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Abstract

Frequent itemset mining is a classical data mining task with a broad range of applications,
including fraud discovery and product recommendation. The enumeration of frequent
itemsets has two main benefits for such applications: First, frequent itemsets provide a
human-understandable representation of knowledge. This is crucial as human experts are
involved in designing systems for these applications. Second, many efficient algorithms
are known for mining frequent itemsets. This is essential as many of today’s real-
world applications produce ever-growing data streams. Examples of these are online
shopping, electronic payment or phone call transactions. With limited physical main
memory, the analysis of data streams can, in general, be only approximate. State-of-
the-art algorithms for frequent itemset mining from such streams bound their error by
processing the transactions in blocks of fixed size, either each transaction individually
or in mini-batches. In theory, single transaction-based updates provide the most up-to-
date result after each transaction, but this enumeration is inefficient in practice as the
number of frequent itemsets for a single transaction can be exponential in its cardinality.
Mini-batch-based algorithms are faster but can only produce a new result at the end
of each batch. In this thesis, the binary choice between up-to-date results and speed is
eliminated. To provide more flexibility, we develop new algorithms with a probabilistic
error bound that can process an arbitrary number of transactions in each batch.
State-of-the-art algorithms mining frequent itemsets from data streams with mini-
batches derive the size of the mini-batch from a user-defined error parameter and hence
couple their error bound to the size of the update. By introducing a dynamic error
bound that adapts to the length of the data stream the error is decoupled from the size
of the update. The benefits of this approach are twofold: First, the dynamic error bound
is independent of the size of the update. Hence, an arbitrary number of transactions
can be processed without losing the error bound. Second, the bound becomes tighter as
more transactions arrive and thus the tolerated error decreases, in contrast to algorithms
with static thresholds. Our approach is extensively compared to the state-of-the-art in
an empirical evaluation. The results confirm that the dynamic approach is not only
more flexible but also outperforms the state-of-the-art in terms of F-score for a large
number of data streams.
As it is easier for experts to extract knowledge from a smaller collection, we consider
mining a compact pattern set. Especially useful are parameterized pattern classes for
which the expert can regulate the size of the output. An example of such a parameterized
pattern class are strongly closed itemsets. Additionally, they are stable against small
changes in the data stream. We present an algorithm mining strongly closed itemsets
from data streams. It builds on reservoir sampling and is thus capable of producing a
result after any number of transactions, once the initial sample is complete. The high
approximation quality of the algorithm is empirically demonstrated and the potential of
strongly closed patterns for two stream mining tasks is shown: concept drift detection
and product configuration recommendation.
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Zusammenfassung

Das Finden häufiger Itemsets ist eine klassische Aufgabe der Datenanalyse mit breitem
Anwendungsspektrum, wie etwa der Betrugserkennung und der Produktempfehlung.
Häufige Itemsets stellen eine verständliche Form der Wissensrepräsentation dar. Davon
profitieren Experten, die mit ihnen arbeiten. Außerdem gibt es viele effiziente Algo-
rithmen für ihre Aufzählung. Dies ist wesentlich, da viele reale Anwendungen lange
Datenströme erzeugen. Beispiele hierfür sind Online-Einkäufe, Transaktionen aus elek-
tronischen Zahlungen und der Telekommunikation. Durch den limitierten Hauptspeicher
kann die Analyse von Datenströmen in der Regel nur approximativ erfolgen. Die Qual-
ität der Approximation richtet sich nach einer Fehlerschranke. Existierende Algorithmen
beschränken ihre Fehler durch die Verarbeitung von Transaktionen in Blöcken fester
Größe. Entweder verarbeiten sie Transaktionen einzeln oder in Mini-Batches. Theo-
retisch liefern transaktionsbasierte Verfahren das aktuellste Ergebnis nach jeder Transak-
tion. In der Praxis ist diese Strategie jedoch langsam, da die Anzahl häufiger Muster in
einer Transaktion exponentiell in ihrer Kardinalität sein kann. Mini-Batch-basierte Al-
gorithmen sind schneller, können jedoch nur am Ende eines Batches ein Ergebnis liefern.
Als Alternative zur binären Wahl zwischen Aktualität und Geschwindigkeit werden hier
neue Algorithmen vorgestellt, die in der Lage sind Batches mit einer beliebigen Anzahl
an Transaktionen zu verarbeiten. Für diese beweisen wir eine probabilistische Schranke
ihres Fehlers.
Aktuelle Mini-Batch-basierte Algorithmen leiten ihre Batch-Größe aus einem vom An-
wender vorgegebenen Fehlerparameter ab. Hierdurch koppeln die Algorithmen die
Fehlerschranke an die Batch-Größe. In dieser Arbeit wird durch die Einführung einer
dynamischen Fehlerschranke, die sich an die Länge des Datenstroms anpasst, eine
größere Flexibilität erreicht, die zweierlei Vorteile bietet. Erstens beweisen wir, dass die
dynamische Fehlerschranke unabhängig von der Größe des Mini-Batches ist und daher
beliebig viele Transaktionen verarbeitet werden können. Zweitens wird die Schranke
kleiner und der tolerierte Fehler geringer, je mehr Transaktionen vorliegen. Im Gegen-
satz hierzu verwenden viele existierenden Algorithmen statische Fehlerschranken. Der
neue Ansatz wird umfassend empirisch mit dem Stand der Technik verglichen. Die
Ergebnisse bestätigen die Vorteile unseres dynamischen Ansatzes. Das Verfahren ist
nicht nur flexibler als der Stand der Technik, sondern es erreicht auch ein besseres F-Maß
für die Mehrzahl getesteter Datensätze.
Ergänzend wird das Finden einer kompakten Mustermenge betrachtet, da die Wissens-
extraktion aus kleineren Mengen für Experten einfacher ist. Besonders nützlich sind
parametrisierbare Mengen, für die sich die Zahl der Muster steuern lässt. Eine dieser
Mengen sind Strongly Closed Itemsets. Wir stellen einen Algorithmus für das Finden von
Strongly Closed Itemsets aus Datenströmen vor. Er basiert auf dem Reservoir-Sampling-
Verfahren und ist daher in der Lage, nach einer beliebigen Anzahl von Transaktionen,
ein Ergebnis zu liefern. Die hohe Approximationsgüte des Ansatzes wird empirisch
belegt und das Potenzial von Strongly Closed Itemsets bei der Datenstromanalyse beim
Erkennen von Konzeptverschiebungen und dem Empfehlen von Produktkonfigurationen
aufgezeigt.
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1. Introduction

Frequent itemset mining (Agrawal et al., 1993) is considered to be one of the most im-
portant data mining problems (Zhu et al., 2007). It is motivated by a huge number of
practical applications including, for example, association rule discovery, fraud discovery,
recommendation systems, advertising strategies, catalog design, plagiarism detection,
and biomarker identification (Leskovec et al., 2014). While the algorithmic aspects of
pattern discovery from static databases are well-understood, many real-world settings
produce continuous and potentially unbounded data streams (Gama, 2010). Their anal-
ysis is a computationally challenging task because they provide a constant flow of new
information, while the computational resources are limited (Babcock et al., 2002). State-
of-the-art algorithms mining frequent itemsets from transactional data streams guaran-
tee error bounds only if the transactions are either processed transaction by transaction
or in fixed-size mini-batches. The first strategy is slow. In particular, frequency-based
pruning is less efficient for single transaction updates. This limits such algorithms to
transactions of small size1. Mini-batch-based updates lack flexibility: They only produce
new results at the end of each mini-batch. Working with a fixed batch size is impracti-
cal if the transaction rate changes over time as is the case, e.g., for electronic payment
transactions. If such algorithms are queried for an updated result while the mini-batch
is incomplete, they lose their guarantees. In this thesis, we address the problem of the
binary choice between slow or fast but static fixed-size update intervals. Our goal is to
decouple the error bound from the update interval. We present algorithms with guaran-
teed error bounds that combine the flexibility of the transaction-based scheme and the
speed of mini-batch-based updates. In other words, the goal is to present new algorithms
with guarantees that are independent of the number of processed transactions, without
the need to produce a new result for each individual transaction.

1.1. Motivation

Data streams are ubiquitous. Any series of events constitutes a data stream. The speed
of the wind or the temperature at a given location are two data streams of natural
origin, while traffic flow, payment transactions, telecommunication, or network packages
are human-generated data streams. These are just a few of the omnipresent examples
of sources of data streams. Such streams can be analyzed with various goals. As a
prominent example, in case of payment and telecommunication transactions, one of the
goals of the analysis is the identification of fraud, see, e.g., Delamaire et al. (2009); Rosset

1 For any minimum frequency threshold θ, transaction by transaction enumeration would generate all
subsets (i.e., exponentially many frequent itemsets) for each of the first 1/θ transactions.
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Country MCC Amount in € Fraud
DEU 5411 54.23 false
DEU 5661 198.99 true
DEU 5411 27.31 false
FRA 8021 102.95 false
FRA 5940 1799.00 false
ITA 5411 54.23 false

Figure 1.1.: Example payment transactions, showing the country, merchant category
code (mcc), amount in € and fraud flag. See, e.g., Bhattacharyya et al. (2011) for
further typical data fields.

et al. (1999). Fraud discovery is important due to the high financial losses caused by
fraudulent behavior. The European Central Bank, for example, reported a total value of
€1.8 billion of fraud losses in the year 2016 for the cards issued within the Single Euro
Payments Area (SEPA) (ECB, 2018).
To reduce these losses, fraud analysts often craft manual rules and feed them into com-
mercial systems such as Online watcher, BV Detect, or SAS Fraud Manager. The inter-
pretability of the fraud patterns is crucial in this context for the fraud analysts. First,
they try to understand the fraud patterns to reason about new means to prevent fraud
and second, they want to be able to explain a customer who’s transaction got acciden-
tally blocked why it was blocked. For these analysts, frequent itemsets and rules derived
from are a valuable input. Once a rule is implemented to prevent a certain fraud pattern,
fraudsters adapt their strategy and new fraud patterns emerge. This creates a constant
demand for the continuous analysis of the stream of payment transactions and the iden-
tification of new frequent fraud patterns. If an analyst detects an active attack, i.e., a
sudden peak in the number of reported fraud incidents, she is interested in an immediate
updated result of the frequent patterns to implement new rules to stop this new kind of
attack. Waiting for any mini-batch to complete in this setting is a considerable obstacle.
As an example, we consider the following set of payment transactions given in Figure 1.12.
The attributes of the transactions are the country in which the transaction took place,
the code for the category of the merchant (mcc), the amount of money spent in euro, and
a fraud flag. We call each “value” of a transaction an item and any combination of items
an itemset. In the above example, we have a total of 14 items. For a universe of n items,
there are 2n − 1 different non-empty itemsets. It is infeasible to list them all if n is not
very small. A common strategy is to list only the frequent itemsets, cf. Agrawal et al.
(1993). An itemset is frequent if it occurs at least as often as a user-defined minimum
support threshold. We ignore the fraud flag for now and list all the frequent itemsets
for a minimum support threshold of 2 in Figure 1.2.

2 For the ease of understanding, we do not list the full set of data fields available for each transaction.
Payment transactions include data about the card, the merchant, the payment, and its processing.
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Itemset Support
DEU 3
5411 3
DEU & 5411 2
FRA 2
54.23 2
5411 & 54.23 2

Figure 1.2.: Frequent itemsets for the example transactions of Figure 1.1 with a minimum
support threshold of 2.

While an absolute minimum support threshold is reasonable for static databases, it is less
suitable for growing data streams: As the stream length increases, with high probability
more and more itemsets will become frequent for a given minimum support threshold.
It is therefore common to use a relative frequency threshold θ instead. An itemset is
frequent given the relative threshold θ if it occurs in at least a fraction θ of transactions in
the stream. For any fixed-size data set, the minimum support threshold can be converted
to a minimum frequency threshold and vice versa. For the above example, the minimum
support threshold of 2 corresponds to the frequency threshold θ = 1/3.
For the task of fraud discovery from transactional data streams, frequent itemsets can
be employed as follows: Generate one data stream from all fraudulent transactions and
add a transaction to it as soon as it is reported as fraudulent. The patterns discov-
ered from this stream are potentially characteristic for fraud. They could, however, be
characteristic both for fraud and genuine transactions. It is hence necessary and com-
mon to compute a reference model. This model would ideally be mined only from all
genuine transactions. However, the true labels of transactions are not known for up to
three months. During this period a customer can report any transaction as fraudulent.
To stop fraud early in this setting an online update of the fraud cases is required as
soon as they are reported. If a transaction is reported as fraud, it is labeled as a fraud
transaction and immediately added to the stream of fraudulent transactions. All other
transactions are considered to be genuine. Overall, fraud cases are very rare events. It
is, therefore, reasonable to assume that the reference model is not affected by the very
few transactions that turn out to be fraud cases later. The reference model can hence
be computed from the stream of all transactions without delay, providing an up-to-date
result needed for fast reaction. Given the set of frequent itemsets mined from both
streams, these sets are compared to each other. Patterns that occur with high frequency
in the fraudulent transactions and are infrequent in all transactions are characteristic
for fraud.
We have applied our approach to real-world payment transactions and mined frequent
itemsets with a minimum frequency threshold of 0.1, i.e, 10% of the transactions. From
our results, we report two patterns: 68% of the fraudulent transactions have security
type = 5 and response code = 2 whereas this combination occurs for only 17% of all
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transactions of one bank. For another bank we obtained a pattern identifying a single
merchant. It occurred in 61% of the fraudulent transactions and less than 10% in the
stream of all transactions for two months. The ECB does not reveal its methods of
analysis but reports a pattern that would be found with our method: “Cross-border
transactions within SEPA made up for 8% of all transactions, but 43% of fraudulent
transactions.” (ECB, 2018).
We have motivated our work with an exemplary use case from finance. Similar use
cases exists in other industrial segments, for example, mobile phone fraud discovery in
telecommunications (Etzion et al., 2016). We note that our approach sketched above
is not limited to fraud detection; in a more general perspective it can be applied to
any transactional data stream classification task even with strong class imbalance and
delayed label generation.

1.2. Background

Data mining is concerned with the extraction of knowledge (e.g., fraud patterns) from
large data collections that are static (e.g., databases) or dynamic (e.g., data streams).
It is an interdisciplinary field between computer science and statistics. After more than
20 years, the classical definition of Fayyad et al. (1996) is still up-to-date:

“Knowledge discovery [...] is the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data”.

Depending on the data analysis task at hand, the extracted knowledge can take diverse
forms. The most prominent tasks include, among others, classification (Duda et al.,
2000), clustering (Jain et al., 1999), outlier detection (Hodge and Austin, 2004), pattern
discovery (Mannila, 2002), regression (Draper and Smith, 1998), and summarization
(Gong and Liu, 2001). Each task has its objective and solves accordingly some particular
class of problems. Pattern discovery, the subfield we are interested in, can itself take
many forms, such as frequent itemset mining or association rule discovery (Agrawal
et al., 1993), subgroup discovery (Klösgen, 1995), and others.
The book “Knowledge Discovery from Data Streams” by Gama (2010) provides a very
good general introduction to the topic of data stream mining. Since the entire data of
a potentially unbounded stream cannot be stored in limited memory, different window
models for the analysis of data streams have been proposed. The sliding window model
considers a constant number of the most recent transactions. This model allows access-
ing the data within the fixed-size window multiple times. The time fading model assigns
weights to transactions. As transactions become older, their weight is reduced until they
eventually no longer contribute to the result and can be removed. This model can be
considered as a variation of the sliding window model. These models are, however, not
well-suited for some use cases. Consider the example of fraud discovery once more. The
number of fraudulent transactions fluctuates. Hence, the frequent itemsets mined from
the stream containing the fraudulent and the one containing all transactions are hard to
synchronize under these models. In contrast, the landmark model considers a growing
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frame of the data stream from some landmark start transaction. The patterns extracted
from the two data streams are always synchronized in this setting, i.e., in our example,
all fraudulent transactions are contained in the stream of all transactions. Algorithms
extracting patterns from data streams under this model have access to the data in one
pass only (Babcock et al., 2002). This implies that all data from the past that are re-
moved from the memory will be lost forever; this is an essential difference to the batch
algorithms designed for static data sets and those for the other window models. In these
cases, data can be accessed multiple times, which facilitates the development of algo-
rithms for these settings. In fact, many data mining algorithms were first proposed for
static data sets. In contrast, the analysis of data streams requires specialized algorithms.
In the case of the landmark model, they often produce only approximate results with
some explicit or implicit error bound. The focus of this thesis is on frequent itemset
mining from transactional data streams with the landmark model. This problem is solv-
able only approximately for any single pass algorithm. Any exact solution requires two
passes, cf. Hidber (1999). Most algorithms mining frequent itemsets from data streams
with an explicit error guarantee can update the extracted patterns not upon request,
but at some fixed time points only. This is a strong limitation, especially for the anal-
ysis of data streams with variable transaction rates, such as the payment transactions
mentioned above.
Formally, each transaction is a non-empty subset of a finite ground set, called the set
of items. Its subsets will be referred to as itemsets. The batch version of the frequent
itemset mining task, i.e, when the entire data is available for the algorithm simultane-
ously, originates from the analysis of shopping baskets, where the items correspond to
the products that can be purchased (Agrawal et al., 1993). The central problem for
this classical task is to generate all itemsets that are bought together frequently. The
notion of “frequent” is a binary property specified by a user-defined frequency threshold.
In this sense, the frequency of an itemset denotes the popularity of the combination of
the products in it. From the application point of view (e.g., store layout design), such
frequent itemsets represent the essential “knowledge” about the shopping behavior of
customers. The algorithmic difficulty of this problem lies in the fact that the number of
frequent itemsets can be exponential in the cardinality of the set of items, implying the
infeasibility of the generation of all frequent itemsets.
To overcome the above algorithmic challenge, one may consider the k most-frequent
itemsets only for some user-defined integer k. Another common option to control the
size of the output is to increase the frequency threshold. Clearly, the larger the thresh-
old is, the smaller the cardinality of the output. These common pruning approaches
introduce, however, a bias towards short patterns (see, e.g., Zhu et al. (2007)). A third
possibility is to consider some compact representation of the family of frequent item-
sets, such as maximal (Mannila and Toivonen, 1997), crucial (Das and Zaniolo, 2016),
or closed (Pasquier et al., 1999b) frequent itemsets. While maximal frequent itemsets
provide the most compact representation, they cannot be used to determine the sup-
port of the frequent itemsets without any (further) database access. Furthermore, it is
computationally intractable to generate this family of itemsets (Boros et al., 2003). The
family of crucial itemsets, a superset of maximal frequent itemsets, provides another
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compact representation. While it is an open question whether they can be enumerated
efficiently, this family has the advantage that the support of all frequent itemsets can
be derived without any database access (Das and Zaniolo, 2016). Finally, the family of
closed frequent itemsets, a superset of crucial itemsets, can be listed with polynomial
delay (see, e.g., Gély (2005)) and allows to determine the support count of the frequent
itemsets without any database access (Pasquier et al., 1999b). The disadvantage of this
family is, however, that its cardinality can be exponential in that of the maximal fre-
quent itemsets (Boros et al., 2003), making it infeasible for data stream applications
with too many closed frequent patterns. Similarly to frequent itemsets, the size of the
output can be controlled by a frequency threshold, facing, however, the bias mentioned
above.

1.3. Contributions

In this thesis, we deal with generating frequent and other types of parameterized (e.g.,
strongly closed) itemsets from transactional data streams, i.e., from a sequence of trans-
actions received one by one. We consider the problem of mining such itemsets from data
streams under the landmark model with guaranteed error bounds. Such guarantees are
important, for example, for the discovery of fraud. This section summarizes the most
important contributions of this dissertation.
For the batch setting, algorithms mining frequent itemsets have been empirically com-
pared by Hipp et al. (2000). Motivated by the vast amount of literature on the subject
of frequent itemset mining from transactional data streams and the lack of a systematic
experimental empirical comparison of the state-of-the-art algorithms for this problem,
our first contribution is concerned with an overview of mining frequent itemsets from
data streams, including a systematic empirical evaluation of the most prominent state-
of-the-art algorithms.

C1 More precisely, in Chapter 3 we collect and discuss the most important state-
of-the-art algorithms mining frequent itemsets from transactional data streams,
including their main algorithmic properties. Since this chapter considers not only
the algorithms developed for the landmark model, but also those working in the
sliding window and the time fading models, the chapter serves as a short survey
of the most prominent algorithms and as such, may be of some independent inter-
est. For the empirical evaluation, we considered the algorithms Carma (Hidber,
1999), Lossy Counting (Manku and Motwani, 2002), FDPM (Yu et al., 2006),
SApriori (Sun et al., 2006), and EStream (Dang et al., 2008). All other algo-
rithms discussed in Chapter 3 have been excluded from our experiments, as they
are tailored to specific data streams, e.g., streams with short transactions.
To obtain a fair comparison, we implemented all five algorithms listed above and
evaluated them extensively in Chapter 4, where we compare the state-of-the-art to
our new algorithms. For the FDPM algorithm, in particular, we have identified a
bottleneck in its original pruning mechanism (Yu et al., 2004). This motivated us
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to modify the pruning strategy of the algorithm, obtaining a much faster algorithm
in this way, without affecting its accuracy. We omit the technical details of this
reimplementation and denote the modified algorithm in the subsequent chapters by
FDPM∗. Finally, we systematically evaluated these state-of-the-art algorithms on
real-world and synthetic data streams of different characteristics. All algorithms,
except for FDPM∗, obtained an average F-score below 0.9. Only FDPM∗, our
improved version of FDPM, was able to achieve an average F-score of 0.96. This
is especially surprising, as the algorithms SApriori and EStream were published
after FDPM.

Our analysis of the state-of-the-art algorithms revealed that they lack the flexibility to
be queried after an arbitrary number of transactions: Either they are based on the mini-
batch design or they compute an update for each transaction at the expense of slow
throughput. The algorithms with mini-batches derive the batch size from their error
bound. Accordingly, they lose their error guarantee if an incomplete batch is processed.
The use case of fraud discovery requires a fast response whenever the fraud rate increases.
As mentioned above, fixed-size batches are obstacles in this setting. We, therefore,
consider the problem of mining transactional data streams with error bounds that hold
independently of the number of processed transactions. More precisely, we decouple
the probabilistic guarantee from the update interval to achieve the high throughput of
mini-batch-based algorithms and the flexibility of updates per transaction at the same
time to develop algorithms that can be queried after any number of transactions.

C2 Our second main contribution is as follows: We first present an algorithm improv-
ing the estimation of an itemset’s frequency for the past, when it was not counted,
as additional transactions are received in the stream. This is a distinguishing fea-
ture compared to the state-of-the-art algorithms. They profit from longer data
streams by obtaining more accurate statistics for each itemset from the time only
when they start counting it. Our algorithm additionally uses its statistics to derive
a dynamic estimate for the past based on conditional probabilities. More precisely,
our data stream mining algorithm, called Partial Counting, maintains the count
of an itemset together with the counts of its immediate subsets to compute condi-
tional probabilities given the counts of the subsets. It obtains an average F-score
of 0.9 in our extensive empirical evaluation, which compares to the state-of-the-art
algorithms mentioned above in contribution C1. However, the F-score obtained by
Partial Counting is below that of FDPM∗. The time and space required by
this algorithm are moderate in comparison to the best algorithms. Remarkably,
the probabilistic inference sketched above outperforms the well-established Lossy
Counting algorithm by Manku and Motwani (2002) in terms of F-score (Lossy
Counting obtained an average F-score of 0.86 only).
This is one of our main motivations for our second algorithm, called Dynamic
Threshold Miner (DTM). It computes a dynamic confidence threshold derived
from Chernoff’s bound based on the user-defined frequency threshold θ and confi-
dence parameter δ. We formally prove that the relative frequency of any itemset is
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approximated by our DTM algorithm with at most some small user-defined error
ε, with probability at least 1− δ. With additional transactions in the data stream,
the threshold gets tighter. When the algorithm starts counting a new potentially
frequent itemset, it uses the same dynamic bounding scheme derived from Cher-
noff’s bound to estimate the itemsets frequency in the past, when it has not been
counted. Because the bound depends on the number of transactions, the algorithm
can be queried after any number of transactions to obtain an updated result. We
extensively compare our algorithm empirically to the state-of-the-art algorithms.
It achieves an excellent average F-score of 0.98, outperforming all state-of-the-
art algorithms. This result shows that our probabilistic reasoning works well in
practice. We describe the two algorithms above in detail in Chapter 4.

The set of frequent itemsets can become infeasible large, essentially restraining e.g.
understandability. To facilitate knowledge extraction, we therefore aim at a further
reduction of the set of patterns. This is additionally motivated by the fact that frequent
itemsets have a language bias towards short patterns. It is caused by the fact, that any
subset of a frequent itemset is not only frequent, but has typically a higher frequency
than the itemset containing it. Thus, the increase of the frequency threshold eliminates
long patterns, i.e., we have a language bias towards short patterns. Long patterns can be
especially useful in knowledge acquisition, as they represent a combination of conditions
(i.e., items). Closed itemsets reduce the pattern space compared to frequent itemsets,
but the set of closed patterns can still be huge. Frequent closed itemsets, on the other
hand, are controlled by the frequency threshold and as discussed above suffer from the
language bias towards short patterns. To overcome this language bias, we propose to
mine the family of relatively strongly or ∆̃-closed itemsets (Boley et al., 2009b) from
data streams. For a growing data stream, the number of absolutely ∆-closed patterns
(Boley et al., 2009b) increases with the stream length, in contrast to relatively ∆̃-closed
patterns. The size of the output of this parameterized pattern class can be effectively
controlled with the parameter ∆̃ without the language bias towards short patterns.
Hence, the output can contain long patterns. This third main contribution is presented
in Chapter 5 and can be summarized as follows:

C3 We consider the problem of mining the family of relatively ∆̃-closed itemsets.
The output of this pattern class can be controlled effectively. We present the
SCSM algorithm mining relatively strongly closed itemsets from data streams.
The algorithm maintains a fixed-size sample, where the sample size is determined
by Hoeffding’s inequality. It is a probabilistic algorithm with a classical ε-δ-bound.
More precisely, the sample size is chosen in a way that with probability at least
1 − δ, the relative frequency in the sample deviates from that in the data stream
by at most ε. The fixed sample size allows us to cast the problem into that of
mining absolutely ∆-closed itemsets. They have several algorithmic advantages.
In particular, they can be enumerated efficiently with a closure operator and are
stable against changes (Boley et al., 2010). Our algorithm efficiently maintains
and updates the family of ∆-closed itemsets from the sample. More precisely, it
decomposes the update operation computing the closure based on a case distinction
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for the outcome of the intersection of a closed set with the newly added and removed
transactions. With this strategy, the algorithm can avoid the computation of the
closure operator in many cases and hence save a significant amount of time. We
use the reservoir sampling scheme (Knuth, 1997; Vitter, 1985), which allows it
to update the patterns at any time after the initial sample has been completed.
Hence, our algorithm follows the anytime paradigm (Dean and Boddy, 1988) with
respect to the sample. Our empirical evaluation confirms the high approximation
quality of the SCSM algorithm in terms of precision and recall. Furthermore, it
demonstrates that it is significantly faster than the Batch algorithm generating
the set of strongly closed patterns for each mining request anew.

In addition, we evaluate the suitability of strongly closed itemsets for the classical
task of concept drift detection and computer-aided product configuration recom-
mendation (Falkner et al., 2011). Our extensive experimental results confirm that
already a few strongly closed patterns are capable of detecting concept drifts for a
broad variety of such drifts and various algorithmic parameters. The latter is im-
portant to detect drifts, even if the parameters are not well-tuned. For the problem
of product configuration recommendation, we evaluate the suitability of strongly
closed sets empirically. Our empirical results with real-world data from an indus-
trial project demonstrate the suitability of strongly closed patterns for this task.
The recommendation based on strongly closed sets clearly outperforms a purely
frequency-based recommendation approach by up to 37% fewer user queries, in-
dicating the suitability of strongly closed sets for this task. Besides this positive
result on the application of strongly closed sets, we discovered that the charac-
teristics of real-world data from industry differ largely from those of synthetic
transaction benchmark data sets.

1.4. Previously Published Work

The central ideas and algorithms of this dissertation have been previously published in
conference proceedings and one journal article listed below. The journal article contains
the potential application scenarios of the strongly closed patterns covered in this thesis.

1. Daniel Trabold, Tamás Horváth and Stefan Wrobel. Effective approximation of
parametrized closure systems over transactional data streams. In Machine Learn-
ing, 2019. (Trabold et al., 2019)

2. Daniel Trabold and Tamás Horváth. Mining Strongly Closed Itemsets from Data
Streams. In Proceedings of the 20th International Conference on Discovery Sci-
ence, 2017. (Trabold and Horváth, 2017)
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3. Daniel Trabold and Tamás Horváth. Mining Data Streams with Dynamic Confi-
dence Intervals. In Proceedings of the 18th International Conference on Big Data
Analytics and Knowledge Discovery, 2016. (Trabold and Horváth, 2016)

4. Daniel Trabold, Mario Boley, Michael Mock, Tamás Horváth. In-Stream Frequent
Itemset Mining with Output Proportional Memory Footprint. In Proceedings of
the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, 2015. (Trabold et al.,
2015)

1.5. Outline

The remainder of this dissertation is structured as follows:

Chapter 2 introduces the necessary basic concepts of itemset and data stream mining.
It defines the formal notions and notation used throughout this thesis and presents
the formal problems considered in subsequent chapters.

Chapter 3 covers the existing related work on frequent itemset mining from transactional
data streams. For completeness, we cover all three window models. This short
survey discusses each algorithm and facilitates the selection of an algorithm with
some desired properties for a given problem.

Chapter 4 considers the problem of mining frequent itemsets from data streams in the
landmark model with probabilistic error bounds. For this setting, two algorithms
are presented. Both algorithms can produce results after an arbitrary number of
transactions. One converges in the limit. For the other, we prove its theoretical
probabilistic error bound. An extensive empirical evaluation compares them to the
state-of-the-art and demonstrates their strengths.

Chapter 5 presents the first algorithm for mining relatively strongly closed itemsets from
data streams with the landmark model. It is based on reservoir sampling and has
a probabilistic error guarantee. The empirical evaluation demonstrates clearly
that it is not only faster than simply recomputing the set of relatively strongly
closed sets from the data stream, but also achieves both a very good recall and
a high precision. We further demonstrate the suitability of strongly closed sets
for two potential applications. First, the classical problem of concept drift or
change detection in data streams. Second, the problem of computer-aided product
configuration recommendation.

Chapter 6 briefly summarizes the contributions of this thesis and discusses their merits
and limitations. Finally, we mention some directions for future research.

Appendix A describes and documents the tuning of the hyper-parameters of the algo-
rithms used in Chapter 4 in detail.
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2. Notions and Problem Definitions

This chapter introduces the notions and notation used within this thesis and defines the
problems considered therein. First, the classical definitions and notation from the itemset
mining literature are introduced in Section 2.1, considering static fixed-size data sets.
Data streams are the subject of Section 2.2. Their characteristics give rise to challenges
not present in the static setting. Data streams can be analyzed under different window
models which essentially differ in how they assign weights to the transactions in the
stream. At the end of that section, the definitions for itemset mining from static data
are redefined for the streaming setting. Finally, Section 2.3 introduces and defines the
problems considered in this dissertation. They have in common that they consider data
streams under the landmark model and mine frequent itemsets or parameterized subsets
of these.

2.1. Itemset Mining

Motivated by the analysis of shopping baskets, the problem of frequent itemset mining
was introduced by Agrawal et al. (1993). Given a large set of transactions, where each
transaction consists of the items bought by a customer in one purchase, the goal of
frequent itemset mining is to identify sets of items that are commonly bought together.
Any combination of items is called an itemset. Given a set of items I = {i1, i2, . . . , in},
both a transaction T and an itemset X are nonempty subsets of I. The transactions
constitute the input and the itemsets are the output. The length or size of an itemset
is defined by the number of items it contains. An itemset with k items is called a k-
itemset. Each transaction is identified by a unique transaction id (TID). A transaction
T is said to support an itemset X if X ⊆ T . Any collection of transactions is called a
database of transactions or transactional data set. Given a database D of transactions,
the support set of an itemset X in D, denoted by D[X], is the set of all transactions in
D which contain X, i.e., D[X] = {T ∈ D : X ⊆ T}. The support count of an itemset
X in a database D, denoted supD(X), is the number of transactions containing X, i.e.,
supD(X) = |D[X]|. We omit D when it is clear from the context, i.e., instead of supD(X)
we will write sup(X).
The problem of frequent itemset mining has received much attention in the data min-
ing community, as it is a very fundamental task with many potential applications.
These include association rule mining (Agrawal et al., 1993), fraud discovery, text min-
ing, product recommendation, e-learning, and web clickstream analysis (Fournier-Viger
et al., 2017) amongst others. Due to their easy interpretability, (interesting) itemsets
are advantageous for applications where comprehensibility is amongst the requirements.
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In contrast, sophisticated modeling techniques such as support vector machines (Vap-
nik and Chervonenkis, 1974) or artificial neural networks (Haykin, 1999) produce non-
understandable black-box models. The primary challenge in frequent itemset mining is
that for a set of n items there can be 2n − 1 frequent itemsets and hence, it is infeasible
to enumerate all of them for large n. Even moderate sizes of n result in huge num-
bers of frequent itemsets. To reduce this enormous set to manageable sizes, different
further measures of interestingness have been proposed, such as maximality (Mannila
and Toivonen, 1997), closedness (Pasquier et al., 1999a), strong closedness (Boley et al.,
2009a), high utility (Tseng et al., 2010), or crucialness (Das and Zaniolo, 2016).
A transactional data set is called dense if each transaction contains most of the items. It
is called sparse, if each transaction contains only a few out of the many possible items.
Transactional data sets can be assumed to be sparse or even very spare in general. The
number of items bought by a customer in a single transaction is usually extremely small
compared to the number of offered products. This is true for traditional supermarket
data but even more so for online markets such as Amazon. Nonetheless, some transac-
tional data sets of different origin are dense by nature. As an example, consider a system
of sensors, where each sensor reports a value at every point in time. Such a system will
produce a dense transactional data set as output. The density of a transactional data
set or database D can be defined as ∑

T∈D

|T |
|I| · |D|

,

where |T | denotes the number of items in transaction T , |I| denotes the number of items,
and |D| the number of transactions.
As it turns out, different encodings are suitable for sparse and dense data. Figure 2.1 il-
lustrates the two most common approaches to orthogonally encode itemsets. Figure 2.1a
shows a set of transactions. An itemset can be encoded explicitly as a set (Figure 2.1b)
or as a bit-vector (Figure 2.1c). In the explicit set-based encoding the transaction ids
(TIDs) of all supporting transactions are stored in the support set of an item. In the bit-
vector representation, there is one bit-vector for each item1. The size of each bit-vector
is identical to the number of transactions. The bit at position j of some item i is set to
true if the item i occurs in transaction j. For sparse data sets, the set-based encoding is
more efficient whereas for dense data sets the bit-vector representation is more compact.
Besides, the computation of set intersections is faster for sets of bit-vectors than for sets
of numbers. Computing such intersections is a common operation for the enumeration
of itemsets and a fundamental step in many algorithms.
The 2n − 1 itemsets over a set I of items with |I| = n together with the empty set form
a lattice as illustrated in Figure 2.2. The number of patterns2 is usually reduced via
constraints on the measure of interest. The most widely used constraint is a user-defined
frequency threshold θ ∈ (0, 1]. The frequency of an itemset X in a database D is defined

1 Note that bit-vectors can also be defined for each transaction, with a bit for each item.
2 A pattern is a more general concept than an itemset. We use the terms interchangeably when there is
no emphasis on itemsets.
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TID Items
1 ab
2 bc
3 ab
4 bcd

(a) transactions

Item Support set
a {1,3}
b {1,2,3,4}
c {2,4}
d {4}

(b) set-based encoding

Item Bitset
a
b
c
d

T F T F
T T T T
F T F T
F F F T

(c) bit-vector encoding

Figure 2.1.: Illustration of itemset encodings.

abcd

abc abd acd bcd

ab ac bc ad bd cd

a b c d

∅

Figure 2.2.: Itemset lattice for the items a, b, c, d.

as
freqD(X) = supD(X)

|D|
,

i.e., it is simply the support count of an itemset divided by the size of the data set.
The frequency threshold partitions the pattern space into patterns that are less frequent
than θ and those that occur at least as frequently as θ. Itemsets which are less frequent
than θ are called infrequent and those which are at least as frequent as θ are the frequent
itemsets. Formally, an itemset X is frequent in a database D for some user-defined
frequency threshold θ ∈ (0, 1], if supD(X) ≥ θ|D|, where |D| denotes the cardinality
of D, i.e., the number of transactions in the database. For a database of fixed size,
the frequency threshold θ can be expressed as an absolute minimum support threshold
minSup = θ|D|. For a minimum support threshold, an itemset X is frequent in D if
supD(X) ≥ minSup. While it appears purely technical at first to replace the relative
frequency threshold θ with an absolute minimum support threshold minSup, the latter
will be useful for the introduction of further concepts.
Let F denote the family of frequent itemsets for a database D and frequency threshold
θ. Mannila and Toivonen (1997) introduced the concept of the border of F , denoted
Bd(F). It consists of the itemsets X such that all proper (non-empty) subsets of X are
frequent (i.e., belong to F) and all proper supersets of X are infrequent (i.e., do not
belong to F). The sets X in Bd(F) that are in F are called the positive border Bd+(F);
those sets X in Bd(F) that are not in F are the negative border Bd−(F). Thus, Bd+(F)
and Bd−(F) form a partitioning of Bd(F).
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The two most recognized algorithms for the task of frequent itemset mining are called
Apriori (Agrawal and Srikant, 1994) and FP-growth (Han et al., 2000). Apriori is
a level-wise algorithm that scans the data set once for each itemset length. Starting
with k = 1, it counts the support of the k-itemsets and then generates candidate k + 1-
itemsets from the frequent k-itemsets. It then increments k and repeats the process until
the set of candidates becomes empty. As pruning criteria for the candidate generation,
the algorithm uses the following observation called Apriori or downward closure property:
any subset of a frequent itemset must be frequent. Apriori has inspired many other
algorithms. As it turns out, the candidate generation and repeated scanning of the
transactions in the data set are the bottleneck of all Apriori-based algorithms. They
work well as long as the frequent itemsets are small.

FP-growth (Han et al., 2000) works without candidate generation. It needs exactly
two passes over the data set. In the first pass, the support count of all items is counted.
The result is used to define a frequency descending total order on the items. The second
pass is used to construct a frequent pattern tree (FP-Tree). This is a prefix tree data
structure with an additional header table and links between nodes. Each node in the
tree represents an item. Any path from the root to a node corresponds to the set of
transactions containing all items along the path. Nodes representing the same item are
linked. The header table contains one entry for each item. It stores the total support
count of that item and maintains a pointer to the item in the tree. All other nodes of
this item can be identified via the node links. Frequent itemsets are mined from the tree
via recursive tree projections. A good reference for further details on FP-Trees and the
FP-growth algorithm is (Borgelt, 2005).

As the FP-Tree is a central data structure in frequent itemset mining, it is illustrated
with an example in Figure 2.3. The transactions on the left (Figure 2.3a) result in the
tree in the middle (Figure 2.3b). The links from the header table are visualized as dashed
lines and the node links as dotted lines. The tree projection for an item is computed by
visiting all nodes of this item via the node links. For each visited node there is exactly
one path to the root node. This path is added to the projected tree without the node of
the item itself. The support count of parent nodes along this path is reduced to that of
its children in the projection. The projected tree for item d is shown in Figure 2.3c.

One challenge in frequent itemset mining stems from the choice of the frequency thresh-
old θ. How should a user choose this threshold for an unknown data set? Some initial
knowledge about the data set at hand is required to pick a threshold neither too high
nor too low. If the threshold is set too high, no or only very few patterns will be found.
Highly frequent patterns are often trivial and known by domain experts. If the threshold
is set too low, the output may contain too many patterns; typically much more than
a user can inspect and it will take a long time to enumerate all those patterns. The
standard approach to find an appropriate threshold is to start with a high value for θ
and lower it until a good trade-off between the threshold value and the number of desired
patterns has been found. A way to circumvent the selection of the threshold is to define
the number k of output patterns in advance and return the k patterns with highest
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TID Items
1 ab
2 bc
3 ab
4 bcd
5 ad

(a) Transactions

Header
table

Tree

b:4
a:3
c:2
d:2

∅

b:4
a:1

a:2
c:2 d:1

d:1

(b) FP-Tree

Header
table

Tree

b:1
a:1
c:1

∅

b:1
a:1

c:1

(c) Projected FP-Tree for item d

Figure 2.3.: FP-Tree data structure.

frequency. This leads to the definition of the top-k frequent patterns: An itemset X is
a top-k frequent itemset in a database D if there are less than k frequent itemsets with
support count at least supD(X) in D.
Mining top-k frequent itemsets seems easier at first. However, from a practitioner’s
point of view, it merely shifts the problem. For sure the output will contain the k
most frequent patterns, but the topmost frequent itemsets are often known to business
experts. Thus the challenge of choosing the right threshold remains an issue even for
top-k pattern mining. It is arguable whether it is less severe for the parameter k than
θ, as k has a clear semantic interpretation.
The major challenge in frequent itemset mining is the exponential growth in the number of
frequent itemsets as the support threshold is lowered. This problem is sometimes referred
to as combinatorial explosion (Chi et al., 2004). Recall that for n items there are up to
2n−1 potentially frequent patterns. This means that already for 20 items, there are more
than 1,000,000 patterns and for only 50 items there are more than 1015 potential frequent
patterns. The tremendous output space can be reduced with additional constraints on
the pattern class. Such constraints will be the subject of the next two sections. The
first covers lossless representations of frequent itemset, i.e., which allow deriving all
frequent itemsets with their exact support count. The second section describes lossy
representations. They allow to reconstruct all frequent patterns, but with approximate
support count only. For the patterns explicitly stored, the support count will be known;
for all other frequent patterns, only a lower bound of their true support count is provided.

2.1.1. Closed and Crucial Itemsets

Two pattern classes have been defined, which result in lossless compression of the set of
frequent patterns: closed and crucial patterns. The advantage of these pattern classes is
that the output space is typically much smaller compared to frequent itemsets, while the
support count of each frequent itemset can still be exactly derived. The more common
class is the family of closed patterns (Pasquier et al., 1999a): An itemset X is closed in
a database D if @Y ⊃ X with supD(Y ) = supD(X).
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In other words, a pattern is closed if and only if each of its proper supersets has a
strictly lower support count. Patterns that share the same support count with at least
one superset are not part of the output; they can be reconstructed from it.
Closed sets can be enumerated efficiently, i.e., with polynomial delay (Ganter and Reuter,
1991; Gély, 2005). They can be characterized by closure operators. More precisely, let
I be some finite set and σ : 2I → 2I be a function, where 2I denotes the power set of
I. Then σ is extensive if X ⊆ σ(X), monotone if X ⊆ Y implies σ(X) ⊆ σ(Y ), and
idempotent if σ(X) = σ(σ(X)) for all X,Y ⊆ I. If σ is extensive and monotone, then it
is a preclosure; if, in addition, it is idempotent, then it is a closure operator on I. It is
a well-known fact (see, e.g., Davey and Priestley (2002)) that for the above definition of
closedness there exists a closure operator σ such thatX is closed if and only if σ(X) = X.
The set of closed patterns is usually further reduced by considering only the closed
patterns that reach a certain frequency threshold θ, i.e., the frequent closed patterns,
or the k most frequent closed, i.e., the top-k closed patterns. The definitions of both
pattern classes are straightforward:
An itemset X is frequent closed in a database D if it is both frequent in D and closed in
D.
An itemset X is a top-k closed itemset in a database D if it is closed in D and there are
less than k closed itemsets with support count greater than supD(X) in D.
Crucial patterns are a rather recent notion introduced by Das and Zaniolo (2016). The
idea of crucial patterns is to eliminate from the set of closed patterns those that have
a support count which is identical to the sum of the support counts of the immediate
closed supersets. The definition of this pattern class is technical and builds upon the
Fp-Tree. We refer to Das and Zaniolo (2016) for the technical details. The definition
will not be needed for this work.
The definitions are illustrated with a tiny example in Figure 2.4. Given the transactions
in Figure 2.4a, the frequency threshold θ = 0.5 and k = 1, the concepts of frequent,
closed, frequent closed, top-k closed, and crucial itemsets are illustrated in Figures 2.4b
to 2.4f, respectively. The concepts of strongly closed (Figure 2.4g) and maximal frequent
itemsets (Figure 2.4h) will be introduced in the following section.

2.1.2. Strongly Closed and Maximal Frequent Itemsets

If it is not necessary to reconstruct the exact support count of all frequent itemsets, then
there are pattern classes which compress the output even more than closed and crucial
patterns; these pattern classes include strongly closed (Boley et al., 2009b) and maximal
frequent itemsets (Mannila and Toivonen, 1997). The two pattern classes allow us to
reconstruct all frequent itemsets without their exact support count. The exact support
count is only known for the itemsets which belong to the output patterns.
Recall that a pattern is closed if the support count of all of its proper supersets is strictly
lower than the support of the pattern itself. A difference of a single transaction suffices
to make a pattern closed. This property is generalized in the following definition:
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(a) transactions

TID Items
1 ab
2 bc
3 ab
4 bcd

(b) freq.

Itemset Sup
a 2
b 4
c 2
ab 2
bc 2

(c) closed

Itemset Sup
b 4
ab 2
bc 2
bcd 1

(d) freq.-closed

Itemset Sup
b 4
ab 2
bc 2

(e) top-1 closed

Itemset Sup
b 4

(f) crucial

Itemset Sup
ab 2
bc 2
bcd 1

(g) 2-closed

Itemset Sup
b 4
ab 2
bc 2

(h) maximal freq.

Itemset Sup
ab 2
bc 2

Figure 2.4.: Illustration of the pattern class definitions. Transactions are shown in 2.4a.
Let θ = 0.5, k = 1, and ∆ = 2.

An itemset X is strongly closed or more precisely ∆-closed in a database D for some
∆ > 0 integer if for all Y with X ( Y ⊆ I it holds that supD(Y ) ≤ supD(X)−∆.

Notice that ordinary closed itemsets are 1-closed. The number of strongly closed patterns
shrinks fast with increasing ∆ (cf. Boley et al. (2009a); Trabold and Horváth (2017)).

An itemset X is strongly closed frequent or more precisely ∆-closed frequent in a
database D if it is both ∆-closed and frequent in D.

We recall some basic algebraic and algorithmic properties of ∆-closed itemsets from
Boley et al. (2009b). For a transaction database D over I and integer ∆ > 0, let
σ̂∆,D : 2I → 2I be defined by

σ̂∆,D(X) = X ∪ {e ∈ I \X : |D[X]| − |D[X ∪ {e}]| < ∆}

for all X ⊆ I. It holds that σ̂∆,D is a preclosure on I that is not idempotent (Boley
et al., 2009b). For an itemset X ⊆ I, consider the sequence

σ̂0
∆,D(X), σ̂1

∆,D(X), σ̂2
∆,D(X), . . .

with

σ̂0
∆,D(X) = X,

σ̂1
∆,D(X) = σ̂∆,D(X), and
σ̂l+1

∆,D(X) = σ̂∆,D(σ̂l∆,D(X))

for all integer l ≥ 1. This sequence has a smallest fixed point, giving rise to the following
definition: For all X ⊆ I, let σ∆,D : 2I → 2I be defined by σ∆,D(X) = σ̂k∆,D(X) with
k = min{l ∈ N : σ̂l∆,D(X) = σ̂l+1

∆,D(X)}. The proof of the claims in the theorem below
can be found in Boley et al. (2009b).
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Algorithm 1 Closure (Boley et al., 2009b)
input: X ⊆ I and integer ∆ > 0
require: data set D over I
output: σ∆,D(X)

1: C ← X; D′ ← D[X]
2: repeat
3: for all e ∈ I \ C do
4: if |D′| − |D′[e]| < ∆ then C ← C ∪ {e}; D′ ← D′[e]
5: until D′ has not been changed in Loop 3–4
6: return C

Theorem 1. Let D be a transaction database over some finite ground set I and ∆ > 0
an integer. Then (i) for all X ⊆ I, X is ∆-closed in D if and only if X = σ∆,D(X), (ii)
σ∆,D is a closure operator over I, and (iii) for all X ⊆ I, the closure σ∆,D(X) of X can
be computed by Algorithm 1 in time O(‖D[X]‖0), where ‖D[X]‖0 = ∑

T∈D[X] |I \ T |.3

Using the fact that σ∆,D is a closure operator, the family of all ∆-closed itemsets of a
data set D can be enumerated by the following divide and conquer folklore algorithm
(see, e.g., Gély (2005)): Generate first recursively all ∆-closed supersets of a set that
contain a certain item e ∈ I, and then all that do not contain it. This algorithm lists
all ∆-closed itemsets non-redundantly, with polynomial delay, and in polynomial space
(see Boley et al. (2010) for some further properties of this algorithm).
Another approach to reduce the number of patterns is called maximal frequent itemsets
(Mannila and Toivonen, 1997). These are precisely the patterns in the positive border
of the frequent itemsets:

An itemset X is maximal frequent in a database D if it is frequent in D and all its
proper supersets Y ⊃ X are infrequent.

Obviously, maximal frequent itemsets form a subset of frequent itemsets. The patterns
at the positive border are often less frequent than those closer to the bottom element of
the lattice.
While strongly closed itemsets can be generated efficiently (i.e., with polynomial de-
lay (Ganter and Reuter, 1991; Gély, 2005)), maximal frequent itemsets cannot be listed
in output polynomial time (Boros et al., 2003), unless P = NP. This is an important
advantage of strongly closed patterns.
The relationships among different pattern classes are illustrated in Figure 2.5. While

3 In Boley et al. (2009b), two different algorithms are discussed for the computation of σ∆,D. They both
have a time complexity of O(‖D[X]‖0), assuming that empty transactions are not allowed. In practice,
the two algorithms behave differently from the point of view of the running time, depending on the
sparsity of D (cf. Boley et al. (2009b) for a detailed discussion).
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strongly closed frequent ⊆ frequent closed ⊆ frequent

⊆

crucial frequent

⊆

maximal frequent

Figure 2.5.: Relationships between frequent pattern classes.

transactions
TID Items

1 ab
2 bc
3 ab

crucial
Itemset Sup
ab 2
b 3

2-closed
Itemset Sup
ab 2

(a) crucial ⊃ 2-closed

transactions
TID Items

1 ab
2 bc
3 ab
4 bc

crucial
Itemset Sup
ab 2
bc 2

2-closed
Itemset Sup
b 4
ab 2
bc 2

(b) crucial ⊂ 2-closed

Figure 2.6.: Examples illustrating the relationship between crucial and strongly closed
patterns with minSup = 2. For the transactions on the left the crucial patterns are a
superset of the 2-closed, for the transactions on the right the relation is reversed i.e. the
crucial patterns are a subset of the 2-closed.

there are some clear subset relationships, crucial, maximal, and strongly closed patterns
are incomparable in general with respect to containment. This fact is illustrated for
crucial frequent and strongly closed frequent patterns in the example in Figure 2.6.
On the left, the crucial patterns form a superset of the 2-closed patterns, whereas on
the right, with one additional transaction, the crucial patterns become a subset of the
2-closed patterns.

Given the various pattern classes, the family of strongly closed frequent patterns is the
one that is effectively controllable by the user without any language bias (e.g., preferring
short patterns by increasing the frequency threshold). The size of this pattern class can
be controlled with the frequency threshold θ and the strength of the closure ∆, whereas
the other frequent pattern classes can be parameterized solely by θ.
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2.2. Data Streams

This section introduces the necessary background from data stream mining. We start
with some basic properties of data streams and discuss how they differ from traditional
(batch) data sets in Section 2.2.1. In particular, data streams give rise to several chal-
lenges not present in the static setting. For the analysis of such data streams, different
window models have been proposed in the literature. They differ in the way they consider
the past of the stream and are subject of Section 2.2.2. After this general introduction
to data streams, we focus on transactions. Transactional data streams are covered in
Section 2.2.3, where the definitions from Section 2.1 are adopted for data streams.

2.2.1. Properties of Data Streams

While most algorithms for data mining work on static batch data sets (i.e., data sets
which reside on disk and can be accessed multiple times), many real-life applications
produce continuous data streams. Examples of such natural data streams come from
industrial applications such as, call detail record analysis, fraud detection, sensor moni-
toring, recommendations, or network security (Bhattacharyya et al., 2011; Etzion et al.,
2016; Zhang and Zhou, 2004). A data stream is regarded as a potentially unbounded
sequence of elements. The nature of the elements that compose the stream is application-
specific. For example, transactional systems produce transactional streams, where each
element is a transaction, sensor systems produce streams of sensor readings, and agent-
based systems produce streams of actions of the agents. Typical examples of streaming
environments will illustrate the additional challenges arising from data streams in com-
parison to the batch setting.
In telecommunication, service providers monitor the use of their network for various
reasons, for example, to control service quality, to identify upcoming bottlenecks, or to
identify abusive use of their network in near real-time. In phone fraud detection, the
goal is to “identify users who use a network service without the intention to pay for
that use” (Etzion et al., 2016). The faster such abusive use is detected, the lower the
loss for the company. As the telecommunication network is used continuously, the next
fraudulent call can happen at any time.
In finance, multiple payment transactions are being processed every second. Only very
few, typically one in several thousand transactions are fraudulent (Bhattacharyya et al.,
2011). To detect them, the stream of transactions needs to be monitored permanently.
When a successful fraud pattern is discovered, transactions conforming to that pattern
will not be authorized for payment. As specific behavior is effectively blocked, fraud-
sters continuously adapt their strategy and look for new ways to circumvent the fraud
prevention system. The system has no control over the order in which the transactions
arrive. The next transaction can be legitimate or fraudulent.
In Industry 4.0 and environmental observations (Mainwaring et al., 2002), sensor mon-
itoring becomes increasingly important. Large sensor systems are deployed to monitor
either machines or the environment, often with the goal of a better understanding of
the dynamics of the monitored system. Each sensor in such a network is one source of
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data of a data stream. While the memory on each sensor is limited, the observed system
provides an unbounded source of data. As new data comes in, old data must be removed
from the memory to make room for the new data.
Online market places, content providers, and social media optimize their service with
recommendation engines (Ricci et al., 2011). These systems suggest products or content
based on the behavior of other users. Consider as examples the platforms YouTube
(Davidson et al., 2010) for videos or Twitter (Kwak et al., 2010) for messaging. Each
video or message in these systems is an element of an ever-growing stream of content. A
topic shared and discussed by several users today might be of little interest next week.
Thus, such systems need to constantly adapt to the changes in the data stream.
Computer networks exchange packets with each other at high rates. Modern network
security solutions monitor the network traffic to identify attackers or temporary block
certain origins or destinations. Network monitoring systems (Cranor et al., 2002) need
to analyze the network stream in real-time to react fast to any incident. One particular
type of network attacks are denial of service attacks. The goal of these attacks is to
flood a system with more requests than it can handle such that it will break down. The
attack is successful if the data arrival rate surpasses the processing time to handle each
request.
These examples illustrate that data streams differ from traditional static data sets stored
on disk in several ways. The main characteristics of data streams include (cf. Babcock
et al. (2002); Golab and Özsu (2003)):

• Data elements arrive continuously.

• The system has no control over the order in which the elements arrive.

• A data stream is potentially unbounded in size.

• Every element from the stream can only reside for a short time in memory.

• The data distribution of a stream can change over time.

• The data arrival rate can surpass the processing speed of an algorithm.

The potentially unbounded nature of data streams and the limited physical memory
of any computer demand for the development of algorithms that work with limited
resources, especially with limited main memory. Even if an entire stream can be stored
on external memory, the analysis of all the data takes too long to keep up with the
arrival rate of new data. The focus of this thesis lies therefore on algorithms that use
only the physical main memory of a computer to track and store information from the
stream and to analyze it. Data compression in the form of compact synopsis structures
is the standard way to reduce the amount of memory required. Various approaches have
been suggested for data compression, including sketches (Flajolet and Martin, 1985),
sampling (Vitter, 1985), and histograms (Guha et al., 2001). All these methods discard,
however, some information.
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Figure 2.7.: Illustration of the window models with two windows wi and wj . For the
time fading model, the height indicates the weight of each transaction.

Irrespective of the technology used to reduce the amount of data, streaming algorithms
operate on a subset of the data from the stream due to the limited memory. Such
algorithms are therefore often approximate, as they can not access past data, which is
no longer kept in memory. Sophisticated inference mechanisms are used to derive some
information from the synopsis about the data which is not explicitly encoded in the
synopsis. Different existing synopses will be the subject of Chapter 3 and new synopses
will be presented in Chapters 4 and 5.

2.2.2. Data Stream Models

For the analysis of data streams, different window models have been proposed in the
literature. A window model defines the set of elements from the data stream which
constitute the input of the analysis. The models differ in the development of the size of
the window they consider and in the way they assign a weight to each element from the
stream. The three most important window models are illustrated in Figure 2.7.
The landmark model (Zhu and Shasha, 2002) considers all elements of the stream from
some fixed landmark start time s up to the current element t (see Figure 2.7a). This
implies that the window gets larger as more elements arrive in the data stream. Each
element is assigned the same weight. As a consequence, the influence of each element
on the final result gradually vanishes as the window gets larger because with increasing
window size, each element represents a smaller share of the entire window. The growing
nature of the window makes the design of algorithms for this model challenging because
the available memory is limited and the data streams are assumed to be unbounded.
The sliding window model (Datar et al., 2002) considers the k most recent elements for
some integer k > 0. In this model, the window has a fixed size (see Figure 2.7b). The
first k elements are added to the window. From the k + 1-st element onward, whenever
a new element arrives the oldest element is deleted from the window. Once the window
is completely filled, the elements within the window all have the same constant weight
1/k. Elements outside the window have zero weight.
The time-sensitive sliding window model (Lin et al., 2005) is a variation of the sliding
window model. It considers a temporal window of a fixed size which is moved forward
as time passes. The number of elements arriving at each point in time can vary in this
model. In contrast to the regular sliding window model discussed above, the number of
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elements arriving and leaving the window is neither identical nor fixed. It is impossible
to predict the relative weight of a transaction under this model, as it depends both on
the arriving and the leaving transactions.
The time fading or damped model (Zhu and Shasha, 2002), sometimes referred to as
the time decayed or time-tilted model, is a model in which elements are associated with
different weights. In this model, more recent elements have a higher weight than older
ones (see Figure 2.7c). With each new arriving element, the weight of all elements
decays by a factor such that elements seen long ago will eventually be removed from
consideration. The number of elements considered is limited. This model is sometimes
regarded as a variation of the landmark model (e.g., Gupta et al. (2010)). At the same
time, it shares the characteristic that old elements will eventually be discarded with the
sliding window model.
Irrespective of the window model, the data in the window changes as new elements arrive
in the data stream and the learned model needs to be updated to reflect the change. The
naive solution would be to compute the output from scratch for the changed window.
This approach has high costs in terms of the time required to compute the update.
Incremental solutions are typically faster ; they either update the model for each new
incoming element or fill a buffer with incoming elements and process all elements from
the buffer when the buffer is full or upon request. The first approach is called element-
based update or more specifically, transaction-based update when the elements in the
data stream are transactions. The second approach is often referred to as mini-batch
since the elements from the buffer are processed in small batches. Element-based updates
provide the most accurate result reflecting the change of every element. However, for
large windows, the result will change at most slightly with each new element. It is thus
questionable whether such element-wise updates are needed. Computing updates in
mini-batches is often faster because there are fewer invocations of the update operation
and because the update with mini-batches can often be implemented more efficiently. In
the case of frequent itemset mining, frequency-based pruning is more effective for larger
mini-batches.
After the discussion of the different models, we now focus on transactional data streams.

2.2.3. Transactional Data Streams

A transactional data stream is a data stream in which the elements are transactions. For-
mally, a transactional data stream S is a potentially unbounded sequence of transactions
S = 〈T1, T2, . . . , 〉. Transaction T1 is the first and oldest transaction. The transactions
can vary in their size as is the case for market basket transactions or they can have a
fixed size such as payment transactions or call detail records. The terms stream, data
stream, and transactional data streams will be used henceforth as synonyms.
All the definitions in Section 2.1 have been stated for static (fixed size) data sets. They
can be easily formulated for data streams. Consider a potentially unbounded data stream
S = 〈T1, T2, . . .〉, where each transaction Ti contains an arbitrary number of elements
of the ground set I, i.e., Ti ⊆ I. The finite subsequence of the first t ∈ N transactions
is denoted as St = 〈T1, T2, . . . , Tt〉. The support set and support count of itemsets for
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finite data streams can be defined similarly to those of fixed size databases. The support
set of an itemset X in St, denoted by St[X], is defined as the set {T ∈ St : X ⊆ T}.
The support count of X in St, denoted as supSt(X), is the cardinality of St[X], i.e.,
supSt(X) = |St[X]|. With the definitions of (unbounded) data streams and those for the
support set and support count of an itemset in such a stream, all the above definitions
for itemsets are applicable to transactional data streams. It suffices to replace the
database D with the finite transactional data stream St and supD(X) with supSt(X) in
each definition to obtain the definition for the streaming case. With Ft,θ we denote the
family of frequent itemsets at time t for the stream St and the frequency threshold θ.
Formally, Ft,θ = {X ⊆ I : supSt(X)/|St| ≥ θ}.
Mining a stream under the landmark model imposes an additional challenge when it
comes to closed itemsets or strongly closed itemsets. As the window gets larger, more
and more itemsets will become closed or strongly closed. For very long streams, the
set of frequent closed itemsets might be almost as large as the set of frequent itemsets.
Accordingly, the effect of compression decreases.

2.3. Problem Definitions

From the different window models for data stream mining, the landmark model is the
most challenging, as it considers a growing number of transactions from the stream.
The problems considered in this thesis all concern mining frequent itemsets or subsets
of frequent itemsets from data streams under the landmark model with error guarantees
independent of the size of the update. That is, we explicitly decouple the error bound
from the update interval to combine the speed of mini-batch-based algorithms with
the flexibility of transaction by transaction enumeration. We consider the following
problems:

1. Mining frequent itemsets from a stream of transactions generated by a fixed, but
unknown distribution.

2. Mining frequent itemsets from transactions generated independently.

3. Mining strongly closed itemsets from transactions generated independently.

All problems consider a data stream S = 〈T1, T2, . . .〉 and single-pass algorithms. The
problems differ in the process generating the transactions Ti and the set of patterns
mined from S.
The first problem is concerned with transactions Ti generated independently according
to some fixed, but unknown distribution D : 2I → [0, 1]. We write D ∼ D to indicate
that the random variable D is distributed according to D. Formally, we have Ti ⊆ I
and Ti ∼ D for each point in time i ∈ N. Given a frequency threshold θ and a single
pass over the data stream, the goal is to enumerate all itemsets X that are frequent in
St′ = 〈T1, T2, . . . , Tt′〉, i.e., supSt′ (X) ≥ θ, for each point in time t′ ∈ N. This problem is
defined formally as follows:
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Problem 1: Mining frequent itemsets from streams with fixed unknown distribution:
Given some fixed, but unknown distribution D : 2I → [0, 1], a potentially un-
bounded data stream S = 〈T1, T2, . . .〉 with transactions Ti generated indepen-
dently at random according to D, i.e., Ti ∼ D, an integer t′ ∈ N defining the
sequence St′ = 〈T1, T2, . . . , Tt′〉, and a threshold θ ∈ (0, 1], return all frequent
itemsets X ⊆ 2I , i.e., itemsets which satisfy supSt′ (X) ≥ θ.

Fixed, but unknown distributions are common in human behavior at the subconscious
level and in natural environmental processes. Examples are written texts and spoken
language. Each sentence is a transaction and the words are the items. The combination
of words to form sentences is coined by factors such as origin, education, social status,
and others. The analysis of such data can reveal information about the author or a
group of authors. Koppel et al. (2005) use features extracted from texts to identify an
author’s native language. Alzahrani et al. (2012) survey the work on plagiarism detection
in natural languages and programming languages. The individual distribution of word
combinations, i.e., frequent itemsets from fixed but unknown distributions, can help to
solve both of the above problems. A solution for the identification of fixed unknown
distributions is the subject of Section 4.2.
Another related problem is the analysis of streams with independently generated trans-
actions. In many application domains, transactions originate from several independent
sources. Consider the classical setting of market basket analysis. The stream of sales
transactions is generated by many customers, each with individual needs. In such set-
tings, there is no fixed distribution. The transactions Ti are instead generated inde-
pendently by some unknown probability distribution Di over the space 2I \ {∅} of all
transactions. For all t ∈ N, let [t] denote the set {1, . . . , t}. For any non-empty itemset
X ⊆ I and i ∈ [t], this random generation of the transactions gives rise to the probability
pi(X) that X is a subset of Ti, i.e., to

pi(X) = PrT∈Di [X ⊆ T ]

where the subscript on the right-hand side indicates that the probability is taken w.r.t.
the random generation of T according to Di. For any X ⊆ I and i ∈ [t], let Xi be
the binary random variable indicating whether or not X ⊆ Ti. It follows from the
definitions above that the Xis are independent Poisson trials with success probability
Pr(Xi = 1) = pi(X) that is unknown for the mining algorithm.
Given a data stream St = 〈T1, T2, . . . , Tt〉, a threshold θ ∈ [0, 1] specified by the user,
and some t′ ∈ [t], an itemset X ⊆ I is called interesting w.r.t. St′ if p(t′)(X) ≥ θ, where
p(t′)(X) is the average success probability of X in St′ , i.e.,

p(t′)(X) = p1(X) + . . .+ pt′(X)
t′

;

X is called frequent w.r.t. St′ if f (t′)(X) ≥ θ, where f (t′)(X) is the relative frequency of
X in St′ , i.e.,

f (t′)(X) = X1 + . . .+Xt′

t′
.
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We note that the above notion of interestingness strongly relates to that of frequency.
Indeed, according to Poisson’s theorem, for any ε > 0,

lim
t′→∞

Pr
(∣∣∣f (t′)(X)− p(t′)(X)

∣∣∣ < ε
)

= 1 ,

i.e., the probability that the (relative) frequency f (t′)(X) of X in St′ arbitrarily approx-
imates to the average success probability p(t′)(X) tends to 1 when t′ →∞.
Recall the broad range of applications ranging from bioinformatics to webstream analysis
(Fournier-Viger et al., 2017) of frequent itemsets from Section 2.1. These patterns are a
human-understandable form of knowledge. Algorithms mining such patterns from data
streams are of high practical importance for those who are interested in understanding
the characteristics or patterns of these streams. Motivated by this high practical rele-
vance, the problems of answering interestingness and frequency queries for any X ⊆ I,
at any time point t′ > 0, are considered in this thesis. More precisely, we consider the
following two problems:

Problem 2: Finding interesting itemsets from data streams: Given a single pass over a
data stream St = 〈T1, . . . , Tt〉 with transactions generated independently at random
according to some unknown distributions D1, . . . ,Dt, an integer t′ ∈ [t], a threshold
θ ∈ (0, 1], and a query of the form “Is X interesting w.r.t. St′?” for some X ⊆ I,
return True along with p(t′)(X) if X is interesting w.r.t. St′ ; False otherwise.

Problem 3: Listing frequent itemsets from data streams: Given a single pass over a
data stream St = 〈T1, . . . , Tt〉 of transactions, an integer t′ ∈ [t], a threshold
θ ∈ (0, 1], and a query of the form “Is X frequent w.r.t. St′?” for some X ⊆ I,
return True along with f (t′)(X) if X is frequent w.r.t. St′ ; False otherwise.

Notice the difference between Problems 2 and 3. While Problem 2 assumes that the
transactions Ti are generated by independent unknown distributions Di, Problem 3 does
not assume this independence. For both problems, we assume that the queries are
received by the algorithm at time t′, that the data stream is traversed in one pass,
and that the full set of transactions the algorithm has already seen cannot be stored
by the algorithm. Note that these two problems are more general than Problem 1,
as they consider data streams with transactions generated from unknown independent
probability distributions, instead of a single unknown probability distribution. Solutions
for these two problems will be presented in Section 4.3.
Despite their practical relevance, the problems considered so far neglect the various
techniques proposed to reduce the size of the output. Smaller outputs have at least
two benefits. For human experts smaller sets are easier to understand. On the algo-
rithmic side, a smaller output might require less summary information and could thus
be beneficial for the streaming setting where memory is limited. Which of the various
compression techniques is most suitable? Closed, crucial, and strongly closed patterns
face the challenge that the longer the stream is processed under the landmark model the
more itemsets will become closed, crucial, or ∆-closed for a fixed (absolute) ∆ with high
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probability. Maximal patterns, on the other hand, can not be enumerated efficiently
(Boros et al., 2003). Strongly closed patterns have a number of advantages. First of all,
the parameter ∆ provides an additional level of flexibility over the other pattern classes.
Second, ordinary closed patterns are a special case of strongly closed patterns: It suffices
to set ∆ = 1 for ordinary closed patterns. Finally, with the help of the closure operator,
closed patterns can be mined in output polynomial time (Boley et al., 2010). Since each
strongly closed set corresponds to a sharp drop in frequency, they represent the itemsets
that stand apart and are more stable against small changes in the input stream than
ordinary closed sets for example. In practice, strongly closed sets form a compact, often
tiny subset of the family of frequent patterns, which makes them especially useful in the
context of stream mining. Still, the challenge remains that the number of strongly closed
patterns grows with the stream length. This problem can, however, be circumvented by
considering a relative strength ∆̃ ∈ (0, 1] instead of the absolute one ∆. It removes the
problem of absolute strength for growing data streams, as it is always relative to the
stream length. More precisely, for a threshold ∆̃ ∈ (0, 1], an itemset X ⊆ I is relatively
∆̃-closed in St if

|St[X]|
|St|

− |St[Y ]|
|St|

≥ ∆̃ (2.1)

holds for all Y with X ( Y ⊆ I. For ∆̃-closed itemsets, any proper extension of an
itemset X must decrease its relative frequency by at least ∆̃. Thus, ∆̃ indicates the
relative strength of the closure. If it is clear from the context, the adverb “relatively”
will be omitted. Relatively ∆̃-closed itemsets correspond to those itemsets with a sharp
drop in relative frequency. For market basket data, each such set might describe a
customer segment, while most frequent sets do not define meaningful customer groups.
Motivated by different real-world applications (e.g., concept drift detection, computer-
aided product configuration discussed in Section 5.4), we consider the following problem:

Problem 4: Listing ∆̃-closed sets from data streams: Given a single pass over a data
stream St = 〈T1, T2, . . . , Tt〉 over a set I of items, a threshold ∆̃ ∈ (0, 1], and an
integer t′ ∈ [t], list all itemsets X ⊆ I that are ∆̃-closed in St′ = 〈T1, T2, . . . , Tt′〉.

A solution to this problem is the subject of Chapter 5. Note that the definition of
relative ∆̃-closedness for St above can equivalently be reformulated by that of absolute
∆-closedness (Boley et al., 2009b) as follows: X is relatively ∆̃-closed in St if and only
if it is absolutely ∆-closed in St for ∆ = dt∆̃e, that is, |St[X]| − |St[Y ]| ≥ ∆ for all Y
with X ( Y ⊆ I. In general, the family of ∆-closed itemsets in a transaction database
D is denoted by C∆,D. In particular, the family of ∆-closed itemsets in St is denoted by
C∆,St .
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3. Related Work

This chapter serves as a short survey on the state-of-the-art algorithms mining frequent
itemsets from transactional data streams. We start with a brief introduction to the topic
in Section 3.1. The three main sections of the chapter focus on the various window models
for data stream mining. In particular, we discuss algorithms for the landmark model in
Section 3.2, those for the sliding window model in Section 3.3, and finally an algorithm
for the time fading model in Section 3.4. In Section 3.5, we compile a taxonomy of the
algorithms and a compact table with their key characteristics to facilitate the selection
of an algorithm with desired properties. We conclude this chapter in Section 3.6 with a
brief summary.

3.1. Frequent Itemset Mining from Data Streams

For a good survey on mining data streams, the reader is referred to Gaber et al. (2005).
This review paper covers general concepts for data stream mining, such as approxi-
mation schemes like sketches, and considers different mining techniques like clustering,
classification, frequent itemset mining, and time series analysis. The survey by Gama
(2012) has a similar focus. It is less all-embracing concerning the mining techniques
but covers one specific algorithm for frequent pattern mining more detailed. While both
surveys provide an overview of data stream mining in general, they do not cover the
relevant literature on frequent itemset mining from data streams. A survey focusing
on frequent itemset mining from transactional data streams is provided by Cheng et al.
(2008). It encompasses a total of nine algorithms, including one mining closed itemsets
and one with a rare time model (Giannella et al., 2003). The majority of the algorithms
described considers the landmark model. We discuss several additional algorithms, all
mining frequent itemsets from data streams.
Recall from Section 2.2.2 that the difficulty of mining data streams depends on the
particular window model considered. For the landmark model, any single-pass algorithm
is approximate in nature, i.e., the output can contain more than all frequent itemsets or
not all of them (Hidber, 1999). The central problem is that it is infeasible to count all
itemsets. However, the frequency of itemsets can change and hence, infrequent itemsets
that have not been counted may become frequent. Many algorithms use techniques to
approximate the frequency of itemsets for the past, in which they have not been counted,
once they start counting them. Though in this dissertation we focus on the landmark
model only, for completeness we overview the sliding window and the time fading models
as well. Algorithms for these two window models can produce exact results as long as
the entire window fits in memory, which is generally assumed for these algorithms.
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TID Items
1 ab
2 bc
3 ab
4 bcd

Figure 3.1.: Example transactional data stream.

To illustrate some of the data structures, we introduce a tiny data stream with four
transactions in Figure 3.1. Each transaction is identified by a transaction id (TID). We
will refer to this example whenever needed.

3.2. Landmark Algorithms

In this section, we describe nine prominent algorithms mining frequent itemsets from
transactional data streams under the landmark model.

Carma

The algorithm Carma (Hidber, 1999) is a two-pass algorithm consisting of two distinct
phases. Each phase requires one pass over the data. The first phase computes a superset
of the truly frequent itemsets. The second phase determines the exact support count
for each itemset identified in phase one. This allows the algorithm to return the exact
result after the second pass. The following description focuses solely on the first phase
because the focus of this work is on single-pass algorithms. The algorithm is designed for
dynamically changing frequency thresholds during the process of mining the data stream.
Because this detail is neglected by all other algorithms, we will describe Carma in a
simplified version for a fixed threshold. The algorithm maintains an itemset lattice as
its data structure. For each arriving transaction, it (i) updates the count of all itemsets
already in the lattice and (ii) adds new itemsets if all of their subsets are in the lattice
and frequent. Pruning happens not for every transaction, but at regular intervals after
max(d1/θe, 500) transactions have been processed. The number 500 is chosen arbitrarily
by the author of Carma. Pruning removes all itemsets with cardinality ≥ 2 from the
lattice which have become infrequent. In contrast, 1-itemsets are never pruned, which
implies that their counts are always exact. For each itemset in the lattice, the algorithm
maintains three numbers: (i) the time t when the itemset was added to the lattice,
(ii) the count of the item since t, and (iii) the maximal missed count of the itemset.
The maximal missed count is derived from the maximal missed count of all subsets and
based on the frequency threshold, whichever is lower determines the true maximal missed
count. More precisely the maximal missed count for an itemset X is defined by

maxMissed(X) = min
(

min
Y⊂X

(maxMissed(Y ) + count(Y )− 1) , b(t− 1)θc+ |X| − 1
)

,
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where count(Y ) denotes the support count of itemset Y in the buffer and |X| the cardi-
nality of X. In case of dynamic frequency thresholds, the term b(t− 1)θc needs to take
the changes of the threshold into account (see Hidber (1999) for the details).

Discussion Carma explicitly assumes that the user changes the frequency threshold
during the mining process and considers such changes. Most other authors do not con-
sider such changes explicitly, but rather assume that the threshold is either not changed
or the algorithm works with a new threshold, once it has been adjusted by the user.
Many algorithms require additional parameters to control the error. Carma requires
no such additional parameter, which makes its application easy compared to such algo-
rithms where the output depends on the choice of additional parameters. This simple
design, however, limits the control of the analyst over the algorithm. The Partial
Counting algorithm of this thesis has been inspired by the design of Carma and in
particular, by the recursion of approximating the maximal missed transactions for an
itemset. Instead of the fixed approximation scheme that does not improve as more
transactions arrive, several approximations will be proposed in Section 4.2. Two of these
become more accurate as the number of transactions increases.

Lossy Counting

The Lossy Counting algorithm by Manku and Motwani (2002) is perhaps the most
recognized algorithm in this field. Using an additional error parameter 0 < ε < θ,
typically with ε� θ, it provides the following guarantees: (i) The algorithm is complete,
i.e., it returns all frequent itemsets, (ii) no itemset with frequency below (θ − ε)t is
generated, where t is the length of the data stream, and (iii) all estimated frequencies
are less than the true frequencies by at most ε · t.
Lossy Counting first buffers the transactions in as many blocks as memory available,
each of size

⌈
1
ε

⌉
and processes then all buffered blocks together as a single batch. The

number of stored itemsets does not depend on θ but on the number of buffered blocks,
denoted by β. The algorithm starts counting all itemsets which occur with a support
count of at least β in the buffer. The larger β the fewer itemsets the algorithm counts.
It is thus important that β be a large number. To reduce the number of considered
candidate itemsets, the algorithm first identifies all items which are less frequent than β
in the buffer. An itemset is no longer counted, if at some point its frequency is below or
equal to the number of buckets processed so far. If an itemset was not counted for the
past, the maximal error in the count of the itemset is the number of buckets processed
before the current batch. This error is recorded separately and added to the frequency
count. All itemsets are stored in a trie structure and updated with each buffer. To save
memory, the trie is stored without the usual pointers in tree structures but encoded
compactly in a single array. The nodes are arranged in the array corresponding to a
pre-order traversal of the tree and always updated in this order by the algorithm. The
set of frequent patterns is produced from the trie reporting all patterns with frequency
f ≥ (θ − ε) · t.
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Discussion The error guarantee introduced with Lossy Counting has inspired many
other algorithms to provide the same guarantee with different designs. In this respect
the algorithm is seminal for the field.
The storage of itemsets depends on the number of blocks in the buffer, the size of the
buffer on the available memory, and the size of each block on the parameter ε. The
storage space is thus independent of the threshold θ. If ε is set to a constant factor
of θ, as suggested by the authors, then the threshold indirectly determines how many
blocks fit in a given amount of memory. For a small number of blocks, a huge amount
of unnecessary information is stored by this algorithm.

FDPM

FDPM by Yu et al. (2004) takes two user-defined parameters to control reliability (δ)
and the number of blocks in memory (k). It guarantees the following: (i) all itemsets
with frequency at least θ are in the result with probability 1 − δ, (ii) no itemset with
frequency less than θ is in the result, and (iii) the probability that the estimated support
count for an itemset is identical to the true support count is at least 1− δ.
The algorithm processes k blocks, each of size (2 + 2 ln(2/δ))/θ. A larger k reduces the
runtime, at the expense of space. It keeps two structures, the set of frequent patterns in
the current block and the set of overall frequent patterns. For each block, it first identifies
potentially frequent patterns, then merges them with the overall frequent patterns, and
prunes the set of overall frequent patterns, whenever a condition on the size of this
set holds. For a data stream St, all itemsets with frequency at least θ − εt with εt =√

(2θ ln(2/δ))/t are kept in memory, where εt is derived from Chernoff bounds. FDPM is
sound but incomplete.

Discussion The algorithm uses a dynamic error εt which decreases as the stream
gets longer. In contrast to many related algorithms, the tolerated error on the mined
patterns gets thus smaller as the stream gets longer. This property is very desirable
for any stream mining algorithm. Our DTM algorithm developed in Section 4.3 uses
similar probabilistic reasoning. It still has three main features distinguishing it from
FDPM. In particular, DTM estimates the frequency for the uncounted period, it can
be queried after any number of transactions without losing its bound, and it applies
different probabilistic reasoning.

Stream Mining

The Stream Mining algorithm by Jin and Agrawal (2005) is another algorithm with
an additional error parameter ε for some 0 < ε ≤ 1. Based on ε, it provides the following
guarantees: (i) The algorithm returns all frequent itemsets and (ii) all itemsets returned
by the algorithm have a frequency of at least θ · (1 − ε). The algorithm processes 1-
and 2-itemsets immediately and buffers transactions to process larger itemsets later in
batches. The buffer has a variable size contrary to many other algorithms that use a
fixed buffer size. Processing of larger itemsets is delayed until a certain condition on
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the average number of two-itemsets per transaction holds. This condition depends both
on θ and ε. The algorithm then reduces the count of each 2-itemset and removes all
2-itemsets with count 0 before it generates larger itemsets from the buffer in a level-wise
manner using the Apriori property. After each level has been processed, all counters of
this level are reduced by 1 and all itemsets with counter 0 are removed. Conceptually,
the algorithm runs on an itemset lattice structure. At the end, all itemsets with counter
at least θt − r will be output, where t is the stream length in transactions and r the
number of reduction steps until t.

Discussion The pruning of supersets by means of the reduction step is very weak
compared to the standard pruning approach. As a result, a very large number of in-
frequent sets is enumerated by this algorithm, which is feasible only for streams with
short transactions. The experimental evaluation of the algorithm focuses on data sets
in which the average size of frequent itemsets is only 4 or 6. The correlation between
the number of two-itemsets and 4- or 6-itemsets is higher than the correlations with the
number of larger k-itemsets. It is an open question, how accurate the approach performs
for larger k as this correlation gets weaker.

SApriori

The SApriori algorithm by Sun et al. (2006) adapts the Apriori algorithm to data
streams. It has an error and a confidence parameter ε and δ, respectively. The stream is
divided by the algorithm into blocks of size 2θ log(2/δ)/ε2. Each block is used for mining
frequent itemsets of some particular length. To find the frequent k-itemsets, it needs
to process k blocks. Once the largest frequent itemsets have been found, all remaining
blocks can be ignored by the algorithm. Alternatively, the algorithm could be restarted
to adapt to potential changes in the data distribution.

Discussion While, on the one hand, the algorithm is extremely fast, on the other
hand, it requires the largest transaction buffer size and must process several buffers in
order to produce reasonable F-scores. In contrast to all other algorithms which can
adapt at least to some extent to changes in the data stream, this algorithm assumes
that the distribution in the stream is static. With such a strong assumption, it is an
open question, why the algorithm does not mine itemsets of all lengths from the first
block and ignores all remaining blocks.

EStream

EStream(Dang et al., 2008) is a complete, but not sound mining algorithm that has
an error and a maximum pattern length parameter 0 < ε < θ/2 and L, respectively. It
provides the following guarantees: (i) The frequency of all 1-itemsets is correct, (ii) the
error in the estimated frequency of any 2-itemset is at most ε, and (iii) the error in the
estimated frequency of all other itemsets is at most 2ε.
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FI-List a:2 b:4 c:2 d:1

Header table b:2 c:2
d:1

SFI-Tree a:2

b:2

b:4

c:2

d:1

c:2 d:1

Figure 3.2.: Data structures used by the DSM-FI algorithm for the transactions from
Figure 3.1.

The algorithm stores frequent itemsets in a trie structure and does not use any trans-
action buffer. Each transaction is immediately processed and then discarded. For each
itemset length k, EStream specifies a decreasing minimum frequency threshold as a
function of k and L, and stores a k-itemset as a candidate if all of its (k − 1)-subsets
reach the minimum threshold calculated for k − 1. Whenever

⌈
2L−2ε−1

⌉
transactions

have been processed, the algorithm prunes all infrequent, but the 1-itemsets.

Discussion Since it uses no buffer, EStream stores many additional itemsets, which
are in fact infrequent. The idea that smaller subsets need to occur more frequently than
larger itemsets is intended to reduce the set of infrequent itemsets stored. However,
when an itemset first occurs in a transaction, it must be added as a candidate if the
subsets satisfy the frequency constraint, even if it will be removed in the next pruning
step. Furthermore, both the output and the frequency thresholds for subsets depend on
the specification of L. The bound on the error of the estimated frequency holds only
for the correct L. This parameter is hard to set for a user in advance. For too small
or too large values of L, the algorithm might miss frequent itemsets. While the idea
to process transactions immediately without a buffer is very charming, there is a clear
cost associated with the frequent updates of such a strategy. The benefits of buffering
transactions for a while and processing them in mini-batches seems to be worth the
additional delay and memory costs in most cases and has a clear runtime benefit.

DSM-FI

DSM-FI is proposed by Li et al. (2008a). Similarly to Lossy Counting, it has an
additional error parameter 0 < ε < θ and provides the same error guarantee as Lossy
Counting. This algorithm processes transactions in mini-batches. It uses a forest as
its central summary structure. The forest contains a prefix tree for each sub-frequent
item. Each tree has a classical header table like an FP-Tree, with pointers to nodes in
the tree. Nodes in the tree for the same item are linked in a list in the usual way. The
structure is illustrated in Figure 3.2.
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Transactions within a batch are processed individually. For each transaction, the items
are sorted in lexicographic order. The transaction itself and all suffixes of the transaction
are inserted into the forest summary structure. After all transactions from one mini-
batch have been processed, a pruning step removes all infrequent items from all trees.
Trees with infrequent items at the root node are removed entirely.
The set of frequent items is produced from the forest only upon request. For each tree,
the algorithm tests the maximal itemset encoded in the tree first. If this set is frequent,
all subsets are frequent too. Otherwise, it is enumerated into m subsets, each of size
m− 1. The strategy is applied recursively until a frequent set is found, which stops the
recursion. This enumeration strategy pays only off when most of the frequent itemsets
are of size at least m/2. To see this, consider a frequent itemset lattice. Starting from
the largest element, the number of enumerated sets is smaller if most elements in the
lattice are of size greater than half of the size of the maximal element.

Discussion The algorithm does not take full advantage of the fact that it processes
transactions in mini-batches. It first processes each transaction individually and only
identifies infrequent items after an entire mini-batch has been processed and each trans-
action has been projected and inserted into the forest structure. Lossy Counting first
scans all transactions in the buffer to identify infrequent items to discard. The DSM-
FI algorithm would profit from a scan of the transactions in the mini-batch to update
the frequency statistics of single items, as it could then ignore all infrequent items.
Another issue originates from the enumeration scheme when producing a result. Consider
a data stream containing the four simple transactions ab, ac, ad, ae. Assume they are
all frequent. Then the DSM-FI algorithm will first construct the five-itemset abcde, all
5 four-itemsets, all 10 three-itemsets and finally reports the four frequent two itemsets.
It would have thus been better to enumerate itemsets bottom-up in this example. In
many real-world scenarios, the situation is similar; most transactions contain only a
very small subset of all items. The enumeration strategy thus needs to generate huge
amounts of infrequent itemsets until it finally finds the frequent ones. This can be fixed
by changing the enumeration order of the tree structure. Starting with small itemsets
and producing larger ones from the tree would result in a faster algorithm for many data
sets.

hMiner

The hMiner algorithm (Wang and Chen, 2009) extends the idea of the hCount al-
gorithm (Jin et al., 2003). Both algorithms rely on hashing. While hCount mines
frequent items, hMiner mines frequent itemsets. It provides a guarantee for the case
that the items are independent.1 If, however, the items were truly independent, then the
mining problem would be trivial. Indeed, in this case, it suffices to count the frequen-
cies of single items and compute the frequencies of larger itemsets using basic results

1 The central proof of the algorithm assumes that items are independent.
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from probability theory. Itemset mining is interesting (both from the application and
algorithmic aspects) only if items are not independent. For this non-trivial case, the
algorithm does not provide a guarantee.
The algorithm works as follows. It hashes all subsets of each transaction with a single
hash function. The hash function has the standard form h(x) = (a · x + b) mod m,
where a and b are arbitrary prime numbers and m is the size of the hash table. The size
m is determined based on user-defined error and confidence parameters. Each entry in
the table records the number of accesses, the last access time, and points to the frequent
itemsets hashed to that position. For the frequent itemsets, estimated and exact counts
are maintained. The estimated counts account for the past when the itemset was not
counted. The exact ones maintain the exact count from when counting of the itemset
starts up to the current transaction. The support count is derived from the number
of accesses of the hash entry and the counts of all frequent items for that entry. New
itemsets are added to the hash structure if the itemset is a 1-itemset or all subsets are
frequent. Pruning does not check the entire hash table but controls only those entries
that have been accessed while adding a transaction. It removes all itemsets from such
accessed hash entries that are no longer frequent.

Discussion This algorithm enumerates every subset of each transaction. Such an
enumeration is only feasible if the transactions are small since a transaction of size n has
2n − 2 proper non-empty subsets. The experimental evaluation of the authors considers
artificial streams with only up to 7 items per transaction. The mechanism to estimate
support counts assumes that all infrequent items hashed to one position have the same
probability to occur in any transaction. This is very unlikely for at least two reasons:
First, in most data sets both real-world and simulated, items have different probabilities
(cf. Figure 5.17, page 107). Second, itemsets of different sizes can be mapped to the same
hash bucket. In general, larger itemsets are less frequent than their subsets. The central
error analysis of hMiner assumes that the items in a transaction are independent. If,
however, the items were independent of each other, there is no need for frequent itemset
mining, as the likelihood of each itemset depends in this case purely on its size and not
on the items involved.

SA-Miner

The Support-Approximation miner (SA-Miner) algorithm (Li and Jea, 2014) is an
algorithm without any formal error guarantee. It uses feed-forward neural networks
to learn a function to predict the frequency of a k-itemset based on the sum of the
frequencies of its subsets. More precisely, given (x1, . . . , xm) with m ≤ k − 1 and y,
where the xis are the sum of the support counts of all i-subsets of the k-itemset and
y is the support count of the k-itemset, the algorithm learns a function f : Nm → N
to predict the support count of a k-itemset given the support counts of its subsets up
to size m. While the support count of the subsets up to size m must be explicitly
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maintained, the support count of any larger itemset is approximated given the learned
function. Hence, the name support approximation of the method. This eliminates the
need to explicitly maintain the support counts of larger sets.
The algorithm processes transactions in mini-batches. The first batch is used to learn the
prediction function f . In subsequent batches, only small itemsets, i.e., those up to size
m, are counted and support counts of larger itemsets are approximated by the learned
function. The value small is determined by the square root of the average transaction
size. Any itemset smaller than this value is considered to be small, all others to be large.
The functional dependencies are learned with feed-forward neural networks. Rather than
just using a simple two-layer feed-forward architecture, genetic algorithms (Fraser and
Burnell, 1970) are employed to generate a pool of neural network architectures and
weights. This pool is updated and iteratively reduced until a single network remains,
which is then trained to convergence with back-propagation (Rumelhart et al., 1986), a
standard algorithm for such training.
Once the network has been trained, mini-batches are processed continuously to update
the exact counts of all small itemsets. The algorithm tests for concept drifts by either
checking the average transaction length or comparing the singleton distributions of the
mini-batches. The description mentions both options, without further specifying which
one is used by the algorithm. If a drift is detected, the support relationships need to
be relearned, i.e., a new neural network must be trained form the current batch. The
algorithm can work in both the landmark and the sliding window model. In the landmark
model, counts can only increase; in the sliding window model, the support counts of small
sets are reduced for the batch leaving the window. The support approximation technique
is only employed if there is a mining request from a user. It is then used to predict the
frequencies of the non-counted itemsets.

Discussion The algorithm tries to combine techniques popular in other areas of com-
puter science such as genetic algorithms and neural networks with frequent itemset min-
ing. The idea to approximate the count of large itemsets as a function of the support
count of their subsets attempts to exploit the fact that the support count of a superset
depends on the support count of its subsets. How well this approach works for large
itemsets or long data streams is not known and needs further investigation, especially
with regards to some error bound. It is a well-known fact that neural network training
requires a lot of data and many training epochs for good fits. Simple linear regression
might be faster during training and provide similar results in terms of the approxima-
tion quality. The merits of this algorithm are that it explicitly detects concept drifts
and adapts to them.

3.3. Sliding Window Algorithms

In this section, we consider the four most prominent algorithms mining frequent itemsets
under the sliding window model.

37



SWIM

The Sliding Window Incremental Miner (SWIM) by Mozafari et al. (2008) produces an
exact output with some optional maximal delay d. Conceptually a window is divided
into several panes of identical size. The delay parameter d controls the maximal number
of panes processed before reporting a frequent itemset. For each arriving pane, there is
one leaving the window. The delay is bounded by the number of panes that constitute
the entire sliding window.
For a new arriving pane, the algorithm performs two steps. First, it updates the support
counts of all frequent itemsets. Then it searches new frequent patterns in the pane. For
each new frequent pattern, it creates an entry in the tree storing the frequent itemsets.
In addition to the current support count, it maintains an array of support counts for all
panes in the window. These counts will be updated over time as old panes move out
of the window. The support count is exact after the last pane has left the window in
which the itemset was infrequent. The additional array is then discarded. The itemset
is reported after this delay as frequent for each window, in which it was frequent. If the
user does not want to wait, the algorithm counts the frequency of new itemsets in all
panes, which will produce the exact result immediately.

Discussion The idea to delay the report of frequent itemsets is attractive. It reduces
the computation time at the expense of a reporting delay. For applications that are
not time-critical the additional delay may be acceptable. It allows processing more
transactions in a given time. This is of interest whenever an application produces data
streams at a high rate. The algorithm also has the flexibility to produce exact results
immediately.

WSW

The weighted sliding window (WSW) algorithm (Tsai, 2009) considers sliding windows,
where the user can assign different weights to each slide of a window. This model is
more general than the time fading model, as the weights can be set more flexible. It is
an open question, whether the results will be intuitive for freely defined weights. The
algorithm considers windows based on time intervals instead of transactions. That is,
each slide can contain a different number of transactions.
WSW stores the transaction identifiers for each item. It computes the frequent itemsets
level-wise utilizing the Apriori property by computing the intersection of the sets of
transaction identifiers. For each window, the support set of each item is computed only
once, but each time the window is moved forward, the support set is multiplied with the
new weight and the candidate itemsets are generated again. This candidate generation
step is one of the bottlenecks of Apriori-based approaches. In addition, the support sets
of larger itemsets are computed via a set intersection, which is a costly operation.
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Discussion Both the idea of individual weights for each slide and slides based on time
instead on the number of transactions provide more flexibility than many other algo-
rithms. Despite this flexibility, the algorithm is, however, very simple and re-executes
Apriori for updated data sets. A large number of empirical results indicate that Apri-
ori is slow compared to newer algorithms. The general idea of WSW does not depend
on Apriori but could use another algorithm to run faster. Even then a lot of compu-
tation would be repeated. Streaming algorithms should exploit the fact that they have
already computed a partial result for an earlier state of the data stream to reduce the
time per update. The WSW algorithm does not take advantage of such a strategy.

MFI-TransSW

The Mining Frequent Itemsets with a Transaction-sensitive Sliding Window (MFI-
TransSW) algorithm (Li et al., 2006) maintains a bit-vector for each item. The bit-
vector of item x takes the value true at position t if x occurs in transaction Tt. When
a new transaction arrives, all bits are left-shifted and the new transaction is encoded
in the last bits. The window is moved continuously with each arriving transaction. Bit
vectors that are no longer needed (i.e., when all bits are set to false) are removed. The
set of frequent itemsets is computed upon request.
Frequent itemsets are generated level-wise. The support set is obtained by computing
the component-wise logical AND between bit-vectors. The Apriori property is used to
prune unpromising candidates.

Discussion The algorithm relies on a very simple idea. It recomputes the set of
frequent itemsets for each mining request from the bit-vectors and ignores all previous
results. This is feasible if the mining requests are rare. If, however, the user queries the
set of frequent itemsets regularly, the strategy is way more expensive than maintaining
the set of frequent itemsets and updating them with new transactions. The bit-vector
data structure is suitable for dense data streams but fits less well to sparse data streams.

CPS-Tree

Tanbeer et al. (2009) describe a dynamic reorganizing tree structure that is mined with
the FP-growth algorithm. This approach is called Compact-Pattern-Stream-Tree Slid-
ing Window (CPS-TreeSW). Its idea is to calculate the support descending order on
the items and reorganize the tree at regular intervals. Consider a window which is di-
vided into several panes, each of identical length. The size of a pane defines the interval
after which the tree is restructured. Nodes at the leaf level maintain separate support
counts for each pane. All other nodes maintain a single count. Each node has pointers
to its parent, a sibling, and its children. A global item list maintains the global support
count of each item. The list contains a pointer to the first node for the item in the tree.
When the window is moved one pane forward in the data stream, the counts from the
oldest pane can be easily subtracted from any node because they are known at the
leaf level. New transactions are added to the existing tree based on the old support
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descending order of the items. After all transactions of the new pane have been inserted
into the tree, the new global order is derived based on the updated item list and the
tree is restructured with respect to the support descending order. The set of frequent
itemsets can be mined from the updated tree with the FP-growth algorithm.

Discussion Maintaining separate support counts at the leaves for each pane eliminates
the need to recompute the support count for the transactions to be deleted. This is a
clear advantage for any algorithm working with mini-batches. Keeping this information
only at the leaf level, where it is truly needed, reduces the overall cost. The restructuring
of the tree comes at some cost. While it keeps the tree small, it may not pay off in terms
of overall runtime if the tree changed only a little. A measure on the deviation of the tree
from the perfect order could be added to the CPS-Tree to optimize the trade-off between
restructuring and mining time. The more compact the tree, the faster FP-growth will
run on the tree. The recomputation of the entire output set from scratch after each
mini-batch has a higher cost compared to algorithms that update the set of frequent
patterns directly. On the other hand, the CPS-TreeSW algorithm has a very small
memory footprint, as it needs to maintain only the tree which is bounded by the number
of transactions in the window, whereas the number of frequent itemsets is exponential
in the size of the number of distinct items.

3.4. Time Fading Window Algorithms

This section contains one single algorithm for the time fading model.

estDec

The estDec algorithm (Chang and Lee, 2003) is an approximate algorithm without a
formal error analysis. It maintains the exact support count of all singleton items and a
subset of all larger itemsets. Given two user-defined parameters decay base b > 1 and
decay base life h ≥ 1, it derives the decay rate d = b(1/h) to discount the weight of older
transactions. Let n denote the total number of transactions in the stream discounted by
the decay rate.
For each new arriving transaction T+, the algorithm first updates the number of trans-
actions in the stream with the user-defined decay rate d. It then updates the support
count of all monitored itemsets respecting d. Itemsets which become less frequent than
a pruning threshold θpr < θ are removed from the monitored set. Each new item in
T+ that is not monitored is added to the prefix-tree structure used to store the itemsets.
Single items are never pruned. Larger sets are added if their maximal estimated sup-
port count divided by n is larger than some insertion threshold θins < θ. The maximal
estimated support count of a k-itemset is simply the minimal support count of all its
(k − 1)-subsets. The minimal estimated support count of a k-itemset is derived from
the union bound of its (k − 1)-subsets. The error in the support count is defined as the
difference between the maximal and minimal estimated support count. Upon request,
estDec retrieves all itemsets from the tree that have a support larger than θ · n.
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Discussion The result of the algorithm depends largely on the thresholds θins and θpr
used for insertion and pruning, respectively. Most other algorithms use θ as insertion
threshold and do not have a specific insertion threshold θins. The pruning threshold
θpr is often derived from some error bound. estDec provides more flexibility with
its explicit thresholds, but no bound. The explicit computation of the updated result
for each individual transaction reduces the throughput of the algorithm compared to
algorithms that update mini-batches.

3.5. Discussion

The key characteristics of the algorithms mining frequent itemsets from data streams are
summarized in Table 3.1. In addition to the algorithms described above, the table lists
the characteristics of the following three less cited algorithms: AP_Stream (Silvestri
and Orlando, 2007), DSCA (Jea and Li, 2009), and BFI Stream (Li et al., 2008b).
The table considers the dimensions Problem definition, which comprises, the pattern
type, the error in the output and the false result, Pattern maintenance, composed of the
update interval and the enumeration approach, and Data handling, which considers the
dynamics of the threshold, the synopsis structure and the use of bit-vectors.
By definition, the table includes only algorithms mining frequent patterns. The most
popular window model for frequent itemset mining from transactional data streams is
the landmark model, followed by the sliding window model. The time fading model is the
least prominent. For the landmark model, most algorithms produce false-positive results.
A second broad category includes those algorithms for which the output error is not
specified, i.e., the algorithm can produce both false-positive and false-negative results at
the same time. The false negative approach is exotic, despite its benefits. All Algorithms
for the sliding window model produce exact results. We observe a strong correlation
between the output and the false result. More precisely, three of the algorithms with
false positive output limit false patterns to the interval θ − ε ≤ freq(X) < θ and
three use looser bounds. Algorithms with false positive and false negative results do
not have a specific proven error bound, they come with undefined false results. This
is equivalent to stating that the false result is in the interval 0 < freq(X) < ∞. The
algorithms with exact results produce no false results. Concerning the update strategies,
mini-batching and updates per transaction are on par. The favorite listing strategy is
bottom-up enumeration. Given the downward closure property, this is very reasonable.
All algorithms, except for one, use static thresholds. Regarding the data structures,
trees seem to be the most prominent choice. Bit vectors are used by only one algorithm
on our list.
To assist in the selection of an algorithm, we present a decision tree in Figure 3.3 for the
choice based on the window model, the output, and the update strategy.
While most designs have their merits and limitations, some algorithms seem to work
only for special cases. These are hMiner, Stream Mining, DSM-FI, and SA-Miner.
The first two were evaluated only on data sets with very short average transaction sizes
of length up to 4. Their general design is not suited for large transactions, as they
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Figure 3.3.: Decision tree for the selection of an algorithms mining frequent itemsets
from data streams. (LM = landmark, SW = sliding window, TF = timefading, tx =
transaction)

both enumerate every subset of each transaction (hMiner) or almost all subsets of a
set of transactions (Stream Mining). Both approaches are infeasible for large trans-
actions. DSM-FI is very slow because of its top-down enumeration approach requiring
it to check a very large number of non-frequent itemsets. SA-Miners design is overly
complicated without any proof that the proposed method works for data streams with
large transactions.

3.6. Summary

In this chapter, we have presented a survey of the literature on frequent itemset mining
from transactional data streams. For each covered algorithm, we discussed its idea as
well as the advantages and potential limitations of the design. To support the selection
of an algorithm with particular properties for a given setting, we compiled a table with
the main characteristics and a decision tree to assist the choice. In summary, our (short)
survey supports the understanding of the sate-of-the-art and reveals that the majority
of algorithms are designed for the landmark model.
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Problem definition Pattern maintenance Data handling
Algorithm WM1 Output2 False Update Enumeration Threshold Synopsis BV3 Reference(s)

result structure
Carma LM FP 0 < freq(X) < θ transaction bottom-up static lattice no Hidber (1999)

Lossy Counting LM FP θ − ε ≤ freq(X) < θ mini-batch bottom-up static tree/array no Manku and Motwani (2002)
Stream Mining LM FP θ − ε ≤ freq(X) < θ transaction bottom-up static lattice no Jin and Agrawal (2005)

DSM-FI LM FP θ − ε ≤ freq(X) < θ transaction top-down static tree no Li et al. (2008a)
EStream LM FP θ − 2ε < freq(X) < θ transaction bottom-up static tree no Dang et al. (2008)
hMiner LM FP 0 < freq(X) < θ transaction undefined static hash table no Wang and Chen (2009)

SApriori LM FP & FN unspecified mini-batch bottom-up static table no Sun et al. (2006)
AP_Stream LM FP & FN unspecified mini-batch bottom-up static table no Silvestri and Orlando (2007)

DSCA LM FP & FN unspecified transaction bottom-up static tree no Jea and Li (2009)
SA-Miner LM FP & FN unspecified mini-batch bottom-up static tree & ANN4 no Li and Jea (2014)

FDPM LM FN Pr(0) ≥ 1− δ mini-batch bottom-up dynamic table no Yu et al. (2004, 2006)
MFI-TransSW SW exact none transaction bottom-up static bit-vector yes Li and Lee (2009); Li et al. (2006)

BFI Stream SW exact none transaction bottom-up static tree no Li et al. (2008b)
SWIM SW exact none mini-batch bottom-up static tree no Mozafari et al. (2008)
WSW SW exact none mini-batch bottom-up static tid-sets no Tsai (2009)

CPS-TreeSW SW exact none mini-batch bottom-up static tree no Tanbeer et al. (2009)
estDec TF FP 0 < freq(X) < θ transaction bottom-up static lattice no Chang and Lee (2003)

Table 3.1.: Most important characteristics of algorithms mining frequent itemsets from data streams.
1 Window Model: LM = landmark, SW = sliding window, TF = timefading
2 Output: FP = false psoitive, FN = false negative
3 BV = Bit-vector
4 ANN = artificial neural network
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4. Frequent Itemset Mining from
Transactional Data Streams

This chapter considers the problem of mining frequent itemsets from data streams under
the landmark model with probabilistic guarantees for the output patterns that are inde-
pendent of the update cycle. We start with a high-level description of our contribution
in Section 4.1. In the main sections, we present two algorithms. The first one, called
Partial Counting is the subject of Section 4.2. It is based on a simple probabilistic
reasoning. The second, more sophisticated algorithm, called DTM, is presented in Sec-
tion 4.3. It has a dynamic probabilistic error bound that allows it to produce results
after any number of transactions. We extensively evaluate our algorithms empirically
and compare them to the state-of-the-art in Section 4.4. Our results demonstrate that
the DTM algorithm outperforms the state-of-the-art algorithms in terms of F-score. We
discuss our contribution in Section 4.5 and summarize this chapter in Section 4.6.

4.1. Contribution

In this section, we provide a short overview of the contributions in this chapter, before
presenting them in detail. Recall from Chapter 2 that mining data streams under the
landmark model is challenging because, in general, it is infeasible to keep the entire
stream in main memory. Thus a small synopsis is required. It must store the essential
information from the data stream to approximately capture both the past and the present
information. Clearly, any algorithm with a guarantee for the analysis of such a data
stream must guarantee that the synopsis is suitable to infer information about the past
and the current state of the stream. Some of the algorithms for this task, such as SA-
Miner by Li and Jea (2014), come without a formal analysis of the output’s error.
Others, with a formal analysis of the error, provide awkward error bounds (e.g., the
DSM-FI algorithm by Li et al. (2008a)) or even worse contain flaws (e.g., hMiner by
Wang and Chen (2009) (cf. Section 3.2)). State-of-the-art algorithms with proven error
bounds require fixed-size updates. They either process each transaction individually,
which is slow, or fixed-size mini-batches. While the mini-batch-based update is fast, it
limits flexibility. In particular, if such an algorithm is queried for an incomplete mini-
batch, then it cannot guarantee any clear error bound. We decouple the (probabilistic)
guarantee from the update interval to obtain a fast and flexible algorithm.
In particular, we first propose the Partial Counting algorithm inspired by Carma (Hid-
ber, 1999). Our algorithm combines explicit counts of itemsets with probabilistic rea-
soning to estimate the support count of an itemset for the past, while it was not counted.
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The estimation relies on Bayes’ theorem and the observed itemset frequencies. A distinct
feature of the algorithm is that the estimate improves with additional transactions in
the data stream. In fact, it converges in the limit.
As a second scenario, we then take a different probabilistic view and consider transactions
generated by dynamic distributions. In this setting, the transactions are generated
independently at random with some unknown distribution over all transactions. The
occurrence of an item X in the i-th transaction Ti gives rise to the binary variable Xi

indicating whether or not X ∈ Ti. In fact, the Xis are independent Poisson trials.
For this setting, we designed the algorithms DCIM1 (Trabold and Horváth, 2016) and
DTM2. Both algorithms rely on the same theory and share the concept of dynamic
bounds. The algorithms guarantee that the estimate of the frequency θ is correct within
a dynamic error of ε, with a probability of at least 1− δ for some user-defined confidence
δ > 0. This bound is formally proven and improves as more and more transactions are
received from the stream. That is, ε gets gradually smaller with additional transactions.
DTM improves upon DCIM in terms of F-score. In this thesis, we only cover the
DTM algorithm because the two algorithms are very similar and DTM obtains superior
F-scores. This algorithm estimates the frequency of a new (potential) frequent itemset
for the unobserved past not by the frequencies of its subsets, but by a dynamic bound.
The bound is always below the frequency threshold and converges towards it for infinite
streams.
We extensively compare our algorithms Partial Counting and DTM to five state-
of-the-art algorithms. Our experiments demonstrate the good mining quality of our
algorithms and show that they are competitive in both runtime and memory, given the
quality of the mining results. DTM outperforms all state-of-the-art algorithms in terms
of F-score over a large variety of data streams.

4.2. The Partial Counting Algorithm

This section introduces the Partial Counting algorithm approximating the frequency
of frequent itemsets from a data stream of transactions at any point in time. Our goal
is to design an algorithm that produces a sequence F̂1,θ, F̂2,θ, ... of families of candidate
frequent itemsets such that at each point in time t ∈ N, the family F̂t,θ approximates Ft,θ
closely, while maintaining a small memory footprint. Before we present the algorithm,
we introduce two further notations. We define the support count of an itemset X in a
data stream S = 〈T1, T2, . . . , 〉 from time i to time j by

Ci,jX = |{k ∈ N : i ≤ k ≤ j,X ⊆ Tk}| ,

i.e., the support count of X for the interval is equal to the number of transactions from Ti
to Tj that contain X. Let pi(X) = Pr[X ⊆ Ti]. We write p(X)i,j to denote the average
success probability of the event that itemset X is being supported by the transactions

1 Dynamic Confidence Intervals Miner
2 Dynamic Threshold Miner
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Figure 4.1.: Partial Counting working principle: The occurrences of itemset X are
counted from tX . CtX ,tX denotes this observed count for X from tX to t. As the support
count of X is not available for the period 1 to tX − 1, it must be estimated for this time
interval; Ĉ1,tX−1

X denotes this estimated count.

from Ti to Tj , i.e.,

p(X)i,j = pi(X) + . . .+ pj(X)
j − i+ 1 .

The inputs to our Partial Counting algorithm are a minimum frequency threshold
θ ∈ (0, 1] and, for each time point t ∈ N, the most recent transaction Tt ⊆ I. For each
t ∈ N, the algorithm estimates the frequency of all frequent itemsets with respect to the
transaction data stream 〈T1, . . . , Tt〉, in one pass and without storing the transactions
T1, . . . , Tt−1 seen earlier.
For all t ∈ N, the algorithm keeps only those itemsets in the memory that have been
estimated as frequent after having processed Tt; all other itemsets, except for the 1-
itemsets, are removed from the memory. Thus, in contrast to the Lossy Counting
algorithm by Manku and Motwani (2002), the space complexity of the algorithm is only
O
(
|F̂t,θ|

)
, where F̂t,θ is the family of itemsets estimated as frequent with respect to

T1, . . . , Tt.
The algorithm is depicted in Algorithm 2. To process the next transaction Tt arriving
at time t, the algorithm takes in a first step (lines 4–12) all non-empty subsets X of
Tt (line 4) and increments the counter for X if X is already in the memory (lines 5–
6). Otherwise, if X is a singleton or it is a k-itemset for some k > 1 and all of its
(k − 1)-subsets are already in the memory, it stores X with some additional auxiliary
information. It utilizes the Apriori property, i.e., that a k-itemset cannot be frequent
if at least one of its (k − 1)-subsets is infrequent. More precisely, for X we store a
quadruple (x.set, x.s, x.t, x.count) that will be used to estimate the frequency of X for
the data stream T1, . . . , Tt−1.
The components of the quadruple are defined as follows: Variable x.set stores the itemset
X itself. All subsets with exactly one item less (i.e., Y such that |Y | = |X| − 1) along
with their count are stored in the set variable x.s. The time tX , i.e., when the counting of
X starts, is kept in x.t. Finally x.count stores the count of the itemset. It is important
to note that the subsets of Tt are processed in increasing cardinalities, as otherwise
potential new frequent itemsets can be lost (see lines 4,8, and 9).
In a second step (lines 13–16), the algorithm then prunes all quadruples corresponding
to itemsets X from the memory that satisfy |X| > 1 and are estimated as infrequent
at point t. In line 14, the algorithm first calculates an estimation of the support count
of X; different strategies for this estimation step will be presented in Section 4.2.1 by
noting that all these strategies recursively estimate the support count from the counts
(i.e., x.count) maintained by the algorithm using some statistical inference. Figure 4.1
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Algorithm 2 Partial Counting
1: Intitalization
2: F ← ∅ // current set of frequent patterns with auxiliary information

3: Processing of transaction Tt
4: for X ⊆ Tt in increasing cardinality do // counting
5: if ∃x ∈ F with x.set = X then
6: increment x.count
7: else
8: if |X| = 1 ∨ (∀Y ⊂ X : ∃y ∈ F with y.set = Y ∧ |Y | = |X| − 1) then
9: x.s← {(y.set, y.count) : y ∈ F ∧ y.set ⊂ x.set ∧ |y.set| = |x.set| − 1)}
10: x.t = t
11: x.count = 1
12: F ← F ∪ {x}
13: for x ∈ F with |x.set| > 1 do // pruning
14: compute Ĉ1,t

x // see Section 4.2.1
15: if Ĉ1,t

x /t < θ then
16: delete x from F

17: Output after timepoint t
18: for x ∈ F do
19: if |x.set| > 1 ∨ x.count/t > θ then output (x.set,Ĉ1,t

x )

illustrates the general setting: For an itemset X (re)counted from time tX , its support
count for the period from 1 to tX − 1 must be estimated from the information available
at time t. If the frequency derived from this estimation is below the threshold θ, X
is removed from the memory. Thus, when an itemset becomes frequent it is stored
and counted as long as it is estimated as frequent. When it becomes infrequent, it is
immediately pruned.
For a query after time point t, Partial Counting outputs all itemsets with their
estimated support counts from F that meet the minimum frequency condition (line 18–
19). According to the construction, all itemsets X in F with |X| > 1 will automatically
be part of the output. In summary, we have a true online algorithm that returns a
family F̂t,θ of itemsets predicted as frequent from the stream of transactions from the
beginning of the stream up to time t.

4.2.1. Support Approximation Strategies

This section describes a generic framework for support count estimation and presents
different strategies for this problem. Except for one, all of the strategies in this section
are based on some careful combination of the observed counts with the estimated ones
that are derived from conditional probabilities.
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We write Ĉ for estimated support counts. As illustrated in Figure 4.1, whenever there
is some observed support count for an itemset X, the estimated support count for the
entire period of all transactions is given by the estimation Ĉ1,tX−1

X of the support count
for the period [1, tX − 1] for which the support count of X is not available plus the
observed support count CtX ,tX for the interval [tX , t] in which X has been counted. As
long as no observed count for X exists at time t, its estimated support count is 0, i.e.,

Ĉ1,t
X =

{
min

(
bθ(tX − 1)c, Ĉ1,tX−1

X

)
+ CtX ,tX if t ≥ tX

0 o/w .

We now present different strategies to compute Ĉ1,tX−1
X . The first estimation strategy

is similar to the one proposed by Hidber (1999). The other two are natural strategies
based on conditional probabilities.

Upper Bound Estimation (ube) This estimation strategy takes the minimum estimated
support count of all (k − 1)-subitemsets Y of a k-itemset X, i.e.,

Ĉ1,tX−1
X = min

Y⊂X,

|Y |=|X|−1

Ĉ1,tX−1
Y .

Clearly, this formula gives an upper bound on the true support count of X. Notice that
this is a static strategy in the sense that it does not improve the estimation Ĉ1,tX−1

X as
further transactions arrive.

Estimation Based On Conditional Probabilities We now turn to more complex, dy-
namic estimation strategies. They are based on the probabilistic view of frequencies
that for any itemset X and t ∈ N

p(X)1,t = p(Y )1,t · p(X|Y )1,t

for any Y ⊂ X. To estimate p(X)1,t, we need to estimate p(X)1,tX−1, as all information
about X is available for the interval [tX , t]. We estimate p(X)1,tx−1 by estimating (i)
p(Y )1,tX−1 and (ii) p(X|Y )1,tX−1:

(i) Regarding p(Y )1,tX−1, we estimate it recursively by

p(Y )1,tX−1 ≈ Ĉ1,tX−1
Y

tX − 1 (4.1)

by noting that the support counts are stored from the very beginning for all 1-
itemsets.

(ii) Regarding p(X|Y )1,tX−1, we make use of the fact that [tX , t] is a common observa-
tion period for both X and Y and the assumption that the underlying distribution
D is stationary and estimate p(X|Y )1,tX−1 by

p(X|Y )1,tX−1 ≈ p(X|Y )tX ,t, (4.2)
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which, in turn, can be calculated by

p(X|Y )tX ,t = CtX ,tX

CtX ,tY

. (4.3)

One can show that for sufficiently large tX and t, (4.2) gives a close estimation
with high probability.

Putting together, from (4.1), (4.2), and (4.3) it follows that p(X)1,tX−1 can be estimated
by

p(X)1,tX−1 ≈ Ĉ1,tX−1
Y

tX − 1 ·
CtX ,tX

CtX ,tY

. (4.4)

As the frequency of X in [1, tX − 1] is identical to the probability p(X)1,tX−1, by (4.4)
the support count Ĉ1,tX−1

X can be estimated by

Ĉ1,tX−1
X = p(X)1,tX−1 · (tX − 1)

≈ Ĉ1,tX−1
Y · CtX ,tX

CtX ,tY

.

The two strategies presented below build upon the idea discussed above. They differ
from each other only by the particular choice of Y . All strategies have in common that
they estimate the support counts only for itemsets X with |X| ≥ 2.

(a) Minimum estimation (me): This strategy uses the single subset Y that results in the
minimum estimated count for X, i.e.,

Ĉ1,tX−1
X =


min
Y⊂X,

|Y |=|X|−1

Ĉ1,tX−1
Y · CtX ,tX

CtX ,tY

if |X| > 1

0 o/w (i.e., if |X| = 1) .

(b) Average estimation (ae): Averaging is a standard technique to combine several un-
certain predictors for obtaining a more robust result than any individual predictor
would give. This strategy averages over all Y , i.e.,

Ĉ1,tX−1
X =


1
|X|
·

∑
Y⊂X,

|Y |=|X|−1

Ĉ1,tX−1
Y · CtX ,tX

CtX ,tY

if |X| > 1

0 o/w (i.e., if |X| = 1) .

An Illustrative Example To illustrate the three different strategies presented above, we
use the small example given in Table 4.1. It shows a total of 8 transactions in the first
row, t in the second row, and the frequencies of a, b, and ab in rows three to five. The
last three rows show the estimated frequencies for the three strategies.
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transactions a b a ab a b a ab
t 1 2 3 4 5 6 7 8
freq(a) 1 0.5 0.66 0.75 0.8 0.6 0.71 0.75
freq(b) 0 0.5 0.33 0.5 0.4 0.5 0.43 0.5
freq(ab) 0 0 0 0.25 0.2 0.17 0.14 0.25
ube 0 0 0 0.5 0.4 0.33 0.29 0.38
me 0 0 0 0.5 0.4 0.25 0.21 0.33
ae 0 0 0 0.5 0.4 0.29 0.23 0.35

Table 4.1.: A data stream of transactions illustrating the different estimation strategies
ube, me, and ae. The first row shows the transactions, the second row t, the next three
rows the frequencies for itemsets a, b and ab respectively. The last three rows show the
estimated frequencies for the itemsets a, b, and ab for the three strategies presented.

In the example, the first estimation occurs for transaction 4, as this is the first occurrence
of ab and is counted from this transaction onwards. Up to and including the third
transaction, the set a occurs twice and b once. All estimations rely on the counts of a and
b for the first three transactions. The strategies start to differ from the 6th transaction
(i.e., from t = 6) onwards. We will, therefore, illustrate the different strategies for the
6th transaction. C4,6

ab = 1 for all strategies.

(i) ube estimates Ĉ1,3
ab = min(2, 1) = 1, which gives

Ĉ1,6
ab = Ĉ1,3

ab + C4,6
ab = 1 + 1 = 2

and thus, a frequency of 2
6 = 0.33.

(ii) me estimates Ĉ1,3
ab = min(1 · 1

2 , 2 ·
1
2) = 0.5, which gives

Ĉ1,6
ab = Ĉ1,3

ab + C4,6
ab = 0.5 + 1 = 1.5

and a frequency of 1.5
6 = 0.25.

(iii) ae estimates Ĉ1,3
ab = 1

2(1 · 1
2 + 2 · 1

2) = 0.75, which gives

Ĉ1,6
ab = Ĉ1,3

ab + C4,6
ab = 0.75 + 1 = 1.75

and a frequency of 1.75
6 = 0.29.

All other estimations are computed accordingly.

4.2.2. Implementation Issues

In this section, we discuss some important optimizations of the Partial Counting algo-
rithm and briefly describe some implementation issues, including caching of intermediate
results, processing of transactions in mini-batches, the data structure, insertion into the
data structure, and pruning.
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To speed up the algorithm, we employ two optimizations. First, observe that Partial
Counting employs a recursive strategy to estimate the unobserved frequencies Ĉ1,tX−1

X

based on the frequencies of some or all subsets Y ⊂ X : |Y | = |X| − 1. Computing
explicitly all steps of the recursion requires exponentially many recursive calls in the
size of X. The algorithm processes itemsets in increasing cardinality (cf. line 4). Thus
the estimated frequencies for all subsets Y ⊂ X have already been computed when X
is processed. The algorithm, therefore, caches all estimated frequencies in each update
step. This essentially reduces the exponential number of recursive calls in the size of X
to a set of lookups in the size of X, i.e., the time complexity for the update of X shrinks
from exponential to linear.

As a second optimization, we add a simple transaction buffer to store up to B transac-
tions for some integer B > 0. This strategy is used by many related algorithms (see,
e.g., Manku and Motwani (2002); Sun et al. (2006); Yu et al. (2004)). While there is
no mining request and the buffer is not full, transactions are simply added to the buffer
one by one. Whenever the buffer is full or the algorithm is queried for the current set
of frequent itemsets, all the transactions from the buffer are processed at once. The
addition of a buffer changes lines 4, 10 and 11 of the algorithm. Instead of looping over
a single transaction in line 4, the algorithm iterates over all subsets of the transactions
stored in the buffer. Let s denote the number of transactions in the buffer. Then line
10 changes to x.t = t − s. In line 11, instead of setting the count of an itemset to 1,
the count is set to the count of the itemset in the buffer. More precisely, let c denote
the count of an itemset X in the buffer. Then line 11 changes to x.count = c. The
buffer has the advantage that it reduces the number of iterations (cf. lines 3–16) in the
algorithm and increases the throughput of the algorithm, without modifying the overall
approach. Whereas other algorithms require specific sizes for their buffer, e.g., Manku
and Motwani (2002); Sun et al. (2006); Yu et al. (2004), the choice of the buffer size B
for Partial Counting is arbitrary and does not affect the accuracy of the algorithm.

The data structure F can be stored as a prefix tree. This allows for a compact rep-
resentation of the family of itemsets, as it suffices to store for each itemset X only a
single item. Indeed, the itemset corresponding to a node can uniquely be recovered by
concatenating the items on the path from the root to the node at hand. Furthermore, it
also allows for pruning entire branches, if such a node has to be deleted that has further
children.

The set x.s can be stored compactly as an array of integers. For an itemset X with
|X| = k, there are k different (k−1)-subsets. We sort all these subsets Y lexicographically
and take only the index of the missing item i (i.e., which satisfies Y ∪ {i} = X) to store
the count for itemset Y. Thus, we keep k counters for the subsets and one for the itemset
X.

Theoretically, we may start observing an itemset X as soon as the estimated frequencies
for all subsets Y ⊂ X have reached the minimum frequency threshold θ. X may not
occur in the transaction (or buffer), when this condition is met. However, X may
become frequent only when it occurs in the current transaction (buffer). That is, we
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start counting X, with the transaction (buffer) containing X after all Y have already
reached the minimum frequency threshold. The price we pay for this is that the first
estimation of p(X|Y ) is 1 and as such, very inaccurate.
An itemset that is inserted into F at time t is never pruned in t. Otherwise, it would
not have been inserted. We exploit this by skipping the pruning test for itemsets which
were inserted in time t.

4.3. The Dynamic Threshold Miner

This section presents the Dynamic Threshold Miner (DTM) algorithm for approximat-
ing the solution of Problem 2 defined in Section 2.3 (page 26). While the algorithm is
designed for the above problem, it also solves Problem 3 (cf. page 26) as will be shown
empirically in Section 4.4. It is based on the idea of dynamical confidence thresholds,
developed for the Dynamic Confidence Interval Miner DCIM algorithm (Trabold and
Horváth, 2016). Though DTM builds upon the theory of DCIM, it regularly obtains
superior F-scores because its estimation for the past is more accurate and it is less restric-
tive when starting to count new potential frequent itemsets. While DCIM distinguishes
three states for an itemset DTM associates any itemset with one of two states. Both
algorithms have in common that they dynamically estimates the frequency for the un-
observed period. We now focus on the DTM algorithm. At any time it associates each
itemset with one of the following states: interesting or uninteresting. The state of an
itemset X depends on its estimated frequency f̂(X) and a dynamic confidence threshold
ε calculated by Chernoff’s bound. An itemset is interesting if f̂(X) ≥ θ− ε; otherwise it
is uninteresting. Figure 4.2 illustrates the two states.
As the stream evolves and more transactions become available, ε gets smaller and thus,
the interval of state interesting becomes smaller over time as illustrated in Figure 4.3.
The interval for interesting itemsets, shown in gray in the figure, shrinks fast in the
beginning and then slower and slower.
The DTM algorithm stores all interesting and singleton itemsets (independently of their
current state). Similarly to other related stream mining algorithms, we assume that the
algorithm is provided a buffer that can be used to store B transactions for some B > 0
integer.
The main steps of the DTM algorithm are given in Algorithm 3. It has three input
parameters: A frequency threshold θ ∈ (0, 1], a confidence parameter δ ∈ (0, 1) for
defining the dynamic confidence interval, and a buffer size B ∈ N. For each itemset
X ⊆ I stored by the algorithm, it records the index τ of the transaction since X has
(again) been stored by the algorithm (X.τ), the number of occurrences of X in the
transactions from transaction Tτ (X.count), the current state of X (X.state), and an
estimate of the frequency of X (X.est). When a new transaction arrives, it is added
to the buffer. If the buffer becomes saturated, it is first processed with Algorithm 4
and then emptied. Finally, when the algorithm receives an interestingness query for an
itemset X, it returns “uninteresting” if X is not among the itemsets stored. Otherwise,
it returns “interesting” if its estimated relative frequency X.est is at least θ since X.τ .
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interesting

uninteresting

1
θ

θ − ε

0

Figure 4.2.: Itemset states used by the
DTM algorithm.

Figure 4.3.: Development of the regions in-
teresting (top) and uninteresting (bottom)
for the first 100 transactions and θ = 0.8.

Algorithm 3 DTM Main
Parameters: frequency threshold θ ∈ (0, 1], confidence parameter δ ∈ (0, 1), and buffer
size B ∈ N

Initialization:
for all i ∈ I do {i}.τ = 1, {i}.count = 0, {i}.state = Infreq

Processing transaction Tt at time t
set Buffer[t mod B] = Tt
if t mod B = B − 1 then process and empty the buffer // see Algorithm 4

Processing query X at time t
if (X.state = Int) ∧ (X.est ≥ θ) then

return “interesting” with X.oe
else

return “uninteresting”

We now turn to the description of processing the buffer (see Algorithm 4). All itemsets
are of state uninteresting initially. DTM does not store uninteresting itemsets, except
for singletons. The state of an itemset X w.r.t. a data stream St = 〈T1, . . . , Tt〉 is based
on the following probabilistic reasoning: Let p(t)(X) = µ > 0. Since

p(t)(X) = E[X1 + . . .+Xt]
t

,

where E denotes the expected value, applying Chernoff bounds to Poisson trials we have

Pr
(
X1 + . . .+Xt

t
≤ (1− ε)µ

)
≤ e−tµε2/2

for any 0 < ε < 1 (see, e.g., Ch. 4 of Mitzenmacher and Upfal (2005)). Bounding the
right-hand side by δ, we get

ε ≥
√
−2 log δ
tµ

.
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Algorithm 4 Dynamic Threshold Miner (DTM)
Input: frequency threshold θ ∈ (0, 1], confidences δ ∈ (0, 1), buffer size B ∈ N

1: function Estimate(integer s)
2: return max

(
0,
(

1−
√
−2 log δ
sθ

)
θ

)

Process the buffer at time t:
3: for all ∅ 6= X ⊆ I such that @Y ⊂ X with Y.state = Unint do
4: c = support count of X in the buffer
5: if |X| = 1 then
6: X.count = X.count+ c
7: if X.count/t ≥ Estimate(t) then X.state = Int, X.est = X.count/t
8: else X.state = Unint
9: else // |X| > 1

10: if X.state = Unint then // i.e., X is not in the data structure
11: M = (Estimate(t−B) · (t−B) + c)/t
12: if M ≥ Estimate(t) then
13: X.state = Int, X.τ = t−B + 1, X.count = c, X.est = M

14: else
15: X.count = X.count+ c
16: X.est = (Estimate(X.τ − 1) · (X.τ − 1) +X.count)/t
17: if X.est ≥ Estimate(t) then X.state = Int
18: else X.state = Unint

Thus, for any t > −2 log δ
µ , we have

Pr
(
X1 + . . .+Xt

t
≤
(

1−
√
−2 log δ
tµ

)
µ

)
≤ δ .

Now consider the case that

X1 + . . .+Xt

t
≤

1−
√
−2 log δ
tθ

 θ . (4.5)

One can easily check that if X was interesting, i.e., µ ≥ θ, then we had
(

1−
√
−2 log δ
tµ

)
µ ≥

1−
√
−2 log δ
tθ

 θ
whenever

t = O

(− log δ
θ

)
.
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Thus, the probability that (4.5) occurs and X is interesting is bounded by δ, implying
that X is not interesting with probability at least 1− δ.

Using the probabilistic reasoning sketched above, an itemset X is regarded by Algo-
rithm 4 as uninteresting (Unint) for a data stream St if (4.5) holds and interesting
otherwise. All singleton itemsets are processed and stored by the algorithm regardless of
their state (see lines 5–8). For an itemset X of state uninteresting, DTM first calculates
an estimate of its relative frequency (lines 11 and 1–2). If it does not satisfy condition
(4.5), then the state is changed to interesting and X is stored (lines 12–13). Finally, in
lines (15–18) the state is updated for interesting itemsets according to the probabilistic
reasoning described above.

Implementation In this section, we describe some of the specifics and optimizations of
the implementation of our DTM algorithm.

We experimented with two different implementations. The first is Apriori-based, the
second one is based on the FP-Tree data structure. For the Apriori-based version, we
use a column-based table as the buffer, where each column corresponds to one item. For
every column, we store the set of ids of the transactions that contain the corresponding
item. For this purpose we assign a number to each transaction, starting from 1. Counting
itemsets is easy with this structure, as it suffices to compute the intersection of the sets
corresponding to the columns of the items in the itemsets (Zaki et al., 1997). The size
of the intersection is the support count of the itemset in the set of transactions in the
buffer. We use classical transaction projection to reduce the incidence sets to the smallest
possible size. This speeds-up further projections (Boley et al., 2009b).

For the FP-Tree-based design, we simply use an array for the buffer. Once the buffer is
full or upon a query, we construct an FP-Tree from the buffer and enumerate itemsets
with breadth-first-search (or level-wise). While depth-first-search is typically faster (cf.,
e.g., Qinghua Zou et al. (2002); Wang et al. (2003)), the design of the algorithm requires
level-wise processing. To reduce the number of computed projections, we cache one
projected tree for each level. The cache always stores the last projected tree for each level,
except the current one. Once the projections at the current level have been computed, the
next tree does not need to be reprojected from the root node. Rather, it can be projected
from an already projected and cached tree, if a parent of the tree to be projected is in the
cache. This improves the runtime efficiency, however at the expense of some additional
memory. We have tested both implementations and found that the tree-based version is
several times faster than the other one.

The itemsets stored by DTM are kept in a classical prefix tree structure with lexi-
cographical sorting. Each node stores its first transaction, i.e., the time when it was
created, the count, its state, and the optimistic estimate.
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4.4. Empirical Evaluation

The goal of the empirical evaluation is to compare the performance of the algorithms
developed within this thesis to other state-of-the-art algorithms. The main features
considered for this comparison are the mining quality, the amount of memory, and the
runtime. The mining quality is measured in terms of F-score, which is obtained by
comparing the output of the approximate streaming algorithm to the output of an exact
non-streaming algorithm processing the transactions from the stream. Given the correct
output from the non-streaming algorithm, it is easy to compute the exact numbers of
correctly identified frequent itemsets, i.e., true positives (TP), any additionally reported
frequent itemset which is not frequent, i.e., false positives (FP), and any missing frequent
itemset, i.e., false negatives (FN). The F1-score or simply F-score is defined as:

F-score = 2TP
2TP + FP + FN

.

4.4.1. Data sets

In this section, we describe the data sources used in the experiments. Our evaluation
relies on classical publicly available real-world benchmark data sets and artificially gen-
erated data streams with known characteristics. Two popular sources for the task of
frequent itemset mining are the UCI machine learning repository (Dua and Graff, 2019)
and the Frequent Itemset Mining Dataset Repository3. While the former provides data
sets for a broad range of data mining tasks, the latter focuses specifically on data sets for
frequent itemset mining. Both sources provide classical data sets for the non-streaming
setting. Since there is no equivalent source providing data streams and the above data
sets are well-known in the frequent itemset mining literature, these standard data sets
will be used for our evaluation. Data streams can be generated from them by feeding
the transactions one after one to an initially empty stream or by repeatedly drawing
the next transaction with replacement from the data set. The first approach results in
deterministic data streams, which are limited in length to the number of transactions in
a data set. The second one can be used to generate streams that are larger than the data
set the stream is generated from. For some algorithms and parameters, the number of
transactions that are required to reach their error bound exceeds the number of transac-
tions in some data sets. This is a limitation of the first approach. The second approach
results in streams that contain the same transaction multiple times. We have generated
streams with 10 million transactions from these data sets by randomly drawing the next
transaction. However, the experimental results show that these streams have very little
variation and most algorithms find the frequent itemsets easily. The frequent itemsets
for 1M transactions of such a stream are nearly identical or even identical to the frequent
itemsets for 10M transactions of such a stream. Since our goal is to identify strengths
and weaknesses, we do not report these results and work with the first approach to
separate the algorithms more clearly. Table 4.2 lists the real-world benchmark data sets
used in the empirical evaluation and their key characteristics.
3 http://fimi.ua.ac.be/data/
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Data set Instances Binary
attributes

Average trans-
action length Density

Adult* 48,842 104 9 0.086538
Chess (kr-vs-k) 28,056 58 7 0.120690
Kosarak 990,002 41,270 8 0.000196
Poker-hand 1,025,010 95 11 0.115789
T10I4D100k 100,000 870 10 0.011612
T40I10D100k 100,000 942 40 0.042044

Table 4.2.: Benchmark data sets used for the empirical evaluation.
* = considering all nominal columns

Some interesting aspects, such as, for example, the effect of the number of items, the
impact of the average size of the transactions and others, can not be measured clearly
on these classical benchmark data sets because the characteristics of interest can not be
controlled for them. Therefore, additional artificially generated data streams are used
to investigate the behavior of the algorithms for the variation of a single parameter
under controlled settings. Two further advantages of artificial data streams are that
they can generate streams of arbitrary length and with more variation than streams
generated by repeatedly drawing from a fixed set. Artificial data streams are generated
with the IBM quest market basket data generator (Agrawal and Srikant, 1994), which is
the state-of-the-art tool for generating transactional benchmark data sets with certain
characteristics. The program is widely used for the evaluation of algorithms mining
frequent itemsets (see, e.g., Wang and Chen (2009)).
The parameters of this tool are:

• D: number of transactions in k

• N: number of different items in k

• T: average number of items per transaction

• I: average length of maximal patterns

• L: number of patterns

• C: correlation between patterns.

To obtain data streams with different characteristics, all parameters were systematically
modified. Table 4.3 lists the distinct values used for each parameter. The start con-
figuration is D = 1, 000, N = 10, T = 20, I = 4, L = 10k, and c = 0.5. All other
configurations are obtained from this start configuration by modifying the values of a
single parameter. In total, 32 artificial data streams have been generated by different
variations of these parameters.
To distinguish between the two very different data sources, the real-world benchmark
data sets will be referred to as real-world or UCI data and the artificially generated data
streams as artificial or QUEST.
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Parameter Semantic Values
D number of transactions in k 100; 1, 000; 10, 000
N number of items in k 1; 10; 100; 1, 000
T average number of items per transaction 10; 20; 30; 40; 50; 60; 70
I average length of maximal patterns 4; 6; 8; 10; 12; 14; 16; 18; 20
L number of patterns 1k; 10k; 100k; 1M
C correlation between patterns 0; 0.25; 0.5; 0.75; 1

Table 4.3.: Parameters used for synthetic data stream generation.

4.4.2. Design of Experiment

In this section, we describe the design of our experiments. Each data set is considered
and processed as a data stream providing the transactions one after the other to the
algorithm. Each algorithm is queried at regular intervals for the set of frequent itemsets.
These intervals are data set specific and are chosen equidistant such that after each
additional tenth of the data stream a new result is obtained. For each intermediate
result, the ground truth is computed with an exact non-streaming algorithm, considering
the first n transactions. The ground truth serves as a gold-standard, against which the
outputs of the approximate streaming algorithms are compared. Some algorithms require
a specific block size for their error guarantee to hold. For them, we compute intermediate
and ground truth results after as many blocks have been processed as have been filled
completely by the i-th tenth of the stream and compare this result to the ground truth
computed for the same number of transactions.
The algorithms are evaluated at five thresholds corresponding to approximately 1k, 5k,
10k, 50k, and 100k frequent itemsets. These thresholds cover a broad range of appli-
cations. Small sets of frequent patterns can be manually investigated. This, however,
becomes more and more challenging with larger numbers of frequent itemsets. While
large sets of frequent patterns are computationally more interesting, they are practically
less relevant because patterns with lower frequency are often less significant. Hence 100k
seems a reasonable bound. As the number of frequent itemsets for a data stream might
change over time, the thresholds are determined based on the ground truth result for
the entire stream.
The ten results for each data stream and the five thresholds give a total of 50 results
for each data set. These results are further condensed to obtain a single number from
all measurements considering either the average or the worst-case performance. The
worst-case corresponds to the minimal F-score, the maximal memory, and the maximal
runtime. It provides a lower bound of the performance of an algorithm. Since the real-
world and artificial data exhibit different characteristics, the results will be aggregated
for both data sources separately and will be reported whenever appropriate.
For the empirical comparison, the most relevant algorithms mining data streams un-
der the landmark model were chosen (cf. Section 3.2). In particular, Carma (Hidber,
1999), Lossy Counting (Manku and Motwani, 2002), SApriori (Sun et al., 2006),
FDPM (Yu et al., 2004) and EStream (Dang et al., 2008). The algorithms DSM-
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FI (Li et al., 2008a), Stream Mining (Jin and Agrawal, 2005), hMiner (Wang and
Chen, 2009), and SA-Miner (Li et al., 2014) have such specific properties that make
them unsuitable for the general mining setting. In particular, the enumeration scheme
of DSM-FI requires the algorithm to check very large numbers of non-frequent itemsets,
making it very slow. This is an undesired property for any stream mining algorithm.
Since hMiner enumerates every subset of each transaction and Stream Mining enu-
merates almost every subset of a set of transactions, both approaches result in an expo-
nentially large set and work therefore only for very short transactions. hMiner has been
evaluated with an average maximal itemset size of 4, Stream Mining for transactions
with size up to 6. Finally, SA-Miner is overly complicated. Its support approximation
approach with artificial neural networks requires a lot of data for the training of the
network, yet even with this data, it is unclear whether such a support approximation
relation can be learned for most real-world data sets.
All algorithms were (re)implemented in the Java programming language and use similar
data structures whenever appropriate. The individual implementation of an algorithm
might be less or more sophisticated than the implementation by the respective authors,
but this reimplementation with similar data structures and transaction processing en-
sures maximal comparability among the algorithms. Our goal is not to present the most
sophisticated implementations of these algorithms, but rather to have comparable im-
plementations. While the results can altogether be further improved concerning memory
and runtime through more sophisticated data structures, they demonstrate the perfor-
mance of the algorithms in relation to each other. For Carma, we buffer the transactions
and process all transactions from the buffer at once with the FP-growth algorithm.
Since this algorithm has no formal error bound, this does not change the error, but it
significantly improves the processing speed. We found that our implementation of the
FDPM algorithm was slow due to its intermediate pruning of the set of patterns from
the current batch. To speed up the algorithm, we skip this pruning and generate an FP-
Tree for each batch, which makes our modified implementation of the algorithm very
fast. We refer to the modified version as FDPM∗.
Most algorithms have specific parameters that affect their performance. To better un-
derstand their impact and to have a fair comparison, we tune these parameters before
the comparison of algorithms with each other. The details of our parameter tuning are
provided in the Appendix.
All experiments were run on computers with the following hard and software config-
uration: Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz equipped with 64GB of memory
running Debian GNU/Linux 9 with Kernel Version 4.18.10 and the OpenJDK Java ver-
sion 1.8.0_181.

4.4.3. Experimental Comparison

This section compares the performance of the algorithms to each other based on the
optimal parameters as evaluated in the Appendix. Table 4.4 summarizes them. The
comparison considers the effect of varying the following aspects:

• Frequency threshold
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Algorithm Parameter(s)
DTM δ = 0.1
EStream ε = 0.1θ; k = as from ground truth
Lossy Counting (LC) ε = 0.01θ
Partial Counting (PC) strategy = average estimation
FDPM∗ k = 5; δ = 0.0001
SApriori ε = 0.002θ; δ = 0.0001

Table 4.4.: Optimal parameters for frequent itemset mining algorithms.

• Length of the data stream

• Number of different items

• Average number of items per transaction

• Average length of maximal patterns

• Number of patterns

• Correlation between patterns

The first two aspects will be evaluated both on the real-world benchmark data from
Table 4.2 and the artificial data streams obtained with the IBM quest market basket
data generator. The further aspects can only be evaluated on the artificial data streams,
as these parameters can not be controlled for the real-world data.
For a single data stream, ten results are computed as described previously. They are
aggregated based on a worst-case scenario, taking the minimum F-score and the max-
imum memory and runtime, as they provide a lower bound on the performance of an
algorithm. A good lower bound is very desirable for a new unknown data stream. Across
the various data streams, these worst-case results are averaged to obtain a single number
for all data streams.

Frequency threshold As described above, frequent itemsets are mined at five data
stream specific thresholds corresponding to approximately 1k, 5k, 10k, 50k, and 100k
frequent itemsets. These values cover a broad range of applications. Results for the
real-world data streams are shown in Figure 4.4 and those for the artificial data streams
in Figure 4.5. To obtain a unique order we compute the averages over all threshold
values and rank the algorithms by this order.
For the F-scores in Figures 4.4a and 4.5a, we observe that the order of the algorithms
is consistent across both data sources. The overall rank of the algorithms from best to
worst is as follows: DTM, FDPM∗, Partial Counting, Lossy Counting, Carma,
SApriori, and EStream. In case of high frequency thresholds and few frequent item-
sets, SApriori and EStream perform way better than for lower frequency thresholds.
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(a) F-Measure (b) Memory (c) Runtime

Figure 4.4.: Average effect of varying the frequency threshold on (a) F-Measure, (b) Mem-
ory, and (c) Runtime for the UCI data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure 4.5.: Average effect of varying the frequency threshold on (a) F-Measure, (b) Mem-
ory, and (c) Runtime for artificial QUEST data.

This is probably due to the length bias introduced by the frequency threshold. For
higher frequency thresholds there are fewer long itemsets, making the mining problem
easier.

Concerning the memory needed to process the streams, we observe different orders for the
UCI data (Figure 4.4b) and the QUEST data streams (Figure 4.5b). Noteworthy is that
there is a clear trend that at lower thresholds the algorithms all require more memory
than at higher thresholds. For both data sources SApriori requires significantly less
memory than the other algorithms. However, it achieves poor F-scores. On the UCI
data, FDPM∗ comes next, then Carma, Partial Counting, and DTM. For the
QUEST data, we observe a different order. In particular, Partial Counting requires
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(a) F-Measure (b) Memory (c) Runtime

Figure 4.6.: Effect of varying the length of the data stream on (a) F-Measure (mean),
(b) Memory (worst case), and (c) Runtime (worst case) for the UCI data streams.

the third least memory, followed by Carma, DTM, and FDPM∗. In both cases, Lossy
Counting requires the second to most memory and EStream requires the most. They
both need an order of magnitude more memory than the other algorithms (Figure 4.5b).
We now turn to the description of the runtime. See Figures 4.4c and 4.5c for the results
on real-world and artificial data streams respectively. First of all, we observe the general
tendency that with an increasing number of frequent itemsets the algorithms take longer
to process the data streams. While this general trend holds for both data sources, it is
more apparent for the UCI data. On the QUEST data, there is a decrease in runtime for
large numbers of frequent itemsets for EStream. The algorithm is unable to produce
these results for some data streams. As we consider only completed results, the algorithm
obtains hence a lower total runtime. Surprisingly, Partial Counting and DTM are
amongst the fastest algorithms for the QUEST data. They rank second and third after
SApriori. For the real-world streams, DTM is faster than Partial Counting. For
these streams, they are both slower than SApriori and FDPM∗.
In summary, DTM performs best in terms of F-score. Partial Counting is still very
competitive on the artificial streams and at the same time very memory efficient and the
fastest algorithm amongst those obtaining high F-scores.

Length of the data stream To analyze the effect of the length of the data stream,
intermediate results for each data set are produced at regular intervals, corresponding
to one-tenth of the data stream. For the artificial data streams, we consider streams
with 100k, 1M, and 10M transactions and produce intermediate results after each tenth
for every stream. For each data stream, we extract the average F-score for the real-
world and lowest F-score for the artificial streams, the highest memory consumption,
and maximal runtime. We average these results over all five frequency thresholds. The
results for the real-world and artificial streams are shown in Figures 4.6 and 4.7. We
discuss both data sources in turn.
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(a) F-Measure (b) Memory (c) Runtime

Figure 4.7.: Effect of varying the length of the data stream on (a) F-Measure, (b) Memory,
and (c) Runtime for artificial QUEST data.

Some algorithms did not complete for all thresholds and stream length; we ignore these
missing results. On the real-world data, we can observe for the average F-score (Fig-
ure 4.6a) that the EStream algorithm is the only one that profits from increasing
stream length. Still, its F-score ends up second to last. Only SApriori performs worse.
It has no clear tendency as a function of the stream length. All other algorithms show a
drop in their F-score with increasing stream length. DTM consistently obtains the best
F-scores, followed by FDPM∗; Partial Counting ranks fifth.
Concerning memory consumption (Figure 4.6b) one can observe that only the two al-
gorithms SApriori and FDPM∗ require less memory than DTM. The next best is
Carma followed by Partial Counting. Lossy Counting and EStream show an
increasing memory demand as the stream gets longer. Finally, we note that SApriori,
FDPM∗, and Partial Counting require constant memory, irrespective of the stream
length.
Figure 4.6c shows the maximum runtime for each update step, i.e., each point represents
the individual time required to process one-tenth of the stream. The overall order from
fast to slow is SApriori, FDPM∗, Lossy Counting, DTM, EStream, Partial
Counting, and Carma. Carma shows the most unstable processing times.
We now turn to the artificial data streams (see Figure 4.7). For the streams with 10
Million transactions, Lossy Counting did not have sufficient memory to complete.
Concerning the worst-case F-score (Figure 4.7a), we observe that it increases for the
algorithms SApriori and Carma with the stream length. This is because we evaluate
the experiment after every 1/10 of the stream. Thus, longer streams provide more
transactions and hence, the algorithms can build more accurate statistics. DTM is
again best in all cases with an F-score of 0.99, followed by Partial Counting which
obtains an F-score of 0.97. While FDPM∗ is competitive up to 1M transactions, its
F-score drops for streams with 10M transactions. We attribute this to the fact that the
algorithm processes more buffers for longer streams, which causes it to miss more and
more frequent itemsets. The effect of the stream length on memory is shown in Figure
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(a) F-Measure (b) Memory (c) Runtime

Figure 4.8.: Worst case effect of varying the number of items on (a) F-Measure, (b) Mem-
ory, and (c) Runtime for artificial QUEST data.

4.7b. For streams with 10M transactions, most algorithms require a similar amount
of memory. SApriori requires significantly less and EStream significantly more than
the other algorithms. Figure 4.7c shows the maximal time to process one update, i.e.,
one-tenth of the data stream. As the streams get longer, these individual updates have
to process more transactions and require more time. Hence, the runtime increases. This
is well expected, in contrast to the updates on the real-world data streams with constant
size.
The results from this experiment clearly show the superior performance of DTM in terms
of F-score. Partial Countings inference mechanism is well-suited for the artificial data
streams but seems less appropriate for the real-world data streams, where its F-score
decreases with increasing data stream length.

Number of different items To test the impact of the number of different items in
the data streams, artificial data streams were generated with different alphabet sizes. In
particular, the following sizes were used: 1k, 10k, 100k and 1M. Similarly to the previous
experiment, we average the results over all five frequency thresholds. The results for these
experiments are shown in Figure 4.8. Regarding the F-score (Figure 4.8a), we observe
that most algorithms are agnostic to the size of the alphabet. EStream profits from
larger alphabets, while SApriori performs slightly worse with increasing alphabet size.
The best F-scores archive the algorithms DTM, FDPM∗, and Partial Counting.
Regarding the memory consumption (Figure 4.8b), the algorithms can be partitioned
into three categories. Those with a memory footprint independent of the number of items
(EStream), those that require more memory as the number of items increases (FDPM∗,
DTM, Carma, Partial Counting), and algorithms which require less memory as the
number of items grows (Lossy Counting, SApriori).
The runtime results (Figure 4.8c) indicate that all algorithms except for EStream re-
quire more time to process data streams with larger alphabets. EStream, on the other
hand, gets faster as the alphabet grows. Lossy Counting and DTM are the two algo-
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(a) F-Measure (b) Memory (c) Runtime

Figure 4.9.: Effect of varying the average number of items per transaction on (a) F-
Measure, (b) Memory, and (c) Runtime for artificial QUEST data.

rithms with the largest increase in runtime with growing alphabet size. We observe that
Partial Countings runtime increases slowest with the increasing number of items.
More precisely, the runtime increases from 10, 500 seconds for 1, 000 different items to
16, 000 seconds for 1M different items. Thus the algorithm is particularly well-suited for
streams with very large ground sets I.

Average items per transaction For the artificial data streams, we modify the average
number of items per transaction as defined in Table 4.3, considering the values 10, 20, 30,
40, 50, 60, and 70. The results are averaged over all five frequency thresholds and shown
in Figure 4.9. Note first that for EStream and Lossy Counting, some experiments
did not run. This is visible for EStream in the F-score for 70 items (Figure 4.9a).
All other algorithms perform very well, i.e., with F-scores close to 1, irrespective of the
average number of items per transaction. In particular, DTM, Partial Counting,
and Carma obtain very high F-scores.
The memory consumption is shown in Figure 4.9b. We clearly observe that the algo-
rithms fall into two categories: Those with constant memory irrespective of the average
number of items per transaction and those that require more memory as the average
number of items per transaction increases. Carma, DTM, Partial Counting, and
FDPM∗ require almost the same amount of memory irrespective of the number of items.
EStream and SApriori require more memory as the average number of items per trans-
action increases. Finally, Lossy Counting shows no clear pattern as a function of the
number of average items per transaction.
The runtime increases with an increasing average number of items per transaction for all
algorithms (see Figure 4.9c). The order from fast to slow is SApriori, Partial Count-
ing, Carma, DTM, FDPM∗, EStream, and finally Lossy Counting. DTM and
Lossy Counting have the smallest increase in runtime which makes these algorithms
suitable to process very large transactions with several hundred items per transaction.
Partial Counting is efficient both in terms of memory and runtime and has a slightly
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(a) F-Measure (b) Memory (c) Runtime

Figure 4.10.: Effect of varying the average length of maximal patterns on (a) F-Measure,
(b) Memory, and (c) Runtime for artificial QUEST data.

better F-score than Carma which requires a little less memory and about the same
time. DTM, on the other hand, is interesting for transactions with 100 items or more,
as it can be expected to be the fastest algorithm among those with high F-scores for
such streams.

Average length of maximal patterns To identify the effect of the average length of the
maximal patterns, this length was systematically modified. More precisely, we considered
lengths from 4 to 20, at increments of 2. As in the previous experiments, we average the
results over all five frequency thresholds. They are reported in Figure 4.10. Note that
Lossy Counting was unable to complete from the average length of 16 onwards. The F-
scores (Figure 4.10a) are the least accessible, as they show some fluctuation. We observe
the general tendency that the F-score drops as the average length increases. But this
general trend shows several exceptions. We note that our algorithms are amongst those
with the highest F-scores over a broad range. In particular, DTM obtains the highest
F-scores and only FDPM∗ manages to be constantly better than Partial Counting.
The memory consumption is depicted in Figure 4.10b. We observe that for all algorithms,
except for SApriori, the memory consumption clearly increases with the average length
of maximal patterns. Out of the three algorithms with the highest F-scores, Partial
Counting requires the least memory, followed by FDPM∗. While DTM requires less
space than FDPM∗ in many cases, it requires more memory for 20 items and this result
dominates the overall average.
The runtime results are reported in Figure 4.10c. EStream shows the largest increase in
runtime as the average length of maximal patterns increases. SApriori is at the opposite
extreme with the smallest increase. All other algorithms rank somewhere in between.
Partial Counting is overall the second fastest algorithm, followed by FDPM∗ and
then DTM.
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(a) F-Measure (b) Memory (c) Runtime

Figure 4.11.: Effect of varying the number of patterns on (a) F-Measure, (b) Memory,
and (c) Runtime for artificial QUEST data.

Amongst the algorithms with the best F-scores, Partial Counting requires the least
memory and is fast. This makes the algorithm a strong candidate for settings in which
the available memory or the processing time is limited, such as, for example, mobile
devices. DTM, on the other hand, obtains consistently the best F-scores.

Number of patterns For the artificial data streams, we considered streams with 1k, 10k,
100k, and 1M patterns. The averages over the worst-case results for all five frequency
thresholds are shown in Figure 4.11. FDPM∗ and Lossy Counting did not complete
for the two lowest frequency thresholds at 100k and 1M patterns. This can be seen in the
results, for example, in Figure 4.11b, which shows that they require the least memory.
With respect to the F-score (Figure 4.11a), we observe that with an increasing number
of patterns it decreases slightly, except for DTM, FDPM∗ and Lossy Counting. If
we rank the algorithms the top three are DTM, FDPM∗, and Partial Counting.
The memory consumption is shown in Figure 4.11b. All algorithms require more memory
as the number of patterns increases. Note that FDPM∗ and Lossy Counting appear
to require less memory at lower thresholds, but this is purely caused by the fact that
they did not produce all results at these thresholds.
The runtime results are reported in Figure 4.11c. With an increasing number of patterns,
all algorithms tend to run longer. The overall impact of the number of patterns on the
runtime is rather small. All algorithms are fast in this experiment, except for DTM. For
1M patterns, the algorithm requires the most time to compute the update. However,
unlike FDPM∗ it completed for all data streams and thresholds.

Correlation between patterns We generate synthetic data streams with different cor-
relation strengths between the patterns. In particular, we investigate data streams with
correlation 0, 0.25, 0.5, 0.75, and 1. The results are depicted in Figure 4.12. Overall,
this parameter shows little effect in all three plots. The F-scores (Figure 4.12a) for each
algorithm vary only within a very close range. Only FDPM∗ performs slightly worse
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(a) F-Measure (b) Memory (c) Runtime

Figure 4.12.: Effect of varying the correlation between patterns on (a) F-Measure,
(b) Memory, and (c) Runtime for artificial QUEST data.

Algorithm F-score
DTM 0.9805
FDPM∗ 0.9598
Partial Counting 0.9002
Lossy Counting 0.8550
Carma 0.8523
SApriori 0.6086
EStream 0.4356

Table 4.5.: Average F-score over all frequent itemset mining experiments.

for the correlation 1.0. DTM obtains once more the best F-score. The impact on mem-
ory (Figure 4.12b) is also very limited. Most notable are some runtime effects (Figure
4.12c). While overall there is very little effect, FDPM∗ and Lossy Counting require
more time with an increasing correlation between the patterns. This effect is stronger
for FDPM∗. Amongst the algorithms with high F-scores, Partial Counting is the
fastest.

Résumé We briefly summarize the seven experiments of this section. To obtain an
overall picture, we compute the average F-score and an average rank for both memory
and runtime over all experiments. These metrics are useful to derive a ranking of the
algorithms. Table 4.5 shows the average F-scores. Not only does our DTM algorithm
obtain the best overall F-score, but it has also the best F-score in all experiments. Other
good candidates with respect to the F-score are FDPM∗ and Partial Counting.
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Regarding the memory, the ranking of the algorithms from small to large is SApri-
ori, Partial Counting, Carma, FDPM∗, DTM, Lossy Counting, and finally
EStream. We observe that Partial Counting comes second after SApriori. This
makes our Partial Counting algorithm a good candidate if the goal is to obtain good
results with limited memory which is the case e.g. for mobile device applications.
If we rank the algorithms from fast to slow, we obtain the following order: SApri-
ori, Partial Counting, FDPM∗, DTM, Lossy Counting, Carma, and EStream.
SApriori is first, but given its overall low F-score, the algorithm does not seem to be a
good choice. Partial Counting ranks again second and is thus not only interesting if
the memory is limited, but also when the update of the results should be fast, i.e., when
the speed at which new transactions arrive is high, such as in classical big data settings.
We conclude that DTM provides the best F-score over a large set of datasets and
parameters and is hence the most accurate algorithm. If, however, the F-score is not the
most important and an approximation of the family of frequent itemsets is sufficient,
then Partial Counting is the most memory efficient and fastest algorithm amongst
the top three in terms of F-score.

4.5. Discussion

Before we discuss the results of this chapter, we briefly recall them. We have presented
two new algorithms with probabilistic reasoning for the problem of mining frequent
itemsets from data streams under the landmark model. Both algorithms have the benefit
that they can work with transaction buffers, but still, produce results after any number
of transactions. The DTM algorithm provides a theoretical proven probabilistic error
bound which guarantees that the chance that an itemset is frequent but not reported as
such is bounded by 1− δ, for some user-defined confidence δ. A common feature of both
algorithms is that they use an estimated frequency for the past.
The Partial Counting algorithm mines frequent itemsets with a memory-bound pro-
portional to the number of frequent itemsets in the stream. It starts counting an itemset,
once all subitemsets are frequent and uses statistical inference to estimate the unobserved
frequency. To achieve good F-scores, our algorithm requires less memory and time than
the state-of-the-art algorithms.
Partial Counting tries to estimate the frequency of an itemset based on the frequen-
cies of its direct subsets. We proposed three mechanisms for this estimation: upper
bound, minimum, and average estimation and compared them empirically. The strate-
gies follow different reasonings. The upper bound estimation uses the single smallest
count of a subset as the estimation for the past. The other two strategies work with
conditional probabilities. They compute the conditional probability of a k-itemset given
its k (k− 1)-subitemsets and multiply this conditional probability with the count of the
subitemset, for each subitemset. These conditional probabilities become more precise
as further and further transactions are added to the stream. The minimum strategy
takes simply the minimum of all the estimations obtained from the (k− 1)-subitemsets,
whereas the average strategy computes the average over all subitemsets. To compute
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the estimates based on the conditional probabilities, the algorithm tracks and stores the
counts of the k-subsets when it starts to count a k-itemset. This is an overhead in terms
of memory, which is feasible only for small k.
The algorithm is very similar to Carma (Hidber, 1999). The central difference
comes from the estimation approach employed. Carmas strategy resembles the up-
per bound estimation, but differs in a small detail. While Partial Counting uses
min

(
bθ(tX − 1)c, Ĉ1,tX−1

X

)
to obtain an estimate for the past, Carma adds the cardinal-

ity of the itemset X to the frequency threshold multiplied by the number of transactions
in the past, i.e., it computes min

(
bθ(tX − 1)c+ |X|, Ĉ1,tX−1

X

)
. As the experimental

results have demonstrated, our approach leads to better F-scores.
Our DTM algorithm is a probabilistic algorithm designed for answering interestingness
queries on data streams with transactions generated by independent probability dis-
tributions. The empirical results on real-world benchmark and artificial data streams
demonstrate that it achieves an excellent performance not only on mining interesting
itemsets but also on frequent itemset mining from data streams, even with correlated
transactions. In all of our experiments, it achieves the best F-scores and outperforms all
state-of-the-art algorithms. Additionally, we observe, that its runtime increases slower
than the runtime of other algorithms with an increasing number of items per transaction
(cf. Figure 4.9). The algorithm can work with arbitrary buffer sizes and even process
incomplete buffers, in contrast to many other approaches. Interestingly, the guarantee
of DTM is independent of the buffer size. The buffer has only an impact on the update
frequency and even incomplete buffers can be processed without any loss of the formal
error bound. The algorithm profits from larger data streams as the error bound gets
tighter as more and more transactions arrive in the stream. It is most similar to FDPM,
but differs from it in the following features:

1. DTM estimates the frequency for the uncounted period,

2. it applies a different probabilistic reasoning, and

3. its output is not necessarily sound.

We conclude that our two algorithms presented in this chapter provide clear algorithmic
advantages over the state-of-the-art approaches. In particular, DTMs high F-scores
make this algorithm the method of choice, when exact results are required. Partial
Counting is suitable if the result does not need to be as precise, but the memory and
time are more restricted and the size of each transaction is limited.

4.6. Summary

This chapter proposed two new algorithms for the task of frequent itemset mining from
transactional data streams under the landmark model. Although they work with a
transaction buffer, they are still able to produce a result after any number of transac-
tions. All state-of-the-art algorithms process transactions either individually, with low
throughput, or in mini-batches with less flexibility, providing results with probabilistic
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guarantees only for completely full mini-batches. In contrast, the probabilistic reasoning
of our algorithms is independent of the number of transactions processed in each up-
date. They combine thus the flexibility of the transaction-based update with the time
advantage of mini-batch-based algorithms. For the DTM algorithm, we have proven a
bound that gets tighter as more and more transactions are processed. Our extensive
empirical experiments have demonstrated a superior F-score of our DTM algorithm for
all but one dataset.
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5. Strongly Closed Itemset Mining from
Transactional Data Streams

This chapter is concerned with mining strongly closed itemsets, a parameterized subset
of frequent itemsets. We start with a motivation for the choice of this pattern class
in Section 5.1. Our main contribution, the Strongly Closed Stream Mining (SCSM)
Algorithm, is described in Section 5.2. It incrementally updates the family of strongly
closed sets based on a fixed size sample. This characteristic essentially allows the al-
gorithm to compute an updated result for any number of transactions, once the initial
sample is complete. We extensively evaluate the algorithm empirically in Section 5.3.
Our empirical results confirm both the compactness of strongly closed sets, as well as the
high approximation quality of our algorithm. In Section 5.4, we empirically demonstrate
their suitability for two practical applications: concept drift detection and product con-
figuration recommendation. We discuss the results of this chapter in Section 5.5 and
summarize finally our contributions in Section 5.6.

5.1. Motivation

In the previous chapter, we proposed two algorithms for approximating the family of
all frequent itemsets from transactional data streams and empirically demonstrated that
they are able to maintain even 100K frequent itemsets in practically feasible time. While
this order of magnitude is typically sufficient for mining short frequent itemsets, it is less
suitable for generating long patterns. Indeed, recall from Chapter 2 that for a ground
set of size n, there might be 2n − 1 non-empty frequent itemsets in a data stream.
Assuming a fixed capacity of maintaining at most K patterns, the length of a longest
frequent itemset is bounded by log2K. This follows from the fact that all subsets of
an itemset must be frequent themselves. The potentially huge number of the output
patterns has not only a negative impact on the update time of any such data stream
mining algorithm but also affects the memory. A common solution to reduce the number
of output itemsets is to increase the frequency threshold. However, this approach suffers
from a language bias towards short patterns; this is precisely the problem we want to
address.
Another approach to deal with the time and space complexity problem above is to
generate some compact representation of the family of frequent itemsets. A natural
candidate would be the class of maximal frequent itemsets. If, however, P 6= NP, this
class of patterns cannot be enumerated efficiently (Boros et al., 2003). A different option
could be to consider the family of closed frequent itemsets, which can be listed with
polynomial delay (see, e.g., Ganter and Reuter (1991); Gély (2005)). While there are
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several fast algorithms mining closed frequent itemsets from data streams (see, e.g.,
Tang et al. (2012); Yen et al. (2014)), the number of closed itemsets still may be huge
and hence not compact enough. In particular, in the landmark model most frequent
itemsets will typically become (frequent) closed. This is perhaps one of the main reasons
why the vast majority of algorithms for closed frequent itemset mining in data streams
focuses on the sliding window model. Thus, closed frequent patterns do not solve the
problem of reducing the output patterns feasibly for the landmark model. Last but
not least, one may consider the family of crucial frequent itemsets (Das and Zaniolo,
2016), a subset of all frequent closed itemsets containing all maximal frequent itemsets.
While crucial itemsets provide the theoretically most compact lossfree representation of
frequent itemsets (including support counts), they do not solve the problem either. The
difference between closed and crucial frequent itemsets typically vanishes with increasing
data stream length. In addition, it is an open problem whether or not crucial itemsets
can be generated with polynomial delay.
To overcome the limitations of the above pattern classes, we give up the requirement for
lossless representations of frequent itemsets and consider the problem of mining some
compact lossy “synopsis” able to capture certain essential information about the data
stream. This problem relaxation is motivated by the fact that completeness is not nec-
essary to capture fundamental characteristics of a data stream1. We will experimentally
confirm this claim in Section 5.4 for the practical problems of concept drift detection
and product configuration recommendation.
Clearly, the pattern language providing lossy synopses must be chosen carefully; oth-
erwise the essential information to be preserved might be lost in the compact repre-
sentation. As we empirically show, frequent strongly closed itemsets, a parametrized
subfamily of frequent closed itemsets provides such a lossy synopsis. Accordingly, in this
chapter, we consider the problem of listing ∆̃-closed itemsets from data streams under
the landmark model, i.e., Problem 4 defined in Section 2.3 (page 27). For this problem,
we present an efficient algorithm with a completeness guarantee with respect to a reser-
voir sample. The sample size will be derived from Hoeffding’s inequality in a way that
with high probability, the relative frequency of any itemset in the sample deviates from
the relative frequency in the data stream at most by a small user-defined error.
The parameter ∆̃ controls the output size and hence the memory. With increasing ∆̃,
the number of itemsets decreases fast (Boley et al., 2009b; Trabold and Horváth, 2017).
It is important to note that, in contrast to frequency-based pruning, ∆̃ does not limit
the pattern length. Our empirical results in Section 5.3 confirm both the compactness
of strongly closed sets as well as the high approximation quality of our algorithm.

5.2. The Strongly Closed Stream Mining Algorithm

In this section, we present our Strongly Closed Stream Mining (SCSM) algorithm
for the ∆̃-Closed Set Listing problem (Problem 4) defined in Section 2.3 (page 27). To
tackle massive data streams in feasible time, we approximate the ∆̃-closed sets for a data
1 Consider the mp3 audio format as a practical example.
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TID Items
1 bd
2 bd
3 bd
4 ad
5 ad
6 cd
7 cd
8 c
9 c

(a) Transactions

Itemset Support
d 7
ad 2
bd 3
cd 2

(b) 2-closed itemsets
for transactions 1–8

Itemset Support
c 4
d 6
ad 2
bd 2
cd 2

(c) 2-closed itemsets
for transactions 2–9

Figure 5.1.: Strongly closed itemsets example.

stream St = 〈T1, . . . , Tt〉 at time t from a fixed size random sample Dt generated from
St without replacement. Since the order of the elements in the sample does not matter,
Dt is regarded as a transaction database. The size s of Dt is chosen in a way that for
all X ⊆ I, the discrepancy between the relative frequency of X in St and that in Dt is
at most ε with probability at least 1− δ, i.e., s satisfies

Pr
(∣∣∣∣ |St[X]|

t
− |Dt[X]|

s

∣∣∣∣ ≤ ε) ≥ 1− δ (5.1)

for any X ⊆ I. The parameters ε (error) and δ (confidence) are specified by the user.
Our extensive experiments in Section 5.3.5 show that a very close approximation of the
true family of ∆̃-closed itemsets can be obtained in this way.
Our algorithm recalculates the family of ∆̃-closed itemsets not after each new transac-
tion, but either upon request or after b new transactions have been received since the
last update, where b, the buffer size, is specified by the user. Given St = 〈T1, . . . , Tt〉
and St′ = 〈T1, . . . , Tt, Tt+1, . . . , Tt′〉 with t′− t ≤ b, the new sample Dt′ of St′ is computed
from the old sample Dt by Dt′ = Dt	Ddel⊕Dins, where Ddel (resp. Dins) is the multiset
of transactions to be removed from (resp. added to) Dt, and 	 and ⊕ denote the set
difference and the union operations on multisets.
The algorithm will be illustrated on the example transactional data stream given in
Figure 5.1 with b = 8 and ∆ = 2. The strongly closed itemsets for transactions 1-8
(respectively 2-9) are shown in Figure 5.1b (resp. 5.1c).
We sketch the sampling algorithm in Section 5.2.1 and describe the algorithm updating
the family of ∆̃-closed itemsets from Dt to Dt′ in Section 5.2.2.

5.2.1. Sampling

We use reservoir sampling (Knuth, 1997; Vitter, 1985) for generating a random sample
Dt of size s for a data stream St = 〈T1, . . . , Tt〉, as this method does not require the
stream length to be known in advance. The general scheme of reservoir algorithms
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is that they first add T1, . . . , Ts to a “reservoir” and then throw a biased coin with
probability s/k of head for all k = s+ 1, . . . , t. If the outcome is head they replace one
of the elements selected from the reservoir uniformly at random with Tk. This naive
version of reservoir sampling, attributed to A.G. Waterman by D. Knuth in (Knuth,
1997), generates a random sample Dt of St without replacement uniformly at random.
That is, all elements of St have probability s/t of being part of the sample after St
has been processed. We have implemented Vitter’s more sophisticated version, called
Algorithm Z in (Vitter, 1985).
Given a sample Dt of a data stream St = 〈T1, . . . , Tt〉, the sample Dt′ for St′ =
〈T1, . . . , Tt, Tt+1, . . . , Tt′〉 is computed from Dt by repeatedly applying Algorithm Z to
Dt and the elements in 〈Tt+1, . . . , Tt′〉. Recall that t′ − t ≤ b, where b is the buffer size.
If a transaction in the sample is replaced by a new transaction T ∈ {Tt+1, . . . , Tt′},
we appropriately update a database Ddel containing the transactions to be removed
from Dt and a database Dins containing the transactions to be added to Dt. Clearly,
|Ddel| = |Dins|. Furthermore

E[|Ddel|] = E[|Dins|] ≤
bs

t′
. (5.2)

This follows directly from the linearity of the expectation and from E[Xk] = s/t′, where
Xk is the indicator random variable for the event that Tk is selected for St′ . Note that in
(5.2) we have inequality only in the case that t′−t < b, i.e., when an update is calculated
upon request for an incomplete buffer; o/w we always have equality. The RHS of (5.2)
approaches 0 as t′ approaches infinity. For example, it is only 15 for b = 10k, t′ = 100M,
ε = 0.005, δ = 0.001, and s = 150k, where the sample size s = s(ε, δ) satisfying (5.1) is
calculated by Hoeffding’s inequality2, i.e.,

s =
⌈ 1

2ε2 ln 2
δ

⌉
. (5.3)

In our running example in Figure 5.1, for the sake of simplicity, we assume that trans-
action 1 will be replaced with transaction 9 by the sampling algorithm.

5.2.2. Incremental Update

Note that the sample size s in (5.3) depends on the error and confidence parameters ε
and δ only. That is, s does not change with increasing data stream length. Hence, both
denominators in the LHS of (2.1) (page 27) will be fixed (i.e., s) for the entire mining
process from the s-th transaction onward. More precisely, for any transaction database
D of size s and ∆̃ ∈ [0, 1], the family of relatively ∆̃-closed itemsets of D is equal to the
family C∆,D of absolutely ∆-closed itemsets for ∆ = ds∆̃e. This allows us to consider
the following problem equivalent to the ∆̃-Closed Set Listing problem (Problem 4):

2 We note that Hoeffding’s inequality applies to samples without replacement as well (Hoeffding, 1963).
A tighter bound can be derived from Serfling’s inequality (Serfling, 1974). The improvement becomes,
however, marginal with increasing data stream length.
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Algorithm 5 Update C∆,Dt

input: data sets Ddel,Dins over I and ∆ ∈ N
require: totally ordered set (I,≤), data set Dt over I, and C∆,Dt

output: C∆,Dt′
for Dt′ = Dt 	Ddel ⊕Dins

Main:
1: C∆,Dt′

← {∅}
2: ListClosed(∅, ∅, min I)

ListClosed(C,N, i):
1: X ← {k ∈ I \ C : k ≥ i}
2: if X 6= ∅ then
3: e← minX; Ce ← C ∪ {e}
4: if Ddel[Ce] = ∅ ∧ Dins[Ce] = ∅ then C ′ ← Closure_α(C, e, C∆,Dt) //Case (α)
5: else if Dins[Ce] = ∅ then C ′ ← Closure_β(C, e,Ddel[Ce], C∆,Dt) //Case (β)
6: else if Ddel[Ce] = ∅ then C ′ ← Closure_γ(C, e,Dins[Ce], C∆,Dt) //Case (γ)
7: else C ′ ← σ∆,Dt′

(Ce) //Case (δ)
8: if C ′ ∩N = ∅ then
9: add (C, e,N,C ′, ↑) to C∆,Dt′

10: ListClosed(C ′, N, e+ 1)
11: else
12: add (C, e,N,C ′, ↓) to C∆,Dt′

13: Y ← {k ∈ I \ C : k > e}
14: if Y 6= ∅ then
15: e′ ← minY
16: ListClosed(C,N ∪ {e}, e′)

Problem 5: Listing ∆-Closed sets from data streams: Given Dt, Ddel, Dins for St and
St′ as defined in Section 5.2.1, an integer ∆ > 0, and the family C∆,Dt of ∆-closed
itemsets of Dt, generate all elements of C∆,Dt′

for Dt′ = Dt 	Ddel ⊕Dins.

Instead of generating C∆,Dt′
from scratch, our goal is to design a much faster practical

algorithm by reducing the number of evaluations of the closure operator for Dt′ . This is
motivated by the fact that the execution of the closure operator is the most expensive
part of the algorithm. We make use of the fact that the expected number of changes in
Dt′ w.r.t. Dt becomes smaller and smaller as t′ increases (cf. (5.2)). Accordingly, our
focus in the design of the updating algorithm is on quickly deciding whether an element
C ′ ∈ C∆,Dt remains ∆-closed in Dt′ , where C ′ is obtained by C ′ = σ∆,Dt(C ∪ {e}) for
some C ∈ C∆,Dt and e ∈ I. Below, we show that in all of the cases when at least one
of the support sets Ddel[C ∪ {e}] or Dins[C ∪ {e}] is empty, the problem above can be
decided much faster than with the naive way of using Algorithm 1. As we empirically
demonstrate in Section 5.3.6, a considerable speed-up over the naive algorithm can be
achieved in this way.
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We first briefly sketch the algorithm computing C∆,Dt′
from C∆,Dt (see Algorithm 5).

It requires four auxiliary pieces of information for all strongly closed itemsets in C∆,Dt ,
except for the empty set (cf. line 1 of Main). Hence, to simplify the notation, the
set variables C∆,Dt and C∆,Dt′

in all algorithms of this section store quintuples, where
the first component is the strongly closed itemset itself; the other four components are
specified below. Algorithm 5 is a divide and conquer algorithm that recursively calls
ListClosed with some ∆-closed set C ∈ C∆,Dt′

, forbidden set N ⊆ I, and minimum
candidate generator element i. It first determines the next smallest generator element
e (line 3) and calculates the closure C ′ = σ∆,Dt′

(C ∪ {e}) in lines 4–7; these steps are
discussed in detail below. We store C ′, together with some auxiliary information (lines 9
and 12). The algorithm then calls ListClosed recursively for generating further ∆-closed
supersets of C ′. In particular, if C ′ does not contain any forbidden item from N , then
the last element of the quintuple stored for C ′ is ↑ (line 9); o/w it is ↓ (line 12). After
all elements of C∆,Dt′

have been generated that are supersets of C, contain e, but do
not contain any element in N , the algorithm generates all closed sets in C∆,Dt′

that are
supersets of C and do not contain any element from N ∪ {e} (lines 13–16).
Example 1. Using the transactions in Figure 5.1, we show how Algorithm 5 updates
the family of 2-closed itemsets for the first eight transactions (cf. Figure 5.1b) to that
for the last eight (cf. Figure 5.1c). For I = {a, b, c, d} with a < b < c < d and
C∆,Dt = {d, ad, bd, cd}, the input to the algorithm for this update consists of Ddel = {t1},
Dins = {t9}, and ∆ = 2. The algorithm first initializes C∆,Dt′

← {∅} (line 2) and then
calls ListClosed(∅, ∅, a) (line 3). The recursive calls of the function ListClosed are
visualized in Figure 5.2. The edges corresponding to lines 1–12 are labeled with the value
of the variable Ce (cf. line 3) and the case used for the update in lines 4–7; unlabeled
edges correspond to lines 14–16.
Theorem 2. Algorithm 5 generates all elements of C∆,Dt′

correctly, irredundantly, in to-
tal time O

(
|I| · |C∆,Dt′

| · ‖Dt′‖0
)
, with delay O

(
|I|2‖Dt′‖0

)
, and in space O(|I|+ ‖Dt′‖0).

Proof. Regarding the correctness, we only need to show that C ′ computed in lines 4–7
satisfies C ′ = σ∆,Dt′

(C ∪ {e}). The correctness of Closure_α (Algorithm 6), Closure_β
(Algorithm 7), and Closure_γ (Algorithm 8) is shown below in Lemmas 1, 2, and 3,
respectively. The proofs of the irredundancy and the time and space complexity are
immediate from Boley et al. (2010) and Gély (2005) by noting that Algorithm 5 must
call the closure operator for all elements in C∆,Dt′

in the worst-case.

In the rest of this section, we give the algorithms for the cases distinguished in lines 4–7
(case (δ) is trivial) and prove their correctness.

Case (α) We first consider the case that the set C ∪ {e} with C ∈ C∆,Dt′
and e ∈ I to

be extended for further ∆-closed sets satisfies

Ddel[C ∪ {e}] = ∅ and Dins[C ∪ {e}] = ∅ (5.4)

(line 4 of Algorithm 5). The closure σ∆,Dt′
(C ∪ {e}) for this case can be computed by

Algorithm 6; the correctness of Algorithm 6 is stated in Lemma 1 below.

78



LC(∅,∅,a)

LC(ad,∅,b)

LC(ad,b,c)

LC(∅,a,b)

LC(bd,a,c) LC(∅,ab,c)

LC(c,ab,d) LC(∅,abc,d)

a:α

abd:α

acd:α

b:β

bcd:β c:γ

cd:α d:α

Figure 5.2.: Call stack for the update in Example 1. Labeled edges correspond to lines 1–
12 of Algorithm 5; unlabeled to lines 14–16. The first component of an edge label denotes
Ce (cf. line 3 of Algorithm 5), the second the case applied (cf. lines 4–7).

Algorithm 6 Closure_α
input: C ∈ C∆,Dt′

with Dt′ = Dt 	Ddel ⊕Dins, e ∈ I, and C∆,Dt

require: Dt
output: σ∆,Dt′

(C ∪ {e})

1: if ∃(C, e,N,C ′, q) ∈ C∆,Dt for some N , C ′, and q then return C ′

2: else return σ∆,Dt(C ∪ {e}) // σ∆,Dt(C ∪ {e}) = σ∆,Dt′
(C ∪ {e}) for this case

Lemma 1. Algorithm 6 is correct, i.e., for all C ∈ C∆,Dt′
and for all e ∈ I, the output

of the algorithm is σ∆,Dt′
(C ∪ {e}).

Proof. Condition (5.4) implies that Dt[C ∪{e}] = Dt′ [C ∪{e}], where Dt′ = Dt	Ddel⊕
Dins. Hence, σ∆,Dt′

(C ∪ {e}) = σ∆,Dt(C ∪ {e}) and σ∆,Dt′
(C ∪ {e}) ∈ C∆,Dt , from which

the proof is immediate for both cases considered in lines 1–2.

Example 2. In our running Example 1, the first call LC(∅,∅,a) in Figure 5.2 corresponds
to case (α), as Dins[a] = Ddel[a] = ∅. Algorithm 6 returns ad as the closure of a in line 1,
i.e., we do not need to (re)evaluate the closure operator on a.

Case (β) We now turn to the case that C ∈ C∆,Dt′
and e ∈ I fulfill

Ddel[C ∪ {e}] 6= ∅ and Dins[C ∪ {e}] = ∅ (5.5)

(line 5 of Algorithm 5). In Proposition 1 below we first prove some monotonicity results
that will be used also for case (γ).

Proposition 1. Let D1 and D2 be transaction databases over I. If D1 ⊆ D2, then for
all ∆ ∈ N,

C∆,D1 ⊆ C∆,D2 . (5.6)
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Algorithm 7 Closure_β
input: C ∈ C∆,Dt′

with Dt′ = Dt 	Ddel ⊕Dins, e ∈ I, Ddel[C ∪ {e}], and C∆,Dt

require: Dt
output: σ∆,Dt′

(C ∪ {e})

1: if there exists (C, e,N,C ′, q) in C∆,Dt for some N , C ′, and q then
2: C ′.count← |Dt[C ′]| − |Ddel[C ′]|
3: for all i ∈ I \ C ′ do
4: C ′.∆i ← |Dt[C ′ ∪ {i}]|
5: if C ′.count− C ′.∆i + |Ddel[C ′ ∪ {i}]| < ∆ then
6: return σ∆,Dt′

(C ∪ {e})
7: return C ′

8: else
9: return σ∆,Dt′

(C ∪ {e})

Furthermore, for all ∆ ∈ N and for all X ⊆ I,

σ∆,D1(X) ⊇ σ∆,D2(X) . (5.7)

Proof. Let C ∈ C∆,D1 for some ∆ ∈ N and let D′ = D2 	 D1. Then, for any e ∈ I \ C,
we have

|D2[C ∪ {e}]| = |D1[C ∪ {e}]|+ |D′[C ∪ {e}]|
≤ |D1[C]| −∆ + |D′[C]|
= |D2[C]| −∆ ,

where the inequality follows from C ∈ C∆,D1 and from the anti-monotonicity of support
sets. Hence, C ∈ C∆,D2 completing the proof of (5.6).
To show (5.7), suppose that during the calculation of σ∆,D2(X), the items in σ∆,D2(X)\X
have been added toX in the order e1, . . . , ek. LetX0 = X andXi = X∪{e1, . . . , ei−1, ei}
for all i ∈ [k]. Then |D2[Xi−1]| − |D2[Xi]| < ∆ for all i ∈ [k] (see Algorithm 1). Since
D2[Xi−1] ⊇ D2[Xi] and D1 ⊆ D2, we have |D1[Xi−1]| − |D1[Xi]| < ∆ for all i. Thus,
as Algorithm 1 is Church-Rosser, all ei will be added to σ∆,D1(X) as well, implying
(5.7).

Using Proposition 1, we have the following result for Algorithm 7 concerning case (β):

Lemma 2. Algorithm 7 is correct, i.e., for all C ∈ C∆,Dt′
and for all e ∈ I, the output

of the algorithm is σ∆,Dt′
(C ∪ {e}).

Proof. By Condition (5.5), Dt′ [C ∪ {e}] ⊆ Dt[C ∪ {e}] and hence Proposition 1 implies
that there is no Y ∈ C∆,Dt′

with C ∪ {e} ( Y ( σ∆,Dt(C ∪ {e}). Furthermore, if
σ∆,Dt(C ∪{e}) 6∈ C∆,Dt′

, then σ∆,Dt(C ∪{e}) ( σ∆,Dt′
(C ∪{e}). Thus, to check whether

C ′ = σ∆,Dt(C ∪ {e}) remains closed in Dt′ , it suffices to test whether

|Dt′ [C ′]| − |Dt′ [C ′ ∪ {i}]| ≥ ∆ (5.8)
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Algorithm 8 Closure_γ
input: C ∈ C∆,Dt′

with Dt′ = Dt 	Ddel ⊕Dins, e ∈ I, Dins[C ∪ {e}], and C∆,Dt

require: Dt
output: σ∆,Dt′

(C ∪ {e})

1: if there exists (C, e,N,C ′, q) in C∆,Dt for some N , C ′, and q then
2: C ′′ ← C ∪ {e}; D′ ← (Dt ⊕Dins)[C ′′]
3: repeat
4: for all i ∈ C ′ \ C ′′ do
5: if |D′| − |D′[i]| < ∆ then
6: C ′′ ← C ′′ ∪ {i}; D′ ← D′[i]
7: until D′ has not been changed in Loop 4–6
8: return C ′′

9: else
10: return σ∆,Dt′

(C ∪ {e})

further holds for all items i ∈ I \ C ′ (lines 2–6 of Algorithm 7). If so, the algorithm
returns C ′ in line 7, implying the correctness of Algorithm 7 for the case that C ′ ∈ C∆,Dt′

;
the claim is trivial for the other two cases (lines 6 and 9).

We note that in our implementation of Algorithm 7 we do not calculate C ′.count and
C ′.∆i in lines 2 and 4, but store and maintain them consistently. In this way, the
condition in line 5 can be decided from Ddel, without any access to Dt. It is important
to mention that with increasing stream length, the number of elements to be deleted
from C∆,Dt becomes smaller (cf. (5.2)) and typically, most of the elements of C∆,Dt′

are
calculated by terminating in line 7.

Example 3. In our running Example 1, the call of LC(∅,a,b) in Figure 5.2 corresponds
to case (β) because Dins[b] = ∅ and Ddel[b] 6= ∅. Since (∅, a, b, bd, ↑) ∈ C∆,Dt, Algorithm 7
only needs to compute support queries on Ddel in lines 2, 4, and 5. For all i considered in
line 3, the condition in line 5 is not fulfilled. Hence, the algorithm returns db in line 7,
without calling the closure operator.

Case (γ) Finally we discuss the case that C ∈ C∆,Dt′
and e ∈ I satisfy the condition

Ddel[C ∪ {e}] = ∅ and Dins[C ∪ {e}] 6= ∅ (5.9)

(see line 6 of Algorithm 5). The proof for this case is shown also by using Proposition 1.

Lemma 3. Algorithm 8 is correct, i.e., for all C ∈ C∆,Dt′
and for all e ∈ I, the output

of the algorithm is σ∆,Dt′
(C ∪ {e}).

Proof. The proof is automatic for the case that the condition in line 1 of Algorithm 8 is
false. Consider the case that it is true. Proposition 1 with Condition (5.9) implies that
C∆,Dt ⊆ C∆,Dt′

(i.e., all ∆-closed itemsets in C∆,Dt are preserved) and that σ∆,Dt′
(C ∪
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{e}) ⊆ σ∆,Dt(C ∪ {e}). Thus, when calculating σ∆,Dt′
(C ∪ {e}) in Loop 3–7, it suffices

to consider only the elements in σ∆,Dt(C ∪ {e}) \ (C ∪ {e}), from which the claim is
immediate for this case.

Compared to case (β), we need to calculate support counts in the entire sample Dt′ for
this case. However, the inner loop (lines 4–6) iterates over a typically much smaller set
than the general closure algorithm (cf. lines 2–5 of Algorithm 1). Analogously to case
(β), the number of new ∆-closed itemsets to be added to C∆,Dt′

becomes smaller with
increasing stream length, and hence, most of the elements of C∆,Dt′

are calculated in the
“then” part (line 2–8) of the “if” statement.

Example 4. In our running Example 1, the call of LC(∅,ab,c) in Figure 5.2 corresponds
to case (γ) since item c occurs only in Dins (i.e., Dins[c] 6= ∅ and Ddel[c] = ∅). Since
(∅, ab, c, cd, ↑) ∈ C∆,Dt, the algorithm goes into the loop 4–6, iterating over all elements
of cd \ c. The condition in line 5 is not satisfied for d and thus c is returned as a new
closed itemset in line 8, without calling the closure operator.

Controlling the Time and Space Complexity of the Update

Although by Theorem 2 Algorithm 5 does not improve the worst-case time and space
complexity of the batch algorithm (Boley et al., 2009b) calculating the family of strongly
closed sets from scratch, our experimental results presented in Section 5.3.6 clearly
demonstrate a considerable speed-up on artificial and real-world data sets. The to-
tal time depends on the cardinality of C∆,Dt′

, which can be exponential in |I|. The time
and space of the update can be controlled by selecting the parameter ∆ in a way that
|C∆,Dt′

| < K for some reasonable small K. The value of K may depend, e.g., on time
or space capacity constraints. Once K has been fixed, the value of ∆ can automatically
be adjusted when the number of elements in C∆,Dt′

that have already been enumerated
exceeds K. More precisely, suppose Algorithm 5 has generated a subset C′ ⊆ C∆,Dt′

with
|C′| = K + 1. For all C ∈ C′, let ∆C be the strength of C and denote ∆′ = minC∈C′ ∆C .
Clearly, ∆′ ≥ ∆. Let C′′ = {C ∈ C′ : ∆C > ∆′}. For the set obtained we have
C′′ ⊆ C∆′+1,Dt′

and |C′′| ≤ K.
This change of ∆ to ∆′ + 1 requires, however, the maintenance of auxiliary pieces of
information for all already generated strongly closed sets, as well as the reconstruction
of the five tuples for the closed sets remaining. More precisely, suppose ∆C,e = |Dt[C]|−
|Dt[C ∪{e}]| has been calculated correctly for all C ∈ C∆,Dt and for all e ∈ I \C. Notice
that the strength of C in Dt is given by mine∈I\C ∆C,e, where the ∆C,es are obtained as a
byproduct of the algorithm computing the closure operator (cf. Algorithm 1). One can
see that if C ∈ C∆,Dt′

and C has not been recalculated by calling the closure operator,
then ∆C,e can be updated by

∆C,e = ∆C,e + |Dins[C]| − |Dins[C ∪ {e}]| − |Ddel[C]|+ |Ddel[C ∪ {e}]|
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for all e ∈ I \ C. Thus, the complexity of the update for this case depends on the
cardinality of Dins and Ddel only, which become smaller and smaller with increasing t′
by (5.2). Finally, utilizing the algebraic properties of closure systems, the five tuples
can be reconstructed by a top-down traversal of the enumeration tree corresponding to
Algorithm 5.

5.2.3. Implementation Details

This section describes some aspects and optimizations in the implementation of the
SCSM algorithm. The algorithm has been implemented in the Java programming lan-
guage. Each new item from the data stream is mapped to the next available integer. To
store numbers in collections, Java uses autoboxing, i.e., the numbers are converted to
objects (Ullenboom, 2018). This results in an unnecessary memory and runtime over-
head. Several frameworks have been implemented for collections of primitives, such as
the “primitives collection for java”3, “High Performance Primitive Collections”4, and
koloboke5. We will use the koloboke collection framework, as some preliminary experi-
ments show that its collections are amongst the fastest.
The most expensive operation in the SCSM algorithm is the computation of the closure
operator. Henceforth, the goal is to make this operation fast. The implementation
follows the optimizations described in (Boley et al., 2009b) and adds a few more.
The sample is represented by a set of incidence sets for each item, i.e., for each item e we
keep the set of transaction ids that contain this item. The computation of the support
set of some itemset X is then obtained as the intersection of the transaction id sets for
all items contained in X. We use classical data reduction to reduce the set of transaction
ids to be tested. The support set of any refinement of a closed set C can be computed
from the reduced transaction set D[C]. Therefore, we reduce the sets of transaction ids
of all items e ∈ C \ I to the set of transaction ids of C. While this requires an additional
pass over the data in the sample for each closed set, it does not change the runtime
complexity of the algorithm and speeds-up the computation of all further intersections
(Boley et al., 2009b).
A simple, yet powerful optimization for the computation of the closure is the addition
of an early abort condition (Boley et al., 2009b). The computation of the closure of an
itemset C can be stopped in Algorithm 1 whenever an element from the set of prohibited
items N is added, as in this case the closure will not be part of the output (cf. line 12 of
Algorithm 5). We further optimize the closure check by tracking the size of |D′|− |D′[e]|
in the case that the condition in line 4 of Algorithm 1 is not met. This allows us to skip
those items e for which |D′[e]| is too large in successive iterations of the outer loop of
the closure algorithm. For every e ∈ I \ C that is added to D′ in line 4 of Algorithm 1,
we store ∆e = |D′| − |D′[e]| and increment a variable, called sum, by ∆e. If in the next
iteration of the loop 3 – 4 the condition ∆e− sum ≥ ∆ is satisfied, then we do not need
to compute the exact value of |D′| − |D′[e]|, as |D′| − |D′[e]| ≥ ∆ will hold.
3 pcj.sourceforge.net/
4 https://github.com/carrotsearch/hppc
5 https://koloboke.com/
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The third optimization in our closure algorithm is that it reports back all e with |D′[e]| =
0 given C. They need not be checked in any superset of C and can thus be removed
from I when calling ListClosed in line 10 of Algorithm 5.
As the final optimization, we keep track of the order in which the items ei are added to
C in line 4 of Algorithm 1 computing the closure of σ∆,D(C ∪ {e}). Suppose that the
items are added in the order e1, . . . , ek. Then σ∆,D(C ∪ {e}) = C ∪ {e1, . . . , ek}. When
checking whether C ∪ {e1, . . . , ek} is still closed in subsequent calls for the argument
C ∪ {e}, the items ei can be checked in the same order. If C ∪ {e1, . . . , ek} remains
closed, this heuristic often outperforms a check in random order. It reduces the number
of iterations of the loop in lines 2 – 5 of Algorithm 1 if the order of the items does not
change. Even if it changes, we still first try to add all e ∈ {e1, . . . , ek} before testing
e ∈ I \C. Of course, once all e ∈ {e1, . . . , ek} have been tested, all e ∈ I \C∪{e1, . . . , ek}
need still to be tested as well.
Finally, we note that we store the set of ∆-closed itemsets in a compact prefix tree
structure, where each node represents a closed itemset or an itemset that contains a
prohibited element (line 12 of Algorithm 5). The generator element e is used as the
address of a child within the parent.

5.3. Empirical Evaluation

This section describes the empirical evaluation of the SCSM algorithm with the goal
to demonstrate the impact of the parameters, its high approximation quality, and the
speed-up obtained by the case distinction for the closure operator. The evaluation is
based on artificial and real-world data streams. The artificial data streams are generated
with the IBM quest market basket data generator (Agrawal and Srikant, 1994). This
software generates synthetic market basket data sets based on user-defined parameters.
The parameters are average transaction size (T), average length of maximal patterns
(I), number of transactions (D), number of patterns (L), correlation strength between
patterns (C), and the number of different items in thousands (N). The real-world data
streams are obtained from data sets from the UCI repository (Dua and Graff, 2019).
Table 5.1 lists their key characteristics, i.e., number of instances, number of binary
attributes, average transaction size, and density. As these data sets do not contain
enough transactions for long data streams, we use data streams of length 5M obtained
by random enlargement of the benchmark data sets for the experiments.
For the comparisons, we define a Batch algorithm. To do so, the first t transactions
from the stream are added to a buffer and then Algorithm 5 with C∆,Dt = ∅ is run
on these transactions. Note that this is equivalent to removing cases (α) – (γ) from
Algorithm 5. Hence, we effectively measure the benefit of these cases. The result is
thus correct for these transactions and constitutes a ground truth against which the
SCSM algorithm is compared to in terms of precision, recall, F-score, memory, runtime,
and speed-up. For all experiments, we use ∆ = d∆̃te for the batch and ∆ = d∆̃se for
our streaming algorithm, where s is the sample size.
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Data set Instances Binary attributes Average tx length Density
Kosarak 990,002 41,270 8 0.000196
Mushroom 8,124 119 23 0.193277
Poker-hand 1,025,010 95 11 0.115789
Retail 88,162 16,471 11 0.000626
T10I4D100k 100,000 870 10 0.011612
T40I10D100k 100,000 942 40 0.042044

Table 5.1.: Benchmark data sets used for the empirical evaluation of the SCSM algo-
rithm.

Confidence
Error 0.1 0.01 0.001
0.1 149 264 380
0.01 14,978 26,491 38,004
0.001 1,497,866 2,649,158 3,800,451

Table 5.2.: Sample sizes for various error and confidence values of the SCSM algorithm.

The evaluation considers the effect of the four parameters of the algorithm, i.e., rel-
ative strength of the closure ∆̃ (Section 5.3.1), error ε (Section 5.3.2), confidence δ
(Section 5.3.3), and buffer size b (Section 5.3.4). The dimensions considered for these
parameters are F-score, memory in GB, and runtime in hours. In particular, for ∆̃ we
consider the values ∆̃ = 0.001 + 0.005i for i = 0, 1, . . . , 9. For the buffer size b we com-
pare the sizes 1k, 5k, 10k, 50k, 100k, and 500k. The confidence and error parameters
δ and ε jointly affect the sample size. For both parameters, we consider the values 0.1,
0.01 and 0.001. The sample sizes for all nine combinations of these two parameters are
given in Table 5.2.
Besides the above evaluation concerning the parameters of the algorithm, we separately
investigate the mining quality measured in terms of precision and recall (Section 5.3.5)
and the speed-up of SCSM compared to the Batch algorithm (Section 5.3.6).
For the first four experiments investigating the effects of ∆̃, ε, δ, and b, we use the follow-
ing setup: We take data streams with 5M transactions produced by random sampling
from the data sets in Table 5.1. On these data streams, we run both the Batch al-
gorithm and the SCSM algorithm requesting a new result at regular intervals after b
transactions have been added. Except for the experiment evaluating the effect of the
buffer size (i.e., b), we use b = 500, 000. As the results in Section 5.3.4 show, the buffer
size does not impact the F-measure and memory required by our streaming algorithm.
It only impacts the runtime and large buffers reduce the overall processing time. The
Batch algorithm runs always for the first n transactions and SCSM for the updated
sample. As long as the sample is incomplete (because b is smaller than s), we simply add
the transactions from the buffer to the sample and do not compute the strongly closed
itemsets. We report the empirical results for a worst-case scenario, i.e., the smallest
F-score, the maximum amount of memory, and the maximum runtime needed to process
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(a) F-Measure (b) Memory (c) Runtime

Figure 5.3.: Worst case effect of varying ∆̃ on (a) F-Measure (showing SCSM only, be-
cause it is 1 for the Batch algorithm), (b) Memory and (c) Runtime for all data streams
obtained by random enlargement of the data sets from Table 5.1 with 5M transactions.

the entire stream. We further condense the results for all data streams in the same fash-
ion. The setup of the experiments for the mining quality and the speed-up differs from
that of the first four experiments and will be described in the corresponding sections.
All experiments were run on computers with Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz
equipped with 64GB of memory running Debian GNU/Linux 9 with Kernel Version
4.18.10 and the OpenJDK Java version 1.8.0_181.

5.3.1. Relative Closure Strength

In this section, we investigate the effect of the choice of the relative strength of the
closure ∆̃ for ε < 0.1 and for all values of δ as specified in Table 5.2. The largest value
of ε is excluded for these experiments, as for very small samples, the approximation
of the family of strongly closed itemsets is unreliable. The worst-case results for both
algorithms and all steps of all data streams are shown in Figure 5.3 in terms of F-
score, memory, and runtime. For ∆̃ = 0.001, the Batch algorithm required more than
the available RAM for the data set T40I10D100K. The algorithm could therefore not
complete the computation. We exclude the results for both algorithms for this case.
Figure 5.3a shows the F-score only for the SCSM algorithm because it is 1 for the
Batch algorithm. The F-score decreases slightly with lower values of ∆̃, as there are
more strongly closed itemsets which need to be extracted from the fixed size sample.
Overall, most F-scores are around 0.9; the lowest value is 0.84. These results are ob-
tained with a fraction of the memory required by the Batch algorithm (Figure 5.3b).
The parameter ∆̃ shows no effect on the memory requirement for the Batch algorithm,
except for the smallest value, where the experiment did not complete the execution.
SCSM requires slightly more memory as ∆̃ is lowered and the number of strongly closed
sets increases. Despite the increase, it requires still far less memory than the Batch al-
gorithm.
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(a) F-Measure (b) Memory (c) Runtime

Figure 5.4.: Worst case effect of varying the error parameter ε on (a) F-Measure (showing
SCSM only, because it is 1 for the Batch algorithm), (b) Memory and (c) Runtime for
all data streams obtained by random enlargement of the data sets from Table 5.1 with
5M transactions.

The effect of ∆̃ on the runtime is presented in Figure 5.3c. The results show the runtime
needed to process the entire data stream. One can observe that smaller values of ∆̃
result in a higher runtime for both algorithms and that the SCSM algorithm is faster
than the Batch algorithm. Both results confirm our theoretical considerations. As
∆̃ becomes smaller, there are more strongly closed sets. Since the complexity of our
algorithm depends on the size of the output (cf. Theorem 2), the runtime increases with
the number of strongly closed sets. A central goal of the streaming algorithm is to be
faster than the Batch algorithm, which is the case for all values of ∆̃.

5.3.2. Error

Notice that the sample size depends both on ε and δ. Their effects are investigated
separately. Because ε has a far stronger impact on the sample size than δ, we first study
the effect of ε. The results are averaged over all values for δ. The experiments were run
for ∆̃ = 0.016 + 0.005i for i = 0, 1, . . . , 6. The reason to start with ∆̃ = 0.016 instead
of 0.001 is that some experiments with ∆̃ ≤ 0.011 did not complete the computation
for the Batch algorithm. The worst-case results for both algorithms over all update
steps of all data streams are shown in Figure 5.4. For smaller values of ε, the size of
the sample increases. It is evident from Figure 5.4a that for smaller values of ε, the
F-score increases. The same holds for the memory consumption (see Figure 5.4b). For
ε = 0.001, SCSM requires more memory than for ε = 0.1, but overall far less than the
Batch algorithm. Both the increase in F-score and memory can be well explained by
the larger sample size as a result of smaller values of ε.
Figure 5.4c shows the runtime required to process the entire stream. Overall, our
SCSM algorithm is several times faster than the Batch algorithm. The Batch al-
gorithm seemingly gets faster with smaller values of ε. The smaller ε, the larger the
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(a) F-Measure (b) Memory (c) Runtime

Figure 5.5.: Worst case effect of varying the confidence parameter δ on (a) F-Measure
(showing SCSM only, because it is 1 for the Batch algorithm), (b) Memory and (c) Run-
time for all data streams obtained by random enlargement of the data sets from Table
5.1 with 5M transactions.

sample size. We note that as long as the sample of SCSM is incomplete, we run neither
of the two algorithms, i.e., they run fewer times for small values of ε. Accordingly, the
Batch algorithm achieves an overall lower runtime. Interestingly, for very small values
of ε the streaming algorithm gets slower. While some increase in runtime can be ex-
plained by the larger sample size, the algorithm runs a few iterations less. Its overall
runtime remains far below that of the Batch algorithm. We still have further investi-
gated this behavior and found that the slower performance of our streaming algorithm is
caused by the update steps that replace large parts of the sample. In this situation, two
effects slow our algorithm down. First, most closures in Algorithm 5 will be computed
with case (δ) which will result in the same runtime as the Batch algorithm. However,
there are several additional costs in this case for our algorithm. First, it needs to iden-
tify the set Ddel, which, in our implementation, requires one pass over the entire sample.
Second, for every candidate closed set Ce, it needs to compute both the projections
Ddel[Ce] and Dins[Ce]. If none of the conditions for case (α) – (γ) holds, then these are
simply additional costs. Of course, it would be possible to detect situations where large
parts of the sample get replaced and always compute σ∆,Dt′

(C ∪ {e}) in this case.

5.3.3. Confidence

This section focuses on the effect of δ. The results are averaged over all values for
ε as indicated in Table 5.2. The setup is otherwise identical to the one described in
Section 5.3.2. In particular, the experiments were run for ∆̃ = 0.016 + 0.005i for i =
0, 1, . . . , 6. The worst-case results for both algorithms over all update steps for all data
streams are shown in Figure 5.5. In particular, Figure 5.5a shows that for smaller values
of δ, the F-score increases. The effect is, however, less pronounced than in case of ε
(cf. Figure 5.4a). This is well explained by the fact that δ has a smaller impact on the
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(a) F-Measure (b) Memory (c) Runtime

Figure 5.6.: Worst case effect of varying the buffer size on (a) F-Measure (showing
SCSM only, because it is 1 for the Batch algorithm), (b) Memory and (c) Runtime for
kosarak data stream obtained by random enlargement with 5M transactions.

sample size, due to the logarithmic dependence (see (5.3)). Figure 5.5b shows the impact
on the consumed memory. As δ becomes smaller, the memory consumption increases.
This follows from the fact that a larger sample must be maintained. Again the impact is
less strong than for the parameter ε. Overall, SCSM requires far less memory than the
Batch algorithm. Figure 5.5c shows the runtime required to process the entire stream.
As δ gets smaller, the sample size increases and the streaming algorithm requires a little
more time. Note that also the Batch algorithm requires a little more time for the
lowest confidence value. As we are interested in the streaming algorithm, we do not
further consider this outlier. The reasons have been discussed in Section 5.3.2. For this
specific experiment, the streaming algorithm is still more than three times faster than
the Batch algorithm.

5.3.4. Buffer Size

The impact of the choice of the buffer size b is investigated for ∆̃ = 0.046. We have
chosen this value because the number of strongly closed sets is small for it. This allows
the algorithm to compute the update fast. The parameters ε and δ are both fixed at
0.001, as these settings result in a large sample and provide the most accurate results.
The worst-case results for both algorithms for this experiment over all update steps and
all data streams are shown in Figure 5.6.
Figure 5.6a shows the detailed F-scores and Figure 5.6b the memory consumption. Nei-
ther the correctness of the result nor the memory required to produce the result seems
to be correlated to the buffer size. SCSM reaches an F-score of 1 and requires only a
fraction of the memory consumed by the Batch algorithm. The parameter b affects
only the runtime as shown in Figure 5.6c. The larger the buffer the smaller the total
runtime required to process the entire stream. With larger buffers, the strongly closed
sets are computed less frequently and hence the overall runtime decreases. As the family
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of strongly closed itemsets is stable against small changes, it will change little with-
out concept drifts in the data stream. This justifies the use of large buffers for many
applications.

5.3.5. Mining Quality

In this section, we present empirical results demonstrating the high approximation qual-
ity of our algorithm measured in terms of precision and recall. For these experiments, we
use data streams of length 5M obtained by random enlargement of the benchmark data
sets listed in Table 5.1, as well as 10 artificial data streams (T10I4D5M, T40I10D5M,
and 8 variations of T10I4D5M). For the two artificial data streams (T10I4D5M and
T40I10D5M) we used the same parameters (except for the size) as for T10I4D100K and
T40I10D100K. For the variations of T10I4D5M, we systematically modified the param-
eters, i.e., number of patterns (L), correlation strength between patterns (C), and the
number of different items in thousands (N). In particular, we used L ∈ {1k,10k,100k,1M},
C ∈ {0, 0.5} and N ∈ {1, 10, 100} in the data generation process. The patterns are inde-
pendent at C = 0, while there is some correlation among them for C = 0.5.
Similarly to the previous experiments, we run this experiment for the values ∆̃ = 0.001+
0.005i for i = 0, 1, . . . , 9. We use ε = 0.005 and δ = 0.001 which gives us a sample size
s = 150k (see Section 5.2.1), corresponding to around 3% of the 5M stream length. The
buffer size is chosen arbitrarily to be b = 25k. The results in Figures 5.6a and 5.15 show
that the choice of b is not critical.
The results are reported in Tables 5.3, 5.4 and 5.5 for the data sets from Table 5.1 and
the variations of T10I4D5M in terms of precision (P ) and recall (R), together with the
number of ∆̃-closed sets (|C∆,Dt |). We note that for T40I10D5M, the Batch algorithm
was unable to compute the result for ∆̃ = 0.001 in 24 hours. One can see that the
precision and recall values are never below 0.80; in most cases, they are actually close or
equal to 1. The results on the data streams obtained from the benchmark data sets might
be favorable for our algorithm due to the repetition of transactions. The two artificial
data streams T10I4D5M and T40I10D5M do not have such a bias. Still, we obtained
very good results for these data streams as well. Thus, the repetition of transactions
does not improve the results in favor of our algorithm.
We have carried out experiments on several other artificial data streams generated by
the IBM Quest data generator using other parameters selected systematically (except for
the size 5M). All results in Tables 5.4 and 5.5 are over a ground set of 1,000 items (i.e.,
for N = 1). For larger N , the results look similar, but with increasing N the number
of strongly closed patterns decreases. The precision and recall values for the synthetic
data sets are close to 1, in all considered settings they do not fall below 0.92. Thus,
our algorithm provides a good approximation of the set of strongly closed itemsets in
transactional data streams.
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Kosarak Mushroom Poker-hand Retail T10I4D5M T40I10D5M
∆̃ |C∆,Dt| P R |C∆,Dt| P R |C∆,Dt| P R |C∆,Dt| P R |C∆,Dt| P R |C∆,Dt| P R

0.046 8 1 1 155 0.99 1 6 1 1 8 1 1 6 1 1 190 1 0.99
0.041 8 1 1 190 1 0.99 62 1 1 10 1 1 11 0.92 1 223 0.98 0.99
0.036 9 1 1 225 0.98 0.98 127 1 1 11 1 1 19 1 1 267 0.99 0.99
0.031 10 1 1 382 0.99 1 248 1 1 12 1 1 29 1 0.93 330 0.99 0.99
0.026 14 1 1 676 0.97 0.98 353 1 1 13 1 1 44 0.96 0.98 433 1 0.98
0.021 16 1 0.94 1112 0.99 1 578 1 1 13 0.93 1 82 0.99 0.98 650 1 0.99
0.016 24 1 1 1934 0.97 1 738 1 1 18 1 1 140 1 0.99 1137 0.98 0.98
0.011 40 0.98 1 4361 0.84 0.84 739 1 1 27 1 0.96 218 0.98 0.99 2785 0.98 0.98
0.006 86 0.98 0.97 9469 0.80 0.93 4343 0.96 0.94 66 0.98 0.98 390 0.99 1 11k 0.97 0.97
0.001 1153 0.93 0.96 76k 0.93 0.98 47k 1 1 1653 0.93 0.96 2591 0.96 0.94 —

Table 5.3.: Number of ∆̃-closed sets (|C∆,Dt |), precision (P ) and recall (R) after process-
ing 5M transactions for various data sets and different values of ∆̃.

L = 1k L = 10k
C = 0 C = 0.5 C = 0 C = 0.5

∆̃ |C∆,Dt| P R |C∆,Dt| P R |C∆,Dt| P R |C∆,Dt| P R

0.041 11 1 1 12 1 1 11 1 0.91 11 1 1
0.036 17 1 1 19 1 0.95 20 1 1 24 0.96 1
0.031 33 1 1 34 1 0.97 32 1 1 37 1 0.97
0.026 46 0.98 0.98 54 0.98 1 63 0.95 1 61 0.94 0.98
0.021 75 0.99 1 81 0.98 0.98 101 0.98 0.99 99 0.99 0.99
0.016 132 1 0.98 136 0.97 0.99 164 0.98 0.99 163 0.99 0.98
0.011 226 0.99 0.98 224 0.98 0.97 288 0.99 1 282 0.98 0.99
0.006 392 0.99 0.99 359 0.98 0.99 497 0.99 0.99 471 0.99 0.99
0.001 2618 0.96 0.95 2673 0.95 0.94 2455 0.93 0.94 2590 0.94 0.93

Table 5.4.: Number of ∆̃-closed sets (|C∆,Dt |), precision (P ) and recall (R) after process-
ing 5M transactions of synthetic quest data generated with IBMs Quest data generator.
The parameters used in data generation are T = 10, I = 4, D = 5M , and N = 1, the
remaining parameters are specified in the first two header rows.

5.3.6. Speed-up

In this section, we empirically study the speed-up obtained by our algorithm. For this
purpose, we first sample 100k random transactions, replace then 10k, 1k, 100, 10, and
1 transaction in the sample, and run our SCSM algorithm as well as the Batch algo-
rithm. Figure 5.7 shows the average runtime fraction of our algorithm in comparison
to the Batch algorithm as a function of the number of changed transactions for all
data sets from Table 5.1. The runtime results are reported in detail for one data set in
Figure 5.8 by noting that we observed a similar speed-up for all other data sets. As the
number of changes decreases, our streaming algorithm needs to evaluate considerably
fewer database queries, implying that the smaller the change in the sample, the more
the runtime of the two settings differs. In Table 5.6 we present the number of strongly
closed itemsets (|C∆,Dt |) and the speed-up (S) of our algorithm for various values of ∆̃
for experiments when only a single transaction has been changed. In most cases, our
algorithm is faster by at least one order of magnitude. Interestingly, the more ∆̃-closed
itemsets are calculated, the higher the speed-up. Recall that a transaction is added to
the sample with probability s/k, where s is the size of the sample and k the current

91



L = 100k L = 1M1
C = 0 C = 0.5 C = 0 C = 0.5

∆̃ |C∆,Dt| P R |C∆,Dt| P R |C∆,Dt| P R |C∆,Dt| P R

0.041 9 0.9 1 8 1 0.88 7 0.88 1 7 1 1
0.036 21 1 0.95 20 1 1 20 1 0.9 20 1 0.95
0.031 34 0.97 0.97 33 0.97 0.97 33 0.97 1 36 1 0.97
0.026 60 0.98 1 59 0.98 1 57 1 0.98 57 0.98 1
0.021 100 1 0.97 104 0.96 0.97 100 0.97 1 100 0.95 0.99
0.016 171 0.98 1 173 0.99 0.98 175 0.98 0.98 175 1 0.99
0.011 311 0.98 0.97 317 0.99 0.98 310 1 1 314 0.98 0.99
0.006 530 0.99 1 535 0.99 0.99 534 0.99 0.99 534 0.99 0.99
0.001 3176 0.93 0.92 3153 0.93 0.93 3260 0.93 0.92 3279 0.92 0.92

Table 5.5.: Number of ∆̃-closed sets (|C∆,Dt |), precision (P ) and recall (R) after process-
ing 5M transactions of synthetic quest data generated with IBMs Quest data generator.
The parameters used in data generation are T = 10, I = 4, D = 5M , and N = 1, the
remaining parameters are specified in the first two header rows.
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Figure 5.7.: Fraction of the runtime of our
SCSM of the Batch algorithm as a function
of the number of changes (log scale): black:
mean, gray: SD.

#Changes Stream time Batch time
10,000 6.0 6.0
1,000 4.7 6.0
100 4.2 6.0
10 1.1 6.0
1 0.3 6.0

Figure 5.8.: Runtime in seconds of our
SCSM and the Batch algorithm ob-
tained for T10I4D100k for different num-
ber of changes and for ∆̃ = 0.006.

length of the data stream. The expected value to replace only one transaction is reached
if the probability to replace each of the s transactions in the sample is at most 1/s. This
condition holds, whenever k ≥ s2.

5.4. Potential Applications

This section considers two practical application scenarios for the SCSM algorithm de-
veloped in this chapter. The first one is concept drift detection, a classical problem from
data stream mining. A concept drift is an unforeseen change in the distribution of a
data stream. For our example of fraud detection, such a concept drift is caused by new
fraud patterns. The detection of such drifts is of high relevance for any stream mining
algorithm. Indeed, a model that was learned on a data stream before a drift occurred
might be incorrect after the drift. It is thus important to retrain the model after each
drift. The second application scenario is computer-aided product configuration recom-
mendation, a problem raised in a project with an industrial partner. The task in product
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Kosarak Mushroom Poker-hand Retail T10I4D100K T40I10D100K
∆̃ |C∆,Dt| S |C∆,Dt| S |C∆,Dt| S |C∆,Dt| S |C∆,Dt| S |C∆,Dt| S

0.046 8 3.09 154 10.90 62 8.26 8 5.69 6 7.69 191 16.57
0.041 8 5.81 186 13.74 62 11.55 10 2.89 11 8.00 222 16.52
0.036 9 5.48 245 5.89 127 11.33 11 8.05 19 11.48 267 18.73
0.031 10 7.20 385 7.24 247 14.74 12 3.67 29 9.89 330 14.37
0.026 14 7.36 547 18.04 353 13.17 13 7.69 44 26.15 433 22.79
0.021 15 7.31 1105 19.44 578 19.45 13 9.28 83 24.57 649 23.40
0.016 24 11.13 2012 23.44 738 36.43 18 11.00 138 16.77 1146 43.30
0.011 38 14.87 4367 34.73 739 26.43 26 12.58 219 21.77 2780 96.39
0.006 86 23.61 11k 33.96 4238 39.35 67 24.63 391 50.05 11k 235.86
0.001 1148 99.79 82k 37.41 46k 59.66 1638 106.19 2574 148.09 346k 1893

Table 5.6.: Number of ∆̃-closed sets and speed-up (S) for changing a single transaction.

configuration recommendation is to suggest to a user an individual configuration based
on some initial choices from a very large set of potential options. The goal is to come
up with the configuration desired by the customer by asking her as few questions as
necessary and thus to eliminate the need to consider each option individually.

Strongly closed patterns have the characteristic feature that they correspond to patterns
exhibiting a sharp drop in support count if extended by any item. For a user-defined
value ∆, each strongly closed pattern occurs in at least ∆ more transactions than any
of its supersets. This property does not only reduce the number of patterns significantly
with increasing ∆, but also guarantees that the patterns are sufficiently stable against
changes in terms of support count (Boley et al., 2010). Additionally, ∆ reduces the
“redundancy” amongst the patterns. While all subsets of a frequent itemset are frequent
themselves, subsets of ∆-closed itemsets are not necessary ∆-closed. For a fixed capacity
of K itemsets, the set of ∆-closed itemsets is less redundant than the set of K frequent
itemsets with high probability. This property is especially useful for applications that
profit from an irredundant pattern set, such as fraud detection. As we empirically
demonstrate, both concept drift detection and product configuration recommendation
profit from this kind of non-redundancy.

As mentioned above, the goal of concept drift detection is to identify changes in the
distribution of a data stream. Desired properties of algorithms for the detection of
such drifts are: a timely detection of the true changes, few false positive detections,
and limited resource consumption in terms of time and memory. For concept drift
detection from transactional data streams, various pattern classes might be considered
as candidates. Since the families of frequent, closed, crucial, and even maximal itemsets
can be of enormous cardinality, they seem inappropriate for these tasks. Although their
size can be controlled by the frequency threshold θ, such a control creates a language
bias towards short patterns. However, they might be unable to capture the concept.
In contrast, the size of the pattern class of strongly closed patterns can be controlled
without this bias. It includes, therefore, patterns of various lengths. At the same time,
they are not as numerous as ordinary closed or crucial patterns because ∆ prunes very
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effectively (cf. Boley et al. (2009a)). This allows faster updates of the set of patterns and
requires less memory. These properties make strongly closed itemsets a good candidate
for the detection of concept drifts from transactional data streams.
In product configuration recommendation the goal is to assist a customer in finding an
individual configuration of a hyper-configurable system. Such systems provide a large
variety of options, from which only a subset can be selected at any time. From the
perspective of itemset mining, each option is an item and each sold configuration a
transaction. A starting point for any such recommendation system could be frequent
patterns, as they correspond to the combinations which have been chosen often. A
system based purely on the descending frequency of the frequent itemsets has, however,
some severe disadvantages. First, the number of patterns can be very large. Second,
and more significant is the fact that there is a great redundancy among the patterns
because they are closed under the subset relation. Extending a recommendation by a
single item at any time is a naive solution, which does not solve the problem. Our
experimental results in Section 5.4.2 show that strongly closed patterns can reduce the
number of queries to a potential customer to less than half with respect to asking her
for each item individually. This might make the difference between a customer buying
a product and one being overwhelmed by the vast number of choices before abandoning
the purchase altogether. Maximal patterns could be another alternative, but they can
not be listed in output polynomial time (Boros et al., 2003), in contrast to strongly
closed itemsets. Maximal patterns correspond to the maximal configurations that are
frequent. A truly new configuration will differ from any existing configuration in at least
one option. Thus, recommending sets of options in small chunks seems more likely to
be successful than recommending the configurations from the border (see, e.g., Mannila
and Toivonen (1997)) corresponding to the maximal frequent patterns. Strongly closed
patterns provide starting points for such new configurations, in contrast to maximal
patterns. Our experiments with different values of ∆̃ clearly demonstrate that additional
patterns are beneficial.
In summary, our working hypothesis is that strongly closed itemsets form a suitable
synopsis for both practical applications.

5.4.1. Concept Drift Detection

This section is concerned with the application of strongly closed itemsets to concept
drift detection. The detection of concept drifts is a classical problem in data stream
analysis. An excellent survey on this subject has been written by Gama et al. (2014).
Depending on the type of transactions in the stream, the definition of concept drifts is
slightly different. We follow the one given in van Leeuwen and Siebes (2008). Consider
a transactional data stream S = S1S2S3 . . . composed of sequences of transactions Si
such that Si is drawn i.i.d. from distribution Di such that Di 6= Di+1 for all i > 0
integer. In this setting the transition from the last transaction of Si to the first of Si+1
constitutes a concept drift. If each transaction consists of a single item, statistical tests
can be used to detect drifts (see, e.g., Kifer et al. (2004)). Gama et al. (2014) consider
labeled transactions, where each transaction consists of descriptive variables, also called
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Figure 5.9.: Illustration of the drift dimension pace over time for the two concepts 1 and
2. Adapted from Gama et al. (2014).

independent variables, and a target variable also called the dependent variable. Data
streams with independent and dependent variables are the primary subject of research
on concept drift detection. For classification tasks, the target variable takes a finite
number of categorical values, whereas, in regression, its value range is continuous. In
the transactional streams considered in this thesis, the transactions are unlabeled and
may contain more than one item. The focus lies on detecting drifts in this last setting,
which is called a virtual concept drift in Gama et al. (2014).
Similarly to Gama et al. (2014), we assume that the drifts happen unexpectedly and are
unpredictable. If the drifts were predictable, the problem would be trivial.
As an example, recommendation systems often rely on “typical” purchasing patterns
extracted from the shopping baskets of other customers. Since these patterns are usually
dynamic (i.e., change over time), such systems resorting to typical patterns must work
with an up-to-date set of patterns corresponding to the (unknown) current distribution.
As a second example consider topics in news feeds. They constantly change. A topic
is characterized by a set of keywords that are most relevant to it. A stream of articles
can be transformed into a transactional stream via keyword extraction. The keywords
extracted from an article form a transaction, which might be used to identify topics and
changes in the distribution of topics. A user who is interested in certain topics might
be interested in reading only articles relevant to her. As new topics emerge, it might
be necessary to ask her whether a new topic is relevant to her. Motivated by these and
other scenarios we present an application of strongly closed itemsets to concept drift
detection in transactional data streams.
Two major classes of concept drifts are distinguished in Li and Jea (2014) for frequent
patterns in transactional data streams: Isolated and successive concept drifts. While
isolated concept drifts are single drifts that do not necessarily have any preceding or
successive drift, successive concept drifts are drifts within a drift sequence. The goal of
this section is to demonstrate the suitability and effectiveness of our algorithm for the
first drift type, i.e., for detecting isolated concept drifts.6
To characterize isolated concepts drifts, the following two dimensions are regarded in Li
and Jea (2014):

(i) pace, i.e., the time required to completely replace the old distribution by the new
one and

6 Since our algorithm does not save the concept drifts detected in the past, it is not suited (in its present
form) for successive concept drift detection.
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(ii) commonality, i.e., the overlap of the two distributions.

For (i), we consider both swift and gradual replacements of distributions. In case of swift
drifts, the distribution changes abruptly, i.e., from one transaction to the next. For
illustration, consider a production plant. When a machine abruptly stops working, as
might be the case e.g. when a drive belt breaks, then the change between the transaction
when the machine was last working and the non-working state is abrupt. In contrast,
gradual drifts have an elongated transition from one distribution to the other. Consider
another production plant. A machine experiences wear out over time, such that for
example drilled holes will be less and less precise. The transition from good holes to
bad ones is very gradual as the drill slowly loses its sharpness. Figure 5.9 illustrates the
two paces and an outlier, which does not constitute a drift, for transactions over the set
{1,2 }.
For (ii) above, we consider separated and intersected distributions. In case of separated
distributions, there is no overlap in the distributions. For our production plant example,
such a separated distribution occurs when the sensor readings for the state in which
the machine is working are completely different from those when it stopped working.
A straightforward way to obtain such distributions is to pick them at random from a
pool over pairwise disjoint ground sets. In contrast, intersected distributions are defined
over the same ground set and in a way that the individual and the joint probabilities
over the ground set are identical for some of the elements and different for the others.
For example, such a drift may occur in a production environment if some sensors report
similar results, independent of the machines state, while others have different ranges
depending on the state of the machine.
Combining (i) and (ii), we thus have four cases for isolated drifts (i.e., swift–separated,
swift–intersected, gradual–separated, gradual–intersected). Gama et al. (2014) point out
that most techniques “implicitly or explicitly assume and specialize in some subset of
concept drifts. Many of them assume sudden non-recurring drifts. But in reality, often
mixtures of many types can be observed.”
The algorithms to detect drifts have been classified in Gama et al. (2014) into the four
groups:

1. sequential analysis,

2. control charts,

3. monitoring two distributions, and

4. contextual.

Sequential analysis techniques use the entire stream to detect changes. They either con-
ceptually divide a stream S = 〈T1, . . . , Tt〉 in two successive substreams Sn1 = 〈T1, . . . , Tn〉
and Stn+1 = 〈Tn+1, . . . , Tt〉 and test the hypothesis that the substreams are generated
by two different probability distributions (Wald, 1947) or they maintain some statistic
over the stream in form of sums and signal a change if a threshold is exceeded (Page,
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1954). Control charts consider labeled transactions. For such a transaction the pre-
diction of a model can be correct or wrong. The errors in the prediction are random
variables of Bernoulli trials. As long as the number of errors is less than a threshold,
the stream is considered to be in-control. If the probability that the recent examples
come from a different distribution is 95% or above, the stream is in a warning state.
The stream is out-of-control if the recent examples came from another distribution with
a probability of at least 99%. Algorithms monitoring two distributions use a reference
window, which is often fixed, and a sliding window containing the most recent trans-
actions. They compare the distributions of the transactions in the two windows with
statistical tests. These approaches are more general than the previous ones and often
more precise. However, they need to store the transactions of the two windows. This
requires more memory than the techniques keeping only simple statistics. Finally, con-
textual algorithms are self-adapting to changes, rather than signaling the change to the
user. This category includes, for example, the Splice-2 algorithm (Harries et al., 1998),
a meta-learning technique for batch learning. This category will not be considered any
further. Since methods comparing two distributions are the most general, we follow this
approach to detect concept drifts with strongly closed patterns.
We omit a detailed overview of the literature on concept drift detection, as our primary
goal is to demonstrate only the potential of strongly closed itemsets for this problem.
The StreamKrimp (van Leeuwen and Siebes, 2008) seems to be the only algorithm
specifically addressing the task of change detection from classical transactional data
streams. It falls under the category of algorithms monitoring two distributions. Our
approach based on strongly closed sets for the task of concept drift detection also relies
on monitoring two distributions. For the sake of simplicity, the families of strongly closed
sets will be computed for two windows and will be compared to each other. This simple
approach could be improved by checking the closure of a subset of the closed sets from
the first window on the new one. If the closure did not change for most of the checked
itemsets, there is probably no drift. With this optimization, an algorithm specific to
drift detection based on strongly closed sets can be developed. We stress that the focus
in this thesis is only to demonstrate the suitability of strongly closed sets as a potential
application. Hence, we do not include these optimizations.

Concept Drift Detection with Strongly Closed Sets

We briefly sketch our approach to detect concept drifts with strongly closed sets. As
already mentioned, our goal is not to present a sophisticated algorithm for this problem,
but rather to demonstrate how strongly closed sets can be used to detect such drifts. Our
method follows the design of monitoring two distributions. The approach to detect con-
cept drifts with strongly closed sets works as follows. Similarly to StreamKrimp (van
Leeuwen and Siebes, 2008), it divides the stream into small batches and computes the
set of relatively strongly closed itemsets for each batch for a user-defined value of ∆̃. The
sets of strongly closed patterns for two consecutive batches are compared by computing
the Jaccard distance between them; the Jaccard distance between two sets A and B is
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defined by
JD(A,B) = 1− |A ∩B|

|A ∪B|
.

Since the Jaccard distance is normalized, it provides an intuitive measure for the dis-
similarity between two sets. We will use it as an indicator for drift, by comparing the
two families of strongly closed itemsets. For a practical algorithm, the user would need
to define a threshold on the Jaccard distance, which would cause the algorithm to signal
a change if the threshold has been reached. We briefly mention two further aspects of
interest for a practical algorithm. One concerns the choice of the parameter ∆̃. Ideally,
it would be somehow self-adjusting based on the characteristics of the stream. Further
potential optimizations include a preliminary test to check if the set of strongly closed
patterns has changed and skip the computation of a new set of strongly closed patterns
in case it is unlikely that a drift occurred. However, such optimizations are beyond the
scope of this thesis and left open for future work. In our empirical evaluation, we use the
simple algorithm computing sets of strongly closed sets at regular intervals. The experi-
mental results confirm that already this simple technique results in reasonable detection
performance.

Empirical Evaluation

To asses the potential of strongly closed sets for concept drift detection under various
parameter settings, we generate artificial data sets of swift and gradual replacements
from the data sets in Table 5.1 (page 85) by repeatedly drawing transactions from the
data sets as follows: We first create two data streams S1 and S2 generated with different
distributions. For swift drifts, we then simply concatenate S1 and S2. For gradual
replacements, we generate a data stream S1 · S · S2 by concatenating S1, S, and S2,
where S consists of ` transactions from S1 and S2, corresponding to the “graduality” of
the drift. In particular, transaction i in S is taken from S1 at random with probability
1 − i/` and from S2 with probability i/`. In this way, we simulate a noisy “linear”
transition of length ` from S1 to S2. Clearly, the longer the transition phase the less
evident is the exact location of the drift.
To generate separated distributions, we simply replaced each item by a new one. Finally,
for intersected distributions, some of the items were removed from the transactions
independently and uniformly at random.
For each data stream, we generated three concept drifts with 2M transactions between
any two consecutive drifts; 2M is a sufficiently large length enabling a careful investiga-
tion of different features (see below) of our algorithm.
To detect the concept drifts in these data streams, we started a new instance of our
mining algorithm every 100k transactions, with parameter values ε = 0.01 and δ = 0.02.
These values give a sample size of around 23k (cf. Section 5.2.1), corresponding to
roughly 1% of the 2M transactions between the consecutive drifts. Recall from Sec-
tion 5.3.5 that we obtained very accurate results for the sample size of 150k. The results
in this section obtained for the much smaller sample size of 23k also demonstrate that
reliable concept drift detection is possible by means of approximate results. A practical
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implication of this property is that working with smaller sample sizes allows for faster
update times. As the indicator for concept drifts, we used the Jaccard distance between
the families of strongly closed sets returned by the two consecutive instances of our al-
gorithm (having a delay of 100k); the impact of non-consecutive instances is discussed
at the end of this section.
We investigate both the effect of different drift characteristics as well as that of different
parameter settings of our algorithm. While our aim at considering different drift char-
acteristics is to demonstrate that strongly closed sets can indeed detect a wide range
of concept drifts, the analysis of different parameters of our algorithm serves to show
that it can detect drifts for various choices of the parameters. That is, the stability of
strongly closed itemsets ensures that it is not sensitive to the particular choice of the
parameters. In particular, we empirically analyze the effects of drift characteristics for
drift type: the four drift types defined above,

drift length: the length of gradual drifts, and

drift intersection: the probability of overlap for intersected drifts
and those of the algorithm’s parameter choices for
degree of closedness: the strength of closedness (i.e., ∆̃),

delay: the delay after which a new instance of our algorithm is started, and

buffer: the buffer size b of our algorithm.
In order to make our experimental results clearly comparable, we present them in detail
only for the Poker-hand data set. It was selected for this purpose at random out of
the six data sets considered in Table 5.1; for all other five data sets we obtained very
similar results, for all six characteristics above. Unless otherwise specified, the length
of gradual drifts is 250k transactions, the probability for intersected distributions is 0.5,
and b = 25k. We justify the particular choice of these values by noting that the length
of gradual drifts is longer than the sample size, a probability of 0.5 results in a clear
contrast between the distributions, and the buffer size was chosen at random close to
the sample size.
For these experiments, we plot the Jaccard distance as a function of the transactions in
the stream. These plots have two advantages over a numerical evaluation with perfor-
mance measures: First, they provide more insights than pure numbers and second, their
outcome does not depend on the choice of some threshold. In particular, the results can
be inspected for arbitrary thresholds afterwards.

Experimental Results

This section contains the results of the experiments to demonstrate the suitability of
strongly closed sets for concept drift detection for various types of drifts and different
parameter settings. The six different aspects are presented in turn. The first three
results are for different characteristics of the drift, the last three investigate the effect of
different parameters of the algorithm.
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swift separated swift intersected

gradual separated gradual intersected

Figure 5.10.: Concept drift detection results for Poker-hand drift type ∈ {swift–
separated, swift–intersected, gradual–separated, gradual–intersected} at ∆̃ = 0.001.
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25000 100000

Figure 5.11.: The influence of the drift length ∈{1k, 5k, 25k, 100k} on concept drift
detection. Results for Poker-hand with gradual–separated concept drifts at ∆̃ = 0.001.
Note that drifts of length 0 correspond to the swift–separated case.

drift type: Figure 5.10 presents the results obtained by our algorithm for the four types of
isolated drifts. The three drifts are clearly identifiable in all four cases. Notice that
for the two swift drifts, the peaks are spikier than for the two gradual ones. This
is due to the reason that in case of swift drifts, the transition from one distribution
to the next is more abrupt compared to gradual drifts that spread over more
transactions. Comparing the two separated drifts (LHS) with the two intersected
ones (RHS), one can observe that the peaks stand more apart for separated drifts.
This meets our expectations, as for separated drifts, there is (much) less overlap
in the data distributions than for intersected ones.

drift length: Figure 5.11 is concerned with the influence of the drift’s length for gradual–
separated concept drifts. That is, we are interested in the ability to detect drifts
for different times needed to completely replace a new concept with the previous
one. We present our results for drift lengths of 1, 000, 5, 000, 25, 000, and 100, 000
transactions. The results clearly demonstrate that no matter how long the drift’s
length, as all three drifts are clearly identifiable for all four lengths. In particular,
drifts of 1, 000 and 5, 000 transactions are clearly shorter, drifts of 25, 000 transac-

100



0.1 0.2

0.3 0.4

Figure 5.12.: Concept drift detection results for Poker-hand with swift–intersected con-
cept drifts for probability of intersection ∈ {0.1, 0.2, 0.3, 0.4} and ∆̃ = 0.01.

∆̃ = 0.001 ∆̃ = 0.011

∆̃ = 0.021 ∆̃ = 0.031

Figure 5.13.: Concept drift detection results for Poker-hand with swift–separated concept
drifts for ∆̃ ∈ {0.001, 0.011, 0.021, 0.031}.

tions are a bit longer, and drifts of 100, 000 transactions are clearly longer than the
sample size. The results obtained for intersected drifts are similar. (Swift concept
drifts are not presented, as their drift length is always 0.)

drift intersection: In all other experiments, intersected drifts are generated by taking
the transactions one-by-one and removing each item from the transaction at hand
independently and with probability p = 0.5. It is natural to ask how sensitive is our
algorithm for other values of p. To answer this question, we generated intersected
drifts for p = 0.1, 0.2, 0.3, and 0.4. The results are presented in Figure 5.12. One
can see that the drifts are clearly recognizable for all cases, i.e., even for p = 0.1,
although there is no peak for this value (in contrast to the three other values). The
figure shows a clear correlation between p and the height of the peaks. The results
for gradual drifts look very similar with slightly wider peaks (cf. Figure 5.10 for
the difference between swift and gradual).7

7 Note that a similar experiment is meaningless for separated drifts because they do not share any
common items before and after the drift.
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Figure 5.14.: Influence of the delay between miners ∈ {25k, 50k, 100k, 250k} on concept
drift detection illustrated for the Poker-hand data set with swift–separated drift and
stongly closed itemsets for ∆̃ = 0.011.

degree of closedness: In Figure 5.13 we investigate the influence of ∆̃ ranging from
0.001 to 0.031, corresponding to ∆ = 23 and ∆ = 714, respectively. The up-
per limit 0.031 is chosen based on the values in Table 5.6. In case of Poker-
hand for instance, this choice of ∆̃ results in around 250 (i.e., about 0.5%)
strongly closed itemsets out of 46,000 ordinary ones. For all values of ∆̃ ∈
{0.001, 0.011, 0.021, 0.031} the drifts are clearly visible. While they are smoother
and more indicative for lower values of ∆̃ (i.e., for larger subsets of ordinary closed
itemsets), already as few as 250 strongly closed itemsets (∆̃ = 0.031) suffice to
detect the drifts, demonstrating the appropriateness of strongly closed itemsets to
concept drift detection.

delay: In Figure 5.14 we investigate the effect of the delay, i.e., the number of trans-
actions after which we start a new instance of our mining algorithm. Recall that
the Jaccard distance is computed for the output of two consecutively started in-
stances of the algorithm. Clearly, there is some trade-off in choosing the number
of transactions between the two miners. On the one hand, the more transactions
are processed before the next instance of the algorithm is started, the lower the
overall runtime. On the other hand, a concept drift can only be located within the
interval of transactions between two consecutively started miners. We investigate
delays of 25k, 50k, 100k, and 250k transactions. Four observations can be made
as the delay increases from 25k to 250k. First, for small delays, the drifts are
detected on the spot, i.e., right when they happen. Second, the peaks, which are
very spiky for a delay of 25k transactions become wider for larger delays. Third,
the height of the peaks decreases with increasing delay. Forth, as there is more
delay between the miners, it takes more transactions after the drift, before it is
detected (i.e., the first peak moved from 2.075M for a delay of 25k to 2.25M for
a delay of 250k). Still, the drifts are clearly visible in all cases, regardless of the
choice of this parameter.
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Figure 5.15.: The effect of the buffer size ∈ {1k, 10k, 100k, 500k} on the concept drift
detection with strongly closed sets. Results for poker-hand with swift–intersected drifts
and ∆̃ = 0.011.

Figure 5.16.: Concept drift detection results for Poker-hand with swift–intersected con-
cept drifts for varying detection delay at ∆̃ = 0.001.

buffer: The effect of the buffer size is shown in Figure 5.15. In particular, we consider
buffers of size 1k, 10k, 100k, and 500k. On the one hand, with a larger buffer, there
are less frequent updates of the family of strongly closed sets, resulting in a better
runtime. On the other hand, however, less frequent updates of strongly closed sets
reduce the ability to detect drifts close to the time they happen. Our experiments
clearly confirm this trade-off. The larger the buffer size, the smoother the plot of
the Jaccard distance. (The reason that there is no apparent difference between a
buffer of size 1k and 10k is that both are smaller than the sample size.) For buffers
of 100k and especially of 500k, the peaks lose their individual shape but are still
clearly visible. In summary, smaller buffers can capture more details of the data
stream, while larger buffers result in shorter computation time, as expected.

In all of the experiments so far, we considered Jaccard distances between the outputs
of consecutive miners started at equidistant intervals. Even for swift drifts, the drift
takes place with high probability during the run of one of the miners. In such cases, the
output of the miner might thus not fully reflect the state prior to the drift but capture
already a part of the drift. This is especially true for long intersected drifts. It can thus
be favorable to allow for some gap between the outputs of the miners. Figure 5.16 shows
the influence of the gap between the two miners. In particular, we compare the current
miner with the previously started one (left), with the one started two intervals before
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(middle), and with the one started three intervals before (right). The three drifts are
clearly visible in all settings. With an increasing gap between the miners, the Jaccard
distance reaches higher values in case of drifts, confirming our expectations.
In summary, drift type (Figure 5.10) and intersection (Figure 5.12) are two drift char-
acteristics having the strongest influence on the Jaccard distance and thus the ability
to detect concept drifts by using strongly closed itemsets. In contrast, the particular
choice of the parameters of our algorithm seems to show less effect, indicating that
our algorithm is not sensitive to them. In particular, for appropriately chosen delays
(Figure 5.14) between miners, drifts are detected on the spot. The parameters ∆̃ (Fig-
ure 5.13) and b (Figure 5.15) show the effect that drifts are a little more prominent
for lower values. The length (Figure 5.11) of the drift seems to have no effect on the
ability to detect drifts. An additional gap between the miners can improve the Jaccard
distance (Figure 5.16). Having investigated different drift types and the sensitivity of
the parameters of our algorithm on various data sets, we finally conclude that strongly
closed itemsets are excellent indicators for concept drift detection in data streams.

5.4.2. Product Configuration Recommendation

As another potential practical application of strongly closed itemsets, in this section
we empirically demonstrate their suitability for computer-aided product configuration
(Falkner et al., 2011; Ricci et al., 2003), a problem raised by an industrial project. In
particular, we propose an algorithm based on strongly closed itemsets that supports the
customer in selecting a set of options (items) from a given pool that together constitute
her desired product to be purchased (e.g., an individual composition of a pizza’s topping,
an individually customized prefabricated house/modular home, etc.). Depending on the
number of possible options, finding the most appropriate configuration can be a time-
consuming and tedious task.
The above kind of configuration problems can be regarded as the following computational
problem: Suppose the goal is to identify a product, i.e., an unknown transaction T ⊆ I
for some finite set I of items. To achieve this goal, the learning algorithm is assumed to
have access to a database D of transactions over I (e.g., pizza toppings, prefabricated
houses/modular homes etc. ordered by other customers) and to an oracle (i.e., the
customer) and it may ask queries of the form

“Is Y ⊆ T?”

for some Y ⊆ I. In case Y = T (resp. Y ( T ) the answer is “Equal” (resp. “Subset”);
otherwise, the oracle returns a counterexample x ∈ Y \ T . The aim of the learning
algorithm is to identify T with as few queries as possible.
Notice that the problem above is in fact concept learning with queries. Indeed, just
regard I as the instance space and transactions as concepts. For the case that the
transaction database D is not part of the problem setting, exact identification of concepts
has systematically been discussed in the pioneering work by Angluin (Angluin, 1987) for
various types of queries and concept classes. The query defined in this section can be
considered as a combination of equivalence and subset queries (cf. Angluin (1987)). The
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Algorithm 9 Exact Transaction Identification with Queries
input: database D over I and C∆,D for some ∆ ∈ N
require: subset query oracle and an unknown set T ⊆ I
output: T

1: S := C∆,D ∪ {{x} : x ∈ I}
2: X := ∅
3: Y := argmax

Z∈S
|Z \X| · |D[Z]|

4: call the oracle with query X ∪ Y
5: if Answer = “Equal” then return T = X ∪ Y
6: else if Answer = “Subset” then
7: X := X ∪ Y
8: remove all sets Z from S with Z ⊆ X
9: else

10: let x be the counterexample returned by the oracle
11: remove all sets Z from S with x ∈ Z
12: go to 3

rationale behind considering this type of queries is that most customers have typically
some constraint defined in advance for the product to be purchased (e.g., an upper bound
on the number of components of the pizza’s topping, some fixed budget for the prefab
house/modular home, etc.) that must be fulfilled by the product. Once the set of items
recommended is appropriate for the customer and any further extension would violate the
constraint, she might be interested in completing the process (answer “Equal”), without
considering the remaining options (items) that have not been shown/recommended by
the algorithm yet. This is an important requirement especially for such situations where
the number of all options or items (i.e., |I|) is too large compared to that of the finally
selected ones (i.e., |T |).

Another difference to the problem settings in Angluin (1987) is that the algorithm has
access also to D containing a set of already purchased configurations. The underlying
idea of our approach is that some of the “typical patterns” in D are likely to be selected
also for the unknown target configuration T . It is not difficult to see that for the case
that D is not part of the problem or the transactions in D have been generated with an
entirely different process as the unknown set T , the number of subset queries required to
identify T exactly is |I|−1 if all non-empty subsets of I can be a potential transaction (or
concept). In real-world situations, both of these assumptions are, however, unnecessarily
strong. In fact, as we show empirically using real-world product configuration data sets,
the above number can be reduced to 0.5 · |I| on average by using strongly closed itemsets.
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The Algorithm

The algorithm exactly identifying an unknown transaction T over a ground set I of items
with queries is given in Algorithm 9. Its input is a database D of transactions over I
and the family C∆,D of ∆-closed itemsets of D for some positive integer ∆. Although the
algorithm considers D and C∆,D as static inputs, it can effectively be applied in practice
in the data stream setting as well. For data streamsD and C∆,D are continuously updated
as described in Section 5.2 based on a reservoir sample of the data stream. This follows
from the properties that C∆,D contains typically only a few thousands of ∆-closed sets
for appropriately chosen ∆ and that the time complexity of the algorithm is linear in
the combined size of I and C∆,D.
Algorithm 9 starts by initializing the set variable S with the union of C∆,D and the
family of singleton sets formed by the items in I (line 1). Some of the singleton sets will
be needed for exact identification, e.g., in such cases when the unknown transaction T
to be identified is not ∆-closed. In the set variable X, we store the set of items of T to
be identified that have already been detected by the algorithm. It is initialized by the
empty set (line 2). At this point, the uncertainty as to T is |I| bits. The goal of the
learning algorithm is to reduce this amount of uncertainty to zero. To achieve this, on
the one hand, we prefer queries that reduce the amount of uncertainty with as many bits
as possible, i.e., we are interested in selecting a set Y ∈ S maximizing |Y \X|. On the
other hand, however, the larger the cardinality of the query the smaller is the chance
that it is a subset of T . Therefore, we need to take into account the absolute frequency
(or support count) of the set inquired as well. Since cardinality is at odds with frequency,
we control the trade-off between them by the product of the potential information gain
with the absolute frequency and select the set Y from S maximizing this heuristic (cf.
line 3). As we will see shortly, each set in S will be queried at most once. We then call
the oracle with the union of the already learned subset X of T with this candidate set
Y (line 4) and, depending on its answer, proceed as follows: We stop the algorithm by
returning X ∪ Y if it is equal to T (line 5). If Y is a subset of T (line 6), we add it
to X (line 7) and remove all sets from S that are contained by X (line 8), as none of
them can further contribute to the reduction of the uncertainty as to T . Note that by
definition, the set Y used in the query will also be removed. Finally, if X ∪ Y 6⊆ T , the
oracle returns a counterexample x ∈ Y \ T (line 10). As x /∈ T , we remove all sets in
S that contain x. Note that in this case the amount of uncertainty is reduced by 1 bit
only, in contrast to the case that X ∪ Y ( T (lines 6–8).
We will compare the performance of our algorithm described above to the following
less sophisticated algorithm, called Algorithm Baseline, obtained from Algorithm 9 by
replacing line 1 with

1′ : S := {{x} : x ∈ I} .

That is, this algorithm ignores all ∆-closed sets and uses only singletons in the queries,
preferring them by their absolute frequency. The brute-force solution to this problem
would be to ask a membership query for all items in some arbitrary order. The difference
between this brute-force strategy, referred to as Algorithm Naive and Algorithm Base-
line is that Algorithm Baseline asks the membership queries for the items in the order
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Figure 5.17.: Cumulative item frequency distribution: real-world vs. benchmark.

of their frequencies and can stop the algorithm as soon as the target transaction has been
identified. One can easily see that all three algorithms are correct and require |I| queries
in the worst-case.8 Below we show on real-world data sets that Algorithm 9 requires
much fewer queries than Algorithm Baseline.

Real-World Data Characteristics

To understand the characteristics of the real-world industrial data, we analyze their
properties and compare them to those of the classical artificial benchmark data set
T10I4D100k. More precisely, we look at (i) the frequency distribution of single items,
(ii) the transaction histogram, and (iii) the co-occurrences of item pairs.
First, we analyze the frequency distribution of single items for our real-world data and the
benchmark data set. The cumulative frequency distributions for single items are shown
for both data sets in Figure 5.17. There are some apparent differences between the real-
world data and the benchmark data. The real-world data contains both very infrequent
and highly frequent items. In particular, several items occur in all transactions. On
the artificial benchmark data, the frequency distribution of items is more uniform. In
particular, high frequent items are completely missing in the artificial benchmark data.
The most frequent items in the real-world data occur in each transaction whereas the
most frequent item in the artificial data occurs in only 28.7% of all transactions. Only
for the least frequent 25% of all items, the relative frequency in the real-world and the
artificial data set are close to each other. A consequence of this observation is that
the distribution of items in the real-world data differs largely from that in the artificial
8 Assuming that transactions are non-empty subsets of I, this worst-case bound can be reduced to |I|−1
by querying finally the set containing the two items left.
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(a) real-world data (b) benchmark data set T40I10D100K

Figure 5.18.: Transaction histograms: real-world vs. benchmark.

benchmark data. This will affect the family of strongly closed patterns, as, for example,
the highly frequent items from the real-world data will occur in several strongly closed
patterns.
The transaction histograms in Figure 5.18 report the number of transactions as a function
of the transaction frequency. We observe that in the real-world data (Figure 5.18a)
64.86% of all transactions are unique. The most frequent transaction occurs 190 times
and the second most frequent 143 times. On average a transaction occurs 1.4203 times.
On the benchmark data (Figure 5.18b) 99.86% of all transactions are unique. That is,
there is way less similarity in the transactions compared to the real-world data. The most
frequent transaction occurs only 6 times, the second most frequent 5 times. While the
real-world data contains a few very frequent transactions, such transactions are missing
in the artificial data. On average, a transaction occurs 1.0007 times in the benchmark
data set, which is very different from the 1.4203 times average transaction occurrence
on the real-world data. We observe that the item frequencies are more uniform for the
synthetic data. In summary, there is a less diverse structure in the artificial data.
Finally, we investigate the co-occurrences of two items. They are shown in Figure 5.19a
(real-world) and Figure 5.19b (artificial). Each plot represents a matrix with items on
both axes. The cell (i, j) is colored as a function of the joint occurrence of items i and
j. The darker the color, the more frequent the two items occur together.
For the real-world data we observe:

1. The first few lines in the co-occurrence plot have an almost identical color scale
and show a dark color in the top left corner which is fading to the right (top of
Figure 5.19a).

2. There seem to be a few highly frequent co-occurring items (top of Figure 5.19a).
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(a) real-world data (b) benchmark data set T40I10D100K

Figure 5.19.: Co-ocurrences of items: real-world vs. benchmark.

3. Many combinations, in particular with low frequent items, never occur (lower right
of Figure 5.19a).

On the benchmark data we note the following differences:

1. The prominent dark area in the top left corner is missing.

2. The color fading is much less evident.

3. The number of items that do not occur together is much lower than on the real-
world data.

To quantify the last difference, we counted the number of co-occurring items, i.e. 2-
itemsets, in the real-world and synthetic data. We observe, in the real-world data 35.91%
of all possible co-occurrences actually occur versus 48.69% in the synthetic data. This is
yet another indication that there is less diversity in randomly generated benchmark data
sets than in the real-world data. Some important constraints, e.g., some items increase
the likelihood of other items to occur or prohibit some items altogether are not well-
captured in the synthetic data. However, such constraints are typical for real-world data.
Consider the choice of the equipment of a bathroom as an example. A certain shower
design might influence the choice of the sink, while at the same time it excludes all other
showers. While there is some variation on the showers and sinks, each bathroom needs
both straight and curved tubes. Thus, they will occur in any bathroom configuration.
Such dependencies are missing in the artificial data sets, which show a nearly uniform
distribution. Results from the real-world data are therefore not comparable to such
benchmark data sets. Designing a process to generate artificial data sets that mimic the
characteristics of our real-world data is an interesting open problem for future work.
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ID 1 2 3 4 5 6 7 8 9 10 11
|I| 246 239 251 262 334 331 232 237 171 168 154
|D| 8,341 15,844 19,310 28,239 19,550 50,134 27,078 33,933 9,149 17,935 5,902
k 52.28 55.29 51.25 43.98 59.95 60.72 48.94 67.14 48.86 47.14 51.62
density 0.2125 0.2314 0.2042 0.1679 0.1795 0.1835 0.2110 0.2833 0.2857 0.2806 0.3352

Table 5.7.: Real-world product configuration data set characteristics. The four rows cor-
respond to the cardinality of the ground set (|I|), number of transactions (|D|), average
transaction size (k), and density.

Empirical Evaluation

To assess the potential of strongly closed sets for the product recommendation problem,
we ran both Algorithms 9 and Baseline on 11 real-world product configuration data
sets from a single real-world product configuration database provided by our industrial
partner. The data sets are all from the same domain but have non-overlapping ground
sets I. Let Ii denote the set of all items that occur in any transaction of data set Di,
then for every two data sets Di and Dj , Ii ∩ Ij = ∅. Table 5.7 contains the cardinality
of the ground set (|I|), the number of transactions (|D|), the average transaction size
(k), and the density for each of the 11 data sets. A final observation concerning the
characteristics of these data sets is that k is very large compared to I. In other words,
the density is high. The lowest density is 0.17 and the highest 0.34. For both algorithms,
we measure the fraction of queries they require compared to Algorithm Naive. Recall
that Algorithm Naive would ask a membership query in some ad hoc order for every
element of I to identify the unknown target transaction T .
Using five-fold cross-validation, we computed the family of strongly closed itemsets for
each of the data sets, used them in Algorithm 9 to identify the transactions in the test
set, and calculated the fraction of queries required in comparison to Algorithm Naive.
We did so for values of ∆̃ from 0.005 to 0.1, corresponding to 504, 302 respectively 1
strongly closed sets on average for all data sets. For smaller values of ∆̃, the families of
strongly closed sets become very large. We ran algorithm Baseline on the same folds
and evaluated it against Algorithm Naive.

Experimental Results

Figure 5.20 shows the average fraction of queries over all data sets required by our
Algorithm 9 for various values of ∆̃ and by Algorithm Baseline. The gain over Al-
gorithm Naive is high for both algorithms. One can see that the number of queries
monotonically increases with ∆̃ in the observed interval, motivating the choice of small
values for ∆̃. This is not surprising, as smaller values of ∆̃ result in larger families of
strongly closed itemsets, allowing for an ultra-fine grade of queries. In particular, for
∆̃ = 0.005 our approach requires on average only a fraction of 0.49 of the queries needed
by Algorithm Naive, compared to the fraction of 0.64 needed by Algorithm Baseline.
This results in a saving of 23.4% on average and 37.61% in the best case for our Al-
gorithm 9 over Algorithm Baseline. Note, however, that there is a trade-off between
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Figure 5.20.: Empirical results for the task of product configuration recommendation. We
show the fraction of queries of Algorithm Baseline and our Algorithm 9 in comparison
to Algorithm Naive. The box-plots display the distribution of the averages over all
input data sets for varying ∆̃.

the choice of ∆̃ and the time of updating the family of strongly closed sets. It is also
very likely that the improvement will not continue forever with decreasing ∆̃: As the
number of closed sets increases with decreasing ∆̃, they lose their characteristic sharp
drop in frequency and will hence become similar to the frequent itemsets used by Algo-
rithm Baseline.
To illustrate the effect of ∆̃ on the number of strongly closed sets, in Figure 5.21 we
report the number of strongly closed sets for the values of ∆̃ used in this experiment.
The number of strongly closed sets increases fast with decreasing ∆̃. In fact, it increases
faster than the saving increases. It might thus be concluded that the contribution of
each additional closed set becomes less and less, as the number of closed sets increases.
Mining strongly closed patterns for lower values of ∆̃ takes longer and requires more
memory. The parameter ∆̃ must, therefore, be chosen carefully for a specific application
scenario (see Section 5.3.1 for the effect of ∆̃ on both runtime and memory). The time
to compute the recommendation given a family of strongly closed sets is negligible in all
our experiments.
The experimental results presented in this section clearly demonstrate the potential of
strongly closed itemsets for the computer-aided product configuration task.

5.5. Discussion

The goal of this chapter was the presentation of a general-purpose algorithm for mining
strongly closed itemsets from transactional data streams under the landmark model.
In contrast to frequent itemsets, strongly closed patterns do not have a language bias
towards short patterns. Furthermore, their number can be controlled effectively by a
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∆̃
Figure 5.21.: Number of strongly closed sets for the product configuration data sets for
varying ∆̃.

parameter ∆ that has the clear semantic interpretation that any superset must have
a support count of at least ∆ transactions less. These two advantageous properties
motivated our choice of this particular pattern class. Our algorithm relies on reservoir
sampling to obtain a fixed size data set from a growing data stream. The sample size is
chosen by Hoeffding’s inequality providing the following probabilistic guarantee: With
probability at least 1− δ, the discrepancy between the relative frequency of an itemset
X in the stream St and that in the sample Dt is at most ε for all X ⊆ I. The fixed
sample size enables our algorithm to heavily utilize some of the nice algebraic and al-
gorithmic properties of this kind of itemsets. The careful investigation of the impact of
the parameters of our algorithm presented in Section 5.3 has shown that it achieves high
F-scores, requires only a small fraction of the memory required by the Batch algorithm,
and is in most settings clearly faster than the Batch algorithm. The approximation
and speed-up results clearly indicate the suitability of our algorithm for mining strongly
closed itemsets even from massive transactional data streams.
In Section 5.4 we have demonstrated the suitability of strongly closed sets for two practi-
cal applications, the classical problem of concept drift detection and the task of computer
aided product configuration recommendation for hyper-configurable systems.
The potential of strongly closed sets for concept drift detection has been demonstrated
with a basic algorithm that computes families of strongly closed sets from a stream
divided into consecutive mini-batches. The Jaccard distance was used to compare the
families of strongly closed sets from two successive windows. The plots of the Jaccard
distance as a function of the stream length clearly showed that a simple threshold can be
used to signal a drift. The algorithm has been evaluated over diverse settings, varying
both the characteristics of the data streams as well as the parameters of the algorithm.
We considered data streams with different pace of drift and varying commonality for the
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distributions before and after the drift. For the algorithm, the relative strength of the
closure ∆̃, the delay between consecutive miners, and the buffer size have been varied.
In all experiments, the drifts are clearly visible in the plots of the Jaccard distance,
demonstrating that strongly closed sets are a good indicator of concept drifts for a wide
range of drifts and algorithmic settings. Both characteristics are important. The first
to detect drifts of different types, the second to detect drifts even when the algorithmic
parameters are not perfectly tuned.
The algorithm to detect concept drifts with strongly closed sets serves mainly as a
proof of concept. It is obviously less sophisticated than the StreamKrimp algorithm
(van Leeuwen and Siebes, 2008), which is tailored to the specific problem of concept
drift detection. However, our algorithm can further be improved and turned into a
sophisticated algorithm that does not need to compute a new set of strongly closed
itemsets for each batch.
As a second practical application, the task of product configuration recommendation
has been introduced. This problem was coined by an industrial project. Since the data
is not publicly available and differs significantly from classical benchmark data sets, the
data characteristics have been reported and compared to those of a classical benchmark
data set. The essential difference is that the real-world data contains a much more
intrinsic structure, whereas the benchmark data is rather uniform. In particular, the
real-world data contains items that imply others and also items that exclude others.
Strongly closed itemsets mined on historical data contain only item combinations that
were sold together, which implies that they are valid solutions. To solve the problem
of product configuration recommendation, an algorithm querying strongly closed sets
has been proposed. It has been empirically compared to a naive and a baseline
algorithm and turned out to be superior to both algorithms requiring up to 23.4%
fewer user queries than the baseline algorithm, which in turn is superior to the naive
algorithm. We conclude that strongly closed sets provide a clear algorithmic advantage
over the other two algorithms and are indeed suitable for the problem of computer-aided
product configuration recommendation. Additionally, they implicitly capture inclusion
and exclusions of items that must be modeled explicitly with other machine learning
approaches. This is a huge benefit, as it eliminates any manual work to define these
concepts.
We close this section with with two problems for future research. The speed-up results
reported in Section 5.3.6 can further be improved by utilizing that |C∆,Dt | is typically
(much) smaller than the sample size s calculated by Hoeffding’s inequality (for a detailed
discussion on the size of C∆,Dt see Boley et al. (2009b)). In such cases, the closure
σ∆,Dt′

(C ∪ {e}) can be computed from C∆,Dt without any database access to Dt′ , even
when the closure of C ∪ {e} has not been calculated for Dt. For example, instead of
computing σ∆,Dt(C ∪ {e}) in line 2 of Algorithm 6, we can return

⋂
{Y ∈ C∆,Dt : C ∪ {e} ⊆ Y } ,

as C∆,Dt is a closure system.
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Besides the landmark model considered in this work, the problem of mining strongly
closed itemsets under the sliding window model would be another interesting related
problem. Since our algorithm handles both insertion and deletion of transactions, it
might be applicable to this setting if only the sampling is replaced by a sliding window.
It might be however possible to design a more sophisticated algorithm for this setting.
For practical applications, more sophisticated algorithms tailored to the specific problems
would be beneficial over our proof-of-concept solutions.

5.6. Summary

In this chapter, we have presented a general-purpose algorithm, called SCSM, for the
task of mining strongly closed itemset from transactional data streams. Our algorithm
maintains a fixed size sample such that the relative frequency of any itemset in the
sample deviates from that in the data stream at most by some small user-defined error.
The size of the sample is derived from Hoeffding’s bound based on a user-defined level
of confidence. We have proven the formal correctness of our algorithm with respect to
the sample. Our experiments confirm both the compactness of the set of strongly closed
patterns and that our incremental algorithm achieves a high approximation quality in
significantly less time than the Batch algorithm. Similarly to our other algorithms
presented in Chapter 4, SCSM can be queried at any time. Additionally, we have
demonstrated the suitability of strongly closed itemsets for two practical applications,
for concept drift detection and for product configuration recommendation. All in all,
our new algorithm allows mining long frequent patterns without the usual language bias
introduced by frequent patterns with high accuracy from data streams.
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6. Conclusion

This chapter contains a high-level summary of this dissertation thesis. It discusses the
value and significance of the main results (cf. Section 1.3 for a complete list of all
contributions). Finally, it shows directions for future research in a concluding section.

Summary

Our research on frequent itemset mining from data streams under the landmark model
lead us to the design of new algorithms that can be queried for new patters anytime
and still guarantee probabilistic error bounds. In contrast, all existing state-of-the-art
algorithms with error guarantees need to process transactions in blocks of fixed size,
where the block size is derived from an error bound. This enforces update intervals to
be determined by the block size and limits, therefore, the flexibility. Additionally, for
a fixed capacity of patterns, we can provide longer and less redundant patterns which
improve the interpretability and are of high practical use. We achieve this by mining
strongly closed patterns.
In the first chapter, we identified the limitation caused by static, fixed size updates of
state-of-the-art algorithms. We motivated the need for more flexible designs with the ex-
emplary use case of fraud discovery. This inspired us to consider three problems related
to frequent itemset mining or subsets of them for which we can provide bounds that are
independent of the update interval. Chapter 2 contained an introduction of the theo-
retical background of both itemset and data stream mining and the formulation of the
problems considered in this thesis. Chapter 3 gave an overview of the most prominent
as well as recent algorithms mining frequent itemsets from data streams for different
window models. The subsequent chapters focused on the landmark model. Chapter 4
introduced two new algorithms with error guarantees for the task of frequent itemset
mining from data streams under the landmark model. In contrast to most state-of-the-
art approaches, the guarantees hold independently of the block size in which transactions
are processed as mini-batches, or equivalently, the guarantee is independent of the update
cycle. This is a great advantage for data streams with varying transaction arrival rate, as
the results can be obtained at any point in time without the need to wait until the blocks
will be filled. Extensive experiments investigated the effects of different characteristics
of the data streams, compared the proposed approaches to the state-of-the-art methods,
and demonstrated the strength of the new algorithms. In a subsequent chapter, the
first algorithm to mine relatively strongly closed itemsets from data streams under the
landmark model has been proposed. Strongly closed patterns have several advantages
compared to frequent patterns. First, they represent a smaller subset of patterns and
thus require less memory and are easier to understand. Second, they do not share the
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language bias of frequent itemsets towards short patterns. Third, they correspond to
itemsets with a sharp drop in frequency and thus form a stable subset. To exploit some of
their algebraic properties, strongly closed sets are not generated from the entire stream,
but instead from a reservoir sample; the sample size is derived from a probabilistic error
bound. The quality and speed of our algorithm have been demonstrated empirically.
Finally, Section 5.4 showed the potential of strongly closed sets for the classical prob-
lem of concept drift detection and the problem of product configuration recommendation
for hyper-configurable systems. The problem of product configuration recommendation
originates from an industrial project. It differs from classical recommendation systems
(Ricci et al., 2011) in the sense that it recommends a configuration composed of many
items, i.e., itemsets, instead of single items as in classical recommendation systems.

Discussion

The results summarized above show that the focus of the thesis lies on the design of al-
gorithms and not on new data structures. In this respect, the work follows the majority
of literature on pattern mining. The empirical evaluation of the properties of the algo-
rithms is far more extensive than usual in this field. In particular, the effect of various
data stream characteristics have been investigated in great detail.
Existing algorithms mining frequent itemsets with formal guarantees rely on fixed size
update cycles. In case of very small update cycles, i.e., single transactions, these al-
gorithms are, however, slow. In case of long update cycles, they are not flexible. The
algorithms proposed in this thesis eliminate this requirement. The benefits are obvi-
ous. Consider some production plant that interrupts the production. In this scenario,
classical algorithms can not provide an up-to-date result, unless by coincidence the stop
happens to match the update cycle or the user is willing to sacrifice the error bound.
In contrast, our algorithms can provide the most up-to-date result without any loss for
future results. Assume the result is to be used to understand the cause of the interrup-
tion. In this setting, it is very important that it is reliable. This reliability can be only
guaranteed by the error bound.
We point out the significance of mining strongly closed itemsets from data streams
instead of classical frequent itemsets. Notably, strongly closed itemsets have several
important advantages. The popular frequency-based itemset mining paradigm suffers
from the language bias favoring short patterns. This is an often undesirable side ef-
fect of frequency-based pruning. Strongly closed sets do not have this bias. Moreover,
they correspond to stable patterns with a sharp drop in frequency. This sharp frequency
drop ensures that these patterns stand apart amongst all. In addition, the set of strongly
closed patterns is typically much smaller and shrinks fast in size with increasing strength
of the closure (Boley et al., 2009b; Trabold and Horváth, 2017). This is advantageous in
terms of a smaller output. A central goal in pattern discovery is to provide understand-
able patterns (Mannila, 2002). Providing a large set of patterns, as usually generated
by frequency-based pruning approaches, is a nuisance for domain experts trying to un-
derstand the entire collection of those patterns. In contrast, our choice of the smaller
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pattern sets of strongly closed itemsets helps the practitioners to better understand the
characteristics of their data streams. This motivates further research mining compact
understandable pattern sets from data streams, which are often desired, yet hard to find.
While there are very strong benefits on the application level both in terms of stability
and compactness, there is a cost associated with mining such concise patterns. Com-
puting the closure is expensive in comparison to frequency-based pruning. Thus, mining
strongly closed itemsets from high-speed transactional data streams might not be an
option. In such cases, algorithms mining frequent itemsets are more beneficial.

Outlook

The results of this thesis have solved some problems and at the same time raised some
new questions for future research. Besides the individual questions related to each
chapter that are mentioned in the respective chapter, we have identified more general
questions for potential future research. As this work focused on frequent, respectively
strongly closed patterns mined under the landmark model, two very natural questions
to ask are: (i) How can the proposed methods be adapted for mining the top-k patterns
with the same sort of probabilistic guarantee independent of the update cycle and (ii)
how can the probabilistic algorithms be fit to other window models? For the case of
frequent patterns, algorithms for top-k pattern mining and other window models have
already been proposed. However, they all do not use the probabilistic reasoning intro-
duced in this work and lack the ability to be queried anytime. Adapting our reasoning
model to (i) and (ii) should not be too complicated. The development of additional
algorithms, that provide bounds independent of the size of the update cycles might lead
to another direction of future research: Is there an entire class of algorithms for which
a probabilistic bound like ours could be proven in general?
While strongly closed itemsets can be enumerated with polynomial delay (Boley et al.,
2009b), no efficient algorithm for the enumeration of the top-k strongly closed patterns
is known so far. The naive solution building on the existing algorithm computing the
closure for a very small ∆ and filtering the result does not yield an efficient algorithm, as
its delay would not be output-polynomial. The problem is interesting because it might
be easier for an expert to define the number of patterns she is interested in, instead
of a strength threshold ∆. The problem is however non-trivial. It might even have no
efficient exact solution. In case of approximate solutions questions about the quality of
the approximation arise. Adapting strongly closed patterns to further window models,
on the other hand, should be easier. Our algorithm already handles both the addition
and deletion of transactions from the sample. It suffices thus to modify the sampling
mechanism, to obtain an algorithm for the sliding window case. The adaptation to the
time fading window model would require an additional weight for each transaction.
We have cast the problem of mining relatively ∆̃-closed sets into the problem of mining
absolutely ∆-closed sets for a fixed size sample. For the case of absolutely ∆-closed sets
it holds that the addition of a transaction can only add further ∆-closed sets to those
that are already ∆-closed, but can not remove any ∆-closed set; vice versa the deletion of
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a transaction can only remove ∆-closed itemsets, but can not induce new ∆-closed sets.
The two properties do not, however, hold for the case of relatively ∆̃-closed itemsets1.
Hence for the enumeration of relatively ∆̃-closed sets, update mechanisms different from
those considered in this thesis are required. How to maintain ∆̃-closed itemsets efficiently
is an open question for potential future research. It is both of theoretical and practical
importance, as the number of absolutely closed sets for any fixed ∆ increases with
additional transactions, unless restricted to a fixed size sample. Relatively strongly
closed sets on the other hand would scale naturally with increasing stream length.
Other directions for future research relate to practical applications. We have only con-
sidered two potential application scenarios. Strongly closed patterns might be useful
in further scenarios such as root-cause analysis, where they could be used to identify
common characteristics as well as in many other domains, such as biology or medicine.
Another theoretically interesting direction is the transfer of the concept of strong closed-
ness to other pattern classes, for example, sequences (Agrawal and Srikant, 1995).
Strongly closed sequences could reduce the set of sequences in a controllable and se-
mantically meaningful way. A very similar direction would be to extend the concept of
relevant sequences (Grosskreutz et al., 2013) to strongly relevant sequences.
Finally, future research could build upon the problem of recommending entire itemsets
instead of single items, just like multi-label classification extends the concept of assigning
a single class to an instance to the assignment of multiple classes to each instance.
State-of-the-art solutions for the multi-label classification problem exploit inter-class
dependencies and achieve thus better solutions than simply running several dedicated
single-class classifiers. Itemset recommendation might be solvable both more efficiently
and with better results if addressed directly in comparison to a combination of many
single item recommender systems.
To summarize, many inspiring directions emerge from this work. Some of these are
directly related to frequent pattern mining, others concern the pattern class of strongly
closed itemsets, and some consider further potential applications.

1 To illustrate this consider the following example of a data stream with the three transactions ac, ab,
ab. Let ∆̃ = 0.6, then ab is ∆̃-closed. Assume that the next transaction is d. This makes ab 0.5-closed,
i.e., even though a transaction has been added, ab lost its state of relative closedness. If in the next
step transaction ac will be deleted, then ab is 0.67-closed again.
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A. Parameter Tuning

This section describes the tuning of the parameters for the algorithms in Chapter 4. The
data streams used and the design of the experiment follows the description of Section 4.4.
We refer to this section for the details. The streams obtained from the six real-world
benchmark data sets of Table 4.2 (page 58) do not have enough transactions for some
combinations of the algorithms and parameters. However, their characteristic differs
from that of artificial benchmark data streams. It is therefore interesting to see how
the algorithms perform on the real-world and the 33 artificial benchmark data streams.
The artificial data streams are obtained by the IBM Quest data generator with the
parameters specified in Table 4.3 (page 59). All algorithms are hence tuned both on
the classical benchmark data streams. We refer to the real-world data as UCI and the
artificial data as QUEST.
Each data set is mined at five data set specific thresholds corresponding to 1k, 5k, 10k,
50k, and 100k frequent itemsets. These thresholds cover a broad range of applications.
We use these thresholds for both types of data (i.e., real-world and artificial). For the
six real-world data sets and the five thresholds, this results in a total of 30 experiments
for each set of parameters and each algorithm. Whereas for the 32 artificial data streams
and the five frequency thresholds we obtain a total of 160 experiments. Each stream is
mined at regular intervals producing 10 results. The results for each data stream are
aggregated to a single value corresponding to a worst-case scenario, i.e., the F-score for
the entire stream is the minimal F-score out of the 10 F-scores whereas for memory and
runtime the maximal value is considered. To aggregate the results from the 30 versus
160 experiments, for each set of parameters we report either a worst-case aggregation
corresponding to the minimal F-score and maximal memory and runtime or the average
result of all data streams and frequency thresholds. Whenever the worst-case scenario
reveals the effect of parameters, results will be provided for this scenario. However,
for some algorithms, the average results are more suitable to illustrate the effect of a
parameter. We always present the result that shows the effect best and for DTM even
both.
The parameter tuning will be described for each algorithm in turn, in alphabetic order.
The evaluation of the specific parameters will include the parameter range used by the
authors of the respective algorithm, as well as lower and larger values. This choice is
based on the assumption that the authors have chosen the parameters in ranges that
are suitable for similar data streams. The optimal parameters are expected to vary for
different data streams but should be on the same order of magnitude. Otherwise, setting
them to reasonable values for an (in advance) unknown stream is impossible.

DTM specific parameter δ Our DTM algorithm has a single parameter δ. It follows
from theory that values of δ closer to 0 should provide better approximations. The
parameter was evaluated at 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9. We only show
results for the range 0.01 – 0.9. These are representative and lower values of δ do not
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(a) F-Measure (b) Memory (c) Runtime

Figure A.1.: DTM worst-case effect of δ on (a) F-Measure, (b) Memory and (c) Runtime
for the UCI benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.2.: DTM average effect of varying δ on (a) F-Measure, (b) Memory and (c) Run-
time for the UCI benchmark data streams.

change the overall picture. Results for the UCI data streams are given in Figures A.1
and A.2, showing the worst-case and the average case aggregations respectively. In a
similar manner, Figures A.3 and A.4 report the results on the QUEST data streams.
The theoretical result, that smaller values for δ lead to an increasing F-score, is visible
for both scenarios and the two data sources (i.e., real-world and artificial). The worst-
case (Figures A.1a and A.3a) and the average case (Figures A.2a and A.4a) consistently
show an improved F-score for lower values of δ. The improvement is best visible in
Figure A.3a.
Smaller values of δ require more memory for both the real-world (Figure A.1b and
A.2b) and artificial (Figure A.3b and A.4b) data streams. This confirms the theoretical
considerations. The increase is visible for the worst-case and the average case scenario.
With respect to the runtime the results on both real-world (Figures A.1c and A.2c)
and artificial (Figures A.3c and A.4c) data streams show that for lower values of δ the
processing of the streams takes longer. This holds for the two aggregation scenarios. Note
that these runtime results are very consistent with the results for memory consumption.
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(a) F-Measure (b) Memory (c) Runtime

Figure A.3.: DTM worst-case effect of δ on (a) F-Measure, (b) Memory and (c) Runtime
for the QUEST benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.4.: DTM average effect of varying δ on (a) F-Measure, (b) Memory and (c) Run-
time for the QUEST benchmark data streams.

We chose the value δ = 0.1 for all experiments. This value produces very good F-score
results. The results improve only little with lower values. However, lower values of δ
require more memory and time to process the streams.

EStream specific parameter error The EStream algorithm (Dang et al., 2008) has
two parameters, one is the maximal pattern length, the other an error parameter ε. The
maximal pattern length is set to the correct length of the longest pattern obtained by
the non-streaming algorithm computing the ground truth for the entire stream. As the
value for the first parameter is provided to the algorithm based on the ground truth,
this parameter does not need to be optimized and only the error parameter is considered
further. Dang et al. (2008) fix the value of ε to 0.1 of θ. We evaluate the following
multiples of θ for this parameter: 0.001, 0.01, 0.1, 0.2 and 0.3. Figures A.5 and A.6
show the average results on the UCI and QUEST data streams respectively.
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(a) F-Measure (b) Memory (c) Runtime

Figure A.5.: Effect of the error parameter used by EStream on (a) F-Measure, (b) Mem-
ory and (c) Runtime for all UCI benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.6.: Effect of the error parameter used by EStream on (a) F-Measure, (b) Mem-
ory and (c) Runtime for all QUEST benchmark data streams.

Smaller values of the error parameter result in better F-scores (Figures A.5a and A.6a),
as expected. However, the effect is very small. In particular, there is very little gain
from ε/θ = 0.1 to ε/θ = 0.001. See Figures A.5b and A.6b for the effect on memory and
Figures A.5c and A.6c for impact on the runtime. Across all data streams, small error
values seem to require both more memory and longer runtimes than larger values. The
choice of ε seems to affect the memory and runtime far more than the F-score. While
at ε/θ = 0.1 the algorithm needs only 2/3rd of the runtime required at ε/θ = 0.001
the F-scores at both values of ε are very close across the data sources. Based on these
results, the error ε = 0.1 · θ will be used as the best parameter for EStream.

FDPM specific parameters reliability and k The authors of FDPM evaluate the pa-
rameter reliability δ at 0.0001, 0.001, 0.01, and 0.1 and adjust k such that 50, 000 trans-
actions constitute one batch (Yu et al., 2004).
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(a) F-Measure (b) Memory (c) Runtime

Figure A.7.: Effect of the reliability parameter used by FDPM on (a) F-Measure,
(b) Memory and (c) Runtime for the UCI benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.8.: Effect of the reliability parameter used by FDPM on (a) F-Measure,
(b) Memory and (c) Runtime for the QUEST benchmark data streams.

We optimize the two parameters in turn, starting with reliability. Figures A.7 and A.8
show the average effect for the UCI and QUEST data streams, respectively. In case the
reliability parameter requires a buffer size larger than one-tenth of a data stream, the
experiment is not run. Otherwise, k is set to the largest possible value such that no more
than 1/10-th of the stream is processed at once. The situation in which the experiment
can not run because the buffer size exceeds 1/10-th of the stream is more likely to occur
for smaller values of the reliability parameter.

Both the F-score and the memory seem to be affected consistently by the choice of
the reliability parameter. Smaller values for this parameter result in higher F-scores
(Figures A.7a and A.8a), but require more memory (Figures A.7b and A.8b). The
runtime result for the QUEST data follows this general pattern (Figure A.8c). Only
on the UCI data, the pattern is less clear (Figure A.7c). This might be a side effect
of different values for k. Note that the very fast runtime is due to the fact that we
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(a) F-Measure (b) Memory (c) Runtime

Figure A.9.: Effect of the parameter k used by FDPM on (a) F-Measure, (b) Memory
and (c) Runtime for the UCI benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.10.: Effect of the parameter k used by FDPM on (a) F-Measure, (b) Memory
and (c) Runtime for the QUEST benchmark data streams.

implemented the algorithm by using an FP-Tree and produce the result for each batch
simply by an enumeration of the FP-Tree, without the intermediate pruning step. This
optimization improves the runtime tremendously without affecting the F-score.
Based on these results, the value for the reliability parameter δ is set to 0.0001. For
even lower values the buffer size increases further and the experiment can not be run on
many data streams because the buffer size exceeds one-tenth of a data stream.
We now turn to the discussion of the parameter k which is evaluated for δ = 0.0001 for
the reasons above. We tested the values of k = 1, 2, 5, and 10. Figures A.9 and A.10 show
the results for the UCI and QUEST data streams respectively. For both data sources
the F-score increases with increasing k (Figures A.9a and A.10a). At the same time, the
algorithm requires less memory for larger k and runs faster. Increasing k from 1 to 2 has
a far larger impact than increasing k from 2 to 5 or 10. This observation holds for both
memory (Figures A.9b and A.10b) and runtime (Figures A.9c and A.10c). The runtime
result is expected, as the output is computed less frequent. The memory result is less
obvious and an artifact of our FP-Tree-based implementation of the algorithm. In the
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(a) F-Measure (b) Memory (c) Runtime

Figure A.11.: Effect of the error parameter used by Lossy Counting on (a) F-Measure,
(b) Memory and (c) Runtime for the UCI benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.12.: Effect of the error parameter used by Lossy Counting on (a) F-Measure,
(b) Memory and (c) Runtime for the QUEST benchmark data streams.

original version, the algorithm prunes more frequently with lower values of k and hence
requires less memory. As we buffer transactions and convert them into an FP-Tree, the
tree can be more compact for larger k, as more items can be pruned as infrequent from
the buffer. We will use k = 5 for all further experiments, as for k = 10 some streams are
not long enough at the frequency thresholds corresponding to 100k frequent itemsets.

Lossy Counting specific parameter error Manku and Motwani (2002) fix the value of
the error parameter ε to 0.1θ. We will evaluate the values 0.01θ, 0.1θ, 0.2θ and 0.3θ for
the parameter ε. Figures A.11 and A.12 illustrate the effect of the parameter for the
real-world and synthetic benchmark data streams respectively.
For all data streams, there is a clear trend that lower values of ε correspond to higher
F-scores (Figures A.11a and A.12a). At the same time, we observe an increase in both
memory and runtime. The effect on memory is better visible for the artificial data
(Figure A.12b) then for the real-world benchmark data (Figure A.11b). For the former,
there is a very clear increase for every change in ε. The changes are smaller for the UCI
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(a) F-Measure (b) Memory (c) Runtime

Figure A.13.: Effect of the strategy used by Partial Counting on (a) F-Measure,
(b) Memory and (c) Runtime for the UCI benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.14.: Effect of the strategy used by Partial Counting on (a) F-Measure,
(b) Memory and (c) Runtime for all QUEST benchmark data streams.

data for ε/θ ≥ 0.1. Concerning the runtime, the effect is clearly visible for both data
sources (Figures A.11c and A.12c). Note that memory and runtime do not scale together.
Consider the decrease of ε/θ from 0.2 to 0.1 for the QUEST data streams. While the
average memory required increases by a factor of 3, the average runtime increases by a
factor less than 2.
Obviously, smaller values of ε provide better results, as expected. They require larger
blocks of transactions to be processed together, which, in turn, increases the number of
transactions to be processed before the next result can be obtained. The value ε = 0.01θ
provides the best results in terms of the F-score and will hence be used for all further
experiments.

Partial Counting specific parameter estimation strategy For Partial Counting the
three estimation strategies will be evaluated. Results for the UCI and QUEST data
streams are shown in Figures A.13 and A.14, respectively. For each strategy, we generate
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a boxplot from all the results of all data streams and all thresholds as they illustrate the
distribution of the results over all configurations. Overall, the results look very similar
for both real-world and artificial data.
In terms of the F-score (Figures A.13a and A.14a), the strategies behave very similarly.
The average estimation strategy (AE) performs best for both data sources, followed by
the minimum estimation (ME). The upper bound estimation (UE) seems to provide the
worst results on average.
Regarding the memory (Figures A.13b and A.14b), the strategies behave overall very
similar. The upper bound estimation requires the least memory across all data streams,
average estimation comes second, and minimum estimation is last.
For the runtime (Figures A.13c and A.14c), there is only a little difference between the
strategies. Surprisingly, the computation of the upper bound and minimum estimation
strategies are not really faster than the average estimation.
Based on these results, the average estimation strategy will be used for the experiments.
In terms of F-score, it is as good as the minimum estimation. Compared to the upper
bound estimation, they are both better. Concerning memory, it is slightly better than
the minimum estimation strategy. This makes the strategy the best choice.

sApriori specific parameters confidence and error For SApriori the parameters cho-
sen by the authors for all experiments were fixed to confidence δ = 0.1 and error
ε = 0.002 (Sun et al., 2006). We evaluate the parameters δ = 0.0001, 0.001, 0.01, 0.1, 1
and ε ∈ [0.001, 0.005] at 0.001 increments, and optimize them sequentially. Starting with
the initial value of ε = 0.002 as used by the authors, δ is evaluated first and fixed to the
best value and only after is ε tuned, given the best value of δ.
Figures A.15 and A.16 show the impact of the confidence parameter δ for the real-world
and artificial data streams, respectively. As δ is lowered, the F-score increases for the
QUEST data (Figure A.16a). The effect is less evident for the UCI data where the
maximal F-score is obtained for δ = 0.1 (Figure A.15a).
The memory consumption increases with lower confidence for the real-world data (Fig-
ure A.15b), but not necessarily for the artificial one (Figure A.16b). As the algorithm
uses larger buffers for lower confidence values, it seems reasonable that it requires more
memory as the confidence value is lowered.
Concerning the runtime, the results are similar to those obtained for memory. The UCI
data shows a clear correlation between the confidence parameter and the runtime for
lower confidence values (Figure A.15c), whereas the runtime on the artificial benchmark
data is surprisingly highest for the largest confidence (Figure A.16c).
Because the SApriori algorithm is really fast, it is optimized for the F-score which is
the best for low values of the confidence parameter. Therefore, δ is fixed to 0.0001.
Results for varying ε are given in Figures A.17 and A.18 for the UCI and QUEST data
streams.
The results are not consistent across the data sources. The F-scores increase for both
scenarios with lower values of ε (see Figures A.17a and A.18a). For the UCI data,
both memory and runtime follow this trend (see Figure A.17b for memory and A.17c
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(a) F-Measure (b) Memory (c) Runtime

Figure A.15.: Effect of the confidence parameter used by SApriori on (a) F-Measure,
(b) Memory and (c) Runtime for the UCI benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.16.: Effect of the confidence parameter used by SApriori on (a) F-Measure,
(b) Memory and (c) Runtime for the QUEST benchmark data streams.
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(a) F-Measure (b) Memory (c) Runtime

Figure A.17.: Effect of the error parameter used by SApriori on (a) F-Measure,
(b) Memory and (c) Runtime for the UCI benchmark data streams.

(a) F-Measure (b) Memory (c) Runtime

Figure A.18.: Effect of the error parameter used by SApriori on (a) F-Measure,
(b) Memory and (c) Runtime for the QUEST benchmark data streams.

for the runtime). For the QUEST data, there is a peak in memory for low values of
ε (Figure A.18b), but in general, there is no clear trend in the memory consumption
associated with the value of ε. Considering the runtime, the trend is that larger values
of ε require more time (Figure A.18c). Thus, especially the runtime results for the two
data sources seem to follow opposing patterns when we compare Figure A.17c to A.18c.
Based on these results, the value ε = 0.001 seems to be the best choice. The difference in
terms of F-score to the value ε = 0.002 is, however, very small. For θ set such that 100k
frequent itemsets can found and ε = 0.001, the block size exceeds the size of one-tenth
of most data streams and thus the result can not be computed based on the design of
the experiment. We will, therefore, fix ε = 0.002 for the experiments.

Summary In this appendix, we have carefully tuned the algorithmic parameters of
the algorithms mining frequent itemsets from data streams. We reported the detailed
results in terms of F-score, memory, and runtime for each algorithm for a range of pa-
rameters. We have chosen the optimal parameters for each algorithm based on results
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Algorithm Parameter(s)
DTM δ = 0.1
EStream ε = 0.1θ; k = as from ground truth
Lossy Counting ε = 0.01θ
Partial Counting strategy = average estimation
FDPM k = 5; δ = 0.0001
SApriori ε = 0.002θ; δ = 0.0001

Table A.1.: Optimal parameters for frequent itemset mining algorithms.

on both real-world and artificial data streams. We finally summarize the optimal pa-
rameter values of the algorithms for the set of data streams and thresholds used in our
experiments in Table A.1. The table serves as a reference within this work. For different
applications or data streams, other parameters could be more suitable. For our purpose,
these parameters provide good results for each algorithm and a foundation for a fair
comparison.
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