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Abstract

Modern galaxy redshift surveys provide a wealth of information about our Universe. It is the
goal to observe luminous objects in the whole sky and as far back in time as possible – from a
combination of all their data we then want to learn about when the Universe was born and how
it evolved. On these cosmological length scales a whole galaxy can be represented as a single
point, amongst billions of others. When we measure the two-dimensional position on the sky
for many galaxies, and combine it with their distance (given by their cosmological redshift),
we obtain a three-dimensional map of the cosmos. In this map we clearly see that galaxies are
not randomly distributed in the Universe – instead they build a specific large-scale structure
and align in form of a cosmic web. In our current concordance model of cosmology the spatial
distribution of luminous objects depends heavily on an underlying, non-visible cosmic web. It
consists of dark matter which does not emit electromagnetic radiation and therefore cannot
be observed. Its influence on other particles is purely gravitational, and we know that there
must be much more dark matter in the Universe than visible matter – otherwise the luminous
cosmic web would look completely different from what we observe. Therefore, it is of utmost
interest to infer its exact amount and distribution. Theories of gravitational collapse suggest
that the formation of dense luminous structures such as galaxies happens in locations where also
the dark matter is rather dense. In a two-step process, first the gravitational collapse of dark
matter happens, and within the resulting haloes form then the galaxies. The distribution of
both haloes and galaxies is therefore biased with respect to the dark matter density field. This
leads to the conclusion that we can infer information about dark matter by observing a large
number of galaxies. While the overall idea of halo (or galaxy) bias is intuitive to understand,
the exact dynamics are still heavily debated.

In this study, we aim to shed light on some of the issues connected to bias. The relation
between haloes and dark matter is often phrased in form of a bias expansion up to a certain order
that connects various statistical quantities (bias operators) and weighs them with numerical
factors (bias parameters). It remains an open question which of these operators are really
needed for an accurate description, and what the exact values of the bias parameters are. To
address these questions, in chapter 2, we run a suite of 40 cosmological N-body simulations
and then compare existing bias models piece by piece to the numerical data. After validating
the theoretically motivated shape of individual terms in the data, we fit various complete bias
relations against the halo distribution to measure the bias parameters. For that we employ a
novel routine that includes the covariance matrix of all terms. Then, using a statistical model
selection criterion, we infer the optimal number of bias operators and parameters. We find that
for the large halo masses in our simulations a four-parameter model gives the best results. The
bias parameters we measure compare excellently with previous results from the literature.

Furthermore, with even greater emphasis, in both chapters 2 and 3 we address a rather
technical, but pressing complication that arises in bias models which, so far, has been only
examined from a theoretical perspective. When modeling the individual statistical expressions
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within the framework of cosmological perturbation theory, unphysical extra terms arise at
different orders in the expansion. These, while solely due to the mathematical formulation of the
problem, distort the measurement of the bias parameters. A correct physical interpretation is
therefore made impossible. From theoretical efforts results the approach of bias renormalisation
that aims at eliminating these terms order by order in a consistent way. For the first time, we
apply this method to numerical data, therefore providing the crucial test of its validity. We
are fully successful in renormalising halo bias in simulations at first order (linear bias) as we
demonstrate in chapter 2. At second order (quadratic and tidal bias), the issue is more delicate,
as we show in chapter 3, where we highlight restrictions on the range of scales for which the
method provides satisfying results.

Overall, our findings motivate an application of our model and the renormalisation technique to
numerical and also possibly observational data. However, they also clearly expose the limitations
of employing perturbative techniques for describing the formation of the large-scale structure of
the Universe.
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CHAPTER 1

Introduction

1.1 The science of cosmology

Since the early ages of mankind humans have been fascinated with the night sky. Whereas in
early civilizations astronomical phenomena have been attributed to religious beliefs and were
interpreted within the framework of astrology1, nowadays we employ modern scientific methods
to make sense of what we see when are ‘looking up’. The naked human eye can recognize several
thousands of stars (Hoffleit and Warren, 1987) when located in a dark place, and by now we
know that all these bright dots shine because of the same mechanism that is at work in the Sun
– and therefore responsible for life on Earth: Mainly hydrogen is fusing to become helium, and
integrated over the mass of the Sun an enormous amount of energy is being released during that
process. In dark places without any light pollution we can even see our own galaxy, a barred
spiral galaxy called the Milky Way. It is visible as a hazy band of light, roughly 30° in width,
that spans the whole sky, and by now we know that this band is in fact made up of ∼ 1011

individual stars of various masses and temperatures (Inglis, 2018). They lie bound in a flat disk,
with a bulge of stars in the center, and spiral arms towards the outskirts. The Solar System
with the Sun in the center and the Earth as the 3rd innermost planet is hosted by the Orion
spiral arm, at roughly 8 kpc from the center of the Milky Way2.

When we go beyond observing with the naked eye we will find that there is more than that.
Whereas there reside dozens of billions of stars in the Milky Way, similarly there exist dozens
of billions of galaxies themselves – we are by no means special! Neither is the existence of the
Solar System including planets a unique occurence, nor is the Milky Way a single island in
vast empty space. When employing Earth-bound telescopes with meter-size mirrors or even
turning to telescopes installed in space we can observe galaxies of various sizes and shapes,
and at various distances away from us. They may come on their own, or, more common, may
be bound together in the form of galaxy clusters, hosting a few up until several thousands of
galaxies (Beckwith et al., 2006). To give an impression on this, in Fig. 1.1 we show the Hubble
Ultra Deep Field, a small region in the southern sky that was exposed for a long time with the
Hubble Space Telescope (hereafter HST). It shows about 105 galaxies and galaxy clusters of
various sizes, colours and shapes, some of them about 13 Gyr old.

1 For example the yearly flooding of the Nile in ancient Egypt was explained with the rising of the star Sirius
(Fitzgerald, 1951).

2 The astronomical unit Parsec, short for parallax second, where 1 pc ≈ 3.26 ly, is the distance from which 1 AU,
i.e. the distance between Earth and Sun, appears as 1′′.
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Chapter 1 Introduction

Figure 1.1: The Hubble Ultra Deep Field (HUDF), a 106 s exposure of an 11′ region in the southern sky
(Beckwith et al., 2006). The image was taken with four different filters and contains about 105 objects,
mostly galaxies, but also some foreground point sources like stars. It shows the large number and variety
(e.g. in colour, luminosity, shape) of galaxies that can be found already in only a small patch of the sky.

In between the galaxies (or galaxy clusters) there is almost nothing. However they are not
just randomly distributed. Rather it is the case that they cluster together in the form of
two-dimensional sheets and one-dimensional filaments, encapsulating large empty blobs, called
voids. Where sheets and filaments intersect, and matter collapses due to gravitational forces,
knots will form. These are tightly-packed regions in space that host many closely-located galaxies.
We call the arrangement of galaxies and galaxy clusters in the form of knots, filaments, sheets
and voids the cosmic web (Bond, Kofman and Pogosyan, 1996) – on these large spatial scales
galaxies can be treated as point-like objects. The cosmic web is revealed when we perform
observations not only on single objects, but when we conduct astronomical surveys that cover a
large part of the sky. A pioneering example for such a survey is the 2dF Galaxy Redshift Survey
(hereafter 2dFGRS) that in the late 1990s and early 2000s observed more than 2.4× 106 galaxies
in a patch of the sky of ≈ 1500 deg2 and constructed a three-dimensional map of them (Colless
et al., 2001). We show their results in Fig. 1.2 where the observer is located at the center, and
the cones to each side represent the viewing angle into the Universe. The cosmic web is clearly
visible. However, there is a limit for the formation of structure: Beyond ∼ 200 Mpc so far there
has not been found any clustering of matter (Percival, Baugh et al., 2001). It seems that from
this threshold on matter is distributed homogeneously. We will turn to the exact description of
the spatial distribution of galaxies (and the absence of them) in section 1.3.
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1.1 The science of cosmology

Figure 1.2: The projected two-dimensional spatial distribution of galaxies (represented by the blue dots)
as observed with the 2dFGRS (Colless et al., 2001), up until a distance of approximately two billion
lightyears. The observer (i.e. the Earth) is in the center, along the sides of the cones we are looking into
the Universe. Along the arclength of the cones one of the angular coordinates on the sky changes (the
radial ascension), the other angular coordinate (the declination) was integrated over. The cosmic web is
clearly visible especially for small distances from the center. For larger distances it becomes fainter which
is due to the observational bias that only the brightest objects can still be observed at these distances.

The enormous space that contains all mentioned above we call the Universe. Per definition,
there is only one such object, and it contains all matter that exists. The Universe provides a
natural lab where we can study astrophysical objects of various sizes, from planets to the most
massive galaxy clusters. The Universe hosts so many of them that we can employ the scientific
method3. For astrophysical objects, we can make claims based on statistical reasoning. However,
with only one Universe we need to think a bit differently. The science of exploring and trying to
explain the Universe as a whole is the science of cosmology.

Cosmology asks for the most basic questions, grazing even philosophy in some points, and we
will name only some of them: How did the Universe come to be? How old and how large is it? Is it
static or evolving? What will happen to it in the future? What does it contain? These questions
can be easily understood, but the answers are all the more complicated and hard to achieve. We
want to understand the Universe as the one thing that it is – this calls for one singular theory
that is capable of describing the largest scales of space and time. Ideally it can give insight
on the temporal evolution of the Universe, starting from its beginning (commonly dubbed the
Big Bang – although it did not happen a real Bang; S. Weinberg, 1977) – which was roughly
13.7 Gyr ago, until today. Also it should give information on how its content was produced and
which processes govern its distribution and behaviour. Motivated to take on this task, during

3 The scientific method is defined as the intertwinement of deduction and induction to learn about natural
phenomena: It means first observing a phenomenon, building a theory from that, making predictions from that
theory, and then testing these predictions (and therefore the theory itself) against more observations (more
commonly phrased as conducting an experiment).
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Chapter 1 Introduction

the last century cosmology evolved into a very active field of research, so that nowadays we have
indeed such a cosmological concordance model that serves as a theoretical basis to describe the
Universe as a whole – on top of this we can then try to explain smaller-scale processes such as
astrophysical phenomena. We call this the ΛCDM model (Planck Collaboration, 2018b) which
introduces two contributions of yet unknown physical form to the energy or mass budget4 of
the Universe. There are Dark Energy (hereafter DE; e.g. Efstathiou, Sutherland and Maddox,
1990, Riess, Filippenko et al., 1998), abbreviated with Λ, and Cold Dark Matter (hereafter
CDM; e.g. Sofue and Rubin, 2001, Eisenstein et al., 2005). These two substances cannot be
observed directly since they do not emit any radiation – but they make up roughly 95% of the
energy density! The visible matter that can be directly observed in the form of galaxies, stars
etc. and also objects of everyday-life on Earth (like this thesis that you are currently reading)
only contributes roughly 5%. Founded on the pillars of General Relativity (hereafter GR) – a
theory that is able to describe gravity on very larges scales – the ΛCDM model celebrated great
success for the last two decades, and matches remarkably well with many observations.

In the following we will elaborate in detail about the cosmological concordance model ΛCDM.
We will introduce GR as a tool to describe the evolution of the Universe, which will naturally
lead to the result that the behaviour of the Universe as a whole depends much on its content.
Building up on this, we will dissect the Universe’s matter content into its individual components
– in particular we will motivate the introduction of DE and CDM and what ‘fingerprints’ these
two energy density components leave behind in cosmological observables. Further, we will
explore the clustering properties of both CDM and the visible matter (hereafter called baryons5),
with explicit focus on the statistical description of the clustering and the connection between
CDM and galaxies (galaxy bias; Desjacques, Jeong and Schmidt, 2018a). We will introduce
the mathematical framework of cosmological Standard Perturbation Theory (hereafter SPT;
Bernardeau et al., 2002) which serves to understand the formation of the large-scale structure of
the Universe (hereafter LSS; Peebles, 1980) – and therefore how we can extract cosmological
information from galaxy surveys. As a complement to theoretical considerations, we will also
elaborate on cosmological N-body simulations (e.g. Springel, 2005, Vogelsberger et al., 2014)
which have emerged in the last decades as an indispensable tool to understand structure formation
down to the very smallest scales, i.e. the inner regions of gravitationally collapsed objects (haloes;
Navarro, Frenk and S. D. M. White, 1997).

1.2 World models from General Relativity

1.2.1 The Cosmological Principle

If we want to describe the Universe we need to make some a priori assumptions from which we
can build our whole theory. What we postulate should be reasonable, which means it should be
backed up by experiments (or observations in an astrophysical context). Of course one can never
completely prove a postulate by definition, but we can find more and more empirical evidence
that supports it. In the case of a description of the Universe, we postulate the Cosmological
Principle (hereafter CP; Linder, 1997). This states that the Universe is homogeneous and

4 From Einstein’s theory of General Relativity we know that energy and mass can be converted into each other,
therefore the two quantities can be used interchangeably.

5 In a cosmological context the term ‘baryons’ includes all elementary particles that are not DM, whereas in a
particle physics context baryons are only a subgroup of particles, i.e. hadrons with a half-integer spin.
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1.2 World models from General Relativity

isotropic – it has the same properties in every point and it looks the same in every direction6.
This assumption is reasonable as can be shown from observations (e.g. Scaramella, Vettolani
and Zamorani, 1991, Campanelli et al., 2011, Planck Collaboration, 2018b).

We need to combine the properties of homogeneity and isotropy with GR. In the framework of
GR space-time is described as a four-dimensional manifold which is characterized by its metric
field gµν. It determines both distances of events (in space and time) and the world-lines of freely
falling particles when applying the geodesic equation. Distances are computed from the metric
tensor as

ds2
= gµνdxµdxν , (1.1)

where we apply Einstein’s summation convention and sum over indices that appear twice. To
compute a metric that incorporates the CP we need to assume that there exists a set of comoving
fundamental observers who all experience the Universe in the same fashion if they synchronize
their clocks, and who all follow the mean motion of matter and radiation. After a lengthy
calculation, invoking the afore-mentioned conditions, one arrives at the Friedmann-Lemâıtre-
Robertson-Walker metric (hereafter FLRW metric).

1.2.2 The Friedmann-Lemâıtre-Robertson-Walker metric

Robertson (1935) and Walker (1937) showed that the CP leads to a metric that can be written
as

ds2
= c2dt2

− a2(t)
[
dχ2

+ f 2
k (χ)

(
dθ2

+ sin2 θ dφ2
)]
, (1.2)

where c is the speed of light7, χ is the comoving radial coordinate, θ and φ are the angular
coordinates on a unit sphere, t is the cosmic time and a(t) is the scale factor. The scale factor
is normalized such that a(t = 0) = a(t0) = 1 and allows the freedom of a spatial expansion or
contraction of the metric. Since it only depends on the cosmic time and not on the spatial
coordinates, it factorizes, and the expansion will be homogeneous (we will show in section 1.2.3
why only expansion and not contraction describes the real Universe). Using the scale factor we
can introduce comoving coordinates x and physical coordinates r that are related via

r = a(t) x . (1.3)

In the FLRW metric fk(χ) is the comoving angular diameter distance, i.e. the distance inferred
from the diameter under which an observer sees an object of fixed size. It depends on the
curvature parameter k,

fk(χ) ≡


sin

(√
kχ
)

√
k

for k > 0

χ for k = 0
sinh

(√
−kχ

)
√
−k

for k < 0 .

(1.4)

Note the difference between the curvature of space at fixed t (which is described by k) and the
curvature of space-time (which is described by the Riemann curvature tensor in Einstein’s field
equations, hereafter EFEs). Space can be flat (in the case of k = 0, where the metric reduces to
the Euclidean case), but space-time might and most certainly will still be curved if there is any

6 This is an extension of the Copernican Principle that only postulates homogeneity.
7 c = 3 × 108 m s−1
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Chapter 1 Introduction

matter contained in it.

1.2.3 Friedmann-Lemâıtre models

For now, we are interested in the evolution of the Universe as a whole, as described by the FLRW
metric, and not in individual events happening at a certain point in space-time. This means we
would like to know a special form of the scale factor a(t) since this contains information about
the homogeneous and isotropic scaling. To achieve this, we need to plug in the metric into EFEs,
given as

Gµν =
8πG

c4 Tµν − Λgµν , (1.5)

where G is the gravitational constant8, Tµν is the stress-energy tensor, dependent on the energy
content, Λ is the cosmological constant (the same constant we already used to describe DE, we
will explore the interpretation later on) and Gµν is the Einstein tensor, given as

Gµν = Rµν −
1
2
gµνR . (1.6)

Here, Rµν is the Ricci tensor and R is the Ricci scalar. They can be computed from the Riemann
curvature tensor Rσµνρ via contraction,

Rµν ≡ Rλµνλ , (1.7)

and
R ≡ R µ

µ = gµνR
µν . (1.8)

The Riemann curvature tensor however consists of a combination of derivatives of the metric
up until second order, so that in the end, apart from a few constants, the independent input
quantities of EFEs are essentially only the stress-energy tensor and the metric itself. Plugging
in the metric, it can be shown that the type of matter contents must be a homogeneous perfect
fluid with density ρ(t) and pressure p(t). From this calculation, that we omit here, follow two
independent equations, the Friedmann equations:(

ȧ
a

)2

=
8πG

3
ρ −

kc2

a2 +
Λc2

3
, (1.9)

ä
a

= −
4πG

3

(
ρ +

3p

c2

)
+

Λc2

3
, (1.10)

where a dot denotes a derivative with respect to the time coordinate. These equations can be
interpreted in the sense that the r.h.s., i.e. the different energy densities that were introduced
by the stress-energy tensor, govern the l.h.s., i.e. the evolution of the scale factor in time. The
individual contributions of the energy density are split into a term for ‘normal’ matter (known
particles with or without mass – where the latter is also called radiation –, described by ρ),
a curvature term (described by k) and a term with a constant energy density of yet unknown
physical origin (described by Λ; we will soon see why we need this term).

We know that the Universe is expanding. This was shown by Hubble and Humason (1931),

8 G = 6.67 × 10−11 N m2 kg−2
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1.2 World models from General Relativity

who performed the observations, and Lemâıtre (1927), who developed the theory. They found
that the vast majorities of galaxies in the Universe is moving away from us, and they receed faster
the farther they are away. In practice, Hubble and Humason (1931) measured the distance from
the pulsation period of cepheids, which is correlated with their intrinsic luminosity. From the
comparison of absolute and apparent magnitude one can therefore infer the distance. Velocity
measurements via spectroscopy had already been provided earlier by Slipher (1917) where it was
found that certain spectral lines were shifted to the side of the spectrum with longer wavelengths.
Interpreting this redshift as a Doppler shift one can calculate a recession velocity. This relation
can be written as the Hubble-Lemâıtre law,

v = H0D , (1.11)

where v is the recession velocity, D is the distance and H0 is the constant of proportionality,
the Hubble constant. Its dimension is the inverse of time, and it is often parametrized as
H0 = h × 100 km s−1 Mpc−1 where the variable h accounts for the measurement uncertainty that
came with the value of H0 for many decades – even in modern cosmological calculations h is
still kept when working in comoving space, e.g. without taking the expansion into account. We
show the original Hubble diagram in Fig. 1.3 where the recession velocity is plotted against
distance for a set of objects. Apart from some scatter a linear relation is clearly visible. However,
Hubble was only able to measure this relation for galaxies that were close by. For farther-away
objects, the relation between velocity and distance becomes non-linear, and the redshift cannot
be interpreted as a Doppler shift anymore, but rather as a cosmological redshift, due to the
expansion of the Universe. Related to the Hubble constant we introduce the time-dependent
Hubble function that can be computed from the relationship between physical and comoving
coordinates as

ṙ = ȧ(t)x =
ȧ(t)
a(t)

r ≡ H(t)r . (1.12)

It is also called the expansion rate of the Universe, and one defines H0 ≡ H(t = 0). From these
considerations we can define the beginning of the Universe that was a time t ago as the event
when a(t) = 09. The evolution of the scale factor and the Hubble function we can then calculate
from the Friedmann equations, depending on the matter densitites of the Universe.

1.2.4 The matter content of the Universe

From the two Friedmann equations given in section 1.2.3 we can derive a third equation, the
adiabatic equation,

d(ρc2r3) = −pd(r3) , (1.13)

which contains information about the time dependence of the matter components. If we assume
an equation of state p = wρ to hold (with w a constant that is specific for each matter component),
the adiabatic equation yields the solution

ρ(t) = ρ0a−3(w+1) , (1.14)

which tells us that the matter components scale with a, the exact behaviour depending on w.
We normalize the equation such that ρ0 = ρ(t = 0), i.e. when a = 1.

To obtain the exact evolution we need to specify the individual matter components. One of

9 A well-defined beginning of the Universe does not exist in all world models, however.
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Figure 1.3: The original recession-velocity-versus-distance plot done by Hubble (1929). Plotted are
‘extragalactic nebulae’ (the term ‘galaxy’ was not yet common at the time) whose velocity has been
inferred from spectroscopy. The distance was calculcated via the period-luminosity relation for variable
cepheid stars – the period of the variability is observed, from this the luminosity is inferred, and then
from this the distance can be computed via the distance modulus. The solid line is a linear fit to the
filled circles that represent the individual nebulae. The dashed line is a fit to the empty circles that
represent the nebular grouped together. From the slope of the lines follows the Hubble constant.

them is dust, i.e. particles that have mass (such as protons, neutrons, electrons) and that we
assume to have zero pressure (p = 0 and therefore w = 0). This assumption is justified if the
particles are non-relativistic, i.e. p � wρ. We thus obtain

ρm(t) = ρm0 a−3(t) . (1.15)

The next component is radiation, i.e. massless relativistic particles. For these it can be shown
that the equation of state then needs to be p = ρc2/3, therefore w = 1/3. We find

ρr(t) = ρr0 a−4(t) . (1.16)

The third and last component is vacuum energy. It is the energy density of empty space and
is represented by the cosmological constant Λ. It has the unintuitive equation of state p = −ρ,
which means that the pressure is negative and w = −1. This yields

ρΛ(t) = ρΛ0 = const =
Λc2

8πG
, (1.17)

where the last step was obtained from dividing equation (1.9) by 8πG/3 and reading off the
expression. To simplify calculations, from now on we interpret the total density ρ as ρ = ρm+ρr+ρΛ.
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1.2 World models from General Relativity

We also introduce the critical density ρcr. This quantity is the total density in the case of zero
curvature (ρ0 for k = 0). We therefore obtain from equation (1.9)

ρcr =
3H2

0

8πG
. (1.18)

If the total density is larger than the critical, the Universe will be positively curved, if it is
smaller, negatively.

1.2.5 The cosmological parameters

We are now in the position to define the cosmological density parameters. These dimensionless
quantities are defined as the respective matter densities, normalized to the critical density,

Ωi =
ρi0

ρcr
, (1.19)

where we evaluate ρi at t0. We can further define

Ω0 = Ωm + Ωr + ΩΛ . (1.20)

For a flat universe, it will be Ω0 = 1, for a positively or negatively curved one it will be Ω0 > 1
or Ω0 < 1. Using these definitions, we can rewrite equation (1.9) as

H2
= H2

0

[
Ωr a−4

+ Ωm a−3
+ (1 −Ω0) a−2

+ ΩΛ

]
. (1.21)

One of the main goals of the observational side of cosmology is to measure these cosmological
density parameters plus the Hubble constant to high precision, and a lot of efforts are spent to
achieve this. Modern cosmology has various tools at hand that complement each other which
allows to cross-check the different methods for systematic errors and break degeneracies between
parameters. The basic idea is always the same: Cosmological observables, like the clustering
of galaxies that we already mentioned earlier, depend on the cosmological parameters. If the
observables can be both modelled and measured properly, the parameters can be inferred. Some
more examples of cosmological tools are CMB10 measurements, weak-lensing11 surveys, counting
of galaxy clusters12 and Supernovae Ia (hereafter SNeIa) observations13.

In Table 1.1 we present the results of a few selected cosmological parameters derived from
state-of-the-art CMB measurements (Planck Collaboration, 2018b) and SNeIa observations
(Riess, Macri et al., 2016, Jones et al., 2018), assuming a flat Universe (k = 0 as measured e.g.
by Abbott et al., 2019). It becomes clear that while results from different probes are similar,

10 The Cosmic Microwave Background is almost-perfect blackbody radiation of T = 2.73 K, a relic from only
380 000 yr after the Big Bang when electrons and nuclei combined for the first time, and the Universe became
transparent. See section 1.5.2 for more.

11 The deflection of light by a gravitational potential, described by GR, is called Gravitational Lensing. There
are various lensing regimes, in the weak regime, where the potential is small, cosmological information can be
inferred using statistical methods.

12 From counting of singular objects such as galaxy clusters their mass function, i.e. the number distribution in
mass, can be inferred, which depends on cosmology.

13 SNeIa are standard candles which means that through calibration techniques their luminosity and absolute
magnitude can be obtained. The comparison with their apparent magnitude gives their distance. This distance
is compared to that inferred from their redshift which is cosmology-dependent. See section 1.2.6 for more.
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Figure 1.4: The two-dimensional posterior distributions for two degenerate combinations of cosmological
parameters, i.e. Ωmh2 and σ8Ω

0.25
m for the ΛCDM model (Planck Collaboration, 2018b). The dark-shaded

area represents the 68%, the light-shaded area the 95% credibility intervals. The smaller the area covered
by the intervals, the better constrained are the parameters. The different colours represent different
combinations of data sets taken by the Planck satellite – the more data sets are included, the smaller are
the ellipses.

Table 1.1: Four selected cosmological parameters, i.e. the matter density Ωm, the vacuum energy density
ΩΛ, the Hubble constant H0 and the age of the Universe (Planck Collaboration, 2018b; Riess, Macri
et al., 2016; Jones et al., 2018). We compare two different inferences and state both the value and the
error range (the age however cannot be inferred from the Riess16+Jones18 analysis).

Parameter Planck18 Riess16+Jones18

Ωm 0.311 ± 0.006 0.272 ± 0.014
ΩΛ 0.689 ± 0.006 0.718 ± 0.012
H0 [km s−1 Mpc−1] 67.66 ± 0.42 72.52 ± 1.75
Age [Gyr] 13.787 ± 0.020 –

there is still some tension that needs to be alleviated either by introducing new physics or by
reducing systematic errors. In Fig. 1.4 we illustrate the interpretation process of cosmological
information – plotted against each other are a combination of parameters (h, Ωm, and σ8 that
we will explain in section 1.4.2), and we see that the parameters are slightly degenerate with
each other. The darker the respective region in the plot, the more likely is that value for the
parameter combination – thus, the smaller the ellipse, the better the constraints.
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1.2 World models from General Relativity

1.2.6 Dark Matter and Dark Energy – the ΛCDM model

From observational programs it was found that there exist two exotic matter components in the
Universe that we call Dark Matter and Dark Energy. As we already mentioned in section 1.1
this dark sector cannot be observed directly, but there is a lot of indirect evidence that calls for
its existence.

DM does not emit any electromagnetic radiation, however its gravitational influence emerges
on a variety of scales: Rotation curves of galaxies are measured as flat where they should actually
drop at large radii if one assumes Keplerian rotation with a potential originating only from
visible baryonic matter (Sofue and Rubin, 2001). Similar reasoning can be applied for hot gas in
galaxy clusters – from X-ray measurements its temperature can be inferred, which is so high
that without the gravitational pull of DM the gas would actually be evaporating from the cluster
(Allen, Evrard and Mantz, 2011). Furthermore, the cosmic web would not exist in its observed
form without a ‘backbone’ of DM – clustering processes on large scales would come out much
weaker in general (Eisenstein et al., 2005). Theoretical considerations allow for different kinds
of DM that are called cold, warm or hot, and correspond to particles that are non-relativistic,
relativistic or ultra-relativistic (Primack and Gross, 2001). Comparing quantitative predictions
for different DM types against data one finds that DM in our Universe is cold (Bardeen et al.,
1986, Jenkins et al., 1998), therefore explaining part of the name of the current concordance
model ΛCDM.

The concept of DE was manifested through influential work by Riess, Filippenko et al. (1998)
and Perlmutter et al. (1999) which later resulted in a Nobel prize. Using SNeIa as standard
candles, they showed that the Universe is currently in a phase of accelerated expansion. This
fact has been confirmed in many other works after that (for an overview see Huterer and Shafer,
2018). Such an expansion history is only possible if we infer a contribution to the energy budget
whose density stays constant in time, as can be shown from the Friedmann equations. In
the ΛCDM framework the physical quantity DE is included via the cosmological constant Λ.
Theoretical extensions to this describe DE also as a time-dependent quantity (e.g. Chevallier
and Polarski, 2001), but so far no robust observational evidence has been found to support
deviance from a constant (Suzuki et al., 2012).

1.2.7 Cosmological distance measurements

For the inference of cosmological information it is crucial to obtain the position of astrophysical
sources (i.e. to construct maps) in three dimensions – the two-dimensional position on the sky
can be easily measured, more difficult however is to obtain the distance along the line of sight.
In curved spaces, there does not exist one ‘true’ distance – we can define different concepts of
distance that need to be applied in the correct context. The issue is complicated even more by
the fact that when we look deep into the Universe we are actually looking back in time (along
the past lightcone) due to the speed of light being finite. One common way to deal with these
complications is to introduce the concept of cosmological redshift as a distance indicator.

Astrophysical sources (e.g. galaxies) emit electromagnetic radiation at specific wavelengths.
If they are far away, their light will get shifted to longer wavelengths on its way to us due to
the expansion of the Universe – it gets redshifted. The farther away a source is, the stronger
this effect will be. Therefore, the redshift z that is easily accessible through spectroscopic
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Figure 1.5: Plotted is the same as in Fig. 1.2, but with more recent data taken by the Sloan Digital Sky
Survey (Albareti et al., 2017). The map was built from the data of SDSS-III, i.e. stage three of the
survey. Stage four is currently in operation, with eBOSS (see text) being one of the surveys most relevant
for cosmology.

measurements can be used as a distance indicator. It is defined as

z ≡
λobs − λe

λe
=
λobs

λe
− 1 , (1.22)

where λobs is the observed wavelength on Earth and λe is the emitted wavelength at the position
of the source. This definition is reasonable when we explore how to compute the actual comoving
physical separation χ between two objects. From the FLRW metric, we find for radial light rays
(i.e. dθ = dφ = 0) that

χ =

∫ t0

t

dt′

a(t′)
, (1.23)

where χ is a quantity independent of time by definition. Therefore, the same holds for the r.h.s.
as

dt
a(t)

=
dt0

a(t0)
. (1.24)

A time interval is the inverse of a frequency so that we find

dt0
dt

=
ν

ν0
=

a(t0)
a(t)

=
1

a(t)
= z + 1 , (1.25)
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1.3 Cosmological structure formation

where in the last step we made use of equation (1.22) since the ratio of two frequencies is the
inverse of the ratio of two wavelengths. The redshift therefore emerges as the quantity of choice
when we want to give information about the distance of an object or about the look-back time
towards an object, i.e. the time span that we look into the past when observing said object. Per
definition it is z(t0) = 0.

Astronomical surveys that span a large portion of the sky and whose goal is the three-
dimensional mapping of the cosmos are therefore called redshift surveys, since the information in
the third coordinate along the line of sight is given in the form of a redshift. A survey is called
the deeper, the higher its maximum obtainable redshift is. Surveys that map the clustering
of galaxies and galaxy clusters are of this kind14. In section 1.1 we already mentioned the
2dFGRS, a more recent one is the Sloan Digital Sky Survey IV (hereafter SDSS-IV; Albareti
et al., 2017), the fourth stage of a survey using a custom-built 2.5 m telescope at the Apache
Point Observatory, and of particular interest is their Extended Baryon Oscillation Spectroscopic
Survey (hereafter eBOSS; Dawson et al., 2016). eBOSS was started in 2014 and aims at precisely
mapping more than 2.5 × 105 galaxies in the redshift range of 0.6 < z < 2.2. It builds upon the
legacy of SDSS-III from which we show the projected two-dimensional map in Fig. 1.5. Other
planned and upcoming projects are e.g. Euclid (Amendola et al., 2018) and the Large Synoptic
Survey Telescope (Zhan and Tyson, 2018).

1.3 Cosmological structure formation

All the calculations we performed in the previous section only describe a homogeneous and
isotropic Universe since we invoked the CP. However, we were also talking about astrophysical
objects such as stars and galaxies – obviously homogeneity and isotropy do not hold perfectly.
To understand this we need to pay attention that the Universe as a whole and individual objects
are modelled on completely different scales. We already mentioned in section 1.1 that structures
are only found on scales below ∼ 200 Mpc. This is where the formation of individual objects
and the LSS happens. Above this scale, the Universe becomes homogeneous and isotropic, and
therefore can be described employing the Friedmann-Lemâıtre world models. For smaller scales
we need another theory whose goal it should be to explain how actually galaxies, galaxy clusters
and the cosmic web form. This can be achieved in the framework of cosmological structure
formation15.

1.3.1 Dark matter as a fluid

In general, structure formation is a very complicated process – it is in principle an N-body
problem with an enormous amount of particles that interact with each other through various
forces. When describing cosmological processes we are on such large scales that all other forces
besides gravity can be safely neglected – still it is hard and practically impossible to treat
structure formation analytically as an N-body problem (this kind of treatment is performed by
cosmological N-body simulations that we will describe in section 1.5). The solution is to turn to
the framework of hydrodynamics and treat matter as a fluid instead, so that we do not need to
follow individual particles, but instead describe smooth fields of density ρ and velocity u.

14 For an overview about cosmology from clustering see Percival (2007).
15 For an overview and also many detailed derivations see the influential book by Peebles (1980).
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We can simplify the problem by only describing the structure formation of DM and forget
about baryons for now. This is justified since the dust component of the Universe contains
much more DM than baryons16 (Planck Collaboration, 2018b). Treating DM as a fluid means
that this approximation will break down on some smaller scale – this is because DM consists of
collisionless particles that only interact gravitationally. Therefore at small scales multi-streams
will occur, which means that at one position in space particles will move in different directions
so that the velocity field is not well-defined anymore. Another simplification that we already
made when introducing dust is the absence of pressure. Also we will only concentrate on the
matter-dominated epoch of the Universe, i.e. where the matter term in the Friedmann equations
dominates. This means we can neglect radiation, Ωr = 0.

Taking all this into account we can write the fluid equations for the DM density and velocity,

∂ρ

∂t
+ ∇r(ρu) = 0 Continuity equation, (1.26)

∂u
∂t

+
(
u · ∇r

)
u = −∇rφ Euler equation, (1.27)

∇
2
rφ = 4πGρ − Λ Poisson equation, (1.28)

where ρ = ρ(r, t) and u = u(r, t). We switch from writing the fields in physical coordinates r to
comoving coordinates x, which gives

ρ(r, t) = ρ̂

(
r

a(t)
, t
)

= ρ̂(x, t) , (1.29)

u(r, t) = ȧx + v(x, t) =
ȧ
a

r + v
(

r
a(t)

)
, (1.30)

Φ(x, t) ≡ φ(r, t) +
äa
2
|x|2 , (1.31)

where v can be interpreted as the peculiar velocity (i.e. the velocity without the contribution of
the expansion of the Universe, the Hubble flow) and Φ is defined as the comoving potential. We
also introduce the density contrast δ(x, t), defined as

δ =
ρ̂ − ρ̄

ρ̄
. (1.32)

With these expressions we can translate the fluid equations to comoving coordinates in δ and v,

∂v
∂t

+
ȧ
a

v +
1
a
(
v · ∇x

)
v = −

1
a
∇xΦ , (1.33)

∂δ

∂t
+

1
a
∇x[(1 + δ) v] = 0 , (1.34)

∇
2
xΦ =

3H2
0Ωm

2a
δ . (1.35)

Depending on the cosmological parameters H0 and Ωm this set of coupled differential equations
describes CDM inhomogenities in density and velocity for a certain epoch with scale factor a.

16 In fact the density parameter of matter Ωm can be split into Ωc for CDM and Ωb for baryons, with Ωb/Ωc ≈ 1/5.
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1.3 Cosmological structure formation

1.3.2 Linear theory

The set of equations (1.33) – (1.35) cannot be solved analytically. One option is to restrict the
analysis to small perturbations in density and small peculiar velocity. In this case the fluid
equations can be linearized in these quantities which gives

∂δ

∂t
+

1
a
∇x · v = 0 , (1.36)

∂v
∂t

+
ȧ
a

v = −
1
a
∇xΦ , (1.37)

and the Poisson equation which is already linear. After performing some algebra on the set of
equations we find the differential equation

∂2δ(x, t)
∂2t

+ 2H(t)
∂δ(x, t)
∂t

−
3H2

0Ωm

2a3 δ(x, t) = 0 , (1.38)

whose solution factorizes in x and t and therefore we can write the ansatz

δ(x, t) = D+(t) δ(x, 0) + D−(t) δ(x, 0) . (1.39)

From the shape of this expression it becomes clear that in linear theory, the spatial behaviour of
the density fluctuations is solely determined by the initial conditions δ(x, 0). Their evolution in
time is described by the two prefactors D+(t) and D−(t). Inserting this ansatz into equation (1.38)
we find a differential equation for D±(t),

D̈± + 2H(t)Ḋ± −
3H2

0Ωm

2a3 D± = 0 . (1.40)

The Hubble function H(t) is one solution of this equation, but it is decreasing in time and
therefore ∝ D−(t), which means that it is not relevant for structure formation at late times in
the Universe. However, following Sturm-Liouville theory, we can use it to construct the second
solution,

D+(a) ∝
5ΩmH(a)

2H0

∫ a

0

da′[
Ωra

′−2
+ Ωma′−1

+ ΩΛa′2
]3/2 , (1.41)

for a flat universe as is the case for our Universe. We define D(a) (and therefore also D(t)) as
D(a) ≡ D+(a)/D+(1) which is called the linear growth factor.

It remains an open problem at this stage how to describe not only the temporal evolution,
but to find a theory that gives an explicit expression for the initial conditions δ(x, 0). We will
come back to this in section 1.4.1.

1.3.3 Non-linear evolution - Standard Perturbation Theory

Until now, we were only describing density fluctuations at the very largest scales. When we
perform a spatial Fourier transformation (hereafter FT) on δ(x, t), it can be shown that in linear
theory each Fourier mode k evolves independently from the other – the modes do not couple
to each other. This changes when we move onto describing more non-linear (‘intermediate’)
scales. The general assumption is that the linear density field still dominates, and non-linear
gravitational interaction between particles imposes only small corrections onto it. This means
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we can write the spatial behaviour of δ as an ordered expansion,

δ(x) = δ1(x) + δ2(x) + · · · + δn(x) + O
(
δn+1

)
, (1.42)

where δn is O
(
δn

1
)
. This ansatz for the non-linear density field and the following calculations are

performed within the framework of cosmological Standard Perturbation Theory (hereafter SPT;
Bernardeau et al., 2002). The easiest way to proceed and to explicitly calculate the higher-order
contributions to δ is to move to Fourier space. We define the FT as

y(k) =

∫ ∞

−∞

y(x)e−ix·k d3x

(2π)3 . (1.43)

Applying the FT to the fully non-linear fluid equations (1.33) – (1.35) and performing a bit of
algebra, we find a coupled set of differential equations for δ and θ (with θ(x) = ∇ · v(x)):

∂δ(k, t)
∂t

+ θ(k, t) = −

∫
δD

[
k − (k1 + k2)

]
α(k1,k2) θ(k1, t) δ(k2, t) dk1 dk2

∂θ(k, t)
∂t

+ H(t) θ(k, t) +
3ΩmH2(t)

2
δ(k, t) = −

∫
δD

[
k − (k1 + k2)

]
β(k1,k2) θ(k1, t) θ(k2, t) dk1 dk2 ,

(1.44)

where δD represents the Dirac delta function and

α(k1,k2) =
(k1 + k2) · k1

k2
1

, β(k1,k2) =
(k1 + k2)2(k1 · k2)

2k2
1k2

2

. (1.45)

In an Einstein-de Sitter universe (Ωm = 1, ΩΛ = 0, hereafter EdS universe) these equations can
formally be solved by an expansion in Fourier space, in particular for δ

δ(k, t) = a(t) δ1(k) + a2(t) δ2(k) + · · · + an(t) δn(k) + O
[
an+1(t) δn+1(k)

]
, (1.46)

with

δn(k) =

∫
δD

[
k − (q1 + · · · + qn)

]
Fn(q1, . . . ,qn) δ1(q1) . . . δn(qn) dq1 . . . dqn . (1.47)

We call the linear density field δ1(k) the leading-order term (hereafter LO term) since it is of the
lowest order in the expansion. The terms δn≥2(k) are higher-order terms, in particular we call
δ2(k) the next-to-leading-order term (hereafter NLO term). Fn(q1, . . . ,qn) is a function that is
constructed from α(k1,k2) and β(k1,k2) via a recursive relation. We give the explicit expression
for F2(q1,q2),

F2(q1,q2) =
5
7

+
1
2

q1 · q2

q1q2

(
q1

q2
+

q2

q1

)
+

2
7

(
q1 · q2

)2

q2
1q2

2

, (1.48)

so that we can write the NLO term as

δ2(k) =

∫
δD

[
k − (q1 + q2)

]
F2(q1,q2) δ1(q1) δ(q2) dq1dq2 . (1.49)

Higher-order terms can be found in Goroff et al. (1986). As mentioned, in principle these
expressions only hold true in an EdS universe. However it can be shown that also in our ΛCDM
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Universe they still provide a remarkably good approximation (Scoccimarro et al., 1998), so we
will use this framework throughout the rest of the study.

We are now in a position to construct the density field at a given time up until an arbitrary
order and therefore include non-linear gravitational clustering to our desired precision, if we only
know δ1. The analytical expressions will become immensely complicated though. Also it remains
to be seen up until which scale kmax this prescription actually holds and accurately describes the
real density field – at some point, at the strongly non-linear scales, multi-streaming will kick
in and destroy the fluid approximation upon which the whole treatment is built. We cannot
derive this threshold from first principles, but we need to make a comparison of our theoretical
framework with ‘real’ data to access it – this problem will be tackled with the help of numerical
N-body simulations, that we will explain in section 1.5. For now, we will shift our focus from
the large to intermediate scales (and therefore the fluid approximation) towards the strongly
non-linear scales, and we will explore a possible theoretical approach in more detail.

1.3.4 Tracers of the LSS – Dark-matter haloes

There are limited possibilities to analytically describe the gravitational N-body interaction at
the smallest scales, i.e. in the knots of the cosmic web where collapse in all three dimensions
happens. One approach is to consider a spherically-symmetric mass overdensity in an otherwise
homogeneous universe, called the spherical collapse model (Gunn and Gott, 1972). The basic
idea is that for early times shells of matter recede from the center of mass because of the Hubble
expansion, i.e. the physical radius of the whole overdensity increases with time. However the
recession process is stalled by the gravitational attraction of the shells – the comoving radius
shrinks with time. If the initial perturbation is dense enough, at some point the shells will reach
a maximum physical size (the turn-around radius) and afterwards will collapse. The outcome of
this collapse will be a virialized object of finite size in equilibrium (no contraction or expansion
anymore), called dark-matter halo.

The average density of the halo ρvir can be computed as ρvir = ∆vir ρ̄m(t) where ρ̄m(t) is the mean
physical matter density of the Universe and the overdensity ∆vir depends on the cosmological
parameters and in general on time. For an EdS universe it is ∆vir = 18π2

≈ 178 for all t, for our
ΛCDM Universe with the cosmology as given in section 1.2.5 the value varies between the EdS
value at very high redshifts and ∆vir ≈ 333 at z = 0. It can be shown that collapse happens when
the initial overdensity field δ1 ' 1.68 – this means that already in the linear field we can identify
the formation location of haloes.

Of course reality is a much more complicated process than the indealized model we just
presented. A density perturbation will never come isolated, but embedded in the complex
environment of the cosmic web. The approximation of spherical symmetry has been loosened
via the introduction of the ellipsoidal collapse model (Bond and Myers, 1996). The formation
process and internal structure of haloes is still a very active field and is both studied from
an analytical and a numerical point of view (e.g. Borzyszkowski, Ludlow and Porciani, 2014,
More, Diemer and Kravtsov, 2015, Borzyszkowski, Porciani et al., 2017). In Fig. 1.6 we show a
halo from an N-body simulation (for more detail on simulations see section 1.5) that is being
assembled through anisotropic streams of matter from the outsides. The density of the halo is
the highest in the center and decreases towards the outskirts.

In this study, we will not explore halo formation in greater detail, but we rather focus on the
larger scales – mainly we are interested in haloes approximated as point-like objects that are
tracers of the LSS. Where we cannot directly observe the DM and the cosmic web that mostly
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Figure 1.6: A DM halo from a high-resolution cosmological N-body simulation (More, Diemer and
Kravtsov, 2015). The halo is approximately spherical in shape and is being fed matter from the outsides
via anisotropic filaments. In the center the density is the highest whereas it declines towards the outskirts.
The various white lines represent different physical criteria to define the boundaries of the halo.

consists of it (and therefore we do not have immediate access to the cosmological information
contained in it), we can observe discrete objects that follow the LSS in a specific way because of
their physical formation process. If we make the reasonable assumptions that DM haloes form
in dense regions of the LSS (the denser, the higher also the density of the halo and the larger its
total mass; Kaiser, 1984, Bardeen et al., 1986) and that in return galaxies form in DM haloes
(where baryons can fall into and cool down because of the gravitational potential; H. Mo, van den
Bosch and S. D. M. White, 2010), we can use this to infer about cosmology from galaxy surveys.
This connection between discrete objects following an underlying continuous distribution is
generally known as tracer bias or more specifically halo and galaxy bias (Desjacques, Jeong and
Schmidt, 2018a). We will explore a more thorough, quantitative description in the next section.

1.3.5 The concept of halo and galaxy bias

In general moving from the DM distribution to galaxies is a two-step process – we first need a
prescription to link the DM density field with the DM haloes, and then another to populate the
DM haloes with galaxies (Fry and Gaztanaga, 1993, Cooray and R. Sheth, 2002, Berlind and
D. H. Weinberg, 2002). The second step is needed since it is not just the case that each DM halo
will host one galaxy with properties that can be directly inferred from the halo properties. Rather
depending on the halo size there can reside several galaxies of various masses and luminosities
in it. In this study, we will not further explore the problem of connecting galaxies to haloes
– rather we want to focus on the first step of the problem, i.e. relating the LSS with the DM
haloes.

This can be tackled from two different perspectives essentially. Either one wants to really
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1.3 Cosmological structure formation

Figure 1.7: Observational spatial distribution of galaxies, compared with the spatial distribution of DM
in a numerical simulation (Springel, Frenk and S. D. M. White, 2006). Left : observational data from
2dFGRS, top: observational data from SDSS and CfA2 (Huchra et al., 1983), bottom and right : numerical
data from the Millennium simulation (Springel, S. D. M. White, Jenkins et al., 2005).

understand the physical processes behind bias which calls for a detailed understanding of the
formation processes of haloes (or the distribution of peaks, i.e. points in space where the
density field lies above a certain threshold). The other option is to treat the problem in a more
phenomenological fashion, motivated from physical reasoning on a basic level, but with the
main goal in mind of finding a working recipe to apply to observations. We will focus on the
second option in this study in general (we give a brief introduction to more physical approaches
in section 1.4.6 though). Such a phenomenologial model that connects haloes (or tracers in
general) to the underlying matter distribution is called a Eulerian biasing scheme (McDonald
and Roy, 2009, Baldauf, Seljak, Senatore et al., 2011, R. K. Sheth, Chan and Scoccimarro, 2013,
Desjacques, 2013).

The basic assumption is that the overdensity field of the haloes δh(x) – obtained by smoothing
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the discrete halo distribution at an arbitrary scale – is related to the matter density field δ(x) in
some general form δh(x) = Fx[δ], where Fx is a functional. In Fig. 1.7 we illustrate the motivation
for this assumption: Shown is the observed spatial distribution of galaxies from three different
surveys, as well as the spatial distribution of DM in a numerical dark-matter only simulation,
post-processed in a way to mimic the technical characteristics of the three surveys. The visual
statistical similarity between the galaxies (data) and the DM (theory/numerics) is remarkable.
A biasing scheme is called local if it can be written in the form of an expansion,

δh(x, t) =
∑

O

bO(t) O(x, t) , (1.50)

where O denotes an operator and bO the respective bias parameter. The bias parameters are
numbers that do not depend on spatial coordinates, but may and certainly will depend on time
and on halo properties like mass (or e.g. galaxy properties like colour or luminosity). Effectively
they can be understood as the result of a marginalization process over the complicated long-time,
small-scale processes of halo formation, i.e. biasing can be interpreted as an Effective Field
Theory (hereafter EFT; Senatore, 2015). The parameters can be positive or negative, and the
larger the absolute value of a bias parameter is, the more importance does the respective operator
have for describing the halo field. We will give a more thorough, quantitative introduction to
the concept of bias as an EFT in chapter 2. Historically, at first the operators O would just be
taken as powers of the density field, i.e. δh = b1δ + b2δ

2
+ b3δ

3
+ . . . (Fry and Gaztanaga, 1993),

but it has been shown that these do not fully represent the halo field, rather one should also
take e.g. various combinations of derivatives of the density field or even the peculiar velocity
field into account (Mirbabayi, Schmidt and Zaldarriaga, 2015). We will soon see about this in
more detail.

Usually the exact value of the bias parameters is not the most important issue. In observations
such as galaxy clustering surveys there will be assumed a bias model, and then the bias parameters
are treated as free parameters of that model that will be marginalized over in the process of
data analysis (Cole, Percival et al., 2005, Percival, Nichol et al., 2007, Blake et al., 2010, Granett
et al., 2012, Beutler et al., 2017, Salazar-Albornoz et al., 2017). The crucial problem is to first
find that bias model that correctly describes the actual conditions. This is not straightforward,
since the approach from equation (1.50) is designed such that one first has a lot of freedom
that needs to be reduced by reasonable arguments. From a mathematical point of view, it is
not difficult to write down a complete set of operators (also called a basis) up until a certain
order in the expansion, but then it remains to be seen which of these operators are actually
needed in a real physical context. Also the need for certain operators will certainly depend on
the minimum scale that one tries to model. Another question is how one performs the link to
cosmology, or to put it differently, how can the operators themselves be modelled such that they
depend on cosmological parameters? We will treat this issue in the framework of SPT in this
study, i.e. our goal will be to write each operator in such a fashion that the initial density field
will be the main input. The question about which operators will be actually needed (i.e. the
explicit form of the bias model) can be addressed first from theoretical considerations (Angulo
et al., 2015, Mirbabayi, Schmidt and Zaldarriaga, 2015, Desjacques, Jeong and Schmidt, 2018c),
but then surely needs to be tested against numerical data.

We will now explore the shape of the operators in more depth in an order-by-order approach.
At first order, this will be a simple linear bias model (Kaiser, 1984), i.e. δh = b1δ. This relation
only holds true on the very largest scales (Gaztanaga and Frieman, 1994). At second order two
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operators can be introduced, δ2 and s2 with respective bias parameters b2 and bs2 (McDonald

and Roy, 2009), where s2(x) = si j(x)si j(x) with

si j(x) = ∂i∂ jΦ(x) −
1
3
δ(K)

i j δ(x) , (1.51)

and δ(K)
i j the Kronecker symbol. The quantity si j is called the tidal tensor and accounts for

shearing effects in the matter field. Furthermore, we introduce the first higher-derivative bias
operator, ∇2δ (Desjacques, Crocce et al., 2010), with the respective bias parameter b

∇
2δ

.

The expansion has been also written down at third order (Desjacques, Jeong and Schmidt,
2018a), but it is still unclear which of the operators is actually needed in reality. We will explore
the explicit third-order model in more detail and perform the test against numerical simulations
in chapter 2.

1.4 Statistics in cosmology

Until this point we were talking a lot about the density field (and the peculiar velocity field that
comes with it in linear theory). We investigated how it evolves in time, and gave the equations
that describe gravitational clustering. In the following section we shall now derive the explicit
spatial dependency, i.e. δ(x). We want to make clear that it is not possible to develop a theory
that describes exactly our Universe with all its peculiarities – like that the Andromeda galaxy
resides at ≈ 780 kpc away from us (Karachentsev et al., 2004), or that the Local Group, the
galaxy cluster that the Milky Way is part of, consists of about 70 galaxies17 (McConnachie,
2012). Such a task would be much too complex, plus we would need to know the exact initial
conditions in six-dimensional phase-space which we do not have access to. Rather we can only
describe a Universe with the same statistical properties, thus we also model the initial density
fluctuations in the Universe (upon which structure formation solely depends in the framework
of SPT) in a statistical fashion. Also we will derive statistical quantities that will allow to test
our theoretical approach against observations.

1.4.1 Initial conditions as Gaussian random fields

We model the initial density field as a random field with zero mean, and the real, observable
Universe will be one realization of this random field. A zero-mean random field describing the
overdensity field δ(x) associates each point x ∈ R3 with a stochastic variable of the sample space
S = [−1,∞) and is fully characterised by its cumulative distributions Prob{δ(x1) ≤ δ1, . . . , δ(xn) ≤
δn}. From the CP we assume homogeneity and isotropy which means the random field is invariant
under transformations such as x→ R(x + y), where R is a rotation matrix and y is a translational
vector. Sampling the distributions gives a certain realization of the random field. By applying
the three-dimensional FT to δ(x) we obtain its Fourier-space equivalent δ(k). With this quantity
we can define a Gaussian random field that has two main properties: Its Fourier components
are mutually statistical independent, and its probability density is described by a Gaussian.
From these properties follow interesting statistical consecquences, as we will see in the following
section.

17 The Milky Way and the Andromeda Galaxy (also called M31) are the two largest galaxies and of similar mass.
The other galaxies are substructure, i.e. satellite dwarf galaxies that move in the gravitational potential of the
two main galaxies. Well-known satellites are the Large and Small Magellanic Clouds.
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Figure 1.8: The two-dimensional projection of the CMB anisotropy signal measured across the whole
sky by the Planck Collaboration (2018a). The spatial resolution is of the order of arcminutes. Red
spots indicate regions with increased temperature of the radiation relative to the mean value, blue spots
indicate colder regions. The signal is of the order of µK. The grey lines indicate the location of the Milky
Way.

Applying the concept of Gaussian random fields to the Universe is justified by observations,
since the CMB, which basically tells us the initial conditions of structure formation, is indeed a
Gaussian random field within the current constraints (Planck Collaboration, 2019). Imprinted
in it are tiny temperature fluctuations of relative size of 10−5. These probably originate from
quantum fluctuations that were blown up to macroscopic fluctuations during a period of very
rapid expansion right after the Big Bang, called Inflation18, where the Universe expanded
∼ 60e-folds in a time span of ∼ 10−34 s. Inflation introduced under- and overdensities into the
spatial distribution of matter that would serve as seeds for structure formation. The differences
in the gravitational potential were only very small at that time and at the formation time of the
CMB, but their impact was large enough. At the location of overdensities the CMB photons had
to climb out of a potential well, hence they were losing energy and became redshifted – these
are the colder spots in the CMB anisotropy map. At the location of underdensities the process
works vice versa. Therefore the CMB temperature map provides an excellent snap shot of the
initial conditions of the Universe and one realization of a Gaussian random field. In Fig. 1.8
we show the most recent map of the CMB (Planck Collaboration, 2018a). Red colour denotes
hotter spots, blue colder ones. From the colour bar one can see that the maximum amplitude of
the inhomogeneities is only ∼ 102

µK.

Non-linear gravitational evolution (i.e. the formation of the LSS and DM haloes) will introduce
non-Gaussianity into the random field – this can also be understood from the shape of the SPT
equations: At higher order, i.e. for the calculation of δn≥2, integrals need to be computed that

18 The original idea was introduced by Guth (1981) to solve the flatness and horizon problem, that state that the
flatness of the Universe today would require a very precise fine tuning at early times, and that the whole CMB
is nearly isotropic although not all points could have been in causal contact earlier (Tsujikawa, 2003).
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1.4 Statistics in cosmology

couple the Fourier modes at different k to each other, where for a Gaussian random field the
modes evolve independently.

1.4.2 2-point statistics

Since we are dealing with structure formation from a statistical point of view, it makes sense
to introduce also statistical quantities that allow us to give precise information about the
statistical properties of the random field. We already qualitatively explained the concept of a
Gaussian random field, and how structure formation alters this, and now we want to develop
the mathematical tools for a more quantitative approach.

We define the two-point correlation function (hereafter 2PCF),

ξ(r, t) = 〈δ(x, t) δ(x + r, t)〉 , (1.52)

where 〈. . . 〉 denotes the average over the ensemble of realizations of the random field. In practice,
the ensemble average can be replaced with a volume average. The 2PCF gives information
about the degree of correlation between two different points separated by r. In the limit r → 0
it coincides with the variance of the field

lim
r→0

ξ(r, t) = 〈δ2(x, t)〉 ≡ σ2(t) . (1.53)

The correlation function cannot depend on the two points x and x+r individually, but only on the
absolute value of the separation vector r since we assume δ(x, t) to be statistically homogeneous
and isotropic. We can also calculate the correlator of the Fourier transform δ(k),

〈δ(k) δ(k′)〉 =

∫
e−ix·k d3x

(2π)3

∫
eix′·k′ d3x′

(2π)3 〈δ(x) δ(x′)〉 (1.54)

=

∫
e−ix·k d3x

(2π)3

∫
ei(x+r)·k′ d3r

(2π)3 ξ(r) (1.55)

= (2π)3δD(k − k′)
∫

eir·kξ(r)
d3r

(2π)3 (1.56)

≡ (2π)3δD(k − k′)P(k) , (1.57)

where we substituted x′ = x + r and in the end defined the power spectrum P(k), i.e. the Fourier
transform of the 2PCF,

P(k) =

∫
e−ir·kξ(r)

d3r

(2π)3 . (1.58)

The power spectrum only depends on the absolute value k of the Fourier modes, i.e. it gives
information about how strongly clustered the field is depending on scale (analogously to the 2PCF
which only depends on r). For a Gaussian random field, all statistical information is contained
in the power spectrum, higher-order statistics (see section 1.4.3) will give no improvement. To
infer cosmological information from the power spectrum the usual way is to model it based on
some physical prescription including cosmological parameters, and then to compare against the
power spectrum measured from observations. Of course one can also employ the 2PCF which
contains exactly the same information, but often numerical calculations are less complicated
and less expensive if performed in Fourier space. In the rest of the study we will solely focus on

23



Chapter 1 Introduction

power spectra, and not incorporate correlation functions anymore, for exactly these reasons.

The power spectrum can be computed for all sorts of fields, like e.g. the matter or halo
overdensity field. It is also possible to build cross spectra that contain information about how
strongly two different fields are correlated depending on scale. The formation of the LSS and of
individual DM haloes becomes visible when comparing power spectra at different redshifts: The
lower the redshift (i.e. the later in the history of the Universe) the more power will accumulate
on the smaller scales (Peebles, 1980). There exists an initial power spectrum with a specific
shape and amplitude that captures all the statistical properties of the initial conditions of the
Universe (Harrison, 1970, Zeldovich, 1972). Late-time power spectra will depart from the initial
power spectrum in particular on the small and intermediate scales. From now on, we indicate the
initial, linear power spectrum by writing P11(k) (in contrast to the non-linear power spectrum).

Its form can be derived from a few cosmological considerations in the framework of inflation.
It is of the power-law form

P11(k, a) = AknsT 2(k)D2(a) , (1.59)

where D(a) is the linear growth factor, A is a free normalization constant that has to be fixed by
observations, ns is the spectral index to be explained below, and T (k) is the transfer function. The
transfer function describes how structures grow differently depending on scale in linear theory
(not to confuse with structure growth depending on scale due to clustering, this is described
within non-linear theory). It can be shown that the growth depends on when fluctuations at
some scale k enter the horizon19, with the difference being whether this happens in the radiation-
or matter-dominated era (i.e. when either of the terms dominates in the Friedmann equation).
For small perturbations that enter in the radiation-dominated era growth is prohibited until
the Universe becomes matter-dominated. Furthermore, in the transfer function the effect of
free-streaming is included. Depending on the type of DM, i.e. whether it is cold, warm or
hot, the particles have smaller or higher velocity – faster particles will cluster less than slower
ones, they will free-stream, therefore for hot and warm DM small-scale power is decreased in
comparison to CDM. This is encoded in the transfer function. Whereas a thorough analytical
derivation of T (k) is quite a complex problem, there exist fitting formulae that depend only on
the cosmological model and the cosmological parameters (e.g. Bardeen et al., 1986).

The shape of P11(k) is mainly influenced by ns. It can be predicted from inflation and has
been confirmed by observations (Planck Collaboration, 2018b) that this must be slightly smaller
than one. We can define the dimensionless power spectrum

∆
2(k) = 4πk3P11(k) , (1.60)

for which, in a CDM scenario, we find that it increases with k for a broad range of scales (only
for the very smallest scales it follows ∆

2(k) ∝ kns−1 and therefore becomes asymptotically small).
This means that the largest fluctuations are on small scales and thus will become non-linear first.
A scenario where gravitational collapse happens first on small scales and then on larger scales
is called a bottom-up scenario (the inverse situation would be called a top-down scenario). In
practice, in a bottom-up Universe such as the one we live in, small structures such as DM haloes
(and within them the galaxies) form first. These small haloes fall onto each other and form
larger clusters. The fact that we find this situation in observations and simulations confirms
that DM is indeed cold (Jenkins et al., 1998). In the case of warm or hot DM large structures

19 The horizon is the maximum distance that a photon can travel in a given time interval, i.e. the maximum
distance two points can be spatially separated to still be in casual contact within that time interval
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would be the first to collapse.

The shape of the power spectrum can be motivated from theory, however the strength of
the fluctuations, i.e. the normalization constant A, must be measured. Historically, a special
parameterization was introduced which was motivated by observations – it was found that in
the context of counting galaxies, the variance of their number N in a sphere of 8 h−1 Mpc was
very close to one, i.e.

〈(N − 〈N〉)2
〉

〈N〉2
≈ 1 . (1.61)

The most recent data show that the value is in fact smaller than one (see below), but the original
idea of parametrizing the amount of structure by counting collapsed objects within a certain
radius was kept. One employs the dispersion σ2(R) of the density field δR(x) when smoothed at
a certain radius R,

σ2(R) ≡ 〈δ2
R(x)〉 =

∫
|W(kR)|2P(k)

d3k

(2π)3 =
1

2π2

∫ ∞

0
|W(kR)|2k2P(k) dk (1.62)

where W(kR) is the Fourier representation of a filter function that smooths the density field, and
where in the last step we have exploited the spherical symmetry of W(kR) and integrated over
the angular part. Setting R = 8 h−1 Mpc gives the cosmological parameter σ8 that is constrainted
to σ8 = 0.811 ± 0.006 by current surveys (e.g. Planck Collaboration, 2018b). This parameter is
now commonly used to express the normalization of the power spectrum.

In the framework of SPT we found that non-linear gravitational evolution can be derived
from the initial conditions, so now we will extend this treatment to power spectra. From
equation (1.42) we build the correlator in Fourier space, and after some algebra obtain Pδδ(k)
which will be the non-linear power spectrum,

Pδδ(k) ' P(LO)
δδ (k) + P(NLO)

δδ (k)

= 〈δ1(k) δ1(k′)〉 + 〈δ2(k) δ2(k′)〉 + 2〈δ1(k) δ3(k′)〉

= P11(k) + P(22)
δδ (k) + P(13)

δδ (k) , (1.63)

where we omit writing (2π)3δD(k−k′) explicitly. We identify the LO term with P11(k) which is of
order two in the expansion. The NLO term consists of two different contributions that are both
of order four. For a Gaussian random field it follows from Wick’s theorem that all correlators of
odd orders vanish, therefore we do not find a contribution of order three as NLO term. The
NLO terms can be calculated explicitly,

P(22)
δδ (k) = 2

∫
p

F2
2(p,k − p) P11(p) P11(|k − p|) , (1.64)

P(13)
δδ (k) = 6P11(k)

∫
p

F3(p,−p,k) P11(p) , (1.65)

which is mainly one three-dimensional integral over the linear power spectrum, modulated with
a kernel, and where we introduced the compact notation∫

p
· · · ≡

∫
. . .

d3 p

(2π)3 . (1.66)
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Figure 1.9: The linear power spectrum at three different redshifts (grey lines), compared with the
non-linear 1-loop power spectrum at the same redshifts (coloured lines) in the framework of SPT (Lee,
Park and Biern, 2014)). The overall amplitude of the spectra grows for smaller redshifts, as described by
linear theory. Also, the non-linear power spectra show increased signal for smaller scales and redshifts
due to non-linear gravitational clustering.

Because of the integral operation such expressions are also called loop terms. The LO term that
requires no integration is called tree term. Of course one does not have to stop the expansion
of the power spectrum at fourth order and compute only the 1-loop terms. In principle the
expansion can be extended to n-th loop. The analytical expressions become very complicated
though, and such efforts are only reasonable when observational instruments are able to provide
the respective precision at the small scales. It is very desirable though to make the effort with
the smaller scales, both in theory and observations – most cosmology-constraining power lies in
fact there. Cosmic Variance, i.e. the fact that our Universe is only one realization of a random
field, puts large theoretical errors on the larger scales since only few of the Fourier modes can
be fit into the Universe. These errors present a fixed lower limit, they cannot be decreased by
increased intrument precision or better modeling (Blot et al., 2016).

At some point writing the power spectrum as an expansion will break down. This scale kmax
can be explored when comparing the theoretical expressions against N-body data. Accurate
modeling of non-linear clustering on even smaller scales calls for other methods, such as the
halofit model (Smith et al., 2003). In Fig. 1.9 we show the linear power spectrum in comparison
with the SPT 1-loop power spectrum for three different redshifts by Lee, Park and Biern (2014).
One can see that the overall amplitude increases, and that especially on small scales power
accumulates due to non-linear effects.
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1.4.3 3-point statistics

For a Gaussian random field all statistical information is contained within the power spectrum.
To detect non-Gaussianity the bispectrum B(k1, k2, k3) needs to be employed which is given as

〈δ(k1) δ(k2) δ(k3)〉 = (2π)3δD(k1 + k2 + k3)B(k1, k2, k3) , (1.67)

i.e. it is the three-point equivalent to the power spectrum (in real space this would be the
three-point correlation function). The bispectrum only gives a value for a closed triangle, also it
is translationally and rotationally invariant. For a Gaussian random field it is zero since it is a
correlator of odd order. In SPT, the full matter bispectrum can be written as an expansion in
linear power spectra (as in general a higher-order statistic can be written as an expansion in
lower-order statistics),

B(LO)
δδδ (k1, k2, k3) = 2

[
F2(k1,k2) P11(k1) P11(k2) + F2(k2,k3) P11(k2) P11(k3)

+ F2(k3,k1) P11(k3) P11(k1)
]
, (1.68)

where we only wrote the tree-level expression which can be derived when plugging in the
expansion of δ into the correlator and keeping only LO terms. Of course also for the bispectrum
loop terms can be derived that we omit stating explicitly (we refer to e.g. Scoccimarro et al.,
1998 for that).

The bispectrum can be used as an independent complement to the power spectrum when
exploring the clustering of galaxies and inferring cosmological parameters from that (e.g. Pollack,
Smith and Porciani, 2012, Yankelevich and Porciani, 2019), and we will give its possible
applications a closer look in chapter 3.

1.4.4 Measuring bias from statistics

In section 1.3.5 we introduced the concept of bias, and in particular the approach of a Eulerian
bias scheme. Now we want to explore the possibility of actually measuring the bias parameters
from statistics. No matter whether one is really interested in the exact values of the bias
parameters and would like to give a physical interpretation to them, or whether one merely sees
the bias parameters as nuisance parameters in an observational context that will be marginalized
over anyway – to make progress we need a technique to obtain explicit values.

The path that we will take here is measuring the parameters from n-point cross spectra (for
an overview see Desjacques, Jeong and Schmidt, 2018a). The general technique then is the
following: One decides on a basis of operators up until a certain order. This expansion is then
cross-correlated with another field, e.g. the matter density field or the halo density field. The
bias parameters can then be measured if the resulting cross spectra are available from data or
theoretical models. When writing the bias expansion in terms of cross spectra one needs to
decide up until which order terms should be included. Similar to equation (1.63), there will be
an LO term, and then several 1-loop NLO terms that are all of the same order. One has to
make sure that, depending on which bias operators one includes, all possible NLO terms are
taken care of. It is inconsistent to take into account only some of them.

In this study our focus is on testing the bias expansion against numerical data, therefore we
choose to measure the bias parameters from a cross correlation in Fourier space with δ(k). The
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LO term for this can be calculated easily,

〈δh(k) δ(k′)〉(LO)
= b1〈δ1(k) δ1(k′)〉 , (1.69)

or in terms of spectra
P(LO)
δhδ

(k) = b1P11(k) . (1.70)

We see that at LO only appears the linear bias parameter b1 that comes with the linear
power spectrum P11(k). The l.h.s. of equation (1.70) consists of the data that is measured from
simulations, the r.h.s. consists of the physical model. Of course in a context of actual observations
we need to build the cross correlation with δh(k) which gives the halo power spectrum Pδhδh

(k)
on the l.h.s. – this is the only quantity that is actually accessible from real measurements (more
precisely only the galaxy power spectrum is accessible, but galaxy bias can be treated with the
same methodology as halo bias). When testing the model against numerical data, in principle
we have all the cross spectra at hand. A measurement of the parameters is then performed
via fitting the data against the model, employing e.g. a Markov Chain Monte–Carlo routine
(Hastings, 1970) that samples the posterior distribution of the parameters in form of a chain of
random numbers.

The LO bias expansion will only be valid on very large scales and break down on the
intermediate scales (we will show this explicitly in chapter 2). To model these accurately we
need the NLO terms that will consist of operators up until third order. We omit writing them
here explicitly since this will be done in detail in chapter 2. The bias parameters can also
be measured from cross correlations at bispectrum level, or also from correlation functions at
various levels in real space, however we will not focus on this in this study.

1.4.5 Bias renormalisation

Despite not writing the full third-order expansion we want to point out a pecularity when
dealing with higher-order operators, and therefore loop terms. Calculating these loops means
that technically one has to integrate the linear power spectrum over an infinite range of scales,
thus in particular also the very small scales for that SPT is not valid any more per definition.
Effectively the large scales, for that we want to obtain the signal, receive power from scales for
that the theory fails. To avoid this problem, also called UV-sensitivity, one manually introduces
an arbitrary cutoff scale Λ, at which the integral of the loop terms is truncated. This eliminates
the small scales from the loop, however replaces one problem with another: Now the result of
the integration and therefore the whole bias expansion and the bias parameters depend on Λ,
which was chosen by hand and has no intrinsic physical meaning.

The procedure to circumvent this, i.e. to make the cross spectra and bias parameters
independent of Λ, is called the renormalisation of bias parameters (McDonald, 2006, McDonald
and Roy, 2009, Assassi et al., 2014), and we want to illustrate it with the example of the
second-order operator δ2(x) – of course the technique can also be applied to other operators,
and we will perform a thorough treatment with more detailed calculations in chapter 2 and 3.
Here we will mainly focus on giving a motivation. Writing δ2(x) as an expansion gives

δ2(x) =
[
δ1(x) + δ2(x) + δ3(x) + . . .

][
δ1(x) + δ2(x) + δ3(x) + . . .

]
= δ2

1(x) + 2δ1(x)δ2(x) + δ2
2(x) + 2δ1(x)δ3(x) + . . . (1.71)
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Cross-correlating the Fourier transform δ2(k) of this operator20 with the density field (and
paying attention that correlators of odd order vanish) contributes two terms to the NLO terms
of Pδhδ

(k), i.e.

P(LO)
δ2δ

(k) = 〈(δ2
1(k) δ2(k′)〉 + 2〈(δ1δ2)(k) δ1(k′)〉

= P(22)
δ2δ

(k) + P(31)
δ2δ

(k) , (1.72)

since the LO terms of Pδhδ
(k) are of order two, and the NLO terms are of order four, as is the

case for equation (1.72). Note that the r.h.s. of equation (1.72) are LO terms of P
δ2δ

(k), but
NLO terms of Pδhδ

(k)! We can write them explicitly,

P(22)
δ2δ

(k) = 2
∫

p
F2(p,k − p) P11(p) P11(|k − p|) , (1.73)

P(31)
δ2δ

(k) = 4P11(k)
∫

p
F2(−p,k) P11(p) , (1.74)

and after some algebra we find that equation (1.74) can be written in the form

P(31)
δ2δ

(k) =
68
21
σ2

1(Λ)P11(k) , (1.75)

where σ2
1(Λ) is given via equation (1.62) (where Λ = 2π/R), using P11(k) in the integral. It

becomes clear that P(31)
δ2δ

(k) is a cutoff dependent quantity since it contains the variance of the

density field which is influenced mainly by the cutoff scale Λ – the larger the value of that,
the larger will also be σ2

1(Λ). In particular, P(31)
δ2δ

(k) tends to a constant value different from

zero for k → 0 which leads to an undesired mixing of power from linear bias and higher-order
biases. However, P(22)

δ2δ
(k) does not contain any cutoff sensitivity at k → 0 as can be shown when

performing an explicit numerical calculation of the integral. The fact that the cutoff-dependent
part of P(LO)

δ2δ
(k) can be clearly separated from the actual signal that we are interested in allows

to simply subtract it. This means that in the bias expansion we only keep P(22)
δ2δ

(k), and eliminate

the large-scale limit of P(31)
δ2δ

(k).
This approach cannot only be performed on the level of spectra, but already on the level of

fields. We introduce the renormalised operator
[
δ2]

1(x) which is given as

[
δ2]

1(x) = δ2(x) −
68
21
σ2

1(Λ)δ(x) , (1.76)

which is the original cutoff-dependent operator minus a term that, when cross-correlated with
δ(x), gives exactly the UV-sensitive piece, and therefore eliminiates it. We are writing [. . . ]1 in
equation (1.76) to indicate that this is only the renormalisation of the operator at first order.
This comes because we only wrote the LO terms in equation (1.72). Of course there are also
NLO terms to this expression that are of order six, eight and so forth. The renormalisation
procedure can be extended to second, third etc. order to take care of these terms. We will have
a closer look at this in chapter 3.

Writing the renormalisation at the level of spectra allows for a new interpretation: We are

20 This notation means that we first build the square and then perform the FT.
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introducing an additional operator, i.e. δ(x), into the bias expansion. However this operator
already appears at LO in the bias expansion (see equation 1.42). We can therefore rearrange
the bias expansion and absorb the correction term in equation (1.76) in b1. In general we can
rewrite equation (1.50) in terms of renormalised operators [O] and renormalised bias parameters
bR

O

δh =
∑
[O]

bR
O [O] . (1.77)

For our example, taking into account the shape of the correction term in equation (1.76), this
gives in particular for the renormalised bias parameter bR

1

bR
1 = b1 +

68
21
σ2

1(Λ)b2 . (1.78)

In principle with this technique all operators and bias parameters can be renormalised to an
arbitrary order, and only fields that come naturally with the bias expansion anyway are needed
to achieve this. It remains to be tested against numerical data however how well this method
actually performs, and we will do so in chapter 2 and 3.

1.4.6 Physical models and interpretation of bias

The phenomenological approach to tracer bias, presented in form of the Eulerian bias scheme,
is immensely useful for practical applications, e.g. the implementation into the data analysis
pipelines of large galaxy surveys. In this section we want to place it into a broader context and
compare with other techniques that in part also enable the prediction of actual values for the
bias parameters. We will test the results of our own work quantitatively against the literature
in chapter 2, here we will introduce the concepts qualitatively in a brief fashion.

The framework of the peak-background split (Bardeen et al., 1986; hereafter PBS) offers a
possible physical interpretation of the bias parameters. The original idea is that haloes form in
the density field where some threshold νσ is exceeded where ν is a number. This concept can
either be applied to extended regions, described via a Heaviside step function, or to point-like
peaks. In the limit of ν � 1 the result for peaks tends to that for extended regions, and the
relation between the correlation function for peaks ξpeaks(r) and that of the density field ξ(r) is
given as

ξpeaks(r) '
ν2

σ2 ξ(r) . (1.79)

The original result for overdense regions was derived by Kaiser (1984). A heuristic explanation
for peak biasing can be achieved by splitting the density field into a low-amplitude, low-frequency
background signal δbg and a noisy high-amplitude foreground signal δfg. Peaks form where
the foreground signal is subject to constructive interference, and they show a clustering excess
when the threshold νσ is crossed. This process is modulated by the background signal that, on
the small scales of tracer formation, acts as a constant shift in the background density. From
combining this with a halo mass function (i.e. the number density of haloes of a given mass at
a given redshift) a biasing relation b(ν) can be derived. For the Press-Schechter mass function
(Press and Schechter, 1974), that builds upon the spherical collapse model where the threshold
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for gravitational collapse is νσ = δc = 1.68 (see section 1.3.4), this relation is

b(ν) = 1 +
ν2
− 1
δc

, (1.80)

which was derived by Cole and Kaiser (1989). For σ → 0 this tends to the Kaiser formula.
Equation (1.80) can be improved via the introduction of a moving barrier, δc(ν), that comes
with the ellipsoidal collapse model (R. K. Sheth, H. J. Mo and Tormen, 2001)21. To generalize
it even more and make it adaptable to more halo formation models and mass functions, Tinker
et al. (2010) introduced a flexible fitting function for b(ν) that depends on δc and six parameters.
These parameters are either constants or can also depend on halo properties. We will compare
the bias parameter results from our simulations with these predictions.

However so far only the linear bias parameter, dubbed b1 before, was derived. Within the
PBS framework also higher-order bias parameters can be predicted. In general, for the case of
bias parameters bn that come with powers of the density field δn it is

bn =
ρ̄m

n̄h

∂nn̄h

∂ρ̃n
m

∣∣∣∣∣∣
ρ̄m

, (1.81)

with n̄h the mean number density of haloes, ρ̄m a fiducial mean matter density and ρ̃m a matter
density that was shifted by an amount ∆ with respect to the fiducial value by the large-scale
background amplitude of the PBS. Therefore if we can only predict the number density of haloes
as a function of the underlying mean matter density, we can predict the bias parameters by
varying that mean matter density and calculating the derivative. In practice this technique can
be implemented via the separate-universe approach where ρ̃m is interpreted as the cosmological
matter density of a different universe which means that the complete background cosmology will
be different. This can be realized e.g. by running numerical simulations with various cosmologies.
From this can then be derived fitting formulas for higher-order bias parameters depending on b1
as in Lazeyras, Wagner et al. (2016). We will compare our measurement of b2 to their work22.
The PBS is consistent with the general perturbative approach to bias since it can be shown
that the PBS bias parameters coincide exactly with the renormalised bias parameters that we
introduced in section 1.4.5 (Desjacques, Jeong and Schmidt, 2018a).

A relation for b1 and the tidal bias term s2 can be derived from the framework of Lagrangian
bias (Baldauf, Seljak, Desjacques et al., 2012) where halo formation sites are identified in the
initial density field (motivated from peaks that give rise to protohaloes). The bias model is
again written as an expansion, where the gravitational evolution of the individual terms can
be calculated perturbatively. It turns out that in the expression for the second-order matter
density field a term with 2/7s2 appears, so that when inserting the matter density into the bias
expansion the s2 term comes with a prefactor that is interpreted as the respective bias parameter
bs2 , explicitly

bs2 =
2
7

(1 − b1) . (1.82)

21 The framework that deals with halo formation models with respect to barrier crossing is also called the
excursion-set formalism where halo formation corresponds to a Brownian random walk that upcrosses a barrier
for collapse one or multiple times (Bond, Cole et al., 1991).

22 The PBS and separate-universe approach can also be extended to bias parameters that come with tidal terms
or derivatives of the density field, but in this study we will not look into this in detail.
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We will test our results against this relation.

A prediction for b
∇

2δ
(ν) can be inferred from peak statistics, similar to b1(ν), when writing

ξpeaks to higher order (Desjacques, 2008, Baldauf, Desjacques and Seljak, 2015). For this bias
parameter that is associated with derivatives of the density field not only the peak height is
important, but also the mean peak curvature ū = G1/G0 (with Gi the i-th moment of the peak
curvature u) and the spectral width γ = σ2

1/(σ0σ2) (with σi the i-th moment of the power
spectrum) that reflects the range over which ∆

2(k) (with ∆(k) the dimensionless power spectrum
as defined in section 1.4.2) is large. The mean peak curvature can be expressed in terms of γ
and ν. We will list the explicit expressions and compare our results in chapter 2.

1.5 Numerical simulations

In the last decades cosmological simulations have emerged as a unique testbed to follow structure
formation in the Universe down to the very smallest scales (Jenkins et al., 1998, for a recent
overview see Kuhlen, Vogelsberger and Angulo, 2012). We can explore the formation of the
cosmic web over length scales of several hundred h−1 Mpc down to individual DM haloes and
the galaxies within them on sub-kpc scales. It is not possible though to access this broad range
of scales with one single simulation – instead it has to be decided which problem should be
addressed, and the set up of the simulation has to be chosen accordingly. In this study we
are not interested in the resolution of the inner structure of individual DM haloes or galaxies,
but we rather care for cosmic scales and the statistics that we can measure from that. We will
therefore focus on DM-only simulations and avoid the treatment of baryons.

1.5.1 Cosmological N-body codes

The basic idea is to study the behaviour of a large number of DM particles which means tracing
their position and velocity in time under the influence of the gravitational force in a cubic box
of some size that represents a large part of the observable Universe. Of course not actual DM
elementary particles can be simulated since their number would need to be huge to achieve
results of cosmological relevance. Instead one uses representative particles of masses around
107 . . . 1011M�. In practice a DM halo in a simulation will then consist of several dozen until
millions of representative DM particles.

To set up the simulation we have to fix a few external parameters – the number of DM
particles N, the comoving side length L (and therefore the volume V = L3) of the simulation
cube, and the cosmological parameters. Common numbers are N = 10243

≈ 1.07 × 109 and
L = 1 h−1 Gpc. The matter content of the Universe is about Ωm ≈ 0.3 and the critical density
is ρcr ≈ 27.8 × 1010 h−2 M�Mpc−3. From this follows a particle mass of mp ≈ 7.8 × 1010 h−1 M�,
i.e. that of a small galaxy. More particles give a better resolution, but are of course more
computationally expensive. Note that in principle such large scales would call for a full GR
treatment, but it can be shown that in practice relativistic effects are negligible (Chisari and
Zaldarriaga, 2011). It is therefore enough to perform the calculations of the gravitational forces
in the Newtonian framework. In order to implement the CP and to allow for using Fourier
transformations, we impose periodic boundary conditions. This means that particles close to
the edge of the simulation box feel the forces from the opposite side, and they will immediately
enter from that side when leaving the box.

The explicit expression for the force that is felt by the i-th particle, exerted by the j-th particle,
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is

Fi = G
∑
j,i

mp(r j − ri)

|r j − ri|
3 . (1.83)

It would be the most direct way to compute this sum for all the N particles at a certain time
step and then accelerate them according to the force they feel. In the next time step this
routine would be repeated with updated positions and velocities and so forth. However, for
large N this method is not feasible since it scales like N2 and is therefore very computationally
expensive. Modern N-body codes, such as the Gadget-2 code (Springel, 2005) that we are using
for our simulation suite introduced in chapter 2, instead employ a hybrid scheme of two more
sophisticated methods, called the TreePM method. Within this technique the force calculation
is split up into large and small scales.

On large scales a Particle-Mesh method (hereafter PM method) is employed. The mass of
the point-like DM particles is spread on a grid via an interpolation technique23. From this, the
potential can be computed employing the Poisson equation. The force is easily calculated from
this via performing an FT (using a numerical library, such as the Fastest Fourier Transform of
the West, FFTW, Frigo and Johnson, 2005) and multiplying with ik. Positions and velocities will
then be updated by applying this force to the particles, using the same grid interpolation. The
method is very fast and of low memory use, but it is lacking accuracy on particle separations of a
few grid cells. At these scales the slower, but more accurate Tree algorithm is used. This method
splits the particle distribution into cubes of successively smaller size (the first one of the hierarchy
is called tree node and the descending ones are called leaves) with increasing particle density.
The force onto the particles within these cubes is then calculated via a multipole expansion.
The method is very memory-intensive and it is thus reasonable to restrict its application to the
smallest scales.

Another effect that has to be taken into account for close particle separations is the two-body
relaxation process where a momentum transfer from one DM particle to another takes place.
This is not a physical process, but an artifact introduced by treating DM as macroscopic particles
in the numerical context. It can be avoided with the use of a softening parameter ε that modifies
the gravitational force below a certain softening length,

F(r) = −
Gm2

pr

(r2
+ ε2)3/2 , (1.84)

where r = r j − ri is the separation vector between two particles. The softening length is chosen to
be of the order of the mean separation of two particles and for a galaxy-sized halo in Gadget-2
it can be optimally calculated as (Power, Johari and Vij, 2003)

ε ≈
4r200√

N200
, (1.85)

where N200 is the number of particles within a DM halo of radius r200 (the radius we will define
in section 1.5.3). The modification of the gravitational force eliminates the occurence of strong
two-body processes, however it comes with the drawback that scales below the softening length
cannot be resolved and are strongly affected by numerical artifacts.

23 One of them is e.g. the Cloud-In-Cell (hereafter CIC) method, where the mass of one particle is distributed
over its eight neighbouring grid points, weighted with the distance to the grid point (Efstathiou, Davis et al.,
1985).
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1.5.2 Initial conditions

A cosmological simulation requires an initial density and velocity field, i.e. the initial conditions
(hereafter IC), that can then be evolved in time. We need to choose the initial redshift zIC in the
matter-dominated epoch which should be high enough that the random field is still Gaussian,
but also not too high since the accuracy decreases for small δ, plus computational time would be
wasted. A common number is zIC ∼ 50. The amplitude of the Fourier modes δ(k) of the initial
density field are then constructed as

P11
[
δ(k)

]
=

1

πσ2(k)
exp

[
−
δ2(k)

σ2(k)

]
, (1.86)

where P11(k) is the theoretical linear power spectrum that can be computed numerically from
Boltzmann solvers such as the Code for Anisotropies in the Microwave Background (CAMB;
Lewis and Challinor, 2011) at the respective zIC for a certain input cosmology. This way for the
IC we obtain a Gaussian random field with the correct power spectrum. Now we need to obtain
a particle distribution that gives exactly this density field. This can be done via first placing
the N particles on a regular grid and shifting them slightly in position such that they have the
correct Fourier modes δ(k), using the Zel’dovich approximation (hereafter ZA; Zel’dovich, 1970).
The replaced position x(q, t) for a particle at initial position q is given as

x(q, t) = q + D(t)Ψ1(q) , (1.87)

where Ψ1(q) is called the displacement field, and it is given via its Fourier modes

Ψ1(k) = −ik
δ(k)

k2 . (1.88)

The respective velocity field v(t) is given as

v(t) = a(t)
dD(t)

dt
Ψ1(q, t) . (1.89)

The ZA is the first-order term of a more general expansion of the displacement field in the
framework of Lagrangian perturbation theory (hereafter LPT). In LPT one traces the trajectory
of each fluid element via its displacement from q due the full displacement field Ψ, given as

Ψ(q, t) = Ψ1(q, t) +Ψ2(q, t) +Ψ3(q, t) + . . . . (1.90)

Employing only the ZA introduces spurious effects in the low-redshift power spectrum at percent
level which can be avoided when using higher-order LPT for IC generation, such as 2LPT
(Crocce and Scoccimarro, 2006; M. White, 2014).

1.5.3 Halo-finding algorithms

After running the simulation from the initial to a final redshift, snapshots of the whole box
can be analyzed (where beforehand must be specified at what z the code should produce an
output). One has at hand the particle positions and velocities, and from this e.g. correlation
functions and power spectra can be built after distributing the particles on a grid, using again
e.g. the CIC method. We can also identify the haloes that formed as tightly-bound virialized
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DM conglomerates through gravitational collapse and decoupling from the expansion of the
Universe. Therefore a halo is more than just a very overdense region and has to be defined and
identified in the simulation accordingly. There are various options on how to find a halo in a
simulation. Here we will present the two most common ones.

One possibility is to define a halo as an extended region above a certain density threshold ∆ρ̄,
i.e. a spherical overdensity (hereafter SO) that is ∆-times more dense than the mean density of
the Universe ρ̄. We start from identifying local overdensities, i.e. peaks, in the density field and
then draw gradually expanding spheres around that until the desired SO is reached. The value
of ∆ is a personal choice, common values are ∆ = 200, 300 or 500. This method makes the great
simplification that a halo always has spherical shape. Also it only accesses information on the
position of the particles, and neglects velocity information – thus we cannot know whether the
‘halo’ we just identified is actually in virial equilibrium. A popular algorithm that employs the
SO criterion is the Amiga Halo Finder (AHF; Knollmann and Knebe, 2009).

The second type of halo finders does not treat haloes as objects of fixed shape and density,
but rather defines them by collecting and linking particles together that are separated by less
than a certain linking length. This method is called Friends-of-Friends (Davis et al., 1985), and
the linking length is commonly chosen 0.2 times the mean particle separation which is motivated
from theoretical predictions within the spherical collapse model (Efstathiou, Frenk et al., 1988).
Every particle can only belong to one halo, therefore the halo identification is unique. Again
the method relies purely on particle position information and neglects velocity information. A
popular algorithm of this kind is Subfind (Springel, S. D. M. White, Tormen et al., 2001).

In recent years more and more sophisticated halo finders have been developed (for a comparative
overview see Knebe et al., 2011). One of these is the Rockstar algorithm (Behroozi, Wechsler
and Wu, 2013a) which operates in phase-space and therefore incorporates the full particle
information. It starts from an FOF identification with a large linking length of 0.28 and from
this builds a hierarchy with gradually decreasing linking length. The phase-space distance metric
of each FOF subgroup is renormalised by the respective dispersion in position and velocity to
allow for an adaptive selection of overdensities at each level. When this process is finished,
the FOF groups are converted into haloes, starting at the deepest level, minimizing the metric
between the halo and a single particle. Halo centers can then be obtained from averaging the
particle positions. We will employ Rockstar in chapters 2 and 3 to study the issue of halo
bias with respect to the underlying DM field from a numerical point of view.

1.6 Open questions addressed in this study

In this introduction so far we laid out the state of the art in theory and methodology in the
era of precision cosmology, the science that aims to understand the Universe as a whole. We
presented the theoretical backbone that leads to our current concordance model of cosmology,
the ΛCDM model, which describes the history and contents of the Universe employing only
six parameters, among them the density of the illusive components Dark Matter (DM) and
Dark Energy (DE). We emphasized how scientific progress in cosmology is founded on the three
pillars of theory, observations and numerical simulations and how strong intertwinement of these
different branches is crucial.

In the rest of this study we will focus in particular on the issue of accurate theoretical modeling
of galaxy and halo bias – i.e. the relationship between the spatial clustering of said tracers and
the underlying DM field – and we will test our model against a suite of 40 cosmological N-body
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simulations. Only an accurate bias model across a broad range of scales will allow access to the
cosmological information hidden in the statistical properties of the DM distribution. We can
group our research into three aspects:

1. Which ingredients, i.e. density fields and powers or derivatives of these, are needed in
a Eulerian bias scheme to accurately predict the clustering of haloes as tracers down
to the non-linear regime? How important are the individual terms at different orders
in the expansion and what is the value of the respective bias parameters, depending on
maximum scale and on halo mass? Where does the optimal trade-off between flexibility
and complexity of the model lie?

2. In order for the bias expansion to be valid an arbitrary cutoff scale Λ needs to be applied
to the density fields (and therefore also to the statistics such as power spectra) – how can
we manipulate the model in a way that the higher-order terms become insensitive to this
cutoff scale? Will this renormalisation approach that is well-motivated from theory also
survive the test to N-body data?

3. Within the framework of Standard Perturbation Theory (SPT) the renormalisation of
spectra and bias parameters needs to be performed order by order – how can we translate
this approach to real data from simulations (or observations in the end)? Is it possible to
conduct the renormalisation at n-th order via the precise measurement of n-point statistics
from the data? How important are in particular second-order terms, and up until which
scale is the order-by-order renormalisation approach valid?

We will first introduce the theoretical bias expansion and the framework of renormalisation in
chapter 2. With this we will also describe our set up of cosmological N-body simulations and
how they are designed for measuring a set of bias parameters across a broad range of scales
and to test the renormalisation procedure at first order (linear bias). We will for the first time
measure all the spectra involved directly from the simulation and will therefore provide an
explicit test of higher-order operators and spectra in SPT against data. To measure the bias
parameters we employ a fitting procedure including correlated errors in the model.

In chapter 3 we extend our analysis to second order in the renormalisation procedure. Whereas
before we only had to measure power spectra from the simulation, now we turn to the bispectrum
with the goal of renormalising quadratic and tidal bias. This allows to compare the influence
of higher-order terms in comparison to the first-order renormalisation results depending on Λ.
Additionally, we apply the first-order renormalisation procedure to the halo power spectrum.
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CHAPTER 2

Renormalisation of linear halo bias in N-body
simulations

1

2.1 Introduction

The idea that galaxies could be biased tracers of the underlying matter distribution dates back
to the 1980s and is intimately linked with the development of the cold-dark-matter (CDM)
cosmological model (e.g. Kaiser, 1984; Davis et al., 1985; Rees, 1985; Dekel and Rees, 1987;
S. D. M. White et al., 1987). For many years, the leading galaxy-biasing model assumed a local
and deterministic relation between the smoothed galaxy density contrast δg and the matter
density contrast δ evaluated at the same position x, i.e. δg(x) = f [δ(x)] where f denotes a generic
‘bias function’ (Fry and Gaztanaga, 1993). The freedom in the function f was often described in
terms of the ‘bias parameters’ i.e. the Taylor coefficients bi appearing in the ‘bias expansion’
δg = b0 + b1 δ + b2 δ

2
+ . . . . These parameters depend on the coarse-graining scale used to define

δ and δg. The reasons for smoothing are multiple: (i) galaxies are discrete objects and we want
to define a continuous density field; (ii) our model aims at describing the largest scales only; (iii)
the bias expansion should be well-behaved so that it can be truncated at finite order; (iv) the
dynamical model we use to evolve cosmological perturbations breaks down on small scales.

This bias model is applicable to any tracers of the large-scale structure (LSS) of the Universe
(e.g. galaxy clusters, dark-matter (DM) haloes, galaxies detected with different selection criteria)
by picking the appropriate function f or, equivalently, the corresponding set of bias parameters.
In particular, if one considers DM haloes, the local ansatz for the bias relation is supported by
spherically-symmetric models of gravitational collapse which also provide predictions for the
bias parameters as a function of halo mass (e.g. H. J. Mo and S. D. M. White, 1996; H. J. Mo,
Jing and S. D. M. White, 1997; Porciani et al., 1998).

It was later realised that anisotropic gravitational collapse generates non-local and stochastic
terms in the bias relation (Catelan, Lucchin et al., 1998) and that this originates leading-order
(LO) corrections to the galaxy bispectrum (Catelan, Porciani and Kamionkowski, 2000). The
implications of this result were fully appreciated only a decade later when local bias was shown to
be insufficient to describe the clustering of DM haloes (Manera and Gaztañaga, 2011; Matsubara,
2011; Roth and Porciani, 2011; Pollack, Smith and Porciani, 2012; Pollack, Smith and Porciani,
2014) and evidence for bias corrections that are quadratic in the tidal tensor was found in

1 This chapter has been submitted to MNRAS. A pre-print version has been published in Werner and Porciani
(2019).
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N-body simulations (Baldauf, Seljak, Desjacques et al., 2012; Chan, Scoccimarro and R. K.
Sheth, 2012). At the same time, it was realized that the bias expansion should also contain a
series of derivative terms starting with R2

∇
2δ because haloes and galaxies collect material from

an extended region of space of characteristic size R (e.g. Desjacques, 2008; McDonald and Roy,
2009; Desjacques, Crocce et al., 2010; Schmidt, Jeong and Desjacques, 2013; Fujita et al., 2016).
The current consensus is that the bias relation should be compatible with all possible symmetries
of gravitational instability (McDonald and Roy, 2009; Kehagias et al., 2014; Senatore, 2015;
Eggemeier, Scoccimarro and Smith, 2019) and thus depend on several other fields than δ (see
section 2.2.2).

Different techniques have been developed to measure the corresponding bias coefficients for DM
haloes in numerical simulations. One possibility is to fit model predictions to the N-body data for
various clustering statistics – e.g. power spectra or two-point correlation functions – (Saito et al.,
2014; Bel, Hoffmann and Gaztañaga, 2015; Hoffmann, Bel and Gaztañaga, 2015; Hoffmann, Bel
and Gaztañaga, 2017; Modi, Castorina and Seljak, 2017; Hoffmann, Gaztañaga et al., 2018) or
even at the field level (Roth and Porciani, 2011; Schmittfull et al., 2018). Alternatively, one can
measure the response of the halo population to long-wavelength perturbations in the matter
density (Li, Hu and Takada, 2016; Baldauf, Seljak, Senatore et al., 2016; Lazeyras, Wagner et al.,
2016; Lazeyras and Schmidt, 2019). Lastly, bias parameters can be obtained by cross-correlating
the corresponding fields that appear in the bias expansion with the halo density distribution
(Abidi and Baldauf, 2018; Lazeyras and Schmidt, 2018).

Another important line of research has examined how measurable clustering statistics of tracers
depend on the bias relation and on the statistical properties of the underlying matter-density
field. This is, in fact, key to interpret results from galaxy redshift surveys. For a local bias
relation and in the presence of a Gaussian matter-density field, the ratio b2

eff(k) between the
(shot-noise subtracted) tracer- and matter power spectra tends to the constant b2

1 when k → 0
(Szalay, 1988; Coles, 1993; Fry and Gaztanaga, 1993; Gaztanaga and Baugh, 1998). However,
for a non-Gaussian matter density distribution, the constant does not coincide with the linear
bias parameter and also depends on the cumulants of the matter density as well as higher-order
bias parameters (Scherrer and D. H. Weinberg, 1998). In particular, if the statistics of the
matter distribution are derived using standard perturbation theory, the LO correction to b2

1
scales with the variance of the linear density field that grows large when the coarse-graining
scale becomes small (Heavens, Matarrese and Verde, 1998, see also our section 2.2.3 for further
details). This sensitivity of the theoretical predictions on the smoothing scale that defines the
bias function complicates the use of bias models to interpret observational data.

Inspired by applications of the renormalisation group to the perturbative solution of ordinary
differential equations, McDonald (2006) proposed a different interpretation of the theoretical
predictions. The key concept is that the parameters bi appearing in the bias expansion do
not actually correspond to the physical constants that can be measured in a survey. They are,
instead, bare quantities that do not take into account the contribution of perturbative (loop)
corrections to the leading terms. One can then rewrite the result of the perturbative calculations
for the power spectrum of the tracers in terms of measurable ‘renormalised2’ quantities that
do not depend on the smoothing scale. McDonald and Roy (2009) extended this approach to
a bias relation that also depends on the tidal field. More recently, by using the diagrammatic
representation of perturbation theory (PT), Assassi et al. (2014) derived a set of conditions

2 The whole procedure parallels Wilsonian renormalisation in field theories. The coarse-graining scale of the
density fields here replaces the cutoff that regularises the loop integrals in the quantum field theories.
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that the bias expansion must satisfy to be perturbatively renormalised order by order (see
also Senatore, 2015). From these studies it emerges that only bias expansions that include
terms proportional to the tidal field and to derivative of the matter density (e.g. ∇2δ) can be
renormalised.

Bias renormalisation is analogous to methods used in statistical field theory and quantum
field theory. In general, these techniques provide a convenient way to build ‘effective theories’
that describe physics at a given range of length (and/or time, mass, etc.) scales and with a given
accuracy by using a finite set of parameters. This bypasses the need for the ‘full theory’ that
includes physics on all scales but might be intractable or, even, unknown. Likewise, the goal of
bias renormalisation is to build an effective model for the clustering statistics of tracers. Much
of the jargon used in the literature on bias renormalisation is imported from other branches
of physics. Less theoretically inclined researchers shy away from the unfamiliar notation and
concepts. One of the motivations of this paper is to provide a pedagogical review of the subject
and some concrete examples to see it ‘in action’. A second one is that there are a number
of questions that are still unanswered. Are all the possible operators allowed by symmetries
necessary in the bias expansion? Up to what distances does the renormalised bias expansion
(truncated to some order) give an accurate description of the observed clustering statistics of
tracers like galaxies?

Although the renormalisation of the bias expansion has always been discussed within the
context of cosmological PT, only some of its aspects are fully perturbative. If one writes down
a bias expansion in terms of Taylor coefficients, renormalisation is necessary also when one
deals with the exact dynamics (extracted e.g. from simulations as in our case) in order to
account for the non-linear terms (e.g. δ2) that generate smoothing-dependent spectra. In general,
renormalisation fixes a ‘language’ problem in the way we describe biasing, and PT provides an
approximate solution on how to implement the remedy in practice. Here we present a first step
towards implementing renormalisation within a large suite of N-body simulations where the
dynamics is non-perturbative. This will shed new light on the limitations of the perturbative
approach.

Usually, tests of the renormalised bias models are conducted by fitting the full perturbative
expression for some clustering statistics to N-body simulations (e.g. Saito et al., 2014). We
instead apply the renormalisation procedure step by step to the numerical data, examining all
the contributions due to the relevant fields separately. For simplicity, we focus on the cross
power spectral density Pδhδ

(k) of the matter and halo density fields3 defined as 〈δh(k) δ(k′)〉 =

(2π)3 Pδhδ
(k) δD(k+k′), where the brackets 〈. . . 〉 denote the average over an ensemble of realizations

and δD(k) is the Dirac delta distribution in three dimensions.

The detailed goals of this work are to (i) apply the Wilsonian renormalisation-group (RG)
method to halo bias in a large suite of N-body simulations and study the behaviour of the fields
appearing in the bias expansion as a function of the coarse-graining scale; (ii) measure the bias
parameters of the DM haloes extracted from simulations by fitting the halo-matter cross-power
spectrum Pδhδ

(k); (iii) follow their evolution (running) induced by the RG coarse-graining scale;
(iv) test that they can be renormalised by re-arranging the terms in the bias expansion; (v)
use Bayesian model-selection techniques to determine which bias parameters are necessary to
accurately describe Pδhδ

(k) up to k = 0.2 h Mpc−1. In this paper, we introduce the main concepts
of our study and focus on the renormalisation of the linear bias coefficient, b1. We plan to

3 With a little abuse of notation, we denote by f (k) the Fourier transform of the function f (x) where x indicates
the comoving position.
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Chapter 2 Renormalisation of linear halo bias in N-body simulations

discuss the renormalisation of the bias parameters at second order in our future work.

The structure of this paper is as follows: The theoretical motivations and methods of bias
renormalisation are reviewed in section 2.2 where we also present an original discussion on
the impact of filter functions. The numerical techniques and N-body simulations we use are
described in section 2.3. Our results on renormalisation are presented in section 2.4 and the
measurements of the bias parameter in section 2.5. Finally, our conclusions are laid down in
section 2.6.

2.2 Tracer bias in cosmological perturbation theory

2.2.1 Standard perturbation theory in a nutshell

Standard perturbation theory (SPT, for a review, see Bernardeau et al., 2002) describes matter
as a pressureless and inviscid fluid to model the growth of density and velocity perturbations in
a Friedmann-Robertson-Walker background with expansion factor a. The system formed by the
continuity, Euler and Poisson equations is solved perturbatively. At any given time, the fastest
growing solution for the density contrast, δ(x), is expanded as

δ(x) = δ1(x) + δ2(x) + δ3(x) + . . . (2.1)

where δ1 denotes the growing-mode solution to the linearized set of equations and δn = O(δn
1).

The time evolution of δ1 is governed by the linear growth factor D(a), such that δ1 ∝ D. Similarly,
the fastest growing mode for the divergence of the peculiar velocity ∇ · v = −aH f θ – where
H = ȧ/a is the Hubble parameter (the dot indicates differentiation with respect to cosmic time)
and f = d ln D/d ln a – is written as

θ(x) = θ1(x) + θ2(x) + θ3(x) + . . . , (2.2)

with θ1 = δ1. In Fourier space,

δn
(
k
)

=

∫
Fn

(
k1, . . . ,kn

)
δ1

(
k1

)
. . . δ1

(
kn

)
δD

(
k1 + · · · + kn − k

) d3k1

(2π)3 . . .
d3kn

(2π)3 (2.3)

and

θn
(
k
)

=

∫
Gn

(
k1, . . . ,kn

)
δ1

(
k1

)
. . . δ1

(
kn

)
δD

(
k1 + · · · + kn − k

) d3k1

(2π)3 . . .
d3kn

(2π)3 , (2.4)

where the kernels Fn and Gn are homogeneous functions of degree zero that describe the
couplings between Fourier modes generated by the dynamical non-linearities. These functions
obey recursion relations that can be solved order by order starting from F1 = G1 = 1 (e.g. Goroff
et al., 1986). For instance, the second-order kernels (symmetrized over permutations of their
arguments) are

F2
(
k1,k2) =

5
7

+
1
2

k1 · k2

k1k2

(
k1

k2
+

k2

k1

)
+

2
7

(
k1 · k2

k1k2

)2

, (2.5)

G2
(
k1,k2) =

3
7

+
1
2

k1 · k2

k1k2

(
k1

k2
+

k2

k1

)
+

4
7

(
k1 · k2

k1k2

)2

, (2.6)

40



2.2 Tracer bias in cosmological perturbation theory

Although these expressions are exact only in an Einstein-de Sitter universe, they provide an
excellent approximation also in the ΛCDM scenario (Bernardeau, 1994; Lee, Park and Biern,
2014).

Assuming Gaussian initial conditions allows us to compute perturbative expansions for
statistical quantities averaged over an ensemble of realisations of δ1. For instance, let us
consider the power spectrum of matter density perturbations, Pδδ(k), defined as 〈δ(k) δ(k′)〉 =

(2π)3 Pδδ(k) δD(k + k′). Within SPT and up to fourth order in δ1, we can write the ‘correlator’
〈δδ〉 ' 〈δ1δ1〉 + 〈δ2δ2〉 + 〈δ3δ1〉 (the obvious dependence on the wavevectors is understood here to
simplify notation). Therefore, Pδδ(k) can be approximated as

Pδδ(k) ' P(11)
δδ (k) + P(22)

δδ (k) + P(31)
δδ (k) , (2.7)

where the LO term P(11)
δδ (k) coincides with the linear power spectrum P11(k) while the next-to-

leading-order (NLO) corrections are

P(22)
δδ (k) = 2

∫
F2

2(q,k − q) P11(|k − q)|) P11(q)
d3q

(2π)3 , (2.8)

P(31)
δδ (k) = 3 P11(k)

∫
F3(q,−q,k) P11(q)

d3q

(2π)3 . (2.9)

A powerful diagrammatic technique has been introduced to conveniently perform the SPT
expansion of ensemble-averaged statistics (e.g. Bernardeau et al., 2002). This is analogous to the
method introduced by Feynman in quantum electrodynamics. In most cases, LO contributions
are associated with tree diagrams (in the sense of graph theory) and are thus called ‘tree-level
terms’. Evaluating these quantities does not require any integration (see e.g. P11(k) above). On
the other hand, terms associated with diagrams containing n-loops give rise to ‘n-loop corrections’
that require n integrations (see e.g. the 1-loop term P(22)

δδ (k)+ P(13)
δδ (k)). Note that, if the tree-level

term vanishes, the LO is given by the 1-loop terms (see e.g. section 2.2.3).

SPT mainly suffers from two limitations. First, being a perturbative technique, it is expected
to break down when and where |δ(x)| ' 1. Second, the gravitational collapse of an initially
cold distribution of collisionless DM develops multi-stream regions where the velocity field is
not single-valued. However, the pressureless-fluid approximation adopted by SPT does not
account for this phenomenon which alters the dynamics of the system. N-body simulations show
that, within the ΛCDM scenario, SPT provides rather accurate predictions for 2- and 3-point
statistics at redshifts z > 1 and k . 0.2 h Mpc−1 while it becomes increasingly imprecise at lower
redshifts (for the same wavenumbers) as the variance of the density perturbations approaches
unity (e.g. Carlson, M. White and Padmanabhan, 2009; Nishimichi et al., 2009; Blas, Garny
and Konstandin, 2014).

2.2.2 Biasing as an effective field theory

We are interested in describing how discrete objects (for example DM haloes or galaxies) trace
the smooth matter density field throughout the Universe. Since haloes assemble from the
gravitational collapse of matter on small scales and galaxies form within them, it is reasonable
to assume that some deterministic relationship exists between the density of matter and that
of the discrete tracers on large scales. Numerical simulations and simple toy models that
associate haloes to peaks in the initial density field provide supporting evidence in favour of this
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Chapter 2 Renormalisation of linear halo bias in N-body simulations

argument. However, the physics of halo and galaxy formation is complex, highly non-linear and
non-perturbative. Although we can simulate it with the help of a computer, we are not able
to make analytical predictions. Given these circumstances, for practical applications like the
interpretation of galaxy redshift surveys, it makes sense to opt for a simplified description that
holds true only on large scales.

Analogous problems in other fields of physics led to the development of effective field theories
(EFTs). We highlight here how the basic concepts of an EFT can be used to model large-scale
biasing. We first introduce the effective overdensity field of the tracers4, δh(x, t), which describes
their large-scale clustering, but is blind to their precise distribution on small scales. In order to
relate this quantity to the underlying mass-overdensity field, δ, it is necessary to identify all
possible dependencies that are compatible with the symmetries of the problem. Assuming that
the tracers are non-relativistic implies that gravitational physics is fully described in terms of the
(rescaled) peculiar gravitational potential φ, defined so that ∇2φ = δ. Taking into account the
equivalence principle and that δh is a scalar under rotations, it follows that δh can only depend
on scalar combinations of second spatial derivatives of the peculiar gravitational potential ∂i∂ jφ,

and first spatial derivatives of the peculiar velocity field ∂ j3
i (McDonald and Roy, 2009; Kehagias

et al., 2014; Senatore, 2015).

The second key step in the construction of an EFT for biasing is to consider that the physics
regulating the clustering of tracers is non-local in space and time. The material that forms a
tracer was dispersed within an extended patch of characteristic size R at early times and needed
a characteristic time T to assemble together. In general, R . 10 h−1 Mpc (the Lagrangian size of
galaxy clusters) which is small compared with the scales we want to describe using our EFT.
On the other hand, T is never short compared to the Hubble time. It follows that the effective
theory of biasing should be approximately local in space but non-local in time (Senatore, 2015).
In mathematical terms, this means that δh should depend on the cosmological perturbations
evaluated along the past worldlines of the fluid elements that end up forming the tracers at a
given location (or, better, within a given patch).

Since we are only interested in the large spatial scales, the third step is to expand the
generic (and unknown) functional δh in powers of the cosmological fluctuations and their spatial
derivatives (to account for the mild spatial non-locality). Note that the tensor ∂i∂ jφ is a
dimensionless quantity and its spatial derivatives need to be multiplied by a length scale of
order R in the expansion. It follows that all derivative corrections will be suppressed on scales
much larger than R. This is more easily seen in Fourier space. For instance, let us consider the
first derivative correction to terms that are proportional to δ, i.e. ∼ R2

∇
2δ (as we need a scalar

under rotations). In Fourier space this term is proportional to (kR)2 and thus heavily suppressed
for scales k � R−1. On the other hand, this also implies that the derivative expansion breaks
down on scales of order R.

Finally, the non-locality in time is accounted for by making some further hypotheses, namely
by assuming that cosmological perturbations evolve as in SPT. In this case, the expansion of δh
is re-organised to avoid duplication of terms (for instance the velocity divergence coincides with
the overdensity at linear order) and its coefficients are re-defined as integrals over time of the
original ones (Mirbabayi, Schmidt and Zaldarriaga, 2015; Angulo et al., 2015; Desjacques, Jeong
and Schmidt, 2018b; Desjacques, Jeong and Schmidt, 2018c).

4 The subscript ‘h’ refers to DM haloes, but the framework is applicable to any tracer.
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2.2 Tracer bias in cosmological perturbation theory

Up to third order in the cosmological perturbations, one thus obtains

δh = b0 + b1δ + b
∇

2δ
∇

2δ + b2δ
2

+ bs2 s2
+ b3δ

3
+ b

δs2δs2
+ bs3 s3

+ bΓ3
Γ3 , (2.10)

where we have (i) decomposed the tensor ∂i∂ jφ into its trace δ and the traceless part,

si j = ∂i∂ jφ −
1
3
δK

i j δ =

(
∂i∂ j∇

−2
−

1
3
δK

i j

)
δ = γi j δ , (2.11)

(with ∇−2 the inverse of the Laplacian operator and δK
i j the Kronecker symbol); (ii) introduced

the scalars s2
= si js ji, s3

= si js jkski; (iii) used the (rescaled) velocity potential φ3 such that

∇
2φ3 = θ to define the tensor pi j = ∂i∂ jφ3 −

1
3δ

K
i jθ and the operator5 Γ3 = s2

− p2
− (2/3)(δ2

− θ2)
with p2

= pi j p ji; (iv) included only the leading higher-derivative term ∝ ∇2δ, for simplicity.

In compact form, the bias expansion can be written as

δh =
∑

O

bO O , (2.12)

where the sum runs over a fixed basis of operators, O, that are compatible with the symmetries
and the evolution of cosmological perturbations while the bias parameters, bO, depend on the
characteristics of the population of tracers (e.g. the halo mass, the galaxy luminosity or the
intensity of a particular emission line).

The expressions above are meant to relate the spatial distribution of tracers on large scales
with the underlying long-wavelength cosmological perturbations in a deterministic way. However,
the short-wavelength fluctuations (to which our effective theory is blind by construction) also
play a role in determining the precise location of the tracers. In order to account for this
phenomenon in the theory, we introduce a certain degree of randomness in the bias expansion
by assuming that the bias coefficients have also a zero-mean stochastic component εO, i.e.

δh =
∑

O

(
bO + εO

)
O . (2.13)

Furthermore, it is customary to treat each stochastic term as a perturbation O(δ). For example,
to second order, we can write:

δh = b0 + ε0 + b1δ + b
∇

2δ
∇

2δ + ε1δ + ε
∇

2δ
∇

2δ + b2δ
2

+ bs2 s2 . (2.14)

Under the assumption that the stochastic terms do not correlate with the long-wavelength
cosmological perturbations, their statistical properties are fully determined by their auto- and
cross-correlation functions (or auto- and cross-spectra in Fourier space). In the literature, it is
often assumed that the cross-spectrum between εO and εO′ can be written as a series expansion
in k2,

ΥOO′(k) = Υ0,OO′ + Υ2,OO′k
2

+ Υ4,OO′k
4

+ . . . . (2.15)

Once again, this reflects the fact that δh should be determined by the value assumed by the
stochastic fields within an extended region of space and not only at one point. However, when

5 The bias expansion is sometimes written using the so-called second- and third-order ‘Galileon’ operators, G2(φ)
and G3(φ) The relation between this set of operators and ours is G2(φ) = s2

− (2/3) δ2 and G3(φ) = −δ3/9− s3 +δs2/2.
Note that Γ3 = G2(φ) − G2(φv).
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taken term by term, this expansion makes little sense in configuration space. While Υ0,OO′ gives
rise to a standard shot-noise term with a 2-point correlation that is proportional to the Dirac
delta distribution at zero lag, δD(r), the remaining terms generate contributions proportional to
∇

2nδD(r). These ‘contact terms’ (as they are generally dubbed in field theory) appear because
we are considering an asymptotic expansion in Fourier space that breaks down on small scales.
A more sophisticated treatment of the short-wavelength modes should then be used to discuss
the statistics of tracers in configuration space.

A note is in order regarding equations (2.10), (2.12), and (2.13). Implicit in the definition of
all fields is a low-pass smoothing procedure that isolates the long-wavelength modes to which
the theory applies. In particular, it is necessary to specify how the smoothing is done for
the non-linear terms like δ2 and s2. In fact, the long-wavelength modes of δ2 depend on the
short-wavelength modes of δ implying that δ2 cannot be reliably computed with a perturbative
approach and that it can grow large even at low k. Since we want to consider only the contribution
of the large-scale modes of the density perturbations, the only meaningful interpretation of
the r.h.s. in equations (2.10), (2.12), and (2.13) is to smooth the matter overdensity field first
and then use the low-pass filtered δ to evaluate the non-linear operators (Heavens, Matarrese
and Verde, 1998). Filtering out the short-wavelength modes with k > Λ is thus necessary for
several reasons: (i) as we have already mentioned, to only consider the scales that are described
by the theory; (ii) to ensure that |δ(x)| � 1 and a series expansion of the bias relation in the
cosmological perturbations makes sense; and (iii) to be able to apply SPT.

The ultimate goal of the effective theory of biasing is to model the observed n-point correlation
functions (and their corresponding multi-spectra in Fourier space) for tracers on large scales. In
this work, we focus on two-point statistics in Fourier space. The model predictions are obtained
by correlating the Fourier transform of equation (2.13) either with itself or with the Fourier
transform of the overdensity field. This provides a systematic expansion of the spectra organized
according to the importance of its terms based on a power-counting argument. The underlying
assumption is that there exist two well-defined scales: a non-linearity scale Rnl (at which physics
becomes non-perturbative and the expansion in powers of the cosmological fluctuations breaks
down) and a non-locality scale L (at which the expansion in powers of the higher-derivative
terms breaks down). The different contributions to the spectra scale as powers of kL and kRnl.
Truncating the expansion at a given order thus provides results with reliable error estimates
without referencing any quantity outside of the theory. The bias parameters and the coefficients
that define the statistical properties of the stochastic fields are free parameters that need to be
tuned in order to match observations. However, since the non-linear operators of the theory are
heavily dependent on the smoothing scale, the best-fitting coefficients will inherit a dependence
on Λ. As we have already mentioned in the introduction, an analogy can be established between
this description of galaxy biasing and the Wilsonian renormalisation in quantum field theory. In
brief, the bias series can be re-organized so that to eliminate the so-called ‘UV-sensitive’ terms
that depend on Λ order by order in the perturbative expansion. This is equivalent to expressing
the bias relation in terms of a set of ‘renormalised’ operators [O] built from the original operator
basis O

δh =
∑
[O]

(b[O] + ε[O]) [O] . (2.16)
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2.2 Tracer bias in cosmological perturbation theory

2.2.3 Bias renormalisation

The bias renormalisation forms the main subject of our investigation and, for this reason, we
explore the related concepts in more detail.

UV-sensitivity of composite operators

The bias expansion given in equation (2.13) contains operators obtained by multiplying two
fields evaluated at the same spatial location, like δ2 and s2. These ‘local operators’ or ‘composite
operators’ (as they are generally called in field theories) are very sensitive to the short-wavelength
modes of δ that are not accurately modelled by SPT. This can be easily understood, for example,
by inspecting the Fourier transform of δ2:

δ2(k) =

∫
δ(q) δ(k − q)

d3q

(2π)3 . (2.17)

Even for small values of k, δ2 receives contributions from all scales. For instance, its expectation
value,

〈δ2(x)〉 =
1

2π2

∫ ∞

0
q2 Pδδ(q) dq ≡ σ2 , (2.18)

can get very large (or even diverge) if the density perturbations have substantial power at
small scales. Similarly, the cross spectrum of δ2 with the matter-density fluctuations, defined
as 〈δ2(k) δ(k′)〉 = (2π)3 P

δ2δ
(k) δD(k + k′), coincides with an integral over all scales of the matter

bispectrum

P
δ2δ

(k) =

∫
Bδδδ(q,k − q,−k)

d3q

(2π)3 , (2.19)

where 〈δ(p) δ(q) δ(k)〉 = (2π)3 Bδδδ(p, q, k) δD(p + q + k). All this implies that, if a low-pass filter
W(k,Λ) is applied to δ, then δ2(k) inherits a strong dependence on Λ. In brief, we say that the
composite operators δ2 and s2 are UV-sensitive.

Composite operators in SPT

To LO in SPT, we can write the matter power spectrum P(LO)
δδ (k) = P11(k) and the bispec-

trum B(LO)
δδδ (k1, k2, k3) = B(112)

δδδ (k1, k2, k3) + B(121)
δδδ (k1, k2, k3) + B(211)

δδδ (k1, k2, k3). By substituting these
approximations in equations (2.18) and (2.19) one obtains

σ2
(LO) = lim

Λ→∞

1

2π2

∫ Λ

0
q2 P11(q) dq ≡ lim

Λ→∞
σ2

1(Λ) , (2.20)

and

P(LO)
δ2δ

(k) =

∫ [
B(112)
δδδ (q,k − q,−k) + cyclical

] d3q

(2π)3

= P(22)
δ2δ

(k) + P(31)
δ2δ

(k) , (2.21)

45



Chapter 2 Renormalisation of linear halo bias in N-body simulations

with

P(22)
δ2δ

(k) = 2
∫

F2
(
q,k − q

)
P11

(
q
)

P11
(
|k − q|

) d3q

(2π)3 , (2.22)

and

P(31)
δ2δ

(k) = 4P11
(
k
) ∫

F2
(
− q,k

)
P11

(
q
) d3q

(2π)3 . (2.23)

The behaviour of these cross-spectra at large scales (k → 0) is usually determined by using
spherical coordinates (with polar axis k) and limiting the integration in q with an upper cutoff
Λ. It turns out that

P(31)
δ2δ

(k) =
68
21
σ2

1(Λ) P11(k) , (2.24)

which shows that the normalisation of P(31)
δ2δ

(k) depends on Λ (Heavens, Matarrese and Verde,

1998). This is an example of a UV-sensitive term. On the other hand, the k → 0 limit of P(22)
δ2δ

(k)
does not show any cutoff dependence.

Renormalisation and counterterms

Fur illustrative purposes only, let us now consider a simplified bias expansion such that

δh(x) = b0 + b1δ(x) + b2δ
2(x) (2.25)

and evaluate the expectation value of δh at NLO in SPT.

It is straightforward to obtain that 〈δh(x)〉 = b0 + b2σ
2
1(Λ). Since 〈δh〉 is an observable which

is identically equal to zero, if we want to identify our truncated perturbative result with the
actual measurement, it is necessary to set b0 + b2σ

2
1(Λ) = bR

0 = 0. This leads to the modified bias
expansion δh(x) = bR

0 + b1δ(x) + b2[δ2(x) − σ2
1(Λ)] = b1δ(x) + b2[δ2(x) − σ2

1(Λ)].
Starting from this expression, we now derive the cross spectrum between the tracer density

field and the matter density to 1-loop in SPT. The tree-level result is b1P11(k), while the 1-loop
corrections give b2

[
P(22)
δ2δ

(k) + P(31)
δ2δ

(k)
]
. Equation (2.24) shows that the loop corrections contain

a term which coincides with the tree-level result rescaled by a cutoff-dependent coefficient.
Remarkably, the combination [b1 + b2 (68/21)σ2

1(Λ)] P11(k) gives the dominant contribution when
k → 0. Inspired by Wilsonian renormalisation of field theories where the UV divergences are
cancelled by a redefinition of the parameters of the theory, McDonald (2006) proposes to replace
b1 + b2 (68/21)σ2

1(Λ) with the new (‘renormalised’ or ‘observable’) linear bias coefficient bR
1 . The

resulting expression for the cross spectrum at one loop will thus be

Pδhδ
(k) = bR

1 P11(k) + b2 P(22)
δ2δ

(k) . (2.26)

Here, bR
1 should be considered as a free parameter of the model that can be adjusted to fit

observational data. On the other hand, the ‘bare’ linear bias coefficient b1 should be merely
considered as a mathematical tool to perform calculations and should not be assigned any
physical meaning. This technique can be iterated to renormalise higher-order bias parameters
(McDonald, 2006; McDonald and Roy, 2009). The net effect of this procedure is that no
UV-sensitive terms appear in the theoretical expressions for the ensemble averaged statistics of
the tracers.

A different way to understand renormalisation is through the introduction of counterterms in
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2.2 Tracer bias in cosmological perturbation theory

the bias expansion. For instance, let us re-consider the example above. In order to eliminate the
UV-sensitive term that appears in the NLO expression for 〈δh(x)〉, we could add the constant
counterterm ∆b0 to the r.h.s. of equation (2.25) and get 〈δh(x)〉 = b0 +∆b0 +b2σ

2
1(Λ). By requiring

that the expectation value of the theory coincides with the observed value (i.e. zero), we thus
get ∆b0 = −b0 − b2σ

2
1(Λ). The new bias expansion (including the counterterm) can thus be

re-organised as follows:
δh(x) = b1δ(x) + b2

[
δ2(x)

]
0
, (2.27)

where
[
δ2(x)

]
0
≡ δ2(x) −σ2

1(Λ) denotes a new operator compatible with the renormalisation of b0.

Next, we could add the counterterm ∆b1δ(x) to the bias expansion in order to cancel out the
UV-sensitive term in the NLO expression for the two-point statistic Pδhδ

(k). In fact, the new term

generates the correction ∆Pδhδ
(k) = ∆b1P11(k) and by imposing that b1 + ∆b1 + b2 (68/21)σ2

1(Λ) =

bR
1 , we finally obtain

δh(x) = bR
1 δ(x) + b2

[
δ2(x)

]
1
, (2.28)

where
[
δ2(x)

]
1
≡ δ2(x) − σ2

1(Λ) [1 + (68/21) δ(x)] represents the quadratic operator which is
consistent with the renormalisation of both b0 and b1.

The examples above illustrate how the linear bias coefficient b1 and the field δ2 can be
consistently renormalised starting from the simplified model given in equation (2.25). Considering
a more general bias expansion that includes additional composite operators requires further
calculations. For instance, we might want to add a non-local bias term proportional to s2. In
this case, all the perturbative calculations we made to compute spectra and cross-spectra for δ2

can be easily generalised to s2. By introducing the Fourier-space operator

S 2
(
k1,k2

)
= γi j(k1) γ ji(k2) =

(
k1 · k2

k1k2

)2

−
1
3
, (2.29)

one finds that 〈s2(x)〉 = (4/3)σ2 and

P(31)
s2δ

(k) = 4P11
(
k
) ∫

F2
(
− q,k

)
S 2(q,k − q) P11

(
q
) d3q

(2π)3 , (2.30)

which is UV-sensitive as (McDonald and Roy, 2009)

lim
k→0

P(31)
s2δ

(k)

P11(k)
=

136
63

σ2
1(Λ) . (2.31)

Thus, s2 needs to be renormalised. Analogous considerations apply to other composite operators.

A systematic procedure for renormalising the bias expansion order by order in PT has been
presented by Assassi et al. (2014). The renormalisation conditions for the generic operator O
appearing in the bias expansion are

〈[O](q) δ1(q1) . . . δ1(qm)〉 = 〈O(q) δ1(q1) . . . δ1(qm)〉(LO) , (2.32)

where qi → 0 ∀i. In a diagrammatic representation, this means that the counterterms should be
chosen so that to cancel the loop corrections obtained from diagrams in which different Fourier
modes of δ that contribute to the operator O are contracted among themselves as in equations
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(2.23) and (2.30).

2.2.4 Cross-spectrum between matter and tracers

In this paper, we use a large suite of N-body simulations to test how accurately the third-order
bias expansion given in equation (2.10) describes the spatial distribution of biased tracers
(namely, dark-matter haloes with different masses). In order to focus on the deterministic terms,
we only consider the cross-spectrum between the matter-density field and the tracers, Pδhδ

(k).
As a reference, we provide here the perturbative result for this quantity (to NLO) expressed in
terms of the renormalised linear bias parameter bR

1 (McDonald and Roy, 2009; Assassi et al.,
2014; Saito et al., 2014; Senatore, 2015; Desjacques, Jeong and Schmidt, 2018b):

Pδhδ
(k) =

(
bR

1 + b
∇

2δ
k2

)
[P(LO)

δδ (k) + P(NLO)
δδ (k)] + b2 P[δ2]1δ

(k)

+ bs2 P[s2]1δ
(k) + bΓ3

PΓ3δ
(k) + Υ2,ε1,εm

k2 . (2.33)

In the expression above, we have introduced the LO cross spectra of the renormalised operators,

P[δ2]1δ
(k) = lim

Λ→∞
P(22)
δ2δ

(k) , (2.34)

P[s2]1δ
(k) = lim

Λ→∞

[
P(22)

s2δ
(k) + Bs2δ

(k)
]
, (2.35)

where6

P(22)
s2δ

(k) = 2
∫

F2(q,k − q) S 2(q,k − q) P11(q) P11(|k − q|)
d3q

(2π)3 , (2.36)

Bs2δ
(k) = P(31)

s2δ
(k) −

136
63

σ2
1(Λ) P11(k) . (2.37)

On the contrary, the Γ3 operator does not require renormalisation (e.g. Assassi et al., 2014) and
we have

PΓ3δ
(k) = BΓ3δ

(k) = lim
Λ→∞

P(31)
Γ3δ

(k) , (2.38)

with7

P(31)
Γ3δ

(k) = 4P11(k)
∫ [

F2(−q,k) −G2(−q,k)
] (q · (k − q)

q |k − q|

)2

− 1

 P11(q)
d3q

(2π)3 . (2.39)

A few notes are in order here. First, all terms proportional to P11(k) have been used to define
the renormalised linear bias parameter as a function of the bare bias coefficients:

bR
1 = b1 +

(
68
21

b2 +
136
63

bs2 + 3b3 +
2
3

b
δs2

)
σ2

1(Λ) . (2.40)

6 Equation (2.24) implies that B
δ2δ(k) = 0 as P(31)

δ2δ
(k) ∝ P11(k).

7 The perturbative contributions to Γ3 vanish at second order.
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This makes sure that Pδhδ
(k)→ bR

1 Pδδ(k) in the limit k → 0. Secondly, although the perturbative

calculations give bR
1 P(LO)

δδ (k) + b1 P(NLO)
δδ (k), this expression has been replaced with bR

1 [P(LO)
δδ (k) +

P(NLO)
δδ (k)] in equation (2.33), the difference being proportional to σ2

1 P(NLO)
δδ (k) and thus higher-

order in the perturbations. As we will show later, this substitution is a source of error on mildly
non-linear scales. Thirdly, the third-order local bias coefficient b3 is renormalised into bR

1 and
does not appear in equation (2.33). Fourthly, it turns out that the functions Bs2δ

(k) and BΓ3δ
(k)

are proportional to each other and therefore a single bias parameter (a linear combination of bs2

and bΓ3
) could be used to scale their total contribution (McDonald and Roy, 2009). Finally, no

direct contributions from the stochastic bias coefficients εO appear in the r.h.s. of equation (2.33).
This is because these zero-mean stochastic fields are assumed to be independent of δ. If, however,
matter-density perturbations are described in terms of an effective deterministic field δeff plus
stochastic contributions εm (from the small-scale modes that are not included in the theory),
then the correlation between the stochastic terms ε1 and εm should contribute to P(NLO)

δhδ
(k).

The corresponding cross spectrum is represented by the term Υ2,ε1,εm
k2

= (∂Υεεm
/∂k2)k=0 k2 in

equation (2.33). Theoretical considerations suggest that this term should be highly suppressed
with respect to the other NLO corrections (Senatore, 2015; Angulo et al., 2015).

2.2.5 Impact of filter functions

Equations (2.24) and (2.31) are obtained from equations (2.23) and (2.30) by performing the
integration over q in spherical polar coordinates. The integration range extends over the full
solid angle around k but is limited to the region q < Λ for the radial component. We show here
that this calculation does not exactly give what one would obtain by smoothing the density field
with a sharp cutoff in k space as, for instance, we will do later when analyzing N-body data.

As mentioned in section 2.2.2, the bias expansion applies to fields that have been low-pass
filtered. Let us consider the smoothed field W(k) δ(k) with W(k) a low-pass, spherically symmetric,
window function. In this case, equation (2.23) should be replaced with

P(31)
δ2δ

(k) = 4P11
(
k
)
W

(
k
) ∫

F2
(
− q,k

)
P11

(
q
)
W

(
q
)

W
(
|k − q|

) d3q

(2π)3 . (2.41)

For simplicity, in this work, we use a spherical top-hat filter in k space,

W(k) =

1 if k < Λ ,

0 otherwise .
(2.42)

The factor W(|k − q|) in the integrand of equation (2.41) thus limits the integration range to the
region where

Λ
2 > |k − q|2 = k2

+ q2
− 2qkµ , (2.43)

with µ = (k · q)/(kq) the cosine of the angle between k and q. This turns out to be a constraint
on µ at fixed q,

µ >
k2

+ q2
− Λ

2

2qk
= µmin , (2.44)

and implies that, for q > Λ − k, the integration range in µ will have a lower bound µmin > −1.
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The complete result for 0 < k < Λ is

P(31)
δ2δ

(k) = P11(k)W(k)
68
21
σ2

1(Λ − k) + 2
∫ Λ

Λ−k

∫ 1

µmin

F2
(
− q,k

)
dµ P11

(
q
)q2dq

2π2

 , (2.45)

where the integral over µ reduces to∫ 1

µmin

F2
(
− q,k

)
dµ =

17
21
−

51
112

(
k
q

+
q
k

)
+

5
28

Λ
2

kq
+

17
336

k3

q3 +
q3

k3


+

3
112

 Λ
4

k3q
+

Λ
4

kq3

 − 5
56

Λ
2k

q3 +
Λ

2q

k3

 +
1

84
Λ

6

k3q3 . (2.46)

It follows that

P(31)
δ2δ

(k) = P11(k)W(k)
{

68
21
σ2

1(Λ − k) +
34
21

[
σ2

1(Λ) − σ2
1(Λ − k)

]
+

 17
168

k3
−

5
28

Λ
2k +

3
56

Λ
4

k
+

1
42

Λ
6

k3

 H−1(k) +

−51
56

k +
5
14

Λ
2

k
+

3
56

Λ
4

k3

 H1(k)

+

−51
56

1
k
−

5
28

Λ
2

k3

 H3(k) +
17

168
1

k3 H5(k)
}
. (2.47)

where

Hn(k) =

∫ Λ

Λ−k
qn P11(q)

dq

2π2 (2.48)

and σ2
1(Λ) − σ2

1(Λ − k) = H2(k). By Taylor expanding the Hn(k) functions to fourth order, we
obtain the linear expansion of the expression in the curly parentheses in equation (2.47),

P(31)
δ2δ

(k)

P11(k)W(k)
=

68
21
σ2

1(Λ) −
1
3

Λ
3P11(Λ)

2π2 +

−17
28

Λ
2P11(Λ)

2π2 +
1
8

Λ
3P′11(Λ)

2π2

 k + O(k2) . (2.49)

This result has some implications for the renormalisation of the bias expansion. First, the
resulting expression for P(31)

δ2δ
(k) is not proportional to P11(k) at finite wavenumbers. Moreover, the

limit for k → 0 of equation (2.49) is not (68/21)σ2
1(Λ) (contrary to what claimed by Desjacques,

Jeong and Schmidt, 2018b, after their equation 2.122) and a different cutoff-dependent coefficient
should be used to renormalise b1. Note, however, that, for a ΛCDM cosmology, the k → 0 limit
reduces to (2.24) for Λ → +∞. We will return to these issues and present a comparison with
N-body simulations in section 2.4.3. Analogous calculations can also be performed for s2 and
other composite operators.

2.3 Numerical methods

In this section, we introduce our suite of N-body simulations and describe the numerical
techniques we use to build the continuous density fields, as well as the auto and cross power
spectra that enter the bias expansion.
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2.3.1 N-body simulations
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Figure 2.1: Top: Average matter power spectrum Pδδ(k) and halo-matter cross spectra Pδhδ
(k) (for the mass

bins M1,M2,M3 defined in Section 2.3.1) measured from our 40 simulations. Shaded regions represent the
standard error of the mean. Bottom: Corresponding effective bias functions Pδhδ

(k)/Pδδ(k). The dashed
lines indicate a constant fit to the five leftmost data points.

We use the SPH code gadget-2 (Springel, 2005) to run 40 DM-only simulations. Their main
characteristics are summarised in Table 2.1. We set up the initial conditions (IC) at zIC = 50 with
the music code (Hahn and Abel, 2011) employing the Planck 2015 (Planck Collaboration, 2016)
cosmology, i.e. h = 0.677, σ8 = 0.816, ns = 0.967, Ωm = 0.3089, Ωb = 0.0486 and ΩΛ = 0.6911.

To identify gravitationally bound structures, we use the rockstar halo finder (Behroozi,
Wechsler and Wu, 2013b). This algorithm uses the phase-space distribution of the simulation
particles to detect spherical haloes with a virial mass defined as in Bryan and Norman (1998).
We split the halo population into three mass bins based on the number of halo particles. In
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Figure 2.2: The fields that are included in the bias expansion. We show a 2D slice extracted from one
N-body simulation. The grid of images shows different fields along the vertical direction (as indicated by
the labels) and different values of the cutoff scale Λ (in h Mpc−1) in the horizontal direction. All the fields
have been standardised to zero mean and unit variance. Note that the images only cover 80 per cent of
the box in the vertical direction.

52



2.3 Numerical methods

Table 2.1: The set of parameters that characterise our suite of Nsim simulations: Lbox denotes the box
length, Npart the number of particles, Mpart the particle mass, Lsoft the softening length, and zIC the initial
redshift.

Nsim Lbox Npart Mpart Lsoft zIC Cosmology

40 1200 h−1 Mpc 5123 1.1037 × 1012h−1 M� 0.078 h−1 Mpc 50 Planck 2015

Table 2.2: The variance of the matter density field as a function of the cutoff scale Λ at z = 0. We contrast
the results obtained from linear SPT (σ2

1) with those measured in the simulations (σ2
sim).

Λ [h Mpc−1] σ2
1 σ2

sim
0.05 0.0377 0.0343
0.10 0.1672 0.1513
0.20 0.5430 0.5223

the lowest-mass bin, M1, haloes contain between 40 and 79 particles, corresponding to a mean
mass of M1 = 6.15 × 1013h−1M�. The second bin includes haloes with 80 to 159 particles
(M2 = 1.21 × 1014h−1M�), while more massive structures with ≥ 160 particles fall into the
highest-mass bin (M3 = 3.17 × 1014h−1M�).

2.3.2 Measuring smoothed fields and spectra

We employ a ‘cloud-in-cell’ (CIC) interpolation method to build the gridded overdensity fields δ
and δh starting from the positions of the N-body particles and of the haloes, respectively. The
fields are sampled on a regular Cartesian mesh with 2563 cells that fully covers the simulation
box. After correcting for the mass-assignment scheme, we use the fast-Fourier-transform (FFT)
algorithm to obtain δ(k) and δh(k). In the top panel of Fig. 2.1, we show the matter power
spectrum Pδδ(k) and the halo-matter cross spectra Pδhδ

(k) averaged over our set of simulations for
each halo mass bin. The shaded regions indicate the standard error of the mean. In the bottom
panel, we show the ratio Pδhδ

(k)/Pδδ(k) which can be interpreted as an effective scale-dependent
bias. This function grows with k, and this effect becomes more prominent for more massive
haloes. In order to emphasize this trend, we fit a constant to the five leftmost data points and
plot the result with a dashed line. The discrepancy between the solid and dashed line provides
a strong motivation for considering non-linear bias models.

Low-pass smoothing is applied in Fourier space by multiplying the FFT of the fields by the
window function W(k) given in equation (2.42). We use three different values for the cutoff scale
Λ ensuring that the variance of the δ field is smaller than unity (see Table 2.2). We also apply
spectral methods to compute the Fourier transforms of si j and ∇2δ starting from δ(k). In order
to compute Γ3, we first build three momentum grids (one for each Cartesian component of the
momentum vector) by applying the CIC interpolation to the particle velocities. To get the
velocity grids from these we divide the momentum components by the density. We apply the
FFT to these grids so that we can first compute θ(k) = ik · v(k)/(aH f ) and then pi j(k). Finally,

we transform all the smoothed fields back to real space and compute the quadratic fields δ2(x),
s2(x), p2(x) and Γ3(x).

A sample slice extracted from one of the simulation boxes at z = 0 for all fields is shown in
Fig. 2.2. From top to bottom we plot the different fields, from left to right we change the cutoff
scale Λ. We standardised the fields such that dark tones indicate large deviations from than the
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mean. As expected, larger values of Λ give rise to more detailed structure in all panels. The
most striking feature is that δh and δ always look very similar. This is not surprising since δh ∝ δ

at LO in the bias expansion. For larger Λ, the similarity is less evident, reflecting the increased
importance of higher-order and derivative terms. The Laplacian of δ looks qualitatively similar
to δ for small Λ, whereas, for large Λ, short-wavelength Fourier modes are enhanced with respect
to the density field. The field δ2 presents concentrated high positive peaks on top of a rather
uniform background, somewhat reminiscent of shot noise (see also Heavens, Matarrese and
Verde, 1998). Around those peaks the signal of s2 becomes strong in almost spherical shells
which are particularly evident for large Λ. Finally, for Λ = 0.2 h Mpc−1, Γ3 presents high peaks
at the same locations as δ2 and s2 while this correspondence is less striking for smaller Λ. Not
visible in the figure is that the relative amplitudes of the different fields change dramatically
with the cutoff scale. Whereas, for Λ = 0.05 h Mpc−1, they are clearly ordered as expected from
SPT, for Λ = 0.2 h Mpc−1, δ, δ2, s2 and Γ3 are all of order unity.

We employ standard methods to compute the auto and cross power spectra between the fields
using 10, 20 and 40 linearly-spaced bins in k for Λ = 0.05, 0.1, and 0.2 h Mpc−1, respectively.

2.4 Renormalisation in simulations

In this section, we measure the UV-sensitivity of the composite operators and implement the
renormalisation framework directly in our simulations.

In the top panels of Fig. 2.3, we show the average over the 40 simulations of the cross spectra
between different composite operators and δ for three values of Λ. We plot P

δ2δ
(k) on the

left-hand side and Ps2δ
(k) on the right-hand side. As expected, our results are UV-sensitive as

the amplitude of the spectra changes dramatically with Λ. Qualitatively, this is consistent with
the perturbative calculations presented in Section 2.2.3.

We want to build a procedure that removes the UV-sensitive part from the cross spectra. In
the perturbative calculations, this term is [limq→0 P(31)

Oδ (q)/P11(q)] P11(k). For instance, if O = δ2,

then P(31)
Oδ (q) is obtained from the correlator 2〈(δ2δ1) δ1〉 (parentheses here denote the fields

contributing to δ2). This is the LO term of 〈δ2δ1〉. In the simulations, we cannot isolate δ2 from
all the other non-linear terms. However, if the perturbative ansatz holds true on the largest
scales, we can safely assume that 〈δ2δ1〉 is dominated by the LO part when k → 0. Therefore,
it makes sense to measure P

δ2δ1
(k) from the simulations and compute the ‘renormalised cross

spectrum’

P[δ2]1δ
(k) = P

δ2δ
(k) −

P
δ2δ1

(kmin)

P11(kmin)
P11(k)

= P
δ2δ

(k) − α
δ2(Λ) P11(k) , (2.50)

where kmin denotes the bin containing the lowest wavenumbers that can be accessed in our
simulation boxes and P11(k) is computed directly by re-scaling the IC of the simulations. Similarly,
for s2, we have

P[s2]1δ
(k) = Ps2δ

(k) −
Ps2δ1

(kmin)

P11(kmin)
P11(k)

= Ps2δ
(k) − αs2(Λ) P11(k) . (2.51)
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Figure 2.3: Average cross spectra Pδ2δ(k) and Ps2δ(k), measured from our 40 simulations for different values
of Λ. Shaded regions represent the standard error of the mean. Top: The ‘full’ spectra, obtained from
cross-correlating the quadratic operators δ2 and s2 with δ. Middle: The UV-sensitive part of the spectra,
obtained by correlating δ2 and s2 with δ1. Bottom: The renormalised spectra, obtained by subtracting
the UV-sensitive terms from the full spectra. A symmetric logarithmic scale on the y axis is used for
quantities that assume both positive and negative values. The vertical dashed lines indicate the locations
of the different cutoff scales.
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Figure 2.4: The top panel shows the k-dependent growth factor Deff(k), measured in our simulations by
using equation (2.52). The solid line and the shaded region indicate the average over the 40 realisations
and its error, respectively. The hatched region is magnified in the bottom panel where we fit a constant
(solid) and a linear function of k (dashed) to Deff(k) measured at the first four multiples of the fundamental
frequency 2π/Lbox (data points with error bars). The dotted line represents the linear growth factor for
the adopted cosmology, D = 40.015.

2.4.1 Measuring the linear growth factor

In order to implement the renormalisation procedure sketched above, we need the linear density
field δ1 evaluated at z = 0 in the N-body simulations. This is obtained by multiplying the IC by
the linear growth factor D. Although D can be computed from the cosmological parameters
by performing a numerical integration (D = 40.015 at z = 0), the result does not necessarily
match the actual growth of perturbations in the simulations which only provide an approximate
solution. Previous studies have shown that different N-body codes might differ by up to 0.3 per
cent in the large-scale normalization of the matter power spectrum at z = 0 which corresponds
to a 5 per cent error on D (see e.g. Fig. 1 in Schneider et al., 2016). Since the success of the
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2.4 Renormalisation in simulations

Table 2.3: The factors αδ2 (Λ) and αs2 (Λ) defined in equations (2.50) and (2.51). The values indicate the
average over the simulations and the uncertainty is the standard error of the mean.

Λ [h Mpc−1] α
δ2(Λ) αs2(Λ)

0.05 0.072 ± 0.001 0.046 ± 0.001
0.10 0.349 ± 0.006 0.228 ± 0.004
0.20 1.261 ± 0.017 0.834 ± 0.013

renormalisation procedure relies on the subtraction of two signals with comparable amplitudes
to get a much smaller one, we need to make sure that we know the precise value of the growth
factor realized in the simulations. Therefore, we proceed as follows. First, we measure an
‘effective’ scale-dependent growth function directly from our simulations as

Deff(k) =
〈δ(k, z = 0)
δ1(k, zIC)

〉
k bin

(2.52)

where the average is taken over the same bins of k as the spectra and we have explicitly written
the redshift at which the fields are evaluated. The result for k < 0.03 h Mpc−1 is shown in the top
panel of Fig. 2.4 where the shaded region indicates the error of the mean over the simulations.
Note that, as expected from theoretical considerations, Deff decreases with k on these scales.
We are interested in the limit of this function for k → 0. For this reason, we only consider the
leftmost bin and analyze the signal at the level of single Fourier modes (see the bottom panel
of Fig. 2.4). In order to extract the limit, we fit a constant (Deff = 39.98 ± 0.07, dotted) and a
linear function of k (Deff(k) = 40.09± 0.31− (13± 39) (k/1 h Mpc−1), dashed) to the measurements.
The slope of the linear fit is consistent with zero within the errors. Furthermore, the two fits
give consistent limits for k → 0 which are also compatible with the expected value for D. For
our calculations, we therefore use D = 39.98.

2.4.2 Renormalising the spectra

We are now ready to compute P
δ2δ1

(k) and Ps2δ1
(k) as well as the renormalised spectra P[δ2]1δ

(k)
and P[s2]1δ

(k). A note is in order here. The IC of our simulations are Gaussian and all the
three-point correlators of δ1 should, in principle, vanish. In practice, however, we measure very
noisy non-zero values for P

δ2
1δ1

(k) and Ps2
1δ1

(k). In the perturbative framework, these spectra
coincide with the tree-level terms of P

δ2δ
(k) and Ps2δ

(k). Therefore, in order to improve the
quality of our results, we subtract the noisy terms from all the non-linear cross spectra appearing
on the r.h.s. of equations (2.50) and (2.51). Our final results for P

δ2δ1
(k) and Ps2δ1

(k) are shown
in the middle panels of Fig. 2.3. As expected, they show a similar behaviour as a function of
both Λ and k with respect to P

δ2δ
(k) and Ps2δ

(k). However, when k approaches Λ their signal is
suppressed. The corresponding values of α

δ2(Λ) and αs2(Λ) are presented in Table 2.3.

We finally compute the renormalised spectra P[δ2]1δ
(k) and P[s2]1δ

(k) from equations (2.50)

and (2.51). We first obtain them for each simulation individually and then perform an average.
The results are shown in the bottom panels of Fig. 2.3. At large scales, spectra obtained with
different values of Λ are now compatible within the errorbars while they differ when k ' Λ. This
means that the renormalisation procedure was successful.
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Chapter 2 Renormalisation of linear halo bias in N-body simulations

2.4.3 Comparing spectra from simulations and SPT
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Figure 2.5: The top panels show the UV-sensitive spectra Pδ2δ1
(k) (left) and Ps2δ1

(k) (right) divided by the
linear matter power spectrum. Plotted are the average spectra measured from the simulations for different
values of Λ (solid). Shaded regions represent the standard error of the mean. For comparison, the dashed
curves represent P(31)

δ2δ
(k)/P11(k) and P(31)

s2δ
(k)/P11(k) computed from SPT accounting for the filter functions

– see equation (2.41) and the analogue for s2. Likewise, the horizontal dotted lines indicate the values
68/21σ2 and 136/63σ2 – see equations (2.24) and (2.31). Differently, the vertical dashed lines mark
the locations of the different cutoff scales. The bottom panels show the renormalised spectra P[δ2]1δ

(k)
(left) and P[s2]1δ

(k) (right) measured from the simulations (solid). Shaded regions represent the standard
error of the mean. Also plotted are the perturbative results evaluated by taking the filter functions into
account (dashed).

In the top-left panel of Fig. 2.5, we show a comparison between P(31)
δ2δ

(k), calculated with

SPT (equation (2.24), dashed-dotted), with SPT including filter functions (equation (2.41),
dashed), and P

δ2δ1
(k) that we measure from the simulations (solid). We repeat the analysis in

the top right panel for P(31)
s2δ

(k) and Ps2δ1
(k). Equations (2.24) and (2.31) show that in SPT the

UV-sensitive terms can be written as a Λ-dependent prefactor times P11(k). Therefore, in order
to conveniently compare the numerical results to the SPT predictions, we always plot the ratios
of the cross spectra with P11(k). The measurements from the simulations (solid) decrease with k
and are in excellent agreement with the SPT results when filter functions are taken into account
(dashed). Note that when k → 0, the curves do not assume the values 68/21σ2 and 136/63σ2
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2.5 Measuring bias parameters

(dotted), but stay below them (as described by e.g. the first line of equation (2.49) for δ2). The
logarithmic difference between the solid and dotted curves decreases for larger values of Λ. This
result confirms the discussion presented in Section 2.2.5.

In the bottom panels of Fig. 2.5 we compare the renormalised spectra measured from the
simulations (shown already in the bottom panels of Fig. 2.3 in logarithmic scale) with the
theoretical predictions including filter functions. We find good agreement at all k for small
values of Λ. For Λ = 0.2 h Mpc−1, however, the theoretical results differ more markedly from the
simulation measurements. This suggests either that higher-order terms should be accounted for
in order to match the N-body results, or that the perturbative expansion starts breaking down
at these scales and redshifts.

2.5 Measuring bias parameters

We now measure the bias parameters by fitting Pδhδ
(k) with different bias models, renormalised

and not. First, we describe our Bayesian fitting routine that takes into account the correlations
between the different spectra extracted from our simulations. Subsequently, we discuss how many
bias parameters are needed to optimally describe our data by using Bayesian model-comparison
techniques. Finally, we present the best-fitting parameters.

2.5.1 Fitting method

In this section, we introduce the Bayesian method we use to fit the bias parameters. Readers
who are more interested in the results than in the statistical techniques can directly move to
section 2.5.3.

Our goal is to fit a model for Pδhδ
(k) to our simulation suite, that can schematically be written

as Pδhδ
(k) =

∑
O bO POδ(k). Contrary to previous work in the field, we do not rely on perturbation

theory, but we measure the spectra POδ(k) together with Pδhδ
(k) from the simulation boxes.

This means that both the dependent and the independent variables in our fit are affected by
statistical errors. Since these measurement errors are correlated (as they originate from the
same underlying density field), we need to account for their covariance matrix C. In practice,
we treat each realisation as a repeated measure of all the spectra and we infer the best-fitting
parameters by writing a global likelihood function for the bias parameters.

To simplify the notation, we write all the cross spectra for a given k bin as a multi-dimensional
vector y and their noisy estimates as ŷ = y + η, where η denotes the measurement error. We
assume that the estimator of all yi is unbiased and that the errors are drawn from a multi-variate
Gaussian distribution with covariance matrix C as stated above. It follows that the probability
of measuring ŷ is

P(ŷ) =
1

4π2 √det C
exp

[
−

1
2

(ŷ − y)TC−1(ŷ − y)
]
. (2.53)

We now order the components of the vectors so that Pδhδ
(k) appears first. We can thus write

y1 = β2y2 + β3y3 + · · · + βnyn (where the coefficient βi represent the n − 1 bias parameters that
characterize a model). The likelihood function for the model parameters (β, y) given the data is
then

L(β, y) ∝ P(ŷ|β, y) =
1

4π2 √det C
exp

[
−

A
2

]
, (2.54)
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Chapter 2 Renormalisation of linear halo bias in N-body simulations

with8

A = C−1
11 (ŷ1 − βiyi)

2
+ 2 C−1

1 j (ŷ1 − βiyi)(ŷ j − y j) + C−1
i j (ŷi − yi)(ŷ j − y j) . (2.55)

We then marginalize over the unknown true spectra y, i.e.

L(β) ∝
∫ ∞

−∞

L(β, y) dny . (2.56)

This is easily achieved after rewriting the integrand in the form of a n-dimensional Gaussian
distribution. We first rewrite A as

A = ŷµC
−1
µν ŷν + yiQi jy j − 2ωiyi , (2.57)

where
Qi j = C−1

i j + C−1
11 βiβ j + βiC

−1
1 j + β jC

−1
1i , (2.58)

and
ωi = C−1

iµ ŷµ + βiC
−1
1µ ŷµ . (2.59)

We then express the second term on the r.h.s. of equation (2.57) as a function of a generic vector
d such that

yiQi jy j = (yi − di)Qi j(y j − d j) + diQi jy j + yiQi jd j − diQi jd j , (2.60)

and impose that diQi jy j + yiQi jd j = 2ωixi. This gives di(Qi j + Q ji)y j = 2diQi jy j = 2ωiyi, implying
that diQi j = ω j. We finally obtain

di = ω jQ
−1
ji , (2.61)

which, inserted into equation (2.57), gives

A = ŷµC
−1
µν ŷν + (yi − di)Qi j(y j − d j) − diQi jd j . (2.62)

We now perform the integration in equation (2.56) and arrive at the final expression for one k
bin:

L(β) ∝ [2π det (CQ)]−1/2 exp
[
−

1
2

(
ŷµC

−1
µν ŷν − diQi jd j

)]
. (2.63)

To combine all k bins, we consider the total likelihood L defined as

L (β) =

N∏
j=1

L j(β) , (2.64)

where N denotes the number of k bins. In practice, we replace the unknown covariance matrix C
with an unbiased estimate derived from the 40 simulations. We sample the posterior distribution
of the bias parameters by using our own Markov Chain Monte-Carlo (MCMC) code and assuming
flat priors.
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2.5 Measuring bias parameters

Table 2.4: The difference ∆WAIC between a model and the preferred one (highlighted with a dash)
obtained by fitting Pδhδ

for mass bin M3. Columns two to five indicate which operators are included in
each model. Columns six to eight (as well as nine to eleven) refer to different values of Λ expressed in
units of h Mpc−1.

Model δ δ2 s2
∇

2δ ∆WAIC (NR & RNL) ∆WAIC (RL)

Λ = 0.05 0.1 0.2 0.05 0.1 0.2

M1 x 62.56 1672.15 69339.13 34.99 1683.11 69847.85

M2a x x 83.16 492.70 4302.72 4.53 689.03 5188.85

M2b x x 40.13 449.46 9308.73 32.54 820.53 7367.62

M2c x x 23.79 81.89 846.68 1.03 – 576.55

M3a x x x 12.94 436.73 1797.75 7.24 450.06 4406.97

M3b x x x 10.42 40.97 828.06 – 1.63 575.36

M3c x x x 25.14 82.82 328.83 2.33 1.91 161.92

M4 x x x x – – – 1.59 3.86 –

Table 2.5: As in Table 2.4, but considering models that include more operators (see columns two and
three) with respect to M4. Results are displayed for Λ = 0.2 h Mpc−1, only.

Model Γ3 k2
∆WAIC (NR & RNL) ∆WAIC (RL)

M5a x 1.72 1.02

M5b x 2.35 1.88

M6 x x 1.66 1.41

2.5.2 How many bias parameters are needed?

A generic bias expansion includes all the possible operators allowed by symmetries. Here, we
perform a Bayesian model comparison to investigate how many bias parameters are actually
needed to fit Pδhδ

(k) extracted from our simulations for k < 0.2 h Mpc−1. We focus on the M3
sample that shows the most prominent scale-dependent bias in Fig. 2.1. We start with fitting
the simple linear-bias model Pδhδ

(k) = b1Pδδ(k). Then, we add several combinations of the terms
b2P

δ2δ
(k), bs2 Ps2δ

(k) and b
∇

2δ
P
∇

2δδ
(k) as summarized in Table 2.4. Finally, motivated by the

perturbative results presented in section 2.2.4, we also consider the terms bΓ3
PΓ3δ

(k) and bk2k2,
as well as a combination of the two (see Table 2.5).

We quantify the relative performance of each model by using the Widely Applicable Information
Criterion (Watanabe, 2010), also known as the Watanabe-Akaike Information Criterion (WAIC).
This method evaluates the ‘predictive accuracy’ of a model, i.e. how useful the model will
be in predicting new or future measurements. For finite and noisy data, this concept differs
from the ‘goodness of fit’ which quantifies how well a model describes the data that have been
used to optimize the model parameters. The WAIC is a Bayesian method that generalizes the
Akaike Information Criterion (AIC, Akaike, 1973) by averaging over the posterior distribution
of the model parameters. It can be shown that it is asymptotically equivalent to Bayesian
cross validation (Watanabe, 2010). Moreover, the WAIC can be seen as an improvement upon
the Deviance Information Criterion (DIC, Spiegelhalter et al., 2002) as it is invariant under

8 From now on Greek indices run from 1 to n and Roman indices run from 2 to n. Moreover, C−1
i j denotes the

i j-element of the inverse of C.
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Chapter 2 Renormalisation of linear halo bias in N-body simulations

re-parametrization of the model and also works for singular models (where the Fisher information
matrix is not invertible). To apply the WAIC, one first estimates the log pointwise predictive
density of the model (lppd, Gelman, Hwang and Vehtari, 2014)

lppd =
∑

i

ln〈P(wi|θ)〉post (2.65)

where the sum runs over the data points wi, and P(wi|θ) denotes the probability to measure wi
under the statistical model and for a given set of model parameters θ. The expectation 〈. . . 〉post
is estimated using draws for the model parameters from the posterior distribution given by the
MCMC chains. The better the model fits the data, the larger the lppd is. In order to avoid
overfitting, the lppd should be penalized for the effective number of model parameters, pWAIC.
Two different estimators can be used to measure this quantity from the MCMC chains, namely

pWAIC,1 = 2
∑

i

[log〈P(wi|θ)〉post − 〈log P(wi|θ)〉post] , (2.66)

and
pWAIC,2 =

∑
i

〈[log P(wi|θ) − 〈log P(wi|θ)〉post]
2
〉post . (2.67)

Essentially, each model parameter counts as one if all the information about it comes from the
likelihood function, as zero if all the information comes from the prior, or as an intermediate
number whenever both the data and the prior are informative. For our fits, we do not notice any
practical difference between using equation (2.66) or equation (2.67). Following Gelman, Hwang
and Vehtari (2014), we finally define the WAIC by using a deviance scale (i.e. by multiplying
the lppd by a factor of 2 so that the final result is more easily comparable with the AIC and the
DIC):

WAIC = −2(lppd − pWAIC,i) (2.68)

The lower the WAIC is, the better the model performs. It is generally understood that a difference
∆WAIC of 5 (10) provides ‘suggestive’ (‘substantial’) evidence in favour of the preferred model.

2.5.3 Bare bias expansion

When we do not apply any renormalisation (hereafter NR, short for ‘no renormalisation’), the
lowest WAIC is obtained for model M4,

Pδhδ
(k) = b1Pδδ(k) + b

∇
2δ

P
∇

2δδ
(k) + b2P

δ2δ
(k) + bs2 Ps2δ

(k) , (2.69)

for all values of Λ. In Table 2.4, we report the difference ∆WAIC between each model we have
considered and the preferred one. Our results clearly rule out models with less than four bias
parameters. On the other hand, considering additional terms proportional to Γ3 and k2 and their
combination gives a WAIC which is slightly worse than for M4, as we present in Table 2.5 for
Λ = 0.2 h Mpc−1(since higher-order corrections should be most important for this cutoff). This
shows that there is no need to include bΓ3

and bk2 in the bias expansion as, for k < 0.2 h Mpc−1,

our measurement of Pδhδ
(k) within ∼ 70 h−3 Gpc3 cannot constrain them. We thus conclude that,

to describe the z = 0 cross spectral density of massive DM haloes and matter on these scales,
we need to account for the linear bias b1, the non-linear bias b2, the tidal bias bs2 and the first
higher-derivative bias b

∇
2δ

.
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2.5 Measuring bias parameters

In the top panel of Fig. 2.6, we plot the best-fitting model M4 (solid curve) and the corres-
ponding residuals are shown in the narrow panel below (fourth from the top). The fit never
deviates from the measurements in a statistically significant way and sub-percent accuracy is
achieved for most values of k. In order to visually illustrate the need for and the concept of
renormalisation, in the top panel, we also plot the individual contributions of the different terms
appearing on the r.h.s. of equation (2.69). Note that Pδδ(k), P

δ2δ
(k) and Ps2δ

(k) are proportional
to each other when k → 0. Moreover, the terms that scale with b2 and bs2 are never negligible
compared with b1Pδδ(k), even at the largest scales we can probe.

2.5.4 Renormalised bias expansion

For every model expressed in terms of the bare bias parameters, we can renormalise the cross-
spectra of the composite operators with δ as in the examples provided by equations (2.50) and
(2.51). The subtracted terms proportional to P11(k) will then contribute to the renormalised
linear bias parameter. Let us consider, for example, equation (2.69) and re-write it in terms of
the renormalised cross spectra

Pδhδ
(k) = b1Pδδ(k) + (α

δ2b2 + αs2bs2) P11(k) + b
∇

2δ
P
∇

2δδ
(k) + b2P[δ2]1δ

(k) + bs2 P[s2]1δ
(k) , (2.70)

with α
δ2 and αs2 the numerical coefficients appearing in equations (2.50) and (2.51). The result

of this decomposition for the best-fitting model M4 is illustrated in the second panel from the
top of Fig. 2.6 (labelled IE, short for ‘intermediate expansion’). The renormalised cross spectra
of the composite operators are now subdominant (and have a different shape) for k → 0 with
respect to the linear bias terms. Their relative contributions to Pδhδ

(k) grow with k (although
their sum nearly vanishes in this particular case).

In perturbative calculations, the spectrum P11(k) appearing in equation (2.70) is promoted to
Pδδ(k) to write

Pδhδ
(k) = bR

1 Pδδ(k) + b
∇

2δ
P
∇

2δδ
(k) + b2P[δ2]1δ

(k) + bs2 P[s2]1δ
(k) , (2.71)

which is the analog of equation (2.33) with

bR
1 = b1 + α

δ2b2 + αs2bs2 . (2.72)

In the simulations, however, this expression does not coincide any longer with equation (2.71) as
P11(k) , Pδδ(k) for k > 0 (see Fig. 2.7). The only option to renormalise the linear bias coefficient
without altering equation (2.69) is to generalize equation (2.50) to the non-linear regime by
using

P(NL)
[δ2]1δ

(k) = P
δ2δ

(k) − α
δ2(Λ) Pδδ(k) , (2.73)

together with analogous relations for the other composite operators. We can thus re-write
equation (2.69) as

Pδhδ
(k) = bR

1 Pδδ(k) + b
∇

2δ
P
∇

2δδ
(k) + b2P(NL)

[δ2]1δ
(k) + bs2 P(NL)

[s2]1δ
(k) , (2.74)

which we refer to as the RNL, short for ‘non-linear renormalisation’. In the third panel from
the top of Fig. 2.6, we show the best-fitting model M4 and its different components. Obviously,
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Figure 2.6: The best fit of the bias model M4 to Pδhδ
(k) (solid) and its different components (as indicated

in the legend, with short-dashed lines representing negative values) for the halo mass bin M3 and
Λ = 0.2 h Mpc−1. To improve readability we neglect the uncertainty in the bias parameters (only using
their posterior mean). In the top three panels, we show the results obtained for the NR, IE and RNL
cases which give rise to the same fit. The fit residuals normalised to the statistical error of the data
∆Pδhδ

(k) are displayed in the fourth panel. Results for the RL case are displayed in the bottom two panels.
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Figure 2.7: Non-linear corrections to the matter power spectrum at z = 0. The line shows the average
ratio taken over the simulations. Shaded regions indicate the standard error of the mean.

fitting the RNL expression to the numerical data is completely equivalent to fitting the NR
one and gives the same constraints on the non-linear and higher-derivative bias parameters.
Therefore, the conclusions regarding the optimal number of bias parameters that we have drawn
for the bare bias expansion still apply to the RNL case.

On the other hand, in hands-on situations, it is common practice to fit 1-loop perturbative
models to survey or simulation data (e.g. Saito et al., 2014). In our study, taking model M4
as an example, this corresponds to using equation (2.71) together with (2.50) and (2.51). In
this case (hereafter dubbed RL, short for ‘linear renormalisation’), the best-fitting parameters
and the goodness of fit do not coincide with those obtained for NR and RNL models. We thus
repeat our model-selection test focusing on RL models. We find that the preferred operator sets
vary with the cutoff scale (see the rightmost three columns in Table 2.4). For Λ = 0.05 and 0.1
h Mpc−1, all models that contain a term in ∇2δ are favoured. For Λ = 0.2 h Mpc−1, instead,M4 is
singled out by the WAIC (the bottom two panels of Fig. 2.6 display the individual components
of M4 and the fit residuals). Further adding the Γ3 and/or k2 operators leads to slightly larger
WAIC indicating mild overfitting. These results suggest that, as expected in an effective theory,
more bias parameters are needed if smaller scales are considered. In particular, while δ and
∇

2δ form the minimal set of operators required for Λ < 0.1 h Mpc−1, adding [δ2]1 and [s2]1 is
necessary to describe the data with Λ = 0.2 h Mpc−1.

2.5.5 Bias parameters

The best-fitting values of the bias parameters obtained for the NR and the RNL cases are
displayed in Table 2.6 for all mass bins and cutoff scales. We show both the bare linear bias
parameter (b1) and the renormalised one (bR

1 ). Similarly, in Table 2.7, we report the best-fitting
parameters for the RL fits. Notice that, while b1 is Λ-dependent, bR

1 assumes consistent values
for all cutoffs in both the RNL and RL cases. We can thus conclude that the non-perturbative
renormalisation procedures we have implemented in the simulations were completely successful.
Nevertheless, it is worth pointing out that the best-fitting values of b2, bs2 and b

∇
2δ

in Tables 2.6
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Table 2.6: The bias parameters obtained by fitting equations (2.69) and (2.74) to Pδhδ
(k) from our 40

simulations.

Mass Λ b1 bR
1 b2 bs2 b

∇
2δ

bin [h Mpc−1] (NR) (RNL) [h2 Mpc−2]
0.05 1.91 ± 0.02 1.89 ± 0.01 −0.09 ± 0.26 −0.14 ± 0.46 5.53 ± 7.34

M1 0.1 1.91 ± 0.02 1.89 ± 0.01 −0.003 ± 0.10 −0.08 ± 0.08 7.12 ± 1.26
0.2 2.04 ± 0.04 1.895 ± 0.003 −0.05 ± 0.03 −0.09 ± 0.01 2.45 ± 0.36
0.05 2.38 ± 0.02 2.39 ± 0.02 0.14 ± 0.39 0.06 ± 0.67 17.87 ± 10.28

M2 0.1 2.30 ± 0.04 2.38 ± 0.01 0.38 ± 0.15 −0.25 ± 0.12 18.34 ± 1.82
0.2 2.35 ± 0.05 2.378 ± 0.004 0.12 ± 0.05 −0.15 ± 0.01 10.71 ± 0.55
0.05 3.26 ± 0.03 3.35 ± 0.02 2.92 ± 0.55 −2.79 ± 0.95 57.75 ± 15.00

M3 0.1 2.94 ± 0.05 3.36 ± 0.01 1.87 ± 0.20 −1.00 ± 0.15 54.50 ± 2.39
0.2 2.35 ± 0.07 3.35 ± 0.01 1.07 ± 0.06 −0.42 ± 0.01 40.33 ± 0.67

Table 2.7: As in Table 2.6 but using equation (2.71).

Mass Λ bR
1 b2 bs2 b

∇
2δ

bin [h Mpc−1] [h2 Mpc−2]
0.05 1.90 ± 0.01 −0.10 ± 0.27 0.01 ± 0.05 7.81 ± 6.09

M1 0.1 1.90 ± 0.01 −0.10 ± 0.08 0.02 ± 0.08 7.34 ± 0.96
0.2 1.898 ± 0.002 0.05 ± 0.01 −0.10 ± 0.01 3.84 ± 0.13
0.05 2.38 ± 0.01 −0.14 ± 0.40 −0.05 ± 0.07 12.03 ± 8.58

M2 0.1 2.38 ± 0.01 0.18 ± 0.12 −0.14 ± 0.13 17.33 ± 1.39
0.2 2.379 ± 0.004 0.12 ± 0.01 −0.15 ± 0.01 10.56 ± 0.17
0.05 3.35 ± 0.02 −0.87 ± 0.62 −0.07 ± 0.11 42.85 ± 13.53

M3 0.1 3.36 ± 0.01 −0.05 ± 0.17 −0.07 ± 0.17 41.46 ± 1.96
0.2 3.35 ± 0.01 0.23 ± 0.02 −0.36 ± 0.02 30.97 ± 0.23

and 2.7 differ for all mass bins when Λ ≥ 0.1 h Mpc−1. These results demonstrate the limitations of
applying perturbative renormalisation at finite values of k. As already discussed in section 2.5.4,
in order to retain the measurements of b2, bs2 and b

∇
2δ

from the NR fit in the renormalised case,
equation (2.73) (and its analogue for the other operators) must be used instead of (2.50).

2.5.6 Comparison with previous work

We compare the halo bias parameters we obtained from our simulations with previous results in
the literature. In Fig. 2.8, we contrast our results for b1 and bR

1 (symbols) with the fit by Tinker
et al., 2010 – their equation (6) – evaluated for a mean halo overdensity of ∆ = 333 (solid line).
The fit quantifies the relative amplitude of the halo and matter power spectra on large scales as
measured from a set of N-body simulations with slightly different cosmological parameters. To
ease the comparison, we express the mass dependence in terms of the ‘peak height’ ν = δc/σM.
Here, σM denotes the linear rms density fluctuation smoothed over the Lagrangian patch of
each halo using a spherical top-hat filter and δc = 1.686 is the critical linear overdensity in the
spherical collapse model (for an Einstein-de Sitter universe). The horizontal location of the
symbols is obtained by computing ν for every halo and averaging over each mass bin. In the NR
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Figure 2.8: The best-fitting linear bias parameter as a function of the peak height, ν, for different cutoff
scales, Λ. The left-hand side panel refers to the NR case in which b1 runs with Λ. On the contrary,
the right-hand side panel shows the results obtained by fitting bR

1 . Although solid and open symbols
characterize the RNL and RL cases, respectively, all symbols referring to the same mass bin overlap and
cannot be distinguished. As a reference, we also show the fitting function by Tinker et al. (2010) (solid)
and its relative deviation from our results (bottom panels). The shaded area represents the intrinsic
scatter about the mean relation found by Tinker et al. (2010).

case (left), our best-fitting values run with Λ and differ from the fit by Tinker et al. (2010) by
up to 30 per cent. After renormalisation (right), the Λ-independent data points obtained in the
RNL and RL cases are in excellent agreement with each other and also match the results by
Tinker et al. (2010) to better than 2 per cent which is a factor of three smaller than the intrinsic
scatter about the mean relation between linear bias and halo mass found in Tinker et al. (2010).
This shows that by renormalising the spectra we automatically obtain a consistent and robust
value of bR

1 for all the mass bins.

In Fig. 2.9, we compare our measurements of b2 and bs2 with other results in the literature. For
the quadratic bias (top panels), we consider three different fitting functions for the relation b2(b1)
extracted from N-body simulations. The first was obtained by applying the peak-background
split to measurement of the halo mass function (Hoffmann, Bel and Gaztañaga, 2015). The
second was determined with the ‘separate-universe’ technique in which one studies the response
to infinite-wavelength perturbations (Lazeyras, Wagner et al., 2016). The third, instead, was
derived from measurements of the halo reduced three-point correlation function (Hoffmann,
Bel and Gaztañaga, 2017). Note that these methods measure the renormalised b2 while we
only renormalise b1. Therefore, we do not expect that our Λ-dependent best-fitting values for
b2 should perfectly coincide with the other results in the literature. Nevertheless, in the NR
case (left panel) and for large-scale cutoffs (i.e Λ = 0.05 and 0.1 h Mpc−1), our measurements
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Figure 2.9: Symbols with errorbars indicate the best-fitting non-linear bias parameters b2 (top) and bs2

(bottom) as a function of b1 for different cutoff scales. The panels on the left-hand side show the bare
bias parameters (NR) while the results on the right-hand side are obtained after renormalising b1 (here,
empty and filled symbols correspond the RNL and RL cases, respectively). As a reference, we overplot
several theoretical models and fitting functions for the renormalised parameters (see the main text for
details).

approximately run along the fitting functions for the relation b2(b1). After renormalising b1
(right panel), however, our b2 measurements for the two highest mass bins tend to lie below the
previously published results. Moreover, as already mentioned, we obtain different b2 values in
the RNL and RL cases. The RNL results with small Λ are in much better agreement with the
fitting functions in the literature. This suggests that it should be possible to further improve the
agreement by extending the RNL technique to renormalise b2. We will explore this possibility in
our future work. For the tidal bias (bottom panels), we also compare our best-fitting values to
three different literature results. We consider the theoretical prediction for a local Lagrangian
biasing scheme (Catelan, Porciani and Kamionkowski, 2000), bs2(b1) = −(2/7) (b1 − 1) (Baldauf,
Seljak, Desjacques et al., 2012; Chan, Scoccimarro and R. K. Sheth, 2012) together with
two fitting functions that account for a non-vanishing Lagrangian tidal-tensor bias in N-body
simulations (Modi, Castorina and Seljak, 2017; Abidi and Baldauf, 2018, their equations 22
and 5.1 plus 2.32, respectively). In agreement with these fitting functions, our measurements
provide evidence for large negative tidal biases at high halo masses. After renormalising b1, this
conclusion holds only in the RNL case while bs2 always assumes values close to zero in the RL
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Figure 2.10: The best-fitting first higher-derivative bias parameter, b
∇

2δ, as a function of the peak height,
ν, for different cutoff scales. As a reference, we show the the fit to numerical simulations by Lazeyras and
Schmidt (2019, dashed) and the predictions from peak statistics presented in Desjacques (2008, solid).

case.

In Fig. 2.10, we plot our results for b
∇

2δ
as a function of ν. The NR and RNL fits are shown

together in the left-hand side panel since b
∇

2δ
assumes the same value in these cases. On the

contrary, the RL results are plotted in the right-hand side panel. As a benchmark, we also
show the fitting function obtained with the ‘amplified-mode’ simulation technique by Lazeyras
and Schmidt (2019, their equation 5.4 but note that we adopt the opposite sign convention
for b

∇
2δ

) as well as the predictions for density peaks (Desjacques, 2008) computed using the
filter function given in Chan, R. K. Sheth and Scoccimarro (2017). In agreement with Elia,
Ludlow and Porciani (2012), our measurements for the haloes scale with ν in a similar way as
the theoretical peak model but assume lower values in the ν-range we can probe. Compared
with the fit by Lazeyras and Schmidt (2019), we find comparable results in bins M1 and M2 and
substantially higher values for M3. Overall our NR and RNL measurements display a steeper
ν-dependence than expected based on their results.

2.6 Summary

We have investigated a number of issues related to the clustering of biased tracers of the LSS. In
particular, we have focused on the renormalisation of the linear bias parameter. After reviewing
the literature on the subject, we have applied a bias expansion to N-body simulations and
studied the UV-sensitivity of the composite operators that contribute to the halo-matter cross
spectrum Pδhδ

(k). We have then successfully mastered the challenge to renormalize these terms
without resorting to perturbation theory. Finally, we have identified how many bias parameters
are needed to accurately describe halo clustering for k < 0.2 h Mpc−1without overfitting. Our
main results can be summarized as follows.

1. We have run a suite of 40 N-body simulations and measured Pδhδ
(k) for three different
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halo-mass bins selected at z = 0. Consistently with previous work, we have found that
the ratio Pδhδ

(k)/Pδδ(k) grows with k and that this effect becomes more prominent for
more massive haloes (Fig. 2.1). The scale dependence of the ratio provides a compelling
motivation for considering non-linear bias models.

2. We have measured all fields that enter a non-linear bias expansion to third order in the
density fluctuations using different values of the coarse-graining scale (Λ = 0.05, 0.1 and
0.2 h Mpc−1, Fig. 2.2). By cross-correlating these fields with the mass overdensity, we
have computed all partial contributions to Pδhδ

(k). Focusing on the composite operators

appearing in the bias expansion (e.g. δ2 and s2), we have shown that the amplitude
of their cross spectra with δ strongly depends on Λ (top panels of Fig. 2.3). We have
demonstrated that this ‘UV-sensitivity’ is fully captured by the cross correlation between
the composite operators and the linear density field (middle panels of Fig. 2.3). Thus, we
have successfully obtained the renormalised spectra by subtracting this UV-sensitive term
from the original spectra (bottom panels of Fig. 2.3).

3. We have compared P
δ2δ1

(k) and Ps2δ1
(k) extracted from the simulations to perturbative

predictions at LO. An excellent agreement over a broad range of scales can be achieved by
properly accounting for the window functions that define the coarse-graining procedure
in the perturbative integrals (top panels of Fig. 2.5). The values 68/21σ2

1 and 136/63σ2
1,

that are usually quoted for the limit k → 0, overpredict our measurements, as they are
obtained neglecting the influence of the window function. The relative difference, however,
decreases with increasing Λ.

4. For Λ = 0.05 and 0.1 h Mpc−1, we have shown that the ‘renormalised spectra’ P[δ2]1δ
(k) and

P[s2]1δ
(k) measured in the simulations are in very good agreement with the perturbative

calculations obtained by taking the window functions into account (bottom panels of
Fig. 2.5). For Λ = 0.2 h Mpc−1, however, the 1-loop results show non-negligible deviations
from the numerical data.

5. We have fit bias models with a different number of parameters to Pδhδ
(k) by using a

Bayesian method that accounts for correlations between all spectra entering the model.
With a model-selection criterion (WAIC), we have determined the optimal number of
bias parameters that are needed as a function of Λ for both the renormalised and non-
renormalised spectra. The preferred set of bias operators includes δ,∇2δ, δ2 and s2 in most
cases (model M4 in Table 2.4).

6. In Fig. 2.6, we have illustrated the renormalisation procedure of the linear bias parameter for
the optimal model. We have identified two different modi operandi. The first (RL) parallels
perturbative renormalisation while the second (RNL) generalizes the renormalisation
procedure to the fully non-linear regime.

7. We have presented the fits we obtained for the optimal bias model (see Tables 2.6 and 2.7,
as well as Figs. 2.8 – 2.10) and compared them to previous results in the literature. While
the best-fitting values for the bare linear bias b1 run with Λ, those for the renormalised
linear bias bR

1 stay constant as a function of the cutoff scale (for both RL and RNL). This
confirms that our numerical renormalisation was successful.
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8. Finally, we have shown that only RNL leaves the non-linear and higher-derivative bias
parameters unchanged with respect to the bare bias expansion (NR). This casts some
doubts on the accuracy and robustness of using NLO perturbative expressions to fit
low-redshift observational and N-body data at k & 0.1 h Mpc−1.
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CHAPTER 3

Renormalisation of quadratic and tidal halo
bias in N-body simulations

1

3.1 Introduction

The spatial distribution of gravitationally collapsed tracers of the large-scale structure (LSS)
of the Universe (e.g. dark-matter (DM) haloes, galaxies), δh(x), can be described in form of a
’bias relation’ with respect to the underlying DM field. In the framework of an effective field
theory (EFT), this model can be written as an expansion, truncated at some order, which
contains all possible symmetries of gravitational instability, weighted by a numerical factor, the
’bias parameter’. The quantities in the expansion (called ’operators’ O) are powers of the DM
overdensity field δ(x), as well as derivative (e.g. ∇2δ(x)) and non-local (e.g. the square of the
tidal tensor, s2(x)) terms. In a recent paper (Werner and Porciani, 2019, hereafter W19) we
provided a pedagogical review on the topic of bias (in particular the issue of ’renormalisation’
that we will briefly explain below), and we refer the reader interested in a detailed presentation
to this work and the many references contained therein. This paper presents a follow-up analysis
to our previous work and is therefore largely built upon it.

It is generally of interest – depending on certain tracer quantities and on scale – which
operators are actually needed in the bias expansion and what values the corresponding bias
parameters should have. On the one hand, an accurate bias model is crucial for cosmological
inference from large-scale galaxy redshift surveys. The bias parameters are then treated as free
parameters that are fitted to the measurements from the survey. On the other hand, for testing
physical bias relations, it is interesting to compare the predicted bias parameter values with
those measured from numerical data. In order to address these two issues, in W19 we employed
a suite of 40 cosmological N-body simulations to determine the optimal number of bias operators
and measured the corresponding coefficients for three different halo mass bins. For that, relying
on δ defined by the (rescaled) peculiar gravitational potential φ via ∇2φ = δ, we first wrote the
bias expansion up until third order,

δh = b0 + b1δ + b
∇

2δ
∇

2δ + b2δ
2

+ bs2 s2
+ b3δ

3
+ b

δs2δs2
+ bs3 s3

+ bΓ3
Γ3 , (3.1)

1 This chapter is in preparation for submission to MNRAS.
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with s2
= si js ji and s3

= si js jkski, where

si j = ∂i∂ jφ −
1
3
δK

i j δ =

(
∂i∂ j∇

−2
−

1
3
δK

i j

)
δ = γi j δ , (3.2)

(with ∇−2 the inverse of the Laplacian operator and δK
i j the Kronecker symbol), as well as

p2
= pi j p ji with pi j = ∂i∂ jφ3 −

1
3δ

K
i jθ and Γ3 = s2

− p2
− (2/3)(δ2

− θ2), where φ3 is the (rescaled)

velocity potential such that ∇2φ3 = θ. In order to measure the bias parameters bi, we translated
the relation into Fourier space and then cross-correlated δh(k) with δ(k) (both which can be
described as random fields) which gives the correlator 〈δh(k) δ(k′)〉, where the brackets 〈. . . 〉
denote the average over an ensemble of realizations. The correlator can be written using the
cross spectrum between matter and tracers, Pδhδ

(k), where 〈δh(k) δ(k′)〉 = (2π)3 Pδhδ
(k) δD(k + k′)

and δD(k) is the Dirac delta distribution in three dimensions. Using the Widely Applicable
Information Criterion (WAIC), we showed in W19 that only a subset of those operators from
equation (3.1) is needed to accurately describe the distribution of haloes in our simulations up
until k ≤ 0.2 h Mpc−1, therefore the cross spectrum can be written as

Pδhδ
(k) = b1Pδδ(k) + b

∇
2δ

P
∇

2δδ
(k) + b2P

δ2δ
(k) + bs2 Ps2δ

(k) . (3.3)

The r.h.s. of this relation represents the model and the l.h.s. the data. We measured all power
and cross spectra appearing on both sides directly from the simulations and then fitted the r.h.s.
against the l.h.s. to get the bias parameters b1, b2, bs2 and b

∇
2δ

.

However, the spectra P
δ2δ

(k) and Ps2δ
(k), that include the non-linear ’composite operators’

δ2 and s2, present a peculiarity that we examined in great detail in W19. For various reasons
(that we laid out in detail in the previous paper) all density fields that enter the bias expansion
need to be smoothed with a filter. To implement this smoothing in our simulations, we chose a
sharp cutoff in k-space at three scales Λ = {0.05, 0.1, 0.2} h Mpc−1, and set the Fourier modes of
the density field above these scales to zero. However, imposing this arbitrary cutoff propagates
to the aforementioned cross spectra: Their signal tends to a constant at large scales (k → 0)
that increases for larger values of Λ. This presents a problem since on large scales the signal
of Pδhδ

(k) is expected to be described solely by a constant, cutoff-independent contribution of
the linear bias b1Pδδ(k). We showed that by adapting the framework of cosmological Standard
Perturbation Theory (SPT; see W19 for an overview of the method as well as the notation we
use) to simulations, it is possible to ’renormalise’ the cross spectra and therefore the linear bias
parameter such that afterwards the renormalised bias parameter bR

1 is cutoff-independent.

In this paper we want to extend our work from W19 in two different ways: First, we
want to focus on the renormalisation of the two non-linear bias parameters b2 (quadratic
bias) and bs2 (tidal bias) which, after the procedure in the previous paper, remain still cutoff
dependent. In order to achieve this, we need to bring the renormalisation framework to the
level of bispectra (Assassi et al., 2014, hereafter A14), and measure the cross bispectrum of
the halo density field with the matter density field, Bδhδδ

(k, k1, k2), where 〈δh(k) δ(k1) δ(k2)〉 =

(2π)3 Bδhδδ
(k, k1, k2) δD(k + k1 + k2), and the bias relation is given as

Bδhδδ
(k, k1, k2) = b1Bδδδ(k, k1, k2) + b2B

δ2δδ
(k, k1, k2) + bs2 Bs2δδ

(k, k1, k2) + b
∇

2δ
B
∇

2δδδ
(k, k1, k2) . (3.4)

Second, we want to apply the renormalisation method to the halo power spectrum, Pδhδh
(k),

which is a quantity that is particularly interesting for galaxy redshift surveys. In contrast to
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the halo-matter cross spectrum, which only exists in simulations, the halo power spectrum is
directly measurable, and therefore it is a crucial task to check the renormalisation procedure
also in this case.

The structure of this paper is as follows: In section 3.2 we will introduce briefly the renormal-
isation framework and then perform an elaborate derivation of the renormalisation expressions at
second order, both in SPT and adapted to N-body simulations. We then show how to measure
the bispectrum from our suite of simulations in section 3.3, and we present our data, in particular
the results of the second-order renormalisation, in section 3.4. In section 3.5 we provide the
theoretical and numerical results for the renormalisation of the halo power spectrum. We finally
summarize and conclude in section 3.6.

3.2 Bias renormalisation in SPT

In this section we first briefly introduce again the general concept of bias renormalisation. We
summarize our results from our previous work, W19, where we performed the renormalisation
at first order in a suite of N-body simulations, and succeeded in making b1 cutoff independent.
For more details we refer the reader to this paper.

Building up on that, following A14, we extend the procedure to second order, now aiming at
the renormalisation of b2 and bs2 . We present detailed SPT calculations at the level of bispectra
that set up the theoretical framework, and then describe how to implement the expressions into
our suite of numerical simulations.

3.2.1 The renormalisation framework

In the bias relation, written as an EFT, appear ’composite operators’ O = {δ2, s2
} that are

’UV-sensitive’. This means they receive power from all scales, in particular also from short-
wavelength modes that lie outside the regime for which the EFT is valid, as we see for the
Fourier transform of δ2 as an example,

δ2(k) =

∫
δ(q) δ(k − q)

d3q

(2π)3 . (3.5)

This presents a problem, since it makes the resulting expressions sensitive to the cutoff of the
integral. Additionally, also the bias parameters become cutoff dependent. A14 developed a
framework, based upon cosmological SPT, that allows to consistently renormalise the composite
operators and therefore the bias parameters order by order. The essence of this approach is that
additional ’counter operators’ are introduced that eliminate the UV-sensitive pieces at large
scales. The result are renormalised operators [O], defined via

〈[O](q) δ1(q1) . . . δ1(qm)〉 = 〈O(q) δ1(q1) . . . δ1(qm)〉(LO) , (3.6)

where qi → 0 ∀i, δ1 is the linear DM density field (evolved to redshift z = 0 by multiplication
with the linear growth factor D) and ’LO’ means the leading-order term of the r.h.s. Therefore,
an operator renormalised to m-th order, [O]m, fulfills equation (3.6) where the cross correlation
with δ1 is written m-fold.

For example, the first-order renormalised [δ2]1 is calculated through power spectra. The result
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is commonly given as

[δ2]1 = δ2
−

68
21
σ2

1(Λ) δ , (3.7)

where the second term on the r.h.s. is the counter operator, and σ2
1(Λ) is the strength of the

fluctuations of δ1 which is given as

σ2
1(Λ) =

1

2π2

∫ Λ

0
q2 P11(q) dq , (3.8)

with P11(k) the linear power spectrum. The constant prefactor 68/21σ2
1(Λ) in equation (3.7) is

calculated from the expression

lim
k→0

P(31)
δ2δ

(k)

P11(k)

 = lim
k→0

4 ∫
F2

(
− q,k

)
P11

(
q
) d3q

(2π)3

 . (3.9)

where P(31)
δ2δ

(k) is the (31)-term of the cross spectrum between δ2 and δ, given as the correlator

2〈(δ1δ2)(k) δ1(k′)〉. In W19 we showed, however, that when comparing to real data, it is crucial
to take care of filter functions W(k) in the integral that originate from smoothing the density
fields,

lim
k→0

P(31)
δ2δ

(k)

P11(k)

 = lim
k→0

[
4 W(k)

∫
F2(−q,k) P11(q) W(q) W(|k − q|)

d3q

(2π)3

]
, (3.10)

where

W(k) =

1 if k < Λ ,

0 otherwise .
(3.11)

This integral gives

lim
k→0

 P(31)
δ2δ

(k)

P11(k) W(k)

 =
68
21
σ2

1(Λ) −
1
3

Λ
3P11(Λ)

2π2 , (3.12)

which presents a modification to the respective term in equation (3.7). From these considerations
follows the ’renormalised cross spectrum’ P[δ2]1δ

(k) that enters equation (3.3),

P[δ2]1δ
(k) = P

δ2δ
(k) − lim

k′→0

 P(31)
δ2δ

(k′)

P11(k′) W(k′)

 P11(k) . (3.13)

In perturbative calculations, it is common to use P11(k) on the r.h.s. of equation (3.13), whereas
we showed in W19 that the non-linear (NL) power spectrum Pδδ(k) should be used to avoid
mistakes on mildly non-linear scales, so that

P(NL)
[δ2]1δ

(k) = P
δ2δ

(k) − lim
k′→0

 P(31)
δ2δ

(k′)

P11(k′) W(k′)

 Pδδ(k) . (3.14)

For the implementation into numerical simulations we measured all spectra consistently from the
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3.2 Bias renormalisation in SPT

data and did not model them with perturbative integrals. Therefore, equation (3.14) becomes

P(NL)
[δ2]1δ

(k) = P
δ2δ

(k) −
P
δ2δ1

(kmin)

P11(kmin)
Pδδ(k)

≡ P
δ2δ

(k) − α
δ2 Pδδ(k) , (3.15)

where kmin is the minimum k value accessible in the simulations which is given as kmin = 2π/L
with L the box length. We demonstrated that when computing the renormalised cross spectra
as in equation (3.15) (analogously for s2) the renormalised linear bias parameter bR

1 shows
consistent values for all Λ.

3.2.2 Renormalisation at second order

Now we want to extend the procedure to second order. The goal is to find a bias expansion
that allows to measure all terms directly from the simulations, which can then be fitted against
Bδhδδ

(k, k1, k2) to obtain the renormalised b2 and bs2 . Following equation (3.6), the renormalised

operators [δ2]2 and [s2]2 need to fulfill the relation

〈[O]2(k) δ1(k1) δ1(k2)〉 = 〈[O]1(k) δ1(k1) δ1(k2)〉(LO) , (3.16)

with ki → 0 ∀i, where we write [O]1 on the r.h.s. to indicate that we start the procedure from
the operators already renormalised at first order. Therefore, the terms that we need to subtract
(which can be written as the counter operators) are given by taking the k1, k2 → 0 limit of the
next-to-leading-order (NLO) term of the r.h.s. of equation (3.16), 〈[O]1(k) δ1(k1) δ1(k2)〉(NLO),
which coincides with the cross bispectrum B(NLO)

[O]1δ1δ1
(k, k1, k2). We now want to calculate this

bispectrum explicitly, since our first goal is to derive the respective counter operators. This was
already done by A14 who provided the final result in a compact way (their equation 2.42). We,
however, want to present the calculation in a much more detailed and intuitive way to the reader,
and with this also confirm the earlier result. Again we use δ2 as an example. Furthermore, for
now we only write the purely theoretical expressions without taking filter functions into account.
This gives

B(NLO)
[δ2]1δ1δ1

(k, k1, k2) = B([22]11)
δ2δ1δ1

(k, k1, k2) + B([13]11)
δ2δ1δ1

(k, k1, k2) −
68
21
σ2

1(Λ) B(211)
δδ1δ1

(k, k1, k2) . (3.17)

where B([22]11)
δ2δ1δ1

(k, k1, k2) relates to the correlator 〈(δ2δ2)(k) δ1(k1) δ1(k2)〉, B([13]11)
δ2δ1δ1

(k, k1, k2) can be

identified with 〈(δ1δ3)(k) δ1(k1) δ1(k2)〉, and B(211)
δδ1δ1

(k, k1, k2) is given by 〈δ2(k) δ1(k1) δ1(k2)〉. From
now on we define

B22(k, k1, k2) ≡ B([22]11)
δ2δ1δ1

(k, k1, k2) , (3.18)

B13(k, k1, k2) ≡ B([13]11)
δ2δ1δ1

(k, k1, k2) , (3.19)

and
R1(k, k1, k2) ≡ B(211)

δδ1δ1
(k, k1, k2) , (3.20)

We explicitly calculate these expressions now and derive the counter terms.
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Chapter 3 Renormalisation of quadratic and tidal halo bias in N-body simulations

Calculation of B22(k, k1, k2)

In the framework of SPT, B22(k, k1, k2) can be written as

B22(k, k1, k2) =

∫
a,b,c,d,p,q

〈
F2(c,d) δ1(c) δ1(d) δD(p − (c + d)) F2(a,b) δ1(a) δ1(b) δD(q − (a + b))

δD(k − (p + q)) δ1(k1) δ1(k2)
〉 1

(2π)3 , (3.21)

where we introduced the notation ∫
x
· · · =

∫
. . .

d3x

(2π)3 . (3.22)

Therefore,

B22(k, k1, k2) =
1

(2π)3

∫
a,c,q

F2[c,k − (q + c)] F2(a,q − a)〈
δ1(a) δ1(c) δ1(q − a) δ1[k − (q + c)] δ1(k1) δ1(k2)

〉
. (3.23)

The average is computed by applying Wick’s theorem for six fields. We omit the lengthy
calculation here and arrive at

B22(k, k1, k2) =
4

(2π)3 P11(k1) P11(k2)
∫

a
[F2(a,k1) F2(a,−k2) + F2(a,k2) F2(a,−k1)] P11(a) . (3.24)

Inserting the expression for F2 into the kernel [. . . ] of equation (3.24) gives

[. . . ] =
50
49

+
20
49

(
µ2

+ ν2
)

+
8
49
µ2ν2

−
1
2
µν

(
a
k1

+
k1

a

) (
a
k2

+
k2

a

)
, (3.25)

where we introduced µ = a · k1/ak1 and ν = a · k2/ak2. We also define γ = k1 · k2/k1k2. We
perform the integration in spherical coordinates, i.e. over the radial coordinate a and two angular
coordinates φ and θ. We put the coordinate system in a way that the z-axis points into the
direction of k1 and that cos θ = µ. From this follows a relation between µ, ν and γ,

ν = γ sin θ cos φ sin θ12 + sin θ sin φ sin θ12 sin φ12 + µγ , (3.26)

that we need for the integration. θ12 and φ12 form the angles between k1 and k2. Before finally
performing the integral we need to look at the last term in more detail. It can be written as

−
1
2
µν

(
a
k1

+
k1

a

) (
a
k2

+
k2

a

)
= −

1
2
µν

 a2

k1k2
+

k1

k2
+

k2

k1
+

k1k2

a2

 . (3.27)

Following equation (3.16), k1 and k2 → 0. Since the last term of equation (3.27) is of second
order in k1 and k2, we omit it. Also, the first term on the r.h.s. will not give σ2

1(Λ), but a
higher moment because of the a2 in the numerator. We therefore also omit it, and keep only the
combinations of k1 and k2. Inserting now equation (3.26) into equation (3.25) and performing
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3.2 Bias renormalisation in SPT

the integral (where we integrate over µ from −1 to 1 and over a from 0 to the cutoff Λ) we obtain

B22(k, k1, k2) =

[
3832
735

−
2
3
γ

(
k1

k2
+

k2

k1

)
+

192
2205

γ2
]
σ2

1(Λ) P11(k1) P11(k2) . (3.28)

We point out that terms of odd orders in µ vanish during the integration since we integrate over
a symmetric interval.

Calculation of B13(k, k1, k2)

In the framework of SPT, B13(k, k1, k2) is

B13(k, k1, k2) = 2
∫

a,b,c,p,q

〈
δ1(p) F3(a,b, c) δ1(a) δ1(b) δ1(c)

δD[q − (a + b + c)] δD[k − (p + q)] δ1(k1) δ1(k2)
〉 1

(2π)3

=
2

(2π)3

∫
a,c,q

F3[a,b,q − (a + b)]
〈
δ1(a) δ1(c) δ1(q − a) δ1[k − (q + c)] δ1(k1) δ1(k2)

〉
=

6

(2π)3 P11(k1) P11(k2)
∫

a

[
F3(a,−a,k1) + F3(a,−a,k2)

+ 2 F3(a,−k1,−k2)
]

P11(a) . (3.29)

From the definition of F3 (e.g. Carrasco et al., 2014) we find F3(a,−a,k1) = F3(a,−a,k2) = 0 so
that only the last term remains of interest. We examine this term in more detail,

F3(a,−k1,−k2) =
G2(a,−k1)

|a − k1|
2

−2K2

54
k2 · (a − k1)

k2
2

+
7
54

K · (a − k1)


+
G2(a,−k2)

|a − k2|
2

−2K2

54
k1 · (a − k2)

k2
1

+
7
54

K · (a − k2)


+
7
54

K ·
[
a
a

F2(k1,k2) −
k1

k1
F2(a,−k2) −

k2

k2
F2(a,−k1)

]
−

G2(k1,k2)

|k1 + k2|
2

2K2

54
a · (k1 + k2)

a2 +
7

54
K · (k1 + k2)


≡ t1 + t2 + t3 + t4 , (3.30)

with K = a − (k1 + k2). We will evaluate the four different terms ti, each written in one line,
separately, where the first and second line have the same shape, just with exchanged k1 and k2.
The last line, t4, we can write as

t4 =
G2(k1,k2)

k2

 2
54

akβ + 2k2β2
+

k3β

a

 +
7
54

(
akβ + k2

) , (3.31)

where β = a ·k/ak. All terms of odd order in β will vanish during the integration, so the expression
simplifies,

t4 =

[
4
54
β2

+
7

54

] [
3
7

+
1
2

(
k1

k2
+

k2

k1

)
γ +

4
7
γ2

]
. (3.32)
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We now turn to t3, and omit terms of odd order in µ, ν or multiplicative combinations of those.
We obtain

t3 =
5
18

+
1
27

(
µ2

+ ν2
)

+
7

108
µν

(
k1

k2
+

k2

k1

)
+ γ

[
17

108

(
k1

k2
+

k2

k1

)
+

1
27

(
k1

k2
µ2

+
k2

k1
ν2

)]
+

1
27
γ2 . (3.33)

The terms t1 and t2 are more complicated. To make progress with the calculation, we need to
Taylor-expand the prefactor up until second order in ki,

1

|a − k1|
2 =

1

a2 −
2µk1

a3 +
(
4µ2
− 1

)k2
1

a4 + O
(
k3

1

)
, (3.34)

and
1

|a − k2|
2 =

1

a2 −
2νk2

a3 +
(
4ν2
− 1

)k2
2

a4 + O
(
k3

2

)
. (3.35)

This is justified since the procedure is designed to work in the limit ki → 0. After expanding,
we can simplify the terms further. This is now straightforward, but very lengthy. Many terms
appear, but a lot of them can be cancelled due to three different reasons: (i) Again they are of
odd order in µ or ν, (ii) they are of order higher than one in ki and therefore small compared
to the first-order terms, or (iii) they are of order different than zero in a and therefore do not
contribute to σ2

1(Λ) after integration. Calculating both t1 and t2 gives

t1 + t2 =
1
9

+
11
108

µν

(
k1

k2
+

k2

k1

)
+

20
189

(
µ2

+ ν2
)
−

4
63
µ2ν2

+

[
4

189

(
k1

k2
µ2

+
k2

k1
ν2

)
+

1
63

(
k1

k2
+

k2

k1

)
+

4
27
µν

]
γ . (3.36)

We are now in the position to add the ti and, inserting everything into equation (3.29), perform
the integration as for B22(k, k1, k2). We end up with

B13(k, k1, k2) =

[
688
105

+
82
21
γ

(
k1

k2
+

k2

k1

)
+

314
945

γ2
]
σ2

1(Λ) P11(k1) P11(k2) . (3.37)

Calculation of R1(k, k1, k2)

We write R1(k, k1, k2) as

R1(k, k1, k2) =

∫
a,b

〈
δ1(a) δ1(b) F2(a,b) δD[k − (a + b)] δ1(k1) δ1(k2)

〉 1

(2π)3

=

∫
a

F2(a,k − a)
〈
δ1(a) δ1(k − a) δ1(k1) δ1(k2)

〉 1

(2π)3

= 2 F2(k1,k2) P11(k1) P11(k2)

=

[
10
7

+

(k1

k2
+

k2

k1

)
γ +

4
7
γ2

]
P11(k1) P11(k2) . (3.38)
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3.3 Measuring the bispectrum

Complete expression for B(NLO)

[δ2]1δ1δ1

(k, k1, k2)

Adding the results for B22(k, k1, k2), B13(k, k1, k2) and R1(k, k1, k2), following equation 3.17, we find

B(NLO)
[δ2]1δ1δ1

(k, k1, k2) =

[
5248
735

+
508
2205

γ2
]
σ2(Λ) P11(k1) P11(k2) . (3.39)

Note that the expression consists of a purely γ-dependent prefactor, multiplied with P11(k1) P11(k2).
The UV sensitivity is contained within this prefactor which does not go to zero for k1, k2 → 0.
Therefore, it must be subtracted at all finite k1 and k2 in form of a counter term,

lim
k′1,k

′
2→0

B(NLO)
[O]1δ1δ1

[
k(γ), k′1, k

′
2

]
P11(k′1) P11(k′2)

 P11(k1) P11(k2) , (3.40)

where γ = [k2
− (k2

1 + k2
2)]/(2k1k2). This expression is analogous to e.g. our equation (31) in W19.

From equation (3.39) follows the renormalisation of δ2 at second order,

[δ2]2 = δ2
− σ2(Λ)

[
1 +

68
21
δ +

2869
735

δ2
+

254
2205

s2
]
. (3.41)

We therefore confirm the result by A14. An analogous calculation can be performed for s2.

3.3 Measuring the bispectrum

In this section, we show how we measure the bispectra from the simulations, and present the
data. For the physical and numerical details on our suite of 40 DM-only simulations, we refer
the reader to our previous work W19.

For measuring the overdensity fields δh(x) and δ(x) on a grid, we employ a ’cloud in cell’ (CIC)
interpolation method. At a redshift of z = 0, we start from the positions of the DM particles and
the haloes, respectively, in the simulation box of side length L = 1200 h−1 Mpc, and arrive at a
regular Cartesian mesh with Ng = 256 cells on each grid side. We correct for the mass assignment
scheme, and then use the fast-Fourier-transform (FFT) algorithm to compute δh(k) and δ(k). We
apply low-pass smoothing by multiplying the fields in Fourier space with the window function
W(k) for three values of Λ = {0.05, 0.1, 0.2} h Mpc−1, and then use spectral methods to compute
si j(k) and ∇2δ(k). After transforming the fields back to real space, we obtain δ2(x), s2(x) and

∇
2δ(x).
From these fields, the bispectrum, in principle, is computed as

Bδδδ(k,k1,k2) =
1

(2π)3N∆

∑
n∈∆

δ(k) δ(k1) δ(k2) , (3.42)

where ∆ is the set of triangles with side lengths {k,k1,k2} with k + k1 + k2 = 0, and N∆ is
their number. However, computing the bispectrum in this way involves nested loops, which
numerically results in a very time-consuming task. Therefore, instead we use a bispectrum
estimator based on FFT, developed by Scoccimarro (2015) and Watkinson et al. (2017), and
implemented in the code of Alkhanishvili (2018), which reduces the number of loops that must

81



Chapter 3 Renormalisation of quadratic and tidal halo bias in N-body simulations

-109

-108

0

108

109

1010

1011

B
δ h
δδ

(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

Bδhδδ(k, k1, k2)

equilateral, k= k1 = k2

108

109

1010

1011

B
δ h
δδ

(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

squeezed, k= 1
4
k1 = 1

4
k2

10-2 10-1

k [hMpc−1]

108

109

1010

1011

B
δ h
δδ

(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

folded, k= 2k1 = 2k2

10

0

10

20

30

40

B
δ h
δδ

(k
,k

1
,k

2
)/
B
δδ
δ
(k
,k

1
,k

2
)

0

2

4

6

8

10

B
δ h
δδ

(k
,k

1
,k

2
)/
B
δδ
δ
(k
,k

1
,k

2
)

10-2 10-1

k [hMpc−1]

0

2

4

6

8

10

B
δ h
δδ

(k
,k

1
,k

2
)/
B
δδ
δ
(k
,k

1
,k

2
)

Figure 3.1: The halo-matter cross bispectra Bδhδδ
(k, k1, k2) and the matter bispectrum Bδδδ(k, k1, k2),

averaged over the 40 simulations (left column). Shaded regions represent the standard error of the mean.
We show the halo-matter cross bispectrum for the three different halo mass bins (light-brown, red, purple,
in order of increasing mean mass of the halo mass bin) and the matter bispectrum in black. The different
rows represent three different triangle configurations with fixed ratio between k, k1 and k2 (equilateral,
squeezed and folded triangles, as indicated in the respective panel), where k is the running variable. In
the right column we show the ratio Bδhδδ

(k, k1, k2)/Bδδδ(k, k1, k2) for the same triangle configurations. Note
the symmetrically logarithmic scaling on the y-axis for the top left panel.
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Figure 3.2: The cross bispectra between δ2 and s2 and the matter density field, Bδ2δδ(k, k1, k2) and
Bs2δδ(k, k1, k2) (left and right column, respectively), averaged over the 40 simulations. Shaded regions
represent the standard error of the mean. We show the measurements for the same triangle configurations
as in Fig. 3.1. The different colours represent the different cutoff scales Λ that were used to smooth the
fields (with Λ = 0.05, 0.1 and 0.2 h Mpc−1coloured in green, orange and blue). Note the symmetrically
logarithmic scaling on the y-axis for the first row.
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be computed. The estimator is written as

B(k,k1,k2) ≈
V2

N3
pix

∑Npix
n δ(n,k) δ(n,k1) δ(n,k2)∑Npix
n I(n,k) I(n,k1) I(n,k2)

, (3.43)

where V = L3 and Npix = N3
g . Furthermore, we define

δ(n,ki) =
∑

Ii±s/2

δFFT(mi) e2πi n·mi/Ng , (3.44)

I(n,ki) =
∑

Ii±s/2

e2πi n·mi/Ng , (3.45)

with Ii = |ki/kf −mi|. It is kf = 2π/L the fundamental frequency, so that ki = kf mi, s is the bin
width, and

δFFT(mi) =
∑

n
δ(n) e2πi n·mi/Ng , (3.46)

where x = nL/Ng. To build a cross bispectrum from various fields, we just need to replace
one or more of the functions on the r.h.s. of equation (3.43) with the respective operator.
We bin the bispectra in {10, 20, 40} bins of bin width kf for each side of the triangle for Λ =

0.05, 0.1, 0.2h Mpc−1.

In Fig. 3.1 we show the halo-matter cross bispectrum Bδhδδ
(k, k1, k2) and the matter bispectrum

Bδδδ(k, k1, k2), averaged over the 40 simulations for three exemplary triangle configurations. In
the left column we plot them separately, and in the right column we plot the ratio. Each line
represents a certain triangle configuration with fixed ratio between k, k1 and k2. We plot the
bispectrum value of the respective configuration and choose k as the independent variable. In the
first line we focus on the equilateral configuration, where all triangle sides have the same length,
k = k1 = k2. The second line shows a squeezed configuration, where in general k1 ' k2 � k, and
we choose the explicit configuration k = 1/4k1 = 1/4k2. Finally, in the third line, we plot the
folded configuration where k = 2k1 = 2k2. The shaded regions indicate the standard error of the
mean over the 40 simulations. As a general trend we find that Bδhδδ

(k, k1, k2) behaves similarly
as Bδδδ(k, k1, k2). The larger the mean mass of the halo bin (for the exact values see W19), the
stronger is the signal of the halo-matter cross bispectrum for all k. Note the fluctuations of the
signal between positive and negative values for some k, where also the errors are large. This
behaviour is symptomatic of noise.

Fig. 3.2 shows the cross bispectra of δ2 and s2 with the matter, B
δ2δδ

(k, k1, k2) (left column)
and Bs2δδ

(k, k1, k2) (right column). Plotted are the spectra of the same triangle configurations as

in Fig. 3.1 for three values of Λ. Blue colour indicates Λ = 0.2 h Mpc−1, orange Λ = 0.1 h Mpc−1,
and green represents Λ = 0.05 h Mpc−1. Unless stated otherwise, from now on, in this paper this
colouring scheme will always indicate the presentation of data for these three values of Λ, so we
will not mention it explicitly anymore. We find that the larger Λ is, the stronger is the overall
signal for all k. In particular, the spectra approach a Λ-dependent constant for k → 0. From
this, we clearly find that the bispectra are UV-sensitive.

84



3.4 Renormalisation in simulations

3.4 Renormalisation in simulations

We want to build a procedure to eliminate the UV-sensitivity on large scales. In the PT
calculations, this is given by equation (3.40). In the simulations, to obtain the renormalised
bispectra B[δ2]2δδ

(k, k1, k2) and B[s2]2δδ
(k, k1, k2), we therefore need to compute

B[O]2δδ
(k, k1, k2) = B[O]1δδ

(k, k1, k2) −

B(NLO)
[O]1δ1δ1

[k(γ), kmin, kmin]

P11(kmin) P11(kmin)

 P11(k1) P11(k2)

≡ B[O]1δδ
(k, k1, k2) − fO(γ) P11(k1) P11(k2) , (3.47)

where, following equations (3.15) and (3.17),

B[O]1δδ
(k, k1, k2) = BOδδ(k, k1, k2) − αOBδδδ(k, k1, k2) , (3.48)

and
B[O]1δ1δ1

(k, k1, k2) = BOδ1δ1
(k, k1, k2) − αOBδδ1δ1

(k, k1, k2) . (3.49)

Furthermore, to obtain fO(γ), we compute

B(NLO)
[O]1δ1δ1

(k, k1, k2) = B[O]1δ1δ1
(k, k1, k2) − B(LO)

[O]1δ1δ1
(k, k1, k2)

= B[O]1δ1δ1
(k, k1, k2) − BO1δ1δ1

(k, k1, k2) , (3.50)

under the assumption that B[O]1δ1δ1
(k, k1, k2) is dominated by first- and second-order terms, and

higher-order terms are negligible. Note that when introducing fO(γ) in equation (3.47) we are
using an ansatz, i.e. we assume that the SPT result which depends only on γ (equation 3.39)
holds also in the simulations. To compute fO(γ), we use the triangle configurations with the
smallest values for k1 and k2, calculate γ = [k2

− (k2
1 +k2

2)]/(2k1k2) and then bin B(NLO)
[O]1δ1δ1

(k, k1, k2) in
that. We use the configurations {k1, k2, k} = {{211}, {111}, {122}, {223}, {112}} in units of kf and in
order of increasing γ = [−1, 1]. Note that we do not only include triangles with {k1, k2} = kmin = kf ,
but also those with {k1, k2} = 2kmin to improve the quality of fO(γ). We obtain fO(γ) separately
for each simulation and then, to calculate the complete counter term fO(γ) P11(k1) P11(k2) for
a fixed triangle configuration, we loop over k, k1 and k2, and interpolate fO(γ) to obtain the
respective value.

3.4.1 First-order renormalisation

To give an impression of the influence of the first-order renormalisation on the bispectrum level,
in Fig. 3.3, we plot α

δ2 Bδδδ(k, k1, k2) (left) and αs2 Bδδδ(k, k1, k2) (right), i.e. the second term on
the r.h.s. of equation (3.48), using the same triangle configurations as in Fig. 3.2. We find that
the overall amplitude changes with Λ, however the shape in k is the same for all cutoff scales.
This is expected from theoretical considerations: For the calculation of Bδδδ(k, k1, k2) no integrals,
which introduce small-scale power to the result and are usually cut off at an arbitrary value, are
needed. Therefore, this spectrum is not affected by the cutoff. The change in normalization
with Λ is fully attributed to αO. We then show the effect of the first-order renormalisation on
the full cross bispectrum in Fig. 3.4 where we plot B[δ2]1δδ

(k, k1, k2) and B[s2]1δδ
(k, k1, k2). Overall,

the value of the spectra slightly decreases, but the change in shape is only minor.
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Figure 3.3: The same as Fig. 3.2, but for the first-order renormalisation term αδ2 Bδδδ(k, k1, k2) and
αs2 Bδδδ(k, k1, k2).

In Fig. 3.5 we show the cross bispectrum of [δ2]1 and [s2]1 with the linear density field,
B[δ2]1δ1δ1

(k, k1, k2) and B[s2]1δ1δ1
(k, k1, k2). The signal increases both for decreasing k and increasing

Λ. Overall, it presents features very similar to Fig. 3.4.
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Figure 3.4: The same as Fig. 3.2, but for the first-order renormalised cross bispectra of δ2 and s2 with the
matter density field, B[δ2]1δδ

(k, k1, k2) and B[s2]1δδ
(k, k1, k2). Note the symmetrically logarithmic scaling on

the y-axis for the first and third row.

3.4.2 Second-order renormalisation

Using equation (3.50), we split B[O]1δ1δ1
(k, k1, k2) into its two contributions, B(LO)

[O]1δ1δ1
(k, k1, k2) and

B(NLO)
[O]1δ1δ1

(k, k1, k2), and show them in Figs. 3.6 and 3.7. The LO terms in Fig. 3.6, measured from

87



Chapter 3 Renormalisation of quadratic and tidal halo bias in N-body simulations

-108

-107
0

107

108

109

1010

1011

B
[δ

2
] 1
δ 1
δ 1
(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

B[O]1δ1δ1(k, k1, k2)

equilateral, k= k1 = k2

-108

-107
0

107

108

109

1010

1011

B
[δ

2
] 1
δ 1
δ 1
(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

squeezed, k= 1
4
k1 = 1

4
k2

10-2 10-1

k [hMpc−1]

-108

-107
0

107

108

109

1010

1011

B
[δ

2
] 1
δ 1
δ 1
(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

folded, k= 2k1 = 2k2

-108

-107
0

107

108

109

1010

1011

B
[s

2
] 1
δ 1
δ 1
(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

-108

-107
0

107

108

109

1010

1011

B
[s

2
] 1
δ 1
δ 1
(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

10-2 10-1

k [hMpc−1]

-108

-107
0

107

108

109

1010

1011

B
[s

2
] 1
δ 1
δ 1
(k
,k

1
,k

2
)
[h
−

6
M

p
c6

]

Figure 3.5: The same as Fig. 3.2, but for the cross bispectra of [δ2]1 and [s2]1 with the linear matter
density field, B[δ2]1δ1δ1

(k, k1, k2) and B[s2]1δ1δ1
(k, k1, k2). Note the symmetrically logarithmic scaling on the

y-axis for all panels.

the simulations (solid), look similar for all values of Λ (apart from some noise), in particular
the signal for k1, k2 → 0 does not change substantially. This is expected from theoretical SPT
calculations (dashed) which are computed as B

δ2
1δ1δ1

(k, k1, k2) = 2P11(k1) P11(k2) W(k1) W(k2) and

Bs2
1δ1δ1

(k, k1, k2) = 2P11(k1) P11(k2) S 2(k1,k2) W(k1) W(k2). In Fig. 3.7, B(NLO)
[O]1δ1δ1

(k, k1, k2), however,
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Figure 3.6: The same as Fig. 3.5, but showing only the LO terms, Bδ2
1δ1δ1

(k, k1, k2) and Bs2
1δ1δ1

(k, k1, k2)
(solid). We also show the theoretical results computed from SPT (dashed). Note the symmetrically
logarithmic scaling on the y-axis for all panels.

is Λ-dependent, as expected both from SPT, and the way it is calculated from equation (3.50).
Similar to the other cutoff-dependent quantities, the signal increases for larger values of Λ. A
note is in order here: In a well-behaved expansion, a term of order n + 1 should always contribute
less to the overall result than a term of order n. Otherwise, truncating the expansion at some
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Figure 3.7: The same as Fig. 3.5, but showing only the NLO terms, B[δ2]1δ1δ1
(k, k1, k2)− Bδ2

1δ1δ1
(k, k1, k2) and

B[s2]1δ1δ1
(k, k1, k2)− Bs2

1δ1δ1
(k, k1, k2). Note the symmetrically logarithmic scaling on the y-axis for all panels.

order will introduce errors and is therefore not allowed. In the case of B(NLO)
[O]1δ1δ1

(k, k1, k2), for

Λ = 0.2 h Mpc−1, however, the NLO contribution is larger than the LO one for all triangle
configurations. This shows that a cutoff value of 0.2 h Mpc−1is already too large to build a proper
expansion. Nevertheless, we still use these data, because we want to test the renormalisaton
procedure also in a case where formally the expansion is not well-behaved.
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Figure 3.8: The renormalisation prefactors fδ2 (γ) (left, solid) and fs2 (γ) (right, solid), computed as in
equation (3.47), plotted over γ = k1 · k2/(k1k2), the cosine of the angle between k1 and k2. We show
the median of the 40 simulations. Shaded regions represent the standard error of the median. Dashed
lines represent the theoretical SPT result, obtained from evaluating equations (3.21), (3.29) and (3.38)
numerically, including filter functions. The horizontal position of the data points is obtained by calculating
γ separately for each triangle configuration and then performing the average in each bin. Horizontal error
bars indicate the standard error of the mean.

From B(NLO)
[O]1δ1δ1

(k, k1, k2) and P11(k) (for which we used the same binning as for the bispectrum;

for more details see W19), we calculate fO(γ), using equation (3.47). We show the results in
Fig. 3.8, both for f

δ2(γ) (left) and fs2(γ) (right), using the median of the 40 simulations. We
calculate γ separately for each triangle configuration and then plot the mean for each bin. The
horizontal error bars indicate the standard error of the mean on γ over the bin. Using the
median for fO(γ) is motivated by Fig. 3.9 which shows the probability density function (PDF) of
f
δ2(γ) (top three rows) and fs2(γ) (bottom three rows) for each value of γ (five panels in each row,

following the order of data points in Fig. 3.8) and Λ (different rows), respectively. It becomes
clear that fO(γ) exhibits a great amount of scatter, and is prone to both negative and positive
outliers. The median, therefore, is a more stable quantity than the mean, and better represents
the true value of fO(γ). Shaded regions indicate the standard error of the median which is
computed as 1.2533 times the standard error of the mean. Additionally, in Fig. 3.8, for f

δ2(γ) we
also plot the theoretical SPT result that was obtained by evaluating equations (3.21), (3.29) and
(3.38) numerically, including filter functions (dashed lines). We find that for Λ = 0.05 h Mpc−1the
measurements agree with the theory. The errors, however, are large, which indicates that for a
precise measurement of fO(γ) even more simulations are needed. For Λ = 0.1 and 0.2 h Mpc−1the
signal is more unstable, but still in acceptable agreement with the theory for some values of γ. It
is unclear at that point whether the data points with negative values originate from a too small
number of simulations, or whether the break-down of SPT plays a role at these cutoff scales.

Finally, in Fig. 3.10 we show the second-order renormalised cross bispectra B[δ2]2δδ
(k, k1, k2) and

B[s2]2δδ
(k, k1, k2), obtained from equation (3.47). We find that the signal for Λ = 0.05 h Mpc−1does
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Figure 3.9: The PDF of fδ2 (γ) (top three rows) and fs2 (γ) (bottom three rows) of the 40 simulations for
the five bins of γ from Fig. 3.8 (from left to right).

not change substantially in comparison to the first-order renormalised bispectrum. The overall
amplitude decreases slightly, but the spectrum still presents large, positive values in almost all
cases. For Λ = 0.1 and 0.2 h Mpc−1, however, the spectra become completely negative and now
show a flatter shape than before. This behaviour is consistent with what we found for Fig. 3.8:
Also for f

δ2(γ) and fs2(γ) the two larger cutoffs give a similar measurement, whereas the one for

Λ = 0.05 h Mpc−1differs. These results can be explained in the context of Figs. 3.6 and 3.7: We
already pointed out that in particular for Λ = 0.2 h Mpc−1the NLO terms show an overall larger
signal than the LO terms, which should not happen when writing an expansion. Additionally,
also for Λ = 0.1 h Mpc−1the NLO results are similar to the LO ones which can lead to the same
problems. This suggests that when measuring the bispectrum at z = 0, the analysis must be
restricted to cutoff scales Λ < 0.1 h Mpc−1. For these scales, BOδδ(k, k1, k2) is dominated by the
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Figure 3.10: The same as Fig. 3.2, but for the second-order renormalised cross bispectra B[δ2]2δδ
(k, k1, k2)

and B[s2]2δδ
(k, k1, k2). Note the symmetrically logarithmic scaling on the y-axis for all panels.

LO term, and the NLO term only adds a subdominant contribution so that the computation
of B[O]2δδ

(k, k1, k2) gives a meaningful result. It is therefore not possible at this stage to claim
success of the renormalisation procedure in simulations. With only the results for one cutoff
scale, Λ = 0.05 h Mpc−1, at hand, we are not in the position to make a comparison between cutoff
scales, and therefore not possible to say whether the dependency on it could be eliminated.
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Chapter 3 Renormalisation of quadratic and tidal halo bias in N-body simulations

3.5 Renormalising the halo power spectrum

Another interesting test of the renormalisation framework is to apply it to the halo power
spectrum Pδhδh

(k). In contrast to the halo-matter cross spectrum, which can only be measured
in numerical simulations, the halo (or galaxy) power spectrum is a quantity that is actually
accessible by galaxy redshift surveys. Therefore, testing how well it can be renormalised within
the developed framework is a crucial task. Under the assumption that only those operators
appearing in equation (3.3) are needed, we use equation (3.1) and write the theoretical halo
power spectrum until fourth order in the perturbations (McDonald and Roy, 2009; Desjacques,
Jeong and Schmidt, 2018b),

Pδhδh
(k) =

(
b2

1,R + 2b1,Rb
∇

2δ
k2

+ b2
∇

2δ
k4

) [
P(LO)
δδ (k) + P(NLO)

δδ (k)
]

+ 2
(
b1,Rb2 + b

∇
2δ

b2k2
)

P[δ2]1δ
(k) + 2

(
b1,Rbs2 + b

∇
2δ

bs2k2
)

P[s2]1δ
(k)

+ b2
2P[δ2]1[δ2]1

(k) + b2
s2 P[s2]1[s2]1

(k) + 2b2bs2 P[δ2]1[s2]1
(k) −

1
nh
, (3.51)

where the last term represents shot noise that must be subtracted, modelled by using the inverse
of the halo density nh. Some of the spectra we already examined in detail in W19. The terms
where δ2 and s2 are cross-correlated with themselves or with each other can be written as

P[O]1[O′]1
(k) = P(22)

OO′
(k) − lim

k→0
P(22)

OO′
(k) , (3.52)

where

P(22)
δ2δ2(k) =

∫
P11(q) P11(|k − q|)

d3q

(2π)3 , (3.53)

P(22)
s2 s2(k) =

∫
P11(q) P11(|k − q|) S 2(q,k − q)2 d3q

(2π)3 , (3.54)

P(22)
δ2 s2(k) =

∫
P11(q) P11(|k − q|) S 2(q,k − q)

d3q

(2π)3 , (3.55)

and

lim
k→0

P(22)
δ2δ2(k) =

∫
P11(q)2 d3q

(2π)3 , (3.56)

lim
k→0

P(22)
s2 s2(k) =

4
9

∫
P11(q)2 d3q

(2π)3 , (3.57)

lim
k→0

P(22)
δ2 s2(k) =

2
3

∫
P11(q)2 d3q

(2π)3 . (3.58)

From equations (3.56) – (3.58) it becomes clear that the expressions at k → 0 are not k-dependent
(in contrast to the renormalisation term in equation 3.13), which is interpreted as an additional,
cutoff-dependent noise contribution to the spectra.

So far, we wrote the integrals without the filter functions. As shown in W19 and explained in
section 3.2.1, however, when comparing SPT results to simulation data, the filters are needed.
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Figure 3.11: The renormalised cross spectra appearing in the the halo power spectrum, P[δ2]1∇
2δ(k) (top

left), P[s2]1∇
2δ(k) (top right), P[δ2]1[δ2]1

(k) (middle left), P[s2]1[s2]1
(k) (middle right), and P[δ2]1[s2]1

(k) (bottom).

The results were obtained by measuring the expressions in equations (3.61) and (3.62) for three values of
Λ from the simulations and performing the average. Shaded regions represent the standard error of the
mean.
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Chapter 3 Renormalisation of quadratic and tidal halo bias in N-body simulations

The integral expressions therefore become

P(22)
OO′

(k) =

∫
P11(q) P11(|k − q|) ΣOO′(q,k − q) W(q) W(|k − q|)

d3q

(2π)3 , (3.59)

with

ΣOO′ =


1 for O = O′ = δ2 ,

S 2(q,k − q)2 for O = O′ = s2 ,

S 2(q,k − q) for O = δ2, O′ = s2 .

(3.60)

Since the independence on k in the limit k → 0 is unchanged by introducing the filters, we
therefore perform the renormalisation in the simulations as

P[O]1[O′]1
(k) = POO′(k) − POO′(kmin) . (3.61)

Furthermore, the renormalisation of the spectra involving O = {δ2, s2
} and ∇2δ is computed

analogously to equation (3.15),

P[O]1∇
2δ

(k) = PO∇2δ
(k) − αOP

∇
2δδ

(k) . (3.62)

Inserting equations (3.61) and (3.62) into equation (3.51), we write the complete halo power
spectrum Pδhδh

(k), measured from the simulations, as

Pδhδh
(k) = b2

1,RPδδ(k) + 2b1,Rb
∇

2δ
P
∇

2δδ
(k) + b2

∇
2δ

P
∇

2δ∇2δ
(k)

+ 2
[
b1,Rb2P[δ2]1δ

(k) + b2b
∇

2δ
P[δ2]1∇

2δ
(k)

]
+ 2

[
b1,Rbs2 P[s2]1δ

(k) + bs2b
∇

2δ
P[s2]1∇

2δ
(k)

]
+ b2

2P[δ2]1[δ2]1
(k) + b2

s2 P[s2]1[s2]1
(k) + 2b2bs2 P[δ2]1[s2]1

(k) −
1
nh
, (3.63)

with nh = Nh/V, where Nh is the number of haloes in the simulation box. We show the
renormalised spectra that appear only in the halo power spectrum and were not shown in
W19 in Fig. 3.11. We find similar behavior for all spectra: For small k, the signal approaches
zero, independently of the value of Λ. This shows that also for these terms the first-order
renormalisation procedure was fully successful. The amplitude of all spectra grows towards more
negative values with increasing k, whereas the signal obtains larger absolute values for increasing
Λ. In total, the renormalised results show very similar characteristics to those presented in W19.
While from this it might first seem as if the spectra were giving degenerate contributions to
Pδhδh

(k), this is not true. They do differ slightly in amplitude and shape on the smaller scales,
and it is exactly at these small scales where these higher-order contributions are expected to
provide the greatest modification to the LO spectrum.

3.6 Summary

In this paper we extended the procedure to renormalise halo bias in simulations, developed in
our previous work W19, in two ways. In the former paper, we successfully renormalised the
cross spectra P

δ2δ
(k) and Ps2δ

(k) in the halo-matter cross spectrum Pδhδ
(k), and therefore also the

linear bias parameter b1 (first-order renormalisation). Now, we mainly focused on renormalising
the relevant spectra in the halo-matter-matter cross bispectrum Bδhδδ

(k, k1, k2) and therefore
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3.6 Summary

the bias parameters b2 and bs2 (second-order renormalisation). Additionally, we applied the
procedure to the halo power spectrum Pδhδh

(k) and successfully renormalised the relevant spectra.
Our main results can be summarized as follows:

1. We performed a detailed SPT calculation for the renormalisation term at bispectrum level
B(NLO)

[O]1δ1δ1
(k, k1, k2) (equations 3.28, 3.37, 3.38 and 3.39) and confirmed the result presented

by A14 (their equation 2.42).

2. Using an estimator based on FFT, we measured Bδhδδ
(k, k1, k2) from the simulations for

the three halo mass bins that we introduced in W19, and compared it to Bδδδ(k, k1, k2) for
three different triangle configurations (Fig. 3.1). While the data show a certain amount
of noise, the halo-matter cross bispectrum looks similar to the matter bispectrum for all
configurations and scales. The larger the mean halo mass of the bin is, the stronger is the
signal of Bδhδδ

(k, k1, k2).

3. For the three different values of the cutoff Λ = {0.05, 0.1, 0.2} h Mpc−1we measured the
cross bispectra between O = {δ2, s2

} and the matter (Fig. 3.2), which are clearly cutoff
dependent since their overall amplitude increases with increasing Λ. We renormalised
these spectra to first order, using the result for the renormalisation term we obtained in
W19, [O]1 = O − αOδ (Fig. 3.4).

4. We adapted the SPT result for renormalisation at second order to apply it to real data
(equations 3.47 – 3.50), and we measured all the appearing bispectra from the simulations
(Figs. 3.5 – 3.7). In particular, we obtained the renormalisation term which must be
subtracted from the first-order renormalised cross bispectra to obtain the second-order
renormalised ones.

5. We performed the second-order renormalisation in simulations (Fig. 3.10). For Λ =

0.05 h Mpc−1the procedure had a minor influence, in contrast to the measurements for
Λ = 0.1 and 0.2 h Mpc−1, where too much was subtracted. This issue arises since for these
cutoff scales the NLO terms present a signal close to or larger than the LO term. Clearly,
this indicates that the expansion itself ceases to be valid, therefore the whole procedure
must be restricted to Λ < 0.1 h Mpc−1at z = 0.

6. We compared the LO term, BO1δ1δ1
(k, k1, k2), to SPT results, evaluated numerically in-

cluding filter functions (Fig. 3.6). We find good agreement for all scales and values of Λ.
Furthermore, in the case of δ2 we calculated the prefactor of the renormalisation term,
f
δ2(γ), from SPT including filter functions. Particularly for Λ = 0.05 h Mpc−1it compares

well to the data. For larger values of Λ we find an increased divergence between theory
and data which could provide a hint that SPT looses its applicability at these cutoff scales.

7. We adapted the first-order renormalisation procedure to the bias expansion of the halo
power spectrum Pδhδh

(k) (equation 3.63) and measured a set of renormalised cross spectra
(Fig. 3.11). Since the signal approaches zero in the case of k → 0 for all values of Λ the
first-order renormalisation was successful.

In summary, the results suggest that the second-order renormalisation procedure has only a
major impact in a small interval of cutoff scales between 0.05 and 0.1 h Mpc−1. Future work
should aim at constraining this interval by repeating the measurements from this work at more
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Chapter 3 Renormalisation of quadratic and tidal halo bias in N-body simulations

values of Λ. It is also possible to perform the analysis for larger redshifts where the procedure
should be valid for greater cutoff scales. It is then of interest to fit the bias expansion at
bispectrum level against Bδhδδ

(k, k1, k2) using the fitting method developed in W19. This will
allow to obtain values for the set of bias parameters, and it will provide insight whether it is
possible to renormalise b2 and bs2 .

Furthermore, the successful renormalisation of the bias expansion of Pδhδh
(k) clearly motivates

an application of the model to data, both in simulations and also in real galaxy redshift surveys.
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CHAPTER 4

Summary & Outlook

Accurate models to describe the bias of dark-matter (DM) tracers (e.g. haloes or galaxies) are a
crucial ingredient in the analysis process of galaxy redshift surveys. In this work, we approached
the task of phrasing a halo-bias relation (often in the form of an ordered expansion; e.g. McDonald
and Roy, 2009; Kehagias et al., 2014; Senatore, 2015) from several perspectives. After providing
a theoretical motivation for a set of bias models within the framework of an Effective Field
Theory (EFT) in combination with cosmological Standard Perturbation Theory (SPT), we
ran a suite of 40 cosmological DM-only simulations in order to obtain a numerical testbed
with enormous statistical power. Besides our investigation of the optimal bias model based
on the application of model selection techniques, we particularly directed our efforts towards
implementing and therefore testing the renormalisation of halo bias (a scheme first introduced by
McDonald, 2006) within our simulations. This technique aims at eliminating unphysical artifacts
that, within the otherwise powerful mathematical framework, are unavoidably introduced to the
bias expansion. It prescribes how to rewrite individual terms of the model order by order with
the intent of obtaining a physically meaningful description of bias. In this study, for the first
time, we demonstrated how to successfully adapt this method to numerical data and, therefore,
how to renormalise the bias expansion in practice.

In chapter 2 we focused on the renormalisation of linear bias. For each of our models the
DM density field was expanded in a different number of bias operators Oi (where the full set of
operators is {δ, δ2, s2,∇2δ,Γ3, k

2
}), each weighted with a bias parameter bi. In order to obtain the

bias parameters from the simulations, after smoothing the density field with a sharp cutoff in
Fourier space, we cross-correlated the halo density field and the bias model with δ and measured
the resulting power and cross spectra, where we found a clear dependency of the halo-matter
cross spectrum Pδhδ

(k) on the halo mass. For three different halo mass bins we finally fitted
the bias model against the halo-matter cross spectrum, using a novel method that takes into
account the covariance matrix of all spectra, and we found that even without any renormalisation
the data were in very good agreement with the model. However, the bias parameters did not
contain any physical meaning – while the linear bias b1 should dominate on large scales, it was
contaminated by a cutoff-dependent signal from the quadratic (b

δ2) and tidal (bs2) biases. We
addressed this issue by modeling the cross spectra P

δ2δ
(k) and Ps2δ

(k) within the framework of
SPT and isolating the cutoff-dependent (UV-sensitive) terms on large scales. We demonstrated,
both analytically and numerically, that when comparing SPT calculations to numerical data
filter functions must be multiplied to each density field, which leads to a modification of the
prefactor αO of the UV-sensitive terms (contrary to what was claimed by Desjacques, Jeong and
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Schmidt, 2018a). After measuring the cutoff-dependent terms in the simulations, we subtracted
them from the cross spectra to obtain the renormalised bias expansion and bias parameters.
In this context we found that the linear growth factor, that multiplies the linear density field,
requires very precise measurement, and therefore we extracted it directly from the simulations.
By fitting the renormalised bias relation to the halo-matter cross spectrum we were able to
measure a renormalised linear bias parameter bR

1 that presented the same value for each cutoff
scale. We repeated the same procedure for eleven different bias models, and using statistical
model selection techniques we found that a four-parameter model, containing δ, δ2, s2 and ∇2δ,
fitted the data best at redshift z = 0 on scales k ≤ 0.2 h Mpc−1. Using fewer parameters resulted
in inaccuracy on small scales, whereas using more parameters lead to overfitting.

In light of the success of adapting the renormalisation method to the halo bias expansion, it is
expected to be useful also for galaxies and other tracers of the DM that are directly observable.
Even while the cross spectrum between tracers and DM only exists in simulations, it is still of
great value to have at hand a working model that can also be applied to other numerical data.
In particular, it will be interesting to measure the bias parameters at higher redshifts or for
tracer populations binned in a quantity different than mass (e.g. colour or luminosity) to shed
more light on the formation processes of the large-scale structure of the Universe. Additionally,
efforts should be spent on pushing the model and the renormalisation technique to even smaller
scales. While it is in principle straightforward to obtain good fitting results also on smaller
scales by introducing higher-order operators (even if it remains to be seen which exactly are
needed), it is unclear whether the renormalisation method, based on SPT, will survive this
extension. Already at k = 0.2 h Mpc−1 we observe a divergence between the results given by the
perturbative integrals and the numerical measurements. Repeating the analysis for other cutoffs
is therefore an important task.

In chapter 3 we extended our work with the aim of renormalising the higher-order bias
parameters, b2 and bs2 , that so far still remained cutoff-dependent. Where the renormalisation
of linear bias is best achieved on the level of 2-point statistics, for higher-order parameters we
must turn to 3-point statistics, i.e. the bispectrum (Assassi et al., 2014). We cross-correlated
the halo density field and the bias expansion with δδ to measure the halo-matter-matter cross
bispectrum Bδhδδ

(k, k1, k2) from our suite of simulations where we found a similar behaviour in
halo mass as in the previous chapter. Consistently, the cross bispectra including B

δ2δδ
(k, k1, k2)

and Bs2δδ
(k, k1, k2) presented a cutoff dependency which we aimed to isolate within the framework

of SPT. While in principle the approach is the same as for linear bias, on the bispectrum level
the UV-sensitivity is given by not only one, but two different perturbative correlators. Because
of the higher complexity of the task, in a first step, we explicitly calculated these expressions and
successfully compared the final result to the literature. Building up on that, we identified the
SPT integrals with the analogous quantities in the simulations and obtained the UV-sensitive
term. In contrast to the linear bias, the prefactor fO(γ) of this renormalisation term is not a
constant anymore, but instead depends on the triangle configuration {k, k1, k2} on large scales.
We performed the second-order renormalisation by subtracting this term successfully for the
smallest cutoff scale, for the larger ones, however, the perturbative approach already broke
down. This leads to the conclusion that the halo bias relation and with it the second-order
renormalisation at bispectrum level must be restricted to scales k < 0.1 h Mpc−1. For the smallest
cutoff scales, visually the influence of the second-order renormalisation was only minor. It is
worth pointing out, however, that whereas on the power spectrum level the quadratic and tidal
cross spectra are fully dominated by a loop term, on bispectrum level they are given as the
combination of a tree and loop term. We therefore expect the renormalisation to only have a
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subdominant influence on the signal, in comparison to the absolute value.
A more quantitative analysis of the success of the technique will be possible when the

renormalised bias expansion is fitted against the halo-matter cross bispectrum, using the same
method as in the previous chapter, since this allows to obtain the bias parameters. It is
important to measure the spectra and parameters for an additional set of smaller cutoff scales,
complementing those that we had used so far, where the SPT approach is still valid. This will
give clear insight whether the UV-sensitivity can be consistently removed also for b2 and bs2 .
Furthermore, fitting the bispectrum will provide complementary bias parameter results to the
power spectrum fit and therefore allow to cross-check the different statistics against each other.
In particular, it is important to confirm the cutoff independency of bR

1 also on bispectrum level.
Furthermore, it will be valuable to obtain an expression for the renormalisation term not only
for the bispectrum, but already on the field level. For the linear bias, this is easily achievable,
since the UV-sensitive term is given by a single correlator, that can be directly translated into a
counter operator that must be subtracted (McDonald and Roy, 2009). For higher-order bias,
however, several correlators come into play. While in SPT, neglecting filter functions, it is
possible to derive two counter operators on field level also from that (which are exactly δ2 and
s2, therefore leading to the renormalisation of b2 and bs2), it remains an open question whether
this is also possible for real data. It will be helpful to investigate this in more detail, since
the discovery of these potential counter operators would possibly allow the renormalisation of
quadratic and tidal bias even on power spectrum level, making the method even more powerful
and attractive.

Finally, in a straightforward fashion, we adapted the first-order renormalisation technique
to the halo power spectrum, Pδhδh

(k). We successfully renormalised the various cross spectra
in the bias relation (which appear additionally to those from the halo-matter cross spectrum),
which either also modify the linear bias, or add unto the shot noise that naturally comes in the
halo power spectrum. Since the power spectrum of haloes – and therefore also other luminous
tracers – is directly observable from redshift surveys, it would be an exciting next step to test
the renormalised bias model on a variety of tracer populations in simulations, and possibly
eventually on real survey data.
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APPENDIX A

Posterior distributions of the bias parameters

In Figs. A.1 – A.3 we show the marginalised one- and two-dimensional posterior distributions of
the bias parameters, measured in chapter 2 with our MCMC routine where we implemented
the fitting scheme from section 2.5.1. Shown are the bias parameters obtained by fitting
equations (2.69) and (2.71) against Pδhδ

(k) for the three halo mass bins and three values of Λ.
Light and dark shadings indicate the 68.3 and 95.4 per cent credibility regions, respectively. The
larger Λ is, the better constrained are the bias parameters due to the increased number of data
points considered in the fit.
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Figure A.1: Posterior distributions of the bias parameters b1, b2, bs2 and b
∇

2δ obtained by fitting Pδhδ
(k)

for three values of Λ. Results are shown for the halo mass bin M1. The top and bottom panels refer to
the NR model given in equation (2.69) and the RL one in equation (2.71), respectively. The shaded areas
indicate 68.3 and 95.4 per cent credibility intervals.
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Figure A.2: The same as Fig. A.1, but for halo mass bin M2.

115



Appendix A Posterior distributions of the bias parameters

1.2

1.8

2.4

3.0

b
2

−3.2

−2.4

−1.6

−0.8

b
s2

2.4 2.8 3.2

b1

40

50

60

70

b
∇

2
δ

[h
−

2
M

p
c2

]

1.2 1.8 2.4 3.0

b2

−3.2 −2.4 −1.6 −0.8

bs2

40 50 60 70

b∇2δ [h−2 Mpc2]

M3, NR

Λ = 0.05 hMpc−1

Λ = 0.1 hMpc−1

Λ = 0.2 hMpc−1

−1.0

−0.5

0.0

0.5

b
2

−0.25

0.00

0.25

b
s2

3.300 3.325 3.350 3.375 3.400

bR
1

24

32

40

48

b
∇

2
δ

[h
−

2
M

p
c2

]

−1.0 −0.5 0.0 0.5

b2

−0.25 0.00 0.25

bs2

24 32 40 48

b∇2δ [h−2 Mpc2]

M3, RL

Λ = 0.05 hMpc−1

Λ = 0.1 hMpc−1

Λ = 0.2 hMpc−1

Figure A.3: The same as Fig. A.1, but for halo mass bin M3.
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APPENDIX B

Three-dimensional impression of one simulation

In Fig. B.1 we show a three-dimensional artistic impression of the actual particle distribution in
one of the cosmological simulations. Displayed is a cube of side length L = 150 h−1 Mpc which
coincides with one corner of the simulation. The figure was generated using the rendering
software Blender1 by placing light-emitting particles in otherwise dark three-dimensional space
on top of a diffusely reflecting surface, and solving the render equations for this setup.

1 https://www.blender.org/
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Appendix B Three-dimensional impression of one simulation

Figure B.1: A three-dimensional impression of the particle distribution in one of the simulations in form
of a cube with side length L = 150 h−1 Mpc. Image Credit (technical implementation): Alexander Schäbe.
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