar Q10 for all the sub-catchments (approximately 

0.02 mm, time step of analysis = 5 min), which means similar sub-catchment behavior 

for high flow events. In contrast to the high flows, the sub-catchments differ in terms of 

low flows. The lower the flows, the higher the differences. However, Loffing and Mebar-

Low remain similar for the low flow with Q90 being equal to 0.003 mm whereas 0.0008 

mm is observed in Bankandi-North and 0.0003 mm in Fafo. These differences may be 

mainly explained by the contribution of the groundwater to the streamflow. Therefore, 

soil and LULC, which control the infiltration, are the key factors to the deeper 

understanding of the differences in one hand and groundwater hydraulic conductivities 

and the hydraulic gradients are the main parameters controlling groundwater flow 

(Darcy, 1856). Moreover, the slope can contribute to an extent the differences of 

behavior. For instance, approximately 16% of the area of Bankandi-south is covered by 

a slope which is equal or higher than 10% whereas only 3% of the area of the Loffing and 

Bankandi-north are equal or higher than 10% slope (Fig. 5-13). 

 

 

Fig. 5-12. Flow duration curves at 5 minute time step for 4 discharge stations in 2014 

and 2015 (see Fig. 4-1 and Fig. 4-2 for the locations of the discharge stations). 
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Fig. 5-13. Slope distribution in the Bankandi-Loffing catchment 

 

Runoff components by stream electrical conductivity analysis 

The observed electric conductivity (EC) and discharge at the outlet of 

Bankandi-Loffing (see Fig. 4-2-a for the location of the discharge station) are correlated 

which is shown for the event of September 20 to 23, 2015 in Fig. 5-14-a (coefficient of 

determination (R²) was 0.63). Therefore, EC was used to determine runoff components 

and especially runoff discharge or fast flow (overland flow plus interflow) and the base 

flow. The result of application of the equation (5-2) is presented in the Fig. 5-14-b. 

The total rainfall for the event (Fig. 5-14) was 75.6 mm during 135 min     (2.25 

h). The recorded maximum rainfall intensity during the event was 14.6 mm per 5 min 

(equivalent to 175.2 mm h-1). The mean rainfall intensity of the event which was 33.6 

mm h-1 shows it was a very heavy rainfall event (Llasat, 2001). The event generated a 

total runoff coefficient of 20% compare to the rainfall. The decomposition of runoff 

shows that runoff discharge (64% of total runoff) contitutes the major part of the total 

runoff and base flow represents 36% of the total runoff of the event           (Fig. 5-14-b).  
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Fig. 5-14. Base flow separation using EC at the main outlet of Bankandi-Loffing station: 

A- comparison between measured EC and the hydrograph; B- runoff discharge and base 

flow assessment based on the event recorded for the period of September 20 to 23, 

2015. 

 

Runoff components by hydrograph analysis 

Table 5-3 summarizes the results of hydrograph-based runoff partitioning. It 

shows that the interflow is the most important component of total discharge in the 

majority of the sub-catchments except in Mebar-up where surface flow prevailed 

compared to other runoff components. Furthermore, it is important to notice the 

absence of base flow for some ephemeral streams (Moutori, Mebar-up) due to the 

greater depth of the shallow groundwater. 

Although the temporal resolution of the discharge data was high, all flood 

events do not isolate the two peaks (surface flow and interflow). Most of the well-

separated peaks occurred in September, in the middle of the rainy season. This is the 

time of the season when the soil is almost at its field capacity or saturated and the 

shallow aquifer close to its highest level below the ground. Therefore, the surface runoff 

might mainly occur by saturation excess. Regarding the interflow, groundwater ridging 

and the translatory flow might account as the major mechanism of rapid sub-surface 

flow around the middle of the rainy season due to the soil water at the field capacity or 

wetter (Beven, 1989). 
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Table 5-3. Total runoff decomposition by the hydrograph analysis. 

 Event 
P 

(mm) 
Ip 

(mm h-1) 
Qt 

(mm) 
Cr 

(%) 

Runoff components  
(% of total runoff) 

 Qs Qi Qb 

Loffing 20-21/09/2015 70 31 11 16 19 39 42 

Bankandi-N 6-7/09/2015 75 12 18 24 20 64 16 

Bankandi-S 03/10/2014 45 9 14 31 16 75 9 

Mebar-up 18/09/2015 99 23 32 32 54 46 0 

Moutori 01/09/2014 26 6 8 31 0 100 0 

Fafo 1-2/08/2014 28 6 9 32 6 89 6 
P: rainfall; Ip: Rain Intensity; Qt: Total runoff; Cr: Total runoff coefficient; Qs: surface runoff;  
Qi: interflow; Qb: base flow, Bankandi-N: Bankandi-north, Bankandi-S: Bankandi-south. 

 

By assuming the surface runoff calculated by the EC-based method is equal to 

the sum of surface flow and interflow, the comparison of the partitioning methods 

showed only a slight difference. The EC-based partitioning gave a runoff discharge of 

64% of total runoff and base flow of 36%, whereas with hydrograph-based partitioning, 

they were 58%, and 42% respectively. 

High disparities in the results of runoff partitioning between the events were 

observed. This may be attributed to the pre-event hydraulic conditions and in some 

extent to the variation of rainfall intensity. In fact, rainfall intensity for the investigated 

events ranges from 6 to 31 mm h-1. 

 

5.3.2 Groundwater dynamics 

Temporal variation of groundwater table at the outlet of Bankandi-Loffing 

In order to understand the shallow groundwater reaction in both rainy and 

dryness, the shallow groundwater level was recorded at a 6 h time steps during 2014 to 

2016 at the outlet of the Bankandi-Loffing catchment. Fig. 5-15 depicts the shallow 

groundwater level at the piezometer Lo23 and the rainfall accounting for recharge (see 

Fig. 4-2-a for the location of the piezometer in Bankandi-Loffing catchment). 
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Fig. 5-15. Temporal variation of groundwater table depth at the piezometer Lo23 (see 

Fig. 4-2 for the location of the piezometer in the Bankandi-Loffing catchment). 

 

Fig. 5-15 shows that the shallow groundwater reacts almost simultaneously to 

rainfall and increases to its highest level in October whereas, in the dry season, 

groundwater levels drop steadily reaching its lowest value in mid – May which is 1.45 

and 1.05m below surface in 2014 and 2015 respectively. This suggests a shallow 

groundwater which can be easily accessible by traditional means of digging including 

pickaxe, shovel, and hoe instead of heavy digging machines. Therefore low financial 

investment is needed for digging wells. However, further investigation of groundwater 

productivity through pumping tests is needed to determine the full potential of the 

groundwater in the area for irrigation. 

 

Hydraulic interrelation between shallow aquifer and streamflow 

The groundwater-streamflow relationship is important to understand water 

fluxes between the two systems. Therefore, water levels in the streambed and water 

levels in the Piezometer Lo23 located 5 m away from the riverbed at the outlet of 

Bankandi-Loffing are compared for the years 2014 and 2015. The stream level minus 

groundwater level is presented in the Fig. 5-16. 
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(a) 

 
(b) 

 

Fig. 5-16. Difference between stream level and groundwater (GW) level at the outlet of 

the Bankandi-Loffing catchment during 2014 (a) and 2015 (b). (Time resolution: 6 h; the 

dashed line shows stream-grounwater equilibrium level). 

 

Exfiltration from the shallow groundwater to the stream is driven by a 

hydraulic gradient from groundwater to the stream. Fig. 5-16 shows that exfiltration 

occurs most of the observation period whereas infiltration from the stream occurs 

mainly during flood events. Longer infiltration period was noted in 2015 compared to 

2014. This may be mainly explained by the difference in rainfall between the two years. 

The rise of the curve from October (beginning of dry season) may be attributed to 
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groundwater level decrease which leads to base flow reduction. Base flow continues to 

decrease until it completely stops when groundwater drops below the streambed from 

December and the stream dries out. 

 

Groundwater recession 

Table 5-4 shows a variable turnover of the base flow which is influenced by the 

inter-annual variability of rainfall in the area during the observation period. The base 

flow turnover was short (11 days) for the rather dry year 2014 but much longer for 

wetter years 2015 and 2016. This suggests that in the absence of rainfall, base flow may 

last 11 to 44 days before groundwater level drops below streambed and the stream dries 

out. It is important to recall that the Bankandi-Loffing is a headwater catchment with an 

intermittent stream. 

 

Table 5-4. Characteristics of base flow recession curve at the outlet of Bankandi-Loffing. 

Flood event date q0 (mm d-1) a τ (d) 

October 6-12, 2014 1.0195 -0.0887 11 
December 2-31, 2015 0.0717 -0.0356 28 
October 11, to November 25, 2016 0.1436 -0.0226 44 
q0: initial discharge; a: slope of the late recession curve; τ: turnover time of 
groundwater storage.  

 

A longer observation of groundwater depletion in piezometers for 

approximately 6 months with no significant rainfall is presented in Fig. 5-17. A gradual 

depletion of groundwater table was observed during the dry season even after stream 

flows cease. This means a considerable part of groundwater is discharge by groundwater 

flow below stream bed. It is important to note higher depletion rate in early dry season 

(19 mm d-1) compared to late dry season (9 mm d-1). The difference is mainly due to a 

higher groundwater hydraulic gradient at early dry season compared to late dry season 

between the upstream and downstream areas. 
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Fig. 5-17. Groundwater depletion in the dry season for 4 piezometers (depths are below 

ground surface) 

 

Shallow groundwater table spatial and temporal distribution 

The spatial distribution of the groundwater level is depicted in Fig. 5-18, 

contrasting the groundwater levels in October 2015 (end of the rainy season) versus 

May 2015 (end of dry season). 
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May 2015 October 2015 

  

Fig. 5-18. Spatial distribution of the depth to groundwater table in Bankandi-Loffing in 

May and October 2015. 

 

In October, the observed groundwater level is less than 2.5 m below the 

ground surface (indicated by spots in green) at most of the observation sites. Red dots 

indicate that the groundwater is absent at the investigation depth (first 6 m). 

Dominating green spots indicate rather shallow groundwater in October due to recharge 

during the rainy season. 

In May, the green and orange dots indicate sites with permanent groundwater 

whereas red dots are locations with temporal or absent shallow groundwater at the first 

6m. The spatial distribution of sites with perennial shallow groundwater (green spots) 

follows a spatial pattern as these sites are concentrated in the depression parts or the 

inland valleys of the catchments (see Fig. 4-2 for the topography of the catchment). 

The shallow groundwater table suggests that it is reachable by basic tools and 

therefore not much investment is needed to exploit the shallow groundwater in the 

inland valleys. However, its productivity needs to be assessed by pumping tests in order 

to determine the quantity of water it can realistically provide. 

 

Deep groundwater table spatial and temporal distribution 

Three wells under use by local people for domestic water supply in Mebar, 

Moutori, and Bankandi were selected to monitor the deep groundwater table dynamics 

compared to the shallow aquifer previously analyzed in this chapter          (Fig. 5-15 and 

Fig. 5-18). The monitoring was implemented from 2014 to 2016. The total depths of the 

wells are approximately 6m in Mebar, 16m in Moutori, and 25m in Bankandi-Loffing. 

Like the shallow aquifer, the monthly groundwater table level observation (Fig. 5-19) 
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shows a peak level at the end of September whereas the lowest levels were observed 

from May to June. 

 

 

 

Fig. 5-19. Monthly groundwater table fluctuation in the Bankandi-Loffing, Moutori, and 

Mebar catchments from 2014 to 2016. (a) level below ground, (b) referenced 

groundwater level (Fig. 5-20 shows the location of the wells). 
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Fig. 5-20. Location of the three monitoring wells on a geological map. 

 

The similarity between groundwater level in Bankandi-Loffing and Moutori 

(Fig. 5-19) might be attributed to the fact that both wells are located at the upstream 

area in the same geological formation (Ante-Birimian granites) (Fig. 5-20). Moreover, 

the referenced groundwater level depicted in Fig. 5-19-b shows a higher level in 

Bankandi and Moutori compared to Mebar for the observation period. This seems to 

infer that groundwater flow occurs in the same direction as streamflow; that is west-

east. 

The groundwater recession rate in the dry season decreased from west to east 

(68 mm d-1 in Bankandi, 31 mm d-1 in Moutori and 8 mm d-1 in Mebar). This may be due 

to the direction of groundwater flow (west-east). The large lateral inflow of groundwater 

in the dry season sustained the flow and reduced the groundwater recession in 

downstream area. 

 

Electrical resistivity tomography of some transects 

Transects (Fig. 5-21 and Fig. 5-22) are centered to valley bottom in order to 

account for the sub-surface of inland valleys and pass near some piezometers which 

were installed in the shallow aquifer. The measurements were contrasted between the 

upstream and downstream area of the catchment. 

 

# Deep well

Geology

Ante-Birimian granites

Birimian shists

Green rocks

Weathered tickness

10-30 m (10-30 m saturated)

30-50 m (0-10 m saturated)

>50 m (0-10 m saturated)

Dano Catchment

Bankandi-Loffing

Mebar

Moutori
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Fig. 5-21 Locations of the transects AB, CD, EF, GH, IJ, and KL in Bankandi-Loffing. 

 

 

 

 

 

 

Fig. 5-22. Locations of the transects MN, OP, and QR in Mebar. 

 

The two-dimensional resistivity profiles or the electrical resistivity 

tomographies (ERT) (Fig. 5-23, Fig. 5-24, Fig. 5-25, and Fig. 5-26) show heterogeneous 

distribution of electrical resistivity. The highest resistivities can be observed at the 

bottoms and the edges of the ERTs whereas the lowest resistivities are located at the 

centers. This may be attributed to relatively low water content of the deep geological 

formations. Low resistivity at ERT bottoms might indicate the aquifer basement rock 

which is less weathered hence less permeable. The edges of the ERTs which describe 

slope and uplands of inland valleys have less water content due to flow of groundwater 

Transect

River network

Transect

River network
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from uplands to valley bottoms. Sometimes, narrow bands of relatively high resistivities 

cover some low resistivity areas (e.g.: transect CD Fig. 5-23; transect EF, GH Fig. 5-24; 

transect QR, MN Fig. 5-26). This may be attributed to laterite rocks which result from 

clay induration due to severe superficial weathering followed by selective leaching and 

concentration of oxidized iron (Fe3+) (Giorgis et al., 2014). The laterite rocks are most of 

the time impermeable. 

The low resistivity observed at the centers of the ERTs might be associated with 

a significant amount of groundwater. When these formation are permeable, they may 

constitute good aquifers. However, if they have high clay content, they may shows low 

electrical resistivity but low permeability. Consequently, they will not be aquifers easy 

to use. These formation are 20 to 30 m thick in the investigated catchments. This 

information is valuable for the configuration of the geometry of the aquifer in WaSiM. 

Nevertheless, the information from these ERTs analyses should be used with 

precautions because topography is not included to the analyses. Slight deviations might 

occur from uplands to lowlands for each transect. The deviations might be negligible 

due to short transects (240 to 950 m) in a relatively flat area. 
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North South 

 

 

Fig. 5-23. Electrical resistivity tomographies of transects AB and CD located at the center 

of Bankandi-Loffing (the red arrows indicate the position of some monitored 

piezometers; see Fig. 5-21 for the locations of the transects). 
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North South 

 

 

Fig. 5-24. Electrical resistivity tomographies of transects EF and GH located at northern 

area of Bankandi-Loffing (the red arrows indicate the position of some monitored 

piezometers; see Fig. 5-21 for the locations of the transects). 
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North South 

 

 

Fig. 5-25. Electrical resistivity tomographies of transects KL and IJ located at downstream 

area of Bankandi-Loffing (the red arrows indicate the position of some monitored 

piezometers; see Fig. 5-21 for the locations of the transects). 
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South North 

 
North South 

 
North South 

 

Fig. 5-26. Electrical resistivity tomographies of transects QR, OP, and MN located at 

Mebar (the red arrows indicate the position of some monitored piezometers; see Fig. 

5-22 for the locations of the transects). 

 

Slug test results 

Hydraulic conductivity (Ks) is one of the most important characteristics of an 

aquifer (Hwang et al., 2017). It measures the transmission of water through porous 

formations. Ks of the shallow aquifer is unknown for the study area. A Slug test has been 

undertaken in order to estimate Ks. The result (Table 5-5) shows a large range of Ks 
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variability in the area (10-8 to 10-5 m s-1). The variation may be explained by the variation 

of the geological formations which vary from alluvium in the valley bottoms to saprolites 

in the slope and uplands. The saprolites are very permeable when the coarse materials 

that they are made of are not cemented by fine materials (clay and silt). 

The valley bottoms tend to have alluvial materials on the top of saprolites. 

Therefore, the recharge of the weathered saprolite aquifer and the underlying 

migmatitic or granitic aquifer mainly depends on the hydraulic conductivity of the 

alluvial materials. This process is well described in a similar catchment in the northern 

Benin (Fass, 2004). The alluvium of the valley bottoms can be constitute of sand or sandy 

loam and permeable. Nevertheless, if they are made of silt of clay, their permeability is 

reduced. 

The measured Ks obtained is similar to the Ks of a fractured igneous and 

metamorphic rock (Şen, 2015). However, a precaution is needed when using slug test 

data because they correspond to Ks at the vicinity of the investigated wells. 

 

Table 5-5. Statistics of measured saturated hydraulic conductivity using slug test in 36 

piezometers. 

 Ks (m s-1) Ks (cm d-1) 

Minimum 1.0 10-8 0.1 

Maximum 1.2 10-5 103.2 

Mean 1.6 10-6 13.8 

Percentile 25% 1.3 10-7 1.1 

Median 8.7 10-7 7.5 

Percentile 75% 1.6 10-6 14.1 

 

5.3.3 Measured soil water 

Weekly variations of soil moisture 

The calculation of soil water at field capacity and at permanent wilting point 

and plant available water (Table 5-6) show that Plinthosols is the least plant available 

water soil with clay to clay loam texture. It is followed by Cambisols (clay loam soil) and 

Gleysols (silt clay loam). Hence, the plant available water decreases from water valley 

bottom dominated by Gleysols to uplands where Plinthosols are the main soil type. 
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Table 5-6. characteristics of dominant soil types and their soil available water. 

 Horizon depth 
(cm) 

Texture 
θs  θr  θfc θPWP PAW  

 (vol. %) 

Cambiosol 

0-16 Clay loam 46 10 27 15 12 

16-42 Clay loam 44 10 27 15 11 

42-86 Silty clay Loam 43 10 28 16 12 

Gleysol 

0-18 Silt Loam 42 6 24 12 12 

18-42 Silty clay Loam 41 7 32 19 13 

42-72 Silty clay Loam 40 3 34 19 15 

Plinthosol 
0-15 Loam 36 8 22 13 10 

15-42 Clay loam 34 9 27 18 9 
42-86 Clay 35 8 28 18 10 

θs: soil water at saturation; θr: residual soil water; θfc: soil water at field capacity; θPWP: soil water at 
the permanent wilting point; PAW: plant available water. 

 

Weekly soil moisture measurements at 3 different depths and 64 points for a 

total study area of 53 km² at uplands and valley bottoms were conducted in the rainy 

seasons from 2014 to 2016. The results presented in Fig. 5-27 show a general higher soil 

moisture at the valleys bottoms compared to uplands. Moreover, soil moisture increase 

with depth in both uplands and valley bottoms.  
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Fig. 5-27. Average weekly soil moisture at upland (a)  and lowland (b) for the rainy season 

2014 – 2016 at 3 different depths (Mo, Me, Ba, Lo, and Fo refer to Moutori, Mebar, 

Bankandi, Loffing, and Fafo respectively; error bar are standard deviation of each series). 

 

Daily variation of soil water 

Soil moisture was continuously measured (30 min resolution) in the Bankandi-

south sub-catchment and in three different horizons of a Cambisol profile. FDR sensors 

were installed at 10 cm depth in the 1st horizon, 40 cm in the 2nd horizon, and 70 cm 

depth in the 3rd horizon (see Yira, 2016 for more detailed description of the installation). 

The 1st horizon has a loamy texture and is made of 33% sand, 45% silt, and 22% clay. The 

2nd and the 3rd horizon have clay loamy texture with 22% sand, 40% silt and 37% clay soil 

fraction for the second horizon and 24% sand, 39% silt, and 37%clay for the third horizon 

(Yira, 2016). 

The temporal variation of soil moisture in the year 2014 (Fig. 5-28) shows lower 

soil moisture in the first horizon compared the third horizon. This may be partly 

attributed to the higher proportion of sand and lower proportion of clay in the first 

horizon (33% sand and 22% silt) compared to the third horizon (24% sand and 37% silt). 

In fact, soil specific surface area increases when fine particle proportion increase or 

coarse particle proportion decreases (Ersahin et al., 2006). Hence, an increase in soil 

specific surface area leads to an increase of soil water holding capacity. 

Higher variabilities of soil moisture is observed at the top soil compared to soil 

moil moisture in the third horizon (Fig. 5-28). Yira (2016) observed a similar result in the 

experimental site of Tambiri (south-east of the Dano catchment) in 2013. He suggested 
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this to be attributed to the water retention of the first horizon and the travelling time of 

the wetting front in the horizon. In some extent, this may also be explained by the fact 

that the top horizon is the primary source of evaporation and transpiration. 

 

 

Fig. 5-28. Temporal dynamic of soil moisture at the first three horizons in the Bankandi-

south sub-catchment (see Fig. 4-2-a for the location of the station). 

 

5.4 Conclusion 

This chapter used several fundamental hydrological methods to analyze data 

from an intensive instrumentation and monitoring campaign during 2014 and 2015 in 

order to provide information for a better understanding of hydrological processes which 

control the water availability for small-scale farmers.  

A high interannual variability is observed with rainfall being 163 mm higher in 

2015 than in 2014 and runoff coefficients doubling from 8% in 2014 to 15% in 2015. Flow 

duration curves suggest a similar behavior for the investigated catchments during 

intense storm events whereas a significant contrast is observed for low flow. In general, 

the hydrograph-based runoff partitioning shows that interflow is the main component 

of streamflow.  

The observation of shallow and deep groundwater reveals that the recharge 

occurs from June to October and then depletion follows steadily in the dry season. The 

general groundwater flow is the same as the streamflow, which is from west to east. In 

the valley bottoms, the shallow groundwater table remained shallower than 1.5m 

throughout the year even during the drier year of 2014. The turnover (replacement) of 

the shallow groundwater varies from 11 to 44 days. Moreover, the spatial distribution 

of shallow groundwater suggests permanent groundwater availability in the valley 
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bottom and ephemeral availability at uplands. The geo-electrical tomography and slug 

test show a heterogeneous aquifer. A further investigation of the shallow groundwater 

productivity is needed in order to fully assess its potential to support climate change 

adaptation strategies for smaller scale farmers in Dano. 

The plant available water decreases from the valley bottoms to uplands and 

the mean soil moisture in valley bottoms was significantly higher than the soil moisture 

at the uplands with soil moisture increasing with depth in the uplands and valley 

bottoms. 

Finally, an integration of the findings into a physical-based and deterministic 

hydrological model will allow a deeper understanding of hydrological processes in the 

area. 
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6 MODELING WATER RESOURCES IN TWO INLAND VALLEY CATCHMENTS IN 

DANO, BURKINA FASO 

 

6.1 Introduction 

Water resources availability for smallholder farmer in West Africa is a major 

concern for poverty alleviation and economic development as the majority of the 

population practices rainfed agriculture (Denis et al., 2012). West Africa is one of the 

regions which are mostly affected by climate variability and climate change (Descroix et 

al., 2009; Frappart et al., 2009; Ibrahim et al., 2013a; Lebel et al., 2009; Lebel and Ali, 

2009; Mougin et al., 2009; Niang et al., 2014; Oguntunde et al., 2017). This is not only 

because of the particularity of the West African monsoon but also due to the limited 

capacity to adapt to climate variability and climate change. The region has experienced 

repetitive droughts during the last four decades which can be associated to climate 

change (Cornforth, 2011; Kasei et al., 2010; Klein et al., 2015; Lebel et al., 2009).  

Although very strong rainfall events (rainfall >30 mm day-1) are rare according 

to Salih et al. (2018), they account for nearly 50% of the annual rainfall. These strong 

rainfall events  have been disastrous to rainfed agriculture with crop yield loss, soil 

fertility loss due to surface soil erosion, and other natural hazards including flooding 

(Braman et al., 2013; Di Baldassarre et al., 2010; Kundzewicz et al., 2013; Nka et al., 

2015; Tschakert et al., 2010).  

 Smallholder farmers in West Africa are the major actors in agriculture and food 

production (Moyo, 2016) and are, as seen, confronted with many challenges. Moreover, 

the region has suffered from many policy failures related to “structural adjustment 

programs” and the liberalization (privatization) of agriculture sector, imposed on 

developing countries by World Bank and International Monetary Funds (IMF). This led 

to an aggravation of the social and economic conditions of poor smallholder farmers 

(Amanor, 2012, 2009; Hounkonnou et al., 2012). Against this background, efficient water 

and land management is the key for improving the livelihoods and food security of the 

population.  

Taking this into account, the area selected for this study is located in rural 

south-western Burkina Faso, where 60% of the population are endemically poor 

smallholder farmers (Coulombe et al., 2000; INSD, 2014). Due to relatively higher water 

availability in inland valleys, there has been a considerable shift of agriculture from 

uplands to valley bottoms. Inland valleys are estimated to cover 22-52 million ha in West 

Africa (Windmeijer and Andriesse, 1993) and approximately 1200 ha in the study area 

(see chapter 2). 
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For a meaningful policy design and implementation of an effective water 

management strategy, it is important to understand the underlying hydrological 

processes.  

Hydrological modeling is usually applied to understand hydrological processes 

and predict water resources. Several studies used the semi-distributed SWAT (Soil & 

Water Assessment Tool) model (Arnold et al., 1998) at the West African sub-continental 

scale and the major river basin scale (e.g. Volta, Niger, Senegal river basins) (Akpoti et 

al., 2016; Obuobie and Diekkrüger, 2008; Poméon et al., 2018b; Schuol et al., 2008; 

Schuol and Abbaspour, 2007, 2006). The spatially explicit grid-based mesoscale 

Hydrological Model (mHM) (Kumar et al., 2013; Samaniego et al., 2010) was also 

successfully applied by Poméon et al. (2018) at that scale.  

However, physically-based models such as MIKE SHE (Ma et al., 2016; Zhou et 

al., 2013) are rarely utilized in the region because they necessitate the knowledge of 

physical parameters and the region is a very sparse data environment (Devia et al., 

2015). Andersen et al. (2001) used MIKE SHE model to represent hydrological processes 

and to estimate the water balance of the Senegal River basin. Physically-based models 

are suitable for hydrological processes modeling and for mitigating the problem of 

identifiability and equifinality (Beven, 2006; Beven and Freer, 2001; Ebel and Loague, 

2006; Savenije, 2001; Vrugt et al., 2009). The problem of identifiability and equifinality 

is related to uncertainties in hydrological models due to the fact that several parameter 

sets can produce acceptable matching between observed and modelled variable. The 

problem is more pronounced with relatively high number of parameters. Nevertheless, 

due to the data scarcity and the necessity to accurately represent hydrological 

processes, a model based on both conceptual and physical formulations should be 

applied. 

The Water balance Simulation Model (WaSiM) is a grid-based and mainly 

physically-based hydrological model (Schulla, 2015). It utilizes the Richards and Weaver 

(1944) equation for soil hydrological modeling and the van Genuchten (1980) approach 

for the parameterization of soil hydraulic parameters. The parameterization of the soil 

model using the van Genuchten equation reduces the number of parameters to be 

calibrated and thereby the problem of identifiability (Samaniego et al., 2010). WaSiM 

was previously applied at the mesoscale for modeling the Volta River basin (Kasei, 2010). 

It has also been used at a smaller scale in the Dano catchment (Yira, 2016). Therefore, 

WaSiM was selected for the modeling of rural small scale agriculture catchments in 

Dano.  

The objective of this study is to model surface and groundwater resources in 

order to support adaptation strategies and planning of water management at the local 

scale for small holder farming systems. This study especially addresses the following 
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research questions: (1) Can WaSiM be applied at the local scale for hydrological 

processes representation and water balance estimation? (2) What are the main 

hydrological processes controlling water resources availability in inland valleys? (3) Can 

the parameters established for one catchment be transferred to another catchment? 

 

6.2 Materials and methods 

Bankandi-Loffing and Mebar are two small rural adjacent catchments located 

in the Dano catchment in south-western Burkina Faso. The Bankandi-Loffing and Mebar 

catchments are 30 and 8 km² large, respectively, and Bankandi-Loffing is divided into 

three sub-catchments including Bankandi-south (2 km²) and Bankandi-north (9 km²) at 

the upstream area and Loffing (19 km²) at the downstream area. The catchments are 

located in a Sudan Sahelian climate (Schmengler, 2011). Due to the geomorphology of 

the area land in the Bankandi-Loffing catchment is flat with several inland valleys which 

can easily be flooded during the rainy season. On the other hand, in the Mebar 

catchment, the slopes are steeper, the times of concentration are shorter and inland 

valley bottoms cover a smaller area of the catchment. The vegetation is mainly of 

savanna type in both of the catchments and the geology of the area is made of crystalline 

rocks and the aquifer develops in faults, fractures, saprolites, and alluvial materials (see 

chapter 2 for more details concerning location and description).  

While at the mesoscale remote sensing climate data can be used for 

hydrological modeling, at the local scales such as the Dano catchment this is hardly 

possible because the spatial resolution of remote sensing data products is too coarse for 

small scale studies as they range from 0.03° to 1° with an average resolution of 0.275°(Li 

et al., 2009; Poméon et al., 2017; Xu et al., 2014). Therefore, I undertook an intensive 

instrumentation of the catchments by installing and operating an observation network 

constituting of, among others, stream gauges, piezometers, rainfall recorders and 

weather stations (see chapter 4 for more detail on the instrumentation). Three year time 

series data (2014-2016) were collected. A digital elevation model (DEM) in 30 m 

resolution was obtained from NASA (2014), a soil map from Hounkpatin (2017), soil 

characteristics from Yira (2016), and a land use and land cover map from Forkuor (2014). 

The Bankandi-Loffing and Mebar catchments were modeled using WaSiM. The model 

was calibrated for two years (2014-2015) and validated during the year 2016 at hourly 

time step. A warmup period of six years was applied by repeating the climate variables 

of 2013 (rainfall, air temperature, air humidity, global radiation, wind speed). This was 

necessary in order to stabilize the model and to obtain initial model state near to the 

observed initial hydrological conditions. The Penman-Monteith approach (Brutsaert, 

1982; Monteith, 1975) was used for estimating evapotranspiration and the groundwater 
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conceptual model was applied (see chapter 3 for methods, and chapter 4 for the field 

observation network).  

 

6.3 Results and discussion 

6.3.1 Calibration and validation of Bankandi-Loffing model 

Model performance 

WaSiM performed very well as shown by the objective functions (Table 6-1) 

(see chapter 3 for the description of objective functions). The Nash-Sutcliffe efficiency 

(NSE) (Nash and Sutcliffe, 1970), the Kling-Gupta efficiency (KGE) (Gupta et al., 2009; 

Kling et al., 2012), and the coefficient of determination (R²) are larger than 0.5 in most 

of the cases in the calibration and the validation periods. In general, the model 

performed as well at the upstream area (Bankandi-north) as at the overall catchment 

(Bankandi-Loffing). The R² ranges from 0.47 to 0.95, NSE from 0.40 to 0.95, and KGE 

from 0.57 to 0.84, at the outlet and at the Bankandi-north stream station and for 

calibration and validation periods. The slight decrease of the model performance might 

be attributed to overcalibration as the best simulation is selected based on the highest 

value of the objective functions (Harmel et al., 2010). Pbias is lower than 30% for all the 

cases indicating a slight overestimation of the discharge by the model.  

 

Table 6-1. Model performance for daily simulated values for the upstream area 

Bankandi-north (BaN) and the outlet of Bankandi-Loffing (BaLof) catchment. 

 Calibration (2014-2015)  Validation (2016) 

 BaLof BaN  BaLof BaN 

R2 0.91 0.95  0.82 0.47 
NSE 0.88 0.95  0.77 0.40 
KGE 0.82 0.84  0.57 0.68 
Pbias (%) 15.9 12.4  29.4 1.6 
BaLof: Overall catchment of Bankandi-Loffing; BaN: Bankandi-north;  
R²: Coefficient of determination; NSE: Nash-Sutcliffe Efficiency; KGE: Kling-
Gupta Efficiency. 

 

In addition to the assessed numerical model performance, the visual 

performance of the model, which is illustrated by the hydrographs in Fig. 6-1 and      Fig. 

6-2, showed very good results for the upstream area and the overall catchment. 

Temporal dynamics as well as most of the high and low flows were well simulated in the 

calibration and validation periods. However, as already shown previously in the 

numerical performance analyses, the model performed better in the calibration period 

compared to the validation period especially at the Bankandi-north station. Some peaks 
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were not well captured by the model at that station. This is partly due to the quality of 

the observed discharge data as a sensor dysfunction was noted in the period. 

 

 

Fig. 6-1. Comparison of simulated and observed hydrographs for the upstream sub-

catchment (Bankandi-north). The vertical dash line separates the calibration period from 

the validation period. 
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Fig. 6-2. Comparison of simulated and observed hydrographs for the outlet (Bankandi-

Loffing). The vertical dash line separates the calibration period from the validation 

period. 

 

The comparison of the simulated and observed top soil (10 cm depth) moisture 

during the year 2014 showed a good agreement (Fig. 6-3). It should be noted that the 

model was not calibrated for soil moisture as most of the soil parameters were 

measured in the field or laboratory. Each of the calculated objective functions (R², NSE, 

and KGE) were higher than 0.5. The graphical comparison shows good agreement 

between the simulated and observed soil moisture and the model simulated the initial 

soil moisture well. This indicated that the applied six year warmup period was sufficient 

to stabilize the model. Although some discrepancies can be observed in the rainy season 

and the dry season, on the whole, the temporal dynamics were well captured. A good 

top soil modeling is important for runoff generation and partitioning between different 

soil layers and the aquifer.  
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Fig. 6-3. Comparison of daily average simulated top soil water and observed soil 

moisture at Bankandi-south (measured soil moisture data at 10 cm depth were only 

available for the year 2014 at the soil moisture station). 

 

In addition to the soil moisture, the model was validated by comparing the 

average simulated monthly groundwater level at the outlet sub-catchment (Loffing) 

with the observed groundwater level at a piezometer located at the outlet of the 

catchment. The comparison was done after subtracting the elevation difference 

between the piezometer and the Loffing sub-catchment from the areal simulated 

groundwater level. Fig. 6-4 suggests a short delay of some simulated groundwater level 

peaks compared to observed peaks. This led to unsatisfactory results with regards to R² 

and NSE. However, in general, the temporal dynamics and the amplitudes of variations 

were acceptable with KGE 0.5. 
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Fig. 6-4. Comparison of monthly areal average of simulated groundwater table below 

ground surface (bgs) at the downstream sub-catchment (Loffing) and the observed 

groundwater level at a piezometer located at the outlet of the catchment.  

 

Water balance  

A considerable inter-annual variation of rainfall was observed during the three 

year period of monitoring (Table 6-2). The difference in annual rainfall between the 

years 2014 and 2015 was 223 mm (21% of the mean annual rainfall). 

The actual evapotranspiration (ETa) represents 45% of the potential 

evapotranspiration (ETp). This indicates a water limited and not an energy limited 

catchment. During dry years (2014 and 2016), decreases of soil water storage are 

observed whereas in the wet year 2015, an increase of soil water storage is noted. This 

is shown by negative change in storages (delta S) in former years and positive delta S in 

the latter year (Table 6-2). The succession of dry and wet years resulted in a more or less 

stable system from 2014 to 2016 with a relatively low annual mean delta S for the overall 

Bankandi-Loffing catchment ( delta S= -12 mm). This means that water stored in the soil 

and aquifers during wetter years is lost through evapotranspiration and groundwater 

flow during dry years. Therefore, consecutive dry years similar to the year 2014 will not 

only jeopardize the livelihoods of the majority of the farmers who practice rainfed 

agriculture but also will affect the general hydrological processes and water resources.  
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Table 6-2. Average annual water balance in mm at the Bankandi-Loffing catchment for years 2014-2016. 

    P ETp ETa EIa Ea Ta E/Ta Qt Qs Qi Qb Sim.Cr (%) Obs.Cr (%) Delta S 

2014 

BaS 969 2077 906 60 699 147 5 106 33 67 5 11 - -43 

BaN 925 1985 932 59 712 162 4 65 32 25 8 7 6 -72 

Lof 968 1941 868 57 675 136 5 130 38 17 75 13 - -30 

BaLof 955 1965 890 58 688 145 5 108 36 23 49 11 8 -43 

2015 

BaS 1116 2158 898 56 676 165 4 195 72 108 15 17 - 23 

BaN 1172 2044 930 60 696 174 4 161 76 59 26 14 14 81 

Lof 1189 2012 880 57 674 148 5 224 83 34 107 19 - 85 

BaLof 1178 2033 897 58 681 157 4 203 80 47 75 17 19 78 

Calibration (2014-2015) 

BaS 1042 2118 902 58 688 156 4 150 52 88 10 14 - -10 

BaN 1048 2014 931 60 704 168 4 113 54 42 17 11 10 4 

Lof 1078 1976 874 57 674 142 5 177 60 26 91 16 - 28 

BaLof 1066 1999 894 58 684 151 5 156 58 35 62 15 14 18 

Validation (2016) 

BaS 933 2053 939 62 709 168 4 67 14 47 6 7 - -73 

BaN 980 2119 997 66 755 176 4 73 24 31 18 7 17 -90 

Lof 1019 1992 927 61 712 154 5 154 29 18 106 15 - -62 

BaLof 1001 2036 949 63 725 162 4 122 26 24 71 12 14 -70 

Annual mean (2014-2016) 

BaS 1006 2096 914 59 695 160 4 123 40 74 9 12 - -31 

BaN 1026 2049 953 62 721 171 4 100 44 38 17 10 12 -27 

Lof 1059 1982 892 58 687 146 5 169 50 23 96 16 - -2 

BaLof 1045 2011 912 60 698 155 5 144 47 31 65 14 14 -12 
BaLof: Overall catchment of Bankandi-Loffing (30km²); BaN: Bankandi-north (9km²); BaS: Bankandi-south (2km²); Lof: Loffing (19km²); P: precipitation; ETp: potential 
evapotranspiration; ETa: total actual evapotranspiration; EIa: actual interception evaporation; Ea: actual evaporation from bare soil and open water surfaces; Ta: 
actual transpiration; E: total actual evaporation (Ea + EIa) ; Qt: total runoff; Qs: surface runoff; Qi: interflow; Qb: base flow; Sim.Cr: simulated total runoff coefficient; 
Obs.Cr: observed total runoff coefficient; Delta S: change in storage. 
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At the catchment scale of Bankandi-Loffing, the evaporation was five times as 

high as the transpiration. This can be explained by the long dry season of 7 to 8 months 

per year, in which most farmers cease activities, the herbaceous vegetation dries out 

completely, and most of trees lose their leaves in savanna areas. This leads to a 

significant reduction of transpiration by plants. However, a relatively higher coverage of 

permanent plants (forest) in the Bankandi-north sub-catchment compared to Bankandi-

south and Loffing sub-catchment (see chapter 2 for the land use land cover map) can 

partially explain the significant difference of transpiration between the former and the 

latter sub-catchments.  

The observed variability in annual rainfall led to a more pronounced variation 

of the observed runoff volume. For instance, the variation of rainfall from 2014 to 2015 

was 21% of the mean annual rainfall but the increase in total runoff was approximately 

four times the increase in rainfall (approximately 88% of the mean runoff). The mean 

total runoff coefficient at the outlet was 14% of mean annual rainfall but there was a 

significant contrast between upstream sub-catchments (Bankandi-south and Bankandi-

north) and the downstream sub-catchments (Loffing). The highest runoff coefficient was 

obtained at the downstream sub-catchment due to a high contribution of base flow to 

streamflow. The high contribution of base flow can be explained by the shallowness of 

the groundwater table at this sub-catchment compared to the upland sub-catchments 

(see chapter 5 for the observed groundwater table). 

Table 6-2 also indicates that interflow is the main runoff component in 

Bankandi-south sub-catchment and represents 60% of the total runoff. It is noteworthy 

that interflow decreases from the upstream sub-catchments to the downstream. Yira et 

al. (2016) obtained 56% on average between 2011 and 2014 and 59% in 2014 while 

modeling a 6.5-times larger catchment than Bankandi-Loffing. In a similar catchment in 

northern Benin simulated for the period 1998-2004 by Cornelissen et al. (2013), the 

interflow was 65% of the total runoff using the UHP-HRU model and 38% using WaSiM. 

Based on field experiments the authors conclude that UHP-HRU has a better 

representation of the hydrological dynamics of the catchment. Moreover, in the Volta 

basin, Kasei (2010) found 68% interflow at the northern area and 60% at the southern 

area where the Dano catchment is located. However, interflow is not the dominant 

runoff component in the other Bankandi-Loffing sub-catchments. For instance, in 

Bankandi-north, surface flow is the most dominating component of runoff (44% of total 

runoff) and in the Loffing sub-catchment and the overall Bankandi-Loffing catchment, 

base flow largely dominates streamflow (57% and 45% of total runoff, respectively). An 

increase of base flow was noted from upstream to downstream section. The comparison 

between observed base flow (see chapter 5) estimated using analytical hydrograph 

decomposition and the simulated base flow shows close similarities. For instance, the 
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observed base flow at Bankandi-south, Bankandi-north, and Bankandi-Loffing represent 

9%, 16%, and 42% of the total runoff, respectively, and the simulated base flow is 7%, 

17%, and 45% for the respective sub-catchments. The difference between these findings 

and the previously cited studies is due to the fact that a considerable part of the 

downstream area of the investigated catchment is occupied by valley bottoms of inland 

valleys. The proximity of aquifer level to the ground surface allows for a significant 

contribution of base flow in valley bottoms. 

It is also important to recall that the partitioning of runoff into its components 

is not only influenced by rainfall intensity and physical properties of soil and slope but 

also by hydrological conditions of the catchment before flood events (Beven, 1989). 

Furthermore, macropore density and distribution drive runoff component generation in 

West African savanna. For instance, Giertz et al. (2005) reported 219 bio-pores per m² 

in a savanna plot of a catchment in northern Benin whereas only 60 bio-pores were 

counted in cultivated field. With the conversion of savanna to croplands in the Dano 

catchment (Op de Hipt, 2017; Yira et al., 2016), the current pattern of runoff 

components is likely to change in favor of surface flow. This might lead to significant soil 

fertility loss due to high soil erosion (Op de Hipt et al., 2017). Therefore, an improvement 

of the current traditional water and soil management should be planned. 

 

6.3.2 Transfer of Bankandi-Loffing parameters to Mebar model without 

recalibration 

The parameter set which gave the highest objective functions during 

calibration and validation of the Bankandi-Loffing model was directly applied to the 

Mebar model without recalibration and the calculated model performance (Table 6-3) 

shows very good results during years 2014-2015. The Mebar model performed even 

better than Bankandi-Loffing during the period 2014-2015. R², NSE, and KGE were 

approximately 0.3 higher in Mebar than in Bankandi-Loffing.  

However, in 2016, the Mebar model resulted in lower R² and NSE than the 

Bankandi-Loffing model but the values of the objective functions remain higher or equal 

to 0.6. In contrast to R² and NSE, the Pbias significantly improved in Mebar model (12%) 

compared to Bankandi-Loffing (29%) in 2016. On the basis of KGE, the performance 

difference between the non-recalibrated Mebar model (KGE 0.59) and the Bankandi-

Loffing model (KGE 0.57) is negligible during 2016. 

Moreover, the hydrograph (Fig. 6-5) shows that the non-recalibrated Mebar 

model has fallen slightly short in matching some peaks but in general the performance 

is good. 
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Table 6-3. Non-recalibrated Mebar model performance in the period 2014-2015 and 

2016. 

  2014-2015 2016 

R² 0.93 0.65 

NSE 0.92 0.64 

KGE 0.84 0.59 

Pbias (%) 0.9 11.9 

R²: Coefficient of determination; NSE: Nash-Sutcliffe Efficiency; KGE: Kling-Gupta Efficiency. 

 

 

Fig. 6-5. Comparison of simulated Mebar hydrograph using the parameters from the 

best Bankandi-Loffing simulation and the observed hydrograph from 2014 to 2016.  

 

The numerical and graphical Mebar model performances show good results in 

both periods 2014-2015 and 2016. Therefore, the transfer of the parameters from the 

Bankandi-Loffing model to Mebar can be considered as a success. However, it is 

important to note that the calibration and validation period of the initial Bankandi-

Loffing model and the transfer period of for Mebar are identical (2014-2016). The period 

is characterized by two dry years separated by a wet year. These findings therefore need 

to be tested for longer time periods and in different climate conditions in order to fully 

evaluate the robustness of the model in transferring parameters from one catchment to 

another. 

 



Modeling water resources in two inland valley catchments in Dano, Burkina Faso 

99 

 

6.3.3 Recalibration and validation of the Mebar model 

The Mebar model was calibrated for 2014-2015 and validated for 2016 in order 

to establish a reference Mebar model for evaluating the quality of the parameter 

transfer. The summary (Table 6-4) indicates an improvement of model performance 

with the recalibration. Each objective function (R², NSE, and KGE) is greater than 0.9 in 

calibration period and 0.7 in validation year. The increase of R² and NSE (0.02 in 

calibration period and 0.06 in validation period) with the recalibration is lower than the 

increase of KGE (0.11 in calibration and 0.12 in validation periods) during both the 

calibration and the validation periods. This may be explained by the combined effect of 

the increase of R² and NSE. KGE is a function of correlation coefficient which is the 

square root of R², the bias ratio and the variability ratio which can be estimated in NSE 

(Kling et al., 2012).  

The comparison of the simulated hydrograph and measured hydrograph   (Fig. 

6-6) shows good agreement between the hydrographs and is consistent with the 

numeric model performance assessment. 

 

Table 6-4. Mebar model performance for the calibration and validation periods 

  Calibration (2014-2015) Validation (2016) 

R² 0.95 0.71 

NSE 0.95 0.70 

KGE 0.96 0.70 

Pbias (%) 1.9 11.5 

R²: Coefficient of determination; NSE: Nash-Sutcliffe Efficiency; KGE: Kling-Gupta Efficiency. 
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Fig. 6-6. Comparison of simulated and observed hydrographs at the Mebar catchment 

during the calibration period 2014-2015 and the validation year 2016. The vertical dash 

line separates the calibration period from the validation period. 

 

The water balance of the best simulation of the Mebar model (Table 6-5) shows 

many similarities with Bankandi-Loffing. The actual evapotranspiration (ETa) is 85% of 

rainfall, physical evaporation accounts for 79% of ETa, and only 45% of the potential 

evapotranspiration (ETp) could actually evaporate in form of ETa given the water limited 

conditions of the area. 

In contrast to Bankandi-Loffing, instead of base flow, interflow is the main 

component of runoff in Mebar (39% of total runoff) and is followed by surface flow (32% 

of total runoff). The contrast between Mebar and Bankandi-Loffing can be partly 

explained by to the difference in slopes and land use. A large area of the Mebar 

catchment is located between the Ioba Mountains and is mostly covered by uplands 

while the Bankandi-Loffing catchment is characterized by flat land and valley bottoms 

of the inland valleys. The estimated mean slope is 5.1% with a standard deviation of 

4.6% in the Mebar catchment whereas the mean slope is 4.1% with standard deviation 

of 3.1% in the Bankandi-Loffing catchment. Concerning land use, croplands occupy a 

larger area in Mebar (42%) than in Bankandi-Loffing (33%) (See chapter 2 and 4 for 

topography and land use land cover of the catchments). The slope and land use may be 

responsible for the higher contribution of both surface runoff and interflow in Mebar 

compared to Bankandi-Loffing. 
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Table 6-5. Water balance components in mm per year of the Mebar model for the 

calibration and validation periods. 

  Calibration (2014-2015) Validation (2016) 
Mean (2014-

2016) 

P 1008 1024 1013 
ETp 1924 1848 1898 
ETa 848 875 857 
EIa 58 62 59 
Ea 672 694 679 
Ta 118 119 119 
Qt 146 141 144 
Qs 48 40 46 
Qi 58 54 56 
Qb 40 48 43 
Sim. Cr (%) 14 14 14 
Delta S 14 8 12 
P: precipitation; ETp: potential evapotranspiration; ETa: total actual evapotranspiration; EIa: actual 
interception evaporation; Ea: actual evaporation from bare soil and open water surfaces; Ta: actual 
transpiration; Qt: total runoff; Qs: surface runoff; Qi: interflow; Qb: base flow; Sim.Cr: simulated total 
runoff coefficient; Delta S: change in storage. 

 

6.3.4 Water balance summary in Bankandi-Loffing and Mebar 

The comparison of the mean annual water balance for Bankandi-Loffing 

(BaLof), Mebar before (Meb_0) and after (Meb) recalibration (Fig. 6-7) shows only 3% 

lower rainfall in Mebar models (Meb_0 and Meb) compared to Bankandi-Loffing and no 

rainfall rate difference between Meb_0 and Meb was noted. This could in part explain 

the similar simulated total runoff for the three models. However, significant differences 

were noted between the simulated runoff components for the three models and the 

variations of runoff components between the models do not indicate any trend. 

Furthermore, the potential evapotranspiration (ETp) does not seem to 

continuously decrease between the models but the total actual evapotranspiration 

(ETa) and the actual transpiration (Ta) do. If only Meb_0 and Meb were examined, it is 

clear that the recalibration led to reductions ETp, ETa, and Ta while actual evaporation 

(Ea) increased. This behavior seems to be caused by the increase of the mean canopy 

surface resistance (rsc) from 64 to 73 s m-1 and the evaporation surface resistance (rse) 

increase from 50 to 52 s m-1 due to land use land cover differences. 

Fig. 6-8 presents monthly temporal variations of the water balance 

components. For very intense rainfall conditions such as the conditions in September 

2015, the peak of surface runoff is higher than interflow. Conversely, under moderate 

rainfall conditions like in September 2014 and September 2016, the peak of surface 
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runoff is lower than interflow. However, the peaks of base flow stay lower than the 

surface runoff and interflow but are sustained for longer time compared to surface 

runoff and interflow. As for the transpiration, their rates were only considerable during 

rainy seasons (June to October). This is consistent with the field observations which 

present much reduced plant activities in dry seasons due to water unavailability. The 

herbaceous vegetation completely dies out and most of trees loss their leaves, 

therefore, most of the ability to transpire. 

 

 

Fig. 6-7. Annual mean water balance for Bankandi-Loffing (BaLof), Mebar before 

recalibration (Meb_0), and after recalibration (Meb) for the period 2014-2016. P: 

precipitation; ETp: potential evapotranspiration; ETa: total actual evapotranspiration; 

Ea: actual evaporation from bare soil and open water surfaces; Ta: actual transpiration; 

Qt: total runoff; Qs: surface runoff; Qi: interflow; Qb: base flow; Delta S: change in 

storage. 

 

P ETp ETa Ea Ta Qt Qs Qi Qb Delta S

BaLof 1045 2011 912 698 155 144 47 31 65 -12

Meb_0 1013 2014 866 666 139 143 35 68 40 4

Meb 1013 1898 857 679 119 144 46 56 43 12
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Fig. 6-8. Temporal variation of some water balance components in Bankandi-Loffing 

(BaLof), Mebar before recalibration (Meb_0), and Mebar after recalibration (Meb) from 

2014 to 2016. (a): precipitation (P), (b): actual transpiration (Ta), (c): surface runoff (Qs), 

(d): interflow (Qi), (e): base flow (Qb). 

 



Modeling water resources in two inland valley catchments in Dano, Burkina Faso 

104 

 

6.4 Conclusion 

The instrumentation of the catchments and the available spatial distributed 

data (soil, LULC, topography, etc.) allowed to obtain sufficient high quality hydrological 

and meteorological data for a successful calibration and validation of the WaSiM 

hydrological model. The four applied objective functions (R², NSE, KGE, and Pbias) 

suggest that WaSiM performed well in modeling the discharge from small scale rural 

inland valley catchments (Bankandi-Loffing and Mebar). The soil moisture and 

groundwater table depth were also well modeled and the initial soil moisture conditions 

were well reproduced by the model. 

The analysis of the water balance indicates that evapotranspiration is 

quantitatively the most important hydrological process in the area and the physical 

evaporation largely dominates evapotranspiration. The average annual loss of 688 mm 

(approximately 67% of annual rainfall) due to evaporation does not contribute to 

biomass production. Therefore, evaporation reduction techniques such as agroforestry 

or mulching should be implemented as part of an effort for better management of soil 

and scarce water resources. Moreover, 14% of annual rainfall run out of the catchment 

as total runoff without being used. Therefore, soil water management techniques could 

be setup in order to slow down the surface flow and thereby increase the infiltration 

and soil water availability while keeping the impact on downstream in an acceptable 

range. The success of the implementation of the water resources management depend 

on the level of involvement of stakeholders. 

Interflow dominates runoff in the Mebar catchment and upstream area of 

Bankandi-Loffing whereas base flow is the major runoff components in downstream 

area of Bankandi-Loffing which has large area of inland valley bottoms. Due to the trend 

of conversion of savanna into croplands as a result of population growth, surface flow 

will presumably increase, leading to an increase of soil erosion. Consequently, 

adaptation strategies should be planned accordingly. Supplementing the current 

erosion technique (stone-belt) with agroforestry and/or mulching might be considered. 

The transfer of parameters from Bankandi-Loffing model to Mebar shows good 

results. However, considering that this investigation occurred for the same time period 

and the study period is relatively short, the robustness of the model should be tested 

for longer period in different climate and catchment conditions. 
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7 MODELING THE IMPACT OF CLIMATE AND LAND USE / LAND COVER 

CHANGE ON WATER AVAILABILITY IN AN INLAND VALLEY CATCHMENT IN 

DANO, BURKINA FASO 

 

7.1 Introduction 

A sustainable water and land resource management is crucial for poverty 

reduction, food security, and ecosystem preservation in West Africa, where the majority 

of the population earn their livelihood from rainfed agriculture (AGRA, 2014; FAO, 2014; 

Hollinger and Staatz, 2015; Jalloh et al., 2013). Agriculture contributes approximately 

25% of the gross domestic product (GDP) of West Africa and account for more than 

quarter of the region’s GDP growth (African Development Bank, 2019). Smallholder 

farming is a mainstay of the economy and the main source of food production in the 

region (Denis et al., 2012).  

The region experienced high variability of rainfall during the last five decades 

and is expected to be the most impacted worldwide by climate change in the twenty 

first century (Descroix et al., 2009; Frappart et al., 2009; Ibrahim et al., 2013a; Lebel et 

al., 2009; Lebel and Ali, 2009; Mougin et al., 2009; Niang et al., 2014; Oguntunde et al., 

2017). Regional climate models (RCMs) have been increasingly utilized to assess 

hydrological impacts of climate change because they are applied at a relatively high 

spatial resolution (0.11° to 0.44°) (Gutiérrez et al., 2019). Therefore, they better 

represent the variations of land surface, vegetation, topography, and coast line 

compared to global climate models (GCMs) (Gbobaniyi et al., 2014). Hence, RCMs use 

physically-based modeling for downscaling. Consequently, the coherence between 

climate variables, especially precipitation and temperature can be conserved (Gutiérrez 

et al., 2019; Muerth et al., 2012).  

The Coordinated Regional Climate Downscaling Experiment (CORDEX-Africa, 

www.cordex.org) project used a dynamical downscaling method to simulate relatively 

high spatial resolution climate variables for the African domain (Dosio et al., 2015; 

Gbobaniyi et al., 2014; Kim et al., 2014; Stanzel et al., 2018; Yira et al., 2017). The 

dynamical downscaling method consist of using GCM data as the initial and lateral 

boundary conditions for the RCMs (Xu et al., 2019).  

In the hydrological impact assessment studies, simulated climate variables 

from one or several climate models are often employed to force one or several 

hydrological models (Chawla and Mujumdar, 2015; Chegwidden et al., 2019; Feng et al., 

2019; Zhang et al., 2018). 

RCM data are frequently associated with systematic error when compared to 

historical observation data (Moghim and Bras, 2017; Shrestha et al., 2017; Teng et al., 

2015; Teutschbein and Seibert, 2012). The uncertainty in climate simulations is directly 
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translated to the output of hydrological models (Kling et al., 2012). Thus, these data are 

difficult to use in climate impact studies without a bias correction (Teutschbein and 

Seibert, 2012). 

Several post-processing bias correction methods of RCM data were proposed 

(Maraun et al., 2017; Smitha et al., 2018). Most of the bias correction methods are based 

on the assumption that the bias distribution in the historical period does not change in 

the future. Fundamentally, the hypothesis cannot be verified but can only be falsified 

(Popper, 2002). Moreover, bias correction methods have been criticized for violating 

some RCM assumptions by altering the physical relationship between climate variables 

including the relationship between precipitation and temperature (Addor et al., 2016; 

Ehret et al., 2012; Maraun, 2016; Maraun et al., 2017). Although Maraun et al. (2017) 

fiercely criticized bias correction, they do not suggest dismissal of bias correction in 

impact assessment studies. They highly recommend a good understanding of the 

sources of climate model bias and the selection of a bias correction method accordingly. 

For more transparency on the uncertainty induced by bias correction, some authors 

recommended to report both bias corrected and non-bias corrected results (Ehret et al., 

2012). 

Post-processing bias corrections are not the only source of uncertainties in 

hydrological impact assessments. Uncertainties exist at each step of the assessment 

chain (Muerth et al., 2012). In the European domain, it has been demonstrated that 

GCMs are the major source of uncertainty compared to RCMs and other sources of 

uncertainties (Déqué et al., 2007; Muerth et al., 2012). Findings in North America seem 

to indicate that the largest uncertainty originates from climate internal variability (Braun 

et al., 2012; Music and Caya, 2009). The regional climate internal variability is the 

variability induced by changing only initial conditions of a RCM. The climate internal 

variability is more pronounced when precipitation is the most influencing factor over a 

water limited environment (Chegwidden et al., 2019).  

In order to account for the large uncertainties in climate projections, it has 

been recommended to apply multiple model and multiple run ensemble approaches 

(Bormann et al., 2009; Laux et al., 2017; Stanzel et al., 2018).  

The selection of the type of hydrological model (conceptual vs physically-

based) is not exempt from uncertainty. Thus, In addition to climate model ensembles, 

the use of hydrological model ensembles has been suggested (Block et al., 2009). 

Land use change has been proven to significantly influence the hydrology of 

the region. Therefore, hydrological impact assessment study might not be realistic if 

land use change impact is not included into the analyses (Giertz et al., 2005; Yira et al., 

2016). 
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Many hydrological impact studies have been conducted in the region. Aich et 

al. (2014) compared the impact of climate change on streamflow in four major river 

basins in several African regions. Kasei (2010) analyzed climate change in the Volta River 

basin (400,000 km²) and Bossa et al. (2014) in the Ouémé River basin (49,256 km²), 

Benin. However, few studies investigated hydrological impacts at the local scale in the 

region (Cornelissen et al., 2013; Op de Hipt et al., 2018; Yira et al., 2017). Local studies 

that combine impacts of climate and land use change on hydrology with a focus on 

inland valleys are very rare in the West African region (Op de Hipt et al., 2019). 

The objective of this study was to look into the impact of climate and land use 

change on water resources in an inland valley in the Dano catchment in order to support 

informed decision making for smallholder farmers who are the most vulnerable to 

climate change. A separated and combined effect of climate and land use changes were 

scrutinized and the implications of the future changes on the adaptation strategies were 

discussed. 

 

7.2 Material and methods 

7.2.1 Climate model ensembles 

The impact of climate change on water resources in an inland valley catchment 

(Bankandi-Loffing, 30 km², south-western Burkina Faso) was assessed using climate data 

of the CORDEX-Africa. A more detailed description of the Bankandi-Loffing catchment 

can be found in chapter 2. A climate ensemble constituted of five RCM-GCMS was 

applied for the impact assessment (Table 7-1). The ensemble was obtained from three 

RCMs which use four global climate models (GCMs) as boundary conditions.  An 

ensemble of several RCM-GCMs was necessary in order to account for the uncertainties 

associated to climate models (Déqué et al., 2017; IPCC, 2014). Five RCM-GCMs were 

applied in the present study for data availability reason. An insight into the regional scale 

by Laux et al. (2017) recommend an ensemble of more than ten RCM-GCMs for 

precipitation related impact studies. Each RCM-GCM data comprises precipitation and 

air temperature for a reference period (1971-2000) and a predicted period (2021-2050). 

According to Vautard et al. (2014), the selected reference period corresponds to 0.46°C 

air temperature increase compared to pre-industrial period (1881-1910). For the 

predicted period, two greenhouse gas emission scenarios were considered, namely the 

representative concentration pathway (RCP) 4.5 and 8.5 (Moss et al., 2010). Daily 

temperature and precipitation of the RCM-GCMs were available at a 0.44° spatial 

resolution. Temperature and precipitation were extracted from 3x2 nodes and the 

average values were applied to the calibrated WaSiM model. Some authors utilized 3x3, 

5x5, or 7x7 nodes for a better coverage of spatial variabilities (Mercogliano et al., 2014; 

Villani et al., 2014). Bias corrected temperature using the delta change approach 
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(Haddeland et al., 2012) and precipitation using non-parametric quantile mapping 

(Gudmundsson et al., 2012) were employed to force the hydrological model. The non-

bias corrected results are not presented here because they had already been considered 

in previous researches in the study area (Op de Hipt et al., 2018; Yira et al., 2017). 

The decision to use only bias corrected climate variables is motivated by the 

fact that bias correction reduces inconsistencies and deviations. It restores the timing of 

rainy seasons and considerably minimizes inter-node deviations (Yira et al., 2017). This 

subsequently leads to a more realistic seasonal distribution of precipitation and air 

temperature. Therefore, bias correction makes climate variables suitable for 

hydrological impact assessment of climate change (Johnson and Sharma, 2015; Muerth 

et al., 2012; Op de Hipt et al., 2018; Portoghese et al., 2011; Teutschbein and Seibert, 

2012; Vrac et al., 2012; Yira et al., 2017). 

 

Table 7-1. RCM-GCM products and the research centers of their production.  

RCM-
GCM 
label 

RCM Driving GCM 
RCM center 
/ Institute 

Country of 
RCM center 
/ Institute 

Acronym (Yira et 
al. 2017) 

M1 CCLM48 CNRM-CM5 CCLMcom Germany CCLM-CNRM 
M2 CCLM48 EC-EARTH CCLMcom Germany CCLM-EARTH 
M3 CCLM48 ESM-LR CCLMcom Germany CCLM-ESM 
M4 HIRHAM5 NorESM1-M DMI Denmark  HIRHAM-NorESM 
M5 RACMO22 EC-EARTH KNMI Netherlands RACMO-EARTH 
RCM: Regional Climate model; GCM: Global Climate Model; CCLM: Climate Limited Modelling 
Community; DMI: Danish Meteorological Institute; KNMI: Royal Netherlands Meteorological 
Institute. 

 

 

7.2.2 Land use land cover (LULC) prediction 

The future LULC maps (LULC-2019, LULC-2025, and LULC-2030) were 

developed by Op de Hipt (2017) based on historical maps (LULC-2000 and LULC-2013) 

using the Land Change Modeler (LCM) (Clark Labs, 2016). LCM is an empirically driven 

processing software which follows three steps. The first step is the past land cover 

analysis. The second step is the modelling of transition potentials. For this step, LCM 

uses a multi-layer neural network (Chan et al., 2001) to model the potential for land 

transition from one land use class to another. The method considers multiple variables 

including slopes, distance to roads, previously deforested areas, and settlements. The 

calibrated transition potential model is then used for future scenario predictions. Finally, 

the last step consists of using historical rates of change and the transition potential 

model to determine changes of land use per pixel and time step. At this step, a stochastic 
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Markov chain technique (Wilson and Weng, 2011) was applied to simulate the 

probability of LULC and the future LULC map is generated. 

Fig. 7-1 shows a gradual conversion of savanna to cropland and settlement. 

The average annual reduction rate of savanna was 1.1% of the catchment area and the 

highest conversion rate occurred from 2007 to 2013 (3.3% of the catchment area per 

year). The trend of savanna conversion was previously reported in Yira et al. (2016). They 

analyzed the impact of LULC change on hydrological processes in the catchment 

including evapotranspiration and the soil infiltration. The modification of 

evapotranspiration could be attributed to the change in vegetation characteristics such 

as albedo, which modifies evapotranspiration by defining net solar radiation (Monteith, 

1975). In addition to albedo, canopy surface resistance, leave area index, and root depth 

could be modified by LULC change and consequently could lead to a variation of 

evapotranspiration. 

However, LULC change influences infiltration rates by modifying macropore 

distribution in the soil. In a similar catchment in northern Benin, Giertz et al. (2005) 

demonstrated a significant decrease of the number of macropores from savanna to 

cropland. Macropore distribution could affect interflow and base flow. 
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LULC 2013 LULC 2030 

  

 

Fig. 7-1. Spatial and temporal variation of historical land use and Land cover (LULC 1990, 

2000, 2007, and 2013) and the predicted future LULC (years 2019, 2025, and 2030) at a 

spatial resolution 200 m. (Dataset: Op de Hipt, 2017). 

 

On the question of drivers of land use change, many studies suggest that 

population growth (3% per year) is the main driver of savanna conversion to cropland 

(CILSS, 2016; Codjoe, 2004; Op de Hipt et al., 2019; Ouedraogo et al., 2010; Paré et al., 

2008; Yira et al., 2016). This is needed to satisfy the considerable increase of food 

demand in the region. Moreover, the evolution of the farming systems suggests that the 

development of cotton cultivation has significantly contributed to the savanna 

conversion (Op de Hipt et al., 2019; Yira et al., 2016). The production of cotton increased 

from 75,476 t in 1990 to 280,000 t in 2013 (270% increase) at the country level (FAO, 

2019). 

Other drivers of natural vegetation conversion into croplands include bushfire, 

mining, wood harvesting, and climate variability, among others (Zoungrana et al., 2015). 

The conversion is frequently associated with the vulnerability of soil to erosion and soil 
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fertility losses. This in return exacerbates more natural ecosystem conversion to 

agriculture. Hounkpatin et al. (2018) estimated soil organic carbon loss in the Dano 

catchment of up to 24 t C ha-1 (ton carbon per hectare) at the top 10 cm and 49 t C ha-1 

at the upper 30 cm. 

 

7.2.3 Calibration and validation of the hydrological model 

To study impacts of climate change on hydrology, a calibrated hydrological 

model is often forced by RCM-GCM climate variables including precipitation and 

temperature (Chegwidden et al., 2019; Chen et al., 2019; Fazeli Farsani et al., 2019; Feng 

et al., 2019; Nilawar and Waikar, 2019; Oeurng et al., 2019). The Bankandi-Loffing 

catchment was initially calibrated and validated at an hourly time step using the 

Penman-Monteith approach (Monteith, 1975) for evapotranspiration estimation (see 

chapter 6 for the calibration and validation of the Bankandi-Loffing model). As the 

temperature is the only climate variable available at a daily time step for 

evapotranspiration approximation, the model was recalibrated at a daily time step using 

the Hamon method to estimate evapotranspiration for the climate impact assessment 

(Federer and Lash, 1983; Hamon, 1963; Rao et al., 2011; Schulla, 2015). The recalibration 

of the model was solely based on the optimization of the Hamon monthly correction 

factor which depends on season and location. The model was calibrated during 2014-

2015 and validated in 2016 using LULC-2013 as a reference and the annual water balance 

was estimated. 

 

7.2.4 Climate and land use scenarios 

Climate and land use scenarios were implemented according to Table 7-2. For 

each of the five RCM-GCMs, the bias corrected precipitation and temperature were 

utilized as input for the recalibrated hydrological model. The hydrological model was 

separately run for each of the three components of a RCM-GCM (reference period, RCP 

4.5, and RCP 8.5) for 30 years. The reference period (1971-2000) and the predicted 

period (2021-2050) were preceded by the same warmup period of 6 years. The water 

balance of each RCM-GCM for RCP 4.5 and RCP 8.5 were compared to their counterpart 

reference periods. An equal duration (30 years) of predicted and reference periods were 

used and the predicted periods were compared to the reference period in order to 

cancel out systematic bias related to the hydrological model and the climate models. 

The systematic error is assumed to be constant between the reference period and the 

predicted period (Chaix et al., 2018). The identical warmup period was used to avoid 

variation in the initial conditions of the hydrological model. 

The predicted RCM-GCMs were compared to their counterpart modelled past 

and not observed historical data because the bias correction is not perfect. Therefore, 
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comparing predicted modelled data with observed data will add a new layer of 

uncertainty to the impact assessment. 

The LULC-2013 was considered as the reference LULC and was used during the 

reference period and the predicted periods, except while assessing the combined 

climate and land use change impact. During the assessment of combined climate and 

land use change impact, LULC-2013 was replaced by LULC-2030 for the predicted future 

climate scenarios (Table 7-2). 

 

Table 7-2. Model setup for hydrological impact assessment of climate and land use. 

 Reference Prediction 

Scenario LULC 
Historical  
RCM-GCM 

LULC 
RCM-GCM  

(RCP 4.5 and 8.5) 

1 2013 1971-2000 2013 2021-2050 
2 2013 1971-2000 2030 2021-2050 

LULC: land use and land cover; RCM: regional climate model, GCM: global climate 
model; RCP: representative concentration pathway 

 

7.3 Results and discussion 

7.3.1 Hydrological model performance and water balance 

The simulated hydrograph (Fig. 7-2) and the model performance statistics 

(Table 7-3) show a good performance of the hydrological model at daily time step using 

the Hamon method for the evapotranspiration estimation. There is a good agreement 

between simulated and observed total runoff in terms of timing and magnitude. Most 

of the peak flows were well captured. However, some extreme events were not well 

captured. This can be attributed to the uncertainty increase with the size of the flood 

due to overbank flows. 

The Kling-Gupta efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012) was 

approximately 0.7 for the calibration and validation periods. The Nash-Sutcliffe 

efficiency (NSE) (Nash and Sutcliffe, 1970) (≥ 0.5) and percent bias (24% for calibration 

period and 21% for validation) were satisfactory (Moriasi et al., 2007; Van Liew et al., 

2007). 

The annual average change in storage was negative during the simulation 

period (delta S = -30 mm). This is partly attributed not only to the short simulation period 

but also mainly to high inter-annual variability of rainfall during the observation period 

(2014-2016). The annual rainfall in the year 2015 was 21% higher than the year 2014 

and 16% higher than the year 2016. Therefore, the simulation period cannot be qualified 

as a stationary period and the equilibrium of the water balance was not reached. In the 

dry years, the water deficit is compensated by the soil moisture originating from the 

shallow groundwater of inland valley bottoms. In the valley bottoms, the groundwater 
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table is near the ground surface and consequently, contributes significantly to soil 

moisture through capillary rise. 

In general, the water balance is in the range of previous studies in the region 

(Cornelissen et al., 2013; Yira et al., 2017, 2016). Given that the impact assessment is 

done by relative change in water balance between the predicted period and the 

reference period, the systematic error will be cancelled out (Habel, 2010). 

 

Table 7-3. Mean annual water balance and the model performance.  

  
Calibration  
(2014-2015) 

Validation  
(2016) 

Annual mean  
(2014-2016) 

P (mm) 1067 1001 1045 

ETa (mm) 982 954 973 

Qt (mm) 96 113 102 

Qs (mm) 39 46 41 

Qi (mm) 40 43 41 

Qb (mm) 18 23 19 

Delta S (mm) -11 -66 -30 

R²  0.59 0.71 - 

NSE  0.57 0.48 - 

KGE 0.66 0.73 - 

Pbias (%) -23.70 21.20 - 
P: precipitation; ETa: total actual evapotranspiration; Qt: total runoff; Qs: surface runoff; Qi: interflow; 
Qb: base flow; Delta S: change in storage; R²: Coefficient of determination; NSE: Nash Sutcliffe 
Efficiency; KGE: Kling-Gupta Efficiency. 
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Fig. 7-2. Comparison of simulated discharge using Hamon ETp and observed discharge 

at the outlet of Bankandi-Loffing catchment. The vertical dashed line separates the 

calibration (2014-2015) period from the validation (2016) period. 

 

7.3.2 Sensitivity of the hydrological model to LULC change 

Four historical LULCs (LU-1990, LU-2000, LU-2007, and LU-2013) and three 

predicted future LULCs (LU-2019, LU-2025, and LU-2030) were utilized to run the 

calibrated hydrological model for three years (2014-2016). The annual mean water 

balance results (Table 7-4) demonstrate a linear decrease of the actual 

evapotranspiration (ETa) while the total runoff increases with conversion of savanna to 

croplands. The savanna area decrease is highly correlated to the change in mean annual 

ETa and more than 96% of the variation of the annual ETa can be attributed to the 

decrease in savanna area (Pearson correlation coefficient R²= 0.96,                           p-

value= 0.0001). The relative decrease of ETa from LU-2013 to LU-2030 is -5%, whereas 

the relative increase of the total runoff is +27%. This seems to suggest that runoff is 

nearly six times more sensitive to savanna conversion than ETa. Moreover, the increase 

in the total runoff is primarily driven by the increase in the surface runoff (R²=0.996, p-

value < 0.0001). This could contribute to a soil erosion increase and a soil fertility loss 

for agriculture (Op de Hipt, 2017). 
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Table 7-4. Mean annual water balance for each land use land cover for the period 2014-

2016. 

 Land use and land cover 

  LU-1990 LU-2000 LU-2007 LU-2013 LU-2019 LU-2025 LU-2030 

P (mm) 1045 1045 1045 1045 1045 1045 1045 

ETa (mm) 1039 1011 1014 973 950 934 924 

Qt (mm) 44 69 71 102 119 133 140 

Qs (mm) 16 28 27 41 51 58 62 

Qi (mm) 24 27 29 41 43 45 45 

Qb (mm) 4 14 14 19 25 30 33 
LU: land use and land cover; P: precipitation; ETa: total actual evapotranspiration; Qt: total runoff; Qs: 
surface runoff; Qi: interflow; Qb: base flow;   Cr: simulated total runoff coefficient. 

 

The variation of average monthly ETa (Fig. 7-3-e) suggests that the largest 

differences between the land use scenarios occur at the beginning (May, June, and July) 

and the end of the rainy season (October). The magnitude of monthly ETa in September 

is approximately the same for all the land use scenarios. This can be explained by the 

fact that there is sufficient water to satisfy the monthly potential evapotranspiration in 

September. The total runoff (Fig. 7-3-a), surface runoff (Fig. 7-3-b), and base flow (Fig. 

7-3-d) clearly show September as the month of the highest contrast between the 

scenarios while August recorded the maximum variance for interflow (Fig. 7-3-c). 

Many authors have documented the conversion of savanna to cropland in the 

region and a subsequent increase in runoff (Descroix et al., 2018; Mahé et al., 2010, 

2005; Op de Hipt et al., 2019; Paré et al., 2008; Stéphenne and Lambin, 2001; Yira et al., 

2016; Zoungrana et al., 2015). Mahé et al. (2005)reported 30% decline of natural 

vegetation and 23% croplands increase from 1965 to 1995 in the Nakambe River basin 

in the central-northern Burkina Faso. They attributed the subsequent increase in runoff 

to the decrease of soil water holding capacity (WHC). In a similar climatic zone in 

northern Benin, Giertz et al., (2005) found that the infiltration rate of natural savanna is 

significantly higher than in croplands. Therefore, croplands tend to produce more runoff 

than savanna areas. 

It is noteworthy that the evapotranspiration considerably influenced the 

outcome of the resulting water balance in this study. None of soil parameters were 

modified. Thus, the change in water balance cannot be attributed to a change in 

infiltration. As the Hamon method of evapotranspiration was applied instead of the 

Penman-Monteith method, parameters such as albedo and canopy surface resistance 

could not explain the variation of the actual evapotranspiration either (Hamon, 1963; 

Monteith, 1975). The major parameter in this study which influences the change of the 

water balance with land use change is root depth. The root depth varies throughout the 
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year from 0.2 to 1.8 m under natural savanna. Most of cropland are bare soil (root depth 

0 m) during dry season (January to May). In the cropping period (June to October), the 

root depth ranges from 0.01 to 0.53 m. The following parameters can contribute to a 

lesser extent: the specific thickness of water layer on the leaves (interception 

parameter, IntercepCap), the root distribution (RootDistr), the vegetation cover fraction 

(VCF), and the leave area index (LAI). This is supported by Leemhuis et al. (2007) and 

Beck et al. (2013) in their studies in tropical regions in Indonesia and Puerto-Rico, 

respectively. Hence, evapotranspiration reduction as a result of natural savanna 

conversion to cropland favors infiltration excess runoff. Furthermore, it is important to 

note that rainfall characteristics (intensity, distribution in time) play a crucial role in 

runoff generation (Niehoff et al., 2002; Zhou et al., 2019). 
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Fig. 7-3. Mean monthly water balance variation with land use land cover change for the 

period 2014-2016. Land use (LU) for the years 2019, 2025, and 2030 are modeled land 

use and land cover. (a): total runoff (Qt); (b): surface runoff (Qs); (c): interflow (Qi); (d): 

base flow (Qb); (e): actual evapotranspiration (ETa); (f): rainfall (P);. The same 

meteorological data set for all land use scenarios was used. 

 

7.3.3 Climate change impact on hydrology 

Fig. 7-4 illustrates the input climate model data (precipitation and air 

temperature) and the output main water balance components (total runoff, surface 

runoff, interflow, base flow, and actual evapotranspiration) for the reference period 

(1971-2000). The comparison between the five RCM-GCMs using the nonparametric, 

pairwise, and corrected Wilcoxon test shows no significant difference for the reference 
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climate input data of most of the RCM-GCMs. This suggests that most of the RCM-GCMs 

belongs to the same population and have a similar distribution for the reference period. 

However, significant difference was obtained for actual evapotranspiration between 

RACMO-EARTH and each of the following models: CCLM-CNRM (p-value=0.0197), CCLM-

ESM (p-value=0.0164), and HIRHAM-NorESM (P-value=0.0426). A similar result was 

observed for base flow with a significant difference between RACMO-EARTH and CCLM-

CNRM (p-value=0.0309) and between RACMO-EARTH and CCLM-ESM (p-value=0.0426). 

It is important to note that a significant difference for base flow occurred although there 

was no significant difference for the total runoff. This is due to the low contribution of 

base flow to runoff. 

The relative change in temperature and precipitation and the implication for 

water balance components is shown in Fig. 7-5. All the models revealed an increase in 

temperature compared to the reference period (Fig. 7-5-g). The increase in temperature 

is higher for the RCP 8.5 than RCP 4.5. This is because the greenhouse forcing of RCP 8.5 

(>1,370 ppm CO2 equivalent) is higher than the greenhouse forcing of RCP 4.5 (~650 

ppm CO2 equivalent) (Moss et al., 2010). The annual increase in temperature ranges 

from 1 to 2°C until 2030. The highest increases in temperature were predicted by CCLM-

EARTH and CCLM-ESM. The predicted temperature is consistent with the decision 

adopted by the Conference of the Parties at its twenty-first session in Paris (COP 21). 

The Paris agreement urgently recommended that parties limit the temperature increase 

to well below 2°C compared to the pre-industrial level (Déqué et al., 2017; Diedhiou et 

al., 2018; UN-FCCC, 2016).  

Although the investigated climate models unanimously simulate an increase in 

temperature, they diverge on precipitation signals (Fig. 7-5-f) and the uncertainties are 

high among the ensemble members. CCLM-EARTH and CCLM-ESM which predict the 

highest increases in temperature project negative precipitation signals while the other 

models (CCLM-CNRM, HIRHAM-NorESM, and RACMO-EARTH) simulated positive 

signals. For the models which predicted positive precipitation signals, the increase in 

annual precipitation is higher under high greenhouse gas forcing (RCP 8.5) than the 

moderate greenhouse gas forcing (RCP 4.5). However, for the models which predicted 

negative precipitation signals, there was no clear trend of precipitation signals as 

function of greenhouse gas concentration. The climate models predict precipitation 

increases from 3% (predicted by HIRHAM-NorESM under RCP 4.5) to 18% (predicted by 

CCLM-CNRM/RCP 8.5) and the decreases range from -10 to -5%. Yira et al. (2017) 

obtained +1 to +18% increase and -9 to -6% decrease in precipitation in a 6.5 times larger 

catchment in Dano compared to the Bankandi-Loffing catchment. Op de Hipt et al. 

(2018) found +6 to +19% increase and -11 to -4% decrease in the Dano catchment (4 
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times larger than the Bankandi-Loffing catchment). It is noteworthy that the selected 

climate models do not present opposite signals between RCP 4.5 and RCP 8.5. 

Furthermore, the models with higher increase in temperature project lower 

increase in mean annual precipitation whereas the models with lower increase in 

temperature show higher increase in mean annual precipitation. This seems to 

contradict the Clausius-Clapeyron relation (Pall et al., 2007). According to the Clausius-

Clapeyron equation, rainfall intensity increases with green-house gas under constant 

moisture availability at global or regional scale. Annual comparison of rainfall in this 

study might be the reason for the differences. Additionally, at local scale, air moisture 

might significantly vary. Importantly, the distribution of daily rainfall shows an increase 

of the 95th percentile for most of the models. The daily rainfall 95th percentile increases 

in a range of 2% to 24% compared to the reference period for all the models. This is 

applicable to the negative and positive precipitation signal models. The increase of 

intense rainy days is associated with a decrease of rainy days for most of the climate 

models. This is consistent with previous studies in the region which demonstrated not 

only the increase rainfall intensity and the decrease of rainy days but also a delay of 

rainy season onset (Ibrahim et al., 2013a). 
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Fig. 7-4. Annual water balance distribution during the reference period (1971-2000) for 

the five RCM-GCMs using LULC 2013. M1: CCLM-CNRM; M2: CCLM-EARTH; M3: CCLM-

ESM; M4: HIRHAM-NorESM; and M5: RACMO-EARTH; Temp.: air temperature (2 m 

height); P: precipitation; Qt: total runoff; Qs: surface runoff; Qb: base flow; ETa: actual 

evapotranspiration. 
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Fig. 7-5. Annual change for the period 2021-2050 of air temperature (Temp.) and 

precipitation (P) and the subsequent change of actual evapotranspiration (ETa), total 

runoff (Qt), surface runoff (Qs), interflow (Qi), and base flow (Qb) compared to the 

period 1971-2000 (LU-2013 was employed for both reference and prediction periods). 

M1: CCLM-CNRM; M2: CCLM-EARTH; M3: CCLM-ESM; M4: HIRHAM-NorESM; and M5: 

RACMO-EARTH. 

 

The direction of change in the estimated water balance components          (Fig. 

7-5-a to Fig. 7-5-e) are superimposed by precipitation signals. CCLM-EARTH and CCLM-
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ESM show a negative change while the other models predict positive change. This seems 

to suggest that the predicted water balance is mainly influenced by precipitation in the 

study area. This is consistent with Yira et al. (2017), who suggested that could be 

attributed to water limited conditions of the area. Evidence from a similar catchment in 

California simulated using the SWAT model is also in line with these findings (Arnold et 

al., 1998; Ficklin et al., 2010). However, insight from Op de Hipt et al. (2018) seems to 

indicate that potential evapotranspiration is more influential to runoff than rainfall. 

They attributed the divergent finding to the structural difference between the 

hydrological models SHETRAN (see https://research.ncl.ac.uk/shetran/ for the 

description) and WASIM (Schulla, 2015).  

The annual actual evapotranspiration (ETa) (Fig. 7-5-e) varies from 0% (no 

change) predicted by HIRHAM-NorESM/RCP 4.5 to +12% projected by                     CCLM-

CNRM/RCP 8.5. CCLM-EARTH/RCP 4.5 projected the lowest ETa decrease (-6%). In 

contrast with ETa, the total runoff (Fig. 7-5-a) exhibits a much higher increase (+12% to 

+95%) and decrease (-44% to -24%). The total runoff decrease is expected to be an order 

of magnitude less than the increase but still more prominent than the decrease of ETa. 

A more detailed analysis of the runoff components clearly demonstrates that 

surface runoff (Fig. 7-5-b) is expected to have a major change. The maximum surface 

runoff change is predicted by HIRHAM/RCP 8.5 (+256%) followed by CCLM-

CNRM/RCP8.5 (+166%). Moreover, a considerable increase in surface runoff was noted 

under RCP 4.5, such as +133% increase projected by HIRHAM-NorESM and +106% by 

CCLM-CNRM. However, CCLM-EARTH predicted a decrease of -51% and -46% under RCP 

4.5 and RCP 8.5, respectively and CCLM-ESM projected negligible change in surface 

runoff under RCP 4.5 and only -12% decrease under RCP 8.5. If the increase of surface 

runoff, such as predicted by CCLM-CNRM and HIRHAM-NorESM occurred, it would be 

detrimental for soil in terms of erosion and fertility loss (Op de Hipt, 2017; Op de Hipt et 

al., 2019, 2018; Yira, 2016; Yira et al., 2016). 

 

7.3.4 Predicted dry spell change 

Daily bias corrected modelled rainfall data were utilized to analyze dry spells 

of >5 days and >10 days in wet seasons (June to October) by comparing the predicted 

period (2021 to 2030) with the reference period (1971 to 2000). The threshold of a rainy 

day was assumed to be 0.1 mm.  

Fig. 7-6 depicts a variable relative change of dry spells for the five climate 

models under RCP 4.5 and RCP 8.5. Some models predict increase in dry spells. The 

increase of dry spells ranges from 12% to 96% for >5 day dry spells and 12% to 125% for 

>10 day dry spells compared to the reference period. Nonetheless, other models project 

a decrease of dry spells which range from -10% to -44% for >5 day dry spells and -2% to 

https://research.ncl.ac.uk/shetran/
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-44% for >10 day dry spells. The models CCLM-EARTH and CCLM-ESM predict a decrease 

in annual rainfall (Fig. 7-5-f). However, CCLM-EARTH shows a decrease in dry spells 

whereas CCLM-ESM predicts an increase in dry spells. This seems to suggest that the 

decrease in annual rainfall is mainly due to increase in dry spells for CCLM-ESM. This in 

line with Kendon et al. (2019) who found the decrease of precipitations to be due to 

decrease in rainfall occurrence in the West African region. As for CCLM-EARTH, the 

decrease in annual rainfall might be due to its projection of light rainfall. However, some 

models have been reported to show increase in rainfall intensity in the region (Han et 

al., 2019). 

In general, the change in >10 day dry spells are expected to be higher than the 

change in >5 day dry spells. In a similar study in East Africa, it has be found that maize 

experiences at least one >10 day dry spells in 74% to 80% of the season (Barron et al., 

2003). The occurrence of dry spells during flowering and grain filling stages might lead 

to yield reduction or crop failure (Laux et al., 2009, 2008). 

 

 

Fig. 7-6. Relative changes of >5 day and >10 day dry spells of the predicted period (2021 

to 2030) compared to the reference period (1971 to 2000). M1: CCLM-CNRM; M2: 

CCLM-EARTH; M3: CCLM-ESM; M4: HIRHAM-NorESM; and M5: RACMO-EARTH. Bias 

corrected data were utilized. The threshold of a rainy day is 0.1 mm. the analysis was 

performed in the rainy season (June to October). 

 

7.3.5 Climate and land use change impact on hydrology 

The results of the combined impact of climate and land use change on 

hydrology is depicted in Fig. 7-7. The land use change exacerbates the increase of runoff 
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due to climate change (Fig. 7-7-a). Under the effect of land use 2030, CCLM-CNRM, 

HIRHAM-NorESM, and RACMO-EARTH project a total runoff increase range of +52% to 

+158% compared to the reference period. The maximum increase was predicted by 

CCLM-CNRM/RCP 8.5 whereas the lowest increase was observed with RACMO-

EARTH/RCP 4.5. Total runoff has increased by a factor of 1.4 to 4.5 times compared to 

the climate change impact only scenario depending on the ensemble member. 

Nevertheless, the models CCLM-EARTH and CCLM-ESM predicted a total runoff 

decrease range of -29% to -11%. In this case, the highest and the lowest decrease are 

observed under RCP 4.5 forcing. Land use change reduces the impact of climate change 

for these climate models (CCLM-EARTH and CCLM-ESM) by a factor of 0.5 to 0.7 

compared to the climate change impact only scenario. 

A comparison with the previous scenario (climate change impact only) clearly 

reveals that 27% to 78% of total runoff change can be attributed to land use change. 

Consequently, the impact of Land use change on the total runoff varies significantly with 

the climate model. The maximum land use change contribution is predicted under 

RACMO-EARTH/RCP 4.5 forcing whereas the minimum land use change impact 

contribution is projected under HIRHAM-NorESM/RCP 8.5. Thus, the projected land use 

impact indicates that land use change impact on total runoff is not negligible and cannot 

be ignored when studying future climate impact on hydrology in the area. 

The runoff component analyses (Fig. 7-7-b, Fig. 7-7-c, and Fig. 7-7-d) shows that 

the major driver of runoff change is surface runoff (Fig. 7-7-b). Nearly fourfold increase 

in surface runoff is expected under RCP 8.5 for CCLM-CNRM (+281%) and HIRHAM-

NorESM (+305%). Surface runoff is projected to approximately triple under RACMO-

EARTH/RCP 8.5 (+186%), CCLM-CNRM/RCP 4.5 (+185%), and HIRHAM-NorESM/RCP 4.5 

(+173%). This could subsequently intensify soil erosion with disastrous loss in soil fertility 

if no mitigation strategies are put in place. 

It is interesting to note a significant increase of base flow with land use change 

from 3% to 44% in the first scenario (Fig. 7-5-d) to 67% to 141% (Fig. 7-7-d) in the second 

scenario compared to the reference period. The contribution of the land use change to 

base flow increase is therefore estimated to 69-96% of the combined land use and 

climate change. This seems to suggest that land use change is the major driver of base 

flow change in the catchment. No direct relationship exists between base flow and land 

use parameters. The increase of the base flow with land use change can be attributed 

to the surplus water from the ETa decrease from the first scenario (0% to 12% compared 

to the reference period; Fig. 7-5-e) to the second scenario (-3% to 7% compared to the 

reference period; Fig. 7-7-e). This may be attributed to the fact that root depth is greater 

in savanna (0.2 to 1.8 m used for WaSiM parameterization) than in croplands (0 to 0.61 

m used for WaSiM parameterization). 
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Fig. 7-7. Annual change for the period 2021-2050 (LULC 2030) of total runoff (Qt), 

surface runoff (Qs), interflow (Qi), base flow (Qb), and actual evapotranspiration (ETa) 

compared to the period 1971-2000 (LULC 2013). M1: CCLM-CNRM; M2: CCLM-EARTH; 

M3: CCLM-ESM; M4: HIRHAM-NorESM; and M5: RACMO-EARTH. 

 

The monthly signal variations of the input climate variables (Fig. 7-8) and the 

subsequent simulated water balance before and after the application of land use change 

(Fig. 7-9) was presented in order to look into seasonal variations of the water balance 

(in mm). 
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Fig. 7-8. Monthly change of precipitation (a) and (b) and air temperature (c) and (d) for 

five RCM-GCMs (CCLM-CNRM; CCLM-EARTH; CCLM-ESM; HIRHAM-NorESM; RACMO-

EARTH). The predicted period (2021-2050) for each representative concentration 

pathway (RCP 4.5 and RCP 8.5) was compared to reference period (1971-2000). P: 

precipitation, Temp.: air temperature at 2 m height, vertical dashed lines mark the 

beginning and the end of rainy season. 

 

Fig. 7-8-a and Fig. 7-8-b suggest that the peak rainfall changes occur in June 

under RCP 4.5 for CCLM-CNRM, HIRHAM-NorESM, and RACMO-EARTH whereas the 

peaks are expected two months later (in August) under RCP 8.5 for CCLM-CNRM and 

RACMO-EARTH. The peak magnitude of rainfall change increases from RCP 4.5 to     RCP 

8.5 for CCLM-CNRM, HIRHAM-NorESM, and RACMO-EARTH (positive precipitation signal 

models) decreases from RCP 4.5 to RCP 8.5 for CCLM-EARTH (negative precipitation 

signal model). 

The simulated monthly change in total runoff is depicted by Fig. 7-9-a1 to Fig. 

7-9-a4. Like rainfall, the extreme changes of total runoff under RCP 8.5 forcing are 

delayed compared to RCP 4.5 forcing. For instance, the extreme changes of total 



Modeling the impact of climate and land use / land cover change on water availability 
in an inland valley catchment in Dano, Burkina Faso 

127 

 

discharge are expected in July under RCP 4.5 forcing whereas they are expected in 

August under RCP 8.5 for CCLM-CNRM, HIRHAM-NorESM, and CCLM-EARTH. A similar 

prediction is obtained for surface runoff (Fig. 7-9-b1 to b4) and interflow (Fig. 7-9-c1 to 

c4). Yet, base flow peak changes are projected to occur in August irrespective of 

greenhouse gas forcing.  

For ETa, no general trend seems to be observed in terms of the time of 

occurrence of the peaks for the first scenario (Fig. 7-9-e1 and Fig. 7-9-e2). However, 

under the second scenario (Fig. 7-9-e3 and Fig. 7-9-e4), ETa change appears to increase 

gradually during the rainy season from June to October. 
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Fig. 7-9. Monthly change of predicted (2021-2050) total runoff (Qt), surface runoff (Qs), 

interflow (Qi), base flow (Qb), and actual evapotranspiration (ETa) compared to 

reference period (1971-2000). RCP: representative concentration pathway; LU: land use. 

The vertical dashed lines show the beginning and the end of rainy season.  
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7.3.6 Implications of the future uncertainty for adaptation strategies 

In order to develop water management strategies to support decision making, 

the output of the hydrological impact assessment is frequently utilized as an input to 

water management models. The uncertainty in the future hydrology exacerbates the 

already difficult water resource management in the region. 

The projected increase of annual rainfall will not be harmful for agriculture if 

the increase in rainfall is not characterized by increase in rainfall intensity and the rainfall 

is evenly distributed in time. In this case, increasing reservoir storage can help to achieve 

food security for the growing population in the region. However, problems might arise 

if the increase in rainfall is characterized by an increase in rainfall intensity and the 

reduction in rainy days. In this case, there will be an increase in soil erosion with soil 

fertility loss. Furthermore, farmers might not be able to grow current crops because of 

too short rainy seasons. In this scenario, it is crucial to develop and implement 

techniques for mitigating erosion processes including e.g. stone belts and afforestation. 

As for the shortening of the rainy seasons, development and application of short-term 

crop species would be needed. Evidence from previous studies showed a shift of the 

onset of the rainy season. Systems of seasonal forecasts and information propagation 

need to be improved and accessible to farmers before the onset of the rainy season 

(Waongo, 2015). 

A decrease in annual rainfall can be characterized by frequent long dry spells 

(see Fig. 7-6). In this case, a substantial increase in surface and subsurface storage will 

be essential to supplement water deficits. The water storage development would have 

to take into account the downstream water needs including ecosystem needs. 

Moreover, techniques for decreasing evaporation and increasing the soil water holding 

capacity (WHC) (Descroix et al., 2018) will be necessary. The situation can be aggravated 

if the decrease in rainfall is associated with an increase in rainfall intensity and decrease 

in rainy days. In this case, adaptation strategies will need to address not only the 

unavailability of water but also soil erosion. Although there has been failure in the 

management of some inland valleys in the area (Yacouba et al., 2018), inland valleys can 

be still utilized as a mitigation option for smallholder farmers as their valley bottoms are 

relatively wetter than the uplands. However, the management of inland valleys needs 

to be improved in order to fully benefit from their water availability potential. In the 

worst case scenario, water exchange between regions would have to be envisaged. For 

instance, some water from the Congo River basin could be channelized to regions which 

experience more atrocious droughts. The Congo River is the second largest river in the 

world in terms of the discharge with a mean monthly discharge of 24,700 to 75,500 m s-

1 from 1903 to 1996 (Coynel et al., 2005). It is important to note that water transfer 
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between regions is not only costly but also might be associated with negative ecological 

impacts. 

All these propositions are mainly curative approaches of dealing with climate 

change impacts. It is certainty better if preventive mitigation strategies can also be put 

in place such as decelerating global warming by reducing greenhouse gas emissions. It 

is also vital to protect and/or restore ecosystems including rivers, lakes, oceans, and 

forests that we crucially depend on. These ecosystems sequestrate a significant amount 

of carbon and therefore contribute to the stability of the climate systems (Baldocchi and 

Penuelas, 2019; Hessen et al., 2004; Lal, 2004). 

 

7.4 Conclusion 

Hydrological impacts of climate and land use change were investigated at a 

local scale in the Dano catchment using five RCM-GCMs under RCP 4.5 and RCP 8.5 

greenhouse gas forcings. After calibration and validation of WaSiM, bias corrected 

simulated daily rainfall and temperature were applied to force the hydrological model 

for the reference period (1971-2000) and the future period (2021-2050).  

The calibration (2014-2015) and validation (2016) of WaSiM show good 

agreement in terms of hydrographs and objective functions between the observed and 

the simulated discharge. KGE equals to approximately 0.7, NSE > 0.5 and Pbias ranges 

between 21% and 24%. 

The sensitivity of the hydrological model to land use change was investigated 

using four historical LULC from 1990 to 2013 and three predicted future LULC from 2019 

to 2030. The results show an increase of runoff with time as the conversion of the 

savanna to croplands occurs. 

The impact of climate change on streamflow was assessed by comparing the 

predicted period with the reference period. The results suggest a large spread for the 

future change of runoff in response to the non-agreement between the RCM-GCM 

simulations. Three models project an increase of the total runoff from +12% to +95% 

and ETa from 0 to 12% whereas two models predict a decrease of total runoff from       -

44% to -24% and ETa from -3% to -6%. Surface runoff is projected to record the highest 

relative change compared to the other runoff components. 

The combined climate and land use change was estimated using LULC-2013 in 

the reference period and the LULC-2030 as future land use. The results indicate that land 

use change exacerbates the increase of total runoff (+52% to +158% compared to 

reference period) predicted by three RCM-GCMs, and reduces the decrease of total 

runoff (-29% to -11% compared to reference period) predicted by the other two models. 
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By comparing the two scenarios it can be concluded that the contribution of 

land use change impact on hydrology is not negligible and varies significantly with the 

climate model (27% to 78% of the combined climate and land use change). 

The spread of the future predictions does not lead to one direction to follow 

for the development of climate adaptation strategies. However, the selected model 

ensemble allows to explore both directions of change (increase or decrease of water 

resource). Given the uncertainty of the future projections and the adverse impacts that 

might rise from the implementation of some adaptation strategies, it is clearly better to 

opt for preventive measures. 

The results of this study can be used as input to water management models in 

order to derive strategies to cope with present and future water scarcities for 

smallholder farming in the investigated area. 
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8 OVERALL CONCLUSION 

This study ultimately aims at supporting strategies for efficient management 

of water resources at local scale for smallholder farming systems. Hence, improving the 

adaptation capacities of smallholder farmers to cope with climate variabilities, reduce 

poverty, attain food security, and preserve ecosystems. 

To achieve these goals, an intensive instrumentation has been undertaken and 

operationalized due to the lack of in situ observation systems. The data include climate 

parameters, stream flow, soil water, and shallow and deep groundwater. A slug test, a 

geo-electrical resistivity survey, and the groundwater use in agriculture were 

investigated. These data were completed by soil, LULC, historical, and modeled future 

climate data. 

The hydrological processes were described using fundamental hydrological 

methods and a physically-based and spatially distributed hydrological model (WaSiM). 

An ensemble of five RCMs, which were forced under RCP 4.5 and RCP 8.5 

scenarios, four historical LULC, and three predicted LULC data set were utilized to assess 

the impact of climate change and LULCC on water resources. 

The conclusion of each of these studies were presented in detail in the 

conclusion of chapter 5, 6, and 7. The following lines summarize these conclusions with 

regard to the research questions presented in chapter 1. 

 

1) To what extent can an intensive instrumentation combined with fundamental 

hydrological methods effectively improve the understanding of hydrological 

processes in four inland valley catchments? 

The instrumentation helped to achieve high temporal and spatial resolution of 

time series data which includes discharge, meteorological, piezometric, and soil 

moisture data for three consecutive years (2014 to 2016). The field surveys provided the 

required spatially distributed data for physically-based and spatially distributed 

modeling. 

The observed hydrographs and flow duration curves of the observed runoff 

data show headwater sub-catchments that are fast flowing with reduced total runoff 

due to a limited contribution of base flow, whereas in the downstream sub-catchments, 

flows are sustained by base flow and consequently yield in higher annual total runoff 

coefficients. The decomposition of the total runoff into runoff components using water 

electrical conductivity and hydrographs shows that interflow is the major contributor of 

the runoff. 

The groundwater table remains shallower than 1.5 m throughout the year. A 

permanent groundwater availability is observed at the valley bottoms of inland valleys 
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whereas ephemeral availability is observed in uplands. A further investigation of the 

shallow groundwater productivity is needed in order to fully assess its potential to 

support climate change adaptation strategies for small scale farmers in Dano. 

 

2) How can a physically-based and a spatially distributed hydrological model be 

applied in a data limited environment to improve the understanding of 

hydrological processes in an inland valley catchment? 

WaSiM has been calibrated for two years (2014 to 2015) and validated in 2016 

using multi-criteria approach (the coefficient of determination, R²; the Nash-Sutcliffe 

efficiency, NSE; the Kling-Gupta efficiency, KGE; and the percent bias, Pbias) were 

applied for model performance evaluation. The Bankandi-Loffing catchment was 

considered for this experiment.  

The four applied objective functions (R², NSE, KGE, and Pbias) suggest, that 

WaSiM performed well in modeling the discharge of a small scale rural inland valley 

catchment (Bankandi-Loffing). The R² ranges from 0.47 to 0.95, NSE from 0.40 to 0.95, 

and KGE from 0.57 to 0.84. The soil moisture and groundwater table depth were also 

modeled well and the initial soil moisture conditions were adequately reproduced by 

the model. The numerical performance for soil moisture modeling is 0.70 for R² and NSE 

and 0.80 for KGE. As for the groundwater table modeling, the results are 0.30, 0.20, and 

0.5 for R², NSE, and KGE, respectively. 

The analysis of the water balance indicates that evapotranspiration is 

quantitatively the most important hydrological process in the area and the physical 

evaporation largely dominates evapotranspiration. Moreover, 14% of annual rainfall run 

out of the catchment as total runoff without being used. 

Interflow dominates runoff in the headwater sub-catchment whereas base 

flow is the major runoff component in the downstream containing the inland valley 

bottoms. Surface flow will presumably increase, leading to an increase of soil erosion 

due to the trend of conversion of savanna into croplands as a result of population 

growth. Consequently, adaptation strategies should be planned accordingly. 

Supplementing the current erosion technique (stone-belt) with agroforestry and/or 

mulching might be considered. 

 

3) How will be the performance of WaSiM if the resulting parameter set from 

calibration and validation of a catchment is applied without recalibration to 

another catchment in the study area? 

The transfer of parameters from the Bankandi-Loffing WaSiM model to Mebar 

shows good results. The simulated discharge matches well the observed discharge. The 
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model score 0.93, 0.92, and 0.84 for R², NSE, and KGE, respectively in the year 2014 to 

2015 and R²: 0.65, NSE: 0.64, and KGE: 0.59 in the year 2016. However, considering that 

this investigation occurred for the same time period in the same climate zone (Sudan 

Sahelian climate zone) and the short duration of the study (three years), the robustness 

of the model should be tested for a longer period in different climate and catchment 

conditions. 

 

4) What is the impact of climate change and LULCC on water resources in an inland 

valley catchment? What are the implications of climate change on adaptation 

strategies? 

The sensitivity of the hydrological model to LULCC was investigated using four 

historical LULC maps from 1990 to 2013 and three predicted future LULC maps from 

2019 to 2030. The results show an increase of surface runoff (overland flow) with time 

as the conversion of the savanna to croplands occurs. 

The impact of climate change on streamflow was assessed by comparing the 

predicted period with the reference period. The results suggest a large uncertainty for 

the future changes of runoff in response to the large uncertainty in the RCMs’ 

simulations. Three models project an increase of the total runoff from +12% to +95% 

and the actual evapotranspiration from 0 to 12% whereas two models predict a decrease 

of total runoff from -44% to -24% and the actual evapotranspiration from       -3 to -6%. 

Surface runoff is projected to record the highest relative change compared to the other 

runoff components (interflow and base flow). 

The combination of climate change and LULCC uses LULC-2013 in the reference 

period and LULC-2030 for the future. The results indicate that LULCC exacerbates the 

increase of total runoff (increase range: +52% to +158% compared to the reference 

period) predicted by three RCMs, and reduces the decrease of total runoff (decrease 

range: -29% to -11% compared to the reference period) predicted by the other two 

models. This may lead to adverse impact on the ecosystems of the area, soil erosion, 

and water scarcity in the study area. 

The uncertainty of the future predictions does not lead to one direction to 

follow for the development of climate adaptation strategies. However, the selected 

climate model ensemble allows exploring both directions of change (increase or 

decrease of water resources). 

Given the uncertainty of the future projections and the adverse impacts that 

might arise for the implementation of adaptation strategies, it is clearly more preferable 

to opt for preventive measures structured in adaptive management approach. 
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10 APPENDICES 

 

Appendix 1: Historical LULC from 1990 to 2013 of Bankandi-Loffing catchment (data 

set provided by Op de Hipt et al., 2019). 
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Appendix 2: Predicted LULC from 2019 to 2030 of Bankandi-Loffing catchment (data 

set provided by Op de Hipt et al., 2019). 
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Appendix 3: Sensitivity of ETp to evaporation surface resistance (rse) and model 

temporal resolution  

 

The aim of this sensitivity analyses is to determine the range of rse that yields 

in realistic ETp in the study area and how the model time resolution influence annual 

ETp. The Penman-Monteith method was used for an rse range of 50-500 s m-1 and 10, 

30, 60 min, and 1 day time resolutions. All other parameters including the canopy 

surface resistance (rsc) and the interception surface resistance (rsi), were constant (rsc= 

100 s m-1 and rsi=80 s m-1). The year 2013 LULC with 30 m spatial resolution were utilized 

and the calculation was applied for the period 2013-2015. A comparison of sub-daily 

times step (10, 30, 60 min) results were compared to daily time step result using the 

discrepancy (Δ) calculated in the following equation. 

 

Δ =
∑𝐸𝑇𝑝 ∆𝑡 − ∑𝐸𝑇𝑝 𝑑

∑𝐸𝑇𝑝 𝑑
∗ 100%  

 

With ETp.Δt, the ETp computed at the time step Δt; and ETp.d, the 

evapotranspiration calculated at daily time step. 

 

Table: Variation of ETp with rse and with daily and hourly time steps of calculations. 

rse (s m-1) 
Hourly ETp calculation 

(mm yr-1) 

Daily ETp calculation 

(mm yr-1) 

Variation 

Delta 

50 2889 2715 6% 

100 2612 2443 7% 

150 2405 2245 7% 

200 2243 2089 7% 

225 2173 2023 7% 

250 2111 1964 7% 

300 2001 1848 8% 

350 1908 1764 8% 

400 1829 1693 8% 

450 1759 1626 8% 

500 1698 1568 8% 
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