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Biased and unbiased estimates based on laser
scans of surfaces with unknown deformations
Abstract: The estimates based on laser scans of surfaces
with unknown deformations are biased and not repro-
ducible when changing the scanning geometry. While the
existence of a bias is only disadvantageous at some ap-
plications, non-reproducible estimates are never desired.
Hence, this varying bias and its origin need to be investi-
gated – since this situation has not been examined su�-
ciently in the literature. Analyzing this situation, the de-
pendence of the estimation on the network con�guration
is highlighted: the network con�guration – studied simi-
larly to geodetic networks – rules about the impact of the
deformation.
As pointed out, this impact can be altered bymanipulating
the network con�guration. Therefore, several strategies
are proposed. These include manipulations of the least-
squares adjustment as well as robust estimation. It is re-
vealed that the reproducibility of the estimates can indeed
be signi�cantly increased by some of the proposed least-
squares manipulations. However, the bias can only be sig-
ni�cantly reduced by robust estimation.
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1 Introduction
Laser scanners have become one of the most used instru-
ments by geodetic engineers. The technical progress re-
garding measurement frequency, spatial resolution and
accuracy lead to an increase of laser scanner applications,
especially in geodetic deformationmeasurements, reverse
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engineeringor general surface analysis. Dependent on this
trend, the investigation of surfaces also develops from
pointwise considerations to an analysis of the complete
surface structure and its estimated parameters.

This great enhancement of givendatabearsnewpossi-
bilities especially regarding the spatial resolution of mea-
sured (deformed) objects. Nevertheless, –what is often ne-
glectedwhenworkingwith this great amount of point data
– the measurement geometry and the con�guration of ad-
justment are still restricted to the same rules as if working
with only a limitednumber of observations. In this connec-
tion, the point cloud of a laser scanner can be regarded as
a geodetic network. Thus, its quality regarding the accu-
racy and especially the reliability has to be proven simi-
lar to other geodetic networks. This should always be con-
sidered when using laser scanner point clouds for surface
analysis where high accuracy is of interest.

1.1 Uncovering the varying bias

Laser scanner point clouds are often used to parameterize
surfaces (e.g., [3, 13, 16]). Based on the sampled surface,
functional and stochastic models are built up and their
consistence is proven in some studies by, e.g., a global test
or other tools to reveal mismodeling [7, 10]. Other stud-
ies analyze the scanning geometry regarding point accu-
racies, sampling resolution or the resulting level of detail
dependent on the laser beam footprint [23, 24, 30, 33–35].
However, – what has not been addressed in previous stud-
ies su�ciently – scanned surfaces are often only known
to a certain level of detail that does not characterize the
surface su�ciently. Thus, unknown (local) deformations
deviating from the assumed functional model might exist.

A previous study of the present paper revealed
that these deformations can result in biased and non-
reproducible parameter estimates when approximating
scanned surfaces [15]. This bias is de�ned as the mean de-
viation of the estimated parameters from the true value;
the reproducibility equals the di�erence betweenmaximal
and minimal variation of each parameter. While the exis-
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tence of a bias is only disadvantageous at some applica-
tions, non-reproducible estimates are never desired.

As will be shown, this varying bias results from the
scanning geometry-dependent network con�guration of
the adjustment. This network con�guration is based upon

1. the varying sampling density that originates from the
scanner-typical sampling of surfaces (Figure 1),

2. the object’s geometry and
3. the observations’ stochastic model.

Resulting from this network con�guration, local deforma-
tions are weighted. This weight can be expressed by the
partial redundancies that de�ne the reliability of each ob-
servation in a least-squares adjustment [9]. Hence, alter-
ing the scanning geometry leads to di�erent systematics
in the partial redundancies and, thus, to non-reproducible
parameter estimates. Regarding Figure 1, these statements
would mean that (1) an approximation of the surface
would always be biased and that (2) this bias would be dif-
ferent when scanning from station 2 instead of station 1.

Fig. 1. Two-dimensional sketch of the sampling densities when
scanning a locally deformed plane (black line) from stations 1 and
2 (crosses). The resulting estimations are di�erently biased (thick
lines). The angular scanning resolution – that is excessively thinned
here for reasons of displaying – is indicated by the increments ∆t
and the laser beam vectors (thin lines).

Usually, partial redundancies are used for quality con-
trol or optimizationof geodetic networks (e.g., [11, 14]): low
partial redundancies – implying poor reliability – as well
as high ones – attesting poor cost e�ectiveness – should be
avoided. However, their validity can be transferred to the
present application. Though their individual magnitude is
not of importance here due to the high redundancy in the
adjustment, the spatial variation of their magnitude in the
point cloud helps analyzing and justifying the results of
parameter estimation.

1.2 Handling the varying bias

Non-parameterized deformations equal systematic errors
in the functional model. This is an unusual situation in
typical geodetic approximation problems because system-
atic errors are considered most times only regarding the
observations, not regarding the parameterization of the
surface (e.g., [16, 38]). However, the strategies for deal-
ing with systematic errors in the observations can be tried
to transfer to dealing with systematic errors in the func-
tional model aiming at increasing reproducibility and un-
biasedness. This can either be done by simply eliminating
only the variation of the bias – which increases the repro-
ducibility – or by eliminating the bias itself – which in-
creases the reproducibility and also the unbiasedness.

As already mentioned, the network con�guration that
rules about the bias is based upon (1.) the sampling
density, (2.) the sampled object’s geometry and (3.) the
stochastic model of the observations. Hence, changing the
impact of either one of these aspects modi�es the partial
redundancies and the network con�guration. This could
be done by (1.) data reduction [20, 21, 26, 32, 43], (2.) bal-
ancing the adjustment [25] or (3.) insertion of spatial cor-
relations.

Apart from modifying the least-squares adjustment,
the robust estimation – usually used for dealingwith gross
observational errors – is also worth investigating. Here,
the BIBER-estimator (Bounded In�uence By Standardized
Residuals [40, 41]) or the RANSAC-algorithm (Random
Sample Consensus [5, 8, 37]) can be named.

1.3 Main aspects of the present study

The present study points out how local, non-
parameterized deformations on a surface can impact the
parameter estimation. Furthermore, strategies for dealing
with this situation are given and investigated (Table 1).
Both is performed by approximating a (deformed) plane
based on simulated scans. Altogether, this study
– uncovers the varying bias of estimates based on laser

scans of a deformed plane,
– investigates several strategies for increasing the repro-

ducibility and the unbiasedness,
– analyzes these strategies based on the network con�g-

uration and
– shows limits of least-squares estimations regarding

non-parameterized deformations.

Here, the focus is laid on investigating several modi�ca-
tions of a classical least-squares estimation to increase
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Table 1. Strategies for increasing the reproducibility and the un-
biasedness of the estimates based on laser scans of deformed
surfaces.

Least-squares Robust
Data reduction BIBER-estimator
Insertion of spatial correlations RANSAC-algorithm
Balancing the adjustment

the reproducibility and the unbiasedness of the estimates.
Thereby, it is analyzed how the variation of the bias and
the bias itself can be minimized without detecting and
eliminating the points belonging to the deformation and
without parameterizing the deformation. As robust tech-
niques are often used for dealing with gross errors, they
are also investigated. They shall suggest the limits of least-
squares techniques.

2 Simulating and approximating
laser scans

The present section gives an overview about parameteriz-
ing a plane aswell as about simulating and approximating
laser scans of sampled (deformed) planes. This overview is
presented here for reasons of completeness and to clarify
the basics used in the following sections. However, the so-
phisticated reader might skip this section.

2.1 Equation of planes

A plane can be described by 4 parameters
p4 = [nx , ny , nz , d] in three-dimensional space:

nx · x + ny · y + nz · z = d. (1)

Here, nx , ny , nz equal the three components of the plane’s
normal vector and d describes the orthogonal distance
of the plane to the center of the (local) coordinate sytem
[x, y, z] in which the coordinates x, y, z are given [31]. Usu-
ally, thenormal vector is normalized to eliminate the ambi-
guity in the parameter vector. Instead, the uniqueness can
be achieved by dividing the distance d resulting in

nx
d︸︷︷︸
nx

·x + ny
d︸︷︷︸
ny

·y + nz
d︸︷︷︸
nz

·z = 1. (2)

This is attended by a reduction of the number of parame-
ters

p = [nx , ny , nz]T (3)

to u = 3 describing a plane in three-dimensional space.

2.2 Simulating laser scans of (deformed)
planes

For analyzing the bias in the approximation of deformed
planes based on laser scans, several simulations are per-
formed. They are all based on generating the laser scanner
observations l, i.e., distances si, vertical angles βi and hor-
izontal directions ti of number i = 1, . . . ,m each:

l = [s1, β1, t1, . . . , sm , βm , tm]T . (4)

As the observation triplets s, β, t are of number m each
(number of points), the number of observation equals n =
m · 3.

The observations are based on the scanning geometry,
i.e., the station of the laser scanner and the position, the
orientation and the shape of themeasured object. To simu-
late realistic observations, several aspects have to be con-
sidered: (1.) the scanning geometry has to be de�ned. (2.)
Based on this, true laser scanner observations can analyt-
ically be calculated. (3.) Afterwards, these measurements
have to be noised to gain a realistic realization of the true
measurements. These stepswill be explained in the follow-
ing.

2.2.1 Assessing the scanning geometry

The observations of eq. (4) are given in the laser scan-
ner coordinate system [x, y, z]. This varies between dif-
ferent simulation runs as the station of the laser scan-
ner changes. To evaluate the e�ect of di�erent laser scan-
ner stations, the simulated plane and the position of the
scanner are de�ned in a global coordinate system [X, Y , Z]
where the transformation parameters between local and
global system are always known. The position, orientation
and magnitude of the plane is always constant. Thus, the
estimated parameters are comparable between di�erent
simulations by transforming them into the global coordi-
nate system. The simulated global plane parameters equal

[nx , ny , nz , d]T = [0, 1, 0, 0]T . (5)

The plane’s dimensions are 0m ≤ X ≤ 20m and 0 ≤ Z ≤ 5m
and – resulting from eq. (5) – Y = 0. Figure 2 shows this
plane in the global coordinate system [X, Y , Z] scanned
from station no. 1. As can be seen in Figure 3, this station
varies during the simulation between no. 1–5.
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Fig. 2. Simulated sampled plane from station no. 1 (black cross);
projection of station in plane (red dot) and total standard deviation
σxyz,i (eq. 9).

Fig. 3. Simulated plane that is scanned by the �ve stations no. 1–
5 (crosses, projected in XZ-plane) containing four deformations
indicated by deviations in Y.

2.2.2 Calculating observations

By de�ning the origin and orientation of the local laser
scanner coordinate system [x, y, z] inside the global one,
corresponding observations can be simulated. These ob-
servations are generated similar to the real scanning pro-
cedure by sampling the surface with constantly increasing
vertical angle β and horizontal direction t: βi = β1 + i · ∆β
and ti = t1 + i · ∆t.

The corresponding distances si are gained by analyt-
ical geometry. They equal the distance between the laser
scanner station and the point of intersection between the
laser beamvectors – built up by horizontal and vertical an-
gles – and the sampled surface. In case of an undeformed
plane, eq. (2) is used to represent the surface and to calcu-
late the point of intersection for each observation. If local
deformations exist on the plane, the distances are calcu-
lated analytically by integrating radial basis functions rep-
resenting the deformations on the plane (Figure 3) [39].

The resulting sampling points of number i = 1, . . . ,m
can be calculated by

xi =

 x
y
z


i

=

 s · sin β · cos t
s · sin β · sin t
s · cos β


i

. (6)

The sampling density is not homogenous and due to the
scanning geometry, i.e., the station of the laser scanner
and the position, orientation and shape of the measured
object. This is shown in Figure 4 as the sampling density
descreases when increasing the distance to the scanner.

Fig. 4. Approximative sampling density of the simulated observa-
tions at station no. 1 (cross, projected in XZ-plane).

2.2.3 Noising the observations

The calculatedmeasurements are assumed to be randomly
noised, i.e., the residuals follow a Gaußian distribution,
to generate realistic realizations. Thus, the simulation also
integrates residuals

v =
[
vs,1, vβ,1, vt,1, . . . , vs,m , vβ,m , vt,m

]T (7)

of number n based on the standard deviations σs,i =
0.5mm + si · 0.1mm/m, σβ = 125µrad ≈ 8mgon and
σt = 125µrad ≈ 8mgon. These errors equal typical laser
scanner noise (e.g., Leica HDS6100 [22]). Thus, the covari-
ance matrix ΣΣΣll,i of a single observation triplet and the one
of the whole point cloud ΣΣΣll, respectively, equal

ΣΣΣll =



 σ2s,1
σ2β

σ2t


︸ ︷︷ ︸

ΣΣΣll,1
. . .

ΣΣΣll,m


. (8)
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As only the main diagonal of ΣΣΣll is �lled, no correlations
are assumed to exist. Based on this, the total standard de-
viation of the sampling points xi (eq. 6) is given by

σxyz,i =
√
σ2x,i + σ2y,i + σ2z,i (9)

where σx,i , σy,i , σz,i are gained by variance propagation
of ΣΣΣll,i using eq. (6) [18]. This total standard deviation is
shown in Figure 2. It is visible that the noise increases pro-
portionally to the distances si based on σs,i.

2.3 Approximating laser scans

For approximating the laser scans of the (deformed) sur-
faces, the cost function vTΣΣΣ−1ll v is minimized. This usually
leads to the Gauß-Helmert model (GHM) – also known as
general case of adjustment [27] – regarding the functional
model of eq. (2).

This GHM can be reduced to a Gauß-Markov model
(GMM) which is advantageous since the later introduced
manipulations of the approximation can be implemented
more straightforward in a GMM (see Secs. 4-5).

2.3.1 Gauß-Helmert model

The functional model of the GHM should equal eq. (2)
instead of eq. (1) when approximating a plane to avoid
the ambiguity. Furthermore, taking into account that the
noised observations l + v are incorporated in eq. (2), the
functional model is set up as

f (l + v, p) = nx · (s + vs) · sin(β + vβ) · cos(t + vt)
+ ny · (s + vs) · sin(β + vβ) · sin(t + vt)
+ nz · (s + vs) · cos(β + vβ) − 1
= 0. (10)

The stochastic model is based on the covariance ma-
trix of the observations ΣΣΣvv = ΣΣΣll of eq. (8). The further
explanations regarding the strict solution of the nonlinear
GHM are given in [15, 27, 28] but are recapitulated here for
reasons of completeness.

Because the model of eq. (10) is nonlinear, parameter
updates ∆p̂ with p̂ = ∆p̂ + p̂0 are estimated iteratively –
where p̂0 are the estimated parameters of the last iteration
– until convergence is reached. The linearized functional
model equals

B · (v − v̂) + A · (p − p̂0) + f (l + v̂, p̂0) = 0 (11)

when introducing approximate residuals v̂ that are up-
dated in each iteration [28]. Here, the Jacobian matrices,

i.e., designmatrixA and conditionmatrixB, are evaluated
at the estimated parameters p̂0 as well as at the iteratively
approximated observations l + v̂:

A = ∂f
∂p

∣∣∣∣
l+v̂,p̂0

; B = ∂f
∂l

∣∣∣∣
l+v̂,p̂0

. (12)

Based on eqs. (11) and (12), by de�ning the vector of dis-
crepancies as

w = −B · v̂ + f (l + v̂, p̂0) (13)

and the Lagrange multipliers as k, the normal equations[
ΣΣΣll A
AT 0

]
·
[

k
∆p̂

]
=
[

−w
0

]
(14)

can be built up, where BΣΣΣllBT is substituted by

ΣΣΣll = BΣΣΣllBT . (15)

The normal equations (14) are used to iteratively esti-
mate the parameter updates ∆p̂, the residuals v̂ and �nally
p̂ and ΣΣΣp̂p̂ [27].

2.3.2 Reduction to a Gauß-Markov model

The GHM can be reduced to a GMM [6, 18]. This reduc-
tion is strict and, thus, reversible [27]. As requirement for
the transformation, the rank of B (eq. 12) needs to be full:
rank(B) = m. However, this is always ful�lled regard-
ing laser scanner measurements as no observation is per-
formed twice or more often. Since the later explained ma-
nipulations of the approximation are de�ned in a GMM,
the reduction to a GMM is explained in the following.

The reduction to the GMM is based on substituting

v = Bv. (16)

This leads to the already described variance propagation
from ΣΣΣll = ΣΣΣvv to ΣΣΣll (eq. 15). By de�ning the reduced sub-
stituted observations ∆l = −w, the parameter updates and
their covariance matrix are estimated by

∆p̂ =
(
ATΣΣΣ−1ll A

)−1
ATΣΣΣ−1ll ∆l (17)

ΣΣΣp̂p̂ =
(
ATΣΣΣ−1ll A

)−1
. (18)

Here, the covariancematrix ΣΣΣll (eq. 15) equals amain diag-
onalmatrix sinceΣΣΣll (eq. 8) is also a diagonalmatrix. Thus,
the substituted observations l are not correlated similar to
the original ones l. Simultaneously, – as their number is
reduced from n to m – only one single substituted obser-
vation li and its corresponding variance σ2l,i =

[
ΣΣΣll
]
i,i rep-

resent the whole observation triplet li = [si , βi , ti]T and its
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covariance matrix ΣΣΣll,i of eq. (8). The same applies for the
residuals v and their substitutions v (eq. 16). Interpreted
geometrically, observations and residuals are transformed
to the condition space.

From the previous derivations, the estimated substi-
tuted residuals and their covariance matrix equal

v̂ = ∆l − A∆p̂ (19)
ΣΣΣ v̂v̂ = ΣΣΣll − AΣΣΣp̂p̂A

T . (20)

following the usual derivations of a GMM [18]. Resubstitut-
ing these residuals leads to [18]:

v̂ = ΣΣΣllBTΣΣΣ−1ll v̂. (21)

These residuals are used to update the observations by l+v̂
again to build up the Jacobian matrices of eq. (12) and to
calculate the discrepancies of eq. (13). These transforma-
tions are performed in each iteration.

3 Analyzing biased estimates
Based on the least-squares estimation presented in the
previous section, several simulated laser scans are approx-
imated. Here, as already written, the station of the laser
scanner changes between �ve positions while the position
of the scanned plane remains �xed in the global coordi-
nate system [X, Y , Z]. Furthermore, deformations with a
magnitude of 5 mm are integrated in the plane (see Fig-
ure 3). These deformations vary regarding their spatial ex-
pansions. Either no deformation, one deformation – the
one centered at the projection of station no. 1 – or four de-
formations are introduced.

Based on these di�erent con�gurations, one simu-
lated realizationof observations is processedandanalyzed
each time. Due to the noising of the observations in each
realization, the resulting estimates depend on the speci�c
generated noise. However, the variation of the estimates
due to this noise is negligible compared to the varying bias
caused by network con�guration and deformation. Thus,
it can be disregarded. In the following, the results are il-
lustrated and analyzed.

3.1 Results of parameter estimation

As three versions of planes – no, one or four deforma-
tions – and �ve di�erent stations are processed, �fteen
sets of parameters p̂ = [n̂x , n̂y , n̂z]T are estimated. These
are transformed back into p̂4 = [n̂x , n̂y , n̂z , d̂]T using eq.
(2) and afterwards into the global coordinate system so

that they are comparable. The resulting parameters are
p̂glo = [n̂X , n̂Y , n̂Z , D̂]T . As the expressiveness of the di-
mensionless normal vector [n̂X , n̂Y , n̂Z]T is limited, it is
transformed to the polar coordinates vertical angle Θ̂ and
horizontal angle Φ̂ indicating the orientation of the esti-
mated plane in the global coordinate system:

Θ̂ = arccos

 n̂Z√
n̂2X + n̂2Y + n̂2Z

 (22)

Φ̂ = arctan
(
n̂Y
n̂X

)
. (23)

Consequently, the two polar coordinates Θ̂ and Φ̂ as
well as the distance D̂ are analyzed in the �nal parameter
vector p̂�n = [Θ̂, Φ̂, D̂]T . Their deviations to the true values
p�n – known by eq. (5) – are shown in Figure 5. They are
analyzed by a parameter signi�cance test based on the test
value

T = 1
h
(
p̂�n − p�n

)T ΣΣΣ−1�n (p̂�n − p�n
)
∼ F (24)

where F indicates that T is Fisher-distributed. For T ≤
fh,r,1−α, the di�erence between the estimates and the ex-
pectation values is insigni�cant [12]. This test depends on
the signi�cance level α = 1%, on the adjustment’s re-
dundancy r (eq. 26) and on the number of tested param-
eters h = 3 – resulting in the quantil fh,r,1−α of the Fisher-
distribution. The completely �lled covariancematrix of the
estimated parameters ΣΣΣ�n is gained by a three-step vari-
ance propagation from p̂ to p̂4, then to p̂glo and �nally to
p̂�n.

In Figure 5 can be seen that the estimated parameters
indeed vary between the di�erent laser scanner stations if
deformations exist on the scanned surface. If no deforma-
tion exists, the variations are negligible and appear only
due to the speci�c simulated realization of the stochas-
tic process. Consequently, the signi�cance test is accepted
most times.

The bias of the estimated vertical angle and the dis-
tance based on the plane being deformed by only one de-
formation increases when the distance between scanner
and deformation decreases (station no. 1 and 4, see Fig-
ure 3). This is expectable since the sampling density is
greater at the deformation in these cases (see Figure 4).
The horizontal angle is only biased by a smaller magni-
tude which is due to the dimension of the plane being four
times longer in horizontal than in vertical direction. Thus,
the ratio of deformed sampling points is four times higher
in vertical direction.

Regarding the estimates when the plane is deformed
four times, the results of varying biases are comparable.
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Fig. 5. Estimated global plane parameters of original adjustment; no
deformation (crosses), one deformation (dots), four deformations
(dashed).

The variation is even larger due to the existence of more
deformed parts of the surface. This also holds for the hori-
zontal angles as the deformations are now also distributed
more in horizontal direction. Furthermore, due to the fact
that not only one deformation exists, the position of max-
imal bias varies between the parameters and stations.

3.2 Analyzing the network con�guration

Partial redundancies describe the controllability and the
reliability of each observation [9]. These partial redun-
dancies rj can be calculated for each observation lj , j =
1, . . . , n, used in the GHM. Similarly, they can be calcu-
lated for the substituted observations li used in the GMM
– thus, representing the controllability of a whole obser-
vation triplet [si , βi , ti]T or sampling point [xi , yi , zi]T , re-
spectively:

ri =
[
ΣΣΣ v̂v̂ΣΣΣ

−1
ll

]
i,i
; i = 1, . . . ,m. (25)

Both values are related by ri = ri,s + ri,β + ri,t. Since the
sampling points’ reliabilities are of interest, only ri are in-
vestigated further.

Generally, partial redundancies – lying in the interval
of [0, 1] for uncorrelated observations – depend on three
di�erent aspects:

1. the varying sampling density that is contained in A
and B and, thus, in ΣΣΣ v̂v̂ and ΣΣΣ v̂v̂ (eq. 20),

2. the object’s geometry, also contained in A and B and,
thus, in ΣΣΣ v̂v̂ and ΣΣΣ v̂v̂ and

3. the observations’ stochastic model equaling ΣΣΣll and
ΣΣΣll.

Thus, changing one of these aspects leads to a modi�ca-
tion of the partial redundancies. As they imply the relia-
bility of each observation, the modi�cation of the partial
redundancies leads to a change of the estimated parame-
ters [9].

The partial redundancies of the plane approximation
with the laser scanner being stationed at positions no. 1
and 3 are shown in Figure 6. As can be seen, the partial
redundancies vary between both �gures. This is due to the
already described three e�ects of (1.) sampling density, (2.)
object’s geometry and (3.) stochastic model:

1. The trend of the partial redundancies is not strictly
symmetric to the plane’s center. This is because of
the inhomogeneous sampling density resulting from
the laser scanner not being positioned in front of the
plane’s center. Thepartial redundancy is higher in sec-
tions with dense point sampling.

2. The partial redundancies decrease whenmoving from
the plane’s middle to the endings. This phenomenon
is well known as the points near the endings of the
plane become more important [2]. Thus, this e�ect is
due to the sampled object’s geometry.

3. As the points’ standard deviations increase porpor-
tionally to the measured distance (see Figure 2), the
partial redundancies are higher when increasing the
distance to the scanner. However, this e�ect is smaller
and, thus, overlayed by the other two e�ects. It will get
more visible after the proposed least-squares manipu-
lations (see Figure 8).

These spatial distributions of the partial redundancies im-
plicitly weight each sampling point in the adjustment. As
this weight obviously depends on the scanning geometry,
the parameters are biased and not reproducible when al-
tering this scanning geometry. This explains the results of
the approximation shown in Figure 5.
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Fig. 6. Partial redundancies of the plane estimation from stations
no. 1 (top) and no. 3 (bottom, both projected in XZ-plane); original
adjustment.

The variation of the partial redundancies is only very
small. This rests upon the fact that their sum equals the
redundance of the adjustment

r = m − u =
∑
i

ri =
∑
j

rj (26)

As m ≈ 250, 000 is many times higher than u, the redun-
dancy is approximately r ≈ m. Thus, the partial redundan-
cies ri are all near their maximal value of 1. In the present
case, they vary only bymax(ri) − min(ri) ≈ 2 · 10−5.

This small variation is typical when approximating
laser scans since the number of parameters is alwaysmany
times smaller than the number of observations. However,
neither the actual magnitude of the partial redundancies
nor the magnitude of their variation is of primary interest.
Rather the spatial distribution of the partial redundancies’
variation in the point cloud should be focused as it im-
plies the diverging importance of the sampling points for
parameter estimation.

4 Improvement by least-squares
manipulation

As shown in the previous section, the parameter estimates
are biased and non-reproducible. The present section in-
troduces three di�erent approaches for handling these ef-
fects. They aim at changing the sampling density (data re-
duction), the stochasticmodel (insertion of spatial correla-
tions) or the impact of the object’s geometry (balanced ad-
justment) to modify the partial redundancies and, hence,

the estimates. After inroducing these algorithms, the pa-
rameter estimates are discussed.

4.1 Data reduction

Point clouds of laser scanners are often reduced to save
processing time due to the highly redundant information
[20, 21, 26, 32, 43]. Only seldom, the reduction ismotivated
by optimizing the sampling density regarding the network
con�guration [15]. However, this is the reason for reduc-
ing the data in the present case: the idea is to homogenize
the partial redundancies so that their spatial distribution
is more independent from the original scanning geometry.

For data reduction, three di�erent types exist: (1.) uni-
form, (2.) curvature and (3.) random reduction [43]. As the
aim is to increase the reproducibility of the estimation,
only the �rst two approaches are relevant. The curvature
based reduction reduces the point density depending on
local object curvature, the uniform one grids the sampling
points [20, 21, 26]. Thus, both are similar regarding the
present case of approximating the point cloud to a plane
that is not curved.

The implemented data reduction builds a nearly regu-
lar grid of observationsmaintaining asmany observations
as possible. No interpolation or othermanipulation of spe-
ci�c observations is performed but an elimination of sev-
eral observations due to their spatial position. This data
reduction contains three steps:

1. �nding the longest distance ldist of neighbored points,
2. building a regular three-dimensional grid of cell

length ldist aligned to the point cloud’s principal com-
ponents, and

3. eliminating all points in each cell except for the one
nearest to the cell middle.

Performing this reduction scheme, a nearly homogeneous
sampling density originates. When scanning, e.g., from
station no. 1, approximately 35,000 observations of the
original 250,000 observations remain.

4.2 Insertion of spatial correlations

Usually, spatial correlations are integrated in the analy-
sis of laser scans to cope either with surface-based sys-
tematic errors or with geometry-based systematic errors
[16, 33, 36]. The �rst category would include, e.g., mate-
rial re�ection or penetration into the surface structure. The
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second one would contain, e.g., laser beamwidth or inci-
dence angles.

However, spatial correlations can also be introduced
to change the network con�guration. Spatial correlations
of constant radii would consider in a similiar way to the
data reduction that the sampling density is very inhomo-
geneous as the independence of dense distributed obser-
vations is decreased.Hence, not the number of points is re-
duced as in the data reduction but each individual point’s
impact on the parameter estimation.

By de�ning themagnitude of correlation by a Gaußian
distribution curve with the parameter lcorr equaling the
standard deviation, the correlation matrix R [18] with its
elements Ri,j(i, j = 1, . . . ,m) can be built up:

Ri,j = exp
(
−12

(
Di,j
lcorr

)2
)
. (27)

Here, Di,j equals the distance between sampling points i
and j. The parameter lcorr is quanti�ed regarding the cell
length ldist of the data reduction: lcorr = ldist/3. Following
probability theory [18], the triple of lcorr, i.e., ldist, approxi-
mately equals the radius of correlation.

These correlations are integrated into the adjustment
by adding them to the existing covariance matrix of the
substituted observations ΣΣΣll that originally equals a main
diagonal matrix:

ΣΣΣll,corr = ΣΣΣll + (0.9 · (R − I)) ◦
(
σσσijσσσTij

)
, (28)

with σσσij =
√

diag
(
ΣΣΣll
)
[42]. The minimization of R by the

identity matrix I considers that the main diagonal should
not be altered, the factor0.9 scales all correlations to avoid
instability in the adjustment due to nearly full correlated
measurements.

Subsequently, the estimation of Sec. 2 is manipulated
in the way that the covariance matrix ΣΣΣll,corr is incorpo-
rated into eqs. (17-21) instead of ΣΣΣll.

4.3 Balancing the adjustment

The sampled object’s geometry impacts the least-squares
parameter estimation. This has already been known since,
e.g., high-leverage points are analyzed: these points im-
pact parameter estimations by a high ratio only due to
their position on the object [2]. To eliminate the impact of
the sampled object’s geometry, the adjustment can be bal-
anced [25].

For balancing an adjustment, balancing factors p̃bal,i
are used to weight each observation. These balancing fac-
tors arise out of the network con�guration similar to the

partial redundancies. But here, the so called normal form
of the design matrix needs to be calculated since this nor-
mal form contains the desired geometrical information
[25]. Therefore, u rows of the design matrix A of arbitrary
index are extracted to build up a matrix W. The normal
form of A afterwards follows by A = AW−1.

Using the normal form A, the balancing factors p̃bal,i
are iteratively estimated [25] to afterwards update the co-
variance matrix of the observations:

ΣΣΣll,bal = ΣΣΣll ·


p̃bal,1

. . .
p̃bal,m


−1

. (29)

In the end, this covariance matrix ΣΣΣll,bal is incorporated
into eqs. (17-21) instead of ΣΣΣll.

After balancing an adjustment, the in�uence of the
object’s geometry as well as the one of the sampling den-
sity is eliminated. This leads to partial redundancies that
would all be equal if the observational variances were
identical anduncorrelated. However, as this is not the case
in the present application, the partial redundancies nearly
solely depend on the stochastic model.

As already written, the submatrixW consists of u cho-
sen rows of A. These chosen rows should not correspond
to neighboured sampling points when scanning with high
resolution. Otherwise, the calculation of the normal form
could be bad conditioned asW is numerically nearly rank
de�cient.

4.4 Results and analysis of parameter
estimation

The parameter estimates based on the simulation of the
di�erent stations are given in Figure 7. This time, only the
results regarding the inclusion of all four deformations are
inspected. As can be seen, the reproducibility of the esti-
mates can be increased in all three components when re-
ducing the data or inserting spatial correlations. The re-
sults of these twomanipulations do not di�er signi�cantly
from each other. Contrary, the estimates of the balanced
adjustment decrease the reproducibility compared to the
original adjustment. The biases are not reduced signi�-
cantly in all of these manipulations, also indicated by the
declined signi�cance tests.
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Fig. 7. Estimated global plane parameters of deformed plane based
on least-squares manipulations; data reduction (blue), insertion of
correlations (green), balanced adjustment (brown), original adjust-
ment (black).

Data reduction

Thepartial redundancies of the reduceddata show that the
impact of the sampling density is eliminated (Figure 8).
The position of maximal partial redundancy is almost in
the middle of the plane due to the increased impact of
the object’s geometry now. Furthermore, by investigating
that the partial redundancies are not strictly symmetric
but higher on the right side of the plane, the impact of the
stochastic model is visible more clearly than in the origi-
nal adjustment. This is because the point accuracy is less
on the right side due to the longer distances to the scanner
station. Nevertheless, the most important fact is that the
impact of the sampling density is eliminated.

As the sampling density impacts the network con�gu-
ration the most, the reproducibility can be increased sign-
�cantly evenwhen scanning deformed surfaces. The in�u-
ence of the deformations is homogenized as the number of
points positioned on the deformations does not depend on
the original scanning geometry. However, the bias cannot

be reduced. This can also be seen in the partial redundan-
cies as the impact of the deformation is not decreased.

Fig. 8. Partial redundancies of the plane estimation from station no.
1 (cross, projected in XZ-plane); data reduction (top), insertion of
correlations (middle), balanced adjustment (bottom).

Insertion of spatial correlations

Regarding the partial redundancies of the correlated ad-
justment (Figure 8), it can be seen that the trend of the
spatial distribution is similiar to the original adjustment.
But deviating, the systematic seems to be mitigated as the
variationof thepartial redundancies is decreased. Further-
more, – what cannot be seen in Figure 8 – the partial re-
dundancies are not in the interval of [0, 1] anymore due to
the sampling points’ correlations. However, the impact of
correlating the adjustment is not as clearly visible as is the
case at the other two least-squares manipulations.

Disregarding this fact, the e�ect of inserting spatial
correlations is very similiar to the data reduction. This is
expectable since the radius of spatial correlation is chosen
corresponding to the point distance after data reduction.
Hence, the bias cannot be reduced in all estimates but the
reproducibility is improved.
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Balancing the adjustment

The partial redundancies of the balanced adjustment
show that the impact of the object’s geometry as well as
the one of the sampling density are indeed eliminated (Fig-
ure 8). The remaining structure is nearly only due to the
stochastic model since the distribution of the partial re-
dundancies is similiar to the one of the sampling points’
total standard deviations (see Figure 2).

This e�ect causes even more biased and less repro-
ducible results. Thus, the opposite of the desired e�ect is
achieved. This is expectable when combining Figure 4 and
Figure 8: in the original adjustment, a locally higher sam-
pling density results in higher partial redundancies. As the
e�ect of the sampling density on the partial redundan-
cies is eliminated by balancing the adjustment, only the
stochastic model rules about the network con�guration.
Thus, the partial redundancies are lower at high sampling
densities as the sampling density is high near the scanner
where the sampling points’ standard deviations are lower.
Consequently, areas near the scanner are weighted twice
by the balanced adjustment: by the high sampling density
as well as by the balancing factors.

5 Improvement by robust
estimation

The results of the previous section show that the re-
producibility can be increased signi�cantly when reduc-
ing the data or introducing spatial correlations. However,
the estimates are still biased. Therefore, it is of inter-
est whether other techniques – besides the usual least-
squares adjustment – yield better results.

Robust estimation techniques are usually used to ap-
proximate data by some model where the data is a�ected
by gross errors [1, 37, 42]. The impact of gross errors is
less in robust estimation than in usual least-squares es-
timation. Thus, it should be investigated if robust esti-
mation is also suited for approximating data where the
functional model is a�ected by systematic errors, i.e.,
local deformations. As representative for robust estima-
tion, the RANSAC-algorithm (Random Sample Consensus)
and theBIBER-estimator (Bounded In�uenceByStandard-
ized Residuals) are investigated. After introducing the two
methods, the results regarding the already discussed ex-
amples are presented.

5.1 BIBER-estimator

The BIBER-estimator belongs to the family of modi�ed M-
estimators [40, 41]. These types of estimators are more ro-
bust than a classical least-squares approach because out-
liers do impact the estimation less: in a classical least-
squares adjustment, e.g., the GHM or GMM, the cost func-
tion vTv is minimized (see Sec. 2), disregarding the covari-
ance matrix ΣΣΣll. Thus, the square sum of the residuals v
is minimized. If outliers having large residuals exist, they
in�uence the minimization of the cost function. At (modi-
�ed) M-estimators, the in�uence of outliers is restricted by
notminimizing the square sumof the corresponding resid-
uals. This can be done by weighting the observations de-
pendent on their residual [17, 19].

Modi�ed M-estimators – in contrast to usual M-
estimators – incorporate not only the residuals of the ob-
servations in the weight but also their reliability due to the
network con�guration. At theBIBER-estimator, this results
in weighting each observation if its standardized residual

ω̂i =
v̂i
σ̂v,i

= v̂i
σl,i ·

√
ri
, (30)

where σ̂2v,i = [ΣΣΣ v̂v̂]i,i, outnumbers a threshold c [40, 41]:

pBIBER,i =
{
1 |ω̂i| < c
c/|ω̂i| |ω̂i| ≥ c

. (31)

Thus, standardized residuals smaller than the threshold c
are not weighted so that they areminimized as in the least-
squares estimation. The other ones are weighed down so
that they impact the estimation less. The threshold c is
usually set up in the interval [2.5, 4] [40]; here, it equals
2.58 related to an outlier test with 99.0% con�dence level
[29].

As these weights are based on the estimated residu-
als of eq. (19), they cannot be integrated before the sec-
ond iteration step. To gain a more stable estimation, the
weights are scaled to a total number of m by p̃BIBER,i =
pBIBER,i/

∑
pBIBER,i · m similar to the balancing factors.

Based on this, the covariance matrix

ΣΣΣll,BIBER = ΣΣΣll ·


p̃BIBER,1

. . .
p̃BIBER,m


−1

(32)

is incorporated into eqs. (17-21) instead of ΣΣΣll.

5.2 RANSAC-algorithm

The RANSAC-algorithm was developed to �t a model to
data containing a signi�cant percentage of outliers [5, 8,
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37]. It is based upon not using all observations for estimat-
ing the desired parameters but upon only using the least
number of observations that is possible. By selecting dif-
ferent samples of observations very often, the parameters
are calculated many times. Then, out of these parameter
sets, the best one is chosen. Hence, the RANSAC-algorithm
is no adjustment minimizing all residuals in some way as
are the other presented algorithms – least-squares as well
as robust. Following, the parameter signi�cance test as
proposed in eq. (24) cannot be performed.

The implementation of the RANSAC-algorithm is as
follows [4]:

1. Selection of 3 randomly chosen sampling points. No
triple can be selected twice and at least two points
need to have a distance of minimial 5 meters to each
other.

2. Estimation of the plane parameters as described in
Sec. 2 basedon these 3points. As 3points contain 9ob-
servations but only 3 parameters are calculated, this
implementation also leads to a redundant adjustment.

3. Calculation of a consensus set. This equals a selection
of all sampling points that do �t to the estimated plane
model. A sampling point does not �t to themodel if its
deviation from the model

|n̂x · xi + n̂y · yi + n̂z · zi − 1| (33)

is greater than its standard deviation σxyz,i (eq. 9).

These steps are processed 10, 000-times. This magnitude
is chosen by empirical investigations; a further enhance-
ment of this magnitude does not improve the results sig-
ni�cantly anymore. The �nally chosen parameter solution
equals the one being supported by the most sampling
points, i.e., the one having the largest consensus set.

5.3 Results and analysis of parameter
estimation

The results of parameter estimation are shown in Figure 9.
Comparing to the original adjustment and even compar-
ing to the least-squaresmanipulations, the reproducibility
and the unbiasedness can be improved signi�cantly. This
holds for the BIBER-estimator as well as for the RANSAC-
algorithm. However, the signi�cance test that can be per-
formed for the BIBER-estimator still indicates deviations
that do signi�cantly deviate from the true values. Conse-
quently, the estimates still depend on the scanning geom-

etry – even though less than at the least-squares estima-
tions.

Fig. 9. Estimated global plane parameters of deformed plane based
on robust adjustments; BIBER-estimator (red), RANSAC-algorithm
(purple), original adjustment (black).

BIBER-estimator

For the BIBER-estimator, the partial redundancies are
shown in Figure 10. They are calculated similarly to the
least-squares estimations (eq. 25), this time incorporating
the modi�ed covariance matrix ΣΣΣll,BIBER a�ecting ΣΣΣ v̂v̂ and,
thus, ri [40].

The partial redundacies now consist of two systemat-
ics: (1.) the �rst one is similar to the one of the partial re-
dundancies of the original adjustment (see Figure 6). Here,
the corresponding sampling points’ standardized residu-
als are smaller than the threshold – thus, they are not
treated as outliers. (2.) The second systematic enlarges
the partial redundancies of the sampling points being af-
fected by the local deformations – these observations are
weighted down due to high standardized residuals imply-
ing that the observations are outliers. Thus, the impact of
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the observations on the parameter estimation depends on
the network con�guration as well as on their residuals.

Fig. 10. Partial redundancies of the plane estimation from station
no. 1 (cross, projected in XZ-plane); BIBER-estimator.

RANSAC-algorithm

As the RANSAC-algorithm calculates the parameters many
times – but each time only based upon three sampling
points – the partial redundancies cannot be analyzed.
However, the increase of the unbiasedness can be ex-
plained by the number of points being in�uenced by the
local deformations. As this number is small compared to
the total number of sampling points, the consesus of all
estimated plane parameters is larger near the true, unde-
formed plane. Apparently, the proportion of the points not
being in�uenced by the local deformations is higher than
the breakdown point of this robust adjustment [37].

6 Discussion and resulting
suggestion

The results of the previous sections show that unlimited
unbiasedness and reproducibility cannot be achieved by
any of the discussed least-squares or robust estimations.
Table 2 and Table 3 quantify these results. Table 2 corre-
sponds to the plane being deformed four times. These re-
sults have already been examined deeper in the previous
sections (see Figure 5, Figure 7 and Figure 9). The results of
Table 3 are the ones corresponding to the plane not being
deformed; they have not been discussed before except for
the original adjustment (Figure 5).

Based on these tables, it can be stated that the in-
sertion of correlations and the data reduction both pro-
duce similar results – they improve the reproducibility if
unknown deformations exist. Contrary, balancing the ad-

justment degrades the results. Robust techniques, i.e., the
BIBER-estimator and the RANSAC-algorithm, improve the
reproducibility as well as the unbiasedness in this case;
the RANSAC-algorithm seems to be the best solution. How-
ever, as can be seen in Table 3, the RANSAC-algorithm is
the worst estimator of the discussed ones when no defor-
mation exists.

Hence, a combined strategy couldbe suited. This strat-
egy would aim at eliminating the systematic error in the
functional model, i.e., the local deformations, in three
steps:

1. robust estimation by the RANSAC-algorithm,
2. detection of deformations and elimination of corre-

sponding sampling points, and
3. least-squares estimation.

The cruicial stepwould be part (2.) as it is to judgewhether
sampling points are in�uenced by a deformation or not.
If the deformed parts could reliably be detetected in this
step (2.), the following estimates of step (3.) would not be
biased due to a functional model not su�ering from any
systematic error. Additionally, they would be optimal due
to the least-squares minimization.

A simple implementation of these three steps has been
performed leading to the results also shown in Tables 2–3.
Here, the eliminated sampling points are the ones not be-
ing integrated in the consensus set. Thus, plotting the par-
tial redundancies would equal Figure 6 with gaps at the
four deformations. As expected, the results are always bet-
ter than the ones of the RANSAC-algorithm. Nevertheless,
the deformed parts of the simulated plane are quite easy
to detect in part (2.). Hence, before transfering this spe-
ci�c result to general applications, it should be analyzed
further.

7 Conclusion and outlook
The present study analyzes estimates based on laser scans
of surfaces with unknown deformations. It is investigated
how the adjustment’s network con�guration impacts the
parameter estimation. Here, the sampling density, the ob-
ject’s geometry aswell as the stochasticmodel are the rele-
vant aspects. It is pointed out that the estimates are biased
and not reproducible if deformations equaling systematic
errors in the functional model exist. These investigations
havenot beendonebefore regarding the literature. Follow-
ing, the estimates of surfaces based on laser scans pro-
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Table 2. Including four deformations in plane: bias and reproducibility of all estimates (vertical angle Θ̂, horizontal angle Φ̂, distance D̂) of
the di�erent adjustments (ls=least-squares, r=robust).

Adjustment Type Bias Reproducibility
Θ̂[mgon] Φ̂ [mgon] D̂ [mm] Θ̂ [mgon] Φ̂ [mgon] D̂ [mm]

Original adjustment ls -66.0 -28.1 4.7 55.7 58.7 8.1
Data reduction ls -53.1 -27.6 5.5 28.4 17.6 1.8
Insertion of spatial correlations ls -55.3 -27.9 5.5 31.4 21.0 2.1
Balancing the adjustment ls -110.7 -26.5 2.9 83.8 110.0 20.7
BIBER-estimator r -19.7 -10.6 1.6 15.8 21.2 2.8
RANSAC-algorithm r -3.1 -2.7 0.4 8.6 5.2 0.9
Elimination of systematic error r+ls -1.4 -2.4 0.3 4.2 4.5 0.6

Table 3. Including no deformation in plane: bias and reproducibility of all estimates (vertical angle Θ̂, horizontal angle Φ̂, distance D̂) of the
di�erent adjustments (ls=least-squares, r=robust).

Adjustment Type Bias Reproducibility
Θ̂ [mgon] Φ̂ [mgon] D̂ [mm] Θ̂ [mgon] Φ̂ [mgon] D̂ [mm]

Original adjustment ls -0.1 0.0 0.0 0.2 0.1 0.0
Data reduction ls -0.2 0.0 0.0 0.6 0.3 0.0
Insertion of spatial correlations ls 0.0 0.0 0.0 0.2 0.1 0.0
Balancing the adjustment ls -0.1 0.0 0.0 0.3 0.1 0.0
BIBER-estimator r -0.1 0.0 0.0 0.2 0.1 0.0
RANSAC-algorithm r -0.8 -0.2 0.1 5.2 1.3 0.3
Elimination of systematic error r+ls -0.2 -0.1 0.0 0.7 0.3 0.0

posed in miscellaneous publications are possibly biased
and non-reproducible.

The least-squares estimates can be improved re-
garding the reproducibility by data reduction or inser-
tion of spatial correlations. However, the bias cannot be
eliminated. Contrary, robust adjustments as the BIBER-
estimator or the RANSAC-algorithm can either increase the
reproducibility as well as the unbiasedness. Nevertheless,
– as robust adjustments are not a least-squares minimiza-
tion – they do not minimize the residuals of the observa-
tions optimally. The better solution could be a combined
approach of eliminating the systematic error resulting in
improved estimates in the present case.

While these investigations are only shown here by
approximating locally deformed planes, the formulated
problem statement and the presented analysis can be
transferred to other applications, objects and con�gura-
tions. Investigations of simulated and real data either have
already been shown [15] or will be in further studies, e.g.,
regarding the approximation of paraboloids [13, 16]. Con-
sequently, to guarantee reproducible and unbiased esti-
mates even when scanning surfaces containing local, un-
known and, thus, non-parameterized deformations, the
presentedanalysis and its solutions shouldbe investigated
further.
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