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Summary

The main objective of this thesis is to study relativistic and Euclidean Fermionic quantum fields from a
geometrical and probabilistic point of view as opposed to the standard treatment which is more algebraic in
nature. The main motivation lays in the practical need of being able to apply to Fermionic systems a number
of results from probability theory, stochastic analysis, calculus of variations, and infinite dimensional
analysis which are readily available in the case of Bosonic quantum fields. A more general context for this
work is the development of alternative models for Fermionic quantum fields.

This thesis comprises of six chapters including the first one which is the introduction. The chapters
from the second to the fifth deal with Fermionic theories. In chapter two we present a model for a finite
dimensional system of Fermions which is described in terms of a stochastic diffusion process on the
Lie group Spin(2n + 1). In chapter three we review the notion of induced representations applied to
the representation theory of the Poincaré group. Moreover, in that chapter, we introduce Wightman and
Schwinger functions and we relate them to the representation theory of the Poincaré group. In chapter four
we simplify the derivation of a known result in the literature which allows for a description of Euclidean
Dirac Fermions in four dimensions in terms of complex Gaussian random fields. Our simplification should
prove useful in future applications, particularly to the non Gaussian case. In chapter five we present a
new model for relativistic Dirac fields. In this model we consider a complexified space time and the
representation theory of the complexified Poincaré spin group. In this way we can treat both the real
Poincaré group and the Euclidean group at once. We show that starting from this complexified spacetime
one arrives naturally to a Bosonic description of free Dirac Fermions. We finally give a method to recover
the usual Fermionic Fock space and the free Wightman functions.

In the last chapter we pass to the Bosonic case and in particular to gauge theories. There we give a
rigorous formulation of a simple “naive” Faddeev-Popov quantization for (Bosonic) gauge theories. We
apply such a formulation to the case of the Euclidean radiation field and prove a representation of the
corresponding Euclidean probability measure as a limit of essentially finite dimensional natural probability
measures inspired by our version of the Faddeev-Popov procedure.
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1 A very incomplete slice of history.
The beginning of quantum field theory (QFT). Quantum field theory (QFT) originates as early as in
the late 20s, soon after the first steps of quantum mechanics [114], with the seminal work of, among
others1, Dirac, Fermi, Heisenberg, Pauli, Fock, and Jordan and Wigner. One of the main motivations,
in the early development of QFT, was the desire of getting a theory consistent both with the principles
of special relativity and with those of quantum mechanics. The phenomenological motivation was the
formulation of quantum electrodynamics (QED), that is of a theory describing the interaction of electrons
with the electromagnetic field at a fundamental level. The requirement of the formulation of a (quantum
mechanical) relativistic theory was natural, after the basic principles of dynamics based on special relativity
had been accepted by the physics community at large.

Wigner notion of elementary particles. A cornerstone in the development of QFT was the idea, due to
Wigner ([140], [14]), of giving a mathematical definition of the intuitive notion of elementary particle.
Intuitively a particle is elementary when it cannot be broken further. Nevertheless, as it later turned out,
one needs to allow fundamental particles to transform into one another. Hence, the problem of giving a
good definition of such an abstract entity is certainly a nontrivial one.

Wigner’s idea is, roughly speaking, as follows. He defines an elementary particle in terms of its trans-
formation properties under the most fundamental symmetry transformations in nature. These fundamental
symmetry transformations must include, if we are to produce a relativistic theory, rotations, translations,
and pure relativistic transformations (boosts). This group of transformations is usually called the Poincaré
group. More precisely he defines a fundamental particle as a state of a quantum mechanical system which
has transformation properties, under the Poincaré group, which are in a sense “minimal”. By “minimal” we
mean that, such transformation properties, can be described by a minimal set of numbers. Mathematically,
one says that an elementary particle is a vector which transforms under the Poincaré group according to a
unitary, projective, irreducible representation on a Hilbert space. Different stateswhich have the same
transformation properties correspond to possible configurations of the same elementary particle. Hence,
if one thinks of an elementary particle as an abstract concept which can have different states, then an
elementary particle is completely characterized by a given “minimal” set of numbers, i.e. an irreducible,
projective, unitary representation. The set of numbers which characterize a given elementary particle

1A beautiful selection of the original papers is given in [121]. More on the history of quantum electrodynamics and quantum
field theory can be found e.g. in [72, 118].
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6 Chapter I. Introduction

are historically called quantum numbers. In Wigner analysis the Poincaré group is considered as the
fundamental symmetry group, but the definition of elementary particle can be generalized to more general
groups. This generalization is necessary, for example, if one wants to have the electric charge among the
quantum numbers describing the elementary particles. The irreducible unitary projective representations
of the Poincaré group are characterized by two numbers (s, �) with s = 0, 1∕2, 1, 3∕2,… and � ∈ ℝ. The
number s is called spin quantum number whereas the number � denotes the square of the mass quantum
number m.

Wigner idea, on one side, gives a definition of elementary particles which is completely independent
from the phenomenology or any prior intuitive notion of particle. On the other side, it gives striking
physical meaning to the representation theory of certain (Lie) groups. Thanks toWigner, and later on, Yang
and Mills in the 50s, and Gell-Mann and Ne’eman in the 60s, the theory of Lie groups became of prominent
importance in high energy theoretical physics. Such a development is undoubtedly a consequence also of
the far seeing result by Noether [103]

Bosons and Fermions. In quantum mechanics a state of a given system is usually described by a wave
function. Such a wave function is a vector v in some infinite dimensional Hilbert space and can represent
for example a system of n identical elementary particles. Roughly speaking, a wave function describing n
identical elementary particles depends on n independent variables. Permuting the order of the n elementary
particles correspond to permuting these variables. When these n particles are identical the state described
by the wave function should not change under such a permutation. Now, the wave function gives more
information than that necessary to fully describe the state of the system. If we think of the wave function
as a vector v in an infinite dimensional Hilbert space, then the state of the system is determined only by
the line on which the vector v lies. Mathematically speaking any vector of the form v = �v0, � ∈ ℂ,
corresponds to the same state of the system. In particular the vector v and the reversed vector −v determine
the same state of the system.

As a result, when we permute identical particles the vector (i.e. the wave function) v is allowed
to reverse its orientation. We can now define the notion of Bosons and Fermions. We call n identical
elementary particles Bosons if they are described by a vector which, when we permute the order of the
elementary particles, remains the same. One also says that these n identical particles obey the Bose-
Einstein statistics. Similarly, we call n identical elementary particles Fermions if, when we permute their
order, the vector v describing them is reversed into −v. In this case one also says that these particles obey
the Fermi-Dirac statistics. In general there are other possibilities. The vector v, describing n identical
elementary particles, could be changed by a permutation by a unitary phase v → ei�v, � ∈ ℝ (We want a
unitary phase ei� , because symmetry transformations in quantum mechanics are assumed to preserve the
length of the vector v describing any state and to be invertible). Particles that transform under permutation
according to this more general rule are said to obey a para statistics.

The difficulties of QFT. QFT, in spite of its early history, which intertwines with the early stages of
quantum mechanics, does not share with quantum mechanics the same role of a classical, well established
theory. There are perhaps two reasons for this difference.

One cause could be that the original approach to QFT was strongly changed by the development of
gauge theories in the 60s and the parallel evolution of statistical physics and critical phenomena.

The second, and perhaps biggest difference, is that quantum mechanics was, from almost the beginning
([114, 61, 32] cf. also [133]), within the grasp of the mathematics which was being developed around
the same time (see e.g. [137, 102, 111] and reference therein). On the other hand, QFT underwent a
development which lead to explore directions very far from the known realms of Mathematics. This is
especially true if one restricts the attention to the theory of relativistic quantum fields (RQFT). Perhaps the
distance between the theoretical physical aspects of QFT and the rigorous mathematical physical ones were
not realized at first. In fact it was hoped that the combination of special relativity with quantum mechanics
would have resolved some of the mathematical issues which afflicted classical relativistic theories (action
at a distance cf. e.g. [138], etc. . . ). It did not take long to realize that this was not the case, because of the
persistence of divergences e.g. in QED. By this we mean that a superficial application of the theory of
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QED would erroneously lead to the prediction that some physical observable quantities are “divergent”,
that is infinite. This problem, which already exists in classical (non quantum) physics, is not acceptable
if we want to claim that QED is really a “fundamental” theory. Hence some reformulation of QED was
necessary. That point in time was the beginning of renormalization theory2. Since then, many efforts have
been made to try and give to RQFT a solid mathematical foundation which would resolve the appearance
of such infinite quantities. Instead of focusing on a specific model, which could be a priori very hard
to define and would inevitably have some ad hoc features, one could formulate a set of general axioms
motivated from physical intuition and hindsight. These axiom would define the scope of a well defined
theory of relativistic quantum fields. The problem then remains of finding models which satisfy those
axioms. Such an approach is usually referred to as the axiomatic approach to QFT.

Wightman axiomatization. One of the early attempts at the axiomatization of RQFT was proposed by
Wightman [139] (a recent review can be found in [128], moreover let us cite [124, 122]). This approach
starts from a set of physically motivated axioms, called Wightman axioms, for a system of quantum
fields. This set of axioms has been proved (cf. [139]) to be equivalent to a set of properties regarding
a denumerable set of relativistically covariant, analytic functions in an increasing number of variables,
called Wightman functions. As a result, the problem of finding a system of fields fulfilling the set of
axioms can be converted into the problem of finding Wightman functions which satisfy the corresponding
set of properties.

One basic axiom expresses the property (called positivity) of getting a suitable Hilbert space associated
with the functions. The program of constructingWightman functions satisfying all the axioms is sometimes
called nonlinear program, the same leaving out the positivity condition is sometimes called linear program.

The Wightman axioms are satisfied by free (i.e. non interacting), relativistic quantum fields that are
characterized by a strictly positive mass quantum number and an arbitrary (integer or half-integer) value
of the intrinsic spin quantum number. The problem of finding non-free models satisfying these axioms
remains open and it is at the core of the mathematical research regarding QFT.

Perhaps the most fruitful attempt at generalizing the Wightman axioms to quantum fields with zero
mass has its origin in [127, 126] (for further reference and comments cf. [125]).

Wightman approach considers the analytic continuation of distributions, the Fourier transform of
which is supported on some set contained in the solid light cone (meaning the interior of the light cone
united to its boundary). In this way on obtains functions, called Wightman functions which are well
defined an analytic in some complex domain.

Other directions have been investigated to axiomatize RQFT. We devote our attention to the Wightman
approach because is tightly linked with Euclidean quantum field theory to be described below. Another
axiomatization is the Haag-Kastler one, based on the theory of operator algebras. We limit ourselves to
mentioning the references [58, 10, 12] since it is only marginally related to the approach we take in this
work.

Euclidean quantum field theory (EQFT). Another direction in the development of QFT begun with the
work of Schwinger [120, 119] and Nakano [94] who defined in physical terms the notion of Euclidean
quantum field theory (and in particular Euclidean quantum electrodynamics). The main point proposed
by those authors is to analytically “rotate” the relativistic time parameter which appears in the heuristic
formulation of QFT to an imaginary time (the rotation is currently generally called “Wick rotation”).
Schwinger shows that such a procedure is quite natural and, at least at the formal level, the original QFT
and the “rotated” one are equivalent. Moreover the “rotated” theory is formally invariant (respectively
covariant) under the Euclidean group in four dimensions whenever the original theory was invariant
(respectively covariant) under the Poincaré group. For this reason the theory which originates from this
approach is called Euclidean quantum field theory (EQFT). The point of view of going to this “Euclidean

2For an early perspective on the problem of renormalization see e.g. [135, 136]; a very informative short commentary about
the early efforts of renormalization and the relation with the problems in the classical (non quantum) theory is given in [117,
chapters 15-16]; a recent thorough historical discussion of renormalization theory is given by [22]. Finally, for a critical modern
perspective on renormalization, from a phenomenological point of view, cf. [134, Section 12.3].
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setting” seems to be particularly fruitful especially in the case of scalar fields. Indeed, Symanzik [130,
129] realized that the theory for Euclidean scalar fields is related to the theory of particular Euclidean
random fields. This realization opened a new direction of investigation and attempts at axiomatization.
Nelson, in his germinal work [98, 95], proposed a set of axioms for Euclidean, Markovian (in the sense of
Nelson), random fields. These axioms, when satisfied, guarantee (via a procedure of analytic continuation)
the existence of a well defined scalar relativistic quantum field (i.e. satisfying the Wightman axioms).
A weaker set of axioms (where the character of random fields was abandoned) was later proposed by
Osterwalder and Schrader in [105, 106] (see also [51]) who formulated axioms in terms of Euclidean
analogues of the Wightman functions (these analogues are called Schwinger functions). From these
Schwinger functions one gets the Wightman functions and vice versa, see also Zinoviev [142] for a
complete proof (cf. [123] for a detailed review of the different set of axioms, moreover we cite [52, 31]).

New work in progress. At the moment, new mathematical methods are being developed which one one
hand interpret in a new light the ideas from the old QFT (in particular but not restricted to EQFT) and on
the other introduce innovative ideas which are leading to an overall renewed hope in succeeding in the old
goad of giving QFT, RQFT, and EQFT a solid mathematical foundation. We give a very incomplete list of
reference to delineate some of the present line of research which we find particularly stimulating [59, 60,
6, 4, 56, 54, 13, 55, 53].

2 Motivation and some of the existing results
The need of different approaches to quantum mechanics. Perhaps because of the novelty of the ideas
which lead to quantummechanics and quantum field theory, there has been in the physical and mathematical
communities a strong desire to develop different approaches for describing nature at the microscopical
level.

Schrödinger “wave mechanics” and Heisenberg “matrix mechanics” were proved by Schrödinger to be
in fact not different alternatives. Nevertheless they do carry a different flavor, the former more analytical
and the latter more algebraic. Among the “classical” alternative approaches to quantum mechanics, we
cite the Feynamn path integral approach [38]3 and Bohmian mechanics4 [30, 19, 20]. Another, perhaps
less well known, alternative approach, is Nelson’s stochastic mechanics [96] (cf. also below), where
he proposes a model for quantum mechanics which takes probability theory, instead of Hilbert space
techniques, as basic mathematical foundation of the theory.

One reason of wishing for alternative formulations resides perhaps in the intrinsic philosophical
difficulty in accepting the novelty of the ideas which lead to quantum mechanics and quantum field theory.

Another, maybe stronger, justification lies in the fact that quantum mechanics in not felt as an indepen-
dent theory, as perhaps one could say of general relativity. Quantum mechanics in a sense depends upon a
classical picture that then is “quantized”. This procedure of going from a classical intuition to a quantum
model is perhaps, philosophically, quite unsatisfactory. Indeed, quantum mechanics should describe the
world at a scale where classical mechanics is known to fail. Our, perhaps naive, opinion is that the tools
from classical mechanics, rather than classical mechanics itself, are very malleable and capture and display
some properties in a very efficient way. This is what makes, at least for us, the applicability of classical
mechanical techniques to QFT particularly desirable.

The appearance of divergences in quantum field theory, both in relativistic quantum field theory and
statistical quantum field theory, fuels once again the question whether the quantum theory is insufficient
and incomplete. Henceforth one feels even strongly the need for alternative approaches.

The Bosonic case. We can describe Bosonic quantum field theories within different formulations each of
them carrying different useful insights on the problem.

3There exists a large literature regarding mathematical, rigorous treatment of Feynman path integral. We restrict ourselves
only to the following references: [5, 91, 3, 62, 76]. A more complete list can be found e.g. in [5] (cf. also [7]).

4We mention: [11] which includes an historical account about the role of de Broglie in the development of Bohmian
mechanics; [36, 37] for a rigorous mathematical and physical perspective, and [66] for further Physical perspectives.
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The parallel with classical mechanics leads to the idea that free Bosonic quantum fields are described
by an infinite system of quantum harmonic oscillators.

The parallel between relativistic QFT and Euclidean QFT gives a new interpretation of free Bosonic
quantum fields. Free Bosonic quantum fields, from the probabilistic EQFT perspective, are described
by infinite random variables (random fields) which are independent and Gaussianly distributed. The
description of free Bosonic quantum fields in terms of Gaussian random variables is, we believe, particularly
satisfactory. Indeed, one could interpret this Gaussian distribution as resulting from very many effects at
lower scales. These effect being unknown could, at first order, be described as giving random independent
contributions. Summing all those contributions would lead, with a naive application of the central limit
theorem, to a Gaussian distribution. Hence free Bosonic quantum fields could be considered as a first
order approximation of a collectively phenomenon of effects at lower scales.

The Fermionic case. It is of course desirable to obtain, in the case of free Fermionic quantum fields,
a similar level of understanding to the one present for free Bosonic quantum fields. We give three
justifications.

Physically, Fermions are just as fundamental as Bosons. Indeed all known matter is composed by
Fermions (quarks, electrons, etc. . . ).

Mathematically, one believes that accounting for Fermions should improve the rate of summability
of the formal asymptotic series the non convergence of which constitutes the basic obstruction to a
mathematically rigorous definition of QFT.

A third, perhaps more technical, reason is found in the fact that Lagrangian and more general variational
techniques, which are very powerful in the context of Bosonic field theories, are difficult to generalize
to Fermionic fields. Indeed, because of the intrinsic anticommuting character of Fermions, attempts to
generalize these techniques leads often to merely formal manipulations. On the problem of Lagrangian
formulation and Fermion fields cf. e.g. [79]. At the heuristic level, the Lagrangian formulation is usually
employed in combination with Feynman path integration, either in the Minkowski or Euclidean setting, to
“quantize” a field theory. In case of certain Bosonic field theories this procedure of “quantization” can be
made fully rigorous. There exists a parallel approach in the case of Fermions which also in some cases
can be made fully rigorous. One has to employ in place of Feynman path integral the notion of Berezin
integral (cf. [18, 17] and for an instructive application of these techniques in the context of constructive
renormalization and supersymmetry cf. [33]. Regarding Fermionic integration and supersymmetry we
would like to mention the recent result by Gn̈eysu and Ludewig [57]). The Berezin integration is a powerful
tool when introduced rigorously. Nevertheless, in the context of Berezin integration the Lagrangian and
variational techniques are lost to some extent. The reason is that the variables, e.g. of the Lagrangian,
need now to anticommute. It is therefore difficult to recover in this anticommutative context the analysis
which is familiar in the standard commutative setting.

Regardless of the personal motivation, mainly the physical but also the mathematical community
has produced, in almost a century of history, a huge literature in the effort of obtaining such a level
of understanding. In spite of such efforts, a completely satisfactory answer to such a problem can be
considered to be still open.

Existing results. Beyond the standard, perhaps complete and satisfactory, algebraic description, many
other partial interpretation of Fermions have been given.

One possible direction is to find a classical analog to Fermions in a similar way as one can look at
Bosons, classically, as harmonic oscillators. Intuitively spin is associated to a classical system which
rotates, for example a spinning top. This parallel is well known at least for a single non-relativistic
Fermion, that is a non-relativistic 1∕2-spin particle5. Early work in this direction includes: [21, 113]. This
parallel can be considered the starting point of subsequent research: [116] (cf. also [115]), [15, 16, 70]. A
generalization to n-Fermion states is given in [41] and Chapter II of this thesis. We feel these techniques to
be very promising because they give a simple intuitive classical picture to the algebraic notion of Fermions

5In non relativistic physics we cannot use Wigner’s definition of “elementary particle”. In the non relativistic context,
particle will just mean the solution of a Schrödinger type equation.



10 Chapter I. Introduction

as anticommuting objects. In particular, because they come from a classical picture, they allow for a
Lagrangian treatment, a feature which is very desirable in the case of quantum fields. Unfortunately this
description of Fermions is, for the time being and to our knowledge, limited to non-relativistic systems.

Another direction of research can be considered as originating from what is now known as Feynman
checkerboard model (cf. [115, pp. 367-380]). The idea is particularly stimulating because it uses a
stochastic jump process which in some sense would describe a random “switching” up and down of the
spin of the particle. Feynman original model works in 1 + 1-dimensions. There exists generalizations to
higher dimensions. Perhaps the state of the art in this stochastic, jump process, description of Fermionic
degrees of freedom is reached in [29, 27, 28] [8]. Another, related direction, is the use of determinantal
point-processes. In this regard we would like to mention [89] and [131, 132]. Citing only these few
references, we cannot give justice to the development of these stochastic ideas in the description of
Fermions. We point out two limitations which, to our knowledge, are common among the approaches
which use jump processes to describe Fermions. First, they do not directly provide an intuitive picture.
The jump process does give a notion of “anticommutativity” but the process itself is in a sense artificial.
Moreover, so far, these methods have been successful only in the non-relativistic case.

A third direction originates from the work of Jordan and Wigner [71]. They describe a way to embed
the Fermionic Fock space6 into the Bosonic one. This embedding is an isometry and preserves the grading,
that is a state describing n Fermions is mapped to a state of n Bosons. This embedding procedure is
now called the Jordan-Wigner transformation and has many applications. For example it is the tightly
linked to what is usually called the Boson-Fermion correspondence (starting perhaps with the work by
Coleman [23]) which has applications in PDE theory (e.g. Korteweg–de Vries equation), representation
theory, low-dimensional conformal field theory and string theory (e.g. affine Lie algebras, Kac-Moody
algebras) (cf. [93, 73, 109, 92, 67]) This Boson-Fermions correspondence gives an equivalence between a
Fermionic model, for example the Thirring model and a Bosonic one, for example the sine-Gordon model.
This correspondence is unfortunately mainly restricted to models in 1 + 1-dimensions.

Jordan-Wigner transformation is defined for a discrete system, that is for a Fock space built from
a 1-particle Hilbert space like l2(ℕ). Friedrichs [39, 40] gave a generalization of this embedding to
the case where the 1-particle space is a space like L2(ℝd). A remarkable fact, is that in this case the
embedding becomes an isomorphism. Among the works in physics which employ Friedrichs’ idea, we
mention Klauder [75], many works by Garbaczewski among which we cite [44, 42, 50, 45, 46, 47, 48, 49,
43], related works by Dobaczewski [34, 35] (and Holland [65]), the works in Mathematics by Parthasarathy
et al. [68, 69, 108, 88, 107], Accardi [1], Applebaum [9], Kopietz [77], and the work by Kupsch7 [84, 83,
85, 81, 82] and Lehmann [87]. We discuss further these ideas in Chapter IV. Friedrichs’ isomorphism has
the advantage of being ab initio suited to the relativistic (as well as the Euclidean) case in any dimension.
The drawback resides in the fact that such an isomorphism is to some extent artificial.

We mention the approach by Laidlaw and DeWitt in [86] and rediscovered by Nelson [99] within
the context of his stochastic mechanics (cf. also [101] where a short list or errata for [99] is given and
[97, 100] for reviews). This approach uses the idea that the configuration space of unordered n-tuples
{x1,… , xn}, xj ∈ ℝd , j = 1,… , n, is a non-simply-connected differentiable manifold. The property of
being non-simply-connected would, in this approach, be the origin of the different statistics (Bose-Einstein,
Fermi-Dirac, and para statistics). We remark that this formulation is related to the approach in terms of
determinantal processes mentioned above.

A final approach we would like to mention is the one in [24, 25] This approach considers expectations
with respect to a Poisson process on a topological groups. It connects the Feynman-Kac formula for the
time evolution of a non-relativistic system to unitary projective representations of a topological group
acting on a topological space equipped with a quasi-invariant measure. The perspective of relating the
construction of (interacting) quantum fields and with the representation theory of Abelian topological
groups is also investigated in [2] in connection with interacting Bosonic fields. In [24] the authors show

6For the definition of Bosonic and Fermionic Fock spaces cf. [26] and e.g. [110]
7In particular, for ease of reference, we point out [81] where Kupsch’ approach is compared with the probabilistic approach

of Meyer, Parthasaraty, et al.
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that, by choosing a special topological group, one can describe with this method quantum spin systems8
on a lattice as well as more general Fermi systems.

3 Main results obtained and structure of the thesis
The content of the other Chapters of this Thesis is as follows.

Chapter II . In Chapter II we discuss the relation between finite dimensional Fermion systems and
stochastic diffusion processes on the spin group. Finite dimensional Fermion systems are described by
elements of an exterior algebra over an n-dimensional complex space. Such Fermions are by definition
spinless but possess the characterizing property of relativistic Fermions in as much as the states describing
them belong to an exterior algebra.

These states can be embedded in the space L2(Spin(2n + 1)). Under this embedding the creation and
annihilation operators of the Fermions are lifted to left invariant vector fields on the Lie group Spin(2n+1).

We prove that the time evolution of the Fermionic system can be described in terms of a stochastic
process with a well defined second order, positive, selfadjoint generator. In fact we describe the time
evolution as a Feynman-Kac type formula with respect to that stochastic process, the perturbation being
described by a first order complex valued operator.

We find a description which is quite similar to the case of the evolution generated by the Laplacian
perturbed by a scalar potential in which the solution is described by a Feynman-Kac formula with respect
to a Brownian motion.

The relation between the Fermionic Fock space and the Lie group Spin(2n + 1) is standard (cf. [41])
even though, perhaps, not very well known (let us remark, apologetically, that we did not know such a
relation at the time when we wrote the content in this chapter). In this regard we hope to have clarified
that the correct relation is between the Fermionic Fock space and Spin(2n + 1) and not SO(2n + 1). The
confusion between Spin(n) and SO(n) is unfortunately still present in the physical literature (a related
problem is found in [141] where the term 3-sphere is employed to mean the 2-sphere).

The analysis of how and to what extent one can use this correspondence to give a stochastic description
of Fermions is new. The main results are in Theorem §4.13 and Theorem §5.6. Standard functional
analytical and stochastic methods are employed in our analysis.

Chapter III. In Chapter III we study the Schwinger (reduced, two-point) function for the Euclidean Dirac
field (in 3 + 1 dimensions). We derive the Schwinger function from first principles. In doing so we give a
detailed review of standard Wigner-Mackey theory of induced representations applied to the universal
cover of the Poincaré group (which is sometimes also called the Poincaré spinor group).

Moreover, we discuss some technical points. In particular those related to the representation of
reflections (in particular the parity transformation) within the full Poincaré group and its different universal
covers.

In our analysis we derive the Schwinger function in a natural, canonical way up to the final step. The
final step corresponds to the choice of embedding of the Schwinger function into the Clifford algebra
ℂl(4,ℂ). The final Euclidean 2-point function, as given by a bilinear form, depends upon this choice in a
relevant way.

Most of the chapter is to be understood as a detailed review of standard material which will be needed
in the rest of the thesis. There are numerous little glitches in the literature which we hope to have clarified
in our presentation. To our knowledge, the way we introduce Wightman and Schwinger functions from the
group theory fills a gap in the literature. The main results are the constructions summarized in Theorem
§5.13 and Theorem §5.28. The construction explained in section 4 will be used in Chapter V.

Chapter IV. In a paper by Kupsch the n-point function of Euclidean Dirac field is given as expectation of
a certain function of complex Gaussian random fields. In Chapter IV we give a simplification of Kupsch’
result in three different directions.

8Other approaches suitable for spin systems which could allow for a generalization to relativistic fields include [63, 64], [90]
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1. We avoid the artificial doubling of spinor fields;

2. We use the chaos decomposition of complex Gaussian random fields;

3. We employ Friedrichs’ idea to obtain an isomorphism between the Fermionic Fock space with the
Bosonic Fock space over the same 1-particle space.

Our approach permits to treat the antisymmetric property of Fermions and the non-positivity of the 2-point
function from a more unified perspective. Moreover, we believe, it is better suited for future generalizations
where non-Gaussian random fields will be considered.

The main result is Theorem §5.10 and its Corollary which describe the Euclidean n-point functions
for the Euclidean Dirac field in term of the complex Gaussian random fields mentioned above. Theorem
§5.10 and the discussion leading to it constitute the simplified (in the sense mentioned above) version of
the result by Kupsch mentioned above.

Chapter V. In Chapter 5. we give a novel Bosonic realization for the free Dirac fields in 3+1 dimensions.
We solve two problems that in general arise when attempting a Bosonic representation of Fermions:

1. The Fermionic 2-point Schwinger function is not positive definite (whereas the 2-point function for
relativistic Bosons is positive definite);

2. The Fermionic Fock space consists of states which are antisymmetric (whereas the Bosonic Fock
space consists of symmetric states).

The solution we propose solves both problems at once. The main point, in our construction, is to consider,
in place of the real Poincaré group, its complexification. Such a complexification arises already in the
context of Wightman functions independently of the aim of associating Euclidean functions to Wightman
functions.

The representation theory of the complexified Poincaré group leads to 2-point functions which are
positive definite. Moreover one can recover, as two limits, the standard Wightman, respectively Schwinger,
2-point functions.

The 1-particle space H for such half-spin representations of the complexified Poincaré spinor group
splits as a tensor product of two (infinite dimensional) Hilbert spaces: H = 1 ⊗2. We therefore,
correspondingly, construct a Bosonic Fock space over this 1-particle space. Finally, because of the tensor
product structure of this 1-particle space we obtain that the Bosonic Fock space over this space includes
naturally the Fermionic Fock space for Dirac Fields.

The representation theory of the complexified Poincaré spin group and its application to Physical
problems is not new (cf. [112]). Nor the complexified spacetime is a new concept (cf. the whole theory of
Wightman functions and [74]). The proposal of employing a complexified spacetime and the representation
of the complexified Poincaré group to give to Dirac Fermions an Euclidean (as well as relativistic) covariant
2-point function which is positive definite is new.

Similarly, the Bosonic Fock space over the space of “infinite matrices” (Hilbert-Schmidt operators) nor
is its decomposition into irreducible representations of the symmetric group are new (cf. e.g. [104]). The
application of this decomposition to obtain a Bosonic Fock space to describe Fermions is new. Moreover
the fact that the positive definite 2-point described above leads naturally and canonically to this Bosonic
Fock space for Fermions is new an perhaps the relevant part in our proposal.

These ideas should be understood in the context of our wider program which aims at bringing together
standard results from infinite dimensional global analysis (cf. e.g. [80]) and perhaps less standard results
from infinite dimensional abstract harmonic analysis (we have in mind e.g. [78]) to develop new models,
for the description of Fermions, which are both natural and amenable from the perspective of standard
probability theory on infinite dimensional spaces.

The main results of this chapter are contained in the propositions §5.3 and §5.8 (cf. also the remark
following it) where we summarize the main points of the construction, and in §5.10 where we describe
the Bosonic Fock space realization and the procedure of recovering the standard Fermionic Fock space
from it.
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Chapter VI. In all the chapters before the last one we concentrated on problems related to the description
of Fermion systems and Dirac fields, in terms of associated Bosonic and probabilistic methods. The last
chapter of this Thesis is dedicated to a problem concerning spin-1 Euclidean gauge fields, hence Bosonic
(Euclidean) particles.

In the final goal of describing fields interacting with matter, one would like to consider coupled systems
of Bosonic spin-1 particles interacting with Dirac fields. (this is the case, e.g. in QED, or more generally
in Yang-Mills theories). The goal in this chapter is to define a rigorous version of the Faddeev-Popov
procedure which is a quantization procedure well suited to gauge theories.

The general formal idea of this procedure is to introduce in the Feynman type path integral a density
which depends on the gauge degrees of freedom. This allows, at least formally, to develop a perturbative
analysis of gauge theories.

The mathematical implementation of this technique presents problems that are wide open in the case
of the Yang-Mills fields.

This chapter have three objectives.
First, we give a review of important (fairly) recent developments regarding analytic aspects related to

the topology and geometry of the gauge orbit space.
Second, we describe a general procedure of quantization which we call “naive Faddeev-Popov quanti-

zation”. This procedure is fully rigorous. It is “naive” in the sense that it applies to theories which do
not require any renormalization (this nevertheless includes models with gauge invariant regularizations,
before such regularizations are removed).

Third, we specialize to the Maxwell field. There we give two procedures of quantization. First we
quantize the free Maxwell field (which we also call radiation field) by taking quotient of the phase space
by the gauge action. This is possible to do for the Maxwell field because the gauge symmetry in this
case is Abelian. Second we apply our “naive Faddeev-Popov quantization” which in principle would be
applicable to more general gauge theories. In this case we analyze the situation thoroughly explaining
how infrared and ultraviolet regularizations can be introduced and then removed.

The main results are contained in the Theorems §7.15, §7.18, and §7.19. These results employ
somewhat technical results from Hodge-Friedrichs-Kodaira theory together with Hilbert-space methods,
probabilistic methods, and PDE methods. Each of these techniques are standard (at the very least within its
own community). We employ these techniques to show that it is possible to make the ideas by Faddeev and
Popov perfectly rigorous when taken independently from the (huge) separate problem of renormalizing
gauge theories (in four dimensions). We consider as the natural next step the application of our approach
of a rigorous, non-perturbative, Faddeev-Popov quantization to models where renormalization theory and
geometry play a non-trivial role. This would put our approach to the test to see whether it can lead to some
simplification in the rigorous definition of such models.

Each chapter is written with the objective of being completely independent from the others, at the
cost of some unavoidable redundancy. We include a separate abstract, introduction, and list of references
in every chapter. We hope that this will improve the readability. For convenience we also include the
complete list of references cited in this thesis at the very end.
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II
Finite dimensional Fermions and stochastic

processes on the spin group

Abstract

In this chapter we consider a “finite system of Fermions” represented by an element of the exterior
algebra of the n-dimensional complex space. The Fermions are spinless but possess the characterizing
anticommutativity property. We associate invariant vector fields on the Lie group Spin(2n + 1)
to the Fermionic creation and annihilation operators. These vector fields implement the regular
representation of the corresponding Lie algebra so(2n + 1). As such, they do not satisfy the canonical
anti-commutation relations in general, however once they have been projected onto an appropriate
subspace of L2(Spin(2n + 1)) these relations are satisfied. We define a time evolution of the system
of Fermions in terms of a symmetric positive-definite quadratic form in the creation-annihilation
operators. The realization of Fermionic creation and annihilation operators brought by the (invariant)
vector fields allows us to interpret this time evolution in terms of a positive selfadjoint operator which
is the sum of a second order operator which generates a stochastic process and a first order, complex
valued operator which strongly commutes with the second order operator. A probabilistic interpretation
is give in terms of a stochastic process associated with the second order operator.
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1 Introduction
Probabilistic methods in Quantum Field Theory have proved to be particularly fruitful (cf. e.g. [37], [14],
[17]). These methods have been almost exclusively restricted to Bosonic Field Theories. Some ideas
of the Bosonic probabilistic methods carry over, to an extent, to the Fermionic case using the beautiful
algebraic technique of Berezin integration [4]. However, the Berezin integral, being defined in terms of
Grassmann variables, does not lend itself easily to an interpretation in the context of probability theory or
measure theory, but cf. [7] on this regard.

The results in this chapter are inspired in part by the work of Schulman [36] (cf. also [35, Chapters
22-24]) who gives a description of a single 1

2 -spin particle in terms of the Feynman path integral. The
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22 Chapter II. Finite dimensional Fermions

precedents for Schulman’s idea can be found in early work on Quantum Mechanics connecting the Pauli
1
2
-spin formalism with the quantum spinning top [5, 33] (cf. also the more recent work [3]).
During the final drafting of this paper we have found a setting similar to ours in [12] and [9] (cf. also

[8, 10, 11, 24, 23, 26, 27, 25]). The motivations and aims of these papers are however different from
those in the present manuscript. The idea presented in the references quoted above is, however, similar the
starting point in our construction. Given a system of 2n anticommuting creation-annihilation operators,
the idea consists in establishing an association between each anticommuting creation-annihilation operator
and a corresponding element in the complexified Lie algebra soℂ(2n + 1). In turn the elements of the
complexified Lie algebra are interpreted as some differential operators in an L2 space. As we detail in
section 2, the notion of the 1∕2-spin representation of the Lie algebra soℂ(2n+ 1) is by definition realized
as a representation on the exterior algebra

⋀

ℂn. The irreducibility of such a representation then implies
that the Fermionic algebra of anticommuting creation-annihilation operators is generated by the elements
of soℂ(2n + 1) represented, according to the 1∕2-spin representation, as matrices acting on

⋀

ℂn. In
section 3 we then describe the association to the elements of the Lie algebra to corresponding differential
operators.

The difference of our result with respect to the one cited above is the following. Here we associate to
the Fermionic Hamiltonian a new operator, which we call quasi-Hamiltonian. This quasi-Hamiltonian
differs from the one proposed in the literature above by having also a second order part (in addition to the
first order part which also appears in the above publications). This difference stems from the fact that our
motivation is to study the (Wick rotated) time evolution of the original Fermionic system in terms of a
stochastic process in some probability space. This second order part is therefore crucial to our analysis,
since it constitutes the generator of our stochastic process of diffusion type. This difference implies that the
operator which is the objective of our investigation is very different and needed a separate analysis. Finally,
our presentation devotes as much attention as possible to the rigorous mathematical derivation of the
results. It provides, in our opinion, deeper physical understanding of the problem and offers the possibility
of further generalizations, especially to infinite dimensional settings related to quantum electrodynamics.

General motivation

Our motivation originates, in fact, from quantum electrodynamics (QED). In particular we wish to
investigate the possible ways in which one can associate to a relativistic Dirac quantum field a stochastic
process in some probability space.

For an interacting scalar Bosonic quantum fields this association can be obtained following, for
example, the following procedure.

1. Consider first the free Bosonic system associated to the original interacting one. One can prove that
the Bosonic Fock space is isomorphic to a probability space L2( , �0), where is the dual of a
nuclear space and �0 is a probability measure.

2. Continue the free time evolution of the quantum states, given by a quantum Hamiltonian H , to
imaginary (Euclidean) time (Wick rotation) and associate H to a generator − of a stochastic
process acting on the probability space L2( , �0).

3. The description of the (Wick rotated) free time evolution in terms of a stochastic process, whenever
possible, allows for the application of powerful stochastic techniques to the original interacting
quantum system.

For example the Feynman path integral is sometimes difficult to rigorously define and apply to the original
relativistic quantum theory (see, however [1, Chapter 9]). On the other hand, in the stochastic description
the integral in the space of paths is often a well defined measure-theoretic object. Moreover, this stochastic
description leads, in addition to powerful estimates, useful for constructing models of relativistic quantum
fields, also to a more intuitive picture of the models under consideration because offers a bridge between
the theory of relativistic quantum fields and quantum statistical physics (see, e.g., [37] [14][17]).
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This procedure is however not easily generalizable to Fermionic relativistic quantum fields.
To the knowledge of the author a probabilistic description of Fermionic relativistic quantum fields, par-

allel to the one explained here for Bosonic fields, is still missing. We are here using the term “probabilistic”
in a “strict sense”, that is not including, e.g., non commutative probability.

Motivation for considering a “finite system of Fermions without spin”

In describing the Dirac Fermions one usually (c.f. [40, Chapter 10]) introduces a Fock space

Dirac(ℌ+,ℌ−) =
∞
⨁

n=0
(ℌ+)∧n ⊗

∞
⨁

m=0
(Cℌ−)∧m

where ℌ+,ℌ− are respectively the one-particle Hilbert space and one-antiparticle Hilbert space and C
denotes the operator of charge conjugation. Alongside this Fock space one usually introduces a CAR1 al-
gebra of creation-annihilation operators for particles and antiparticles respectively a∗(f ), a(f ), b∗(g), b(g),
f ∈ ℌ+, g ∈ ℌ−. The definition of these operators, can be found in [40, Chapter 10], cf. also e.g. [28].

Finally, the dynamics of the free Dirac fields is prescribed by the Hamiltonian (which we write in the
familiar physicists notation cf. e.g. [41, Equation (7.5.52), Chapter 7, §7.5, p.325])

H = ∫ℝ3
!(p)

∑

�=1,2

(

a†�(p)a�(p) + b
†
�(p)b�(p)

)

dp,

where !(p) =
√

p2 + m2.
We shall consider here a radical simplification of this model. We will consider a finite dimensional

Fock space of particles without spin (and no antiparticles):

anti-symmetric(ℂn) ∶=
⋀

ℂn ∶=
∞
⨁

k=0
(ℂn)∧k,

that is the Fermionic Fock space in this context is taken to be just the exterior algebra ofℂn. This Fermionic
Fock space can be thought of as describing a system of spinless Fermions, where each of the Fermions,
once created can occupy one of n possible states.

We introduce a finite dimensional CAR algebra in terms of creation-annihilation operators c†k, ck,
k = 1,… , n and in analogywith the Hamiltonian associated with the Dirac field we consider as Hamiltonian
an operator on

⋀

ℂn

H̃E =
n
∑

k=1
Ekc

†
kck , (II.1)

parametrized by E = 0 ≤ E1 ≤⋯ ≤ En. The set E is thought of as the collection of energy eigenstates
and takes the role, in this simplified model, of !(p) in the theory of Dirac fields.

We can write down the Schrödinger equation for this finite dimensional Fermionic model as

i)tΨt = HΨt , Ψt ∈
⋀

ℂn, t ∈ ℝ.

We are interested in the "Euclidean" version of this Schrödinger equation, namely

)�Ψ� = −HΨ� , Ψ� ∈
⋀

ℂn, � ≥ 0

which corresponds to a Wick rotation of the time to the imaginary axis.

1CAR stays for canonical anticommutation relations. About CAR algebras cf. e.g. [6] .
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Statement of the results
The results obtained here can be concisely phrased as follows.

The constant 1 ∈
⋀

ℂn is called the vacuum state in the Fermionic Fock space
⋀

ℂn. The Fermionic
creation-annihilation operators ck, c

†
k ∈ End(

⋀

ℂn) satisfy the canonical anticommutation relations (CAR):

{ck, c
†
l} = �nm, {ck, cl} = {c

†
k, cl} = 0, k,l = 1,… , n. (CAR)

We denote by Spin(2n+ 1) the real spin group in 2n+ 1 dimensions, that is the universal cover of the real
special orthogonal Lie group SO(2n + 1) in 2n + 1 dimensions. The real Lie algebra associated with both
of these Lie groups will be denoted by so(2n + 1). The space L2(Spin(2n + 1)) will denote the space of
complex valued functions which square modulus integrable with respect to the normalized Haar measure
on Spin(2n + 1). The space C∞(Spin(2n + 1)) will denote the space of complex valued smooth functions
on the real spin group Spin(2n + 1).

We associate to ck, c
†
k elements of the complex Lie algebra soℂ(2n + 1) which is the complexification

of the real Lie algebra so(2n + 1). This association is explained in section 2.
Then we interpret these elements as differential operators Dk, D

†
k on L

2(Spin(2n + 1)) with common
domain given by C∞(Spin(2n + 1)).

We embed the Fermionic Fock space
⋀

ℂn into L2(Spin(2n + 1)) as Hilbert spaces, and denote the
image of this embedding by FΨ0 , of L

2(Spin(2n + 1)). This embedding is not canonical but is uniquely
characterized as follows:

(A) Dk, D
†
k restricted to FΨ0 satisfy (CAR).

(B) There is aΨ0 ∈ L2(Spin(2n+1)) which corresponds to the image of 1 ∈
⋀

ℂn under this embedding.

The choice of this vector is restricted by the requirement (A). Different vectors which satisfy (A) give
rise to equivalent embeddings. Peter-Weyl theorem gives a characterization of the equivalent embeddings.
This point will be explained in section 3.

Much as we have associated c†k, ck to Dk, D
†
k, given an n-tuple E = (E1,… , En) of strictly positive

numbers in non-decreasing order, we associate to a Fermionic Hamiltonian

H̃E
def
=

n
∑

k=1
Ekc

†
kck ∈ End(

⋀

ℂn)

an unbounded operatorHE in L2(Spin(2n + 1)) given by

HE
def
=

n
∑

k=1
EkD

†
kDk , Dom(HE)

def
= C∞(Spin(2n + 1)).

The specific choice of E is immaterial. We therefore leave it free as a parametrization and sometimes
refer toHE as a family of operators implying “parametrized by E”. Some other times we refer toHE as
quasi-Hamiltonian. This practice should not lead to any confusion.

The choice of the family of operatorsHE , which we associate to the original Fermionic Hamiltonian
H̃E , is not unique. We make the choice based on two facts: (1) The restriction ofHE to FΨ0 coincides, up
to isomorphism, with H̃E on

⋀

ℂn; (2) The quasi-Hamiltonian is required to be a second order differential
operator. We impose requirement (2) because we are interested in giving a stochastic process interpretation
to the model we are constructing.

We are now almost ready to state the two main results of our analysis.
For the sake of definiteness, fix Xk,l , k < l = 1,… , 2n+ 1 to be the standard basis of the Lie algebra

soℂ(2n + 1) where Xk,l are the matrices with elements (Xk,l)ij = �ki�lj sgn(i − j), i, j = 1,… , 2n + 1.
As explained in details in section 3, we can regard the elements Xk,l of the standard basis of soℂ(2n + 1)
as right-invariant differential operators on C∞(Spin(2n + 1)) ⊂ L2(Spin(2n + 1)).
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Then the operators D†
k, Dk will be defined in section 4 as follows

D†
k
def
= X2k−1,2n+1 + iX2k,2n+1 , Dk

def
= X2k−1,2n+1 − iX2k,2n+1 , k = 1,… , n ,

In section 4 we define the quasi-Hamiltonian operatorHE and study its properties proving a number
of results, the most important of which is the following:

Result I: Quasi-Hamiltonian (§4.13) The family of unbounded operators HE defined on the domain
C∞(Spin(2n + 1)) in L2(Spin(2n + 1)) is a family of essentially selfadjoint operators. Moreover the
quasi-Hamiltonian can be decomposed on C∞(Spin(2n + 1)) as

HE =
n
∑

k=1
EkLk + i

n
∑

k=1
EkTk,

where Tk
def
= X2k−1,2k, and the operators Lk

def
= (X2k−1,2n+1)2 + (X2k,2n+1)2, for k = 1,… , n, are positive

definite and essentially selfadjoint on C∞(Spin(2n + 1)). The operators Tk, k = 1,… , n, are essentially-
selfadjoint on C∞(Spin(2n+1)) and their closure T k, k = 1,… , n, defines a family of strongly commuting
unbounded operators in L2(Spin(2n + 1)). Moreover T k strongly commutes with Ll, for any k,l =
1,… , n.

In section 5 we study how to associate toHE a stochastic process. In that section we will write the
quasi-Hamiltonian as

HE = P0 + iB0,

where

P0
def
=

n
∑

k=1
EkLk, B0

def
=

n
∑

k=1
EkTk,

are unbounded operators on L2(Spin(2n + 1)) with common domain given by C∞(Spin(2n + 1)).
The following can be considered the most important result in that section.

Result II: Stochastic evolution (§5.6) The operatorP0 is essentially selfadjoint on the domainC∞(Spin(2n+
1)) ⊂ L2(Spin(2n+1)) and its closure P0 is the generator of a stochastic diffusion process on Spin(2n+1).
Moreover, we have the following representation of the semigroup generated byHE

(f, e−tHEg)L2(Spin(2n+1)) = EX
[

f (0)
(

ei t B0g
)

(

X(t)
)

]

, (II.2)

whereEX denotes the expectation with respect to the process generated byP0,HE andB0 denote the closure
of the operators, f (0) denotes complex conjugation, and f, g ∈ C(Spin(2n + 1)) ⊂ L2(Spin(2n + 1)).

2 Clifford algebra, exterior algebra, and the orthogonal Lie algebra
In this section we provide some preliminary definitions. In particular we define the half-integer represen-
tation of the Lie group Spin(2n + 1).

§ 2.1 Clifford algebra. Let V be a finite dimensional vector space over ℝ, Q a real valued quadratic
form on V , and T (V ) =

⨁∞
n=0 V

⊗n the algebraic tensor algebra defined by V . Let I be the (two sided)
ideal in T (V ) generated by elements of the form

v ⊗ v +Q(v)1 , v ∈ V .

The Clifford algebra l(V ,Q) is by definition the algebra given by taking T (V ) modulo I , i.e.

l(V ,Q) ∶= T (V )∕I .
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We denote by l(n) the Clifford algebra l(ℝn, ‖ ⋅ ‖), where ‖ ⋅ ‖ is the norm on ℝn given by the
Euclidean quadratic form on ℝn, n ∈ ℕ.

We define the complex Clifford algebra ℂl(V ,Q) to be the complexification of l(V ,Q):

ℂl(V ,Q) ∶= ℂ⊗ℝ l(V ,Q),

where ⊗ℝ denotes the tensor product over ℝ. Finally we denote by ℂl(n) the complexification of the
Clifford algebra l(n), that is ℂl(n)

def
= ℂ⊗ℝ l(ℝn, ‖ ⋅ ‖) ≅ l(ℂn, ‖ ⋅ ‖ℂn), where ‖ ⋅ ‖ℂn denotes the

norm in ℂ.

§ 2.2 Even and odd parts Consider the automorphism � ∶ l(V ,Q)→ l(V ,Q) which on elements
v ∈ V acts by �(v) = −v. Since �2 = Id there is a decomposition

l(V ,Q) = l even(V ,Q)⊕ l odd(V ,Q)

where

l even(V ,Q) ∶= span{v1⋯ v2k, k ∈ ℕ, vj ∈ V },
l odd(V ,Q) ∶= span{v1⋯ v2k+1, k ∈ ℕ, vj ∈ V }.

We shall call the elements of l even(V ,Q) and l odd(V ,Q) even and odd elements in l(V ,Q)
respectively.

Note that l even(V ,Q) is a subalgebra of l(V ,Q). On the other hand l odd(V ,Q) is not an algebra
because the multiplication of an even number of odd elements yields an even element.

We will use the shorthands l even(k), l even(k) when V = ℝk, Q(v) = ‖v‖2.

We now turn to exterior algebras and their relation with Clifford algebras.

§ 2.3 Exterior algebra Let V be a real or complex , finite dimensional, vector space. Let I0 be the (two
sided) ideal in T (V ) generated by elements of the form

v ⊗ v, v ∈ V .

Then we define the exterior algebra of the vector space V to be
⋀

V ∶= T (V )∕I0,

where T (V ) is now respectively the real or complex tensor algebra of V .

§ 2.4 Proposition For any quadratic form Q on a finite dimensional vector space V over a field K, the
Clifford algebra l(V ,Q) is naturally isomorphic (as a graded algebra) to the exterior algebra

⋀

V .

PROOF. A standard reference is [21, Chapter 1, Proposition 1.2]. A somewhat more extended
proof can be found e.g. in [39, Chapter 11, Proposition 1.1]

§ 2.5 Proposition We have the algebra isomorphism ℂl(2k) ≅ End
⋀

ℂk.

PROOF. See, e.g., [13, Lemma 20.9, p.304] or [38, Proposition 43.1, p.183].

§ 2.6 Explicit example We clarify the connection between Clifford algebra and exterior algebra with a
simple example.

Let 
1,… , 
2n be complex 22n × 22n matrices which satisfy

{
i, 
j} = −2�ijId , i, j = 1,… , 2n,
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where {⋅, ⋅} stands for the anticommutator (i.e. {A,B}
def
= AB + BA for any finite dimensional matrices

A,B). The matrices 
i, i = 1,… , n generate ℂl(2n). If we now define2

cj ∶=
1
2
(


2j + i
2j−1
)

, c∗j ∶=
1
2
(


2j − i
2j−1
)

, j = 1,… , n ,

then the matrices bj , b∗j satisfy the canonical anti-commutation relations

{cj , ck} = {c∗j , c
∗
k} = 0 , {cj , c∗k} = �jk1 , j, k = 1,… n .

Finally note that cj , c∗k generate End(
⋀

ℂn) as an algebra.

§ 2.7 Lemma Let soℂ(2n + 1) denote the complexification of the real Lie algebra so(2n + 1). Then we
have the following chain of relations

soℂ(2n + 1) → ℂl even(2n + 1) ≅ ℂl(2n) ≅ End(
⋀

ℂn)

where the first → is an embedding and a Lie algebra homomorphism and is not surjective (but only
injective).

PROOF. The first embedding is proved in [15, Lemma 6.2.2, p. 313].
The first isomorphism ≅ is proved in [15, Lemma 6.1.7, p. 310] or can be deduced from [13,

Lemma 20.16 p.306 + Lemma 20.9 p.304].
The second embedding is the ℝ-linear algebra homomorphism which extends to l(2n) the

map which embeds ℝ2n into ℂ2n.
The last isomorphism follows from the Proposition in §2.5 (compare also [13, formula (20.18),

p. 306]).

§ 2.8 Definition (Half-spin representation) The chain of relations of the Lemma in §2.7 gives rise to a
representation by endomorphisms

�(1∕2) ∶ soℂ(2n + 1) → End(
⋀

ℂn)

of the Lie algebra soℂ(2n + 1) into the carrier space
⋀

ℂn. We shall call this representation the half-spin
representation3 of soℂ(2n + 1).

The terminology half-spin representation is justified by the following proposition.

§ 2.9 Proposition The half-spin representation �(1∕2) in §2.8 of soℂ(2n + 1) is the irreducible represen-
tation of soℂ(2n + 1) with highest weight

�(1∕2) = (12 ,… , 12
⏟⏟⏟
n times

).

2Note the similarity with creation annihilation operators for the (Bosonic) harmonic oscillator

aj =
xj + ipj
√

2
, a∗j =

xj − ipj
√

2
,

where [aj , a∗k] = �jk and [xj , pk] = i�jk . This suggests the striking correspondence


2j ⇝
√

2 xj , 
2j−1 ⇝
√

2 pj

together with the following correspondence anticommutators⇝ commutators

{⋅, ⋅} ⇝ i[⋅, ⋅] .

3Sometimes this representation is simply called the spin representation. We prefer, in our context, to use the more self-
explanatory term half-spin representation.
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A general weight � of the representation �(1∕2) is given by

� = (± 1
2
,… ,±1

2
⏟⏞⏞⏟⏞⏞⏟
n times

),

with all possible distributions of ± in the components.
Moreover the lowest weight of this representation is given by −�(1∕2). Finally the (normalized) highest

weight vector is the constant 1 ∈
⋀0ℂn and the (normalized) lowest weight vector is e1 ∧⋯∧ en ∈

⋀nℂn.

PROOF. Cf. [13, §20.1, Proposition 20.20 p.307] or [15, Section 6.2.2, Proposition 6.2.4 p.315].
The statement about the highest/lowest weight vectors follows easily from the proofs of the cited
propositions.

§ 2.10 Remark The image �(1∕2)(soℂ(2n + 1)) of soℂ(2n + 1) in End(
⋀

ℂn) generates End(
⋀

ℂn) as an
algebra.

PROOF. This is a direct consequence of the fact that �(1∕2) is an irreducible representation.

We (finally) bring Fermions into the picture.

§ 2.11 (Finite dimensional) Fermionic Fock space In general given a Hilbert space H one calls
Fermionic Fock space (or antisymmetric Fock space) the Hilbert space

Fanti-symmetric(H ) ∶=
.

⋀

H ∶=
∞
⨁

k=0
H

.
∧k,

where the k = 0 term in the direct sum is just ℂ, and where the dot over the wedges denotes completion of
the exterior product with respect to the usual scalar product (cf. [30] and [31]).

Here we are interested in the finite dimensional case, i.e. we are interested in a system of at most
n ∈ ℕ Fermions. So in our context the Fock space will consist of the exterior algebra (defined in 2.3) of
the vector space ℂn:

Fanti-symmetric(ℂn) ∶=
⋀

ℂn ∶=
n

⨁

k=0
(ℂn)∧k.

We call the element 1 ∈ ℂ →
⋀

ℂn the vacuum (state). We define the Fermionic creation,
respectively annihilation operators c†j , respectively ck , with j, k = 1,… , n, as the linear operators
mapping

⋀

ℂn into
⋀

ℂn which satisfy for every j, k = 1,… , n, the following conditions

(i) cj 1 = 0, i.e. the cj’s annihilate the vacuum.

(ii) (!1, cj!2)ℂn = (c
†
j!1, !2)ℂn , for any !1, !2 ∈ ℂn, i.e. cj , c

†
j are adjoint to one-another

(iii) {cj , ck} = {c
†
j , c

†
k} = 0, {cj , c

†
k} = �jk i.e. the canonical anti-commutation relations are satisfied.

3 Fermions and L2(Spin(2n + 1))
In this section we connect the half-spin representation of soℂ(2n + 1), constructed by algebraic means in
the previous section, with a more geometrical and analytical representation, i.e. the regular representation
(to be defined below).

§ 3.1 so(2n + 1) as a Lie subalgebra of gl(2n + 1) We take as the standard basis for the Lie algebra
gl(2n+1) the matrices Eij , i, j = 1,… , 2n+1 with matrix elements (Eij)kl = �ik�jl, k, l = 1,… , 2n+1,
i.e. all entries vanish except for the (i, j)-th entry, which is equal to one.
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Considering so(2n+ 1) as a Lie subalgebra of gl(2n+ 1), we can take as generators of so(2n+ 1) the
matrices

Xij = Eij − Eji. (II.3)

We also consider the Cartan-Weyl basis (adopting the notation in [29])

Hk ∶= X2k−1,2k , k = 1,… , n
Q±k ∶= X2k−1,2n+1 ± iX2k,2n+1 , k = 1,… , n
�kℎ ∶= [Qℎ, Qk] , ℎ ≠ −k, ℎ, k = ±1,… ,±n .

Note: Hk are the elements of the Cartan subalgebra. The Q±k and the �ℎk are lowering-raising generators
4. The Q±k connect the Lie algebra so(2n + 1) with its subalgebras while the �ℎk operate within the
subalgebras of so(2n + 1) ([29]).

The matricesHk, Qℎ satisfy the following commutation relations

[Hℎ,Hk] = 0 , ℎ, k = 1,… , n ,
[Hℎ, Qk] = (�ℎk − �ℎ,−k)Qk , k = ±1,… ,±n , ℎ, k = 1,… , n .

Other useful relations can be found in [29].

§ 3.2 The manifold Spin(2n + 1) as a Spin(2n + 1)-space We collect some well-known results about
the Lie group Spin(k) seen as a k(k − 1)∕2 dimensional manifold.

1. We can think of Spin(k) as a Lie group of transformations on itself, looked upon as a manifold
denoted again by Spin(k). In particular we regard the manifold Spin(k) as equipped with a left
action of the Lie group Spin(k): we have the differentiable map Spin(k) × Spin(k) → Spin(k)
which sends (g, x) → gx such that (g1g2)x = g1(g2x), where g, g1, g2 ∈ Spin(k) are thought of as
transformations, and x ∈ Spin(k) as a point on the manifold. Similarly, we can define a right action
of Spin(k) on itself by taking the differentiable map Spin(k) × Spin(k) → Spin(k), (g, x) → xg,
x(g1g2) = (xg1)g2, where x, g, g1, g2 are as before.

2. We denote by dg the uniqueHaar measure on a compact Lie groupG normalized by the condition
∫G dg(G) = 1. In particular we denote by dg the Haar measure for G = Spin(k).

§ 3.3 Definition Let G be a compact Lie group. Let us denote by C∞(G) the space of smooth functions
from G to ℂ. Note that for convenience we will always consider spaces of functions into ℂ and not ℝ. We
define a representation of G on C∞(G) by the action of left translation, i.e.

G→ C∞(G), g → Lg ,

where Lg is defined as the map

Lg ∶ C∞(G)→ C∞(G), Lgf = f◦g−1, f ∈ C∞(G)

i.e. (Lgf )(x) ∶= f (g−1x), x, g ∈ G. We call this representation the left regular representation of G.
Similarly we define the right regular representation of G by the action of right translation R ⋅, i.e.

R ⋅ ∶ G → C∞(G), g → Rg ,

where the map Rg is defined by

(Rgf )(x) ∶= f (xg), f ∈ C∞(G), x, g ∈ G.
4In [29] the difference between lowering and rising generators (here denoted by Q±k, �kℎ) and lowering and rising operators

(in the terminology of Gelfand-Zeitlin, see e.g. [2, Chapter 10, §1]) is explained.
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Let us denote by L2(G) the complex space of functions from the manifold G into ℂ, which are square-
integrable with respect to the (normalized) Haar measure on Spin(k).

We extend by continuity and linearity the left regular representation of G from the space C∞(G) to
the space L2(G) because the operators (Lg)f (x) = f (g−1x) are bounded linear operators from L2(G)
to itself. Note in particular that the left regular representation extended to L2(G) gives rise to a unitary
(infinite dimensional) representation of G. For this reason in the following we shall denote the left regular
representation of G on L2(G) by

(U (g)f )(x)
def
= f (g−1x), f ∈ L2(G), x, g ∈ G.

§ 3.4 Invariant vector fields on a Lie group A smooth vector field on a Lie group G is called left
invariant when it commutes with all left translations Lg (defined in §3.3). Similarly a vector field on a
Lie group is called right invariant when it commutes with all the right translations Rg.

To describe the invariant vector fields on Spin(2n + 1) we employ the fact that the exponential map
from the Lie algebra of a Lie group to the Lie group itself is natural. That is, given a homomorphism of
Lie groups  ∶ G → H inducing a map d ∶ TeG → TeH the following diagram

TeG TeH

G H

d 

exp exp

 

commutes. In more categorical language, we have a natural transformation

Lie Mfld

LAlg

G →G

G →A A →A

between the forgetful functor Lie → Mfld and the functor Lie → Mfld which first computes the Lie
algebra, and then passes through the forgetful functor LAlg →Mfld.

This fact allows us to consider an invariant vector field on a matrix Lie group G as the restriction of a
corresponding invariant vector field on GL(2n + 1).

We now use this naturality property in the case of the Lie group G = Spin(2n + 1).
Consider the Lie group GL(n) which is an open, connected, submanifold of the manifoldM(n × n) ≅

ℝn2 of real n × n matrices. Consider Spin(2n + 1) as a Lie subgroup of GL(2n + 1) and consider the Lie
algebra so(2n + 1) of G as a Lie subalgebra of gl(k) ≅M(n × n) of GL(n) (where ≅ stands here for Lie
algebra isomorphism).

A standard result5 gives that any left-invariant vector field XA on G can be obtained in the form

XAf (g) =
d
dt
f
(

getA
)|

|

|

|t=0
, f ∈ C∞(G), (II.4)

where A ∈ so(2n + 1) ⊂ M(2n + 1), g ∈ G = Spin(2n + 1) ⊂ GL(2n + 1) ⊂ M(2n + 1).
ConsiderGL(n)with a non-singular6 parametrization given by coordinates c ∶ GL(n)→ ℝn2 , c ∶ g →

c(g), that is c = (ckj(⋅))i,j=1,…,n sends an element g ∈ GL(n) to a matrix c(g) = (cjk(g))j,k=1,…,n ∈ ℝn2 .

5Cf. e.g. [15, Proposition 1.3.17 p. 33]
6Note that for example the Euler angle parametrization of Spin(3) is singular in the sense that the coefficients of the invariant

vector fields in this coordinate system are singular functions. Non singular local parametrizations exist in a connected Lie group
G because a Lie group is a smooth manifold.
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We get

XGLM f (g) = d
dt
f
(

getM
)|

|

|

|t=0

=
∑

ij
mij

∑

k
cki(g)

)
)ckj

f (g)

= Tr {M T } f (g) , with Tij =
∑

k
cki(g)

)
)ckj

,

whereM ∈M(k) (the real k × k matrices) with elements mij .
At the identity g = 1 ∈ GL(n) the vector field XGLM becomes

XGLM f (g)|g=1 =
∑

ij
mij

)f (g)
)cij

|

|

|

|

|g=1
.

Noting from (II.3) that a basis for the Lie algebra so(2n + 1) is given in terms of elements in the Lie
algebra of gl(2n + 1) by Xij = Eij − Eji we get for the invariant vector fields on Spin(2n + 1)

XSpin(2n+1)A f (g) =
n
∑

i,j=1
Aij

2n+1
∑

k=1

(

cki(g)
)
)ckj

− ckj(g)
)
)cki

)

f̃ (g),

with A ∈ so(2n + 1), g ∈ Spin(2n + 1) ⊂ GL(2n + 1) and f̃ is the smooth extension of f from
C∞(Spin(2n + 1)) to C∞(GL(2n + 1)). At the identity g = 1 ∈ Spin(2n + 1) we have thus

XSpin(2n+1)A f (1) =
n
∑

i,j=1
Aij

(

)
)cij

− )
)cji

)

f̃ (1).

Similarly any right-invariant vector field XA on G can be obtained by the formula

XAf (g) =
d
dt
f
(

e−tAg
)|

|

|

|t=0
, f ∈ C∞(G), (II.5)

where A ∈ so(2n + 1) ⊂ M(2n + 1), g ∈ G = Spin(2n + 1) ⊂ GL(2n + 1) ⊂ M(2n + 1).
Notice the “intertwining” of the terms of left-translation and right-invariance, right-translation and

left-invariance. That is, note that if we differentiate the action by right translation as in (II.4) we obtain a
left-invariant vector field. On the other hand, if we differentiate the left-action as in (II.5) we obtain a
right-invariant vector field.

In the sequel, as a matter of choice, we will be deal only with the left-regular representation (which
comes from the left action). Hence the vector fields we will handle will be right-invariant.

§ 3.5 Universal enveloping algebra Let a be a Lie algebra over ℝ or ℂ. Let T (a) be the tensor algebra
over a as a vector space. Let J be the (two sided) ideal generated by elements of the form

X ⊗ Y − Y ⊗ X − [X, Y ], X, Y ∈ a .

Then we define the universal enveloping algebra of a to be

U(a) ∶= T (a)∕J

§ 3.6 Proposition Let G be a Lie group with Lie algebra g. Denote byD(G) the algebra of differential
operators on C∞(G) generated by the right-invariant vector fields onG and the identity. Then the universal
enveloping algebra U(g) is isomorphic (as a an algebra) to D(G). Moreover, by this isomorphism, the
Lie algebra g is represented on U(g) ≅ D(G) by the representation7 dU ∶ g → U(g) ≅ D(G) which
associates to each element in g the corresponding right-invariant vector field.

7The notation dU will be justified in Section 4.
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PROOF. Cf. [16, Ch. II, Proposition 1.9 and its proof, p. 108]

§ 3.7 Remark Denote by ' the isomorphism in Proposition §3.6. The fact that the universal enveloping
algebra is isomorphic (as a Lie algebra) toD(G) means that the invariant vector fields '(X1),… , '(Xn)
associated with the generators of the Lie algebra g satisfy the Lie algebra commutation relations. That is
they satisfy, on the domain C∞(G), the following relation 8

['(X), '(Y )] = '([XY ]).

Now in the case of the Lie group SO(2n + 1) we constructed in the previous section its Lie algebra as a
matrix algebra starting from the generators of the Clifford algebra l(2n). So in the representation of
the previous section we have elements 
1,… 
2n which satisfy the Lie algebra commutation relations of
so(2n + 1) and the anti-commutation relations of the Clifford algebra. Then we can associate to every
element in this “Clifford-Lie” algebra an invariant vector field as a differential operator inD(G). The so
defined invariant vector fields will satisfy the commutation relations of the Lie algebra so(2n + 1) but
will not satisfy the Clifford anti-commutation relations of the original elements 
1,… 
2n in the starting
“Clifford-Lie” matrix algebra.

§ 3.8 Example To clarify the previous remark we consider the example of SO(3). Using Euler’s angle
parametrization of Spin(3) we have for the invariant vector fields [3, 19]:

s1 = i
(

−cos�)� + sin� cot � )� −
sin�
sin �

)�

)

,

s2 = i
(

sin�)� + cos� cot � )� −
sin�
sin �

)�

)

,

s3 = −i )� ,

where (�, �, �) ∈ [0, �] × [0, 2�] × [0, 4�]. With straight forward computations (or abstractly applying
the Proposition in §3.6 ) it can be shown that these generators satisfy the commutation relations

[sj , sk] = i
3
∑

l=1
�jklsl ,

where �ijk is the Levi-Civita symbol in three dimensions. On the other hand they cannot in general satisfy
the Fermionic anti-commutation relations, we have for example

{s1 + is2, s1 − is2} ≠ 1.

Indeed the left hand side is a nontrivial second order differential operator which is not a constant operator
on the space C∞(Spin(3)), as one easily verifies.

§ 3.9 Peter-Weyl theorem Let G by a compact Lie group. Denote by Ĝ the set of all irreducible non-
equivalent unitary (complex) representations � of G. Denote by D�

ij the matrix elements of � in the
irreducible unitary representation given by �, and denote by d� the dimension of such a representation.

Then:

1. The regular representation decomposes into a direct sum of irreducible unitary representations.
Every irreducible unitary representation of the compact Lie group G appears in this decomposition
with a multiplicity equal to its dimension.

8We denote by [XY ] (no comma) the commutation relations in the Lie algebra g and by [A,B] = AB − BA (with comma)
the commutation relations inD(G) or in U(g).
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2. We have an orthonormal basis for L2(G) given by the following vectors

Y �(i)j(x) =
√

d� D
�
ij(x) , � ∈ Ĝ , i, j = 1,… , d� x ∈ G.

gewhere d� denotes the dimension of the representation labeled by �. Take � fixed. Then the set of
functions (Y �(i)j)j=1,…,d� spans for every i = 1,… , d� an invariant irreducible subspace of dimension
d� for the right regular representation, and this subspace realizes one of the d� copies of irreducible
representations for the right regular representation parametrized by �. This means that the following
decomposition holds:

L2(G) =
⨁

�∈Ĝ

d� copies
(⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
V� ⊕⋯⊕ V�

)

,

where V� is the carrier space of the irreducible representation � and, as above, d� = dimV�.

3. We have another orthonormal basis given by the following vectors

Ỹ �(i)j(x) =
√

d� D�
ij(x) � ∈ Ĝ , i, j = 1,… , d� ,

where the over-line in D�
ij(x) denotes complex conjugation. These vectors play the same role for

the left-regular representation as the previous vectors Y �(i)j did for the right regular representation.

PROOF. Cf. [2, Chapter 7 §2, Theorem 1 p.172 and Theorem 2 p.174]

§ 3.10 Remark The previous theorem tells us nothing about the actual form of the matrix elements
D�
ij(g), g ∈ G, which need to be computed by other means, for example with the help of Gelfand-Zeitlin

construction (cf. [2, Chapter 11 §1], [15, Chapter 8], or [42, Chapter X, Chapter XVIII]). On the other hand
the previous theorem does tell us among other things that, once we have for an irreducible representation
the matrix elements D�

ij(g), g ∈ G, �, then

(Y �(i)j , LgY
�′
(i′)j′) = ���′ �i(i′) �j(j′)D

�
ij(g).

We now embed the Fermionic Fock space
⋀

ℂn into L2(Spin(2n + 1)).

§ 3.11 Lemma Let (⋅, ⋅)⋀ℂn denote the Hermitian scalar product in
⋀

ℂn obtained by extension of the
standard Hermitian scalar product of ℂn. Let �1∕2(g) denote the half-spin representation of an element
g ∈ Spin(2n + 1).

Then the map

� ∶
⋀

ℂn → L2(Spin(2n + 1)), � ∶  →
(

 , �1∕2(g) 
)

⋀

ℂn .

defines an embedding of
⋀

ℂn into L2(Spin(2n + 1)).
The restriction of the regular representation of Spin(2n + 1) to the image of � defines a representation

which coincides with the half-spin representation of Spin(2n + 1).

PROOF. Follows directly from the Peter-Weyl theorem in §3.9.

§ 3.12 Remark We note that from the Proposition in §2.9 we have that the weights of the half spin
representations are

(±1
2
,… ,± 1

2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

n times

).

Each of the corresponding weight vectors are elements of the carrier space of the half-spin representation.
Hence by the Peter-Weyl theorem they can be embedded into L2(Spin(2n + 1)).



34 Chapter II. Finite dimensional Fermions

Consider a weight � of the form (± 1
2
,… ,±1

2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

n times

) with a given number of “plus signs” and the comple-

mentary number of “minus signs”. Then the corresponding weight vector Ψ� is interpreted physically as a
vector in the Fermionic Fock space. The plus signs in the weight � denote “filled states”, that is to every
“plus sign‘ corresponds a Fermionic particle in the respective state.

For later convenience we give the following definition.

§ 3.13 Definition We denote by Ψ0 the image of the vacuum state 1 ∈
⋀

ℂn under the embedding �. That
is, we define

Ψ0(g)
def
=

(

1, �1∕2(g) 1
)

⋀

ℂn ,

We will denote by FΨ0 the image of the embedding � ∶
⋀

ℂn → L2(Spin(2n+ 1)) given in point 2. of
the Lemma in §3.11.

§ 3.14 Remark The closure of the orbit of Ψ0 under the regular representation of Spin(2n+ 1) coincides
with FΨ0 .

PROOF. Denote by GΨ0 ⊂ L2(Spin(2n + 1)) the span of the orbit of Ψ0 under the left-regular
representation of Spin(2n + 1) and consider the embedding � ∶

⋀

ℂn → FΨ0 ⊂ L
2(Spin(2n + 1)).

Then GΨ0 is a subset of FΨ0 because U (g)Ψ0 = U (g) �(1) = �(�(1∕2)1) ⊂ �(
⋀

ℂn), where U (g)
denotes the right regular representation of an element g ∈ Spin(2n + 1). Moreover the inverse
image �−1(GΨ0) is a Spin(2n + 1)-invariant subspace of

⋀

ℂn. But then �−1(GΨ0) =
⋀

ℂn because
the representation of Spin(2n + 1) on

⋀

ℂn is irreducible.

4 Time evolution of a Fermionic state
In order to define the time evolution we need some function analytic concepts. In particular regarding the
infinitesimal representation dU of a Lie g of a Lie group G obtained as the differential of the right regular
representation U of G. For simplicity, we restrict the discussion to the case where the group G is compact.

§ 4.1 Let G be a connected, simply connected, compact Lie group. Let g be its Lie algebra. Let U denote
the left regular representation of G introduced in §3.3. Note that U is a unitary infinite dimensional
representation. For X ∈ g we define the operator dU (X) with domain C∞(G) by

dU (X)f = d
dt
U (etX)f |t=0, f ∈ C∞(G).

Then by definition dU coincides with the representation of the Lie algebra g by right-invariant vector
fields given in §3.6 (for more details cf., e.g. [34, §10.1]).

By the universal property of the universal enveloping algebra U(g) the representation dU can be
extended uniquely (up to isomorphism) to a representation of the full universal enveloping algebra U(g).
For convenience we shall still denote by dU this extension. In this way we end up with a representation of
every element in U(g) by an algebra of differential operators on the common domain C∞(G).

§ 4.2 Denote by gℂ the complexification of the real Lie algebra g. We can equip U(gℂ) with an antilinear
involution ∗ defined on elements in the real Lie algebra g by

X∗ = −X, X ∈ g,

and then extended (uniquely because of the universal property of U(g)) to the full enveloping algebra
U(gℂ). The enveloping algebra together with this involution becomes a ∗-algebra. An element X ∈ U(g)
is said to be Hermitian (as an element of the universal enveloping algebra) when X = X∗, where the ∗
denotes the antilinear involution defined above.
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On the algebraD(G) of right-invariant smooth differential operators in L2(G) with common invariant
domain C∞(G) we have an antilinear involution, which we also denote by ∗, which sends the unbounded
operator D ∈ D(G) to its Hilbert-adjoint D∗. This involution makesD(G) into a ∗-algebra.

The representation dU is by definition an algebra isomorphism

dU ∶ U(gℂ)
≅
→ D(G).

Once we equip U(gℂ) and D(G) with the involutions described above in principle one would like
to extend dU to a ∗-isomorphism. But this is in general not possible, since in general we will not have
dU (X) = dU (X)∗, for X = X∗ ∈ U(gℂ), because the domain of the Hilbert adjoint dU (X)∗ can in
general be bigger than the domain of dU (X), that is the operator dU (X) is Hermitian9 but not selfadjoint.
Now one could try to extend the operator dU (X) to a selfadjoint operator by enlarging its domain. This
might be possible for one operator dU (X) for a fixed X ∈ U(g). But for different X, Y ∈ U(g) we need
to have a common invariant domain of definition for dU (X) and dU (Y ) because we want an algebra of
operators. Hence in general one cannot expect to find an extension of dU to a ∗-isomorphism.

One could argue that being a ∗-isomorphism is too strong a property and not necessarily the most
natural. The best situation that we can hope for is contained in the following proposition.

§ 4.3 Proposition Let G be a compact Lie group with Lie algebra g. Then

dU (X∗) = dU (X)∗, X ∈ U(gℂ), (II.6)

where the overline on the right hand side denotes the operator closure.

PROOF. The proof can be found in e.g. [34, Corollary 10.2.10, p.270].

Remark First note that the Proposition above implies that any Hermitian element D ∈ D(G) is automati-
cally essentially selfadjoint.

For this reason we could call an algebra isomorphism with the property in (II.6) an essentially ∗-
isomorphism.

We now turn to the notion of commuting unbounded operators. There are two natural notions of
commuting unbounded operators, weakly commuting and strongly commuting. We give the precise
definitions.

§ 4.4 Given two unbounded operatorsA,B with common domain D in a Hilbert spaceℌ, we say thatA,B
weakly commute on D when ABv = BAv for all v ∈ D . Given two selfadjoint unbounded operators
A,B we say that A,B strongly commute when for all s, t ∈ ℝ, eitAeisB = eisBeitA, where eitC denotes
the unitary group generated by a selfadjoint operator C (cf. [30, Theorem VIII.13]).

Regarding the relation between strong and weak commutativity of operators on a Hilbert space we
have the following result due to Nelson.

§ 4.5 Lemma ([22, Corollary 9.2]) Let A,B be two Hermitian unbounded operators on a Hilbert space
 and let  be a dense linear subspace of  such that  is contained in the domain of A, B, A2, AB,
BA, and B2, and such that A,B weakly commute on . If the restriction of A2 + B2 to  is essentially
selfadjoint then A and B are essentially selfadjoint and their closures A, B strongly commute.

A direct consequence of this lemma to our situation is the following.
9In the context of unbounded operators in a Hilbert space, an operator T with domain Dom(T ) is Hermitian when it

satisfies Dom(T ) ⊂ Dom(T ∗) and T |Dom(T ) = T ∗Dom(T ). The operator T is selfadjoint when in addition the stronger condition
Dom(T ) = Dom(T ∗) holds. In the algebraic context of universal enveloping algebras, an element X ∈ U(gℂ) is said to be
Hermitian when X = X∗ in the sense of section §4.2. These two, in general different, concepts for an object to be Hermitian
coincides when we identify the universal enveloping algebraU(gℂ) with the algebra of smooth right-invariant vector fieldsD(G).
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§ 4.6 Proposition. Let U(g) be the universal enveloping algebra of a Lie algebra g of a compact group
G. Let X, Y ∈ U(g) be two commuting operators (in the algebraic sense of elements in the universal
enveloping algebra). Then

(i) the closed operators dU (X), dU (Y ) ∈ D(G) strongly commute;

(ii) if dU (X) is positive (semi-)definite, and dU (Y ) is Hermitian, then exp(−dU (X)) exp(idU (Y )) =
exp(idU (Y )) exp(−dU (X)), where we recall that dU (X) and dU (Y ) are the unique closed extensions
of dU (x), respectively dU (Y ), and dU (X) > 0.

PROOF. The statement in (i) follows from the Proposition in §4.3 and Nelson’s Lemma in §4.5.
Indeed, if X, Y commute in the universal enveloping algebra then dU (X) and dU (Y ) weakly
commute on C∞(G) because dU is a representation of U(g) with domain C∞(G).

Now for G a compact group the Proposition in §4.3 tells us that any Hermitian element in
theD(G) is essentially self adjoint on C∞(G) ⊂ L2(G). Therefore in particular, for any X, Y ∈
U(gℂ), we have that the operators dU (X), dU (X)2 = dU (X2), dU (X)dU (Y ) = dU (XY ),
dU (X) + dU (Y ) = dU (X + Y ) have the same domain C∞(G), and are essentially selfadjoint
there. Hence the hypothesis of the Lemma in §4.5 are satisfied with A = dU (X) and B = dU (Y )
and statement (i) follows.

The statement in (ii) is a straight forward application of spectral calculus (cf [30, Section
VIII.5]).

§ 4.7 Remark Because of the above proposition we only need to check whether two operators commute
as elements of the universal enveloping algebra. From the proposition in §4.6 it then follows automatically
that their closures are selfajdoint and strongly commuting.

With this proposition we have completed the considerations from the general theory. We can now turn
to the application that we have in mind.

§ 4.8 Quasi-Fermionic vector fields Let Xij ,i, j = 1,… , 2n + 1, be (as in §3.1) the invariant vector
fields on Spin(2n + 1) which form the standard basis10 of the Lie algebra11 Lie(Spin(2n + 1)).

We define the following operators

D+
k
def
= X2k−1,2n+1 + iX2k,2n+1 ,

D−
k
def
= X2k−1,2n+1 − iX2k,2n+1 , k = 1,… , n ,

as linear operators on C∞(Spin(2n + 1),ℂ) ⊂ L2(Spin(2n + 1)).
We call these operators “quasi-Fermionic” because they satisfy the Canonical Anti-Commutation Rela-

tions onlywhen projected onto the correct (in the sense of the Remark in §3.7) subspace ofL2(Spin(2n+1)).

§ 4.9 Quasi-Hamiltonian operator Let us choose an n-tuple of strictly positive numbersE = (E1,… , En)
with 0 < E1 ≤⋯ ≤ En. Using forD±

k the notation of the previous paragraph we call a quasi-Hamiltonian
the operator

HE =
n
∑

k=1
EkD

+
kD

−
k ,

acting on C∞(Spin(2n+1)). For different n-tuples E we have different quasi-Hamiltonians. In the special
case where E = (1,… , 1) the quasi-Hamiltonians will be called quasi-number operator.

10 That is, they satisfy the commutation relations [2, Chapter 9, (42), p.260]

[Xri, Xsj] = �isXrj + �rjXis − �ijXrs − �rsXij , where r, i, s, j ∈ {1,… , 2n + 1}.

11We denote by Lie(G) the Lie algebra of a Lie group G when we want to underline that we consider the Lie algebra as the
vector space of right-invariant vector fields on G.
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This is well defined, since D± are linear combinations of smooth vector fields, in particular D− maps
C∞(Spin(2n + 1)) into C∞(Spin(2n + 1)) (indeed these differential operators are elements of an algebra:
D± ∈ D(Spin(2n + 1))). In fact, using the above definition of the operators D+

k , D
−
k in terms of the

operators Xij in §4.8 we have, on C∞(Spin(2n + 1)):

HE =
n
∑

k=1
Ek(X2k−1,2n+1 + iX2k,2n+1)(X2k−1,2n+1 − iX2k,2n+1)

=
n
∑

k=1
Ek(X2k−1,2n+1)2 +

n
∑

k=1
Ek(X2k,2n+1)2 + i

n
∑

k=1
Ek [X2k−1,2n+1, X2k,2n+1]

=
n
∑

k=1
Ek((X2k−1,2n+1)2 + (X2k,2n+1)2) + i

n
∑

k=1
EkX2k−1,2k.

Therefore we obtain

HE =
n
∑

k=1
EkLk + iB0 (II.7)

where B0 ∶=
∑n
k=1EkX2k−1,2k and Lk

def
= X2

2k−1,2n+1 +X
2
2k,2n+1, k = 1,… , n.

Remark The operators D±
k restricted to the subspace FΨ0 ⊂ C

∞(Spin(2n + 1)), defined in §3.13, satisfy
the canonical anticommutation relations.

Similarly the operator HE restricted to the subspace FΨ0 ≅
⋀

ℂn coincides with the Fermionic
Hamiltonian operator H̃E =

∑

kEkc
†
kck defined in (II.1).

We now prove some Lemmas which culminate in the theorem in §4.13 below.

§ 4.10 Lemma The operators X2k−1,2k, k = 1,… , n, defined in §4.8, form a commuting family of
operators in the universal enveloping algebra of soℂ(2n + 1).

PROOF. The statement follows from the standard fact12 that the maximal commutative subalgebra
(Cartan subalgebra) of the Lie algebra so(2n + 1) is generated by the elements X2k−1,2k, k =
1,… , n.

§ 4.11 Lemma. Consider

Ll
def
= (X2l−1,2n+1)2 + (X2l,2n+1)2, l = 1,… , n,

as an element of the universal enveloping algebra of so(2n+ 1). Then Ll commutes with X2k−1,2k, for all
l, k ∈ {1,… , n}.

PROOF. We first observe that, thanks to the Proposition in §4.6, it is enough to prove that

[Ll, X2k−1,2k] = 0, for all l, k = 1,… , n,

as a relation in the universal enveloping algebra U(so(2n + 1)ℂ). Hence all relations until the end
of the proof are meant to hold on this algebra.

Using the identity [X2, Y ] = X[X, Y ] + [X, Y ]X for any X, Y ∈ U(so(2n + 1)ℂ) we get

[Ll, X2k−1,2k] = X2l−1,2n+1[X2l−1,2n+1, X2k−1,2k] + [X2l−1,2n+1, X2k−1,2k]X2l−1,2n+1
+X2l,2n+1[X2l,2n+1, X2k−1,2k] + [X2l,2n+1, X2k−1,2k]X2l,2n+1 (II.8)

12Cf. e.g. [38, Chapter 42.]
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Now using in this expression the commutation relations (cf. footnote 10)

[Xri, Xsj] = �isXrj + �rjXis − �ijXrs − �rsXij , where r, i, s, j ∈ {1,… , 2n + 1}, (II.9)

we obtain for l, k = 1,… , n

[Ll, X2k−1,2k] = −X2l−1,2n−1 �2l−1,2k−1X2n+1,2k − �2l−1,2k−1X2n+1,2kX2l−1,2n+1
+X2l,2n+1 �2l,2kX2n+1,2k−1 + �2l,2kX2n+1,2k−1X2l,2n+1

Now, using in this expression the fact that Xij = −Xji for all i, j = 1,… , 2n + 1, and collecting
the Kronecker deltas into a unique Kronecker delta which multiplies everything, we get

[Ll, X2k−1,2k] = �k,l (X2l−1,2n+1X2k,2n+1 +X2k,2n+1X2l−1,2n+1
−X2l,2n+1X2k−1,2n+1 −X2k−1,2n+1X2l,2n+1)

Finally using the identity �ijf (i, j) = �ijf (i, i) where f (i, j) is any function of i, j ∈ ℕ we get

[Ll, X2k−1,2k] = �k,l (X2k−1,2n+1X2k,2n+1 +X2k,2n+1X2k−1,2n+1
−X2k,2n+1X2k−1,2n+1 −X2k−1,2n+1X2k,2n+1)

= 0.

From this lemma we have the following straightforward corollary.

§ 4.12 Corollary.
∑n
k=1EkLk commutes with B0 (with B0 as in (II.7)).

We collect all the properties of the quasi-Hamiltonian proved so far in the following theorem.

§ 4.13 Theorem. The family of unbounded operatorsHE defined on the domain C∞(Spin(2n + 1)) in
L2(Spin(2n + 1)) is a family of essentially selfadjoint operators. Moreover the quasi-Hamiltonian can be
decomposed on C∞(Spin(2n + 1)) as

HE =
n
∑

k=1
EkLk + i

n
∑

k=1
EkTk,

where Tk
def
= X2k−1,2k, and the operators Lk, k = 1,… , n are positive definite and essentially selfadjoint

on C∞(Spin(2n + 1)). The operators Tk, k = 1,… , n, are essentially-selfadjoint on C∞(Spin(2n + 1))
and their closure T k, k = 1,… , n, defines a family of strongly commuting unbounded operators in
L2(Spin(2n + 1)). Moreover T k strongly commutes with Ll, for any k,l = 1,… , n. .

5 Stochastic process associated to the quasi-Hamiltonian
§ 5.1 Operators associated to HE . Let us write the quasi-Hamiltonian in §4.13 as the sum of two
operators, that is let

HE = P0 + iB0

where P0
def
=

∑n
k=1EkLk and B0

def
=

∑n
k=1EkTk, where all the operators are defined on C

∞(Spin(2n+1)).
Since the operator B0 appears inHE multiplied by the imaginary unit i we cannot associate directly

to the closureHE a (real) stochastic process. For this reason we consider, together with P0, B0, andHE
above, the following operator

P
def
= P0 + B0, quad Dom(P )

def
= C∞(Spin(2n + 1)). (II.10)
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We show now that it is possible to associate a stochastic processes to both P0 and P . First we see that
both P0 and P generate a probability semigroup in the following sense.

§ 5.2 Lemma. The operators P , P0 are essentially selfadjoint on C∞(Spin(2n + 1)) and their closure
P , P0 are infinitesimal generators of a strongly continuous semigroup which acts on L2(Spin(2n + 1)) as
a convolution semigroup of probability measures with support on Spin(2n + 1).

PROOF. The statement follows from [20, Theorem 3.1].

Now we characterize the stochastic processes generated by P0 and P in terms of the SDEs these
processes satisfy. Before doing so let us spend a paragraph introducing the notion of stochastic differential
equations (SDEs) on a manifold and the notion of the generator of a diffusion process, basically following
[18].

§ 5.3 SDE on a manifold Let  be a smooth, connected manifold of dimension d. Moreover for
convenience let us assume to be compact. This assumption simplifies somewhat the discussion and is
sufficient for our purposes because we will in the sequel only deal with manifolds associated to compact
Lie groups. In particular if is a compact manifold then every C∞-vector field on it is complete, that
is the flow associated to the given vector field can be extended to all times. This allows us to define a
stochastic process globally on the manifold (without the need of the introduction of an explosion time).

Let us denote by () the set of C∞-vector fields on . Let A0, A1,… , Ar ∈ (), r ∈ ℕ be
vector fields on.

Let (Ω, (Ft)0≤t<∞,ℙ) be a filtered probability space. Let (W (t)) = (W 1(t),… ,W r(t)) be an r-
dimensional Ft-adapted Brownian motion with B(0) = 0. Finally, let � be an F0-measurable-valued
random variable.

Consider now an Ft-adapted stochastic process X = X(t) on , that is an Ft-adapted random
variable X = (X(t)) with values in the continuous functions C0([0,∞);).

Suppose that for every f ∈ C∞() the stochastic process X = (X(t)) satisfies ℙ-almost surely the
following integral equation

f (X(t)) − f (�) = ∫

t

0

r
∑

k=1
(Akf )(X(s))◦dW k(s) + ∫

t

0
(A0f )(X(s)) ds, (II.11)

for all13 t ∈ [0,∞), where ◦dB denotes integration in the Stratonovich sense (see, e.g. [18]). Then we
will say that the-valued stochastic process X = (X(t)) is a solution to (II.11).

Let us spend few words on the notion of strong solution regardless whether we are on a manifold 
or just in ℝd . Given a notion of solution it is natural to ask whether it satisfies some given initial condition.
That is we would like to specify the random variable � to be actually equal to a fixed point x ∈ without
any randomness. A solution to (II.11) with non random initial conditions � = x, would be a stochastic
process Xx starting at x for t = 0.

Actually what we are asking for is a function F ∶ ×C0([0,∞);ℝr)→ C0([0,∞);) which maps
the initial condition x ∈ and the given realization of the Brownian motionW = (W (t)) to a realization
of a process X = (X(t)) on the manifold  which is a solution Xx = F (x,W ) to (II.11) with initial
condition � = x with probability one and with given Brownian motionW = (W (t)). Since at some point
we would like to integrate Xx both with respect to x ∈ and with respect to ℙ it is natural to ask that F
be jointly measurable in x andW = (W (t)). It turns out that this is not always possible. When it is we
will call Xx = F (x,W ) a strong solution to (II.11) with initial condition � = x ∈  with probability
one (cf. the discussion in [32, Section V.10] and [18, Chapter IV, section 1, esp. pp.162-163]).

In the context of smooth manifolds the situation is particularly good because we are considering SDE
with smooth coefficients. Indeed one has a result (cf. [18, Chapter V, Section 1., Theorem 1.1, p.249])

13By saying that the equality holds ℙ-almost surely, for all t, we are saying that the right hand side and the left hand side
define indistinguishable processes.
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which states that given an initial condition x ∈ and an r-dimensional Brownian motionW = (W (t)),
then a strong solution to (II.11) always exists and is unique14.

Once this important detail regarding the meaning of initial conditions is understood we give meaning
to the following shorthand, which we shall refer to as a Stratonovich SDE on the (compact) manifold :

{

dX(t) =
∑r
k=1Ak(X(t))◦dW

k(t) + A0(X(t))dt ,
X(0) = x , x ∈.

(II.12)

The meaning associated to (II.12) is that we consider a strong solutionX of (II.11) (with initial conditions
� = x with probability one) and then define a solution to (II.12) to be the random variable Xx = F (x,W ),
where F is the map which defines our strong solution X.

Let us now discuss the notion of generator associated to the strong solution of (II.12).
First consider a more general case. For x ∈, let Xx be a continuous stochastic process adapted to a

filtration Ft in the probability space (Ω,F ,ℙ). For simplicity we consider a stochastic process defined for
all t ∈ [0,∞) and with values in the space of continuous maps [0,∞)→  (where is always assumed
to be compact) such that X(0) = x (where equality means ℙ-a.s.).

Let Px be the probability law associated to the random variable (Xx(t)). This means that Px is the
image measure under the measurable mapping Xx = (Xx(t)) of the probability measure ℙ. Assume that
x → Px is universally measurable15 and that Px is uniquely determined by x ∈.16 Moreover assume
that there exists a linear operator L with domain Dom(L) in C(), such that for every f ∈ Dom(L),

Xf (t)
def
= f (X(t)) − f (X(0)) − ∫

t

0
(Lf )(X(s)) ds

is a martingale with continuous sample paths and adapted to the filtration Ft associated to Xx(t) (cf. [18,
Chapter IV, Theorem 5.2, p.207]). Then the family of probability measures (Px)x∈ is called a diffusion
generated by the operator L.

When, for every x ∈, Xx is the stochastic process on the manifold  which is the strong solution
to (II.12) with initial conditionX(0) = x, then we have the following [18, Chapter V, Theorem 1.2, p.253].

The family of probability laws (Px)x∈, associated with the strong solutions Xx to (II.12) with initial
conditions x ∈, is a diffusion generated by the operator

L
def
= 1
2

r
∑

j=1
Ak(Akf ) + A0f, f ∈ C∞(),

(where, as before, the manifold is assumed to be compact) and A0, A1,… , Ar ∈ () are interpreted
as differential operators with common domain C∞().

We now go back to our setting where the manifold  = Spin(2n + 1) and collect the specialized
version of the standard results discussed in the previous paragraph. Doing so we give the characterization
of the generators P0 and P (defined in §5.1), as promised above, in terms of stochastic processes.

§ 5.4 Notation We need to perform a slight change of notation. In this section we use the symbols
A0, A1,… to denote vector fields. In the last section we used the symbols Xij , i, j = 1,… , 2n + 1, to
denote both elements of the Lie algebra so(2n + 1), and the associated vector fields. We now change the
notation and denote by Ak what we denoted in the last section by X2n+1,k, that is we define:

Ak
def
= X2n+1,k, k = 1,… , 2n.

14The idea behind this result is that the manifold  is locally diffeomorphic to ℝd where d is the dimension of the manifold
. This means that locally the SDE (II.12) (and hence (II.11)) can be written in coordinates as a standard SDE on ℝd . One can
apply standard results about existence and uniqueness of solutions of SDEs to these local realizations. Finally one needs to patch
together different local solutions into a global solution. Details can be found (as usual) in the above mentioned [18].

15Cf., e.g. [18, p.1].
16These conditions are actually automatically satisfied when Xx is the strong solution to (II.12).
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As before, we will not use different notations when we consider Ak as a vector field or a differential
operator. Similarly, the differential operator B0 defined after (II.7) will be considered also as a vector field
without changing notation.

§ 5.5 Lemma: Stochastic processes associated to P0 and P . 1. The following Stratonovich SDEs
on Spin(2n + 1)

(P )

{

dY (t) =
∑2n
k=1

√

E′kAk(Y (t))◦dW
k(t) + B0(Y (t))dt ,

Y (0) = x , x ∈ Spin(2n + 1)

(P0)

{

dX(t) =
∑2n
k=1

√

E′kAk(X(t))◦dW
k(t)

X(0) = x , x ∈ Spin(2n + 1),

where (W k(t), k = 1,… , 2n), is a standard Brownian motion in ℝ2n, are well defined and admit a
unique strong solution.

2. The operators P and P0 are the generators of the diffusion processes given by the strong solutions
of (P ), (P0) respectively.

PROOF. For the first statement see [18, Chapter 5, Theorem 1.1 p.249]. The second statement is
proved in [18, Theorem 1.2, p.253].

The following result describes the time evolution given by the quasi-Hamiltonian HE in term of a
stochastic diffusion process generated by the second order part inHE .

§ 5.6 Theorem. We have the following representations of the semigroup generated byHE

(f, e−tHEg)L2(Spin(2n+1)) = EX
[

f (0)
(

ei t B0g
)

(

X(t)
)

]

, (II.13)

whereEX denotes the expectation with respect to the process generated byP0,HE andB0 denote the closure
of the operators, f (0) denotes complex conjugation, and f, g ∈ C(Spin(2n + 1)) ⊂ L2(Spin(2n + 1)).

PROOF. First note that e−tHE is a bounded operator for all t ∈ ℝ+. Hence f, g can be taken in
L2(Spin(2n + 1)). The equality follows directly from the representation of the Hamiltonian as
HE = P0 + iB0, the fact that P0 and B0 strongly commute, and the strong Markov property of P0
(which is a consequence of point 2. of §5.5):

(f, e−tHEg)L2(Spin(2n+1)) = (f, e−t (P0+iB0)g)L2(Spin(2n+1))

= (f, e−t P0ei t B0g)L2(Spin(2n+1))

= EX
[

f (0)
(

ei t B0g
)

(

X(t)
)

]

.
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III
Schwinger functions for Euclidean Dirac
Fermions and induced representations

Abstract

We give a detailed analysis on how the 2-point Schwinger function (distribution) for the Dirac
field is obtained from first principles. In particular we show how the Schwinger function is uniquely
determined from the Lorentz covariance of the theory, arriving in a natural way to exhibit its vector
valued character. To this vector valued Schwinger function one can associate a bilinear form, however
this procedure is not unique.
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1 Introduction
The goal of this chapter is to introduce the Schwinger two-point function for the Dirac field in the most
natural way.

To do so we start from the Wigner-Mackey analysis of induced representations as applied to the full
Poincaré spin group. This topic is often discussed in the literature. We give here a full account clarifying
some points which might result as obscure from the standard treatment given in the literature.

45



46 Chapter III. Schwinger functions

Thenwe introduce the notion ofWightman two-point function. We explain the relation of theWightman
two-point function for the free Dirac field with the Wigner-Mackey analysis of the representations of the
Poincaré spin group mentioned above.

Finally we pass from the two-point Wightman function for Dirac field to the two-point Schwinger
function employing the Bargmann-Hall-Wightman theorem. By this theorem, the two point Wightman
function determines uniquely the two-point Schwinger function. Whereas the two-pointWightman function
is seen, e.g. from our analysis, to originate from a scalar product in a Hilbert space, when we pass to
the two-point Schwinger function such a connection is lost. In particular, if we want to associate to the
two-point Schwinger function a Euclidean invariant bilinear form, we can only do so in a non canonical
way.

The structure of this chapter is as follows. In section 2 we give some remarks about the projective
representations of a symmetry group in quantummechanics and how they correspond to true representations
of the universal cover of such a symmetry group. Then we specialize to the situation where the symmetry
group is chosen to be the full Poincaré group. In the last part of the section we explain how the Euclidean
rotation group in four dimensions SO(4) is obtained from the proper, orthochronous Lorentz group
SO0(1, 3) via complexification.

In section 3 we introduce some aspects of the standard theory of Wigner and Mackey about induced
representations and its applications to a special class of Lie groups split into a semidirect product. In the
last subsection, we specialize the analysis to the case of the universal cover of the proper orthochronous
Lorentz group.

In section 4 we discuss the two fundamental representations for the 1-particle Hilbert space describing
the possible states of a single 1∕2-spin massive elementary (quantum) particle. These two fundamental
representation are usually calledWigner representation and Dirac representations. The Dirac representation
is constructed in the last subsection and is obtained from what we called the “covariant representation”.

In section 5 we describe the Wightman and Schwinger two-point functions. We introduce Wightman
two-point functions in relation with the analysis, done in section 4, of the Dirac realization of the 1-particle
Hilbert space. The Schwinger functions are discussed in the last subsection. There we also discuss the
ambiguity which arises if one wants, as it is usually the case, interpret the two-point Schwinger function
as a kernel in a Euclidean invariant, bilinear form.

2 Some preliminary definitions.
Conventions. We define the Minkowski pseudo metric g on ℝ4 to be given, in standard form, by the matrix

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎠

.

We employ the convention by which an Hermitian scalar product is a positive definite form (⋅, ⋅), antilinear in the
left argument and linear in the right one.

Symmetries in quantum mechanics
Comment. In the standard presentation of quantum mechanics one usually interprets the absolute value squared of
Schrödinger wave functions as probability densities. This physical assumption leads mathematically, to associate
physical states with normalized wave functions. This in turn leads to some complications because, instead of
considering wave functions in a linear space, in particular a Hilbert space, we have to consider them as elements
in the projectivization of some Hilbert space. Moreover, the symmetry properties of the theory are represented in
this projective Hilbert space only up to a phase, meaning that we have to look, on the projective Hilbert space, for
projective representations of any symmetry group of our physical system. This picture, with a projective Hilbert
space and projective representations, is more complicated than a description just in terms of a Hilbert space and
actual (linear, unitary) representations because the constraint of having normalized states is a non linear constraint.
Luckily, in most cases, one can define a new (linear) Hilbert space and a new group of transformations, acting on the
Hilbert space by a (quasilinear) representation (to be defined below). The original projective system can then be
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uniquely reconstructed by this linear model. This analysis is due mainly to Wigner and Bargmann. We give a here
the skeleton of this analysis mainly for two reasons. First we want to introduce some notation and motivate the next
subsection where we pass from the proper orthochronous Lorentz group SO0(1, 3) to its double cover Spin0(1, 3).
Second, the very existence of Fermions is justified mathematically by the, above mentioned, projective nature of
quantum mechanics. In particular, since the sign of a wave function has no meaning from the projective standpoint,
we can allow a wave function, describing indistinguishable particles, to be also antisymmetric in its variables, not
just symmetric (and in general we can allow for parastatistics).

§ 2.1 Let be a (separable) complex Hilbert space. We denote by ℙ() the projective Hilbert space of
. That is, we let ℙ() = ( ⧵ 0)∕ ∼, where ∼ denotes the equivalence relations which identifies two
vectors, v ∼ w, v,w ∈ , if there exists a complex number � ∈ ℂ such that v = �w.

§ 2.2 Let G be a Lie group and  be a complex Hilbert space. We denote by ℂ⋆ the multiplicative
group of non-zero complex scalars. We call projective representation of G a Lie group endomorphism
� ∶ G → Aut()∕ℂ⋆, where Aut() denotes the space of invertible, bounded, linear maps from  to
itself.

§ 2.3 We call a map � from a complex vector space V into itself antilinear, when it satisfies, for all
v,w ∈ V , � ∈ ℂ, �(v+w) = �(v) +�(w), �(�v) = ��(v), where � denotes complex conjugation. Let
be a complex Hilbert space with scalar product (⋅, ⋅). An antiunitary map is an antilinear map T → 
such that (T v, Tw) = (w, v), for all v,w ∈ V . Let us call quasiunitary a map which is either unitary or
antiunitary. We note that quasilinear maps are real-linear in the sense that a quasilinear map � satisfies
�(rv) = r�(v) for all r ∈ ℝ, v ∈ V .

§ 2.4 We define a quasiunitary representation of a Lie groupG to be a continuous group-homomorphism
� of G into the space of quasiunitary endomorphisms of a complex Hilbert space .

§ 2.5 We define the space of symmetry transformations of a complex Hilbert space  with scalar
product (⋅, ⋅) to be the topological group of all real-linear (real-linear is needed because we want to
allow for antilinear maps which are real-linear but not complex-linear) maps � from  to  such
that |(�(v), �(w))| = |(v,w)|, where group structure is given by composition and the topology is the
operator norm topology. We define a quasiunitary projective representation to be a continuous group-
homomorphism � into the space of symmetry transformations. We note that in some references (cf. e.g.
[26]) what we call a “quasiunitary projective representation” is simply called a “projective representation”.

§ 2.6 Remark. One could say that a projective representation of a group G adds more structure to just a
representation of a group G. In some sense this “extra structure” is at the core of the difference between
quantum an classical mechanics. We have in mind the case of the Heisenberg group [25, 2]. It is often
convenient to go from a projective representation of a groupG to just a representation but of a larger group
G′. This possibility is very convenient because it dispenses us of the non-linear nature of a projective
space. Moreover, often, the groupG′ is “nicer” than the original groupG. We briefly describe this process
(of going from a projective representation of G to a representation of G′) following [7, 6, Sections III.5
and VIII.4]

§ 2.7 Let N,G be topological groups with N Abelian. A central extension of N by G is a triple (G′, i, j)
where G′ is a topological group, i is a homeomorphic isomorphism of N onto a closed subgroup N′ of the
center of G′, and j is an open homomorphism of G′ onto G whose kernel coincides with N′. The triple
(G′, i, j) is usually displayed as a short exact sequence N→ G′ → G.

§ 2.8 Proposition. Let � be a (non trivial) unitary projective representation of a topological group G.
Then � is constructible from a unique (up to isomorphisms) central extension U(1) → G′ → G of the
circle group U(1) by G.

PROOF. Cf. [6, p. 834].
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Lorentz and Poincaré groups, and universal covers, complexification
Comment. In this subsection we collect basic facts about the Lorentz and Poincaré group, their universal covers,
and complexification. We employ the, by now, standard notation of Clifford algebras and Spin and Pin groups (cf.
e.g. [22, 12]). We mention the problem of describing all the inequivalent Lie groups which are universal cover of
the full Poincaré group, meaning the Poincaré group including space-time reflections.

§ 2.9 We call Lorentz group 
def
= O(1, 3) (also sometimes called full Lorentz group, or homogeneous

Lorentz group) the group of linear maps ℝ4 → ℝ4 which leave invariant the Minkowski metric. Under
this definition the Lorentz group has four connected components and includes three dimensional rotations,
boosts, as well as spacetime reflections. It is customary to denote the connected component of the identity
of  by ↑

+. Said differently we have 
↑
+
def
= SO0(1, 3), where SO0(1, 3) is the connected component of

the identity of SO(1, 3).

§ 2.10 We call Poincaré group  (also called inhomogeneous Lorentz group) the semidirect product of
the Lorentz group acting on the group of four-dimensional translations, that is 

def
= ℝ4 ⋊O(1, 3), where

ℝ4 denotes here the additive, Abelian, group of four-dimensional translations. Its connected subgroup is
↑
+
def
= ℝ4 ⋊ SO0(1, 3).

§ 2.11 As discussed above, when dealing with projective representations of these groups, is convenient to
consider their universal covers. We denote by ̃↑

+, respectively ̃
↑
+ the universal cover of ↑

+, respectively
↑
+:

̃↑
+
def
= Spin0(1, 3), ̃↑

+
def
= ℝ4 ⋊� Spin0(1, 3),

where we have employed the notation ⋊� to point out that Spin0(1, 3) acts on ℝ4 via the covering map
� ∶ Spin0(1, 3) → SO0(1, 3). Let us denote by SL(2;ℂ)ℝ the complex Lie group SL(2;ℂ) seen as a real
Lie group of twice its dimension. Then we have (cf. e.g. [12, p. 56])

Spin0(1, 3) ≅ SL(2;ℂ)ℝ.

§ 2.12 Choice of universal cover. The groups  and  are non–connected–Lie groups hence more care
is needed when passing to the universal covers: cf. [19, 5, 24, 27]. In particular the universal cover is not
unique. Since our primary interest is toward Dirac Fermions we follow the common practice choosing for
universal covers of respectively the Lorentz and Poincaré group the following disconnected Lie groups

̃
def
= Pin(1, 3), ̃

def
= ℝ4 ⋊� Pin(1, 3).

Note that we have the following short exact sequences (cf. [12, Thorem 2.10])

ℤ2 → Spin(1, 3)→ SO(1, 3), ℤ2 → Pin(1, 3) → O(1, 3).

In particular these universal covers are “double covers”.

§ 2.13 A complexification of a Lie group G is a pair (F, i) of a complex analytic group F and a Lie
group homomorphism i ∶ G → F such that the following universal property is satisfied: Given another
complexification (F′, i′) there exists a unique analytic group homomorphism � ∶ F → F ′ such that the
diagram

G F

F ′

i

i′ �

commutes.
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§ 2.14 The complexification of Spin0(1, 3) is isomorphic (as a complex Lie group, that is as an analytic
group) to Spin(4;ℂ) ≅ SL(2,ℂ) × SL(2,ℂ). Note that Spin0(1, 3) is isomorphic (as a Lie group) to
SL(2,ℂ)ℝ, that is to SL(2,ℂ) seen as a real six-dimensional Lie group. On the other hand we have that
Spin(4;ℂ) splits into the direct product SL(2,ℂ) × SL(2,ℂ). However this time SL(2,ℂ) is regarded
as a complex, three-dimensional, Lie group. Let Spin(4) be the universal cover of the real Lie group
SO(4) (cf. e.g. [20, p. 151]). The Lie group Spin(4) is not simple (but only semisimple), indeed one has
Spin(4) ≅ SU(2)×SU(2) (cf. [12, p. 50]), where SU(2) ≅ Spin(3) (cf. e.g. [20, p. 152]). By the universal
property, the complexification preserves the Cartesian product structure, in particular the complexification
of Spin(4) ≅ SU(2) × SU(2) is Spin(4,ℂ) ≅ SL(2,ℂ) × SL(2,ℂ). It will be important the fact that the
groups Spin0(1, 3),Spin(4,ℂ),Spin(4) can all be realized inside the same complex Clifford algebra ℂl(4)
(we will say more about this below).

§ 2.15 Let us consider the Lie group SO(4) of Euclidean rotations in four dimensions and the proper,
orthochronous, Lorentz group SO0(1, 3). The complexification of each Lie group is isomorphic to SO(4,ℂ).
To define and manipulate Wightman and Schwinger functions, we will need to fix embeddings of SO(4)
and SO0(1, 3) into SO(4,ℂ). In this section we explicitly construct such embeddings.

Consider SO(4) as the real Lie subgroup of SO(4,ℂ) consisting of those matrices in SO(4,ℂ) all
of whose entries are real. In this way we have defined and embedding of SO(4) into SO(4,ℂ). Let us
parameterize SO(4) by generalized Euler angles (cf. e.g. [28, Section 9.1.5 (8), p. 11]), that is, local
coordinates:

(�1, �2, �3, �4, �5, �6), �1 ∈ [0, 2�), �j ∈ [0, �), 2 ≤ j ≤ 6.

Any elementR in SO(4) is an analytic functions in these six real parameters. We analytically continue these
functions to functions on a set of 6 complex parameters. These 6 complex parameters now parameterize
SO(4,ℂ) in such a way that if we restrict to the real part we obtain an element of SO(4) (as a Lie subgroup
of SO(4,ℂ)).

Let us now consider the proper orthochronous Lorentz group SO0(1, 3). We want to find an embedding
of SO0(1, 3) into SO(4,ℂ). Let us introduce a set of generalized Euler angles for SO0(1, 3), that is a set
of local coordinates:

( ,�) = ( 1,  2,  3, �1, �2, �3),  1,  2,  3 ∈ ℝ, �1, �3 ∈ [0, 2�), �2 ∈ [0, �),

where  1,  2,  3 parametrize Lorentz boosts and �1, �2, �3 parametrize three dimensional rotations. Let
R ∈ SO(4) ⊂ SO(4,ℂ). We denote by R̃ the analytic continuation of R to the complex coordinates which
parametrize SO(4,ℂ). Then there exists a unique element RΛ ∈ SO(4) such that its analytic continuation
R̃Λ satisfies

Λ(�, ) =
(

−i 0
0 I3

)

R̃Λ(�, i )
(

i 0
0 I3

)

,

for all  1,  2,  3 ∈ ℝ, �1, �3 ∈ [0, 2�), �2 ∈ [0, �), where the angles �, are as above and i denotes
the set of three imaginary angles: i 1, i 2, i 3.

Let us denote by (�j)6j=1 the subset of the subset of the parametrization of SO(4,ℂ) such that �1 ∈
[0, 2�), �j ∈ [0, �), 2 ≤ j ≤ 6. Similarly, let us denote by ( k, i�k)3k=1 the subset of parameters of
SO(4,ℂ) such that  1,  2,  3 ∈ ℝ, �1, �3 ∈ [0, 2�), �2 ∈ [0, �).

Then, we define the following embeddings:

SO(4) → SO(4,ℂ), R → R̃↾(�j )6j=1 ,

and
SO0(1, 3) → SO(4,ℂ), Λ → R̃Λ↾(i k,�k)3k=1 .

For later reference, we call these embeddings the standard embeddings of SO(4) and SO0(1, 3) into
SO(4,ℂ) respectively.
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3 Remarks on induced representations
Comment. In this section we collect some basic facts about irreducible unitary representations of the Poincaré
group (more precisely, its double cover). We will not go into the details of induced representations as discussed by
Wigner and Mackey, but rather will restrict ourselves to a presentation of such results as will be necessary in the
sequel. We refer the reader to [10, 1, 23, 22, 13, 8, 30].

Induced representations of locally compact groups
Comment. We give, in this subsection, a set of general definitions and results which will become important when we
turn to the specific situation treated in this thesis, i.e. the case of the Poincaré group in connection with Wightman
and Schwinger functions. There are multiple (equivalent) approaches to define induced representations. We select
the one that we feel is best suited for the application that we have in mind.

§ 3.1 Let G be a locally compact topological group, H a closed subgroup, and � a unitary representation
of H on a complex Hilbert space (�). The quotient G∕H = {gH ∶ g ∈ G} equipped with the quotient
topology is a locally compact Hausdorff space. G acts on the quotient G∕H by left multiplication, that
is we have a continuous map G × G∕H → G∕H, (g, !) → g ⋅ !, where, if ! = g′H ∈ G∕H for some
g′ ∈ G, then g ⋅ ! = gg′H . Given an element g ∈ G and Borel measure � on G∕H we denote by �g the
push-forward measure given by �g(B)

def
= �(g ⋅ B) for any Borel set B ∈ G∕H. Finally, we assume that a

quasi-invariant measure � is given on G∕H, where a quasi-invariant measure is a regular Borel measure �
such that �g is absolutely continuous with respect to � for all g ∈ G.

§ 3.2 Consider the special case where G is a finite group and H a subgroup of G. In the case of induced
representations for finite groups (cf. e.g.[18, Chapter 8]), it is often useful to fix a section, that is a way
to identify cosets in G∕H with elements in G. Going back to the case of G a topological group and H a
topological subgroup of G, we now impose on a section the extra condition of being measurable. That is,
we define a measurable cross section of a topological group G with respect to a topological subgroup
H to be a measurable map s ∶ G∕H→ G such that q(s(x)) = x, for all x ∈ G∕H, where q ∶ G→ G∕H
is the quotient map. In the following we will refer to a measurable cross section just as section. Such a
section always exists at least if we assume G to be a second countable, locally compact, topological group
(cf.[8, pp.167, 71]). We assume that we have fixed a choice of a measurable cross section. Such a choice
is, in general, not natural.

§ 3.3 Let us set 
def
= Ran s to be the image of s. Note that  is then a Borel set in G (because the

quotient map q ∶ G → G∕H is continuous, hence (Borel-)measurable) and intersects every H-orbit in G
in precisely one point. (Conversely, if we are given a Borel set′ ⊂ G which intersect each H-orbit in
one point, we can define a measurable section s′ by setting s′

def
= q↾′ .) By definition, the preimage of

the section s coincides with the restriction q↾ of the quotient map q to. Hence, if we denote by �s
the pushforward of the measure � under s, then �s is supported on  ⊂ G and �s(B) = �(q↾ (B)), for
any Borel set B ⊂.

§ 3.4 The define the representation of G induced by the representation (�,(�)) of H to be the pair
(

U�
�,s , L

2(, �s;(�))
)

defined as follows. We denote by

U�
�,s ∶ G→ U

(

L2(, �s;(�))
)

,

the continuous group-homomorphism from the locally compact group G to the space of unitary operators
on the complex Hilbert space L2(, �s;(�)). defined by:

U�
�,s(g)f (p)

def
=

√

d�g−1
d�

(q(p))�
(

s(q(p))−1 g s(g−1 ⋅ q(p))
)

f (g−1 ⋅ q(p)),

p ∈, f ∈ L2(, �s;(�)), (III.1)
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where�g−1 is the push forward of themeasure� under the left action ofG onG∕H, that is ∫G∕H f (!) d�g−1(!) =

∫G∕H f (g ⋅ !) d�(!); moreover
d�g−1
d� (!) represents the Radon–Nikodym derivative of �g−1 with respect

to mu at ! ∈ G∕H.

§ 3.5 We have presented here one way to induce a representation. There are other (unitarily equivalent)
realizations of an induced representations (cf. e.g. [10, 1, 6]). When it is irrelevant which of these
equivalent models we use, we will employ the notation IndGH(�) to denote the representation of G induced
by the representation � of the subgroup H.

Wigner-Mackey theory for semidirect products
Comment. The objective of this subsection is to arrive at theorem §3.13 which sometimes goes by the name of
“Mackey machine”. This theorem is a cornerstone for characterizing all unitary irreducible representations (up to
equivalence) for a special class of topological groups. This class includes finite dimensional Lie groups which
are semidirect products of a topological group and an Abelian topological group, and which satisfy an important
condition regarding the orbits of the elements in the Abelian (normal) subgroup.

§ 3.6 Let G be a locally compact group. The set of equivalence classes of (continuous) unitary representa-
tions of G is, with the appropriate topology (Fell topology, cf. e.g.[10, p. 38]), a topological space, called
the dual space of G and is denoted by Ĝ.

§ 3.7 Let N be an Abelian, locally compact group. Then the dual space N̂ can be given the structure of
an Abelian topological group called the dual group (or Pontryagin dual) of N. An element � ∈ N̂ is
(by definition) an irreducible unitary representation of N and is called a character of the Abelian group
N. By Schur’s lemma, any character of N is a one dimensional unitary representation. Hence a character
of N is a continuous homomorphism from N into the one dimensional torus T of complex numbers of
modulus one. Therefore we can make N̂ into a locally compact Abelian group by taking as our product
the pointwise multiplication of complex valued functions, and as topology the compact-open topology
(giving uniform convergence on compact sets).

§ 3.8 In this subsection we consider the case where we are given a topological group G with a normal,
Abelian, closed subgroupN. In particular we have in mind the “semidirect product case” whereG = N⋊L
is a semidirect product of an Abelian topological group N with a topological group L.

§ 3.9 We define an action � → g ⋅ � of G on the dual group N̂ of N, by letting (g ⋅ �)(n) = �(g−1ng), for
g ∈ G, � ∈ N̂, n ∈ N. This gives a jointly continuous map G × N̂→ N̂, (g, �) → g ⋅ � . Note that N, as
a subgroup of G, acts trivially on the dual space Ĝ of G. If we specialize to the case of the semidirect
product G = N⋊ L, then the action of G on N̂ naturally descends to an action of L on N̂.

§ 3.10 We let G�
def
= {g ∈ G ∶ g ⋅ � = �}, G(�)

def
= {g ⋅ � ∶ g ∈ G} be, respectively, the stabilizer and

the G-orbit of a character1� ∈ N̂. The stabilizer G� , � ∈ N̂, is a closed subgroup of G. If, as above, we
specialize to the semidirect product case G = N⋊ L, then we define L� , as a subgroup of L, to be the
stabilizer of � ∈ N̂ under the action of L on N̂ as remarked in §3.9.

§ 3.11 Note that two G-orbits never intersect unless they coincide. Therefore the set of G-orbits of
elements of N̂ is the quotient space N̂∕(G↾N̂) = {G(�) ∶� ∈ N̂}, where G↾N̂ denotes the equivalence
relation which makes of x, y ∈ N̂ equivalent if and only if they lie on the same orbit under G.

§ 3.12 A cross-section of theG-orbits in N̂, is defined to be a subset X̂ of N̂ such thatX ∩O is a singleton
for each O ∈ N̂∕G↾N̂.

1We introduce here the stabilizer and the orbit for the action of G on the dual group N̂ because we will only need these
concepts in this context. The notion of a stabilizer (also called an isotropy group or a little group) and of a G-orbit are, in
general, defined for a generic action of the group G on a generic set.
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We are now ready to state the fundamental theorem in this subsection which is a version of what is
often referred to as “Mackey machine” for semidirect products. The statement we present holds under
weaker assumptions (cf. [10, p. 160-161]). The assumption we impose are more restrictive but are more
intuitive, and wholly sufficient for our purposes.

§ 3.13 Theorem (Mackey). SupposeG = N⋊L is a semidirect product of a second countable topological
group L acting on a Abelian, second countable topological group. Moreover, suppose there exists a Borel
set X̂ in N̂ which is a cross-section of the G-orbits in N̂. Then the dual space Ĝ is given by

Ĝ =
{

indGG� (� × �) ∶ � ∈ L̂� , � ∈ X
}

,

where � × � denotes the unitary representation (� × �,), defined by taking as carrier space the carrier
space of the representation �, and letting (� × �)(n, l) = �(n)�(l), for all (n, l) ∈ G = N⋊ L.

The concrete case of ISpin0(1, 3) = ℝ4 ⋊ Spin0(1, 3)
Comment.We now specialize Mackey’s theorem in §3.13 to the specific case which interests us, i.e. the proper
orthochronous Poincaré group.

§ 3.14 We specialize the discussion of the previous subsection to the case

ISpin0(1, 3) = ℝ4 ⋊ Spin0(1, 3),

where ℝ4 denotes the additive group of translations in the Euclidean four dimensional space ℝ4, and
Spin0(1, 3) is the universal cover of the proper orthochronous Lorentz group ↑

+ = SO0(1, 3). The
semidirect product is induced by the covering map Spin0(1, 3) → SO0(1, 3) and the standard action of
SO0(1, 3) ⊂ SO(1, 3) on ℝ4 which defines SO(1, 3). Let us remark that ISpin0(1, 3) is the universal cover
of the proper orthochronous Poincaré group.

We translate the theorem in §3.13 to the present case.

§ 3.15 The action of Spin0(1, 3) on ℝ4, in the semidirect product, coincides by hypothesis with the action
of SO0(1, 3). The dual group ℝ̂4 of ℝ4 can be again identified with ℝ4. Moreover, the action of SO0(1, 3)
on the dual group of ℝ4 can be identified with the action of SO0(1, 3) on ℝ4 itself if we replace every
element of SO0(1, 3)with its inverse. Hence the Spin0(1, 3)-orbits in the dual group ofℝ4 can be identified
with the orbits of ℝ4 itself under the standard action of SO0(1, 3). Each orbit (cf. e.g. [1, p. 517]) is one
of the following subsets of ℝ4 ≅ ℝ̂4, for some m ≥ 0,

Ô+m =
{

n̂ ∈ ℝ̂4 ∶ n̂21 + n̂
2
1 + n̂

2
1 + n̂

2
1 = m

2, n0 > 0
}

Ô−m =
{

n̂ ∈ ℝ̂4 ∶ n̂21 + n̂
2
1 + n̂

2
1 + n̂

2
1 = m

2, n0 < 0
}

Ô+im =
{

n̂ ∈ ℝ̂4 ∶ n̂21 + n̂
2
1 + n̂

2
1 + n̂

2
1 = −m

2,
}

Ô+0 =
{

n̂ ∈ ℝ̂4 ∶ n̂21 + n̂
2
1 + n̂

2
1 + n̂

2
1 = m

2, n0 > 0
}

Ô−0 =
{

n̂ ∈ ℝ̂4 ∶ n̂21 + n̂
2
1 + n̂

2
1 + n̂

2
1 = m

2, n0 < 0
}

Ô00 =
{

n̂ = (0, 0, 0, 0)}.

(III.2)

A cross-section X̂ must be a set in ℝ̂4 which intersects every orbit in precisely one point. The list of sets
of orbits in (III.2) implies that, if we let

X̂> = {(m, 0, 0, 0) ∶m > 0}, X̂< = {(−m, 0, 0, 0) ∶m > 0}, X̂i = {(0, 0, 0, N) ∶N > 0},

X̂+ = {(1∕2, 0, 0, 1∕2)}, X̂− = {(−1∕2, 0, 0, 1∕2)}, X̂0 = {(0, 0, 0, 0)},

then a possible choice of cross-section X̂ is the union

X̂ = X̂> ∪X< ∪Xi ∪X+ ∪X− ∪X0. (III.3)
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For every n̂ ∈ X̂ we have a corresponding Ln̂. In the various cases, we have the following isomorphisms
(for details cf. e.g. [1, Section 17.2.C])

Ln̂ ≅

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Spin(3) ≅ SU(2) n̂ ∈ X̂> ∪ X̂<

SL(2,ℝ) n̂ ∈ X̂i
ISO(2) n̂ ∈ X̂+ ∪X−
Spin(1, 3) n̂ ∈ X̂0

.

Now the theorem in §3.13 says that every unitary irreducible representation (up to isomorphism) of
G = Spin0(1, 3) is uniquely determined by a character � = n̂ ∈ X̂ and one (up to isomorphism) unitary
irreducible representation (�,) of the corresponding group Ln̂. Moreover the theorem asserts that each
such a representation (up to isomorphism) of ISpin0(1, 3) is induced from the representation (n̂ × �,) of
ℝ4 ⋊ Ln̂ via the induced representation method.

4 One particle states
Comment.We present here the description of elementary particles with positive mass and spin 1∕2 as one (up to
equivalence) irreducible unitary representation of the (double cover) of the Poincaré group. We give three equivalent
unitary irreducible representations of the (double cover) of the Poincaré group, each in a separate subsection. Each
of these representations is important. The contents of the subsections is the following.

1. In the first subsection, we discuss Wigner original construction. This construction has the advantage of
being the most natural. Unfortunately it has the disadvantage that it is non-trivial to extend this unitary
representation to a (non unitary) representation of the complexified Poincaré group. The representation of the
complexified Poincaré group will be a pivotal point in the next section, where we will deal with Wightman
theory (for relativistic spin 1/2 positive mass quantum fields).

2. In the second subsection, we discuss a “covariant representation”. This representation is unitarily equivalent
to the Wigner representation of point 1. but has an important new feature. In this representation, the spin
operator is finite dimensional (that is, a matrix) and commutes (strongly) with the angular momentum operator.
Moreover, this representation can be easily extended to a (non unitary) representation of the complexified
Poincaré group. Nevertheless, this representation has a problem. The parity transformation (which reverses
the orientation of three dimensional space) cannot be realized in this representation.

3. This leads to the approach in the third subsection. To be able to represent parity and keep the representation
amenable to an extension to the complexified Poincaré group, we need to add nonphysical degrees of freedom.
We stress that, from the perspective taken here, these extra degrees of freedom are not directly linked with
antiparticles.
Antiparticles are described, in Wigner representation, by another copy of the same Wigner representation
(up to equivalence) which is used for particles. The only difference is that particles and antiparticles have
opposite charge. We do not discuss anti-particles because, for our discussion, we do not need the notion of
charge.
Explicitly, we consider in the last subsection the covariant representations (in the sense of point 2.) together
with a representation obtained from that by applying (a lift of) the parity transformation (to be defined there).
Then, we consider the direct sum of these representations, hence obtaining a reducible representation. Finally,
we project onto the even parity subspace of the representation space obtaining an irreducible representation,
which we call covariant 1-particle representation. This representation will be the starting point in our
presentation of Wightman theory.

This section concerns material discussed in the rich literature that has appeared since the paper by Wigner and
Barmann. Nevertheless we believe that our presentation clarifies some points where the existing literature is
somewhat “cryptic”.

Wigner states with positive mass and spin one half
§ 4.1 In the following we will be interested only in the irreducible unitary representation of ISpin0(1, 3)
which is uniquely (up to isomorphism) given by a fixed character n̂ = (m, 0, 0, 0) ∈ X̂>, for a fixed



54 Chapter III. Schwinger functions

m > 0, and the defining representation of SU(2), that is the representation of SU(2) given by complex
two-by-two matrices with determinant one acting on ℂ2. In the framework of quantum mechanics, the
parameterm is associated to the physical observable of rest mass, and the choice of representation of SU(2)
corresponds to the physical observable called total angular momentum quantum number and denoted by
J . We have made the choice of a fixed m > 0 and the defining representation of SU(2) which corresponds
to J = 1∕2 (the numerical value 1∕2 corresponds to the highest weight (with appropriate normalization)
of the representation of the Lie algebra so(3) which corresponds to the defining representation of the Lie
group SU (2)). For this reason we call the induced representation in this case the “positive mass and spin
one half” representation of ISpin0(1, 3).

We now explicitly construct the induced representation in this “positive mass and spin one half” case.

§ 4.2 In the definition of induced representation we gave in §3.4, we assumed fixed a choice of measurable
section s ∶ G∕H → G. In this case this translates to a measurable section s ∶ ISpin0(1, 3)∕(ℝ4 ⋊ Ln̂) →
ISpin0(1, 3), that is we have to find a Borel set  ⊂ ISpin0(1, 3) which intersects every (ℝ4 ⋊ Ln̂)-
orbit in exactly one point. We proceed as follow. Under the identification ℝ̂4 ≅ ℝ4 the character n̂
is identified to some point n ≅ n̂ in ℝ4. Then we choose as  the ISpin0(1, 3)-orbit ISpin0(1, 3)(n)
of n under ISpin0(1, 3). This procedure does give the desired result because by hypothesis the group
ℝ4 ⋊ Ln̂ is the stabilizer ISpin0(1, 3)n̂ of n̂ ≅ n, which means that the ISpin0(1, 3)-orbit of n̂ ≅ n is
naturally identified with ISpin0(1, 3)∕ISpin0(1, 3)n̂. Finally, note that, under the identification n ≅ n̂,
the ISpin0(1, 3)-orbit ISpin0(1, 3)(n) is identified with one of the orbits in the sets of orbits we have
listed in (III.2). To summarize, in our case, we have picked a character n̂ = (m, 0, 0, 0), for some fixed
m > 0. This gives a natural choice of section s ∶ ISpin0(1, 3)∕ISpin0(1, 3)n̂ → ISpin0(1, 3) which sends
ISpin0(1, 3)∕ISpin0(1, 3)(m,0,0,0) to the ISpin0(1, 3)-orbit of (m, 0, 0, 0)which we denote byO+m. Moreover
the invariant measure � on Spin(1, 3)∕Spin(3) ≅ SO0(1, 3)∕SO(3) is pushed forward by s to a measure
on O+m which we denote by �m. It is well known (cf. e.g. [16, IX.8 p. 70 and Theorem IX.37 p. 84]) that
the measure �m is unique up to multiplication by a scalar. We can explicitly parametrize the manifold O+m
with a single chart diffeomorphic to ℝ3. In this parametrization we set

�m(p)
def
= 1
2
√

p2 + m2
dp, p ∈ ℝ3.

where dp denotes the Lebesgue measure on ℝ3.

§ 4.3 The induced representation (U�
�,s, L

2(, �s;(�))) in the general definition we gave in §3.4 spe-
cialize in this “positive mass, spin one half” case to the irreducible unitary representation

(

Um,1∕2,m,1∕2)

of ISpin0(1, 3), given as follows. The representation (�,(�)) of ℝ4 ⋊ SU(2) is given, in our case, by
setting (�) = ℂ2 and, for all (n, u) ∈ ℝ4 ⋊ SU(3),

�(x, u) = eimx0 u,

where x0 is the first component of a vector x = (x0, x1, x2, x3) ∈ ℝ4 representing a translation in four
dimensions, and u ∈ SU(2) is seen as a 2-by-2 complex matrix acting on ℂ2. Moreover in our case, since
� is invariant, we have

√

d�g−1
d�

(q(p)) = 1, p ∈ O+m.

The only non trivial step in our “translation” is to give an explicit form to the term

�
(

s(q(p))−1 g s(g−1 ⋅ q(p))
)

in (III.1) of §3.4. Let us identify Spin0(1, 3) ≅ SL(2,ℂ)ℝ. We define the matrix

p̃
def
=

(

p0 − p3 p2 + ip1
p2 − ip1 p0 + p3

)

, p ∈ O+m. (III.4)
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Note that p̃ ∈ SL(2,ℂ), that is det p̃ = 1, and is positive definite (indeed, p̃ has eigenvalues p0 ±
√

p2,
where p2

def
= p21 + p

2
2 + p

2
3. Now, since we assume p ∈ O+m, p

0 =
√

p2 + m2. Hence both eigenvalues are
positive). Moreover, let us define

V (A, p)
def
=

√

p̃−1A
√

A−1p̃A∗−1, A ∈ SL(2, C), p ∈ O+m. (III.5)

We note that V (A, p) ∈ SU(2), for all A ∈ SL(2,ℂ), p ∈ O+m. We state the following result, referring
to, e.g. [4, Section 7.2.C] and [1, Section 17.2.D] for the explicit computation. For any g = (x,A) ∈
ISpin0(1, 3) = ℝ4 ⋊ Spin0(1, 3),

�
(

s(q(p))−1 g s(g−1 ⋅ q(p))
)

= eix�p�V (A, p), p ∈ O+m,

where x�p� = t
√

p2 + m2 − x ⋅ p denotes the Minkowski scalar product of x = (t, x) ∈ ℝ4 with
p = (p0,p) ∈ O+m and identifying O+m with the set {p ∈ ℝ4 ∶ p = (

√

p2 + m2,p), p ∈ ℝ3} ⊂ ℝ4. We
collect the main results discussed in §4.2, §4.3 in the following paragraph.

§ 4.4 The induced representation (Um,1∕2,m,1∕2) is given by

m,1∕2 = L2(O+m, �m;ℂ
2), Um,1∕2(x,A)f (p) = eix�p�V (A, p)f (Λ(A)p), (III.6)

where f ∈ L2(O+m, �m;ℂ
2), x�p� = x0p0 − x1p1 − x2p2 − x3p3 denotes the Minkowski pseudo metric,

p = (p�)�=0,1,2,3 ∈ O+m, (x,A) ∈ ISpin0(1, 3) with x = (x�)�=0,1,2,3 ∈ ℝ4, A ∈ SL(2,ℂ), and Λ ∶
Spin0(1, 3) → SO0(1, 3) denotes the covering map. We call (Um,1∕2,m,1∕2) theWigner representation
of ISpin0(1, 3) = ℝ4⋊ Spin0(1, 3). Note that, because of the Mackey machine, the Wigner representation
is an irreducible, unitary representation of ISpin0(1, 3).

§ 4.5 Remarks. 1. The matrix p̃ defined in (III.4) can be expressed in terms of the three Pauli matrices
�j , j = 1, 2, 3, as follows

p̃ = p0 I2 −
∑

j=1,2,3
pj�j , p ∈ O+m.

If we let A ∈ SL(2,ℂ) the matrix p̃ satisfies (cf. [21, (1-17) p. 12])

p̃A−1 = A∗p̃A, pA−1
def
= Λ(A−1)p, (III.7)

where A∗ denotes the complex conjugate transpose of the matrix A.

2. Alongside p̃ we also introduce the notation

p∼
def
= p0 I2 +

∑

j=1,2,3
pj�j , p ∈ O+m.

We have a similar relation to the remark above: for A ∈ SL(2,ℂ)

p∼A = Ap∼A
∗, pA = Λ(A)p,

in fact, this relation is the usual way to define the covering map Λ ∶ SL(2,ℂ)ℝ → SO0(1, 3) (cf.
[21, p. 12]).

3. A straight forward computation using the properties of the Pauli matrices shows the following
relation between the matrices p̃ and p∼

p̃p∼ = m
2, p ∈ O+m.
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4. The square root
√

p̃∕m of the positive definite matrix p̃∕m, p ∈ O+m, is explicitly given by (cf. [4, p.
283])

√

p̃∕m =
m I + p̃

√

2m(p0 + m)
.

5. Let l(1, 3) denote the real Clifford algebra over ℝ4 with the Minkowski metric. We denote by

 ∶ ℝ4 → l(1, 3) the natural embedding of ℝ4 in l(1, 3). Let us define the following shorthand
notations. If (ek)k=0,1,2,3 denotes a basis for ℝ4, then let us set 
k

def
= 
(ek). Moreover, we set

p̂ = 
(p), p ∈ O+m.

Now, we note that the matrix 
0p̂, p ∈ O+m, is positive definite. Hence, we can take its square-root.
In particular we have (cf. [23, (3.55) p. 91])

√

p̂
0∕m =
m I4 + p0 I4 + p ⋅ �
√

2m(p0 + m)
, p ∈ O+m, (III.8)

where we have denoted by � the vector of matrices with components [�]j = 
0
j , j = 1, 2, 3, and
p ⋅ � =

∑

j=1,2,3 pj�j .

6. In terms of a basis (ek)k=0,1,2,3 we have p̂ =
∑3
k=0 pk
k. Similarly, we define

p̌
def
=

3
∑

k=0
pk


−1
k = p0
0 −

∑

j=1,2,3
pj
j ,

where 
−1k denotes the inverse of 
k = 
(ek), k = 0, 1, 2, 3. We employ the convention of defining
the Clifford algebra l(1, 3) such that

{
(v), 
(w)} = g(v,w),

Where v,w ∈ ℝ4, {⋅, ⋅} denotes the anticommutator, and g(⋅, ⋅) denotes the Minkowski pseudo
metric with signature (1,−1,−1,−1). In the usual convention for the gamma matrices 
−1k = 
∗k ,
where the ∗ denotes complex-conjugate transpose. Similarly to the remark 3 we have

p̂p̌ = m2, p ∈ O+m.

Covariant realization
§ 4.6 The Wigner representation of ISpin0(1, 3) depends in a non trivial way on A ∈ SL(2,ℂ)ℝ ≅
Spin0(1, 3) through the “twist” V (p, A) which “mixes” p ∈ O+m with A ∈ Spin0(1, 3). On the other
hand the Hilbert space m,1∕2 is “not twisted” in the following sense. The Hilbert space m,1∕2 =
L2(O+m, �m;ℂ

2) = L2(O+m, �m)⊗̂ℂ2, where ⊗̂ denotes the completion of the tensor product with respect
to the scalar product (⋅, ⋅)m,1∕2 ofm,1∕2. This scalar product is given by

(ℎ1 ⊗ v1, ℎ2 ⊗ v2)m,1∕2 = (ℎ1, ℎ2)L2(O+m,�m)(v1, v2)ℂ2 ,

for ℎ1, ℎ2 ∈ L2(O+m, �m), v1, v2 ∈ ℂ2, and where (v1, v2)ℂ2 denotes the standard Hermitian scalar product
in ℂ2. Hence we say that the Hilbert spacem,1∕2 is not twisted because its scalar product does not “mix”
L2(O+m, �m) with ℂ2.

§ 4.7 We define a different representation, unitarily equivalent to theWigner representation, by “removing”
part of the twist in the definition of the homomorphism Um,1∕2 and “adding it” to the scalar product the
Hilbert space. We define

(1,0)
def
= Wm,1∕2, U(1,0)

def
= WUm,1∕2W −1 (III.9)
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where
W f (p)

def
=

√

p̃∕mf (p), f ∈m,1∕2, p ∈ O+m, (III.10)

and p̂ is given in §4.3. Note that this new representation ((1,0), U(1,0)) is, by construction, unitarily
equivalent to the original Wigner representation (W m,1∕2, Um,1∕2). Indeed, by (III.9), the mapW is an
isometric isomorphism m,1∕2 → (1,0) and intertwines Um,1∕2 with U(1,0). The explicit form of U(1,0) is
directly computed from (III.10), (III.6), and (III.7) (also, compare with [1, Formula (41) p. 523]). We
obtain

U(1,0)(x,A) (p) = eix�p
�
A (Λ(A)p),

where  ∈ (1,0), p ∈ O+m, (x,A) ∈ ISpin
0(1, 3). It is clear that, in this formula, the dependence of

U(1,0) on A is simpler than the A dependence of Um,1∕2. Moreover U(1,0) does not “mix” p ∈ O+m with
A ∈ Spin0(1, 3). The scalar product in(1,0), which makes the mapW ∶m,1∕2 → (1,0) an isometric
isomorphism, is given by

(

 1,  2
)

(1,0)
= ∫O+m

(

 1(p), (p̃∕m) 2(p)
)

ℂ2 d�m,  1,  2 ∈(1,0).

We see that this scalar product is indeed “twisted”, that is, if we take, for i = 1, 2,  i = �i(p)⊗ vi with �i
a smooth, compactly supported, complex valued function, and vi ∈ ℂ2, then the scalar product in (1,0)
does not decompose into the product of a scalar product, of just �1 with �2, times a scalar product, of
just v1 with v2. This irreducible unitary representation ((1,0), U(1,0)) of ISpin0(1, 3) is sometimes called
covariant representation. We call it the (1,0)-spinor representation. This representation is, in fact, the
one chosen in [21, in particular, see Section 1–4] as fundamental representation from which a multispinor
representation is assembled.

§ 4.8 The (1, 0)-representation, besides having a simpler transformation property under SL(2,ℂ)ℝ, it
has a new important feature. The generators of the rotations (that is, the elements of the Lie algebra of
SL(2,ℂ) seen as unbounded selfadjoint operators on the appropriate Gårding domain) split into the sum
of two selfadjoint operators which strongly commute [3, p. 189]. One of these two strongly commuting
operators is unbounded and it is interpreted physically as angular-momentum operator. The other is a
bounded matrix operator which is interpreted as spin operator. The original Wigner representation does
not have this property. This means that, with the non-local transformation which we used to go from
Wigner representation to the (1, 0)-representation, we have “decoupled” angular-momentum and spin
variables.

Parity is a troublemaker

§ 4.9 It is well known (cf. e.g. [1, Section 17.3]) that it is impossible to represent the “parity” symmetry
by a (complex-)linear representation in the carrier space of the (1,0)-spinor representation. The “solution”
to this issue, which we will present in the following sections, is to define a dual representation, the
(0, 1)-spinor representation, and form a new, reducible, unitary representation, the (1, 0)⊕ (0, 1)-spinor
representation or, for short, bispinor representation. To recover an irreducible representation we will
need to project onto a subspace.

§ 4.10 Remark. Consider the full Lorentz group O(1, 3). In the defining representation of O(1, 3) parity
is represented by the matrix

P =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎠

.

The parity transformation acts on the Lie subgroup SO0(1, 3) by conjugation with the matrix P : g →
PgP−1, g ∈ SO0(1, 3). By taking the Jacobian of this map g → PgP−1, we induce an action on the
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Lie algebra so(1, 3) of SO0(1, 3). We briefly describe this action. Let so(1, 3) = K + N be a Cartan
decomposition of so(1, 3). The generators in K are associated with Lorentz boosts and the generators in
K with three-dimensional rotations. The action of the parity transformation on the Lie algebra so(1, 3)
has the effect of what is sometimes called Cartan involution (cf. e.g. [11, p. 1]). That is, it reverses the
sign of the elements inN (the generators of the boosts) while leaving unchanged the elements in K (the
generators of three-dimensional rotations). Now, being this transformation defined on the Lie algebra, it
can be uniquely lifted to the universal cover Spin0(1, 3) of SO0(1, 3). Hence, no matter which double cover
we choose for the disconnected Lie groupO(1, 3), we will have the same action of the parity transformation
on the generators of the Lie algebra. Since the parity transformation is, by definition, the Cartan involution
at the Lie algebra level, when we pass to the Lie group, the parity transformation will correspond to the
Cartan involution for the Lie group. If we regard a Lie group as a subgroup of an algebra of complex
matrices, then Cartan involution is the map g → g∗−1, where the ∗ denotes complex-conjugate-transpose,
in the sense of complex matrices..

Going back to the particular case of SL(2,ℂ)ℝ ≅ Spin0(1, 3), seen as a group of 2-by-2 complex
matrices, the parity transformation induces the transformation A → A∗−1, A ∈ SL(2,ℂ).

This discussion shows that the parity transformation intertwines the (1, 0)-spinor representation with a
representation, to be defined in the following paragraph, where the matrix A is “replaced” by A∗−1.

§ 4.11 By the discussion in the previous paragraph the parity transformation has a natural action on
the positive mass hyperboloid O+m. Let us parametrize O+m by identifying it with ℝ3. Then the parity
transformation P , discussed in the paragraph above, acts by sending p ∈ ℝ3 into −p. This means that
taken a point p ∈ O+m which is parametrized by a vector p, under the isomorphism O+m ≅ ℝ3, is sent by the
parity transformation to a point pP ∈ O+m which is parametrized by the vector p, under the isomorphism
O+m ≅ ℝ3. Let us now lift this action from O+m ≅ ℝ3 to the spacesm,1∕2 defined in §4.4 and the space
(1,0) defined in §4.7. Explicitly, let us denote by P (1,0) the lift of P to (1,0). This lift acts on a function
 ∈(1,0)  ∶ O+m ≅ ℝ3 to ℂ2 by  → P (1,0) with P (1,0) (p) =  (pP ). Note that the measure �m(p)
defined in §4.2 is invariant under this transformation. We now define the space (0,1) as the image of
P (1,0), that is the elements of(0,1) are obtained by applying P (1,0) to every element in(1,0). Explicitly
we have

(0,1) =
{

 ∶ ( , )(0,1)
<∞

}

,
where

( 1,  2)(0,1)
= ∫O+m

( 1(p), (p∼∕m) 2(p))ℂ2 d�m(p),  1,  2 ∈(0,1).

The map P (1,0) is by definition an isometric isomorphism of (1,0) with (0,1). We can therefore pushfor-

ward the representation U(1,0) to a representation U(0,1)
def
= P (1,0)U(1,0)(P (1,0))−1 on(0,1). Explicitly we

have
U(0,1)(x,A) (p) = eix�p

�
A∗−1 (Λ(A)p),  ∈(0,1), (III.11)

where A∗−1 denotes the complex-conjugate-transpose-inverse matrix, and p ∈ O+m, (x,A) ∈ ISpin
0(1, 3).

One can convince oneself that U(0,1)(x,A), x ∈ ℝ4, A ∈ SL(2,ℂ) is indeed unitary by noticing that (cf.
[21]) A∗p̃A = p̃′, with p′ = Λ(A−1)p (where Λ ∶ SL(2,ℂ)ℝ → SO0(1, 3) is the covering map), and
taking complex-conjugate-transpose-inverse on both sides of this relation. We call this representation
((0,1), U(0,1)) the (0, 1)-spinor representation.

§ 4.12 Having defined both the (1, 0)- and the (0, 1)-spinor representations of ISpin0(1, 3), we can now
take their direct sum (1, 0) ⊕ (0, 1). We denote this new reducible representation of ISpin0(1, 3) by
(

(1,0)⊕(0,1), U(1,0)⊕(0,1)
)

. Explicitly we let

(1,0)⊕(0,1) = ((1,0) ⊕(0,1)).

The scalar product (⋅, ⋅)(1,0)⊕(0,1) on (1,0)⊕(0,1) is given, for Ψ1,Ψ2 ∈(1,0)⊕(0,1), by

(Ψ1,Ψ2)(1,0)⊕(0,1)
def
= ∫O+m

(Ψ1(p),
(


0p̂∕m
)

Ψ2(p))ℂ4 d�m(p). (III.12)



Section III.4. One particle states 59

Finally, we define the operators U(1,0)⊕(0,1)(x,A), (x,A) ∈ ISpin0(1, 3), on Ψ ∈(1,0)⊕(0,1), by

U(1,0)⊕(0,1)(x, S)Ψ(p) = eix�p
�
S Ψ(Λ(S)p),

where Λ is the covering map, now thought of as sending an element S ∈ Spin0(1, 3) → ℂl(4) to an
elementΛ(S) ∈ SO0(1, 3). Let us note that the embedding Spin0(1, 3) ≅ SL(2,ℂ)ℝ → ℂl(4) is explicitly
given here by

A →

(

A 0
0 A∗−1

)

, A ∈ SL(2,ℂ) (III.13)

where we have represented ℂl(4) as an algebra of 4-by-4 complex matrices acting on the space ℂ4.

§ 4.13 As we saw, the map P (1,0) intertwines, by definition, the representation ((1,0), U(1,0)) with
((0,1), U(0,1)). On the space(1,0)⊕(0,1) such an intertwining effect is obtained by the following map

(P (1,0)⊕(0,1)Ψ)(p)
def
= BΨ(p), Ψ ∈(1,0)⊕(0,1) p ∈ O+m,

where B is the block matrix
B =

(

0 I2
I2 0

)

.

Note that we are taking as representation of Spin0(1, 3) as 4-by-4 complex matrices acting on ℂ4 given by
the embedding (III.13).

Let us consider the group GB,ISpin0(1,3) generated by the matrix B together with all the elements of
ISpin0(1, 3) (where the Spin0(1, 3) “part” of ISpin0(1, 3) is realized by the representation just mentioned).
Note also that the matrix B in fact represents the element 
0 ∈ l(1, 3) → ℂl(4) (cf. §4.5).

Now, by construction P (1,0)⊕(0,1) gives a representation of B on the space(1,0)⊕(0,1). Hence we see
that on the space (1,0)⊕(0,1) we have a representation of the whole group GB,ISpin0(1,3).

The groupGB,ISpin0(1,3) is one of the possible groups obtained by lifting the parity transformation as an
element of O(1, 3) to one of the universal covers of (1, 3) (cf. §2.12). Not that the parity transformation
P ∈ O(1, 3) is lifted to two elements B and −B in GB,ISpin0(1,3). This means that both P (1,0)⊕(0,1) and
−P (1,0)⊕(0,1) are parity operators on the space (1,0)⊕(0,1), that is they both correspond to the same
“physical” parity transformation P as an element of O(1, 3).

By this discussion we see that we can extend the representation
(

(1,0)⊕(0,1), U(1,0)⊕(0,1)
)

to a repre-
sentation of GB,ISpin0(1,3) by imposing that the matrix B (resp. −B), seen as an element of GB,ISpin0(1,3),
is represented by the operator P (1,0)⊕(0,1) (resp. −P (1,0)⊕(0,1)). Let us denote this extension still by
(

(1,0)⊕(0,1), U(1,0)⊕(0,1)
)

. Then we have that the representation
(

(1,0)⊕(0,1), U(1,0)⊕(0,1)
)

of GB,ISpin0(1,3)
is reducible. Indeed we can project onto the eigenspaces of the operator P (1,0)⊕(0,1) (which corresponds to
diagonalizing B). We construct the following projection operators acting on(1,0)⊕(0,1):

ℚ+Ψ(p)
def
= 1

√

2

(

I4 − B
)

Ψ(p), ℚ−Ψ(p)
def
= 1

√

2

(

I4 − B
)

Ψ(p), Ψ ∈(1,0)⊕(0,1), p ∈ O+m.

These projection operators project onto eigenspaces which are usually called respectively even and odd
parity eigenspaces (cf. [23, §3.2.5, p. 93]).

We project the reducible representation ((1,0)⊕(0,1), U(1,0)⊕(0,1)) onto the even parity eigenspace
obtaining an irreducible representation of the group GB,ISpin0(1,3). We denote this new representation by
(+

(1,0)⊕(0,1), U
+
(1,0)⊕(0,1)) and we call it the covariant 1-particle representation of ISpin0(1, 3). Explicitly

we have
+
(1,0)⊕(0,1) = ℚ+(1,0)⊕(0,1).

The scalar product on +
(1,0)⊕(0,1) is then

(Ψ1,Ψ2)1p = ∫O+m

(

Ψ1(p),
1
m
(p̂
0 + m
0)Ψ2(p)

)

ℂ4 d�m(p), Ψ1,Ψ2 ∈+
(1,0)⊕(0,1). (III.14)
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5 Wightman and Schwinger functions
Comment. We link the “group theoretic” presentation up to this point with the Wightman theory in the case of free
Dirac fields. In our presentation, we avoid the use of quantum fields. We want to show precisely why every step is
necessary and justified from the basic principles without any unnecessary assumption.

We do not present the full axiomatic Wightman theory. We restrict ourselves to the special case of free Dirac
fields which, we believe, to be only implicitly discussed throughout the literature.

The main aim of this section is to show that the “Schwinger function” (We will call it Schwinger distribution in
the main part of the text) is non-ambiguously defined, in the case of free Dirac fields, starting from first principles.
Moreover, we find that, even if the Schwinger function is uniquely prescribed, its interpretation is not. In fact, we
claim that there remains some ambiguity in interpreting the Schwinger function as a bilinear form.

The importance of interpreting the Schwinger function as a bilinear form stems from the fact that this bilinear
form is then interpreted as a 2-point function in the context of Euclidean field theory.

Distributions on the forward cone, analytic functions, and covariance
Conventions. We denote the proper, orthochronous, Lorentz group by SO0(1, 3). Let V denote a (real or complex)
vector space. We denote the Minkowski metric by g(⋅, ⋅) with signature (1,−1,−1,−1), hence we have

g(v, v) = v20 − v
2
1 − v

2
2 − v

2
3, v = (v0, v1, v2, v3) ∈ ℝ4.

For vectors k, x ∈ ℝ3 we denote by x ⋅k the positive definite scalar product in ℝ3 of x with k. We denote by S (ℝ4),
respectively S (ℝ4;V ), the space of Schwartz test functions with values in ℂ, respectively in V . We denote by
S ′(ℝ4), respectively S ′(ℝ4;V ), the topological dual of S (ℝ4), respectively S (ℝ4;V ).

§ 5.1 The forward cone V + is defined to be the open set of ℝ4 given by

V + def
=

{

v = (v0, v) ∈ ℝ4 ∶ g(v, v) > 0, v0 > 0
}

,

where g(⋅, ⋅) is the Minkowski pseudo metric. That is, the forward cone denotes the interior of the “upper”
light cone. We are thinking of vectors in V + as momentum 4-vectors and not as space-time 4-vectors. The
forward tube T + is defined as the open set of ℂ4 given by

T + def
= ℝ4 − iV+.

That is, T + ⊂ ℂ4 consists of those complex four-vectors which can be written as a vector in ℝ4 minus i
times a vector inside the forward light cone.

§ 5.2 In our presentation, it will be convenient to define a reduced Wightman distribution for Dirac fields
as a matrix valued distribution. We therefore introduce here the notion of a vector valued tempered
distribution, that is a tempered distribution with values in a finite dimensional Hilbert space. Explicitly,
let (Ξ�)n�=1, n ∈ ℕ, be a set of tempered distributions, Ξ� ∈ S ′(ℝd), d ∈ ℕ. Let V be a finite dimensional

Hilbert space of dimension n and (ek)nk=1 an orthonormal basis of V . Then, we call Ξ
def
=

∑n
�=1 e�Ξ� a

vector valued tempered distribution. Let us denote by S ′(ℝd)⊗ V the space of vector valued tempered
distributions with values in the finite dimensional Hilbert space V . If the vector space is also an algebra
of matrices we will call the vector valued distribution a matrix valued tempered distribution. When
the context is clear we will drop the term “tempered” and just say vector valued distribution.

§ 5.3 Let Ξ ∈ S ′(ℝ4) ⊗ V be a vector valued tempered distribution with V be a finite dimensional
Hilbert space. We say that Ξ is a lower boundary value of an analytic function F in the tube T + with
values in V when

lim
�0↓0

S ′(ℝ4) F (⋅ + i�0) = Ξ,

where limS ′(ℝ4) denotes the limit in S ′(ℝ4), F̃ (⋅+i�0) denotes a function onℝ4 = ℜℂ4 (whereℜmeans
real part of ) with values in V , and �0 ↓ 0 means �0 goes to zero from the positive side.
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§ 5.4 Proposition. Let Ξ = F (�) ∈ S ′(ℝ4)⊗ V , V a finite dimensional Hilbert space, be the distribu-
tional Fourier transform of a measure valued distribution � supported on the closure V + of the forward
cone V+. Then Ξ is the lower boundary value of an analytic function F defined on the forward tube T +.
Moreover there exists a polynomial P and a positive integerN such that

‖F (z)‖V ≤ ‖P (z)‖V (1 + dist(ℑ(z), )V +)−N ), z ∈ T +,

where dist denotes the distance of a point from a set and ‖ ⋅ ‖V denotes the norm on the finite dimensional
Hilbert space V . Finally, the analytic function F on T + is unique and is explicitly given by

F (x − iv) = F (expv(⋅) �)(x), v ∈ V+, x ∈ ℝ4 (hence x − iv ∈ T+),

where exp�(⋅) � denotes the distribution obtained by multiplying � by the function expv(p)
def
= e−v⋅p, p ∈ ℝ4.

PROOF. Cf. [16, Theorem IX.16, p. 23].

§ 5.5 Motivated by the previous proposition we make the following definitions. We call a Schwartz
distribution Ξ ∈ S ′(ℝ4) ⊗ V , for a finite dimensional Hilbert space V , a vector valued forward
distribution when it is the Fourier transform of a Schwartz distribution supported on the forward cone V+.
Moreover, we say that F is the forward tube extension of a distribution Ξ when Ξ is the lower boundary
value of an analytic function F on the forward tube T +.

§ 5.6 Consider the complexification SO(4;ℂ) of the proper, orthochronous, Lorentz group SO0(1, 3). We
define the extended tube to be the subset of ℂ4 given by

T ′ def=
{

z′ ∈ ℂ4 ∶ there exist z ∈ T , L ∈ SO(4,ℂ), such that z′ = Lz
}

.

§ 5.7 Let F̃ be an analytic function on T ′ with values in a complex vector space V . We say that F̃ is an
R-covariant analytic function on T ′ if there exists a finite dimensional2 representation R of SO(4,ℂ)
on V such that

F̃ (z) = R(L)F̃ (Lz), z ∈ T ′, L ∈ SO(4,ℂ).

§ 5.8 Let (V ,R) be a finite dimensional representation of SO(4,ℂ), and let RSO0(1,3) be its restriction to
SO0(1, 3), where we consider SO0(1, 3) as embedded in SO(4,ℂ) by the standard embedding defined in
§2.15. We call Ξ ∈ S ′(ℝ4;V ) an RSO0(1,3)-covariant distribution when it satisfies

Ξ = RSO0(1,3)(Λ) Ξ◦Λ, Λ ∈ SO0(1, 3),

where Ξ◦Λ is the distribution which satisfies, for any f ∈ S (ℝ4;V ), ⟨Ξ◦Λ, f⟩ = ⟨Ξ, f◦Λ⟩, where ⟨⋅, ⋅⟩
denotes the S ′(ℝ4;V )-S (ℝ4;V ) dual paring, and f◦Λ(x) = f (Λx), x ∈ ℝ4, Λ ∈ SO0(1, 3).

§ 5.9 Proposition. (Bargmann-Hall-Wightman) Let F̃ be an analytic function on T +. Let R be a finite
dimensional representation of SO(4,ℂ) on a vector space V . Let RSO0(1,3) a representation of SO0(1, 3)
obtained by restricting the representation R to SO0(1, 3) by the standard embedding (where the standard
embedding SO0(1, 3) → SO(4,ℂ) is given in §2.15). Assume that F̃ satisfies

F̃ (z) = RSO0(1,3)(Λ)F̃ (Λz), z ∈ T +, Λ ∈ SO0(1, 3).

Then F̃ admits a single valued extension to T + and such an extension is unique if we require the extension
to be an R-covariant analytic function on T ′.

PROOF. Cf. anyone of the following: [21, Theorem 2–11, p. 66], [9, Chapter IV, section 4] [4,
Theorem 9.1, p. 362].

2A finite dimensional representation of a non-compact, semisimple Lie group such as as SO(4,ℂ) is unitary if and only if is
trivial. Hence we are assuming here that our representation is either trivial or not unitary and in general reducible.
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§ 5.10 Comment. The use that we make of this theorem is the following. We start from a RSO0(1,3)-
covariant forward distribution Ξ. First we use the fact that Ξ is assumed to be a vector valued forward
distribution. This allows us, by §5.4, to extended Ξ by an analytic function FΞ to the forward tube T +.
In the forward tube lie in particular points of the form z = (it, x), for any t > 0 and any x ∈ ℝ3. Our
final goal here is to pass to an Euclidean theory. For this reason we are interested in obtaining from the
initial distribution Ξ a new distribution which is supported on the set of points {(it, x) ∶ t ∈ ℝ, x ∈ ℝ3}.
By extending Ξ we can obtain the analytic function FΞ which, as we said, is well defined for z = (it, x),
for any t > 0 and any x ∈ ℝ3. We would like to extend this functions also to points z = (it, x), for any
t < 0 and any x ∈ ℝ3. In general it is not clear how to analytically continue the function to points with
“imaginary time” it and t < 0. At this point if we use the assumption that Ξ is RSO0(1,3)-covariant. By
uniqueness of the extension of Ξ by the analytic function FΞ we can extend the RSO0(1,3)-covariance to
the function FΞ as long as we restrict to those transformations in SO0(1, 3) which preserve the forward
tube T +, where FΞ has been defined. Now the important point of having the RSO0(1,3)-covariance is
that it implies that the function FΞ transforms under SO0(1, 3) by a representation which comes from
a representation of the complexification SO(4,ℂ) of SO0(1, 3). Inside SO(4,ℂ) we have in particular a
copy of SO(4) (SO(4) = SO(4,ℝ)) and in particular we have a transformation − I ∈ SO(4) which acts on
ℂ4 by

− I ∶ (z0, z1, z2, z3) → (−z0,−z1,−z2,−z3).

By this transformation we send (it,−x) into (−it, x), for any t > 0, x ∈ ℝ3. Hence, it can be used to reach
points of the form (i�, x) with � < 0, x ∈ ℝ3 from points of the form (it, y) with t = −� > 0, y ∈ ℝ3.

We therefore want to define a new function F̃Ξ by imposing that on T + it coincides with FΞ and is
defined on the extended tubeT ′ (that is on all points inℂ4 that can be reached fromT + by a transformation
of SO(4,ℂ)) by imposing that

F̃Ξ(Lz+) = R(L−1)FΞ(z+), z+ ∈ T +, L ∈ SO(4,ℂ).

This procedure is well defined because, given z ∈ T ′, regardless on how we reach it from T + the value
F̃Ξ(z) will be the same. This fact is at the core of the proof of Bargmann-Hall-Wightman theorem we
quoted in §5.9.

Now that we have obtained the analytic function F̃Ξ on T ′ we can restrict it to T ′ ∩ {(it, x) ∶ t ∈
ℝ, x ∈ ℝ3}.

We have thus motivated the next paragraph where we introduce the notion of Schwinger function.

§ 5.11 Consider the set S
def
=

{

z′ = (z′0, z
′) ∈ T ′ ⊂ ℂ4 ∶ℜ(z′0) = 0,ℑ(z) = 0

}

of all points in the
extended tube T ′ with imaginary first component and the other three components taken to be real. We
call S the set of Schwinger points (not to be confused with Jost points). Moreover, let us define a map
Wick ∶ S → ℝ4 by

Wick ∶ (it, x1, x2, x3) → (t, x1, x2, x3),

where (it, x1, x2, x3) ∈ S. We call this map the Wick rotation. Let F̃ be any analytic function on the
extended tube T ′ with values in a vector space V . We define the Schwinger function associated to F̃ ,
which we denote by ̃F̃ , to be the restriction of F̃ to S composed with the inverse of the Wick rotation,
that is we define ̃F̃ to be the function3on Wick(T ′ ∩ S) such that,

̃F̃ = F̃↾S ◦Wick−1,

where ◦ denotes the composition of functions. The reason of composing the restriction of F̃ to S with
the inverse of Wick rotation is that, this way, the Schwinger function is a function defined on the subset
Wick(T ′ ∩ S) of ℝ4 instead of being defined on T ′ ∩ S which is a subset of iℝ ×ℝ3.

3Note that our so defined Schwinger function is an analytic function on Wick(T ′ ∩S). In the literature the term “Schwinger
function” is often more broadly understood in the sense of what we shall call (in §5.13) Schwinger distribution.
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§ 5.12 Following the notation in [15] let us denote by 0S (ℝ4) to be the set of test functions in S (ℝ4)
which vanish with all their (partial) derivatives in zero equipped with the topology induced from S (ℝ4).
We define analogously 0S (ℝ4;V ) for a finite dimensional vector space V . Finally we denote by 0S ′(ℝ4),
respectively 0S ′(ℝ4;V ) the topological duals of 0S (ℝ4), respectively 0S ′(ℝ4;V ).

The following theorem describes the procedure by which we can uniquely construct a Schwinger
function starting from an RSO0(1,3)-covariant, forward distribution (the notion of forward (vector valued)
distribution was introduced in §5.5).

§ 5.13 Theorem. Let (V ,R) be a finite dimensional analytic representation of SO(4,ℂ). Let Ξ ∈
S ′(ℝ4;V ) be an RSO0(1,3)-covariant, forward distribution. Then

1. There exists a unique F analytic function on the forward tube T + of which Ξ is the lower boundary
value.

2. There exists a unique R-covariant analytic function on the extended tube T ′ which analytically
continues F .

3. Finally, the Schwinger function S̃F̃ associated to F̃ uniquely defines a distributionΞ in 0S ′(ℝ4;V ).

Wightman and Schwinger distributions for the Dirac field

§ 5.14 Let us generally call a unitary (in general reducible) representation ( , U ) of ISpin0(1, 3) a free
canonical representation when

1. Let be a manifold embedded inℝ4, equipped with a Spin0(1, 3)-action and an invariant measure4.
The carrier Hilbert space  is a space of (equivalence classes of) functions defined (up to a set of
measure zero) on with values in a finite dimensional Hilbert space .

2. the action U of the Lie group ISpin0(1, 3) is of the following form

U (x,A)f (p) = eip⋅x�(A)f (Λ(A)p), p ∈, f ∈ ,

where (x,A) ∈ ISpin0(1, 3), that is x ∈ ℝ4, A ∈ Spin0(1, 3), Λ denotes the action of Spin0(1, 3) on
, and � is any finite dimensional (in general reducible) representation of Spin0(1, 3) (in particular,
� does not depend on the function f ).

§ 5.15 Remarks. 1. Our definition of free canonical representation can describe what in theoretical
Physics terminology are called generalized free fields. This is the case because we have required
that the normal Abelian subgroup ℝ4 of ISpin0(1, 3) = ℝ4 ⋊ Spin0(1, 3) be represented by the
character eip⋅x. That is, we have required that the covariant representation, when restricted to ℝ4,
be irreducible. Hence, by the Källén-Lehmann representation (cf. e.g. [4, Section 8.3.B]) only
generalized-free fields can correspond to such a representation.

2. Note that the Wigner representation is not a free canonical representation, in the sense of the above
definition, because it violates the requirement that � be a finite dimensional representation. The
importance of the requirement of having a finite dimensional representation � is to ensure the
existence of an extension of the covariant representation of ISpin0(1, 3) to a representation (in
general not unitary) of the complexification ISpin(4;ℂ) = ℂ4 ⋊ Spin(4;ℂ) of ISpin0(1, 3).

3. The representations ((1,0), U(1,0)) and (+
(1,0)⊕(0,1), U(1,0)⊕(0,1)) are both free canonical representa-

tions.

4The term measure in this context will always mean regular Borel measure (cf. [10]).
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§ 5.16 Wehave defined above the covariant 1-particle representation (+
(1,0)⊕(0,1), U

+
(1,0)⊕(0,1)) of ISpin

0(1, 3).
Let us simplify the notation and write

+ ≡ +
(1,0)⊕(0,1), U+ ≡ U+

(1,0)⊕(0,1).

We call the carrier space+ the covariant 1-particle space.

§ 5.17 Associated with the representation (+, U+) there is a notion which looks almost like a Fourier
transform. Consider Ψ ∈ S (O+m;ℂ

4). Let

Ψ̌(x) = ∫O+m
U+(x, e)Ψ(p) d�m(p), . x ∈ ℝ4,

where e ∈ Spin0(1, 3) denotes the identity. If we parametrize the hyperboloid O+m by identifying it with
ℝ3 we can write Ψ̌ as follows

Ψ̌(x) = ∫ℝ3
ei(!(p)t+ip⋅x)Ψ(p) 1

2!(p)
dp,

where !(p)
def
=

√

p2 + m2, and by abuse of notation, we have denoted by Ψ(p) the function Ψ composed
with the chart which identifies O+m with ℝ3, and x = (t, x) ∈ ℝ4. Now we see that Ψ̌ is indeed very similar
to an inverse Fourier transform. This notion of transform, very similar to the (inverse) Fourier transform,
originates from the fact that ISpin0(1, 3) has a non-trivial, normal, Abelian subgroup. Let us denote by 
the map  ∶ Ψ → Ψ̌.

§ 5.18 We denote by F the Fourier transform on the space S (ℝ4;ℂ4) of Schwartz test functions on ℝ4
with values in ℂ4. Let f ∈ S (ℝ4;ℂ4). We define a map: S (ℝ4;ℂ4)→ + by

f → Ψf
def
= ℚ+

(

F (f )↾O+m
)

,

where F (f )↾O+m denotes the restriction to O+m of the Fourier transform F of f , and ℚ+ is the projection
operator defined in §4.13. Note that, for f ∈ S (ℝ4;ℂ4), F (f )↾O+m∈(1,0)⊕(0,1). Therefore Ψf ∈+,
and the map f → Ψf is indeed a well defined map: S (ℝ4;ℂ4)→ +.

§ 5.19 Proposition. The map wD(⋅, ⋅) ∶ S (ℝ4;ℂ4) ×S (ℝ4;ℂ4)→ ℂ,

wD(f, g)
def
=

(

Ψf ,Ψg
)

(1,0)⊕(0,1), f , g ∈ S (ℝ4;ℂ4), (III.15)

is a well defined bilinear form on S (ℝ4;ℂ4) which we call 2-point Wightman distribution. Moreover

wD(f, g) =
(

Ψf ,Ψg
)

+ f, g ∈ S (ℝ4;ℂ4), (III.16)

and we have, for f, g ∈ S (ℝ4;ℂ4),

wD(f, g) = ∫O+m

(

1
(2�)4 ∫ℝ4×ℝ4

f (x)e−ip�x� 1
m
(

p̂
0 + m
0
)

eip�y
�
g(y) dx dy

)

d�m(p), (III.17)

where we use Einstein notation p�x�
def
= p0x0 − p1x1 − p2x2 − p3x3, for p = (p�), x = (x�), x� ∈ ℝ,

p� ∈ ℝ, � = 0, 1, 2, 3.

PROOF. Let us first note that the integral in (III.17) converges because, by assumption, f, g are in
S (ℝ4;ℂ4). Indeed, the integration dx and dy performs (modulo constant) a Fourier transform,
that is, we have

wD(f, g) = ∫O+m
F (f )(p) 1

m
(

p̂ + m I4
)


0F (g)(p) d�m(p),
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where F denotes Fourier transform. Now the Fourier transform sends Schwartz test functions
into Schwartz test functions hence F (f ),F (g) ∈ S (ℝ4;ℂ4). The matrix (p̂ + m I4)
0 is positive
definite for any p ∈ O+m. We now parametrize the hyperboloid O+m by projecting it onto ℝ3. Hence

we write p ∈ O+m as p = (!(p),p) where p ∈ ℝ3 and !(p)
def
=

√

p2 + m2. Then we have,

wD(f, g) = ∫ℝ3
F (f )(!(p),p) 1

m
(


0!(p) +
3
∑

j=1
pj
j + m I4

)


0F (g)(!(p),p) 1
2!(p)

dp

Now the dp integral converges because the kernel

(


0!(p) +
3
∑

j=1
pj
j + m I4

) 1
!(p)

is polynomially bounded and F (f ),F (g) are Schwartz test functions. Finally, the fact that the
integral in (III.17) coincides with the definition of wD(⋅, ⋅) in (III.15) and the fact that (III.15)
coincides with (III.16) follow directly from the definitions of the scalar products (⋅, ⋅)(1,0)⊕(0,1) and
(⋅, ⋅)+ given in (III.12) and (III.14).

§ 5.20 Remark. Note that the bilinear form wD ∶ S (ℝ4;ℂ4) ×S (ℝ4;ℂ4) is singular, in the sense of
having a non-trivial kernel. Indeed let f ∈ S (ℝ4;ℂ4) and define

−f
def
= 1
m
(

)̂ − m I
)

f, f ∈ S (ℝ4;ℂ4),

where )̂
def
=

∑3
�=0 
�

)
)x�

. The map Q− is a well defined map S (ℝ4;ℂ4) → S (ℝ4;ℂ4) with non-zero
image. The image Ran− of − is the kernel of the bilinear form wD in the sense that for any fixed
f− ∈ Ran−, wD(f−, g) = 0 for all g ∈ S (ℝ4;ℂ4).

PROOF. This follows easily from the definition of wD and of − in §4.13.

§ 5.21 Consider the real Clifford algebra l(1, 3) defined abstractly as the quotient of the real tensor
algebra T(ℝ4)

def
=

⨁∞
n=0(ℝ

4)⊗n of ℝ4 by the ideal I generated by the elements v⊗w+w⊗v− g(v,w) I,
v,w ∈ ℝ4, where g(⋅, ⋅) denotes the Minkowski pseudo metric with signature (1,−1,−1,−1). Now we
realize Spin0(1, 3) as a subgroup of l(1, 3) by first defining

Pin(1, 3)
def
=

{

' ∈ l(1, 3) ∶ ∃'−1, g(',') = ±1
}

Spin(1, 3)
def
= Pin(1, 3) ∩ leven(1, 3),

where leven(1, 3) denotes the even part of the Clifford algebra l(1, 3), and then letting Spin0(1, 3) be
the component of Spin(1, 3) connected with the identity. Now denote by 
 the canonical embedding ℝ4 in
the Clifford algebra l(1, 3), and define an action � of Spin0(1, 3) on ℝ4 ≅ 
(ℝ4) by

�(S) ∶ 
(v) → S−1
(v)S, v ∈ ℝ4, S ∈ Spin0(1, 3).

Under the identification of ℝ4 ≅ 
(ℝ4) the action � of Spin0(1, 3) on 
(ℝ4) defines an action Λ of
Spin0(1, 3) on ℝ4 by


(Λ(S)v) = �(S)(
(v)), v ∈ ℝ4, S ∈ Spin0(1, 3).

We now want to introduce a complex Hilbert space into the picture because eventually it is needed
when employing these definitions in the framework of representation theory. Hence, alongside l(1, 3),
we consider the complex Clifford algebra ℂl(4) obtained by taking the quotient of the tensor algebra
T(ℂ4) = T(ℝ4)⊗ℝ ℂ by the ideal generated by the elements v ⊗ w +w⊗ v − v ⋅w I where v,w ∈ ℂ4,
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and v ⋅w =
∑3
k=0 vkwk. Note that the bilinear form v ⋅w, v,w ∈ ℂ4 is not the standard Hermitian scalar

product on ℂ4 which would involve complex conjugation. We now embed l(1, 3) in ℂl(4) and represent
l(4) on ℂ4 as an algebra of 4-by-4 complex matrices. It is a standard fact that l(4) is a simple algebra,
that is ℂl(4) ≅ Aut(ℂ4) ≅ M4(ℂ), whereM4(ℂ) denotes the algebra of 4-by-4 complex matrices. We
now equip ℂ4 with the standard Hilbert space structure given by the Hermitian scalar product

(v,w)ℂ4
def
=

3
∑

k=0
vkwk, v, v ∈ ℂ4,

where the over line denotes complex conjugation. Now look again at the embedding 
 of ℝ4 in l(1, 3).
We extend 
 to an embedding of ℝ4 in ℂl(4), by embedding l(1, 3) in ℂl(4), and considering ℂl(4) as
an algebra of matrices (that is operators) on the Hilbert space (ℂ4, (⋅, ⋅)ℂ4). Hence now 
(x), x ∈ ℝ4 is an
operator: ℂ4 → ℂ4. Since x ∈ ℝ4 is by definition a real vector we would like perhaps its embedding into
ℂl(4) to be directly an Hermitian operator but this is not the case, indeed we have

(v, 
(x)∗w)ℂ4 = (
(Px)v,w)ℂ4 , v, w ∈ ℂ4, x ∈ ℝ4

where we have defined, for x = (x0, x1, x2, x3), Px = (x0,−x1,−x2,−x3). For this reason it makes sense
to define an embedding ℝ4 in l(1, 3) given by x → 
0
(x), where 
0

def
= 
(e0) where e0 is the unit

eigenvector of the Minkowski pseudo metric g with eigenvalue +1. Now, by the anticommutation rule
for the gamma matrices, it is straightforward to show that the operator 
0
(x) is indeed Hermitian with
respect to the standard scalar product (⋅, ⋅)ℂ4 of ℂ4. Moreover we have that this embedding x → 
0
(x) is
“compatible” with respect of the action of Spin0(1, 3), that is

(v, 
0
(Λ(S)x)w)ℂ4 = (v, S∗
0
(x)Sw)ℂ4 = (Sv, 
0
(x)Sw)ℂ4 ,

for all v,w ∈ ℂ4, x ∈ ℝ4, S ∈ Spin0(1, 3) and where S∗ denotes the matrix complex-conjugated
transposed which is a well defined operation because we see l(1, 3) as embedded in ℂl(4) ≅M4(ℂ).

§ 5.22 We define the reduced Wightman (generalized)-function for a free Dirac particle to be the
matrix valued tempered distribution in S ′(ℝ4)⊗ (ℂ4⊗ℂ4) associated with the bilinear form wD(⋅, ⋅) via
the nuclear theorem . We denote this distribution byWD. Explicitly we have

WD(') = ∫O+m

(

∫ℝ4

1
m
(


0p̂ + 
0m
)

eip�y
�
'(y) dy

)

d�m(p), ' ∈ S (ℝ4;ℂ).

Note that ' ∈ S (ℝ4;ℂ) is a scalar function. For every ' ∈ S (ℝ4;ℂ),WD(') ∈ l(1, 3) Hence, by in
our terminology,WD is a matrix-valued distribution. One can think ofWD as the distribution in S ′(ℝ4)
obtained by Fourier transforming the positive definite, matrix valued, �-finite measure

1
m

0
(

p̂ + m I4
)

d�m.

Notice that the above (positive definite, matrix valued) measure is supported on the hyperboloid O+m which,
in turn, is contained in the (open) forward light-cone V +.

§ 5.23 The reduced Wightman distributionWD(⋅) and the bilinear form wD(⋅, ⋅) are related, as a straight
forward computation shows, by

wD(f, g) =
3
∑

jk=0
Wjk(fj ∗+ gk), f , g ∈ S (ℝ4;ℂ4),

where fj , gk, andWjk denote the components of the vector functions f, g and thematrix-valued distribution
W ; moreover ∗+ denotes the operator5 of “convolution with the wrong sign”, that is ('1 ∗+ '2)(x) =
∫ℝ4 '1(x + y)'2(y) dy, '1, '2 ∈ S (ℝ4;ℂ).

5The operator ∗+ has the interesting “anti-commutativity” property: ('1∗+'2)(x) = ('2∗+'1)(−x).
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§ 5.24 Proposition. The reduced, matrix valued, Wightman distributionWD ∈ S ′(ℝ4;ℂ4 ⊗ ℂ4) is the
boundary value of a function holomorphic on the forward tube T + def

= ℝ4 − iV + ⊂ ℂ4. That is, there
exists a unique function W̃ , holomorphic on T +, such that

lim
�0↓0

S ′(ℝ4;ℂ4) W̃D(⋅ + i�0) = WD,

where limS ′(ℝ4;ℂ4) denotes the limit in S ′(ℝ4;ℂ4), W̃D(⋅ + i�0) denotes a function on ℝ4 = ℜℂ4 (where
ℜ means real part of), and �0 ↓ 0 means that �0 goes to zero from the positive side. Moreover, the analytic
function W̃ , defined on the forward tube T + is uniquely determined byW .

PROOF. This follows from §5.4 (Cf. also [16, Theorem IX.32, p. 67]).

§ 5.25 From the definition in §5.22, the reduced, matrix valued, Wightman distribution W has the
following symmetry, under the action of Spin0(1, 3),

WD('◦Λ(S)) = S∗WD(')S, ' ∈ S (ℝ4;ℂ), (III.18)

where S ∈ Spin0(1, 3) → ℂl(4) is thought of as a 4-by-4 complex matrix, hence the complex-conjugated
and transposed matrix S∗ makes sense, Λ denotes the covering map from Spin0(1, 3) to SO0(1, 3), and
(f◦Λ(S))(x) = f (Λ(S)x), x ∈ ℝ4.

§ 5.26 Remark. The space ℂ4 in S (ℝ4;ℂ4),S ′(ℝ4;ℂ4) comes from the representation of the group
ISpin0(1, 3). In this representation we have identified ℂ4 with the exterior algebra

⋀

ℂ2 to give a
representation of the (real) Clifford algebra l(1, 3) as embedded in the complex Clifford algebra
ℂl(4) ≅ End(

⋀

ℂ2). For this reason the quadratic form wD(⋅, ⋅) can also be considered as a quadratic
form on S (ℝ4;

⋀

ℂ2). Moreover, the Wightman distributionWD(⋅) can also be seen as a distribution in
S ′(ℝ4;ℂl(4)).

§ 5.27 Let us decompose the reduced, matrix valued, Wightman (matrix valued) distributionWD into two
partsWD = W1 +W0, where, for � ∈ S (ℝ4;ℂ),

W1(')
def
= ∫O+m

(

∫ℝ4
'(x)eix�p�


0p̂
m
dx
)

d�m(p), W0(�)
def
= ∫O+m

(

∫ℝ4
'(x)eix�p�
0 dx

)

d�m(p),

where we use, as above, the Einstein convention x�p� = x0p0 − x1p1 − x2p2 − x3p3. We have discussed
in §5.21 that we can embed ℝ4 in ℂl(4) in at least two ways. One is the canonical embedding which
sends k ∈ ℝ4 to p̂ = 
(p). Another is given by sending p ∈ ℝ4 to p̂
0 = 
(p)
0. From the representation
of Spin0(1, 3) as a subgroup of ℂl(4) we deduce the following transformation properties


(Λ(S)p) = S−1
(p)S, 
0
(Λ(S)p) = S∗ (
0
(p))S, p ∈ ℝ4,

where Λ ∶ Spin0(1, 3) → SO0(1, 3) is the covering map. From this and the transformation properties of
the Wightman distributionW in (III.18) we see thatW1 transforms as a vector distribution whereasW0
transforms as a scalar distribution. To be explicit, let us define the following vector and scalar distributions,
for ' ∈ S (ℝ4;ℂ),

Ξ1(')
def
= ∫O+m

(

∫ℝ4
'(x)eix�p�

p
m
dx

)

d�m(p), Ξ0(x)
def
= ∫O+m

(

∫ℝ4
'(x)eix�p� dx

)

d�m(p),

where Ξ1 ∈ S ′(ℝ4;ℂ4), Ξ0 ∈ S ′(ℝ4;ℂ).
Now Ξ1, respectively Ξ0, transforms, under the orthochronous Lorentz group, as a vector, respectively

scalar, distribution. That is, for any Λ ∈ SO0(1, 3), we have

Ξ1(') = ΛF1('◦Λ−1), Ξ0(') = F0('◦Λ−1),

where ('◦Λ−1)(x) = '(Λ−1x), x ∈ ℝ4.
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We summarize the above discussion in the following theorem.

§ 5.28 Theorem. Let i denote the map ℝ4 ⊕ℝ → l(1, 3) given by

x ⊕ m → 
0
(x) + m
0, x ∈ ℝ4, m ∈ ℝ.

Then i is an embedding and is canonical (in the sense that it does not depend on the choice of basis for ℝ4
and l(1, 3)). Moreover, i extends uniquely to an embedding iℂ ∶ ℂ⊕ ℂ → ℂl(4). Let (V ,R) be the
finite dimensional representation of SO(4,ℂ) given by

V
def
= ℂ4 ⊕ ℂ, R(L) z ⊕ � = (Lz)⊕ �, L ∈ SO(4,ℂ), z ∈ ℂ4, � ∈ ℂ.

That is, R is the defining representation of SO(4,ℂ) on ℂ4 and the trivial representation on ℂ. Let
RSO0(1,3) be the restriction of R to elements of SO0(1, 3) (where SO0(1, 3 is embedded into SO(4,ℂ) by
the standard embedding defined in §2.15). Then:

1. The Wightman distribution WD is identified under the embedding iℂ with the unique Schwartz
distribution ΞD which satisfies, for all ' ∈ S (ℝ4),

WD(') = iℂ
(

ΞD(')
)

.

2. The distribution ΞD is a RSO0(1,3)-covariant, forward distribution (the notion of R-covariant distri-
bution was defined in §5.8 and that of forward distribution in §5.5).

We now apply the theorem in §5.13 to ΞD in §5.28 obtaining the following corollary.

§ 5.29 Corollary. By the construction given above, the reduced, matrix valued, Wightman matrix valued
distribution WD defines a unique Schwinger distribution D in 0S ′(ℝ4;ℂ5). Moreover D can be
canonically extended to a tempered distribution in S ′(ℝ4;ℂ5).

PROOF. The only statement that perhaps still requires proof is the fact that we can extend SD to
a tempered distribution. This can be done directly from the explicit expression of D. We have
D(�) = 1(�)⊕ 0(�) with

l(�) = ∫Wick(T ′∩S)
Fl(x)�(x) dx, � ∈ 0S (ℝ4),l = 0, 1,

where Wick(T ′ ∩ S) was defined in §5.11. Now, it not difficult to show that

F1(x) = ∫O+m

(

�(t)e−!(p)t−ip⋅x − �(−t)e!(p)t+ip⋅x
) 1
m
p d�m(p), x = (t, x), t ≠ 0,

where � denotes the Heaviside step function, and

F0(x) = ∫O+m
e−!(p)|t|−ip⋅x d�m(p), x = (t, x), t ≠ 0,

Now we extend l, l = 0, 1, to tempered distributions by defining

1(')
def
= ∫O+m

(

∫ℝ4
'(x)

(

�(t)e−!(p)t−ip⋅x − �(−t)e!(p)t+ip⋅x
) 1
m
p dt dx

)

d�m(p)

and
0(')

def
= ∫O+m

(

∫ℝ4
'(x)e−!(p)|t|−ip⋅x 1

m
p dt dx

)

d�m(p),

where the integrals are easily seen to converge for any ' ∈ S (ℝ4). Therefore, 1 and 0 are
bounded linear functionals from S (ℝ4) to ℝ, that is they are tempered distributions.
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Schwinger distributions and bilinear forms
§ 5.30 Theorem §5.28 says that the Schwinger distribution D is uniquely specified by the reduced
Wightman distributionWD. In our detailed analysis we have highlighted the fact that the reducedWightman
distribution WD is in fact composed of two irreducible Wightman distributions. We have called these
distributions Ξ1 and Ξ0, where Ξ1 transforms vectorially and Ξ0 as a scalar under the proper, orthochronous
Lorentz group. Hence we identified the Wightman function WD with an R-covariant, forward, matrix
valued distribution with values in ℂ5. One could say that the original meaning of a two-point Wightman
distribution as a bilinear form given in §5.19 is lost when one passes to the reduced Wightman distribution.

As a consequence, one could say that the (uniquely determined) Schwinger distribution, does not have
an a priori interpretation as a bilinear form. To stress this fact, we have defined the Schwinger distribution
D as a tempered distribution with values in ℂ5.

Nevertheless, in the context of Euclidean quantum electrodynamics in the sense of Schwinger ([17]),
one wants to interpret the Schwinger distribution as Euclidean invariant bilinear form. Multiple methods
have been proposed in the literature to achieve this goal (cf. [14, 31], [29] and reference therein). Every
method leads to a “different looking” bilinear form. Sometimes the bilinear forms in the literature are
equivalent some other time they are not . We claim that all these bilinear forms are in fact due to the
ambiguity, not in what we called Schwinger distribution, but in the interpretation of such a distribution as
a bilinear form.

In the remaining of this subsection we associate a bilinear form to, what we called, Schwinger
distribution.

§ 5.31 Let D ∈ S ′(ℝ4)⊗ ℂ5 be the matrix valued, Schwinger distribution of §5.29 and let ℂl(4) the
complex Clifford algebra over ℂ4. We want to interpret D as a bilinear form on some appropriate space
of test functions. The original 2-point Wightman distribution wD(⋅, ⋅) was defined in §5.19 as a bilinear
form on S (ℝ4,ℂ4) ×S (ℝ4,ℂ4). From this 2-point Wightman distribution we obtained a reduced, matrix
valued, Wightman distributionWD ∈ S ′(ℝ4)⊗ (ℂ4 ⊗ ℂ4). To interpret the Schwinger distribution D
as a bilinear form, we can first consider it as a “reduced form” of a bilinear form, in the same way that the
reduced, matrix valued, Wightman distributionWD is a “reduced form” of the bilinear form wD. In order
to follow this approach, we first want to convert the vector valued Schwinger distribution D into a matrix
valued Schwinger distribution with values in some algebra of matrices. Let us choose as algebra the same
algebra we had for the reduced, matrix valued, Wightman distribution, that is the complex Clifford algebra
ℂl(4). Then, we have to embed the image of D into ℂl(4), hence we have to embed ℂ5 into ℂl(4). As
remarked above there are multiple possible ways to embed a vector in ℂ5 into l(4). We choose to embed
ℂ5 = ℂ4 ⊕ ℂ → ℂl(4) by

� ∶ ℂ4 ⊕ ℂ → ℂl(4), �(z ⊕ �) = 
 (z) + � I, z ⊕ � ∈ ℂ4 ⊕ ℂ,

where 
 is the canonical embedding of ℂ4 ∈ ℂl(4). Note in particular that if we denote as before, for
v ∈ ℝ4,


(v) =
3
∑

j=0
vj
j ,

where 
j ∈ ℂl(4), j = 0, 1, 2, 3, are the gamma matrices in Dirac representation, then, letting ℝ4 → ℂ4
be the standard embedding of ℝ4 into ℂ4, we have, for a v ∈ ℝ4 seen as a vector in ℂ4,


 (v) = iv0
0 +
3
∑

k=1
vk
k.

Let us the define the Euclidean Schwinger distribution (for Dirac fields) to be the matrix valued
distribution S ∈ S ′(ℝ4)⊗ ℂl(4) such that, for all ' ∈ S (ℝ4), we have

S (')
def
= �(D(')).
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Now, with a similar reasoning as in §5.23we define a bilinear form s ∶ S (ℝ4;ℂ4)×S (ℝ4;ℂ4)→ ℂ
by

s (f, g) =
3
∑

jk=0
[D(fj ∗+ gk)]jk, f , g ∈ S (ℝ4;ℂ4),

where [D(fj ∗+ gk)]jk, j, k = 0, 1, 2, 3, denote, as above, the matrix components and ∗+ denotes the
“convolution with the wrong sign” as in §5.23.

A straightforward computation shows the following explicit form for S . Let ' ∈ S (ℝ4;ℂ4). Then
we have

S (') = ∫ℝ4

(

∫ℝ4
'(x)e−ip⋅x

ip0
0 +
∑3
k=1 pk
k + m I4
p2 + m2

dx
)

dp, (III.19)

where 
j , j = 0, 1, 2, 3, denote the gamma matrices in Dirac representation.

§ 5.32 Remark. Note that the Euclidean Schwinger distribution S in (III.19) gives rise, for every
' ∈ (ℝ4) to a non definite, but Hermitian (i.e. symmetric under the Hermitian scalar product in ℂ4)
matrix S (') ∈ ℂl(4).
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IV
A note to Kupsch probabilistic setting for the

Euclidean Dirac field

Abstract

The n-point functions of Euclidean Dirac quantum fields have been expressed by Kupsch as the
expectation of a certain function of complex Gaussian random fields. We simplify his approach in
three ways. First, by employing the Schwinger 2-point function for the Dirac quantum fields in the
representation given in a paper by van Nieuwenhuizen and Waldron, we avoid the doubling of the
number of spinor fields. Second, we use the chaos expansions of complex Gaussian processes in a
way which, we believe, is better suited for further applications. Third, we use an isomorphism due to
Friedrichs to relate the Fermionic Fock space and the Bosonic one. As a consequence of our simplified
approach we can treat in a more unified way the antisymmetric properties of a collection of n-Fermions
and the non-positive definiteness of the 2-point function.
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1 Introduction
Mathematically speaking, one of the most appealing features of Euclidean techniques, when applied to
Bosonic theories, is the following. At least after imposing some regularization, one can express the vacuum
averages of the Euclidean quantum fields as integrals of some function with respect to a (�-additive)
probability measure. This picture, on one hand, removes the complexity of dealing with unbounded
operators in favor of integration of a commuting algebra of functions with respect to a well defined
probability measure. On the other hand, this probabilistic approach puts in evidence many properties of
the given system, for example positivity, reflection positivity, and Markovianity that are useful also for
the study of the corresponding relativistic quantum fields. In particular the positivity and �-additivity
of the probability measure which characterize the system (perhaps with some regularizations) are very
strong properties which make directly applicable many results from analysis. Moreover many results

73
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from analysis of elliptic or parabolic systems become available through this approach. Due to well known
connections between probability and analysis (e.g. in elliptic and parabolic differential equations) the
Euclidean approach permits also the exploitation of strong related analytic methods.

Free Euclidean Bosonic field theories could be defined, in this context, as being those theories which
correspond to a centered, Gaussian, probability measure. For example a free Euclidean Bosonic quantum
field with positive mass, is completely determined by its 2-point function (i.e. the vacuum average of the
Euclidean invariant bilinear form built from the quantum field and its Hermitian adjoint). Equivalently,
in the probabilistic interpretation mentioned above, free Euclidean field theories with positive mass are
completely determined by the covariance (or second moment) of the Gaussian measure describing them.

It would be desirable to extend such a measure theoretic, probabilistic setting to Fermionic theories
(on this matter cf. e.g. [6]). Even when restricting to free Fermionic theories, one is usually faced with
two main problems:

1. The presence of the Fermi-Dirac statistics,

2. The formulation of Euclidean covariance of a system with “half-integer” spin.

The Fermi-Dirac statistics implies that the operators describing Fermions satisfy anticommutation relations.
In particular they cannot be related in a straight forward fashion to a commuting algebra of functions.
Euclidean covariance, when the fields have half-integer spin, implies that the 2-point function is anti-
symmetric (when described in an appropriate basis, more on this will be mentioned below), hence in
particular they are not positive definite. The fact that Fermionic operators satisfy anticommutation
relations and the fact the the 2-point function is anti-symmetric is a strong hint which suggests that these
two problems are two faces of a single property. In many regards this is in fact true. One can think for
example about the spin and statistics theorem in its various formulations (cf. e.g. [4]). Nevertheless, one
could also argue that the nature of these two phenomena (statistics and Euclidean covariance) is quite
different. The statistical property involves, by definition, more than one particle, whereas the Euclidean
covariance is a property which can be described already at the one particle level.

Kupsch ([17]) describes a way to deal with the these two problems and, as a consequence, provides a
probabilistic description of free Fermionic fields in terms of a Gaussian measure on a classical probability
space.

The statistical problem is eliminated in [17] by relating the n-point functions of the theory, not directly
with the moments of a Gaussian, but with a certain function of the moments of the same degree. This
certain function encodes the combinatorial, anticommuting nature of Fermi-Dirac statistics.

The non-positivity of the 2-point function is handled in [17] first by doubling the number of Fermionic
fields. Because of this doubling, the 2-point function is replaced by a different 2-point function (in terms
of twice as many fields) which is antisymmetric (in the sense to be specified below). Then a standard
property of antisymmetric bilinear forms is applied. Specifically, antisymmetric bilinear forms can be
interpreted as the imaginary part of a positive definite Hermitian form. In turn, an Hermitian form can be
taken as covariance of a complex Gaussian measure.

Combining these two ideas, Kupsch is able to describe Euclidean Fermionic n-point functions as the
expectation of a, somewhat complicated, function of Gaussianly distributed complex random variables.

We give a simplified reformulation of Kupsch’ result which, in our opinion, is better suited for further
applications. The main points of our simplification are the following.

1. Kupsch, similarly to [19], doubles the number of Fermionic fields. In this way he obtains a new
2-point function, in twice as many fields, which is antisymmetric. Any 2-point function can be made
antisymmetric by such a doubling. Hence it is not immediately clear why this would be a natural
approach specific to Fermionic fields. We show that the doubling is not necessary to obtain an
antisymmetric 2-point function, which can be indeed obtained effectively by choosing an appropriate
representation for the quantum fields. In practice, we employ an idea from [23] where a special
notion of Wick rotation is defined. Via this Wick rotation, the resulting Euclidean approach gives
rise, without doubling, to an antisymmetric two point function.
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2. We give a simple generalization of the treatment of complex Gaussian white noise, and of the
corresponding chaos expansions, given in [12]. We need the formulas from this simple generalization,
in conjunction with what we discuss in point 3. below, to treat the case of Euclidean Dirac field. We
hope that our treatment, through these chaos expansions, will also have applications to the study of
certain non Gaussian random fields. Our approach should simplify the treatment of non Gaussian
random fields in future generalizations.

3. To treat the combinatorial, anticommuting nature of Fermionic fields, we use an isomorphism due to
Friedrichs [5] which maps the Fermionic Fock space into the Bosonic one isometrically and respects
the grading which corresponds to the number of particle operator (Let us mention the following
further references regarding this isomorphism: from the physics literature we cite [16] and [8, 9,
10, 11]; from the mathematical literature we cite [15], [18]). This isomorphism avoids the need to
choosing a basis of the physical Hilbert space. Nevertheless, it does not come free of choices. One
still has to choose a fixed family of “Friedrichs functions” which have the task of “symmetrizing”
the antisymmetric functions which constitute the elements of the Fermionic Fock space.

As a consequence of our approach we have the following interesting perspective. In the context of point
1. above, when dealing with the positivity of the 2-point function, we need to introduce a real structure
(in conjunction with a complex structure), which allows us to relate the antisymmetric 2-point function
with the imaginary part of a Hermitian, positive definite, 2-point function. In practice, the very fact of
taking the imaginary part, corresponds to choosing a real structure. Similarly, the family of “Friedrichs
functions”, needed to define the Friedrichs isomorphism, could be considered as a new structure which
generalizes the notion of real structure. The real structure is employed at the level of 2-point functions
(hence at 1-particle level), whereas this new structure, built from Friedrichs functions, plays a similar role
but at the level of 2n-point functions, for all n > 1. We come back to this point in §5.12.

The structure of this note is as follows. In section 2 we define the Euclidean 2-point function described
in [23].

In section 3we convert the Euclidean 4-component complex Dirac spinors into Euclidean 8-component
real Dirac spinors. In this representation the 2-point function becomes an anti-symmetric real operator.

In section 4 we make use of the standard result that an anti-symmetric real bilinear form on a real
Hilbert space can be obtained as the imaginary part of an Hermitian scalar product on a complex Hilbert
space. There the main ingredient will be the introduction of a complex structure next to a real structure.
We then describe the chaos expansions for complex Gaussian processes and, employing those, we construct
a complex Gaussian random field with covariance given by this Hermitian scalar product.

In section 5 we show how to recover the Euclidean Fermionic n-point functions from expectations of
the complex Gaussian random field introduced in section 4. The main result concerning a probabilistic
representation of free Euclidean Fermionic n-point functions is given in §5.10.

2 Euclidean Dirac fields via Wick rotation

We summarize the approach of [23] for an Euclidean version of the Dirac field .
Consider the four dimensional Minkowski space-time with metric � = diag(1,−1,−1,−1). We can

think of the Euclidean imaginary time as a fifth real dimension. The Wick rotation is a rotation by �∕2
in the plane formed by the original (real) time direction and the (imaginary) euclidean time. In [23] the
authors proposed to perform a similar rotation in the spinor components alongside the Wick rotation in
the time variable.

The result, after this prescription for Wick rotation, is to consider a Euclidean theory with 2-point
function given, in momentum space, by

Ŝ (p) = 
0

∑

j=1,2,3 pj
j + ip0
5 + m1
p2 + m2

, p ∈ ℝ4, m > 0,
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where p2 = p20 + p
2
1 + p

2
2 + p

3
3 and the 
-matrices (
�)�=0,1,2,3, 
5 = i
0
1
2
3 are the standard (Minkowski)


-matrices which satisfy, for �, � = 0,… , 4,

{
�, 
�} = ���1, {
�, 
5} = 0, (
5)2 = 1, � =

(

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)

,

where the brackets {⋅, ⋅} denote the symmetrized product ({A,B} = AB + BA for two 4-by-4 matrices
A,B). We call ̂ the Euclidean 2-point function.

For the sake of concreteness we chose in what follows the standard Dirac representation1:


0 =

(

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)

, 
5 =

(

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)

, 
1 =

(

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

)

, 
2 =

(

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

)

, 
3 =

(

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

)

.

The point of this prescription of Wick rotation is that the Euclidean 2-point function is Hermitian in
the sense that

Ŝ (p)t = Ŝ (p), p ∈ ℝ4, (IV.1)

where Ŝ (p)t denotes the complex conjugation and transposition of the matrix Ŝ (p).
In the representation of 
-matrices that we chose we have, explicitly,

Ŝ (p) =
1

p2 + m2

(

m 0 ip0 + p3 p1 − ip2
0 m ip2 + p1 ip0 − p3

p3 − ip0 p1 − ip2 −m 0
ip2 + p1 −ip0 − p3 0 −m

)

.

Following the same derivation as in the Minkowski case [22], it can be shown that the function Ŝ (p)
is the symbol (in momentum space) of a selfadjoint, bounded2 operator S on L2(ℝ4;ℂ4) given by

(Sf )(x)
def
= (S ∗ f )(x), x = (x�)�=0,1,2,3 ∈ ℝ4,

where we define S as the inverse Fourier transform in the sense of distributions of Ŝ , the x ∈ ℝ4 being
the conjugate variables of the p ∈ ℝ4 via Fourier transform, ∗ denotes convolution, and f ∈ S (ℝ4).

3 Real form of the fields
In this section we shall connect the Euclidean two point function(s) of the free Dirac field with vacuum
averages of Fermionic fields in the standard, formal, notation of quantum field theory, cf. e.g. [1, 21,
20]. In particular Ψ(x), xℝ4, will denote a quantum Fermionic field in the “space-time representation”,
where x ∈ ℝ4 denotes a point of the Euclidean space-time. We shall employ the notation Ψ̂(p), p ∈ ℝ4, to
denote a quantum Fermionic field in the “momentum space representation”, where p ∈ ℝ4 denotes a point
of ℝ4 thought as the space of Fourier variables.

With this notation we can give two notions of the 2-point function of a Euclidean free Dirac field, one
in space-time and the other in momentum space. Let us denote by ⟨F (Ψ)⟩ the Berezin functional average
of the function F of Ψ, that is its vacuum average. We can either consider the “space-time representation”:

⟨

Ψ(x)Ψ†(y)
⟩

= −
⟨

Ψ†(y)Ψ(x)
⟩

= iS (x − y), x, y ∈ ℝ4,
1Cf. e.g. [2].
2A direct computation shows that

Ŝ(p)∗Ŝ(p) = Ŝ(p)2 = 1
p2 + m2

.

Hence, denoting by f̂ the four-dimensional Fourier transform of f , we get

‖Sf‖
2
L2(ℝ4;ℂ4) = ∫ℝ4

‖Ŝ(p)f̂ (p)‖2ℂ4 dp = ∫ℝ4

1
p2 + m2

‖f̂ (p)‖2ℂ4 dp ≲ ‖f‖2L2(ℝ4;ℂ4), (IV.2)

which proves that the operator S is bounded in L2(ℝ4;ℂ4).
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or the “momentum space representation”
⟨

Ψ̂(p)Ψ̂†(q)
⟩

= −
⟨

Ψ̂†(p)Ψ̂(q)
⟩

= iŜ (p) �(p − q), p, q ∈ ℝ4.

Note that, in both last formulas, the i on the right hand side makes the right hand side anti-Hermitian, cf.
(IV.1).

We shall now define 8-component real fields with real anti-symmetric 2-point function. We perform the
computations in the momentum space representation. One could also chose the space-time representation,
in which case the computations would be analogous, mutatis mutandis.

Momentum space representation

With notations as above, we define

Γ̂(p)
def
=

(

Φ̂(p)
Π̂(p)

)

, Φ̂(p)
def
= 1

√

2

(

Ψ̂(p) + Ψ̂†(p)
)

, Π̂(p)
def
= i

√

2

(

Ψ̂(p) − Ψ̂†(p)
)

.

A straight forward computation shows that
⟨

Γ̂(p)Γ̂(q)
⟩

= Ĉ(p) �(p − q), p, q ∈ ℝ4

with

Ĉ(p)
def
=

(

I(p) R(p)
−R(p) I(p)

)

, I(p)
def
= i
2

(

Ŝ (p) − Ŝ (p)t
)

, R(p)
def
= 1
2

(

Ŝ (p) + Ŝ (p)t
)

. (IV.3)

Explicitly, in the representation of 
-matrices we chose, we have

I(p) = 1
p2+m2

(

0 0 −p0 p2
0 0 −p2 −p0
p0 p2 0 0
−p2 2p0 0 0

)

, R(p) = 1
p2+m2

(

m 0 p3 p1
0 m p1 −p3
p3 p1 −m 0
p1 −p3 0 −m

)

.

Of course knowing Ĉ(p) is equivalent to knowing Ŝ (p). Hence in what follows we will call Ĉ(p)
the real (Euclidean) 2-point function, whereas we will continue to call Ŝ (p) the Euclidean 2-point
function.

In the usual theory of quantum fields one is interested in the n-point functions. In this Euclidean
setting we call Euclidean n-point functions the following quantities

Ŝ(n)l1…ln(p1,⋯ , pn)
def
= det

1≤i,j≤n

(

Ŝ (pi − pj)
)

, n even, lj = 1,… , 4, pj ∈ ℝ4, j = 1,… , n, (IV.4)

and Ŝ(n) = 0 for n odd. Alongside these Euclidean n-point functions we consider the real Euclidean
n-point functions which we define to be

Ĉ (n)r1…rn
(p1,⋯ , pn)

def
= det

1≤i,j≤n

(

Ĉrirj (pi − pj)
)

, n even, rj = 1,… , 8, pj ∈ ℝ4, j = 1,… , n, (IV.5)

and Ĉ (n) = 0 for n odd.

4 Complex structure and complex Gaussian random field

Complex structure

We start with some general considerations about complex structures on real Hilbert spaces. Then we turn
to the special case we are interested in.
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§ 4.1 Complex structure. Let V be a real separable Hilbert space. We define a complex structure on
V to be a linear anti-symmetric automorphism J of V such that J2 = −1.

Consider the complexified Hilbert space Vℂ
def
= V ⊗ℝ ℂ. Then we have the canonical decomposition

Vℂ = V 1,0 ⊕ V 0,1,

given by the two orthogonal projectors from Vℂ into V 1,0, respectively V 0,1, defined by:

P1,0 =
1
2
(1 + iJ) , P0,1 =

1
2
(1 − iJ) .

J is the above complex structure. Consider the map � ∶ V → V 1,0 given by

�(v)
def
= 1
2
(1 − iJ)v. (IV.6)

that is, the map � is just the projection P1,0 restricted to V as a subspace of Vℂ.
Proposition. The map � is complex isomorphism of the Hilbert spaces3(V , J ) and (V 1,0, i).
PROOF. First note that � is ℂ-linear in the sense that

�(Jv) = i�(v),

which also implies that, for any w ∈ Ran�, we have Jw = iw. Second � is invertible. In fact let us define
a linear map � ∶ V 1,0 → V by

�(w) = ℜw + Jℑw, w ∈ V 1,0.

A straight forward computation shows that, for � as above, �(�(w)) = w,w ∈ V 1,0. Hence � in invertible
and � is its inverse. Finally � is an isometry because 1

2 (1 + iJ) is an orthogonal projection.

§ 4.2 We now turn to the special case which interests us. Consider the bounded operatorC ∶ L2(ℝ4;ℝ8)→
L2(ℝ4;ℝ8)

(Cf )(k)
def
= Ĉ(k)f (k), f ∈ S (ℝ4;ℝ8),

where Ĉ(k) is defined in (IV.3). Since C is selfadjoint, we have the following polar decomposition

C = JP = PJ

with
P =

√

−C2 = 1
√

p2 + m2
1, J =

√

p2 + m2 C.

Here J is looked upon as a multiplication operator in L2(ℝ4;ℝ8). A straight forward computation, indeed,
shows that J2 = −1, hence J defines a complex structure on the space L2(ℝ4;ℝ8). The map � above gives
us an isomorphism between (L2(ℝ4;ℂ4), i) and (L2(ℝ4;ℝ8), J).

Now, given the bilinear, antisymmetric, real, quadratic form on S (ℝ4;ℝ8),

!(f, g) = ∫ℝ4
f (k)Ĉ(k)g(k) dk, f , g ∈ S (ℝ4;ℝ8), (IV.7)

we construct the following complex valued form

ℎ(f, g) = !(Jf, g) − i!(f, g).

3We denote by e.g. (V , J ) the space V together with the complex structure J which makes V into a complex space.
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The interesting case to us is when ℎ(⋅, ⋅) takes the form

ℎ(f, g) = ∫ℝ4
f (k)

( 1
√

p2 + m2
− iĈ(k)

)

g(k) dk

=
8
∑

ij=1
∫ℝ4

( 1
√

p2 + m2
1 − iĈ(k)

)

ij
�(p − k)fi(k)gj(p) dk dp, f , g ∈ S (ℝ4;ℝ8). (IV.8)

In the following we are interested in the following property, which follows from (IV.7),

!(f, g) = i
8
∑

ij=1
∫ℝ4

(

1
√

p2 + m2
− iĈij(k)

)

�(p − q) 1
√

2
(f ∧ g)ij(k, p) dp dk, (IV.9)

where 1∕
√

2 comes from the fact that (f ∧ g)(p, k)
def
= 1

2 (fi(p)gj(k) − fj(k)gi(p)). Let us define

(Kf )i(p)
def
=

8
∑

j=1
∫ℝ4

(

1
√

p2 + m2
− iĈij(k)

)

�(p − k)fj(k) dk, f ∈ S (ℝ4;ℝ8),

as an operator which sends the real space S (ℝ4;ℝ8) into the complex space L2(ℝ4;ℂ8). We can write
(IV.9) in a more abstract way as follows

!(f, g) = iTrL2(ℝ4;ℝ8)
(

K (f ∧ g)
)

, (IV.10)

where TrL2(ℝ4;ℝ8 denotes the trace of an operator in L2(ℝ4;ℝ8), and K(f ∧ g) denotes the product of the
bounded operator K with the f ∧ g interpreted as a trace class operator in L2(ℝ4;ℝ8).

§ 4.3 We now consider the map �, which was defined in the general in (IV.6), as a map from L2(ℝ4;ℝ8)
to L2(ℝ4;ℂ4). restricted to S (ℝ4;ℝ8), sends the bilinear form ℎ into a bilinear form on S (ℝ4;ℂ4)
which we denote by ▵(⋅, ⋅), that is, we define on S (ℝ4;ℂ4) the bilinear form

▵(f, g)
def
= ℎ(�(f ), �(g)), f , g ∈ S (ℝ4;ℂ4).

In our case the form ▵(⋅, ⋅) is

▵(f, g) = 2∫ℝ4
f (k) 1

√

k2 + m2
Ig(k) dk, f , g ∈ S (ℝ4;ℂ4), (IV.11)

where I says for the unite matrix in ℂ4. To show that this is the case it is enough to show that This
computation shows that

▵(�(f ), �(g)) = ℎ(f, g), f , g ∈ S (ℝ4;ℝ8).



80 Chapter IV. Kupsch probabilistic setting

Now this follows from the following computation, where now f, g ∈ S (ℝ4;ℝ8) are real,

▵(1
2
(1 + iJ)f, 1

2
(1 + iJ)g) = 1

2 ∫ℝ4
(1 + iJ)f (k) 1

√

k2 + m2
(1 + iJ)g(k) dk

= 1
2 ∫ℝ4

(1 − iJ)f (k) 1
√

k2 + m2
(1 + iJ)g(k) dk

= 1
2 ∫ℝ4

(

f (k) 1
√

k2 + m2
g(k) + (Jf )(k) 1

√

k2 + m2
(Jg)(k)

)

dk +

+ i
2 ∫ℝ4

(

(Jf )(k) 1
√

k2 + m2
g(k) − f (k) 1

√

k2 + m2
(Jg)(k)

)

dk

= 1
2 ∫ℝ4

(

f (k) 1
√

k2 + m2
g(k) + f (k) 1

√

k2 + m2
(−J2g)(k)

)

dk +

+ i
2 ∫ℝ4

(

−f (k) 1
√

k2 + m2
(Jg)(k) − f (k) 1

√

k2 + m2
(Jg)(k)

)

dk

= ∫ℝ4
f (k) 1

√

k2 + m2
g(k) dk − i∫ℝ4

f (k) 1
√

k2 + m2
(Jg)(k) dk

= ∫ℝ4
f (k) 1

√

k2 + m2
g(k) dk − i∫ℝ4

f (k)Ĉ(k)g(k) dk,

where in the fourth equality we use the anti-symmetry of J, in the fifth the property J2 = −1, and in the
last the definition of Ĉ(k).

Using the fact that � is the inverse of �, shown in the proof of the proposition in paragraph §4, we
have of course

▵(f, g) = ℎ(�(f ), �(g)), f , g ∈ S (ℝ4;ℂ4).

In the following we will deal with the form ▵(⋅, ⋅) because of its easier form and because, differently
than the Euclidean two-point function, the density 1

√

k2+m2
, appearing in the definition (IV.11) of ▵(⋅, ⋅),

defines a positive definite multiplication operator. The original Euclidean two point function ̂ can be
recovered as follows. Through the construction explained in this subsection we can reconstruct from ▵(⋅, ⋅)
the form ℎ(⋅, ⋅), and from ℎ(⋅, ⋅) we can recover the antisymmetric form !(⋅, ⋅). Finally, form ! we recover
the density Ĉ (cf. (IV.7)) and as explained at the end of section 3, the Euclidean two-point function  is
recovered from Ĉ .

It is a standard fact4 that the bilinear form ▵(⋅, ⋅) defines an Hermitian scalar product on S (ℝ4;ℂ4)
and therefore a Hilbertian norm which we denote by ‖ ⋅ ‖▵.

We let
W▵

def
= Closure

‖⋅‖▵

(

S (ℝ4;ℂ4)
)

. (IV.12)

Complex Gaussian random field

We now define a complex Gaussian random field5 on S ′(ℝ4;ℂ4) with covariance given by the scalar
product (⋅, ⋅) defined above.

We introduce the Gel’fand triple

S (ℝ4;ℂ4) → L2(ℝ4;ℂ4) → S ′(ℝ4;ℂ4).

4Cf. e.g. [17], see also, e.g. [3], [14].
5In the sense for example of [12].
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The scalar product (f, g)
def
= ∫ℝd

∑4
j=1 fj(k)gj(k) dk, for f, g ∈ L2(ℝ4;ℂ4), induces a paring ⟨⋅, ⋅⟩ ∶

S ′(ℝ4;ℂ4) ×S ′(ℝ4;ℂ4)→ ℂ.
Let T be a positive definite, selfadjoint, bounded operator on L2(ℝ4;ℂ4). We define the following

Hermitian, complex valued, bilinear form on S (ℝ4;ℂ4) ×S (ℝ4;ℂ4)

▵T(⋅, ⋅) ∶ S (ℝ4;ℂ4) ×S (ℝ4;ℂ4)→ ℂ, ▵T(f, g)
def
= (f, T g).

Now we specialize to the case where T is the operator in the definition of ▵ in (IV.11), hence we set ▵T=▵.
Moreover let us set

WT
def
= W▵,

whereW▵ was defined in (IV.12).

§ 4.4 Definition Let �T be the Borel probability measure on the nuclear space S ′(ℝ4;ℂ4) defined by

∫S ′(ℝ4;ℂ4)
ei⟨Z,f ⟩+i⟨Z,g⟩ d�T(Z) = e−(g,Tf ).

This relation does in fact define a probability measure because of the Bochner-Minlos theorem generalized
to this complex setting (cf. [13, Theorem 1.1, p. 2] for the standard statement of the Bochner-Minlos
theorem). We call the probability measure �T a (centered) complex Gaussian probability measure and
the collection of random variables ⟨⋅, f⟩ for f ∈ S (ℝ4;ℂ4) on the probability space (S ′(ℝ4;ℂ4),B, �T)
a (standard) complex Gaussian random field (with zero mean). As it is customary, we also write
∫S ′(ℝ4;ℂ4) F (Z) d�T(Z) as E[F (Z)] for a given integrable function F ∶ S ′(ℝ4;ℂ4)→ ℂ.

Remark The above definition is a straight forward generalization of [12, formula (6, 29) and Theorem
6.1]. We have the following formulas for the covariance

E[⟨Z, f⟩⟨Z, g⟩] = (f,Tg), E[⟨Z, f⟩⟨Z, g⟩] = E[⟨Z, f⟩⟨Z, g⟩] = 0.

In the proposition below give a simple generalization to our case of [12, Corollary of Theorem 6.4].
Following the notation in [12] we distinguish the spaceWT, defined above, fromW T, which we define
to be the space (canonically isomorphic to WT) obtained by applying the antilinear map of complex
conjugation to the whole spaceWT.

§ 4.5 Proposition (complexWiener-Itô-Hida-Segal isomorphism) Wehave the following isomorphism
of complex Hilbert spaces

T ∶ L2(S ′(ℝ4;ℂ4), �T)
≅
→ Closure

( ∞
⨁

n=0

∞
⨁

k=0

√

(n − k)!k! W ⊙(n−k)
T ⊗W

⊙k
T

)

,

where the T -transform is defined by

(T F )(f )
def
= ∫
S ′(ℝd ;ℂr)

F (Z) ei⟨Z,f⟩+i⟨Z,f⟩ d�T(Z), f ∈ S (ℝd ,ℂr), F ∈ L2(S ′(ℝd ,ℂr)),

and where Closure(⋅) denotes the closure with respect to the scalar product induced by the scalar product
onWT (cf. §5.1). We have employed the tensor product symbol ⊗, respectively the symmetric tensor
product symbol ⊙, to denote respectively the Hilbert tensor product, respectively the Hilbert symmetric
tensor product.

PROOF. We show that this statement follows from [12, Corollary of Theorem 6.4]. Indeed in [12,
Corollary of Theorem 6.4] the same statement is proved for T = 1 and r = 1, in which case the
spaceWT coincides withL2(ℝd ;ℂ). Now the generalization to r > 1 is straight forward. Moreover
when T is a general bounded, selfadjoint, positive operator in L2(ℝd ;ℂr) its square root

√

T is
also a well defined bounded, selfadjoint, positive operator in L2(ℝd ;ℂr). We can now follow the
same proof as in [12, Theorem 6.3] replacing the random variables ⟨z, �⟩ and ⟨z, �⟩ by ⟨z,

√

T �⟩

and ⟨z,
√

T �⟩.
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5 Euclidean n-point functions for Fermion fields

Jordan-Wigner-Friedrichs-Klauder isomorphism

We give a brief, yet self-contained, review of the isomorphism between Fermionic and Bosonic Fock
spaces introduced in [5] (cf. also [16] for physical motivation, and [18]), which we will need below. The
main result which we will use from this section is the corollary in §5.5.

§ 5.1 Fock spaces. Given a separable Hilbert space H , let us denote by ℾ⊗H , ℾ⊙H , and ℾ∧H
the general Fock space, the Bosonic Fock space, and the Fermionic Fock space respectively. For
completeness we give the explicit definitions of these spaces. Let be a nuclear space. We define

Γ⊗
def
=

∞
⨁

n=0
⊗n, Γ⊙

def
=

∞
⨁

n=0
⊙n, Γ∧

def
=

∞
⨁

n=0
 ∧n,

where ⊗n, ⊙n, and  ∧n denote the n-th tensor power, the n-th symmetric tensor power, and the n-th
antisymmetric tensor power of  . Let (⋅, ⋅) be a given scalar product on  and let H be the Hilbert
space obtained by closing  under (⋅, ⋅). We can lift the scalar product (⋅, ⋅) on  to a scalar product
⦅⋅, ⋅⦆ on Γ⊗ by extending by linearity the relations

⦅f1 ⊗⋯⊗ fn, g1 ⊗⋯⊗ fn⦆
def
= (f1, g1)⋯ (fn, gn), fj , gj ∈ , j = 1,… , n.

This scalar product naturally descends to a scalar product on Γ⊙ and on Γ∧ . We denote the closures
of Γ⊗ , Γ⊙ , and Γ∧ respectively by ℾ⊗H , ℾ⊙H , and ℾ∧H . We call these three Hilbert space
respectively the general Fock space, the Bosonic Fock space, and the Fermionic Fock space. Note that
ℾ⊙H , and ℾ∧H are Hilbert subspaces of ℾ⊗H .

§ 5.2 Second quantization. Given a bounded operator T on a Hilbert space H we denote by ΓT or
Γ(T ) the operator on ℾ⊗H extending by linearity the relations

(ΓT )(f1 ⊗⋯⊗ fn) = (Tf1)⊗⋯⊗ (Tfn), f1,⋯ fn ∈ H , n ∈ ℕ .

The operator ΓT restricts naturally to an operator on ℾ⊙H and on ℾ∧H .

§ 5.3 Definition: Friedrichs-Klauder functions. LetHs((ℝd
x)
n) denote the Sobolev-Hilbert space with

exponent s ∈ ℝ. The notation ℝd
x is used to denote the d-dimensional Euclidean space ℝd when we

want to distinguish it from the momentum space, also isomorphic to ℝd , which we then denote by ℝd
k .

Take s < −d. We call a family of functions �(n) ∈ Hs((ℝd
x)
n), n ∈ ℕ a family of Friedrichs-Klauder

functions when each �(n) satisfies the following properties

(i) the (ℝd)n Fourier transform �̂(n)(k1,… , kn) of �(n)(x1,… , xn) satisfies

(

�̂ (n)(k1,… , kn)
)2 a.e.= 1, k1,… , kn ∈ ℝd

k;

(ii) �̂ (n) (and therefore also �̂ (n)) is antisymmetric in the exchange of variables, that is under a permutation
� ∈ Sn, � ∶ {1,… , n} → {�(1),… , �(n)}, we require �̂ (n) to satisfy

�̂ (n)(k�(1),… , k�(n)) = sgn(�) �̂ (n)(k1,… , kn),

where sgn(�) denotes the sign of the permutation �.

§ 5.4 Proposition: JWFK isomorphism Let E0 = E1 = 1 be the identity map in ℾ⊗L2(ℝd
k). For n ≥ 2,

let En be the map
En ∶ L2((ℝd

k)
n)→ L2((ℝd

k)
n)  (n) → �̂ (n) (n),
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where the product �̂ (n) (n) is taken pointwise. We define the map E ∶ ℾ⊗L2(ℝd)→ ℾ⊗L2(ℝd) by

E
def
=

∞
⨁

n=0
En.

Then E is unitary and descends to a grading-preserving isometric isomorphism

E ∶ ℾ∧L2(ℝd
k)→ ℾ⊙L2(ℝd

k).

PROOF. First note that, since by hypothesis �̂ (n) is antisymmetric, En maps symmetric functions
into antisymmetric ones and antisymmetric function into symmetric ones.

We now show that the condition (�̂ (n))2
a.e.
= 1 implies both that En is a partial isometry and

that it is invertible. This means that En is unitary. Indeed

‖�̂ (n) (n)‖2
ℾ⊗L2(ℝd

k)
= ∫
(ℝd

k)
n

|�̂ (n)(k1,… , kn) (n)(k1,… , kn)|2 dk1⋯ dkn

= ∫
(ℝd

k)
n

�̂ (n)(k1,… , kn)2 | (n)(k1,… , kn)|2 dk1⋯ dkn

= ‖ (n)‖2
ℾ⊗L2(ℝd

k
,

where we used the condition (i) in §5.4. This proves that En is a partial isometry. To see that it is
invertible it is enough to note that

En(En (n)) = (�̂ (n))2 (n)
a.e.
=  (n),

which means that En is its own inverse.

We shall use the following corollary of the previous proposition. We omit the proof which is, mutatis
mutandis, the same as the one for the proposition.

§ 5.5 Corollary Consider a bounded, selfadjoint, positive operator T on the complex Hilbert space
L2(ℝd ;ℂr).

Let
(

WT, (⋅, ⋅)T
)

be the complex Hilbert space obtained by completing S (ℝd ;ℂr) with respect to the
Hermitian bilinear form (⋅, ⋅)T ∶ S (ℝd ;ℂr) ×S (ℝd ;ℂr)→ ℂ,

(f, g)T
def
= (f,Tg), f , g ∈ S (ℝd ;ℂr),

where (⋅, ⋅) denotes the Hermitian scalar product of L2(ℝd ;ℂr).
Suppose that on ℾ⊗S (ℝd ;ℂd) the operators Γ(T) and E commute. Then the assertions of the proposi-

tion in §5.4 hold also with
(

WT, (⋅, ⋅)T
)

in place of (L2(ℝd), (⋅, ⋅).

Remark A sufficient condition for the hypothesis, of the corollary in §5.5, that Γ(T) and E commute
when restricted to ℾ⊗S (ℝd ;ℂd), is the following. The operator T is a d × d-matrix-valued multiplication
operator, that is Tf (k) =M(k)f (k) whereM(k), for k ∈ ℝd , is an appropriate matrix which makes T,
on the Hilbert space L2(ℝd ;ℂr): bounded, selfadjoint, and positive. This is the situation which we will
need below.

We state in passing a useful combinatorial property of the maps �̂(n), n ∈ ℕ cf. [7, Formula (3.6)]:

§ 5.6 Lemma Given a function �̂(k, k′) of two variables k, k′ ∈ ℝd , antisymmetric in the permutation of
the variables, we can construct a function

�̂(n)(k1,… , kn)
def
=

∏

1≤j<l≤n
�̂(kj , kl)

of n variables which is anti-symmetric in the permutation of any two variables.
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Representation of Euclidean Fermionic n-point functions
The objective in this subsection is to state and prove a result, related to the result in [17], which gives the
representation of Fermionic n-point functions in terms of functionals of the chaos expansions of a complex
Gaussian random field. This result will be stated and proved in §5.10. We begin with some preliminary
lemmas dealing with easy combinatorial properties, the proofs of which are straight forward and therefore
omitted.

§ 5.7 Lemma Define in the usual manner the Pfaffian of an arbitrary 2n × 2n complex matrix M =
(mij)n2ij=1, as follows

pfM
def
= 1
2nn!

∑

i1…i2n

"i1…i2n

n
∏

l=1
mi2l−1i2l ,

where "i1…i2n denotes the Levi-Civita symbol. Then, if we denote by A(M)
def
= (M − Mt)∕2 the

antisymmetric part ofM , we have
pf(M) = pf(A(M)).

§ 5.8 Lemma LetM be a complex valued n-by-n matrix. Let us denote by bold face letters v, w vectors
in ℂ. and by v ⋅Mw the bilinear form6

v ⋅Mw
def
=

n
∑

ij=1
viMijwj .

Let v1,… , vk ∈ ℂn, k ≤ n. Then we have

pf
1≤ij≤k

[vi ⋅Mvj]
def
=

k
∑

i1…ik=1
"i1…ik

k
∏

l=1
vi2l−1 ⋅Mvi2l

= pf
1≤ij≤k

[vi ⋅ A(M)vj],

where, as above, A(M) = M+Mt

2
is the antisymmetric part of the matrixM .

§ 5.9 Lemma Let (V , ⋅) be a separable Hilbert space. Let v1,… , v2p ∈ V . Consider the p-form
v1 ∧⋯ ∧ v2p ∈ Ω2p(V ) ⊂ ℾ∧V . We can think of v1 ∧⋯ ∧ v2p ∈ Ω2p(V ) ⊂ ℾ∧V as a trace-class operator
in End (Ωp(V )) by considering its action to be

v1 ∧⋯ ∧ v2p(w1 ∧⋯ ∧ wp)
def
= (v1 ∧ v2)(w1) ∧⋯ ∧ (v2p−1 ∧ v2p)(wp),

where (vi ∧ vj)(w)
def
= (vj ⋅ w)vi − (vi ⋅ w)vj .

ForM ∈ End(V ), letM⊗p ∈ End(Ωp(V )) be its p-th tensor power,M⊗p def= M ⊗⋯⊗M (p times).
Finally, denote by TrEnd(Ωp(V ))(⋅) the trace of a trace-class operator in End(Ωp(V )).

Then we have

TrEnd(Ωp(V ))
((

v1 ∧⋯ ∧ v2p
)

◦M⊗p) = TrEnd(Ωp(V ))
((

v1 ∧⋯ ∧ v2p
)

◦A(M)⊗p
)

,

where ◦ denotes the composition of operators and A(M) denotes as before is the antisymmetric part of
the operatorM .

6Note that, in general, the bilinear form v ⋅Mw is neither symmetric nor Hermitian. In terms of the Hermitian scalar product
(v,w)

def
=

∑n
i=1 viwi, where vi denotes complex conjugation, we have

v ⋅Mw = (v,Mw),

where (v)i
def
= vi, for all i = 1,… , n.
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Remark The functional
M → TrEnd(Ωp(V ))

((

v1 ∧⋯ ∧ v2p
)

◦M⊗p)

can be thought as a generalization of the concept of Pfaffian. Below, when it is clear in what space the
trace is taken, we will simply write Tr.

Remark.We shall denote byMt the transpose of the operatorM . If the Hilbert space is complex this
notion is different from the notion of Hilbert adjoint, which we denote byM∗.

The following proposition gives the procedure by which one recovers the Euclidean n-point functions
from the complex Gaussian random field defined above.

§ 5.10 Theorem. Let the notation be as above. Then we can write compactly

C(�(f1), �(g1);… ;�(fn), �(gn)) =

= Tr
(

(

f1 ∧ g1 ∧⋯ ∧ fn ∧ gn
)

◦
(

E(n) ⊗E(n)
)

◦E
[

Z⊙n ⊗Z⊙n
])

. (IV.13)

Explicitly we have

C(�(f1), �(g1);… ;�(fn), �(gn)) =

= ∫(ℝ4)2n
(g1 ∧ f1 ∧⋯ ∧ gn ∧ fn)j1l1…jnln(k1,… , kn; p1,… , pn) ×

�(n)(k1,… , kn)�(n)(p1,… , pn) ×

× E
[

Zj1(k1)Zl1(p1)⋯Zjn(kn)Zln(pn)
]

dk1 dp1⋯ dkn dpn, (IV.14)

where

C(�(f1), �(g1);… ;�(fn), �(gn))
def
=

8
∑

r1s1…rnsn=1
∫(ℝ4)2n

Ĉ (2n)r1,s1,…,rn,sn
(k1, p1,… , kn, pn) ×

× (�g)r1(p1)⋯ (�g)rn(pn)(�f )s1(k1)⋯ (�f )sn(kn) dp1 dk1⋯ dkn dpn, (IV.15)

and where the map � is defined in section 4.

PROOF. The statement follows from the combinatorial lemmas above together with the decompo-
sition in §4.5. The two expressions (IV.13) and (IV.14) follow from each other simply by applying
the definitions of the maps E(n) and of the trace Tr. To show that, for example, (IV.13) holds
we need to verify the following. First note that (IV.13) holds at the 2-point function level, that
is, for n = 1. This is indeed true by construction. Then note that, for n > 1, it has the right
symmetry property, that is is antisymmetric under any odd permutations among the set of functions
{f1, g1,… , fn, gn}. This is trivially satisfied because on the right hand side we have the wedge
products of these functions. Finally note that, for a fixed n, the right hand side is not identically
zero. Indeed the expression

(

E(n) ⊗E(n)
)

◦E
[

Z⊙n ⊗Z⊙n
]

(IV.16)

is antisymmetric, because of the definition of the Friedrichs maps E(n), in the permutation of a pair
(fj , gj) with another pair (fl, gl), j,l ∈ {1,… , n}. Moreover, the expression (IV.16) is neither
symmetric nor antisymmetric in the exchange of an fj with a gj with the same j ∈ {1,… , n}. In
particular it can be antisymmetrized and still give a nonzero result.

Finally, let (ej)j∈ℕ+ be a basis for L2(ℝd ;ℂr) composed of elements in S (ℝd ;ℂr). Then one
can trivially show, by explicit evaluation of the expectation E[⋯], that the relation (IV.13) is
satisfied when one chooses e1,… , en for the functions f1,… , fn and e1,… , en for the functions
g1,… , gn. Hence the proof is complete.
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We note that the wedge products in (IV.13) and (IV.14) in the theorem above are redundant, in the
sense that we have the following corollary.

§ 5.11 Corollary. We can rewrite (IV.13) and (IV.14) respectively as

C(�(f1), �(g1);… ;�(fn), �(gn)) =

= Tr
(

(

f1 ⊗ g1 ⊗⋯⊗ fn ⊗ gn
)

◦
(

E(n) ⊗E(n)
)

◦E
[

ℑ
{

Z ⊗Z
}⊙n

])

, (IV.17)

where the imaginary part ℑ
{

Z ⊗Z
}

of the matrix Z ⊗Z is taken component wise, and as

C(�(f1), �(g1);… ;�(fn), �(gn)) =

= ∫(ℝ4)2n
(g1 ⊗ f1 ⊗⋯⊗ gn ⊗ fn)j1l1…jnln(k1,… , kn; p1,… , pn) ×

�(n)(k1,… , kn)�(n)(p1,… , pn) ×

× E
[

ℑ
{

Zj1(k1)Zl1(p1)
}

⋯ℑ
{

Zjn(kn)Zln(pn)
}

]

dk1 dp1⋯ dkn dpn. (IV.18)

PROOF. We first show (IV.18) is indeed the same as (IV.14).
The antisymmetry of the permutation of a kj with a kl, j,l ∈ {1,… , n}, j ≠ l, is enforced

by the Friedrichs function �(n)(k1,… , kn). Similarly, the antisymmetry of the permutation of
the variable pj with the variable pl, j,l ∈ {1,… , n}, is enforced by the Friedrichs function
�(n)(p1,… , pn). Finally, the imaginary parts ℑ

{

Zj1(k1)Zl1(p1)
}

inside the expectation enforce
the antisymmetry under the permutation of a variable kj with the variable pj , j ∈ {1,… , n}.
These antisymmetry properties imply also clearly the antisymmetry under the permutation of a
variable kj with a variable pl , j,l ∈ {1,… , n}, j ≠ l. Hence we conclude that (IV.18) is indeed
equivalent to (IV.14).

It now follows from (IV.18) that we can rewrite (IV.13) as follows Indeed, to obtain this last
expression from (IV.18), it is enough to note that

E
[

Z
⊙n
⊗Z⊙n

]

= E
[

(

Z ⊗Z
)⊙n

]

,

which follows from the symmetry property of the complex Gaussian probability measure. Indeed,
for example, an expression of the form

E
[

Zj1(k1)Zl1(p1)Zj2(k2)Zl2(p2)
]

is symmetric under the permutation which exchanges (j1, k1) with (j2, k2).7

§ 5.12 Concluding remark. The expressions (IV.17) and (IV.18) should clarify the comment made in
the Introduction of this chapter, where we stated that the Friedrichs functions constitute a generalization
of the notion of real structure to the whole Fock space. Indeed we see that taking the imaginary part
(which means we have chosen a real structure which distinguishes between real and imaginary parts)
antisymmetrizes at the level of the 2-point function, hence at the one-particle level. Whereas the Friedrichs
functions �(n) plays a similar role at the n-particle level.
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V
Relativistic Fermions in 3 + 1 dimensions:
complexified Poincaré spin group, and a
Bosonic Fock space of Hilbert-Schmidt

operators

Abstract

We construct a model for relativistic free Dirac Fermions which is realized canonically in a Bosonic
Fock space. The starting point consist in considering the complexified space time and the induced
representations of the complexified Poincaré spin group. Hence in our model we are describing both
relativistic and Euclidean symmetries at once. Finally the Bosonic Fock space corresponds to a Fock
space on a space of Hilbert-Schmidt operators or, which is the same, the 1-particle Hilbert space,
on which the Fock space is constructed, is itself the (completed) tensor product of two other infinite
dimensional (separable) Hilbert spaces. We conclude by giving a way to recover, from our model, the
standard Fermionic Fock space for free relativistic Dirac fields.
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1 Introduction
The motivation for this chapter comes from the desire of introducing probabilistic methods well adapted
to the Euclidean Dirac field. The main two problems, when trying to adapt probability theory to the
Euclidean Dirac field are

89



90 Chapter V. Complexified Poincaré spin group

1. The (Euclidean) Schwinger 2-point function does not define a positive definite form, hence one
cannot directly construct a Hilbert space of 1-particle states.

2. The state of n Dirac Fermions is antisymmetric (for every n ∈ ℕ+. Hence it cannot be described
as an n-th moments of a probability measure, because such moments correspond to symmetric
quantities.

In the literature there exist methods to circumvent these two problems. We cite [17], [13], [14], [21] and
reference therein. We believe that these methods have a common drawback. They solve the two problems
mentioned above with a somewhat ad hoc technique, which works but adds very little to the already very
robust functional analytic and algebraic formulation given either in terms of Fock spaces (cf. [20]) or in
terms of C∗ algebras (cf. [4]). Moreover, the approaches in the literature treat the two problems separately.

We give here a construction which solves the two problems mentioned above at the same time, starting
from a basic generalization of the standard Dirac theory to complex space-time.

The complexified space time is a fundamental ingredient of Wightman theory. Indeed Wightman
functions are considered as holomorphic functions in regions of the complexified spacetime.

The most relevant point for our purposes concerns the rigorous proof of the spin-statistics (spin and
statistics) theorem in the context of Wightman axioms. There one uses a rotation in the complexified
spacetime to prove that half-integer spin fields, if they commute for space separated points, then they are
trivial. This theorem needs that the Wightman n-point functions be defined on the complexified spacetime.
Moreover the Wightman functions are constructed in such a way that the action of the complexified Lorentz
spin group Spin(4,ℂ) is defined on them. Nevertheless, in Wightman theory, the complexified Lorentz
spin group is not defined at the level of the quantum fields, it only acts on the analytically continued
n-point functions. In the proof of this theorem, one considers the Wightman two-point function. Then
one notices that, under a rotation by � in the plane determined by the x-axis and the imaginary time axis
the two point function for half-integer fields is multiplied by −1. This means that this 2-point function is
antisymmetric under this transformation, and similarly for the n-point functions. This is the main step in
the proof which then implies the anticommutativity (at space separated points) of Fermionic fields in this
axiomatic framework. This anticommutativity is what we recognized above as the second obstruction to a
probabilistic description of relativistic Fermions.

We remark that here we shall basically be concerned with free Fermionic fields, whereas the content
of the spin-statistics theorem applies in principle to any theory satisfying the Wightman axioms.

In fact, the antisymmetry of the Wightman two-point function under the rotation described above, is
also the origin to the first obstruction we mentioned above. Indeed, this antisymmetry, under the rotation
mentioned above of the Wightman two-point function, makes the Euclidean 2-point Schwinger function,
in certain representations (cf. chapter III), correspond to an antisymmetric, Euclidean invariant, bilinear
form. In particular, this form, being non-symmetric, cannot be positive definite.

On the other hand, the Wightman functions which correspond to Bosonic fields, are symmetric under
the rotation mentioned above. This implies that, in particular, the Bosonic fields commute (for space like
points) and that the Euclidean Schwinger two-point function is symmetric (and also positive-definite).

In our construction, instead of complexifying the variables of the Wightman functions by analytic
continuation, we consider directly wavefunctions (which correspond to 1-particle states) on the complexi-
fied spacetime. Hence we define the action of the complexified Lorentz spin group (and in general of the
complexified Poincaré spin group ℂ4 ⋊ Spin(4,ℂ)) directly on the wavefunctions. This is a more general
situation than the one treated by Wightman theory. To obtain the representation of the complexified
Poincaré spin group on the wavefunctions we give a parallel construction to the standard Wigner-Mackey
analysis of induced representations which is classically applied to the real Poincaré spin group.

In section 2 we discuss, from a general point of view, the structure of the Bosonic Fock space
constructed on a tensor product of two Hilbert spaces. We consider this structure as interesting on its own
right because of its connection with the theory of Lie groups in infinite dimensions (cf. [16] and also [1, 2,
3, 12]). This fascinating connection between relativistic fields and analysis and probability on infinite
dimensional Lie groups will be the subject of future investigation. We also discuss the relations between



Section V.2. A Bosonic realization of the Fermionic Fock space 91

the Bosonic Fock space and the Fermionic Fock space, showing that the second can be embedded in the
first one (proposition §2.10). The results described in section 2 are only used in our construction at the
very end, in proposition §5.10.

In section 3 we introducing some notation and conventions regarding the complexified Poincaré spin
group and some of its subgroups. In section 4 we describe how the theory of induced representations
applies to our situation. In proposition §4.3 we collect the most important points discussed in the section.
In section 5 we start by explaining the construction a special unitary representation of the complexified
Poincaré group with a certain degree of details to show how it corresponds to the standard construction of
Dirac representations starting from Wigner representations. The point of arrival of our construction is the
unitary representation of the complexified Poincaré group ℂ4 ⋊ Spin(4,ℂ) summarized in proposition
§5.8.

Since we are representing the complexified Poincaré group, in particular we are representing the
Euclidean rotation which is used in the proof of the spin-statistics theorem mentioned above. Moreover,
since the representation which we construct is unitary, it is realized on a Hilbert space, therefore the
Hermitian scalar product on this Hilbert space is an invariant positive definite bilinear form, which is
also invariant, therefore symmetric, under the Euclidean rotation described above. By the discussion
above regarding the spin-statistics theorem, a fortiori, we need to impose on our system the Bose-Einstein
statistics, that is, we need to consider the Hilbert space of the representation as the 1-particle space inside
a Bosonic Fock space.

The Bosonic Fock space, appropriate for our model, is described in the final part of the section.
An important point in our construction is that the Hilbert space of the representation which we

constructed splits canonically into the (completed) tensor product of two Hilbert spaces. This allows us
to use the results from section 2 to this case. In that final proposition we describe how one recovers the
standard Fermionic Fock space for relativistic Dirac fields starting from the Bosonic model which we have
constructed.

2 A Bosonic realization of the Fermionic Fock space
In this section we define a Bosonic Fock space over a Hilbert space of Hilbert-Schmidt operators. We will
show that we can embed any Fermionic Fock space in a Bosonic Fock space of this type. The construction
is interesting on its own right hence we discuss it in some details. This Bosonic Fock space will arise
naturally in the realization of Dirac Fermions which we will give in the later sections and, as a result, will
allow us to give a cogent, cohesive description of Dirac Fermions in terms of Bosonic objects.

Notation.We denote by  a separable Hilbert space over K = ℝ or ℂ. A basis for  will always mean and
orthonormal basis.

We denote by ⊗n def=  ⊗K ⋯⊗K  the algebraic tensor product of n copies of  seen as a vector space,
that is forgetting the Hilbert structure. We equip ⊗n with the scalar product induced by . For example we define
on ⊗2 the scalar product obtained by extending the bilinear form

(f1 ⊗ f2, g1 ⊗ g2)⊗2
def
= (f1, g1)(f2, g2) ,

defined first on monomials f1 ⊗ f2, g1 ⊗ g2 ∈ . This scalar product makes ⊗n into a pre-Hilbert space. We
denote by⊗̂ n the completion of⊗n with respect to the Hilbert norm associated to the scalar product just defined
and call it Hilbert n-th tensor power of .

We denote by⊕∞
n=0n the algebraic direct sum of a denumerable collection ()n∈ℕ of (pre-)Hilbert spaces. If

on the space⊕∞
n=0n we have a notion of scalar product the direct sum is meant to be orthogonal with respect to it.

In this case we denote by ⊕̂∞
n=0n its completion.

In general, we place a hat over a symbol to denote completion of a pre-Hilbert space with respect to its Hilbert
norm.

We denote by ℕ the set of non-negative integers and by ℕ+ the set of positive integers.
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Young symmetrizer, Young diagrams, and Schur functor
For completeness, we introduce in this subsections some standard combinatorial notions which will be
necessary in the following subsections.

References. About Young symmetrizer, Young diagrams, Schur functor, etc..., cf. e.g. [15, 7, 22].

§ 2.1 For k ∈ ℕ, let �(k) = (�1,… , �k) be a partition, that is a collection of non-negative integers
�1 ≥ ⋯ ≥ �k, �1 +⋯ + �k = k. A partition �(k) can be visualized via its associated Young diagram, that
is a collection of k boxes, arranged in the following “top-left corner” shape:

1 2 3 ⋯ �1−1 �1

�1+1 �1+2 �1+3 ⋯ �2

⋮ ⋮ ⋮

k−1

k

where the boxes are numbered only to show how the boxes are arranged.
We will use the term Young diagram and partition interchangeably.
We denote by S�(k) the Schur functor as a functor in the category of vector spaces. Explicitly we define

S�(k) to be the vector space obtained as follows. Consider a tensor F in the vector spaceH⊗k. Fix an
orthogonal basis for , F has components1 F

(

j1,… , jk
)

. Now we can picture the k indices j1,… , jn as
partitioned according to �(k), that is

j1,… , j�1
⏟⏞⏞⏟⏞⏞⏟

�1

,… , j�1+⋯+�k−1+1,… , jk
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�k

and we can arrange these indices in the shape of the Young diagram associated to �(k) as for example in
the picture below.

j1 j2 j3 ⋯ j�1−1 j�1

j�1+1 j�1+2 j�1+3 ⋯ j�2

⋮ ⋮ ⋮

jk−1

jk

Now denote by c�(k) the Young symmetrizer which acts by symmetrizing the indices along the rows of
the Young diagram and antisymmetrizing the indices along the columns, explicitly we define

c�(k)F
(

j1,… , jk
) def
= 1
k!

∑

p∈H(�(k)),q∈V (�(k))

�q ⋅ (�pqF )
(

j1,… , jk
)

,

whereH(�) denotes the set of permutations of k letters which permute only numbers in the same rows of
�, analogously V (�) denotes the set of permutations along the columns, �q is the sign of the permutation
q, and �pq denotes the standard representation of the composed permutation pq (where pq denotes the
composition of the permutations p and q) on the space of tensors (that is permutations are represented by
the operation of permuting the indices).

1We will denote the indices of a tensor F with “parenthesis notation” meaning that we write F (j1,… , jk) in place of the
more common Fj1 ,…,jk
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§ 2.2 Definition: Schur functor. Given a Hilbert space , we let S�(k) be the image of ⊗n under
c�(k) . It is easy to see that S�(k) can be made into an (endo)functor in the category of vector spaces which
is usually called Schur functor.

We let Ŝ�(k) be the closure of S�(k) in the norm of ⊗̂ k. The space Ŝ�(k), equipped with the
scalar product induced by ⊗̂ n, is a Hilbert subspace of ⊗̂ n.

§ 2.3 Remark. The vector space S�(k) and the Hilbert space Ŝ�(k) are well defined in the sense that
they do not depend on the basis chosen for its construction.

PROOF. The construction of S� we have given used a choice of basis of  and the expression of a tensor F ∈ ⊗n in
components. This is unnecessary2. The symmetric groupSn acts naturally in ⊗n without any need of a choice of basis.
Indeed, we have the representation �Sn → End(⊗n) given, on monomials v1 ⊗⋯⊗ vn ∈ ⊗n, by

��(v1 ⊗⋯⊗ vn) = v�(1) ⊗⋯⊗ v�(n), � ∈ Sn.

Using this natural action ofSn on ⊗n we can define the Schur functor S� as before.

§ 2.4 Definitions: symmetric and antisymmetric powers. In case of the partition �(k) = (k, 0,… , 0)
we denote S�(k) also by the shorthand ⊙k. Similarly for �(k) = (1,… , 1) we employ the notation ∧k.
When we complete these spaces with respect to the Hilbert norm of⊗̂ n we write, respectively,⊙̂ n and
∧̂n.

Note that we use the symbol ∧n instead of a symbol like ∧n which would be more consistent with
the notations⊗n and⊙n. Through this difference in the notation we want express the fact that the tensor
product and the symmetric tensor product of vector spaces are associative whereas the antisymmetric
tensor product is not, that is

(⊗n)⊗ (⊗m) = ⊗(n+m), (⊙n)⊗ (⊙m) = ⊙(n+m),

but
(∧n) ∧ (∧mH) ≠ ∧(n+m).

Bosonic Fock space and Fermions
§ 2.5 Definition: Bosonic Fock space (or symmetric Fock space). Let  be a Hilbert space over the
field K = ℝ or ℂ. We denote by ℾ⊙ the Hilbert space

ℾ⊙
def
=

∞
̂⨁

k=0
⊙̂ k,

where ⊙̂ 0 def= K and the direct sum is an orthogonal direct sum in the sense of Hilbert spaces.

§ 2.6 Remark. Consider to separable Hilbert spaces 1, 2. Note that the space 1 ⊗̂2 is naturally
isomorphic with the space of Hilbert-Schmidt operators from 1 to 2.

§ 2.7 Definition. Taking into account the previous remark we call the Bosonic Fock space ℾ⊙
(

1 ⊗̂2

)

the Bosonic Fock space of Hilbert-Schmidt operators.

We now arrive at the main point in this section.

§ 2.8 Theorem. Let 1, 2 be two separable Hilbert spaces on the field K = ℝ,ℂ and 1 ⊗̂2 be their
Hilbert tensor product. Then the Bosonic Fock space ℾ⊙(1 ⊗̂2) over 1 ⊗̂2 decomposes into the
following (orthogonal) direct sum

ℾ⊙
(

1 ⊗̂2

)

=
∞
̂⨁

k=0

⨁

�(k)

(

Ŝ�(k)1

)

⊗̂
(

Ŝ�(k)2

)

, (V.1)

where for k = 0, �(0)
def
= ∅ and S∅j

def
= K j = 1, 2.

2We thank our friend W. Stern for pointing this out to us.
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PROOF. We specialize the proof to the case 1 = 2 = . The general situation is proved
similarly. Consider the definition

ℾ⊙
(

 ⊗̂
)

=
∞
⨁

k=0
⊙k( ⊗̂).

Fix a basis for  and thus a basis for ( ⊗̂)⊙̂ k. In this basis, an element F (k) ∈ ( ⊗̂)⊙̂ k
will have components F (k)

(

j1,l1,… , jk,lk
)

and will be symmetric under any exchange of any
pair jr,lr with any other pair js,ls. Of course it does not have any symmetry property under,
for example, the exchange of just a given js with another jr. Given that F is symmetric under
the exchange of the pairs if it so happens that F is also symmetric in the exchange of jr with js
then it has to be symmetric also in the exchange of lr with ls. Similarly if F is antisymmetric
in the exchange of jr with js then it has to be antisymmetric also in the exchange of lr with ls.
Hence we can apply the Young symmetrizer c�(k) to F seen just as a function of the j’s. Because
of what was said so far, the result of applying this Young symmetrizer to F is that also the l’s
are forced to have the same symmetry. Moreover for any fixed pair jr,lr the tensor F will be
neither symmetric or antisymmetric. More precisely, the image under c�(k) will consist of a tensor
F ′ in the variables j1,… , jk, l1,… ,lk such that it has the specified symmetry in the permutation
of the j’s and separately the same symmetry under the permutation of the l’s, and will have no
specified symmetry under the exchange of the j’s with the k’s. Said differently F ′ is an element of
(

S�(k)
)

⊗
(

S�(k)
)

. Hence, we obtain the decomposition (and henceforth the statement of the
theorem)

⊙k( ⊗̂) =
⨁

�(k)

(

S�(k)
)

⊗
(

S�(k)
)

,

as soon as we prove orthogonality.
To show orthogonality fix a basis of . Pick elements F ∈

(

S�(k)
)

⊗
(

S�(k)
)

, F ′ ∈
(

S�(k′)
)

⊗
(

S�(k′)
)

with �(k) ≠ �(k′). We have to show that F ′ is orthogonal to F . Note that we
can restrict to k = k′ because for k ≠ k′ we already have orthogonality by the orthogonal direct
sum in the definition of the Bosonic Fock space.

By hypothesis F and F ′ have different transformation properties under the permutations of
the indices of their components in the fixed basis. Moreover the scalar product in ℾ⊙

(

 ⊗̂
)

is invariant under the permutation of indices. This means that the action of permutation of the
indices is unitary. And since by hypothesis F and F ′ have different transformation properties
under the permutations of the indices we can find a unitary operator U ∶  →  such that F and
F ′ are both eigenvectors but with different eigenvalues. This implies that they are orthogonal.

Fermionic part

§ 2.9 Definition: Fermionic Fock space (or antisymmetric Fock space). Let  be a Hilbert space
over the field K = ℝ or ℂ. We denote by ℾ∧ the Hilbert space

ℾ∧
def
=

∞
̂⨁

k=0
∧̂k,

where ∧̂0
def
= K and the direct sum is an orthogonal direct sum in the sense of Hilbert spaces.

We want to show that how to embed the Fermionic Fock space ℾ∧ into the space ℾ⊙( ⊗̂).
We can rewrite the decomposition (V.1) as follows

ℾ⊙
(

 ⊗̂
)

=
∞
⨁

k=0

(

∧k
)

⊗
(

∧k
)

⊕
∞
⨁

k=2

⨁

�(k)≠∧k

(

S�(k)
)

⊗
(

S�(k)
)

, (V.2)
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where we have separated the original sum into two sums, one where we consider only completely anti-
symmetric Young diagrams (cf. §2.4) and the second where all the other diagrams are considered. By
�(k) ≠ ∧k in (V.2) we mean that �(k) should not be equal to a completely antisymmetric Young diagram
(1,… , 1
⏟⏟⏟

)

k times

.

For convenience we write
ℾ⊙

(

 ⊗̂
)

=∧ ⊕♯ ,

where

∧
def
=

∞
⨁

k=0

(

∧k
)

⊗
(

∧k
)

, ♯
def
=

∞
⨁

k=2

⨁

�(k)≠∧k

(

S�(k)
)

⊗
(

S�(k)
)

. (V.3)

We shall call∧ call the Fermionic part of the Bosonic Fock space ℾ⊙( ⊗̂).
We now embed the Fermionic Fock space ℾ∧ inside the Fermionic part∧.
For every k ∈ ℕ pick a vector v(k) ∈ ∧k. For example, we can fix an orthonormal basis ej , j = ℕ+,

of , and define
v(0) = 1, v(k) = e1 ∧⋯ ∧ ek , k ∈ ℕ+.

Denote by Pk the orthogonal projection onto the one dimensional span of the vector v(k).
We can now define the operator P ∈ End

(

ℾ⊙
(

 ⊗̂
))

by

P
def
=

∞
⨁

k=0
Pk ⊗ I, (V.4)

where I denotes the identity operator in , and where we extend Pk ⊗ I, k ∈ ℕ, to be operators from
ℾ⊙

(

 ⊗̂
)

to itself by letting PkS�(k)() = 0, for all �(k) ≠ ∧k.
By definition of the operator P , we see that the image of P is the Fermionic Fock space embedded in

ℾ⊙
(

 ⊗̂
)

. We have thus proved the following.

§ 2.10 Proposition.
P ℾ⊙

(

 ⊗̂
)

≅ ℾ∧,

where ≅ denotes a canonical isomorphism of Hilbert spaces.

§ 2.11 Remark. The isomorphism P ℾ⊙
(

 ⊗̂
)

≅ ℾ∧ is canonical in the sense that it does not
depend on the basis of . This does not mean that we canonically embed the Fermionic Fock space ℾ∧
into ℾ⊙

(

 ⊗̂
)

≅ ℾ∧. This embedding depends on the arbitrary choice of the operator P .

§ 2.12 Discussion. The point of the last proposition is to show that indeed we can use the Bosonic
space ℾ⊙( ⊗̂) as a replacement of the usual Fermionic Fock space. In particular, all the Fermionic
observables can be defined in this Bosonic Fock space. When we want to compute physical quantities all
it remains to do is to project onto the Fermionic Fock space embedded in our Bosonic Fock space.

3 The universal cover of the complexified Poincaré group and its
subgroups

Definition of the complexified Poincaré group: ISpin(4,ℂ)

§ 3.1 Let ℂl(4) be the complex Clifford algebra over ℂ4. If we denote by  ℂ4
def
= ⊕n∈ℕ(ℂ4)⊗n the full

tensor algebra over ℂ4, then
ℂl(4)

def
=  ℂ4∕,
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where  is the ideal in  generated by elements of the form v ⊗ v − (v ⋅ v) I, for v ∈ ℂ4, where
v ⋅ v

def
= Tr(v ⊗ v) ∈ ℂ denotes the extension to ℂ4 of the standard scalar product in ℝ4. We remark that,

since on ℂn, n ∈ ℕ, all non degenerate forms are equivalent, we could have started with any ideal Q
generated by elements of the form v⊗v−Q(v, v) I, v ∈ ℂ4, for any non degenerate formQ, and we would
have arrived at a complex Clifford algebra naturally isomorphic to ℂl(4). This point is relevant, because
we are interested in two quadratic forms in ℝ4, the standard one and the Minkowski one. Because of the
previous remark, on ℂ4 the distinction disappears hence we are in a sense treating both the Euclidean and
Minkowski case at once.3

We can naturally identify ℂ4 with its copy in the full tensor algebra  ℂ4. This identification is
canonical in that does not depend on the basis. Under this identification we have that ℂ4 is canonically
considered as a subset of the complex Clifford algebra ℂl(4). The algebra structure of the Clifford algebra
ℂl(4) is induced by that on  ℂ4. Let us denote just by juxtaposition the product on ℂl(4). Finally, let us
extend the dot product v ⋅w from ℂ4 to the whole tensor algebra  ℂ4 and hence also to the subalgebra
ℂl(4). For example, we have that (v1v2) ⋅ (w1w1) = (v1 ⋅w1)(v2 ⋅w2), with v1, v2, w1, w2 ∈ ℂ4.

Let Spin(4,ℂ) ⊂ ℂl(4) be the group, under the multiplication induced from the one of ℂl(4), defined
as follows

Spin(4,ℂ)
def
=

{

Iv1⋯ vr ∈ ℂl(4) ∶ vj ⋅ vj = 1, vj ∈ ℂ4, j = 1,… , r, r ∈ ℕ
}

.

The group Spin(4,ℂ) has both the structure of an analytic group and of a (real) Lie group. When we want
to stress that we are considering Spin(4,ℂ) as a real Lie group we shall employ the notation Spin(4,ℂ)ℝ.

The group Spin(4,ℂ) is not simple, but just semisimple. In fact we have the following isomorphisms

Spin(4,ℂ) ≅ Spin(3,ℂ) × Spin(3,ℂ), Spin(3,ℂ) ≅ SL(2,ℂ). (V.5)

The reason we are interested in Spin(4,ℂ) is because it is isomorphic to the complexification of the
(real) Lie group SL(2,ℂ)ℝ, where we denote by SL(2,ℂ)ℝ the group SL(2,ℂ) equipped with the (real)
Lie group structure to distinguish it from SL(2,ℂ) equipped with the analytic group structure.

As remarked above we can canonically embed ℂ4 in ℂl(4). Employing this embedding, we define the
following canonical action � of l(4) on ℂ4:

�(s)v
def
= svs−1, v ∈ ℂ4, s ∈ Spin(4,ℂ). (V.6)

It is a standard result (cf. e.g. [19, Chapter 12, (1.43) p. 251]4) that the action � induces the covering map

Spin(4,ℂ)→ SO(4,ℂ).

Given the action � of Spin(4,ℂ) ≅ SL(2,ℂ) × SL(2,ℂ) on ℂ4 defined above, we define5

ISpin(4,ℂ)
def
= ℂ4 ⋊� Spin(4,ℂ),

where ⋊� denotes the semidirect product with respect to the mentioned action �.

3A remark is in order. Here we shall treat unitary representations of the double cover of the Poincaré group. In particular we
shall represent the translations by unitary phases. This will force us to introduce a real structure on ℂ4 and therefore identify ℂ4,
via this real structure, with ℝ8. We shall discuss this point further in §4.1.

4Let us make a remark between the conventions we employ here and those in [19]. In [19, Chapter 12, (1.40) p. 250] the
superscript ♯ denotes the conjugation on the real Clifford algebra l(n,Q) (notation as in [19]) obtained by composing the main
anti-automorphism with the main involution. For s ∈ Spin(n,ℂ), n ∈ ℕ, we have that s−1 = s♯. Hence our definition of �
coincides with the definition of what in [19, Chapter 12, (1.43) p. 251] is denoted by �.

5The notation ISpin is not standard in the literature. The symbol ISpin is meant as shorthand for inhomogeneous Spin
group In employing this terminology we mimic a similar convention for the Euclidean group in n dimensions which is sometime
denoted ISO for “inhomogeneous SO group”.
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Little group and its embedding
§ 3.2 We call little group the subgroup of Spin(4,ℂ)which leaves invariant, under the action of Spin(4,ℂ)
on ℂ4, any vector of the form

v̊ =
( �
0
0
0

)

, � ∈ ℂ. (V.7)

This choice generalizes to the complexified case the usual choice in the Wigner representations of the
Poincaré group. We denote the little group byW (after Wigner), that is we let

W
def
=

{

s ∈ Spin(4,ℂ) ∶ sv̊s−1 = v̊
}

. (V.8)

For future use, it is convenient to define the Lie subgroup L̃ of Spin(4,ℂ)ℝ which double covers the Lie
group L of (real) Lorentz transformations. In symbol, we define

L̃
def
=

{

s ∈ Spin(4,ℂ) ∶ 
0s∗
0 = s−1
}

,

where 
0 is the image of the element (1, 0, 0, 0) ∈ ℂ4 under the canonical embedding ℂ4 → ℂl(4).
Moreover, s∗ denotes the complex-conjugate–transpose of an element s ∈ Spin(4,ℂ) seen as a complex
matrix.

§ 3.3 Weyl basis. Up to now every step has been natural, in the sense that we are not making any explicit
choice. It is convenient at this point to choose a basis for ℂl(4). Let 
Weyl

� , � = 0, 1, 2, 3, be the Weyl (or
chiral) representation of Dirac’s 
-matrices:


Weyl
0 =

(

0 I2
I2 0

)

, 
Weyl
j =

(

0 �j
−�j 0

)

, j = 1, 2, 3,

where I2 is the unit 2-by-2 matrix, �1 =
( 0 −i
i 0

)

, �2 =
( 0 1
1 0

)

, and �3 =
( 1 0
0 −1

)

are the standard Pauli
matrices. We call the basis of ℂl(4,ℂ) obtained using these 
Weyl

� , � = 0, 1, 2, 3, as generators, the Weyl
basis of ℂl(4,ℂ).

An element s ∈ Spin(4,ℂ) can be written

s = exp
{

∑

0≤�<�≤3
w��

1
2

Weyl
� 
Weyl

�

}

, w�� ∈ ℂ, 0 ≤ � < � ≤ 3.

By explicitly evaluating the generators 12
�
� of the Lie algebra so(4,ℂ) of Spin(4,ℂ) one explicitly sees
that any element s ∈ Spin(4,ℂ), when written in this basis, is of the form

s =
(

A 0
0 B

)

,

for some A,B ∈ SL(2,ℂ), that is, in Weyl basis we have the identification

Spin(4,ℂ)
Weyl basis
= SL(2,ℂ) × SL(2,ℂ).

This, in particular, proves the first isomorphism in (V.5).
Now consider the canonical embedding ℂ4 → ℂl(4,ℂ) discussed above. Having now chosen a basis

for ℂl(4,ℂ) we denote this embedding when specialized to this choice of basis by 
Weyl. Hence we have


Weyl ∶ ℂ4 → ℂl(4,ℂ), 
Weyl ∶ v → 
Weyl(v)
def
=

3
∑

�=0
v�


Weyl
� ,

where (v�) denote the components of the vector v ∈ ℂ4. If we consider v̊ as given in §3.2 (V.7), we have


Weyl(v̊) = m
Weyl
0 .
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Employing this realization of v̊, a straightforward computation shows that, in this basis, the little groupW
is given by

W
Weyl basis
= SL(2,ℂ)diag

def
=

{

(A,B) ∈ SL(2,ℂ) × SL(2,ℂ) ∶A = B
}

,

where SL(2,ℂ)diag denotes the diagonal subgroup of the Cartesian product SL(2,ℂ) × SL(2,ℂ) (cf. next
paragraph §3.4). Similarly we have

L̃
Weyl basis
=

{

(A,A∗−1) ∈ SL(2,ℂ) × SL(2,ℂ)
}

(V.9)

where A∗−1 denotes the complex-conjugate–transpose–inverse of the matrix A ∈ SL(2,ℂ), that is A∗−1 is
the image of A under the Cartan involution Θ (defined in the following paragraph). Finally, note that in
Weyl basis the action � of Spin(4,ℂ) on ℂ4 is explicitly given by

�(s)v
Weyl basis
=

(

0 A(v0 I2 +
∑3
j=1 vj�j)B

−1

A(v0 I2 −
∑3
j=1 vj�j)B

−1 0

)

, (V.10)

where s ∈ Spin(4,ℂ) is identified with (A,B) ∈ SL(2,ℂ) × SL(2,ℂ).

We have seen that Spin(4,ℂ) decomposes into the Cartesian product SL(2,ℂ) × SL(2,ℂ) and that the
little group can be identified with the diagonal subgroup of SL(2,ℂ) × SL(2,ℂ). We analyze this setting
from from a more abstract perspective, with the hope of being clearer in the presentation.

§ 3.4 In general, for a topological group G, we can consider the symmetric pair (G ×G,Gdiag), where
Gdiag denotes the diagonal subgroup of G ×G (cf. [8, Chapter 4, §6, p. 223] and [9, Proposition (3.17), p.
51]). When G is a Lie group we have the following.

1. G ≅ Gdiag, indeed g → (g, g) is the canonical isomorphism of G with Gdiag.

2. the division map d ∶ G×G → G, d ∶ (g1, g2) → g1g−12 has a right-inverse given by c ∶ G → G×G,
c ∶ g → (g, e), where e denotes the identity element in G.

3. the previous point actually shows that we have the following Lie group isomorphism

G ×G∕(Gdiag) ≅ G

where Gdiag denotes the diagonal subgroup of G ×G.

4. the last two points give, in concrete terms, the following decomposition of an element (g1, g2) ∈
G ×G,

(g1, g2) = (g, e)(ℎ, ℎ), g = g1g−12 , ℎ = g2, (V.11)

where by construction (ℎ, ℎ) ∈ Gdiag and (g, e) determines an element in G ×G∕Gdiag ≅ G.

5. If we consider SL(2,ℂ) as a group of complex matrices we can define the Cartan involution as
Θ ∶ A → A∗−1. The set of fixed points for this involution is the group SU(2) seen as a subgroup of
SL(2,ℂ). The symmetric space SL(2,ℂ)∕SU(2) is not a Lie group, but is isomorphic to the familiar
hyperboloid of “Lorentz boosts”. The decomposition of an element A ∈ SL(2,ℂ) according to the
Cartan involution Θ is the familiar Cartan decomposition which in this case actually corresponds to
the polar decomposition A = V P , V ∈ SU(2), P positive definite, Hermitian.

6. Now consider G × G. Clearly Gdiag is isomorphic (as a Lie group) to G. The symmetric space
G ×G∕Gdiag is a Lie group and it is isomorphic to G as well (as we remarked in point 4.). If we
define the involutionS ∶ (g1, g2) → (g2, g1), then the set of fixed points for this involution is the
Lie group Gdiag of diagonal elements (ℎ, ℎ) ∈ G ×G. Hence the decomposition we defined under
point 4. is in fact the decomposition corresponding to the involutionS
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4 Inducing a representation of non-zero complex mass
§ 4.1 Real structure and characters. 1. In the semidirect product ISpin(4,ℂ) = ℂ4 ⋊� Spin(4,ℂ)

the factor ℂ4 denotes the additive group of translations in the four dimensional complex space
(which is also denoted by ℂ4).

2. The multiplicative characters of the additive group ℂ4 are continuous group homomorphisms from
the Abelian group ℂ4 to the unit circle T . Note: often one defines a multiplicative character as
a group homomorphism of an Abelian group to ℂ× instead of the circle T . Since we care about
unitary representations we need to map to the circle T (and not ℂ×). This forces us to define a real
structure on ℂ4, that is to define an identification of ℂ4 with ℝ8. This identification, in turn, forces
us to consider ISpin(4,ℂ) as a real Lie group. We shall employ the notation ISpin(4,ℂ)ℝ when we
need to stress that we consider ISpin(4,ℂ) as a real Lie group (technically speaking real Lie groups
are just Lie groups, whereas complex Lie groups are more commonly called analytic groups. We
use the redundant terminology real Lie group to be clearer).

3. The standard choice of real structure on ℂ4 is the one which comes from taking the real and
imaginary parts of each component of the vectors in ℂ4. With this choice of real structure, the
characters of ℂ4 are

�w(z) = exp
{

i
3
∑

�=0
(ℜw�ℜz� +ℑw�ℑz�)

}

,

wherew = (w0, w1, w2, w3) ∈ ℂ4, z = (z0, z1, z2, z3) ∈ ℂ4 andℜ,ℑ denote the real and imaginary
part respectively. We will denote ℂ4 by ℂ4ℝ when we need to stress that we are considering it as a
real space (or a real Lie group) with respect to its standard real structure just described.

4. Note that an element (A,A∗−1) ∈ L ⊂ Spin(4,ℂ), which corresponds to a real Lorentz transfor-
mation, respects the real structure in the sense that a real vector x = ℜz, z ∈ ℂ4, is mapped to a
real vector y = �(A,A∗−1)x. This is compatible with our choice of action of Spin(4,ℂ) on ℂ4 (in
(V.10)). Our choices so far have been aimed at considering the Lorentz group as the “fundamental
object”. Another possibility of conventions would have been to consider as “fundamental object”
the compact group SO(4).

5. The additive groupℂ4ℝ is a closed normal Abelian subgroup of the locally compact group ISpin(4,ℂ)ℝ.
Let ℂ̂4 denote the Pontryagin dual group ofℂ4ℝ. We identifyℂ4 and Spin(4,ℂ)with the respective
(closed) subgroups in ISpin(4,ℂ). Note: we defined the action � of Spin(4,ℂ) on ℂ4 (in (V.10)).
Now, in the semidirect product ISpin(4,ℂ) the action � of Spin(4,ℂ) on ℂ4 is by conjugation, that
is

(z, e) ∈ ℂ4 → (0, s)(z, e)(0, s)−1 = (�(s)z, e) = (�−1(A�(z)B−1), e),

where z ∈ ℂ4, s = (A,B) ∈ Spin(4,ℂ), �−1 is the inverse of � restricted on the image of � (so that
it is invertible), e is the identity (of Spin(4,ℂ)).

6. We denote by g ⋅ � the action of an element g ∈ ISpin(4,ℂ)ℝ on an element � ∈ ℂ̂4ℝ, where ℂ
4
ℝ

denotes the additive group ℂ4 as a real Lie group for the real structure defined above. Explicitly we
have

(s ⋅ �)(z) = �(�(s)−1z),

where �(s)−1 is by definition �(s−1). Disclaimer (!): If we had defined this action with �(s) in
place of �(s−1) we would not have obtained a (left) action. Specifically, it would not satisfy
(s ⋅ (r ⋅ �) = ((s ⋅ r) ⋅ �), s, r ∈ Spin(4,ℂ). Cf. [5, p. 504ff] v.s. [11, p. 145 (last line)].

§ 4.2 The representation of ISpin(4,ℂ) induced from a representation ofW and the character �v̊.
Consider the realization of ISpin(4,ℂ) in Weyl basis. Then as seen above we have the identification

ISpin(4,ℂ)
Weyl basis
= ℂ4 ⋊� (SL(2,ℂ) × SL(2,ℂ)).
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Let us define
IW

def
= ℂ4 ⋊�W.

In the Weyl basis we have the identification

IW
Weyl basis
= ℂ4 ⋊� SL(2,ℂ)diag.

In this paragraph we shall look upon ISpin(4,ℂ), IW, Spin(4,ℂ), and W always in this “Weyl basis
realization”. This shall cause no reduction of generality because we are going to defined a representation
of ISpin(4,ℂ) only up to isomorphism.

Wewant to define the representation IndISpin(4,ℂ)IW (�v̊×�) of ISpin(4,ℂ) induced from the representation

�v̊×� ofℂ4⋊�W
Weyl basis
= ℂ4⋊�SL(2,ℂ)diag. The induced representation Ind

ISpin(4,ℂ)
IW (�v̊×�) is uniquely

defined only up to isomorphism. Nevertheless, as in other similar situations, we refer to IndISpin(4,ℂ)IW (�v̊×�)
as the induced representation.

We break the construction in some steps.

1. Let  be a complex Hilbert space and (, �) a unitary representation of W ≅ SL(2,ℂ) on .
Consider the group IW. As above, let �v̊ be the character of ℂ4 corresponding to the vector
v̊ = (�, 0, 0, 0) ∈ ℂ4. We define the representation (, �v̊ × �) to be the representation of IW on
given by

(�v̊ × �)(n, ℎ)f
def
= �v̊(n)�(ℎ)f, f ∈ H , (n, ℎ) ∈ ℂ4 ⋊�W. (V.12)

2. Let Ov̊ denote the orbit of v̊ under6 ISpin(4,ℂ). If we consider the group ℂ4 ⋊�W as a subgroup
ISpin(4,ℂ) = ℂ4⋊� Spin(4,ℂ) then v̊ is invariant under it. Hence we have the first of the following
isomorphisms of manifolds

Ov̊ ≅ ISpin(4,ℂ)∕(ℂ4 ⋊�W) ≅ Spin(4,ℂ)∕W
Weyl basis
= SL(2,ℂ)diag ≅ SL(2,ℂ),

and the remaining isomorphisms follow from §3.4 and §3.3.

3. The Lie group SL(2,ℂ) has a two-sided invariant measure (or Haar measure) which is unique up to
multiplication by a constant. Let us fix � to be one such a Haar measures. We shall refer to � as the
Haar measure of SL(2,ℂ). The decomposition in (V.11), when applied to the case G = SL(2,ℂ),
gives rise to an embedding

� ∶ SL(2,ℂ) ≅ SL(2,ℂ) × SL(2,ℂ)∕SL(2,ℂ)diag → SL(2,ℂ) × SL(2,ℂ).

That is, given an element A ∈ SL(2,ℂ) this embedding defines an element �(A) ∈ SL(2,ℂ) ×
SL(2,ℂ). Explicitly, if we represent SL(2,ℂ) × SL(2,ℂ) as matrices of the form

( A 0
0 B

)

, A,B ∈
SL(2,ℂ), then the embedding � is

�(A) =
(

A 0
0 I2

)

, A ∈ SL(2,ℂ),

where v̊ is as in (V.12) above. Let us then define the isomorphism | ∶ SL(2,ℂ)
≅
→ Ov̊ as follows

| ∶ A → �(A)v̊.

This map is an isomorphism of manifolds and is therefore in particular measurable. We can therefore
push forward the Haar measure � on SL(2,ℂ) along this map to obtain an invariant measure |∗�

6Note that the action of ISpin(4,ℂ) on ℂ4 is by definition the action of ISO(4,ℂ) of which ISpin(4,ℂ) is the double cover.
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on Ov̊. We now give this measure explicitly. First we let � to be the Haar measure on SL(2,ℂ)
explicitly given in the following parametrization (and normalization)

d�(A)
def
= 1

|a22|2
da12 da21 da22 da12 da21 da22, A =

(

a11 a12
a21 a22

)

, (V.13)

where the measure da12 da21 da22 da12 da21 da22 denotes the standard measure on ℂ3 ≅ ℝ6. For
the derivation of (V.13) we refer to [5, p. 68] or [18, p. 13]. Then the pushforward measure j∗�
can be represented as follows

d(j∗�)(v) =
1

|�||v22|2
dv12 dv21 dv22 dv12 dv21 dv22,

where v = (v12, v21, v22) ∈ ℂ3.

4. We define the carrier space for the representation IndISpin(4,ℂ)IW (�v̊ × �) (�v̊ and � as in (V.12)). Let

H
def
= L2(ℂ3, j∗�;),

where  is the Hilbert space on which we are representingW (and also IW).

5. To define the representation IndISpin(4,ℂ)IW (�v̊×�) onH we need some notation for the decomposition
in (V.11), specialized to the case G = SL(2,ℂ). This decomposition is a special case of what is
often called Mackey decomposition. That decomposition gives, for any element s = (A,B) ∈
SL(2,ℂ) × SL(2,ℂ), two elements w(s), q(s) which satisfy

s = q(s)w(s)

with w(s) ∈ SL(2,ℂ)diag. Explicitly, representing s = (A,B) =
(

A 0
0 B

)

, we have

q(s) =
(

AB−1 0
0 I2

)

, w(s) =
(

B 0
0 B

)

. (V.14)

6. Given v ∈ Ov̊ we define the element ℎv ∈ Spin(4,ℂ)∕W such that

v = �(ℎv)v̊, (V.15)

where � is, as above, the action of Spin(4,ℂ) on ℂ4, and we are considering Spin(4,ℂ)∕W as
embedded in ISpin(4,ℂ) by the embedding � given in step 4. The element ℎv is well defined and
unique up to its sign (because the action � forgets the sign). This ambiguity is resolved once we
require that ℎv̊ = I. Then, by the group structure, having specified the sign of one of these elements
actually fixes the sign of all of them. Hence we end up with a unique ℎv, for all v ∈ Ov̊.
In the usual theory of Wigner representations of the (real) Lorentz group, ℎv corresponds to what is
usually called the standard boost.

7. We are now ready to define the representation
(

H , IndISpin(4,ℂ)IW (�v̊ × �)
)

. The standard theory7 of
induced representations produces the induced representation IndISpin(4,ℂ)IW (�v̊ × �), when realized on

7We give here the standard computation which leads to the definition we give in the text:
(

�(n, ℎ)F
)

(v) =
(

�(0, ℎv)�(0, ℎv)−1 �(n, ℎ)F
)

(v)

=
(

�(0, ℎv)�
(

�(ℎ−1v )n, ℎ
−1
v ℎ

)

F
)

(v)

=
(

�
(

�(ℎ−1v )n, ℎ
−1
v ℎ

)

F
)

(v̊)

=
(

(�v̊ × �)
(

�(ℎ−1v )n, s
W (ℎ−1v ℎ)

)

)

F
(

�(ℎ−1v ℎ)
−1v̊

)

=
(

�v̊
(

�(ℎ−1v )n
)

�
(

sW (ℎ−1v ℎ)
)

)

F
(

�(ℎ−1)v
)

=
(

�v
(

n
)

�
(

sW (ℎ−1v ℎ)
)

)

F
(

�(ℎ−1)v
)

.
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the Hilbert space H defined above, in the following form
(

IndISpin(4,ℂ)IW (�v̊ × �)(n, ℎ)F
)

(v)
def
=

(

�v
(

n
)

�
(

w(ℎ−1v ℎ)
)

)

F
(

�(ℎ−1)v
)

,

F ∈ H , (n, ℎ) ∈ ISpin(4,ℂ) = ℂ4 ⋊� Spin(4,ℂ). (V.16)

Note that, by writing the big parenthesis in
(

�v
(

n
)

�
(

w(ℎ−1v ℎ)
)

)

, we want to stress that the operator
(

�v
(

n
)

�
(

w(ℎ−1v ℎ)
)

)

is applied to F
(

�(ℎ−1v)
)

∈  and not to F as an element of H .

8. We can simplify (V.16) employing the explicit form of w(ℎ−1v ℎ) given in (V.14). Let us first define
the following notation

�(v)
def
= v0 I2 +

3
∑

j=1
vj�j , v ∈ ℂ4.

Note that, when v ∈ Ov̊ ⊂ ℂ4 then �(v) ∈ SL(2,ℂ). With this notation, we have, for � ∈ ℂ, � ≠ 0,

ℎv =

(

1
�
�(v) 0
0 I2

)

, v ∈ Ov̊, v̊ = (�, 0, 0, 0). (V.17)

Let us represent ℎ ∈ Spin(4,ℂ) in Weyl basis, that is let us set

ℎ =
(

A 0
0 B

)

, A, B ∈ SL(2,ℂ).

Hence

ℎ−1v ℎ =

(

( 1
�
�(v))−1A 0
0 B

)

.

Then we obtain from (V.14) that

q(ℎ−1v ℎ) =

(

( 1
�
�(v))−1AB−1 0

0 I2

)

, w(ℎ−1v ℎ) =
(

B 0
0 B

)

.

We can therefore rewrite (V.16) as follows, setting �
def
= IndISpin(4,ℂ)IW (�v̊ × �),

(

�(n, ℎ)F
)

(v) =
(

�v(n) �(B)
)

F
(

A�(v)B−1
)

,

F ∈ H , n ∈ ℂ4, ℎ =
(

A 0
0 B

)

, A, B ∈ SL(2,ℂ), (V.18)

where we have used the fact that in Weyl representation ℎ =
(

A 0
0 B

)

and, in this Weyl realization,

we can identify �(ℎ)v with A�(v)B−1 (cf. (V.10)), and by abuse of notation, we are evaluating
F on the right hand side on A�(v)B−1 ∈ SL(2,ℂ). What we mean is to evaluate F on the four
elements of such matrix, that is on �−1(A�(v)B−1), where �−1 is the inverse image of � and, as
such, maps elements of SL(2,ℂ) into ℂ4.

This construction shows how to explicitly give one of the unitarily equivalent realization of the induced
representation of ISpin(4,ℂ) starting with the character �v̊ and a unitary representation � of ISpin(3,ℂ).
We state what we found as a proposition.

For the standard theory of induced representations see, e.g. [11]. For computations similar to the one above see [6, (7.69), p.
283].
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§ 4.3 Proposition. Let v̊ = (�, 0, 0, 0) ∈ ℂ4, � ∈ ℂ, and let �v̊ be the character of the additive group
ℂ4 ≅ ℝ8,

�v̊(n) = exp
{

i 12
(

v̊ ⋅ n + v̊ ⋅ n
)}

= exp
{

i12
(

�n0 + �n0
)}

, n = (n0, n1, n2, n3) ∈ ℂ4,

where the over-line denotes complex conjugation and the ⋅ denotes the standard bilinear dot product in ℂ4 .
Let ISpin(4,ℂ), respectively ISpin(3,ℂ), be the inhomogeneous complex spin groups in four, respectively
three, dimensions. Let us identify v̊ ≅ (v̊, e) with the element (v̊, e) ∈ ISpin(4,ℂ), where e denotes the
identity element in Spin(4,ℂ). Let Ov̊ be the orbit of v̊ under the action of ISpin(4,ℂ) on itself. Finally,
let ((�), �) be a unitary representation of Spin(3,ℂ) ≅ SL(2,ℂ) on a complex Hilbert space(�). Then

1. the map �v̊ × � ∶ ISpin(4,ℂ)→ U() into the unitary operators on  given by

(�v̊ × �)(n, ℎ)f
def
= �v̊(n)�(s)f, (n, ℎ) ∈ ISpin(3,ℂ), n ∈ ℂ4, ℎ ∈ Spin(3,ℂ), f ∈ (�),

defines a unitary representation of ISpin(3,ℂ) on (�).

2. The unitary representation, unique up to isomorphism, (�,H ), of ISpin(4,ℂ), induced by the
unitary representation �v̊ × � of ISpin(3,ℂ), is realized, up to isomorphisms, as follows.

H
def
= L2

(

Ov̊, j∗�SL(2,ℂ) ; (�)
)

, (V.19)

where �SL(2,ℂ) denotes the, unique up to normalized Haar, measure of SL(2,ℂ), and j∗�SL(2,ℂ)
denotes the push forward measure along the map j which gives the isomorphism of smooth manifolds
j ∶ SL(2,ℂ)

≅
→ Ov̊.

Let us identify Spin(4,ℂ) ≅ SL(2,ℂ) × SL(2,ℂ) and denote by � ∶ ℂ4
≅
→ M2(ℂ) the vector space

isomorphism of ℂ4 with the space M2(ℂ) of 2-by-2 complex matrices given by

�(v) = v0 I2 +
3
∑

j=1
vj�j , v = (v0, v1, v2, v3) ∈ ℂ4,

where �j , j = 1, 2, 3, are the standard Pauli matrices. Then we have
(

�(n, s)F
)

(v) =
(

�v(n) �(B)
)

F
(

A�(v)B−1
)

, (V.20)

where

F ∈ H , n ∈ ℂ4, s =
(

A 0
0 B

)

∈ SL(2,ℂ) × SL(2,ℂ) ≅ Spin(4,ℂ), A, B ∈ SL(2,ℂ).

§ 4.4 Remark. Note that, by abuse of notation, the function F on the left hand side it is evaluated on an
element of ℂ4 whereas on the right hand side is evaluated on a complex 2-by-2 matrix. This causes no
ambiguity because we consider ℂ4 identified with the space M2(ℂ) of 2-by-2 complex matrices via the
vector space isomorphism � ∶ ℂ4

≅
→ M2(ℂ).

5 A positive mass, 1∕2-integer representation of the complexified
Poincaré spin group and its application to the free Dirac field

§ 5.1 Choice of representation forW. In principle the most natural choice, for arriving at a representa-
tion of ISpin(4,ℂ) in our setting, would be to pick an irreducible unitary representation of the little group
W. Since we want to connect with the standard theory of Dirac fields, it is simpler to chose instead a
reducible unitary representation ofW. We now explain the choice of representation we are going to make.
The important requirement on the representation that we are going to choose is that, when restricted to
SU(2) ⊂ SL(2,ℂ), it should restrict to the irreducible unitary representation of SU(2) which corresponds
to half-integer spin.
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1. The groupW, as we discussed, is isomorphic to SL(2,ℂ). Now, SL(2,ℂ) can be seen as the double
cover of the Lorentz group, that is, we have the following isomorphism

SL(2,ℂ) ≅ Spin(1, 3),

where Spin(1, 3) is the spin group with respect to the Minkowski quadratic form with signature
(1,−1,−1,−1). Now, let us define

ISpin(1, 3)
def
= ℝ4 ⋊� Spin(1, 3),

where � is the same action as above just restricted to Spin(1, 3) ⊂ Spin(4,ℂ).

2. The standard theory of Dirac fields (cf. chapter III) give us at least two Hilbert spaces on which
to represent the whole inhomogeneous group ISpin(1, 3). Loosely speaking, one of these Hilbert
spaces is a space of functions in the “momentum variables” and the other Hilbert space is a space of
functions in the “space-time variables”. The one we are interested in, at the moment, is the one in
the “momentum variables”. Explicitly we define the representation (, U ) of ISpin(1, 3) as follows.

First we consider the Hilbert space

(1,0)
def
=

{

 ∶ ‖ ‖(1,0)

def
= ∫ℝ3

(

 (q), 1
m
�(q) (q)

)

ℂ2
1

2
√

q2 + m2
dq < +∞

}

, (V.21)

where q = (
√

q2 + m2, q1, q2, q3)t, q = (q1, q2, q3) ∈ ℝ4, and (⋅, ⋅)ℂ2 denotes the standard Hermitian
scalar product in ℂ2. Hence (1,0) is the closure of the space C∞c (ℝ

3;ℂ2) with respect to the
Hilbertian norm ‖ ⋅ ‖(1,0)

defined above. We take this space as the carrier space of the following
representation of SL(2,ℂ):

U(1,0)(A) (q) = Af (�A−1(q)), A ∈ SL(2,ℂ),  ∈(1,0),q ∈ ℝ3,

where we have denoted by �A−1(p) the three dimensional vector obtained by applying �(B−1) to the

four dimensional vector
( p0
p1p2p3

)

and then restricting to the last three components. We refer to [20,

§3.3.2, (3.89) p 95] or chapter III, §4.7 of the present work, for the construction of such a represen-
tation and the proof that it is the restriction of a well defined irreducible, unitary representation of
ISpin(1, 3) to Spin(1, 3).

Now, we let


def
= (1,0) ⊕(1,0), �

def
= U(1,0) ⊕U(1,0). (V.22)

Hence we have

(

�(B)f
)

(q)
def
=

(

B 0
0 B

)

f
(

�B−1(q)
)

,

B ∈ SL(2,ℂ), q ∈ ℝ3, f ∈ , .

We remark that the space  is the carrier space for the little group. It so just happens that the little
group is isomorphic to a copy of the Lorentz group. The compact part of the little group, which is
isomorphic to SU(2), should be identified with the double cover of the Lie group of 3-dimensional
rotations. The “remaining” part, that is SL(2,ℂ)∕SU(2), is isomorphic to the hyperboloid q20−q

2 = 1,
q0 ∈ ℝ, q ∈ ℝ3. This part should be identified with the analytic continuation to imaginary angles
of the 3-dimensional rotations.
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3. We shall now combine the representation (, �) defined in (V.22) with §4.2.4 and §4.2.7, where
we defined the representation (H , IndISpin(4,ℂ)IW (�v̊ × �). We start by considering the Hilbert space
H . By standard manipulation of Hilbert tensor products, we have

H = L2(ℂ3, j∗�;)
= L2(ℂ3, j∗�) ⊗̂

where ⊗̂ denotes the completed tensor product and⊗ in the last line is used to denote the product
measure.
We now turn to the definition of � in (V.18). With the choice of � given here in point 2. we get

(

IndISpin(4,ℂ)IW (�v̊ × �)(n, s)Ψ
)(

v,q
)

= �v(n)
(

B 0
0 B

)

Ψ
(

A�(v)B−1,�B−1(q)
)

, (V.23)

where

v ∈ ℂ3, q ∈ ℝ3, Ψ ∈ L2
(

ℂ3, (j∗�)
)

⊗̂;ℂ4
)

,

n ∈ ℂ4, ℎ =
(

A 0
0 B

)

, A, B ∈ SL(2,ℂ).

§ 5.2 “Covariant realization”. In the classical case of the real Poincaré group, one first defines Wigner
representations. Then, to have a simpler transformation rule one can go from Wigner representation to a
“covariant representation”. We refer to chapter III for the details. The basic trick to go from the Wigner
representation to the “covariant representation” is to apply to the spinor wavefunction in momentum space
f (p), p ∈ ℝ3, a multiplication operator which multiplies by a standard boost, that is the matrix

√

�(p),
p = (

√

p2 + m2,p)t, where p ∈ ℝ3 coincides with the argument of the spinor wavefunction f (p) (note
that applying this “standard boost multiplication operator” is not equivalent with making an actual boost).
For the details cf. [5, p. 523, (40)-(41)] or chapter III of the present work; in the latter, see in particular
§4.7.

Here we are going to follow a similar path, but for ISpin(4,ℂ) in place of the double cover ISpin0(1, 3)
of the real Poincaré group. We shall start with the representation (H , �) defined in (V.23), apply the
“standard boost multiplication operator”, and end up with a new representation, which we shall call (H̃, �̃)
which has “nicer” transformation properties.

The “standard boost” for the case of ISpin(4,ℂ) was defined in (V.15) and explicitly realized in
(V.17). Hence we define a multiplication operator � by

(�F )(v,q)
def
=

(

1
�
�(v) 0
0 I2

)

F (v,q), v ∈ Ov̊,q ∈ ℝ3,

where Ov̊ is defined at point 2. We look at the operator � as an operator from H to, in general, the space
of distributions D ′(Ov ×ℝ3;ℂ4). We then define a new space H̃ as the range of � in D ′(Ov ×ℝ3;ℂ4)

H̃
def
= Ran �.

Since the matrix
(

1
�
�(v) 0
0 I2

)

is invertible for every v ∈ Ov̊, the operator � is an isomorphism of H with H̃ . Moreover we can define
on H̃ a Hermitian scalar product by pushing forward the scalar product of H along the map �. In this
way we make H̃ into a Hilbert space and � becomes an isometric isomorphism of Hilbert spaces. We
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push forward, along �, also the representation � on H , obtaining a representation �̃ on H̃ . A straight
forward computation shows that the representation �̃ is given explicitly by the following

(

�̃(n, ℎ)Ψ̃
)(

v,q
)

= �v(n)
(

A 0
0 B

)

Ψ
(

A�(v)B−1,�B−1(q)
)

, (V.24)

where
v ∈ ℂ3, q ∈ ℝ3, Ψ̃ ∈ H̃ , n ∈ ℂ4, ℎ =

(

A 0
0 B

)

, A, B ∈ SL(2,ℂ).

We remark that we chose the definition of the representation (, �), given in (V.22), in such a way as
to obtain this final result. In particular, the form of the representation (H̃ , �̃) forced us to consider as
representation of the little group a direct sum of two copies of a 2-spinor representation.

We collect the properties of the representation (H̃ , �̃) that we have constructed in a proposition which
is parallel to the proposition in 4.3.

§ 5.3 Proposition. Let take the standard vector v̊ = v̊(m)
def
= (m, 0, 0, 0), m ∈ ℝ, and specialize the

representation (H , �) of 4.3 to this special case. Let �̃ ∶ H → Ran �̃ be defined by

(�̃F )(v,q)
def
=

(

�(v)
√

�(q) 0
0

√

�(q)

)

(

F (v,q)
F (v,q

)

, v ∈ Ov̊(m), q = (
√

q2 + m2,q) ∈ ℝ4, q ∈ ℝ3.

(V.25)
The map �̃ is indeed well defined for any F ∈ H . It is invertible and it carries the unitary representation
(H , �) into the unitary representation (H̃ , �̃) given by

H̃
def
= Ran �, �̃

def
= �̃��̃−1,

where H is a complex Hilbert space equipped with scalar product carried by the map �̃ from H to H̃ ,
that is

(Ψ̃1, Ψ̃2)�̃−1H
def
= (�̃−1Ψ̃1, �̃−1Ψ̃2)H , Ψ̃1, Ψ̃2 ∈ , (V.26)

where (⋅, ⋅)H denotes the scalar product of H . Explicitly we have

(

�̃(n, s)Ψ̃
)

(v,q) = �v(n)
(

A 0
0 B

)

Ψ̃
(

A�(v)B−1,�B−1(q)
)

, (V.27)

where

v ∈ ℂ3, q ∈ ℝ3, Ψ̃ ∈ H̃ , n ∈ ℂ4, s =
(

A 0
0 B

)

∈ SL(2,ℂ) × SL(2,ℂ), A, B ∈ SL(2,ℂ).

Finally the scalar product on H̃ is explicitly given by

(Ψ̃1, Ψ̃2)H̃ = ∫Ov̊(m)

(

(�−1Ψ̃1)(v, ⋅), (�−1Ψ̃2)(v, ⋅)
)


1

2!(q)
dq d(j∗�SL(2,ℂ))(v)

= ∫Ov̊(m)

(

Ψ̃1(v,q),
(

1
m3
�(v)∗−1�(q)−1�(v)−1 0

0 1
m
�(q)−1

)

Ψ̃2(v,q)
)

ℂ4
×

× 1
2!(q)

dq d(j∗�SL(2,ℂ))(v),

(V.28)

for Ψ̃1, Ψ̃2 ∈ H̃ where�SL(2,ℂ) denotes the (properly normalized) Haarmeasure on SL(2,ℂ) and j∗�SL(2,ℂ)
was defined in point 3 of §5.1.
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§ 5.4 Remark. The representation (H̃ , �̃) given in the last proposition has already most of the features
we desire. The wavefunction Ψ̃ ∈ H̃ depends on a variable v ∈ Ov̊(m) ≅ SL(2,ℂ) (see point 2. in
§5.3) which transforms as a vector under SL(2,ℂ) × SL(2,ℂ) ≅ Spin(4,ℂ). Moreover it depends on an
additional variable q which comes out from the construction of the unitary representation but has not a
direct meaning. Finally the wave function depends on a finite index � = 0, 1, 2, 3 which gives to the wave
function the correct bi-spinor nature. Indeed its bi-spinorial part transforms with the defining representation
of Spin(4,ℂ) (cf. chapter (V.27)). Nevertheless the scalar product in (V.28) is still somewhat cryptic. In
particular it is not directly clear how to relate it to the usual scalar product which one gets in the standard
relativistic Dirac fields (cf. III). We therefore are going to define (in §5.6) a change of variable which will
simplify the structure of the representation and in particular of such a scalar product. To define this change
of variables we need first to discuss in more details the Haar measure on SL(2,ℂ) and its decomposition.

§ 5.5 Decomposition of the measure j∗�. 1. We start by decomposition �. We recall that � is the
Haar measure (with a fixed normalization convention) on SL(2,ℂ). With our convention of nor-
malization the measure � was given in (V.13). Consider now the polar decomposition A = PU for
a matrix A ∈ SL(2,ℂ) in terms of a positive definite matrix P

def
=

√

AA∗ and a unitary matrix of
determinant one U ∈ SU(2). We now want to give the explicit form of the decomposition � in terms
of the measure �P on the set of Hermitian, positive definite 2-by-2 matrices and the Haar measure
�SU(2) of SU(2). We can parametrize the space of Hermitian, positive definite 2-by-2 matrices as
follows

P =
(

!1(p) − p3 p2 + ip2
p2 − ip1 !1(p) + p3

)

,

where, as before, p
def
= (p1, p2, p3) ∈ ℝ3, and

!1(p)
def
=

√

p2 + 1 .

Hence, we want to decompose the measure � given in (V.13) in terms of the Lebesgue measure
dp1 dp2 dp3 on ℝ3 and the Haar measure �SU(2) on SU(2). This means that we need to compute the
Jacobian J in the decomposition

d�(A) = J dp1 dp2 dp3 d�SU(2)(U ),

One way to compute this Jacobian is the following. First decompose a matrix A ∈ SL(2,ℂ)
according to the Iwasawa decomposition A = KU (which holds almost everywhere with respect to
the Haar measure on SL(2,ℂ)):

(

a11 a12
a21 a22

)

=
(

�−1 z
0 �

)(

u11 u12
u21 u22

)

, � > 0, z ∈ ℂ.

The disintegration of the measure � which corresponds to this decomposition of a matrix A ∈
SL(2,ℂ) is well known (cf. [18, Appendix A–1, p. 282-283]. Also relevant is [10, Section 1.2]).
One has, for � normalized as in (V.13),

d�(A) = � d� d(ℜz) d(ℑz) d�SU(2)(U ), � > 0, z ∈ ℂ, U ∈ SU(2), A ∈ SL(2,ℂ),

where �SU(2) denotes the Haar measure on SU(2) normalized to 1.
Then, we compute the Jacobian of the change of variables (�,ℜz,ℑz) → (p1, p2, p3). This change
of variables is given by8

� = !1(p) + p3, �z = p2 + ip3.
Performing this computation, after straight forward computations, one finds

d�(A) = 1
2!1(p)

dp1 dp2 dp3 d�SU(2)(U ),

with p = (p1, p2, p3) ∈ ℝ3, U ∈ SU(2), A ∈ SL(2,ℂ).
8Cf. [5, §17.2.D, (36) p.522] where there is a small typo: one should replace m

2
with just m.
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2. We now turn our attention to the measure j∗� which, we recall, is the invariant measure on the
manifold Ov̊ obtained by pushing forward the (with a fixed normalization convention) Haar measure
� on SL(2,ℂ). Recall that the vector v̊ is defined as v̊

def
= (�0, 0, 0, 0) for a fixed complex number �0.

Since we want to compare this model with the usual results concerning the half-spin representations
of the real Poincaré group we now specialize to the situation where �0 is

�0 = m > 0

for a given positive number m. In this case, one unsurprisingly finds the following decomposition
for the measure j∗�:

d(j∗�)(v) =
1

2!m(p)
dp d�SU(2)(U ), v ∈ Ov̊, v̊ = (m, 0, 0, 0), m > 0, (V.29)

where dp
def
= dp1 dp2 dp3 denotes the Lebesgue measure on ℝ3 and

!m(p)
def
=

√

p2 + m2.

§ 5.6 Change of variables. Let us now go back to the representation (H̃ , �̃) introduced in §5.2. A
function Ψ̃ ∈ H̃ is a vector valued functions of two variables, v ∈ Ov̊(m) and q ∈ ℝ3. Let us, as
usual, identify ℂ4 with the space M2(ℂ) of 2-bi-2 complex matrices via the vector space isomorphism �.
Under this this isomorphism the manifold Ov̊(m) is sent into the space of 2-by-2 complex matrices with
determinant equal to m2. This space is clearly isomorphic to SL(2,ℂ) and corresponds to having “dilated”
every element in SL(2,ℂ) by multiplying it by m. The decomposition in (V.29) corresponds to seeing
every variable v ∈ Ov̊ as decomposed into two components:

v = (p, U ), v ∈ Ov̊, p ∈ ℝ3, U ∈ SU(2).

With this decomposition in mind, we can think of a function Ψ̃ ∈ H̃ as a function of three variables:
p ∈ ℝ3, U ∈ SU(2), q ∈ ℝ3. We can intuitively think of these variables as follows. The variable
p parametrizes the physical mass hyperboloid, that is it has the same meaning in this model as in the
conventional case. The variable U characterizes give the degrees of freedom which corresponds to
“imaginary boosts” that are Euclidean rotations between the first (0-th) axis and the remaining axis. The
variable q characterizes the degrees of freedom corresponding to “imaginary three-dimensional rotations”.

We are now ready to describe the change of variables which we want to perform. Consider the formula
(V.28). In the matrix on the right hand side we have the term

1
m3
�(v)∗−1�(q)−1�(v)−1 = 1

m3
(

�(v)�(q)�(v)∗
)−1.

We observe that the transformation

1
m
�(q) → 1

m3
(

�(v)�(q)�(v)∗
)−1, q = (

√

q2 + m2,q) ∈ ℝ4, q ∈ ℝ3, v ∈ Ov̊(m)

corresponds to performing on q a Lorentz transformation. In particular, since q is on the mass hyperboloid,
this transformation will send it to a new vector qv still on the same hyperboloid. As discussed above, we
consider a function Ψ̃ ∈ H̃ as a function of (p, U ,q), p ∈ ℝ3, U ∈ SU(2), and q ∈ ℝ3, where both the
variables p and q parametrize a copy of the mass hyperboloid with mass m. Hence we can define the
change of variables

(p, U ,q) → (p′, U ,q)

where p′ is defined by requiring
1
m
�(p′) = 1

m3
�(v)�(q)�(v)∗ (V.30)

where p = (
√

p2 + m2,p) and the other variables are as above. This is a well defined change of variables
because, as we remarked, the right hand side defines a point on the mass hyperboloid.
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§ 5.7 Let (p, U ,q) → (p′, U ,q) be the change of variables explained in the last paragraph. We define an
operator ' which implements on the functions in H̃ such change of variables, that is we let

' ∶ Ψ̃(p, U ,q) → Ψ̃(p′, U ,q),

for Ψ̃ ∈ H̃ , p ∈ ℝ3, q ∈ ℝ3, and p′ defined by (V.30).
Let us define the Hilbert space9 HℂD as the image of the map ' applied to every element in H̃ :

HℂD
def
= Ran'.

The scalar product of HℂD is obtained by carrying over the scalar product of H̃ via the map '. Similarly,
the representation �̃ of ISpin(4,ℂ) on H̃ is carried by themap' into the representation �ℂD of ISpin(4,ℂ)
on HℂD. We now explicitly compute the form of the representation �ℂD and of the scalar product of HℂD.

For the representation �ℂD we get, using the definition of ',
(

�ℂD(n, s)Φ
)

(p′, U ,q) =
(

'�̃(n, s)'−1Φ
)

(p′, U ,q)
=
(

�̃(n, s)'−1Φ
)

(�(v)�(q)�(v)∗, U ,q)

= �v(n)
(

A 0
0 B

)

(

'−1Φ
)(

A�(v)B−1B�(q)B∗B∗−1�(v)∗A∗, U ,��(B)−1(q)
)

= �v(n)
(

A 0
0 B

)

(

'−1Φ
)(

A�(v)�(q)�(v)∗A∗, U ,�B−1(q)
)

= �v(n)
(

A 0
0 B

)

Φ
(

A�(p′)A∗, U ,�B−1(q)
)

.

We note that, to pass from the second to the third line, we used the fact that, by construction, we have the
following transformation properties

�(v) → A�(v)B−1, �(q) → B�(q)B∗

under the action of an element s =
(

A 0
0 B

)

∈ SL(2,ℂ) × SL(2,ℂ) ≅ Spin(4,ℂ).

Now we consider the scalar product on HℂD. Because of the definition of change of variables in
(V.30), it is easy to see that we get

(Φ1,Φ2)HℂD
= ('−1Φ1, '−1Φ2)H̃

= ∫Ov̊(m)

(

Φ1(p′, U ,q),
(

1
m
�(p′)−1 0
0 1

m
�(q)−1

)

Φ2(p′, U ,q)
)

ℂ4
×

× 1
2!(q)

dq 1
2!(p′)

dp′ d�SU(2)(U ).

where we used the fact that the measure 1
2!(p′) dp

′ is invariant under the change of variables ' because
such a change of variables corresponds to a Lorentz transformation.

We collect the properties of this new representation (HℂD, �ℂD) in the following proposition.

§ 5.8 Proposition. Let � ∶ ℂ4
≅
→ M2(ℂ) be the vector space isomorphism of ℂ4 with the space M2(ℂ) of

2-by-2 complex matrices defined above (cf. Remark in §4.3). Hence we identify v ∈ ℂ4 with �(v) ∈ M2(ℂ).
Moreover let us identify Spin(4,ℂ) ≅ SL(2,ℂ) × SL(2,ℂ) in such a way that it acts on ℂ4 ≅ M2(ℂ) by

�(v) → �(s, v) = A�(v)B−1, s =
(

A 0
0 B

)

, v ∈ ℂ4.

9The subscript ℂD in HℂD is for “complexified Dirac”.
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Then we can define a unitary representation (HℂD, �ℂD) of ISpin(4,ℂ) by the following. The complex
Hilbert space HℂD is the completion of the space of ℂ4-valued, smooth, compactly supported functions
C∞0 (ℝ

3 × SU(2) ×ℝ3;ℂ4) on ℝ3 × SU(2) ×ℝ3 under the Hermitian scalar product

(Φ1,Φ2)HℂD
= ∫Ov̊(m)

(

Φ1(p′, U ,q),
(

1
m
�(p′)−1 0
0 1

m
�(q)−1

)

Φ2(p′, U ,q)
)

ℂ4
×

× 1
2!(q)

dq 1
2!(p′)

dp′ d�SU(2)(U ). (V.31)

The representation �ℂD is given by

(

�ℂD(n, s)Φ
)

(p, U ,q) = �v(n)
(

A 0
0 B

)

Φ
(

A�(p)A∗, U , B�(q)B∗
)

, (V.32)

where we recall that �v̊ denotes the character of the additive group ℂ4 ≅ ℝ8 relative to the vector
v̊ = (m, 0, 0, 0), m > 0 (cf. §4.1 point 3.) and

Φ ∈ HℂD, A, B ∈ SL(2,ℂ), p = (
√

p2 + m2,p), q = (
√

q2 + m2,q), p,q ∈ ℝ3.

§ 5.9 Remark. As we have discussed, if we denote by
(

A 0
0 B

)

and element of SL(2,ℂ) × SL(2,ℂ) ≅

Spin(4,ℂ), then the subgroup of Spin(4,ℂ) which corresponds to real Lorentz spin transformations is

given by elements of the form
(

A 0
0 A∗−1

)

, for A ∈ SL(2,ℂ). The scalar product in (V.31) bears a

similar relation with the scalar product which appears in the 1-particle Hilbert space for the standard Dirac
field. Indeed, with notation as in (V.31)), if we fix the variable q such that it satisfy

�(q) = �(p′)∗−1,

we obtain, by a straight forward computation,
(

1
m
�(p′)−1 0
0 1

m
�(q)−1

)

=

(

1
m
�(p′)−1 0
0 1

m
�(p′)∗

)

= m I4 + !(p′)

W eyl
0 −

3
∑

j=1
p′j


W eyl
j ,

where !(p′) =
√

p′2 + m2, p′ = (p′1, p
′
2, p

′
3) ∈ ℝ3 and 
W eyl

� , � = 0, 1, 2, 3, denote the Dirac 
-matrices
in Weyl basis. Now, the rightmost term in the previous expression is precisely the matrix appearing in the
scalar product which we encountered in §4.12, (III.12). The relation of that scalar product with the theory
of Wightman and Schwinger 2-point functions is given in that chapter (cf. especially §4.13 and §5.19).

Hence we see in what sense this construction generalizes Wightman theory for the free Dirac fields to
complex spacetime and the complexified Poincaré spinor group.

Fock space

In this final subsection we finally introduce the Fock space on the 1-particle space HℂD which is the
carrier space of the representation described in §5.8. Moreover we apply the results from section 2 to the
present situation.

§ 5.10 Proposition. Let (HℂD, �ℂD) be the representation of ISpin(4,ℂ) given in proposition §5.8. Then

1. The complex Hilbert space HℂD decomposes in a Hilbert tensor product HℂD = 1 ⊗̂2 where

1 = L2(SU(2), d�SU(2)),
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and 2 is the completion of the space of ℂ4-valued, smooth, compactly supported functions
C∞0 (ℝ

3 ×ℝ3;ℂ4) on ℝ3 ×ℝ3 with respect to the scalar product

( 1,  2)2

def
= ∫

ℝ3×ℝ3

(

 1(p′,q),
(

1
m
�(p′)−1 0
0 1

m
�(q)−1

)

 2(p′,q)
)

ℂ4
1

2!(q)
dq 1
2!(p′)

dp′,

where  1,  2 ∈ 2 and the rest of the notation is as in §5.8.

2. Consider the Bosonic Fock space over HℂD, namely the space

ℾ⊙HℂD.

Let (ej)j∈ℕ+ be an ordered orthonormal basis for 1 and let P be the projection of section 2 §2.10.
Then the Fermionic Fock space for the free relativistic Dirac field is obtained by applying P to
ℾ⊙HℂD and then restricting to functions for which �(q) = �(p′)∗−1 in the sense of §5.9.

PROOF. The first statement follows from the fact that the scalar product of HℂD does not mix the
variable U ∈ SU(2) with the other variables. Hence HℂD has a canonical decomposition into the
L2 space with respect to the variable U ∈ SU(2) and the remaining Hilbert space in the remaining
variables.

The second statement follows from the proposition §2.10 in section 2 and the remark §5.9.
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VI
On the Faddeev-Popov quantization of gauge
theories and Euclidean quantum radiation

field

Abstract

We first give a brief review on the standard aspects of classical Euclidean gauge theories with
particular emphasis on some relatively recent results regarding the smooth structure of the space
of gauge potentials. Then, we formulate a simple approach, in Euclidean space time, to rigorously
define the procedure of Faddeev-Popov quantization, for simple gauge theories which do not need
renormalization. We call this approach “naive Faddeev-Popov quantization”. Finally we turn to the
example of the free Euclidean electromagnetic radiation field. We describe its quantization in two
ways. First we describe, in our terms, the approach in which one takes the quotient of the space of
gauge potentials by the group of gauge transformations. Second we apply our “naive Faddeev-Popov
quantization” to provide the quantization of the Euclidean electromagnetic radiation field.
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1 Introduction
In the seminal work [23] Faddeev and Popov gave a formal prescription for the quantization of gauge
theories in the context of perturbation theory. Their original interest was toward Yang-Mill gauge theory
in Minkowski space-time and involved formal manipulations of Feynman path-integrals. Perhaps the most
successful application in theoretical Physics of the Faddeev-Popov formal technique is the description of
weak interactions (cf. e.g. the exposition by Georgi [26]).

Feynman path integral techniques are often studied in the Euclidean setting ([54], [27]) where one
hopes to cast Feynman’s original formal idea into a rigorous technique within the realm of measure theory.
For this reason here we start directly from the Euclidean formulation of gauge theories.

The objective we want to achieve here is two fold. On one hand, we describe, in general terms, the
quantization of gauge theories employing the Faddeev-Popov ideas stressing what can be retained in a
rigorous measure theoretic context from the formal approach. Our discussion tries to be as natural as
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114 Chapter VI. Naive Faddev-Popov quantization

possible thus avoiding ad hoc constructions. Moreover we try to be “model agnostic”, in such a way that
the techniques described here would remain applicable in almost automatic way in different models. Our
discussion assumes that very strong conditions are fulfilled by the gauge theory which is to be quantized.
For these reason we like to call our approach a “naive Faddeev-Popov quantization”. The case of Yang-
Mills gauge theory, without regularizations remains outside the possibilities of the rigorous presentation
we give here.

On the other hand, we apply our construction to the simplest of the physically relevant problems: the
quantized Maxwell (free, electromagnetic) field in four (Euclidean) dimensions. This case we study in full
detail.

This chapter serves as a starting point for future research where we plan to combine the Fermionic
techniques explained in the previous chapters with techniques from (Bosonic) gauge theories, in particular
those of the present chapter.

The geometry of classical Euclidean gauge theories is by now quite well understood (cf. e.g. [24, 22,
50]). The geometry of the space of configuration of the classical gauge field is of central importance in
any attempt to quantization. The classical situation is investigated, among others, in [19, 1, 39, 37, 38,
2, 3] cf. also [21]. Perhaps of particular interest, is the fact that the space of (classical) gauge potentials
has the structure of an infinite dimensional G-bundle, where the group G is the infinite dimensional Lie
group of gauge transformations (cf. [15, 3]). Moreover the kinetic term of the Lagrangian density arises
naturally as a Riemannian metric on the orbit space (that is the quotient of the space of (classical) gauge
potentials and the group of gauge transformations). We touch upon these results in section 3.

The situation for quantum (Euclidean) gauge theories is much less understood (cf. however [34]). We
cite the following references to give a feeling of the applicability of the ideas developed here and of the
directions and generalizations which we intend to pursue in the future: [5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 28,
40, 52]

The problem of “quantization” of the Euclidean Maxwell free field has been studied by numerous
authors. In particular we mention [32, 25, 30, 20, 12, 33, 49, 29, 58, 41]. For more details regarding how
the approaches in these reference relate to our “naive Faddeev-Popov” quantization compare sections 5
and 6.

This chapter roughly splits into two parts. The first part corresponds to sections 2, 3, and 4 and
describes gauge theories in general. Sections 6 and 7 form the second part where we specialize to the
Maxwell gauge theory. Finally section 5 connects the two parts.

In more details, the content is as follows. Section 2 and 3 describe the general settings for classical
Euclidean gauge theories. In these sections we are necessarily elliptic in our presentation. Nevertheless,
in section 3, we try to touch what we believe are important modern results regarding the topological and
geometrical properties of the infinite dimensional manifold which describes the configuration space for
gauge fields. Section 4 describes our naive Faddeev-Popov quantization. In section 5 we briefly explain
the simplifications which take place when one specializes from a generic (non Abelian) gauge theory
to the Abelian Maxwell gauge theory. In section 6 we describe an approach for the quantization of the
Maxwell field in which one takes the quotient of the space of gauge fields by the action of the group
of gauge transformations. This approach is arguably simpler, than the approach we discuss next, but is
restricted, to our knowledge, to just the Maxwell gauge theory, where the space of gauge potentials factors
into a Cartesian product. In section 7 we apply our naive Faddeev-Popov quantization to the quantization
of the Euclidean Maxwell free field. The results here are, to our knowledge, entirely new. The main results
are formulated in theorem §7.15, theorem §7.18, and theorem §7.19.

2 Differential geometric setting for gauge theories
In this section we fix some differential geometric notation which we need in the sequel.

§ 2.1 Let  = (E, �,M,F,G, �) be fiber G-bundle with total space a manifold E, projection map �, base
manifold M, standard fiber a manifold F, structure group a Lie group G, and group action �. A fiber
G-bundle  is a fiber bundle � ∶ E → M for which the transition functions take values in the image
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Ran � = �(G) under a smooth homomorphism � ∶ G→ DiffF of a Lie groupG into the diffeomorphisms
DiffF of the standard fiber F. A vector G-bundle is a fiber G-bundle where the standard fiber is a vector
space and the action of the structure group on the fiber is a linear representation. A principal G-bundle
is a fiber G-bundle where the standard fiber is a copy of the structure group and the action of the structure
group on itself is by left translation. To distinguish between these three cases we will denote a generic
fiber G-bundle by  , a generic vector G-bundle by �, and a generic principal G-bundle by  .

§ 2.2 Let  be a principal G-bundle over a manifold M. Let ad be the adjoint bundle of  , that is
a vector G-bundle with fiber the Lie algebra g and as action of G the adjoint representation of G on g.
Moreover let Ad denote the fiber G-bundle with standard fiber a copy of the structure group and action
given by conjugation (i.e. an element g ∈ G acts on another element ℎ ∈ G by ℎ → gℎg−1). A warning
about notation. The representation of G, by which G acts on the fibers in the adjoint bundle ad , is the
adjoint representation of the Lie group which is usually denoted by Ad. Nevertheless the adjoint bundle
is not usually denoted by Ad  . The notation Ad is usually reserved for the adjoint fiber G in which,
since it is not a vector bundle, the action of G on the fiber does not constitute a (linear) representation.

§ 2.3 Let us denote by Ωp(M, �), p ∈ ℕ, the (global, smooth) p-forms on the manifoldM with values in
the vector bundle �. That is, we let

Ωp(M, �)
def
= Γ(� ⊗M ΛpM),

where the right hand side denotes the space of (global, smooth) sections of the tensor product bundle
� ⊗M ΛpM. The tensor product bundle is the vector bundle overM with standard fiber the vector space
F ⊗

⋀p(ℝdimM), where F denotes the standard fiber of � and
⋀p(ℝdimM) denotes the vector space of

p-forms on ℝdimM.

§ 2.4 Let us denote by () the space of connections over the principal G-bundle  . We will not need
to work directly with this space, hence we limit ourselves to refer to [1] for its description. The space
() has an affine space structure. To go back to the usual vector space structure we distinguish between
connections and gauge-potentials. We call (smooth) gauge-potential the difference of two connections.
Then the space of (smooth) gauge-potentials is a vector space which we denote by . One has the
standard identification

 = Ω1(M, ad).

of the space of gauge-potentials with the vector space of one-forms overM with values in the vector
bundle ad overM. We will use this identification as our definition of .

§ 2.5 Let  be a principal bundle with structure group G and total space P. We denote by Gau the
group of gauge transformations1, that is the group (under fiber-wise multiplication) of G-equivariant,
fiber preserving, diffeomorphisms P → P. One has the canonical identification (cf. e.g. [47, Lemma 4.1.2,
p. 82])

Gau = Γ(Ad),

where Γ(Ad) denotes the space of smooth sections of the fiber bundle Ad . Γ(Ad) is considered as a
group under fiber-wise multiplication. Again, we will use this identification as our definition of the group
Gau of gauge transformations.

§ 2.6 To describe the action of the group of gauge transformations Gau on the vector space of gauge
potentials, we pass to the local picture. For the global description we refer to [3, 1]. Let {U�} be an atlas
for the base manifoldM of the vector bundle ad and A ∈ . Then, on a given chart U�, the g-valued
one form A is just a vector valued function:

A↾U�∶ U� → g⊗ℝdimM .
1In some of the literature one finds Aut denoting what we here denote by Gau .
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Similarly let g ∈ Gau , then on a chart U� the section g of Ad is just a G-valued function

g↾U�∶ U� → G.

We define an action � ∶ Gau × →  by imposing its behavior chart-wise:

�(g↾U� , A↾U� )(x) = g↾U� (x)A↾U� (x)g↾U� (x)
−1 + )g↾U� (x)g↾U� (x)

−1.

3 Infinite dimensional manifold structure
In this section we briefly examine the smooth structure introduced by Michor ([43, 45, 44, 42] and [46])
on the set C∞(M,N) of smooth maps between two (smooth, finite dimensional) manifoldsM and N. Then
we discuss the situations where, in place of C∞(M,N), one specializes to the cases of the space  of
gauge potentials and the group Gau of gauge transformations.

§ 3.1 Let C0(M,N) be the set of continuous functions between two manifoldsM, N. On C0(M,N) the
locally finite open topology (LO-topology for short) is the topology with basis

{f ∈ C(M,N) ∶f (L�) ⊂ U�},

where L = (L�) is a locally finite family of closed subsets L� ⊂ M, and U = (U�) is a family of open
subsets of N with the same index set.

§ 3.2 Consider a function f ∈ C∞(M,N), that is a smooth function from M to N. We denote by T lf
the l-th derivative of f . For example T 0f = f and T 1f = Tf denotes the push-forward (also called
Jacobian) of f . For a fixed k ∈ ℕ, let us introduce the k-jet jkf (x) of f ∈ C∞(M,N) at x ∈ M:

jkf (x)
def
= [f, x]k,

where [f, x]k denotes the equivalence class of all pairs (g, y) g ∈ C∞(M,N), y ∈ M, such that y = x and
and T lg = T lf , for all 0 ≤ l ≤ k. The set of all k-jets from M to N is denoted by J k(M,N). Given
f ∈ C∞(M,N), we can identify the equivalence class jkf (x) with the list of Taylor coefficients which, by
definition, characterize the class. The zero order coefficient is just a point in N. In this way, we see that one
can consider J (M,N) as a vector bundle overM×N, with standard fiber the vector space of polynomial
of order up to k without constant coefficient. In particular J 0(M,N) = M × N. As a consequence of this
picture, we see that jk is a map from C∞(M,N) into C0(M, J k(M,N)).

Now, let us denote by J∞(M,N) the projective limit (in the category of Hausdorff topological spaces)
of the sequence

J 0(M,N)← J 1(M,N) ←⋯ .

Then we have a well defined family of projections �∞k ∶ J∞(M,N)→ J k(M,N). For f ∈ C∞(M,N), j∞f
denotes the element in J∞(M,N) such that �∞k j

∞f (x) = jkf (x), for all 0 ≤ k < ∞, x ∈ M. Similarly to
the case of jk, 0 ≤ k <∞, we interpret j∞ as a map from C∞(M,N) into C0(M, J∞(M,N)).

§ 3.3 We define the D-topology on C∞(M,N) to be the topology induced by the embedding j∞ ∶
C∞(M,N) → C0(M, J∞(M,N)) from the LO-topology (defined in §3.1).

Let D(M,N)
def
= C∞c (M,N) be the space of smooth maps fromM to N with compact support. Then

(D(M,N),D-topology) is a nuclear LF-space (that is LF-space which is also nuclear).
We now define Michor’s FD-topology on C∞(M,N). To do so, we define the equivalence relation

f ∼ g, for f, g ∈ C∞(M,N), by imposing f and g to be equivalent when the set {x ∈ M∶f (x) ≠ g(x)}
is relatively compact inM.

The fine D-topology (FD-topology for short) is defined to be the coarsest topology on C∞(M,N)
which is finer than the D-topology and for which the set of cosets of the equivalence relation above are
open.
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§ 3.4 Following [46, Chapter 9] we define the notion of C∞c -manifold as a Hausdorff topological spaceM
equipped with a family (U�, u�, E�)�∈I such that:

1. (U�) is an open cover ofM, and u� ∶ U� → E�, for all � ∈ I , is a homeomorphism onto an open
subset Ran u� of a locally convex topological vector space E�;

2. for U� ∩ U� ≠ ∅, the maps u�� = u�◦u−1� are C∞c diffeomorphisms. As a consequence E� and E� ,
�, � ∈ I are linearly isomorphic.

By NLF-manifold we mean a C∞c -manifold where, for all � ∈ I , the E� are isomorphic to a nuclear
LF-space E.

We now are ready to quote (without proof) two results which apply this general theory of infinite
dimensional manifolds to the cases we need: the group Gau of gauge transformations and the space 
of gauge potentials.

§ 3.5 Proposition ([19, 2]). Let  be a principal bundle with base manifold a (not necessarily compact)
finite dimensional smooth manifoldM and with structure group a (not necessarily compact) Lie group G.
Then, the group of gauge transformations Gau equipped with the D-topology is an NLF-manifold.

§ 3.6 Proposition ([46, Theorem10.4]). Let be a principal bundle with basemanifold a (not necessarily
compact) finite dimensional smooth manifold M and with structure group a (not necessarily compact,
finite dimensional) Lie group G. Then the space  of gauge potentials equipped with FD-topology is an
NFL-vector space (that is an NFL-manifold which is also a topological vector space). Moreover the space
c of gauge potentials with compact support, equipped with the D-topology is a Fréchet nuclear vector
space.

4 A naive Faddeev-Popov quantization
In this section is we give a “naive” but rigorous interpretation of the formal Faddeev-Popov ideas. By
“naive”, we mean that the rigorous approach described here can be expected to work only whenever no
renormalization is needed.

§ 4.1 Remark. Loosely speaking, in classical mechanics, we are presented with a space of states and
an action functional defined on it. The classical trajectories are determined by minimizing the action
functional. The idea of Feynman can be rephrased informally in the following way. Starting with the action
functional, we construct a notion of integration, or of averaging, on the space of states. The averaging
process should have the property that we can recover the classical minimization process as a “linear
approximation”. In the context of gauge theories we can consider the space of gauge potentials as “total
space of states”. It is very convenient, both from mathematical and physical reasons, to consider theory
which are gauge invariant. This implies that the space of gauge potentials includes states (i.e. gauge fields)
which are gauge equivalent, that is, they are connected by a gauge transformation. In defining a notion of
averaging in the space of gauge potentials, one is thus faced with the problem of how to account for these
equivalent states. We have (at least) two options to define a notion of averaging in this context.

One is to quotient out the action of the group Gau of gauge transformations and to consider the
orbit space∕Gau as “true configuration space” . The geometry of this “true configuration space” is
studied e.g. in [15]. The issue with this space is that in general it has a complicated structure (cf. e.g. [3])
whereas the space of gauge potentials is a “simple” topological vector space . The second option is to
keep the total space  of gauge potentials (or the space c of compactly supported gauge potentials) and
develop a notion of integration there. The formal approach of Faddeev-Popov opts for this second path.

§ 4.2 To make the ideas described in the previous paragraph rigorous, we need a well defined notion of
integration on an infinite dimensional space. Within the context of measure theory, one possible way to
attack this problem is via the powerful Kolmogorov theorem.
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Thanks to this theorem, we can give a “naive” but rigorous formulation of the idea of Faddeev and
Popov on how to implement Feynman quantization approach for gauge theories which satisfy some
restrictive hypothesis which allow for the program to go through. The formulation that we discuss here is
rigorous but limited in scope, hence the epithet “naive”.

In the last section we will apply the approach described here to a basic though interesting example:
the quantization of the Maxwell field in Euclidean four-dimensional space-time. It would be interesting to
apply this formulation of Faddeev-Popov quantization to other examples, where the geometry of gauge
invariance would play a more prominent role.

§ 4.3 The notion of action functional is of central importance in theoretical as well as mathematical
physics. Let us give here a definition of this notion, which simply adapts to our setting. We call action
functional a nonlinear functional (or, in other words, a function) S ∶  → ℝ. We call an action functional
S gauge invariant when

S(�(g, A)) = S(A), for all g ∈ Gau and A ∈ ,

where � ∶ Gau × →  denotes the action of the group Gau of gauge transformations on the space
 of gauge potentials. Note that since the space  is a topological vector space, the notion of action as a
(nonlinear) functional is globally well defined.

§ 4.4 Let X be a topological, locally convex, vector space. Following e.g. [16], we call a sequence
(en)n∈ℕ os elements ofX a topological basis forX when, for every x ∈ X, there exists a unique sequence
of numbers (cn(x))n∈ℕ such that x =

∑

n∈ℕ cn(x)en, where the series converges in X. If all functionals
x → cn(x) are continuous, then (en)n∈ℕ is called a Schauder bases for X.

§ 4.5 Let (EN ,BN , �N,N+1)N∈ℕ be a projective system of measurable spaces. For concreteness sake,
we assume EN ⊂ EN+1 to be an increasing sequence of topological vector spaces, and BN the Borel
�-algebra on EN . Then (�N,N+1)N∈ℕ is the canonical family of continuous projections EN+1 → EN .
Consider a sequence (�N ) of measures where, for eachN ∈ ℕ, �N is a Borel measure on EN . The family
(�N )N∈ℕ is said to be self-consistent when

�N,N+1◦�
N+1 = �N , for allN ∈ ℕ,

where �N,N+1◦�N+1 denotes the push-forward of the measure �N+1 under the map �N,N+1.

We state a simple version of the celebrated Kolmogorov theorem which serves our purposes (cf. e.g.
[57, Corollary p. 39]).

§ 4.6 Proposition (Kolmogorov). Let (EN )N∈ℕ be an increasing sequence of complete, separable,
metric spaces. Then every self-consistent family of Borel, probability measures can be extended to a
�-additive probability measure � on the projective limit measurable space lim

←←
EN .

§ 4.7 Faddeev-Popov quantization. We are now ready to describe what we call “naive Faddeev-Popov
quantization”. The goal is to define an appropriate notion (cf. §4.1) of integration on the space  of
gauge transformation. To construct such a notion of integration, within the context of measure theory, we
have at our disposal the powerful tool given by the Kolmogorov theorem. So we will proceed by defining
measures on “smaller spaces” and then use Kolmogorov to pass to the limit and define a measure on the
full space of gauge transformation.

We therefore need to define first a notion of “smaller spaces”. To do so we follow the classical
procedure in quantum field theory to introduce two regularization: an infrared regularization and an
ultraviolet regularization.

Infrared regularization: In this approach to infrared regularization we use the topological structure of
 to define an infrared regularization. As discussed above we can assume to be equipped with a nuclear
LF -space topology. In particular, being an LF -space, we will have a set of indices I , and a family
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(K )K∈I of Fréchet spaces, such that  is their direct limit  = lim←→K . We shall call the procedure
of restricting the functionals and measures, yet to be constructed, to eachK , an infrared regularization.
This type of infrared regularization, in section 7, will correspond to an infrared cut-off. We also note that
in the section 7 it will become important to impose extra conditions on the family of spaces (K )K∈K .
In particular I will denote there a family of absorbing, connected, convex subsets of ℝ4 with smooth
boundaries.

Ultraviolet regularization: To introduce in a convenient way an ultraviolet regularization we introduce
an extra structure, on the spaces K . We assume thus, that we are give an Hilbert scalar product on each
K and we denote by K the completion with respect to such scalar product. The appropriate choice
of Hilbert structure will depend in particular on the action functional. For each K ∈ I we choose a
Hilbert basis (eKn )n∈ℕ+ of K . We choose as ultraviolet regularization the restriction from the (infinite
dimensional) Hilbert spaces K , K ∈ I , to the finite dimensional subspaces

V N
K

def
= Span

(

eK1 ,… , eKN
)

.

Let PN,K ∶ K → V N
K be the orthogonal projection on the finite dimensional subspace V N

K . Denote by
 the group Gau of gauge transformations when considered as a transformation group, that is, denoting
by � ∶ Gau × →  the action of Gau on , we let


def
=

{

�(g, ⋅) ∶ g ∈ Gau
}

,

where, �(g, ⋅), for g ∈ Gau , denotes a map  → , and the (group) composition law is given by
letting �(g, ⋅)◦�(g′, ⋅)

def
= �(gg′, ⋅). In the following we will identify Gau with . In particular, by

abuse of notation, we will denote elements of  by g, g′,… , as we do for Gau , and we will denote the
group product by simple juxtaposition (g, g′) → gg′, as we do for Gau. Define the truncated gauge
transformation groups NK by

NK
def
= PN,K PN,K = {PN,KgPN,K ∶ g ∈ },

where g ∈  is now understood as a transformation on . Note that, for N ∈ ℕ, K ∈ I , NK is a Lie

group under the truncated product: (g1g2)N
def
= PNK g1g2P

N
K , g1, g2 ∈ Gau .

Let us denote by AK,N the projection of A ∈  on the subspace V N
K , that is AK,N

def
= PN,KAPN,K .

Moreover denote by dAK,N the Lebesgue measure on V N
K and by dgK,N the Haar measure on NK .

Faddeev-Popov functional: Let us introduce a nonlinear functional FFP ∶  → [0,+∞), which we
shall call Faddeev-Popov functional, which is assumed to satisfy the following condition:

lim
N→+∞

∫NK F
K,N
FP (gK,N , 0) dgK,N

∫NK F
K,N
FP (gK,N , AK,N )) dgK,N

< +∞, for all AK,N ∈ V N
K , (VI.1)

where

FK,NFP (gK,N , AK,N )
def
= FFP

(

PK,N�(gK,N , AK,N )
)

,

AK,N ∈ V N
K , gK,N ∈ NK , N ∈ ℕ+, K ∈ I , (VI.2)

denote the “finite dimensional approximations” of FFP. where � ∶ Gau × →  denotes the action of
Gau on.

Projective system of measures: We define the following family of positive measures

d�K,N
def
=

( ∫NK F
K,N
FP (gK,N , 0) dgK,N

∫NK F
K,N
FP (gK,N , AK,N ) dgK,N

)

FK,N (AK,N )e−SK,N (AK,N ) dAK,N .
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Each of these d�K,N is a well defined measure on the finite dimensional vector space V K,N . The family
of measures �K,N ,N ∈ ℕ, K ∈ I , still needs to be normalized. We therefore define

d�K,N
def
= d�K,N

|�K,N |
(

V N
K

) ,

where |�K,N | denotes the total variation of the measure �K,N . We now want to remove first the ultraviolet
regularization (which will correspond to a projective limitN →∞) and second the infrared regularization
(projective2 limit in I ).

First,if we assume that the family of measures (�K,N )N∈ℕ+ defines a compatible system of probability
measures for every K ∈ I , then

by Kolmogorov theorem (§4.6), for every K ∈ I , there exists a probability measure �K on the
projective limit 

def
= lim←N such that it agrees with each �K,N when projected on each V K,N ,N ∈ ℕ.

Second, if we assume that the new measures �K ,K ∈ I , also define a compatible system of measures,
then, we apply Kolmogorov a second time to obtain a measure � on the projective limit space.

This construction of a measure � is what we call “naive Faddeev-Popov quantization”. We shall
apply this construction to a concrete example in the following section.

5 Quantization of Maxwell field in the Euclidean four-dimensional
space-time

§ 5.1 In this section we will make two basic assumptions to be able to carry out our study at this stage.
The first assumption is that the base spaceM is assumed to beℝ4. From the homotopy perspective this

is, of course, a great simplification because ℝ4 is a contractible (paracompact, Hausdorff) space. Hence
any fiber bundle is homotopy equivalent to the trivial (product) bundle (cf. [Corollary p. 102][53]). From
the functional analysis perspective this assumption is not so much a simplification. In fact, ℝ4 being
non compact, it forces to deal with operators (e.g. the Laplacian) with continuous spectrum. From the
physical perspective it is quite natural to assume the base manifold to be ℝ4. In fact, it is often useful to
make the working assumption that the large scale structure of space time does not play an important role
in the description of elementary particle physics (although in might be necessary to relax this physical
assumption in the future).

The second assumption, is to consider the structure group to beU (1) (which of course means excluding,
e.g., Yang-Mills fields). Let us mention that, starting with any principal bundle  with Abelian structure
group, we obtain an adjoint vector bundle ad equivalent to the trivial vector bundle  × g, whereM is
the base manifold of  and g is the (trivial) Lie algebra of the Abelian structure group of  . The most
important effect of considering an Abelian structure group is that the space of connections (or the space of
gauge potentials) factors with respect to the action of the group of gauge transformations. That is we have

 = Gau ×∕Gau .

Indeed, the group Gau of gauge transformations act on the vector space  of gauge potentials by
translation by an exact 1-form:

�(g, A) = A + d�, g ∈ Gau , A ∈ ,

where � = )gg−1 is a zero-form and g = exp �, for some real valued smooth function � on ℝ4.

§ 5.2 As a result of the assumptions described in the last paragraph we are left with the following situation.

 ≅ C∞(ℝ4;ℝ4), Gau ≅ {d� ∶ � ∈ C∞(ℝ4;ℝ)},
2Note that is assumed to be the inductive limit of the AK , K ∈ I . But, when we remove the regularization we want to

look for a measure on the projective limit.
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where we are identifying ℝ4 with the space of one forms
⋀1ℝ4 over ℝ4. Moreover, we are identifying

Gau with the space of (smooth) exact 1-forms onℝ4, whence, in this identification, Gau is a topological
vector subspace of.

Because of the simple geometry in this example, we can employ, in place of the approach we described
in §4.7, a simpler approach which employs Hilbert space techniques. We will explain this in the following
section (section 6). We go back to the more general approach described in §4.7 in section 7.

6 Quantization of the Euclidean radiation field by taking the quotient of
the “state space”

Literature. The “quantization procedure” which we describe in this subsection is closely related to the discussion
in existing literature: [32, 25, 30, 20, 12, 33, 49, 29, 58, 41]. The main difference is that we will consider the
gauge potentials one-forms as fundamental whereas in the literature cited above often the main focus is on the field
two-forms.

§ 6.1 Let M be a geodesically complete, C∞, Riemann manifold (for example ℝ4). Let us denote by
C∞0 (Λ

kT ∗M), k ∈ ℕ, the space of smooth k-forms over M with compact support. Similarly denote by
L2(ΛkT ∗M,

√

det g(x) dx) the space of square integrable k-forms onM with respect to the Riemannian
volume measure

√

det g(x) dx. Let


def
= ̂⨁

k∈ℕ
L2(ΛkT ∗M,

√

det g(x) dx),

where ̂
⨁

denotes the (orthogonal, free) Hilbert direct sum. We denote by d the exterior differential
defined on a dense domain  given by the union in  of the C∞0 (Λ

kT ∗M) for all k ∈ ℕ. We employ

both standard notations d∗ and � to denote the formal adjoint in  of d. Let Δ
def
= dd∗ + d∗d be the

Hodge-Laplacian3. We take  (as defined above) as dense domain of the whole algebra of differential
operators generated by d, d∗. We assume that on  the Hodge Laplacian is essentially selfadjoint Let Δk,
for each fixed k = 0, 1,… , dimM, be the restriction of Δ on k-forms (and restricting its dense domain
accordingly) and by Δcl

k its unique selfadjoint closure in . Then we have the following weak L2-Hodge
decomposition.

§ 6.2 Hodge-Kodaira-Friedrichs decomposition. We have the following orthogonal decomposition
(notation as above)

L2(ΛkT ∗M,
√

det g(x) dx) = Hk,2(M)⊕ dC∞c (Λk−1T ∗M)⊕ d∗C∞c (Λk+1T ∗M),

whereHk,2 = ker Δcl
k and the over-line denotes closure in L2(ΛkT ∗M,

√

det g(x) dx).

PROOF. The proof goes back to Kodaira [36].

§ 6.3 Let us now specialize to the caseM = ℝ4. From Kodaira proof, specialized to this case, we obtain
the following facts. The following operators are orthogonal projection operators on ,

P = Δ−1d∗d, Q = Δ−1dd∗, (VI.3)

where first we define P and Q on the dense domain  and then extend to the whole of . Note that
P +Q = I . The weak L2 decomposition of the proposition above, whenM = ℝ4, becomes

L2(ℝ4; Λkℝ4) = dC∞c (ℝ4,Λk−1ℝ4)⊕ d∗C∞c (ℝ4,Λk+1ℝ4), , (VI.4)

because we do not have harmonic forms in L2(ℝ4; Λkℝ4). Moreover we have

RanP = kerQ = d∗C∞c (ℝ4,Λk+1ℝ4), RanQ = ker P = dC∞c (ℝ4,Λk+1ℝ4). (VI.5)
3In this convention (from complex geometry) the Hodge-Laplacian when evaluated on functions coincides with minus the

standard Laplacian.
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§ 6.4 Let us define the space of Schwartz gauge potentials S and the group S of Schwartz gauge
transformations to be respectively

S
def
= S (ℝ4;ℝ4), S

def
= Gau ∩S .

The action functional S in this case is a (nonlinear) functional onS . The standard gauge invariant
action for the electromagnetic field is, for A ∈ S ,

S(A)
def
= 1

4 ∫ℝ4

3
∑

�,�=0
F��(A)(x)2 dx, F��(A)(x)

def
= [dA]�� = )�A�(x) − )�A�(x),

�, � = 0, 1, 2, 3,

where, by gauge invariant, we mean that S is invariant under the gauge transformation A → A + d�,
for A ∈ S and d� ∈ S . Because of the gauge invariance, the action S defines a quadratic form
S ×S → ℝ which has a non zero kernel.

§ 6.5 The space S . The decomposition (VI.4) suggests how to deal with this problem. We let S be
the space obtained closing the space d∗C∞c (ℝ

4; Λ2ℝ4) in the topology ofS . Then S , being a closed
subspace of the nuclear subspace of S , is itself nuclear. Moreover, sinceS is dense in L2(ℝ4,Λ1ℝ4),
the vector space S is a dense subset in the quotient space

d∗C∞c (ℝ4,Λ2ℝ4) = RanQ = L2(ℝ4; Λ1ℝ4)⊖ dC∞c (ℝ4; Λ0ℝ4)

of square integrable 1-forms modulo exact (=closed here) 1-forms. Let us denote by SQ
def
= S◦Q the

action S restricted to S , that is we let

SQ(Ã)
def
= ∫ℝ4

(

dÃ(x), dÃ(x)
)

Λ1ℝ4 dx, Ã ∈ S ,

where (⋅, ⋅)Λ1ℝ4 denotes the standard product on Λ1ℝ4 ≅ ℝ4. By definition, we have that SQ defines a
non-degenerate, strictly positive definite, quadratic form ⟨⋅, ⋅⟩ ∶ S × S → ℝ. To see this, note that we
have, for every Ã ∈ S ,

SQ(Ã) = ∫ℝ4

(

Ã(x), d∗dÃ(x)
)

Λ1ℝ4 dx

= ∫ℝ4

(

Ã(x),ΔQÃ(x)
)

Λ1ℝ4 dx

= ∫ℝ4

(

Ã(x),ΔÃ(x)
)

Λ1ℝ4 dx,

(VI.6)

where the first equality follows by definition of Hilbert adjoint, the second by definition of the projection
Q, and the last by the fact that for Ã ∈ S = QS we have QÃ = Ã, since Q is a projection.

From the fact that SQ is a positive definite, non-degenerate, quadratic we see that SQ defines a norm
on S , actually a Hilbertian norm, that is a norm which comes from a scalar product.

§ 6.6 As we noted above, the space S , being a closed subspace of the nuclear subspaceS is itself a
nuclear space. Let ′S denote the dual of S with respect to the duality induced by the scalar product in
L2(ℝ4;ℝ4). We have then the following Gel’fand triple

S → Q(L2(ℝ4;ℝ4)) → ′S ,

whereQ(L2(ℝ4;ℝ4)) denotes the image ofL2(ℝ4;ℝ4) underQ, that isQ(L2(ℝ4;ℝ4) = d∗C∞c (ℝ4; Λ2ℝ4).
We can therefore apply Bochner-Minlos theorem, which we now quote.
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§ 6.7 Proposition. Let C be a complex valued function on a countably Hilbert nuclear space  and
assume thatC is continuous, positive definite, and satisfiesC(0) = 1. Then there exists a unique probability
measure �C on the topological dual  ′ of  such that, for all f ∈ ,

∫ ′
exp{i⟨x, f⟩} d�C (x) = C(f ),

where ⟨⋅, ⋅⟩ denotes the ′, dual pairing. Moreover, let (n, | ⋅ |n), n ∈ ℕ be a family of pre-Hilbert
spaces such that  is the inductive limit  = lim←→n. If, for a fixed k ∈ ℕ, C is continuous with
respect to the Hilbertian norm | ⋅ |k and the injection ink ∶ n → k is of Hilbert-Schmidt type, then
�C (−k) = 1, where −k is the dual ofk with respect to the ′- pairing ⟨⋅, ⋅⟩.

PROOF. Cf. e.g. [31, Theorem 1.1, p. 2-3].

§ 6.8 Because of (VI.6) , we see that we should define a random field with covariance given by Δ−1.
Note that S (as defined in §6.5) is not in the domain of Δ−1. For example Δ−1 does not map compactly
supported functions to square integrable functions. Nevertheless, denoting by ⟨⋅, ⋅⟩ the D ′(ℝ4,Λ1) −
D(ℝ4,Λ1) dual paring the expression ⟨Δ−1A,A⟩, A ∈ S , is a well defined quadratic form. Moreover the
function S ∋ A → ⟨Δ−1A,A⟩ ∈ ℝ is continuous (with respect to the topologies of S and ℝ) because
Δ−1 is continuous as an operator from S to D ′(ℝ4; Λ1ℝ4).

We are therefore justified to apply the Bochner-Minlos theorem with = S and

C(f ) = exp
{

∫ℝ4

(

f (x),Δ−1f (x)
)

dx
}

, f ∈ S .

We obtain, by Bochner-Minlos’ theorem, a well defined random field on ′S with covariance operator
given by Δ−1. We collect this result in the following statement.

§ 6.9 Theorem. The actionSQ, defined onS , is a non-singular quadratic form induced by the essentially
selfadjoint operator Δ1,Q, that is the restriction of the Hodge Laplacian Δ to 1-forms which are in the
image of the projection operator Q defined in (VI.3). The inverse Δ−11,Q of Δ1,Q is a well defined bounded
operator in Q

(

L2(ℝ4; Λ1ℝ4)
)

.
The function C(f ) = exp

{

∫ℝ4
(

f (x),Δ−1f (x)
)

dx
}

, for f ∈ S defines a probability measure
�Δ−1 on ′S , which means that we have a well defined Gaußian random field X ∶ ′S → ℝ (on the
Borel probability measure space (′S ,B(

′
S), �Δ−11,Q)) with zero mean and covariance E

[

X(f )X(g)
]

=
(

f (x),Δ−11,Qg(x)
)

Λ1ℝ4 .

7 Faddeev-Popov quantization of Euclidean radiation field
Our objective here is to give an application of the method explained in §4.7.

To achieve our objective we first need to characterize the model from the “classical” (i.e. non quantum)
standpoint. In particular we need to specify

1. The spaces of “classical gauge potentials” and of “classical gauge transformations”.

2. The action functional and the Faddeev-Popov functional as functionals on the space of “classical
gauge potentials” and which have well defined transformation properties under the “classical gauge
transformations”.

After this “classical” description, we introduce the infrared and ultraviolet regularizations.
These regularizations will allow us to introduce a family of finite dimensional measures, as described

in §4.7, parametrized by the regularizations.
The final step will be to show that, when we remove the regularizations, this family of finite dimensional

measures converges to a well defined measure in a nuclear (infinite dimensional) space.



124 Chapter VI. Naive Faddev-Popov quantization

Along the way we will introduce several facts borrowed from the Hodge theory.
We will often employ the following shorthand in dealing with function spaces. For example for the

space L2(ℝ4; Λpℝ4), p ∈ ℕ, will be employ the shorthand notation L2(ℝ4,Λp).

§ 7.1 Spaces of “classical gauge potentials” and “classical gauge transformations” Let us first, as
we did in the last section, restrict the state of gauge potentials and the group of gauge transformations.

We take as “classical state space” the space c of smooth, compactly supported, gauge potentials and
as group of gauge transformations the subgroup c of smooth, compactly supported, gauge transformations.
Explicitly we take

c
def
= D(ℝ4,Λ1ℝ4), c

def
= c ∩

{

d� ∶ � ∈ C∞(ℝ4;ℝ)
}

.

§ 7.2 Gauge invariant action functional. On the space c we define the following gauge-invariant
action

S(A)
def
= 1
4 ∫ℝ4

(

dA(x), dA(x)
)

Λ1ℝ4 dx, A ∈ c .

We will often identify Λ1ℝ4 ≅ ℝ4. Hence, a gauge potential A ∈ c will be considered often as a vector
valued function (instead of 1-form valued). Under this identification, we have

S(A) = 1
4 ∫ℝ4

3
∑

�,�=0
()�A� − )�A�)2 dx

= 1
2 ∫ℝ4

3
∑

�,�=0

(

− A�)�)�A� + ()�A�)()�A�)
)

dx

= −1
2 ∫ℝ4

A ⋅ (Δ + ∇⊗ ∇)A dx, A ∈ c ,

where in the second line we have used integration by parts and in the last line ⋅ denotes the standard scalar
product in ℝ4.

§ 7.3 Faddeev-Popov functional. We choose a Faddeev-Popov functional, that is a function FFP ∶ c →
[0,+∞) which satisfies the assumptions given in §4.7.

This functional, loosely speaking, defines a measure on the fibers of equivalent potentials, that is gauge
potentials which are transformed into one another by a gauge transformation. A “true” gauge fixing would
corresponds to a Dirac delta measure on the fibers. By analogy, any Faddeev-Popov functional is often
referred to as a gauge fixing even though, more strictly speaking it is a “gauge averaging”.

A standard choice of FFP is (cf. e.g. [56, (15.5.22), (15.5.24)])

FFP(A)
def
= exp

{

−1
� ∫ℝ4

(

�A(x), �A(x)
)

Λ1ℝ4 dx
}

= exp
{

−1
� ∫ℝ4

(

divA(x)
)2 dx

}

, A ∈ c , � ∈ (0,+∞),
(VI.7)

where, in the first line we used the notation � to denote the formal adjoint d∗ of the exterior derivative d
and in the second line divA(x)

def
=

∑3
�=0 )�A�(x). Note that this Faddeev-Popov functional is actually a

family of functionals parametrized by a constant � ∈ (0,+∞) (“gauge parameter”).
Below, we will define infrared and ultraviolet regularizations and show (cf. Lemma below) that this

functional does (trivially) satisfy the assumption (VI.1) in §4.7 with respect to those regularizations.

Before introducing the infrared and ultraviolet regularization we need some general results regarding
the Hodge theory.
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§ 7.4 Theorem: Hodge-Friedrichs-Kodaira decomposition for manifold with boundary. Let  be
a compact smooth oriented Riemannian manifold with (smooth) boundary ). Let Ωk() denote the
space of k-forms on. Moreover we define

Ωkt ()
def
=

{

� ∈ Ωk() ∶ � is tangent to )
}

,

Ωkn()
def
=

{

� ∈ Ωk() ∶ � is tangent to )
}

,

k()
def
=

{

� ∈ Ωk() ∶ d� = �� = 0
}

.

We remark, following [4], that d� = �� = 0 is in general stronger than Δ� = 0. Nevertheless it is
customary to employ the term harmonic forms to denote the elements in k(). Then we have the
following orthogonal decompositions:

Ωk() = dΩk−1t ()⊕ �Ωk+1n ()⊕k(),

L2(,Λk) = dC∞c (,Λk−1)⊕ �C∞c (,Λk+1)⊕k(),
(VI.8)

where the over-line denotes the closure in L2. Moreover the operators d, �, Δ = d� + �d, defined on
C∞c (,Λk), are extended to closed operators dR, �R, dA, �A, ΔR, ΔA, defined on the domains

Dom(dR) = Dom(�R) =
⨁

k∈ℕ
H1
R(,Λk),

Dom(dA) = Dom(�A) =
⨁

k∈ℕ
H1
A(,Λk),

Dom(ΔR) =
⨁

k∈ℕ
H2
R(,Λk),

Dom(ΔA) =
⨁

k∈ℕ
H2
A(,Λk),

H1
R(,Λk)

def
=

{

� ∈ H1(,Λk) ∶ � ∧ �↾)= 0
}

,

H1
A(,Λk)

def
=

{

� ∈ H1(,Λk) ∶ � ∧ (⋆�)↾)= 0
}

,

H2
R(,Λk)

def
=

{

� ∈ H2(,Λk) ∶ � ∧ �↾)= 0, � ∧ (��)↾)= 0
}

,

H2
A(,Λk)

def
=

{

� ∈ H2(,Λk) ∶ � ∧ (⋆�)↾)= 0, � ∧ (� ⋆ �)↾)= 0
}

,

where ⋆ denotes the Hodge star and � denotes the one form orthogonal to the boundary ) pointing in
the outward direction and of constant length equal to one.

The domainsH0
b (,Λk) andH1

b (,Λk), respectively for b = R,A, correspond to what are usually
called (cf. [55, Chapter 5, §9]) respectively regular and absolute boundary conditions.

We now specialize to regular boundary conditions. Let us denote the kernel of the (closed, selfadjoint,
positive semi definite) operator ΔR by R(). Then the space R() is finite dimensional and is equal
to the span of the eigenvector of ΔR corresponding to the zero eigenvalue. Following [55, Chapter 5,
§9], let us denote by GR the operator ΔR which annihilates R() and inverts ΔR on the orthogonal
complement of its kernel, that is GR satisfies

GRΔR = (1 − PRℎ ),

where Pℎ denotes the projection operator onto the spaceR(). Finally we have the following orthogonal
decomposition of a function u ∈ L2(,Λk):

u = d�GRu + �dGRu + PRℎ u. (VI.9)

PROOF. We took the first decomposition in (VI.8), Ωk() = dΩk−1t ()⊕⟂ �Ωk+1n (), from [4,
8.5.5 Theorem, p. 515.] where it is given without proof. The explicit proof follows, for example,
from the result proved in [48, Theorem 7.7.8(ii)].
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The second decomposition in (VI.8) follows by closure in L2 of the first decomposition.
For the decomposition in (VI.9) cf. e.g. [55, Chapter 5, Proposition 9.8, p. 367].

Corollary 1. Let PRd = d�GR, PR�
def
= �dGR. Moreover let Pℎ be the projection operator onto the finite

dimensional space
⨁dim

k=0 k() of harmonic forms.
All the bounded operators PRd , P

R
� , Pℎ, G

R, commute among themselves. Moreover the unbounded
operators �RdR, dR�R, and ΔR = �RdR, �RdR strongly commute among themselves.

PROOF. The operators PRd , P
R
� , and P

R
ℎ all commute because they are mutually orthogonal pro-

jection operators. We show that PRd commutes with GR. The remaining commutation relations are
proved similarly. Let x, y ∈ L2(,Λk) and denote by (⋅, ⋅) the scalar product in L2(,Λk). Then

(x, PRd G
Ry) = (PRd x,G

Ry) = (d�GRx,GRy) =
= (GRx, d�GRy) = (GRx, PRd y) = (x,G

RPRd y),

where: the equalities on the first line follow from the symmetry of PRd and its definition; to go
from the first line to the second we used the fact that the form (du, dv) is a symmetric closed form
with domain which contains the range of GR; finally the remaining equalities follow from the
definition of PRd and the fact that GR is symmetric. From this computation we see that for every
x, y ∈ L2(; Λk) (x, PRd G

Ry) = (x,GRPRd y), that is, P
R
d G

R = GRPRd .

Corollary 2. The operators dR�R, �RdR, ΔR = dR�R + �RdR defined on the domain H2
R(,Λk are

selfadjoint operators which strongly commute with each other. In particular, they have a common basis of
eigenvectors.

PROOF. Since we are considering a compact manifold with smooth boundary we obtain that
the spectrum of the Hodge LaplacianΔR with relative boundary conditions is discrete. In particular
we have a basis of eigenvectors for ΔR. By the previous corollary we obtain that each eigenvector
belongs to the image of precisely one of the projection operators PRd , P

R
� , and Pℎ.

Moreover every eigenvector of the Hodge Laplacian is in the domain of both the operators
dR�R, �RdR. This can be sees for example by noting the following. Let v� ∈ L2(,Λk) is an
eigenvector for the Hodge Laplacian with eigenvalue � ≠ 0. Then Pdv� = d�GRv� =

1
�
d�v. Now

since Pd is bounded, Pdv� is in L2(,Λk). But then also 1
�
d�v� is in L2(,Λk), which implies

d�v� ∈ L2(,Λk). Therefore v� is in the domain of dR�R. Similar proofs hold in the case of
� = 0 and for the operator �RdR.

Finally, by the algebraic identities d2 = 0, �2 = 0, the eigenvectors in the range of PRd are
annihilated by �RdR and those in the range of PR� are annihilated by dR�R. From this and the
definition ΔR = �RdR+dR�R it follows that the eigenvectors of ΔR are also eigenvectors of �RdR
and dR�R.

Now by the spectral theorem for unbounded selfadjoint operators we know that the projection
valued measures of the operators ΔR, �RdR, and dR�R, are formed from the same projection
operator which projects onto the subspaces spanned by these common eigenvalues. Hence these
spectral families commute, that is the operators strongly commute.

§ 7.5 Remark. The convenience of the regular and absolute boundary conditions is seen for example by
this last corollary. If we had imposed Dirichlet boundary conditions (component wise on the differential
forms) then the strong commutativity of the operators in this last corollary would not hold in general.

We need one last result.

§ 7.6 Proposition. Let be a smooth compact manifold with boundary ). If the boundary is convex
then the finite dimensional vector space R() defined as the space of the 0-eigenvectors of the Hodge
Laplacian with relative boundary conditions is equal to zero.
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PROOF. This result follows from e.g. [51, Theorem 2.6.4, p. 106].

We can now turn our attention to the infrared and ultraviolet regularizations.

§ 7.7 Remark. Perhaps the less trivial point, at this stage, is that the regularizations applied to the space
of “classical gauge potentials” (to be defined below) will induce, in turn, respective regularizations on the
space of “classical gauge transformations”.

We first introduce the infrared regularization.

§ 7.8 Infrared regularization. Essentially we introduce as infrared regularization a cut-off in the
Euclidean space-time ℝ4. Let Ω be a open convex domain in ℝ4 with smooth boundary. We can now
define the spaces of gauge potentials and gauge transformations which are smooth and compactly supported
inside Ω:

c(Ω)
def
=

{

A ∈ c ∶ suppA ⊂⊂ Ω
}

,

c(Ω)
def
=

{

d� ∈ c ∶ supp � ⊂⊂ Ω
}

.

§ 7.9 Completion and boundary conditions. Before we introduce the ultraviolet regularization we
need to introduce boundary conditions. This is required in our approach because we want to express the
ultraviolet regularization in terms of eigenvector expansion. Hence we want to enlarge our spaces c(Ω)
and c(Ω) in such a way as to make them Hilbert spaces.

Now, the definition of the action functional and the Faddeev-Popov functional depend on two quadratic
forms which we denote respectively by QS and QFP , explicitly we have

QS(f, g) = (df , dg), QFP (f, g) = (�f , �g), f , g ∈ c(Ω).

These two quadratic forms are both symmetric. They can be extended to different closed symmetric forms.
We chose one specific extension which is convenient in our setting. Let

1(Ω)
def
= H1

R(Ω; Λ
1).

Then the two quadratic forms QS and QFP , extended to the domain1(Ω) are closed. This can be seen
directly from the fact that the space H1

R(Ω; Λ
1) is closed in the Sobolev space H1(Ω; Λ1) and the two

quadratic forms define norms that are equivalent to the one of the Sobolev spaceH1(Ω; Λ1).
This choice of extension is convenient because it comes from the closure of the Hodge exterior

differential operator d. Hence in particular it allows the application of the results from the Hodge theory
quoted above.

It remains to extend also the space of gauge transformations c(Ω). Now, since we want the action to
be gauge invariant, we have to impose that d� be in the domain of the form QS , that is in 1(Ω). This is
the case when we take

2(Ω)
def
= H2

R(Ω,Λ
0).

Indeed the exterior differential operator d preserves the relative boundary conditions. Moreover it maps
the Sobolev spaceH2(Ω,Λ0) continuously into the Sobolev spaceH1(Ω,Λ1).

Finally let us define
1(Ω)

def
= dH2

R(Ω,Λ
0).

That is for every gauge transformation � ∈ 2(Ω), we have d� ∈ 1(Ω). The space 1(Ω) is convenient
because it is a subspace of the space1(Ω). In particular a gauge transformation acts simply by translating
a vector in 1(Ω) by a vector in 1(Ω).

The last point we want to make is that the elements in 1(Ω) are in one-to-one correspondence with
the elements of 2(Ω), that is the map d from 2(Ω) to 1(Ω) is a bijection. The surjectivity is clear from
the definition of 1(Ω). The injectivity follows from the fact that d is bounded and has kernel equal to
zero. Indeed, since � ∈ 2(Ω) are zero forms, the regular boundary conditions, which we have imposed,
coincide with the Dirichlet boundary conditions. Therefore d� = 0 implies � = 0, that is, ker d = {0}.
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Having introduced the Hilbert spaces 1(Ω) and 1(Ω), we can now easily define an ultraviolet
regularization.

§ 7.10 Ultraviolet regularization. We consider the Hodge Laplacian ΔRΩ with regular boundary condi-
tions on a bounded, convex, smooth domainΩ ⊂ ℝ4. TheHodge LaplacianΔRΩ has domain

⨁

k∈ℕH
2(Ω,Λk),

it is selfadjoint and has discrete spectrum. Moreover, since we have chosen a convex bounded smooth
domain Ω we have that the kernel of ΔRΩ coincides with the harmonic forms and, by the proposition in
§7.6, it is zero. We consider the restriction of ΔRΩ on the space of one forms, that is on the domain 1(Ω)
and we denote such restriction still by ΔRΩ. Let (e

Ω
k )k∈ℕ+ be the set of eigenvectors of ΔRΩ. Then we define

the following “ultraviolet regularized” finite dimensional spaces

1(Ω, N)
def
= span(eΩ1 ,… , eΩN )

1(Ω, N)
def
= 1(Ω, N) ∩ 1(Ω).

§ 7.11 Regularized action functional and Faddeev-Popov functional. Let as before S ∶ c → ℝ and
FFP ∶ c → ℝ be respectively the action and Faddeev-Popov functionals defined on the “classical space
of gauge potentials”c .

These functionals restrict trivially to functionals on c(Ω), where c(Ω) is the space of gauge
potentials with support in Ω. Let us denote by SΩ and FΩ such restrictions. Moreover, let us denote by
S̃Ω and F̃Ω the extensions of SΩ and FΩ from the space c(Ω) to the domain1(Ω).

Finally we denote by S̃Ω,N and F̃Ω,N the restrictions of S̃Ω and F̃Ω to the finite dimensional spaces
1(Ω, N). We call S̃Ω,N and F̃Ω,N respectively the regularized action and Faddeev-Popov functionals.

We are now ready to define our family of probability measures.

§ 7.12 Finite dimensional measure. Let I be a family of convex, bounded, smooth domains Ω1 ⊂
Ω2 ⊂⋯↗ ℝ4. We define a family of non-normalized4 measures (�Ω,N )Ω∈I ,N∈ℕ, each �Ω,N supported
on(Ω, N):

d�Ω,N
def
=

∫1(Ω,N) F̃
Ω,N
FP (0, �Ω,N ) d�Ω,N

∫1(Ω,N) F̃
Ω,N
FP (AΩ,N , �Ω,N ) d�Ω,N

F̃Ω,NFP (AΩ,N )e−S̃Ω,N (AΩ,N ) dAΩ,N ,

AΩ,N ∈ V Ω,N , �Ω,N ∈ GΩ,N ,Ω ∈ I , N ∈ ℕ, (VI.10)

where dAΩ,N and d�Ω,N denote respectively the Lebesgue measure on 1(Ω, N) and on 1(Ω, N),
Ω ∈ I ,N ∈ ℕ.

As a result of our choice of regularizations we have the following result which simplifies the form of
the family of probability measures.

§ 7.13 Lemma. Consider the family of measure �Ω,N defined in (VI.10). Then the fraction appearing on
the right hand side of (VI.10) is identically equal to one. That is, we have

∫1(Ω,N) F̃
Ω,N
FP (0, �Ω,N ) d�Ω,N

∫1(Ω,N) F̃
Ω,N
FP (AΩ,N , �Ω,N ) d�Ω,N

= 1,

for all AΩ,N ∈ 1(Ω, N), Ω ∈ I ,N ∈ ℕ.

PROOF. Identifying 1(Ω, N) with ℝN by passing to the basis (en)n∈ℕ+ of eigenvalues of ΔRΩ we
have that the integrals are Gaußian integrals. Moreover, the (en)n∈ℕ+ being also eigenvectors of

4In §7.15 we will define the normalized version of these measures.
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(d�)RΩ, the covariant matrices of the numerator and denominator are diagonal. Let us denote by
RN the matrix

RNjk
def
= (ej ,∇⊗ ∇ek)L2(ℝ4;Λ1ℝ4 , j, k ∈ {1,… , N}, N ∈ ℕ+.

Then we get

∫ℝM F̃Ω,NFP (0, �Ω,N ) d�Ω,N

∫ℝM F̃Ω,NFP (AΩ,N , �Ω,N ) d�Ω,N
= exp

{

xTRNx
}

exp
{

−(J (x))T(BN )−1J (x)
}

,

where x denotes the infinite dimensional vector with components

xj
def
= (AΩ,N , ej),

[J (x)]k
def
=

∑

j∈ℕ+ Jkjxj , and, for j, k = 1,… , N ,

BNjk
def
= (ℎj ,Δ2ℎk)L2(ℝ4;Λ0),

JNjk
def
= (∇Δej , ℎk)L2(ℝ4;Λ1),

with (ℎj)j∈ℕ+ the family of scalar functions uniquely defined by ∇ℎj = ej , j ∈ ℕ+. The fact that
these ℎj are uniquely defined follows from §7.6.

Substituting the definitions we obtain

N
∑

k,l=1
[J (x)T]k[(BN )−1]kl[J (x)]l =

N
∑

k,l=1
xTkR

N
klxl.

Hence the statement of the lemma holds.

§ 7.14 Remark. This lemma is an embodiment of the usual formal physical procedure of removing the
“Faddeev-Popov” determinants when they do not explicitly depend on the gauge potential.

We now need to remove the regularizations. We start by removing the ultraviolet regularization.

§ 7.15 Theorem. With notations as above (� and I were defined in §7.12), let, for every Ω ∈ I ,
N ∈ ℕ+,

�Ω,N
def
= �Ω,N

|�Ω,N |
(

1(Ω, N)
) ,

Then, for a fixed Ω ∈ I , �Ω,NN∈ℕ converges weakly in D ′(ℝ4; Λ1ℝ4), as N → ∞, to a measure �Ω

supported on D ′(ℝ4,Λ1ℝ4).

PROOF. Denote by ⟨⋅, ⋅⟩ the dual pairingD ′(ℝ4;ℝ4)-D(ℝ4;ℝ4)which restrict to the scalar product
in L2(ℝ4;ℝ4) when we consider L2(ℝ4;ℝ4) as embedded in D ′(ℝ4;ℝ4). Consider, for everyΩ ∈
I ,1(Ω) as embedded inL2(Ω;ℝ4). Then, if we extend every function in1(Ω) by zero we have
an embedding of1(Ω) in D ′(ℝ4;ℝ4). Now, for every Ω ∈ I ,1(Ω, N),N ∈ ℕ+ is embedded
in 1(Ω) hence 1(Ω, N) embeds in D ′(ℝ4;ℝ4). Now we can push forward the measure �Ω,N
via this embedding1(Ω, N) → D ′(ℝ4;ℝ4) to obtain a measure �̃Ω,N on D ′(ℝ4;ℝ4).

Let (en)n∈ℕ+ be a basis of L2(Ω;ℝ4) of eigenvalues of the selfadjoint Hodge Laplacian ΔRΩ
defined above. Moreover, let DΩ,N be the followingN-by-N matrix

DΩ,N
jk

def
= (ej ,ΔRΩek)L2(Ω;ℝ4), j, k ∈ {1,… , N}.
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We fix a basis of1(Ω, N) and denote by aΩ,Nj , for j ∈ {1,… , N}, the components of AΩ,N ∈
1(Ω, N) in this basis. Then, by definition of �̃Ω,N and the lemma above we have the following
explicit representation of the measure �̃Ω,N :

∫D ′(ℝ4;ℝ4)
exp

{

i⟨X,A⟩
}

d�Ω,N (X) =

= ∫ℝN
exp

{

i
N
∑

j=1
xNj a

Ω,N
j +

N
∑

j,k=1
xjD

Ω,N
jk xk

}

dxN ,

where dxN denotes the Lebesgue measure on ℝN .
Now note that DΩ,N is a symmetric non-degenerate matrix. Indeed it is symmetric by defini-

tion. Moreover it is non-degenerate because if it had a zero eigenvalues then the corresponding
eigenvector could be extended to a vector in L2(Ω,ℝ4) which would be an eigenvector of ΔRΩ with
zero eigenvalues. But this is a contradiction because ΔRΩ has no zero-eigenvalues on L2(Ω,ℝ4). In
particular DΩ,N is diagonalizable by an orthogonal change of basis in ℝN which, therefore, leaves
the Lebesgue measure invariant. We therefore see that, for every fixed Ω ∈ I andN ∈ ℕ+, the
measure �Ω,N is in fact a product measure

�Ω,N = �Ω1 ⊗ ⋅⊗ �ΩN
of appropriate (not yet normalized) Gaußian measures �Ωj , j = 1,… , N . If we now consider, as
in the statement of the theorem, the normalized measure �Ω,N = �Ω,N∕|�Ω,N |(V Ω,N ), then we
see that �Ω,N is a product of normalized Gaußian measures �Ωj , j = 1,… , N . We can now pass
to the limitN →∞ and define the measures �Ω D ′(Ω;ℝ4) as the weak limit (that is the limit in
D ′(Ω;ℝ4)) �Ω

def
= w-limN→∞ �Ω,N .

§ 7.16 Remark. We note that, by definition, the Faddeev-Popov functional FFP depends on a parameter
� > 0 which we consider fixed once and for all. Because of this dependence all the quantity which are
defined in terms of FFP depend on this parameter. In particular, for example, the measures �Ω, Ω ∈ I ,
depend on �. We have chosen to hide the dependence on � everywhere because we feel it would contribute
to the clutter of the notations without extra gain. In principle � could be chosen equal to one everywhere.
Nevertheless we keep the hidden dependence on � because we aim at arriving at the formula (VI.11)
below, which is usually given in term of the parameter �.

Finally we remove the infrared regularization.
Before turning to the main theorem in this section we quote the following standard result. We use the

following result in the proof below in place of a direct application of Kolmogorov theorem.

§ 7.17 Lévy-Fernique theorem. Let be a nuclear space and′ its topological dual. Let �M ,N ∈ ℕ+,
and � be probability measures on ′. If

lim
M→+∞∫′

ei⟨X,f ⟩ d�M (X) = ∫′
ei⟨X,f ⟩ d�(X)

for each f ∈ , then �N converges weakly in ′ to � asM →∞.

PROOF. Cf. [17, Théorème 4.5].

§ 7.18 Theorem. The probability measures �Ω on D ′(ℝ4;ℝ4), given by Theorem §7.15, converge
weakly in D ′(ℝ4;ℝ4), as Ω ↗ ℝ4, to a probability measure � on D ′(ℝ4;ℝ4). Moreover, the measure �
is supported on S ′(ℝ4;ℝ4) ⊂ D ′(ℝ4;ℝ4) and its Fourier transform is given by

∫S ′(ℝ4;ℝ4)
exp

{

i⟨X,A⟩
}

d�(X) =

= exp
{

−∫ℝ4
Â(−k) ⋅

(

|k|2 I4 + (� − 1)k ⊗ k
|k|4

)

Â(k) dk
}

, (VI.11)
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where ⟨⋅, ⋅⟩ denotes theS ′(ℝ4;ℝ4)-S (ℝ4;ℝ4) pairing, Â denotes the Fourier transform ofA ∈ S (ℝ4;ℝ4),
and � > 0 is the “gauge” parameter on which also � depends (cf. the remark in §7.16).

PROOF. By pushing forward the measures �Ω, though the embedding of D ′(Ω;ℝ4) in D ′(ℝ4;ℝ4),
we get a measure on D ′(ℝ4;ℝ4) which we still denote by �Ω. Hence we can now consider the
limit of the family of (probability) measures �Ω, Ω ∈ I , as a (weak) limit in D ′(ℝ4;ℝ4), as Ω
expands to ℝ4.

Consider an element A ∈ D(ℝ4;ℝ4). Then, for a Ω′ ∈ I big enough to contain the support
of A, we have that A is contained in D(Ω′;ℝ4). Hence we have

∫′(ℝ4;ℝ4)
ei⟨X,A⟩ d�Ω′(X) = exp

{

(

A,
[(

�d + 1
�
d�

)R
K

]−1A
)

L2(ℝ4;ℝ4)

}

,

for every Ω′ is assumed big enough so that A ∈ D(ℝ4;ℝ4) is supported on a set strictly contained
in Ω′.

Now we want to pass to the limit Ω′ ↗ ℝ4. By the Lévy-Fernique theorem above we have the
result provided the covariance

1
2
[(

�d − 1
�
d�

)R
K

]−1 =
[

(−Δ + (1 − 1
�
)∇⊗ ∇)RK

]−1, � > 0,

converges in the weak operator topology to the operator
[

(−Δ + (1 − 1
�
)∇⊗ ∇)Rℝ

]−1,

where (−Δ + (1 − 1
�
)∇ ⊗ ∇)Rℝ denotes the selfadjoint extension in L2(ℝ4;ℝ4), corresponding

to regular boundary conditions, of the positive definite (� > 0) operator in parenthesis initially
defined on D(ℝ4;ℝ4), and similarly for (−Δ + (1 − 1

�
)∇⊗∇)RK . The proof of this convergence is

given below where, for clarity, we state this result as a separate theorem.
The final statement in the present theorem (§7.18) follows by representing the covariance of the

limit in Fourier transform and noting that is continuous on S (ℝ4;ℝ4) hence, by Bochner-Minlos’
theorem, corresponds to a probability measure supported on S ′(ℝ4;ℝ4).

§ 7.19 Theorem. Let Ω be a bounded, convex, open domain in ℝ4. Consider the two operators with the
same form and different domains:

LRΩ
def
= (−Δ + (1 − 1

�
)∇⊗ ∇), � > 0, Dom(LRΩ)

def
= H2

R(Ω,Λ
1),

L
def
= (−Δ + (1 − 1

�
)∇⊗ ∇), � > 0, Dom(L)

def
= H2(ℝ4,Λ1).

These operators are selfadjoint strictly positive definite operators. They obviously depend on a � > 0 but
we choose to hide such dependence in the notation (cf. remark in §7.16). Moreover they have well defined,
selfadjoint inverses (LRΩ)

−1 (that is also bounded) and L−1 (which is unbounded). The operator L−1 admits
an extension to an operator L̊−1 ∶ L2(ℝ4,Λ1) → D ′(ℝ4,Λ1). Furthermore for every ' ∈ C∞c (ℝ

4,Λ1),
we have

lim
Ω↗ℝ4

(

(LRΩ)
−1' , '

)

L2(ℝ4;ℝ4) = ⟨L̊−1' , '⟩, (VI.12)

where the operator L−1 ⟨⋅, ⋅⟩ denotes the D ′(ℝ4,Λ1)-D(ℝ4,Λ1) pairing5.

PROOF. The fact that the operator LRΩ is selfadjoint on H2
R(Ω,Λ

1) was discussed above. The

operator L can be obtained by Friedrichs extension of the real quadratic form qL(',')
def
= (',L')

5We need to employ the dual pairing ⟨⋅, ⋅, ⟩ in place of the L2 scalar product (⋅, ⋅)L2(ℝ4 ,Λ1) because for ' ∈ C∞
c (ℝ

4,Λ1), L−1'
needs not be in L2(ℝ4,Λ1) but, as will be seen from the proof, in will still be an element of D ′(ℝ4,Λ1).
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on the initial domain C∞c (ℝ
4; Λ1) which makes it densely defined in L2(ℝ4,Λ1). Note that the

operator L + 1 induces in C∞c (ℝ
4; Λ1) a norm equivalent to the norm ofH2(ℝ4,Λ1). This shows

thatH2(ℝ4,Λ1) is indeed the domain of selfadjointness, as an operator in L2(ℝ4; Λ1ℝ4).
Both the operators LRΩ and L are (strictly) positive definite. The operator L can be shown to

be strictly positive and invertible (on its range) directly from its symbol (Fourier transform). If we
denote by F the unitary Fourier operator in L2(ℝ4,Λ1), we have that

(F−1L−1f )(k) = 1
2�

|k|2 I4 + k ⊗ k
|k|4

(Ff )(k), k ∈ ℝ4. (VI.13)

The we call the density
|k|2 I4 + k ⊗ k

|k|4
, k ∈ ℝ4,

the symbol of the operator L−1.
Note that the function of k ∈ ℝ4 on the right hand side of (VI.13) is a well defined function in

L2(ℝ4,Λ1), if f is in the range of L. On the other hand, if instead of a function f in the range
of L we take a function � ∈ C∞c (ℝ

4,Λ1) the function on the right hand side of (VI.13), with
f replaced by ', is still a well defined integrable function because near the origin the symbol
|k|2 I2+k⊗k

|k|4
behaves, in norm, as const. 1

|k|2
and far from the origin F' decays fast enough because,

for ' ∈ C∞c (ℝ
4,Λ1), F' is at least in S (ℝ4,Λ1). Nevertheless the resulting function will fail

to be in L2(ℝ4,Λ1). Indeed, in the L2 norm of L−1', we have a density which near the origin
behaves as 1

|k|4
which is not integrable in four dimensions. In any case, as we shall see shortly, we

can extend L−1, to an operator L̊−1 ∶ C∞c (ℝ
4,Λ1)→ D ′(ℝ4,Λ1) with the same symbol. Then we

have that L̊−1' is a well defined element in D ′(ℝ4,Λ1) for ' ∈ C∞c (ℝ
4,Λ1). Or, more accurately

(as was stated in the body of the theorem), the operator L−1 admits an extension L̊−1 with range in
D ′(ℝ4,Λ1).

Similarly, let us denote by L̊ the operator with the same symbol as L, but defined as a weak
differential operator in D ′(ℝ4,Λ1) (that is, as a differential operator defined on distributions).

To see that L̊−1' is a well defined element in D ′(ℝ4,Λ1), note that by definition of the dual
paring ⟨⋅, ⋅⟩, we have

⟨L̊−1' ,  ⟩ = 1
2� ∫ℝ4

(F')(k)
|k|2 I4 + k ⊗ k

|k|4
(F )(k) dk, (VI.14)

which is integrable for any ', ∈ C∞c (ℝ
4,Λ1) because, as we noted above, the density |k|2 I4+k⊗k

|k|4
is integrable near the origin, bounded far from the origin, and far from the origin the whole integral
converges because F' and F are in S (ℝ4,Λ1) when ', ∈ C∞C (ℝ

4,Λ1) ⊂ S (ℝ4,Λ1).
We now turn to the operator LRΩ. Note that it has zero kernel because of our assumption on

Ω and the proposition in §7.6. Since the operator is selfadjoint, this implies that the operator
invertible. Moreover the inverse is a bounded selfadjoint operator.

∼

We turn to the proof of (VI.12), the only remaining step to conclude the proof of Theorem
§7.19. In the following we use the following notation.
Notation: For the remaining of the proof, we define uRΩ to be the solution inH2

R(Ω,Λ
1), that is

with relative boundary conditions, to

LRΩu
R
Ω = f, , (VI.15)

for f ∈ C∞c (ℝ
4,Λ1) with supp f ⊂⊂ Ω.
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We, correspondingly, define

u = L̊−1f, f ∈ C∞c (ℝ
4,Λ1).

Note that at worst u ∈ H−2(ℝ4,Λ1) ⊂ D ′(ℝ4,Λ1), as seen e.g. from the form of the Fourier
transform of u (cf. (VI.14)). We break the proof of (VI.12) in the following steps.

1. There exists an extension ũΩ of uRΩ, to the whole of ℝ
4, such that

‖∇ũΩ‖L2(ℝ4,(Λ1)⊗2) ≤ C‖∇uRΩ‖L2(Ω,(Λ1)⊗2) (VI.16)

with a constant C independent ofΩ. Such extension exists for any function inH2(Ω,Λ1), regardless
of the choice of boundary conditions, cf. [35, Theorem 1.] (where such an extension is constructed
for more general domains).

2. As above, let us denote by ⟨⋅, ⋅⟩ the dual pairing D ′(ℝ4,Λ1)-D(ℝ4,Λ1). We have, by the definition
of L, for any w ∈ H1(ℝ4,Λ1),

⟨Lw,w⟩ = (∇w,∇w)L2(ℝ4,(Λ1)⊗2) +
1
�
(divw, divw)L2(ℝ4,Λ0) ≥ ‖∇w‖2L2(ℝ4,(Λ1)⊗2).

Note that in the left hand side we had to use the dual pairing ⟨⋅, ⋅⟩, but on the right hand side of the
equality sign, all the L2 scalar products are well defined because w is assumed to be inH1(ℝ4,Λ1).

Notation. From this point on we write simply Lp(Ω), for some p > 0, to denote either Lp(Ω,Λ0) or
Lp(Ω, (Λ1)⊗2).

3. Since uRΩ is supported in Ω we have

⟨LuRΩ, u
R
Ω⟩ = (L

R
Ωu

R
Ω, u

R
Ω). (VI.17)

To see that this is the case we note that one can approximate uRΩ with functions ('j)j∈ℕ+ compactly
supported in Ω. If we replace uRΩ in (VI.17) by 'j , j ∈ ℕ+, then the expression certainly holds for
every j ∈ ℕ+. Now taking the limit as j → ∞ we have that (LΩ'j , 'j) converges to the right hand
side of (VI.17). But then also the left hand side must converge to the left hand side of (VI.17), that
is (VI.17) holds.
Now, by (VI.17), we have

⟨LuRΩ, u
R
Ω⟩ = (L

R
Ωu

R
Ω, u

R
Ω) = (f, u

R
Ω) ≤ ‖f‖L4∕3(Ω)‖u

R
Ω‖L4(Ω),

where the second equality follows from (VI.15) and the last inequality is the standard Hölder
inequality with p = 4, q = 4∕3.

4. We now use the fact, which again follows from [35, Theorem 1.], that the extension ũΩ is bounded
in Lp(ℝ4) whenever uRΩ is bounded in Lp(Ω). From this we get the first inequality in the following:

‖uRΩ‖L4(Ω) ≤ ‖ũΩ‖L4(ℝ4) ≤ C1‖∇ũΩ‖L2(ℝ4) ≤ C1C‖∇uRΩ‖L2(Ω)

where the second inequality is the Gagliardo-Nirenberg-Sobolev inequality, and the last inequality
follows from point 1. Note that the constant C which comes from Gagliardo-Nirenberg-Sobolev
inequality is independent on the domain Ω (this is the reason we are using this inequality).

5. Combining the previous points we obtain, setting C2 = C1C ,

⟨L̊uRΩ, u
R
Ω⟩ ≤ ‖f‖L4∕3(Ω)‖u

R
Ω‖L4(Ω) ≤ C2‖f‖L4∕3(Ω)‖∇uRΩ‖L2(Ω) ≤

≤ C2‖f‖L4∕3(Ω)
√

(uRΩ, Lu
R
Ω),

where the first inequality comes from point 3., the second from point 4., and the last inequality
follows from point 2. and the fact that uRΩ ∈ H

2
R(ℝ

4,Λ1), hence inH1
R(ℝ

4,Λ1).
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6. Noting that by definition of uRΩ we have ⟨(LRΩ)
−1f , f⟩ = ⟨LuRΩ, u

R
Ω⟩, we obtain from the previous

point that, for f as in (VI.15),

⟨(LRΩ)
−1f , f⟩ = ⟨LuRΩ, u

R
Ω⟩ ≤ C(f )

where C(f )
def
= C2‖f‖L4∕3(Ω) is independent on the (size of the) domain Ω, for f fixed with support

in the interior of Ω.

7. Note first that, by definition of uRΩ, we have ⟨(L
R
Ω)
−1f , f⟩ = ⟨uRΩ, f⟩. Now, since the bound obtained

in point 6. is uniform in Ω we have that for any fixed f ∈ C∞c (ℝ
4,Λ1) and any sequence of (open,

bounded, smooth, convex) domains Ω1 ⊂ Ω2 ⊂ ⋯ ↗ ℝ4 there exists a subsequence (Ωn(k))k∈ℕ+
which converges, that is:

lim
k→∞

(uRΩn(k) , f ) = ⟨u∗, f⟩,

where in general u∗ will depend on the sequence (Ωn)n∈ℕ+ . Without loss of generality we can
assume supp f ⊂⊂ Ω for some Ω ⊂ Ω1 ⊂ Ω2 ⊂ ⋯. Now, note that each uRΩj satisfies weakly (by

hypothesis) L̊uRΩj = f on Ω, that is, for every g ∈ C∞c (Ω,Λ
1), we have ⟨LuRΩj , g⟩ = (f, g). Hence,

passing to the limit j →∞, we also have ⟨L̊u∗, g⟩ = (g, f ) for any g ∈ C∞c (Ω,Λ
1).

Now the point is that the relation ⟨Lu∗, g⟩ = (f, g) can be extended to hol for any f, g ∈ C∞c (ℝ
4,Λ1).

Indeed, first note that ⟨Lu∗, g⟩ = (f, g) holds for every g ∈ C∞c (ℝ
4,Λ1) (and f ∈ C∞c (Ω,Λ

1) still
fixed). This is true because for any g ∈ C∞c (ℝ

4,Λ1) we can find a domain Ωn0 in the sequence
(Ωn)n∈ℕ+ such that supp g ⊂⊂ Ωn. Hence for any n > n0 we have ⟨L̊uRΩn , g⟩ = (f, g). In particular
in the limit we will still have ⟨L̊u∗, g⟩ = (f, g). Finally we want to show that ⟨L̊u∗, g⟩ = (f, g) holds
also if we change the support of f . To see this note that we could have chosen (at the beginning)
any f in C∞c (ℝ

4,Λ1). Going through the same construction we would have obtained a different u∗f ,
where we now have explicitly displayed the dependence on f . But for any f ∈ C∞c (ℝ

4,Λ1) we
have, in the sequence (Ωn)n∈ℕ+ , an element Ωn0 such that supp f ⊂⊂ Ωn0 . And, as before, for any
n > n0, ⟨L̊uRΩn , g⟩ = (f, g). Hence we conclude that, indeed,

⟨L̊u∗f , g⟩ = (f, g), f , g ∈ C∞c (ℝ
4,Λ1). (VI.18)

Since L̊−1 exists in D ′(ℝ4,Λ1), the relation (VI.18) implies that u∗f is the solution to the problem
Lu = f in D ′(ℝ4,Λ1), for f ∈ C∞c (ℝ

4,Λ1), which is unique and coincides with L̊−1f .
Hence we have that for any sequence (Ωn)n∈ℕ+ the sequence ((LRΩn)

−1f , f ) = (uRΩn , f ), for any
f ∈ C∞c (ℝ

4,Λ1), has a well defined limit and the limit is ⟨L−1f, f⟩, in formulas

lim
n∈ℕ+

((LRΩn)
−1f , f ) = ⟨L−1f, f⟩,

which concludes the proof of the theorem.
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