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Summary

We show that in Zermelo-Fraenkel Set Theory without the Axiom of Choice (ZF), a surjec-
tively modi�ed Continuum Function θ(κ) can take almost arbitrary values on all cardinals.
This is in sharp contrast to the situation in ZFC, where on the one hand, Easton's Theo-
rem states that the Continuum Function on the class of all regular cardinals is essentially
undetermined, but on the other hand, various results show that the value of 2κ for sin-
gular cardinals κ is strongly in�uenced by the behavior of the Continuum Function below.

Without the Axiom of Choice (AC), the powerset of a cardinal ℘(κ) is generally not well-
orderable, and there are di�erent ways how �largeness� can now be expressed. The
θ-function maps any cardinal κ to the least cardinal α for which there is no surjective
function from ℘(κ) onto α, thus measuring the surjective size of the powersets ℘(κ).

Our �rst theorem answers a question of Saharon Shelah, who asked whether there are
any bounds on the θ-function in the theory ZF + DC + AX4. Here, the axiom AX4 is the
assertion that for every cardinal λ, the set [λ]ℵ0 (the collection of all countable subsets of
λ) can be well-ordered. Together with the Axiom of Dependent Choice (DC), the theory
ZF + DC + AX4 provides a rich framework for combinatorial set theory in the ¬AC-context,
in which set theory is �not so far from normal� (Shelah). Nevertheless, we prove that the
answer to Shelah's question is no: Given any �reasonable� behavior of the θ-function on
a set of uncountable cardinals, we construct a symmetric extension N ⊧ ZF + DC + AX4

where this behavior is realized. More precisely: For sequences of uncountable cardinals
(κη ∣ η < γ) and (αη ∣ η < γ) with certain natural properties in our ground model V , we
construct a cardinal-preserving symmetric extension N ⊇ V with N ⊧ ZF + DC + AX4 such
that θN(κη) = αη holds for all η < γ.

Our forcing notion is based on ideas from the paper �Violating the Singular Cardinals
Hypothesis without Large Cardinals� (2012) by Moti Gitik and Peter Koepke. We mod-
ify and generalize their construction in order to treat not only the cardinal ℵω, but the
θ-values of all cardinals (κη ∣ η < γ) simultaneously.
For every η < γ, we add αη-many new κη-subsets to the ground model, which are linked in
a certain fashion in order not to accidentally raise the θ-values of the cardinals below. Our
eventual model N contains surjections s ∶ ℘(κη) → α for every η < γ and α < αη, but N
does not contain a surjection s ∶ ℘(κη) → αη for any η < γ. Moreover, an Approximation
Lemma holds: Any set of ordinals located in N can be captured in a �mild� V -generic
extension that preserves cardinals and the GCH. Thus, cardinals are N -V -absolute.

This great freedom provided to the Continuum Function in ZF + DC + AX4 di�ers dras-
tically from the limitations and restrictions prominent in ZFC.

Our second theorem deals with the question whether also any �reasonable� behavior of
the θ-function on a class of in�nite cardinals can be realized in ZF. (The construction
explained above can not be straightforwardly generalized to a class-sized forcing notion



and is therefore only suitable for treating set many θ-values at the same time.)

Given a ground model V with a function F ∶ Card → Card on the class of in�nite cardinals
such that F is weakly monotone and F (κ) ≥ κ++ holds for all κ, is there is a cardinal-
preserving extension N ⊇ V with N ⊧ ZF such that θN(κ) = F (κ) for all κ ∈ Card?

We introduce a new notion of class forcing P, consisting of functions on trees with �nitely
many maximal points. The trees' levels are indexed by cardinals, and on any level κ,
there are �nitely many vertices (κ, i) with i < F (κ). Below any vertex (κ, i), we will add
a new κ-subset to the ground model. Since we do not allow splitting at limits for the
trees, it follows that this forcing notion indeed adds F (κ)-many new κ-subsets for every
κ. Our eventual model N is a symmetric extension by this class forcing P. We prove
that N ⊧ ZF, although P is not pretame and collapses all cardinals. Moreover, N can be
approximated from within by rather �mild� V -generic extensions and hence, preserves all
cardinals. Finally, we prove that θN(κ) = F (κ) holds for all κ.
Note that by �niteness of the trees however, it is not possible to retain DC in the sym-
metric extension N .

We conclude that any �reasonable� behavior of the θ-function can be realized in ZF � the
only restrictions are the obvious ones. In other words: An analogue of Easton's theorem
holds for all cardinals.
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Chapter 0

Introduction

0.1 The Continuum Function in ZFC

Investigations of the Continuum Function κ↦ 2κ lead back to the very beginnings of set
theory. In 1878, at a time where the theory of trans�nite ordinal numbers had not been
developed yet, Georg Cantor postulated his �rst version of the Continuum Hypothesis
(CH):

There is no set the cardinality of which is strictly between the cardinality of the set R of
real numbers and the cardinality of the set N of natural numbers.

A few years later, the theory of cardinals and their exponentiation lead Cantor to the
�nal form:

2ℵ0 = ℵ1 (CH) .

The question about the truth or falsehood of the Continuum Hypothesis became the �rst
on David Hilbert's famous list of important open problems, presented at the International
Congress of Mathematicians in 1900. Cantor was convinced that the Continuum Hypoth-
esis should be true, and tried in vain to prove it for many years. It was not until 1963,
45 years after Cantor's death, that Paul Cohen gave a proof in [Coh63] and [Coh64] that
2ℵ0 can be any cardinal κ of uncountable co�nality in ZFC. Before that, Kurt Gödel had
shown in [Göd40] that CH holds in his constructible universe L. Thus, not only was the
Continuum Hypothesis among the �rst statements that were shown to be independent of
ZF, but the technique of forcing that Paul Cohen invented in his proofs has had a decisive
impact on modern set theory as a powerful tool for establishing relative consistency and
independence results.

However, there is no evidence that Georg Cantor or any of his contemporaries generalized
the Continuum Hypothesis to arbitrary ℵα ([Moo11, p. 491]).

In 1904, a talk by Julius König at the International Congress of Mathematicians at Hei-
delberg attracted attention, where he gave a �proof� that CH is false. Shortly after, Felix
Hausdor� discovered that the origin of the mistake was the theorem by Felix Bernstein

1



Chapter 0. Introduction

([Ber01]),
ℵℵαµ = 2ℵα ⋅ ℵµ,

which fails in the case that α = 0 and µ = ω. This lead Hausdor� to the notion of co�nal-
ity, followed by extensive research on order types. In [Hau08], Hausdor� postulated the
Generalized Continuum Hypothesis (GCH) in the following form:

If the ordinal α has a predecessor α − 1 and ℵα is regular, then ℵα = ℵ
ℵα−1
α = 2ℵα−1 .

Replacing α by α + 1 (taking in consideration that Hausdor� had shortly discovered that
with the Axiom of Choice, it follows that any successor cardinal ℵα+1 is regular), this
yields:

∀α ∈ Ord 2ℵα = ℵα+1 (GCH) .

Hausdor� never took a clear position whether the GCH should be true or false, while
methods for constructing independence results were still out of reach at that time.

In [Göd38], where Kurt Gödel introduced the class L of constructible sets, he proved the
consistency of the GCH with ZFC. The �rst global result about possible behaviors of the
Continuum Function κ↦ 2κ contradicting GCH was given byWilliam B. Easton in [Eas70],
seven years after Paul Cohen had invented the method of forcing. Easton's theorem states
that any reasonable behavior of the 2κ-function on the regular cardinals κ is consistent
with ZFC. Indeed, the only constraints are weak monotonicity (κ ≤ λ → 2κ ≤ 2λ) and
König's Theorem, which implies cf (2κ) > κ for all κ.
Easton's Theorem reads as follows:

Theorem (William B. Easton). Let V be a ground model of ZFC + GCH with a class func-
tion F whose domain consists of regular cardinals and whose range consists of cardinals,
such that for all κ, λ ∈ domF the following properties hold:

� κ ≤ λ→ F (κ) ≤ F (λ),

� cf F (κ) > κ.

Then there exists a generic extension V [G] ⊧ ZFC by class forcing such that V and V [G]
have the same cardinals and co�nalities, and V [G] ⊧ 2κ = F (κ) holds for all κ ∈ domF .

Easton's forcing construction takes �many� Cohen forcings, and combines them in a way
that was henceforth known as the Easton product. This technique generalized results by
Cohen and Solovay, which had only allowed for setting �nitely many 2κ-values simultane-
ously.

Summing up, the behavior of the Continuum Function on the class of regular cardinals
follows the rules of �anything goes�: There are no restrictions, except for the obvious ones.

For singular cardinals however, the situation is a lot more involved, since the value of 2κ

for singular κ is strongly in�uenced by the behavior of the Continuum Function below. In
the model constructed by Easton, the 2κ-values for singular κ are as small as possible, so
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Chapter 0. Introduction

the Singular Cardinals Hypothesis (SCH) holds, which is the following statement:

Whenever κ is a singular cardinal with 2cf κ < κ, then κcf κ = κ+.

In particular:

Whenever κ is a singular cardinal with the property that 2λ < κ holds for all λ < κ, then
2κ = κ+.

It turned out that the negation of the SCH is tightly linked with the existence of large
cardinals. Among the �rst results in this direction was a theorem by Menachem Magidor
([Mag77b] and [Mag77a]) who proved that, assuming a huge cardinal, it is possible that
GCH �rst fails at a singular strong limit cardinal. On the other hand, Ronald Jensen and
Keith Devlin proved in [DJ75] that the negation of 0♯ implies SCH. Moti Gitik deter-
mined in [Git89] and [Git91] the consistency strength of ¬SCH being the existence of a
measurable cardinal λ of Mitchell order σ(λ) = λ++.

There are many more results about possible behaviors of the Continuum Function starting
from large cardinals. For instance, a theorem of Carmi Merimovich shows that assuming
some large enough cardinal, the theory ZFC + ∀κ (2κ = κ+n) is consistent for each n < ω
([Mer07]).

On the other hand, Silver's Theorem ([Sil75]) imposes a restriction on possible values of
the Continuum Function on singular cardinals, which came rather surprising at that time,
since the general impression was that maybe Easton' theorem could be generalized to all
cardinals.

Silver's Theorem reads as follows:

For any singular cardinal κ of uncountable co�nality such that 2λ = λ+ holds for all λ < κ,
it follows that 2κ = κ+.

Moreover, the SCH holds if it holds for all singular cardinals of countable co�nality.
This result was extended by Fred Galvin and András Hajnal shortly after ([GH75]).

The probably most famous upper bound on the Continuum Function on singular cardinals
is the following theorem by Saharon Shelah ([She94]):

If 2ℵn < ℵω for all n < ω, then 2ℵω < ℵω4.

In [GM96], William Mitchell and Moti Gitik prove that if there is no inner model with a
strong cardinal, then even 2ℵω < ℵω1 .

This brief overview makes clear that there are signi�cant constraints on possible behaviors
of the Continuum Function in ZFC. In particular, a result like Easton's Theorem can not
exist for all cardinals.
Today's research on the Continuum Function is concerned with �rstly, �nding restrictions
on possible behaviors, and secondly, �nding equiconsistency results of possible behaviors
and large cardinals (cf. [Mer07, p. 2]).

3



Chapter 0. Introduction

All of these results essentially involve the Axiom of Choice.

In this thesis, we look at possible behaviors of the Continuum Function in ZF + ¬AC.
Papers by Arthur Apter and Peter Koepke ([AK10]) and Moti Gitik and Peter Koepke
([GK12]), the latter of which this thesis is based on, show that an accordingly modi�ed
Continuum Function has a lot more freedom in ZF. We generalize their results towards
an �Easton-like� theorem for regular and singular cardinals.

0.2 The Axiom of Choice

First formulated by Ernst Zermelo in [Zer04], the Axiom of Choice is still the most con-
troversial mathematical axiom. It states:

For every family S of nonempty sets there exists a choice function, i.e. a function f on
S with the property that f(X) ∈X holds for every set X in S. (Axiom of Choice, AC)

The original purpose of Zermelo was to give a rigorous proof of the well-ordering theorem,
but instead he started a debate about the tenability of this �new� axiom, providing the
possibility of arbitrary choices without the slightest hint how the resulting function f
could be de�ned.

Further criticism of the Axiom of Choice arose from the fact that it has some �unpleas-
ant� ([Jec73, p. 2]) consequences that do not seem to agree with our basic intuition. The
most famous one is probably the Banach-Tarski paradox ([BT24]), based on earlier work
by Vitali ([Vit05]) and Hausdor� ([Hau14a]): Any solid sphere can be decomposed into
�nitely many subsets, which can be reassembled in a di�erent way to obtain two solid
spheres, each of which has the same size as the original one. This phenomenon seems to
be a �paradox�, since dividing a sphere into �nitely many parts, moving them around and
rotating them, should preserve the volume. The key point is that the subsets considered
are non-measurable sets which do not have a volume in the ordinary sense. Their con-
struction makes use of uncountably many choices.

On the other hand, the Axiom of Choice is indispensable for many important theorems
of modern mathematics. For example, it is equivalent to Zorn's Lemma, Tychono�'s
Theorem (the product of any family of compact topological spaces is compact), and the
theorem that every vector space has a basis.

In [Göd38], Kurt Gödel proved the consistency of AC relative to ZF by constructing
L ⊧ ZFC, starting o� from a model of ZF. This paved the way for a broad acceptance of
the Axiom of Choice (together with the matter of fact that many substantial theorems in
mathematics do not get by without AC).

However, it was not until 1964 that a proof was given for the independence of AC from the
axiom system ZF; for which Paul Cohen used his shortly invented technique of forcing
(cf. [Coh63] and [Coh64]). He incorporated arguments by A. Fraenkel ([Fra22]), who had
introduced permutation models more than 40 years ago, proving the independence of AC
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Chapter 0. Introduction

from ZFA (an axiom system of set theory allowing the existence of atoms). We elaborate
on this in Chapter 1.2, p. 13). Subsequent work by Mostowski ([Mos39]), Lindenbaum
([LM38]) and Specker ([Spe57]) lead to the formulation of symmetric forcing, which opened
up the way for a huge variety of theorems and equiconsistency results. Starting o� from a
model of a theory ZFC + X, symmetric forcing leads to a model of a theory ZF + ¬AC + Y,
thus showing: If ZFC +X is consistent, then so is ZF + ¬AC + Y.
Although there is no doubt that the Axiom of Choice should be generally accepted, it can
still be a �worthwhile endeavor� ([She16, �0]) to construct models of a theory ZF+¬AC+Y,
which can give deep insight in the theory ZFC itself.

In [She14], Shelah re�ects on the Axiom of Choice from a contemporary, pragmatic point
of view. He starts with listing reasons why set theory without AC should be taken into
account, although today's mathematicians are of course not impressed by the �paradox�
of Banach-Tarski any more, and do not question the indispensability of the Axiom of
Choice.
First, he reminds us that historically, essentially the lack of a �reasonable� theory with-
out AC lead to its acceptance. Thus, the establishment of �nice� results in ZF (+ weaker
forms of AC, for instance ZF +DC + AX4, see below) on the other hand justi�es considering
ZF + ¬AC. Secondly, Shelah points out that a theory without AC bars the way to �mere
existence theorem[s]� ([She14, p. 247]), but insists on �nicely de�nable� [She16, �0] solu-
tions. Thus in a sense, existence theorems are �strengthen[ed]� [She16, �0] by weakening
AC.

We now look at weak forms of AC, leading to rich theories.

The Axiom of Dependent Choice (DC) was introduced by Paul Bernays in 1942
([Ber42]):

For every nonempty set X with a binary relation R such that for all x ∈X there is y ∈X
with yRx, it follows that there is a sequence (xn ∣ n < ω) in X such that xn+1Rxn for all
n < ω. (Axiom of Dependent Choice, DC)

Over ZF, the axiom DC is equivalent to the Baire category theorem for complete metric
spaces, and it is equivalent to the Löwenheim-Skolem theorem. Over ZF + DC, it is con-
sistent that every set of reals is Lebesgue measurable ([Sol70]). (The construction of a
non-measurable set requires uncountably many choices.)

The Axiom of Countable Choice (CC or ACω), asserting that any countable collec-
tion of nonempty sets has a choice function, is strictly weaker than DC.

The Axiom of Dependent Choice can be generalized as follows, for κ a cardinal:

Let S be a nonempty set with a binary relation R on S, such that for every α < κ and
every function f ∶ α → S, there exists y ∈ S with f Ry. Then there is f ∶ κ → S such that
f ↾ αRf(α) holds for all α < κ. (DCκ)

The Axiom of Choice implies that DCκ holds for all κ � indeed, ∀κ DCκ is equivalent to AC.

5



Chapter 0. Introduction

When dealing with real numbers, surprisingly often the Axiom of Dependent Choice is
su�cient (instead of full AC), and the theory ZF + DC provides an interesting framework
for real analysis.
Concerning combinatorial set theory however, investigations under ZF +DC seemed rather
hopeless in the �rst place. A crucial step in the other direction was a paper by Saharon
Shelah ([She97]) with the main result in ZF + DC that whenever µ is a singular cardinal of
uncountable co�nality such that ∣H(µ)∣ = µ, then µ+ is regular and non-measurable. In the
case that the power sets ℘(α) are well-orderable for all α < ℵω1 with ∣⋃α<ℵω1 ℘(α)∣ = ℵω1 ,
it essentially follows that also ℘(ℵω1) is well-orderable.
Subsequently (see [She10] and [She16]), Shelah showed that much of pcf theory is possible
in ZF + DC, if an additional axiom is adopted:

For every cardinal λ, the set [λ]ℵ0 can be well-ordered. (AX4)

He calls AX4 an �anti-thesis to considering L[R]� ([She16, �0]) where roughly speaking,
only 2ℵ0 lacks a well-ordering.

Starting from a ground model V ⊧ ZFC, any symmetric extension by countably closed
forcing yields a model of ZF + DC + AX4 (see [She10, p.3 and p.15]). In [She16, 0.1],
Shelah concludes that ZF + DC + AX4 is �a reasonable theory, for which much of combi-
natorial set theory can be generalized �. For example, he proves a rather strong version of
the pcf theorem, gives a representation of λκ for λ >> κ (concluding that [λ]κ can be be
�almost well-ordered� ([She14, p. 249]) ), and proves that certain covering numbers exist.
Moreover, Shelah shows that in ZF + DC + AX4 there is a proper class of regular successor
cardinals. (There can still be singular successors, but �not too many�, [She14, p. 249]).
In [She14, p. 249], Shelah concludes that set theory in ZF + DC + AX4 is �not so far from
normal�, which makes investigations in ZF + DC + AX4 a worthwhile venture.

0.3 The Continuum Function in ZF

In Chapter 0.1, we saw that in ZFC, the Continuum Function on the class of all regular
cardinals is essentially undetermined by Easton's Theorem, while for singular cardinals
κ on the other hand, possible values of 2κ are strongly in�uenced by the behavior of the
Continuum Function below. In particular, an Easton-like theorem for regular and singular
cardinals can not exist.

All results setting bounds on possible 2κ-values for singular cardinals essentially involve
the Axiom of Choice. Without AC, however, there is a lot more possible:

In [AK10], Arthur Apter and Peter Koepke examine the consistency strength of the nega-
tion of SCH in ZF + ¬AC. In this context, one has to distinguish between injective and
surjective failures. An injective failure of SCH at κ is a model of ZF + ¬AC with a singular
cardinal κ such that GCH holds below κ, but there is an injective function ι ∶ λ ↪ ℘(κ)
for some λ ≥ κ++. A surjective failure of SCH at κ is a model of ZF + ¬AC with a singular
cardinal κ such that GCH holds below κ, but there is a surjective function f ∶ ℘(κ) → λ
for some cardinal λ ≥ κ++. On the one hand, Arthur Apter and Peter Koepke construct

6



Chapter 0. Introduction

injective failures of the SCH at ℵω, ℵω1 and ℵω2 that would contradict the theorems by
Shelah ([She94]) and Silver ([Sil75]) in the ZFC-context, but have fairly mild consistency
strengths in ZF + ¬AC. For instance, they prove that the theory

ZFC + ∃κ (σ(κ) = κ++ + ω2),

where σ(κ) denotes the Mitchell order of the measurable cardinal, is equiconsistent with
the theory

ZF + ¬AC + � GCH holds below ℵω2� +

+ � there is an injective function ι ∶ ℵω2+2 → [ℵω2]
ω2 � .

On the other hand, regarding a surjective failure of the SCH, they prove that for every
α ≥ 2, ZFC together with the existence of a measurable cardinal is equiconsistent with the
theory

ZF + ¬AC + �GCH holds below ℵω � +

+ � there is a surjective function f ∶ [ℵω]
ω → ℵω+2 � .

It follows that also without the Axiom of Choice, injective failures of the SCH are in-
evitably linked to large cardinals. Regarding surjective failures however, one can not
replace the surjective function f ∶ [ℵω]ω → ℵω+2 in their argument by a surjection f ∶
℘(ℵω)→ ℵω+2; so the following question remained:

Is it possible for λ ≥ ℵω+2, to construct a model of ZF + ¬AC where GCH holds below ℵω
and there is a surjection f ∶ ℘(ℵω)→ λ without any large cardinal assumptions?

This question was positively answered by Motik Gitik and Peter Koepke in [GK12], where
a ground model V ⊧ ZFC +GCH with a cardinal λ ≥ ℵω+2 is extended via symmetric forcing
such that the extension N = V (G) preserves all V -cardinals, the GCH holds in N below
ℵω, and there is a surjective function f ∶ ℘(ℵω)→ λ.

More generally, in the absence of the Axiom of Choice where ℘(κ), the power set of a
cardinal κ, is generally not well-ordered, the �size� of ℘(κ) can be measured surjectively
by the θ-function

θ(κ) ∶= sup{α ∈ Ord ∣ ∃ f ∶ ℘(κ)→ α surjective function},

generalizing the value θ ∶= θ(ω) prominent in descriptive set theory. In the ¬AC-context,
the θ-function provides a surjective substitute for the Continuum Function κ ↦ 2κ. If
θ(κ) = µ, there exists a surjective function f ∶ ℘(κ) → α for every α < µ, but there is no
surjection function f ∶ ℘(κ)→ µ. Since also without the Axiom of Choice, there is always
a surjection f ∶ ℘(κ)→ κ+, it follows that θ(κ) ≥ κ++ for all cardinals κ.

One can show that in the model constructed in [GK12], it follows that indeed, θ(ℵω) = λ+.
The question arises to what extent this result can be generalized: Is it possible to do a
similar construction and replace ℵω by a cardinal κ of uncountable co�nality? What
happens if we want θ(κ) to be a limit cardinal? And is it possible to treat several
cardinals κ at the same time and set their θ-values independently? Can we perhaps even
modify the θ-function as we wish?
This leads us to our main question:
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Is the θ-function essentially undetermined in ZF?

We will see that the answer is yes.

The construction introduced in [GK12] can roughly be described as follows: A ground
model V is extended by a forcing notion P adding λ-many subsets of ℵω. These subsets
are linked in a certain fashion to make sure that not too many ℵn-subsets are adjoined for
n < ω. The eventual model N is a symmetric submodel of the generic extension, generated
by certain equivalence classes of these λ-many ℵω-subsets.

In Chapter 2, we modify and generalize this forcing notion. Given a ground model
V ⊧ ZFC + GCH with a �reasonable� behavior of the θ-function on a set of (regular
or singular) cardinals, our construction provides a cardinal-preserving symmetric exten-
sion where this behavior is realized.

One important modi�cation is that we replace �niteness properties by the property of
being countable, which gives a countably closed forcing notion P. Together with a count-
ably complete normal �lter on our P-automorphism group, it follows that the according
symmetric extension N is a model of ZF + DC + AX4 (cf. [Kar14, Lemma 1] and [She16,
p. 3 + 15]).

Our �rst main theorem (see [FK18]) states:

Theorem. Let V be a ground model of ZFC +GCH with γ ∈ Ord and sequences of uncount-
able cardinals (κη ∣ η < γ) and (αη ∣ η < γ), such that (κη ∣ η < γ) is strictly increasing
and closed, and the following properties hold:

� ∀ η < η′ < γ αη ≤ αη′, i.e. the sequence (αη ∣ η < γ) is increasing,

� ∀ η < γ αη ≥ κ++η ,

� ∀ η < γ cf αη > ω,

� ∀ η < γ (αη = α+ → cf α > ω).

Then there is a cardinal- and co�nality-preserving extension N ⊇ V with N ⊧ ZF + DC +
AX4 such that that θN(κη) = αη holds for all η < γ.

Firstly, this result gives an answer to our main question for the theory ZF + DC + AX4:
Yes, the θ-function is essentially undetermined on any set of cardinals.
Secondly, the theorem above answers a question of Shelah: Firstly, in [She10, �0], he
emphasizes that under ZF + DC + AX4, we �cannot say much� on possible cardinalities of
℘(κ). In [She16, �0.2 1)], Shelah asks, referring to [GK12]: �Can we bound hrtg ℘(µ)1

[= θ(µ)] for µ singular? � No, we can not.

1 In [She16, �0.4 1)], Shelah de�nes �hrtg (A) = min{α ∣ there is no function from A onto α}�. Then
hrtg ℘(κ) = min{α ∈ Ord ∣ ∄ f ∶ ℘(κ) → α surjective function} = sup{β ∈ Ord ∣ ∃ f ∶ ℘(κ) →
β surjective function} = θ(κ).
This does not coincide with the notion of the Hartogs number of a set X, which is usually de�ned as the
least ordinal α such that there is no injection from α into X.
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Chapter 3 deals with the question whether also any �reasonable� behavior of the θ-function
on a class of (regular or singular) cardinals can be realized. Before that, in Chapter 2.7,
we argue that a construction like in Chapter 2 can not be straightforwardly generalized
to a class-sized forcing notion and is therefore only suitable for treating set many θ-values
at the same time.

This gives rise to the following question: Given a ground model V with a �reasonable�
function F ∶ Card→ Card on the class of all in�nite cardinals, is there a cardinal-preserving
extension N ⊇ V where θN(κ) = F (κ) holds for all κ?

In Chapter 3.1, we introduce a new notion of forcing P whose elements p are functions on
trees (t,≤t) with �nitely many maximal points. The trees' levels are indexed by cardinals,
and on any level κ, there are �nitely many vertices (κ, i) with i < F (κ). For successor
cardinals κ+, the value p(κ+, i) is a partial 0-1-function on the interval [κ,κ+). Thus, for
any condition p and (κ, i) ∈ domp, it follows that ⋃{p(ν+, j) ∣ (ν+, j) ≤t (κ, i)} is a partial
function on κ with values in {0,1}. Since we do not allow splitting at limits for the trees,
it follows that this forcing indeed adds F (κ)-many new κ-subsets for every cardinal κ.

Our eventual model N is a symmetric extension by this class forcing P. Although P is
not pretame and collapses all cardinals, we will see that N ⊧ ZF. Moreover, cardinals are
N -V -absolute, and θN(κ) = F (κ) holds for all κ.

In other words: In ZF, the θ-function can take almost arbitrary values on all cardinals.
The only constraints are the obvious ones: weak monotonicity, and θ(κ) ≥ κ++ for all κ.

This gives our second main theorem (see [FK16]):

Theorem. Let V be a ground model of ZFC + GCH with a function F on the class of
in�nite cardinals such that the following properties hold:

� ∀κ F (κ) ≥ κ++

� ∀κ,λ (κ ≤ λ→ F (κ) ≤ F (λ)).

Then there is a cardinal-preserving extension N ⊇ V with N ⊧ ZF such that θN(κ) = F (κ)
holds for all κ.

This complements our results from Chapter 2 and gives another answer to our main ques-
tion above: Yes, the Continuum Function is essentially undetermined in ZF � there is an
Easton-like theorem for all cardinals.

This thesis is structured as follows: Following some preliminaries (see Chapter 0.4), Chap-
ter 1 contains a comprehensive introduction to Symmetric Forcing. We start with the gen-
eral forcing technique and then introduce symmetric forcing, largely following [Dim11],
where the technical framework is given for symmetric forcing with partial orders (without
using Boolean algebras). Chapter 1.2.3 complements the presentation from [Dim11] by
including the case that one has to deal with automorphisms π ∶ Dπ → Dπ de�ned not on
the whole forcing notion P, but only on a dense subset Dπ ⊆ P. Boolean algebras are
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avoided by working with equivalence classes of partial automorphisms [π]. We also set
the framework for Symmetric Class Forcing without Boolean algebras, in the case that
the class forcing P is considerably nice.

In Chapter 2, we �rst present the forcing notion introduced by Moti Gitik and Peter
Koepke (cf. [GK12]). After that, we give a proof of our �rst main theorem: Any �reason-
able� behavior of the θ-function on a set of uncountable cardinals (given by sequences in
V , (κη ∣ η < γ), and the according θ-values (αη ∣ η < γ)) can be realized in ZF + DC + AX4.
We discuss what �reasonable� means in this context, and then introduce our countably
closed forcing notion P, based on the forcing notion constructed in [GK12]. The eventual
model N ⊧ ZF + DC + AX4 is a V -generic symmetric extension by P. We show that N
preserves all cardinals, and the θ-values are as desired: θN(κη) = αη for all η < γ.

In Chapter 3, we give a proof of our second main theorem: Given a ground model V
with a function F ∶ Card → Card on the class of in�nite cardinals, respecting the rules of
weak monotonicity and F (κ) ≥ κ++ for all κ ∈ Card, we construct N ⊇ V with N ⊧ ZF
such that cardinals are N -V -absolute and θN(κ) = F (κ) holds for all κ ∈ Card. We �rst
introduce our class-sized forcing notion P, and then use our techniques from Chapter 1.4
to construct a V -generic symmetric extension, which will be our eventual model N . This
yields an Easton-like theorem in ZF for all cardinals.

0.4 Preliminaries

The axiom system ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice) is the
most common foundation of mathematics. It consists of the following axioms:

Extensionality. If two sets X and Y have the same elements, then X = Y .

Foundation. Every nonempty set has an ∈-minimal element.

Pairing. If X and Y are sets, then there exists a set {X,Y } which contains exactly X
and Y .

Union. If X is a set, there exists a set Y = ⋃X which is the union of all elements of X.

In�nity. There exists an in�nite set.

Power Set. For every set X there exists a set Y = ℘(X) which is the collection of all
subsets of X.

Separation. If ϕ is a formula with its free variables among x, a, z; then for any sets a,
z, also {x ∈ a ∣ ϕ(x, a, z)} is a set.

Replacement. If ϕ is a formula with its free variables among x, y, a, z; then for
any sets a, z such that for all x ∈ a there is exactly one y with ϕ(x, y, a, z), also
{y ∣ ∃x ∈ a ϕ(x, y, a, z)} is a set.

Axiom of Choice. Every family of nonempty sets has a choice function.

Separation and Replacement are schemas (they contain an axiom for every formula ϕ).
The others are single axioms.

10
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The Axiom System ZF (Zermelo-Fraenkel Set Theory) is ZFC without the Axiom of
Choice. In context with class forcing, sometimes Power Set is excluded, which yields
the theory ZFC− (and ZF−, respectively). Note that in ZF−, not all commonly used choice
principles are equivalent, so we have to insist on the strongest form:

Well-ordering. Every set can be well-ordered.

Then ZFC− is the theory obtained from ZF− by adding Well-ordering.

Also in context with class forcing, sometimes Union is weakened:

Weak Union. If X is a set, then there exists a set Y ⊇ ⋃X which is a superset of the
union of all elements of X.

If Separation is available, then Union follows from Weak Union.

The following axiom schema implies Replacement, and is equivalent to Replacement if
Power Set holds:

Collection. If a and z are sets and ϕ is a formula with its free variables among x, y, a,
z, such that for every x ∈ a there exists y with ϕ(x, y, a, z), then there exists a set Y with
the following property: For every x ∈ a there is y ∈ Y with ϕ(x, y, a, z).

We denote by L∈ the language of set theory, i.e. �rst-order language with the binary pred-
icate symbol �∈ �.

Throughout this thesis, we work in �rst-order set theory ZFC and forego introducing a
second-order axiomatization like Gödel-Bernays set theory GB, which would allow for
quanti�cation over classes. In our setting, the classes are simply the de�nable classes
in V , i.e. objects of the form {x ∣ ϕ(x,x0, . . . , xn−1)}, where ϕ ∈ L∈, with �nitely many
parameters x0, . . . , xn−1 from V . We will treat V -classes informally, but always take care
that everything can be described in the language L∈.

Our notation is mostly standard and follows textbooks as [Jec06] or [Kun06].
We write Ord and Card for the class of ordinals and the class of in�nite cardinals, respec-
tively. The co�nality of an ordinal α is abbreviated cf α. We denote by Reg the class of
all regular cardinals (all those κ ∈ Card with cf κ = κ), and by Sing the class of all singular
cardinals (all κ ∈ Card with cf κ < κ).
A cardinal κ is inaccessible if it is uncountable, regular, and a strong limit cardinal,
i.e. whenever λ < κ, then also 2λ < κ. An inaccessible cardinal is a type of large cardinal:
It can not be reached from smaller cardinals by the common set-theoretic operations.

For a set X, we denote by ℘(X) ∶= {Y ∣ Y ⊆X} its power set, and by TC(X) the transitive
closure of X, i.e. the �⊆ �- smallest transitive set containing X. If X has cardinality ≥ κ,
then [X]κ denotes the collection of all Y ∈ ℘(X) with ∣Y ∣ = κ.

Given a function f , we denote by dom f its domain, and by rg f its range. We write
f ∶ A → B for dom f = A and rg f ⊆ B. If the function f is injective, we write f ∶ A ↪ B,
if f is surjective, we sometimes write f ∶ A↠ B. For a set X, we denote by idX ∶X →X
the function that maps every x ∈X onto itself.

11
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A sequence is a function whose domain is an ordinal α. We use the standard nota-
tion (ai ∣ i < α). A sequence of ordinals (ai ∣ i < α) is normal if it is strictly increas-
ing (i.e. i < j → ai < aj) and closed (i.e. for every limit ordinal β < α, it follows that
aβ = ⋃i<β ai).

We assume familiarity with basic cardinal arithmetic as presented in [Jec06, Chapter 5].

For the sake of completeness, we state König's Theorem, which has decisive in�uence on
behavior of the Continuum Function in ZFC:

Theorem 0.4.1 (König's Theorem, [Jec06, 5.10]). Let I be a set and κi, λi ∈ Card for
every i ∈ I. Moreover, assume that κi < λi holds for all i ∈ I. Then

∑
i∈I
κi <∏

i∈I
λi.

Corollary 0.4.2 ([Jec06, 5.12]). Let κ be a cardinal. Then cf (2κ) > κ.

The proof of König's Theorem essentially involves the Axiom of Choice.
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Chapter 1

Symmetric Forcing

In this chapter, we present symmetric forcing with partial orders following [Jec73, 5.1 +
5.2] and [Dim11, 1.1 + 1.2], and after that describe our construction of symmetric exten-
sions for partial automorphisms π ∶ Dπ → Dπ, which are not de�ned on the whole forcing
P but only on a dense subset Dπ ⊆ P. Thereby, we continue the presentation in [Dim11,
1.2] which contains a comprehensive approach to constructing symmetric extensions by
partial orders without using Boolean Algebras. We extend the methods introduced there
in order to incorporate partial automorphisms for set and class forcing.

We start this chapter with a short overview of the history of symmetric models.

In [Fra22], A. Fraenkel introduced the notion of a permutation model to provide a method
for establishing independence results concerning the Axiom of Choice. His work was re-
�ned by Mostowski and Lindenbaum in [Mos39] and [LM38]. This approach starts from
a ground model of ZFCA, which is a modi�ed version of ZFC that allows atoms : An atom
is not a set, and has no elements. Hence, Extensionality does not holds for the atoms.

A general theory of permutation models was developed by E. Specker in [Spe57]. The
overall idea is that one can not use the axioms of ZFCA to distinguish between the atoms,
which allows for constructing models in which the set A of atoms does not have a well-
ordering.

Although this method can not be applied to models of ZFC, it gives some insight into the
problem how the independence of the Axiom of Choice from the other axioms could be
established.

Indeed, when Paul Cohen introduced the method of forcing in [Coh63] and [Coh64], set
theorists noticed that certain sets derived from the generic �lter behave similarly as the
atoms in the theory ZFCA. The symmetric extension can roughly be constructed as fol-
lows: Automorphism of the partial order P can be extended to automorphisms of the
name space, and the symmetric extension shall consist of the interpretations of all those
names which are hereditarily symmetric, i.e. they hereditarily remain unchanged under
�many� P-automorphisms. In order to specify the phrase �many�, one introduces an au-
tomorphism group A on the partial order, and a normal �lter F on A. A P-name ẋ is
symmetric, if the set {π ∈ A ∣ πẋ = ẋ} is an element of F , and recursively, a P-name ẋ is
hereditarily symmetric, ẋ ∈HS, if ẋ is symmetric and ẏ ∈HS for all ẏ ∈ dom ẋ. Then the
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Chapter 1. Symmetric Forcing

symmetric extension V (G) ∶= {ẋG ∣ ẋ ∈HS} is a model of ZF.

This chapter is structured as follows:

In Chapter 1.1, we give the preliminaries for the method of forcing, in order to �x our
notation and list some basic properties.
After that, in Chapter 1.2, we present the technique of symmetric forcing with partial
orders. We follow the presentation given in [Dim11, 1.1 + 1.2], where the standard
method of forcing with Boolean values from [Jec06] and [Jec73] is translated to partial
orders.
In the case that the occuring automorphisms π are not de�ned on the whole forcing
P but only on a dense subset Dπ ⊆ P however, the standard approach is to turn back
to Boolean-valued models, since any such π ∶ Dπ → Dπ can be uniquely extended to an
automorphism of the according complete Boolean algebra B(P). The aim of Chapter 1.2.3
is to incorporate also this situation (which appears frequently in practical applications)
into the technique of symmetric forcing with partial orders.
In Chapter 1.3, we give a brief introduction to class forcing. As an example, we discuss
Easton forcing, a class-sized product forcing introduced by William Easton in [Eas70] in
order to show that in ZFC, the Continuum Function on the class of all regular cardinals
can take almost arbitrary values.
Finally, in Chapter 1.4, we set the framework for constructing symmetric extensions by
class forcing in the case of partial automorphisms π ∶ Dπ → Dπ on dense subsets Dπ ⊆ P.
We restrict to the case that �rstly, the class forcing P = ⋃α∈OrdPα can be written as an
increasing chain of set-sized complete subforcings (with certain additional properties) and
secondly, any automorphism π ∶Dπ →Dπ de�ned on a dense class Dπ ⊆ P is the canonical
extension of some πα ∶ Dπ ∩ Pα → Dπ ∩ Pα, where Dπ ∩ Pα is a dense subset of Pα.
Symmetric class forcing will be used in Chapter 3.

1.1 Forcing: Notation, Basic Properties and Examples.

1.1.1 Forcing Preliminaries.

The method of forcing was invented by Paul Cohen in [Coh63] and [Coh64], where he
proved the independence of the Continuum Hypothesis (CH) of ZFC. The idea is to ex-
tend a countable, transitive model of set theory V (the ground model) by a generic �lter
G, to obtain the generic extension V [G] which is the smallest transitive ZFC-model with
G ∈ V [G] and V ⊆ V [G]. Forcing conditions in the ground model approximate G, and
determine more and more properties of the generic extension V [G].

Forcing is a very general and �exible method for producing a variety of models and es-
tablishing relative consistency results.

In this chapter, we give a short overview of the forcing technique and list some basic
properties. A comprehensive introduction to forcing and generic extensions can be found
in [Kun06, VII] or [Jec06, 14].
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As an example, we will discuss several versions of Cohen forcing : Firstly, adding a Cohen
generic is probably the simplest and most intuitive way of adding a new set to the ground
model; and secondly, Cohen forcing is the starting point for modifying the Continuum
Function κ↦ 2κ.

We �x a ground model V , i.e. a countable, transitive model of ZFC. For a discussion of
the metamathematical background, we refer to [Kun06, VII].

De�nition 1.1.1. A forcing is a set (P, ≤, 1) such that (P, ≤) is a preorder (i.e. the
relation �≤� is re�exive and transitive on P) with greatest element 1.

The elements of P are the conditions. If p, q ∈ P with q ≤ p, then q is stronger than p. Two
forcing conditions p, q ∈ P are compatible (we write p∥q) if they have a common extension
(i.e. there exists r ∈ P such that r ≤ q and r ≤ p), and incompatible if they do not (we
write p� q).

Most natural forcings are antisymmetric, i.e. for all p, q ∈ P, we have (q ≤ p∧ p ≤ q)→ p = q.
Sometimes, antisymmetry is an additional requirement in De�nition 1.1.1.

Note that, given a preorder (P,≤) without a maximal element, one can easily construct
a new one by adding a maximal element 1 ∉ P �on top�, and work with the forcing notion
(P ∪ 1,≤,1).

De�nition 1.1.2. A forcing P is separative if for all p0, p1 ∈ P with p0 ≰ p1 there exists
p ≤ p0 such that p�p1.

Whenever a forcing notion P is not separative, it can be replaced by a separative partial
order that yields the same generic extensions.

For the rest of this Chapter, let (P,≤,1) denote a forcing.

We will always assume that a forcing notion (P,≤,1) is separative (which is the case for
most forcing notions that occur in practice).

Before we can construct generic extensions, we need the following notions:

De�nition 1.1.3. A set A ⊆ P is an antichain if its elements are pairwise incompatible.
A maximal antichain is an antichain A ⊆ P with the property that for all antichains B ⊆ P
with B ⊇ A, it follows that B = A.

De�nition 1.1.4. A set D ⊆ P is dense if for all q ∈ P there exists q′ ∈ D with q′ ≤ q. If
in addition, D is downwards closed (i.e. q ∈ D and q′ ≤ q imply q′ ∈ D), then D is called
open dense. For a condition p ∈ P, set D ⊆ P is dense below p if for every q ≤ p there exists
q′ ∈D with q′ ≤ q.

A set D ⊆ P is predense if for all q ∈ P there exists q′ ∈D with q′ ∥ q. For a condition p ∈ P,
a set D ⊆ P is predense below p if for every q ≤ p there exists q′ ∈D with q′ ∥ q.

De�nition 1.1.5. A set ∅ ≠ F ⊆ P is a �lter on P if the following holds:

(i) F is upwards closed : If p ∈ F and q ∈ P with q ≥ p, then also q ∈ F .
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(ii) F is directed, i.e. for any p, q ∈ F , there exists r ∈ F with r ≤ p, q.

A �lter G ⊆ P is V -generic on P if it intersects every dense set D ⊆ P with D ∈ V .

It is not di�cult to verify that a �lter G ⊆ P is V -generic on P if and only if it hits every
maximal antichain / open dense set / predense set in V . If G is V -generic on P and p ∈ G,
then G ∩ D ≠ ∅ for every set D that is dense below p.

In the case that P is nonatomic (or nontrivial), i.e. every p ∈ P has two incompatible ex-
tensions, an easy density argument yields that P-generic �lters never exist in the ground
model V .

On the other hand, since we have assumed our ground model to be countable, one can
enumerate the dense sets in V from the �outside� and �nd a �lter G on P that hits every
dense set in V . This settles the question of the existence of a V -generic �lter (cf. [Kun06,
2.3] or [Jec06, 14.4]).

As an example, we look at Cohen forcing Fn(ω,2,ℵ0), which adds an ω-subset to the
ground model. It was introduced by Paul Cohen in[Coh63], who used a generalized ver-
sion Fn(ω2 × ω,2,ℵ0) to construct a model in which 2ℵ0 = ℵ2 holds, i.e. the Continuum
Hypothesis fails. Further generalizations can be used to violate the Generalized Contin-
uum Hypothesis GCH at any regular cardinal κ (see [Sol63]).

Example 1.1.6 (Cohen forcing). Let Fn(ω,2,ℵ0) ∶= {p ∶ domp→ 2 ∣ domp ⊆ ω , ∣domp∣ <
ω} denote the set of all �nite partial functions from ω into {0,1} ordered by reverse in-
clusion, i.e. p ≤ q i� p ⊇ q. For G a V -generic �lter on Fn(ω,2,ℵ0), it follows that any
p, q ∈ G are compatible; hence, ⋃G is a function. Moreover, for every n < ω, the set
Dn ∶= {p ∈ Fn(ω,2,ℵ0) ∣ n ∈ domp} is dense; hence, G ∩ Dn ≠ ∅ and it follows that
n ∈ dom⋃G. Thus, ⋃G ∶ ω → 2, and since Fn(ω,2,ℵ0) is nonatomic, we obtain ⋃G ∉ V .
The function ⋃G ∶ ω → 2 is called a Cohen real.
In many cases, the generic �lter G is confused with ⋃G.

Cohen forcing is the starting point for changing the value of 2κ and investigating possible
behaviors of the Continuum Function.

We will now de�ne the generic extension V [G]. Informally, V [G] consists of all sets which
can be constructed using G and �nitely many elements of the ground model V . Every
x ∈ V [G] has a name ẋ ∈ V , which tells how x can be constructed from G.

De�nition 1.1.7. The class of P-names for V is de�ned as follows: Recursively, we de�ne
the set NameVα (P) by setting NameV0 (P) ∶= ∅, NameVα+1(P) ∶= {ẋ ∣ ẋ ⊆ NameVα (P) × P)},
and NameVλ (P) ∶= ⋃α<λ NameVα (P) for λ a limit ordinal.
The class of P-names for V is NameV (P) ∶= ⋃α∈Ord NameVα (P).

For ẋ ∈ NameV (P), let rkPṡ ∶= α if ẋ ∈ NameVα+1(P) ∖NameVα (P). This is the P-rank of ẋ.
For any ẋ ∈ NameV (P), it follows that rkPẋ = sup{rkPẏ + 1 ∣ ẏ ∈ dom ẋ}, and NameVα (P) is
the collection of all ẋ ∈ NameV (P) with rkPẋ < α.

We introduce the following notation:
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For a P-name ẋ ∈ NameV (P), let

d0(ẋ) ∶= dom ẋ , dn+1(ẋ) ∶= domdn(ẋ) for n < ω , and Tdom(ẋ) ∶= ⋃
n<ω

dn(ẋ).

We say that a set S ⊆ NameV (P) is dom-transitive if for every ẋ ∈ S and ẏ ∈ dom ẋ, it fol-
lows that also ẏ ∈ S. Then Tdom(ẋ) ∪ {ẋ} ⊆ NameV (P) is the �⊆�- smallest dom-transitive
set T with ẋ ∈ T .

Now, we are ready to de�ne the interpretation of P-names by a generic �lter, along the
well-founded relation ẏ R ẋ ∶↔ ẏ ∈ dom ẋ.

De�nition 1.1.8. Let G be a V -generic �lter on P. If ẋ ∈ NameV (P), then

ẋG ∶= {ẏG ∣ ∃p ∈ G (ẏ, p) ∈ ẋ}.

The generic extension of V by G is de�ned as follows:

V [G] ∶= {ẋG ∣ ẋ ∈ NameV (P)}.

Then V [G] consists of all those x which are de�nable in V [G] from G and �nitely many
elements of V .

The elements of the ground model a have canonical names ǎ, de�ned recursively as follows:

ǎ ∶= {(b̌,1) ∣ b ∈ a}.

It follows inductively that ǎG = a holds for all a ∈ V . For ordinals α, the �ˇ � is usually
omitted and we write α instead of α̌.

The canonical name for the generic �lter is

Ġ ∶= {(p̌, p) ∣ p ∈ P}.

Then for any H a V -generic �lter on P, it follows that ĠH =H.

Theorem 1.1.9 ([Jec06, 14.5]). Let G be a V -generic �lter on P. The generic extension
V [G] is the smallest transitive ZFC-model with the property that V ∪ {G} ⊆ V [G].

It is not di�cult to see that OrdV = OrdV [G].

If ẋ, ẏ ∈ NameV (P) with (ẏ, p) ∈ ẋ, then p forces that ẏ ∈ ẋ: For any G a V -generic �lter
on P with p ∈ G, it follows that ẏG ∈ ẋG. This concept is generalized in the following
de�nition:

De�nition 1.1.10. Let ϕ(v0, . . . , vn−1) ∈ L∈ be a formula of set theory and ẋ0, . . . , ẋn−1 ∈
Name(P). We say that p forces ϕ(ẋ0, . . . , ẋn−1),

p ⊩VP ϕ(ẋ0, . . . , ẋn−1),

if V [G] ⊧ ϕ(ẋG0 , . . . , ẋ
G
n−1) holds for every V -generic �lter G on P with p ∈ G.
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When V and P are clear from the context, we write just �⊩�. Similarly, when the ground
model V is clear, we write Name(P).

Of course, De�nition 1.1.10 takes place in an outer model, not in V . However, one
can show that for a formula of set theory ϕ ≡ ϕ(v0, . . . , vn−1) �xed, the forcing relation
p ⊩VP ϕ(ẋ0, . . . , ẋn−1) for p ∈ P and ẋ0, . . . , ẋn−1 ∈ Name(P) can be expressed in the ground
model V . This de�nability lemma is an integral part of the theory of forcing and crucial
for proving that the generic extension V [G] is a model of ZFC. It is the �rst part of the
Forcing Theorem, the second part of which (the truth lemma) states that every formula
ϕ ∈ L∈ that holds true in the generic extension V [G], is forced by some condition p ∈ G.

Theorem 1.1.11 (Forcing Theorem, [Kun06, VII 3.6]). Let ϕ(v0, . . . , vn−1) ∈ L∈ denote a
formula of set theory and P a forcing in V .
� The class {(p, ẋ0, . . . , ẋn−1) ∣ p ∈ P, ẋ0, . . . , ẋn−1 ∈ Name(P) , p ⊩VP ϕ(ẋ0, . . . , ẋn−1)} is
de�nable in V (de�nability lemma).

� If G is a V -generic �lter on P and ẋ0, . . . , ẋn−1 ∈ Name(P) such that V [G] ⊧ ϕ(ẋG0 , . . . ,
ẋGn−1), then there exists a condition p ∈ G with p ⊩VP ϕ(ẋ0, . . . , ẋn−1) (truth lemma).

The de�nability lemma implies that for every formula of set theory ϕ(v0, . . . , vn−1), there
is another formula ϕ(y, z, v0, . . . , vn−1) such that ϕ(p,P, ẋ0, . . . , ẋn−1) holds true in V if
and only if P ∈ V is a forcing, p ∈ P, and p ⊩VP ϕ(ẋ0, . . . , ẋn−1).

We quote the following list of important properties of forcing from [Jec06, 14.7]:

Proposition 1.1.12 (Properties of Forcing). Let ϕ, ψ ∈ L∈ denote formulas of set theory.

(1) If p, q ∈ P such that p ⊩ ϕ and q ≤ p, then also q ⊩ ϕ.
(2) There is no p ∈ P with both p ⊩ ϕ and p ⊩ ¬ϕ.
(3) For every p ∈ P, there is q ≤ p such that q decides ϕ, i.e. either q ⊩ ϕ, or q ⊩ ¬ϕ.

For every p ∈ P, the following holds:

(4) p ⊩ ¬ϕ i� there is no q ≤ p with q ⊩ ¬ϕ,
(5) p ⊩ ϕ ∧ ψ i� p ⊩ ϕ and p ⊩ ψ,
(6) p ⊩ ∀x ϕ i� p ⊩ ϕ(ẋ) for every ẋ ∈ Name(P),
(7) p ⊩ ϕ ∨ ψ i� for all q ≤ p, there exists r ≤ q with r ⊩ ϕ or r ⊩ ψ,
(8) p ⊩ ∃xϕ i� for all q ≤ p, there exist r ≤ q and ẋ ∈ Name(P) with r ⊩ ϕ(ẋ).

Finally, the Maximality Principle states:

(9) If p ∈ P with p ⊩ ∃x ϕ, there exists ẋ ∈ Name(P) with p ⊩ ϕ(ẋ).

The Maximality Principle is equivalent to the Axiom of Choice.

We introduce the following notation for names for ordered pairs:

De�nition 1.1.13. For ẋ, ẏ ∈ Name(P), let OR0
P(ẋ, ẏ) ∶= {(ẋ,1)}, and OR1

P(ẋ, ẏ) ∶=
{(ẋ,1), (ẏ,1)}. Then

ORP(ẋ, ẏ) ∶= {(OR0
P(ẋ, ẏ),1), (OR1

P(ẋ, ẏ),1)}
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Chapter 1. Symmetric Forcing

is the canonical name for the ordered pair of ẋ and ẏ.

For G a V -generic �lter on P, it follows that the interpretation ORP(ẋ, ẏ)G is the ordered
pair (ẋG, ẏG).
If the forcing P is clear from the context, we write just OR(ẋ, ẏ).

We continue with de�nitions and facts about isomorphisms, embeddings and projections
of forcing notions.

De�nition 1.1.14. Let (P,≤P,1P), (Q,≤Q,1Q) be forcing notions. A map b ∶ P → Q is
an isomorphism of forcings if b is bijective, b(1P) = 1Q, and for all p0, p1 ∈ P it follows
that p0 ≤P p1 if and only if b(p0) ≤Q b(p1). If additionally P = Q, then b is called an
automorphism of P.

Even if two forcing notions P and Q are not isomorphic, they can still produce the same
generic extensions if there is a dense embedding between P and Q:

De�nition 1.1.15. Let (P,≤P,1P), (Q,≤Q,1Q) be forcing notions.
� A map % ∶ P → Q is an embedding if for all p0, p1 ∈ P, �rstly, if p1 ≤P p0, then
%(p1) ≤Q %(p0), and secondly, if p0 �P p1, then %(p0)�Q %(p1).

� A map % ∶ P → Q is a complete embedding, if % is an embedding, and for every
maximal antichain A ⊆ P, it follows that the pointwise image %[A] = {%(p) ∣ p ∈ A}
is a maximal antichain in Q.
If P ⊆ Q and the inclusion ι ∶ P ↪ Q with ι(p) = p for all p ∈ P is a complete
embedding, then P is a complete subforcing of Q. We write P ⊆c Q.

� A map % ∶ P→ Q is a dense embedding, if % is an embedding and the pointwise image
%[P] is dense in Q.

Clearly, every dense embedding is complete. Whenever % ∶ P→ Q is a complete embedding
and H a V -generic �lter on Q, then %−1[H] ∶= {p ∈ P ∣ %(p) ∈ H} is a V -generic �lter on
P with V [%−1[H]] ⊆ V [H]. If % ∶ P → Q is a dense embedding, then P and Q produce the
same generic extensions.

De�nition 1.1.16. Let (P,≤P,1P), (Q,≤Q,1Q) be forcing notions. A map % ∶ P → Q is a
projection, if the following hold:

(i) %(1P) = 1Q
(ii) Whenever p0, p1 ∈ P with p1 ≤P p0, then %(p1) ≤ %(p0).
(iii) For all p ∈ P and q ∈ Q with q ≤Q %(p), there exists p′ ∈ P with p′ ≤P p and %(p′) ≤Q q.

Whenever % ∶ P → Q is a projection and G a V -generic �lter on P, then the upwards
closure H ∶= {q ∈ Q ∣ ∃p ∈ G π(p) ≤ q} is a V -generic �lter on Q.

1.1.2 Changing the Value of 2κ.

In this chapter, we set the necessary preliminaries to construct a generic extension V [G]
where 2ℵ0 = ℵ2 holds. Generalizing the forcing notion from Example 1.1.6, this was how
Paul Cohen proved in [Coh63] and [Coh64] the consistency of ¬CH.
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After that, we discuss the generalization of Cohen forcing used by Robert Solovay in
[Sol63] to obtain a generic extension with 2κ = λ, where κ is a regular cardinal, and λ is
an arbitrary cardinal with cf λ > κ.

Example 1.1.17 (Changing the value of 2ℵ0). Let λ be an uncountable cardinal.
Then

Fn(λ × ω,2,ℵ0) ∶= {p ∶ domp→ 2 ∣ domp ⊆ λ × ω , ∣p∣ < ℵ0}

denotes the forcing notion consisting of all partial functions form λ × ω into {0,1} with
�nite domain, ordered by reverse inclusion. If G is a V -generic �lter on Fn(λ × ω,2,ℵ0),
then for every α < λ, it follows that Gα ∶ ω → 2, Gα(n) ∶= G(α,n) for all n < ω, is a
total function on ω, thus adding a new ω-subset to the ground model. An easy density
argument shows that Gα ≠ Gβ whenever α ≠ β. Hence, Fn(λ × ω,2,ℵ0) adds a λ-sequence
of pairwise di�erent function from ω into 2, and it follows that (2ℵ0)V [G] ≥ ∣λ∣V [G].

Setting λ ∶= ℵV2 , this is not yet enough to make sure that 2ℵ0 = ℵ2 holds true in V [G],

since it remains to prove that indeed, λ = ℵ
V [G]
2 . This will follow from the fact that the

partial order Fn(λ × ω,2,ℵ0) preserves cardinals, i.e. for any V -cardinal α, it follows that
α is still a cardinal in V [G].

De�nition 1.1.18. A forcing P preserves cardinals if for every V -generic �lter G on P
and α an ordinal, it follows that α is a cardinal in V if and only if α is a cardinal in V [G].
A forcing P preserves co�nalities if for every V -generic �lter G on P and γ a limit ordinal,
it follows that cfV (γ) = cfV [G](γ).

Every forcing that preserves co�nalities, preserves cardinals, as well.

The following combinatorial property guarantees the preservation of cardinals and co�-
nalities:

De�nition 1.1.19. A forcing P has the countable chain condition (c.c.c.) if every an-
tichain in P is at most countable.

If V [G] is a V -generic extension by some c.c.c.-forcing P, then every function f ∈ V [G],
f ∶ A→ B with A, B ∈ V , can be approximated by a map F ∈ V , F ∶ A→ ℘(B) such that
for all a ∈ A, it follows that f(a) ∈ F (a) and F (a) is at most countable.

This gives rise to the following lemma:

Lemma 1.1.20 ([Kun06, VII 5.10]). Any c.c.c.-forcing P preserves cardinals and co�-
nalities.

An easy application of the ∆-system lemma ([Kun06, II 1.6]) shows that the forcing
notion Fn(λ × ω,2,ℵ0) from Example 1.1.17 has the c.c.c. Hence, by Lemma 1.1.20, it
follows that Fn(λ × ω,2,ℵ0) preserves cardinals. In particular, ℵV2 = (ℵ2)V [G]. Hence,
V [G] ⊧ 2ℵ0 ≥ ℵ2, and it follows that V [G] ⊧ ¬CH. This is probably the most famous
consistency result in the theory of forcing:

Theorem 1.1.21 ([Coh63] , [Coh64]). If ZFC is consistent, then also the theory ZFC +
¬CH is consistent.
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It was Robert Solovay who determined in [Sol63] the exact value of 2ℵ0 in the generic
extension from Example 1.1.17:

If λ is an in�nite cardinal such that λω = λ in V and G is a V -generic �lter on Fn(λ ×
ω,2,ℵ0), then V [G] ⊧ 2ℵ0 = λ.

The proof uses nice names for subsets of ω:

De�nition 1.1.22. Let α be an ordinal and P a notion of forcing. A nice P-name for a
subset of α is of the form

ẋ = {(β, p) ∣ β < α , p ∈ Aβ},

where each Aβ ⊆ P is an antichain. We denote by Nice(P, α) the set of nice P-names for
subsets of α.

One can show that for every X ⊆ α in a P-generic extension V [G], there exists a nice
name Ẋ ∈ Nice(P, α) with X = ẊG.

The following lemma shows how nice names for subsets of κ can be used to put an upper
bound on the value of 2κ in the generic extension:

Lemma 1.1.23 ([Kun06, VII 5.13]). Let κ and λ be cardinals, and P a forcing such that
∣P∣ ≤ λ and P has the c.c.c. . Let G be a V -generic �lter on P. Then V [G] ⊧ 2κ ≤ (λκ)V .

Proof. Since every antichain in P is countable, it follows that there are ≤ λℵ0-many an-
tichains in P. Hence, there are only (λℵ0)κ = λκ-many nice P-names for subsets of κ.
Let (Ẋi ∣ i < λκ) enumerate Nice(P, α) in V . For every X ∈ ℘V [G](κ), there exists
Ẋ ∈ Nice(P, α) with X = ẊG. Hence, the map F ∶ (λκ)V → ℘V [G](κ), F (i) = ẊG

i is
surjective.

More general, for any generic extension V [G] by a forcing notion P, and κ a cardinal,

it follows that (2κ)V [G] ≤ (2∣P∣ ⋅κ)
V
, since Nice(P, κ) ⊆ ℘(κ × P), so there are at most

2∣P∣ ⋅κ-many nice P-names for subsets of κ.

Applying Lemma 1.1.23 with κ = ℵ0 to the forcing notion Fn(λ × ω,2,ℵ0), which has
cardinality λ, it follows that 2ℵ0 ≤ λℵ0 holds true in any Fn(λ × ω,2,ℵ0)-generic extension.

If V ⊧ GCH, then λℵ0 = λ for all cardinals λ of uncountable co�nality; which gives the
following result:

Theorem 1.1.24 ([Kun06, p. 209 + 210]). Let V be a ground model of ZFC + GCH with
a cardinal λ such that cfV (λ) > ω. Then there is a cardinal- and co�nality-preserving
generic extension V [G] with V [G] ⊧ 2ℵ0 = λ.

König's Theorem (see 0.4.1) implies that cf(2ℵ0) > ℵ0 must hold in any model of ZFC.
Thus, as Solovay wrote in [Sol65]: �2ℵ0 can be anything it ought to be�.

This is a striking answer to more than eighty years of discussion after Cantor had ad-
vanced the Continuum Hypothesis in [Can78].
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The question arises whether a similar forcing notion can also be used to modify the value
of 2κ for arbitrary cardinals.

If κ is regular, one can use the partial order

Fn(λ × κ,2, κ) ∶= {p ∶ domp→ 2 , domp ⊆ λ × κ , ∣domp∣ < κ},

and proceed similarly as before:

Example 1.1.25 (Changing the value of 2κ). Let κ, λ be cardinals. The forcing
notion Fn(λ × κ,2, κ) ∶= {p ∶ domp→ 2 , domp ⊆ λ × κ , ∣domp∣ < κ} consists of all partial
functions p from λ × κ into {0,1} with ∣domp∣ < κ, ordered by reverse inclusion. Then
Fn(λ × κ,2, κ) adds a λ-sequence of pairwise di�erent functions from κ into 2. Hence,
whenever G is a V -generic �lter on Fn(λ × κ,2, κ), it follows that (2κ)V [G] ≥ ∣λ∣V [G].

In order to establish V [G] ⊧ 2κ = λ, it will be necessary that κ is regular, 2<κ = κ, and
λκ = λ holds true in V .

De�nition 1.1.26. Let κ be an in�nite cardinal in V . A forcing notion P preserves
cardinals ≥ κ (or ≤ κ), if for every V -generic �lter G on P and α ≥ κ (respectively, α ≤ κ),
it follows that α is a cardinal in V if and only if α is a cardinal in V [G].
A forcing notion P preserves co�nalites ≥ κ (or ≤ κ) if for every limit ordinal γ with
cfV (γ) ≥ κ (respectively, cfV (γ) ≤ κ), it follows that cfV (γ) = cfV [G](γ).

The following notion generalizes the c.c.c. :

De�nition 1.1.27. Let κ be an uncountable cardinal. A forcing P has the κ-chain
condition (κ-c.c.) if every antichain A ⊆ P has cardinality < κ.

By a theorem of Tarski, the least κ such that P satis�es the κ-c.c. is either �nite, or regular
and uncountable. This allows us to concentrate on the κ-c.c. for regular uncountable
cardinals. Then every forcing with the κ-c.c. preserves cardinals and co�nalities ≥ κ:

Proposition 1.1.28 ([Kun06, VII 6.9]). Let P be a forcing and κ a regular uncountable
cardinal such that P has the κ-chain condition. Then P preserves co�nalities and cardinals
≥ κ.

As for the c.c.c., the point is that whenever G is a V -generic �lter on a κ-c.c. forcing P
and f ∶ A → B a function in the generic extension V [G] with A, B ∈ V , then f can be
approximated by a map F ∈ V , F ∶ A → ℘(B) such that f(a) ∈ F (a) and ∣F (a)∣ < κ for
all a ∈ A.

In particular, any forcing P preserves all co�nalities and cardinals ≥ ∣P∣+.

Example 1.1.20 (Changing the value of 2κ, continued). An application of the
∆-system lemma shows that Fn(λ × κ,2, κ) has the (2<κ)+-c.c. Hence, Fn(λ × κ,2, κ)
preserves cardinals and co�nalities ≥ (2<κ)+.

In the case that κ is regular in V , the preservation of cardinals and co�nalities up to κ will
be guaranteed by a di�erent combinatorial property of the partial order, the < κ-closure.
Hence, in the case that 2<κ = κ (for instance, if V ⊧ GCH), it follows that the forcing
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notion Fn(λ × κ,2, κ) preserves all cardinals.

In the case that there are V -cardinals α with κ+ ≤ α ≤ 2<κ however, it follows that in the
generic extension V [G], any such α is collapsed to κ. Thus, cardinals are not V -V [G]-
absolute.

De�nition 1.1.29. A forcing P is ≤ κ-closed if for for any γ ≤ κ and (pi ∣ i < γ) a
descending sequence in P (i.e. pj ≤ pi for all i ≤ j < γ) there exists a lower bound : There
is p ∈ P with p ≤ pi for all i < γ. A forcing P is < κ-closed if it is ≤ γ-closed for all γ < κ.

Lemma 1.1.30 ([Kun06, VII 6.14]). Let P be a < κ-closed forcing, G a V -generic �lter
on P and f ∶ α → V a function in V [G], where α < κ. Then f ∈ V .

This immediately implies:

Corollary 1.1.31 ([Kun06, VII 6.15]). If κ is a cardinal and P is < κ-closed, then P

preserves co�nalities and cardinals ≤ κ.

Example 1.1.20 (Changing the value of 2κ, continued). If κ is a regular cardinal,
then Fn(λ × κ,2, κ) is < κ-closed. Hence, the forcing Fn(λ × κ,2, κ) preserves cardinals
≥ κ. If additionally 2<κ = κ, it follows that Fn(λ × κ,2, κ) preserves all co�nalities and
cardinals.

Now, assume that κ is regular, 2<κ = κ and λκ = λ in V . Let G be a V -generic �l-
ter on Fn(λ × κ,2, κ). Since 2<κ = κ, it follows that Fn(λ × κ,2, κ) has the κ+-cc, and
∣Fn(λ × κ,2, κ)∣ ≤ λ<κ = λ. Hence, there are at most λκ = λ-many antichains, and
∣Nice (Fn(λ × κ,2, κ), κ)∣ ≤ λκ = λ. As in the proof of Lemma 1.1.23, this implies 2κ ≤ λ.

The following theorem is by Robert Solovay (see [Sol63]):

Theorem 1.1.32 ([Kun06, VII 6.17]). Assume that κ is regular, 2<κ = κ and λκ = κ in
V , and let G be a V -generic �lter on Fn(λ × κ,2, κ). Then V [G] ⊧ 2κ = λ.

It follows that the forcing notion Fn(λ × κ,2, κ) can be used to violate GCH at any regular
cardinal κ: We start with a model V ⊧ ZFC + GCH with cardinals κ, λ such that κ is
regular and cf(λ) > κ. Then 2<κ = κ and λκ = λ holds; hence, for any V -generic extension
V [G] by Fn(λ × κ,2, κ), it follows that V [G] ⊧ 2κ = λ. For η < κ, it follows by < κ-closure
of the forcing that (2η)V [G] = (2η)V = (η+)V = (η+)V [G.

By König's Theorem (see 0.4.1), it follows that always cf(2κ) > κ must hold in any model
of ZFC; hence, the requirement that cf(λ) > κ is not a restriction. Thus, for regular κ,
the cardinality of the power set ℘(κ) can take any possible value.

For singular cardinals κ, however, the forcing notion Fn(κ × λ,2, κ) is not < κ-closed and
collapses the cardinal κ. Hence, Fn(κ × λ,2, κ) is not suitable for changing the value of 2κ

for singular κ. Indeed, investigating possible behaviors of the Continuum Function 2κ for
singular κ is a lot more involved, and there are restrictions beyond König's Theorem. For
instance, Silver's Theorem implies that whenever κ is a singular cardinal of uncountable
co�nality such that GCH holds below κ, then also 2κ = κ+ follows. We elaborate on this
in Chapter 0.1.
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1.1.3 Products

The idea of taking products of forcing notions arose from the following question: Is it
also possible to violate GCH at more than one regular cardinals at the same time? For
example, can we use forcing to construct a model in which 2ℵ1 = ℵ3 and 2ℵ2 = ℵ5 holds?
The answer is yes : Starting from a ground model V ⊧ ZFC + GCH, one can �rst force
with Fn(ℵ5 × ℵ2,2,ℵ2) and obtain a model V [G] where 2ℵ2 = ℵ5, and 2ℵ1 = ℵ2, 2ℵ0 = ℵ1

holds. After that, one can force over V [G] with Fn(ℵ3 × ℵ1,2,ℵ1), and obtain a generic
extension V [G][H], where 2ℵ2 = ℵ5, 2ℵ1 = ℵ3, and 2ℵ0 = ℵ1.
It is important that we proceed �backwards�, since we need for the second step that GCH
holds below the relevant cardinal. Thus, this method only enables us to violate GCH at
�nitely many regular cardinals at the same time.

If we want to modify the powers of in�nitely many regular cardinals simultaneously, we
need product forcing :

De�nition 1.1.33. Let (P,≤P,1P) and (Q,≤Q,1Q) be forcings. The product forcing

(P,≤P,1P) × (Q,≤Q,1Q) = (P × Q,≤P×Q,1P×Q)

is de�ned by setting (p1, q1) ≤P×Q (p0, q0) if p1 ≤P p0 and q1 ≤Q q0, and 1P×Q ∶= (1P,1Q).

Let G be a V -generic �lter on P × Q. It induces G0 ∶= {p ∈ P ∣ ∃ q ∈ Q (p, q) ∈ G} and
G1 ∶= {q ∈ Q ∣ ∃p ∈ P (p, q) ∈ G}. It is not di�cult to see that G0 and G1 are V -generic
�lters on P and Q respectively, and G = G0 × G1. Hence, any V -generic �lter G on a
product P × Q has the form G = G0 × G1, where G0 is V -generic on P, and G1 is V -generic
on Q. The converse is not true: For genericity of the product G0 × G1, it is additionally
necessary that G1 is generic over V [G0].

More precisely:

Lemma 1.1.34 (Product Lemma, [Kun06, VIII 1.4]). Let P and Q be forcings, and
G0 ⊆ P, G1 ⊆ Q. Then the following are equivalent:

(i) G0 × G1 is a V -generic �lter on P × Q,

(ii) G0 is a V -generic �lter on P and G1 is a V [G0]-generic �lter on Q,

(iii) G1 is a V -generic �lter on Q and G0 is a V [G1]-generic �lter on P.

If (i) - (iii) hold, then V [G0 × G1] = V [G0][G1] = V [G1][G0].

In many applications, one encounters the product of two forcings P and Q the �rst of
which is not too large, and the second is su�ciently closed. Then the following lemma
applies:

Lemma 1.1.35 ([Jec06, 15.19]). Let P and Q be forcing notions and κ a cardinal such
that P satis�es the κ+-chain condition and Q is ≤ κ-closed. Let G be a V -generic �lter on
P, H a V -generic �lter on Q, and f ∶ κ→ V a function in V [G][H]. Then f ∈ V [G].

We de�ne products of in�nitely many forcing notions:
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De�nition 1.1.36. Let I be an index set and (Qi ∣ i ∈ I) a collection of forcings where
every Qi is partially ordered by ≤i and has greatest element 1i. The product (or product
with full support)

P =∏
i∈I
Qi

consists of all p ∶ I → V with the property that p(i) ∈ Qi for all i ∈ I, with maximal
element 1 ∶= (1i ∣ i ∈ I) and the partial order ≤P de�ned by q ≤ p ∶⇔ q(i) ≤i p(i) for all
i ∈ I. For p ∈ P, the support of p is suppp ∶= {i ∈ I ∣ p(i) ≠ 1i}.

If G is a V -generic �lter on P, then for every i ∈ I, it follows that Gi ∶= {p(i) ∣ p ∈ G}, the
projection of G onto Qi, is a V -generic �lter on Qi.

For a collection of forcings (Qi ∣ i ∈ I) and κ a regular cardinal, the κ-product (or product
with < κ-support) is

<κ
∏
i∈I
Qi ∶= {p ∈∏

i∈I
Qi ∣ ∣ suppp∣ < κ},

with the ordering and maximal element as before. The ℵ1-product is usually referred to
as product with countable support.
Products with �nite support appear frequently: For a collection of forcings (Qi ∣ i ∈ I),
the �nite-support product is

�n

∏
i∈I
Qi ∶= {p ∈∏

i∈I
Qi ∣ ∣ suppp∣ < ℵ0},

with the ordering and maximal element as before.

Sometimes, the �product of (Qi ∣ i ∈ I)� is de�ned like our product with �nite support. In
order to avoid misunderstandings, we always clarify what support we are using.

We conclude this chapter by introducing the forcing notion that William Easton used in
[Eas70] to show that the Continuum Function on the class of all regular cardinals can
take almost arbitrary values, as long as it meets the rules of monotonicity and König's
Theorem.

De�nition 1.1.37. For α an ordinal, I ⊆ α, and a collection of forcings (Qi ∣ i ∈ I), the
product with Easton support is

Easton

∏
i∈I

Qi ∶= {p ∈∏
i∈I
Qi ∣ ∀γ (γ is inaccessible → ∣ suppp ∩ γ∣ < γ) }.

In the case that I is a set of cardinals and GCH holds, Easton support is equivalent to
requiring that ∣domp ∩ γ∣ < γ for all regular cardinals γ.

If we wish to change the value of 2κ for �many� regular κ at the same time, we can use
the product forcing

PF ∶=
Easton

∏
κ∈domF

Fn(F (κ) × κ,2, κ),

where F ∶ domF → Card is an Easton function, i.e.
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(i) any κ ∈ domF is a regular cardinal,

(ii) cf F (κ) > κ for all κ ∈ domF ,

(iii) if κ, λ ∈ domF with κ < λ, then F (κ) ≤ F (λ).

Starting from a model V ⊧ ZFC + GCH, one can show that in any V -generic extension by
PF , it follows that 2κ = F (κ) for all κ ∈ domF . In other words: Any �reasonable� behavior
of the Continuum Function (i.e. meeting the rules of weak montonicity and König's The-
orem) is consistent with ZFC.
In general, the domain of the Easton function F is a proper class, so we need class forcing
to construct the appropriate generic extension. Therefore, further discussion of Easton
forcing is deferred to Chapter 1.3.2.

1.2 Symmetric Forcing

In this chapter, we present the technique of constructing symmetric extensions by forcing
with partial orders and symmetric names.

The idea of starting with a group of permutations A with a normal �lter F on A, then
considering symmetric objects (which are �xed by F -many permutations), and taking all
objects which are hereditarily symmetric (i.e. they are symmetric, and so are all elements
in their transitive closure), already appeared in the construction of permutation models
by Fraenkel ([Fra22]) and (in a precise version) Mostowski ([Mos39]), who proved the
independence of the Axiom of Choice from ZFA (set theory with atoms).
The underlying idea � the axioms of ZFA do not distinguish between the atoms, which
allows for constructing models in which the set of all atoms has no well-ordering � was
adapted by Paul Cohen in [Coh63] and [Coh64], where he constructed a symmetric forcing
extension where the reals cannot be well-ordered. As a consequence, it follows that ¬AC
is consistent with ZF.

A general technique for constructing symmetric extension as submodels of Boolean-valued
models was developed by Scott (unpublished) and reformulated by Jech ([Jec71]).
In practise, however, it is often more comfortable to work with automorphisms of partial
orders. In [Dim11, 1.2], the method from [Jec71] is translated to forcing with partial
orders; which allows for avoiding Boolean algebras, except in the case that one has to
deal with automorphisms π ∶ Dπ → Dπ that are not de�ned on the entire forcing P, but
only on a dense subset Dπ ⊆ P.

Our aim is to incorporate this situation (which appears frequently in practice) into the
technique of constructing symmetric extensions by using automorphisms of partial orders.
This will happen in Chapter 1.2.3. The overall idea is to call two isomorphisms π ∶Dπ →
Dπ and σ ∶ Dσ → Dσ equivalent (write π ∼ σ), if they agree on the intersection Dπ ∩ Dσ.
We then work with the equivalence classes [π].

1.2.1 Constructing Symmetric Extensions

For this chapter, we �x a partial order (P,≤,1).
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De�nition 1.2.1. An automorphism of P is a bijection π ∶ P→ P such that π(1) = 1, and
for any p, q ∈ P, it follows that p ≤ q if and only if πp ≤ πq. Let Aut(P) denote the group
of all P-automorphisms, with the identity element idP ∶ P→ P, p↦ p for all p ∈ P.

Any π ∈ Aut(P) can be extended to an automorphism π̃ of the name space Name(P) by
the following recursive de�nition along the Nameα(P)-hierarchy:

π̃(ẋ) ∶= { (π̃(ẏ), πp) ∣ (ẏ, p) ∈ ẋ}.

We confuse any π ∈ Aut(P) with its extension π̃ (which does not lead to ambiguity).
Inductively, it follows that rkP πẋ = rkP ẋ for any π ∈ Aut(P) and ẋ ∈ Name(P). For any
canonical name ǎ for an element a of the ground model, it follows recursively that πǎ = ǎ.
Moreover, whenever ṡ, ṫ ∈ Name(P) and ORP(ṡ, ṫ) denotes the canonical name for their
ordered pair, it follows that

π(ORP(ṡ, ṫ)) = ORP(πṡ, πṫ).

Lemma 1.2.2 (Symmetry Lemma, [Dim11, 1.14]). Let π be a P-automorphism, ϕ(v0,
. . . , vn−1) a formula of set theory and ẋ0, . . . , ẋn−1 ∈ Name(P). Then p ⊩ ϕ(ẋ0, . . . , ẋn−1)
if and only if πp ⊩ ϕ(πẋ0, . . . , πẋn−1).

The proof is by induction over the complexity of ϕ, using the properties of the forcing
relation (cf. Propositon 1.1.12).

De�nition 1.2.3. Let A be a group.
(i) A �lter F on A is a collection of subgroups B ⊆ A such that ∅ ≠ F and F is closed

under supersets and �nite intersections.
(ii) A �lter F on A is normal if for every B ∈ F and π ∈ A it follows that the conjugate

π−1Bπ is contained in F , as well.
(iii) A �lter F on A is countably complete if for every {Ai ∣ i < ω} a family of A-subgroups

with the property that Ai ∈ F for all i < ω, it follows that also in the intersection

⋂i<ωAi is an element of F .
(iv) For κ a regular cardinal, a �lter F on A is κ-complete if for every {Ai ∣ i < κ} a family

of A-subgroups such that Ai ∈ F for all i < κ, it follows that also the intersection

⋂i<κAi is an element of F .

For constructing symmetric forcing extensions, we will need a group A of P-automorphisms
and a normal �lter F on A.

The following example demonstrates the main ideas:

Example 1.2.4 (Cohen Forcing). As an example, we consider the forcing notion Fn(ω ×
ω,2,ℵ0) introduced in Example 1.1.17. Paul Cohen used it to construct a symmetric
extension V (G) ⊇ V where the reals have no well-ordering. Hence, V (G) ⊧ ZF + ¬AC.
Let G be a V -generic �lter on Fn(ω × ω,2,ℵ0). As before , we can extract for every i < ω
the following real number (a subset of ω):

Gi ∶= {n < ω ∣ ∃p ∈ G p(i, n) = 1}.
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We wish to construct the symmetric extension V (G) in such a way that the set X ∶=
{gi ∣ i ∈ ω} is an element of V (G), but X has no well-ordering in V (G).

We consider the following group A of Fn(ω × ω,2,ℵ0)-automorphisms: Let b ∶ ω → ω
denote a bijection on ω with �nite support, i.e. suppb ∶= {i < ω ∣ b(i) ≠ i} is �nite.
Then b induces an automorphism π = πb of Fn(ω × ω,2,ℵ0) as follows: For a condition
p ∈ Fn(ω × ω,2,ℵ0), let dom(πp) ∶= {(π(i), n) ∣ (i, n) ∈ domp}, and (πp)(π(i), n) ∶= p(i, n)
for all (i, n) ∈ domp. Then the generic ω-subsets are permuted according to F .
Let A denote the group of all automorphism πb ∶ Fn(ω × ω,2,ℵ0)→ Fn(ω × ω,2,ℵ0) which
are induced by a bijection b ∶ ω → ω with �nite support as described above.
For every i < ω, let Fix(i) ∶= {πb ∈ A ∣ b(i) = i} = {π ∈ A ∣ ∀p ∈ Fn(ω × ω,2,ℵ0) ∀n <
ω ((i, n) ∈ domp → (πp)(i, n) = p(i, n))}. Then Fix(i) is a subgroup of A. Let F denote
the �lter generated by �nite intersections of these Fix(i):

F ∶= {B ⊆ A subgroup ∣ ∃k < ω ∃ i0, . . . , ik−1 < ω B ⊇ Fix(i0) ∩ ⋯ ∩ Fix(ik−1)}.

It is not di�cult to see that F is normal.

For the rest of this chapter, we �x an automorphism group A ⊆ Aut(P) and a normal
�lter F on A.

Intuitively, a P-name ẋ should be symmetric if it is �xed by �many� automorphisms of
P, and the symmetric extension V (G) should consist of all evaluated P-names which are
symmetric and have only symmetric names in their transitive closure.

De�nition 1.2.5. A P-name ẋ is symmetric for F if the stabilizer group

symA(ẋ) ∶= {π ∈ A ∣ πẋ = ẋ}

is an element of F . Recursively, a name ẋ is hereditarily symmetric, ẋ ∈ HSF , if ẋ is
symmetric, and ẏ is hereditarily symmetric for all ẏ ∈ dom ẋ.

When A and F are clear from the context, we write just sym(ẋ) and HS.

Recursively, it follows that a canonical name ǎ for an element a of the ground model is
always hereditarily symmetric, since πǎ = ǎ holds for all π ∈ Aut(P).

For every ẋ ∈ Name(P) and π ∈ A, it follows that

symA(πẋ) = π ⋅ symA(ẋ) ⋅ π−1,

since for any σ ∈ A, we have σ(πẋ) = πẋ if and only if (π−1σπ)(ẋ) = ẋ. Hence, by normality
of F , it follows that whenever a name ẋ is symmetric and π ∈ A, then πẋ is symmetric,
too. Thus, whenever ẋ ∈HS and π ∈ A, then also πẋ ∈HS.

De�nition 1.2.6. For a V -generic �lter G on P, the symmetric extension by F and G is
de�ned as follows:

V (G)F ∶= {ẋG ∣ ẋ ∈HS}.
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Then V (G)F is a transitive class with V ⊆ V (G)F ⊆ V [G].

In most cases, we write just V (G), or use the letter N for a symmetric extension.

The symmetric forcing relation ⊩s can be de�ned informally as follows:

De�nition 1.2.7. If ϕ(v0, . . . , vn−1) ∈ L∈ is a formula of set theory and ẋ0, . . . , ẋn−1 ∈HS,
we write

p (⊩s)
V
P ,F ϕ(ẋ0, . . . , ẋn−1)

if V (G)F ⊧ ϕ(ẋG0 , . . . , ẋ
G
n−1) for every V -generic �lter G on P.

When V , P and F are clear from the context, we write just �⊩s�.

Note that the symmetric forcing relation ⊩s can be de�ned in the ground model similar as
the ordinary forcing relation ⊩, but with the variables and quanti�ers ranging over HS.
It has most basic properties of ⊩. In particular, the analogue of Proposition 1.1.12 holds:

Proposition 1.2.8 (Properties of Symmetric Forcing, [Dim11, 1.20]). Let ϕ, ψ be
formulas of set theory.

(1) If p, q ∈ P such that p ⊩s ϕ and q ≤ p, then also q ⊩s ϕ.
(2) There is no p ∈ P with both p ⊩s ϕ and p ⊩s ¬ϕ.
(3) For every p ∈ P, there is q ≤ p such that q decides ϕ, i.e. either q ⊩s ϕ or q ⊩s ¬ϕ.

For every p ∈ P, the following holds:

(4) p ⊩s ¬ϕ if and only if no there is no q ≤ p with q ⊩s ¬ϕ,
(5) p ⊩s ϕ ∧ ψ if and only if p ⊩s ϕ and p ⊩s ψ,
(6) p ⊩s ∀x ϕ if and only if p ⊩s ϕ(ẋ) for every ẋ ∈HS
(7) p ⊩s ϕ ∨ ψ if and only if for all q ≤ p, there exists r ≤ q with r ⊩s ϕ or r ⊩s ψ,
(8) p ⊩s ∃x ϕ if and only if for all q ≤ p, there exists r ≤ q and a name ẋ ∈ HS with

r ⊩s ϕ(ẋ).

Whenever ẋ, ẏ ∈ HS and p ∈ P, then p ⊩s ẏ ∈ ẋ if and only if p ⊩ ẏ ∈ ẋ with the ordinary
forcing relation �⊩�, and p ⊩s ẋ ⊆ ẏ if and only if p ⊩ ẋ ⊆ ẏ.

Moreover, the Symmetry Lemma holds for ⊩s (with the same proof by induction on the
complexity of formulae as for the ordinary forcing relation �⊩�, using Proposition 1.2.8);
and the Forcing Theorem holds true, as well: The proof for the atomic cases p ⊩s ẋ ∈ ẏ
and p ⊩s ẋ ⊆ ẏ is the same as for the ordinary forcing relation �⊩�, and also the induction
on the complexity of formulae can be carried out as for �⊩� , with the modi�cation that
names are ranging over HS in the existential quanti�er case).

Theorem 1.2.9 ([Dim11, 1.21]). Let A be a group of P-automorphisms with a normal
�lter F on A, and let G be a V -generic �lter on P. Then V (G)F is a transitive model of
ZF with V ⊆ V (G)F ⊆ V [G].

A detailed proof of the axioms can be found in [Dim11]. We will prove the analogue
of Theorem 1.2.9 for our more general construction in the case that we do not have P-
automorphisms, but automorphisms π ∶ Dπ → Dπ on dense subsets Dπ ⊆ P (cf. Theorem
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1.2.21).

Example 1.2.4 (Cohen Forcing, continued). In our example above, a name ẋ for
Fn(ω × ω,2,ℵ0) is symmetric if there are �nitely many i0, . . . , ik−1 < ω with πẋ = ẋ for all
π which are contained in the intersection Fix(i0) ∩ ⋯ ∩ Fix(ik−1). Let G be a V -generic
�lter on Fn(ω × ω,2,ℵ0), and let N ∶= V (G)F denote the according symmetric extension.
For i < ω, the i-th generic ω-subset Gi = {n < ω ∣ ∃p ∈ G p(i, n) = 1} has a canonical name

Ġi ∶= {(n, p) ∣ p ∈ P , p(i, n) = 1},

with the property that πĠi = Ġi holds true for all π ∈ Fix(i). Indeed, for any i < ω and
π = πb ∈ A induced by a bijection b ∶ ω → ω, it follows that πbĠi = Ġb(i).

Hence, Ġi ∈HS and Gi ∈ N for all i < ω. Note that Gi ≠ Gj whenever i ≠ j.

The set X ∶= {Gi ∣ i < ω} has the canonical name

Ẋ ∶= {OR(i, Ġi) ∣ i < ω },

where OR(i, Ġi) denotes the canonical name for the ordered pair. Then Ẋ is stabilized
by all π ∈ A, since for any π = πb ∈ A induced by a bijection b ∶ ω → ω, it follows that

πẊ = {OR(i, πĠi) ∣ i < ω } = {OR(i, Ġb(i)) ∣ i < ω } = Ẋ.

Hence, X ∈ N . We claim that the set X has no well-ordering in N .

Assume towards a contradiction that there was a injective function f ∶ ω → X in N . Let
ḟ ∈HS with ḟG = f such that πḟ = ḟ holds for all π ∈ Fix(i0) ∩ ⋯ ∩ Fix(ik−1), where k < ω
and i0, . . . , ik−1 < ω. Take Gi ∈ rg f with i ∉ {i0, . . . , ik−1}, and let m < ω with f(m) = Gi.
Take a condition p ∈ P such that

p ⊩s ḟ ∶ ω → Ẋ is an injective function (∗)

and
p ⊩s OR(m, Ġi) ∈ ḟ .

The idea is to consider an isomorphism π induced by a permutation i↔ j such that πp ∥p
and πḟ = ḟ , which will contradict the fact that p forces the functionality of ḟ .

Take j < ω such that j ≠ i, j ∉ {i0, . . . , ik−1}, and (j, n) ∉ domp for all n < ω. Let π = πb ∈ A
be the map induced by the permutation b ∶ ω → ω with b(i) = j, b(j) = i, and b(j′) = j′

for all j′ ∈ ω ∖ {i, j}. Then

p ∶= p ∪ { ((j, n), p(i, n)) ∣ (i, n) ∈ domp}

is a common extension of p and πp; and from π ∈ Fix(i0) ∩ ⋯ ∩ Fix(ik−1) it follows that
πḟ = ḟ . Hence, πp ⊩s OR(m,πĠi) ∈ πḟ implies that πp ⊩s OR(m, Ġj) ∈ ḟ . Altogether,
p ⊩s OR(m, Ġi) ∈ ḟ and p ⊩s OR(m, Ġj) ∈ ḃ, which contradicts p ≤ p and (∗).

It follows that the set X cannot be well-ordered in N . Hence, the Axiom of Choice fails
in the symmetric extension V (G).

This construction was used by Paul Cohen to prove the consistency of ZF + ¬AC.
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1.2.2 A Model for θ(ℵ0) = λ+
In this chapter, we throw a �rst glimpse at the question about possible values of the
Continuum Function in the absence of AC.
Since the power sets ℘(κ) can not necessarily be well-ordered in ZF + ¬AC, the �rst ques-
tion is how �largeness� of the power sets could now be expressed.

The θ-function is de�ned on the class of all cardinals by setting

θ(κ) ∶= sup{α ∈ Ord ∣ ∃ f ∶ ℘(κ)→ α surjective function}.

It generalizes the value Θ = θ(ℵ0) prominent in descriptive set theory and provides a
surjective substitute for the Continuum Function in ZF.

Note that if the Axiom of Choice holds and 2κ = λ, then θ(κ) = λ+.

Let V ⊧ ZFC + GCH be a ground model with an uncountable cardinal λ. The aim of
this chapter is to use Cohen Forcing Fn(λ × ω,2,ℵ0) to construct a symmetric extension
V (G) ⊇ V with θ(ℵ0) = λ+, i.e. there exists a surjection f ∶ ℘(ω) → λ, but there is no
surjective function f ∶ ℘(ω)→ λ+.

Let A be the group consisting of all Fn(λ × ω,2,ℵ0)-automorphisms π of the following
form: There is a �nite set dom π ⊆ λ × ω (the domain of π), and for every (i, n) ∈ domπ,
there is a map π(i, n) ∶ 2→ 2, such that for every condition p ∈ Fn(λ × ω,2,ℵ0), the image
πp is de�ned as follows:

� domπp = domp, with
� (πp)(i, n) = π(i, n)(p(i, n)) in the case that (i, n) ∈ domp ∩ domπ,
� (πp)(i, n) = p(i, n) for all (i, n) ∈ domp ∖ domπ.

In other words: For every (i, n) in the domain of π, the value of p(i, n) is switched or not
according to whether π(i, n) ∶ 2→ 2 is the identity or not.

Our normal �lter F on A is de�ned as in Example 1.2.4: For i < λ, let Fix(i) ∶= {π ∈
A ∣ ∀n < ω ((i, n) ∈ domπ → π(i, n) = id)}. Then

Fix(i) = {π ∈ A ∣ ∀p ∈ Fn(λ × ω,2, ω) ∀n < ω ((i, n) ∈ domp→ (πp)(i, n) = p(i, n)) }.

Let F be the normal �lter generated by �nite intersections of these Fix(i):

F ∶= {B ⊆ A subgroup ∣ ∃k < ω ∃ i0, . . . , ik−1 < ω B ⊇ Fix(i0) ∩ ⋯ ∩ Fix(ik−1) }.

We take a V -generic �lter G on Fn(λ × ω,2,ℵ0), and denote by N ∶= V (G)F the symmet-
ric extension by F and G. Since the forcing notion Fn(λ × ω,2,ℵ0) preserves cardinals,
it follows that cardinals are also absolute between V and N .

For i < λ, let
Gi ∶= {(n, ε) ∣ n < ω , ε ∈ {0,1} , ∃p ∈ G p(i, n) = ε}.

Its canonical name

Ġi ∶= { (a, p) ∣ p ∈ Fn(λ × ω,2,ℵ0) ∧ ∃n < ω ∃ ε ∈ {0,1} (a = OR(n, ε) ∧ p(i, n) = ε) }
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is stabilized by all π ∈ A with π ∈ Fix(i). Thus, Gi ∈ N for all i < λ.

However, the sequence (Gi ∣ i < λ) is not contained in N . In order to obtain a surjection
f ∶ ℘(ℵ0) → λ in N , we use the following technique: Around each Gi, we de�ne a �cloud�
G̃i ⊆ ℘N(ℵ0), with the property that Gi ∈ G̃i for all i < λ, but G̃i ∩ G̃j = ∅ whenever i ≠ j.

For i < λ, let
˙̃Gi ∶= {(πĠi, p) ∣ p ∈ Fn(λ × ω,2,ℵ0) , π ∈ A}.

Then G̃i ∶= (
˙̃Gi)G = {(π−1G)i ∣ π ∈ A} = {(πG)i ∣ π ∈ A}.

For any i, j < λ with i ≠ j, it follows that G̃i ∩ G̃j = ∅: If not, there would be π,
σ ∈ A with (πG)i = (σG)j. Since domπ ∪ domσ is �nite, it follows that the set
D ∶= {p ∈ Fn(λ × ω,2,ℵ0) ∣ ∃n < ω ∶ (i, n) ∉ (domπ ∪ domσ) ∧ (j, n) ∉ (domπ ∪
domσ) ∧ p(i, n) ≠ p(j, n)} is dense; so by genericity, we can take a condition q ∈ G ∩ D.
Then (πq)i(n) = (πq)(i, n) = q(i, n) ≠ q(j, n) = (σq)(j, n) = (σq)j(n); contradicting
(πG)i = (σG)j.

Hence, the sets G̃i are pairwise disjoint.

Lemma 1.2.10. V (G) ⊧ θ(ℵ0) ≥ λ+.

Proof. The sequence (G̃i ∣ i < λ) is an element of N , since its canonical name

( (OR(i, ˙̃Gi),1) ∣ i < λ )

is stabilized by all π ∈ A. Thus, we can de�ne in N a surjective function f ∶ ℘(ω) → λ as
follows: For X ∈ N , X ⊆ ω, let f(X) = i if X ∈ G̃i, if such i exists, and f(X) = 0, else.
Then f is well-de�ned, since the G̃i are pairwise disjoint, and f is surjective, since Gi ∈ N
with f(Gi) = i for all i < λ.

It remains to prove that θN(ℵ0) ≤ λ+; i.e. there is no surjective function f ∶ ℘(ℵ0)→ λ+.

An important property of symmetric extensions by forcing notions with a high degree of
symmetricity is the Approximation Lemma: Sets of ordinals in V (G) can be captured in
fairly �mild� V -generic extensions.

For �nitely many i0, . . . , ik−1 < λ, it follows that Gi0 × ⋯ × Gik−1 is a V -generic �lter
on Fn(ω,2,ℵ0)k, since for any dense set D ⊆ Fn(ω,2,ℵ0)k, it follows that D ∶= {p ∈
Fn(λ × ω,2,ℵ0) ∣ (pi0 , . . . , pik−1) ∈D} is dense in Fn(λ × ω,2,ℵ0).

These �nite products Gi0 × ⋯ × Gik−1 will describe our approximation models:

Lemma 1.2.11 (Approximation Lemma). For every set of ordinals X ⊆ α with X ∈ V (G)
there are �nitely many i0, . . . , ik−1 < λ such that

X ∈ V [Gi0 × ⋯ × Gik−1].

Proof. Let X = ẊG with Ẋ ∈ HS such that πẊ = Ẋ holds for all π ∈ Fix(i0) ∩ ⋯ ∩
Fix(ik−1), where k < ω, and i0, . . . , ik−1 < λ. Let

X ′ ∶= {β < α ∣ ∃p ∈ Fn(λ × ω,2, ω) ∶ p ⊩s β ∈ Ẋ , pi0 ∈ Gi0 , . . . , pik−1 ∈ Gik−1}.
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Clearly, X ′ ∈ V [Gi0 × ⋯ × Gik−1], so it remains to show that X =X ′. The inclusion �⊆� is
clear by the Forcing Theorem.

Regarding �⊆�, assume towards a contradiction there was β ∈ X ′ ∖X. By construction of
X ′, take a condition p with p ⊩s β ∈ Ẋ, with the property that pi0 ∈ Gi0 , . . . , pik−1 ∈ Gik−1 .
Since β ∉X, it follows that there must be p′ ∈ G with p′ ⊩s β ∉ Ẋ.

We now wish to construct an automorphism π ∈ A such that πp ∥p′ and π ∈ Fix(i0) ∩
⋯ ∩ Fix(ik−1). Then πẊ = Ẋ; hence, from p ⊩s β ∈ Ẋ and πp ⊩s β ∈ πẊ, it follows that
πp ⊩s β ∈ Ẋ. If p ≤ πp, p′ denotes a common extension of πp and p′, then p ⊩s β ∈ Ẋ and
p ⊩s β ∉ Ẋ; contradiction.

It remains to construct π. Let domπ ∶= domp ∪ domp′. For every (i, n) ∈ domπ, we
de�ne π(i, n) ∶ 2 → 2 as follows: π(i, n) ≠ id in the case that (i, n) ∈ domp ∩ domp′ with
p(i, n) ≠ p′(i, n), and π(i, n) = id, else. Then πp ∥p′ by construction; and since p′ ∈ G and
pi0 ∈ Gi0 , . . . , pik−1 ∈ Gik−1 , it follows that p(il, n) = p

′(il, n) for all l < k, n < ω whenever
(il, n) ∈ domp ∩ domp′. Thus, π(il, n) = id for all l < k, n < ω with (il, n) ∈ domπ; which
implies π ∈ Fix(i0) ∩ ⋯ ∩ Fix(ik−1).

It follows that the automorphism π has all the desired properties. Hence, X = X ′ and
X ∈ V [Gi0 × ⋯ × Gik−1].

Since any approximation model V [Gi0 ×⋯×Gik−1] satis�es GCH and cardinals are absolute
between V and V [G], it follows that there is in V [G] an injection ℘(ℵ0) ∩ V [Gi0 × ⋯ ×
Gik−1]↪ ℵ1. There are λ-many tuples (i0, . . . , ik−1) ∈ [λ]<ω; hence, there is an injection

ι ∶⋃{℘(ℵ0) ∩ V [Gi0 × ⋯ × Gik−1] ∣ k < ω , i0, . . . , ik−1 < λ}→ λ

in V [G].

Since
℘N(ℵ0) ⊆⋃{℘(ℵ0) ∩ V [Gi0 × ⋯ × Gik−1] ∣ k < ω , i0, . . . , ik−1 < λ}

by the Approximation Lemma 1.2.11, a surjective function f ∶ ℘(ℵ0)N → λ+ in N ⊆ V [G]
would yield a bijection λ ↔ λ+ in V [G]. This is a contradiction, since Fn(λ × ω,2, ω)
preserves cardinals.

Thus, it follows that θN(ℵ0) = λ+, i.e. there exists in N a surjection f ∶ ℘(ℵ0) → λ, but
there is not surjective function f ∶ ℘(ℵ0)→ λ+.

This gives the following theorem:

Theorem 1.2.12. Let V be a ground model of ZFC + GCH with an uncountable cardinal λ.
Then there exists a cardinal-preserving extension N ⊇ V with N ⊧ ZF such that cardinals
are absolute between V and N and θN(ℵ0) = λ+.

In the case that cf λ = ω, for example λ = ℵω, this is in sharp contrast to the setting in
ZFC, where König's Theorem requires cf (2ℵ0) > ω.

This example gives rise to the question whether for arbitrary cardinals κ, the values
θ(κ) might be essentially undetermined in ZF. In [GK12], Motik Gitik and Peter Koepke
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construct a forcing notion giving rise to a symmetric extension N = V (G) with θ(ℵω) = λ+,
where λ ≥ ℵω+1 is an arbitrary cardinal; while below ℵω, GCH is preserved. In Chapter
2.1, we give an overview of their construction.

1.2.3 Symmetric Forcing with Partial Automorphisms

For this chapter, let (P,≤,1) be a separative forcing notion. In many applications, one
encounters the situation that there are automorphisms π which can not be de�ned on the
whole forcing notion P, but only on a dense subset Dπ ⊆ P. We call such π ∶ Dπ → Dπ a
partial automorphism. The set A of partial automorphisms that should be considered, is
usually not quite a group, but has a very similar structure:

� For any π, σ ∈ A with π ∶ Dπ → Dπ, σ ∶ Dσ → Dσ and p ∈ Dπ ∩ Dσ, the image σ(p)
is an element of Dπ ∩ Dσ as well; and A contains a map ν ∶ Dν → Dν such that
Dν =Dπ ∩ Dσ and ν = π ○ σ on Dν . (We call ν the concatenation π ○ σ.)

� For any π ∈ A, there is a map ν in A with Dν =Dπ such that π ○ ν = ν ○ π = idDν =
idDπ . (We call ν the inverse π−1.)

� There is an identity element id ∈ A, which is the identity map on its domain Did,
with Did ⊇Dπ for all π ∈ A.

This does not quite give a group structure: For instance, for any π ∈ A, the concatenation
π ○ π−1 = π−1 ○ π = idDπ is not the identity element id, which usually has a larger domain
Did ⊇Dπ.

In this setting, the standard approach would be using Boolean-valued models for the con-
struction of the symmetric submodel N : Any automorphism π ∶Dπ →Dπ can be uniquely
extended to an automorphism of the complete Boolean algebra B(P), and thereby induces
an automorphism of the Boolean valued model V B(P). Then one can consider the group
consisting of these extended automorphisms, de�ne a normal �lter and construct the cor-
responding symmetric submodel as described in [Jec73, 5].

The aim of this chapter is to avoid Boolean valued models and �nd a way to incorporate
this situation with partial automorphisms into symmetric forcing with partial orders.

De�nition 1.2.13. A map π is a partial P-automorphism if there is a dense set Dπ ⊆ P
such that π ∶Dπ →Dπ, π is bijective, and for all p, q ∈Dπ it follows that q ≤ p if and only
if πq ≤ πp.

De�nition 1.2.14. Let D be a collection of dense subsets D ⊆ P which is closed under
intersections (i.e. for any D, D′ ∈ D, it follows that the intersection D ∩ D′ is contained
in D as well) and has a maximal element Dmax (i.e. Dmax ⊇ D for all D ∈ D). A set A is
an almost-group of partial P-automorphisms for D if the following hold:

� Every π ∈ A is a partial P-automorphism, π ∶Dπ →Dπ, with Dπ ∈ D.
� For every D ∈ D, the automorphisms {π ∈ A ∣ Dπ = D} form a group, denoted by
AD.

� For every D, D′ ∈ D with D ⊆ D′ and π ∈ AD′ , it follows that π[D] = D, and the
restriction π ↾ D is an element of AD.
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We will now see how any almost-group A of partial P-automorphisms for D can be turned
into a group, using the direct limit:

For any D, D′ ∈ D with D ⊆ D′, there is a canonical homomorphism φD′D ∶ AD′ → AD,
π ↦ π ↾ D. This gives a directed system

(AD, φD′D)D,D′∈D ,D⊆D′

and we can take the direct limit

A ∶= lim
Ð→

AD =⊔AD/ ∼

with the following equivalence relation �∼� : Whenever π ∈ AD and π′ ∈ AD′ , then π ∼ π′

if there exists D′′ ∈ A, D′′ ⊆ D ∩ D′, such that π and π′ agree on D′′. Since D is closed
under intersections and P is separative, this is the case if and only if π and π′ agree on
the intersection D ∩ D′.

The explicit de�nition of A reads as follows:

De�nition/Proposition 1.2.15. Let A be an almost-group of partial P-automorphisms
for D. We de�ne on A the following equivalence relation:

π ∼ π′ ∶↔ π ↾(Dπ ∩ Dπ′) = π
′ ↾ (Dπ ∩ Dπ′).

For π ∈ A, we denote by [π] its equivalence class:

[π] ∶= [π]∼ ∶= {σ ∈ A ∣ σ ∼ π} = {σ ∈ A ∣ π ↾ (Dπ ∩ Dσ) = σ ↾ (Dπ ∩ Dσ)}.

Then A = { [π] ∣ π ∈ A} becomes a group as follows: For π, σ ∈ A, let [π] ○ [σ] ∶= [ν],
where ν ∈ A with Dν =Dπ ∩ Dσ and ν(p) = π(σ(p)) for all p ∈Dπ ∩ Dσ.

We call A the group of partial P-automorphisms derived from A.

Proof. First, we have to make sure that the operation �○� is well-de�ned. For any π, σ ∈ A
and D ∶=Dπ ∩Dσ, it follows by De�nition 1.2.14 that π ↾ D and σ ↾ D are elements of AD.
Since AD is a group, it follows that there exists a map ν ∈ AD ⊆ A with Dν =D =Dπ ∩ Dσ

such that ν = (π ↾ D) ○ (σ ↾ D), i.e. ν(p) = π(σ(p)) for all p ∈D.

If [π] = [π′], [σ] = [σ′] and ν, ν′ as above with Dν = Dπ ∩ Dσ, ν(p) = π(σ(p)) for
all p ∈ Dν , and Dν′ = Dπ′ ∩ Dσ′ with ν′(p) = π′(σ′(p)) for all p ∈ Dν′ , then for all
p ∈Dν ∩Dν′ = (Dπ ∩Dσ) ∩(Dπ′ ∩Dσ′), it follows that ν(p) = π(σ(p)) = π′(σ′(p)) = ν′(p).
Hence, [ν] = [ν′] and it follows that �○� is well-de�ned.

The identity element id is the identity element of the group ADmax , with Did =Dmax ⊇Dπ

for all π ∈ A. Then [π] ○ [id] = [id] ○ [π] = [π] for all π ∈ A follows.

Finally, for π ∈ A, let [π]−1 ∶= [ν], where ν is the inverse element of π in ADπ . Then
Dν = Dπ and ν(π(p)) = π(ν(p)) = p for all p ∈ Dπ = Dν ; hence, [π] ○ [ν] = [ν] ○ [π] =
[idDπ] = [idDmax] = id.
Again, such [ν] is well-de�ned: Whenever [π] = [π′] and ν, ν′ with Dν = Dπ, ν = π−1 on
Dπ and Dν′ = Dπ′ , ν′ = (π′)−1 on Dπ′ , then for any p ∈ Dν ∩ Dν′ = Dπ ∩ Dπ′ , it follows
that ν(p) = ν((ν−1 ○ π−1)(p)) = π−1(p) = (π′)−1(p) = ν′(p). Thus, [ν] = [ν′].
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We now have to �nd a way to extend our partial automorphisms π to the name space
Name(P).

We �x a collection D of dense sets which is closed under intersections and has a maximal
element Dmax, and an almost-group A of partial P-automorphisms; and denote by A the
group of partial automorphisms derived from A as in 1.2.15.

For D ∈ D, we de�ne a hierarchy Nameα(P)
D
recursively:

� Name0(P)
D
∶= ∅

� Nameα+1(P)
D
∶= { ẋ ∈ Name(P) ∣ ẋ ⊆ Nameα(P)

D
× D }, and

� Nameλ(P)
D
∶= ⋃α<λ Nameα(P)

D
for λ a limit ordinal.

Let
Name(P)

D
∶= ⋃

α∈Ord

Nameα(P)
D
.

In other words: Name(P)
D
is the collection of all P-names ẋ in which only conditions

p ∈D occur.

Whenever π ∈ A, π ∶ Dπ → Dπ and ẋ ∈ Name(P), the image πẋ can be de�ned as usual if

ẋ ∈ Name(P)
Dπ
. In the case that ẋ is a P-name with ẋ ∉ Name(P)

Dπ
however, it is not

clear how to apply π, so ẋ has to be modi�ed.

Given D ∈ D, we de�ne recursively for ẋ ∈ Name(P):

xD ∶= {(yD, p) ∣ ẏ ∈ dom ẋ , p ∈D , p ⊩ ẏ ∈ ẋ}.

Then xD ∈ Name(P)
D
with ẋG = (xD)G for any V -generic �lter G on P, and rkPx

D = rkPẋ.

Let now D = Dπ ∈ D, and π ∶ Dπ → Dπ a partial P-automorphism. Whenever G is a
V -generic �lter on P, then π−1G ∶= {q ∈ P ∣ ∃ r ∈ D ∩ G q ≥ π−1r} is a V -generic �lter on

P as well; and for any name ż ∈ Name(P)
D
, it follows that (πż)G = żπ

−1G. In particular,
(πzDπ)G = żπ

1G for any ż ∈ Name(P).

Moreover, it is not di�cult to verify that whenever D, D′ ∈ D and ẋ ∈ Name(P), then

xD
D′

= xD
′
; and whenever π, π′ ∈ A, π ∶ Dπ → Dπ, π′ ∶ Dπ′ → Dπ′ and ẋ ∈ Name(P)

Dπ
,

then
πxDπ′ = πẋ

Dπ′ .

Later on, we will take a normal �lter F on A and call a P-name ẋ symmetric if the
collection of all [π] with πxDπ = xDπ is contained in F .
We have to make sure that this de�nition does not depend on which representative of [π]
we choose:

Lemma 1.2.16. Let π, π′ ∈ A with π ∼ π′, i.e. π ↾ (Dπ ∩ Dπ′) = π′ ↾ (Dπ ∩ Dπ′). Then
for any ẋ ∈ Name(P), it follows that πxDπ = xDπ if and only if π′xDπ′ = xDπ′ .
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We prove the following more general statement by induction over α:

Lemma 1.2.17. Let π, π′ ∈ A with π ∼ π′, i.e. π ↾ (Dπ ∩ Dπ′) = π′ ↾ (Dπ ∩ Dπ′), and
α ∈ Ord. Then for any ẏ, ż ∈ Name(P) with rkPẏ = rkPż = γ, it follows that πyDπ = zDπ if
and only if π′yDπ′ = zDπ′ .

Proof. W.l.o.g. we can assume that Dπ′ ⊆ Dπ; since the map σ ∶= π ↾ (Dπ ∩ Dπ′) = π′ ↾
(Dπ ∩ Dπ′) is contained in A as well, with Dσ = Dπ ∩ Dπ′ and σ ∼ π, σ ∼ π′. Hence,
if we now that πyDπ = zDπ ⇔ σyDσ = zDσ for all ẏ, ż ∈ Name(P), and σyDσ = zDσ ⇔
π′yDπ′ = zDπ′ for all ẏ, ż ∈ Name(P); then it follows that whenever ẏ, ż ∈ Name(P), then
πyDπ = zDπ if and only if π′yDπ′ = zDπ′ .

Thus, assume Dπ′ ⊆Dπ. We consider γ ∈ Ord, and assume inductively that the statement
holds true for all β < γ: Whenever ẋ, u̇ ∈ Name(P) with rkPẋ = rkPu̇ < γ, then πx

Dπ = uDπ

if and only if π′xDπ′ = uDπ′ .

Let ẏ, ż ∈ Name(P) with rkPẏ = rkPż = γ.

�⇒�: First, assume that πyDπ = zDπ . We only prove zDπ′ ⊆ π′yDπ′ ; the other inclusion is
similar.

Let (xDπ′ , p) ∈ zDπ′ , i.e. ẋ ∈ dom ż, p ∈ Dπ′ , and p ⊩ ẋ ∈ ż. Then also p ∈ Dπ holds.
Hence, (xDπ , p) ∈ zDπ , and zDπ = πyDπ by assumption; so there must be u̇ ∈ dom ẏ
with xDπ = πuDπ . Setting q ∶= π−1p, it follows that q ⊩ uDπ ∈ yDπ and q ⊩ u̇ ∈ ẏ.

Since xDπ = πuDπ with xDπ ∈ dom zDπ , it follows that rkPu̇ = rkPẋ < γ. Thus, our
inductive assumption implies that xDπ′ = π′uDπ′ . Hence, (xDπ′ , p) = (πuDπ′ , πq),
which is contained in π′yDπ′ , since u̇ ∈ dom ẏ, q ∈ Dπ′ (since p ∈ Dπ′ , q = π−1p, and
π−1[Dπ′] =Dπ′), and q ⊩ u̇ ∈ ẏ.

�⇐�: Now, assume π′yDπ′ = zDπ′ . As before, we only prove the inclusion zDπ ⊆ πyDπ .

Consider (xDπ , p) ∈ zDπ , i.e. ẋ ∈ dom ż, p ∈ Dπ and p ⊩ ẋ ∈ ż. Let p̃ ≤ p with p̃ ∈ Dπ′ .
Then (xDπ′ , p̃) ∈ zDπ′ = π′yDπ′ , so there must be u̇ ∈ dom ẏ with xDπ′ = π′uDπ′ . By
the inductive assumption, it follows that xDπ = πuDπ , since rkPu̇ = rkPẋ < γ. Let
q ∶= π−1p. We have to show that (πuDπ , πq) ∈ πyDπ . Since u̇ ∈ dom ẏ and q ∈ Dπ,
it su�ces to verify that q ⊩ u̇ ∈ ẏ. We prove that whenever r ≤ q, r ∈ Dπ′ , then
r ⊩ u̇ ∈ ẏ. Consider such r ≤ q with r ∈ Dπ′ . Then πr ∈ Dπ′ , and πr ≤ p implies
that πr ⊩ ẋ ∈ ż. Hence, (xDπ′ , πr) ∈ zDπ′ , and zDπ′ = π′yDπ′ by assumption. Now,
(π′uDπ′ , π′r) = (xDπ′ , πr) ∈ π′yDπ′ implies that r ⊩ uDπ′ ∈ yDπ′ ; hence, r ⊩ u̇ ∈ ẏ as
desired.

Let F be a normal �lter on A (cf. De�nition 1.2.3), i.e. F is a nonempty collection of
A-subgroups, closed under supersets and �nite intersections, such that for any subgroup
B ∈ F and π ∈ A, the conjugate [π]B[π]−1 is an element of F , as well.

We use F to establish our notion of symmetry:
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De�nition 1.2.18. A P-name ẋ is symmetric for F if the stabilizer group

symA(ẋ) ∶= {[π] ∈ A ∣ πxDπ = xDπ}

is an element of F . Recursively, a name ẋ is hereditarily symmetric, ẋ ∈ HSF , if ẋ is
symmetric, and ẏ is herditarily symmetric for all ẏ ∈ dom ẋ.

By Lemma 1.2.16, this is well-de�ned, since whenever π ∼ π′ and ẋ ∈ Name(P), it follows
that πxDπ = xDπ if and only if π′xDπ′ = xDπ′ .

When A and F are clear from the context, we write just sym(ẋ) and HS.

We will use the following properties: If ẋ ∈ HSF and π ∈ A, then �rstly, it is not di�cult
to verify that also xDπ ∈ HSF holds; and secondly, πxDπ ∈ HSF . For the second claim,
one can check that whenever σ ∈ A with σxDσ = xDσ , then

(πσπ−1)πxDπ
Dπσπ−1

= πxDπ
Dπσπ−1

,

and then use the normality of F .

For any element of the ground model a ∈ V , it follows that the canonical name ǎ ∶=
{(b̌,1) ∣ b ∈ a} is hereditarily symmetric:

For π ∈ A,

ǎ
Dπ

= {(b̌
Dπ
, p) ∣ b̌ ∈ dom ǎ , p ∈Dπ , p ⊩ b̌ ∈ ǎ} = {(b̌

Dπ
, p) ∣ b ∈ doma , p ∈Dπ},

and
πǎ

Dπ
= {(πb̌, πp) ∣ b ∈ doma , p ∈Dπ} = {(πb̌, p) ∣ b ∈ doma , p ∈Dπ},

so one can show recursively that πǎ
Dπ

= ǎ
Dπ

holds for every a ∈ V and π ∈ A.

Now, we are ready to de�ne the symmetric extension:

De�nition 1.2.19. Let G be a V -generic �lter on P. The symmetric extension by F and
G is

V (G)F ∶= {ẋG ∣ ẋ ∈HSF}.

When the normal �lter F is clear from the context, we write just HS and V (G).

The symmetric forcing relation with partial automorphisms (⊩s)VP ,F can be de�ned as in
De�nition 1.2.7, and we write just �⊩s� if the ground model V , the forcing P, and the
normal �lter F on a group A of partial P-automorphisms are clear from the context.

Whenever ẋ, ẏ ∈ HS and p ∈ P, then p ⊩s ẏ ∈ ẋ if and only if p ⊩ ẏ ∈ ẋ with the ordinary
forcing relation �⊩�, and p ⊩s ẋ = ẏ if and only if p ⊩ ẋ = ẏ. In particular, for any ẋ ∈HSF

and D ∈ D, we have

xD = {(yD, p) ∣ ẏ ∈ dom ẋ , p ∈D , p ⊩s ẏ ∈ ẋ}.

The symmetric forcing relation with partial automorphisms satis�es the same basic prop-
erties as the ordinary symmetric forcing relation (see Proposition 1.2.8 � one has to use
that for every ẋ ∈HSF and π ∈ A, it follows that πxDπ ∈HSF , as well).

Moreover, the Symmetry Lemma holds true:
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Lemma 1.2.20 (Symmetry Lemma). Let π ∈ A, ϕ(v0, . . . , vn−1) a formula of set theory
and ẋ0, . . . , ẋn−1 ∈ HSF . For p ∈ Dπ, it follows that p ⊩s ϕ(ẋ0, . . . , ẋn−1) if and only if
πp ⊩s ϕ(πx

Dπ
0 , . . . , πxDπn−1).

The Forcing Theorem holds true, as well (with the same proof as for the ordinary forc-
ing relation �⊩�, except that for the existential quanti�er case in the induction on the
complexity of formulae, one has to adopt De�nition 1.2.18).
It remains to verify that symmetric forcing with partial automorphisms always yields a
model of ZF.

Theorem 1.2.21. Let P be a notion of forcing, let A be an almost-group of partial P-
automorphisms, A the group of partial automorphisms derived from A, and F a normal
�lter on A. If G denotes a V -generic �lter on P, then V (G) = V (G)F is a transitive
model of ZF with V ⊆ V (G) ⊆ V [G].

Proof. The inclusions V ⊆ V (G) ⊆ V [G] are clear, and the transitivity of V (G) follows
by heredity of HSF . Hence, the axioms of Extensionality, Foundation and In�nity hold
in V (G).

Pairing. Let x, y ∈ V (G) and ẋ, ẏ ∈ HS with x = ẋG, y = ẏG. We have to show that the
set {x, y} is an element of V (G) as well, i.e. we have to �nd a name ż ∈HS with żG = {x, y}.

Let ż ∶= {(ẋ,1), (ẏ,1)} and consider π ∈ A with πxDπ = xDπ and πyDπ = yDπ . Since

zDπ = {(xDπ , p) ∣ p ∈Dπ} ∪ {(yDπ , p) ∣ p ∈Dπ},

it follows that

πzDπ = {(πxDπ , πp) ∣ p ∈Dπ} ∪ {(πyDπ , πp) ∣ p ∈Dπ}

= {(xDπ , πp) ∣ πp ∈Dπ} ∪ {(yDπ , πp) ∣ πp ∈Dπ}

= zDπ

as desired. Thus, symA(ż) ⊇ symA(ẋ) ∩ symA(ẏ) ∈ F , and it follows that ż is symmetric.
Since dom ż = {ẋ, ẏ} ⊆HS, this implies ż ∈HS as desired.

Union. Let x ∈ V (G), x = ẋG with ẋ ∈ HS. We have to show that ⋃x ∈ V (G), i.e. we
have to �nd u̇ ∈HS with ⋃x = u̇G. Let

u̇ ∶= {(ż, p) ∣ (∃ ẏ ∈ dom ẋ ż ∈ dom ẏ) ∧ p ⊩s (∃ y ∈ ẋ ż ∈ y)}.

It is not di�cult to see that indeed, u̇G = ⋃x. Let π ∈ A with πxDπ = xDπ . We will show
that also πuDπ = uDπ : Then symA(u̇) ⊇ symA(ẋ); so u̇ is symmetric, and dom u̇ ⊆ HS
implies u̇ ∈HS as desired.
By de�nition,

uDπ ∶= {(zDπ , p) ∣ p ∈Dπ , ż ∈ dom u̇ , p ⊩s ż ∈ u̇}.

We claim that

uDπ = {(zDπ , p) ∣ (∃ ẏ ∈ dom ẋ ż ∈ dom ẏ) ∧ p ∈Dπ ∧ p ⊩s (∃ y ∈ ẋ ż ∈ y)}.
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Regarding �⊇�, consider (zDπ , p) such that ż ∈ dom ẏ for some ẏ ∈ dom ẋ, p ∈ Dπ, and
p ⊩s (∃ y ∈ ẋ ż ∈ y). Then (ż, p) ∈ u̇; hence, ż ∈ dom u̇ and p ⊩s ż ∈ u̇. This gives
(zDπ , p) ∈ uDπ as desired.

For the other inclusion �⊆� , take (ż, p) ∈ uDπ , i.e. ż ∈ dom u̇, p ∈Dπ, and p ⊩s ż ∈ u̇. Then
by construction of dom u̇, there must be ẏ ∈ dom ẋ with ẋ ∈ dom ẏ. It remains to show
that p ⊩s (∃ y ∈ ẋ ż ∈ y). Let H be a V -generic �lter with p ∈ H. Then żH ∈ u̇H ; so there
must be (ż0, q) ∈ u̇ with żH0 = żH and q ∈ H. Then q ⊩s ∃y ∈ ẋ ż0 ∈ y. Hence, there must
be y ∈ ẋH with żH = żH0 ∈ y. This implies p ⊩s (∃ y ∈ ẋ ż ∈ y) as desired.

Thus, we have shown that

uDπ = {(zDπ , p) ∣ (∃ ẏ ∈ dom ẋ ż ∈ dom ẏ) ∧ p ∈Dπ ∧ p ⊩s (∃ y ∈ ẋ ż ∈ ẏ)}

= {(zDπ , p) ∣ (∃ y ∈ domxDπ zDπ ∈ dom y) ∧ p ∈Dπ ∧ p ⊩s (∃ y ∈ x
Dπ zDπ ∈ y)}.

Hence, πuDπ =

= {(πzDπ , πp) ∣ (∃ y ∈ domxDπ zDπ ∈ dom y) ∧ p ∈Dπ ∧ p ⊩s (∃ y ∈ x
Dπ zDπ ∈ y)}

= {(πzDπ , πp) ∣ (∃ y ∈ domπxDπ πzDπ ∈ dom y) ∧ πp ∈Dπ ∧ πp ⊩s (∃ y ∈ πx
Dπ πzDπ ∈ y)}.

Since πxDπ = xDπ by assumption, this implies πuDπ = uDπ as desired.

Separation. Let ϕ(v,w) be a formula of set theory, a ∈ V (G), and z ∈ V (G) some
parameter. We claim that

b ∶= {x ∈ a ∣ V (G) ⊧ ϕ(x, z)}

is an element of V (G), as well. Let a = ȧG, z = żG with ȧ, ż ∈HS. Let

ḃ ∶= {(ẋ, p) ∣ ẋ ∈ dom ȧ , p ∈ P , p ⊩s (ẋ ∈ ȧ ∧ ϕ(ẋ, ż))}.

Clearly, ḃG = b, and dom ḃ ⊆ HS. It remains to make sure that the name ḃ is symmetric.

We show that for every π ∈ A with πxDπ = xDπ and πzDπ = zDπ , it follows that πb
Dπ

= b
Dπ
.

Then symA(ḃ) ⊇ symA(ẋ) ∩ symA(ż) implies symA(ḃ) ∈ F as desired.

For π ∈ A,

b
Dπ

= {(xDπ , p) ∣ ẋ ∈ dom ḃ , p ∈Dπ , p ⊩s ẋ ∈ ḃ}.

We now claim that for any ẋ ∈ dom ȧ and p ∈ P, it follows that p ⊩s ẋ ∈ ḃ if and only if
p ⊩s (ẋ ∈ ȧ ∧ ϕ(ẋ, ż)). The implication �⇐� is clear, since for any ẋ ∈ dom ȧ and p ∈ P
with p ⊩s (ẋ ∈ ȧ ∧ ϕ(ẋ, ż)), we have (ẋ, p) ∈ ḃ by de�nition. Hence, p ⊩s ẋ ∈ ḃ. Regarding
�⇒� , consider ẋ ∈ dom ȧ and p ∈ P with p ⊩s ẋ ∈ ḃ. Let H be a V -generic �lter on P with
p ∈H. We have to show that ẋH ∈ ȧH and V (H) ⊧ ϕ(ẋH , żH).
From ẋH ∈ ḃH , it follows that there must be ẏ ∈ dom ȧ and q ∈ H with (ẏ, q) ∈ ḃ and
ẋH = ẏH . Then q ⊩s ẏ ∈ ȧ ∧ ϕ(ẏ, ż), hence, ẏH ∈ ȧH and V (H) ⊧ ϕ(ẏH , żH). Since
ẏH = ẋH , this �nishes the proof.
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Thus,

b
Dπ

= {(xDπ , p) ∣ ẋ ∈ dom ḃ , p ∈Dπ , p ⊩s (ẋ ∈ ȧ ∧ ϕ(ẋ, ż))}

= {(xDπ , p) ∣ ẋ ∈ dom ȧ , p ∈Dπ , p ⊩s (ẋ ∈ ȧ ∧ ϕ(ẋ, ż))}

= {(xDπ , p) ∣ xDπ ∈ domaDπ , p ∈Dπ , p ⊩s (x
Dπ ∈ aDπ ∧ ϕ(xDπ , zDπ))}

= {(x, p) ∣ x ∈ domaDπ , p ∈Dπ , p ⊩s (x ∈ a
Dπ ∧ ϕ(x, zDπ))}

Hence, by the Symmetry Lemma 1.2.20

πb
Dπ

= {(πx,πp) ∣ x ∈ domaDπ , p ∈Dπ , p ⊩s (x ∈ a
Dπ ∧ ϕ(x, zDπ))}

= {(πx,πp) ∣ πx ∈ domπaDπ , p ∈Dπ , πp ⊩s (πx ∈ πa
Dπ ∧ ϕ(πx,πzDπ))}.

Since πaDπ = aDπ , πzDπ = zDπ , and p ∈Dπ if and only if πp ∈Dπ, this gives

πb
Dπ

= {(πx,πp) ∣ πx ∈ domaDπ , πp ∈Dπ , πp ⊩s (πx ∈ a
Dπ ∧ ϕ(πx, zDπ))} = b

Dπ

as desired.

Power Set. Consider X ∈ N , X = ẊG with Ẋ ∈ HS. We have to show that ℘N(X) ∈ N .
Let

Ḃ ∶= {(Ẏ , p) ∣ Ẏ ∈HS , Ẏ ⊆ dom Ẋ × P , p ∈ P , p ⊩s Ẏ ⊆ Ẋ}.

Then ḂG = ℘N(X), since for any Y ∈ N with Y ⊆X, there exists a name Ẏ ∈HS, Ẏ G = Y ,
such that Ẏ ⊆ dom Ẋ × P.

It remains to make sure that the name Ḃ is symmetric. Consider π ∈ A with πX
Dπ

= X.
Then

B
Dπ

= { (Y
Dπ
, p) ∣ Ẏ ∈HS , Ẏ ⊆ dom Ẋ × P , p ∈Dπ , p ⊩s Ẏ ∈ Ḃ }.

It is not di�cult to check that

B
Dπ

= { (Y
Dπ
, p) ∣ Ẏ ∈HS , Ẏ ⊆ dom Ẋ × P , p ∈Dπ , p ⊩s Ẏ ⊆ Ẋ },

since for any p ∈ Dπ and Ẏ ∈ HS, Ẏ ⊆ dom Ẋ × P, it follows that p ⊩s Ẏ ∈ Ḃ if and only
if p ⊩s Ẏ ⊆ Ẋ. Hence,

πB
Dπ

= { (πY
Dπ
, πp) ∣ Ẏ ∈HS , Ẏ ⊆ dom Ẋ × P , πp ∈Dπ , πp ⊩s πY

Dπ
⊆ πX

Dπ
}.

It remains to show that B
Dπ

= πB
Dπ
; then

{ [π] ∈ A ∣ πB
Dπ

= B
Dπ

} ⊇ { [π] ∈ A ∣ πX
Dπ

=X
Dπ

} ∈ F

as desired.

For the inclusion B
Dπ

⊆ πB
Dπ
, consider (Y

Dπ
, p) ∈ B

Dπ
as above. It su�ces to con-

struct Ẏ0 ∈ HS, Ẏ0 ⊆ dom Ẋ × P with πY0
Dπ

= Y
Dπ
. Then setting p0 ∶= π

−1p, it follows

that (Y
Dπ
, p) = (πY0

Dπ
, πp0) ∈ πB

Dπ
, since p ⊩s Y

Dπ
⊆ X

Dπ
and πX

Dπ
= X

Dπ
gives
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πp0 ⊩s πY0
Dπ

⊆ πX
Dπ
.

Let
Ẏ0 ∶= { (ż, p) ∣ ż ∈ dom Ẋ , p ∈Dπ , πz

Dπ ∈ domY
Dπ
, πp ⊩s πz

Dπ ∈ Y
Dπ

}.

Then

πY0
Dπ

= {(πzDπ , πp)∣ ż ∈ dom Ẋ , p ∈Dπ , πz
Dπ ∈ domY

Dπ
, p ⊩s ż ∈ Ẏ0 }.

We �rst show that whenever ż ∈ dom Ẋ, p ∈ Dπ and πzDπ ∈ domY
Dπ

as above, then

p ⊩s ż ∈ Ẏ0 if and only if πp ⊩s πz
Dπ ∈ Y

Dπ
.

�⇐� : If πp ⊩s πz
Dπ ∈ Y

Dπ
, it follows that (ż, p) ∈ Ẏ0; hence, p ⊩s ż ∈ Ẏ0 as desired.

�⇒� : Now, assume p ⊩s ż ∈ Ẏ0. Let H be a V -generic �lter on P with πp ∈ H. We have

to show that (πzDπ)H ∈ (Y
Dπ

)H . Let H ′ ∶= π−1H. Then (πzDπ)H = żH
′
, and p ∈H ′.

Hence, żH
′
∈ Ẏ H′

0 implies that there must be (u̇, r) ∈ Ẏ0 with u̇H
′
= żH

′
and r ∈ H ′.

Then r ∈ Dπ and πr ⊩s πu
Dπ ∈ Y

Dπ
by construction of Ẏ0. Since πr ∈ H, it follows

that (πuDπ)H ∈ (Y
Dπ

)H , with (πuDπ)H = u̇H
′
= żH

′
= (πzDπ)H as desired.

Hence,

πY0
Dπ

= {(πzDπ , πp)∣ ż ∈ dom Ẋ , p ∈Dπ , πz
Dπ ∈ domY

Dπ
, πp ⊩s πz

Dπ ∈ Y
Dπ

}.

We have to make sure that πY0
Dπ

= Y
Dπ
. The inclusion πY0

Dπ
⊆ Y

Dπ
is clear. Re-

garding �⊇�, consider (uDπ , q) ∈ Y
Dπ

with u̇ ∈ dom Ẏ ⊆ dom Ẋ, and q ∈ Dπ such that

q ⊩s u̇ ∈ Ẏ . From uDπ ∈ domX
Dπ

= domπX
Dπ
, it follows that there must be v̇ ∈ dom Ẋ

with uDπ = πvDπ . Let r ∶= π−1q. Then (uDπ , q) = (πvDπ , πr) ∈ πY0
Dπ
, since q ⊩s u̇ ∈ Ẏ

implies that πr ⊩s πv
Dπ ∈ Y

Dπ
as desired.

Thus, we have constructed Ẏ0 ⊆ dom Ẋ × P with πY0
Dπ

= Y
Dπ
. It remains to make sure

that Ẏ0 ∈ HS. Firstly, Ẋ ∈ HS implies that dom Ẏ0 ⊆ HS. Secondly, for any σ ∈ A with

σY
Dσ

= Y
Dσ
, it follows for the concatenation ν ∶= π1σπ that

νY0
Dν

= νY0
Dπ

Dν

= ν π−1Y
Dπ

Dν

,

and since σY
Dσ

= Y
Dσ
, one can easily check that

ν π−1Y
Dπ

Dν

= π−1Y
Dπ

Dν

,

and

π−1Y
Dπ

Dν

= Y0
Dπ

Dν

= Y0
Dν
.

Since the name Ẏ is symmetric, it follows by normality of F that Ẏ0 is symmetric, as well.

Hence, Ẏ0 has all the desired properties; and it follows that B
Dπ

⊆ πB
Dπ
.
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The inclusion πB
Dπ

⊆ B
Dπ

is similar.

Replacement. Consider a ∈ N such that N ⊧ ∀x ∈ a ∃y ϕ(x, y). We have to show that
there is b ∈ N with

N ⊧ ∀x ∈ a ∃ y ∈ b ϕ(x, y).

Let a = ȧG with ȧ ∈HS. We proceed like in the proof of Replacement in ordinary forcing
extensions. For ẋ ∈ dom ȧ and p ∈ P, let

α(ẋ, p) ∶= min{α ∣ ∃ ẇ ∈ Nameα(P) ∩ HS ∶ p ⊩s (ϕ(ẋ, ẇ) ∧ ẋ ∈ ȧ)}

if such α exists, and α(ẋ, p) ∶= 0, else.
By Replacement in V , take β ∈ Ord with β ≥ sup{α(ẋ, p) ∣ ẋ ∈ dom ȧ , p ∈ P}. Let

ḃ ∶= {(ẏ,1) ∣ ẏ ∈ Nameβ(P) ∩ HS},

and b ∶= ḃG. Then for all x ∈ a, it follows that there exists y ∈ b with N ⊧ ϕ(x, y). It
remains to show that the name ḃ is symmetric. Let π ∈ A. Then

b
Dπ

= {(yDπ , q) ∣ ẏ ∈ Nameβ(P) ∩ HS , q ∈Dπ},

and
πb

Dπ
= {(πyDπ , πq) ∣ ẏ ∈ Nameβ(P) ∩ HS , q ∈Dπ}.

We show that πb
Dπ

= b
Dπ
.

Since it is not possible to apply π to arbitrary P-names ẏ with ẏ ∉ Name(P)
Dπ
, we

construct an alternative π̃ that is enough for our purposes here.
Recursively, we de�ne for ẏ ∈ Name(P):

π̃(ẏ) ∶= { (π̃(ż), πq) ∣ ∃ (ż, q) ∈ ẏ , q ≤ q , q ∈Dπ }.

Then rkP ẏ = rkP π̃(ẏ).

Whenever H is a V -generic �lter on P, H ′ ∶= π−1H and ẏ ∈ Name(P), it is not di�cult to
see that (π̃(ẏ))H = ẏH

′
, and

πyDπ = π̃(ẏ)
Dπ
.

Moreover, one can show recursively that whenever ẏ ∈ Name(P) and σ ∈ A with σyDσ =
yDσ , then

(πσπ−1) π̃(ẏ)
Dπσπ−1 = π̃(ẏ)

Dπσπ−1 .

Hence,

{ [τ] ∈ A ∣ τ π̃(ẏ)
Dτ

= π̃(ẏ)
Dτ

} ⊇ { [π][σ][π]−1 ∣ [σ] ∈ A, σyDσ = yDσ }.

In the case that ẏ is symmetric, i.e. { [σ] ∈ A ∣ σyDσ = yDσ } ∈ F , it follows by normality

that also { [τ] ∈ A ∣ τ π̃(ẏ)
Dτ

= π̃(ẏ)
Dτ

} ∈ F . Hence, π̃(ẏ) ∈HS whenever ẏ ∈HS.
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Now, we can show that πb
Dπ

= b
Dπ
: For the inclusion �⊆�, consider (πyDπ , πq) ∈ πb

Dπ

with ẏ ∈ Nameβ(P) ∩ HS, q ∈ Dπ. Then also πq ∈ Dπ, and πyDπ = π̃(ẏ)
Dπ
, where

π̃(ẏ) ∈ Nameβ(P) ∩ HS; so (πyDπ , πq) = (π̃(ẏ)
Dπ
, πq) ∈ b

Dπ
follows. The inclusion �⊇� is

similar.

Hence, ḃ ∈HS as desired.

This �nishes the proof of V (G) ⊧ ZF.

The following proposition is an adaptation of [Kar14, Lemma 1] to symmetric forcing
with partial automorphisms.

Proposition 1.2.22. Let P be a countably closed forcing, A an almost-group of partial
P-automorphisms, A the group of partial P-automorphisms derived from A, and F a
countably complete �lter on A. Let G be a V -generic �lter on P. Then V (G)F ⊧ ZF +
DC + AX4.

Proof. V (G)F ⊧ ZF follows from Theorem 1.2.21. We now prove that for any set X ∈ N
and f ∶ ω → X a function in V [G], it follows that f ∈ N . Then N ⊧ DC: Consider a
nonempty set X in N with a binary relation R such that for all x ∈ X there exists y ∈ X
with yRx. Then DC in V [G] gives a sequence (xn ∣ n < ω) with the property that xn+1Rxn
for all n < ω; so (xn ∣ n < ω) ∈ N as desired.

Consider X ∈ N , X = ẊG with Ẋ ∈HS. Let f ∶ ω →X denote a function in V [G], f = ḟG

with ḟ ∈ NameV (P). Take p0 ∈ G with

p0 ⊩
V
P ḟ ∶ ω → Ẋ.

In particular, p0 forces the functionality of ḟ .

We claim that the following set is dense in P below p0:

D ∶= {p ∈ P ∣ ∃ (ẋn ∣ n < ω) ∀n < ω (ẋn ∈ dom Ẋ ∧ p ⊩VP ḟ(n) = ẋn) }.

Let p0 ≤ p0. We work in V [G] and construct sequences (pn ∣ n < ω) and (ẋn ∣ n < ω)
as follows: Assume inductively that m < ω, and (pn ∣ n ≤ m), (ẋn ∣ n < m) are already
constructed. Then pick pm+1 ∈ P, ẋm ∈ dom Ẋ ⊆ HS such that pm+1 ≤ pm and pm+1 ⊩VP
ḟ(m) = ẋm. It follows that (pn ∣ n < ω) ∈ V , (ẋn ∣ n < ω) ∈ V , since P is countably
closed. Hence, there exists p ∈ P with the property that p ≤ pn for all n < ω. Then p is an
extension of p0 in D; so D is dense in P below p0. Pick p ∈D ∩ G and (ẋn ∣ n < ω) ∈ V as
in the De�nition of D. We de�ne a name for f as follows:

ġ ∶= { (ORP(n, ẋn),1) ∣ n < ω }.

Then ġG = f by de�nition of D and since p ∈ G. It remains to make sure that ġ ∈ HS.
Since ẋn ∈HS for all n < ω, it su�ces to show that

symA(ġ) = { [π] ∈ A ∣ πgDπ = gDπ } ∈ F .
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For any n < ω and [π] ∈ symA(ẋn), it is not di�cult to check that

πORP(n, ẋn)
Dπ

= ORP(n, ẋn)
Dπ
.

Hence, whenever [π] ∈ ⋂n<ω symA(ẋn), it follows that πgDπ = gDπ . Now, ẋn ∈ HS
gives sym(ẋn) ∈ F for every n < ω; and since F is countably complete, it follows that

⋂n<ω sym(ẋn) ∈ F . Hence,

symA(ġ) ⊇ ⋂
n<ω

symA(ẋn) ∈ F .

is yields f = ġG ∈ N , which �nishes the proof of N ⊧ DC.

Regarding N ⊧ AX4, note that ([λ]ℵ0)V [G] = ([λ]ℵ0)V by the countable closure of P. The
ZFC-model V contains a wellordering of [λ]ℵ0 , i.e. a bijection b ∶ [λ]ℵ0 → α for some
ordinal α. Then b is also a wellordering of ([λ]ℵ0)N = ([λ]ℵ0)V in N .

1.3 Class Forcing

In this chapter, we brie�y review the basic properties of class forcing, i.e. we look at what
happens if we drop the requirement on forcings that the partial order (P,≤,1) is a set (cf.
De�nition 1.1.1):

De�nition 1.3.1. A class forcing is a class (P,≤,1) such that (P,≤) is a preorder (the
relation ≤ is transitive and re�exive on P) with greatest element 1.

Class Forcing was �rst used by William B. Easton in [Eas70], who proved that in ZFC,
the Continuum Function κ ↦ 2κ can behave almost arbitrarily on the class of regular
cardinals, as long it obeys the rules of weak monotonicity and König's Theorem. We will
discuss Easton forcing in Chapter 1.3.2.

In contrast to set forcing, forcing with a proper class need not preserve the axioms of ZFC
� for example, the partial order Fn(ω,Ord,ℵ0) ∶= {p ∶ domp → Ord ∣ domp ⊆ ω , ∣p∣ < ℵ0}
adds a surjective function from ω into the ordinals, and thereby destroys the axiom of
Replacement. Moreover, it is not di�cult to write down a class-sized partial order that
adds a proper class of Cohen reals and hence destroys Power Set.

We continue working in �rst-order set theory ZFC, where the classes of V are the de�nable
ones, i.e. objects of the form {x ∣ ϕ(x,x0, . . . , xn−1)}, where ϕ ∈ L∈ with �nitely many
parameters x0, . . . , xn−1 ∈ V . Thus, it is not possible to quantify over classes, which can
be sidestepped by regarding statements of the form �For every class forcing P . . . � as
schemes. We will treat V -classes informally, but always take care that every statement
can be described in the language L∈ (with additional predicates for the ground model V
and the generic �lter G where necessary).
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1.3.1 The Forcing Theorem, Pretameness and Increasing Chains.

We refer to [Fri00, 2] and [BT97, p.5 - 12] for a detailed introduction to class forcing,
and merely concentrate on some aspects important for us when constructing symmetric
extensions by class-sized partial orders (cf. Chapter 1.4).

We start with introductory de�nitions and remarks regarding generic extensions by class
forcing, before we turn to the Forcing Theorem (De�nition 1.3.8). Unlike as with set
forcing, the Forcing Theorem does not always hold for class forcing, but it can be traced
back to the de�nability lemma for atomic formulae (see [Kra17]). We look at pretame-
ness of class forcings, a necessary and su�cient condition for the generic extension to
satisfy ZFC−, and tameness, a necessary and su�cient condition for the generic exten-
sion to satisfy ZFC. In our applications, we will only consider fairly nice class forcings,
namely those P = ⋃α∈OrdPα that can be written as an increasing chain of set-sized subforc-
ings with certain properties (De�nition 1.3.15), which always satisfy the Forcing Theorem.

Later on, in Chapter 1.4, we will consider symmetric extensions by class forcing, where it
can be the case that V (G) ⊧ ZF although ZFC fails in V [G].

Most of the de�nitions form Chapter 1.1.1 can be given verbatim, or by just replacing
�set� by �class� where necessary.

De�nition 1.3.2. Let P be a class forcing for V . A �lter G ⊆ P is V -generic on P if for
every D ⊆ P a dense class in V , it follows that G ∩ D = ∅.

Since V is countable, there are only countably many dense classes of V . Thus, as in the
case for set forcing, one can enumerate them from the �outside�, and use a diagonalization
argument to show:

Lemma 1.3.3. Let (P,≤,1) be a class forcing for V and p ∈ P. Then there exists a
V -generic �lter G on P with p ∈ G.

The class of all P-names is de�ned recursively:

De�nition 1.3.4. A P-name is a set ẋ such that every y ∈ ẋ is of the form y = (ẏ, p) with
a P-name ẏ and p ∈ P. We denote by NameV (P) the class of all P-names for V .

The rank function on NameV (P) is de�ned as usual:

rkPẋ ∶= sup{rkPẏ + 1 ∣ ẏ ∈ dom ẋ}.

For α ∈ Ord, we denote by NameVα (P) the class of all ẋ ∈ NameV (P) with rkPẋ < α.

De�nition 1.3.5. Let (P,≤,1) be a class forcing for V , and G a V -generic �lter on P.
We de�ne recursively for ẋ ∈ NameV (P):

ẋG ∶= {ẏG ∣ ∃p ∈ G (ẏ, p) ∈ ẋ}.

Then V [G] ∶= {ẋG ∣ ẋ ∈ NameV (P)} is the generic extension of V by G.
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As for set forcing, it follows that V [G] is a transitive class with V ⊆ V [G] and OrdV [G] =
OrdV .

When the ground model V is clear from the context, we write just Name(P).

For ϕ(v0, . . . , vn−1) ∈ L∈ a formula of set theory, p ∈ P and ẋ0, . . . , ẋn−1 ∈ Name(P), the forc-
ing relation p ⊩VP ϕ(ẋ0, . . . , ẋn−1) can be de�ned as for set forcing (cf. De�nition 1.1.10).

We will work with the structure ⟨V [G], ∈, V,G⟩, where we have predicate symbols for the
ground model and the generic �lter.

We proceed as in [Git80, 4] and extend out language of set theory L∈ by unary predicate
symbols A and B, where A(x) will assert that x ∈ V , and B(x) will assert that x is in
the generic �lter G. We denote this extended language by LA,B∈ .

De�nition 1.3.6. For p ∈ P, we de�ne:

� p ⊩VP A(ẋ) i� ∀q ≤ p ∃r ≤ q ∃a (r ⊩VP ẋ = ǎ)

� p ⊩VP B(ẋ) i� ∀q ≤ p ∃r ≤ q ∃s ∈ P ∶ ((r ⊩VP ẋ = š) ∧ r ≤ s).

Moreover:

� V [G] ⊧ A(x) i� x ∈ V

� V [G] ⊧ B(x) i� x ∈ G.

Informally, the forcing relation can be de�ned as usual:

De�nition 1.3.7. For a formula ϕ(v0, . . . , vn−1) ∈ L
A,B
∈ , a condition p ∈ P and ẋ0, . . . , ẋn−1 ∈

Name(P), we write
p ⊩VP ϕ(ẋ0, . . . , ẋn−1)

if for any G a V -generic �lter on P with p ∈ G, it follows that ϕ(ẋG0 , . . . , ẋ
G
n−1) holds in the

structure ⟨V [G], ∈, V,G⟩.

We will abuse notation and do not write A andB in our formulas, but keep in mind that in-
side the structure V [G], formulas ϕ can talk about V andG. We write ϕ(x0, . . . , xn−1, V,G)
where these predicates are important.

Behind the forcing symbol ⊩VP , we will write �p ⊩
V
P ẋ ∈ V̌ � instead of �p ⊩VP A(ẋ)� (which

corresponds to introducing the class name V̌ ∶= {(ǎ,1) ∣ a ∈ V }), and �p ⊩VP ẋ ∈ Ġ � for

�p ⊩VP B(ẋ)�(which corresponds to introducing the class name Ġ ∶= {(p̌, p) ∣ p ∈ P}).

We write p ⊩VP ϕ(ẋ0, . . . , ẋn−1, V̌ , Ġ) when we need to mention the predicates V̌ and Ġ
behind the forcing symbol.

The forcing relation for class forcing satis�es most of the basic properties as the ordi-
nary forcing relation for set forcing (see Proposition 1.1.12, (1) - (8)), and the Symmetry
Lemma holds true, as well.
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It is not di�cult to see that whenever p ⊩VP ẋ ∈ V̌ and π ∶ Dπ → Dπ is a partial P-
automorphism with p ∈Dπ, then

πp ⊩VP πx
Dπ ∈ V̌

(which corresponds to the fact that V̌ regarded as a class name, satis�es πV̌
Dπ

= V̌
Dπ

for
all π ∶ Dπ → Dπ). Moreover, from p ⊩VP ẋ ∈ Ġ and π ∶ Dπ → Dπ a partial P-automorphism
with p ∈Dπ, it follows that

πp ⊩VP πx
Dπ ∈ πĠ,

where πĠ is the canonical name for π−1G:

p ⊩VP ẏ ∈ πĠ i� ∀q ≤ p ∃r ≤ q ∃s ∈ P ∶ ((r ⊩VP ẏ = š) ∧ π
−1r ≤ s).

However, unlike as with set forcing, the Forcing Theorem does not always hold for class
forcing.

De�nition 1.3.8. Let ϕ ≡ ϕ(v0, . . . , vn−1) be an L
A,B
∈ -formula.

� We say that P satis�es the de�nability lemma for ϕ over V if

{ (p, ẋ0, . . . , ẋn−1) ∣ p ∈ P , ẋ0, . . . , ẋn−1 ∈ Name(P) , p ⊩VP ϕ(ẋ0, . . . , ẋn−1) }

is de�nable in V .

� We say that P satis�es the truth lemma for ϕ over V if for all ẋ0, . . . , ẋn−1 ∈ Name(P)
and G a V -generic �lter on P with

⟨V [G], ∈, V,G⟩ ⊧ ϕ(ẋG0 , . . . , ẋ
G
n−1).

it follows that there exists p ∈ G with

p ⊩VP ϕ(ẋ0, . . . , ẋn−1).

� We say that P satis�es the Forcing Theorem for ϕ over V if P sati�es the de�nability
lemma and the truth lemma for ϕ over V .

We say that P satis�es the Forcing Theorem (over V ) if P satis�es the Forcing Theorem
for all LA,B∈ -formulas ϕ (over V ).

We remark that any generic extension V [G] by class forcing satis�es all single axioms of
ZFC (i.e. all axioms of ZFC except for possibly instances pf Power Set, Separation and
Replacement, cf. Chapter 0.4); with Union replaced byWeak Union (see [Kra17, 1.2.9]):
For any x ∈ V [G], there exists a set y ∈ V [G] with ⋃x ⊆ y.

In set forcing, the axioms of Separation and Replacement can be established using the
Forcing Theorem. For class forcing, however, we need a stronger property:

De�nition 1.3.9 ([Fri00, p.33]). A class forcing (P,≤,1) is pretame if for every p ∈ P
and (Di ∣ i ∈ I) a de�nable sequence of dense classes, there exists q ≤ p and a sequence
(di ∣ i ∈ I) ∈ V such that for all i ∈ I it follows that di ⊆Di and di is predense below q.
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It is not di�cult to see that any ZFC−-preserving class forcing has to be pretame (see
[Fri00, 2.17]).

On the other hand:

Proposition 1.3.10 ([Fri00, 2.19]). Assume that the class forcing (P,≤,1) is pretame
and satis�es the Forcing Theorem. Then P preserves ZFC−.

Proposition 1.3.11 ([Fri00, 2.18]). If the class forcing (P,≤,1) is pretame, then it sat-
is�es the Forcing Theorem.

Thus, it follows that a class forcing is pretame if and only if it preserves ZFC−.

For the preservation of Power Set, one needs a stronger notion: tameness.

De�nition 1.3.12 ([Fri10, p.9]). A class forcing (P,≤,1) is tame if P is pretame, and
1 ⊩VP Power Set.

For pretame forcings, tameness can be described by a combinatorial property of the par-
tial order using predense partitions (see [Fri00, p. 36]).

A class forcing (P,≤,1) is tame if and only if it preserves ZFC.

In Chapter 3, we will construct a symmetric extension by a class-sized partial order
(P,≤,1). Even if a class forcing P is not pretame, one can sometimes arrange that the
according symmetric extension is nevertheless a model of ZF. It is crucial, however, that
the Forcing Theorem holds.

By the following theorem, it su�ces to check the de�nability lemma for the atomic for-
mulae:

Theorem 1.3.13 ([Kra17, 2.1.5]). If the class forcing (P,≤,1) satis�es the de�nability
lemma over V either for �v0 ∈ v1� or �v0 = v1�, then P satis�es the Forcing Theorem over
V for every LA,B∈ -formula ϕ.

In the case that the Forcing Theorem holds, there is also a product lemma for class
forcings:

Lemma 1.3.14 ([Fri00, 2.27]). Suppose that (P,≤P,1P) and (Q,≤Q,1Q) are class forcings.

(i) If G is P-generic over V , and H is Q-generic over ⟨V [G], ∈, V,G⟩, then G × H is a
P × Q - generic �lter over V .

(ii) Let K denote a V -generic �lter on P × Q. Then K is of the form K = G ×H, where
G is a P-generic �lter over V . If in addition, the Forcing Theorem holds for P, then
H is a Q-generic �lter over ⟨V [G], ∈, V,G⟩.

Our class forcing that we construct in Chapter 3 will satisfy the property that it can
be written as the union of a sequence of set-sized forcings, each of which is a complete
subforcing of those beyond:
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De�nition 1.3.15. A class forcing (P,≤,1) is an increasing chain of set-sized complete
subforcings if there is a class ((α,Pα) ∣ α ∈ Ord) such that P = ⋃α∈OrdPα, and each
Pα = (Pα,≤α,1α) = (Pα,≤↾ Pα,1) is a set forcing with the property that for all α, β ∈ Ord
with α < β, it follows that Pα is a complete subforcing of Pβ.

The following properties can be found in [Sho71, 12], [Zar73, 3], and in [Rei06] in a more
modern fashion using Boolean Algebras:

Assume that P = ⋃α∈OrdPα is an increasing chain of set-sized complete subforcings. Then
any Pα is a complete subforcing of P. Let G denote a V -generic �lter on P. Then for
every α ∈ Ord, it follows that Gα ∶= G ∩ Pα is a V -generic �lter on Pα. We de�ne a rank
function ∆(ẋ) recursively on Name(P) as follows: Let ∆(ẋ) be the smallest α such that
for all (ẏ, p) ∈ ẋ, it follows that ∆(ẏ) ≤ α and p ∈ Pα.
Whenever ẋ ∈ Name(P) with ∆(ẋ) ≤ α, then ẋ ∈ Name(Pα) and ẋG = ẋGα . Hence, it
follows that V [Gα] ⊆ V [Gβ] whenever α < β, and V [G] = ⋃α∈Ord V [Gα].

The following theorem is proved in [Sho71, 12] and [Zar73, 3]:

Theorem 1.3.16. If the class forcing P = ⋃α∈OrdPα is an increasing chain of set-sized
complete subforcings, then P satis�es the Forcing Theorem for every LA,B∈ -formula ϕ.

The basic idea of the proof is that for ẋ, ẏ ∈ Name(P) with ∆(ẋ), ∆(ẏ) ≤ α and p ∈ Pα,
the forcing relations p ⊩VP ẋ ∈ ẏ and p ⊩VP ẋ = ẏ for P can be de�ned via p ⊩VPα ẋ ∈ ẏ and
p ⊩VPα ẋ = ẏ, so the de�nability lemma for set forcing yields the de�nability lemma for the
atomic formulas �v0 ∈ v1� and �v0 = v1�. Then Theorem 1.3.13 can be applied.

Another useful property is that for P = ⋃α∈OrdPα an increasing chain of set-sized complete
subforcings as above, the interpretation function of names ẋ ↦ ẋG is de�nable in any P-
generic extension V [G]. This is not necessarily true for arbitrary class forcing, since the
recursive de�nition of (⋅)G makes use of Replacement, which might fail in V [G].

Proposition 1.3.17 ([Git80]). Assume that the class forcing P = ⋃α∈OrdPα is an increas-
ing chain of set-sized complete subforcings, and let G be a V -generic �lter on P. Then
there is a formula τ(u, v) such that for any ẋ, x ∈ V [G], we have ⟨V [G], ∈, V,G⟩ ⊧ τ(ẋ, x)
if and only if ẋ ∈ NameV (P) with x = ẋG.

Proof. First, we construct a function f in ⟨V [G], ∈, V,G⟩ such that

dom f = {(α, ẋ) ∣ α ∈ Ord , ẋ ∈ NameV (Pα)},

and for all (α, ẋ) ∈ dom f , it follows that f(α, ẋ) = ẋGα (= ẋG). Note that we cannot apply
the recursion theorem directly, since it makes use of Replacement.

However, we can still de�ne in ⟨V [G], ∈, V,G⟩:

f(α, ẋ) = x i�

(∗) α ∈ Ord, ẋ ∈ Name(Pα), and there exists F ∈ V [G], F ∶ domF → V [G] such that
domF ⊆ NameV (Pα), domF is dom-transitive (see p. 17), F (ẋ) = x and for every
ẏ ∈ domF it follows that

∀ z (z ∈ F (ẏ)↔ ∃ (ż, p) ∈ ẏ (p ∈ Gα ∧ z = F (ż))).
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Then as in the proof of the recursion theorem in ZFC, it follows that this de�nition indeed
yields a function (one considers a counterexample of least rank and obtains a contradic-
tion), and for all α ∈ Ord, the set {ẋ ∣ (α, ẋ) ∈ dom f} is dom-transitive. However, in order
to show that (α, ẋ) ∈ dom f for all α ∈ Ord, the original argument cannot be employed
here, since it needs the axiom of Replacement. Instead, we use that the interpretation
function (⋅)Gα can be de�ned inside the ZFC-model V [Gα].

Let ẋ ∈ Name(Pα), and assume recursively that for all ẏ ∈ Tdom ẋ (cf. p. 17), we have
ẏ ∈ dom f with f(ẏ) = ẏG. Let F denote the function that maps any ẏ ∈ Tdom ẋ ∪ {ẋ} to
its interpretation ẏGα . Then F ∈ V [Gα] ⊆ V [G], domF = {ẋ} ∪Tdom ẋ is dom-transitive,
and for any ẏ ∈ domF , we have F (ẏ) = ẏGα = {żGα ∣ ∃ (ż, p) ∈ ẏ p ∈ Gα}. In other words,

∀ z (z ∈ F (ẏ)↔ ∃(ż, p) ∈ ẏ (p ∈ Gα ∧ z = F (ż))).

It follows that F satis�es all the requirements from (∗). Hence, (α, ẋ) ∈ dom f with
f(α, ẋ) = F (ẋ) = ẋGα = ẋG as desired.

It follows that (∗) de�nes in ⟨V [G], ∈, V,G⟩ a function f on {(α, ẋ) ∣ α ∈ Ord , ẋ ∈
NameV (Pα)} with f(α, ẋ) = ẋGα = ẋG for all (α, ẋ) ∈ dom f .

Hence, there is a formula τ0(u, v,w) such that ⟨V [G], ∈, V,G⟩ ⊧ τ0(α, ẋ, x) i�

⟨V [G], ∈, V,G⟩ ⊧ α ∈ Ord ∧ ẋ ∈ NameV (Pα) ∧ f(α, ẋ) = x.

Moreover, there is a formula τ(v,w) with ⟨V [G], ∈, V,G⟩ ⊧ τ(ẋ, x) i�

⟨V [G], ∈, V,G⟩ ⊩ (ẋ ∈ NameV (P) ∧ ∀α ∈ Ord (ẋ ∈ Name(Pα)→ τ0(α, ẋ, x))).

Since ẋGβ = ẋGα = ẋG whenever ẋ ∈ Name(Pα) and β ≥ α, it follows that ⟨V [G], ∈, V,G⟩ ⊧
τ(ẋ, x) i� ẋ ∈ NameV (P) with x = ẋG.

We will now introduce class products. For D a class of ordinals and (Qβ ∣ β ∈ D) a de�nable
sequence of set forcings, a product

P =
I
∏
β∈D

Qβ

is always an increasing chain of set-sized complete subforcings.

De�nition 1.3.18 ([Rei06, 122]). Let D be a class of ordinals and I a sub-ideal on D,
i.e. I is a class consisting of sets of ordinals X ⊆ D such that ∅ ∈ I, {β} ∈ I for all β ∈ D,
I is closed under �nite unions, and whenever X ∈ I and β ∈ Ord, then also X ∩ β ∈ I
(cf. [Rei06, 105 + 113]). Let ( (Qβ,≤β,1β) ∣ β ∈ D ) be a class such that each Qβ is a set
forcing. The product of ( (Qβ,≤β,1β) ∣ β ∈ D ) with supports in I

P ∶=
I
∏
β∈D

Qβ

consists of all p ∶ domp → V with the property that domp ∈ I and p(β) ∈ Qβ for all
β ∈ domp, with maximal element 1 ∶= ∅, and the ordering ≤P de�ned by setting q ≤ p i�
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dom q ⊇ domp and q(β) ≤β p(β) for all β ∈ domp.

If G is a V -generic �lter on P, then for every β ∈ D it follows that Gβ ∶= {p(β) ∣ p ∈ G, β ∈
domp}, the projection of G onto Qβ, is a V -generic �lter on Qβ.

In applications, D is for example the class of all cardinals or the class of all regular
cardinals.

Lemma 1.3.19 ([Rei06, 123]). Let (P,≤,1) be the product of ( (Qβ,≤β,1β) ∣ β ∈ D ) with
supports in I as in De�nition 1.3.18. For α ∈ Ord, let Pα ∶= {p ∈ P ∣ domp ⊆ α}, with
maximal element 1α ∶= 1 = ∅ and the ordering ≤α inherited from P. Then P = ⋃α∈OrdPα
is an increasing chain of set-sized complete subforcings.

Proof. Let γ, δ ∈ Ord with γ ≤ δ. We have to show that Pγ is a complete subforcing of Pδ.
Consider p, q ∈ Pγ. Clearly, q ≤γ p if and only if q ≤δ p; and q �γ p if and only if q �δ p, since
whenever r ∈ Pδ is a common extension of p and q, then r ∶= r ↾ γ is a common extension
of p and q in Pγ.
Let now A ⊆ Pγ be a maximal antichain in Pγ. Consider p ∈ Pδ, and take r ∈ A with
r ∥γ p ↾ γ. Let q ∈ Pγ with q ≤γ r, q ≤γ p ↾ γ. Then the condition q ∈ Pδ, de�ned by setting
q(β) ∶= q(β) for β < γ, and q(β) ∶= p(β) for γ ≤ β < δ is a common extension of r and p in
Pδ. Hence, the antichain A is also maximal in Pδ; and we conclude that indeed, Pγ is a
complete subforcing of Pδ.

De�nition 1.3.20. Fix a de�nable sequence of set forcings ( (Qβ,≤β,1β) ∣ β ∈ D ) as
above.
Let κ be a regular cardinal. If I is the class of all sets X ⊆ D of cardinality < κ, we obtain
the κ-product (or product with < κ-support)

P =
<κ
∏
β∈D

Qβ,

which is the collection of all p ∶ domp → V with the property that domp ⊆ D with
∣domp∣ < κ, and p(β) ∈ Qβ for all β ∈ domp. The ℵ1-product is usually referred to as
product with countable support.

If I is the class of all �nite subsets of D, we obtain the product with �nite support,

P =
�n

∏
β∈Ord

Qβ,

which is the collection of all p ∶ domp → V such that domp is a �nite subset of D, and
p(β) ∈ Qβ for all β ∈ domp.

Finally, if I is the class of all sets X ⊆ D with the property that for all inaccessible
cardinals γ it follows that ∣X ∩ γ∣ < γ, we obtain the product with Easton support

P =
Easton

∏
β∈D

Qβ,
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which is the class of all p ∶ domp → V such that domp ⊆ D with ∣domp ∩ γ∣ < γ for all
inaccessible γ, and p(β) ∈ Qβ for all β ∈ D.

If D consists of cardinals and GCH holds, then Easton support is equivalent to requiring
∣domp ∩ γ∣ < γ for all regular cardinals γ.

1.3.2 Easton Forcing

In this chapter, we discuss Easton Forcing as an example of tame class forcing. Introduced
by William Easton in [Eas70], it was used to prove that the Continuum Function on the
class of all regular cardinals can take almost arbitrary values:

Theorem 1.3.21 (William B. Easton). Let V be a ground model of ZFC + GCH with a
class function F whose domain consists of regular cardinals and whose range consists of
cardinals, such that for all κ, λ ∈ domF the following properties holds:

� κ ≤ λ→ F (κ) ≤ F (λ) (weak monotonicity),

� cf F (κ) > κ (König's Theorem).

Then there exists a generic extension V [G] by class forcing such V [G] ⊧ ZFC, V and V [G]
have the same cardinals and co�nalities, and V [G] ⊧ 2κ = F (κ) holds for all κ ∈ domF .

We again remark that a similar construction is not possible for singular cardinals.

Our proof of Easton's Theorem follows [Jec06, 15.18]. We start from a ground model
V ⊧ ZFC + GCH with an Easton function F ∶ domF → Card, which is a class function
with the following properties:

(i) any κ ∈ domF is a regular cardinal,
(ii) cf F (κ) > κ for all κ ∈ domF ,
(iii) κ, λ ∈ domF with κ < λ→ F (κ) ≤ F (λ).

The corresponding Easton forcing for F is the Easton support product of the Cohen
forcings Fn(F (κ) × κ,2, κ):

De�nition 1.3.22. For κ ∈ domF , we denote by Fn(F (κ) × κ,2, κ) the set of all function
q ∶ dom q → 2 with dom q ⊆ F (κ) × κ and ∣q∣ < κ.

The Easton forcing for F is the product with Easton support

PF ∶=
Easton

∏
κ∈domF

Fn(F (κ) × κ,2, κ),

which is the class of all p ∶ suppp→ 2 where suppp ⊆ domF a set such that for all regular
cardinals γ, it follows that ∣ suppp ∩ γ∣ < γ, and p(κ) ∈ Fn(F (κ) × κ,2, κ) for all κ ∈ suppp.

For p, q ∈ PF , we set q ≤ p i� supp q ⊇ suppp with q(κ) ⊇ p(κ) for all κ ∈ suppp; and
1F ∶= ∅.
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Let G be a V -generic �lter on PF . For every κ ∈ domF and i < F (κ), it induces

Gκ
i ∶= {α < κ ∣ ∃p ∈ G p(κ)(i, α) = 1}.

By genericity, it follows that Gκ
i ≠ G

κ
j whenever i ≠ j; thus, the forcing PF indeed adds

F (κ)-many new κ-subsets for every κ ∈ domF . Hence, V [G] ⊧ 2κ ≥ F (κ). It remains to
show that V [G] ⊧ ZFC, that cardinals and co�nalities are absolute between V and V [G],
and that V [G] ⊧ 2κ ≤ F (κ) for all κ ∈ domF .

For γ a regular cardinal and p ∈ PF , we consider the following decomposition:

p≤γ ∶= p ↾ (γ + 1) , p>γ ∶= p ↾ (Ord ∖ (γ + 1)).

Then p = p≤γ ∪ p>γ for all p ∈ PF and γ regular.

Let
P
≤γ
F ∶= {p≤γ ∣ p ∈ PF} , P

>γ
F ∶= {p>γ ∣ p ∈ PF}.

Then PF is isomorphic to the product P≤γF × P>γF .

Lemma 1.3.23 ([Jec06, 15.18]). For every regular cardinal γ, the forcing P>γF is ≤ γ-
closed.

Proof. Let (pi ∣ i < γ) be a descending sequence in P>γF , i.e. pj ≤ pi whenever i < j. We
de�ne a condition p as follows: Let suppp ∶= ⋃i<γ supppi ⊆ Ord∖(γ+1); and for κ ∈ suppp,
let p(κ) ∶= ⋃i<γ pi(κ), with pi(κ) ∶= ∅ in the case that κ ∉ supppi.
By compatibility of the pi, it follows that any p(κ) is a function p(κ) ∶ domp(κ)→ 2 with
domp(κ) ⊆ F (κ) × κ. Moreover, for any κ ∈ suppp, we have κ > γ and κ is regular; hence,
∣ suppp(κ)∣ = ∣⋃i<γ supppi(κ)∣ < κ, which implies p(κ) ∈ Fn(F (κ) × κ,2, κ). Finally, for
any λ a regular cardinal with λ > γ, it follows that ∣ suppp ∩ λ∣ = ∣⋃i<γ(supppi ∩ λ)∣ < λ.
Hence, p ∈ P>γF is a common extension of (pi ∣ i < γ).

Moreover, since GCH holds, an application of the ∆-system lemma yields:

Lemma 1.3.24 ([Jec06, 15.17 + 15.18]). For every regular cardinal γ, the set forcing P≤γF
satis�es the γ+-cc.

By Lemma 1.3.19 it follows that PF = ⋃γ∈Reg P
≤γ
F is an increasing chain of set-sized com-

plete subforcings. Hence, PF satis�es the Forcing Theorem (see Theorem 1.3.16), and
V [G] = ⋃γ∈Reg V [G≤γ].

Now, Lemma 1.3.14 yields for every γ ∈ RegV that G ≅ G≤γ × G>γ, where G≤γ ∶= {p≤γ ∣ p ∈
G} is a P≤γF -generic �lter over V , and G>γ ∶= {p>γ ∣ p ∈ G} is a P>γF -generic �lter over
⟨V [G≤γ], ∈, V,G≤γ⟩.

Moreover,

Proposition 1.3.25 ([Fri00, 2.26]). Easton forcing PF is pretame.

Hence, it follows that PF preserves ZFC−. Regarding the preservation of Power Set, it is
not di�cult to see that Lemma 1.1.35 remains true when the second factor Q is a class
forcing. Thus,
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Lemma 1.3.26 ([Jec06, p. 236]). Let γ be a regular cardinal in V . Then every function
f ∶ γ → V in V [G] is already contained in V [G≤γ]. In particular,

℘V [G](γ) = ℘V [G≤γ](γ).

Let now X ∈ V [G]. Since V [G] ⊧ ZFC−, there must be a cardinal γ ∈ RegV with an
injection ι ∶ X ↪ γ in V [G]. Now, ℘V [G](X) = {ι−1[y] ∣ y ∈ ℘V [G](γ)}, and ℘V [G](γ) =
℘V [G≤γ](γ) is a set in V [G≤γ] ⊆ V [G], since V [G≤γ] ⊧ ZFC. Hence, ℘V [G](X) ∈ V [G]; and
we conclude that V [G] ⊧ Power Set.

From the factorization PF ≅ P≤γF × P
>γ
F , we also obtain the preservation of cardinals and

co�nalities:

Lemma 1.3.27 ([Jec06, 15.18]). Any κ ∈ RegV is still a a regular cardinal in V [G].

Proof. Assume towards a contradiction there was γ < κ, γ ∈ RegV , with a co�nal function
f ∶ γ → κ in V [G]. Then by Lemma 1.3.26, it follows that f ∈ V [G≤γ]; so κ is not regular
in V [G≤γ]. But this is not possible, since P≤γF sati�es the γ+-chain condition.

Thus, all cardinals and co�nalities are preserved by PF .

Proposition 1.3.28 ([Jec06, 15.18]). For any λ ∈ domF , it follows that (2λ)V [G] = F (λ).

Proof. We have already argued that (2λ)V [G] ≥ F (λ), since Easton forcing adds F (λ)-
many new λ-subsets.

In order to show that (2λ)V [G] ≤ F (λ), �rst note that by Lemma 1.3.26,

(2λ)V [G] = ∣℘V [G](λ)∣V [G] = ∣℘V [G≤λ](λ)∣V [G] ≤ ∣℘V [G≤λ](λ)∣V [G≤λ] = (2λ)V [G≤λ].

Now, (2λ)V [G≤λ] can be computed as in Lemma 1.1.23; and now it is important that the
function F meets the requirements from König's Theorem:

For any regular κ ≤ λ with κ ∈ domF , it follows that the forcing notion Fn(F (κ) × κ,2, κ)
has cardinality ≤ F (κ) ≤ F (λ), since V ⊧ GCH, and cf F (κ) > κ. Thus, ∣P≤λF ∣ ≤ F (λ)<λ =
F (λ). Since P≤λF has the λ+-c.c. by Lemma 1.3.24, it follows that there are ≤ F (λ)λ =
F (λ)-many antichains in P≤λF . Hence, ∣Nice(P≤λF , λ)∣ = F (λ)λ = F (λ), which implies
(2λ)V [G≤λ] ≤ F (λ) as desired.

This �nishes the proof of Easton's Theorem.

1.4 Symmetric Extensions by Class Forcing

In this chapter we extend our technique of symmetric forcing with partial automorphisms
introduced in Chapter 1.2.3 to class-sized forcing notions P. We proceed similarly as in
Chapter 1.2.3, but for working with proper classes a measure of extra care is needed.
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We con�ne ourselves to the case that the class forcing P has a nice hierarchy : We demand
that P = ⋃αPα should be an increasing chain of set-sized complete subforcings with pro-
jections ρα ∶ P → Pα, with certain properties as listed below. Any partial automorphism
for P that we consider, say π ∶ Dπ → Dπ, will be fairly �set-like�: There will α ∈ Ord such
that π can be constructed from an automorphism πα ∶ Dπ ∩ Pα → Dπ ∩ Pα as follows:
Any p ∈ Dπ is �rst projected down to Pα via ρα, then the map πα is employed to ρα(p),
and then πα(ρα(p)) ∈ Pα is �glued together� with the �upper part� of p that is not taken
into account for ρα(p). In order to formalize this �upper part�, we demand that there
is a de�nable sequence (P[α,∞) ∣ α ∈ Ord) of class-sized forcing notions with a de�nable
sequence of projections (ρ[α,∞) ∶ P → P[α,∞) ∣ α ∈ Ord); and for every α ∈ Ord, there is a
canonical isomorphism from P into a dense subforcing of Pα × P[α,∞). Then every p ∈ P
can be viewed as a pair (ρα(p), ρ[α,∞)(p)).

We demand that the maps ρα and ρ[α,∞) have several natural properties that one expects
from �cutting o�� and �gluing together�, see De�nition 1.4.2.

Examples 1.4.1. (1) In Chapter 3, we will apply this idea to a �nite support product

P =
�n

∏
κ∈Card

Qκ

of Cohen-like forcing notions Qκ. Setting Pα ∶= ∏
�n

κ<αQκ and P[α,∞) ∶= ∏
�n

κ∈[α,∞)Qκ,
it follows that P = ⋃α∈OrdPα is an increasing chain of set-sized complete forcing
notions; and we have projections ρα ∶ P → Pα, p ↦ p ↾ α, and ρ[α,∞) ∶ P → P[α,∞),
p↦ p ↾ (Card ∖α). Then for every α ∈ Ord, it follows that any p ∈ P can be viewed
as a pair (ρα(p), ρ[α,∞)(p)), and P ≅ Pα × P[α,∞).

(2) Also in Chapter 3, will also employ this construction to forcing with partial functions
on �nitary trees (i.e. in this case, trees with �nitely many maximal points) the levels
of which are indexed by cardinals. Then ρα(p) is the lower part of the tree up to
level α (including level α itself), and ρ[α,∞)(p) is the upper part of the tree (level α
and higher). In this case, P is not isomorphic to the product Pα × P[α,∞) but only
to a dense subforcing, since conditions in Pα × P[α,∞) might have additional �roots�
at level α.

De�nition 1.4.2. A class forcing P has a nice hierarchy if the following hold:

a) P = ⋃α∈OrdPα is an increasing chain of set-sized complete subforcings, each of which
is upwards closed in P, i.e. for any p ∈ Pα and q ∈ P with q ≥ p, it follows that
q ∈ Pα, as well. There are projections (ρα ∣ α ∈ Ord), ρα ∶ P → Pα, such that
{(α, p, ρα(p)) ∣ α ∈ Ord , p ∈ P} is a class in V , and for all α, β ∈ Ord, α ≤ β, the
following properties hold:

(i) ∀p, q ∈ P (p ≤ q → ρα(p) ≤ ρα(q)),
(ii) ∀p ∈ Pα ρα(p) = p (in particular, ρα(1) = 1 = 1α),
(iii) ∀p ∈ P ρα(ρβ(p)) = ρα(p),
(iv) ∀p ∈ P , q ∈ Pα ( q ≤α ρα(p)→ ∃p′ ≤ p ρα(p′) ≤α q ),
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(v) ∀p ∈ P p ≤ ρα(p).

b) There is a de�nable sequence of class-sized forcing notions (P[α,∞) ∣ α ∈ Ord) with
projections (ρ[α,∞) ∣ α ∈ Ord), ρ[α,∞) ∶ P → P[α,∞), i.e. {(α, p) ∣ α ∈ Ord , p ∈ P[α,∞)}
is a class in V and {(α, p, ρ[α,∞)(p)) ∣ α ∈ Ord , p ∈ P} is a class in V .
For every α ∈ Ord, the map bα ∶ P→ Pα ×P[α,∞) de�ned by bα(p) ∶= (ρα(p), ρ[α,∞)(p)),
is an isomorphism from P into a dense subforcing of Pα × P[α,∞).

For notational convenience, we will often identify p ∈ P with its image bα(p) =
(ρα(p), ρ[α,∞)(p)) ∈ Pα × P[α,∞).

We de�ne projections ρα ∶ Pα × P[α,∞) → Pα and ρ[α,∞) ∶ Pα × P[α,∞) → P[α,∞) for
α ∈ Ord by setting ρα(pα, q[α,∞)) ∶= pα and ρ[α,∞)(pα, q[α,∞)) ∶= q[α,∞) for (pα, q[α,∞)) ∈
Pα ×P[α,∞). Then for every p ∈ P, it follows that ρα(bα(p)) = ρα(p), and ρ[α,∞)(bα(p)) =
ρ[α,∞)(p). We will often mix up ρα with ρα, and ρ[α,∞) with ρ[α,∞).

c) Regarding the projections (ρ[α,∞) ∣ α ∈ Ord), we require for all p, q ∈ P and α,
β ∈ Ord with β < α:

(i) p ≤ q → ρ[α,∞)(p) ≤ ρ[α,∞)(q),
(ii) p ∈ Pβ → ρ[α,∞)(p) = 1[α,∞) (in particular, ρ[α,∞)(1) = 1[α,∞)),
(iii) for every q[α,∞) ∈ P[α,∞) with q[α,∞) ≤[α,∞) ρ[α,∞)(p), there exists p′ ≤ p with

ρ[α,∞)(p′) ≤[α,∞) q[α,∞).

d) Regarding the interplay of the maps ρα and ρ[α,∞), we require for all α ≤ β:

Let pα ∈ Pα, and q ∈ P such that (pα, ρ[α,∞)(q)) ∈ P. Then

(i) ρβ(pα, ρ[α,∞)(q)) = (pα, ρ[α,∞)(ρβ(q)))

(ii) (ρβ(pα, ρ[α,∞)(q)), ρ[β,∞)(q)) = (pα, ρ[α,∞)(q)).

For p ∈ P, we call ∆(p) ∶= min{α ∈ Ord ∣ p ∈ Pα} the height of p. Whenever p ≤ q, then by
the upwards closure of the Pα, it follows that ∆(p) ≥ ∆(q).

For a name ẋ ∈ Name(P), we de�ne recursively:

∆(ẋ) ∶= sup{∆(ẏ) ∣ ẏ ∈ dom ẋ} ∪ sup{∆(p) ∣ p ∈ rg ẋ}.

Then ∆(ẋ) is the smallest α such that for all (ẏ, p) ∈ ẋ, it follows that ∆(ẏ) ≤ α and
p ∈ Pα.

For the rest of this chapter, let P denote a separative class forcing with a nice hierarchy.
By Theorem 1.3.16 it follows that the Forcing Theorem holds. In particular, the forcing
relation is de�nable in V .

We will now describe what type of dense classesD and partial P-automorphisms π ∶D →D
we will consider.

De�nition 1.4.3. � A dense class D ⊆ P allows projections if for any p ∈D and α ∈ Ord,
it follows that ρα(p) ∈D, as well.
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� A dense class D ⊆ P can be described below α if for every p ∈ P, it follows that p ∈ D if
and only if ρα(p) ∈D ∩ Pα.

� An automorphism π ∶ D → D on a dense class D ⊆ P can be described below α if D can
be described below α, and there exists an automorphism πα ∶ D ∩ Pα → D ∩ Pα such
that for every p ∈D,

π(p) = (πα(ρα(p)), ρ[α,∞)(p)).

We write π = πα.
� An automorphism π ∶ D → D on a dense class D ⊂ P is nicely level-preserving, if D
allows projections, and for all β ∈ Ord and p ∈ D, it follows that π(ρβ(p)) = ρβ(π(p)).
In particular, ∆(π(p)) = ∆(p) for all p ∈D.

Whenever D ⊆ P is a dense class that allows projections, then for any α ∈ Ord, it follows
that D ∩ Pα is dense in Pα.

Example 1.4.4. Let P = ∏
�n

κ∈OrdQκ with Pα ∶= ∏
�n

κ<αQκ as in Example 1.4.1 (1). For ϕ
a formula of set theory, and S a class of parameters in V , the dense classes considered
could be of the form

Dα,s = {p ∈ P ∣ ∀κ ∈ domp ∩ α ϕ(p(κ), s)}

for α ∈ Ord and a parameter s ∈ S. Then for any p ∈Dα,s and α ∈ Ord, it follows that also
ρα(p) = p ↾ α ∈ Dα,s. Hence, Dα,s allows projections. Moreover, for any α ≥ α, we have
p ∈Dα,s if and only if ρα(p) ∈Dα,s. Thus, Dα,s can be described below α.

The automorphisms π could be of the form π ∶ Dα,s → Dα,s for some Dα,s as above with
π = (π(κ) ∣ κ < α) such that each π(κ) is a partial automorphism on Qκ; and whenever
p ∈ Dα,s, then dom(πp) ∶= domp with πp(κ) = π(κ)(p(κ)) for all κ < α, and πp(κ) = p(κ)
for all κ ≥ α. Then π can be described below α, and π is nicely level-preserving.

In this setting that π ∶ D → D can be described below α with π = πα, we will sometimes
abuse notation, confuse π = πα with πα, and treat π as a set.
Similarly, if a dense class D ⊆ P can be described below α, then membership to D can be
reduced to membership to D ∩ Pα, and we will again sometimes abuse notation, confuse
D with D ∩ Pα, and treat D as a set.

We continue with two lemmas about basic properties that follow from De�nition 1.4.2
and 1.4.3:

Lemma 1.4.5. Assume that π ∶D →D can be described below α with π = πα, and assume
that for all p ∈ Pα and β ∈ Ord, it follows that πα(ρβ(p)) = ρβ(πα(p)). Then π is nicely
level-preserving.

Proof. First, consider β < α and let p ∈D. Then

π(ρβ(p)) = (πα(ρα(ρβ(p))) , ρ[α,∞)(ρβ(p)))

= (πα(ρβ(p)) , 1[α,∞)) (by 1.4.2 a) + c) )

= πα(ρβ(p)).
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On the other hand,

ρβ(π(p)) = ρβ(πα(ρα(p)) , ρ[α,∞)(p))

= (ρβ ○ ρα)(πα(ρα(p)), ρ[α,∞)(p)) (by 1.4.2 a) )

= ρβ(πα(ρα(p))).

Now, ρβ(πα(ρα(p))) = πα(ρβ(ρα(p))) by our assumption on πα, and πα(ρβ(ρα(p))) =
πα(ρβ(p)) by 1.4.2 a). This �nishes the proof for β < α.

In the case that β ≥ α, we have

π(ρβ(p)) = (πα(ρα(ρβ(p))), ρ[α,∞)(ρβ(p)))

= (πα(ρα(p)), ρ[α,∞)(ρβ(p))) (by 1.4.2 a) )

= ρβ(πα(ρα(p)), ρ[α,∞)(p)) (by 1.4.2 d) )

= ρβ(π(p)).

Lemma 1.4.6. If π ∶ D → D can be described below α and α < β, then π can also be
described below β.

Proof. Let π = πα as above with πα ∶D ∩ Pα
≅
→D ∩ Pα. Then

π(p) = (πα(ρα(p)), ρ[α,∞)(p))

for all p ∈D. We de�ne a map πβ as follows: For p ∈D ∩ Pβ, set

πβ(p) ∶= ρβ(πα(ρα(p)), ρ[α,∞)(p)) = ρβ(π(p)).

Then

(πβ(ρβ(p)), ρ[β,∞)(p)) = (ρβ(πα(ρα(ρβ(p))), ρ[α,∞)(ρβ(p))) , ρ[β,∞)(p) )

= (ρβ(πα(ρα(p)), ρ[α,∞)(ρβ(p))) , ρ[β,∞)(p) ) by 1.4.2 a)

= (ρβ(πα(ρα(p)), ρ[α,∞)(p)) , ρ[β,∞)(p) ) by 1.4.2 d)

= (πα(ρα(p)), ρ[α,∞)(p)) by 1.4.2 d)

= π(p)

for all p ∈D.

Whenever p ∈D ∩ Pβ, it follows that πβ(p) = π(p); hence, πβ ∶D ∩ Pβ →D ∩ Pβ is indeed
an automorphism.

Now, we adapt our De�nition 1.2.14 of an almost-group of partial P-automorphisms to
class forcing. We try to avoid introducing D (which would be a collection of classes),
and therefore assume that all dense classes D considered are given by the same formula
ϕ(x, y), with parameters ranging over a class S. In other words: Any dense class D we
are considering is of the form D =Ds = {p ∈ P ∣ ϕ(p, s)} for some s ∈ S.
If necessary, one could also allow �nitely many formulas ϕ0(x, y), . . . , ϕn−1(x, y) with
parameters in S0, . . . , Sn−1, respectively.
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De�nition 1.4.7. Let ϕ(x, y) be a formula of set theory and S a class in V . A class A
is an almost-group of partial P-automorphisms for ϕ and S if the following hold:

a) For every s ∈ S, the classDs ∶= {p ∈ P ∣ ϕ(p, s)} is dense in P, and there exists α ∈ Ord
such that Ds can be described below α. The smallest such α will be denoted by
α(s).

b) For every s0, s1 ∈ S, there exists s2 ∈ S with α(s2) ≤ max{α(s0), α(s1)} such that
Ds0 ∩ Ds1 =Ds2 , i.e. {p ∈ P ∣ ϕ(p, s0) ∧ ϕ(p, s1)} = {p ∈ P ∣ ϕ(p, s2)}.

c) There exists smax ∈ S with Ds ⊆Dsmax for all s ∈ S.

d) Every π ∈ A is a nicely level-preserving automorphism π ∶ Ds
≅
→ Ds for some s ∈ S,

and there exists α ∈ Ord such that π can be described below α, i.e. there exists an
automorphism πα ∶Ds ∩ Pα →Ds ∩ Pα with π = πα.

e) For every s ∈ S and α ∈ Ord with α ≥ α(s),

A(s,α) ∶= {π = πα ∈ A ∣ πα ∶Ds ∩ Pα
≅
→Ds ∩ Pα }

is a group.
f) Whenever s, s′ ∈ S with Ds ⊆ Ds′ , then for every π ∈ A(s′,α′) with α′ ≥ α(s′), it

follows that π[Ds] =Ds; and π ↾ Ds ∈ A(s,α) for every α ≥ max{α′, α(s)}.

(Note that for every π ∈ A(s′,α′) with π = πα′ for some πα′ ∶ Ds′ ∩ Pα′
≅
→ Ds′ ∩ Pα′

and Ds ⊆ Ds′ as above, it follows that π ↾ Ds = πα′ ↾ Ds. If α ≥ max{α′, α(s)}, it
follows automatically that π ↾ Ds can also be described below α: Setting πα(p) ∶=

ρα(πα′(ρα′(p)), ρ[α′,∞)(p)), we obtain that πα ↾ Ds : Ds ∩ Pα
≅
→ Ds ∩ Pα is an

automorphism satisfying π ↾ Ds = πα ↾ Ds.)

Let ϕ(x, y) be a formula of set theory, S a class in V , and A an almost-group for ϕ and S.
Then A can be can be turned into a group if we use a construction similar to the direct
limit, but keep in mind that we are working with proper classes:

Whenever s, s′ ∈ S and α, α′ ∈ Ord with α ≥ α(s), α′ ≥ α(s′) such that Ds ⊆ Ds′ and
α ≥ α′, there is a canonical homomorphism φ(s′,α′)(s,α) ∶ A(s′,α′) → A(s,α), π ↦ π ↾ Ds. More

precisely: A map π ∈ A(s′,α), π = πα′ is mapped to πα, where πα ∶ Ds ∩ Pα
≅
→ Ds ∩ Pα is

de�ned by setting πα(p) ∶= ρα(πα′(ρα′(p)), ρ[α′,∞)(p)) for all p ∈Ds ∩ Pα.

This gives a directed system
(A(s,α), φ(s′,α′)(s,α))

for s, s′ ∈ S, α ≥ α(s), α′ ≥ α(s′); and Ds ⊆Ds′ , α ≥ α′.

We cannot straightforwardly take the direct limit, since there is a proper class of indices.
However, Scott's Trick can be applied as follows:

We consider the following equivalence relation �∼� on ⋃{A(s,α) ∣ s ∈ S , α ≥ α(s)}: When-
ever π ∈ A(s,α) and π′ ∈ A(s′,α′), let π ∼ π′ i� there exists s′′ ∈ S with Ds′′ ⊆ Ds ∩ Ds′ and
α′′ ≥ α,α′ such that φ(s,α)(s′′,α′′)(π) = φ(s′,α′)(s′′,α′′)(π′). It is not di�cult to see that this is
the case if and only if π and π′ agree on Ds ∩ Ds′ (since we assumed our forcing P to be
separative).
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De�nition/Proposition 1.4.8. Let ϕ(x, y) be a formula of set theory, S a class in V ,
and A an almost-group for ϕ and S. We de�ne on A the following equivalence relation:

For π, π′ with π ∶Ds →Ds, π′ ∶Ds′ →Ds′ let

π ∼ π′ ∶⇔ π ↾ (Ds ∩ Ds′) = π
′ ↾ (Ds ∩ Ds′).

Consider π ∈ A. We denote by ∆l(π) (the lower height of π) the least ordinal α such that
there exists π′ ∈ A with π′ ∼ π such that π′ can be described below α.
We de�ne

[π] ∶= [π]∼ ∶= {σ = σα ∣ α = ∆l(π) , σ ∼ π , σα ∶ domσ ∩ Pα → domσ ∩ Pα}.

Let
A ∶= { [π] ∣ π ∈ A}.

Then A becomes a group as follows: Consider π, σ ∈ A with π ∈ A(s,α), σ ∈ A(s′,α′).
Then by 1.4.7 b), there is s′′ ∈ S with Ds′′ = Ds ∩ Ds′ , and α(s′′) ≤ α′′ ∶= max{α,α′}.
Let [π] ○ [σ] ∶= [ν], where ν is the map in A(s′′,α′′) satisfying ν(p) = π(σ(p)) for all p ∈Ds′′ .

We call A the group of partial P-automorphisms derived from A.

Proof. We have to make sure that the operation �○� is well-de�ned: Let π, σ as above
with π ∈ A(s,α), σ ∈ A(s′,α′), and s′′ ∈ S with Ds′′ =Ds ∩ Ds′ and α(s′′) ≤ α′′ ∶= max{α,α′}.
Then π ↾ Ds′′ ∈ A(s′′,α′′) and σ ↾ Ds′′ ∈ A(s′′,α′′) by 1.4.7 f). Now, since A(s′′,α′′) is a group,
there exists ν ∈ A(s′′,α′′) with ν(p) = π(σ(p)) for all p ∈ Ds′′ . Setting να′′ ∶= ν ↾ Pα′′ , it is
not di�cult to see that ν = να′′ , and να′′(p) = π(σ(p)) for all p ∈Ds′′ ∩ Pα′′ .
The rest of the proof is as in De�nition / Proposition 1.2.15 for set forcing.

For the rest of this chapter, we �x a formula ϕ(x, y), a class S, an almost-group A for ϕ
and S, and A, the group of partial automorphisms derived from A.

Note that whenever π, σ ∈ A with π ∼ σ, then ∆l(π) = ∆l(σ). Thus, for any π, σ ∈ A, it
follows that π ∼ σ if and only if [π] = [σ].

We will now extend our automorphisms π ∈ A to the name space. Let s ∈ S. Recur-
sively, we say that ẋ ∈ Name(P) is a P-name for Ds if for all (ẏ, p) ∈ ẋ, it follows that

ẏ is a P-name forDs, and p ∈Ds. We denote by Name(P)
Ds

the class of all P-names forDs.

Whenever ẋ is a P-name and π ∶ Ds → Ds, then πẋ can be de�ned as usual in the case

that ẋ ∈ Name(P)
Ds
, and recursively, it follows that ∆(πẋ) = ∆(ẋ) for all ẋ ∈ Name(P)

Ds
.

In the case that ẋ ∉ Name(P)
Ds

however, we have to proceed similarly as in Chapter 1.2.3

to modify ẋ to obtain a name xDs ∈ Name(P)
Ds

with the property that ẋG = (xDs)G for
any G a V -generic �lter on P.

In order to make sure that xDs is a set, we have to modify our de�nition from Chapter
1.2.3, and require that for all (yDs , p) ∈ xDs , it follows that ∆(p) ≤ ∆(ẋ):
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Given s ∈ S, we de�ne recursively for ẋ ∈ Name(P):

xDs ∶= { (yDs , p) ∣ ẏ ∈ dom ẋ , p ∈Ds , ∆(p) ≤ ∆(ẋ) , p ⊩ ẏ ∈ ẋ}.

Then xDs ∈ Name(P)
Ds
, and inductively, it follows that rkPx

Ds = rkPẋ.

Lemma 1.4.9. Let s ∈ S. Whenever G is a V -generic �lter on P and ẋ ∈ Name(P), then
ẋG = (xDs)G.

Proof. Assume recursively that ẏG = (yDs)G holds for all ẏ ∈ Name(P) with rkPẏ < rkPẋ.
The inclusion �ẋG ⊇ (xDs)G � is clear. Regarding �⊆�, consider y ∈ ẋG, and let (ẏ, p) ∈ ẋ
with y = ẏG and p ∈ G. By density of Ds, there exists q ≤ p, q ∈ Ds, with q ∈ G. Let
α ∶= ∆(ẋ). Then ∆(p) ≤ α. Setting q̃ ∶= ρα(q), it follows that q̃ ∈ Ds, as well, since Ds

allows projections. Moreover, ∆(q̃) ≤ α = ∆(ẋ), and since q̃ = ρα(q) ≤ ρα(p) = p, it follows
that q̃ ⊩ ẏ ∈ ẋ. Hence, (yDs , q̃) ∈ xDs ; and q ∈ G with q̃ = ρα(q) ≥ q (by 1.4.2 a)) implies
that q̃ ∈ G, as well. Hence, y = ẏG = (yDs)G ∈ (xDs)G as desired.

Lemma 1.4.10. Whenever s, s′ ∈ S and ẋ ∈ Name(P), then xDs
Ds′

= xDs′ .

Proof. We �rst show that ∆(xDs) = ∆(ẋ) holds true for all ẋ ∈ Name(P) and s ∈ S. Take
ẋ ∈ Name(P), and assume recursively that ∆(yDs) = ∆(ẏ) holds for all ẏ ∈ Name(P) with
rkPẏ < rkPẋ. By de�nition,

∆(xDs) = sup{∆(yDs) ∣ ẏ ∈ dom ẋ} ∪ sup{∆(p) ∣ p ∈ rg (xDs)}.

For any ẏ ∈ dom ẋ, it follows by assumption that ∆(yDs) = ∆(ẏ) ≤ ∆(ẋ). For every
p ∈ rg (xDs), we have ∆(p) ≤ ∆(ẋ) by construction. Hence, ∆(xDs) ≤ ∆(ẋ).

Regarding the proof of �∆(xDs) ≥ ∆(ẋ)�, it su�ces to show that sup{∆(p) ∣ p ∈ rg (xDs)} ≥

sup{∆(p) ∣ p ∈ rg ẋ}. Consider (ẏ, p) ∈ ẋ with ∆(p) =∶ α. Our aim is to �nd (yDs , q̃) ∈ xDs

with ∆(q̃) = α. Take q ≤ p with q ∈ Ds, and let q̃ ∶= ρα(q). Then q̃ ∈ Ds as well, since Ds

allows projections, and ∆(q̃) ≤ α = ∆(p) ≤ ∆(ẋ). Moreover, q̃ = ρα(q) ≤ ρα(p) = p implies
∆(q̃) ≥ ∆(p) = α, and q̃ ⊩ ẏ ∈ ẋ. Hence, (yDs , q̃) ∈ xDs with ∆(q̃) = ∆(p) = α as desired.
We conclude that sup{∆(p) ∣ p ∈ rg (xDs)} ≥ sup{∆(p) ∣ p ∈ rg ẋ}; which �nishes the proof

of ∆(xDs) = ∆(ẋ).

Now, consider ẋ ∈ Name(P), and assume recursively that yDs
Ds′

= yDs′ holds true for all
ẏ ∈ Name(P) with rkPẏ < rkPẋ. Then

xDs
Ds′

= { (yDs
Ds′
, p) ∣ ẏ ∈ dom ẋ , p ∈Ds′ , ∆(p) ≤ ∆(xDs) , p ⊩ yDs ∈ xDs }

= { (yDs′ , p) ∣ ẏ ∈ dom ẋ , p ∈Ds′ , ∆(p) ≤ ∆(ẋ) , p ⊩ ẏ ∈ ẋ}

= xDs′ .
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Moreover, it is not di�cult to verify that whenever π, π′ ∈ A, π ∶ Ds → Ds, π′ ∶ Ds′ → Ds′

and ẋ ∈ Name(P)
Ds
, then

πxDs′ = πẋ
Ds′ .

In order to establish a notion of symmetry, we need the following analogue of Lemma
1.2.16:

Lemma 1.4.11. Let π, π′ ∈ A with π ∶ Ds → Ds, π′ ∶ Ds′ → Ds′ such that π ∼ π′,
i.e. π ↾ (Ds ∩ Ds′) = π′ ↾ (Ds ∩ Ds′). Then for ẋ ∈ Name(P), it follows that πxDs = xDs

if and only if π′xDs′ = xDs′ .

We prove the following analogue of Lemma 1.2.17 by induction over α:

Lemma 1.4.12. Let π, π′ ∈ A with π ∶ Ds → Ds, π′ ∶ Ds′ → Ds′ such that π ∼ π′,
i.e. π ↾ (Ds ∩ Ds′) = π′ ↾ (Ds ∩ Ds′), and γ ∈ Ord. Then for any ẏ, ż ∈ Name(P) with
rkPẏ = rkPż = γ, it follows that πyDs = zDs if and only if π′yDs′ = zDs′ .

Proof. As in the proof of Lemma 1.2.17, we can assume w.l.o.g. that Ds′ ⊆ Ds, since the
map π̃ ∶= π ↾ (Ds ∩ Ds′) = π′ ↾ (Ds ∩ Ds′) is contained in A, as well by 1.4.7 f).

Consider γ ∈ Ord, and assume the statement is true for all γ < γ. Let ẏ, ż ∈ Name(P)
with rkPẏ = rkPż = γ.

�⇒�: If πyDs = zDs , then similarly as in the proof of Lemma 1.2.17, one can show that
zDs′ ⊆ πyDs′ holds. The inclusion �⊇� is similar.

�⇐�: Now, assume π′yDs′ = zDs′ . Following the proof from Lemma 1.2.17, we show that
zDs ⊆ πyDs . (The inclusion �⊇� is similar.) Let α ∶= ∆(ż). Consider (xDs , p) ∈ zDs ,
i.e. ẋ ∈ dom ż, p ∈Ds, ∆(p) ≤ α, and p ⊩ ẋ ∈ ż. We have to show that (xDs , p) ∈ πyDs .
Let p′ ≤ p with p′ ∈ Ds′ , and set p̃ ∶= ρα(p

′). Then p̃ ∈ Ds′ as well (since Ds′

allows projections), ∆(p̃) ≤ α = ∆(ż), and from p̃ = ρα(p
′) ≤ ρα(p) = p, it follows

that p̃ ⊩ ẋ ∈ ż. Hence, (xDs′ , p̃) ∈ zDs′ = π′yDs′ ; so there must be u̇ ∈ dom ẏ
with xDs′ = π′uDs′ . By inductive assumption, it follows that xDs = πuDs , since
rkPu̇ = rkPẋ < γ. Let q ∶= π−1p. We have to show that (πuDs , πq) ∈ πyDs . We know
that u̇ ∈ dom ẏ and q ∈Ds, so it remains to show that ∆(q) ≤ ∆(ẏ) and q ⊩ u̇ ∈ ẏ.

Regarding �∆(q) ≤ ∆(ẏ)�, let q̃ ∶= (π′)−1(p̃). Then (π′uDs′ , π′(q̃)) = (xDs′ , p̃) ∈ π′yDs′

gives ∆(q̃) ≤ ∆(ẏ); hence, ∆(p̃) ≤ ∆(ẏ), and from p̃ ≤ p, we obtain ∆(p) ≤ ∆(ẏ).
Hence, from q = π−1p, it follows that ∆(q) = ∆(p) ≤ ∆(ẏ) as desired.

Regarding the proof of �q ⊩ u̇ ∈ ẏ �, it su�ces to show that r ⊩ u̇ ∈ ẏ for all r ≤ q with
r ∈ Ds′ . Consider r ≤ q with r ∈ Ds′ , and let r̃ ∶= ρα(r), where α ∶= ∆(ż) as above.
Since ∆(q) = ∆(p) ≤ α, it follows that r̃ = ρα(r) ≤ ρα(q) = q; and r̃ ∈ Ds′ , since Ds′

allows projections. Then πr̃ is contained in Ds′ , as well. Moreover, from p ⊩ ẋ ∈ ż
and r̃ ≤ q = π−1p, it follows that πr̃ ⊩ ẋ ∈ ż. Finally, ∆(πr̃) = ∆(r̃) ≤ α = ∆(ż), and
ẋ ∈ dom ż; so we obtain (xDs′ , πr̃) ∈ zDs′ . Thus, (π′uDs′ , πr̃) ∈ π′yDs′ ; which implies
r̃ ⊩ u̇ ∈ ẏ. Since r ≤ r̃ = ρα(r), it follows that r ⊩ u̇ ∈ ẏ as desired; which �nishes the
proof.
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Now, we introduce our notion of symmetricity in the context of class forcing with partial
automorphisms. We try to get around employing the notion of a �lter (which would be a
collection of proper classes), but instead notice that in most applications, there are only
�nitely many types of A-subgroups to be considered, each of which is given by a formula
ψi(v,w): For i < l (where l is a �nite number), we have Ai(y) = { [π] ∈ A ∣ ψi(π, y) } for
some parameter y. We usually want only parameters with certain properties; so for any
i < l, there will be another formula χi(w) such that only subgroups Ai(y) are considered
where χi(y) holds. (In applications, the formula χi(y) could state, for example, that y is
a �nite set of ordinals with certain properties.)

In order to have the groups Ai(y) well-de�ned, one has to require that for all y with χi(y)
and π, π′ ∈ A with π ∼ π′, it follows that ψi(π, y) if and only if ψi(π′, y).

Finally, we have to ask for a normality property, corresponding to the requirement that
in the case of set forcing, one has to use a normal �lter.

This results in the following de�nition (recall that we have �xed an almost-group A of
partial automorphisms for P):

De�nition 1.4.13. A �nitely generated symmetric system S for A consists of a �nite num-
ber l < ω, l-many formulas ψ0(x, y), . . . , ψl−1(x, y), and l-many formulas χ0(y), . . . , χl−1(y)
such that the following properties hold:

a) Let i < l. Whenever y with χi(y), and π, π′ ∈ A with π ∼ π′, then ψi(π, y) if and only
if ψi(π′, y). In other words: The formulas ψi(π, y) respect �∼�.

b) For all i < l and y with χi(y), it follows that

Ai(y) ∶= { [π] ∈ A ∣ ψi(π, y) }

is a subgroup of A.

c) The following normality property holds: Let [π] ∈ A, i < l, and y with χi(y). Then
there is n < ω and �nitely many i0, . . . , in−1 < l; moreover, �nitely many parameters
y0, . . . , yn−1 such that χij(yj) holds for all j < n, and

[π]Ai(y)[π]
−1 ⊇ Ai0(y0) ∩ ⋯ ∩ Ail−1(yl−1).

The following de�nition corresponds to saying that a subgroup B ⊆ A is contained in the
�lter generated by the Ai(y):

De�nition 1.4.14. Let S be a �nitely generated symmetric system for A. A subgroup
B ⊆ A gives rise to symmetry with respect to S if there is n < ω and �nitely many
i0, . . . , in−1 < l; moreover, �nitely many parameters y0, . . . , yn−1 such that χij(yj) holds for
all j < n, and

B ⊇ Ai0(y0) ∩ ⋯ ∩ Ain−1(yn−1).

Remark 1.4.15. Since there are only �nitely many formulas ψ0(v,w), . . . , ψl−1(v,w) and
χ0(w), . . . , χl−1(w) involved, De�nition 1.4.13 and De�nition 1.4.14 could be rephrased to
a formula of set theory.
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Remark 1.4.16. One could also allow intersections of cardinality < κ for κ a regular
cardinal. Then De�nition 1.4.13 c) and 1.4.14 above have to be modi�ed as follows:

� Regarding normality, one has to require that for any [π] ∈ A, i < l and y with χi(y),
there are κ0, . . . , κl−1 < κ, and for any ι < l a sequence (yιj ∣ j < κι) with χι(yιj) for all
j < κι such that

[π]Ai(y)[π]
−1 ⊇⋂

ι<l
⋂
j<κι

Aι(y
ι
j).

� A subgroup B ⊆ A gives rise to symmetry with respect to S if there are κ0, . . . , κl−1 < κ;
and for any ι < l a sequence (yιj ∣ j < κι) with ψι(yιj) for all j < κι such that

B ⊇⋂
ι<l
⋂
j<κι

Aι(y
ι
j).

For our purposes in the context of Chapter 3, we will only need symmetric systems that
are generated by �nite intersections.

Fix a �nitely generated symmetric system S for A. Now, we can use S to establish our
notion of symmetry:

De�nition 1.4.17. A P-name ẋ is symmetric for S if the stabilizer group

symA(ẋ) ∶= { [π] ∈ A, π ∶Ds →Ds ∣ πxDs = xDs }

gives rise to symmetry with respect to S. Recursively, a name ẋ is hereditarily symmetric,
ẋ ∈HSS , if ẋ is symmetric, and ẏ is hereditarily symmetric for all ẏ ∈ dom ẋ.

By Lemma 1.4.11, this is well-de�ned, since for any π, π′ ∈ A, π ∶ Ds → Ds, π′ ∶ Ds′ → Ds′

with π ∼ π′ and ẋ ∈ Name(P), it follows that πxDs = xDs if and only if π′xDs′ = xDs′ .

When A and S are clear from the context, we write just sym(ẋ) and HS.

Like in the case for set forcing, one can show that whenever ẋ ∈ HSS and π ∈ A,
π ∶ Ds → Ds, then �rstly, also xDs ∈ HSS holds; and secondly, πxDs ∈ HSS . For the
second claim, one has to use the normality property from De�nition 1.4.13 c).

Moreover, for any element a of the ground model, it is not di�cult to see that the canon-
ical name ǎ ∶= {(b̌,1) ∣ b ∈ a} is hereditarily symmetric.

We are now ready to de�ne the symmetric extension:

De�nition 1.4.18. Let G be a V -generic �lter on P. The symmetric extension by S and
G is

V (G)S ∶= {ẋG ∣ ẋ ∈HSS}.

When the symmetric system is clear from the context, we write just V (G).

For ϕ a formula of set theory, p ∈ P, and ẋ0, . . . , ẋn−1 ∈HS, the symmetric forcing relation
p (⊩s)VP ,S ϕ(ẋ0, . . . , ẋn−1) can be de�ned as for set forcing (cf. De�nition 1.2.7).
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We will work with the structure ⟨V (G)S , ∈, V ⟩, where we have a unary predicate symbol
for the ground model.

Similarly as in Chapter 1.3.1, we extend our language of set theory L∈ by a unary predi-
cat symbol A, where A(x) will assert that x ∈ V , and denote this extended language by LA∈ .

De�nition 1.4.19. For p ∈ P, we de�ne:

� p (⊩s)VP ,S A(ẋ) i� ∀q ≤ p ∃r ≤ q ∃a (r ⊩VP ẋ = ǎ)

� V [G] ⊧ A(x) i� x ∈ V

Again, we will abuse notation and do not mention the predicate A in our formulas. In-
stead, we keep in mind that inside the structure V (G)S , formulas can talk about the
ground model V ; and write ϕ(x0, . . . , xn−1, V ) where necessary. Moreover, behind the
forcing symbol (⊩s)VP ,S , we write �p (⊩s)VP ,S ẋ ∈ V̌ � instead of �p (⊩s)VP ,S A(ẋ)�; and

p (⊩s)VP ,S ϕ(ẋ0, . . . , ẋn−1, V̌ ) for a formula ϕ ∈ LA∈ when we need to mention the predicate

V̌ .

Informally, the symmetric forcing relation for class forcing can be de�ned as usual:

De�nition 1.4.20. For a formula ϕ(v0, . . . , vn−1) ∈ LA∈ , a condition p ∈ P, and ẋ0, . . . , ẋn−1 ∈
HS, we write

p (⊩s)
V
P ,S ϕ(ẋ0, . . . , ẋn−1)

if for any G a V -generic �lter on P with p ∈ G, it follows that ϕ(ẋG0 , . . . , ẋ
G
n−1) holds in the

structure ⟨V (G)S , ∈, V ⟩.

Then (⊩s)VP ,S satis�es the same basic properties as the ordinary symmetric forcing rela-
tion (see Proposition 1.2.8); and the Symmetry Lemma holds true, as well.

Whenever ẋ, ẏ ∈ HS and p ∈ P, then p (⊩s)VP ,S ẏ ∈ ẋ if and only if p ⊩VP ẏ ∈ ẋ; moreover,

p (⊩s)VP ,S ẋ = ẏ if and only if p ⊩VP ẋ = ẏ; and p (⊩s)
V
P ,S ẋ ∈ V̌ if and only if p ⊩VP ẋ ∈ V̌ .

Hence, the de�nability lemma for (⊩s)VP ,S holds for the atomic formulas �v0 ∈ v1� ,�v0 = v1�

and �v0 ∈ V̌ �. As in [Kra17, 2.1.5], this implies that the Forcing Theorem holds for the
symmetric forcing relation (⊩s)VP ,S .

In most cases, when the ground model V , the forcing notion P, and the symmetric system
S are clear from the context, we write just �⊩s�.

Since p ⊩s ẏ ∈ ẋ if and only if p ⊩ ẏ ∈ ẋ for all ẋ, ẏ ∈HS and p ∈ P, it follows that for any
ẋ ∈HS and a parameter s ∈ S, we have

xDs = {(yDs , p) ∣ ẏ ∈ dom ẋ , p ∈Ds , ∆(p) ≤ ∆(ẋ) , p ⊩s ẏ ∈ ẋ}.

In general, symmetric extensions by class forcing do not preserve ZF. However, the
following proposition remains true:
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Proposition 1.4.21. Let P be a notion of forcing, A a group of partial P-automorphisms
for ϕ and S, and A the group of partial automorphisms derived from A. Let S be a
�nitely generated symmetric system for A. Then V (G) = V (G)S is transitive with V ⊆
V (G) ⊆ V [G], and V (G) satis�es all single axioms of ZF− (that is, all axioms of ZF−

except Separation and Replacement), with Union replaced by Weak Union (cf. Chapter
0.4).

Proof. The axioms of Extensionality, Foundation and In�nity are clear.

Regarding Pairing, consider x, y ∈ V (G), x = ẋG, y = ẏG with ẋ, ẏ ∈HS. We have to �nd
a name ż ∈HS with żG = {x, y}.

Let ż ∶= {(ẋ,1) , (ẏ,1)} and consider π ∈ A, π ∶Ds →Ds with πx
Ds = xDs and πyDs = yDs .

Then

zDs = {(xDs , p) ∣ p ∈Ds , ∆(p) ≤ ∆(ẋ)} ∪ {(yDs , p) ∣ p ∈Ds , ∆(p) ≤ ∆(ẏ)},

and

πzDs = {(πxDs , πp) ∣ p ∈Ds , ∆(p) ≤ ∆(ẋ)} ∪ {(πyDs , πp) ∣ p ∈Ds , ∆(p) ≤ ∆(ẏ)}.

Since p ∈ Ds ⇔ πp ∈ Ds for all p ∈ P, and ∆(p) = ∆(πp) for all p ∈ Ds, it follows that
πzDs = zDs . Hence, symA(ż) ⊇ symA(ẋ) ∩ symA(ẏ), so symA(ż) gives rise to symmetry
with respect to S. Since dom ż = {ẋ, ẏ} ⊆HS, it follows that ż ∈HS as desired.

For Weak Union, consider x ∈ V (G), x = ẋG with ẋ ∈HS. We have to �nd u ∈ V (G) with
u ⊇ ⋃x. Let

u̇ ∶= {(ż,1) ∣ ∃ ẏ ∈ dom ẋ ż ∈ dom ẏ}.

Then u̇G ⊇ ⋃x. It remains to make sure that u̇ ∈HS.

Consider π ∈ A, π ∶Ds →Ds with πx
Ds = xDs . Then

uDs = {(zDs , p) ∣ p ∈Ds , ∆(p) ≤ ∆(ż) , ∃ ẏ ∈ dom ẋ ż ∈ dom ẏ}

= {(z, p) ∣ p ∈Ds , ∆(p) ≤ ∆(z) , ∃ y ∈ domxDs z ∈ dom y},

since by the proof of Lemma 1.4.10 it follows that ∆(ż) = ∆(zDs) for all zDs ∈ domuDs .

We obtain

πuDs = {(πz, πp) ∣ p ∈Ds , ∆(p) ≤ ∆(z) , ∃ y ∈ domxDs z ∈ dom y}

= {(πz, πp) ∣ πp ∈Ds , ∆(πp) ≤ ∆(z) , ∃ y ∈ domπxDs πz ∈ dom y},

which is equal to uDs , since we assumed πxDs = xDs .

Hence, symA(u̇) ⊇ symA(ẋ), and dom u̇ ⊆HS; which gives u̇ ∈HS as desired.

The axioms of Separation and Replacement hold true if P = ⋃α∈OrdPα and A satisfy cer-
tain homogeneity properties as in Proposition 3.3.2 and 3.3.3. The axiom of Power Set
does not holds true in general.

However, even if the generic extension V [G] by some class forcing P does not satisfy ZFC,
there can still be an intermediate symmetric extension V (G) = V (G)S with V (G) ⊧ ZF
(see Chapter 3).

67



Chapter 2

An Easton-like Theorem for Set-many

Cardinals in ZF + DC

In this chapter, we show that in the theory ZF + DC + AX4, the θ-function can take al-
most arbitrary values on any set of cardinals. This answers a question of Saharon Shelah
from [She16, �0.2 1)]: �Can we bound hrtg (℘(µ)) [= θ(µ)] for µ singular? � No, we can not.

On the one hand, this generalization of Easton's Theorem to regular and singular cardi-
nals in a theory with weak choice is in sharp contrast to the AC-situation, where Silver's
Theorem and pcf theory put prominent bounds on the Continuum Function. On the other
hand, the theory ZF + DC + AX4 is surprisingly rich and allows for much of combinatorics.
For instance, a version of the pcf theorem holds (see [She16, �1]) and certain covering
numbers exist (see [She16, �2 (D)]).

We continue with a few words about ZF + DC + AX4. Starting o� from ZF + DC, most of
real analysis is possible. Investigations in combinatorial set theory under ZF + DC seemed
rather hopeless in the �rst place, until Saharon Shelah proved various interesting results
under ZF + DC in [She97], thus initiating further projects under weak choice.

In [She10], he suggested to adopt the following additional axiom:

(AX4) For every cardinal λ, the set [λ]ℵ0 can be well-ordered.

Given a ground model V ⊧ ZFC, any symmetric extension by countably closed forcing
yields a model of ZF + DC + AX4 (cf. [She10, p.3 + p. 15] and [Kar14, Lemma 1]).
In [She16, 0.1], Shelah concludes that ZF + DC + AX4 is a �reasonable theory, for which
much of combinatorial set theory can be generalized �.

We stress that we aim to work without any large cardinal assumptions. By [AK10], rais-
ing the surjective size of [κ]cf κ requires a measurable cardinal. This again underlines how
di�erently [κ]cf κ and ℘(κ) behave in the absence of the Axiom of Choice; so our setting
does not allow for investigating [κ]cf κ.

The starting point of this thesis was the paper �Violating the Singular Cardinals Hypoth-
esis Without Large Cardinals� by Motik Gitik and Peter Koepke ([GK12]). Starting o�
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from a ground model V ⊧ ZFC + GCH, they construct a cardinal-preserving symmetric
extension N ⊇ V with N ⊧ ZF such that in N , the GCH holds below ℵω, but there is a
surjective function s ∶ ℘(ℵω)→ λ for some arbitrarily high �xed cardinal λ in V .

Note that under AC, this theory has rather high consistency strength for λ ≥ ℵω+2, and
is inconsistent for λ ≥ ℵω4 by pcf theory ([She94]). Hence, without the Axiom of Choice,
the (surjectively modi�ed) Continuum Function θ(κ) apparently has a lot more freedom.
This result gives rise to the thesis that in the theory ZF, the θ-function can take almost
arbitrary values on all cardinals.

In Chapter 2.1, we present the construction from [GK12]. Many questions arise: Is it
possible to generalize the theorem to cardinals of uncountable co�nality? Is it also possi-
ble to set the θ-values of several cardinals independently? The forcing notion introduced
in [GK12] relies on certain �niteness properties, so DC does not hold in the symmetric
extension. Is it possible to modify the general construction and obtain a forcing notion
that is countably closed? On page 75 - 77 we discuss what generalizations would be in-
teresting, and sketch basic ideas.

In Chapter 2.2 we state our theorem: Given a ground model V ⊧ ZFC + GCH with γ ∈ Ord
and �reasonable� sequences (κη ∣ η < γ), (αη ∣ η < γ) of uncountable cardinals, there is
a cardinal-preserving extension N ⊇ V with N ⊧ ZF + DC + AX4 such that θN(κη) = αη
holds for all η < γ. Here, �reasonable� means that the following properties hold:

� ∀ η < η′ αη ≤ α′η
� ∀ η αη ≥ κ++η
� ∀ η cf αη > ω
� ∀ η (αη = α+ → cf α > ω).

It is not di�cult to see that we cannot remove any of the �rst three properties. The
fourth property

∀ η (αη = α
+ → cf α > ω)

is necessary in ZF + DC + AX4, as well (cf. Chapter 2.2). The more general question
whether there could be a model N ⊧ ZF + DC with cardinals κ, α such that θN(κ) = α+

and cf α = ω, is adressed in Chapter 2.7, where we show that this is not possible under
N ⊧ ¬0♯.

In Chapter 2.3, we introduce our countably closed forcing notion P, the basic ingredients
of which are based on the forcing notion introduced in [GK12]. We treat limit cardinals
and successor cardinals separately, in order to obtain better gaps between the limit cardi-
nals for subsequent factoring arguments: Our forcing notion will be a product P = P0 × P1,
where P0 is in charge of setting the θ-values of the limit cardinals κη, and P1 is in charge
of setting the θ-values of the successor cardinals κη = κη

+.

Roughly speaking, P0 adds αη-many κη-subsets (Gη
i ∣ i < αη) to the ground model, which

are linked in a certain fashion in order not to accidentally raise the θ-values of the car-
dinals below. The forcing notion P1 is a countable support product of Cohen-like forcing
notions P η.
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We establish our notion of symmetry in Chapter 2.4. Applying the technique introduced
in Chapter 1.2.3, we de�ne a collection D of dense subsets of P, and an almost-group A
of partial P-automorphisms for D (cf. De�nition 1.2.14) in Chapter 2.4.1. We will make
sure that the forcing P0 is homogeneous with respect to A, i.e. for any dense set D ∈ D and
conditions p, p′ ∈ P0, there exist p ≤ p, p

′ ≤ p′ with p, p′ ∈ D (such that p and p′ have the
same �shape�) and an automorphism π ∈ A, π ∶D →D with πp = p′. Secondly, we will need
that for any pair of generic κη-subsets G

η
i and G

η
j with i, j < αη, there is an automorphism

π ∈ A interchanging them. We turn A into a group A by considering equivalence classes
[π] for π ∈ A, where π ∼ σ if and only if π and σ agree on the intersection of their domains.

In Chapter 2.4.2, we introduce our A-subgroups that will generate a normal �lter F on
A. Firstly, we will have subgroups Fix(η, i) for η < γ, i < αη in order to make sure that
any generic κη-subset G

η
i is contained in the eventual symmetric extension N . Secondly,

for λ < γ, k < αλ, we include subgroups Hλ
k such that for any automorphism π ∈Hλ

k , there
is an interval [α,κλ), with the property that π does not a�ect the generics Gλ

i for i ≤ k
�too much� on this interval [α,κλ). This will eventually give rise to a surjective function
f ∶ ℘(κλ)→ k in N .

Countable intersections of these subgroups Fix(η, i) and Hλ
k generate a normal �lter F

on A (Lemma 2.4.4).

In Chapter 2.5, we take a V -generic �lter G on P, and de�ne N ∶= V (G)F as the symmet-
ric extension by G and F . Then N ⊧ ZF, and N ⊧ DC + AX4, since the forcing notion P
is countably closed and our normal �lter F is countably complete (see [Kar14, Lemma 1]
and [She10, p.3 + p. 15]).

Moreover, an Approximation Lemma holds (Lemma 2.5.2): Any set of ordinals located in
N can be captured in a �mild� V -generic extension that preserves cardinals and the GCH.
Hence, cardinals are V -N -absolute.

It remains to prove that indeed, θN(κη) = αη for all η < γ, which is the task of Chapter
2.6. The direction �θN(κη) ≥ αη� follows by construction of the groups Hλ

k (see Chapter
2.6.1). Regarding �θN(κη) ≤ αη� (see Chapter 2.6.2 + 2.6.3), we proceed as follows:

We assume towards a contradiction that there was a surjective function f ∶ ℘(κη) → αη
in N for some η < γ. We �x β < αη �large enough�, and de�ne a restriction fβ that is
obtained from f as follows: In the domain of fβ, we allow only κη-subsets contained in
those intermediate generic extensions from the Approximation Lemma that add for any
σ < γ only those κσ-subsets Gσ

i that have indices i ≤ β. We ask ourselves whether fβ is
still surjective onto αη.

First, we assume towards a contradiction that fβ ∶ dom fβ → αη is a surjection. We prove
that fβ is contained in a model V [Gβ ↾ (η + 1)], which is a V -generic extension by a
forcing notion Pβ ↾ (η+1), obtained from P by essentially �cutting o�� at height η+1 and
width β. On the one hand, we prove that Pβ ↾ (η + 1) preserves all cardinals ≥ αη; but on

the other hand, we will see that V [Gβ ↾ (η + 1)] contains a set ℘̃(κη) ⊇ dom fβ with an

injection ι ∶ ℘̃(κη) ↪ β. Contradiction. Hence, it follows that fβ ∶ dom fβ → αη must not
be surjective.
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However, considering α ∈ rg f ∖ rg fβ, an isomorphism argument yields a contradiction,
again.

We conclude that our assumption of a surjective map f ∶ ℘(κη)→ αη in N must be wrong,
and θN(κη) ≤ αη follows.

In Chapter 2.6.4 and 2.6.5, we prove that in the symmetric extension N , the θ-values
θN(λ) of cardinals λ ∈ (κη, κη+1) or λ ≥ sup{κη ∣ η < γ} are the smallest possible. This
allows us to assume w.l.og. for our construction that the sequence (αη ∣ η < γ) is strictly
increasing.

We conclude with several remarks in Chapter 2.7.

The contents of Chapter 2 have appeared in [FK18].

2.1 The Basic Construction

This chapter is concerned with with the paper �Violating the Singular Cardinals Hypothe-
sis Without Large Cardinals� by Moti Gitik and Peter Koepke ([GK12]), where they prove
the following theorem:

Theorem 2.1.1 ([GK12, Theorem 1]). Let V be a ground model of ZFC and GCH, and
λ a cardinal in V . Then there exists a cardinal-preserving extension N ⊇ V with N ⊧ ZF
such that N ⊧ �GCH holds below ℵω�, and θN(ℵω) ≥ λ+.

This theory for λ ≥ ℵω+2 would have large consistency strength under AC (see [Git91]), and
in the case that λ ≥ ℵω4 , even contradict Shelah's pcf theory. In other words: Theorem
2.1.1 provides a strong surjective violation of pcf theory in the absence of the Axiom of
Choice.

In this chapter, we �rst present their construction, and then look at possible generaliza-
tions. We describe the main issues that we will be dealing with in this thesis and suggest
upcoming di�culties.

The procedure in [GK12] can roughly be described as follows: The ground model V is
extended by a forcing notion P which contains �rstly, a �square forcing� P∗ adding ℵn+1-
many Cohen subsets of ℵn+1 for every n < ω, and secondly, a component adding λ-many
subsets of ℵω that are linked with the �square forcing� P∗. The eventual model N is a
choiceless submodel of the generic extension, generated by certain equivalence classes of
these λ-many adjoined ℵω-subsets.

Let V be a ground model of ZFC + GCH, and λ a cardinal in V . We will now give a
de�nition of P. The �rst basic ingredient is the following forcing notion P ′, adding one
Cohen subset to each interval [ℵn,ℵn+1):

De�nition 2.1.2 ([GK12]). The forcing (P ′,⊇,∅) consists of all functions p ∶ domp → 2
for which there is a sequence (δn ∣ n < ω) with δn ∈ [ℵn,ℵn+1) for all n < ω, such that

domp = ⋃
n<ω

[ℵn, δn).
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A product analysis shows:

Lemma 2.1.3 ([GK12, Lemma 1]). The forcing P ′ preserves cardinals and the GCH.

The forcing notion P∗ is a two-dimensional version of P ′, adjoining ℵn+1-many Cohen
subsets to every interval [ℵn,ℵn+1):

De�nition 2.1.4 ([GK12]). Denote by (P∗,⊇,∅) the forcing notion consisting of all func-
tions p∗ ∶ domp∗ → 2 such that domp∗ is of the following form: There is a sequence
(δn ∣ n < ω) with δn ∈ [ℵn,ℵn+1) for all n < ω, such that

domp = ⋃
n<ω

[ℵn, δn)
2.

For p∗ ∈ P∗ and ξ < ℵω, let p∗(ξ) ∶= { (ζ, p∗(ξ, ζ)) ∣ (ξ, ζ) ∈ domp∗ } denote the ξ-th section
of p∗.

As in Lemma 2.1.3, it follows that also P∗ preserves all cardinals and the GCH.

We are now ready to de�ne the eventual forcing notion P. Every condition p ∈ P is of the
form p = (p∗, (pi, ai)i<λ) where p∗ ∈ P∗ and pi ∈ P ′ for all i < λ. The linking ordinals ai
determine how the i-th generic ℵω-subset Gi will be eventually linked with the P∗-generic
�lter G∗.

De�nition 2.1.5 ([GK12, De�nition 1]). Let P be the collection of all p = (p∗, (pi, ai)i<λ)
with the following properties:

� The support of p, suppp, is a �nite subset of λ, and pi = ai = ∅ whenever i ∉ suppp.

� There is a sequence (δn ∣ n < ω) with δn ∈ [ℵn,ℵn+1) for all n < ω, such that
p∗ ∶ ⋃n<ω[ℵn, δn)2 → 2 and pi ∶ ⋃n<ω[ℵn, δn)→ 2 for all i ∈ suppp.

Let domp ∶= ⋃n<ω[ℵn, δn).

� Whenever i ∈ suppp, then ai is a �nite subset of ℵω with ∣ai ∩ [ℵn,ℵn+1)∣ ≤ 1 for all
n < ω.

If i0 ≠ i1, then ai0 ∩ ai1 = ∅. (We call this the independence property).

Concerning the partial ordering �≤ �, any linking ordinal {ξ} = ai ∩ [ℵn,ℵn+1) settles that
whenever q ≤ p, then the extension qi ⊇ pi within in the interval [ℵn,ℵn+1) is determined
by q∗(ξ):

For p = (p∗, (pi, ai)i<λ), q = (q∗, (qi, bi)i<λ) ∈ P, we let q ≤ p if the following holds: q∗ ⊇ p∗;
qi ⊇ pi , bi ⊇ ai for all i ∈ suppp; and whenever ζ ∈ (dom qi ∖ dompi) ∩ [ℵn,ℵn+1) with
ai ∩ [ℵn,ℵn+1) = {ξ}, then ξ ∈ dom q with qi(ζ) = q∗(ξ, ζ) (we call this the linking prop-
erty).

The maximal element of P is 1 ∶= (∅, (∅,∅)i<λ).

Let G be a V -generic �lter on P. It induces

G∗ ∶= {q∗ ∈ P∗ ∣ ∃p = (p∗, (pi, ai)i<λ) ∈ G q∗ ⊆ p∗},
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and for i < λ:
Gi ∶= {qi ∈ P

′ ∣ ∃p = (p∗, (pi, ai)i<λ) ∈ G qi ⊆ pi}.

As usual, these �lters G∗, Gi are identi�ed with their union ⋃G∗, ⋃Gi.

Let now ξ ∈ [ℵn,ℵn+1). We denote by

G∗(ξ) ∶= { q ∶ [ℵn, δn)→ 2 ∣ δn ∈ [ℵn,ℵn+1) , ∃p = (p∗, (pi, ai)i<λ) ∈ G ∶

∀ ζ ∈ dom q q(ζ) = p∗(ξ, ζ) }

the ξ-th section of G∗. Identifying G∗(ξ) with ⋃G∗(ξ), it follows that G∗(ξ) ∶ [ℵn,ℵn+1)→
2.

For i < λ, let gi ∶= ⋃{ai ∣ p = (p∗, (pi, ai)i<λ) ∈ G}. Then gi ⊆ ℵω hits every interval [ℵn,ℵn+1)
in exactly one point, and by the independence property it follows that gi0 ∩ gi1 = ∅ when-
ever i0 ≠ i1.

The linking property implies that any Gi ↾ [ℵn,ℵn+1) is equal to some G∗(ξ) on a �nal
segment, with {ξ} = gi ∩ [ℵn,ℵn+1). Hence, by the independence property it follows that
distinct Gi0 and Gi1 correspond to parallel disjoint �paths through the forcing P∗� ([GK12,
p.6]).

Before de�ning the symmetric submodel model N , we need the following notions:

De�nition 2.1.6 ([GK12, Chapter 2]). For a set D and functions F ∶D → 2, F ′ ∶D → 2,
the pointwise exclusive or F ⊕ F ′ ∶ D → 2 is de�ned as follows: (F ⊕ F ′)(x) = 0 if
F (x) = F ′(x) and (F ⊕ F ′)(x) = 1 if F (x) ≠ F ′(x).

For functions F ∶ ℵω ∖ ℵ0 → 2, F ′ ∶ ℵω ∖ ℵ0 → 2, we set F ∼ F ′ if there exists n < ω with

� (F ⊕ F ′) ↾ ℵn+1 ∈ V [G∗],
� (F ⊕ F ′) ↾ [ℵn+1,ℵω) ∈ V .

Then �∼� is an equivalence relation on 2ℵω∖ℵ0 .

For a function F ∶ ℵω ∖ ℵ0 → 2, we denote by

F̃ ∶= {F ′ ∶ ℵω ∖ ℵ0 → 2 ∣ F ′ ∼ F}

its equivalence class by �∼ �.

The eventual model N will be of the form N = HODV [G](V ∪ A), where A is a transitive
set. We refer to [Jec06, p. 194 � 196] for a detailed introduction to OD and HOD, and
merely use that X ∈ N if and only if for every Y ∈ TC({X}) there is a formula ϕ and
parameters v ∈ V , a0, . . . , an−1 ∈ A, such that

Y = { y ∈ V [G] ∣ V [G] ⊧ ϕ(y, v,A, a0, . . . , an−1) }.
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De�nition 2.1.7. We de�ne in V [G]:

T∗ ∶= {X ∈ V [G∗] ∣ ∃n < ω X ⊆ ℵn }.

For i < λ, we have the equivalence class

G̃i ∶= {F ∶ ℵω ∖ ℵ0 → 2 ∣ F ∼ Gi},

and set
Ð→
G ∶= (G̃i ∣ i < λ).

Let
N ∶= HODV [G](V ∪ TC({T∗,

Ð→
G}) ).

Then N ⊧ ZF.

For Theorem 2.1.1, it remains to show that cardinals are N -V -absolute, N ⊧ �GCH holds
below ℵω�, and there exists in N a surjective function f ∶ ℘(ℵω)→ λ.

We only sketch the basic ideas here, and refer to [GK12, Chapter 4 + 5] for detailed proofs.

Lemma 2.1.8 ([GK12, Lemma 3]). There exists in N a surjective function f ∶ ℘N(ℵVω )→
λ.

Proof. Let i, j < λ with i ≠ j, and assume towards a contradiction that Gi ∼ Gj. Then
there exists n < ω with v ∶= (Gi ⊕Gj) ↾ [ℵn+1,ℵω) ∈ V , which contradicts the density of
the set

D ∶= {p = (p∗, (pi, ai)i<λ) ∈ P ∣ ∃ ξ ∈ [ℵn+1,ℵω) pi(ξ)⊕ pj(ξ) ≠ v(ξ) }.

Hence, Gi ≁ Gj whenever i ≠ j, and we can de�ne in N a function f ∶ ℘(ℵVω )→ λ as follows:
Let f(X) ∶= i for X ∈ G̃i, if such i exists, and f(X) = 0, else. Note that the de�nition

of f uses only the sequence
Ð→
G , which is contained in N . Moreover, f is well-de�ned by

what we have just shown, and f is surjective, since Gi ∈ N for all i < λ.

The model N can be approximated by fairly �mild� V -generic extensions, which is crucial
for keeping control over the surjective size of ℘(ℵVω ).

Lemma 2.1.9 ([GK12, Lemma 5], Approximation Lemma). Let X ∈ N with X ⊆ Ord.
Then there are n < ω and �nitely many i0, . . . , il−1 < λ with

X ∈ V [G∗ ↾ (ℵ
V
n+1)

2 × Gi0 ↾ [ℵ
V
n+1,ℵ

V
ω ) × ⋯ × Gil−1 ↾ [ℵ

V
n+1,ℵ

V
ω )],

where G∗ ↾ (ℵVn+1)
2 × Gi0 ↾ [ℵVn+1,ℵ

V
ω ) × ⋯ × Gil−1 ↾ [ℵVn+1,ℵ

V
ω ) is a V -generic �lter over

the forcing notion P∗ ↾ (ℵVn+1)
2 × (P ′ ↾ [ℵVn+1,ℵ

V
ω ))

l.
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The proof uses an isomorphism argument relying on homogeneity properties of P.

Now, a product analysis shows that cardinals are absolute between V and V [G∗ ↾
(ℵVn+1)

2 × Gi0 ↾ [ℵVn+1,ℵ
V
ω ) × ⋯ × Gil−1 ↾ [ℵVn+1,ℵ

V
ω )] (cf. [GK12, Lemma 6]); hence,

cardinals are absolute between V and N . In particular, ℵVω = ℵNω .

Altogether, N ⊇ V is a cardinal-preserving extension with N ⊧ ZF and θN(ℵω) ≥ λ+.

Below ℵω, the situation in N is to large extend like the situation in V :

Lemma 2.1.10 ([GK12, Lemma 8]). GCH holds in N below ℵω: For every n < ω, there
exists in N a bijection bn ∶ ℘(ℵn)→ ℵn+1.

Summing up 2.1.1 provides a strong �surjective violation of pcf theory without the use of
large cardinals� ([GK12, p.2]).

The starting point of this thesis was to look at possible generalizations.

A) The �rst obvious question to ask is whether θ(ℵω) = λ+ (not only �≥�) holds in the
constructed model N , in the case that λ ≥ ℵ+ω. Indeed, assuming that there was a
surjective function f ∶ ℘(ℵω) → λ for some λ > λ, one can apply an isomorphism
argument and obtain a contradiction. Hence, θN(ℵω) = λ+.

B) Chapter 6 in [GK12] suggests that their construction can be straightforwardly gen-
eralized to any cardinal κ of countable co�nality. In the case that cf κ > ω, several
modi�cations yield the same result: Let (κj ∣ j < cf κ) denote a normal co�nal
sequence in κ. The intervals [κj, κj+1) for j < cf κ now take the role of the intervals
[ℵn,ℵn+1) for n < ω. Regarding the forcing notions P ′ and P∗, one has to require
that the conditions are bounded below all regular limit cardinals κ. The linking
ordinals ai are bounded below κ (instsead of �nite), and hit every interval [κj, κj+1)
in at most one point. The support of the conditions p remains �nite. Then a similar
proof shows that the constructed ZF-model N ⊇ V is a cardinal-preserving extension
with θN(κ) = λ+, and θN(α) = α++ for all α < κ.

C) In a setting without AC, where the power sets ℘(κ) are not necessarily well-ordered,
it can happen that θ(κ) = µ is a limit cardinal: If θ(κ) = µ, there exist surjections
f ∶ ℘(κ) → α for all α < µ, but there is no surjective function f ∶ ℘(κ) → µ. This
situation can not be realized by the same construction:

If one tries to use equivalence classes G̃i for i < µ as in De�nition 2.1.7, then for any
α < µ, the sequence (G̃i ∣ i < α) would have to be contained in N , while the whole

sequence of equivalence classes
Ð→
G = (G̃i ∣ i < λ) must not be contained in N .

Instead of taking some HOD(A)-inner model of V [G], we will construct our ZF-
model as a symmetric extension N = V (G), using the technique of (partial) au-
tomorphisms and symmetric names as described in Chapter 1.2. By choosing the
normal �lter F carefully, we will make sure that any sequence (G̃i ∣ i < α) for α < µ
has a symmetric name. The whole sequence (G̃i ∣ i < µ) will not have a symmetric
name, and we will prove that indeed, there exists no surjective function f ∶ ℘(κ)→ µ
in N .

75



Chapter 2. An Easton-like Theorem for Set-many Cardinals in ZF + DC

D) The key question is whether it is possible to treat several cardinals κη at the same
time and set their θ-values independently. More precisely: Given �reasonable� se-
quences of cardinals (κη ∣ η < γ), (αη ∣ η < γ) in V , is it possible to construct a
cardinal-preserving symmetric extension N ⊇ V such that θN(κη) = αη holds for all
η < γ?

Dealing with �many� cardinals κη at the same time requires essentially new ideas; in
particular, when the sequence (κη ∣ η < γ) has limit points. For instance, it is not
any more possible to work with initial segments of G∗ (such as G∗ ↾ κ2

η), since they

would interfere with the generic κη-subsets G
η
i for η < η. For this reason, we adjust

the approximation models, and establish that the symmetric extension N can be
approximated by intermediate generic extensions of the form

V [Gη0
i0
× ⋯ × Gηm−1

im−1 ],

where Gη
i denotes the i-the generic κη-subset adjoined by the generic �lter G.

The overall construction can be described as follows (assuming w.l.o.g. that the
sequence (κη ∣ η < γ) is normal, i.e. strictly increasing and closed): For every κη+1

a limit cardinal, we take a normal sequence (κη,j ∣ j < cf κη+1) co�nal in κη+1 with
κη,0 = κη. First, we will de�ne our forcing notion P0, which is a generalization of
the forcing P from De�nition 2.1.5. The basic ingredient P η (for η < γ) is de�ned
as follows: Pη is the collection of all p ∶ dom → 2 for which there is a sequence
(δν,j ∣ ν < η , j < cf κν+1) with δν,j ∈ [κν,j, κν,j+1) for all ν < η, j < cf κν+1 such that

domp = ⋃
ν<η

j<cf κν+1

[κν,j, δν,j),

and for any regular κν,j, the domain domp ∩ κν,j is bounded below κν,j. The forcing
notion P∗ is a �square version� of P γ.

Any condition p ∈ P0 is of the form p = (p∗, (p
η
i , a

η
i )η<γ , i<αη), where p∗ ∈ P∗, p

η
i ∈ P

η

for all η < γ; and the pairwise disjoint linking ordinals aηi ⊆ κη are all bounded below
κη and hit every interval [κν,j, κν,j+1) ⊆ κη in at most one point.

However, we will need better closure properties for certain product analyses. There-
fore, we treat successor cardinals κη = κη

+ in a separate forcing P1 (which will be a
product of Cohen-like forcing notions) and set P ∶= P0 × P1, where P0 is in charge of
the limit cardinals and P1 is in charge of the successor cardinals. Then for any κη+1

a limit cardinal, we choose the normal co�nal sequence (κη,j ∣ j < cf κη+1) in such a
way that κη,j+1 ≥ κ++η,j holds for all j < cf κη+1.

Our model N = V (G) will be a symmetric extension by P, and we will show that N
preserves cardinals and θN(κη) = αη holds for all η < γ.

The only requirements on the sequences (κη ∣ η < γ) and (αη ∣ η < γ) are the obvious
ones: weak monotonicity and αη ≥ κ++η for all η < γ.
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E) Finally, we ask whether it is also possible to work with a countably closed forcing
notion P and a countably complete �lter F generating the symmetric extension.
Then N ⊧ ZF + DC + AX4, providing a model where the Axiom of Choice fails but
still, surprisingly much of set theory can be realized (see [She16, 0.1]).

In order to obtain a countably closed forcing notion, �niteness properties in the forc-
ing construction have to be replaced by the property of being countable. Regarding
the linking ordinals aηi however, requiring that any aηi ⊆ κη is a bounded subset of
κη is not any more possible, since in the case that cf κη = ω this would con�ict with
the requirement of P being countably closed.

Instead, the linking ordinals aηi ⊆ κη will now hit every interval [κν,j, κν,j+1) ⊆ κη
in exactly one point. This adjustment makes a substantial di�erence: For any V -
generic �lter G = G0 × G1 on P and σ < γ, m < ασ with κσ a limit cardinal, the
collection of linking ordinals

gσm ∶=⋃{aσm ∣ p = (p∗, (p
η
i , a

η
i )η<γ , i<αη) ∈ G0 }

is now contained in the ground model V . (Indeed, for any condition p ∈ G0, p =
(p∗, (p

η
i , a

η
i )η<γ , i<αη) with (σ,m) ∈ suppp0, it follows that gσm = aσm.) By countable

support, this implies that also countable sequences (g
σj
mj ∣ j < ω) of linking ordinals

are in the ground model. However, for σ < γ and κσ a limit cardinal, the sequence
(gσi ∣ i < ασ) can not be contained in V nor in the symmetric extension N : By
the independence property, the sequence (gσi ∣ i < ασ) would blow up any interval
[κν,j, κν,j+1) ⊆ κσ to size ασ and thereby collapse cardinals.

The aim of this Chapter 2 is to modify and generalize the forcing notion from [GK12]
according to A) - E) and prove that given a ground model V ⊧ ZFC + GCH with �reason-
able� sequences of cardinals (κη ∣ η < γ) and (αη ∣ η < γ) � see Chapter 2.2 for a precise
de�nition of the term �reasonable� �, one can construct a cardinal-preserving symmetric
extension N ⊇ V with N ⊧ ZF + DC + AX4 such that θN(κη) = αη holds for all η < γ.

In other words: Every possible behavior of the θ-function in ZF+DC+AX4 can be realized.
This version of Easton's Theorem for �nice� ZF-models with little choice, including regular
and singular cardinals, is in sharp contrast to the situation in ZFC.

2.2 The Theorem

We start from a ground model V ⊧ ZFC +GCH and a reasonable behavior of the θ-function:
There are sequences of uncountable cardinals (κη ∣ 0 < η < γ) and (αη ∣ 0 < η < γ) in V
(where γ is an ordinal) for which we aim to construct a symmetric extension N ⊇ V with
N ⊧ ZF + DC + AX4, such that V and N have the same cardinals and co�nalities and
θN(κη) = αη holds for all η.
(Later on, we will set κ0 ∶= ℵ0, α0 ∶= ℵ2 for technical reasons � therefore, we talk about
sequences (κη ∣ 0 < η < γ), (αη ∣ 0 < η < γ) here, excluding κ0 and α0. )
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First, we want to discuss what properties the sequences (κη ∣ 0 < η < γ) and (αη ∣ 0 < η < γ)
must have to allow for such construction.

W.l.o.g. we can assume that (κη ∣ 0 < η < γ) is strictly increasing and closed.

The following conditions must be satis�ed:

� For η < η′, it follows from κη < κη′ that αη ≤ αη′ must hold, i.e. the sequence
(αη ∣ 0 < η < γ) must be increasing.

� For any cardinal κ, it is possible to construct a surjection s ∶ ℘(κ) → κ+ without
making use of the Axiom of Choice. Hence, αη ≥ κ++η must hold for all η.

� Since N ⊧ ACω, it follows that cf αη > ω for all η: Assume towards a contradiction
there were cardinals κ, α with θN(κ) = α, but cfN(α) = ω. Let α = ⋃i<ω αi. By
de�nition of θN(κ), it follows that for every i < ω, there exists in N a surjection
from ℘(κ) onto αi. Now, ACω allows us to pick in N a sequence (si ∣ i < ω) such that
each si ∶ ℘(κ)→ αi is a surjection. This yields a surjective function s ∶ ℘(κ) × ω → α,
de�ned by setting s(X, i) ∶= si(X) for each (X, i) ∈ ℘(κ) × ω; which can be easily
turned into a surjection s ∶ ℘(κ)→ α. Contradiction, since θN(κ) = α.
Hence, it follows that cf αη > ω for all η.

� Finally, for every αη a successor cardinal with αη = α+, we will need that cf α > ω.
In our setting here, it is not possible to drop this requirement: We start from a
ground model V ⊧ ZFC + GCH with sequences (κη ∣ 0 < η < γ), (αη ∣ 0 < η < γ),
and aim to construct N ⊇ V with N ⊧ ZF + DC such that V and N have the same
cardinals and co�nalities and θN(κη) = αη holds for all η. If there was some cardinal
κη with θN(κη) = α+, where cf α = ω, one could construct in N a surjective function
s ∶ ℘(κη)→ α+ as follows:
Take a surjection s ∶ ℘(κη) → α in N . Firstly, the canonical bijection κη ↔ κη × ω
gives a surjection s0 ∶ 2κη → (2κη)ω. Secondly, the surjection s ∶ ℘(κη) → α yields in
N a surjection s1 ∶ (2κη)ω → αω, de�ned by setting s1(Xi ∣ i < ω) ∶= (s(Xi) ∣ i < ω).
Then s1 is surjective, since for any (αi ∣ i < ω) ∈ αω given, one can use ACω to obtain a
sequence (Yi ∣ i < ω) with Yi ∈ s−1[{αi}] for all i < ω. Then s1(Yi ∣ i < ω) = (αi ∣ i < ω).
Thirdly, it follows from cf α = ω that there is a surjection s2 ∶ αω → α+ in V .
Then s2 ∈ N , and since (αω)N ⊇ (αω)V and (α+)N = (α+)V , this gives a surjection
s2 ∶ αω → α+ in N .
Thus, it follows that s2 ○ s1 ○ s0 ∶ 2κη → α+ is a surjective function in N ; contradict-
ing that θN(κη) = α+.

Hence, in our setting where we want to extend a ground model V ⊧ ZFC + GCH
cardinal-preservingly and obtain N ⊧ ZF + DC, it is not possible to have αη = α+

with cf α = ω.

The following question arises: More generally, without referring to a ground model
V , could there be N ⊧ ZF + DC + AX4 with cardinals κ, α, such that cfN(α) = ω
and θN(κ) = α+? The answer is no: Let s ∶ ℘(κ) → α denote a surjective function
in N . Then with DC, it follows as before that there is also a surjective function
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s1 ∶ (2κ)ω → αω in N ; and we also have a surjective function s0 ∶ 2κ → (2κ)ω. It
remains to make sure that there is also a surjection s2 ∶ αω → α+ in N .

We proceed as follows: First, we show that there is no surjective function χ ∶ α →
[α]ω, then we use AX4. For any set M ∈ [α]ω, we denote by (M(i) ∣ i < ω) its
increasing enumeration. We apply a diagonalization argument similar as in König's
Theorem: Let α = ⋃i<ω αi, and assume towards a contradiction that there was a
surjection χ ∶ ⋃i<ω αi → [α]ω. For every i < ω, the set χ[αi] consists of countable
M ⊆ α, and we let Ai ∶= {M(i) ∣ M ∈ χ[αi]}. Then Ai ⊆ α with ∣Ai∣ ≤ αi < α. We
take a strictly increasing sequence (βj ∣ j < ω) such that βj ∈ α ∖Aj for every j < ω,
and let M ∶= {βj ∣ j < ω}. By surjectivity of χ, there must be α < α with χ(α) =M .
Take i < ω with α < αi. Then M ∈ χ[αi]; hence, βi =M(i) ∈ Ai. Contradiction.

Hence, it follows that there can not be a surjective function χ ∶ α → [α]ω in N . Since
[α]ω is well-ordered by AX4, it follows that there must be a surjection s2 ∶ [α]ω → α+.
Together with the canonical surjection αω ↠ [α]ω (mapping any function f ∶ ω → α
to its range rg f = {f(n) ∣ n < ω} if rg f is countable, and to an arbitrary set
X ∈ [α]ω, else) this yields a surjection s2 ∶ αω → α+ as desired.

Thus, s2 ○ s1 ○ s0 ∶ 2κ → α+ is a surjective function in N ; which gives the desired
contradiction.

We conclude that all the requirements on the sequences (κη ∣ 0 < η < γ) and (αη ∣ 0 < η < γ)
listed above are necessary for a model N ⊧ ZF + DC + AX4.

In addition, one could ask if there exists a model N ⊧ ZF + DC (without AX4) with car-
dinals κ, α such that θN(κ) = α+ and cfN(α) = ω. It is not di�cult to see that this is
not possible under ¬0♯ (cf. Chapter 2.7); and we conclude that without large cardinal
assumptions, it is not possible to construct a model N ⊧ ZF + DC with κ, α such that
θN(κ) = α+ and cf α = ω.

Our main theorem states that the properties listed above are the only restrictions on the
θ-function for set-many uncountable cardinals in ZF + DC + AX4:

Theorem. Let V be a ground model of ZFC + GCH with γ ∈ Ord and sequences of un-
countable cardinals (κη ∣ 0 < η < γ) and (αη ∣ 0 < η < γ), such that (κη ∣ 0 < η < γ) is
strictly increasing and closed and the following properties hold:

� ∀0 < η < η′ < γ αη ≤ αη′, i.e. the sequence (αη ∣ 0 < η < γ) is increasing,

� ∀0 < η < γ αη ≥ κ++η ,

� ∀0 < η < γ cf αη > ω,

� ∀0 < η < γ (αη = α+ → cf α > ω).

Then there is a cardinal- and co�nality-preserving extension N ⊇ V with N ⊧ ZF + DC +
AX4 such that that θN(κη) = αη holds for all 0 < η < γ.
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In our construction, we will make sure that for any cardinal λ in a �gap� (κη, κη+1),
the value θN(λ) is the smallest possible, i.e. θN(λ) = max{αη, λ++}. Moreover, setting
κγ ∶= ⋃{κη ∣ 0 < η < γ}, αγ ∶= ⋃{αη ∣ 0 < η < γ}, we will also make sure that θN(λ) takes
the smallest possible value for every λ ≥ κγ: We will have θN(λ) = max{α++γ , λ

++} in the
case that cf αγ = ω; θN(λ) = max{α+γ , λ

++} in the case that αγ = α+ for some cardinal α
with cf α = ω; and θN(λ) = max{αγ, λ++}, else.

This allows us to assume w.l.o.g. that the sequence (αη ∣ 0 < η < γ) is strictly increasing:
If not, one can start with the original sequences (κη ∣ 0 < η < γ) and (αη ∣ 0 < η < γ),
and successively strike out all κη for which the value αη is not larger than the values αη
before. This procedure results in sequences (κ̃η ∣ 0 < η < γ̃) ∶= (κs(η) ∣ 0 < η < γ̃) and
(α̃η ∣ 0 < η < γ̃) ∶= (αs(η) ∣ 0 < η < γ̃) for some γ̃ ≤ γ and a strictly increasing function
s ∶ γ̃ → γ, such that α̃γ̃ ∶= ⋃{α̃η ∣ 0 < η < γ̃} = ⋃{αs(η) ∣ 0 < η < γ̃} = ⋃{αη ∣ 0 < η < γ} = αγ,
and (α̃η ∣ 0 < η < γ̃) = (αs(η) ∣ 0 < η < γ̃) is strictly increasing. If we then use the
sequences (κ̃η ∣ 0 < η < γ̃), (α̃η ∣ 0 < η < γ̃) for our construction and make sure that
not only θN(κ̃η) = α̃η holds for all 0 < η < γ̃, but additionally, θN(λ) takes the small-
est possible value for all cardinals λ within the �gaps� (κ̃η, κ̃η+1), and for all cardinals
λ ≥ κ̃γ̃ ∶= ⋃{κ̃η ∣ 0 < η < γ̃}; then it follows, that for all κη in the original sequence
(κη ∣ 0 < η < γ), the values θN(κη) = αη are as desired.

Hence, from now on, we assume w.l.o.g. that the sequence (αη ∣ 0 < η < γ) is strictly
increasing.

2.3 The Forcing

In this chapter, we de�ne our forcing notion P.

We start from a ground model V ⊧ ZFC + GCH with sequences (κη ∣ 0 < η < γ),
(αη ∣ 0 < η < γ) that have all the properties mentioned in Chapter 2.2.

We will have to treat limit cardinals and successor cardinals separately. Let Lim ∶= {0 <
η < γ ∣ κη is a limit cardinal}, and Succ ∶= {0 < η < γ ∣ κη is a successor cardinal}. For
η ∈ Succ, we denote by κη the cardinal predecessor of κη; i.e. κη = κη

+. Our forcing will
be a product P = P0 × P1, where P0 deals with the limit cardinals κη, and P1 is in charge
of the successor cardinals.

The forcing P0 is a generalized version of the forcing notion in [GK12].
Roughly speaking, for every η ∈ Lim we add αη-many κη-subsets, which will be linked in
a certain fashion, in order to make sure that not too many κ-subsets for cardinals κ < κη
make their way into the eventual model N .

For technical reasons, let κ0 ∶= ℵ0, α0 ∶= ℵ2. For all η with η + 1 ∈ Lim, we take a se-
quence of cardinals (κη,j ∣ j < cf κη+1) co�nal in κη+1, such that κη,0 = κη, the sequence
(κη,j ∣ j < cf κη+1) is strictly increasing and closed, and any κη,j+1 is a successor cardinal
with κη,j+1 ≥ κ++η,j for all j < cf κη+1.
These �gaps� between the cardinals κη,j and κη,j+1 will be necessary for further factoring
arguments.
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For all 0 < η < γ for which η + 1 ∈ Succ, i.e. κη+1 is a successor cardinal, we set κη,0 ∶= κη,
and cf κη+1 ∶= 1 for reasons of homogeneity.

Now, in the case that η ∈ Lim, the forcing P η will be de�ned like an Easton-support
product of Cohen forcings for the intervals [κν,j, κν,j+1) ⊆ κη:

De�nition 2.3.1. For η ∈ Lim, we let the forcing notion (P η,⊇,∅) consist of all functions
p ∶ domp→ 2 such that domp is of the following form:

There is a sequence (δν,j ∣ ν < η , j < cf κν+1) with δν,j ∈ [κν,j, κν,j+1) for all ν < η, j < cf κν+1

with
domp = ⋃

ν<η
j<cf κν+1

[κν,j, δν,j),

and for any regular κν,j, the domain domp ∩ κν,j is bounded below κν,j.

For a set S ⊆ κη, we let P η ↾ S ∶= {p ∈ P η ∣ domp ⊆ S} = {p ↾ S ∣ p ∈ P η}. Then for any
κν,j < κη, the forcing P η is isomorphic to the product P η ↾κν,j × P η ↾ [κν,j, κη), where the
�rst factor has cardinality ≤ κ+ν,j, and the second factor is ≤ κν,j-closed.

This helps to establish:

Lemma 2.3.2. For all η ∈ Lim, the forcing P η preserves cardinals and the GCH.

Proof. Let Gη denote a V -generic �lter on P η. It su�ces to show that for all cardinals α
in V ,

(2α)V [Gη] ≤ (α+)V ,

which implies that cardinals are V -V [Gη]-absolute: If not, there would be a V -cardinal
α with a surjection s ∶ β → α in V [Gη] for some V [Gη]-cardinal β < α. Then there is

also a surjection s ∶ β → (β+)V in V [Gη], which gives a surjection s ∶ β → (2β)
V [Gη]

.
Contradiction.

� In the case that α ≥ κ+η , it follows that (2α)V [Gη] ≤ ∣℘(α ⋅ ∣P η ∣)∣V ≤ (2α)V = (α+)V by
the GCH in V .

� Now, assume α ∈ (κν,j, κν,j+1) for some κν,j < κη. Then the forcing P η can be
factored as P η ↾κν,j × P η ↾ [κν,j, κη), where P η ↾ κν,j has cardinality ≤ κ+ν,j ≤ α, and
P η ↾ [κν,j, κη) is ≤ α-closed. Hence,

(2α)
V [Gη]

≤ (2α)
V [Gη↾κν,j]

≤ ∣℘(α ⋅ ∣P η ↾ κν,j ∣) ∣
V
≤ (2α)

V
= (α+)V .

� If α = κν,j for some regular κν,j < κη, then ∣P η ↾ κν,j ∣ = κν,j and P η ↾ [κν,j, κη) is
≤ κν,j-closed; so the same argument applies.
If α = κη is regular, then (2α)V [Gη] ≤ (α+)V follows from ∣P η ∣ ≤ κη.

It remains to show that (2κν,j)V [Gη] = (κ+ν,j)
V for all singular κν,j < κη, and (2κη)V [Gη] ≤

(κ+η)
V in the case that κη itself is singular.

We only prove the �rst part (the argument for κη is similar).
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� Assume the contrary and let κν,j least with λ ∶= cf κν,j < κν,j and (2κν,j)V [Gη] >
(κ+ν,j)

V . Take (αi ∣ i < λ) co�nal in κν,j. By assumption and by what we have shown

before, it follows that (2α)V [Gη] = (α+)V for all α < κν,j. Hence, CardV ∩ (κν,j + 1) =

CardV [G] ∩ (κν,j + 1), and (2αi)V [Gη] = (α+i )
V for all i < λ. Thus,

2κν,j ≤∏
i<λ

2αi ≤ κλν,j ≤ κ
κν,j
ν,j = 2κν,j

holds true in V and V [Gη]. Let λ ∈ [κµ,m, κµ,m+1) for some κµ,m < κν,j. If λ > κµ,m,
then ∣P η ↾ κµ,m∣ ≤ (κµ,m)+ ≤ λ, and P η ↾ [κµ,m, κη) is ≤ λ-closed. In the case that
λ = κµ,m, it follows by regularity of λ that ∣P η ↾ κµ,m∣ ≤ κµ,m = λ, as well. In either
case,

(2κν,j)
V [Gη]

= (κλν,j)
V [Gη]

≤ (κλν,j)
V [Gη↾κµ,m]

≤ (2κν,j)
V [Gη↾κµ,m]

≤

≤ ∣℘(κν,j ⋅ ∣P
η ↾κµ,m∣) ∣

V
≤ ∣℘(κν,j ⋅ κ

+
µ,m) ∣

V
= (κ+ν,j)

V ,

which gives the desired contradiction.

Corollary 2.3.3. For every η ∈ Lim, the forcing P η preserves co�nalites.

Proof. We show that every regular V -cardinal λ is still regular in V [Gη]. If not, there
would be in V [Gη] a regular cardinal λ < λ with a co�nal function f ∶ λ → λ. Let
λ ∈ [κν,j, κν,j+1). The forcing P η is isomorphic to the product P η ↾ κν,j × P η ↾ [κν,j, κη),
where the second factor is ≤ λ-closed. If λ > κν,j, then the �rst factor has cardinality
≤ κ+ν,j ≤ λ. In the case that λ = κν,j, the �rst factor has cardinality ≤ κν,j = λ by regularity

of λ. Hence, f ∈ V [G ↾ κν,j]. However, since ∣P η ↾ κν,j ∣ < λ, it follows that λ is still a
regular cardinal in the generic extension V [Gη ↾ κν,j]. Contradiction.
Thus, it follows that P η preserves co�nalities as desired.

Our eventual forcing notion P0 will contain ασ-many copies of P σ for every σ ∈ Lim. They
will be labelled P σ

i , where i < ασ. All the P σ
i for σ ∈ Lim, i < ασ, will be linked with a

forcing notion P∗, which is a two-dimensional version of P γ, adding κν,j+1-many Cohen
subsets to every interval [κν,j, κν,j+1):

De�nition 2.3.4. We denote by (P∗,⊇ ∅) the forcing notion consisting of all functions
p∗ ∶ domp∗ → 2 such that domp∗ is of the following form:

There is a sequence (δν,j ∣ ν < γ , j < cf κν+1) with δν,j ∈ [κν,j, κν,j+1) for all ν < γ, j < cf κν+1

with
domp∗ = ⋃

ν<γ
j<cf κν+1

[κν,j, δν,j)
2,

and for any κν,j a regular cardinal, it follows that ∣domp∗ ∩ κ2
ν,j ∣ < κν,j, and in the case

that κγ itself is regular, we require that ∣domp∗∣ < κγ.
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For p∗ ∈ P∗ and ξ < κγ, let p∗(ξ) ∶= { (ζ, p∗(ξ, ζ)) ∣ (ξ, ζ) ∈ domp∗ } denote the ξ-th section
of p∗. If a ⊆ κγ is a set that hits every interval [κν,j, κν,j+1) in at most one point, we let

p∗(a) ∶= { (ζ, p∗(ξ, ζ)) ∣ ξ ∈ a, (ξ, ζ) ∈ domp∗ }.

As in Lemma 2.3.2, it follows that P∗ preserves cardinals and the GCH.

Now, we are ready to de�ne our forcing notion P0. Every p0 ∈ P0 is of the form

p0 = (p∗, (p
σ
i , a

σ
i )σ∈Lim , i<ασ)

with p∗ ∈ P∗ and pσi ∈ P
σ for all (σ, i).

The linking ordinals aσi will determine how the i-th generic κσ-subset Gσ
i , given by the

projection of the generic �lter G onto P σ
i , will be eventually linked with the P∗-generic

�lter G∗.

De�nition 2.3.5. Let P0 be the collection of all p0 = (p∗, (pσi , a
σ
i )σ∈Lim , i<ασ) such that:

� The support of p0, suppp0, is countable with pσi = a
σ
i = ∅ whenever (σ, i) ∉ suppp0.

� We have p∗ ∈ P∗, and pσi ∈ P
σ for all (σ, i) ∈ suppp0.

� The domains of the pσi are coherent in the following sense:
If domp∗ = ⋃ν<γ,j<cf κν+1[κν,j, δν,j)

2, then for every (σ, i) ∈ suppp0, it follows that
dompσi = ⋃ν<σ,j<cf κν+1[κν,j, δν,j).

We set domp0 ∶= ⋃ν,j[κν,j, δν,j).

� For all (σ, i) ∈ suppp0, we have aσi ⊆ κσ with ∣aσi ∩ [κν,j, κν,j+1)∣ = 1 for all intervals
[κν,j, κν,j+1) ⊆ κσ.
If (σ0, i0) ≠ (σ1, i1), then a

σ0
i0
∩ aσ1i1 = ∅. (We call this the independence property).

Concerning the partial ordering ≤0, any linking ordinal {ξ} = aσi ∩ [κν,j, κν,j+1) settles that
whenever q0 ≤ p0, the extension qσi ⊇ pσi within in the interval [κν,j, κν,j+1) is determined
by q∗(ξ):

For p0 = (p∗, (pσi , a
σ
i )σ,i), q0 = (q∗, (qσi , b

σ
i )σ,i) ∈ P0, let q0 ≤0 p0 if the following holds: q∗ ⊇ p∗;

qσi ⊇ p
σ
i , b

σ
i ⊇ a

σ
i for all (σ, i) ∈ suppp0, and whenever ζ ∈ (dom qσi ∖ dompσi ) ∩ [κν,j, κν,j+1)

with aσi ∩ [κν,j, κν,j+1) = {ξ}, then ξ ∈ dom q0 with qσi (ζ) = q∗(ξ, ζ) (we call this the linking
property ).

The maximal element of P0 is 10 ∶= (∅, (∅,∅)σ<γ,i<ασ).

Let G0 denote a V -generic �lter on P0, and gσi ∶= ⋃{aσi ∣ p = (p∗, (pσi , a
σ
i )σ,i) ∈ G0}.

Note that by our strong independence property, every interval [κν,j, κν,j+1) will be blown
up to size sup{ασ ∣ σ ∈ Lim} in a P0-generic extension.
Hence, since we want our eventual symmetric submodel N preserve all V -cardinals,
we will have so make sure that N �does not know� the sequence of linking ordinals
(gσi ∣ σ ∈ Lim , i < ασ).

A major di�erence between our forcing and the basic construction in [GK12] is the fol-
lowing: The forcing conditions in [GK12, De�nition 2] have �nite linking ordinals aσi ; so
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the according generics gσi are not contained in the ground model V . With our de�nition
however, it follows for any p ∈ G0 with (σ, i) ∈ suppp that gσi = aσi ∈ V . By countable
support, also countable sequences of linking ordinals (g

σj
ij

∣ j < ω) are contained in V ; but

for σ ∈ Lim not the whole sequence (gσi ∣ i < ασ).
This modi�cation helps to establish that any generic Gσ

i can be described using only G∗
and sets from the ground model V (see below).

Next, we de�ne our forcing notion P1, which will be in charge of the successor cardinals.
For every σ ∈ Succ with κσ = κσ

+, it follows that σ =∶ σ + 1 must be a successor ordinal,
since we have assumed in the beginning that the sequence (κσ ∣ 0 < σ < γ) is closed.

We denote by P σ the Cohen forcing

P σ ∶= {p ∶ domp→ 2 ∣ domp ⊆ [κσ, κσ) , ∣domp∣ < κσ},

and let

Cσ ∶= {p ∶ domp→ 2 ∣ domp = domx p × domyp ⊆ ασ × [κσ, κσ) , ∣domp∣ < κσ}.

Then both P σ and Cσ are < κσ-closed, and if 2<κσ = κσ, i.e. 2κσ = κσ, then they satisfy
the κ+σ-chain condition and hence, preserve cardinals.
In particular, any forcing P σ or Cσ preserves cardinals if we are working in our ground
model V with V ⊧ GCH, or any V -generic extension by ≤ κσ-closed forcing.

De�nition 2.3.6. The forcing notion (P1,≤1,∅1) consists of all p1 = (pσ)σ∈Succ with
countable support suppp1 ∶= {σ ∈ Succ ∣ pσ ≠ ∅}, and pσ ∈ Cσ for all σ ∈ Succ. For
p1 = (pσ)σ∈Succ, q1 = (qσ)σ∈Succ ∈ P1, we let q1 ≤1 p1 if qσ ⊇ pσ for all σ ∈ Succ; and
11 ∶= (∅)σ∈Succ is the maximal element.

For σ ∈ Succ and i < ασ, we set pσi = {(ζ, pσ(i, ζ)) ∣ (i, ζ) ∈ dompσ}.

Our main forcing will be the product P ∶= P0 × P1 with maximal element 1 ∶= (10,11)
and order relation ≤. In order to simplify notation, we write conditions p ∈ P in the form
p = (p∗, (pσi , a

σ
i )σ∈Lim,i<ασ , (p

σ)σ∈Succ).

It is not di�cult to verify:

Proposition 2.3.7. P is countably closed.

This is important to make sure that DC holds in our eventual symmetric extension N .

For 0 < η ≤ γ (with η ∈ Lim or η ∈ Succ or η = γ), we de�ne a forcing P
η
like P η is de�ned

in the case that η ∈ Lim:

Let P
η
consist of all functions p ∶ domp→ 2 such that there is a sequence (δν,j ∣ ν < η, j <

cf κν+1) with δν,j ∈ [κν,j, κν,j+1) for all κν,j < κη, and

domp =⋃
ν,j

[κν,j, δν,j),

such that ∣p ↾ κν,∣ < κν, whenever κν, is a regular cardinal, and ∣p∣ < κη in the case that
κη itself is regular.
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For any 0 < η < λ with κλ a limit cardinal, it follows that P
η
= P λ ↾κη.

Let now G be a V -generic �lter on P. It induces

G∗ ∶= {q∗ ∈ P∗ ∣ ∃p = (p∗, (p
σ
i , a

σ
i )σ,i, (p

σ)σ) ∈ G ∶ q∗ ⊆ p∗},

and for λ ∈ Lim, k < αλ:

Gλ
k ∶= {qλk ∈ P

λ ∣ ∃p = (p∗, (p
σ
i , a

σ
i )σ,i, (p

σ)σ) ∈ G ∶ qλk ⊆ p
λ
k}.

As usually, these �lters G∗, Gλ
k are identi�ed with their union ⋃G∗, ⋃Gλ

k . Then any Gλ
k

can be regarded a subset of κλ.

Moreover, let
gλk ∶=⋃{aλk ∣ p = (p∗, (p

σ
i , a

σ
i )σ,i, (p

σ)σ) ∈ G}.

Then gλk = a
λ
k for any p ∈ G with (λ, k) ∈ suppp0; and gλk hits any interval [κν,j, κν,j+1) ⊆ κλ

in exactly one point. By the independence property, it follows that gλ0k0 ∩ g
λ1
k1

= ∅ whenever
(λ0, k0) ≠ (λ1, k1).

For λ ∈ Succ, set
Gλ ∶= {pλ ∣ p = (p∗, (p

σ
i , a

σ
i )η,i, (p

σ)σ) ∈ G},

and
Gλ
k ∶= {pλk ∣ p = (p∗, (p

σ
i , a

σ
i )σ,i, (p

σ)σ) ∈ G}

for any k < αλ.

Again, we confuse these �lters Gλ, Gλ
k with their union ⋃Gλ, ⋃Gλ

k .

Let now ξ ∈ [κν,j, κν,j+1). We denote by

G∗(ξ) ∶= { q ∶ [κν,j, δν,j)→ 2 ∣ δν,j ∈ [κν,j, κν,j+1) , ∃p = (p∗, (p
σ
i , a

σ
i )σ,i, (p

σ)σ) ∈ G ∶

∀ ζ ∈ dom q q(ζ) = p∗(ξ, ζ) }

the ξ-th section of G∗.

If a ⊆ κγ is a set that hits any interval [κν,j, κν,j+1) ⊆ κγ in at most one point, we denote

by G∗(a) the set of all q ∈ P
γ
such that there is p ∈ G with q ⊆ p∗(a).

As before, we identify any G∗(ξ) and G∗(a) with their union ⋃G∗(ξ) and ⋃G∗(a), re-
spectively. Then any G∗(ξ) with ξ ∈ [κνj, κν,j+1) can be regarded as a function G∗(ξ) ∶
[κν,j, κν,j+1) → 2, and any G∗(a) becomes a function G∗(a) ∶ domG∗(a) → 2, where
domG∗(a) ⊆ κγ is the union of those intervals [κν,j, κν,j+1) with a ∩ [κν,j, κν,j+1) ≠ ∅.

Now, the linking property implies that any Gλ
k ↾ [κν,j, κν,j+1) with λ ∈ Lim, k < αλ, is

eventually equal to G∗(ξ), where {ξ} ∶= aλk ∩ [κν,j, κν,j+1).
Indeed, the symmetric di�erence Gλ

k⊕G∗(gλk) is always an element of the ground model V :
Take a condition p ∈ G with (λ, k) ∈ suppp0, such that for any interval [κν,j, κν,j+1) ⊆ κλ
with domp0 ∩ [κν,j, κν,j+1) ≠ ∅ and {ξ} ∶= aλk ∩ [κν,j, κν,j+1), it follows that ξ ∈ domp0.
(This does not interfere with the condition that domp0 has to be bounded below all reg-

ular κν,, since we do not bother the intervals [κν,j, κν,j+1) with domp0 ∩ [κν,j, κν,j+1) = ∅.)
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� Firstly, Gλ
k(ζ) ⊕ G∗(gλk)(ζ) = 0 whenever ζ ∉ domp0: Let ζ ∈ [κν,j, κν,j+1), ζ ∉ domp

with {ξ} ∶= gλk ∩ [κν,j, κν,j+1) = aλk ∩ [κν,j, κν,j+1). Take q ∈ G, q ≤ p with ζ ∈ dom q0.
Then by the linking property, it follows that ξ ∈ dom q0 with qλk(ζ) = q∗(ξ, ζ). Hence,
Gλ
k(ζ) = q

λ
k(ζ) = q∗(ξ, ζ) = G∗(gλk)(ζ), and G

λ
k(ζ)⊕G∗(gλk)(ζ) = 0.

� If ζ ∈ domp then Gλ
k(ζ)⊕G∗(gλk)(ζ) = p

λ
k(ζ)⊕ p∗(ξ, ζ), where again, ζ ∈ [κν,j, κν,j+1)

and {ξ} ∶= gλk ∩ [κν,j, κν,j+1) = aλk ∩ [κν,j, κν,j+1). Here we use that for any interval
[κν,j, κν,j+1) with domp ∩ [κν,j, κν,j+1) ≠ ∅, it follows that aλk ∩ [κν,j, κν,j+1) ⊆ domp0.

Hence, Gλ
k ⊕G∗(gλk) can be calculated in V .

This will be employed to keep control over the surjective size of ℘(κλ) in the eventual
symmetric extension N .

Now, we consider countable products ∏m<ω P
σm and ∏m<ω P

σm
:

De�nition 2.3.8. Let ((σm, im) ∣ m < ω) be a sequence of pairwise distinct pairs with
0 < σm < γ, i < ασm for allm < ω. We denote by∏m<ω P

σm the set of all (p(m) ∣m < ω) with
p(m) ∈ P σm for all m < ω (with full support), and similarly, ∏m<ω P

σm
∶= { (p(m) ∣ m <

ω) ∣ ∀m < ω p(m) ∈ P
σm

}.

For any interval [κν,j, κν,j+1) ⊆ κγ, it follows that ∏m<ω P
σm ↾ κν,j has cardinality ≤ κν,j in

the case that κν,j is regular, and cardinality ≤ κ+ν,j, else. Moreover, ∏m<ω P
σm ↾ [κν,j, κσm)

is ≤ κν,j-closed. Hence, as in Lemma 2.3.2 and Corollary 2.3.3, one can show that the
product ∏m<ω P

σm preserves cardinals, co�nalities and the GCH.
Similarly, ∏m<ω P

σm
preserves cardinals, co�nalities and the GCH.

The next lemma implies that countable products∏m<ωG∗(g
σm
im

) are V -generic over∏m<ω P
σm
:

Lemma 2.3.9. Consider a sequence (am ∣ m < ω) of pairwise disjoint sets such that for
all m < ω, the following holds: am is a subset of κσm for some 0 < σm < γ, and for all κν,j <
κσm, it follows that ∣am ∩ [κν,j, κν,j+1)∣ = 1, i.e. am hits every interval [κν,j, κν,j+1) ⊆ κσm
in exactly one point. Then ∏m<ωG∗(am) ∶= { (p(m) ∣ m < ω) ∣ ∀m < ω p(m) ∈ G∗(am) }

is a V -generic �lter on ∏m<ω P
σm
.

Proof. LetD ⊆∏m<ω P
σm be an open dense set in V . We show thatD ∩∏m<ωG∗(am) ≠ ∅.

Let
D ∶= {p = (p∗, (p

σ
i , a

σ
i )σ,i, (p

σ)σ) ∈ P ∣ (p∗(am) ∣ m < ω) ∈D}.

It su�ces to prove that D is dense in P. Assume p = (p∗, (pσi , a
σ
i )σ,i, (p

σ)σ) ∈ P given, and
denote by (qm ∣ m < ω) an extension of (p∗(am) ∣ m < ω) in D. We have to construct
p ≤ p such that p∗(am) ⊇ qm for all m < ω.
Consider an interval [κν,j, κν,j+1) ⊆ κγ. In the case that (domp ∪ ⋃m<ω dom qm) ∩
[κν,j, κν,j+1) = ∅, let δν,j ∶= κν,j. Otherwise, we pick δν,j ∈ [κν,j, κν,j+1) such that �rstly,

(domp ∪ ⋃
m<ω

dom qm) ∩ [κν,j, κν,j+1) ⊆ [κν,j, δν,j);

secondly, for all m < ω, it follows that am ∩ [κν,j, κν,j+1) ⊆ [κν,j, δν,j); and thirdly,
aσi ∩ [κν,j, κν,j+1) ⊆ [κν,j, δν,j) for all (σ, i) ∈ suppp. This is possible, since the sets
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am ∩ [κν,j, κν,j+1) and aσi ∩ [κν,j, κν,j+1) are singletons or empty, all the domains domp ∩
[κν,j, κν,j+1) and dom qm ∩ [κν,j, κν,j+1) for m < ω are bounded below κν,j+1, and κν,j+1 is
always a successor cardinal.
Let

domp0 ∶=⋃
ν,j

[κν,j, δν,j).

Then domp0 is bounded below all regular κν,, since this holds true for domp and

⋃m<ω dom qm. We de�ne p∗ on ⋃ν,j[κν,j, δν,j)
2 as follows: Consider an interval [κν,j, δν,j) ≠

∅ and ξ, ζ ∈ [κν,j, δν,j). For (ξ, ζ) ∈ domp × domp, let p∗(ξ, ζ) ∶= p∗(ξ, ζ). If {ξ} =
am ∩ [κν,j, κν,j+1) for some m < ω and ζ ∈ dom qm, we set p∗(ξ, ζ) ∶= qm(ζ). This is not a
contradiction towards p∗ ↾ [κν,j, δν,j)2 ⊇ p∗ ↾ [κν,j, δν,j)2, since qm ⊇ p∗(am) for all m < ω.
Also, the am are pairwise disjoint, so for any ξ ∈ [κν,j, δν,j), there is at most one m with
ξ ∈ am. For all the remaining (ξ, ζ) ∈ domp∗, we can set p∗(ξ, ζ) ∈ {0,1} arbitrarily. This
de�nes p∗ on ⋃ν,j[κν,j, δν,j)

2.

For all (σ, i) ∈ suppp0 ∶= suppp0, we set aσi ∶= aσi , and de�ne pσi ⊇ pσi on the cor-
responding domain ⋃κν,j<κσ[κν,j, δν,j) according to the linking property : Whenever ζ ∈
(domp0 ∖ domp) ∩ [κν,j, κν,j+1) and aσi ∩ [κν,j, κν,j+1) = {ξ}, then ξ ∈ domp0 follows, so
we can set pσi (ζ) ∶= p∗(ξ, ζ). For the ζ ∈ dompσi ∖ dompσi remaining, we can de�ne pσi (ζ)
arbitrarily. This completes the construction of p0.

Let p1 ∶= p1. It is not di�cult to check that p ≤ p indeed is a condition in P with
p∗(am) ⊇ qm for all m < ω. Hence, (p∗(am) ∣ m < ω) ∈D, and p ∈D as desired.

In particular, for ((σm, im) ∣ m < ω) a sequence of pairwise distinct pairs as before with
σm ∈ Lim, im < ασm for all m < ω, it follows that ∏m<ωG∗(g

σm
im

) is a V -generic �lter over

∏m<ω P
σm
.

Similarly, one can show:

Lemma 2.3.10. Let ((σm, im) ∣ m < ω) denote a sequence of pairwise distinct pairs with
0 < σm < γ, im < ασm for all m < ω. Then ∏m<ωG

σm
im

∶= { (p(m) ∣ m < ω) ∣ ∀m < ω p(m) ∈

Gσm
im

} is a V -generic �lter on ∏m<ω P
σm.

2.4 Symmetric Names

2.4.1 Constructing A and A

For de�ning our symmetric extension N , we �rst need an almost-group A of partial P-
automorphisms. We will have A = A0 × A1, where A0 is an almost-group of partial
P0-automorphisms, and A1 is an almost-group of partial P1-automorphisms.

We start with the construction of A0.

Every π0 ∈ A0 will be an order-preserving bijection π0 ∶ Dπ0 → Dπ0 with Dπ0 ∈ D0, where
D0 is de�ned as follows:

Let D0 denote the collection of all sets D ⊆ P0 given by
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� a countable support suppD ⊆ {(σ, i) ∣ σ ∈ Lim, i < ασ}, and

� a domain domD ∶= ⋃ν<γ , j<cf κν+1[κν,j, δν,j) such that δν,j ∈ [κν,j, κν,j+1) for all ν < γ,
j < cf κν+1; and for all regular κν,, it follows that domD ∩ κν, is bounded below
κν,,

such that D is the set of all p = (p∗, (pσi , a
σ
i )σ,i) ∈ P0 with

� suppp ⊇ suppD , domp ⊇ domD , and

� for all intervals [κν,j, κν,j+1) with domp ∩ [κν,j, κν,j+1) ≠ ∅, it follows that

⋃
(σ,i)∈suppp

aσi ∩ [κν,j, κν,j+1) ⊆ domp.

In other words: D is the collection of all p ∈ P0 the domain and support of which cover a
certain domain and support given by D; with the additional property that all the linking
ordinals {ξ} = aσi ∩ [κν,j, κν,j+1) contained in any interval [κν,j, κν,j+1) hit by domp, are
already contained in domp.

It is not di�cult to see that any D ∈ D0 is dense in P0. The sets D ∈ D0 are not open
dense; but whenever p, q ∈ P0 with p ∈D and q ≤ p such that supp q = suppp, then by the
linking property, it follows that also q ∈D.

Whenever D, D′ ∈ D0, then the intersection D ∩ D′ is contained in D0 as well, with
supp (D ∩ D′) = suppD ∪ suppD′, dom (D ∩D′) = domD ∪ domD′.
The collection D0 has a maximal element (D0)max with supp(D0)max ∶= ∅, dom(D0)max =
∅. Clearly, (D0)max ⊇D for all D ∈ D.

Hence, it follows that D has all the properties required in De�nition 1.2.14.

We now describe the two types of partial P0-automorphisms that will generate A0:

Our �rst goal is that for any two conditions p, q ∈ P with the same �shape�, i.e. domp =
dom q, suppp = supp q and ⋃aσi = ⋃ b

σ
i , there is an automorphism π0 ∈ A0 with π0p = q.

This homogeneity property will be achieved by giving the maps π0 ∈ A0 a lot of freedom
regarding what can happen on suppπ0 and domπ0.

For κν,j < κγ, let
suppπ0(ν, j) ∶= {(σ, i) ∈ suppπ0 ∣ κν,j < κσ}.

Concerning the linking ordinals, we want that for any p ∈ Dπ0 , p = (p∗, (pσi , a
σ
i )σ,i) with

πp = p′ = ((p′)∗, ((p′)σi , (a
′)σi )σ,i), the sets of linking ordinals for p and p′ are the same,

i.e. ⋃aσi = ⋃(a′)σi . In other words, for any interval [κν,j, κν,j+1), the linking ordinals
ξ ∈ [κν,j, κν,j+1) will be exchanged between the coordinates (σ, i) ∈ suppπ0(ν, j), which is
described by an isomorphism Fπ0(ν, j) ∶ suppπ0(ν, j)→ suppπ0(ν, j).

Regarding the (p′)σi for (σ, i) ∈ suppπ0, there will be for every ζ ∈ [κν,j, κν,j+1) ∩ domπ0 a
bijection π0(ζ) ∶ 2suppπ0(ν,j) → 2suppπ0(ν,j) with

( (p′)σi (ζ) ∣ (σ, i) ∈ suppπ0(ν, j) ) ∶= π0(ζ)(p
σ
i (ζ) ∣ (σ, i) ∈ suppπ0(ν, j) ).
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Concerning p′∗, we will have a similar construction for the p′∗(ξ, ζ) in the case that
ζ ∈ domπ0 and ξ is a linking ordinal contained in ⋃aσi . Moreover, for all (ξ, ζ) ∈ domπ0 ∩
[κν,j, κν,j+1)2, we will have a bijection π∗(ξ, ζ) ∶ 2→ 2, and set p′∗(ξ, ζ) = π∗(ξ, ζ)(p∗(ξ, ζ))
whenever ξ, ζ ∈ domπ0 and ξ ∉ ⋃aσi .

Our second goal is that for any interval [κν,j, κν,j+1) and (σ, i), (λ, k) ∈ suppπ0(ν, j), there
is an isomorphism π0 ∈ A0 with (π0G)λk ∩ [κν,j, κν,j+1) = Gσ

i ∩ [κν,j, κν,j+1). Thus, every
π0 ∈ A0 will be equipped with bijections Gπ0(ν, j) ∶ suppπ0(ν, j) → suppπ0(ν, j) for every
κν,j < κγ, such that the following holds: Whenever p ∈Dπ0 , p

′ ∶= πp and ζ ∈ domp∖domπ0,
(σ, i) ∈ suppπ0(ν, j), then (p′)σi (ζ) = p

λ
k(ζ) with (λ, k) ∶= Gπ0(ν, j)(σ, i).

Whenever ζ ∈ domπ0 and (σ, i) ∈ suppπ(ν, j), then the values (p′)σi (ζ) are described by
the maps π0(ζ) mentioned above, which allows for setting (p′)σi (ζ) ∶= p

λ
k(ζ) for any pair

(σ, i), (λ, k) ∈ suppπ0(ν, j).

Roughly speaking, A0 will be generated by these two types of isomorphism. Regard-
ing the construction of p′∗, some extra care is needed concerning the values p′∗(ξ, ζ)
for ζ ∉ domπ0 and ξ ∈ ⋃aσi a linking ordinal, since we have to make sure that the
maps π0 ∈ A0 are order-preserving. Whenever p, q ∈ Dπ0 with q ≤ p, then also q′ ≤ p′

must hold; in particular, whenever {ξσi } ∶= aσi ∩ [κν,j, κν,j+1) is a linking ordinal and
ζ ∈ dom q ∖ domp (in particular, ζ ∉ domπ0), then {ξσi } = (a′)λk ∩ [κν,j, κν,j+1) with
(σ, i) = Fπ0(ν, j)(λ, k), and q′∗(ξ

σ
i , ζ) = (q′)λk(ζ) by the linking property for q′ ≤ p′.

Moreover, (q′)λk(ζ) = qµl (ζ) with (µ, l) = Gπ0(ν, j)(λ, k), and qµl (ζ) = q∗(ξ
µ
l , ζ) with

ξµl = aµl ∩ [κν,j, κν,j+1) by the linking property for q ≤ p. Hence, q′∗(ξ
σ
i , ζ) = q∗(ξ

µ
l , ζ)

must hold, where (µ, l) = Gπ0(ν, j) ○ (Fπ0(ν, j))
−1(σ, i).

This gives rise to the following de�nition:

De�nition 2.4.1. Let A0 consist of all automorphisms π0 ∶ Dπ0 → Dπ0 such that there
are

� a countable set suppπ0 ⊆ {(σ, i) ∣ σ ∈ Lim, i < ασ}
(for κν,j < κγ, we set suppπ0(ν, j) ∶= {(σ, i) ∈ suppπ0 ∣ κν,j < κγ}),

� a domain domπ0 = ⋃ν<γ , j<cf κν+1[κν,j, δν,j) such that δν,j ∈ [κν,j, κν,j+1) for all ν < γ,
j < cf κν+1; and for all regular κν,, it follows that domπ0 ∩ κν, is bounded below
κν,
(for κν,j < κγ, we set domπ0(ν, j) ∶= domπ0 ∩ [κν,j, κν,j+1)),

such that

Dπ0 = {p = (p∗, (p
σ
i , a

σ
i )σ,i) ∈ P0 ∣ suppp ⊇ suppπ0 , domp ⊇ domπ0, and

∀κν,j < κγ ∶ (domp ∩ [κν,j, κν,j+1) ≠ ∅⇒ ⋃
(σ,i)∈suppp

aσi ∩ [κν,j, κν,j+1) ⊆ domp) };

moreover, there are

� for all ν < γ, j < cf κν+1, a bijection

Fπ0(ν, j) ∶ suppπ0(ν, j)→ suppπ0(ν, j)

89



Chapter 2. An Easton-like Theorem for Set-many Cardinals in ZF + DC

(which will be in charge of permuting the linking ordinals as mentioned above),

and a bijection
Gπ0(ν, j) ∶ suppπ0(ν, j)→ suppπ0(ν, j)

(which will be in charge of permuting the verticals pσi outside domπ0 on the interval
[κν,j, κν,j+1)),

� for all ν < γ, j < cf κν+1 and ζ ∈ [κν,j, κν,j+1) ∩ domπ0, a bijection

π0(ζ) ∶ 2
suppπ0(ν,j) → 2suppπ0(ν,j)

(which will be in charge of setting the values (πp)σi (ζ) for (σ, i) ∈ suppπ0(ν, j),
ζ ∈ domπ0),

� for all ν < γ, j < cf κν+1, ζ ∈ [κν,j, κν,j+1) ∩ domπ0, and

(ξσi ∣ (σ, i) ∈ suppπ0(ν, j)) ∈ (domπ0(ν, j))
suppπ0(ν,j)

a sequence of pairwise distinct ordinals, a bijection

(π0)∗(ζ)(ξ
σ
i ∣ (σ, i) ∈ suppπ0(ν, j)) ∶ 2

suppπ0(ν,j) → 2suppπ0(ν,j)

(which will be in charge of setting the values (πp)∗(ξσi , ζ) for {ξ
σ
i } = a

σ
i ∩ [κν,j, κν,j+1)

a linking ordinal and ζ ∈ [κν,j, κν,j+1) ∩ domπ0 ),

� for all ν < γ, j < cf κν+1 and (ξ, ζ) ∈ [κν,j, κν,j+1)2, a bijection

(π0)∗(ξ, ζ) ∶ 2→ 2

such that π∗(ξ, ζ) is the identity whenever (ξ, ζ) ∉ (domπ0)2

(which will be in charge of the values (πp)∗(ξ, ζ) in the case that ξ ∉ ⋃σ,i a
σ
i is not

a linking ordinal);

which de�nes for p ∈Dπ0 , p = (p∗, (pσi , a
σ
i )σ,i), the image πp =∶ p′ = (p′∗, ((p

′)σi , (a
′)σi )σ,i) as

follows:

We will have suppp′ = suppp, domp′ = domp. Moreover:

� Concerning the linking ordinals, for all (σ, i) ∈ suppp′ = suppp and κν,j < κσ:

� (a′)σi ∩ [κν,j, κν,j+1) = aσi ∩ [κν,j, κν,j+1) for (σ, i) ∉ suppπ0(ν, j),

� (a′)σi ∩ [κν,j, κν,j+1) = aλk ∩ [κν,j, κν,j+1) with (λ, k) = Fπ0(ν, j)(σ, i) in the case
that (σ, i) ∈ suppπ0(ν, j).

� Concerning the (p′)σi with (σ, i) ∈ suppπ0:

� for ζ ∈ domπ0,

((p′)σi (ζ) ∣ (σ, i) ∈ suppπ0(ν, j)) = π0(ζ)(p
σ
i (ζ) ∣ (σ, i) ∈ suppπ0(ν, j)),
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� and in the case that ζ ∉ domπ0,

(p′)σi (ζ) = p
λ
k(ζ) with (λ, k) = Gπ0(ν, j)(σ, i).

� Whenever (σ, i) ∉ suppπ0, then (p′)σi = p
σ
i .

� We now turn to p′∗. Consider an interval [κν,j, κν,j+1). For any (σ, i) ∈ suppπ0(ν, j),
let {ξσi } ∶= a

σ
i ∩ [κν,j, κν,j+1). For ζ ∈ [κν,j, κν,j+1) ∩ domπ0, we will have

(p′∗(ξ
σ
i , ζ) ∣ (σ, i) ∈ suppπ0(ν, j)) =

= (π0)∗(ζ)(ξ
σ
i ∣ (σ, i) ∈ suppπ0(ν, j))(p∗(ξ

σ
i , ζ) ∣ (σ, i) ∈ suppπ0(ν, j)).

In the case that ζ ∈ [κν,j, κν,j+1) ∩ (domp ∖ domπ0), we will have for (σ, i) ∈
suppπ0(ν, j):

p′∗(ξ
σ
i , ζ) ∶= p∗(ξ

λ
k , ζ),

where (λ, k) = Gπ0(ν, j) ○ (Fπ0(ν, j))
−1(σ, i).

Finally, if (ξ, ζ) ∈ (domp)2 with ξ, ζ ∈ [κν,j, κν,j+1) such that ξ ∉ ⋃σ,i a
σ
i , then

p′∗(ξ, ζ) = (π0)∗(ξ, ζ)(p∗(ξ, ζ)).

For any π ∈ A0, it follows that Dπ0 ∈ D0 with suppDπ0 ∶= suppπ0 and domDπ0 ∶= domπ0.
Moreover, whenever p is a condition inDπ0 , then p

′ ∶= π0p ∈ P0 is well-de�ned with p′ ∈Dπ0 ,
since suppp′ = suppp, domp′ = domp, and ⋃σ,i a

σ
i = ⋃σ,i(a

′)σi by construction.
Here we use that π0 is only de�ned on Dπ0 and not on the entire forcing P0, since we have
to make sure that in our construction of the p′∗(ξ

σ
i , ζ) for ζ ∉ domπ0, we do not run out

of domp.

It is not di�cult to see that for any p, q ∈ Dπ0 with q ≤ p, also q′ ≤ p′ holds. The linking
property follows readily from our de�nition of the p′∗(ξ

σ
i , ζ) for ζ ∉ domπ0.

Whenever π0 ∈ A0 and D ∈ D0 with D ⊆ Dπ0 , it follows that the map π0 ∶= π0 ↾ D is con-
tained in A0, as well. Here we have to use that the maps π0 do not disturb the conditions'
domain or support, and merely permute the linking ordinals. In particular, whenever
p ∈D, it follows that the image π0p is contained in D, as well.

For De�nition 1.2.14, it remains to verify that for any D ∈ D0, the collection (A0)D ∶=
{π1 ∈ A0 ∣ Dπ0 =D} is a group.

Firstly, whenever π0 ∈ A0, π0 ∶ Dπ0 → Dπ0 , it is not di�cult to write down a map ν0 ∈ A0

with Dν0 =Dπ0 such that ν0 is the inverse of π0:

Let suppν0 ∶= suppπ0 and domν0 ∶= domπ0. For any κν,j < κγ, we set Fν0(ν, j) ∶=
(Fπ0(ν, j))

−1, Gν0(ν, j) ∶= (Gπ0(ν, j))
−1; and for ζ ∈ [κν,j, κν,j+1), we let ν0(ζ) ∶= (π0(ζ))−1.

Regarding (ν0)∗ we use the following notation:

For sets I, J with a bijection b ∶ I → J and a sequence (xj ∣ j ∈ J ), we denote by
b(xj ∣ j ∈ J ) the induced sequence parametrized by I:

b(xj ∣ j ∈ J ) ∶= (yi ∣ i ∈ I) with yi ∶= xb(i) for all i ∈ I.
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Whenever ζ ∈ [κν,j, κν,j+1) ∩ domπ0, and

(ξσi ∣ (σ, i) ∈ suppπ0(ν, j)) ∈ (domπ0(ν, j))
suppπ0(ν,j)

is a sequence of pairwise distinct ordinals, we set (ν0)∗(ξσi ∣ (σ, i) ∈ suppπ0(ν, j)) ∶=

Fπ0(ν, j) ○ [(π0)∗(Fπ0(ν, j)
−1
(ξσi ∣ (σ, i) ∈ suppπ0(ν, j)) )]

−1

○ Fπ0(ν, j)
−1
,

which is a bijection on 2suppπ0(ν,j).

For (ξ, ζ) ∈ [κν,j, κν,j+1)2, let (ν0)∗(ξ, ζ) ∶= ((π0)∗(ξ, ζ))
−1
.

It is not di�cult to verify that indeed, π0(ν0(p)) = ν0(π0(p)) = p holds for all p ∈Dπ0 =Dν0 .

Secondly, for any π0 ∶ D → D, σ0 ∶ D → D in A0, one can write down a map τ0 ∈ A0

explicitly with Dτ0 =D such that τ0(p) = π0(σ0(p)) holds for all p ∈D.

Finally, (A0)D contains the identity element (id0)D (the identity on D); and it follows
that (A0)D is indeed a group.

Now, all the properties form De�nition 1.2.14 are satis�ed. Hence, A0 is an almost-group
of partial P0-automorphisms.

We turn to P1 and de�ne A1, our collection of partial P1-isomorphisms. Every π1 ∈ A1

will be a bijection π1 ∶Dπ1 →Dπ1 with a dense set Dπ1 ∈ D1, where D1 is de�ned as follows:

Let D1 denote the collection of all D ⊆ P1 given by:

� a countable support suppD ⊆ Succ, and

� for every σ ∈ suppD, κσ = κσ
+, a domain domD(σ) = domxD(σ) × domyD(σ) ⊆

ασ × [κσ, κσ) with ∣domπ1(σ)∣ < κσ,

such that

D = {p ∈ P1 ∣ suppp ⊇ suppD ∧ ∀σ ∈ suppD dompσ ⊇ domD(σ)}.

Then every set D ∈ D1 is open dense; and whenever D, D′ ∈ D1, then the intersection
D ∩ D′ is contained in D1 as well, with supp(D ∩ D′) = suppD ∪ suppD′, and domx(D ∩
D′)(σ) = domxD(σ) ∪ domxD′(σ), domy(D ∩ D′)(σ) = domyD(σ) ∪ domyD′(σ) for all
σ ∈ supp(D ∩ D′).

Moreover, the collection D1 has a maximal element (D1)max with supp(D1)max ∶= ∅. Then
for all D ∈ D1, we have P1 = (D1)max ⊇D.

It follows that D has all the properties required in De�nition 1.2.14.

We now describe the two types of partial P1-isomorphisms that will generate A1:

As with A0, our �rst goal is that for any p, q ∈ P1 which have the same �shape�, i.e. suppp =
supp q and dompσ = dom qσ for every σ ∈ suppp, there is an isomorphism π1 ∈ A1 with
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π1p = q. These isomorphisms will be of the following form: For every σ ∈ suppπ1, we will
have a collection of π(σ)(i, ζ) ∶ 2 → 2 for (i, ζ) ∈ domπ1(σ), such that for any p ∈ Dπ1 ,
the map π1 changes the value of pσ(i, ζ) if and only if π1(σ)(i, ζ) ≠ id. In other words,
(π1p)σ(i, ζ) = π1(σ)(i, ζ)(pσ(i, ζ)).
This allows for constructing an isomorphism π1 with π1p = q for any pair of conditions
p, q that have the same supports and domains: One can simply set π1(σ)(i, ζ) = id if
pσ(i, ζ) = qσ(i, ζ), and π1(σ)(i, ζ) ≠ id in the case that pσ(i, ζ) ≠ qσ(i, ζ).

Secondly, for every pair of generic κσ-subsets Gσ
i and Gσ

i′ for σ ∈ Succ and i, i′ < ασ, we
want an isomorphism π ∈ A1 with πGσ

i = G
σ
i′ . Therefore, we include into A1 all isomor-

phisms π1 = (π1(σ) ∣ σ ∈ suppπ1) such that for every σ ∈ suppπ1, there is a bijection fπ1(σ)
on a countable set suppπ1(σ) ⊆ ασ; and π1 is de�ned as follows: Whenever p ∈ Dπ1 , then
(π1p)σ(i, ζ) = pσ(fπ1(σ)(i) , ζ) for all (i, ζ) ∈ dompσ. Then πGσ

i = G
σ
fπ1(σ)(i)

.

Roughly speaking, A1 will be generated by these two types of isomorphisms. In order to
retain a group structure, the values (π1p)σ(i, ζ) for (i, ζ) ∈ domπ1(σ) and i ∈ suppπ1(σ)
have to be treated separately: For every ζ ∈ domy π1(σ), there will be a bijection π1(ζ) ∶
2suppπ1(σ) → 2suppπ1(σ) such that ((π1p)σ(i, ζ) ∣ i ∈ suppπ1(σ)) = π1(ζ)(pσ(i, ζ) ∣ i ∈

suppπ1(σ)).

This yields the following de�nition:

De�nition 2.4.2. A1 consists of all isomorphisms π1 ∶ Dπ1 → Dπ1 , π1 = (π1(σ) ∣ σ ∈
suppπ1) with countable support suppπ1 ⊆ Succ, such that for all σ ∈ suppπ1, κσ = κσ

+,
there are

� a countable set suppπ1(σ) ⊆ ασ with a bijection fπ1(σ) ∶ suppπ1(σ)→ suppπ1(σ),

� a domain domπ1(σ) = domx π1(σ) × domy π1(σ) ⊆ ασ × [κσ, κσ) with ∣domπ1(σ)∣ <
κσ, such that suppπ1(σ) ⊆ domx π1(σ),

� for every (i, ζ) ∈ ασ × [κσ, κσ) a bijection π1(σ)(i, ζ) ∶ 2 → 2, with π1(σ)(i, ζ) = id
whenever (i, ζ) ∉ domπ1(σ), and

� for every ζ ∈ domy π1(σ) a bijection π1(ζ) ∶ 2suppπ1(σ) → 2suppπ1(σ)

with
Dπ1 = {p ∈ P1 ∣ suppp ⊇ suppπ1 ∧ ∀σ ∈ suppπ1 dompσ ⊇ domπ1(σ)};

and for every p ∈Dπ1 , the image π1p is de�ned as follows:

We will have supp(π1p) = suppp with (π1p)σ = pσ whenever σ ∉ suppπ1. Moreover, for
σ ∈ suppπ1,

� for every (i, ζ) ∈ dompσ with i ∉ suppπ1(σ), we have (π1p)σ(i, ζ) = π1(σ)(i, ζ)(pσ(i, ζ)),

� for every i ∈ suppπ1(σ) and ζ ∈ domy pσ ∖ domy π1(σ),

(π1p)
σ(i, ζ) = pσ(fπ1(σ)(i), ζ), and
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� for all ζ ∈ domy π1(σ),

((π1p)
σ(i, ζ) ∣ i ∈ suppπ1(σ)) = π1(ζ)(p

σ(i, ζ) ∣ i ∈ suppπ1(σ)).

In other words: Outside the domain domπ1(σ), we have a swap of the horizontal lines
pσ(i, ⋅) for i ∈ suppπ1(σ), according to fπ1(σ). If ζ ∈ domy π1(σ), then the values
(π1p)σ(i, ζ) for i ∈ suppπ1(σ) are given by the map π1(ζ). Any remaining value (π1p)σ(i, ζ)
with i ∉ suppπ1(σ) is equal to pσ(ζ, i) or not, depending on whether π1(σ)(i, ζ) ∶ 2→ 2 is
the identity or not.

We need the dense sets Dπ1 in order to make sure that dom(π1p)σ = dompσ. In particular,
we do not want to run out of dompσ when permuting the pσ(i, ⋅) for i ∈ suppπ1(σ).

It is not di�cult to see that any map π1 ∶ Dπ1 → Dπ1 as in De�nition 2.4.2 is order-
preserving.

Whenever π1 ∈ A1 and D ∈ D1 with D ⊆ Dπ1 , then the map π1 ∶= π1 ↾ D is contained in
A1, as well. Here we have to use that the maps π1 do not disturb the conditions' support
or domain. In particular, whenever p ∈D, it follows that π1p ∈D, as well.

For De�nition 1.2.14, it remains to verify that for any D ∈ D1, the collection (A1)D ∶=
{π1 ∈ A1 ∣ Dπ1 =D} is a group; which happens similarly as for A0:

Firstly, for any π1 ∈ A1, π1 ∶Dπ1 →Dπ1 , one can write down a map ν1 ∈ A1 with Dν1 =Dπ1

such that ν1 is the inverse of π1.
Secondly, whenever π1, σ1 ∈ A1, π1 ∶ D → D, σ1 ∶ D → D, one can explicitly write down a
map τ1 ∈ A1 with Dτ1 =D such that τ1(p) = π1(σ1(p)) holds for all p ∈D.
Finally, (A1)D contains the identity element (id1)D (the identity on D), and it follows
that (A1)D is indeed a group.

Hence, all the properties from De�nition 1.2.14 are satis�ed, so A1 is indeed an almost-
group of partial P1-automorphisms.

De�nition 2.4.3. Let A ∶= A0 × A1, i.e. any π ∈ A is of the form π = (π0, π1), where
π0 ∈ A0, π0 ∶ Dπ0 → Dπ0 is a partial P0-automorphism, and π1 ∈ A1, π1 ∶ Dπ1 → Dπ1 is a
partial P1-automorphism.

Let D ∶= D0 × D1. By what we have just shown, it follows that A is an almost-group of
partial P-automorphisms for D.

Let A denote the group of partial P-automorphisms derived from A as in De�nition 1.2.15:

For π, π′ ∈ A, π ∶Dπ →Dπ, π′ ∶Dπ′ →Dπ′ , we set

π ∼ π′ ∶⇔ π ↾ (Dπ ∩ Dπ′) = π
′ ↾ (Dπ ∩ Dπ′),

and let A ∶= {[π] ∣ π ∈ A}, with concatenation A given by concatenation in A (cf. 1.2.15).

94



Chapter 2. An Easton-like Theorem for Set-many Cardinals in ZF + DC

2.4.2 Constructing F
Now, we de�ne a collection of A-subgroups that will generate a normal �lter F on A,
establishing our notion of symmetry.

We will introduce two di�erent types of A-subgroups.

Firstly, for any 0 < η < γ, i < αη (with η ∈ Lim or η ∈ Succ), let

Fix(η, i) ∶= { [π] ∈ A ∣ ∀p ∈Dπ (πp)ηi = p
η
i }.

Whenever π ∼ π′, it follows that (πp)ηi = p
η
i for all p ∈ Dπ if and only if (π′p)ηi = p

η
i for all

p ∈Dπ′ . Hence, Fix(η, i) is well-de�ned, and any Fix(η, i) is a subgroup of A.

By including Fix(η, i) into our �lter F , we make sure that any canonical name Ġη
i for the i-

th generic κη-subset G
η
i is hereditarily symmetric, since πGη

i

Dπ
= Gη

i

Dπ
for all π ∈ Fix(η, i).

Hence, our eventual model N will contain any generic κη-subset G
η
i .

Now, we turn to the second type of A-subgroup. For any 0 < λ < γ and k < αλ (with
λ ∈ Lim or λ ∈ Succ), we need in N a surjection s ∶ ℘(κλ) → k in order to make sure that
θN(κλ) ≥ αλ. However, the sequence (Gλ

i ∣ i < αλ) must not be included into N , since
θN(κλ) ≤ αλ, so N must not contain a surjection s ∶ ℘(κλ)→ αλ.

The idea is that for any 0 < λ < γ and k < αλ, we de�ne a �cloud� around each Gλ
i for i ≤ k,

denoted by (G̃λ
i )

(k), and make sure that the �sequence of clouds� ( (G̃λ
i )

(k) ∣ i < k) makes
its way into N .

When de�ning the according A-subgroups, we have to treat limit cardinals and successor
cardinals separately.

For λ ∈ Lim, k < αλ, let

Hλ
k ∶= { [π] ∈ A ∣ ∃κν, < κλ ∀κν,j ∈ [κν,, κλ) ∀ i ≤ k ∶

((λ, i) ∉ suppπ0(ν, j) ∨ Gπ0(ν, j)(λ, i) = (λ, i))}.

It is not di�cult to verify that any Hλ
k is well-de�ned and indeed a subgroup of A.

Roughly speaking, Hλ
k contains all [π] ∈ A such that above some κν, < κλ, there is no

permutation of the vertical lines P λ
i ↾ [κν,, κλ) for i ≤ k.

This implies that for any i, j < k with i ≠ j and [π] ∈Hλ
k , it is not possible that πG

λ
i = G

λ
j .

Hence, for any i < k, we can de�ne a �cloud� around Gλ
i as follows:

(
˙̃
Gλ
i )

(k) ∶= {(πGλ
i

Dπ
,1) ∣ [π] ∈Hλ

k }.

With (G̃λ
i )

(k) ∶= ((
˙̃
Gλ
i )

(k))
G
, it follows that (G̃λ

i )
(k) is the orbit of Gλ

i under Hλ
k ; so two

distinct orbits (G̃λ
i )

(k) and (G̃λ
j )

(k) for i ≠ j are disjoint. The sequence ((G̃λ
i )

(k) ∣ i < k),

which has a canonical symmetric name stabilized by all π with [π] ∈Hλ
k , gives a surjection

s ∶ ℘(κλ)→ k in N (see Chapter 2.6.1).
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Now, we consider the case that λ ∈ Succ. For k < αλ, let

Hλ
k ∶= { [π] ∈ A ∣ ∀ i ≤ k (i ∉ suppπ1(λ) ∨ fπ1(λ)(i) = i) }.

Again, one can easily check that Hλ
k is well-de�ned and indeed an A-subgroup.

Whenever [π] is contained in Hλ
k , then π does not interchange any Gλ

i and G
λ
j for i, j < k

in the case that i ≠ j. Thus, as for λ ∈ Lim, we can de�ne �clouds� (G̃λ
i )

(k) for i ≤ k and
obtain a surjection s ∶ ℘(κη)→ k in N (see Chapter 2.6.1).

We are now ready to de�ne our normal �lter F on A. Note that the Fix(η, i) and Hλ
k

are not normal A-subgroups: For instance, if [π] ∈ Fix(η, i) for some η ∈ Lim, i < αη,
and σ ∈ A with Gσ0(ν, j)(η, i) = (η, i′) for all κν,j,< κη such that [π] ∉ Fix(η, i′), then in
general, [σ]−1[π][σ] is not contained in Fix(η, i).

However, it is not di�cult to verify:

Lemma 2.4.4. � For all σ ∈ A, and η ∈ Lim, i < αη,

[σ]Fix(η, i)[σ]−1 ⊇ Fix(η, i) ∩ ⋂{Fix(ηm, im) ∣ m < ω, (ηm, im) ∈ suppσ0}.

In the case that σ ∈ A, and η ∈ Succ, i < αη,

[σ]Fix(η, i)[σ]−1 ⊇ Fix(η, i) ∩ ⋂{Fix(η, im) ∣ m < ω, im ∈ suppσ1(η)}.

� For σ ∈ A and λ ∈ Lim, k < αλ,

[σ]Hλ
k [σ]

−1 ⊇Hλ
k ∩ ⋂{Fix(ηm, im) ∣ m < ω, (ηm, im) ∈ suppσ0}.

In the case that λ ∈ Succ, k < αλ,

[σ]Hλ
k [σ]

−1 ⊇Hλ
k ∩ ⋂{Fix(λ, im) ∣ m < ω, im ∈ suppσ1(λ)}.

Hence, it follows that countable intersections of the A-subgroups Fix(η, i) and Hλ
k gen-

erate a normal �lter on A:

De�nition 2.4.5. We de�ne F as follows:

A subgroup B ⊆ A is contained in F if there are ((ηm, im) ∣ m < ω), ((λm, km) ∣ m < ω)
with

B ⊇ ⋂
m<ω

Fix(ηm, im) ∩ ⋂
m<ω

Hλm
km
.

Then by Lemma 2.4.4, it follows that F is a normal, countably complete �lter on A.

Now, we can use F to establish our notion of symmetry. The following De�nition corre-
sponds to De�nition 1.2.18:

De�nition 2.4.6. A P-name ẋ is symmetric if

symA(ẋ) ∶= { [π] ∈ A ∣ πxDπ = xDπ } ∈ F .

Recursively, a name ẋ is hereditarily symmetric, x ∈ HS, if ẋ is symmetric, and ẏ is
hereditarily symmetric for all ẏ ∈ dom ẋ.
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2.5 The Symmetric Submodel

Let G be a V -generic �lter on P. The symmetric extension by F and G is

N ∶= V (G) ∶= V (G)F = {ẋG ∣ ẋ ∈HS}.

As set out in Chapter 1.2.3, the symmetric forcing relation with partial automorphisms
� ⊩s� can be de�ned as usual, and satis�es the same basic properties as the ordinary
symmetric forcing relation. In particular, the Symmetry Lemma holds, and the Forcing
Theorem holds true, as well.

Whenever ẋ, ẏ ∈ HS and p ∈ P, then p ⊩s ẏ ∈ ẋ if and only if p ⊩ ẏ ∈ ẋ (with the ordinary
forcing relation �⊩�) and p ⊩s ẋ = ẏ if and only if p ⊩ ẋ = ẏ. In particular, for any ẋ ∈HS
and D ∈ D, we have

xD = {(yD, p) ∣ ẏ ∈ dom ẋ , p ∈D , p ⊩s ẏ ∈ ẋ}.

By Theorem 1.2.21, it follows that N = V (G) is a transitive model of ZF with V ⊆ N ⊆
V [G].

Proposition 2.5.1. N ⊧ DC + AX4.

Proof. N ⊧ DC follows readily, since �rstly, P is countably closed (Proposition 2.3.7) and
secondly, our normal �lter F generating N is countably complete. We give a proof for
the sake of completeness, using the basic ideas from [Kar14, Lemma 1].

It su�ces to show that whenever X ∈ N and f ∶ ω →X is a function in V [G], then f ∈ N .
This implies DC: Assume that there was in N a set X with a binary relation R such that
for any x ∈X there exists y ∈X with yRx. Since DC holds in V [G], we obtain a sequence
(xn ∣ n < ω) in V [G] such that xn+1Rxn for every n < ω. Then (xn ∣ n < ω) is already
contained in N , as desired.

Let X ∈ N , X = ẊG with Ẋ ∈ HS, and consider a function f ∶ ω → X in V [G]. Let
f = ḟG, where ḟ ∈ NameV (P). Take a condition p0 ∈ G such that

p0 ⊩ ḟ ∶ ω → Ẋ.

We claim that the following set (in V ) is dense in P below p0:

D ∶= {p ∈ P ∣ ∃ (ẋn ∣ n < ω) ∀n < ω (ẋn ∈ dom Ẋ ∧ p ⊩ ḟ(n) = ẋn) }

Let p0 ∈ P, p0 ≤ p0. We use recursion in V to construct sequences (pn ∣ n < ω) and
(ẋn ∣ n < ω) such that ẋn ∈ dom Ẋ, pn+1 ≤ pn, and pn+1 ⊩ ḟ(n) = ẋn for all n < ω.
By countable closure of P, we can take a condition p ∈ P such that p ≤ pn for all n < ω.
Then p ⊩ ḟ(n) = ẋn for all n < ω. Thus, p is an extension of p0 in D; and it follows that
D is dense in P below p0.

Thus, we can take q ∈ G ∩ D, q ≤ p0, and (ẋn ∣ n < ω) as in the de�nition of D with
ẋn ∈ dom Ẋ and q ⊩ ḟ(n) = ẋn for all n < ω. Let

ġ ∶= { (ORP(n, ẋn),1) ∣ n < ω }.
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Then ġG = f . It remains to make sure that ġ ∈HS. Since ẋn ∈ dom Ẋ ⊆HS for all n < ω, it
follows that symA(ẋn) ∈ F for every n < ω. Thus, dom ġ ⊆HS. Moreover, F is countably
complete, which gives ⋂n<ω symA(ẋn) ∈ F . Since πg

Dπ = gDπ for all π ∈ ⋂n<ω symA(ẋn), it
follows that ġ ∈HS as desired.

Regarding N ⊧ AX4 (see [She10, p.3 and p.15]), we note that ([λ]ℵ0)V [G] = ([λ]ℵ0)V , since
P is countably closed. Hence, ([λ]ℵ0)N = ([λ]ℵ0)V . Thus, the set [λ]ℵ0 can be well-ordered
in N , using the according well-ordering of [λ]ℵ0 in V .

Next, we want to show that N preserves all V -cardinals; which will follow from the fact
that any set of ordinals X ⊆ α, X ∈ N , can be captured in a �mild� V -generic extension
by a forcing notion as in Lemma 2.3.9 and Lemma 2.3.10.

This Approximation Lemma demonstrates how our symmetric extension N can be approx-
imated from within by fairly nice V -generic extensions. Later on, this will be a crucial
step in keeping control over the values θN(κη).

Lemma 2.5.2 (Approximation Lemma). Consider X ∈ N , X ⊆ α with X = ẊG such that

πX
Dπ

=X
Dπ

holds for π ∈ A with [π] contained in the intersection

⋂
m<ω

Fix(ηm, im) ∩ ⋂
m<ω

Fix(ηm, im) ∩ ⋂
m<ω

Hλm
km

∩ ⋂
m<ω

Hλm
km
,

where ((ηm, im) ∣ m < ω), ((ηm, im) ∣ m < ω), ((λm, km) ∣ m < ω) and ((λm, km) ∣ m < ω)
denote sequences with ηm ∈ Lim, im < αηm; ηm ∈ Succ, im < αηm for all m < ω; and
λm ∈ Lim, km < αλm; λm ∈ Succ, km < αλm for all m < ω.

Then
X ∈ V [ ∏

m<ω
Gηm
im

× ∏
m<ω

G
ηm
im

].

Proof. Let

X ′ ∶= {β < α ∣ ∃p = (p∗, (p
σ
i , a

σ
i )σ,i, (p

σ)σ) ∶ p ⊩s β ∈ Ẋ , ∀m ∶ (ηm, im) ∈ suppp0 ,

∀m ∶ aηmim = gηmim , (pηmim )m<ω ∈ ∏
m<ω

Gηm
im
, (p

ηi
im

)m<ω ∈ ∏
m<ω

G
ηm
im

}.

Then
X ′ ∈ V [ ∏

m<ω
Gηm
im

× ∏
m<ω

G
ηm
im

],

since the sequence (gηmim )m<ω is contained in V . It remains to show that X = X ′. The
inclusion X ⊆ X ′ follows from the Forcing Theorem. Concerning �⊇� , assume towards a
contradiction there was β ∈X ′ ∖X. Take p as above with (ηm, im) ∈ suppp0 for all m < ω,
and

p ⊩s β ∈ Ẋ , ∀m ∶ aηmim = gηmim , (pηmim )m<ω ∈ ∏
m<ω

Gηm
im
, (p

ηi
im

)m<ω ∈ ∏
m<ω

G
ηm
im
.

Since β ∉X, we can take p′ ∈ G, p′ = (p′∗, ((p
′)σi , (a

′)σi )σ,i, ((p
′)σ)

σ
) with p′ ⊩s β ∉ Ẋ, such

that (ηm, im) ∈ suppp′0 for all m < ω.
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First, we want to extend p and p′ and obtain conditions p ≤ p, p′ ≤ p′, p = (p∗, (p
σ
i , a

σ
i )σ,i, (p

σ)σ),
p′ = (p′∗, ((p

′)σi , (a
′)σi )σ,i, ((p

′)σ)
σ
) such that the following holds:

� ∀m < ω pηmim = (p′)ηmim , aηmim = (a′)ηmim

� ∀m < ω p
ηm
im

= (p′)
ηm
im

� domp0 = domp′0

� suppp0 = suppp′0

� ⋃(σ,i)∈suppp0
aσi = ⋃(σ,i)∈suppp′0(a

′)σi

� ∀ (ν, j) ∶ domp0 ∩ [κν,j, κν,j+1) ≠ ∅ → (⋃σ,i a
σ
i ∩ [κν,j, κν,j+1)) ⊆ domp0 ,

∀ (ν, j) ∶ domp′0 ∩ [κν,j, κν,j+1) ≠ ∅ → (⋃σ,i (a
′)σi ∩ [κν,j, κν,j+1)) ⊆ domp′0

� suppp1 = suppp′1

� ∀σ ∈ suppp1 = suppp′1 ∶ domp1(σ) = domp′1(σ).

We will now describe how p0 and p′0 can be constructed. First, we need a set supp0 ∶=
suppp0 = suppp′0. Consider

s ∶= sup{κσ ∣ σ ∈ Lim , ∃ i < ασ ∶ (σ, i) ∈ suppp0 ∪ suppp′0}.

Then by closure of the sequence (κσ ∣ 0 < σ < γ), it follows that s = κγ for some γ ≤ γ.
If γ = γ, then cf κγ = ω and we can take ((σk, lk) ∣ k < ω) with σk ∈ Lim, lk < ασk for all
k < ω such that (κσk ∣ k < ω) is co�nal in κγ, and (σk, lk) ∉ suppp0 ∪ suppp′0 for all k < ω.
Let

supp0 ∶= suppp0 ∶= suppp′0 ∶= suppp0 ∪ suppp′0 ∪ {(σk, lk) ∣ k < ω}.

If γ < γ, we can set σk ∶= γ ∈ Lim for all k < ω and take (lk ∣ k < ω) such that lk < ασk with
(σk, lk) = (γ, lk) ∉ suppp0 ∪ suppp′0 for all k < ω. Let

supp0 ∶= suppp0 ∶= suppp′0 ∶= suppp0 ∪ suppp′0 ∪ {(σk, lk) ∣ k < ω}

as before.
The next step is to de�ne the linking ordinals. Take a set X ⊆ κγ such that for all intervals
[κν,j, κν,j+1) ⊆ κγ, it follows that ∣X ∩ [κν,j, κν,j+1)∣ = ℵ0; and X ∩ (⋃(σ,i)∈suppp0 a

σ
i ∪

⋃(σ,i)∈suppp′0(a
′)σi ) = ∅. Let

X ∶=X ∪ ⋃
σ,i

aσi ∪ ⋃
σ,i

(a′)σi .

Our aim is to construct p and p′ such that ⋃σ,i a
σ
i = ⋃σ,i (a

′)σi =X.

Consider an interval [κν,j, κν,j+1) ⊆ κγ. For every (σ, i) ∈ suppp0 with κσ > κν,j, we let
aσi ∩ [κν,j, κν,j+1) ∶= aσi ∩ [κν,j, κν,j+1).

De�ne
{ξk(ν, j) ∣ k < ω} ∶= (X ∩ [κν,j, κν,j+1)) ∖⋃

σ,i

aσi .
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This set has cardinality ℵ0 by construction of X.

Moreover, let

{ (σk(ν, j), lk(ν, j)) ∣ k < ω } =∶ {(σ, i) ∈ suppp0 ∖ suppp0 ∣ κσ > κν,j}.

This set also has cardinality ℵ0 by construction of suppp0 = supp0.

Now, for any k < ω, let

a
σk(ν,j)
lk(ν,j)

∩ [κν,j, κν,j+1) ∶= {ξk(ν, j)}.

Together with same construction for p′, we obtain the linking ordinals aσi , (a′)σi for
(σ, i) ∈ supp0 = suppp0 = supp(p′)0 such that the independence property holds, and

⋃σ,i a
σ
i = ⋃σ,i(a

′)σi =X.

Next, we construct dom0 ∶= domp0 = dom(p′)0 ∶= ⋃ν,j[κν,j, δν,j) as follows: Consider an in-
terval [κν,j, κν,j+1) ⊆ κγ. In the case that domp0 ∩ [κν,j, κν,j+1) = dom(p′)0 ∩ [κν,j, κν,j+1) =
∅, let δν,j ∶= κν,j. Otherwise, take δν,j ∈ [κν,j, κν,j+1) such that (domp0 ∪ domp′0 ∪ X) ∩
[κν,j, κν,j+1) ⊆ [κν,j, δν,j). (This is possible since the set X ∩ [κν,j, κν,j+1) is countable, and
any κν,j+1 is a successor cardinal.)
Let

dom0 ∶= domp0 ∶= domp′0 ∶=⋃
ν,j

[κν,j, δν,j).

This set is bounded below all regular κν, by construction, since domp0 and domp′0 are
bounded below all regular κν,.

Now, for (σ, i) ∈ suppp0, let p
σ
i ∶ dompσi → 2 on the corresponding domain with dompσi =

domp0 ∩ κσ, such that pσi ⊇ p
σ
i for all (σ, i) ∈ suppp0, and in the case that (σ, i) = (ηm, im)

for some m < ω, we additionally require that pηmim ⊇ (p′)ηmim . This is possible, since p′ ∈ G
and pηmim ∈ Gηm

im
, so pηmim and (p′)ηmim are compatible.

We de�ne p∗ on the according domain ⋃ν,j[κν,j, δν,j)2 such that p∗ ⊇ p∗, and the link-
ing property holds for p0 ≤ p0: Consider an interval [κν,j, κν,j+1) with δν,j > κν,j. For
ζ ∈ (domp0 ∖ domp0) ∩ [κν,j, κν,j+1) and {ξ} ∶= aσi ∩ [κν,j, κν,j+1) for some (σ, i) ∈ suppp0,
it follows by construction that ξ ∈ domp0. Let p∗(ξ, ζ) ∶= p

σ
i (ζ). For all ξ, ζ ∈ domp0 ∩

[κν,j, κν,j+1), we set p∗(ξ, ζ) ∶= p∗(ξ, ζ); and p∗(ξ, ζ) ∈ {0,1} arbitrary for the ξ, ζ ∈ domp0

remaining.

Concerning p′, we set (p′)ηmim = pηmim for all m < ω. Then (p′)ηmim ⊇ (p′)ηmim by construction.
For the (σ, i) ∈ supp(p′)0 = suppp0 remaining, we can set (p′)σi arbitrarily on the given
domain such that (p′)σi ⊇ (p′)σi .
Finally, we let (p′)∗ ⊇ (p′)∗ according to the linking property for p′0 ≤ p

′
0 (same construc-

tion as for p∗).

It follows that p0 ≤ p0 and p′0 ≤ p
′
0, and p0 and p′0 have all the required properties.

The construction of p1 ≤ p1 and p′1 ≤ p
′
1 is similar.

Our aim is to write down an isomorphism π ∈ A with the following properties:
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� p ∈Dπ with πp = p′,

� π ∈ ⋂m<ω Fix(ηm, im) ∩ ⋂m<ω Fix(ηm, im) ∩ ⋂m<ωH
λm
km

∩ ⋂m<ωH
λm
km

(then πX
Dπ

=X
Dπ

follows).

From p ⊩s β ∈ Ẋ, we will then obtain πp ⊩s β ∈ πX
Dπ
; hence, p′ ⊩s β ∈X

Dπ
. This will be

a contradiction towards p′ ⊩s β ∉ Ẋ.

We start with π0. Let domπ0 ∶= domp0 = domp′0, and suppπ0 ∶= suppp0 = suppp′0.

� Consider an interval [κν,j, κν,j+1). We de�ne Fπ0(ν, j) ∶ suppπ0(ν, j)→ suppπ0(ν, j)
as follows: Let Fπ0(ν, j)(σ, i) ∶= (λ, k) in the case that (a′)σi ∩ [κν,j, κν,j+1) = a

λ
k ∩

[κν,j, κν,j+1). This is well-de�ned by the independence property, and since we have
arranged ⋃σ,i a

σ
i = ⋃σ,i(a

′)σi .

� For every interval [κν,j, κν,j+1), let Gπ0(ν, j)(σ, i) = (σ, i) for all (σ, i) ∈ suppπ0(ν, j).

(These maps Gπ0(ν, j) will be the only parameters of π0 which are not deter-
mined by the requirement that π0p0 = p′0. However, in order to make sure that
π ∈ ⋂m<ω Fix(ηm, im) ∩ ⋂m<ωH

λm
km

, we �rstly need Gπ0(ν, j)(ηm, im) = (ηm, im) for
all m < ω; and secondly, whenever m < ω and i ≤ km, we need that Gπ0(ν, j)(λm, i) =
(λm, i) for all κν,j above a certain κν,.)

� For ζ ∈ [κν,j, κν,j+1) ∩ domπ0, we de�ne π0(ζ) ∶ 2suppπ0(ν,j) → 2suppπ0(ν,j) as fol-
lows: For (ε(σ,i) ∣ (σ, i) ∈ suppπ0(ν, j)) ∈ 2suppπ0(ν,j) given, let π0(ζ)(ε(σ,i) ∣ (σ, i) ∈

suppπ(ν, j)) ∶= (ε̃(σ,i) ∣ (σ, i) ∈ suppπ0(ν, j)) such that ε̃(σ,i) = ε(σ,i) whenever
pσi (ζ) = (p′)σi (ζ), and ε̃(σ,i) ≠ ε(σ,i) in the case that pσi (ζ) ≠ (p′)σi (ζ).

� Let now ζ ∈ domπ0 ∩ [κν,j, κν,j+1), and

(ξσi (ν, j) ∣ (σ, i) ∈ suppπ0(ν, j)) ∈ domπ0(ν, j)
suppπ0(ν,j).

The map π∗(ζ)(ξσi (ν, j) ∣ (σ, i) ∈ suppπ0(ν, j)) ∶ 2suppπ0(ν,j) → 2suppπ0(ν,j) is de�ned

as follows: A sequence (ε(σ,i) ∣ (σ, i) ∈ suppπ0(ν, j)) is mapped to (ε̃(σ,i) ∣ (σ, i) ∈

suppπ0(ν, j)) with ε̃(σ,i) = ε(σ,i) if p∗(ξ
σ
i (ν, j), ζ) = p

′
∗(ξ

σ
i (ν, j), ζ), and ε̃(σ,i) ≠ ε(σ,i) in

the case that p∗(ξ
σ
i (ν, j), ζ) ≠ p

′
∗(ξ

σ
i (ν, j), ζ).

� For (ξ, ζ) ∈ [κν,j, κν,j+1)2, the map π∗(ξ, ζ) ∶ 2 → 2 is de�ned as follows: We let
π∗(ξ, ζ) = id in the case that (ξ, ζ) ∉ (domπ0(ν, j))2. If ξ, ζ ∈ domπ0(ν, j), let
π∗(ξ, ζ) = id if p∗(ξ, ζ) = p

′
∗(ξ, ζ), and π∗(ξ, ζ) ≠ id in the case that p∗(ξ, ζ) ≠ p

′
∗(ξ, ζ).

This de�nes π0. Directly by construction, it follows that π0p0 = p
′
0: Let

π0p0 =∶ ((πp)∗, ((πp)
σ
i , (πa)

σ
i )σ,i, (πp

σ)σ).

Then for any (σ, i) ∈ supp(π0p0) = suppp0 and κν,j < κσ, we have (πa)σi ∩ [κν,j, κν,j+1) =
aλk ∩ [κν,j, κν,j+1), where (λ, k) = Fπ0(ν, j)(σ, i); hence, a

λ
k ∩ [κν,j, κν,j+1) = (a′)σi ∩ [κν,j, κν,j+1)

as desired.
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For any ζ ∈ domp0, it follows by de�nition of π0(ζ) that ((πp)σi (ζ) ∣ (σ, i) ∈ suppπ0(ν, j)) =

((p′)σi (ζ) ∣ (σ, i) ∈ suppπ0(ν, j)), and similarly, (πp)∗(ξ, ζ) = p′∗(ξ, ζ) for all (ξ, ζ) ∈
dom(πp)∗ = domp∗.
Hence, π0p0 = p

′
0.

It remains to verify that π ∈ ⋂mFix(ηm, im) ∩ ⋂mH
λm
km

. Consider a condition r ∈ Dπ0

and let r′ ∶= π0r. Take an interval [κν,j, κν,j+1) ⊆ κγ. Then for any m < ω with
(ηm, im) ∈ suppπ0(ν, j) and ζ ∈ domπ0(ν, j), it follows that (r′)ηmim (ζ) = rηmim (ζ) by con-
struction of the map π0(ζ), since we have arranged p

ηm
im

(ζ) = (p′)ηmim (ζ). In the case that
ζ ∈ [κν,j, κν,j+1) with ζ ∈ dom r0 ∖ domπ0, it follows for m < ω that (r′)ηmim (ζ) = rλk(ζ),
where (λ, k) = Gπ0(ν, j)(ηm, im) = (ηm, im) as desired. Hence, (r′)ηmim = rηmim for all m < ω.
Since r ∈Dπ0 was arbitrary, it follows that π0 ∈ ⋂m<ω Fix(ηm, im).

Similarly, π0 ∈ ⋂mH
λm
km

follows from the fact thatGπ0(ν, j) = id for all intervals [κν,j, κν,j+1) ⊆
κγ.

Now, we turn to the map π1.

Let suppπ1 ∶= suppp1 = suppp′1, and domπ1(σ) ∶= domp1(σ) = domp′1(σ) for σ ∈ suppπ1.
We set suppπ1(σ) ∶= ∅ for all σ ∈ suppπ1. Then we only have to de�ne maps π1(σ)(i, ζ) ∶
2→ 2 for σ ∈ suppπ, (i, ζ) ∈ domπ1(σ): Let π1(σ)(i, ζ) = id if p(σ)(i, ζ) = p

′(σ)(i, ζ), and
π1(σ) ≠ id in the case that p(σ)(i, ζ) ≠ p′(σ)(i, ζ).

Clearly, π1p1 = p
′
1. Moreover, π ∈ ⋂mFix(ηm, im): Let m < ω and r ∈Dπ1 with ηm ∈ supp r

and im ∈ domx r(ηm). In the case that ηm ∈ suppπ1, it follows for any ζ ∈ domy r(ηm)
that (πr)(ηm)(im, ζ) = π1(ηm)(im, ζ)(r(ηm)(im, ζ)) = r(ηm)(im, ζ) by construction of π1,

since we have arranged that p′(ηm)(im, ζ) = p(ηm)(im, ζ) whenever (im, ζ) ∈ domp(ηm) =
domp′(ηm) = domπ1(ηm). If ηm ∉ suppπ1, then (πr)(ηm) = r(ηm) by construction.

Finally, π ∈ ⋂mH
λm
km

follows from the fact that suppπ1(λ) = 0 for all λ ∈ suppπ1.

Hence, the map π has all the desired properties.

This �nishes the proof of X =X ′, and

X =X ′ ∈ V [ ∏
m<ω

Gηm
im

× ∏
m<ω

G
ηm
im

]

follows.

It is not di�cult to see that with the exception of the maps Gπ0(ν, j), all the parameters
describing π are given by the requirement that πp = p′. We call an isomorphism π ∈ A of
this form a standard isomorphism for πp = p′.

With the same proofs as for Lemma 2.3.2 and 2.3.3, one can show:

Lemma 2.5.3. Let ((σm, im) ∣ m < ω), ((σm, im) ∣ m < ω) with σm ∈ Lim, im < ασm,
and σm ∈ Succ, im < ασm for all m < ω. Then ∏m<ω P

σm × ∏m<ω P
σm preserves cardinals,

co�nalities and the GCH.

Hence, the Approximation Lemma 2.5.2 implies:
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Corollary 2.5.4. Cardinals and co�nalities are V -N-absolute.

We will now take a closer look at the intermediate generic extensions introduced in the
Approximation Lemma 2.5.2. Firstly, we replace the generic �lters Gσm

im
by G∗(g

σm
im

), and
secondly, we factor at κη (or κη+1).

De�nition 2.5.5. For 0 < η < γ, we say that ((am)m<ω, (σm, im)m<ω) is an η-good pair if
the following hold:

� (am ∣ m < ω) is a sequence of pairwise disjoint κη-subsets, such that for all m < ω
and κν, < κη, it follows that ∣am ∩ [κν,, κν,+1)∣ = 1,

� for all m < ω, we have σm ∈ Succ with σm ≤ η, im < ασm ,

� if m ≠m′, then (σm, im) ≠ (σm′ , im′).

As in Lemma 2.3.9 and 2.3.10, it follows that for any η-good pair ((am)m<ω, (σm, im)m<ω),

∏
m<ω

G∗(am) × ∏
m<ω

Gσm
im

is a V -generic �lter on ∏m<ω(P
η
)ω × ∏m<ω P

σm .

Proposition 2.5.6. Let 0 < η < γ and X ∈ N with X ⊆ κη. If κη+1 > κ+η (or κη = κγ with
γ = γ + 1), it follows that there is an η-good pair ((am)m<ω, (σm, im)m<ω) with

X ∈ V [ ∏
m<ω

G∗(am) × ∏
m<ω

Gσm
im

].

Proof. By the Approximation Lemma 2.5.2, there are sequences ((σm, im) ∣ m < ω),
((σm, im) ∣ m < ω) of pairwise distinct pairs with σm ∈ Lim, im < ασm ; σm ∈ Succ,
im < ασm for all m < ω, such that

X ∈ V [ ∏
m<ω

Gσm
im

× ∏
m<ω

Gσm
im

].

The sequence of linking ordinals (gσmim ∣ m < ω) is contained in V , and by the linking
property, it follows that V [∏m<ωG

σm
im

] = V [∏m<ωG∗(g
σm
im

)].
Hence,

X ∈ V [ ∏
m<ω

G∗(g
σm
im

) × ∏
m<ω

Gσm
im

].

The forcing ∏m<ω P
σm × ∏m<ω P

σm can be factored as

( ∏
m<ω

P σm ↾κη × ∏
σm≤η

P σm) × ( ∏
m<ω

P σm ↾ [κη, κσm) × ∏
σm>η

P σm),

where the �lower part� has cardinality ≤ κ+η by the GCH in V , and the �upper part� is
≤ κ+η -closed: If κη+1 is a limit cardinal, this follows from the fact that κη,j+1 ≥ κ++η,j for all
j < cf κη+1 by construction (in particular, κη,1 ≥ κ++η ); and if κη+1 is a successor cardinal,
we use our assumption that κη+1 > κ+η . Hence,

X ∈ V [ ∏
m<ω

G∗(g
σm
im

∩ κη) × ∏
σm≤η

Gσm
im

].
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Setting am ∶= gσmim ∩ κη for m < ω, it follows by the independence property that

((am)m<ω, (σm, im)m<ω ,σm≤η)

is an η-good pair with
X ∈ V [∏

m<ω
G∗(am) × ∏

σm≤η
Gσm
im

].

In the case that κη+1 = κ+η , we use our notion of an η-almost good pair, which is de�ned like

an η-good pair, with the exception that for an η-almost good pair ((am)m<ω, (σm, im)m<ω),
we have am ⊆ κη+1 for all m < ω.

De�nition 2.5.7. For 0 < η < γ with κη+1 = κ+η , we say that ((am)m<ω, (σm, im)m<ω) is an
η-almost good pair if the following hold:

� (am ∣ m < ω) is a sequence of pairwise disjoint κη+1-subsets, such that for all m < ω
and κν, < κη+1, it follows that ∣am ∩ [κν,, κν,+1)∣ = 1,

� for all m, we have σm ∈ Succ with σm ≤ η, and im < ασm ,

� if m ≠m′, then (σm, im) ≠ (σm′ , im′).

The counterpart of Proposition 2.5.6 states:

Proposition 2.5.8. Let 0 < η < γ and X ∈ N with X ⊆ κη. In the case that κη+1 = κ+η ,
there is an η-almost good pair ((am)m<ω, (σm, im)m<ω) with

X ∈ V [ ∏
m<ω

G∗(am) × ∏
m<ω

Gσm
im

× Gη+1].

Proof. We follow the proof of Proposition 2.5.6 with a slightly di�erent factorization: Let

X ∈ V [ ∏
m<ω

G∗(g
σm
im

) × ∏
m<ω

Gσm
im

]

as before with σm ∈ Lim, im < ασm ; σm ∈ Succ, im < ασm for all m < ω. The forcing

∏m<ω P
σm
im

× ∏m<ω P
σm
im

can be factored as

( ∏
m<ω

P σm ↾κη+1 × ∏
σm≤η+1

P σm) × ( ∏
m<ω

P σm ↾ [κη+1, κσm) × ∏
σm>η+1

P σm),

where the �lower part� has cardinality ≤ κη+1 by the GCH in V (since κη+1 = κ+η), and the
�upper part� is ≤ κη+1-closed. Hence,

X ∈ V [ ∏
m<ω

G∗(g
σm
im

∩ κη+1) × ∏
σm≤η+1

Gσm
im

] ⊆ V [ ∏
m<ω

G∗(g
σm
im

∩ κη+1) × ∏
σm≤η

Gσm
im

× Gη+1].

With am ∶= gσmim ∩κη+1 form < ω, it follows that ((am)m<ω, (σm, im)m<ω ,σm≤η) is an η-almost
good pair with

X ∈ V [∏
m<ω

G∗(am) × ∏
σm≤η

Gσm
im

× Gη+1]

as desired.
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2.6 ∀η θN(κη) = αη
It remains to make sure that in our ZF-model N , the values θN(κη) are as desired. Firstly,
in Chapter 2.6.1, 2.6.2 and 2.6.3, we will show that θN(κη) = αη holds for all 0 < η < γ.
After that, in Chapter 2.6.4 and 2.6.5, we will see that for any cardinal λ ∈ (κη, κη+1) in
a �gap�, or λ ≥ κγ = sup{κη ∣ 0 < η < γ}, the value θN(λ) is the smallest possible.
By our remarks from Chapter 2.2, this justi�es our assumption from the beginning that
the sequence (αη ∣ 0 < η < γ) is strictly increasing.

2.6.1 ∀η θN(κη) ≥ αη
Using the subgroups Hη

k , it is not di�cult to see that for all k < αη, there exists in N a
surjection s ∶ ℘(κη)→ k.

Proposition 2.6.1. Let 0 < η < γ. Then θN(κη) ≥ αη.

Proof. Let k < αη. We construct in N a surjection s ∶ ℘(κη) → k. As already outlined in
Chapter 2.4.2, we de�ne around each Gη

i with i < k a �cloud� as follows:

(G̃η
i )

(k)
∶= ( (

˙̃
Gη
i )

(k)
)
G

,

where

(
˙̃
Gη
i )

(k)
∶= { (πGη

i

Dπ
,1) ∣ [π] ∈Hη

k };

and we take the following canonical name for the i-th generic κη-subset:

Ġη
i ∶= { (a, p) ∣ p ∈ P , ∃ ζ < κη ∃ ε ∈ {0,1} ∶ a = ORP(ζ̌ , ε̌) ∧ p

η
i (ζ) = ε}.

Roughly speaking, (G̃η
i )

(k)
is the orbit of Gη

i under the A-subgroup H
η
k ; hence, its canon-

ical name (
˙̃
Gη
i )

(k)
is �xed by all automorphisms in Hη

k .

More precisely:

Let σ ∈ A with [σ] ∈Hη
k . Then

(G̃η
i )

(k)
Dσ

= { ( πGη
i

Dπ
Dσ

, p ) ∣ [π] ∈Hη
k , p ∈Dσ }.

Moreover, for all π,

πGη
i

Dπ
Dσ

= { ( aDσ , p ) ∣ p ∈Dσ , p ⊩s a ∈ πG
η
i

Dπ
, ∃ ζ < κη ∃ ε ∈ {0,1} ∶ a = ORP(ζ̌ , ε̌) },

since for any a = ORP(ζ̌ , ε̌) as above, it follows that πa
Dπ

Dσ
= aDπ

Dσ
= aDσ .

Now, it is not di�cult to see that p ∈ Dσ with p ⊩s a ∈ πG
η
i

Dπ
if and only if p ∈ Dσ and

for all q ≤ p with q ∈Dπ ∩ Dσ and ζ ∈ dom q0, it follows that (π−1q)ηi (ζ) = ε.

Also, σaDσ = aDσ holds for all σ.
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Hence,

σ πGη
i

Dπ
Dσ

= { ( σaDσ , σp ) ∣ p ∈Dσ , ∃ ζ < κη ∃ ε ∈ {0,1} a = ORP(ζ̌ , ε̌) ,

∀ q ∈Dπ ∩ Dσ ( (q ≤ p ∧ ζ ∈ dom q0)⇒ (π−1q)ηi (ζ) = ε ) }

= { ( aDσ , p ) ∣ p ∈Dσ , ∃ ζ < κη ∃ ε ∈ {0,1} a = ORP(ζ̌ , ε̌) ,

∀ q ∈Dπ ∩ Dσ ( (q ≤ p ∧ ζ ∈ dom q0)⇒ (π−1σ−1q)ηi (ζ) = ε ) }.

Setting τ ∶= σπ, it follows that

σπGη
i

Dπ
Dσ

= τGη
i

Dτ
Dσ

.

Now, any element of σ (G̃η
i )

(k)
Dσ

is of the form

( σπGη
i

Dπ
Dσ

, σp )

with [π] ∈Hη
k and p ∈Dσ. Since

( σπGη
i

Dπ
Dσ

, σp ) = ( τGη
i

Dτ
Dσ

, p ),

where τ ∶= σπ and p ∶= σp satisfy [τ] ∈Hη
k and p ∈Dσ, it follows that

( σπGη
i

Dπ
Dσ

, σp ) ∈ (
˙̃
Gη
i )

(k)
Dσ

.

Hence,

σ (G̃η
i )

(k)
Dσ

⊆ (G̃η
i )

(k)
Dσ

.

The inclusion �⊇� is similar.

Thus,

( (
˙̃
Gη
i )

(k)
∣ i < k ) ∶= { ( ORP ( ǐ, (

˙̃
Gη
i )

(k)
) , 1 ) ∣ i < k },

is a name for the sequence ((G̃η
i )

(k)
∣ i < k) that is stabilized by all σ with [σ] ∈ Hη

k .

Hence, ((G̃η
i )

(k)
∣ i < k) ∈ N .

Now, we can de�ne in N a surjection s ∶ ℘(κη) → k as follows: For X ∈ N , X ⊆ κη, let

s(X) ∶= i in the case that X ∈ (G̃η
i )

(k)
if such i exists, and s(x) ∶= 0, else.

The surjectivity of s is clear, since Gη
i ∈ N for all i < k with s(Gη

i ) = i. It remains to show

that s is well-de�ned; i.e. for any i, i′ < k with i ≠ i′, it follows that (G̃η
i )

(k)
∩ (G̃η

i′)
(k)

= ∅.

First, let η ∈ Lim, and take i, i′ < k with i ≠ i′.
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The point is that the automorphisms inHη
k do not permute the vertical lines P

η
i ↾ [κν,, κη)

and P η
i′ ↾ [κν,, κη) above some κν, < κη. Thus, the orbits of G

η
i and G

η
i′ under H

η
k must

be disjoint:

Assume towards a contradiction there was X ∈ (G̃η
i )

(k)
∩ (G̃η

i′)
(k)
. Then we have

(πGη
i

Dπ
)
G
= (τGη

i′
Dτ

)
G

for some π, τ with [π] ∈ Hη
k and [τ] ∈ Hη

k . Hence, (π−1G)ηi = (τ−1G)ηi′ . Take κν, < κη
such that for all κν,j ∈ [κν,, κη) and l < k, it follows that Gπ0(ν, j)(η, l) = (η, l) whenever
(η, l) ∈ suppπ0(ν, j), and Gτ0(ν, j)(η, l) = (η, l) whenever (η, l) ∈ supp τ0(ν, j).
By genericity, take q ∈ G with q ∈Dπ ∩Dτ such that there is ζ ∈ dom q∖(domπ0 ∩ dom τ0),
ζ ∈ [κν,, κη) with q

η
i (ζ) ≠ q

η
i′(ζ).

W.l.o.g., let qηi (ζ) = 1, qηi′(ζ) = 0. With r ∶= π−1q, r′ ∶= τ−1q, it follows by construction of
the isomorphism that rηi (ζ) = q

η
i (η) = 1 and (r′)ηi′(ζ) = q

η
i′(ζ) = 0, which would contradict

(π−1G)ηi = (τ−1G)ηi′ .

Hence, s ∶ ℘(κη)→ k is a well-de�ned surjection in N .

The case η ∈ Succ is similar.

2.6.2 ∀η (κη+1 > κ+η Ð→ θN(κη) ≤ αη )
Let 0 < η < γ. Throughout this Chapter 2.6.2, we assume that

κη+1 > κ+η.

Then Proposition 2.5.6 can be applied.

In Chapter 2.6.3, we discuss the case that κη+1 = κ+η , where the proof can be structured
the very same way; except that the intermediate generic extensions where the κη-subsets
in N are located are given by Proposition 2.5.8. Thus, we will have to take care of an
extra factor Gη+1 in our products describing these intermediate generic extensions, which
will lead to a couple of modi�cations. In Chapter 2.6.3, we take a brief look at each step
in the proof presented here, and go through the major changes.

Assume towards a contradiction that there was a surjective function f ∶ ℘(κη)→ αη in N .

Let f = ḟG with ḟ ∈ HS, such that πf
Dπ

= f
Dπ

holds for all π ∈ A with [π] contained in
the intersection

⋂
m<ω

Fix(ηm, im) ∩ ⋂
m<ω

Hλm
km

(Iḟ).

By Proposition 2.5.6, it follows that any X ∈ dom f is of the form

X = Ẋ
∏m<ωG∗(am)×∏m<ωGσmim ,

where ((am)m<ω, (σm, im)m<ω) is an η-good pair.
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Our proof will be structured as follows: We pick some β < αη large enough for the inter-
section (Iḟ) (we give a de�nition of this term on the next page) and consider a map fβ,
which will be obtained from f by restricting its domain to those X that are contained in
a generic extension

V [ ∏
m<ω

G∗(am) × ∏
m<ω

Gσm
im

]

for an η-good pair ((am)m<ω, (σm, im)m<ω) such that im < β for all m < ω.
We wonder if this restricted function fβ could still be surjective onto αη.

The main steps of our proof can be outlined as follows:

First, we assume that also fβ ∶ dom fβ → αη was surjective onto αη.

A) We de�ne a forcing notion Pβ ↾ (η+1), which will be obtained from P by essentially
�cutting o� � at height η + 1 and width β. We show that there is a projection of
forcing posets ρβ ∶ P → Pβ ↾ (η + 1). Then the V -generic �lter G on P induces a
V -generic �lter Gβ ↾ (η + 1) on Pβ ↾ (η + 1).

B) We show that fβ is contained in an intermediate generic extension similar to V [Gβ ↾
(η + 1)].

C) We prove that the forcing Pβ ↾ (η + 1) preserves cardinals ≥ αη.

D) We construct in V [Gβ ↾ (η+1)] a set ℘̃(κη) ⊇ dom fβ with an injection ι ∶ ℘̃(κη)↪ β.

Then D) together with B) and C) gives the desired contradiction.

Hence, fβ ∶ dom fβ → αη must not be surjective.

E) We consider α < αη with α ∈ rg f ∖ rg fβ, and use an isomorphism argument to
obtain a contradiction, again.

We see that either case, whether fβ was surjective or not, leads into a contradiction.
Thus, our initial assumption must be wrong, and we can �nally conclude:

There is no surjective function f ∶ ℘(κη)→ αη.

Before we start with Chapter 2.6.2 A), we �rst de�ne our term large enough for the
intersection (Iḟ):

De�nition 2.6.2. A limit ordinal β̃ < αη is large enough for the intersection (Iḟ) if the
following hold:

� β̃ > κ+η

� β̃ > sup{im ∣ ηm ≤ η}

� β̃ > sup{km ∣ λm ≤ η}
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(We use that αη ≥ κ++η , and cf αη > ω.)

Fix a limit ordinal β̃ < αη large enough for the intersection (Iḟ), and let β ∶= β̃ + κ+η
(addition of ordinals).

The restriction fβ is de�ned as follows:

De�nition 2.6.3.

fβ ∶= { (X,α) ∈ f ∣ ∃ ((am)m<ω, (σm, im)m<ω) η-good pair ∶

(∀m im < β) ∧ ∃ Ẋ ∈ Name ((P
η
)ω × ∏

m<ω
P σm) X = Ẋ

∏m<ωG∗(am)×∏m<ωGσmim }.

First, we assume towards a contradiction that fβ ∶ domfβ → αη is surjective.

A) Constructing Pβ ↾ (η + 1).

Our aim is to construct a forcing notion Pβ ↾ (η+1) that is obtained from P by essentially
�cutting o�� at height η and width β; i.e. only the cardinals κσ for σ ≤ η should be
considered, and for any such κσ, we add at most β-many new κσ-subsets Gσ

i .
Regarding our V -generic �lter G on P, we need that the restriction Gβ ↾ (η + 1) ∶= G ↾
(Pβ ↾ (η + 1)) is a V -generic �lter on Pβ ↾ (η + 1), which will be guaranteed by making
sure that the canonical map ρβ ∶ P→ Pβ ↾ (η+1), p↦ pβ ↾ (η+1) is a projection of forcing
posets.

A �rst attempt to de�ne Pβ ↾ (η + 1) could be the following:

For p ∈ P, let

pβ ↾(η + 1) = (p∗ ↾κ
2
η, (p

σ
i , a

σ
i )σ≤η,i<min{ασ ,β}, (p

σ ↾ (min{ασ, β} × domy p
σ)σ≤η)

denote the canonical restriction; and set

Pβ ↾ (η + 1) ∶= {pβ ↾ (η + 1) ∣ p ∈ P}.

But then, Gβ ↾ (η + 1) ∶= {pβ ↾ (η + 1) ∣ p ∈ G} would not be a V -generic �lter on
Pβ ↾ (η + 1): Consider a linking ordinal ξ ∈ gσ

i
for some (σ, i), such that η < σ < γ, i < ασ

holds; or σ ≤ η, β ≤ i < ασ. The set D ∶= {p ∈ Pβ ↾ (η + 1) ∣ ξ ∈ ⋃σ≤η,i<β a
σ
i } is dense in

Pβ ↾ (η + 1); but D ∩ Gβ ↾ (η + 1) = ∅ by the independence property. Hence, Gβ ↾ (η + 1)
can not be a V -generic �lter on Pβ ↾ (η + 1).

This shows that the conditions in Pβ ↾ (η + 1) should contain some information about
which linking ordinals are �forbidden� for ⋃σ≤η,i<β a

σ
i , being already occupied by some

index (σ, i) with σ > η or i ≥ β.
Thus, for p ∈ P, we add to pβ ↾ (η + 1) a new coordinate Xp, which is essentially the
union of all aσi ∩ κη for σ > η or i ≥ β. Then Xp is a subset of κη that hits any interval
[κν,j, κν,j+1) in at most countably many points.
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Let η̃ ∶= sup{σ < η ∣ σ ∈ Lim}. By closure of the sequence (κσ ∣ 0 < σ < γ), it follows that
η̃ ∈ Lim with η̃ = max{σ ≤ η ∣ η ∈ Lim}, and κη̃ = sup{κσ ∣ σ ∈ Lim , σ < η̃}.

W.l.o.g. we restrict to the case that

β < αη̃ or Lim ∩ (η,γ) ≠ ∅ ;

which is the same as requiring that there exist coordinates (σ, i) with σ ∈ Lim, and σ > η
or i ≥ β. (Otherwise, the forcing Pβ ↾ (η + 1) already contains all coordinates (σ, i) with
σ ∈ Lim, and there are no �forbidden� linking ordinals. In that case, we can indeed set
Pβ ↾ (η + 1) ∶= { (p∗ ↾ κ2

η, (p
σ
i , a

σ
i )σ≤η,i<β, (p

σ ↾ (β × domy pσ))σ≤η) ∣ p ∈ P}, and obtain that
Gβ ↾ (η + 1) is a V -generic �lter on Pβ ↾ (η + 1). )

For a condition p ∈ P, let

Xp ∶=⋃{ aσi ∩ κη̃ ∣ σ ∈ Lim with (σ > η or i ≥ β) } ,

and
pβ ↾ (η + 1) ∶= (p∗ ↾ κ

2
η, (p

σ
i , a

σ
i )σ≤η̃,i<β, (p

σ ↾ (β × domy p
σ))σ≤η,Xp ).

For reasons of homogeneity, we include into Pβ ↾ (η +1) only those conditions pβ ↾ (η +1)
for which the set Xp hits every interval [κν,j, κν,j+1) ⊆ κη̃ in countably many points, which
is the same as requiring ∣{(σ, i) ∈ suppp0 ∣ σ > η̃ or i ≥ β}∣ = ℵ0.

De�nition 2.6.4. Pβ ↾ (η + 1) ∶=

{ pβ ↾ (η + 1) ∣ p ∈ P , ∣{(σ, i) ∈ suppp0 ∣ σ > η or i ≥ β}∣ = ℵ0 } ∪ {1βη+1},

with 1βη+1 as the maximal element.

For conditions pβ ↾ (η + 1), qβ ↾ (η + 1) in Pβ ↾ (η + 1) ∖ {1βη+1}, let q
β ↾ (η + 1) ≤βη+1

pβ ↾ (η + 1) if Xq ⊇ Xp, and (q∗ ↾ κ2
η, (q

σ
i , b

σ
i )σ≤η,i<β, (q

σ ↾ (β × domy qσ)σ≤η) ≤ (p∗ ↾

κ2
η, (p

σ
i , a

σ
i )σ≤η,i<β, (p

σ ↾ (β × domy pσ)σ≤η) regarded as conditions in P.

In other words: Pβ ↾ (η + 1) is the collection of all (p∗, (pσi , a
σ
i )σ≤η,i<β, (p

σ)σ≤η,Xp) such
that

� p ∶= (p∗, (pσi , a
σ
i )σ≤η,i<β, (p

σ)σ≤η) is a condition in P with domp0 ⊆ κη, suppp0 ⊆
{(σ, i) ∣ σ ≤ η, i < β}, and suppp1 ⊆ η + 1 with ∀σ ∈ suppp1 ∶ domx pσ ⊆ β,

� Xp ⊆ κη̃ with ∀[κν,j, κν,j+1) ⊆ κη̃ ∣Xp ∩ [κν,j, κν,j+1)∣ = ℵ0, and Xp ∩ ⋃σ≤η , i<β a
σ
i = ∅.

For p, q ∈ P with q ≤ p and ∣{(σ, i) ∈ suppp0 ∣ σ > η or i ≥ β}∣ = ℵ0, it follows that
qβ ↾ (η + 1) ≤ pβ ↾ (η + 1).

De�nition 2.6.5.

Gβ ↾ (η + 1) ∶= {p ∈ Pβ ↾ (η + 1) ∣ ∃p ∈ G ∶ ∣{(σ, i) ∈ suppp0 ∣ σ > η or i ≥ β}∣ = ℵ0 ,

pβ ↾ (η + 1) ≤βη+1 p}.
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We will now show that Gβ ↾ (η + 1) is a V -generic �lter on Pβ ↾ (η + 1).

Let P ⊆ P denote the collection of all p ∈ P with the property that ∣ {(σ, i) ∈ suppp0 ∣ σ >
η ∨ i ≥ β} ∣ = ℵ0, together with the maximal element 1. Then P is a dense subforcing of P.

Proposition 2.6.6. The map ρβ ∶ P → Pβ ↾ (η + 1) with p ↦ pβ ↾ (η + 1) in the case that
∣ {(σ, i) ∈ suppp0 ∣ σ > η ∨ i ≥ β} ∣ = ℵ0, and 1↦ 1

β
η+1, is a projection of forcing posets:

� ρβ(1) = 1βη+1 ,

� if p, q ∈ P with q ≤ p, it follows that ρβ(q) ≤βη+1 ρ
β(p) ,

� for any p ∈ P and q ∈ Pβ ↾ (η + 1) with q ≤βη+1 ρ
β(p), there exists q ∈ P such that q ≤ p

and ρβ(q) ≤ q.

Hence, Gβ ↾(η + 1) is a V -generic �lter on Pβ ↾ (η + 1).

Proof. Clearly, the map ρβ as de�ned above is order-preserving with ρβ(1) = 1βη+1. Con-

sider p = (p∗, (p
σ
i , a

σ
i )σ,i, (p

σ)σ) ∈ P and q = (q∗ ↾ κ2
η, (q

σ
i , b

σ
i )σ≤η,i<β, (q

σ)σ≤η,Xq) ∈ Pβ ↾

(η + 1) with q ≤βη+1 ρ
β(p) = pβ ↾ (η + 1). Then

(q∗ ↾ κ
2
η, (q

σ
i , a

σ
i )σ≤η,i<β) ≤0 (p∗ ↾ κ

2
η, (p

σ
i , a

σ
i )σ≤η,i<β) in P0 ,

(qσ)σ≤η ≤1 (pσ ↾ (β × domy p
σ))σ≤η in P1 , and

Xq ⊇ ⋃{aσi ∩ κη̃ ∣ σ > η ∨ i ≥ β}.

We have to construct q ∈ P, q = (q∗, (q
σ
i , b

σ

i )σ,i, (q
σ)σ), with q ≤ p and ρβ(q) = qβ ↾

(η + 1) ≤βη+1 q.

We start with q0:

� In order to achieve Xq ⊇ Xq, we will enlarge suppp0 ∪ supp q0 by countably many
((η̂,mk) ∣ k < ω), where η̂ > η or mk ≥ β for all k < ω, and arrange that any

ξ ∈Xq ∖Xp occurs as a linking ordinal in some b
η̂

mk
.

More precisely: Let supp q0 ∶= suppp0 ∪ supp q0 ∪ supp∗, where supp∗ ∶= {(η̂,mk) ∣ k <
ω} such that (η̂,mk) ∉ suppp0 ∪ supp q0 for all k < ω, and since we are working in
the case that β < αη̃ or (η, γ) ∩ Lim ≠ ∅, we can take either η̂ ∶= η̃ and mk ∈ (β,αη̃)
for all k < ω; or η̂ ∈ (η, γ) ∩ Lim. Then for all (η̂,mk), it follows that η̂ > η or
mk ≥ β.

� Next, we de�ne the linking ordinals b
σ

i for (σ, i) ∈ supp q0 such that Xq ⊇Xq.

For (σ, i) ∈ supp q0, we let b
σ

i ∶= b
σ
i ⊇ a

σ
i ; and in the case that (σ, i) ∈ suppp0∖supp q0,

we set b
σ

i ∶= a
σ
i . Finally, we de�ne (b

η̂

mk
∣ k < ω) with the following properties:

� as usual, every b
η̂

mk
is a subset of κη̂ that hits every interval [κν,j, κν,j+1) ⊆ κη̂

in exactly one point ,
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� ⋃{b
η̂

mk
∩ κη̃ ∣ k < ω} ⊇Xq ∖Xp ,

� b
η̂

mk
∩ bσ

i
= ∅ for all k < ω and (σ, i) ∈ supp q0 ,

� b
η̂

mk
∩ aσ

i
= ∅ for all k < ω and (σ, i) ∈ suppp0 ∖ supp q0

(since q ≤βη+1 p
β ↾ (η + 1), it follows that in this case, σ > η or i ≥ β) ,

� b
η̂

mk
∩ b

η̂

mk′ = ∅ whenever k ≠ k′.

This is possible, since Xq ∩ bσ
i
= ∅ for any (σ, i) ∈ supp q by construction of Pβ ↾

(η + 1); and whenever (σ, i) ∈ suppp0 ∖ supp q0, then σ > η or i ≥ β implies aσ
i
⊆Xp;

thus (Xq ∖Xp) ∩ a
σ
i
= ∅.

� We now de�ne dom q0. For any interval [κν,j, κν,j+1) ⊆ κη, take δν,j ∈ [κν,j, κν,j+1)
as follows: In the case that dom q0 ∩ [κν,j, κν,j+1) = ∅, let δν,j ∶= κν,j. If dom q0 ∩

[κν,j, κν,j+1) ≠ ∅, we take δν,j ∈ (κν,j, κν,j+1) such that ⋃{b
σ

i ∣ (σ, i) ∈ supp q0} ∩
[κν,j, κν,j+1) ⊆ [κν,j, δν,j) and dom q0 ∩ [κν,j, κν,j+1) ⊆ [κν,j, δν,j). Since dom q0 is
bounded below all regular cardinals κν,, this is also true for ⋃{ [κν,j, δν,j) ∣ κν,j < κη }.
Let

dom q0 ∩ κη ∶=⋃{ [κν,j, δν,j) ∣ κν,j < κη },

and dom q0 ∩ [κη, κγ) ∶= domp0 ∩ [κη, κγ).

� We take q∗ ↾ κ
2
η ⊇ q∗ ↾ κ

2
η arbitrary on the given domain; and q∗ ↾ [κη, κγ)2 ∶= p∗ ↾

[κη, κγ)2.

� It remains to de�ne qσi for (σ, i) ∈ supp q0.

For (σ, i) ∈ supp q0, we de�ne qσi ⊇ qσi on the given domain ⋃κν,j<κσ[κν,j, δν,j) ac-
cording to the linking property : Consider an interval [κν,j, κν,j+1) with δν,j > κν,j.
For any ζ ∈ (dom q0 ∖ dom q0) ∩ [κν,j, κν,j+1), set q

σ
i (ζ) ∶= q∗(ξ, ζ), where {ξ} ∶=

bσi ∩ [κν,j, κν,j+1) = b
σ

i ∩ [κν,j, κν,j+1). (Note that ξ ∈ dom q0 by construction).
For (σ, i) ∈ suppp0 ∖ supp q0, we set qσi ↾ [κη, κγ) ∶= pσi ↾ [κη, κγ), and de�ne
qσi ↾ κη ⊇ pσi ↾ κη on the given domain according to the linking property as be-
fore.
Finally, q η̂mk for k < ω can be arbitrary on the given domain.

Then q0 = (q∗, (q
σ
i , b

σ

i )σ,i) is a condition in P0. In particular, the independence property

holds for the linking ordinals b
σ

i : Firstly, by construction of (b
η̂

mk
∣ k < ω), it follows that

b
η̂

mk
∩ b

σ

i = ∅ for any (σ, i) ∈ supp q0 ∪ suppp0. Secondly, whenever (σ0, i0) ∈ supp q0

and (σ1, i1) ∈ suppp0 ∖ supp q0, then σ1 > η or i1 ≥ β; hence, b
σ1
i1 = aσ1i1 ⊆ Xp ⊆ Xq. Since

b
σ0
i0 ∩ Xq = b

σ0
i0
∩ Xq = ∅, this implies b

σ0
i0 ∩ b

σ1
i1 = ∅ as desired. Thus, the independence

property holds for q0.

Moreover, (ρβ(q))0 = (q∗ ↾ κ
2
η, (q

σ
i , b

σ

i )σ≤η,i<β,Xq) ≤ q0 by construction; in particular,

Xq ⊆ Xq: Consider ξ ∈ Xq. In the case that ξ ∈ Xp, it follows that ξ ∈ aσ
i
for some

(σ, i) ∈ suppp0 with σ > η, or i ≥ β. Then (σ, i) ∈ suppp0 ∖ supp q0; hence, b
σ

i = a
σ
i
, and it
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follows that ξ ∈ b
σ

i ⊆Xq as desired. In the case that ξ ∈Xq ∖Xp, we have ξ ∈ b
η̂

mk
for some

k < ω; so again, ξ ∈Xq as desired.

Finally, q0 ≤ p0 by construction; and it follows that q0 has all the desired properties.

The construction of q1 is similar. Thus, the map ρβ ∶ P → Pβ ↾ (η + 1) as de�ned above,
is indeed a projection of forcing posets.

It follows that Gβ ↾ (η+1) is a V -generic �lter on Pβ ↾ (η+1): For genericity, consider an
open dense setD ⊆ Pβ ↾ (η+1). It su�ces to show that the setD ∶= {p ∈ P ∣ pβ ↾ (η+1) ∈D}
is dense in P. Take a condition p ∈ P, and let p ≤ p with p ∈ P. Since D ⊆ Pβ ↾ (η + 1) is
dense, there exists q ∈ Pβ ↾ (η + 1) with q ≤βη+1 p

β ↾ (η + 1). By what we have just shown,

we there exists q ≤ p with qβ ↾ (η+1) ≤ q. Then q is an extension of p in D as desired.

B) Capturing fβ.

In this section, we will show that the map fβ is contained in a generic extension similar
to V [Gβ ↾ (η + 1)].

Recall that we are working in the case that κη+1 > κ+η, and β < αη̃ or (η̃, γ) ∩ Lim ≠ ∅,
where η̃ ∶= max{σ < η ∣ σ ∈ Lim}.

Recall that any X ∈ dom f is of the form

X = Ẋ
∏m<ωG∗(am)×∏m<ωGσmim ,

where Ẋ ∈ Name((P
η
)ω) × ∏m<ω P

σm
im

) and ((am)m<ω, (σm, im)m<ω) is an η-good pair.

Moreover,
fβ ∶= { (X,α) ∈ f ∣ ∃ ((am)m<ω, (σm, im)m<ω) η-good pair ∶

(∀m im < β ) ∧ ∃ Ẋ ∈ Name ((P
η
)ω × ∏

m<ω
P σm) X = Ẋ

∏m<ωG∗(am)×∏m<ωGσmim }.

Fix an η-good pair % = ((am)m<ω, (σm, im)m<ω). We use recursion over the Name((P
η
)ω

× ∏m<ω P
σm)-hierarchy to de�ne a map τ% ∶ Name((P

η
)ω × ∏m<ω P

σm) → Name(P) that

maps any name Ẏ ∈ Name((P
η
)ω × ∏m<ω P

σm) to a name τ%(Ẏ ) ∈ Name(P) such that

Ẏ
∏m<ωG∗(am)×∏m<ωGσmim = (τ%(Ẏ ))G.

De�nition 2.6.7. For an η-good pair % = ((am)m<ω, (σm, im)m<ω), we de�ne recursively

for Ẏ ∈ Name((P
η
)ω × ∏m<ω P

σm):

τ%(Ẏ ) ∶= { (τ%(Ż), q) ∣ q ∈ P , ∃ ( Ż , ((p∗(am))m<ω , (p
σm
im

)m<ω) ) ∈ Ẏ ∶

∀m ( q∗(am) ⊇ p∗(am) , qσm
im

⊇ pσm
im

) }.

It is not di�cult to check that indeed, Ẏ
∏m<ωG∗(am)×∏m<ωGσmim = (τ%(Ẏ ))G holds for all

Ẏ ∈ Name((P
η
)ω × ∏m<ω P

σm).
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Now, we de�ne a map (fβ)′ ⊇ fβ, which is contained in an intermediate generic extension
similar to V [Gβ ↾ (η + 1)]. We will then use an isomorphism argument to show that
actually, (fβ)′ = fβ.

Recall that f = ḟG, where πf
Dπ

= f
Dπ

whenever [π] contained in the intersection

⋂m<ω Fix(ηm, im) ∩ ⋂m<ωH
λm
km

denoted by (Iḟ).

The idea is that we include into Pβ ↾ (η+1) the verticals P ηm
im

for ηm ∈ Lim, ηm > η. Below
κη, the linking property will be important, so we also have to include the linking ordinals
aηmim ∩ κη.

For a condition p ∈ P, we set

X̃p ∶=⋃{aσi ∩ κη̃ ∣ σ ∈ Lim , (σ, i) ≠ (ηm, im) for all m < ω , (σ > η or i ≥ β)}.

Then X̃p is similar to Xp, but excludes the linking ordinals aηmim for ηm ∈ Lim.

For reasons of notational convenience and better clarity, we introduce the following ad-hoc
notation:

Let

(pβ ↾ (η + 1))(ηm,im)m<ω ∶= (p∗ ↾ κ
2
η , (p

σ
i , a

σ
i )σ≤η , i<β , (p

ηm
im
↾ κη, a

ηm
im

∩ κη)m<ω , ηm>η,

(pσ ↾ (β × domy p
σ))σ≤η, X̃p ).

Then (pβ ↾ (η+1))(ηm,im)m<ω can be obtained from pβ ↾ (η+1) by using X̃p instead of Xp,
and including (pηmim ↾ κη, a

ηm
im

∩ κη) for ηm ∈ Lim with ηm > η. (Note that for ηm ≤ η, it
follows that im < β, so (pηmim , a

ηm
im

) is already part of the condition pβ ↾ (η + 1).)

We are now ready to de�ne our forcing notion (Pβ ↾ (η+1))(ηm,im)m<ω . The order relation
is de�ned similarly as for the forcing notion Pβ ↾ (η + 1); but additionally, we require for
(qβ ↾ (η + 1))(ηm,im)m<ω ≤ (pβ ↾ (η + 1))(ηm,im)m<ω that the linking property below κη holds
for all (ηm, im) with ηm ∈ Lim, ηm > η.

De�nition 2.6.8. Let (Pβ ↾ (η + 1))(ηm,im)m<ω denote the collection of all (pβ ↾ (η +
1))(ηm,im)m<ω such that p ∈ P (i.e. p ∈ P with ∣{(σ, i) ∈ suppp0 ∣ σ > η or i ≥ β}∣ = ℵ0);
together with (1βη+1)

(ηm,im)m<ω as the maximal element.

For conditions p, q ∈ P, let (qβ ↾ (η + 1))(ηm,im)m<ω ≤ (pβ ↾ (η + 1))(ηm,im)m<ω if

� X̃q ⊇ X̃p,

� (q∗ ↾ κ2
η, (q

σ
i , b

σ
i )σ≤η,i<β, (q

σ ↾ (β × domy qσ))σ≤η) ≤ (p∗ ↾ κ2
η, (p

σ
i , a

σ
i )σ≤η,i<β, (p

σ ↾

(β × domy pσ))σ≤η) regarded as conditions in P,

� ∀ ηm > η ∶ qηmim ↾ κη ⊇ p
ηm
im
↾ κη,

� ∀ ηm > η , (ηm, im) ∈ suppp ∶ bηmim = aηmim ,

� for all intervals [κν,j, κν,j+1) ⊆ κη and ηm > η with aηmim ∩ [κν,j, κν,j+1) = {ξ}, it follows
that qηmim (ζ) = q∗(ξ, ζ) whenever ζ ∈ (dom q ∖ domp) ∩ [κν,j, κν,j+1).
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Finally, for constructing our intermediate generic extension for capturing fβ, we also have
to include the verticals P ηm ↾ [κη, κηm) for ηm > η.

This gives a product

(Pβ ↾ (η + 1))(ηm,im)m<ω × ∏
m<ω

P ηm ↾ [κη, κηm),

which is the set of all

( (pβ ↾ (η + 1))(ηm,im)m<ω , (pηmim ↾ [κη, κηm))m<ω )

such that p ∈ P (i.e. p ∈ P with ∣{(σ, i) ∈ suppp0 ∣ σ > η or i ≥ β}∣ = ℵ0); together with a

maximal element (1
β

η+1)
(ηm,im)m<ω .

Then
(Gβ ↾ (η + 1))(ηm,im)m<ω × ∏

m<ω
Gηm
im
↾ [κη, κηm)

is the set of all ( (pβ ↾ (η + 1))(ηm,im)m<ω , (pηmim ↾ [κη, κηm))m<ω ) such that there exists

q ∈ G ∩ P with (qβ ↾ (η+1))(ηm,im)m<ω ≤ (pβ ↾ (η+1))(ηm,im)m<ω and qηmim ↾ [κη, κηm) ⊇ pηmim ↾

[κη, κηm) for all m < ω; together with the maximal element (1
β

η+1)
(ηm,im)m<ω .

In order to show that (Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG
ηm
im
↾ [κη, κηm) is a V -generic �lter

on (Pβ ↾ (η+1))(ηm,im)m<ω × ∏m<ω P
ηm ↾ [κη, κηm), we proceed similarly as in Proposition

2.6.6:

Proposition 2.6.9. The map (ρβ)(ηm,im)m<ω ∶ P→ (Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ω P
ηm ↾

[κη, κηm),
p↦ ( (pβ ↾ (η + 1))(ηm,im)m<ω , (pηmim ↾ [κη, κηm))m<ω )

in the case that ∣{(σ, i) ∈ suppp0 ∣ σ > η ∨ i ≥ β}∣ = ℵ0, and 1 ↦ (1
β

η+1)
(ηm,im)m<ω , is a

projection of forcing posets.

Proof. We closely follow the proof of Proposition 2.6.6. Consider p ∈ P with ∣{(σ, i) ∈
suppp0 ∣ σ > η ∨ i ≥ β}∣ = ℵ0, and a condition

q = ( q∗ ↾ κ
2
η , (q

σ
i , b

σ
i )σ≤η,i<β , (q

ηm
im
↾ κη, b

ηm
im

∩ κη)m<ω,ηm>η ,

(qσ)σ≤η , X̃q , (q
ηm
im
↾ [κη, κηm))m<ω )

in
(Pβ ↾ (η + 1))(ηm,im)m<ω × ∏

m<ω
P ηm ↾ [κη, κηm)

with q ≤ (ρβ)(ηm,im)m<ω(p). We have to construct q ≤ p, q = (q∗, (q
σ
i , b

σ

i )σ,i, (q
σ)σ), such

that (ρβ)(ηm,im)m<ω(q) ≤ q.

We start with q0.
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� Similarly as in Proposition 2.6.6, we construct supp∗ = {(η̌,mk) ∣ k < ω} such that
η̌ > η or mk ≥ β, and (η̌,mk) ∉ suppp0 ∪ supp q0 for all k < ω; with the additional
property that for all k < ω, we have (η̌,mk) ∉ {(ηm, im) ∣ m < ω , ηm ∈ Lim}. We set
supp q0 = suppp0 ∪ supp q0 ∪ supp∗ ∪{(ηm, im) ∣ m < ω , ηm ∈ Lim}.

� Next, we de�ne the linking ordinals b
σ

i for (σ, i) ∈ supp q0, such that X̃q ⊇ X̃q holds:

First, we consider the case that (σ, i) ∉ {(ηm, im) ∣ m < ω , ηm ∈ Lim}. For (σ, i) ∈
supp q0, we let b

σ

i ∶= b
σ
i ⊇ a

σ
i , and b

σ

i ∶= a
σ
i in the case that (σ, i) ∈ suppp0 ∖ supp q0.

We construct (b
η̌

mk
∣ k < ω) as in Proposition 2.6.6.

After that, we de�ne the linking ordinals (b
ηm
im ∣ m < ω , ηm ∈ Lim) with the following

properties:

� As usual, every b
ηm
im is a subset of κηm that hits any interval [κν,j, κν,j+1) ⊆ κηm

in exactly one point.

� The b
ηm
im are pairwise disjoint, and b

ηm
im ∩ b

σ

i = ∅ for every m < ω and (σ, i) ∈
supp q0 with (σ, i) ≠ (ηm, im).

� For every (ηm, im) ∈ suppp0, we set b
ηm
im ∶= aηmim ; for every (ηm, im) ∈ supp q0 ∖

suppp0 with ηm ≤ η, we set b
ηm
im ∶= bηmim ; and whenever (ηm, im) ∈ supp q0∖suppp0

with ηm > η, we let b
ηm
im ⊇ bηmim ∩ κη.

This concludes our construction of the linking ordinals b
σ

i .

� We de�ne dom q0 = ⋃ν,j[κν,j, δν,j) as follows:
Let dom ∶= domp0 ∪ dom q0 ∪ ⋃ηm∈Lim dom qηmim ↾ [κη, κηm). For every interval
[κν,j, κν,j+1) with dom ∩ [κν,j, κν,j+1) = ∅, we set δν,j ∶= κν,j; and whenever dom ∩
[κν,j, κν,j+1) ≠ ∅, we pick δν,j ∈ (κν,j, κν,j+1) with the property that dom∩ [κν,j, κν,j+1) ⊆

[κν,j, δν,j), and b
σ

i ∩ [κν,j, κν,j+1) ⊆ [κν,j, δν,j) for all (σ, i) ∈ supp q0.

Since dom p0, dom q0 and the domains dom qηmim ↾ [κη, κηm) are bounded below all
regular cardinals, this is also true for dom and dom q0.

� We take q∗ ↾ κ
2
η ⊇ q∗ ↾ κ

2
η arbitrary on the given domain.

The verticals qσi ↾ κη for (σ, i) ∈ (supp q0 ∪ suppp0) ∖ {(ηm, im) ∣ m < ω , ηm ∈ Lim}
can be de�ned according to the linking property as in Proposition 2.6.6.

The verticals q η̂mk ↾ κη with (η̂,mk) ∈ supp∗ can be set arbitrarily on the given
domain.

Now, consider (ηm, im) with ηm ∈ Lim. In the case that (ηm, im) ∈ supp q0 with
ηm ≤ η, we can proceed as before, and de�ne qηmim ⊇ qηmim according to the linking
property as in Proposition 2.6.6.
Concerning the verticals qηmim ↾ κη for (ηm, im) ∈ supp q0 with ηm > η, we de�ne
qηmim ↾ [κν,j, κν,j+1) ⊇ q

ηm
im
↾ [κν,j, κν,j+1) on intervals [κν,j, κν,j+1) ⊆ κη according to the

linking property, and use that we have incorporated the linking ordinals bηmim ∩ κη into
our forcing notion (Pβ ↾ (η + 1))(ηm,im)m<ω : For ζ ∈ (dom q0 ∖ dom q0) ∩ [κν,j, κν,j+1),
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we set qηmim (ζ) ∶= q∗(ξ, ζ), where {ξ} = bηmim ∩ [κν,j, κν,j+1) = b
ηm
im ∩ [κν,j, κν,j+1). (Note

that ξ ∈ dom q0 by construction.)

In the case that (ηm, im) ∉ supp q0, it follows that also (ηm, im) ∉ suppp0, and we
can set qηmim ↾ κη arbitrarily on the given domain.

� Next, consider an interval [κν,j, κν,j+1) ⊆ [κη, κγ). We �rst set the verticals qσi ↾
[κν,j, κν,j+1) for (σ, i) ∈ supp q0, σ > η, on the given domain, with the property that
qηmim ↾ [κν,j, κν,j+1) ⊇ qηmim ↾ [κν,j, κν,j+1) for all m < ω with (ηm, im) ∈ supp q0, and
qσi ↾ [κν,j, κν,j+1) ⊇ p

σ
i ↾ [κν,j, κν,j+1) whenever (σ, i) ∈ suppp0. After that, we de�ne

q∗ ↾ [κν,j, κν,j+1)2 ⊇ p∗ ↾ [κν,j, κν,j+1)2 according to the linking property : Whenever

ζ ∈ (dom q0 ∖ domp0) ∩ [κν,j, κν,j+1) and {ξ} = aσi ∩ [κν,j, κν,j+1) = b
σ

i ∩ [κν,j, κν,j+1)
for some (σ, i) ∈ suppp0, then q∗(ξ, ζ) ∶= qσi (ζ). Otherwise, q∗(ξ, ζ) can be set
arbitrarily.

This de�nes q0. The construction of q1 is similar; and it is not di�cult to see that q ≤ p
with (ρβ)(ηm,im)m<ω(q) ≤ q.

Hence, (ρβ)(ηm,im)m<ω is a projection of forcing posets.

Thus, it follows that (Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG
ηm
im
↾ [κη, κηm) is a V -generic �lter

on the forcing notion (Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ω P
ηm ↾ [κη, κηm).

The aim of Chapter 2.6.2 B) is to show that fβ is contained in the intermediate V -generic
extension V [ (Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG

ηm
im
↾ [κη, κηm) ].

De�nition 2.6.10. Let (fβ)′ denote the set of all (X,α) for which there exists an η-good
pair % = ((am)m<ω, (σm, im)m<ω) with im < β for all m < ω such that

X = Ẋ
∏mG∗(am)×∏mGσm

im ,

and there is a condition p ∈ P with

� ∣{(σ, i) ∈ suppp0 ∣ σ > η or i ≥ β}∣ = ℵ0,

� p ⊩s (τ%(Ẋ), α) ∈ ḟ

� ( (pβ ↾ (η + 1))(ηm,im)m<ω , (pηmim ↾ [κη, κηm))m<ω ) ∈ (Gβ ↾ (η + 1))(ηm,im)m<ω ×

∏m<ωG
ηm
im
↾ [κη, κηm),

� ∀ ηm ∈ Lim ∶ (ηm, im) ∈ suppp0 with aηmim = gηmim .

Then (fβ)′ ∈ V [ (Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG
ηm
im
↾ [κη, κηm) ], since the sequence

(gηmim ∣ m < ω) is contained in the ground model V .

We will now use an isomorphism argument and show that fβ = (fβ)′.

Proposition 2.6.11. fβ = (fβ)′.
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Proof. By the Forcing Theorem, it follows that (fβ)′ ⊇ fβ. Assume towards a contradic-
tion, there was (X,α) ∈ (fβ)′ ∖ fβ. Let

X = Ẋ
∏m<ωG∗(am)×∏m<ωGσmim

for an η-good pair % = ((am)m<ω, (σm, im)m<ω) with im < β for all m < ω. Take p ∈ P as in

De�nition 2.6.10 with p ⊩s (τ%(Ẋ), α) ∈ ḟ ; and since (X,α) ∉ fβ, we can take p′ ∈ G with

p′ ⊩s (τ%(Ẋ), α) ∉ ḟ and (ηm, im) ∈ suppp′0 for all ηm ∈ Lim.

Our �rst step will be to extend the conditions p and p′ and obtain p ≤ p, p′ ≤ p′ such
that p and p′ have �the same shape� similarly as in the Approximation Lemma 2.5.2; but
additionally, pβ ↾ (η + 1) = (p′)β ↾ (η + 1) holds, and pηmim = (p′)ηmim for all m < ω, and
aηmim = (a′)ηmim for all m < ω with ηm ∈ Lim.
After that, we construct an isomorphism π such that �rstly, πp = p′; secondly, π should

not disturb the forcing Pβ ↾ (η + 1) (which will imply π τ%(Ẋ)
Dπ

= τ%(Ẋ)
Dπ
); and thirdly

[π] should be contained in the intersection ⋂mFix(ηm, im) ∩ ⋂mH
λm
km

(which implies

πf
Dπ

= f
Dπ
).

Then from p ⊩s (τ%(Ẋ), α) ∈ ḟ it follows πp ⊩s (π τ%(Ẋ)
Dπ
, α) ∈ πf

Dπ
. Together with

p′ ⊩s (τ%(Ẋ)
Dπ
, α) ∉ f

Dπ
, this gives our desired contradiction.

In order to make such an isomorphism π possible, the extensions p ≤ p and p′ ≤ p′ will
satisfy the following properties:

� supp0 ∶= suppp0 = suppp′0

� dom0 ∶= domp0 = domp′0

� ⋃a ∶= ⋃(σ,i)∈supp0
aσi = ⋃(σ,i)∈supp0

(a′)σi

� ∀ ν , j ∶ (dom0 ∩ [κν,j, κν,j+1) ≠ ∅⇒ ⋃a ∩ [κν,j, κν,j+1) ⊆ dom0)

� supp1 ∶= suppp1 = suppp′1

� ∀σ ∈ supp1 ∶ dom1(σ) ∶= dompσ = dom(p′)σ.

Additionally, we want:

� ∀m < ω ∶ pηmim = (p′)ηmim

� ∀m < ω , ηm ∈ Lim ∶ aηmim = (a′)ηmim

� pβ ↾ (η + 1) = (p′)β ↾ (η + 1), i.e.

� p∗ ↾ κ
2
η = p

′
∗ ↾ κ

2
η

� ∀σ ∈ Lim, σ ≤ η, i < min{ασ, β} ∶ pσi = (p′)σi , a
σ
i = (a′)σi

� ∀σ ∈ Succ σ ≤ η ∶ pσ ↾ (β × domy p
σ) = (p′)σ ↾ (β × domy(p

′)σ).
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Then it follows that X̃p = X̃p′ .

Note that aηmim = (a′)ηmim for ηm ∈ Lim follows automatically, since aηmim = (a′)ηmim = gηmim by
assumption.

Now, we construct the conditions p and p′.

We start with the linking ordinals aσi and (a′)σi , with our aim that ⋃σ,i a
σ
i = ⋃σ,i(a

′)σi =∶ ⋃a.
We closely follows our construction from the Approximation Lemma 2.5.2; but now, some
extra care is needed, since we additionally have to make sure that aσi = (a′)σi holds for all
σ ≤ η, i < β.

Similarly as in the Approximation Lemma 2.5.2, let

s ∶= κδ ∶= sup{κσ ∣ σ ∈ Lim , ∃ i < ασ (σ, i) ∈ suppp0 ∪ suppp′0}.

Recall that we are assuming β < αη̃ or Lim ∩ (η̃, γ) ≠ ∅, where η̃ ∶= max{σ ≤ η ∣ σ ∈
Lim}.

In the case that κδ = κγ, we set γ ∶= δ and take ((σk, lk) ∣ k < ω) such that sup{κσk ∣ k <
ω} = κγ = κγ, and (σk, lk) ∉ suppp0 ∪ suppp′0 for all k < ω, with the additional property
that σk > η̃ or lk ≥ β for all k < ω.
If κδ < κγ and Lim ∩ (η̃, γ) ≠ ∅, let γ ∈ Lim ∩ (η̃, γ) with γ ≥ δ, and take ((σk, lk) ∣ k < ω)
such that (σk, lk) = (γ, lk) ∉ suppp0 ∪ suppp′0 for all k < ω.
Finally, if κδ < κγ and Lim ∩ (η̃, γ) = ∅, then β < αη̃ follows. In this case, let γ ∶= η̃ ≥ δ,
and take ((σk, lk) ∣ k < ω) with (σk, lk) = (γ, lk) ∉ suppp0 ∪ suppp′0 for all k < ω; with the
additional property that lk ≥ β for all k < ω.

Let
supp0 ∶= suppp0 ∶= suppp′0 ∶= suppp0 ∪ suppp′0 ∪ {(σk, lk) ∣ k < ω}.

We now construct the linking ordinals aσi . For any (σ, i) ∈ suppp0, we set a
σ
i ∶= a

σ
i ; and

whenever (σ, i) ∈ suppp′0 ∖ suppp0 with σ ≤ η, i < β, then aσi ∶= (a′)σi .

Now, take a set Z ⊆ κγ such that for all intervals [κν,j, κν,j+1) ⊆ κγ, we have ∣Z ∩

[κν,j, κν,j+1)∣ = ℵ0, and Z ∩ (⋃(σ,i)∈suppp0 a
σ
i ∪ ⋃(σ,i)∈suppp′0 (a

′)σi ) = ∅. Let

Z ∶= Z ∪ ⋃
σ,i

aσi ∪ ⋃
σ,i

(a′)σi .

Our aim is to construct p and p′ with ⋃σ,i a
σ
i = ⋃σ,i(a

′)σi = ⋃a ∶= Z.

Fix an interval [κν,j, κν,j+1) ⊆ κγ. Let

Zν,j ∶= (⋃{aσi ∣ (σ, i) ∈ suppp0} ∪ ⋃{(a′)σi ∣ (σ, i) ∈ suppp′0 , σ ≤ η, i < β} ) ∩

∩ [κν,j, κν,j+1)

and
{ξk(ν, j) ∣ k < ω} ∶= (Z ∩ [κν,j, κν,j+1)) ∖Zν,j.

This set has cardinality ℵ0 by construction of Z.
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Now, let

{(σk, lk) ∣ k < ω} =∶ {(σ, i) ∈ suppp0 ∖ suppp0 ∣ κν,j < κσ and (σ > η or i ≥ β)}.

This set also has cardinality ℵ0 by construction of suppp0. Now, for any k < ω, we let

aσk
lk

∩ [κν,j, κν,j+1) ∶= {ξk(ν, j)}.

We apply the same construction to the linking ordinals (a′)σi for (σ, i) ∈ suppp′0 = supp0.
It is not di�cult to see that ⋃σ,i a

σ
i = ⋃σ,i(a

′)σi = ⋃a = Z, the independence property
holds, and aσi = (a′)σi whenever σ ≤ η, i < β.

Next, take dom0 ∶= domp0 = domp′0 = ⋃ν,j[κν,j, δν,j) with the property that �rstly,

domp0 ∪ domp′0 ⊆ dom0, and secondly, for every interval [κν,j, κν,j+1) ⊆ κγ with dom0 ∩
[κν,j, κν,j+1) ≠ ∅, it follows that Z ∩ [κν,j, κν,j+1) ⊆ dom0.

It remains to construct p∗, p
′
∗, and p

σ
i , (p

′)σi for (σ, i) ∈ supp0.

First, we consider an interval [κν,j, κν,j+1) ⊆ κη.

We start with the construction of p∗ ↾ [κν,j, κν,j+1)2 = p′∗ ↾ [κν,j, κν,j+1)2.

Let ξ, ζ ∈ [κν,j, κν,j+1) ∩ dom0.

� In the case that (ξ, ζ) ∈ domp0 × domp0, we set p
′
∗(ξ, ζ) ∶= p∗(ξ, ζ) ∶= p∗(ξ, ζ).

� If (ξ, ζ) ∈ domp′0 × domp′0, then p
′
∗(ξ, ζ) ∶= p∗(ξ, ζ) ∶= p

′
∗(ξ, ζ).

For (ξ, ζ) ∈ (domp0 × domp0) ∩ (domp′0 × domp′0), this is not a contradiction, since
p∗ ↾ κ2

η and p
′
∗ ↾ κ

2
η are compatible.

� If ζ ∈ domp0 ∖ domp′0 and ξ ∉ domp0, we proceed as follows: In the case that {ξ} =
aσi ∩ [κν,j, κν,j+1) for some (σ, i) ∈ suppp0 with σ ≤ η, i < β or (σ, i) ∈ {(ηm, im) ∣ m <
ω}, we set p′∗(ξ, ζ) ∶= p∗(ξ, ζ) ∶= p

σ
i (ζ). Otherwise, we set p′∗(ξ, ζ) = p∗(ξ, ζ) arbi-

trarily.

� In the case that ζ ∈ domp′0 ∖ domp0 and ξ ∉ domp′0, we proceed as before: If
{ξ} = (a′)σi ∩ [κν,j, κν,j+1) for some (σ, i) ∈ suppp′0 with σ ≤ η, i < β or (σ, i) ∈
{(ηm, im) ∣ m < ω}, then p′∗(ξ, ζ) ∶= p∗(ξ, ζ) ∶= (p′)σi (ζ). Otherwise, we set p

′
∗(ξ, ζ) =

p∗(ξ, ζ) arbitrarily.

� In all other cases, p′∗(ξ, ζ) = p∗(ξ, ζ) can be set arbitrarily.

This de�nes p∗ ↾ [κν,j, κν,j+1)2 = p′∗ ↾ [κν,j, κν,j+1)2.

Now, consider (σ, i) ∈ supp0. We de�ne pσi and (p′)σi on the interval [κν,j, κν,j+1) ⊆ κη as
follows:

� For (σ, i) ∈ suppp0, we de�ne p
σ
i ↾ [κν,j, κν,j+1) ⊇ pσi ↾ [κν,j, κν,j+1) according to the

linking property : Let {ξ} ∶= aσi ∩ [κν,j, κν,j+1) and consider ζ ∈ [κν,j, κν,j+1) ∩ dom0.
If ζ ∈ domp0, we set pσi (ζ) ∶= pσi (ζ); and pσi (ζ) ∶= p∗(ξ, ζ) in the case that ζ ∈
dom0 ∖ domp0. (Note that ξ ∈ dom0 follows by construction.)
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� In the case that (σ, i) ∈ suppp′0, we de�ne (p′)σi ↾ [κν,j, κν,j+1) ⊇ (p′)σi ↾ [κν,j, κν,j+1)
according to the linking property as before: Let {ξ} ∶= (a′)σi ∩ [κν,j, κν,j+1), and
consider ζ ∈ [κν,j, κν,j+1) ∩ dom0. If ζ ∈ domp′0, we set (p′)σi (ζ) ∶= (p′)σi (ζ); and
(p′)σi (ζ) ∶= (p′∗)(ξ, ζ) in the case that ζ ∈ dom0 ∖ domp′0. (Again, ξ ∈ dom0 by
construction.)

� For (σ, i) ∈ suppp0 ∖ suppp′0, let (p′)σi ↾ [κν,j, κν,j+1) ∶= p
σ
i ↾ [κν,j, κν,j+1).

� For (σ, i) ∈ suppp′0 ∖ suppp0, let p
σ
i ↾ [κν,j, κν,j+1) ∶= (p′)σi ↾ [κν,j, κν,j+1).

� If (σ, i) ∈ supp0 ∖ (suppp0 ∪ suppp′0), then p
σ
i ↾ [κν,j, κν,j+1) = (p′)σi ↾ [κν,j, κν,j+1)

can be set arbitrarily on the given domain.

This de�nes all pσi and (p′)σi for (σ, i) ∈ supp0 on intervals [κν,j, κν,j+1) ⊆ κη.

We now have to verify that pσi = (p′)σi for any (σ, i) ∈ supp0 with σ ≤ η, i < β. We only
have to treat the case that (σ, i) ∈ suppp0 ∩ suppp′0.
Consider an interval [κν,j, κν,j+1) ⊆ κσ ⊆ κη. Then p′ ∈ G and

(pβ ↾ (η + 1))(ηm,im)m<ω ∈ (Gβ ↾ (η + 1))(ηm,im)m<ω

implies that pσi and (p′)σi are compatible, and aσi ∩ [κν,j, κν,j+1) = (a′)σi ∩ [κν,j, κν,j+1) =∶ {ξ}.

Let ζ ∈ [κν,j, κν,j+1) ∩ dom0.

� If ζ ∈ domp0 ∩ domp′0, then p
σ
i (ζ) = p

σ
i (ζ) = (p′)σi (ζ) = (p′)σi (ζ).

� For ζ ∈ dom0∖(domp0 ∪ domp′0), it follows that p
σ
i (ζ) = p∗(ξ, ζ) = p

′
∗(ξ, ζ) = (p′)σi (ζ)

by construction, since we have arranged p∗ ↾ κ
2
η = p

′
∗ ↾ κ

2
η.

� Let now ζ ∈ domp0∖domp′0, ξ ∉ domp0. Then p
σ
i (ζ) = p

σ
i (ζ), and (p′)σi (ζ) = p

′
∗(ξ, ζ).

Since p′∗(ξ, ζ) = p
σ
i (ζ) by construction of p′∗, this gives p

σ
i (ζ) = (p′)σi (ζ) as desired.

The case that ζ ∈ domp′0 ∖ domp0, ξ ∉ domp′0, can be treated similarly.

� If ζ ∈ domp0 ∖ domp′0 and ξ ∈ domp0, it follows that p
σ
i (ζ) = p

σ
i (ζ) and (p′)σi (ζ) =

p′∗(ξ, ζ) as before; but in this case, we have set p′∗(ξ, ζ) ∶= p∗(ξ, ζ), so it remains to
verify that pσi (ζ) = p∗(ξ, ζ).

Since p′ ∈ G, (pβ ↾ (η+1))(ηm,im)m<ω ∈ (Gβ ↾ (η+1))(ηm,im)m<ω , we can take q ∈ G with
(qβ ↾ (η + 1))(ηm,im)m<ω ≤ (pβ ↾ (η + 1))(ηm,im)m<ω , and assume w.l.o.g. that q ≤ p′.
Then qσi (ζ) = q∗(ξ, ζ) by the linking property for q ≤ p′, since (a′)σi ∩ [κν,j, κν,j+1) =
{ξ}. Moreover, pσi (ζ) = q

σ
i (ζ) and p∗(ξ, ζ) = q∗(ξ, ζ), and we are done.

� The remaining case is that ζ ∈ domp′0 ∖ domp0 and ξ ∈ domp′0. Then pσi (ζ) =
p∗(ξ, ζ) = p

′
∗(ξ, ζ) and (p′)σi (ζ) = (p′)σi (ζ), and it remains to verify that (p′)σi (ζ) =

p′∗(ξ, ζ). As before, take q ∈ G with q ≤ p′ and (qβ ↾ (η + 1))(ηm,im)m<ω ≤ (pβ ↾
(η + 1))(ηm,im)m<ω . The latter gives qσi (ζ) = q∗(ξ, ζ) by the linking property, since
σ ≤ η, i < β, aσi ∩ [κν,j, κν,j+1) = {ξ} and ζ ∈ dom q0 ∖ domp0. Moreover, from q ≤ p′

it follows that (p′)σi (ζ) = q
σ
i (ζ) and p′∗(ξ, ζ) = q∗(ξ, ζ); hence, (p

′)σi (ζ) = p
′
∗(ξ, ζ) as

desired.
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Thus, it follows that pσi = (p′)σi holds for all (σ, i) ∈ supp0 with σ ≤ η, i < β.

If m < ω with ηm ≤ η, then im < β follows by construction of β. Hence, pηmim = (p′)ηmim .
It remains to make sure that whenever m < ω with ηm > η, then pηmim ↾ κη = (p′)ηmim ↾ κη
holds; which can be shown similarly as pσi = (p′)σi in the case that σ ≤ η, i < β: We use
that aηmim = (a′)ηmim and pηmim (ζ) = (p′)ηmim (ζ) for all m < ω and ζ ∈ domp0 ∩ domp′0; and now,
it is important that we are using the forcing notion (Pβ ↾ (η + 1))(ηm,im)m<ω instead of
Pβ ↾ (η + 1); since we need the linking property below κη for the (ηm, im) with ηm > η.

It remains to construct p∗ ↾ [κη, κγ)
2, p′∗ ↾ [κη, κγ)

2, and pσi ↾ [κη, κγ), (p
′)σi ↾ [κη, κγ) for

all (σ, i) ∈ supp0 with σ > η.

� For (ηm, im) with ηm > η, we take pηmim ↾ [κη, κηm) ⊇ pηmim ↾ [κη, κηm), (p′)ηmim ↾
[κη, κηm) ⊇ (p′)ηmim ↾ [κη, κηm) on the given domain, such that pηmim ↾ [κη, κηm) =

(p′)ηmim ↾ [κη, κηm). This is possible, since p′ ∈ G and (pβ ↾ (η + 1))(ηm,im)m<ω ∈ (Gβ ↾
(η + 1))(ηm,im)m<ω ; so pηmim and (p′)ηmim are compatible for all m < ω.

� For the (σ, i) ∈ supp0 remaining, we set pσi ↾ [κη, κγ) ⊇ pσi ↾ [κη, κγ) and (p′)σi ↾
[κη, κγ) ⊇ (p′)σi ↾ [κη, κγ) arbitrarily on the given domain.

� Consider an interval [κν,j, κν,j+1) ⊆ [κη, κγ). We de�ne p∗ ↾ [κν,j, κν,j+1)2 ⊇ p∗ ↾
[κν,j, κν,j+1)2 according to the linking property : Whenever ζ ∈ dom0 ∖ domp0 and
{ξ} = aσi ∩ [κν,j, κν,j+1) for some (σ, i) ∈ suppp0, then p∗(ξ, ζ) ∶= p

σ
i (ζ).

The construction of p′∗ ↾ [κν,j, κν,j+1)2 ⊇ p′∗ ↾ [κν,j, κν,j+1)2 is similar.

This completes our construction of p0 ≤ p0 and p′0 ≤ p
′
0 with all the desired properties.

Similarly, one can construct p1 ≤ p1, p
′
1 ≤ p′1 such that supp1 ∶= suppp1 = suppp′1,

dom1(σ) ∶= domp1(σ) = domp′1(σ) for all σ ∈ supp1; and pσi = (p′)σi for all σ ≤ η, i < β
with σ ∈ Succ, and pηmim = (p′)ηmim for all m < ω with ηm ∈ Succ.

We now proceed similarly as in the Approximation Lemma 2.5.2 and construct an iso-
morphism π such that π a standard isomorphism for πp = p′. This determines all pa-
rameters of π except the maps G0(ν, j) ∶ suppπ0(ν, j) → suppπ0(ν, j), which will be
de�ned as follows: Consider an interval [κν,j, κν,j+1). Recall that we have the map
Fπ0(ν, j) ∶ suppπ0(ν, j) → suppπ0(ν, j), which is in charge of permuting the linking ordi-
nals: We set Fπ0(ν, j)(σ, i) ∶= (λ, k) for (a′)σi ∩ [κν,j, κν,j+1) = a

λ
k ∩ [κν,j, κν,j+1). We de�ne

Gπ0(ν, j) ∶= Fπ0(ν, j) for all κν,j < κη, and Gπ0(ν, j) ∶= id whenever κν,j ≥ κη.

By construction, it follows that πp = p′. We will now check that [π] is contained in the
intersection ⋂mFix(ηm, im) ∩ ⋂mH

λm
km

.

� Consider m < ω with ηm ∈ Lim and r ∈Dπ, r′ ∶= πr, with (ηm, im) ∈ supp r0.

For an interval [κν,j, κν,j+1) ⊆ κηm and ζ ∈ domπ0 ∩ [κν,j, κν,j+1), it follows by con-
struction of the map π0(ζ) that (r′)ηmim (ζ) = rηmim (ζ) holds; since pηmim = (p′)ηmim .

In the case that ζ ∈ [κν,j, κν,j+1) ∩ (dom r0 ∖ domπ0), it follows that (r′)ηmim (ζ) =
rλk(ζ) with (λ, k) = Gπ0(ν, j)(ηm, im). If κν,j < κη, then (λ, k) = Gπ0(ν, j)(ηm, im) =
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Fπ0(ν, j)(ηm, im) = (ηm, im), since aηmim = (a′)ηmim . In the case that κν,j ≥ κη, we have
Gπ0(ν, j) = id; so again, (λ, k) = (ηm, im).

Hence, rηmim (ζ) = (r′)ηmim (ζ) holds for all ζ ∈ dom r0 ∩ κηm .

This proves [π] ∈ Fix(ηm, im) in the case that ηm ∈ Lim. For ηm ∈ Succ, we obtain
[π] ∈ Fix(ηm, im) as in the Approximation Lemma.

� Consider m < ω with λm ∈ Lim. In the case that λm > η, we have Gπ0(ν, j)(λm, i)
= (λm, i) for all κν,j ∈ [κη, κλm), and [π] ∈ Hλm

km
follows. If λm ≤ η, it follows that

km < β by construction of β. Hence, whenever κν,j < κλm and i ≤ km, we have
Gπ0(ν, j)(λm, i) = Fπ0(ν, j)(λm, i) = (λm, i); since a

λm
i = (a′)λmi follows from λm ≤ η,

i < β.

In the case that λm ∈ Succ, we obtain [π] ∈Hλm
km

as in the Approximation Lemma.

Thus, we have shown that [π] ∈ ⋂mFix(ηm, im) ∩ ⋂mH
λm
km

; which implies πf
Dπ

= f
Dπ
. It

remains to make sure that πτ%(Ẋ)
Dπ

= τ%(Ẋ)
Dπ
.

Recall that we have an η-good pair % = ((am)m<ω, (σm, im)m<ω) with im < β for all m < ω,
and Ẋ ∈ Name ((P

η
)ω ×∏m<ω P

σm) with

τ%(Ẋ) = { (τ%(Ẏ ), q) ∣ q ∈ P , ∃ (Ẏ , ((p∗(am))m<ω , (p
σm
im

)m<ω ) ) ∈ Ẋ ∶

∀m ( q∗(am) ⊇ p∗(am) , qσm
im

⊇ pσm
im

) }.

Then

τ%(Ẋ)
Dπ

= {( τ%(Ẏ )
Dπ
, q ) ∣ q ∈Dπ , Ẏ ∈ dom Ẋ , q ⊩s τ%(Ẏ ) ∈ τ%(Ẋ) },

and

πτ%(Ẋ)
Dπ

= {(πτ%(Ẏ )
Dπ
, πq ) ∣ πq ∈Dπ , Ẏ ∈ dom Ẋ , q ⊩s τ%(Ẏ ) ∈ τ%(Ẋ) }.

We will now check that π is the identity on Pβ ↾ (η + 1). More precisely: Let q ∈ Dπ,
q = (q∗, (qσi , b

σ
i )σ,i, (q

σ)σ) with πq = q′ = (q′∗, ((q
′)σi , (b

′)σi )σ,i, ((q
′)σ)σ). We prove that

q′∗ ↾ κ
2
η = q∗ ↾ κ

2
η; moreover, (q′)σi = q

σ
i , (b′)σi = b

σ
i for all σ ≤ η, i < β with σ ∈ Lim, and

(q′)σi = q
σ
i for all σ ≤ η, i < β with σ ∈ Succ.

� Since π is a standard isomorphism for πp = p′, it follows that q′∗ ↾ κ2
η = q∗ ↾ κ

2
η for

all q ∈ Dπ; since �rstly, p∗ ↾ κ
2
η = p′∗ ↾ κ

2
η, and secondly, Gπ0(ν, j) = Fπ0(ν, j) for

all κν,j < κη. The latter makes sure that q′∗(ξ
σ
i (ν, j), ζ) = q∗(ξσi (ν, j), ζ) whenever

ζ ∈ dom q0∖domπ0, and {ξσi (ν, j)} ∶= b
σ
i ∩ [κν,j, κν,j+1) for some (σ, i) ∈ suppπ0(ν, j):

We have q′∗(ξ
σ
i (ν, j), ζ) = q∗(ξ

λ
k (ν, j), ζ) with (λ, k) = Gπ0(ν, j) ○ (Fπ0(ν, j))

−1(σ, i);
so from Gπ0(ν, j) = Fπ0(ν, j) it follows that q

′
∗(ξ

σ
i (ν, j), ζ) = q∗(ξ

σ
i (ν, j), ζ) as desired.
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� Let now (σ, i) ∈ suppπ0 = suppp0 with σ ≤ η, i < β and σ ∈ Lim. Then aσi = (a′)σi ;
hence, Fπ0(ν, j)(σ, i) = (σ, i) for all κν,j < κσ. This gives (b′)σi = bσi as desired.
For ζ ∈ domπ0 = domp0, it follows from pσi = (p′)σi by construction of π0 that
(q′)σi (ζ) = qσi (ζ) holds. Finally, if ζ ∈ (dom q0 ∖ domπ0), and ζ is contained in
an interval [κν,j, κν,j+1) ⊆ κσ, then (q′)σi (ζ) = qλk(ζ) with (λ, k) = Gπ0(ν, j)(σ, i) =
Fπ0(ν, j)(σ, i) = (σ, i) as desired. Hence, it follows that (q′)σi = q

σ
i for all σ ≤ η, i < β.

� In the case that σ ≤ η, i < β with σ ∈ Succ, we obtain (q′)σi = q
σ
i from pσi = (p′)σi as

in the Approximation Lemma 2.5.2.

Hence, π is the identity on Pβ ↾ (η + 1).

Now, it is not di�cult to prove recursively that for every Ż ∈ Name((P
η
)ω ×∏m<ω P

σm) the
following holds: If H is a V -generic �lter on P, then (τ%(Ż))πH = (τ%(Ż))H = (τ%(Ż))π

−1H .

This implies τ%(Ẋ)
Dπ

= πτ%(Ẋ)
Dπ
, since for every q ∈ Dπ and Ẏ ∈ dom Ẋ, we have

q ⊩s τ%(Ẏ ) ∈ τ%(Ẋ) if and only if πq ⊩s τ%(Ẏ ) ∈ τ%(Ẋ) holds.

Summing up, this gives our desired contradiction: Since p ⊩s (τ%(Ẋ), α) ∈ ḟ , it follows

that πp ⊩s (πτ%(Ẋ)
Dπ
, α) ∈ πf

Dπ
; hence, p′ ⊩s (τ%(Ẋ)

Dπ
, α) ∈ f

Dπ
. But this contradicts

p′ ⊩s (τ%(Ẋ), α) ∉ ḟ .

Thus, our assumption that (X,α) ∈ (fβ)′ ∖ fβ was wrong, and it follows that (fβ)′ = fβ

as desired.

Hence, fβ ∈ V [ (Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG
ηm
im
↾ [κη, κηm) ].

C) (Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωP ηm ↾ [κη,κηm) preserves cardinals ≥ αη.

The next step is to show that cardinals ≥ αη are absolute between V and V [Gβ ↾
(η + 1))(ηm,im)m<ω × ∏m<ωG

ηm
im
↾ [κη, κηm)].

Recall that we are assuming GCH in our ground model V , which will be used implic-
itly throughout this Chapter 2.6.2 C): When we claim that a particular forcing notion
preserves cardinals, then we mean it preserves cardinals under the assumption that GCH
holds, if not stated di�erently.

First, we have a look at the cardinality of (Pβ ↾ (η + 1))(ηm,im)m<ω . Recall that β was an
ordinal large enough for the intersection (Iḟ) with κ

+
η < β < αη.

Lemma 2.6.12. ∣(Pβ ↾ (η + 1))(ηm,im)m<ω ∣ ≤ ∣β∣+.

Proof. The forcing notion (Pβ ↾ (η + 1))(ηm,im)m<ω is the set of all

(p∗ ↾ κη , (p
σ
i , a

σ
i )σ≤η,i<β, (p

σ ↾ (β × domy p
σ))σ≤η , (p

ηm
im
↾ κη, a

ηm
im

∩ κη)m<ω , ηm>η , X̃p )

for p ∈ P with ∣{(σ, i) ∈ suppp0 ∣ σ > η ∨ i ≥ β}∣ = ℵ0, together with the maximal element
(1βη+1)

(ηm,im)m<ω . Since X̃p ⊆ κη, there are only κ+η ≤ ∣β∣-many possibilities for X̃p; and there
are only ≤ κ+η ≤ ∣β∣-many possibilities for p∗ ↾ κ2

η and (pηmim ↾ κη, a
ηm
im

∩ κη)m<ω. Concerning
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(pσi , a
σ
i )σ≤η,i<β, there are ∣β∣ℵ0 ≤ ∣β∣+-many possibilities for the countable support; and with

the support �xed, we have (2κη)ℵ0 ≤ κ+η ≤ ∣β∣-many possibilities for countably many (pσi , a
σ
i )

with σ ≤ η, i < β. Finally, for (pσ ↾ (β × domy pσ))σ≤η, there are only ∣η∣ω ≤ κ+η ≤ ∣β∣-many
possibilities for the countable support; and with the countable support �xed, there are
≤ (2∣β∣ ⋅κη)ℵ0 = ∣β∣+-many possibilities for countably many pσ with dompσ ⊆ β ×κσ ⊆ β × κη.
Hence, it follows that the forcing notion (Pβ ↾ (η+1))(ηm,im)m<ω has cardinality ≤ ∣β∣+.

Corollary 2.6.13. If ∣β∣+ < αη, then (Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ω P
ηm ↾ [κη, κηm)

preserves cardinals ≥ αη.

Proof. With the same arguments as in Lemma 2.3.2, one can show that the forcing

∏m<ω P
ηm ↾ [κη, κηm) preserves all cardinals. By Lemma 2.6.12 above, the forcing (Pβ ↾

(η+1))(ηm,im)m<ω has cardinality ≤ ∣β∣+ (in V ; and hence, also in any∏m<ω P
ηm ↾ [κη, κηm)-

generic extension). It follows that the product (Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ω P
ηm ↾

[κη, κηm) preserves all cardinals ≥ ∣β∣++.

It remains to consider the case that ∣β∣+ = αη. Then by our assumptions on the sequence
(αη ∣ 0 < η < γ) (cf. Chapter 2), it follows that cf ∣β∣ > ω. Hence, GCH gives ∣β∣ℵ0 = ∣β∣ < αη;
and by our proof of Lemma 2.6.12, it follows that all components of (Pβ ↾ (η+1))(ηm,im)m<ω

have cardinality ≤ ∣β∣ < αη; with the exception of (pσ ↾ (β × domy pσ))σ≤η, where there
might be (2∣β∣ ⋅κη)ℵ0 = ∣β∣+ = αη-many possibilities.

We now have to distinguish several cases depending on whether η is a limit ordinal or
not, and depending on whether κη is a limit cardinal or a successor cardinal (i.e. η ∈ Lim
or η ∈ Succ).
We will have to separate one or two components P σ ↾ (β × [κσ, κσ)), where σ ∈ Succ,
σ ≤ η, κσ = κσ

+, from the forcing notion (Pβ ↾ (η + 1))(ηm,im)m<ω ; and obtain a forcing

((Pβ ↾ (η + 1))(ηm,im)m<ω)
′
which has cardinality < αη, while the product of the remaining

P σ ↾ (β × [κσ, κσ)) and ∏m<ω P
ηm ↾ [κη, κηm) preserves cardinals.

Proposition 2.6.14. The forcing notion (Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ω P
ηm ↾ [κη, κηm)

preserves all cardinals ≥ αη.

Proof. By Corollary 2.6.13, we only have to treat the case that αη = ∣β∣+. Then cf ∣β∣ > ω
and ∣β∣ℵ0 = ∣β∣.
First, we assume that η is a limit ordinal. Then by closure of the sequence (κσ ∣ 0 <
σ < γ), it follows that η ∈ Lim, i.e. κη = sup{κσ ∣ 0 < σ < η} is a limit cardinal.

Since the sequence (ασ ∣ 0 < σ < γ) is strictly increasing (cf. Chapter 2.2), it follows
that ασ < ∣β∣ for all σ < η. Hence, for any σ ∈ Succ with σ < η, the forcing notion
P σ ↾ (β × [κσ, κσ)) = P σ ↾ (ασ × [κσ, κσ)) has cardinality ≤ α+σ ≤ ∣β∣; and we conclude
that there are only ≤ ∣η∣ℵ0 ⋅ ∣β∣ℵ0 = ∣β∣-many possibilities for (pσ ↾ (β × domy pσ))σ≤η.
Hence, by the proof of Lemma 2.6.12, it follows that (Pβ ↾ (η+1))(ηm,im)m<ω has cardinality
≤ ∣β∣ < αη. Like in Corollary 2.6.13, this implies that the product (Pβ ↾ (η+1))(ηm,im)m<ω ×

∏m<ω P
ηm ↾ [κη, κηm) preserves all cardinals ≥ ∣β∣+ = αη as desired.

The remaining case is that η is a successor ordinal. Let η = η + 1. We now have to
distinguish four cases, depending on whether κη and κη are successor cardinals or limit
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cardinals.

If η ∈ Lim and η ∈ Lim, it follows for any P σ ↾ (β × [κσ, κσ)) with σ ≤ η, σ ∈ Succ
that σ < η must hold; hence, ασ < αη < αη = ∣β∣+, which implies ασ < ∣β∣. Thus,
the corresponding forcing notion P σ ↾ (β × [κσ, κσ)) = P σ ↾ (ασ × [κσ, κσ)) has car-
dinality ≤ α+σ ≤ ∣β∣; and as before, it follows that the forcing (Pβ ↾ (η + 1))(ηm,im)m<ω

has cardinality ≤ ∣β∣ℵ0 = ∣β∣. Like in Corollary 2.6.13, this implies that the product
(Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ω P

ηm ↾ [κη, κηm) preserves all cardinals ≥ ∣β∣+ = αη as de-
sired.

If η ∈ Lim and η ∈ Succ, we consider the forcing notion ((Pβ ↾ (η + 1))(ηm,im)m<ω)
′
,

which is obtained from (Pβ ↾ (η + 1))(ηm,im)m<ω by excluding P η ↾ (β × [κη, κη)); i.e. we
consider

(pσ ↾ (β × domy p
σ))σ<η = (pσ ↾ (β × domy p

σ))σ<η

instead of (pσ ↾ (β × domy pσ))σ≤η. Then ((Pβ ↾ (η + 1))(ηm,im)m<ω)
′
has cardinality ≤ ∣β∣

as before; and it su�ces to check that the remaining product

P η ↾ (β × [κη, κη)) × ∏
m<ω

P ηm ↾ [κη, κηm)

preserves all cardinals.
The forcing notion ∏m<ω P

ηm ↾ [κη, κηm) preserves cardinals. Moreover, ∏m<ω P
ηm ↾

[κη, κηm) is ≤ κη-closed. Hence, in any V -generic extension by ∏m<ω P
ηm ↾ [κη, κηm)

the following holds: Firstly, P η ↾ (β × [κη, κη)) is the same forcing notion as in V ; and
secondly, P η ↾ (β × [κη, κη)) preserves cardinals, since 2<κη = κη. Thus, it follows that the
product P η ↾ (β × [κη, κη)) × ∏m<ω P

ηm ↾ [κη, κηm) preserves all cardinals as desired.

If η ∈ Succ and η ∈ Lim, we proceed similarly, but exclude P η ↾ (β × [κη, κη)) instead
of P η ↾ (β × [κη, κη)).

If η ∈ Succ and η ∈ Succ, then both P η ↾ (β × [κη, κη)) and P η ↾ (β × [κη, κη)) have
to be parted from (Pβ ↾ (η + 1))(ηm,im)m<ω . As before, it follows that �rstly, the remaining

forcing notion, denoted by ((Pβ ↾ (η + 1))(ηm,im)m<ω)
′′
, has cardinality ≤ ∣β∣; and secondly,

the remaining product

P η ↾ (β × [κη, κη)) × P
η ↾ (β × [κη, κη)) × ∏

m<ω
P ηm ↾ [κη, κηm)

preserves all cardinals.

It follows that (Pβ ↾ (η+1))(ηm,im)m<ω × ∏m<ω P
ηm ↾ [κη, κηm) preserves all cardinals ≥ αη.

This concludes our proof by cases.

D) A set ℘̃(κη) ⊇ domfβ with an injection ι ∶ ℘̃(κη)↪ ∣β∣ℵ0.

In this section, we construct in V [(Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG
ηm
im
↾ [κη, κηm)] a set

℘̃(κη) with ℘̃(κη) ⊇ dom fβ, together with an injective function ι ∶ ℘̃(κη) ↪ (∣β∣ℵ0)V < αη.
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Since fβ is contained in V [(Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG
ηm
im
↾ [κη, κηm)] by De�ni-

tion 2.6.10 and Proposition 2.6.11, and (Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ω P
ηm ↾ [κη, κηm)

preserves cardinals ≥ αη by Proposition 2.6.14, this will contradict our initial assumption
that fβ ∶ dom fβ → αη was surjective.

Fix an η-good pair % = ((am)m<ω, (σm, im)m<ω). Then ∏mG∗(am) × ∏mG
σm
im

is a V -

generic �lter on ∏mP
η
× ∏mP

σm ; and as in Lemma 2.3.2, it follows that this forcing
preserves cardinals and the GCH. Hence, there is an injection χ ∶ ℘(κη) ↪ (κ+η)

V in

V [∏mG∗(am) × ∏mG
σm
im

].

Let Mβ be the set of all η-good pairs ((am)m<ω, (σm, im)m<ω) in V with the property that

im < β for all m < ω. Then Mβ has cardinality ≤ (2κη)ℵ0 ⋅ ∣η∣ℵ0 ⋅ ∣β∣ℵ0 ≤ ∣β∣ℵ0 .

First, we consider the case that ∣β∣+ = αη. Then cf ∣β∣ > ω; hence, GCH gives ∣β∣ℵ0 = ∣β∣
and there is an injection ψ ∶Mβ ↪ ∣β∣ in V .

By construction of fβ (cf. De�nition 2.6.3), it follows that any X ⊆ κη with X ∈ domfβ

is contained in a model V [∏mG∗(am) × ∏mG
σm
im

] for some η-good pair

((am)m<ω, (σm, im)m<ω) ∈Mβ.

Hence, domfβ is a subset of

℘̃(κη) ∶= ⋃{℘(κη) ∩ V [∏
m

G∗(am) × ∏
m

Gσm
im

] ∣ ((am)m<ω, (σm, im)m<ω) ∈Mβ }.

The set ℘̃(κη) can be de�ned in V [(Gβ ↾ (η + 1))(ηm,im)m<ω × Gηm
im
↾ [κη, κηm)], since for

any ((am)m<ω, (σm, im)m<ω) ∈Mβ, we have am ⊆ κη, and σm ≤ η, im < β for all m < ω.

For the rest of this section, we work in V [(Gβ ↾ (η+1))(ηm,im)m<ω ×∏m<ωG
ηm
im
↾ [κη, κηm)],

and construct there an injective function ι ∶ ℘̃(κη)↪ ∣β∣V .

For a set X ∈ ℘̃(κη), let
ι̃(X) ∶= ((am)m<ω, (σm, im)m<ω)

if ((am)m<ω, (σm, im)m<ω) ∈Mβ with X ∈ ℘(κη) ∩ V [∏mG∗(am) × ∏mG
σm
im

], and

ψ((am)m<ω, (σm, im)m<ω) is least with this property.
Now, we use the Axiom of Choice in V [(Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG

ηm
im
↾ [κη, κηm)],

and choose for all ((am)m<ω, (σm, im)m<ω) ∈Mβ an injection

χ((am)m<ω ,(σm,im)m<ω) ∶ (℘(κη) ∩ V [∏
m

G∗(am) × ∏
m

Gσm
im

] )↪ (κ+η)
V .

Now, we can de�ne ι ∶ ℘̃(κη)↪ (κ+η)
V ⋅ ∣β∣V as follows: For X ∈ ℘̃(κη), let

ι(X) ∶= (χι̃(X)(X), ψ(̃ι(X)) ).

Since ψ and the maps χ((am)m<ω ,(σm,im)m<ω) for ((am)m<ω, (σm, im)m<ω) ∈Mβ are injective, it
follows that also ι is injective; which �nishes our construction in the case that (∣β∣+)V = αη.
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If ∣β∣+ < αη in V , we can take an injection ψ ∶ Mβ ↪ (∣β∣+)V , and construct an injective

function ι ∶ ℘̃(κη)↪ (κ+η)
V ⋅ (∣β∣+)V in V [(Gβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG

ηm
im
↾ [κη, κηm)]

similarly as before.

This gives the following proposition:

Proposition 2.6.15. If (∣β∣+)V = αη, then there is in V [(Gβ ↾ (η + 1))(ηm,im)m<ω ×

∏m<ωG
ηm
im
↾ [κη, κηm)] an injection ι ∶ ℘̃(κη)↪ ∣β∣V , where

℘̃(κη) ∶=⋃{℘(κη) ∩ V [∏
m

G∗(am) × ∏
m

Gσm
im

] ∣ ((am)m<ω, (σm, im)m<ω) ∈Mβ }.

If (∣β∣+)V < αη, there is in V [(Gβ ↾ (η+1))(ηm,im)m<ω ×∏m<ωG
ηm
im
↾ [κη, κηm)] an injection

ι ∶ ℘̃(κη)↪ (∣β∣+)V .

This leads to our desired contradiction: We assumed that fβ ∶ dom fβ → αη was surjective.
By Chapter 2.6.2 B), De�nition 2.6.10 and Proposition 2.6.11, it follows that fβ ∈ V [(Gβ ↾
(η + 1))(ηm,im)m<ω × ∏mG

ηm
im
↾ [κη, κηm)]; where (Gβ ↾ (η + 1))(ηm,im)m<ω × ∏mG

ηm
im
↾

[κη, κηm) is a V -generic �lter on the forcing notion ((Pβ ↾ (η + 1))(ηm,im)m<ω × ∏mP
ηm ↾

[κη, κηm), which preserves cardinals ≥ αη by Chapter 2.6.2 C), Proposition 2.6.14.

However, since dom fβ ⊆ ℘̃(κη) and ∣β∣V < αη, it follows that fβ together with the map ι
from Proposition 2.6.15 above, collapses the cardinal αη in V [(Gβ ↾ (η + 1))(ηm,im)m<ω ×

∏mG
ηm
im
↾ [κη, κηm)]. Contradiction.

Thus, we have shown that our initial assumption that fβ ∶ dom fβ → αη was surjective,
was wrong.

Hence, there must be α < αη with α ∉ rg fβ.

E) We use an isomorphism argument and obtain a contradiction.

We �x an ordinal α < αη with α ∉ rg fβ. By surjectivity of f , there must be X ⊆ κη,
X ∈ N , with f(X) = α. Hence, there is an η-good pair % = ((am)m<ω, (σm, im)m<ω) with
X ∈ V [∏mG∗(am) × ∏mG

σm
im

]; but since X ∉ dom fβ, there must be at least one index

m < ω with im ≥ β. Let S0 denote the set of all (σm, im) with im < β, and let S1 be the
set of all (σm, im) with im ≥ β. Then ∣S1∣ ≥ 1.
For better clarity, we now switch to a slightly di�erent notation, and write (λm, km) ∶=
(σm, im) in the case that m ∈ S1. We denote our η-good pair % by

% = ((am)m<ω, ((σm, im)m∈S0 , (λm, km)m∈S1
)).

Then

X = Ẋ
∏mG∗(am)×∏m∈S0 G

σm
im

×∏m∈S1 G
λm
km

for some Ẋ ∈ Name((P
η
)ω × ∏m∈S0

P σm × ∏m∈S1
P λm), such that the following holds:

� (am ∣ m < ω) is a sequence of pairwise disjoint κη-subsets, such that for all m < ω
and κν, < κη, it follows that ∣am ∩ [κν,, κν,+1)∣ = 1,
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� S0 ⊆ ω, and for all m ∈ S0, we have σm ∈ Succ with σm ≤ η, im < min{ασm , β},

� if m, m′ ∈ S0 with m ≠m′, then (σm, im) ≠ (σm′ , im′),

� ∅ ≠ S1 ⊆ ω, and for all m ∈ S1, we have λm ∈ Succ with λm ≤ η, km ∈ [β,αλm),

� if m, m′ ∈ S1 with m ≠m′, then (λm, km) ≠ (λm′ , km′).

Since (X,α) ∈ f , take p ∈ G with

p ⊩s (τ%(Ẋ), α) ∈ ḟ .

Since we are using countable support, we can asssume w.l.o.g. that σm ∈ suppp1,
im ∈ domx p1(σm) for all m ∈ S0; and λm ∈ suppp1, km ∈ domx p1(λm) for all m ∈ S1.

The idea can roughly be explained as follows: Recall that we have β = β̃ + κ+η (addition

of ordinals), where the ordinal β̃ is large enough for (Iḟ). In particular, κ+η < β̃ < β < αη.
We will now extend p and obtain a condition q ∈ G, q ≤ p, such that there is a sequence

(lm ∣ m ∈ S1) with lm ∈ (β̃, β) for all m ∈ S1, such that qλm
km

= qλm
lm

for all m ∈ S1. Then we

construct an isomorphism π ∈ A that swaps any (λm, km)-coordinate with the according
(λm, lm)-coordinate.
Then πq = q; and we will see that π ∈ ⋂mFix(ηm, im) ∩⋂mH

λm
km

, since β̃ is large enough for

(Iḟ). Hence, πf
Dπ

= f
Dπ
; so from q ⊩s (τ%(Ẋ), α) ∈ ḟ , we obtain that q ⊩s (πτ%(Ẋ)

Dπ
, α) ∈

f
Dπ
. Setting

Y ∶= (πτ%(Ẋ)
Dπ

)
G

,

it follows that
(Y,α) ∈ f.

However, we will see that Y = Ẋ
∏mG∗(am)×∏m∈S0 G

σm
im

×∏m∈S1 G
λm
lm ; where im < β for all

m ∈ S0, but also lm < β for all m ∈ S1. But then, the η-good pair

%′ = ((am)m<ω, ((σm, im)m∈S0 , (λm, lm)m∈S1))

is an element of Mβ, and it follows that

(Y,α) = (Ẋ
∏mG∗(am)×∏m∈S0 G

σm
im

×∏m∈S1 G
λm
lm , α) ∈ fβ.

But this would be a contradiction towards α ∉ rg fβ.

We start our proof with the following lemma:

Lemma 2.6.16. Let D be the set of all q ∈ P for which there exists a sequence of pairwise
distinct ordinals (lm ∣ m ∈ S1) with lm ∈ (β̃, β) ∖ {im ∣ m ∈ S0} for all m ∈ S1, such that
qλm
km

= qλm
lm

holds for all m ∈ S1. Then D is dense below p.
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Proof. Consider q ∈ P with q ≤ p. We have to construct q ≤ q with q ∈ D. The
idea is that for every m ∈ S1, we enlarge domx q(λm) by some suitable km, and set
q(λm)(km, ζ) ∶= q(λm)(lm, ζ) = q(λm)(lm, ζ) for all ζ ∈ domy q(λm) = domy q(λm).

Note that for every m ∈ S1, we have λm ∈ supp q1 with ∣domx q1(λm)∣ < κλm ≤ κη,

since λm ≤ η. Hence, it follows that ∣⋃m∈S1
domx q(λm)∣ ≤ κη < κ+η ; and similarly,

∣⋃m∈S0
domx q(σm)∣ ≤ κη < κ+η . Thus, the set

∆ ∶= (β̃, β) ∖ ( ⋃
m∈S1

domx q(λm) ∪ ⋃
m∈S0

domx q(σm) )

has cardinality κ+η .

Recall that for every m ∈ S0, we have assumed that im ∈ domx p(σm) ⊆ domx q(σm); hence
im ∉ ∆.
For m ∈ S1, we have km ∈ [β,αλm); hence, β < αλm and ∆ ⊆ (β̃, β) ⊆ αλm follows.

We take a sequence of pairwise distinct ordinals (lm ∣ m ∈ S1) in ∆ (then {lm ∣ m ∈ S1} ⊆
(β̃, β) ∖ {im ∣ m ∈ S0}), and de�ne the extension q ≤ q as follows:

Set q0 ∶= q0, and supp q1 = supp q1. (From q ≤ p it follows that λm ∈ supp q1 for all m ∈ S1.)
For σ ∈ supp q1 with σ ∉ {λm ∣ m ∈ S1}, we set q(σ) ∶= q(σ). For σ ∈ {λm ∣ m ∈ S1}, we
proceed as follows: Let S1(σ) ∶= {m ∈ S1 ∣ σ = λm}. We set domy q(σ) ∶= domy q(σ), and
domx q(σ) ∶= domx q(σ) ∪ {lm ∣ m ∈ S1(σ)}. Note that by construction of ∆ this union is
disjoint, since lm ∉ domx q(σ) = domx q(λm) for all m ∈ S1(σ).

Note that for every m ∈ S1(σ), we have km ∈ domx p(σ) ⊆ domx q(σ) ⊆ domx q(σ).

We let q(σ)(i, ζ) ∶= q(σ)(i, ζ) whenever (i, ζ) ∈ domx q(σ) × domy q(σ). If (i, ζ) ∈
dom q(σ) ∖ dom q(σ), then ζ ∈ domy q(σ) and i = ln for some n ∈ S1(σ), i.e. n ∈ S1

with σ = λn. In this case, we set q(σ)(i, ζ) = q(λn)(ln, ζ) ∶= q(λn)(kn, ζ) = q(σ)(kn, ζ).

This de�nes q ≤ q with the property that qλm
km

= qλm
lm

holds for all m ∈ S1.

Thus, it follows that D is dense below p.

Since p ∈ G, we can now take q ∈ G, q ≤ p with q ∈ D. Take (lm ∣ m ∈ S1) as in the

de�nition of D, with lm ∈ (β̃, β) ∖ {im ∣ m ∈ S0} and qλm
km

= qλm
lm

for all m ∈ S1. Then the

sets {(λm, lm) ∣ m ∈ S1} and {(σm, im) ∣ m ∈ S0} are disjoint.

Since q ≤ p, we have
q ⊩s (τ%(Ẋ), α) ∈ ḟ .

The next step is to construct an isomorphism π that swaps every (λm, km)-coordinate
with the according (λm, lm)-coordinate for m ∈ S1, and does nothing else.

De�nition 2.6.17. We de�ne an isomorphism π ∈ A as follows:

� The map π0 is the identity on Dπ0 = P0.
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� We set suppπ1 ∶= supp q1, and for every σ ∈ supp q1, we let domπ1(σ) ∶= dom q1(σ).

Then for all m ∈ S1, it follows that λm ∈ suppp1 ⊆ supp q1 = suppπ1; and km ∈
domx p1(λm) ⊆ domx q1(λm) = domx π1(λm), lm ∈ domx q1(λm) = domx π1(λm).

� Consider σ ∈ suppπ1 with κσ = κσ
+. In the case that σ ∉ {λm ∣ m ∈ S1}, we set

suppπ1(σ) ∶= ∅, and let π1(σ)(i, ζ) ∶ 2 → 2 be the identity map for all (i, ζ) ∈
ασ × [κσ, κσ).

� For σ ∈ {λm ∣ m ∈ S1}, consider the set S1(σ) ∶= {m ∈ S1 ∣ σ = λm}, and let
suppπ1(σ) ∶= {km ∣ m ∈ S1(σ)} ∪ {lm ∣ m ∈ S1(σ)}. Then suppπ1(σ) is a subset of
domx π1(σ).

The map fπ1(σ) ∶ suppπ1(σ) → suppπ1(σ) is de�ned as follows: Let fπ1(σ)(km) =
lm, and fπ1(σ)(lm) = km for all m ∈ S1(σ).

Then fπ1(σ) is well-de�ned and bijective, since km ≥ β for all m ∈ S1, and lm < β for
all m ∈ S1.

It remains to de�ne the maps π1(ζ) ∶ 2suppπ1(σ) → 2suppπ1(σ) for ζ ∈ domy π1(σ): Let
π1(ζ)(εi ∣ i ∈ suppπ1(σ)) ∶= (ε̃i ∣ i ∈ suppπ1(σ)), where ε̃km ∶= εlm , ε̃lm ∶= εkm for all
m ∈ S1(σ).

Finally, for every (i, ζ) ∈ ασ × [κσ, κσ), we let π1(σ)(i, ζ) ∶ 2→ 2 be the identity.

This de�nes our automorphism π ∈ A.

Lemma 2.6.18. For Y ∶= (πτ%(Ẋ)
Dπ

)
G

, it follows that (Y,α) ∈ f .

Proof. By construction of π it follows that whenever r is a condition in Dπ with r′ ∶= πr,

then the following holds: Firstly, for all m ∈ S1, we have (r′)λm
km

= rλm
lm

and (r′)λm
lm

=

rλm
km
. Secondly, whenever σ ∈ supp r1, i ∈ domx r(σ) with (σ, i) ∉ {(λm, km) ∣ m ∈ S1} ∪

{(λm, lm) ∣ m ∈ S1}, then (r′)σi = r
σ
i .

In particular, (r′)
σm′
im′

= r
σm′
im′

holds for all m′ ∈ S0:

On the one hand, we have (σm′ , im′) ∉ {(λm, km) ∣ m ∈ S1} for all m′ ∈ S0, since im′ < β;
but km ≥ β for all m ∈ S1. On the other hand, (σm′ , im′) ∉ {(λm, lm) ∣ m ∈ S1} for all
m′ ∈ S0 follows by construction of the set D.

In other words: The map π swaps for allm ∈ S1 the (λm, km)-coordinate with the according
(λm, lm)-coordinate, and does nothing else.

Hence, it follows that πq = q; since qλm
km

= qλm
lm

for all m ∈ S1.

Next, we want to show that π ∈ ⋂mFix(ηm, im) ∩ ⋂mH
λm
km

. Then πf
Dπ

= f
Dπ

follows.
Regarding π ∈ ⋂mFix(ηm, im), it su�ces to make sure that for all m < ω, we have
(ηm, im) ∉ {(λm′ , km′) ∣ m′ ∈ S1} ∪ {(λm′ , lm′) ∣ m′ ∈ S1}. But this follows from the fact
that λm′ ≤ η and km′ ≥ β > β̃, lm′ > β̃ for all m′ ∈ S1; but β̃ is large enough for (Iḟ), so

for any ηm with ηm ≤ η, it follows that im < β̃. This implies (ηm, im) ∉ {(λm′ , km′) ∣ m′ ∈
S1} ∪ {(λm′ , lm′) ∣ m′ ∈ S1} for all m < ω as desired.
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Hence, π ∈ ⋂mFix(ηm, im).

Regarding π ∈ ⋂mH
λm
km

, we have to make sure that whenever λm = λm′ for some m < ω and

m′ ∈ S1, then suppπ1(λm) = suppπ1(λm′) ⊆ (km, αλm) holds; i.e. km′ > km and lm′ > km.
Again, this follows from the fact that λm′ ≤ η and km′ ≥ β > β̃, lm′ > β̃ for all m′ ∈ S1; and
β̃ is large enough for (Iḟ), so whenever λm ≤ η, then km < β̃ follows. Hence, π ∈ ⋂mH

λm
km

.

Thus, it follows that πf
Dπ

= f
Dπ
.

Now, from q ⊩s (τ%(Ẋ), α) ∈ ḟ , we obtain πq ⊩s (πτ%(Ẋ)
Dπ
, α) ∈ πf

Dπ
; hence, q ⊩s

(πτ%(Ẋ)
Dπ
, α) ∈ f

Dπ
. With

Y ∶= (πτ%(Ẋ)
Dπ

)
G
,

it follows from q ∈ G that (Y,α) ∈ f as desired.

We will now show that (Y,α) ∈ f implies that also (Y,α) ∈ fβ must hold. This �nally
gives our desired contradiction, since α ∉ rg fβ.

Indeed, we will prove that

Y = Ẋ
∏mG∗(am)×∏m∈S0 G

σm
im

×∏m∈S1 G
λm
lm .

Since im < β for all m ∈ S0 and lm < β for all m ∈ S1, it follows that the η-good pair

%′ ∶= ((am)m<ω, ((σm, im)m∈S0 , (λm, lm)m∈S1))

is an element of Mβ. Hence, (Y,α) ∈ f would then imply that also (Y,α) ∈ fβ must hold,
and we are done.

Recall that
% ∶= ((am)m<ω, ((σm, im)m∈S0 , (λm, km)m∈S1)),

Ẋ ∈ Name((P
η
)ω × ∏m∈S0

P σm × ∏m∈S1
P λm), and τ%(Ẋ) is the canonical extension of Ẋ

to a name for P (see De�nition 2.6.7).

We will show recursively:

Lemma 2.6.19. For every Ẏ ∈ Name ((P
η
)ω × ∏m∈S0

P σm × ∏m∈S1
P λm), it follows that

π τ%(Ẏ )
Dπ

= τ%′(Ẏ )
Dπ
.

Proof. Consider Ẏ ∈ Nameα+1((P
η
)ω × ∏m∈S0

P σm × ∏m∈S1
P λm), and assume recursively

that the claim was true for all Ż ∈ Nameα((P
η
)ω × ∏m∈S0

P σm × ∏m∈S1
P λm).

First,

τ%(Ẏ )
Dπ

= { ( τ%(Ż)
Dπ
, r ) ∣ r ∈Dπ , Ż ∈ dom Ẏ , r ⊩s τ%(Ż) ∈ τ%(Ẏ ) },
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and

πτ%(Ẏ )
Dπ

= { (πτ%(Ż)
Dπ
, πr ) ∣ r ∈Dπ , Ż ∈ dom Ẏ , r ⊩s τ%(Ż) ∈ τ%(Ẏ ) }.

Now, for any H a V -generic �lter on P and Ż0 ∈ Name((P
η
)ω × ∏m∈S0

P σm × ∏m∈S1
P λm),

it follows by construction of the map π that

(τ%(Ż0))
H

= Ż
∏m<ωH∗(am)×∏m∈S0 H

σm
im

×∏m∈S1 H
λm
km

0

= Ż
∏m<ω(πH)∗(am)×∏m∈S0(πH)σm

im
×∏m∈S1(πH)λm

lm
0

= (τ%′(Ż0))
πH
,

since π swaps any (λm, km)-coordinate with the according (λm, lm)-coordinate, and does
nothing else.

Hence, whenever r ∈ Dπ, then r ⊩s τ%(Ż) ∈ τ%(Ẏ ) if and only if πr ⊩s τ%′(Ż) ∈ τ%′(Ẏ ).
Thus, by our recursive assumption,

πτ%(Ẏ )
Dπ

= { (πτ%(Ż)
Dπ
, πr ) ∣ πr ∈Dπ , Ż ∈ dom Ẏ , πr ⊩s τ%′(Ż) ∈ τ%′(Ẏ ) }

= { ( τ%′(Ż)
Dπ
, r ) ∣ r ∈Dπ , Ż ∈ dom Ẏ , r ⊩s τ%′(Ż) ∈ τ%′(Ẏ ) }

= τ%′(Ẏ )
Dπ
.

Hence,

Y = (πτ%(Ẋ)
Dπ

)
G
= (τ%′(Ẋ)

Dπ
)
G
= (τ%′(Ẋ))

G
=

= Ẋ
∏mG∗(am)×∏m∈S0 G

σm
im

×∏m∈S1 G
λm
lm .

Hence, by Lemma 2.6.18 above, it follows that

(Ẋ
∏mG∗(am)×∏m∈S0 G

σm
im

×∏m∈S1 G
λm
lm , α) ∈ f.

But im < β for all m ∈ S0 and lm < β for all m ∈ S1; hence,

(Ẋ
∏mG∗(am)×∏m∈S0 G

σm
im

×∏m∈S1 G
λm
lm , α) ∈ fβ.

But this contradicts our choice of α ∉ rg fβ.

Thus, in either case our assumption of a surjective function f ∶ ℘N(κη) → αη in N has
lead to a contradiction, and it follows that indeed, θN(κη) ≤ αη.

Recall that we have assumed throughout our proof that κη+1 > κ+η . In the next Chapter
6.3, we will treat the case that κη+1 = κ+η , and discuss where the arguments from Chapter
2.6.2 have to be modi�ed.
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2.6.3 ∀η (κη+1 = κ+η Ð→ θN(κη) ≤ αη )
If κη+1 = κ+η , we need the notion of an η-almost good pair (cf. De�nition 2.5.7 and Proposi-

tion 2.5.8): For anyX ∈ N ,X ⊆ κη, there exists an η-almost good pair ((am)m<ω, (σm, im)m<ω)
such that X ∈ V [∏mG∗(am) × ∏mG

σm
im

× Gη+1].

Throughout this Chapter 2.6.3, we assume that

κη+1 = κ+η.
As before in Chapter 2.6.2, we assume towards a contradiction that there was a surjective

function f ∶ ℘N(κη) → αη in N with πf
Dπ

= f
Dπ

for all π ∈ A with [π] contained in the
intersection

⋂
m<ω

Fix(ηm, im) ∩ ⋂
m<ω

Hλm
km

(Iḟ).

We take β̃ large enough for (Iḟ) as in Chapter 2.6.2, De�nition 2.6.2, and set β ∶= β̃ + κ+η
(addition of ordinals).

Now, we can adapt our de�nition of fβ to η-almost good pairs, and obtain:

fβ ∶= { (X,α) ∈ f ∣ ∃ ((am)m<ω, (σm, im)m<ω) η-almost good pair ∶ (∀m im < β) ∧

∃ Ẋ ∈ Name ((P
η
)ω × ∏

m

P σm × P η+1) X = Ẋ
∏mG∗(am)×∏mGσm

im
×Gη+1

}.

First, we assume towards a contradiction that fβ ∶ domfβ → αη is surjective.

A) Constructing P̃β ↾ (η + 1).

As before, we only treat the case that

β < αη̃ or Lim ∩ (η,γ) ≠ ∅,
where η̃ ∶= sup{σ < η ∣ σ ∈ Lim}, i.e. we presume that there exist (σ, i) with σ ∈ Lim and
i ≥ β or σ > η.

This time, we construct a forcing notion P̃β ↾ (η +1) instead of Pβ ↾ (η +1); which should
be like Pβ ↾ (η + 1), except that �rstly, we use restrictions p∗ ↾ κ2

η+1 instead of p∗ ↾ κ2
η,

and secondly, we include P η+1.

De�nition 2.6.20. For p ∈ P, let

p̃β ↾ (η + 1) ∶= (p∗ ↾ κ
2
η+1, (p

σ
i , a

σ
i )σ≤η,i<β, (p

σ ↾ (β × domy p
σ))σ≤η, p

η+1,Xp ),

and denote by P̃β ↾ (η + 1) the collection of all p̃β ↾ (η + 1) such that p ∈ P (i.e. p ∈ P with
∣{(σ, i) ∈ suppp0 ∣ σ > η ∨ i ≥ β}∣ = ℵ0 ); together with the maximal element 1̃βη+1. The

order relation ≤̃
β
η+1 is de�ned as in De�nition 2.6.4.

Like in Chapter 2.6.2 A), one can write down a projection of forcing posets ρ̃βη+1 ∶ P →

P̃β ↾ (η + 1) and conclude that

G̃β ↾ (η + 1) ∶= {p ∈ P̃β ↾ (η + 1) ∣ ∃ q ∈ G ∩ P q̃β ↾ (η + 1) ≤̃
β
η+1 p}

is a V -generic �lter on P̃β ↾ (η + 1).
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B) Capturing fβ.

We de�ne a forcing notion (P̃β ↾ (η+1))(ηm,im)m<ω , which will be obtained from P̃β ↾ (η+1)
by using X̃p instead of Xp (cf. Chapter 2.6.2 B) ), and including for ηm ∈ Lim, ηm > η the
verticals pηmim ↾ κη+1, and also aηmim ∩ κη+1, the according linking ordinals up to κη+1.

The restriction (p̃β ↾ (η + 1))(ηm,im)m<ω for p ∈ P is de�ned as follows:

(p̃β ↾ (η + 1))(ηm,im)m<ω ∶= (p∗ ↾ κ
2
η+1 , (p

σ
i , a

σ
i )σ≤η,i<β , (p

ηm
im
↾ κη+1, a

ηm
im

∩ κη+1)m<ω , ηm>η,

(pσ ↾ (β × domy p
σ))σ≤η , X̃p , p

η+1 ).

Roughly speaking, the di�erence with the restrictions (pβ ↾ (η + 1))(ηm,im)m<ω introduced
in Chapter 2.6.2 B) is, that we are now reaching up to κη+1 = κ+η instead of κη.

We denote by (P̃β ↾ (η + 1))(ηm,im)m<ω the collection of all (p̃β ↾ (η + 1))(ηm,im)m<ω for p ∈ P
together with the maximal element (1̃βη+1)

(ηm,im)m<ω . The order relation �≤� is de�ned like
in De�nition 2.6.8.

Finally, we include the verticals P ηm ↾ [κη+1, κηm) for ηm > η + 1, which gives the product

(P̃β ↾ (η + 1))(ηm,im)m<ω × ∏
m<ω

P ηm ↾ [κη+1, κηm).

Let
(G̃β ↾ (η + 1))(ηm,im)m<ω × ∏

m<ω
Gηm
im
↾ [κη+1, κηm)

denote the collection of all

((p̃β ↾ (η + 1))(ηm,im)m<ω , (pηmim ↾ [κη+1, κηm)m<ω))

such that there exists q ∈ G ∩ P with (q̃β ↾ (η + 1))(ηm,im)m<ω ≤ (p̃β ↾ (η + 1))(ηm,im)m<ω and
qηmim ↾ [κη+1, κηm) ⊇ pηmim ↾ [κη+1, κηm) for all m < ω.

As in Proposition 2.6.9, one can construct a projection of forcing posets

(ρ̃β)(ηm,im)m<ω ∶ P→ (P̃β ↾ (η + 1))(ηm,im)m<ω × ∏
m<ω

P ηm ↾ [κη+1, κηm),

and it follows that (G̃β ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG
ηm
im
↾ [κη+1, κηm) is a V -generic �lter

on (P̃β ↾ (η + 1))(ηm,im)m<ω × ∏m<ω P
ηm ↾ [κη+1, κηm).

Like in Chapter 2.6.2 B), we want to de�ne a map (fβ)′ contained in V [G̃β ↾ (η +
1))(ηm,im)m<ω × ∏m<ωG

ηm
im
↾ [κη+1, κηm)], and then use an isomorphism argument to show

that fβ = (fβ)′.

Before that, we have to modify our transformations of names τ% (where % is an η-good
pair), and de�ne transformations τ̃%(where % is an η-almost good pair) with

τ̃% ∶ Name((P
η+1

)ω × ∏
m<ω

P σm × P η+1)→ Name(P)

as follows (cf. De�nition 2.6.7):
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De�nition 2.6.21. For an η-almost good pair % = ((am)m<ω, (σm, im)m<ω), de�ne recur-

sively for Ẏ ∈ Name((P
η+1

)ω × ∏m<ω P
σm × P η+1):

τ̃%(Ẏ ) ∶= { (τ̃%(Ż), q) ∣ q ∈ P , ∃ (Ż , ((p∗(am))m<ω , (p
σm
im

)m<ω , p
η+1)) ∈ Ẏ ∶

∀m ( q∗(am) ⊇ p∗(am) , qσm
im

⊇ pσm
im

) , qη+1 ⊇ pη+1 }.

Then Ẏ
∏m<ωG∗(am)×∏m<ωGσmim ×Gη+1

= (τ̃%(Ẏ ))G holds for all Ẏ ∈ Name((P
η+1

)ω ×∏m<ω P
σm ×

P η+1).

De�nition 2.6.22. Let (fβ)′ denote the set of all (X,α) for which there exists an η-
almost good pair % = ((am)m<ω, (σm, im)m<ω) with im < β for all m < ω, such that

X = Ẋ
∏mG∗(am)×∏mGσm

im
×Gη+1

,

and there is a condition p ∈ P with the following properties:

� ∣{(σ, i) ∈ suppp0 ∣ σ > η or i ≥ β}∣ = ℵ0,

� p ⊩s (τ̃%(Ẋ), α) ∈ ḟ ,

� ( (p̃β ↾ (η+1))(ηm,im)m<ω , (pηmim ↾ [κη+1, κηm))m<ω ) ∈ (G̃β ↾ (η+1))(ηm,im)m<ω ×∏m<ωG
ηm
im
↾

[κη+1, κηm),

� ∀ ηm ∈ Lim ∶ (ηm, im) ∈ suppp0 with aηmim = gηmim .

Then (fβ)′ ∈ V [(G̃β ↾ (η + 1))(ηm,im)m<ω × ∏m<ωG
ηm
im
↾ [κη+1, κηm)].

Proposition 2.6.23. fβ = (fβ)′.

Proof. We brie�y outline where the isomorphism argument form Proposition 2.6.11 has

to be modi�ed. We start with (X,α) ∈ (fβ)′ ∖ fβ, X = Ẋ
∏mG∗(am)×∏mGσm

im
×Gη+1

, for an
η-almost good pair % = ((am)m<ω, ((σm, im)m<ω)). Take p as in the de�nition of (fβ)′ with
p ⊩s (τ̃%(Ẋ), α) ∈ ḟ , and p′ ∈ G with p′ ⊩s (τ̃%(Ẋ), α) ∉ ḟ .

The �rst step is the construction of extensions p ≤ p, p′ ≤ p′ such that p and p′ have �the
same shape�, agree on P̃β ↾ (η + 1); and pηmim = (p′)ηmim holds for all m < ω, and aηmim = (a′)ηmim
holds for all m < ω with ηm ∈ Lim.

We proceed as in Proposition 2.6.11, with the following modi�cations:

� The construction of p∗, p
′
∗ that we used in the Proposition 2.6.11 for intervals

[κν,j, κν,j+1) ⊆ κη, has to be applied to all intervals [κν,j, κν,j+1) ⊆ κη+1 now, since we
need p∗ and p

′
∗ agree on κ

2
η+1.

� Analogously, the construction of pσi , (p
′)σi for σ ∈ Lim, i < ασ for intervals [κν,j, κν,j+1) ⊆

κη, has to be applied to all intervals [κν,j, κν,j+1) ⊆ κη+1 now, in the case that σ > η+1.
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� Additionally, we have to make sure that pη+1 = (p′)η+1.

The next step is the construction of an isomorphism π such that πp = p′, πf
Dπ

= f
Dπ
,

and π τ̃%(Ẋ)
Dπ

= τ̃%(Ẋ)
Dπ
. Again, we take for π a standard isomorphism for πp = p′; but

this time, we set Gπ0(ν, j) ∶= Fπ0(ν, j) for all intervals [κν,j, κν,j+1) ⊆ κη+1 (instead of only
intervals [κν,j, κν,j+1) ⊆ κη), and Gπ0(ν, j) = id for all κν,j ≥ κη+1 (instead of all κν,j ≥ κη).
Then as before, it follows that π ∈ ⋂mFix(ηm, im) ∩ ⋂mH

λm
km

.

For verifying π τ̃%(Ẋ)
Dπ

= τ̃%(Ẋ)
Dπ
, we now additionally have to make sure that π is the

identity on P η+1. But since we have arranged pη+1 = (p′)η+1, this is clear by construction
of π1.

Now, it follows from p ⊩s (τ̃%(Ẋ), α) ∈ ḟ that πp ⊩s (π τ̃%(Ẋ)
Dπ
, α) ∈ πf

Dπ
. Hence,

p′ ⊩s (τ̃%(Ẋ)
Dπ
, α) ∈ f

Dπ
, which is a contradiction towards p′ ⊩s (τ̃%(Ẋ), α) ∉ ḟ .

Thus, fβ = (fβ)′ ∈ V [(G̃β ↾ (η + 1))(ηm,im)m<ω × ∏mG
ηm
im
↾ [κη+1, κηm)] as desired.

C) (P̃β ↾ (η + 1))(ηm,im)m<ω × ∏mP ηm ↾ [κη+1,κηm) preserves cardinals ≥ αη.

Now, we will show that cardinals ≥ αη are absolute between V and V [(G̃β ↾ (η +
1))(ηm,im)m<ω × ∏m<ωG

ηm
im
↾ [κη+1, κηm)].

As in Chapter 2.6.2 C), we are using that GCH holds in our ground model V , and when
we argue that a particular forcing notion preserves cardinals, we mean that it preserves
cardinals under GCH, if not stated di�erently.

Lemma 2.6.24. If ∣β∣+ < αη, then (P̃β ↾ (η+1))(ηm,im)m<ω ×∏mP
ηm ↾ [κη+1, κηm) preserves

cardinals ≥ αη.

Proof. We closely follow the proof of Lemma 2.6.12 and Corollary 2.6.13.

The forcing notion (P̃β ↾ (η + 1))(ηm,im)m<ω is the set of all

(p∗ ↾ κ
2
η+1 , (p

σ
i , a

σ
i )σ≤η,i<β , (p

ηm
im
↾ κη+1, a

ηm
im

∩ κη+1)m<ω,ηm>η,

(pσ ↾ (β × domy p
σ))σ≤η , X̃p , p

η+1 ),

where p ∈ P with ∣{(σ, i) ∈ suppp0 ∣ σ > η ∨ i ≥ β}∣ = ℵ0.

Since κη+1 = κ+η , it follows that the p∗ ↾ κ2
η+1, as well as (pηmim ↾ κη+1, a

ηm
im

∩ κη+1) for
m < ω are bounded below κη+1; which gives only ≤ (κη+1 ⋅ 2κη)ω = κη+1 = κ+η ≤ ∣β∣-many
possibilities.
Since X̃p ⊆ κη, there are only ≤ κ+η ≤ ∣β∣-many possibilities for X̃p, as well. Regarding
(pσi , a

σ
i )σ≤η , i<β and (pσ ↾ (domx pσ × β))σ≤η, it follows as in Lemma 2.6.12 that there are

only ≤ ∣β∣+ ⋅ κ+η = ∣β∣+-many possibilities.

We denote by ((P̃β ↾ (η + 1))(ηm,im)m<ω)
′
the forcing notion that is obtained from (P̃β ↾

(η + 1))(ηm,im)m<ω by excluding P η+1. Then (P̃β ↾ (η + 1))(ηm,im)m<ω is isomorphic to the

product ((P̃β ↾ (η + 1))(ηm,im)m<ω)
′
× P η+1.
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By what we have just argued, it follows that the forcing notion ((P̃β ↾ (η + 1))(ηm,im)m<ω)
′

has cardinality ≤ ∣β∣+; and the remaining product P η+1 ×∏m<ω P
ηm ↾ [κη+1, κηm) preserves

all cardinals by similar arguments as in Proposition 2.6.14. Hence, it follows that ((P̃β ↾

(η + 1))(ηm,im)m<ω)
′
× P η+1 × ∏m<ω P

ηm ↾ [κη+1, κηm) preserves all cardinals ≥ ∣β∣++.

Proposition 2.6.25. The forcing (P̃β ↾ (η+1))(ηm,im)m<ω ×∏mP
ηm ↾ [κη+1, κηm) preserves

cardinals ≥ αη.

Proof. We only have to treat the case that αη = ∣β∣+. Then cf ∣β∣ > ω, and GCH gives
∣β∣ℵ0 = ∣β∣. The proof is similar as for Proposition 2.6.14: We distinguish several cases,

and construct ((P̃β ↾ (η+1))(ηm,im)m<ω)
′′
from (P̃β ↾ (η+1))(ηm,im)m<ω by splitting up P η+1,

and also one or two factors P σ ↾ (β × [κσ, κσ)) for σ ∈ Succ with σ = η, or σ = η in the case
that η is a successor ordinal with η = η + 1. Then as in the proof of Proposition 2.6.14, it
follows that ((P̃β ↾ (η + 1))(ηm,im)m<ω)

′′
has cardinality ≤ ∣β∣ < αη, and the product of the

remaining P σ ↾ (β × [κσ, κσ)), P η+1 and ∏mP
ηm ↾ [κη+1, κηm) preserves all cardinals.

D) A set ℘̃(κη) ⊇ domfβ with an injection ι ∶ ℘̃(κη)↪ ∣β∣ℵ0.

For an η-almost good pair % = ((am)m<ω, (σm, im)m<ω), it follows that ∏mG∗(am) ×

∏mG
ηm
im

× Gη+1 is a V -generic �lter on ∏m(P
η
)ω × ∏mP

σm × P η+1, and

(2α)
∏mG∗(am)×∏mGσm

im
×Gη+1

= (α+)V

holds for all α ≤ κη by the same proof as for Lemma 2.3.2, since P η+1 ist ≤ κη-closed.
Thus, there is an injection χ ∶ ℘(κη)↪ (κ+η)

V in V [∏mG∗(am) × ∏mG
σm
im

× Gη+1].

Let M̃β denote the set of all η-almost good pairs % = ((am)m<ω, (σm, im)m<ω) in V with
the property that im < β for all m < ω. Then M̃β has cardinality ≤ κη+1 ⋅ ∣η∣ℵ0 ⋅ ∣β∣ℵ0 = ∣β∣ℵ0 .

Moreover, domfβ is a subset of ℘̃(κη) ∶=

⋃{ ℘(κη) ∩ V [∏
m

G∗(am) × ∏
m

Gσm
im

× Gη+1] ∣ ((am)m<ω, (σm, im)m<ω) ∈ M̃β }.

Now, we can proceed as in Chapter 2.6.2 D) and construct in V [(G̃β ↾ (η+1))(ηm,im)m<ω ×

∏mG
ηm
im
↾ [κη+1, κηm)] an injection ι ∶ ℘̃(κη) ↪ ∣β∣V in the case that αη = (∣β∣+)V and an

injection ι ∶ ℘̃(κη) ↪ (∣β∣+)V in the case that αη > (∣β∣+)V . Together with Chapter 2.6.3
B) and 2.6.3 C), this gives the desired contradiction.

Thus, we have shown that the map fβ ∶ dom fβ → αη must not be surjective.

E) We use an isomorphism argument and obtain a contradiction.

The arguments for this part are the very same as in the case that κη+1 > κ+η , except that we

are now working with η-almost good pairs % = ((am)m<ω, (σm, im)m<ω) instead of η-good
pairs.

Thus, also in the case that κη+1 = κ+η , it follows that θ
N(κη) = αη.
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2.6.4 The Remaining Cardinals in the �Gaps� λ ∈ (κη,κη+1)
So far, we have shown that θN(κη) = αη holds for all 0 < η < γ. Recall that in the very
beginning (see Chapter 2.2), we started by �thinning out� our sequence (κη ∣ 0 < η < γ)
and assuming w.l.o.g. that (αη ∣ 0 < η < γ) is strictly increasing. Thus, it remains make
sure that for all cardinals λ ∈ (κη, κη+1) in the �gaps� , θN(λ) gets the smallest possible
value, i.e. θN(λ) = max{αη, λ++}. This will be our aim for this Chapter 2.6.4.
After that, in Chapter 2.6.5, we make sure that also for all cardinals λ ≥ κγ, the value
θN(λ) will be the smallest possible.

We consider a cardinal λ in a �gap� λ ∈ (κη, κη+1) (then κη+1 > κ+η), and set α(λ) ∶=
max{λ++, αη}. Then θN(λ) ≥ α(λ) is clear, and it remains to make sure that there is no
surjective function f ∶ ℘N(λ)→ α(λ) in N .

First, we want to describe the intermediate generic extensions where the λ-subsets X ∈
℘N(λ) are located.

Let λ ∈ [κη,, κη,+1), where  < cf κη+1 in the case that η + 1 ∈ Lim, and  = 0 with
λ ∈ (κη,0, κη,1) = (κη, κη+1) in the case that η + 1 ∈ Succ.

We will modify our de�nition of an η-good pair and obtain the notion of an η-good pair
for λ, which will be used to describe the intermediate generic extensions where the sets
X ∈ ℘N(λ) are located:

De�nition 2.6.26. We say that ((am)m<ω, (σm, im)m<ω) is an η-good pair for λ, if the
following hold:

� (am ∣ m < ω) is a sequence of pairwise disjoint subsets of κη,, such that for all
κν,l < κη,, it follows that ∣am ∩ [κν,l, κν,l+1)∣ = 1,

� for all m < ω, we have σm ∈ Succ with σm ≤ η, and im < ασm ,

� if m ≠m′, then (σm, im) ≠ (σm′ , im′).

Similarly as in Proposition 2.5.6, we obtain:

Proposition 2.6.27. For every X ∈ N , X ⊆ λ, there is an η-good pair for λ, denoted by
% = ((am)m<ω, (σm, im)m<ω), such that X ∈ V [∏m<ωG∗(am) × ∏m<ωG

σm
im

].

Proof. As in Proposition 2.5.6, it follows by the Approximation Lemma 2.5.2 that any
X ∈ N , X ⊆ λ is contained in a generic extension

X ∈ V [∏
m<ω

G∗(g
σm
im

) × ∏
m<ω

Gσm
im

],

where ((σm, im) ∣ m < ω) and ((σm, im) ∣ m < ω) are sequences of pairwise distinct pairs
with σm ∈ Lim, im < ασm , and σm ∈ Succ, im < ασm for all m < ω.

The forcing ∏m<ω P
σm × ∏m<ω P

σm can be factored as

( ∏
m<ω

P σm ↾ κη, × ∏
σm≤η

P σm ) × ( ∏
m<ω

P σm ↾ [κη,, κηm) × ∏
σm>η

P σm ).
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In the case that λ ∈ (κη,, κη,+1), it follows that the �lower part� has cardinality ≤ κ+η, ≤ λ,
and the �upper part� is ≤ λ-closed.
If λ = κη,, then �rstly, the �lower part� has cardinality ≤ κ+η, = λ

+, and secondly, it follows
that  > 0 and κη+1 ∈ Lim, so κη,+1 ≥ κ++η, by construction. Hence, the �upper part� is
≤ λ+-closed.
In either case, we obtain

X ∈ V [∏
m<ω

G∗(g
σm
im

∩ κη,) × ∏
σm≤η

Gσm
im

].

With am ∶= gσmim ∩ κη, for all m < ω, it follows by the independence property that

((am)m<ω, (σm, im)m<ω) is an η-good pair for λ with

X ∈ V [∏
m<ω

G∗(am) × ∏
σm≤η

Gσm
im

].

(Note that ∏mG∗(am) × ∏σm≤ηG
σm
im

is a V -generic �lter on the forcing (P
η+1
↾ κη,)ω ×

∏σm≤η P
σm).

As before, we assume towards a contradiction that there was a surjective function f ∶

℘N(λ) → α(λ) in N , where πf
Dπ

= f
Dπ

holds for all π ∈ A with [π] contained in the
intersection

⋂
m<ω

Fix(ηm, im) ∩ ⋂
m<ω

Hλm
km

(Iḟ).

We take β̃ large enough for the intersection (Iḟ) as in Chapter 2.6.2, De�nition 2.6.2, and

set β ∶= β̃ + κ+η (addition of ordinals).

Let

fβ ∶= { (X,α) ∈ f ∣ ∃ ((am)m<ω, (σm, im)m<ω) η-good pair for λ ∶ (∀m im < β) ∧

∃ Ẋ ∈ Name ((P
η+1
↾ κη,)

ω × ∏
σm≤η

P σm) X = Ẋ
∏mG∗(am)×∏mGσm

im }.

First, we assume towards a contradiction that fβ ∶ domfβ → α(λ) is surjective.

A) Constructing ̃̃
Pβ ↾ (η + 1).

We proceed as in Chapter 2.6.2 A) and 2.6.3 A), except that we have to use P∗ ↾ κ2
η,

instead of P∗ ↾ κ2
η, and do not include P η+1:

For p ∈ P, we set

̃̃pβ ↾ (η + 1) ∶= (p∗ ↾ κ
2
η, , (p

σ
i , a

σ
i )σ≤η,i<β , (p

σ ↾ (β × domy p
σ))σ≤η , Xp ),

and denote by ̃̃
Pβ ↾ (η + 1) the collection of all ̃̃pβ ↾ (η + 1), where p ∈ P (i.e. p ∈ P with

∣{(σ, i) ∈ suppp0 ∣ σ > η ∨ i ≥ β}∣ = ℵ0 ); together with the maximal element ̃̃
1
β
η+1, and the
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order relation ̃̃≤
β

η+1 de�ned similarly as in De�nition 2.6.4.

We denote by ̃̃Gβ ↾ (η + 1) the set of all p ∈ ̃̃
Pβ ↾ (η + 1) such that there exists q ∈ G ∩ P

with ̃̃q β ↾ (η + 1) ̃̃≤
β

η+1 p. Then as in Chapter 2.6.2 A), Proposition 2.6.6, it follows that
̃̃Gβ ↾ (η + 1) is a V -generic �lter on ̃̃

Pβ ↾ (η + 1).

B) Capturing fβ.

For p ∈ P, the restriction (̃̃pβ ↾ (η + 1))(ηm,im)m<ω is de�ned as follows:

(̃̃pβ ↾ (η + 1))(ηm,im)m<ω ∶= (p∗ ↾ κ
2
η, , (p

σ
i , a

σ
i )σ≤η,i<β , (p

ηm
im
↾ κη,, a

ηm
im

∩ κη,)m<ω , ηm>η ,

(pσ ↾ (β × domy p
σ))σ≤η , X̃p ).

We de�ne (
̃̃
Pβ ↾ (η + 1))(ηm,im)m<ω and (

̃̃Gβ ↾ (η + 1))(ηm,im)m<ω as in Chapter 2.6.2 B) and
2.6.3 B). Then

(
̃̃Gβ ↾ (η + 1))(ηm,im)m<ω × ∏

m<ω
Gηm
im
↾ [κη,, κηm)

is a V -generic �lter on

(
̃̃
Pβ ↾ (η + 1))(ηm,im)m<ω × ∏

m<ω
P ηm ↾ [κη,, κηm).

The construction of (fβ)′ as well as the proof of fβ = (fβ)′ are as in Chapter 2.6.2 B) and
2.6.3 B); except that this time, the isomorphism π from the proof of Proposition 2.6.11
has to be the identity on P∗ ↾ κ2

η, (not only on P∗ ↾ κ2
η). This can be achieved by the

following modi�cations: Firstly, we demand that p∗ and p′∗ cohere on P∗ ↾ κ
2
η, (not only

P∗ ↾ κ2
η); secondly, we arrange p∗ ↾ κ

2
η, = p

′
∗ ↾ κ

2
η, (instead of just p∗ ↾ κ

2
η = p′∗ ↾ κ

2
η);

and thirdly, when constructing the isomorphism π, we set Gπ0(ν, j) ∶= Fπ0(ν, j) for all
κν,j < κη, now, and Gπ0(ν, j) = id whenever κν,j ≥ κη,.

It follows that fβ = (fβ)′ ∈ V [(
̃̃Gβ ↾ (η + 1))(ηm,im)m<ω × ∏mG

ηm
im
↾ [κη,, κηm)].

C) (̃̃Pβ ↾ (η + 1))(ηm,im)m<ω × ∏m<ωP ηm ↾ [κη,,κηm) preserves cardinals
≥ α(λ) =max{λ++,αη}.

The arguments here are similar as in Chapter 2.6.2 C) and 2.6.3 C), since there are only
≤ (2κη,)ℵ0 = κ+η, ≤ λ

+ < α(λ)-many possibilities for p∗ ↾ κ2
η, and (pηmim ↾ κη,, a

ηm
im

∩ κη,)m<ω.

D) A set ℘̃(λ) ⊇ domfβ with an injection ι ∶ ℘̃(λ)↪ λ+ ⋅ ∣β∣ℵ0.

We proceed as in Chapter 2.6.2 D) and 2.6.3 D). Whenever ((am)m<ω, (σm, im)m<ω) is an

η-good pair for λ, it follows that ∏mG∗(am) × ∏mG
σm
im

is a V -generic �lter on (P
η+1
↾

κη,)ω × ∏mP
σm ; and

(2α)
V [∏mG∗(am)×∏mGσm

im ] = (α+)V
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holds for all cardinals α by the same proof as in Lemma 2.3.2. Hence, it follows that in
V [∏mG∗(am) × ∏mG

σm
im

], there is an injection χ ∶ ℘(λ)↪ (λ+)V .

Let ̃̃Mβ be the set of all % = ((am)m<ω, (σm, im)m<ω) in V such that % is an η-good

pair for λ with the property that im < β for all m < ω. Then ̃̃Mβ has cardinality
≤ (κ+η,)

ℵ0 ⋅ ∣β∣ℵ0 ≤ λ+ ⋅ ∣β∣ℵ0 .

By construction, it follows that dom fβ is a subset of

℘̃(λ) ∶=⋃{℘(λ) ∩ V [∏
m

G∗(am) × ∏
m

Gσm
im

] ∣ ((am)m<ω, (σm, im)m<ω) ∈
̃̃Mβ }.

As in Chapter 2.6.2 D), we can now work in V [(
̃̃Gβ ↾ (η + 1))(ηm,im)m<ω × ∏mG

ηm
im
↾

[κη,, κηm)] and construct there an injection ι ∶ ℘̃(λ) ↪ (λ+)V ⋅ ∣β∣V in the case that

αη = (∣β∣+)V , and an injection ι ∶ ℘̃(λ)↪ (λ+)V ⋅ (∣β∣+)V in the case that αη > (∣β∣+)V .
Together with Chapter 2.6.4 B) and 2.6.4 C), this gives the desired contradiction.

Hence, it follows that there must be α < α(λ) with α ∉ rg fβ.

E) We use an isomorphism argument and obtain a contradiction.

The arguments for this part are the same as in Chapter 2.6.2 E); except that we are
working with η-good pairs for λ now (instead of η-good pairs).

Thus, we have shown that for all cardinals λ ∈ (κη, κη+1) in a �gap� , the value θN(λ) is
the smallest possible: θN(λ) = α(λ) = max{λ++, αη}.

It remains to consider the cardinals λ ≥ κγ ∶= sup{κη ∣ 0 < η < γ}. We prove that for all
λ ≥ κγ, again, θN(λ) takes the smallest possible value.

This will be the aim of the next Chapter 2.6.5.

2.6.5 The Cardinals λ ≥ κγ ∶= sup{κη ∣ 0 < η < γ}
Let αγ ∶= sup{αη ∣ 0 < η < γ}, and consider a cardinal λ ≥ κγ. We want to show that θN(λ)
takes the smallest possible value α(λ), de�ned as follows:

� In the case that cf αγ = ω, we set α(λ) = max{α++γ , λ
++}.

� In the case that αγ = α+ for some α with cf α = ω, we set α(λ) = max{α+γ , λ
++}.

� In other cases, we set α(λ) ∶= max{αγ, λ++}.

Then by our remarks from Chapter 2.2, it follows that indeed, θN(λ) ≥ α(λ) holds for all
λ ≥ κγ.

First, we assume that
α(λ) > αγ .

It remains to prove that there is no surjective function f ∶ ℘N(λ)→ α(λ) in N .

We start with the following observation (again, we use that V ⊧ GCH):
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Lemma 2.6.28. Let λ ≥ κγ with α(λ) > αγ. Then P preserves cardinals ≥ α(λ).

Proof. For every p ∈ P, p = (p∗, (pσi , a
σ
i )σ<γ,i<ασ , (p

σ)σ<γ), there are

� ≤ κ+γ -many possibilities for p∗,

� ≤ αℵ0
γ -many possibilities for the countable support of (pσi , a

σ
i )σ<γ,i<ασ ,

� ≤ κ+γ -many possibilities for (pσi , a
σ
i )σ<γ,i<ασ when the support is given.

In the case that γ is a limit ordinal, it follows by the strict monotonicity of the
sequence (ασ ∣ 0 < σ < γ) that ασ < αγ holds for all 0 < σ < γ. Hence, for any σ ∈ Succ, the
forcing notion P σ has cardinality ≤ α+σ ≤ αγ; and it follows by countable support that we
have ≤ ∣γ∣ℵ0 ⋅ αℵ0

γ = αℵ0
γ -many possibilities for (pσ)σ<γ. Hence, the forcing P has cardinality

≤ κ+γ ⋅α
ℵ0
γ ≤ λ+ ⋅αℵ0

γ . If cf αγ > ω, GCH gives ∣P∣ ≤ λ+ ⋅αγ, and α(λ) = max{λ++, α+γ}. Hence,
P preserves cardinals ≥ α(λ) as desired. If cf αγ = ω, then α(λ) = max{λ++, α++γ } ≥ ∣P∣+;
and again, it follows that P preserves cardinals ≥ α(λ).
It remains to consider the case that γ = γ + 1 is a successor ordinal. Then our sequences
(κσ ∣ 0 < σ < γ) = (κσ ∣ 0 < σ ≤ γ) and (ασ ∣ 0 < σ < γ) = (ασ ∣ 0 < σ ≤ γ) have a maximal
element, and κγ = κγ, αγ = αγ.
If γ ∈ Lim, i.e. κγ is a limit cardinal, it follows that for any σ ∈ Succ, we have σ < γ;
hence, α+σ ≤ αγ = αγ. This gives ∣P∣ ≤ κ+γ ⋅ α

ℵ0
γ ≤ λ+ ⋅ αℵ0

γ as before, and α(λ) ≥ ∣P∣+.
If γ ∈ Succ, i.e. κγ is a successor cardinal, then P γ has to be treated separately. We
factor P ≅ P′ × P γ with P′ ∶= { (p∗, (pσi , a

σ
i )σ≤γ , i<ασ , (p

σ)σ<γ) ∣ p ∈ P}. Then P γ preserves
cardinals, and P′ has cardinality ≤ (λ+)V ⋅ (αℵ0

γ )V as before (in V , and hence, also in
any P γ-generic extension); where α(λ) ≥ ∣P′∣+. Hence, the forcing P ≅ P′ × P γ preserves
cardinals ≥ α(λ) as desired.

Now, we assume towards a contradiction that there was a surjective function f ∶ ℘N(λ)→
α(λ) in N .
By the Approximation Lemma 2.5.2, it follows that any X ∈ N , X ⊆ λ, is contained in
an intermediate generic extension V [∏m<ωG

σm
im

], with a sequence ((σm, im) ∣ m < ω) of
pairwise distinct pairs in V such that 0 < σm < γ, im < ασm for all m < ω. Denote by M
the collection of these ((σm, im) ∣ m < ω). Then ∣M ∣ ≤ αℵ0

γ in V ; and αℵ0
γ < α(λ) as argued

before.
The product ∏mP

σm preserves cardinals and the GCH. Hence, it follows that in any
generic extension V [∏mG

σm
im

], there is an injection χ ∶ ℘(λ) ↪ (λ+)V . Now, one can

argue as in Chapter 6.2 D), and de�ne in V [G] a set ℘̃(λ) ⊇ ℘N(λ) with an injection

ι ∶ ℘̃(λ) ↪ (λ+)V ⋅ αγ, or ι ∶ ℘̃(λ) ↪ (λ+)V ⋅ (α+γ)
V in the case that α(λ) ≥ (α++γ )V . To-

gether with Lemma 2.6.28, this gives the desired contradiction.

Thus, we have shown that in the case that α(λ) > αγ, there can not be a surjective func-
tion f ∶ ℘(λ)→ α(λ) in N .

It remains to consider the case that

α(λ) = αγ .
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Then λ+ < αγ, cf αγ > ω; and if αγ = α+ for some α, then cf α > ω.

Assume towards a contradiction that there was a surjective function f ∶ ℘N(λ)→ α(λ) in

N , f = ḟG with πf
Dπ

= f
Dπ

for all π ∈ A with [π] contained in the intersection

⋂
m<ω

Fix(ηm, im) ∩ ⋂
m<ω

Hλm
km

(Iḟ).

Similary as before, we take β̃ < α(λ) large enough for the intersection (Iḟ), i.e. β̃ > λ+

with β̃ > sup{im ∣ m < ω} ∪ sup{km ∣ m < ω} (this is possible, since cf α(λ) > ω). Let
β ∶= β̃ + κ+γ (addition of ordinals). Then κ+γ ≤ λ

+ < α(λ) gives λ+ < β < α(λ).

By the Approximation Lemma 2.5.2, it follows as in Proposition 2.5.6 that any X ∈ N ,
X ⊆ λ, is contained in an intermediate generic extension V [∏mG∗(am) ×∏mG

σm
im

], where

((am)m<ω, (σm, im)m<ω) is a good pair for κγ, i.e.

� (am ∣m < ω) is a sequence of pairwise disjoint subsets of κγ, such that for all κν, < κγ
and m < ω, it follows that ∣am ∩ [κν,, κν,+1)∣ = 1,

� for all m < ω, we have σm ∈ Succ, 0 < σ < γ, and im < ασm ,

� if m ≠m′, then (σm, im) ≠ (σm′ , im′).

As before, let

fβ ∶= { (X,α) ∈ f ∣ ∃ ((am)m<ω, (σm, im)m<ω) good pair for κγ ∶ (∀m im < β) ∧

∧ ∃ Ẋ ∈ Name ((P
γ
)ω × ∏

m

P σm) X = Ẋ
∏mG∗(am)×∏mGσm

im }.

First, we assume towards a contradiction that fβ ∶ domfβ → α(λ) is surjective.

A) + B) Constructing Pβ and capturing fβ.

For a condition p ∈ P, let

pβ ∶= (p∗, (p
σ
i , a

σ
i )σ∈Lim , i<β, (p

σ ↾ (β × domx p
σ))σ∈Succ,Xp ),

where
Xp ∶=⋃{aσi ∣ σ ∈ Lim , i ≥ β}.

We de�ne Pβ and Gβ as before.

The construction of (fβ)′ ∈ V [Gβ] and the isomorphism argument for fβ = (fβ)′ are as
in Chapter 6.2 and 6.3; except that when constructing the isomorphism π, we now have
to set Gπ0(ν, j) ∶= Fπ0(ν, j) for all κν,j < κγ.
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C) Pβ preserves cardinals ≥ α(λ) = αγ = sup{αη ∣ 0 < η < γ} .

The arguments here are similar as in Chapter 2.6.2 C): If αγ > ∣β∣+, it follows as in Lemma
2.6.12 that ∣Pβ ∣ ≤ κ+γ ⋅ ∣β∣ℵ0 ≤ λ+ ⋅ ∣β∣+ < αγ. In the case that αγ = ∣β∣+, it follows that
cf ∣β∣ > ω, and as before, we distinguish several cases, whether γ is a limit ordinal or
γ = γ + 1, and in the latter case, whether γ ∈ Lim, or γ ∈ Succ with γ = γ + 1 etc.
We separate P γ (or P γ, or both), and obtain that P γ (or P γ, or the product P γ × P γ)
preserves cardinals, while the remaining forcing is now su�ciently small.

D) A set ℘̃(λ) ⊇ domfβ with an injection ι ∶ ℘̃(λ)↪ λ+ ⋅ ∣β∣ℵ0.

As in Chapter 2.6.2 D) and 2.6.4 D), we construct in V [Gβ] a set ℘̃(λ) ⊇ dom fβ with

an injection ι ∶ ℘̃(λ) ↪ (λ+)V ⋅ (∣β∣+)V in the case that (∣β∣+)V < α(λ) and an injection

ι ∶ ℘̃(λ)↪ (λ+)V ⋅ ∣β∣V in the case that (∣β∣+)V = α(λ).

Together with Chapter 2.6.5 B) and 2.6.5 C), this gives the desired contradiction.

Hence, it follows that there must be some α < α(λ) with α ∉ rg fβ.

E) We use an isomorphism argument and obtain a contradiction.

With the same isomorphism argument as in Chapter 2.6.2 E), it follows that θN(λ) = α(λ)
as desired.

Thus, we have shown that also for all cardinals λ ≥ κγ, θN(λ) takes the smallest possible
value.

This was the last step in the proof of our main theorem.

2.7 Discussion and Remarks

● Our result gives an answer to Shelah's question from [She16, �0.2 1)] (�Can we bound
hrtg (℘(µ)) [= θ(µ)] for µ singular?� No, we can not), and con�rms his thesis from
[She10, p.2] that in ZF + DC + AX4 it is �better� to look at ( [κ]ℵ0 ∣ κ ∈ Card ) rather than

(℘(κ) ∣ κ ∈ Card ), in the sense that by what we have shown, the only restrictions that can
be imposed on the θ-function on a set of cardinals in ZF + DC + AX4, are the obvious ones.

In [She10, �0 (A)], Shelah suggests to investigate possible cardinalities of (κℵ0 ∣ κ ∈ Card ).
From Theorem 1 in [AK10], it follows that increasing the surjective size of [ℵω]ℵ0 together
with preserving GCH below ℵω, requires a measurable cardinal, which indicates how dif-
ferently ℘(ℵω) and [ℵω]ℵ0 behave without the Axiom of Choice.
In further investigation, one might look at the cardinal arithmetic in our constructed
model, such as possible surjective sizes of ([κ]λ ∣ κ ∈ Card) for λ << κ.

● We now look at the following requirement that we put on the sequences (κη ∣ 0 < η < γ),
(αη ∣ 0 < η < γ):

∀ η (αη = α
+ → cf α > ω).
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In Chapter 2.2, we mentioned that this condition is necessary under ZF + DC + AX4.
Moreover, we proved that whenever we start from a ground model V ⊧ ZFC + GCH, and
construct a symmetric extension N ⊇ V with N ⊧ ZF + DC such that V and N have the
same cardinals and co�nalities, then the following holds:

If κ, α ∈ Card with θN(κ) = α+, then cfN(α) > ω.

One could ask what happens if we drop the requirement that N should extend a ground
model V ⊧ ZFC + GCH cardinal- and co�nality-preservingly:

Can there be any inner model N ⊧ ZF + DC with cardinals κ, α such that θN(κ) = α+ and
cfN(α) = ω?

Let s ∶ 2κ → α denote a surjective function in N . Then with DC, it follows as in Chapter
2.2 that there is also a surjection s1 ∶ (2κ)ω → αω in N ; and we also have a surjective
function s0 ∶ 2κ → (2κ)ω.
In Chapter 2.2, we then took a surjection s̃2 ∶ (αω)V → (α+)V from our ground model
V , which gave a surjection s2 ∶ (αω)N → (α+)N in N . Then s2 ○ s1 ○ s0 ∶ 2κ → α+ was a
surjective function in N , hence, θN(κ) ≥ α++.

In a more general setting, where we can not refer to a ground model V , we try to use the
constructible universe L = LN instead. Under the assumption ¬0♯, it follows by Jensen's
Covering Theorem ([DJ75]) that L does not di�er drastically from N : In particular, L and
N have the same successors of singular cardinals; so if cfN(α) = ω, then (α+)L = (α+)N .

This yields the following lemma:

Lemma 2.7.1. Let N be an inner model of ZF + DC with N ⊧ ¬∃0♯, and α ∈ CardN with
cfN(α) = ω. Then there exists a surjective function s2 ∶ (αω)N → (α+)N in N .

Proof. Let (αi ∣ i < ω) denote a strictly increasing sequence in N that is co�nal in α.
First, we construct in N an injection ι ∶ (2α)L ↪ (αω)N , ι = ι2 ○ ι1 ○ ι0, as follows:

� Let ι0 ∶ (2α)L → ∏i<ω(2
αi)L denote the injection that maps any g ∶ α → 2, g ∈ L, to

the sequence of its restrictions ((g ↾ αi) ∣ i < ω).

� For any i < ω, there is in L an injection γ ∶ (2αi)L ↪ (α+i )
L; so with DC in N , we

can choose a sequence of injective maps (γi ∣ i < ω) such that γi ∶ (2αi)L ↪ (α+i )
L for

all i < ω. Then we de�ne in N an injection ι1 ∶ ∏i<ω(2
αi)L → ∏i<ω(α

+
i )
L by setting

ι1(Xi ∣ i < ω) ∶= (γi(Xi) ∣ i < ω).

� Finally, since (α+i )
L ≤ (α+i )

N < α for all i < ω, it follows that there is in N an injective
map ι2 ∶∏i<ω(α

+
i )
L ↪ (αω)N .

Thus, ι ∶= ι2 ○ ι1 ○ ι0 ∶ (2α)L ↪ (αω)N is an injection in N ; which yields a surjection
s ∶ (αω)N → (2α)L, or s ∶ (αω)N → (α+)L.

Since we have assumed that N ⊧ ¬∃0♯ and cfN(α) = ω, it follows by Jensen's Covering
Lemma in N that (α+)L = (α+)N .

This gives our surjecion s2 ∶ (αω)N → (α+)N in N as desired.
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Corollary 2.7.2. Let N be an inner model of ZF +DC with N ⊧ ¬0♯ and cardinals κ, α
such that θN(κ) = α+. Then cfN(α) > ω.

Proof. Let s ∶ 2κ → α denote a surjective function in N , and assume towards a contra-
diction that cfN(α) = ω. As mentioned before, we have surjections s0 ∶ 2κ → (2κ)ω and
s1 ∶ (2κ)ω → αω. By Lemma 2.7.1, it follows that there is also a surjection s2 ∶ αω → α+ in
N . Setting s ∶= s2 ○ s1 ○ s0, we obtain in N a surjective function s ∶ 2κ → α+. Contradic-
tion.

Thus, without large cardinal assumptions, it is not possible to obtain a modelN ⊧ ZF+DC
such that θN(κ) = α+ for cardinals κ, α with cfN(α) = ω.

● Another question to ask is, under what circumstances certain ¬AC-large cardinal prop-
erties are preserved in our symmetric extension N . As an example, we will brie�y look at
the question whether an inaccessible cardinal κ from the ground model V could remain
inaccessible in N .

The notion of inaccessibility in ZFC reads as follows: A cardinal κ is inaccessible (or
strongly inaccessible) if κ is regular and 2λ < κ holds for all cardinals λ < κ.
Hence, it can not be transferred directly to the ¬AC-context, since the power sets ℘(λ)
for λ < κ are usually not well-ordered. In [BDL07, Chapter 2], there are several charac-
terizations how inaccessibility can be de�ned in ZF:

De�nition 2.7.3 ([BDL07]). (i) A regular uncountable cardinal κ is i-inaccessible if
for all λ < κ, there is an ordinal α < κ with an injection ι ∶ ℘(λ)↪ α.

(ii) A regular uncountable cardinal κ is v-inaccessible if for all λ < κ, there is no
surjection s ∶ Vλ → κ.

(iii) A regular uncountable cardinal κ is s-inaccessible if for all λ < κ, there is no
surjection s ∶ ℘(λ)→ κ.

Note that i-inaccessibility implies v-inaccessibility, and v-inaccessibility implies s-inac-
cessibility. It is not di�cult to see that a cardinal κ is v-inaccessible if and only if Vκ is a
model of second-order ZF (see [BDL07, Chapter 2]).

Let now κ be an inaccessible cardinal in the setting of our theorem: V ⊧ ZFC + GCH
with sequences (κη ∣ 0 < η < γ), (αη ∣ 0 < η < γ) as before, with the additional property
that for all κη < κ, it follows that also αη < κ. Then by construction, it follows that κ is
s-inaccessible in N , while i-inaccessibility of κ is out of reach, since we do not have our
power set well-ordered.

The question remains whether κ is v-inaccessible in N .

By induction over λ, we could prove (using several isomorphism and factoring arguments
similar to those in Chapter 2.6):

Proposition 2.7.4. Let V be a ground model of ZFC + GCH with γ ∈ Ord, and sequences
of uncountable cardinals (κη ∣ 0 < η < γ) and (αη ∣ 0 < η < γ) with the properties listed in
Chapter 2.2. Moreover, let N ⊇ V denote the symmetric extension constructed in Chapter
2.3, 2.4 and 2.5.
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If κ is an inaccessible cardinal in V with the property that for all κη < κ it follows that
αη < κ, then κ is v-inaccessible in N : For λ < κ, there can not be a surjective function
s ∶ Vλ → κ in N .

In our inductive proof, we show that for any cardinal λ < κ, there exists κν,(λ) < κ and
a cardinal βλ < κ with an injection ι ∶ V N

λ ↪ βλ in V [G ↾ κν,(λ)].

● Finally, we remark that our theorem gives a result about possible behaviors of the
θ-function on a set of uncountable cardinals. A straightforward generalization of our forc-
ing notion to ordinal length sequences (κη ∣ η ∈ Ord), (αη ∣ η ∈ Ord) does not result in a
ZF-model:

Denote by P the class forcing which canonically generalizes our forcing notion P to se-
quences (κη ∣ η ∈ Ord), (αη ∣ η ∈ Ord) of ordinal length, denote by G a V -generic
�lter on P, and let N ∶= V (G). Then N ⊭ Power Set: Assume towards a contradic-
tion that Z ∶= ℘N(ℵ1) ∈ N . Then there would be an ordinal γ and a symmetric name
Ż ∈ HS ∩ Name(P ↾ γ) with Z = ŻG↾γ, where P ↾ γ denotes the initial part of P up to
κγ. Now, by an isomorphism argument similar as in the Approximation Lemma 2.5.2,
one can show that any set X ∈ ℘N(ℵ1) is contained in an intermediate generic exten-
sion V [∏m<ωG

ηm
im

] with ηm < γ, im < αηm for all m < ω. Consider X ∶= Gγ+1
i ↾ ℵ1 for

some i < αγ+1. Then X ∈ ℘N(ℵ1); hence, X = Gγ+1
i ↾ ℵ1 ∈ V [∏m<ωG

ηm
im

] for a sequence
((ηm, im) ∣ m < ω) with ηm < γ, im < αηm for all m < ω. But this is not possible, since
Gγ+1
i is V [∏m<ωG

ηm
im

]-generic on P γ+1.

Broadly speaking, the point is that a class-sized version of our forcing construction never
stops adding new subsets of ℵ1 (or any other uncountable cardinal). Although we can try
and keep control over the surjective size of ℘N(ℵ1), it is not possible to capture ℘N(ℵ1) in
an appropriate set-sized intermediate generic extension; and it remains a future project
to settle this problem and �nd a countably closed forcing notion that is also suitable for
sequences (κη ∣ η ∈ Ord), (αη ∣ η ∈ Ord) of ordinal length.
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Chapter 3

An Easton-like Theorem for all

Cardinals in ZF

In this chapter, we show that in the theory ZF, the θ-function can take almost arbitrary
values on all cardinals.

More precisely, we prove the following theorem (see [FK16]):

Theorem. Let V be a ground model of ZFC + GCH with a function F ∶ Card→ Card such
that the following properties hold:

� ∀κ F (κ) ≥ κ++

� ∀κ,λ (κ ≤ λ→ F (κ) ≤ F (λ)).

Then there is a cardinal-preserving extension N ⊇ V with N ⊧ ZF such that θN(κ) = F (κ)
for all κ ∈ Card.

In other words: In the theory ZF, an analogue of Easton's Theorem holds for regular and
singular cardinals. The only constraints on the θ-function are the obvious ones: weak
monotonicity, and θ(κ) ≥ κ++ for all cardinals κ.

This is in sharp contrast to the situation in ZFC, where Easton's Theorem includes only
regular cardinals, while possible values of 2κ for singular κ strongly depend on the behavior
of the Continuum Function below.
Recall that in Chapter 2, we additionally retained DC in our symmetric extension. How-
ever, the forcing notion introduced there could not be turned into a class forcing, and
therefore merely allowed for setting the θ-values of set-many cardinals.

We now complement our results from Chapter 2 by dropping the restriction that only set
many cardinals can be considered (but in return losing DC in the constructed model N .)

Let F ∶ Card → Card be a function on the class of in�nite cardinals with the properties
stated above: F is weakly monotone, and F (κ) ≥ κ++ for all κ ∈ Card. We introduce a
class-sized forcing notion P (completely di�erent from the forcing notion from Chapter
2.3) that allows for treating class many cardinals at the same time.
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The conditions p are 0-1-functions on trees with �nitely many maximal points. The trees'
levels are indexed by cardinals, and the vertices on any level κ are denoted by pairs (κ, i)
where i < F (κ). For a successor cardinal κ+ and (κ+, i) a vertex in the tree t(p) associ-
ated with p, the value p(κ+, i) is a partial 0-1-function on the interval [κ,κ+), bounded
below κ+. Thus, below any vertex (κ, i), the generic �lter G adds a new κ-subset. For
i, j < F (κ) with i ≠ j, the κ-subsets below the vertices (κ, i) and (κ, j) agree on some
interval [0, α), where α denotes the level where the branches below (κ, i) and (κ, j) split.
We do not allow branches to split at limit levels, thus making sure that the forcing indeed
adds F (κ)-many pairwise distinct κ-subsets for every cardinal κ.

In Chapter 3.1, we de�ne our class forcing P. Like in Chapter 2.3, P will be a product
P = P0 × P1, where P0 (a forcing notion consisting of partial 0-1-functions on �nitary trees
as described above) is in charge of setting the θ-values of the limit cardinals, while P1 (a
�nite support product of Cohen-like forcing notions) is in charge of setting the θ-values
of the successor cardinals. We will see that P has a nice hierarchy (cf. De�nition 1.4.2
and Lemma 3.1.6), so our methods from Chapter 1.4 can be applied.

In Chapter 3.2, we �rst construct our almost-groupA = A0 ×A1 of partial P-automorphisms.
Any automorphisms π in A0 has a height htπ ∈ Card, and for all κ < htπ basically �re-
names� the vertices on level κ. The partial automorphisms in A1 are similar to the partial
P1-automorphisms introduced in Chapter 2.4.

We proceed as described in Chapter 1.4 and use a method similar to Scott's Trick to turn
A into a group A. We de�ne the following A-subgroups that will yield our notion of sym-
metry: Firstly, for κ ∈ Card and i < F (κ), a subgroup Fix(κ, i) will be included into our
symmetric system in order to make sure that the i-th generic κ-subset Gκ

i has a symmetric
name. Secondly, for κ ∈ Card and α < F (κ), including a subgroup Small(κ, [0, α)) ensures
that there exists a surjective function s ∶ ℘(κ) → α in the eventual symmetric extension
N (hence, θN(κ) ≥ F (κ)). We verify that the collection of these subgroups satis�es the
normality property (cf. 1.4.13 c) ), and hence yields a �nitely generated symmetric system
S (cf. 1.4.13).

We take a V -generic �lter G on P and denote by N ∶= V (G) the symmetric extension by
S and G.

Although due to its �niteness properties, the class forcing P adds a co�nal function
f ∶ ω → Ord (see Proposition 3.1.3), the symmetric extension N satis�es all axioms of
ZF. This will be shown in Chapter 3.3.

We will also see that an Approximation Lemma holds (cf. Lemma 3.3.6): Any set of ordi-
nals located in N can be captured in a �mild� V -generic extension that preserves cardinals
and the GCH.

In Chapter 3.4, we �nally prove that indeed, θN(κ) = F (κ) holds for all κ ∈ Card.

The direction �θN(κ) ≥ F (κ)� is rather immediate by construction of the subgroups
Small(κ, [0, α)). Regarding �θN(κ) ≤ F (κ)� , we use a similar proof structure as in Chap-
ter 2.6.2 A) - E) (cf. p. 108):
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We assume towards a contradiction that there was a surjective function S ∶ ℘(κ)→ F (κ)
in N . First, we de�ne a restriction Sβ ∶ domSβ → F (κ), which is obtained from S by
roughly allowing only κ-subsets contained in those intermediate generic extensions from
the Approximation Lemma that use merely branches below indices (κ+, i) with i < β.
In Proposition 3.4.2 we prove that whenever β < F (κ) is �large enough�, it follows by
surjectivity of S that the map Sβ must be surjective, as well. We construct an involved
intermediate generic extension that preserves all cardinals ≥ F (κ) (cf. Lemma 3.4.7), and
then use an isomorphism argument to show that this intermediate generic extension must
contain the map Sβ ∶ domSβ → F (κ) (cf. Proposition 3.4.9). In Proposition 3.4.10, we
prove that our intermediate generic extension also contains an injection ιβ ∶ domSβ → β;
which �nally gives the desired contradiction.

3.1 The Forcing

We start from a ground model V ⊧ ZFC + GCH with a function F ∶ Card → Card on the
class of in�nite cardinals such that the following properties hold:

� ∀κ F (κ) ≥ κ++

� ∀κ,λ (κ ≤ λ→ F (κ) ≤ F (λ)).

In this section, we de�ne our class forcing P and give some basic properties.

We will have to treat limit cardinals and successor cardinals separately: P is a product
P ∶= P0 × P1, where P0 will blow up the power sets of all limit cardinals κ, and P1 is in
charge of the successor cardinals κ+.

The conditions in P0 will be functions on trees with �nitely many maximal points.

For constructing P0, our function F has to be modi�ed as follows: For all limit cardinals
κ, let Flim(κ) ∶= F (κ), and for any successor cardinal κ+ > ℵω, let Flim(κ+) ∶= F (κ), where
κ ∶= sup{λ < κ+ ∣ λ is a limit cardinal }. For n < ω, set Flim(ℵn) ∶= F (ℵ0). Moroever, let
Flim(0) ∶= {0}.

Our trees' levels will be indexed by cardinals, and on any level κ, the trees contain �nitely
many vertices (κ, i) with i < Flim(κ).

De�nition 3.1.1. A partial order (t,≤t) is an Flim-tree, if

t ⊆ ⋃
κ∈Card

{κ} × Flim(κ) ∪ {(0,0)}

with the following properties:

� If (κ, i) ≤t (λ, j), then κ ≤ λ.

� For any (λ, j) ∈ t and κ < λ, there exists exactly one i < Flim(κ) with (κ, i) ≤t (λ, j).

� The tree t has �nitely many maximal points, i.e. there are �nitely many (κ0, i0), . . . ,
(κn−1, in−1) with t = {(κ, i) ∣ ∃m < n (κ, i) ≤t (κm, im)}.
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� There is no splitting at limits, i.e. for any limit level κ and (κ, i), (κ, i′) ∈ t with
{(λ, j) ∈ t ∣ (λ, j) ≤t (κ, i)} = {(λ, j) ∈ t ∣ (λ, j) ≤t (κ, i′)}, it follows that i = i′.

If (t,≤t) is an Flim-tree with maximal points (κ0, i0), . . . , (κn−1, in−1), we call ht t ∶=
max{κ0, . . . , κn−1) the height of t.

The �rst and second conditions make sure that for any Flim-tree (t,≤t), the predecessors
of any (κ, i) ∈ t with κ = ℵα are linearly ordered by ≤t in order type α (or α+1 in the case
that α is �nite), and for any (κ, i) ∈ t, it follows that (0,0) ≤t (κ, i).

There is a canonical partial order on the class of Flim-trees: Let (s,≤s) ≤Flim−tree (t,≤t) i�
s ⊇ t and ≤s ⊇ ≤t.

The conditions in our forcing P0 will be functions p ∶ (t(p),≤t(p)) → V whose domain
(t(p),≤t(p)) is an Flim-tree.
The functional values of p below any maximal point (κ, i) ∈ t(p) will make up a partial
0-1-function on κ. If (κ, i) and (λ, j) are the maximal points of two branches meeting at
level ν, then the according 0-1-functions coincide up to ν.
Hence, a P0-generic �lter will add a new κ-subset G(κ,i) below any vertex (κ, i) with
i < Flim(κ). The fourth condition in De�nition 3.1.1 makes sure that for any i, i′ < Flim(κ)
with i ≠ i′, the according κ-subsets G(κ,i) and G(κ,i′) given by the branches below (κ, i)
and (κ, i′) are distinct. Hence, our forcing adds Flim(κ)-many pairwise distinct κ-subsets
for any cardinal κ.

For a set X, we denote by Fn(X,2, κ) the collection of all functions f ∶ dom f → 2 with
dom f ⊆X and ∣dom f ∣ < κ.

De�nition 3.1.2. The class forcing (P0,≤0) consists of all functions p ∶ (t(p),≤t(p)) → V
such that (t(p),≤t(p)) is an Flim-tree, and

� p(κ+, i) ∈ Fn( [κ,κ+),2, κ+) for all (κ+, i) ∈ t(p) with κ+ a successor cardinal,

� p(ℵ0, i) ∈ Fn(ℵ0,2,ℵ0) for all (ℵ0, i) ∈ t(p), and

� p(κ, i) = ∅ for all (κ, i) ∈ t(p) with κ a limit cardinal or κ = 0.

� For (κ, i) ∈ t(p), let

p(κ,i) ∶=⋃{p(ν+, j) ∣ (ν+, j) ≤t(p) (κ, i)}.

We require that ∣p(κ,i)∣ < κ for all i < Flim(κ) whenever κ is a regular limit cardinal.

For p ∶ (t(p),≤t(p))→ V , q ∶ (t(q),≤t(q))→ V conditions in P0, let q ≤0 p i�

� (t(q),≤t(q)) ≤Flim−tree (t(p),≤t(p)),

� q(κ, i) ⊇ p(κ, i) for all (κ, i) ∈ t(p).

Let 10 ∶= ∅.
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For a condition p ∈ P0, p ∶ (t(p),≤t(p)) → V , we call htp ∶= ht t(p) the height of p. Let
ht10 ∶= 0.

Let λ be a cardinal. We denote by p ↾ (λ + 1) ∶ t(p) ↾ (λ + 1) → V the restriction of p to
the subtree t(p)↾(λ+ 1) ∶= {(κ, i) ∈ t(p) ∣ κ ≤ λ}, ≤t(p)↾(λ+1) ∶= ≤t(p) ∩ (t(p)↾(λ+ 1)). Then
p↾(λ + 1) ∈ P0 with p ≤0 p↾(λ + 1). Let P0 ↾(λ + 1) ∶= {p↾(λ + 1) ∣ p ∈ P0}.

Similarly, we de�ne p ↾ [λ,∞) ∶ t(p) ↾ [λ,∞) → V (which is not a condition in P0), with
t(p) ↾ [λ,∞) ∶= {(κ, i) ∈ t(p) ∣ κ ≥ λ}. Let (p ↾ [λ,∞))(κ, i) ∶= p(κ, i) for all (κ, i) ∈ t(p)

with κ > λ, and (p ↾ [λ,∞))(λ, i) ∶= ∅ for any (λ, i) ∈ t(p). Set P0 ↾ [λ,∞) ∶= {p ↾
[λ,∞) ∣ p ∈ P0}.

The forcing P0 is dense in the product P0 ↾(λ + 1) × P0 ↾ [λ,∞).

Similarly, for cardinals µ, λ with µ < λ, we de�ne p ↾ [µ,λ + 1) ∶ t(p) ↾ [µ,λ + 1) → V
with t(p) ↾ [µ,λ + 1) ∶= {(κ, i) ∈ t(p) ∣ µ ≤ κ ≤ λ}. Let (p ↾ [µ,λ + 1))(κ, i) ∶= p(κ, i) for

all (κ, i) ∈ t(p) with κ > µ, and (p ↾ [µ,λ + 1))(µ, i) ∶= ∅ for any (µ, i) ∈ t(p). We set
P0 ↾ [µ,λ + 1) ∶= {p↾ [µ,λ + 1) ∣ p ∈ P0}.

For conditions p, q ∈ P0 with p ∥ q, it follow that t(p) ∪ t(q) with the order relation
≤t(p) ∪ ≤t(q) is an Flim-tree as well, and we can de�ne a maximal common extension
p ∪ q of p and q as follows: Let t(p ∪ q) ∶= t(p) ∪ t(q), ≤t(p∪ q) ∶=≤t(p) ∪ ≤t(q) with
(p ∪ q)(κ, i) ∶= p(κ, i) ∪ q(κ, i) for any (κ, i) ∈ t(p) ∩ t(q), (p ∪ q)(κ, i) ∶= p(κ, i) whenever
(κ, i) ∈ t(p) ∖ t(q) and (p ∪ q)(κ, i) ∶= q(κ, i) for all (κ, i) ∈ t(q) ∖ t(p).

Surely, the class forcing P0 does not preserve ZFC:

Proposition 3.1.3. Let G0 be a V -generic �lter on P0. There is a co�nal function
f ∶ ω → Ord in ⟨V [G0], ∈, V,G0⟩. In particular, the Axiom of Replacement fails in
⟨V [G0], ∈, V,G0⟩.

Proof. We work in ⟨V [G0], ∈, V,G0⟩. For any cardinal λ and i < F (λ+), note that (λ+, i)
is a vertex in the generic tree with G0(λ+, i) ∶ [λ,λ+)→ 2.

We de�ne a function f ∶ ω → Ord as follows: Let n < ω. Let f(n) ∶= λ if λ is the least
cardinal with the property that G(λ+,m)(λ) = 0 for all m < n, but G(λ+, n)(λ) = 1.

In order to make sure that f is well-de�ned, we check that for any n < ω, the following
set is dense in P0:

Dn ∶= {p ∈ P0 ∣ ∃λ ∈ Card (∀m < n p(λ+,m)(λ) = 0 ∧ p(λ+, n)(λ) = 1 ) }.

Fix n < ω, and consider a condition p ∈ P. Let ht t(p) =∶ λ, and take λ > λ arbitrary.
We de�ne an extension p ≤ p as follows: t(p) is obtained from t(p) by adding (n + 1) -
many new branches disjoint from t(p) with maximal points (λ+,0), . . . , (λ+, n). We set
p(λ+,m)(λ) ∶= 0 for all m < n, p(λ+, n)(λ) ∶= 1, and the remaining values p(κ+, i)(ζ) for
(κ+, i) ∈ t(p), ζ ∈ [κ,κ+) arbitrary with the property that p(κ+, i) ∶= p(κ+, i) whenever
(κ+, i) ∈ t(p). Then p is an extension of p in Dn.

It follows that Dn is dense in P0; and we can pick p ∈ G ∩ Dn. By de�nition on Dn, there
exists λn ∈ Card with the property that G0(λ+n,m)(λn) = p(λ+n,m)(λn) = 0 for all m < n,
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and G0(λ+n, n)(λn) = p(λ
+
n, n)(λn) = 1. Hence, f(n) is well-de�ned with f(n) ≤ λn.

It remains to make sure that the function f is co�nal in Ord. Assume towards a contra-
diction that rg f was bounded below some cardinal κ. We claim that the following set is
dense in P0:

D ∶= {p ∈ P0 ∣ ∃n < ω ∀λ < κ ∃m < n p(λ+,m)(λ) = 1}.

Consider p ∈ P, and let l < ω denote the number of maximal points of t(p). Then
t(p) has ≤ l-many vertices on any level λ ≤ ht t(p). Let n ∶= l + 1. For any λ < κ,
there exists m < n, i.e. m ∈ {0,1, . . . , l}, with the property that (λ,m) ∉ t(p). We de-
�ne an extension p ≤ p as follows: t(p) is obtained from t(p) by adding a new branch
{(λ,m(λ)) ∣ 0 < λ ≤ κ} ∪ {(0,0)} such that any m(λ) is the least m ≤ l with the
property that (λ,m) ∉ t(p). For λ+ ≤ κ, set p(λ+,m(λ+))(λ) ∶= 1, and the remaining
values p(λ+,m(λ+))(ζ) for ζ ∈ (λ,λ+) arbitrary. Moreover, p(λ+, i) ∶= p(λ+, i) whenever
(λ+, i) ∈ t(p). Then p is an extension of p in D; which proves the density of D ⊆ P0.

Now, take q ∈ D ∩ G0 and n < ω as in the de�nition of D. By assumption, µ ∶= f(n) < κ,
so G0(µ+,m)(µ) = 0 for all m < n. This contradicts q ∈D.

Thus, it follows that the function f ∶ ω → Ord can not be bounded below any cardinal κ.

Note that for successor cardinals κ+, the forcing P0 only adds Flim(κ+)-many κ+-subsets,
which might be less than the desired F (κ+). Hence, we need a second forcing P1 to blow
up the power sets ℘(κ+).
(The reason why we use for P0 the function Flim instead of F is that for singular limit
cardinals κ, we will have to use the forcing notion P0 ↾(κ++1) instead of P0 ↾(κ+1) for cap-
turing κ-subsets in N in our proof of θN(κ) ≤ F (κ); and we will need that Flim(κ+) = F (κ)
to make sure that P0 ↾(κ+ + 1) only has size F (κ).)

Now, we turn to P1. The forcing P1 will be a variant of Easton forcing with �nite
support: We will have a �nite support-product of forcings Fn( [κ,κ+) × F (κ+),2, κ+),
where a successor cardinal κ+ shall only be included into the forcing P1 if F (κ+) is strictly
greater than all F (ν+) for ν < κ.

De�nition 3.1.4. Let Succ′ denote the class of all successor cardinals κ+ with the prop-
erty that F (κ+) > F (ν+) for all ν+ < κ+. The forcing (P1,≤1,11) consists of all conditions
p ∶ suppp→ V with suppp ⊆ Succ′ �nite and

p(κ+) ∈ Fn( [κ,κ+) × F (κ+),2, κ+)

for all κ+ ∈ suppp; such that dom p(κ+) is rectangular, i.e. dom p(κ+) = domx p(κ+) ×
domy p(κ+) for some domx p(κ+) ⊆ [κ,κ+) and domy p(κ+) ⊆ F (κ+).
The conditions in P1 are ordered by reverse inclusion: Let q ≤1 p i� supp q ⊇ suppp with
q(κ+) ⊇ p(κ+) for all κ+ ∈ suppp. The maximal element is 11 ∶= ∅.

For a cardinal λ and p ∈ P1, we denote by p ↾ (λ + 1) the restriction of p to the domain
{κ+ ∈ suppp ∣ κ+ ≤ λ}. Similarly, we write p ↾ [λ,∞) for the restriction of p to {κ+ ∈
suppp ∣ κ+ > λ}.
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Let P1 ↾(λ+ 1) ∶= {p1 ↾(λ+ 1) ∣ p1 ∈ P1}, and P1 ↾ [λ,∞) ∶= {p1 ↾ [λ,∞) ∣ p1 ∈ P1}. Then P1

is isomorphic to the product P1 ↾(λ + 1) × P1 ↾ [λ,∞).

For a successor cardinal κ+ ∈ Succ′, we set P1(κ+) ∶= {p(κ+) ∣ p ∈ P1}, which is the forc-
ing notion Fn( [κ,κ+) × F (κ+),2, κ+). If G1 is a V -generic �lter on P1, it follows that
G1(κ+) ∶= {p(κ+) ∣ p ∈ G1} is V -generic on P1(κ+).

De�nition 3.1.5.
(P,≤) ∶= (P0 × P1,≤P0×P1).

For a condition p = (p0, p1) ∈ P and a cardinal λ, let p ↾ (λ+1) ∶= (p0 ↾ (λ+1), p1 ↾ (λ+1)),
and p ↾ [λ,∞) ∶= (p0 ↾ [λ,∞), p1 ↾ [λ,∞)). Let η(p) ∶= min{λ ∣ p↾(λ + 1) = p}.
Moreover, P ↾ (λ + 1) ∶= {p ↾ (λ + 1) ∣ p ∈ P}, and P ↾ [λ,∞) ∶= {p ↾ [λ,∞) ∣ p ∈ P}.

Lemma 3.1.6. P has a nice hierarchy.

Proof. For α ∈ Ord, let (P0)α ∶= P0 ↾(ℵα+1) = {p ∈ P0 ∣ htp ≤ ℵα}, with (≤0)α the ordering
on (P0)α induced by ≤0, and (10)α ∶= ∅ = 10. Moreover, let (P1)α ∶= P1 ↾ (ℵα + 1) = {p ∈
P1 ∣ suppp ⊆ ℵα + 1}, with (≤1)α the ordering induced by ≤1, and (11)α ∶= ∅ = 11.

Setting
Pα ∶= (P0)α × (P1)α

for α ∈ Ord, it follows that P = ⋃α∈OrdPα is an increasing chain of set-sized forcing notions.

Let now α < β. We have to make sure that Pα is a complete suborder of Pβ. For
A a maximal antichain in Pα, we have to show that A is also maximal in P. Assume
towards a contradiction there was p = (p0, p1) ∈ Pβ with p� q for all q ∈ A. Take
q ∈ A with q ∥ (p ↾ (ℵα + 1)), and denote by r = (r0, r1) a common extension of
p ↾ (ℵα + 1) and q in Pα. Then r ∶= (r0, r1) with r0 ∶= r0 ∪ p0 (i.e. r ↾ (ℵα + 1) = r0,
r ↾ [ℵα,∞) = p0 ↾ [ℵα,∞) ∪ {((ℵα, i),∅) ∣ (ℵα, i) ∈ t(r0) ∖ t(p0)}) and r1 ∶= r1 ∪ p1 is a
common extension of p and q. Contradiction.

Thus, we have shown that P = ⋃α∈OrdPα is an increasing chain of set-sized complete forc-
ing notions, and clearly, each Pα is upwards closed.

We now go through De�nition 1.4.2:

a) For α ∈ Ord, de�ne ρα ∶ P → Pα by setting ρα(p) ∶= p ↾ (ℵα + 1) for all p ∈ P. The
properties (i) - (v) are not di�cult to verify. Regarding (iv), consider p = (p0, p1) ∈ P
and q = (q0, q1) ∈ Pα with q ≤ ρα(p). Let p′ ∶= (p′0, p

′
1) with p

′
0 ∶= q0 ∪ p0, p′1 ∶= q1 ∪ p1.

Then p′ ≤ p, and ρα(p′) = (q0, q1) = q as desired.
b) For α ∈ Ord, let P[α,∞) ∶= P ↾ [ℵα,∞) with the projection ρ[α,∞) ∶ P → P[α,∞),

p↦ p ↾ [ℵα,∞).

We de�ne: Pα × P[α,∞) ∶=

{ ((p0, p1), (q0, q1)) ∈ Pα ×P[α,∞) ∣ {(κ, i) ∈ t(q0) ∣ κ = ℵα} ⊆ {(κ, i) ∈ t(p0) ∣ κ = ℵα}},

i.e. Pα × P[α,∞) consists of all those conditions ((p0, p1), (q0, q1)) in Pα × P[α,∞) for

which p0 ∪ q0 has no �extra roots� at level α. Then Pα × P[α,∞) is dense in Pα ×P[α,∞)
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(one can extend p0 if necessary).

For any ((p0, p1), (q0, q1)) ∈ Pα × P[α,∞), we can regard (p0, q0) as a condition in
P0 by identifying the pair (p0, q0) with the condition p0 ∪ q0 de�ned as follows:
t(p0 ∪ q0) ∶= t(p0) ∪ t(q0) with the order relation ≤t(p0 ∪ q0) ∶=≤t(p0) ∪ ≤t(q0); (p0 ∪
q0)(κ, i) ∶= p0(κ, i) in the case that κ ≤ ℵα, and (p0 ∪ q0)(κ, i) ∶= q0(κ, i) for κ > ℵα.
Similarly, we can regard (p1, q1) as a condition in P1 by identifying the pair (p1, q1)
with p1 ∪ q1.
It follows that the map bα ∶ P → Pα × P[α,∞), p ↦ (ρα(p), ρ[α,∞)(p)) is an iso-

morphism of forcings with inverse (bα)−1 ∶ Pα × P[α,∞) → P, ((p0, p1), (q0, q1)) ↦
(p0 ∪ q0, p1 ∪ q1).

We will confuse any p ∈ P with its image bα(p) in Pα × P[α,∞).

c) The properties (i) - (iii) are not di�cult to verify. For (iii), consider p ∈ P and
q[α,∞) ∈ P[α,∞) with q[α,∞) ≤[α,∞) ρ[α,∞)(p). By density, take p′ ∈ Pα × P[α,∞) with
p′ ≤ (ρα(p), q[α,∞)). Then p′ ≤ (ρα(p), ρ[α,∞)(p)) = p with ρ[α,∞)(p′) ≤[α,∞) q[α,∞).

d) The properties (i) and (ii) are clear, identifying each p ∈ P with its image bα(p) =
(ρα(p), ρ[α,∞)(p)) in Pα × P[α,∞).

Hence, it follows that P has a nice hierarchy.

We conclude tat P satis�es the Forcing Theorem. In particular, the forcing relation ⊩VP
is de�nable.

Moreover, for any ordinal α and G a V -generic �lter on P, it follows that Gα ∶= G ∩ Pα is
a V -generic �lter on Pα.

By the same arguments as above, it follows that also P0 = ⋃α∈Ord(P0)α has a nice hierar-
chy with projections (ρ0)α ∶ P0 → (P0)α, p ↦ p ↾ (ℵα + 1) and (ρ0)[α,∞) ∶ P0 → (P0)[α,∞),
p ↦ p ↾ [ℵα,∞); and similarly, P1 = ⋃α∈Ord(P1)α has a nice hierarchy with projections
(ρ1)α ∶ P1 → (P1)α and (ρ1)[α,∞) ∶ P1 → (P1)[α,∞).

If G0 is a V -generic �lter on P0 and G1 is V [G0]-generic on P0, then G ∶= G0 ×G1 is a
V -generic �lter on P. By the de�nability of ⊩VP0

, it follows that the converse is true, as
well (cf. Lemma 1.3.14).

Our eventual symmetric submodel N ⊆ V [G] will have the crucial property that sets of
ordinalsX ⊆ α withX ∈ N can be captured in �mild� V -generic extensions of the following
form:

De�nition/Lemma 3.1.7. For p, q ∈ P0 with (t(q),≤t(q)) ≤Flim−tree (t(p),≤t(p)), we denote
by q ↾ t(p) the restriction of q to the domain t(p). Let

P0 ↾ t(p) ∶= {q ↾ t(p) ∣ q ∈ P0, t(q) ≤ t(p)},

with the partial order induced by ≤0, and the maximal element 1P0↾t(p) ∶ t(p) → V with
1P0↾t(p)(κ, i) = ∅ for all (κ, i) ∈ t(p).
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For G0 a V -generic �lter on P0 and p ∈ G0, it follows that

G0 ↾ t(p) ∶= {q ↾ t(p) ∣ q ∈ G0, t(q) ≤Flim−tree t(p)} = {q ∈ G0 ∣ t(q) = t(p)}

is a V -generic �lter on P0 ↾ t(p).

Proof. Consider a dense set D ⊆ P0 ↾ t(p). It su�ces to show that D ∶= {q ∈ P0 ∣ q ↾ t(p) ∈
D} is dense in P0 below p.
Take q ∈ P0 with q ≤0 p. There exists r ∈ P0 ↾ t(p), r ∈ D, with r ≤0 q ↾ t(p). We
de�ne a condition q ∈ P0 as follows: (t(q),≤t(q)) ∶= (t(q),≤t(q)) with q(κ, i) ∶= r(κ, i) for
(κ, i) ∈ t(p), and q(κ, i) ∶= q(κ, i), else. Then q ≤0 q with q ↾ t(p) = r ∈D as desired.

For �nitely many (κ0, i0), . . . , (κn−1, in−1) ∈ t(p), we denote by t(p) ↾ {(κ0, i0), . . . ,
(κn−1, in−1)} the subtree {(κ, i) ∈ t(p) ∣ ∃m < n (κ, i) ≤t(p) (κm, im)} with the order-
ing induced by ≤t(p). We write p↾{(κ0, i0), . . . , (κn−1, in−1)} for the restriction of p to the
subtree t(p)↾{(κ0, i0), . . . , (κn−1, in−1)}.
If the set {(κ0, i0), . . . , (κn−1, in−1)} contains all maximal points of p, i.e. for any (κ, i) ∈
t(p) there is l < n with (κ, i) ≤t(p) (κl, il), then we sometimes use the notation G0 ↾
{(κ0, i0), . . . , (κn−1, in−1)} instead of G0 ↾ t(p).

We have similar restrictions for P1:

De�nition/Lemma 3.1.8. Consider �nitely many cardinals κ0, . . . , κn−1 ∈ Succ′, and
ı0 < F (κ0), . . . , ın−1 < F (κn−1). For a condition p1 ∈ P1, we de�ne p1 ↾ {(κ0, ı0), . . . ,
(κn−1, ın−1)} as follows:

dom p1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)} ∶=

(domx p(κ0) × {ı0}) ∪ ⋯ ∪ (domx p(κn−1) × {ın−1}) =

= {(α, i) ∈ domp ∣ ∃ l < n i = ıl},

and for any (α, ıl) ∈ dom p1(κl),

(p1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)})(α, ıl) ∶= p1(κl)(α, ıl).

Let

P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)} ∶= {p1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)} ∣ p1 ∈ P1}.

For G1 a V -generic �lter on P1, it follows that

G1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)} ∶= {p1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)} ∣ p1 ∈ G1 }

is a V -generic �lter on P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}.

In other words, for any l < n with κl = κ̃+l , it follows that P1 ↾ {(κ0, ı0), . . . , (κn−1, ın−1)}
adds a new Cohen-subset to the interval [κ̃l, κ̃+l ).
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Proof. If D is a dense subset of P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}, it follows that

D ∶= {p1 ∈ P1 ∣ p1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)} ∈D}

is dense in P1.

Hence, if G = G0 × G1 is a V -generic �lter on P with (κ0, i0), . . . , (κn−1, in−1), (κ0, ı0), . . . ,
(κn−1, ın−1) as before and p ∈ G0, p ∶ t(p)→ V such that {(κ0, i0) , . . . , (κn−1, in−1)} ⊆ t(p)
contains all maximal points of t(p), it follows that

G0 ↾ t(p) ×G1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}

is a V -generic �lter on P0 ↾ t(p) × P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}.

We will now see that these forcings preserves all cardinals.

Proposition 3.1.9. Consider a condition p ∈ P0 such that {(κ0, i0), . . . , (κn−1, in−1)} ⊆
t(p) contains all maximal points of t(p); moreover, �nitely many (κ0, ı0), . . . ,(κn−1, ın−1)
with κ0, . . . , κn−1 ∈ Succ′, ı0 < F (κ0), . . . , ın−1 < F (κn−1).
The forcing

P0 ↾ t(p) × P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}

preserves cardinals and the GCH.

Proof. We show that for all cardinals λ,

(2λ)
V [G0 ↾t(p)×G1↾{(κ0,ı0), ...}]

= (λ+)V .

First, consider the case that λ = λ
+
is a successor cardinal. Let (P0 ↾ t(p))↾(λ + 1) ∶= {q ↾

(λ + 1) ∣ q ∈ P0 ↾ t(p)} and (P0 ↾ t(p))↾ [λ,∞) ∶= {q ↾ [λ,∞) ∣ q ∈ P0 ↾ t(p)}.
Similarly, let (P1 ↾{(κ0, ı0), . . .})↾ (λ + 1) ∶= {(p↾ (λ + 1))↾{(κ0, ı0), . . .} ∣ p ∈ P1} denote
the lower part, and (P1 ↾ {(κ0, ı0), . . .}) ↾ [λ,∞) ∶= {(p ↾ [λ,∞)) ↾ {(κ0, ı0), . . .} ∣ p ∈ P1}
the upper part of the forcing P1 ↾{(κ0, ı0), . . .}.

Then P0 ↾ t(p) × P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)} can be factored as

((P0 ↾ t(p))↾(λ + 1) × (P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)})↾(λ + 1))×

((P0 ↾ t(p))↾ [λ,∞) × (P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)})↾ [λ,∞)),

where the �rst factor has cardinality ≤ λ, since λ = λ
+
is a successor cardinal, and the

second factor is ≤ λ - closed. Thus, it follows that

(2λ)
V [G0↾t(p)×G1↾{(κ0,ı0), ...}]

≤ ∣℘(λ)∣V = (λ+)V

as desired.

If λ is a regular limit cardinal, the same argument applies.

It remains to show that

(2λ)
V [G0↾t(p)×G1↾{(κ0,ı0), ...}]

= (λ+)V
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in the case that λ is a singular limit cardinal. Assume the contrary and take λ least such
that η ∶= cf λ < λ and

(2λ)
V [G0↾t(p)×G1↾{(κ0,ı0), ...}]

> (λ+)V .

Let (λi ∣ i < η) denote a co�nal sequence in λ. By assumption, it follows that

(2λ)
V [G0↾t(p)×G1↾{(κ0,ı0), ...}]

= (λ
+
)V

for all λ < λ. Thus,
2λ ≤∏

i<η
2λi ≤ (2<λ)

η
= λη ≤ λλ = 2λ

holds true in V and V [G0 ↾ t(p) ×G1 ↾{(κ0, ı0), . . .}]. Since η is regular, we have

∣ (P0 ↾ t(p))↾(η + 1) × (P1 ↾{(κ0, ı0), . . .})↾(η + 1) ∣ ≤ η,

and
(P0 ↾ t(p))↾ [η,∞) × (P1 ↾{(κ0, ı0), . . .})↾ [η,∞)

is ≤ η - closed. Thus,

(2λ)V [G0↾t(p)×G1↾{(κ0,ı0), ...}] = (λη)V [G0↾t(p)×G1↾{(κ0,ı0), ...}] ≤

≤ (λη)V [(G0↾t(p))↾(η+1)×(G1↾{(κ0,ı0), ...})↾(η+1)] ≤ (2λ)V [(G0↾t(p))↾(η+1)×(G1↾{(κ0,ı0), ...})↾(η+1)] ≤

≤ ∣℘(λ × η)∣V ≤ (2λ)V = (λ+)V ,

which gives the desired contradiction.

We will see that any set of ordinals in our eventual symmetric submodelN can be captured
in a generic extension by one of these forcings P0 ↾ t(p) × P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}.

Hence, N preserves all cardinals.

3.2 Symmetric Names

For de�ning our symmetric submodel N , we �rst we need an almost-group A of partial
P-automorphisms (cf. De�nition 1.4.7). We will have A = A0 ×A1, where A0 is a group
of P0-automorphisms each of which is nicely level-preserving and can be described be-
low some ordinal α, and A1 is an almost-group of partial P1-automorphisms. It is not
di�cult to check that in this setting, it follows that A is an almost-group of partial P-
automorphisms.

We start with the construction of A0.

De�nition 3.2.1. Denote by A0(levels) the collection of all π = (π(κ) ∣ κ ∈ Card, κ < htπ)
with htπ, the height of π, a cardinal, such that each π(κ) ∶ {(κ, i) ∣ i < Flim(κ)} →
{(κ, i) ∣ i < Flim(κ)} is a bijection with �nite support suppπ(κ) ∶= {(κ, i) ∣ π(κ)(κ, i) ≠
(κ, i)}.
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A map π ∈ A0(levels) induces an automorphism πtree on the class of Flim-trees as fol-
lows: Set πtree(t,≤t) ∶= (s,≤s) with s ∶= π[t] ∶= {π(κ)(κ, i) ∣ (κ, i) ∈ t}, where for
κ ≥ htπ, we take for π(κ) the identity on {(κ, i) ∣ i < Flim(κ)}. Let ≤s ∶= π[≤t] ∶=
{(π(κ)(κ, i), π(λ)(λ, k)) ∣ (κ, i) ≤t (λ, k)}.
Moreover, π induces an automorphism π ∶ P0 → P0: For p ∈ P0, p ∶ t(p) → V , let
π(p) ∶ πtree(t(p),≤t(p))→ V with π(p)(π(κ)(κ, i)) = p(κ, i) for all (κ, i) ∈ t(p).
Let

A0 ∶= {π ∣ π ∈ A0(levels)}.

We will often confuse an automorphism π with its extensions πtree and π.

Note that for an Flim-tree t(p), it follows that π(t(p)) is essentially the same tree, where
only the vertices (κ, i) have now di�erent �names� π(κ)(κ, i).

It is not di�cult to see that any π ∈ A0 can be described below α ∶= htπ + 1; and any
automorphism π ∈ A0 is nicely level-preserving (cf De�nition 1.4.3).

As usual, every π ∈ A0 can be extended to an automorphism on Name(P0), which will be
denoted by the same letter.

Let κ be a cardinal and G0 a V -generic �lter on P0. For every i < Flim(κ), the forcing P0

adjoins a new κ-subset (G0)(κ,i) given by the branch through (κ, i):

(G0)(κ,i) = {ζ < κ ∣ ∃p ∈ G0 ∃ (λ, j) ≤t(p) (κ, i) ∶ p(λ, j)(ζ) = 1}.

Then (G0)(κ,i) has a canonical P0-name

(G̈0)(κ,i) ∶= {(ζ, p) ∣ ζ < κ , p ∈ P0 ↾(κ + 1) , ∃ (λ, j) ≤t(p) (κ, i) ∶ p(λ, j)(ζ) = 1},

For any π ∈ A0, it follows that π ((G̈0)(κ,i)) = (G̈0)π(κ)(κ,i). Thus, the automorphisms in
A0 allow for swapping the generic subsets.

(We use the notation (G̈0)(κ,i) here, because later on, (Ġ0)(κ,i) will be used for the canon-
ical P-name.)

We call an automorphism π ∈ A0 small if it satis�es the following property:

For all (κ, i), it follows that π(κ)(κ, i) = (κ, j) such that there is a limit ordinal γ(i) with
i, j ∈ [γ(i), γ(i) + ω).

It is not di�cult to see that for any pair of conditions p, q ∈ P0, there is a small automor-
phism π ∈ A0 with πp ∥ q. Indeed, by �niteness of the trees, it is possible to arrange that
for any (κ, i) ∈ t(p), we have π(κ)(κ, i) ∉ t(p) ∪ t(q).

Now, we turn to P1. We �rst outline the basic ideas about how our almost-group A1 of
partial P-automorphisms shall look like.

If G1 is V -generic on P1, then for any κ+ ∈ Succ′, i < F (κ+), the generic κ+-subset

(G1)(κ+,i) ∶= {ζ ∈ [κ,κ+) ∣ ∃p ∈ G1 p(κ
+)(ζ, i) = 1}
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has the canonical P1-name

(G̈1)(κ+,i) ∶= {(ζ, p) ∣ ζ ∈ [κ,κ+), p ∈ P1 ↾(κ
+ + 1), p(κ+)(ζ, i) = 1}.

(Again, we use the notation (G̈1)(κ,i) here, because later on, (Ġ1)(κ,i) will be used for the
canonical P-name.)

Firstly, we want that for any two generic κ+-subsets (G1)(κ+,i) and (G1)(κ+,i′), there is
an automorphism π ∈ A1 interchanging them. In other words: We want to include into
A1 the collection of all π = (π(κ+) ∣ κ+ ∈ suppπ) with �nite support suppπ, such that
for every κ+ ∈ suppπ, there is a bijection fπ(κ+) on a �nite set suppπ(κ+) ⊆ F (κ+) with
π(G̈1)(κ+,i) = (G̈1)(κ+,fπ(κ+)(i)) for all i ∈ suppπ(κ+).

For these automorphisms π, we will have πp(κ+)(ζ, i) = p(κ+)(ζ, fπ(κ+)(i)) whenever
p ∈ P1 with ζ ∈ [κ,κ+), i ∈ suppπ(κ+). For all the remaining κ+ and (ζ, i), we will have
πp(κ+)(ζ, i) = p(κ+)(ζ, i).

Moreover, we want that for any p, q ∈ P1, there is an automorphism π ∈ A1 with πp ∥ q.
These π will be of the form π = (π(κ+) ∣ κ+ ∈ suppπ) with �nite support suppπ, such
that for any κ+ ∈ suppπ, there is domπ(κ+) = domx π(κ+) × domy π(κ+) ⊆ [κ,κ+)×F (κ+)
with ∣domπ(κ+)∣ < κ+, and a collection

(π(κ+)(ζ, i) ∣ (ζ, i) ∈ domπ(κ+)) ∈ 2domπ(κ+),

such that π changes the values p(κ+)(ζ, i) if and only if π(κ+)(ζ, i) = 1. In other words:
πp(κ+)(ζ, i) ≠ p(κ+)(ζ, i) whenever π(κ+)(ζ, i) = 1, and πp(κ+)(ζ, i) = p(κ+)(ζ, i) in the
case that π(κ+)(ζ, i) = 0 or (ζ, i) ∉ domπ(κ+).

A1 will be generated by those two types of automorphisms.

All the (ζ, i) with (ζ, i) ∈ domπ(κ+) and i ∈ suppπ(κ+) will have to be treated seper-
ately: Namely, for any ζ ∈ domx π(κ+), we will have a bijection π(κ+)(ζ) which maps the
sequence (p(ζ, i) ∣ i ∈ suppπ(κ+)) to ((πp)(ζ, i) ∣ i ∈ suppπ(κ+)).
These bijections π(κ+)(ζ) will be necessary to retain a group structure.

We will now de�ne the collection of dense classes Ds that will serve as the domains of the
partial automorphisms π ∶Ds

≅
→Ds in A1. We need a class of parameters S and a formula

ϕ, such that any Ds is of the form Ds = {p ∈ P1 ∣ ϕ(p, s)} (cf. De�nition 1.4.7).

De�nition/Proposition 3.2.2. Let S be the class of all s = (dom s(κ+) ∣ κ+ ∈ supp s)
such that supp s ⊆ Succ′ is �nite, and any dom s(κ+) is of the form dom s(κ+) = domx s(κ+)×
domy s(κ+) with domx s(κ+) ⊆ [κ,κ+), domy s(κ+) ⊆ F (κ+), and ∣dom s(κ+)∣ < κ+.

Let ϕ(p, s) be the formula

p ∈ P1 ∧ ∀κ+ ∈ (suppp ∩ supp s) domp(κ+) ⊇ dom s(κ+).

Then a), b) and c) from De�nition 1.4.7 hold.

Proof. We observe that S consists of all �nite sequences s = (dom s(κ+) ∣ κ+ ∈ suppp)
which are allowed as domains for conditions in P1, and ϕ(p, s) states that p is a condition
in P1, the domains of which extend the domains given by s.
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a) For every s ∈ S, the set

Ds = {p ∈ P1 ∣ ∀κ+ ∈ (suppp ∩ supp s) domp(κ+) ⊇ dom s(κ+)}

is dense in P1, and Ds can be described below α(s) ∶= max{κ+ ∈ supp s ∣ dom s(κ+) ≠
∅}.

b) Let s0, s1 ∈ S. Then we can construct s2 ∈ S with Ds2 = Ds0 ∩ Ds1 as follows:
Let supp s2 = supp s1 ∪ supp s0, and domx s2(κ+) ∶= domx s0(κ+) ∪ domx s1(κ+),
domy s2(κ+) = domy s0(κ+) ∪ domy s1(κ+) for all κ+ ∈ supp s2. Then Ds2 = {p ∈
P1 ∣ ϕ(p, s2)} = {p ∈ P1 ∣ ϕ(p, s0)∧ϕ(p, s1)} =Ds0 ∩Ds1 , with α(s2) = max{α(s0), α(s1)}.

c) Setting smax ∶= ∅, it follows that Dsmax = P1 with Dsmax ⊇Ds for all s ∈ S.

We can now de�ne our almost-group A1:

De�nition 3.2.3. Let A1 consist of all automorphisms π ∶ Dπ → Dπ, π = (π(κ+) ∣ κ+ ∈
suppπ) with �nite support supp π ⊆ Succ′ such that for all κ+ ∈ suppπ, there are

� a �nite set suppπ(κ+) ⊆ F (κ+) with a bijection fπ(κ+) ∶ suppπ(κ+)→ suppπ(κ+),

� a domain domπ(κ+) = domx π(κ+)×domy π(κ+) ⊆ [κ,κ+)×F (κ+) with ∣domπ(κ+)∣ <
κ+ such that suppπ(κ+) ⊆ domy π(κ+), and a collection (π(κ+)(ζ, i) ∣ (ζ, i) ∈

[κ,κ+) × F (κ+)) with π(κ+)(ζ, i) ∈ 2 for all (ζ, i) and π(κ+)(ζ, i) = 0 whenever
(ζ, i) ∉ domπ(κ+), and

� for any ζ ∈ domx π(κ+), a bijection π(κ+)(ζ) ∶ 2suppπ(κ+) → 2suppπ(κ+),

such that setting s(π) ∶= (domπ(κ+) ∣ κ+ ∈ suppπ), it follows that s(π) ∈ S with

Dπ =Ds(π) = {p ∈ P1 ∣ ∀κ+ ∈ (suppp ∩ suppπ) domp(κ+) ⊇ domπ(κ+)};

and for any p ∈Dπ, the condition πp is de�ned as follows:

We will have supp(πp) = suppp with πp(κ+) = p(κ+) whenever κ+ ∈ suppp ∖ suppπ.
Let now κ+ ∈ suppp ∩ suppπ.

� For any i ∈ suppπ(κ+) and ζ ∉ domx π(κ+), we have

πp(κ+)(ζ, i) = p(κ+)(ζ, fπ(κ
+)(i)).

� For ζ ∈ domx π(κ+),

(πp(κ+)(ζ, i) ∣ i ∈ suppπ(κ+)) = π(κ+)(ζ)(p(κ+)(ζ, i) ∣ i ∈ suppπ(κ+)).

� Whenever i ∉ suppπ(κ+), then πp(κ+)(ζ, i) ∶= p(κ+)(ζ, i) if π(κ+)(ζ, i) = 0, and
πp(κ+)(ζ, i) ≠ p(κ+)(ζ, i) in the case that π(κ+)(ζ, i) = 1.
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In other words: Outside the domain domπ(κ+), we have a swap of the horizontal lines
p(κ+)(⋅ , i) for i ∈ suppπ(κ+) according to fπ(κ+).
Inside domπ(κ+), the values πp(κ+)(ζ, i) for i ∈ suppπ(κ+) are determined by the maps
π(κ+)(ζ); while any of the remaining values πp(κ+)(ζ, i) with i ∉ suppπ(κ+) is equal to
p(κ+)(ζ, i) if and only if π(κ+)(ζ, i) = 1.

We need the dense sets Dπ to make sure that domp(κ+) is not mixed up by π.
For notational convenience, we writeDπ rather thanDs(π), but keep in mind that anyDπ is
of the form Dπ =Ds(π) = {p ∈ P1 ∣ ϕ(p, s(π))}, where s(π) = (domπ(κ+) ∣ κ+ ∈ suppπ) ∈ S.

Lemma 3.2.4. A1 is an almost-group of partial P-automorphisms for ϕ and S.

Proof. We go through De�nition 1.4.7. By 3.2.2, it remains to make sure that d), e) and
f) hold.

d) It is not di�cult to verify that any π ∈ A1 is order preserving. The inverse map
π−1 ∈ A1 can be written down explicitly, using De�nition 3.2.3. Moreover, it follows
from De�nition 3.2.3 that any π ∈ A1 is nicely level-preserving and can be described
below some ordinal α (take for α the maximal element of suppπ), i.e. there exists
an automorphism πα ∶Dπ ∩ Pα →Dπ ∩ Pα with π = πα.

e) Let s ∈ S, and α an ordinal with α ≥ α(s). We have to make sure that

(A1)(s,α) ∶= {π = πα ∈ A1 ∣ πα ∶Ds ∩ Pα
≅
→Ds ∩ Pα}

is a group. Let π = πα, σ = σα ∈ (A1)(s,α). Firstly, it is not di�cult to write down
a map ν ∈ (A1)(s,α), ν = να such that να = (πα)−1. Then ν is the inverse of π.
Secondly, using De�nition 3.2.3, one can write down a map τ ∈ (A1)(s,α), τ = τα
such that τα(p) = πα(σα(p)) for all p ∈ Pα ∩ Ds. Then τ = π ○ σ. Thirdly, (A1)(s,α)
contains the identity element idDs (the identity map on Ds), since idDs = idDs ∩Pα .
Hence, (A1)(s,α) is indeed a group.

f) Let s, s′ ∈ S with Ds ⊆ Ds′ , and α′ ≥ α(s′). For any π ∈ (A1)(s′,α′), it follows that
π[Ds] = Ds, since the maps π in A1 do not change the support and domains of the
conditions. Moreover, π ↾ Ds ∈ (A1)(s,α) for every α ≥ max{α′, α(s)} follows from
De�nition 3.2.3.

De�nition 3.2.5. Let A ∶= A0 × A1, i.e. any π ∈ A is of the form π = (π0, π1), where
π0 ∈ A0, π0 ∶ P0 → P0; and π1 ∈ A1, π1 ∶Dπ1 →Dπ1 is a partial P1-automorphism.

By what we have just shown, it follows thatA is an almost-group of partial P-automorphisms.

Let A denote the group of partial P-automorphisms derived from A as in De�nition 1.4.8:

For π, π′ ∈ A, π ∶Dπ →Dπ, π′ ∶Dπ′ →Dπ′ , we set

π ∼ π′ ∶⇔ π ↾ (Dπ ∩ Dπ′) = π
′ ↾ (Dπ ∩ Dπ′),
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and use a method similar to Scott's Trick to obtain set-sized equivalence classes [π] = [π]∼
(cf. p. 60 and 61). Then we set A ∶= {[π] ∣ π ∈ A}. Concatenation in A is given by con-
catenation in A, and the group structure of the A(s,α) gives a group structure on A as
described in 1.4.8.

Now, we are ready to introduce a �nitely generated symmetric system S for A. For this,
we introduce formulas ψ0(x, y), . . . , ψ3(x, y), and χ0(y), . . . , χ3(y) such that that for each
i ∈ {0,1,2,3} the following holds (cf. De�nition 1.4.13): Firstly, whenever π, π′ ∈ A, then
ψi(π, y)⇔ ψi(π′, y) for all y with χi(y). Secondly, for all y with χi(y), it follows that

Ai(y) ∶= {[π] ∈ A ∣ ψi(π, y)}

is a subgroup of A. And thirdly, the normality property holds for the Ai(y), see 1.4.13 c).

Then a subgroup B ⊆ A gives rise to symmetry if there are �nitely many Ai0(y0), . . . ,
Ain−1(yn−1), where i0, . . . , in−1 ∈ {0,1,2,3} and χi0(y0), . . . , χin−1(yn−1) hold, with

B ⊇ Ai0(y0) ∩ ⋯ ∩ Ain−1(yn−1).

A name ẋ is symmetric, if the stabilizer group

symA(ẋ) = { [π] ∈ A ∣ πxDπ = xDπ }

gives rise to symmetry.

We now go through the four types of A-subgroups that we want to include into our �nitely
generated symmetric system S, and give some motivation.

Firstly, for any κ ∈ Card, i < Flim(κ), we want to include

Fix0(κ, i) ∶= { [π] = [(π0, π1)] ∈ A ∣ π0(κ)(κ, i) = (κ, i) },

which is well-de�ned (since for any π, π′ ∈ A with π ∼ π′, it follows that π ∈ Fix0(κ, i)⇔
π′ ∈ Fix0(κ, i)), and Fix0(κ, i) is an A-subgroup.

By this, we make sure that any canonical name

(Ġ0)(κ,i) ∶= {(ζ, p) ∣ ζ < κ , p ∈ P↾(κ + 1) , ∃ (λ, j) ≤t(p) (κ, i) ∶ p(λ, j)(ζ) = 1}

is hereditarily symmetric; since

π (G0)(κ,i)
Dπ

= (G0)(κ,i)
Dπ

whenever [π] ∈ Fix0(κ, i). Thus, our model N will contain any of the adjoined κ-subsets
(G0)(κ,i) given by the branches through the generic tree.

Now, we turn to the second type of A-subgroup for our �nitely generated symmetric sys-
tem S: For any cardinal κ and α < Flim(κ), we want in N a surjection s ∶ ℘(κ) → α;
which gives θN(κ) ≥ F (κ) for all limit cardinals κ. However, we have to make sure that
θN(κ) < F (κ)+; so the sequence ((G0)(κ,i) ∣ i < F (κ)) must not be contained in N .
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Therefore, for cardinals κ and α < Flim(κ) a limit ordinal, we consider the subgroup
Small0(κ, [0, α)) containing all [π] = [(π0, π1)] with the property that π0(κ) is small
below α, i.e. for any i < α, it follows that π0(κ)(κ, i) = (κ, j) such that i, j ∈ [γ(i), γ(i)+ω)
for some limit ordinal γ(i):

Small0(κ, [0, α)) ∶= { [π] = [(π0, π1)] ∈ A ∣ ∀ i < α, i ∈ [γ(i), γ(i) + ω) with γ(i) a limit

ordinal ∶ (π0(κ)(κ, i) = (κ, j) for some j ∈ [γ(i), γ(i) + ω) ) }.

Then Small0(κ, [0, α)) is well-de�ned, since for any π, π′ ∈ A with π ∼ π′, it follows that
π(κ)(κ, i) = π′(κ)(κ, i). Moreover, Small0(κ, [0, α)) is a subgroup of A.

Now, for any limit ordinal i < α, we can de�ne a �cloud� around (Ġ0)(κ,i) as follows:

(
˙̃G0)

α
(κ,i) ∶= { (π (G0)(κ,i)

Dπ
,1) ∣ [π] ∈ Small0(κ, [0, α)) } =

= { ( (G0)(κ,i+n)
Dπ
,1 ) ∣ n < ω }.

Then (G̃0)α(κ,i) ∶= ((
˙̃G0)α(κ,i))

G
is the set of all (G0)(κ,i+n) for n < ω; hence, any two distinct

clouds (G̃0)α(κ,i) and (G̃0)α(κ,j) for limit ordinals i, j < α are disjoint. It follows that the
sequence

( (G̃0)
α
(κ,i) ∣ i < α a limit ordinal ),

which has a canonical symmetric name stabilized by all π ∈ Small0(κ, [0, α)), yields a
surjection s ∶ ℘(κ)→ α in N .

This argument is carried out in more detail in Proposition 3.4.1.

Moreover, for any κ ∈ Succ′, κ = κ+ and i < F (κ), we include into our �nitely generated
symmetric system S:

Fix1(κ, i) ∶= { [π] = [(π0, π1)] ∈ A ∣ ∀p ∈Dπ ∶ (πp) ↾ {(κ, i)} = p ↾ {(κ, i)} }.

As before, Fix1(κ, i) is a well-de�ned subgroup of A.

By this, we make sure that any generic κ-subset (G1)(κ,i) is contained in our eventual
symmetric submodel N ; since with the canonical name

(Ġ1)(κ,i) ∶= {(ζ, p) ∣ ζ ∈ [κ,κ+) , p ∈ P↾(κ+ + 1) , p(κ+)(ζ, i) = 1},

it follows that π(G1)(κ,i)
Dπ

= (G1)(κ,i)
Dπ

for all π ∈ Fix1(κ, i).

Again, we have to make sure that the sequence ((G1)(κ,i) ∣ i < F (κ)) is not contained inN ,
in order to achieve θN(κ) ≤ F (κ). On the other hand, we need surjections s ∶ ℘(κ)→ α for
all α < F (κ). Thus, we include into our �nitely generated symmetric system for κ ∈ Succ′,
α < F (κ):

Small1(κ, [0, α)) ∶= { [π] = [(π0, π1)] ∈ A ∣ ∀ i < α (i ∉ suppπ1(κ) ∨ fπ1(κ)(i) = i) }.
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Again, Small1(κ, [0, α)) is a well-de�ned A-subgroup.

Moreover, Small1(κ, [0, α)) does not contain any of those automorphisms that inter-
change some (Ġ1)(κ,i) and (Ġ1)(κ,j) for i, j < α. Thus, for any i < α, we can de�ne a

�cloud� (G̃1)α(κ,i) around (G1)(κ,i) with the symmetric name

(
˙̃G1)

α
(κ,i) ∶= { (π(G1)(κ,i)

Dπ
,1) ∣ [π] ∈ Small1(κ, [0, α)) }

such that with (G̃1)α(κ,i) ∶= ((
˙̃G1)α(κ,i))

G
, it follows that any two distinct clouds (G̃1)(κ,i)

and (G̃1)(κ,j) are disjoint. Hence, the sequence ((G̃1)(κ,i) ∣ i < α), which has a canonical
symmetric name stabilized by all π ∈ Small1(κ, [0, α)), gives a surjection s ∶ ℘(κ) → α in
N .

This concludes the introduction of our �nitely generated system S for A, and we have
already checked 1.4.13 a) and b). Regarding 1.4.13 c), it is not di�cult to verify:

Lemma 3.2.6. � For all π ∈ A and κ ∈ Card, i < Flim(κ),

[π]Fix0(κ, i)[π]
−1 ⊇ Fix0(κ, i) ∩ ⋂{Fix0(κ, j) ∣ (κ, j) ∈ suppπ0(κ)}.

� For π ∈ A and κ ∈ Succ′, i < F (κ),

[π]Fix1(κ, i)[π]
−1 ⊇ Fix1(κ, i) ∩ ⋂{Fix1(κ, j) ∣ j ∈ suppπ1(κ)}.

� For π ∈ A and κ ∈ Card, α < Flim(κ) a limit ordinal,

[π]Small0(κ, [0, α))[π]
−1 ⊇ Small0(κ, [0, α)) ∩ ⋂{Fix0(κ, j) ∣ (κ, j) ∈ suppπ0(κ)}.

� For π ∈ A and κ ∈ Succ′, α < F (κ),

[π]Small1(κ, [0, α))[π]
−1 ⊇ Small1(κ, [0, α)) ∩ ⋂{Fix1(κ, j) ∣ j ∈ suppπ1(κ)}.

We conclude:

De�nition/Proposition 3.2.7. The A-subgroups

� Fix0(κ, i) for κ ∈ Card, i < Flim(κ)

� Small0(κ, [0, α)) for κ ∈ Card, α < Flim(κ) a limit ordinal

� Fix1(κ, i) for κ ∈ Succ′, i < F (κ), and

� Small1(κ, [0, α)) for κ ∈ Succ′, α < F (κ)

yield a �nitely generated symmetric system as in De�nition 1.4.13, denoted by S.

The following De�nition corresponds to De�nition 1.4.14:

De�nition 3.2.8. A subgroup B ⊆ A gives rise to symmetry with respect to S if there
are n,m,n,m < ω and
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� κ0, . . . , κn−1 ∈ Card, i0 < Flim(κ0), . . . , in−1 < Flim(κn−1),

� λ0, . . . , λm−1 ∈ Card, α0 < Flim(λ0), . . . , αm−1 < Flim(λm−1) limit ordinals,

� κ0, . . . , κn−1 ∈ Succ′, ı0 < F (κ0), . . . , ın−1 < F (κn−1), and

� λ0, . . . , λm−1 ∈ Succ′, α0 < F (λ0), . . . , αm−1 < F (λm−1)

such that B is a superset of the following intersection:

Fix0(κ0, i0) ∩ ⋯ ∩ Fix0(κn−1, in−1) ∩ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Small0(λm−1, [0, αm−1))∩

∩Fix1(κ0, ı0) ∩ ⋯ ∩ Fix1(κn−1, ın−1) ∩ Small1(λ0, [0, α0)) ∩ ⋯ ∩ Small1(λm−1, [0, αm−1)).

We de�ne corresponding to De�nition 1.4.17:

De�nition 3.2.9. A P-name ẋ is symmetric for S if the stabilizer group

symA(ẋ) ∶= { [π] ∈ A, π ∶Dπ →Dπ ∣ πxDπ = xDπ }

gives rise to symmetry with respect to S. Recursively, a name ẋ is hereditarily symmetric,
ẋ ∈HSS , if ẋ is symmetric and ẏ is hereditarily symmetric for all ẏ ∈ dom ẋ.

3.3 The Symmetric Submodel

Fix a V -generic �lter G on P.

De�nition 3.3.1. The symmetric extension by S and G is

N ∶= V (G)S ∶= {ẋG ∣ ẋ ∈HSS}.

We claim that N sati�es the statement from our theorem, i.e. N ⊧ ZF, N preserves all
V -cardinals, and θN(κ) = F (κ) for all κ.

We will work with the structure ⟨N, ∈, V ⟩ = ⟨V (G)S , ∈, V ⟩, where we have a unary predi-
cate symbol for the ground model.

Since P is approachable by projections, it follows that the Forcing Theorem holds for ⊩VP ,
ans also for the symmetric forcing relation (⊩s)VP ,S .
In this chapter, we will verify that N is indeed a model of ZF, although the class forcing
P does not preserve ZFC. Later on, we will see that any set of ordinals located in N can
be captured in a �mild� V -generic extension by set forcing that preserves cardinals and
the GCH.

By Proposition 1.4.21, it follows thatN is satis�es the axioms of Extensionality, Foundation,
Pairing, Weak Union and Infinity.

Proposition 3.3.2. The Axiom of Separation holds in ⟨V [G], ∈, V ⟩ and ⟨N, ∈, V ⟩ for
every LA∈ -formula ϕ.
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Proof. We �rst consider V [G]. Let a ∈ V [G] and ϕ ∈ LA∈ .
W.l.o.g. assume n = 1 and take a parameter z ∶= z0 in V [G]. We have to show that there
is b ∈ V [G] with

b = {x ∈ a ∣ ⟨V [G], ∈, V ⟩ ⊧ ϕ(x, z, V )}.

Take a cardinal λ large enough such that there are names ȧ, ż ∈ Name(P ↾ (λ + 1)) with
a = ȧG↾(λ+1), z = żG↾(λ+1).
Let

ḃ ∶= {(ẋ, p) ∣ ẋ ∈ dom ȧ, p ∈ P↾(λ + 1), p ⊩VP (ẋ ∈ ȧ ∧ ϕ(ẋ, ż, V̌ )) }.

We claim that ḃG = b. The direction �⊆� is clear. Concerning �⊇� , consider x ∈ b. Let
ẋ ∈ dom ȧ with x = ẋG and p ∈ G with

p ⊩VP (ẋ ∈ ȧ ∧ ϕ(ẋ, ż, V̌ )).

Let p ∶= p↾(λ + 1). It su�ces to verify also p ⊩VP (ẋ ∈ ȧ ∧ ϕ(ẋ, ż, V̌ )). If not, there would
be q ∈ P, q ≤ p with

q ⊩VP ¬ (ẋ ∈ ȧ ∧ ϕ(ẋ, ż, V̌ )).

We construct a P-automorphism π with πp ∥ q such that π is the identity on P ↾ (λ + 1).
Then πxDπ = xDπ , πaDπ = aDπ and πzDπ = zDπ ; hence,

πp ⊩VP (xDπ ∈ aDπ ∧ ϕ(xDπ , zDπ , V̌ )),

contradicting that πp ∥ q.

We start with π0. Let htπ0 ∶= max{η(p), η(q)}. For α ≤ λ, let π0(α) be the identity. For
λ+ ≤ α ≤ htπ0, take for π0(α) a bijection on {(α, i) ∣ i < Flim(α)} with �nite support such
that for any (α, i) ∈ t(p), it follows that π0(α)(α, i) = (α, j) for some (α, j) ∉ t(p) ∪ t(q).
Then from q ≤ p↾(λ + 1) it follows that π0p0 ∥ q0.

Now, we turn to π1. Let suppπ1 ∶= suppp1 ∪ supp q1. For α+ ∈ suppπ1 with α+ ≤ λ,
let π1(α+) be the identity. For α+ ∈ suppπ1 with α+ > λ, we de�ne π1(α+) as follows:
Let domπ1(α+) ∶= domp1(α

+) ∩ dom q1(α+) and suppπ1(α+) = ∅; then we only need to
de�ne π1(α+)(ζ, i) for ζ ∈ domx p1(α

+) ∩ domx q1(α+), i ∈ domy p1(α
+) ∩ domy q1(α+).

Let π1(α+)(ζ, i) = 0 if p1(α
+)(ζ, i) = q1(α+)(ζ, i), and π1(α+)(ζ, i) = 1 in the case that

p1(α
+)(ζ, i) ≠ q1(α+)(ζ, i). Then π1p1 ∥ q1.

Hence, our automorphism π = (π0, π1) is as desired.

This proves Separation in ⟨V [G], ∈, V ⟩ for any LA∈ -formula ϕ.

The proof for N is similar, using symmetric names and the symmetric forcing relation
(⊩s)VP .

Now, in order to show that Replacement holds in N , it is enough to verify the Axiom
Scheme of Collection (and then use Separation):

Proposition 3.3.3. For any LA∈ -formula ϕ(x, y, v0, . . . , vn−1) and a, z0, . . . , zn−1 ∈ N
such that

⟨N, ∈, V ⟩ ⊧ ∀x ∈ a ∃y ϕ(x, y, z0, . . . , zn−1, V ),
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there exists b ∈ N with the property that

⟨N, ∈, V ⟩ ⊧ ∀x ∈ a ∃y ∈ b ϕ(x, y, z0, . . . , zn−1, V ).

Proof. For an ordinal α and the set forcing Pα as above, the Nameβ(Pα)V -hierarchy is
de�ned recursively (in V ) as usual: ẋ ∈ Nameβ+1(Pα)V i� ẋ ⊆ Nameβ(Pα)V × Pα, and for
λ a limit ordinal, ẋ ∈ Nameλ(Pα)V i� ẋ ∈ Nameβ(Pα)V for some β < λ.
We are going to use the following �diagonal hierarchy�: For α ∈ Ord, let

Nα ∶= {ẋGα ∣ ẋ ∈HS ∩ Nameα+1(Pα)
V }.

One has to check that this hierarchy is indeed de�nable in the structure ⟨V [G], ∈, V,G⟩,
i.e. there is an LA,B∈ -formula τ such that ⟨V [G], ∈, V,G⟩ ⊧ τ(x,α, V,G) i� α = min{β ∣ x ∈
Nβ}.
Therefore, one �rst has to make sure that the interpretation function (⋅)G is de�nable
within ⟨V [G], ∈, V,G⟩, where some extra care is needed, since the recursion theorem can
only be applied very carefully (we do not have replacement in V [G]).
This issue is adressed in [Git80] and Proposition 1.3.17, where we show: There is a func-
tion f in ⟨V [G], ∈, V,G⟩ with f(ẋ, α, V,G) = x if and only if ẋ ∈ Nameα+1(Pα)V and
x = ẋGα .

This function f can be used to de�ne our Nα-hierarchy: Let τ(x,α, V,G) be the formula

α = min{β ∣ ∃ ẋ ∈HS ∩ Nameβ+1(Pβ)
V x = f(ẋ, β, V,G)}.

Then ⟨V [G], ∈, V,G⟩ ⊧ τ(x,α, V,G) if and only if α = min{β ∣ x ∈ Nβ}.

Now, consider a ∈ N and an LA∈ -formula ϕ with

⟨N, ∈ V ⟩ ⊧ ∀x ∈ a ∃y ϕ(x, y, V ).

(We suppress the parameters z0, . . . , zn−1 for simplicity.) We have to show that there exists
b ∈ N with the property that

∀x ∈ a ∃y ∈ b ⟨N, ∈, V ⟩ ⊧ ϕ(x, y, V ).

First, we use structural induction over the formula ϕ to construct an LA,B∈ -formula ϕ such
that for all x ∈ a and y,

⟨V [G], ∈, V,G⟩ ⊧ ϕ(x, y, V,G)

if and only if
⟨N, ∈, V ⟩ ⊧ ϕ(x, y, V ).

Then we de�ne in ⟨V [G], ∈, V,G⟩:

M ∶= { (x,α) ∣ x ∈ a ∧ α = min{β ∣ ∃ y ∃ ẏ ∈HS ∩ Nameβ+1(Pβ)
V ∶

y = f(ẏ, β, V,G) ∧ ϕ(x, y, V,G) } }.

Then M = { (x,α) ∣ x ∈ a ∧ α = min{β ∣ ∃ y ∈ Nβ ⟨N, ∈, V ⟩ ⊧ ϕ(x, y, V )} }.
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It su�ces to show that there exists δ with rg M ⊆ δ, since this would imply that for all
x ∈ a, there exists y ∈ Nδ with ⟨N, ∈, V ⟩ ⊧ ϕ(x, y, V ).

Take λ large enough such that there is ȧ ∈ HS ∩ Name(P ↾ (λ + 1))V with a = ȧG↾(λ+1).
We claim that M ∈ V [G↾(λ + 1)].

Let
M ′ ∶= {(ẋG↾(λ+1), α) ∣ ẋ ∈ dom ȧ, α = min{β ∣ ∃ ẏ ∈HS ∩ Nameβ+1(Pβ)

V

∃p ∶ p ⊩VP (ẋ ∈ ȧ ∧ ϕ(ẋ, ẏ, V̌ , Ġ)) , p↾(λ + 1) ∈ G↾(λ + 1)} }.

Then M ′ ∈ V [G↾(λ + 1)]. It remains to prove that M =M ′.

Therefore, it su�ces to show that in ⟨V [G], ∈, V,G⟩, for any ẋ ∈ dom ȧ and β ∈ Ord the
following are equivalent:

(I) ẋG↾(λ+1) ∈ a ∧ ∃ ẏ ∈HS ∩ Nameβ+1(Pβ)V ∃ y ∶ y = f(ẏ, β, V,G) ∧ ϕ(ẋG↾(λ+1), y, V,G)

(II) ∃ ẏ ∈HS ∩ Nameβ+1(Pβ)V ∃p ∶ p ⊩VP (ẋ ∈ ȧ ∧ ϕ(ẋ, ẏ, V̌ , Ġ)),
p↾(λ + 1) ∈ G↾(λ + 1).

The direction �(I) ⇒ (II)� is clear. Concerning �(II) ⇒ (I)� , assume towards a contra-
diction that there was ẋ ∈ dom ȧ, β ∈ Ord and ẏ ∈ HS ∩ Nameβ+1(Pβ)V with p ⊩VP (ẋ ∈

ȧ ∧ ϕ(ẋ, ẏ, V̌ , Ġ)) for some p ∈ P with p↾(λ + 1) ∈ G↾(λ + 1), but (I) fails.
From p ⊩VP ẋ ∈ ȧ with p↾(λ+ 1) ∈ G↾(λ+ 1) and ẋ, ȧ ∈ Name(P↾(λ+ 1))V , it follows that
ẋG↾(λ+1) ∈ ȧG↾(λ+1) = a; hence,

⟨V [G], V, ∈,G⟩ ⊧ ¬(∃ ẏ ∈HS ∩Nameβ+1(Pβ)
V ∃ y ∶ y = f(ẏ, β, V,G)∧ϕ(ẋG↾(λ+1), y, V,G) ).

Take q ∈ G such that

q ⊩VP ∀ẏ ∈HS ∩ Nameβ+1(Pβ)
V ∀ y ( y = f(ẏ, β, V,G) Ð→ ¬ϕ(ẋ, y, V,G) ).

As in Proposition 3.3.2, we can construct an automorphism π such that πp ∥ q, and π is
the identity on P↾(λ + 1). Then πxDπ = xDπ ; hence,

πp ⊩VP ϕ(ẋ, πyDπ , V̌ , πĠ).

By structural induction over the formula ϕ, one can use an isomorphism argument
to show that for any condition r ∈ P, it follows that r ⊩VP ϕ(ẋ, πyDπ , V̌ , Ġ) if and

only if r ⊩VP ϕ(ẋ, πyDπ , V̌ , πĠ). The induction step regarding the existential quan-
ti�er follows from the fact that for any v̇ ∈ HS ∩ Nameα+1(Pα)V and π ∈ A, also
πvDπ ∈HS ∩ Nameα+1(Pα)V ; and v̇H = (πvDπ)πH for any V -generic �lter H on P.

Hence, it follows that also
πp ⊩VP ϕ(ẋ, πyDπ , V̌ , Ġ).

But πyDπ ∈HS ∩ Nameβ+1(Pβ)V , which contradicts πp ∥ q.
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Thus, (I) and (II) are equivalent, which impliesM =M ′ as desired. Now, sinceM ∈ V [G↾
(λ + 1)], we can apply Replacement in the ZFC-model V [G ↾ (λ + 1)] and obtain that
rg M ⊆ δ for some ordinal δ. Therefore,

∀x ∈ a ∃y ∈ Nδ ⟨N, ∈, V ⟩ ⊧ ϕ(x, y, V ).

Since Nδ ∈ N (the canonical name Ṅδ ∶= {(ẋ,1) ∣ ẋ ∈HS ∩ Nameα+1(Pα)V } is symmetric),
this �nishes the proof.

Similarly, one can show that the Axiom of Replacement holds true in V [G] as long the
formula ϕ does not make use of the parameter G for the generic �lter:

Proposition 3.3.4. For any LA∈ -formula ϕ(x, y, v0, . . . , vn−1) and a, z0, . . . , zn−1 ∈ V [G]
such that

⟨V [G], ∈, V,G⟩ ⊧ ∀x ∈ a ∃y ϕ(x, y, z0, . . . , zn−1, V ),

it follows that there exists b ∈ V [G] with the property that

⟨V [G], ∈, V,G⟩ ⊧ ∀x ∈ a ∃y ∈ b ϕ(x, y, z0, . . . , zn−1, V ).

One can use basically the same proof, but with the hierarchy ((V [G])α ∣ α ∈ Ord) instead
of (Nα ∣ α ∈ Ord), where (V [G])α ∶= {ẋGα ∣ ẋ ∈ Nameα+1(Pα)}.

Proposition 3.3.5. The Axiom of Power Set holds in N .

Proof. Consider a set Y ∈ N . We �rst show:

∃λ ∈ Card ℘N(Y ) ⊆ V [G↾(λ + 1)] (∗).

Take a cardinal µ large enough such that Y ∈ V [G ↾ (µ + 1)] and ∣Y ∣V [G↾(µ+1)] ≤ µ,
i.e. there exists an injection ι ∶ Y ↪ µ in V [G ↾ (µ + 1)]. Take Ẏ ∈ Name(P ↾ (µ + 1))V

with Y = Ẏ G↾(µ+1). Let λ ∶= F (µ)+; then ∣P↾(µ + 1)∣ ≤ λ.
We claim that ℘N(Y ) ⊆ V [G↾(λ + 1)].

Consider Z ∈ ℘N(Y ), Z = ŻG with Ż ∈ HS such that πZ
Dπ

= Z
Dπ

for all π which are
contained in the intersection

Fix0(κ0, i0) ∩ . . . ∩ Fix0(κn−1, in−1) ∩ Small0(λ0, [0, α0)) ∩⋯ ∩ Small0(λm−1, [0, αm−1))∩

∩Fix1(κ0, ı0) ∩ ⋯ ∩ Fix1(κn−1, ın−1) ∩ ⋯ ∩ Small1(λ0, [0, α0)) ∩ Small1(λm−1, [0, αm−1)).

Take a condition r ∈ G such that t(r) contains the vertices (κ0, i0), . . . , (κn−1, in−1) and all
t(r)-branches have height ≥ µ.
Then G0 ↾(µ+ 1) × (G0 ↾ t(r))↾ [µ,∞) × G1 ↾(µ+ 1) × (G1 ↾{(κ0, ı0), . . . , (κm−1, ım−1)})↾

[µ,∞) is a V -generic �lter on P0 ↾ (µ + 1) × (P0 ↾ t(r)) ↾ [µ,∞) × P1 ↾ (µ + 1) × (P1 ↾

{(κ0, ı0), . . . , (κm−1, ım−1)})↾ [µ,∞).

We want to show that Z is contained in the intermediate generic extension

V [G0 ↾(µ+1)× (G0 ↾ t(r))↾ [µ,∞)×G1 ↾(µ+1)× (G1 ↾{(κ0, ı0), . . . , (κm−1, ım−1)})↾ [µ,∞)].

Let Z ′ be the set of all ẏG↾(µ+1) with ẏ ∈ dom Ẏ such that there exists p ∈ P, p0 ≤ r, with
p ⊩VP ẏ ∈ Ż such that:
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� p0 ↾(µ + 1) ∈ G0 ↾(µ + 1),

� (p0 ↾ t(r))↾ [µ,∞) ∈ (G0 ↾ t(r))↾ [µ,∞),

� p1 ↾(µ + 1) ∈ G1 ↾(µ + 1),

� (p1 ↾{(κ0, ı0), . . .})↾ [µ,∞) ∈ (G1 ↾{(κ0, ı0), . . .})↾ [µ,∞).

It su�ces to show that Z = Z ′. The direction �⊆� follows from the Forcing Theorem. For
�⊇�, we use an isomorphism argument similarly as before: Assume there was ẏG↾(µ+1) ∈
Z ′ ∖Z with ẏ ∈ dom Ẏ and p with p ⊩ ẏ ∈ Ż as in the de�nition of Z ′.
Take q ∈ G such that q0 ≤ r and q ⊩ ẏ ∉ Ż. We will construct an automorphism π with
πp ∥ q such that π restricted to P↾(µ + 1) is the identity, and additionally,

π ∈ Fix0(κ0, i0) ∩ ⋯ ∩ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Fix1(κ0, ı0) ∩ ⋯

⋯ ∩ Small1(λ0, [0, α0)) ∩ ⋯ .

But then, from πp ⊩ πyDπ ∈ πZ
Dπ

and πZ
Dπ

= Z
Dπ
, πyDπ = yDπ , it follows that

πp ⊩ yDπ ∈ Z
Dπ
. Together with πp ∥ q and q ⊩ ẏ ∉ Ż, this gives the desired contra-

diction.

We start with the construction of π0. Let htπ ∶= max{η(p), η(q)}. For α ≤ µ, let π0(α) be
the identity. In the case that α ∈ [µ+,htπ], we take for π0(α) a bijection on {(α, i) ∣ i <
Flim(α)} with �nite support such that:

� for any (α, i) ∈ t(r), we have π0(α)(α, i) = (α, i),

� for any (α, i) ∈ t(p) ∖ t(r), we have π0(α)(α, i) = (α, j) for some j < Flim(α) with
(α, j) ∉ t(p) ∪ t(q),

� for any i < Flim(α) with i ∈ [γ(i), γ(i)+ω) for γ a limit ordinal, we have π0(α)(α, i) =
(α, i′) such that also i′ ∈ [γ(i), γ(i) + ω).

Then π0 is the identity on P0 ↾ (µ + 1), and π0 ∈ Fix0(κ0, i0) ∩ ⋯ ∩ Fix0(κn−1, in−1),
since π0(α)(α, i) = (α, i) for all (α, i) ∈ t(r). Moreover, π0 ∈ Small0[λ0, [0, α0)) ∩ ⋯ ∩
Small0(λm−1, [0, αm−1)), since we only use small permutations. By construction, it follows
that π0p0 ∥ q0.

The map π1 can be constructed as in the proof of Proposition 3.3.2. Then π1p1 ∥ q1, π1

restricted to P1 ↾(µ+1) is the identity, π1 ∈ Fix1(κ0, ı0) ∩⋯ ∩ Fix1(κn−1, ın−1) since p1 and
q1 agree on P1 ↾{(κ0, ı0), . . .}, and π1 ∈ Small1(λ0, [0, α0)) ∩ ⋯ ∩ Small1(λm−1, [0, αm−1)),
since suppπ1(α+) = ∅ for all α+ ∈ Succ′.

Hence, our automorphism π has all the desired properties, which implies Z = Z ′; so

Z ∈ V [G0 ↾(µ + 1) × (G0 ↾ t(r))↾ [µ,∞) × G1 ↾(µ + 1) × (G1 ↾{(κ0, ı0), . . .})↾ [µ,∞) ].

Recall that we have an injection ι ∶ Y ↪ µ in V [G↾(µ+1)]; so using the parameter Z, we
can construct in V [G0 ↾ (µ+1)× (G0 ↾ t(r)) ↾ [µ,∞)×G1 ↾ (µ+1)× (G1 ↾{(κ0, ı0), . . .}) ↾
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[µ,∞)] a function ιZ ∶ µ→ 2 with ιZ(α) = 1 i� α ∈ im(ι) with ι−1(α) ∈ Z, and ιZ(α) = 0,
else.

The forcing

P0 ↾ (µ + 1) × (P0 ↾ t(r))↾ [µ,∞) × P1 ↾ (µ + 1) × (P1 ↾{(κ0, ı0), . . .})↾ [µ,∞)

can be factored as

(P0 ↾ (µ + 1) × (P0 ↾ t(r))↾ [µ,λ + 1) × P1 ↾ (µ + 1) × (P1 ↾{(κ0, ı0), . . .})↾ [µ,λ + 1) ) ×

× ( (P0 ↾ t(r))↾ [λ,∞) × (P1 ↾{(κ0, ı0), . . .})↾ [λ,∞) ),

where the �lower part�

P0 ↾ (µ + 1) × (P0 ↾ t(r))↾ [µ,λ + 1) × P1 ↾ (µ + 1) × (P1 ↾{(κ0, ı0), . . .})↾ [µ,λ + 1)

has cardinality ≤ Flim(µ) ⋅ λ ⋅ F (µ)+ ⋅ λ = F (µ)+ = λ, and the �upper part�

(P0 ↾ t(r))↾ [λ,∞) × (P1 ↾{(κ0, ı0), . . .})↾ [λ,∞)

is ≤ λ-closed.

Hence,

ιZ ∈ V [G0 ↾(µ+1) × (G0 ↾ t(r))↾ [µ,λ+1) × G1 ↾(µ+1) × (G1 ↾{(κ0, ı0), . . .})↾ [µ,λ+1)];

so ιZ ∈ V [G↾(λ + 1)], which implies that also Z ∈ V [G↾(λ + 1)].

Since Z ∈ ℘N(Y ) was arbitrary, it follows that ℘N(Y ) ⊆ V [G ↾ (λ + 1)] as desired. This
proves (∗).

Now, let a ∶= ℘V [G↾(λ+1)](Y ) ∈ V [G↾(λ+1)]. Then ℘N(Y ) ⊆ a. Take ȧ ∈ Name(P↾(λ+1))V

with a = ȧG = ȧG↾(λ+1).

Inside the structure ⟨V [G], ∈, V,G⟩, we de�ne a function F ∶ a→ Ord as follows:

For z ∈ a, let F (z) = α if α = min{β ∣ z ∈ Nβ} if such an α exists. Let F (z) = 0, else.

Now, we will use the function f from Proposition 3.3.3 with the property that ⟨V [G], ∈, V,G⟩ ⊧
f(ẋ, α, V,G) = x i� ẋ ∈ Nameα+1(Pα)V with x = ẋGα .

Let η(z, β, V,G) denote the statement

∃ ẋ ∈HS ∩ Nameβ+1(Pβ)
V z = f(ẋ, β, V,G).

Then

F = { (żG↾(λ+1), α) ∣ ż ∈ dom ȧ ∧ żG↾(λ+1) ∈ ȧG↾(λ+1) ∧ α = min{β ∣ η(żG↾(λ+1), β, V,G)} }∪

∪{ (żG↾(λ+1),0) ∣ ż ∈ dom ȧ ∧ żG↾(λ+1) ∈ ȧG↾(λ+1) ∧ ¬∃β η(żG↾(λ+1), β, V,G) }.

We claim that F ∈ V [G↾(λ + 1)].
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Let

F̃ ∶= { (żG↾(λ+1), α) ∣ ż ∈ dom ȧ, żG↾(λ+1) ∈ ȧG↾(λ+1),∃p ∶ p ⊩VP α = min{β ∣ η(ż, β, V̌ , Ġ)},

p↾(λ + 1) ∈ G↾(λ + 1) } ∪

∪ { (żG↾(λ+1),0) ∣ ż ∈ dom ȧ, żG↾(λ+1) ∈ ȧG↾(λ+1),∃p ∶ p ⊩VP ¬∃β η(ż, β, V̌ , Ġ),

p↾(λ + 1) ∈ G↾(λ + 1) }.

It su�ces to show that F = F̃ . The direction �⊆� follows from the Forcing Theorem.
Concerning �⊇� , we proceed as in the proof of Proposition 3.3.3:
Assume towards a contradiction, there was (żG↾(λ+1), α) ∈ F̃ ∖F with ż ∈ dom ȧ, żG↾(λ+1) ∈
ȧG↾(λ+1). W.l.o.g., let α > 0.
Take p ∈ P with

p ⊩VP α = min{β ∣ η(ż, β, V̌ , Ġ)}

and p↾(λ + 1) ∈ G↾(λ + 1). Since (żG↾(λ+1), α) ∉ F , there must be q ∈ G with

q ⊩VP ¬ (α = min{β ∣ η(ż, β, V̌ , Ġ)}).

As in the proof of Proposition 3.3.2, we construct an automorphism π with πp ∥q such
that π restricted to P↾(λ + 1) is the identity. Then πzDπ = zDπ ; so

πp ⊩VP α = min{β ∣ η(ż, β, V̌ , πĠ)}.

Now, for any condition r ∈ P and β an ordinal, we have r ⊩VP η(ż, β, V̌ , Ġ) if and only if

r ⊩VP η(ż, β, V̌ , πĠ), similarly as in the proof of Proposition 3.3.3. Hence,

πp ⊩VP α = min{β ∣ η(ż, β, V̌ , Ġ)},

contradicting that πp ∥ q.

The case α = 0 is similar. Hence, F = F̃ ∈ V [G↾(λ + 1)] as desired.

Now, by Replacement in V [G ↾ (λ + 1)], it follows that rgF is bounded by some ordinal
δ. Then any z ∈ ℘N(Y ) ⊆ a is contained in some Nα for α < δ; hence, ℘N(Y ) ⊆ Nδ. By the
Axiom of Separation, this implies ℘N(Y ) ∈ N as desired.

Thus, we have shown that the symmetric extension N is indeed a model of ZF.

We will now see that N preserves all V -cardinals, which follows from the fact that any
set of ordinals X ∈ N , X ⊆ α can be captured in a �mild� V -generic extension by a forcing
as in Proposition 3.1.9:

Lemma 3.3.6 (Approximation Lemma). Let X ∈ N , X ⊆ α with X = ẊG such that

πX
Dπ

=X
Dπ

for all π which are contained in the intersection

Fix0(κ0, i0) ∩ ⋯ ∩ Fix0(κn−1, in−1) ∩ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Small0(λm−1, [0, αm−1))∩
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∩Fix1(κ0, ı0) ∩ ⋯ ∩ Fix1(κn−1, ın−1) ∩ Small1(λ0, [0, α0)) ∩ ⋯ ∩ Small1(λm−1, [0, αm−1)).

Let r ∈ G0 such that {(κ0, i0), . . . , (κn−1, in−1)} ⊆ t(r) contains all maximal points of t(r).

Then
X ∈ V [G0 ↾ t(r) ×G1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}] =

= V [G0 ↾{(κ0, i0), . . . , (κn−1, in−1)} ×G1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}].

Proof. De�ne

X ′ ∶= {β < α ∣ ∃ q = (q0, q1) ∶ q0 ≤0 r , q ⊩ β ∈ Ẋ , q0 ↾ t(r) ∈ G0 ↾ t(r),

q1 ↾{(κ0, ı0), . . .} ∈ G1 ↾{(κ0, ı0), . . .}}.

Then X =X ′ follows by an isomorphism argument as before.

From Lemma 3.3.6 and Proposition 3.1.9 we obtain:

Corollary 3.3.7. Cardinals are N-V -absolute.

A factoring argument shows that for X ⊆ κ with κ a cardinal, the according forcings in
the statement of Lemma 3.3.6 can be cut o� at level κ+:

Corollary 3.3.8. Let X ∈ N , X ⊆ κ with κ a limit cardinal. Then there are n,n′ < ω,
j0, . . . , jn−1 < Flim(κ+) = F (κ), and κ0, . . . , κn′−1 ∈ Succ′ with κ0 < κ, . . . , κn′−1 < κ;
ı0 < F (κ0), . . . , ın′−1 < F (κn′−1) such that

X ∈ V [G0 ↾{(κ
+, j0), . . . , (κ

+, jn−1)} ×G1 ↾{(κ0, ı0), . . . , (κn′−1, ın′−1)} ×G1(κ
+)].

For a successor cardinal κ+ and X ∈ N , X ⊆ κ+, there are n,n′ < ω, j0, . . . , jn−1 < Flim(κ+),
and κ0, . . . , κn′−1 ∈ Succ′ with κ0 ≤ κ+, . . . , κn′−1 ≤ κ+; ı0 < F (κ0), . . . , ın′−1 < F (κn′−1)
such that

X ∈ V [G0 ↾{(κ
+, j0), . . . , (κ

+, jn−1)} ×G1 ↾{(κ0, ı0), . . . , (κn′−1, ın′−1)}].

Proof. First, we consider the case that κ is a limit cardinal. From Lemma 3.3.6, it
follows that there are �nitely many cardinals κ0, . . . , κn−1, and i0 < Flim(κ0), . . . , in−1 <
Flim(κn−1); moreover, �nitely many κ0, . . . , κn−1 ∈ Succ′ and ı0 < F (κ0), . . . , ın−1 < F (κn−1)
with

X ∈ V [G0 ↾{(κ0, i0), . . . , (κn−1, in−1)} ×G1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}].

W.l.o.g. we can assume κ0, . . . , κn−1 ≥ κ+. Take a condition r ∈ G0 such that {(κ0, i0), . . .
, (κn−1, in−1)} ⊆ t(r) contains all maximal points of t(r). Then

G0 ↾{(κ0, i0), . . . , (κn−1, in−1)} ×G1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)}

is a V -generic �lter on the forcing

P0 ↾ t(r) × P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1}),
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which can be factored in a �lower part�

((P0 ↾ t(r))↾(κ
+ + 1)) × ((P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)})↾(κ

+ + 1)),

with cardinality ≤ κ+, and an �upper part�

((P0 ↾ t(r))↾ [κ
+,∞)) × ((P1 ↾{(κ0, ı0), . . . , (κn−1, ın−1)})↾ [κ

+,∞)),

which is ≤ κ+-closed. Thus, X is contained in the generic extension by the lower part:
Let (κ+, j0), . . . , (κ+, jn−1) denote the ≤t(r)-predecessors of (κ0, i0), . . . , (κn−1, in−1) respec-
tively, on level κ+. Moreover, assume w.l.o.g. that 0 ≤ n′ ≤ n′′ ≤ n with κ0, . . . , κn′−1 < κ;
κn′ , . . . , κn′′−1 = κ+, and κn′′ , . . . , κn−1 > κ+. Then

X ∈ V [G0 ↾{(κ
+, j0), . . . , (κ

+, jn−1)} ×G1 ↾{(κ0, ı0), . . . , (κn′′−1, ın′′−1)}] ⊆

⊆ V [G0 ↾{(κ
+, j0), . . . (κ

+, jn−1)} ×G1 ↾{(κ0, ı0), . . . , (κn′−1, ın′−1)} ×G1(κ
+)]

as desired.

The case X ⊆ κ+ is similar.

3.4 ∀ κ ∈Card θN(κ) = F(κ)
Firstly, using the subgroups Small0(κ, [0, α)) or Small1(κ, [0, α)), it is not di�cult to see
that θN(κ) ≥ F (κ) for all cardinals κ; i.e. for any α < F (κ), there exists in N a surjection
s ∶ ℘(κ)→ α:

Proposition 3.4.1. ∀κ ∈ Card θN(κ) ≥ F (κ).

Proof. First, we consider the case that κ is a limit cardinal. Fix some cardinal α <
Flim(κ) = F (κ); we construct in N a surjection s ∶ ℘(κ)→ α.
As already mentioned in Chapter 3.2, we de�ne for any limit ordinal i < α a �cloud�
around (Ġ0)(κ,i) as follows:

(̃̇G0)
α
(κ,i) ∶= { (π(G0)(κ,i)

Dπ
,1) ∣ [π] ∈ Small0(κ, [0, α)) } =

= { ((G0)(κ,i+n)
Dπ
,1) ∣ n < ω }.

Then
(G̃0)

α
(κ,i) ∶= ((̃̇G0)

α
(κ,i))

G
= { (G0)(κ,i+n) ∣ n < ω } ∈ N

for any limit ordinal i < α, since the name (̃̇G0)α(κ,i) is �xed by all π with [π] ∈ Small0(κ, [0, α)).

Moreover, any two distinct clouds (G̃0)α(κ,i) and (G̃0)α(κ,j) for limit ordinals i and j are
disjoint � here, we have to use that splitting at limits is not allowed in our tree forcing;
so for j, j′ < Flim(κ) with j ≠ j′ it follows by genericity that indeed, (G0)(κ,j) ≠ (G0)(κ,j′).
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Recall that for P-names ẋ, ẏ, we denote by ORP(ẋ, ẏ) the canonical name for the ordered
pair (ẋG, ẏG). The sequence ((G̃0)α(κ,i) ∣ i < α a limit ordinal) is contained in N as well,
since its name

{ ( ORP(i, (
̃̇G0)

α
(κ,i)),1 ) ∣ i < α a limit ordinal}

is �xed by all π ∈ Small0(κ, [0, α)).

This gives in N a well-de�ned surjection s ∶ ℘(κ)→ {i < α ∣ i is a limit ordinal}, by setting
s(X) ∶= i whenever X ∈ (G̃0)α(κ,i) for some i < α, and s(X) ∶= 0, else.

Also without the Axiom of Choice, s can be turned into a surjection s ∶ ℘(κ)→ α.

Concerning successor cardinals, it su�ces to show that θN(κ+) ≥ F (κ+) for all κ+ ∈ Succ′.
Let α < F (κ+). We proceed similarly as before, setting for i < α:

(̃̇G1)
α
(κ+,i) ∶= { (π(G1)(κ+,i)

Dπ
,1 ) ∣ [π] ∈ Small1(κ

+, [0, α)) }.

With π (G1)(κ+,i) ∶= (π(G1)(κ+,i)
Dπ

)
G
, we obtain

(G̃1)
α
(κ+,i) ∶= ((̃̇G1)

α
(κ+,i))

G
= {π (G1)

α
(κ+,i) ∣ [π] ∈ Small1(κ

+, [0, α)) }.

As before, it follows that the sequence ((G̃1)α(κ+,i) ∣ i < α) is contained in N , so it su�ces to

check that two distinct �clouds� (G̃1)α(κ+,i) and (G̃1)α(κ+,j) are indeed disjoint. Assume to-

wards a contradiction, there were π, σ ∈ Small1(κ+, [0, α)) with π (G1)α(κ+,i) = σ (G1)α(κ+,j).

By genericity, take ζ ∈ [κ,κ+)∖(domx π(κ+)∪domx σ(κ+)) with (G1)(κ+,i)(ζ) ≠ (G1)(κ+,j)(ζ).
Since i, j < α and π,σ ∈ Small1(κ+, [0, α)), it follows that π (G1)(κ+,i)(ζ) = (G1)(κ+,i)(ζ)
and σ (G1)(κ+,j)(ζ) = (G1)(κ+,j)(ζ). Contradiction.

Hence, the sequence ((G̃1)α(κ+,i) ∣ i < α) gives in N a surjective function s ∶ ℘(κ+) → α as
desired.

It remains to show that θN(κ) ≤ F (κ) for all cardinals κ.

First, we consider the case that

κ is a limit cardinal.

Assume towards a contradiction that there was a surjection S ∶ ℘(κ) → F (κ) in N . For
the rest of this section, �x such a surjection S.

Let Ṡ ∈ HS with S = ṠG such that πS
Dπ

= S
Dπ

for all π that are contained in the
intersection

Fix0(κ0, i0) ∩ ⋯ ∩ Fix0(κn−1, in−1) ∩ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Small0(λm−1, [0, αm−1))∩

∩Fix1(κ0, ı0) ∩ ⋯ ∩ Fix1(κn−1, ın−1) ∩ Small1(λ0, [0, α0)) ∩ ⋯ ∩Small1(λm−1, [0, αm−1)),

which will be abbreviated by (IṠ).

We know from Corollary 3.3.8 that any X ∈ N , X ⊆ κ is contained in a generic extension
of the form

V [G0 ↾{(κ
+, j0), . . . , (κ

+, jk−1)} ×G1 ↾{(µ0, 0), . . . , (µk−1, k−1)} ×G1(κ
+)],
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where k, k < ω, j0, . . . , jk−1 < Flim(κ+) = F (κ), and µ0, . . . , µk−1 < κ, 0 < F (µ0), . . . ,
k−1 < F (µk−1).

For a limit ordinal β < F (κ) large enough for (IṠ) (we give a precise de�nition of this
term later), we want to consider a map Sβ ⊆ S, which will be the restriction of S to all
X that are contained in a generic extension

V [G0 ↾{(κ
+, j0), . . . , (κ

+, jk−1)} ×G1 ↾{(µ0, 0), . . . , (µk−1, k−1)} ×G1(κ
+)],

where j0, . . . , jk−1 < β and 0, . . . , k−1 < β.

Let M denote the collection of all tuples (s, (µ0, 0), . . . , (µk−1, k−1)) such that k < ω,
µ0, . . . , µk−1 ∈ κ ∩ Succ′, 0 < F (µ0), . . . , k−1 < F (µk−1), and s is a condition in P0 with
�nitely many maximal points (κ+, j0), . . . , (κ+, jk−1) with j0, . . . , jk−1 < Flim(κ+) = F (κ).
For β < F (κ), we denote by Mβ the collection of all tuples (s, (µ0, 0), . . . , (µk−1, k−1)) ∈
M such that additionally, 0 < β, . . . , k−1 < β, and s has maximal points (κ+, j0), . . . ,
(κ+, jk−1) with j0, . . . , jk−1 < β.

Proposition 3.4.2. There is a limit ordinal β < F (κ) such that the restriction

Sβ ∶= S ↾{X ⊆ κ ∣ ∃ (s, (µ0, 0), . . . , (µk−1, k−1)) ∈Mβ ∶ s ∈ G0 ↾(κ
+ + 1) ,

X ∈ V [G0 ↾ t(s) × G1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × G1(κ
+)] }

is surjective onto F (κ), as well.

Later on, we will lead this into a contradiction by showing that any such Sβ must be
contained in an intermediate generic extension which preserves cardinals ≥ F (κ), but also
contains an injection ι ∶ domSβ ↪ β.

We now de�ne what we mean by large enough for (IṠ): Fix a condition r ∈ G0 such that
{(κ0, i0), . . . , (κn−1, in−1)} ⊆ t(r) contains all maximal points of t(r), and an extension
r ≤0 r, r ∈ G0 such that all t(r)-branches have height ≥ κ+. For l < n with κl ≥ κ+, let
(κ+, i′l) be the t(r)-predecessor of (κl, il) on level κ+; in the case that κl < κ+, let (κ+, i′l)
denote some t(r)-successor of (κl, il) on level κ+.
We say that a limit ordinal β̃ < Flim(κ+) = F (κ) is large enough for (IṠ) if the following
hold:

� β̃ > i′0, . . . , i
′
n−1,

� β̃ > αl for all l <m with λl ≤ κ+,

� β̃ > ıl for all l < n with κl < κ,

� β̃ > αl for all l <m with λl < κ.

We will refer to these conditions r, r later on.

We want to show that whenever a limit ordinal β̃ < F (κ) is large enough for (IṠ) and

β ∶= β̃ + κ+ (addition of ordinals), then Sβ must be surjective onto F (κ), as well.
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For any tuple (s, (µ0, 0), . . . , (µk−1, k−1)) ∈M and

ẋ ∈ Name(P0 ↾ t(s) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ
+)),

we de�ne a canonical extension ̃̇x ∈ Name(P) as follows:

Recursively, set

̃̇x ∶= { (̃̇y, v) ∣ ∃ (ẏ, (v0 ↾ t(s), v1 ↾{(µ0, 0), . . .}, v1(κ
+))) ∈ ẋ ∶ v0 = v0 ↾ t(s),

supp v1 ⊆ κ
+ + 1, v1 ↾{(µ0, 0), . . .} = v1 ↾{(µ0, 0), . . .}, v1(κ

+) = v1(κ
+) }.

If s ∈ G0 ↾(κ+ + 1), it follows that

̃̇xG = ẋG0↾t(s)×G1↾{(µ0,0), ...}×G1(κ+).

Sometimes, this name ̃̇x will be extended further to a name ̃̇x
Dπ

∈ Name(P)
Dπ
. In order

to simplify notation, this extension will be denoted by ̃̇xDπ .
We now give a proof of Proposition 3.4.2.

Proof. Assume towards a contradiction that a limit ordinal β̃ < F (κ) is large enough and
β ∶= β̃ + κ+ (addition of ordinals), but Sβ is not surjective. Let α < F (κ) with α ∉ rgSβ.
Fix some cardinal λ with λ > max{κ+, κ0, . . . , κn−1, λ0, . . . , λm−1, κ0, . . . , κn−1, λ0, . . . , λm−1}
such that Ṡ ∈ Name(P↾(λ+ 1))V . Then S ∈ V [G↾(λ+ 1)], and we can de�ne a canonical
P ↾(λ + 1)-name for Sβ as follows:

Ṡβ ∶= { (ORP↾(λ+1)(
̃̇X,α), p ) ∣ ∃ (s, (µ0, 0), . . . , (µk−1, k−1)) ∈Mβ ∶

Ẋ ∈ Name(P0 ↾ t(s) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ
+)), p = (p0, p1) ∈ P↾(λ + 1),

p0 ≤ s, p ⊩P↾(λ+1) ORP↾(λ+1)(
̃̇X,α) ∈ Ṡ }.

It is not di�cult to check that indeed, (Ṡβ)G↾(λ+1) = Sβ.

Since S ∶ ℘N(κ) → F (κ) is surjective, there must be X ∈ ℘N(κ) with (X,α) ∈ S. By
Corollary 3.3.8, take (s, (µ0, 0), . . . , (µk−1, k−1)) ∈ M such that s ∈ G0 ↾ (κ+ + 1) has
maximal points (κ+, j0), . . . , (κ+, jk−1), and

X = ẊG0↾t(s)×G1↾{(µ0,0), ... ,(µk−1,k−1)×G1(κ+)

for some Ẋ ∈ Name(P0 ↾ t(s) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+)). W.l.o.g. we can
assume that the sequences (jl ∣ l < k) and (l ∣ l < k) are both increasing.

Now, (X,α) = (̃̇XG↾(λ+1), α) ∈ ṠG↾(λ+1), but α ∉ rg(Ṡβ)G↾(λ+1), so we can take p ∈ G↾(λ+1)
such that

p ⊩P↾(λ+1) ORP↾(λ+1)(
̃̇X,α) ∈ Ṡ , p ⊩P↾(λ+1) α ∉ rg Ṡβ.

W.l.o.g., let p0 ≤ r, p0 ≤ s and htp ≥ κ+.

Now, take h ≤ k such that j0, . . . , jh−1 < β, jh, . . . , jk−1 ≥ β, and h ≤ k with 0, . . . , h−1 < β,
h, . . . , k−1 ≥ β. Then (X,α) ∉ Sβ implies that h < k or h < k.
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Pick pairwise distinct ordinals π0jh, . . . , π0jk−1 in (β̃, β) ∖ {j0, . . . , jh−1} such that
{(κ+, π0jh), . . . , (κ+, π0jk−1)} ∩ t(p0) = ∅.
We want to construct a P0-automorphism π0 which is the identity below level κ+, and
swaps for any l ∈ [h, k) the vertex (κ+, jl) with the vertex (κ+, π0jl); i.e. for any q0 ∈ P0 and
l ∈ [h, k) with (κ+, jl), (κ+, π0jl) ∈ t(q0), we want that (π0q0)↾{(κ+, π0jl)} = q0 ↾{(κ+, jl)},
and (π0q0) ↾ {(κ+, jl)} = q0 ↾ {(κ+, π0jl)}. Since {(κ+, π0jh), . . . , (κ+, π0jk−1)} ∩ t(p0) = ∅,
we can assure that at the same time, π0p0 ∥p0.

For P1 we proceed similarly, but in order to achieve π1p1 ∥p1, we �rst have to extend p to
condition p = (p0, p1) ≤ (p0, p1) with p ∈ G↾(λ + 1) such that the following holds:

For any µ+ ∈ Succ′ with {l ∈ [h, k) ∣ µl = µ+} = {l0, . . . , lz−1} for some 1 ≤ z < ω
(i.e. , µl0 = ⋯ = µlz−1 = µ+, so l0, . . . , lz−1 ∈ [h, k) implies that l0 , . . . , lz−1 ≥ β), it
follows that µ+ ∈ suppp1 with l0 , . . . , lz−1 ∈ domy p1(µ

+), and there are π1l0 , . . . ,

π1lz−1 ∈ (β̃, β)∖{0, . . . , h−1} with p1 ↾{(µ
+, l0)} = p1 ↾{(µ

+, π1l0)}, . . . , p1 ↾{(µ
+, lz−1)} =

p1 ↾{(µ
+, π1lz−1)}.

Since β = β̃ + κ+, and domy p1(µ+) has cardinality ≤ µ < κ, this is possible by a density
argument.

Now, it is possible to construct a P1-automorphism that exchanges for every l ∈ [h, k) the
(P1)(µl,l)-coordinate with the according (P1)(µl,π1l)-coordinate; so for any q1 ∈ Dπ, we
will have (π1q1)(µl,π1l) = (q1)(µl,l), (π1q1)(µl,l) = (q1)(µl,π1l). By our preparations about
p, we can also assure π1p1 ∥p1.

Moreover, we will have πS
Dπ

= S
Dπ
: Recall that β̃ was large enough for (IṠ), and for both

π0 and π1 we do not disturb indices below β̃; so π ∈ Fix0(κ0, i0) ∩⋯ ∩ Small0(λ0, [0, α0)) ∩
⋯ ∩ Fix1(κ0, ı0) ∩ ⋯ ∩ Small1(λ0, [0, α0)) ∩ ⋯ .
For a condition q ≤ p, πp and H a V -generic �lter on P with q ∈ H, it follows that
α ∉ rg(Ṡβ)H , but at the same time

( (π̃̇X
Dπ

)
H
, α ) ∈ (πS

Dπ
)
H
= ṠH .

We will see that this is a contradiction, since (π̃̇X
Dπ

)
H
will be equal to some (̃̈X

Dπ
)
H
,

where Ẍ is a name for the forcing

P0 ↾ t(π0s) × P1 ↾{(µ0, j0), . . . , (µh−1, h−1), (µh, π1h), . . . , (µk−1, π1k−1)} × P1(κ
+),

where π0s ≥ π0p ≥ q has maximal points (κ+, j0), . . . , (κ+, jh−1), (κ+, π0jh), . . . , (κ+, π0jk);
thus, (π0s, (µ0, 0), . . . , (µh−1, h−1), (µh, π1h), . . . , (µk, π1k)) ∈Mβ. This will imply

( (̃̈X
Dπ

)
H
, α ) ∈ (Ṡβ)H ,

contradicting that α ∉ rg(Ṡβ)H .

We start with de�ning π0. Let htπ0 ∶= η(p). For any α < κ+, π0(α) will be the identity
on {(α, i) ∣ i < Flim(α)}. Regarding level κ+, let suppπ0(κ+) ∶= {(κ+, jh), . . . , (κ+, jk−1),
(κ+, π0jh), . . . , (κ+, π0jk−1)} with π0(κ+)(α, jl) = (α,π0jl), π0(κ+)(α,π0jl) = (α, jl) for
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all l ∈ [h, k). For κ++ ≤ α ≤ htπ0, the map π0(α) is constructed as follows: Let
{(α, δ0), . . . , (α, δn(α)−1)} denote the collection of all (α, δ) ∈ t(p0) which have a t(p0)-

predecessor in {(κ+, jh), . . . , (κ+, jk−1)}. Pick δ̃0, . . . , δ̃n(α)−1 < Flim(α) pairwise distinct

with {(α, δ̃0), . . . , (α, δ̃n(α)−1)}∩ t(p0) = ∅ such that for all i < n(α), there is a limit ordinal

γ with δi, δ̃i ∈ [γ, γ+ω). Let suppπ0(α) ∶= {(α, δ0), . . . , (α, δn(α)−1), (α, δ̃0), . . . , (α, δ̃n(α)−1)}

with π0(α)(α, δl) = (α, δ̃l), π0(α)(α, δ̃l) = (α, δl) for all l < n(α).
This de�nes π0.

First, we have to check whether π0 ∈ Fix0(κ0, i0) ∩ ⋯ ∩ Fix0(κn−1, in−1). Consider
l < n. Then π0 ∈ Fix0(κl, il) is clear in the case that κl < κ+. If κl = κ+, then
(κl, il) ∉ suppπ0(κl) follows from β̃ > i′l = il. In the case that κl > κ+, let suppπ0(κl) =

{(κl, δ0), . . . , (κl, δn(κl)−1), (κl, δ̃0), . . . , (κl, δ̃n(κl)−1)} as before. Recall that we denote by
(κ+, i′l) the t(r)-predecessor of (κl, il) on level κ+ (which is also its t(p0)-predecessor).

Since β̃ is large enough for (IṠ), it follows that i
′
l < β̃, so (κ+, i′l) ∉ {(κ+, jh), . . . , (κ+, jk−1)};

thus, (κl, il) ∉ {(κl, δ0), . . . , (κl, δn(κl)−1)}.

Also, (κl, il) ∈ t(r) ⊆ t(p0) gives (κl, il) ∉ {(κl, δ̃0), . . . , (κl, δ̃n(κl)−1)}. Hence, (κl, il) ∉
suppπ0(κl) as desired; and it follows that π0 ∈ Fix0(κ0, i0) ∩ ⋯ ∩ Fix0(κn−1, in−1).

Also, π0 ∈ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Small0(λm−1, [0, αm−1)): Let l <m. For λl ≠ κ+, there
is nothing to show. In the case that λl = κ+, we use again that β̃ is large enough for (IṠ);

so β̃ > α0, . . . , αm−1, which implies suppπ0(κ+) ∩ {(κ+, i) ∣ i < αl} = ∅.

Finally, πp0 ∥p0 by construction.

Now, we turn to π1. Let suppπ1 ∶= {µh, . . . , µk−1}.

Consider µ+ ∈ Succ′ with {l ∈ [h, k) ∣ µl = µ+} = {l0, . . . , lz−1} for some 1 ≤ z < ω. (Then
µl0 = ⋯ = µlz−1 = µ

+, and l0, . . . , lz−1 ∈ [h, k) implies l0 , . . . , lz−1 ≥ β.) Recall that we have

π1l0 , . . . , π1lz−1 ∈ (β̃, β) ∖ {0, . . . , h−1} with p1 ↾ {(µl0 , l0)} = p1 ↾ {(µl0 , π1l0)}, . . . , p1 ↾
{(µlz−1 , lz−1)} = p1 ↾{(µlz−1 , π1lz−1)}.
Let domπ1(µ+) = domx π1(µ+) × domy π1(µ+) ∶= domx p1(µ

+) × domy p1(µ
+), and

suppπ1(µ+) ∶= {l0 , . . . , lz−1 , π1l0 , . . . , π1lz−1}. The map fπ1(µ
+) ∶ suppπ1(µ+)→ suppπ1(µ+)

will be de�ned as follows: fπ1(µ
+)(l) = π1l, fπ1(µ

+)(π1l) = l for all l ∈ {l0, . . . , lz−1}.
For ζ ∈ domx π1(µ+), we need a bijection π1(µ+)(ζ) ∶ 2suppπ1(µ+) → 2suppπ1(µ+). Again, we
swap any l-coordinate with the according π1l-coordinate:
(π1(µ+)(ζ)(εi ∣ i ∈ suppπ1(µ+)) ) l

∶= επ1l , (π1(µ+)(ζ)(εi ∣ i ∈ suppπ1(µ+)) )π1l
∶= εl for

l ∈ {l0, . . . , lz−1}.
Finally, for (ζ, i) ∈ [µ,µ+) × F (µ+), let π1(µ+)(ζ, i) = 0.

This de�nes π1, withDπ1 = {q ∈ P1 ∣ ∀µ+ ∈ supp q ∩{µh, . . . , µk−1} dom q(µ+) ⊇ domπ1(µ+)}.

For any such q ∈ Dπ1 and µ+ ∈ supp q with µ+ = µl0 = ⋯ = µlz−1 for 0, . . . , lz−1 as above,
we have {l0 , . . . , lz−1 , π1l0 , . . . π1lz−1} ⊆ domy p(µ+) = domy π1(µ+) ⊆ domy q1(µ+), and
(π1q)(µ+)(ζ, l) = q(µ

+)(ζ, π1l), (π1q)(µ+)(ζ, π1l) = q(µ
+)(ζ, l) for all l ∈ {l0, . . . , lz−1},

ζ ∈ domx q(µ+). Moreover, (π1q)(µ+)(ζ, i) = q(µ+)(ζ, i) for all the ζ ∈ domx q(µ+),
i < F (µ+) remaining with i ∉ suppπ1(µ+) = {l0 , . . . , lz−1 , π1l0 , . . . , π1lz−1}.
Since we have arranged that p1 ↾ {(µl0 , l0)} = p1 ↾ {(µl0 , π1l0)}, . . . , p1 ↾ {(µlz−1 , lz−1)} =
p1 ↾{(µlz−1 , π1lz−1)}, it follows that (π1p1)(µ

+) = p1(µ
+).
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Hence, π1p1 ∥p1.

It remains to check that π1 ∈ Fix1(κ0, ı0) ∩ ⋯ ∩ Fix1(κn−1, ın−1)∩ Small1(λ0, [0, α0))
∩⋯ ∩ Small1(λm−1, [0, αm−1)). For l < n and κl < κ, we have ıl < β̃, since β̃ is large
enough, so ıl ∉ suppπ1(κl). Hence, π1 ∈ Fix1(κl, ıl). In the case that κl ≥ κ, it follows that
κl ∉ suppπ1, so again, π1 ∈ Fix1(κl, ıl) as desired. Similarly, π1 ∈ Small1(λ0, [0, α0)) ∩
⋯ ∩ Small1(λm−1, [0, αm−1)).

Thus, we have constructed an automorphism π = (π0, π1) with πp ∥p and π ∈ Fix0(κ0, i0) ∩
⋯ ∩ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Fix1(κ0, ı0) ∩ ⋯ ∩ Small1(λ0, [0, α0)) ∩ ⋯. This gives

πS
Dπ

= S
Dπ
.

Since p ⊩P↾(λ+1) ORP↾(λ+1)(
̃̇X,α) ∈ Ṡ, it follows that πp ⊩P↾(λ+1) ORP↾(λ+1)(π

̃̇X
Dπ
, α) ∈

πS
Dπ
; hence,

πp ⊩P↾(λ+1) ORP↾(λ+1)(π
̃̇X
Dπ
, α) ∈ Ṡ .

Take q ∈ P↾(λ + 1) with q ≤ p, πp. Then q ⊩P↾(λ+1) α ∉ rg Ṡβ, and

q ⊩P↾(λ+1) ORP↾(λ+1)(π
̃̇X
Dπ
, α) ∈ Ṡ.

We will lead this into a contradiction.

As already indicated, π̃̇X
Dπ

will be equal to some ̃̈X
Dπ
, where Ẍ is a name for the forcing

P0 ↾ t(π0s) × P1 ↾{(µ0, j0), . . . , (µh−1, h−1), (µh, π1h), . . . , (µk−1, π1k−1)} × P1(κ
+),

where π0s ∈ P0 has maximal points (κ+, j0), . . . , (κ+, jh−1), (κ+, π0jh), . . . , (κ+, π0jk−1).

More generally, for a name ẋ ∈ Name(P0 ↾ t(s) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+)),
we cannot apply π directly to obtain πẋ, but have transform ẋ into a P-name ̃̇x �rst, and

then consider the extension ̃̇x
Dπ
.

However, the map π induces a canonical isomorphism Tπ ∶ P0 ↾ t(s) × P1 ↾ {(µ0, 0), . . . ,
(µk−1, k−1)} × P1(κ+)→ P0 ↾ t(π0s) × P1 ↾{(µ0, 0), . . . , (µh−1, h−1), (µh, π1h), . . . ,
(µk−1, π1k−1)} × P1 ↾ (κ+), which extends to the name space, such that for all ẋ ∈
Name(P0 ↾ t(s) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+)), we have

T̃πẋ
Dπ

= π̃̇x
Dπ
.

This transformation Tπ can be de�ned as follows:
Recall that s is a condition in P0 with maximal points (κ+, j0), . . . , (κ+, jk−1), so the con-
dition π0s has maximal points (κ+, j0), . . . , (κ+, jh−1), (κ+, π0jh), . . . , (κ+, π0jk−1) with
(π0s)↾κ+ = s↾κ+, and for any l < h, it follows that π0s has the same branch below (κ+, jl)
as s; but for l ∈ [h, k), the π0s-branch below (κ+, π0jl) coincides with the s-branch below
(κ+, jl).

For a condition
( v0 ↾ t(s), v1 ↾{(µ0, 0), . . . , (µk−1, k−1)}, v1(κ

+) )
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in P0 ↾ t(s) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+), let

Tπ(v0 ↾ t(s), v1 ↾{(µ0, 0), . . . , (µk−1, k−1)}, v1(κ
+))

be the condition

( v′0 ↾ t(π0s), v
′
1 ↾{(µ0, 0), . . . , (µh−1, h−1), (µh, π1h), . . . , (µk−1, π1k−1)}, v

′
1(κ

+) )

with

� v′0 ↾ t(π0s) = π0(v0 ↾ t(s)),

� v′1 ↾{(µ0, 0), . . . , (µh−1, h−1), (µh, π1h), . . . , (µk−1, π1k−1)} ∈ P1 ↾{(µ0, 0), . . . ,
(µh−1, h−1), (µh, π1h), . . . , (µk−1, π1k−1)} is obtained from v1 ↾{(µ0, 0), . . . , (µk−1, k−1)}
by swapping any (µl, l)-coordinate for l ∈ [h, k) with the according (µl, π1l)-
coordinate,

� v′1(κ
+) = v1(κ+).

Then Tπ induces a canonical transformation of names Tπ ∶ Name (P0 ↾ t(s)×P1 ↾{(µ0, 0), . . . ,

(µk−1, k−1)}×P1(κ+))→ Name (P0 ↾ t(π0s)×P1 ↾{(µ0, j0), . . . , (µh−1, jh−1), (µh, π1jh), . . . ,

(µk−1, π1jk−1)} × P1 ↾(κ+)), which will be denoted by the same letter.

Recursively, it is not di�cult to check that indeed, π̃̇x
Dπ

= T̃πẋ
Dπ
.

Thus, from

q ⊩P↾(λ+1) ORP↾(λ+1)(π
̃̇X
Dπ
, α) ∈ Ṡ

it follows that

q ⊩P↾(λ+1) ORP↾(λ+1)(T̃πẊ
Dπ
, α) ∈ Ṡ.

Now, TπẊ ∈ Name (P0 ↾ t(π0s) × P1 ↾{(µ0, 0), . . . , (µh−1, h−1), (µh, π1h), . . . , (µk−1,

π1k−1)} × P1(κ+)), where π0s has maximal points (κ+, j0), . . . , (κ+, jh−1), (κ+, π0jh), . . . ,
(κ+, π0jk−1) with j0 < β, . . . , jh−1 < β, and π0jh < β, . . . , π0jk−1 < β by construction. Also,
0 < β, . . . , h−1 < β, and π1h < β, . . . , π1k−1 < β by construction. Thus, (π0s, (µ0, 0), . . . ,
(µh−1, h−1), (µh, π1h), . . . , (µk−1, π1k−1)) ∈Mβ.

Since q0 ≤ π0p0 ≤ π0s and q ⊩P↾(λ+1) ORP↾(λ+1)(T̃πẊ, α) ∈ Ṡ, it follows that

(ORP↾(λ+1)(T̃πẊ
Dπ , α), q) ∈ Ṡβ.

contradicting that also q ⊩P↾(λ+1) α ∉ rg Ṡβ.

Hence, Sβ must be surjective, which �nishes the proof.

Thus, we have shown that for any β̃ < F (κ) large enough and β = β̃ + κ+, the restriction
Sβ ∶ domSβ → F (κ) must be surjective, as well.
We will now lead this into a contradiction.

For the rest of this section, we �x some limit ordinal β̃ < F (κ) large enough and let
β ∶= β̃ + κ+. We want to capture Sβ in an intermediate model V [Gβ ↾ (κ+ + 1)], which
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will be a generic extension by a certain set forcing Pβ ↾ (κ+ + 1). We will show that
V [Gβ ↾(κ+ + 1)] also contains an injection ι ∶ domSβ ↪ β, while Pβ ↾(κ+ + 1) preserves all
cardinals ≥ F (κ) � a contradiction.

Roughly speaking, this forcing Pβ ↾ (κ+ + 1) will be obtained from P, by �rst cutting o�
at height κ+ + 1, and then cutting o� at width β. The latter procedure is rather clear
for P1: For successor cardinals λ+ < κ, λ+ ∈ Succ′, we take for (P1)β(λ+) the forcing
Fn([λ,λ+) × β,2, λ+) instead of Fn([λ,λ+) × F (λ+),2, λ+) in the case that β < F (λ+).
However, the forcing notion (P0)β ↾ (κ+ + 1) requires a careful construction. One could
try and restrict P0 to all those p ∈ P0 ↾ (κ+ + 1) which have only maximal points (κ+, i)
with i < β. Nevertheless, their predecessors (λ, j) on lower levels λ < κ+ might still have
indices j > β, so our forcing would still be �too big�.
Our idea will be to drop all indices at levels below κ+ � then the domain t(p) of the
conditions p ∈ (P0)β ↾(κ+ + 1) will be given by their maximal points (κ+, i) and the struc-
ture of the tree below, i.e. for any two maximal points (κ+, i) and (κ+, i′) we only need
information about the level at which the branches below them meet.

We start with a �preliminary version� (P̂0)β ↾(κ+ + 1): Any condition p ∈ (P̂0)β ↾(κ+ + 1)
will be of the form p ∶ t(p)→ V with a tree t(p) given by its �nitely many maximal points
(κ+, β0), . . . , (κ+, βk−1) and the tree structure below. We will now specify how this tree
structure should be coded into the forcing conditions:

On the one hand, for any level α ≤ κ+, the tree structure of t(p) induces an equivalence
relation ∼α on the set {β0, . . . , βk−1} by setting βi ∼α βj i� (κ+, i) and (κ+, j) have a
common t(p)-predecessor on level α. This equivalence relation ∼α induces a partition Bα

on {β0, . . . , βk−1} such that for all l, l′ < k, there exists z ∈ Bα with {βl, βl′} ⊆ z i� the
vertices (κ+, βl) and (κ+, βl′) have a common t(p)-predecessor on level α.

Conversely, the tree structure below (κ+, β0), . . . , (κ+, βk−1) could be described by a se-
quence (Bα ∣ α ≤ κ+, α ∈ Card) of partitions of the set {β0, . . . , βk−1} such that any Bα+

is �ner than Bα, and B0 = {{β0, . . . , βk−1}}, Bκ+ = {{β0}, . . . ,{βk−1}}. Since for Flim-trees
we do not allow splitting at limits, we have to require that for any limit cardinal α ≤ κ,
there exists a cardinal α < α such that Bα = Bβ for all β with α ≤ β ≤ α.
We will give any t(p)-vertex on level α ≤ κ+ a �name� (α, z), where z ∈ Bα is the collec-
tion of all i < k with (α, z) ≤t(p) (κ+,{βi}). Then the vertices already determine the tree
structure of t(p).

De�nition 3.4.3. Let k < ω and β0, . . . , βk−1 < Flim(κ+) = F (κ). We say that (t,≤t)
is a tree below (κ+, β0), . . . , (κ+, βk−1) if there is a sequence (Bα ∣ α ≤ κ+, α ∈ Card) of
partitions of the set {β0, . . . , βk−1} such that

� for any cardinal α < κ+, it follows that Bα+ is �ner than Bα, B0 = {{β0, . . . , βk−1}},
and Bκ+ = {{β0}, . . . ,{βk−1}},

� for all limit cardinals α, there exists α < α with Bβ = Bα for all α ≤ β ≤ α,

such that
t ∶= ⋃

α∈Card
α≤κ+

{α} ×Bα,
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i.e. , the vertices of t are pairs (α, z) with z ∈ Bα a subset of {β0, . . . , βk−1}.

The order ≤t is de�ned as follows: (α, z) ≤t (β, z′) i� α ≤ β and z ⊇ z′.

We call supp t = {(κ+, β0), . . . , (κ+, βk−1)} the support of (t,≤t).

For β ≤ Flim(κ+), we denote by T (κ+, β) the collection of all (t,≤t) such that (t,≤t) is a
tree below some (κ+, β0), . . . , (κ+, βk−1) with k < ω and β0, . . . , βk−1 < β.

There is a canonical partial order ≤T (κ+,β) on T (κ+, β): Set (s,≤s) ≤T (κ+,β) (t,≤t) i� supp ⊇
supp t, and the tree structures of s and t below supp t agree, i.e. for any i, j ∈ supp t, the
(t,≤t)-branches below (κ+, i) and (κ+, j) meet at the same level as they do in (s,≤s).

De�nition 3.4.4. Let (t,≤t), (s,≤s) ∈ T (κ+, β) with supp t = {β0, . . . , βk−1}, supp s =
{β0, . . . , βk−1}, and the according sequences of partitions (Bα ∣ α ∈ Card, α ≤ κ+) and
(Bα ∣ α ∈ Card, α ≤ κ+). Then (s,≤s) ≤T (κ+,β) (t,≤t) i� the following hold:

� supp s = {β0, . . . , βk−1} ⊇ {β0, . . . , βk−1} = supp t,

� for any α ≤ κ+, the partition Bα extends Bα, i.e. for any βl, βl′ ∈ supp t,

(∃ z ∈ Bα {βl, βl′} ⊆ z) ⇔ (∃ z ∈ Aα {βl, βl′} ⊆ z).

One can check that ≤T (κ+,β) is indeed a partial order.

For trees (s,≤s) and (t,≤t) in T (κ+, β) with (s,≤s) ≤T (κ+,β) (t,≤t), we can de�ne an em-
bedding ι ∶ (t,≤t) ↪ (s,≤s) as follows: ι(α, z) ∶= (α, z), where (α, z) ∈ s with z ⊇ z (then
z = z ∩ supp t). With ≤ι[t] ∶= ι[≤t] = {(ι(α, z), ι(β, z′)) ∣ (α, z) ≤t (β, z′)}, it follows that
≤ι[t] =≤s ∩ ι[t], and (ι[t],≤ι[t]) ⊆ (s,≤s) is a subtree.
Conversely, consider s, t ∈ T (κ+, β) with an embedding ι ∶ (t,≤t)↪ (s,≤s) such that for all
(α, z) ∈ t, we have ι(α, z) = (α, z) with z ⊇ z. Then (ι[t], ι[≤t]) ⊆ (s,≤s) is a subtree, and
one can easily check that (s,≤s) ≤T (κ+,β) (t,≤t).
Hence, the partial order ≤T (κ+,β) can also be described via embeddings.

The maximal element of T (κ+, β) is the empty tree.

Now, we can de�ne (P̂0)β ↾(κ+ + 1):

De�nition 3.4.5. The forcing (P̂0)β ↾(κ+ + 1) consists of all p ∶ t(p)→ V such that

� t(p) ∈ T (κ+, β),

� p(α+, z) ∈ Fn([α,α+),2, α+) for all (α+, z) ∈ t(p) with α+ a successor cardinal,

� p(ℵ0, z) ∈ Fn(ℵ0,2,ℵ0) for all (ℵ0, z) ∈ t(p),

� p(α, z) = ∅ for all (α, z) ∈ t(p) with α a limit cardinal, and

� ∣p↾α∣ < α for all regular limit cardinals α.

For p, p ∈ (P̂0)β ↾(κ+ + 1), set p ≤ p i�

� t(p) ≤T (κ+,β) t(p),
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� p(α, z) ⊇ p(α, z) whenever z ⊇ z.

The maximal element 1 in (P̂0)β ↾(κ+ + 1) is the empty condition with t(1) = ∅.

Our argument for capturing Sβ inside V [Gβ ↾ (κ+ + 1)] will roughly be as follows: We
de�ne a function (Sβ)′ as the set of all (ẊGβ↾(κ++1), α) for an appropriate name Ẋ, such
that there exists p ∈ P with p ⊩ (Ẋ, α) ∈ Ṡ and pβ ↾ (κ+ + 1) ∈ Gβ ↾ (κ+ + 1). In order to
show that (Sβ)′ ⊆ Sβ, we use an isomorphism argument similarly as before: If there was
(ẊGβ↾ (κ++1), α) ∈ (Sβ)′ ∖Sβ, one could take p and q in P with pβ ↾(κ+ + 1) ∈ Gβ ↾(κ+ + 1),
q ∈ G such that p ⊩ (Ẋ, α) ∈ Ṡ and q ⊩ (Ẋ, α) ∉ Ṡ. We construct an automorphism π

with πp ∥ q with π̃̇X
Dπ

= ̃̇X
Dπ

and πS
Dπ

= S
Dπ
, and obtain a contradiction.

Recall that prior to the proof of Proposition 3.4.2, we have �xed a condition r ∈ G0 such
that the maximal points of t(r) are among {(κ0, i0), . . . , (κn−1, in−1)} ⊆ t(r), and r ∈ G0,
r ≤ r, such that all branches of r have height ≥ κ+. For l < n with κl ≥ κ+, we denote by
(κ+, i′l) the t(r)-predecessor of (κl, il) on level κ+; in the case that κl < κ+, we have chosen
for (κ+, i′l) some t(r)-successor of (κl, il) on level κ+.

Firstly, in order to make sure that πp ∥ q is possible while at the same time π ∈ Fix0(κ0, i0)∩
⋯ ∩ Fix0(κn−1, in−1), it will be necessary that from (p0)β ↾(κ++1) ∈ (G0)β ↾(κ++1), q ∈ G,
it follows that p and q coincide on the tree t(r). Thus, we will have to include t(r) into
our forcing (P̂0)β ↾ (κ+ + 1): Namely, we will restrict (P̂0)β ↾ (κ+ + 1) to those conditions
that coincide with t(r) below level κ+.
Secondly, for π ∈ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Small0(λm−1, [0, αm−1)), we will have to make
sure that (p0)β ↾ (κ+ + 1) ∈ (G0)β ↾ (κ+ + 1), q ∈ G implies that for all l < m, the indices
(λl, i) at level λl agree for p and q for all i < αl. In order to achieve this, we enhance
our forcing (P̂0)β ↾(κ++1) and assign indices (λ, i) with i < αl to some some vertices (λl, z).

We start with the second, de�ning a forcing ((P̂0)β ↾ (κ+ + 1))(λ0,α0), ...
that will be the

collection of all p ∈ (P̂0)β ↾ (κ+ + 1) equipped with an additional indexing function N(p)
on {(λl, z) ∈ t(p) ∣ l <m,λl ≤ κ} such that

� N(p)(λl, z) ∈ {(λl, i) ∣ i < αl} ∪ {∗} for all (λl, z) ∈ dom N(p),

� any (λ, i) ∈ rg N(p) has only one preimage:

(N(p)(λl, z) = N(p)(λl, z
′) ∧ z ≠ z′ )⇒ N(p)(λl, z) = N(p)(λl, z

′) = ∗.

The idea about this indexing function N(p) is that for a condition p ∈ ((P̂0)β ↾ (κ+ +

1))(λ0,α0), ...
, any vertex (λl, z) ∈ t(p) with N(p)(λl, z) = (λl, i) for some i < αl should

correspond to the vertex (λl, i) for conditions in P0, while all vertices (λl, z) ∈ t(p) with
N(p)(λl, z) = ∗ should correspond to vertices (λl, i) with i ≥ αl.

For p, p ∈ ((P̂0)β ↾(κ+ + 1))(λ0,α0), ...
with indexing functions N(p) and N(p), we set p ≤ p

i� p ≤ p in (P̂0)β ↾(κ+ + 1), and N(p)(λl, z) = N(p)(λl, z) for all z ⊇ z.
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Now, we de�ne our forcing ((P̂0)β ↾ (κ+ + 1))
r

(λ0,α0), ...
, which could be regarded the col-

lection of all those conditions p ∈ ((P̂0)β ↾(κ+ + 1))(λ0,α0), ...
that coincide with t(r) below

(κ+, i′0), . . . , (κ
+, i′n−1), where the function N(p) is now de�ned on

{(λl, z) ∈ t(p) ∣ l <m,λl ≤ κ} ∪ {(α, z) ∈ t(r) ∣ α ≤ κ+}.

First, we de�ne T (κ+, β)t(r) ⊆ T (κ+, β) as follows: The condition t(r) induces on any level

α ≤ κ+ an equivalence relation ∼
t(r)
α on {i′0, . . . , i

′
n−1} by setting i′l ∼

t(r)
α i′

l
i� (κ+, i′l) and

(κ+, i′
l
) have a common t(r)-predecessor on level α.

Thus, let (t,≤t) ∈ T (κ+, β)t(r) i� (t,≤t) ∈ T (κ+, β) with partitions (Bα ∣ α ∈ Card, α ≤ κ+)
as in the de�nition of T (κ+, β), such that {(κ+, i′0), . . . , (κ

+, i′n−1)} ⊆ supp t, and for any

level α ≤ κ+, the partition Bα coincides with ∼
t(r)
α , i.e. for all l, l < n, we have i′l ∼

t(r)
α i′

l
i�

there exists z ∈ Bα with {i′l, i
′
l
} ⊆ z.

In other words, we want the tree structure of t below (κ+, i′0), . . . , (κ
+, i′n−1) coincide with

the tree structure of t(r).
The partial order ≤T (κ+,β)t(r) on T (κ+, β)t(r) is inherited from T (κ+, β).

Now, any p ∈ ((P̂0)β ↾ (κ+ + 1))
r

(λ0,α0), ...
will be of the form p ∶ t(p) → V with t(p) ∈

T (κ+, β)t(r) and the values p(α, z) as in De�nition 3.4.5, equipped with an indexing func-
tion N(p) de�ned on

{ (λl, z) ∈ t(p) ∣ l <m,λl ≤ κ} ∪ { (α, z) ∣ ∃ l < n (α, z) ≤t(p) (κ+,{i′l}) }

with the following properties:

� For (α, z) ≤t(p) (κ+,{i′l}) with N(p)(α, z) = (α, i), it follows that (α, i) is the t(r)-
predecessor of (κ+, i′l) on level α.

� For all the (λl, z) remaining, N(p)(λl, z) ∈ {(λl, i) ∣ i < αl} ∪ {∗} as before with

(N(λl, z) = N(λl, z
′) ∧ z ≠ z′)⇒ N(λ, z) = N(λ, z′) = ∗.

The idea about extending the domain of N(p) is that any (α, z) ≤t(p) (κ+,{i′l}) with
N(p)(α, z) = (α, i) should correspond to the vertex (α, i) ∈ t(r).

The partial order �≤� on ((P̂0)β ↾ (κ+ + 1))
r

(λ0,α0), ...
is de�ned as follows: Set p ≤ p i�

t(p) ≤ t(p) in T (κ+, β)t(r), and for all (α, z) ∈ t(p), (α, z) ∈ t(p) with z ⊆ z, it follows that
p(α, z) ⊇ p(α, z), and N(p)(α, z) = N(p)(α, z) in the case that (α, z) ∈ domN(p).

For the maximal element 1, we have for t(1) a tree below (κ+, i′0), . . . , (κ
+, i′n−1) with par-

titions (Bα ∣ α ∈ Card, α ≤ κ+) and the values N(1)(α, z) given by t(r), and 1(α, z) = ∅
for all (α, z) ∈ t(1).

This de�nes (P0)β ↾(κ+ + 1) ∶= ((P̂0)β ↾(κ+ + 1))
r

(λ0,α0), ...
.

We will now see that there is a subforcing (P̃0)r ⊆ P0 dense in P0 below r with a projec-
tion of forcing posets ρβ0 ∶ (P̃)r → (P0)β ↾ (κ+ + 1). Hence, G0 induces a V -generic �lter
(G0)β ↾(κ+ + 1) on (P0)β ↾(κ+ + 1).
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Generally, for a condition p ∈ P0 with t(p) ≤ t(r) such that all the branches of t(p) have
height ≥ κ+, we can de�ne ρβ0(p) ∈ (P0)β ↾(κ+ + 1) as follows: Roughly, we take all prede-
cessors of the points {(κ+, i) ∈ t(p) ∣ i < β} and drop the indices below level κ+. We start

with de�ning t ∶= t(ρβ0(p)). Let supp t ∶= {(κ+, βl) ∣ l < k} ∶= {(κ+, i) ∈ t(p) ∣ i < β}. For

any level α ≤ κ+, the condition p induces an equivalence relation ∼α on {β0, . . . , βk−1} by
setting βl ∼α βl i� (κ+, βl) and (κ+, βl) have a common t(p)-predecessor on level α. We
take for t the sequence (Bα ∣ α ∈ Card, α ≤ κ+) of partitions such that any Bα corresponds
to the equivalence relation ∼α: For any βl, βl, we have βl ∼α βl i� there exists z ∈ Bα with
{βl, βl} ⊆ z. Together with the order relation ≤t given by (α, z) ≤t (β, z′) i� α ≤ β and
z ⊇ z′, this de�nes t ∈ T (κ+, β). From t(p) ≤ t(r) it follows that t ∈ T (κ+, β)t(r).

The tree t can be embedded into t(p): Namely, a canonical map ιβ0(p) ∶ t ↪ t(p) can be
de�ned as follows. For (α, z) ∈ t, consider βl ∈ z. Let (α, i) denote the t(p)-predecessor
of (κ+, βl) on level α. Then (α, z) ∈ t corresponds to the vertex (α, i) ∈ t(p), and we set
ιβ0(p)(α, z) ∶= (α, i). This map is well-de�ned and injective, with (α, z) ≤t (β, z′) if and
only if ιβ0(p)(α, z) ≤t(p) ι

β
0(p)(β, z

′).

Hence, (ιβ0(p)[t], ι
β
0(p)[≤t]) ⊆ (t(p),≤t(p)) is a subtree.

For (α, z) ∈ t = t(ρβ0(p)), we set (ρβ0(p))(α, z) ∶= p(ι
β
0(p)(α, z)).

It remains to de�ne the indexing function N ∶= N(ρβ0(p)): For (α, z) ∈ t with (α, z) ≤t

(κ+,{i′l}) for some l < n, let N(α, z) ∶= (α, i) ∶= ιβ0(p)(α, z). For all (λl, z) ∈ t, < m,

with ιβ0(p)(λl, z) = (λl, i), let N(λl, z) ∶= ι
β
0(p)(λl, z) = (λl, i) in the case that i < αl, and

N(λl, z) ∶= ∗, else.

This de�nes the projection ρβ0(p).

Whenever (α, z) ∈ t with (α, z) ≤t (κ+,{i′l}) for some l < n, then N(α, z) = (α, i) is
the t(p)-predecessor of (κ+, i′l) on level α. Since t(p) ≤ t(r) it follows that (α, i) is

also the t(r)-predecessor of (κ+, i′l) on level α. Hence, ρβ0(p) is indeed a condition in

((P̂0)β ↾(κ+ + 1))
r

(λ0,α0),...
= (P0)β ↾(κ+ + 1).

Let now (P̃0)r denote the collection of all p ∈ P0 with t(p) ≤ t(r) such that all branches of
p have height at least κ+, and the following additional property holds:

(1) For l <m, every (λl, k) ∈ t(p) with k < αl has a t(p)-successor (κ+, i) with i < β.

Then ((P̃0)r, (≤̃0)r) is a forcing with the partial order (≤̃0)r induced by ≤0 and maximal
element 1 ∶ t(r)→ V with 1(α, i) = ∅ for all (α, i) ∈ t(r).

Since (P̃0)r is dense in P0 below r, it follows that (G̃0)r ∶= {p ∈ (P̃0)r ∣ p ∈ G0} is a
V -generic �lter on (P̃0)r.

Proposition 3.4.6. The map ρβ0 ∶ (P̃0)r → (P0)β ↾ (κ+ + 1), p ↦ ρβ0(p) is a projection of
forcing posets. In particular,

(G0)
β ↾(κ+ + 1) ∶= ρβ0 [(G̃0)

r] = {ρβ0(p) ∣ p ∈ (P̃0)
r ∩ G0}

is a V -generic �lter on (P0)β ↾(κ+ + 1).
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The latter will be important, since we want to work with models of the form V [(G0)β ↾
(κ+ + 1)] as intermediate generic extensions to capture parts of the map Sβ.

Proof. It is not di�cult to see that ρβ0 is order-preserving and surjective with ρβ0(1) = 1.
In order to show that ρβ0 is a projection of forcing posets, it remains to verify the following
property: For any p ∈ (P̃0)r and q ∈ (P0)β ↾ (κ+ + 1) with q ≤ ρβ0(p), there exists s ∈ (P̃0)r,
s ≤ p with ρβ0(s) ≤ q.

Then it follows that (G0)β ↾(κ+ + 1) hits any open dense set D ⊆ (P0)β ↾(κ+ + 1).

Let p ∈ (P̃0)r and q ≤ ρ
β
0(p) as above. First, we construct a condition q ∈ (P̃0)r compatible

with p such that ρβ0(q) = q. We do not change the tree structure of q, but give any
vertex (α, z) ∈ t(q) an index N(q)(α, z) = (α, i), where N(q) should extend the following
indexing functions Nκ+(q), N ′(q) and Np(q):

� Nκ+(q) maps any (κ+,{i}) ∈ t(q) to the number (κ+, i),

� N ′(q) is the restriction ofN(q) to the set of all (λl, z) ∈ t(q), λl ≤ κ, withN(q)(λl, z) ≠
∗,

� Np(q) maps any (α, z) ∈ t(q) which corresponds to a vertex (α, z) ∈ t = t(ρβ0(p)) to
the number (α, i) that (α, z) inherits from t(p).
More precisely: Since q ≤ ρβ0(p), there is an embedding ι ∶ (t,≤t)↪ (t(q),
≤t(q)) such that for all (α, z) ∈ t, it follows that ι(α, z) = (α, z) for some z ⊇ z. For
any (α, z) ∈ im ι with (α, z) = ι(α, z), let Np(q)(α, z) be the number (α, i) of the

t(p)-vertex corresponding to (α, z): With our canonical map ιβ0(p) ∶ t ↪ t(p) with
ιβ(p)(α, z) = (α, i), set Np(q)(α, z) ∶= (α, i) = ιβ(p)(ι−1(α, z)).

It is not di�cult to see that Nκ+(q) ∪ N ′(q) ∪ Np(q) is well-de�ned and injective.
Since t(p) ≤ t(r), it follows that for any (α, z) ∈ t(q) with (α, z) ≤t(q) (κ+,{i′l}) for some
l < n, we haveNp(q)(α, z) = (α, i), where (α, i) is the t(r)-predecessor of (κ+, i′l) on level α.

It remains to de�neN(q)(α, z) for those (α, z) ∈ t(q) remaining with (α, z) ∉ dom (Nκ+(q)∪

N ′(q) ∪ Np(q)).

For α < κ+, α ∉ {λl ∣ l <m}, let

Zα ∶= { (α, i) ∣ i < Flim(α) , (α, i) ∉ t(p) ∪ im (Nκ+(q) ∪ N
′(q) ∪ Np(q)) }.

For l <m with λl ≤ κ, let

Zλl ∶= { (λl, i) ∣ i ∈ [αl, Flim(λl)) , (λl, i) ∉ t(p) ∪ im (Nκ+(q) ∪ N
′(q) ∪ Np(q)) }.

We take for N(q) ∶ t(q) → V an injective function with N(q) ⊇ Nκ+(q) ∪ N ′(q) ∪ Np(q)
such that N(q)(α, z) ∈ Zα for all (α, z) ∈ t(q) ∖ dom (Nκ+(q) ∪ N ′(q) ∪ Np(q)).

The condition q ∈ (P̃0)r is de�ned as follows: t(q) ∶= {N(q)(α, z) ∣ (α, z) ∈ t(q)}, with
≤t(q) ∶= {(N(q)(α, z),N(q)(β, z′)) ∣ (α, z) ≤t(q) (β, z′)}.

For any (α, i) = N(q)(α, z) ∈ t(q), let q(α, i) ∶= q(α, z).
This �nishes the construction of q.
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By construction, it follows that ρβ0(q) = q. Also, q ∥p: Firstly, for any (κ+, j) ∈ t(p) with
j < β, it follows by construction of Np(q) that the t(p)-branch below (κ+, j) coincides
with the t(q)-branch below (κ+, j).
On the other hand, the set of all (α, i) ∈ t(p) which have no successor (κ+, j) with j < β
is disjoint from t(q): The sets Zα and Zλl are disjoint from t(p) by construction, so
N(q)(α, z) = (α, i) ∈ t(p) would imply (α, i) ∈ im (Nκ+(q) ∪ N ′(q) ∪ Np(q)). But any
(α, i) ∈ imNκ+(q) ∪ imNp(q) clearly has a t(p)-successor (κ+, j) with j < β, so the only
possibility remaining is that (α, i) = (λl, i) = N ′(q)(λl, z) = N(q)(λl, z) for some l < m
with i < αl. But then it follows from property (1) for (P̃0)r that again, (λl, i) has a
t(p)-successor (κ+, j) with j < β � contradiction.
For any (α, i) = N(q)(α, z) ∈ t(q) ∩ t(p), we have (α, i) = Np(q)(α, z), and with the
embedding ι ∶ (t,≤t) ↪ (t(q),≤t(q)) as in the de�nition of Np(q) with ι(α, z) = (α, z), it

follows from q ≤ ρβ0(p) that q(α, i) = q(α, z) ⊇ ρ
β
0(p)(α, z) = p(α, i).

Hence, q ∥p.

Setting s ∶= p ∪ q, it follows that s ≤ p with s ∈ (P̃0)r and ρ
β
0(s) ≤ ρ

β
0(q) = q.

Hence, the condition s has all the desired properties, and it follows that ρβ0 is indeed a
projection of forcing posets.

For capturing Sβ, we will consider the product forcing

(P0)
β ↾(κ+ + 1) × (P0 ↾ t(r))↾ [κ

+,∞).

Then also the map ρβ0 ∶ (P̃0)r → (P0)β ↾ (κ+ + 1) × (P0 ↾ t(r)) ↾ [κ+,∞), which maps a

condition p ∈ (P̃0)r to (ρβ0(p), (p↾ t(r))↾ [κ
+,∞) ) is a projection of forcing posets; hence,

(G0)β ↾ (κ+ + 1) × (G0 ↾ t(r)) ↾ [κ+,∞) is a V -generic �lter on (P0)β ↾ (κ+ + 1) × (P0 ↾

t(r))↾ [κ+,∞).

Now, we turn to (P1)β ↾ (κ + 1). As already mentioned, we take for any λ+ ∈ Succ′ ∩
κ at stage λ+ the forcing Fn ([λ,λ+) × min{β,F (λ+)},2, λ+) instead of Fn ([λ,λ+) ×

F (λ+),2, λ+).
More precisely, (P1)β ↾ (κ + 1) consists of all conditions p ∶ Succ′ ∩ (κ + 1) → V with
suppp ∶= {λ+ < κ ∣ p(λ+) ≠ ∅} �nite such that for all λ+ ∈ suppp,

p(λ+) ∈ Fn ([λ,λ+) ×min{F (β,λ+)},2, λ+)

with domp rectangular, i.e.

domp(λ+) = domx p(λ
+) × domy p(λ

+)

for some domx p(λ+) ⊆ [λ,λ+) and domy p(λ+) ⊆ min{β,F (λ+)}. The partial order �≤� is
reverse inclusion, and the maximal element 1 is the empty condition.

For p ∈ P1, we can de�ne a projection ρβ1(p) as follows: suppρβ1(p) ∶= suppp ∩ (κ+1), and
for any λ+ < κ with λ+ ∈ suppp,

dom (ρβ1(p))(λ
+) ∶= domx p(λ

+) × (domy p(λ
+) ∩ β),
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with (ρβ1(p))(λ
+)(ζ, i) = p(λ+)(ζ, i) for all (ζ, i) ∈ dom (ρβ1(p))(λ

+).

It is not di�cult to check that ρβ1 is indeed a projection from P1 onto (P1)β ↾ (κ + 1).
Hence,

(G1)
β ↾(κ + 1) ∶= {ρβ1(p) ∣ p ∈ G1}

is a V -generic �lter on (P1)β ↾(κ + 1).

For capturing Sβ, we will work with the forcing

((P1)
β ↾(κ + 1)) × P1(κ

+) × P1 ↾{(κl, ıl) ∣ l < n, κl > κ
+}.

The map ρβ1 ∶ P1 → ((P1)β ↾ (κ + 1)) × P1(κ+) × P1 ↾{(κl, ıl) ∣ l < n, κl > κ+} that maps a

condition p ∈ P1 to (ρβ1(p), p1(κ+), p1 ↾ {(κl, ıl) ∣ l < n,κl > κ+}) is a projection of forcing
posets, as well. Hence, it follows that

(G1)
β ↾(κ + 1) ×G1(κ

+) ×G1 ↾{(κl, ıl) ∣ l < n, κl > κ
+}

is a V [G0]-generic �lter on ((P1)β ↾(κ + 1)) × P1(κ+) × P1 ↾{(κl, ıl) ∣ l < n, κl > κ+}.
In particular,

V [(G0)
β ↾(κ+ + 1) × (G0 ↾ t(r))↾ [κ

+,∞) × (G1)
β ↾(κ + 1) × G1(κ

+)×

×G1 ↾{(κl, ıl) ∣ l < n, κl > κ
+}]

is a well-de�ned generic extension by the forcing

(P0)
β ↾(κ+ + 1) × (P0 ↾ t(r))↾ [κ

+,∞) × (P1)
β ↾(κ + 1) × P1(κ

+)×

×P1 ↾{(κl, ıl) ∣ l < n, κl > κ
+}.

Lemma 3.4.7.

(P0)
β ↾(κ+ + 1) × (P0 ↾ t(r))↾ [κ

+,∞) × (P1)
β ↾(κ + 1) × P1(κ

+)×

×P1 ↾{(κl, ıl) ∣ l < n, κl > κ
+}

preserves cardinals ≥ F (κ).

Proof. First, it is not di�cult to see that the forcing (P0)β ↾ (κ+ + 1) has cardinality
≤ ∣β∣ < F (κ) (one has to use that β is large enough, which implies that β > αl for all l <m
with λl ≤ κ+).

Concerning (P1)β ↾ (κ + 1), we have several cases to distinguish: If ∣β∣+ < F (κ), then
∣(P1)β ↾(κ + 1)∣ ≤ ∣β∣+ < F (κ). For the rest of the proof, assume ∣β∣+ = F (κ).

� If the class Succ′ has no maximal element below κ, it follows that F (λ+) < ∣β∣ for
all λ+ < κ with λ+ ∈ Succ′, since F (λ+) < F (µ+) for all λ+, µ+ ∈ Succ′ with λ+ < µ+.
Hence, all the blocks Fn([λ,λ+) × F (λ+),2, λ+) in (P1)β ↾ (κ + 1) have cardinality
≤ ∣β∣; so ∣(P1)β ↾(κ + 1)∣ < F (κ).
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It remains to consider the case that Succ′ has a maximal element µ+ below κ.
Now, we have to treat the block (P1)β(µ+) = Fn([µ,µ+)×min{F (µ+), β},2, µ+) separately
and consider the forcing (P1)β ↾(µ + 1).

� In the case that F (µ+) ≤ ∣β∣ or �F (µ+) = F (κ) = ∣β∣+ and the class Succ′ has no
maximal element below µ+�, it follows that ∣(P1)β ↾(µ+1)∣ < F (κ) similarly as before.

� Finally, if F (µ+) = F (κ) = ∣β∣+ and Succ′ has a maximal element ν+ below µ+, we
have to treat the product (P1)β(ν+) × (P1)β(µ+) separately. Since F (ν+) ≤ ∣β∣, it
follows that F (λ+) < ∣β∣ for all λ+ ∈ Succ′ with λ+ < ν+; hence, ∣(P1)β ↾(ν +1)∣ ≤ ∣β∣ <
F (κ).

For the rest of the proof, we restrict to the latter case with (P1)β ↾ (κ + 1) ≅ ((P1)β ↾
(ν + 1)) × (P1)β(ν+) × (P1)β(µ+) and ∣(P1)β ↾ (ν + 1)∣ < F (κ) � the other cases can be
treated similarly.

Consider the product forcing

(P0)
β ↾(κ+ + 1) × (P0 ↾ t(r))↾ [κ

+,∞) × (P1)
β ↾(κ + 1) × P1(κ

+)×

×P1 ↾{(κl, ıl) ∣ l < n, κl > κ
+}.

Similarly as in Proposition 3.1.9, it follows that the �upper part�

(P0 ↾ t(r))↾ [κ
+,∞) × P1 ↾{(κl, ıl) ∣ l < n, κl > κ

+}

preserves cardinals. Since this forcing is also ≤ κ+-closed, it follows that the �lower part�,
namely,

(P0)
β ↾(κ+ + 1) × (P1)

β ↾(κ + 1) × P1(κ
+),

is the same forcing in a (P0 ↾ t(r)) ↾ [κ+,∞) × P1 ↾{(κl, ıl) ∣ l < n, κl > κ+}-generic exten-
sion as it is in V .

Thus, it su�ces to show that (P0)β ↾(κ+ + 1)× (P1)β ↾(κ+ 1)×P1(κ+) preserves cardinals
≥ F (κ). We factor

(P0)
β ↾(κ+ + 1) × (P1)

β ↾(κ + 1) × P1(κ
+) ≅

≅ ( (P0)
β ↾(κ+ + 1) × (P1)

β ↾(ν + 1)) × ((P1)
β(ν+) × (P1)

β(µ+) × P1(κ
+)).

The product (P1)β(ν+)× (P1)β(µ+)×P1(κ+) preserves all cardinals. Secondly, as we have
argued before, the forcing (P0)β ↾(κ++1)×(P1)β ↾(ν+1) has cardinality < F (κ) (in V and
hence, also in any (P1)β(ν+)× (P1)β(µ+)×P1(κ+)-generic extension). Hence, the product
forcing (P0)β ↾(κ++1)× (P1)β ↾(κ+1)×P1(κ+) preserves cardinals ≥ F (κ), which �nishes
the proof.

We want to show by an isomorphism argument that our surjection Sβ ∶ domSβ → F (κ)
is contained in

V [(G0)
β ↾(κ+ + 1) × (G0 ↾ t(r))↾ [κ

+,∞) × (G1)
β ↾(κ + 1) × G1(κ

+)×
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×G1 ↾{(κl, ıl) ∣ l < n, κl > κ
+}].

Also, we will see that in V [(G0)β ↾ (κ+ + 1) × (G0 ↾ t(r)) ↾ [κ+,∞) × (G1)β ↾ (κ + 1) ×
G1(κ+) × G1 ↾{(κl, ıl) ∣ l < n, κl > κ+}], there is also an injection ι ∶ domSβ ↪ β. Together
with Lemma 3.4.7 this gives the desired contradiction.

Recall that any X in the domain of Sβ is of the form

X = ẊG0↾t(s)×G1↾{(µ0,0), ... ,(µk−1,k−1)}×G1(κ+)

where s is a condition in G0 ↾ (κ+ + 1) and (s, (µ0, 0), . . . , (µk−1, k−1)) ∈ Mβ, i.e. s has
�nitely many maximal points (κ+, j0), . . . , (κ+, jk−1) with j0 < β, . . . , jk−1 < β, and k < ω,
µ0, . . . , µk−1 ∈ κ ∩ Succ

′, 0 < min{F (µ0), β}, . . . , k−1 < min{F (µk−1), β}. For any such s,
let s = s ∪ r.

Since do not want to use G0 ↾ (κ+ + 1) for capturing Sβ, but only (G0)β ↾ (κ+ + 1), we
would like to replace the �lter

G0 ↾ t(s) = {p↾ t(s) ∣ p ∈ G0, t(p) ≤ t(s)},

by something like

� ((G0)
β ↾(κ+ + 1))↾ t(s) ∶= {p↾ t(s) ∣ ρβ0(p) ∈ (G0)

β ↾(κ+ + 1), t(ρβ0(p)) ≤ t(ρ
β
0(s)) }�

but we have to specify what we mean by p ↾ t(s) if not necessarily t(p) ≤ t(s), but we
only know that t(ρβ0(p)) ≤ t(ρ

β
0(s)), i.e. merely the tree structures of t(p) and t(s) agree

below the vertices (κ+, j) ∈ t(s).

We will have t(p ↾ t(s)) ∶= t(s). For a vertex (α,m) ∈ t(s) with t(s)-successor (κ+, j), let
(α,m′) denote the t(p)-predecessor of (κ+, j) on level α. We will set (p ↾ t(s))(α,m) ∶=
p(α,m′). From t(ρβ0(p)) ≤ t(ρ

β
0(s)) it follows that this is well-de�ned: If (κ+, j), (κ+, j′)

are both t(s)-successors of (α,m), then also in the tree t(p), the vertices (κ+, j) and
(κ+, j′) have a common predecessor (α,m′) on level α.
In other words: The condition p ↾ t(s) is constructed from p ↾ {(κ+, j) ∣ (κ+, j) ∈ t(s)}
by exchanging any index (α,m′) such that (α,m′) ≤t(p) (κ+, j), with (α,m) such that
(α,m) ≤t(s) (κ+, j).

De�nition/Lemma 3.4.8. Let q denote a condition in P0 ↾(κ++1) with maximal points
(κ+, j0), . . . , (κ+, jk−1) such that j0, . . . , jk−1 < β, and q ∥ r. With q = q ∪ r, assume

ρβ0(q) ∈ (G0)β ↾(κ+ + 1). We de�ne

((G0)
β ↾(κ+ + 1))↾ t(q)

as the set of all p↾ t(q) with p ∈ P0 ↾(κ+ + 1) such that

ρβ0(p) ∈ (G0)
β ↾(κ+ + 1)

and
t(ρβ0(p)) ≤ t(ρ

β
0(q)),

with p↾ t(q) as de�ned before.
This is a V -generic �lter on P0 ↾ t(q), with ((G0)β ↾ (κ+ + 1))↾ t(q) = G0 ↾ t(q) in the case
that q ∈ G.
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Proof. More generally, for conditions q0, q1 ∈ P0 with maximal points in {(κ+, j) ∣ j < β}
and q0 ∥ r, q1 ∥ r, let q0 = q0 ∪ r and q1 = q1 ∪ r as before. If

t(ρβ0(q0)) = t(ρ
β
0(q1)),

there is the following canonical isomorphism T (q0, q1) ∶ P0 ↾ t(q0) → P0 ↾ t(q1): For
a condition p ∈ P0 ↾ t(q0) and some vertex (α,m) ∈ t(q1), consider a t(q1)-successor
(κ+, j). Let (α,m′) denote the according t(q0)-predecessor of (κ+, j) on level α. Set
(T (q0, q1)(p))(α,m) ∶= p(α,m′). As argued before, it follows from t(ρβ0(q0)) = t(ρ

β
0(q1))

that this is well-de�ned.
This isomorphism T (q0, q1) extends to an isomorphism T (q0, q1) ∶ Name(P0 ↾ t(q0)) →
Name(P0 ↾ t(q1)) on the name space as usual: For Ẏ ∈ Name(P0 ↾ t(q0)), de�ne recursively:

T (q0, q1)(Ẏ ) ∶= { (T (q0, q1)(Ż), T (q0, q1)(p) ) ∣ (Ż, p) ∈ Ẏ }.

In the case that t(ρβ0(q0)) = t(ρ
β
0(q1)) agrees with the generic �lter (G0)β ↾ (κ+ + 1), it is

not di�cult to check that

Ẏ
((G0)β↾(κ++1))↾t(q0) = (T (q0, q1)Ẏ )

((G0)β↾(κ++1))↾t(q1)
.

Hence, using canonical names for the generic �lter, it follows that

((G0)
β ↾(κ+ + 1))↾ t(q1) = T (q0, q1)[ ((G0)

β ↾(κ+ + 1))↾ t(q0) ].

Now, let q ∈ P0 ↾ (κ+ + 1) as in the statement of this lemma, with maximal points
(κ+, j0), . . . , (κ+, jk−1) with j0, . . . , jk−1 < β such that q ∥ r, and ρβ0(q) ∈ (G0)β ↾ (κ+ + 1)
for q ∶= q ∪ r.
Let s ∈ G0 with the same maximal points (κ+, j0), . . . , (κ+, jk−1) and ρ

β
0(s) = ρ

β
0(q), where

s ∶= s ∪ r as before. Since ((G0)β ↾ (κ+ + 1)) ↾ t(s) = G0 ↾ t(s) is a V -generic �lter on
P0 ↾ t(s) and T (s, q) ∶ P0 ↾ t(s)→ P0 ↾ t(q) is an isomorphism of forcings, it follows from

((G0)
β ↾(κ+ + 1))↾ t(q) = T (s, q)[G0 ↾ t(s)]

that ((G0)β ↾(κ+ + 1))↾ t(q) is a V -generic �lter on P0 ↾ t(q) as desired.

Now, we turn to P1: For �nitely many (µ0, 0), . . . , (µk−1, k−1) with µ0, . . . , µk−1 < κ,
0 < min{F (µ0), β}, . . . , k−1 < min{F (µk−1), β}, let

((G1)
β ↾(κ + 1))↾{(µ0, 0), . . . , (µk−1, k−1)}

denote the collection of all p1 ↾{(µ0, 0), . . . , (µk−1, k−1)} with p1 ∈ P1 ↾(κ + 1) such that

(p1)
β ↾(κ + 1) ∈ (G1)

β ↾(κ + 1).

Then ((G1)β ↾(κ + 1))↾{(µ0, 0), . . . , (µk−1, k−1)} = G1 ↾{(µ0, 0), . . . , (µk−1, k−1)}.

Thus, for any X ∈ domSβ, X = ẊG0↾t(s)×G1↾{(µ0,0), ... ,(µk−1,k−1)}×G1(κ+), it follows that

X = Ẋ
((G0)β↾(κ++1))↾t(s)×((G1)β↾(κ+1))↾{(µ0,0), ... ,(µk−1,k−1)}×G1(κ+).

This will help us prove the following proposition:
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Proposition 3.4.9. The restriction Sβ is contained in

V [ (G0)
β ↾(κ+ + 1) × (G0 ↾ t(r)) ↾ [κ

+,∞) × (G1)
β ↾ (κ + 1) × G1(κ

+)×

×G1 ↾{(κl, ıl) ∣ l < n,κl > κ
+} ].

Proof. As in the proof of Proposition 3.4.2, �x a cardinal λ with λ > max{κ+, κ0, . . . , κn−1, λ0,
. . . , λm−1, κ0, . . . , κn−1, λ0, . . . , λm−1} such that Ṡ ∈ Name(P ↾ (λ + 1)). Then also
Ṡβ ∈ Name(P↾(λ + 1)).
Let (Sβ)′ denote the collection of all

( Ẋ
((G0)β↾(κ++1))↾t(q)×((G1)β↾(κ+1))↾{(µ0,0), ... ,(µk−1,k−1)}×G1(κ+), α )

such that

(i) q is a condition in P0 ↾(κ++1) where t(q) has maximal points (κ+, j0), . . . , (κ+, jk−1)
with j0, . . . , jk−1 < β; moreover, q ∥ r, and for q ∶= q ∪ r, it follows that ρβ0(q) ∈ (G0)β ↾
(κ+ + 1),

(ii) k < ω, µ0, . . . , µk−1 ∈ κ ∩ Succ′ and 0 < min{F (µ0), β}, . . . , k−1 < min{F (µk−1), β},

(iii) Ẋ is a name for the forcing P0 ↾ t(q) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+),

(iv) there is a condition p ∈ P↾(λ + 1) with p0 ∈ (P̃0)r, p0 ≤ q and

� ρβ0(p) ∈ (G0)β ↾(κ+ + 1)

� (p0 ↾ t(r))↾ [κ+,∞) ∈ (G0 ↾ t(r))↾ [κ+,∞)

� (p1)β ↾(κ + 1) ∈ (G1)β ↾(κ + 1)

� p1(κ+) ∈ G1(κ+)

� p1 ↾{(κl, ıl) ∣ l < n,κl > κ+} ∈ G1 ↾{(κl, ıl) ∣ l < n,κl > κ+}

such that p ⊩P↾(λ+1) (̃̇X,α) ∈ Ṡ.

It su�ces to show that Sβ = (Sβ)′.

�⊇�: For (X,α) ∈ Sβ, we haveX = ẊG0↾t(s)×G1↾{(µ0,0), ... ,(µk−1,k−1)}×G1(κ+) for some (s, (µ0, 0),
. . . , (µk−1, k−1)) ∈ Mβ with s ∈ G0 ↾ (κ+ + 1), where Ẋ is a name for the forcing
P0 ↾ t(s) × P1 ↾{(µ0, 0), . . .} × P1(κ+).

Then (X,α) = (̃̇X
G↾(λ+1)

, α) ∈ ṠG↾(λ+1), so there must be p ∈ G↾(λ+1), p0 ≤ s ∶= s∪ r,

with p ⊩P↾(λ+1) (̃̇X,α) ∈ Ṡ.

Setting q ∶= s, it follows that

(X,α) = ( Ẋ
((G0)β↾(κ++1))↾t(q)×((G1)β↾(κ+1))↾{(µ0,0), ... ,(µk−1,k−1)} ×G1(κ+), α )

is contained in (Sβ)′ as desired.
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�⊆� : Assume towards a contradiction, there was (X,α) ∈ (Sβ)′ ∖ Sβ. Let

X = Ẋ
((G0)β↾(κ++1))↾t(q)×((G1)β↾(κ+1))↾{(µ0,0), ... ,(µk−1,k−1)} ×G1(κ+)

as in the de�nition of (Sβ)′ with p ∈ P↾(λ + 1) as in (iv) such that

p ⊩P↾(λ+1) (̃̇X,α) ∈ Ṡ (×).

Since ρβ0(q) ∈ (G0)β ↾(κ++1), we can take a condition s ∈ G0 ↾(λ+1), s ∈ (P̃0)r with
s ≤ r and ρβ0(s) = ρ

β
0(q). W.l.o.g. we can assume that s = s∪r for some s ∈ G0 ↾(κ++1)

which has the same maximal points (κ+, j0), . . . , (κ+, jk−1) as q. The isomorphism
T (q, s) ∶ P0 ↾q → P0 ↾s from the proof of De�nition / Lemma 3.4.8 can be extended
to an isomorphism from P0 ↾ t(q) × P1 ↾ {(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+) onto
P0 ↾ t(s) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+) that is the identity on the second
and third coordinate. We will denote this extension by T (q, s) as well, and con-
sider the according isomorphism on the name space T (q, s) ∶ Name (P0 ↾ t(q) × P1 ↾

{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+))→ Name (P0 ↾ t(s) × P1 ↾{(µ0, 0), . . . ,

(µk−1, k−1)} × P1(κ+)).

Let Ẍ ∶= T (q, s)Ẋ. Then

X = Ẋ
((G0)β↾(κ++1))↾t(q)×((G1)β↾(κ+1))↾{(µ0,0), ... ,(µk−1,k−1)}×G1(κ+) =

= Ẍ
((G0)β↾(κ++1))↾t(s)×((G1)β↾(κ+1))↾{(µ0,0), ... ,(µk−1,k−1)}×G1(κ+) =

= ẌG0↾t(s)×G1 ↾{(µ0,0), ... ,(µk−1,k−1)×G1(κ+) = ̃̈X
G

,

where as before, ̃̈X denotes the canonical extension of Ẍ to a P-name.

Since (X,α) ∉ S, there exists p′ ∈ G↾(λ + 1), p′0 ∈ (P̃0)r, with

p′ ⊩P↾(λ+1) (̃̈X,α) ∉ Ṡ (××).

W.l.o.g. we can take p′0 ≤ s, and assure by a density argument, that ρβ0(p
′
0) ≤ ρ

β
0(p0).

We want to construct an isomorphism π ∶ P→ P with the following properties:

� πp ∥p′

� π̃̇X
Dπ

= ̃̈X
Dπ

� πS
Dπ

= S
Dπ
.

Together with (×) and (××), this gives the desired contradiction.

The third condition is satis�ed if we make sure that π is contained in the intersection
Fix0(κ0, i0) ∩ ⋯ ∩ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Fix1(κ0, ı0) ∩ ⋯ ∩ Small1(λ0, [0, α0)) ∩
⋯.
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We start with the construction of π0. From ρβ0(p
′
0) ≤ ρ

β
0(p0), it follows that the tree

structures of t(p0) and t(p′0) coincide below the vertices (κ+, i) ∈ t(p0) with i < β.
Hence, we can achieve π0p0 ∥p′0 by changing any index (α,m) with (α,m) ≤t(p0)
(κ+, i) for some i < β, to (α,m′), where (α,m′) ≤t(p′0) (κ+, i), i.e. (α,m′) is the
corresponding index in the tree structure of t(p′0); and outside the branches below
{(κ+, i) ∈ t(p0) ∣ i < β}, we make t(π0p0) and t(p′0) disjoint.

Let htπ0 ∶= λ + 1. For a cardinal α < htπ0 with α ∉ {λ0, . . . , λm−1}, take for π0(α) a
bijection on {(α, j) ∣ j < Flim(α)} with �nite support such that the following hold:

� If (α, j) ∈ t(r), then π0(α)(α, j) ∶= (α, j).

� If (α, j) has a t(p0)-successor (κ+, i) with i < β, it follows from ρβ0(p
′
0) ≤ ρ

β
0(p0)

that also (κ+, i) ∈ t(p′0). Let π0(α)(α, j) ∶= (α, j′) be the t(p′0)-predecessor of
(κ+, i) on level α.

� For all the (α, j) ∈ t(p0) remaining, j ∈ [γ(j), γ(j)+ω) for γ(j) a limit ordinal,
let π0(α)(α, j) = (α, j′) for some j′ ∈ [γ(j), γ(j)+ω) with (α, j′) ∉ t(p0) ∪ t(p′0).

This is well-de�ned: If (α, j) has two t(p0)-successors (κ+, i) and (κ+, i′) with
i, i′ < β, then it follows from ρβ0(p

′
0) ≤ ρβ0(p0) that (κ+, i) and (κ+, i′) also have

the same t(p′0)-predecessor on level α. Also, if (α, j) ∈ t(r) has a t(p0)-successor
(κ+, i) with i < β, it follows that in t(p′0), the vertex (κ+, i) has predecessor (α, j)
as well, since t(p0) and t(p′0) both extend t(r). Thus, π0(α)(α, j) = (α, j).

In the case that α = λl for some l < m, we have to be careful, since we want
π ∈ Small0(λl, [0, αl)). Thus, for any interval [γ, γ + ω) ⊆ αl with γ a limit ordinal
and j ∈ [γ, γ + ω), we have to make sure that π0(λl)(λl, j) = (λl, j′) such that also
j′ ∈ [γ, γ + ω):

Consider (λl, j) ∈ t(p0) with t(p0)-successor (κ+, i) for some i < β. Let (λl, z) ∈
t(ρβ0(p0)) with i ∈ z, and (λl, z) ∈ t(ρ

β
0(p

′
0)) with i ∈ z.

Since ρβ0(p
′
0) ≤ ρβ0(p0), it follows that z ⊇ z, and in the case that j < αl, we

have N(ρβ0(p
′
0))(λl, z) = N(ρβ0(p0))(λl, z) = (λl, j). Hence, (λl, j) is also the t(p′0)-

predecessor of (κ+, i) on level λl, which gives π0(λl)(λl, j) = (λl, j).
In the case that j ≥ αl, it follows from

N(ρβ0(p
′)) (λl, z) = N(ρβ0(p))(λl, z) = ∗

that for (λl, j′) denoting the t(p′0)-predecessor of (κ
+, i) on level λl, i.e. π0(λl)(λl, j) =

(λl, j′), we have j′ ≥ αl, as well.

Thus, we can make sure that for any l <m, the following additional property holds
for π0(λl):

� For any (λl, j) with γ a limit ordinal such that j ∈ [γ(j), γ(j)+ω) ⊆ αl, we have
π0(λl)(λl, j) = (λl, j′) such that j′ is contained in the interval [γ(j), γ(j)+ω),
as well.
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Then π0 ∈ Small0(λ0, [0, α0)) ∩ ⋯ ∩ Small0(λm−1, [0, αm−1)), and π0 ∈ Fix0(κ0, i0) ∩
⋯ ∩ Fix0(κn−1, in−1), since (κl, il) ∈ t(r) for all l < n.

We now have to verify that π0p0 ∥p′0. Firstly, on the tree t(r), the conditions p0

and p′0 coincide, and π0 is the identity. Secondly, from ρβ0(p
′
0) ≤ ρβ0(p0) and by

construction of the map π0, it follows that π0p0 and p′0 agree on the branches below
{(κ+, i) ∈ t(π0p0) ∣ i < β}. All the remaining t(π0p0)- and t(p′0)-branches are disjoint,
i.e. whenever (α, j) ∈ t(p′0) ∖ t(r), and (α, j) has no t(p′0)-successor (κ

+, i) with i < β,
then (α, j) ∉ t(π0p0). Hence, π0p0 ∥p′0.

The map π1 with π1p1 ∥p′1 can be constructed as in Proposition 3.3.2, and since
p′1 ∈ G1 ↾ (λ + 1) and p satis�es (iv), it follows that π1 ∈ Fix1(κ0, ı0) ∩ ⋯ ∩
Fix1(κn−1, ın−1) ∩ Small1(λ0, [0, α0)) ∩ ⋯ ∩ Small1(λm−1, [0, αm−1)) as desired.

It remains to check that π̃̇X
Dπ

= ̃̈X Dπ , where Ẍ ∶= T (q, s)Ẋ.
Firstly, π1 is the identity on P1 ↾ {(µ0, 0), . . . , (µk−1, k−1)}, since µl < κ, l < β for
all l < k; so from (p1)β ↾ (κ + 1) ∈ (G1)β ↾ (κ+ + 1), p′1 ∈ G1, it follows that p1 and p′1
coincide on P1 ↾{(µ0, 0), . . . , (µk−1, k−1)}. Similarly, π1 is the identity on P1(κ+).
Now, consider π0. Recall that any (α, j) ∈ t(p0) with (α, j) ≤t(p0) (κ+, i) for some
i < β is mapped to (α, j′) such that (α, j′) is the t(p′0)-predecessor of (κ+, i) on
level α. Since p0 ≤ q = q ∪ r, p′0 ≤ s = s ∪ r with ρβ0(s) = ρ

β
0(q), it follows that any

(α, j) ∈ t(q) with (α, j) ≤t(q) (κ+, i) for some i < β is mapped to the corresponding
t(s)-predecessor of (κ+, i) on level α: π0(α)(α, j) = (α, j′) with (α, j′) ≤t(s) (κ+, i).
Hence, it follows for any condition q̃ ∈ P0 ↾ t(q) that π0q̃ = T (q, s)(q̃) ∈ P0 ↾ t(s).

Inductively, this implies π̃̇x
Dπ

= ̃̈x
Dπ

whenever ẋ is a name for P0 ↾ t(q) × P1 ↾
{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+) and ẍ ∶= T (q, s)ẋ.

In particular, π̃̇X
Dπ

= ̃̈X
Dπ
, which �nishes the proof.

Thus, we have shown that the surjection Sβ ∶ domSβ → F (κ) is contained in V [(G0)β ↾
(κ+ + 1) × (G0 ↾ t(r)) ↾ [κ+,∞) × (G1)β ↾ (κ + 1) ×G1(κ+) ×G1 ↾{(κl, ıl) ∣ l < n,κl > κ+}].
We will now see that in this model, there is also an injection ιβ ∶ domSβ ↪ β. Together
with Lemma 3.4.7 this gives the desired contradiction.

Proposition 3.4.10. In V [(G0)β ↾ (κ+ + 1) × (G0 ↾ t(r)) ↾ [κ+,∞) × (G1)β ↾ (κ + 1) ×
G1(κ+) × G1 ↾{(κl, ıl) ∣ l < n,κl > κ+}], there is an injection ιβ ∶ domSβ → β.

Proof. We work inside V [(G0)β ↾ (κ+ + 1) × (G0 ↾ t(r)) ↾ [κ+,∞) × (G1)β ↾ (κ + 1) ×
G1(κ+) × G1 ↾{(κl, ıl) ∣ l < n,κl > κ+}] ⊧ ZFC.

Let M̃β denote the collection of all tuples (q, (µ0, j0), . . . , (µk−1, jk−1)) ∈ Mβ with the

property that q ∥ r, and for q = q ∪ r as before, ρβ0(q) ∈ (G0)β ↾(κ+ + 1).

Fix some (q, (µ0, 0), . . . , (µk−1, k−1)) ∈ M̃β. Then ((G0)β ↾ (κ+ + 1)) ↾ t(q) × ((G1)β ↾

(κ + 1)) ↾ {(µ0, 0), . . . , (µk−1, k−1)} × G1(κ+) is a V -generic �lter on P0 ↾ t(q) × P1 ↾
{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+).
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From Proposition 3.1.9 we know that the forcing P0 ↾ t(q) × P1 ↾ {(µ0, 0), . . .} pre-
serves cardinals and the GCH. By the same proof, one can show that P0 ↾ t(q) × P1 ↾
{(µ0, 0), . . .} × P1(κ+) preserves cardinals and the GCH below κ+ (since P1(κ+) is ≤ κ-
closed):
For every α ≤ κ,

(2α)
V [((G0)β↾(κ++1))↾t(q)× ((G1)β↾(κ+1))↾{(µ0,0), ...}×G1(κ+)]

= (α+)V .

Hence, in V [((G0)β ↾ (κ+ + 1)) ↾ t(q) × ((G1)β ↾ (κ + 1)) ↾{(µ0, 0), . . .} × G1(κ+)], there
is an injection ι ∶ ℘(κ)↪ (κ+)V .

Now, we can use AC (in V [(G0)β ↾ (κ+ + 1) × (G0 ↾ t(r)) ↾ [κ+,∞) × (G1)β ↾ (κ + 1) ×
G1(κ+)×G1 ↾{(κl, ıl) ∣ l < n,κl > κ+}]) to obtain a collection of injections ι(q,(µ0,0),...,(µk−1,k−1)) ∶

℘(κ) ∩ V [((G0)β ↾ (κ+ + 1)) ↾ t(q) × ((G1)β ↾ (κ + 1)) ↾{(µ0, 0), . . .} × G1(κ+)] ↪ (κ+)V

for (q, (µ0, 0) , . . . , (µk−1, k−1)) ∈ M̃β.

Let ̃̃Mβ denote the set of all tuples ((κ+, j0) , . . . , (κ+, jk−1), (µ0, 0) , . . . , (µk−1, k−1))
with k, k < ω and j0 , . . . , jk−1 < β, µ0 , . . . , µk−1 ∈ κ ∩ Succ′, 0 < min{F (µ0), β} , . . . ,
k−1 < min{F (µk−1), β}.

Let τ denote an injection that maps any tuple ((κ+, j0) , . . . , (κ+, jk−1)) with j0, . . . , jk−1 <
β as above to some condition q ∈ P0 such that t(q) has maximal points (κ+, j0) , . . . , (κ+, jk−1),
q ∥ r, and for q ∶= q ∪ r as before, ρβ0(q) ∈ (G0)β ↾(κ+ + 1).

For any ((κ+, j0) , . . . , (κ+, jk−1), (µ0, 0) , . . . , (µk−1, k−1)) ∈
̃̃Mβ, let

ι((κ+,j0) , ... , (µ0,0) , ...) ∶= ι(q,(µ0,0) , ...),

where q ∶= τ((κ+, j0), . . . , (κ+, jk−1)).

Any X ∈ domSβ is of the form

X = Ẋ
((G0)β↾(κ++1))↾t(q)×((G1)β↾(κ+1))↾{(µ0,0), ...}×G1(κ+)

for some Ẋ ∈ Name (P0 ↾ t(q)×P1 ↾{(µ0, 0), . . . , (µk−1, k−1)}×P(κ
+)) with (q, (µ0, 0), . . . ,

(µk−1, k−1)) ∈ M̃β. Denote by (κ+, j0), . . . , (κ+, jk−1) the maximal points of t(q) with

τ((κ+, j0), . . . , (κ+, jk−1)) =∶ q′. Then ρβ0(q), ρ
β
0(q

′) ∈ Gβ
0 ↾ (κ

+ + 1) with the same max-
imal points; hence, ρβ0(q) = ρβ0(q

′). With the isomorphism T (q, q′) ∶ P0 ↾ t(q) → P0 ↾
t(q′) from De�nition / Lemma 3.4.8 and its extension T (q, q′) ∶ Name(P0 ↾ t(q) × P1 ↾
{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+))→ Name(P0 ↾ t(q′) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} ×
P1(κ+)), it follows that

X = (T (q, q′)Ẋ)
((G0)β↾(κ++1))↾t(q′)×((G1)β↾(κ+1))↾{(µ0,0), ...}×G1(κ+)

where (T (q, q′)Ẋ) ∈ Name(P0 ↾ t(q′) × P1 ↾{(µ0, 0), . . . , (µk−1, k−1)} × P1(κ+)).

Hence,
X ∈ dom ι(q′,(µ0,0),...) = dom ι((κ+,j0),...,(µ0,0),...).
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There is a canonical bijection b ∶ ̃̃Mβ → β. Hence, the injections ι((κ+,j0) , ... , (µ0,0) , ... )

for ((κ+, j0), . . . , (µ0, 0), . . .) ∈
̃̃Mβ can be �glued together� to an injection ι ∶ domSβ →

(κ+)V × β as follows: For X ∈ domSβ, take ((κ+, j0), . . . , (µ0, 0), . . .) ∈
̃̃Mβ with δ ∶=

b((κ+, j0), . . . , (µ0, 0), . . .) < β least such that X ∈ dom ι((κ+,j0),...,(µ0,0),...) and set

ι(X) ∶= ( ι((κ+,j0) , ... , (µ0,0) , ... )(X), δ ).

This gives an injection ι ∶ domSβ → β in V [(G0)β ↾ (κ+ + 1) × (G0 ↾ t(r)) ↾ [κ+,∞) ×
(G1)β ↾(κ + 1) × G1(κ+) × G1 ↾{(κl, ıl) ∣ l < n,κl > κ+}] as desired.

Thus, we have shown that our assumption of a surjective function S ∶ ℘(κ) → F (κ) in N
leads to a contradiction.
Hence, θN(κ) ≤ F (κ) for any limit cardinal κ.

It remains to show that θN(κ+) ≤ F (κ+) for all

successor cardinals κ+,

which can be done by the same argument:

Like before, we assume towards a contradiction there was a surjective function S ∶ ℘(κ+)→

F (κ+) in N , S = ṠG with πS
Dπ

= S
Dπ

for all π that are contained in an intersection like
(IṠ). Again, �x a condition r ∈ G0 such that {(κ0, i0), . . . , (κn−1, in−1)} ⊆ t(r) contains all
maximal points of t(r), and an extension r ≤0 r, r ∈ G0 such that all t(r)-branches have
height ≥ κ+.
From Corollary 3.3.8, it follows that any X ∈ N , X ⊆ κ+, is contained in a model of the
form

V [G0 ↾{(κ
+, j0), . . . , (κ

+, jk−1)} × G1 ↾{(µ0, 0), . . . , (µk−1, k−1)}],

where j0, . . . , jk−1 < Flim(κ+) = F (κ) and µ0, . . . , µk−1 ∈ Succ
′ ∩ (κ++1) with 0 < F (µ0), . . . ,

k−1 < F (µk−1).

For a limit ordnal β̃ < F (κ+), our de�nition of large enough for (IṠ) has to be slightly

modi�ed: This time, we require that β̃ > ıl for all l < n with κl ≤ κ+ (instead of just κl < κ),
and β̃ > αl for all l <m with λl ≤ κ+ (instead of just λl < κ).

Fix β̃ < F (κ+) large enough for (IṠ) and β ∶= β̃ + κ+ (addition of ordinals). We de-
�ne the restriction Sβ similarly as before: Let M ′ denote the collection of all tuples
(s, (µ0, 0) , . . . , (µk−1, k−1)) with k < ω, µ0 , . . . , µk−1 ≤ κ+, 0 < F (µ0) , . . . , k−1 <
F (µk−1), and s a condition in P0 with maximal points (κ+, j0) , . . . , (κ+, jk−1) where
j0 < Flim(κ+), . . . , jk−1 < Flim(κ+). Moreover, we denote by M ′

β the collection of all tuples
(s, (µ0, 0) , . . . , (µk−1, k−1)) ∈M

′ with the additional property that 0 < β , . . . , k−1 < β,
and s has maximal points (κ+, j0) , . . . , (κ+, jk−1) with j0 < β , . . . , jk−1 < β.
Let

Sβ ∶= S ↾{X ⊆ κ ∣ ∃ (s, (µ0, 0), . . . , (µk−1, k−1)) ∈M
′
β ∶ s ∈ G0 ↾(κ

+ + 1),

X ∈ V [G0 ↾ t(s) × G1 ↾{(µ0, 0) , . . . , (µk−1, k−1)}] }.
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The same proof as for Proposition 3.4.2 shows that the surjectivity of S implies that Sβ

must be surjective, as well.

Now, with the same construction as before, one can capture Sβ in an intermediate model
V [(G0)β ↾(κ++1) × (G0 ↾ t(r)) ↾ [κ+,∞) × (G1)β ↾ (κ++1) ×G1 ↾{(κl, ıl) ∣ l < n,κl > κ+}],
and like in Lemma 3.4.7, one can show that the according forcing (P0)β ↾(κ+ + 1) × (P0 ↾
t(r)) ↾ [κ+,∞) × (P1)β ↾ (κ+ + 1) × P1 ↾ {(κl, ıl) ∣ l < n, κl > κ+} preserves cardinals
≥ F (κ+).
Finally, one can show like in Proposition 3.4.10 that in this model V [(G0)β ↾(κ++1)× (G0 ↾
t(r)) ↾ [κ+,∞) × (G1)β ↾ (κ++1) ×G1 ↾{(κl, ıl) ∣ l < n, κl > κ+}], there is also an injection
ιβ ∶ domSβ ↪ β. This gives the desired contradiction.

Hence, it follows that θN(κ+) ≤ F (κ+) for all successor cardinals κ+.

Thus, our model N has all the desired properties.

3.5 Discussion and Remarks

Our result generalizes Easton's Theorem to regular and singular cardinals: In the theory
ZF, the θ-function can take almost arbitrary values. This extends the results from Chap-
ter 2 to a proper class of cardinals, with the constraint that this time, we do not retain
DC in the symmetric extension N .

One could ask whether it is possible to do a similar construction and obtain a ZF-model
N where additionally DC holds. For this, we would need a countably closed forcing no-
tion (and a symmetric system generated by countable intersections). A straightforward
generalization of P0 would be a forcing with trees (t,≤t) where countably many maximal
points are allowed, instead of just �nitely many.

However, this gives rise to the following appearance that we call an open branch: There
might be a ≤t-increasing chain of vertices ((α, iα) ∣ α < λ) for some cardinal λ of countable
co�nality such that there exists no (λ, i) ∈ t with (α, iα) ≤t (λ, i) for all α < λ. The number
of open branches might be 2ℵ0 = ℵ1, so we can not always �close� all of them and retain a
condition in the forcing.

Let us shortly discuss the following technical problem that comes along with these open
branches: If conditions p and q in P0 agree on a subtree t(r) ≥ t(p), t(q), it might not
be possible to achieve πp ∥ q by a small P0-automorphism π that is the identity on t(r):
Consider the case that the tree t(r) has an open branch ((α, iα) ∣ α < λ) such that in
t(p), there is a vertex (λ, i) with (λ, i) ≥t(p) (α, iα) for all α < λ, but in t(q), there is a
di�erent vertex (λ, i′) with i′ ≠ i and (λ, i′) ≥t(q) (α, iα) for all α < λ. An automorphism
π with πp ∥ q such that π is the identity on this branch ((α, iα) ∣ α < λ), has to satisfy
π(λ)(λ, i) = (λ, i′), since the tree t(πp) ∪ t(q) must not have a �splitting� at level λ. But
then, there is no way to guarantee that π is small, since in general, i and i′ will not be
close to each other.

Thus, generalizing P0 to trees with countably many maximal points makes us lose an
essential homogeneity property, and several crucial arguments in the original proof do not
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work any more.

One could try and allow trees with < µ-many maximal points, where µ is an inaccessible
cardinal. Then our conditions in the forcing have < µ-many open branches, and we can
now �close� all of them and still remain inside P0. Hence, our forcing will be < µ-closed.
In this setting, we call a P0-automorphism small, if for any level κ and π(κ)(κ, i) = (κ, i′),
it follows that there is an ordinal γ divisible by µ with i, i′ ∈ [γ, γ + µ).
Concerning P1, we can use < µ-support instead of �nite support, and then take intersec-
tions of < µ-many Fix(κ, i)- and Small(λ, [0, α))-subgroups for generating our symmetric
system. Then N ⊧ DC<µ (cf. [Kar14, Lemma 1]).

Of course, DC<µ imposes further restrictions on the θ-function, and one cannot use this
modi�ed forcing for setting θ-values θN(κ) for cardinals κ < µ. However, it might be
conceivable to combine this < µ-closed tree forcing with the set-sized forcing notion from
Chapter 2, which could treat the cardinals below µ, while the < µ-closed tree forcing could
provide the �upper part�, setting the θ-values θN(κ) of cardinals κ ≥ µ.
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