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Abstract

Mean-field electronic structure methods like Hartree–Fock (HF) or Kohn–Sham
(KS) Density Functional Theory (DFT) do not account for long-range correla-
tion effects and consequently not for London Dispersion (LD). These LD forces
contribute significantly to the interaction between molecular aggregates and are
thus mandatory for a quantitative comparison of in silico predictions with exper-
imental observations. Casimir and Polder formulated long-range correlation in
terms of dynamic polarizabilities and established the foundation of all LD correc-
tions within a DFT framework. This dissertation develops an efficient correction
scheme, termed DFT-D4, for the accurate calculation of LD correlation effects
in combination with Density Functional Approximations (DFAs) or other mean-
field electronic structure methods. The presented scheme is an extension of the
well-established DFT-D3 LD correction. In DFT-D3, the Coulomb operator is
expanded into multipoles where a coarse-grain partitioning to atomic polarizabil-
ities enables the calculation of interatomic dipole-dipole dispersion coefficients.
Fractional Coordination Numbers (CNs) are used as a measure of the hybridiza-
tion to efficiently calculate hybridization dependent dispersion coefficients from
dynamic Atom-in-Molecule (AIM) polarizabilities.

In order to better account for non-additive AIM-polarizability effects, DFT-D4
additionally uses atomic oxidation state information. Those oxidation state in-
formation are of particular importance in systems like organometallic or charged
complexes and improve their description of noncovalent interactions substantially.
The oxidation-state dependency is implemented by an empirical function which
uses atomic charge information for the scaling of reference polarizabilities. This
scaling procedure is shown to be well suited to incorporate the most significant
electronic effects into the reference values. The DFT-D4 default method uses a
classical charge model, however, other charge schemes are implemented as well.
A D3-like interpolation scheme incorporates those scaled references and generates
hybridization and oxidation state dependent dynamic polarizabilities. DFT-D4
is shown to yield excellent molecular polarizabilities and dispersion coefficients.
On a database of 1225 intermolecular dispersion coefficients the Mean Absolute
Deviation (MAD) from experimental references is 3.8%. When combined with ap-
propriate DFAs, noncovalent interaction energies for large complexes have MADs
well below 10% and rotational constants (measure for the molecular size) have
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Abstract

the accuracy of high-level correlated methodologies.

For certain metal-ions in highly polar and periodic environments, DFT-D meth-
ods obtain too large atomic polarizabilities compared to Time-Dependent Density
Functional Theory (TD-DFT) values (e. g., Na+ in crystalline NaCl). A more in-
depth analysis shows that the absence of suitable reference systems causes the
identified problem. In periodic environments, the CNs quickly approach values
far beyond those for which reference polarizabilities are available. This absence
leads to CNs extrapolations of polarizabilities, which are not reliable. The periodic
DFT-D4 removes this drawback by extending the scope of reference polarizabili-
ties for highly coordinated systems. For this purpose, dynamic polarizabilities for
pseudo-periodic references with high CNs are calculated. The addition of such
references to the D4-reference pool enables the physically reasonable calculation
of atomic polarizabilities in dense solids. Such improved polarizabilities are shown
to be beneficial for obtaining high-quality adsorption energies.

Comparing the computational costs of several dispersion corrections shows large
differences in terms of efficiency. While the computational costs of the DFT-
D4 method are negligible with respect to the underlying DFT calculation, some
correction methods become the computational bottleneck.

The second part of the thesis consists of two application studies of LD corrected
DFT methods. In the first case study, LD driven packing effects lead to the short-
est intermolecular H· · ·H contact reported to date. The attractive interactions
between tBu groups cause this unusual binding situation. A periodic dispersion
corrected DFT composite scheme verifies the experimental finding and an energy
decomposition analysis quantifies the importance of LD interactions. The DFT

structure determined by this composite scheme agrees very well with the struc-
ture determined from a low-temperature neutron diffraction experiment (inter-
molecular hydrogen-hydrogen bond length deviate by ≈1 pm from the experimen-
tal one). The second case study investigates LD interactions in organometallic
complexes. Properly accounting for LD is shown to be important for predicting
reaction paths, e. g, for the design of dispersion-controlled reaction sequences in
homogeneous catalysis. In other systems like in the [[Rh(CNPh)4]2]2+ dication,
LD contributions are able to compensate substantial repulsive electrostatic inter-
actions. Additionally, LD interaction energies are compared to values obtained by
a Local Energy Decomposition (LED) employing a local coupled-cluster theory. In
combination with certain DFAs, the LD energies are in good agreement with the
values of the LED partitioning.
In summary, the DFT-D4 LD correction is recommended as a standard tool in
computer-assisted chemistry of molecular and periodic systems due to its high
accuracy and computational efficiency.
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Kurzreferat

Mean-Field-Elektronenstrukturmethoden wie Hartree–Fock (HF) oder Kohn–Sham
(KS) Dichtefunktionaltheorie (DFT) sind nicht befähigt langreichweitige Korrela-
tionseffekte und somit auch keine London Dispersion (LD) zu beschreiben. Solche
LD Kräfte tragen signifikant zu der Interaktion molekularer Aggregate bei und
sind deshalb obligatorisch für einen quantitativen Vergleich zwischen in silico-
Vorhersagen und experimentellen Beobachtungen. Casimir und Polder haben lan-
greichweitige Korrelationseffekte anhand dynamischer Polarisierbarkeiten hergelei-
tet und damit die Grundlage aller DFT-basierten LD Korrekturen errichtet. Die
vorliegende Dissertation entwickelt ein effizientes Korrekturschema, namens DFT-
D4, für die genaue Berechnung von LD Korrelationseffekten in Kombination mit
Dichtefunktionalnäherungen (DFAs) oder anderen Mean-Field-Elektronenstruktur-
methoden. Das präsentierte Schema ist eine Erweiterung der etablierten DFT-D3
London Dispersionskorrektur. In DFT-D3 wird der Coulomb-Operator in Mul-
tipole entwickelt, wobei eine coarse-grain Partition auf atomare Polarisierbarkei-
ten die Berechnung von interatomaren Dipol-Dipol Dispersionskoeffizienten er-
möglicht. Fraktionelle Koordinationszahlen (CNs) gelten hierbei als Maß für die
Hybridisierung von Atomen und werden zur effizienten Berechnung von hybri-
disierungsabhängigen Dispersionskoeffizienten ausgehend von dynamischen Atom-
im-Molekül (AIM) Polarisierbarkeiten verwendet.

Für eine weitere Verbesserung von solchen nicht additiven AIM-Polarisierbarkeits-
effekten, verwendet DFT-D4 zusätzlich Informationen über den atomaren Oxi-
dationszustand. Solche Oxidationszustandsinformationen sind besonders in Syste-
men wie Organometallkomplexen oder geladenen Komplexen von ausgesprochener
Wichtigkeit und verbessern die Beschreibung von deren nichtkovalenten Wechsel-
wirkungen substantiell. Diese Oxidationszustandsabhängigkeit wird anhand einer
empirisch ermittelten Funktion eingeführt welche atomare Ladungsinformationen
für die Skalierung von Referenzpolarisierbarkeiten benutzt. Es wird gezeigt, dass
diese Skalierung die wichtigsten Elektronenstruktureffekte in die Referenzwerte
einbezieht. Die vorgestellte DFT-D4 Standardmethode benutzt ein klassisches
Ladungsmodell für Skalierungszwecke, wobei auch andere Ladungsmodelle im-
plementiert sind. Ein D3-artiges Interpolationschema verwendet die skalierten
Referenzen und erstellt hybridisierungs- und oxidationsabhängige dynamische Po-
larisierbarkeiten. Desweiteren wird gezeigt, dass DFT-D4 exzellente molekulare
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Kurzreferat

Polarisierbarkeiten und Dispersionskoeffizienten berechnet. Auf einer Datenbank
von 1225 intermolekularen Dispersionskoeffizienten erzielt DFT-D4 eine mittlere
absolute Abweichung (MAD) von 3.8% im Vergleich zu experimentellen Referen-
zen. Wenn geeignete DFAs mit DFT-D4 gekoppelt werden, weisen nichtkovalente
Interaktionsenergien für große Komplexe MADs unter 10% auf und Rotationskon-
stanten (Meßgröße für die molekulare Größe) besitzen die Genauigkeit von hochge-
nauen korrelierten Wellenfunktionsmethoden.

Für gewisse Metallionen in hochpolaren und periodischen Umgebungen berech-
nen DFT-D Methoden zu große atomare Polarisierbarkeiten verglichen mit zeitab-
hängigen Dichtefunktionaltheorie (TD-DFT) Werten (z.B. für Na+ im NaCl-Kris-
tall). Eine gründliche Untersuchung zeigt, dass die Abwesenheit von zweckmäßi-
gen Referenzsystemen diese identifizierten Probleme verursacht. Innerhalb pe-
riodischer Umgebungen können CNs-Werte erreichen werden, die weit von den
Werten abweichen, für welche Referenzpolarisierbarkeiten vorhanden sind. Dieses
Fehlen von Interpolationspunkten sorgt für eine Extrapolation von Polarisierbar-
keiten, welche nicht zuverlässlich ist. Das periodische DFT-D4 beseitigt diesen
Nachteil, indem es den Umfang der Referenzpolarisierbarkeiten für hoch koor-
dinierte Systeme erweitert. Zu diesem Zweck werden dynamische Polarisierbar-
keiten für pseudoperiodische Referenzen mit hohen CNs berechnet. Die Auf-
nahme solcher Referenzen in den D4-Referenzpool ermöglicht die physikalisch
sinnvolle Berechnung der atomaren Polarisierbarkeiten in dicht gepackten Fes-
tkörpern. Diese verbesserten Polarisierbarkeiten erweisen sich als vorteilhaft für
den Erhalt hochwertiger Adsorptionsenergien.

Der Vergleich der Rechenkosten mehrerer Dispersionskorrekturen zeigt große Un-
terschiede in Bezug auf ihre Effizienz. Während die Rechenkosten der DFT-D4-
Methode im Vergleich zur zugrunde liegenden DFT-Berechnung vernachlässigbar
sind, werden einige Korrekturmethoden zum Rechenengpass.

Der zweite Teil der Arbeit besteht aus zwei Anwendungsstudien von LD-korrigierten
DFT-Methoden. In der ersten Fallstudie sorgen LD-induzierte Packungseffekte
zu dem bisher kürzesten ermittelten intermolekularen H· · ·H-Kontakt. Die at-
traktiven Wechselwirkungen zwischen den tBu-Gruppen der Substituenten verur-
sachen diese ungewöhnliche Bindungssituation. Ein periodisch dispersionskor-
rigiertes DFT-Kompositschema verifiziert den experimentellen Befund und eine
Energiezersetzungsanalyse quantifiziert die Bedeutung von LD-Interaktionen. Die
ermittelte DFT-Struktur stimmt sehr gut mit der durch ein Neutronenbeugungsex-
periment bestimmten Struktur überein (intermolekulare Wasserstoff-Wasserstoff
Bindungslänge weicht ≈1 pm vom experimentellen Befund ab). Die zweite Fall-
studie untersucht LD-Interaktionen in metallorganischen Komplexen. Die korrekte
Berücksichtigung von LD erweist sich als wichtig für die Vorhersage von Reaktion-
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spfaden, z.B. für die Gestaltung von dispersionsgesteuerten Reaktionsabläufen in
der homogenen Katalyse. In anderen Systemen wie in dem [[Rh(CNPh)4]2]2]2+

Dikation sind LD-Beiträge in der Lage, erhebliche abstoßende elektrostatische
Wechselwirkungen zu kompensieren. Zusätzlich werden LD-Interaktionsenergien
mit Werten verglichen, die durch eine lokale Energiezersetzung (LED) unter Ver-
wendung einer lokalen Coupled-Cluster-Theorie erhalten werden. In Kombination
mit bestimmten DFAs stehen die LD-Energien in guter Übereinstimmung mit den
Werten der LED-Partitionierung.
Zusammenfassend wird die DFT-D4 London Dispersionskorrektur aufgrund ihrer
hohen Genauigkeit und Recheneffizienz als Standardwerkzeug in der comput-
ergestützten Chemie von molekularen und periodischen Systemen empfohlen.
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Introduction

Quantum Mechanical (QM) models are used in chemistry and physics to ratio-
nalize experimental findings, i. e., to explain reactivity or spectroscopic properties
of compounds of various kind.1–3 Typically their predictive power is verified in
benchmark studies or blind competitions. Examples are the assessment of protein
and ligand modeling,4,5 the prediction of crystal structures,6,7 or the calculation of
intermolecular interaction energies.8 Nowadays, theoretical modeling has become
accurate enough to be incorporated as an integral part of many developments in
both science and industry.9–11 One example is the discovery process of new ma-
terials. When searching for materials with specific properties, one has to choose
from a vast pool of possible candidates. Since the experimental investigation of
many materials is practically and economically demanding, electronic structure
methods are used to efficiently reduce the search space and guide through the
material design process.

Figure 0.1.: Sketch of a possible material discovery work-flow.

Figure 0.1 exemplifies a practical, quantum-mechanically driven material discov-
ery process. Different branches of industry impose specific conditions on new
materials which are determined by their chemical and physical properties. As the
available space of new materials is immense, theoretical models are used to identify
promising candidates,12,13 which can be further investigated experimentally.
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0. Introduction

In this context, the three-dimensional (molecular) structure plays a crucial role
as it strongly influences physical and chemical properties. Experimentally, the
X-ray method is routinely used to determine the structure of the corresponding
molecular crystal of organic or biomolecular compounds. However, this requires
the formation of an ordered crystal structure of the considered compound. Even if
the crystallization was successful, it is questionable whether the conformation of
the molecule in the crystal structure represents the molecular geometry adopted in
solution.14 To resolve this issue, QM simulations allow to describe the structure for
the respective compound in different aggregate types, i. e., within the gas phase,
a solution, or a solid state. Here, the accurate modeling of the structure requires
the proper description of covalent and Noncovalent Interactions (NCIs).

The Symmetry-Adapted Perturbation Theory (SAPT)15,16 allows the separation
of the total interaction energy (INT) into several energetic contributions. Those
contributions are Electrostatics (ES), Pauli Exchange Repulsion (EXR), Induction
(IND), and LD.
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Figure 0.2.: Energetic decomposition of the π-stacked uracil dimer INT using the SAPT
method (AC-PBE0/def2-QZVP level of theory). Figure created in analogy
to Figure 6 of Ref. 17.

Figure 0.2 shows such a decomposition for the INT of the π-stacked uracil dimer
using SAPT. Usually, the EXR is the largest (and often only) repulsive contribution.
The ES and LD terms are of similar magnitude, whereas the IND terms are smaller.
Apparently, the LD is a very important interaction in this system, and its accurate
prediction is necessary for accurate QM predictions.
Solving the many-particle Schrödinger equation would seamlessly cover all these
covalent and NCIs. However, this is prohibitive for realistic systems. Therefore, for-
mal approximations of either the Hamiltonian or the many-particle wave function

2



exist. The desired accuracy of the results can be used to select different elec-
tronic structure methods, ranging from fast, low-cost methods18 to more involved
high-level methods. In recent years new developments introduced an impressive
impact in the field of high-level Wave Function Theory (WFT). Embedding tech-
niques19–21 and local variants of coupled-cluster theory22–24 have made the “gold
standard” of quantum chemistry CCSD(T) feasible for molecular systems up to
several hundred atoms and molecular crystals of small organic compounds.25,26

Furthermore, new algorithms extended the field of quantum Monte–Carlo sim-
ulation. This led to substantial time savings achieving even high-precision lat-
tice energies of molecular crystals calculated in a reasonable amount of time.27

Other commonly used many-body correlation methods are the Random Phase
Approximation (RPA)28 and the Møller–Plesset Perturbation Theory of Second-
Order (MP2). Along with the availability of more powerful computers,29 the
development of efficient electronic structure methods, in particular, has estab-
lished computational chemistry as a fundamental part of chemistry in recent
decades.30,31 Herein especially effective one-particle methods such as HF or DFT

have become the “workhorse”32 of computational chemistry.

Hohenberg and Kohn (HK) introduced DFT as the mapping of the electron den-
sity n(r) to the electronic energy,33 which makes this approach particularly cost-
effective (wavefunction Ψ ∈ R3N versus electron density n ∈ R3). However,
the exact HK density functional is unknown. Therefore, it is common practice to
use DFAs in the picture of KS-DFT. Such DFAs express the electron correlation in
semi-local frameworks allowing for a good description of ES, IND, and EXR effects.
However, they do not describe the LD contribution, which is a nonlocal, long-
range correlation effect. Conventional hybrid functionals (including nonlocal Fock
exchange) do not describe such LD contributions either.34–37 This inability roots
in the missing −C6/R6 dependence and is known as the “dispersion problem”.38

The missing long-range correlation of semi-local DFT was subject of early studies,
e. g., in rare-gas dimers,39 in base pair stacking,40 or in N2 dimers.41

Cohen and Pack showed that the application of an atom pairwise dispersion cor-
rection combined with a density functional type interaction potential partly cures
the dispersion problem. In their work,42 they used the so-called Gordon–Kim
model and applied a dispersion correction of the form

EDISP(R) = −
C6
R6 −

C8
R8 −

C10
R10 , (0.1)

with R being the interatomic distance. At the same time several other disper-
sion corrections were developed for the description of NCIs in bio-organic systems,
e. g., by the groups of Yang,43 Elstner/Hobza,44 or Scoles45. Newer generations
of dispersion corrections have nowadays become standard tools in the field of
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0. Introduction

computational chemistry.46–52

Among these models are the DFT-D corrections (namely DFT-D,53 DFT-D2,54

and DFT-D346), which are based on a semi-classical treatment of dispersion in-
teractions. The wording “semi-classical” means that the dispersion contribution
is expressed in classical terms, although this contribution is a pure quantum me-
chanical effect. DFT-D models couple the resulting dispersion potential with
conventional QM methods and are predicated on an atom pairwise additive treat-
ment of the dispersion energy (for HF analogue see Ref. 55,56). Benchmarking
of the third DFT-D version (DFT-D3) revealed high accuracies for all test cases
and no outliers.46 DFT-D3 thus enables the accurate prediction of noncovalent
geometries and dispersion interactions as highlighted in figure 0.3.

(a) noncovalent geometries

CCSD(T)/aug-cc-PVTZ 3.84

B3LYP/def2-TZVP 6.57

B3LYP-D3(BJ)-ATM/def2-TZVP 3.85

Center of mass distance / Å

(b) noncovalent interactions
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Figure 0.3.: Noncovalent geometries (a) and NCIs57 (b) for D3 corrected DFAs.

The wide spread use of this method is reflected in its growing citation num-
bers (cf. figure 0.4). Furthermore, this correction scheme is available in several
leading codes as orca,58 turbomole,59 gaussian,60,61 vasp,62–66 psi4,67

molpro,68 adf,69 qchem,70 crystal17,71 cp2k,72 and many more, demon-
strating a broad acceptance in the community.
Since the bottleneck of the calculation remains the self-consistent field procedure,
the coupling of semi-local DFT with DFT-D3 does not come with any additional
computational costs. Due to the popularity and excellent quality, which makes
this method the de facto standard approach for treating NCIs in molecular systems,
an important question arises:

“Can this model be further improved while maintaining its efficiency?”

Instead of a simple reparametrization of the damping scheme—as proposed by
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groups of Schwabe,73 Sherrill,74 or Head-Gordon75—the main topic of the present
work is the partial inclusion of electronic structure to improve the D3 methodology
itself.

The present dissertation develops an “improved DFT-D3 method”. This improved
method includes electronic structure contributions in the derivation of dynamic
polarizabilities while keeping up the efficiency of the original model. In analogy
with earlier DFT-D revisions, the new method is called DFT-D4. The intention
is to provide an extension of the original model by means of partitioned charge
information in order to achieve higher accuracies especially in situations where
charge information is different from that of the D3-references, e. g., in organome-
tallic or charged complexes. In the following an overview of QM methods is given
that are important for this dissertation, focusing on DFT and the description of
long-range correlation effects in terms of Rayleigh–Schrödinger Perturbation The-
ory (PT). Furthermore, the semi-classical DFT-D3 LD correction is introduced,
which provides the foundation for the development of the successor method.
Part I discusses the DFT-D4 method in detail. Chapter 1 introduces hybridiza-
tion and oxidation state dependent dynamic polarizabilities. Those polarizabili-
ties are obtained by extending the hybridization-only scheme of DFT-D3 with a
charge-scaling concept. Chapter 2 describes a generalization of this charge-scaling
concept, resulting in a significant reduction of empirical parameters. Afterwards,
Chapter 3 discusses the extension of the molecular DFT-D4 method with Periodic
Boundary Conditions (PBCs). Such an extension is essential for representing LD

effects in solid states, on surfaces, or in simulations applied with PBCs. Several
applications, like the calculation of lattice energies and volumes of molecular crys-
tals, show small but consistent improvements when applying the periodic DFT-D4
method compared to other dispersion correction schemes. We also analyze ad-
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0. Introduction

sorption of small organic molecules on different surfaces. A computational timings
analysis shows that the DFT-D4 method is convincing in terms of its accuracy/-
cost ratio.
Part II highlights two applications of dispersion-corrected DFT methods. Chapter 4
demonstrates the importance of LD effects within a molecular crystal synthesized
by the Schreiner group.76 This overcrowded molecular crystal exhibits the shortest
intermolecular H· · ·H contacts reported so far, which may correspond either to
potential energy minima or conformational transition states.77 DFT schemes are
used to identify the origin of these short H· · ·H contacts.
Afterwards, several organometallic complexes are investigated concerning their
structural and energetic properties. Several examples are presented, e. g., the
analysis of transition metal thermochemistry and NCIs for small, heavy element
containing main group compounds (Chapter 5). These examples show that charge-
dependent polarizabilities are beneficial to describe properties of organometallic
complexes more accurately.
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Theoretical Background

The following chapters provide an overview of the theoretical background of QM

methods that are of special importance for this dissertation. After defining the
electronic Hamiltonian, the HF theory is explained in Chapter 0.2 and the concept
of dynamic electron correlation is explained. Chapter 0.3 introduces the KS-DFT
and gives an overview of various classes of DFAs. Mean-field electronic structure
methods such as HF and KS-DFT generally do not account for long-range electron
correlation. Such mean-field methods share the common feature that a set of
N one-particle functions is optimized for the considered N electrons and that the
total energy depends exclusively on the occupied orbitals. The remaining functions
that are left over in the variational optimization are the virtual orbitals. These
virtual orbitals contain information about excitation energies and can be used to
model the response of the system with respect to external perturbations, e. g.,
caused by electromagnetic fields. This is exploited in wave function theories since
the virtual orbitals are used to construct an improved wavefunction by inclusion
of excited determinants.78 However, neither virtual orbitals nor non-local density
information is used within mean-field approaches which is the root cause for their
missing ability to describe LD correlation. The concept of long-range dynamic
correlation is defined in Chapter 0.4. Based on these theoretical fundamentals, a
semi-classical scheme is introduced in Chapter 0.5 which enables the approximated
inclusion of LD interactions in mean-field electronic structure approaches. Semi-
classical correction schemes calculate the pairwise dispersion energy contribution,
which is added to the electronic energy of the particular mean-field approach. The
term “semi-classical” arises from the fact that the dispersion energy is effectively
expressed in terms of classical interactions between atoms or molecules, although
LD itself is intrinsically a pure quantum mechanical effect.

0.1. Definition of the Electronic Hamiltonian

Molecular systems consist of bonded atoms that comprise negatively charged elec-
trons and positively charges nuclei. The Hamiltonian defines the sum of the kinetic
and the potential energies of all particles within such systems. In the following,
indices e and n refer to electrons and nuclei, respectively. The time-independent,

7



0. Theoretical Background

non-relativistic Hamiltonian is given by

Ĥ = Ĥe + T̂n + V̂n−n(+V̂n−field) , (0.2)

with Ĥe being the electronic Hamiltonian defined as

Ĥe = T̂e + V̂n−e + V̂e−e(+V̂e−field). (0.3)

If not noted otherwise, atomic units are used throughout. The kinetic energy of
the K nuclei of the system T̂n is defined by

T̂n =

K∑
a=1

−∇2
Ra

2Ma
, (0.4)

where Ra denotes the Cartesian coordinates of the nucleus a with mass Ma and
∇Ra = ∂/∂Ra. The nucleus-nucleus potential V̂n−n represents the repulsion
between the nuclei79 (with nuclear charges Za and Zb)

V̂n−n =

K−1∑
a=1

K∑
b>a

ZaZb
|Ra − Rb|

. (0.5)

The electronic Hamiltonian Ĥe is decomposed into the kinetic energy of the N
electrons (note that ∇i ≡ ∇ri , with ri being the position of electron i)

T̂e =

N∑
i=1

−∇2
i

2 , (0.6)

the interaction between electrons and nuclei

V̂n−e =

K∑
a=1

N∑
i=1

Za

|Ra − ri|
, (0.7)

and the interaction between electrons

V̂e−e =

N−1∑
i=1

N∑
j>i

1∣∣ri − rj
∣∣ . (0.8)

After a transformation into the center-of-mass, the Hamiltonian separates into
parts of the nuclei and the electrons. This separation leads to an electronic problem
in which the nuclear charge enters as a static external field. However, this practical
factorization is lost as soon as the system to be considered is composed of several
atoms. In such systems the dynamic coupling between electrons and nuclei has

8



0.2. Hartree–Fock Theory and Electron Correlation

to be taken into account, e. g., by solving the Schrödinger equation

Ĥ |Ψ〉 = E |Ψ〉 . (0.9)

The first step towards a solution to equation 0.9 is the decoupling of the electron
from the nuclear motion, which relies on the different time scales of the two types
of motion. This is known as the Born–Oppenheimer Approximation (BOA).79 The
BOA factorizes the total wavefunction Ψ into a nuclear wavefunction Ψn and an
electron wavefunction Ψek

Ψ (R1, . . . ,RK; r1σ1, . . . , rNσN)

= Ψn (R1, . . . ,RK)Ψek (R1, . . . ,RK; r1σ1, . . . , rNσN) ,
(0.10)

where σ denotes the spin-state of an electron. The electron wavefunction depends
on the position of the nuclei and satisfies the Schrödinger equation

Ĥe |Ψ
e
k〉 = Ek |Ψek〉 , (0.11)

which represents a stationary eigenvalue problem for any given set of Rα. Ek
is the electronic energy of the stationary electronic state k with corresponding
wavefunction Ψek. The nuclei are moving in a potential field created by the nucleus-
nucleus repulsion (cf., equation 0.5) and the potential generated by the electrons.
Within the BOA, the contribution from V̂n−n becomes an additive constant.

0.2. Hartree–Fock Theory and Electron Correlation

The most common and simplest approximate solution of equation 0.11 is the HF

method, which assumes the ground state wave function Ψek=0 to be a single Slater
determinant composed of single-particle states

Ψek=0 ≈ Φ1···N (r1σ1, . . . , rNσN)

=
1√
N!

∣∣∣∣∣∣∣∣

φ1(r1σ1) · · · φN(r1σ1)
... ...

φ1(rNσN) · · · φN(rNσN)

∣∣∣∣∣∣∣∣
.

(0.12)

The HF approach determines the N single-particle states φi in the approximate
ground state wavefunction Φ1···N variationally. This is realized by forming the
expectation value of the Hamilton operator with respect to the wave function
Φ1···N. We obtain the following result by assuming orthogonal single-particle
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0. Theoretical Background

states

〈Φ1···N|Ĥ|Φ1···N〉 =
N∑
i=1

∑
σ=↑,↓

∫
d3rφ∗i (rσ)

[
−∇2

2 + νext(r)
]
φi(rσ)

+
1
2

N∑
i,j=1

∑
σ,σ ′=↑,↓

∫
d3r

∫
d3r ′φ∗i (rσ)φ∗j (r ′σ ′)w(r, r ′)

×
[
φi(rσ)φj(r ′σ ′) − φj(rσ)φi(r ′σ ′)

]
,

(0.13)

where νext(r) = −
K∑
a=1

Za/|Ra − r| denotes the total potential generated by the

nuclei and w(r, r ′) = 1/|r − r ′| the electron-electron interaction. This method
incorporates orthonormality by introducing a set of Lagrange multipliers {εi} and
minimizing the energy expression with respect to this constraint.

L
(
{φi}

)
= 〈Φ1···N|Ĥ|Φ1···N〉−

N∑
i=1

εi

(∑
σ

∫
d3r |φi(rσ)|2 − 1

)
(0.14)

A set of real and diagonal multipliers is sufficient as the resulting single-particle
Hamiltonian determining the φi turns out to be Hermitian, which ensures the
orthogonality of the φi. The set of single-particle states corresponding to the
diagonal Lagrange multiplier matrix is called canonical. This constraint leads to
the HF equations (for i = 1, . . . ,N)

−∇2

2 φi(rσ) +
∑
σ ′=↑,↓

∫
d3r ′ νHFeff (rσ, r ′σ ′)φi(r ′σ ′) = εiφi(rσ). (0.15)

The effective HF potential is given as

νHFeff = δσσ ′δ
(3) (r − r ′

){
νext(r) + νH(r)

}
+ νHFX (rσ, r ′σ ′). (0.16)

δKL is the Kronecker delta which equals unity for K = L and zero for K 6= L and
δ(3) is the Dirac delta-function. This potential is non-local and contains three
terms, the potential generated by the nuclei (see above), the Hartree potential
(Coulomb interactions between electrons)

νH(r) =
∫
d3r ′w(r, r ′)

∑
σ ′=↑,↓

N∑
i=1

∣∣φj(r ′σ ′)
∣∣2, (0.17)
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0.2. Hartree–Fock Theory and Electron Correlation

and the non-local exchange potential

νHFX (rσ, r ′σ ′) = −w(r, r ′)
N∑
j=1

φj(rσ)φ∗j (r ′σ ′), (0.18)

which depend on the solutions to be determined by the HF equations. We over-
come this nonlinearity by iterating equation 0.15 self-consistently where each step
determines first the φi corresponding to the current potential followed by generat-
ing the updated potentials from these φi. We stop the self-consistent treatment
once the iterative procedure reached a suitable accuracy limit (i.e., obtaining
self-consistency). The introduced Slater determinant (equation 0.12) satisfies
the requirement of antisymmetry and therefore incorporates correlation between
Same-Spin (SS) electrons better known as Fermi correlation. This determinant
does, however, not include the correlation resulting from the interaction between
the Opposite-Spin (OS) electrons. In the HF approach each electron experiences
the average field of the complete electron cloud. The actual motion of an elec-
tron, however, depends on the individual positions of all other electrons which is
known as Coulomb correlation. Including Coulomb correlation into the many-body
wavefunction needs representation by more than a single Slater determinant. The
complete solutions of the HF equations not only provides the N occupied single-
particle states included in the HF ground state, but also a finite (to infinite) number
of unoccupied states (the other eigenstates of the differential equation in equa-
tion 0.15). We build the complete basis N-particle Hilbert space from the set of
all such single-particle state determinants using a Configuration Interaction (CI)
approach. This enables the description of correlated wavefunctions in terms of a
series of excited determinants (single excitations, double excitations, . . . , N-tuple
excitations) where p,q represent occupied and r, s virtual orbitals

|Ψk〉 = c0 |Φ0〉︸ ︷︷ ︸
ground state

+
∑
pr

crp
∣∣Φrp

〉

︸ ︷︷ ︸
singles

+
∑
pqrs

crspq
∣∣Φrspq

〉

︸ ︷︷ ︸
doubles

+ . . . (0.19)

Several strategies are developed to calculate the expansion coefficients c differ-
ently.80,81 So-called correlated ab initio methods are obtained by forming the
expectation value of the Hamiltonian with respect to correlated wavefunctions.
Modern computer architectures and efficient numerical implementations allow the
application of correlated ab initio methods to more extensive system sizes. Never-
theless, there is a fundamental drawback which seriously limits their range of appli-
cability. To understand this, we need to introduce the concept of algorithm com-
plexity. Using mathematical nomenclature, fast algorithms refer to low-complexity
algorithms (e. g., fast Fourier transform,82 the multigrid method,83 and the fast

11



0. Theoretical Background

multipole method84). Generally, the complexity of an algorithm relates to its
asymptotic behavior. If the computing time grows as TCPU ∝ prefactor Mk in
the limit of large systems, the scaling behavior of the method is proportional to
O(Mk) where M resembles the total size of the system. For QM methods the
system size is given by the total number of, e. g., atomic orbitals, plane waves, or a
similar concept used for the expansion of the single-particle orbitals that construct
the wavefunction. A typical expansion of the single-particle orbitals uses Linear
Combinations of Atomic Orbitals (LCAO-MO).80,85,86

φi(rσ) =
M∑
k=1

bi,kσψk(r). (0.20)

From equation 0.20, the problem of calculating the HFmolecular orbitals reduces to
the problem of calculating the set of expansion coefficients bi,kσ. Multiplying by
〈ψk|, turns the integro-differential equation into an algebraic eigenvalue problem
(Roothaan–Hall formalism). Here, the b (equation 0.20) and the c (equation 0.19)
coefficients are determined either sequentially or simultaneously. For instance, in
the case of an effective single-particle problem, like in HF, this results in

M∑
l=1

∑
σ ′

[〈
ψk

∣∣∣∣
−∇2

2 δσσ ′ + ν̂eff,σσ ′

∣∣∣∣ψl
〉
− εi〈ψk|ψl〉δσσ ′

]
bi,lσ ′ = 0, (0.21)

where ν̂eff,σσ ′ is the total effective potential which the electrons experience. In
order to make a statement about the applicability of QM methods, one compares
their scaling behavior with the sizeM of the basis set. The following list gives an
overview about the scaling behavior of different established QM methods.87

Table 0.1.: Scaling behavior for QM methods with respect to system size M.

Method Scaling Description

HF O(M4) Standard implementation
MP2 O(M5) Møller-Plesset perturbation theory of 2nd order on HF basis
RPA O(M5) Random phase approximation using the matrix sign

function by Furche88

CCSD(T) O(M7) Coupled Cluster: projection allowing single (S),
double (D) and selected triple (T) particle-hole excitations
from HF ground state

FCI O(M!) Full CI: energy minimization allowing
all N-tuple excitations from the HF ground state
with N electrons
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0.3. Density Functional Theory

While the exact range of applicability of ab initio methods is hard to assess, there
will always be interesting systems whose size is beyond their scope. For this
reason, a method is chosen that offers the best possible scaling to describe large
and complex systems. Table 0.1 reveals that the standard scaling behavior of the
HF method is sufficient for conducting larger computational studies. However,
within HF the electron motion is practically uncorrelated (particle moves within
an averaged effective potential of all other). Thus the question arises whether
it is possible at all to map the complete many-body problem onto an effective
single-particle theory, which incorporates parts of Coulomb correlation.

0.3. Density Functional Theory

One method that aims for the mapping of the many-body problem onto an effective
singe-particle theory is DFT. The foundations of DFT are based on the theorems
of HK,33,89 which assure that a stationary many-particle system is completely
described by its ground state density. The Hamiltonian of a stationary system
with N interacting electrons is given as

Ĥe = T̂e + V̂ext + Ŵe−e, (0.22)

where T̂e represents the kinetic energy operator of the electrons, V̂ext repre-
sents the interaction of the electrons with external sources characterized by time-
independent potentials νext(r), and Ŵe−e the electron-electron interaction. The
many-body eigenstates

∣∣Ψek
〉
corresponding to this Hamiltonian are obtained by

solving the stationary Schrödinger equation given in equation 0.11.
Consider the set of all Hamiltonians of this form, i.e., the set of all local potentials
νext for which equation 0.11 leads to

∣∣Ψek=0
〉
, while fixing the electron-electron

interaction. This set contains apart from physically realizable potentials also an
infinite number of mathematical constructs. Additionally, it contains an infinite
number of copies of any given νext(r), which are obtained by simply adding a
constant. All such copies lead to the same ground state and are therefore physically
equivalent. The solution of the Schrödinger equation can therefore be interpreted
as a map between the set V of external potentials which differ by more than a
constant

V =

{
νext

∣∣with: νext multiplicative, corresponding |Ψek=0〉 exists,

ν ′ext(r) 6= νext(r) + const.
} (0.23)
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and the set G of resulting ground states32

G =

{
|Ψek=0〉

∣∣with: |Ψek=0〉 ground state corresponding to one element of V,
∣∣∣Ψe ′k=0

〉
6= exp(iθ) |Ψek=0〉 with θ being some global phase

}
.

(0.24)

The map from V to G is termed A. The associated ground state density n0 is
defined as

n0(r) = 〈Ψek=0|n̂(r)|Ψek=0〉

= N
∑

σ1···σN

∫
d3r2 . . .d3rN

∣∣(r1σ1, . . . , rNσN) |Ψek=0〉
∣∣2. (0.25)

The second map from G to N is termed B where the ground state densities are
obtained as

N =

{
n0
∣∣n0(r) = 〈Ψek=0|n̂(r)|Ψek=0〉 , |Ψek=0〉 ∈ G

}
. (0.26)

The complete surjective mapping is shown below.

V G N

V1

V2

V3

V4

Ψ0,V1

Ψ0,V2 Ψ0,V3

Ψ0,V4

=
?

?
n0,V1

n0,V2 n0,V4=
?

A B

?

Figure 0.5.: Connection between external potential νi, associated ground states Ψ0,νi
,

and ground state densities n0,νi
. Figure created in analogy to Figure 2.1 of

Ref. 32.

HK observed that both mappings (A and B) are injective33 (proof by contradic-
tion) and thus unique (paths with question marks are not possible). This means
there exists a direct correspondence between the external potential νext in the
Hamiltonian, the ground state

∣∣Ψek=0
〉
resulting from solution of the Schrödinger

equation and the associated ground state density n0. Furthermore, the ground
state is a unique and universal functional of the ground state density. As a con-
sequence of the unique relation between n0 and

∣∣Ψek=0
〉
and the Ritz variational

14
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principle, a minimum principle for E[n] is introduced

E
[
n
]
=
〈
Ψek=0

[
n
]∣∣Ĥe

∣∣Ψek=0
[
n
]〉

. (0.27)

If n0 is the ground state density corresponding to νext, one has for other densities
n ′(r) 6= n0(r)

E
[
n0
]
< E

[
n ′
]
⇐⇒ E0 = min

n∈N
E
[
n
]
. (0.28)

Unfortunately, the HK theorems give no further information about the exact form
of E[n].90 The connection between the existence theorems and a mapping of the
interacting N-particle problem onto an effective noninteracting system is provided
by the KS-DFT scheme.91,92 This scheme uses a model system of noninteracting
electrons (Ŵe−e = 0) by employing a multiplicative external potential νs.

ĤS = T̂e + V̂s with V̂s =

∫
d3r n̂(r)νs(r) (0.29)

TheN-particle ground stateΦ1···N is a single Slater determinant constructed from
the energetically lowest solutions φi of the single-particle Schrödinger equation
(for i = 1, . . . ,N) {

−∇2

2 + νs(r)
}
φi(rσ) = εiφi(rσ). (0.30)

The introduced HK theorem is valid for arbitrary many-particle systems, irrespec-
tive of their particle-particle interaction (interacting particles or noninteracting
particles). The ground state of a noninteracting system is a unique functional of
the ground state density |Φ[n]〉 for which the HK ground state energy functional
of a noninteracting system is given as

Es
[
n(r)

]
= 〈Φ[n(r)]|T̂ |Φ[n(r)]〉+

∫
d3r νs(r)n(r). (0.31)

KS worked out an effective potential νs – by restricting the variation of E[n] to
fixed particle numbers – which is given by

νs(r) = νext(r) + νH
[
n0(r)

]
+ νXC

[
n0(r)

]
, (0.32)

where νH is the Hartree (Coulomb) potential

νH
[
n(r)

]
=

∫
d3rw(r, r ′)n(r ′), (0.33)

and νXC the Exchange-Correlation (XC) potential given as functional derivative of

15
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the XC energy functional

νXC
[
n(r)

]
=
δEXC

[
n(r)

]

δn(r) . (0.34)

By inserting equation 0.32 into equation 0.30 one obtains the KS equations92

where the starting potential is typically constructed by some trial density n(1)(r)
(e. g., superposition of atomic densities){

−∇2

2 + νext(r) + νH
[
n(1)(r)

]
+ νXC

[
n(1)(r)

]}
φi(rσ) = εiφi(rσ). (0.35)

Those equations have to be solved self-consistently, similar to the HF equations.
The XC energy functional is composed of an exchange EX

[
n(r)

]
and a correlation

EC
[
n(r)

]
functional part, though these are not necessarily separable.93,94 Given

the exact XC functional one would yield the correct Exchange (X) and Correlation
(C) energy.33,95 In this case, a system of noninteracting fermionic particles would
yield the same density and energy as the fully interacting N-electron system.92,93

This way, KS-DFT offers an appealing alternative to treat electron correlation
within a mean-field approach. Since the exact functional of an arbitrary density is
unknown, DFAs are used.96,97 Herein, the XC energy has to be approximated, which
is regularly classified according to the Jacob’s ladder hierarchy as introduced by
Perdew.98,99 Within Jacob’s ladder, DFAs are categorized into rungs of that ladder.
The higher the rung, the more information of the systems is used in the functional,
ascending from the so-called “Hartree hell” to the “Heaven of chemical accuracy”
as depicted in figure 0.6.
The simplest approximation assumes a (locally) uniform electron density and is
thus dubbed Local Spin Density Approximation (LSDA). In the frame of this
approximation, the expression for the XC energy is given by

ELSDAXC
[
n(r)

]
=

∫
d3r n(r)εLSDAXC

[
n(r)

]
. (0.36)

Here, εLSDAXC is the XC energy density per particle of an electron gas with uniform
spin densities.100 LSDA is still used in the solid state community with recent exten-
sions to finite temperature free energies.101 While extended metallic systems can
be described reasonably well by LSDA, typical molecular systems require inclusion
of the density gradient∇n(r) as in the Generalized Gradient Approximation (GGA).

EGGAXC
[
n(r)

]
=

∫
d3r εLSDAXC

[
n(r)

]
g
(
n(r),∇n(r)

)
(0.37)

Different expressions are possible for the so-called enhancement factor g. The
most prominent GGAs are the Perdew–Burke–Enzerhof (PBE)102 exchange and
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"Heaven of chemical accuracy"

"Hartree hell"

A
cc

ur
a

cy

C
om

pu
ta

tio
na

l c
os

ts

X
C

 fu
nc

tio
na

l i
nc

lu
de

s
hybridocc. Φ

double hybridvir. Φ

mGGA∆n(r), 𝜏	

LSDAn(r)

GGA∇n(r)

Figure 0.6.: Perdew and Schmidt’s “Jacob’s ladder” of DFAs.

correlation functionals and the Becke Exchange (B88)103 combined with the Lee–
Yang–Parr (LYP)104 correlation functional. A natural extension to GGAs is to
use higher-order derivatives of the electron density or other semilocally-available
information, leading to the meta-GGA (mGGA) class. A typically employed variable
is the KS kinetic energy density

τ =
∑
i

|∇φi|2
2 . (0.38)

Popular mGGAs are the Tao–Perdew–Staroverov–Scuseria (TPSS)105 functional and
the Minnesota functionals M06L,106 M11L,107 and MN12L108 by Truhlar and co-
workers. A recently introduced empirical mGGA with a smoothness constraint and
a VV10 long-range dispersion correction (long-range dispersion effects see be-
low), B97M-V, was presented by Mardirossian and Head-Gordon.109 Constraint-
satisfaction based mGGA functionals have gained more attention110–113 with a
most recent development being the Strongly Constrained and Appropriately Normed
(SCAN)114 functional. Driven from the fact that LSDA and GGAs suffer from Self-
Interaction Error (SIE)115 techniques have been developed for constructing func-
tionals which combine a fractional amount aX of nonlocal (one-determinantal)
HF exchange with local XC functionals. Such hybrid functionals have reduced SIE
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which drastically improved, e. g., the description of band-gaps of periodic materi-
als, thermochemistry, and kinetics of chemical reactions. These hybrid DFAs were
originally introduced by Becke and are motivated by the adiabatic connection.93

The hybrid energy expression is given as

E
hybrid
XC = (1− aX)EGGAX + aXE

HF
X + EGGAC . (0.39)

In principle, any semi-local XC component can be combined with Fock exchange,
popular ones are PBE0116 and B3LYP.117,118 Heyd and co-workers decomposed
the Coulomb operator into Short-Range (SR) and Long-Range (LR) contributions
of the form

1
|r − r ′| =

erf (ω|r − r ′|)
|r − r ′| +

1− erf (ω|r − r ′|)
|r − r ′| , (0.40)

where erf is the normal error function and ω is an adjustable range separation
parameter.119 Those Range-Separated Hybrids (RSH) have the energy expression

ERSHXC = (1− aX)EGGA,SRX (ω) + aXE
HF,SR
X (ω) + EGGA,LRX + EGGAC . (0.41)

In molecular calculations especially long-range corrected functionals are widely
used in the calculation of excited states by means of TD-DFT because the orbital
energies obtained with them are much more amenable for such calculations.120–123

The highest rung of Jacob’s ladder corresponds to a non-local treatment of ex-
change and correlation, where the latter is achieved by including virtual orbital
information, e. g., by means of MP2124–129 or RPA theory.130–134 However, these
so-called double-hybrid functionals are no longer pure mean-field approaches since
they go beyond the zeroth-order term in the many-body perturbation series (see
section 0.4 for more details).
In the procedure of solving the KS-DFT equations in systems with translational
invariance, several simplifications can be applied due to symmetry. The effec-
tive potential νs, which enters the KS Hamiltonian, is periodic with respect to
translations

νs(r) = νs(r + T), (0.42)

where T is the Bravais lattice vector of the solid. Those PBCs lead to Bloch’s
theorem which states that the periodicity of the bulk material constrains the one-
electron wave function to obey

φi,k(r + T) = exp(ikT) exp(ikr)ui,k(r) = exp(ikT)φi,k(r), (0.43)

where k is the vector of reciprocal space and φi,k(r) a product of a lattice-periodic
Bloch function uik(r) and a single-particle basis set. Translational symmetry now
ensures that one has to consider only k-vectors which lie inside the First Brillouin
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0.3. Density Functional Theory

Zone (FBZ)135 when solving the KS equations under PBCs. The integration in
the FBZ is then replaced by an integration over a k-point mesh (special point
theorem136,137).
Different expansions are possible to represent the single-particle basis set of equa-
tion 0.43. One possibility is to solve the KS equations directly by using a grid where
functions are represented by their value over a set of points in real space.138 Fur-
thermore, Numerically Tabulated Atom-Centered Orbitals (NAOs) are well known
in the literature allowing the creation of optimized element-dependent basis sets
that are compact as well as accurate in production calculations with respect to
total energy convergence.139 Conceptually somehow different are the so-called
Daubechies wavelets which have the characteristic that they form an orthogonal
and smooth basis set, localized both in real and Fourier spaces.140 Another possi-
bility in generating orbitals relies on an expansion in Slater Type Orbitals (STOs)
where integrals may be calculated numerically141 or in a mixed scheme with analyt-
ical and recursion/expansion-based evaluations.142 Most quantum chemical codes
use Gaussian Type Orbitals (GTOs) to solve integrals analytically59,60,143–145 while
others use a combination of GTOs with Projector Augmented-Wave (PAW) meth-
ods.72,146 Especially the PAW ansatz is often used in material science66,147 and
will thus be discussed in more detail.
In the PAW method the All-Electron (AE) wave function |ΦN〉 is transformed into
the so-called Pseudo Hilbert Space (PHS) by means of a linear transformation

|ΦN〉 =
∣∣Φ̃N

〉
+
∑
r

(
|φr〉−

∣∣φ̃r
〉) 〈

p̃r
∣∣Φ̃N

〉
. (0.44)

Here, the PHS wave functions
∣∣Φ̃N

〉
are the variational quantities and r is an

abbreviation for the atomic site. The AE partial waves |φr〉 are obtained for
a reference atom whereas the PHS partial waves

∣∣φ̃r
〉
are equivalent to the AE

partial waves outside a defined radius.148 The projector functions p̃ are dual to
the partial waves 〈

p̃r
∣∣φ̃s
〉
= δrs. (0.45)

By incorporating equation 0.44, one is able to show that in the PAW method the
AE charge density is given by

n(r) = ñ(r) + n1(r) − ñ1(r), (0.46)

where ñ(r) is the soft pseudo-charge-density calculated directly from the pseudo-
wave-functions on a plane-wave grid

ñ(r) =
∑
N

fN
〈
Φ̃N

∣∣r
〉 〈

r
∣∣Φ̃N

〉
. (0.47)
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Here, fN denotes the occupation number. The onsite charge densities n1(r) and
ñ1(r) are treated on a radial support grid.62,64,65Both charge densities are defined
as

n1(r) =
∑
(r,s)

ρrs 〈φr|r〉 〈r|φs〉 , (0.48)

and
ñ1(r) =

∑
(r,s)

ρrs
〈
φ̃r
∣∣r
〉 〈

r
∣∣φ̃s
〉
, (0.49)

where ρrs are the occupancies of each augmentation channel (r, s) which are
calculated from the pseudo-wave-functions applying the projector functions

ρrs =
∑
N

fN
〈
Φ̃N

∣∣p̃r
〉 〈
p̃s
∣∣Φ̃N

〉
. (0.50)

It is common practice to expand only those plane-waves-functions which exhibit
small kinetic energies. Hence, the plane-wave basis set can be truncated to include
only plane-wave-functions within a particular cutoff energy. The truncation of the
basis set at a finite cutoff energy will lead to errors in the computation of the
energy and its derivatives. To minimize this error in a systematic way, it is recom-
mended to increase the value of the cutoff energy until the calculated total energy
converges within a required tolerance. For states with metallic characteristics and
small fluctuations in the charge density, very few plane-waves are sufficient. In
contrast, systems with a rather localized electron density as in molecular crystals,
large plane-wave basis sets are needed which make the DFT calculation rather
costly.149

In these situations, atom centered functions like GTOs can significantly reduce the
number of basis functions. This approach is based on the expansion of orbitals in
Bloch sums

φi,k(r) =
∑
µ

cµi(k)φµ,k(r) µ = 1, . . . ,M , (0.51)

where µ labels all Atomic Orbitals (AOs) in the reference primitive cell and the
Bloch functions are created in an LCAO-MO ansatz

φµ,k(r) =
∑

T
exp(ikT)χµ(r − Aµ − T) . (0.52)

GTOs benefit from a fast convergence behavior for describing the core electrons
due to strong localization. However, in contrast to plane-waves, small AO basis
sets strongly suffer from Basis Set Incompleteness Error (BSIE), and especially
from the Basis Set Superposition Error (BSSE). Already semi-diffuse AOs can
exhibit near linear dependencies in periodic calculations which directly excludes
the reduction of the BSSE by a systematic increase of the AO basis. To overcome
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this problem, a general geometrical procedure has been developed in 2012 which
corrects for the BSSE in a semi-empirical way150 which has been further extended
to be applicable to periodic systems in 2013.151

0.4. Long-Range Correlation

A drawback about mean-field electronic structure methods like HF or semi-local
DFT is the fact that these methods do not describe long-range electronic correlation
effects, and hence they cannot account for LD effects.17 Such interactions are
mandatory for describing the chemistry or physics of large or condensed-phase
systems in an accurate and asymptotically correct way. This chapter describes
how PT captures such long-range correlation effects, giving rise to the theoretical
framework of LD.
Given a Hamiltonian Ĥ that is too complicated to be handled directly, it is sup-
posed that it differs by a small “perturbation” (obtaining Ĥ ′) from a related
unperturbed zeroth-order Hamiltonian Ĥ0 describing the following problem

Ĥ = Ĥ0 + λĤ
′. (0.53)

λ is the strength of the perturbation ranging from the unperturbed problem (λ = 0)
to the perturbed problem (λ = 1). When solving for λ = 0

Ĥ0 |Φ0〉 =W0
Φ |Φ0〉 , (0.54)

one obtains the eigenfunctions of the unperturbed problem |Φ0〉 with eigenvalues
W0
Φ. The desired solution for λ = 1 satisfies

Ĥ |Φ〉 =WΦ |Φ〉 , (0.55)

where the eigenfunctions of the perturbed problem |Φ〉 as well as its eigenvalues
WΦ are to be obtained. For this purpose both quantities are expanded as a power
series in λ as shown below:

|Φ〉 = |Φ0〉+ λ
∣∣Φ ′
〉
+ λ2 ∣∣Φ ′′

〉
+ · · ·

WΦ =W0
Φ + λW ′Φ + λ2W ′′Φ + · · ·

(0.56)

Orthonormality is required (intermediate normalization), i.e.,

〈
Φ0
∣∣Φ ′
〉
=
〈
Φ0
∣∣Φ ′′

〉
= · · · = 0 and 〈Φ0|Φ0〉 =

〈
Φ ′
∣∣Φ ′
〉
= · · · = 1.

(0.57)
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By substituting the expanded |Φ〉 and WΦ into (Ĥ−WΦ) |Φ〉 = 0, we get
((
Ĥ0 + λĤ

′
)
−
(
W0
Φ + λW ′Φ + λ2W ′′Φ + · · ·

))

×
(
|Φ0〉+ λ

∣∣Φ ′
〉
+ λ2 ∣∣Φ ′′

〉
+ · · ·

)
= 0,

(0.58)

which is expected to converge for sufficient small λ for which one can equate
coefficients in power of λ (up to second-order) as

λ0 :
(
Ĥ0 −W

0
Φ

)
|Φ0〉 = 0 ,

λ1 :
(
Ĥ0 −W

0
Φ

) ∣∣Φ ′
〉
+
(
Ĥ ′ −W ′Φ

)
|Φ0〉 = 0 ,

λ2 :
(
Ĥ0 −W

0
Φ

) ∣∣Φ ′′
〉
+
(
Ĥ ′ −W ′Φ

) ∣∣Φ ′
〉
−W ′′Φ |Φ0〉 = 0 .

(0.59)

The zeroth-order problem is supposed to be solved already. By multiplying the
first-order equation with 〈Φ0| one obtains (exploiting that 〈Φ0|Ĥ0 −W0

Φ|Ψ〉 =
〈Ψ|Ĥ0 −W

0
Φ|Φ0〉∗ = 0 for any wavefunction Ψ)

W ′Φ = 〈Φ0|Ĥ ′|Φ0〉 , (0.60)

where the first-order energy W ′Φ resembles the expectation value of the pertur-
bation operator for the unperturbed wavefunction. Applying the same procedure
to the second-order term one obtains the second-order energy expression

W ′′Φ = 〈Φ0|Ĥ ′|Φ ′〉, (0.61)

for which the wavefunction |Φ ′〉 is needed. Here |Φ ′〉 is expanded in terms of the
unperturbed eigenfunctions

∣∣Φ ′
〉
=
∑ ′

k

ck |k0〉 , (0.62)

where the prime indicates that the term k = n is omitted – ensuring that
〈Φ0|Φ

′〉 = 0. Using this expression within the first-order term – and remem-
bering that Ĥ0 |k0〉 =W0

k |k0〉 – gives the following expression∑ ′

k

ck
(
W0
k −W

0
Φ

)
|k0〉+

(
Ĥ ′ −W ′Φ

)
|Φ0〉 = 0. (0.63)

Multiply by 〈p0| and exploiting the orthonormality of the unperturbed eigenfunc-
tions |k0〉 one obtains an expression for each cp coefficient

cp = −
〈p0|Ĥ ′|Φ0〉
W0
p −W0

Φ

, (0.64)
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which can be substitute into equation 0.62 to finally obtain the second-order
energy expression after substituting |Φ ′〉 into equation 0.61

W ′′Φ = 〈Φ0|Ĥ ′|Φ ′〉 = −
∑ ′

p

〈Φ0|Ĥ ′|p0〉〈p0|Ĥ ′|Φ0〉
W0
p −W0

Φ

. (0.65)

Since intermolecular forces are relatively weak it is common practice to model such
interactions using PT. If two systems are far enough apart from each other the
overlap between their wavefunctions approaches zero (exponential decrease of the
electron density). This means that one can identify a set of i electrons belonging
to system A and a set of j electrons belonging to system B. Furthermore, one
can define a Hamiltonian ĤA for system A and one ĤB for system B in terms
of their electrons. The unperturbed Hamiltonian now simply is the sum of both
Hamiltonians

Ĥ0 = ĤA + ĤB. (0.66)

Perturbations are given by electrostatic interactions between particles of system
A and particles of system B

Ĥ ′ =
∑
i∈A

∑
j∈B

1
Rij

, (0.67)

where Rij resembles the distance between particles on A and particles on B. The
unperturbed states are simply the product wavefunction of both systems ΦAmΦBn
which can be abbreviated as |mn〉

Ĥ0 |mn〉 =
(
ĤA + ĤB

)
|mn〉

=
(
WA
m +WB

n

)
|mn〉

=W0
mn |mn〉 .

(0.68)

The energy expressions up to second-order of the ground state of the system
(m = n = 0), also known as the “polarization approximation”,152 are given by

W0
00 =W0

A +W0
B ,

W ′00 = 〈00|Ĥ ′|00〉 ,

W ′′00 = −
∑ ′

mn

〈00|Ĥ ′|mn〉〈mn|Ĥ ′|00〉
W0
mn −W0

00
.

(0.69)

After expanding Ĥ in multipole moments the consideration of the dipole-dipole
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term gives to the leading order pairwise dispersion energy expression153

E
(6)
DISP = −

∑
mA 6=0

∑
nB 6=0

〈0A0B|µ̂AαTαβµ̂Bβ|mAnB〉〈mAnB|µ̂Aγ Tγδµ̂Bδ |0A0B〉
WA
m0 +W

B
n0

= −TαβTγδ
∑
mA 6=0

∑
nB 6=0

WA
m0W

B
n0

WA
m0 +W

B
n0︸ ︷︷ ︸

not factorizable

×
〈0A|µ̂Aα |mA〉〈mA|µ̂Aγ |0A〉

WA
m0

〈0B|µ̂Bβ|nB〉〈nB|µ̂Aδ |0B〉
WB
n0

,

(0.70)

withWA
m0 =WA

m−WA
0 . Expression 0.70 cannot be completely factorized, which

has been solved in two ways. The first solution has been introduced by London154

which makes use of the Unsöld approximation155 to replace the highlighted term
by an empirical one constructed from average excitation energies (UA and UB).
Here, one obtains the London formula by factoring out the sum-over-states ex-
pression for the polarizabilities (αAαγ and αBβδ)

E
(6)
DISP ≈ −

UAUB
4(UA +UB)

TαβTγδα
A
αγα

B
βδ

= −
UAUB

4(UA +UB)
TαβTγδα

Aδαγα
Bδβδ

= −
3UAUB

2(UA +UB)

αAαB

R6 ,

(0.71)

with
TαβTγδ =

(3RαRβ − R2δαβ)(3RαRβ − R2δαβ)

R10 . (0.72)

A more sophisticated way has been introduced by Casimir and Polder156 which
led together with other works157–159 to the pairwise dispersion energy formula
including dynamic polarizabilities at imaginary frequencies

E
(6)
DISP = −

2
π
TαβTγδ

∞∫
0

dω
∑ ′

m

〈0A|µ̂Aα |mA〉〈mA|µ̂Aγ |0A〉νAm
(νA)2 +ω2︸ ︷︷ ︸
αAαγ(iω)

×
∑ ′

n

νBn〈0B|µ̂Bβ|nB〉〈nB|µ̂Bδ |0B〉
(νBn)

2 +ω2︸ ︷︷ ︸
αBβδ(iω)

.
(0.73)

Equation 0.73 reduces to the pairwise term after substituting the tensor elements
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given in equation 0.72

E
(6)
DISP = −

3
π

∞∫
0

dω
αA(iω)αB(iω)

R6 = −
C6
R6 . (0.74)

The pairwise dispersion energy of a system can thus be calculated on the basis of
dynamic polarizabilities resulting in pairwise dispersion coefficients C6.
Apart from PT, density-density response functions can be used to calculate the
dynamic correlation energy. This approach exploits the Adiabatic Connection
Fluctuation Dissipation (ACFD) theorem160 which captures effects of an external
Coulomb perturbation (interaction scaled by λ) acting on the electron density.

EACFDcorr = −
1
2

1∫
0

dλ

∫
d3r d3r ′

1
|r − r ′|

∞∫
0

dω
[
χλ(r, r ′, iω) − χ0(r, r ′, iω)

]

(0.75)
The induced density and the external potential are related through a position- and
frequency-dependent charge density susceptibility

χ0(r, r ′, iω) = −4
∑
i

∑
a

ωai

ω2
ai +ω

2φi(r)φa(r)φa(r
′)φi(r ′). (0.76)

Unfortunately, most systems can not be treated exactly due to increasing com-
putational costs with increasing system size. In order to circumvent this obsta-
cle, semi-classical methods are used to enable the computation of LD interac-
tions161,162 even for large system sizes. A deeper discussion of such semi-classical
LD correction schemes is given in the next chapter.

0.5. Semi-Classical London Dispersion Corrections

Many semi-classical correction schemes are inspired by perturbation theory. In-
stead of solving the complicated many-body problem, they reduce the complexity
to local dynamical properties of individual fragments, e. g., to polarizabilities at
imaginary frequencies. Such polarizabilities can be used for the calculation of dis-
persion coefficients between any fragments. If the dispersion coefficients for the
fragments are known, the pairwise dispersion energy is easily amenable. However,
in general dispersion coefficients are unknown for arbitrary fragments which is
furthermore complicated by defining the fragments themselves. A straightforward
and elegant way is the fragmentation into atomic contributions163 which allows
the formulation of methods that are more or less applicable to any system as long
as the pairwise dispersion coefficients are known. Since dynamic polarizabilities are
second-order properties, their calculation is time-intensive, which prohibits their
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system-specific calculation in order to deduce pairwise dispersion energies. How-
ever, approximations enable the efficient calculation of system-specific dynamic
polarizabilities. One method that realizes an efficient scheme to calculate such
polarizabilities for systems of most sizes is the DFT-D3 method.17,46 This semi-
classical scheme requires only the geometry as input to calculate the inter- and
intramolecular dispersion energy based on pre-calculated TD-DFT164,165 data. The
D3 method expands the Coulomb operator into multipoles. A coarse-grain parti-
tioning to atomic polarizabilities enables the calculation of dipole-dipole dispersion
coefficients as introduced by Casimir and Polder.156

CAB
6 =

3
π

∞∫
0

dωαA(iω)αB(iω). (0.77)

In 2010 Grimme and co-workers proposed this approach that includes the molecu-
lar environment explicitly by the empirical concept of CNs. This concept represents
hybridization conditions for each element that is in agreement with chemical in-
tuition. The molecular geometry and, therefore, the CNs define the chemical
environment. DFT-D3 uses pre-calculated TD-DFT reference polarizabilities ob-
tained with a PBE0-like hybrid functional (aX = 37.5%) in a nearly complete
basis set. A modified Casimir–Polder equation uses those pre-calculated reference
polarizabilities to derive atom pairwise dispersion coefficients CAB

6,ref(CNA,CNB)

for atoms A and B in these reference systems.

CAB
6,ref(CNA,CNB) =

3
π

∞∫
0

dω
1
m
[
αAmHn(iω) −

n
2α

H2(iω)
]

× 1
k

[
αBkHl(iω) −

l
2α

H2(iω)

] (0.78)

Here, AmHn and BkHl are the reference systems for A and B with the corre-
sponding coordination number CNA and CNB. These reference systems describe
different bonding situations and are distinguished by their CNs. An interpolation
over the reference coefficients enables the calculation of system-specific dispersion
coefficients

CAB
6 =

NA∑
i

NB∑
j

CAB
6,refLij

NA∑
i

NB∑
j

Lij

(0.79)

with
Lij = exp

(
−4
[(
CNA − CNA

i

)2
+
(
CNB − CNB

j

)2]) . (0.80)
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The CN-interpolation ensures an efficient calculation of system-specific dispersion
coefficients only by geometrical mean. The D3 method uses recursion relations to
obtain CAB

8 coefficients from the dipole-dipole ones which enables the calculation
of dipole-quadrupole interactions E(8)

DISP. By default DFT-D3 neglects higher-
order terms of the dispersion energy (e. g., triple-dipole or quadrupole-quadrupole
interactions). The atom pairwise dispersion energy is calculated as follows

ED3DISP = −
1
2
∑
AB

∑
n=6,8

sn
CAB
n

Rn
f
(n)
damp

(
RAB0

)
. (0.81)

Different approaches are available for choosing f(n)damp(R
AB) where RAB is an inter-

atomic distance for atom pair AB. However, the rational Becke-Johnson damping
function is the default166 as given by

f
(n)
damp,BJ

(
RAB0

)
=

R
(n)
AB

R
(n)
AB +

(
a1RAB0 + a2

)(n) . (0.82)

The scheme incorporates functional-specific parameter a1 and a2 as well as the
radii RAB0 =

√
CAB

8 /CAB
6 . Axilrod–Teller–Muto (ATM) define the leading order

non-additive dispersion contribution167,168 as

EABC =
CABC

9 (3 cos θa cos θb cos θc + 1)
(RABRBCRCA)

3 . (0.83)

Here, θa, θb, and θc are the internal angles of the triangle formed by RAB, RBC,
and RCA while CABC

9 is the triple-dipole constant defined by

CABC
9 =

3
π

∞∫
0

dωαA(iω)αB(iω)αC(iω). (0.84)

Their contribution to the total dispersion energy are, however, rather small (≈5-
10%). An established approximation uses the geometric mean of dipole-dipole
dispersion coefficients to obtain triple-dipole dispersion coefficients.46

CABC
9 ≈ −

√
CAB

6 CBC
6 CCA

6 (0.85)

The triple-dipole dispersion energy expression contribution is as follows

E
(9)
DISP =

∑
ABC

EABCfdamp,(9)
(
RABC

)
, (0.86)

27



0. Theoretical Background

where the sum is over all atom triples in the system applied with a zero-damping
scheme as proposed by Chai and Head-Gordon122

fdamp,(9)
(
RABC

)
=

1

1+ 6
(
RABC

/(
4/3RABC0

))−16 . (0.87)

Equation 0.87 uses the geometrically averaged inter-atomic distances RABC as well
as the cutoff radii RABC0 . In densely packed systems the correction is in general
repulsive. Attractive contributions are only found for linear arrangements. As
demonstrated by a database of 1225 inter-molecular CAB

6 coefficients, the semi-
classical D3 schemes yields highly accurate results competitive to approaches that
directly use electronic structure information to scale tabulated atomic references.38

Since its publication, several groups successfully applied the DFT-D3 method in
works including, e. g., the description of cohesive energies and lattice parameter
of molecular crystals,169 the treatment of adsorption processes (small molecules
on surfaces,170 methane on carbon models,171 amino acids on graphene172), the
description of thermochemistry and intramolecular LD effects in conformers,173 the
determination of structural and energetic properties of TiO2 modifications,174 the
application of DFT-D3 noncovalent interactions with DFT methods applied with
small AO basis sets,175 the D3 contribution to interatomic force constants,176 the
determination of anharmonic vibrational frequency calculation of nucleobases and
their dimers,177 and the lithium migration process in lithium–graphite intercalation
compounds.178 Of course, this is only a limited selection of works that applied
the D3 correction. Nevertheless, when listing the different works, the general
applicability of the DFT-D3 method can quickly be seen.
Aside from the pure geometrical DFT-D3 dispersion model, several electron density-
dependent approaches exist. Examples are the Tkatchenko–Scheffler (TS)49 model
with its Many-Body Dispersion (MBD@scsTS)179 analogon, the Exchange Dipole
Moment (XDM)47,48,180 model of Becke and Johnson, or the Local-Response Dis-
persion (LRD)181,182 model by Sato and Nakai. Other approaches include non-local
density information in the design of their XC functional. Established examples are
the family of van der Waals Density Functionals (vdw-DF)183–187 as well as the
VV10 method.51,52

In the following Part of this work the theoretical framework of the DFT-D4 method
is introduced.
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Development of the DFT-D4
London Dispersion Correction
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As introduced in Chapter 0.5, the DFT-D3 method belongs to the class of semi-
classical LD corrections. This method uses pre-calculated reference dispersion
coefficients in combination with CNs representing the atomic hybridization. All
CNs are used within an interpolation scheme between the references to obtain
hybridization-specific dispersion coefficients. The reference dispersion coefficients
are obtained from AIM partitioned molecular TD-DFT polarizabilities. One draw-
back of this approach is the fixed electronic structure of the reference polarizabil-
ities. A more detailed description would consider the electronic structure of the
atom inside its chemical environment to modulate the particular atomic reference
polarizability, i.e., scale the polarizabilities of cations to lower and the ones of
anions to higher values compared to the polarizabilities of neutral atoms.
In Part I, the semi-classical DFT-D4 dispersion correction scheme is introduced,
which adds charge-flexibility to the D3 reference polarizabilities using a scaling
ansatz. This approach uses a multiplicative scaling function that modifies each
reference polarizability with respect to relative atomic charge changes. The next
three chapters introduce the theoretical foundations of this method including de-
tails about the development and proper validation with respect to literature-known
benchmark sets. As its predecessor, this correction scheme can in principle be cou-
pled to all mean-field electronic structure methods, however, in the following only
the coupling to density functional approximations is described in detail.

Chapter 1 describes the general idea how element-specific scaling functions are
used. Here, the concept of effective nuclear charges is introduced rendering the
calculation of charge-dependent polarizabilities possible. Atomic partial charges
used within the scaling functions are obtained from the GFN-xTB188 method. The
charge-scaling effect is verified by testing several properties: First, molecular pair-
wise dispersion coefficients for small molecules and AIM polarizabilities for large
systems are discussed. Second, molecular dispersion coefficients are calculated for
an electronically complicated dissociating lithium-cation benzene complex. Here-
after, noncovalent interaction energies are examined for three common benchmark
sets, which mainly consist of noncovalently bound complexes.

Chapter 2 generalizes the scaling functions to a global one that incorporates el-
emental properties, as the chemical hardness, to calculate scaling factors based
on relative effective charge changes. Contrary to the method described in Chap-
ter 1, atomic partial charges are obtained from an electronegativity equilibration
model, which enables the robust and efficient calculation of atomic charges at a
high quality. Furthermore, a many-body dispersion model based on a coupling
of atomic polarizabilities in terms of quantum harmonic oscillators is introduced.
The DFT-D4 default method is defined and the use of alternative partial charges
is investigated. This default method is verified by means of several literature-
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known benchmark sets including properties like molecular dispersion coefficients,
noncovalent and conformational energies, thermochemistry, as well as covalent
and noncovalent structures.

Physically reasonable atomic polarizabilities are the foundation of any DFT-D-like
LD correction. So-called Dobson type-A many-body effects189 reduce the polariz-
ability of an atom when its coordination number is increased. Such environmental
effects predicate that it is not sensible to utilize polarizabilities derived from free
isolated atoms to describe the ones in molecules. This conclusion holds when a
condensed phase is created from molecules, where the decrease of atomic polar-
izabilities is even more enhanced. Particularly in very densely packed solids like
in alkaline halides, the atomic polarizability decrease is significant. Chapter 3 dis-
cusses the calculation of new reference polarizabilities for densely packed periodic
model systems using TD-DFT. A new procedure enables their efficient calculation
using a pseudo-periodic scheme, splitting the solid into three regions, of which
only the innermost region is described quantum-mechanically. This QM region is
surrounded by a layer of effective core potentials to overcome additional polariza-
tion effects. The outer region of the cluster is described by a simple point charge
model, that imitates Coulomb interactions of the perfect crystal. The extension
of the DFT-D4 reference set of polarizabilities with those for densely packed peri-
odic systems enables the consideration of additional periodic type-A nonadditive
effects. Following this approach, new reference polarizabilities are calculated for
alkaline metals, earth alkaline metals, and early d-metals of group 3-5.

Compared to experimental solid-state polarizabilities, DFT-D4 outperforms its pre-
decessor DFT-D3 and other density-dependent dispersion corrections. An organic
polymer database is used to measure the quality of refractive indices. Here, theo-
retical reference values are used for a comparison, showing that DFT-D4 is able to
accurately calculate refractive indices. Furthermore, other correction schemes are
compared, including the TS method and MBD@scsTS. Important solid-state quan-
tities as, e. g., lattice energies and cell volumes of various molecular crystals, are
discussed. Additionally, this chapter compares theoretically obtained adsorption
energies for three surface-adsorbate combinations to experimental or theoretical
reference data. Computational timings for the self-consistent field calculation of
the cyclohexadione crystal demonstrate the computational efficiency of different
dispersion correction models.
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I. Development of the DFT-D4 London Dispersion Correction

Abstract A new model, termed D4, for the efficient computation of molecular
dipole-dipole dispersion coefficients is presented. As in the related, well estab-
lished D3 scheme, these are obtained as a sum of atom-in-molecule dispersion
coefficients over atom pairs. Both models make use of dynamic polarizabilities ob-
tained from first-principles time-dependent density functional theory calculations
for atoms in different chemical environments employing fractional atomic coordi-
nation numbers for interpolation. Different from the D3 model, the coefficients
are obtained on-the-fly by numerical Casimir–Polder integration of the dynamic,
atomic polarizabilities α(iω). Most importantly, electronic density information is
now incorporated via atomic partial charges computed at a semi-empirical quan-
tum mechanical tight-binding level, which is used to scale the polarizabilities.
Extended statistical measures show that errors for dispersion coefficients with the
proposed D4 method are significantly lower than with D3 and other, computation-
ally more involved schemes. Alongside, accurate isotropic charge and hybridization
dependent, atom-in-molecule static polarizabilities are obtained with an unprece-
dented efficiency. Damping function parameters are provided for three standard
density functionals, i.e., TPSS, PBE0, and B3LYP, allowing evaluation of the new
DFT-D4 model for common noncovalent interaction energy benchmark sets.

1.1. Introduction

Due to its excellent accuracy-cost ratio, Kohn–Sham density functional theory
(KS-DFT, or DFT in the following)190,191 is the workhorse of modern electronic
structure calculations. Especially for the chemistry or physics of large or condensed-
phase systems, the inclusion of long-range electron correlation interactions is in-
dispensable in order to reach the so-called chemical accuracy (≈1 kcalmol−1)
in theoretical simulations. Semi-local or hybrid density functional approximations
(DFAs) do not describe such correlation effects,17 hence they cannot account for
the important London dispersion interactions.161 In order to correct for this short-
coming, semi-classical methods were developed to enable the computation of the
long-range (London) dispersion energy in molecules and solids. The computation-
ally efficient atom pairwise D3(BJ) scheme166 requires only the molecular geome-
try as input to calculate the inter- and intramolecular dispersion energy based on
pre-computed linear-response time-dependent DFT (TD-DFT) data. Aside from
this geometrical dispersion model, electron density dependent approaches like the
Tkatchenko-Scheffler (TS) model,49 the exchange dipole moment (XDM) model
of Becke and Johnson,47,48,180 or the local-response dispersion (LRD) model by
Sato and Nakai exist.181,192 Conceptually somewhat different are the nonlocal den-
sity functional based dispersion corrections for which the family of van der Waals
density functionals183–187 (vdW-DFs) and VV1051,52 are noteworthy examples.
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I. Development of the DFT-D4 London Dispersion Correction

While the D3 approach is by far the fastest dispersion correction, one disadvan-
tage of this geometrical scheme is that changes in the underlying electron density
are not reflected in the dispersion coefficients. Whenever the density around an
atom in a molecule or solid is significantly different from the one present in the
reference compound, larger errors can occur.170,193 This is in particular relevant
for applications involving metal centers (ions), which often change their effective
electron number (atomic charge) and corresponding dipole-dipole dispersion coef-
ficients (C6). Density dependent approaches are, however, computationally more
expensive compared to the D3 model and often neglect atomic hybridization ef-
fects (for respective modification of the hybridization devoid TS model, see Ref.
194). With this in mind, an extension of the well established and widely used D3
method is proposed here.

1.2. Theory

1.2.1. General

The new model introduced here, termed D4, calculates charge dependent disper-
sion coefficients efficiently and in a black box manner by incorporation of molecu-
lar input coordinates [for coordination numbers (CNs)] and also by semi-empirical
quantum mechanical (QM) tight-binding (TB) computation (for atomic charges).
The Mulliken charges195 from a (partially polarized) minimal basis tight-binding
scheme were shown to agree rather well with DFT Hirshfeld charges.196 By using
the same (semi-empirical) QM method (GFN-xTB188) throughout to obtain the
charges for our new model, we avoid complications arising solely from the fact that
various functionals (e.g., hybrid vs. GGA) yield different charges. This choice fur-
thermore reduces the number of necessary fit procedures and facilitates interfacing
the model to existing QM codes. A related atom pairwise dispersion correction,
denoted as dDMC,197 also incorporated TB based Mulliken charges from the self-
consistent charge density functional tight-binding (SCC-DFTB198,199) method.
The general applicability of TB charge based dispersion models depends on the
availability of parameters for different elements. Since all elements up to Z = 86
are parameterized for GFN-xTB, the new D4 method has practically no limita-
tions regarding the applicability to various chemical problems. Starting from the
D3 scheme, conceptually minimal changes are applied such that for neutral (non-
polar) molecules only small differences (mostly small improvements) between D3
and D4 are found. The new model is intended to be combined with various, pre-
dominantly mean-field electronic structure methods17 similar to D3 (for a recent
successful use of D3 dispersion in SAPT, see Ref. 200). The D4 dispersion co-
efficients and static dipole polarizabilities are already used in a newly developed
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intermolecular force-field (FF).201

1.2.2. Dispersion Coefficients

The calculated Mulliken charges serve as descriptors to scale pre-computed ref-
erence TD-DFT polarizabilities at imaginary frequencies α(iω). These are then
used to obtain charge and coordination number (see below) dependent CAB6 co-
efficients via numerical on-the-fly Casimir–Polder integration156

CAB6 =

NA,ref∑
A,ref=1

NB,ref∑
B,ref=1

3
π

∞∫
0

dωαA,ref(iω, zA)WA,ref
A αB,ref(iω, zB)WB,ref

B

(1.1)

with

αA(iω, zA) = 1
m

[
αAmHn(iω) −

n

2α
H2(iω)ζ(zHA)

]
ζ(zA, zA,ref) (1.2)

and
ζ(zA, zA,ref) = ba[1.47 exp(zA/zA,ref) log10(zA,ref/zA)]. (1.3)

The reference polarizabilities αAmHn , describing the molecular polarizabilities of
the symmetric hydride systems AmHn (i.e., containing m chemically equivalent
atoms A), incorporate hybridization in the D3 model (e.g., for carbon, the ref-
erence system with CNC = 2 is C2H2). Polarizabilities were calculated at the
same level of theory as for D3 (hybrid TD-DFT with augmented quadruple-ζ AO
basis set).46 In equation 1.1, WA,ref/B,ref

A/B
, are weighting factors to determine

the contributions of all element specific reference systems NA,ref/B,ref (for fur-
ther details see Appendix A1). In equation 1.2, zHA describes the effective charge
of hydrogen bound to atom A in the particular reference system AmHn while
zH2 describes the effective charge of hydrogen in the H2 molecule. The effective
charge zA of an atom A within a molecule equals the sum of its nuclear charge
ZA and its self-consistently derived Mulliken charge qA,

zA = ZA + qA. (1.4)

Thus, a negatively charged atom is treated as having an effectively smaller nuclear
charge. Equation 1.3 introduces the atom specific charge-function ζ. Here, the
parameter b has been parameterized first to match the TD-DFT derived molecular
dispersion coefficients of the reference systems (i.e., zA = zA,ref ). Then param-
eter a is parameterized to match cationic static polarizabilities (zA 6= zA,ref ) for
all elements with Z = 2−86. The whole training set is given within Appendix A1.
In principle, the atomic charges could also be provided individually by the underly-
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ing DFT calculation. This, however, would introduce many empirical parameters
(one set for each DFA) and would furthermore complicate interfacing the method
with existing computer codes (in particular for nuclear gradients) and charge de-
void methods like force-fields. We thus continue the successful D3 strategy to
provide only a single, well-defined and general “set” of dispersion coefficients. For
the very rare case of GFN-xTB not providing a reasonable electronic structure, we
provide a fall-back option to resort to PBE0/TZVP Hirshfeld charges. Figure 1.1
illustrates the effect of the introduced scaling function for hydrogen in two extreme
bonding situations.

D3 D4

qH=0

 qH>0

qH<0LiH

FH

H H

αA(iω)ζ(zA)

H H

LiH

FH

Figure 1.1.: Schematic representation of the ζ-functionality which rescales atomic po-
larizabilities based on input Mulliken charges q. The left side shows the
standard partitioning of atomic polarizabilities in D3. On the right side, the
scaled atomic polarizabilities are shown. The depicted radii of the atoms
directly correspond to the calculated atomic CAA6 coefficients.

The radii of the atoms directly correspond to the calculated homoatomic CAA6
dispersion coefficients derived with D3 (left side) and D4 (right side). Fractional
coordination numbers of all atoms are calculated to obtain atomic polarizabilities
by weighting over all element specific reference systems AmHn with respect to
those CNs. In D3, a two-dimensional interpolation scheme for different atoms A
and B is used to compute CAB6 , while in D4 this function is four-dimensional,
i.e., two atomic charges and two CN values. The use of CNs is in accordance
with chemical intuition regarding different hybridization situations for each atom
within the molecule. Compared to D3, the calculation of the CN has been slightly
modified. The atomic electronegativities of the two atoms enter the calculation
in order to distinguish between covalent and ionic bonding. The CNs are ad-
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justed to approximately match Wiberg bond orders202 of single bonds. Therefore,
additional reference systems are included in the D4 Gaussian interpolation of po-
larizabilities describing nonpolar (e.g., fluorine with CNF2 = 0.96) as well as polar
(e.g., hydrogen fluoride with CNHF = 0.74) cases resulting in a better description
of the individual bonding and hybridization situation. For details of the determi-
nation of the few relevant model parameters, see Appendix A1. Furthermore, we
changed the Gaussian weighting from interpolating precalculated CAB6 dispersion
coefficients between atoms having different CNs to a scheme which interpolates
reference polarizabilities between atoms having different CNs and different charges
instead (i.e., each polarizability is a two-dimensional function).

1.2.3. Dispersion Energy

The D4 dispersion coefficients are used to compute the atom pairwise dispersion
energy in complete analogy to DFT-D3(BJ) by coupling to a damping scheme to
be used with standard density functionals. The DFT-D4 dispersion energy is given
by

ED4DISP = −
∑
AB

∑
n=6,8

sn
CAB(n)

Rn f
(n)
damp(R) (1.5)

where R is an interatomic distance for atom pair AB, and f(n)damp denotes the
standard Becke–Johnson damping function166 (denoted BJ-damping or simply
damping in the following). The factors sn scale the individual multipolar contri-
butions. Due to its physically reasonable behavior at short interatomic distances,
the BJ-damping function given by

f
(n)
damp(R) =

R(n)

R(n) + (a1R0 + a2)
(n)

, (1.6)

has become the default already in D3166. It incorporates functional-specific pa-
rameters a1 and a2 as well as the radii R0 =

√
CAB8 /CAB6 . The atom pair-wise

dipole-quadrupole contribution E(8)
DISP is included with the respective CAB8 disper-

sion coefficient, which is computed recursively as in D3 from the dipole-dipole
dispersion coefficient

CAB8 = 3CAB6
√
QAQB (1.7)

with
QA =

√
ZA
〈r4A〉
〈r2A〉

. (1.8)

Here, 〈r4A〉 and 〈r2A〉 are multipole-type expectation values derived from atomic
densities and ZA equals the nuclear charge of atom A. For more details, see Ref.
46.
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1.2.4. Technical Details

We have coupled three established semi-local DFAs to the new D4 dispersion
model (meta-GGA: TPSS105, hybrid: B3LYP117,118 and PBE0116) as usual by fit-
ting to common interaction energy benchmark sets, namely S66x8203, S22x5204,
and NCIBLIND108. We used the TURBOMOLE suite of programs143,205,206 (ver-
sion 7.0.2) to conduct all ground-state DFT calculations. Within the DFT cal-
culations, we applied standard exchange-correlation functional integration grids
(m4) and typical self-consistent field (SCF) convergence criteria (10−7Eh) as well
as the resolution of the identity integral approximation207–209. Ahlrich’s type
quadruple-zeta basis sets (def2-QZVP) are used for all single-point calculations.
The density functional specific damping parameters are obtained by least-squares
Levenberg–Marquardt minimization to the reference interaction energies in the
three investigated benchmark sets.

1.3. Results

1.3.1. Molecular C6 Coefficients
Experimentally, molecular C6 coefficients are accessible from dipole oscillator
strength distributions (DOSDs). Figure 1.2 displays computed molecular dis-
persion coefficients in comparison to experimental values and data from related
theoretical methods (D3, TS, LRD). The respective statistical evaluation over all
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Figure 1.2.: Comparison of experimentally derived molecular dispersion coefficients (from
dipole oscillator strength distributions) with calculated ones (1225 cases,
compilation by A. Tkatchenko). Note the logarithmic scale and variation of
the coefficients over three orders of magnitude. The test set contains small
to medium-sized, inorganic and organic molecules (H2 - C8H18 ).
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calculated dispersion coefficients in Figure 1.2 is given in Table 1.1, presenting the
mean absolute deviation (MAD), mean deviation (MD), standard deviation (SD),
and the absolute maximum (AMAX) error. The deviations are always taken as
relative values (in %).

Table 1.1.: Statistical measures for the relative deviations (in %) of calculated molecular
C6 dispersion coefficients from different approaches with respect to experi-
mental values for the molecular benchmark set in Figure 1.2. All calculated
values are given in the Supporting Information of Ref. 210.

Method MAD MD SD AMAX

D3 4.7 −2.4 5.2 23.9
TS 5.3 −2.7 7.3 44.0
LRD 6.1 −2.5 7.7 52.9
D4 2.8 −0.6 3.6 17.5

It is noteworthy that already the calculation of dispersion coefficients for “normal”,
medium-sized inorganic and organic molecules is substantially improved upon the
accurate D3 model which has an MAD of 4.7%38 for this benchmark set compiled
by A. Tkatchenko. The D4 MAD value of 2.9% is remarkable and is well within the
accuracy limits of the underlying hybrid TD-DFT quantum chemistry method. To
the best of our knowledge, the new D4 model yields the best cost-accuracy ratio
for calculating isotropic C6 dispersion coefficients for arbitrary systems compared
to other approaches.43,47–50,53,180–182,211–217

1.3.2. Atoms-in-Molecules Polarizabilities

As a by-product of the D4 procedure, accurate atomic polarizabilities are obtained
which may have a widespread application in classical force-fields (see our parallel
work on a GFN-xTB based intermolecular FF201). As an example for a possi-
ble large target system, the dispersion coefficients and atomic polarizabilities of
the green fluorescent protein218 (GFP, PDB entry 1GFL, with 3601 atoms and
a total molecular charge of −6) were calculated within 30 minutes on a single
desktop computer. Figure 1.3 shows the charge and coordination dependency
of homoatomic CAA6 dispersion coefficients in the chromophore of the GFP ex-
emplifying the relatively big changes between D3 and D4 for very polar bonding
situations. Because of the presence of charged side-chains, we used an implicit
generalized Born solvation model219 augmented with a solvent accessible surface
term for water [GBSA(H2O), GBSA in the following] in this calculation, while
the default D4 procedure employs gas phase Mulliken partial charges. However,
GFN-xTB/GBSA provides higher stability in the self-consistent charge procedure
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Figure 1.3.: Chain A of the green fluorescent protein as well as an enlarged display of
the chromophore (PHE64, SER65, and TYR66). All homoatomic CAA6
dispersion coefficients were calculated for the whole protein at the D4 and
the D3 level of theory.

for highly charged molecular systems so that we recommend its use in such cal-
culations. The quality of the calculated atomic polarizabilities is estimated by
exploiting their additivity property153 to compute molecular polarizabilities that
are directly comparable to calculated hybrid TD-DFT molecular polarizabilities.
For an organic molecule benchmark set (ROT34220), this results in a small devi-
ation of only 2.5% similar to the one obtained for the molecular C 6 coefficients
(see Table 1.1).

1.3.3. Li+-benzene: An Electronically Complicated Example
System

As a cross-check and an example for a more difficult case involving a charged,
organometallic system, the cation-π dissociation of a lithium cation and benzene
(Bz) is considered. Figure 1.4 depicts the dissociation curve of the complex.
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Figure 1.4.: Molecular dispersion coefficient Cmol6 for the dissociating lithium cation-
benzene complex. The initial structure is optimized at the PBE0-
D3(BJ)/def2-QZVP level of theory. All values are divided by the calculated
TD-DFT molecular dispersion coefficient for the optimized minimum struc-
ture Cmol,ref6 . The reference TD-DFT curve is plotted in green while D3
and D4 data are shown in red and blue, respectively. The black arrow cor-
responds to the distance of the lithium cation to the center-of-mass of the
benzene molecule denoted R(Li+–Bz).

The calculated molecular dispersion coefficient is plotted against the center-of-
mass distance R(Li+-Bz) (shown as a black arrow in the inset). With increasing
R(Li+-Bz), the coordination number of the lithium cation CNLi+ is decreasing to
zero in the asymptotic region. This leads to an overestimation of the C6 coef-
ficient in D3, which essentially coincides with the huge dispersion coefficient of
the free lithium atom. A charge dependent method like D4 is able to correct
this deficiency by considering the electronic structure. The implemented charge
function scales neutral reference polarizabilities to values that agree well with the
ones in cationic or anionic situations. An MAD of 5% is calculated with D4 for the
entire dissociation curve with respect to TD-DFT reference molecular dispersion
coefficients. The maximum deviation is found at CNLi ≈ 0.5, with an error of
12.1%. Upon ionization, the static polarizability (αLiref(0) = 149.6 Hartree Bohr6)
is decreased of a lithium atom by three orders of magnitude compared to the value
of the free cation (αLi+ref (0) = 0.2 Hartree Bohr6 ). Thus the residual error is com-
parably small in this extreme case. The direct comparison to D3 demonstrates
the major improvement and shows that the description of charged and neutral
systems is more consistent in D4. This is important for many organometallic sys-
tems in chemistry (see Ref. 193, for example). For atomic dispersion coefficients
calculated by the XDM method for related systems, see Ref. 221.
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1.3.4. Noncovalent Interaction Energies
In Table 1.2, we directly compare DFT-D4 and DFT-D3(BJ) derived interaction
energies for three density functionals.

Table 1.2.: Interaction energies calculated with three dispersion corrected DFAs (meta-
GGA: TPSS,105 hybrid: B3LYP117,118 and PBE0116) and Ahlrich’s type def2-
QZVP basis set (not counter-poise corrected). All statistical measures are
given in kcalmol−1 relative to the reference energies. The best result for
each measure is highlighted in bold-face.

S66x8
TPSS B3LYP PBE0

Measure D3 D4 D3 D4 D3 D4

MAD 0.29 0.26 0.20 0.22 0.33 0.30
MD 0.07 −0.03 −0.14 −0.10 −0.17 −0.15
SD 0.37 0.33 0.26 0.27 0.42 0.39
AMAX 1.06 1.00 0.99 0.82 1.61 1.52

S22x5

MAD 0.32 0.29 0.28 0.26 0.42 0.37
MD −0.11 −0.21 −0.14 −0.14 −0.23 −0.27
SD 0.51 0.41 0.46 0.42 0.67 0.56
AMAX 2.54 1.95 2.39 1.66 3.04 2.70

NCIBLIND10

MAD 0.90 0.56 0.22 0.20 0.28 0.24
MD 0.72 0.28 0.06 −0.04 −0.04 −0.08
SD 1.98 1.10 0.47 0.32 0.54 0.42
AMAX 9.40 4.77 2.23 1.55 2.10 1.69

Here, the DFT-D3(BJ) damping parameters are re-fitted by the same procedure
on the same benchmark sets for a fair comparison between both models. As can
be seen from the table, the DFT interaction energies are mostly improved by using
D4, even for neutral systems. This is noteworthy because the DFT-D3(BJ) model
is usually considered as being already rather accurate. It furthermore indicates
that a part of the residual DFT-D3(BJ) interaction energy error is rooted in the
dispersion coefficients although the DFT part is also significant at this accuracy
level.

1.4. Summary and Conclusion

We have presented an atomic charge and coordination number dependent scheme,
termed D4, to compute C6 dispersion coefficients, which can be coupled to stan-
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dard density functional approximations in a DFT-D4 sense. Atomic Mulliken
charges are taken from a recently published semiempirical tight-binding method
(GFN-xTB),188 which is available for all elements with Z = 1–86. The disper-
sion model is based on the well-established D3 scheme and, by incorporating the
atomic charge information, basically corrects for some failures for polar, organo-
metallic, and ionic systems. The accuracy of the dispersion coefficients is slightly
improved for the “normal” cases which were already good with D3. Importantly,
the general black-box philosophy of the approach and the coupling of a single
dispersion coefficient model to various standard DFAs is equivalent to the one of
D3, which allows a broad application to quantum chemical problems. Compared
to the purely geometrical D3 model, the computational cost of D4 is increased
due to the semi-empirical tight-binding procedure. Since the entire D4 procedure
is orders of magnitude faster compared to a Hartree–Fock or DFT treatment, the
cost of D4 is negligible in a DFT-D4 scheme. Preliminary DFT-D4 interaction en-
ergy benchmarks for noncovalently bound systems (S66x8, S22x5, NCIBLIND10)
show small but consistent improvements for the TPSS, PBE0, and B3LYP DFAs.
Prospective works will couple D4 to more contemporary DFAs leading to a general
and widely applicable DFT-D4 approach. Current work is devoted to an efficient
implementation of analytical D4 nuclear gradients, which are necessary for ge-
ometry optimizations. Furthermore, a periodic implementation of GFN-xTB will
be developed to treat dispersion interactions of bulk materials and surfaces un-
der periodic boundary conditions. In the current form, the D4 dispersion energy
program can be downloaded from the authors’ website and used in a single-point
energy mode for checking results of other pairwise dispersion corrections and due
to its high accuracy even approximate wave function theory calculations.
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See Appendix A1 for further details about the D4 model, parametrization details
of the charge function, and BJ-damping parameters for TPSS, B3LYP, and PBE0.
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I. Development of the DFT-D4 London Dispersion Correction

Abstract The so-called D4 model is presented for the accurate computation of
London dispersion interactions in density functional theory approximations (DFT-
D4) and generally for atomistic modeling methods. In this successor to the DFT-
D3 model, the atomic coordination-dependent dipole polarizabilities are scaled
based on atomic partial charges which can be taken from various sources. For
this purpose, a new charge-dependent parameter-economic scaling function is de-
signed. Classical charges are obtained from an atomic electronegativity equilibra-
tion procedure for which efficient analytical derivatives with respect to nuclear
positions are developed. A numerical Casimir–Polder integration of the atom-
in-molecule dynamic polarizabilities then yields charge- and geometry-dependent
dipole-dipole dispersion coefficients. Similar to the D3 model, the dynamic polar-
izabilities are precomputed by time-dependent DFT and all elements up to radon
(Z = 86) are covered. The two-body dispersion energy expression has the usual
sum-over-atom-pairs form and includes dipole-dipole as well as dipole-quadrupole
interactions. For a benchmark set of 1225 molecular dipole-dipole dispersion co-
efficients, the D4 model achieves an unprecedented accuracy with a mean relative
deviation of 3.8% compared to 4.7% for D3. In addition to the two-body part,
three-body effects are described by an Axilrod–Teller–Muto term. A common
many-body dispersion expansion was extensively tested, and an energy correction
based on D4 polarizabilities is found to be advantageous for larger systems. Becke–
Johnson-type damping parameters for DFT-D4 are determined for more than 60
common density functionals. For various standard energy benchmark sets, DFT-
D4 slightly but consistently outperforms DFT-D3. Especially for metal containing
systems, the introduced charge dependence of the dispersion coefficients improves
thermochemical properties. We suggest (DFT-)D4 as a physically improved and
more sophisticated dispersion model in place of DFT-D3 for DFT calculations as
well as other low-cost approaches like semi-empirical models.

2.1. Introduction

Many computational studies have shown that dispersion-corrected Kohn-Sham
density functional theory (abbreviated as DFT in the following) is currently the
method of choice for the routine computation of the electronic and geomet-
ric structure of large systems,95,190, e.g., in the fields of supramolecular chem-
istry,4,5,222 catalysis,223,224 or in materials science.6,225,226 In contrast to more
elaborate wave function theory (WFT) based methods, most density functional
approximations (DFAs) are not able to describe long-ranged electron correlation
effects.34,36,227,228 Their treatment is, however, important to compute energetic
properties with high accuracy (approximately 1 kcalmol−1), particularly for non-
covalently bonded or condensed phase systems. Therefore, various correction
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schemes have been developed to describe so-called London dispersion interac-
tions in a DFT framework.17 The most commonly used method for molecular
applications is the so-called DFT-D3 scheme,46 which calculates the inter- and
intramolecular dispersion interactions only by employing the given system coor-
dinates (and atomic numbers). Similar atom pairwise models, which additionally
include information from the electron density, have been reviewed recently17 and
are only mentioned briefly here. Among them are the exchange hole dipole mo-
ment47,48,228,229 (XDM) model and the Tkatchenko–Scheffler (TS)49 model both
employing Hirshfeld partitioning. It is also possible to directly develop nonlocal
density functionals, which are inherently capable of describing London dispersion
interactions. This way, atomic partitioning, which always involves some arbitrari-
ness, is avoided. Here, the family of van der Waals density functionals is to be
mentioned, which are based on the fundamental adiabatic connection theory and
offer a rigorous basis for the design of dispersion-inclusive exchange-correlation
functionals.183,187 A simplified construction scheme for the nonlocal correlation
part has been introduced by Vydrov and Van Voorhis.51,52 The computational
costs of incorporating dispersion corrections into a standard DFT treatment are
very method dependent but generally smaller compared to the actual DFT calcu-
lation. Consequently, it is reasonable to include them by default, and it has been
demonstrated that the accuracy of dispersion-corrected DFAs for thermochemical
properties on average follows Jacob’s ladder57 classification. Note that for very
low-cost atomistic models such as semi-empirical molecular orbital or force-field
methods, only nondensity dependent schemes like DFT-D3 (and here proposed
D4) are computationally feasible. The current work describes the further develop-
ment of the widely used semi-classical DFT-D3 approach. Recently, it was shown
that this “geometry-only” model can be further improved by addition of atomic
charge information.210 Therein, we showed that computed atom-in-molecule dy-
namic polarizabilities can be scaled by means of an element specific function with
Mulliken-type atomic charges as input. Here, we want to report on the final
version of the D4 model and provide it in a usable form for a large number of den-
sity functionals as DFT-D4. In general, we retained the general idea and strong
points of the well established D3 scheme and introduced the charge dependence
as well as some less important, mostly, technical improvements. Compared to
the scaling scheme in Ref. 210, a less empirical function is used (see below) and
the Mulliken partial charges are replaced by default with classical electronega-
tivity equilibration (EEQ) partial charges as recently described by Goedecker et
al.230. The D4 scheme is, however, general in a sense that any type of atomic
charges in addition to the geometric structure of the can be used as input. Previ-
ous studies have revealed that many-body dispersion (MBD) interactions beyond
a pairwise picture are important, e.g., in supramolecular,231,232 in cluster,233,234
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and in condensed-phase systems235–239 where so-called Dobson type B effects189

play an important role. The use of a coupled-dipole based many-body dispersion
(MBD) correction (cf. the MBD method in Refs. 50 and 179) in our implemen-
tation does not yield systematic improvements compared to the simple third-order
Axilrod–Teller–Muto167,168 (ATM) term. However, the MBD correction proves to
be useful for large systems (see noncovalent benchmarks in section 2.3), for which
we recommend its application in terms of an energy correction. The theory and
technical details of the D4 method are described in section 2.2. Subsequently,
in section 2.3, results for dispersion coefficients with D4 as well as for energies
and structures obtained with DFT-D4 are compared directly to those of other
established dispersion correction schemes for the same underlying DFA. Finally, a
summary and an outlook on possible future work will be given.

2.2. Theory

Atomic units are used throughout in this work. The DFT-D4 workflow is simplified
for an example molecule in Figure 2.1.

IN-/OUTPUT

STORED

AT RUNTIME

xyz

zA=ZA+qA

AABqA+χB= 0Σ
A=1

DFT-D4

αA,ref(iω)

CNA,ref

CNA

αA,ref(iω,zA)

 2) Averaging

 1) Scaling

αA(iω,zA,CNA)

qtot

zA,ref

A

C6
AB

C9
ABCA(iω)T

(optional)

Three-body
dispersion
   energy

dispersion
   energy

Pair-wiseMany-body
dispersion

(optional)

Nel.xyz

Integration

     Alternative
       charges
      (TB,DFT)

(default)

Figure 2.1.: Schematic workflow of the D4 program for an example molecule (all defini-
tions and steps are explained in detail in the text).

The pairwise dipole-dipole dispersion coefficients in D4 are calculated by numerical
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integration via the well-known Casimir–Polder relation

CAB6 =
3
π

∞∫
0

dωαA(iω)αB(iω). (2.1)

At runtime, the isotropically averaged atomic dynamic polarizabilities at imagi-
nary frequency α(iω) in equation 2.1 are obtained in two steps: The first step
incorporates an atomic partial charge dependent scaling of atomic reference po-
larizabilities. For this purpose, a new charge-scaling function ζ has been designed
in this work given by

ζ(zA, zA,ref) = exp
[
β1

{
1− exp

[
γA
(
1− zA,ref

zA

)]}]
, (2.2)

which is sketched exemplarily in Figure 2.2.

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5
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2.5

zA,ref /zA

ζ

β1 and γA are set to unity

Figure 2.2.: The ζ-function is shown, which scales the time-dependent density functional
theory (TD-DFT) computed dynamic polarizabilities α(iω) depending on
the calculated effective nuclear charge zA. The scaling depends on the
quotient of the latter and the precalculated charge zA,ref of the atom in the
reference system for which the dynamic polarizability has been computed. If
both effective charges are equal, no scaling is performed (the crossing point
of dotted lines) and the reference polarizability is taken.

In equation 2.2, the chemical hardness γA is taken from Ref. 240 and serves
as a nonfitted element-specific parameter to control the steepness of the scaling
function. The value of the global parameter β1 = 3 was determined by inspec-
tion. The empirical charge-dependent scaling in D4 is intended to increase the
magnitude of the atomic dynamic dipole polarizabilities α(iω) for larger number
of electrons in proximity to the considered atom. Independent from the actual
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DFA which is to be corrected, environment dependent atomic partial charges are
taken as input. The advantage is that such external partial charges can be (inde-
pendently from the actual calculation) made accurate and robust and that the D4
dispersion coefficients remain functional independent. By default, classical EEQ
type partial charges are used as descriptor for the electron density change (see
section 2.2.1). Other common options for the choice of the charges are discussed
below. In equation 2.2, we follow the definition of the effective nuclear charge
zA, used also in Ref. 210, as the sum of the nuclear charge of atom A and the
atomic partial charge qA

zA = ZA + qA, (2.3)

and introduce effective nuclear charges for element specific reference systems
zA,ref. For all elements beyond krypton, we consistently employ modified nuclear
charges Z ′ , as defined in Table 2.1, due to the use of effective core potentials
(ECPs) in the computation of the dynamic polarizability reference values.

Table 2.1.: Effective nuclear charges Z ′ used in the D4 charge scaling function for ele-
ments beyond krypton. The subtracted number corresponds to the number
of core electrons absorbed in the ECP used (default def2-ECPs in TURBO-
MOLE143,205,206).

Element Z ′

Rb-Xe Z− 18
Cs-La Z− 46
Ce-Lu Z− 28
Hf-Rn Z− 60

In comparison to the initially proposed charge-scaling function presented in Ref.
210, the two element-specific parameters could be discarded resulting in a global
scaling function with only one empirical parameter. The charge-dependent atomic
dynamic polarizability for a single reference system of atom A is given by the
product of αA,ref(iω) and its scaling function as

αA,ref(iω, zA) = αA,ref(iω)ζ(zA, zA,ref). (2.4)

In equation 2.4, atom-in-molecule dynamic polarizabilities of element specific ref-
erence systems αA,ref(iω) are utilized. Since such atom-in-molecule dynamic
polarizabilities cannot be calculated directly, molecular dynamic polarizabilities
of the reference systems AmXn (having m chemically equivalent atoms A and
n chemically equivalent X atoms) are used in the present model. From these

50



I. Development of the DFT-D4 London Dispersion Correction

molecular dynamic polarizabilities αAmXn(iω), the contribution of the nX atoms
is subtracted to obtain atom-in-molecule dynamic polarizabilities αA,ref(iω) for
atom A in different chemical environments. Here, the approximate additivity of
polarizabilities241 is exploited to generate atom-in-molecule dynamic polarizabili-
ties according to the following partitioning scheme:

αA,ref(iω) =
1
m

[
αAmXn(iω) −

n

l
αXl(iω)ζ(zX, zX,ref)

]
. (2.5)

Equation 2.5 directly considers the charge scaling of all X atoms in the respective
reference system. l is a stoichiometric factor specific to the reference molecule of
element X. The effective nuclear charges zX,ref entering equation 2.5 are constant
values determined once for the respective reference system. By subtracting charge-
scaled polarizabilities of the atoms X, the partitioning of molecular polarizabilities
into atomic contributions changes—with respect to D3—depending on the charge
of the atoms X within each reference system. In D4, the polarizability of atom
A is either increased (positive partial charge at X, subtract lower amount from
A) or decreased (negative partial charge at X, subtract higher amount from A)
when comparing with polarizabilities obtained by subtracting neutral X atoms.
The second step in the D4 procedure is the geometry-based interpolation over the
charge-scaled element specific reference systems. In order to enable a geometric
interpolation of all αA,ref(iω, zA) of atom A, a weighting procedure similar to
the fractional coordination number (CN) based scheme in D3 is used. As already
described in Ref. 210, the CN used within D4 is, however, slightly modified and
includes an electronegativity difference dependence for the respective element-pair,
i.e.,

CNA =
∑
A

∑
B 6=A

δENAB
2

(
1+ erf

(
−k0

(
RAB − RcovAB

RcovAB

)))

δENAB =
(
k1 exp (|ENA − ENB|+ k2)

2
)/
k3.

(2.6)

In equation 2.6, Pauling242 electronegativities (EN), the internuclear distance RAB
of pair AB, and the covalent atomic radii243 (RcovAB = RcovA + RcovB ) are used.
The parameters in equation 2.6 (k0 = 7.5, k1 = 4.1, k2 = 19.09, and k3 =

254.56) were obtained by fitting CN values to GFN2-xTB244 derived Wiberg bond
orders202 of singly bonded diatomic molecules. The exponential used in D3 is
replaced here by an error function to avoid a divergence behavior of the CN in
applications for dense systems under periodic boundary conditions.245 A graphical
comparison of CN values is shown for D4 and D3 in Figure 2.3 for a catalyst
frequently used in organometallic synthesis as an example.
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Figure 2.3.: Coordination numbers of selected atoms for the first generation Hoveyda–
Grubbs catalyst246,247 given as an example. Black/red (brackets) values
show CN values for D4/D3.

All reference coordination numbers, termed CNA,ref , are precalculated and stored
in the code such that a Gaussian weighting functionWA,ref

A can efficiently be used
to generate system-specific charge- and geometry-dependent atom-in-molecule
polarizabilities for atom A abbreviated as αA(iω) for clarity

αA(iω) ≡ αA,ref(iω, zA,CNA) =
NA,ref∑
A,ref=1

αA,ref(iω, zA)WA,ref
A . (2.7)

The contribution of each reference value αA,ref(iω, zA) to the final atom-in-
molecule polarizability of atom A is given by

W
A,ref
A (CNA,CNA,ref) =

Ns∑
j=1

exp
(
−β2 × j

(
CNA − CNA,ref)2)

NA,ref∑
A,ref=1

Ns∑
j=1

exp
(
−β2 × j

(
CNA − CNA,ref)2)

,

(2.8)

forNA,ref reference systems per element A (note that
NA,ref∑
A,ref=1

W
A,ref
A = 1). The

parameter β2 = 6 is adjusted manually to guarantee a smooth weighting function.
In contrast to D3, the Gaussian weighting is changed, such that several Gaussian
functions can be used for single reference systems as shown in equation 2.8.
Generally the number of Gaussian functionsNs is obtained once for every reference
system and used at runtime as described in equation 2.8. The procedure of setting
Ns – for different reference systems – is exemplified in Figure 2.4 to explain the
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principle of the weighting scheme.

0 1 2 3 4 5

∆CN12
∆CN23

A,ref1

A,ref2 A,ref3

CN

0 1 2 3 4 5

∆CN12
∆CN23

A,ref1

A,ref2 A,ref3

CN

(a)

(b)

Ns
A,ref1 = Ns

A,ref2 = Ns
A,ref3

Increase
set size

Ns
A,ref1 , Ns

A,ref2 = Ns
A,ref3

Figure 2.4.: Example for setting Ns for different reference systems. The CN difference
between systems A, ref1 and A, ref2 is denoted as ∆CN12. A, ref1 and
A, ref2 are easily distinguishable within the Gaussian weighting procedure
of equation 2.8 with Ns = 1, while A, ref2 and A, ref3 are not as could
be seen in part (a) of the figure. To circumvent this behavior, the set of
Gaussian functions is enlarged for A, ref2 and A, ref3 as it is shown in part
(b) by varying the Ns value in equation 2.8 dynamically.

Differences between CN values of reference systems are used to indicate when an-
other more compact Gaussian is necessary. As indicated in Figure 2.4(a), reference
systems with a sufficiently large CN difference can easily be distinguished from
each other within the Gaussian weighting procedure in equation 2.8 for Ns = 1.
This is no longer the case if the reference CN difference between two systems ap-
proaches smaller values as present between reference system A, ref2 and A, ref3
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(denoted as ∆CN23 in Figure 2.4). The overlap between the Gaussian functions
placed on A, ref2 and A, ref3 – shown in white – makes it considerably more
difficult to differentiate between both reference systems. For this reason, the set
of Gaussian functions is enlarged – by increasing Ns – for these near lying refer-
ence systems, as shown in Figure 2.4(b). This way, less overlapping functions are
added, which makes both reference systems distinguishable within the Gaussian
weighting procedure. By following this strategy it is possible to generate a smooth
weighting scheme without any discontinuities. The final charge- and coordination-
dependent atom-in-molecule polarizabilities, as obtained from equation 2.7, hence
include the dependence of α(iω) on the spatially closest binding partners (i.e.,
so-called Dobson type A effects189). They are used to calculate pairwise disper-
sion coefficients via a numerical Casimir–Polder integration over a fixed number
of 23 points (between iωmin = 10−6i and iωmax = 10.0i given in Hartree).

CAB6 ≡ CAB6 (CNA, zA,CNB, zB)

=
3
2π

22∑
j=1

(
ωj+1 −ωj

)
×
(
αA(iωj+1)α

B(iωj+1) + α
A(iωj)α

B(iωj)
)
.

(2.9)

The effect of charge scaling and Gaussian weighting on the αA(0) values with
variations in the partial charge (leading to different effective nuclear charges z)
and in the coordination number is visualized for carbon and hydrogen in Figure 2.5.
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Figure 2.5.: Visualization of the two-dimensional dependence of static polarizabilities
α(0) (in Bohr3) on the charge and coordination state in the D4 model for
(left) carbon and for (right) hydrogen. White circles represent αA(0) values
for the reference systems.

Furthermore, Figure 2.6 shows static atom-in-molecule polarizabilities for carbon
atoms in different hybridization states for the (3Z)-hexen-1-yne molecule.
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Figure 2.6.: Example molecule with depicted static atom-in-molecule polarizabilities α(0)
(in Bohr3) from D4 (black) according to equation 2.5 and for D3 (red in
brackets). Values for carbon/hydrogen are given in bold/italic font.

Here, we follow the definition in equation 2.5 for D4 and the definition given in Ref.
46 for D3 to obtain those polarizabilities. As atomic partitioning schemes generally
introduce some arbitrariness, the individual atom-in-molecule polarizabilities from
D3 and D4 also differ (by about 10%). However, the physical observable, i.e.,
the total molecular dispersion coefficient, is similar with the two methods for
this rather nonpolar compound (CAA6,mol(TD-PBE38/daug-def2-QZVP)=2103.1,
CAA6,mol(D4)=1949.5, and CAA6,mol(D3)=1893.0 – all given in Hartree Bohr6). Here,
the additivity of pairwise dispersion coefficients in molecules P (atoms p ∈ P) and
Q (atoms q ∈ Q) has been used

C
PQ
6,mol =

∑
p

∑
q

C
pq
6 . (2.10)

2.2.1. Classical Environment Dependent Partial Charges

For the scaling of atom-in-molecule polarizabilities, an established classical charge
model based on electronegativity equilibration of Gaussian type charge densities
is used.230 It allows the electronic charge to distribute itself in an optimal way
over the whole system, includes penetration effects, and thus can describe both
neutral and charged systems. Unlike environmental dependent partial charges that
are determined by neural networks,248 the adapted method determines the total
charge (as sum of all atomic charges) of the system exactly. For this purpose,
atomic charge densities are used within an isotropic electrostatics (IES) energy
expression where elements of the X vector and elements of the A matrix are given
by

XA = −χA and AAB =


JAA +

√
2γAA
√
π

A = B

erf
(
γABRAB

)

RAB
otherwise

(2.11)
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The EEQ model presented here contains as atomic radii aA, which are used
in the expression γAB = ((aA)2 + (aB)2)−1/2, as well as element dependent
atomic hardnesses JAA, and the right-hand side (RHS) χA. The RHS consists
of the atomic electronegativity ENA which is scaled by the square-root of the
error function modified D3 coordination number (termed mCN) that incorporates
the environment dependency into the model including an element specific scaling
parameter κA

χA = ENA − κA
√
mCNA. (2.12)

The mCN is given for atom A as

mCNA =
1
2
∑
B=1
B 6=A

(
1+ erf

(
−k

(
RAB
RcovAB

− 1
)))

(2.13)

similar to equation 2.6 with RcovAB = RcovA +RcovB . Geometry-only dependent partial
charges are obtained by solving a set of linear equations under the constraint that
the atomic charges sum up to the correct overall charge

L = EIES + λ

(∑
A=1

qA − qtot

)
, (2.14)

with ∂L/∂q = 0 and ∂L/∂λ =
N∑
i=1

qi − qtot. Adding this constraint in terms of
an Lagrange multiplier leads to the modified linear system of equations

(
A 1
1T 0

)(
q
λ

)
=

(
X
qtot

)
. (2.15)

This classical charge model requires five empirical parameters (JAA, aA, ENA,
κA, and RAcov) per element and achieves for molecules across the entire periodic
table of elements an average deviation of about 0.04 e− (0.03 e− for organic
molecules) from PBE0 based Hirshfeld charges (see Appendix A2). The main
motivation to propose a classical charge model as default instead of a quantum
chemistry based one is the higher robustness in electronically complicated cases
for which simple tight-binding or DFT methods may fail to converge properly (see
Appendix A2 for discussion). Furthermore, it enables the use of D4 in combina-
tion with fast approaches. For the construction of the analytical gradient of the
D4 dispersion energy, the derivatives of the charges with respect to nuclear dis-
placements are required. The partial derivative of the Lagrangian is derived with
respect to inter-nuclear distances in complete analogy to, e.g., coupled-perturbed
SCF equations, and the analytical partial charge derivatives were developed in
this work for the first time as given in Appendix A2. Computer timings for the
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calculation of the charges and their derivatives are given in Table 2.2 for different
protein structures. The formal scaling of the procedure is O(N3) with number of
atoms N and hence the same as for the dispersion energy in D3-ATM and D4
(for a two-body only approach – abbreviated by 2B – the formal scaling reduces
to O(N2)).

Table 2.2.: Computer timings in seconds for the calculation of energies (E), energies
and analytical gradients (E+g), and analytical charge derivatives (∂q/∂Rj)
for differently sized protein structures with their protein database (PDB)
entry. All calculations have been conducted at four cores (each CPU: Intel(R)
Core(TM) i7-7700K CPU@4.20GHz) with DFT-D4-2B, DFT-D4-ATM, or
DFT-D4-MBD. Timings for D4-MBD are excluded for proteins with more
than 1500 atoms.

PDB E(D4) E+g(D4)

(atoms) 2B ATM MBD ATM ∂q/∂Rj

2BEG(373) 0.07 0.20 2.11 0.25 0.01
1R0I(782) 0.22 1.32 37.08 2.18 0.04
1MOL(1562) 1.13 9.75 401.00 13.28 0.40
2ZOH(1929) 1.80 18.21 . . . 24.85 1.29
1YMB(2489) 3.45 38.70 . . . 48.26 2.24
1JS8(5988) 47.07 528.45 . . . 570.45 24.47

By using the definition of the Lagrangian given in equation 2.14, the analytical
charge gradients are derived as



∂q
∂Rj
∂λ
∂Rj


 =


 A 1

1T 0




−1

×


−




∂A
∂Rj 0

0T 0




 q

λ


+




∂X
∂Rj

0




 (2.16)

where the inverse of the indefinite (N+1) matrix has been obtained by a Bunch-
Kaufman factorization249 and inversion.

2.2.2. Two-body Dispersion Energy

The pairwise dispersion coefficients are then used to compute the corresponding
dispersion energy in complete analogy to DFT-D3 by multiplying with a short-
range damping function in order to apply the model in combination with standard
DFAs. The DFT-D4 pairwise dispersion energy is given by

E
(6,8)
DISP = −

∑
AB

∑
n=6,8

sn
CAB(n)

R
(n)
AB

f
(n)
damp (RAB) , (2.17)
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where sn scales the individual multi-polar contributions (s6 and s8 for the dipole-
dipole and dipole-quadrupole term, respectively), and f (n)damp denotes the rational
Becke–Johnson (BJ) damping function (denoted as BJ-damping (BJD) in the
following).

f
(n)
BJD(RAB) =

R
(n)
AB

R
(n)
AB +

(
a1 RAB0 + a2

)(n) (2.18)

has become already the default in DFT-D3. For alternatives, see Ref. 122 and
for a general discussion of damping functions in dispersion corrected DFT models,
see Ref. 166. Equation 2.18 incorporates the functional-specific parameters a1

and a2 and the cutoff-radii defined as

RAB0 =

√
CAB8
CAB6

, (2.19)

where the recursive relation between dipole-dipole and dipole-quadrupole disper-
sion coefficients is used as in DFT-D346.

RAB0,BJ =
(
a1 R

AB
0 + a2

)
. (2.20)

Furthermore, we define the following expression for the rational damping term

RAB0,BJ =
(
a1 R

AB
0 + a2

)
. (2.21)

2.2.3. Three-body Dispersion and Efficient Geometry
Optimizations

The simplest way to include three-body effects is to use the well-known ATM term

EABC =
CABC9 (3 cos θa cos θb cos θc + 1)

(RABRBCRCA)
3 . (2.22)

Here, θa, θb, and θc are the internal angles of the triangle formed by RAB, RBC,
and RCA, while CABC9 is the triple-dipole constant given by

CABC9 =
3
π

∞∫
0

dωαA(iω)αB(iω)αC(iω). (2.23)

The numerical integration of the triple-dipole dispersion coefficient is possible
using D4 polarizabilities, but due to the fact that the three-body energy contribu-
tion is rather small (at most 5-10% of EDISP), the coefficients can be reasonably
approximated as in the D3-ATM model by a geometric mean of dipole-dipole
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dispersion coefficients, i.e.,

CABC9 ≈
√
CAB6 CBC6 CCA6 . (2.24)

This approximation was already tested within the DFT-D3-ATM scheme for dif-
ferent element combinations and a typically small deviation of about 10–20% to
the exact expression has been found46. In the D4 model, the C6 coefficients used
to obtain the CABC9 are obtained from charge-neutral atomic polarizabilities (i.e.,
neutral atoms with zA = ZA). The finally used three-body dispersion energy
expression is then given as

E
(9),ATM
DISP =

∑
ABC

EABCf
(9)
damp(RABC), (2.25)

where the sum is over all atom triples ABC applied with a zero-damping scheme
proposed by Chai and Head-Gordon122

f
(9)
damp(RABC) =

1
1+ 6

(
RABC

)−16 . (2.26)

Equation 2.26 includes the averaged inter-atomic distance

RABC =

(
RAB RBC RCA

/
RAB0,BJ R

BC
0,BJ R

CA
0,BJ

)1/3
, (2.27)

which incorporates RAB/BC/CA0,BJ (cf. equation 2.21). The final energy expression
used is therefore given as

ED4DISP = E
(6,8)
DISP + E

(9),ATM
DISP . (2.28)

Analytical gradients are available for this energy expression within the D4 imple-
mentation as tested against numerical derivatives.

2.2.4. Many-body Dispersion Energy

Depending on the size and the geometrical arrangement of the atoms, higher-
order dispersion contributions (larger than three-body) can be of similar magni-
tude as three-body contributions and hence, for consistency, terms up to infinite
order should be included to achieve a consistent description of all dipole-dipole
interaction orders189. Here, a conceptually simple but robust approach intro-
duced originally by Cao and Berne250 is adapted, which has been made popular
by Tkatchenko et al.239. Physically it is based on a coupling of atomic dipole
polarizabilities in terms of quantum harmonic oscillators (QHOs). The coupled
dipole model of QHOs serves as an approximation to describe the density-density
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response functions, which would otherwise be calculated, e.g., via the random
phase approximation (RPA). The atomic response functions in a coupled dipole
model allow a considerable reduction in the degrees of freedom (i.e., three QHOs
per atom) and the computational costs. With this in mind, an alternative energy
expression is proposed which consists of two parts. The first is to compose the two-
body dipole-dipole and dipole-quadrupole interaction. The second part includes all
dipole-dipole interactions up to infinite order, E (n),MBD

DISP (n = 6, 9, 12, 15, . . . ,∞).
To avoid double counting of the two-body dipole-dipole energy, it is removed ex-
plicitly from the MBD energy according to

ED4-MBD
DISP = E

(6,8)
DISP +

(
E
(n),MBD
DISP − E

(6),MBD
DISP

)
. (2.29)

Here we have exploited that E(6)
DISP = E(6),MBD

DISP (see Appendix A2 for the complete
derivation), which is the case in our consistent damping formulation for the two-
body dispersion energy. It should be noted that this mutual consistency does not
exist in the TS and MBD schemes of Tkatchenko and coworkers, which unfortu-
nately, has obfuscated the scientific discussion about the relevance of many-body
dispersion beyond two- and three-body interactions. Furthermore, rearranging to
ED4-MBD
DISP = E

(n),MBD
DISP + E

(8)
DISP is not possible in the general case, as for double

hybrid density functionals (abbreviated as DHDF) s6 6= 1, whereas this scaling
cannot be applied to an individual term in the infinite-order MBD energy.

2.2.5. Definition of the D4 Default Model and Use of Alternative
Charges

At first, it should be emphasized that the D4 model only turns into a DFT-D4
method when used in combination with a specific density functional. If just po-
larizabilities or dispersion coefficients are calculated, the results are functional
independent. The D4 default setting uses classical EEQ partial charges to scale
atom-in-molecule polarizabilities due to their characteristics of being robust and
efficient. The quality of the used charges is important but not essential for the
finally obtained accuracy. The D4 model also works well with other charges, e.g.,
with partial charges obtained by the recently developed GFN2-xTB tight-binding
method. This indicates its robustness and that under almost all circumstances D4
is similar or better than D3 but never worse (by construction). Generally, the use
of three types of reference charges is currently implemented in the model: EEQ
gas phase charges q (default), Mulliken-type partial charges qTB from the GFN2-
xTB tight-binding method244, and DFT Hirshfeld charges qDFT (PBE0116/def2-
TZVP251 level). Hirshfeld partial charges at the PBE0/def2-TZVP level of theory
were also used to parameterize the EEQ model. If DFT charges should be used
they must be calculated separately such that they can be fed into the model.
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For a given type of charges (classical or TB or DFT) different reference effective
nuclear charges zA,ref, as introduced in equation 2.4, are stored and accordingly
used in the D4 program. The DFT-D4 default model always includes an ATM
term as described in section 2.2.3 (see equation 2.28 for the total energy ex-
pression). Nevertheless we offer the possibility to use DFT-D4 including MBD
effects (termed DFT-D4-MBD) in terms of an energy correction. The rational
BJ-damping function is always applied. The use of other damping functions is
not supported since we obtained in many test calculations the overall best results
always with the BJ-damping for several DFA classes. When using this so-defined
method, it should be abbreviated as “method-D4” (where “method” represents
either a DFA or Hartree-Fock), which allows simple and clear referencing in future
publications. If charges other than the default are used, this could be indicated by
adding e.g. ”(TB)” or ”(PBE0/def2-TZVP)”. Unfortunately, the previous DFT-
D3 method has partly lost a clear abbreviation over the years, since additional
parameterizations or extensions to the method have been assigned with various
nomenclatures (see, e.g., DFT-D3(0)46, DFT-D3(BJ)166, DFT-D3(CSO)73,252,
DFT-D3(op)75, DFT-D3M74). In the next sections, the technical details of the
calculations are given first, followed by benchmarking of this finalized D4/DFT-D4
method for dispersion coefficients, interaction energies, conformational energies,
as well as in general thermochemical applications. Last, optimized covalent as
well as noncovalent geometries are discussed.

2.2.6. Technical Details

All ground state DFT calculations were performed with either TURBOMOLE
7.0.2, and TURBOMOLE 7.2.1 (for all SCAN114,253 calculations) or ORCA
4.0.158,145. Standard exchange-correlation energy integration grids (TURBO-
MOLE: m4, ORCA: grid4, finalgrid5) and usual convergence criteria for the self-
consistent field convergence (10−7 Hartree) were used. The resolution of the
identity (RI) approximation207–209 was applied in all calculations for the elec-
tronic Coulomb energy contribution. Ahlrich’s type quadruple-zeta basis sets
(def2-QZVP254) were used throughout if not stated otherwise.

BJ-damping function parameterization The functional specific parameters of
the BJ-damping function have been determined using a Levenberg–Marquardt
least-squares minimization to reference interaction energies of established nonco-
valent interaction benchmark sets (S66x8203, S22x5204, NCIBLIND108). In total,
98 dissociation curves with 718 reference data points of high accuracy were used
for regression. The use of this new fitting set enabled parameterizations of such
DFAs for which BJ-damping parameters could not be obtained successfully in ear-
lier works due to over-binding tendencies (e.g., Minnesota functionals, see Ref.
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57).

Molecular Dispersion Coefficients All molecular dynamic dipole polarizabili-
ties α(iω) were calculated using TD-DFT164,165. As in D3, a variant of the PBE0
hybrid functional was used, with a Fock-exchange admixture of 37.5% (dubbed
PBE38). This method has already proved its accuracy and robustness in previous
works46,210. The atomic orbital (AO) basis sets used in the TD-DFT calcula-
tions are of doubly augmented def2-QZVP quality very closely representing the
complete basis set (CBS) limit for this property. Here, for the respective sys-
tems, each hydrogen has been augmented with additional (2s/2p), each main
group element with additional (2s/2p/1d), and each transition metal with addi-
tional (2s/2p/1d/1f) Gaussian primitive functions. The exponent-extrapolation
of the additional primitives was done with the subprogram define from TUR-
BOMOLE 7.0.2. The following def2-ECPs are used: ECP-28 covering 28 core
electrons (for Rb, Sr, Y-Cd, In-SB, Te-Xe, Ce-Lu), ECP-46 covering 46 core elec-
trons (for Cs, Ba, La), and ECP-60 covering 60 core electrons (for Hf-Hg, Tl-Bi,
Po-Rn) as defined in Ref. 251. Comparative calculations with the XDM model
were conducted with the postg255 program based on TURBOMOLE generated
wave function wfn-files. Unfortunately, postg only supports a limited number
of basis sets, since each basis set has its own parameterization linked to the ap-
plied density functional. Therefore, all postg input files were calculated with the
PBE102/def2-TZVP setup. Furthermore, calculations were also carried out with
the TS based MBD method of Tkatchenko et al. using the corresponding stan-
dalone code256. The required relative Hirshfeld volumes were taken from postg
calculations performed at the PBE/def2-TZVP level. All geometries of the TD-
DFT derived organometallic molecular C6 coefficient benchmark set (abbreviated
as TOMC6 benchmark set) were obtained on the TPSS105-D3(BJ)-ATM/def2-
TZVP level of theory and molecular reference dispersion coefficients are shared in
Appendix A2.

Noncovalent Reference Interaction Energies for L7 and S30L Benchmark
Sets We use recently published reference values (see Supplementary Material
of Ref. 257) for the L7258 and the S30L259 benchmark sets. They were ob-
tained from local CCSD(T) calculations together with a special purpose CBS
estimation scheme including the geometry deformation energy and Boys/Bernardi
counter-poise (CP) correction260 (DLPNO-CCSD(T)261,262 in its sparse matrix
implementation22 employing the CBS* protocol as described in reference263).

Reference Energies for Thermochemical Benchmarks The reference con-
formational energies and structures of SCONF264, PCONF21265,266, ICONF57,
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and UPU23263 subsets were extracted from the GMTKN55 database (see Ref.
57 for further information and our homepage267 for the entire database). For
each benchmark set, the respective reference data with the accompanying level
of theory are listed in Appendix A2. The reference energies and structures for the
MOR41 transition metal reaction benchmark set were taken from previous work
(see Ref. 268 and our homepage269 for the entire database).

Tetrakis(isonitrile)rhodium(I) Dimer and Monomer Calculations For the
generation of reference association energies of the tetrakis(isonitrile)rhodium(I)
complex, CP-corrected DLPNO-CCSD(T) calculations with tight thresholds and
extended basis sets (def2-TZVPP(VeryTightPNO270)
/def2-QZVPP(TightPNO270)) were conducted using ORCA 4.0.1. A basis set
extrapolation was performed using optimized exponents proposed by Neese and
Valeev271. The deformation energy of the monomers (0.42 kcalmol−1) was also
taken into account. The error bar of the calculated interaction energy is estimated
to about ±0.5 kcalmol−1. Geometries have been obtained at the PBEh-3c272 level
of theory and verified as minimum structures by frequency calculations.

2.3. Results

2.3.1. Molecular Dispersion Coefficients

We have taken reference molecular dispersion coefficients which were determined
experimentally from dipole oscillator strength distributions (DOSD) as described in
previous works by Meath and co-workers273,274. From this data, a benchmark set
has been compiled in Ref. 49 consisting of 1225 molecular dispersion coefficients
for systems ranging from di-hydrogen to octane and other nonorganic molecules
such as SF6 or O2. The respective statistical evaluation for D338, D4, D4(TB),
the local response dispersion method (LRD)182, and TS49 for all systems in the
DOSD benchmark set are given in Table 2.3.
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Table 2.3.: Top (entries labeled for DOSD set): Statistical measures for the relative de-
viation (in %) of calculated molecular C6 dispersion coefficients for different
approaches with respect to experimental values for a molecular benchmark set
consisting of 50 molecules. For D3, LRD, and TS values are taken from Refs.
38,49,182. Bottom (entries labeled for TOMC6 set): Statistical measures for
the relative deviation (in %) of calculated homo-molecular C6 dispersion co-
efficients for different approaches with respect to theoretical TD-DFT values
for a transition metal benchmark set of 25 complexes for the complete set
and 15 complexes for the subset. The best values are highlighted in bold
font.

Measure D4 D4(TB) D3 LRD TS

DOSD

MAD 3.8 3.9 4.7 6.1 5.3
MD −0.1 0.3 −2.4 −2.5 −2.7
SD 5.1 5.3 5.2 7.7 7.3
AMAX 29.1 34.7 23.9 52.9 44.0

D4 D4(TB) D3 XDM MBD

TOMC6 Subset MAD 8.7 8.9 20.5 9.4 13.7
MD −1.7 −2.3 −9.6 1.4 13.7
SD 11.2 11.4 28.1 13.3 6.1
AMAX 29.7 25.1 80.8 36.6 26.2

Measure D4 D4(TB) D3

Complete MAD 7.0 7.9 12.0
MD −2.2 −3.6 −5.5
SD 9.3 9.4 15.7
AMAX 29.7 25.1 56.1

For medium-sized organic and inorganic molecules, D4/D4(TB) further improves
upon the already accurate D3 model (mean absolute deviation, MAD, of 3.8%
and 3.9% vs. 4.7%). Other statistical measures for D4/D4(TB) are also low-
ered in comparison to values for the competitors which indicates a robust and
consistent improvement in the description of pairwise dispersion coefficients for
such systems. In the authors’ opinion, the achieved MAD of 3.8% closely ap-
proaches the inherent accuracy of the underlying TD-DFT calculations and is
thus difficult to improve further. For comparison, an assessment of the XDM
method yielded an MAD of 10.0% for a similar small-molecule database229, while
a number of vdW density functionals yield even larger deviations for asymptotic
molecular C6 coefficients275. Note that the resulting DFT-D4 interaction energy
errors in the asymptotic regime of about 4.0% are comparable or even smaller
than, e.g., residual errors in WFT energy calculations employing large but finite
triple- or quadruple-zeta basis sets. Since the DOSD set excludes the important
class of transition metal complexes, we have created a corresponding benchmark
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set consisting of computed molecular dipole-dipole dispersion coefficients derived
from TD-DFT dynamic reference polarizabilities at the PBE38/daug-def2-QZVP
level of theory. This benchmark set consists of 25 organometallic complexes (see
left side of Figure 2.7 for example structures) and is dubbed as TOMC6 which
stands for TD-DFT derived organometallic molecular C6 coefficient benchmark
set.
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Figure 2.7.: (left) Example complexes from the TOMC6 set including (I) aluminium, (II)
nickel, (III) molybdenum, and (IV) cobalt to demonstrate the diversity of the
benchmark set. Structures and reference molecular dispersion coefficients
are listed in Appendix A2. (right) Correlation plot between reference molec-
ular dispersion coefficients of transition metal complexes obtained by hybrid
TD-DFT (numerically integrated from molecular α(iω) values according to
equation 2.9) and molecular ones derived from pairwise dispersion coeffi-
cients with D3, D4, D4(TB), XDM, and MBD models.

Results for the D3, D4, D4(TB), XDM, and MBD schemes are given on the right
side of Figure 2.7 together with their statistical evaluation listed in Table 2.3.
Here, the TOMC6 set was divided into two parts because several systems could
not be treated with XDM and MBD for technical reasons. The resulting smaller
set for which also XDM and MBD data are available is termed “subset” in the
following. In accordance with the previously discussed DOSD benchmark set, the
use of scaled polarizabilities in D4/D4(TB) improves upon the accuracy of the D3
method. For this set only XDM is able to achieve a comparable accuracy, how-
ever, at a substantially larger computational effort because a properly converged
DFT electron density is required in XDM. Furthermore, XDM energies need to be
integrated numerically over a fine grid to avoid numerical noise. The MBD model
achieves a result which is in between of D4/D4(TB) and D3 (here the molecu-
lar dispersion coefficient changes for different range-separation parameters – we
used βPBE = 0.83 – and, therefore, for different DFAs within MBD). Notably, all
methods yield larger errors for the electronically more complicated systems in the
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TOMC6 (sub)set than for the DOSD molecules. Nevertheless, the asymptotic D4
error of about 7.0% is still smaller than typical errors of DFAs for other correlation
energy effects. This will be further discussed below for the thermochemistry of
transition metal complexes. The application of Hirshfeld partial charges at the
PBE0/def2-TZVP level of theory slightly worsen upon the D4(TB) result with an
MAD of 9.5% for the complete set. The fact that calculated D4 molecular dis-
persion coefficients have the smallest errors with respect to reference values when
applying the EEQ charges additionally motivates their use as default (as already
defined in section 2.2.5). An explicit discussion of the effect of using different
charges is avoided, whereby DFT-D4 results with GFN2-xTB charges are shared
in Appendix A2 for interaction energies and structures.

2.3.2. Noncovalent Interactions and Conformational Energies

As shown in the section 2.3.1, the pairwise dispersion coefficients for organic/i-
norganic molecules and transition metal complexes are improved with the D4
method. In general, it is assumed that improved dispersion coefficients in DFT-
D type methods are associated with improved noncovalent interaction energies.
This assumption is to be verified in this section for various small to large molecule
benchmark sets. Reference interaction energies refer to the CCSD(T) or DLPNO-
CCSD(T) level of theory with tight threshold settings and CBS extrapolation
mostly taken from Ref. 257.
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Figure 2.8.: Comparison of MAD values for three typical noncovalent interaction bench-
mark sets (L7, S30L, S22) and various standard DFAs. Density functionals
corrected by D3(BJ)-ATM are shown in gray (bar width 1.0), DFT-D4 re-
sults are shown in blue (bar width 0.4), and DFT-D4-MBD results are shown
in yellow (bar width 0.2). For the S22 benchmark set the scaling of the MAD
axis was adjusted accordingly and values were obtained by averaging over
several typical DFAs (eight meta-GGAs, nine hybrids, and three DHDFs).

Figure 2.8 shows interaction energies in benchmark sets of increasing molecule size
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which are mainly stabilized by London dispersion: S22276, L7258, and S30L259.
Various typical noncovalent interaction motifs like hydrogen and halogen bond-
ing, π-π stacking, nonpolar dispersion, CH-π, and cation-dipolar interactions are
represented. The description of noncovalent interactions in the larger systems is
slightly (S30L) to largely (L7) improved at the DFT-D4-MBD level compared to
the already well performing DFT-D3(BJ)-ATM method. The only exception is the
TPSS-D4-MBD treatment for the L7 set which is worse than the D3(BJ)-ATM
corrected values. Note that residual MAD values of about 1 kcalmol−1 for L7
and 1-2 kcalmol−1 for S30L are not far from the accuracy of the reference data.
For the S30L benchmark the MAD values increase when the ATM term is ne-
glected, i.e., for DFT-D3 (DFA/MAD(DFA-D3(BJ))/MAD(DFA-D3(BJ)-ATM),
in kcalmol−1): PW6B95/3.4/2.4, TPSS/4.1/3.6, B3LYP/5.9/4.1, PBE/2.3/2.8.
For the S22 set, we use averaged MAD values for different DFA classes ar-
ranged according to Jacob’s ladder. Data for eight (meta) generalized gradient
approximation DFAs, abbreviated as (m)GGA, (namely BLYP103,104, BP86277,
M06L106,278, O-LYP279,280, PBE, revPBE281, RPBE282 , and SCAN), nine hy-
brid DFAs (M06283, B3LYP117,118, BHLYP, M062X, O3LYP, PBE0, PW6B95284,
TPSS0, and TPSSh), and three DHDF (DSD-BLYP285, DSD-PBEB95286, and
PWPB95286) are used to obtain averaged MAD values for S22. For this impor-
tant and prototypical noncovalent interaction (NCI) benchmark, D4 outperforms
D3(BJ)-ATM especially for hybrids and DHDFs.
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+ +

Coulomb interaction Dispersion interaction

      Strong
    attraction

+ +

Method

DLPNO-CCSD(T)

PBE0-D3(BJ)-ATM
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ΔE

PBE0 38.9

PBE0-D4(TB) 7.8

Figure 2.9.: Shown is a cationic dirhodium complex with the respective association en-
ergy ∆E in the gas phase where the repulsive cation-cation interaction is
almost compensated by attractive London dispersion interactions schematic
adapted from Ref. 287.

Figure 2.9 shows an interesting example for strong London dispersion interactions
in a doubly positively charged organometallic dirhodium complex. Here, the dom-
inant Coulomb repulsion can almost be compensated by dispersion interactions287
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in the gas phase (compare the association energy ∆E(PBE0) in Figure 2.9 with
its corresponding dispersion corrected values). This and related complexes have
been studied intensively and the property of oligomer formation in solution has
been an “open case” for many years288–290. Quantum chemical calculations have
been able to assign the main binding motif of this highly charged system to be
the London dispersion thus making it an ideal test case for the DFT-D4 method.
The theoretical reference association energy was calculated with an accurate local
coupled-cluster protocol (see technical details section) and is compared to the
dispersion and Boys-Bernardi CP-corrected PBE0/def2-QZVPP values.
Counterintuitively, the D4 corrected gas phase interaction is more favorable (less
positive association energy) than the corresponding D3 value. This is initially
surprising, since cationic compared to neutral complexes should feature smaller
dispersion coefficients as accounted for in D4 but not in D3. According to a de-
tailed analysis, the observed increased dispersion interaction in DFT-D4 is based
on new reference systems that have been added to some elements within the
D4 model (e.g., RhH5, CNRh = 4.70 and C6H6, CNC = 2.92), increasing the
homo-atomic dispersion coefficient for those elements (e.g., for rhodium atoms
within the complex the difference between D3 (CAA

6 (D3)=244.7 Hartree Bohr6)
and D4 (CAA

6 (D4)=294.9 Hartree Bohr6) is significant). Furthermore, the molec-
ular charge is distributed over all atoms in the molecule and is not centered on
the rhodium atoms. Thus, the partial charges of the rhodium atoms are only
marginally changed when the neutral dimer complex is turned into the dication
(the change in qRh is less than 0.1). In summary, the stronger binding in D4 which
is in better agreement with the localized CCSD(T) reference value (for both types
of partial charges – EEQ or TB) can be explained by larger atomic dispersion
coefficients in combination with only a small decrease of atomic polarizabilities
due to small partial charges on the central rhodium atoms. DFT-D4 also yields
comparable or higher accuracies for (bio)chemically important conformational en-
ergies in various test systems. Figure 2.10 exemplifies this for sugar conformers
(SCONF) as well as for tri- and tetra-peptide conformers (PCONF21) both taken
from the GMTKN55 database.
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Figure 2.10.: Conformational energies for two benchmark sets SCONF (left) and
PCONF21 (right) in comparison to accurate reference values at the
DLPNO-CCSD(T)/TightPNO/CBS level of theory57. For all calculations
a def2-QZVP basis set (abbreviated as QZ) has been applied.

Additionally, results for conformational energies of inorganic molecules (ICONF),
as well as for RNA backbone conformers (UPU23) are given in Table 2.4.
Note that in contrast to DFT-D3, the DFT-D4 training set used for the determina-
tion of the BJ-damping parameters does not contain conformational energies. In
Figure 2.10 we show DSD-BLYP based results as an example and provide statisti-
cal evaluations for other selected DFAs (PBE, B3LYP, and PW6B95) in Table 2.4.
Overall, the conformational energies are generally improved for PBE, B3LYP, and
PW6B95 by applying DFT-D4/DFT-D4(TB) compared to DFT-D3(BJ)-ATM.
The reduction of the MAD is often noticeable (about 0.1 kcalmol−1) but some-
times significant, e.g., 0.20–0.25 kcalmol−1 for peptides and RNA structures with
PBE or B3LYP. Especially for the peptide set the improvement is large when
compared to the small averaged absolute relative energy of only 1.62 kcalmol−1.

2.3.3. Thermochemistry

As discussed in section 2.3.1, the D4 model is particularly good for systems in
which atomic partial charges show significant deviations from the reference systems
used in the Gaussian weighting procedure (cf. equation 2.8). Typical examples are
transition metal complexes, which contain d-block elements in varying oxidation
states. We have discussed the improved description of pair-wise dispersion co-
efficients for transition metal complexes for the TOMC6 set (see section 2.3.1).
In the following, the thermochemistry of transition metal compounds is investi-
gated employing the recently composed MOR41 set consisting of 41 closed-shell
transition metal reactions of uncharged molecules. The estimated maximum error
of the reference reaction energies is about 2 kcalmol−1 (see Ref. 268 for further
information). The reactions in this set typically occur in homogeneous catalysis,
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Table 2.4.: Conformational energies calculated with three widely used dispersion cor-
rected DFAs (PBE, B3LYP, and PW6B95) with the def2-QZVP basis set. All
statistical measures are given in kcal mol−1 relative to the reference energies.
The best result for each measure is highlighted in bold, DFT-D3(BJ)-ATM
is abbreviated by D3, DFT-D4 is abbreviated by D4, and DFT-D4(TB) by
D4(TB). The average reference energy over all entries in the set |∆E| are
taken from Ref. 57.

Sugar conformers (SCONF, |∆E| = 4.60)

PBE B3LYP PW6B95

Measure D3 D4 D4(TB) D3 D4 D4(TB) D3 D4 D4(TB)

MAD 0.78 0.88 0.77 0.29 0.33 0.23 0.24 0.28 0.20
MD 0.28 0.34 0.29 −0.14 −0.07 −0.14 −0.01 0.04 −0.02
SD 0.98 1.09 0.94 0.48 0.58 0.42 0.38 0.43 0.36
AMAX 2.73 2.96 2.67 1.73 2.07 1.64 1.21 1.33 1.12

Tri- and tetrapeptides (PCONF21, |∆E| = 1.62)

MAD 1.20 0.99 1.04 0.53 0.35 0.30 0.48 0.49 0.49
MD −0.54 −0.51 −0.53 −0.04 0.03 0.01 0.34 0.36 0.38
SD 1.44 1.24 1.18 0.60 0.41 0.37 0.58 0.60 0.46
AMAX 2.51 2.31 2.36 1.11 0.90 0.88 1.05 0.98 0.98

Inorganic conformers (ICONF, |∆E| = 3.27)

MAD 0.31 0.31 0.31 0.28 0.28 0.27 0.22 0.22 0.22
MD 0.09 0.09 0.10 −0.06 −0.08 −0.07 0.04 0.02 0.02
SD 0.38 0.40 0.40 0.39 0.42 0.39 0.33 0.33 0.34
AMAX 0.84 1.12 1.11 0.99 1.15 0.98 0.90 0.83 0.85

RNA backbone conformers (UPU23, |∆E| = 5.72)

MAD 0.57 0.51 0.48 0.68 0.60 0.54 0.66 0.63 0.59
MD 0.36 0.27 0.20 0.55 0.42 0.31 0.52 0.49 0.42
SD 0.71 0.63 0.58 0.80 0.70 0.57 0.80 0.76 0.58
AMAX 1.67 1.62 1.50 1.57 1.50 1.33 1.65 1.55 1.44

i.e., complexation reactions, oxidative additions, and ligand exchange reactions.
For the MOR41 set, the D4 model outperforms D3(BJ)-ATM for all tested DFAs
(the only exception is PW6B95-D4). This is particularly noticeable for the well
performing double hybrid DFAs DOD-PBE291, and DSD-PBE291 or hybrid DFAs
(especially for PBE0) for which it is now possible to almost reach the estimated
error level of the reference method. Hence, the combination of such DFAs with
D4 represents an efficient route to obtain reaction energies in transition metal
thermochemistry applications. During the D4 parameterization process, damp-
ing parameters for some DFAs could also be “repaired”. The RPBE functional is
given as example, where the published parameters were apparently not optimal
(see Supplementary Material of Ref. 57 for original values). A recently published
work shows furthermore that DFT-D4 is particularly suitable for the description
of noncovalent interactions in organometallic complexes292. For main group ele-
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Figure 2.11.: Comparison of MAD values for MOR41 reaction energies. The inset shows
one example reaction (reaction 28 in the set). Various density functionals
from different rungs of Jacob’s ladder are investigated. Shown are devia-
tions of D3(BJ)-ATM corrected (gray, bar width 1.0), D4 corrected (blue,
bar width 0.4), and D4-MBD corrected (yellow, bar width 0.2) DFT com-
puted reaction energies to reference values with an estimated uncertainty
of ≈ 2 kcal mol−1.

ments, the general performance of DFT-D4 for thermochemistry and kinetics is
assessed using the large GMTKN55 database. This database allows an evalua-
tion for a wide variety of chemical problems and provides a large number of 2462
systems resulting in 1505 relative energies.
Figure 2.12 shows results for several dispersion-corrected DFAs grouped accord-
ing to Jacob’s ladder plotted with their weighted mean total absolute deviations
(WTMAD-2, see Ref. 57 for the exact definition). The figure is divided into
two parts describing the performance for the entire GMTKN55 database (termed
as GMTKN55 full) and for all its NCI subsets (shown inverted and termed as
GMTKN55 NCIs). Overall for this typical selection of DFAs, DFT-D4 represents a
retention or small improvement over DFT-D3(BJ)-ATM for general thermochem-
istry. No single outlier in the huge number of systems in GMTKN55 was detected.
The improvement obtained with DFT-D4 is more pronounced in the NCI subsets
than for the entire database because in the former the dispersion contributions are
relatively larger than for most “normal” chemical reactions. A direct comparison
between DFT-D4 (ATM, MBD either with EEQ or TB charges) and nonlocally
corrected DFT (DFT-NL) for this NCI subsets shows a clear improvement when
applying D4 (see Table 2.5).
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Figure 2.12.: Comparison of weighted mean deviations (WTMAD-2 values) for the entire
GMTKN55 set and its noncovalent interaction subsets. Shown are devi-
ations of DFT-D3(BJ)-ATM (gray), DFT-D4 (blue), and DFT-D4-MBD
(yellow) values to reference data (see technical details section for further
information).

Table 2.5.: WTMAD-2 values over all NCI subsets of the GMTKN55 benchmark database
given in kcalmol−1 for DFT-D4 ((EEQ/TB)-ATM, (EEQ/TB)-MBD) or
DFT-NL which were extracted from Ref. 293.

EEQ TB

DFA ATM MBD ATM MBD DFT-NL

B3LYP 5.58 5.76 6.29 6.36 6.03
PW6B95 5.29 5.27 5.38 5.50 5.87
DSD-BLYP 3.23 3.15 3.09 3.12 3.18

Importantly, the remaining MAD of 2.0 kcalmol−1 for the MOR41 set and the
WTMAD-2 of 2.0–3.0 kcalmol−1 for GMTKN55 with the best functionals is not
far from the accuracy of the underlying reference methods. The s6 damping pa-
rameters for the double hybrid DFAs (which is unity for all lower-rung DFAs) has
been constrained in the fitting according to the procedure of Ref. 46, i.e., we
have not followed the construction scheme of Martin and co-workers291 for its
determination. This constraint, however, does not affect their accuracy which is
actually significantly increased with DFT-D4 compared to the already very ac-
curate DFT-D3 versions. Overall, the performance of D4 and D4-MBD is very
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similar for the whole GMTKN55 benchmark database which shows that an ATM
treatment is sufficient, if the damping function is chosen in a consistent manner
(see Secs. 2.2.2 and 2.2.4).

2.3.4. Covalent and Noncovalent Structures

In order to investigate the DFT-D4 accuracy more closely, various standard bench-
mark sets for bond distances in equilibrium geometries are discussed here. This is
of particular importance because structure determination is a common application
area of DFT methods. First, covalent bond lengths are to be investigated, whereby
noncovalent distances, and entire equilibrium structures are also examined in this
section. All geometries discussed here are fully optimized employing an Ahlrich’s
type quadruple-zeta AO basis set (def2-QZVP254). The sets used for testing co-
valent bond lengths consist of molecules formed by the first or second row main
group elements of the periodic table (LMGB35), molecules which are composed
of main group elements of the third or higher rows (HMGB11), and 3d-transition
metal complexes with a total of 50 analyzed bond lengths as compiled by Bühl
and Kabrede294 (TMC32). For a detailed description of the former benchmark
sets see Ref. 272. These sets are ideally suited also for “cross-checking”, since
many of the here treated elements were not part of the D4 parameterization pro-
cess (only the elements H, C, N, and O are present in the BJ-damping function
fit), which was furthermore based solely on energies. Figure 2.13 shows mean
absolute deviations from reference values for three typical D3(BJ)-ATM and D4
dispersion-corrected DFAs and a statistical evaluation of all three benchmark sets
is given in Appendix A2.
Inspection of Figure 2.13 shows only marginal differences between DFT-D4 and
DFT-D3(BJ)-ATM for bond lengths which is expected because dispersion correc-
tions mostly affect the noncovalent distance regime which is not really covered in
these relatively small molecules tested. The tiny worsening observed for HMGB11
and for the TMC32 benchmark (the MAD increases by less than 0.1 pm) are
practically irrelevant. Small differences between DFT-D4 and DFT-D3(BJ)-ATM
are found for equilibrium rotational constants Be while larger differences occur for
intermolecular distances in the S66295 noncovalent equilibrium complex bench-
mark (as derived from data for the S66x8 benchmark set203). The Be values can
be considered as a measure for the quality of a complete molecular structure. Its
accurate computation requires a consistently good description of covalent bond
lengths as well as of nonbonded distances and small changes of internal rotational
degrees of freedom may result in rather large deviations of a few percent for Be. As
already discussed in the literature, dispersion corrections to DFT typically increase
Be values (shrink molecular size) significantly by about 0.5-1.5%296, thereby in
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general improving the agreement with the reference data.
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Figure 2.14.: Mean relative deviations from reference values for two benchmark sets
representing the quality of entire equilibrium structures (rotational con-
stants, ROT34) and noncovalent center-of-mass equilibrium distances (de-
rived from S66x8) for seven DFAs. Gray bars: DFT-D3(BJ)-ATM (bar
width 1.0), blue bars: DFT-D4 (bar width 0.4).

Figure 2.14 shows the relative MAD in % of computed equilibrium rotational
constants compared to back-corrected experimental values for the ROT34 bench-
mark set220. Here, dispersion corrected PBE0 yields accurate molecular structures
within the uncertainty of the reference data while dispersion corrected TPSS and
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PBE on average overestimate molecular size (see the statistical evaluation in Ap-
pendix A2. Dispersion corrected B3LYP provides slightly enlarged molecular struc-
tures where both, the D4 and the D3(BJ)-ATM correction, perform equally well.
All in all, the high quality of covalent equilibrium geometries obtained with DFT-
D3(BJ)-ATM is retained with DFT-D4. Noncovalent equilibrium geometries are
considered in Figure 2.14. Reference coupled-cluster interaction energies taken
from Ref. 203 for eight different shifted center-of-mass (CMA) distances were in-
terpolated to obtain reference CMA distances for all complexes in the S66 set. The
DFT computed CMA distances were obtained in the same way to allow a direct
comparison to the reference values. As can be seen from this plot, the D4 model
yields a slight (O-LYP and SCAN) to enormous improvement (revPBE) compared
to the already very accurate DFT-D3(BJ)-ATM geometries. For the standard
DFAs PBE, TPSS, and PBE0 shown in Figure 2.13, D4 performs slightly better
or equally well than D3-ATM. Note, that the relative error for calculated CMA
distances without dispersion correction is about one order of magnitude larger
and that the very small residual relative deviations of 1.0% or less are similar for
mostly covalent (ROT34) and noncovalent (S66) sets, respectively.

2.4. Summary and Conclusions

We presented the theory and main features of the final D4 method, in which
charge-scaled atom-in-molecule dipole polarizabilities are interpolated by means of
an atomic coordination number within a Gaussian weighting procedure to generate
charge- and geometry-dependent atom-in-molecule polarizabilities α(iω). The
partial charges used in the polarizability scaling are obtained by default with a
classical electronegativity equilibration (EEQ) model. As fall-back levels, TB based
Mulliken-type partial charges qTB (GFN2-xTB) or DFT based Hirshfeld partial
charges qDFT (PBE0/def2-TZVP) are proposed. The polarizabilities are then
numerically integrated at runtime of the D4 code to obtain system-dependent
dipole-dipole dispersion coefficients CAB6 . For two benchmark sets they are more
accurate than the charge-independent ones from the predecessor D3 scheme, and
particularly, better coefficients are obtained for transition metal compounds. The
two-body dispersion energy is computed in the commonly applied form as a sum
over pair interactions including dipole-dipole and approximate dipole-quadrupole
terms. A well-known many-body dispersion model based on coupled harmonic
oscillators is used for the determination of all higher-order dipole terms using
the charge- and geometry-dependent α(iω) values. Exact analytical gradients
including derivatives of the EEQ charges are available for the simplified default
energy expression where the higher-order dipole-dipole interactions are truncated
to the ATM term for computational efficiency. The final DFT-D4 default model
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uses the two-body and the ATM energy expression (cf. equation 2.28) in structure
optimizations. In addition, a single-point MBD correction is recommended as a
sanity check for larger systems (cf. equation 2.29). The degree of empiricism in
the ad hoc more physical D4 is slightly higher than in D3 with the same number
of functional-dependent damping parameters (three) and a few additional global
parameters for the charge dependency and coordination numbers.
The accuracy of the D4 method has been extensively verified using various bench-
mark sets including dispersion coefficients (organic and organometallic systems)
and with various standard density functionals as DFT-D4 for interaction energies
(intramolecular dispersion, and host-guest systems of medium to large size), con-
formational energies (sugars, tri- and tetrapeptides, inorganic systems, and RNA
backbone models), covalent bond lengths (light main group elements, heavy main
group elements, and 3d-transition metal elements), organic equilibrium structures
(rotational constants), noncovalent equilibrium structures, and reaction energies
of main group chemistry (extended GMTKN55 database) and transition metal
complexes occurring in homogeneous catalysis (MOR41).
DFT-D4 in general improves slightly upon the already accurate and well-established
DFT-D3(BJ)-ATM method and the new D4 model seems to be the most accu-
rate and general molecular dispersion correction available. This mainly results
from the inclusion of atomic charge effects into the atomic polarizabilities, the
balanced treatment of higher-order dipole-dipole interactions, and most impor-
tantly the high accuracy of the underlying TD-DFT dispersion coefficients. In
particular, systems involving large atomic charges or respective charge changes in
chemical processes (e.g., oxidation/reduction) benefit from a DFT-D4 treatment
compared to DFT-D3. Moreover, it should be emphasized that the generally good
description of dispersion interactions in nonpolar main group or organic molecules
is retained compared to DFT-D3(BJ)-ATM, i.e., DFT-D4 represents a save re-
placement of a widely used and well tested method. In the current form, the D4
method appears to have reached a plateau level within the DFT-D methodology
in terms of physical sophistication and cost-accuracy ratio. Further improvements
would most likely lead to significantly increased computational costs and more-
over would require concomitant improvements of the applied DFAs or damping
schemes. Importantly, the general black-box philosophy of the DFT-D4 approach
and the coupling of a single dispersion model to various standard DFAs is analo-
gous to DFT-D3. This and the availability for most of the periodic table (elements
up to atomic number Z = 86) enables broad application to a wide variety of quan-
tum chemical problems. A list of all 67 currently parameterized DFAs together
with their BJ-damping parameters is given in Appendix A2 (for different atomic
partial charges in combination with an ATM or an MBD treatment).
The proposal of D4 with a robust and reasonably accurate classical charge model as
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basis allows its application not only in the DFT context. Simplified semi-empirical
orbital models, sophisticated force-fields201 or neural network potentials can easily
be coupled with the D4 model simply because no electron density is required and
the whole procedure including nuclear gradients still runs at “force-field speed”.
This opens a route for an efficient, physically sound, and basically nonempirical
treatment of noncovalent interactions in large systems with thousands of atoms.
Ongoing work focuses on the implementation of the D4 model for periodic sys-
tems, which requires a cost-efficient determination of partial charges under peri-
odic boundary conditions. The here presented final molecular (nonperiodic) ver-
sion can be downloaded in coded form from the authors’ website free of charge297.
Furthermore, the DFT-D4 method is available in the upcoming release of TUR-
BOMOLE 7.3 software143,205,206, the next release of ORCA 4.1.0145, and
within an update of MOLPRO68.
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2.6. Appendix A2

In Appendix A2 the classical charge model is defined in more detail including
an energy expression and analytical gradients. The theoretical foundations of
the many-body dispersion correction used within the DFT-D4-MBD method is
discussed in detail. The derivation of the two-body dispersion potential which
is included into the GFN2-xTB Hamiltonian matrix is given. The definitions of
the double hybrid density functionals used are given. The BJ-damping parame-
ters are given for 67 DFAs and for Hartree-Fock. We compare timings (single-
point energies and gradients) between DFT-D4 and DFT-D3(BJ)-ATM for the
tetrakis(isonitrile)rhodium(I) dimer with 106 atoms and for a diamond chunk with
430 atoms. Furthermore, all statistical quantities are defined and listed as used
in the evaluation of the calculated data. Statistical evaluations of the following
benchmark systems are given with all reference and computed data for S30L, L7,
MOR41, SCONF, PCONF21, ICONF, UPU23, ROT34, LMGB35, HMGB11, and
TMC32. Structures of the tetrakis(isonitrile)rhodium(I) monomer and dimer are
attached, whereas the TOMC6 benchmark set (structures and reference molec-
ular C6 coefficients) is given as a tarball. Furthermore, we share the fitting set
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used for determination of damping parameters, to ensure that new DFAs can be
parameterized consistently.
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I. Development of the DFT-D4 London Dispersion Correction

Abstract We present an extension of the DFT-D4 model [J. Chem. Phys., 2019,
150, 154122] for periodic systems. The main new ingredient are additional refer-
ence polarizabilities for highly-coordinated group 1-5 elements derived from peri-
odic electrostatically-embedded cluster calculations. To demonstrate the perfor-
mance of the improved scheme, several test cases are considered, for which we
compare D4 results to those of its predecessor D3(BJ) as well as to several other
dispersion corrected methods. The largest improvements are observed for solid
state polarizabilities of 16 inorganic salts, where the new D4 model achieves an
unprecedented accuracy, surpassing its predecessor as well as other, computation-
ally much more demanding approaches. For cell volumes and lattice energies of
two sets of chemically diverse molecular crystals, the accuracy gain is less pro-
nounced compared to the already excellently performing D3(BJ) method. For the
challenging adsorption energies of small organic molecules on metallic as well as
on ionic surfaces, DFT-D4 provides values in good agreement with experimental
and/or high-level references. These results suggest the standard application of the
proposed periodic D4 model as a physically improved yet computationally efficient
dispersion correction for standard DFT calculations as well as low-cost approaches
like semi-empirical or even force-field models.

3.1. Introduction

The efficiency of modern Kohn–Sham density functional theory190,191 (DFT) en-
ables its routine application to very large molecules with thousands of atoms, as
well as the systematic screening of huge numbers of smaller compounds.298 How-
ever, DFT as approximate mean-field electronic structure method can fail dra-
matically for certain types of interactions. The two most prominent and relevant
problems are (i) the absence or severe underestimation of long-range electronic-
correlation effects, which give rise to London dispersion interactions,17 and (ii)
the so-called self-interaction error (SIE).281,299 The SIE problem will not be fur-
ther discussed in this work, as the focus of the present study is the extension of a
correction scheme which attempts to solve the first mentioned London dispersion
problem.
An accurate account of dispersion interactions is mandatory for most reasonable
description of chemically relevant molecules and even more so for condensed-phase
systems. Accordingly, it has shown, that dispersion-corrections systematically
improve the accuracy of density functionals on all rungs of Jacob’s ladder.57 The
development of dispersion correction schemes is a very active field of research
which has spawned several different approaches. The unifying idea of all these
approaches is to reintroduce the in principle well understood physics of London
dispersion to the DFT framework. The existing approaches may be organized
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in two categories. On the one hand, there are self-consistent schemes in which
dispersion is directly included in the functional, e. g., via a response function
and/or non-local dispersion kernels, and on the other with additive post-SCF-type
corrections which model dispersion based on atomic polarizabilities. The latter
may be subdivided in corrections which explicitly take into account the electron
density, and semi-classical approaches that are electron density independent.
Most approaches incorporate the electron density into their theoretical apparatus.
These include the exchange-hole dipole moment (XDM) approach of Becke and
Johnson,47,48 as well as the Tkatchenko–Scheffler (TS) model,49 and its many-
body dispersion (MBD) successor.50,300 All those methods employ a Hirshfeld-type
atomic partitioning of the electron density, either to rescale the polarizabilities of
the neutral atoms (TS, MBD), or to density-weight the approximated expectation
value of the squared total multipole operator for each atom within the molecule
(XDM). For the TS related approaches, Bučko and co-workers217,301 showed that
an iterative Hirshfeld partitioning, in which the fractionally charged atomic refer-
ence state is determined self-consistently, can improve the description of dispersion
interactions.
Approaches of the first category, which self-consistently include dispersion in the
density functional circumvent the somewhat arbitrary atomic partitioning of the
electron density. However, this comes at the cost of a reduced flexibility — cou-
pling to any method is hardly possible — and increased computational costs.
Approaches of this class are, e. g., the van der Waals density functionals302–307

(vdW-DF), which are based on the fundamental adiabatic connection theory. A
simplified construction scheme for the non-local correlation part has been intro-
duced by Vydrov and Van Voorhis (rVV10).51,52

Topic of this work are the semi-classical DFT-D methods of the last category.17,153

Testing representatives from each of these categories, including TS(TS/HI),
MBD(MBD/HI,MBD/FI), opt-vdw-DF2, rVV10, and DFT-D, we find that they
are all equally able to accurately account for dispersion interactions in various
scenarios within a DFT framework. However, the associated computational costs
of these methods can differ significantly. The overarching principle for the cost of
any such correction should be that the computational efficiency of the underlying
DFT method must be retained. While this is in general the case for all of these
methods in combination with hybrid functionals employing large Gaussian basis
sets, the correction can become the bottleneck in low-cost GGA DFT calculations,
as will be shown and discussed later in this article. For even lower-cost atomistic
models such as semi-empirical molecular orbital or force-field methods, only the
fastest approaches remain viable. An important point concerning the computa-
tional efficiency of additive dispersion-correction schemes is their account of the
chemical environment. While it appears as a logical step to derive and/or scale
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the atomic polarizabilities based on the electron density, this also introduces a
computationally demanding step, which typically slows down the calculation.
The DFT-D3 model46,166 avoids the electron density partitioning by interpolating
between atomic reference polarizabilities based on fractional coordination numbers
(CNs). The recently introduced successor DFT-D4 further improves this model
by making the atomic reference polarizabilities charge-dependent.210,308 However,
to retain the computational efficiency, the charge-information is not derived from
the electron density, but provided by a classical and thus efficient electronegativ-
ity equilibration (EEQ) model calculation. While this charge-scaling improves the
description for most molecular applications, in particular for transition metals,292

there are still issues with certain metal-ions in highly polar and periodic environ-
ments, such as Na+ in crystalline NaCl. In bulk systems, the D3/D4 method
sometimes lacks an accurate description due to the absence of suitable reference
systems. In the solid state, the coordination number of alkaline, alkaline-earth and
early transition metals can approach values far beyond those for which references
polarizabilities are available from molecular treatments, causing the otherwise ac-
curate interpolation to become an unreliable extrapolation.
The present work addresses this problem by widening the scope of the refer-
ences. Polarizabilities for new, highly coordinated systems are included based
on pseudo-periodic model calculations with the periodic electrostatic embedded
cluster method (PEECM). This includes new polarizabilities for alkaline, alkaline-
earth, and early transition metal elements. Herein theoretically observed solid
state polarizabilities are evaluated against experimentally determined ones. We
benchmark the quality for properties such as organic polymer refractive indices
which are directly dependent on polarizabilities. Lattice energies and cell vol-
umes of molecular crystals are evaluated using different literature known London
dispersion correction schemes in comparison to the new approach. Furthermore,
interfaces between organic molecules and inorganic surfaces are treated for which
new properties can emerge.309–311 Noncovalent London dispersion effects are es-
sential for structural properties, but also for the quantification of the stability of
such systems.312–314 For this purpose we discuss adsorption energies of organic
molecules on non-polar and ionic surfaces which either exhibit partly covalent or
partly electrostatically driven binding motifs penetrating the particular description
of noncovalent interactions (NCIs) between adsorbate and surface.
The next section shortly introduces the DFT-D4 theory, which defines the method
under periodic boundary conditions. A detailed description of the methodologies—
especially the generation of periodic EEQ partial charges and the periodic disper-
sion energy expression— is given in Appendix A3. A special focus shall be put on
a scheme to calculate periodic reference polarizabilities. Afterwards the results for
the above mentioned tests will be discussed. Finally, a summary and an outlook
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are given presenting the quality of the method on solid state properties and discuss
possible future applications.

3.2. Theory

The theoretical framework of this work was presented in detail in Ref. 308 describ-
ing the basics of the molecular DFT-D4 model. For the calculation of periodic
CNs, charge and geometry dependent dynamic polarizabilities α(iω), as well as
for pair and triple-wise dispersion energies see the detailed theoretical description
given in Appendix A3. A periodic EEQ model is developed within the present
work for the efficient calculation of partial charges used in the ζ-scaling for atom-
in-molecules polarizabilities. For this purpose, a cyclic cluster model is used to
capture periodic boundary conditions. Since dispersion interactions are much
faster decaying (leading order term is propotional to R−6) than, e. g., Coulomb
interactions, we employ for this energy contribution a real-space cutoff within the
periodic implementation. Analytical gradients (nuclear forces and stress tensor)
are available for the dispersion energy expression including pairwise and triple wise
London dispersion interactions.

3.2.1. Dynamic Polarizabilities from Cluster Extrapolation

A major problem for D3/D4 calculations of dense periodic systems has been the
absence of suitable molecular reference systems. Consider for example the alkaline
(earth) metals, for which there are only singly or doubly coordinated molecular ref-
erences (KH, MgH2), but no references with CNs close to the ones realized, e. g.,
in salts (KCl, MgCl2, etc.). This problem persisted up to group 5, and causes too
large polarizabilities to be used in these situations and in turn an over-stabilization
of such systems. In order to eliminate this shortcoming, it is desirable to augment
the database of references. For this purpose, the polarizability per crystal unit
cell and eventually that of the anions and cations has to be calculated, which can
in principle be accomplished in two ways: (i) the calculation of polarizability per
volume from the dielectric function of the solid (using, e. g.,, the Clausius–Mosotti
equation315 in the limit of ideal ionic crystals), and (ii) the calculation of polar-
izability per atom from a cluster extrapolation. Zhang et al. have shown that a
cluster extrapolation gives satisfactory results for obtaining atomic polarizabilities
within the solid state (maximum deviation of about 2% for the polarizability of
silicon316). Since this latter approach is moreover more similar with the method
used to obtain molecular reference polarizabilities, it is suitable for our purpose.
To simulate periodic boundary conditions of the crystal we apply the PEECM.317

Within this approach the entire periodic system is divided into three parts: the
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inner part covering the cluster (I), an optional shell (II) which is build from effective
core potentials (ECPs), and the outer part (III) which describes its environment.
Part (I) is treated quantum mechanically (QM), whereby in part of (II) ions are
replaced by ECPs. Such an isolating ECP shell—surrounding the actual QM
part—is necessary in order to prevent artificial polarization of the electron density
by ions which would otherwise be in direct contact with the QM boundary. The
outer part (III) is described by a periodic array of point charges, representing
cationic and anionic sites of the perfect ionic crystal. The effect of the additional
ECP shell is briefly shown in Table 3.1 where a simple point charge embedding
(PCE) model describes the cluster without additional ECPs.

Table 3.1.: Static polarizabilities (given in Bohr3) and homoatomic dispersion coeffi-
cients (given in Hartree Bohr6) as obtained by a cluster extrapolation for
lithium inside the lithium chloride crystal. Here the effect of an ECP shell on
the absolute size of the particular property within the crystal is investigated
starting from a Li4Cl4 cluster. Furthermore, the point charges (termed qPC)
creating the outer part are given.

Embedding qPC αLi(0) CLi-Li
6

None 0.0 37.2 129.7
PCE ±0.3 8.0 15.4
PCE ±1.0 <0.1 0.1

PEECM ±1.0 5.0 7.6

The polarizability of lithium as part of an isolated Li4Cl4 cluster (i. e., no embed-
ding) decreases significantly in PBC. Furthermore, when applying a PCE model, it
is crucial to use adjusted point charges, since properties such as polarizabilities are
strongly influenced by the present Coulomb field. The effect of unadjusted point
charges within a PCE model (qPC = ±1) results in artificially low polarizabilities
and thus small dispersion coefficients. However, this can be overcome by means
of an ECP shell, without having to manually adjust the point charge in advance
(see “PEECM” embedding in Table 3.1). Thus, it is advisable to embed the QM
region into ECPs to get the right answer for the right reason. The electronic
Coulomb energy term arising from the periodic field of point charges surrounding
the cluster has the following form

J =
∑
µν

N∈UC∑
k

∞∑
T∈O

Dµνqk

∫
dr µ(r)ν(r)

|r − Rk − T| , (3.1)

where UC denotes the unit cell of point charges, Dµν are elements of the density
matrix, µ and ν are basis functions, qk and Rk denote charges and positions of
point charges, and T denotes the direct lattice vector of the outer part III. The
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energy term is evaluated using the periodic fast multipole method318 (PFMM)
which—unlike the Ewald method—defines the lattice sums entirely in the direct
space. Figure 3.1 schematically shows the distribution of the cluster into three
parts.

Figure 3.1.: The schematic construction of a cluster within the periodic electrostatic em-
bedded cluster method. Part (I) consists out of the QM part (pink spheres)
embedded into part (II) which is build from ECPs (blue atoms). Part (III)
is embedding part (II) by periodic point charges (small gray atoms) repre-
senting cationic and anionic sites as in the perfect ionic crystal.

The correct representation of polarities for atoms inside solids without using QM
information still remains a challenge. For the geometry dependent D3 method
this is hardly possible, because only the CN is used to weight reference systems
accordingly. This disadvantage was partly overcome with the development of the
D4 method by including information from the electronic structure (atomic partial
charges) in the calculation of the atomic dipole polarizabilities. Nevertheless, peri-
odic dipole polarizabilities are significantly smaller than those present in molecules
which rises the need of reference systems that are especially designed for repre-
senting solid state properties. Addition of such references is easily feasible in the
D4 method. Here, only dynamic polarizabilities of the new references are required.
We obtain pairwise dipole-dipole C6 coefficients during the calculation by means
of numerical Casimir–Polder integration. Figure 3.2 highlights the elements which
are broadened with new periodic reference polarizabilities. In particular, the ele-
ments of group 1–5 were supplemented with new references.
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...

...

...

Figure 3.2.: The yellow highlighted elements received new periodic reference polar-
izabilities at the PEECM level. All these elements exposed relatively
high polarizabilities for molecular reference systems.

3.3. Results

3.3.1. Polarizabilities and Refractive Indices

Accurate polarizabilities are the foundation of many London-dispersion correction
schemes. As demonstrated in previous works,46,210,308 there is a direct correlation
between the description of molecular polarizabilities and the accurate description
of NCI energies. Therefore, this section will briefly discuss the quality of the new
reference polarizabilities. For this, ionic polarizabilities are shown representing the
polarizabilities of cations and anions inside the crystal. In general, cations have
a lower electron density and thus a lower local (atomic) polarizability and vice
versa. The last part of this section covers the calculation of refractive indices
of several optical organic polymers to validate the quality of polarizabilities in
“organic” crystals where the new reference polarizabilities are supposed to have a
small effect.
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Figure 3.3.: Given are periodic static polarizabilities as obtained by experimental mea-
surements (molecular polarizabilities are extracted from Ref. 315).

The experimental literature data were obtained by measuring the refractive index
n (RI) at several wavelengths λ. In Ref. 315 all RIs are extrapolated to λ = ∞
(obtaining n∞) and used within the Lorentz expression to calculate the particular
experimental salt polarizability

α
exp
salt =

3Vm
4π

n2∞ − 1
n2∞ + 2, (3.2)

where Vm is the volume of the crystal divided by the number of molecules inside
the crystal. All Vm values are taken from X-ray data319 and all theoretical salt
polarizabilities are obtained as the sum of the cationic and the anionic polarizability

αcalcsalt = α
cation
salt + αanionsalt . (3.3)

For D3, atomic polarizabilities are calculated as introduced in Ref. 46, hence we
do not approximate polarizabilities as introduced in the empirical relationship for
determining polarizabilities from homoatomic dispersion coefficients320,321. Fur-
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thermore, the Tkatchenko-Scheffler49 method with iterative Hirshfeld (HI) parti-
tioning217,301 (termed TS/HI) as well as its many-body dispersion analogon50,300

(termed MBD/HI) are listed for the sake of completeness217,301,322. Here an HI
analysis is indispensable, since the TS and MBD variants calculate cationic po-
larizabilities that are too high in their absolute value (similar to neutral atomic
polarizabilities) leading to artificially high salt polarizabilities. Furthermore, the
MBD/FI (fractionally ionic) variant is used, which was developed by Gould et al.323

This method promises in particular a drastic improvement for the calculation of
polarizabilities in ionic systems. In Figure 3.3 the quality of salt polarizabilities are
given for two DFT-D methods (DFT-D3 and DFT-D4) as well as for two MBD
methods (MBD/HI and MBD/FI).
Extended statistical evaluations are given for the mean deviation (MD), the mean
absolute deviation (MAD), the root mean squared deviation (RMSD), and the
absolute maximum error (AMAX) and are given in Bohr3 if not stated otherwise.
The experimentally determined polarizabilities are reproduced with high accuracy
by the DFT-D4 method (MD = −0.2, MAD = 1.7, RMSD = 2.1, AMAX =

4.1). MBD is not able to calculate reasonable polarizabilities for seven out of 16
different salts due to non-physical negative values after its screening procedure.
Note that these problems are already literature-known.323 MBD/HI calculates
polarizabilities for all salts without such problems, however, this method gives
only poor results (MD = 32.0, MAD = 32.0, RMSD = 21.4, AMAX = 66.1).
This is slightly improved at the density-independent DFT-D3 level (MD = 31.8,
MAD = 31.8, RMSD = 9.5, AMAX = 44.7). Compared to DFT-D3, further
improvements are obtained when using the MBD/FI method where the fractional
ionic reference systems are beneficial for describing salt polarizabilities (MD =

14.6, MAD = 14.6, RMSD = 8.4, AMAX = 40.6). TS and TS/HI show overall
the largest deviations. Here even the iterative Hirshfeld partitioning cannot lower
the absolute values of the neutral TS atomic polarizabilities enough to produce
reasonable salt polarizabilities (TS: MD = 192.0, MAD = 192.0, RMSD = 199.0,
AMAX = 256.3, and TS/HI: MD = 114.1, MAD = 114.1, RMSD = 118.4,
AMAX = 158.2).
To check for ionic polarizabilities themselves, we use experimental ionic polarizabil-
ities that have been created by partitioning salt polarizabilities to the contributions
of their cations and anions using a least-squares fitting procedure.315 Those exper-
imental ionic polarizabilities are compared to theoretically derived polarizabilities
representing the cation and the anion inside the crystal.
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Exp. D3 D4

KCl

RbI

Figure 3.4.: Schematic 2D-representation for anionic (yellow) and cationic (blue) polar-
izabilities within the KCl (top) and RbI (bottom) solid state. Given are the
experimentally derived ion polarizabilities (left) as computed by Tessman and
coworkers,315 the calculated atomic D4 polarizabilities (right), and the D3
polarizabilities (center). The radii of the spheres correspond to the absolute
value of the polarizability.

Figure 3.4 schematically highlights how D4 and D3 obtain ionic polarizabilities for
K+ and Cl– in KCl and for Rb+ and I– in RbI (both space group Fm3m) compared
to experimental ionic polarizabilities. Here, the absolute value of polarizabilities
are expressed in sphere-radii, where large radii correspond to large polarizabilities
and vice versa. Furthermore, cationic polarizabilities are represented in blue and
anionic polarizabilities in yellow. The agreement to experimental ionic polariz-
abilities is significantly improved by adding periodic reference polarizabilities in
combination with a charge scaling procedure (i.e., αRb∈RbIexp

/
αI∈RbIexp = 0.3 versus

αRb∈RbID4
/
αI∈RbID4 = 0.4, and αRb∈RbID3

/
αI∈RbID3 = 1.8). A comparison with the TS

and the MBD model shows that the scaling of neutral atomic polarizabilities using
Hirshfeld volumes is insufficient for the accurate calculation of ionic polarizabili-
ties within RbI (αRb∈RbITS /αI∈RbITS = 8.0 and αRb∈RbIMBD /αI∈RbIMBD = 13.1). TS/HI and
MBD/HI perform better in determining ionic polarizabilities within RbI compared
to their non-iterative analogues (αRb∈RbITS/HI

/
αI∈RbITS/HI = 4.5 and αRb∈RbIMBD/HI

/
αI∈RbIMBD/HI =

1.3). The MBD/FI method significantly improves here (αRb∈RbIMBD/FI
/
αI∈RbIMBD/FI = 0.1)

whereby the cationic polarizability of Rb+ is obtained somewhat too small and the
anionic polarizability of I– too large within this salt. In general it is assumed that
improved ionic polarizabilities also yield improved interaction energies for ionic
systems (e. g.,, adsorption processes on ionic surfaces) which will be discussed in
more detail in section 3.3.3.
Another test case is the calculation of RI values for optical organic polymers,
which is based on the work of Hachmann and co-workers.324 In their work, poly-
mer polarizabilities of organic compounds were calculated using hybrid TD-DFT
(TD-PBE0/def2-TZVP) and RIs were obtained using the Lorentz equation. We
calculate RIs from molecular polarizabilities of the monomer units of each polymer
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obtained by approximated methods (DFT-D, TS, or MBD). This approximation,
however, is accompanied by a lack of many-body effects, so that the RIs to be
calculated are known to be too large in absolute value. Furthermore, monomer
structures are used, since the explicit polymer growth (including conformational
analysis for each polymer) is beyond the scope of this work. However, this is
intended to be covered in more detail in future works, e.g., by interfacing the
supramolecular toolkit of Jelfs and co-workers325 to explicitly build polymer struc-
tures. Overall 73 monomer units of polymer structures have been extracted from
Ref. 324 and re-optimized at the PBEh-3c272 level of theory after searching for
minimum conformers using the conformer-rotamer ensemble sampling tool326 for
each monomer unit. We calculate RI values as follows

n∞ =

√
3Vm + 8π · α
3Vm − 4π · α , (3.4)

where Vm values are taken from Ref. 324 assuming a constant packing fraction
of the bulk polymer. Figure 3.5 shows the relative deviation of RIs from exper-
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∆n∞
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Figure 3.5.: Error ranges (relative to experimental data) for calculated refractive
indices at different theoretical levels of theory (D4, D3, MBD/HI,
MBD/FI, and TS/HI) for an organic polymer database.

imental values324 (the MAD of TD-DFT RIs from experimental RIs is 2.3% its
RMSD 3.0%). As can be seen from the graph, all methods generally calculate
too large RI values, which is partly due to the approximation of using molecular
polarizabilities α in equation 3.4. However, since this approximation is applied
to all methods, they can be directly compared with each other. The smallest
MD and RMSD values are obtained from the D3 and D4 methods, which are
able to determine RI values with good accuracy. The slightly better performance
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of D3 compared to D4 is within statistical uncertainty and expected, as D3 al-
ready provides highly accurate polarizabilities for organic molecules and molecular
crystals. Subsequently, the MBD/FI method from Gould and co-workers achieves
adequate accuracy. The least suitable method for predicting RIs is the TS/HI
method, which achieves improvements through additional many-body dispersion
effects within the MBD/HI method.

3.3.2. Molecular Crystals

Lattice Energies

Molecular crystals are relevant in pharmaceutical chemistry.327,328 An important
property is the lattice energy Elat, which reflects how much energy is released per
molecule upon resublimation. It is defined as

Elat =
1
Z
Ecrystal − Egas, (3.5)

where Ecrystal is the energy of the crystal including overall Z molecules within the
primitive cell and Egas is the energy of the isolated molecule in the lowest energy
conformation.
Recently, a set of eight highly accurate reference energies for molecular crystals
have been published based on diffusion Monte-Carlo (DMC) calculations.27 These
reference systems include various binding motifs like, e. g., hydrogen bonding in ice,
electrostatic interactions in CO2, as well as London-dispersion dominated unsatu-
rated hydrocarbons. The statistical deviation (RMSD) of these high-level results
from experimental data is small (0.004 eV). To provide a framework for the fol-
lowing discussion of the DFT results, it is useful to consider previous applications
of this data set, which has been used to benchmark RPA and MP2.329–331 With
a computational cost between the DMC benchmark calculations and DFT-based
methods, RPA and MP2 afford RMSDs of 0.08 eV and 0.06 eV, respectively. More-
over, by systematically studying the deviations from the reference, it was possible
to devise an efficient GW-type singles correction to RPA (GWSE), which provides
a much improved RMSD of only 0.01 eV.
In the following, we will explore the performance of DFT-D4 and D3(BJ) in
combination with various functionals (PW91,332 SCAN,114,253 PBE,102 rPBE,333,
revPBE,281 TPSS,105 B3LYP,118,334 and PBE0116), and moreover compare D4
to other dispersion-corrected DFT methods. We include dispersion-corrected
method implemented in the latest version of the prominent VASP progam pack-
age, namely the methods of Tkatchenko/Scheffler (TS and MBD with fixed and
iterative atomic charges)49,50,217,217,300,301,301,323, Landgreth/Lundquist (original
vdW-optPBE302–307 and revised rev-vdW-DF2)335 and Vydrov/Van Voorhis (re-
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vised VV10)51,52.
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Figure 3.6.: a) Benchmark of DFT-D4 with several prominent DFs for the computation
of lattice energies of eight molecular crystals (subset of the ICE10336 and
X23337,338 benchmark set), for which high-level fixed node diffusion Monte-
Carlo (FN-DMC) references are available.27. The RMSD of the uncorrected
DFs is given in parenthesis (x-axis). b) PBE-D4 compared to other disper-
sion corrected approaches, including the original two-body TS correction,49
TS/HI with iterative Hirschfeld charges,217,301 TS/MBD with many-body
effects,50,300 the combintion of MBD with HI,217,301, as well as yet an-
other revision that includes ionic references (MBD/FI).323 Also shown are
results obtained with SCAN-D4 compared to SCAN-rVV10,51,52), as well as
with the original variant of vdW-DF,302–307 and a more recent revised vari-
ant. The colored bars depict the relative (%) deviation from the reference,
whereas the transparent bars at the bottom show the absolute root-mean
square deviation (RMSD) from the reference including its numerical value.
All calculations were conducted with VASP and employ the hardest PAW-
PBE (GW) potentials available in the VASP library, an energy cut-off of
1000 eV and fine k-spacing. See Supplementary Material for more details.

We begin the discussion with the performance of D4 and D3(BJ) in combination
with different functionals, which is depicted in Figure3.6a. In almost all cases,
the error without dispersion correction is well above 0.5 eV, whereas the worst
performance including the dispersion correction is 0.1 eV (revPBE-D3). Only the
uncorrected SCAN functional achieves an RMSD below 0.3 eV, indicating that it
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includes medium-range correlation effects to some extend, which is in agreement
with previous reports.114,253,339 The best overall performance is provided by PBE0-
D4 with an RMSD of 0.02 eV, which is well below that of much more demanding
MP2 and RPA approaches.Considering also the MDs of 0.08 eV, 0.06 eV and
0.01 eV for RPA, MP2 and PBE0-D4 shows that the error of PBE0-D4 is less
systematic. The computationally even more efficient (no exact exchange) rPBE-
D3(BJ) approach is almost as accurate as PBE0-D4, and closely followed by
TPSS-D4, B3LYP-D3 and revPBE-D3, which all provide an RMSD 6 0.04 eV in
the range of chemical accuracy (about 1 kcalmol−1). For perspective, these DFT
calculations take only hours for hybrid density functional approximations (DFAs)
to minutes for generalized gradient approximations (GGAs) on a compute node
with 16 CPUs.
Comparing D3(BJ) and D4, the agreement with the reference improves signifi-
cantly in some cases for D4 (cf., revPBE and B3LYP), while for most DFAs it
is only slightly more accurate, and in some cases slightly worse (cf., PW91 and
rPBE).
The results shown in Figure 3.6b for the two-body models TS and TS/HI indicate
a systematic under-binding. In particular for the crystals of the aromatics, one
of the most common structural motif in organic chemistry, the deviations are as
large as 50% of the total lattice energy. This is cured by the inclusion many-body
effects in the MBD approaches, which has an accuracy comparable to that of
D3(BJ) and D4. Note, that D3(BJ) as employed here achieves this good result
without including many-body effects. While the vdW-optPBE functional based
on the original approach is not able to accurately describe the different interaction
motifs, the revised variant rev-vdW-DF2 does a much better job, approaching the
accuracy of PBE-D4. SCAN-D4 and SCAN-rVV10 perform very similar. Although
they are slightly worse than PBE-D4 regarding their RMSD, the deviation within
a given chemical compound class as indicated by similar colors in Figure 3.6 is
consistent. They provide by far the best relative energies of the ice (blue) and
NH3 forms.
In conclusion, these results suggest PBE0-D4 as the most accurate approach
for studies on molecular crystals. At the computationally much more efficient
(meta)GGA level, rPBE-D3 and TPSS-D4 are the next best options, providing
only slightly worse lattice energies at much lower computational cost. Rev-vdW-
DF2 and the MBD based approaches provide very similar accuracy. However, for
MBD/HI and MBD/FI the computation of the dispersion-correction takes much
longer than the GGA calculation itself (cf. timings below), limiting their applica-
bility. If the variation in investigated chemical structures is small and the relative
energies are more important than absolute energies, SCAN-D4 and similarly also
SCAN-rVV10 can be recommended. However, due to the increased cost of the
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SCAN functional, also these approaches are computationally more demanding than
GGA+D3/D4.

Geometries from Experimental Measurements

The packing of organic molecules into crystals is highly sensitive to an accurate
treatment of NCIs and dispersion effects in particular. In 2012, Johnson and co-
workers compiled a set of organic crystals from available low temperature X-ray
structures (termed C21 benchmark337) which was refined and extended by Reilly
and Tkatchenko resulting in the X23 benchmark set.338 Various groups already
used this benchmark set to test electronic structure methods.340,341 In their work
Johnson et al. applied an artificial pressure to include volume expansion due to
vibrational effects in the optimization procedure. However, as discussed in earlier
works272 the zero point vibrational energy (ZPVE) and thermal contributions
of the unit cell volume can be estimated and used to transform the experimental
volume V0 into back-corrected reference equilibrium volumes Ve which are directly
comparable to optimizations on the electronic energy surface.
Here we have calculated unit cell volumes using PBE-D3(BJ), PBE-D4, PBE-TS,
PBE-TS/HI, PBE-MBD, PBE-MBD/HI, PBE-MBD/FI, and pure PBE for the
X23 systems. Figure 3.7 shows deviations from reference volumes per molecule
for the 23 crystal structures. Uncorrected PBE only achieves a poor description by
generally overestimating the cell volumes for these molecular crystals (black bar in
Figure 3.7, MD = 14.7%, MAD = 14.7%, and RMSD = 5.2%). Coupling PBE to
any dispersion correction improves the description significantly but the respective
methods perform differently well. PBE-TS performs worst which, however, can
be improved by using an iterative Hirshfeld partitioning.
Including many-body dispersion effects or adding an iterative Hirshfeld partitioning
further improves the accuracy. Additional reference systems with fractional ionic
character do not further increase the quality of the MBD results which is expected,
since the considered molecular crystals have almost no ionic character. PBE-
D3(BJ) volumes are comparable to those calculated with the TS/HI method. For
the 23 tested molecular crystals, MBD gives a more accurate description compared
to D3(BJ). However, PBE-D4 also improves upon PBE-D3(BJ) and furthermore
is on par with the computationally more demanding MBD method in terms of all
statistical evaluations (MD , MAD, and RMSD).
As another test, the D4 and MBD models are tested for their capability of re-
producing strong hydrogen networks within different ice polymorphs. This impor-
tant binding motif is under-represented in the X23 benchmark set, so that the
ICE10 benchmark336 set is to be used for this purpose. A detailed description of
crystallized water requires an accurate description of NCIs especially for reproduc-
ing structural properties. Overall, we investigate eight experimentally studied ice
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Figure 3.7.: Error ranges (relative to experimental data) for calculated cell volumes di-
vided by the number of molecules inside the cell for 23 molecular crystal
structures (X23 benchmark set). Shown are data for pure PBE (black) and
PBE coupled to D4, D3(BJ), TS, MBD, TS/HI, MBD/HI, and MBD/FI.
For all PAW calculations an 800 eV plane-wave energy cutoff is applied to
minimize Pulay stress.

polymorphs. The measurements have been conducted at low temperatures (up
to 100 K) where the thermal contribution to the ice density has been assumed to
be rather small assuming that measured structures can be treated as equilibrium
structures.336 In the original ICE10 publication the ZPVE is estimated on each unit
cell volume by correcting for thermal effects using the HF-3c342 method applied
with an ATM many-body dispersion treatment. In the present work we apply the
quasi-harmonic approximation (QHA, see Supplementary Material for details) to
eight out of ten ICE10 polymorphs to obtain back-corrected equilibrium volumes
that are listed in Table 3.2. For this purpose HSE-3c343 calculations are performed
within crystal1771 to revise parts of this benchmark set. This composite DFT
method has already proven its accuracy with respect to the reproducibility of vol-
umes of molecular crystals343 and is ideally suited for such computational intensive
calculations.18
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Table 3.2.: Refinement of the ICE10 benchmark set336 (excluding polymorph II and XIII)
with a correction of equilibrium volumes Ve to free-energy volumes V0 due to
ZPVE and thermal energies calculated at the HSE-3c level of theory343 using
a quasi-harmonic approximation. Structures and experimental temperatures
are taken from Ref. 336. For all PAW calculations an 800 eV plane-wave
energy cutoff is applied to minimize Pulay stress. All volumes are given in
Å3.

HSE-3c Experimenta ∆ V / %

Polymorph V0 Ve ∆V/V0 (%) V0 V ref
e PBE -D4 -MBD

Ih 29.19 28.11 3.7 32.05 30.86 −3.0 −5.8 −6.5
III 25.11 23.69 5.7 25.69 24.23 7.3 0.9 −0.5
VI 23.36 21.44 8.2 22.84 20.97 5.0 0.5 −0.7
VII 23.03 21.32 7.4 20.26 18.76 7.4 1.8 0.8
VIII 23.03 21.38 7.2 20.09 18.64 8.2 2.7 2.2
IX 24.88 23.76 4.5 25.63 24.48 5.8 −1.0 −2.8
XIV 23.65 21.75 8.0 23.12 21.27 6.4 1.4 0.1
XV 23.45 21.60 7.9 22.45 20.68 7.2 1.8 5.0

aExperimental Ve estimated as V ref
e = V ref

0

(
1 +

VHSE-3c
e −VHSE-3c

0

VHSE-3c
0

)
.

The direct comparison of PBE-D4 and PBE-MBD shows that both methods are
well suited to describe equilibrium volumes of ice polymorphs. For the IX system,
both methods calculate volumes that are too small, while for the VI and III systems
D4 yields a too large volume while MBD does the opposite. The only “outlier”
can be seen in the hexagonal ice Ih, where both methods drastically underestimate
the equilibrium volume. The effect of the underlying density functional should be
considered as well, since PBE is known to overbind hydrogen bonds344. For the Ih
polymorph earlier studies already showed that PBE drastically underestimates the
equilibrium volume345 which could be corrected by explicitly including many-body
correlation effects in terms of diagrammatic perturbation theory. However, this
is beyond the scope of this work and will be neglected. The data of Table 3.2
show that PBE-D4 is suitable to generate accurate volumes for ice polymorphs
(MD = 0.3%, MAD = 2.0%, RMSD = 2.7%) when comparing to MBD corrected
PBE (MD = −0.3%, MAD = 2.3%, RMSD = 3.4%). In general, pure PBE dras-
tically overestimates all equilibrium volumes (PBE: MD = 5.6%, MAD = 6.3%,
RMSD = 3.6%) indicating that use of an appropriate London dispersion correction
is indispensable even in systems that are dominated by hydrogen bonding.
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3.3.3. Adsorption on Surfaces

To evaluate the performance of the D4 and related approaches for the calcula-
tion of adsorption energies, three chemically diverse model systems dominated by
NCIs are considered.346 These include the adsorption of non-polar benzene on
gold (sparse), polar CO on polar MgO (saturated), as well as non-polar C2H2 on
ionic NaCl (also saturated). For all of these, accurate experimental and/or high-
level computational references are available. The respective adsorption models are
shown in Figure 3.8. In addition to D4, we consider its predecessors D3(BJ), D2,
as well as other established methods, namely MBD (including variants), TS (in-
cluding variants) and the vdw-DF2 and rVV10 dispersion functionals. All DFT-D
and TS/MBD calculations are conducted in combination with the PBE functional.
This is done for the sake of comparability and in spite of experience showing re-
lated GGAs and meta-GGA like RPBE, revPBE and TPSS are often more accurate
for the investigation of adsorption. The adsorption energies are calculated using

∆Eads = (Etotal − Eslab − nEmolecule) /n, (3.6)

where n is the number of adsorbed molecules per unit cell, Eslab the energy of
the vacant surface, Etotal the energy of the adsorbed molecule on the surface,
and Emolecule the energy of the isolated molecule. To circumvent computationally
expensive structure optimizations at each level, and yet avoid a bias by using one
of the tested dispersion-correction schemes to conduct the optimizations, all cal-
culations refer to single-point energies (cut-off 800 eV) on geometries obtained at
the plain DFT/SCAN level (cut-off 500 eV). In these optimizations, the molecules
as well as the first (complete) layer of the surfaces is relaxed, while the lower layers
were kept fixed at default values provided by the atomic simulation environment
(ASE).347 SCAN has been chosen for this purpose because it provides reason-
able agreement for all systems without any dispersion correction, and moreover
accurate structuralparameters for bulk fcc gold.339 In general, the impact of the
geometric relaxation from the ASE default structures is small but not negligible
with the adsorption energy changing by about 0.01-0.02 eV in case of the polar
surfaces and 0.05 eV for benzene on gold (calculated at the PBE-D3(BJ) and
SCAN levels of theory)
Figure 3.8 shows the deviation from reference values for all considered methods.
Before we begin the discussion, it should be pointed out that there is a system-
atic bias when comparing calculated adsorption energies to experimental enthalpy
values. The problem being that no straightforward approach exists to account for
zero-point and thermal contributions in these types of calculations. However, since
both of these contributions reduce the interaction strength, an overestimation of
the theoretical adsorption energy compared to the reference values is preferable
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Figure 3.8.: Comparison and benchmark of DFT-D4 and related approaches for the ad-
sorption of small organic molecules at metallic and ionic surfaces.

to an underestimation. To provide an estimate for the magnitude of these contri-
butions, we estimate the thermal contributions and neglect zero-point vibrational
contributions. The latter are typically small in the case of adsorption since the
bond formed between surface and asorbate is rather weak. Assuming a classical
picture and moreover that adsorption freezes out all translations and rotations of
the adsorbate in the gas phase, this provides a correction of 5/2kT = 0.065 eV for
the linear CO and acetylene molecules and 3kT = 0.078 eV for benzene at 300K.
These will be taken into account in the discussion.
Benzene on gold—The adsorption of aromatic molecules on transition metal
surfaces is of particular interest in materials science because the catalytic conver-
sion of aromatic substances is a key reaction in many petrochemical processes.348

Our model is based on the common adsorption mode with benzene flat on the
(111) surface of fcc Au as is shown in Figure 3.8, and corresponds to coverage of
θ = 1/25.349 Since gold provides one of the most inert surfaces, the adsorption is
almost exclusive driven by London dispersion. The experimental estimate of the
adsorption energy is −0.64 eV at a sub-monolayer coverage.350 Plain PBE pro-
vides a qualitatively wrong, repulsive energy of (0.49 eV). While the old D2 model
clearly over-corrects this failure of PBE with an adsorption energy of −1.4 eV, the
newer D3(BJ) model provides a much improved energy of −0.76 eV, which can be
considered in agreement with the experiment given the absence of zero-point and
thermo-chemical corrections in the calculated values. The D4 model presented
here is even closer to the experimental result with −0.69 eV. The original TS model
performs very similar to D4 (−0.70 eV) irrespective if fixed or iterative Hirshfeld
charges are used. Including many-body effects via the MBD approach significantly
worsens the agreement, providing too small adsorption energies (−0.48 eV). Plain
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SCAN finds, in contrast to PBE, an attractive interaction between adsorbate and
surface. However, with −0.50 eV it is slightly below the experimental value. This
confirms that SCAN describes parts of medium-range correlation effects intrinsi-
cally. However, as already seen for the molecular crystals, this can lead to double
counting in combination with dispersion corrections. Accordingly, both SCAN-
rVV10 and SCAN-D4 slightly over-bind the system with adsorption energies of
−0.83 eV and −0.85 eV, respectively. Also the rev-vdw-DF2 functional correctly
recovers the (attractive) interaction between adsorbate and surface, but slightly
underestimates it with an adsorption energy of −0.56 eV.
Carbon monoxide on magnesium oxide—The adsorption of carbon monoxide
on MgO(001) surfaces has been extensively studied both experimentally351–353

and theoretically.354–357 Experimental studies provided adsorption energies rang-
ing from about −0.13 eV352,358 up to −0.20 eV,359 and showed that CO adsorbs
in a C-down configuration on top of five-fold coordinated Mg atoms.352 This is
reflected in our model system with a coverage of 75%, which has been taken
from Ref. 170 and is shown in Figure 3.8. While previous DFT-based stud-
ies predict a wide range of adsorption energies from −0.10 eV to −0.56 eV,355

coupled-cluster based approaches provide values in better agreement with the ex-
periment of −0.15 eV357 to−0.17 eV360. Considering the absence of zero-point
and thermo-chemical corrections in our calculations, we selected the lowest ex-
perimental value of −0.20 eV to be used as reference. Already plain PBE is
with a computed adsorption energy of −0.12 eV in qualitative agreement with the
reference value. As noted previously, the D2 model over-binds CO with an ad-
sorption energy of −0.30 eV. Surprisingly, this becomes even worse with D3(BJ)
(−0.36 eV), and even D4 does not improves the result with −0.31 eV. In fact, all
employed methods except plain PBE predict much too large adsorption energies
for this system, which range from the worst value of −0.47 eV (MBD) to the best
of −0.26 eV (SCAN, MBD/HI). This may be seen as a hint towards a more fun-
damental problem of DFT for this system, or a problem with the model system.
In face of this general over-binding of dispersion-corrected DFT for this system,
it is not surprising that SCAN and MBD/HI provide the best agreement, as these
are also the approaches that provide the over-all smallest adsorption energies,
and accordingly the only ones besides plain PBE with a positive mean average
deviation.
Acetylene on sodium chloride—The adsorption of acetylene on sodium chloride
has been studied by several groups experimentally and theoretically. Experimental
adsorption energies361,362 range from −0.25 to −0.31 eV corresponding to full
and half coverage, respectively. Previous studies employing periodic DFT pro-
vide values ranging from −0.32 eV to −0.44 eV.170 We employ the same model
system, which corresponds to full coverage with the C2H2 molecules ordered in
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a T-shaped formation (cf. Figure 3.8). We use a reference value of −0.29 eV,
which is between the experimental estimates for full and half coverage. Plain
PBE affords an attractive yet too small interaction between adsorbate and sur-
face, as evident from the adsoption energy of −0.12 eV. Again, D2 significantly
over-corrects to an adsorption energy of (−0.42 eV). This improves slightly with
D3(BJ) providing −0.40 eV, and more significantly with the latest D4 approach to
−0.35 eV. Most certainly, this improvement is related to the superior ionic polar-
izabilities of the D4 approach compared to D3(BJ). Also the results of the other
methods demonstrate the necessity for accurate ionic polarizabilities. While the
TS and MBD approaches with their fixed atomic charges both over-stabilize this
system even more than D2 with an adsorption energies of −0,48 eV, the iterative
schemes TS/HI and MBD/HI yield much better agreement with −0.24 eV and
−0.25 eV. Adding ionic references in the MBD/FI schemes further improves this
agreement, leading to an adsorption energy closer to both D4 and the reference
with −0.27 eV. Also plain SCAN provides a good description, yielding an adsorp-
tion energy of −0.28 eV, which increases slightly when the functional is combined
with a dispersion correction (SCAN-D4 −0.36 eV, SCAN-rVV10 −0.38 eV). Also
the rev-vdW-DF2 functional performs well with a value of −0.33 eV.
In particular this last system nicely demonstrates the necessity to include charge
and/or density information in the dispersion correction, as evident from the supe-
riority of D4 over D3(BJ), as well as the charge-iterative Hirshfeld schemes over
the standard models. Regarding the over-all statistical agreement, the data indi-
cate that PBE-D4, PBE-TS/HI, SCAN and rev-vdW-DF2 are the most accurate
approaches with an RMSD below 0.1 eV. Of these, in particular PBE-D4 stands
out with the most consistent deviation in the form of a slight over-binding of
the adsorbates. As pointed out earlier, this is preferable to an under-binding and
would be corrected by including zero-point and thermo-chemical contributions in
the calculations. The perhaps most surprising result from this benchmark is the
excellent performance of the uncorrected SCAN functional. However, this also
comes at an increased computational cost, as will be discussed in detail in the
next section.

3.3.4. Timings

In this section, we compare the computational cost of different dispersion-corrected
DFT methods using the cyclohexanedione crystal structure as a test case. For this
purpose, single-point energy calculations are conducted with VASP with settings
for high numerical precision (cut-off of 800 eV, fine k-point grid) on a 16 core In-
tel(R) Xeon(R) CPU (E5-2660 v4 @ 2.00 GHz). With this set-up, the DFT/PBE
single-point takes about 7.5 minutes walltime. Figure 3.9 provides the total wall-
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time of the calculation, as well as (if possible) the timing for the dispersion-
correction only, which is determined as the difference between the DFT/PBE
calculation with and without the respective correction.
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Figure 3.9.: Total wall-clock time of a single-point calculation for the cyclohexanedione
crystal with DFT/PBE and various dispersion-correction schemes, SCAN-
rVV10 and rev-vdW-DF2 (blue bars). Time spent on the dispersion cor-
rection alone is shown in orange (not available for the self-consistent ap-
proaches). While cost of D4, TS (and MBD) is almost negligible compared
to the DFT calculation (7.4 minutes), the charge-iterative TS and MBD
schemes are much slower (MBD/HI over 100 times slower than D4) and
become the bottleneck of the calculation.

Regarding the total walltime, DFT-D4, -TS and -MBD (the latter with fixed
charges) are comparable with timings just under 10 minutes, followed by rev-
vdW-DF2 just above 10 minutes. The charge-iterative schemes are significantly
more expensive taking just above 15 (TS/HI, MBD/FI) up to almost 30 minutes
(MBD/HI). Only the SCAN-rVV10 calculation takes even longer with 33 minutes,
but this is mostly due to the increased computational cost of the SCAN functional.
Removing the overhead of the DFT calculation and focusing only on the timing
of the dispersion-correction, D4 turns out as the fastest method by far with 11
s, followed by fixed-charge TS and MBD with 31 s and 118 s, respectively. All
of these are in stark contrast to the charge-iterative schemes, which are orders of
magnitude slower taking as long (9 min for TS/HI and MBD/FI), or twice as long
(19 min for MBD/HI) as the underlying DFT/PBE calculation. As a result, the
dispersion-correction becomes the bottleneck of the calculation, in spite of the
high numerical precision settings for the DFT calculation. In combination with
semi-empirical and/or tight-binding approaches, or just more sloppy DFT settings
and a good initial guess – as is the typical scenario for DFT molecular-dynamics
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simulations – the charge-iterative schemes are impractical and only the fastest
schemes (D4, TS) remain useful.

3.4. Summary and Conclusions

We presented an extension of the molecular DFT-D4 model for describing dense
condensed-phase systems under periodic boundary conditions. For this purpose,
new periodic reference polarizabilities for alkaline, for alkaline-earth, and for early
d-metals (group 3-5) were calculated using a pseudo-periodic electrostatic em-
bedded cluster model.
The utility of the additional reference polarizabilities was demonstrated by cal-
culating solid state polarizabilities of different salts and comparing them to ex-
perimental data. Here, the new references lead to a dramatic improvement for
cationic and anionic polarizabilities, which now exhibit the correct ordering com-
pared to the experiment and also show better quantitative agreement. For the
same test set, related methods like MBD, MBD/HI and even MBD/FI exhibited
much larger deviations. This is despite the explicit inclusion of ionic reference
systems in the MBD/FI approach, which improves the description compared to
MBH/HI, but does not approach the accuracy of the D4 model.
Eventually, the performance of the periodic DFT-D4 model was tested and com-
pared to its predecessors and related approaches in three real-world application
scenarios. These include (i) the calculation of lattice energies of molecular crys-
tals, (ii) the determination of cell volumes of molecular crystals, as well as (iii) the
modeling of the adsorption of chemically diverse substrates on non-polar, polar
and ionic surfaces. For lattice energies of molecular crystals, various D3 and D4
corrected DFAs showed excellent agreement to high-level references. Especially
“repulsive” density functionals (e. g.,, revPBE, TPSS, and PBE0) turned out to
provide an accurate account for NCIs, whereas density functionals that already
include mid-range correlation to some extent (SCAN) appear to suffer from possi-
ble double-counting issues. Other approaches showed to be competitive to D4 for
describing such lattice energies like MBD/HI corrected DFAs or the rev-vdw-DF2
functional. The quality of geometries was investigated using cell volumes of 23
molecular crystals and eight different ice polymorphs. For those systems, DFT-D4
yielded accurate cell volumes with a deviation very similar to related approaches.
In general, all tested approaches show a tendency to calculate slightly too small
volumes. Regarding the calculation of adsorption energies for organic molecules, a
direct comparison between DFT-D4 and electron density dependent (TS;TS/HI,
MBD;MBD/HI;MBD/FI, vdw-DF2, rVV10) and independent (DFT-D3(BJ) and
DFT-D2) models showed DFT-D4, TS/HI and rev-vdW-DF2 to provide the best
agreement, followed by SCAN (without any vdW correction) and the iterative
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MBD schemes. Of these, D4 stands out as the approach provides the most sys-
tematic deviation in the form of a slight over binding.
Ultimately, an analysis of computational timings shows that DFT-D4 is orders of
magnitude faster than the iterative MBD schemes which offer similar accuracy, and
thus provides the best balance between cost and accuracy. With the development
of the periodic DFT-D4 model it is routinely possible to describe chemically diverse
molecular, periodic solids or surfaces accurately with a low computational effort.
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3.6. Appendix A3

Within Appendix A3, first the periodic DFT-D4 methodologies are introduced
followed by the theoretical definition of the quasi-harmonic approximation. Af-
terwards, the technical details for the calculation of reference polarizabilities are
shown. Finally, the computational details of all applications are given in detail.
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The use of large, sterically overcrowded substituents is common practice for many
synthetic works in organic chemistry. As frequently proposed, the primary pur-
pose of substituents is to prevent their central atom from initiating reactions that
could lead to decomposition or transformation of the compounds. Substituents
cause stabilization by occupying space around a reactive centre363,364 preventing
access to it, or by shielding this space by the use of bowl-shaped or concave lig-
ands.365 Examples of such ligands are, e. g., tertphenyls366–368 or N-heterocyclic
Carbenes (NHCs)369,370. The bulk effects of such ligands base upon EXR that
originates from one or more hydrocarbon-substituted groups. Formerly, scientists
typically assumed that the attractions caused by LD are individually weak and
virtually negligible. This misunderstanding roots in the validity of the assump-
tion when applied to a single pair of atoms. In larger molecules, however, LD

effects have considerable significance inducing stabilization in the order of dozens
of kilocalories per mole. Such attractive effects can thus compete with the EXR

and realize special binding situations. One famous example is the instability of the
hexaphenyl ethane (Ph3C–CPh3), which only exists as persistent radicals (Ph3C·)
as first reported by Gomberg.371,372 These trityl radicals do not dimerize to the
expected hexaphenyl ethane. By contrast, the sterically more crowded tris(3,5-di-
tert-butylphenyl)methyl radical dimerizes,373,374 forming a stable colourless, crys-
talline solid with an elongated C-C bond of 1.67(3) Å (see system 2 in figure 4.1).
A computational study375 revealed that the tremendous stabilizing energy arises
from LD effects between the meta tert-butyl groups.

As the importance of LD is well-known, e. g., in protein research, 376 supramolec-
ular,377 and theoretical chemistry,17,239,378 the next two chapters highlight some
organic and organometallic compounds where these forces play a crucial role.
Chapter 4 investigates another unique binding situation in the tris(3,5-di-tert-
butylphenyl)methane (TPM) molecular crystal. This compound crystallizes in C3-
symmetric head-to-head dimers, each revealing an intermolecular H· · ·H contact
of only 1.566(5) Å . This binding motif is rationalized by the HSE-3c composite
scheme, and an energy decomposition scheme verifies the importance of LD effects
for the molecular TPM-dimer complex. The dissociation energy of the TPM dimer
and the unsubstituted symmetric triphenyl-methane dimer shows the substantial
overall stabilizing effect of the meta tert-butyl groups.

One of the first publications that describe the structural distortion of an organo-
metallic complex utilizing LD effects concerned the transition metal and lanthanide
amido derivatives M[N(SiMe)3] (M = Sc and Eu). Those three-coordinated com-
pounds display a pyramidalized rather than a planar metal coordination.379 Studies
suggested that the planarity distortion arises in the formation of the crystalline
phase, in which the metal ion is pushed out of the coordination plane by a sym-
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metrical contraction resulting from intramolecular-interligand van der Waals at-
tractions. Recently, the number of publications concerning LD effects controlling
the stability, structure and reactivity of various transition metals increased rapidly.
Examples are found for Pd(PPh3)4,380 Pd(PtBu3)2,381 Os(Cl)2(H2)(PiPr3)2,382

or the Grubbs’ catalysts.383 The theoretical understanding and quantification of
LD within such organometallic complexes are of crucial importance when it comes
to reaction planning of future synthesis. Chapter 5 deals with LD effects in such
organometallic complexes. The theoretical foundations of long-range correlation
are shortly recapped. Afterwards, the necessity of including a dispersion correction
in DFT is highlighted by the calculation of high-quality structures and high-quality
relative energies. The latter is verified by comparing against literature-known
benchmark sets. A comparison to experimental data validates the theoretically
obtained molecular geometries. Furthermore, absolute DFT-D3 and DFT-D4 dis-
persion energy values are discussed for HF and several DFAs and compared to
high-level coupled-cluster values obtained in a local energy decomposition.
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Abstract Neutron diffraction of tri(3,5-tert-butylphenyl)methane at 20 K reveals
an intermolecular C-H· · ·H-C distance of only 1.566(5) Å, which is the shortest re-
ported to date. The compound crystallizes as a C3-symmetric dimer in an unusual
head-to-head fashion. Quantum chemical computations of the solid state at the
HSE-3c level of theory reproduce the structure and the close contact well (1.555 Å
at 0 K) and emphasize the significance of packing effects; the gas-phase dimer
structure at the same level shows a 1.634 Å C-H· · ·H-C distance. Intermolecu-
lar London dispersion interactions between contacting tert-butyl substituents sur-
rounding the central contact deliver the decisive energetic contributions to enable
this remarkable bonding situation.

Continuously probing the limits of chemical bonding helps improve our current
understanding of molecular structure theories. Many are enthralled by the notion
of going beyond carbon-carbon triple bonds,384 inorganic quadruple and higher
bond orders,385,386 twisted double bonds,387–389 compressed390,391 and stretched
covalent bonds392–394 and noncovalent interactions such as extremely short C· · ·C
contacts,395,396 and many more. To the best of our knowledge, we report here the
shortest intermolecular H· · ·H contact in a hydrocarbon as evident from the ex-
ceptional congruence of both neutron and X-ray diffraction experimental data with
quantum chemical crystal structure computations. Impressive examples for very
short intramolecular C-H· · ·H-C contacts are some bowl-like structures such as
exo,exo-tetracyclo[6.2.1.1.386,3890385,390]dodecane 3 derivatives with RH···H down
to 1.713(3) Å 397 (neutron diffraction data, NRD) and the famous current record
holder “half-cage” pentachloro-pentacyclododecane 4 with a short H· · ·H con-
tact of 1.617(3) Å (NRD), thereby significantly undercutting the sum of the van
der Waals (vdW) radii of 2.40 Å398 by ∆RvdW = −0.78 Å (Figure 4.1).77 Such
compressions are not uncommon in heteroatomic polycycles, with Pascal’s record
holder 5 that displays an intramolecular Si-H· · ·H-Si contact of roughly 1.56 Å ,
as judged from quantum chemical computations and the Si· · ·Si distance of
4.433(2) Å derived from X-ray single crystal diffraction (XRD) data; unfortu-
nately, no NRD study of 5 has been published.399,400
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Figure 4.1.: Short intermolecular H· · ·H contact in all-meta tBu-triphenyl-methane
dimer 12 and the long RC-C in LD stabilized all-meta tBu-hexaphenylethane
2. Polycyclic structures with short intramolecular H· · ·H contacts:
exo,exo-tetracyclododecane 3 (NRD), “half-cage” 4 (NRD) and in,in-
bis(hydrosilane) 5 (XRD; RH···H ≈ 1.56 Å by computations and 1.531(8) Å
by NRD400).

Structures 3-5 share tight transannular H· · ·H contacts within a sterically con-
fined environment, and at first glance such short contacts would not be expected
intermolecularly because of the energetic penalty associated with bringing atoms
much within their comfortable vdW-radii.401–404 Here we demonstrate not only
that this energetic drawback can be overcome in an intermolecular bonding sit-
uation via highly attractive London dispersion161,162,405 (LD) interactions, but
also that such short nonbonding distances can be compressed even more than
in the shortest published intramolecular case. In molecular design, large alkyl
groups are used to introduce bulk and sterically shield reactive moieties. The
fact bulky groups are highly polarizable, thereby increasing their ability to engage
in non-negligible, stabilizing LD interactions, is often disregarded. Such groups
are appropriately termed “dispersion energy donors”, DEDs.406 This thermody-
namic stabilization can be utilized to isolate otherwise highly reactive molecular
entities within an LD shell,407 as demonstrated for bulky NHC coordinated main
group compounds408 and the exceedingly crowded hexaphenylethane derivatives
such as all-meta tBu-hexaphenylethane (2).375,409 Although hexaphenylethane is
experimentally unknown, sterically much more crowded 2 is isolable and was char-
acterized via XRD374 and NMR spectroscopy.410 The origin of the stabilization
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was traced back to LD interactions between the tBu-groups, which are deemed
excellent DEDs.375,409 The otherwise delicate organic peroxide functionality411

is also highly stabilized when embedded in the all-meta tBu-trityl motive lead-
ing to a m.p. (decomp.) of 253 ◦C in bis(tri(3,5-di-tert-butylphenyl)methyl)
peroxide.412 These peripheral LD interactions also give rise to an all-meta tBu-
triphenylmethane dimer 12 [Bis(tri(3,5-di-tert-butylphenyl)-methane)], featuring
the shortest C-H· · ·H-C contact reported to date (Figure 4.2)

Figure 4.2.: ORTEP representation of 12 derived from neutron diffraction data with
ellipsoids drawn at 50% probability.

Hydrocarbon 1 crystallizes in the cubic space group Pa3 as determined by XRD
at 100 K. The asymmetric unit consists of one 3,5-di-tBu-phenyl group attached
to the central Cα-Hα moiety. Application of the S6 symmetry operation present
in Pa3 along the Cα-Hα axis results in dimer 12 with a RCα···Cα of 3.780(7) Å .
As the XRD C-H bond length of RC-H = 1.00(4) Å already revealed a remarkably
short C-H· · ·H-C distance of 1.77(7) Å , we reckoned the true distance must be
significantly shorter because of the well-known underestimation of XRD C-H bond
distances. Using NRD at the lowest achievable temperature of 20 K utilizing
a large crystal with 2 mm edges, we determined the cubic, yet less symmetric
space group P213.413 The new asymmetric unit consists of two distinguishable
fragments, lowering the symmetry in the dimer to C3. Although the Cα-Hα bond
lengths are ordinary414 (Table 4.1) with 1.088(5) Å and 1.098(5) Å , the extremely
short intermolecular Hα · · ·H’α contact of only 1.566(5) Å is the shortest reported
to date.
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Table 4.1.: Structural Data of 12 Determined by NRD and DFT Computations.

NRD HSE-3cb

T [K] (state) 20 100 200 0 (s) 0 (g)
R-value 0.031 0.054 0.096
Volume [Å3] 7833.1(4) 7901.4(4) 8040.4(4) 7676.9
Hα · · ·H’α 1.566(5) 1.577(6) 1.594(9) 1.555 1.634
Cα · · ·Hα 1.093(5)c,d1.093(3) 1.091(5) 1.088 1.092
Ave. Calk-H 1.090(7) 1.078(29) 1.068(45) 1.091 1.091
Ave. Carom-H 1.085(6) 1.085(2) 1.076(4) 1.082 1.082
Cα-Ci 1.515(1)c 1.515(1) 1.515(2) 1.509 1.513
Hα-Cα-Ci 106.0(1)c 106.0(1) 105.9(1) 105.9 104.8
Ci-Cα-Ci 112.7(1)c 112.7(1) 112.8(1) 112.8 113.7
Hα-Cα-Ci-Co 39.8 39.8 40.1 39.8 45.3
Ho · · ·Pha 3.632 3.639 3.654 3.613 3.637
Ho · · ·C’o 2.927(1) 2.958(1) 2.978(1) 2.917 3.062
tBu· · ·Ph’a 5.192 5.136 5.140 5.025 4.982
tBu· · · tBu’a 6.166 6.115 6.113 6.037 5.889

aGroup centroid distances.
bBasis set: def2-mSVP.
cAve. of both molecules in 12 (cf. supporting information of Ref. 409).
dC’α-H’α = 1.098(5) Å .

To allow such short contacts well below their vdW radii,398,415 the overall stabiliza-
tion must derive from other parts of the molecule, which, based on the measured
NRD data, do not suffer from significant deformations: The sp3 angles around
the central carbon Cα amount to 106.0◦ (Hα-Cα-Ci) and 112.7◦ (Ci-Cα-C’i);
the C-C bonds are ordinary.414 More importantly, there are 33 contacts within
the attractive vdW-range below the sum of the atom radii (3.08 Å )416 down to
2.39 Å . NRD measurements at higher temperatures (Table 4.1) reveal the ex-
pected structural temperature dependence resulting in an H· · ·H distance change
of ∆RH···H (20 → 200 K) = 0.03 Å ; linear extrapolation leads to a minimum
RH···H of 1.563 Å at 0 K. To rationalize the structural peculiarities of 12 , we em-
ployed DFT computations within the CRYSTAL14 software suite71 utilizing the
developed screened Fock exchange density functional composite scheme termed
HSE-3c.343 This efficient method includes the D3 correction46 and a geometrical
counterpoise correction scheme150 accounting for the basis set superposition er-
ror (BSSE) and improving the description of LD interactions. The primitive cell
starting from the 20 K NRD data (P213) was fully optimized featuring relaxation
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of all atom positions as well as cell parameters. Because of the high symmetry of
the molecular crystal, we were able to reduce the atom count within the primi-
tive cell from 856 reducible to 74 irreducible atoms. The HSE-3c computed solid
state structure is in agreement with the NRD structure of 12 (Table 4.1). The
H· · ·H distance of 1.555 Å at 0 K reproduces the NRD extrapolated value within
the error bounds. The volume of the primitive cell is 2% smaller than observed
experimentally. This equals a thermal density gradient of ≈1 mg cm−3 K−1 (cf.
supporting information of Ref.409), which deviates from the experimental value
(0.1 mg cm−3 K−1) but is in the typical range for organic crystals.417 To estimate
packing effects, 12 was computed in the gas phase at the same level of theory. This
elongates the central H· · ·H contact to 1.634 Å . Crystal packing thus provides
some non-negligible stabilization to the tight H· · ·H contact. Note that the often
employed approximation of using molecularly (non-periodic) optimized structures
as substitute for periodic crystal data is insufficient in our case and would lead
to inconsistencies between theory and experiment of about 0.07 Å . Closely re-
lated unsubstituted triphenylmethane 6418 and the all-meta methyl derivative 7
(cf. supporting information of Ref. 409) crystallize in space groups different from
12 , namely in Pna21 and P1 , respectively, and no linear head-to-head dimers
can be discerned. An energy decomposition analysis (EDA, Figure 4.3 and cf.
Appendix A4)419 of 12 at the B3LYP-D3(BJ)-ATM/def2-TZVPP level is instruc-
tive in understanding the roles of the various (arguably somewhat arbitrary) energy
contributions to the overall stability of 12 ; the trends are mirrored by an SAPT(0)
analysis (Figure 4.3).
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Figure 4.3.: Energy decomposition analysis of 12 at B3LYP-D3(BJ)-ATM/def2-TZVPP.

Of course, the steric bulk of the tBu-groups increase the overall Pauli exchange
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repulsion between the monomers significantly. However, all other contributions
including electrostatics stabilize the dimer interactions, with the dispersion com-
ponent being by far the most important. To estimate overall stabilizing energy
contributions of the tBu groups, the dissociation energy of 12 was computed
by optimization at B3LYP-D3(BJ)-ATM/def2-TZVPP including thermostatistical
corrections at PBEh-3c and compared to the unsubstituted symmetric triphenyl-
methane dimer 62. Structure 12 is bound by 48.9 kcalmol−1 of LD; dissociation
therefore is unfavored by ∆G298

d = 7.7 kcalmol−1.167 By omitting the tBu moi-
eties, the head-to-head arrangement of 62 becomes unstable and about 77% of
LD interaction is lost resulting in ∆G298

d = −8.5 kcalmol−1. Solvation free energy
contributions computed with BP86-COSMO-RS420–422 for CHCl3 destabilize the
dimerization of 12 by ∆∆G298 = −8.1 kcalmol−1. In addition, we note a rela-
tively large contribution of the (often repulsive) three-body Axilrod-Teller-Muto
(ATM) dispersion terms17,167,168 that enlarge the H· · ·H distance by about 0.01
to 0.02 Å while decreasing the De from 30.9 to 27.7 kcalmol−1. Dimer 12 is
formally the hydrogenation product of 2. Upon dissociation of 2, a second, local
minimum was predicted to occur along the intrinsic reaction coordinate.375 Such
radical “van der Waals complexes”, better termed LD-complexes, are related to
the “cage-effect”.423 The bis(all-meta tBu-triphenylmethyl radical) LD-complex
82 with a C· · ·C distance of 5.28 Å can be taken as a hydrocarbon analogue of
structures with frustrated Lewis pairs (FLPs),424 where the split central C-C bond
corresponds to the unsaturated dative D→A bond. This analogy was recognized
in the very first appearance of FLPs, where the authors depicted HPE derivatives
as structures analogous to FLPs.425 As FLPs are able to split H2,426 it seemed
plausible that 82 may be able to split H2 with 12 being the formal product. Un-
fortunately, all attempts to split dihydrogen with the corresponding radical 8•
were unsuccessful, as solutions of 8• eventually hydrolyze over a period of one
month to all-meta tBu-triphenylmethanol and all-meta tBu-triphenyl-methane 1
when pressurized with H2 or D2 (for ease of identification by NMR, for details
see supporting information of Ref. 409). We attributed this to the fact that the
barrier for H2 cleavage is the highest when there is no polarization as is the case
for 8•. From a different viewpoint, 12 may also be viewed as a “frozen early
transition state” because of the very close contact of the Hα’s. Indeed, our com-
putational analysis of the contact between the close hydrogens using the quantum
theory of atoms in molecules (QTAIM)427 reveals a bond critical point and the
noncovalent interaction (NCI) plot428 displays a strongly attractive region. Such
computed attractions in tight H· · ·H contacts were also found in a study of 5.429

As such arrangements are far off equilibrium, an interpretation of the analysis of
the density gradient is delicate and might lead to contradictory results. A bonding
interaction between the Hα’s should weaken the respective Cα-Hα bond, measur-
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able by a red-shifted C-H bond stretching frequency. However, experimentally the
stretching vibration frequency of, e.g., 5 increases.77 Unfortunately, the central
C-H IR absorptions are buried under other vibrational bands for 12. Deuteration
at the central methine carbon red-shifts the corresponding C-2H bond stretching
frequency into the uncongested region around 2100 to 2300 cm−1 but we did not
observe additional absorptions. The PBEh-3c computed central asymmetric (IR
active) ν(Cα-H· · ·H-Cα) is about 56 cm−1 blue-shifted as compared to ν(Cα-H)
of the monomer, similar to what was found for 5 (Table 4.2).

Table 4.2.: B3LYP-D3(BJ)-ATM/def2-TZVPP Computations of the Dimeric Structures
of Unsubstituted Triphenylmethane 6 and All-meta tBu-Substituted 1a

Measure 12 62

De 27.8 8.2
∆H298

d 26.6 8.7
T∆S298

d 18.9 17.2
∆G298

d 7.7 −8.5c

∆G298
d,solv −0.4d −8.3d

EDISP 48.9 11.3
∆RbC-H −0.007 −0.005
RCH···HC 1.601 1.717

aDistances in Å , energies in kcalmol−1.
Thermostatistical corrections to free energy using PBEh-3c structures and vibrational frequencies.
bDifference to monomer.
c ∆G<0 means dissociation.
dAfter solvent correction [BP86-COSMO-RS:CHCl3].

In summary, we have identified the shortest intermolecular H· · ·H contact (1.566(5) Å )
reported to date in the crystal structure of the all-meta tBu-triphenylmethane
dimer 12 , as analyzed by NRD at temperatures as low as 20 K. Solid state DFT
computations reveal crystal packing does affect this distance but is not chiefly
responsible for this short H· · ·H contact. Rather, large LD interactions exerted
via the tBu-groups surrounding the compressed H· · ·H contact stabilize 12. The
tBu-groups act as DEDs and counter the otherwise energetically unfavorable head-
to-head arrangement of Hα’s.
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4.2. Appendix A4

See Appendix A4 for further information about the applied computational setup.
This includes coordinates of the previously introduced structures. Furthermore,
values for the dissociation energies of the dimers to two monomers are given.
Finally, values are given for the applied energy decomposition analysis for the
TPM dimer structure.
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CONSPECTUS Quantum chemical methods are nowadays able to determine
properties of larger chemical systems with high accuracy and Kohn-Sham density
functional theory (DFT) in particular has proven to be robust and suitable for
everyday applications of electronic structure theory. A clear disadvantage of many
established standard density functional approximations like B3LYP is their inability
to describe long-range electron correlation effects. The inclusion of such effects,
also termed London dispersion, into DFT has been extensively researched in recent
years, resulting in some efficient and routinely used correction schemes. The well-
established D3 method has demonstrated its efficiency and accuracy in numerous
applications since 2010. Recently, it was improved by developing the successor
(termed D4) which additionally includes atomic partial charge information for the
generation of pairwise dispersion coefficients. These coefficients determine the
leading-order (two-body) and higher-order (three- or many-body) terms of the
D4 dispersion energy which is simply added to a standard DFT energy. With its
excellent accuracy-to-cost ratio, the DFT-D4 method is well suited for the deter-
mination of structures and chemical properties for molecules of most kinds. While
dispersion effects in organic molecules are nowadays well studied, much less is
known for organometallic complexes. For such systems, there has been a grow-
ing interest in designing dispersion-controlled reactions especially in the field of
homogeneous catalysis. Here, efficient electronic structure methods are necessary
for screening of promising model complexes and quantifying dispersion effects. In
this Account, we describe the quality of calculated structural and thermodynamic
properties in gas-phase obtained with DFT-D4 corrected methods, specifically for
organometallic complexes. The physical effects leading to London dispersion in-
teractions are briefly discussed in the picture of second-order perturbation theory.
Subsequently, basic theoretical aspects of the D4 method are introduced followed
by selected case studies. Several chemical examples are presented starting with
the analysis of transition metal thermochemistry and noncovalent interactions for
small, heavy element containing main group compounds. Computed reaction ener-
gies can only match highly accurate reference values when all energy contributions
are included in the DFT treatment, thus highlighting the major role of dispersion
interactions for the accurate description of thermochemistry in gas-phase. Fur-
thermore, the correlation between structural and catalytic properties is emphasized
where the accessibility of high quality structures is essential for reaction planning
and catalyst design. We present calculations for aggregates of organometallic
systems with intrinsically large repulsive electrostatic interactions which can be
stabilized by London dispersion effects. The newly introduced inclusion of atomic
charge information in the DFT-D4 model robustly leads to quantitatively improved
dispersion energies in particular for metallic systems. By construction it yields re-
sults which are easily understandable due to a clear separation into hybridization
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and charge (oxidation) state and two- and many-body effects, respectively. Due
to its high computational efficiency, the D4 dispersion model is even applicable to
low-cost classical and semiempirical theoretical methods.

5.1. Introduction

The London dispersion interaction, further abbreviated as London dispersion (LD),
is one of the fundamental components of noncovalent interactions leading to
molecular flexibility, adaptability and diversity and thus render the complicated
apparatus of life possible. It is omnipresent and must be included in any reason-
able theoretical description of chemical or physicochemical processes of matter,
i.e., between molecules in gases, liquids and solid materials as well as for in-
tramolecular interactions in large systems.17 Understanding and predicting such
interactions is crucial for e.g. design and improvement of catalysts.430,431 London
and Eisenschitz161 pioneered the quantum physical description of this perma-
nently attractive interaction between instantaneously induced dipoles (occurring
due to electronic fluctuations) in polar and nonpolar molecules and atoms (cf.
Figure 5.1).153

Electron correlation

E E

Coulomb

exchange
and

interactions

A B

single-excitation single-excitation

coupled to double-excitation

transition densities

μ μ

μ := (transition) dipole moment

A

Figure 5.1.: Scheme of the dispersion interaction for two interacting fragments A and B
(e.g., He atoms with a ground state doubly occupied 1s orbital and virtual
(unoccupied) 2p3p4p . . . orbitals) at large distance. The transition densities
for excitations from the 1s orbital to the np orbitals lead to nonvanishing
transition dipoles in a multipole expansion and, hence, to the leading dipole-
dipole part of dispersion interactions.

London dispersion interactions are electron correlation effects which become more
energetically favorable with increasing dynamic polarizability and size of the con-
sidered fragments. The leading order (two-body) part of the dispersion energy
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shows an asymptotic R−6 behavior, with R being the interfragment distance, and
is thus classified to belong to the long-range electron correlation energy regime.
Nowadays, state-of-the-art wave function theory (WFT) methods exists which
are able to determine such long-range correlations with high accuracy. However,
these methods are often not computationally feasible for calculating large or many
smaller molecules due to the involved high computational effort. Hence, the de-
velopment of simplified methods is of great importance that provide a reasonable
compromise between accuracy and efficiency. Specifically, Kohn-Sham density
functional theory (abbreviated as DFT in the following) has developed into a ro-
bust electronic structure method within modern electron structure theory in recent
years. One disadvantage of DFT is its inability to describe long-range correlations
sufficiently. However, such interactions are indispensable to obtain interaction
energies with errors less than the common chemical accuracy of 1 kcalmol−1,
particularly for noncovalently bond systems. Therefore, semiclassical dispersion
corrections to DFT have been developed in the past years and are meanwhile used
routinely in many quantum chemistry codes.17,46,47,179,210,432,433 Some of these
correction schemes accurately incorporate LD into DFT at very small computa-
tional costs. The low-cost composite DFT schemes18 PBEh-3c272 and B97-3c257

as well as the corrected Hartree-Fock (HF) method HF-3c342 and the extended
tight-binding methods GFN- and GFN2-xTB188,244 are examples for the inclusion
of such correction schemes into functional and method design. Here we focus on
the very recent D4 method as successor of the widely applied D3 correction46,166

and concentrate on the application to DFT leading to DFT-D4 methods. The D4
scheme employs charge-scaled atomic reference polarizabilities α(iω) as well as a
geometry-based interpolation scheme to obtain charge- and geometry-dependent
pairwise dispersion coefficients CAB6 .210 It should be particularly useful for metallic
systems. Figure 5.2 shows small organic molecules to medium-sized organome-
tallic complexes that contain a d-block element in varying oxidation states with
some exemplary homoatomic atoms-in-molecules dispersion coefficients CAA6 .

122



II. Applications of London Dispersion Corrections

partly huge effects

329.3
113.4

390.6
133.5

mainly small effects

OTM

31.5

21.1

24.0

28.7

108.5

156.6

18.1

22.6

1.5
2.6

CAA
6 = 3

π

∞∫
0

dω αA(iω)αA(iω)

Figure 5.2.: Homoatomic dispersion coefficients CAA6 are shown for small organic
molecules and organotransitionmetallic (OTM) complexes. Dispersion coef-
ficients are given in atomic units (1 au equals 1 Hartree Bohr6). Gray = C;
white = H; blue = N; red = O; yellow = S; green = Cl; purple = I; pink =
Co; gray-blue = Cr.

These coefficients mainly determine the strength of LD and can vary over several
orders of magnitude. For carbon atoms in typical organic compounds, the abso-
lute values for homoatomic dispersion coefficients are in a relatively narrow range.
For example, coefficients between 18.1 au for the more positively charged carbon
atom in CCl4 compared to 28.0 au for carbon in C6H6 are obtained. This picture is
different for organometallic complexes where dispersion coefficients can vary sig-
nificantly depending on the complex geometry and oxidation state. For example,
the coefficient for chromium (gray-blue, right side of Figure 5.2) drops by more
than 50% between the Cr(C6H6)2 sandwich complex and the Cr(CO)6 molecule.
Dispersion-corrected DFT methods are adopted in contemporary research and in
chemical industry, e.g., in polymer chemistry, catalyst design, adhesive studies, or
colloid stability evaluation, where accurate interaction energies for larger systems
(200-300 atoms) are essential for, e.g., verifying reaction mechanisms or screen-
ing purposes. Here, the cooperation between experiment and theory is important
for optimizing chemical processes and verifying new synthetic routes. Especially
organometallic complexes play an important role, because metal specific chemi-
cal properties allow a conceivable range of chemical transformations, which are
chemically interesting but challenging for theory because of their diverse, often
complicated electronic structure. In this Account, we briefly describe the theoret-
ical foundations that lead to long-range electron correlation effects and LD and
how to treat those in the framework of DFT. Subsequently, theoretical results for
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structural and thermodynamical properties obtained at typical dispersion-corrected
DFT levels are discussed in comparison to high-level WFT reference data or ex-
perimental results. This includes energy decomposition analysis to understand the
interactions as well as comparison to noncorrected DFT results. Finally, a short
comment on computational efficiency, a summary, and an outlook on possible
future work will be given.

5.2. Theory and Methods

Figure 5.1 depicts the Coulomb and exchange interactions between two coupled
single excitations which occur spontaneously and simultaneously through quan-
tized electronic fluctuations. Such coupled excitations describe electron correla-
tion, which is an attractive contribution to the total energy of the system. In
second order perturbation theory (PT2), the energy of such coupled excitations
can be expressed as

E
(PT2)
corr = −

nocc.∑
ij

nvirt.∑
ab

{(ia|jb) − (ib|ja)}2

ωai +ωbj
(5.1)

Here, the Coulomb (ia|jb) = J and exchange (ib|ja) = K integrals together with
the energies ω of the single excitations determine the magnitude of the correlation
energy. Since the electron density decreases exponentially, the exchange contri-
bution K between separated fragments vanishes in the asymptotic region, such
that only the long-range Coulomb interaction remains. Expanding this Coulomb
interaction into multipoles, the first nonvanishing term describes the fragment (or
atom) pairwise dipole-dipole interaction, which can be represented by averaged
and integrated, isotropic dynamic dipole-dipole polarizabilities of the two frag-
ments A and B leading to the Casimir-Polder and London formulas, respectively,
for the dispersion energy EDISP

E
(6)
DISP = −

3
πR6

∞∫
0

dωαA(iω)αB(iω) = −CAB6 /R6 (5.2)

The above equations form the basis for very many dispersion energy correction
schemes. Semilocal density functional approximations (DFAs) include short- to
mid-ranged electron correlation effects through the exchange-correlation func-
tional. In order to avoid double counting of interactions, the atom-pairwise disper-
sion energy −CAB6 /R6 is usually damped at short-range using internuclear distance
(RAB) dependent damping functions as, e.g., multiplied by the rational function
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proposed by Becke and Johnson432,433 (abbreviated as BJ in the following)

f
(n)
BJ (RAB) =

R
(n)
AB

R
(n)
AB +

(
a1 RAB0 + a2

)(n) (5.3)

The D4 dispersion correction used within this work incorporates both two-body
and three-body dispersion interactions.308 Three-body effects are captured by
inclusion of an Axilrod-Teller-Muto (ATM) term167,168 as known from earlier DFT-
D methods46 which contributes normally less than about 5%. The total dispersion
energy is given by the following formula

ED4DISP = −
∑
AB

∑
n=6,8

sn
CAB(n)

R
(n)
AB

f
(n)
BJ (RAB) + E

(9),ATM
DISP (5.4)

In addition to the two-body C6 and three-body C9 terms, less long-ranged dipole-
quadrupole pairwise terms (n = 8) are included as well. Atomic polarizabilities
for atoms-in-molecules are obtained from element specific reference molecule po-
larizabilities that are scaled with respect to relative charge differences between the
target and the reference molecule. Importantly, all fundamental polarizabilities
in the model are obtained nonempirically at the time-dependent DFT level.434

Those scaled reference polarizabilities are interpolated based on a geometrical
measure of the hybridization state (coordination number, CN) to produce charge-
and geometry-dependent atomic polarizabilities as depicted in Figure 5.3.
Those polarizabilities are used to calculate pairwise dispersion coefficients from
which dipole-quadrupole and triple-dipole dispersion coefficients are available via
recursion in analogy to earlier works.46 As can be seen from Figure 5.3, gen-
erally the polarizability and the dispersion coefficients increase with decreasing
CN (lower saturation) and decreasing positive charge. The latter effect is more
pronounced for metals where the D4 method (which includes charges) is benefi-
cial compared to the older D3 scheme. Note that computationally more involved
density dependent dispersion correction schemes like vdW-DF187 or VV1051,52

automatically include this oxidation state dependence. Those methods, however,
are less accurate for dispersion coefficients17 and do not allow simple analysis
which is available in D4 through the atomic partitioning. The charges in the D4
approach can be computed by DFT, simple tight-binding methods or even classi-
cally by electronegativity equilibration depending on the degree of sophistication
of the basic theoretical method which is dispersion corrected.
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Figure 5.3.: Charge- and geometry-dependent static atomic polarizabilities α(0) for car-
bon (left) and molybdenum (right) from averaging element specific reference
polarizabilities. Positive (negative) partial charges decrease (increase) the
polarizabilities magnitude.

5.3. Applications

Although consideration of LD is an accepted standard in computational organic
chemistry, the awareness for the importance of LD in organometallic chemistry
was not widespread. Recently, a resurgent interest in LD effects on organome-
tallic chemistry is noted.193,365,430,435,436 Two major aspects, emerging from the
interface between theoretical and experimental chemistry are the influence of LD
on (a) structural properties and (b) reaction thermodynamics. Both are closely
connected to reactivity prediction and catalyst design.435 In this context, the
applicability and accuracy of methods varies significantly throughout the zoo of
theoretical approaches ranging from force-fields over semiempirical approaches to
DFT and WFT based methods. Approaching highest accuracy at smallest possible
cost represents an inevitable compromise with growing system size and complex-
ity. Therefore, careful assessment of quantum chemical (QC) methods remains
essential. With a growing focus on organometallic chemistry, new benchmark sets
had to be developed to verify the strengths of DFT known from computational
organic chemistry and to identify its weaknesses with respect to the exigencies
of organometallic chemistry. In the following we present selected benchmark
studies and examples of how further developed methods like D4 substantially
improve the accuracy of state-of-the-art DFT for geometries and thermochem-
istry. We first discuss benchmark studies for closed-shell transition metal thermo-
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chemistry (gas-phase reaction energies) like the MOR41268 and WCCR10437,438

sets as well as the HEAVY2846 benchmark set for intermolecular noncovalent
interactions of small, heavy main group element containing compounds (cf. Fig-
ure 5.4). In all cases the inclusion of dispersion corrections proved crucial to
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Figure 5.4.: Influence of different dispersion corrections to DFT for describing metallic
thermochemistry in the MOR41, WCCR10, and HEAVY28 benchmark sets.
All values are obtained at the PBE0/def2-QZVPP level.

obtain high accuracy compared to WFT references. For MOR41, consisting of
41 realistic transitionmetal complex reactions, plain DFT yields a large mean
absolute deviation (MAD) of 6.6 kcalmol−1 and a standard deviation (SD) of
6.9 kcalmol−1 for the robust PBE0116 functional with a large def2-QZVPP251

atomic orbital (AO) basis set. Application of either D3(BJ)-ATM (further abbre-
viated as D3) or the nonlocal (NL) VV1051,52 dispersion corrections improve the
results significantly with MAD of 2.6 kcalmol−1 for D3 and 2.4 kcalmol−1 for
the density-dependent NL correction. The D4 model further improves the results,
yielding a MAD of 2.1 kcalmol−1. An exemplary reaction with large dispersion
effects is the association of PCy3 to benzyliden[1,3-bis(2,4,6-trimethylphenyl)-
2-imidazolidinyliden]dichlororuthenium forming the Grubbs II catalyst (cf. Fig-
ure 5.5). Here, plain PBE0 yields a deviation of 24.7 kcalmol−1 for the reaction
energy. Including the D4 correction reduces this deviation to only 0.5 kcalmol−1.
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Figure 5.5.: Reaction energies for the association of PCy3 to benzyliden[1,3-bis(2,4,6-
trimethylphenyl)-2-imidazolidinyliden]dichlororuthenium forming the Grubbs
II catalyst (kcalmol−1). All DFT energies are calculated with the def2-
QZVPP basis with reference to DLPNO-CCSD(T)/ TightPNO/CBS(def2-
TZVPP/def2-QZVPP) level results.

Similar trends are observed for the WCCR10 and the HEAVY28 benchmark sets
where the application of the D4 model decreases the MD by one order of magni-
tude (WCCR10) and by about 50% (HEAVY28) as depicted in Figure 5.4. While
these studies highlight the importance of dispersion corrections to standard DFT
functionals for thermochemistry, the systematic influence of LD on structural fea-
tures of organometallic systems is far less systematically studied. A well established
benchmark set of small first to third row transition metal compounds by Bühl and
co-workers294,439,440 is available. However, as only small molecules (<20 atoms)
are included, the influence of the dispersion correction schemes is small and not
representative for most realistically sized organometallic complexes. The latter
often have extensive ligand spheres with large inter- and intramolecular disper-
sion interactions. In the following we present selected examples of significant
dispersion interaction influenced organometallic geometries. A strong correlation
between structural and catalytic properties has been studied by Bickelhaupt and
co-workers in 2015.441 They investigated the influence of sterically attractive LD
on the bite-angle flexibility and the metal-mediated C-H bond activation of bis-
phosphane palladium catalysts. It was shown that significantly bent minimum
structures of the PdR2 catalysts with R = PiPr3, PCy3, and PPh3 are favored
with increasing ligand size. These observations were predominantly attributed
to interligand dispersion interactions (cf. Figure 5.6). The resulting increased
bite-angle flexibility decreases the catalyst activation strain leading to compa-
rably small activation barriers for the oxidative addition of methane (about 8.6
kcalmol−1 smaller) for Pd(PPh3)2 with respect to Pd(PH3)2. Concluding, Bick-
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Figure 5.6.: NCIplot428,442 of the transition state of the oxidative addition of methane to
Pd(PCy3)2. A blue color indicates strongly attractive, red repulsive regions,
and green regions are dispersion dominated. Note the large effect of the D4
correction on the calculated bite angle in the equilibrium structure of about
16◦.

elhaupt and co-workers pointed out the importance of dispersion interactions for
modern concepts of catalyst design reconsidering sterically controlled mechanisms
for enhancing catalyst properties. Another example of significant dispersion in-
duced structural features are heavy group 14 carbene analogues carrying large ter-
phenyl ligands.443,444 Power et al. synthesized a series of bis-terphenyl tetrylenes
of the formula E{C6H3-2,6-(C6H2-2,4,6-iPr3)2}2 (E = Ge, Sn or Pb) with system-
atically increased ligand size.443 Surprisingly these compounds show an counter-
intuitive trend of decreased Cipso-E-Cipso angles with increased steric demand of
the terphenyl ligands ArMes < ArDipp < ArTripp. The dovetailing of both ligands
(cf. Figure 5.7) favors intramolecular dispersion interactions thus decreasing the
Cipso-E-Cipso angle. Uncorrected DFT yields systematically too large Cipso-E-Cipso

angles. Specifically for the largest system Pb(ArTripp)2 the deviation of 9.3◦ from
the experimentally observed angle (108.1◦) is substantial (cf. Figure 5.7). Here,
already the DFT-D3 optimization yields equilibrium geometries in good accor-
dance with the experimental structure. The significant angle compression with
increased steric demand is reproduced well. The Cipso-E-Cipso angle is 107.3◦ at
the DFT-D4 level, only deviating 0.8◦ from the experiment (φDFT-D3 = 107.5◦).
These results further emphasize the indispensability of dispersion corrections to
DFT for describing complex molecular systems. In particular for compounds in-
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Figure 5.7.: NCIplot of a sterically crowded heavy carbene analogue Pb{C6H2-2,4,6-
iPr3)2}2 and its experimental and calculated Cipso-Pb-Cipso angles in degrees.

cluding heavy elements that often involve flexible bonding, attractive interligand
interactions play an important role on key structural features. Furthermore, the
stabilization of unprecedented organometallic complex structures due to disper-
sion interactions were investigated by Merino and co-workers for cationic group
8 sumanene complexes of the formula CpM(η6 – sumanene)+ (with M = Fe, Ru,
Os).445 From sterical considerations the bonding motif of the domed sumanene
ligand should be dominated by a convex (B) bound structure, minimizing the
steric repulsion between the CpM and the sumanene fragment (cf. Figure 5.8).
Counterintuitively, a concave (A) bonding is observed experimentally. Merino and

Ru

concave (A)

convex (B)

ΔEA-B Fe Ru Os

PBE0 0.2 3.5 3.4
PBE0-D3 -4.8 -1.8 -1.7
PBE0-D4 -5.0 -1.8 -1.7

Figure 5.8.: Overlay of a concave and a convex bound sumanene structure plots. The
convex coordinated structure motif is depicted in blue. Relative energies
with the def2-QZVPP basis sets are given in kcalmol−1.

co-workers showed that several dispersion-free DFT approaches fail to qualitatively
reproduce this observation. Upon inclusion of the D3 correction most presented
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DFT functionals provide qualitatively correct relative energies. This indicates a
significant stabilization of the concave structures by attractive intramolecular dis-
persion interactions of up to 5 kcalmol−1. Even though dispersion effects in large
organometallic systems are often dominated by ligand-ligand interactions, various
examples show clear indications for important metal-metal dispersion interactions
as well. A prominent example are bimetallic indenyl bridged complexes (cf. Fig-
ure 5.9).

antisyn

Method

PBE0 -1.0
PBE0-D3 -3.6
PBE0-D4 -4.1

ΔEsyn-anti

Cr Rh Cr

Rh

DLPNO-CCSD(T) -4.2

Figure 5.9.: Isomers of a bimetallic indenyl complex optimized at the PBE0-D4/def2-
QZVP level. Energies calculated with the def2-QZVPP basis set with
reference to DLPNO-CCSD(T)/CBS(def2-TZVPP/VeryTightPNO/def2-
QZVPP/TightPNO) values (in kcalmol−1).

Several representative compounds were investigated, focusing on the relative sta-
bilities of their syn- and anti-isomers. Moreover, the role of noncovalent metal-
metal interactions446 was studied. The stabilizing metal-metal interaction was
shown to be of purely noncovalent nature and intramolecular dispersion inter-
actions were identified to play a crucial role in stabilizing the syn-isomer. This
stabilization stands in contrast to expected steric repulsion between the bridged
transition metal fragments. Inclusion of dispersion interactions in DFT is cru-
cial for the correct reproduction of the relative energies and structures of the
investigated indenyl complexes. The plain PBE0 functional with the large def2-
QZVPP basis set is not able to reproduce the DLPNO-CCSD(T)/CBS(def2-
TZVPP/VeryTightPNO/def2-QZVPP/TightPNO)261 reference values, yielding
too stable anti-isomers (for details see Appendix A5). Inclusion of the D4 correc-
tion improves the DFT relative energy, reproducing the reference value well. For all
four indenyl systems PBE0-D4/def2-QZVPP yields small MAD (0.45 kcalmol−1)
and MD (−0.1 kcalmol−1) values. Furthermore, organometallic aggregates with
intrinsically large repulsive electrostatic interactions can be stabilized by dispersion
effects.287 The DLPNO-CCSD(T)/TightPNO/def2-QZVPP interaction energy of
a cationic tetrakis(isonitrile)-rhodium(I) dimer was analyzed by applying the Local
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Energy Decomposition (LED) method447 (cf. Figure 5.10).

Figure 5.10.: LED analysis of the [[Rh(CNPh)4]2]2+ dication obtained at the DLPNO-
CCSD(T)/def2-QZVPP level.

The DFT-D dispersion models are therefore applicable even to huge systems con-
sisting of several thousands of atoms thereby without significant overhead in-
creasing the accuracy of the obtained results significantly. Overall, neglecting
dispersion corrections in state-of-the-art DFT-based computational chemistry is
mostly unjustifiable. As already mentioned, the D3 (and D4 with classical charges)
schemes are even sufficiently fast in order to be applied in the framework of very
fast semiempirical DFT approximations188,244 or force-fields.

5.4. Summary and Perspective

The progressive understanding of London dispersion interactions has led to an in-
creased interest in the application of dispersion correction schemes to organometal-
lic systems. By comparison to WFT results, it was shown that dispersion-corrected
DFT performs excellently in terms of accuracy and speed for a variety of orga-
nometallic complexes. The accurate prediction of thermochemical and structural
properties is routinely facilitated by applying combinations of well understood and
robust DFT functionals like PBE0 and an efficient and accurate dispersion correc-
tion like the newly developed D4 model. It generally improves results by keeping
established and extremely well tested D3 components with an additional inclu-
sion of charge-dependent atomic polarizabilities. This improvement was largely
inspired by the requirements immanent to organometallic complexes with respect
to versatile charge characteristics. In addition to accurate total energy calcula-
tions, a quantification and dissection of dispersion effects is possible. It was shown
that for some dispersion-corrected density functionals (e.g., B3LYP) absolute dis-
persion energies agree well with localized coupled-cluster values obtained by an
energy decomposition scheme. With these possibilities at hand, routine application
of the efficient D4 model to organometallic systems enables close on time cooper-
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ation of experimentalists and computational chemists. Specifically, challenges like
rational organometallic catalyst design will profit from easily accessible improve-
ments to DFT. The neglect of dispersion interactions in modern computational
chemistry proved negligent and unjustifiable as robust and efficient dispersion
correction schemes are available. Residual errors in DFT based computational
chemistry treatments are mostly caused by partially remaining (and persistent)
deficiencies like inaccurate treatment of solvation (which partially quenches dis-
persion effects),448 thermal effects (entropy), as well as inherent problems of the
underlying exchange-correlation functionals (mainly caused by the self-interaction
error).30 It remains to be seen how modern density functionals449,450 which try to
tackle such problems will evolve and influence the field of organometallic chemistry
in the future.

5.5. Appendix A5

See Appendix A5 for further information about the applied density functional
calculations, the applied DFT-D methods, the applied DLPNO-CCSD(T) setup
as well as information about the Tetrakis(isonitrile)rhodium(I) dimer structure.
This is followed by benchmark data including data for the MOR41 benchmark,
the WCCR10 benchmark set, and the HEAVY28 benchmark set. Afterwards, the
local energy decomposition is compared against dispersion-corrected DFT which
is followed by a discussions about computational timings. Finally, structures of
the indenyl complexes are given
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KS-DFT emerged as the method of choice when describing the electronic structure
of molecular or periodic systems. Practical DFAs are commonly used for the rou-
tine calculation of structures and physical properties of systems with hundreds of
atoms. However, DFAs are unable to account for dynamic long-range correlation
effects. Although methods exist to determine LD correlation effects accurately,
e. g., TD-DFT or correlated WFT, they usually exceed the computational effort of
the underlying electronic structure method. To cure this deficit, several cost-
effective LD correction models have been developed. Considering their exploited
approximations, Klimeš classified dispersion corrections in different groups intro-
ducing his “stairway to heaven”.378 In analogy to Jacob’s ladder, each group is
placed on a different rung with increasing use of environment information leading
to higher overall accuracy when climbing this ladder. Since the majority of this
dissertation deals with DFT-D methods, the basic idea of the “stairway to heaven”
is adapted, but only related to DFT-D methods.
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Figure 6.1.: DFT-D version of Klimeš’ “stairway to heaven”.378

Starting at a semi-local DFT level, the accuracy is improved for each rung ap-
proaching the best result within the “Functional Heaven”. As with Jacob’s ladder,
higher rungs do not correlate with higher accuracies for a particular problem. In-
stead, the overall statistical performance is improved. The DFT-D2 method on the
first rung incorporates the right −C6/R6 asymptotic behavior for the interaction
of two atoms being separated by their distance R with their pairwise dispersion co-
efficient C6. This is achieved by including constant dispersion coefficients to each
element irrespective of its oxidation or hybridization state. The errors introduced
by this rough approximation can be huge, e. g., dispersion coefficients of carbon
atoms in sp and sp3 hybridized states can differ by up to 35%.43 The DFT-D3
method on rung two corrects for this drawback through the inclusion of hybridiza-
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tion dependent pairwise dispersion coefficients (Dobson type-A nonadditivity189)
in terms of fractional coordination numbers.

Despite the widespread reliability and versatility of DFT-D dispersion corrections,
intensive research is ongoing to enhance their universality, robustness, and ac-
curacy further. This dissertation presented the extension of the DFT-D3 model
from rung two by considering oxidation-state information and many-body effects
with the aim to diversify the application areas while simultaneously improving the
accuracy. An important constraint is that the extension does not deteriorate the
computational efficiency of DFT-D3.
Chapter 1 introduced a simple ansatz to incorporate oxidation-state information in
the hybridization-dependent reference D3-polarizabilities. The presented approach
rescales D3-polarizabilities regardless of the DFT electron density but rather by
empirical functions. Initially, DFT-D4 was designed using element specific charge-
scaling functions (three parameter per element) with partial charges calculated at
the GFN-xTB tight-binding level of theory. This charge-scaling procedure enabled
the modeling of cationic and anionic polarizabilities.
The subsequent development of one global charge-scaling function resulted in the
reduction of the number of empirical parameters (two global parameters). In
the final DFT-D4 (Chapter 2), the calculation of partial charges is replaced by
a classical electronegativity equilibration charge model, which introduced a high
efficiency while maintaining the accuracy. The application of the final DFT-D4
model shows excellent accuracy for diverse properties like molecular dispersion
coefficients, noncovalent interaction energies, conformational energies, thermo-
chemical applications, as well as covalent and noncovalent geometries.
The development of the periodic DFT-D4 model was the topic of Chapter 3. This
chapter examined the influence of additional Dobson type-A effects for dynamic
polarizabilities and their influence on interaction energies. The addition of periodic
reference polarizabilities to the pool of existing D4-references enables the accu-
rate calculation of polarizabilities that match experimental data, e. g., of alkaline
halides. It was shown that lattice energies and cell volumes of molecular crystals
are slightly improved when comparing to its predecessor DFT-D3. Larger improve-
ments are found for obtaining adsorption energies of small organic molecules on
several (non-)polar surfaces.
The general importance of LD effects to verify experimental data was highlighted
in Chapter 4 and 5. Here, long-range correlation effects led to a unique bind-
ing motif with the shortest intermolecular hydrogen-hydrogen contact reported to
date. Low-temperature single-crystal neutron diffraction measurements of crys-
talline TPM have been reported showing an intermolecular H· · ·H distance of
1.566(5) Å. This unusual binding motif originates from a LD driven crystal packing
effect as verified by the HSE-3c composite scheme. To strengthen this hypothesis,
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an energy decomposition analysis was performed showing that LD interactions are
the dominant binding motif leading to the overall stability of the TPM dimer. Also,
the effect of LD on structural and reaction thermodynamic properties was analyzed
for organometallic complexes. For transition metal complexes, the absolute size
of homoatomic dispersion coefficients is highly dependent on the geometry and
oxidation state of the complex. For example, the coefficient for chromium drops
by more than 50% between the Cr(CO)6 molecule and the Cr(C6H6)2 sandwich
complex. DFT-D4 generally improves for such complexes by keeping the estab-
lished and extremely well tested D3-components and including flexibility in terms
of charge-dependent atomic polarizabilities.

Additional computational costs associated with the physical improvements of
DFT-D4 are negligible when coupling with standard semi-local DFAs. Figure 6.2
compares the computational timings of single point and gradient calculations of
DFT-D methods with the ones of PBE in two different basis set expansions for a
saturated diamond chunk.
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Figure 6.2.: Timings analysis of different DFT-D methods compared to PBE calculations
applied with different basis sets. For the MBD-D4 method no gradients are
available.

The presented PBE calculations are computationally orders of magnitudes more
demanding than all applied DFT-D methods, which verifies that the computa-
tional costs do not increase by incorporating additional LD corrections schemes in
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terms of DFT-D methods. However, among the DFT-D methods, the presented
DFT-D4 method is slightly more costly than its predecessor method DFT-D3. The
additional costs occurring in DFT-D4 can be traced back to the calculated elec-
tronegativity equilibration partial charges. An exception is DFT-D4-MBD, which
is only recommended for the subsequent correction of interaction energies for large
intramolecular complexes as recommended in Ref. 308.

To conclude, this dissertation presented the development of the DFT-D4 London
dispersion correction. The comparison to several standard energy benchmark sets
showed that the DFT-D4 method typically outperforms its predecessor DFT-D3.
Due to the fact that many-body dispersion effects are incorporated up to third-
order by default, the DFT-D “stairway to heaven” is complemented with DFT-D4
on the highest rung. Thus, it is indeed possible to develop an improved DFT-D3
scheme while maintaining its computational efficiency within a DFT-based frame-
work. The errors arising due to the approximation in modern LD corrections are
typically smaller compared to errors in the semi-local DFAs treatment. Continuous
development of short-range XC functionals seems necessary to advance dispersion-
corrected DFT methods further.

The competitors to dispersion-corrected DFT methods are correlated WFT methods
like the coupled-cluster “gold-standard” CCSD(T), its various localized versions,
and quantum Monte-Carlo methods. While these methods are basically more
accurate and general, in practice they are still limited by the slow convergence
with respect to the basis set size, the associated large BSSE, and their (techni-
cal) inability to efficiently provide nuclear gradients. Those disadvantages are also
present in modern DFT-based methods, which try to describe dispersion inter-
actions seamlessly (e. g., RPA,129 ab initio DFT,451 double-hybrid functionals,128

or range-separated hybrids with long-range components from WFT452). These
methods are often less empirical than dispersion-corrected DFT methods, more
generally applicable, and may address other deficiencies of standard DFT such as
self-interaction errors or static correlation problems. However, their correlation
functionals depend on virtual orbitals, which results in considerably higher com-
putational costs and thus limits the applicability of these methods. Therefore,
dispersion-corrected DFT methods will be indispensable in the near future. Espe-
cially the presented cost-effective and highly accurate DFT-D4 London dispersion
correction is intended to be used as an “everyday”-tool for standard computational
applications like structure generation and molecular dynamics simulations.

Currently, the best approach for an accurate and efficient electronic structure
theory is a multi-level ansatz. This ansatz combines the structure generation
using dispersion-corrected DFT with high-accuracy WFT single-point calculations.
However, the latter is still time demanding and generally the bottleneck of this
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ansatz. With the development of the DFT-D4 dispersion correction, double hybrid
DFAs can replace the WFT part of this ansatz. D4-corrected double hybrid DFAs

achieve high accuracies as shown for general main group thermochemistry, kinetics,
noncovalent interactions, and for realistic metal organic reactions.308

In future works, this DFT multi-level ansatz is promising to obtain the best cost-
accuracy ratio and thus paves the way for the precise description of larger molecular
and condensed phase systems.
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A1. Supporting Information to
Chapter 1

Appendix A1 contains:

• D4 model (2017 version) methodologies

• ζ function parametrization

• Extendet statistical measures

• Cation-π dissociation

• BJ-damping parameter

A1.1. Appendix: Extension of the D3 Dispersion
Coefficient Model

A1.2. D4 Definition

Charge Dependence

Besides the geometrical D3 dispersion model,17 there are semi-classical density de-
pendent approaches like the Tkatchenko-Scheffler (TS) model49 or the exchange
dipole moment (XDM) model of Becke and Johnson.47,47,48 In the newly presented
approach, which is based on D3, electronic structure information is included via
atomic partial charges as continuous descriptors. Just like D3, the new scheme
relies on reference systems for which the dynamic polarizabilities are computed
from first-principles time-dependent density functional theory (TD-DFT). In order
to describe differently charged environments, which are not described sufficiently
by using D3, charge dependencies need to be included in the reference molecules.
Due to the fact that TD-DFT calculations employing a fractional electron occu-
pation are not possible with our available codes, the nuclear charges of the atoms
A and B of the reference systems are varied to effectively describe different charge
situations. In equation A1.1 the element specific scaling-function ζ of the refer-
ence polarizabilities (cf., equation 1.3 in chapter 1.2.2) are expressed as functions
of the charges qA of the atoms. The effective nuclear charge of atom A within
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the corresponding molecule can be defined as

zA = ZA + qMulliken. (A1.1)

Here, ZA equals the nuclear charge of atom A whereas qMulliken is the specific
calculated Mulliken195 partial charge for atom A within the molecule.

ζ(zA) = ba1.47 exp(zA/zA,ref) log(zA,ref/zA) (A1.2)

Equation A1.2 introduces the element-specific parameter b which is obtained
for each coordination number via matching hybrid TD-DFT molecular disper-
sion coefficients of the reference systems (zA = zA,ref, to parametrize b). The
structures of the reference systems are optimized at the hybrid density functional
PBE0116 level of theory employing an Ahlrichs quadruple-zeta basis set251 (def2-
QZVP). Polarizabilities at imaginary frequencies are derived on these geometries
with the def2-QZVP basis set for all main group elements augmented with diffuse
(2s2p1d)-functions except for hydrogen whose basis set is augmented by (2s2p)-
functions. For transition metals, an additional set of diffuse (2s2p1d1f)-functions
is provided. This basis set will be abbreviated as aug-def2-QZVP in the following.
Time-dependent density functional theory (TD-DFT) calculations are performed
to compute the electric dipole polarizabilities α(iω) with a variant of the PBE0
hybrid functional containing 37.5 % Fock exchange (ax = 3/8, termed PBE38)
employing the aug-def2-QZVP basis sets. Differently coordinated hydrides (AmHn

and BkHl) are used as model systems for atoms A and B having specific fractional
coordination numbers CNA/B, which are directly connected to the molecular envi-
ronment of the described atom A and B. This is exactly as in D3. The parameter
a is adjusted for each element using cross-check systems where the calculated
Mulliken charge is different from those of the reference systems (qA,ref 6= qA, to
parametrize a). Additionally, we have calculated the cationic static polarizability
for atoms with Z = 2−86 and adjusted a manually to fit those data. All reference
Mulliken partial charges qA,ref are stored as constant values in the code. The
stored reference dipole polarizabilities are then scaled by the partial charge depen-
dent function ζ to simulate effects from a higher or lower electron density around
the corresponding atom. The charge function is therefore a correction scheme
for dipole polarizabilities to produce, after numerical integration, more accurate
molecular dispersion coefficients.

GFN-xTB Derived Charges

Recently, a tight-binding (TB) Hamiltonian196 was developed, which yields ac-
curate Mulliken partial charges in a reasonable time frame even for systems with
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thousands of atoms. A related self-consistent charge model (GFN-xTB188) is used
to calculate these charges which then serve as input for the presented charge de-
pendent dispersion model. We have tested the amount of computer time for a
large system having 3601 atoms (green fluorescence protein, PDB code: 1GFL,11
charge: -6). The computation time of the self-consistent Mulliken partial charges
takes about 30 minutes on a desktop computer. Compared to standard Kohn-
Sham DFT calculations such a computation can be regarded as negligible. A
selfconsistent TB model (i.e., GFN-xTB) is preferred due to the principally sim-
pler computation of gradients which will be developed in future work.

The Covalent Coordination Number

In order to distinguish covalent and ionic bonding situations between atom pairs
the D3 functional form for the CN is modified. The new scheme is termed the
covalent coordination number (CNAcov), which is given by

CNAcov =

Natoms∑
B 6=A

exp
(
−k1

(
|ENA − ENB + k2|

2))

1+ exp
[
−16

(
4(RA,cov+RB,cov)

3RAB − 1
)] . (A1.3)

Equation A1.3 is mostly identical to the D3 case and differs only in the numerator,
which always equals one in D3. The exponential function in the numerator is
adjusted to approximately match Wiberg bond orders for single bonds (computed
with GFN-xTB). The variables k1 and k2 have the values 0.016 and 19.089. In
Table A1 the geometrical coordination number from D3 (CNA) and the covalent
coordination number of the new D4 model (CNAcov) are given for various diatomic
molecules.

Table A1.1.: Geometrical (D3) and covalent (D4) fractional coordination numbers. Con-
sidered atoms are highlighted in bold font

D3 D4
System CNA CNAcov

Li-H 0.986 0.801
Li-Li 0.941 0.923
C-H 0.987 0.918
C-F 1.000 0.785
F-H 0.998 0.740
F-F 0.979 0.961

It is noted that the geometrical coordination number is very similar for covalent
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and ionic connections (cf. Li2 and LiH in Table) while the covalent coordination
number enables the distinction between such cases. Consequently, more reference
systems can be considered in the Gaussian average, which cover both situations for
each element. Reference systems can therefore be supplemented with homoatomic
molecules like alkali or halogen dimers.

Polarizability Definitions

For clarity, all possible polarizability notations are given below to dispose any
occuring confusion. We start with the molecular polarizabilities at imaginary fre-
quencies of the symmetric hydride reference molecules AmHn which is denoted as
αAmHn(iω) (having m chemically equal atoms A and n equally charged hydro-
gen atoms). Because of the fact that we are interested in atomic polarizabilities at
imaginary frequencies of atom A within the reference system AmHn, αAmHn(iω)

is reduced by its scaled hydrogen contribution as shown in equation A1.4

αA,ref(iω) =
1
m

[
αAmHn(iω) −

n

2α
H2(iω)ζ(zHA,ref , zH2)

]
. (A1.4)

The charge dependent atomic polarizability of atom A is introduced by the prod-
uct of αA,ref(iω) and the reference specific charge function, ζ(zA, zA,ref) (cf.,
equation A1.2), as follows

αA,ref(iω) = αA,ref(iω)ζ(zA, zA,ref). (A1.5)

Equation A1.5 is solved on-the-fly for all element specific reference systems. After
this, a Gaussian weighting function WA,ref

A is used to obtain charge dependent
and hybridization weighted polarizabilities at imaginary frequencies for atom A

(see section below for details):

αA(iω) ≡ αA,ref(iω, zA,CNAcov) =
NA,ref∑
A,ref=1

αA,ref(iω, zA)WA,ref
A (A1.6)

Here, we introduce a short-hand notation for the final polarizability at imaginary
frequencies for atom A, αA(iω), and declare NA,ref as the number of reference
systems for the chemical element corresponding to atom A.

The Modified Gaussian Interpolation Scheme

The introduction of charge dependent scaling functions ζ and covalent CNs
leads to a modified charge dependent Casimir-Polder formula which is given in
equation 10. First, we need to introduce the contribution of the polarizability
in reference system (with given CNA,ref

cov ) to the polarizability of atom A (with
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NA,ref∑
A,ref=1

W
A,ref
A = 1), which is given by

W
A,ref
A =

exp
[
−ΩA

(
CNAcov − CN

A,ref
c ov

)2
]

NA,ref∑
A,ref=1

exp
[
−ΩA

(
CNAcov − CN

A,ref
cov

)] (A1.7)

with

ΩA =

NA,ref∑
A,ref=1

√
2CNA,av

cov(√
3.5
(
CNAcov − CN

A,ref
cov

)2
+ ε

) (A1.8)

and

CNA,av
cov =

1
NA,ref

NA,ref∑
A,ref=1

CNA,ref
cov . (A1.9)

The stored reference polarizabilities at imaginary frequencies are scaled by
ζ(zA, zA,ref) and used in a Gaussian average (over CNAcov) to obtain the
αA(iω, zA,CNAcov)) from which dispersion coefficients are numerically integrated
on-the-fly. The Gaussian weighting function is designed in such a way that it
matches the reference polarizabilities in case that the calculated covalent CN is
equal to the reference one. Compared to the D3 Gaussian weighting function, the
scaling factor of 4.0 in the exponential function is replaced with a sum over all
reference systems for atom A, which includes the difference between the present
and the reference covalent coordination number in the denominator (see equa-
tion A1.8). In case both coordination numbers match (CNAcov = CN

A,ref
cov ), ΩA

becomes very large ( ε = 10−8). This way, we ensure that the contribution of
the exactly matched reference system is dominant in the Gaussian average. The
factor of 3.5 inside the square root of the denominator and the value of 2.0 inside
the square root of the nominator were adjusted manually to smooth the weighting
function between different reference systems. Equation A1.8 depends on the aver-
age reference covalent coordination number CNA,av

cov (see equation A1.9), which
is necessary to counteract the divergence behavior of the polarizabilities in case of
high covalent CNs. Figure 1 shows the performance of both weighting functions
(D3 and D4) regarding to their ability of connecting the calculated homoatomic
CAA6 dispersion coefficients for the given reference coordination number.
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Figure A1.1.: Comparison between the D3 and the D4 Gaussian weighting function
and their abilities of connecting pre-calculated homoatomic CAA6
dispersion coefficients (atoms are highlighted in green) obtained
from carbon reference systems as a function of the coordination
number CNA (D3: CNA; D4: CNAcov). All reference points are
highlighted via vertical lines. The blue dotted curve represents the
D3 weighting function while the new scheme is represented by the
red curve. It should be noted that polarizabilities are weighted in
D4, while D3 weights over CAB6 dispersion coefficients.

The new Gaussian weighting function (red curve) yields plateaus around the ref-
erence CNs, which demonstrates the “knock-out” criterion employed in the new
function around the reference coordination (via ΩA). This is different in D3,
in which the interpolation is smoother (blue dashed curve), however, not neces-
sarily yielding the reference value of CAA6 at CNAcov = CN

A,ref
cov . In equation

10, the final atom pairwise dispersion coefficient in D4 is given. The polariz-
ability of an atom A/B with effective nuclear charge zA/zB and covalent co-
ordination number CNAcov/CNBcov is obtained by weighting over all ζ scaled
reference systems of atom A/B. The contribution of hydrogen is scaled by
ζ(zHA , zH2)/ζ(zHB , zH2) (where the reference effective charge of hydrogen in
dihydrogen is zH2 = 1) and subtracted to obtain the correct polarizability of
atom A/B (at CNA,ref

cov /CNB,ref
cov ) from the molecular polarizability αAmHn(iω)

or αBkHl(iω).

CAB6 ≡ CAB6 (CNAcov, zA,CNBcov, zB) =
3
π

∞∫
0

dωαA(iω)αB(iω) (A1.10)

Equation A1.10 uses the short-hand notation of αA/B(iω) (see equation A1.6)
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and additionally introduces the short-hand notation of the weighted and charge
dependent dispersion coefficients, CAB6 , which is also used in chapter 1.2. In the
D4 model, dispersion coefficients are directly calculated from weighted polariz-
abilities instead of weighting precalculated reference dispersion coefficients as it
was done in D3. In comparison to the D3 model, an additional loop over the 23
imaginary frequencies is required (Simpson integration), however, the additional
computational costs are negligible in a QM context. The use of polarizabilities
instead of precomputed pairwise dispersion coefficients also facilitates the com-
putation of higher-order, many-body coefficients. For example, the dispersion
coefficient of the leading nonadditive term describing the three-body long-range
dispersion interaction is defined, as derived from third-order perturbation theory,
via

CABC9 ≡ CABC9 (CNAcov, zA,CNBcov, zB,CNCcov, zC)

= −
3
π

∞∫
0

dωαA(iω)αB(iω)αC(iω).
(A1.11)

In equation A1.11 we use again the short-hand notation of αA/B/C(iω). The D4
model is capable of calculating equation A1.11 from the correct CABC9 expression
whereas D3 approximates these coefficients. The accuracy of this approximation
for CABC9 coefficients will be discussed elsewhere. In the following we summarize
the procedure of D4 in a step by step scheme:

1 Scaling of stored reference molecule TD-DFT polarizabilities by ζ to include
a charge dependence into the model.

2 Calculation of system specific polarizabilities at imaginary frequencies as
Gaussian averages (via CNAcov) over reference polarizabilities.

3 Calculation of the dispersion coefficients CAB6 by numerical Simpson inte-
gration from the system specific polarizabilities obtained in step (2).

The steps given above describe the working procedure of the actual program during
the calculation of charge dependent pairwise CAB6 dispersion coefficients for an
arbitrary molecule. The additivity of these pairwise dispersion coefficients can be
exploited to derive a molecular dispersion coefficient according to

Cmol6 =

NAatoms∑
p

NBatoms∑
q

C
pq
6 , (A1.12)

where p and q refer to atoms of the particular molecules A and B, respectively.
Here, the molecular dispersion coefficient is expressed as a sum over atomic dis-
persion terms.153
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A1.3. Parametrization of the ζ Scaling Function

As given in chapter 1.2 the charge function is defined as

ζ(zA) = b︸︷︷︸
Part B

a

Part C︷ ︸︸ ︷
1.47 exp

(
zA/zA,ref) log

(
zA,ref/zA

)︸ ︷︷ ︸
Part A . (A1.13)

• zA: Effective nuclear charge of atom A (see equation A1.1)

• zA,ref: Reference effective nuclear charge of atom A in reference system
AmHn

Part A The functional dependency in the exponent of the charge function is
obtained from explicitly calculated polarizabilities at imaginary frequencies where
the nuclear charges of the m chemically equivalent atoms within each reference
system AmHn are varied to simulate a modified fractional electron occupation.

Part B In case that both effective nuclear charges match (zA = zA,ref), the
exponent of the charge function is equal to zero which enables the parametrization
of the parameter b by recreating the explicitly calculated molecular dispersion
coefficient of the particular reference system. One has to note that this parameter
is reference system dependent.

Part C In case that both effective nuclear charges do not match (zA 6= zA,ref),
the exponent of the charge function is not equal to zero. For each element molec-
ular dispersion coefficients of different cationic cross-check systems are used to
parametrize a. Additionally, the cationic static polarizabilities α(0) for each ele-
ment of the periodic system are used to check the parametrization of the element
specific a parameter. The factor exp

(
zA/zA,ref) within the exponent of the

charge function ensures the proper scaling behavior (stronger scaling for cationic
systems (zA > zA,ref) , damped scaling for anionic systems (zA < zA,ref). All
parameter are given in the Supporting Information of Ref. 210.

A1.4. Extendet Statistical Measures

As statistical measure for a set {x1, . . . , xn} of data points with references {r1, . . . , rn}
we use

• Mean deviation (MD): MD = 1
n

∑
i(xi − ri)

• Mean absolute deviation (MAD): MAD = 1
n

∑
i |xi − ri|
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• Standard deviation (SD): SD =
√

1
n−1
∑
i(xi − ri −MD)2

• Maximum absolute deviation (MAX): MAX = max{|xi − ri|}

A1.5. Cation-π Dissociation

We have optimized the Li-Benzene cation-π-system at the PBE0-D3(BJ)/def2-
QZVP level and used the optimized structure as an initial point for the dissociation
process. We therefore placed the lithium cation and the center of mass (COM) of
benzene along the z-axis and shifted in 0.1 Bohr intervals the benzene molecule.
At each point we calculated the molecular C6 coefficient at the D3 level of theory
and compared it to the D4 one for which additionally self-consistent charges were
calculated at each point using GFN-xTB. The following structure was used as
initial point for the dissociation process. Coordinates are given in Bohr.
−1.00626687792760 2.43476715537044 −0.00930580305938 c
1.59615582946838 2.01486731041519 −0.05631561175738 c
2.53411243178359 −40.44913456876536 −40.05348140480449 c
0.86959342503882 −2.49318767713759 −0.00344307836595 c

−1.73282433321136 −2.07327817480661 0.04360431932939 c
−2.67078705017786 0.39072063455874 0.04059472444714 c
2.88713274098834 3.60049347821153 −0.10189959594592 h
4.55277786762725 −0.77505011564623 −0.09691768223979 h
1.59698699801968 −4.40474149652284 −0.00799365670788 h

−3.02408886260592 −3.65904634519516 0.07548875248786 h
−4.68977364596326 0.71650842369131 0.06976979632961 h
−1.73392997182037 4.34621663623828 −0.01843787662990 h
−0.00011786417452 0.00001818575674 3.42222090408594 l i

Furthermore, we use some points of the dissociation process to measure the quality
of the given method.
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Table A1.2.: Chosen points of a dissociation curve between a lithium cation and benzene.
We have calculated hybrid PBE38/aug-def2-QZVP molecular dispersion
coefficients (here, denoted as TD-DFT in the following) as reference points.
Distances are given in Bohr.

R(Li+-Bz) TD-DFT D4 D3

3.52 1628.14 1570.46 1968.13
4.42 1704.70 1936.86 2231.04
4.92 1725.67 1943.54 2548.78
5.42 1755.18 1846.32 4165.12
5.92 1766.27 1786.83 4515.05
6.42 1771.08 1772.15 4577.33
6.92 1771.02 1770.47 4596.26

MAD 5.18 101.48
MD 4.16 101.48
SD 6.64 64.81

AMAX 13.62 159.53

A1.6. BJ-Damping Parameter

Table A1.3.: Parameters for the Becke-Johnson damping function for three density func-
tional approximations. All parameter were adjusted to match reference
interaction energies of the S66x8,203 S22x5204, and NCIBLIND108 bench-
mark sets.

Method a1 a2 s8

TPSS-D3 0.3352 4.4231 1.2715
TPSS-D4 0.4732 4.0794 1.3707
B3LYP-D3 0.3986 4.4236 1.9894
B3LYP-D4 0.3837 4.5261 1.7993
PBE0-D3 0.4014 4.8804 1.2664
PBE0-D4 0.0381 6.6249 1.0204
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Appendix A2 contains:

• EEQ model methologies

• Many-body dispersion theory

• D4 dispersion potential for GFN2-xTB

• Double hybrid density functional definitions

• BJ-damping parameter sets:

DFT-D4-ATM, DFT-D4-MBD, DFT-D4(TB)-MBD, and DFT-D4(TB)-ATM

• Timings (energy and gradient)

• Extended statistical measures

• Statistical evaluations:

L7, MOR41, SCONF, PCONF21, ICONF, UPU23, ROT34, LMGB35, HMGB11,
and TMC32

A2.1. Appendix: A Generally Applicable Atomic-Charge
Dependent London Dispersion Correction

A2.2. Classical Partial Charges

Classical electronegativity equilibration (EEQ) partial charges are determined by
minimizing the following energy expression

EIES =

N∑
i=1

(
χiqi +

1
2

(
Jii +

2γii√
π

)
q2
i

)
+

1
2

N∑
i=1

N∑
j=1
i 6=j

qiqj
erf(γijRij)

Rij
(A2.1)

where γij is given as (a2
i + a

2
j)

− 1
2 with ai beeing the van der Waals radius of

atom i. For a more compact representation we rewrite the above expression in
matrix notation

EIES = q>(12Aq − X) (A2.2)
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where we define the A matrix and the X vector by

Xi = −χi and Aij =


Jii +

√
2γii√
π

i = j

erf(γijRij)
Rij

otherwise
(A2.3)

Note that the choice of X is defined according to the work of Goedecker et al.
in 2015230, and we keep the original notation to aid comparability. To obtain
EEQ partial charges from this equations, under the constraint that the partial
charges conserve the total charge qtotal of the system, the method of constrained
Lagrangian optimization is used as

L = EIES + λ

(
N∑
k=1

qk − qtotal

)
with ∂L

∂q = 0 ∧
∂L

∂λ
=

N∑
i=1

qi − qtotal = 0

(A2.4)
which leads to the following set of (N+ 1) linear equations

(
A 1
1> 0

)
·
(

q
λ

)
=

(
X
qtotal

)
(A2.5)

In contrast to Goedecker’s approach we determine χi not by a neural network
but use a modified variant of the coordination number (mCN) similary as in the
DFT-D3 model46. For this EEQ charge model we suggest

χi = ENi − κi
√
mCNi (A2.6)

where ENi is the electronegativity, κi is a scaling factor for the geometry depen-
dency, and mCNi is the coordination number defined as

mCNi =
N∑
j=1
j6=i

1
2 ·
(
1+ erf

(
−k1 ·

(
Rij

Rcovij
− 1
)))

(A2.7)

where k1 is an ad-hoc parameter which is set to 7.5 to reproduce the short range
behaviour of the original DFT-D3 CN as close as possible while having a better
long-range behaviour. Rcovij = Rcovi + Rcovj are the covalent radii published by
Pyykkö et al. in 2010243 which are used to be consistent with the DFT-D3 CN.
As we arrived at a stationary point in the constrained optimization we can derive

175



A2. Supporting Information to Chapter 2

the expression needed to calculate the analytical partial charge derivative by

∂L

∂qk
= 0 =⇒ 0 =

d

dRj
∂L

∂qk
=

∂2L

∂qk∂Rj
+
∂2L

∂q2
k

· ∂qk
∂Rj

⇐⇒ ∂2L

∂q2
k

· ∂qk
∂Rj

= −
∂2L

∂qk∂Rj

(A2.8)

Plugging in the expression for L from equation A2.4 we get

∂2L

∂q2 =

(
A 1
1> 0

)
(A2.9)

Plugging everything back into equation A2.8 we get



∂q
∂Rj
∂λ

∂Rj


 =

(
A 1
1> 0

)−1

·


−



∂A

∂Rj
0

0> 0


 ·

(
q
λ

)
+



∂X
∂Rj
0




 (A2.10)

To invert the indefinite but symmmetric (N + 1) matrix we apply a Bunch–
Kaufman factorization. Overall four parameter are fitted for each element i: ENi,
Jii, κi, and ai (namely the atomic electronegativity, atomic hardness terms, ele-
ment specific scaling parameters, and atomic van der Waals radii).

Table A2.1.: Atomic electronegativities EN, element-dependent atomic hardness terms
J, element specific scaling parameters κ, and atomic van der Waals radii a
for all elements up to radon (Z = 86).

Atomic number ENi Jii κi ai

1 1.23695041 −0.35015861 0.04916110 0.55159092
2 1.26590957 1.04121227 0.10937243 0.66205886
3 0.54341808 0.09281243 −0.12349591 0.90529132
4 0.99666991 0.09412380 −0.02665108 1.51710827
5 1.26691604 0.26629137 −0.02631658 2.86070364
6 1.40028282 0.19408787 0.06005196 1.88862966
7 1.55819364 0.05317918 0.09279548 1.32250290
8 1.56866440 0.03151644 0.11689703 1.23166285
9 1.57540015 0.32275132 0.15704746 1.77503721
10 1.15056627 1.30996037 0.07987901 1.11955204
11 0.55936220 0.24206510 −0.10002962 1.28263182
12 0.72373742 0.04147733 −0.07712863 1.22344336
13 1.12910844 0.11634126 −0.02170561 1.70936266
14 1.12306840 0.13155266 −0.04964052 1.54075036

Continued on next page
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Table A2.1 – Continued from previous page
Atomic number ENi Jii κi ai

15 1.52672442 0.15350650 0.14250599 1.38200579
16 1.40768172 0.15250997 0.07126660 2.18849322
17 1.48154584 0.17523529 0.13682750 1.36779065
18 1.31062963 0.28774450 0.14877121 1.27039703
19 0.40374140 0.42937314 −0.10219289 1.64466502
20 0.75442607 0.01896455 −0.08979338 1.58859404
21 0.76482096 0.07179178 −0.08273597 1.65357953
22 0.98457281 −0.01121381 −0.01754829 1.50021521
23 0.96702598 −0.03093370 −0.02765460 1.30104175
24 1.05266584 0.02716319 −0.02558926 1.46301827
25 0.93274875 −0.01843812 −0.08010286 1.32928147
26 1.04025281 −0.15270393 −0.04163215 1.02766713
27 0.92738624 −0.09192645 −0.09369631 1.02291377
28 1.07419210 −0.13418723 −0.03774117 0.94343886
29 1.07900668 −0.09861139 −0.05759708 1.14881311
30 1.04712861 0.18338109 0.02431998 1.47080755
31 1.15018618 0.08299615 −0.01056270 1.76901636
32 1.15388455 0.11370033 −0.02692862 1.98724061
33 1.36313743 0.19005278 0.07657769 2.41244711
34 1.36485106 0.10980677 0.06561608 2.26739524
35 1.39801837 0.12327841 0.08006749 2.95378999
36 1.18695346 0.25345554 0.14139200 1.20807752
37 0.36273870 0.58615231 −0.05351029 1.65941046
38 0.58797255 0.16093861 −0.06701705 1.62733880
39 0.71961946 0.04548530 −0.07377246 1.61344972
40 0.96158233 −0.02478645 −0.02927768 1.63220728
41 0.89585296 0.01909943 −0.03867291 1.60899928
42 0.81360499 0.01402541 −0.06929825 1.43501286
43 1.00794665 −0.03595279 −0.04485293 1.54559205
44 0.92613682 0.01137752 −0.04800824 1.32663678
45 1.09152285 −0.03697213 −0.01484022 1.37644152
46 1.14907070 0.08009416 0.07917502 1.36051851
47 1.13508911 0.02274892 0.06619243 1.23395526
48 1.08853785 0.12801822 0.02434095 1.65734544
49 1.11005982 −0.02078702 −0.01505548 1.53895240
50 1.12452195 0.05284319 −0.03030768 1.97542736

Continued on next page
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Table A2.1 – Continued from previous page
Atomic number ENi Jii κi ai

51 1.21642129 0.07581190 0.01418235 1.97636542
52 1.36507125 0.09663758 0.08953411 2.05432381
53 1.40340000 0.09547417 0.08967527 3.80138135
54 1.16653482 0.07803344 0.07277771 1.43893803
55 0.34125098 0.64913257 −0.02129476 1.75505957
56 0.58884173 0.15348654 −0.06188828 1.59815118
57 0.68441115 0.05054344 −0.06568203 1.76401732
58 0.56999999 0.11000000 −0.11000000 1.63999999
59 0.56999999 0.11000000 −0.11000000 1.63999999
60 0.56999999 0.11000000 −0.11000000 1.63999999
61 0.56999999 0.11000000 −0.11000000 1.63999999
62 0.56999999 0.11000000 −0.11000000 1.63999999
63 0.56999999 0.11000000 −0.11000000 1.63999999
64 0.56999999 0.11000000 −0.11000000 1.63999999
65 0.56999999 0.11000000 −0.11000000 1.63999999
66 0.56999999 0.11000000 −0.11000000 1.63999999
67 0.56999999 0.11000000 −0.11000000 1.63999999
68 0.56999999 0.11000000 −0.11000000 1.63999999
69 0.56999999 0.11000000 −0.11000000 1.63999999
70 0.56999999 0.11000000 −0.11000000 1.63999999
71 0.56999999 0.11000000 −0.11000000 1.63999999
72 0.87936784 −0.02786741 −0.03585873 1.47055223
73 1.02761808 0.01057858 −0.03132400 1.81127084
74 0.93297476 −0.03892226 −0.05902379 1.40189963
75 1.10172128 −0.04574364 −0.02827592 1.54015481
76 0.97350071 −0.03874080 −0.07606260 1.33721475
77 1.16695666 −0.03782372 −0.02123839 1.57165422
78 1.23997927 −0.07046855 0.03814822 1.04815857
79 1.18464453 0.09546597 0.02146834 1.78342098
80 1.14191734 0.21953269 0.01580538 2.79106396
81 1.12334192 0.02522348 -0.00894298 1.78160840
82 1.01485321 0.15263050 -0.05864876 2.47588882
83 1.12950808 0.08042611 -0.01817842 2.37670734
84 1.30804834 0.01878626 0.07721851 1.76613217
85 1.33689961 0.08715453 0.07936083 2.66172302
86 1.27465977 0.10500484 0.05849285 2.82773085
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The quality of those classical partial charges can be seen in Figure A2.1 and in
Figure A2.2 where we correlate PBE0/def2-TZVP Hirshfeld partial charges with
classical EEQ charges and with GFN2-xTB charges.

Table A2.2.: Statistical measures calculated for the comparison between calculated par-
tial charges and reference PBE0/def2-TZVP Hirshfeld partial charges. De-
viations are given in e−.

Measure EEQ(Z = 1− 86) GFN2-xTB(Z = 1− 86) EEQ(Z = 1− 17) GFN2-xTB(Z = 1− 17)

MAD 0.04 0.13 0.03 0.18
MD 0.00 0.00 0.00 −0.01
SD 0.06 0.36 0.05 0.65
AMAX 0.56 19.27 0.33 19.92
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Figure A2.1.: EEQ versus GFN2-xTB partial charges in direct correlation with Hirshfeld
partial charges calculated at the PBE0/def2-TZVP level of theory for all
elements with Z = 1− 86.
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Figure A2.2.: EEQ versus GFN2-xTB partial charges in direct correlation with Hirshfeld
partial charges calculated at the PBE0/def2-TZVP level of theory for all
elements with Z = 1− 17 (excluding helium and neon).

As can be seen from the Table A2.2, GFN2-xTB converges in some cases to the
wrong electronic solution, so that huge deviations can occur (maximum deviation
is 19.92 e−). The EEQ model on the other hand proves to be quite robust and can
convince with a maximum deviation of 0.56 e− on more than 20000 calculated
data points for the Z = 1− 86 case.

A2.3. Many-Body Dispersion Theory

Tkatchenko et al.163 have shown that the dispersion energy can be written as

E
(n),MBD
disp =

∞∫
0

dω

2π Tr {ln (1− A(iω)T)} , (A2.11)

when neglecting intra-oscillator interactions322 within the matrix formulation(
Tr {A(iω)T} = 0

)
. In DFT-D4, the frequency-dependent polarizability matrix

A(iω) is obtained from the previously generated atom-in-molecule dynamic po-
larizabilities

A
βγ
KP(iω) = αK(iω)δKPδγβ

= αK(iω, zK,CNK) δKP δγβ.
(A2.12)
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In equation A2.12, K and P label atoms, and β and γ refer to the Cartesian com-
ponents of their inter-nuclear distance. The use of D4 atom-in-molecule dynamic
polarizabilities offers advantages. Different from the TS-based polarizabilites, the
D4 polarizabilites already contain information about the molecular environment
and no self-consistent screening needs to be performed, which can jeopardize the
stability of the method323. The generation of the D4 polarizabilities is simple
and robust, since only the geometry and atomic partial charges are needed and
no additional information from DFT is required. T is the interaction tensor de-
scribing the coupling between the oscillators. The matrix elements of the damped
interaction tensor T are given by

T
βγ
KP =

√
f
(6)
BJD

∂

∂R
β
KP

∂

∂R
γ
KP

(
1
RKP

)
. (A2.13)

It should be noted that the BJ-damping function is used here as well to screen the
elements of the tensor. A motivation for this choice is given below. The MBD
energy can be viewed as a series of n-body dipole-dipole terms, and hence, the
n-body energy can be obtained directly via a Casimir-Polder similar integration
of the coupled atom-in-molecule polarizabilities. Because the contributions of the
terms in the series tend to oscillate and it converges slowly with n, the value of the
limit of the series is used here as computed in equation A2.11. The astute reader
will note that the evaluation of the logarithmic trace in equation A2.11 is not
directly possible since the product A(iω)T is a trace-less matrix. To obtain the
logarithmic trace, the matrix created by subtraction (1−A(iω)T) is diagonalized
and the sum of the eigenvalues is used to calculate all many-body dispersion
terms. Furthermore, splitting the diagonal polarizability matrix A(iω) into the
product of its square roots, which is possible due to the invariance regarding cyclic
permutation, simplifies the problem to symmetrical matrices only, which makes
the calculation of eigenvalues much simpler

(
1− A1/2(iω)TA1/2(iω)

)
U = UΛ. (A2.14)

Here, Λ represents the matrix of eigenvalues with elements λ. The eigenvalues
are then used analogously to equation A2.11, and hence the final expression for
the MBD energy reads

E
(n),MBD
disp =

∞∫
0

dω

2π ln
( 3N∏
l=1

λl

)
. (A2.15)

Semi-local DFAs already include short-ranged electron correlation within the exchange-
correlation functional. Along with avoiding singularities, this is why the dispersion
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energy is always damped at short range. Likewise, the interaction tensor in the
MBD model needs to be damped. Ideally, the second order term of the MBD
energy should be exactly equivalent to the D4 two-body dipole-dipole energy, i.e.,

E
(6),MBD
disp = −

∞∫
0

dω

2π Tr
{
1
2
(A(iω)T)2

}

= −

∞∫
0

dω

2π
1
2

N∑
K

N∑
P

αK(iω)αP(iω)

R10
KP

f2damp

×
3∑
β

3∑
γ

(
3RβKPR

γ
KP − δβγR

2
KP

)2

= −
1
2

N∑
K

N∑
P

CKP6
R6
KP

f2damp

!
= −

1
2

N∑
K

N∑
P

CKP6
R6
KP

f
(6)
BJD = E

(6)
disp.

(A2.16)

Hence, the square root of the BJ-damping function is used to damp the MBD in-
teraction tensor. Nevertheless, it should be noted that for higher interaction orders
(higher exponentiation of fdamp), the respective MBD energy contributions be-
come damped more strongly also in the mid-range distance regime. However, this
peculiarity is considered to be small, since the higher-order (n > 2) MBD energies
represent a smaller fraction of the total dispersion energy (usually one to two mag-
nitudes less than two-body contributions). The final D4-MBD dispersion energy
expression consists of two parts. The first compose the two-body dipole-dipole and
dipole-quadrupole interaction (denoted as E(6,8)

disp ). The second part includes all
dipole-dipole interactions up to infinite order, E (n),MBD

disp (n = 6, 9, 12, 15, . . . ,∞).
To avoid double counting of the two-body dipole-dipole energy, it is removed
explicitly from the MBD energy according to

ED4-MBD
disp = E

(6,8)
disp +

(
E
(n),MBD
disp − E

(6),MBD
disp

)
. (A2.17)

Exploiting that E(6)
disp = E

(6),MBD
disp and re-arranging to ED4-MBD

disp = E
(n),MBD
disp +

E
(8)
disp is not possible in the general case, as for double hybrid density functionals

(abbreviated as DHDF) s6 6= 1, whereas this scaling cannot be applied to an
individual term in the infinite-order MBD energy. Hence, the dispersion energy
in DFT-D4-MBD is always calculated as shown in equation A2.17. Similar to
Figure 16 of Ref. 17, the contributions to the dispersion energy considered in D4
are put into context with other correction schemes in Figure A2.3.
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Figure A2.3.: Asymptotic dispersion coefficients from different many-body orders and
increasing number of terms in the multipole expansion. The contributions
covered by the D3 (including ATM term), D4-MBD, MBD, and XDM
methods are highlighted. This Figure is generated in analogy to Figure 16
in Ref. 17.

A2.4. Tight-Binding Two-Body Dispersion Potential
(GFN2-xTB)

We developed the GFN2-xTB dispersion potential in terms of density fluctuations
(see Ref. 454)

∂

∂cνi

[
E
(6,8)
disp −

∑
j

njεj


∑
A,B

∑
κ∈A

∑
λ∈B

cκjcλjSκλ − 1



]
= 0
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Take the derivative of E(6,8)
disp with respect to the AO coefficient

∂E
(6,8)
disp
∂cνi

=
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∂cνi
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Which leads to the two–body DFT–D4 potential used within the GFN2-xTB
method

FD4κλ =
1
2Sκλ(dA + dB),∀κ ∈ A, λ ∈ B

184



A2.5. Double Hybrid Density Functionals

A2.5. Double Hybrid Density Functionals

In the following we give the construction scheme to build the double hybrid density
functionals (DHDF) as

EDHDF = (1− aFockx )EDFTx + aFockx + aDFTc EDFTc + aPT2,OSc EPT2c,OS + a
PT2, SS
c EPT2c,SS.

Table A2.3.: Double hybrid functional definitions as given in the associated literature.

Name Exchange Correlation aFockx aDFTc aPT2,OSc aPT2, SSc Ref.

B2PLYP B88 LYP 0.5300 0.7300 0.2700 0.2700 455

mPW2PLYP mPW LYP 0.5500 0.7500 0.2500 0.2500 456

PWPB95 PW B95 0.5000 0.7310 0.2690 0.0000 457

DSD-BLYP B88 LYP 0.6900 0.5400 0.4600 0.3700 285

DSD-PBE PBE PBE 0.6800 0.4900 0.5500 0.1300 291

DSD-PBEB95 PBE B95 0.6600 0.5500 0.4600 0.0900 291

DSD-PBEP86 PBE P86 0.7000 0.4300 0.5300 0.2500 291

DSD-SVWN Slater VWN5 0.7200 0.3300 0.5900 0.1200 291

DOD-BLYP B88 LYP 0.6500 0.5800 0.5300 0.0000 291

DOD-PBE PBE PBE 0.6400 0.5400 0.4200 0.0000 291

DOD-PBEB95 PBE B95 0.6400 0.5700 0.4600 0.0000 291

DOD-PBEP86 PBE P86 0.6500 0.4700 0.5400 0.0000 291

DOD-SVWN Slater VWN5 0.6900 0.3400 0.5800 0.0000 291

PBE0-2 PBE PBE 0.7937 0.5000 0.5000 0.5000 458

PBE0-DH PBE PBE 0.5000 0.8750 0.1250 0.1250 459

A2.6. BJ-Damping Parameters

Within this section we neglect explicit notation for EEQ charges and denote GFN2-
xTB Mulliken-type charges as “TB”. Different parametrizations are created for
the application of either ATM or MBD for higher-order dipole-dipole interactions
within the DFT-D4 treatment.

Table A2.4.: BJ-damping parameter (DFT-D4-ATM, default model also abbreviated as
DFT-D4) for various DFAs as derived by fitting to reference data (S66x8203,
S22x5204, NCIBLIND108).

DFA s6 s8 a1 a2

B1LYP 1.0000 1.83127296 0.38566678 4.46165003
B1P 1.0000 3.39627782 0.48378848 5.03931438
B3LYP 1.0000 1.93437518 0.40534340 4.46480849

Continued on next page
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Table A2.4 – Continued from previous page
DFA s6 s8 a1 a2

B3P 1.0000 3.16491035 0.47074324 4.98026996
B3PW 1.0000 2.71641216 0.44494036 4.52574006
B97 1.0000 0.89828166 0.30815953 4.44343255
BHLYP 1.0000 1.51193799 0.28352672 5.30677349
BLYP 1.0000 2.29195845 0.43649221 4.07264155
BPBE 1.0000 3.63472763 0.47149679 4.34913593
BP 1.0000 3.09980446 0.41177321 4.91760174
BPW 1.0000 2.94562042 0.45965220 4.16080174
CAMB3LYP 1.0000 1.64013269 0.42783452 5.00658911
HF 1.0000 1.60819947 0.44823943 3.34739336
LB94 1.0000 2.50951042 0.37548645 3.39814397
LCBLYP 1.0000 1.54912035 0.64133251 7.02976707
M062X 1.0000 −0.11498052 0.86398340 7.32464659
M06 1.0000 0.46179592 0.58829427 5.97912883
M06L 1.0000 −0.00187113 0.70990419 6.04454604
MPW1LYP 1.0000 1.32525501 0.30073471 5.17778698
MPW1PW 1.0000 1.62245065 0.41739065 4.60898422
MPWLYP 1.0000 1.35859418 0.28679077 4.91552802
MPWPW 1.0000 1.72053269 0.32744516 4.82196851
O3LYP 1.0000 1.72541878 0.10800765 6.06229794
OLYP 1.0000 2.67570477 0.57149958 2.61804572
OPBE 1.0000 2.90041924 0.62909263 2.36955885
PBE0 1.0000 1.18452505 0.41932554 4.89618246
PBE 1.0000 0.94243311 0.40721568 4.66368352
PW1PW 1.0000 1.17508911 0.47051491 4.88711396
PW6B95 1.0000 −0.23516829 0.07665268 5.86715185
PW86PBE 1.0000 1.43609069 0.42682422 4.67753537
PW91 1.0000 0.85759927 0.39107740 4.99334711
PWP1 1.0000 0.62830540 0.55631871 5.33628863
PWP 1.0000 0.56431039 0.47594244 5.65254449
REVPBE0 1.0000 1.50141170 0.35855796 4.16067532
REVPBE38 1.0000 1.71457164 0.38736794 4.42261301
REVPBE 1.0000 1.70953750 0.52348507 3.08765999
REVTPSS 1.0000 1.49570230 0.43220513 4.66456596
RPBE 1.0000 1.28835906 0.45266603 3.17321040
RPW86PBE 1.0000 1.22474218 0.39927128 4.70290460

Continued on next page
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Table A2.4 – Continued from previous page
DFA s6 s8 a1 a2

SCAN 1.0000 0.45317923 0.61487801 5.89122426
TPSS0 1.0000 1.53512360 0.39794992 4.74628072
TPSS 1.0000 2.22450811 0.44885211 4.64982937
TPSSH 1.0000 2.14405267 0.45324685 4.65909865
WB97 1.0000 1.09057850 0.74881884 7.31791871
WB97X 1.0000 0.33918375 0.57422550 6.43538496
X3LYP 1.0000 1.49832379 0.21295905 5.48908321
XLYP 1.0000 1.52445161 0.09180633 5.36566590
B2PLYP 0.6400 1.03991146 0.42917078 4.64590570
DODBLYP 0.4700 1.21297512 0.40152993 4.29043657
DODPBEB95 0.5400 0.02025159 0.39558022 4.10515132
DODPBE 0.4800 0.81504008 0.38947068 4.40817249
DODPBEP86 0.5600 0.71727708 0.41545419 4.54527783
DODSVWN 0.4200 0.82512933 0.46905029 4.92016057
DSDBLYP 0.5400 0.60520504 0.46267788 4.76592888
DSDPBEB95 0.5400 −0.04387628 0.44578581 4.26570539
DSDPBE 0.4500 0.68957174 0.42311803 4.56085039
DSDPBEP86 0.4700 0.38400895 0.53392682 5.11487807
DSDSVWN 0.4100 0.50548201 0.49342933 4.92304517
MPW2PLYP 0.7500 0.54093706 0.48555673 4.89799320
PBE0-2 0.5000 0.08487184 0.67263608 5.70637126
PBE0-DH 0.8750 0.63911617 0.47372984 4.84410206
PWPB95 0.8200 −0.34312910 0.38199320 4.03853149

Table A2.5.: BJ-damping parameter (DFT-D4-MBD) for various DFAs as derived by
fitting to reference data (S66x8203, S22x5204, NCIBLIND108).

DFA s6 s8 a1 a2

B1LYP 1.0000 1.82880361 0.38501163 4.45594754
B1P 1.0000 3.41489436 0.48259611 5.03433256
B3LYP 1.0000 1.93794471 0.40421683 4.45688214
B3P 1.0000 3.17922279 0.46994391 4.97628954
B3PW 1.0000 2.72554948 0.44382046 4.52143550
B97 1.0000 0.89819432 0.30783131 4.44291091
BHLYP 1.0000 1.51023186 0.28234967 5.28949264
BLYP 1.0000 2.08803266 0.41735956 4.04064805
BPBE 1.0000 3.54765467 0.49393534 4.19603329

Continued on next page
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Table A2.5 – Continued from previous page
DFA s6 s8 a1 a2

BP 1.0000 3.11653507 0.41001465 4.90963955
BPW 1.0000 2.84702187 0.44956163 4.15043391
CAMB3LYP 1.0000 1.65135340 0.42686732 4.99408201
HF 1.0000 1.46466084 0.44789141 3.26970754
LB94 1.0000 2.18919793 0.34183980 3.37328349
LCBLYP 1.0000 1.67842102 0.64789374 7.02690136
M062X 1.0000 −0.04651739 0.86440644 7.33574136
M06 1.0000 0.53733769 0.58813271 5.97262795
M06L 1.0000 0.02532615 0.70915517 6.03265137
MPW1LYP 1.0000 1.33831837 0.29969213 5.17075867
MPW1PW 1.0000 1.63282499 0.41546443 4.59996898
MPWLYP 1.0000 1.36529771 0.28692936 4.90977514
MPWPW 1.0000 1.73006353 0.32572466 4.81445524
O3LYP 1.0000 1.73860949 0.10639457 6.05007081
OLYP 1.0000 2.46450335 0.55516617 2.59873072
OPBE 1.0000 2.69357400 0.61287320 2.35731816
PBE0 1.0000 1.19731044 0.41771977 4.88392353
PBE 1.0000 0.94691612 0.40691345 4.64175930
PW1PW 1.0000 1.18241329 0.46953406 4.88287074
PW6B95 1.0000 −0.15512537 0.08230524 5.93915172
PW86PBE 1.0000 1.46613603 0.42646395 4.67105725
PW91 1.0000 1.20681513 0.46332094 4.85704367
PWP1 1.0000 0.65768072 0.55537751 5.32895289
PWP 1.0000 0.59488896 0.47689543 5.64399980
REVPBE0 1.0000 1.49951783 0.35844324 4.16158145
REVPBE38 1.0000 1.79788536 0.38772841 4.45985024
REVPBE 1.0000 1.52954699 0.49385683 3.10984716
REVTPSS 1.0000 1.50953024 0.43005107 4.65617962
RPBE 1.0000 1.14398738 0.44115512 3.14109823
RPW86PBE 1.0000 1.23872511 0.39820283 4.69425839
SCAN 1.0000 0.47101979 0.61572766 5.89955634
TPSS0 1.0000 1.44964396 0.38938772 4.70319441
TPSS 1.0000 1.92120722 0.42887152 4.56481847
TPSSH 1.0000 2.16224973 0.45193499 4.65294862
WB97 1.0000 1.24878344 0.76459986 7.30498442
WB97X 1.0000 0.35331967 0.57760797 6.42117791

Continued on next page
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Table A2.5 – Continued from previous page
DFA s6 s8 a1 a2

X3LYP 1.0000 1.50510876 0.21172184 5.47818274
XLYP 1.0000 1.50974073 0.09056128 5.36235665
B2PLYP 0.6400 1.01216754 0.41643920 4.63180980
DODBLYP 0.4700 1.08835002 0.37569917 4.23989863
DODPBEB95 0.5400 0.04414267 0.39115971 4.17572877
DODPBE 0.4800 0.81215720 0.38244055 4.37813788
DODPBEP86 0.5600 0.72032712 0.40969100 4.51490751
DODSVWN 0.4200 0.88325732 0.45773819 4.95764154
DSDBLYP 0.5400 0.62682576 0.45454010 4.72957926
DSDPBEB95 0.5400 −0.02861403 0.43084778 4.29816817
DSDPBE 0.4500 0.69830579 0.41691935 4.53518393
DSDPBEP86 0.4700 0.41120180 0.52679302 5.08057386
DSDSVWN 0.4100 0.73601001 0.50101270 5.06418673
MPW2PLYP 0.7500 0.55667324 0.48097971 4.87944949
PBE0-2 0.0500 0.26780051 0.67986298 5.76199448
PBE0-DH 0.8750 0.98152896 0.46760392 5.06547798
PWPB95 0.8200 −0.35440136 0.36144369 4.10631855

Table A2.6.: BJ-damping parameter (DFT-D4(TB)-MBD) for various DFAs as derived
by fitting to reference data (S66x8203, S22x5204, NCIBLIND108).

DFA s6 s8 a1 a2

HF 1.0000 1.45828683 0.44712742 3.26487734
BLYP 1.0000 2.08117058 0.41711642 4.03955128
BPBE 1.0000 3.64259175 0.47063878 4.34712279
BP 1.0000 3.11112473 0.40995387 4.91005330
BPW 1.0000 2.52744727 0.40402782 4.22084057
LB94 1.0000 2.09141891 0.30128051 3.45788060
MPWLYP 1.0000 1.36460200 0.28610246 4.91028062
MPWPW 1.0000 1.73130752 0.32547973 4.81372663
OLYP 1.0000 2.30187644 0.54154721 2.53287278
OPBE 1.0000 2.47862243 0.59805792 2.26671322
PBE 1.0000 0.95159605 0.40436318 4.65010856
RPBE 1.0000 1.05401423 0.42599648 3.10146307
REVPBE 1.0000 1.52850098 0.49314034 3.10441225
PW86PBE 1.0000 1.46497296 0.42635774 4.67070001
RPW86PBE 1.0000 1.23782981 0.39785399 4.69412260
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Table A2.6 – Continued from previous page
DFA s6 s8 a1 a2

PW91 1.0000 0.89648532 0.39592418 4.96320977
PWP 1.0000 0.63806944 0.47390787 5.66515208
XLYP 1.0000 1.50994082 0.09051215 5.36205296
B97 1.0000 0.89799738 0.30819088 4.44324265
TPSS 1.0000 1.88901638 0.42775015 4.55379980
REVTPSS 1.0000 1.50883062 0.43017530 4.65783611
SCAN 1.0000 0.46990209 0.61436450 5.89911495
B1LYP 1.0000 1.83074938 0.38493543 4.45592640
B3LYP 1.0000 1.93642773 0.40445381 4.45704639
BHLYP 1.0000 1.51896770 0.28192218 5.29427469
B1P 1.0000 3.41675121 0.48253511 5.03389354
B3P 1.0000 3.18279035 0.46992325 4.97650253
B3PW 1.0000 2.72363274 0.44377256 4.52215574
O3LYP 1.0000 1.73874942 0.10638982 6.04981736
REVPBE0 1.0000 1.49890714 0.35819541 4.15947955
REVPBE38 1.0000 1.57382508 0.37838702 4.35632432
PBE0 1.0000 1.19661978 0.41734308 4.88432030
PWP1 1.0000 0.64888926 0.55564809 5.32212639
PW1PW 1.0000 1.18364244 0.46953724 4.88272276
MPW1PW 1.0000 1.62788471 0.41557675 4.59973489
MPW1LYP 1.0000 1.33170909 0.29830906 5.17345035
PW6B95 1.0000 −0.16443919 0.07904989 5.94439646
TPSSH 1.0000 2.16468907 0.45254189 4.65553922
TPSS0 1.0000 1.25285163 0.38223499 4.61593529
X3LYP 1.0000 1.50562853 0.21152728 5.47901628
M06L 1.0000 0.01347697 0.70834664 6.03315516
M06 1.0000 0.50785008 0.58953157 5.97317057
M062X 1.0000 0.04672618 0.87098156 7.32988630
WB97 1.0000 1.12736363 0.75396590 7.31052961
WB97X 1.0000 0.35040501 0.56974796 6.44327794
CAMB3LYP 1.0000 1.65213437 0.42676206 4.99450582
LCBLYP 1.0000 1.67459038 0.64772566 7.02691022
LH07TSVWN 1.0000 1.64716468 0.36027550 3.94884094
LH07SSVWN 1.0000 2.54773475 0.37196719 3.89864094
LH12CTSSIRPW92 1.0000 1.90023851 0.33513581 3.53724635
LH12CTSSIFPW92 1.0000 2.04371641 0.33238788 3.47234711
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Table A2.6 – Continued from previous page
DFA s6 s8 a1 a2

LH14TCALPBE 1.0000 0.96217113 0.40809799 4.53911955
B2PLYP 0.7800 0.97090085 0.41849225 4.59286243
MPW2PLYP 0.7500 0.55506801 0.48148834 4.88179316
PWPB95 0.8200 −0.02640853 0.43744768 4.53884724
DSDBLYP 0.5400 0.62642144 0.45589598 4.73062294
DSDPBE 0.4500 0.69229105 0.41584408 4.52896960
DSDPBEB95 0.5400 −0.02535683 0.43117570 4.31724907
DSDPBEP86 0.4700 0.40437239 0.52692625 5.08678249
DSDSVWN 0.4100 0.73668521 0.50541252 5.06078930
DODBLYP 0.4700 1.04384962 0.37001761 4.22041649
DODPBE 0.4800 0.80824428 0.38386476 4.37573221
DODPBEB95 0.5600 0.02781676 0.38100406 4.18729280
DODPBEP86 0.4600 0.71163846 0.40907164 4.51396886
DODSVWN 0.4200 0.82959503 0.45957776 4.89671368
PBE0-2 0.5000 0.12481539 0.66150525 5.70164463
PBE0-DH 0.8750 0.65674732 0.47131118 4.82816982

Table A2.7.: BJ-damping parameter (DFT-D4(TB)-ATM) for various DFAs as derived
by fitting to reference data (S66x8203, S22x5204, NCIBLIND108).

DFA s6 s8 a1 a2

HF 1.0000 1.55736644 0.44217952 3.32410441
BLYP 1.0000 2.19020080 0.42913071 4.05110479
BPBE 1.0000 3.62974920 0.47179311 4.34832782
BP 1.0000 3.08647246 0.41162112 4.91954319
BPW 1.0000 2.85109094 0.45463214 4.14345106
LB94 1.0000 2.39809364 0.36347155 3.34195390
MPWLYP 1.0000 1.36395783 0.28602441 4.91054588
MPWPW 1.0000 1.73185625 0.32534435 4.81318452
OLYP 1.0000 2.30087126 0.54144859 2.53332300
OPBE 1.0000 2.70962530 0.61800352 2.27621123
PBE 1.0000 0.93625094 0.40790049 4.65135944
RPBE 1.0000 1.05164427 0.42592627 3.10037133
REVPBE 1.0000 1.61138201 0.51215200 3.04718355
PW86PBE 1.0000 1.19254614 0.39745489 4.66150128
RPW86PBE 1.0000 1.22289266 0.39946065 4.70231415
PW91 1.0000 0.78221005 0.39097390 4.94408451
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Table A2.7 – Continued from previous page
DFA s6 s8 a1 a2

PWP 1.0000 0.61218826 0.47778963 5.64605664
XLYP 1.0000 1.50968143 0.09056306 5.36223975
B97 1.0000 0.89818005 0.30891258 4.44379503
TPSS 1.0000 2.22336684 0.44903931 4.65080532
REVTPSS 1.0000 1.49374036 0.43199183 4.66405759
SCAN 1.0000 0.45775648 0.61669342 5.90523468
B1LYP 1.0000 1.82819641 0.38561062 4.46105123
B3LYP 1.0000 1.93077774 0.40520781 4.46255249
BHLYP 1.0000 1.50655502 0.28355060 5.30354638
B1P 1.0000 3.39400623 0.48389119 5.03982146
B3P 1.0000 3.16190735 0.47103271 4.98137363
B3PW 1.0000 2.71273965 0.44631895 4.52517962
O3LYP 1.0000 1.72321198 0.10802598 6.06126661
REVPBE0 1.0000 1.50046346 0.35837424 4.15979987
REVPBE38 1.0000 1.61994900 0.38456295 4.37487340
PBE0 1.0000 1.18497326 0.41918588 4.89170085
PWP1 1.0000 0.61368682 0.55682803 5.33266814
PW1PW 1.0000 1.16002822 0.47078518 4.89243094
MPW1PW 1.0000 1.61991331 0.41709790 4.60728322
MPW1LYP 1.0000 1.32539433 0.30123436 5.17574956
PW6B95 1.0000 −0.24364276 0.06861369 5.89370310
TPSSH 1.0000 1.81699305 0.43708555 4.57679351
TPSS0 1.0000 1.46938802 0.39751411 4.71014742
X3LYP 1.0000 1.49493575 0.21310866 5.48746009
M06L 1.0000 0.02539965 0.71110772 6.05063504
M06 1.0000 0.50295755 0.58875642 5.96557487
M062X 1.0000 −0.12770286 0.86289908 7.30761622
WB97 1.0000 1.26204557 0.75437695 7.31527780
WB97X 1.0000 0.34783580 0.57488291 6.41921802
CAMB3LYP 1.0000 1.63966917 0.42427808 5.03109815
LCBLYP 1.0000 1.67838379 0.64705435 7.02883375
LH07TSVWN 1.0000 3.40858218 0.53218598 3.55068620
LH07SSVWN 1.0000 2.01742030 0.49983199 3.53449278
LH12CTSSIRPW92 1.0000 2.46688356 0.56783603 2.83126177
LH12CTSSIFPW92 1.0000 2.70376807 0.58623258 2.72103381
LH14TCALPBE 1.0000 1.23827287 0.43537537 4.63938635
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Table A2.7 – Continued from previous page
DFA s6 s8 a1 a2

B2PLYP 0.7800 1.00468553 0.42737183 4.62624158
MPW2PLYP 0.7500 0.54318070 0.48472756 4.89674342
PWPB95 0.8200 −0.35342155 0.37278086 4.03580081
DSDBLYP 0.5400 0.60151254 0.46091302 4.75348449
DSDPBE 0.4500 0.69865539 0.42508371 4.56518930
DSDPBEB95 0.5400 −0.05097431 0.42967019 4.32398958
DSDPBEP86 0.4700 0.38271706 0.53397308 5.11687101
DSDSVWN 0.4100 0.50904643 0.49413232 4.92092377
DODBLYP 0.4700 1.17101452 0.39833737 4.25809811
DODPBE 0.4800 0.80761267 0.38873738 4.40171191
DODPBEB95 0.5600 0.00959016 0.38866713 4.09462693
DODPBEP86 0.4600 0.71327951 0.41631367 4.53851973
DODSVWN 0.4200 0.62186246 0.45590032 4.74298602
PBE0-2 0.5000 0.10740034 0.66706819 5.73936118
PBE0-DH 0.8750 0.74864713 0.47598257 4.90910090

A2.7. Timings of Energy and Gradient Calls

We compare timings for energy and gradient calls between DFT–D4 and DFT–
D3(BJ)-ATM for the Tetrakis(isonitrile)rhodium(I) dimer with 106 atoms (doubly
positively charged) and a diamond chunk with 430 atoms (286 carbon atoms and
144 hydrogen atoms) derived at four Intel(R) Core(TM) i7-6700 CPU (3.40 GHz).

Property CPU time(DFT–D4) / s CPU time(DFT–D3(BJ)-ATM) / s

Tetrakis(isonitrile)rhodium(I) dimer (106 atoms, charge +2)
single–point 0.01 0.03
gradient 0.01 0.03

Diamond chunk (430 atoms, charge 0)
single–point 0.34 0.41
gradient 0.51 1.02

A2.8. Extendet Statistical Measures

Statistical evaluation: S30L
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Table A2.8.: Extendet statistical evaluation of the S30L259 benchmark set for various
different DFAs. For each functional we directly compare DFT–D3 (BJ)-
ATM (abbreviated as D3) corrected values with DFT–D4-ATM (abbreviated
as D4) corrected values given in kcalmol−1. For further details please check
Ref. 257,263. We follow the numberation of the systems regarding Ref. 259

DLPNO- PW6B95 SCAN revPBE
# CCSD(T)/CBS* D4 D3 D4 D3 D4 D3

1 −31.0 −28.2 −30.1 −30.2 −29.7 −29.6 −28.0
2 −20.7 −19.0 −20.4 −19.8 −19.4 −19.6 −18.2
3 −23.3 −19.1 −19.2 −22.5 −21.5 −20.8 −18.0
4 −18.6 −20.9 −20.3 −21.4 −21.0 −20.7 −18.6
5 −27.9 −31.6 −32.9 −33.2 −32.2 −32.7 −28.7
6 −25.2 −21.2 −22.8 −25.6 −25.2 −24.8 −22.2
7 −31.0 −32.1 −33.4 −33.2 −33.2 −34.8 −29.9
8 −35.6 −36.9 −38.7 −38.1 −38.0 −40.2 −34.5
9 −33.7 −31.6 −32.7 −33.6 −29.4 −35.1 −27.0
10 −35.0 −30.5 −32.0 −34.7 −30.2 −36.2 −27.8
11 −35.8 −32.8 −36.7 −40.1 −34.2 −42.5 −32.5
12 −36.9 −33.6 −37.5 −40.1 −34.1 −42.5 −32.4
13 −27.3 −24.2 −25.7 −27.1 −25.5 −24.0 −22.9
14 −28.6 −24.2 −26.7 −28.3 −26.6 −25.6 −23.9
15 −17.5 −17.3 −18.1 −21.8 −21.9 −21.2 −21.1
16 −21.6 −21.4 −23.9 −24.2 −24.2 −25.3 −24.7
17 −34.3 −32.6 −31.7 −36.0 −35.9 −33.4 −32.3
18 −22.8 −20.8 −20.4 −24.4 −24.0 −22.5 −21.3
19 −15.3 −14.4 −14.7 −17.0 −16.1 −15.4 −15.3
20 −18.5 −17.2 −17.9 −20.1 −19.1 −18.0 −18.2
21 −28.0 −22.8 −24.9 −27.3 −25.1 −23.9 −23.5
22 −35.3 −35.2 −33.9 −38.6 −38.8 −39.5 −38.7
23 −62.1 −63.0 −61.8 −66.5 −66.9 −68.7 −68.1
24 −136.3 −130.3 −133.1 −138.0 −134.7 −126.9 −126.5
25 −28.7 −27.4 −31.2 −30.2 −28.9 −29.8 −27.1
26 −28.6 −26.4 −30.3 −27.9 −26.5 −29.8 −27.1
27 −83.4 −80.6 −82.0 −84.3 −83.5 −80.6 −80.7
28 −80.0 −77.4 −78.7 −80.7 −80.1 −77.2 −77.4
29 −52.8 −56.0 −54.2 −58.1 −58.2 −55.8 −54.2
30 −49.6 −51.1 −49.9 −53.6 −53.4 −51.5 −49.7

MD 1.5 0.3 −1.7 −0.4 −0.8 1.8
MAD 2.5 1.8 2.0 2.3 2.9 3.1

RMSD 2.9 2.2 2.6 2.7 3.6 3.8
SD 13.3 11.7 10.5 14.8 19.5 18.4
Var 6.1 4.7 3.8 7.6 13.1 11.7
Max 6.0 4.1 0.9 4.8 9.4 9.8
Min −3.7 −5.0 −5.3 −5.4 −6.7 −6.0

AMax 6.0 5.0 5.3 5.4 9.4 9.8

Statistical evaluation: L7
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Table A2.9.: Extendet statistical evaluation of the S30L259 benchmark set for various dif-
ferent DFAs. For each functional we directly compare DFT–D3 (BJ)-ATM
(abbreviated as D3) corrected values with DFT–D4-MBD (abbreviated as
D4) corrected values given in kcalmol−1. For further details please check
Ref. 257,263. We follow the numberation of the systems regarding Ref.259

DLPNO- PW6B95 SCAN revPBE
# CCSD(T)/CBS* D4 D3 D4 D3 D4 D3

1 −31.0 −29.8 −30.1 −30.1 −29.7 −30.2 −28.0
2 −20.7 −20.2 −20.4 −19.7 −19.4 −20.0 −18.2
3 −23.3 −20.8 −19.2 −22.6 −21.5 −21.8 −18.0
4 −18.6 −21.5 −20.3 −21.5 −21.0 −21.1 −18.6
5 −27.9 −33.4 −32.9 −33.2 −32.2 −33.4 −28.7
6 −25.2 −22.9 −22.8 −25.6 −25.2 −25.5 −22.2
7 −31.0 −33.2 −33.4 −33.3 −33.2 −35.2 −29.9
8 −35.6 −38.2 −38.7 −38.1 −38.0 −40.5 −34.5
9 −33.7 −35.2 −32.7 −34.1 −29.4 −37.3 −27.0
10 −35.0 −34.6 −32.0 −35.3 −30.2 −38.6 −27.8
11 −35.8 −38.7 −36.7 −40.9 −34.2 −46.0 −32.5
12 −36.9 −39.4 −37.5 −40.9 −34.1 −45.9 −32.4
13 −27.3 −26.4 −25.7 −27.0 −25.5 −25.3 −22.9
14 −28.6 −26.8 −26.7 −28.2 −26.6 −27.0 −23.9
15 −17.5 −17.9 −18.1 −21.9 −21.9 −21.6 −21.1
16 −21.6 −22.4 −23.9 −24.3 −24.2 −25.9 −24.7
17 −34.3 −33.3 −31.7 −36.0 −35.9 −33.9 −32.3
18 −22.8 −21.6 −20.4 −24.4 −24.0 −23.1 −21.3
19 −15.3 −15.6 −14.7 −17.1 −16.1 −16.3 −15.3
20 −18.5 −19.0 −17.9 −20.2 −19.1 −19.3 −18.2
21 −28.0 −25.9 −24.9 −27.3 −25.1 −25.9 −23.5
22 −35.3 −35.5 −33.9 −38.7 −38.8 −39.8 −38.7
23 −62.1 −63.0 −61.8 −66.6 −66.9 −68.8 −68.1
24 −136.3 −135.9 −133.1 −138.5 −134.7 −130.8 −126.5
25 −28.7 −30.4 −31.2 −30.2 −28.9 −31.0 −27.1
26 −28.6 −29.5 −30.3 −27.8 −26.5 −31.0 −27.1
27 −83.4 −82.8 −82.0 −84.3 −83.5 −81.9 −80.7
28 −80.0 −79.1 −78.7 −80.6 −80.1 −78.2 −77.4
29 −52.8 −55.9 −54.2 −58.1 −58.2 −55.8 −54.2
30 −49.6 −51.3 −49.9 −53.6 −53.4 −51.6 −49.7

MD −0.5 0.3 −1.8 −0.4 −1.9 1.8
MAD 1.5 1.8 2.1 2.3 3.1 3.1

RMSD 1.9 2.2 2.7 2.7 3.9 3.8
SD 10.2 11.7 10.8 14.8 18.8 18.4
Var 3.6 4.7 4.0 7.6 12.2 11.7
Max 2.5 4.1 1.0 4.8 5.5 9.8
Min −5.5 −5.0 −5.3 −5.4 −10.2 −6.0

AMax 5.5 5.0 5.3 5.4 10.2 9.8

Table A2.10.: Extended statistical evaluations of different DFAs with respect to DLPNO-
CCSD(T)/CBS* data. For each functional we directly compare DFT–
D3 (BJ)-ATM (abbreviated as D3) corrected values with DFT–D4-ATM
(abbreviated as D4) corrected values given in kcalmol−1. We follow the
numberation of the systems regarding Ref. 258.

DLPNO- PW6B95 PBE0 TPSS
# CCSD(T)/CBS* D4 D3 D4 D3 D4 D3

CBH −11.6 −8.2 −9.0 −10.8 −11.7 −10.8 −11.6
C2C2PD −21.3 −18.8 −20.4 −20.1 −18.3 −23.9 −20.1
C3A −17.0 −14.7 −14.9 −16.0 −14.4 −18.4 −15.3
C3GC −29.1 −26.2 −26.6 −27.0 −24.2 −31.1 −25.9
GCGC −12.8 −13.5 −12.4 −14.1 −12.1 −15.8 −12.5
GGG −1.9 −1.8 −1.4 −2.1 −1.3 −3.0 −1.6
PHE −23.0 −23.7 −23.7 −25.4 −25.3 −24.2 −23.9

MD 1.4 1.2 0.2 1.3 −1.5 0.8
MAD 1.8 1.4 1.3 2.0 1.7 1.1

RMSD 2.2 1.7 1.5 2.6 1.9 1.5
SD 4.3 3.1 3.9 5.8 3.1 3.3
Var 3.1 1.6 2.5 5.7 1.6 1.8
Max 3.4 2.6 2.1 4.9 0.8 3.2
Min −0.7 −0.7 −2.4 −2.3 −3.0 −0.9

AMax 3.4 2.6 2.4 4.9 3.0 3.2
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Table A2.11.: Extended statistical evaluations of different DFAs with respect to DLPNO-
CCSD(T)/CBS* data. For each functional we directly compare DFT–
D3 (BJ)-ATM (abbreviated as D3) corrected values with DFT–D4-MBD
(abbreviated as D4) corrected values given in kcalmol−1. We follow the
numberation of the systems regarding Ref. 258.

DLPNO- PW6B95 PBE0 TPSS
# CCSD(T)/CBS* D4 D3 D4 D3 D4 D3

CBH −11.6 −8.6 −9.0 −11.0 −11.7 −10.8 −11.6
C2C2PD −21.3 −20.5 −20.4 −20.3 −18.3 −23.6 −20.1
C3A −17.0 −15.6 −14.9 −16.1 −14.4 −18.1 −15.3
C3GC −29.1 −27.8 −26.6 −27.2 −24.2 −30.7 −25.9
GCGC −12.8 −13.9 −12.4 −14.1 −12.1 −15.6 −12.5
GGG −1.9 −2.0 −1.4 −2.1 −1.3 −2.8 −1.6
PHE −23.0 −24.0 −23.7 −25.6 −25.3 −24.3 −23.9

MD 0.6 1.2 0.1 1.3 −1.3 0.8
MAD 1.2 1.4 1.2 2.0 1.5 1.1
RMSD 1.5 1.7 1.4 2.6 1.7 1.5
SD 3.6 3.1 3.7 5.8 2.8 3.3
Var 2.1 1.6 2.3 5.7 1.3 1.8
Max 3.0 2.6 1.9 4.9 0.8 3.2
Min −1.1 −0.7 −2.6 −2.3 −2.8 −0.9
AMax 3.0 2.6 2.6 4.9 2.8 3.2

Table A2.12.: Extended statistical evaluations of different DFAs with respect to DLPNO-
CCSD(T)/CBS* data. For each functional we directly compare DFT–
D3 (BJ)-ATM (abbreviated as D3) corrected values with DFT–D4(TB)-
ATM (abbreviated as D4) corrected values given in kcalmol−1. We follow
the numberation of the systems regarding Ref. 258.

DLPNO- PW6B95 PBE0 TPSS
# CCSD(T)/CBS* D4 D3 D4 D3 D4 D3

CBH −11.6 −9.4 −9.0 −12.0 −11.7 −12.0 −11.6
C2C2PD −21.3 −20.3 −20.4 −20.0 −18.3 −22.9 −20.1
C3A −17.0 −15.4 −14.9 −15.9 −14.4 −17.7 −15.3
C3GC −29.1 −27.6 −26.6 −26.9 −24.2 −30.2 −25.9
GCGC −12.8 −13.7 −12.4 −13.9 −12.1 −15.3 −12.5
GGG −1.9 −1.9 −1.4 −2.1 −1.3 −2.8 −1.6
PHE −23.0 −24.2 −23.7 −25.8 −25.3 −24.6 −23.9

MD 0.6 1.2 0.0 1.3 −1.3 0.8
MAD 1.2 1.4 1.3 2.0 1.3 1.1

RMSD 1.4 1.7 1.6 2.6 1.4 1.5
SD 3.2 3.1 4.1 5.8 1.8 3.3
Var 1.8 1.6 2.9 5.7 0.5 1.8
Max 2.2 2.6 2.2 4.9 −0.4 3.2
Min −1.2 −0.7 −2.8 −2.3 −2.5 −0.9

AMax 2.2 2.6 2.8 4.9 2.5 3.2
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Statistical evaluation: MOR41 We follow the numberation of
the systems regarding Ref. 268.
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Table A2.13.: Extendet statistical evaluations of : DOD-PBE and DSD-PBE in
kcalmol−1. We abbreviate D3(BJ)-ATM by D3.

DOD-PBE DSD-PBE
# Ref. D4-ATM D4-MBD D3 D4-ATM D4-MBD D3

1 −43.1 −46.2 −46.3 −47.4 −48.4 −48.4 −49.7
2 −46.6 −51.6 −51.8 −52.7 −54.2 −54.2 −55.4
3 −27.6 −35.8 −36.0 −36.6 −39.4 −39.4 −40.3
4 −62.5 −60.3 −60.5 −61.0 −58.5 −58.5 −59.4
5 3.7 2.9 2.7 2.3 3.7 3.7 3.0
6 −23.1 −21.7 −21.7 −20.4 −22.9 −22.9 −21.9
7 −16.2 −14.3 −14.2 −12.5 −14.8 −14.8 −13.3
8 −17.2 −13.5 −13.7 −13.4 −13.2 −13.2 −13.3
9 −18.8 −14.5 −14.6 −12.4 −14.2 −14.2 −13.2
10 −22.6 −21.9 −22.1 −23.2 −23.3 −23.3 −24.6
11 27.0 24.7 24.7 22.6 23.0 23.0 21.4
12 −29.8 −33.4 −33.5 −32.8 −35.5 −35.5 −35.2
13 −43.2 −45.8 −46.0 −47.1 −47.7 −47.7 −49.2
14 −52.0 −53.7 −54.0 −55.6 −55.1 −55.1 −56.7
15 −4.1 7.5 7.3 8.1 11.8 11.8 12.1
16 −39.8 −40.3 −40.8 −42.7 −40.3 −40.3 −41.7
17 −16.1 −13.9 −14.0 −11.2 −14.0 −14.0 −11.8
18 −34.2 −34.0 −34.4 −37.0 −33.7 −33.7 −36.2
19 −40.1 −39.9 −40.3 −43.0 −39.4 −39.4 −41.9
20 −30.2 −29.5 −29.8 −31.8 −28.8 −28.8 −30.9
21 −15.1 −17.2 −17.7 −18.6 −15.8 −15.8 −17.3
22 −35.9 −39.0 −39.4 −41.6 −40.3 −40.3 −42.6
23 −55.0 −55.1 −55.6 −58.9 −54.8 −54.8 −57.9
24 −41.6 −40.2 −41.1 −45.2 −39.9 −39.9 −42.7
25 −45.9 −45.2 −46.3 −50.5 −45.4 −45.4 −48.1
26 −36.4 −34.9 −35.2 −37.1 −33.3 −33.3 −34.7
27 −21.8 −21.1 −21.2 −22.7 −19.8 −19.8 −21.0
28 −36.3 −35.9 −36.1 −37.9 −34.6 −34.6 −36.0
29 −28.3 −28.7 −28.9 −30.3 −27.9 −27.9 −29.2
30 −14.9 −16.0 −16.2 −17.2 −14.9 −14.9 −15.8
31 −29.9 −29.4 −29.8 −31.2 −28.6 −28.6 −30.1
32 −1.9 −2.0 −2.0 −2.0 −2.3 −2.3 −2.1
33 −10.7 −6.7 −6.7 −5.8 −4.2 −4.2 −2.8
34 −25.6 −22.9 −23.0 −23.8 −21.0 −21.0 −21.3
35 −30.9 −28.3 −28.4 −29.9 −26.6 −26.6 −27.4
36 −39.8 −40.2 −40.4 −42.2 −40.0 −40.0 −41.1
37 −14.0 −16.9 −17.4 −17.4 −16.0 −16.0 −16.6
38 −64.4 −68.1 −68.6 −76.3 −67.4 −67.4 −74.0
39 −63.9 −63.3 −63.9 −65.8 −63.7 −63.7 −66.3
40 −65.8 −65.2 −65.4 −68.2 −64.9 −64.9 −67.7
41 −3.2 −2.4 −2.3 −1.4 −2.1 −2.1 −0.7

MD 0.1 −0.2 −1.3 0.2 0.2 −40.9
MAD 2.1 2.1 3.5 2.9 2.9 3.7
RMSD 3.1 3.1 4.4 4.3 4.3 5.0
SD 19.7 19.9 26.7 27.5 27.5 31.8
Var 9.7 9.9 17.8 18.9 18.9 25.3
Max 11.5 11.4 12.1 15.8 15.8 16.2
Min −8.2 −8.4 −12.0 −11.8 −11.8 −12.7
AMax 11.5 11.4 12.1 15.8 15.8 16.2
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Table A2.14.: Extendet statistical evaluations of : B3LYP and PBE0 in kcalmol−1. We
abbreviate D3(BJ)-ATM by D3.

B3LYP PBE0
# Ref. D4-ATM D4-MBD D3 D4-ATM D4-MBD D3

1 −43.1 −40.5 −40.6 −41.0 −44.6 −44.6 −44.7
2 −46.6 −41.9 −42.0 −42.3 −47.4 −47.4 −47.4
3 −27.6 −22.8 −22.9 −23.0 −26.4 −26.4 −26.4
4 −62.5 −66.2 −66.4 −66.5 −71.3 −71.3 −71.4
5 3.7 −0.1 −0.1 0.1 −2.6 −2.6 −2.4
6 −23.1 −17.4 −17.4 −15.9 −21.0 −21.0 −20.3
7 −16.2 −12.1 −12.0 −11.3 −15.7 −15.7 −15.3
8 −17.2 −12.8 −12.9 −11.8 −16.0 −16.0 −15.3
9 −18.8 −14.3 −14.3 −11.9 −16.1 −16.1 −15.0
10 −22.6 −16.4 −16.6 −16.4 −19.4 −19.4 −19.1
11 27.0 30.0 30.1 28.2 30.9 30.9 30.2
12 −29.8 −24.6 −24.6 −22.8 −29.9 −29.9 −28.9
13 −43.2 −38.0 −38.1 −37.9 −43.9 −43.9 −43.6
14 −52.0 −43.8 −44.0 −43.6 −50.9 −50.9 −50.5
15 −4.1 −5.0 −5.1 −4.2 −4.8 −4.8 −4.4
16 −39.8 −39.3 −39.8 −39.7 −40.4 −40.4 −40.0
17 −16.1 −14.5 −14.6 −9.9 −13.7 −13.7 −11.2
18 −34.2 −31.8 −32.0 −31.7 −33.3 −33.3 −32.8
19 −40.1 −37.2 −37.4 −37.1 −38.7 −38.7 −38.0
20 −30.2 −29.2 −29.4 −28.6 −28.6 −28.6 −27.8
21 −15.1 −18.5 −18.8 −16.5 −18.7 −18.7 −17.1
22 −35.9 −32.3 −32.6 −30.6 −33.5 −33.5 −32.1
23 −55.0 −51.2 −51.4 −51.8 −52.6 −52.6 −52.3
24 −41.6 −40.8 −41.7 −42.9 −41.3 −41.3 −41.7
25 −45.9 −45.4 −46.4 −47.0 −45.6 −45.6 −45.6
26 −36.4 −42.4 −42.6 −43.6 −38.5 −38.5 −39.0
27 −21.8 −26.8 −27.0 −27.5 −25.1 −25.1 −25.5
28 −36.3 −41.7 −41.9 −42.5 −39.2 −39.2 −39.5
29 −28.3 −32.8 −33.0 −33.0 −30.0 −30.0 −30.0
30 −14.9 −21.8 −22.1 −21.6 −16.3 −16.3 −16.1
31 −29.9 −32.8 −33.2 −33.4 −29.4 −29.4 −29.7
32 −1.9 0.1 0.1 0.9 0.2 0.2 0.7
33 −10.7 −18.9 −19.0 −17.9 −9.4 −9.4 −8.8
34 −25.6 −30.3 −30.5 −30.5 −25.1 −25.1 −25.0
35 −30.9 −34.6 −34.7 −35.1 −29.8 −29.8 −29.9
36 −39.8 −39.4 −39.5 −40.9 −34.9 −34.9 −35.3
37 −14.0 −33.0 −33.4 −33.7 −23.3 −23.3 −23.4
38 −64.4 −72.2 −72.6 −78.5 −69.1 −69.1 −71.8
39 −63.9 −58.2 −58.5 −56.7 −60.7 −60.7 −59.5
40 −65.8 −66.4 −66.5 −67.2 −69.0 −69.0 −69.2
41 −3.2 −6.3 −6.3 −6.7 −3.0 −3.0 −3.4

MD −0.1 −0.3 −0.2 −0.3 −0.3 −0.0
MAD 4.2 4.2 4.8 2.3 2.3 2.6
RMSD 5.3 5.3 6.0 3.1 3.1 3.4
SD 33.7 33.9 38.3 19.7 19.7 21.8
Var 28.3 28.8 36.6 9.7 9.7 11.9
Max 8.2 7.9 8.4 5.0 5.0 4.9
Min −19.0 −19.4 −19.6 −9.2 −9.2 −9.4
AMax 19.0 19.4 19.6 9.2 9.2 9.4
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Table A2.15.: Extendet statistical evaluations of : PW6B95 and CAM-B3LYP in
kcalmol−1. We abbreviate D3(BJ)-ATM by D3.

PW6B95 CAM-B3LYP
# Ref. D4-ATM D4-MBD D3 D4-ATM D4-MBD D3

1 −43.1 −41.8 −41.8 −41.4 −40.1 −40.1 −40.1
2 −46.6 −42.9 −43.0 −42.5 −42.7 −42.7 −42.7
3 −27.6 −22.6 −22.6 −22.2 −23.2 −23.2 −23.1
4 −62.5 −63.0 −63.0 −62.4 −64.4 −64.4 −64.2
5 3.7 1.0 1.1 1.6 2.7 2.7 3.0
6 −23.1 −19.8 −19.7 −18.8 −19.5 −19.5 −18.6
7 −16.2 −16.5 −16.0 −15.0 −14.1 −14.1 −13.4
8 −17.2 −12.2 −12.4 −11.3 −15.8 −15.8 −14.8
9 −18.8 −12.5 −12.3 −10.0 −17.8 −17.8 −16.5
10 −22.6 −15.5 −15.6 −14.7 −15.8 −15.8 −15.3
11 27.0 32.8 33.0 32.3 33.6 33.6 33.1
12 −29.8 −28.4 −28.2 −26.7 −24.3 −24.3 −23.0
13 −43.2 −40.9 −40.7 −39.8 −38.4 −38.4 −37.9
14 −52.0 −47.9 −48.1 −47.4 −44.1 −44.1 −43.5
15 −4.1 −3.9 −4.0 −3.1 −9.6 −9.6 −9.1
16 −39.8 −40.0 −40.5 −39.7 −39.0 −39.0 −38.2
17 −16.1 −15.2 −15.2 −12.5 −16.2 −16.2 −13.1
18 −34.2 −29.4 −29.3 −30.9 −30.2 −30.2 −29.8
19 −40.1 −34.5 −34.5 −36.2 −36.4 −36.4 −35.9
20 −30.2 −27.1 −26.9 −26.7 −28.2 −28.2 −27.3
21 −15.1 −16.0 −16.1 −16.0 −14.4 −14.4 −12.8
22 −35.9 −26.1 −26.6 −29.3 −27.4 −27.4 −26.5
23 −55.0 −46.8 −46.7 −50.3 −49.0 −49.0 −49.2
24 −41.6 −39.7 −41.2 −42.0 −40.7 −40.7 −41.0
25 −45.9 −43.0 −44.7 −45.1 −45.0 −45.0 −44.7
26 −36.4 −33.5 −34.2 −35.6 −42.1 −42.1 −42.9
27 −21.8 −21.4 −22.1 −23.7 −27.4 −27.4 −28.2
28 −36.3 −34.3 −34.9 −36.6 −41.8 −41.8 −42.6
29 −28.3 −26.1 −26.7 −27.4 −32.1 −32.1 −32.4
30 −14.9 −9.9 −10.6 −11.6 −17.4 −17.4 −17.7
31 −29.9 −25.4 −26.4 −27.2 −33.3 −33.3 −34.1
32 −1.9 −1.2 −1.1 −1.5 0.5 0.5 0.8
33 −10.7 −10.5 −10.7 −10.7 −18.5 −18.5 −18.1
34 −25.6 −24.1 −24.4 −25.4 −28.6 −28.6 −28.8
35 −30.9 −28.7 −29.0 −31.0 −32.7 −32.7 −33.3
36 −39.8 −33.5 −33.5 −37.2 −36.5 −36.5 −37.7
37 −14.0 −19.6 −20.2 −19.3 −26.7 −26.7 −26.9
38 −64.4 −59.6 −60.5 −64.0 −67.0 −67.0 −70.0
39 −63.9 −61.0 −61.2 −60.5 −60.8 −60.8 −59.8
40 −65.8 −66.2 −66.2 −66.9 −65.9 −65.9 −66.2
41 −3.2 −1.0 −1.4 −2.2 −5.9 −5.9 −6.6

MD 2.7 2.4 2.1 0.5 0.5 0.7
MAD 3.2 3.0 2.7 3.7 3.7 4.3
RMSD 4.0 3.8 3.5 4.6 4.6 5.0
SD 18.9 19.1 18.0 28.9 28.9 31.4
Var 8.9 9.1 8.1 21.0 21.0 24.7
Max 9.8 9.2 8.7 8.5 8.5 9.3
Min −5.6 −6.2 −5.3 −12.7 −12.7 −12.8
AMax 9.8 9.2 8.7 12.7 12.7 12.8
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Table A2.16.: Extendet statistical evaluations of : revPBE and M06L in kcalmol−1. We
abbreviate D3(BJ)-ATM by D3.

revPBE M06L
# Ref. D4-ATM D4-MBD D3 D4-ATM D4-MBD D3

1 −43.1 −44.5 −44.6 −44.1 −41.0 −41.0 −40.7
2 −46.6 −47.6 −47.6 −47.0 −45.1 −45.1 −44.9
3 −27.6 −29.0 −29.1 −28.4 −27.1 −27.1 −26.9
4 −62.5 −73.6 −73.8 −72.4 −64.9 −64.9 −64.7
5 3.7 −6.8 −6.7 −5.4 −2.7 −2.7 −2.5
6 −23.1 −17.9 −17.9 −15.5 −18.1 −18.1 −18.1
7 −16.2 −12.9 −12.9 −11.3 −16.8 −16.8 −16.8
8 −17.2 −14.2 −14.3 −12.3 −7.7 −7.7 −7.5
9 −18.8 −14.0 −13.8 −9.7 −7.2 −7.2 −8.2
10 −22.6 −24.6 −24.7 −23.3 −13.2 −13.2 −12.7
11 27.0 24.2 24.5 22.7 30.7 30.7 31.3
12 −29.8 −30.6 −30.4 −26.8 −24.7 −24.7 −24.3
13 −43.2 −44.8 −44.7 −42.9 −39.8 −39.8 −39.4
14 −52.0 −51.2 −51.3 −49.5 −50.0 −50.0 −49.2
15 −4.1 1.9 1.7 4.0 5.4 5.4 5.5
16 −39.8 −41.7 −42.0 −40.4 −42.3 −42.3 −40.6
17 −16.1 −14.8 −14.9 −7.8 −18.2 −18.2 −17.7
18 −34.2 −34.8 −34.5 −32.9 −24.7 −24.7 −23.9
19 −40.1 −39.0 −38.5 −37.2 −28.8 −28.8 −27.7
20 −30.2 −31.2 −30.9 −28.7 −24.6 −24.6 −23.6
21 −15.1 −23.9 −23.7 −18.9 −13.7 −13.7 −12.7
22 −35.9 −37.5 −37.1 −35.2 −21.8 −21.8 −20.7
23 −55.0 −52.2 −51.6 −51.5 −40.8 −40.8 −39.8
24 −41.6 −39.1 −40.0 −41.1 −39.0 −39.0 −36.8
25 −45.9 −43.5 −44.7 −45.4 −44.0 −44.0 −41.1
26 −36.4 −35.5 −35.6 −37.6 −33.7 −33.7 −33.0
27 −21.8 −21.5 −21.7 −24.1 −22.2 −22.2 −22.1
28 −36.3 −36.0 −36.2 −38.1 −33.9 −33.9 −33.5
29 −28.3 −28.9 −29.1 −29.7 −25.7 −25.7 −25.4
30 −14.9 −23.2 −23.2 −23.6 −12.4 −12.4 −12.2
31 −29.9 −28.0 −28.4 −29.3 −23.8 −23.8 −23.9
32 −1.9 −0.5 −0.3 0.0 1.4 1.4 1.4
33 −10.7 −10.5 −10.6 −10.0 −12.1 −12.1 −11.8
34 −25.6 −25.1 −25.1 −25.9 −22.1 −22.1 −21.7
35 −30.9 −29.1 −29.0 −30.3 −23.6 −23.6 −23.2
36 −39.8 −33.6 −33.2 −36.0 −29.8 −29.8 −29.6
37 −14.0 −29.7 −30.4 −28.1 −26.4 −26.4 −26.1
38 −64.4 −73.0 −73.0 −78.5 −59.1 −59.1 −57.4
39 −63.9 −56.7 −56.8 −52.8 −56.1 −56.1 −55.6
40 −65.8 −66.7 −66.5 −66.4 −65.0 −65.0 −64.7
41 −3.2 −1.3 −1.4 −4.3 −4.7 −4.7 −4.9

MD −0.6 −0.6 0.1 3.6 3.6 4.2
MAD 3.3 3.3 3.8 5.1 5.1 5.4
RMSD 4.8 4.9 5.4 6.4 6.4 6.8
SD 30.7 31.0 34.8 34.1 34.1 34.5
Var 23.6 24.1 30.3 29.1 29.1 29.7
Max 7.2 7.2 11.1 14.2 14.2 15.2
Min −15.7 −16.3 −14.2 −12.4 −12.4 −12.1
AMax 15.7 16.3 14.2 14.2 14.2 15.2
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Table A2.17.: Extendet statistical evaluations of : PBE and RPBE in kcalmol−1. We
abbreviate D3(BJ)-ATM by D3.

PBE RPBE
# Ref. D4-ATM D4-MBD D3 D4-ATM D4-MBD D3

1 −43.1 −46.7 −46.8 −46.6 −44.4 −44.4 −49.0
2 −46.6 −50.0 −50.0 −49.9 −47.3 −47.3 −51.6
3 −27.6 −31.5 −31.5 −31.3 −28.8 −28.8 −31.8
4 −62.5 −75.1 −75.2 −75.0 −74.0 −74.0 −76.4
5 3.7 −7.4 −7.4 −7.0 −7.2 −7.2 −8.6
6 −23.1 −20.4 −20.4 −19.6 −17.7 −17.7 −11.6
7 −16.2 −14.9 −14.8 −14.7 −12.1 −12.1 −4.3
8 −17.2 −14.4 −14.5 −13.7 −14.1 −14.1 −13.6
9 −18.8 −16.0 −15.9 −15.0 −15.3 −15.3 −10.5
10 −22.6 −24.5 −24.6 −23.9 −24.6 −24.6 −28.1
11 27.0 25.0 25.0 24.6 24.4 24.4 18.2
12 −29.8 −30.8 −30.7 −29.4 −30.8 −30.8 −26.0
13 −43.2 −45.2 −45.2 −44.7 −44.9 −44.9 −48.9
14 −52.0 −52.3 −52.5 −51.4 −51.2 −51.2 −55.5
15 −4.1 1.2 1.1 1.7 1.2 1.2 3.8
16 −39.8 −39.5 −39.9 −38.5 −40.5 −40.5 −42.2
17 −16.1 −14.4 −14.5 −11.7 −14.6 −14.6 −2.1
18 −34.2 −32.5 −32.6 −31.0 −36.0 −36.0 −44.7
19 −40.1 −36.3 −36.4 −34.6 −39.9 −39.9 −48.6
20 −30.2 −28.1 −28.1 −26.5 −32.2 −32.2 −38.0
21 −15.1 −20.4 −20.6 −18.0 −25.2 −25.2 −28.0
22 −35.9 −35.2 −35.4 −32.5 −38.5 −38.5 −48.8
23 −55.0 −50.2 −50.3 −48.5 −53.8 −53.8 −65.6
24 −41.6 −36.8 −37.6 −36.3 −38.1 −38.1 −47.5
25 −45.9 −41.4 −42.3 −40.4 −41.6 −41.6 −50.6
26 −36.4 −34.9 −35.1 −34.9 −35.6 −35.6 −41.8
27 −21.8 −21.9 −22.1 −22.0 −21.8 −21.8 −30.1
28 −36.3 −35.5 −35.7 −35.4 −36.3 −36.3 −44.2
29 −28.3 −27.7 −27.8 −27.4 −29.0 −29.0 −35.5
30 −14.9 −19.9 −20.1 −19.2 −23.6 −23.6 −28.7
31 −29.9 −26.6 −26.9 −26.6 −28.9 −28.9 −36.5
32 −1.9 0.9 0.9 1.5 −0.5 −0.5 −0.4
33 −10.7 −9.5 −9.6 −8.8 −10.1 −10.1 −5.2
34 −25.6 −23.8 −23.9 −23.3 −25.0 −25.0 −27.0
35 −30.9 −28.1 −28.2 −27.6 −29.2 −29.2 −34.1
36 −39.8 −32.8 −32.9 −32.8 −34.3 −34.3 −41.5
37 −14.0 −29.8 −30.0 −29.8 −30.3 −30.3 −31.1
38 −64.4 −68.5 −68.8 −70.0 −73.9 −73.9 −99.4
39 −63.9 −57.0 −57.2 −55.1 −58.6 −58.6 −68.8
40 −65.8 −68.4 −68.5 −68.1 −67.4 −67.4 −79.4
41 −3.2 −2.8 −2.9 −3.6 −1.1 −1.1 2.6

MD −0.1 −0.3 0.5 −0.9 −0.9 −4.7
MAD 3.5 3.4 3.9 3.4 3.4 8.3
RMSD 4.8 4.7 5.1 5.0 5.0 10.1
SD 30.5 30.4 32.4 31.4 31.4 57.5
Var 23.3 23.0 26.3 24.6 24.6 82.6
Max 7.0 6.9 8.8 5.5 5.5 14.0
Min −15.7 −16.0 −15.8 −16.2 −16.2 −35.0
AMax 15.7 16.0 15.8 16.2 16.2 35.0
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Statistical evaluation: SCONF

Table A2.18.: Reference values are calculated on a DLPNO-
CCSD(T)/TightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ) level of theory.
We follow the nomenclature of the GMTKN5557 database. We abbreviate
D3(BJ)-ATM by D3 and D4-ATM by D4.

DSDBLYP B3LYP PW6B95 PBE
# Ref. D4 D3 D4 D3 D4 D3 D4 D3

ANGOL15
C1–C2 0.9 0.9 0.9 0.8 0.8 0.9 0.9 0.8 0.8
C1–C3 2.3 2.2 2.2 2.5 2.6 2.5 2.5 3.2 3.2
C1–C4 3.1 3.1 3.1 3.2 3.3 3.3 3.3 3.9 3.9
C1–C5 4.6 4.5 4.5 4.5 4.4 4.7 4.7 5.1 5.1
C1–C6 4.9 4.8 4.8 4.7 4.7 5.1 5.1 5.4 5.4
C1–C7 4.2 4.2 4.2 4.6 4.5 4.3 4.2 5.3 5.3
C1–C8 4.4 4.3 4.3 4.7 4.5 4.4 4.3 5.3 5.2
C1–C9 6.2 6.2 6.1 6.2 6.0 6.4 6.3 6.8 6.6
C1–C10 6.2 6.1 6.1 6.3 6.1 6.5 6.4 7.1 6.9
C1–C11 5.7 5.6 5.6 5.9 5.7 5.8 5.7 6.5 6.4
C1–C12 5.6 5.6 5.6 6.0 5.8 5.8 5.7 6.7 6.6
C1–C13 5.9 5.8 5.8 6.0 5.7 6.7 6.5 6.8 6.7
C1–C14 6.3 6.3 6.3 6.4 6.2 6.5 6.4 6.8 6.7
C1–C15 6.2 6.3 6.2 6.5 6.0 6.2 6.0 6.8 6.5

GLC4
G1–G2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2
G1–G3 6.2 6.2 6.3 5.3 5.6 4.8 5.0 4.6 4.8
G1–G4 5.5 5.1 5.2 3.5 3.8 4.8 5.0 2.6 2.8

MD >0.1 >0.1 −0.1 −0.1 0.0 −0.0 0.3 0.3
MAD 0.1 0.1 0.3 0.3 0.3 0.2 0.9 0.8

RMSD 0.1 0.1 0.6 0.5 0.4 0.4 1.1 1.0
SD 0.5 0.4 2.4 1.9 1.8 1.6 4.3 3.9
Var 0.0 0.0 0.3 0.2 0.2 0.2 1.1 0.9
Max 0.1 0.1 0.4 0.3 0.7 0.6 1.2 1.1
Min −0.4 −0.4 −2.1 −1.7 −1.3 −1.2 −3.0 −2.7

AMax 0.4 0.4 2.1 1.7 1.3 1.2 3.0 2.7

Statistical evaluation: PCONF21

203



A2. Supporting Information to Chapter 2

Table A2.19.: The reference energies were generated on the DLPNO-
CCSD(T)/TightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ) level of theory
while the original geometries were kept. We follow the nomenclature
of the GMTKN5557 database. We abbreviate D3(BJ)-ATM by D3 and
D4-ATM by D4.

DSDBLYP B3LYP PW6B95 PBE
# Ref. D4 D3 D4 D3 D4 D3 D4 D3

Tripeptides
99–444 0.0 0.2 0.1 −0.3 −0.7 0.9 0.7 −2.2 −2.5
99–357 1.0 1.0 0.8 0.9 0.1 0.9 0.6 −1.0 −1.5
99–366 0.7 1.1 1.0 1.2 1.1 1.7 1.7 0.6 0.5
99–215 0.8 1.1 0.9 0.6 0.2 1.6 1.4 −1.2 −1.4
99–300 0.8 1.3 1.2 1.5 1.2 1.6 1.5 0.8 0.6
99–114 1.9 1.8 1.6 1.7 1.1 1.6 1.3 0.1 −0.3
99–412 2.2 2.2 2.1 2.0 1.9 2.1 2.1 1.4 1.4
99–691 1.6 1.9 1.8 1.9 1.8 2.3 2.3 1.1 1.1
99–470 1.9 2.0 1.9 2.3 1.7 2.6 2.3 1.4 1.0
99–224 2.1 1.8 1.7 1.2 1.0 2.9 2.8 −0.2 −0.4

GLY
GLY_ab–GLY_aR 1.1 1.1 1.2 0.9 1.3 1.2 1.4 1.3 1.6
GLY_ab–GLY_pII 1.2 1.5 1.5 1.8 1.9 2.2 2.3 2.3 2.4
GLY_ab–GLY_aL 2.4 2.5 2.7 2.4 3.0 2.2 2.5 2.8 3.2
GLY_ab–GLY_b 2.1 1.8 1.9 1.8 1.8 2.1 2.1 1.3 1.3

SER
SER_ab–SER_aR 1.5 1.6 1.6 1.6 1.9 1.6 1.7 2.0 2.2
SER_ab–SER_pII 2.8 3.1 3.2 3.2 3.5 3.6 3.7 3.9 4.0
SER_ab–SER_aL 2.3 2.7 2.8 2.6 3.2 1.8 2.1 3.4 3.7
SER_ab–SER_b 2.7 2.5 2.6 2.5 2.5 2.9 2.9 2.3 2.3

MD 0.1 0.1 0.0 0.0 0.4 0.3 −0.5 −0.5
MAD 0.2 0.2 0.3 0.5 0.5 0.5 1.0 1.2

RMSD 0.3 0.3 0.4 0.6 0.6 0.6 1.2 1.4
SD 1.0 1.2 1.7 2.6 2.0 2.0 4.8 5.7
Var 0.1 0.1 0.2 0.4 0.2 0.2 1.4 1.9
Max 0.5 0.6 0.7 0.9 1.0 1.0 1.1 1.5
Min −0.3 −0.4 −0.9 −1.1 −0.5 −0.6 −2.3 −2.5

AMax 0.5 0.6 0.9 1.1 1.0 1.0 2.3 2.5

Statistical evaluation: ICONF
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Table A2.20.: Reference energies are obtained with the W1–F12 protocol on TPSS-
D3(BJ)/def2-TZVP optimised geometries without spin–orbit and DBOC.
We follow the nomenclature of the GMTKN5557 database. We abbreviate
D3(BJ)-ATM by D3 and D4-ATM by D4.

DSDBLYP B3LYP PW6B95 PBE
# Ref. D4 D3 D4 D3 D4 D3 D4 D3

N3H5_1–N3H5_2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.2
N3H5_1–N3H5_3 5.3 5.3 5.4 5.2 5.3 5.2 5.2 5.6 5.6
N4H6_1–N4H6_2 0.1 0.5 0.5 0.6 0.6 0.8 0.9 0.4 0.4
N4H6_1–N4H6_3 2.3 2.7 2.7 3.0 3.1 3.2 3.2 3.0 3.0
N3P3H12_1–N3P3H12_2 12.2 12.5 12.5 12.2 12.3 12.2 12.2 11.9 11.9
Si5H12_1–Si5H12_2 0.1 -0.1 -0.0 0.1 0.2 -0.1 0.0 0.1 0.2
Si5H12_1–Si5H12_3 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9
Si5H12_1–Si5H12_4 3.5 3.7 3.7 3.3 3.3 3.5 3.4 3.1 3.1
Si6H12_1–Si6H12_2 1.7 1.8 1.8 1.7 1.5 1.4 1.4 1.6 1.4
P7H7_1–P7H7_2 1.4 1.6 1.6 1.6 1.6 1.5 1.6 1.2 1.2
S4O4_1–S4O4_2 4.4 4.5 4.5 4.2 4.3 3.8 3.9 5.0 5.0
S8_1–S8_2 9.2 9.1 9.1 9.4 9.1 9.1 9.2 10.3 10.0
H2S2O7_1–H2S2O7_2 0.6 0.5 0.5 0.6 0.6 0.6 0.6 0.5 0.4
H2S2O7_1–H2S2O7_3 3.5 3.2 3.2 3.1 3.2 3.6 3.6 3.1 3.2
H4P2O7_1–H4P2O7_2 1.3 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2
H4P2O7_1–H4P2O7_3 3.7 3.4 3.4 3.0 3.0 3.6 3.6 3.8 3.8
H4P2O7_1–H4P2O7_4 4.3 3.7 3.7 3.2 3.4 4.5 4.4 4.2 4.3

MD 0.0 0.0 −0.1 −0.1 0.0 0.0 0.1 0.1
MAD 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3

RMSD 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.4
SD 1.1 1.1 1.7 1.6 1.4 1.4 1.6 1.5
Var 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1
Max 0.4 0.4 0.7 0.8 0.8 0.9 1.1 0.8
Min −0.7 −0.6 −1.1 −1.0 −0.6 −0.5 −0.4 −0.4

AMax 0.7 0.6 1.1 1.0 0.8 0.9 1.1 0.8

Statistical evaluation: UPU23

205



A2. Supporting Information to Chapter 2

Table A2.21.: Reference values are obtained at the DLPNO-CCSD(T)/CBS*//TPSS-
D3(BJ)/def2-TZVP(COSMO) level of theory. We follow the nomencla-
ture of the GMTKN5557 database. We abbreviate D3(BJ)-ATM by D3
and D4-ATM by D4.

DSDBLYP B3LYP PW6B95 PBE
# Ref. D4 D3 D4 D3 D4 D3 D4 D3

2p–1a 4.9 5.4 5.5 5.6 6.0 6.0 6.1 5.5 5.7
2p–1b 3.0 3.7 3.8 3.6 4.1 4.2 4.3 4.0 4.2
2p–1c 8.9 9.4 9.6 9.7 10.1 10.4 10.6 9.6 9.8
2p–1g 2.2 2.6 2.6 2.7 2.7 3.2 3.2 2.9 2.9
2p–1p 2.0 2.7 2.8 2.4 2.7 3.0 3.0 2.5 2.6
2p–2a 3.1 3.0 3.0 3.5 3.5 2.9 2.9 3.1 3.1
2p–5z 0.6 0.2 0.4 -0.3 0.1 0.9 0.9 0.8 1.0
2p–6p 3.3 3.2 3.2 3.1 3.2 3.0 3.1 2.9 2.9
2p–7a 7.3 8.4 8.4 8.8 8.8 8.4 8.4 8.9 8.9
2p–aa 4.0 4.4 4.4 4.8 4.9 4.2 4.2 5.0 5.2
2p–1e 11.1 11.8 11.8 11.8 12.0 12.2 12.3 11.7 11.9
2p–0a 4.8 5.9 6.0 6.0 6.2 5.7 5.8 5.6 5.7
2p–1f 14.4 14.1 14.1 14.3 14.4 14.1 14.2 13.8 13.9
2p–9a 5.2 5.5 5.5 5.8 5.7 5.5 5.4 5.7 5.7
2p–4b 5.5 5.6 5.6 5.5 5.6 5.7 5.7 5.3 5.4
2p–3a 6.8 7.2 7.2 7.3 7.3 7.6 7.6 6.7 6.7
2p–7p 3.9 3.7 3.7 3.6 3.6 3.5 3.5 3.5 3.5
2p–8d 6.4 6.4 6.5 6.7 6.8 6.4 6.5 6.5 6.6
2p–3d 5.4 5.5 5.5 5.7 5.8 5.7 5.8 5.6 5.7
2p–0b 6.7 6.5 6.5 6.1 6.2 6.3 6.3 5.9 6.0
2p–1m 5.6 6.8 6.8 6.7 6.7 6.7 6.7 5.9 5.9
2p–2h 10.4 10.9 10.9 11.5 11.4 10.7 10.8 10.4 10.4
2p–3b 6.1 6.5 6.5 6.4 6.4 6.6 6.6 6.2 6.2

MD 0.3 0.4 0.4 0.6 0.5 0.5 0.3 0.4
MAD 0.4 0.5 0.6 0.7 0.6 0.7 0.5 0.6

RMSD 0.6 0.6 0.7 0.8 0.8 0.8 0.6 0.7
SD 2.1 2.2 2.7 2.8 2.8 2.9 2.8 2.9
Var 0.2 0.2 0.3 0.3 0.4 0.4 0.3 0.4
Max 1.2 1.2 1.5 1.6 1.5 1.7 1.6 1.7
Min −0.3 −0.3 −0.9 −0.5 −0.4 −0.4 −0.8 −0.8

AMax 1.2 1.2 1.5 1.6 1.5 1.7 1.6 1.7

Statistical evaluation: ROT34
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Table A2.22.: Statistical data for the results of the ROT34 test set for three DFAs using
the def2–QZVP basis set. Anharmonic corrections have been performed
at the HF/DZ level of theory as described in the literature220. All values
are given in MHz. We abbreviate D3(BJ)-ATM by D3 and D4-ATM by
D4.

PBE0 PBE TPSS
# rot. const Ref. D3 D4 D3 D4 D3 D4

A 4293.9 4299.8 4298.1 4240.8 4238.8 4235.9 4235.8
1 B 1395.9 1400.7 1400.7 1383.9 1382.9 1384.5 1384.1

C 1130.2 1133.1 1132.9 1119.3 1118.3 1119.5 1119.1
A 3322.5 3309.3 3307.7 3247.0 3247.8 3239.0 3240.4

2 B 719.8 718.8 719.0 707.2 707.5 709.5 709.4
C 698.0 697.0 697.2 686.0 686.0 687.7 687.6
A 3071.1 3071.9 3071.3 3023.0 3022.8 3021.0 3022.3

3 B 1285.0 1289.9 1290.4 1271.9 1270.9 1271.1 1270.2
C 1248.7 1249.0 1249.3 1232.4 1231.7 1231.0 1230.7
A 2755.9 2765.6 2765.8 2731.3 2731.7 2729.3 2730.3

4 B 2675.6 2689.5 2689.3 2652.4 2652.1 2653.3 2653.1
C 2653.3 2666.5 2666.8 2631.5 2631.8 2633.1 2634.1

5 A 2336.9 2339.1 2339.9 2307.0 2306.5 2306.0 2307.1
A 1464.2 1471.0 1471.1 1440.0 1439.7 1439.1 1439.9

6 B 768.2 767.6 768.3 756.4 757.1 762.1 763.0
C 580.6 580.9 581.4 572.3 572.7 576.1 576.8
A 1165.7 1170.2 1170.4 1152.1 1153.5 1154.6 1155.9

7 B 661.2 660.6 661.3 653.3 653.8 654.0 654.6
C 454.0 454.6 454.9 448.9 449.4 449.6 450.2
A 1166.3 1167.7 1168.3 1147.9 1148.4 1153.1 1155.3

8 B 767.6 766.4 767.0 752.7 753.0 754.3 755.0
C 513.0 512.5 512.9 504.3 504.5 505.6 506.4
A 862.5 865.9 866.0 852.4 852.4 853.2 853.8

9 B 754.2 752.8 752.8 741.8 741.7 742.6 742.9
C 513.7 513.6 513.7 505.7 505.6 506.5 506.8
A 3086.2 3101.0 3100.5 3060.2 3059.9 3061.3 3061.6

10 B 723.7 725.3 725.2 716.2 715.9 715.8 716.0
C 685.0 686.7 686.6 678.0 677.8 677.7 677.9
A 1432.1 1436.0 1435.5 1416.5 1416.5 1418.6 1418.9

11 B 820.5 822.8 822.9 810.9 811.4 812.1 813.3
C 679.4 683.0 682.9 674.1 675.0 675.4 676.1
A 1523.2 1523.3 1521.2 1496.3 1495.8 1497.2 1497.4

12 B 1070.5 1075.0 1076.0 1059.8 1060.6 1060.9 1061.9
C 719.9 721.1 721.5 709.3 709.7 711.0 711.9

MD 2.6 2.7 −18.1 −18.1 −17.6 −17.0
MAD 3.8 3.9 18.1 18.1 17.6 17.0

RMSD 5.7 5.8 23.3 23.4 24.1 23.7
SD 29.4 30.0 85.5 86.5 96.5 95.9
Var 26.1 27.3 221.8 226.5 282.2 278.9
Max 14.8 14.3 −5.1 −4.4 −4.0 −3.3
Min −13.2 −14.8 −75.5 −74.7 −83.5 −82.1

AMax 14.8 14.8 75.5 74.7 83.5 82.1
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Table A2.23.: Statistical data for the results of the ROT34 test set for three DFAs using
the def2–QZVP basis set. Anharmonic corrections have been performed
at the HF/DZ level of theory as described in the literature220. All values
are given in MHz. We abbreviate D3(BJ)-ATM by D3 and D4(TB)-ATM
by D4.

PBE0 PBE TPSS
# rot. const Ref. D3 D4 D3 D4 D3 D4

A 4293.9 4299.8 4300.5 4240.8 4239.3 4235.9 4239.0
1 B 1395.9 1400.7 1400.3 1383.9 1383.6 1384.5 1384.9

C 1130.2 1133.1 1132.8 1119.3 1118.8 1119.5 1119.9

A 3322.5 3309.3 3308.4 3247.0 3247.9 3239.0 3243.4
2 B 719.8 718.8 718.9 707.2 708.0 709.5 710.5

C 698.0 697.0 697.1 686.0 686.3 687.7 688.3

A 3071.1 3071.9 3072.6 3023.0 3023.1 3021.0 3024.1
3 B 1285.0 1289.9 1290.0 1271.9 1271.9 1271.1 1272.3

C 1248.7 1249.0 1248.8 1232.4 1232.0 1231.0 1231.8

A 2755.9 2765.6 2766.1 2731.3 2732.3 2729.3 2732.0
4 B 2675.6 2689.5 2689.8 2652.4 2652.8 2653.3 2654.7

C 2653.3 2666.5 2667.2 2631.5 2632.2 2633.1 2635.1

5 A 2336.9 2339.1 2339.1 2307.0 2307.1 2306.0 2308.6

A 1464.2 1471.0 1471.4 1440.0 1440.2 1439.1 1440.7
6 B 768.2 767.6 768.5 756.4 757.3 762.1 764.5

C 580.6 580.9 581.5 572.3 572.8 576.1 577.9

A 1165.7 1170.2 1170.1 1152.1 1153.4 1154.6 1156.2
7 B 661.2 660.6 661.0 653.3 653.8 654.0 654.7

C 454.0 454.6 454.8 448.9 449.4 449.6 450.2

A 1166.3 1167.7 1168.3 1147.9 1149.6 1153.1 1158.8
8 B 767.6 766.4 766.9 752.7 753.3 754.3 755.8

C 513.0 512.5 512.8 504.3 504.8 505.6 507.2

A 862.5 865.9 866.0 852.4 852.6 853.2 854.7
9 B 754.2 752.8 752.8 741.8 741.9 742.6 743.6

C 513.7 513.6 513.7 505.7 505.8 506.5 507.3

A 3086.2 3101.0 3100.8 3060.2 3060.5 3061.3 3063.5
10 B 723.7 725.3 725.3 716.2 716.1 715.8 716.6

C 685.0 686.7 686.6 678.0 677.9 677.7 678.5

A 1432.1 1436.0 1435.6 1416.5 1416.4 1418.6 1421.2
11 B 820.5 822.8 822.6 810.9 810.9 812.1 813.2

C 679.4 683.0 682.7 674.1 674.1 675.4 676.3

A 1523.2 1523.3 1520.1 1496.3 1495.5 1497.2 1499.0
12 B 1070.5 1075.0 1076.4 1059.8 1060.6 1060.9 1062.5

C 719.9 721.1 721.5 709.3 710.1 711.0 712.7

MD 2.6 2.7 −18.1 −17.8 −17.6 −15.8
MAD 3.8 4.0 18.1 17.8 17.6 15.8

RMSD 5.7 5.9 23.3 23.1 24.1 22.4
SD 29.4 30.6 85.5 86.0 96.5 92.7
Var 26.1 28.3 221.8 224.3 282.2 260.3
Max 14.8 14.6 −5.1 −4.6 −4.0 −2.7
Min −13.2 −14.1 −75.5 −74.6 −83.5 −79.1

AMax 14.8 14.6 75.5 74.6 83.5 79.1
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Statistical evaluation: LMGB35

Table A2.24.: The LMGB35 benchnmark set contains of systems from the first and
second row of the periodic system. All bond lengths are given in pm.
Reference distances are taken from Ref. 460. We abbreviate D3(BJ)-
ATM by D3 and D4-ATM by D4.

PBE0 PBE TPSS
system(bond) Ref. D3 D4 D3 D4 D3 D4

H2(H–H) 74.1 74.5 74.4 75.0 75.0 74.3 74.2
HF(H–F) 91.7 91.8 91.7 93.0 93.0 92.9 92.9
H2O(H—O) 95.7 95.7 95.7 96.9 96.9 96.7 96.7
HOF(O—H) 96.6 96.6 96.6 97.9 97.9 97.7 97.7
OH(O–H) 97.0 97.0 97.0 98.3 98.3 98.2 98.1
NH3(N–H) 101.2 101.1 101.1 102.1 102.1 101.9 101.8
OH+(O–H) 102.9 103.2 103.2 104.7 104.7 104.0 103.9
NH(N–H) 103.6 103.7 103.7 105.0 104.9 104.4 104.4
C2H2(C–H) 106.2 106.4 106.4 107.0 107.0 106.5 106.5
NO+(N–O) 106.3 105.3 105.3 106.9 106.9 106.6 106.6
HCN(H–C) 106.5 106.8 106.8 107.5 107.5 107.0 107.0
NH+(N–H) 107.0 107.6 107.6 109.1 109.1 108.3 108.3
C2H4(C–H) 108.1 108.3 108.3 109.1 109.1 108.6 108.6
CH4(C—H) 108.6 108.8 108.8 109.5 109.5 109.1 109.1
N2(N–N) 109.8 108.9 108.9 110.2 110.2 109.9 109.9
CH2O(O–H) 109.9 110.7 110.7 111.7 111.7 111.0 111.0
N+

2 (N–N) 111.6 110.1 110.1 111.4 111.4 111.2 111.2
O+

2 (O–O) 111.6 109.8 109.8 112.1 112.1 112.0 112.0
CH(C–H) 112.0 112.4 112.4 113.6 113.6 112.9 112.9
CO(C–O) 112.8 112.2 112.2 113.5 113.5 113.3 113.3
HCN(C–N) 115.3 114.5 114.5 115.7 115.7 115.4 115.4
CO2(C–O) 116.0 115.6 115.6 117.0 117.0 116.8 116.8
C2H2(C–C) 120.3 119.6 119.6 120.6 120.6 120.2 120.2
CH2O(C–O) 120.3 119.5 119.5 120.8 120.8 120.7 120.7
BO(B–O) 120.5 119.9 119.9 121.3 121.3 121.2 121.2
O2(O–O) 120.8 119.2 119.2 121.8 121.8 121.9 121.9
BH(B–H) 123.2 124.0 124.0 125.1 125.1 123.6 123.6
BF(B–F) 126.3 125.9 125.9 127.3 127.3 127.3 127.3
CF(C–F) 127.2 126.7 126.7 128.5 128.5 128.9 128.9
NF(N–F) 131.7 130.3 130.3 132.7 132.7 133.3 133.3
F+

2 (F–F) 132.2 127.2 127.3 131.6 131.6 131.7 131.7
C2H4(C–C) 133.4 132.2 132.2 133.2 133.2 133.0 133.0
F2(F–F) 141.2 137.5 137.6 141.4 141.4 141.6 141.6
HOF(O–F) 143.5 140.5 140.6 144.5 144.5 145.0 145.0
B2(B–B) 159.0 161.3 161.3 161.8 161.8 161.9 161.9

MD −0.5 −0.6 1.0 1.0 0.7 0.7
MAD 0.9 0.9 1.0 1.0 0.8 0.8

RMSD 1.4 1.4 1.2 1.2 1.0 1.0
SD 7.8 7.7 4.0 3.9 3.9 3.9
Var 1.8 1.7 0.5 0.5 0.5 0.5
Max 2.3 2.3 2.8 2.8 2.9 2.9
Min −5.0 −4.9 −0.6 −0.6 −0.5 −0.5

AMax 5.0 4.9 2.8 2.8 2.9 2.9
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Table A2.25.: The LMGB35 benchnmark set contains of systems from the first and
second row of the periodic system. All bond lengths are given in pm.
Reference distances are taken from Ref.460. We abbreviate D3(BJ)-ATM
by D3 and D4(TB)-ATM by D4.

PBE0 PBE TPSS
system(bond) Ref. D3 D4 D3 D4 D3 D4

H2(H–H) 74.1 74.5 74.4 75.0 74.2 74.3 74.2
HF(H–F) 91.7 91.8 91.7 93.0 92.9 92.9 92.9
H2O(H—O) 95.7 95.7 95.7 96.9 96.7 96.7 96.7
HOF(O—H) 96.6 96.6 96.6 97.9 97.7 97.7 97.7
OH(O–H) 97.0 97.0 97.0 98.3 98.1 98.2 98.1
NH3(N–H) 101.2 101.1 101.1 102.1 101.9 101.9 101.9
OH+(O–H) 102.9 103.2 103.2 104.7 103.9 104.0 103.9
NH(N–H) 103.6 103.7 103.7 105.0 104.4 104.4 104.4
C2H2(C–H) 106.2 106.4 106.4 107.0 106.5 106.5 106.5
NO+(N–O) 106.3 105.3 105.3 106.9 106.6 106.6 106.6
HCN(H–C) 106.5 106.8 106.8 107.5 107.0 107.0 107.0
NH+(N–H) 107.0 107.6 107.6 109.1 108.3 108.3 108.3
C2H4(C–H) 108.1 108.3 108.3 109.1 108.6 108.6 108.6
CH4(C—H) 108.6 108.8 108.8 109.5 109.1 109.1 109.1
N2(N–N) 109.8 108.9 108.9 110.2 109.9 109.9 109.9
CH2O(O–H) 109.9 110.7 110.7 111.7 111.0 111.0 111.0
N+

2 (N–N) 111.6 110.1 110.1 111.4 111.2 111.2 111.2
O+

2 (O–O) 111.6 109.8 109.8 112.1 112.0 112.0 112.0
CH(C–H) 112.0 112.4 112.4 113.6 112.9 112.9 112.9
CO(C–O) 112.8 112.2 112.2 113.5 113.3 113.3 113.3
HCN(C–N) 115.3 114.5 114.5 115.7 115.4 115.4 115.4
CO2(C–O) 116.0 115.6 115.6 117.0 116.8 116.8 116.8
C2H2(C–C) 120.3 119.6 119.6 120.6 120.2 120.2 120.2
CH2O(C–O) 120.3 119.5 119.5 120.8 120.7 120.7 120.7
BO(B–O) 120.5 119.9 119.9 121.3 121.2 121.2 121.2
O2(O–O) 120.8 119.2 119.2 121.8 121.9 121.9 121.9
BH(B–H) 123.2 124.0 124.0 125.1 123.6 123.6 123.6
BF(B–F) 126.3 125.9 125.9 127.3 127.3 127.3 127.3
CF(C–F) 127.2 126.7 126.7 128.5 128.9 128.9 128.9
NF(N–F) 131.7 130.3 130.3 132.7 133.3 133.3 133.3
F+

2 (F–F) 132.2 127.2 127.3 131.6 131.7 131.7 131.7
C2H4(C–C) 133.4 132.2 132.2 133.2 133.0 133.0 133.0
F2(F–F) 141.2 137.5 137.6 141.4 141.6 141.6 141.6
HOF(O–F) 143.5 140.5 140.6 144.5 145.0 145.0 145.0
B2(B–B) 159.0 161.3 161.3 161.8 161.9 161.9 161.9

MD −0.5 −0.6 1.0 0.7 0.7 0.7
MAD 0.9 0.9 1.0 0.8 0.8 0.8

RMSD 1.4 1.4 1.2 1.0 1.0 1.0
SD 7.8 7.7 4.0 3.9 3.9 3.9
Var 1.8 1.7 0.5 0.5 0.5 0.5
Max 2.3 2.3 2.8 2.9 2.9 2.9
Min −5.0 −4.9 −0.6 −0.5 −0.5 −0.5

AMax 5.0 4.9 2.8 2.9 2.9 2.9

Statistical evaluation: HMGB11
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Table A2.26.: Experimental reference bond distances for 11 molecules from Ref. 243
containing third–row or higher main group elements. All distances are
given in pm. We abbreviate D3(BJ)-ATM by D3 and D4-ATM by D4.

PBE0 PBE TPSS
system(bond) Ref. D3 D4 D3 D4 D3 D4

Cl2(Cl–Cl) 198.8 197.9 197.9 200.4 200.5 200.8 200.8
S2H2(S–S) 205.5 204.4 204.4 206.3 206.3 206.4 206.4
P2(CH3)4(P–P) 221.2 219.2 219.2 221.3 221.4 220.9 221.0
Br2(Br–Br) 228.1 227.8 227.8 230.8 230.8 230.5 230.5
Se2H2(Se–Se) 234.6 232.4 232.4 235.0 235.0 234.4 234.4
Ge2H6(Ge–Ge) 241.0 242.1 242.1 243.3 243.3 242.5 242.5
As2(CH3)4(As–As) 242.9 243.8 243.8 247.3 247.2 246.1 246.1
Te2(CH3)2(Te–Te) 268.6 267.3 267.3 269.7 269.6 268.5 269.1
Sn2(CH3)6(Sn–Sn) 277.6 277.7 278.0 279.6 280.1 278.4 278.9
Sb2(CH3)4(Sb–Sb) 281.8 282.5 282.6 286.2 286.1 284.9 285.0
Pb2(CH3)6(Pb–Pb) 288.0 287.1 287.2 292.0 291.9 289.8 290.3

MD −0.5 −0.5 2.2 2.2 1.4 1.5
MAD 1.0 1.1 2.2 2.2 1.5 1.6

RMSD 1.2 1.2 2.6 2.6 1.8 1.9
SD 3.6 3.6 4.9 4.8 4.0 3.8
Var 1.3 1.3 2.4 2.3 1.6 1.5
Max 1.1 1.1 4.4 4.3 3.2 3.2
Min −2.2 −2.2 0.1 0.2 −0.3 −0.2

AMax 2.2 2.2 4.4 4.3 3.2 3.2

Table A2.27.: Experimental reference bond distances for 11 molecules from Ref. 243
containing third–row or higher main group elements. All distances are
given in pm. We abbreviate D3(BJ)-ATM by D3 and D4(TB)-ATM by
D4.

PBE0 PBE TPSS
system(bond) Ref. D3 D4 D3 D4 D3 D4

Cl2(Cl–Cl) 198.8 197.9 197.9 200.4 200.5 200.8 200.8
S2H2(S–S) 205.5 204.4 204.4 206.3 206.4 206.4 206.4
P2(CH3)4(P–P) 221.2 219.2 219.2 221.3 221.7 220.9 221.3
Br2(Br–Br) 228.1 227.8 227.8 230.8 230.8 230.5 230.6
Se2H2(Se–Se) 234.6 232.4 232.4 235.0 235.0 234.4 234.5
Ge2H6(Ge–Ge) 241.0 242.1 242.1 243.3 243.3 242.5 242.6
As2(CH3)4(As–As) 242.9 243.8 243.8 247.3 247.4 246.1 246.3
Te2(CH3)2(Te–Te) 268.6 267.3 267.3 269.7 269.8 268.5 269.2
Sn2(CH3)6(Sn–Sn) 277.6 277.7 278.0 279.6 280.7 278.4 279.3
Sb2(CH3)4(Sb–Sb) 281.8 282.5 282.6 286.2 286.8 284.9 285.5
Pb2(CH3)6(Pb–Pb) 288.0 287.1 287.2 292.0 292.7 289.8 291.0

MD −0.5 −0.5 2.2 2.4 1.4 1.8
MAD 1.0 1.1 2.2 2.4 1.5 1.8

RMSD 1.2 1.2 2.6 2.9 1.8 2.1
SD 3.6 3.6 4.9 5.3 4.0 4.1
Var 1.3 1.3 2.4 2.9 1.6 1.7
Max 1.1 1.1 4.4 5.0 3.2 3.7
Min −2.2 −2.2 0.1 0.4 −0.3 −0.1

AMax 2.2 2.2 4.4 5.0 3.2 3.7

Statistical evaluation: TMC32
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Table A2.28.: Diverse set of 32 metal complexes from the first transition row, for which
precise gas- phase geometries are known from electron diffraction or mi-
crowave spectroscopy. Compilation by Bühl et al.294. We abbreviate
D3(BJ)-ATM by D3 and D4-ATM by D4.

PBE0 PBE TPSS
system(bond) Ref. D3 D4 D3 D4 D3 D4

Sc(acac)3(Sc–O) 207.6 209.0 208.8 210.4 210.3 210.0 209.8
TiCl4(Ti–Cl) 216.9 216.4 216.4 218.3 218.2 218.3 218.3
Ti(CH3)Cl3(Ti–C) 204.7 202.3 202.3 204.5 204.7 205.3 205.3
Ti(CH3)Cl3(Ti–Cl) 218.5 218.0 217.9 219.3 219.2 219.5 219.4
Ti(CH3)2Cl2(Ti–C) 205.8 203.5 203.6 205.5 205.5 206.3 206.3
Ti(CH3)2Cl2(Ti–Cl) 219.6 219.6 219.6 220.5 220.4 220.7 220.6
Ti(BD4)3(Ti–B) 217.5 214.3 214.3 214.7 214.6 214.9 214.8
Ti(BD4)3(Ti–Dbr) 198.4 193.4 193.5 193.7 193.7 193.2 193.1
VOF3(V=O) 157.0 154.1 154.1 157.5 157.5 157.6 157.5
VOF3(V–F) 172.9 171.6 171.6 173.7 173.7 173.4 173.4
VF5(V–Fax) 173.4 173.5 173.5 176.4 176.4 175.9 175.9
VF5(V–Feq) 170.8 169.9 169.9 172.7 172.6 172.3 172.3
VOCl3(V=O) 157.3 153.9 153.9 157.2 157.2 157.3 157.3
VOCl3(V–Cl) 213.8 213.0 213.0 215.0 214.9 214.9 214.9
V(N(CH3)2)4(V–N) 187.9 186.1 186.1 188.2 188.1 188.1 187.9
V(Cp)(CO)4(V–CCO) 196.3 192.3 192.3 192.7 192.7 194.4 194.3
CrO2F2(Cr=O) 157.4 153.7 153.6 157.1 157.1 157.0 157.0
CrO2F2(Cr–F) 171.9 170.2 170.2 172.4 172.3 172.0 172.0
CrO2Cl2(Cr=O) 157.7 153.8 153.8 157.2 157.2 157.2 157.1
CrO2Cl2(Cr–Cl) 212.2 210.6 210.6 212.4 212.4 212.4 212.3
CrO2(NO3)2(Cr=O) 158.4 153.8 153.8 157.4 157.4 157.4 157.4
CrO2(NO3)2(Cr–O) 195.4 191.0 191.0 193.2 193.2 193.0 192.9
Cr(C6H6)2(Cr–C) 215.0 213.0 212.9 213.8 213.7 213.6 213.5
Cr(C6H6)(CO)3(Cr–CAr) 220.8 219.1 219.2 221.0 221.1 220.2 220.2
Cr(C6H6)(CO)3(Cr–CCO) 186.3 183.8 183.8 183.9 183.9 185.2 185.0
Cr(NO)4(Cr–N) 175.0 171.5 171.5 174.1 174.1 174.1 174.0
MnO3F(Mn=O) 158.6 154.2 154.2 159.2 157.7 157.6 157.6
MnO3F(Mn–F) 172.4 170.1 170.1 171.0 172.0 171.6 171.6
MnCp(CO)3(Mn–CCp) 214.7 213.7 213.7 215.2 215.1 214.3 214.2
MnCp(CO)3(Mn–CCO) 180.6 178.3 178.3 178.4 178.3 179.4 179.3
Fe(CO)5(Fe–C)mean 182.9 179.7 179.7 180.2 180.1 181.0 180.9
Fe(CO)3(tmm)(Fe–CCO) 181.0 177.9 177.9 178.0 178.0 178.8 178.8
Fe(CO)3(tmm)(Fe–Ccent) 193.8 192.2 192.2 194.6 194.6 194.3 194.3
Fe(CO)3(tmm)(Fe–CCH2 ) 212.3 209.8 209.9 213.1 213.2 212.0 212.2
Fe(CO)2(NO)2(Fe–C)mean 187.2 180.8 180.8 181.5 181.3 182.3 182.2
Fe(CO)2(NO)2(Fe–N) 167.4 164.1 164.1 167.1 167.0 166.9 166.9
FeCp2(Fe–C) 206.4 204.2 204.2 204.0 204.1 203.7 203.5
Fe(C2H4)(CO)4(Fe–Cet) 211.7 209.7 216.2 213.0 216.7 212.3 216.7
Fe(C2H4)(CO)4(Fe–Cax) 181.5 180.0 180.1 179.9 179.9 180.7 180.7
Fe(C2H4)(CO)4(Fe–Ceq) 180.6 178.1 177.8 178.9 178.7 179.6 179.3
Fe(C5(CH3)5)(P5)(Fe–P) 237.7 235.7 235.7 236.3 236.1 234.9 234.7
CoH(CO)4(Co–Ceq) 181.8 178.4 178.4 179.0 179.0 179.5 179.5
Co(CO)3(NO)(Co–N) 165.8 162.9 162.9 166.1 166.1 165.8 165.8
Co(CO)3(NO)(Co–C) 183.0 180.1 180.1 180.5 180.4 181.1 181.0
Ni(CO)4(Ni–C) 182.5 182.1 182.0 182.3 182.2 182.7 182.6
Ni(acac)2(Ni–O) 187.6 185.1 184.3 185.8 185.3 185.4 184.6
Ni(PF3)4(Ni–P) 209.9 209.0 208.8 210.6 210.3 210.0 209.5
CuCH3(Cu–C) 188.4 190.1 190.1 189.3 189.4 189.6 189.6
CuCN(Cu–C) 183.2 184.3 184.3 182.0 182.0 182.3 182.3
Cu(acac)2(Cu–O) 191.4 191.9 191.8 194.3 194.2 193.2 193.1

MD −2.1 −2.0 −0.6 −0.5 −0.6 −0.5
MAD 2.3 2.4 1.5 1.6 1.3 1.4

RMSD 2.7 2.8 1.9 2.1 1.7 1.9
SD 11.6 13.3 13.0 14.0 11.3 12.8
Var 2.7 3.6 3.5 4.0 2.6 3.3
Max 1.7 4.5 3.0 5.0 2.5 5.0
Min −6.4 −6.4 −5.7 −5.9 −5.2 −5.3

AMax 6.4 6.4 5.7 5.9 5.2 5.3
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Table A2.29.: Diverse set of 32 metal complexes from the first transition row, for which
precise gas- phase geometries are known from electron diffraction or mi-
crowave spectroscopy. Compilation by Bühl et al.294. We abbreviate
D3(BJ)-ATM by D3 and D4(TB)-ATM by D4.

PBE0 PBE TPSS
system(bond) Ref. D3 D4 D3 D4 D3 D4

Sc(acac)3(Sc–O) 207.6 209.0 208.9 210.4 210.3 210.0 209.8
TiCl4(Ti–Cl) 216.9 216.4 216.4 218.3 218.2 218.3 218.3
Ti(CH3)Cl3(Ti–C) 204.7 202.3 202.3 204.5 204.5 205.3 205.4
Ti(CH3)Cl3(Ti–Cl) 218.5 218.0 217.9 219.3 219.3 219.5 219.5
Ti(CH3)2Cl2(Ti–C) 205.8 203.5 203.6 205.5 205.5 206.3 206.4
Ti(CH3)2Cl2(Ti–Cl) 219.6 219.6 219.5 220.5 220.5 220.7 220.7
Ti(BD4)3(Ti–B) 217.5 214.3 214.3 214.7 214.6 214.9 214.8
Ti(BD4)3(Ti–Dbr) 198.4 193.4 193.4 193.7 193.7 193.2 193.1
VOF3(V=O) 157.0 154.1 154.1 157.5 157.5 157.6 157.5
VOF3(V–F) 172.9 171.6 171.6 173.7 173.7 173.4 173.4
VF5(V–Fax) 173.4 173.5 173.5 176.4 176.4 175.9 175.9
VF5(V–Feq) 170.8 169.9 169.8 172.7 172.6 172.3 172.4
VOCl3(V=O) 157.3 153.9 153.9 157.2 157.2 157.3 157.3
VOCl3(V–Cl) 213.8 213.0 213.0 215.0 214.9 214.9 214.9
V(N(CH3)2)4(V–N) 187.9 186.1 186.2 188.2 188.1 188.1 188.0
V(Cp)(CO)4(V–CCO) 196.3 192.3 192.3 192.7 192.7 194.4 194.3
CrO2F2(Cr=O) 157.4 153.7 153.7 157.1 157.1 157.0 157.0
CrO2F2(Cr–F) 171.9 170.2 170.2 172.4 172.4 172.0 172.0
CrO2Cl2(Cr=O) 157.7 153.8 153.8 157.2 157.2 157.2 157.2
CrO2Cl2(Cr–Cl) 212.2 210.6 210.6 212.4 212.4 212.4 212.4
CrO2(NO3)2(Cr=O) 158.4 153.8 153.8 157.4 157.4 157.4 157.4
CrO2(NO3)2(Cr–O) 195.4 191.0 191.0 193.2 193.2 193.0 192.9
Cr(C6H6)2(Cr–C) 215.0 213.0 213.0 213.8 213.7 213.6 213.6
Cr(C6H6)(CO)3(Cr–CAr) 220.8 219.1 219.2 221.0 221.1 220.2 220.3
Cr(C6H6)(CO)3(Cr–CCO) 186.3 183.8 183.8 183.9 183.9 185.2 185.1
Cr(NO)4(Cr–N) 175.0 171.5 171.5 174.1 174.1 174.1 174.1
MnO3F(Mn=O) 158.6 154.2 154.2 159.2 157.7 157.6 157.6
MnO3F(Mn–F) 172.4 170.1 170.1 171.0 172.0 171.6 171.6
MnCp(CO)3(Mn–CCp) 214.7 213.7 213.7 215.2 215.1 214.3 214.3
MnCp(CO)3(Mn–CCO) 180.6 178.3 178.3 178.4 178.4 179.4 179.4
Fe(CO)5(Fe–C)mean 182.9 179.7 179.7 180.2 180.2 181.0 181.0
Fe(CO)3(tmm)(Fe–CCO) 181.0 177.9 177.9 178.0 178.0 178.8 178.8
Fe(CO)3(tmm)(Fe–Ccent) 193.8 192.2 192.2 194.6 194.7 194.3 194.4
Fe(CO)3(tmm)(Fe–CCH2 ) 212.3 209.8 209.8 213.1 213.1 212.0 212.2
Fe(CO)2(NO)2(Fe–C)mean 187.2 180.8 180.7 181.5 181.4 182.3 182.3
Fe(CO)2(NO)2(Fe–N) 167.4 164.1 164.2 167.1 167.1 166.9 166.9
FeCp2(Fe–C) 206.4 204.2 204.2 204.0 204.1 203.7 203.6
Fe(C2H4)(CO)4(Fe–Cet) 211.7 209.7 209.9 213.0 213.1 212.3 212.6
Fe(C2H4)(CO)4(Fe–Cax) 181.5 180.0 180.0 179.9 179.9 180.7 180.7
Fe(C2H4)(CO)4(Fe–Ceq) 180.6 178.1 178.1 178.9 178.8 179.6 179.6
Fe(C5(CH3)5)(P5)(Fe–P) 237.7 235.7 244.7 236.3 236.2 234.9 234.8
CoH(CO)4(Co–Ceq) 181.8 178.4 178.4 179.0 179.0 179.5 179.5
Co(CO)3(NO)(Co–N) 165.8 162.9 162.9 166.1 166.1 165.8 165.8
Co(CO)3(NO)(Co–C) 183.0 180.1 180.1 180.5 180.5 181.1 181.1
Ni(CO)4(Ni–C) 182.5 182.1 182.0 182.3 182.3 182.7 182.7
Ni(acac)2(Ni–O) 187.6 185.1 184.3 185.8 185.3 185.4 184.6
Ni(PF3)4(Ni–P) 209.9 209.0 208.4 210.6 209.8 210.0 209.1
CuCH3(Cu–C) 188.4 190.1 190.1 189.3 189.4 189.6 189.6
CuCN(Cu–C) 183.2 184.3 184.3 182.0 182.0 182.3 182.3
Cu(acac)2(Cu–O) 191.4 191.9 191.8 194.3 194.2 193.2 193.1

MD −2.1 −2.0 −0.6 −0.6 −0.6 −0.6
MAD 2.3 2.5 1.5 1.5 1.3 1.3

RMSD 2.7 2.9 1.9 1.9 1.7 1.7
SD 11.6 14.7 13.0 12.9 11.3 11.5
Var 2.7 4.4 3.5 3.4 2.6 2.7
Max 1.7 7.0 3.0 3.0 2.5 2.5
Min −6.4 −6.5 −5.7 −5.8 −5.2 −5.3

AMax 6.4 7.0 5.7 5.8 5.2 5.3
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A3. Supporting Information to
Chapter 3

Appendix A3 contains:

• Periodic DFT-D4 methologies for ζ-function, CN definition, EEQ model, dispersion
energy

• Quasi-harmonic approximation (QHA) definition

• Technical details of reference polarizabilities

• Computational details for solid state volumes, QHA, timings, refractive indices, and
salt polarizabilities

A3.1. Appendix: Extension and Evaluation of the D4
London Dispersion Model for Periodic Systems

A3.1.1. Periodic DFT-D4 Methologies

Let us begin with a review of the theoretical framework of the D4 approach308

as this will provide the context for the introduction of the new features. The
underlying concept of D4 and its predecessors is to model the dispersion energy
based on atomic pairwise dispersion coefficients C jk6 , which are obtained from a
Casimir–Polder integration of the respective atomic polarizabilities αeff(iω)

C
jk
6 =

3
π

∞∫
0

dωαeffj (iω)αeffk (iω). (A3.1)

Note that atomic units are used throughout in this work. To account for the
influence of the chemical environment, the atomic polarizabilities used in the D4
model are not fixed at the values of the isolated atoms α(iω), but depend (i) on
geometric parameters captured by the atomic coordination number (CNj, as in
D3), as well as (ii) on effective atomic charges (zj, new in D4) obtained via an
electronegativity-equilibration (EEQ) scheme. The idea behind the introduction
of this charge scaling is to allow for a more “natural” behavior of the effective
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polarizabilities, i.e., to render atoms with negative partial charge more polarizable
and vice versa.
In practice, the geometry and charge dependence of the polarizabilities is imple-
mented using an interpolation based on a set of molecular reference systems. To
do this efficiently and avoid an interpolation in two dimensions, the atomic po-
larizabilities of all reference systems are, in a first step, rescaled to match the
effective charge of the atom under consideration of zj via

α ref
i (iω) = α ref

i (iω)ζ(z j, z refi ), (A3.2)

where ζ describes an empirical relation between the polarizability of an atom and
its effective charge. Its analytical form

ζ(z i, z refi ) = exp
(
β

{
1− exp

[
γi

(
1−

z refi
z i

)]})
, (A3.3)

with β as a global parameter set to 3 and γi as the chemical hardness taken from
Ref. 461 is discussed in more detail in Ref. 308. The calculation of the necessary
effective charges z done with an EEQ model is described in section. A3.1.2
In a second step, the effective polarizability of the atom j is obtained via interpo-
lation from the charge-scaled reference polarizabilities using a Gaussian weighting
based on the coordination number (CN)

αeffj (iω) =

N i, ref∑
i, ref=1

α ref
i (iω)W i, ref

j (CN i,refi ,CNj). (A3.4)

However, to use this CN-based approach in periodic systems, a different for-
mula for the CN is used compared to the molecular implementation to avoid
CN-divergences. The expression for the CN in periodic systems reads

CN i =∑
T

∑ ′

j

δENij
2

(
1+ erf

(
−k0

(
(R ij + T) − R cov

ij

R cov
ij

)))

δENij =
(
k1 exp

(
|EN i − EN j|+ k2

)2
)/
k3 ,

(A3.5)

where, T = t 1a1 + t 2a2 + t 3a3 denotes the translation vector with a1, a2, and a3

being the lattice vectors (t 1, t 2, and t 3 ∈ Z). The primed sum over j indicates
that the case i = j is omitted for T = 0. One of the central changes is the use of
Pauling electronegativities (EN),242 as well as the inter-nuclear distance R ij of the
pair ij, and the covalent atomic radii243 (R cov

ij = R cov
i +R cov

j ). Note that the CN
has become EN-dependent to differentiate between covalent and ionic bonding
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(e.g., differentiate F2 from HF). The parameters in equation A3.5 (k0 = 7.5,
k1 = 4.1, k2 = 19.09, and k3 = 254.56) were taken from Ref. 308.
This charge and geometry dependent calculation of atomic polarizabilities from
molecular reference systems, which may be described as an atom-in-molecule ap-
proach to polarizabilities, presumes the additivity of atomic polarizabilities,241

which is reflected in the following equation

α ref
i (iω) =

1
m

[
α ImXn(iω) −

n

l
αXl(iω)ζ(zX, z refX )

]
. (A3.6)

Here, αImXn(iω) is the molecular polarizability of one I-reference, αXl(iω) refers
to the homonuclear compound (e.g., αH2(iω) as dihydrogen) andm, n, and l are
the particular stochiometric coefficients. All I atoms inside the reference molecules
and the X atoms in the homonuclear compounds are electronically equal and thus
symmetry equivalent. By exploiting this symmetry equivalence, the approximation
of additive polarizabilities is justified. Furthermore, the charge scaling of all X
atoms in the respective reference system is directly incorporated.
This more general scheme has no disadvantaged compared to the hydrogenated
reference systems used in the D3 model. With it, any diatomic molecular polariz-
abilities, e.g., dihalide molecular polarizabilities (chlorine or fluorine) and oxygen
molecular polarizabilities can be used in the subtraction scheme of equation A3.6
as briefly discussed in Ref. 170. This generalization of the approach opens up the
possibility to provide specialized C6 dispersion coefficients, which will be exploited
here to properly describe interactions in ionic solids.

A3.1.2. Periodic Electronegativity Equilibration Model

For the generation of atomic partial charges q under periodic boundary conditions,
a classical geometry dependent EEQ charge model is developed in the present
work. For this purpose, a cyclic cluster model (CCM) is implemented which
applies periodic boundary conditions to a cluster that uses a non-primitive unit
cell of a solid, a surface, or an infinite chain by directly employing cyclic Born-
van-Kármán boundary conditions. The environment of each atom is replaced by a
notional cyclic arrangement of cluster atoms, where the interaction zone of each
atom within the cyclic cluster is described by a Wigner-Seitz cell, constructed by
the translation vectors of the unit cell and centered at the atom. The cluster
is constructed as a supercell of the primitive unit cell, so that a repetition of
this unit cell of N1, N2, and N3 cells along the lattice vectors a1, a2, and a3

leads to a total cell number of N = N1 · N2 · N3. In the CCM, the WSCs are
stoichiometrically and symmetrically constructed to ensure local electroneutrality.
This is guaranteed by the fact that each WSC central atom i is surrounded by
Ξ i neighbours j with an inverted partial charge. When setting up the cluster, the
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number of all neighbours of each WSC central atom is determined and weighting
factors w ij = 1/Ξ i for the respective neighbours are assigned, accordingly. Since
the CCM is a finite-size method, the clusters used can also carry a net charge
without running into convergence problems occurring within the employed Ewald
sums. In contrast to a supercell model, no summation over special k-points has
to be carried out. Instead, a discrete number of k-points is contained implicitly
by placing them equally distributed in space.

{k} =
3∏
j

g j

N j
b j with gj = 0, . . . ,N−1

j (A3.7)

Here, we introduce the reciprocal lattice vectors b. The periodic charge density
ρ(r) of the system is supposed to be a superposition of spherically symmetric
Gaussian functions centered at the atoms position, each normalized to the corre-
sponding nuclear charge qi given by the following expression

ρ i(r) =
∑

T

q i

a3
iπ

3/2 exp
(
−
|r − R i + T|2

a2
i

)
. (A3.8)

Here, the atomic van der Waals radii a i are introduced. By choosing such atomic
charge densities the total isotropic electrostatic (IES) energy is amenable by the
following expression given in matrix notation

E IES = q T
(
1
2A · q − X

)
. (A3.9)

The interaction matrix A contains all periodic Coulomb interactions, which are
developed in Ewald sums by splitting the Coulomb operator into short-range and
long-range contributions (Ewald splitting parameter ξ =

√
π/V1/3). Here, the

previously determined weighting factors wij (as obtained from the CCM) are
applied for all off-diagonal elements

A rec
ij =

4π
V

∑
k 6=0

cos
(
k · (R ij + T)

)
exp
{
−
k2

4ξ2

}
w ij

k2

A rec
ii =

4π
V

∑
k 6=0

exp
{
−
k2

4ξ2

}
1
k2

A dir
ij =

∑
T

(
erf(γ ij

∣∣R ij + T
∣∣)∣∣R ij + T

∣∣ −
erf(ξ

∣∣R ij + T
∣∣)∣∣R ij + T

∣∣

)
w ij

A dir
ii =

∑
T 6=0

erf(γii|T|)
|T| −

erf(ξ|T|)
|T|

A
self/back
ii = J ii +

2γ ii√
π

−
π

ξ2V
.

(A3.10)
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Furthermore, we define γ ij to be equal to
(
a2
i + a

2
j

)−1/2
. The Lagrangian is

constructed under the constraint that the sum of the atomic charges conserves
the total charge of the cluster, i.e.,

L = E IES + λ

(∑
k

qk − q cluster

)

with ∂L

∂q = 0 ∧
∂L

∂λ
=
∑
i

q i − q cluster = 0,
(A3.11)

which leads to a set of (N + 1) linear equations. The right-hand side (RHS) of
this set of equations is given by X i = −χ i, where χ i consists of the fitted atomic
electronegativity EN i which is shifted according to the following expression

χ i = EN i −Ω i. (A3.12)

The molecular EEQ model uses for this shift the square root of a modified error
function CN as described in Ref. 308. Since high coordination numbers can be
reached very quickly in a periodic system, artificial polarity reversals can occur. An
instructive example is displayed in figure A3.1, where the polarity between cations
and anions within the sodium chloride crystal is reversed (i.e., sodium formally
becomes anionic and chlorine cationic). This is an artifact of the definition of
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Figure A3.1.: Functional dependence on the sodium partial charge q(Na) with increasing
CN(Na) using the molecular EEQ model within the sodium chloride crystal.

the CN, which depends on the covalent radius Rcov of the respective atom. As
a result, the atom with the larger covalent radius also gets a higher CN (here
R cov
Na = 3.5Bohr and R cov

Cl = 2.5Bohr) and thus a higher EN shift resulting in
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nonphysical polarity changes. In order to avoid such artifacts, the procedure is
modified for periodic boundary conditions. Here, Ω i is used which includes the
global parameter γ = 8 and is given as

Ω i = κ i

(
log
(

1+ exp (γ)
1+ exp (γ− CNi)

))1/2
. (A3.13)

This classical charge model requires overall five empirical parameters (J ii, a i,
EN i, κ i, and R cov

i ) per element and achieves for molecules across the entire
periodic table of elements an average deviation of about 0.04 e− (0.03 e− for
organic molecules) with respect to PBE0 based Hirshfeld charges.308

By using the definition of the Lagrangian given in equation A3.11 the analytical
charge gradients is derived as

∂q
∂R j

= Ã−1
[
−
∂(A · q)
∂R j

+
∂X
∂R j

]
(A3.14)

where the inverse of the indefinite (N+1) matrix has been obtained by a Bunch–
Kaufman factorization249 and inversion.

A3.1.3. Dispersion Energy

The periodic DFT-D4 energy expression is constructed as follows

ED4
disp = E

(6,8)
disp + E

(9),ATM
disp . (A3.15)

The left part of equation A3.15 corresponds to the pairwise dispersion energy
which is given by

E
(6,8)
disp = −

1
2
∑
i

∑
T

∑ ′

j

∑
n=6,8

sn
C
ij
(n)

R
(n)
ijT

f
(n)
damp

(
R ijT

)
. (A3.16)

Here, the primed sum over j indicates that the case i = j is omitted for T = 0. In
equation A3.16, sn scales the individual multi-polar contributions—s6 and s8 for
the dipole–dipole and dipole–quadrupole term—and f (n)damp denotes the rational
Becke–Johnson (BJ) damping function (denoted as BJ-damping (BJD) in the
following) which is used to couple this approach to standard DFAs.

f
(n)
BJD(RijT) =

R
(n)
ijT

R
(n)
ijT

+
(
a1 R

ij
0 + a2

)(n) (A3.17)
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Equation A3.17 incorporates the DFA-specific parameters a1 and a2 and the
cutoff-radii defined as

R
ij
0 =

√√√√C
ij
8

C
ij
6
, (A3.18)

where the recursive relation between dipole–dipole and dipole–quadrupole disper-
sion coefficients is used. Furthermore, we define the following expression for the
rational damping term

R
ij
0,BJ =

(
a1 R

ij
0 + a2

)
. (A3.19)

The simplest way to include three-body effects uses the well-known Axilrod–Teller–
Muto167,168 (ATM) term (cf., right side of equation A3.15) which is defined as
the sum over ijk energy contributions each defined by

Eijk =
C
ijk
9
(
3 cos θi cos θj cos θk + 1

)
(
RijRjkRki

)3 . (A3.20)

Here, θi, θj, and θk are the internal angles of the triangle formed by R ij, R jk,
and Rki while C ijk9 is the triple-dipole constant given by

C
ijk
9 ≈

√
C
ij
6 C

jk
6 C

ki
6 . (A3.21)

The C ijk9 coefficients are derived from C6 coefficients which are obtained from
charge-neutral atomic polarizabilities (i.e., neutral atoms with z i = Z i). The
finally used three-body dispersion energy expression is as follows

E
(9),ATM
disp =

− k
∑
i

∑
T

∑
j

∑ ′

T ′

∑ ′′

k

f
(9)
damp(RijTkT ′ )E

ijTkT ′ , (A3.22)

where the sum is over all atom triples ijk applied with a zero-damping scheme
proposed by Chai and Head-Gordon122

f
(9)
damp(RijTkT ′ ) =

1
1+ 6

(
RijTkT ′

)−16 . (A3.23)

To avoid multiple counting of three-body interactions the factor k is set to 1
3 if

atoms i, j, k are within the reference cell and to 1
2 in all other cases. As previously,

the primed sum over j indicates that the case i = j is omitted for T = 0, the
double primed sum over k indicates that the case j = k is omitted for T = T ′ and
i = k is omitted for T = 0. Equation A3.23 includes the averaged inter-atomic
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distance

RijTkT ′ =

(
RijT RjTkT ′ RkT ′i

/
R
ij
0,BJ R

jk
0,BJ R

ki
0,BJ

)1/3
, (A3.24)

which incorporates R ij/jk/ki0,BJ (cf. equation A3.19). Since dispersion interactions
are much faster decaying (leading order term ∝ R−6) than, e.g., Coulomb interac-
tions we employ for this energy contribution a real-space cutoff within the periodic
implementation. Furthermore, analytical gradients are available for the dispersion
energy expression in equation A3.15.

A3.1.4. Theory of the Quasi-Harmonic Approximation

In order to account for thermodynamic properties to crystals, the knowledge of
phonon modes is required over the complete first Brillouin zone (FBZ) of the
system. The easiest way to account for ZPVE contributions includes harmonic
lattice dynamics where each k-point in the FBZ is associated with 3M harmonic
oscillators (i. e. phonons) which are labeled by a phonon band index n (n =

1, . . . , 3N) and whose energy levels are given by the usual harmonic expression as

εn,k
m =

(
m+

1
2

)
ωkn, (A3.25)

wherem is an integer, ωkn = 2πνkn, and N is the number of atoms per primitive
cell. The overall vibrational canonical partition function of a crystal at a given
temperature T is given as

Qvib(T) =
∏

k

3N∏
n=1

∞∑
m=0

exp
(
−
ε
n,k
m

kBT

)
, (A3.26)

where kB is Boltzmann’s constant. From this expression it is straightforward to
obtain harmonic expressions to the internal energy given as

E(T) = kBT
2
(
∂ log (Qvib)

∂T

)
=
∑
kn

 hωkn


1
2 +

1

exp
(

 hωkn
kBT

)
− 1


 . (A3.27)

However, the harmonic approximation has its limitations like zero thermal expan-
sion, temperature independence of elastic constants and bulk modulus, equality of
constant-pressure and constant-volume specific heats, as well as infinite thermal
conductivity and phonon lifetimes.462 To overcome such drawbacks, the simplest
way includes quasi-harmonic quantities in the sense of the quasi-harmonic ap-
proximation (QHA).463–466 According to the QHA the Helmholz free energy of
a crystal is written retaining the same harmonic expression but introducing an
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explicit dependence of vibrational phonon frequencies on volume as given by

FQHA(T ,V) = U0(V) + F
QHA
vib (T ,V), (A3.28)

where U0(V) is the zero-temperature internal energy of the crystal without any
vibrational contribution (similar to volume constrained geometry optimizations)
and the vibrational part is given by

F
QHA
vib (T ,V) =

∑
kn

 hωkn(V)

2 + kBT

[
ln
(
1− exp

(
−

 hωkn(V)

kBT

))]
, (A3.29)

where the first part refers to the zero-point energy of the system. The equilibrium
volume at a given temperature T is obtained by minimizing FQHA(T ,V) with
respect to volume V while keeping T constant.

A3.1.5. Technical Details

All molecular dynamic dipole polarizabilities α(iω) were calculated using time-
dependent density functional theory (TD-DFT).164,165 A variant of the PBE0
hybrid functional was used, with a Fock-exchange admixture of 37.5% (dubbed
PBE38). This method has already proved its accuracy and robustness in previous
works.46,210,308 The atomic orbital (AO) basis sets used in the TD-DFT calcula-
tions are of def2-QZVP251,254 quality closely representing the complete basis set
(CBS) limit for this property. The following def2-ECPs are used: ECP-28467–469

covering 28 core electrons (for Rb, Sr, Y-Cd, In-SB, Te-Xe, Ce-Lu), ECP-46 cov-
ering 46 core electrons (for Cs, Ba, La), and ECP-60 covering 60 core electrons
(for Hf-Hg, Tl-Bi, Po-Rn) as defined in Ref. 251. Crystal structures have been
extracted from materials project470 (for alkali metals Li, Na, K, Rb, and Cs;
for alkaline earth metals Be, Mg, Ca, Sr, and Ba; for d-block elements Sc and Y)
and used within the PEECM to obtain dynamic polarizabilities. Since some ele-
ments have experimental crystal structures that exhibit high dipole moments, the
PEECM calculation could not be successfully converge (e.g, for Ti, Zr, Hf, V, Nb,
and Ta). For these elements closed-shell monomers without dipole moments were
extracted from the crystal structure and dynamic polarizabilities were calculated
using the presented level of theory. Furthermore, periodic coordination numbers
were assigned to those six extracted clusters to be used as approximated “peri-
odic” reference system. The ECPs used to create the shells within part (II) of the
particular clusters have been extracted from the turbomole206,471 basis set li-
brary (nomenclature reads as follows element/ecp-electrons in core-name; for alkali
metals we used: Li/ecp-2-sdf, Na/ecp-10-sdf, K/ecp-18-sdf, Rb/ecp-36-sdf, and
Cs/ecp-54-sdf; for earth alkali metals we used: Be/ecp-2-sdf, Mg/ecp-10-sdf472,
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Ca/ecp-18-sdf, Sr/ecp-36-sdf, and Ba/ecp-54-sdf; for d-block elements we used:
Sc/ecp-10-mdf473, Y/ecp-28-mwb474; for halogen we applied Cl/ecp-10-sdf and
F/ecp-2-sdf and for oxygen we applied O/ecp-2-sdf).

A3.1.6. Computational Details

X23: Solid State Volumina For the determination of the 23 molecular crystal
structure volumes we applied the VASP 6.0.8 software package. All PBE PAW
calculations used an 800eV plane-wave cutoff (convergence criteria: energy dif-
ference ∝ 10−6). The DFT conjugated gradient method has been used within
the optimization where all atomic positions and the cell has been relaxed. For all
calculations standard pseudopotentials have been used.

ICE10: QHA Calculations Quasi-harmonic approximation calculations have
been performed for eight different ice polymorphs. For this purpose the QHA
implementation within the crystal17 code has been applied in combination
with HSE-3c. Here, four different volumina have been used (steps of 2.5%) for
which overall ten different temperatures have been applied (ranging from 10 K to
100 K applying 10 K steps). V0 has been extracted from Helmholtz free energy
calculations at a pressure of 0 GPa.

Timings for the Cyclohexanedione Crystal A self-consistent field (SCF) calcu-
lation has been performed for the cyclohexanedione crystal using the PBE/800eV
setup in vasp 6.0.8 (convergence criteria: energy difference ∝ 10−6). The con-
verged wave function has been applied to determine the pure timing arising from
each dispersion correction. For SCAN-rVV10 and vdW-DF2 we applied an PAW
cutoff of 800eV. For all calculations standard pseudopotentials have been used.

Refractive Indices Salt polarizabilities have been calculated for an organic poly-
mer database. For D3 and D4 we use polarizabilities from the dftd3 and dftd4
standalone programs. For other dispersion corrections we have calculated polariz-
abilities using vasp 6.0.8 with a PBE/500eV setup using standard pseudopoten-
tials.

Salt Polarizabilities Salt polarizabilities have been calculated for several alkali
halides. For D3 and D4 we use polarizabilities from the dftd3 and dftd4 stan-
dalone programs. For other dispersion corrections we have calculated polarizabili-
ties using vasp 6.0.8 with a PBE/500eV setup using standard pseudopotentials.
All values are given in table A3.1 together with statistical measures covering the
mean absolute deviation (MAD), the mean deviation (MD), the root mean squared
deviation (RMSD), and the absolut maximum deviation (AMAX) all given in %.

223



A3. Supporting Information to Chapter 3

Table A3.1.: Static polarizabilities as obtained by experimental measurements (polariz-
abilities are extracted from Ref. 315), and theoretical values for D4, D3,
TS, TS/HI, MBD, MBD/HI, and MBD/FI. All polarizabilities and statis-
tical measures are given in Bohr3. Statistical values are given in %. All
crystal structures have the Fm3m space group.

Salt polarizabilities
# Compound αexp αD4 αD3 αTS αMBD αTS/HI αMBD/HI αMBD/FI
1 LiF 6.1 9.0 40.8 144.4 crash 89.0 8.4 14.4
2 LiCl 19.6 20.7 52.6 163.9 crash 112.4 27.3 31.5
3 LiBr 27.9 27.1 59.2 171.4 crash 124.2 41.2 48.7
4 LiI 42.0 39.4 71.0 189.4 130.5 149.6 73.0 75.9
5 NaF 7.8 10.8 27.8 139.7 crash 77.4 17.8 16.0
6 NaCl 22.0 22.5 39.6 158.3 crash 93.1 34.3 30.7
7 NaBr 29.6 29.1 46.1 166.2 137.5 102.1 41.2 42.7
8 NaI 42.3 41.6 58.0 184.5 153.8 122.4 61.5 60.9
9 KF 13.6 16.4 53.4 244.6 crash 144.6 57.1 27.2
10 KCl 28.2 28.1 65.3 261.8 230.6 161.7 67.9 34.7
11 KBr 35.7 34.7 71.8 270.7 242.7 172.5 73.7 46.9
12 KI 49.9 47.3 83.6 291.0 260.2 195.6 93.9 65.2
13 RbF 17.4 19.7 62.1 269.3 crash 165.9 83.5 35.9
14 RbCl 31.8 31.5 73.9 282.7 257.6 180.1 89.1 38.1
15 RbBr 40.0 37.8 80.5 290.8 268.3 190.2 96.0 50.4
16 RbI 54.6 50.5 92.3 310.9 285.4 212.8 116.0 68.7

MD 5.7 156.2 873.7 222.6 511.2 120.6 59.2
MAD 10.1 156.2 873.7 310.1 511.2 120.6 59.2
RMSD 16.7 203.4 1037.1 383.6 602.4 154.6 69.0
AMAX 47.1 568.7 2267.2 717.6 1359.2 379.6 135.9
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Appendix A4 contains:

• TPM crystal structure (HSE-3c)

• TPM gas phase dimer structure (HSE-3c)

• TPM dimer dissociation energies (B3LYP-D3(BJ)-ATM/def2-TZVPP)

• TPM gas phase dimer structure (B3LYP-D3(BJ)-ATM/def2-TZVPP)

• Triphenylmethane dimer dissociation energies (B3LYP-D3(BJ)-ATM/def2-TZVPP)

• Triphenylmethane gas phase dimer structure (B3LYP-D3(BJ)-ATM/def2-TZVPP)

A4.1. Appendix: London Dispersion Enables the
Shortest Intermolecular Hydrocarbon H· · ·H
Contact

A4.2. Computations

Molecular computations were performed at the HSE-3c343 (crystal structure as
well as dimer calculations, CRYSTAL1471), at the B3LYP-D3(BJ)-ATM/def2-
TZVPP46,117,166,475,476 (energy decomposition analysis, TURBOMOLE
7.0.2205,206,208,209) and at the B3LYP-D3(BJ)-ATM/def2-TZVPP//PBEh-3c (dis-
sociation free energy//thermo statistic contributions, TURBOMOLE 7.0.2) level
of theory. Coordinates are given in Angström [Å], energies in Hartree [Eh]. The
HSE-3c solid state computations of 12 were performed within the P213 space
group. All gas phase computations of 12 were performed without restrictions and
converged to point group S6.
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A4.2.1. Crystal Structure

Figure A4.1.: Structure of 12 obtained by solid state HSE-3c computations.

Figure A4.2.: Comparison of the wireframe representation of the unit cell of 1 obtained
by a) neutron diffraction and b) solid state HSE-3c computations.

Table A4.1.: The Coordinates of the crystal structure of tri(3,5-di-tert-
butylphenyl)methane optimized with the HSE-3c composite scheme
in space group P213.

Element x y z Element x y z

856
H 13.360 3.458 8.991 H 11.273 7.096 15.794
H 20.600 6.367 13.321 H 13.796 8.454 16.959
H 16.269 −0.873 16.231 H 12.631 5.931 18.317
H 13.280 3.611 13.261 H 13.287 3.365 16.018

Continued on next page
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Table A4.1 – Continued from previous page
Element x y z Element x y z

H 16.329 6.447 13.474 H 13.572 6.440 13.229
H 16.116 3.398 16.311 H 16.362 6.155 16.303
H 16.986 3.861 11.204 H 14.374 5.353 15.216
H 18.387 2.741 13.724 H 9.020 3.498 16.226
H 15.866 1.340 12.605 H 13.364 10.707 13.361
H 15.948 3.463 6.537 H 16.229 6.363 20.571
H 23.053 3.779 13.326 H 6.589 6.110 16.177
H 16.264 −3.326 13.642 H 13.414 13.138 15.974
H 15.272 4.455 14.318 H 13.617 6.313 23.001
H 9.900 3.520 9.824 H 7.308 4.701 15.416
H 19.766 9.827 13.384 H 14.175 12.419 14.565
H 16.207 −0.039 19.690 H 15.026 5.552 22.282
H 14.745 2.524 7.409 H 7.448 4.935 17.161
H 22.181 4.982 12.387 H 12.429 12.279 14.799
H 17.203 −2.454 14.846 H 14.792 7.298 22.143
H 14.574 4.274 7.268 H 9.921 0.023 15.662
H 22.323 5.153 14.138 H 13.928 9.806 9.886
H 15.453 −2.596 15.016 H 19.704 5.799 19.670
H 17.758 2.482 7.851 H 7.917 7.926 17.118
H 21.739 1.969 12.346 H 12.473 11.810 17.789
H 17.245 −2.012 11.833 H 11.801 7.254 21.674
H 17.457 5.032 7.676 H 12.264 -0.041 15.859
H 21.915 2.270 14.896 H 13.732 7.463 9.823
H 14.695 −2.188 12.133 H 19.768 5.995 17.326
H 16.145 5.815 8.564 H 7.757 7.587 14.585
H 21.027 3.582 15.678 H 15.006 11.970 17.451
H 13.912 −1.300 13.446 H 12.140 4.721 21.833
H 17.805 2.591 9.605 H 8.594 6.225 13.827
H 19.986 1.922 12.454 H 15.763 11.133 16.089
H 17.136 −0.259 11.786 H 13.502 3.964 20.997
H 9.897 4.339 12.071 H 9.514 7.590 14.446
H 17.520 9.830 14.202 H 15.144 10.213 17.453
H 15.388 2.207 19.694 H 12.137 4.583 20.077
H 17.522 5.149 9.433 H 10.080 1.855 18.231
H 20.158 2.205 15.012 H 11.360 9.647 11.719
H 14.578 −0.431 12.069 H 17.872 8.367 19.511
H 16.634 1.532 8.824 H 12.534 1.269 14.711
H 20.767 3.093 11.396 H 14.879 7.193 11.133
H 18.195 −1.040 12.956 H 18.458 4.848 17.057
H 11.226 4.563 9.338 H 9.669 7.972 16.991
H 20.253 8.501 14.427 H 12.600 10.058 17.836
H 15.164 −0.526 18.364 H 11.755 7.127 19.922
H 10.173 1.853 11.682 H 8.901 6.829 18.088
H 17.909 9.554 11.716 H 11.502 10.826 16.692
H 17.874 1.818 19.418 H 12.898 8.225 20.690
H 11.307 2.823 9.048 H 13.267 1.319 16.307
H 20.543 8.420 12.686 H 13.283 6.460 11.183
H 16.904 −0.816 18.283 H 18.408 6.444 16.323
H 11.647 1.813 12.648 H 8.947 1.433 15.991
H 16.943 8.080 11.676 H 13.600 10.780 11.297
H 17.914 2.784 17.944 H 18.294 6.127 20.644
H 11.231 5.450 11.773 H 11.834 1.842 18.353
H 17.818 8.496 15.313 H 11.237 7.893 11.706
H 14.277 1.909 18.360 H 17.885 8.490 17.756

Continued on next page
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Table A4.1 – Continued from previous page
Element x y z Element x y z

H 11.299 4.317 13.121 H 10.965 0.349 17.989
H 16.470 8.428 14.181 H 11.602 8.762 10.212
H 15.410 3.257 18.291 H 19.378 8.125 18.625
H 11.667 1.219 10.989 H 9.910 1.363 14.516
H 18.602 8.060 11.083 H 15.075 9.817 11.226
H 18.508 1.125 17.924 H 18.364 4.652 19.681
C 15.263 3.640 9.940 C 11.224 6.019 15.896
C 19.650 4.464 13.504 C 13.694 8.503 15.883
C 16.087 0.077 14.328 C 13.708 6.033 18.367
C 13.819 3.632 12.320 C 13.746 5.981 15.844
C 17.270 5.908 13.495 C 11.102 1.723 16.304
C 16.095 2.457 15.772 C 13.287 8.625 11.586
C 15.901 3.826 13.690 C 18.004 6.440 18.489
C 15.292 3.467 7.409 C 9.970 4.003 16.131
C 22.182 4.435 13.331 C 13.460 9.757 13.866
C 16.260 −2.455 14.299 C 15.724 6.267 19.620
C 17.137 2.498 8.749 C 9.902 1.110 15.577
C 20.842 2.590 12.362 C 14.013 9.825 10.974
C 17.229 −1.115 12.454 C 18.617 5.714 19.689
C 15.203 3.749 12.354 C 12.352 3.911 16.010
C 17.237 4.524 13.612 C 13.580 7.375 13.775
C 15.978 2.490 14.388 C 15.816 6.147 17.239
C 13.875 3.537 9.936 C 8.733 6.253 15.996
C 19.654 5.852 13.401 C 13.594 10.994 16.117
C 16.190 0.073 15.716 C 13.474 6.133 20.857
C 13.129 3.536 11.119 C 7.455 5.446 16.198
C 18.472 6.598 13.399 C 13.393 12.272 15.310
C 16.191 1.255 16.462 C 14.281 6.334 22.136
C 10.984 4.433 12.083 C 11.144 3.238 16.122
C 17.507 8.743 14.296 C 13.469 8.583 13.102
C 15.294 2.220 18.606 C 16.489 6.258 18.446
C 16.117 3.644 8.678 C 12.400 5.299 15.903
C 20.912 3.610 13.508 C 13.688 7.327 15.163
C 16.083 −1.185 13.474 C 14.428 6.039 17.190
C 11.608 3.394 11.141 C 10.987 1.426 17.805
C 18.449 8.119 13.258 C 11.786 8.740 11.289
C 16.333 1.278 17.982 C 18.301 7.941 18.603
C 15.909 3.758 11.167 C 8.648 6.956 14.636
C 18.424 3.818 13.621 C 14.954 11.079 16.819
C 15.969 1.303 13.681 C 12.771 4.773 20.943
C 16.854 4.986 8.586 C 9.987 5.387 16.017
C 21.005 2.873 14.849 C 13.574 9.740 15.251
C 14.741 −1.278 12.736 C 14.340 6.153 19.603
C 11.256 1.988 11.645 C 8.815 7.305 17.111
C 17.946 8.471 11.852 C 12.480 10.912 17.168
C 17.739 1.781 18.334 C 12.422 7.247 20.776
C 10.987 3.586 9.760 C 12.364 1.042 15.765
C 19.831 8.740 13.449 C 13.825 7.363 10.906
C 16.141 −0.104 18.604 C 18.685 5.902 17.227
H 16.231 16.269 −0.873 H 18.317 12.631 5.931
H 8.991 13.360 3.458 H 15.794 11.273 7.096
H 13.321 20.600 6.367 H 16.959 13.796 8.454
H 16.311 16.116 3.398 H 16.303 16.362 6.155
H 13.261 13.280 3.611 H 16.018 13.287 3.365
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H 13.474 16.329 6.447 H 13.229 13.572 6.440
H 12.605 15.866 1.340 H 15.216 14.374 5.353
H 11.204 16.986 3.861 H 20.571 16.229 6.363
H 13.724 18.387 2.741 H 16.226 9.020 3.498
H 13.642 16.264 −3.326 H 13.361 13.364 10.707
H 6.537 15.948 3.463 H 23.001 13.617 6.313
H 13.326 23.053 3.779 H 16.177 6.589 6.110
H 14.318 15.272 4.455 H 15.974 13.414 13.138
H 19.690 16.207 −0.039 H 22.282 15.026 5.552
H 9.824 9.900 3.520 H 15.416 7.308 4.701
H 13.384 19.766 9.827 H 14.565 14.175 12.419
H 14.846 17.203 −2.454 H 22.143 14.792 7.298
H 7.409 14.745 2.524 H 17.161 7.448 4.935
H 12.387 22.181 4.982 H 14.799 12.429 12.279
H 15.016 15.453 −2.596 H 19.670 19.704 5.799
H 7.268 14.574 4.274 H 15.662 9.921 0.023
H 14.138 22.323 5.153 H 9.886 13.928 9.806
H 11.833 17.245 −2.012 H 21.674 11.801 7.254
H 7.851 17.758 2.482 H 17.118 7.917 7.926
H 12.346 21.739 1.969 H 17.789 12.473 11.810
H 12.133 14.695 −2.188 H 17.326 19.768 5.995
H 7.676 17.457 5.032 H 15.859 12.264 −0.041
H 14.896 21.915 2.270 H 9.823 13.732 7.463
H 13.446 13.912 −1.300 H 21.833 12.140 4.721
H 8.564 16.145 5.815 H 14.585 7.757 7.587
H 15.678 21.027 3.582 H 17.451 15.006 11.970
H 11.786 17.136 −0.259 H 20.997 13.502 3.964
H 9.605 17.805 2.591 H 13.827 8.594 6.225
H 12.454 19.986 1.922 H 16.089 15.763 11.133
H 19.694 15.388 2.207 H 20.077 12.137 4.583
H 12.071 9.897 4.339 H 14.446 9.514 7.590
H 14.202 17.520 9.830 H 17.453 15.144 10.213
H 12.069 14.578 −0.431 H 19.511 17.872 8.367
H 9.433 17.522 5.149 H 18.231 10.080 1.855
H 15.012 20.158 2.205 H 11.719 11.360 9.647
H 12.956 18.195 −1.040 H 17.057 18.458 4.848
H 8.824 16.634 1.532 H 14.711 12.534 1.269
H 11.396 20.767 3.093 H 11.133 14.879 7.193
H 18.364 15.164 −0.526 H 19.922 11.755 7.127
H 9.338 11.226 4.563 H 16.991 9.669 7.972
H 14.427 20.253 8.501 H 17.836 12.600 10.058
H 19.418 17.874 1.818 H 20.690 12.898 8.225
H 11.682 10.173 1.853 H 18.088 8.901 6.829
H 11.716 17.909 9.554 H 16.692 11.502 10.826
H 18.283 16.904 −0.816 H 16.323 18.408 6.444
H 9.048 11.307 2.823 H 16.307 13.267 1.319
H 12.686 20.543 8.420 H 11.183 13.283 6.460
H 17.944 17.914 2.784 H 20.644 18.294 6.127
H 12.648 11.647 1.813 H 15.991 8.947 1.433
H 11.676 16.943 8.080 H 11.297 13.600 10.780
H 18.360 14.277 1.909 H 17.756 17.885 8.490
H 11.773 11.231 5.450 H 18.353 11.834 1.842
H 15.313 17.818 8.496 H 11.706 11.237 7.893
H 18.291 15.410 3.257 H 18.625 19.378 8.125
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H 13.121 11.299 4.317 H 17.989 10.965 0.349
H 14.181 16.470 8.428 H 10.212 11.602 8.762
H 17.924 18.508 1.125 H 19.681 18.364 4.652
H 10.989 11.667 1.219 H 14.516 9.910 1.363
H 11.083 18.602 8.060 H 11.226 15.075 9.817
C 14.328 16.087 0.077 C 18.367 13.708 6.033
C 9.940 15.263 3.640 C 15.896 11.224 6.019
C 13.504 19.650 4.464 C 15.883 13.694 8.503
C 15.772 16.095 2.457 C 15.844 13.746 5.981
C 12.320 13.819 3.632 C 18.489 18.004 6.440
C 13.495 17.270 5.908 C 16.304 11.102 1.723
C 13.690 15.901 3.826 C 11.586 13.287 8.625
C 14.299 16.260 −2.455 C 19.620 15.724 6.267
C 7.409 15.292 3.467 C 16.131 9.970 4.003
C 13.331 22.182 4.435 C 13.866 13.460 9.757
C 12.454 17.229 -1.115 C 19.689 18.617 5.714
C 8.749 17.137 2.498 C 15.577 9.902 1.110
C 12.362 20.842 2.590 C 10.974 14.013 9.825
C 14.388 15.978 2.490 C 17.239 15.816 6.147
C 12.354 15.203 3.749 C 16.010 12.352 3.911
C 13.612 17.237 4.524 C 13.775 13.580 7.375
C 15.716 16.190 0.073 C 20.857 13.474 6.133
C 9.936 13.875 3.537 C 15.996 8.733 6.253
C 13.401 19.654 5.852 C 16.117 13.594 10.994
C 16.462 16.191 1.255 C 22.136 14.281 6.334
C 11.119 13.129 3.536 C 16.198 7.455 5.446
C 13.399 18.472 6.598 C 15.310 13.393 12.272
C 18.606 15.294 2.220 C 18.446 16.489 6.258
C 12.083 10.984 4.433 C 16.122 11.144 3.238
C 14.296 17.507 8.743 C 13.102 13.469 8.583
C 13.474 16.083 -1.185 C 17.190 14.428 6.039
C 8.678 16.117 3.644 C 15.903 12.400 5.299
C 13.508 20.912 3.610 C 15.163 13.688 7.327
C 17.982 16.333 1.278 C 18.603 18.301 7.941
C 11.141 11.608 3.394 C 17.805 10.987 1.426
C 13.258 18.449 8.119 C 11.289 11.786 8.740
C 13.681 15.969 1.303 C 20.943 12.771 4.773
C 11.167 15.909 3.758 C 14.636 8.648 6.956
C 13.621 18.424 3.818 C 16.819 14.954 11.079
C 12.736 14.741 -1.278 C 19.603 14.340 6.153
C 8.586 16.854 4.986 C 16.017 9.987 5.387
C 14.849 21.005 2.873 C 15.251 13.574 9.740
C 18.334 17.739 1.781 C 20.776 12.422 7.247
C 11.645 11.256 1.988 C 17.111 8.815 7.305
C 11.852 17.946 8.471 C 17.168 12.480 10.912
C 18.604 16.141 -0.104 C 17.227 18.685 5.902
C 9.760 10.987 3.586 C 15.765 12.364 1.042
C 13.449 19.831 8.740 C 10.906 13.825 7.363
H 3.496 6.406 10.736 H 1.410 2.768 3.933
H 6.406 10.736 3.496 H 2.768 3.933 1.410
H 10.736 3.496 6.406 H 3.933 1.410 2.768
H 3.416 6.253 6.466 H 3.424 6.498 3.709
H 6.253 6.466 3.416 H 6.498 3.709 3.424
H 6.466 3.416 6.253 H 3.709 3.424 6.498
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H 7.122 6.003 8.523 H 4.511 4.511 4.511
H 6.003 8.523 7.122 H -0.844 6.366 3.501
H 8.523 7.122 6.003 H 6.366 3.501 -0.844
H 6.085 6.401 13.190 H 3.501 -0.844 6.366
H 6.401 13.190 6.085 H -3.274 3.753 3.550
H 13.190 6.085 6.401 H 3.753 3.550 -3.274
H 5.409 5.409 5.409 H 3.550 -3.274 3.753
H 0.037 6.343 9.903 H -2.555 5.162 4.311
H 6.343 9.903 0.037 H 5.162 4.311 -2.555
H 9.903 0.037 6.343 H 4.311 -2.555 5.162
H 4.881 7.340 12.318 H -2.416 4.928 2.566
H 7.340 12.318 4.881 H 4.928 2.566 -2.416
H 12.318 4.881 7.340 H 2.566 -2.416 4.928
H 4.711 5.589 12.459 H 0.057 9.841 4.065
H 5.589 12.459 4.711 H 9.841 4.065 0.057
H 12.459 4.711 5.589 H 4.065 0.057 9.841
H 7.894 7.381 11.876 H -1.947 1.938 2.609
H 7.381 11.876 7.894 H 1.938 2.609 -1.947
H 11.876 7.894 7.381 H 2.609 -1.947 1.938
H 7.594 4.831 12.051 H 2.401 9.904 3.868
H 4.831 12.051 7.594 H 9.904 3.868 2.401
H 12.051 7.594 4.831 H 3.868 2.401 9.904
H 6.281 4.049 11.163 H -2.106 2.276 5.142
H 4.049 11.163 6.281 H 2.276 5.142 -2.106
H 11.163 6.281 4.049 H 5.142 -2.106 2.276
H 7.941 7.273 10.122 H -1.270 3.638 5.900
H 7.273 10.122 7.941 H 3.638 5.900 -1.270
H 10.122 7.941 7.273 H 5.900 -1.270 3.638
H 0.033 5.525 7.656 H -0.350 2.274 5.281
H 5.525 7.656 0.033 H 2.274 5.281 -0.350
H 7.656 0.033 5.525 H 5.281 -0.350 2.274
H 7.658 4.715 10.294 H 0.216 8.008 1.496
H 4.715 10.294 7.658 H 8.008 1.496 0.216
H 10.294 7.658 4.715 H 1.496 0.216 8.008
H 6.771 8.331 10.903 H 2.670 8.594 5.016
H 8.331 10.903 6.771 H 8.594 5.016 2.670
H 10.903 6.771 8.331 H 5.016 2.670 8.594
H 1.363 5.300 10.389 H -0.195 1.891 2.736
H 5.300 10.389 1.363 H 1.891 2.736 -0.195
H 10.389 1.363 5.300 H 2.736 -0.195 1.891
H 0.309 8.011 8.045 H -0.963 3.035 1.639
H 8.011 8.045 0.309 H 3.035 1.639 -0.963
H 8.045 0.309 8.011 H 1.639 -0.963 3.035
H 1.444 7.041 10.679 H 3.404 8.544 3.420
H 7.041 10.679 1.444 H 8.544 3.420 3.404
H 10.679 1.444 7.041 H 3.420 3.404 8.544
H 1.783 8.051 7.079 H -0.917 8.430 3.736
H 8.051 7.079 1.783 H 8.430 3.736 -0.917
H 7.079 1.783 8.051 H 3.736 -0.917 8.430
H 1.367 4.414 7.954 H 1.971 8.021 1.374
H 4.414 7.954 1.367 H 8.021 1.374 1.971
H 7.954 1.367 4.414 H 1.374 1.971 8.021
H 1.436 5.546 6.606 H 1.102 9.515 1.738
H 5.546 6.606 1.436 H 9.515 1.738 1.102
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H 6.606 1.436 5.546 H 1.738 1.102 9.515
H 1.803 8.644 8.738 H 0.046 8.501 5.211
H 8.644 8.738 1.803 H 8.501 5.211 0.046
H 8.738 1.803 8.644 H 5.211 0.046 8.501
C 5.399 6.223 9.787 C 1.360 3.844 3.831
C 6.223 9.787 5.399 C 3.844 3.831 1.360
C 9.787 5.399 6.223 C 3.831 1.360 3.844
C 3.955 6.232 7.407 C 3.883 3.883 3.883
C 6.232 7.407 3.955 C 1.238 8.141 3.423
C 7.407 3.955 6.232 C 8.141 3.423 1.238
C 6.037 6.037 6.037 C 3.423 1.238 8.141
C 5.428 6.396 12.318 C 0.107 5.861 3.596
C 6.396 12.318 5.428 C 5.861 3.596 0.107
C 12.318 5.428 6.396 C 3.596 0.107 5.861
C 7.273 7.365 10.978 C 0.038 8.753 4.150
C 7.365 10.978 7.273 C 8.753 4.150 0.038
C 10.978 7.273 7.365 C 4.150 0.038 8.753
C 5.339 6.115 7.373 C 2.488 5.952 3.717
C 6.115 7.373 5.339 C 5.952 3.717 2.488
C 7.373 5.339 6.115 C 3.717 2.488 5.952
C 4.011 6.326 9.791 C -1.130 3.610 3.731
C 6.326 9.791 4.011 C 3.610 3.731 -1.130
C 9.791 4.011 6.326 C 3.731 -1.130 3.610
C 3.265 6.328 8.608 C -2.409 4.417 3.529
C 6.328 8.608 3.265 C 4.417 3.529 -2.409
C 8.608 3.265 6.328 C 3.529 -2.409 4.417
C 1.121 5.431 7.644 C 1.281 6.625 3.605
C 5.431 7.644 1.121 C 6.625 3.605 1.281
C 7.644 1.121 5.431 C 3.605 1.281 6.625
C 6.253 6.219 11.049 C 2.537 4.564 3.824
C 6.219 11.049 6.253 C 4.564 3.824 2.537
C 11.049 6.253 6.219 C 3.824 2.537 4.564
C 1.745 6.469 8.586 C 1.124 8.438 1.922
C 6.469 8.586 1.745 C 8.438 1.922 1.124
C 8.586 1.745 6.469 C 1.922 1.124 8.438
C 6.046 6.106 8.560 C -1.216 2.908 5.091
C 6.106 8.560 6.046 C 2.908 5.091 -1.216
C 8.560 6.046 6.106 C 5.091 -1.216 2.908
C 6.991 4.878 11.141 C 0.124 4.476 3.710
C 4.878 11.141 6.991 C 4.476 3.710 0.124
C 11.141 6.991 4.878 C 3.710 0.124 4.476
C 1.393 7.875 8.082 C -1.049 2.559 2.616
C 7.875 8.082 1.393 C 2.559 2.616 -1.049
C 8.082 1.393 7.875 C 2.616 -1.049 2.559
C 1.123 6.278 9.967 C 2.500 8.821 3.962
C 6.278 9.967 1.123 C 8.821 3.962 2.500
C 9.967 1.123 6.278 C 3.962 2.500 8.821
H 6.367 13.321 20.600 H 8.454 16.959 13.796
H 3.458 8.991 13.360 H 7.096 15.794 11.273
H -0.873 16.231 16.269 H 5.931 18.317 12.631
H 6.447 13.474 16.329 H 6.440 13.229 13.572
H 3.611 13.261 13.280 H 3.365 16.018 13.287
H 3.398 16.311 16.116 H 6.155 16.303 16.362
H 2.741 13.724 18.387 H 5.353 15.216 14.374
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H 3.861 11.204 16.986 H 10.707 13.361 13.364
H 1.340 12.605 15.866 H 3.498 16.226 9.020
H 3.779 13.326 23.053 H 6.363 20.571 16.229
H 3.463 6.537 15.948 H 13.138 15.974 13.414
H -3.326 13.642 16.264 H 6.110 16.177 6.589
H 4.455 14.318 15.272 H 6.313 23.001 13.617
H 9.827 13.384 19.766 H 12.419 14.565 14.175
H 3.520 9.824 9.900 H 4.701 15.416 7.308
H -0.039 19.690 16.207 H 5.552 22.282 15.026
H 4.982 12.387 22.181 H 12.279 14.799 12.429
H 2.524 7.409 14.745 H 4.935 17.161 7.448
H -2.454 14.846 17.203 H 7.298 22.143 14.792
H 5.153 14.138 22.323 H 9.806 9.886 13.928
H 4.274 7.268 14.574 H 0.023 15.662 9.921
H -2.596 15.016 15.453 H 5.799 19.670 19.704
H 1.969 12.346 21.739 H 11.810 17.789 12.473
H 2.482 7.851 17.758 H 7.926 17.118 7.917
H -2.012 11.833 17.245 H 7.254 21.674 11.801
H 2.270 14.896 21.915 H 7.463 9.823 13.732
H 5.032 7.676 17.457 H -0.041 15.859 12.264
H -2.188 12.133 14.695 H 5.995 17.326 19.768
H 3.582 15.678 21.027 H 11.970 17.451 15.006
H 5.815 8.564 16.145 H 7.587 14.585 7.757
H -1.300 13.446 13.912 H 4.721 21.833 12.140
H 1.922 12.454 19.986 H 11.133 16.089 15.763
H 2.591 9.605 17.805 H 6.225 13.827 8.594
H -0.259 11.786 17.136 H 3.964 20.997 13.502
H 9.830 14.202 17.520 H 10.213 17.453 15.144
H 4.339 12.071 9.897 H 7.590 14.446 9.514
H 2.207 19.694 15.388 H 4.583 20.077 12.137
H 2.205 15.012 20.158 H 9.647 11.719 11.360
H 5.149 9.433 17.522 H 1.855 18.231 10.080
H -0.431 12.069 14.578 H 8.367 19.511 17.872
H 3.093 11.396 20.767 H 7.193 11.133 14.879
H 1.532 8.824 16.634 H 1.269 14.711 12.534
H -1.040 12.956 18.195 H 4.848 17.057 18.458
H 8.501 14.427 20.253 H 10.058 17.836 12.600
H 4.563 9.338 11.226 H 7.972 16.991 9.669
H -0.526 18.364 15.164 H 7.127 19.922 11.755
H 9.554 11.716 17.909 H 10.826 16.692 11.502
H 1.853 11.682 10.173 H 6.829 18.088 8.901
H 1.818 19.418 17.874 H 8.225 20.690 12.898
H 8.420 12.686 20.543 H 6.460 11.183 13.283
H 2.823 9.048 11.307 H 1.319 16.307 13.267
H -0.816 18.283 16.904 H 6.444 16.323 18.408
H 8.080 11.676 16.943 H 10.780 11.297 13.600
H 1.813 12.648 11.647 H 1.433 15.991 8.947
H 2.784 17.944 17.914 H 6.127 20.644 18.294
H 8.496 15.313 17.818 H 7.893 11.706 11.237
H 5.450 11.773 11.231 H 1.842 18.353 11.834
H 1.909 18.360 14.277 H 8.490 17.756 17.885
H 8.428 14.181 16.470 H 8.762 10.212 11.602
H 4.317 13.121 11.299 H 0.349 17.989 10.965
H 3.257 18.291 15.410 H 8.125 18.625 19.378
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H 8.060 11.083 18.602 H 9.817 11.226 15.075
H 1.219 10.989 11.667 H 1.363 14.516 9.910
H 1.125 17.924 18.508 H 4.652 19.681 18.364
C 4.464 13.504 19.650 C 8.503 15.883 13.694
C 3.640 9.940 15.263 C 6.019 15.896 11.224
C 0.077 14.328 16.087 C 6.033 18.367 13.708
C 5.908 13.495 17.270 C 5.981 15.844 13.746
C 3.632 12.320 13.819 C 8.625 11.586 13.287
C 2.457 15.772 16.095 C 1.723 16.304 11.102
C 3.826 13.690 15.901 C 6.440 18.489 18.004
C 4.435 13.331 22.182 C 9.757 13.866 13.460
C 3.467 7.409 15.292 C 4.003 16.131 9.970
C -2.455 14.299 16.260 C 6.267 19.620 15.724
C 2.590 12.362 20.842 C 9.825 10.974 14.013
C 2.498 8.749 17.137 C 1.110 15.577 9.902
C -1.115 12.454 17.229 C 5.714 19.689 18.617
C 4.524 13.612 17.237 C 7.375 13.775 13.580
C 3.749 12.354 15.203 C 3.911 16.010 12.352
C 2.490 14.388 15.978 C 6.147 17.239 15.816
C 5.852 13.401 19.654 C 10.994 16.117 13.594
C 3.537 9.936 13.875 C 6.253 15.996 8.733
C 0.073 15.716 16.190 C 6.133 20.857 13.474
C 6.598 13.399 18.472 C 12.272 15.310 13.393
C 3.536 11.119 13.129 C 5.446 16.198 7.455
C 1.255 16.462 16.191 C 6.334 22.136 14.281
C 8.743 14.296 17.507 C 8.583 13.102 13.469
C 4.433 12.083 10.984 C 3.238 16.122 11.144
C 2.220 18.606 15.294 C 6.258 18.446 16.489
C 3.610 13.508 20.912 C 7.327 15.163 13.688
C 3.644 8.678 16.117 C 5.299 15.903 12.400
C -1.185 13.474 16.083 C 6.039 17.190 14.428
C 8.119 13.258 18.449 C 8.740 11.289 11.786
C 3.394 11.141 11.608 C 1.426 17.805 10.987
C 1.278 17.982 16.333 C 7.941 18.603 18.301
C 3.818 13.621 18.424 C 11.079 16.819 14.954
C 3.758 11.167 15.909 C 6.956 14.636 8.648
C 1.303 13.681 15.969 C 4.773 20.943 12.771
C 2.873 14.849 21.005 C 9.740 15.251 13.574
C 4.986 8.586 16.854 C 5.387 16.017 9.987
C -1.278 12.736 14.741 C 6.153 19.603 14.340
C 8.471 11.852 17.946 C 10.912 17.168 12.480
C 1.988 11.645 11.256 C 7.305 17.111 8.815
C 1.781 18.334 17.739 C 7.247 20.776 12.422
C 8.740 13.449 19.831 C 7.363 10.906 13.825
C 3.586 9.760 10.987 C 1.042 15.765 12.364
C -0.104 18.604 16.141 C 5.902 17.227 18.685
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A4.2.2. Gas Phase Structures

Table A4.2.: The Coordinates of the crystal structure of tri(3,5-di-tert-
butylphenyl)methane optimized with the HSE-3c composite scheme
in space group P213.

Element x y z Element x y z

214
H 10.331 10.333 10.331 H 9.389 9.385 9.389
H 11.364 11.366 8.376 H 8.357 8.353 11.344
H 8.377 11.366 11.365 H 11.343 8.354 8.354
H 11.364 8.378 11.362 H 8.353 11.341 8.360
H 15.621 11.042 8.317 H 4.099 8.672 11.403
H 8.319 15.623 11.041 H 11.402 4.096 8.671
H 11.040 8.316 15.619 H 8.672 11.405 4.102
H 13.482 10.654 11.990 H 6.238 9.063 7.731
H 11.991 13.483 10.654 H 7.730 6.235 9.065
H 10.654 11.990 13.483 H 9.066 7.730 6.237
H 14.723 11.409 4.913 H 4.995 8.304 14.807
H 4.912 14.722 11.382 H 14.807 4.994 8.316
H 11.393 4.910 14.716 H 8.307 14.808 5.003
H 15.098 10.188 6.125 H 4.610 9.519 13.593
H 6.128 15.083 10.161 H 13.591 4.619 9.534
H 10.169 6.123 15.081 H 9.527 13.596 4.624
H 15.613 11.863 6.353 H 4.112 7.839 13.365
H 6.348 15.621 11.830 H 13.367 4.105 7.858
H 11.839 6.348 15.614 H 7.850 13.368 4.113
H 12.388 10.903 4.897 H 7.327 8.836 14.823
H 4.898 12.383 10.912 H 14.822 7.328 8.824
H 10.916 4.897 12.377 H 8.819 14.822 7.338
H 12.564 9.635 6.108 H 7.137 10.098 13.608
H 6.112 12.537 9.644 H 13.606 7.154 10.088
H 9.645 6.108 12.537 H 10.086 13.611 7.157
H 11.380 10.916 6.328 H 8.335 8.830 13.392
H 6.327 11.374 10.945 H 13.392 8.338 8.805
H 10.941 6.328 11.370 H 8.808 13.390 8.344
H 12.199 13.293 6.925 H 7.541 6.441 12.804
H 6.926 12.229 13.307 H 12.799 7.519 6.428
H 13.306 6.929 12.218 H 6.429 12.795 7.531
H 13.113 13.285 5.417 H 6.626 6.446 14.311
H 5.416 13.140 13.285 H 14.308 6.606 6.440
H 13.289 5.420 13.129 H 6.436 14.304 6.618
H 13.921 13.651 6.943 H 5.823 6.065 12.786
H 6.942 13.956 13.641 H 12.782 5.797 6.069
H 13.644 6.946 13.944 H 6.066 12.778 5.810
H 16.844 9.053 12.292 H 2.874 10.661 7.430
H 12.294 16.845 9.054 H 7.431 2.871 10.663
H 9.057 12.293 16.845 H 10.664 7.434 2.873
H 15.802 8.428 11.010 H 3.913 11.287 8.713
H 11.012 15.805 8.428 H 8.716 3.908 11.287
H 8.428 11.014 15.802 H 11.290 8.715 3.914
H 15.094 9.190 12.428 H 4.623 10.527 7.295
H 12.429 15.096 9.190 H 7.297 4.621 10.532
H 9.194 12.431 15.096 H 10.530 7.297 4.623
H 16.232 12.689 11.571 H 3.493 7.025 8.146
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Table A4.2 – Continued from previous page
Element x y z Element x y z

H 11.574 16.233 12.690 H 8.140 3.493 7.026
H 12.691 11.565 16.233 H 7.028 8.149 3.491
H 17.089 11.565 12.628 H 2.632 8.148 7.092
H 12.631 17.090 11.566 H 7.087 2.631 8.151
H 11.569 12.624 17.091 H 8.152 7.095 2.630
H 15.343 11.741 12.758 H 4.379 7.977 6.960
H 12.760 15.343 11.741 H 6.957 4.378 7.982
H 11.746 12.754 15.344 H 7.980 6.962 4.376
H 17.188 9.801 9.358 H 2.529 9.909 10.362
H 9.361 17.191 9.803 H 10.361 2.524 9.905
H 9.799 9.357 17.187 H 9.912 10.366 2.531
H 18.132 10.412 10.710 H 1.587 9.297 9.010
H 10.712 18.134 10.414 H 9.008 1.584 9.293
H 10.412 10.707 18.132 H 9.301 9.015 1.587
H 17.376 11.542 9.598 H 2.345 8.167 10.122
H 9.600 17.378 11.544 H 10.118 2.344 8.164
H 11.540 9.593 17.375 H 8.171 10.126 2.346
C 10.962 10.963 10.962 C 8.758 8.756 8.758
C 12.300 11.002 10.256 C 7.420 8.716 9.464
C 10.257 12.301 11.001 C 9.463 7.418 8.717
C 11.001 10.257 12.299 C 8.718 9.463 7.421
C 12.312 11.213 8.881 C 7.409 8.505 10.840
C 8.881 12.314 11.212 C 10.839 7.406 8.505
C 11.211 8.881 12.310 C 8.506 10.838 7.411
C 13.498 11.242 8.161 C 6.222 8.475 11.560
C 8.162 13.500 11.240 C 11.558 6.219 8.476
C 11.239 8.161 13.496 C 8.476 11.559 6.225
C 14.689 11.039 8.861 C 5.031 8.676 10.859
C 8.863 14.691 11.039 C 10.858 5.028 8.675
C 11.038 8.860 14.688 C 8.677 10.860 5.033
C 14.713 10.828 10.235 C 5.007 8.887 9.486
C 10.236 14.715 10.828 C 9.484 5.004 8.887
C 10.828 10.234 14.712 C 8.889 9.487 5.008
C 13.499 10.821 10.921 C 6.221 8.896 8.800
C 10.922 13.501 10.821 C 8.799 6.218 8.897
C 10.820 10.921 13.499 C 8.899 8.800 6.221
C 13.469 11.537 6.664 C 6.253 8.185 13.057
C 6.665 13.473 11.533 C 13.056 6.249 8.184
C 11.536 6.664 13.467 C 8.182 13.056 6.257
C 14.804 11.230 5.986 C 4.914 8.480 13.733
C 5.985 14.803 11.206 C 13.733 4.913 8.492
C 11.214 5.983 14.798 C 8.485 13.735 4.921
C 12.386 10.702 5.970 C 7.326 9.034 13.749
C 5.972 12.378 10.714 C 13.748 7.331 9.021
C 10.715 5.970 12.374 C 9.019 13.749 7.337
C 13.157 13.027 6.477 C 6.580 6.699 13.250
C 6.477 13.182 13.028 C 13.247 6.561 6.694
C 13.030 6.480 13.172 C 6.692 13.243 6.573
C 16.004 10.596 11.013 C 3.716 9.118 8.707
C 11.015 16.005 10.597 C 8.706 3.713 9.118
C 10.597 11.012 16.004 C 9.121 8.710 3.716
C 15.928 9.240 11.727 C 3.790 10.475 7.995
C 11.729 15.930 9.241 C 7.996 3.786 10.476
C 9.243 11.729 15.929 C 10.478 7.997 3.790
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Table A4.2 – Continued from previous page
Element x y z Element x y z

C 16.173 11.712 12.052 C 3.549 8.003 7.667
C 12.055 16.174 11.713 C 7.663 3.548 8.005
C 11.715 12.048 16.174 C 8.006 7.669 3.547
C 17.238 10.590 10.111 C 2.482 9.121 9.609
C 10.114 17.239 10.591 C 9.606 2.479 9.118
C 10.589 10.109 17.237 C 9.124 9.613 2.483

A4.2.3. Determination of the Dissociation Energies

Dissociation energies of the dimers to two monomers were obtained by the follow-
ing equation:

Ed = 2 · E(Monomer)− E(Dimer) (A4.1)

Tri(3,5-di-tert-butylphenyl)methane dimer

Table A4.3.: Energies for tri(3,5-di-tert-butylphenyl)methane and the corresponding
dimer at the B3LYP-D3(BJ)-ATM/def2-TZVPP level. Thermostatistical
corrections at the PBEh-3c level.

Energy Unit Monomer Dimer

EE Hartree -1676.8746179 -3353.7934933
U Hartree -1675.9300409 -3351.9033033
H Hartree -1675.8798279 -3351.8020233
S calmol−1 259.003 454.653
G298K Hartree -1676.0028889 -3352.0180433
C-H· · ·H-C Å n/a 1.601

Table A4.4.: Coordinates of the structure of tri(3,5-di-tert-butylphenyl)methane opti-
mized at B3LYP-D3(BJ)-ATM/def2-TZVPP.

Element x y z Element x y z

107
C -0.803 4.014 2.919 H -3.360 1.405 4.886
C -0.035 3.808 1.777 H -3.994 4.350 5.406
C 0.182 2.490 1.368 H -4.026 3.622 3.794
C -0.346 1.416 2.069 H -3.077 5.079 4.087
C -1.118 1.660 3.203 H -1.886 4.212 6.829
C -1.355 2.956 3.648 H -0.941 4.939 5.529
C 1.395 -0.412 2.061 H -0.448 3.390 6.208
C 2.067 -1.391 1.345 H 5.305 -3.724 2.515
C 3.321 -1.860 1.746 H 6.068 -2.479 1.518
C 3.880 -1.311 2.896 H 5.840 -4.106 0.882
C 3.232 -0.319 3.641 H 3.276 -2.212 -0.997
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Table A4.4 – Continued from previous page
Element x y z Element x y z

C 1.989 0.122 3.203 H 4.716 -3.223 -1.115
C -1.889 -2.632 3.667 H 4.845 -1.558 -0.531
C -0.888 -1.778 3.219 H 2.977 -4.585 1.925
C -1.058 -1.006 2.071 H 3.611 -5.003 0.328
C -2.243 -1.108 1.358 H 2.156 -4.014 0.474
C -3.273 -1.958 1.770 H 3.566 1.689 6.466
C -3.073 -2.706 2.926 H 2.079 0.936 5.895
C -0.005 -0.001 1.626 H 2.877 2.171 4.917
C 0.582 4.959 0.975 H 5.749 1.254 5.426
C -2.186 3.250 4.900 H 5.135 1.668 3.820
C 4.017 -2.951 0.927 H 5.929 0.117 4.090
C 3.898 0.237 4.903 H 4.583 -0.530 6.821
C -1.735 -3.475 4.936 H 4.747 -1.691 5.502
C -4.568 -2.025 0.954 H 3.156 -1.361 6.185
C 0.229 6.333 1.556 H -0.309 -3.894 6.502
C 0.068 4.904 -0.476 H -0.224 -2.235 5.915
C 2.115 4.813 0.980 H 0.450 -3.550 4.949
C -2.716 1.971 5.560 H -1.772 -5.582 5.478
C -3.392 4.130 4.522 H -1.110 -5.269 3.868
C -1.311 3.995 5.926 H -2.850 -5.185 4.140
C 5.387 -3.331 1.501 H -2.739 -3.671 6.858
C 4.223 -2.454 -0.517 H -3.830 -3.249 5.537
C 3.134 -4.213 0.912 H -2.752 -2.026 6.207
C 3.049 1.321 5.579 H -5.877 -2.741 2.552
C 5.261 0.854 4.535 H -5.181 -4.033 1.565
C 4.110 -0.907 5.912 H -6.478 -3.030 0.923
C -0.372 -3.271 5.609 H -3.562 -1.769 -0.975
C -1.878 -4.968 4.582 H -5.157 -2.514 -1.082
C -2.833 -3.081 5.943 H -3.777 -3.451 -0.493
C -5.579 -3.018 1.540 H -5.464 -0.300 1.939
C -4.244 -2.464 -0.486 H -6.146 -0.656 0.346
C -5.222 -0.631 0.928 H -4.564 0.114 0.482
H 0.597 6.447 2.576 H -0.010 0.000 0.533
H -0.848 6.506 1.559 H -0.984 5.023 3.255
H 0.688 7.115 0.949 H 0.789 2.288 0.494
H 0.331 3.965 -0.961 H -1.530 0.818 3.734
H 0.501 5.717 -1.062 H 1.591 -1.805 0.465
H -1.018 5.003 -0.505 H 4.846 -1.657 3.228
H 2.503 4.852 1.999 H 1.460 0.888 3.745
H 2.575 5.622 0.408 H 0.041 -1.697 3.759
H 2.431 3.868 0.539 H -2.367 -0.497 0.473
H -3.303 2.231 6.442 H -3.854 -3.368 3.265
H -1.904 1.317 5.883

Table A4.5.: Coordinates of the structure of tri(3,5-di-tert-butylphenyl)methane dimer
optimized at B3LYP-D3(BJ)-ATM/def2-TZVPP.

Element x y z Element x y z

214
C -0.804 4.083 2.896 H 2.450 -3.060 -0.668
C 0.001 3.799 1.794 H 4.035 -3.656 -1.112
C 0.253 2.457 1.508 H 3.761 -1.921 -0.943
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Table A4.5 – Continued from previous page
Element x y z Element x y z

C -0.296 1.436 2.276 H 3.804 -4.484 2.542
C -1.102 1.756 3.363 H 3.937 -5.179 0.920
C -1.365 3.082 3.694 H 2.412 -4.467 1.459
C 1.394 -0.463 2.277 H 3.921 1.647 6.484
C 2.004 -1.448 1.509 H 2.409 0.847 6.061
C 3.292 -1.902 1.796 H 3.060 2.117 5.021
C 3.940 -1.347 2.899 H 5.997 1.303 5.188
C 3.354 -0.361 3.696 H 5.178 1.703 3.672
C 2.074 0.075 3.365 H 6.056 0.183 3.826
C -1.988 -2.725 3.694 H 5.066 -0.515 6.703
C -0.970 -1.835 3.363 H 5.128 -1.671 5.373
C -1.095 -0.976 2.276 H 3.613 -1.406 6.233
C -2.254 -1.010 1.508 H -0.533 -4.226 6.478
C -3.291 -1.898 1.795 H -0.463 -2.517 6.056
C -3.136 -2.737 2.897 H 0.304 -3.719 5.013
C 0.001 -0.001 1.887 H -1.877 -5.846 5.186
C 0.805 -4.083 -2.896 H -1.123 -5.341 3.668
C 1.365 -3.082 -3.694 H -2.878 -5.334 3.826
C 1.103 -1.755 -3.363 H -2.976 -4.126 6.703
C 0.296 -1.436 -2.276 H -4.009 -3.598 5.374
C -0.252 -2.457 -1.508 H -3.016 -2.422 6.232
C 0.000 -3.799 -1.794 H -5.647 -3.506 2.001
C 1.095 0.977 -2.276 H -4.609 -4.076 0.690
C 2.254 1.011 -1.508 H -6.136 -3.265 0.332
C 3.291 1.898 -1.795 H -3.865 -0.598 -0.675
C 3.135 2.738 -2.896 H -5.180 -1.667 -1.114
C 1.988 2.725 -3.694 H -3.546 -2.306 -0.942
C 0.969 1.835 -3.362 H -5.779 -1.031 2.537
C -3.354 0.361 -3.696 H -6.446 -0.802 0.914
C -2.074 -0.075 -3.364 H -5.061 0.156 1.449
C -1.394 0.463 -2.277 H 1.116 -5.271 -5.373
C -2.005 1.448 -1.508 H 2.089 -4.639 -6.701
C -3.292 1.901 -1.796 H 0.591 -3.824 -6.232
C -3.940 1.347 -2.899 H 3.185 -5.153 -3.824
C -0.001 0.001 -1.887 H 4.065 -3.634 -3.668
C 0.626 4.911 0.945 H 4.127 -4.541 -5.185
C -2.259 3.469 4.876 H 3.369 -1.590 -5.014
C 3.943 -3.000 0.948 H 1.944 -1.657 -6.057
C 4.136 0.219 4.879 H 3.392 -2.569 -6.478
C -1.878 -3.693 4.876 H -1.137 -5.320 1.118
C -4.569 -1.909 0.947 H -1.409 -3.647 0.677
C 2.260 -3.469 -4.876 H 0.231 -4.221 0.942
C -0.626 -4.912 -0.945 H -0.229 -6.946 -0.329
C 4.569 1.910 -0.947 H 1.234 -6.025 -0.689
C 1.878 3.692 -4.876 H 0.221 -6.642 -1.998
C -4.136 -0.219 -4.879 H -2.520 -5.989 -0.908
C -3.944 3.000 -0.948 H -1.992 -5.525 -2.532
C -0.203 6.204 1.002 H -2.662 -4.311 -1.444
C 0.739 4.491 -0.530 H 5.181 1.666 1.114
C 2.038 5.200 1.490 H 3.867 0.596 0.673
C -2.767 2.244 5.646 H 3.545 2.303 0.943
C -3.481 4.249 4.355 H 6.134 3.267 -0.331
C -1.464 4.356 5.852 H 4.606 4.077 -0.687
C 5.477 -2.921 0.997 H 5.644 3.509 -1.999

Continued on next page

239



A4. Supporting Information to Chapter 4

Table A4.5 – Continued from previous page
Element x y z Element x y z

C 3.515 -2.898 -0.525 H 6.447 0.805 -0.915
C 3.497 -4.367 1.502 H 5.780 1.035 -2.538
C 3.327 1.269 5.651 H 5.063 -0.154 -1.451
C 5.420 0.891 4.358 H 4.009 3.597 -5.375
C 4.509 -0.914 5.853 H 2.976 4.126 -6.703
C -0.562 -3.522 5.645 H 3.015 2.421 -6.232
C -1.946 -5.141 4.356 H 2.878 5.334 -3.827
C -3.042 -3.444 5.853 H 1.123 5.341 -3.669
C -5.276 -3.272 1.003 H 1.877 5.846 -5.187
C -4.264 -1.599 -0.528 H -0.304 3.718 -5.013
C -5.522 -0.830 1.496 H 0.463 2.516 -6.056
C 1.464 -4.356 -5.852 H 0.532 4.226 -6.478
C 3.482 -4.249 -4.355 H -5.128 1.671 -5.373
C 2.767 -2.244 -5.646 H -5.066 0.514 -6.703
C -0.740 -4.491 0.530 H -3.612 1.406 -6.233
C 0.204 -6.204 -1.001 H -6.056 -0.183 -3.826
C -2.037 -5.202 -1.491 H -5.178 -1.704 -3.672
C 4.264 1.597 0.527 H -5.996 -1.304 -5.188
C 5.274 3.274 -1.001 H -3.060 -2.118 -5.021
C 5.523 0.833 -1.498 H -2.408 -0.848 -6.061
C 3.042 3.444 -5.853 H -3.921 -1.647 -6.484
C 1.945 5.141 -4.356 H -4.035 3.657 1.111
C 0.562 3.522 -5.645 H -2.449 3.063 0.666
C -4.509 0.913 -5.853 H -3.758 1.923 0.944
C -5.420 -0.891 -4.358 H -5.904 3.666 -0.325
C -3.327 -1.269 -5.651 H -5.831 1.937 -0.678
C -3.514 2.899 0.525 H -5.872 3.117 -1.992
C -5.477 2.919 -0.996 H -3.939 5.179 -0.922
C -3.499 4.367 -1.504 H -3.808 4.483 -2.544
H -0.218 6.642 2.000 H -2.414 4.468 -1.462
H -1.233 6.026 0.691 H 0.002 -0.001 0.801
H 0.230 6.946 0.330 H -0.002 0.001 -0.800
H 1.407 3.647 -0.678 H -1.019 5.113 3.136
H 1.135 5.320 -1.118 H 0.877 2.189 0.667
H -0.234 4.222 -0.942 H -1.536 0.951 3.935
H 1.994 5.523 2.531 H 1.461 -1.854 0.667
H 2.521 5.987 0.906 H 4.939 -1.676 3.139
H 2.663 4.308 1.441 H 1.593 0.853 3.937
H -3.392 2.570 6.479 H -0.056 -1.810 3.934
H -1.944 1.658 6.057 H -2.334 -0.336 0.668
H -3.368 1.590 5.014 H -3.921 -3.437 3.137
H -4.127 4.541 5.185 H 1.019 -5.112 -3.136
H -4.064 3.634 3.668 H 1.536 -0.951 -3.935
H -3.185 5.153 3.824 H -0.876 -2.190 -0.667
H -2.089 4.640 6.701 H 2.334 0.336 -0.667
H -1.116 5.271 5.373 H 3.921 3.437 -3.137
H -0.591 3.824 6.232 H 0.056 1.810 -3.934
H 5.870 -3.120 1.994 H -1.593 -0.853 -3.936
H 5.832 -1.939 0.680 H -1.461 1.854 -0.667
H 5.904 -3.668 0.326 H -4.939 1.676 -3.139

Triphenylmethane dimer
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Table A4.6.: Energies for the triphenylmethane and the corresponding dimer at the
B3LYP-D3(BJ)-ATM/def2-TZVPP level. Thermostatistical corrections at
the PBEh-3c level.

Energy Unit Monomer Dimer

EE Hartree -733.5369732 -1467.087047
U Hartree -733.2520992 -1466.516800
H Hartree -733.2359432 -1466.485733
S calmol−1 120.837 184.166
G298K Hartree -733.2933572 -1466.573236
C-H· · ·H-C Å n/a 1.717

Table A4.7.: Coordinates of the structure of triphenylmethane optimized at B3LYP-
D3(BJ)-ATM/def2-TZVPP.

Element x y z Element x y z

35
C -0.706 4.072 3.144 C 0.080 0.014 1.876
C 0.086 3.814 2.029 H 0.092 0.036 0.783
C 0.316 2.505 1.629 H -0.888 5.091 3.458
C -0.238 1.432 2.328 H 0.941 2.308 0.766
C -1.033 1.701 3.439 H -1.482 0.884 3.986
C -1.264 3.012 3.846 H 1.638 -1.830 0.687
C 1.468 -0.437 2.309 H 4.964 -1.746 3.383
C 2.120 -1.423 1.568 H 1.614 0.843 4.022
C 3.370 -1.893 1.948 H 0.033 -1.815 3.950
C 3.990 -1.383 3.084 H -2.295 -0.368 0.671
C 3.349 -0.401 3.829 H -3.886 -3.391 3.253
C 2.099 0.070 3.442 H 3.861 -2.656 1.358
C -1.912 -2.686 3.724 H 3.824 0.005 4.713
C -0.879 -1.824 3.370 H -4.122 -1.904 1.283
C -1.004 -0.980 2.270 H -1.797 -3.335 4.582
C -2.184 -1.023 1.527 H -1.884 3.202 4.712
C -3.216 -1.884 1.874 H 0.522 4.632 1.472
C -3.084 -2.719 2.979

Table A4.8.: Coordinates of the structure of triphenylmethane dimer optimized at
B3LYP-D3(BJ)-ATM/cc-pVDZ.

Element x y z Element x y z

70
C -0.734 4.091 3.109 C -3.360 1.917 -1.970
C 0.006 3.815 1.964 C -4.013 1.390 -3.080
C 0.257 2.499 1.598 C -0.090 -0.012 -1.938
C -0.228 1.439 2.366 H 0.118 0.041 0.850
C -0.973 1.724 3.507 H -0.113 -0.029 -0.850
C -1.221 3.042 3.879 H -0.932 5.115 3.396

Continued on next page
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Table A4.8 – Continued from previous page
Element x y z Element x y z

C 1.477 -0.446 2.361 H 0.838 2.291 0.708
C 2.106 -1.440 1.611 H -1.369 0.913 4.102
C 3.363 -1.911 1.964 H 1.604 -1.853 0.744
C 4.011 -1.394 3.082 H 4.992 -1.757 3.360
C 3.393 -0.404 3.834 H 1.667 0.851 4.057
C 2.135 0.070 3.474 H 0.006 -1.861 3.966
C -1.937 -2.724 3.681 H -2.274 -0.307 0.698
C -0.897 -1.851 3.373 H -3.899 -3.417 3.149
C -1.005 -0.972 2.299 H 0.931 -5.119 -3.364
C -2.173 -0.988 1.534 H 1.372 -0.923 -4.096
C -3.209 -1.861 1.835 H -0.838 -2.278 -0.695
C -3.094 -2.734 2.913 H 2.274 0.331 -0.698
C 0.092 0.017 1.938 H 3.897 3.414 -3.184
C 0.733 -4.093 -3.084 H -0.005 1.843 -3.987
C 1.222 -3.049 -3.860 H -1.673 -0.864 -4.043
C 0.975 -1.730 -3.496 H -1.596 1.869 -0.755
C 0.229 -1.437 -2.357 H -4.994 1.751 -3.358
C -0.257 -2.492 -1.583 H 1.804 -3.260 -4.748
C -0.006 -3.810 -1.940 H -0.386 -4.614 -1.324
C 1.006 0.975 -2.308 H 3.837 -2.678 1.367
C 2.173 1.002 -1.542 H 3.891 0.008 4.702
C 3.207 1.873 -1.852 H -3.899 -0.027 -4.688
C 3.093 2.732 -2.941 H -3.832 2.690 -1.378
C 1.936 2.712 -3.710 H 1.836 3.379 -4.556
C 0.898 1.841 -3.393 H 4.101 1.884 -1.242
C -3.398 0.392 -3.826 H -4.103 -1.863 1.225
C -2.138 -0.078 -3.466 H -1.837 -3.401 4.519
C -1.476 0.447 -2.360 H -1.802 3.246 4.769
C -2.102 1.449 -1.616 H 0.385 4.623 1.353
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A4.3. Interaction Energies

A4.3.1. Energy Decomposition Analysis

Table A4.9.: Energies of the energy decomposition analysis of the (3,5-di-tert-
butylphenyl)methane dimer in C3 on the B3LYP-D3(BJ)-ATM/def2-
TZVPP level of theory.

[Hartree] [kcalmol−1]

Eelst -0.02894088 –18.16048
Enuc-nuc 7235.12086 4540060
E1-electron –14470.7822 –9080459
E2-electron 7235.63237 4540381

Eexch-rep 0.11836262 74.27289
Eexch –0.02976382 –18.67688
Eexch-rep 0.14812644 92.94978

Eorbital Relax. –0.02068952 –12.98273
Ecorr. –0.08309221 –52.14061

Etot –0.0584361 –36.66883
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Figure A4.3.: Representation of the energy decomposition analysis at the B3LYP-
D3(BJ)-ATM/def2-TZVPP level of theory with respect to the H· · ·H dis-
tance within the (3,5-di-tert-butylphenyl)methane dimer. The total in-
teraction energy (bold, green curve) shows a minimum around 1.59 Å.
Dispersion interactions (termed “DISP”) are dominant within the com-
plex mirroring long-range correlation effects. The local correlation energy
(termed “loc-Corr”) represents the short-range correlation part, already
described by the B3LYP hybrid functional.
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Appendix A5 contains:

• Computational details for DFT calculations, DFT-D corrections, DLPNO-CCSD(T),
and geometry optimization

• Benchmark data for MOR41, WCCR10, and HEAVY28

• LED for [[Rh(CNPh)4]2]2+ dication

• Timings

• Structure of indenyl complexes

A5.1. Appendix: Understanding and Quantifying
London Dispersion Effects in Organometallic
Complexes

A5.1.1. Computational Details

Density Functional Theory Calculations

All ground state DFT calculations were performed with TURBOMOLE 7.0.2,143,205

TURBOMOLE 7.3359 or ORCA 4.0.1144,145 program packages. Standard exchange-
correlation energy integration grids (TURBOMOLE: m4, ORCA: grid4, finalgrid5)
and usual convergence criteria for the self-consistent field convergence (10−7

Hartree) were used. The resolution of the identity (RI) approximation207,209 was
applied in all calculations for the electronic Coulomb energy contribution. Ahlrichs’
type quadruple-ζ basis sets with (def2-QZVPP) and without (def2-QZVP)254 ad-
ditional polarization functions were used and for timings also def2-SVP was em-
ployed.

DFT-D Corrections

Our standalone dftd3 and dftd4 was used for all D3(BJ)-ATM46 and D4210,308

(All partial charges used in D4 calculations were obtained self-consistently by
GFN2-xTB244 if not noted otherwise) single point calculations, respectively. For
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geometry optimization the TURBOMOLE 7.3 implementation of D4 was used.
All calculations employing the D3 and D4 correction scheme apply Becke-Johnson
(BJ) damping166 and include Axilrod-Teller-Muto (ATM) type three-body disper-
sion167,168 to the total dispersion energy. Molecular dispersion coefficients were
calculated with the D4 method standalone.

DLPNO-CCSD(T)

For generation of reference energies DLPNO-CCSD(T)261 was used in its sparse
maps implementation22 as available in ORCA 4.0.1144,145 with def2-TZVPP and
def2-QZVPP254 basis sets and corresponding auxiliary basis sets. The auxiliary
basis sets def2-TZVPP/C and def2-QZVPP/C477 were applied for the correlation
part. For complete basis set (CBS) extrapolation the scheme proposed by Neese
and Valeev271 was employed. VeryTightPNO 270 settings for def2-TZVPP and
TightPNO settings478 for def2-QZVPP and ORCA TightSCF convergence criteria
for the HF energy were used. The LED447 scheme was carried out with ORCA
4.0.1 as well.

Geometries

The Tetrakis(isonitrile)rhodium(I) dimer structure has been obtained with the dis-
persion corrected composite method PBEh-3c272 and the monomers have been cut
out of this dimer structure without further optimization. For the transition state
structure of the oxidative addition of methane to Pd(PCy3)2 and the structure of
the heavy carbene analogue Pb{C6H2 –2,4,6– iPr3)2}2 structures were optimized
at the PBE0-D4/def2-TZVP level of theory. The structures of the sumanene and
the bismetallic indenyl complexes were optimized on the PBE0-D4/def2-QZVP
level of theory. Minimum structures were verified as minima on the potential en-
ergy hyper surface by the absence of imaginary frequencies in harmonic frequency
calculations.

A5.1.2. Benchmark Data

Table A5.1.: MOR41 reaction energies given in kcalmol−1. DFT calculations employ the
def2-QZVPP basis set. Given are PBE0 (termed as “Pure”) and dispersion
corrected PBE0 values. We abbreviate D3(BJ)-ATM as D3 and D4(qTB)-
ATM as D4. Reference: DLPNO-CCSD(T)/TightPNO/CBS(def2-
TZVPP/def2-QZVPP)

# Ref. Pure D3 D4 NL
1 −43.1 −42.1 −44.7 −44.7 −45.8
2 −46.6 −45.2 −47.4 −46.9 −48.8
3 −27.6 −24.7 −26.4 −26.4 −27.6
4 −62.5 −69.0 −71.4 −71.7 −72.4

Continued on next page
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Table A5.1 – Continued from previous page
# Ref. Pure D3 D4 NL
5 3.7 −0.1 −2.4 −2.3 −3.3
6 −23.1 −19.8 −20.3 −21.0 −21.9
7 −16.2 −15.3 −15.3 −15.4 −17.4
8 −17.2 −12.7 −15.3 −17.0 −15.6
9 −18.8 −21.0 −15.0 −16.8 −16.2
10 −22.6 −13.3 −19.1 −19.5 −20.6
11 27.0 37.1 30.2 29.0 29.6
12 −29.8 −25.6 −28.9 −30.2 −31.4
13 −43.2 −39.3 −43.6 −43.8 −45.4
14 −52.0 −42.4 −50.5 −52.8 −53.8
15 −4.1 −3.7 −4.4 −5.1 −5.4
16 −39.8 −24.0 −40.0 −41.1 −41.3
17 −16.1 −8.2 −11.2 −14.5 −15.5
18 −34.2 −23.3 −32.8 −33.1 −33.0
19 −40.1 −26.8 −38.0 −38.4 −38.3
20 −30.2 −18.1 −27.8 −28.3 −28.4
21 −15.1 −8.2 −17.1 −17.5 −18.1
22 −35.9 −22.5 −32.1 −33.4 −32.4
23 −55.0 −41.2 −52.3 −52.4 −52.2
24 −41.6 −20.7 −41.7 −41.5 −41.6
25 −45.9 −21.2 −45.6 −45.6 −45.8
26 −36.4 −31.4 −39.0 −38.9 −34.6
27 −21.8 −24.4 −25.5 −25.5 −21.4
28 −36.3 −36.0 −39.6 −39.6 −35.4
29 −28.3 −27.5 −30.0 −29.9 −26.6
30 −14.9 −13.1 −16.1 −16.4 −12.3
31 −29.9 −28.4 −29.7 −29.8 −25.9
32 −1.9 0.4 0.7 0.4 0.1
33 −10.7 −6.6 −8.8 −10.0 −7.7
34 −25.6 −20.9 −25.0 −25.8 −23.1
35 −30.9 −25.4 −29.9 −30.3 −27.9
36 −39.8 −32.0 −35.3 −34.7 −34.0
37 −14.0 −20.2 −23.5 −23.3 −21.2
38 −64.4 −51.5 −71.8 −69.7 −65.0
39 −63.9 −54.9 −59.6 −61.2 −61.5
40 −65.8 −64.5 −69.2 −68.4 −69.9
41 −3.2 −6.0 −3.4 −3.4 −1.4

MD 5.5 < −0.1 −0.5 0.2
MAD 6.6 2.6 2.2 2.4

RMSD 8.7 3.4 3.0 3.1
SD 6.9 3.5 3.0 3.2
Var 47.0 11.9 9.2 10.0
Max 24.7 4.9 5.1 5.8
Min −6.5 −9.4 −9.3 −9.9

AMax 24.7 9.4 9.3 9.9
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Table A5.2.: WCCR10 ligand binding energies given in kcalmol−1. DFT calcula-
tions employ the def2-QZVPP basis set. Given are PBE0 (termed
as “Pure”) and dispersion corrected PBE0 values. We abbreviate
D3(BJ)-ATM as D3 and D4(qTB)-ATM as D4. Reference: DLPNO-
CCSD(T)/NormalPNO/CBS(cc-pVTZ-PP/cc-pVQZ-PP)

# Ref. Pure D3 D4
1 25.60 21.46 24.30 24.18
2 63.36 37.14 61.59 63.54
3 63.00 37.60 61.80 63.77
4 52.70 30.98 52.90 52.64
5 45.08 33.86 46.36 46.08
6 67.38 62.27 66.57 66.75
7 59.75 56.32 60.74 60.67
8 50.12 46.20 50.60 50.80
9 36.38 33.14 38.54 38.40
10 23.78 17.63 22.96 23.56

MD −11.1 −0.1 0.3
MAD 11.1 1.1 0.8

RMSD 14.3 1.2 1.0
SD 9.6 1.3 1.0
Var 91.9 1.7 0.9
Max −3.2 2.2 2.0
Min −26.2 −1.8 −1.4

AMax 26.2 2.2 2.0

Table A5.3.: HEAVY28 interaction energies given in kcalmol−1. DFT calculations em-
ploy the def2-QZVP basis set. Given are PBE0 (termed as “Pure”) and
dispersion corrected PBE0 values. We abbreviate D3(BJ)-ATM as D3
and D4(qTB)-ATM as D4. Reference: CCSD(T)/CBS(aug-cc-pwCVTZ-
PP/aug-cc-pwCVQZ-PP)

# Ref. Pure D3 D4
1 1.16 0.12 1.42 1.46
2 2.49 2.02 2.83 2.89
3 1.36 0.42 1.52 1.51
4 0.77 0.18 0.88 0.86
5 0.98 0.27 1.11 1.07
6 1.30 0.48 1.56 1.47
7 0.60 0.38 0.88 0.90
8 1.25 −0.04 1.38 1.30
9 0.55 0.02 0.80 0.73
10 0.36 0.12 0.42 0.44
11 0.75 −0.01 0.77 0.79
12 0.93 0.03 0.94 0.92
13 1.18 0.00 1.20 1.14
14 0.65 0.04 0.85 0.82
15 1.28 0.13 1.60 1.60
16 1.57 1.55 2.13 2.03
17 1.06 0.73 1.51 1.39
18 2.02 2.03 2.85 2.66
19 1.89 1.84 2.74 2.55
20 1.49 1.28 2.30 2.12
21 2.84 2.46 3.50 3.51
22 0.52 −0.15 0.76 0.72

Continued on next page
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Table A5.3 – Continued from previous page
# Ref. Pure D3 D4
23 0.68 0.36 0.81 0.87
24 0.48 −0.09 0.60 0.62
25 1.23 0.52 1.41 1.36
26 1.22 0.42 1.38 1.35
27 0.80 0.23 1.11 1.06
28 3.35 3.10 4.07 4.07

MD −0.58 0.31 0.27
MAD 0.58 0.31 0.27

RMSD 0.68 0.40 0.34
SD 0.36 0.26 0.22
Var 0.13 0.07 0.05
Max 0.01 0.85 0.72
Min −1.29 0.01 −0.04

AMax 1.29 0.85 0.72

A5.1.3. LED

Table A5.4.: Energy contributions as coming from the LED analysis given in kcalmol−1.

∆Eint ∆Eel-prep ∆Eelint ∆E(X,Y)
exch ∆Edisp ∆Ered,(X,Y)

C-(T)

∣∣∣ Edisp
∆Eint

∣∣∣

13.1 164.5 −71.4 −30.1 −47.9 −2.1 3.7

Absolute dispersion energy deviations: ∆Edisp − ∆EHF/DFT-Ddisp
HF-D3 −1.7

B3LYP-D3 −6.0
PBE0-D3 −19.6

HF-D4 4.6
B3LYP-D4 −1.9
PBE0-D4 −16.6

In order to obtain a more accurate dispersion energy the triples contributions is
further decomposed into charge transfer and dispersion interaction by an estima-
tion scheme, where the ratio of the dispersion part of the strong pairs Edisp(X,Y)

C-SP
is divided by the total interaction energy of the strong pairs E(X,Y)

C-SP to obtain the
ratio rsp. For the total dispersion contribution the triples contribution are scaled
by rsp. The remaining triples contribution is termed Ered.,(X,Y)

C-(T) .

rsp =
E
disp(X,Y)
C-SP

E
(X,Y)
C-SP

(A5.1)

Edisp = E
disp(X,Y)
C-SP + E

(X,Y)
C-WP + rSPE

(X,Y)
C-(T) (A5.2)
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A5.1.4. Timings
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Figure A5.1.: CPU timings of selected DFT-D combinations for a diamondoid with 430
atoms. qTB indicates the use of charges obtained from the GFN2-xTB
Tight-Binding method,244 qC the use of classical charges.

A5.1.5. Indenyl Complexes

(OC)3Cr ML2
(OC)3Cr ML2

syn anti

Figure A5.2.: Structures of the syn- and anti-facial bimetallic indenyl
species (1: ML2=Rh(norbornadiene), 2: ML2=[Rh(CO)2], 3:
ML2=[Rh(cyclooctadiene)], 4:ML2=[Ir(CO)2]).
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Abbreviations

ACFD Adiabatic Connection Fluctuation Dissipation

AE All-Electron

AIM Atom-in-Molecule

AMAX Absolute Maximum deviation

AOs Atomic Orbitals

ATM Axilrod–Teller–Muto

B88 Becke Exchange

BOA Born–Oppenheimer Approximation

BSIE Basis Set Incompleteness Error

BSSE Basis Set Superposition Error

CI Configuration Interaction

CNs Fractional Coordination Numbers

C Correlation

DFAs Density Functional Approximations

DFT Density Functional Theory

ES Electrostatics

EXR Pauli Exchange Repulsion

FBZ First Brillouin Zone

GGA Generalized Gradient Approximation

GTOs Gaussian Type Orbitals

HF Hartree–Fock

HK Hohenberg and Kohn

IND Induction

INT total interaction energy

KS Kohn–Sham
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LCAO-MO Linear Combinations of Atomic Orbitals

LD London Dispersion

LED Local Energy Decomposition

LRD Local-Response Dispersion

LR Long-Range

LSDA Local Spin Density Approximation

LYP Lee–Yang–Parr

MAD Mean Absolute Deviation

MBD@scsTS Many-Body Dispersion

MD Mean Deviation

mGGA meta-GGA

MP2 Møller–Plesset Perturbation Theory of Second-Order

NAOs Numerically Tabulated Atom-Centered Orbitals

NHCs N-heterocyclic Carbenes

NCIs Noncovalent Interactions

OS Opposite-Spin

PAW Projector Augmented-Wave

PBCs Periodic Boundary Conditions

PBE Perdew–Burke–Enzerhof

PHS Pseudo Hilbert Space

PT Rayleigh–Schrödinger Perturbation Theory

QM Quantum Mechanical

RMSD Root Mean Squared Deviation

RPA Random Phase Approximation

RSH Range-Separated Hybrids

SAPT Symmetry-Adapted Perturbation Theory
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SCAN Strongly Constrained and Appropriately Normed

SIE Self-Interaction Error

SR Short-Range

SS Same-Spin

STOs Slater Type Orbitals

TD-DFT Time-Dependent Density Functional Theory

TPM tris(3,5-di-tert-butylphenyl)methane

TPSS Tao–Perdew–Staroverov–Scuseria

TS Tkatchenko–Scheffler

vdw-DF van der Waals Density Functionals

WFT Wave Function Theory

XC Exchange-Correlation

XDM Exchange Dipole Moment

X Exchange
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