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Summary

In this thesis, we consider problems arising from the physical phenomenon of particle sedimentation.
We focus on non-Brownian particles in fluids at zero Reynolds number. Microscopically, the particle
system is described by a system of ordinary differential equations that determine the particle
trajectories which is coupled to a partial differential equation for the fluid flow. The objective of this
thesis is the rigorous derivation of macroscopic equations from microscopic particle dynamics as well
as the analysis of such macroscopic equations.

For a suitable limit of many small spherical inertialess particles, we prove convergence to a
nonlinear system of partial differential equations that couples a transport equation for the particles
with Stokes equations for the fluid. This system has been used as a sedimentation model in the
physics literature. The limit behavior occurs in the regime where the volume fraction of particles is
very small but there are still enough particles such that the interaction of the particles through the
fluid is relevant. In the considered limit, we prove that the microscopic dynamics is well-posed until
time T which tends to infinity, and we prove well-posedness and convergence to the macroscopic
system globally in time. The result has been published in Communications in Mathematical Physics,
[Höf18a].

The proof of the result in [Höf18a] uses a technique to represent the solution of the fluid equations
which is known as the method of reflections. We systematically study this technique and show how to
use it in order to derive classical homogenization results. This part is based on the author’s master’s
thesis [Höf15]. The results presented in this thesis are an improved version of [HV18], published in
Archive for Rational Mechanics and Analysis. In comparison with [HV18], the assumptions under
which convergence of the method of reflections is proved have been relaxed significantly.

For aerosols, the particle inertia becomes relevant in appropriate scaling limits and it has
been suggested that the microscopic dynamics converge to a Vlasov equation coupled with Navier-
Stokes/Brinkman equations. A rigorous proof of this result is presently completely out of scope, even
in the case when the fluid inertia is neglected. There are several papers in the literature, though,
that derive the Brinkman equations in the quasi-stationary case as a first step of the proof of the full
problem. Since the particle distances are very difficult to control for the full problem, it is important
to minimize the restrictions on these distances in the derivation of the Brinkman equations. Based
on an idea that we first applied to a similar problem for the Poisson instead of the Stokes equations,
we generalize these results to stochastic distributions of particles with very mild constraints on the
sizes and distances of the particles. The results have been obtained together with Arianna Giunti
and Juan Velázquez, [GHV18; GH18] (arXiv preprints).

The Vlasov-Navier-Stokes equations involve several dimensionless physical parameters, such
as the Reynolds number and the Stokes number, which account for the fluid inertia and particle
inertia respectively. We consider the equations at zero Reynolds number, which are then called the
Vlasov-Stokes equations, and study the limit of the Stokes number tending to zero in such a way
that the interaction strength of the particles – determined by another physical parameter – is held
fixed. In this limit, we prove convergence to the coupled transport-Stokes system which has been
derived from the microscopic picture in [Höf18a]. This result has been published in SIAM Journal
on Mathematical Analysis, [Höf18b].

If the sedimenting particles are non-spherical, the orientation of the particles influences the
macroscopic behavior. We study a macroscopic model for the sedimentation of inertialess rod-like
particles. We investigate the well-posedness of this system, which is more delicate than in the case of
the transport-Stokes equations and the Vlasov-Stokes equations. Short-time existence for the full
system and global well-posedness for cylindrically symmetric initial data is established.
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Chapter 1

Introduction

Small particles moving in a fluid are encountered in various situations in nature and technology.
In many cases, gravitation is the driving force for the movement of the particles. Although the force
acting on each particle due to the gravity is directly proportional to its mass, and there is no direct
(e.g. electromagnetic) interaction between the particles themselves, the motion of the particles will
be quite complex in many situations. The complexity arises from the interaction of the particles
through the fluid. Indeed, the presence of each particle induces a disturbance in the fluid flow which
again influences all the other particles. In viscous fluids, this disturbance is of a long range nature,
decaying like one over the distance. Therefore, the motion of a cloud of particles will in general
show a significantly different qualitative behavior than the motion of a single particle. In particular,
while the latter problem might be studied by explicit analytic solution, this is beyond hope for a
system of many particles. Moreover, if the number of particles exceeds a certain value, the full
problem becomes inaccessible by numerical simulations. On the other hand, from a practical point of
view, the exact particle trajectory of every single particle is not relevant in most applications, but
rather macroscopic quantities like the local average density and velocity of particles. Therefore, it
is desirable to derive effective macroscopic equations that govern the motion of the particles in the
limit of many small particles.

Various physical parameters determine the effective sedimentation dynamics. On the one hand,
there are the properties of the fluid surrounding the particles, namely its mass density, viscosity, and
temperature, as well as the size and shape of the container bounding the fluid. On the other hand,
there are the properties of the particles, their mass density, volume fraction in the fluid, and size and
shape of the cloud of particles under consideration. Most prominently, though, it is the size of the
particles that determine the dynamics. Indeed, sedimentation processes occur at various length-scales
of particles ranging from macromolecules and viruses (∼ 10 nm− 100 nm) to suspensions of dust and
sand to large macroscopic objects like rocks (see e.g. [Dho96; Van06; Jul10]).

Larger particles settle faster than smaller particles, and the fluid flow tends to become turbulent
then. On the other hand, for very small particles, the effect of Brownian motion of the particles
becomes important. This thesis focuses on the intermediate regime of particles where both Brownian
motion and fluid inertia is negligible. The fluid flow can then be modeled by the Stokes equations.

This regime is described by two dimensionless quantities, low Reynolds number Re such that the
fluid inertia is small, and high Péclet number Pe such that the motion due to gravity (and the induced
fluid flow) is large compared to Brownian motion. We will elaborate more on the identification of
these regimes in Section 2.2.1, where we consider the settling of a single sphere, and in Section 2.3,
where we formally derive macroscopic equations for sedimentation. In Section 2.3, we will also discuss
two more dimensionless quantities that determine the macroscopic behavior the dynamics; the Stokes
number St which accounts for the inertia of the particles and the parameter γ for the interaction

1



2 Introduction

strength between the particles.
Another important factor for the sedimentation is the shape of the particles. In the simplest case

the particles are spherical such that their orientation is irrelevant. In contrast, if one considers a single
particle of elongated shape, then it will fall faster oriented in the direction of gravity than with a
transverse orientation. For the sake of simplicity of the model and the feasibility of the mathematical
analysis, we will mostly restrict our study to spherical particles. However, the sedimentation of very
elongated particles such as fibers and polymers occurs in various applications, and it shows some
strikingly different phenomena compared to the sedimentation of spherical particles. We therefore
also study a macroscopic model for such rod-like particles.

As another simplification of our models, we will consider monodisperse suspensions, i.e., all
particles have identical size (and shape). We will only include polydiversity in the formal derivation
of macroscopic equations in Section 2.3. Finally, we consider all the sedimentation processes in the
idealized situation of a fluid that fills the whole space R3, and at very small volume fraction of the
particles. We briefly discuss effects of finite volume fraction and sedimentation in bounded containers
in Section 2.5.

1.1 Macroscopic sedimentation models

The main focus of this thesis is directed towards the following three macroscopic sedimentation
models which we give here in dimensionless form.

The first one models the dynamics of inertialess spherical particles:

∂tρ+

(
u+

2

9
γ−1g

)
· ∇ρ = 0,

−∆u+∇p = ρg, div u = 0 in R3, u(x)→ 0 as |x| → ∞.
(1.1.1)

Here, ρ(t, x) is the density of particles at time t and position x ∈ R3, and u(t, x) and p(t, x) are the
fluid velocity and pressure, respectively. Moreover, g is the (dimensionless) gravitational acceleration,
and γ is the dimensionless quantity accounting for the interaction strength between the particles
mentioned above.

These equations, which we call the transport-Stokes equations, have the following interpretation:
Since the particles are inertialess, their velocity is determined by the fluid velocity at the position of
the particle and the strength of the gravity as u+ 2/(9γ)g. Moreover, the gravitational force acting
on each particle must be the balanced by the drag force exerted by the fluid. By Newton’s third law,
this implies that the particles are exerting the same force on the fluid which leads to the source term
ρg in the Stokes equations above.

The second model describes sedimentation of spherical particles when the inertia of the particles
becomes relevant:

∂tf + v · ∇xf + St−1 divv

(
γ−1gf +

9

2
(u− v)f

)
= 0,

−∆u+∇p = 6πγ

ˆ
R3

(v − u)f dv, div u = 0 in R3, u(x)→ 0 as |x| → ∞.
(1.1.2)

Here, f(t, x, v) is the density of particles at time t and position x ∈ R3 with velocity v ∈ R3, and St
is the Stokes number that accounts for the effect of the particle inertia.

This system of equations is called the Vlasov-Stokes equations. The particles are accelerated
by gravity and by the fluid drag force which is proportional to the difference between the fluid and
particle velocity. On the other hand, again by Newton’s third law, the particles exert the same force
on the fluid, leading to the fluid equations above, which are known as Brinkman equations.
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Finally, for inertialess rod-like particles, we consider the system

∂tf +

(
u+

1

8γ−1
(Id + ξ ⊗ ξ)g

)
· ∇xf + divξ

(
Pξ⊥(ξ · ∇)uf

)
= 0,

−∆u+∇p =

ˆ
S2

fg dξ, div u = 0 in R3, u(x)→ 0 as |x| → ∞.
(1.1.3)

Here f(t, x, ξ) denotes the density of particles at time t and position x that have an orientation ξ
considered as an element in the two-dimensional unit sphere1 S2. Moreover, Id denotes the identity
matrix, and Pξ⊥ denotes the orthogonal projection to the orthogonal complement of ξ.

In contrast to the inertialess system for spherical particles (1.1.1), the velocity of the particles
now depends also on their orientation. This orientation undergoes changes due to the fluid flow,
which satisfies the analogous of the Stokes equations in (1.1.1) since

´
S2 f dξ to the spatial particle

density corresponds to ρ in (1.1.1)..

1.2 Outline

The systems (1.1.1), (1.1.2), and (1.1.3) and related equations are used in the physics and
engineering literature for the macroscopic modeling of sedimentation (see e.g. [Wil18; Koc90; O’R81;
CP83; DE88]) So far, very little is known about these models from the mathematical perspective.
The ultimate goal would be a comprehensive analysis of these equations as well as their rigorous
derivation as limits of particle systems. The only one of these models which has been rigorously
derived so far is the transport-Stokes system (1.1.1). This derivation is the content of Chapter 4.
Regarding the Vlasov-Stokes equations (1.1.2), there are only results concerning the derivation of
the fluid equations, the Brinkman equations, without taking into account the time evolution of the
particles. We extended the existing results in the literature in [GHV18] and [GH18], which we will
present in Chapter 5 and 6. We study the full macroscopic Vlasov-Stokes equations (1.1.2) in Chapter
7 and prove convergence of the system to the transport-Stokes equations (1.1.1) in the asymptotic
limit of small particle inertia St→ 0. In Chapter 8, we prove local well-posedness for the rod model
1.1.3 and existence of global solutions under the assumption of cylinder symmetry. The remaining
sections of the introduction are devoted to a more detailed outline and discussion of these main
results of the thesis. For the precise statements, though, we will refer to the respective chapters.

In Chapter 2 we will give a more detailed introduction and overview of the microscopic and
macroscopic aspects of sedimentation and suspension dynamics without proving original mathematical
results. Starting from a discussion of the settling of a single body in infinite Stokes fluids, we will give
a formal derivation of the three macroscopic sedimentation models (1.1.1), (1.1.2), and (1.1.3) that
we introduced above. We also discuss the various physical regimes in which these equations can be
expected to hold. Furthermore, we give an overview of some phenomena regarding the macroscopic
behavior of sedimentation dynamics which have been observed experimentally and numerically. It
can be hoped that some of these phenomena could be understood in the future by analyzing the
underlying macroscopic equations. Finally, we briefly discuss two effects on particle sedimentation
that we are neglecting for the rest of this thesis: the effects of finite volume fraction of the particles
and the effects of container walls.

1Strictly speaking, the orientation is of course undirected, and thus an element of the projective space. For all our
purposes, though, it is more convenient to work with ξ ∈ S2.



4 Introduction

1.3 The method of reflections

In Chapter 3, we study the method of reflections and some applications to homogenization
problems. We will discuss below how this method is used in and linked to the study of sedimentation
problems. The method of reflections is a method to represent the solution of a (linear) boundary
value problem where the boundary consists of several connected components. One example is the
Dirichlet problem of the Poisson equation in perforated domains. More precisely, we consider the
space R3 which is perforated by pairwise disjoint particles {Ωi}i∈I where I is a finite or countable
index set. Then, given a source term f ∈ Ḣ−1(R3), the dual space of the homogeneous Sobolev space
Ḣ1(R3) := {v ∈ L6(R3) : ∇v ∈ L2(R3)}, we study the problem of finding the solution to

−∆u = f in R3 \
⋃
i∈I

Ωi,

u = 0 in
⋃
i∈I

Ωi.
(1.3.1)

By the standard theory, this problem has a unique weak solution u ∈ Ḣ1(R3). The Method of
Reflection formally gives this solution in terms of a series expansion

u =
∑
k∈N

Φk. (1.3.2)

Here, Φ0 ∈ Ḣ1
0 (R3) is the solution to the problem neglecting the effect of the particles, i.e., Φ0 solves

−∆Φ0 = f in R3.

Then, one defines Φ1 :=
∑

i∈I Φ1,i, where the function Φ1,i is the reflection of Φ0 at the i-th particle,
which means that

−∆Φ1,i = 0 in R3 \ Ωi,

Φ1,i = −Φ0 in Ωi.

In other words Φ1,i is chosen such that Φ0 + Φ1,i would solve (1.3.1) if the i-th particle was the only
particle. If there is more than one particle, Ψ1 := Φ0 + Φ1 will in general not solve (1.3.1), since
Φ1,i 6= 0 in Ωj for j 6= i. Therefore, next order corrections are needed. More precisely, one inductively
defines the functions Φk,i as the solutions to

−∆Φk,i = 0 in R3 \ Ωi,

Φk,i = −
∑
j 6=i

Φk−1,j in Ωi.

Then, with Φk =
∑

i∈I Φk,i, one obtains the formal series expansion (1.3.2). If this series is convergent,
then the error terms Φk,i that we are adding to fulfill the boundary conditions become smaller and
smaller. Thus, convergence of this series should imply that the thereby defined function u indeed
solves (1.3.1). Sometimes the method explained above is referred to as the parallel method of
reflections to distinguish from its not so widespread sequential variant, where an ordering of the set
I is chosen and analogous correctors Φk,i are computed considering one particle after the other and
already taking into account the correction on the particles considered before.

The method of reflections was introduced by Smoluchowski in 1911 in [Smo11] in order to
calculate the interaction of spherical particles through a Stokes fluid. The importance of the method
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of reflections for similar problems in the physics and engineering community is evident from its
detailed presentation in several standard textbooks (see for instance [HB12; Dho96; KK13]). However,
the method appears to have been seldom studied from the mathematical perspective.

Luke considered in [Luk89] the sequential method of reflections for the Stokes equations with
sedimentation boundary conditions (cf. equation (1.4.1) below) for any configuration of finitely many
particles in a bounded domain. The key to his proof was to observe that the method of reflections
can be formulated in terms of orthogonal projections. Later, Traytak [Tra06] studied the parallel
method of reflections in the case of the Poisson equations with Dirichlet boundary conditions and
finitely many spherical particles in the whole space R3 and proved necessary and sufficient conditions
for the convergence of the method.

Jabin and Otto used a related method in [JO04], where they identified the regime of inertialess
particle sedimentation that is so dilute that the interaction between the particles becomes negligible.
However, the estimates used in [JO04] seem to be too rough in order to directly apply to the regime
where the interaction between the particles becomes relevant.

Recently, the method of reflections also attracted the attention in numerical analysis. In [LLS17],
the authors give an overview of both variants of the method of reflections and analyze the convergence
rate numerically. In [CGHS18], which also contains a nice historical introduction to the method of
reflections, the authors study relations between the method of reflections and classical numerical
methods, such as Schwarz methods.

In Chapter 3, we study the parallel version of the method of reflections in the whole space R3

perforated by finitely or infinitely many particles of arbitrary shape for the Poisson and the Stokes
equations. We formulate the method in terms of orthogonal projections as

N∑
k=0

Φk =

(
1−

∑
i∈I

Qi

)N
Φ0. (1.3.3)

If the Poisson equation is replaced by the so called screened Poisson equation (−∆u+ `−2)u = f
for some ` > 0, we prove that the convergence of the method of reflections is related to the
(harmonic/electrostatic) capacity density of the particles µ: If `2µ is sufficiently small, the method
converges linearly. For higher capacity densities, the method in general yields a divergent series.
However, in the framework of orthogonal projections, replacing the term on the right-hand side of
(1.3.3) by (

1− γ
∑
i∈I

Qi

)N
Φ0, (1.3.4)

yields a sequence which converges to the solution u of the screened Poisson equation if γ is chosen
such that γ`2µ is sufficiently small.

For the Poisson and Stokes equations, a similar result applies for finitely many particles. The
method when (1.3.3) is replaced by (1.3.4) has been studied independently of the author’s work in
[LLS17] for γ = N−1, where N is the number of particles. In [LLS17], this variant of the method is
then called the averaged (parallel) method of reflections, and it is proved that it always leads to a
convergent sequence.

For infinitely many particles, the method yields a divergent series due to the long range structure
of these equations. However, it is possible to consider instead of (1.3.4) the sequence given by(

1−
∑
i∈I

γiQi

)N
Φ0. (1.3.5)
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We show in Chapter 3 how to choose γi such that this defines a sequence which converges to the
solution u of (1.3.1).

Chapter 3 contains the results of [HV18], which is based on the author’s master’s thesis [Höf15].
However, the results we are able to prove convergence of the (modified) method of reflections in
Chapter 3 under much milder assumption on the particle configuration compared to [HV18] and
[Höf15]. In [Höf15], the assumption is made, that all the particles are spherical with identical radii
and centers on the lattice (dZ)3. In [HV18], the particles are allowed to have different size and shape.
Instead of particles on a lattice, particle configurations are treated where the particles satisfy the
following minimal distance condition: Each particle Ωi is contained in a ball Bri(xi), such that

sup
i∈I

sup
j 6=i

ri
|xi − xj |3

≤ µ0 <∞.

The quantity µ0 provides an upper bound for the capacity density of the particles (see Section 1.5.
In [HV18], we also simplified some of the arguments and extended the results of [Höf15] to the Stokes
equations. In Chapter 3, we prove the same convergence results for the method of reflections under
the much less restrictive assumption

∑
i∈I

∑
j 6=i

rirje
2|xi−xj |

`

|xi − xj |2
<∞

for some ` > 0.
In Chapter 3, we will also show how to use the method of reflections in order to give a new proof

of homogenization results in domains perforated by many small particles. In particular, the method
allows us to prove the homogenization of the Stokes equations to the Brinkman equations in the
limit of many small particles. The Brinkman equations are the fluid equations in the macroscopic
sedimentation model (1.1.2). We will comment more on these homogenization results in Section 1.5.
Moreover, as we will explain in Section 1.4, the method of reflections in its framework of orthogonal
projections is one of the key ingredients in proving the convergence of the microscopic inertialess
particle sedimentation to the macroscopic equations (1.1.1), which is proved in Chapter 4.

1.4 The derivation of the transport-Stokes equations

In Chapter 4, we rigorously derive the transport-Stokes equations (1.1.1) as a mean field limit of
microscopic inertialess particle sedimentation in Stokes flows. More precisely, we consider N spherical
particles Bi := BR(Xi), 1 ≤ i ≤ N and study the following dimensionless system for inertialess
non-rotating particles

−∆v +∇p = 0, div v = 0 in R3\
N⋃
i=1

Bi,

v = Vi in Bi, v(x)→ 0 as |x| → ∞,

Ẋi = Vi,
4π

3N
g = −

ˆ
∂Bi

σ[v]ndH2, for 1 ≤ i ≤ N.

(1.4.1)

Here, σ[v] = ∇v + (∇v)T − p Id is the fluid stress. The boundary conditions imposed on the fluid
are the so called sedimentation boundary conditions (or boundary conditions of the fourth kind).
They consist in prescribing the total force each particle acts on the fluid (last equation) and the
no-slip condition that the fluid flow has to equal a constant at the boundary of each of the particles
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(since they are not allowed to rotate). Since the particles are inertialess, these constants, which
are the particle velocities Vi, are not prescribed but determined by solving the fluid equation. For
convenience, the fluid velocity v is extended by Vi inside of the particle Bi. The rotations of particles
are neglected for the sake of simplicity of the model only. They are negligible in the homogenization
limit of many small particles (cf. [Mec18]).

More details on the approximations and nondimensionalization leading to the microscopic model
(1.4.1) as well as a discussion about the physical regime of its validity can be found in Chapter 2.3.

The system (1.4.1) has been widely used as a model for particle sedimentation, in particular as a
starting point for formal calculations of sedimentation velocities and numerical simulations (see for
instance [Has59; Bat72; Hin77; Nic+95; GM12b]).

There are a number of papers (e.g. [CP83; Koc90]) about the derivations of the transport-Stokes
equations (1.1.1). However, the first preliminary step towards a rigorous derivation of a macroscopic
system from the microscopic particle system (1.5.1) has only been made in [JO04], where the regime
is identified where the particle interaction is negligible, and thus all the particles settle like isolated
particles. In particular, they found that if the minimal distance between the particles dN,min satisfies
dN,min & N−1/3, the quantity γ := NR determines the interaction strength between the particles
(note that due to the nondimensionalization, the system size, which affects the interaction strength,
has been rescaled to 1).

In Chapter 4, which contains the results of [Höf18a], we prove the convergence of the particle
model (1.4.1) towards the macroscopic equations (1.1.1) in the limit N → ∞ with R → 0 and
γ → γ∗ ∈ (0,∞]. We postpone the precise formulation of the convergence result to Chapter 4.
Roughly speaking, we prove uniform convergence in [0, T )× R3 for any time T > 0 for an averaged
particle density ρN to the solution ρ of the (1.1.1) with initial datum ρ0 under the three conditions,
first, that the initial average particle density ρN (0, ·) converges to ρ0, second, that the initial particle
configurations satisfies the estimate dN,min & N−1/3 uniformly in N , and third, that NR3 logN → 0.

This last condition is slightly more restrictive than imposing that the volume fraction φN := NR3

converges to zero, which is very natural since a non-vanishing limit volume fraction φ would (at least
formally) change the limit viscosity in (1.1.1) according to the Einstein law µeff = (1 + 5/2φ)µ (with
µ = 1 in our case due to the nondimensionalization). We will discuss this effect in more details (but
on a formal level) in Chapter 2.5.2.

The constraint dN,min & N−1/3 on the initial particle configurations is imposed to rule out the
presence of clusters of too close particles that would change the effective behavior of the dynamics.
However, this assumption is the main drawback of the result, as it is not satisfied with a probability
that tends to 1 as R→ 0 if the initial particle distribution is random according to any reasonable
probability distribution. It would be highly desirable to be able to consider such stochastic initial
data, since from the physical point of view it is practically impossible to have an exact control on the
initial configuration.

As a first step in this direction, Mecherbet [Mec18] has been able to relax the condition dN,min &
N−1/3 to allow more initial particle configurations. However, her conditions are still not general
enough in order to allow for a probabilistic result. In [Mec18], the microscopic model includes particle
rotations, and it is shown that the rotations indeed do not affect the macroscopic behavior. Moreover,
a quantitative convergence rate of the microscopic particle density towards the macroscopic particle
in terms of Wasserstein distances is proved. As a drawback, the results in [Mec18] are only proved
for short times.

The rigorous derivation of mean field limits similar to the systems (1.1.1), (1.1.2), and (1.1.3)
from particle models are in general very difficult. Although such a mean field limit can be derived in
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a quite straightforward manner if the particle interaction is given by

V̇i =
1

N

∑
j 6=i

F (Xi −Xj), (1.4.2)

for a smooth force F (see [BH77]), it has long been recognized to be a very challenging task when
the interactions are singular, which is the case in many physical relevant problems, most prominently,
F (x) ∼ ±1/|x|2 in the case of gravitational or Coulombian force. Here, the mean field limit has only
been accomplished if the singularity is cut off or the singularity is sufficiently mild (see [HJ07; HJ15]).

For the particle systems considered in this thesis, each particle changes the fluid velocity at each
point in a manner that behaves like the inverse distance to that particle. Hence, all the problems that
we study here correspond to singular interactions. However, for the system of inertialess particles
(1.4.1), the interaction does not determine the acceleration but the velocity of the particles. This
has certain advantages, as it can be hoped that very close particles have almost the same velocities
leading to estimates on their relative distance over time. We will comment on the difficulties arising
from inertial particles in the next section. Another system, where the interaction determines the
velocity and not the acceleration is the vortex model, where the vortex formulation of the Euler
equations has been obtained in the mean field limit in [GHL90; HL90]

On the other hand, there is an additional obstruction to the derivation of sedimentation models:
the particle interaction is not given as in (1.4.2) by an explicitly given force which only depends on the
distance between the particles. In contrast, in sedimentation problems, the particles are interacting
with each other by modifying the fluid flow. Therefore, the interaction has a more complex structure,
since one has to solve a boundary value Stokes problem.

A way to overcome this problem is to find sufficiently good approximations of the fluid velocities
which are more explicit. This is exactly what we will do in Chapter 4, by considering the fluid flow
uN that one gets if one assumes that the force which every particle exerts on the fluid is distributed
uniformly on the boundary of that particle. Then, since the total force is given by the last equation
in (1.4.1), the only difference between the exact solution vN to the fluid equations of (1.4.1) and the
approximation uN is how these forces are distributed at each particles. Since the particles are very
small, one is therefore led to think that the approximation of vN to uN is very accurate.

However, in order to control each of the particle trajectories, we effectively need L∞-estimates for
uN − vN which are usually difficult to obtain. This is where we employ the method of reflections
yielding an explicit series representation for vN . It is possible to apply the method in such a way
that the first term in this series is given by the approximation uN , and the k-th order terms can be
shown to be of order φkN , which proves the desired estimate for uN − vN , since the volume fraction
φN is assumed to tend to zero in the limit N →∞.

The reason why the condition dN,min & N−1/3 on the initial particle configuration is imposed is
that the Method of Reflection breaks down when some of the particles are too close to each other,
and it is indeed to be suspected that the approximation of vN by uN is actually not accurate at
every particle if they are not sufficiently well separated.

Thus, another difficulty in the proof is to show that the condition dN,min & N−1/3, which can
only be imposed for the initial distribution of particles, persists globally in time under the dynamical
behavior of the particle system. As pointed out above this can be hoped to be true because the
particle velocities only depend on their positions and it can actually be proven again with the help of
the method of reflections.
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1.5 The Brinkman equations as the homogenized Stokes equations

The Vlasov-Stokes equations (1.1.2) as a sedimentation model has been mathematically studied
by Hamdache [Ham98], who proved global well-posedness of a similar system where the stationary
Stokes equations are replaced by the instationary Stokes equations. Since then, these and related
models for inertial particles in fluids have attracted a lot of attention: In [AMB97; BDGM09; Yu13;
WY15; CK15], global well-posedness has been proven for the Vlasov-Navier-Stokes equations. Global
existence of solution to the Vlasov-Navier-Stokes-Fokker-Planck equations (thus taking into account
particle diffusion) has been established in [GHMZ10; CKL11]. In [MV07] existence of weak solutions
to the compressible version of this system has been proved. Finally, local existence of weak solutions
to the compressible Vlasov-Euler equations have been proved in [BD06]. Several asymptotic limits of
some of these equations have been studied in [GJV04a; GJV04b; CG06; MV08].

All these results study the macroscopic systems. In contrast to the transport-Stokes equations
(1.1.1), the rigorous derivation of the Vlasov-Stokes equations (1.1.2) from a particle system is still a
widely open problem. Partial results on the derivation of the Vlasov-Navier-Stokes-Fokker-Planck
have been recently obtained in [FLR18]. For completeness, we also mention the papers [BDGR17;
BDGR18], where the Vlasov-Navier-Stokes equations are obtained as a scaling limit of a multiphase
Boltzmann system.

The dimensionless microscopic model for inertial spherical particles (corresponding to the inertia-
less model (1.4.1)) reads

−∆u+∇p = 0, div u = 0 in R3\
N⋃
i=1

Bi,

u = Vi in Bi, u(x)→ 0 as |x| → ∞,

Ẋi = Vi, V̇i = λ

(
g +

3N

4π

ˆ
∂Bi

σ[u]ndH2

)
.

(1.5.1)

The main obstacle which makes the analysis of this model even more challenging than the one for
inertialess particles is caused by the fact that inertial particles are moving significantly relative to
each other even if they are already quite close together, while for inertialess particles we are able to
rule out such behavior since their velocities only depend on their positions.

Due to the singular nature of the particle interactions, close pairs of particles move significantly
different than well separated particles. If the number of such pairs or clusters is sufficiently small, it
can be hoped that they do not affect the macroscopic behavior of the system. However, even when
we restrict ourselves to initial conditions of well separated particles, it seems plausible that one can
construct pathological initial configurations where many close pairs of particles occur after short
times, for example by putting a slower particle in front of each faster particle. In those pathological
situations, convergence to the macroscopic system (1.1.2) cannot be expected to hold.

Consequently, one can only hope for the convergence of the microscopic dynamics to the macro-
scopic equations for a large set of initial data, and the exceptional set seems very hard to characterize.
This problem is quite standard in the derivation of kinetic equations, in particular for the Boltzmann
equations (see e.g. [CIP94]) and it is therefore natural both physically and mathematically to consider
stochastic initial data. Thus, as a first step towards the derivation of the Vlasov-Stokes equations
(1.1.2), it is necessary to study the quasi-static problem of the convergence of the fluid equations to
the Brinkman equations, the fluid equations in (1.1.2), for random distributions of particles (without
considering their time-evolution), and to investigate the fluctuations of the fluid velocity.

Before we further discuss the derivation of the Brinkman equations, we remark that the issue
of particles approaching each other also occurs in certain inertialess sedimentation models: For
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non-spherical inertialess particles, the particle velocities do not only depend on their positions but
also on their orientations, such as for rod-like particles, for which the macroscopic model (1.1.3)
is proposed. Moreover, even for inertialess spherical but polydisperse particle distributions, i.e.,
systems with particles of different size, the same problem occurs since larger particles settle faster
than smaller particles. Thus, the convergence proof for inertialess spherical particles which we will
give in Chapter 4 is not easily adapted to the case of polydisperse particle distributions since the
condition dmin . N−1/3 does not persist in time.

For the study of the homogenization problem of the Stokes to the Brinkman equations, we consider
the simplified problem, where the particle velocities are set to zero. More precisely, we study the
homogenization limit of the problem

−∆uε +∇pε = f, div uε = 0 in Dε, (1.5.2)

uε = 0 on ∂Dε

in a perforated domain Dε, that is obtained from D ⊂ R3 by removing a number of small particles
indexed by Iε. We also call those particles holes in the following, in order to make clear that they
are fixed. As ε→ 0, the number of holes tends to infinity and their sizes tend to zero.

To simplify the problem even more, we first study the corresponding problem for the Poisson
instead of the Stokes equations, i.e., set to zero. More precisely, we consider the homogenization limit
of the problem

−∆uε = f, in Dε, (1.5.3)

uε = 0 on ∂Dε.

This problem can be interpreted as studying the electrostatic potential uε in the presence of many
small grounded holes. The order of magnitude of the effect of each hole on the potential is given by
the electrostatic capacity of the holes. For spherical particles {BRi(Xi)}i∈Iε , which we restrict our
attention to, their individual capacity is given by 4πRi. We therefore introduce the capacity density

µε := 4π
∑
i∈I

RiδXi .

A nontrivial effect of the holes can be expected in the limit ε→ 0, if the capacity density of the holes
is of order one. On the other hand, if the capacity density tends to zero, we expect uε → u, where u
solves the Poisson equation without holes, and, if the capacity density tends to infinity, we expect
uε → 0.

In Chapter 3, we consider the case D = R3 and use the method of reflections to study the limit
as ε→ 0. Under the assumption that the holes are sufficiently well separated and that the capacity
density µε converges in a suitable way to some µ ∈ L∞(R3) which is uniformly bounded below, we
prove that uε ⇀ u in H1(R3), where u is the solution of the screened Poisson equation

−∆u+ µu = f, in R3.

We also prove the analogous result for the Stokes equation. Here the role of the electrostatic
capacity is replaced by the Stokes resistance of the holes (see Section 2.2). In the case of a spherical
hole, this resistance is given by 6πRi. With the corresponding definition of µε, we obtain under the
same assumptions as for the Poisson equation that the sequence of solutions uε to (1.5.2) weakly
converges in H1(R3) to the solution u of the Brinkman equations

−∆u+ µu+∇p = f, div u = 0 in R3.
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Very similar results have been obtained before (see e.g. [CM82a; CM82b; All90a; DGR08]; a
detailed discussion of the existing literature will follow). We revisit these problems in Chapter 3 in
order to investigate and illustrate the use of the method of reflections, which allows us to give a
completely new proof for homogenization results in perforated domains. This new proof avoids the
classical usage of cleverly chosen test-functions in order to pass to the limit equation. Instead, the
method of reflections yields a series expansion of the solutions uε, which can be shown to converge
to u by some Riemann-sum argument. It can be hoped that this approach could lead to a better
quantitative understanding of the convergence. A variant of the method of reflections has actually
been used in [FOT85] and [Rub86] where the fluctuations uε around the limit solution u is determined
when the holes are randomly distributed. However, [FOT85] and [Rub86] are only able to treat the
case where (−∆) in (1.5.3), (1.5.2) is replaced by (−∆ + λ) for λ ∈ R has to be sufficiently large. As
mentioned in Section 1.3, this ensures the convergence of the method of reflections. In Chapter 3, we
are able to use the method of reflections without introducing λ by relying on the modified Method of
Reflection (cf. equation (1.3.5)). It can be hoped that with similar methods, also the fluctuation
results from [FOT85] and [Rub86] can be proved for the case λ = 0.

Although the Method of Reflection seems to provide a very effective tool in order to get quantitative
estimates, it becomes very difficult to apply as soon as clustering of holes occurs. In Chapter 5 and
6 we analyze under which minimal assumptions on the configuration of holes the homogenization
results for the Poisson and Stokes equations hold revisiting the classical methods that have been
used by Cioranescu and Murat [CM82a; CM82b] for the Poisson equation and by Allaire [All90a]
for the Stokes equations. There is a huge literature on the homogenization of the Poisson and
Stokes equations in perforated domains. Most results, though, in particular in the case of the Stokes
equations, apply to a deterministic setting, where situations of very close particles are explicitly ruled
out. A detailed overview of the existing literature on those homogenization problems can be found in
Stokes 5.1 and 6.1. The results in Chapter 5 and 6 are published in [GHV18] and in the preprint
[GH18].

We consider perforated domains Dε ⊂ Rd, d > 2 which are obtained by removing a randomly
generated configuration of spherical holes. More precisely, in Chapter 5

Dε := D\
⋃

zi∈Φ∩ 1
ε
D

B
ε

d
d−2 ρi

(εzi),

where 1
εD := {x ∈ Rd : εx ∈ D}. We assume that the collection Φ of the hole centers zi is generated

according to a stationary point process on Rd and that the radii {ρi}zi∈Φ are unbounded random
variables with identical 1-correlation functions and short-range correlations. We impose the minimal
constraint that the expectation of the d-dimensional capacity of each hole is finite, i.e.,

〈ρd−2〉 <∞. (1.5.4)

(Note that the rescaling B
ε

d
d−2 ρi

(εzi) is chosen according to this capacity density.) Moreover, we

require Φ to satisfy a strong mixing condition and that the variance of the number of holes in bounded
sets is finite.

These assumptions are very mild (in particular they are satisfied if Φ is a Poisson point process)
and allow for big clusters of close and even overlapping holes B

ε
d
d−2 ρi

(εzi). More precisely, clusters of

arbitrary numbers of overlapping holes appear with probability one in the limit ε→ 0. Nevertheless,
we prove that P-almost surely, when ε→ 0, the solutions uε of (1.5.3) weakly converge in H1

0 (D) to
the solution of

−∆u+ µu = f in D

u = 0 on ∂D,
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where µ is the average capacity density of the holes. Due to stationarity, this average capacity density
is constant and given by

µ = (d− 2)Hd−1(Sd−1)〈ρd−2〉〈#(Φ ∩Q)〉,

where Sd−1 is the (d− 1)-dimensional unit sphere in Rd, and 〈#(Φ ∩Q)〉 is the expected number of
holes in a unit cube Q.

The main challenge in the proof of this result is do deal with the clusters of close holes. We treat
these particles by a careful study of the geometry of the perforation leading to a smallness estimate
of the capacity of these “bad” holes. Due to subadditivity of the capacity, we are then able to prove
that the effect of these “bad” holes is negligible in the limit ε→ 0.

In Chapter 6, we present corresponding results for the Stokes equations. Due to the incompress-
ibility, the analysis is significantly more difficult in this case, since for the Stokes resistance, that
corresponds to the electrostatic capacity for the Poisson equation, subadditivity fails. However, we
are nevertheless able to prove the homogenization to the Brinkman equations under the slightly
strengthened condition when (1.5.4) is replaced by

〈ρd−2+β〉 <∞ for some β > 0. (1.5.5)

For simplicity, we only consider the case, when Φ is a Poisson point process and the radii ρi are
identically and independently distributed. Condition (1.5.5) is used in a even more detailed analysis
of the geometry of the random perforation, where we prove that P-almost surely, as ε→ 0, there are
no clusters of more than M close holes of similar size, where M is a number that depends on β and
d. It must be emphasized, though, that clusters of arbitrary number of overlapping holes which are
composed of different sizes of holes still appear with probability one in the limit ε→ 0.

1.6 The inertialess limit of the Vlasov-Stokes equations

In Chapter 7, we prove the convergence of the solutions to the Vlasov-Stokes equations (1.1.2) to
the solutions of the transport-Stokes equations (1.1.1) in the limit St→ 0 with γ ∈ R+ fixed. This
result is expected, since the Stokes number St in the Vlasov-Stokes equations (1.1.2) determines the
strength of the particle inertia and the transport-Stokes equations 1.1.1 models inertialess particles.

We again postpone the precise formulation of the convergence to Chapter 7. We remark, however,
that the solution to the Vlasov-Stokes equations (1.1.2) with parameter St is a function fSt depending
on time t, position x and velocity v. On the other hand, since the transport-Stokes equations model
inertialess particles, the solution is a function ρ depending only on time t and position x. Thus,
the convergence takes place for the velocity averages of fSt, i.e., for ρSt :=

´
R3 fSt dv. The main

aspect of the convergence proof is to establish that in the limit St→ 0, fSt concentrates in the space
of velocities around the transport velocity u+ 2/9γ−1g of (1.1.1). This concentration happens on
the timescale St, inducing a boundary layer at time zero, where the particles adapt their velocities
without moving. Consequently, the convergence of the fluid velocities only happens for positive times
and not at the initial time.

As already mentioned at the beginning of Section 1.5, asymptotic limits of the related equations
have been studied before in [GJV04a; GJV04b; CG06; MV08]. However, all these papers study
the case where the diffusion of the particles is significant, thus modeling the particle evolution by
a Vlasov-Fokker-Planck equation coupled to some equations for the fluid flow. The diffusive term
completely changes the nature of the system. In particular, the analysis in [GJV04a; GJV04b; CG06;
MV08] is based on a relation between the dissipated energy of the system and a relative entropy,
which is not available for the study of the Vlasov-Stokes equations. Therefore, the proof of the
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convergence result in Chapter 7 is based on the method of characteristics. Together with an estimate
for the energy

E :=

ˆ
R3×R3

|v|2fSt dv dx, (1.6.1)

this also allows for a global well-posedness proof of the Vlasov-Stokes equations.

The main obstacle in the proof is that the energy estimate depends on St, which makes it
hard to achieve uniform estimates in the limit of St→ 0. Therefore a very careful analysis of the
characteristics is needed in order to show that the particle velocities adapt sufficiently fast to the
corresponding inertialess velocities.

1.7 Well-posedness results for a model of sedimentation of rod-like
particles

In Chapter 8 we consider the macroscopic equations (1.1.3) that models the sedimentation of
inertialess rod-like particles.

The mathematical literature on suspensions of rigid rod-like particles is even more limited than
for spherical particles. There are only some results concerning the so called Doi model which goes
back to [Doi81] (see also [DE88]). In this model, Brownian motion of the particles is taken into
account leading to an additional diffusion terms in the system (1.1.3). In [OT08] stationary solutions
and perturbations around those solutions have been studied. Existence of weak solution to the same
model has been proved in [BT13] and it has been studied numerically by [HO06].

In Chapter, we will prove short time existence of solutions to the rod model (1.1.3). The proof is
based on the method of characteristics and a fixed point argument. It is very similar to the existence
proof to solutions of the Vlasov-Stokes equations (1.1.2) that we give in Chapter 4.3. However, in
contrast to the Vlasov-Stokes equations, we are not able to prove the existence of global solutions for
the rod model (1.1.3). In comparison with the Vlasov-Stokes equations, there are two aspects that
make the existence proof more challenging. First, in the rod-model (1.1.3), not only the fluid velocity
u appears but also its gradient, which is more singular. Second, in the Vlasov-Stokes equations
(1.1.2), we are able to use energy estimates are available for the kinetic energy of the particles (1.6.1).
A similar energy for the rod model (1.1.3) does not seem to be available.

Regarding the first issue, the presence of ∇u and its regularity, the rod-model resembles more the
well-known Vlasov-Poisson equations than the Vlasov-Stokes system. The Vlasov-Poisson equations
are

∂tf + v · ∇xf +∇u · ∇vf = 0 in (0, T )× R3 × R3,

−∆u =

ˆ
R3

f dv in (0, T )× R3, u(x)→ 0 as |x| → ∞.
(1.7.1)

For the Vlasov-Poisson equations global well-posedness has first been proved in [Pfa92] (see also
[Sch91] for an improved version of the proof of [Pfa92]), also based on the method of characteristics.
However, even if from the regularity point of view the Vlasov-Poisson equations (1.7.1) look very
similar to the rod model (1.1.3), there are important differences: as for the Vlasov-Stokes equations,
the Vlasov-Poisson system comes with a natural kinetic energy. The main difference, though, lies
in the (a priori) possible blowup scenarios for solutions to the Vlasov-Poisson equations on the one
hand and for solutions to the rod model on the other hand.

In both cases, the possible blowup lies in the L∞-norm of the spatial particle density ρ. For the
Vlasov-Poisson equations, we have ρ =

´
R3 f dv, for the rod-model ρ =

´
S2 f dξ. For the Vlasov-

Poisson equitations, the L∞-norm of f is conserved. Hence, blowup of ρ can only occur if the velocity
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of the particles blow up. Therefore, the main technical effort in [Pfa92] goes into estimates on the
support of f(t, x·) in the space of velocities (uniformly in x) under the assumption of compactly
supported initial data f0. On the other hand, for the rod-model (1.1.3), this is no issue since S2 is
compact. However, the dynamics does not preserve the L∞-norm of f . Therefore, in order to prove
global well-posedness of the rod model (1.1.3), estimates for ‖f(t, ·)‖∞ have to be proved.

In order to get insights on whether blowup in finite time of solutions to the rod-model (1.1.3)
occurs or how to rule out such behavior, we also study in Chapter 8 a simplified version of (1.1.3).
This simplified version is derived from the full system (1.1.3) in the case of cylindrically initial data
f0. This symmetry assumption considerably reduces the complexity of the system, but it preserves
the general structure which a priori could produce blowup phenomena. However, we will prove in
Chapter 8 that this rod model for cylinder symmetrical solutions is well-posed globally in time.



Chapter 2

Microscopic and macroscopic
sedimentation models

This chapter introduces the theory of sedimentation. This introduction is not intended to be
comprehensive but rather focuses on problems treated later in this thesis and related problems. This
chapter does not contain original rigorous mathematical results.

The classical problem of a single body in an infinite fluid modeled by Stokes equations is the
topic of Section 2.2. This is the starting point for almost any sedimentation model. We also discuss
in the context of this section the assumption of neglecting the fluid (and particle) inertia as well as
particle diffusion. In Section 2.3 we formally derive the macroscopic sedimentation models (1.1.1),
(1.1.2), and (1.1.3) and discuss their physical range of application. In Section 2.4, we formally take
several scaling limits of the Vlasov-Stokes equations (1.1.2), including the inertialess limit, which
is rigorously treated in Chapter 7. Finally, in Section 2.5, we discuss some further phenomena on
particle sedimentation that have attracted a lot of attention in the physics community but are not
treated in this thesis. It seems worthwhile to consider these problems in future research.

For a general introduction to physical hydrodynamics, we refer the reader to [LL87; BB67;
GHPM01] and to [HB12] for hydrodynamics at small Reynolds numbers.

2.1 List of Symbols

Throughout this chapter, a lot of symbols are used to denote various physical quantities. Therefore
a list of symbols used in this chapter is given below. We will give a precise definition of these symbols
when they first appear.

The usage of these symbols in the other chapters might deviate in some cases.

u, v fluid velocity
p, q fluid pressure
R particle radius
X particle position
V particle velocity
Ω particle angular velocity
Ξ particle orientation for a rod-like particle
ρf fluid mass density
ρp particle mass density
µ dynamic viscosity
σ[v] fluid stress related to a fluid velocity v
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g gravitational acceleration
ĝ normalized gravitational acceleration (ĝ := g/|g|)
mp particle mass
Ip particle moment of inertia
F force acting on a particle
T torque acting on a particle
VSt “Stokes velocity”, settling velocity of a single particle in infinite unperturbed fluid
M Stokes resistance matrix
Θ temperature
T typical time
L typical length
U typical velocity
D diffusion constant
φ volume fraction of the particles
Re Reynolds number
St Stokes number
Pe Péclet number
kB Boltzmann constant
γ interaction strength
λ (Stγ)−1

S2 two dimensional unit sphere
n outer unit normal
H2 two dimensional Hausdorff measure
δ∂Br(x) normalized Hausdorff measure on ∂Br(x)

Id identity matrix

2.2 The settling of a single particle

In this section, we summarize results on the settling of a single particle in the idealized situation
of an otherwise unperturbed infinite fluid. As throughout the thesis, we mostly restrict the discussion
to the idealized situation of zero Reynolds numbers and infinite Péclet number, where inertia of the
fluid and Brownian diffusion of the particle is negligible. A discussion about the regime where this
is a valid approximation is included in the following subsection. In this regime, there is a linear
dependence between the particle velocity and the drag force exerted on it by the fluid, and this
relation completely describes the settling of the particle. We will not give the detailed computations
leading to the results that we summarize in this section. They can be found in standard textbooks,
e.g. in [HB12].

The first systematic study of the diffusive motion (low Péclet number) of particles in fluids has
been undertaken by Einstein in a series of papers that can be found in [Ein56]. For an introduction
to this topic, we also refer the reader to [Dho96]. The motion of bodies in turbulent flows (high
Reynolds number) is an extremely complicated issue. In particular, the relation between the velocity
of the body and the drag force acting on it is nonlinear for nonzero Reynolds numbers. Experiments
suggest that for sufficiently large Reynolds numbers the drag force is proportional to the square of
the velocity with a constant independent of the Reynolds number. At present, the mathematical
analysis of this topic is very much limited to numerical simulations. An introduction to turbulent
flows can be found in [Bat53; LL87].
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2.2.1 The settling of a single spherical particle

The mathematical study of sedimentation goes back to Stokes [Sto51] who calculated the drag
force acting on a solid body moving in a creeping flow. More precisely, let us consider a spherical
particle of radius R and mass density ρp settling in a fluid of (dynamic) viscosity µ and density
ρf extending to all of R3 and which is at rest at infinity. Then, modeling the fluid flow by the
incompressible Navier-Stokes equations, the problem is to find the solution to

ρf (∂tv + (v · ∇)v)− µ∆v+∇p = ρfg, div v = 0 in R3 \BR(X(t)),

v(t, x) = V (t) + Ω(t)× (x−X(t)) in BR(X(t)), v(t, x)→ 0 as |x| → ∞,

Ẋ = V, mpV̇ = mpg +

ˆ
∂BR(X(t))

σ[v]ndH2,

IpΩ̇ =

ˆ
∂BR(X(t))

(x−X(t))× (σ[v]n) dH2.

Here, v(t, x) and p(t, x) are the fluid velocity and pressure at time t and position x, and σ[v] :=
µ(∇v + (∇v)T ) − pId denotes the fluid stress. Moreover, g ∈ R3 is the gravitational acceleration,
X,V , and Ω denote the position, the velocity, and the angular velocity of the particle respectively,
and mp and Ip are the mass and the moment of inertia of the particle. Furthermore, n denotes the
outer unit normal and H2 the two-dimensional Hausdorff measure.

Stokes simplified this problem by making the assumption that the Reynolds number

Re =
ρfLU

µ

is small compared to unity, where U is the ‘typical’ value of |v|, and L is the ‘typical’ length-scale
over which v changes. If Re� 1, one might justify (at least formally) to drop the convective/inertial
term ρf (∂tv + (v · ∇)v) yielding the Stokes equations instead of the Navier-Stokes equations. Then,
neglecting also the rotation of the particle (which can actually be shown to converge to zero as t→∞
for a spherical particle) one can determine the terminal velocity VSt of the particle, by solving the
stationary problem

−µ∆v +∇p = ρfg, div v = 0 in R3 \BR(0), v(x)→ 0 as |x| → ∞,

v = VSt in BR(0), mpg = −
ˆ
∂BR(0)

σ[v]ndH2.

Note the special type of boundary conditions that are imposed here: The total force that the fluid
acts on the particle is prescribed to equal mpg. On the other hand, the fluid velocity v needs to be
constant in BR(0), but this constant, which we denote by VSt, is not given but part of the problem.
These boundary conditions are sometimes referred to as boundary conditions of the fourth type, or,
more intuitively for our purpose, as sedimentation boundary conditions.

After changing the pressure by defining p(x) =: q(x) + ρg · x, and using mp = (4π/3)R3ρp this
problem becomes

−µ∆v +∇q = 0, div v = 0 in R3 \BR(0), v(x)→ 0 as |x| → ∞,

v = VSt in BR(0), F :=
4π

3
R3(ρp − ρf )g = −

ˆ
∂BR(0)

σ[v]ndH2,
(2.2.1)

where now (abusing the notation) σ[v] := µ(∇v + (∇v)T )− qId. Stokes [Sto51] explicitly solved this
problem (by using the symmetry of the problem and introducing the so called stream function) and



18 Microscopic and macroscopic sedimentation models

computed

VSt =
F

6πµR
=

2

9

(ρp − ρf )R2g

µ
. (2.2.2)

Moreover, the explicit computation reveals that the force F = 6πµRVSt, which the particle is dragging
the fluid with, is uniformly distributed on the boundary of the spherical particle. In particular, there
is no torque exerted on the particle (as one can also deduce from a simple symmetry argument). This
is different for non-spherical particles as we will discuss in the next subsection. Since the force F is
uniformly distributed on the boundary of the particle, u solves the problem

−µ∆v +∇q = Fδ∂BR(0), div v = 0 in R3, v(x)→ 0 as |x| → ∞, (2.2.3)

where δ∂BR(0) denotes the normalized uniform measure on the sphere, i.e.,

δ∂BR(0) :=
H2|∂BR(0)

H2(∂BR(0))
. (2.2.4)

We will now check a posteriori the assumption Re � 1: As typical length-scale and typical
velocity we identify R and |VSt|. Thus,

Re =
ρfR|VSt|

µ
=

2

9

ρf (ρp − ρf )R3|g|
µ2

. (2.2.5)

To get a feeling for the regime Re� 1, we insert some typical values for ρf , ρp, µ and g. We consider
water with ρf ≈ 103 kg m−3 and µ ≈ 1 kg m−1 s−1, and a grain of sand with ρp ≈ 2× 103 kg m−3.
Moreover, g ≈ 10 m s−2. Inserting into (2.2.5) yields

Re ≈ 2

9
107R3m−3.

Hence, Re� 1 if R� 1 cm. Thus, for a typical sand grain sedimenting in water, Re� 1 holds.

We can also consider the instationary problem when the particle initially has a velocity V0 different
from VSt. We again neglect the rotation of the particle. (If the spherical particle was not rotating
initially, it will also not rotate at any later time since the torque vanishes as we observed above, and
if it was rotating initially, the rotation will decay exponentially in time.) Solving only for the velocity
V (t) we use translational invariance to reduce the problem to

−µ∆v +∇q = 0 div u = 0 in R3 \BR(0), v(x)→ 0 as |x| → ∞,

v = V (t) in BR(0), V̇ =
ρp − ρf
ρp

g +
3

4πR3ρp

ˆ
∂BR(0)

σ[v]ndH2.

From (2.2.1) and (2.2.2), we already know that

ˆ
∂BR(X(t))

σ[v]ndH2 = −6πRµV (t).

Thus,

V̇ =
ρp − ρf
ρp

g − 9µ

2R2ρp
V (t),
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which solution is given by

V (t) = VSt + exp

(
− 9µt

2R2ρp

)
(V (0)− VSt).

In particular, the particle velocity adapts to the terminal settling velocity in times of order

Tt =
2

9

R2ρp
µ

. (2.2.6)

On the other hand, the time in which the body, having attained its terminal velocity, falls down the
distance given by its radius is

T =
R

|VSt|
=

9

2

µ

(ρp − ρf )R|g|
.

Comparing those times, this yields for the so called Stokes number

St :=
Tt
T

=

(
2

9

)2 (ρp − ρf )ρpR
3|g|

µ2
.

The Stokes number St determines the importance of the particle inertia. Comparing the Stokes
number St to the Reynolds number Re in (2.2.5), we see that their values are quite similar in this
situation, if the fluid density ρf and the particle density ρp are of the same order. Therefore, (with
the possible exception of dilute gases when ρf � ρp) if the fluid inertia is negligible for the settling
of a single body, so is the particle inertia.

In the above computation, we completely ignored the phenomenon that a particle suspended in a
fluid undergoes Brownian diffusion due to random collision with fluid molecules. Throughout this
thesis, we restrict out study to non-Brownian particles. However, in order to identify the regime,
where Brownian motion is negligible, we will briefly address this issue in the next paragraphs. For a
more comprehensive introduction to the diffusive motion of particles in fluids, we refer the reader to
[Dho96].

The diffusion constant for a particle is given by the Einstein relation

D = kBΘM−1 (2.2.7)

where Θ is the absolute temperature, kB the Boltzmann constant, and M−1 is the mobility, the
inverse of the resistance to translations of the particle. More precisely, if the particle translates
with velocity V in an infinite fluid at rest, then the force the particle exerts on the fluid is given
by F = MV . For a spherical particle with radius R, equation (2.2.2) implies M = 6πRµ. (For a
particle of arbitrary shape, M will generally be a matrix (see Section 2.2.2).)

The variance of the particle’s position X after time t due to Brownian motion is given by1

E(|X|2) = 6Dt.

Thus, the typical distance the particle travels due to diffusion in time t is given by
√
|D|t. In order

to find out, whether Brownian motion may be neglected, we need to compare this distance to the
distance the particle travels neglecting the Brownian motion. Since this distance depends linearly on
time in contrast to the square-root dependence of the diffusion distance, the result will depend on
the considered time-scale. The typical time is related to the typical length L by T = L/U , where U

1For a general particle, both M and D are matrices, 6D in this identity has to be replaced 2 trD
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is the absolute value of the velocity of the particle. Hence, the relevant quantity for the importance
of Brownian motion is the so-called Péclet number(

UT√
DT

)2

=
UL

|D|
=: Pe. (2.2.8)

For the problem of a sedimenting sphere in infinite fluid, one might choose as the typical length
the radius of the particle R. Then, since the settling velocity is given by the Stokes velocity (2.2.2),
we have

Pe =
|VSt|R
D

=
2

9

(ρp − ρf )R3g

µ

6πRµ

kBΘ
=

4

3
π

(ρp − ρf )R4g

kBΘ
(2.2.9)

If we consider again a grain of sand in water with the same specifications as above and at temperature
Θ ≈ 300 K, we find

Pe ≈ 1025R4m4.

Consequently, to have a large Péclet number, and thus negligible Brownian motion, the sand grain
needs to have a radius of at least 10−6 m.

We emphasize that for a sedimenting cloud of particles, the value of both the Reynolds number
and the Péclet number might change, since both the particle velocity and the relevant length-scale
might differ. We will address this question in Section 2.3.5.

2.2.2 The settling of a single particle of arbitrary shape

The trajectory of a settling body of arbitrary shape is in general more complicated than for a
spherical particle. Due to the lack of symmetry, the solution cannot be computed explicitly not
even in the small Reynolds number regime when the Navier-Stokes equations are replaced by the
Stokes equations. In this case, however, due to the linearity of the Stokes equations, there is a linear
dependence between the force F and the torque T exerted on the particle on the one hand, and
the velocity V and the angular velocity Ω of the particle on the other hand. More precisely, let us
consider a particle occupying a closed, bounded (and sufficiently regular) set K ⊂ R3 with center of
mass at the origin. Then, for any V ∈ R3 and Ω ∈ R3 there exists a unique solution to the problem

−µ∆v +∇p = 0, div v = 0 in R3 \K,
v = V + Ω× x in K, v(x)→ 0 as |x| → ∞,

and we find the force and torque acting on the fluid by

F :=

ˆ
∂K

σ[v]ndH2, T :=

ˆ
∂K

x× (σ[v]n) dH2.

Then, there exists a matrix M ∈ R6×6 such that for all V ∈ R3 and Ω ∈ R3

(F, T ) = −M(V,Ω),

where (F, T ) ∈ R6 denotes the vector composed of F and T . For a spherical particle studied in the
previous subsection, M is a diagonal matrix, and, by isotropy, the first three diagonal entries of
M are identical as are the last three. In general, however, this is not true, meaning, that a purely
translating object might experience a force which is not parallel to its velocity, and might even
experience a torque. In particular, a sedimenting particle starting from a resting position will in
general not move parallel to the direction of gravity and it will start to rotate.
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The matrix M is called the resistance matrix2, and it can be shown to be symmetric. If the
particle possesses symmetries, the complexity of the resistance matrix M reduces. In particular, if the
particle is symmetric with respect to all three coordinate axes, M is a diagonal matrix. If, in addition,
the particle is “spherically isotropic”, i.e., it is symmetric under any exchange of the coordinate axes,
then, the first three diagonal entries of M are identical as are the last three. Examples of a spherical
isotropic particle are spheres and cubes.

2.2.3 The settling of a single rod-like particle

In many applications involving sedimentation, the particles are very elongated in one direction in
comparison to the other two directions. We call such particles rod-like particles, or simply rods.

We consider a rod which is symmetric with respect to all three coordinate axes and which is
oriented with its elongated part in the direction of the x3-coordinate. For definiteness, we may think
of a particle given by

K := {(x1, x2, x3) ∈ R3 : x3 ∈ [−l, l], |(x1, x2)| ≤ r(|x3|)}, (2.2.10)

with r : [0, l) → R+ and r0 := sups∈[0,l) r(s) � l. As discussed in the previous subsection, the
resistance matrix M is diagonal. In particular, a purely translational motion of the rod will not cause
any torque on it. Our intuition tells us that the resistance of the rod to any movement perpendicular
to its orientation is larger than its resistance to moving parallel to its orientation.

For a rod-like particle, one can approximately calculate the entries of the resistance matrix using
a so called slender body theory. This approach goes back to Burgers [Bur38] and was later used by
Batchelor [Bat70] to calculate the resistance for slender bodies of the form (2.2.10). Although these
are formal computations, they can probably rigorously justified without much difficulty. As a result,
(under the assumption that r does not in a sense vary too much over [0, l]) with ε = log(2l/r0)−1

M11 = M22 = 8πµlε(1 +O(ε)), M33 = 4πµlε(1 +O(ε)). (2.2.11)

Strikingly, the force caused by translations perpendicular to the orientation of the rod is twice as
high as for translations parallel to the rod, independently of the exact shape of the rod. Hence, the
terminal settling velocity of a rod subject to a constant force F depends on its orientation ξ ∈ S2

and is approximately given by

V = (Id + ξ ⊗ ξ) F

8πµlε
. (2.2.12)

The slender body theory also yields the resistance of the particle to rotations perpendicular to its
orientation as

M44 = M55 =
8π

3
µl3ε(1 +O(ε)). (2.2.13)

2.3 Formal derivation of macroscopic sedimentation models

We consider a cloud of N spherical particles located at (X̄i)1≤i≤N with radii (R̄i)1≤i≤N and
velocities (V̄i)1≤i≤N . The fluid surrounding the particles is assumed to satisfy the Navier-Stokes

2Some authors only call the upper left 3× 3 block of M the resistance matrix.



22 Microscopic and macroscopic sedimentation models

equations with no-slip boundary conditions at the particles, neglecting particle rotations. Thus,
analogously to Section 2.2, we study the problem

ρf (∂tv̄ + (v̄ · ∇)v̄)− µ∆v̄ +∇p = 0, div v̄ = 0 in R3\
N⋃
i=1

Bi, (2.3.1)

v̄ = V̄i in Bi, v̄(x)→ 0 as |x| → ∞, (2.3.2)

˙̄Xi = V̄i, ρp
4π

3
R̄3
i

˙̄Vi =
4π

3
R̄3
i (ρp − ρl)g +

ˆ
∂Bi

σ̄[v̄]ndH2, (2.3.3)

Here, Bi := BR̄i(X̄i), and σ̄[v̄] = µ(∇v̄+ (∇v̄)T )− pId is the fluid stress. Notice that we have already
absorbed the gravitational force acting on the fluid into the pressure as explained in Section 2.2.1.
Therefore, we separately added the buoyancy to the force acting on particle by the fluid.

In the following subsections, we formally derive macroscopic equations for these dynamics in
different regimes leading to the transport-Stokes equations (1.1.1) and the Vlasov-Stokes equation
(1.1.2). The derivation of the system (1.1.3) modeling the sedimentation of rod-like particles will
be given in Section 2.3.4. We will always consider the regime, where the interaction between the
particles through the fluid is important. We will always assume that the particles do not collide. If
there are too many collisions (or close pairs of particles), the macroscopic dynamics is expected to
change. It can be hoped that this assumption is satisfied, if the volume fraction φ of the particles is
small. In Section 2.3.5, we will discuss the physical regimes in which these macroscopic equations
can be expected to be valid.

In contrast to the rigorous results of this thesis outlined in Chapter 1, we allow the particles to
have different radii, i.e., we consider a polydisperse distribution of particles. On a formal level, in
particular ignoring possible particle collisions, this does not cause any difficulties, and we therefore
include this aspect for the sake of a more general picture. We have argued in Chapter 1.5, why
polydispersity causes problems for the rigorous derivation of these models.

On the other hand, we do not include the rotation of particles for the sake of simplicity of the
computations. The rotations do not affect the macroscopic equations (see [Mec18] in the case of
inertialess particles).

Formal derivation of variants of the models considered here have also been formally derived in
the physics literature. The transport-Stokes equations (1.1.1) for the sedimentation of inertialess
particles are for instance considered in [Feu84]. The Vlasov-Stokes equations are formally derived
in [Koc90], where also the effect of particle collisions is considered. In [DE88], various models for
suspensions of rod-like particles are considered, including the study of elastic rods and the Brownian
motion.

2.3.1 Inertialess particles in Stokes flows

If we neglect both the inertia of the particle and the inertia of the fluid, problem (2.3.1) – (2.3.3)
becomes

−µ∆v̄ +∇p = 0, div v̄ = 0 in R3\
N⋃
i=1

Bi, (2.3.4)

v̄ = V̄i in Bi, v̄(x)→ 0 as |x| → ∞,

˙̄Xi = V̄i, F̄i :=
4π

3
R̄3
i (ρp − ρf )g = −

ˆ
∂Bi

σ̄[v]ndH2. (2.3.5)

We emphasize that the boundary conditions imposed on the fluid are the sedimentation boundary
conditions introduced in Section 2.2.1. The second equation in (2.3.3), which determines the
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acceleration of the particles, has turned into the second equation in (2.3.5), which is a constraint on
the fluid flow. On the other hand, the (extended) fluid velocity ū only has to be constant in all the
particles Bi and this constants, denoted by V̄i, are then determined by the constraints coming from
the second equation in (2.3.5).

Clearly, the fluid flow satisfies an equation of the form

−µ∆v̄ +∇p =
N∑
i=1

fi div v̄ = 0 in R3, v̄(x)→ 0 as |x| → ∞,

where the force distributions fi are supported on ∂Bi and satisfy
´
∂Bi

fi = F̄i. If the particles are

very small, one could expect that for each particle velocity V̄i = v̄(Xi) it does not matter how exactly
the forces fj are distributed on ∂Bj for j 6= i. Moreover, we already know from (2.2.3) that for a
single sedimenting sphere, the distribution of the force F̄i is uniform on ∂Bi. Therefore, a good
approximation of v̄ should be the solution to the problem

−µ∆ū+∇p =

N∑
i=1

F̄iδ∂Bi div ū = 0 in R3, ū(x)→ 0 as |x| → ∞,

where δ∂Bi is defined as in (2.2.4). (Note that we still denote the pressure by p although it is different
from the one in (2.3.4). We will repeatedly abuse the notation for the pressure in this way. No
confusion will arise from this abuse of notation since the pressure will never appear without the
corresponding velocity field.)

Using the linearity of the Stokes equations and the solution for a single moving sphere, one can
write down ū explicitly as

ū(x) =
N∑
i=1

wR̄i(x− X̄i),

where wRi denotes the solution to the problem of a single sphere of radius Ri centered at the origin
with a force Fi (which only depends on the radius of the particle R̄i) acting on it. In particular, by
(2.2.2),

V̄ (Xi) ≈ ū(X̄i) =
F̄i

6πµR̄i
+
∑
j 6=i

wR̄i(X̄i − X̄j). (2.3.6)

The functions wR̄i decay like 1/|x|. Moreover, since all the forces F̄i point in the direction of g,

wR̄i(x− X̄i) · g ∼
|F̄i|

µ|x− X̄i|

for |x− X̄i| ≥ R̄i. In particular, there are no cancellation effects in the sum on the right-hand side
of (2.3.6) in the direction of g. Let us assume that the particles are distributed in a region Ω of
diameter L and have typical radii R̄. Then, the order of magnitude of the contribution to V (Xi) by
the collective effect due to the sum on the right-hand side of (2.3.6) is given by∣∣∣∣∣∣

∑
j 6=i

wR̄i(Xi −Xj)

∣∣∣∣∣∣ ∼ N |F̄R̄|
µL3

ˆ
Ω

1

|X̄i − x|
dx ∼ N |F̄R̄|

µL
,
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where F̄R̄ = 4π
3 R̄

3
i (ρp − ρl)g. Comparing this collective effect, with the settling velocity VSt of an

isolated sphere, which is given by the first term on the right hand side of (2.3.6), yields (assuming
F̄i ∼ F̄R̄) ∣∣∣∣∣∣

∑
j 6=i

wR̄i(Xi −Xj)

∣∣∣∣∣∣ ∼ NR̄

L
|VSt| =: γ|VSt| =:

9

2
Uc.

Thus, for small values of γ, we expect all the particles to behave similar to isolated spheres (this has
been rigorously proved in [JO04] for monodisperse suspensions). For γ of order one or larger, we
expect the interactions between the particles to become important. Therefore, we focus on the latter
case in the following.

We now non-dimensionalize the dynamics. We define

T :=
L

Uc
,

v(s, y) :=
v̄(Ts, Ly)

Uc
, u(s, y) :=

ū(Ts, Ly)

Uc
,

Vi(s) :=
V̄i(Ts)

Uc
, Xi(s) :=

X̄i(Ts)

L
,

Ri :=
R̄i
L
, R :=

R̄

L
, ri :=

Ri
R
,

(2.3.7)

and we redefine Bi := BRi(Xi). Then,

−∆v +∇p = 0, div v = 0 in R3\
N⋃
i=1

Bi,

v = Vi in Bi, v(x)→ 0 as |x| → ∞,

Ẋi = Vi, Fi :=
4π

3N
r3
i ĝ = −

ˆ
∂Bi

σ[v]ndH2,

where ĝ = g/|g| and σ[v] = (∇v + (∇v)T ) − pId are the dimensionless gravity and fluid stress
respectively. Analogously, u is the solution to the problem

−∆u+∇p =
4π

3N

N∑
i=1

r3
i δ∂Bi ĝ, div u = 0 in R3, u(x)→ 0 as |x| → ∞.

We introduce the particle density

ρN (t, x, r) :=
4π

3N

N∑
i=1

δ∂Bi(x)δri(r).

Here δ∂Bi is defined as in (2.2.4), which means that the spacial support of ρ consists of the boundaries
of the particles. This is convenient since, by this definition,

−∆u+∇p =

ˆ ∞
0

r3ρN ĝ dr, div u = 0 in R3, u(x)→ 0 as |x| → ∞.

Notice that ρN satisfies the transport equation

∂tρ+ v · ∇ρ = 0.
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We assume that in the limit N →∞ with R→ 0 and γ → γ∗ ∈ (0,∞], we have ρN → ρ in a suitable
(weak) sense. Then, we formally deduce u→ v∗, and since v ≈ u also v → v∗, which solves

−∆v∗ +∇p =

ˆ ∞
0

r3ρĝ, div v∗ = 0 in R3, v∗(x)→ 0 as |x| → ∞. (2.3.8)

However, reconsidering equation (2.3.6), v∗ will only contain the information of the second term on
the right hand side of that equation, which is the collective term. Therefore, we expect that ρ solves

∂tρ+ (v∗ +
2

9
γ−1
∗ r2

i ĝ) · ∇ρ = 0, (2.3.9)

where the term 2
9γ
−1
∗ r2

i ĝ exactly corresponds to the settling velocity of an isolated particle. The
coupled system (2.3.9), (2.3.8) is the polydisperse version of the system (1.1.1).

2.3.2 The Brinkman equations

In this and the next subsection, we revisit the system (2.3.1), (2.3.2), (2.3.3). In contrast to the
previous subsection, we keep the inertia of the particles in order to derive the Vlasov-Stokes equations
(1.1.2). Moreover, in contrast to the rest of this thesis, we also allow for nonzero Reynolds numbers
Re. Formally the fluid inertia does not cause any difficulties in the derivation of the macroscopic
dynamics.

Using the dimensionless quantities defined in (2.3.7), the full dynamics including inertial effects
given by (2.3.1), (2.3.2), (2.3.3) becomes

Re(∂tu+ (u · ∇)u)−∆u+∇p = 0, div u = 0 in R3\
N⋃
i=1

Bi, (2.3.10)

u = Vi in Bi, u(x)→ 0 as |x| → ∞. (2.3.11)

Ẋi = Vi, V̇i = λ

(
g +

3

4π

N

r3
i

ˆ
∂Bi

σ[u]ndH2

)
, (2.3.12)

where

Re =
NR̄3ρf (ρp − ρf )|g|

µ2
, λ =

µ2L3

ρp(ρp − ρf )N2R̄6|g|
.

We will first consider only the system (2.3.10), (2.3.11) with the particle positions and velocities
held fixed and derive the Brinkman equations. To this end, we notice that on the length-scale of a
single particle, the relevant Reynolds number is

Rep =
ρfUcR̄

µ
= RRe.

Thus, even if Re is not small, we might assume that Rep is small and therefore approximate the
Navier-Stokes equations by the Stokes equations near each particle. We assume that there exists a
macroscopic fluid velocity v∗ close to u in an averaged sense (and thus in the weak topology). We
expect v∗ to be close to u away from the particles. Consider the ball Bd(Xi), where d is chosen
such that R� d� L and dist(Bd(Xi), Bj)� R for all j 6= i. Then, in Bd(Xi), we expect u to be
approximately given as the solution to

−∆u+∇p = 0, div u = 0 in Bd(Xi) \Bi,
u = v∗ on ∂Bd(Xi), u = Vi on ∂Bi.
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Since v∗ changes on length-scales of order L, we can replace the value v∗ on ∂Bd(Xi) by v∗(Xi).
Then, the solution to the above Dirichlet problem can be computed explicitly, and since R� d it is
very close to the solution to

−∆u+∇p = 0, div u = 0 in R3 \Bi,
u(x)→ v∗(Xi) as |x| → ∞, u = Vi on ∂Bi.

This is the problem of a translating sphere in an infinite fluid. Thus, (pretending that all the
approximations for u are exact) we know from (2.2.2) and (2.2.3) thatˆ

∂Bi

σ[u]ndH2 = 6πRi(v∗(Xi)− Vi), (2.3.13)

and

−∆u+∇p = 6πRi(v∗(Xi)− Vi)δ∂Bi , div u = 0 in Bd(0).

Thus, we formally deduce

Re(∂tu+ (u · ∇)u)−∆u+∇p =
N∑
i=1

6πRri(Vi − v∗)δ∂Bi , div u = 0 in Bd(0).

We assume that the empirical particle density fN (x, v, r) =
∑N

i=1 δXi(x)δVi(v)δri(r) (weakly) converges
to some f in the limit N →∞ with Re→ 0 such that NR→ γ∗ ∈ (0,∞), Re→ Re∗ ∈ [0,∞). Then,
taking formally the homogenization limit, yields for u→ v∗

Re∗(∂tv∗ + (v∗ · ∇)v∗)−∆v∗ +∇p = 6πγ∗

ˆ ∞
0

ˆ
R3

r(v − v∗)f dv dr in R3,

div v∗ = 0 in R3, v∗(x)→ 0 as |x| → ∞.

Clearly, in the case of a monodisperse distribution f(x, v, r) = h(x, v)δ1(r), and Re∗ = 0, these are
the Brinkman equations which appear in the Vlasov-Stokes equations (1.1.2).

2.3.3 The Vlasov-Navier-Stokes equations

We now consider again the full dynamics (2.3.10) - (2.3.12). Having derived the Brinkman
equation for the fluid flow in the previous subsection, we only have to take the limit in (2.3.12). We
observe, that we can use (2.3.13) to simplify that equation yielding (approximately)

Ẋi = Vi V̇i = λ

(
g +

9

2

γ

r2
i

(v∗(Xi)− Vi)
)
. (2.3.14)

Thus, the particle density fN (x, v, r) =
∑N

i=1 δXi(x)δVi(v)δri(r) satisfies (approximately)

∂tfN + v · ∇xfN + λ divv

((
ĝ +

9

2

γ

r2
(v∗ − v)

)
fN

)
= 0.

Taking the limit N →∞ assuming λ→ λ∗ ∈ (0,∞), we thus deduce the polydisperse version of the
so called Vlasov-Navier-Stokes equations

∂tf + v · ∇xf + λ∗ divv

(
ĝf +

9

2

γ∗
r2

(v∗ − v)f

)
= 0,

Re∗(∂tv∗ + (v∗ · ∇)v∗)−∆v∗ +∇p = 6πγ∗

ˆ ∞
0

ˆ
R3

r(v − v∗)f dv dr in R3,

div v∗ = 0 in R3, v∗(x)→ 0 as |x| → ∞.

(2.3.15)

For Re∗ = 0 and monodisperse particle distribution, these equations turn into the Vlasov-Stokes
equations (1.1.2) with St = (γ∗λ∗)

−1.
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2.3.4 Sedimentation of inertialess rod-like particles

Instead of spherical particles, we now investigate the sedimentation of a cloud of rods. For
simplicity, we restrict ourselves to monodisperse suspensions of rods. As we have seen in Section
2.2.3, the settling velocity of rods depends on their orientation. Therefore, it is not longer possible to
ignore particle rotations in the model. On the other hand, we have also seen that the exact shape
of the rods does not matter too much as long as they are very elongated. We therefore consider
particles of the form

K := {(x1, x2, x3) ∈ R3 : x1 ∈ [−l̄, l̄], |(x2, x3)| ≤ R̄(|x1|)},

where we assume l̄� R̄. Then, every particle is prescribed by the position of its center X̄i and its
orientation Ξ̄i ∈ S2. We denote the set occupied by the i-th particle by Ki := X̄i +O(Ξ̄i)K, where
O(Ξ̄i) ∈ SO(3) is chosen such that O(Ξ̄i)e1 = Ξ̄i.

Then, our starting point for the sedimentation of rods are the inertialess microscopic dynamics

−µ∆v̄ +∇p = 0, div v̄ = 0 in R3\
N⋃
i=1

Ki,

v̄ = V̄i + Ωi × (x− X̄i) in Bi, v̄(x)→ 0 as |x| → ∞,

˙̄Xi = Vi, F̄ := πR̄2 l̄(ρp − ρf )g = −
ˆ
∂Ki

σ̄[v]ndH2,

˙̄Ξi = PΞ̄⊥i
Ωi, 0 =

ˆ
∂Ki

(x− X̄i)× (σ[v]n) dH2.

(2.3.16)

Here PΞ̄⊥i
= (Id− Ξ̄i ⊗ Ξ̄i) denotes the orthogonal projection to Ξ̄⊥i = TΞ̄i

S2, the tangential space

of S2 at Ξ̄i. As for the problem (2.3.4) – (2.3.5), the constants Vi and Ωi are determined by the
equations for the fluid.

By the same heuristics as in Section 2.3.1, we approximate the fluid velocity by

ū(x) =

N∑
i=1

wΞ̄i
(x− X̄i),

where wΞ̄i
is the solution to the problem of a single rod with orientation Ξ̄i centered at the origin

with a force F̄ acting on it. Note that this approximation of the fluid velocity does not account for
the rotations of the particles. However, at least formally, the effect of the rotation of the particles on
the fluid velocity is negligible as in the case of spherical particles. It is only important to take into
account the rotations of the particles because of the direct effect of the orientation of each particle
on its velocity.

Indeed, from (2.2.12), we have

V̄i ≈ ū(X̄i) = (Id + Ξ̄⊗ Ξ̄)
F̄

8πµl̄ε
+
∑
j 6=i

wΞ̄j
(X̄j − X̄i),

where ε = log−1(2l̄/R̄).
For the rotational motion, we observe that for all 0 < δ < l̄

v̄(X̄i + δΞ̄i) = V̄i + δΩi × Ξ̄i = V̄i + δ ˙̄Ξi.
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Thus,

˙̄Ξi = PΞ̄⊥i
(Ξ̄i · ∇)v̄(X̄i) ≈ PΞ̄⊥i

(Ξ̄i · ∇)ū(X̄i) = PΞ̄⊥i
(Ξ̄i · ∇)

∑
j 6=i

wΞ̄j
(X̄j − X̄i). (2.3.17)

As in Section 2.3.1, we compare the order of magnitude of the self-interaction term to the collective.
The self interactive term scales like

VSt :=
F̄

8πµl̄ε
=
R̄2(ρp − ρf )g

8εµ
.

On the other hand, the collective term is of order∣∣∣∣∣∣
∑
j 6=i

wΞ̄i
(Xi −Xj)

∣∣∣∣∣∣ ∼ NF̄

µL3

ˆ
Ω

1

|Xi − x|
dx ∼ Nl̄ε

L
|VSt| =: γ|VSt| =: 8Uc. (2.3.18)

We rescale the dynamics with the typical length L and the velocity Uc analogously as in Section
2.3.1. Then, formally in the limit of N →∞, R→ 0 with γ → γ∗ ∈ (0,∞]

∂tf +

(
u+

1

8γ−1
∗

(Id + ξ ⊗ ξ)ĝ
)
· ∇xf + divξ

(
Pξ⊥(ξ · ∇)uf

)
= 0,

−∆u+∇p =

ˆ
S2

fĝ dξ, div u = 0.

(2.3.19)

It is interesting to notice that the rotations of particles are important only when γ ∼ 1. Indeed, if the
interactions are very strong (γ � 1), then the particles are transported by the fluid velocity u. Their
orientation, although it does change in times of order one, does not have a significant influence on the
sedimentation velocity. Hence, in this case, there is no difference between spherical and non-spherical
particles. On the other hand, if the interactions are very weak (γ � 1), the velocity of the particles
due to the self-interaction is much faster than their rotation. Hence, in the relevant time-scale, their
orientation is fixed.

2.3.5 The regime of validity of these equations

For single particles it was argued in Section 2.2.1 that neglecting fluid and particle inertia as well as
Brownian motion is justified for a wide range of relevant particle sizes – typically for 1 µm� R� 1 cm
for solids sedimenting in liquids. We now address in which regimes those effects are negligible in the
case of a sedimenting cloud of particles and thus in which regimes the macroscopic equations derived
in the previous subsections can expected to be appropriate to model the sedimentation dynamics.
For clouds of particles, these regimes are in general different from the ones for isolated particles due
to the possibility of much higher fluid and particle velocities caused by the interaction between the
particles.

We recall that the interaction strength is determined by the parameter γ. For γ � 1, the particles
do not interact significantly, but behave like isolated particles studied in Section 2.2. In some sense,
this is the case of very dilute suspensions. This is not the case which we are interested in. We are
interested in the regime γ ∼ 1 or γ � 1, which will also be characterized below. On the other hand,
we need to consider suspensions that are sufficiently dilute in the sense that the volume fraction of
the particles φ is small. If this is not the case, one expects that collisions of particles or at least the
effect of very close pairs of particles might becomes relevant. For positive volume fraction of the
particles, there is also the effect of the change of viscosity of the fluid according to Einstein’s law.
We briefly comment on this phenomenon in Section 2.5.2.
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The regime of negligible fluid inertia

This regime is characterized by small Reynolds numbers. If γ is of order one or large, a macroscopic
fluid velocity arises from the collective effect of the particles. This fluid velocity is expected to change
on the length scale on which the macroscopic particle density changes. We assume that this length
scale is L. Thus, the Reynolds number is given as

Re =
ρfLUc
µ

=
ρf (ρp − ρf )NR̄3|g|

µ2
=
ρf (ρp − ρf )L3φ|g|

µ2

where we introduced the volume fraction of the particles

φ :=
NR̄3

L3
= NR3.

We calculate the Reynolds number for an explicit example. Let us consider as in Section 2.2.1
the example of sand grains in water (ρf ≈ 103 kg m−3, µ ≈ 1 kg m−1 s−1, ρp ≈ 2× 103 kg m−3,
g ≈ 10 m s−2. This yields

Re ≈ 107NR̄3m−3.

Typical sand grains have a size of R̄ ∼ 10−3 m. Then, Re ≈ 10−2N . Thus, the assumption is violated
as soon as N ∼ 102. However, there are examples of much smaller particles of size R̄ ∼ 10−6 m such
as clay, which allows to consider clouds of significantly more particles (N ∼ 1010) with Re� 1.

Concerning the interaction strength γ = NR̄L−1, we see that in the case R̄ ∼ 10−6 m, N ∼ 1010,
there is wide range of γ depending on the diameter of the cloud L. For L ∼ 104 m, we have γ ∼ 1, and
for smaller clouds with the particle number and radius held fixed, the interaction becomes dominant.

In order to have small volume fraction φ = NR̄3L−3, the cloud should not become too small.
Considering again R̄ ∼ 10−6 m, N ∼ 1010, we find that the diameter L should not fall below about
10−2 m to fullfil this requirement.

The regime of negligible particle inertia

In the intertialess regime of the particles, the transport-Stokes equations (1.1.1) are expected
to be valid. In order to identify this regime from the microscopic point of view we compute the
so called Stokes number, which is the ratio between the characteristic time of the particle and the
characteristic time of the fluid. The former is the relaxation time for a particle needed to adjust its
velocity to the quasi-stationary, “inertialess” velocity, where gravity is balanced by the fluid drag
force. The latter is the time over which the fluid velocity changes along the particle trajectory. From
(2.3.14), we deduce, analogously as we have obtained (2.2.6), that the relaxation time for particle i is
given by

Tp =
2

9

r2
i

λγ
T ∼ 1

λγ
T.

where T is defined in (2.3.7) (thus, Tp is the relaxation time for the unrescaled dynamics). On the
other hand, the characteristic time of the fluid is T = L/Uc because the fluid velocity changes over
the length-scale L and these changes are transported with the fluid velocity with typical value Uc.
Thus, we find for the Stokes number

St ∼ 1

λγ
=
ρp(ρp − ρf )|g|φR2L3

µ2
.
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We compare the Stokes number with the Reynolds number

St

Re
=
ρp
ρf

R̄2

L2
=
ρp
ρf
R2 = . (2.3.20)

Since we consider R� 1, we typically have St� Re. Thus, the inertia of the particles is typically
negligible if the inertia of the fluid is negligible. In particular, the inertialess dynamics considered in
Section 2.3.1 seem to have a wide range of validity.

The regime of negligible fluid inertia but significant particle inertia

In the regime of the Vlasov-Stokes equations (1.1.2) where the inertia of the particles count but
the inertia of the fluid does not, (2.3.20) implies that we need to have ρp � ρf . Let us check, whether
this regime is physically relevant. For very heavy particles like gold, we have ρp ∼ 2× 104 kg m−3.
On the other hand, all (common) liquids have a density of at least ρf ∼ 103 kg m−3. Thus, whenever
Re� 1 and R� 1 we have St� 1.

However, this regime might be physical relevant for (rarefied) gases: air at standard conditions
has a density of ρf ∼ 1 kg m−3 and the density can be reduced further by reducing the pressure.

Furthermore, if we consider the physical regime of the Vlasov-Navier-Stokes equations (2.3.15),
i.e., we allow Re ∼ 1 or even large, it is possible to have both relevant fluid and particle inertia.

The assumption of neglecting the Brownian motion of the particles

We recall from Section 2.2.1 that this is formally justified if the Péclet number Pe given by (2.2.8)
is large compared to unity. Applying this to sedimentation of a cloud of particles, the typical distance
and velocity are again given by L and γ|VSt|, respectively. Thus, recalling from (2.2.7) the diffusion
constant, we find

Pe =
γ|VSt|L
D

=
2

9

(ρp − ρf )NR̄3|g|
µ

6πR̄µ

kBΘ
=

4

3
π

(ρp − ρf )NR̄4|g|
kBΘ

.

Comparing with (2.2.9), this is just N times the value of the Péclet number of a single sedimenting
sphere. Hence, on the considered length-scale of the cloud diameter, the Brownian motion is negligible
even for smaller particles provided the number of particles is large.

The regime of validity of the macroscopic rod model

The effect of particle and fluid inertia for a cloud of rod-like particles is described very similarly as
for spherical particles. However, when it comes to Brownian motion, there is an important additional
aspect: rotational diffusion could also become relevant as it changes the orientation of the particles.
This effect is described analogously to translational diffusion (see (2.2.7)) by the rotational diffusion
constant

Dr = kBΘM−1
r ,

where Mr is the resistance of a particle to rotations. We only consider rotations that change the
orientation of the particles. Then the resistance is given by (2.2.13), i.e.,

Mr ≈
8π

3
µl̄3ε.
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The variance in the orientation after time t satisfies

E[Ξ̄2] ∼ Drt,

for t ≤ Dr. In particular, the orientation changes due to Brownian motion in times of order

Tr =
1

Dr
=

Mr

kBΘ
. (2.3.21)

On the other hand, the particle orientations change due to the gradient of the fluid velocity. By
(2.3.17) and (2.3.18), we have

| ˙̄Ξ| ∼ Uc
L
.

Thus the relevant time scale for this effect is described by the same typical time that is the time
scale for the macroscopic system (2.3.19),

T =
L

Uc
. (2.3.22)

Comparing those time scales given by (2.3.21) and (2.3.22), we find that the rotational diffusion is
negligible if the “rotational Péclet number” Per is large, where Per is given by

Per :=
Tr
T

=
UcMr

LkBΘ
=
π

3

(ρp − ρf )gεNR̄2 l̄4

kBΘL2
.

We compare this quantity with the (translational) Péclet number, given analogously as for spherical
particles by

Pe =
UcL

Dt
=
UcLMt

kBΘ
,

where we denoted the translational diffusion constant and resistance by Dt and Mt, respectively. The
order of Mt is given by (2.2.11). In particular, we find

Per =
Mr

MtL2
Pe ∼ l̄2

L2
Pe.

Since l̄� L, this implies that the rotational Péclet number is much smaller than the translational
Péclet number.

We want to identify how small the rods can be such that Per is still large. We impose one more
constraint, namely that the particle suspension is very dilute in the sense that

η :=
Nl̄3

L2
� 1. (2.3.23)

This constraint is stronger than to require that the particle volume fraction is small. However, it
is reasonable to make this restriction because one could expect that, if (2.3.23) is not satisfied, the
rotation of close rods lead to additional interaction. We also introduce A = l̄R̄−1, the aspect ratio
of the rods, which needs to be large. Moreover, we consider fluid and particle densities such that
ρp − ρf ∼ 103 kg m−3, and standard conditions for the temperature and gravity. This yields for the
rotational Péclet number

Per ∼ 1025 εηLl̄
3

A2
m−4.
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To find the smallest possible value for l̄, for which Per is still large, we assume η ∼ 10−1, A ∼ 10.
We can then neglect ε = (logA)−1 and arrive at

Per ∼ 1022Ll̄3m−4.

We cannot choose L too large. Indeed, following the same computations as for spherical particles
above, it follows that for the specified quantities, we have Re ∼ 104L3m−3. Thus, we have to choose
at least L ∼ 1 cm. Thus, the rotational Péclet number can only be small for rods with at least
l ∼ 1 µm.

Since this length is quite small, we conclude that the macroscopic rod-model (2.3.19) has a wide
range of applicability. On the other hand, the case of very small rods which are much more elongated
than in the example considered above are very important, for example in the study of polymers.
Thus it is reasonable also to study the macroscopic models for Brownian rods that are proposed
in [DE88]. As mentioned in Section 1.7, there are also some mathematical results for these models
[OT08; BT13; HO06].

2.4 Formal limits of the Vlasov-Navier-Stokes equations

There are three parameters involved in the Vlasov-Navier-Stokes equations (2.3.15): Re∗, St∗ =
(γ∗λ∗)

−1, and γ∗. We will drop the index ∗ in this section. Since we are only concerned with
the macroscopic dynamics, no confusion will arise with the corresponding microscopic quantities
considered in the previous section.

We briefly summarize the role of these parameters discussed in the previous section: The Reynolds
number Re determines the strength of the fluid inertia, and the Stokes number determines the
strength of the particle inertia. The parameter γ determines the interaction strength between the
particles, or, more precisely, the ratio between the interaction strength of the particles and the
“self-interaction” due to the direct influence of the gravity on each single particle. The fact that the
parameter γ is involved both in the equations for the fluid velocity and for the particle density is just
a consequence of Newton’s third law.

Various asymptotic limits of the Vlasov-Navier-Stokes equations (2.3.15) can be considered in the
case of different combinations of limits of those parameters. In the next subsections we will formally
consider three of these asymptotic limits:

First, the inertialess limit (with not too strong interactions) which is characterized by St → 0
and Stγ → 0. In this case, we recover the transport-Stokes equations. This is the only one of the
asymptotic limits of the Vlasov-Stokes equations which has been rigorously proved so far. This proof
is the content of Chapter 7 of this thesis.

Second, the case of very large interactions, characterized by γ → 0, St ∼ 1. In this case, we
formally obtain a Vlasov equation, which is coupled to a variant of the Darcy’s law.

The third limit that we consider is intermediate between the first two. It is characterized by
small inertia and high interaction strength, St→ 0 and Stγ ∼ 1. As in the inertialess limit with not
too stron interactions, the Vlasov equations turns into a transport equation. However, the particle
inertia does not vanish from the system but reappears as a convective term in the fluid equations.

In the main part of this thesis where rigorous results are derived, we restrict our study to
sedimentation of monodisperse particles in the regimes of zero Reynolds numbers. We recall that in
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this case, the macroscopic dynamics is described by the system (1.1.2), which we repeat here:

St(∂tf + v · ∇xf) + divv

(
γ−1ĝf +

9

2
(u− v)f

)
= 0,

−∆u+∇p = 6πγ

ˆ
R3

(v − u)f dv, div u = 0 in R3, u(x)→ 0 as |x| → ∞.
(2.4.1)

For the ease of notation, also in this section, instead of the Vlasov-Navier-Stokes equations (2.3.15)
for polydisperse particles, we consider this simplified model even though from the physical point of
view the case of non-zero Reynolds number might be more relevant as discussed in Section 2.3.5.
Formally however, it is formally straightforward to adapt to the case of non-vanishing Reynolds
number and polydisperse particles.

The physical relevance of the considered limits can be studied similarly to Section 2.3.5, but
we omit this discussion here. From the mathematical point of view, these limits appear to be very
interesting even if they might only provide toy models for more complicated systems which are
physically more relevant.

2.4.1 Inertialess limit with not too strong interactions: St→ 0 with Stγ → 0

In this limit, we will recover the inertialess system derived in Section 2.3.1: Since γ−1 � St→ 0
we can neglect the first term in the first equation of (2.4.1). Hence,

divv

(
2

9
γ−1
∗ ĝf + (u− v)f

)
= 0,

where γ∗ ∈ [0,∞] denotes the limit of γ. We will first assume γ∗ > 0.

Multiplying by v and integrating yields with ρ(t, x) =
´
R3 f dv

ˆ
R3

(u− v)f dv =
2

9
γ−1
∗ ρĝ. (2.4.2)

Thus, the second equation in (2.4.1) becomes

−∆u+∇p =
4π

3
ρĝ, div u = 0 in R3, u(x)→ 0 as |x| → ∞.

Moreover, we can integrate the first equation in (2.4.1) over v, and use (2.4.2) and the fact that u is
divergence free to get

∂tρ+

(
2

9
γ−1
∗ ĝ + u

)
· ∇ρ = 0. (2.4.3)

Up to the factor 4π/3, this is exactly the system (2.3.8), (2.3.9) we obtained in Section 2.3.1. We
can get rid of this factor by considering ρ̃ = (4π/3)ρ.

If γ∗ = 0, after changing the timescale t′ = γ−1t, one arrives at

∂t′ρ+
2

9
ĝ · ∇ρ = 0.

In this case, since the interactions are negligible, the particles just fall down like single inertialess
particles.
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2.4.2 Limit of strong interactions: γ →∞ with St ∼ 1

In this limit, the first equation in (2.4.1) simply becomes

St(∂tf + v · ∇xf) + div ((u− v)f) = 0. (2.4.4)

Furthermore, the Brinkman equations turn into Darcy’s law,
ˆ
f(u− v) dv +∇p = 0, div u = 0. (2.4.5)

This is a variant of Darcy’s law, which usually appears in the form

u = M−1
0 (h−∇p), div u = 0,

where h is some given external force and M0 is the (rescaled) particle resistance. The particle
positions are fixed in this system and the particle resistance density is assumed to be constant.
These equations go back to the experimental study of fluid flows through porous media by Darcy
[Dar56]. The Brinkman equations have been later suggested as a intermediate system between the
Stokes equations and Darcy’s law [Bri47]. Both the Brinkman equations and Darcy’s law have been
rigorously derived from the Stokes equations in domains perforated by many small particles (see
e.g. [All90a], [All90b]). The convergence to the Brinkman equations occurs when the density of the
Stokes resistance of the particles is of order one. Darcy’s law is found when this density is very large.
For the problems considered here, the resistance density of the particles corresponds to γ.

It seems that Darcy’s law in the form of (2.4.5) has never been studied. Thus, one of the
mathematical challenges in the derivation and the study of the Vlasov-Darcy system (2.4.4), (2.4.5)
is the analysis of Darcy’s law for non-constant particle density. In particular, Darcy’s law (2.4.5) can
only expected to hold inside the cloud of particles. Outside the cloud, the Stokes equations should
still be valid. Therefore, suitable boundary conditions at the boundary of the particle cloud must be
determined that account for a boundary layer for the transition between Darcy’s law and the Stokes
equations.

2.4.3 Inertialess limit with strong interactions: St→ 0 with Stγ → λ−1
∗ ∈ (0,∞)

In this case, the inertial term in the first equation of (2.4.1) is of the same order as the self-
interaction term involving γ−1. Thus, it is now more subtle to derive the limit equation for the fluid
than in the cases considered in the previous subsections. It is convenient to work with the parameter
λ = (Stγ)−1 instead of St in this limit.

We expect u− v ∼ γ−1. Therefore, we introduce as a new variable

w = γ(u− v),

and we define

h(t, x, w) = γ−3f

(
t, x, u(x, t) +

w

γ

)
.

Then,

−∆u+∇p = 6π

ˆ
R3

whdw, div u = 0 in R3, u(x)→ 0 as |x| → ∞. (2.4.6)

and

∂th− γ∇wh∂tu+

(
u+

w

γ

)
(∇xh− γ∇wh∇xu) + λγ divw

((
ĝ − 9

2
w

)
h

)
= 0.



Inertialess limit with strong interactions: St→ 0 with Stγ → λ−1
∗ ∈ (0,∞) 35

This is equivalent to

∂th+

(
u+

w

γ

)
∇xh+ γ divw

((
λ

(
ĝ − 9

2
w

)
− ∂tu−

(
u+

w

γ

)
∇xu

)
h

)
= 0, (2.4.7)

where we used that u is divergence free. We use the notation

ρ(t, x) =

ˆ
R3

h dw, j(t, x) =

ˆ
R3

whdw.

Integrating equation (2.4.7) and taking the limit γ →∞ yields

∂tρ+ u · ∇ρ = 0.

It is not surprising that this is the same transport equation as (2.4.3) for γ∗ =∞; the particles are
transported by the fluid since both the inertia of the particles and the self-interactive term do not
have a direct effect on the evolution of the particles. The particle inertia only has an effect on the
fluid velocity. Taking the limit γ →∞ in (2.4.7), we find

divw

((
λ∗

(
ĝ − 9

2
w

)
− ∂tu− u∇xu

)
h

)
= 0.

Multiplying this equation by w and integrating yields

9

2
λ∗j = (λ∗ĝ − ∂tu− u∇xu) ρ.

Inserting this identity in (2.4.6), yields the fluid equations

−∆u+∇p = 6πj =
4π

3

(
ĝ − λ−1

∗ (∂tu+ u∇xu)
)
ρ, div u = 0 in R3.

Equivalently, we can write the whole system as

∂tρ+ u · ∇ρ = 0,

4π

3
λ−1
∗ ρ(∂tu+ u∇xu)−∆u+∇p =

4π

3
ĝρ, div u = 0 in R3.

(2.4.8)

This is a very interesting limit equation. The inertia of the particles is negligible for the equation
of the particles. Because of the Brinkman equations for the fluid in (2.4.1), the deviation between
the particle and the fluid velocity is still the driving force for the fluid velocity. Since this deviation
involves the particle inertia which is small but compensated by the high interaction strength γ ∼ St−1,
it endows the fluid with inertia, yielding Navier-Stokes equations for the fluid but with the particle
density in place of the fluid density.

Since the stationary Stokes equations turned into instationary Navier-Stokes equations, we clearly
need an initial datum for u in order to solve (2.4.8), which was not needed for the original problem
(2.4.1), where only an initial datum for the particle density f needs to be prescribed.

As we shall see, this initial datum for u is determined by the initial datum of the particles
and a boundary layer in time: Consider the rescaled time τ = λγt = (St)−1t. This is the time-
scale in which the particle velocities adapt to the fluid velocity. With f̃(τ, ·) := f(τ/(λγ), ·) and
ũ(τ, ·) := u(τ/(λγ), ·) , we find

∂τ f̃ +
v

λγ
∇f̃ + divv

((
1

γ
ĝ + ũ− v

)
f̃

)
= 0.
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Hence, in the limit γ →∞
∂τ f̃ + divv((ũ− v)f̃) = 0. (2.4.9)

This is coupled with the fluid equations which becomes Darcy’s law in the limit γ →∞,
ˆ
f̃(ũ− v) dv +∇p = 0. (2.4.10)

With the notation ρ̃ =
´
f̃ dv and ρ̃V =

´
vf̃ dv, we have

V − ũ =
1

ρ̃
∇p.

Clearly, if V is divergence free, than u = V is a solution. From equation (2.4.9) we find by integrating

∂τ ρ̃ = 0, ρ̃∂τV − ρ̃(ũ− V ) = 0.

Dividing by ρ and taking the divergence yields

∂τ div V = −div V.

Thus,
div V = div V0e

−τ ,

if V0 corresponds to the given initial datum for the particles. Hence, the particle velocities will
rearrange in such a way that V becomes divergence free, and exponentially fast convergence of ũ in
the time-scale of τ can be expected. This happens in times of order 1/(λγ) in the original time-scale
and therefore instantaneously as γ →∞. Thus, the desired initial datum for u in the Navier-Stokes
equations in (2.4.8) is given as the limit of the solution ũ to (2.4.9), (2.4.10) as τ →∞.

2.5 Further sedimentation phenomena and open problems

In this section, we discuss some intriguing phenomena related to the sedimentation models studied
before, which have been observed experimentally and numerically, leading to interesting mathematical
problems for future study.

2.5.1 The analogy between a sedimenting cloud of inertialess spherical particles
and a fluid drop

The qualitative behavior of the system (1.1.1) describing the evolution of a cloud of inertialess
spherical particles is independent of the parameter γ ∈ (0,∞]. Indeed, since the Stokes-equations are
invariant under translations, the value of γ only changes the particle velocity by a constant.

An important observation is that, for γ = ∞, equation (1.1.1) can be interpreted as modeling
the evolution of a fluid with variable density but fixed viscosity. In this case, ρ is the difference of
density of the fluid to the density at infinity. In particular, (1.1.1) models the settling of a fluid drop
surrounded by a fluid of lower density ρf . Recall from Section 2.3.1 that we absorbed the term ρfg
in the fluid equation into the pressure. Therefore, the fluid equation in (1.1.1) is equivalent to

−∆v +∇q = (ρf + ρ)g, div v − 0 in R3.

This equation shows that ρ really resembles an increase in the fluid density.
The analogy between a suspension of particles and a fluid drop has been observed in experiments

and numerical simulations (see e.g. [AKY78; GM12b; PM82; KHA84; NB97; MMNS01; MNG07]).
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Moreover, the macroscopic equation (1.1.1), has been obtained by formal computations in the
physics literature and referred to as a “continuum model for sedimentation” (see e.g. [Feu84; Luk00;
MMNS01]).

There is an interesting quasi-stationary solution to (1.1.1), which has been independently computed
by Hadamard and Rybczynski [Had11; Ryb11]. They showed that ρ(t, x) = 1Br(X0+αtg)(x) solves the
equation where α depends only on r. Thus, according to this solution, a spherical cloud of particles
(or fluid drop) will maintain its shape and settle with constant velocity αg. In contrast to a rigid
particle, though, the fluid velocity inside this spherical drop is not constant but performs a circular
motion.

However, both numerical and experimental studies suggest that this solution is instable both for
particle clouds and fluid drops (see e.g. [AKY78; KHA84; Poz90; MMNS01; MNG07]). It has been
observed that an initially spherically cloud will transform into a toroidal shape by developing a hole
in the axis parallel to the gravity. Then, this torus will expand in the directions perpendicular to the
gravity and finally beak into several pieces. Although different mechanisms have been suggested to
cause this instability, it remains unclear to the present time.

2.5.2 The Einstein law for the effective viscosity of a suspension

One of the most well-known features of particle-laden flows is that the suspension of particles
effectively increases the viscosity of the fluid. Einstein [Ein06] calculated the effective viscosity to
first order in φ as µeff = (1 + 5/2φ)µ.

Mathematically rigorous proofs of this formula have been obtained only recently. In [HM12],
the Einstein law is proved on the level of the effective energy dissipation for homogeneous particle
densities. In [Sch19], it is shown that the convergence also takes place on the level of the fluid
equations. The result in [Sch19] uses the Method of Reflections in the framework described in
Chapters 3 and 4 of this thesis. As a drawback, the result is so far restricted to the static case, where
the particle evolution is not taken into account, and a condition on the minimal distance between
the particles is imposed similar as in Chapter 4.

In Section 2.5.1, we discussed the analogy between the sedimentation of a cloud of particles and a
fluid drop of larger mass density within a surrounding fluid. As a consequence of the increase of the
effective viscosity due to the particles, it has been suggested (see. e.g [GM12b]) that the cloud of
particles resemble a fluid drop of larger density and viscosity. Moreover, both the increase in density
and the increase in viscosity are supposed to be at first order proportional to φ. At first glance, this
seems to contradict the validity of the macroscopic equations (1.1.1), since there is no change in
viscosity. (Recall that the macroscopic equations are rescaled in time with a factor including the
volume fraction φ.) It turns out, however, although the viscosity increases at first order linearly with
the particle volume fraction, the effect on the fluid velocity is quadratic, and therefore negligible in
the limit φ→ 0.

More precisely, taking into account this increase in viscosity, the macroscopic fluid equations
for non-vanishing φ (and without rescaling with φ) differs from the fluid equation in (1.1.1) in the
following way:

−div

((
1 +

5

2
φρ

)(
∇u+∇uT

))
+∇p = φρg in R3,

div u = 0 in R3, u(x)→ 0 as |x| → ∞.
(2.5.1)

The effect of the right hand side (increase of density) on the fluid velocity is of order φ, whereas
the effect of the change of viscosity is of order φ2. Indeed, replacing again u by v = φ−1u (and
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adjusting the pressure in order to avoid a prefactor in front of it), the first equation in (2.5.1) becomes

−∆v − 5

2
φ div(ρ

(
∇v +∇vT

)
+∇p = ρg,div v = 0 in R3, v(x)→ 0 as |x| → ∞

Therefore, in the limit φ→ 0, we recover the fluid equation in (1.1.1).

2.5.3 Fluid backflow in finite containers – the Batchelor correction

At least formally, the analogous equations that describe sedimentation in the whole space R3 are
also valid when considering instead of a bounded domain E, where a no-slip boundary condition is
imposed for the fluid velocity at ∂E. In particular, for inertialess spherical particles, the system
(1.1.1) is replaced by

∂tρ+

(
u+

2

9
γ−1g

)
· ∇ρ = 0,

−∆u+∇p = ρg, div u = 0 in E, u = 0 on ∂E.

(2.5.2)

This system makes sense at least when ρ is compactly supported in E and for times until the first
particle reaches the boundary of E. (One can then extend the dynamics by imposing suitable
constraints at the boundary, e.g. by imposing that mass that hits the boundary of E is taken out of
the system, and that no mass can enter through the boundary.)

Moreover, if we fix an initial distribution of particles ρ0 and take the limit E → R3, we expect
the dynamics to converge to the dynamics of the whole space. However, there is one fundamental
difference between particle sedimentation in finite domains and in the whole space. The fluid velocity
in the whole space given as the solution of the Stokes equation with right-hand side ρg satisfies

g · u ≥ 0 in R3. (2.5.3)

Indeed, using the fundamental solution of the Stokes equations, u can be explicitly computed as

u(x) =
1

8π

ˆ
R3

ρ(y)

(
g

|x− y|
+

(g · (x− y))(x− y)

|x− y|3

)
dy.

This implies (2.5.3) since ρ ≥ 0 (in fact, the inequality in (2.5.3) is strict provided ρ 6= 0).
On the other hand, if we solve the Stokes equations in a bounded domain E with no-slip conditions,

we find for any a ∈ R3

ˆ
E
a · u(y) dy =

ˆ
E

div((a · y)u(y)) = 0. (2.5.4)

In particular, u has mean 0, and (2.5.3) does not hold. Heuristically speaking, if the fluid is pushed
down in some region in E, there has to be a backflow somewhere else because it is incompressible.
Indeed, analogously to (2.5.4), the total fluid flow through each surface Σ ⊂ E with ∂Σ ⊂ ∂E
vanishes. This is not true in the whole space, though: roughly speaking, fluid can enter from infinity.

As a consequence of the backflow, the behavior of solutions in finite containers is expected to
differ significantly from the behavior in the whole space as soon as the particles are filling a large
portion of the container. This can be easily verified by considering the extreme case of a homogeneous
distribution of particles in the whole container, i.e., ρ = 1E . Then, the solution to (2.5.2) is given by
u = 0 and the particles simply settle with the Stokes velocity of a single particle 2/(9γ)g.

We only used that u is divergence-free and satisfies the no-slip condition on ∂E to show that´
E u = 0. Therefore, this also holds for the microscopic fluid velocity, when we extend u into the
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particles. Since the particles are moving in the direction of gravity (at least on average), this implies
that the fluid has to flow in the opposite direction in between the particles. Therefore, when the
particles are distributed homogeneously in the whole container, it is expected that the average
particle velocity is even smaller than the Stokes settling velocity of a single particle, where the
correction depends on the particle volume fraction φ. This phenomenon is known as hindered settling,
and it has attracted a lot of attention in the physics community (see e.g. [Has59; Bat72; Hin77;
Nic+95; GM12b]). The exact value of the average velocity seem to be highly sensitive to the particle
distribution. Hasimoto [Has59] showed that the correction to the particle velocity due to the fluid
backflow is of order φ1/3 times the Stokes velocity VSt if the particles are periodically distributed in
the whole space. To mimic the situation of a bounded container, he considered the solution to the
Stokes equations in a cell Q with periodic boundary conditions imposing the constraint

´
Q u = 0. On

the other hand, Batchelor [Bat72] suggested a settling velocity V = (1− 6.55φ)VSt to first order in φ
in the case when the particles are placed according to a hard spheres distribution. It is an interesting
problem to prove rigorous results in that direction, in particular, when taking the time-evolution into
account.

2.5.4 The Caflisch-Luke paradox

Caflisch and Luke [CL85] pointed out that although the average particle velocity in a suspension
homogeneously distributed in a bounded container is of order VSt, the variance of this velocity formally
increases with the size of the container at fixed particle concentration. In fact, their computation
suggest that this variance is as large as in the case of a cloud of particles sedimenting in infinite
fluid. This computation has been supported by early numerical simulations [Koc94; Lad97] However
experiments did not observe this divergence but found that the variance is independent of the
container size for sufficiently large containers [NG95; SHC97]. Therefore, this issue became known as
the Caflisch-Luke paradox, and several mechanisms were suggested for its resolution [KS91; Bre99;
Luk00], proposing that the variance would decay in time due to the onset of some structure in the
particle distribution. Although this decay has been qualitatively confirmed by simulations [BGGH03;
NL05], there is still no convincing theory explaining a suitable rearrangement of the particles leading
to this behavior. For a review on the Caflisch-Luke paradox, we refer the reader to [GH11].

2.5.5 The instability of sedimentation of rod-like particles

As in the case of inertialess spherical particles, we can consider the corresponding macroscopic
equations for inertialess rod-like particles (1.1.3) in bounded domains E ⊂ R3,

∂tf +

(
u+

1

8γ−1
(Id + ξ ⊗ ξ)g

)
· ∇xf + divξ

(
Pξ⊥(ξ · ∇)uf

)
= 0,

−∆u+∇p =

ˆ
S2

fg dξ, div u = 0 in E, u(x) = 0 on ∂E.

(2.5.5)

Analogously as for spherical particles, if
´
S2 f dξ = 1E , then u = 0. In particular, ignoring boundary

conditions of f at ∂E, any function f(t, x, ξ) = h(ξ) is a stationary solution to (2.5.5).
However, these solutions are experimentally and numerically found to be instable, whereas the

corresponding constant density ρ = 1E is observed to be a stable solution of the transport-Stokes
equations (2.5.2) for spherical particles. Experiments and numerical simulations (based on the
microscopic model (2.3.16)) of the sedimentation of rods at small volume fraction found that the
particles tend to orient towards the direction of gravity and form packets that settle fast with
surrounding regions of little particles rising up (see e.g. [HGMS96; MS98; HG99; SDS05; MBG07]).
In particular, the average settling velocity is not found to be decreased by the presence of other
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particles due to the fluid backflow as for spherical particles, but it is larger than the sedimentation
velocity of a single vertically oriented rod in unperturbed infinite fluid.

In [KS89], the macroscopic model (2.5.5) was studied by a linear stability analysis. It was found
that indeed the stationary solutions f(t, x, ξ) = h(ξ) are unstable. However, in contradiction to the
mentioned experiments and simulations, it was predicted by [KS89] that the horizontal width of the
developed particle clusters are of the order of the container width. Some mechanisms have been
suggested for this different wave number selection in the instability in experiments and simulations
[SSD06a; SSD06b].

A review over the instability of the sedimentation of rods can be found in [GH11].



Chapter 3

The method of reflections

In this chapter, we study the method of reflections which is used to obtain series representations
for the solutions of certain boundary value problems in perforated domains. As discussed in Section
1.3, the method of reflections has been widely used in the physics and engineering literature, but
only few mathematical papers have considered the method.

In this chapter, we give a precise mathematical meaning of the formal series obtained by means of
the method of reflections and explain how these series can be used to obtain the asymptotic behavior
of the solutions of the Poisson and Stokes equations in the limit of domains perforated by many small
particles.

The method of reflections is also used in Chapter 4 for the rigorous derivation of the transport-
Stokes equations (4.1.9) from the microscopic particle system.

The content of this chapter has been published in Archive for Rational Mechanics and Analysis,
[HV18]. In comparison with [HV18], the assumptions on the configurations of particles have been
relaxed considerably. However, the structure of the proof is unaltered. In fact, the improvement has
only been achieved by application of the Cauchy-Schwarz inequality in the proof of Lemma 3.2.8 in a
way that has been overlooked in [HV18].

3.1 Introduction

We consider Poisson and Stokes equations in perforated domains

−∆u = f in R3\K, u = 0 in K, (3.1.1)

and
−∆v +∇p = f, ∇ · v = 0 in R3\K, v = 0 in K. (3.1.2)

where u is a scalar function, and v is a vector field with values in R3. Here, the set K consists of
mutually disjoint sets,

K =
⋃
i∈I

Ωi, (3.1.3)

for some Ωi ⊂ R3 open, where I is a finite or countable index set.
Problems analogous to (3.1.1) and (3.1.2) have been often studied in the physics literature using

the so-called method of reflections. This method allows to obtain some formal series for the solutions
of these equations which eventually should approximate them.

However, the series obtained by means of the method of reflections are divergent for problems
like (3.1.1) and (3.1.2) where K extends to the whole space. This divergence takes place even if the
source term f is compactly supported or decays very fast at infinity.

41
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3.1.1 The method of reflections

The method of reflections in hydrodynamic equations was introduced by Smoluchowski (cf.
[Smo11]). This method allows to approximate the solutions of boundary value problems for the
Poisson or Stokes equations in domains with complex boundaries consisting of many connected
components. We write any of those equations as

Lφ = f in Ω (3.1.4)

where φ is the solution to be computed and f is a suitable source term, and where L could be in
principle any linear elliptic operator. We will assume by definiteness that we wish to solve these
equations in the domain Ω = Rd\

⋃
j Cj , where the sets Cj , which from now on will be denoted as

particles, are compact sets and Cj ∩ Ck = ∅ if j 6= k. The boundary conditions might be Dirichlet,
Neumann or Robin or any other type as long as they are linear. We will write the boundary condition
at each set Cj as

Bφ = gj on ∂Cj . (3.1.5)

Suppose that the exterior boundary value problem outside each of the sets Cj can be solved
explicitly, i.e., we have explicit formulas (typically in terms of integrals) for the problems

Lψj = 0 in Rd\Cj , Bψj = hj on ∂Cj . (3.1.6)

It is then possible to compute iteratively a solution for the boundary value problem (3.1.4), (3.1.5)
in Ω as follows. We write as zero order approximation Φ0 to the solution of (3.1.4), (3.1.5) just as
the solution of

LΦ0 = f in Rd. (3.1.7)

This solution cannot be expected to satisfy the boundary condition (3.1.5). We then define a first
order approximation to φ adding to Φ0 the solutions of the problems (3.1.6) where hj is chosen as
the difference between the desired boundary condition and the one given by Φ0. More precisely we
define Φ1,j as the solution of

LΦ1,j = 0 in Rd\Cj , BΦ1,j = gj − BΦ0 on ∂Cj . (3.1.8)

We then define Φ1 =
∑

j Φ1,j . Then Φ0 + Φ1 yields a new approximation to φ. This new
approximation does not satisfy the boundary conditions on

⋃
j ∂Cj . We can then define a new

correction Φ2, defining functions Φ2,j in a manner analogous to (3.1.8). More precisely we define
inductively functions Φk,j as

LΦk,j = 0 in Rd\Cj , BΦk,j = −B

∑
l 6=j

Φk−1,l

 on ∂Cj for k = 2, 3, ..., (3.1.9)

Φk =
∑
j

Φk,j (3.1.10)

Iterating the method, we obtain a series ΨN = Φ0 + Φ1 + Φ2 + ...+ ΦN . The reason, why this
sequence can be hoped to converge to the solution of the boundary value problem (3.1.4), (3.1.5) is
that ΨN satisfies (3.1.4) and, by induction,

BΨN = gj − BΦN+1,j on ∂Cj .

There are several clear difficulties that one encounters when trying to prove the convergence of
the method described above to the solution φ. If there are infinitely many particles Cj , it is not clear
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whether the functions Φk would be defined since they are given by a series with infinitely many terms.
Actually, the divergence of these series might be expected in this situation because the solutions of
Poisson and Stokes equations yield long range interactions which decay as power laws with a too slow
decay. Even if the functions Φk are well defined, the convergence of {ΨN}N as N →∞ is not clear.
Divergence of this series might happen if the particles Cj are too close and their mutual interactions
do not tend to zero sufficiently fast. More precisely, divergence is expected if∣∣∣∑

l 6=j
Φk,l(xj)

∣∣∣ > |Φk,j(xj)|

for most of the particles j. Indeed this condition implies, that adding Φk does not bring the function
closer to the right boundary conditions at those particles j.

For the analysis of the convergence of the method of reflections applied to problem (3.1.1), it
turns out that some characteristic length is of great importance, namely the screening length. This
concept was introduced in the physics literature in [MR84]. A precise mathematical discussion of
this length and its relevance in phase transition problems driven by diffusive effects can be found
in [NO01], [NV06]. In the following, we illustrate the effect of the screening length for simplicity
in the special case of spherical particles with equal radii distributed on a lattice. (Later we will
go back to more general particle configurations.) More precisely, in (3.1.3) we choose Ωi = Br(xi)
and {xi}i∈I = (dZ)3 for some r, d > 0. In the following, we will use the notation Bi := Br(xi). We
consider equal charges on all particles that are contained in a ball of radius ρ. Then, we look at
the potential at the particle which is at the center of this ball. This potential is the sum of the
potential that is induced by the charge on that particular particle and the potential due to all the
other particles. Then, the screening length is the critical radius ρ at which those two portions are
equal. More precisely, we define uj to be the unique solution with uj(x) → 0 as |x| → ∞ of the
problem

−∆uj = 0 in R3\Bj ,
uj = 1 on ∂Bj .

Then, the screening length is defined as

Λ := sup

{
ρ > 0 : sup

∂Bj

( ∑
l 6=j, xl∈Bρ(xj)

ul (x)

)
< 1

}
.

If we now apply the method of reflections for Poisson equation to the system containing only
the particles in a cloud of radius R, i.e., for KR = K ∩BR(0), a sufficient condition for convergence
would be

R < Λ.

Indeed, adding Φk would then really bring the function closer to the right boundary conditions for
most of the particles, leading to the estimate

‖Φk+1‖ ≤ θ‖Φk‖

in a suitable norm, where

θ := sup
∂Bk

 ∑
j 6=k, xj∈BR

uk (x)

 < 1. (3.1.11)
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This condition is similar to the sufficient condition obtained in [Tra06] for the convergence of the
method of reflections for the Laplace equation in exterior domains with Dirichlet boundary conditions.
The condition there reads

max
i

∑
k 6=i

rk
|xi−xk|

1− ri
|xi−xk|

< 1. (3.1.12)

The proof in [Tra06] relies on the maximum principle for the Poisson equation. Therefore, it is not
clear how to generalize it to other problems like the Stokes equations.

In systems with many particles of small radii and typical distance between particles d, the
conditions (3.1.11) and (3.1.12) are roughly equivalent to

d−3rmax
i

∑
k 6=i

d3

|xi − xk|
< C

with C of order one. Approximating the sum by an integral and assuming that the particles are
contained in ball with radius R, this would be equivalent to

d−3r

ˆ
BR(0)

dy

|y|
< C.

Thus, the screening length Λ is of order
√
r−1d3.

3.1.2 Assumptions on the particle configuration

For a general configuration of particles Ωi, we assume that there exist xi ∈ R3 and ri > 0 such
that Ωi ⊂ Bxi(ri) =: Bi and the balls Bi are pairwise disjoint. For each particle i ∈ I we define the
distance to the nearest other particle

di := inf
j 6=i
|xi − xj |.

Then the sets Bdi/2(xi) are disjoint.
In the following, we will always assume that the following two conditions are satisfied.

Condition 3.1.1. There exists a constant ` such that

C2
` :=

∑
i

∑
j 6=i

rirje
2|xi−xj |

`

|xi − xj |2
<∞ (3.1.13)

Condition 3.1.2.

There exists a constant κ > 1 such that

di
2
> κ2ri for all i ∈ I.

Condition 3.1.1 appears to be rather complicated. However, it can be viewed as a relaxed version
of (3.1.12): due to the exponential cutoff, it is a localized version. Moreover, due to the second sum
on the left-hand side of (3.1.13) instead of the maximum in (3.1.12), Condition 3.1.1 allows clusters
of close particles as long as there are not too many of them. The following minimal distance condition
implies Condition 3.1.1.

Condition 3.1.1∗. There exists µ0 <∞ such that

rid
−3
i ≤ µ0 for all i ∈ I (3.1.14)
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Indeed, if Condition 3.1.1∗ is satisfied for some µ0 <∞, then also Condition 3.1.1 holds with

C` ≤ Cµ0`
2, (3.1.15)

where C is a universal constant. Clearly, Condition 3.1.1 is much less restrictive than Condition
3.1.1∗. In view of the previous subsection, Condition 3.1.1∗ implies a lower bound for the screening
length Λ of the particles. Equivalently, µ0 provides an upper bound for the capacity density of the
particles (see also Section 3.1.5).

Condition 3.1.1 is also satisfied for certain random distribution of particles: Consider spherical
particles that are distributed according to a Poisson point process with intensity n(x)g(r). We define
the capacity density

µ(x) := n(x)

ˆ ∞
0

rg(r) dr.

Then, if µ ∈ L∞(R3), the expectation of C` is estimated as

E(C`) =

ˆ
R3

ˆ
R3

µ(x)µ(y)e
2|x−y|
`

|x− y|2
≤ C‖µ‖∞`2.

In particular, Condition 3.1.1 is satisfied with probability one.

Condition 3.1.2 rules out overlapping or touching particles by requiring that their distance is
controlled by their radius. This condition is not very restrictive. Indeed, we are interested in the
case of many small particles with screening length

√
r−1d3 of order one. Thus the typical distance d

needs to be much larger than the typical radius r. In particular, we observe that Condition 3.1.1∗

implies Condition 3.1.2 if all the radii ri are sufficiently small.

3.1.3 Main results for the Screened Poisson equation

In order to avoid divergences but still allow for infinitely many particles, instead of the Poisson
equation, we will consider first a modified version of the problem (3.1.1), namely the screened Poisson
equation

−∆u+ `−2u = f in R3\K, u = 0 in K (3.1.16)

for some ` > 0. The basic difference between (3.1.1) and (3.1.16) is that the Green’s function
associated to the second problem decreases exponentially in distances of order `, which can be
thought of as the effective system size. Thus, the series defining the functions Φk are well defined.
Moreover, the series in the Method of Reflections converges provided the particle configuration
satisfies the assumptions of the previous subsection with C` sufficiently small. This condition implies
that the screening length of the system is sufficiently large compared to the effective system size,
which guarantees that the interaction does not exceed a certain value.

We also have to impose that (ri)i∈I is bounded.

Condition 3.1.3. There exists a constant α such that

ri ≤ α` for all i ∈ I.

Theorem 3.1.4. Assume Conditions 3.1.1, 3.1.2, and 3.1.3 are satisfied for some ` > 0. Let
L = −∆ + `−2, B = I, Ω = R3\K with K as in (3.1.3), and let gj = 0 on ∂Cj . Suppose also that
f ∈ H−1

(
R3
)

and define Φ0 as in (3.1.7) and inductively the functions Φk by means of (3.1.9),
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(3.1.10). Let u be the unique solution of (3.1.16) in H1
(
R3\K

)
. Then, there exists a constant θ < 1

depending only on κ and a constant C1 depending only on κ and α such that

∥∥∥ N∑
k=0

Φk − u
∥∥∥
H1(R3\K)

≤ max{1, `2}max{θ, C1C`}N‖f‖H−1(R3),

where C` is defined as in (3.1.13).

Remark 3.1.5. In particular, if (3.1.14) is satisfied, the above theorem together with (3.1.15) implies
that

∑N
k=0 Φk converges to u for all particle configurations with `2µ0 sufficiently small.

As indicated in the theorem above, if C` is large, the series
∑∞

k=0 Φk is in general divergent
and the method of reflections cannot be applied, at least not in the form stated in Theorem 3.1.4.
However, it turns out that it is possible to give a meaning to the formal series arising in the method
of reflections in order to obtain a modified series which converges to the solution of (3.1.16).

Indeed, instead of
∑∞

k=0 Φk, we prove (see Theorem 3.2.12) that for arbitrary values of C` there
exists a double sequence q (k,N) defined for k,N ∈ N and 0 ≤ k ≤ N, such that

ΨN =

N∑
k=0

q (k,N) Φk (3.1.17)

converges as N →∞ to the unique solution u of (3.1.16) in H1
(
R3\K

)
.

This result can be thought as a summation method for the original series
∑∞

k=0 Φk. The precise
construction of the sequence q (k,N) will be given in Section 3.2.

3.1.4 The summation procedure and the main result for the Poisson equation

Theorems 3.1.4 and 3.2.12 refer to the Dirichlet problem for the screened Poisson equation (3.1.16)
containing a parameter ` which restricts the range of interaction between particles to the finite value
`. It is natural to ask if the result can be generalized to the Dirichlet problem for the Poisson equation
(3.1.1) which corresponds to ` =∞.

In this case, the series (3.1.10) defining the functions Φk does not converge if the particles extend
to the whole space R3 and then the method of reflections as formulated in Theorem 3.1.4 becomes
meaningless.

Nevertheless, using the formal series
∑∞

k=0 Φk, it is possible to construct an alternative series
which converges to the solution of (3.1.1). However, the relation between the original (divergent)
series and the modified one, is much more involved than in the case of the screened Poisson equation
Theorem 3.2.12. Therefore, we will first give an idea of the summation method.

The summation method is based on an interpretation of the method of reflections using an
abstract idea of functional analysis in Hilbert spaces. It is well known that by means of convenient
choices of Hilbert spaces H, the solutions of many boundary value problems for a large class of
equations with the form (3.1.4) is equivalent to the orthogonal projection of L−1f to the subspace
of the Hilbert space for which the boundary conditions hold. We denote here by L−1 the operator
solving (3.1.4) in the whole space, which can be easily computed using the Green’s function associated
to (3.1.4). We will denote this orthogonal projection operator providing the solution of the boundary
value problem (3.1.4) by P . This projection maps the Hilbert space H into the subspace satisfying
the boundary conditions, which will be denoted by V. On the other hand, we can associate another
orthogonal projection operator Pj to the solution of the boundary value problem for a single particle
j. This projection maps H in a subspace Vj for which the boundary conditions are satisfied at the
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particle j. We have V = ∩jVj . Let Qj denote the orthogonal projection from H in the orthogonal of
Vj in H.

It turns out that the partial sums for the Method of Projections
∑N

k=0 Φk can be written as(
1−

∑
j

Qj

)N
L−1f.

Thus, the Method of Projections converges to the solution of (3.1.4) if

P = lim
N→∞

(
1−

∑
j

Qj

)N
(3.1.18)

in some suitable way. This result would hold trivially if the subspaces {Vj} were mutually orthogonal.
However, if the angles between some of these subspaces are too small, a geometrical argument shows
that (3.1.18) will fail. It is precisely the condition of smallness of C` that ensures that the convergence
(3.1.18) takes place for the Dirichlet problem of the screened Poisson equation (3.1.16). This is the
main idea in the proof of Theorem 3.1.4.

A related geometrical interpretation of the method of reflections has been analyzed in [Luk89]. The
method used in [Luk89] can be applied to systems with finitely many particles, and the convergence
of the method of reflections used there, which does not treat all the particles simultaneously but
sequentially, leads to showing that

lim
N→∞

(∏
j

Pj

)N
= P,

where the product is taken over the finite number of particles chosen in any order. Actually, the
method of reflections used in [Luk89] is not applied in the case of Dirichlet boundary conditions.
Instead, it is applied to the Stokes system imposing the set of mixed boundary conditions at the
particles satisfied by sedimenting inertialess particles, and to the Poisson equation with analogous
boundary conditions.

As indicated above, the convergence stated in (3.1.18) cannot be expected if C` is large. However,
a geometrical argument shows that, as long as the sum

∑
j Qj is convergent, the following convergence

takes place.

P = lim
N→∞

(
I − γ

∑
j

Qj

)N
,

if γ > 0 is small enough. Actually the right hand side can be written as the series (3.1.17) which is
directly related to the original series

∑N
k=0 Φk.

For the Poisson equation (3.1.1) with particles extending to the whole space, the series
∑

j Qj is in
general divergent. However, a similar idea can be applied by including in γ an additional dependence
on the particle position.

Theorem 3.1.6. Suppose Conditions 3.1.1 and 3.1.2 are satisfied with some ` > 0. Let f ∈
Ḣ−1

(
R3
)
. There exists a γ0 > 0 depending only on C` from Condition 3.1.1 and κ from Condition

3.1.2 such that the sequence

lim
N→∞

(
1− γ

∑
j

e−`|xj |Qj

)N
(−∆)−1f

converges to the solution of (3.1.1) in Ḣ1
(
R3
)

for all γ < γ0.

Remark 3.1.7. We denote by Ḣ1(R3) := {v ∈ L6(R3) : ∇v ∈ L2(R3)} the homogeneous Sobolev
space and by Ḣ−1

(
R3
)

its dual space.
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3.1.5 Homogenization results

To illustrate the possible use of the method of reflections, we will give a proof of classical
homogenization results in perforated domains using only the tools developed in this chapter. We
assume that for 0 < δ < 1 we have configurations of spherical particles with radii ri,δ and centers xi,δ
for i ∈ Iδ.

In [CM82a; CM82b] (see [CM97] for an English version), the question considered is the homoge-
nization problem

−∆uδ = f in Ω\Kδ , uδ = 0 in Kδ ∪ ∂Ω, (3.1.19)

where Ω is an open bounded subset of Rn and Kδ is a sequence of sets occupied by particles. It
was proved in [CM97] that under some abstract conditions on the particle configurations, there is
µ ∈W−1,∞(Ω) such that for all f ∈ L2(Ω) the sequence of solutions uδ converges weakly in H1(Ω)
as δ → 0 to the solution of

−∆u+ µu = f in Ω , u = 0 in ∂Ω, (3.1.20)

In [CM97], also specific particle configurations have been studied. In particular, they considered
particles of radius r periodically distributed on the lattice (dZ)3. Then, in the limit r, d→ 0 such
that rd−3 is fixed, the sequence of solutions to (3.1.19) converges to the solution of (3.1.20) with
µ = 4πrd−3.

We have already explained the importance of the quantity rd−3 when we introduced the screening
length Λ. Furthermore, we can draw the following analogy to the theory of electrostatics. The
electrostatic capacity of a conductor is the charge induced on it by a difference of potential. We
recall that the electrostatic capacity of a sphere of radius r is 4πr (cf. [Jac75]). Thus, µ4πrd−3 is the
capacity density of the system.

Therefore, for more complicated particle configuration, it is natural to prove convergence to the
homogenized equation (3.1.20) given that the capacity density converges in a suitable sense. For
δ > 0 and x ∈ (δZ)3, we define qδx to be half open cubes with edges of length δ such that R3 is the
disjoint union of those cubes. Having fixed those cubes, for any y ∈ R3, we use the notation qδy for

the unique cube qδx containing y, where x ∈ (δZ)3. We define the averaged capacity density

µδ(x) :=
4π

δ3

∑
xi,δ∈qδx

ri,δ. (3.1.21)

Then, under the following assumption, we can prove the homogenization result below.

Assumption 3.1.8. For all 0 < δ < 1, the particle configurations satisfy Conditions 3.1.1∗ and 3.1.2
uniformly in δ, i.e. with the same constants ` and κ and with C` uniformly bounded in δ. Moreover,
there exists µ ∈ L∞(R3) and µ1 > 0 such that µδ ≥ µ1 for all 0 < δ < 1 and

lim
δ→0

µδ → µ in L∞(R3).

Note that instead of Condition 3.1.1 we require the stronger Condition 3.1.1∗. This is used for a
Riemann sum argument in the proof of the homogenization result. It seems to be possible to weaken
Condition 3.1.1∗ but it avoids certain technicalities to require it.

Note that
rδ,max := sup

i∈Iδ
ri < Cδ ≤ C. (3.1.22)

Indeed, by Assumption 3.1.8 µδ ≥ µ1 > 0, and therefore every cube qδx contains at least one particle,
and those cubes are of length δ < 1.
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Theorem 3.1.9. Suppose that f ∈ H−1
(
R3
)
. Then, under Assumption, 3.1.8, the problems (3.1.1)

with K = Kδ have unique solutions uδ ∈ H1
(
R3
)
. In the limit δ → 0, uδ converges weakly in H1(R3)

to the unique solution u ∈ H1(R3) of the problem

−∆u+ µu = f in R3.

An analogous result can also be proved for the solutions of the equation (3.1.16). In that case,
the limit equation reads

−∆u+ (`2 + µ)u = f.

Generalizations of this result have been developed, including more general elliptic operators,
in particular Stokes equations [All90a; DGR08; MK74] (see [MK08] for a English version). Most
of the homogenization results for elliptic problems have been obtained in bounded domains. The
homogenization problem associated to (3.1.19) with Ω = R3 has been considered in [NV04a; NV06]
with assumptions on the particle configurations similar to Assumption 3.1.8. In particular, it was
proved in those papers that assuming that f ∈ L∞

(
R3
)
, the unique bounded solutions of (3.1.19)

converge weakly in H1
loc

(
R3
)

as δ → 0 to the solution of (3.1.20) (with Ω = R3). The proof of the
homogenization results in [NV04a; NV06] relies heavily in the derivation of the so-called screening
estimate, which states that the fundamental solution for the Laplace equation in a perforated domain
with homogeneous Dirichlet boundary conditions decreases exponentially over distances of the order
of the screening length Λ = 1√

µ . The proof of this estimate given in [NV06] uses the maximum

principle for second order elliptic operators and therefore the proof cannot be easily generalized to
higher order operators. We want to emphasize that our proof of Theorem 3.1.9 does not use the
maximum principle.

Analogous theorems as Theorem 3.1.6 and Theorem 3.1.9 can be obtained also for Stokes equations
(3.1.2), see Theorem 3.5.8 and Theorem 3.5.12. The homogenized equations in the case of Stokes
equations are

−∆u+∇p+ µu = f in R3, ∇ · u = 0 , (3.1.23)

and the factor 4π in equation (3.1.21) has to be replaced by 6π.

Related results have been obtained in [All90a; DGR08; MK08]. The system of equations (3.1.23)
is known as Brinkman equations, which is a well established model in the theory of filtration. It can
be viewed as intermediate equations between the Stokes equations and Darcy’s law in porous media
(see [SP82; All90b]). All the results in those papers have been obtained in bounded domains and for
particles of identical radii. Theorem 3.5.12 above provides a new proof of this type of homogenization
results by means of the method of reflections. Note that the homogenization result in Theorem 3.5.12
is valid for particle distributions in the whole space and for particles with different radii. However, we
do not think that the method of reflections is really needed for this generalization, because seemingly
the methods of [DGR08] might be easily adapted to prove Theorem 3.5.12. We just want to emphasize
that the convergence result in Theorem 3.5.8 based on the method of reflections is strong enough to
allow the derivation of the homogenization limit.

3.1.6 Organisation of this chapter

The rest of the chapter is organized as follows.

In Section 3.2, we will prove Theorem 3.1.4 and 3.2.12. To do so, after repeating a basic lemma
from functional analysis, we will give the precise formulation of the method of reflections in terms of
orthogonal projections in Section 3.2.2, which will directly lead to necessary and sufficient conditions
for convergence of the series obtained by the method of reflections. In Section 3.2.3, we will provide the
necessary estimate to prove Theorem 3.1.4. In Section 3.2.4, we will explain in detail the geometrical
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idea leading to the summation method yielding Theorem 3.2.12. In Section 3.2.5, we will analyze the
summation method on the level of the original series obtained by the method of reflections.

In Section 3.3, we will explain the modifications needed to adapt the method derived in Section
3.2 to the Poisson equation. These modifications basically consist in a spatial cutoff in order to solve
the problem of divergent series due to the long range structure of the Poisson equation. This leads to
the proof of Theorem 3.1.6.

In Section 3.4, we prove the homogenization result, Theorem 3.1.9. In Section 3.4.1, we show
that, under Assumption 3.1.8, problem (3.1.1) is well posed in H1(R3) due to the existence of a
Poincaré inequality in H1

0 (R3\Kδ). Thereafter, we give a formal derivation of the homogenization
result based on the original formal series obtained by the method of reflections. Finally, we give the
rigorous proof of Theorem 3.1.9 using the tools and results from the previous sections.

In Section 3.5, we apply the method to the Stokes equations (3.1.2) in order to prove the analogous
results as for the Poisson equation. Since most parts work exactly the same way as for the Poisson
equation, we refrain from going through all the details again, but rather point out the necessary
modifications.

3.2 The Screened Poisson equation

Throughout this section, we will always assume that a particle configuration (Ωi)i∈I with
corresponding balls Bi ⊃ Ωi and a number ` > 0 is given which satisfy Conditions 3.1.1, 3.1.2
and 3.1.3 for some κ, ` and α.

3.2.1 Preliminaries of functional analysis

In the following G0 := (−∆ + `−2)−1 denotes the solution operator for the screened Poisson
equation in the whole space R3. Then, G0f = W` ∗ f , where

W`(x) =
e−
|x|
`

4π|x|
. (3.2.1)

Moreover, G0 is an isometric isomorphism from H−1(R3) to H1(R3) if we modify the standard scalar
product in H1(R3) according to

(u, v)H1
`

:= (∇u,∇v)L2 + `−2(u, v)L2 .

We will always consider H1(R3) endowed with this scalar product.

Furthermore, we will denote the dual pairing between H−1(R3) and H1(R3) by 〈·, ·〉.
Moreover, we will use the following notation that differs slightly from the usual terminology.

Given any closed set K ⊂ R3 we will denote as H1
0

(
R3\K

)
the closure in the H1

(
R3
)

topology of
the set of functions u ∈ C∞c

(
R3
)

such that u = 0 in K. Notice that with this convention the elements
of H1

0

(
R3\K

)
are also elements of H1

(
R3
)
.

We now recall a classical Functional Analysis result which allows to interpret the solutions of
the Dirichlet problem for elliptic equations using projections. These projection operators will be an
essential tool for the analysis of the method of reflections.

Lemma 3.2.1. Let Ω ⊂ R3 be open. Then, for every f ∈ H−1(R3), the problem

−∆u+ `−2u = f in R3\Ω,
u = 0 in Ω

(3.2.2)
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has a unique weak solution u ∈ H1(R3). Moreover, the solution for problem (3.2.2), is given by

PΩG0f,

where PΩ is the orthogonal projection from H1(R3) to the subspace H1
0 (R3\Ω).

Proof. Existence and uniqueness follow directly from the Riesz Representation Theorem since the
weak formulation reads

(u, v)H1
` (R3) = 〈v, f〉 for all v ∈ H1

0 (R3\Ω).

Furthermore, denoting by u the solution to problem (3.2.2), we have for v ∈ H1
0 (R3\Ω)

(G0f − u, v)H1
` (R3) = 〈v, f〉 − 〈v, f〉 = 0.

Hence, u = PΩG0.

3.2.2 Formulation of the method of reflections using orthogonal projections

We now recall the method of reflections and give directly an interpretation involving the projection
operators mentioned in the introduction. These projection operators are defined by

Qi = 1− Pi, (3.2.3)

where Pi := PΩi are the projection operators from Lemma 3.2.1. Thus, Qi is the orthogonal projection
in H1(R3) to the subspace H1

0 (R3\Ωi)
⊥. Equivalently, for u ∈ H1(R3), Qiu solves

−∆Qiu+ `−2Qiu = 0 in R3\Ωi, (3.2.4)

Qiu = u in Ωi.

This also yields the characterization

H1
0 (R3\Ωi)

⊥ = {v ∈ H1(R3) : −∆v + `−2v = 0 in R3\Ωi}. (3.2.5)

For f ∈ H−1(R3), we define Φ0 := G0f . Then, the first order correction for a particle i is given
by Φ1,i := −QiΦ0, and the first order approximation for the solution is obtained by subtracting from
Φ0 the correctors Φ1,i for all the particles, i.e.,

Ψ1 = Φ0 +
∑
i∈I

Φ1,i.

Similarly, the k-th order correction for a particle i is given by

Φk,i = −Qi
∑
j 6=i

Φk−1,j .

Then, we define

Φk =
∑
i

Φk,i. (3.2.6)

and the k-th order approximation Ψk = Φ0 + · · ·+ Φk. Therefore, the method of reflections yields
the series

G0f −
∑
i1

Qi1G0f +
∑
i1

∑
i2 6=i1

Qi1Qi2G0f −
∑
i1

∑
i2 6=i1

∑
i3 6=i2

Qi1Qi2Qi3G0f + . . . . (3.2.7)
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As mentioned in the introduction, we want to rewrite this series in terms of powers of a certain
operator. To do so, the key observation is that

Φk,i = −Qi
∑
j 6=i

Φk−1,j = −QiΨk−1.

This is due to the fact that

Ψk−1 = Φk,i in Ωi, (3.2.8)

which follows inductively from the definition of Ψk and Φk,i.

Therefore, we have

Ψk+1 =

(
1−

∑
i

Qi

)
Ψk,

and thus, the partial sums of the scattering series are given by(
1−

∑
i

Qi

)n
G0f. (3.2.9)

Definition 3.2.2. The operator L : H1(R3) ⊃ D(L)→ H1(R3) is defined as

L =
∑
i

Qi.

The domain D(L) of this operator consists of all function u ∈ H1(R3) such that the series
∑

iQi
exists.

Remark 3.2.3. We will show below (cf. Proposition 3.2.7) that L is a bounded operator in the whole
of H1(R3). As mentioned in the introduction, this is due to the exponential decay in the fundamental
solution of the screened Poisson equation and fails for the Poisson equation.

Remark 3.2.4. . We note that D(L) = H1(R3) implies that L is a nonnegative self-adjoint operator,
since the operators Qi are orthogonal projections

Theorem 3.2.5. (i) If the series (3.2.7) obtained by the method of reflections is absolutely con-
vergent, then it yields a solution to the Dirichlet problem (3.1.16).

(ii) The series (3.2.7) is absolutely convergent for every f ∈ H−1(R3) if the operator L from
Definition 3.2.2 is a bounded operator on H1(R3) with ‖L‖ < 2. The series (3.2.7) is convergent
for every f ∈ H−1(R3), then L defines a bounded operator on H1(R3) with ‖L‖ ≤ 2.

(iii) Assume L is a bounded operator on H1(R3) with ‖L‖ < 2, and L has a spectral gap, i.e.,

inf{λ ∈ σ(L)\{0}} = c > 0,

where σ(L) denotes the spectrum of L. Then,

‖(1−L)nG0f−u‖H1
` (R3) ≤ max{1−c, ‖L‖−1}n‖f‖H−1

` (R3) for all f ∈ H−1(R3), (3.2.10)

where u denotes the solution to the Dirichlet problem (3.1.16).



Estimates for the operator L 53

Proof. As above, we denote the partial sums of the series (3.2.7) by Ψn. Since (−∆ + `−2)Qiv = 0 in
R3\K for all v ∈ H1(R3) (cf. (3.2.4)), it follows

(−∆ + `−2)Ψn = f in R3\K.

Thus, this equation is also satisfied by the limit. By (3.2.8) we have Ψn = Φn+1,i → 0 in Ωi since
Φn+1,i appears in the series (3.2.7) which we assumed to be absolutely convergent. This implies that
the limit indeed solves (3.1.16).

To prove the second statement, we observe that by (3.2.9), the partial sums of the series (3.2.7) can
be written as (1− L)nG0f . Since G0 is an isometry, these partial sums only exist if D(L) = H1(R3).
Then, by Remark 3.2.4, L is a nonnegative self-adjoint operator. Thus, by the spectral theorem (for
unbounded self-adjoint operators), up to an isometry, L is a multiplication operator T on H := L2

ν(X)
for some measure space (X,A, ν), i.e., there exists a function f ∈ L∞ν (X) such that Tϕ = fϕ for all
ϕ ∈ L2

ν(X). Thus, (1− L)nG0f corresponds to

(1− f)nϕ

which converges iff

−1 < (1− f) ≤ 1 ν-a.e.

Since L is nonnegative, this is equivalent to f < 2, ν-a.e., and hence, a sufficient condition for
convergence is ‖L‖ < 2, and a necessary condition is ‖L‖ ≤ 2.

If, in addition, L has a spectral gap, then for ν-a.e. x, f(x) = 0 or f(x) ≥ c and (3.2.10)
follows.

Remark 3.2.6. It is essential to observe the following. If the operator L from Definition 3.2.2
defines a bounded operator on H1(R3) with ‖L‖ < 2, then (1 − L)n converges to the orthogonal
projection to the kernel of L. Indeed, by decomposing any u ∈ H1(R3) into u = u1 + u2, where
u1 ∈ kerL and u2 ∈ (kerL)⊥, we see that (1 − L)nu2 = u2 and (1 − L)nu1 → 0 using the spectral
theorem as in the proof above.

We recall that L =
∑

iQi, where Qi are orthogonal projections to H1
0 (R3\Ωi)

⊥. Therefore,

kerL =
⋂
i

H1
0 (R3\Ωi) = H1

0 (R3\K) =: V.

Hence, the series (3.2.7) written as (1 − L)nG0f converges to PG0f , where P denotes orthogonal
projection to V . However, this is just a different way to see that the series indeed converges to the
solution of problem (3.1.16). Indeed, the fact that PG0f solves problem (3.1.16) follows directly from
Lemma 3.2.1.

3.2.3 Estimates for the operator L

Proposition 3.2.7. There exists a constant C1 > 0 depending only on α and κ from Condition
3.1.2 and 3.1.3 such that

‖L‖ ≤ 1 + C1C`,

where C` is the defined in Condition 3.1.1

The key estimate for the proof of the above proposition is the following lemma. Roughly speaking,
it states that correlations between H−1 functions which are supported in the particles are controlled
by the capacity density times the norms of the functions themselves.



54 The method of reflections

Lemma 3.2.8. Assume (fi)i∈I ⊂ H−1(R3) satisfies supp fi ⊂ Bi for all i ∈ I. Then,

c
∑
i

‖fi‖2H−1
` (R3)

≤
∥∥∥∑

i

fi

∥∥∥2

H−1
` (R3)

≤ (1 + C1C`)
∑
i

‖fi‖2H−1
` (R3)

, (3.2.11)

where c > 0 is a universal constant and C1 depends only on α and κ from Condition 3.1.2 and 3.1.3.

For the proof we need the following lemma.

Lemma 3.2.9. Let i, j ∈ I. Assume f ∈ H−1(R3) is supported in Bj. Then, there exists a function
v ∈ H1

0 (Bκri(xi)) such that v = G0f in Bi, and

‖v‖H1
` (R3) ≤ C

√
rirj

e−
|xi−xj |

`

|xi − xj |
‖f‖H−1

` (R3),

for a constant C that depends only on α and κ from Condition 3.1.2 and 3.1.3.

Proof. For z ∈ Bκri(xi), we define θ ∈ C∞c (Bκrj (z − xj)) such that θ = 1 in Brj (z − xj) and

|∇θ| ≤ C
rj

, (where the constant depends on κ). We use that f is supported in Bj . Therefore, using

the fundamental solution (3.2.1),

|(G0f)(z)| = |(W` ∗ f)(z)| = |((θW`) ∗ f)(z)|
= |〈(θW`)(z − ·), f〉| ≤ ‖f‖H−1

` (R3)‖θW`‖H1
` (R3),

(3.2.12)

and
|∇(G0f)(z)| ≤ ‖f‖H−1

` (R3)‖θ∇W`‖H1
` (R3). (3.2.13)

We observe that Condition 3.1.2 and z ∈ Bκri(xi) implies for y ∈ Bκrj (z − xj)

|y| ≥ |xi − xj | − κ(rj + ri) ≥
(

1− 1

κ

)
|xi − xj | ≥ c|xi − xj |.

Using also Condition 3.1.3, we estimate

‖θW`‖H1
` (R3) ≤ ‖W`‖H1

` (Bκrj (z−xj)) +
C

rj
‖W`‖L2(Bκrj (z−xj))

≤ Cr3/2
j e−

|xi−xj |−κ(rj+ri)

`

(
1

c|xi − xj |2
+

1

rjc|xi − xj |
+

1

`c|xi − xj |

)

≤ Cr1/2
j

e−
|xi−xj |

`

|xi − xj |
,

and

‖θ∇W`‖H1
` (R3) ≤ Cr

1/2
j

e−
|xi−xj |

`

|xi − xj |2
.

Now, we use another cutoff function η ∈ C∞c (Bκri(xi)) such that η = 1 in Bi and |∇η| ≤ C
ri

to define
v := η(G0f). Then, we get from the pointwise estimates on G0f , (3.2.12) and (3.2.13),

‖v‖H1
` (R3) = ‖η(G0f)‖H1

` (R3) ≤ ‖G0f‖H1
` (Bκri (xi))

+
C

ri
‖G0f‖L2(Bκri (xi))

≤ C√rirj
e−
|xi−xj |

`

|xi − xj |
‖f‖H−1(R3).
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Proof of Lemma 3.2.8. Let ηi ∈ C∞c (Bκri(xi)) such that ηi = 1 in Bi and |∇ηi| ≤ C
ri

. Now, we

observe that for all u ∈ H1(R3)

‖u‖L2(Bκri (xi))
≤ ‖u‖L6(Bκri (xi))

‖1‖L3(Bκri (xi))
≤ Cri‖∇u‖L2(R3),

where we have used the Gagliardo-Nirenberg-Sobolev inequality ‖u‖L6(R3) ≤ C‖∇u‖L2(R3). Hence,

‖ηiu‖H1
` (R3) ≤ ‖u‖H1

` (R3) +
C

ri
‖u‖L2(Bκri (xi))

≤ C‖u‖H1
` (R3). (3.2.14)

On the other hand, denoting f =
∑

i fi,∑
i

‖fi‖2H−1
` (R3)

=
∑
i

〈G0fi, fi〉 =
∑
i

〈ηiG0fi, fi〉

=
∑
i

〈ηiG0fi, f〉 ≤ ‖f‖H−1
` (R3)

∥∥∥∑
i

ηiG0fi

∥∥∥
H1
` (R3)

.

By taking squares on both sides and using the fact that the balls Bκri(xi) are disjoint together with
the preliminary estimate (3.2.14), we deduce(∑

i

‖fi‖2H−1
` (R3)

)2

≤ C‖f‖2
H−1
` (R3)

∑
i

‖G0fi‖2H1
` (R3).

Since G0 is an isometry, this yields the first inequality in (3.2.11).
For the second inequality, we use again that G0 is an isometry to get∥∥∥∑

i

fi

∥∥∥2

H−1
` (R3)

=
∥∥∥∑

i

G0fi

∥∥∥2

H1
` (R3)

=
∑
i

‖G0fi‖2H1
` (R3) +

∑
i

∑
j 6=i

(G0fi, G0fj)H1
` (R3)

=
∑
i

‖fi‖2H−1
` (R3)

+
∑
i

∑
j 6=i
〈G0fj , fi〉.

Let i 6= j. Since fi is supported in Bi, we have

〈G0fj , fi〉 = 〈v, fi〉,

for any v ∈ H1(R3) such that v = G0fj in Bi. Therefore, application of Lemma 3.2.9 yields

|〈G0fj , fi〉| ≤ C
√
rirj

e−
|xi−xj |

`

|xi − xj |
‖fi‖H−1

` (R3)‖fj‖H−1
` (R3).

Hence, by the Cuachy-Schwarz inequality

∑
i

∑
j 6=i
〈G0fj , fi〉 ≤ C

∑
i

∑
j 6=i

√
rirj

e−
|xi−xj |

`

|xi − xj |
‖fi‖H−1

` (R3)‖fj‖H−1
` (R3)

≤ C
∑
i 6=j

rirje
−

2|xi−xj |
`

|xi − xj |2
∑
i

‖fi‖2H−1
` (R3)

By definition of C` in Condition 3.1.1 this yields the desired estimate.
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Proof of Proposition 3.2.7. We choose an enumeration of the index set I and define

LN :=

N∑
i=1

Qi,

where Qi was defined in (3.2.3). From (3.2.5) we see that every function in the image of G−1
0 Qi is

supported in Bi. Using that G0 is an isometry, Lemma 3.2.8 implies

‖LNu‖2H1
` (R3) ≤ (1 + C1C`)

N∑
i=1

‖Qiu‖2H1
` (R3) = (1 + C1C`)

N∑
i=1

(Qiu, u)H1
` (R3)

= (1 + C1C`)(L
Nu, u)H1

` (R3)

≤ (1 + C1C`)‖LNu‖H1
` (R3)‖u‖H1

` (R3).

Thus, ‖LN‖ ≤ 1 + C1C`.
On the other hand, convergence of LNu holds for any u ∈ H1(R3) that is compactly supported,

because particles lying outside of the support of u do not play any role. Thus, Lu =
∑∞

i=1Qiu is
well defined for all u ∈ H1(R3) and ‖L‖ ≤ 1 + C1C`. Indeed, let ε > 0 and u ∈ H1(R3). Then, there
exists a v ∈ H1(R3) with compact support such that ‖u− v‖H1

` (R3) ≤ ε(1 +C1C`)
−1. Let N0 ∈ N be

such that all particles Ωi lie outside of the support of v for i > N0. Then, for N,M > N0

‖LNu− LMu‖ ≤ ‖LNu− LNv‖+ ‖LNv − LMv‖+ ‖LMu− LMv‖ ≤ 2ε.

Remark 3.2.10. The second estimate in (3.2.11) is sharp in the following sense. For all particle
configurations, ‖L‖ ≥ 1. Moreover, there exists a constant c such that for all ` > 0 and for all C`,
there exist particle configurations satisfying Conditions 3.1.1 with prescribed C`, 3.1.2, and 3.1.3 such
that

‖L‖ ≥ cC`.

In particular, Theorem 3.2.5 implies that the series (3.2.7) is in general not convergent if µ0 is
sufficiently large.

Proof. Consider any particle configuration and a function supported in one particle, i.e., u ∈ H1
0 (Ωi)

for some i ∈ I. Then u is a fixed point of the operator L =
∑

iQi, because Qiu = u and Qju = 0 for
all j 6= i. Hence ‖L‖ ≥ 1.

To see that ‖L‖ & C` we consider particles with equal radii r distributed on a lattice, i.e.,
{xi}i∈I = (dZ)3, Ωi = Bi = Br(xi), and we denote by µ0 = r/d−3 the capacity density. Then, as
mentioned in Section 3.1.2, approximating the the sums in (3.1.13) by integrals, leads to

cµ0`
2 ≤ C` ≤ Cµ0`

2,

for universal constants c, C. The fact that the capacity density µ0 has to appear on the right hand
side of an estimate for ‖L‖ follows more or less directly from the definition of the electrostatic
capacity: The capacity of a set K is defined as

‖∇v‖2L2(R3\K),

where v is the solution to

−∆v = 0 in R3\K,
v = 1 in K.
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Now, we choose d � 1 and consider u ∈ H1(R3) such that u = 1 in B := B1(0). Then, for each
Bi ⊂ B, we have for y ∈ R3\Bi

(Qiu)(y) = re
r
`
e−
|y−xi|
`

|y − xi|
,

and thus,

‖Qiu‖2H1
` (R3) ≥ ‖∇Qiu‖

2
L2(R3) ≥ r

2

ˆ ∞
r

e−
s
`

s2
ds ≥ C`2r.

Therefore, using again that Qi is an orthogonal projection,

‖L‖ ≥ c(Lu, u)H1
` (R3) = c

∑
i

(Qiu, u)H1
` (R3) ≥ c

∑
i : Bi⊂B

‖Qiu‖2H1
` (R3) ≥ c`

2
∑

i : Bi⊂B
r,

where we put the norm of u into the constant because u has been chosen independently of the
particle distribution. Since the number of xi in (dZ)3 ∩ B is of order d−3 = µ0r

−1, we conclude
‖L‖ ≥ c`2µ0.

Using the bound on the norm of L that we proved in Proposition 3.2.7 it follows from Theorem
3.2.5 that the series (3.2.7) obtained by the method of reflections converges to the solution of problem
(3.1.16). Uniform convergence also follows from Theorem 3.2.5 and the following Lemma.

Lemma 3.2.11. There exists a constant c1 > 0 depending only on κ from Condition 3.1.2 such that

(Lu, u)H1(R3) ≥ c1‖u‖2H1(R3),

for all u ∈ H1
0 (R3\K)⊥.

Proof. Let ηi ∈ C∞c (Bκri(xi)) such that ηi = 1 in Bi and |∇ηi| ≤ C
ri

. As shown at the beginning of
the proof of Lemma 3.2.8, we have

‖ηiv‖H1
` (R3) ≤ C‖v‖H1

` (R3).

On the other hand, we know that every u ∈ H1
0 (R3\K)⊥ satisfies −∆u + `−2u = 0 in R3\K

(cf. equation (3.2.5)). Thus, the variational form of this equation implies that u is the function of
minimal norm in the set Xu := {v ∈ H1(R3) : v = u in K}. Clearly,

∑
i ηiQiu ∈ Xu, and hence,

(Lu, u)H1
` (R3) =

∑
i

(Qiu, u)H1
` (R3) =

∑
i

‖Qiu‖2H1
` (R3)

≥ c
∑
i

‖ηiQiu‖2H1
` (R3) = c

∥∥∥∥∑
i

ηiQiu

∥∥∥∥2

H1
` (R3)

≥ c‖u‖2H1
` (R3).

Proof of Theorem 3.1.4. By Proposition 3.2.7, we have ‖L‖ ≤ 1 +C1C`. Furthermore, Lemma 3.2.11
implies

‖Lu‖ ≥ c1‖u‖ (3.2.15)

for all u ∈ H1
0 (R3\K)⊥. By Remark 3.2.6, we have kerL = H1

0 (R3\K). Thus, Estimate (3.2.15)
implies that L has a spectral gap. Therefore, Theorem 3.2.5 implies the exponential convergence

‖(1− L)nG0f − u‖H1
` (R3) ≤ max{1− c1, C1C`}N‖f‖H−1

` (R3) for all f ∈ H−1(R3),

Using equivalence of the norm ‖ · ‖H1
` (R3) to the standard H1-norm concludes the proof.
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3.2.4 Convergence of a modified method of reflections

In the previous subsection, we proved that the series (3.2.7) obtained by the method of reflections
converges for small capacities.

Our aim is now to prove the following theorem.

Theorem 3.2.12. Suppose that Conditions 3.1.1, 3.1.2 and 3.1.3 hold with some constants `, α and
κ. Then, there exists c1 > 0 depending only on κ and C1 depending only on α and κ such that for all
γ > 0

‖(1− γL)MG0f − u‖H1
`
≤ max{1− γc1, γ(1 + C1C`)− 1}M‖f‖H−1

`
.

In particular, there exists γ0 depending only on α, κ, and C` such that for all 0 < γ < γ0 (1−γL)NG0f
converges to u.

Moreover, there exists a double sequence q(n,M, γ) such that

(1− γL)MG0f =
M∑
n=0

q(n,M, γ)Φn,

where Φn as in (3.2.6) are the n-th order correction obtained by the method of reflections.

Recall that the series is given by
lim
n→∞

(1− L)nG0f. (3.2.16)

First of all, we note that the series is indeed divergent if the capacity is sufficiently large. Indeed,
as shown in Remark 3.2.10 the operator norm of L diverges as the capacity tends to infinity and
we have already observed in Theorem 3.2.5 that the series is divergent if the operator norm of L is
larger than 2.

Now we want to give the series a meaning for arbitrary capacities. As seen in Remark 3.2.6, the
solution to problem (3.1.16), which we want to obtain by the method of reflections, is given by PG0f ,
where P is the orthogonal projection to the kernel of L. Therefore, the modification simply consists
in replacing (3.2.16) by

lim
n→∞

(1− γL)nG0f,

with γ := 1/‖L‖. Using again the spectral theorem, we will show in Proposition 3.2.13 below that
this ensures convergence to the solution to problem (3.1.16). However, let us first give a heuristic
explanation why this can be expected.

We can give the following interpretation of the method of reflections using the representation
(3.2.16). To the solution of the equation without boundary conditions G0f , we add the sum of all
the correctors, which is −L. Doing this, we expect to push the function towards zero boundary
conditions. By iterating this, we hope to obtain a sequence converging to the solution to the Dirichlet
problem (3.1.16). However, if G0f has the same sign in several particles that are close to each other
and sufficiently large (i.e., large capacity), then, the effect of L is too large: The boundary conditions
in each of those particles are not only corrected by the corresponding projection operator, but they
also undergo a push in the same direction by the effect of all the other particles. In other words, we
push in the right direction but too far. Therefore, reducing the push by multiplying with γ might
solve this problem.

We can also give a purely geometrical interpretation. Let P denote the orthogonal projection
to kerL, and Q the projection to its orthogonal complement. We recall that L is the sum of the
operators Qi which are the orthogonal projections. Let us denote their kernel by Vi. Then

kerL =
⋂
i

Vi =: V.
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If the subspaces Vi were orthogonal to each other, than, we would have

1− L = 1−
∑
i

Qi = 1−Q = P,

and the convergence of (1− L)n to P would trivially hold.
However, they are not orthogonal to each other. Indeed, the closer two particles are, the more

they interact with each other. Interaction of the particles, however, means lack of orthogonality.
Therefore, the series diverges if there is too much interaction between particles – corresponding to
too large values of C`.

In Figure 3.1, we see what happens in the orthogonal complement V ⊥ if the angles between the
subspaces Vi are small. We consider the simplest non-trivial case in which only two particles are
present.

Figure 3.1: For sufficiently small angles between the subspaces as in this example, (1− L)x might
end up on the other side of the origin then x. In this example, (1− L)x is still closer to the origin
than x. This is a feature of the case of only two subspaces since ‖L‖ < 2 as long as the subspaces Vi
have trivial intersection. Therefore, the method of reflections always yields a convergent sequence if
there are only two particles and they do not intersect. However, if more particles are present and
the angles between the subspaces are sufficiently small, (1− L)x will be larger than x. In that case,
adding a small parameter γ in front of L will solve this problem. Indeed, in this way, we can ensure
that (1− γL)x lies on the same side of the origin as x by choosing γ < 1/‖L‖.

Proposition 3.2.13. Assume H is a Hilbert space and Vk ⊂ H are closed subspaces for k ∈ J ,
where J is a finite or countable index set. Define Qk to be the orthogonal projections from H to V ⊥k .
Let V = ∩k∈JVk and define P to be the orthogonal projection from H to V . If S :=

∑
k∈J Qk defines

a bounded operator, then, for all 0 < γ < 2
‖S‖ ,

lim
M→∞

(1− γS)M = P,

pointwise in H. Moreover, if S is strictly positive in V ⊥, i.e., there exists c > 0 such that

(Sx, x)H ≥ c‖x‖2H for all x ∈ V ⊥, (3.2.17)

then,
‖(1− γS)M − P‖ ≤ max{1− γc, γ‖S‖ − 1}M . (3.2.18)
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Remark 3.2.14. To optimize the exponential convergence in (3.2.18), one can choose

γ =
2

‖S‖+ c
.

Proof. By definition of S, we have kerS = V . Thus, (1− γS)Mx = x for all x ∈ V . On the other
hand, as S is self-adjoint, we have R(S) ⊂ (kerS)⊥ = V ⊥.

We define T as the restriction of S to V ⊥ (in both the domain and the range) satisfies ‖1−γT‖ ≤
max{1− γc, γ‖S‖ − 1}. Thus, it suffices to show that (1− T )n → 0 pointwise in H.

Being a sum of orthogonal projections, S and also T are self-adjoint operators. Hence, by the
spectral theorem, we can assume that T is a multiplication operator on H = L2

ν(X) for some measure
space (X,A, ν), i.e., there exists a function f ∈ L∞ν (X) such that Tϕ = fϕ for all ϕ ∈ L2

ν(X). Since
T is positive and bounded by ‖S‖, we have 0 < f ≤ ‖S‖. Therefore,

‖(1− γT )Mϕ‖2H =

ˆ
X
|ϕ|2(1− γf)2M dν → 0.

If in addition, (3.2.17) holds, then c < f ≤ ‖S‖. Thus,

‖(1− γT )ϕ‖2H =

ˆ
X
|ϕ|2(1− γf)2 dν

≤ ‖1− γf‖2L∞ν (X)‖ϕ‖
2
H

≤ max{1− γc, γ‖S‖ − 1}2‖ϕ‖2H .

Corollary 3.2.15. Let C1 be the constant from Proposition 3.2.7. Then, for all particle configuration
satisfying

C1C` ≤ C2,

for some C2 <∞, there exists a constant γ0, which depends only on C2, with the following property.
For all γ ≤ γ0,

(1− γL)M → P in L(H1(R3)) as M →∞,

where P is the orthogonal projection from H1(R3) to H1
0 (R3\K).

Moreover, there exists ε < 1 depending only on κ, and C2 such that

‖(1− γ0L)M − P‖L(H1(R3)) ≤ Cεn,

where C depends only on `.

Proof. We define γ0 = 1/(1 + C2). Proposition 3.2.7 implies γ0 ≤ 1/‖L‖ Then, the assertion follows
directly from Proposition 3.2.13 and Lemma 3.2.11.

3.2.5 The modified method of reflections as a summation method

Lemma 3.2.16. Let f ∈ H−1(R3). Let Φn as in (3.2.6) be the n-th order correction obtained by the
method of reflections. Then, for all γ > 0

(1− γL)MG0f =

M∑
n=0

q(n,M, γ)Φn,

where q(0,M, γ) := 0, q(n,M, γ) = 0 for n > M , and

q(n,M, γ) =
M !

(M − n)!(n− 1)!

ˆ γ

0
tn−1(1− t)M−n dt =

M !

(M − n)!(n− 1)!
B(γ;n,M − n+ 1),
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for 0 < n ≤ M . Here, B denotes the incomplete Beta function. In particular, for all γ > 0, and
n ∈ N it holds

lim
M→∞

q(n,M, γ) = 1.

Proof. As we have seen in (3.2.9), it holds

M∑
n=0

Φn = (−Lr)MG0f.

By induction, this leads to the following identity

(−Lr)MG0f =

M∑
n=1

(−1)M−n
(
M − 1

n− 1

)
Φn. (3.2.19)

Expanding (1− γL)M and using (3.2.19) leads to q(0,M, γ) = 1, q(n,M, γ) = 0 for n > M , and,
for 0 < n ≤M ,

q(n,M, γ) =
M∑
l=n

(
M

l

)
γl(−1)l−n

(
l − 1

n− 1

)

= (−1)n
M∑
l=n

M !

l(M − l)!
(−γ)l

(n− 1)!(l − n)!

= (−1)n
M !

(n− 1)!

M−n∑
k=0

1

k + l

(−γ)k+l

(M − n− k)!k!
.

Defining

ψ(z) :=
M−n∑
k=0

1

k + n

zk+l

(M − n− k)!k!
,

we find

d

dz
ψ(z) =

M−n∑
k=0

zk+n−1

(M − n− k)!k!

=
zn−1

(M − n)!
(1 + z)M−n,

and hence,

ψ(z) =
1

(M − n)!

ˆ z

0
tn−1(1 + t)M−n dt.

Inserting this in the above equation, we finally get

M∑
l=n

(
M

l

)
γl(−1)l−n

(
l − 1

n− 1

)
= (−1)n

M !

(M − n)!(n− 1)!

ˆ −γ
0

tn−1(1 + t)M−n dt

=
M !

(M − n)!(n− 1)!

ˆ γ

0
tn−1(1− t)M−n dt

=
M !

(M − n)!(n− 1)!
B(γ;n,M − n+ 1).

Proof of Theorem 3.2.12. The result is a direct consequence of Corollary 3.2.15 and Lemma 3.2.16.
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3.3 The Poisson equation

Throughout this section, we will again assume that a particle configuration (Ωi)i∈I with corre-
sponding balls Bi ⊃ Ωi is given which satisfy Conditions 3.1.1 and 3.1.2 for some κ and `. For the
ease of notation, we assume ` = 2.

In order to directly apply the method to the Poisson equation, we need to change the spaces that
we work in to make it possible to solve the Poisson equation in the whole space.

Definition 3.3.1. We define the homogeneous Sobolev space Ḣ1(R3) as the closure of C∞c (R3) with
respect to the L2-norm of the gradient and denote its dual by Ḣ−1(R3). Moreover, for an open set
Ω ⊂ R3, we define the space Ḣ1

0 (Ω) to be {u ∈ Ḣ1 : u = 0 in R3\Ω}.

Note that, with these definitions, the Laplacian is an isometry from Ḣ1 into Ḣ−1(R3). Correspond-
ingly to the previous section, we denote G0 = (−∆)−1. Then, G0f = Φ ∗ f , where Φ(x) = (4π|x|)−1.

The following lemma corresponds to Lemma 3.2.1.

Lemma 3.3.2. Let Ω ⊂ R3 be open. Then, for every f ∈ Ḣ−1(R3), the problem

−∆u = f in R3\Ω,
u = 0 in Ω

(3.3.1)

has a unique weak solution u ∈ Ḣ1(R3). Moreover, the solution for problem (3.3.1) is given by

PΩG0f,

where PΩ is the orthogonal projection from Ḣ1(R3) to the subspace Ḣ1
0 (R3\Ω).

As before, we define

Qi = 1− Pi,

where Pi := PΩi are the projection operators from Lemma 3.3.2. Moreover, we note as in (3.2.5) that
Qi is the orthogonal projection to

Ḣ1
0 (R3\Ωi)

⊥ = {v ∈ Ḣ1(R3) : −∆v = 0 in R3\Ωi}. (3.3.2)

As mentioned before, the operator
∑

iQi, which we have denoted L for the screened Poisson
equation, will in general not be a bounded operator for infinitely particles. This is due to the long
range interactions of the Laplacian. Therefore, we use a spatial cutoff to define the operator L for
the Poisson equation.

Definition 3.3.3. We define

L :=
∑
i

e−|xi|Qi.

Remark 3.3.4. The choice of the specific exponential cutoff has only been made for definiteness
and to make the proof of the estimate for L (cf. Lemma 3.3.5) as analogous to the screened Poisson
equation as possible. However, any cutoff η would work which maps Ḣ1(R3) to Ḣ−1(R3) in the
sense that

´
ηuv dx is well defined for all u, v ∈ Ḣ1(R3). (Note that

´
uv dx is not well defined for

u, v ∈ Ḣ1(R3), and thus Ḣ1(R3) is not contained in Ḣ−1(R3) in this sense.) In particular, we could
choose a polynomial cutoff with sufficiently fast decay.
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3.3.1 Convergence of the modified method of reflections

Lemma 3.3.5. The operator L from Definition 3.3.3 is a well defined, bounded, nonnegative, self-
adjoint operator on Ḣ1(R3) with

‖L‖ ≤ (1 + CC2),

where C2 is the constant defined in Condition 3.1.1 and C depends only on κ from Condition 3.1.2.

The proof follows the lines of the proof of the corresponding result for the screened Poisson
equation, Proposition 3.2.7. The only difference is that the exponential cutoff in the definition of
L replaces the the exponential decay of the fundamental solution of the screened Poisson equation
(3.2.1). We omit the details of the proof. However, we state the lemma corresponding to Lemma
3.2.8 for further reference.

Lemma 3.3.6. Assume (fi)i∈I ⊂ Ḣ−1(R3) satisfy supp fi ⊂ Bi. Then,∥∥∥∑
i

e−|xi|fi

∥∥∥2

Ḣ−1(R3)
≤ (1 + CC2)

∑
i

e−|xi|‖fi‖2Ḣ−1(R3)
,

where the constant C depends only on κ from Condition 3.1.2.

As in Proposition 3.2.13 we would like to prove convergence for

(1− γL)nG0f = (1−
∑
i

γe−|xi|Qi)
nG0f.

for sufficiently small γ > 0. The only difference is that, instead of putting the same small factor γ
in front of all the operators Qi, we now have factors depending on the particle position due to the
spatial cutoff e−|xi| in Definition 3.3.3. Thus, we will see in Proposition 3.3.7 below, that convergence
to the desired solution still holds for sufficiently small γ. However, due to the spatial cutoff, L lacks
the coercivity on Ḣ1

0 (R3\K)⊥ the analogous of which we had in the case of the screened Poisson
equation (cf. Lemma 3.2.11): Clearly, if u ∈ Ḣ1

0 (R3\K)⊥ is only non-zero in particles very far away
from the origin, then, ‖Lu‖Ḣ1 is very small compared to ‖u‖Ḣ1 . Hence, we cannot expect any result
about uniform convergence of (1− γL)nG0 from a purely abstract argument as in Proposition 3.2.13.
Indeed, the farther the mass of the source term f is away from the origin, the slower we expect the
convergence to take place.

Proposition 3.3.7. Let H be a Hilbert space and Vk ⊂ H closed subspaces for k ∈ J , where J
is a finite or countable index set. Define Qk to be the orthogonal projections from H to V ⊥k . Let
V = ∩k∈JVk and define P to be the orthogonal projection from H to V . Assume γk > 0, k ∈ J , are
chosen such that S :=

∑
k∈J γkQk defines a bounded operator with ‖S‖ < 2. Then,

lim
M→∞

(1− S)M = P,

pointwise in H.

If ‖S‖ ≤ 1, then for all x ∈ H,

(Sx, x)H ≥ ‖Sx‖2H , (3.3.3)

and

(S(1− S)x, (1− S)x)H ≤ (Sx, x)H . (3.3.4)
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Proof. The statement about convergence is proven in the same way as in Proposition 3.2.13.
Observe that estimates (3.3.3) and (3.3.4) are trivially satisfied in V . We define again T as the

restriction of S to V ⊥ (in both the domain and the range). Using the spectral theorem, we can
assume T to be a multiplication operator on H = L2

ν(X) for some measure space (X,A, ν), i.e.,
there exists a function f ∈ L∞ν (X) such that Tϕ = fϕ for all ϕ ∈ L2

ν(X). By assumption, we know
0 < f ≤ 1. Therefore,

(Tϕ, ϕ)H =

ˆ
X
fϕ2 dν ≥

ˆ
X
f2ϕ2 dν = ‖Tϕ‖2H ,

and

(T (1− T )ϕ, (1− T )ϕ)H =

ˆ
X
f(1− f)2ϕ2 dν ≤

ˆ
X
fϕ2 dν = (Tϕ, ϕ)H .

Proof of Theorem 3.1.6. We define γ0 ≤ 1/‖Lr‖. Proposition 3.2.7 ensures that this is possible in
such a way that γ0 depends only on C2 and κ. Then, the assertion follows directly from Proposition
3.3.7 and Lemma 3.3.2.

3.3.2 The modified method of reflections on the level of the original series

In this subsection, we will show how to compute the expansion of the term (1− γL)n in order to
obtain a series similar to the original series obtained by the method of reflections (3.2.7). This is not
only interesting in itself, but will be used to derive the homogenization results Theorem 3.1.9 and
3.5.12 in Section 3.4.

This leads to the following definition and lemma.

Definition 3.3.8. Let n ∈ N∗ and β ∈ Nn∗ , where we denote N∗ := N\{0}. Then, we define the
operator Aβ : Ḣ1(R3)→ Ḣ1(R3) by

Aβ =
∑
i1

e−β1|xi1 |Qi1
∑
i2 6=i1

e−β2|xi2 |Qi2 · · ·
∑

in 6=in−1

e−βn|xin |Qin .

Lemma 3.3.9. For all n ∈ N∗, the following identity holds

(L)n =

n∑
l=1

∑
β∈Nl∗
|β|=n

Aβ.

In particular, for all β ∈ Nn∗ , Aβ is a bounded operator with

‖Aβ‖ ≤ (1 + CC2)n,

where C2 is the constant defined in Condition 3.1.1 and C depends only on κ from Condition 3.1.2.

Proof. For n = 1, the assertion is trivial. Let n ≥ 2 and β ∈ Nn∗ . We write β = (β1, β
′) for some

β′ ∈ Nn−1
∗ . Using Q2

x = Qx, it is easy to see that

LAβ = A(1,β) +A(β1+1,β′).

Observe that for every 1 ≤ l ≤ n+ 1 and every γ ∈ Nl∗ with |γ| = n+ 1, either γ1 = 1, then, there
exists a unique β ∈ Nl−1

∗ with |β| = n such that γ = (1, β), or γ1 > 1, then, l ≤ n, and there exists a
unique β ∈ Nl∗ with |β| = n such that γ = (β1 + 1, β′). Therefore, the assertion for n follows from
the one for n− 1.

For β ∈ Nn∗ with βj = 1 for all 1 ≤ j ≤ n, the estimate for the operators Aβ follows directly from
the bound on L (see Lemma 3.3.5) and the identity that we just have proven, since all the operators
Qi are positive. For general γ ∈ Nn∗ , we clearly have ‖Aγ‖ ≤ ‖Aβ‖ if β is chosen as above. This
concludes the proof.
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3.4 Homogenization

In the following, we will always consider particle configurations indexed by δ that satisfy Assump-
tion 3.1.8. We will sometimes put an index δ on objects defined in the previous sections to emphasize
the dependence on δ. On the other hand, we will often omit the index δ for the ease of notation.
In particular, we will often write xi, ri, and Bi instead of xi,δ, ri,δ and Bi,δ. The same applies to
objects that are going to be defined in this section.

3.4.1 A Poincaré inequality for perforated domains

A consequence of the lower bound µδ ≥ µ1 from Assumption 3.1.8 is that problem (3.1.1) admits
a unique solution in H1(R3) for sources f ∈ H−1(R3), instead of solutions only in Ḣ1(R3) for sources
in Ḣ−1(R3). This is due to the existence of a Poincaré inequality in the space H1

0 (R3\K). A related
inequality has been proven in [All90b]. Since we allow for more general particle configurations, the
proof needs to be modified.

We first notice the following local Poincaré inequality.

Lemma 3.4.1. Assume z ∈ R3, R > ρ > 0 and u ∈ H1(BR(z)). Then,

‖u‖2L2(BR(z)\Bρ(z)) ≤ C
R3

ρ
‖∇u‖2L2(BR(z)) + C

R3

ρ2
‖u‖2L2(∂Bρ(z)),

for a universal constant C. Furthermore, one can replace BR(z) by any Ω ⊂ BR(z) which is star
shaped with respect to z (i.e., the line segment connecting z and x is contained in Ω for every z ∈ Ω).

Proof. It suffices to prove the estimate for z = 0 and for smooth functions. Let ϕ ∈ C1(BR(0)).
Then, denoting the unit sphere in R3 by S2 we have for every x ∈ S2 and every t ∈ (ρ,R)

|ϕ(tx)| ≤ |ϕ(ρx)|+
ˆ R

ρ
|∇ϕ(sx)| ds.

Thus,

ˆ
BR(0)\Bρ(0)

|ϕ|2 dy ≤ C
ˆ
S2

ˆ R

ρ
t2
(ˆ R

ρ
|∇ϕ(sx)| ds

)2

dt dx+ C

ˆ
S2

ˆ R

ρ
t2|ϕ(ρx)|2 dt dx

≤ CR3

ˆ
S2

ˆ R

ρ

1

s2
ds

ˆ R

ρ
s2|∇ϕ(sx)|2 ds dx+ C

R3

ρ2

ˆ
S2

ρ2|ϕ(ρx)|2 dt dx

≤ CR
3

ρ

ˆ
BR(0)\Bρ(0)

|∇ϕ|2 dy + C
R3

ρ2

ˆ
∂Bρ(0)

|u|2 dy.

Lemma 3.4.2. Let Ω ⊂ R3 be open and bounded and c > 0. Then there exists a constant C such
that for all measurable U ⊂ Ω with |U | ≥ c and all u ∈ H1(Ω)

‖u‖L2(Ω) ≤ C
(
‖u‖L2(U) + ‖∇u‖L2(Ω)

)
.

Proof. We prove the statement by contradiction. Assume there is no such constant C. Then there
exist sequences Uk ⊂ Ω with |Uk| ≥ c and uk ∈ H1(Ω) such that ‖uk‖L2(Ω) = 1 and

‖u‖L2(Uk) + ‖∇u‖L2(Ω) ≤
1

k
. (3.4.1)
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Then, (3.4.1) implies ∇uk → 0 in L2(Ω). Thus, by Rellich embedding and ‖uk‖L2(Ω) = 1 we find

uk → |Ω|−1/2 in L2(Ω). However, (3.4.1) implies

‖uk − |Ω|−1/2‖L2(Ω) ≥ ‖uk − |Ω|−1/2‖L2(Uk) ≥ ‖|Ω|−1/2‖L2(Uk) − ‖uk‖L2(Uk) ≥ c1/2|Ω|−1/2 − 1

k
.

This yields the desired contradiction.

By a standard scaling argument, one proves the following result.

Lemma 3.4.3. For all c > 0 there exists a constant C > 0 with the following property. Let 0 < δ < 1,
q ⊂ R3 be a cube of length δ and assume U ⊂ q satisfies |U | ≥ cδ3. Then, for all u ∈ H1(q),

‖u‖L2(q) ≤ C
(
‖u‖L2(U) + ‖∇u‖L2(q)

)
.

Lemma 3.4.4. There exists a constant C1 depending only on C` and µ0 from Condition 3.1.1∗ and
Assumption 3.1.8 such that for all 0 < δ < 1 all x ∈ (δZ)3, and all u ∈ H1(R3) such that u = 0 in
Bi for all i ∈ Iδ with xi ∈ qδx

‖u‖L2(qδx) ≤ C1‖∇u‖L2(qδx).

Proof. Let x ∈ (δZ)3. Define d̄i = (µ−1
0 ri)

1/3/2 and notice that by Condition 3.1.1∗ the balls Bd̄i(xi)
are disjoint. We further denote

U := qδx ∩
⋃
xi∈qδx

Bd̄i(xi).

If there xi ∈ qδx with d̄i ≥ δ/2, then |U | ≥ πδ3/6. Otherwise, for all xi ∈ qδx at least a sector of volume
of 1/8 of the ball Bd̄i(xi) is contained in qδx. Then,

|U | ≥ C
∑
xi∈qδx

µ−1
0 ri ≥ Cδ3µ1

µ0
,

where we used µδ ≥ µ1 by Assumption 3.1.8. Let u ∈ H1(R3) such that u = 0 in Bi for all i ∈ Iδ
with xi ∈ qδx. Then, Lemma 3.4.3 implies

‖u‖L2(qδx) ≤ C
(
‖u‖L2(U) + ‖∇u‖L2(qδx)

)
, (3.4.2)

where the constant C depends only on µ1/µ0. By Lemma 3.4.1, applied to the sets Bd̄i(xi) ∩ q
δ
x, we

have

‖u‖L2(U) ≤ µ
−1/2
0 ‖∇u‖L2(U).

Inserting this in equation (3.4.2) finishes the proof.

As a direct consequence of Lemma 3.4.4, we have the following Lemma and Corollary.

Lemma 3.4.5. For all 0 < δ < 1 and all u ∈ H1
0 (R3\Kδ)

‖u‖2L2(R3) ≤ C1‖∇u‖2L2(R3)

for a constant C1 which depends only on µ0 and µ1 from Condition 3.1.1∗ and Assumption 3.1.8.



The main idea of the proof 67

Corollary 3.4.6. For all 0 < δ < 1 and all f ∈ H−1(R3), there exists a unique weak solution
u ∈ H1(R3) to the problem

−∆u = f in R3\Kδ,

u = 0 in Kδ,
(3.4.3)

which satisfies
‖u‖2H1(R3) ≤ C1‖f‖2H−1(R3)

for a constant C1 which depends only on µ0 and µ1 from Condition 3.1.1∗ and Assumption 3.1.8.

Lemma 3.4.7. For all λ > 0 there exists a constant C1 depending only on λ, µ0, and µ1 from
Condition 3.1.1∗ and Assumption 3.1.8 with the following property. For all 0 < δ < 1, all x ∈ (δZ)3,
all qδx ⊂ Ω ⊂ Bλδ(x) which are star shaped with respect to x, and all u ∈ H1(R3) such that u = 0 in
Bi for all i ∈ Iδ with xi ∈ qδx

‖u‖L2(Ω) ≤ C1‖∇u‖L2(Ω).

Proof. By Lemma 3.4.4, it suffices to prove

‖u‖2L2(Ω\qδx) ≤ C1

(
‖∇u‖2L2(Ω) + ‖u‖2H1(qδx)

)
.

We have Bδ/2(x) ⊂ qδx. Using the trace theorem and scaling yields

‖u‖2L2(∂Bδ/2(x)) ≤ Cδ‖∇u‖
2
L2(Bδ/2(x)) +

C

δ
‖u‖2L2(Bδ/2(x)) ≤

C

δ
‖u‖2H1(qδx).

Thus, applying Lemma 3.4.1 yields

‖u‖2L2(Ω\Bδ/2(x)) ≤ C
(λδ)3

δ
‖∇u‖2L2(Ω\Bδ/2(x)) + C

(λδ)3

δ2
‖u‖2L2(∂Bδ/2(x))

≤ Cλ3
(
‖∇u‖2L2(Ω) + ‖u‖2H1(qδx)

)
.

3.4.2 The main idea of the proof

In order to explain the idea how to prove the homogenization result, we need the definition below.
Here and below, we will use the notation

(u)i,δ :=

 
Bri,δ (xi,δ)

u(y) dy.

Definition 3.4.8. For a particle with radius ri,δ at position xi,δ, we define the operator Ti,δ from
Ḣ1(R3) to Ḣ−1(R3) by means of

Qi,δ = G0Ti,δ.

Moreover, we define Mi,δ : Ḣ1(R3)→ Ḣ−1(R3) to be the uniform charge density approximation of
Ti,δ,

(Mi,δu)(y) =
(u)i,δ
r
H2|∂Bi,δ ,

where H2 denotes the two dimensional Hausdorff measure. Furthermore, we define Q̃i,δ = G0Mi,δ to
be the induced approximation for Qi,δ.

The uniform charge density approximations of the operators A
(δ)
β from Definition 3.3.8 are defined

by

M
(δ)
β :=

∑
i1∈Iδ

e−β1|xi1 |Q̃i1
∑
i2 6=i1

e−β2|xi2 |Q̃i2 · · ·
∑

in 6=in−1

e−βn|xin |Q̃in .
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Remark 3.4.9. For u ∈ H1(R3), Tiu is supported in Bi. Since Ti = G−1
0 Qi, and Qi is the orthogonal

projection to H1
0 (R3\Bi)⊥, this follows directly from the characterization (3.3.2).

To understand the meaning of the operator Ti, we take any potential u ∈ Ḣ1(R3) and denote by
f := G−1

0 u the source corresponding to u. Moreover, we denote g = Tiu. Then, subtracting g from f ,
gives a source f − g, which corresponds to a potential v := G0(f − g) that solves

−∆v = f in R3\Bi,
v = 0 in Bi.

We can also draw the following analogy to electrostatics. In this context, −g = −TiG0f gives
the charge density that is induced by f in Bi if Bi represents a grounded conductor (surrounded by
vacuum).

With this definition the original series obtained by the Method of Reflection (3.2.7) becomes,

G0 −
∑
i1

G0Ti1G0 +
∑
i1

∑
i2 6=i1

G0Ti1G0Ti2G0 − . . . , (3.4.4)

This is how the series appears in [Kir82], where Ti is called a scattering operator. In this paper, the
Method of Reflection is interpreted as a scattering process. Viewing G0 as some kind of propagator,
(3.4.4) inherits the interpretation of the potential due to a source which propagates according to G0

and scattered at the particles by Ti.
We want to give an heuristic explanation for the homogenization result Theorem 3.1.9. To do

so, let us pretend for the moment that the series (3.4.4) exists, and that all the operators are well
defined on H1(R3) (instead of Ḣ1(R3)). Moreover, let us assume that we already know that in the
limit δ → 0, we can replace the operator Ti by Mi in Definition 3.4.8. Using the definition of Mi

Assumption 3.1.8 guarantees that 〈ϕ,
∑

i∈Iδ Miu〉 can be interpreted as a Riemann sum for 〈ϕ, Jµu〉,
where J is the inclusion from H1(R3) to H−1(R3). This leads to∑

i∈Iδ

Tiu ≈
∑
i∈Iδ

Miu ⇀ Jµu in H−1(R3),

as δ → 0
Therefore, the first order term in the series (3.4.4) converges to (−G0Jµ)G0f . It seems plausible

that the higher order terms converge weakly to (−G0Jµ)kG0f . Thus, the weak limit of the sequence
of solutions is formally given by

∞∑
k=0

(−G0Jµ)kG0 = (1 +G0Jµ)−1G0 = (−∆ + Jµ)−1,

which is the desired result.
Since the series (3.4.4) is in reality divergent, we use the modified version

(1− γLδ)nG0f, (3.4.5)

which we already know to converge to the solution of (3.1.1). We want to expand (3.4.5) in powers
of Lδ and then to take the weak limit as δ tends to zero in each of the resulting terms separately.
However, one has to take into account that the weak limit is not interchangeable with taking powers.
Therefore it turns out, that it is convenient to use Lemma 3.3.9 in order to write (Lδ)

n as a sum of
terms such that no particle appears back to back with itself like in the formal series in (3.4.4).

Somewhat surprisingly, the exponential cutoff in the definition of the operator Lδ does not cause
much trouble when computing the weak limit. The only difference to the heuristic reasoning above is
that some additional combinatorial identities are needed.
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3.4.3 Weak limits of powers of L

Since the inclusion map from Ḣ1(R3) to Ḣ−1(R3) is not well defined (cf. Remark 3.3.4), we need
the following replacement.

Definition 3.4.10. We define X to be the following subspace of Ḣ1(R3) endowed with the Ḣ(R3)-
topology.

X := {u ∈ Ḣ1(R3) : u = −∆v for some v ∈ Ḣ1(R3)}.

Moreover, we define J : X → Ḣ−1(R3) by means of

〈Ju,w〉 = (∇v,∇w)L2(R3) for all w ∈ Ḣ1,

where v ∈ Ḣ1(R3) is the solution to −∆v = u.

Remark 3.4.11. Note that X is a dense subspace of Ḣ1(R3) as it contains C∞c (R3). Moreover, J
can be viewed as the inclusion map, since 〈Ju,w〉 =

´
R3 uw dx, whenever the latter is well defined.

Lemma 3.4.12. The operator A : Ḣ1(R3)→ Ḣ1(R3),

(Au)(x) = e−|x|u(x),

is a bounded linear operator with range R(A) ⊂ X. Moreover, the composition JA, where J is the
inclusion operator from Definition 3.4.10, is a bounded operator from Ḣ1(R3) to Ḣ−1(R3).

Proof. We observe that the range of A satisfies R(A) ⊂ Ḣ1(R3) ∩ L6/5(R3) ⊂ X. The first inclusion
follows from the Gagliardo-Nirenberg-Sobolev inequality ‖w‖L6(R3) ≤ C‖∇w‖L2(R3) and Hölder’s
inequality. The second one is deduced by the Gagliardo-Nirenberg-Sobolev inequality, too, since this
implies boundedness of the functional F (w) :=

´
R3 uw dx in Ḣ1 if u ∈ Ḣ1(R3) ∩ L6/5(R3), providing

in turn a solution v ∈ Ḣ1(R3) to −∆v = u.
The second assertion follows from ‖Ju‖Ḣ−1(R3) = ‖v‖Ḣ1(R3) and the reasoning above.

Proposition 3.4.13. Let u ∈ Ḣ1(R3) and n ∈ N∗. Then, in the limit δ → 0 with µ as in Assumption
3.1.8,

Lnδ u ⇀

n∑
l=1

∑
β∈Nl∗
|β|=n

(
l∏

j=1

µG0JA
βj

)
u = G0JµA(G0JµA+A)n−1u =: Rnu in Ḣ1(R3).

In particular, for all γ > 0 and all M ∈ N

(1− γLδ)Mu ⇀
(

1 +
M∑
n=1

(
M

n

)
(−γ)nRn

)
u =: SMu in Ḣ1(R3)

The fact that the complicated looking weak limit of Lnδ equals Rn follows from the combinatorial
consideration that, expanding the power in the definition of Rn, each term in the sum on the right
hand side will appear exactly once.

As mentioned above, the proof of Proposition 3.4.13 is based on a Riemann sum argument using
the operators Ti and Mi from Definition 3.4.8. This is not very difficult but technical. Therefore,
we first show how to derive the homogenization result from Proposition 3.4.13 and the results from
Section 3.3.
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Proposition 3.4.14. Let M ∈ N and SM be the pointwise weak limit of (1−γLδ)M from Proposition
3.4.13. Then, there exists γ0 > 0 such that for all γ ≤ γ0 and all f ∈ Ḣ−1(R3),

lim
M→∞

SMG0f = u,

where u is the unique weak solution to

−∆u+ µu = f in R3. (3.4.6)

Proof. We first show that G0Jµ + 1 as an operator from X to Ḣ1(R3) is invertible and that the
inverse mapping is bounded. Since G0 is an isometry, it suffices to prove that Jµ+G−1

0 is invertible
from X to Ḣ−1(R3).

Indeed, we know that for any f ∈ Ḣ−1(R3) ⊂ H−1(R3), problem (3.4.6) has a unique weak
solution u ∈ H1(R3) ⊂ Ḣ1(R3). Moreover, u = −µ−1∆(v − u), where v ∈ Ḣ1(R3) is the solution to
−∆v = f . Thus, u ∈ X, and therefore, the solution operator E : Ḣ−1(R3)→ X for problem (3.4.6)
is well defined. Hence, we have (Jµ+G−1

0 )−1 = E.

Thus, (G0Jµ + 1)−1 = EG−1
0 . Additionally, we see that (G0Jµ + 1)−1 is a bounded operator

since E is bounded because for u and f as above we have ‖Ef‖Ḣ1(R3) = ‖∇u‖L2(R3) ≤ ‖f‖Ḣ−1(R3).

Therefore, inserting the definitions of SM and Rn from the previous theorem, we deduce

SM = 1 +

M∑
n=1

(
M

n

)
(−γ)nRn = 1 +

M∑
n=1

(
M

n

)
(−γ)nG0JµA(G0JµA+A)n−1

= 1 +G0Jµ(G0Jµ+ 1)−1
M∑
n=1

(
M

n

)
(−γ)n((G0Jµ+ 1)A)n

= 1 +G0Jµ(G0Jµ+ 1)−1((1− γ(G0Jµ+ 1)A)M − 1).

Next, we show that (1−γ(G0Jµ+ 1)A)M → 0 pointwise in Ḣ1(R3) as M →∞. First, by Lemma
3.4.12, we know that G0JµA is a bounded operator. Second, G0JµA is also a positive operator since

(G0JµAu, u)Ḣ1(R3) = 〈JµAu, u〉 =

ˆ
µAu · u dx =

ˆ
e−|x|µ(x)|u(x)|2 dx.

Finally, G0JµA is clearly self-adjoint since

(G0JµAu, v)Ḣ1(R3) =

ˆ
µAu · v dx =

ˆ
µAv · u dx.

Therefore, using the spectral theorem for bounded self-adjoint operators as in the proof of Proposition
3.2.13, we conclude (1− γ(G0Jµ+ 1)A)M → 0 pointwise in Ḣ1(R3) for small enough γ.

Furthermore,

G0Jµ(G0Jµ+ 1)−1 = 1− (G0Jµ+ 1)−1,

and hence, this is a bounded operator, as well. Therefore, multiplying by G0 from the right and
taking the limit M →∞ yields

(1− (1− (G0Jµ+ 1)−1))G0 = (1 +G0Jµ)−1G0 = (G−1
0 + Jµ)−1 = (−∆ + µ)−1,

which is the desired result.
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3.4.4 Uniform estimates and proof of Theorem 3.1.9

Combining Proposition 3.4.13 and 3.4.14 we see that (1− γLδ)MG0f converges weakly to the
solution of (3.4.6) if we take the limits in the order δ → 0 followed by M →∞. In order to prove
Theorem 3.1.9, it remains interchange the order of taking the limits. For this purpose, we will prove
that the speed of convergence of (1− γLδ)MG0f to uδ in Ḣ1

loc(R3) as M tends to infinity is uniform
in δ.

Corresponding to Lemma 3.2.11, we have the following lemma. It implies that the sequence
(1 − γLδ)MG0f is close to zero boundary conditions in the particles in any fixed bounded region
uniformly in δ as M →∞.

Lemma 3.4.15. Let u ∈ Ḣ1
0 (R3\Kδ)

⊥ and R > 0, we define v ∈ Ḣ1(R3) to be the solution to

−∆v = 0 in R3\(Kδ ∩BR(0)),

v = u in Kδ ∩BR(0).

Then,
(Lδu, u)Ḣ1(R3) ≥ ce

−R‖v‖2
Ḣ1(R3)

,

where c > 0 is a constant that depends only on κ from Condition 3.1.2.

Proof. The proof follows the same argument as the proof of Lemma 3.2.11. Let ηi ∈ C∞c (Bκri(xi))
such that ηi = 1 in Bi and |∇ηi| ≤ C

ri
. By the same calculation as in the beginning of the proof of

Lemma 3.2.8, we have
‖ηiw‖Ḣ1(R3) ≤ C‖w‖Ḣ1(R3).

On the other hand, by the variational form of the equation for v, we know that v is the function
of minimal norm in the set Xv := {w ∈ Ḣ1(R3) : w = v in Kδ ∩BR}. Recall from equation (3.1.22)
that

r0 := sup
δ

sup
i∈Iδ

ri <∞.

Clearly,
∑

xi∈BR+κr0
ηiQiv ∈ Xu, and hence,

〈Lδv, v〉 =
∑
i∈Iδ

e−|xi|‖Qiv‖2Ḣ1(R3)

≥ ce−R
∑

xi∈BR+κr0

‖ηiQiv‖2Ḣ1(R3)

= ce−R
∥∥∥∥ ∑
xi∈BR+κr0

ηiQiv

∥∥∥∥2

Ḣ1(R3)

≥ ce−R‖v‖2
Ḣ1(R3)

.

The next Lemma is needed to ensure that the values of (1− γLδ)MG0f in a fixed bounded region
is very little affected by particles far away from this region.

For simplicity, we will write Bs instead of Bs(0) in the following.

Lemma 3.4.16. There exists a nonincreasing function e : R+ → R+ with lims→∞ e(s) = 0 with the
following property. For all 0 < δ < 1, all 0 ≤ ρ ≤ R, all w ∈ Ḣ1

0 (R3\Kδ)
⊥ with w = 0 in Kδ ∩BR

satisfy
‖∇w‖L2(Bρ) ≤ e(R− ρ)‖∇w‖L2(R3).
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The proof uses the classical Widman’s hole filling technique (see e.g. [GM12a]). However, it is
not possible to use the Poincaré estimate for mean zero functions, since the equation that w as in the
Lemma satisfies is not invariant under adding constants. Therefore, we need the following Poincaré
inequality.

Lemma 3.4.17. There exist universal constant s0 and a constant C which depends only on µ0 and
µ1 from Condition 3.1.1∗ and Assumption 3.1.8 such that for all 0 < δ < 1, all s1, s ≥ s0, and all
u ∈ Ḣ1

0 (R3\Kδ),
‖u‖2L2(Bs1+s\Bs1 ) ≤ C1‖∇u‖2L2(Bs1+s\Bs1 ).

Proof. Let s1, s > 0. Let J denote the set of all x ∈ (δZ)3 such that qδx ⊂ B(s1+s)\Bs1 . Then, it is
possible to choose s0 large enough (independently of δ) such that for all s1, s > s0 the balls B4δ(x),
x ∈ J , are a covering of Bs1+s\Bs1 , and the sets B4δ(x) ∩ (Bs1+s\Bs1) are star shaped with respect
to x. Therefore, the assertion follows from Lemma 3.4.7.

Proof of Lemma 3.4.16. Fix δ, R, ρ, and w according to the assumptions. Let s0 be as in Lemma
3.4.17. Assume R− s0 ≥ ρ+ s0 (otherwise set e(R− ρ) = 1). For ρ0 + s0 ≤ s ≤ R− s0, we define
ηs ∈ C∞c (Bs+s0) such that ηs = 1 in Bs, |ηs| ≤ 1, and |∇ηs| ≤ C. We use η2w as a test function in
the weak form of the equation w satisfies, namely,

−∆w = 0 in R3\Kδ

w = 0 in Kδ ∩BR.

This yields

0 =

ˆ
Bs+s0

∇w∇(η2w) dx =

ˆ
Bs+s0

(η∇w)2 + 2η∇w∇ηw dx.

Using the Cauchy-Schwartz inequality and the Poincaré inequality in the annulus Bs+s0\Bs, provided
by Lemma 3.4.17, we deduce

‖∇w‖2L2(Bs)
≤ ‖η∇w‖2L2(Bs)

≤ C‖w‖2L2(Bs+s0\Bs)
≤ C1‖∇w‖2L2(Bs+s0\Bs)

.

Let us denote ak := ‖∇w‖2L2(Bρ+(k+1)s0
) and

n := max{k ∈ N : ρ+ (k + 2)s1 ≤ R},

which depends only on R− ρ. Then, the above estimate implies for all 0 ≤ k ≤ n

ak ≤ C1(ak+1 − ak).

Therefore,

ak ≤
C1

C1 + 1
ak+1 =: λak+1,

and λ < 1. By iterating up to n, we conclude

‖∇w‖2L2(Bρ) ≤ λ
n‖∇w‖2L2(R3),

which is the desired estimate.

Remark 3.4.18. As seen in the proof, the decay of e is exponential. This can be interpreted
as a screening effect due to the presence of the particles. This effect can be exploited to prove
homogenization results also for sources f ∈ L∞(R3) (cf. [NV04a; NV06]).
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Proposition 3.4.19. There exists γ > 0 depending only on µ1, µ2 and κ such that for all f ∈
Ḣ−1

(
R3
)

the sequence

lim
N→∞

(1− γLδ)N G0f → v

uniformly in Ḣ1
loc(R3) for all 0 < δ < 1, where v is the solution of (3.1.1).

Proof. As in the proof of Theorem 3.1.6, we choose γ ≤ 1/‖Lδ‖. Lemma 3.3.5 ensures that this is
possible such that γ depends only on µ0 and κ.

Let ρ > 0, ε > 0, and u := G0f ∈ Ḣ1(R3). Since ker(Lδ) = Ḣ1
0 (R3\Kδ), it suffices to consider

u ∈ Ḣ1
0 (R3\Kδ)

⊥. Define uM := (1− γLδ)Mu.

Then, we know from Proposition 3.3.7

‖(1− γLδ)u‖2Ḣ1(R3)
= ‖u‖2

Ḣ1(R3)
− 2(γLδu, u)Ḣ1(R3) + ‖γLδu‖2Ḣ1(R3)

≤ ‖u‖2
Ḣ1(R3)

− γ(Lδu, u)Ḣ1(R3).

Iterating and using monotonicity of (LδuM , uM )Ḣ1(R3), which follows from the estimate (3.3.4) in
Proposition 3.3.7, yields

0 ≤ ‖uM+1‖2Ḣ1(R3)
≤ ‖u‖2

Ḣ1(R3)
− (M + 1)γ(LδuM , uM )Ḣ1(R3).

Thus,

(LδuM , uM )Ḣ1(R3) ≤
1

(M + 1)γ
‖u‖2

Ḣ1(R3)
.

Define vM ∈ Ḣ1(R3) to be the solution to

−∆vM = 0 in R3\(Kδ ∩BR),

vM = uM in Kδ ∩BR,

and wM := uM − vM . Then, Lemma 3.4.16 implies for all R > ρ

‖∇wM‖L2(Bρ(0)) ≤ e(R− ρ)‖wM‖Ḣ1(R3) ≤ e(R− ρ)
(
‖uM‖Ḣ1(R3) + ‖vM‖Ḣ1(R3)

)
≤ e(R− ρ)

(
‖u‖Ḣ1(R3) + ‖vM‖Ḣ1(R3)

)
,

and it is possible to choose R large enough such that e(R− ρ) < ε
3 . On the other hand, by Lemma

3.4.15, we have

ce−R‖vM‖2Ḣ1(R3)
≤ (LδuM , uM )Ḣ1(R3) ≤

1

(M + 1)γ
‖u‖2

Ḣ1(R3)
.

Therefore, choosing M0 large enough yields for all M ≥M0

‖vM‖Ḣ1(R3) <
ε

3
‖u‖Ḣ1(R3).

By combining the estimates for vM and wM , we conclude (assuming without restriction ε ≤ 3)

‖∇uM‖L2(Bρ(0)) < ε‖u‖Ḣ1(R3) = ε‖f‖Ḣ−1(R3).
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Proof of Theorem 3.1.9. We first prove the statement for all sources f ∈ Ḣ−1(R3). Let u and uδ be
as in the statement of the theorem. The functions uδ are well defined and bounded in Ḣ1(R3) by
Corollary 3.4.6. Therefore, it suffices to consider test functions in C∞c (R3). Let ϕ ∈ C∞c (R3) and
choose R > 0 such that suppϕ ⊂ BR(0). Further, let γ < γ0 from Proposition 3.4.19 and denote by
SM the corresponding pointwise weak limit of (1 − γLδ)M from Proposition 3.4.13. Then, for all
M > 0,

|(uδ − u, ϕ)Ḣ1 | ≤ |(SMG0f − u, ϕ)Ḣ1 |+ |(1− γLδ)MG0f − SMG0f, ϕ)Ḣ1 |
+ |(uδ − (1− γLδ)MG0f, ϕ)Ḣ1 |.

The third term on the right hand side is estimated by

‖∇(uδ − (1− γLδ)MG0f)‖L2(BR)‖ϕ‖Ḣ1 .

Choosing M sufficiently large, Proposition 3.4.19 ensures that this term becomes small independently
of r. On the other hand, also the first term becomes small by choosing M large, and the second term
vanishes in the limit δ → 0.

Weak convergence in Ḣ1(R3) is equivalent to weak convergence in L2(R3) of the gradients.
However, due to Corollary 3.4.6, the sequence ur is uniformly bounded in H1(R3). Therefore, we can
extract subsequences that converge weakly in H1(R3). Since their weak limit is uniquely determined
by the weak limit of their gradients, the whole sequence converges weakly in H1(R3).

The result for f ∈ H−1(R3) follows from density of Ḣ−1(R3) in H−1(R3) using again that the
solution operators for problem (3.4.3) are uniformly bounded.

3.4.5 Proof of Proposition 3.4.13

Lemma 3.4.20. The following holds for the operators defined in Definition 3.4.8 and 3.3.8.

(i) There exists a constant C such that, for all 0 < δ < 1, all i ∈ Iδ, and all u ∈ Ḣ1(R3),

‖(Ti −Mi)u‖Ḣ−1(R3) ≤ C‖∇u‖L2(Bi).

(ii) For all u ∈ Ḣ1(R3), all n ∈ N, and all β ∈ Nn∗ ,

‖
(
M

(δ)
β −A

(δ)
β

)
u‖Ḣ1(R3) → 0 as δ → 0. (3.4.7)

For the proof we need the following lemma.

Lemma 3.4.21. For r > 0 and x ∈ R3, let Hr := {u ∈ H1(Br(x)) :
´
Br(x) u = 0}. Then, for all

r > 0, there exists an extension operator Er : Hr → H1
0 (B2r(x)) such that

‖∇Eru‖L2(B2r(x)) ≤ C‖∇u‖L2(Br(x)) for all u ∈ Hr,

where the constant C is independent of r.

Proof. For r = 1 let E1 : H1(B1(x))→ H1
0 (B2(x)) be a continuous extension operator. Then, by the

Poincaré inequality on H1, we get for all u ∈ H1

‖∇E1u‖L2(B2(x)) ≤ ‖E1u‖H1(B2(x)) ≤ C‖u‖H1(B1(x)) ≤ C‖∇u‖L2(B1(x)).

The assertion for general r > 0 follows from scaling by defining (Eru)(x) := (E1ur)(
x
r ), where

us(x) := u(sx).
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Proof of Lemma 3.4.20. Let u ∈ Ḣ1(R3). First, we observe by a straightforward calculation that

(Q̃iu)(y) =

(u)i, if x ∈ Bi,
(u)i

ri
|y − xi|

, otherwise.

Now, we use that G0 is an isometry and that Qi = G0Ti is the orthogonal projection to the subspace

Ḣ1
0 (R3\Bi)⊥ =

{
u ∈ H1(R3) : −∆u = 0 in R3\(Bi)

}
.

Therefore, we can characterize Qiu as the function v ∈ Ḣ1(R3) that solves

−∆v = 0 in R3\Bi,

v = u in Bi.

Hence, v is the function of minimal norm that coincides with u inside the ball Bi. Clearly, Q̃iu ∈
Ḣ1

0 (R3\Bi)⊥, and thus, QiQ̃i = Q̃i. Therefore,

(Qi − Q̃i)u = Qi(u− Q̃iu).

Since Q̃iu = (u)i in Bi, we can use the extension operator Eri from Lemma 3.4.21 (since, by the
Rellich embedding theorem, the restriction of a Ḣ1 function to a ball is a H1 function in that ball)
and estimate

‖(Qi − Q̃i)u‖Ḣ1(R3) ≤ ‖Eri((u− Q̃iu)|Bi)‖Ḣ1(R3)

= ‖∇Eri((u− (u)i)|Bi)‖L2(R3)

≤ C‖∇u‖L2(Bi).

This concludes the proof of assertion (i).
Observe that Miu satisfies supp(Miu) ⊂ ∂Bi. It can easily be seen that Lemma 3.3.6 still holds

true when replacing the cutoff e−|x| by e−j|x| for any j ∈ N∗. Therefore, we get for n = 1

‖(M (δ)
β −A

(δ)
β )u‖2

Ḣ1(R3)
≤ (1 + Cµ0)

∑
i∈Iδ

e−β|xi|‖(Qi − Q̃i)u‖2Ḣ1(R3)

≤ C(1 + µ0)
∑
i∈Iδ

e−β|xi|‖∇u‖L2(Bi).

Hence, the convergence (3.4.7) for n = 1 follows provided the volume of the particles inside a fixed
bounded domain tends to zero as δ → 0. Indeed, we have by definition of µδ (see equation (3.1.21))
and Assumption 3.1.8 ∑

xi∈qδx

r3
i ≤

( ∑
xi∈qδx

ri

)3

≤ Cδ9,

which implies that the volume of the particles in a fixed bounded domain is of order δ6.
The general assertion now follows by induction. For n = 2, we have

‖(M (δ)
β −A

(δ)
β )u‖2

Ḣ1(R3)
≤
∥∥∥∑
i∈Iδ

∑
j 6=i

e−β1|xi|e−β2|xj |Qi(Qj − Q̃j)u
∥∥∥2

Ḣ1(R3)

+
∥∥∥∑
i∈Iδ

∑
j 6=i

e−β1|xi|e−β2|xj |(Q̃i −Qi)Q̃ju
∥∥∥2

Ḣ1(R3)
.

(3.4.8)
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To further estimate the first term on the right hand side, we use that
∑

i∈Iδ e
−β1|xi|Qi is a bounded

operator. Together with part (i) and using again QiQi = Qi and QiQ̃i = Q̃i, we get (with a constant
that depends on µ0)∥∥∥∑

i∈Iδ

∑
j 6=i

e−β1|xi|e−β2|xj |Qi(Qj − Q̃j)u
∥∥∥
Ḣ1(R3)

≤
∥∥∥∑
i∈Iδ

e−β1|xi|Qi
∑
j∈Iδ

e−β2|xj |(Qj − Q̃j)u
∥∥∥
Ḣ1(R3)

+
∥∥∥∑
i∈Iδ

e−β1|xi|Qi(Qi − Q̃i)u
∥∥∥
Ḣ1(R3)

≤ C
∥∥∥∑
j∈Iδ

e−β2|xj |(Qj − Q̃j)u
∥∥∥
Ḣ1(R3)

+ C
∥∥∥∑
i∈Iδ

e−β1|xi|(Qxi − Q̃xi)u
∥∥∥
Ḣ1(R3)

≤ C
∥∥∥∑
j∈Iδ

e−β2|xj |(Qj − Q̃j)u
∥∥∥
Ḣ1(R3)

→ 0.

For the second term on the right hand side of (3.4.8), recall

(Mi − Ti)v = 0 in R3\Bi

for all v ∈ Ḣ1(R3). Hence, for u ∈ H1(R3), we can use Lemma 3.3.6 to take out the sum in i, and
we use the estimate for the uniform charge density approximation from part (i),∥∥∥∑

i∈Iδ

∑
j 6=i

e−β1|xi|e−β2|xj |(Q̃i −Qi)Q̃ju
∥∥∥2

Ḣ1(R3)
≤
∑
i∈Iδ

e−β1|xi|
∥∥∥∑
j 6=i

e−β2|xj |∇Q̃ju
∥∥∥2

L2(Bi)
. (3.4.9)

Inserting the definition of Q̃j , expanding the square of the sum over j, and estimating the integral
yields ∑

i∈Iδ

e−β1|xi|
∥∥∥∑
j 6=i

e−β2|xj |∇Q̃xju
∥∥∥2

L2(Bxi )

≤ C
∑
i∈Iδ

∑
j 6=i

∑
k 6=i

e−β1|xi|rir
2
j r

2
k

e−β2|xj ||(u)j |
|xi − xj |2

e−β2|xk||(u)k|
|xi − xk|2

.

(3.4.10)

Consider the off-diagonal terms first, i.e., j 6= k. We estimate

e−β1|xi|e−β2|xj |e−β2|xk| ≤ e−
|xi−xj |

2 e−
|xi−xk|

2 e−
|xj |

2 e−
|xk|

2

and use ri ≤ µ0d
3
i from Condition 3.1.1∗ to bound the sum over i by an integral,

∑
i 6=j,k

ri
e−
|xi−xj |

2

|xi − xj |2
e−
|xi−xk|

2

|xi − xk|2
≤ Cµ0

ˆ
R3

e−
|y−xj |

2

|y − xj |2
e−
|y−xk|

2

|y − xk|2
dy.

To estimate the integral for j 6= k, we denote z = xj − xk for the moment and split the integral to get

ˆ
R3

e−
|y|
2

|y|2
e−
|y−z|

2

|y − z|2
dy ≤

ˆ
R3\B|z|/2(0)

4e−
|z|
4

|z|2
e−
|y−z|

2

|y − z|2
dy +

ˆ
B|z|/2(0)

e−|y|

|y|2
4e−

|z|
4

|z|2
dy ≤ C e

− |z|
4

|z|2
.

Hence, using

|(u)j ||(u)k|r2
j r

2
k ≤

1

2

(
(u)2

jr
3
j rk + (u)2

kr
3
krj
)
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and symmetry, we deduce

∑
i∈Iδ

∑
j 6=i

∑
k 6=i,j

rir
2
j r

2
ke
−
|xj |

2 e−
|xk|

2 (u)j(u)k
e−
|xi−xj |

2

|xi − xj |2
e−
|xi−xk|

2

|xi − xk|2

≤
∑
j∈Iδ

∑
k 6=j

Cµ0r
3
j rke

−|xj |(u)2
j

e−
|xj−xk|

4

|xj − xk|2

≤
∑
j∈Iδ

Cµ2
0r

3
j e
−|xj |(u)2

xj

ˆ
R3

e−
|xj−y|

4

|xj − y|2
dy

≤ Cµ2
0

∑
j∈Iδ

r3
j e
−|xj |

( 
Bxj

u(y) dy

)2

≤ Cµ2
0

∑
j∈Iδ

e−|xj |‖u‖2L2(Bj)

≤ Cµ2
0

ˆ
R3

e−|y||u(y)|2χ∪j∈IδBj dy,

where we used that the radii ri are uniformly bounded in δ by (3.1.22). Recall from the first part of
the proof that the volume of the particles inside a fixed bounded domain converges to zero. Thus,ˆ

R3

e−|y||u(y)|2χ∪j∈IδBj dy → 0

It remains to bound the diagonal terms j = k in (3.4.10). For those, we use the estimate

∑
i 6=j

ri
e−|xi−xj |

|xi − xj |4
≤ Cµ0

ˆ
R3\Bdj (0)

e−
|y|
2

|y|4
dy ≤ Cµ0d

−1
j ≤ Cµ

4/3
0 r

1/3
j .

Hence, ∑
i

∑
j 6=i

rir
4
j e
−|xj |(u)2

j

e−|xi−xj |

|xi − xj |4
≤ Cµ4/3

0

∑
j∈Iδ

e−|xj |‖u‖2L2(Bj)
→ 0,

For n ≥ 3, one does same thing as for n = 2. We sketch the proof for n = 3. After an analogous
splitting as in estimate (3.4.8), convergence of the first term is shown using the result for n = 2.
For the second term we follow the estimates in the n = 2 case, replacing (u)j by (

∑
l 6=j e

−β3|xl|Q̃l)j .
Therefore, we are left to show ∑

j

e−|xj |
∥∥∥∑
l 6=j

e−β3|xl|Q̃lu
∥∥∥2

L2(Bj)
→ 0. (3.4.11)

and this can be estimated in the same way as the right hand side of equation (3.4.9). The only
difference is that the gradient in (3.4.9) is not present in (3.4.11). However, this only means that
the squares in the denominators in estimate (3.4.10) are missing, but these squares have not been
important for the subsequent estimates due to the presence of the exponentials. Therefore, (3.4.11)
holds.

Proof of Proposition 3.4.13. By Lemma 3.3.9 it suffices to prove

A
(δ)
β u ⇀

(
n∏
j=1

G0JµA
βj

)
u in Ḣ1(R3),
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for all u ∈ Ḣ1(R3), all n ∈ N∗, and all β ∈ Nn∗ .
Since G0 is an isometry, for n = 1, it suffices to show∑

i∈Iδ

e−β1|xi|Tiu ⇀ JµAβ1u in Ḣ−1(R3)

for all u ∈ Ḣ1(R3) and analogously for n ≥ 2. Since by Lemma 3.3.9, we have a uniform bound on

A
(δ)
β , it suffices to prove the assertion for the dense subset Ḣ1(R3) ∩ C1(R3). Lemma 3.4.20 implies

that we can replace all the operators Ti by Mi. Moreover, it suffices to consider test function from the
dense set C∞c (R3). Let u ∈ Ḣ1(R3) ∩ C1(R3) and ϕ ∈ C∞c (R3). Let x ∈ (δZ)3. Then, we estimate
for xi ∈ qδx

|〈ϕ, e−β1|xi|Miu〉 − 4πrie
−β1|x|u(x)ϕ(x)| ≤ 1

ri

ˆ
∂Bi

|e−β1|xi|(u)iϕ(y)− e−β1|x|u(x)ϕ(x)| dy

≤ Criδe−β1|x|‖u‖C1(R3)‖ϕ‖C1(R3).

Thus, with µδ as in (3.1.21),

|〈ϕ,
∑
xi∈qδx

e−β1|xi|Miu〉 − δ3µδ(x)e−β1|x|u(x)ϕ(x)| ≤ Cδe−β1|x|‖u‖C1(R3)‖ϕ‖C1(R3)

∑
xi∈qδx

ri.

≤ Cδe−β1|x|‖u‖C1(R3)‖ϕ‖C1(R3)

∑
xi∈qδx

µ0d
3
i

≤ Cδ4e−β1|x|‖u‖C1(R3)‖ϕ‖C1(R3),

where we used that the balls Bdi(xi) are disjoint and |Bdi(xi) ∩ qδx| ≥ Cd3
i . On the other hand,∣∣∣∣ ˆ

qδx

µ(y)e−β1|y|u(y)ϕ(y) dy − δ3µδ(x)e−β1|x|u(x)ϕ(x)

∣∣∣∣
≤
ˆ
qδx

|µ(y)e−β1|y|u(y)ϕ(y)− µδ(y)e−β1|x|u(x)ϕ(x)| dy

≤ Cδ3
(
‖µ− µδ‖L∞(R3) + δ

)
e−β1|x|‖u‖C1(R3)‖ϕ‖C1(R3).

Now, we take the sum in x ∈ (dZ)3 and use that ∪xqδx = R3. Therefore, combining the above
estimates leads to

|〈ϕ,
∑
i∈Iδ

e−β1|xi|Miu− JµAβ1u〉| ≤ C
(
‖µ− µδ‖L∞(R3) + δ

)
‖u‖C1(R3)‖ϕ‖C1(R3).

This proves the convergence for n = 1.
For n = 2, we write ∑

i∈Iδ

∑
j 6=i

e−β1|xi|e−β2|xj |MiG0Mju− JµAβ1G0JµA
β2u

=

(∑
i∈Iδ

e−β1|xi|Mi − JµAβ1

)
G0JµA

β2u

+
∑
i∈Iδ

e−β1|xi|MiG0

(∑
j 6=i

e−β2|xj |Mj − JµAβ2

)
u.

(3.4.12)

The first term converges to zero weakly in H−1(R3) by the assertion for n = 1.
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To control the second term we show for all i ∈ Iδ and all z ∈ Bi∣∣∣∣(G0

(∑
j 6=i

e−β2|xj |Mj − JµAβ2

)
u

)
(z)

∣∣∣∣ ≤ C(1 + µ0)
(
‖µ− µδ‖L∞(R3) + δ

)
‖u‖C1(R3). (3.4.13)

Using this estimate and inserting the definition of Mi yields (with a constant depending on µ0)∣∣∣∣〈ϕ,MiG0

(∑
j 6=i

e−β2|xj |Mj − JµAβ2

)
u〉
∣∣∣∣ ≤ Cri (‖µ− µδ‖L∞(R3) + δ

)
‖u‖C1(R3)‖ϕ‖L∞(R3),

which converges to zero after multiplying with e−β1|xi| and taking the sum over i. In order to prove
(3.4.13), we write

G0

(∑
j 6=i

e−β2|xj |Mj − JµAβ2

)
u =

∑
x∈(δZ)3

G0

( ∑
j 6=i
xj∈qδx

e−β2|xj |Mj − JµAβ2χqδx

)
u

with χqδx denoting the indicator function of qδx. We first consider x ∈ (δZ)3 such that the cube qx
contains xi or is adjacent to the cube containing xi. Then, for all z ∈ Bi and all j 6= i

|(G0Mju)(z)| = |(u)j |
rj

ˆ
∂Bj

|Φ(z − y)| dy ≤ C‖u‖L∞(R3)ri
1

|xj − xi|
,

where the constant C depends only on κ from Condition 3.1.2. Using Condition 3.1.1∗, we get∑
j 6=i
xj∈qδx

|e−β2|xj |(G0Mju)(z)| ≤ Cδ2µ0‖u‖L∞(R3).

Moreover,∣∣∣(G0JµA
β2χqδxu

)
(z)
∣∣∣ ≤ ‖µ‖L∞(R3)

ˆ
qδx

|u(z)||Φ(y − z)| dz ≤ Cµ0δ
2‖u‖L∞ . (3.4.14)

Now, for x ∈ (δZ)3 such that qδx neither contains xi nor is adjacent to the cube containing xi. Then,
|xi − xj | ≥ C|x− xi| for all xj ∈ qδx. Following the same argument as in the first part of the proof
(the case n = 1) with Φ(z − ·) instead of ϕ, we have for z ∈ Bi∣∣∣∣(G0

( ∑
xj∈qδx

e−β2|xj |Mj − JµAβ2χqx

)
u

)
(z)

∣∣∣∣
≤ Cδ3

(
‖µ− µδ‖L∞(R3) + δ

)
e−β2|x|‖u‖C1(R3)

(
1

|x− xi|
+

1

|x− xi|2

)
.

(3.4.15)

Combining (3.4.14) and (3.4.15) yields (3.4.13).
This finishes the proof for n = 2. Convergence of the higher order terms is proven by induction.

One first splits the difference analogously as in equation (3.4.12), and uses the induction hypothesis
on the first term. The second term is given by∑

i1∈Iδ

e−β1|xi1 |Mi1G0 · · ·
∑

in 6=in−1

e−βn|xin |MinG0

( ∑
in+1 6=in

e−βn+1|xin+1
|Min+1 − JµAβn+1

)
u (3.4.16)

Using estimate (3.4.13) and the definition of Mi yields convergence of (3.4.16) to zero in H−1(R3).
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3.5 Adaptation to Stokes equations

In this section, we will adapt the previous results for the Poisson equation to the case of Stokes
equations. We will not repeat everything from the previous sections but rather point out the necessary
modifications.

3.5.1 The method of reflections applied to Stokes equations

The aim of this subsection is to prove Theorem 3.5.8 stated below after introducing the necessary
notation.

In the following, we will work in spaces of divergence free functions, since this basically allows to
ignore the presence of the pressure in the Stokes equations.

Definition 3.5.1. We define Ḣ1
σ(R3;R3) ⊂ Ḣ1(R3;R3) to be the closed subspace of divergence free

functions, and Ḣ−1
σ (R3;R3) its dual space.

Notation 3.5.2. To improve readability, we will from now on write Ḣ1(R3) instead of Ḣ1(R3;R3)
and similarly for Ḣ−1(R3;R3), Ḣ1

σ(R3;R3), etc.

Remark 3.5.3. Note that Ḣ−1
σ (R3) ⊂ Ḣ−1(R3). Here, the inclusion for f ∈ Ḣ−1

σ (R3) to a function
in Ḣ−1(R3) is given by 〈u, f〉 := 〈Pσu, f〉 for all u ∈ Ḣ1(R3), where Pσ is the orthogonal projection
from Ḣ1(R3) to Ḣ1

σ(R3).

Lemma 3.5.4. Let f ∈ Ḣ−1(R3). Then, the Stokes equations

−∆u = −∇p+ f, div u = 0

have a unique weak solution (u, p) ∈ Ḣ1
σ(R3)×L2(R3). The solution operator Ḡ0 for the velocity field

is given by

Ḡ0f = Φ ∗ f,

where

Φ(x) :=
1

8π

(
1

|x|
+
x⊗ x
|x|3

)
. (3.5.1)

Moreover, the restriction of the solution operator to Ḣ−1
σ , which we denote by G0, is an isometric

isomorphism.

Lemma 3.5.5. Let Ω ⊂ R3 be open. Then, for every f ∈ Ḣ−1(R3), the problem

−∆u = −∇p+ f, div u = 0 in R3\Ω,
u = 0, p = 0 in Ω,

(3.5.2)

has a unique weak solution (u, p) ∈ Ḣ1
σ(R3)× L2(R3). Moreover,

u = PΩḠ0,

where PΩ is the orthogonal projection from Ḣ1
σ(R3) to the subspace Ḣ1

0,σ(R3\Ω).

Remark 3.5.6. Analogous to H1
0 (R3\Ω), we use the convention

Ḣ1
0,σ(R3\Ω) := {u ∈ Ḣ1

σ(R3) : u = 0 in Ω}.
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Remark 3.5.7. The condition p = 0 in Ω in equation (3.5.2) ensures uniqueness. Indeed, dropping
this condition, p can be chosen equal to any constant in every bounded connected component of Ω. In
R3\Ω the pressure is normalized by the condition p ∈ L2(R3).

Again, for a particle i, we define the orthogonal projection Qi = 1 − Pi, where Pi = PΩi . The
main theorem regarding the method of reflections for the Stokes equations is the following.

Theorem 3.5.8. Assume Conditions 3.1.1 and 3.1.2 are satisfied. Let f ∈ Ḣ−1(R3). There exists a
γ0 > 0 depending only on C2 from Condition 3.1.1 and κ from Condition 3.1.2 such that the sequence

lim
N→∞

(
1− γ

∑
j

e−|xj |Qj

)N
Ḡ0f

converges to the solution of (3.1.2) in Ḣ1(R3) for all γ < γ0.

Notice that

Ḣ1
0,σ(R3\Bi)⊥σ = {u ∈ Ḣ1

σ(R3) : −∆u = −∇p in R3\Bi for some p ∈ L2(R3\Bi)},

where ⊥σ indicates that we take the orthogonal complement with respect to Ḣ1
σ(R3).

Notice that G−1
0 Qiu ∈ Ḣ−1

σ (R3) is supported in Bi, i.e., 〈v,G−1
0 Qiu〉 = 0 for every v in

Ḣ1
0,σ(R3\Bx). This, however, does not mean that G−1

0 Qiu, viewed as an element of Ḣ−1(R3),

is supported in Bi.
In the case of Poisson equation, we often used cutoff functions to exploit that a function

f ∈ Ḣ−1
σ (R3) is supported in Bi. However, multiplication with a cutoff function destroys the property

of a function to be divergence free. Therefore, the following Lemma is needed.

Lemma 3.5.9. Assume f ∈ Ḣ−1
σ (R3) is supported in Bi. Then, there exists a unique p ∈ L2(R3)

with p = 0 in Bi such that f̃ := f +∇p is supported in Bi as a function in Ḣ−1(R3). Moreover,
‖f̃‖Ḣ−1(R3) ≤ C‖f‖Ḣ−1(R3) for a universal constant C. We denote by S the operator that maps f to

f̃ .

Proof. Since f ∈ Ḣ−1
σ (R3) is supported in Bi, we have 〈f, v〉 = 0 for all v ∈ Ḣ1

0,σ(R3\Bi). Hence,

there exists a unique p ∈ L2(R3\Bi) such that f = −∇p in R3\Bi and we can set p = 0 in Bi. By
Lemma 3.5.10 below, we can find u ∈ Ḣ1

0 (R3\Bi) such that div u = p and ‖u‖Ḣ1(R3) ≤ C‖p‖L2(R3).
Hence,

‖u‖Ḣ1(R3)‖f‖Ḣ−1(R3) ≥ 〈u, f〉 = 〈u,−∇p〉 = ‖p‖2L2(R3),

and thus ‖p‖L2(R3) ≤ C‖f‖Ḣ−1(R3). Hence, f̃ := f +∇p is supported in Bi as a function in Ḣ−1(R3),

and ‖f̃‖Ḣ−1(R3) ≤ C‖f‖Ḣ−1(R3).

The following Lemma can be found in every standard textbook on Stokes equations, e.g., in
[Gal11].

Lemma 3.5.10. Let Ω ⊂ R3 be a locally Lipschitzian bounded or exterior domain. Then there exists
a constant C with the following property. For all f ∈ L2(Ω), that satisfiesˆ

Ω
f dx = 0

if Ω is a bounded domain, there exists u ∈ H1
0 (Ω) such that

div u = f

and
‖∇u‖L2(Ω) ≤ C‖f‖L2(Ω).
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Remark 3.5.11. The constant C is invariant under scaling of Ω.

Now one can define the operator L analogously to the corresponding operator for the Poisson
equation from Definition 3.3.3. Using Lemma 3.5.9, the estimate for L (cf. Lemma 3.3.5) follows in
the same manner as before. Then, Theorem 3.5.8 follows immediately from Proposition 3.3.7 and
Lemma 3.5.5.

3.5.2 Homogenization

For the homogenization of the Stokes equations, one has to replace the factor 4π in the definition
of the averaged capacity density (3.1.21) by 6π. This is directly related to the fact that the absolute
value of the Stokes drag force on a ball of radius r is 6πr if it is moving with unit speed in a fluid
which is at rest at infinity (see Chapter 2.2.1.

Theorem 3.5.12. Suppose that f ∈ H−1
(
R3
)
. Then, under Assumption 3.1.8, the problems (3.1.2)

with K = Kδ have unique solutions uδ ∈ H1
(
R3
)
. In the limit δ → 0, uδ converges weakly in H1(R3)

to the unique solution u ∈ H1(R3) of the problem

−∆u+∇p+ µu = f, div u = 0 in R3.

Corresponding to Definition 3.4.8, we introduce the following operators.

Definition 3.5.13. We define Ti,δ : Ḣ1
σ(R3)→ Ḣ−1(R3) by Ti,δ = SG−1

0 Qi,δ, where S is the operator
from Lemma 3.5.9.

Moreover, we define the uniform force density approximation of the operator T to be the operator
Mi,δ : Ḣ1

σ(R3)→ Ḣ−1(R3),

(Mi,δu)(y) =
3(u)xi,δ

2ri
H2|∂Bi,δ

Lemma 3.4.21 used in the proof Lemma 3.4.20 has to be replaced by the following Lemma.

Lemma 3.5.14. For r > 0 and x ∈ R3, let Hr :=
{
u ∈ H1

σ(Br(x)) :
´
Br(x) u = 0

}
. Then, for all

r > 0, there exists an extension operator Er : Hr → H1
σ,0(B2r(x)) such that

‖∇Eru‖L2(B2r(x)) ≤ C‖∇u‖L2(Br(x)) for all u ∈ Hr,

where the constant C is independent of r.

Remark 3.5.15. An analogous statement holds for Hr replaced by
{
u ∈ H1

σ(Br(x)) :
´
∂Br(x) u = 0

}
.

Proof. For r = 1, let E1 : H1
σ(B1(x))→ H1

σ,0(B2(x)) be a continuous extension operator. Then, by
the Poincaré inequality in H1, we get for all u ∈ H1

‖∇E1u‖L2(B2(x)) ≤ ‖E1u‖H1(B2(x)) ≤ C‖u‖H1(B1(x)) ≤ C‖∇u‖L2(B1(x)).

The assertion for general r > 0 follows from scaling by defining (Er)u(x) := (E1ur)(
x
r ) where

us(x) := u(sx).

These are the only things that change in the proof of the homogenization result, Theorem 3.5.12,
except for the result about locally uniform convergence in the particle configuration. For the Poisson
equation, this result was stated in Proposition 3.4.19. The analogous statement for the Stokes
equations remains valid.

However, the proof of Lemma 3.4.15 and 3.4.16 needed in the proof of Proposition 3.4.19 have to
be modified due to the use of cutoff functions. Corresponding to Lemma 3.4.15 and 3.4.16, we will
prove Lemma 3.5.17 and 3.5.19 . For the proof of Lemma 3.5.17, we need the following lemma.
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Lemma 3.5.16. Let Ω ⊂ R3 be a bounded and locally Lipschitzian domain and assume v ∈ H1(Ω)
satisfies ˆ

Ω
v · ν = 0.

Then, for any R > 0 and x ∈ R3 such that Ω ⊂⊂ BR(x), there exists u ∈ H1
0 (Ω) such that

u = v in Ω

div u = 0 in BR(x)\Ω

and

‖u‖H1(BR) ≤ C‖v‖H1(Ω),

where the constant depends only on the domains Ω and BR(x).

In particular, for any v ∈ H1(Br) with
´
br
v · ν = 0, we can find u ∈ H1

0 (Bκr(x)) such that

u = v in Br(x)

div u = 0 in Bκr(x)\Br(x)

and

‖∇u‖2H1(Bκr(x)) ≤
C

r2
‖v‖2L2(Br(x)) + C‖∇v‖2L2(Br(x)) ≤ C‖∇v‖

2
L2(R3),

where the constant is independent of r and v.

Proof. We take any (not necessarily divergence free) extension u1 of v to BR(x) that satisfies the
estimate, and take a solution u2 ∈ H1(BR\Ω) of div u2 = −div u1 provided by Lemma 3.5.10 and
define u = u1 + u2.

The second assertion follows from scaling, and the last inequality is a consequence of Hölder’s
inequality and the Gagliardo-Nirenberg-Sobolev inequality.

Lemma 3.5.17. Let u ∈ Ḣ1
0,σ(R3\Kδ)

⊥σ and R > 0. We define v ∈ Ḣ1
σ(R3) to be the solution to

−∆v = −∇p in R3\(Kδ ∩BR(0)),

div v = 0,

v = u in Kδ ∩BR(0).

Then,

(Lδu, u)Ḣ1(R3) ≥ ce
−R‖v‖2

Ḣ1(R3)
,

where c > 0 is a universal constant.

Proof. By the variational form of the equation for v, we know that v is the function of minimal norm
in the set Xv := {w ∈ Ḣ1

σ(R3) : w = v in Kδ ∩BR}. Denote

r0 := sup
δ

sup
i∈Iδ

ri <∞.
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For every xi ∈ BR+κr0 , Corollary 3.5.16 provides functions vi ∈ H1
0 (Bκri(x) with ‖vi‖Ḣ1(R3) ≤

C‖Qiv‖Ḣ1(R3) such that vi = Qiv = v in Bi. Clearly,
∑

xi∈BR+κr0
vi ∈ Xu, and hence,

〈Lv, v〉 =
∑
i

e−|xi|‖Qiv‖2Ḣ1(R3)

≥ ce−R
∑

xi∈BR+κr0

‖vi‖2Ḣ1(R3)

= ce−R
∥∥∥∥ ∑
xi∈BR+κr0

vi

∥∥∥∥2

Ḣ1(R3)

≥ ce−R‖v‖2
Ḣ1(R3)

.

For the proof of Lemma 3.5.19 below, we need the following lemma.

Lemma 3.5.18. Let u ∈ H1(R3) and x ∈ R3. Assume 0 < ρ < R. Then

‖u‖2L2(Bρ(x)) ≤ C
(
ρ3

R3
‖u‖2L2(BR(x)) + ρ2‖∇u‖2L2(BR(x))

)
,

where C is a universal constant.

In particular, under condition 3.1.1∗ we have∑
i∈Iδ

1

r2
i

‖u‖2L2(Bi)
≤ Cµ0‖u‖2L2(R3) + C‖∇u‖2L2(R3).

Proof. Define (u)R,x =
ffl
BR(x) u. Then, using Lemma 3.4.21 we get

‖u− (u)R,x‖L2(Bρ(x)) ≤ ‖u− (u)R,x‖L6(Bρ(x))‖1‖L3(Bρ(x))

≤ Cρ‖∇ER(u− (u)R,x)‖L2(Bd(x)) ≤ Cρ‖∇u‖L2(BR(x)).

Furthermore,

‖(u)R,x‖2L2(Bρ(x)) = Cρ3

( 
BR(x)

u dx

)2

≤ Cρ3

 
BR(x)

u2 dx = C
ρ3

R3
‖u‖2L2(BR(x)).

Combining these two estimates yields the assertion.

Lemma 3.5.19. For all ρ > 0 there exists a nonincreasing function eρ : R+ → R+ which satisfies
lims→∞ eρ(R) = 0 and the following property. For all 0 < δ < 1, all R > ρ, all w ∈ Ḣ1

0,σ(R3\Kδ)
⊥σ

with w = 0 in Kδ ∩BR satisfy

‖∇w‖L2(Bρ) ≤ eρ(R)‖∇w‖L2(R3).

Proof. First note that Assumption 3.1.8 implies

d0 := sup
δ

sup
i∈Iδ

di <∞,

because every cube qδx contains at least one particle and those cubes are of length smaller than one.
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Fix δ, R, ρ, and w according to the assumptions. Let s0 be as in Lemma 3.4.17 and define
s1 = max{s0, ρ, 8d0}. Assume R ≥ 2s1 and let s ≥ s1 such that 2s ≤ R. Note that w is the function
of minimal norm in the set

Xw := {v ∈ Ḣ1
σ : v = 0 in Kδ ∩B2s, v = u on ∂B2s}

Define η ∈ C1(R3) to be a cut-off function with η = 1 in R3\B2s−2d0 , η = 0 in Bs+2d0 , and |∇η| ≤ C/s.
Then, v1 := ηw has the right boundary condition to be in the set Xw but fails to be divergence free.
Indeed, div v1 = ∇η · w. Therefore, we use Lemma 3.5.10 to find a function v2 ∈ Ḣ1

0 (B2s\Bs) with
div v2 = −div v1 and

‖∇v2‖L2(B2s\Bs) ≤ C‖ div v1‖L2(B2s\Bs) ≤
C

s
‖w‖L2(B2s\Bs).

Now v1 + v2 is divergence free and equals w on ∂B2s. To match the boundary conditions in Kδ ∩B2s,
we use Lemma 3.5.16. For xi ∈ A := B2s−d0\Bs+d0 it provides a function vi ∈ H1

0,σ(Bκri(xi)) with
vi = −v2 in Bi and ∥∥∥∥ ∑

xi∈A
vi

∥∥∥∥2

Ḣ1(R3)

≤
∑
xi∈A

C

r2
i

‖v2‖2L2(Bi)
+ C‖∇v2‖2L2(Bi)

≤
∑
xi∈A

Cµ0‖v2‖2L2(Bdi (xi))
+ C‖∇v2‖2L2(Bi)

≤ C(s2µ0 + 1)‖∇v2‖2L2(B2s\Bs),

where we used Lemma 3.5.18 for the second estimate and the Poincaré inequality in Ḣ1
0 (B2s\Bs) for

the last one. By construction, v := v1 + v2 +
∑

xi∈A vi is an element of Xw. Therefore,

0 ≤ ‖∇v‖2L2(R3) − ‖∇w‖
2
L2(R3)

≤ C‖∇w‖2L2(B2s\Bs) + C(
1

s2
+ µ0)‖w‖2L2(B2s\Bs) − ‖∇w‖

2
L2(Bs)

.

Since s ≥ s0 by assumption, the factor s−2 can be dropped. Using the Poincaré inequality in the
annulus B2s\Bs, Lemma 3.4.17, we deduce

‖∇w‖2L2(Bs)
≤ C1‖∇w‖2L2(B2s\Bs),

where C1 depends on µ0, µ1 and κ. Using again the hole filling technique as in the proof of Lemma
3.4.16 and iterating from s = s1 until 2ks ≥ R/2 concludes the proof.





Chapter 4

Sedimentation of inertialess particles
in Stokes flows

In this chapter, we give a rigorous derivation of the transport-Stokes system (1.1.1) as the
macroscopic model for the sedimentation dynamics of inertialess particles at zero Reynolds number.
A formal derivation of this system has already been given in Chapter 2.3, where we also studied
the physical relevance of these equations. In Chapter 2.5.1, we discussed the analogy between the
transport-Stokes equations and the Stokes equations of variable density, as well as some phenomena
regarding the solutions to these equations. An important device for the proof in this chapter is the
method of reflections in the framework of orthogonal projections studied in Chapter 3.

The content of this chapter has been published in Communications in Mathematical Physics,
[Höf18a]

4.1 Introduction

We recall from Chapter 2.3.1 the microscopic dynamics for inertialess particles in a Stokes fluid in
dimensionless form. We consider N particles at centers Xi and with identical radii R and we denote
Bi := BR(Xi) and the initial particle centers by X0

i .

Ẋi = Vi, Xi(0) = X0
i , (4.1.1)

−∆v +∇p = 0 in R3\
N⋃
i=1

Bi,

div v = 0 in R3, v = Vi in Bi, v(x)→ 0 as |x| → ∞,

(4.1.2)

ˆ
∂Bi

σn dH2 =
4π

3N
g =: F, (4.1.3)

where the (dimensionless) gravitational acceleration g is given, and we recall σ = ∇v + (∇v)T − pI.

The particle velocities Vi are determined by the positions Xj of all the particles through the
solution to the Stokes equations v. This dependence can be shown to be locally Lipschitz continuous,
which leads to well-posedness until the first collision of particles occurs. There are several results
on the well-posedness of rigid bodies in viscous fluids even allowing for collisions of the bodies, e.g.
[DE99], [SST02], and [Fei03]. In those paper, Navier-Stokes equations are considered, and inertial
effects of the bodies are taken into account. Both the setting and the well-posedness result needed
here is simpler and is proven in Section 4.3.

87
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Since the empirical measure for the particles solving (4.1.2) and (4.1.3) only depends on the
particle positions, it is given by

νN (t, x) :=
1

N

∑
i

δ(x−Xi). (4.1.4)

It turns out that instead of the empirical measure it is more convenient to deal with regularized
version of it, namely,

ρN (t, x) :=
1

N

∑
i

4π

3

H2|∂Bi
|∂Bi|

, (4.1.5)

(where we included the factor 4π/3 to avoid it from appearing in the limit equation). Since the fluid
velocity v that solves (4.1.2) takes the values Vi in Bi, the time evolution of ρN is given by

∂tρN + v · ∇ρN = 0,

It is very useful to work with the measure ρN instead of νN because ρNg gives an approximation
for the force which the particles exert on the fluid. To see this, we observe that by equation (4.1.3) a
priori only the total force at each particle is known. The quantity ρg therefore approximates those
forces by uniformly distributing them on the surface of the particles. More precisely, the fluid velocity
v can be approximated by u which is defined as the solution to

−∆u+∇p = ρNg,

div u = 0, u(x)→ 0 as |x| → ∞.
(4.1.6)

Such an approximation for v cannot be hoped to be valid (at least not in L∞) if we replace ρN by
νN as this would lead to singularities of u. We expect u to be a good approximation for v in L∞(R3).
We observe that u can be written as u =

∑
i ui with ui being the solution to

−∆ui +∇p =
4π

3N
g
H2|∂Bi
|∂Bi|

=: fi,

div ui = 0, ui(x)→ 0 as |x| → ∞.
(4.1.7)

We have encountered this fluid equation in Chapter 2.2.1, when we studied the settling of a single
spherical particle. In particular, from (2.2.2) we know

ui =
4π

3N

1

6πR
g =

2

9
γ−1g in Bi. (4.1.8)

Hence, each particle velocity Vi is expected to be approximately given by

Vi = v(Xi) ≈ u(Xi) =
∑
j

uj(Xi) =
2

9
γ−1g +

∑
j 6=i

uj(Xi).

The first term on the right hand side is the velocity of a single inertialess particle, the second term
is the collective effect due to the presence of all the other particles. In particular, the second term
corresponds to the macroscopic fluid velocity around Bi, whereas the fluid velocity that produces the
first term decays fast away from Bi.

The quantity γ determines the ratio between these two contributions, and therefore determines
the interaction strength of the particles. It is proportional to the resistance density of the particles,
more precisely, γ = L2µ if mu denotes the resistance density of the particles and L L is the size
of the particle cloud before rescaling it to one (see Chapter 2.3.1). The resistance density is the
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analog of the capacity density in the electrostatic framework. In Chapter 3.1 , we discussed the
relation between the capacity density and the screening length Λ, which is given by Λ2 = µ−1. Thus,
γ = L2/Λ2.

One can interpret the screening length Λ in the following way. The presence of the particles
screens the fluid velocity at infinity (which is zero) over distances of order Λ. In particular, if the
screening length Λ is much larger than the system size L, the collective effect of the particles is small,
which results in a small macroscopic fluid velocity. Hence, for small values of γ, all the particles
approximately sink like isolated spheres. This is the result of [JO04]. We emphasize however that
this screening effect is different from the one that is observed when the sedimentation boundary
conditions in the Stokes equations are replaced by Dirichlet boundary conditions. In that case, as we
discussed in Chapter 3.1, the screening effect results in a faster decay of the fundamental solution over
distances of the screening length. This faster decay does not occur for the sedimentation boundary
conditions.

In the limit N →∞, R → 0 assuming γ → γ∗ ∈ (0,∞] and ρN → ρ in a suitable sense for the
initial data, we expect convergence of the microscopic inertialess dynamics to the transport Stokes
equations, which we write again:

∂tρ+ (v∗ +
2

9
γ−1
∗ g) · ∇xρ = 0,

−∆v∗ +∇p = ρg,

div v∗ = 0, v∗(x)→ 0 as |x| → ∞.

(4.1.9)

We will prove the convergence (4.1.2) and (4.1.3) to the macroscopic equation (4.1.9). The precise
assumptions on the particle configurations will be given in Section 4.2, and the main result will
be stated in Theorem 4.2.9. Well-posedness of the transport-Stokes equations (4.1.9) is shown by
standard arguments based on the Banach fixed point theorem in Section 4.4.

In the limit γ∗ → 0, we get after rescaling time, that the cloud of particles falls down with
constant velocity that is determined by the velocity of a single particle. This is in accordance with
the result of [JO04].

On the other hand, in the case γ∗ = ∞, we see that the self-interaction term 2
9γ
−1
∗ g becomes

negligible and the particles are transported by the macroscopic fluid velocity v∗. Finally, for positive
but finite γ∗, the behavior of solutions to (4.1.9) is very similar as in the case γ∗ = ∞. Indeed,
although equation (4.1.9) is nonlinear, the only effect of the term 2

9γ
−1
∗ g is a translation velocity of

the cloud (cf. Proposition 4.4.1), because the Stokes equations are invariant under translation.

4.2 Assumptions and main result

We will now specify the assumptions on the initial particle configurations, give a precise statement
of the convergence result to the macroscopic equation (4.1.9) and an outline of the proof of the main
result.

4.2.1 Assumptions on the initial particle configurations

We consider a sequence of initial particle configurations {X0
ε,i}1≤i≤Nε indexed by ε and we assume

Nε →∞ and Rε → 0 in the limit ε→ 0.

Notation 4.2.1. For the ease of notation, we write X0
i instead of X0

ε,i in the remainder of this
chapter. We will also sometimes drop the index ε on other quantities, in particular when ε is fixed.
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We impose the following constraints on the initial particle distributions.

(A1) We require the distance between every pair of particles to be at least of the order of the typical
distance between particles. More precisely, the minimal distance

dε,min(0) := min
i 6=j
|X0

i −X0
j |

has to satisfy

Nε(dε,min(0))3 ≥ c0

for some constant c0 > 0 independent of ε.

(A2) We require the volume fraction of the particles φε = NεR
3
ε to satisfy

φε logNε → 0 as ε→ 0.

(A3) We require the quantity γε which is the ratio between the screening length ξε and the system
size Lε to converge to some limit γ∗ ∈ (0,∞]. More precisely,

lim
ε→0

γε = lim
ε→0

NεRε = γ∗ ∈ (0,∞].

For fixed ε > 0, the minimal distance between the particles dε,min might change over time. Thus,
an important issue for the analysis of the time evolution will be to examine whether condition (A1)
is conserved over time, possibly with a smaller constant but uniformly in ε. Therefore we introduce
the following quantity.

Definition 4.2.2. For ε > 0 we define

Yε(t) := sup
0≤s≤t

sup
i 6=j

|X0
i −X0

j |
|Xi(t)−Xj(t)|

,

where the particle positions implicitly depend on ε.

Remark 4.2.3. Implicitly, we also assume the particles to be disjoint, More precisely, we assume
dε,min(0) ≥ 4Rε. Indeed, for sufficiently small ε this is ensured for the initial configuration by (A1)
and (A2).

Moreover, this is preserved up to time t, provided Yε(t) satisfies a uniform bound for small ε:

dε,min(t) ≥ dε,min(0)

Yε(t)
≥ c

1/3
0

N
1/3
ε Yε(t)

=
c

1/3
0

φ
1/3
ε Yε(t)

Rε ≥ 4Rε,

for all ε < ε0(t) small enough. We will always assume that ε is chosen small enough, such that this
is the case.

Notice that in the case of a finite limit γ∗, assumption (A2) is automatically satisfied. Indeed, in
this case

φε logNε = NεR
3
ε logNε ≤ Rε(NεRε)

2 = Rεγ
2
ε → 0.
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4.2.2 Statement of the main result

Finally, we also impose that the initial particle configurations converge in a certain averaged sense.
We recall the definition of the particle density ρε from (4.1.5), and we write ρε,0 for the corresponding
initial particle density. We now define a “coarse grained” density function ρδε by taking averages on
small cubes, but much larger than the typical particle distance. Such an averaged density has been
used in [NV04a] for a related homogenization problem. It has the advantage, in contrast to ρε, that
it is bounded in L∞(R3), and therefore pointwise convergence of ρδεε can be expected. On the other
hand, the averages are taken in such a way, that the total masses of ρε and ρδεε in those small cubes
coincide.

Definition 4.2.4. For δ > 0 we decompose R3 into half-open disjoint cubes Qiδ with edge length δ.
Then, we define ρδε by

ρδε(t, x) =

 
Qiδ

ρε(t, y) dy for x ∈ Qiδ.

We will denote the unique cube containing x by Qxδ .

We also specify the function space, where we require convergence of the averaged initial data ρδε,0

Definition 4.2.5. Let β ≥ 0. We define the norm

‖h‖Xβ := sup
x

(1 + |x|β)|h(x)|,

and the space

Xβ := {h ∈ L∞(R3) : ‖h‖Xβ <∞}.

It is convenient to work in the space Xβ for two reasons. First, dealing with a supremum-norm
enhances working with particle trajectories and the characteristics of the limit equation (4.1.9).
Second, for β > 2, we have ‖Sh‖W 1,∞(R3) ≤ C‖h‖Xβ , where S is the solution operator to Stokes
equations (see Lemma 4.4.3 and Remark 4.4.4).

Remark 4.2.6. We note that for all times ε > 0 and all T such that the dynamics (4.1.1), (4.1.2),
(4.1.3) has a solution up to time T with vε ∈ L∞((0, T )× R3), we have ρδε ∈ C0([0, T );Xβ). Indeed,
consider the function τ(x) = H2|∂BR(X(t)), for some Lipschitz curve X. Then, it is easy to check that

τ δ ∈ C0([0, T );Xβ) and ρδε is the sum of such functions τ .

Assumption 4.2.7. There exists a sequence dε,min(0) � δε → 0 and a function ρ0 ∈ Xβ with
∇ρ0 ∈ Xβ for some β > 2 such that

lim
ε→0
‖ρδεε,0 − ρ0‖Xβ = 0.

Remark 4.2.8. Let δ̃ε → 0, such that δ̃ε = nεδε for some nε ∈ N\0. Then, since ∇ρ0 ∈ Xβ,

‖ρδεε,0 − ρ0‖Xβ → 0.

Thus, we can assume δε � φε.

The following theorem is the main result of this chapter.



92 Sedimentation of inertialess particles in Stokes flows

Theorem 4.2.9. Assume that conditions (A1) - (A3) are satisfied and that the initial data ρε,0
converge to some ρ0 in the sense of Assumption 4.2.7 with some δε → 0 and β > 2. Then for all
T > 0, there exists ε0 > 0 and C1 such that for all ε < ε0, there exists a unique solution to the
dynamics (4.1.1), (4.1.2), (4.1.3) up to time T with

Yε(T ) ≤ eC1T , for all ε < ε0.

In particular, there are no collisions up to time T . Moreover, for all δ̃ε → 0 such that δ̃ε = nεδε for
some nε ∈ N∗ with nε →∞,

ρδ̃εε → ρ in C0([0, T );Xβ),

where ρ is the unique classical solution to problem (4.1.9).

Note that we do not impose a lower bound on the rate of convergence of nε →∞, whereas the
constraint δ̃ε → 0 provides an upper bound. The reason for introducing nε is discussed in Section
4.6.1.

It is possible to relate the averaged convergence ρδ̃εε → ρ to weak L1-convergence of ρε and to
weak convergence in the sense of measures of the empirical measures νε defined in (4.1.4). Indeed,
assuming the particles are all contained in a bounded region independently of ε, the assumption
ρ ∈W 1,∞(R3) implies that both weak L1-convergence ρε ⇀ ρ and weak convergence in the sense of
measures of the empirical measures νε ⇀ ρ are equivalent to averaged convergence in the sense of
Assumption 4.2.7 for some δε. In particular, we have the following corollary.

Corollary 4.2.10. Assume that conditions (A1) - (A3) are satisfied and that there exists a cube
Q0 ⊂ R3 such that X0

ε,i ⊂ Q0 for all ε > 0 and all 1 ≤ i ≤ Nε. Moreover, assume that the empirical
measures νε,0 converge to some ρ0 ∈ Xβ weakly in the sense of measures with ∇ρ0 ∈ Xβ. Then for
all T > 0, there exists ε0 > 0 such that for all ε < ε0, there exists a unique solution to the dynamics
(4.1.1), (4.1.2), (4.1.3) without collisions up to time T . Moreover, νε(t) ⇀ ρ(t, ·) weakly in the sense
of measures for almost every t ≥ 0 where ρ is the unique classical solution to problem (4.1.9).

Proof. We claim that the assumptions of the corollary imply Assumption 4.2.7, namely that there
exists a sequence δε such that ρδεε,0 → ρ0 in Xβ . First, we note that since the limit ρ0 of the sequence
νε,0 is continuous with respect to the Lebesgue measure, we have

νε,0(Q)→
ˆ
Q
ρ0(x) dx,

for all cubes Q ⊂ R3. In particular, we observe that ρ0 = 0 in R3\Q0. Moreover, by definition of ρε,0
and νε,0, for any cube of length δ ≥ dε,min(0)∣∣∣∣ 1

|Q|
νε,0(Q)−

 
Q
ρε,0(y) dy

∣∣∣∣ ≤ Cdε,min(0)

δ
,

where the error term comes from particles close to the boundary of the cube. Let k ∈ N, and let
Qj,k, 1 ≤ j ≤Mk, be cubes of length 1/k according to Definition 4.2.4 that cover Q0 up to a nullset.
Then, there exists εk > 0 such that for all ε < εk∣∣∣∣ 

Q
ρε,0(y)− ρ0(y) dx

∣∣∣∣ < 1/k.

We define δε = 1/k for εk > ε ≥ εk+1. Then, for all εk > ε ≥ εk+1, and all cubes Qiδε as in Definition
4.2.4, and all x ∈ Qiδε∣∣∣∣∣

 
Qiδε

ρε,0(y) dy − ρ0(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
 
Qiδε

ρε,0(y)− ρ0(y) dy

∣∣∣∣∣+
C

k
‖∇ρ0‖L∞(R3) ≤

C

k
.
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This proves the claim.
Hence, we can apply Theorem 4.2.9. Thus, it remains to prove that ρδ̃εε (t, ·) → ρ(t, ·) in Xβ

implies weak convergence νε(t) ⇀ ρ(t, ·). First note that combining the estimate on Yε from Theorem
4.2.9 with Lemma 4.6.3 implies that the fluid velocity vε that transports the particles is uniformly
bounded for ε < ε0 up to time T . Thus, all the particles remain in a bounded region independently
of ε. Moreover, also the limit fluid velocity v∗ is uniformly bounded by Lemma 4.4.3 such that ρ(t, ·)
is uniformly compactly supported up to time T . Let f ∈W 1,∞(R3), let Qi

δ̃ε
, i ∈ Iε with |Iε| ≤ Cδ̃−3

ε

be as in Definition 4.2.4 such that ∪i∈IεQiδ̃ε contains the support of ρ(t, ·) and ρε(t, ·) for all t ≤ T
and all ε < ε0. Let xi be the centers of those cubes. Then,∣∣∣∣ˆ

R3

f dνε(t)−
ˆ
R3

fρ(t, ·) dx
∣∣∣∣ ≤∑

i∈Iε

∣∣∣∣ 1

Nε

∑
Xk(t)∈Qi

δ̃ε

f(Xk)−
ˆ
Qi
δ̃ε

fρ(t, ·) dx
∣∣∣∣

≤
∑
i∈Iε

∣∣∣∣ν(Qi
δ̃ε

)−
ˆ
Qi
δ̃ε

ρ(t, ·) dx
∣∣∣∣‖f‖L∞(R3) + 2δ̃ε‖∇f‖L∞(R3)

≤ Cdε,min(t)

δ̃ε
+ C‖ρδ̃εε (t, ·)− ρ(t, ·)‖L∞(R3) + Cδ̃ε

≤ Cdε,min(t)

δ̃ε
+ C‖ρδ̃εε (t, ·)− ρ(t, ·)‖L∞(R3) + Cδ̃ε.

Since Yε is uniformly bounded, the first term tends to zero, as well as the other two. This concludes
the proof.

4.2.3 Outline of the proof of the main result

Well-posedness of both the microscopic dynamics (4.1.1), (4.1.2), and (4.1.3) away from collisions
and the transport-Stokes equations (4.1.9) is done by standard arguments in the Sections 4.3 and 7.2.

Regarding the convergence result, the main difficulty of the analysis of the dynamics (4.1.1),
(4.1.2), and (4.1.3) is that the fluid velocity v is only given implicitly. It satisfies Stokes equations
but the source term is not given explicitly but only the total force on each particle (by (4.1.3)) and
the constraint that the fluid velocity has to be constant at every particle. Those constants, however,
which are a priori unknown, determine the velocity of the particles, and therefore are the relevant
quantities in order to understand the dynamics.

As an approximation for the fluid velocity vε, we take the velocity uε defined in (4.1.6), which
corresponds to a source term that consists of a sum of forces uniformly distributed on the boundary
of the particles such that (4.1.3) holds. This approximated fluid velocity uε does not satisfy the
constraint of constant velocity at the particles. Smallness of ∇(vε − uε) in L2(R3) can be obtained
by standard variational methods in the limit of small volume fraction φε of the particles, and will be
proven in Section 4.5.2. However, since we are interested in the values of vε at the particles, those
estimates are not sufficient. We still give the proof of the L2-estimate because most of the ingredients
will be used also in the proof of L∞-estimates.

In Section 4.5.3, we prove L∞-estimates of vε−uε using a rigorous version of the so-called method
of reflections, which gives a series representation for vε. The method of reflection is a method to
express the solution operator for an elliptic problem with a boundary consisting of several connected
components in terms of a series involving the solution operators for the individual components.
This method is particularly useful if the solution operators for those individual components are well
understood as in the case of spheres.

A version of this method has been used in [JO04]. We will use the formulation of the method of
reflection in the framework of orthogonal projection that has been investigated in [HV18], where Stokes
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equations with Dirichlet boundary conditions are considered. In that case, the series representation
has been proven to converge if γε (which is the capacity density of the particles) is sufficiently small.
It turns out that in the case of the mixed boundary conditions given in (4.1.2), (4.1.3), the method
is actually convergent under milder assumption. Indeed, we prove convergence of the series to vε in
L∞(R3) under the assumption that the particles are sufficiently separated and φε logNε is small (cf.
(A2)). (This assumption, which is only slightly stronger than smallness of the particle volume φε,
seems to be unavoidable when using the method of reflections, at least without additional assumption
on the distribution of particles. The L2-estimates derived in Section 4.5.2, however, suggest that
smallness of the particle volume φε should be sufficient.) Moreover, the zero order term of the
representation, which is exactly the approximated fluid velocity uε that solves (4.1.6), is shown to be
close to vε in L∞(R3) for small φε.

Replacing vε by uε is the most important step in the proof of the homogenization result. Indeed,
uε is given explicitly in terms of the particle positions and is the solution of the Stokes equations
with a source term proportional to the particle density. In Section 4.5.5, we prove that uε is close
2
9γ
−1
ε g + wε, where wε is the solution to the Stokes equations with source ρδεε g. The function wε

can be viewed as the macroscopic fluid velocity. Indeed, since ρδεε g is bounded in L∞ the effect of
every single particle on the fluid velocity w is negligible, whereas the effect of every single particle
on the fluid velocity uε at the position of that particular particle is 2

9γ
−1
ε g. The proof of smallness

of uε − 2
9γ
−1
ε g − wε is straightforward based on three ingredients. First, the explicit form of uε as

the sum of ui as in (4.1.7) with the value of ui in Bi being 2
9γ
−1
ε g by equation (4.1.8). Second, the

fact that the total masses of ρε and ρδεε in the cubes Qδε coincide, where Qδε are the cubes from the
definition of ρδεε (Definition 4.2.4). Finally, the explicit formula of the solution operator of the Stokes
equations as a convolution operator.

As mentioned before, an important issue is whether aggregation of particles takes place. Not only
is this important to investigate in order to rule out particle collisions, but also since the estimates
based on the method of reflections are only proved for particles that are sufficiently well separated,
in the sense that

αε := sup
j

1

Nε

∑
i 6=j

1

|Xi −Xj |2
(4.2.1)

is not too large. In Section 4.5.4, we will prove Lipschitz type estimates for the fluid velocity vε,
which enable us to control the quantity Yε(t) from Definition 4.2.2. Unfortunately, these Lipschitz
type estimates are again based on the method of reflections, and therefore dependent on the value of
αε from above. It is not difficult to control αε in terms of Y 2

ε , but due to this mutual dependence,
we are a priori only able to show that particle aggregation cannot take place in short times uniformly
for small enough volume fractions φε.

As long as all the particles remain well separated in the sense that Yε(t) does not blow up as
ε → 0, the homogenization result is then proved in Section 4.6.1. With the ingredients from the
previous sections, the proof is not difficult but somewhat tedious based on comparing the particle
trajectories to the characteristics of the limit problem (4.1.9).

Finally, as the last step of the proof of Theorem 4.2.9, we show in Section 4.6.2 that particle
aggregation does not take place for arbitrary finite times in the sense that, for all times t > 0, Yε(t)
does not blow up as ε→ 0. For this we use estimates for the solution to the macroscopic equation
(4.1.9) together with the convergence result for times up to which Yε(t) does not blow up in the
limit ε→ 0. Since pointwise convergence of the particle density to the solution ρ of the macroscopic
equation only holds for the averaged density ρε, and the averages are taken over distances much
larger than the typical particle distance, this convergence does not directly imply information on
the quantity Yε(t). However, the convergence result turns out to be strong enough to yield good a
posteriori estimates on the quantity αε defined in (4.2.1). Finally, by the Lipschitz type estimates
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from Section 4.5.4 on the microscopic fluid velocity vε, we control Yε in terms of αε.

4.3 Well-posedness of the microscopic dynamics away from colli-
sions

In this section, we prove well-posedness of the dynamics (4.1.1), (4.1.2), (4.1.3) away from particle
collisions. We first show that for fixed particle positions Xi at a fixed time, (4.1.2), (4.1.3) admits a
unique weak solution in v in the space of divergence free functions Ḣσ(R3) (see Definition 3.5.1 for
the precise definition), which determines the values of Vi. Then, by standard ODE-theory, it suffices
to show that the mapping (Xi)i 7→ (Vi)i is Lipschitz continuous away from particle collisions.

For a fixed time and given, it is well known (see e.g. [Gal11]) that problem (4.1.2) has a unique
weak solution (v, p) in Ḣ1

σ(R3) × L2(R3) for given data of the particles, (Xi)i, (Vi)i, provided the
particles are not touching each other.

Moreover, for a fixed time, problem (4.1.2), (4.1.3) has a unique weak solution (v, p) in Ḣ1
σ(R3)×

L2(R3) in terms of (Xi)i provided the particles are non-touching. To see this, we fix the space
positions of the particles (Xi)i and observe that, for given velocities Vi, the forces Gi = −

´
∂Bi

σn dH2

are given by G = AV , where A ∈ RN×N is a linear map. Furthermore, A is coercive, because

V ·AV = V ·G = −
N∑
i=1

ˆ
∂Bi

Vi · σn dH2 =

ˆ
R3\

⋃N
i=1 Bi

|∇v|2 = ‖v‖2
Ḣ1(R3)

≥ C‖V ‖2, (4.3.1)

with a constant C that only depends on R and N . Hence, A is invertible, which yields V for prescribed
G and X.

Theorem 4.3.1. For any initial configurations of particles (X0
i )1≤i≤N such that the closed balls B0

i

are pairwise disjoint, there exists a time T∗ > 0 such that the problem (4.1.1), (4.1.2), (4.1.3) has a
unique solution in [0, T∗). Moreover, T∗ =∞, or

lim inf
t→T∗

dmin(t) = 2R.

Proof. We fix N and R. We have seen that the velocities Vi(t) are uniquely determined by the
particle positions. Hence we can write Vi(t) = Wi(X(t)). Then, it suffices to prove that the functions
Wi are Lipschitz continuous away from particle collisions. More precisely, we need to prove that for
all ε > 0, there exists a constant C such that

|Wi(X)−Wi(X̃)| ≤ C|X − X̃|

for all particle configurations (Xi)i with dmin > 2R+ ε.
In the following, a constant C might depend on ε (and N and R). We can estimate the Ḣ1-norm

of the solution v to problem (4.1.2), (4.1.3) brutally, using (4.3.1) and the definition of F in (4.1.3),

‖v‖2
Ḣ1(R3)

=
∑
i

FVi ≤ C sup
i
|Vi| ≤ C‖v‖Ḣ1(R3).

Thus,
‖v‖Ḣ1(R3) ≤ C. (4.3.2)

Fix particle positions with non-touching particles (Xi)1≤i≤N . Then, there exists θ > 1 depending
only on ε and R such that the closed balls B2θR(Xi) are pairwise disjoint. Let (X̃i)1≤i≤N be another
particle configuration with

sup
i
|Xi − X̃i| ≤

(θ − 1)R

4
.
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We define a deformation ϕ by

ϕ(x) := x+
∑
i

(X̃i −Xi)ηi(x),

where ηi ∈ C∞c (BθR(Xi)) are chosen such that 0 ≤ ηi ≤ 1, ηi = 1 in Bi, and

|∇ηi| ≤
2

(θ − 1)R
.

Then, ϕ is a diffeomorphism and |∇ϕ|, |∇ϕ−1| ≤ C.
Consider now the solutions v and ṽ of problem (4.1.2), (4.1.3) with particle positions Xi and X̃i,

respectively. We denote the velocities in the balls Bi and B̃i by Vi and Ṽi, respectively. We define
u1 := ṽ ◦ ϕ. Then,

| div u1| ≤ C
∑
i

|X̃i −Xi||∇ṽ(ϕ(x))|χBθR(Xi)\Bi .

By Lemma 3.5.10, there exists a function u2 ∈ H1
0 (∪iBθRi(Xi)\Bi) such that div u2 = div u1 and

‖u2‖Ḣ1(R3) ≤ C‖ div u1‖L2(R3) ≤ C‖X − X̃‖‖ṽ‖Ḣ1(R3).

Finally, we define u = u1 − u2. Then, u = Ṽi in Bi. Moreover, using the equation, that ṽ satisfies, we
observe

−∆u+∇p = −div g in R3\
N⋃
i=1

Bi,

div u = 0 in R3,

where
g(x) = −

∑
i

((X̃i −Xi)⊗∇ηi(x))∇ṽ(ϕ(x))−∇u2.

Thus,
‖g‖L2(R3) ≤ C‖X − X̃‖‖ṽ‖Ḣ1(R3). (4.3.3)

Moreover, with σu denoting the stress corresponding to u,
ˆ
∂Bi

σundH2 = F,

where F is as in (4.1.3). Defining w := u− v, we then deduce that w satisfies the following equation
in its weak formulation

(∇w,∇ψ) = (g,∇ψ) for all ψ ∈ Ḣ1
σ(R3) with ψ = const in Bi, 1 ≤ i ≤ N.

Testing with ψ = w and using the bound for g from (4.3.3), and (4.3.2) for the norm of ṽ, we deduce

‖w‖Ḣ1(R3) ≤ C‖X − X̃‖.

Since w = Vi − Ṽi in Bi, this yields

‖V − Ṽ ‖ ≤ C‖X − X̃‖,

which concludes the proof.
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4.4 Well-posedness of the macroscopic equations

In this section, we prove well-posedness of the macroscopic equation (4.1.9), which we write here
as

∂tρ+ (u+ v0) · ∇ρ = 0,

ρ(0, ·) = ρ0,

−∆u+∇p = ρg,

div u = 0,

(4.4.1)

where v0 ∈ R3 and g ∈ R3 are some given constants.
We are interested in Lipschitz continuous solutions of this problem. More precisely, for a given

initial datum ρ0 ∈ Xβ with ∇ρ0 ∈ Xβ, we look for a classical solution (ρ, u) ∈ W 1,∞(0, T ;Xβ) ×
L∞(0, T ;W 1,∞) with ∇ρ ∈ L∞(0, T ;Xβ) for any positive time T . Here, Xβ is the space from
Definition 4.2.5.

Proposition 4.4.1. Let u0 ∈ R3 and assume (ρ, u) ∈ L∞(0, T ;Xβ)× L∞(0, T,W 1,∞) is a solution
to problem (4.4.1) with v0 = u0. Let

σ(t, x) := ρ(t, x− tu0)

and
v(t, x) := u(t, x− tu0).

Then (σ, v) solves (4.4.1) with v0 = 0.

Proof. The solution operator of the Stokes equations S is a convolution operator, and convolution
commutes with translation. Therefore, (S(ρ(t, ·)g)(x− tu0) = (S(σ(t, ·)g)(x).

Theorem 4.4.2. Assume ρ0 ∈ Xβ with ∇ρ0 ∈ Xβ for some β > 2. Then, Problem (4.4.1) admits a
unique solution ρ ∈W 1,∞(0, T ;Xβ) for all T > 0. Moreover, ∇ρ ∈ L∞(0, T ;Xβ).

For the proof, we need the following lemma.

Lemma 4.4.3. For all β > 2 and all h ∈ Xβ,

‖Sh‖W 1,∞(R3) ≤ C‖h‖Xβ .

Remark 4.4.4. It is worth noticing that also an estimate of the form

‖Sh‖L∞(R3) ≤ C‖h‖θL∞(R3)‖h‖
1−θ
L1(R3)

and similar for ∇Sh holds with θ = 1/3 and θ = 2/3 respectively. Moreover, since the functions ρδε
are normalized in L1, this yields estimates of the relevant fluid velocities in terms of the L∞-norms
only. However, for the proof of the convergence result (see the proof of Theorem 4.6.1), it is crucial,
that the exponent on the right hand side of these estimates is (at least) equal to 1. This is the reason,
why we chose to work in the space Xβ instead of L∞.

Proof. We recall that the solution operator S can be represented by the convolution with the Oseen
tensor Φ from (3.5.1). Hence, by definition of Xβ,

|(Sh)(x)| ≤ C‖h‖Xβ
ˆ
R3

1

|x− y|
1

|1 + |y|β
dy

≤ C‖h‖Xβ
ˆ
B |x|

2

(x)

1

|x− y|
1

|1 + |x|β
+ C‖h‖Xβ

ˆ
R3\B |x|

2

(x)

1

|y|
1

|1 + |y|β

≤ C‖h‖Xβ
|x|2

1 + |x|β
+ C‖h‖Xβ ,
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since 1
|y|

1
|1+|y|β ∈ L

1(R3) as 1 + β > 3.

The estimate for ∇(Sh)(x) works analogously.

Proof. By Proposition 4.4.1, we only have to consider the case v0 = 0.

We prove the statement using the Banach fixed point theorem. We can write problem (4.4.1) in
a more compressed way as

∂tρ+ S(ρg) · ∇ρ = 0,

ρ(0, ·) = ρ0.
(4.4.2)

The strategy of the proof is the following. In the first part, we derive estimates for the linear equation

∂tρ+ S(τg) · ∇ρ = 0,

ρ(0, ·) = ρ0.
(4.4.3)

In the second part, we show that the solution operator for this equation is a contraction on a suitable
metric space for small times. In order to get a global in time solution, we finally derive estimates for
this solution that show that no blow-up in finite time is possible.

Step 1. Estimates for the linear equation. We recall from Lemma 4.4.3

‖S(τg)‖W 1,∞ ≤ C‖τ‖Xβ , (4.4.4)

where C depends only on g.

We claim that the solution operator A for problem (4.4.3) maps τ ∈ L∞(0, T ;Xβ) to a function
ρ ∈ L∞(0, T ;Xβ). To this end, we denote v := S(τg). Then, the solution to the transport equation
(4.4.3) is given by

ρ(t, x) = ρ0(ϕ(t, 0, x)),

where ϕ(t, ·, ·) is the flow of v starting at time t. More precisely, ϕ is the solution to

∂sϕ(t, s, x) = v(s, ϕ(t, s, x)),

ϕ(t, t, x) = x,
(4.4.5)

which is well defined due to (4.4.4) We observe that,

|ϕ(t, 0, x)− x| ≤
ˆ t

0
|v(s, ϕ(t, s, x))| ds ≤ CT‖τ‖L∞(0,T ;Xβ).

Thus,

(1 + |x|β) ≤ C1

(
1 + T β‖τ‖βL∞(0,T ;Xβ)

)
(1 + |ϕ(t, 0, x)|β), (4.4.6)

where we denote the generic constant by C1 for future reference. In particular,

‖ρ‖L∞(0,T ;Xβ) ≤ C1

(
1 + T β‖τ‖βL∞(0,T ;Xβ)

)
‖ρ0‖Xβ . (4.4.7)

Step 2. Contraction for small times. We want to prove that A is a contraction in

Y := B2C1‖ρ0‖Xβ
(0) ⊂ L∞(0, T ;Xβ) (4.4.8)

for sufficiently small times T , where C1 is the constant from (4.4.6). Choosing T ≤ (2C1‖ρ0‖Xβ )−1,
we have seen in (4.4.7) that the solution operator A for problem (4.4.3) maps Y to itself.
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Let τ1, τ2 ∈ Y , and for i = 1, 2, define vi = S(τig) the solutions to the Stokes equations, ϕi the
corresponding flows as in (4.4.5), and ρi = Aτi the solutions to the linear transport equation (4.4.3).
Then, for t ≤ T ≤ (2C1‖ρ0‖Xβ )−1 we estimate, using (4.4.6) and writing L := 2C1‖ρ0‖Xβ‖∇ρ0‖Xβ ,

(1 + |x|β)|ρ1(t, x)− ρ2(t, x)| = (1 + |x|β)|ρ0(ϕ1(t, 0, x))− ρ0(ϕ2(t, 0, x))|
≤ L|ϕ1(t, 0, x)− ϕ2(t, 0, x)|

≤ L
ˆ t

0
|v1(s, ϕ1(t, s, x))− v2(s, ϕ2(t, s, x))| ds

≤ L
ˆ t

0
|v1(s, ϕ1(t, s, x))− v1(s, ϕ2(t, s, x))| ds

+ L

ˆ t

0
|v1(s, ϕ2(t, s, x))− v2(s, ϕ2(t, s, x))| ds

≤ L‖∇v1‖L∞((0,t)×R3)

ˆ t

0
|ϕ1(t, s, x))− ϕ2(t, s, x)| ds

+ L‖v1 − v2‖L∞((0,t)×R3)t.

Using again Gronwall, we deduce

‖ρ1 − ρ2‖L∞(0,T ;Xβ) ≤ LT‖v1 − v2‖L∞((0,T )×R3)e
L‖∇v1‖L∞((0,T )×R3)T .

Hence, using ‖τ1‖L∞(0,T ;Xβ) ≤ 2C1‖ρ0‖Xβ from (4.4.8) together with the estimates for the Stokes

equation (4.4.4), we conclude for all t ≤ T ≤ (2C1‖ρ0‖Xβ )−1

‖ρ1 − ρ2‖L∞(0,T ;Xβ) ≤ CLT‖τ1 − τ2‖L∞(0,T ;Xβ)e
2CC1L‖ρ0‖XβT .

This proves that A is indeed a contraction if we choose T sufficiently small. Therefore, the Banach
fixed point theorem provides a unique solution ρ up to this time T .

Step 3. Global solution. In order to get a global solution in time, we need to show that ρ(t, ·) and
∇ρ(t, ·) do not blow up in Xβ in finite time, if ρ is the solution to (4.4.1). Define v = S(ρe) and ϕ
the flow of v as before. We observe that

‖ρ(t, ·)‖L1(R3) ≤ C‖ρ(t, ·)‖Xβ ,

and
‖ρ(t, ·)‖L∞(R3) ≤ ‖ρ(t, ·)‖Xβ .

Clearly, the spatial L∞-norm of ρ is conserved over time. Since v is divergence free, also the spatial
L1-norm is conserved. Using the explicit convolution formula for the solution operator S yields

‖v(t, ·)‖W 1,∞(R3) ≤ C(‖ρ(t, ·)‖L1(R3) + ‖ρ(t, ·)‖L∞(R3)) ≤ C‖ρ0‖Xβ . (4.4.9)

Therefore, we estimate analogously as we have obtained (4.4.6)

(1 + |x|β)|ρ(t, x)| = (1 + |x|β)|ρ0(ϕ(t, 0, x))| ≤ C
(

1 + tβ‖ρ0‖βXβ
)
‖ρ0‖Xβ ,

and we conclude
‖ρ‖L∞(0,T ;Xβ) ≤ C

(
1 + T β‖ρ0‖βXβ

)
‖ρ0‖Xβ .

In order to get estimates for the gradient of ρ, we differentiate equation (4.4.2) and obtain

∂t∂xiρ = v∇ · ∂xiρ+ ∂xiv · ρ.
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Hence,

∂xiρ(t, x) = ∂xiρ0(ϕ(t, 0, x)) +

ˆ t

0
∂xiv(s, ϕ(t, s, x)) · ρ(s, ϕ(t, s, x)) ds.

Using (4.4.9) leads to

‖∇ρ‖L∞(0,T ;Xβ) ≤ C
(

1 + T β‖ρ0‖βXβ
)(
‖∇ρ0‖Xβ + T‖ρ0‖Xβ‖ρ‖L∞(0,T ;Xβ)

)
.

Therefore, both ρ and ∇ρ do not blow up in finite time. Thus, by a standard contradiction argument
using Step 2, solutions to (4.4.1) exist and are unique for arbitrary times T .

4.5 Estimates for the fluid velocity

4.5.1 Preliminary estimates on the particle configuration

As mentioned in Section 4.2.3, quantities like αε from equation (4.2.1) play an important role for
the estimates on the fluid velocity. More precisely, for the estimates in the following subsections, it is
important to control

αε,k(t) := sup
j

1

Nε

∑
i 6=j

1

|Xi(t)−Xj(t)|k
, (4.5.1)

for k = 1, 2. Moreover, the method of reflections used in Section 4.5.3 only works provided φεαε,3(t)
is sufficiently small. In the next lemma, we prove estimates for αε,k in terms of c0 from assumption
(A1) and Y from Definition 4.2.2 by approximating the sum in (4.5.1) by an integral.

Lemma 4.5.1. There exists a constant C with the following property. Let ε > 0 and assume that
the dynamics (4.1.1), (4.1.2), (4.1.3) have a solution up to time T . Then, for t < T and k = 1, 2

αε,k(t) ≤ Cc−1
0 Yε(t)

3, (4.5.2)

where c0 is the constant from Assumption (A1) and Yε as in Definition 4.2.2. Moreover,

αε,3 ≤ Cc−1
0 Y 3

ε (t) log

(
NεYε(t)

c0

)
. (4.5.3)

Proof. Since ε and t is fixed, we omit them in the following. We define ψ : R3 → R by

ψ = d−3
min

∑
i

χBdmin/2
(Xi),

where dmin denotes the minimal particle distance. By Definition 4.2.2 and assumption (A1), we have

‖ψ‖L∞(R3) ≤ d−3
min ≤ c

−1
0 NY 3,

and
‖ψ‖L1(R3) = CN.

Thus, for all particles j,

1

N

∑
i 6=j

1

|Xi −Xj |k
≤ C

N

ˆ
R3

ψ(y)

|y −Xj |k
dy

≤ C

N

(ˆ
R3\B1(Xj)

ψ(y)

|y −Xj |k
dy +

ˆ
B1(Xj)

ψ(y)

|y −Xj |k
dy

)

≤ C

N

(
‖ψ‖L1(R3) + ‖ψ‖L∞(R3)

)
≤ Cc−1

0 Y 3,

(4.5.4)
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where we used in the last step that Y ≥ 1. This proves (4.5.2).

To show (4.5.3), we estimate for any j

1

N

∑
i 6=j

1

|Xi −Xj |3
≤ C

N

ˆ
R3\Bdmin/2

(Xj)

ψ(y)

|y −Xj |3
dy

≤ C

N

(ˆ
R3\B1(Xj)

ψ(y)

|y −Xj |3
dy +

ˆ
B1(Xj)\Bdmin/2

(Xj)

ψ(y)

|y −Xj |3
dy

)

≤ C

N

(
‖ψ‖L1(R3) + ‖ψ‖L∞(R3) log

(
1

dmin

))
≤ Cc−1

0 Y 3 log

(
Y

dmin(0)

)
≤ Cc−1

0 Y 3 log

(
NY

c0

)
.

Remark 4.5.2. By splitting the integral in (4.5.4) with Br(Xj) instead of B1(Xj), one can choose
the optimal r to find

sup
j

1

N

∑
i 6=j

1

|Xi −Xj |2
≤ Cc−

2
3

0 Y 2.

4.5.2 Estimates for uε − vε in Ḣ1(R3)

For the remainder of this section, with the exception of Lemma 4.5.15, we consider an arbitrary
given particle configuration without time evolution and derive estimates for the fluid velocity v that
solves the stationary equations (4.1.2), (4.1.3). Therefore we omit the index ε. We will always assume
a configuration of particles with dmin ≥ 4R. We will write C for any constant independent of the
particle configuration, and C might change its value from line to line.

As explained in Section 4.2.3, we need L∞-estimates of u− v, where v is the solution to (4.1.2),
and (4.1.3), and u is the solution to (4.1.6). These estimates will be shown using the method of
reflections in Section 4.5.3. There, we will also rely on standard methods exploiting the structure of
the linear PDEs that u and v solve. In this subsection 4.5.2, we will explain these methods in detail
and prove an L2-estimate for ∇(u− v).

First, we notice that both u and v are solutions to variational problems. We define

E(w) :=
1

2

ˆ
R3

|∇w|2 dx−
∑
i

F

 
∂Bi

w dH2,

with F as in (4.1.3). Then, u, which is defined as the solution to (4.1.6), is the minimizer of E in
Ḣ1
σ(R3). Moreover, v, which solves (4.1.2) and (4.1.3), is the minimizer of E in the subspace

W := {w ∈ Ḣ1
σ(R3) : w = const in Bi, 1 ≤ i ≤ N}.

In particular, v is the orthogonal projection of u from Ḣ1
σ(R3) to W . Thus

‖u− v‖Ḣ1(R3) ≤ ‖u− w‖Ḣ1(R3) for all w ∈W. (4.5.5)

We will exploit this by choosing w in a smart way in order to get an estimate for u− v. Following
this approach, we need the following lemma which provides estimates on u based on its explicit form.
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Lemma 4.5.3. For all particle configuration with dmin ≥ 4R, the function u defined in (4.1.6)
satisfies

‖u‖L∞(∪iBi) ≤ Cα1, (4.5.6)

and

‖∇u‖L∞(∪iBi) ≤ Cα2, (4.5.7)

where αk are defined in (4.5.1).

Proof. We have u =
∑

i ui, where ui = Sfi with fi defined as in (4.1.7) and S : Ḣ−1(R3)→ Ḣ1
σ(R3)

the solution operator for the Stokes equations. Recall from (4.1.8) that ui = 2/9γ2g in Bi. In
particular, ∇ui = 0 in Bi. Using the explicit formula for S as a convolution operator with kernel Φ
as in (3.5.1), we observe for all particles i 6= j

‖∇uj‖L∞(Bi) ≤ C|F |
1

(|Xi −Xj | −R)2
≤ C|F | 1

|Xi −Xj |2
.

Thus, recalling |F | = C
N from (4.1.3), deduce

‖∇u‖L∞(Bi) =
∥∥∑
j 6=i
∇uj

∥∥
L∞(Bi)

≤ C

N

∑
j 6=i

1

|Xi −Xj |2
.

This shows (4.5.7). Estimate (4.5.6) is proved analogously.

Remark 4.5.4. Estimate (4.5.6) actually also holds outside of the particles since the functions wi
are uniformly bounded.

We now prove the main result of this subsection, which shows that the difference between u and
v is of the order of the volume fraction of the particles φ.

Proposition 4.5.5. For all particle configuration with dmin ≥ 4R,

‖u− v‖2
Ḣ1(R3)

≤
∑
i

C‖∇u‖2L2(Bi)
≤ Cα2φ,

with α2 as in (4.5.1).

Proof. By Lemma 3.5.14, for each 1 ≤ i ≤ N , we can find wi ∈ H1
0,σ(B2R(Xi)) with ‖∇wi‖L2(R3) ≤

C‖∇u‖L2(Bi) and wi = u− (u)i in Bi, where (u)i :=
ffl
Bi
u dx. Since the balls B2R(Xi) are disjoint,

we obtain w := u−
∑

iwi ∈W . Hence, by (4.5.5),

‖u− v‖2
Ḣ1(R3)

≤ ‖u− w‖2
Ḣ1(R3)

=
∥∥∑

i

wi
∥∥2

Ḣ1(R3)
≤
∑
i

C‖∇u‖2L2(Bi)
. (4.5.8)

Thus, Lemma 4.5.3 yields

‖u− v‖2
Ḣ1(R3)

≤
∑
i

C‖∇u‖2L2(Bi)
≤ CNR3α2

2 = Cα2
2φ.
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4.5.3 Estimates for uε − vε in L∞ by the method of reflections

In this subsection, we prove smallness of v − u (again, we drop the index ε) in L∞(R3) stated
in Proposition 4.5.8. We use the method of reflections in the framework of orthogonal projections
that has been investigated in Chapter 3. As we will see below, the method has better convergence
properties for the problem (4.1.2), (4.1.3) that v solves than for the Stokes equations with Dirichlet
boundary conditions, which we have studied in Chapter 3. Indeed, for the latter the method only
converges provided that γ is sufficiently small. In Chapter 3, this problem has been overcome by a
suitable resummation procedure.

In the case at hand, however, we will see below, that the higher order terms are associated to
force densities that are “dipoles” in the particles (i.e. their integral vanishes). This makes the method
convergent if φα3 is sufficiently small (see (4.5.1) for the definition of α3). By Lemma 4.5.1 and the
assumptions (A1) and (A2), this is the case for sufficiently small ε provided that Yε is uniformly
bounded.

We will now introduce the necessary framework to apply the method of reflections in this setting
of particle sedimentation using a notation analogous to the one in Chapter 3.

We define
Wi =

{
w ∈ Ḣ1

σ(R3) : w = const in Bi

}
.

Let Pi be the orthogonal projection from Ḣ1
σ(R3) to Wi and Qi = 1− Pi. We observe

W⊥i =

{
w ∈ Ḣ1

σ(R3) : ∃p ∈ L2(R3) −∆w +∇p = 0 in R3\Bi,
ˆ
R3

−∆w +∇p = 0

}
. (4.5.9)

Here, the first condition has to be interpreted in the weak sense. It is satisfied for every w ∈ W⊥i
since Ḣ1

σ,0(R3\Bi) ⊂ Wi. Using the first condition, the second condition simply means 〈−∆w +

∇p, ψ〉Ḣ−1,Ḣ1 = 0 for all ψ ∈ Ḣ1(R3) with ψ = const in Bi, and this follows directly from the
definition of Wi.

The electrostatic analogy of the characterization of W⊥i by (4.5.9) is that the functions in W⊥i
are dipole potentials.

The method of reflections can now be stated as follows. As a zero order approximation for
v, one takes u. Recall from (4.1.2) and (4.1.3) that v is determined by being constant inside of
the particles and satisfying the constraint of the total force acting on each particle being given by
(4.1.3). Moreover, the function u defined in (4.1.6) satisfies this force constraint (4.1.3) but fails to
be constant inside of the particles.

The idea is now to add functions wi to u in such a way that u+wi is constant inside of the particle
i, and still satisfies the Stokes equations outside of the particles and (4.1.3). Thus, wi = −Qiu.
Indeed, by definition of the space Wi, Piu = (1−Qi)u is constant in Bi. Moreover, since Qiu is a
“dipole potential”, (1−Qi)u still satisfies (4.1.3). As a first order approximation for v, we define

v1 = (1−
∑
i

Qi)u.

Clearly, since wi is not constant inside the particles j 6= i, the function v1 is still not constant inside
the particles. Therefore, higher order approximations for v are obtained by repeating this process.

vk =

(
1−

∑
i

Qi

)k
u. (4.5.10)

Then, we have to show the convergence vk → v.
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This approach seems a bit awkward at first glance. Indeed, we already now that v = Pu, where
P is the orthogonal projection to W = ∩iWi. Therefore, the method of reflections consists in writing
this projection as P = limk→∞(1 −

∑
iQi)

k. However, the advantage of this method is that it is
much easier to study Qi than P .

For the proof that vk converges to v, we need the following lemmas. Lemma 4.5.6 ensures that
(1−Qi)vk = Pivk does not differ too much from uk inside particle i. Lemma 4.5.7 is used to exploit
that Qivk is a “dipole potential”, and therefore decays quickly.

Lemma 4.5.6. Let w ∈ Ḣ1
σ(R3). Then, Piw = (w)i in Bi, where (w)i =

ffl
∂Bi

w.

Proof. Let ψ0 ∈ R3 and define ψ ∈ Ḣ1
σ(R3) to be the solution to

−∆ψ +∇p = 0 in R3\Bi,
ψ = ψ0 in Bi.

In other words, ψ is the velocity field corresponding to a moving single sphere without external forces.
Hence, by (2.2.2),

−∆ψ +∇p =
3

2R
ψ0δ∂Bi .

Furthermore, ψ ∈Wi, and hence,

0 = (w − Piw,ψ)Ḣ1(R3) = 〈w − Piw,−∆ψ〉 =
3

2R
ψ0 ·

ˆ
∂Bi

w − Piw dH2.

Since ψ0 was arbitrary, we deduce ˆ
∂Bi

w − Piw dH2 = 0,

and the assertion follows.

Lemma 4.5.7. Assume f ∈ Ḣ−1
σ (R3) is supported in Bi and

´
R3 f = 0, i.e., Sf ∈W⊥i , where S is

the solution operator for the Stokes equations. Then, for all x ∈ R3\B2R(Xi),

|(Sf)(x)| ≤ C R
3
2

|x−Xi|2
‖f‖Ḣ−1

σ (R3), (4.5.11)

and

|∇(Sf)(x)| ≤ C R
3
2

|x−Xi|3
‖f‖Ḣ−1

σ (R3). (4.5.12)

Proof. We denote again by Φ the Oseen tensor (3.5.1). Then,

|(Sf)(x)| = |(Φ ∗ f)(x)| = |((Φ− (Φ)x−Xi,2R) ∗ f)(z)|
= |(E(Φ− (Φ)x−Xi,2R) ∗ f)(z)|
≤ ‖f‖Ḣ−1

σ (R3)‖(E(Φ− (Φ)x−Xi,2R)‖Ḣ1(R3),

where

(Φ)x−Xi,R =

 
BR(x−Xi)

Φ(y) dy,

and E(Φ− (Φ)x−Xi,R) is a divergence free extension of the restriction of Φ− (Φ)x−Xi,R to BR(x−Xi).
By Lemma 3.5.14, we can choose this extension in such a way that

‖(E(Φ− (Φ)x−Xi,R)‖Ḣ1(R3) ≤ C‖∇Φ‖L2BR(x−Xi) = C
R

3
2

|x−Xi|2
.

This establishes estimate (4.5.11). Estimate (4.5.12) is proven analogously.
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Proposition 4.5.8. Assume a particle configuration is given with dmin ≥ 4R and let αk be as in
(4.5.1). Let vk be defined as in (4.5.10). Then, for all particles j and all y 6∈ B2R(Xj),

|Qjvk(y)| ≤ C R3

|Xj − y|2
‖∇vk‖L∞(Bj), (4.5.13)

and

|∇Qjvk(y)| ≤ C R3

|Xj − y|3
‖∇vk‖L∞(Bj). (4.5.14)

Furthermore, there exists a constant δ > 0 with the following property. Assume that φα3 < δ.
Then,

‖∇vk‖L∞(Bi) ≤ α2(Cδ)k, (4.5.15)

and

vk → v in Ḣ1(R3).

Moreover, the convergence also holds in L∞(R3), and we have

‖u− v‖L∞(R3) ≤ Cα2(α2φ+R). (4.5.16)

Proof. Recall that the solution operator S for the Stokes equations is an isometry from Ḣ−1
σ (R3) to

Ḣ1
σ(R3). Thus, by (4.5.9) and Lemma 4.5.7, we have for all particles j and all y 6∈ B2R(Xj)

|Qjvk(y)| ≤ C R
3
2

|Xj − y|2
‖Qjvk‖Ḣ1(R3). (4.5.17)

By (4.5.9), supp ∆Qjvk ⊂ Bi as a function in Ḣ−1
σ (R3). Therefore, Qjvk is the function of minimal

norm in Ḣ1
σ(R3) that coincides with Qjvk in Bi. By Lemma 4.5.6, we have

Qjvk = vk −
 
∂Bj

vk dH2 in Bj .

Hence, Lemma 3.5.14 yields

‖Qjvk‖Ḣ1(R3) ≤ C‖∇vk‖L2(Bj) ≤ CR
3
2 ‖∇vk‖L∞(Bj). (4.5.18)

Combining (4.5.17) and (4.5.18) yields (4.5.13). Estimate (4.5.14) is proven analogously.

We claim that v is the orthogonal projection of vk to W for all k ∈ N. In Section 4.5.2, we have
seen that v is the orthogonal projection of u to W . Therefore, it suffices to observe that Qiw lies
in the orthogonal complement of W for any w ∈ Ḣ1

σ(R3). By definition, Qiw lies in the orthogonal
complement of Wi. Since W ⊂Wi this implies Qiw ∈W⊥.

Now it follows analogously as we have obtained (4.5.8)

‖v − vk‖2Ḣ1(R3)
≤
∑
i

C‖∇vk‖2L2(Bi)
≤
∑
i

CR3‖∇vk‖2L∞(Bi)
. (4.5.19)

In Bi, we have for k ≥ 1

∇vk = ∇(vk−1 −
∑
j

Qjvk−1) =
∑
j 6=i
∇Qjvk−1

since vk−1 −Qivk−1 = Pivk−1 ∈Wi is constant in Bi.
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Thus,

‖∇vk‖L∞(Bi) ≤ C
∑
j 6=i

R3

|Xi −Xj |3
‖∇vk−1‖L∞(Bj) ≤ Cδ‖∇vk−1‖L∞(∪Bj). (4.5.20)

By Lemma 4.5.3,

‖∇u‖L∞(∪Bj) ≤ Cα2.

Combining this with (4.5.20) yields (4.5.15). Hence, by the estimate (4.5.19), the series vk converges
to v in Ḣ1(R3), provided δ < 1/C.

To prove convergence in L∞(R3) we choose for any fixed x ∈ R3 a particle Xi which has minimal
distance to x. We note that Lemma 4.5.11 implies

1

N

∑
j 6=i

1

|x−Xj |2
≤ Cα2.

Application of Lemma 4.5.6 and Lemma 4.5.9 below for particle i, and Lemma 4.5.7 for the others,
using also (4.5.18), yields

|vk+1(x)− vk(x)| = |
∑
j

Qjvk(x)| ≤
∑
j 6=i
|Qjvk(x)|+ |Qivk(x)|

≤
∑
j 6=i

C
R

3
2

(x−Xi)2
‖Qjvk‖Ḣ1(R3) + C‖vk − (vk)i‖L∞(Bi)

≤ Cα2R
3N‖∇vk‖L∞(∪Bj) + CR‖∇vk‖L∞(Bi)

= Cα2(αφ+R)(Cδ)k.

Therefore, vk − v converges to zero in L∞(R3), and (4.5.16) holds.

We need the following maximum modulus estimate for solutions to Dirichlet problems of the
Stokes equations. A proof of this result can be found in [MRS99].

Lemma 4.5.9. Let Ω ⊂ R3 be an exterior domain and assume that g ∈ C(∂Ω) satisfies

ˆ
∂Ω
gν dH2 = 0.

Then, the unique solution u ∈ Ḣ1(R3) of the Dirichlet problem

−∆u+∇p = 0 in Ω,

u = g on ∂Ω

satisfies

‖u‖L∞(Ω) ≤ C‖g‖L∞(∂Ω),

where the constant C depends only on Ω.

Remark 4.5.10. Clearly, the constant C in the above statement is invariant under scaling of the
domain. In fact, we will only apply the above lemma for Ω being the exterior of a ball.
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Lemma 4.5.11. Let y ∈ R3 and let Xi be a particle that has minimal distance to y, i.e.,

|y −Xi| ≤ |y −Xj | for all 1 ≤ j ≤ N.

Then,

|y −Xj | ≥
1

2
|Xi −Xj | for all 1 ≤ j ≤ N.

In particular, for k = 1, 2, ∑
j 6=i

1

|y −Xj |k
≤ C

∑
j 6=i

1

|Xi −Xj |k
.

Proof. We consider two cases.

Case 1.

|Xj −Xi| ≤ 2|y −Xi|.

Then,

|y −Xj | ≥ |y −Xi| ≥
1

2
|Xi −Xj |.

Case 2.

|Xj −Xi| ≥ 2|y −Xi|.

Then,

|Xj −Xi| ≤ |y −Xi|+ |y −Xj | ≤
1

2
|Xj −Xi|+ |y −Xj |,

and the assertion follows.

4.5.4 Lipschitz type estimates for vε and short time estimates on the particle
distances

In order to apply the method of reflections, we have seen in Proposition 4.5.8 that we need to
control the quantities αk (see (4.5.1)) for k = 2, 3. By Lemma 4.5.1, we know how to control αk in
terms of Yε from Definition 4.2.2. The purpose of this subsection is to prove short time estimates for
Yε. More precisely, we show in Proposition 4.5.15 that, starting at time T0, the time θ needed for
two particles to halve their distance is bounded from below. For sufficiently small ε, this bound on θ
depends only on Yε(T0). Thus, if we have estimates for Yε(T0) uniformly in ε, we can also bound
Yε(T0 + θ) uniformly in ε.

This a priori estimate enables us to prove the main theorem for small times (cf. Theorem 4.6.1).
However, it does not rule out that Yε blows up in finite time. Therefore, we prove an a posteriori
estimate on Yε in Section 4.6.2.

In order to control the particle distances, we need to estimate their relative velocities, which is
provided by Lipschitz type estimates for the fluid velocity vε. Since vε solves the stationary equations
(4.1.2), (4.1.3), we will again simplify the notation in the following by considering a fixed particle
configuration neither depending on ε nor on time. First, we observe that we cannot expect a uniform
estimate on the L∞-norm of the gradient of v. Indeed, as discussed in the formal derivation of the
limit equation (4.1.9), we expect the value of v at a particle and the value of v at a distance of order
dmin from that particle to differ by 2/9γ−1g. Hence, ∇v is large near the particles, in particular the
L∞-norm of ∇v tends to infinity as R→ 0.

Therefore, we have to directly prove estimates for v(Xi) − v(Xj). First, in Lemma 4.5.12, we
prove such estimates for the approximated fluid velocity u. Then, in Lemma 4.5.14, we again use the
method of reflections to get the estimates for v as well.
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Lemma 4.5.12. Assume a particle configuration is given with dmin ≥ 4R and let αk be as in (4.5.1).
Then, for all particles i, j and all h ∈ BR(0) ⊂ R3,

|u(Xi + h)− u(Xj + h)| ≤ Cα2|Xi −Xj |.

Proof. We recall from (4.1.6) that u =
∑

i ui, where ui = Sfi with fi defined as in (4.1.7) and
S : Ḣ−1(R3)→ Ḣ1

σ(R3) the solution operator for the Stokes equations. In particular, for x 6∈ BR(Xi),

|∇ui(x)| ≤ C 1

N |x−Xi|2
.

By definition of ui, we have ui(x) = w(x −Xi) for some w ∈ Ḣ1
σ(R3) with w(−x) = w(x). In

particular, for particles i and j

ui(Xi + h) = w(h) = uj(Xj + h). (4.5.21)

Moreover, using symmetry of w,

|uj(Xi + h)− ui(Xj + h)| = |w(Xi −Xj + h)− w(Xj −Xi + h)|
= |w(Xi −Xj + h)− w(Xi −Xj − h)|
≤ C|∇w(Xi −Xj)||h|

≤ C R

N |Xi −Xj |2

≤ C |Xi −Xj |
N |Xi −Xj |2

.

(4.5.22)

Let us denote xi = Xi + h and xj = Xj + h. Then, (4.5.21) and (4.5.22) imply

|u(xi)− u(xj)| ≤
∑
k 6=i,j

|uk(xi)− uk(xj)|+ C
|Xi −Xj |

N |Xi −Xj |2
.

For all k 6= i, j we use Lemma 4.5.13 below, which provides curves sk ∈ C1([0, 1];R3) from xi to
xj such that

|sk(t)−Xk| ≥ min{|xi −Xk|, |xj −Xk|},

and
|ṡk| ≤ C|xi − xj |.

We deduce

|uk(xi)− uk(xj)| ≤ C
ˆ 1

0
|∇uk(sk(t))||xi − xj | dt

≤ C |Xi −Xj |
N

(
1

|xi −Xk|2
+

1

|xj −Xk|2

)
.

Thus, using Lemma 4.5.11, we conclude

|u(x)− u(y)| ≤
∑
k 6=i,j

|uk(xi)− uk(xj)|+ C
|Xi −Xj |

N |Xi −Xj |2

≤ C
∑
i 6=j,k

|Xi −Xj |
N

(
1

|xi −Xk|2
+

1

|xj −Xk|2

)
+ C

|Xi −Xj |
N |Xi −Xj |2

≤ Cα2|Xi −Xj |.
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Lemma 4.5.13. Let x, y, z ∈ R3 be distinct. Then, there exists a curve s ∈ C1([0, 1];R3) with
s(0) = x, s(1) = y,

|s(t)− z| ≥ min{|x− z|, |y − z|},

and
|ṡ| ≤ C|x− y|.

Proof. It suffices to construct a semicircle γ with endpoints x and y such that

dist{γ, z} ≥ min{|x− z|, |y − z|}. (4.5.23)

If x, y, z lie on a line, then we can choose any semicircle with endpoints x and y.
Otherwise, let E be the plane that x, y, z lie in. Then, there are exactly two semicircles in E with

endpoints x and y, and it is easy to check, that (at least) one of them satisfies (4.5.23).

Using Proposition 4.5.8, we can deduce from Lemma 4.5.12

|vε(Xi)− vε(Xj)| ≤ Cα2|Xi −Xj |+ Cα2(α2φε +Rε), (4.5.24)

provided that the assumptions of both Proposition 4.5.8 and Lemma 4.5.12 are satisfied.
The particle volume φε on the right hand side of (4.5.24) poses a problem, since it could be much

larger than the minimal particle distance dε,min. Thus, not even for small times t, does estimate
(4.5.24) imply any lower estimate for dε,min(t) which is uniform in ε.

In order to get rid of φε in (4.5.24), we will prove that the functions vk from Proposition 4.5.8 all
satisfy

sup
k
|vk(Xi)− vk(Xj)| ≤ Cα2|Xi −Xj |.

Lemma 4.5.14. Assume a particle configuration is given with dmin ≥ 4R and let αk be as in (4.5.1).
Then, there exists a constant δ > 0 with the following property. Assume that φα3 < δ. Then, the
functions vk defined in Proposition 4.5.8 satisfy for all particles i and j

|vk(Xi)− vk(Xj)| ≤ Cα2|Xi −Xj |. (4.5.25)

In particular,
|v(Xi)− v(Xj)| ≤ Cα2|Xi −Xj |. (4.5.26)

Proof. The assertion follows from the following estimate which we will prove by induction in k.

|vk(Xi + h)− vk(Xj + h)| ≤ Cδ−1α2

k∑
n=0

(Cδ)n|Xi −Xj |, (4.5.27)

for all particles i, j and all h ∈ BR(0). For k = 0, this is the second part of Lemma 4.5.12.
Let us denote xi = Xi + h and xj = Xj + h. Using the definition of vk from Proposition 4.5.8, we

observe
vk+1(xi) = vk(xi)−

∑
l

Qlvk(xi) = (vk)i −
∑
l 6=i

Qlvk(xi).

Here we used that by Lemma 4.5.6, Qivk = vk − (vk)i in Bi, where (vk)i =
ffl
∂Bi

vk. Therefore,

|vk+1(xi)− vk+1(xj)|

≤ |(vk)i − (vk)j |+
∑
l 6=i,j
|Qlvk(xi)−Qlvk(xj)|+ |Qjvk(xi)|+ |Qivk(xj)|. (4.5.28)
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For the first term on the right hand side, we use the induction hypothesis. Regarding the second
term, for all l 6= i, j, we use Lemma 4.5.13, which provides curves sl ∈ C1([0, 1];R3) from Xi to Xj

such that

|s(t)−Xl| ≥ min{|Xl − xi|, |Xl − xj |},

and

|ṡ| ≤ C|xi − xj |.

Using in addition estimates (4.5.13) and (4.5.15) from Proposition 4.5.8, we deduce

|Qlvk(xi)−Qlvk(xj)| ≤ C|xi − xj |
ˆ 1

0
|∇Qlvk(sl(t))| dt

≤ C|Xi −Xj |R3

(
1

|xi −Xl|3
+

1

|xj −Xl|3

)
‖∇vk‖L∞(Bl)

≤ Cα2|Xi −Xj |R3

(
1

|Xi −Xl|3
+

1

|Xj −Xl|3

)
(Cδ)k.

Thus, for the second term on the right hand side of (4.5.28), we deduce∑
l 6=i,j
|Qlvk(xi)−Qlvk(xj)| ≤ Cα2|Xi −Xj |(Cδ)k+1.

For the third term on the right hand side of (4.5.28) we observe that estimates (4.5.14) and (4.5.15)
from Proposition 4.5.8 yield

|Qjvk(xi)| ≤ C
R3

|Xi −Xj |2
‖∇vk‖L∞(Bl) ≤ Cα2

R3

|xi −Xj |2
(Cδ)k ≤ Cδ−1α2(Cδ)k+1|Xi −Xj |,

where we used R < |Xi −Xj |.
Since we get the same estimate for the fourth term, this finishes the proof of the induction step.

Thus, estimate (4.5.27) holds true for all k ∈ N which implies (4.5.25). Since vk converges to v in
L∞(R3) by Proposition 4.5.8, this also proves (4.5.26).

We now combine the previous lemma and Lemma 4.5.1 which provides bounds for αε,k(t) in
terms of Yε(t). As a result, we are able to prove a lower bound on the time θ that it takes for any
two particles to halve their distance to each other. This lower bound is uniform in ε for sufficiently
small values of ε.

Proposition 4.5.15. Let T0 ≥ 0, and assume there exist ε0 > 0 and Y0 <∞ such that Yε(T0) ≤ Y0

for all ε < ε0. Then, there exists ε1 > 0 and θ > 0 which depends only on Y0 and c0 from Assumption
(A1) such that

Yε(T0 + θ) ≤ 2Yε(0) for all ε < ε1.

Proof. By Lemma 4.5.1,

φεαε,3 ≤ C1φεY
3
ε log

(
NεYε
c0

)
,

where we denote the constant by C1 for definiteness. We choose ε1 < ε0 such that

C1φε(2Y
3

0 ) log

(
2NεYε
c0

)
< δ for all ε < ε1.
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where δ is the constant from Lemma 4.5.14. This is possible, since φε log(Nε) → 0 as ε → 0 by
Assumption (A2). Let

θε := sup{t ≥ 0: Yε(T0 + t) ≤ 2Y0}.
Since Yε is continuous in time, θε > 0. Then, Lemma 4.5.14 and Lemma 4.5.1 yield

|v(Xi)− v(Xj)| ≤ C2c
−1
0 Y 3

0 |Xi −Xj | for all ε < ε1 and all t ≤ T0 + θε.

Since the particles are transported by v, this implies

d

dt
dε,min(t) ≥ C2c

−1
0 Y 3

0 dε,min(t) for all ε < ε1 and all t ≤ T0 + θε.

Hence,

Yε(T0 + t) ≤ Y0e
C2c
−1
0 Y 3

0 t for all ε < ε1 and all t ≤ θε.
By definition of θε, this implies

θε ≥
log 2

C2c
−1
0 Y 3

0

=: θ,

which finishes the proof.

4.5.5 Approximations for the macroscopic fluid velocity

In order to prove the convergence result Theorem 4.2.9, we need to relate the microscopic fluid
velocity vε to the macroscopic fluid velocity v∗ of the limit equation (4.1.9). More precisely, we
have to prove that inside the particles, vε is close to v∗ + 2

9γ
2
εg. Recall that v∗ = S(ρg), where S

is the solution operator to Stokes equations, and we want to prove ρδεε → ρ in the space Xβ from
Definition 4.2.5, where ρδεε is the averaged (or macroscopic) particle density introduced in Definition
4.2.4. Therefore, it is convenient to consider

wδ,ε := S(ρδεg) +
2

9
γ−1
ε g. (4.5.29)

We have already proved boundedness of the operator S in the space Xβ (see Lemma 4.4.3) which
implies estimates of wδ,ε − v∗ − 2

9γ
−1
ε g in terms of ρδε − ρ. In addition, we need to estimate wδ,ε − vε.

By Proposition 4.5.8, we already know that we can replace vε by uε. Therefore, we prove smallness
of wδ,ε − uε in Lemma 4.5.16.

Again, the time evolution and the dependency of the particle configuration on ε is not relevant
for the estimates in this subsection, since we only consider the fluid velocity at a fixed time, which
solves the stationary equations (4.1.2), (4.1.3). Therefore, to simplify the notation, we will formulate
the estimates for a fixed particle configuration neither depending on time nor on ε.

Lemma 4.5.16. Assume a particle configuration is given with dmin ≥ 4R, and let wδ be defined as
in (4.5.29) Then, we have for all δ ≥ dmin

‖u− wδ‖L∞(∪iBi) ≤ Cδ
(

1 +
1

Nd3
min

)
. (4.5.30)

Moreover,

‖wδ‖W 1,∞(R3) ≤ C
(

1 + γ−1 +
1

Nd3
min

)
. (4.5.31)

Furthermore, for all n ∈ N and δ̃ = nδ,

‖wδ̃ − wδ‖L∞(R3) ≤ Cδ̃
(

1 +
1

Nd3
min

)
. (4.5.32)



112 Sedimentation of inertialess particles in Stokes flows

Proof. Recall from (4.1.7) that u =
∑

i ui, where ui = Sfi. Since by (4.1.8) ui(x) = 2
9γ

2g in Bi, we
have for all x ∈ Bi

u(x)−
(
S(ρδg)(x) +

2

9
γ2g

)
= u(x)− ui(x)− (S(ρδg)(x).

We denote by Iδ the set of centers of the cubes from Definition 4.2.4. We define I1 ⊂ Iδ to contain
the center of the cube Qxδ as well as the centers of all cubes adjacent to Qxδ . Then |I1| = 27. Let
I2 = Iδ\I1. We observe that for all z ∈ R3

ˆ
Qzδ

Φ(x− y)g

(
ρ(y)−

 
Qzδ

ρ(z′) dz′

)
dy =

ˆ
Qzδ

(
Φ(x− y)−

 
Qzδ

Φ(x− z′) dz′
)
ρ(y)g dy. (4.5.33)

Thus,

|S(ρg − fi)(x)− S(ρδg)(x)| =

∣∣∣∣∣
ˆ
R3

Φ(x− y)g

(
ρ(y)− fi(y)−

 
Qyδ

ρ(z) dz

)
dy

∣∣∣∣∣
≤ C

∑
z∈I1

ˆ
Qzδ

|Φ(x− y)|
(
|ρ(y)g − fi(y)|+ ρδ(y)

)
dy

+ C
∑
z∈I2

ˆ
Qzδ

∣∣∣∣∣Φ(x− y)−
 
Qzδ

Φ(x− z′) dz′
∣∣∣∣∣ ρ(y) dy

=: A+B.

Recalling the definition of ρ from (4.1.5), we have

‖ρδ‖L1(R3) = C (4.5.34)

‖ρδ‖L∞(R3) ≤
C

Nd3
min

, (4.5.35)

where we used δ ≥ dmin. Using (4.5.35) as well as |Φ(x)| ≤ C/|x|, we deduce

A ≤ C
∑

Xj∈BCδ(x)
j 6=i

1

N |x−Xj |
+

C

Nd3
min

ˆ
BCδ(x)

1

|x− y|
dy

≤ C 1

Nd3
min

ˆ
BCδ(x)

1

|y − x|
dy ≤ C 1

Nd3
min

δ2.

From the explicit expression of Φ in (3.5.1), it follows for all z ∈ I2 and all y ∈ Qzδ∣∣∣∣∣Φ(x− y)−
 
Qzδ

Φ(x− z′) dz′
∣∣∣∣∣ ≤ C δ

|x− z|2
. (4.5.36)

Hence, by (4.5.34), (4.5.35), and (4.5.36),

B ≤ Cδ
∑
z∈I2

ˆ
Qzδ

ρ(y)

|x− z|
dy ≤ Cδ

ˆ
R3

ρδ(y)

|x− y|
dy

≤ Cδ
(
‖ρδ(y)‖L1(R3) + ‖ρδ(y)‖L∞(R3)

)
≤ Cδ

(
1 +

1

Nd3
min

)
.
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Combining the error estimates for A and B proves (4.5.30).

The proof of (4.5.32) is almost completely analogous. The only difference is that, due to the
averaging, there is no problem with a particle that is close to the point where we estimate. Therefore,
we only have to deal with an error term analogous to B, and the estimate holds true in the whole of
R3. Indeed, we have for all x ∈ Qz

δ̃

ρδ̃(y) =

 
Qy
δ̃

ρδ(z) dz.

Hence, using again (4.5.33), we find

|wδ(x)− wδ̃(x)| =

∣∣∣∣∣
ˆ
R3

Φ(x− y)g

(
ρδ(y)−

 
Qy
δ̃

ρδ(z) dz

)
dy

∣∣∣∣∣
≤ C

∑
z∈Iδ̃

ˆ
Qz
δ̃

∣∣∣∣∣Φ(x− y)−
 
Qzδ

Φ(x− z′) dz′
∣∣∣∣∣ ρδ(y) dy.

Proceeding as in the proof of (4.5.30) yields (4.5.32).

By using again the decay of the Oseen tensor Φ, estimate (4.5.31) is a direct consequence of the
estimates (4.5.34) and (4.5.35). Indeed,

‖wδ‖L∞(R3) ≤ Cγ−1 + C

ˆ
R3

ρδ

|y − x|
dy

≤ C
(
γ−1 + ‖ρδ‖L1(R3) + ‖ρδ‖L∞(R3)

)
≤ Cδ

(
1 + γ−1 +

1

Nd3
min

)
,

and analogously for the gradient.

4.6 Convergence to the macroscopic equation

4.6.1 Convergence for small times

In this subsection, we prove the main result, Theorem 4.2.9, up to times for which the particles
are well separated in the sense that the quantity Yε from Definition 4.2.2 is uniformly bounded for
small ε. We already know from Proposition 4.5.15 that there exists such a time T0 > 0.

In Section 4.6.2, we will prove Theorem 4.2.9 by showing that Yε is actually uniformly bounded
for small ε for every finite time interval.

We first state the main result of this subsection.

Theorem 4.6.1. Assume conditions (A1)-(A3) are satisfied. Moreover, assume that for T0 > 0
there exists an ε0 > 0 and C1 <∞ such that

Yε(T0) ≤ C1, for all ε < ε0.

Let δ̃ε → 0, such that δ̃ε = nεδε for some nε ∈ N∗ with nε →∞ as ε→ 0. Then, if Assumption 4.2.7
is satisfied with some β > 2,

ρδ̃εε → ρ in C0([0, T0);Xβ),

where ρ is the unique solution to problem (4.1.9).
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The main ingredients in the proof of Theorem 4.6.1 are Proposition 4.5.8 and Lemma 4.5.16.
Indeed, Proposition 4.5.8 allows to replace the fluid velocity vε, which transports the particles, by
uε. Furthermore, by Lemma 4.5.16, we can replace uε in turn by wδε,ε defined in (4.5.29). The
velocity field wδε,ε resembles v∗ + 2/9γ−1

∗ g from the limit equation (4.1.9). The bounds on Yε in the
assumptions of Theorem 4.6.1 ensure, that the estimates in Proposition 4.5.8 and Lemma 4.5.16 are
uniform in ε as summarized in Lemma 4.6.3 below.

Throughout this subsection, we use the following notation and convention.

Notation 4.6.2. In this subsection, we impose the assumptions of Theorem 4.6.1, and any constant
C̃ might depend on c0 from Assumption (A1), γ∗ from Assumption (A3), the fixed time T0, C1,
‖ρ0‖Xβ , and ‖∇ρ0‖Xβ . Moreover, we will implicitly consider times t ≤ T0. Moreover, we will
implicitly consider ε < ε∗ such that δε ≥ dmin,ε(t) for all t ≤ T0 and ε < ε∗. This is possible because
of δε � dmin,ε(0) by Assumption 4.2.7 and the bound on Y0(T0).

Lemma 4.6.3. Under the assumptions of Theorem 4.6.1, there exists ε1 > 0 such that for all ε < ε1

‖wδε,ε − vε‖L∞(∪iBi(t)) ≤ C̃δε, for all t ≤ T0 (4.6.1)

‖wδ̃ε,ε − wδε,ε‖L∞((0,T0)×R3) ≤ C̃δ̃ε, (4.6.2)

‖wδε,ε‖L∞((0,T0);W 1,∞(R3) ≤ C̃, (4.6.3)

‖vε‖L∞((0,T0)×R3) ≤ C̃. (4.6.4)

Proof. By Lemma 4.5.16, we have

‖wδε,ε(t, ·)− vε(t, ·)‖L∞(∪iBi(t)) ≤ Cδ

(
1 +

1

Nd3
min,ε(t)

)
≤ Cδ

(
1 + Yε(T0)3c0

)
≤ C̃δε.

This proves (4.6.1). Estimates (4.6.2) and (4.6.3) are proven analogously, and estimate (4.6.4) directly
follows from (4.6.1) and (4.6.3).

For the ease of notation, we denote in the following

wε := wδε,ε = S(ρδεε e) +
2

9
γεg.

With the estimates from Lemma 4.6.3, the proof of Theorem 4.6.1 is not difficult but a bit tedious.
It is based on comparing the particle trajectories with the characteristics of the limit equation (4.1.9).
Roughly speaking, Lemma 4.6.3 implies that the velocity difference between the particle trajectories
and the characteristics is of order δε. This is why we prove the convergence for ρδ̃εε with δ̃ε � δε
instead of ρδεε . Indeed, consider a cube Qzδε at time 0 and a particle Xi(0) ∈ Qzδε . Let the cube Qzδε be
transported by wε and the particle by vε. Then, after some time t < T0, Lemma 4.6.3 suggests that
the distance between the particle Xi(t) and the cube Qzδε(t) is of order C̃δ. In particular, we do not
know whether any of the particles that initially have lain in the cube Qzδε are still in the transported
cube after time t. If we consider Qz

δ̃ε
, however, we are able to show this for most of the particles.

This is one cause of some technicalities in the proof of Theorem 4.6.1. The other one is that
it is difficult not prove smallness of ρδ̃εε − ρ directly. Instead, we introduce “intermediate” particle
densities τε and σε.

We define τε to be the solution to

τε(0, ·) = ρε,0,

∂tτε + wε · ∇τε = 0,
(4.6.5)
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and σε to be the solution to

σε(0, ·) = ρδ̃ε0,ε,

∂tσε + wε · ∇σε = 0.
(4.6.6)

Then, the difference between ρε and τε lies only in the transport velocity, and the difference between
τε and σε lies only in the initial datum. More precisely, σε is the function we get from transporting
the averaged initial datum, whereas τ δ̃εε is the average of the transported initial datum.

It is important first to replace the fluid velocity vε by wε – which is how we defined τε – and
afterwards to replace the averaging one cubes Qz

δ̃ε
at every time by averaging at the beginning and

considering the transported averages – which is how we defined σε. The reason for that is that the
estimate on vε − wε in Lemma 4.6.3 only holds inside the particles.

In Lemma 4.6.4, we prove smallness of τ δ̃εε − ρδ̃εε , in Lemma 4.6.5, we prove smallness of τ δ̃εε − σε.
Then, the proof of Theorem 4.6.1 reduces to proving smallness of σε − ρ.

Lemma 4.6.4. Let τε be defined to be the solution to (4.6.5). Then, under the assumptions of
Theorem 4.6.1,

‖τ δ̃εε − ρδ̃εε ‖L∞([0,T0);Xβ) → 0,

where τ δ̃εε and ρδ̃εε are averages on cubes as in Definition 4.2.4.

Proof. We denote by ψε the flow of wε. More precisely, ψε : [0, T0)× [0, T0)×R3 → R3 is the solution
to

∂sψε(t, s, x) = wε(s, ψε(t, s, x)),

ψε(t, t, x) = x.

This is well defined due to Lemma 4.6.3. Fix a particle Bi and consider a point x in that particle at
time 0, i.e., x ∈ Bi(0). Let t < T0. Then, Lemma 4.6.3 implies

|Xi(t)− ψε(0, t, x)| ≤ R+

ˆ t

0
|vε(s,Xi(s))− wε(s, ψε(0, s, y))| ds

≤ R+

ˆ t

0
|vε(s,Xi(s))− wε(s, ψε(0, s, y))| ds

+

ˆ t

0
|wε(s,Xi(s))− wε(s, ψε(0, s, y))| ds

≤ C̃δε + C̃

ˆ t

0
|Xi(s)− ψε(0, s, x))| ds.

Gronwall’s inequality implies

|Xi(s)− ψε(0, t, x)| ≤ C̃δεeC̃t ≤ C̃δε =: ηε. (4.6.7)

This estimate implies that if Bi was transported by wε instead of vε, it would lie in Bηε(Xi(t)) at
time t. For x ∈ R3, we define

qx = {y ∈ Qx
δ̃ε

: dist{y, ∂Qx
δ̃ε
} > C̃ηε},

and
q̄x = {y ∈ R3 : dist{y,Qx

δ̃ε
} < C̃ηε}.

Then, (4.6.7) yields

1

|Qx
δ̃ε
|

ˆ
qx
ρε(t, y) dy ≤

 
Qx
δ̃ε

τε(t, y) dy = τ δ̃εε (t, x) ≤ 1

|Qx
δ̃ε
|

ˆ
q̄x
ρε(t, y) dy.
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Clearly, we also have

1

|Qx
δ̃ε
|

ˆ
qx
ρε(t, y) dy ≤

 
Qx
δ̃ε

ρε(t, y) dy = ρδ̃εε (t, x) ≤ 1

|Qx
δ̃ε
|

ˆ
q̄x
ρε(t, y) dy.

Hence, in order to prove the assertion, it suffices to prove smallness of

(1 + |x|β)

(
1

|Qx
δ̃ε
|

ˆ
qx
ρε(t, y) dy − 1

|Qx
δ̃ε
|

ˆ
q̄x
ρε(t, y) dy

)
=

1 + |x|β

|Qx
δ̃ε
|

ˆ
qx\q̄x

ρε(t, y) dy. (4.6.8)

Fix a particle i such that Xi(t) ∈ qx\q̄x and consider Bδε(Xi(t)). Then, by definition of Yε(T0), we
know that Xj(t) ∈ Bδε(Xi(t)) implies Xj(0) ∈ BY (T0)δε(Xi(0)). Thus,

ˆ
Bδε (Xi(t))

ρε(t, y) dy ≤
ˆ
BY (T0)δε (Xi(0))

ρε,0(y).

Let I denote the set of centers z of the cubes Qzδε from Definition 4.2.4 with Qzδε∩BYε(T0)δε(Xi(0)) 6= ∅.
Then,

ˆ
Bδε (Xi(t))

ρε(t, y) dy ≤
∑
z∈I

ˆ
Qzδε

ρε,0(y) dy ≤ C
∑
z∈I

δ3
ε

1

1 + |z|β
‖ρε,0‖Xβ .

Using the bound on Y (T0), we have |I| ≤ C̃. Furthermore, from Assumption 4.2.7, we know that ρε,0
is uniformly bounded in Xβ. Moreover, since vε is uniformly bounded in L∞(R3) by Lemma 4.6.3,
Xi(t) ∈ qx\q̄x at time t ≤ T0 implies Xi(0) ∈ BC̃(x) and also z ∈ BC̃(x) for all z ∈ I. Therefore,

ˆ
Bδε (Xi(t))

ρε(t, y) dy ≤ C̃δ3
ε

1

1 + |x|β
. (4.6.9)

Finally, we note that the number M of balls Bδε(Xi(t)) with Xi(t) ∈ qx\q̄x that are needed to
cover all the particles Bi(t) in qx\q̄x is bounded by

M ≤ C |q
x\q̄x|
δ3
ε

≤ Cηεδ̃
2
ε

δ3
ε

≤ C̃ δεδ̃
2
ε

δ3
ε

≤ C̃ δ̃
2
ε

δ2
ε

.

Combining this with (4.6.9) yields

(1 + |x|β)
1

|Qx
δ̃ε
|

ˆ
qx\q̄x

ρε(t, y) dy ≤MC̃
δ3
ε

|Qx
δ̃ε
|
≤ C̃ δε

δ̃ε
→ 0.

This finishes the proof.

Lemma 4.6.5. Let σε be defined to be the solution to (4.6.6). Then, under the assumptions of
Theorem 4.6.1

‖τ δ̃εε − σε‖L∞([0,T0];Xβ) → 0.

Proof. Denoting again by ψε the flow of wε, we get

σε(t, x) =

 
Q
ψε(t,0,x)

δ̃ε

ρε,0(y) dy.
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On the other hand, we have

τ δ̃εε (t, x) =

 
Qx
δ̃ε

ρε,0(ψ(t, 0, y)) dy =

 
ψε
(
t,0,Qx

δ̃ε

) ρε,0(y) dy,

where we used that det(Dψε) = 1 which follows from the fact that wε is divergence free.
We estimate using Lemma 4.6.3

|ψε(0, t, x)− ψε(0, t, y)| ≤ |x− y|+
ˆ t

0
|wε(s, ψε(0, s, x))− wε(s, ψε(0, s, y))| ds

≤ |x− y|+ C̃

ˆ t

0
|ψε(0, s, x)− ψε(0, s, x)| ds.

Gronwall’s inequality implies

|ψε(0, t, x)− ψε(0, t, y)| ≤ |x− y|eC̃t ≤ C̃|x− y|. (4.6.10)

By an analogous argument, we also get the lower bound

|ψε(0, t, x)− ψε(0, t, y)| ≥ 1

C̃
|x− y|. (4.6.11)

Consider a point y ∈ Qx
δ̃ε

at time t. We want to find ηε such that dist{y, ∂Qx
δ̃ε
} > ηε implies

ψε

(
0, t, Q

ψε(t,0,y)
δε

)
⊂ Qx

δ̃ε
. (4.6.12)

Estimate (4.6.10) implies that this is true with

ηε = C̃δε, (4.6.13)

for all t ≤ T0. Let
qε(x) = {y ∈ Qx

δ̃ε
: dist{y, ∂Qx

δ̃ε
} > ηε},

and
q̄ε(t, x) =

⋃
y∈qε(t,x)

Q
ψε(t,0,y)
δε

.

Then, by (4.6.12),
qε(x) ⊂ ψε(0, t, q̄ε(t, x)) ⊂ Qx

δ̃ε
. (4.6.14)

Therefore,

(1 + |x|β)|σε(t, x)− τ δ̃εε (t, x)| = (1 + |x|β)

∣∣∣∣∣
 
Q
ψε(t,0,x)

δ̃ε

ρε,0(y) dy −
 
Qx
δ̃ε

ρε,0(ψε(t, 0, y)) dy

∣∣∣∣∣
≤ (1 + |x|β)

∣∣∣∣∣
 
Q
ψε(t,0,x)

δ̃ε

ρε,0(y) dy − ρ0(ψε(t, 0, x))

∣∣∣∣∣
+ (1 + |x|β)

∣∣∣∣∣ 1

|Qx
δ̃ε
|

ˆ
q̄ε(t,x)

ρε,0(y) dy − ρ0(ψε(t, 0, x))

∣∣∣∣∣
+ (1 + |x|β)

1

|Qx
δ̃ε
|

ˆ
Qx
δ̃ε
\qε(t,x)

ρε,0(ψε(t, 0, y) dy

=: A1 +A2 +A3.
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By Lemma 4.6.3, wε is uniformly bounded in L∞(R3). Thus, |ψε(t, 0, y)| ≥ |y| − C̃ and

1

1 + |y|β
≤ C̃

1 + |x|β
, for all y ∈ Qψε(t,0,x)

δ̃ε
.

We estimate A1 using the convergence ρδε0,ε → ρ0 and boundedness of ‖∇ρ0‖Xβ .

A1 ≤ C̃‖ρδεε,0 − ρ0‖Xβ + C̃δ̃ε‖∇ρ0‖Xβ → 0.

In order to estimate A3, we proceed as in the estimate of the term in (4.6.8) from Lemma 4.6.4.
We have to control the number of deformed particles transported by wε in Qx

δ̃ε
\qε(t, x) at time t. To

this end, we define the trajectories of the particles transported by wε

X̃i(t) := ψε(0, t,Xi(0))

and
B̃i(t) := ψε(0, t, Bi(0)).

Then, estimate (4.6.11) implies for all i 6= j

|X̃i(t)− X̃j(t)| ≥
C̃

|Xi(0)−Xj(0)|
.

and
diam B̃i(t) ≤ C̃Rε.

Therefore, A3 tends to zero by the same argument as we have proved smallness of (4.6.8).
For A2, let (xi)

n
i=1 denote the centers of the disjoint cubes that q̄ε(t, x) consists of. Note that

(4.6.14) implies |qε(x)| ≤ |q̄ε(t, x)| due to conservation of volume. Using also (4.6.10), we deduce

A2 ≤ (1 + |x|β)
|Qxδε |
|Qx

δ̃ε
|

n∑
i=1

∣∣∣∣∣
 
Q
xi
δε

ρε,0(y) dy − ρ0(ψε(t, 0, x))

∣∣∣∣∣+

(
1− |q̄ε(t, x)|

|Qx
δ̃ε
|

)
ρ0(ψε(t, 0, x))

≤ C̃‖ρδεε,0 − ρ0‖Xβ + C̃δ̃ε‖∇ρ0‖Xβ + C̃

∣∣∣Qx
δ̃ε
\qε(x)

∣∣∣
|Qx

δ̃ε
|
‖ρ0‖Xβ

≤ C̃‖ρδεε,0 − ρ0‖Xβ + C̃δ̃ε‖∇ρ0‖Xβ + C̃
ηε

δ̃ε
‖ρ0‖L∞(R3).

By equation (4.6.13) this tends to 0 as ε→ 0 because ηε ≤ C̃δε � δ̃ε.

Proof of Theorem 4.6.1. We again define ψε to be the flow of wε. Moreover, we define

w = v∗ +
2

9
γ−1
∗ g = S(ρg) +

2

9
γ−1
∗ g,

and denote by ψ̃ the flow of w.
We recall from Lemma 4.6.3 that wε is bounded uniformly with respect to ε in L∞((0, T0)× R3).

Moreover
‖w‖W 1,∞((0,T0)×R3) ≤ C̃. (4.6.15)

This follows from boundedness of ρ in L∞(0, T0;Xβ), which is stated in Theorem 4.4.2, and Lemma
4.4.3. From the L∞-bounds on w and wε, we deduce for all x ∈ R3

1

1 + |ψε(t, 0, x)|β
≤ C̃

1 + |x|β
,
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and the same inequality with ψ̃ replacing ψ.
Let σε be the solution to (4.6.6). Then,

|ρ(t, x)− σε(t, x)| = |ρ0(ψ̃(t, 0, x))− ρδ̃ε0,ε(ψε(t, 0, x))|

≤ |ρ0(ψ̃(t, 0, x))− ρ0(ψε(t, 0, x))|+ |ρ0(ψε(t, 0, x))− ρδ̃ε0,ε(ψε(t, 0, x))|

≤ 1

1 + |x|β
(
‖∇ρ0‖Xβ |ψ̃(t, 0, x)− ψε(t, 0, x)|+ ‖ρ0 − ρδ̃ε0,ε‖Xβ

)
.

(4.6.16)

Concerning the first term on the right hand side, we have

|ψ̃(t, 0, x)− ψε(t, 0, x)| ≤
ˆ t

0
|w(s, ψ̃(t, s, x))− wε(s, ψε(t, s, x))| ds

≤ ‖∇w‖L∞
ˆ t

0
|ψ̃(t, s, x))− ψε(t, s, x)| ds

+

ˆ t

0
‖w(s, ·)− wε(s, ·)‖L∞ ds.

Gronwall’s inequality yields

‖ψ̃(t, 0, ·)− ψε(t, 0, ·)‖L∞ ≤
ˆ t

0
‖w(s, ·)− wε(s, ·)‖L∞ ds

+ ‖∇w‖L∞
ˆ t

0

ˆ s

0
‖w(τ, ·)− wε(τ, ·)‖L∞ dτe(t−s)‖∇w‖L∞ ds

≤ C̃
ˆ t

0
‖w(s, ·)− wε(s, ·)‖L∞ ds.

(4.6.17)

Combining estimates (4.6.15), (4.6.16), and (4.6.17), we deduce for t < T0

‖ρ(t, ·)− σε(t, ·)‖Xβ ≤ ‖ρ0 − ρδ̃ε0,ε‖Xβ + C̃‖∇ρ0‖Xβ
ˆ t

0
‖w(s, ·)− wε(s, ·)‖L∞ ds. (4.6.18)

Lemma 4.4.3 and Lemma 4.6.3 yield

‖w(s, ·)− wε(s, ·)‖L∞ ≤ ‖wδ̃ε,ε(s, ·)− wε(s, ·)‖L∞ + ‖w(s, ·)− wδ̃ε,ε(s, ·)‖L∞

≤ C̃δ̃ε + ‖S
(
ρ(s, ·)− ρδ̃εε (s, ·)

)
‖L∞

≤ C̃δ̃ε + C‖ρ(s, ·)− ρδ̃εε (s, ·)‖Xβ
≤ C̃δ̃ε + C‖σε(s, ·)− ρδ̃εε (s, ·)‖Xβ + C‖ρ(s, ·)− σε(s, ·)‖Xβ
=: θ1 + C̃‖ρ(s, ·)− σε(s, ·)‖Xβ .

(4.6.19)

Note that θ1 → 0 as ε→ 0 by Lemma 4.6.4 and Lemma 4.6.5. Using estimate (4.6.19) in (4.6.18),
we deduce

‖ρ(t, ·)− σε(t, ·)‖Xβ ≤ ‖ρ0 − ρδ̃ε0,ε‖Xβ + C̃

(
θ1 +

ˆ t

0
‖ρ(s, ·)− σε(s, ·)‖Xβ ds

)
.

We apply Gronwall’s inequality once more to conclude

‖ρ(t, ·)− σε(t, ·)‖Xβ ≤ C̃
(
θ1 + ‖ρ0 − ρδ̃ε0,ε‖Xβ

)
,

which converges to zero, uniformly for t ≤ T0. Combining this estimate with Lemma 4.6.4 and
Lemma 4.6.5 finishes the proof.
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4.6.2 Extension of the convergence to arbitrary times

Using the convergence result, Theorem 4.6.1, we are able to prove a posteriori lim supε→0 Yε(t) <∞
for all t > 0. This is the crucial assumption of Theorem 4.6.1 and therefore the last step to prove the
main result, Theorem 4.2.9.

The key estimate, which we prove in Lemma 4.6.6 below, is that the convergence result stated in
Theorem 4.6.1 allows to show that Yε(t) only grows exponentially in t for small enough ε. With this
estimate and Proposition 4.5.15, it is easy to control Yε by a standard contradiction argument.

In order to prove Lemma 4.6.6, the Lipschitz type estimate on vε from Lemma 4.5.14 implies
that it suffices to bound the quantity αε,2(t) defined in (4.5.1). We are able to achieve this using the

convergence ρδ̃εε → ρ. Indeed, fixing a particle Xi, particles Xj that are close to Xi do not contribute
much to ∑

j 6=i

1

|Xi −Xj |2
. (4.6.20)

For particles far away, however, their exact position within a cube of size δ̃ε is not important for the
value of (4.6.20).

Lemma 4.6.6. There exists a constant C∗ which only depends on ‖ρ0‖L∞(R3) with the following
property. Assume the assumptions of Theorem 4.6.1 are satisfied for some time T0 > 0. Then, there
exists ε1 > 0 such that

Yε(t) ≤ eC∗t for all ε < ε1, and t ≤ T0.

Proof. Claim. There exists ε1 > 0 such that for all ε < ε1 and all t ≤ T0,

sup
j

1

Nε

∑
i 6=j

1

|Xi(t)−Xj(t)|2
≤ C∗,

for some constant C∗, which only depends on ‖ρ0‖L∞(R3).

Let I be the set of the centers of the cubes with side length δ̃ε from Definition 4.2.4. At a fixed
time t < T0, we fix a particle Xj and define I1 to consist of the center of the cube containing Xj , and
the centers of the cubes that are adjacent to that cube. Furthermore, we denote I2 = I\I1. Then, we
estimate

1

Nε

∑
i 6=j

1

|Xi −Xj |2
≤ 1

Nε

∑
y∈I1

∑
Xi∈Qy

δ̃ε

1

|Xi −Xj |2
+

1

Nε

∑
y∈I2

∑
Xi∈Qy

δ̃ε

1

|Xi −Xj |2

=: A1 +A2.

The first term, A1, we estimate

A1 ≤
C

(dε,min(t))3Nε

ˆ
BCδ̃ε (Xj)

1

|y −Xj |2
dy ≤ Cc0δ̃εYε(t)3 ≤ C (4.6.21)

for ε sufficiently small, since Yε is uniformly bounded for small ε.
In order to estimate the second term, A2, we define

M(x) := |{Xi ∈ Qxδ̃ε}|.

Note that
‖M‖L1(R3) = δ̃3

εNε.



Extension of the convergence to arbitrary times 121

Moreover,

‖M‖L∞(R3) ≤ Cδ̃3
εNε‖ρδ̃εε ‖L∞(R3),

since all the balls Bi with centers Xi ∈ Qxδ̃ε are contained in the union of Qx
δ̃ε

and the adjacent cubes.

Thus, Theorem 4.6.1 implies that we can choose ε0 small enough such that for ε < ε0

‖M‖L∞(R3) ≤ Cδ̃3
εNε‖ρ(t)‖L∞(R3) = Cδ̃3

εNε‖ρ0‖L∞(R3),

where we used that the L∞-norm of ρ is conserved in time. Combining the L∞- and L1-estimates of
M yields

A2 ≤
C

Nε

∑
y∈I2

M(y)

|y −Xj |2
≤ C

Nεδ̃3
ε

ˆ
R3

M(y)

|y −Xj |2
dy ≤ C(1 + ‖ρ0‖L∞(R3)). (4.6.22)

Combining the estimates for A1 and A2, (4.6.21) and (4.6.22) proves the claim.
Recall from Lemma 4.5.1

φεαε,3(t) ≤ Cc−1
0 φεY

3
ε (t) log

(
NεYε(t)

c0

)
,

and this converges to zero for any fixed time t < T0 due to Assumption (A2) since Yε(t) is bounded
by assumption.

Thus, Lemma 4.5.14 yields for all particles i and j

|vε(t,Xi)− vε(t,Xj)| ≤ C∗|Xi −Xj |

for all t ≤ T0 and all ε < ε0 for some ε0 small enough.
Hence,

|Xi(t)−Xj(t)| ≥ |Xi(0)−Xj(0)| −
ˆ t

0
|vε(s,Xi(s))− vε(s,Xj(s))| ds

≥ |Xi(0)−Xj(0)| − C∗
ˆ t

0
|Xi −Xj | ds.

Using Gronwall’s inequality and the definition of Yε finishes the proof.

Proof of Theorem 4.2.9. Let T0 > 0. By Theorem 4.6.1, it suffices to prove that there exists ε1 > 0
and C1 <∞ such that

Yε(t) ≤ C1, for all ε < ε1, and t ≤ T0. (4.6.23)

We argue by contradiction. Define T0 to be the infimum over all times for which there is no pair
(ε1, C1) such that (4.6.23) holds, and assume T0 <∞. By Proposition 4.5.15, we know T0 > 0.

Let 0 < θ < T0. Then, at time T∗ := T0 − θ, application of Lemma 4.6.6 yields

Yε(t) ≤ eC∗T0 , for all ε < ε0, and t ≤ T∗,

for some ε0 > 0. Now, we can apply again Proposition 4.5.15, which yields

Yε(t) ≤ 2eC∗T0 , for all ε < ε1, and t ≤ T∗ + θ1,

for ε1 > 0 and some θ1 which depends only on eC∗T0 . Thus, choosing θ < θ1, we get a contradiction
to the definition of T0.





Chapter 5

Homogenization of the Poisson
equation

In this Chapter, we study the homogenization of the Poisson equations in perforated domains
under very mild assumptions on the distribution and size of the holes. In particular, we study
distributions of holes where clusters and even overlapping of holes occur with high probability. We
prove that, under minimal assumptions of the average capacity density of the holes, the classical
homogenization results are still valid. The techniques developed for this problem are also used in
Chapter 6 in order to study the more involved problem of the homogenization of the Stokes equations
to the Brinkman equations, which are the fluid equations in the sedimentation model described by
the Vlasov-Stokes equations (1.1.2).

The content of this chapter can be found in the preprint [GHV18] and has been accepted for
publication in Communications in Partial Differential Equations.

5.1 Introduction

We consider the problem {
−∆uε = f in Dε

uε = 0 on ∂Dε,
(5.1.1)

where the domain Dε is obtained by removing from a bounded set D ⊂ Rd, d > 2, the union of
properly rescaled spherical holes: Given a collection of points Φ = {zi}i∈N ⊂ Rd and associated radii
{ρi}zi∈Φ ⊂ R+, we define

Dε := D\
⋃

zi∈Φ∩ 1
ε
D

B
ε

d
d−2 ρi

(εzi), (5.1.2)

where 1
εD := {x ∈ Rd : εx ∈ D}.

In this chapter, we assume that Dε is a random set. More precisely, we assume that the collection
Φ of the centres is generated according to a stationary point process on Rd and that the radii {ρi}zi∈Φ

are unbounded random variables with short-range correlations. We show that, P-almost surely, when
ε ↓ 0+, the solutions of (5.1.1) weakly converge in H1

0 (D) to the solution of{
(−∆ + C0)uh = f in D

uh = 0 on ∂D.
(5.1.3)

123
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Here, the constant C0 > 0 may be expressed in terms of an averaged density of capacity generated
by the holes. We thus recover in the limit the analogue of the well-known “strange term” obtained
by Cioranescu and Murat in the case of deterministic and periodic holes [CM97]. In this latter case,
which is equivalent to taking Φ = Zd and ρi ≡ r for r > 0, C0 equals the capacity of a ball of radius
r. More precisely,

C0 = (d− 2)Hd−1(Sd−1)rd−2, (5.1.4)

where Sd−1 is the (d− 1)-dimensional unit sphere in Rd.

We show in this chapter that the homogenization of uε to uh of (5.1.3) takes place under minimal
assumptions on the decay of the density functions for the radii {ρi}zi∈Φ of the holes. Namely, we
only assume that the average capacity of each hole is finite. More precisely, we will show that the
homogenization result holds assuming that the configurations of the holes in Rd, d > 2, are assigned
to a class of probability measures for which the expectation of each radius ρi satisfies only

〈ρd−2
i 〉 <∞. (5.1.5)

In view of (5.1.4), this is the minimal assumption under which one can expect C0 in (5.1.3) to
be finite and therefore the limit problem (5.1.3) to be meaningful. On the other hand, to assume
only (5.1.5) on the hole distributions poses some difficulties due to the fact that the presence of balls
in (5.1.2) with large radii could allow the onset of clusters having large capacity. These clusters
might prevent the convergence of uε to the solutions of the homogenized problem uh. In fact, it is
known that the onset of large clusters take place with probability one in systems of spherical holes
filling a small volume fraction of the space Rd, if the radii are distributed according to probability
distributions with sufficiently fat tails (cf. [Gri99; MR96]). However, in [Gri99; MR96] the holes are
not rescaled as in (5.1.2). In this chapter, we prove that with the rescaling of the balls as in (5.1.2),
the assumption (5.1.5) is sufficient to ensure that no percolating-like structures appear in the limit
ε→ 0.

Stochastic homogenization problems for (5.1.1) have been considered before in the literature.
The earliest results were the ones in [PV80] and [MK08]. In [PV80], the evolution version of (5.1.1)
(i.e. the linear heat equation) is considered, and it is shown that the corresponding solutions uε
converge to the analogous evolution version of uh assuming that ε−d spherical holes are distributed
independently according to some density function V ∈ C∞0 (Rd). All the holes are assumed to have

constant and fixed radius rj = ε
d
d−2 .

In [MK08], the authors consider spherical hole configurations constituted of ε−3 balls in a bounded
domain D ⊂ R3, selected according to some classes of probability measures in which the balls cannot
overlap due to the presence of a hard-sphere potential. These probability measures allow also to have
short range correlations between two holes. As in this chapter, also in [MK08], the balls have random

size ε
d
d−2 ρi, where the random variables ρi are assumed to satisfy

〈ρ3+β
i 〉 <∞ with β > 0. (5.1.6)

Under these assumptions, which we further discuss below, it is proved in [MK08] that the solutions
of (5.1.1) converge to the solutions of (5.1.3).

Stochastic homogenization for equations related to (5.1.1) and domains Dε perforated as in (5.1.2)
has been considered also more recently in [CM09; CJCDLL16; CJCDLL15]. In [CM09], the authors
consider the homogenization limit for the obstacle problem associated to a Dirichlet functional in
D ⊂ Rd, d ≥ 2, in which the solutions must satisfy uε ≥ 0 in the collection of small compact sets
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D\Dε. Differently from our setting, the compact sets constituting D\Dε are centred on a periodic

lattice, but they can have random shapes which are uniformly bounded by Mε
d
d−2 , for a fixed constant

M > 0. Assuming an ergodicity condition of the probability measure on the shapes of the sets,
the authors of [CM09] prove that the minimizers uε converge to the solution uh of the semi-linear
equation −∆uh + α (uh)− = f in D.

In [CJCDLL16; CJCDLL15], the main focus is to study the stochastic homogenization of elliptic
equations which not only include (5.1.1) but also singular elliptic operators like the p−Laplacian
operator. The probability measures considered in these works allow to have hole configurations

having random shapes which are uniformly bounded by ε
d
d−2 . Moreover, a stringent condition is

assumed on the probability measure for the positions of the holes to ensure that the minimal distance
between the holes is of order ε with probability one.

In all the papers listed above with the exceptions of [MK08], it is assumed that the size of each

hole is of order ε
d
d−2 with probability one. We emphasize that the main technical difficulty in this

chapter is due to the fact that under the sole assumption (5.1.5), namely for distributions of the size
of holes having fat tails decreasing slowly enough, there exist, with probability one, domains Dε with
the form (5.1.2) punctured by clusters of two or more overlapping holes. These clusters do not occur
(with probability tending to one as ε→ 0) under the assumption (5.1.6) which is made in [MK08].

In order to prove the homogenization results mentioned above there are different methods in
the literature. The first one, which was introduced by Cioranescu and Murat in [CM97], is related
to the energy method of Tartar [Tar09]. It is based on the construction of some oscillating test
functions wε. A related approach has been used in the analysis of several deterministic and stochastic
homogenization problems (cf. [CM09; CJCDLL16; CJCDLL15; DMG94]) and this is also the approach
that will be used in this chapter.

A second approach is based on the construction of suitable projection operators in Hilbert spaces
which are defined using the geometry of the perforated domains. This approach was introduced by
Marchenko and Khruslov (cf. [MK08] and the references therein). A related but different approach is
by the method of reflections that we demonstrated in Chapter 3.

A third approach, used for instance in [PV80], employs the probabilistic interpretation of the
solutions uε of (5.1.1) (and its evolution analogue), in terms of the properties of the Brownian motion.
In particular, the solutions of (5.1.1) as well as the term C0 arising in the limit equation can be
obtained in terms of expectations of functions of the survival time of a Brownian walker among
obstacles.

Finally, we also mention that for problems related to (5.1.1), a different approach has been
introduced in [Nie99; NV04a; NV04b]. In this series of papers, the main goal is to study a dynamical
version of (5.1.1), where the holes evolve according to the function uε itself. In this case, the main
challenge is thus to obtain estimates for the solution in the space L∞ instead of the Sobolev space
H1. The starting point used in [NV04a; NV04b] is an ansatz for the structure of the solution of
(5.1.1) which gives rise to an explicit expression for an approximate solution of (5.1.1). The difference
between this approximate solution and the solution of (5.1.1) is then estimated using the maximum
principle. Stochastic homogenization results have been obtained using this approach in [NV04b],
and in the case of solutions of (5.1.1) in unbounded domains, they rely on the study of screening
properties [NV06]. Concerning the introduction and the study of such screening phenomena for
interacting particles, we also refer to [Nie99] and [NO01].

In the problems of stochastic homogenization, two different types of convergence results are
obtained. One approach consists in introducing a probability measure P on the space of hole
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configurations Ω (positions and shapes) in Rd. The Dirichlet problem (5.1.1) is then solved for each
fixed realization ω ∈ Ω in a bounded domain which is obtained by means of (5.1.2). It is then proved
that uε converges for P−a.s. as ε→ 0 to the solutions of (5.1.3). This is the type of results obtained
in [CM09; CJCDLL16; CJCDLL15], and also in this chapter.

The second approach consists in creating configurations containing ε−d holes in a bounded
domain according to a family of probability measures Pε defined on a space of configurations Ωε.
The homogenization results is thus expressed in terms of convergence in probability, namely that
for any δ > 0, limε→0 Pε ({‖uε − u‖ > δ}) = 0, where ‖·‖ is a suitable norm. The results obtained in
[MK08], [NV04b] and [PV80] are of this type.

5.1.1 Main ideas and organisation of this chapter

As already mentioned in the previous discussion, in this chapter, we focus on probability measures
where the radii of the balls in (5.1.2) satisfy merely the minimal condition (5.1.5) on their moments,
and the centres of the balls are distributed according to a stationary point process on the whole
space. We allow that both the centres and the radii have short-range correlations. This class of
measures includes the cases of balls having independent and identically distributed radii and centres
either periodic or distributed according to an homogeneous Poisson point process (cf. settings (a)
and (b) in the next section). We also give some explicit examples of short-range correlated measures
which are constructed starting from clustering or repulsive point processes for the centres of the holes
(cf. setting (c) in the next section).

In order to prove the main homogenization result for these measures, we adapt the argument
of [CM97] to translate the conditions on the geometry of the holes of Dε into properties of the
associated oscillating test function wε. These functions account for the presence of the holes in the
domain Dε by correcting any admissible test function φ ∈ C∞0 (D) for (5.1.3) into an admissible test
function wεφ ∈ H1

0 (Dε) for (5.1.1). The main breakthrough of [CM97] is the formulation of sufficient
conditions on wε which allow to treat the error terms generated by the presence of wε in the weak
formulation for (5.1.1). In the limit ε ↓ 0+, these errors are the ones giving rise to the additional
term C0uh in (5.1.3). In the case of periodic balls in Rd, the authors in [CM97] explicitly construct
the test functions wε and obtain (5.1.3) with the value for C0 given by (5.1.4); from this construction,
the link between the term C0 and the density of capacity generated by the holes becomes apparent

and motivates the necessary choice in (5.1.2) of the length-scales ε
d
d−2 for the radii and ε for the

distance between the centres.

The main challenge in this chapter is that with the sole assumption (5.1.5) on the radii, we need
to deal in (almost) all the configurations with the presence of large radii. In spite of the scaling
of (5.1.2), the associated big balls may overlap and potentially break down the construction of the
functions wε. The main idea of our proof is to show that, even though with probability one there
are regions where the balls overlap, the moment assumption on the radii is sufficient to ensure that
almost surely these regions have a capacity which vanishes in the limit ε ↓ 0+. This yields that the
contribution of the functions wε to the new term in the limit equation is restricted to the region of
the domain Dε where the balls are small and well-separated.

The structure of this chapter is the following: In the next section, we give a precise definition
of the processes generating the holes in (5.1.2) and introduce some examples which are included in
our setting; we then state the main homogenization result (Theorem 5.2.1). Section 5.3 contains the
proof of the theorems provided that the oscillating test functions exist, while Section 5.4 is devoted
to the crucial arguments for the construction of such oscillating test functions. Section 5.5 provides
some probabilistic results for marked point processes on which the previous section relies and which
make the arguments of this chapter totally self-contained. To this purpose, we also include a proof of
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a Strong Law of Large Numbers which is tailored to the processes that we consider. In the sake of
what we think is a more comfortable reading, we do not prove our main result directly for a general
probability measure, but we first give the argument in the case of holes with periodic centres and
i.i.d. radii. By relying on the abstract results of Section 5.5, we then show how to adapt this proof
to a general measure with short-range correlations. This, we believe, gives a more intuitive structure
to the arguments of this chapter.

5.2 Setting and main result

Let D ⊂ Rd, d > 2, be an open and bounded set that it is star-shaped with respect to the origin1.
For ε > 0, we denote by Dε ⊂ D the domain obtained by removing from D the closure of a set of
“small” holes Hε ⊂ Rd of the form:

Hε :=
⋃

zj∈Φ∩ 1
ε
D

B
ε

d
d−2 ρj

(εzj), (5.2.1)

where 1
εD := {x ∈ Rd : εx ∈ D}, the set Φ ⊂ Rd is a random collection of (countably many) points

and the radii {ρi}zi∈Φ ⊂ R+ are random variables. The set Hε may thus be thought as being
generated by a marked point process (Φ,R) on Rd × R+, where Φ is a point process on Rd for
the centres of the balls, and the marks R = {ρi}zi∈Φ ⊂ R+ are the radii associated to each centre.
We refer to [DVJ08, Chapter 9, Definitions 9.1.I - 9.1.IV] for a rigorous definition of marked point
processes as a class of random measures on Rd × R+. We remark indeed that there is a one-to-one
correspondence between representing each realisation of the process as a collection of points and radii
{(zi, ρi)}i∈N ⊂ Rd × R+ as we do in this chapter, and as the atomic measure µ :=

∑
i∈N δ(zi,ri) on

Rd×R+. We also note that both the previous representations are invariant under permutation of the
indices i ∈ N and thus that there is no preferred ordering of the centres of the balls generating Hε.

We denote by (Ω,F ,P) the probability space associated to the process (Φ,R) and, for every
ω ∈ Ω, we write Hε(ω) for the set defined in (5.2.1) with (Φ,R)(ω). Throughout this chapter, we
assume that (Φ,R) satisfies the the following properties:

• The process Φ is stationary: For every x ∈ Rd we have τx ◦Φ
L
= Φ, where for each {zi}i∈N ⊂ Rd

the translations are defined as

τx({zi}i∈N) = {zi + x}i∈N.

• There exists λ < +∞ such that for any unitary cube Q ⊂ Rd

〈#(Φ ∩Q)2〉
1
2 ≤ λ, (5.2.2)

where #(S) ∈ N ∪∞ denotes the cardinality of a set S and 〈·〉 is the integration over Ω with
respect to the measure P. Note that, by stationarity of Φ, the left-hand side of (5.2.2) does not
depend on the position of Q.

1This assumption ensures that the sets in the family { 1
ε
D}ε>0 (see definition after formula (5.2.1)) are nested. This

is not a necessary condition for our results to hold, but it avoids some technicalities in our proof and it keeps our
arguments and our notation leaner.
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• The point process Φ satisfies a strong mixing condition: For any bounded Borel set A ⊂ Rd, let
F(A) be the smallest σ-algebra with respect to which the random variables N(B)(ω) := #(Φ∩B)
are measurable for every Borel set B ⊂ A. Then, there exist C1 < +∞ and γ > d such that
for every A ⊂ Rd as above, every x ∈ Rd with |x| > diam(A) and every ξ1, ξ2 measurable with
respect to F(A) and F(τxA), respectively, we have

|〈ξ1ξ2〉 − 〈ξ1〉〈ξ2〉| ≤
C1

1 + (|x| − diam(A))γ
〈ξ2

1〉
1
2 〈ξ2

2〉
1
2 . (5.2.3)

• The marginal PR of the marks with respect to the process Φ has 1− and 2− correlation
functions

f1((z, ρ)) = h(ρ), (5.2.4)

f2(zi, ρi, zj , ρj) = h(ρi)h(ρj) + g(|zi − zj |, ρi, ρj) ∀i 6= j

with ˆ
ρd−2h(ρ)dρ < +∞ |g(r, ρ1, ρ2)| ≤ c

(1 + rγ)(1 + ρp1)(1 + ρp2)
(5.2.5)

for p > d− 1, γ > d and c ∈ R+.

The previous assumptions imply that the (d − 2)-moment of the radii of the balls is finite
and that, conditioned to the positions of the centres, the radii for two balls with centres in
z1, z2 have correlations which vanish when the distance |z1 − z2| → +∞. These correlations are
short-range in the sense that the function g above is integrable in the variable r := |z1 − z2|.

Throughout this chapter, we denote Dε(ω) := D\Hε(ω) with Hε(ω) as in (5.2.1), and we identify
any v ∈ H1

0 (Dε(ω)) with the function ṽ ∈ H1
0 (D) obtained by extending v as v ≡ 0 in Hε(ω). Then

we have:

Theorem 5.2.1. Let the holes in (5.2.1) be generated by a marked point process (Φ,R). Let Φ satisfy
(5.2.2) and (5.2.3), and let the marginal PR satisfy (5.2.4) and (5.2.5). For f ∈ H−1(D) and ε > 0,
let uε = uε(ω, ·) ∈ H1

0 (Dε(ω)) solve (5.1.1). Then, there exist a constant C0 > 0 and uh ∈ H1
0 (D)

solving (5.1.3) such that for P-almost every ω ∈ Ω

uε(ω, ·) ⇀ uh in H1
0 (D), for ε ↓ 0+.

Moreover, we have that the constant C0 in (5.1.3) is defined as

C0 = (d− 2)σd〈N(Q) 〉〈 ρd−2 〉, (5.2.6)

where σd = Hd−1(Sd−1) and N(Q) is the number of centres falling into any fixed unitary cube Q.

5.2.1 Some examples of processes generating the holes Hε.

Among the processes which satisfy the conditions required in the previous theorem, we mention
the following three examples: For the first two examples, it is immediate that (5.2.2), (5.2.3), (5.2.4)
and (5.2.5) are satisfied. Also in the case of the examples given in (c), the previous conditions are
satisfied and this follows by easy calculations that we postpone to Section 5.5.3.
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(a) The set Hε is a collection of balls with periodic centres and i.i.d. radii.
Here, the centres have deterministic positions Φ = Zd and the marks R for the radii are a
family of independent and identically distributed random variables which satisfy (5.1.5). In
this case, we have that the constant C0 in (5.2.6) reads C0 = (d− 2)σd〈 ρd−2 〉.

(b) The set Hε is a collection of balls with centres generated by a Poisson point process and i.i.d.
radii. The process Φ is an homogeneous Poisson point process, and, conditioned to Φ, the
marks R are as in case (a). In this case, we have that C0 = (d− 2)σdλ〈 ρd−2 〉 with λ > 0 being
the intensity of the Poisson point process Φ.

(c) The balls of Hε have correlated radii and centres generated by a clustering or repulsive point
process. The process Φ is an attractive or a repulsive point processes with short-range
correlations, respectively:

(c.1) Neymann-Scott cluster process on Rd (see, e.g. [DVJ03, Example 6.3]): Let (Φ1, {ri}i∈Φ1)
be a marked point process where Φ1 is a homogeneous Poisson point process and the marks
are i.i.d. and uniformly distributed on (0, Rc), with 0 < Rc < +∞. For λ2 ∈ L∞(Rd)
and x ∈ Rd, let Φx

2 be the heterogeneous Poisson point process having intensity λ2(· − x).
Then, we define

Φ :=
⋃
zi∈Φ1

Φzi
2 ∩Bri(zi). (5.2.7)

(c.2) Strauss process Φ on Rd with parameters α > 0, β ∈ [0, 1] and interaction distance rc > 0
[DVJ03, Example 7.1(c)], [KR76]. For each bounded Borel set B ⊂ Rd, we define

P(#(Φ ∩B) = n) = Z−1
B

αn

n!

ˆ
B×···×B

βR({x1,··· ,xn})dx1 · · · dxn,

with

R({x1, · · · , xn}) :=
1

2

n∑
i,j
i 6=j

1[0,rc](|xi − xj |),

and

ZB =

+∞∑
n=0

αn

n!

ˆ
B×···×B

βR({x1,··· ,xn})dx1 · · · dxn.

This probability measure is well-defined in the repulsive case β ∈ [0, 1), while it requires
further assumptions in the attractive case β ≥ 1. For β = 0, we remark that Φ is the
hard-core process with radius rc and intensity α (see also [DVJ03, Example 5.3(c)] and
[KR76]). We remark that this process is the same as the macrocanonical Gibbs ensemble
of Statistical Physics at temperature T = 1 for the pair-interaction potential

ψ(r) =

{
− log β if r ≤ rc
0 if r > rc

and the chemical potential µ = logα.

For each one of the previous point processes Φ, we let the marginal PR be any probability
measure satisfying (5.2.4) and (5.2.5).
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5.3 Proof of Theorem 5.2.1

As already discussed in the introduction, our strategy is to adapt the method of [CM97] and
to show that, in spite of the unboundedness of the radii of the holes in Hε, we may almost surely
construct a sequence of suitable oscillating test function. The crucial result of this chapter is indeed
the following:

Lemma 5.3.1. Let Hε = Hε(ω) be as in Theorem 5.2.1. Then, for P-almost every ω ∈ Ω, there
exists a sequence {wε(ω, ·)}ε>0 ⊂ H1(D) which satisfies

(H1) For every ε > 0, wε(ω, ·) = 0 in Hε(ω);

(H2) wε(ω, ·) ⇀ 1 in H1(D) for ε ↓ 0+;

(H3) For every sequence vε ⇀ v in H1
0 (D) such that vε ∈ H1

0 (Dε) it holds that

(−∆wε(ω, ·), vε)H−1,H1
0
→ C0〈ρd−2〉

ˆ
D
v

for ε ↓ 0+ and where C0 defined as in Theorem 5.2.1.

By relying on the previous lemma, the proof of Theorem 5.2.1 follows exactly as in [CM97]:

Proof of Theorem 5.2.1. Let ω ∈ Ω be fixed, and let it belong to the full-probability set Ω′ ⊂ Ω made
of configurations for which, according to Lemma 5.3.1, the functions {wε}ε>0 := {wε(ω, ·)}ε>0 exist
and satisfy hypothesis (H1), (H2) and (H3).

Since uε ∈ H1
0 (Dε), we may test equation (5.1.1) with uε itself and get by the standard energy

estimate

‖uε‖H1 ≤ C‖f‖H−1 ,

with a constant C that depends only on the domain D. By weak-compactness of H1
0 (D), we infer

that, up to a subsequence which may depend on ω,

uε ⇀ uh in H1
0 (D) for ε ↓ 0+. (5.3.1)

We show that uh ∈ H1
0 (D) is the solution of (5.1.3); by uniqueness, this extends the weak convergence

of the solutions uε to the continuum limit ε ↓ 0 and concludes the proof of the theorem.

To prove that uh solves (5.1.3), let us fix any function φ ∈ C∞0 (D). Since (H1) yields wεφ ∈
H1

0 (Dε), we can test the equation (5.1.1) with wεφ and obtain
ˆ
∇(wεφ) · ∇uε = (f, wεφ)H−1,H1

0
. (5.3.2)

By (H2), the right-hand side above converges to

(f, wεφ)H−1,H1
0
→ (f, φ)H−1,H1

0
. (5.3.3)

We now use the product-rule and an integration by parts to rewrite the left-hand side in (5.3.2) as
ˆ
∇(wεφ) · ∇uε =

ˆ
φ∇wε · ∇uε +

ˆ
wε∇φ · ∇uε

= (−∆wε, φuε)H−1,H1
0
−
ˆ
uε∇wε · ∇φ+

ˆ
wε∇φ · ∇uε.
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Since by (H2) of Lemma 5.3.1 and (5.3.1), both uε and wε converge strongly in L2
loc(D), the last

two terms on the right-hand side above converge to
´
∇φ · ∇uh. Furthermore, by (5.3.1) and the

assumption on φ, we apply hypothesis (H3) of Lemma 5.3.1 to the first term on the right-hand side
above and conclude that ˆ

∇(wεφ) · ∇uε → C0

ˆ
φuh +

ˆ
∇φ · ∇uh.

This, together with (5.3.2), (5.3.3) and the arbitrariness of φ ∈ C∞0 (D), yields that uh weakly solves
(5.1.3). The proof of Theorem 5.2.1 is complete.

5.4 Existence of the oscillating test functions (Proof of Lemma
5.3.1)

As already mentioned in Subsection 5.1.1, we proceed to prove Lemma 5.3.1 in two steps: We first
give an argument in the simplest case of random holes Hε having periodic centres and i.i.d. radii (cf.
example (a) of Section 5.2). In that case, the crucial role played by assumption (5.1.5) on the random
geometry of the set Hε becomes clear. We then generalize this argument to an arbitrary process
(Φ,R) that satisfies the assumptions of Theorem 5.2.1. We observe that, as it becomes apparent in
the proofs of this section, the full-probability set of realizations for which the statement of Lemma
5.2.1 holds true is selected by countable repeated applications of Strong Laws of Large Numbers-type
of results. The final set Ω′ ⊂ Ω in which we prove the existence of the oscillating test functions is
thus a countable intersection of full-probability sets and remains of full probability.

Before giving the proof of Lemma 5.3.1, we fix the following notation: For any two open sets
A ⊂ B ⊂ Rd, we define

Cap(A,B) := inf

{ˆ
|∇v|2 : v ∈ C∞0 (B), v ≥ 1A

}
. (5.4.1)

For a point process Φ on Rd and any bounded set E ⊂ Rd, we define the random variables

Φ(E) := Φ ∩ E, Φε(E) := Φ ∩
(

1

ε
E

)
, (5.4.2)

N(E) := #(Φ(E)), N ε(E) := #(Φε(E)).

For δ > 0, we denote by Φδ a thinning for the process Φ obtained as

Φδ(ω) := {x ∈ Φ(ω) : min
y∈Φ(ω),
y 6=x

|x− y| ≥ δ}, (5.4.3)

i.e. the points of Φ(ω) whose minimal distance from the other points is at least δ. Given the process
Φδ, we set Φδ(E), Φε

δ(E), Nδ(E) and N ε
δ (E) for the analogues for Φδ of the random variables defined

in (5.4.2).

For a fixed M > 0, we define the truncated marks

RM := {ρj,M}zj∈Φ, ρj,M := ρj ∧M. (5.4.4)

Furthermore, throughout the proofs, we write

a . b

whenever a ≤ Cb for a constant C = C(d) depending only on the dimension d.

Finally, we remark that, under the assumptions of the process (Φ,R) in Theorem 5.2.1, the
process (Φ, {ρd−2}zi∈Zd) satisfies the assumptions of Section 5.5, and we therefore may apply all the
results stated in that section.
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5.4.1 Case (a): Periodic centres

In this setting, the holes Hε are generated by Φ = Zd and a collection of i.i.d. random variables
{ρi}i∈Zd satisfying (5.1.5). It is immediate to check that the marked process

Since the centres of the holes are periodically distributed, the only challenge in the construction
of the functions wε of Lemma 5.3.1 is due to the random variables {ρi}i∈Zd which might generate
very large holes under the mere condition (5.1.5). In fact, in [CM97] the construction of wε relies
on the assumption that each hole B

ε
d
d−2

(εzi), zi ∈ Zd, is strictly contained in the concentric cube

of size ε; this allows to explicitly construct wε by locally solving a PDE on each of these cubes. In
our case, the sole assumption (5.1.5) does not exclude that there are big holes which overlap and
where the previous construction breaks down. The main auxiliary result on which Lemma 5.3.1 for
the periodic case (a) relies is the following Lemma 5.4.1 on the asymptotic geometry of the set Hε.
Roughly speaking, this lemma ensures that Hε may be almost surely partitioned into two subsets, a
“good” and a “bad” set of holes which we denote by Hε

g and Hε
b , respectively. The set Hε

g contains
most of the holes of Hε and is made of small balls where the construction of wε may be carried
out similarly to [CM97]. The remaining holes, some of which overlap with full probability, are all
included in Hε

b . This set is well separated from Hε
g and small with respect to the macroscopic size

of the domain D: We may indeed enclose Hε
b into a set Dε

b ⊂ D which is still separated from Hε
g

and such that the harmonic capacity of Hε
b with respect to this “safety layer” Dε

b vanishes in the
limit ε ↓ 0+. This allows us to implicitly define wε in Dε

b as the capacitary function of Hε
b in Dε

b ; this
choice ensures that the H1-norm of wε on Dε

b converges to zero. Hence, in the verification of (H2)
and (H3) of Lemma 5.3.1, we only need to focus on the construction of wε on D\Dε

b .

Lemma 5.4.1. Let δ ∈ (0, 2
d−2) be fixed. Then, there exists ε0 = ε0(δ) > 0 such that for P-almost

every ω ∈ Ω and for all ε ≤ ε0 there exist Hε
g(ω), Hε

b (ω), Dε
b(ω) ⊂ Rd such that

Hε(ω) = Hε
g(ω) ∪Hε

b (ω), Hε
b (ω) ⊂ Dε

b(ω), (5.4.5)

dist
(
Hε
g(ω), Dε

b(ω)
)
≥ ε

2
,

where

lim
ε↓0+

Cap (Hε
b (ω), Dε

b(ω)) = 0. (5.4.6)

Moreover, Hε
g (ω) may be written as the following union of disjoint balls centred in nε(ω) ⊂ Zd ∩ 1

εD:

Hε
g(ω) :=

⋃
zj∈nε

B
ε

d
d−2 ρj

(εzj), (5.4.7)

ε
d
d−2 ρj ≤ ε1+δ <

ε

2
, lim

ε↓0+
εd#(nε) = |D|. (5.4.8)

Proof of Lemma 5.4.1. The partition of the set Hε(ω) in the statement of the lemma clearly depends
on the realization ω ∈ Ω; in the sake of a leaner notation, though, in the rest of the proof we omit
the argument ω and write Hε, Hε

b , Hε
g instead of Hε(ω), Hε

b (ω), Hε
g (ω). For each zi ∈ Zd, we denote

by Qεi the cube of length ε centered at εzi.

We begin by constructing the set Hε
b and its “safety layer” Dε

b . We first include in Hε
b the particles

which are large compared to the size of the cubes Qεi : For δ as in the statement of the lemma,we
consider the subset of Zd given by

Jbε :=
{
zi ∈ Zd ∩ 1

ε
D : ε

d
d−2 ρj ≥ ε1+δ

}
, (5.4.9)
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and the corresponding union of balls

H̃ε
b :=

⋃
zj∈Jεb

B
2ε

d
d−2 ρj

(εzj).

We now extend Jεb by including the centres of the balls for which, independently from the size of
their radius, the corresponding cell Qεi intersects H̃ε

b : We define

Ĩεb :=
{
zi ∈ Zd : Qεi ∩ H̃ε

b 6= ∅
}
⊃ Jεb , Iεb := Ĩεb ∩

1

ε
D. (5.4.10)

We finally set

Hε
b :=

⋃
zj∈Iεb

B
ε

d
d−2 ρj

(εzj), Dε
b :=

⋃
zj∈Ĩεb

Qεj . (5.4.11)

By (5.4.11) it is immediate that Hε
b ⊂ Dε

b . To show (5.4.6) we first argue that provided ε ≤ ε0(δ),
with ε0(δ) such that 2ε1+δ

0 ≤ ε0, for every zj ∈ Iεb it holds

B
2ε

d
d−2

(εzj) ⊂ Dε
b . (5.4.12)

Indeed, since by definition H̃ε
b ⊂ Dε

b , if zj ∈ Jεb , then (5.4.12) follows immediately. If, otherwise,
zj ∈ Iεb \ Jεb , then the assumption ε ≤ ε0 implies B

2ε
d
d−2

(εzj) ⊂ Qεj ⊂ Dε
b . By the subadditivity of

the capacity (see definition (5.4.1)) we estimate

Cap
(
(Hε

b (ω), Dε
b(ω)

) (5.4.11)

≤
∑
j∈Iεb

Cap
(
B
ε

d
d−2 ρj

(xj), D
ε
b(ω)

)
(5.4.12)

≤
∑
j∈Iεb

Cap
(
B
ε

d
d−2 ρj

(xj), B
2ε

d
d−2 ρj

(xj)
)

.
∑
j∈Iεb

εdρd−2
j .

To conclude (5.4.6), it remains to show that the right-hand side above vanishes almost surely in the
limit ε ↓ 0+. This follows from Lemma 5.5.3 for the process (Zd, {ρd−2

i }zi∈Zd) provided

lim
ε↓0+

εd#(Iεb ) = 0. (5.4.13)

To show (5.4.13), we first bound by (5.4.10)

εd#(Iεb ) ≤ εd#(Jεb ) +
∑

zi∈Iεb \J
ε
b

|Qεi |.

We note that by (5.4.10) and (5.4.9), there exists a constant c = c(d) such that, provided ε ≤ ε0(d)
(with ε0(d) possibly smaller than the one above), for any cube Qεi with zi ∈ Iεb , there exists zj ∈ Jεb
such that

Qεi ⊂ B
2cε

d
d−2 ρj

(εzj).
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Since all the cubes Qεi are (essentially) disjoint, we use the previous inclusion and the definition of
H̃ε
b to bound

εd#(Iεb ) . εd#(Jεb ) + |H̃ε
b | . εd#(Jεb ) +

∑
zj∈Jεb

(
ε

d
d−2 ρj

)d
. εd#(Jεb ) +

(
ε

d
d−2 max

zj∈ 1
ε
D∩Zd

ρj

)2
εd
∑
zj∈Jεb

ρd−2
j .

By Lemma 5.5.2, we have almost surely

lim sup
ε↓0+

ε
d
d−2 max

zj∈ 1
ε
D∩Zd

ρj ≤ lim
ε↓0+

(
εd

∑
zj∈ 1

ε
D∩Zd

ρd−2
j

) 1
d−2 = 〈ρd−2〉

1
d−2 , (5.4.14)

and thus estimate for ε small enough (this time depending on ω)

εd#(Iεb ) . εd#(Jεb ) + 〈ρd−2〉
2
d−2

∑
zj∈Jεb

(
ε

d
d−2 ρj

)d−2
. (5.4.15)

The first term on right-hand side above tends to zero thanks to

εd#(Jεb ) = εd
∑

zj∈ 1
ε
D∩Zd

1
ε

d
d−2 ρj≥ε1+δ

≤ ε2−δ(d−2)εd
∑

1
ε
D∩Zd

ρd−2
j

and the choice δ < 2
d−2 together with the right-hand side of (5.4.14). By this estimate and Lemma

5.5.3, also the second term on the right-hand side of (5.4.15) vanishes almost surely in the limit
ε ↓ 0+. We thus established (5.4.13) and therefore also (5.4.6).

We now define Hε
g := Hε\Hε

b , which allows to write Hε
g as in (5.4.7) with nε = (Zd ∩ 1

εD)\Iεb .
The first property in (5.4.8) is immediately implied by Jεb ⊂ Iεb and (5.4.9). The second property in
(5.4.8) follows from (5.4.13).

It remains to prove the last inequality in (5.4.5): By the definition of Hε
g itself, if B

ε
d
d−2 ρj

(εzj) ⊂

Hε
g , then ε

d
d−2 ρj ≤ ε1+δ. We choose ε ≤ ε0(δ) as in (5.4.12), such that B

ε
d
d−2 ρj

(εzj) ⊂ Qεj and

ε

2
≤ dist

(
B
ε

d
d−2 ρj

(εzj), ∂Q
ε
j

) (5.4.10)

≤ dist
(
B
ε

d
d−2 ρj

(εzj), D
ε
b

)
.

This concludes the proof of Lemma 5.4.1.

Proof of Lemma 5.3.1, case (a). Let us fix δ and ε0(δ) as in the statement of Lemma 5.4.1. Then,
we know that we may fix P-almost any event ω ∈ Ω such that we find Hε

b (ω), Hε
g(ω) and Dε

b(ω) as
in Lemma 5.4.1. Also in this proof, to keep the notation leaner, we omit the argument ω in the
oscillating test functions and in the set of holes and write, for instance, wε, H

ε instead of wε(ω, ·)
and Hε(ω).

Step 1. We begin by a reduction argument: We claim that we may separately treat the two
regions Dε

b and D\Dε
b , which contain Hε

b and Hε
g respectively, and give an explicit construction for
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wε only in the set D\Dε
b . We indeed claim that, for P-almost every ω ∈ Ω we may set wε = wε1 ∧wε2

with w1, w2 ∈ H1(D) and such that

wε1 ≡ 1 in D \Dε
b , wε1 = 0 in Hε

b , (5.4.16)

0 ≤ wε2 ≤ 1, wε2 ≡ 1 in Dε
b , wε2 = 0 in Hε

g , (5.4.17)

with, in addition,

wε1 → 1 in H1(D). (5.4.18)

If true, this decomposition for wε yields that (H1) is satisfied and, by (5.4.18), that (H2) needs to be
argued only for the sequence {wε2}ε>0. Finally, since ∇wε1 and ∇wε2 have disjoint support, for any
sequence {vε}ε>0 ⊂ H1(D) as in (H3) we have that

(−∆wε, vε)H−1,H1
0

=

ˆ
∇wε1 · ∇vε +

ˆ
∇wε2 · ∇vε,

and, by (5.4.18), that the first term on the right-hand side vanishes in the limit ε ↓ 0+. Since by an
integration by parts, the second term on the right-hand side may be rewritten as (−∆wε2, vε)H−1,H1

0
, we

deduce that with the previous decomposition we may verify (H3) only for the measures {−∆wε2}ε>0.

Step 2. Construction of wε1 and wε2. We begin with wε1: Thanks to (5.4.5) of Lemma 5.4.1 for
Hε
b , H

ε
g and Dε

b , together with (5.4.1) and (5.4.6), for every ε ≤ ε0 there exists a function w̃ε1 ∈ H1
0 (Dε

b),
such that w̃ε1 = 1 in Hε

b , which satisfies

ˆ
Dεb

|∇w̃ε1|2 ≤ 2 Cap(Hε
b , D

ε
b).

If we now set wε1 = 1− w̃ε1, and trivially extend wε1 by 1 outside Dε
b , we immediately have that (5.4.16)

for wε1 is satisfied. In addition, thanks to (5.4.6) and our choice of w̃ε1, also (5.4.18) follows.

We now turn to the construction of wε2: By the properties of Hε
g , Hε

b and Dε
b of Lemma 5.4.1,

the set D\Dε
b contains only the holes of Hε

g , which are all disjoint balls, each strictly contained in
the concentric cube Qεi of size ε. We define wε2 ≡ 1 on Dε

b , and explicitly construct wε2 on D\Dε
b

as done in [CM97]: For each zi ∈ nε, with nε defined in the statement of Lemma 5.4.1, we write
T εi = B

ε
d
d−2 ρi

(εzi) and Bi = B ε
2
(εzi) and define

wε2 = 1−
∑
zi∈nε

wε,i2 , (5.4.19)

with each wε,i2 solving 
−∆wε,i2 = 0 in Bi \ Ti
wε,i2 = 1 in Ti

wε,i2 = 0 in D \Bi.
(5.4.20)

Since by Lemma 5.4.1 all the balls Bi are disjoint and contained in D\Dε
b , definitions (5.4.19)

and (5.4.20) yield that wε2 satisfies (5.4.17) of Step 1. We thus constructed wε1, w
ε
2 satisfying (5.4.17)

and (5.4.18) of Step 1. We conclude this step by remarking that definition (5.4.20) also implies that

wε,i2 = 1− argmin
{

Cap(T εi , B
ε
i )
}
,
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and that each wε,i2 may be written explicitly as
wε,i2 (x) =

|x−εzi|−(d−2)−( ε
2

)−(d−2)

ε−dρ
−(d−2)
i −( ε

2
)−(d−2)

in Bi \ Ti

wε,i2 = 1 in Ti

wε,i2 = 0 in D \Bi.

(5.4.21)

Step 3. Equipped with wε1 and wε2 constructed above, we show that wε = wε1 ∧ wε2 satisfies
properties (H1)-(H3). As already discussed in Step 1, it suffices to prove that {wε2}ε>0 satisfies (H2)
and (H3).

We begin with (H2): By (5.4.19), (5.4.21) and (5.4.8) of Lemma 5.4.1, a direct calculation leads
to

‖∇wε2‖2L2(D) . εd
∑
zi∈nε

ρd−2
i ≤ εd

∑
zi∈Zd∩ 1

ε
D

ρd−2
i . (5.4.22)

By Lemma 5.5.2 applied to the right hand side, we infer that, almost surely,

lim sup
ε↓0+

‖∇wε2‖2L2(D) ≤ C. (5.4.23)

In addition, since 1− wε2 = 0 in Rd\
(⋃

zi∈nε Bi
)
, and the balls {Bi}zi∈nε are essentially disjoint, by

Poincaré’s inequality we obtain also

‖1− wε2‖2L2(D) ≤
∑
zi∈nε

‖1− wε2‖2L2(Bi)
. ε2

∑
zi∈nε

‖∇wε2‖2L2(Bi)
.

This, together with (5.4.22) and (5.4.23), yields that almost surely wε2 ⇀ 1 in H1(D) when ε ↓ 0+.
We thus established (H2).

To prove (H3) for wε2, we first use (5.4.19) and (5.4.21) to decompose

−∆wε2 =

nε∑
i=1

(µε,i − γε,i), µε,i = −∂νwε,i2 δ∂Bi , γ
ε,i = −∂νwε,i2 δ∂Ti ,

with ν denoting the outer normal and δ∂Bi and δ∂T i being the (d− 1)-dimensional Hausdorff measure
restricted to ∂Bi and ∂Ti, respectively. We start by remarking (see (H5)’ of [CM97]) that, since in
(H3) the functions vε are always assumed to be vanishing on each Ti, we only need to focus on the
convergence (H3) for the sequence of measures

µε := −
∑
i∈nε

∂νw
ε,i
2 δ∂Bi :=

∑
i∈nε

µε,i.

More precisely, we claim that for every vε ⇀ v in H1
0 (D) such that vε ∈ H1

0 (Dε), it holds

(µε, vε)H−1,H1
0 (D) → C0

ˆ
D
v, (5.4.24)

where C0 := (d − 2)σd〈 ρd−2 〉 corresponds to the definition (5.2.6) for the case Φ = Zd under
consideration.

We begin by arguing that it suffices to prove (5.4.24) above for any truncated process (Zd,RM ),
with M ∈ N and RM defined in (5.4.4). From now on, we use the lower index M to distinguish the
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objects constructed with the truncated marks RM and the ones coming from R. For instance, we
denote by wε2,M , µεM the analogues of wε and µε introduced above. Note that, for RM , the constant

in (5.4.24) reads C0,M = (d− 2)σd〈 ρd−2
M 〉.

For any M ∈ N, since |C0 − C0,M | . 〈 ρd−21ρ≥M 〉, we bound by the triangular inequality, an
integration by parts and Cauchy-Schwarz inequality∣∣∣∣(−∆wε, vε)H−1,H1

0 (D) − C0

ˆ
D
v

∣∣∣∣ . ‖∇(wεM − wε)‖L2(D)‖∇vε‖L2(D) (5.4.25)

+

∣∣∣∣(µεM , vε)H−1,H1
0 (D) − C0,M

ˆ
D
v

∣∣∣∣+ 〈 ρd−21ρ≥M 〉‖v‖L1 ,

By an argument similar to the one in (5.4.22), we estimate

lim sup
ε↓0+

‖∇(wεM − wε)‖L2(D) . 〈 ρd−21ρ≥M 〉,

so that by letting ε ↓ 0+ in (5.4.25), this and the boundedness of the sequence vε in H1 yield

lim sup
ε↓0+

∣∣∣∣(−∆wε, vε)H−1,H1
0 (D) − C0

ˆ
D
v

∣∣∣∣
. lim sup

ε↓0+

∣∣∣∣(µεM , vε)H−1,H1
0 (D) − C0,M

ˆ
D
v

∣∣∣∣+ 〈 ρd−21ρ≥M 〉(‖v‖L1 + 1).

Hence, provided that (5.4.24) holds for µεM and any fixed M ∈ N, we may then send M ↑ +∞ and
establish (H3) by assumption (5.1.5).

To argue that almost surely and for every M ∈ N the convergence in (5.4.24) holds for µεM , we
follow [CM97]. First, by the definition of wεi,M , we compute

µεM =
∑

zi∈nε∩ 1
ε
D

2d−1(d− 2)(ρi,M )d−2

1− 2d−2ε2(ρi,M )d−2
εδ∂Bi .

Since ρi,M ≤M , to obtain (5.4.24) it suffices to prove

µ̃εM :=
∑
zi∈nε

2d−1(d− 2)ρd−2
i,M εδBi → C0,M strongly in W−1,∞(D).

To show this, we fix M ∈ N and split the convergence (5.4.24) into the two following steps: If we
define

ηεM :=
∑

zi∈Zd∩ 1
ε
D

2d(d− 2)dρd−2
M,i 1Bi ,

then we argue that

µ̃εM − ηεM → 0 strongly in W−1,∞(D), (5.4.26)

and

ηεM → C0,M strongly in W−1,∞(D). (5.4.27)
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To show (5.4.26), we consider the auxiliary problems{
−∆qεi,M = 2d(d− 2)dρd−2

i,M in Bε
i

∂qεi,M
∂ν = 2d−1(d− 2)ρd−2

i,M ε on ∂Bε
i ,

(5.4.28)

which are in particular satisfied by the functions

qεi,M (x) = 2d−1(d− 2)ρd−2
i,M

(
|x− zi|2 −

(ε
2

)2)
.

As qεi,M = 0 on ∂Bε
i , we may extend qεi,M by zero outside of Bε

i and estimate

‖∇qεi,M‖L∞(Bi) = 2d−1(d− 2)ρd−2
i,M ε .Md−2ε.

Using Poincaré’s inequality, and since the balls Bε
i are disjoint, we infer that

qεM :=
∑

zi∈Zd∩ 1
ε
D

qεi,M → 0 in W 1,∞(Rd). (5.4.29)

We observe that by (5.4.28)

ηεM − µ̃εM = −∆qεM +
∑

zi∈(Zd∩ 1
ε
D)\nε

2d(d− 2)dρd−2
M,i 1Bi =: −∆qεM +RMε .

We have by (5.4.29) that −∆qεM → 0 in W−1,∞(Rd). On the other hand, for the term RMε above, we
have that by Lemma 5.5.3 and (5.4.8)

lim
ε↓0+
‖Rε‖L1 . lim

ε↓0+
εd

∑
zi∈(Zd∩ 1

ε
D)\nε

ρd−2
M,i = 0,

almost surely. Since Rε is bounded in L∞, we also have that Rε
∗
⇀ 0 in L∞(D) and Rε → 0 in

W−1,∞(D). This yields (5.4.26).

In order to show (5.4.27), we first remark that it suffices to argue that

ηεM
∗
⇀ C0,M in L∞(D).

Since the family of functions {ηεM}ε>0 is uniformly bounded in L∞(D), we identify the w∗-limit by
testing ηεM with any function ζ ∈ C1

0 (D): Indeed, by Lemma 5.5.4 applied to (Zd, {ρd−2
i,M }i∈Zd) in the

domain B = D we infer almost surely that

(ηεM , ζ)H−1,H1
0 (D) → C0,M

ˆ
D
ζ.

This establishes (5.4.27) and thus concludes the proof for (H3) and for the whole lemma.

5.4.2 Proof of Lemma 5.3.1 in the general case

Let (Φ,R) be a marked point process satisfying the assumptions of Theorem 5.2.1. In contrast
with the previous subsection, when the centres of the holes are distributed according to a general
point process Φ, there is not a deterministic positive lower bound for the minimal distance between
the points of Φ. This requires some technical changes in the arguments of Subsection 5.4.1 but still
allows us to obtain a statement on the asymptotic geometry of Hε similar to Lemma 5.4.1 and to
prove Lemma 5.3.1.
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Lemma 5.4.2. There exist an ε0 = ε0(d) and a family of random variables {rε}ε>0 ⊂ R+ such that
for P-almost every ω ∈ Ω

lim
ε↓0+

rε(ω) = 0, (5.4.30)

and for any ε ≤ ε0 there exist Hε
g(ω), Hε

b (ω), Dε
b(ω) ⊂ Rd such that

Hε(ω) = Hε
g(ω) ∪Hε

b (ω), Hε
b (ω) ⊂ Dε

b(ω),

dist
(
Hε
g(ω), Dε

b(ω)
)
≥ εrε(ω)

2
, (5.4.31)

where

lim
ε↓0+

Cap(Hε
b (ω), Dε

b(ω)) = 0. (5.4.32)

Moreover, Hε
g(ω) may be written as the following union of disjoint balls centred in nε(ω) ⊂ Φ(1

εD):

Hε
g(ω) :=

⋃
zj∈nε

B
ε

d
d−2 ρj

(εzj),

min
zi 6=zj∈nε

ε|zi − zj | ≥ 2rεε, ε
d
d−2 ρj ≤

εrε(ω)

2
, lim

ε↓0+
εd#(nε) = 〈N(Q)〉|D|. (5.4.33)

Furthermore, if for δ > 0 the process Φδ is defined as in (5.4.3), then

lim
ε↓0+

εd#
({
zi ∈ Φε

2δ(D)(ω) : dist(zi, D
ε
b) ≤ δε

})
= 0. (5.4.34)

We remark that the lower bounds in (5.4.31) and (5.4.33) differ from the ones of Lemma 5.4.1 by
the factor rε. This implies, by (5.4.30), that the minimal distance between the balls of the “good”
set Hε

g is only o(ε) for ε ↓ 0+ and not of order ε as required in the construction of the functions
{wε}ε>0 carried out in the previous subsection. We overcome this technical issue by comparing wε
again with the oscillating test functions wεM obtained by approximating Hε

g by a simpler set Hε,M
g .

Here, Hε,M
g is obtained not only by truncating the radii at size M as in the previous subsection, but

also by considering in Hε,M
g only the balls whose centres (in nε ⊂ Φε(D)) satisfy (5.4.31) and (5.4.33)

with M−1ε instead of rεε. As in the previous subsection, we show that the sets Hε,M are a good
approximation of Hε, in the sense that the associated functions wεM and wε are close in H1. This
follows from the fact that the centres removed from Hε

g , which are either too close to each other or to
the “safety layer” Dε

b , are few and may be taken care of by studying the properties of the thinnings
Φδ of a process Φ defined in (5.4.3). In fact, the last limit (5.4.34) of the previous lemma states that
the main error in considering the approximate holes Hε,M

g is given by the points which are too close
to each other.

Proof of Lemma 5.4.2. As in the previous subsection, we suppress the argument ω ∈ Ω for the
random sets involved in the argument below. Let us fix an α ∈ (0, 2

d−2) and let us define

rε := (ε
d
d−2 max

zj∈Φε(D)
ρj)

1
d ∨ ε

α
4 . (5.4.35)
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With this choice, we prove that the decomposition of Hε required by the lemma holds true. We
begin by showing that with this definition rε satisfies (5.4.30): Let

F ε := {zj ∈ Φε(D) | ε
d
d−2 ρj ≥ ε}.

If F ε = ∅, then rε ≤ ε
1
d ∨ ε

α
4 . If otherwise, we estimate

εd max
zj∈Φε(D)

ρd−2
j = εd max

zj∈F ε
ρd−2
j ≤ εd

∑
zj∈F ε

ρd−2
j .

To get (5.4.30), it suffices to show that almost surely the right hand side above tends to zero in the
limit ε ↓ 0+. By Lemma 5.5.3, this holds provided

εd#(F ε)→ 0 ε ↓ 0+.

We show this by bounding

εd#(F ε) . ε2εd
∑

zj∈Φε(D)

ρd−2
j ,

and using Lemma 5.5.2. We thus established (5.4.30).

Equipped with (5.4.35), we now set ηε = rεε and begin by constructing the sets Hε
b and Dε

b . As
in Lemma 5.4.1, we denote by Iεb the set of points in Φε(D) which generate the sets Hε

b and Dε
b . We

start by requiring that Iεb contains the points in Φε(D) whose associated radii are “too big”, namely
the set

Jεb =
{
zj ∈ Φε(D) : ε

d
d−2 ρj ≥

ηε
2

}
. (5.4.36)

Similarly to the periodic case, we set

H̃ε
b :=

⋃
zj∈Jεb

B
2ε

d
d−2 ρj

(εzj). (5.4.37)

We now include in Iεb also the points in Φε(D)\Jεb which, in spite of having radii below the threshold
set in definition (5.4.36), are too close to each other. We indeed define

Kε
b := Φε(D)\

(
Φε

2rε(D) ∪ Jεb
)
. (5.4.38)

Finally, we include into Iεb also the set of points which are not in Jεb ∪Kε
b , but which might are close

to H̃ε
b : We denote them by

Ĩεb :=
{
zj ∈ Φε(D)\(Jεb ∪Kε

b ) : H̃ε
b ∩Bηε(εzj) 6= ∅

}
. (5.4.39)

We thus set

Iεb = Ĩεb ∪ Jεb ∪Kε
b , (5.4.40)

Hε
b :=

⋃
zj∈Iεb

B
ε

d
d−2 ρj

(εzj), Hε
g := Hε \Hε

b , Dε
b :=

⋃
zj∈Iεb

B
2ε

d
d−2 ρj

(εzj). (5.4.41)
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It remains to show that, with Hε
b , Hε

g and Dε
b defined as in (5.4.41), properties (5.4.31), (5.4.32),

(5.4.33) and (5.4.34) are satisfied. We start with (5.4.32). As in the proof of Lemma 5.4.1, the
definition of Dε

b allows us to estimate by the sub-additivity of the capacity

Cap(Hε
b , D

ε
b) . εd

∑
zj∈Iεb

ρd−2
j .

Thanks to Lemma 5.5.3, we conclude that, almost surely, when ε ↓ 0+, the right-hand side above
vanishes provided that almost surely

lim
ε↓0+

εd#(Iεb ) = 0. (5.4.42)

We show this by using definition (5.4.40) and proving that each of the sets which constitute Iεb
satisfies the limit above. We begin with Jεb : Definitions (5.4.35) and (5.4.36) yield

εd#(Jεb ) . ε2r−(d−2)
ε εd

∑
zj∈Φε(D)

ρd−2
j ≤ ε2−α(d−2)εd

∑
zj∈Φε(D)

ρd−2
j .

By Lemma 5.5.2 and the assumption α < 2
d−2 , the right-hand side almost surely vanishes in the limit

ε ↓ 0+. We thus established

lim
ε↓0+

εd#(Jεb ) = 0, (5.4.43)

i.e. limit (5.4.42) for Jεb . We now turn to Kε
b : Let {δk}k∈N be any sequence such that δk ↓ 0+. Since

rε satisfies (5.4.30), we estimate for any δk

lim sup
ε↓0+

εd#(Kε
b )

(5.4.38)
= lim sup

ε↓0+

εd
(
N ε(D)−N ε

rε(D)
) (5.4.3)

≤ lim sup
ε↓0+

εd
(
N ε(D)−N ε

δk
(D)

)
.

We now apply Lemma 5.5.2 to Φ and each Φδk to deduce that almost surely and for every δk

lim sup
ε↓0+

εd#(Kε
b ) ≤ 〈N(Q)−Nδk(Q)〉|D|,

where Q is a unit cube. By sending δk ↓ 0+, Lemma 5.5.2 yields

lim
ε↓0+

εd#(Kε
b ) = 0. (5.4.44)

To conclude the proof of (5.4.42), it remains to show that almost surely also

εd#(Ĩεb )→ 0 ε ↓ 0+. (5.4.45)

By definitions (5.4.36), (5.4.38) and (5.4.39), for each zi ∈ Φε(D)\(Jεb ∪Kε
b ), we have

min
zj∈Φε(D)\{zi}

ε|zj − zi| ≥ 2ηε, ε
d
d−2 ρi <

ηε
2
. (5.4.46)

On the one hand, by the first inequality above, the balls {Bηε(εzi)}zi∈Ĩεb are all disjoint and satisfy

εd#(Ĩεb ) . εd
∑
zi∈Ĩεb

η−dε |Bηε(εzi)| = r−dε
∑
zi∈Ĩεb

|Bηε(εzi)|.
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In addition, the inequalities (5.4.46), definitions (5.4.36), (5.4.38) and (5.4.37) also imply that
|
⋃
zi∈Ĩεb

Bηε(εzi)| . |H̃ε
b |. By wrapping up the previous two inequalities, we bound

εd#(Ĩεb ) . r−dε |H̃ε
b | . r−dε

∑
zj∈Jεb

(
ε

d
d−2 ρj

)d
. r−dε

(
ε

d
d−2 max

zj∈Jεb
ρj

)2 ∑
zj∈Jεb

(
ε

d
d−2 ρj

)d−2
.

By definition (5.4.35), the inequality above reduces to

εd#(Ĩεb ) . εd
∑
j∈Jεb

(
ε

d
d−2 ρj

)d−2
.

Thanks to (5.4.43), we apply Lemma 5.5.3 and deduce (5.4.45). This, together with (5.4.43) and
(5.4.44), yields (5.4.42) and concludes the proof of (5.4.32).

To show (5.4.31), we recall the definitions of Dε
b , H

ε
b and Hε

g in (5.4.41) and set nε := Φε(D)\Iεb .
Since all zi ∈ nε satisfy (5.4.46) and thus also

dist
(
B
ε

d
d−2 ρi

(εzi), ∂Bηε(εzi)
)
≥ ηε

2
,

by definition (5.4.41) of Dε
b , it suffices to show that for all zi ∈ Φε(D)\Iεb and all zj ∈ Iεb we have

Bηε(εzi) ∩B
2ε

d
d−2 ρj

(εzj) = ∅. (5.4.47)

For all zj ∈ Jεb ⊂ Iεb , this identity holds by (5.4.39) and the definition of nε. If zj ∈ Iεb \Jεb , then we

know that 2ε
d
d−2 ρj ≤ ηε and, by (5.4.46) for zi, we obtain (5.4.47) also in this case. This establishes

(5.4.47) and also (5.4.31).

Finally, the properties (5.4.33) of the set Hε
g are a consequence of (5.4.46), definition (5.4.42) and

(5.5.8) of Lemma 5.5.2.

To show (5.4.34), we resort to the definition of Dε
b to estimate{

zi ∈ Φε
2δ(D)(ω) : dist(zi, D

ε
b) ≤ δε

}
⊂ Iεb ∪

{
zi ∈ nε(ω) : dist

(
zi,

⋃
zj∈Jεb

B
2ε

d
d−2 ρj

(εzj)
)
≤ δε

}
∪
{
zi ∈ nε(ω) ∩ Φε

2δ(D)(ω) : dist
(
zi,

⋃
zj∈Ĩεb∪K

ε
b

B
2ε

d
d−2 ρj

(εzj)
)
≤ δε

}
:= Iεb ∪ Eε ∪ Cε.

We already know εd#(Iεb )→ 0. Next, we argue that

εd#(Eε)→ 0.

This follows by an argument similar to the one for (5.4.45): Then, we may choose ε0 = ε0(d) such
that for all ε ≤ ε0, property (5.4.30) yields ηε = εrε ≤ δε. By definition of Jεb in (5.4.36) and of Eε

above, we infer that for such ε ≤ ε0, for all zj ∈ Eε there exists zi ∈ Jεb such that

Bηε(εzj) ⊂ B
2δε+2ε

d
d−2 ρi

(εzi) ⊂ B
6δr−1

ε ε
d
d−2 ρi

(εzi), (5.4.48)
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where in the second inequality we use that r−1
ε δ ≥ 1. We note that by (5.4.33) the balls Bηε(εzj)

with zj ∈ nε are all disjoint. Hence,

εd#(Eε) = r−dε ηdε#(Eε)
(5.4.48)

. r−dε

∣∣∣∣ ⋃
zi∈Jεb

B
6δr−1

ε ε
d
d−2 ρi

(εzi)

∣∣∣∣
. δdr−2d

ε

∑
zi∈Jεb

(
ε

d
d−2 ρi

)d (5.4.35)

≤ δdεd
∑
zi∈Jεb

ρd−2
i .

By Lemma 5.5.3 and (5.4.43), almost surely the right hand side tends to zero in the limit ε ↓ 0+.

We conclude the argument for (5.4.34) by showing that the set Cε is empty when ε is small: In
fact, by construction, if zi ∈ nε satisfies

dist

(
εzi,

⋃
zj∈Ĩεb∪K

ε
b

B
2ε

d
d−2 ρj

(εzj)

)
≤ δε,

then there exists a zj ∈ Ĩεb ∪Kε
b such that for ε ≤ ε0

ε|zi − zj | ≤ dist
(
εzi, B

2ε
d
d−2 ρj

(εzj)
)

+ ηε ≤ 2δε.

This yields Cε ⊂ Φε(D)\Φ2δ(D) and thus that it is empty since by definition we also have Cε ⊂ Φε
2δ(D).

The proof of Lemma 5.4.2 is complete.

Proof of Lemma 5.3.1, general case. We split the proof of the lemma in the same steps as in the
proof for the case of periodic centres (case (a)). Some of these steps may be proven exactly as in the
previous subsection by relying on Lemma 5.4.2 instead of Lemma 5.4.1. We thus focus below only on
the parts of the proof which differ from Subsection 5.4.1.

Step 1. Since by Lemma 5.4.2, the sets Hε
g and Dε

b are disjoint, the splitting wε = wε1 ∧ wε2 with
wε1, w

ε
2 solving (5.4.16), (5.4.17) and (5.4.18) remains unchanged from the case of periodic centres.

Step 2. Again by Lemma 5.4.2, we construct the sequence {wε1}ε>0 satisfying (5.4.16) and (5.4.18)
as in Subsection 5.4.1. We thus only need to focus on the construction of the functions {wε2}ε>0,
which we set equal to 1 on Dε

b . For each zj ∈ nε, with nε being the set of centers of the particles in
Hε
g (see Lemma 5.4.2), we denote the random variables

dεj := min
{

dist(εzj , D
ε
b),

1

2
min
i 6=j

ε|zi − zj |, ε
}
. (5.4.49)

We remark that, in contrast with case (a) where we had by Lemma 5.4.1 that dεj ≥ ε
2 , here Lemma

5.4.2 only implies that, for ε small, dεj ≥ rεε with rε satisfying (5.4.30). By defining for each zj ∈ nε
the sets

T εj = B
ε

d
d−2 ρj

(εzj) Bj = Bdεj (εzj),

we consider the function wε,j2 solving (5.4.20) in Bj\T j and hence defined as

wε,j2 (x) =


|x−εzj |−(d−2)−(dεj)

−(d−2)

ε−dρ
−(d−2)
i −(dεj)

−(d−2) in Bj \ Tj

1 in Tj

0 in D \Bj .

(5.4.50)
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Note, that by definition of dεj , (5.4.49), the functions ∇wε,j have disjoint support. Moreover, for
ε sufficiently small,

dεj ≥ 2ε
d
d−2 ρj . (5.4.51)

Indeed, by Lemma 5.4.2,

2ε
d
d−2 ρj ≤ εrε ≤ min

{1

2
min
i 6=j

ε|zi − zj |, ε
}
,

and

2ε
d
d−2 ρj ≤ ε

d
d−2 ρj +

εrε
2
≤ ε

d
d−2 ρj + dist(Tj , D

ε
b) = dist(εzj , D

ε
b).

We thus set

wε2 = 1−
∑
zj∈nε

wε,j2 , (5.4.52)

which immediately satisfies condition (5.4.17). Therefore, as discussed in Step 1, the function
wε = wε1 ∧ wε2 satisfies (H1) and it suffices to prove (H2)-(H3) only for wε2.

Step 3. We begin by showing that wε2 satisfies (H2): By the triangular inequality and definitions
(5.4.50) and (5.4.52), we estimate

‖∇wε2‖22 =
∑
zi∈nε

‖∇wε,i2 ‖
2
L2(Bi)

.
∑
zi∈nε

εdρd−2
i

1−
(
ε

d
d−2 ρi
dε

)d−2

(5.4.51)

.
∑
i∈nε

εdρd−2
i

nε⊂Φε(D)

.
∑

i∈Φε(D)

εdρd−2
i . (5.4.53)

By Lemma 5.5.2, the right-hand side above is almost surely bounded in the limit ε ↓ 0+. This,
together with Poincaré’s inequality for 1− wε2 in D, yields that almost surely, up to a subsequence,
we have wε2 ⇀ w in H1(D) when ε ↓ 0+.

We claim that w ≡ 1. To this purpose, it is useful to consider the following “truncated” processes
(nεM , {ρj,M}j∈nε) which we construct in the following way: For any M ∈ N, we set

nεM :=
{
zi ∈ nε : dεj ≥

ε

M

}
, ρj,M = ρj ∧M.

In addition, let

Hε,M
g :=

⋃
zj∈nεM

B
ε

d
d−2 ρj,M

(εzj), Dε,M := D\(Hε,M
g ∪Hε

b ),

and let wε,M2 be the function constructed as in (5.4.52) and (5.4.50) for the set Hε,M
g .

By the same argument above for wε2, almost surely and up to a subsequence ,it holds wε,M2 ⇀ wM

for every M ∈ N. Moreover, since 1− wε,M2 = 0 on Rd\
(⋃

zi∈nεM
Bi
)

and the balls Bi are pairwise

disjoint and have radii in [M−1ε, ε] e may argue as in Subsection 5.4.1 and infer that almost surely,
and for every M ∈ N, wε,M2 ⇀ 1 in H1(D), and therefore also strongly in L2(D). This implies by the
triangular inequality

lim sup
ε↓0+

‖wε2 − 1‖22 ≤ lim sup
M↑∞

lim sup
ε↓0+

∥∥wε2 − wε,M2

∥∥2

2
.
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Condition (H2) holds for wε2 provided that the limit on the right-hand side above vanishes. By
Poincaré’s inequality in D, it suffices to prove that

lim
M↑∞

lim sup
ε↓0+

‖∇(wε2 − w
ε,M
2 )‖22 = 0. (5.4.54)

To show this, we argue as follows: By construction

wε2 = wε,M2 in Bi ⊂ D\Dε
b , whenever ρi ≤M and di ≥M−1ε,

wε,M2 ≡ 1 in Bi, whenever di ≤M−1ε.

This implies that the L2-norm on the left-hand side above reduces to∥∥∇(wε − wε,M2

)∥∥2

2
=
∑
zi∈nε

∥∥∇(wε,i2 − w
ε,M,i
2

)∥∥2

2
1ρi≥M1di≥M−1ε

+
∑
zi∈nε

‖∇wε2‖221di≤M−1ε. (5.4.55)

Similarly to (5.4.53), we use the explicit formulation for wε2, wε,M2 to control the first term on the
right-hand side above by∑

zi∈nε

∥∥∇(wε,i2 − w
ε,M,i
2

)∥∥2

2
1ρi≥M1di≥M−1ε.

∑
zi∈nε

εdρd−2
i 1ρi≥M .

By Lemma 5.5.2 applied to the process Φ with marks {ρd−2
i 1ρi≥M}zi∈Φ, and the assumption (5.1.5),

we obtain that almost surely

lim
M↑+∞

lim sup
ε↓0+

∑
zi∈nε

∥∥∇(wε,i2 − w
ε,M,i
2

)∥∥2

2
1ρi≥M1di≥M−1ε = 0. (5.4.56)

By using again the same estimate as in (5.4.53) for wε2, we have that∑
zi∈nε

‖∇wε,i2 ‖
2
21di≤M−1ε.

∑
zi∈nε

εdρd−2
i 1di≤M−1ε. (5.4.57)

By Definition of di in (5.4.49), we have that if di ≤M−1ε, then either zi ∈ Φε(D)\Φε
2M−1(D) or

zi ∈ IεM :=
{
zi ∈ nε ∩ Φε

2M−1(D) : dist(zi, D
ε
b) ≤

ε

M

}
.

Hence, from (5.4.57) we obtain

lim sup
ε↓0+

∑
zi∈nε

‖∇wε,i2 ‖
2
21di≤M−1ε ≤ lim sup

ε↓0+
εd

∑
zi∈Φε(D)\Φ2M−1,ε(D)

ρd−2
i + lim sup

ε↓0+

εd
∑
zi∈IεM

ρd−2
i

On the one hand, by (5.4.34) and Lemma 5.5.3, the second term on the right-hand side vanishes. On
the other hand, Lemma 5.5.2 for both Φ and Φ2M−1

imply that

lim sup
ε↓0+

∑
zi∈nε

‖∇wε,i2 ‖
2
21di≤M−1ε ≤ 〈N(Q)−N2M−1(Q)〉〈ρd−2〉,

where Q is a unit cube. Finally, the right-hand side in the above estimate converges to zero in the
limit M →∞ again by Lemma 5.5.2. If we now wrap up the previous estimate with (5.4.56) and
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(5.4.55), we conclude (5.4.54). We thus established (H1) and (H2) for the sequence wε2 (and thus also
fo wε).

It remains to prove (H3). We consider again the truncated sequences {wε,M2 }ε>0 above and start

by arguing that it is enough to show that, for every M ∈ N fixed, condition (H3) is satisfied by wε,M2 ,
namely (

−∆wε,M2 , vε
)
H−1,H1

0
→ C0,M

ˆ
D
v, (5.4.58)

where C0,M := (d− 2)σd〈N2M−1(Q)〉〈 ρd−2
M 〉. In fact, Cauchy-Schwarz’s inequality yields

∣∣(−∆(wε2 − w
ε,M
2 ), vε

)
H−1,H1

0

∣∣ ≤ (ˆ |∇vε|2) 1
2
(ˆ
|∇(wε2 − w

ε,M
2 )|2

) 1
2

,

and, as the family {vε}ε>0 is uniformly bounded in H1(D), by (5.4.54) we get

lim
M→∞

lim sup
ε↓0+

|(−∆(wε2 − w
ε,M
2 ), vε)H−1,H1

0
| = 0.

Since C0,M → C0 when M ↑ +∞ by (5.5.10) of Lemma 5.5.2, the above limit and the triangular
inequality yield that to prove (H3) it suffices to show (5.4.58).

The proof of (5.4.58) follows the same lines of Step 3. in Subsection 5.4.1 (in particular, (5.4.24)
for wε,M2 ), so we just point out the differences: By arguing as in that case, it suffices to prove that

ηεM :=
∑
zi∈nεM

d(d− 2)ρd−2
i,M

εd

ddi
1Bi

∗
⇀ C0,M in L∞(D) (5.4.59)

The factor εdd−di in the above expression is due to the fact that the balls Bi have now radii di instead
of ε. Hence, by including this factor, we have

‖εdd−di 1Bi‖L1 = ‖1Bε(εzi)‖L1 = εd

as in the periodic case.
Since

‖ηεM‖L∞ .Md(d−2),

to show (5.4.59) it suffices to test ηεM with functions ζ ∈ C1
0 (D). We observe that if we define

η̃εM :=
∑

zi∈Φε
2M−1 (D)

d(d− 2)ρd−2
i,M

εd

ddi
1Bi ,

then as in Step 3 of Subsection 5.4.1, we use Lemma 5.5.2 for Φ2M−1 and Lemma 5.5.4 applied to
(Φ2M−1 , {ρd−2

i,M }) to infer that, almost surely and for all ζ ∈ C1
0 (D),

ˆ
D
η̃εMζ → C0,M

ˆ
D
ζ.

We conclude (5.4.59) by arguing that, almost surely and for all ζ ∈ C1
0 (D), we have∣∣∣∣ˆ

D
(ηεM − η̃εM )ζ

∣∣∣∣→ 0.
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Indeed, ∣∣∣∣ˆ
D

(ηεM − η̃εM )ζ

∣∣∣∣ .Md−2
∑

zi∈Φε
2M−1 (D)\nεM

ˆ
Bε(εzi)

|ζ|

.Md−2‖ζ‖∞εd#
({
zi ∈ Φε

2M−1(D) : di ≤
ε

M

})
.

By definition of di and (5.4.34), the right-hand side tends to zero almost surely in the limit ε→ 0.
This concludes the proof of (5.4.59) and thus establishes (H3) for the sequence {wε2}ε>0. The proof
of Lemma 5.3.1 is complete.

5.5 Auxiliary results

In this section, we give some auxiliary results which have been used in the previous Sections. In
Section 5.5.1, we present a version of the Strong Law of Large Numbers adapted to our needs. We
use this result in Section 5.5.2 where we prove variants of the Strong Law of Large Numbers for
marked processes on which the proofs of Section 5.4 rely. Finally, in Section 5.5.3, we verify the
conditions of Theorem 5.2.1 for the processes defined in case (c) of Section 5.2.

5.5.1 Strong Law of Large Numbers for sums of random variables with correla-
tions

This result is an easy adaptation to our setting, and to our needs, of the standard argument for
the Strong Law of Large Numbers.

Lemma 5.5.1. Let {xi}i∈N = Zd, and let {Xi}i∈N be identically distributed random variables with
Xi ≥ 0 and 〈X〉 < +∞. Let us assume that for every i, j ∈ N with i 6= j

|〈XiXj〉 − 〈X〉2| <
C

|xi − xj |γ
γ > d. (5.5.1)

Then for every bounded Borel set B ⊂ Rd which is star-shaped with respect to the origin, we have

lim
ε↓0+

εd
∑

xi∈Zd∩ 1
ε
B

Xi = 〈X〉|B| almost surely. (5.5.2)

Proof. The proof of this lemma is an easy adaptation of the standard argument for independent and
identically distributed random variables: In particular, we adapt to the case of correlated variables
the argument of [Dur10, Subsection 2.4].

Without loss of generality, we assume that B = Q, where Q is the unitary cube centred at the
origin and Q

1
ε = 1

εQ. Moreover, we may assume that |xi| is monotone in i ∈ N. Thus, there exists a
constant c = c(d) such that for all i ∈ N

|xi| ≥ ci
1
d . (5.5.3)

The first step is to reduce the study of (5.5.2) to the sum of the truncated random variables
Yi := Xi1Xi≤i. Indeed,

∞∑
i=1

P(Xi > i) ≤
ˆ ∞

0
P(X > t) dt = 〈X〉 <∞.
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Thus, by Borel-Cantelli theorem applied to the events Ei := {Xi > i} we have that almost surely in
(5.5.2) we may substitute the variables Xi with their truncated versions Yi. Clearly, also the sequence
{Yi}i∈N satisfies (5.5.1).

We define Ỹi := Yi − 〈Yi〉. The next step of the proof is the following estimate:

∞∑
i=1

〈Ỹ 2
i 〉
i2
≤ 4〈X〉 <∞. (5.5.4)

We estimate

〈Ỹ 2
i 〉 ≤ 〈Y 2

i 〉
ˆ ∞

0
2yP(Yi > y) dy ≤

ˆ i

0
2yP(X > y) dy.

Using the monotone convergence theorem, this yields

∞∑
i=1

〈Ỹ 2
i 〉
i2
≤
∞∑
i=1

1

i2

ˆ ∞
0

1(0,i)(y)2yP(X > y) dy ≤
ˆ ∞

0

∞∑
i>y

1

i2
2yP(X > y) dy.

Since
´∞

0 P(X > y) dy = 〈X〉, to prove (5.5.4) it suffices to show

y
∑
i>y

1

i2
≤ 2.

If y ≥ 1, then

y
∑
i>y

1

i2
= y

∞∑
i=byc+1

1

i2
≤ y

ˆ ∞
byc

1

t2
dt =

y

byc
≤ 2.

If 0 < y < 1,

y
∑
i>y

1

i2
≤ 1 +

∞∑
i=2

1

i2
≤ 1 +

ˆ ∞
1

1

t2
dt = 2.

This concludes the proof of (5.5.4).

Next, we define

Sε :=
∑

i∈Zd∩Q
1
ε

Yi, S̃ε :=
∑

i∈Zd∩Q
1
ε

Ỹi.

Then, for every δ > 0, we estimate by Chebyshev’s inequality

P(εdS̃ε > δ) ≤ ε2d 〈S̃2
ε 〉
δ2

= δ−2ε2d〈
∑

j,i∈Zd∩Q
1
ε

ỸiỸj〉.

By definition of Yi and assumption (5.5.1) the last term is bounded by

P(εdS̃ε > δ) ≤ δ−2ε2d
∑

i∈Zd∩Q
1
ε

〈Ỹ 2
i 〉+ δ−2ε2d

∑
j,i∈Zd∩Q

1
ε

i6=j

C

|i− j|γ
.
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We now restrict ourselves to consider the sequence εk := αk, k ∈ N and α ∈ (0, 1) and use the
previous inequality to estimate

+∞∑
k=1

P(εdkS̃εk > δ) ≤ δ−2
+∞∑
k=1

ε2d
k

∑
i∈Zd∩Q

1
εk

〈Ỹ 2
i 〉+ δ−2

+∞∑
k=1

ε2d
k

∑
j,i∈Zd∩Q

1
εk

i6=j

C

|zi − zj |γ
. (5.5.5)

For the second term on the right-hand side above, thanks to assumption γ > d, we have

+∞∑
k=1

ε2d
k

∑
j 6=i∈Zd∩Q

1
εk

C

|zi − zj |γ
≤

+∞∑
k=1

εdk < +∞.

To estimate the first term on the right-hand side in (5.5.5), we can interchange the order of the sums
since all terms are nonnegative. Thus,

+∞∑
k=1

ε2d
k

∑
i∈Zd∩Q

1
εk

〈Ỹ 2
i 〉 =

∑
i∈Zd
〈Ỹ 2
i 〉

+∞∑
k=1

ε2d
k 1

xi∈Q
1
εk

(5.5.3)

≤
∑
i∈Zd
〈Ỹ 2
i 〉

∑
k : ε−dk ≤Ci

ε2d
k

.
∑
i∈Zd
〈Ỹ 2
i 〉

1

i2d
1

1− α2d

(5.5.4)

. 〈X〉 <∞

Therefore, for every δ > 0 we have that
∑+∞

k=1 P(εdkS̃εk > δ) < +∞ and by Borel-Cantelli’s lemma
and the Dominated Convergence theorem we get

S̃εk → 0 almost surely.

Since limi→∞〈Yi〉 = 〈X〉, this implies also

Sεk → 〈X〉 almost surely. (5.5.6)

To pass to the continuum limit ε ↓ 0+ for the same full-probability set, we argue as in [Dur10] by
monotonicity. Indeed, for εk+1 ≤ ε ≤ εk, we have

Zd ∩Q
1
εk ⊂ Zd ∩Q

1
ε ⊂ Zd ∩Q

1
εk+1

Hence, since Yi ≥ 0, it holds

#
(
Q

1
εk+1

)
#
(
Q

1
εk

) Sεk ≤ Sε ≤
#
(
Q

1
εk+1

)
#
(
Q

1
εk

) Sεk+1
. (5.5.7)

By the choice εk = αk, we obtain

#
(
Q

1
εk+1

)
#
(
Q

1
εk

) → α−d.

We now combine (5.5.6) and (5.5.7) to infer

lim inf
ε→0

Sε ≥ αd〈X〉, lim sup
ε→0

Sε ≤ α−d〈X〉.

Since α ∈ (0, 1) is arbitrary, we conclude the proof by sending α→ 1− in the inequalities above.
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5.5.2 Strong Law of Large Numbers for marked point processes

We give these results for a general marked point process (Φ,X ) with Φ satisfying (5.2.2) and
(5.2.3) and with the marks X := {Xi}zi∈Φ satisfying (5.2.4) with

〈X〉 =

ˆ +∞

0
xh(x)dx < +∞

and with the function g being bounded as in (5.2.5) (with ρ substituted by x and with p > 2).

Lemma 5.5.2. Let Q a unitary cube and let (Φ,X ) be a marked point process as introduced above.
Then, for every bounded set B ⊂ Rd which is star-shaped with respect to the origin, we have

lim
ε↓0+

εdN ε(B) = 〈N(Q)〉|B| almost surely, (5.5.8)

and

lim
ε↓0+

εd
∑

zi∈Φε(B)

Xi = 〈N(Q)〉〈X〉|B| almost surely. (5.5.9)

Furthermore, for every δ < 0 the process Φδ obtained from Φ as in (5.4.3) satisfies the analogues
of (5.5.9), (5.5.8) and

lim
δ↓0+
〈Nδ(A)〉 = 〈N(A)〉 (5.5.10)

for every bounded set A ⊂ Rd.

Lemma 5.5.3. In the same setting of Lemma 5.5.2, let {Iε}ε>0 be a family of collections of points
such that Iε ⊂ Φε(B) and

lim
ε↓0+

εd#Iε = 0 almost surely. (5.5.11)

Then,

lim
ε↓0+

εd
∑
zi∈Iε

Xi → 0 almost surely.

Lemma 5.5.4. In the same setting of Lemma 5.5.2, let us assume that in addition the marks satisfy
〈X2〉 < +∞. For zi ∈ Φ and ε > 0, let ri,ε > 0, and assume there exists a constant C > 0 such that
for all zi ∈ Φ and ε > 0

ri,ε ≤ Cε.

Then, almost surely, we have

lim
ε↓0+

∑
zi∈Φε(B)

Xi
εd

rdi,ε

ˆ
Bri,ε (εzi)

ζ(x) dx =
σd
d
〈N(Q)〉〈X 〉

ˆ
B
ζ(x) dx,

for every ζ ∈ C1
0 (B).
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Proof of Lemma 5.5.2. Without loss of generality we assume that B = QR, with QR the cube of size

R centred at the origin and Q
R
ε = 1

εB. Moreover, we denote by {Qi}i∈Zd the partition of Rd made
of (essentially) disjoint unit cubes centred in the points of the lattice Zd = {xi}i∈N.

The limit (5.5.9) is an easy consequence of a Strong Law of Large Numbers for correlated random
variables, Lemma 5.5.1: For all µ > 0 and all ε small enough

εd
∑

zi∈Φε(QR)

Xi ≤ εd
∑

xj∈Zd∩Q
R+µ
ε

Zi, (5.5.12)

where Zj :=
∑

zi∈Φ(Qj)
Xi are identically distributed random variables by stationarity of (Φ,X ).

Moreover, they have finite average〈 ∑
zi∈Φ(Q)

Xi

〉
= 〈N(Q)〉〈X〉 < +∞ (5.5.13)

and satisfy for every i, j ∈ N with i 6= j

|〈ZiZj〉 − 〈Z〉2|
(5.5.13)

=

∣∣∣∣〈 ∑
zk∈Φ(Qi)

zl∈Φ(Qj)

XkXl

〉
− 〈N(Q)〉2〈X〉2

∣∣∣∣ (5.5.14)

(5.2.5)

≤ |〈X〉2〈N(Qi)N(Qj)〉 − 〈N(Q)〉2〈X〉2|+ C

|xi − xj |γ
〈N(Qi)N(Qj)〉,

where the constant C depends on the constants in (5.2.5). We now appeal to condition (5.2.3): By
the stationarity assumption on Φ, we have that for any i, j ∈ N

〈N(Qi)N(Qj)〉 = 〈N(Qi−j)N(Q)〉,

so that (5.2.3) applied to the random variables N(Qi−j) and N(Q) yields

|〈N(Qi)N(Qj)〉 − 〈N(Q)〉2| . 〈N(Q)2〉
|xi − xj |γ

.

We thus insert this bound into (5.5.14) and get

|〈ZiZj〉 − 〈Z〉2|≤
C〈N(Q)2〉
|xi − xj |γ

.

Hence, condition (5.5.1) is satisfied with constant C〈N(Q)2〉 < +∞, where C depends on the
constants in (5.2.3) and (5.2.4). We apply Lemma 5.5.1 to the sequence {Zi}i∈Zd in (5.5.12) and
conclude

lim sup
ε↓0+

εd
∑

zi∈Φε(QR)

Xi ≤ 〈N(Q)〉〈X〉|QR+µ|.

Arguing analogously for the limit inferior and taking the limit µ → 0 yields (5.5.9). Limit (5.5.8)
follows exactly as (5.5.9) by substituting the marks Xi with 1.

For δ > 0 be fixed. We show that Φδ satisfies the analogues of (5.5.8) and (5.5.9) together with
(5.5.10). Since by definition (5.4.3) we have that N δ(B) ≤ N(B), the limit in (5.5.10) follows from
the Dominated Convergence Theorem. To show (5.5.9) and (5.5.8) we may argue exactly as above
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for the original process Φ and apply Lemma 5.5.1 to the random variables Zδi :=
∑

zi∈Φδ(Qj)
Xi.

Since for each xi ∈ Zd we have 0 ≤ Zδi ≤ Zi, the only condition that remains to be shown for the
collection {Zδi }xi∈Zd is (5.5.1). By arguing as in (5.5.14), we use again (5.2.5) to reduce ourselves to
show (5.5.1) for the random variables {N δ(Qi)}i∈Zd . To do so, for any x ∈ Rd we define

dx := min
y∈Φ(ω),
y 6=x

|x− y|,

so that
N δ(Q) =

∑
zi∈Φ∩Q

1dx>δ(zi), N δ(Qi) =
∑

zi∈τ−xiΦ∩Q
1dx>δ(zi).

Since 1dx>δ = 1N(Bδ(x)\{x}=0), each N δ(Qi) are measurable random variables with respect to
F(Bδ(Qi)) defined in (5.2.3), with

Bδ(Qi) := {x ∈ Rd : dist(x,Qi) ≤ δ}.

We thus apply (5.2.3) as above and conclude that, with a constant depending on δ, condition (5.5.1)
is satisfied by the sequence N δ(Qi). This yields (5.5.2) for Φδ and, by the same argument, also
(5.5.8).

Proof of Lemma 5.5.3. Let M ∈ N. For every zi ∈ Φ, we define truncated marks Yi := Xi1[M,∞)(Xi)
which satisfy assumption (5.2.4) and (5.2.5) thanks to the corresponding assumptions for the original
marks {Xi}i∈N. Since

〈Yi〉 ≤ 〈X〉 < +∞,

we apply Lemma 5.5.2 to the point process Φ with the truncated marks {Yi}zi∈Φ to infer that almost
surely

εd
∑

zi∈Φε(B)

Yi → 〈X1[M,∞)(X)〉.

This yields

lim sup
ε↓0+

εd
∑
zi∈Iε

Xi ≤ lim sup
ε↓0+

εd
∑
zi∈Iε

Xi1[0,M)(Xi) + 〈X1[M,∞)(X)〉

≤M lim sup
ε↓0+

εd#Iε + 〈X1[M,∞)(X)〉 (5.5.11)
= 〈X1[M,∞)(X)〉.

Since 〈X〉 < +∞, we may take the limit M →∞ and conclude the proof.

Proof of Lemma 5.5.4. First, we argue that it suffices to prove the case ri,ε = ε for all zi ∈ Φ and
ε > 0. Indeed, for ζ ∈ C1

0 (B) we use a change of coordinates to get almost surely,

lim sup
ε↓0+

∑
zi∈Φε(B)

∣∣∣∣ εdrdi,ε
ˆ
Bri,ε (εzi)

ζ(x) dx−
ˆ
Bε(εzi)

ζ(x) dx

∣∣∣∣ ≤ lim sup
ε↓0+

Cε‖∇ζ‖L∞εdN ε(B) = 0

since εdN ε(B) is bounded by Lemma 5.5.2.

Without loss of generality we therefore assume ri,ε = ε and |B| = 1.

Next we observe that it suffices to argue that the assertion holds for any fixed ζ ∈ W 1,∞
0 (B).

Indeed, once we have shown this, the statement follows because there exists a countable subset of
W 1,∞

0 (B) which is dense in C1
0 (B).
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We fix ζ ∈W 1,∞
0 (B) and we begin by rewriting the term in the limit as

∑
zi∈Φε(B)

Xi

ˆ
Bε(εzi)

ζ(x) dx =
∑

zi∈Φε(B)

(Xi − 〈X〉)
ˆ
Bε(εzi)

ζ(x) dx

+ 〈X〉
∑

zi∈Φε(B)

ˆ
Bε(εzi)

ζ(x) dx,

so that∣∣∣∣ ∑
zi∈Φε(B)

Xi

ˆ
Bε(εzi)

ζ(x) dx− σd
d
〈N(Q)〉〈X〉

ˆ
B
ζ

∣∣∣∣ (5.5.15)

≤
∣∣∣∣ ∑
zi∈Φε(B)

(Xi − 〈X〉)
ˆ
Bε(εzi)

ζ(x) dx

∣∣∣∣+ 〈X〉
∣∣∣∣ ∑
zi∈Φε(B)

ˆ
Bε(εzi)

ζ(x) dx− 〈N(Q)〉
ˆ
B
ζ

∣∣∣∣.
Let {Qi}i∈N be a partition of Rd into (essentially) disjoint unitary cubes and let {yi}i∈N be the
collection of their centres. We claim that if

Tε(ζ) :=

ˆ
B
ζ, T̃ε(ζ) := εd

∑
Qi∩ 1

ε
B 6=∅

ζ(εyi),

Rε(ζ) :=
∑

z∈Φε(B)

ˆ
Bε(εz)

ζ(x) dx, R̃ε(ζ) := εd
σd
d

∑
Qi∩ 1

ε
B 6=∅

N(Qi)ζ(εyi),

then

lim
ε↓0+
|T ε(ζ)− T̃ ε(ζ)| = 0, lim

ε↓0+
|Rε(ζ)− R̃ε(ζ)| = 0 almost surely. (5.5.16)

The first limit is a standard Riemann sum; for the second limit we argue in a similar way: Since
ζ ∈W 1,∞

0 (B), we have that

|Rε(ζ)− R̃ε(ζ)| =
∣∣∣∣ ∑
Qi∩ 1

ε
B 6=∅

( ∑
zj∈Φ(Qi)

ˆ
Bε(εzj)

ζ − εdσd
d
N(Q)ζ(εyi)

)∣∣∣∣
=

∣∣∣∣ ∑
Qi∩ 1

ε
B 6=∅

∑
zj∈Φ(Qi)

ˆ
Bε(εzj)

(ζ(x)− ζ(εyi))

∣∣∣∣ ≤ 2‖∇ζ‖∞ εd+1N ε(B).

We now apply (5.5.8) of Lemma 5.5.2 to infer (5.5.16). This, together with (5.5.15) and the triangular
inequality implies that almost surely

lim sup
ε↓0+

∣∣∣∣ ∑
zi∈Φε(B)

Xi

ˆ
Bε(εzi)

ζ(x) dx− σd
d
〈N(Q)〉〈X〉

ˆ
B
ζ

∣∣∣∣
≤ lim sup

ε↓0+

∣∣∣∣ ∑
zi∈Φε(B)

(Xi − 〈X〉)
ˆ
Bε(εzi)

ζ(x) dx

∣∣∣∣ (5.5.17)

+ lim sup
ε↓0+

∣∣∣∣εd〈X〉σdd ∑
Qi∩ 1

ε
B 6=∅

ζ(εyi)
(
N(Qi)− 〈N(Q)〉

)∣∣∣∣.
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It remains to show that also the previous two terms on the right-hand side above vanish almost
surely. Since to do this we follow an argument very similar to the one of Lemma 5.5.1, we only give
the details of the parts in which the proof differs. For ε > 0 let

ai,ε :=

ˆ
Bε(εzi)

ζ(x) dx, X̃i := Xi − 〈Xi〉

and

Sε :=
∑

zi∈Φε(B)

ai,εXi, S̃ε :=
∑

zi∈Φε(B)

ai,εX̃i.

We start by proving that the the first term on the right-hand side of (5.5.17), i.e. S̃ε above, vanishes
in the limit; we may argue analogously that also second term on the right-hand side of (5.5.17)
vanishes.

As in the proof of Lemma 5.5.1, we may use Chebyshev’s inequality to estimate for each δ > 0

P(S̃ε > δ) ≤ δ−2〈S̃2
ε 〉 (5.5.18)

and rewrite

〈S̃2
ε 〉 =

〈 ∑
zi,zk∈Φ( 1

ε
B)

ai,εak,εX̃iX̃k

〉
=

∑
Qj∩

1
εB 6=∅

Qi∩
1
εB 6=∅

〈( ∑
zl∈Φ(Qj)

aj,εX̃j

)( ∑
zk∈Φ(Qi)

ak,εX̃k

)〉
.

If we now set Yi :=
∑

zl∈Φ(Qj)
aj,εX̃j , since all |aε,i| ≤ ‖ζ‖L∞εd, we argue as for the random variables

{Zi}i∈N in the proof of Lemma 5.5.2 and infer that

〈S̃2
ε 〉 ≤

∑
Qi∩ 1

ε
B 6=∅

‖ζ‖2∞ε2d〈N(Q)2〉Var(X) + Cε2d‖ζ‖2∞
∑

Qj∩
1
εB 6=∅

Qi∩Qj=∅

〈N(Q)2〉〈X〉2

|xi − xj |γ

γ>d

. εd‖ζ‖2∞〈N(Q)2〉〈X2〉.

Therefore, if we plug this into (5.5.18) and apply Borel-Cantelli’s lemma to the subsequence εn = 1
n

with n ∈ N, we get that

lim
n↑+∞

S̃εn = 0 almost surely.

We appeal to an estimate similar to this one also for the second term on the right hand side of
(5.5.17) (this time using the assumption (5.2.3)) and conclude from (5.5.17) that for the sequence
{εn}n∈N we have almost surely that

lim
n↑+∞

∑
zi∈Φ( 1

εn
B)

Xi

ˆ
Bεn (εnzi)

ζ(x) dx =
σd
d
〈N(Q)〉〈X〉

ˆ
B
ζ(x) dx. (5.5.19)

To extend (5.5.19) to any sequence εj ↓ 0 and for the same full-probability set, we argue again
similarly to Lemma 5.5.1. We first fix the following notation: For 0 < ε < 1, we define

ε :=
(
b1
ε
c+ 1

)−1
, ε :=

(
b1
ε
c
)−1

.
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Note that ε−1, ε−1 ∈ N and ε ≤ ε ≤ ε. By writing ζ = ζ+ + ζ− and using linearity, we observe that it
suffices to consider non-negative functions ζ and thus reduce ourselves to the case ai,ε ≥ 0.

For any εj ↓ 0+ we may use the triangle inequality and the assumptions on the sign of the weights
and the Xi’s to bound

Sεj ≤ Sεj +

Nεj (B)∑
i=1

|ai,εj − ai,εj |Xi ≤ Sεj + max
i=1,··· ,Nεj (B)

|ai,εj − ai,εj |
Nεj (B)∑
i=1

Xi. (5.5.20)

We now claim that the weights are uniformly continuous in the second index, uniformly in the first
index: More precisely we have that almost surely

lim
ε↓0+

maxi≤#Nε(B) |ai,ε − ai,ε|
εd

= lim
ε↓0+

maxi≤#Nε(B) |ai,ε − ai,ε|
εd

= 0. (5.5.21)

We first argue that, if this is true, the proof of the lemma is concluded: From (5.5.20) we indeed
obtain

Sεj ≤ Sεj +
maxi=1,··· ,Nεj (B) |ai,εj − ai,εj |

εdj
εdj

Nεj (B)∑
i=1

Xi.

Limit (5.5.19), Lemma 5.5.2 and the second limit in (5.5.21) yield

lim sup
εj↓0

Sεj ≤
σd
d
〈N(Q)〉 〈X〉

ˆ
ζ.

We may argue similarly as in (5.5.20) for the bound from below and get that

lim inf
εj↓0

Sεj ≥
σd
d
〈N(Q)〉 〈X〉

ˆ
ζ.

This yields the claim of Lemma 5.5.4.

It thus remains to establish (5.5.21): Since ζW 1,∞
0 (B), for any choice of zi ∈ B and ε1 ≤ ε2 we

estimate

|ai,ε1 − ai,ε2 | =
ˆ
Bε1 (0)

|ζ(x+ ε1zi)− ζ(x+ ε2zi)| dx+

ˆ
Bε2 (0)\Bε1 (0)

ζ(x+ εzi) dx

≤ ‖∇ζ‖∞|ε2 − ε1||zi|εd1 + ‖ζ‖∞
((ε2

ε1

)d
− 1
)
εd1.

Since N ε2(B) ≤ N ε1(B) and thus i ≤ N ε2(B), we have that |zi| ≤ ε−1
2 and

|ai,ε1 − ai,ε2 | ≤ ‖ζ‖W 1,∞

((
1− ε1

ε2

)
+
((ε2

ε1

)d
− 1
))

εd1.

Therefore, for the choice ε1 = ε, ε2 = ε this yields

|ai,ε − ai,ε| ≤ ‖ζ‖W 1,∞

(
ε+

( 1

1− ε

)d
− 1

)
εd.

and hence also the first limit in (5.5.4) by (5.5.8) of Lemma 5.5.2. The second limit may be argued
in a similar way.
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5.5.3 Conditions of Theorem 5.2.1 for the processes defined in case (c) of Section
5.2.

By construction, the processes are stationary. Moreover, the marginal PR satisfies (5.2.4), (5.2.5).
Therefore, it suffices to prove that the point process Φ as defined in either (c.1) or (c.2) satisfies
(5.2.2) and (5.2.3).

We begin with case (c.1): For a bounded set D ⊂ Rd, r > 0 and a point xi ∈ Rd, we define
N1(D) := #Φ1(D) and N i

r(D) = #Φxi
r ∩ (Bri(xi) ∩D). For R > 0, let

BR(D) := {x ∈ Rd : dist(x,D) ≤ R}.

Then, by (5.2.7), we estimate

〈N(Q)2〉 =

〈( ∑
zi∈Φ1(Rd)

N i
ri(Bri(zi) ∩Q)

)2〉
≤
〈
N1

(
BRc(Q)

) ∑
zi∈Φ1(BRc (Q))

(
N i
ri(Bri(zi))

)2〉
= 〈N1

(
BRc(Q)

)2〉〈N0
Rc(BRc(0))2〉 ≤ λ2

1‖λ2‖2∞R2d
c |BRc(Q)|2.

After taking the square-root of the above inequality, we conclude (5.2.2).

Condition (5.2.3) is an easy consequence of the fact that the process under consideration has
finite range of dependence Rc, namely that if dist(A,B) > Rc, then the random variables N(A)
and N(B) are independent. Thus, condition (5.2.3) is satisfied for any γ > 0 and with a constant
depending on Rc.

We now turn to case (c.2). In this case, property (5.2.2) is an immediate consequence of the
choice β < 1 and the fact that, if Φ̃ is the Poisson point process on Rd with intensity α, then for
every m ∈ N and bounded set B ⊂ Rd

〈N(B)m〉 ≤ 〈(#Φ̃(B))m〉.

Furthermore, as in the previous case, the process considered in (c.2) has finite range of dependence
given by rc and thus satisfies (5.2.3) for any γ > 0.



Chapter 6

Homogenization of the Stokes
equations

In this Chapter, we consider the steady incompressible Stokes equations in randomly perforated
domains under very mild assumption on the distribution and size of the holes. In the homogenization
limit, we obtain the Brinkman equations, which are the fluid equations in the Vlasov-Stokes equations
(1.1.2), which model sedimentation of inertial particles in a fluid at zero Reynolds number. We have
discussed the significance of the homogenization result that we obtain in this chapter as a first step
in the derivation of the Vlasov-Stokes system in Chapter 1.5. The basic strategy of the proof in this
chapter follows the one for the Poisson equation from the previous chapter. However, several new
ideas are needed in order to deal with the incompressibility of the fluid. We also need to slightly
strengthen the assumptions on the sizes of the holes in comparison to the Poisson equation.

The content of this chapter has appeared as a preprint, [GH18].

6.1 Introduction

We study the problem 
−∆uε +∇pε = f in Dε

∇ · uε = 0 in Dε

uε = 0 on ∂Dε

(6.1.1)

in a domain Dε, that is obtained by removing from a bounded set D ⊂ Rd, d > 2, a random number
of small balls having random centres and radii. More precisely, for ε > 0, we define

Dε = D\Hε, Hε :=
⋃

zi∈Φ∩ 1
ε
D

B
ε

d
d−2 ρi

(εzi), (6.1.2)

where Φ is a Poisson point process on Rd with homogeneous intensity rate λ > 0, and the radii
{ρi}zi∈Φ ⊂ R+ are identically and independently distributed unbounded random variables. We
comment on the exact assumptions on the distribution of each ρi later in this introduction. Our
main result states that, for almost every realization of Hε in (6.1.2), the solution uε to (6.1.1) weakly
converges in H1

0 (D) to the solution uh of the Brinkman equations
−∆uh + µuh +∇ph = f in D

∇ · uh = 0 in D

uh = 0 on ∂D.

(6.1.3)

157
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The constant matrix µ appearing in the equations above satisfies

µ = µ0I, µ0 = Cdλ〈ρd−2〉, (6.1.4)

where 〈·〉 denotes the expectation under the probability measure on the radii ρi, and the constant
Cd > 0 depends only on the dimension d. In the case d = 3, we have Cd = 6π.

From a physical point of view, the equations in (6.1.1) represent the motion of an incompressible
viscous fluid among many small obstacles; the additional term µuh appearing in (6.1.3) corresponds
to the effective friction force of the obstacles acting on the fluid. In the physical literature, the
term µ is the Stokes resistance (see Chapter 2.2; in this chapter though, we mostly adopt for µ the
term “Stokes capacity density” to emphasize the analogy with the harmonic capacity density which
appears in the analogue homogenization problem for the Poisson equation studied in the previous
chapter. More precisely, for a smooth and bounded set E ⊂ Rd, let us define its Stokes capacity as
the symmetric and positive-definite matrix given by

ξt ·Mξ = inf
w∈Eξ

ˆ
Rd\E

|∇w|2, for all ξ ∈ Rd. (6.1.5)

Here,
Eξ =

{
w ∈ H1

loc(Rd;Rd) : ∇ · w = 0, w = ξ in E, w → 0 for |x| ↑ +∞
}
.

Then, in the case E = Br, we obtain M = Cdr
d−2I (see e.g. [All90a]). The definition (6.1.4) of µ is

thus an averaged version of the previous formula where we take into account the intensity rate of the
Process Φ according to which the balls of Hε are generated.

This work is an adaptation to the Stokes equations of the homogenization result obtained in the
previous chapter for the Poisson equation. In particular, the class of random holes considered in this
chapter is included in the class studied in the previous chapter. In the latter, it is assumed that the
identically distributed radii ρi in (6.1.2) satisfy

〈ρd−2〉 < +∞. (6.1.6)

In the this chapter, we require the slightly stronger condition

〈ρ(d−2)+β〉 < +∞, for some β > 0. (6.1.7)

Before further commenting on (6.1.7) in the next paragraph, we recall that in the case of the Poisson
problem, the analogue of the term µ appearing in the homogenized equation (6.1.3) is the asymptotic
harmonic capacity density generated by the holes Hε. Assumption (6.1.6) is minimal in order to
have that this quantity is finite in average, but does not exclude that with overwhelming probability
some balls generating Hε overlap. .

The main challenge in proving the results of this chapter is related to the regions of Hε where
there are clustering effects. More precisely, the main goal is to estimate their contribution to the
Stokes capacity density, and thus to the limit term µ appearing in (6.1.3). In the case of the Poisson
equation in the previous chapter, the analogue is done by relying on the sub-additivity of the harmonic
capacity, together with (6.1.6) and a Strong Law of Large Numbers. In the case of the Stokes capacity
(6.1.4), though, sub-additivity fails due to the incompressibility of the fluid (i.e. the divergence-free
condition). We thus need to cook up a different method to deal with the balls in Hε which overlap
or are too close. Heuristically speaking, the main challenge is that the incompressibility condition
yields that big velocities are needed to squeeze a fixed volume of fluid through a possible narrow
opening. The main reason for the strengthened assumption (6.1.7) is that it allows us to obtain a
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certain degree of information on the geometry of the clusters of Hε. In particular, (6.1.7) rules out
the occurrence of clusters made of too many holes of similar size. We emphasize, however, that it
neither prevents the balls generating Hε from overlapping, nor it implies a uniform upper bound
on the number of balls of very different size which combine into a cluster (see Section 6.6). The
main technical effort of this chapter goes into developing a strategy to deal with these geometric
considerations and succeed in controlling the term in (6.1.3). We refer to Subsection 6.2.3 for a more
detailed discussion on our strategy.

We also mention that, to avoid further technicalities, we only treat the case where the centres of
the balls in (6.1.2) are distributed according to a homogeneous Poisson point process. It is easy to
check that our result applies both to the case of periodic centres and to any (short-range) correlated
point process trated in the previous chapter for which the probabilistic results contained in Section
6.6 hold.

After Brinkman proposed the equations (6.1.3) in [Bri47] for the fluid flow in porous media, an
extensive literature has been developed to obtain a rigorous derivation of (6.1.3) from (6.1.1) in the
case of periodic configuration of holes [Bri86; L8́3; SP82; MK08]. We take inspiration in particular
from [All90a], where the method used in [CM97] for the Poisson equations is adapted to treat the
case of the Stokes equations in domains with periodic holes of arbitrary and identical shape. In
[All90a], by a compactness argument, the same techniques used for the Stokes equations also provide
the analogous result in the case of the stationary Navier-Stokes equations. The same is true also in
our setting (see Remark 6.2.2 in Section 6.2).

In [DGR08], with methods similar to [All90a] and [CM97], the homogenization of stationary
Stokes and Navier-Stokes equations has been extended also to the case of spherical holes where
different and constant Dirichlet boundary conditions are prescribed at the boundary of each ball.
This corresponds to the quasi-static regime of holes slowly moving in a fluid, and gives rise in (6.1.3)
to an additional source term µj, with j being the limit flux of the holes. In [DGR08], the holes have
all the same radius, are not necessarily periodic, but satisfy a uniform minimal distance condition of
the same order of ε as in the periodic setting. In [Hil18], this last condition has been weakened but
not completely removed. In particular it is still assumed that, asymptotically for ε ↓ 0, the radius of
each hole is much smaller than its distance to any other hole.

In [HMS17], the quasi-static Stokes equations are considered in perforated domains with holes of
different shapes which are both translating and rotating. Due to the shapes of the holes, the problem
becomes non-isotropic, i.e. the matrix µ in (6.1.3) is not a multiple of the identity. Moreover, since
also the rotations of the holes are included into the model, a more complicated source term F̄ arises
on the right hand side of the limit problem. The result in [HMS17] is proved under the same uniform
minimal distance assumption as in [DGR08].

Finally, we also mention that the homogenization in the Brinkman regime for evolutionary
Navier-Stokes in a bounded domain of R3 has been considered in [FNN16]. In this paper, the holes
are assumed to be disjoint, have arbitrary shape and uniformly bounded diameter. A condition on
the minimal distance between the holes is substituted by a weaker assumption implying that, for ε
small enough, the diameter of the holes is much smaller than the distance between them.

There are fewer results in the literature concerning the case of randomly distributed holes: In
[Rub86], the case of N randomly distributed spherical holes of size N−1 in R3 is considered. Starting
from the Brinkman equation (6.1.3) with the term µ sufficiently large, it is shown that in the limit
N →∞ an additional zero-order term appears in the limit equation. This result has been recently
generalized in [CH18] to the case of the Stokes equations in the quasi-static regime.

We emphasize that the main novelty of this chapter is that we consider spherical holes whose
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radii are not uniformly bounded and only satisfy (6.1.7). As already mentioned above, for small β in
(6.1.7), with probability tending to one as ε→ 0, the perforated domain Dε in (6.1.2) contains many
holes that overlap. In all the deterministic results listed above, overlapping balls are either excluded
or asymptotically ruled out for ε ↓ 0. Similarly, in the random settings of [Rub86] and [CH18], the
overlapping are negligible in probability: Since the radii of the holes are chosen to be identically N−1,
it is shown that, with probability tending to one as N →∞, the minimal distance between them is
bounded below by N−α for α < 1 .

We finally mention that in this chapter we also give a convergence result for the pressures {pε}ε>0.
In all the papers mentioned above except for [All90a], the convergence of the pressure is not considered.
In fact, the problem may be reformulated so that the pressure only plays the role of a Lagrange
multiplier for the incompressibility of the fluid. As a physical quantity, though, the pressure is
important in itself and obtaining bounds may turn out to be a challenging problem. In [All90a]
it is shown that for a suitable extension Pε(pε) for pε on the whole domain D, the functions Pεpε
converge to ph weakly in L2(D). Since uε converges weakly in H1, this is the optimal result that one
could expect. In our work, we prove a sub-optimal convergence result for a suitable modification p̃ε
of the pressures pε. The main difficulty in our case is again given by the presence of the clusters of
Hε that prevents us from finding suitable bounds for pε close to those regions. Roughly speaking,
the definition of p̃ε allows us to cut-off a small neighborhood Eε of Hε and show that, away from it,
the pressures convergence to ph in Lq, q < d

d−1 . The neighborhood Eε is small in the sense that the
harmonic capacity of the difference Eε\Hε almost surely vanishes in the limit ε ↓ 0+.

This chapter is organized as follows: In Section 6.2 we state the two main theorems, namely
the convergence of the fluid velocity uε and a partial convergence result for the pressure pε. In
Subsection 6.2.4 we formulate Lemma 6.2.4 which provides a rich class of test-functions for (6.1.1)
and characterizes their behaviour in the limit ε→ 0. We then show how the convergence of uε follows
from this result. In Section 6.3, we give some geometric properties for the realization of the holes Hε

that are needed in order to prove Lemma 6.2.4. These properties are split into two lemmas. The
first one is analogous to the corresponding lemma in the previous chapter, the other one gives more
detailed informations on the geometry of the clusters of Hε and is the result which requires the
strengthened version (6.1.7) of (6.1.6). In subsection 6.3.2, we prove the results stated in Section
6.3. In Section 6.4, we prove Lemma 6.2.4. In Section 6.5, we prove the main result concerning
the convergence of pressure. In Section 6.6, we prove some probabilistic result on the number of
comparable balls which may combine into a cluster of Hε. These are the key ingredients used in
subsection 6.3.2 to show the geometric results of Section 6.3. Finally, in Section 6.7, we show how to
extend the convergence result from the Stokes equations to the Stationary Navier-Stokes equations,
and in Section 6.8, we give some standard estimates for the solutions of the Stokes equations in
annuli and exterior domains.

6.2 Setting and main result

Let D ⊂ Rd, d > 2, be an open and bounded set that is star-shaped with respect to the origin.
For ε > 0, we denote by Dε ⊂ D the domain obtained as in (6.1.2), namely by setting Dε = D\Hε

with

Hε :=
⋃

zj∈Φ∩ 1
ε
D

B
ε

d
d−2 ρj

(εzj). (6.2.1)

Here, Φ ⊂ Rd is a homogeneous Poisson point process having intensity λ > 0 and the radii
R := {ρi}zi∈Φ are i.i.d. random variables which satisfy condition (6.1.7) for a fixed β > 0. Since
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assumption (6.1.7) with β1 > 0 implies (6.1.7) for every other 0 < β ≤ β1, with no loss of generality
we assume that β ≤ 1.

Throughout this chapter we denote by (Ω,F ,P) the probability space associated to the marked
point process (Φ,R), i.e. the joint process of the centres and radii distributed as above. We refer to
the previous chapter for a more detailed introduction of marked point processes.

6.2.1 Notation

For a point process Φ on Rd and any bounded set E ⊂ Rd, we define the random variables

Φ(E) := Φ ∩ E, Φε(E) := Φ ∩
(

1

ε
E

)
,

N(E) := #(Φ(E)), N ε(E) := #(Φε(E)).

(6.2.2)

For η > 0, we denote by Φη a thinning for the process Φ obtained as

Φη(ω) := {x ∈ Φ(ω) : min
y∈Φ(ω),
y 6=x

|x− y| ≥ η}, (6.2.3)

i.e. the points of Φ(ω) whose minimal distance from the other points is at least η. Given the process
Φη, we set Φη(E), Φε

η(E), Nη(E) and N ε
η (E) for the analogues for Φη of the random variables defined

in (6.2.2).

For a bounded and measurable set E ⊂ Rd and any 1 ≤ p < +∞, we denote

Lp0(E) := {f ∈ Lp(E) :

ˆ
E
f = 0}.

As in the previous chapter, we identify any v ∈ H1
0 (Dε) with the function v̄ ∈ H1

0 (D) obtained by
trivially extending v in Hε.

Throughout the proofs in this chapter, we write a . b whenever a ≤ Cb for a constant C = C(d, β)
depending only on the dimension d and β from assumption (6.1.7). Moreover, when no ambiguity
occurs, we use a scalar notation also for vector fields and vector-valued function spaces, i.e. we write
for instance C∞0 (D), H1(Rd), Lp(Rd) instead of C∞0 (D;Rd), H1(Rd;Rd), Lp(Rd;Rd).

6.2.2 Main results

Let (Φ,R) be a marked point process as above, and let Hε be defined as in (6.2.1). Then, we
have:

Theorem 6.2.1. For f ∈ H−1(D;Rd) and ε > 0, let (uε, pε) = (uε(ω, ·), pε(ω, ·)) ∈ H1
0 (Dε;Rd) ×

L2
0(Dε;R) be the solution of 

−∆uε +∇pε = f in Dε

∇ · uε = 0 in Dε

uε = 0 on ∂Dε.

(6.2.4)

Then, for P-almost every ω ∈ Ω

uε(ω, ·) ⇀ uh in H1
0 (D;Rd), for ε ↓ 0+,
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where (uh, ph) ∈ H1
0 (D;Rd)× L2

0(D;R) is the solution of
−∆uh +∇ph + Cdλ〈ρd−2〉uh = f in D

∇ · uh = 0 in D

uh = 0 on ∂D,

(6.2.5)

with Cd as in (6.1.4).

Remark 6.2.2 (Stationary Navier-Stokes equations). As in the case of periodic holes [All90a], we
remark that the same result of Theorem 6.2.1 holds in dimension d = 3, 4 for the solutions uε to the
stationary Navier-Stokes system

uε · ∇uε −∆uε +∇pε = f in Dε

∇ · uε = 0 in Dε,

uε = 0 on ∂Dε

(6.2.6)

with homogenized equations
uh · ∇uh −∆uh + Cdλ〈ρd−2〉uh +∇ph = f in D

∇ · uh = 0 in D

uh = 0 on ∂D,

(6.2.7)

We argue in Section 6.7 how the same argument that we give in the next section for Theorem
6.2.1 allows also to treat the non-linear term in (6.2.6).

The previous theorem shows that the holes of Hε which overlap do not destroy the homogenization
process and that their effect on the value of the Brinkman term is negligible. On the other hand, the
complicated geometries which may arise from the clustering effects in Hε prevent us from obtaining a
suitable extension of the pressure terms pε to the whole domain D which converges to ph. Nonetheless,
in the next theorem we prove a convergence result for pε to ph, as long as we remove from D an
exceptional set Eε containing Hε. This set mostly coincides with Hε in the sense that the difference
Eε\Hε has vanishing harmonic capacity.

Theorem 6.2.3. For almost every ω ∈ Ω, there exists a set Eε ⊂ Rd such that Eε ⊃ Hε and for
ε ↓ 0+

Cap(Eε\Hε)→ 0, (6.2.8)

where Cap denotes the harmonic capacity in Rd. Moreover, for every compact set K b D, the
modification of the pressure

p̃ε =

{
pε −

ffl
K\Eε pε in K\Eε

0 in D\K ∪ Eε
(6.2.9)

satisfies for all q < d
d−1

p̃ε ⇀ ph in Lq0(K;R).

Since this result relies on some of the tools which will be developed along the proof of Theorem
6.2.1, we give the argument for Theorem 6.2.3 in Section 6.5.
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6.2.3 Main ideas in proving Theorem 6.2.1 and Theorem 6.2.3

As already mentioned above, the structure and many arguments of this chapter are an adaptation
of the previous chapter to the case of the Stokes equations. In this subsection, we point out the main
differences and the challenges that we encountered along the process.

In contrast to the previous chapter, we prove the convergence of the fluid velocities uε by using an
implicit version of the method of oscillating test-functions, which is similar to the one of [DGR08]: We
construct an operator Rε which acts on divergence-free test-functions v such that Rεv ∈ H1

0 (Dε) is
an admissible test function for (6.2.4), Rεv → v in H1

0 (D) and ∇ ·Rεv = 0 in D. This last condition
in particular implies that we may test the equation (6.2.4) with Rεv and do not need any bounds on
the pressure pε. We emphasize that, as done in [All90a], a convergence result on the pressure terms
{pε}ε>0 is required if one constructs divergence-free oscillating functions wε ∈ H1

0 (Dε) and tests the
equation (6.1.1) for uε with the products φwε, for arbitrary φ ∈ C∞0 (D). We remark that, in principle,
the partial result that we obtain on the convergence of the pressure is strong enough to allow us to
follow also this last approach. However, as we show in Section 6.5, obtaining bounds on the pressure
in our setting strongly relies on the geometric properties of the clusters and requires a fairly (and
further) technical argument. We thus find easier to first give a proof for the homogenization of uε
which does not rely on any bounds on the sequence {pε}ε>0, and only afterwards show how to extract
a convergence result also for pε.

As in the previous chapter with the construction of the oscillating test-functions wε, the construc-
tion of the operator Rε relies on a lemma dealing with the geometric properties of the set of holes
Hε which perforate D in (6.1.2). This lemma allows us to split the set Hε into a “good” set Hε

g ,
which contains holes which are small and well-separated, and a “bad” set Hε

b , which contains big
and overlapping holes. On the one hand, we construct Rεv such that it vanishes on Hε

g by closely
following the ideas in [All90a] and [DGR08]. On the other hand, to define Rεv in such a way that
it vanishes also on Hε

b , we need to improve the arguments used in the previous chapter. In fact,
as pointed out in the introduction, in contrast to the previous chapter, by the incompressibility
condition it is not enough to prove that the harmonic capacity of Hε

b vanishes in the limit ε ↓ 0+.

In order to overcome this problem, we use the following strategy to construct Rεv such that,
for any divergence-free v ∈ C∞0 (D,Rd), the function Rεv vanishes on the “bad” set Hε

b , remains
divergence-free in D and converges to v in H1

0 (D;Rd). We recall that in the set Hε
b the balls may

overlap; the challenge is therefore to find a suitable truncation for v on this set, which preserves the
divergence-free condition and which remains bounded in an H1-sense. A first approach to construct
Rεv would then be to solve the Stokes problem in a large enough neighbourhood Dε

b of Hε
b

−∆wε +∇πε = ∆v in Dε
b \H

ε
b

∇ · w = 0 in Dε \Hε
b

w = 0 on ∂Hε
b

w(x) = v on ∂Dε
b .

(6.2.10)

The connection with the concept of ”Stokes capacity” generated by the set Hε
b thus becomes apparent;

namely, at least in the case of sets E regular enough, the minimizer in (6.1.5) solves
−∆w +∇π = 0 in Rd \ E
∇ · w = 0 in Rd \ E
w = ξ on ∂E

w(x)→ 0 as |x| → ∞.
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However, getting H1-estimates on the solution wε of (6.2.10) which depend explicitly on ε, requires
more informations than we have on the geometry of the set Hε

b . In fact, condition (6.1.7) does not
prevent the balls from overlapping nor provides an upper bound on the number of balls in each of
the clusters (cf. Lemma 6.6.1). The approach that we adopt to construct Rεv is therefore different
and is based on finding a suitable covering H̄ε

b of the set Hε
b . The set H̄ε

b is obtained by selecting
some of the balls that constitute Hε

b and dilating them by a uniformly bounded factor λε ≤ Λ. The
main, crucial, feature of this covering is that it allows us to construct Rεv vanishing on Hε

b ⊂ H̄ε
b by

solving different Stokes problems in disjoint annuli of the form B
θλεε

d
d−2 ρi

(εzi)\B
λεε

d
d−2 ρi

(εzi), θ > 1,

and iterating this procedure a finite number of steps. The advantage in this is that we construct
Rεv iteratively and obtain bounds by applying a finite number of times some standard and rescaled
estimates for solutions to Stokes equations in the annulus Bθ\B1.

More precisely, H̄ε
b is chosen to satisfy the following properties:

(a) H̄ε
b is the union of M < +∞ families of balls such that, inside the same family, the balls

B
λεε

d
d−2 ρi

(εzi) are disjoint even if dilated by a further factor θ2 > 0, i.e. by considering

B
θ2λεε

d
d−2 ρi

(εzi);

By this property, if we want to construct Rεv vanishing only in the holes of the same family, it
suffices to solve (6.2.10) in the disjoint annuli B

θλεε
d
d−2 ρi

(εzi)\B
λεε

d
d−2 ρi

(εzi) and stitch the solutions

together. This suffices to construct Rεv vanishing on the balls B
λεε

d
d−2 ρi

(εzi) of the same family, and

thus on the subset of Hε
b covered by them. In order to obtain Rεv vanishing on the whole set Hε

b ,
one may try to iterate the previous procedure: Let the families of balls constituting H̄ε

b be ordered
with an index k = 1, · · · ,M . Then:

• We construct a first solution v1
ε which solves (6.2.10) in all the (disjoint) annuli generated by

the first family;

• We construct v2
ε solving (6.2.10) with v substituted by v1

ε in the (disjoint) annuli of the second
family;

• We iterate the procedure up to the M -th family and set Rεv = vMε .

However, property (a) alone does not ensure that the final solution constructed in this fashion
vanishes on Hε

b : Since annuli generated by different families may still intersect, at each step the
zero-boundary conditions of the previous steps may be destroyed (as an example, see Figure 6.1).
This is the reason why we need that the covering H̄ε

b satisfies an additional property. This property
should ensure that, if at step k the function vk vanishes on a certain subset of Hε

b , then also vk+1

vanishes on that same subset. We thus construct H̄ε
b in such a way that

(b) all the balls B
θλεε

d
d−2 ρi

(εzi) belonging to the k-th family do not intersect the balls of Hε
b

contained in the previous families (cf. property (6.3.8) of the Lemma 6.3.2).1

The construction of H̄ε
b satisfying (a)-(b) is given in Lemma 6.3.2 and constitutes the most technically

challenging part of this chapter.

1Strictly speaking, this is a simplification of the statement of Lemma 6.3.2 (cf. Remark 6.3.3 in Section 6.3).
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First iteration:

v1ε = 0

v1ε = v

Second iteration:

v2ε(= v1ε) = 0

v2ε = v1ε

v2ε = 0

Figure 6.1: This is an example of a configuration which satisfies only (a) for which the algorithm to construct

Rεv may not give a function vanishing on all the holes. The first picture on the left represents the first iteration

step: The blue, full-lined, ball is the hole belonging to the first family generating H̄ε
b . We solve a Stokes

problem in the blue annulus, with zero boundary conditions in the inner ball. The dashed, red ball represents

a hole generated by another family of H̄ε
b , which is neglected in this step. The second picture represents the

second iteration step: Given the solution v1ε obtained in the first step, we solve another Stokes problem in the

red, smaller, annulus with zero boundary conditions in the inner hole. Since this new annulus intersects the

hole of the previous step, the function v2ε may not vanish in the intersection in red.

6.2.4 Lemma 6.2.4 and proof of Theorem 6.2.1

The proof of Theorem 6.2.1 relies on the following lemma:

Lemma 6.2.4. For almost every ω ∈ Ω and for all ε ≤ ε0(ω) there exists a linear map

Rε : {v ∈ C∞0 (D) : ∇ · v = 0} → H1(D)

with the following properties:

(i) Rεv = 0 in Hε and, for ε small enough, also Rεv ∈ H1
0 (D);

(ii) ∇ ·Rεv = 0 in Rd;

(iii) Rεv ⇀ v in H1
0 (D);

(iv) Rεv → v in Lp(D) for all 1 ≤ p <∞;

(v) For all uε ∈ H1
0 (Dε) such that ∇ · uε = 0 in D and uε ⇀ u in H1

0 (D), we have

ˆ
∇Rεv : ∇uε →

ˆ
∇v : ∇u+ Cdλ〈ρd−2〉

ˆ
v · u,

with Cd as in Theorem 6.2.1.

Proof of Theorem 6.2.1. Let us fix ω ∈ Ω such that the operator Rε of Lemma 6.2.4 exists and
satisfies all the properties (i) - (v). We trivially extend uε to the whole set D. Since by the standard
energy estimate we have ‖uε‖H1

0 (D) ≤ ‖f‖H−1(D), then up to a subsequence εj , we have uε ⇀ u∗ in

H1
0 (D). Note that also ∇ · u∗ = 0 in D. We show that u∗ solves (6.2.5) and, by uniqueness, that

u∗ = uh in H1
0 (D). We thus may extend the convergences above to the whole limit ε ↓ 0+.
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For any divergence-free v ∈ C∞0 (D), we consider ε small enough such that the divergence-free
vector field Rεv obtained by means of Lemma 6.2.4 is in H1

0 (D). By testing (6.2.4) with this vector
field, we obtain

ˆ
∇Rεv : ∇uε = 〈Rεv, f〉H1,H−1 .

We now apply (iii) and (v) of Lemma 6.2.4 to the left- and right-hand side of the above identity,
respectively, and conclude that u∗ satisfies

ˆ
∇v : ∇u∗ + Cdλ〈ρd−2〉

ˆ
v · u∗ = 〈v, f〉H1,H−1 .

Since v ∈ C∞0 (D) is an arbitrary divergence-free test function, we conclude that u∗ is the solution uh
of (6.2.5).

6.3 Geometric properties of the holes

This section is the core of the argument of Theorem 6.2.1 and Theorem 6.2.3 and provides some
almost sure geometrical properties on Hε. These allow us to construct the operator of Lemma 6.2.4.

The results contained in this section rely on assumption (6.1.7) and may be considered as an
upgrade of Chapter 5.4. Since (6.1.7) is stronger than the one assumed in the previous chapter (see
also (6.1.6)), the marked point process (Φ,R) considered in this work is included in the class of
processes studied in previous chapter. Therefore, all the results for Hε contained in Chapter 5.4 hold
also in our case. Bearing this in mind, we introduce the first main result of this section: This is
almost a rephrasing of Lemma 5.4.2, where, thanks to (6.1.7), we are allowed to choose the sequence
rε appearing in the statement of Lemma 5.4.2 as a power law rε = εδ, for δ = δ(d, β) > 0.

Lemma 6.3.1. There exists a δ = δ(d, β) > 0 such that for almost every ω ∈ Ω and all ε ≤ ε0 = ε0(ω),
there exists a partition Hε = Hε

g ∪Hε
b and a set Dε

b ⊂ Rd such that Hε
b ⊂ Dε

b and

dist(Hε
g ;Dε

b) > ε1+δ, |Dε
b | ↓ 0+. (6.3.1)

Furthermore, Hε
g is a union of disjoint balls centred in nε ⊂ Φε(D), namely

Hε
g =

⋃
zi∈nε

B
ε

d
d−2 ρi

(εzi), εd#nε → λ |D|,

min
zi 6=zj∈nε

ε|zi − zj | ≥ 2ε1+ δ
2 , ε

d
d−2 ρi ≤ ε1+2δ.

(6.3.2)

Finally, if for η > 0 the process Φε
2η is defined as in (6.2.3), then

lim
ε↓0

εd#({zi ∈ Φε
2η(D) : dist(εzi, D

ε
b) ≤ ηε}) = 0. (6.3.3)

The next result upgrades the previous lemma and is the key result on which relies the construction
of the operator Rε of Lemma 6.2.4. We introduce the following notation: We set Iε := Φε(D)\nε, so
that, by the previous lemma, we may write

Hε
b :=

⋃
zi∈Iε

B
ε

d
d−2 ρi

(εzi). (6.3.4)
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As already discussed in Section 6.2.3, the main aim of the next result is to show that there exists a
suitable covering for Hε

b , which is of the form

H̄ε
b :=

⋃
zj∈Jε

B
λεjε

d
d−2 ρj

(εzj), Jε ⊂ Iε, sup
zj∈Jε

λεj ≤ Λ

and which satisfies (a) and (b) of Section 6.2.3. More precisely, we have:

Lemma 6.3.2. Let θ > 1 be fixed. Then for almost every ω ∈ Ω and ε ≤ ε0(ω, β, d, θ) we may choose
Hε
g , H

ε
b of Lemma 6.3.1 in such a way that have the following:

• There exist Λ(d, β) > 0, a sub-collection Jε ⊂ Iε and constants {λεl }zl∈Jε ⊂ [1,Λ] such that

Hε
b ⊂ H̄ε

b :=
⋃
zj∈Jε

B
λεjε

d
d−2 ρj

(εzj), λεjε
d
d−2 ρj ≤ Λε2dδ. (6.3.5)

• There exists kmax = kmax(β, d) > 0 such that we may partition

Iε =

kmax⋃
k=−3

Iεk, Jε =

kmax⋃
i=−3

Jεk ,

with Iεk ⊂ Jεk for all k = 1, · · · , kmax and⋃
zi∈Iεk

B
ε

d
d−2 ρi

(εzi) ⊂
⋃
zj∈Jεk

B
λεjε

d
d−2 ρj

(εzj); (6.3.6)

• For all k = −3, · · · , kmax and every zi, zj ∈ Jεk , zi 6= zj

B
θ2λεi ε

d
d−2 ρi

(εzi) ∩B
θ2λεjε

d
d−2 ρj

(εzj) = ∅; (6.3.7)

• For each k = −3, · · · , kmax and zi ∈ Iεk and for all zj ∈
⋃k−1
l=−3 J

ε
l we have

B
ε

d
d−2 ρi

(εzi) ∩B
θλεjε

d
d−2 ρj

(εzj) = ∅. (6.3.8)

Finally, the set Dε
b of Lemma 6.3.1 may be chosen as

Dε
b =

⋃
zi∈Jε

B
θε

d
d−2 λεi ρi

(εzi). (6.3.9)

Remark 6.3.3. As explained in Section 6.2.3, property (6.3.8) is crucial for the construction of the
operator Rε of Lemma 6.2.4. However, it slightly differs from property (b) stated in that section.
Namely, the balls B

ε
d
d−2 θλεjρj

(εzj), zj ∈ Jεl might intersect with some of the balls in Hε
b that are

contained in B
ε

d
d−2 λεi ρi

(εzi) for zi ∈ Jεk , k > l. This is why the additional index sets Iεk are introduced.

In these index sets, the balls are not ordered by size, but in such a way that (6.3.8) holds. More
precisely, if a ball in Hε

b is contained in several of the dilated balls in Jε, we will put it into the index
set Ik with k minimal such that it is contained in a dilated ball in Jεk .
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6.3.1 Structure and main ideas in the proof of Lemma 6.3.1 and Lemma 6.3.2.

Since the proof of Lemma 6.3.2 requires different steps and technical constructions, we give a
sketch of the ideas behind it. It is clear that Lemma 6.3.1 follows immediately from Lemma 6.3.2; we
thus only need to focus on the proof of this last result.

To this end we introduce the following notation, which we will also use throughout the rigorous
proof of Lemma 6.3.2 in the next subsection: Let

δ :=
β

2(d− 2)(d− 2 + β)
∧ β

2d
(6.3.10)

and

Iεk :=

{
{zi ∈ Φε(D) : ε1−δk ≤ ε

d
d−2 ρi < ε1−δ(k+1)} k ≥ −2

{zi ∈ Φε(D) : ε
d
d−2 ρi < ε1+2δ} k = −3.

(6.3.11)

Note that Φε(D) =
⋃
k≥−3 I

ε
k. We remark that the sets Iεk correspond to Iεδ,k in (6.6.1) of Section 6.6

with δ as in (6.3.10). Since we chose δ above such that δ < β
2d , we may apply Lemma 6.6.1 with this

choice of δ and infer that there exists kmax ∈ N such that Iεk = ∅ for all k > kmax. From now on, we
assume that kmax is chosen in this way and thus that

Φε(D) =

kmax⋃
k=−3

Iεk.

In addition, since we may bound

ε
d
d−2 max

Φε(D)
ρi ≤ ε

d
d−2
− d
d−2+β

(
εd

∑
zi∈Φε(D)

ρd−2+β
i

) 1
d−2+β ,

we use (6.1.7) and the Strong Law of Large Numbers, to infer that almost surely and for ε small
enough

ε
d
d−2 max

Φε(D)
ρi . ε

d
d−2
− d
d−2+β 〈ρd−2+β〉

1
d−2+β .

This implies by (6.3.10) that

max
zi∈Φε(D)

ε
d
d−2 ρi . ε2dδ. (6.3.12)

Step 1: Combining clusters of holes of similar size: We begin obtaining a first covering of Hε

made by a union of balls which, if of comparable size, are disjoint even if dilated by a constant factor
α > 1. Roughly speaking, we do this by merging the balls of Hε generated each family Iεk ∪ Iεk−1, in
holes of similar size which which are also disjoint. More precisely, we prove:

Claim: Let α > 1. Then, there exists Λ̃ = Λ̃(d, β, α) > 0 such that for P-almost every ω ∈ Ω and
all ε < ε0(ω) and all −3 ≤ k ≤ kmax there are Ĩεk ⊂ Iεk and {λ̃εj}zj∈Ĩk ⊂ [1, Λ̃] with the following
properties:

(6.3.13)

∀zi ∈ Iεk ∃ zj ∈
⋃
l≥k

Ĩεl : B
ε

d
d−2 ρi

(εzi) ⊂ B
ε

d
d−2 λ̃εjρj

(εzj).
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— : ε
d
d−2 ρi — : αε

d
d−2 ρi — : ε

d
d−2Ri

Figure 6.2: This sequence of pictures shows how to implement the algorithm of Step 1. From left to right: We

begin with an initial configuration of comparable balls generated by centres in Iε−3 ∪ Iε−2 and with associated

radii ε
d

d−2 ρi. In the picture in the middle, the full line represents a dilation by a factor α = 1.5 of this initial

configuration (here drawn with a dashed line). In the last picture, the full line represents the new configuration

obtained with the modified radii Ri which covers all the dilated balls of the previous figure (here drawn with a

dashed line).

For each −3 ≤ k ≤ kmax the balls{
B
ε

d
d−2 αλ̃εi ρi

(εzi)

}
zi∈Ĩεk∪Ĩ

ε
k−1

are pairwise disjoint. (6.3.14)

Note that “most” of the balls generated by the points in Iε−2 ∪ Iε−3 already satisfy (6.3.14) with

λεi = 1. Hence, Ĩε−3 contains most of the points of Iε−3. The only elements of Iε−2 ∪ Iε−3 which might
violate this conditions are the ones which are too close to each other. We will show that, since the
collection Iε−2 ∪ Iε−3 is generated by a Poisson point process, these exceptional points are few for
small values of ε > 0.

To construct the sets Ĩk above we adopt the following strategy (see Figure 6.2 for a sketch):

• Let α > 1 and −2 ≤ k ≤ kmax be fixed. We multiply each one of the radii {ρi}zi∈Iεk∪Iεk−1
by α

and consider the set of balls {
B
αε

d
d−2 ρi

(εzi)

}
zi∈Iεk∪I

ε
k−1

. (6.3.15)

For each point zi ∈ Iεk ∪ Iεk−1 we now define a new radius Rεi in the following way: For each
disjoint ball in the previous collection we set Rεi := ρi. We now consider the balls which are not
disjoint: For each connected component Cεk of (6.3.15), we pick on of the largest balls belonging
to Cεk, say B

αε
d
d−2 ρl

(εzl), and set Rεl as the minimal one such that Cεk ⊂ B
ε

d
d−2Rεl

(εzl). We set

Rεi = 0 for all the zi 6= zl generating the balls contained in Cεk. We thus have a new collection
of radii {Rεi}zi∈Iεk∪Iεk−1

.

• We multiply each Rεi above by the same factor α of the previous step and repeat the construction
sketched above with ρi substituted by Rεi .
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• We show that, almost surely, after a number M = M(d, β) < +∞ of iterations of the previous
two steps, all the radii Rεi obtained at the M th-step do not change any further. This means
that the balls B

ε
d
d−2Rεi

(εzi), for Rεi 6= 0, satisfy (6.3.13) and (6.3.14). Moreover, we may easily

bound each ratio
Rεi
ρi

=: λ̃εi ≤ Λ̃.

The key idea to prove the existence of the threshold M is that the configurations ω ∈ Ω for
which the radii Ri’s obtained after M iterations continue to change is related to events of the
form

“There exist M + 1 balls in Iεk ∪ Iεk−1 which are connected when dilated by C(α,M)”.

By Lemma 6.6.1, this event has zero probability for ε sufficiently small.

• The construction above can be expressed by a dynamical system (cf. (6.3.19)).

• We iterate this process for Iεk ∩ Iεk−1, −2 ≤ k ≤ kmax starting from k = −2, each time working
with the dilated radii that we got from the previous step.

Step 2: Construction of the sets Iε and Jε : Let us set θ = α
1
4 ≥ 1, with α ≥ 1 as in Step

1 (see (6.3.14)). In the previous step we extracted from each family Iεk generating the whole Φε(D) a
sub-collection Ĩεk. These sub-collections provide a covering for the whole set Hε and satisfy (6.3.14).
The aim of this step is to use the previous result to find a way to extract from Φε(D) the subset Iε
generating the bad holes and to construct the covering H̄ε

b .

We remark that, if we set λi = θ2λ̃i, the covering

kmax⋃
k=−3

⋃
zj∈Ĩεk

B
ε

d
d−2 λ̃εjρj

(εzj) ⊇ Hε

satisfies (6.3.7) thanks to (6.3.14).

The construction of this step is based on the following simple geometric fact: Let z1 ∈ Ĩεk1
and

z2 ∈ Ĩεk2
with k1 < k2 − 1. Since by construction we had Ĩεk ⊂ Iεk, this means by definition (6.3.11)

of the sets Iεk that ε
d
d−2 ρ1 ≤ εδε

d
d−2 ρ2 and thus that the ball B

ε
d
d−2 ρ1

(εz1) is much smaller than

B
ε

d
d−2 ρ2

(εz2). Therefore, for ε ≤ ε0(d, β, θ) we have that

B
ε

d
d−2 θ3λ̃ε1ρ1

(εz1) ∩B
ε

d
d−2 λ̃ε2ρ2

(εz2) 6= ∅ ⇒ B
ε

d
d−2 θλ̃ε1ρ1

(εz1) ⊆ B
ε

d
d−2 θ2λ̃ε2ρ2

(εz2). (6.3.16)

Indeed, if the inequality on the left-hand side above is true, for all z ∈ B
ε

d
d−2 θλ̃ε1ρ1

(εz1) we have

ε|z − z2| ≤ ε|z − z1|+ ε|z1 − z2| ≤ ε
d
d−2 θλ̃ε1ρ1 + ε

d
d−2 θ3λ̃ε1ρ1 + ε

d
d−2 λ̃ε2ρ2.

Since ε
d
d−2 ρ1 ≤ εδε

d
d−2 ρ2 and all 1 ≤ λ̃εi ≤ Λ̃, we may choose εδ < θ2−1

θΛ̃(1+θ2)
and obtain that

ε|z − z2| ≤ ε
d
d−2 θ2λ̃ε2ρ2,

i.e. the right-hand side in (6.3.16).

By relying on (6.3.16), we construct the covering Jε in the following way:
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• We start with kmax and set Jεkmax = Ĩεkmax and Jεkmax−1 = Ĩεkmax−1. We know that all the balls

of the form B
ε

d
d−2 λ̃εi ρi

(εzi) generated by zi ∈ Ĩεkmax ∪ Ĩ
ε
kmax−1 are disjoint in the sense of (6.3.14)

(recall that θ4 = α). The same holds for the balls B
ε

d
d−2 λ̃εjρj

(εzj) generated by the centres in

Ĩεkmax−2 ∪ Ĩεkmax−1. We thus focus on the intersections between the balls generated by Ĩεkmax−2

and Ĩεkmax .

• We show how to obtain the set Jεkmax−2 from Ĩεkmax−2 in such a way that (6.3.8) is satisfied by
this family. We begin by dilating the balls generated by the centres in Jεkmax of a factor θ2 and
thus obtain the set

Eεkmax =
⋃

zj∈Jεkmax

B
ε

d
d−2 λεjρj

(εzj)

(we recall that λεj = θ2λ̃εj). We define

Jεkmax−2 := {zi ∈ Ĩεkmax−2 : B
ε

d
d−2 θλ̃εi ρi

(εzi) * Eεkmax}.

Note that with this definition, for all zj ∈ Jεkmax−2 and every zi ∈ Jεkmax we have that

B
ε

d
d−2 θλ̃εi ρi

(εzi) * B
ε

d
d−2 λεjρj

(εzj)

and thus by property (6.3.16) (with zi = z1 and zj = z2) that

B
ε

d
d−2 θλεi ρi

(εzi) ∩B
ε

d
d−2 λ̃εjρj

(εzj) = ∅.

Since λ̃εj ≥ 1, the previous equality implies that the collection Jεkmax−2 satisfies condition (6.3.8).

• We now iterate the previous construction: We define

Eεkmax−1 = Eεkmax ∪
⋃

zi∈Jεkmax−1

B
ε

d
d−2 λεi ρi

(εzi)

and

Eεkmax−2 = (Eεkmax−1\
⋃

zi∈Jεkmax−2

B
ε

d
d−2 θλεi ρi

(εzi)) ∪
( ⋃
zi∈Jεkmax−2

B
ε

d
d−2 λεi ρi

(εzi)
)
.

Note that in the definition of this last set we need to remove the annuli

B
ε

d
d−2 θλεi ρi

(εzi)\B
ε

d
d−2 λεi ρi

(εzi)

in order to be able to iterate the argument of the previous step (see Figure 6.3 for an illustration
of the construction of the set Ekmax−2).

• We iterate the previous procedure and construct the sets Jεk , up to −2 ≤ k ≤ kmax. In the last
step k = −3, we define Jε−3 as the set of those elements which either intersect Eε−2 or that are

too close to each other. Thanks to this construction, some elements of Ĩε−3, i.e. the holes which
are small and well-separated from the clusters and from each others, do not belong to any of
the sets Jεk nor are covered by any of the dilated balls generated by these centres. We then
show that the remaining elements in Ĩε−3 constitute the set nε generating the holes Hε

g .
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Set Ekmax−1: Find the centres in Jkmax−2: Set Ekmax−2:

Figure 6.3: This sequence of pictures shows how to construct Ekmax−2 from Ekmax−1: In the first picture

on the left, the set Ekmax−1 is the one filled with horizontal lines. Note that the balls are all disjoint and

well-separated. The dashed annuli are the balls generated by centres in Ĩkmax−2 and dilated by the factor θ.

The circles with the full line in the second picture represent the balls whose centres are in the set Jkmax−2.

The third picture shows the set Ekmax−2.

• We finally define and partition the set Iε generating the holes of Hε
b by using the sets

{Jεk}−3≤k≤kmax : We insert in each Iεk the centres of the balls of Hε such that k is the smallest
integer for which Jεk provides a covering.

Step 3. Conclusion. We show that with these definitions of Jε, Iεk and λεj , the covering obtained
in the previous step satisfies all the properties of Lemma 6.3.1 and Lemma 6.3.2.

6.3.2 Proof of Lemma 6.3.1 and Lemma 6.3.2.

Proof of Lemma 6.3.2. In the sake of a leaner notation, when no ambiguity occurs we drop the index
ε in the sets of points (e.g. Iεk, J

ε
k , · · · ) and holes which are generated by them.

Proof of Step 1. We start by fixing a (total) ordering ≤ of the points in Φε(D) such that

zi ≤ zj ⇒ ρi ≤ ρj ,

with ρi and ρj the radii of the balls in Hε(D) centred in zi and zj , respectively. We fix α > 1 and
set C0(α,M) = (2αM)M(kmax+3) < +∞, where M = M(β, d) ∈ N is as in Lemma 6.6.1. We only
consider ω ∈ Ω belonging to the full-probability subset of Ω satisfying Lemma 6.6.1 with α = C0 and
δ as in (6.3.10).

We introduce some more notation which is needed to implement the construction sketched in
Step 1: Let Ψε ⊂ Φε(D) be any sub-collection of centres and let Rε = {Ri}zi∈Ψε ⊂ R#Ψε

+ be their
associated radii. Throughout this proof, unless there is danger of ambiguity, we forget about the
dependence of both Ψ and R on ε. For any two centres zi, zj ∈ Ψ with radii Ri and Rj , respectively,
we write

zi
α
− zj ⇔ B

αε
d
d−2Rj

(εzj) ∩B
αε

d
d−2Ri

(εzi) 6= ∅. (6.3.17)

We define a notion of connection between points and associated radii in the following way: We say
that (zi, Ri) and (zj , Rj) are connected, and we write that zi ∼(Ψ,R),α zj whenever

∃ z1, · · · zm ∈ Ψ s.t. zi
α
− z1

α
− · · ·

α
− zm

α
− zj .
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This equivalence relation depends on ε, but we forget about it in the notation. We use the notation
[zi](Ψ,R, α) for each equivalence class with respect to the previous equivalence relation ∼(Ψ,R)α.
Each equivalence class constitutes a cluster of balls in the sense of (6.3.17).

By using this notation we may reformulate the result of Lemma 6.6.1: For almost every ω ∈ Ω,
every ε ≤ ε0(ω, d, β) and any k ≥ −2, if we choose Ψ = Ik ∪ Ik−1, and R = {ρi}zi∈Ψ, we have

sup
z∈Ψ

(
#[z](Ψ,R, C0)

)
≤M, (6.3.18)

i.e. every equivalence class contains at most M elements of Ψ. From now on, we thus fix ω ∈ Ω and
ε ≤ ε0(ω, d, β) satisfying this bound.

Given Ψ ⊂ Φε(D), we introduce the map TΨ,α : R#Ψ
+ → R#Ψ

+ which acts on R = {Ri}zi∈Ψ as

(TΨ,α(R))j :=

{
0 if max{zi ∈ [zj ]ΨR,α} 6= zj

maxzi∈[zj ]ΨR,α
(ε1− d

d−2 |zj − zi|+Ri) if max{zi ∈ [zj ]ΨR,α} = zj
(6.3.19)

We recall that the maximum above is taken with respect to the ordering ≤ between centres of Ψε(D).
We observe that (6.3.19) implies that, if [zj ](Ψ,R, α) = {zj}, then

TΨ,α(R))j = Rj .

By relying on (6.3.18), we use an iteration of the previous map to implement the construction
sketched at Step 1. We begin by considering k = −2 and setting Ψ = I−2 ∪ I−3 and R = {ρi}zi∈Ψ.
We define the dynamical system{

R(n) = TΨ,α(R(n− 1)) n ∈ N
R(0) = R

(6.3.20)

and claim that

R(n) = R(M) ∀n ≥M (6.3.21)

(R(n))j ≤ (2αM)nρj ∀zj ∈ Ψ, ∀n ≤M. (6.3.22)

We start with (6.3.22) and prove it by induction over n ≤ M . By definition (cf. (6.3.20)), the
inequality trivially holds for n = 0. Let us now assume that (6.3.22) holds for some 0 ≤ n < M . We
claim that at step n + 1, each equivalence class [zi](Ψ,R(n), α) contains at most M elements: If
otherwise, by the inductive hypothesis (6.3.22) for n and the choice of the constant C0(M,α), also the
equivalence class [zi](Ψ,R(0), C0) contains more than M elements. Since we chose R(0) = {ρi}zi∈Ψ,by
our choice of ω ∈ Ω and ε ≤ ε(ω,C0), property (6.3.18) is contradicted. Thus, each equivalence class
[zi](Ψ,R(n), α) contains at most M elements. This allows us to bound

(R(n+ 1))j
(6.3.20)

≤ 2α
∑

zi∈[zj ](Ψ,R(n),α)

R(n)i.
(6.3.22)

≤ (2α)n+1Mn
∑

zi∈[zj ](Ψ,R(n),α)

ρi

We now observe that by construction (6.3.20) and definition (6.3.19), either R(n + 1)j = 0, and
thus the bound (6.3.22) holds trivially, or ρj ≥ ρi for all zi ∈ [zj ](Ψ,R(n), α). Thus, the previous
inequality implies that

(R(n+ 1))j≤(2αM)n+1ρj , (6.3.23)
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i.e. inequality (6.3.22) for n+ 1. The induction proof for (6.3.22) is complete.

We now show (6.3.21): We begin by remarking that, by construction, if we haveR(M) 6= R(M+1),
then there exist z1, · · · , zM+1 such that

M+1⋃
k=1

B
ε

d
d−2 ρk

(εzk) ⊂ B
ε

d
d−2R(M+1)1

(εz1).

This, together with estimate (6.3.22) for n = M , implies that the equivalence class [zi](Ψ,R(0), C0)
contains more than M elements. As above, this contradicts our choice of the realization ω ∈ Ω and ε.
We established (6.3.21).

Equipped with properties (6.3.22) and (6.3.21) we may set for every zi ∈ Φε(D)

R(−2)
j :=

{
R(M) if zi ∈ I−2 ∪ I−3

ρi otherwise

and define

Ĩ−3 := {zi ∈ I−3 : R(−2)
i > 0}.

Note that this definition of R(−2) implies that the balls

{B
αε

d
d−2R(−2)

i

(εzi)}zi∈I−2∪Ĩ−3

are pairwise disjoint.

We now iterate the previous step up to k = kmax: For each −1 ≤ k ≤ kmax we define recursively

R(k)
j :=

{
R(M) if zi ∈ Ik ∪ Ik−1

R(k−1) otherwise,
(6.3.24)

where R(M) is obtained by solving (6.3.19) with Ψ = Ik ∪ Ik−1 and R(0) = R(k−1). We note that
for a general −1 ≤ k ≤ kmax, (6.3.22) turns into

(R(k)(n))j ≤ (2αM)(k+2)M+nρj ∀zj ∈ Ψ, ∀n ≤M. (6.3.25)

In fact, since for n ≤M we have (2αM)(k+2)M+n ≤ C0, property (6.3.21) follows by this inequality
exactly as in the case k = −2 shown above. We emphasize that, by definition (6.3.24), at each step k
we have that the balls

{B
αε

d
d−2R(k)

i

(εzi)}zi∈Ik∪Ĩk−1,R
(k)
i >0

(6.3.26)

are pairwise disjoint.

From the previous construction we construct the sets Ĩk and the parameters {λ̃i}zi∈⋃kmaxk=−3 Ĩk
of

Step 1: For every −3 ≤ k ≤ kmax, let

Ĩk := {zi ∈ Ik : (R(k+1)(M))i > 0}, (6.3.27)

λ̃i =
(R(k+1)(M))i

ρi
for zi ∈ Ĩk.
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By (6.3.25) and the definition of the sets Ĩk, we immediately have that each λ̃i ≥ 1 and is bounded
by Λ̃ := (2αM)(kmax+3)M . It remains to argue that Ĩk satisfy (6.3.13) and (6.3.14): Property (6.3.13)
follows immediately from the construction and the definition of the operator TΨ,α. To prove (6.3.14),
we claim that is enough to show that for every k = −2, · · · , kmax and zi ∈ Ĩk,

λ̃i =
R(k)
i

ρi
. (6.3.28)

Indeed, if this is true, then (6.3.14) follows immediately from (6.3.26).

Let −2 ≤ k ≤ kmax be fixed. By (6.3.24), to show (6.3.28) it enough to prove that

R(k)
i = R(k+1)

i , for all zi ∈ Ĩk.

Since by (6.3.24) we have for all zi ∈ Ĩk that R(k+1)
i = R(M)i, with R(M) solving{

R(n) = TΨ,α(R(n− 1)) n ∈ N
R(0) = R(k),

we need to make sure that R(n)i = R(k)
i for each 1 ≤ n ≤M . By induction we show that for zi ∈ Ik

we have

R(n)i 6= R(k)
i ⇒ R(n+ 1)i = R(k+1) = 0 (6.3.29)

This implies (6.3.28) by definition (6.3.27).
For n = 1, property (6.3.29) is an easy consequence of (6.3.26) for the balls generated by points

zi ∈ Ik. Let us assume that (6.3.27) holds at step n. Then, again by (6.3.27), we have that for zi ∈ Ik
either R(n)i = 0, or R(n)i = R(k)

i . Thus, if R(n+ 1)i 6= R(n)i, we necessarily have again by (6.3.26)
that there exists zj ∈ Ik+1 such that

B
αε

d
d−2R(n−1)

j

(εzj) ∩B
αε

d
d−2R(n−1)i

(εzi) 6= ∅.

This implies that ρj ≥ ρi and in turn that zj ≥ zi. By definition of the map TΨ,α, this yields
necessarily that R(n + 1)i = 0. The proof of (6.3.29) is complete. This establishes (6.3.28) and
concludes the proof of (6.3.14).

We conclude this step with the following remark: Let Φε
2εδ/2

(D) be the thinned process (see
(6.2.3)) with δ fixed as in (6.3.10). Moreover, let Sε := Φε(D)\Φε

2εδ/2
(D) and

Ig−3 = I−3 ∩ Φε
2εδ/2

(D), Ib−3 = I−3 \ Ig−3 = I−3 ∩ Sε. (6.3.30)

We claim that, up to taking ε0 = ε0(d, β) smaller than above, we have

Ig−3 ⊂ Ĩ−3, λ̃i = 1 for all zi ∈ Ig−3. (6.3.31)

As will be shown in the next step, the set Ig−3 contains the set nε generating Hε
g .

To show (6.3.31), we observe that whenever zi, zj ∈ Ig−3 ∪ I−2 with zi 6= zj , then we may choose ε
small enough to infer that

B
αε

d
d−2 ρi

(εzi) ∩B
αΛ̃ε

d
d−2 ρj

(εzj) = ∅.
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Indeed, for ε
δ
2 ≤ (αΛ̃)−1, we bound

ε|zi − zj |
(6.3.30)

≥ 2ε1+ δ
2 ≥ 2αΛ̃ε1+δ

(6.3.11)

≥ ε
d
d−2 (αρi + Λ̃ρj).

This implies that after M iterations of the dynamical system (6.3.23), we have R(M) = ρi for all
zi ∈ Ig−3. Thanks to (6.3.27) we obtain (6.3.31).

Proof of Step 2. In this step we rigorously implement the method sketched in Step 2 and
construct the sets Jεk as subsets of Ĩεk, −3 ≤ k ≤ kmax. We define λj = θ2λ̃j , with λ̃j ∈ [1, Λ̃]
constructed in Claim 1 of Step 1, and θ4 = α. Clearly, we may choose the upper bound Λ in the
statement of Lemma 6.3.2 as Λ := θΛ̃. We start by setting

Jkmax := Ĩεkmax ,

Ekmax :=
⋃

zj∈Jkmax

B
λjε

d
d−2 ρj

(εzj),

and inductively define for −1 ≤ l ≤ kmax

Jl−1 :=

{
zj ∈ Ĩl−1 : B

θλ̃jε
d
d−2 ρj

(εzj) 6⊂ El
}
, (6.3.32)

El−1 :=

(
El\

⋃
zj∈Jl−1

B
θλjε

d
d−2 ρj

(εzj)

)
∪

⋃
zj∈Jl−1

B
λjε

d
d−2 ρj

(εzj). (6.3.33)

To construct the remaining sets J−3 and E−3, we need an additional step: We recall the definition of
Sε and Ig−3 from (6.2.3) and (6.3.30), respectively. We first set

J̃−3 :=

{
zj ∈ Ĩ−3 ∩ Sε : B

θλjε
d
d−2 ρj

(εzj) 6⊂ E−2

}
, (6.3.34)

Ẽ−3 :=

(
E−2\

⋃
zj∈J̃−3

B
θλjε

d
d−2 ρj

(εzj)

)
∪

⋃
zj∈J̃−3

B
λjε

d
d−2 ρj

(εzj).

Finally, for zi ∈ Φε(D) we define the set

Kε :=

{
zj ∈ Ig−3 : B2ε1+δ(εzj) ∩

⋃
zi∈∪kmaxk=−2Jk∪J̃−3

B
θλiε

d
d−2 ρi

(εzi) 6= ∅
}
, (6.3.35)

and finally consider

J−3 := J̃−3 ∪
{
zj ∈ Kε : B

θλjε
d
d−2 ρj

(εzj) 6⊂ Ẽ−3

}
, (6.3.36)

Ẽ−3 :=

(
E−2\

⋃
zj∈J−3

B
θλjε

d
d−2 ρj

(εzj)

)
∪

⋃
zj∈J−3

B
λjε

d
d−2 ρj

(εzj).

We remark that in the definitions of El, the annuli B
θλjε

d
d−2 ρj

(εzj)\B
λjε

d
d−2 ρj

(εzj) are cut out

in order to satisfy (6.3.8). Moreover, we observe that each connected component of the set Ek is a
subset of B

λjε
d
d−2 ρj

(εzj) for some zj ∈ Jl, for k ≥ l. This follows from the the definition of Ek and

(6.3.14).
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We finally denote

J :=

kmax⋃
k=−3

Jk. (6.3.37)

and define the set I of the centres generating Hε
b as

I :=
{
zi ∈ Φε(D) : B

ε
d
d−2 ρi

(εzi) ⊂ B
λjε

d
d−2 ρj

(εzj) for some zj ∈ J
}
, (6.3.38)

Ik :=
{
zi ∈ I : k is minimal such that B

ε
d
d−2 ρi

(εzi) ⊂ B
λjε

d
d−2 ρj

(εzj) for zj ∈ Jk
}
. (6.3.39)

Equipped with the previous definition, we construct Hε
b , H̄ε

b and Dε
b as shown in (6.3.4), (6.3.5), and

(6.3.9).

Proof of Step 3. We first argue that the sets Hε
b , H̄

ε
b and Dε

b constructed in the previous step
satisfy the conditions of Lemma 6.3.1.

We begin by claiming that

nε = Ig−3\K
ε, (6.3.40)

with Kε defined in (6.3.35). Since, by construction we set Hε
g = Hε\Hε

b , by (6.3.4) this also reads as

Φε(D)\I = Ig−3\K
ε. (6.3.41)

The ⊇-inclusion is a consequence of the fact that by (6.3.31) we have by construction Ig−3 ∩ J̃−3 = ∅
(see (6.3.34), (6.2.3)). This yields that in the definition (6.3.36) of J−3 the only elements of Ig−3 in
J−3 are the ones contained in Kε. By (6.3.32) and (6.3.37), this yields that (Ig−3\K) ∩ J = ∅. We
now use (6.3.39) to infer that also (Ig−3\Kε) ∩ I = ∅, i.e. the ⊃-inclusion in (6.3.41).

For the ⊂ inclusion we argue the complementary statement which, by (6.3.30), also reads as

Kε ∪
⋃
k≥−2

Iεk ∪ Ib−3 ⊂ I. (6.3.42)

We show how to argue that Ik ⊂ I, for some k ≥ −2. The argument for the other sets is analogous.

Let zi ∈ Ik. Then, by (6.3.13), there exists l ≥ k, zj1 ∈ Ĩl such that

B
ε

d
d−2 ρi

(εzi) ⊂ B
ε

d
d−2 λ̃j1ρj1

(εzj1).

By definition (6.3.32), this yields that either zj1 ⊂ Jl or

B
ε

d
d−2 θλ̃j1ρj1

(εzj1) ⊂ El+1.

In the first case, it is immediate that zi ∈ I (see (6.3.38)); in the second case, since each connected
component of the set El+1 is a subset of a ball B

λj2ε
d
d−2 ρj2

(εzj2) for some zj2 ∈ Jl2 with l2 > l1, it

follows that
B
ε

d
d−2 ρi

(εzi) ⊂ B
λj2ε

d
d−2 ρj2

(εzj2).

Hence, also in this case zi ∈ I. We established Ik ⊂ I. This concludes the proof of (6.3.42) and thus
also of (6.3.41) and (6.3.40).
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From identity (6.3.40), the second line of (6.3.2) immediately follows by (6.3.30) and definition
(6.3.11) for the set I−3. In addition, since Kε is not contained in nε, also the first inequality in (6.3.1)
holds. The remaining claims in (6.3.1), (6.3.2), and (6.3.3) may be obtained from (6.3.42) similarly
to Lemma 5.4.1, thanks to the very explicit definition of the sets H̄ε

b and Dε
b .

In the sake of completeness we give these arguments explicitly: We claim

lim
ε↓0

εd#(I) = 0. (6.3.43)

By taking the complement with respect to Φε(D) in (6.3.41), we have

I =

kmax⋃
k=−2

Ik ∪ Ib−3 ∪Kε.

We estimate the limit for ε ↓ 0+ for the first sets on the right-hand side by appealing to Lemma 5.5.2
and (6.3.10) (we recall that we assumed β ≤ 1): Indeed, we have

lim sup
ε↓0

εd#(

kmax⋃
k=−2

Ik) = lim sup
ε↓0

εd#{zi ∈ Φε(D) : ε
d
d−2 ρi ≥ ε1+2δ}

≤ lim sup
ε↓0

εd−(d−2)(1+2δ)εd
∑

zi∈Φε(D)

ρd−2
i → 0

. lim sup
ε↓0

ε2(1−(d−2)δ) = 0.

We now turn to Ib−3: Let {δk}k∈N be any sequence such that δk ↓ 0+. Since 2εδ/2 → 0, we
estimate for any δk > 0

lim sup
ε↓0+

εd#(Ib−3)
(6.3.30)

≤ lim sup
ε↓0+

εd
(
N ε(D)−N ε

2εδ/2
(D)

) (6.2.3)

≤ lim
ε↓0+

εd
(
N ε(D)−N ε

δk
(D)

)
.

We now apply Lemma 5.5.2 to Φ and each Φδk , k ∈ N, to deduce that almost surely and for every
δk > 0

lim sup
ε↓0+

εd#(Ib−3) ≤ λ|D| − 〈Nδk(D)〉.

By sending δk ↓ 0+, we use once more Lemma 5.5.2 on the last term on the right-hand side above
and obtain

lim
ε↓0+

εd#(Ib−3) = 0.

To conclude the proof of (6.3.43), it thus remains to show that almost surely also

εd#(Kε)→ 0 ε ↓ 0+. (6.3.44)

We have for all zi ∈ Kε ⊂ Ig−3

min
zj∈Φε(D)\{zi}

ε|zj − zi| ≥ 2ε1+δ/2, ε
d
d−2 ρi < ε1+2δ. (6.3.45)
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In particular, by the first inequality above, the balls {Bε1+2δ(εzi)}zi∈Kε are all disjoint, and therefore

εd#(Kε) . εd
∑
zi∈Kε

ε−d(1+2δ)|Bε1+2δ(εzi)| = ε−2dδ
∑
zi∈Ĩεb

|Bε1+2δ(εzi)|. (6.3.46)

In addition, we observe that by definition of Kε, for any zi ∈ Kε there exists zj ∈ ∪kmaxk=−2Jk such that

B2ε1+δ(εzi) ∩B
θλjε

d
d−2 ρj

(εzj) 6= ∅. (6.3.47)

Here we used Kε ⊂ Ĩ−3 and (6.3.14) to rule out that zj ∈ J−3 ⊂ Ĩ−3. In particular, (6.3.45) and
(6.3.47) imply

2ε1+δ/2 ≤ ε|zi − zj | ≤ 2ε1+δ + θλjε
d
d−2 ρj ,

we obtain that θλjε
d
d−2 ρj ≥ 2ε1+δ. We combine this inequality with condition (6.3.47) to infer that

Bε1+2δ(εzi) ⊂ B
2θλjε

d
d−2 ρj

(εzj)

and, by (6.3.46), to estimate

εd#(Kε) . ε−2dδ
∑

zj∈∪kmaxk=−2Jk

|B
2θλjε

d
d−2 ρj

(εzj)|

. ε−2dδ

(
ε

d
d−2 max

zj∈Φε(D)
ε

d
d−2 ρj

)2 ∑
zj∈∪kmaxk=−2Jk

(ε
d
d−2 ρj)

d−2

(6.3.12)

. ε2δd
∑

zj∈Φε(D)

(ε
d
d−2 ρj)

d−2.

Thanks to Lemma 5.5.2, the right-hand side vanishes almost surely in the limit ε ↓ 0+. This concludes
the proof of (6.3.43).

The limit in the first line of (6.3.2) is a direct consequence of (6.3.43). Moreover, the second
inequality in (6.3.1) follows from (6.3.43) and Lemma 5.5.11.

To show (6.3.3), we resort to the definition of Dε
b to estimate{

zi ∈ Φε
2η(D)(ω) : dist(zi, D

ε
b) ≤ ηε

}
⊂ I ∪

{
zi ∈ nε(ω) : dist

(
zi,

⋃
zj∈∪kmaxk=−2Jk

B
Λε

d
d−2 ρj

(εzj)
)
≤ ηε

}
∪
{
zi ∈ nε(ω) ∩ Φε

2η(D)(ω) : dist
(
zi,

⋃
zj∈J−3

B
Λε

d
d−2 ρj

(εzj)
)
≤ ηε

}
:= Iεb ∪ F ε ∪ Cε.

We already know εd#(Iεb )→ 0. Next, we argue that

εd#(F ε)→ 0.
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This follows by an argument similar to the one for (6.3.44): We may choose ε0 = ε0(d) such that
for all ε ≤ ε0, εδ/2 ≤ η. By definition of Jk and of F ε above, we infer that for such ε ≤ ε0, for all
zj ∈ F ε there exists −2 ≤ k ≤ kmax and zi ∈ Jk such that

Bε1+δ/2(εzj) ⊂ B
2ηε+Λε

d
d−2 ρi

(εzi) ⊂ B
2Ληε−2δε

d
d−2 ρi

(εzi), (6.3.48)

where in the second inequality we use that ε−2δη ≥ 1 and ε
d
d−2 ρi ≥ ε1+2δ. We note that by (6.3.45)

the balls Bε1+δ/2(εzj) with zj ∈ nε are all disjoint. Hence,

εd#(F ε)
(6.3.48)

. ε−dδ
∣∣∣∣ ⋃
zi∈∪kmaxk=−2Jk

B
2Ληε−2δε

d
d−2 ρi

(εzi)

∣∣∣∣
.ηdε−d(δ+2δ)

(
max

zj∈Φε(D)
ε

d
d−2 ρj

)2 ∑
zj∈Φε(D)

(ε
d
d−2 ρj)

d−2

(6.3.12)

. ηdεdδ
∑

zj∈Φε(D)

(ε
d
d−2 ρj)

d−2.

The right-hand side vanishes almost surely in the limit ε ↓ 0+ thanks to (6.1.7) and Lemma 5.5.2.

We conclude the argument for (6.3.3) by showing that the set Cε is empty when ε is small: In
fact, by construction, if zi ∈ nε satisfies

dist

(
εzi,

⋃
zj∈J−3

B
Λε

d
d−2 ρj

(εzj)

)
≤ ηε,

then there exists a zj ∈ J−3 ⊂ I−3 such that for ε ≤ ε0 with Λε2δ ≤ η

ε|zi − zj | ≤ dist
(
εzi, B

Λε
d
d−2 ρj

(εzj)
)

+ Λε1+2δ ≤ 2ηε.

This yields Cε ⊂ Φε(D)\Φε
2η(D) and thus that it is empty since by definition we also have Cε ⊂ Φε

2η(D).
This finishes the proof of (6.3.3).

We hence have shown that Hε
b , H̄

ε
b and Dε

b in Lemma 6.3.1 may be chosen as in Step 2 (see
(6.3.4), (6.3.5), and (6.3.9)). We also remark that it immediately follows by (6.3.12) and the bounds

on λεi ≤ Λ obtained at the beginning of Step 2, that the radii λεiε
d
d−2 ρi generating the balls of H̄ε

b

satisfy the second inequality in (6.3.5).

It remains to argue (6.3.7) and (6.3.8). The first property follows directly from (6.3.14) for
Jk ⊂ Ĩk and the choice of the parameters λi = θλ̃i and θ4 = α.

We now turn to (6.3.8) and begin by showing that it suffices to prove the following:

Claim: For all −3 ≤ k < l ≤ kmax and every zk ∈ Jk, zl ∈ Ĩl we have

B
λ̃lε

d
d−2 ρl

(εzl) ∩B
θλkε

d
d−2 ρk

(εzk) = ∅. (6.3.49)

We first prove (6.3.54) provided this claim holds. To do so, for any k < l and zj ∈ Jl we begin by
denoting by E

zj
k the set

E
zj
k := B

ε
d
d−2 λjρj

(εzj) \
l−1⋃
m=k

⋃
zi∈Jm

B
θλiε

d
d−2 ρi

(εzi) (6.3.50)
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and arguing that

B
ε

d
d−2 λ̃jρj

(εzj) ⊂ E
zj
k ⊂ Ek, (6.3.51)

Ek =
⋃̇

l≥k

⋃̇
zj∈Jl

E
zj
k , (6.3.52)

where each union above is between disjoint sets.

By (6.3.33) for El−1 and (6.3.32) for Jl, we clearly have that

B
ε

d
d−2 λjρj

(εzj) ⊂ El−1.

Note that, by construction, this ball is a connected component of the set El−1. From the previous
inclusion, the second inclusion in (6.3.51) is an easy application of the recursive definition (6.3.33) of
Ek. Similarly, (6.3.52) is an easy consequence of the definition (6.3.33) of the sets Ek. Furthermore,
since each Jm ⊂ Ĩm, we apply claim (6.3.49) to zj and all zk ∈ Jm with m ≤ l − 1, and conclude
also the first inclusion in (6.3.51). We conclude that definition (6.3.50) immediately yields the
monotonicity property E

zj
k−1 ⊂ E

zj
k for all zj ∈ Jl and −3 ≤ k ≤ l.

Equipped with (6.3.51)-(6.3.52), we now turn to (6.3.8): Let z0 ∈ Ik0 for some −2 ≤ k0 ≤ kmax.
By definition (6.3.39), there exists z1 ∈ Jk0 such that

B
ε

d
d−2 ρ0

(εz0) ⊂ B
λ1ε

d
d−2 ρ1

(εz1). (6.3.53)

By this, property (6.3.8) follows immediately if we prove that for any l < k0 and all z3 ∈ Jl we have

B
ε

d
d−2 ρ0

(εz0) ∩B
θλ3ε

d
d−2 ρ3

(εz3) = ∅. (6.3.54)

Let −3 ≤ k2 ≤ kmax be minimal such that there exists z2 ∈ Ĩεk2
with the property that

B
ε

d
d−2 ρ0

(εz0) ⊂ B
λ̃2ε

d
d−2 ρ2

(εz2). (6.3.55)

Note that, by (6.3.13), we may always find such k2. If k0 ≤ k2, we use the above claim (6.3.49) on
z2 ∈ Ĩk2 and z3 ∈ Jl with l < k2 and conclude (6.3.54). Let us now assume that k0 > k2: Since
z0 ∈ Ik0 , by definition (6.3.39) we have that z2 6∈ Jk2 . This implies by (6.3.32) that

B
θλ̃2ε

d
d−2 ρ2

(εz2) ⊂ Ek2+1.

In particular, by (6.3.55) and (6.3.50) there exists a k̃0 > k2 and z̃1 ∈ Jk̃0
such that

B
ε

d
d−2 ρ0

(εz0) ⊂ B
θλ̃2ε

d
d−2 ρ2

(εz2) ⊂ E z̃1k2+1. (6.3.56)

Moreover, by (6.3.50) and the assumption k2 < k0, we also have

B
ε

d
d−2 ρ0

(εz0) ⊂ E z̃1k2+1 ⊂ E
z̃1
k0
.

On the other hand, by (6.3.53) also

B
ε

d
d−2 ρ0

(εz0) ⊂ B
λ1ε

d
d−2 ρ1

(εz1) = Ez1k0
.
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By combining the previous two inequalities and using that the sets Ezik , E
zj
k are whenever zi 6= zj ∈ J ,

we conclude that z̃1 = z1. Thus, since z1 ∈ Jk0 , definition (6.3.50) applied to Ez1k2+1 yields that for
all k2 < l < k0 we have for all zi ∈ Jl

Ez1k2+1 ∩B
θε

d
d−2 λiρi

(εzi) = ∅.

By using (6.3.56), the above inequality implies (6.3.54) with zi = z3 and for all k2 < l < k0. To
extend (6.3.54) also to the indices l ≤ k2 it suffices to observe that for l < k2 we may argue as above
in the case k0 ≤ k2. Finally, if l = k2, we obtain (6.3.54) by applying (6.3.55) and (6.3.14) to z2 ∈ Ĩk2

and z3 ∈ Jk2 ⊂ Ĩk2 .

It remains to prove claim (6.3.49). Let zl ∈ Ĩεl , −2 ≤ l ≤ kmax. We begin by arguing that

B
θλ̃lε

d
d−2 ρl

(εzl) ⊂ El. (6.3.57)

Indeed, if zl ∈ Jl, this follows immediately from the definition of El. If zl 6∈ Jl, then by (6.3.32) we
have B

λlε
d
d−2 ρl

(εzl) ⊂ El+1. We now use (6.3.14) on the family Jl and definition (6.3.33) of El to

conclude (6.3.57). From (6.3.57) we may use again (6.3.14) to the families Jl, Jl−1 and also obtain
that

B
θλ̃lε

d
d−2 ρl

(εzl) ⊂ El−1. (6.3.58)

We are now ready to argue (6.3.49) by contradiction: Let us assume that there exists a k < l and
zk ∈ Jk such that (6.3.49) fails, i.e.

B
λ̃lε

d
d−2 ρl

(εzl) ∩B
θλkε

d
d−2 ρk

(εzk) 6= ∅. (6.3.59)

Then, again by (6.3.14) applied to Jl and Jl−1, we necessarily have k ≤ l − 2. Let us now assume
that zk ∈ Jl−2: Then by (6.3.32) we have

B
ε

d
d−2 θλ̃kρk

(εzk) ( El−1. (6.3.60)

This, together with (6.3.58) for zl and (6.3.59) yields

B
θλ̃kε

d
d−2 ρk

(εzk) ∩ ∂B
θλ̃lε

d
d−2 ρl

(εzl) 6= ∅. (6.3.61)

For a general k < l − 2, we claim that we may iterate the previous argument and obtain that
(6.3.59) implies the existence of an integer m ≤ 1 + dkmax2 e and a collection k0, · · · , km ≤ l − 2, such
that k = k0 and for all 0 ≤ n ≤ m− 1 we have kn ≤ kn+1− 2 and there exist zkn ∈ Jkn and zm ∈ Jkm
satisfying (see Figure 6.4)

B
θλ̃kmε

d
d−2 ρkm

(εzkm) ∩ ∂B
θλ̃lε

d
d−2 ρl

(εzl) 6= ∅,

B
θλ̃knε

d
d−2 ρkn

(εzkn) ∩B
θλkn+1

ε
d
d−2 ρkn+1

(εzkn+1) 6= ∅.
(6.3.62)

Indeed, for zk ∈ Jk with k < l − 2, we know that by (6.3.32)

B
ε

d
d−2 θλ̃kρk

(εzk) 6⊂ Ek+1. (6.3.63)
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Bl

Bk0

Bk2Bk1

Bθl

Figure 6.4: The thick ball Bl in the centre represents B
θλ̃lε

d
d−2 ρl

(εzl), while the nested dashed

ball Bθl is its dilation by θ > 1. The balls Bk0 , Bk1 and Bk2 correspond to B
θλ̃k0

ε
d
d−2 ρk0

(εzk0),

B
θλ̃k1

ε
d
d−2 ρk1

(εzk1) and B
θλ̃k2

ε
d
d−2 ρk2

(εzk2), respectively. The nested, dashed balls around Bk0 , Bk1

and Bk2 are the dilations by the factor θ2.

If also (6.3.61) is true, then we obtain (6.3.62) with k0 = km = k. Let us assume, instead, that
(6.3.61) does not hold and thus, by (6.3.59) that

B
ε

d
d−2 θλ̃kρk

(εzk) ⊂ B
ε

d
d−2 θλ̃lρl

(εzl)
(6.3.58)
⊂ El−1. (6.3.64)

Then, by (6.3.63) and (6.3.33) there exists an index k1 ≤ l − 2 and zk1 ∈ Jk1 such that

B
ε

d
d−2 θλ̃kρk

(εzk) ∩B
ε

d
d−2 θλk1

ρk1

(εzk1) 6= ∅. (6.3.65)

Moreover, by (6.3.14), we necessarily have k1 ≥ k + 2. We thus recovered the second line in (6.3.62).
Since zk1 ∈ Jk1 , we use again (6.3.32) to infer that

B
ε

d
d−2 θλ̃k1

ρk1

(εzk1) 6⊂ Ek1+1.

Therefore, if k1 = l − 2, we argue as in (6.3.60) and conclude that (6.3.61) is satisfied with zk
substituted by zk1 . This and (6.3.65) yield (6.3.62) with m = 1. Clearly, the same holds if k1 < l− 2
but (6.3.61) nonetheless satisfied by zk1 . Let us now assume, instead, that zk1 does not satisfy the
first line in (6.3.62): By (6.3.65) and (6.3.64) this implies that

B
ε

d
d−2 θλ̃k1

ρk1

(εzk1) ⊂ B
ε

d
d−2 θλ̃lρl

(εzl) ⊂ El−1.

We may now argue as for (6.3.63) above and obtain the existence of a new index k2 ≥ k1 + 2
satisfying (6.3.65) with k and k1 substituted by k1 and k2 respectively. By repeating the same
argument above we iterate and conclude (6.3.62) for a general m. We remark that, since at each step
n the index kn increases of at least 2 this procedure necessarily stops whenever kn = l − 2. In other
words, we obtain (6.3.62) after at most 1 + dkmax2 e iterations. We thus established (6.3.62).
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Equipped with (6.3.62) we finally argue (6.3.49): Since for all 0 ≤ n ≤ m ≤ 1 + dkmax2 e,
1 ≤ λkn ≤ Λ and k0 ≤ · · · ≤ km ≤ l − 2, we estimate

ε|zl − zk| ≥ ε|zl − zkm | −
m∑
n=1

ε|zkn − zkn−1 |

(6.3.62)

≥ θλ̃lε
d
d−2 ρl − (1 + 2m)Λε

d
d−2 ρkm

θ>1
≥ λ̃lε

d
d−2 ρl + (θ − 1)ε

d
d−2 ρl − (kmax + 4)Λε

d
d−2 ρkm .

We now use the fact that since zl ∈ Ĩl and zkm ∈ Jkm ⊂ Ĩkm , we have by (6.3.11) and the assumptions
on the indices kn that ρl

ρkm
≥ ε−δ. From this inequality it follows that

ε|zl − zk| ≥ λ̃lε
d
d−2 ρl +

(
(θ − 1)ε−δ − (kmax + 4)Λ

)
ε

d
d−2 ρkm

and for ε small enough we bound

ε|zl − zk| ≥ λ̃lε
d
d−2 ρl + 2λkε

d
d−2 ρkm ,

where λk is the factor associated to zk. We now observe that if km = k0 = k, then the above
inequality contradicts (6.3.59). If, otherwise k = k0 6= km, then by construction we have k0 ≤ km − 2
and thus by (6.3.11) that ρk ≤ ρkm . This and the above inequality contradict (6.3.59) also in this
case. This proves claim (6.3.49) and establishes (6.3.8). The proof of Lemma 6.3.2 and Lemma 6.3.1
are complete.

6.4 Proof of Lemma 6.2.4

Proof of Lemma 6.2.4. For a θ > 1 fixed, let Hε = Hε
b ∪Hε

g and the sets H̄ε
b , Dε

b be as introduced
in Lemma 6.3.1 and Lemma 6.3.2. Throughout this proof, we use the notation . for ≤ C with the
constant depending on d, β, θ.

Step 1. We recall that the set Dε
b is related to the partitioning of Hε = Hε

b ∪Hε
g and is such

that Hε
b ⊂ H̄ε

b ⊂ Dε
b . We construct Rεv by distinguishing between the parts of domain D containing

“small” holes (i.e. Hε
g) and the ones containing the clusters of holes (i.e. Hε

b ). We set

Rεv :=

{
vεb in Dε

b

vεg in D\Dε
b ,

(6.4.1)

where the functions vεb and vεg satisfy
vεb = 0 in Hε

b , vεb = v in D\Dε
b ,

∇ · vεb = 0 in D,

vεb ∈ H1
0 (D) for ε small enough and vεb → v in H1

0 (D),

‖vεb‖C0 . ‖v‖C0(D̄).

(6.4.2)

and {
vεg = v in Dε

b , vεg = 0 in Hε
g ,

vεg satisfies properties (i) - (v) with Hε substituted by Hε
g .

(6.4.3)
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In particular, this means

Rεv = vεb + vεg − v. (6.4.4)

Before constructing the functions vεg and vεb , we argue that Rεv defined in (6.4.1) satisfies all the
properties (i) - (v) enumerated in the lemma. Properties (i) and (ii) are immediately satisfied. We
turn to properties (iii) and (iv). By (6.4.4), we rewrite

‖Rεv − v‖Lp(Rd) = ‖vεg − v‖Lp(Rd) + ‖vεb − v‖Lp(Dεb).

The first term on the right-hand side vanishes almost surely in the limit thanks to the second line of
(6.4.3) (property (iv) for vεg). We bound the second term by using Hölder’s inequality and the last
estimate in (6.4.2):

‖vεb − v‖
p
Lp(Dεb) ≤ ‖v − v

ε
b‖C0(D)|Dε

b | . ‖v‖C0(D)|Dε
b |.

Thanks to (6.3.9), also this last line almost surely vanishes in the limit ε ↓ 0+. Thus, almost surely
the whole norm ‖Rεv − v‖Lp(Rd) → 0 when ε ↓ 0+. This yields property (iv) for Rεv. To establish

Property (iii) we use a similar argument to bound the L2-norm of ∇(Rεv − v), this time using that
by (6.4.2) the gradient ∇(vεb − v) converges strongly to zero in L2(Rd). Properties (i) - (iv) for Rεv
are hence established.

It remains to argue property (v): Let uε ∈ H1
0 (Dε) be such that uε ⇀ u in H1(D) and ∇ · uε = 0

in D. By (6.4.4), we have
ˆ
∇Rεv · ∇uε =

ˆ
∇vεg · ∇uε +

ˆ
∇(vεb − v) · ∇uε.

By (6.4.2) and the assumptions on uε, the second integral on the right-hand side almost surely
converges to zero in the limit ε ↓ 0+. We treat the first integral term by observing that H1

0 (Dε) ⊂
H1

0 (D\Hε
g) and applying (6.4.3) (i.e. property (v) for vεg). This implies property (v) for Rεv and

concludes the proof of the lemma provided we construct vεg and vεb as above.

Step 2. Construction of vεb satisfying (6.4.2).

To construct vεb on Dε
b , we exploit the construction of the covering H̄ε

b of Lemma 6.3.2, as sketched
in Section 6.2.3. The main advantage in working with H̄ε

b instead of Hε
b is related to the geometric

properties satisfied by H̄ε
b which allow to define vεb via a finite number of iterated Stokes problems on

rescaled annuli.

Throughout this step, we skip the upper index ε and write vb instead of vεb . Let J =
⋃kmax
i=−3 Ji be

the sub-collection of the centres of the balls generating H̄ε
b in the proof of Lemma 6.3.2. For each

zj ∈ J , we write

Rεj := λεjρj , Bj := B
ε

d
d−2Rj

(εzj), (6.4.5)

Bθ,j := B
ε

d
d−2 θRj

(εzj), Aj := Bθ,j\Bj ,

with λεj ∈ [1,Λ] the factors defined in Lemma 6.3.2.

As a first step, we consider the set Jkmax and define the function v0 on D as
v0 = v in D\

⋃
zj∈Jkmax

Bθ,j

v0 = 0 in Bj for all zj ∈ Jkmax
v0 = v0

j in Aj for all zj ∈ Jkmax ,

(6.4.6)
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where each v0
j solves 

−∆v0
j +∇p0

j = −∆v in Aj

∇ · v0
j = 0 in Aj

v0
j = 0 on ∂Bj

v0
j = v on ∂Bθ,j .

(6.4.7)

This is well-defined since div v = 0. In particular, each function v0
j − v solves the first problem in

(6.8.1) in Ai, and we apply to it the estimates (6.8.2) with the choice R = θ and after a rescaling by

ε
d
d−2Rj and a translation of εzj . This yields

‖∇v0
j ‖2L2(Aj)

.

(
‖∇v‖2L2(Bθ,j)

+
1(

ε
d
d−2Rj

)2 ‖v‖2L2(Bθ,j)

)
,

‖v0
j ‖C0(Bθ,j)

. ‖v‖C0(Bθ,j)
.

We now use the definition (6.4.5) of Rj to obtain

‖∇v0
j ‖2L2(Aj)

.
(
‖∇v‖2L2(Bθ,j)

+ εdλjρ
d−2
j ‖v‖2L∞

)
,

‖v0
j ‖C0(Bθ,j)

. ‖v‖C0(Bθ,j)
.

(6.4.8)

Note that thanks to (6.3.7) of Lemma 6.3.2, we have that Bθ,i ∩Bθ,j = ∅ for all zi 6= zj ∈ Jkmax and
λi ≤ Λ for all zi ∈ J . Thus, this also implies by (6.4.6) that

‖∇v0‖2L2(D) . ‖∇v‖
2
L2(D) + εd

∑
zj∈Jkmax

ρd−2
j ‖v‖2L∞(D),

‖v0‖C0(D) . ‖v‖C0(D).

(6.4.9)

Furthermore, since v0− v is supported only in the balls Bθ,j , the triangle inequality and (6.4.8) imply
also that

‖∇(v0 − v)‖2L2(D) .
∑

zj∈Jkmax

‖∇v‖2L2(Bθ,j)
+ εd

∑
zj∈Jkmax

ρd−2
j ‖v‖2L∞(D). (6.4.10)

We observe also that, by using again the fact that by Lemma 6.3.2 all the balls Bj are disjoint,
the function v0 vanishes on ⋃

zj∈Jkmax

Bj
(6.3.6)

⊇
⋃

zj∈Ikmax

B
ε

d
d−2 ρj

(εzj). (6.4.11)

We now proceed iteratively and for 1 ≤ i ≤ kmax + 3 we consider the subsets Jkmax−i ⊂ J . For
each i in the range above, let vi be defined as in (6.4.6) and (6.4.7), with vi−1 instead of v and the
domains Bj and Aj generated by the elements zj ∈ Jkmax−i. We now argue that at each step i we
have

‖∇vi‖2L2(D) . ‖∇v‖
2
L2(D) + εd

∑
zj∈∪ik=0Jkmax−k

ρd−2
j ‖v‖2L∞(D),

‖vi‖C0(D) . ‖v‖C0(D),

(6.4.12)
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and

vi = 0 in
⋃

zj∈
⋃i
k=0 Ikmax−k

B
ε

d
d−2 ρj

(εzj). (6.4.13)

Moreover,

vi − v = 0 in D\

 ⋃
zj∈∪ik=0Jkmax−k

Bθ,j

 ,

‖∇(vi − v)‖2L2(D) .
∑

zj∈∪ik=0Jkmax−k

(
‖∇v‖2L2(Bθ,j)

+ εdρd−2
j ‖v‖2L∞(D)

)
.

(6.4.14)

We prove the previous estimates by induction over 0 ≤ i ≤ kmax + 3.

It is easy to prove the estimates in (6.4.12) by induction: For i = 0, (6.4.9) is exactly (6.4.12).
We now observe that at each step i we may argue as for v0 and obtain (6.4.9) with v0, v and Jkmax
substituted by vi, vi−1 and Jkmax−i, respectively. Therefore, if we now assume (6.4.12) holds at step
i− 1, we only need to combine the analogue of (6.4.9) for vi with (6.4.12) for vi−1.

We now consider (6.4.13): For i = 0, this is implied immediately by (6.4.11). Let us now assume
that (6.4.13) holds for i− 1. By definition of vi (cf. (6.4.7)), the function vanishes on⋃

zj∈Jkmax−i

Bj
(6.3.6)

⊇
⋃

zj∈Ikmax−i

B
ε

d
d−2 ρj

(εzj)

and equals vi−1 on D\
⋃
zj∈Jkmax−i

Bθ,j . By the induction hypothesis (6.4.13) for i− 1, (6.4.13) for i
follows provided  ⋃

zj∈Jkmax−i

Bθ,j

 ∩
 ⋃
zj∈∪i−1

k=0Ikmax−k

B
ε

d
d−2 ρj

(εzj)

 = ∅.

By recalling the definitions of the balls Bθ,j , this identity is a consequence of property (6.3.8) of
Lemma 6.3.2. We established (6.4.13) and (6.4.12) for each 0 ≤ i ≤ kmax + 3.

Finally, we turn to the claims in (6.4.14): For i = 0, both lines of (6.4.14) hold by construction
and (6.4.10), respectively. If we now assume that (6.4.14) is true for i− 1, then vi is by construction
equal to vi−1 outside the set ⋃

zj∈Jkmax−i

Bθ,j .

It now suffices to apply the induction hypothesis for vi−1 to conclude the first statement in (6.4.14).
In addition, by the triangle inequality we estimate

‖∇(vi − v)‖2L2(D) ≤ ‖∇(vi − vi−1)‖2L2(D) + ‖∇(vi−i − v)‖2L2(D).

We apply the induction hypothesis to the second term on the right-hand side above and get

‖∇(vi − v)‖2L2(D) ≤ ‖∇(vi − vi−1)‖2L2(D) +
∑

zj∈∪i−1
k=0Jkmax−k

(
‖∇v‖2L2(Bθ,j)

+ εdρd−2
j ‖v‖2L∞(D)

)
.(6.4.15)

We now use the analogue of (6.4.8) with v0 and v substituted by vi−1 and vi to infer that

‖∇(vi − vi−1)‖2L2(D) .
∑

zj∈Jkmax−i

(
‖∇vi−1‖2L2(Bθ,j)

+ εdλjρ
d−2
j ‖vi−1‖2L∞(D)

)
,
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and, by (6.4.12) for vi−1, that

‖∇(vi − vi−1)‖2L2(D) .
∑

zj∈Jkmax−i

(
‖∇vi−1‖2L2(Bθ,j)

+ εdλjρ
d−2
j ‖v‖2L∞(D)

)
.

∑
zj∈Jkmax−i

‖∇(vi−1 − v)‖2L2(Bθ,j)

+
∑

zj∈Jkmax−i

(
‖∇v‖2L2(Bθ,j)

+ εdλjρ
d−2
j ‖v‖2L∞(D)

)
.

Since all Bθ,j , zj ∈ Jkmax−i, are disjoint, this implies that

‖∇(vi − vi−1)‖2L2(D) . ‖∇(vi−1 − v)‖2L2(D) +
∑

zj∈Jkmax−i

(
‖∇v‖2L2(Bθ,j)

+ εdλjρ
d−2
j ‖v‖2L∞(D)

)
.

We may apply the induction hypothesis on vi−1 again and combine the above estimate with (6.4.15)
to conclude (6.4.14) for vi. The proof of (6.4.14) is complete.

Equipped with (6.4.12), (6.4.13) and (6.4.14), we finally set vεb := vkmax+3 and show that this
choice fulfils all the conditions in (6.4.2): The first and the second line in (6.4.2) follow immediately
by construction and the definition (6.3.9) of Dε

b . The second estimate in (6.4.12) with i = kmax + 3
yields also the last inequality in (6.4.2). It thus only remain to show that, almost surely, vεb ∈ H1

0 (D)
for ε small enough and vεb → v in H1

0 (D).

To do this, we begin by showing that ∇(vεb − v) → 0 in L2(D): By (6.4.14) with i = kmax + 3
and the fact that v ∈ C∞0 (D), we indeed obtain

‖∇(vεb − v)‖L2(D) . ‖v‖C1(D)

∑
zj∈J

(
(ε

d
d−2 ρj)

2 + 1
)
εdρd−2

j .

We recall that the set J depends on ε, i.e. J = Jε. In addition, since J ⊂ I (cf. Lemma 6.3.2)
and nε = Φε(D)\Iε, the limit in (6.3.2) of Lemma 6.3.1 yields that almost surely εd#Jε → 0 when
ε ↓ 0+. This, together with (6.3.5), (6.1.7) and the Strong Law of Large numbers, Lemma (5.5.3)
in the previous chapter, implies that the right-hand side above almost surely vanishes in the limit
ε ↓ 0+. Hence, we showed that ∇(vεb − v)→ 0 in L2(Rd). By Poincaré’s inequality, it now suffices to
argue that almost surely and for ε small enough vεb ∈ H1

0 (D) to infer that vεb → v in H1
0 (D) and thus

conclude the proof of (6.4.2).

Let K b D be a compact set containing the support of v, and set r = dist(K,D) > 0. We
show that, almost surely, vεb ∈ H1

0 (D) for all ε ≤ ε̄, with ε̄ = ε̄(r, ω) > 0. To do so, we fix any
realization ω ∈ Ω (which is independent from v) for which we have (6.3.12), and resort to the
construction of vεb via the solutions v0, v1 · · · vkmax+3 obtained by iterating (6.4.7). We claim that for
all i = 0, · · · , kmax + 3 we have

supp(vi) =: Kε
i ⊂ D, dist(Kε, D) ≥ r − 2(i+ 1)θΛε2δd, (6.4.16)

for all ε such that the right-hand side in the last inequality is positive. Since vεb := vkmax+3, we may
choose ε̄(r, ω) such that ε2δd ≤ r

4(kmax+4)θΛ and use the above estimate to infer that vεb is compactly

supported in D for all ε ≤ ε̄(r, ω).

We prove (6.4.16) iteratively and begin with i = 0: By (6.4.7) and the assumption on the support
of v, it follows that, if for zi ∈ Jkmax the ball Bθ,i does not intersect the support K of v, then
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v0 = v ≡ 0 on Bθ,i. This, together with property (6.3.7) of Lemma 6.3.2, implies that

supp(v0) ⊂ K
⋃

zi∈Jkmax,
Bθ,i∩K 6=∅

Bθ,i. (6.4.17)

By recalling that thanks to Lemma 6.3.2 each ball Bθ,j has radius

θλiε
d
d−2 ρi ≤ θΛε

d
d−2 ρi

(6.3.12)

≤ θΛε2dδ,

we observe that (6.4.17) yields estimate (6.4.16) for v0. Let us now assume (6.4.16) for vi. Then,
since vi+1 solves (6.4.7) with boundary datum vi, we may argue as above to infer that

Kε
i+1 ⊂ Kε

i

⋃
zi∈Jkmax,
Bθ,i∩K

ε
i
6=∅

Bθ,i

and thus that

dist(Kε
i+1, D) ≥ dist(Kε

i , D)− 2θΛε2dδ
(6.4.16)

≥ r − 2(i+ 1)θΛε2dδ.

This concludes the iterated estimate (6.4.16), which completes the proof of this step.

Step 3. Construction of vεg satisfying (6.4.3). We now turn to the remaining set D\Dε
b and

construct the vector field vεg in a way similar to [All90a][Subsection 2.3.2] and [DGR08].

For every zi ∈ nε, we write

aε,i := ε
d
d−2 ρi, di := min

{
dist(εzi, D

ε
b),

1

2
min
zj∈nε,
zj 6=zi

(
ε|zi − zj |

)
, ε

}
(6.4.18)

and

Ti = Baε,i(εzi), Bi := B di
2

(εzi), B2,i := Bdi(εzi), Ci := Bi\Ti, Di := B2,i\Bi.

We remark that, since zi ∈ nε, Lemma 6.3.1 implies that for δ > 0

aε,i ≤ ε1+2δ, di ≥ ε1+δ, (6.4.19)

and that all the balls B2,i are pairwise disjoint.

For each zi ∈ nε, we define the function vεg in B2,i in the following way:{
vεg = 0 in Ti

vεg = v − ṽεi in Ci,

where ṽεi solves 
−∆ṽεi +∇πεi = 0 in Rd\Ti
∇ · ṽεi = 0 in Rd\B1

ṽεi = v on ∂Ti

ṽεi → 0 for |x| → +∞.

(6.4.20)
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Finally, we require that on Di, v
ε
g solves
−∆vεg +∇qεg = ∆v in Di

∇ · vεg = 0 in Di

vεg = v on ∂B2,i

vεg = v − ṽεi on ∂Bi,

(6.4.21)

and we then extend vεg by v on Rd\
⋃
zi∈nε B2,i. By Lemma 6.3.1 and the definition (6.4.18) of di, we

have that Dε
b ⊂ Rd\

⋃
zi∈nε B2,i. Therefore, this definition of vεg satisfies the first line of (6.4.3) and

property (i) with Hε substituted by Hε
g . It is immediate that by construction ∇ · vεg = 0 in D, i.e. vεg

satisfies also property (ii).

We observe that by uniqueness of the solution to (6.4.20), we may rescale the domains Ci and
rewrite

vεg = v − φε,i∞
( · − εzi
aε,i

)
in Ci, (6.4.22)

with φε,i∞ solving the second system in (6.8.1) in the annulus Rd\B1 and with boundary datum
ψ(x) = v

(
ai,εx − εzi

)
. Similarly, by uniqueness of the solutions to (6.4.21) we may rescale the

domains Di and write

vεg = v − φε,i2 (
· − εzi
di

) in Di, (6.4.23)

with φε,i2 solving the first system in (6.8.1) in the annulus B2\B1 and with boundary datum ψ(x) =

φε,i∞
(di(x−εzi)

aε,i

)
.

We now turn to properties (iii) and (iv) for vεg: We write

‖vεg − v‖
p
Lp(Rd)

=
∑
zi∈nε

‖vεg − v‖
p
Lp(B2,i)

, (6.4.24)

‖∇(vεg − v)‖2L2(Rd) =
∑
zi∈nε

‖∇(vεg − v)‖2L2(B2,i)
,

and, since B2,i = Di ∪ Ci ∪ Ti, we may further split each norm on the right hand side into the
contributions on each set Di, Ci and Ti. We begin by focussing on the domains Di: By (6.4.23), we
apply (6.8.2) to φε,i2 and infer that

‖∇(vεg − v)‖2L2(Di)
. ‖∇ṽεi ‖2L2(Di)

+ d−2
i ‖ṽ

ε
i ‖2L2(Di)

, (6.4.25)

‖vεg − v‖C0(Di) . ‖ṽ
ε
i ‖C0(∂B2,i).

By using (6.4.22) and changing variables, we rewrite the second line above as

‖vεg − v‖C0(B2,i) . ‖φ
ε,i
∞‖C0(∂B

dia
−1
i,ε

),

and use (6.8.4) on φε,i∞ to infer

‖vεg − v‖C0(Bi) . ‖v‖C0

(ai,ε
di

)d−2
. ‖v‖C0εδ(d−2).
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In particular,

‖vεg − v‖
p
Lp(Di)

. adi,ε‖v‖C0εδ(d−2) . ‖v‖C0εd+δ(d−2). (6.4.26)

We now turn to the first inequality in (6.4.25), use (6.4.22) on the right-hand side, and change
variables to estimate

‖∇(vεg − v)‖2L2(Di)
. ad−2

ε,i ‖∇φ
ε,i
∞‖2L2(B

dia
−1
i,ε
\B 1

2 dia
−1
i,ε

) + adε,id
−2
i ‖φ

ε,i
∞‖2L2(B

dia
−1
i,ε
\B 1

2 dia
−1
i,ε

)

(6.8.5)

. ‖v‖2C1a
d−2
ε,i

(aε,i
di

)d−2 (6.4.19)

. ‖v‖2C1ε
d+δ(d−2)ρd−2

i .

(6.4.27)

We consider the sets Ci: We use the definition (6.4.22) for vεg on Ci and a change of variables to
rewrite

‖∇(vεg − v)‖2L2(Ci)
= ad−2

ε,i ‖∇φ
ε,i
∞‖2L2(B 1

2 dia
−1
ε,i
\B1).

Hence, using (6.8.3) for φε,i∞ , we obtain

‖∇(vεg − v)‖2L2(Ci)
. ‖∇v‖2L2(B2aε,i

(εzi)\Ti) + a−2
ε,i ‖v‖

2
L2(B2aε,i

(εzi)\Ti) (6.4.28)

. ad−2
ε,i ‖v‖

2
C1 = εdρd−2

i ‖v‖2C1 .

Similarly, by (6.4.22) and a change of variables, for each 2 ≤ p < +∞ we have

‖vε,ig − v‖
p
Lp(Ci)

= adε,i‖φε,i∞‖
p
Lp(B

dia
−1
ε,i
\B1),

and, thanks to the pointwise estimate (6.8.4) for φε,i∞ , we have that for all p > d
d−2

‖vεg − v‖
p
Lp(Ci)

. ‖v‖p
C0a

d
ε,i

(6.4.19)

. ‖v‖p
C0ε

2+4δεdρd−2
i . (6.4.29)

We finally turn to Ti, on which we easily bound

‖∇(vεg − v)‖2L2(Ti)
= ‖∇v‖2L2(Ti)

≤ ‖v‖2C1a
d
ε,i

(6.4.19)

. ‖v‖2C1ε
2(1+δ)εdρd−2

i , (6.4.30)

‖vεg − v‖
p
Lp(Ti)

= ‖v‖pLp(Ti)

(6.4.19)

. ‖v‖p
C0ε

2(1+2δ)ρd−2.

By collecting all the estimates in (6.4.26), (6.4.27), (6.4.28), (6.4.29) and (6.4.30) we get

‖∇vεg − v‖2L2(B2,i)
. ‖v‖2C1ε

dρd−2
i , (6.4.31)

and for all p > d
d−2

‖vεg − v‖
p
Lp(B2,i)

. ‖v‖C∞εd
(
ε2ρd−2

i + εδp(d−2)
)
.

We insert these estimates in (6.4.24) and apply (6.1.7) and the Strong Law of Large Numbers on the
right-hand sides to conclude that almost surely

‖∇vεg‖L2(D) . 1
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and that vεg → v in Lp(D) for p > d
d−2 . Since v, vεg are supported in the bounded domain D for ε

small enough, we conclude properties (iii) and (iv) for vεg.

We finally turn to property (v). We use an argument very similar to the one for Lemma 5.3.1.
For any N ∈ N fixed and all zi ∈ nε, let us define

nεN :=
{
zi ∈ nε : di ≥

ε

N

}
,

where Q ⊂ Rd is a unit cube. Moreover, let RN := {ρNi }zi∈nε be the truncated environment given by

ρNi := ρi ∧N and let Hε,N
g be the set of holes generated by nεN with RN . Let vε,Ng be the analogues

of vεg for Hε,N
g . We begin by showing that vε,Ng satisfy property (v) on Hε,N

g with

µN = Cd〈(ρN )d−2〉〈#(N 2
N

(Q))〉,

where Q is a unit ball and N 2
N

is defined in Section 6.2.1.

Before showing this, we argue how to conclude also property (v) for vεg: Let uε ∈ H1
0 (Dε) such

that uε ⇀ u in H1(D). For each N ∈ N fixed we bound

lim sup
ε↓0+

∣∣∣∣ˆ ∇vεg · ∇uε − (ˆ ∇v · ∇u+

ˆ
v · µu

)∣∣∣∣
≤ lim sup

ε↓0+

∣∣∣∣ˆ ∇vε,Ng · ∇uε −
(ˆ
∇v · ∇u+

ˆ
v · µu

)∣∣∣∣+ lim sup
ε↓0+

∣∣∣∣ˆ ∇(vεg − vε,Ng ) · ∇uε
∣∣∣∣.

Since Hε,N
g ⊂ Hε

g , property (v) for vε,Ng yields

lim sup
ε↓0+

∣∣∣∣ˆ ∇vεg · ∇uε − (ˆ ∇v · ∇u+

ˆ
v · µu

)∣∣∣∣ (6.4.32)

≤
∣∣∣∣ˆ v · (µ− µN )u

∣∣∣∣+ lim sup
ε↓0+

∣∣∣∣ˆ ∇(vεg − vε,Ng ) · ∇uε
∣∣∣∣.

We now appeal to the explicit construction of the functions vεg, v
ε,N
g to observe that

supp(vεg − vε,Ng ) ⊂
⋃

zi∈nεN ,
ρi≥N

B2,i ∪
⋃

zi∈nε\nεN

B2,i,

vεg − vε,Ng = vεg in
⋃

zi∈nε\nεN

B2,i.

Therefore,

‖∇(vεg − vε,Ng )‖2L2(D) .
∑
zi∈nεN ,
ρi≥N

‖∇(vεg − vε,Ng )‖2L2(B2,i)
+

∑
zi∈nε\nεN

‖∇vεg‖2L2(B2,i)
.

We smuggle in the norms on the right-hand side the function v and appeal to (6.4.31) for vεg (and

the analogue for vε,Ng ) to get that

‖∇(vεg − vε,Ng )‖2L2(D) . ‖v‖C1(D)ε
d

(∑
zi∈nε

ρd−2
i 1ρi≥N +

∑
zi∈nε\nεN

(1 + ρd−2
i )

)
.
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Assumption (6.1.7) and the Strong Law of the Large Numbers yield that almost surely∑
zi∈nε

ρd−2
i 1ρi≥N → 〈ρ1ρ≥N 〉.

Moreover, by (6.3.2) and (6.3.3) of Lemma 6.3.1, and (5.5.10) of Lemma 5.5.2, we have that almost
surely

lim
N↑+∞

lim
ε↓0+

εd#(nε\nεN ) = 0. (6.4.33)

This yields by Lemma 5.5.3 that

lim
N↑+∞

lim
ε↓0+
‖∇(vεg − vε,Ng )‖L2(D) = 0.

Since ∇uε is uniformly bounded in L2(D), we can insert this in (6.4.32) to conclude

lim sup
ε↓0+

∣∣∣∣ˆ ∇vεg · ∇uε − (ˆ ∇v · ∇u+

ˆ
v · µu

)∣∣∣∣ . lim sup
N↑+∞

∣∣∣∣ˆ v · (µ− µN )u

∣∣∣∣.
By using again assumption (6.1.7) and (6.4.33) we infer that the right-hand side above vanishes
almost surely and conclude property (v) for vεg with µ as in Theorem 6.2.1.

We now turn to property (v) for vε,Ng . When no ambiguity occurs, we drop the upper index N .
For every uε as above, we split the integral

ˆ
∇vεg · ∇uε =

ˆ
∇v · ∇uε −

ˆ
∇(vεg − v) · ∇uε.

The first term converges to
´
∇v · ∇u by the assumption on the sequence uε. To conclude property

(v) it thus remains to argue that

ˆ
∇(vεg − v) · ∇uε →

ˆ
v · µNu. (6.4.34)

To prove this, we recall the construction of vεg, and we split the integral into

ˆ
∇(vεg − v) · ∇uε =

∑
zi∈nε

ˆ
Ci

∇(vεg − v) · ∇uε +
∑
zi∈nε

ˆ
Di

∇(vεg − v) · ∇uε.

Note that the integral on each Ti vanishes by the assumption uε ∈ H1
0 (Dε). We first focus on the

second sum on the right-hand side above and use Cauchy-Schwarz and (6.4.27) to bound

∑
zi∈nε

ˆ
Di

∇(vεg − v) · ∇uε . ‖∇uε‖L2(D)

(
εd+δ(d−2)

∑
zi∈nε

ρd−2
i

) 1
2 ‖v‖C∞ .

By the assumption on the weak convergence for the sequence ∇uε and the Strong Law of Large
Numbers, the right-hand side almost surely vanishes in the limit ε ↓ 0+. Thus,

ˆ
∇(vεg − v) · ∇uε =

∑
zi∈nε

ˆ
Ci

∇(vεg − v) · ∇uε + o(1). (6.4.35)
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We turn to the remaining term above: For each zi ∈ nε, let (φ̃ε,i∞ , π̃
ε,i
∞ ) solve the Stokes problem

(6.8.1) in the exterior domain Rd\B1 and with constant boundary datum v(εzi). We define

φ̄∞ = φ̃∞(
· − εzi
aε,i

), π̄∞ := a−1
ε,i π̃∞(

· − εzi
aε,i

), (6.4.36)

and smuggle these functions in each one of the integrals over Ci. This yields∑
zi∈nε

ˆ
Ci

∇(vεg − v) · ∇uε =
∑
zi∈nε

ˆ
Ci

∇(vεg − v − φ̄ε,i∞) · ∇uε +
∑
zi∈nε

ˆ
Ci

∇(φ̄ε,i∞) · ∇uε. (6.4.37)

We claim that the first integral on the right-hand side vanishes in the limit ε ↓ 0+: By (6.4.22)
and (6.4.36), each difference vεg − v− φ̄

ε,i
∞ solves the second system in (6.8.1) in Rd\Ti with boundary

datum ψ = v − v(εzi). Therefore, by the first inequality in (6.8.3),

‖∇(vεg − v − φ̄ε,i∞)‖2L2(Ci)
. ‖∇v‖2L2(B2aε,i

(εzi)\Ti) + a−2
ε,i ‖v − v(εzi)‖2L2(B2aε,i

(εzi)\Ti).

As the vector field v is smooth, we use a Lipschitz estimate on the last term, and conclude that

‖∇(vεg − v − φ̄ε,i∞)‖2L2(Ci)
. ‖v‖2C1a

d
ε,i

(6.4.19)

. ‖v‖2C1ε
2+4δεdρd−2

i .

By Cauchy-Schwarz inequality and this last estimate we find

∑
zi∈nε

ˆ
Ci

∇(vεg − v − φ̄ε,i∞) · ∇uε ≤ ‖∇uε‖L2

(
ε2+d

∑
zi∈nε

ρd−2
i

) 1
2
,

and use the the Strong Law of Large Numbers to conclude that almost surely the above right-hand
side vanishes. This, together with (6.4.37) and (6.4.35), yields

ˆ
∇(vεg − v) · ∇uε =

∑
zi∈nε

ˆ
Ci

∇φ̄ε,i∞ · ∇uε + o(1). (6.4.38)

We now integrate the first integral on the right-hand side above by parts and, since uε vanishes
in Ti, we obtain

ˆ
Ci

∇φ̄ε,i∞ · ∇uε = −
∑
zi∈nε

ˆ
Ci

∆φ̄ε,i∞uε +

ˆ
∂Bi

∂ν φ̄
ε,i
∞uε,

where ν denotes the outer unit normal. By using (6.4.36), the equation (6.8.1) for (φ̄ε,i∞ , π̄
ε,i
∞ ) and the

fact that ∇ · uε = 0 in D, we obtain

ˆ
Ci

∇φ̄ε,i∞ · ∇uε =
∑
zi∈nε

ˆ
∂Bi

(∂nuφ̄
ε,i
∞ − π̄ε,iν) · uε.

By wrapping this up with (6.4.38), we conclude that to show (6.4.34) it suffices to prove that

∑
zi∈nε

ˆ
∂Bi

(∂ν φ̄
ε,i
∞ − π̄ε,iν) · uε →

ˆ
v · µNu. (6.4.39)
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We establish (6.4.39) as in [All90a]: We remark, indeed, that by the uniqueness of the solutions in
(6.8.1), for each zi ∈ nε, we have

φ̄ε,i∞ =
d∑

k=1

vk(εzi)w
ε
k, π̄ε,i =

d∑
k=1

vk(εzi)q
ε
k,

with (wεk, q
ε
k) the analogues of the oscillating test functions constructed in [All90a][Proposition 2.1.4].

We remark that the only difference is that in this setting, the scales aε,i (i.e. the size of the holes Ti)
depend on the index zi and are not constant but bounded by N (we recall that we are considering
the truncated environment RN ). Therefore, by arguing as in Lemma 2.3.7 of [All90a] we use Lemma
2.3.5 of [All90a] and linearity to rewrite∑

zi∈nε

ˆ
∂Bi

(∂ν φ̄
ε,i
∞ − π̄ε,iν)uε = (µNε , uε)H−1,H1

0
+ rε,

with

µNε =
Cd
|B1|

∑
zi∈nε

v(εzi)(ρ
N
i )d−2 (2ε)d

ddi
1Bi , rε → 0 in H−1(D).

Since v ∈ C∞0 (D) and the radii ρNi are uniformly bounded, we can also replace µNε by

µ̃Nε =
Cd
|B1|

∑
zi∈nε

(ρNi )d−2 (2ε)d

ddi
1Biv.

To establish (6.4.39), it remains to argue as in the proof of Lemma 5.3.1 in Chapter 5.4.2 (see from
formula (5.4.59) on) and appeal to Lemma 5.5.4. This yields property (v) for vεg and thus completes
the proof of this step and of the whole lemma.

6.5 Estimates for the pressure (Proof of Theorem 6.2.3)

We begin this section by defining the set Eε appearing in the statement of Theorem 6.2.3. In
order to do so, we recall and introduce some notation. In order to keep the notation simpler we again
often omit the index ε when no ambiguity occurs. From Lemma 6.3.1 and Lemma 6.3.2, we recall
the definition of the index sets nε and J and the factors λj , j ∈ J . We use the notation

Bj = B
ε

d
d−2 ρj

(εzj), Bj,θ = B
θε

d
d−2 ρj

(εzj) for j ∈ nε

Bj = B
λjε

d
d−2 ρj

(εzj), Bj,θ = B
θλε

d
d−2 ρj

(εzj) for j ∈ J,

and we denote Aj = Bj,θ \Bj .
Moreover, we recall the definition of the set El for −3 ≤ l ≤ kmax + 1 from the proof of Lemma

6.3.2:

Ekmax+1 := ∅,

El−1 :=

(
El \

⋃
zj∈Jl−1

Aj

)
∪

⋃
zj∈Jl−1

Bj . (6.5.1)

We now define

Eε := E−3 ∪Hε
g , (6.5.2)



196 Homogenization of the Stokes equations

where Hε
g denotes the set of “good” holes as in Lemma 6.3.1. We remark that Eε is precisely the set

where the operator Rε from Lemma 6.5.2 truncates to zero, i.e. Rεv = 0 in Eε for all v ∈ C∞0 (D),
and Eε is the largest set with this property.

For the proof of Theorem 6.2.3, we will rely on some properties of the set E−3 that follow from
the explicit construction in the proof of Lemma 6.3.2. We collect them in the following Lemma.

Lemma 6.5.1. For j ∈ J , let Ezj be the connected component of E−3 which contains εzj. Then,

E−3 =
⋃
j∈J

Ezj . (6.5.3)

Moreover, for j ∈ Jk, let Ẽzj = Ezj \ Ek+1. Then, Ezj ⊃ B
ε

d
d−2 ρj

(εzj) and

|Ẽzj | & |B
ε

d
d−2 ρj

(εzj)|. (6.5.4)

Furthermore, there exists N1 ∈ N0 and zin ∈ ∪k−2
l=−3Jl, 1 ≤ n ≤ N1 such that

Ezj = Bj \
( N1⋃
n=1

Ein
)
, (6.5.5)

and there exists N2 ∈ N0 and zjn ∈ ∪k−2
l=−3Jl, 1 ≤ n ≤ N2 such that

Aj ∩ Ek+1 ∩ E =

N2⋃
n=1

Ejn ∩Aj ∩ Ek+1. (6.5.6)

Proof. As mentioned above, the proof of this lemma follows from the construction in the proof of
Lemma 6.3.2. First of all, the sets Ezj have been defined in that proof after (6.3.49). Moreover,
(6.5.3) is a direct consequence of (6.3.52), and (6.5.5) follows from (6.3.50).

We turn to the proof of (6.5.6): Since by construction of Ek and Dε
b , Ek+1 ⊂ Dε

b , (6.3.1) implies
Ek+1 ∩ E = Ek+1 ∩ E−3. Moreover, by (6.5.1), Ek ∩Aj = ∅. Hence,

Aj ∩ E−3 ⊂ Aj ∩
(
Ek ∪

⋃
l<k

⋃
zj∈Jl

Ezj
)

= Aj ∩
⋃
l<k

⋃
zj∈Jl

Ezj

This implies (6.5.6).

It remains to prove (6.5.4). To this end, we note that if zi ∈ Jk and B
λiε

d
d−2 ρi

(εzi) ∩ Ek+1 6= ∅,
then there are unique l > k and z1 ∈ Jl such that

B
λiε

d
d−2 ρi

(εzi) ∩ Ek+1 = B
λiε

d
d−2 ρi

(εzi) ∩ Ez1k+1. (6.5.7)

Indeed, let l1 > k be minimal such that there is z1 ∈ Jl1 with

B
λiε

d
d−2 ρi

(εzi) ∩B
λ1ε

d
d−2 ρ1

(εz1) 6= ∅.

Then, since by (6.3.14) l1 ≥ k + 2 we have ρ1 � ρi,

B
λiε

d
d−2 ρi

(εzi) ⊂ B
θλ1ε

d
d−2 ρ1

(εz1).



Estimates for the pressure (Proof of Theorem 6.2.3) 197

Now assume there is l2 ≥ l1 and z2 ∈ Jl2 such that

B
λiε

d
d−2 ρi

(εzi) ∩ Ez2k+1 6= ∅ (6.5.8)

Then, applying (6.3.14), l1 ≤ l2 − 2. In particular

Ez2k+1 ⊂ B
λ2ε

d
d−2 ρ2

(εz2) \B
θλ1ε

d
d−2 ρ1

(εz1)

which contradicts (6.5.8) and thus proves (6.5.7). We remark, that this gives the set J the structure
of a forest.

Furthermore, going through the proof of the claim (6.3.49) we see that actually for any γ < θ2

there exists ε sufficiently small such that for all zj ∈ Jε

B
ε

d
d−2 γλ̃ρj

(εzj) ⊂ Ezj .

Therefore, choosing θ < γ < θ2, for zj ∈ Jk,

|Ezj\Ek+1| ≥ |B
ε

d
d−2 γλ̃ρj

(εzj) \ Ek+1| & |B
ε

d
d−2 ρj

(εzj)|

where the last inequality follows from (6.5.7) and the fact that zj 6∈ Jk if B
ε

d
d−2 θλ̃ρj

(εzj) ⊂ Ek+1.

The proof of Theorem 6.2.3 relies on the following two results. The first lemma below is an
adaptation of Lemma 6.2.4 of Section 6.2.4 to the case of the reduction operator Rε is applied to the
function v = ek, where ek, k = 1, · · · , d are the canonical vectors of Rd. The second lemma below is
a a variant of the standard Bogovski lemma to the set D\Eε which allows to obtain estimates for the
pressure in the Stokes equations (6.1.1). The non-trivial aspect of that Lemma is that the estimate
is uniform in ε for small ε. A priori, any such estimate highly depends on the exact geometry of the
set of holes. To prove this result, we therefore again use an iteration scheme similar to the one in the
construction of the operator Rε.

Lemma 6.5.2. Let k = 1, · · · , d be fixed. Then, for almost every ω ∈ Ω and any ε ≤ ε0(ω) and all
k = 1, · · · , d, there exist wεk ∈ H1(D;Rd) ∩ L∞(D;Rd), k = 1, · · · d, such that

(H1) wεk = 0 on Eε and ∇ · wε = 0 in D;

(H2) wεk ⇀ ek in H1(D) and wεk → ek in Lp(D) for any 1 ≤ p < +∞;

(H3) For any φ ∈ C∞0 (D) and sequence vε ⇀ v in H1
0 (D;Rd) with ∇ · vε = 0 on D we have

lim
ε↓0+

ˆ
φ∇wεk · ∇vε =

ˆ
φek · µv,

with µ defined in Theorem 6.2.1.

Lemma 6.5.3. Let q > d and let K b D. Then, almost surely, there exists ε0 > 0 such that for all
ε < ε0 and all g ∈ Ld+

0 (K \ Eε) there exists v ∈ H1
0 (D \ Eε) such that

div v = g,

‖v‖H1 ≤ C‖g‖Lq ,
(6.5.9)

where C = C(d, β, q).
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Proof of Theorem 6.2.3. We first observe that (6.2.8) holds with the choice of Eε as in (6.5.2). Indeed,
Eε \Hε ⊂ Dε

b and by (6.3.9), sub-additivity of the harmonic capacity, and Lemma 5.5.3

Cap(Eε \Hε) ≤
∑
zj∈Jε

Cap
(
B

Λε
d
d−2 ρj

(εzj)
)
. εd

∑
zj∈Jε

ρd−2
j → 0

almost surely as ε→ 0.
Let K b D and let ε0 > 0 be as in Lemma 6.5.3. Let g ∈ Lq0(K \ Eε) and let v ∈ H1

0 (D \ Eε)
satisfy (6.5.9). Then, testing (6.2.4) with v yields

ˆ
K\Eε

pεg =

ˆ
D\Eε

pε div v = (∇uε,∇v)L2(Dε) + 〈f, v〉H−1,H1

≤ 2‖v‖H1‖f‖H−1 . ‖g‖Lq‖f‖H−1 .

Since g ∈ Lq(K \ Eε) was arbitrary, this implies that, up to a subsequence, p̃ε defined in (6.2.9)
converges to p∗ weakly in Lq

′
(D), where q′ is the Hölder conjugate of q. It remains to identify the

limit p∗ and extend the above convergence to the whole family ε ↓ 0+. To do so, it suffices to fix
any smooth vector field φ ∈ C∞0 (Rd) and test the equation (6.2.4) for uε with the admissible test
function

∑d
k=1w

ε
kφk: The integral terms containing ∇uε and f may be treated as in the proof of

Theorem 6.2.1 by relying on Lemma 6.5.2 instead of Lemma 6.2.4. It thus remains to show that also

d∑
k=1

ˆ
∇ · (wεkφ)pε →

ˆ
∇φ · p∗. (6.5.10)

This indeed yields that (uh, p
∗) solve (6.2.5) and, by uniqueness, that p∗ = ph in Lq0(D).

Let K b D be the support of φ. Then, by (H1) of Lemma 6.5.2 each product wεkφk is supported
in K\Eε and therefore

d∑
k=1

ˆ
∇ · (wεkφ)pε =

d∑
k=1

ˆ
∇ · (wεkφ)p̃ε =

d∑
k=1

ˆ
wεk · ∇φp̃ε,

where in the last identity we used Leibniz rule and the divergence-free condition for wεk in (H1) of
Lemma 6.5.2. It now remains to combine the convergence of p̃ε with (H2) of Lemma 6.5.2 and send
ε ↓ 0+ in the right-hand side above. This establishes (6.5.10) and concludes the proof of Theorem
6.2.3.

Proof of Lemma 6.5.2. We construct wεk as Rεek by mimicking the proof of Step 1 and Step 2 of
Lemma 6.2.4, with the smooth vector field v ∈ C∞0 (D,Rd) substituted by ek. We remark that the
construction does not require that v is compactly supported in D. This yields from property (ii) of
Lemma 6.2.4 that ∇ · wεk = 0 in D. Moreover, a careful look to the construction of Step 2 on the
set Dε

b shows that Rεek vanishes in the set Eε ∩Dε
b ⊃ Hε

b and, since Eε = Hε
g on D\Dε

b , we may
upgrade property (i) of Lemma 6.2.4 to obtain (H1) of Lemma 6.5.2. Property (H2) follows from
(iii) and (iii) of Lemma 6.2.4. Similarly, we argue that (H3) for wεk may be proven as (v). of Lemma
6.2.4, since the term on the left-hand side of (H3) may be rewritten as

ˆ
φ∇wεk · ∇vε = −

ˆ
∇φ · ∇wεkvε − (∆wεk, φvε)H−1,H1

0
.

Thanks to (H2) of Lemma 6.5.2 and the assumption on vε, the first term on the right-hand side
vanishes almost surely in the limit ε ↓ 0+. The remaining term may be treated analogously to (6.4.39)
in the proof of Lemma 6.2.4 (see also [All90a][Subsection 2.3.2]).
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Proof of Lemma 6.5.3. Step 1: Strategy: Let g0 ∈ Lq0(K \Eε) and extend it by zero to a function
g0 ∈ Lq0(D \ Eε). The idea is to first solve the problem to find v0 ∈ H1

0 (K) such that

div v0 = g0,

‖v0‖Hq . ‖g0‖Lq .
(6.5.11)

Clearly, since K does not depend on ε, this just follows from the classical estimates for the Bogovski
operator (see e.g. [Gal11]). Then, we want to do corrections in order to have v = 0 in E. For j ∈ nε
the correction is straightforward by taking v = v0 + vj in Bθ,j , where vj solves the problem

−∆vj +∇pj = 0 in Aj

div vj = 0 in Aj

vj = 0 on ∂Bj,θ

vj = −v0 in Bj .

(6.5.12)

By (6.8.2), we have

‖vj‖H1(Bθ,j) . ‖v0‖H1(Bθ,j) +R
d−2

2
j ‖v0‖L∞ , (6.5.13)

‖vj‖C0 . ‖v0‖C0 ,

where Rj = ε
d
d−2 ρε.

We would like to do this also for zj ∈ J . We should start with zj ∈ Jmax. However, recall the
complementary condition for existence of a solution to equation (6.5.12)

ˆ
∂Bj

v0 · ν = 0.

This is in general not satisfied for those zj since we have

ˆ
∂Bj

v0 · ν =

ˆ
Bj

g0,

and the latter integral might be nonzero if Bj 6⊂ E and we simply extended g0 by zero inside E.
(Clearly, Bj ⊂ E holds for zj ∈ nε.) Moreover, note that for zj ∈ Jk, −3 ≤ k ≤ kmax, instead of the
problem (6.5.12), we need to find a corrector vj that solves

div vj = g0 in Aj ∩ Ek+1

div vj = 0 in Aj \ Ek+1

vj = 0 on ∂Bj,θ

vj = −v(k+1) in Bj ,

(6.5.14)

where v(k) is inductively defined by

v(kmax+1) := v0,

v(k) := v(k+1) +
∑
zj∈Jk

vj .
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By Lemma 6.8.2, we can find a solution vj to (6.5.14) with

‖vj‖H1 . ‖v(k+1)‖H1(Bθ,j) + ‖g‖L2(Bθ,j) +R
d−2

2
j

(
‖v(k+1)‖C0 + ‖ div v(k+1)‖Lq(Br) + ‖g‖Lq

)
,

‖vj‖C0 . ‖v(k+1)‖C0 + ‖ div v(k+1)‖Lq(Br) + ‖g‖Lq
(6.5.15)

with Rj = ε
d
d−2 ρj , provided the complementary condition holds, namelyˆ

Aj∩Ek+1

g0 −
ˆ
∂Bj

v(k+1) · ν = 0. (6.5.16)

Again, this is not satisfied in general, sinceˆ
Aj∩Ek+1

g0 −
ˆ
∂Bj

v(k+1) · ν =

ˆ
Aj∩Ek+1

g0 −
ˆ
Bj\Ek+1

g0.

For this reason, instead of simply extending g0 by zero, we need to extend it in a nontrivial way
to a function g ∈ Lq0(D).

Step 2: Extension of the function g0: First, we extend g0 by g = 0 to Rd \ E. As seen above,
for zj ∈ nε, we can also simply choose g = 0 in Bj . For zj ∈ J let N1 ∈ N0 and zin ∈ ∪k−2

l=−3Jl,

1 ≤ n ≤ N1 such (6.5.5) holds, and let N2 ∈ N0 and zjn ∈ ∪k−2
l=−3Jl, 1 ≤ n ≤ N2 such that (6.5.6)

holds. We now choose g = gj = const in Ẽzj and g = 0 in Ezj \ Ẽzj , where the constants gj are
uniquely determined by satisfying

0 =

ˆ
Aj∩Ek+1

g −
ˆ
Bj\Ek+1

g

=

ˆ
Aj∩Ek+1\E

g0 +

N2∑
n=1

|Ẽjn ∩Aj ∩ Ek+1|gjn

−
ˆ
Bj\(Ek+1∪E)

g0 − |Ẽzj |gj −
N1∑
n=1

|Ẽin ∩Bj \ Ek+1|gin .

(6.5.17)

Indeed, since zin , zjn ∈ ∪k−2
l=−3Jl, this formula yields gj for all zj ∈ Jk, provided we already know gi

for zi ∈ ∪k−2
l=−3Jl. Therefore, all zj , j ∈ J are inductively defined by (6.5.17).

We observe that by this procedure we might extend the function g0 non-trivially also in holes
that are not contained in K, namely if they are within a cluster that intersects with K. Therefore,
we fix some K b K ′ b D and argue that for ε sufficiently small, g = 0 in D \K ′. Indeed, this follows
by induction very similarly to the argument at the end of Step 2 in the proof of Lemma 6.2.4, only
that here we start from the small holes towards the big holes. Indeed, gj = 0 for all j ∈ J−3 with
Bθ,j ⊂ D \K, and gj = 0 for j ∈ Jk if Bθ,j ⊂ D \K and Bθ,j ∩Bθ,i = ∅ for all i ∈ ∪k−1

l=−3 with gi 6= 0.
Hence, instead of (6.5.11), we can find v0 ∈ H1

0 (K ′) with

div v0 = g, (6.5.18)

‖v0‖Hq . ‖g‖Lq ,

and extend v0 by zero to a function in D. In order to find such a v0, we need to check the
complementary condition

´
g = 0. By (6.5.17)ˆ

K′
g =

ˆ
K
g0 +

ˆ
E−3

g =

ˆ
E−3

g

=

ˆ
E−2

g +
∑
j∈J−3

ˆ
Bj\E−3

g −
ˆ
Aj∩E−3

g =

ˆ
E−2

g.
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By induction, this indeed yields g = 0 since Ekmax+1 = ∅.
Step 3: Solving div v = g and obtaining the desired estimates: We need to show that by the
extension of g0 to g, we did not increase its norm too much, i.e.,

‖g‖qLq(K′) . ‖g0‖qLq(K). (6.5.19)

We claim that with the above definition of gj , we have for all zj ∈ Jk

|Ẽzj ||gj | ≤ (2kmax + 3)k+2‖g0‖L1(Bθ2,j\E), (6.5.20)

where Bθ2,j := B
θ2λjε

d
d−2 ρj

(εzj). We prove (6.5.20) by induction over k. For zj ∈ J−3, we have

|Ẽzj |gj =

ˆ
Aj∩Ek+1\E

g,

so (6.5.20) holds for k = −3. Assume that (6.5.20) holds for all 1 ≤ l ≤ k − 1 and consider zj ∈ Jk.
Let N1, N2 ∈ N0 and zin , zjn ∈ ∪k−1

l=−3Jl such that (6.5.5) and (6.5.6) hold. Then,

|Ẽzj ||gj | ≤
ˆ
Bθ,j\E

|g0|+
N1∑
n=1

|Bθ,j ∩ Ẽzin ||gin |+
N2∑
n=1

|Bθ,j ∩ Ẽzjn ||gjn |

≤ ‖g0‖L1(Bθ,j\E) +

N1∑
n=1

(2kmax + 3)k+1‖g0‖L1(Bθ2,in\E)

+

N2∑
n=1

(2kmax + 3)k+1‖g0‖L1(Bθ2,jn\E).

(6.5.21)

We observe that Bθ2,in ⊂ Bθ2,j since Bin ∩Bθ,j 6= ∅ and the radius of the ball Bin is much smaller
than the one of Bj since zin ∈ Jl with l ≤ k − 2. Moreover, for every x ∈ Bθ2,j ,

#{zin , 1 ≤ n ≤ N : x ∈ Bθ2,in} ≤ k + 1,

since, by (6.3.7), Bθ2,in ∩Bθ2,im = ∅ whenever zim 6= zin ∈ Jl for some 1 ≤ m,n,≤ N , −3 ≤ l ≤ k− 2
Using this in (6.5.21) yields (6.5.20).

By definition of g, we have

‖g‖qLq(K′) = ‖g0‖qLq(K) +
∑

zj∈JK′

|Ẽzj ||gj |q.

We estimate for zj ∈ J , using (6.5.20) and (6.5.4),

|Ẽzj ||gj |q .
1

|Ẽzj |q−1
‖g0‖qL1(Bθ2,j\E)

. ‖g0‖qLq(Bθ2,j\E).

Using similar as above that for all x ∈ K ′

#{zj ∈ J : x ∈ Bθ,j} ≤ kmax + 1,

this yields (6.5.19).

Hence, the function v0 solving (6.5.18) satisfies

div v0 = g,

‖v0‖Hq . ‖g‖Lq . ‖g0‖Lq .
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Now we just proceed by adding correctors as sketched in Step 1: First, let vj be the solutions to
(6.5.12) for zj ∈ nε and define

v(kmax+1) := v0 +
∑
zj∈nε

vj .

Then, v(kmax+1) ∈ H1
0 (D),

div v(kmax+1) = g,

v(kmax+1) = 0 in Hε
g ,

(6.5.22)

and, since vj have disjoint support, using (6.5.13)

‖v(kmax+1)‖C0 . ‖g0‖Lq

and

‖v(kmax+1)‖2H1 =
∑
zj∈nε

‖vj‖2H1 .
∑
zj∈nε

‖v0‖2H1(Bθ,j
+ ε

d
d−2 ρj‖v0‖L∞ . ‖g0‖Lq ,

almost surely, for ε small enough.
Then, inductively for k = kmax, . . . ,−3, for all zj ∈ Jk, we claim that we find solutions to vj

(6.5.14) that satisfy (6.5.15), and defining

v(k) := v(k+1) +
∑
zj∈Jk

vj ,

we have v(k) ∈ H1
0 (D) with

div v(k) = g in D \ Ek
v(k) = 0 in Hε

g ∪ Ek,

‖v(k)‖H1 + ‖v(k)‖C0 . ‖g0‖Lq .

(6.5.23)

It remains to prove this claim. Indeed, if (6.5.23) holds, then setting v = v(−3) yields the assertion.

The proof proceeds by induction in k. Indeed, for k = kmax + 1, (6.5.22) yields (6.5.23). Assume
(6.5.23) holds for some k + 1. Then, we recall that the complementary condition for solving (6.5.14)
is (6.5.16), which is equivalent to (6.5.17) since div v(k+1) = g in D \ Ek+1. However, (6.5.17) holds,
because this is exactly how we chose the values of gi, i ∈ J . Therefore, vj is well defined, and satisfies
(6.5.15). In particular v(k) is well defined, and, using that |div v(k+1)| ≤ |g| pointwise together with
the estimates for v(k+1), we get the estimate in (6.5.23) analogously as we obtained the estimates for
v(kmax+1). Moreover, by construction, div v(k) = g in D \ Ek.

Furthermore, v(k) ∈ H1
0 (D), since we only changed v(k+1) in Bθ,j for holes that are in certain

cluster that overlaps with K ′. These balls are contained in D by an argument analogous to the one
at the end of Step 2 in the proof of Lemma 6.2.4. It remains remark that by construction v(k) = 0 in
Hε
g ∪ Ek, since v(k) = 0 in Ek+1\ ∪zj∈Jk Bθ,j and in ∪zj∈JkBj .

6.6 Probabilistic results

The aim of this section is to give some probabilistic results on the random set Hε, in terms of
the size of the clusters generated by overlapping balls of comparable size; these results are used in
Section 6.3 to obtain a good covering for Hε and to estimate its size.
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We introduce the following notation: For α ≥ 1, let

Hε
α =

⋃
zi∈Φε(D)

B
ε

d
d−2 αρi

(εzi).

For a step-size δ > 0, we partition the (random) collection of points Φε(D) in terms of the order of
magnitude of the associated radii: We define

Iεk,δ := {zi ∈ Φε(D) : ε1−δk < ε
d
d−2 ρi ≤ ε1−δ(k+1)} for k ≥ −2, (6.6.1)

Iε−3,δ := {zi ∈ Φε(D) : ε
d
d−2 ρi ≤ ε1+2δ},

and for every k ≥ −2 also

Ψk,ε
δ = Iεk ∪ Iεk−1 ⊂ Φε(D).

Each collection Ψk,ε
δ thus generates the set

Hδ,ε
k,α :=

⋃
zi∈Ψk,εδ

B
ε

d
d−2 αρi

(εzi) ⊂ Hε
α (6.6.2)

which is made of balls having radii which differ by at most two orders δ of magnitude.

Lemma 6.6.1. Let α ≥ 1 and 0 < δ < β
2d be fixed. Then, there exists M(d, β), kmax(β, d) ∈ N such

that for almost every ω ∈ Ω and every ε ≤ ε0(ω)

(I) For every k > kmax we have

Ikε,δ = ∅;

(II) For every −2 ≤ k ≤ kmax, each connected component of Hε
k,α defined in (6.6.2) is made of at

most M balls.

Proof of Lemma 6.6.1. We begin with (I) and observe that assumption (6.1.7) and Chebyshev’s
inequality imply that for a constant C < +∞

〈ρd−2+β〉 ≤ C, P(ρ ≥ r) ≤ Cr−(d−2+β). (6.6.3)

In addition, as already argued in Section 6.3.1 (see (6.3.12)),(6.1.7) and the Strong Law of Large
Numbers (see Lemma 5.5.2) imply that for almost every ω ∈ Ω and all ε sufficiently small

max
zi∈Φε(D)

ε
d
d−2 ρi ≤ 2ε

d
d−2
− d
d−2+β 〈ρd−2+β〉

1
d−2+β .

Hence, for the same choice of ω and ε we have Ik = ∅ whenever k > kmax with

ε1−δ(kmax+1) < ε
d
d−2
− d
d−2+β ,

namely if

1− δ(kmax + 1) <
d

d− 2
− d

d− 2 + β
. (6.6.4)
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We may thus choose the minimal kmax satisfying the inequality above and conclude the proof for (II).

We now turn to (II) and fix −2 ≤ k ≤ kmax: For any m ∈ N we consider the event

Aα,mε,δ,k := {ω : There exist m intersecting balls in Hδ,ε
k,α}.

Then, (II) is equivalent to show that there exists an integer M = M(β, d) ≥ 2 such that

P
( ⋂
ε0>0

⋃
ε≤ε0

⋃
k≥−2

Aα,Mε,δ,k

)
= 0. (6.6.5)

Furthermore, we begin by arguing that it suffices to prove that

P
(⋂
l0∈N

⋃
l≥l0

⋃
k≥−2

Aᾱ,M
2−l,3δ,k

)
= 0, (6.6.6)

i.e. statement (6.6.5) for the sequence εl = 2−l and α, δ substituted by ᾱ = 2
2
d−2α and 3δ.

Suppose, indeed, that (6.6.6) holds: For any ε > 0, let l ∈ N be such that εl+1 ≤ ε ≤ εl. Then for
every two zi, zj ∈ Ψk,δ,ε with ρi ≥ ρj , definition (6.6.1) yields that

ρi − ρj ≤ ρj(
ρi
ρj
− 1) ≤ ρj(ε−2δ

l+1 − 1) ≤ ρjε−3δ
l+1 .

This implies that if ρj ∈ I
εl+1,3δ

k̃−1
for some k̃ ∈ Z, then ρi ∈ I

εl+1,3δ

k̃
. This is equivalent to

Ψδ,ε
k ⊂ Ψ

,3δ,εl+1

k̃
. (6.6.7)

Equipped with this inclusion, we now show that

Aα,mε,δ,k ⊂ A
ᾱ,m

εl+1,3δ,k̃
. (6.6.8)

To do so, let us assume that zi, zj ∈ Ψδ,ε
k satisfy

B
αε

d
d−2 ρj

(εzj) ∩B
αε

d
d−2 ρi

(εzi) 6= ∅.

Then,

ε|zi − zj | ≤ αε
d
d−2 (ρi + ρj)

which yields

|zi − zj | ≤ αε
2
d−2 (ρi + ρj) ≤ αε

2
d−2

l (ρi + ρj) = 2
2
d−2αε

2
d−2

l+1 (ρi + ρj).

This is equivalent to

B
ᾱε

d
d−2
l+1 ρj

(εl+1zj) ∩B
ᾱε

d
d−2
l+1 ρi

(εl+1zi) 6= ∅.

Since the previous argument holds for any choice of two elements in Ψk,δ,ε, this and (6.6.7) imply
(6.6.8). This last statement allows also to conclude that for every m ∈ Z⋃

k≥−2

Aα,mε,δ,k ⊂
⋃
k≥−2

Aᾱ,mεl+1,2δ,k
.
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This establishes that (6.6.6) implies (6.6.5).

To conclude the proof of (II), it only remains to show (6.6.6): We begin by deriving a basic
estimate for the probability of having a certain number of close points in a Poisson point process. We
recall indeed that the centres Φε(D) are distributed according to a Poisson point process in 1εD with
intensity λ. We also recall that, for a general set A ⊂ Rd we denote by N(A) the random variable
providing the number of points of the process which are in A.

For 0 < η < 1, let

Qη :=
{

[−η2, η2]d + y | y ∈ (ηZ)d
}
,

i.e. the set of cubes of length η centered at the points of the lattice (ηZ)d. Let Sη be the set containing
the edges of the cube [0, η2]d, i.e.

Sη := {z = (z1, . . . , zd) ∈ Rd : zk ∈ {0,
η

2
} for all k = 1, · · · , d}.

Then, for any x ∈ Rd there always exists z ∈ Sη and B η
2
(x) ⊂ Q for some Q ∈ Qη + z. Thus, if η is

chosen such that ληd ≤ 1, we use this geometric consideration to estimate

P( ∃x ∈ 1

ε
D : N(B η

2
(x)) ≥ m) . P( ∃Q ∈ Qη, z ∈ Sη : (Q+ z) ∩ 1

ε
D 6= ∅, N(Q+ z) ≥ m),

and the distribution for N(A) to conclude that

P(∃x ∈ 1

ε
D : N(B η

2
(x)) ≥ m) . ε−dη−de−λη

d
∞∑
k=m

(ληd)k

k!
. (ηε)−d(ληd)m. (6.6.9)

Equipped with (6.6.9), we estimate each P (Aα,mε,k ): Let us assume that zi, zj ∈ Ψk,δ,ε are such that

B
αε

d
d−2 ρj

(εzj) ∩B
αε

d
d−2 ρi

(εzi) 6= ∅.

Then,

ε|zi − zj | ≤ αε
d
d−2 (ρi + ρj) ≤ 2αε1−δ(k+1)

and thus by setting

κk = −δ(k + 1), (6.6.10)

we have

|zi − zj | ≤ 2αεκk , Aα,mε,k ⊂ {∃x ∈
1

ε
D : #(Ψk,δ,ε ∩Bmαεκk (x)) ≥ m }. (6.6.11)

We now want to estimate the event in the right-hand side above by appealing to (6.6.9) for each ε
and k fixed and with η = ηεk given by

ηεk := mαεκk . (6.6.12)

We observe indeed that by definition (6.6.1), for every ε the processes Ψk,δ,ε are Poisson processes on
1
εD with intensity given by

λεk = λP( ε−
2
d−2
−δ(k−1) ≤ ρ ≤ ε−

2
d−2
−δ(k+1) )

(6.6.3)

. ε
(d−2+β)

(
2
d−2

+δ(k−1)

)
(6.6.13)
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for any k ≥ −1, and

λε−2 = λP( ρ ≤ ε−
2
d−2
−δ(−1) ) ≤ λ (6.6.14)

for k = 2.

We first argue that, provided that for every k and ε small enough, there exists µk > 0 such that

λεk(η
ε
k)
d ≤ εµk , (6.6.15)

then we conclude the proof of (6.6.6). Indeed, by the previous inequality we may apply (6.6.9) to the
right-hand side of (6.6.11) and bound by (6.6.12) and (6.6.15)

P(Aα,mε,k ) . εmµk−d(1+κk).

By choosing m = M , M sufficiently large, we thus get

P(Aα,mε,k ) . εµk .

Since by (I) we only have to consider finitely many values of k = −3, · · · , kmax, M can be chosen
independently of k. Therefore, recalling that εl = 2−l in (6.6.6), we use the previous estimate and
assumption (6.6.15) to infer ∑

l∈N
P
( ⋃
k≥−2

Aα,Mεl,δ,k

)
<∞.

I thus remains to apply Borel-Cantelli’s lemma to obtain (6.6.6) and thus (6.6.5) as well as (II).

To conclude the proof of the lemma, it thus remains to show (6.6.15). To do so, we recall the
definitions (6.6.12) and (6.6.10) of ηk and κk and we also set for every −1 ≤ k ≤ kmax

γk := (d− 2 + β)
( 2

d− 2
+ δ(k − 1)

)
. (6.6.16)

By (6.6.13), this definitions allows us to bound for each ε

λεk ≤ εγk . (6.6.17)

We first show (6.6.15) for k = −2: In this case, by (6.6.12), (6.6.10) and (6.6.14), we have

λε−2(ηε−2) . εdδ

and we may thus simply choose µ−2 = dδ > 0. We now turn to the case k > −2: Again by (6.6.12)
and, this time, by (6.6.17) we have

λεk(η
ε
k)
d . εγk+dκk .

Therefore we need

µk = γk + dκk
(6.6.16),(6.6.10)

=
2(d− 2 + β)

d− 2
− (2− β)δ(k − 1)− 2dδ > 0.

Since we assumed that β ≤ 1, we may use (6.6.4) on the second term in the right-hand side above
and, after a short calculation, obtain that

µk ≥ 2− (2− β)− 2dδ ≥ β − 2dδ.

Thanks to our assumption δ < β
2d , we thus conclude that µk > 0. This establishes (6.6.15) and

completes the proof of the lemma.
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6.7 Homogenization of the stationary Navier-Stokes equations
(Proof of Remark 6.2.2)

The proof of the homogenization result in this case is analogous to the case of the Stokes equations,
provided we prove the convergence of the non-linear term uε∇ · uε.

We recall the weak formulation of (6.2.6). We define the space Vε := {w ∈ H1
0 (Dε) : divw = 0}

equipped with the norm ‖∇ · ‖L2 . Then, we call uε ∈ V a weak solution to (6.2.6) if

µ

ˆ
∇uε · ∇φ+

ˆ
uε · ∇uε · φ = 〈f, φ〉 ∀φ ∈ Ṽε := {w ∈ H1

0 (Dε) ∩ Ld : divw = 0},

where the space Ṽε is chosen such that the nonlinear term makes sense. Furthermore, by Sobolev
embedding we observe Ṽε = Vε for d ≤ 4. The weak formulation of (6.2.7) is analogous. Existence of
solutions to (6.2.7) is well-known. However, the solution is only known to be unique if d ≤ 4 and

‖f‖V ′ < C(d,D). (6.7.1)

If d ≤ 4 testing with the solution u yields the energy estimate

‖∇ui‖L2 ≤ ‖f‖V ′ . (6.7.2)

For more details on the stationary Navier-Stokes equations see for example [Tem01] and [Gal11].

The proof of the convergence uε ⇀ uh in H1(D) in the case d = 3 is now straightforward provided
(6.7.1) holds. Indeed, thanks to (6.7.2), the sequence uε is bounded in H1, and by the uniqueness of
the solutions to (6.2.7), it therefore suffices to prove that the weak limit u∗ of any subsequence of uε
satisfies (6.2.7). To this end, let v ∈ C∞0 (D) with div = 0. Then, applying Lemma 6.2.4, we know

ˆ
∇uε · ∇(Rεv)→

ˆ
∇u∗ · ∇v + µu∗ · v,

〈f,Rεv〉 → 〈f, v〉.

Therefore, it remains to show

ˆ
uε · ∇uε · (wεkφ)→

ˆ
u∗ · ∇u∗kφ.

However, since 2∗ = 6 > 4 both uε and Rεv converge strongly in L4 and ∇uε converges weakly in L2.
Thus, the convergence above follows immediately.

In the case d = 4 this argument just fails, since the embedding from H1 to L4 is not compact.
However, since by Lemma 6.2.4 also Rεv → v strongly in Lq, for any 4 < q <∞, the argument works
again.

6.8 Estimates for the Stokes equations in annuli and in the exterior
of balls

In this section we summarize some standard results for the solutions to the Stokes equation in
annular and exterior domains (see, e.g. [Gal11; All90a]).
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Lemma 6.8.1. Let R > 1, denote AR := BR\B1, and let ψ ∈ H1(Bθ)∩C0(B̄θ) satisfy
´
∂B1

ψ ·ν = 0.
Let (φR, πR) and (φ∞, π∞) be the (weak) solutions of

∆φR −∇πR = 0 in AR

∇ · φR = 0 in AR

φR = ψ on ∂B1

φR = 0 on ∂BR,


∆φ∞ −∇π∞ = 0 in Rd\B1

∇ · φ∞ = 0 in Rd\B1

φ∞ = ψ on ∂B1

φ→ 0 for |x| → +∞.

(6.8.1)

Then,
‖πR‖L2(AR)/R + ‖∇φR‖L2(AR) ≤ C1

(
‖∇ψ‖L2(AR) + ‖ψ‖L2(AR)

)
,

‖φR‖C0(ĀR) ≤ C1‖ψ‖C0(∂B1),
(6.8.2)

with C1 = C1(d,R). Moreover,

‖π∞‖L2(Rd\B1) + ‖∇φ∞‖L2(Rd\B1) ≤ C2(‖∇ψ‖L2(A2) + ‖ψ‖L2(A2)),

‖φ∞‖C0 ≤ C2‖ψ‖C0(∂B1),
(6.8.3)

with C2 = C2(d). Furthermore,

|φ∞(x)| ≤ C2‖ψ‖C0(∂B1)|x|2−d, (6.8.4)

and, if ∇ · ψ = 0 in B1,2

|∇φ∞(x)| ≤ C2‖ψ‖H1(B2)|x|1−d for all |x| ≥ 3. (6.8.5)

Proof. The existence and uniqueness of solutions to both problems in (6.8.1) together with the
first estimate in both (6.8.2) and (6.8.3) is a standard result [Gal11][Section IV and V]. The second
estimate in both (6.8.2) and (6.8.3) can be found in [MRS99][Theorem 5.1 and Theorem 6.1]. Estimate
(6.8.4) can be found in [MRS99][Theorem 6.1], too.

To prove (6.8.5), we extend φ∞ by ψ inside B1 and π∞ by 0 inside B1. Then, by (6.8.3){
−∆φ∞ +∇π∞ = f in Rd

∇ · φ∞ = 0 in Rd

for some f ∈ Ḣ−1(Rd), with

supp f ⊂ B1,

‖f‖Ḣ−1(Rd) . ‖ψ‖H1(B2).

Here, Ḣ−1(Rd) is the dual of the homogeneous Sobolev space

Ḣ1(Rd) :=
{
v ∈ L

2d
d−2 (Rd) : ∇v ∈ L2(Rd)

}
, ‖ · ‖Ḣ1(Rd) := ‖∇ · ‖L2(Rd).

Hence, with U being the fundamental solution of the Stokes equations we have

φ∞(x) = (U ∗ f)(x).

2This assumption is not needed, but makes the proof slightly simpler.
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The fundamental solution satisfies

|DαU(x)| . C(d, |α|)|x|2−d−|α|.

Using the compact support of f , and letting η ∈ C∞c (B2) be a cut-off function with η = 1 in B1, we
deduce for all |x| > 3

|∇φ∞(x)| = |〈η∇U(x− ·), f〉H1,Ḣ−1 |
≤ ‖η∇U(x− ·)‖Ḣ1(Rd)‖f‖Ḣ−1(Rd)

. C3‖ψ‖H1(B2)|x|1−d.

This proves (6.8.5).

Lemma 6.8.2. Let q > d and let 0 < r < 1, θ > 1, Br := Br(0), Brθ := Brθ(0), Ar,θ := Brθ \ Br.
Assume g ∈ Lq(Brθ) and v ∈ H1(Brθ) ∩ C0(Brθ) with div v ∈ Lq(Br) satisfy

ˆ
Ar,θ

g +

ˆ
∂Br

v · ν = 0.

Then, there exists u ∈ H1
0 (Bθ) ∩ C0(Bθ) solving

div u = g in Ar,θ

u = 0 on ∂Brθ

u = v in Br,

with

‖u‖H1 ≤ C‖v‖H1 + ‖g‖L2 + r
d−2

2 (‖v‖C0 + ‖ div v‖Lq(Br) + ‖g‖Lq)),
‖u‖C0 ≤ C‖v‖C0 + ‖ div v‖Lq(Br) + ‖g‖Lq).

with C = C(θ, d, q).

Proof. We will define u = u1 + u2, where u1 solves
div u1 = g in Ar,θ

div u1 = div v in Br

u1 = 0 on ∂Brθ,

and u2 is the solution to 
−∆u2 +∇p = 0 in Ar,θ

div u2 = 0 in Ar,θ

u = 0 on ∂Brθ

u = v − u1 in Br,

(6.8.6)

As it is well known (see e.g. [Gal11][Theorem 3.1]), the first problem has a solution with

‖u1‖H1 . ‖div v‖L2(Br) + ‖g‖L2 ,

‖u1‖W 1,q . ‖ div v‖Lq(Br) + ‖g‖Lq .
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By Sobolev inequality,

‖u1‖C0 . ‖div v‖Lq(B1) + ‖g‖Lq .

Using estimate (6.8.2) rescaled with r for the solution to (6.8.6), we find

‖∇u2‖L2 . ‖∇(v − u1)‖L2 +
1

r
‖v − u1‖L2 . ‖∇v‖L2 + ‖∇u1‖L2 + r

d−2
2 ‖v − u1‖C0

. ‖∇v‖L2 + ‖g‖L2 + r
d−2

2

(
‖v‖C0‖+ ‖div v‖Lq(B1) + ‖g‖Lq

)
,

and

‖u2‖C0‖ . ‖v − u1‖C0‖ . ‖v‖C0‖+ ‖ div v‖Lq(B1) + ‖g‖Lq .

Combining theses inequalities for u1 and u2 (and the Poincare inequality) yields the desired estimate
for u.



Chapter 7

The inertialess limit of the
Vlasov-Stokes equations

In this Chapter, we study the Vlasov-Stokes equation (1.1.2), the sedimentation model for inertial
particles at zero Reynolds number. We study the regime of small Stokes numbers St, in which, as
explained in detail in Chapter 2, the effects of the particle inertia becomes small. We rigorously
prove that in the limit St→ 0 the solution to the Vlasov-Stokes system converge to the solutions of
the transport-Stokes system (1.1.1) which models the sedimentation of inertialess particles, as we
proved in Chapter 7 A formal argument for this result has been given in Chapter 2.4.1.

The content of this chapter has been published in SIAM Journal on Mathematical Analysis,
[Höf18b].

7.1 Introduction

We consider the Vlasov-Stokes equations (1.1.2). We denote λ = (γSt−1) as in Chapter 2. For
the ease of notation we set γ = 1 and also drop the numerical constants in the Vlasov-Stokes system,
which then becomes

∂tf + v · ∇xf + λ divv (gf + (u− v)f) = 0, f(0, ·, ·) = f0,

−∆u+∇p+ ρ(u− V̄ ) = 0, div u = 0.
(7.1.1)

Here ρ and j denote the spatial particle density and current, i.e.,

ρ(t, x) :=

ˆ
R3

f(t, x, v) dv,

j(t, x) := ρ(t, x)V̄ (t, x) :=

ˆ
R3

f(t, x, v)v dv. (7.1.2)

Omitting these constants, the constant 2
9γ
−1 also in transport-Stokes system (1.1.1) yields

∂tρ∗ + (g + u∗) · ∇ρ∗ = 0, ρ∗(0, ·) = ρ0 :=

ˆ
R3

f0 dv,

−∆u∗ +∇p = gρ∗, div u∗ = 0.

(7.1.3)

We recall that we proved well-posedness of this system in Chapter 7.
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7.1.1 Main result

The main result of this Chapter is the following theorem.

Theorem 7.1.1. Assume f0 ∈W 1,∞(R3 ×R3) is compactly supported. Then, for λ > 0, there exists
a unique solution (fλ, uλ) to (7.1.1). Let (ρ∗, u∗) be the unique solution to (7.1.3). Then, for all
0 < t < T , and all α < 1

ρλ → ρ∗ in C0,α((0, T )× R3),

uλ → u∗ in L∞((t, T );W 1,∞(R3)) and in L1((0, T );W 1,∞(R3)).

Formally, for large values of λ, the first equation in (7.1.1) forces the particle to attain the velocity
g + u(t, x), i.e., the density f(t, x, v) concentrates around g + u(t, x). Using that and integrating the
first equation in (7.1.1) in v leads to the first equation in (7.1.3). Moreover, V̄ in the fluid equation
in (7.1.1) can formally be replaced by g + u(t, x), which leads to the fluid equation in (7.1.3).

Formally, the adjustment of the particle velocities described above happens in times of order 1/λ.
In fact, the process is more complicated as the fluid velocity changes very fast in this time scale
as well. In other words, there is a boundary layer of width 1/λ at time zero for the convergence of
the fluid (and particle) velocity. This is the reason, why the convergence uλ → u∗ can only hold
uniformly on time intervals (t, T ) for t > 0 as stated in the theorem. The particles, however, do
not move significantly in times of order 1/λ. Thus, there is no boundary layer in the convergence
ρλ → ρ∗.

7.1.2 Idea of the proof

We introduce the kinetic energy of the particles

E(t) :=

ˆ
R3×R3

|v|2f dx dv.

Using the Vlasov-Stokes equations (7.1.1) yields the following energy identities for the fluid velocity
and the particle energy (cf. Lemma 7.2.1 and Lemma 7.2.2).

‖∇u‖2L2(R3) + ‖u‖L2(ρ) = (u, j)L2(R3) ≤ ‖V̄ ‖2L2
ρ
≤ E, (7.1.4)

1

2

d

dt
E = λ

(
g ·

ˆ
R3×R3

j dx−
ˆ
R3×R3

(u− v)2f dx dv − ‖∇u‖2L2(R3)

)
. (7.1.5)

Here and in the following, the weighted Lp-norm is defined by

‖h‖p
Lpρ

:=

ˆ
R3

|h|pρ dx.

As expected, equation (7.1.5) shows that there is loss of energy due to friction (friction between
the particles and the fluid as well as friction inside of the fluid), but the gravity pumps energy into
the system (if we assume g ·

´
R3×R3 j dx > 0, which at least after some time should be the case).

Note that the Vlasov-Stokes equations (7.1.1) also imply that the mass of the particles ‖ρ‖L1(R3) is
conserved.

To analyze solutions to the Vlasov equation in (7.1.1), we look at the characteristic curves
(X,V, Z)(s, t, x, v) starting at time t at position (x, v) ∈ R3 × R3, where denote the value of the
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solution f along the characteristic curve by Z(s, t, x, v) = f(s,X(s, t, x, v), V (s, t, x, v)):

∂sX = V, X(t, t, x, v) = x,

∂sV = λ(g + u(s,X)− V (s, t, x, v)), V (t, t, x, v) = v,

∂sZ = 3λZ, Z(t, t, x, v) = f(t, x, v).

(7.1.6)

The last equation has the explicit solution Z(s, t, x, v) = e3λ(s−t)f(t, x, v). By the standard theory
for characteristics, any solution f ∈ W 1,∞((0, T ) × R3 × R3) with u ∈ L∞((0, T );W 1,∞(R3)) is of
the form

f(t, x, v) = e3λtf0(X(0, t, x, v), V (0, t, x, v)). (7.1.7)

Using the characteristics as well as estimates based on the energy identities (7.1.4) and (7.1.5) and
regularity theory of Stokes equations, we prove global well-posedness of the Vlasov-Stokes equations
(7.1.1) for compactly supported initial data f0 ∈W 1,∞(R3 × R3). A similar approach based on an
analysis of the characteristics has been used to prove existence of solutions to the Vlasov-Poisson
equations in [BD85], [Pfa92], and [Sch91] (see also [Gla96]). From the PDE point of view, the
electrostatic potential appearing in the Vlasov-Poisson equation is similar to the fluid velocity in the
Vlasov-Stokes equations. However, in the Vlasov-Poisson equations, the force acting on the particles
is the gradient of the electrostatic potential. whereas in the Vlasov-Stokes equations, only the fluid
velocity itself contributes. This makes it possible to prove existence (and also uniqueness) in a much
simpler way for the Vlasov-Stokes equations.

In order to prove the convergence in Theorem 7.1.1, the starting point is integrating the charac-
teristics which yields

V (t, 0, x, v)− V (0, 0, x, v) (7.1.8)

= λ

(ˆ t

0

(
uλ(s,X(s, 0, x, v)) + g

)
ds+X(0, 0, x, v)−X(t, 0, x, v)

)
.

Thus, ∣∣∣∣X(t, 0, x, v)− x−
ˆ t

0

(
uλ(s,X(s, 0, x, v)) + g

)
ds

∣∣∣∣ ≤ |V (t, 0, x, v)− v|
λ

. (7.1.9)

Therefore, provided the speed of the particles does not blow up, we see that for large values of λ the
particles are almost transported by the fluid plus the gravity. Clearly, this is also what happens for
solutions to the limit inertialess equations (7.1.3).

In order to show that uλ is close to u, we introduce a fluid velocity ũλ which can be viewed as
intermediate between uλ and u∗ by

−∆ũλ +∇pλ = gρλ, div ũλ = 0. (7.1.10)

In order to prove smallness of uλ− ũλ, one needs estimates on ρλ and uλ that are uniform in λ, which
are more difficult to obtain than those that we use in the proof of well-posedness. Indeed, in view of
the energy identity for the particles (7.1.5), any naive estimate based on that equation will blow up
as λ→∞. However, as the first term is linear in the velocity and the other terms (which have a good
sign) are quadratic, the energy E cannot exceed a certain value as long as the particle density ρ is
not too concentrated (cf. Lemma 7.3.2). In other words, if the energy is high enough, the quadratic
friction terms will prevail over the linear gravitation terms and therefore prevent the energy from
increasing further. However, if concentrations of the particle density occur, the particles essentially
fall down like one small and heavy particle, leading to large velocities. Indeed, the terminal velocity
of a spherical particle of radius R in a Stokes fluid at rest is

V =
2

9

ρp − ρf
µ

gR2.
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In order to rule out such concentration effects, we use again the representation of f in (7.1.7)
obtained from the characteristics. Indeed, computing ρ by taking the integral over v in (7.1.7), we
can show that the prefactor e3λt in that formula is canceled due to concentration of f in velocity
space in regions of size e−λt as long as we control ∇u in a suitable way (cf. Lemma 7.3.4). As ∇u is
controlled by E due to the energy identity (7.1.4), this enables us to get uniform estimates for both
u, ∇u, and ρ for small times.

It turns out that also estimates on derivatives of ρ are needed to prove smallness of uλ − ũλ.
These are provided by a more detailed analysis of the characteristics.

7.1.3 Outline of the chapter

The rest of this chapter is organized as follows. In Section 7.2, we prove global well-posedness
of the Vlasov Stokes equations (7.1.1), based on energy estimates, analysis of the characteristics,
and a fixed point argument. In Section 7.3, we derive a priori estimates that are uniform in λ for
small times by analyzing the characteristics more carefully. In particular we prove and use that the
supports of the solutions concentrate in the space of velocities. In Section 7.4.1, we use those a priori
estimates proven in Section 7.3 to show that the fluid velocity uλ is close to the intermediate fluid
velocity ũλ defined in (7.1.10) as λ→∞. In Section 7.4.2, we prove the assertion of the main result,
Theorem 7.1.1, up to times where we have uniform a priori estimates. This follows from compactness
due to the a priori estimates and convergence of averages of ρλ on small cubes, which we prove using
again the characteristic equations. In Section 7.4.3, we finish the proof of the main result, Theorem
7.1.1, by extending the a priori estimates from Section 7.3 to arbitrary times. This is done by using
both the a priori estimates and the convergence for small times.

7.2 Global well-posedness of the Vlasov-Stokes equations

In this section, we write C for any constant that depends only on the initial datum. Any additional
dependencies are denoted by arguments of C, e.g. C(λt) is a constant that depends only on λt and
the initial datum. We use the convention that C is monotone in all its arguments.

Throughout the chapter, to denote spatial norms of functions that depend on space and time we
will often write ‖u‖Lp(R3) instead of ‖u(t, ·)‖Lp(R3) when there is no ambiguity on the dependence on
time.

7.2.1 Estimates for the fluid velocity

Lemma 7.2.1. Let h ∈ L∞(R3 × R3) be nonnegative, and assume Q > 0 is such that supph ⊂
BQ(0) ⊂ R3 × R3. Let

ρ(x) :=

ˆ
R3

h(x, v) dv,

j(x) := ρV̄ :=

ˆ
R3

h(x, v)v dv,

E :=

ˆ
R3×R3

h(x, v)|v|2 dx dv.

Then there exists a unique weak solution u ∈W 1,∞(R3) to the Brinkman equation

−∆u+∇p+ ρu = j.
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Moreover,

‖∇u‖2L2(R3) + ‖u‖L2
ρ(R3) = (u, j)L2(R3) ≤ ‖V̄ ‖2L2

ρ(R3 ≤ E, (7.2.1)

‖u‖L∞(R3) ≤ C(‖h‖L∞(R3×R3), ‖h‖L1(R3×R3), E)(1 +Q), (7.2.2)

‖u‖W 1,∞(R3) ≤ C(Q,E)‖h‖L∞(R3×R3). (7.2.3)

Proof. Existence and uniqueness of weak solutions in the homogeneous Sobolev space Ḣ1(R3) :=
{w ∈ L6(R3) : ∇w ∈ L2(R3)} follows from the Lax-Milgram theorem.

In the following, we write ‖ · ‖q instead of ‖ · ‖Lq(R3) and ‖ · ‖Lq(R3×R3) and ‖ · ‖Lqρ instead of
‖ · ‖Lqρ(R3). Testing the Brinkman equation with u itself yields

‖∇u‖22 + ‖u‖2L2
ρ

= (j, u)L2(R3) ≤ ‖u‖L2
ρ
‖V̄ ‖L2

ρ
. (7.2.4)

By the Cauchy-Schwarz inequality

V̄ 2ρ =

(´
R3 h(x, v)v dv

)2
´
R3 h(x, v) dv

≤
ˆ
R3

h(x, v)v2 dv.

Hence,
‖u‖2L2(ρ) ≤ ‖V̄ ‖L2(ρ) ≤ E.

Using again (7.2.4) yields (7.2.1). Using the critical Sobolev embedding, we have

‖u‖26 ≤ C‖∇u‖22 ≤ CE. (7.2.5)

Moreover, we can use this Sobolev inequality in (7.2.1) to get

‖u‖26 ≤ C‖u‖6‖j‖6/5.

Using the definition of Q yields ‖j‖6/5 ≤ C(Q)‖h‖∞ and therefore

‖∇u‖2 + ‖u‖6 ≤ C(Q)‖h‖∞ (7.2.6)

Standard regularity theory for the Stokes equation (see [Gal11]) implies

‖∇2u‖q ≤ C‖ρu‖q + C‖j‖q. (7.2.7)

for all 1 < q <∞. In order to prove (7.2.3), we use (7.2.7) and (7.2.5) to get

‖∇2u‖6 ≤ C‖ρu‖6 + C‖j‖6 ≤ C‖ρ‖∞‖u‖6 + C‖j‖6 ≤ C(E,Q)‖h‖∞.

Hence, by Sobolev embedding and (7.2.6)

‖∇u‖∞ ≤ C‖∇2u‖6 + C‖∇u‖2 ≤ C(E,Q)‖h‖∞,

and similarly for ‖u‖∞.
It remains to prove (7.2.2). Let R > 0. Then,

ρ =

ˆ
R3

h dv ≤
ˆ
{|v|<R}

h dv +R−2

ˆ
{|v|>R}

|v|2h dv

≤ CR3‖h‖∞ + CR−2

ˆ
{|v|>R}

|v|2h dv.
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We choose

R =

(ˆ
R3

|v|2f dv
)1/5

‖h‖−1/5
∞ .

Thus,

ρ ≤ ‖h‖2/5∞
(ˆ

R3

|v|2h dv
)3/5

,

and therefore,

‖ρ‖5/3 ≤ ‖h‖2/5∞ E
3
5 . (7.2.8)

Moreover, by definition of Q, (7.2.8) implies for all 1 ≤ p ≤ 5/3,

‖j‖p ≤ Q‖ρ‖p ≤ C(‖h‖∞, ‖h‖1, E)Q. (7.2.9)

Sobolev and Hölder’s inequalities imply

‖u‖10 ≤ C‖∇2u‖30/23 ≤ C‖ρ‖5/3‖u‖6 + C‖j‖30/23 ≤ C(‖h‖∞, ‖h‖1, E)(1 +Q),

where we used (7.2.5), (7.2.8), and (7.2.9). Now, we can repeat the argument, using this improved
estimate for u in (7.2.7). This yields

‖u‖30 ≤ C(‖h‖∞, ‖h‖1, E)(1 +Q).

Using again (7.2.7) yields

‖∇2u‖30/19 ≤ C(‖h‖∞, ‖h‖1, E)(1 +Q).

As 30/19 > 3/2, we can apply Sobolev embedding to get

‖u‖∞ ≤ C‖∇2u‖30/19 + C‖u‖6 ≤ C(‖h‖∞, ‖h‖1, E)(1 +Q),

which finishes the proof of (7.2.2).

7.2.2 A priori estimates for the particle density

Lemma 7.2.2. Let T > 0 and f0 ∈W 1,∞(R3 × R3) and let Q0 > 0 be minimal such that supp f0 ⊂
BQ0(0). Assume f ∈W 1,∞((0, T )×R3×R3) is a solution to (7.1.1) with u ∈ L∞((0, T );W 1,∞(R3)).
Then, f is compactly supported on [0, T ]× R3 × R3. Let Q(t) be minimal such that supp f(t, ·, ·) ⊂
BQ(t)(0). Furthermore, define

E(t) :=

ˆ
R3×R3

|v|2f dx dv.

Then,

‖f(t, ·, ·)‖L∞(R3×R3) = e3λt, (7.2.10)

‖ρ‖1 = 1, (7.2.11)

d

dt
E = 2λ

(
g ·

ˆ
R3

j dx−
ˆ
R3×R3

(u− v)2f dx dv − ‖∇u‖2L2(R3)

)
(7.2.12)

≤ 2λ

(
CE

1
2 −

ˆ
R3×R3

(v − V̄ )2f dx dv − ‖u− V̄ ‖2L2
ρ(R3) − ‖∇u‖

2
L2(R3)

)
, (7.2.13)

E(t) ≤ C(1 + (λt)2), (7.2.14)

Q(t) ≤ C(t, λ). (7.2.15)
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Proof. By the regularity assumptions on f and u, the characteristics in (7.1.6) are well defined and
(7.1.7) holds. This shows that the support of f remains uniformly bounded on compact time intervals.

The exponential growth of the L∞-norm of f (7.2.10) follows from the characteristic equations as
we have seen in (7.1.7).

Mass conservation (7.2.11) follows directly from integrating the Vlasov equation (7.1.1).
We multiply the Vlasov equation by |v|2 and integrate to find

d

dt
E = 2

ˆ
R3×R3

v · λ(g + u− v)f dx dv

= 2λ

(
g ·

ˆ
R3×R3

vf dx dv −
ˆ
R3×R3

(u− v)2f dx dv +

ˆ
R3×R3

u · (u− v)f dx dv

)
= 2λ

(
g ·

ˆ
R3×R3

j dx−
ˆ
R3×R3

(u− v)2f dx dv − ‖∇u‖2L2(R3)

)
.

This yields the identity (7.2.12). By the Cauchy-Schwarz inequalityˆ
R3

|j| dx ≤
ˆ
R3×R3

|v|f dv dx ≤ ‖ρ‖1/2
L1(R3)

E1/2. (7.2.16)

Moreover, by definition of V̄ in (7.1.2)ˆ
R3×R3

(u− v)2f dx dv =

ˆ
R3×R3

(
(v − V̄ )2 + (V̄ − u)2 − 2(v − V̄ )(V̄ − u)

)
f dx dv

=

ˆ
R3×R3

(v − V̄ )2f dx dv + ‖u− V̄ ‖2L2
ρ(R3).

(7.2.17)

Using (7.2.16) and (7.2.17) shows (7.2.13).
In particular

d

dt
E ≤ CλE1/2.

This proves (7.2.14) by a comparison principle for ODEs.
The characteristic equation for V in (7.1.6) implies

|V (t, 0, x, v)| =
∣∣∣∣e−λt(v + λ

ˆ t

0
eλs(g + u(s,X(s, 0, x, v))) ds

)∣∣∣∣
≤ e−λtv + |g|+

ˆ t

0
‖u(s·)‖L∞(R3) ds.

Thus, for all (x, v) ∈ supp f0, we get by Lemma 7.2.1, (7.2.10), (7.2.11), and (7.2.14)

|V (t, 0, x, v)| ≤ Q0 + 1 + C(‖f‖L∞((0,t)×R3×R3), ‖E‖L∞(0,t))

ˆ t

0
(1 +Q(s)) ds

≤ C + C(λt)

ˆ t

0
(1 +Q(s)) ds.

By the equation for X, we get for all (x, v) ∈ supp f0

|X(t, 0, x, v)| ≤ Q0 +

ˆ t

0
|V (s, 0, x, v)| ds ≤ Q0 + tC(λt)

ˆ t

0
(1 +Q(s)) ds.

Hence,

Q(t) ≤ sup
(x,v)∈supp f0

|(X(t, 0, x, v), V (t, 0, x, v))| ≤ C + (1 + t)C(λt)

ˆ t

0
(1 +Q(s)) ds.

Grönwall’s lemma yields (7.2.15).



218 The inertialess limit of the Vlasov-Stokes equations

7.2.3 Well-posedness by the Banach fixed point theorem

Proposition 7.2.3. Let f0 ∈ W 1,∞(R3 × R3) with compact support. Then, for all T > 0, there
exists a unique solution f ∈ W 1,∞((0, T ) × R3 × R3) to (7.1.1) with u ∈ L∞((0, T );W 2,∞(R3)) ∩
W 1,∞((0, T )× R3)).

Proof. We want to prove existence of solutions using the Banach fixed point theorem. Let Q1, E1 > 0.
We define the metric space, where we want to prove contractiveness. We write ΩT = (0, T )×R3×R3

Y :=

{
h ∈ ΩT : h ≥ 0, ‖h(t, ·)‖L1(R3×R3) = ‖f0‖L1(R3),

ˆ
R3×R3

(1 + |v|2)h dx dv ≤ E1, supph ⊂ [0, T ]×BQ1(0)

}
.

Then, Y is a complete metric space. Let T > 0 and h1, h2 ∈ Y . For i = 1, 2, we define ui to be the
solution to

−∆ui +∇p =

ˆ ∞
0

ˆ
R3

(v − ui)hi dv.

We define the characteristics (Xi, Vi)(s, t, x, v) analogously to (7.1.6) by

∂s(Xi, Vi)(s, t, x, v) = (Vi(s, t, x, v), g + ui(s,Xi(s, t, x, v))− Vi(s, t, x, v)),

(Xi, Vi)(t, t, x, v) = (x, v).

Then, the solutions to the equation

∂tfi + v · ∇xfi + λdivv (gfi + (ui − v)fi) = 0,

with initial datum f0 is given by

fi(t, x, v) = e3λtf0((Xi, Vi)(0, t, x, v)), (7.2.18)

and fi ∈ W 1,∞(ΩT ). In this way, we defined a map S : Y → W 1,∞(ΩT ) that maps hi to fi. A
fixed point of S solves (7.1.1). In order to apply the Banach fixed point theorem, we show that S is
contractive. We estimate

|f1(t, x, v)− f2(t, x, v)| ≤ e3λt‖∇f0‖L∞(R3×R3)|(X1, V1)(0, t, x, v)− (X2, V2)(0, t, x, v)|. (7.2.19)

Furthermore, writing Xi(s) instead of Xi(s, t, x, v) and similar for Vi, we have for all 0 ≤ s ≤ t

|(X1, V1)(s)− (X2, V2)(s)|

≤
ˆ t

s
| (V1(τ)− V2(τ), λ (u1(τ,X1(τ))− u2(τ,X2(τ))− V1(τ) + V2(τ))) | dτ

≤
ˆ t

s
|V1(τ)− V2(τ)|+ ‖∇u1(τ, ·)‖L∞ |X1(τ)−X2(τ)|+ ‖u1(τ, ·)− u2(τ, ·)‖L∞ dτ

≤ C(Q1, E1)‖h1‖L∞((s,t)×R3×R3)

ˆ t

s
|(X1, V1)(τ)− (X2, V2)(τ)| dτ

+ C(Q1, E1)(t− s)‖h1 − h2‖L∞((s,t)×R3×R3),

where we used Lemma 7.2.1. Grönwall’s lemma implies

|(X1, V1)(t)− (X2, V2)(t)| ≤ C(Q1, E1)t‖h1 − h2‖L∞(Ωt) exp
(
C(Q1, E1)‖h1‖L∞(Ωt)t

)
.
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Inserting this in (7.2.19) yields

‖f1 − f2‖L∞(ΩT )

≤ Te3TC(Q1, E1)‖∇f0‖L∞(R3×R3)‖h1 − h2‖L∞(ΩT ) exp
(
C(Q1, E1)T‖h1‖L∞(ΩT

) (7.2.20)

For L > 0, consider BL(0) ⊂ Y . Then, for all L, equation (7.2.20) implies that there exists T > 0
such that the mapping h 7→ f is contractive. We have to check that h ∈ BL(0) implies f ∈ BL(0).
First,

‖f(t, ·, ·)‖L1(R3) = ‖f0‖L1(R3) (7.2.21)

follows from the equation. Moreover, for any L > ‖f0‖L∞(R3×R3), equation (7.2.18) implies that we
can choose T sufficiently small such that

‖f‖L∞(ΩT ) = ‖f0‖L∞(R3×R3)e
3λT ≤ L.

Furthermore, we have

d

dt

ˆ
R3

ˆ
R3

|v|2f dx dv = 2

ˆ
R3

ˆ
R3

v · (g + u− v)f dx dv

≤ 2(|g|+ ‖u‖L∞(R3))

ˆ
R3

ˆ
R3

(1 + |v|2)f dx dv.

Hence, using mass conservation, equation (7.2.21),

d

dt

ˆ
R3×R3

(1 + |v|2)f dx dv ≤ (|g|+ ‖u‖L∞(R3))

ˆ
R3×R3

(1 + |v|2)f dx dv.

Therefore, Lemma 7.2.1 and Grönwall’s lemma imply

ˆ
R3×R3

(1 + |v|2)f dx dv ≤
ˆ
R3×R3

(1 + |v|2)f0 dv dx exp(C(Q1, E1)Lt).

Thus, for any E1 >
´
R3×R3(1 + |v|2)f0 dv dx, we can choose T small enough such that

´
R3×R3(1 +

|v|2)f dx dv ≤ E1 for all t ≤ T .

Finally, we need to control the support of f . To do this, we follow the same argument as in the
last part of the proof of Lemma 7.2.2 to get

Q(t) ≤ Q0 + (1 + t)

ˆ t

0
C(L,E1, Q1) ds ≤ Q0 + (1 + t)tC(L,E1, Q1).

Again, for any Q1 > Q0, we can choose T small enough such that Q(t) ≤ Q1 for all t ≤ T .

Therefore, by the Banach fixed point theorem, we get local in time existence of solutions to
(7.1.1). Moreover, choosing for example L = 2‖f0‖L∞(R3×R3), E1 = 2E0, Q1 = Q0 + 1, the time T
for which we get existence in this way is a continuous and monotonically decreasing function of
‖f0‖L∞(R3×R3), Q0 and E0. Thus, by a standard contradiction argument, global existence follows
from the a priori estimates in Lemma 7.2.2 since these ensure that ‖f(t, ·)‖L∞(R3×R3), Q and E do
not blow up in finite time.

Since f ∈W 1,∞(ΩT ) with uniform compact support, higher regularity of u follows from taking
derivatives in the Brinkman equations in (7.1.1) and using regularity theory for Stokes equations
similarly to the proof of Lemma 7.2.1.
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7.3 Uniform estimates on ρλ and uλ

In the following, we assume that (f, u) is the solution to the Vlasov-Stokes equations (7.1.1) for
some λ > 0 and some compactly supported initial datum f0 ∈ W 1,∞(R3 × R3). In this section we
want to derive a priori estimates for these solutions that do not depend on λ. This is why we cannot
use the a priori estimates derived in Lemma 7.2.2. However, the drawback of the estimates that
we prove in this section is that they allow for blow-up in finite time. This is also why they are not
suitable in the proof of global well-posedness, that we showed in the previous section. Later, we will
use the limit equation in order to show that the estimates derived here allow for uniform estimates
for arbitrary times.

Again, we denote by C any constant, which only depends on f0 and may change from line to line.

7.3.1 Estimates for the fluid velocity

In this subsection we show that the fluid velocity as well as the particle velocity is controlled by
‖ρ‖L∞(R3), uniformly in λ, which means that high velocities can only occur if particles concentrate in
position space. This also implies control on the particle positions and velocities

The proof is based on the energy identity from Lemma 7.2.2, equation (7.2.12), and the subsequent
estimate (7.2.13). The idea is to estimate the sum of the quadratic terms in that expression, which
have a negative sign, by E(t) from below. The following Lemma, which is a general observation on
weighted L2-spaces, shows why such an estimate is true if ‖ρ‖L3/2(R3) is not too large.

Lemma 7.3.1. There exists a constant c0, such that for all nonnegative functions σ ∈ L3/2(R3), and
all h ∈ L2(σ) and w ∈ H1(R3),

‖∇w‖2L2(R3) + ‖w − h‖2L2
σ(R3) ≥ c0 min{‖σ‖−1

L3/2(R3)
, 1}‖h‖2L2

σ(R3).

Proof. We estimate using the critical Sobolev inequality

‖w‖2L2
σ(R3) ≤ ‖w‖

2
L6(R3)‖σ‖L3/2(R3) ≤ C‖∇w‖

2
L2(R3)‖σ‖L3/2(R3). (7.3.1)

We have for any θ > 0 and any a, b ∈ H for some Hilbert space H

‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2(a, b) ≥ (1− θ)‖a‖2 + (1− 1

θ
)‖b‖2.

Applying this with 1− θ := −C−1‖σ‖−1
L3/2(R3)

, where C is the constant from equation (7.3.1), we find

‖∇w‖2L2(R3) + ‖w − h‖2L2
σ(R3) ≥

θ − 1

θ
‖h‖2L2

σ(R3).

To conclude, we notice that

θ − 1

θ
=

C−1‖σ‖−1
L3/2(R3)

1 + C−1‖σ‖−1
L3/2(R3)

≥ c0 min{‖σ‖−1
L3/2(R3)

, 1}.



Estimates for the fluid velocity 221

Lemma 7.3.2. There exists a constant C that depends only on f0 such that for all λ > 0 and all
t > 0, we have

E(t) ≤ C sup
s≤t
‖ρ‖

2
3

L∞(R3)
, (7.3.2)

‖u(t, ·)‖L∞(R3) ≤ C sup
s≤t
‖ρ(s, ·)‖L∞(R3), (7.3.3)

‖∇u(t, ·)‖L∞(R3) ≤ C sup
s≤t
‖ρ(s, ·)‖2L∞(R3), (7.3.4)

‖V̄ (t, ·)‖L∞(R3) ≤ C sup
s≤t
‖ρ(s, ·)‖L∞(R3), (7.3.5)

where V̄ is the average particle velocity defined in (7.1.2).
Moreover, for all (x, v) ∈ supp f0,

|V (t, 0, x, v)| ≤ C sup
s≤t
‖ρ(s, ·)‖L∞(R3), (7.3.6)

|X(t, 0, x, v)| ≤ Ct sup
s≤t
‖ρ(s, ·)‖L∞(R3). (7.3.7)

Proof. For the sake of a leaner notation, we will again often omit the dependence of t of the norms.
By the energy estimate (7.2.13) from Lemma 7.2.2 and Lemma 7.3.1, we have for the energy of

the particles

d

dt
E ≤ 2λ

(
CE

1
2 −

ˆ
R3×R3

(v − V̄ )2f dx dv − ‖u− V̄ ‖2L2
ρ(R3) − ‖∇u‖L2(R3))

)
≤ 2λ

(
CE

1
2 −

ˆ
R3×R3

(v − V̄ )2f dx dv − c0 min{‖ρ‖−1
L3/2(R3)

, 1}‖V̄ ‖2L2
ρ(R3)

)
≤ 2λ

(
CE

1
2 − c0 min{‖ρ‖−1

L3/2(R3)
, 1}E

)
.

A comparison principle for ODEs implies

E
1
2 (t) ≤ E(0)

1
2 e−2λt +

C

c0
sup
s≤t

max{‖ρ(s, ·)‖L3/2(R3), 1}

≤ C sup
s≤t
‖ρ(s, ·)‖L3/2(R3) ≤ C sup

s≤t
‖ρ(s, ·)‖

1
3

L∞(R3)
,

(7.3.8)

where we used that the L1-norm of ρ is constant in time by (7.2.11). Note that here and in the
following we also use that C might depend on f0 in order to get rid of lower order terms (using that
if f0 = 0, the solution f is also trivial). This proves (7.3.2).

Recall from (7.2.1) that ‖V̄ ‖L2
ρ(R3) ≤ E

1
2 . Thus, (7.3.8) yields

‖V̄ (t, ·)‖L2
ρ(R3) ≤ E

1
2 (t) ≤ C sup

s≤t
‖ρ(s, ·)‖

1
3

L∞(R3)
. (7.3.9)

Using regularity theory for the Stokes equations (see [Gal11]) together with (7.2.1) and (7.3.9) yields

‖∇2u‖L2(R3) ≤ C‖ρu‖L2(R3) + C‖ρV̄ ‖L2(R3) ≤ C‖u‖L6(R3)‖ρ‖L3(R3) + C‖ρV̄ ‖L2(R3)

≤ C‖V̄ ‖L2
ρ(R3)‖ρ‖

2
3

L∞(R3)
+ ‖V̄ ‖L2

ρ(R3)‖ρ‖
1
2

L∞(R3)

≤ C‖V̄ ‖L2
ρ(R3)‖ρ‖

2
3

L∞(R3)
≤ C sup

s≤t
‖ρ(s, ·)‖L∞(R3).
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Sobolev inequality and (7.2.1) yield

‖u‖L∞(R3) ≤ ‖u‖C0, 12 (R3)
≤ C‖u‖W 1,6(R3) ≤ C‖∇u‖W 1,2(R3) ≤ C sup

s≤t
‖ρ(s, ·)‖L∞(R3).

This proves (7.3.3).

Using the characteristic equations (7.1.6), we find for all (x, v) ∈ supp f0

|V (t, 0, x, v)| ≤ e−λt|v|+ |g|+ sup
s≤t
‖u(s, ·)‖L∞(R3) ≤ C sup

s≤t
‖ρ(s, ·)‖L∞(R3),

with a constant C that depends on the support of f0. This proves (7.3.6). Moreover, using the
equation for X, (7.3.6) implies (7.3.7).

Furthermore, by (7.3.6)

‖V̄ (t, ·)‖L∞(R3) ≤ C sup
s≤t
‖ρ(s, ·)‖L∞(R3),

which proves (7.3.5). This can be used again to derive a bound for ∇2u in Lp(R3) to get (7.3.4).
More precisely,

‖∇2u‖L6(R3) ≤ ‖u‖L6(R3)‖ρ‖L∞(R3) + ‖ρV̄ ‖L6(R3)

≤ C‖V̄ ‖L2
ρ(R3)‖ρ‖L∞(R3) + ‖V̄ ‖

1
3

L2
ρ(R3)
‖V̄ ‖

2
3

L∞(R3)
‖ρ‖

5
6
L∞

≤ C sup
s≤t
‖ρ(s, ·)‖2L∞(R3).

Thus,

‖∇u(t, ·)‖L∞(R3) ≤ C sup
s≤t
‖ρ(s, ·)‖2L∞(R3).

7.3.2 Estimates for the particle density

In this subsection we prove estimates on ρ that are uniform in λ for λ sufficiently large. However,
these estimates will depend on u. Then, we will combine these estimates with the ones from Lemma
7.3.2 in order to get estimates on ρ independent of λ and u but only for small times.

We first prove a small lemma on estimates for ODEs that will be used several times analyzing
the characteristics.

Lemma 7.3.3. Let T > 0 and a, b : [0, T ] → R+ be Lipschitz continuous. Let α : [0, T ] → R+ be
continuous and λ ≥ 4 max{1, ‖α‖L∞(0,T )}. Let β ≥ 0 be some constant and assume that on (0, T )

|ȧ| ≤ b,
ḃ ≤ λ(αa− b) + βe−λs.

(i) If a(T ) = 0, then for all s, t ∈ [0, T ] with s ≤ t

a(t) ≤ 2

λ
b(t) +

4

λ2
βe−λt, (7.3.10)

b(t) ≤ exp

(ˆ t

s
−λ+ 2α(τ) dτ

)(
b(s) +

2β

λ
e−λs

)
. (7.3.11)



Estimates for the particle density 223

(ii) If β = 0 and b(0) = 0, then for all t ∈ [0, T ]

b(t) ≤ 2‖α‖L∞(0,T )a.

Proof. We define

z(s) := b(s)− λ

2
a(s) +

2

λ
βe−λs.

Then, if a(T ) = 0,

z(T ) = b(T ) +
2

λ
βe−λT ≥ 0,

and

ż ≤ λ
(
αa− b

2

)
− βe−λs = λ

(
αa− λ

4
a− z

2
+
β

λ
e−λs

)
+ βe−λs ≤ −λ

2
z.

Hence, (applying Grönwall’s lemma to −z(T − t)) we find z ≥ 0 in [0, T ]. This proves (7.3.10).
Moreover, (7.3.10) implies

ḃ ≤ (2α− λ)b+

(
1 +

4

λ

)
βe−λs ≤ (2α− λ)b+ 2βe−λs.

Thus, using the comparison principle for ODEs yields (7.3.11).

In order to prove (ii), we define z := 2‖α‖L∞(0,T )a− b. Then, b(0) = 0 implies z(0) ≥ 0. Using
the equations for a and b, one obtains ż ≥ −(λ/2)z as in the proof of part (i). This implies z ≥ 0 in
[0, T ], and the assertion follows.

Using the previous Lemma, we are able to prove that the particle velocities concentrate in regions
of size e−λt with an error due to fluctuations of the fluid velocity. Based on this result and equation
(7.1.7), we also prove an estimate for ρ.

Lemma 7.3.4. Let T > 0 and assume λ ≥ 4(1 + ‖∇u‖L∞((0,T )×R3)). Then, for all t < T and all
x ∈ R3, the map

v 7→ V (0, t, x, v)

is bi-Lipschitz. In particular its inverse W (t, x, w) is well defined, and

ρ(t, x) =

ˆ
R3

e3λtf0(X(0, t, x,W (t, x, w)), w) det∇wW (t, x, w) dw. (7.3.12)

Moreover, denoting

M(t) := exp

(ˆ t

0
2‖∇u(s, ·)‖L∞(R3) ds

)
, (7.3.13)

we have

|∇vV (0, t, x, v)| ≤M(t)eλt, (7.3.14)

|∇wW (t, x, w)| ≤M(t)e−λt, (7.3.15)

0 ≤ det∇wW (t, x, w) ≤M(t)3e−3λt. (7.3.16)

Furthermore,

‖ρ(t, ·)‖L∞(R3) ≤ C0M(t)3, (7.3.17)

where the constant depends only on f0.
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Proof. We fix t, x, v1, and v2 and define

a(s) = |X(s, t, x, v1)−X(s, t, x, v2)|,
b(s) = |V (s, t, x, v1)− V (s, t, x, v2)|.

Then,

|ȧ| ≤ b, a(t) = 0,

ḃ ≤ λ(‖∇u(s, ·)‖L∞(R3)a− b), b(t) = |v1 − v2|.

Then, with α(s) := ‖∇u(s, ·)‖L∞(R3) and β = 0, we can apply Lemma 7.3.3(i) to deduce

b(t) ≤ b(0)M(t)e−λt,

which implies
b(0) ≥M(t)−1eλt|v1 − v2|. (7.3.18)

Note that the first inequality in (7.3.10) also implies

a(t) ≤ 2

λ
b(t).

Hence,
ḃ ≥ λ(−‖∇u(s, ·)‖L∞(R3)a− b) ≥

(
−λ− 2‖∇u(s, ·)‖L∞(R3)

)
b.

Thus
b(0) ≤ eλtM(t)|v1 − v2|. (7.3.19)

Estimates (7.3.18) and (7.3.19) imply that the map v 7→ V (0, t, x, v) is bi-Lipschitz and yield the
bounds (7.3.14), (7.3.15), and (7.3.16). The Jacobian of W is positive since W (0, x, v) = w and the
Jacobian is continuous in t, which follows from the definition of V and regularity of u proven in
Proposition 7.2.3.

Moreover, recalling (7.1.7), these estimates imply

ρ(t, x) =

ˆ
R3

f(t, x, v) dv =

ˆ
R3

e3λtf0(X(0, t, x, v), V (0, t, x, v)) dv

=

ˆ
R3

e3λtf0(X(0, t, x,W (t, x, w)), w) det∇wW (t, x, w) dw

≤
ˆ
R3

M(t)3f0(X(0, t, x,W (t, x, w)), w) dw

≤ C0M(t)3,

which finishes the proof.

We define
T∗ := sup

{
t ≥ 0: lim sup

λ→∞
‖ρλ‖L∞((0,t)×R3) <∞

}
(7.3.20)

In the lemma below, we prove that T∗ > 0. Later we will show the convergence to the limit equation
(7.1.3) first only up to times T < T∗ and finally, we will show T∗ =∞ using the convergence result
for times T < T∗.

Lemma 7.3.5. Let T∗ be defined as in (7.3.20). Then,

T∗ > 0.
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Proof. By Lemma 7.3.2, we have for all t > 0

‖∇uλ‖L∞((0,t)×R3) ≤ C sup
s≤t
‖ρλ(s, ·)‖2L∞(R3).

Moreover, by Lemma 7.3.4, if λ ≥ 4(‖∇uλ‖L∞(0,t)×R3) + 1), then

sup
s≤t
‖ρλ(s, ·)‖2L∞(R3) ≤ C0 exp

(
2

ˆ t

0
‖∇uλ(s, ·)‖L∞(R3) ds

)
.

Combining these two estimates, we see that λ ≥ C sups≤t ‖ρλ(s, ·)‖2L∞(R3) implies

sup
s≤t
‖ρλ(s, ·)‖L∞(R3) ≤ C0 exp

(
Ct sup

s≤t
‖ρλ(s, ·)‖2L∞(R3)

)
. (7.3.21)

We define
Tλ := sup{t ≥ 0: sup

s≤t
‖ρλ(s, ·)‖L∞(R3) ≤ 2C0}.

Then, Tλ > 0 as ρλ is continuous (and C0 is chosen such that ‖ρ(0, ·)‖L∞(R3) ≤ C0). Moreover,
(7.3.21) implies for all λ ≥ 4(CC2

0 + 1) and all t < Tλ

sup
s≤t
‖ρλ(s, ·)‖L∞(R3) ≤ C0 exp(CC2

0 t).

As ρλ is continuous, this yields for all λ ≥ 4(CC2
0 + 1)

Tλ ≥
log(2)

CC2
0

,

which is independent of λ. Thus,
T∗ ≥ inf

λ≥4(CC2
0+1)

Tλ > 0.

7.3.3 Higher order estimates

In this subsection, we prove estimates on ∂tρ and ∇ρ which are uniform in λ for times T < T∗.
On the one hand, this yields compactness of ρλ in Hölder spaces. On the other hand, we will also
need these estimates in order to prove that the functions ũλ defined in (7.1.10) are close to uλ for
large values of λ.

From now on, any constant C might depend on T but not on λ. In particular, for T < T∗, C
might depend on lim supλ→∞ ‖ρλ‖L∞((0,T )×R3).

Lemma 7.3.6. Let T < T∗. Then, there exist λ0 and C depending on T and f0 such that for all
λ ≥ λ0 and all multiindices β ∈ N3,

‖ρ‖W 1,∞((0,T )×R3) ≤ C, (7.3.22)

‖u‖L∞((0,T0);W 2,∞(R3)) ≤ C, (7.3.23)

‖V̄ ‖L∞((0,T0)×R3) ≤ C, (7.3.24)∥∥∥∇x ˆ
R3

vβf dv
∥∥∥
L∞((0,T0)×R3)

≤ C. (7.3.25)

Moreover, the support of f is uniformly bounded in λ up to time T .
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Proof. By definition of T∗, there is some λ0 such that for all λ ≥ λ0

‖ρ‖L∞((0,T )×R3) ≤ C. (7.3.26)

Thus, Lemma 7.3.2 yields (7.3.24) and

‖u‖L∞((0,T0);W 1,∞(R3)) ≤ C. (7.3.27)

Using this, we have M(t) ≤ C for all t ≤ T , where M is the quantity from (7.3.13) in Lemma 7.3.4.
Moreover, we can assume that λ0 has been chosen sucht that for all λ ≥ λ0

λ ≥ 4(1 + ‖∇u‖L∞((0,T )×R3)). (7.3.28)

In the following, we only consider λ ≥ λ0.

By Lemma 7.3.4, V (0, t, x, v) is invertible with inverse W (t, x, v), and we define

Y (s, t, x, w) := X(s, t, x,W (t, x, w)),

U(s, t, x, w) := V (s, t, x,W (t, x, w)).
(7.3.29)

Then,

∂sY = U, Y (t, t, x, w) = x,

∂sU = λ(g + u(Y, s)− U), U(0, t, x, w) = w, U(t, t, x, w) = W (t, x, w).

Note that by (7.3.12)

ˆ
R3

f(t, x, v) dv = e3λt

ˆ
R3

f0(Y,w) det∇wW dw.

We compute

∂xi det∇wW = tr(adj∇wW∇w∂xiW ) = det∇wW tr((∇wW )−1∇w∂xiW ).

Thus, for any multiindex β,

∂xi

ˆ
R3

vβf dv = e3λt

ˆ
R3

∂xi(W
β)f0(Y,w) det∇wW dw

+ e3λt

ˆ
R3

W β∇xf0(Y,w) · ∂xiY det∇wW dw

+ e3λt

ˆ
R3

W βf0(Y,w) det∇wW tr((∇wW )−1∇w∂xiW ) dw

=: A1 +A2 +A3.

(7.3.30)

We notice that

W (t, x, w) = V (t, 0, X(0, t, x,W (t, x, w)), V (0, t, x,W (t, x, w)))

= V (t, 0, Y (0, t, x, w), w).

Hence, for all (Y (0, t, x, w), w) ∈ supp f0, estimate (7.3.6) implies

|W (t, x, w)| ≤ C. (7.3.31)
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Integrating the equation for U yields (analogously to (7.1.8))

Y (s, t, x, w) = x−
ˆ t

s
g + u(τ, Y ) dτ + λ−1(U(t, t, x, w)− U(s, t, x, w)).

Therefore,

∇xY (s, t, x, w) = Id−
ˆ t

s
∇u(τ, Y )∇xY dτ + λ−1(∇xU(t, t, x, w)−∇xU(s, t, x, w)). (7.3.32)

We claim that
|∇xU(s, t, x, w)| ≤ 2‖∇u‖L∞((0,T0)×R3)|∇xY (s, t, x, w)|. (7.3.33)

Indeed, with

a(s) := |∇xY (s, t, x, w)|,
b(s) := |∇x∂sY (s, t, x, w)|,
α(s) := ‖∇u(s, ·)‖L∞(R3),

this follows from Lemma 7.3.3(ii) using (7.3.28).
We use estimate (7.3.33) in equation (7.3.32) to get

a(s) ≤ 1 +

ˆ t

s
α(τ)a(τ) dτ +

2‖α‖L∞(0,T )

λ
(a(t) + a(s)).

Since a(t) = 0 and equation (7.3.28) implies 4‖α‖L∞(0,T ) ≤ λ, we have

a(s) ≤ 2 + 2

ˆ t

s
α(τ)a(τ) dτ.

Therefore, (7.3.27) implies for all 0 ≤ s ≤ t ≤ T

|∇xY (s, t, x, w)| = a(s) ≤ C. (7.3.34)

Moreover, by (7.3.33), (7.3.27), and (7.3.34)

|∇xW (t, x, w)| = |∇xU(t, t, x, w)| ≤ C. (7.3.35)

We want to estimate ∇x det∇wW . We compute

∂xi det∇wW = tr(adj∇wW∇w∂xiW ) = det∇wW tr((∇wW )−1∇w∂xiW ).

By (7.3.14), we have

|(∇wW (t, x, w)−1| = |(∇vV (0, t, x,W (0, t, x, w))| ≤ Ceλt.

Thus, using also (7.3.16), we find

|∂xi det∇wW | ≤ det∇wW |(∇wW )−1||∇w∂xiW | ≤ Ce−3λteλt|∇w∂xiW |. (7.3.36)

In order to estimate |∇w∂xiW | we further analyze the characteristics Y and U defined in (7.3.29).
Fix t, x, and w and denote

a(s) := |∇wY (s, t, x, w)|,
b(s) := |∇wU(s, t, x, w)|,
α(s) := ‖∇u(s, ·)‖L∞(R3).
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Then, the assumptions of Lemma 7.3.3(i) are satisfied with β = 0.
Thus,

b(t) ≤ exp

(ˆ t

0
−λ+ 2‖∇u(s, ·)‖L∞(R3) ds

)
,

and

|∇wY (s, t, x, w)| = a(s) ≤ 2

λ
b(s) ≤ C

λ
e−λs. (7.3.37)

Next, we consider the second derivative. We denote

a(s) := |∇w∇xY (s, t, x, w)|,
b(s) := |∇w∇xU(s, t, x, w)|,
α(s) := ‖∇u(s, ·)‖L∞(R3),

β := 4M(T )3‖∇2u‖L∞([0,T ]×R3),

with M as in (7.3.17). Then, using the estimates for |∇xY | and |∇wY | from (7.3.34) and (7.3.37)
respectively,

ȧ ≥ −b,
ḃ ≤ λ(‖∇2u‖∞|∇xY ||∇wY |+ ‖∇u‖∞a− b) ≤ λ(αa− b) + βe−λs.

Hence, the assumptions of Lemma 7.3.3(i) are satisfied. Since b(0) = 0, Lemma 7.3.3(i) yields

|∇w∇xW (0, t, x, w)| = b(t) ≤ C 2β

λ
e−λt ≤ C

λ
e−λt‖∇2u‖L∞((0,T )×R3).

Inserting this in (7.3.36), we find

|∂xi det∇wW | ≤
C

λ
e−3λt‖∇2u‖L∞((0,T )×R3). (7.3.38)

We recall the definition of A1, A2, and A3 from equation (7.3.30). Using (7.3.16) and (7.3.35) yields

A1 ≤ C(β).

Estimates (7.3.16), (7.3.31), and (7.3.34) imply

A2 ≤ C(β).

Finally, (7.3.31) and (7.3.38) yield

A3 ≤
C(β)

λ
e−3λt‖∇2u‖L∞((0,T )×R3).

Inserting these bounds on Ai in (7.3.30) we have.∥∥∥∇x ˆ
R3

vβf(t, x, v) dv
∥∥∥
L∞(R3)

≤ C(β)

(
1 +

1

λ
‖∇2u‖L∞((0,T )×R3)

)
. (7.3.39)

Since the support of f in x is controlled by (7.3.7), we also have for any 1 ≤ p ≤ ∞∥∥∥∇x ˆ
R3

vβf(t, x, v) dv
∥∥∥
Lp(R3)

≤ C(β)(1 + T )

(
1 +

1

λ
‖∇2u‖L∞((0,T )×R3)

)
. (7.3.40)
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In order to control ‖∇2u‖L∞((0,T )×R3), the Brinkman equations in (7.1.1) and regularity theory
for the Stokes equations yield

‖∇3u‖Lp(R3) ≤ ‖∇(ρ(u− V̄ ))‖Lp(R3)

≤ ‖ρ‖Lp(R3)‖∇u‖L∞(R3) + ‖∇ρ‖Lp(R3)‖u‖L∞(R3) + ‖∇(ρV̄ ))‖Lp(R3).

Note that both ∇ρ and ∇(ρV̄ ) are of the form of the left hand side in (7.3.40). Therefore, using also
Sobolev embedding together with (7.3.27) and (7.3.26) yields

‖∇2u‖L∞(0,T ;C2,α) ≤ C
(

1 +
1

λ
‖∇2u‖L∞((0,T )×R3)

)
.

This implies (7.3.23) for λ sufficiently large.
Inserting (7.3.23) in (7.3.39) proves (7.3.25). The missing estimate for the time-derivative in

(7.3.22) follows from the Vlasov-Stokes equations (7.1.1) and (7.3.25).

Remark 7.3.7. One might wonder, whether the complicated splitting in (7.3.30) is really needed.
Indeed, we also have

∂xi

ˆ
R3

vβf dv = ∂xie
3λt

ˆ
R3

vβf0(X,V ) dv

= e3λt

ˆ
R3

vβ∇xf0(X,V )∂xiX +∇vf0(X,V )∂xiV dv,

an expression that involves only two terms and in particular does not involve any second derivatives.
However, it turns out, that both ∂xiX and ∂xiV blow up as λ→∞. Therefore, estimating both terms
individually in the above expression cannot lead to the assertion.

7.4 Proof of the main result

7.4.1 Error estimates for the particle and fluid velocities

Recall the definition of ũλ from (7.1.10), which can be viewed as intermediate between uλ and
u∗ defined by (7.1.1) and (7.1.3) respectively. As a first step to show smallness of uλ − u∗ (and
also ρλ − ρ∗), we will show smallness of uλ − ũλ. Comparing the PDEs that uλ and ũλ fulfill, we
observe that we have to prove smallness of ρ(V̄ − uλ − g). This is almost what we do in the proof
of the lemma below. Indeed, it turns out that it is more convenient to consider the error term
Φ = V̄ − ũλ − g instead of V̄ − uλ − g because we control the time derivative of ũ. Then, we are
able to prove smallness of uλ − ũλ using energy identities for Φ and uλ − ũλ analogous to (7.1.4) and
(7.1.5).

Lemma 7.4.1. Assume T < T∗ and let ũλ be defined as in (7.1.10). Then, there exist λ0 such that
for all λ ≥ λ0

‖ũ‖W 1,∞((0,T0)×R3) ≤ C, (7.4.1)

‖ũ(t, ·)− u(t, ·)‖2W 1,∞(R3) ≤ C
(
e−cλt +

1

λ

)
. (7.4.2)

Proof. Again, we consider only λ > λ0 whith λ0 as in Lemma 7.3.6. Then, Lemma 7.3.6 implies that
we control the L∞-norms of ρ and ∂tρ and the support of ρ. Thus, (7.4.1) follows from regularity
theory for the Stokes equations.
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We define

Φ := V̄ − ũ− g,
Z := u− ũ.

Then,

−∆Z +∇p+ (Z − Φ)ρ = 0, divZ = 0.

Therefore
‖∇Z‖2L2(R3) = (Z,Φ− Z)L2

ρ(R3). (7.4.3)

We compute

∂t(ρV̄ ) = −
ˆ
R3

v · ∇xfv dv + λρ(g + u− V̄ ) = −
ˆ
R3

v · ∇xfv dv + λρ(Z − Φ),

∂t(ρΦ) = ∂t(ρV̄ )− ∂t(ρũ) = λρ(Z − Φ)−
ˆ
R3

v · ∇xfv dv − ∂t(ρũ). (7.4.4)

Note that (7.4.1) and the bound on V̄ from Lemma 7.3.6 imply that Φ(t, ·) is uniformly bounded in
L∞(R3) up to time T . Thus, we use (7.4.4), (7.4.3), and the estimates from Lemma 7.3.6, (7.4.1),
and Lemma 7.3.1 to obtain

∂t
1

2
‖Φ‖2L2(ρ) =

ˆ
R3

∂t(ρΦ) · Φ− 1

2
∂tρ|Φ|2 dx

= λ

ˆ
R3

ρΦ · (Z − Φ) dx−
ˆ
R3×R3

v · ∇xfv · Φ dv dx

−
ˆ
R3

∂t(ρũ) · Φ dx− 1

2

ˆ
R3

∂tρ|Φ|2 dx

≤ −λ‖∇Z‖2L2(R3) − λ‖Z − Φ‖2L2
ρ(R3) + C

≤ −cλ‖Φ‖2L2
ρ(R3) + C.

Therefore, we have

‖Φ‖2L2
ρ(R3) ≤ C

(
e−cλt +

1

λ

)
.

By the energy identity for the Brinkman equations (7.4.3), it follows

‖∇Z‖2L2(R3) + ‖Z‖2L2
ρ(R3) ≤ C

(
e−cλt +

1

λ

)
.

Regularity theory for Stokes equations implies

‖∇2Z‖2L2(R3) ≤ 2‖ρZ‖2L2(R3) + 2‖ρΦ‖2L2(R3)

≤ 2‖ρ‖2L3(R3)‖Z‖
2
L6(R3) + 2‖Φ‖2L2

ρ(R3)‖ρ‖L∞(R3)

≤ C
(
e−cλt +

1

λ

)
.

Thus, using Sobolev embedding,

‖Z‖2L∞(R3) ≤ C
(
e−cλt +

1

λ

)
.
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Taking λ0 ≥ 1 and using again (7.4.4) yields

∂t(ρΦ) ≤ −ρΦ + C(λe−cλt +
√
λ).

Thus,

‖ρΦ‖2L∞(R3) ≤ C
(
e−cλt +

1

λ

)
,

which again yields smallness of Z in even better norms. More precisely, for p ≥ 2

‖∇2Z‖2Lp(R3) ≤ C‖ρZ‖
2
Lp(R3) + C‖ρΦ‖2Lp(R3)

≤ C‖ρ‖2Lp(R3)‖Z‖
2
L∞(R3) + C‖ρΦ‖2L∞(R3)

≤ C
(
e−cλt +

1

λ

)
.

In particular,

‖Z‖2W 1,∞ ≤ C
(
e−cλt +

1

λ

)
.

By definition of Z, this proves (7.4.2).

7.4.2 Convergence for small times

We want to prove ρλ → ρ∗ as λ→∞, where ρ∗ is the solution to (7.1.3). By the a priori estimate
from Lemma 7.3.6, we have that ρλ is uniformly bounded in W 1,∞((0, T0)× R3) for times T0 < T∗
defined in (7.3.20). Hence, we can extract strongly convergent subsequences in C0,α((0, T0)×R3) for
all α < 1. It remains to prove that any limit of these subsequences is ρ∗. To this end we will show
that ρλ converges to ρ∗ in a weaker sense by using again the characteristics.

We note that

ρ∗(t, x) = ρ0(X∗(0, t, x)) =

ˆ
R3

f0(X∗(0, t, x), v) dv, (7.4.5)

where X∗(s, t, x) is defined as the solution to

∂sX∗(s, t, x) = g + u∗(s,X∗(s, t, x)),

X∗(t, t, x) = x.

We have seen in (7.1.9) that for large values of λ, the particles are almost transported by uλ + g.
Moreover, in Lemma 7.4.1, we have seen that the fluid velocity uλ is close to ũλ, which roughly
speaking is the fluid velocity corresponding to the limit equation (7.1.3).

In order to compare ρλ to ρ∗, we want to use the formula for ρλ from Lemma (7.3.4),

ρλ(t, x) =

ˆ
R3

e3λtf0(Xλ(0, t, x,Wλ(t, x, w)), w) det∇wWλ(t, x, w) dw. (7.4.6)

Provided Xλ(0, t, x,Wλ(t, x, w)) is close to X∗(0, t, x) independently of w, the right hand sides of
(7.4.5) and (7.4.6) look very similar. However, we lack information on the Jacobian det∇wWλ(t, x, w).
We know that e3λt det∇wWλ(t, x, w) is uniformly bounded (for small times t and large values of λ,
cf. Lemma 7.3.4 and Lemma 7.3.6), but we do not know whether it tends to 1 in the limit λ→∞.

To avoid dealing with this Jacobian, we also integrate over a small set in position space. To this
end, let Ψλ(t, ξ) := (Xλ(t, 0, ξ), Vλ(t, 0, ξ)) with ξ = (x, v). Then, using the characteristic equations
(7.1.6),

∂t∇Ψλ = ∇Ψλ

(
0 Id

λ∇u −λId

)
.
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Hence,

∂t det∇Ψλ = det∇Ψλ tr

(
(∇Ψλ)−1∇Ψλ

(
0 Id

λ∇u −λId

))
= −3λ det∇Ψλ.

Thus,
det∇Ψλ(t, ξ) = e−3λt.

Therefore, for Ω ⊂ R3 measurable,
ˆ

Ω
ρλ(t, y) dy =

ˆ
Ω

ˆ
R3

e3λtf0(Ψ−1
λ (y, v)) dv dy =

ˆ
Ψ−1
λ (Ω×R3)

f0(y, v) dv dy. (7.4.7)

On the other hand, since u∗ is divergence-free, we observe that
ˆ

Ω
ρ∗(t, y) dy =

ˆ
Ω
ρ0(X∗(0, t, y)) dy =

ˆ
X(0,t,Ω)

ρ0(y) dy =

ˆ
X(0,t,Ω)×R3

f0(y, v) dy dv. (7.4.8)

Now, we have to compare the right hand sides of (7.4.8) and (7.4.7).
It is convenient to choose Ω to be a cube. We denote by Qδ the set of all cubes Q ⊂ R3 of length

δ. We define

dλ,δ(t) := sup
Q∈Qδ

∣∣∣∣ 
Q
ρλ(t, y)− ρ∗(t, y) dy

∣∣∣∣ .
We will show that

lim
λ→∞

lim
δ→0

dλ,δ(t) = 0 for all t < T∗. (7.4.9)

This implies ρλ(t, ·)→ ρ∗(t, ·) weakly-* in L∞(R3) as we will prove in Proposition 7.4.5. The idea
is that by the uniform boundedness shown in Lemma 7.3.6, we already have weak convergence of
subsequences to some limit, and (7.4.9) is enough to characterize this weak limit.

We will prove (7.4.9) in Proposition 7.4.4. To do so, we essentially need three ingredients. First,
we will show in Lemma 7.4.2 that dλ,δ is controlled by |Xλ −X∗|. Second, we will show in Lemma
7.4.3 that ũλ − u∗ is controlled by dλ,δ. Finally, we use that the particle trajectories Xλ are almost
the ones, which one get from a transport velocity ũλ + g. This last ingredient is due to (7.1.9) and
Lemma 7.4.1.

Lemma 7.4.2. Let T0 < T∗. Then, there exist constants C1 and λ0 such that for all λ > λ0 and all
t < T0

dλ,δ(t) ≤ C

(
sup

(x,v)∈supp f0

|Xλ(t, 0, x, v)−X∗(t, 0, x)|+ δ +
1

δλ

)
.

Proof. Let Q ∈ Qδ. Let Ψλ(t, y, v) := (Xλ(t, 0, y, v), Vλ(t, 0, y, v)). Recall from (7.4.8) and (7.4.7)

ˆ
Q
ρ∗(t, y) dy =

ˆ
X(0,t,Q)

ρ0(y) dy, (7.4.10)

ˆ
Q
ρλ(t, y) dy =

ˆ
Ψ−1
λ (Q×R3)

f0(y, v) dy dv. (7.4.11)

We want to replace the right hand side of (7.4.11) by an integral of ρ0 to compare its value to the
right hand side of (7.4.10). To this end, we have to replace the set Ψ−1

λ (Q×R3) by a set of the form
Ω× R3. We define

Ω := {X(0, t, z, w) : (z, w) ∈ Ψ(supp f0) ∩ (Q× R3)}
= {y ∈ R3 : there is v ∈ R3 with (y, v) ∈ supp f0, Xλ(t, 0, y, v) ∈ Q}.

(7.4.12)
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Then, we claim

Ψ−1
λ (Q× R3) ∩ supp f0 ⊂

(
Ω× R3

)
∩ supp f0 ⊂ Ψ−1

λ (QCλ−1 × R3), (7.4.13)

where C is a constant independent of δ (and λ), and

QCλ−1 :=
⋃
y∈Q

BCλ−1(y).

The first inclusion in (7.4.13) follows from the definition of Ω. To prove the second inclusion, let
(y, v) ∈ supp f0 ∩ (Ω× R3). Then, by definition of Ω, there exists ṽ ∈ R3 such that (y, ṽ) ∈ supp f0

and Xλ(t, 0, y, ṽ) ∈ Q. From (7.1.9) and the fact that the support of fλ is uniformly bounded up to
time T0 by Lemma 7.3.6, we know that

|Xλ(t, 0, y, v)−Xλ(t, 0, y, ṽ)| ≤ C

λ
+

ˆ t

0
|u(s,Xλ(s, 0, y, v))− u(s,Xλ(s, 0, y, ṽ))| ds

≤ C

λ
+

ˆ t

0
‖∇u‖L∞ |Xλ(s, 0, y, v)−Xλ(s, 0, y, ṽ)| ds.

Using the estimate for ∇u from Lemma 7.3.6 yields

|Xλ(t, 0, y, v)−Xλ(t, 0, y, ṽ)| ≤ C

λ
eCt.

Therefore, Xλ(t, 0, y, v) ∈ QCλ−1 and thus (y, v) ∈ Ψ−1
λ (QCλ−1 × R3). From (7.4.13) it follows∣∣∣∣∣

ˆ
Ψ−1
λ (Q×R3)

f0(y, v) dy dv −
ˆ

Ω×R3

f0(y, v) dy dv

∣∣∣∣∣
≤
ˆ

Ψ−1
λ ((QCλ−1\Q)×R3)

f0(y, v) dy dv

=

ˆ
QCλ−1\Q

ρλ(t, y) dy

≤ ‖ρλ(t, ·)‖L∞(R3)|QCλ−1\Q|

≤ C δ
2

λ
.

(7.4.14)

Combining (7.4.10), (7.4.11), and (7.4.14) yields∣∣∣∣ˆ
Q
ρλ(t, y)− ρ∗(t, y) dy

∣∣∣∣ ≤
∣∣∣∣∣
ˆ
X∗(0,t,Q)

ρ0(y) dy −
ˆ

Ω
ρ0(y) dy

∣∣∣∣∣+ C
δ2

λ
. (7.4.15)

To estimate the right hand side, we note that

|X∗(0, t, Q)| = |Q| = δ3, (7.4.16)

since div u∗ = 0. We want to show that |Ω| ≈ |Q|. To this end, we define X̃λ to be the solution to

∂sX̃λ(s, t, x) = uλ(s, X̃λ(s, t, x)),

X̃λ(t, t, x) = x.
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Then, using (7.1.9), we have for all (x, v) ∈ supp f0

|X̃λ(t, 0, x)−Xλ(t, 0, x, v)| ≤ C

λ
+

ˆ t

0
|uλ(s, X̃λ(s, t, x))− uλ(s,Xλ(s, t, x, v))| ds

≤ C

λ
+

ˆ t

0
‖∇uλ‖L∞(R3)|X̃λ(s, t, x)−Xλ(s, t, x, v)| ds.

Grönwall’s lemma implies

|X̃λ(t, 0, x)−Xλ(t, 0, x, v)| ≤ C

λ
.

Thus,

X̃−1
λ (t, 0, ICλ−1(Q)) ⊂ Ω ⊂ X̃−1

λ (t, 0, QCλ−1),

where

ICλ−1(Q) := {y ∈ Q : BCλ−1(y) ⊂ Q}.

Since div uλ = 0, we have that X̃λ is volume preserving as well. Therefore, using also (7.4.16)

||Ω| − |X∗(0, t, Q)|| ≤ |QCλ−1\ICλ−1(Q)| ≤ C δ
2

λ
. (7.4.17)

We observe that for any function g ∈W 1,∞(R3) and measurable sets E,F ⊂ R3∣∣∣∣ˆ
E
g dx−

ˆ
F
g dx

∣∣∣∣ (7.4.18)

≤ ||E| − |F ||‖g‖L∞ + min{|E|, |F |}‖∇g‖L∞ sup{|x− y| : x ∈ E, y ∈ F}.

Indeed, using the first term on the right hand side, we may assume without loss of generality that
E and F are of equal measure. Approximating E and F by equisized cubes further reduces the
situation to the estimate for two of these cubes. For these cubes, the statement obviously holds.

Applying (7.4.18) together with (7.4.16) and (7.4.17) yields∣∣∣∣∣
ˆ
X∗(0,t,Q)

ρ0(y) dy −
ˆ

Ω
ρ0(y) dy

∣∣∣∣∣
≤ ||Ω| − |X∗(0, t, Q)||‖ρ0‖L∞ + δ3 sup{|y − z| : y ∈ Ω, z ∈ X∗(0, t, Q)}‖∇ρ0‖L∞

≤ C δ
2

λ
+ Cδ3

(
sup
y∈Ω

dist(y,X∗(0, t, Q)) + diam(X∗(0, t, Q))

)
.

(7.4.19)

We need to estimate the second term on the right hand side. To this end, recall the definition of the
set Ω from (7.4.12). For any y ∈ Ω, we find (x, v) ∈ supp f0 such that p := Xλ(t, 0, y, v) ∈ Q. Define
z = X∗(0, t, p) ∈ X∗(0, t, Q). Then

|z − y| = |X∗(0, t, p)−X∗(0, t,X∗(t, 0, y)|
≤ ‖∇X∗(0, t, ·)‖L∞(R3)|Xλ(t, 0, y, v)−X∗(t, 0, y)|
≤ ‖∇X∗(0, t, ·)‖L∞(R3) sup

(x,v)∈supp f0

|Xλ(t, 0, x, v)−X∗(t, 0, x)|.
(7.4.20)

Observe that

‖∇X∗(0, t, ·)‖L∞(R3) ≤ e
´ t
0 ‖∇u∗(s,·)‖ ds ≤ C. (7.4.21)
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Thus, (7.4.20) and (7.4.21) imply

sup
y∈Ω

dist(y,X∗(0, t, Q)) ≤ C sup
(x,v)∈supp f0

|Xλ(t, 0, x, v)−X∗(t, 0, x)|. (7.4.22)

Note that (7.4.21) also yields

diam(X∗(0, t, Q)) ≤ δ‖∇X∗(0, t, ·)‖L∞(R3) ≤ Cδ. (7.4.23)

Finally, estimates (7.4.19), (7.4.23), and (7.4.22) yield∣∣∣∣∣
ˆ
X∗(0,t,)

ρ0(y) dy −
ˆ

Ω
ρ0(y) dy

∣∣∣∣∣
≤ C δ

2

λ
+ Cδ3

(
sup

(x,v)∈supp f0

|Xλ(t, 0, x, v)−X∗(t, 0, x)|+ δ

)
.

Combining this estimate with (7.4.15) finishes the proof.

Lemma 7.4.3. Let T0 < T∗. For u∗ and ũλ as in (7.1.3) and (7.1.10), we have for all δ ≤ 1 and for
all t < T0

‖ũλ(t, ·)− u∗(t, ·)‖L∞(R3) ≤ C(dλ,δ(t) + δ).

Proof. We choose disjoint cubes (Qi)j∈N ⊂ Qδ that cover R3 up to a nullset. Define I ⊂ N to be the
index set for those cubes that intersect with the support of either ρλ(t, ·) or ρ∗(t, ·) and let (zi)i∈I be
the centers of those cubes. Let x ∈ R3. Then,

|ũλ(t, x)− u∗(t, x)| =
∣∣∣∣ˆ

R3

Φ(x− y)(ρλ(t, y)− ρ∗(t, y)) dy

∣∣∣∣
≤
∑
j∈I

∣∣∣∣∣
ˆ
Qj

Φ(x− y)(ρλ(t, y)− ρ∗(t, y)) dy

∣∣∣∣∣ ,
where Φ is the fundamental solution of the Stokes equations,

Φ(y) =
1

8π

(
Id

|y|
+
y ⊗ y
|y|3

)
.

Let I1 ⊂ I be the index set of those cubes Qj which contain x or are adjacent to that cube. Then,
|I1| ≤ 27 and for j ∈ I1 we estimate∣∣∣∣∣

ˆ
Qj

Φ(x− y)(ρλ(t, y)− ρ∗(t, y)) dy

∣∣∣∣∣
≤ (‖ρλ(t, ·)‖L∞(R3) + ‖ρ∗(t, ·)‖L∞(R3)

∣∣∣∣∣
ˆ
Qj

Φ(x− y) dy

∣∣∣∣∣
≤ Cδ2.

Let I2 = I\I1. For h ∈ L1(Rn) and Ω ⊂ Rn measurable, we use the notation

(h)Ω :=

 
Ω
h dx :=

1

|Ω|

ˆ
Ω
h dx.



236 The inertialess limit of the Vlasov-Stokes equations

Then, for j ∈ I2, ∣∣∣∣∣
ˆ
Qj

Φ(x− y)(ρλ(t, y)− ρ∗(t, y)) dy

∣∣∣∣∣
≤ |(Φ(x− ·))Qj |

∣∣∣∣∣
ˆ
Qj

(ρλ(t, y)− ρ∗(t, y)) dy

∣∣∣∣∣
+

ˆ
Qj

|Φ(x− y)− (Φ(x− ·))Qj ||ρλ(t, y)− ρ∗(t, y)| dy

≤ δ3

|x− zj |
dλ,δ(t) +

δ4

|x− zj |2
,

where we used that we control ρλ(t, ·) and ρ∗(t, ·) in L∞(R3) by Lemma 7.3.6. Summing over all
j ∈ I yields

|ũλ(t, x)− u∗(t, x)| ≤ Cδ2 +
∑
j∈I2

δ3

|x− zj |
dλ,δ(t) +

δ4

|x− zj |2

≤ C(δ2 + δ + dλ,δ(t)),

where the constant C depends on the spatial support of ρλ and ρ∗ which we control uniformly up to
time T0 by Lemma 7.3.6. Using δ ≤ 1 finishes the proof.

Proposition 7.4.4. Let t < T∗. Then

lim
δ→0

lim
λ→∞

dλ,δ(t) = 0.

Proof. We define
η(t) := sup

(x,v)∈supp f0

|Xλ(t, 0, x, v)−X∗(t, 0, x)|.

Let (x, v) ∈ supp f0. We write again Xλ(t) instead of Xλ(t, 0, x, v) and similar for X∗. We estimate
using first (7.1.9) together with the fact that the support of fλ remains uniformly bounded up to
time T0, and then applying Lemma 7.4.1, Lemma 7.4.3, and Lemma 7.4.2

|Xλ(t))−X∗(t)|

≤
ˆ t

0
|uλ(s,Xλ(s))− u∗(s,X∗(s))| ds+

C

λ

≤
ˆ t

0
|ũλ(s,Xλ(s))− u∗(s,X∗(s))|+ |ũλ(s,Xλ(s))− uλ(s,X∗(s))| ds+

C

λ

≤
ˆ t

0
‖ũλ(s, ·)− u∗(s, ·)‖L∞(R3) + ‖∇u∗(s, ·)‖L∞(R3)|Xλ(s)−X∗(s)| ds+

C

λ

≤ C
ˆ t

0
dλ,δ(t) + δ + |Xλ(s)−X∗(s)| ds+

C

λ

≤ C
ˆ t

0
η(t) +

1

δλ
+ δ ds+

C

λ
.

Taking the supremum over (x, v) ∈ supp f0 yields for δ ≤ 1

η(t) ≤ C
ˆ t

0
η(s) ds+ C

(
1

δλ
+ δ

)
.
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Grönwall’s lemma implies

η(t) ≤ C
(

1

δλ
+ δ

)
eCt.

Lemma 7.4.2 yields

dλ,δ(t) ≤ C
(

1

δλ
+ δ

)
eCt.

Taking the limits λ→∞ followed by δ → 0 finishes the proof.

Now, we have all the estimates needed to prove the statement of Theorem 7.1.1 up to times
T < T∗.

Proposition 7.4.5. Let T < T∗. Then, for all α < 1,

ρλ → ρ∗ in C0,α((0, T )× R3).

Moreover, for all 0 < t < T ,

uλ → u∗ in L∞((t, T );W 1,∞(R3)) and in L1((0, T );W 1,∞(R3)). (7.4.24)

Proof. By Lemma 7.3.6, the sequence ρλ is uniformly bounded in W 1,∞((0, T )×R3) for large enough
λ. Therefore, for any α < 1, ρλ has a subsequence that converges in C0,α((0, T ) × R3) to some
function σ. We need to show σ = ρ∗. We claim that for all cubes Q ⊂ R3 and all t < T ,

ˆ
Q
ρλ(t, x) dx→

ˆ
Q
ρ∗(t, x) dx. (7.4.25)

Clearly, (7.4.25) implies σ = ρ∗. In order to prove (7.4.25), let ε > 0. Then, by Proposition 7.4.4,
there exists δ0 > 0 such that for all δ < δ0 and all x ∈ R3

lim
λ→∞

dλ,δ =

∣∣∣∣∣
 
Qδ,x

ρλ(t, x)− ρ∗(t, x) dx

∣∣∣∣∣ < ε.

Up to a nullset, we can write Q as the disjoint union of cubes Qi ∈ ∪δ<δ0Qδ. Thus, since ε is
arbitrary, (7.4.25) follows.

In order to prove (7.4.24), we notice that by Lemma 7.4.1 it suffices to prove

ũλ → u∗ in L∞((0, T );W 1,∞(R3)).

However, by regularity theory of the Stokes equations

‖ũλ − u∗‖L∞((0,T );W 1,∞(R3)) ≤ C‖ρλ − ρ∗‖L∞((0,T )×(R3)),

where we used that by Lemma 7.3.6 we have uniform control of the support of ρλ.

7.4.3 Convergence for arbitrary times

In view of Proposition 7.4.5, it only remains to prove T∗ =∞ to finish the proof of Theorem 7.1.1.
The idea of the proof is the following. Due to Lemma 7.3.4, it is sufficient to control the quantity
Mλ(t) defined in (7.3.13) uniformly in λ. Indeed, arguing similarly to Lemma 7.3.5, lim supλ→∞Mλ(t)
has to blow up at time T∗. However, Proposition 7.4.5 shows, that for large enough values of λ, Mλ(t)
is controlled by the corresponding quantity of the limit equation. This gives a contradiction.
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Proof of Theorem 7.1.1. By Proposition 7.4.5, it suffices to prove T∗ =∞. By Lemma 7.3.5, we have
T∗ > 0. Assume T∗ < ∞ and let T < T∗. By definition of T∗ and Lemma 7.3.2, the assumption
λ ≥ 4‖∇uλ‖L∞((0,T )×R3) is satisfied for all λ ≥ λ0(T ). Recall the definition of M(T ) from Lemma
7.3.4, which we will now denote by Mλ(T ) to emphasize the dependence on λ. Moreover, we denote
by M∗ the corresponding quantity for the solution of the limit problem, i.e.,

M∗(t) := exp

(ˆ t

0
2‖∇u(s, ·)‖L∞(R3) ds

)
.

By Proposition 7.4.5, we have
Mλ(T )→M∗(T ) ≤M∗(T∗).

In particular, for all λ ≥ λ0(T ) (possibly enlarging λ0(T )),

Mλ(T ) ≤ 2M∗(T∗).

Therefore, Lemma 7.3.4 implies for all λ ≥ λ0(T )

sup
s≤t
‖ρλ(s, ·)‖2L∞(R3) ≤ 2M∗(T∗).

The rest of the proof is very similar to the proof of Lemma 7.3.5. We define

Tλ := sup{t ≥ 0: sup
s≤t
‖ρλ(s, ·)‖L∞(R3) ≤ 2C0(2M∗(T∗))

3}.

Then, Tλ > T as ρλ is continuous. Analogously as we have shown (7.3.21) in Lemma 7.3.5, we find
that for all t > 0 and λ ≥ C sups≤T+t ‖ρλ(s, ·)‖2L∞(R3)

sup
s≤T+t

‖ρλ(s, ·)‖L∞(R3) ≤ C0(2M∗(T∗))
3 exp

(
Ct sup

s≤T+t
‖ρλ(s, ·)‖2L∞(R3)

)
.

This implies for all λ ≥ max{λ0(T ), CC2
0 (M∗(T∗))

6} and all T + t < Tλ

sup
s≤T+t

‖ρλ(s, ·)‖L∞(R3) ≤ C0(2M∗(T∗))
3 exp(CC2

0 (M∗(T∗))
6t).

As ρλ is continuous, this yields for all λ ≥ max{λ0, CC
2
0 (M∗(T∗))

6

Tλ ≥ T +
log(2)

CC2
0 (M∗(T∗))6

.

In particular, if we choose T < T∗ large enough, we deduce

Tλ > T∗ for all λ ≥ max{λ0, CC
2
0 (M∗(T∗))

6},

which gives a contradiction to the definition of T∗.



Chapter 8

Well-posedness results for rod models

In this chapter, we study well-posedness of the rod model (1.1.3). As argued in Chapter 1.7, the
existence proof of solutions globally in time seems much harder than the one for the transport-Stokes
equations (1.1.1) or the Vlasov-Stokes equations (1.1.2), where we have shown global existence
in Chapters 4 and 7, respectively. For the rod model (1.1.3), we are only able to establish local
well-posedness. Furthermore, we consider cylindrically symmetric solutions to (1.1.3) and prove
global existence in this case.

8.1 Introduction

We consider the rod model (1.1.3) which we repeat here:

∂tf + (u+ (Id +ξ ⊗ ξ)g) · ∇xf + divξ(Pξ⊥(ξ · ∇u)f) = 0,

−∆u+∇p =

ˆ
S2

f dξ g, div u = 0.
(8.1.1)

Here, f(t, x, ξ) ≥ 0 denotes the density of particles at time t and position x ∈ R3 which have
orientation ξ ∈ S2. Moreover, u is the fluid velocity and g the gravitational acceleration. The
operator Pξ⊥ denotes the orthogonal projection to the orthogonal complement of ξ and may be
expressed as Pξ⊥ = Id−ξ ⊗ ξ, where Id is the identity matrix.

We denote the spatial mass-density by

ρ(t, x) :=

ˆ
S2

f(t, x, ξ) dξ.

Then, the fluid equation reads

−∆u+∇p = ρg, div u = 0. (8.1.2)

The characteristic equations associated with the system (8.1.1) are

Ẋ = u+ (Id +Ξ⊗ Ξ)g,

Ξ̇ = PΞ⊥(Ξ · ∇u),

Ż = −divΞ(PΞ⊥(Ξ · ∇u))Z = −5Ξ⊗ Ξ : ∇uZ,
(8.1.3)

where Z denotes the values of f along the (projected) characteristic curves.

Our local well-posedness result, that we prove in Section 8.2, is based on the analysis of the
characteristic curves and a fixed point argument. Roughly speaking, we control the characteristics

239



240 Well-posedness results for rod models

well if we have good estimates on u and ∇u (and ∇2u). We can use that u solves (8.1.2). By standard
estimates (see Remark 4.4.4), we have

‖u(s, ·)‖W 1,∞(R3) . ‖ρ(s, ·)‖
1
3

L1(R3)
‖ρ(s, ·)‖

2
3

L∞(R3)
.

Since u is divergence free, the L1-norm of ρ is conserved. Moreover, since the measure of S2 is finite,
the L∞-norm may be estimated by

‖ρ(s, ·)‖L∞(R3) . ‖f(s, ·)‖L∞(R3×S2).

Using the characteristic equation for Z, we thus find

‖f(s, ·)‖L∞(R3×S2) ≤ ‖f(0, ·)‖L∞(R3×S2) + C

ˆ t

0
‖f(s, ·)‖

5
3

L∞(R3×S2)
,

where the constant C depends on the L1-norm of f(0, ·). This estimate allows to control the L∞-norm
of f for short times, but it is not sufficient to rule out a blowup in finite time.

We have encountered a related problem in the case of the Vlasov-Stokes equations (1.1.2) in
Chapter 7. We have argued in Chapter 1.7 that, due to the lack of an appropriate energy and the
different structures of the equations, it does not seem possible for the rod model (8.1.1) to apply
the strategies used for the well-posedness proof of the Vlasov-Stokes equations in Chapter 7 or for
the Vlasov-Poisson equations used in [Pfa92; Sch91; Gla96]. We are therefore not able to rule out a
blowup of the L∞-norm of f in finite time.

In comparison with the Vlasov-Stokes equations, the Vlasov equation in the rod-model (8.1.1)
also involves the gradient of the fluid velocity u. This means that in the analysis of the characteristics,
also the second gradient of u appears. More precisely, ∇2u appears when one tries to estimate
the differences of characteristics starting at different points (or which are driven by different fluid
velocities). Unfortunately, it is not possible to control the L∞-norm of ∇2u in terms of the L∞-norm
of ρ. Therefore, in Lemma 8.2.2, we give an estimate for ∇2u in terms of ∇ρ. Using this lemma,
the proof of our local well-posedness result implies that, at the maximal time of existence T , the
L∞-norm of f or of its gradient blows up if T <∞. However, it seems possible to refine the argument
in order to prove that it has to be the L∞-norm of f that blows up. Indeed, an analogous result has
been given for the Vlasov-Poisson equations (see [Gla96]). It is based on a more careful estimate of
the L∞-norm of ∇2u which only involves ∇ρ logarithmically.

It seems to be a rather delicate question, whether blowup in finite time of solutions to the rod
model (8.1.1) may occur. In fact, there seems to be a mechanism that leads to concentration of the
particle density, which might produce blowup. This mechanism is the same that has been argued in
[KS89] to be responsible for the experimentally observed instability of homogeneous suspensions of
rods which we briefly discussed in Chapter 2.5. Roughly speaking, the fluid velocity u is larger in
regions of larger concentration of particles and u is almost parallel to the gravity in these regions.
This produces a gradient of u that causes particles near a region of large concentration to rotate in
such a way that they tend to move towards this region. It is not clear, though, if this mechanism is
strong enough to produce blowup in finite time.

We will therefore study this phenomenon and existence of global solutions for a simplified system.
In Section 8.3, we consider cylindrically symmetric solutions f to (8.1.1). More precisely, we consider
particle densities f that satisfy

f(t, Ox+ λg,Oξ) = f(t, x, ξ)

for all t ∈ (0, T ), λ ∈ R and all rotations O ∈ SO(3) such that O(g) = g. In some sense, this is the
maximal symmetry which is preserved by the evolution of the system and still leads to a system with



Short-time existence for the full problem 241

the same potential blowup scenario as for the full problem. In particular, in this system, the velocity
of the particles still depends on their orientation, and the orientation undergoes changes due to the
gradient of the fluid velocity.

Nevertheless, we prove global well-posedness for such cylindrically symmetric solutions. Again,
the proof is based on the method of characteristics. As argued above, the crucial step for global
existence is to establish an a priori estimate on the L∞-norm of f . This is achieved using the
additional structure provided by the symmetry assumptions. In fact, the symmetry assumptions
imply that the characteristic curves of the solution are straight lines in space.

8.2 Short-time existence for the full problem

Similar to the transport-Stokes equations (1.1.1), where we proved well-posedness in Chapter 4,
we work in weighted L∞-spaces. More precisely, for β > 0, we define

‖h‖Xβ(R3) := ‖(1 + |x|β)|h(x)|‖L∞(R3), (8.2.1)

Xβ(R3) := {h ∈W 1,∞(R3) : ‖h‖Xβ(R3) <∞}.

Analogously, we define the space Xβ(R3 × S2) by introducing

‖h‖Xβ(R3×S2) := ‖(1 + |x|β)|h(x, ξ)|‖L∞(R3×S2).

We state the local well-posedness result in the following theorem.

Theorem 8.2.1. Let β > 2 and f0 ∈ Xβ(R3 × S2) with ∇f0 ∈ Xβ(R3 × S2). Then, there exists
T > 0 such that there exists a unique solution f ∈W 1,∞([0, T )× R3 × S2) ∩ L∞(0, T ;Xβ(R3 × S2))
to (8.1.1) with f(0, ·) = f0 and u ∈ L∞((0, T );W 2,∞ ∩ Ḣ1(R3)).

The following lemma provides estimates for the fluid velocity in terms of the particle density. The
lemma directly follows from Lemma 4.4.3

Lemma 8.2.2. Let β > 2 and ρ ∈ Xβ(R3) with ∇ρ ∈ Xβ. Then there exists a unique solution
u ∈W 2,∞(R3) ∩ Ḣ1(R3) to (8.1.2) which satisfies

‖u(t)‖W 1,∞(R3) . ‖ρ(t)‖Xβ(R3),

‖∇u(t)‖W 1,∞(R3) . ‖∇ρ(t)‖Xβ(R3).
(8.2.2)

Proof of Theorem 8.2.1. Step 1: Setup.

We will apply the Banach fixed point theorem. We define the metric space, where we prove
contractiveness. Let T, L > 0. We write Ω = R3 × S2 and UT = (0, T )× R3, and define

YT,L :=

{
h ∈ L∞(0, T ;Xβ(Ω)) : ‖h‖L∞(0,T ;Xβ(Ω)) + ‖∇xh‖L∞(0,T ;Xβ(Ω)) ≤ L

}
.

Then, YT,L is a complete metric space with norm ‖ · ‖L∞(0,T ;Xβ(Ω)).

We now define an operator S : YT,L → L∞(0, T ;Xβ(Ω)). Let h ∈ YT,L, and define u ∈
L∞(0, T ;W 2,∞(R3)) to be the solution to (8.1.2) with ρ =

´
S2 h dξ. Then, we define f := Sh

as the solution to the first equation in (8.1.1) with this given fluid velocity u.

In order to apply the Banach fixed point theorem, we have to show that S is contractive and
S(YT,L) ⊂ YT,L.
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Step 2: S(YT,L) ⊂ YT,L. In view of (8.1.3), we define the characteristics (Xi,Ξi)(s, t, x, ξ) by

∂s(X,Ξ)(s, t, x, n) =
(
ui(s,X) + (I + Ξ⊗ Ξ)g, PΞ⊥i

(Ξ · ∇u(s,X))
)
,

(X,Ξ)(t, t, x, ξ) = (x, ξ).

Then, f = Sh is given by

f(t, x, ξ) = exp

(
−5

ˆ t

0
Ξ(s, t, x, ξ)⊗ Ξ(s, t, x, ξ) : ∇u(s,X(s, t, x, ξ) ds

)
f0((X,Ξ)(0, t, x, ξ)).

(8.2.3)
We observe that Lemma 8.2.2 implies for t < T (assuming without loss of generality |g| = 1)

|(X)(t, 0, x, ξ)− x| ≤
ˆ t

0
|u(s,X(t, s, x, ξ)|+ 2 ds

≤ CT
(

1 + ‖h‖L∞(0,T ;Xβ(Ω)) + ‖∇h‖L∞(0,T ;Xβ(Ω))

)
≤ CT (1 + L).

Thus,

1 + |x|β ≤ C1(1 + T β(1 + L)β)(1 + |X(t, 0, x, ξ)|β), (8.2.4)

where C1 is a constant which only depends on β. Equation (8.2.3) implies

|f(t, x, ξ)| ≤ eCTL|f0((Xi,Ξi)(0, t, x, ξ))|. (8.2.5)

Combining (8.2.4) and (8.2.5) yields

‖f‖L∞(0,T ;Xβ(Ω)) ≤ C1e
CTL(1 + T β(1 + L)β)‖f0‖Xβ(Ω)).

In order to estimate the gradient of f , we define Yi(s) := (X,Ξ)(t, s, xi, ξi), i = 1, 2, to be the
characteristics starting from (xi, ξi) at time t. Then,

|Y1(s)− Y2(s)| ≤ |(x1, ξ1)− (x2, ξ2)|+
ˆ t

0
C(1 + ‖u(τ, ·)‖W 2,∞(R3)|Y1(τ)− Y2(τ)| dτ

≤ |(x1, ξ1)− (x2, ξ2)|+ C(1 + L)

ˆ t

s
|Y1(τ)− Y2(τ)| dτ.

Thus, Grönwall’s estimate implies

|Y1(0)− Y2(0)| ≤ |(x1, ξ1)− (x2, ξ2)|eCT (1+L).

Combining this bound with (8.2.4) yields

‖∇f‖L∞(0,T ;Xβ(Ω)) ≤ C1e
CT (L+1)(1 + T β(1 + L)β)‖∇f0‖Xβ(Ω)). (8.2.6)

Hence, for all L > C1(‖f0‖Xβ(Ω)) + ‖∇f0‖Xβ(Ω))) there exists T > 0 such that S(YT,L) ⊂ YT,L.

Step 3: Contraction.
Let h1, h2 ∈ YT,L. For i = 1, 2, we define ui to be the solution to

−∆ui +∇p =

ˆ
S2

hi dξ g, div ui = 0.
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We denote by Yi(s, t, x, ξ) = (Xi,Ξi)(s, t, x, ξ) the characteristics associated to fi = Shi and abbreviate
Xi(s) = Xi(s, t, x, ξ) and analogously for Ξi. Moreover, we write C(T, L) := C1(1 + T β(1 + L)β)
where C1 is the constant in (8.2.4). Then, we estimate, repeatedly applying the triangle,

(1 + |x|β)|f1(t, x, ξ)− f2(t, x, ξ)|
(8.2.3)

= (1 + |x|β)

∣∣∣∣exp

(
−5

ˆ t

0
Ξ1(s)⊗ Ξ1(s) : ∇u1(s,X1(s)) ds

)
f0(Y1(0))

− exp

(
−5

ˆ t

0
Ξ2(s)⊗ Ξ2(s) : ∇u2(s,X2(s)) ds

)
f0(Y2(0))

∣∣∣∣
(8.2.4)

≤ C(T, L) exp
(
5T‖∇u1‖L∞(UT )

)
‖∇f0‖L∞(Xβ(Ω))|(Y1)(0)− (Y2)(0)| (8.2.7)

+ C(T, L)CT exp
(
CT (‖∇u1‖L∞(UT ) + ‖∇u2‖L∞(UT ))

)
‖f0‖Xβ(Ω)(

‖∇2u1‖L∞(UT ) sup
s≤t
|X1(s)−X2(s)|+ ‖∇(u1 − u2)‖L∞(UT )) + ‖∇u1‖L∞(UT ) sup

s≤t
|Ξ1(s)− Ξ2(s)|

)
(8.2.2)

≤ C(T, L) exp(CTL)
(
‖f0‖Xβ(Ω) + ‖∇f0‖Xβ(Ω)

)
(

(1 + CTL)|(Y1)(0)− (Y2)(0)|+ CT‖h1 − h2‖L∞(0,T ;Xβ(Ω))

)
.

Moreover, for all 0 ≤ s ≤ t ≤ T

|(X1)(s)− (X2)(s)|

≤ C
ˆ t

s
|(Ξ1(τ)− Ξ2(τ)|+ |u1(τ,X1(τ))− u2(τ,X2(τ))| dτ

≤ C
ˆ t

s
|Ξ1(τ)− Ξ2(τ)|+ ‖∇u1‖L∞(UT )|X1(τ)−X2(τ)|+ ‖u1 − u2‖L∞(UT ) dτ

≤ C(1 + L)

ˆ t

s
|Y1(τ)− Y2(τ)| dτ + CT‖h1 − h2‖L∞(0,T ;Xβ(Ω)),

and

|(Ξ1)(s)− (Ξ2)(s)|

≤ C
ˆ t

s
|X1(τ)−X2(τ)|‖∇2u1‖L∞(UT ) + ‖∇(u1 − u2)‖L∞(UT ) + ‖∇u1‖L∞(UT )|Ξ1(τ)− Ξ2(τ)| dτ

≤ CL
ˆ t

s
|Y1(τ)− Y2(τ)| dτ + CT‖h1 − h2‖L∞(0,T ;Xβ(Ω)).

Thus,

|Y1(s)− Y2(s)| ≤ C(1 + L)

ˆ t

s
|Y1(τ)− Y2(τ)| dτ + CT‖h1 − h2‖L∞(0,T ;Xβ(Ω)).

Grönwall’s lemma implies

|Y1(0)− Y2(0)| ≤ CT‖h1 − h2‖L∞(0,T ;Xβ(Ω))e
C(1+L)T .

Inserting this in (8.2.7) yields

‖f1 − f2‖L∞(0,T ;Xβ(Ω))

≤ C(T, L)(1 + CTL)Te(C(L+1)T )
(
‖f0‖Xβ(Ω) + ‖∇f0‖Xβ(Ω)

)
‖h1 − h2‖L∞(0,T ;Xβ(Ω))

≤ C1(1 + (T (1 + L))β+1)Te(C(L+1)T )
(
‖f0‖Xβ(Ω) + ‖∇f0‖Xβ(Ω)

)
‖h1 − h2‖L∞(0,T ;Xβ(Ω)),
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where we used the definition of C(T, L) = C1(1 + T β(1 + L)β). Thus, for all L, there exists T > 0
such that the mapping h 7→ f is contractive with respect to L∞(0, T ;Xβ(Ω)).

Step 4: Conclusion. By the Banach fixed point theorem, there exists a unique fixed point of YT,L
of S if we choose first L sufficiently large and then T sufficiently small. It is easily verified that
f ∈ W 1,∞([0, T ) × R3 × S2). Indeed, it only remains to prove Lipschitz continuity in time. Let
0 < t1 < t2 < T and consider (X,Ξ)(ti, s, x, ξ), the characteristics starting from (x, ξ) at times ti.
Then, we know

(X,Ξ)(t2, s, x, v) = (X,Ξ)(t1, s,X(t2, t1, x, ξ),Ξ(t, t1, x, ξ)).

Using (8.2.2), we have

|X(t2, t1, x, ξ),Ξ(t, t1, x, ξ)− (x, v)| . L(t2 − t1).

Combining this estimate with (8.2.3) yields, similarly to (8.2.6),

sup
x,ξ
‖f(·, x, ξ)‖W 1,∞(0,T ) ≤ eCT (L+1)

(
CTL+ ‖f0‖W 1,∞(R3×S2)

)
.

The regularity for u follows immediately from Lemma 8.2.2.

8.3 Global existence for cylinder symmetric solutions

8.3.1 Setting and main result

We consider the symmetry group of all rotations around the axis parallel to g,

O := {O ∈ SO(3) : Og = g},

and consider initial data f0 : R3 × S2 → R such that

f0(x, ξ) = f(Ox+ λg,Oξ) for all λ ∈ R, O ∈ O.

Since we require f0 to be invariant under translations parallel to the gravity, we cannot have
f0 ∈ L1(R3 × S2) unless f0 = 0.

Instead, we impose that f0 ≥ 0 has finite mass on planes perpendicular to the gravity, which is
given by

H := {x ∈ R3 : x · g = 0}. (8.3.1)

By translation invariance, it is sufficient to consider the function h0 : H × S2 → R defined by

h0(y, ξ) := f0(y, ξ) for all y ∈ H.

We require

h0 ∈ Xβ(H × S2).

For translation invariant ρ, i.e. ρ(x+ λg) = ρ(x) we have div(ρg) = 0. Thus, the fluid equation
simplifies to

−∆u = ρg in R3,
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and we can reduce this to the two dimensional problem in H by

−∆v = ρ in H, u(x) = v(PHx)g, (8.3.2)

where PH is the orthogonal projection to the plane H defined in (8.3.1). In general there is no
solution in v ∈ Lp(H) to the Poisson equation for any 1 ≤ p ≤ ∞, even if the right-hand side satisfies
ρ ∈ C∞c (H). However, defining Xβ(H) analogously to (8.2.1), the analog of Lemma 8.2.2 holds.

Lemma 8.3.1. Let β > 1 and ρ ∈ Xβ(H) with ∇ρ ∈ Xβ(H). Then, there exists a solution
v ∈ L∞loc(H) to (8.3.2) such that ∇v ∈ Lp(H) for all 2 < p <∞. This solution is unique up to the
addition of constants. Moreover, ∇v ∈W 1,∞(H) with

‖∇v‖L∞(H) . ‖ρ‖Xβ(H),

‖∇2v‖L∞(H) . ‖∇ρ‖Xβ(H).

Since the fluid velocity u is translation invariant for translation invariant particle densities f , the
translation invariance is preserved by the evolution under (8.1.1). Therefore, since u is parallel to g,
the fluid velocity u in the term u+ (Id +ξ ⊗ ξ)g) · ∇f has no influence on the dynamics.

Making use of the translational invariance, we can rewrite the dynamics (8.1.1) in (0, T )×H ×S2

as

∂th+ (ξ · g)PHξ · ∇xh+ divξ((ξ · ∇v)Pξ⊥gh) = 0 in (0, T )×H × S2,

−∆v =

ˆ
S2

ˆ
h dξ in (0, T )×H.

(8.3.3)

It should be emphasized that the gradient of the fluid velocity is still relevant for changing the
orientation of the particles, and that this is the most dangerous term regarding possible blowup.
However, we prove global existence of cylindrically symmetric solution, as stated in the following
theorem.

Theorem 8.3.2. Let β > 2 and assume h0 ∈ Xβ(H) with ∇h0 ∈ Xβ(H) satisfies

h0(x, ξ) = h0(Ox,Oξ) for all λ ∈ R, O ∈ O. (8.3.4)

Then, for all T > 0, there exists a unique solution h ∈W 1,∞([0, T )×H×S2)∩L∞(0, T ;Xβ(H×S2))
to (8.3.3) such that h(0, ·) = h0 and h(t, ·) satisfies (8.3.4) for all 0 < t < T and v ∈ L∞(0, T ;L∞loc(H))
with ∇v ∈W 1,∞(H) ∩ Lp(H) for all 2 < p <∞.

8.3.2 The characteristic equations of the system

For h(t, ·) that satisfies (8.3.4), we know that the spatial particle density ρ is invariant under
rotations, i.e. there exists a function σ : (0, T )× (0,∞)→ R such that

ρ(t, x) :=

ˆ
S2

h(t, x, ξ) dξ = σ(t, |x|).

This form of the spatial particle density considerably reduces the complexity of the fluid equation
(8.3.2) to an explicitly solvable ODE. Indeed, v is given as the solution1 to

v(t, x) = ψ(t, |x|), −∂2
rψ −

1

r
∂rψ = σ, (8.3.5)

1Since only the gradient of v, which is unique in W 1,∞(H) ∩ Lp(H), is relevant for the dynamics, we will refer to v
as the solution to (8.3.2) even though v itself is not unique.
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which is solved by

∂rψ(t, r) = −1

r

ˆ r

0
r′σ(t, r′) dr′ =: −1

r
M(t, r), (8.3.6)

where the function M(t, r) is (up to a factor 2π) the total particle mass in Br(0) ⊂ H at time t. In
particular, we find

∇v(t, x) = − 1

|x|
M(t, |x|)x̂, x̂ :=

x

|x|
.

We write the characteristic equations for the system (8.3.3):

Ẋ = (Ξ · g)PHΞ,

Ξ̇ = −M(t, |X|)
|X|

(Ξ · X̂)PΞ⊥g,

Ż = 5
M(t, |X|)
|X|

(Ξ · g)(Ξ · X̂)Z.

(8.3.7)

For the analysis of the characteristics, it is useful to write them in cylinder coordinates in space and
spherical coordinates in the orientation. More precisely, we assume without loss of generality g = e3

and write for X ∈ H, Ξ ∈ S2

X =

 R cos Φx

R sin Φx

0

 , Ξ =

 sin Θ cos Φξ

sin Θ sin Φξ

cos Θ

 .

Then, with

er =

 cos Φx

sin Φx

0

 , eφx =

 − sin Φx

cos Φx

0

 , eθ =

 cos Θ cos Φξ

cos Θ sin Φξ

− sin Θ

 , eφξ =

 − sin Φξ

cos Φξ

0

 ,

we have

Ẋ = Ṙer +RΦ̇xeφx , Ξ̇ = Θ̇eθ + sin ΘΦ̇ξeφξ .

Therefore, the characteristic equations take the form

Ṙ = cos Θ sin Θ cos(Φξ − Φx),

Φ̇x =
cos Θ sin Θ sin(Φξ − Φx)

R
,

Θ̇ = M(t, R)
sin2 Θ cos(Φξ − Φx)

R
,

Φ̇ξ = 0,

Ż = 5M(t, R)
cos Θ sin Θ cos(Φξ − Φx)

R
.

(8.3.8)

The identity Φ̇ξ = 0 expresses the fact that the particle orientations only change in the polar angle.
The reason why the azimuthal angle Φξ is constant is that the fluid velocity u is parallel to g
everywhere. Thus, the orientation cannot change in the direction perpendicular to g = e3. However,
the polar angle Θ of the orientation is only relevant for the sign and the absolute value of the particle
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velocity, and not for its direction. Therefore, Φξ = const implies that the projected characteristics
are straight lines in space. More precisely, along the characteristics we have

R sin(Φξ − Φx) = const. (8.3.9)

as can be checked by a direct computation of the derivative.
We thus introduce Φ := Φξ − Φx, which contains the full information of both angles due to the

symmetry under rotations. Then, we rewrite the characteristic equations as

Ṙ = cos Θ sin Θ cos Φ,

Θ̇ =
sin2 Θ cos Φ

R
M(R, ·),

Φ̇ = −cos Θ sin Θ sin Φ

R
,

Ż = 5
sin Θ cos Θ cos Φ

R
M(R, ·)Z.

(8.3.10)

Let us consider a characteristic curve with Φ = 0 initially. Then, the equation for Φ implies
Φ = const. Hence, Θ̇ ≥ 0 and Θ̇ > 0 unless Θ ∈ {0, π}. Consequently Θ → 0 (unless Θ = π).
Then, as soon as Θ < π/2, we have Ṙ < 0. Thus, the characteristic curve eventually approaches
the origin. This resembles the mechanism explained in the introduction that could produce blowup
of the particle density: due to the symmetry, the fluid flow is largest at the origin. Therefore, the
particles turn in such a way that they approach the origin.

The particles behave similarly if Φ(0) 6= 0. However, due to (8.3.9), we have

R(t) ≥ R(t)‖ sin(Φ(t))| = R(0)| sin(Φ(0))| > 0 (8.3.11)

if Φ(0) 6∈ {0, π} assuming R(0) > 0. This means that those characteristic curves cannot approach
the origin farther than to a certain threshold. Therefore, the concentration mechanism is not strong
enough in this case in order to produce blowup in finite time.

8.3.3 Proof of global existence of solutions

We have argued in the introduction that blowup of solutions is equivalent to blowup of the
L∞-norm of h. On the level of the characteristics, this is expressed by blowup of Z. From the
characteristic equations (8.3.10), we deduce that we control Z if we control supr∈(0,∞) r

−1M(r, t).

By definition (see (8.3.6)), M(r, t) is proportional to the particle mass in Br(0)× S2 at time t. In
particular, since the total mass ‖h(t, ·)‖L1(H×S2) is conserved, we only need to estimate r−1M(r, t)
for small r.

For the proof of this a priori estimate of r−1M(r, t), we use the fact that the system (8.3.3)
preserves mass transported by the characteristics. This is a general property of continuity equations
such as the Vlasov equation (8.3.3), which is also true for the full system (8.1.1) because u is
divergence free. We summarize this property in the following lemma.

Lemma 8.3.3. Let h ∈ W 1,∞([0, T ) × H × S2) ∩ L∞(0, T ;L1(H × S2) be a solution to the first
equation (8.3.3) with some given v ∈ L∞(0, T ;L∞loc(H) ∩W 1,∞(H)). Let Γt = (X(t, x, v),Ξ(t, x, v))
be the diffeomorphism induced by the characteristics starting from (x, ξ) at time zero. Then, for any
measurable set Ω ⊂ H × S2 and for all 0 < t < T ,

ˆ
Ω
h(t, x, ξ) =

ˆ
Γ−1
t (Ω)

h(0, x, ξ).
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In particular, for all 0 < t < T

‖h(t, ·)‖L1(H×S2) = ‖h(0, ·)‖L1(H×S2).

Proposition 8.3.4. Let T > 0 and β > 2 and h ∈W 1,∞([0, T )×H × S2) ∩ L∞(0, T ;Xβ(H × S2))
be a non-negative solution to (8.3.3) such that h(t, ·) satisfies (8.3.4) for all t ∈ [0, T ). Then, for all
0 < t < T ,

‖h(t, ·)‖Xβ(H×S2) ≤ e
C(1+t)‖h(0,·)‖Xβ(H×S2)‖h(0, ·)‖Xβ(H×S2).

Proof. By the definition of M(t, r) in (8.3.6), we have

2πM(t, r) =

ˆ
Br(0)

ˆ
S2

h(t, x, ξ) dξ dx.

In particular, by Lemma 8.3.3 above, we have

2πM(t, r) =

ˆ
H×S2

h(0, x, ξ)1|X(t)|≤r ≤ ‖h(0, ·)‖L∞(H×S2)

ˆ
H×S2

1|X(t)|≤r.

By the smoothness of the coordinate change from cylindrical and spherical coordinates to Cartesian
coordinates away from the origin, the formulation of the characteristic equations (8.3.8) is equivalent
to (8.3.7) for all characteristics that do not pass through the origin. We already know from (8.3.9)
that the only characteristics passing through the origin are the ones with R(0) sin(Φξ(0)−Φx(0)) = 0.
Since the set of those initial data are a nullset, the characteristic equations (8.3.8) contain the same
information as (8.3.7).

We can thus rewrite
ˆ
H×S2

1|X(t)|≤r =

ˆ ∞
0

ˆ 2π

0

ˆ π

0

ˆ 2π

0
s sin θ1R(t)≤r dφξ dθ dφx ds

= 2π

ˆ ∞
0

ˆ π

0

ˆ 2π

0
s sin θ1R(t)≤r dφ dθ ds.

In the second line, we substituted φξ by φ = φξ − φx and integrated out one of the angles using the
symmetry.

We use |Ṙ| ≤ 1 and (8.3.11) to deduce{
(s, θ, φ) : R(t) ≤ r

}
⊂
{

(s, θ, φ) : s ≤ r + t, | sinφ| ≤ s

r

}
.

Moreover, we observe ∣∣∣∣{φ ∈ (0, 2π) : | sinφ| ≤ s

r

}∣∣∣∣ . s

r
.

Combining the above equations yields

M(t, r) . ‖h(0, ·)‖L∞(H×S2)

ˆ r+t

0
r ds = 2r(r + t)‖h(0, ·)‖L∞(H×S2).

Using also that by Lemma 8.3.3

M(t, r) ≤ 2π‖h(t, ·)‖L1(H×S2) = 2π‖h(0, ·)‖L1(H×S2) . ‖h(0, ·)‖Xβ(H×S2),
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we find

max
r∈R+

M(t, r)

r
. max

r∈R+

min{(r + t), r−1}‖h(0, ·)‖Xβ(H×S2)

. (1 + t)‖h(0, ·)‖Xβ(H×S2).

From the characteristic equations, we deduce

|h(t, x, ξ)| ≤ eC(1+t)‖h(0,·)‖Xβ(H×S2) |h0(X(0),Ξ(0)|.

Using that |Ẋ| ≤ 1 we deduce (dealing with the weight of the L∞-norm as in Step 2 of the proof of
Theorem 8.2.1)

‖h(t, ·)‖Xβ(H×S2) . e
C(1+t)‖h(0,·)‖Xβ(H×S2)‖h(0, ·)‖Xβ(H×S2).

This finishes the proof.

Proof of Theorem 8.3.2. With the help of the a priori estimate given in Proposition 8.3.4, the proof
of global well-posedness is not difficult. First, local well-posedness is proved in the same manner as
in the proof of Theorem 8.2.1. Then, one has to show that the quantities that determine the time of
existence do not blow up in finite time. The first part is almost completely analogous to the proof of
Theorem 8.2.1. We therefore do not repeat the technical details here.

One observes that the existence time only depends on

‖h(0, ·)‖Xβ(H×S2) + ‖∇h(0, ·)‖Xβ(H×S2).

We thus need to make sure that this quantity does not blow up in finite time. We already know from
Proposition 8.3.4 that the Xβ-norm of h does not blow up in finite time. It remains to argue that
the same also holds true for the gradient.

This is true, because the estimates from Lemma 8.2.2 can be improved due to the symmetry. We
recall from (8.3.5) that v(t, x) = ψ(t, |x|), and from (8.3.6) that

|∂2
rψ(t, r)| =

∣∣∣∣− d

dr

M(t, r)

r

∣∣∣∣ =

∣∣∣∣M(t, r)

r2
− σ(r, t)

∣∣∣∣ . ‖h(t, ·)‖L∞(H×S2).

With this estimate, we are able to deduce a bound for ‖∇h(0, ·)‖Xβ(H×S2). Indeed, using the above
estimate in the characteristic equations (8.3.7), we find

|(X,Ξ)(0, t, x1, ξ1)− (X,Ξ)(0, t, x2, ξ2)| ≤ eCt|(x1, ξ1)− (x2, ξ2)|,

where C only depends on the L∞-norm of h(s, ·), which we already control. Using the characteristic
equation for Z in (8.3.7) and again the estimates for M(r, t)r−1 and its derivative in terms of the
L1-norm and the L∞-norm of h, we deduce

‖∇h(t, ·)‖Xβ(H×S2) ≤ C(t),

where C(t) only depends on t and ‖h(0, ·)‖Xβ(H×S2). This concludes the proof.
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940.

[HL90] T. Y. Hou and J. Lowengrub. “Convergence of the point vortex method for the 3-D
Euler equations”. In: Comm. Pure Appl. Math. 43.8 (1990), pp. 965–981.

[HM12] B. M. Haines and A. L. Mazzucato. “A proof of Einstein’s effective viscosity for a
dilute suspension of spheres”. In: SIAM J. Math. Anal. 44.3 (2012), pp. 2120–2145.

[HMS17] M. Hillairet, A. Moussa, and F. Sueur. “On the effect of polydispersity and rotation
on the Brinkman force induced by a cloud of particles on a viscous incompressible
flow”. In: arXiv preprint arXiv:1705.08628 (2017).

[HO06] C. Helzel and F. Otto. “Multiscale simulations for suspensions of rod-like molecules”.
In: J. Comput. Phys. 216.1 (2006), pp. 52–75.
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