

Die konvergente Totalsynthese von Ajudazol A über Oxazolmodifikationen

Dissertation

Zur Erlangung des Doktorgrades (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Philipp Wollnitzke

aus Herford

Bonn, 2020

Angefertigt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erster Gutachter: Prof. Dr. Dirk Menche Zweiter Gutachter: Prof. Dr. Andreas Gansäuer

Tag der Promotion: 27. Mai 2020

Erscheinungsjahr: 2020

Die vorliegende Arbeit wurde im Zeitraum November 2015 bis Juli 2019 am Kekulé-Insitut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn unter Anleitung von Professor Dr. Dirk Menche angefertigt.

Danksagung

Der erste Dank für diese Arbeit gebührt Prof. Dr. Dirk Menche. Vielen Dank für die Bereitstellung des spannendenden Themas und das großzügige Vertrauen in meine Fähigkeiten, das Projekt erfolgreich abzuschließen. Die hervorragenden Rahmenbedingungen durch die sehr gute Laborausstattung und die produktive Arbeitsatmosphäre machten diese Arbeit erst möglich.

Prof. Dr. Andreas Gansäuer möchte ich für die Übernahme des Zweitgutachtens und für die Betreuung im Programm der Bonn International Graduate School bedanken.

Priv.-Doz. Dr. Gerhild van Echten-Deckert und danke ich für die Übernahme des fachnahen Gutachtens.

Des Weiteren möchte ich mich bei den von mir betreuten Bachelor- und Masterstudierenden bedanken, bei Julian Hüffel und Tim Treiber für ihre Beiträge zur Synthese und Derivatisierung der Ostseite von Ajudazol A, Florian Küst für seine Beiträge zur Westfragmentsynthese und ganz speziell H. Marie Reuter-Schniete für ihre Beiträge zur Oxazolsynthese, die mich auf die entscheidende Idee gebracht haben, die letzlich zum Erfolg der letzten Fragmentverknüpfung geführt haben.

Vielen Dank an unsere Kooperationspartner der Friedrich-Schiller-Universität Jena, Prof. Dr. Oliver Werz und Dr. Karin von Schwarzenberg von der Ludwig-Maximilians-Universität München, sowie Priv.-Doz. Dr. Gerhild van Echten-Deckert für die Untersuchungen der biologischen Aktivitäten.

Bedanken möchte ich mich ebenfalls bei meinen Kollegen für die zahlreichen Gespräche und angenehme und freundliche Atmosphäre. Jan Philipp Gölz danke ich für die Zusammenarbeit zu Beginn des Projektes. An dieser Stelle möchte ich mich auch bei meinen Labornachbarn Simon Dedenbach, Maximilian Heinemann und Wingkee C. Li für die unterhaltsamen Gespräche inner- und außerhalb des Labors bedanken. Stefanie Spindler danke ich außerdem für die unglaublich hilfreichen Korrektur- und Verbesserungsvorschläge zur schriftlichen Ausfertigung der vorliegenden Arbeit.

Ein großes Dankeschön möchte ich an die Analytikabteilungen der Chemischen Institute der Universität Bonn richten, ohne deren Einsatz diese Arbeit nicht möglich gewesen wäre. Für die Aufnahme der NMR-Spektren danke ich den Mitarbeitern der NMR-Abteilung (Herzlichen Dank an Ulrike Weynand!), sowie an Dr. Marianne Engeser, Christine Sondag und Karin Peters-Pflaumbaum aus der massenspektrometrischen Abteilung, die mir als Student sehr viel über die Fragmentierung und Interpretation von Massenspektren beigebracht haben. Danke an Lilly Hofmann für die zahlreichen GC/MS-Messungen und ebenso vielen Dank an Andreas J. Schneider für die engagierte Unterstützung bei der Trennung der Endstufen, sowie die erheiternden Gespräche und die Einführung in die HPLC-Analytik.

Danke an die zahlreichen Mitarbeiter der Chemischen Institute der Universität Bonn von den Mitarbeitern der Chemikalienausgabe, über die Verwaltungsangestellten, Reinigungskräfte, Elektrikern und Mechanikern, die durch ihre Arbeit eine Forschung überhaupt erst möglich machten.

Abschließend möchte ich mich bei Dr. Jochen Möllmann bedanken. Ohne sein Verständnis für größere und kleinere Probleme jeglicher Art, seine Offenheit, seinen Einsatz als Zuhörer und Ratgeber, sowie seinen Einsatz für mich, wäre vieles nicht möglich gewesen.

Abkürzungsverzeichnis

9-BBN	9-Borabicyclo[3 3 1]nonan	DMF	Dimethylformamid
	9-0v2-10-	DMI	1,3-Dimethyl-2-imidazolidinon
5-0000	borabicyclo[3 3 2]decane	DMP	Dess-Martin-Periodinan
Δ	Adenvlierungsdomäne	DMSO	Dimethylsulfoxid
Abb	Abbildung	DPPA	Diphenylphosphorylazid
	Acyl-Carrierprotein	dppf	1,1'-Bis(diphenylphosphino)-
	Essigsäure		ferrocen
Äquiv	Äquivalente	DTBMP	2,6-Di- <i>tert</i> -butyl-4-
	aqueous (engl: wässrige		methylpyridin
aq.		dr	Diastereomerenverhältnis
	Adenosylmonophosphat	dtbpf	1,1'-Bis(di- <i>tert</i> -
	Acyltransferase		butylphosphino)ferrocen
ΔΤΡ	Adenosintrinhosphat	Δχ	Elektronegativitätsdifferenz
BAIR	(Diacetoxyiod)-benzol	E⁺	Elektrophil
Bn	Benzyl	E _A	Aktivierungsenergie
brsm	(Yield) based on recovered	EDA	Ethylendiamin
Sion	starting material	EDC	1-Ethyl-3-(3-dimethyl-
Bu	Butyl		aminopropyl)carbodiimid
CD	Circulardichroismus	ee	Enantiomerenüberschuss
CH	Cvclohexan	EI	Elektronenstoßionisation
CI	Chemische Ionisation	Enz	Enzym
CoA	Coenzym A	ER	Enoylreduktase
COD	1,5-Cvclooctadien	Et	Ethyl
Conc.	concentrated	EtOAc	Ethylacetat
	(engl.: konzentriert)	et al.	<i>et alii (lat.:</i> "und andere")
CSA	Camphersulfonsäure	ges.	gesättigt
Cv	Cyclohexyl	Hal	Halogen
d	Dublett	HC	Heterocyclase
DBU	1,8-Diazabicvclo[5.4.0]undec-	HD	Halogen Dance
	7-en	HMBC	Heteronuclear multiple bond
DCI	Desoprtions CI		correlation
DH	Dehydratase	HOBt	1-Hydroxybenzotriazol
DHP	Dihydropyran	HSQC	Heteronuclear single
DIAD	Diisopropylazodicarboxylat		quantum coherence
DIC	N,N'-Diisopropylcarbodiimid		spectroscopy
DIBALH	Diisobutylaluminiumhvdrid	IBX	2-lodoxybenzoesäure
	, ,		

DMAP

4-N,N-Dimethylaminopyridin

IC ₅₀	Mittlere inhibitorische		Synthetase
	Konzentration	O-MT	O-Methyltransferase
Ipc	Isopinocampheyl		Oxidase
[′] Pr	Isopropyl	PCC	Pyridiniumchlorochromat
KS	β-Ketoacylsynthase	PCP	Pentidyl-Carrierprotein
KR	β-Ketoacylreduktase	Ph	Phenyl
MAT	Malonylacyltransferase	Pin	Pinakol
Kap.	Kapitel		Typ-I-Polyketidsynthase
Kat.	Katalysator		nara-Nitrophenyl
KR	Ketoreduktase	p-NO ₂ i II PD.	
KS	Ketosynthase		Dyridinium-(n-toluolsulfonat)
LDA	Lithiumdisopropylamid	n Tol	para Toluvi
LG	Abgangsgruppe	ρ -101	<i>para</i> -roluyi Dyridin
m	Multiplett	ру а	
Mbp	Megabasenpaare	y quant	Quartett
<i>m</i> CPBA	meta-Chlorperbenzoesäure	quant.	(organiaghar) Daot
MDG	Metallierungsdirigierende	Г. г 1	
	Gruppe	r.t.	Singulatt
Ме	Methyl	S	Singulett
Mp.	Melting point	S.	Siene
	(<i>engl.</i> : Schmelzpunkt)	SAIVI	S-Adenosymethionin
Ms	Mesyl	sat.	Saturated (engl.: gesattigt)
MW	Mikrowelle	sp.	Spezies
NADH	Nicotinamidadenindinucleotid	I tau S	l ripiett
NBS	N-Bromsuccinimid	tano	
NBSH	2-Nitrobenzolsulfonylhydrazid	TASE	I ris(dimethylamino)sulfonium-
NIS	<i>N</i> -lodsuccinimid		
NMI	N-Methylimidazol		
NMO	N-Methylmorpholin-N-oxid		
NMP	N-Methyl-2-pyrrolidon	IBAI	
NMR	Nuclear magnetic resonance		difluorotriphenylsilikat
	(<i>engl.</i> : Kernspinresonanz)	TBDPS	tert-Butyldiphenylsilyl
<i>N</i> -MT	<i>N</i> -Methyltransferase	TBS t=	tert-Butyldimethylsilyl
NOE	Nuclear Overhauser Effect	'Bu	<i>tert</i> -Butyl
NOESY	Nuclear Overhauser	TE	Thioesterase
	Enhancement Spectroscopy	TEMPO	2,2,6,6-
NRPS	Nicht-ribosomale Peptid-		Tetramethylpiperidinyloxyl
		TES	Triethylsilyl

Tf	Triflyl	TMS	Trimethylsilyl
THF	Tetrahydrofuran	TOS	target-oriented synthesis
THP	Tetrahydropyran	TS	Transition state
TLC	Thin Layer Chromatography		(engl.: Übergangszustand)
	(engl.: Dünnschicht-	vgl.	vergleiche
	chromatographie	z.B.	zum Beispiel
TMEDA	Tetramethylethylendiamin		

Kurzzusammenfassung

Die konvergente Totalsynthese von Ajudazol A über Oxazolmodifikationen

In der vorliegenden Dissertation wird die erste Totalsynthese von Ajudazol A, einem Vertreter der Naturstofffamilie der Ajudazole, beschrieben. Da diese zu den Polyketiden gehörende Naturstoffklasse selektiv die mitochondriale Atmungskette im nanomolaren Bereich inhibiert, stellen sie einen potenziellen Wirkstoff für einen Einsatz in der Krebstherapie oder zur Behandlung von neurodegenerativen Erkrankungen dar. Über NMRbasierte Methoden konnte die Struktur einer (Z,Z)-dienhaltigen Methoxybutenamidseitenkette aufgeklärt werden, welche über ein Oxazolmotiv mit einem anti, anti-konfigurierten Isochromanonmotiv verbunden ist. Die absolute Konfiguration der Ajudazole wurde mittels bioinformatischer Methoden aufgeklärt und über eine Totalsynthese des zweiten Vertreters, bestätigt. Der stereoselektive Aufbau Ajudazol B, des anti,anti-konfigurierten Hydroxyisochromanonmotivs der Ajudazole stellte die größte Herausforderung dar, konnte jedoch elegant durch den Einsatz einer asymmetrischen ortho-Lithiierung als Schlüsselschritt überwunden werden. Zum Aufbau des Oxazolgerüsts wurde eine Cyclodehydratisierungsstrategie angewandt, die jedoch die Linearität der Synthese erheblich steigerte. Cyclodehydratisierungen ermöglichen zwar einen zuverlässigen Zugang zu Oxazolmotiven, aber erschwerden die Synthese von Naturstoffanaloga für die Untersuchung von Struktur-Aktivitäts-Beziehungen. Durch geschicktes Ausnutzen der einzigartigen Chemie von Oxazolen konnte ein modularer Zugang zu den Ajudazolen, hier Ajudazol A (16), entwickelt werden. Der retrosynthetische Ansatz basiert auf drei Untereinheiten ähnlicher Komplexität, die über 6 Stufen zum Naturstoff miteinander verknüpft werden. Die Modularität und Vielseitigkeit des Syntheseansatzes konnte durch die erfolgreiche Synthese eines ersten Ajudazol-Analogs bestätigt werden.

Inhaltsverzeichnis

1.1. Wirkstoffsuche mit Hilfe von Naturstoffen aus Myxobakterien - 2. Die Naturstofffamilie der Ajudazole - 2.1. Strukturaufklärung und Isolierung der Ajudazole - 2.2. Biosynthese der Ajudazole - 2.3. Bioinformatische Genclusteranalyse zur Strukturabsicherung der Ajudazole - 2.4. Biologische Aktivität der Ajudazole - 2.5. Bisher veröffentliche Arbeiten zur Totalsynthese der Ajudazole - 2.5.1. Die erste Synthese eines Isochromanons nach Marquez (2008) - 2.5.2. Die Synthese des Ajudazol-Isochromanons nach Marquez (2011) - 2.5.3. Taylors Synthese der Methoxybutenamid-Seitenkette (2005) - 2.5.4. Rizzacasas Seitenkettensynthesen beider Ajudazole (2007) - 2.5.5. Rizzacasas Totalsynthese von Ajudazol B (2012) - 3.1. Die Oxazolcyclodehydratisierung als linearer Syntheseansatz - 3.2. Modulare Oxazolmodifikationen als konvergenter Syntheseansatz - 3.2.1. Die Chemie der Oxazole - - 4.1. C ⁴ -Oxazolfunktionalisierung über die Halogen-Dance-Reaktion - 4.2. Erste Untersuchungen zur sp ² -sp ³ -Suzuki-Kreuzkupplung an Oxazolen -	1_
 Die Naturstofffamilie der Ajudazole	Ŧ -
2.1. Strukturaufklärung und Isolierung der Ajudazole - 2.2. Biosynthese der Ajudazole - 2.3. Bioinformatische Genclusteranalyse zur Strukturabsicherung der Ajudazole - 2.4. Biologische Aktivität der Ajudazole - 2.5. Bisher veröffentliche Arbeiten zur Totalsynthese der Ajudazole - 2.5. Die erste Synthese eines Isochromanons nach Marquez (2008) - 2.5.2. Die Synthese des Ajudazol-Isochromanons nach Marquez (2011) - 2.5.3. Taylors Synthese der Methoxybutenamid-Seitenkette (2005) - 2.5.4. Rizzacasas Seitenkettensynthesen beider Ajudazole (2007) - 2.5.5. Rizzacasas Totalsynthesen von 8-Deshydroxyajudazol A und B (2011) - 2.5.6. Menches Totalsynthese von Ajudazol B (2012) - 3 3.1. Die Oxazolcyclodehydratisierung als linearer Syntheseansatz - 3 3.2. Modulare Oxazolmodifikationen als konvergenter Syntheseansatz - 3 3.2.1. Die Chemie der Oxazole - 4 4. Ergebnisse und Diskussion - 4 4.1. C ⁴ -Oxazolfunktionalisierung über die Halogen-Dance-Reaktion <t< td=""><td>7 -</td></t<>	7 -
2.2. Biosynthese der Ajudazole - 1 2.3. Bioinformatische Genclusteranalyse zur Strukturabsicherung der Ajudazole - 1 2.4. Biologische Aktivität der Ajudazole - 1 2.5. Bisher veröffentliche Arbeiten zur Totalsynthese der Ajudazole - 1 2.5.1. Die erste Synthese eines Isochromanons nach Marquez (2008) - 1 2.5.2. Die Synthese des Ajudazol-Isochromanons nach Marquez (2011) - 2 2.5.3. Taylors Synthese der Methoxybutenamid-Seitenkette (2005) - 2 2.5.4. Rizzacasas Seitenkettensynthesen beider Ajudazole (2007) - 2 2.5.5. Rizzacasas Totalsynthese von 8-Deshydroxyajudazol A und B (2011) - 2 2.5.6. Menches Totalsynthese von Ajudazol B (2012) - 3 3. Motivation und Zielsetzung - 3 3.1. Die Oxazolcyclodehydratisierung als linearer Syntheseansatz - 3 3.2. Modulare Oxazolmodifikationen als konvergenter Syntheseansatz - 3 3.2.1. Die Chemie der Oxazole - 4 4. Ergebnisse und Diskussion - 4 4.1. C ⁴ -Oxazolfunktionalisierung über die Halogen-Dance-Reaktion - 4 4.2. Erste Untersuchun	8 -
 2.3. Bioinformatische Genclusteranalyse zur Strukturabsicherung der Ajudazole 1 2.4. Biologische Aktivität der Ajudazole	1 -
 2.4. Biologische Aktivität der Ajudazole	5 -
 2.5. Bisher veröffentliche Arbeiten zur Totalsynthese der Ajudazole	7 -
 2.5.1. Die erste Synthese eines Isochromanons nach Marquez (2008)	8 -
 2.5.2. Die Synthese des Ajudazol-Isochromanons nach Marquez (2011)	8 -
 2.5.3. Taylors Synthese der Methoxybutenamid-Seitenkette (2005)	o -
 2.5.4. Rizzacasas Seitenkettensynthesen beider Ajudazole (2007)	2 -
 2.5.5. Rizzacasas Totalsynthesen von 8-Deshydroxyajudazol A und B (2011) 2 2.5.6. Menches Totalsynthese von Ajudazol B (2012)	3 -
 2.5.6. Menches Totalsynthese von Ajudazol B (2012)	ô -
 Motivation und Zielsetzung	D -
 3.1. Die Oxazolcyclodehydratisierung als linearer Syntheseansatz	5 -
 3.2. Modulare Oxazolmodifikationen als konvergenter Syntheseansatz	7 -
 3.2.1. Die Chemie der Oxazole	9 -
 3.2.2. Die Syntheseplanung für Ajudazol A	- C
 4. Ergebnisse und Diskussion 4 4.1. C⁴-Oxazolfunktionalisierung über die Halogen-Dance-Reaktion 4 4.2. Erste Untersuchungen zur sp²-sp³-Suzuki-Kreuzkupplung an Oxazolen 4 	2 -
 4.1. C⁴-Oxazolfunktionalisierung über die Halogen-Dance-Reaktion 4 4.2. Erste Untersuchungen zur sp²-sp³-Suzuki-Kreuzkupplung an Oxazolen 4 	4 -
4.2. Erste Untersuchungen zur sp ² -sp ³ -Suzuki-Kreuzkupplung an Oxazolen 4	4 -
	9 -
4.3. Erweiterte Studien zur sp ² -sp ³ -Suzuki-Kreuzkupplung an Oxazolen 5	4 -
4.4. Phase I: Fragmentsynthesen 5	8 -
4.4.1. Westfragmentsynthese 5	8 -
4.4.2. C ² -Funktionalisierung an Oxazolen 7) -
4.4.3. Ostfragmentsynthese 8	о -
4.5. Phase II: Fragmentkupplungen 8	3 - XI

		4.5.1.	Die sp ² -sp ³ -Suzuki-Kreuzkupplung in der Anwendung 83 -
		4.5.2.	Studien zur sp ² -sp ³ -Negishi-Kreuzkupplung an Oxazolen 86 -
		4.5.3.	Anpassung der Oxazolfragmentsynthese 89 -
		4.5.4.	Abschluss der Totalsynthese von Ajudazol A 91 -
	4.	.6. Syn	these von strukturmodifizierten Analoga 99 -
		4.6.1.	Modifikation der Westseite 99 -
		4.6.2.	Modifikation der Ostseite 102 -
5.		Zusamm	enfassung und Ausblick 103 -
6.		Experim	enteller Teil 110 -
	6.	.1. Allg	emeine Arbeitsvorschriften 110 -
	6.	.2. C ⁴ -C	Dxazolfunktionalisierung über die Halogen-Dance-Reaktion
		6.2.1.	2-(Phenylthio)oxazole (148) 112 -
		6.2.2.	5-Bromo-2-(Phenylthio)oxazole (149) 113 -
		6.2.3.	5-lodo-2-(phenylthio)oxazole (150) 113 -
		6.2.4.	4-Bromo-2-(phenylthio)oxazole (151) 114 -
		6.2.5.	4-lodo-2-(phenylthio)oxazole (152) 115 -
		6.2.6.	4-Bromo-2-Phenylsulfonyloxazole (153) 115 -
		6.2.7.	4-Iodo-2-Phenylsulfonyloxazole (154) 116 -
	6.	.3. Erst	e Untersuchungen zur sp ² -sp ² -Suzuki-Kreuzkupplung an Oxazolen 117 -
		6.3.1.	4-(1-Phenylethyl)-2-(phenylsulfonyloxazole (158)
		and 4-Ph	nenethyl-2-(phenylsulfonyl)oxazole (157) 117 -
	6.	.4. Erw	eiterte Studien zur sp ² -sp ³ -Suzuki-Kreuzkupplung an Oxazolen
		6.4.1. yl)cycloh	<i>tert-</i> Butyldimethyl(((<i>1R,2S,5R</i>)-5-methyl-2-(prop-1-en-2- nexyl)oxy)silane (165)
		6.4.2. ol (165)	(R)-2-((1S,2R,4R)-2-((tert-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propan-1- 119 -
		6.4.3. methylcy	<i>tert</i> -Butyl(((1 <i>R</i> ,2 <i>S</i> ,5 <i>R</i>)-2-((<i>R</i>)-1-iodopropan-2-yl)-5- /clohexyl)oxy)dimethylsilane (166)
		6.4.4. 2-(pheny	4-((<i>S</i>)-2-((1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-2-((<i>tert</i> -Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)- /lsulfonyl)oxazole (168)

6.5.	Phase I	: Fragmentsynthesen 121 -
6	.5.1. We	stfragmentsynthese 121 -
	6.5.1.1.	Allyl-2-(allyloxy)-3-methylbenzoate (115a) 121 -
	6.5.1.2.	2-(Allyloxy)-3-methylbenzoic acid (115b) 122 -
	6.5.1.3.	2-(Allyloxy)-N,N-diisopropyl-3-methylbenzamide (116) 123 -
	6.5.1.4.	(S)-2-(Allyloxy)-N,N-diisopropyl-3-methyl-6-(p-tolylsulfinyl)benzamide (118)
		124 -
	6.5.1.5.	Ethyl (2 <i>R</i> ,3 <i>R</i>)-2-hydroxy-3-methylpent-4-enoate (181) 125 -
	6.5.1.6.	Ethyl-(2R,3R)-3-methyl-2-((triethylsilyl)oxy)pent-4-enoate (112) 126 -
	6.5.1.7.	(2R,3R)-3-Methyl-2-((triethylsilyl)oxy)pent-4-en-1-ol (112a) 126 -
	6.5.1.8.	(2R,3R)-3-Methyl-2-((triethylsilyl)oxy)pent-4-enal (182) 127 -
	6.5.1.9. en-1-yl)- <i>N</i>	2-(Allyloxy)-6-((1 <i>S</i> ,2 <i>R</i> ,3 <i>R</i>)-1-hydroxy-3-methyl-2-((triethylsilyl)oxy)pent-4- /, <i>N</i> -diisopropyl-3-methylbenzamide (183) 128 -
	6.5.1.10. 4,7-dioxa-	2-(Allyloxy)-6-(($5S$, $6R$)-6-((R)-but-3-en-2-yl)-8,8-diethyl-2,2,3,3-tetramethyl-3,8-disiladecan-5-yl)- N , N -diisopropyl-3-methylbenzamide (184) 129 -
	6.5.1.11. methylisod	(3 <i>R</i> ,4 <i>S</i>)-3-((<i>R</i>)-But-3-en-2-yl)-4-((<i>tert</i> -butyldimethylsilyl)oxy)-8-hydroxy-7- chroman-1-one (186) 130 -
	6.5.1.12. methylisoo	(3 <i>R</i> ,4 <i>S</i>)-3-((<i>R</i>)-But-3-en-2-yl)-4,8-bis((<i>tert</i> -butyldimethylsilyl)oxy)-7- chroman-1-one (188) 131 -
	6.5.1.13. 7-methylis	(3 <i>R</i> ,4 <i>S</i>)-4,8-bis((<i>tert</i> -Butyldimethylsilyl)oxy)-3-((<i>R</i>)-1-hydroxypropan-2-yl)- sochroman-1-one (189)
	6.5.1.14.	(3 <i>R</i> ,4 <i>S</i>)-4,8-bis((<i>tert</i> -Butyldimethylsilyl)oxy)-3-((<i>S</i>)-1-iodopropan-2-yl)-7-
	methylisod	chroman-1-one (146) 133 -
6	.5.2. C ² -	Funktionalisierung an Oxazolen 134 -
	6.5.2.1.	2-lodoprop-2-en-1-ol (192) 134 -
	6.5.2.2.	Triethyl((2-iodoallyl)oxy)silane (190) 134 -
	6.5.2.3.	2-(3-((Triethylsilyl)oxy)prop-1-en-2-yl)oxazole (193) 135 -
	6.5.2.4.	5-lodo-2-(3-((triethylsilyl)oxy)prop-1-en-2-yl)oxazole (194) 136 -
	6.5.2.5.	tert-Butyl((2-iodoallyl)oxy)dimethylsilane (196) 136 -
	6.5.2.6.	2-(3-((tert-Butyldimethylsilyl)oxy)prop-1-en-2-yl)oxazole (197) 137 -

6.5.2.7.	2-(3-((<i>tert</i> -Butyldimethylsilyl)oxy)prop-1-en-2-yl)-5-iodooxazole (198)
	138 -
6.5.2.8.	2-(3-((tert-Butyldimethylsilyl)oxy)prop-1-en-2-yl)-4-iodooxazole (199) - 138 -
6.5.2.9.	2-(4-lodooxazol-2-yl)prop-2-en-1-ol (202) 139 -
6.5.2.10.	2-(3-Bromoprop-1-en-2-yl)-4-iodooxazole (203) 140 -
6.5.3. Ost	fragmentsynthese 140 -
6.5.3.1.	Pent-4-ynal (144a) 140 -
6.5.3.2.	Methyl (E)-hept-2-en-6-ynoate (209) 141 -
6.5.3.3.	(<i>E</i>)-Hept-2-en-6-yn-1-ol (209a) 142 -
6.5.3.4.	(<i>E</i>)-7-Bromohept-5-en-1-yne (210) 142 -
6.5.3.5.	Methyl (E)-3-methoxybut-2-enoate (212a) 143 -
6.5.3.6.	(<i>E</i>)-3-Methoxybut-2-enoic acid (64) 143 -
6.5.3.7.	(<i>E</i>)-3-Methoxy- <i>N</i> -methylbut-2-enamide (213) 144 -
6.5.3.8.	(E)-N-((E)-Hept-2-en-6-yn-1-yl)-3-methoxy-N-methylbut-2-
enamide (128) 145 -
6.5.3.9.	(E)-3-Methoxy-N-methyl-N-((2E,6Z)-7-(4,4,5,5-tetramethyl-1,3,2-
dioxaborol	an-2-yl)hepta-2,6-dien-1-yl)but-2-enamide (129) 146 -
6.6. Phase II	- 147 -
6.6.1. Die	sp ² -sp ³ -Suzuki-Kreuzkupplung in der Anwendung 147 -
6.6.1.1.	4-lodo-2-(3-((triethylsilyl)oxy)prop-1-en-2-yl)oxazole (195) 147 -
6.6.1.2.	4-((S)-2-((1S,2R,4R)-2-((<i>tert</i> -butyldimethylsilyl)oxy)-4-
methylcyc	lohexyl)propyl)-2-(3-((triethylsilyl)oxy)prop-1-en-2-yl)oxazole (214) 147 -
6.6.1.3.	(7 <i>R</i> ,8 <i>R</i> ,9 <i>S</i>)-4,9- <i>bis</i> ((<i>tert</i> -butyldimethylsilyl)oxy)-8-hydroxy-3,7-dimethyl-
6 6 2 Stu	dion zur sn ² sn ³ Nogishi Krouzkunnlung an Ovazalan 140^{-1}
0.0.2. Siu	$\frac{1}{49} = \frac{1}{20} $
o.o.z.1. methvlcvc	4-((3)-2-((13,2R,4R)-2-((<i>tert</i> -Butylaimethylsilyl)0xy)-4-
yl)oxazole	(219)
6.6.2.2.	(3R,4S)-4,8-bis((tert-Butyldimethylsilyl)oxy)-3-isopropyl-7-
methylisod	chroman-1-one (220) 150 -
6.6.3. Anp	bassung der Oxazolfragmentsynthese 151 -

6.6.4.	3-lodobut-3-en-1-ol (223)	151 -
6.6.4.1.	. Triethyl((3-iodobut-3-en-1-yl)oxy)silane (224)	152 -
6.6.5.	2-(4-((Triethylsilyl)oxy)but-1-en-2-yl)oxazole (225)	152 -
6.6.5.1.	. 5-lodo-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (226)	153 -
6.6.5.2.	. 4-lodo-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (227)	154 -
6.6.6. A	Abschluss der Totalsynthese von Ajudazol A	155 -
6.6.6.1. ((triethy	. (3 <i>R</i> ,4 <i>S</i>)-4,8-bis((<i>tert</i> -Butyldimethylsilyl)oxy)-7-methyl-3-((<i>R</i>)-1-(2 ylsilyl)oxy)but-1-en-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one (2	-(4- 28) 155 -
6.6.6.2. 2-yl)oxa	. (<i>3R,4S</i>)-4,8-bis((<i>tert</i> -Butyldimethylsilyl)oxy)-3-((<i>R</i>)-1-(2-(4-hydro: azol-4-yl)propan-2-yl)-7-methylisochroman-1-one (229)	xybut-1-en- 156 -
6.6.6.3. oxoisoo	. 3-(4-((R)-2-((3R,4S)-4,8-bis((<i>tert</i> -Butyldimethylsilyl)oxy)-7-methy chroman-3-yl)propyl)oxazol-2-yl)but-3-enal (230)	ʻl-1- 157 -
6.6.6.4. 1,4-dier	. <i>(3R,4S</i>)-4,8-bis((<i>tert</i> -Butyldimethylsilyl)oxy)-3-((<i>R</i>)-1-(2-((<i>Z</i>)-5-iod n-2-yl)oxazol-4-yl)propan-2-yl)-7-methylisochroman-1-one (145)	dopenta- 157 -
6.6.6.5.	. 3,8-bis- <i>tert</i> -Butyldimethylsilyl-ajudazol A (231)	158 -
6.6.6.6.	. (1 <i>R</i> ,2 <i>S</i> ,5 <i>R</i>)-2-((<i>S</i>)-1-Hydroxypropan-2-yl)-5-methylcyclohexan-1	-ol (232) 159 -
6.6.6.7.	. Ajudazol A (16)	160 -
6.7. Synth	hese von strukturmodifizierten Analoga	161 -
6.7.1. N	Modifikation der Westseite	161 -
6.7.1.1. methylc	. 4-((<i>S</i>)-2-((1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-2-((<i>tert</i> -Butyldimethylsilyl)oxy)-4- cyclohexyl)propyl)-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (232).	161 -
6.7.1.2. methylc	. 3-(4-((<i>S</i>)-2-((1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-2-((<i>tert</i> -Butyldimethylsilyl)oxy)-4- cyclohexyl)propyl)-oxazol-2-yl)but-3-en-1-ol (233)	163 -
6.7.1.3. methylc	. 3-(4-((<i>S</i>)-2-((1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-2-((<i>ter</i> t-Butyldimethylsilyl)oxy)-4- cyclohexyl)propyl)oxazol-2-yl)but-3-enal (234)	164 -
6.7.1.4. methylc	. 4-((<i>S</i>)-2-((1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-2-((<i>tert</i> -Butyldimethylsilyl)oxy)-4- cyclohexyl)propyl)-2-((<i>Z</i>)-5-iodopenta-1,4-dien-2-yl)oxazole (235)	164 -
6.7.1.5. methvlc	N-((2 <i>E</i> ,6 <i>Z</i> ,8 <i>Z</i>)-11-(4-((<i>S</i>)-2-((1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-2-((<i>tert</i> -butyldimethylsily))))))))))))))))))))))))))))))))))	l)oxy)-4- xy- <i>N</i> -
methylk	butanamide (236)	· ····· - 165 -

	6.7.1.6.	(<i>E</i>)- <i>N</i> -((2 <i>E</i> ,6 <i>Z</i> ,8 <i>Z</i>)-11-(4-((<i>S</i>)-2-((1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-2-Hydroxy-4-	
	methylcyc	noxy- <i>N</i> -	
	methylbut	166 -	
	6.7.2. Mo	difikation der Ostseite	167 -
	6.7.2.1.	(<i>E</i>)-Hept-2-en-6-yn-1-yl (<i>E</i>)-3-methoxybut-2-enoate (238)	167 -
	6.7.2.2.	(2E,6Z)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2	2,6-dien-1-yl-
	(<i>E</i>)-3-met	hoxybut-2-enoate (239)	168 -
7.	Spektrenanl	nang	169 -
8.	Literaturverz	zeichnis	313 -

1. Bedeutung und Biosynthese von sekundären Stoffwechselprodukten

Sekundärmetabolite werden von verschiedenen Lebewesen als Stoffwechselprodukte gebildet und scheinen, im Gegensatz zu den primären Naturstoffen (proteinogene Aminosäuren, Kohlenhydrate und Lipide), für deren Wachstum und Überleben nicht notwendig zu sein. Der Nutzen mancher Sekundärmetabolite für den Produzenten ist nicht eindeutig geklärt. Möglicherweise dienen sie zur chemischen Verteidigung gegen konkurrierende Organismen oder als Botenstoff zur Steuerung biologischer Funktionen. Aufgrund ihrer vielfältigen Wirkungen spielen sekundäre Naturstoffe bereits seit Jahrtausenden eine wichtige Rolle bei der Behandlung von Krankheiten. Den Durchbruch erlangte die Naturstoffforschung mit der Isolierung des Alkaloids Morphin (1, Abb. 1) aus Papaver somniverum, denn die Isolierung des Wirkstoffs ermöglichte eine Anwendung in genauen Dosierungen.^[1] Das Zeitalter der mikrobiellen Naturstoffe begann mit der Entdeckung des Penicillin G (2) aus Penicillium notatum im Jahr 1928 durch Alexander Fleming.^[2] Seine Beobachtung führte zu einer intensiven Erforschung mikrobieller Naturstoffquellen mit der Erschließung weiterer Antibiotika, wie z.B. Erythromycin (3) oder Tetracyclin (4), welche aus der Klasse der Actinobakterien isoliert wurden.^[3] Mit der steigenden Resistenz von Krankheitserregern gegen gängige Arzneimittel und der zunehmenden Zahl an neuartigen Krankheiten steigt auch der Bedarf an innovativen Medikamenten.

Abbildung 1.1. Strukturen medizinisch wichtiger Naturstoffe: Morphin (1), Penicillin G (2), Erythromycin (3) und Tetracyclin (4).

Naturstoffe oder deren Derivate machen etwa 39% der Medikamente auf dem Weltmarkt aus.^[4] Zusätzlich wurde ein wesentlicher Anteil der heute erhältlichen Medikamente ausgehend von Naturstoffen durch weitergehende chemische Abwandlung entwickelt.^[5] Dies

macht sowohl die Isolierung und Charakterisierung, als auch die Totalsynthese von Naturstoffen zu einem wichtigen Forschungsgebiet für die Arzneistoffentwicklung.

Aus pharmakologischer Sicht sind insbesondere Polyketide und Peptide von besonderem Interesse. Da diese große und sehr heterogene Naturstoffgruppe sowohl aliphatische, cyclische, acyclische und aromatische Verbindungen umfasst, besitzen ihre Vertreter sehr große strukturelle Unterschiede. Polyketide zeichnen sich durch einen gemeinsamen Biosyntheseweg aus. Spezielle Enzymkomplexe, die Polyketid-Synthasen (PKS), bilden aus oder Propionyl-Einheiten die Polyketid-Vorstufen. Acetyl-Peptide werden durch nichtribosomale Peptid-Synthetasen (NRPS) aufgebaut, verknüpfen allerdings Aminosäureeinheiten, anstatt Ketonkörper, zu einer Peptidkette. Mikrobielle Polyketide werden fast ausschließlich von modularen Typ-I-Polyketidsynthasen (PKS-I) synthetisiert.^[6] Diese großen Enzymkomplexe weisen eine enge Verwandtschaft zu den Enzymen der Fettsäurebiosynthese auf. Sowohl Polyketide als auch die Fettsäuren werden durch sich wiederholende decarboxylierende Claisen-Thioester-Kondensationen einer aktivierten Acyl-Startereinheit mit von Malonyl-CoA abgeleiteten Verlängerungseinheiten aufgebaut (Schema 1.1). An diesem Vorgang sind eine β -Ketoacylsynthase (KS) und eine optionale (Malonyl-)Acyltransferase (MAT/AT) beteiligt. Die Acyl-Carrier-Protein-Domäne (ACP) dient als Anker für das wachsende Polyketid-Intermediat und transportiert dieses während der Biosynthese durch die einzelnen katalytischen Zentren. Nach der Kettenverlängerung können weitere Modifizierungen der entstandenen β -Ketofunktion folgen. Die weitere ist vom Aufbau des PKS-Moduls abhängig Modifizierung und erfolgt durch Reduktionsschritte mit Hilfe von Ketoreduktase-Domänen (KR), Dehydratase-Domänen (DH) und/oder Enoylreduktase-Domänen (ER). Die Freisetzung des fertigen Moleküls erfolgt anschließend über eine hydrolytische Spaltung, katalysiert durch die Thioesterase-Domäne (TE).

modifiziertes Polyketid

Schema 1.1 Prinzipieller Mechanismus der mikrobiellen Polyketid-Synthese mit den einzelnen Proteindomänen. Buchstabencode: ACP = Acyl-Carrier-Protein-Domäne, (M)AT = (Methyl-)Malonyl-Acyltransferase-Domäne, KR = Ketoreduktase-Domäne, DH = Dehydratase-Domäne, ER = Enoylreduktase-Domäne, TE = Thioesterase-Domäne.

Typische NRPS-Module weisen eine strukturelle Ähnlichkeit zu den PKS-Modulen auf, verknüpfen allerdings Aminosäuren anstatt Acetyl- oder Malonyleinheiten zu einer Peptidkette (Schema 1.2).^[7] Adenylierungsdomänen (A) aktivieren unter ATP-Verbrauch selektiv eine bestimmte Aminosäure, welche an das Peptidyl-Carrierprotein (PCP) gebunden wird. Anschließend erfolgt - katalysiert durch die Kondensationsdomäne (C) - ein nucleophiler Angriff der freien Aminogruppe am gebundenen Substrat (Peptid oder Aminosäure) des benachbarten NRPS-Moduls. Analog zur Ketosynthase-Domäne im PKS-Modul verläuft der Mechanismus modular. Die strukturellen und katalytischen Ähnlichkeiten erlauben in der Natur auch deren Kombination.^[8] Aus diesen gemischten Enzymkomplexen entsteht somit ein hybrides PKS-NRPS-Produkt. Aus diesem Grund können im Kohlenstoffrückgrat von Polyketiden häufig auch Stickstofffunktionen inkorporiert sein. erhöhen post-PKS und post-NRPS-Modifikationen Weiterhin die Vielfalt dieser Naturstoffklasse.

Schema 1.2. Schematische Darstellung der Funktionsweise von nichtribosomalen Peptid-Synthetasen (NRPS). Buchstabencode: A = Adenylierungsdomäne, PCP = Peptidylcarrierproteindomäne, C = Kondensationsdomäne, TE = Thioesterasedomäne.

1.1. Wirkstoffsuche mit Hilfe von Naturstoffen aus Myxobakterien

Naturstoffe sind für die Entwicklung von neuen Wirkstoffen unverzichtbar. Die hohe Anzahl an Naturstoffen, die als Arzneistoffe, als Vorstufen für Arzneimittel oder als Leitstrukturen Verwendung finden, verdeutlicht die gegenwärtige und zukünftige Relevanz von Sekundärmetaboliten Pflanzen oder Mikroorganismen aus im Bereich der Arzneimittelforschung. Die Diversität der Moleküle, die sich in der Natur finden, korreliert mit der Vielfalt der Organismen und ihres Genpools. Myxobakterien besitzen - im Vergleich zu anderen Prokaryoten - sehr große Genome, beispielsweise besitzt der Stamm Sorangium cellulosum So0157-2 mit über 14.7 Mbp das bisher größte je veröffentlichte bakterielle Genom.^[9] Damit stellen Myxobakterien eine der reichhaltigsten Quellen diverser, strukturell einzigartiger Naturstoffe dar und führten ab den 70er Jahren zur Entdeckung einer Fülle biologisch aktiver Sekundärmetaboliten.^[10] Die Spezies Sorangium cellulosum und Chondromyces crocatus nehmen einen speziellen Platz ein, denn alleine die Gattung Sorangium produziert in etwa die Hälfte aller aus Myxobakterien isolierten Sekundärmetaboliten.^[11] Sowohl die biologische Aktivität als auch die molekularen Strukturen der myxobakteriellen Sekundärmetaboliten sind ebenso vielfältig wie ihr

- 4 -

Genom.^[12] Viele der bisher aus Myxobakterien isolierten Polyketide stellen bei ihrer Entdeckung neuartige Strukturen dar,^[13] somit sind die Sekundärmetaboliten nicht nur aus pharmazeutischer Sicht, sondern auch aus Sicht der chemischen Totalsynthese interessant.

So wurde beispielsweise das erste Archazolid (5, Abb. 1.2) im Jahr 2003 erstmals aus Archangium gephyra und Cystobacter sp. isoliert.^[14] Bei dieser Verbindung handelt es sich makrocyclisches Lacton an Thiazol-Seitenkette, ein einer welches um hohe Cytotoxizitätseigenschaften gegenüber mehreren Zelllinien besitzt. Vacuolare ATPasen (V-ATPasen) stellen eine attraktive Zielstruktur in der Krebstherapie dar und die inhibitorische V-ATPase-Aktivität der Archazolide wurde intensiv untersucht.^[14,15] Die erste Totalsynthese von Archazolid A gelang unserer Arbeitsgruppe im Jahr 2007,^[16] einige Jahre später konnte durch Derivatisierung des Naturstoffs der Wirkmechanismus an der Zielstruktur genauer untersucht werden.^[17]

Abbildung 1.2. Archazolid A (5), Chlorotonil A (6) Tubulysin A (7), Tubulysin D (8), Pretubulysin (9) und Phenylpretubulysin (10).

Das antibiotisch wirksame Chlorotonil A (**6**) wurde aus *Sorangium cellulosum sp.* isoliert und besitzt eine einzigartige *gem*-Dichloromethylen (CCl₂) Einheit.^[18] Dieses einzigartige Makrolid wies in *in-vitro* Experimenten eine hohe Potenz gegenüber gram-positiven Pathogenen auf, aber eine schlechte cytotoxische Aktivität gegenüber eukaryotischen Zelllinien.^[19] Bemerkenswerte Aktivität wies Chlorotonil A (**6**) sowohl in *in-vitro*- als auch *in-vivo*-

Bedeutung und Biosynthese von sekundären Stoffwechselprodukten

Experimenten gegen *Plasmodium falciparum*, einem Krankheitserreger der lebensbedrohlichen Malaria, auf,^[20] aber seine schlechte Löslichkeit verhindert die klinische Entwicklung. Totalsynthetische Zugänge ermöglichen Derivatisierungen und die Synthese von Analoga, somit sollte mit der ersten veröffentlichten Totalsynthese von Chlorotonil A (**6**) die Entwicklung neuer Analoga und die Untersuchung des Wirkmechanismus möglich sein.^[21]

Bei den linearen Tetrapeptiden **7**, **8** und **9** handelt es sich um Vertreter der Tubulysine, welche ebenfalls aus *Archangium gephyra sp.* isoliert wurden. Die Tubulysine wiesen keine Aktivität gegenüber Bakterien auf, aber eine hohe cytostatische Aktivität gegen eukaryotische Zelllinien mit IC₅₀-Werten im picomolaren Bereich.^[22] Die erfolgreiche Totalsynthese von Pretubulysin (**9**) ebnete einen Zugang zum Naturstoff im Multigramm-Maßstab, sodass mehrere *in-vivo* Untersuchungen ermöglicht wurden.^[23] Zusätzlich erlaubte die erste Totalsynthese einen Zugang zu vereinfachten Analoga. Beispielsweise wies das Analogon Phenylpretubulysin (**10**) eine *in-vitro* Aktivität gegenüber verschiedener Krebszelllinien unterschiedlichen Ursprungs mit geringem Verlust der Potenz gegenüber der Leitstruktur **8**.^[24] Die Wirkung basiert auf einer induzierten Apoptose in Krebszellen durch die Depolymerisation von Mikrotubuli, hemmt die Einleitung der Mitose und reduziert somit die Fähigkeit der Metastasierung von Tumoren *in-vivo*.

Besondere Aufmerksamkeit erregten die beiden 16-gliedrigen Makrolide Epothilon A (11, Abb. 1.3) und B (12) des Myxobakteriums der Gattung Sorangium cellulosum, welche 1987 erstmals von G. Höfle und H. Reichenbach isoliert wurden (Abb. 1.3).^[25] Diese Naturstoffklasse sorgte nach ihrer Entdeckung für Aufsehen, als eine zu Paclitaxel (13) analoge Wirkung auf Tumorzellen festgestellt wurde.^[26] Die biologische Aktivität beruht auf einer Stabilisierung der Mikrotubuli, welche das Wachstum von Tumoren und Metastasen verhindern. Aufgrund der hohen Potenz und dem klinischen Bedarf als Antitumortherapeutikum waren die Epothilone das Ziel vieler Totalsynthesen. Danishefsky et al. veröffentlichten die ersten Totalsynthesen von Epothilon A und B im Jahr 1996.^[27] Zehn Jahre später gab die Schering AG das erste synthetische Epothilon ZK-EPO (Sagopilon, 14) in die klinische Entwicklung.^[28] Ixabepilon (15) wurde als erstes semisynthethisches Analogon für die Chemotherapie zugelassen.^[29]

Abbildung 1.3. Die cytostatischen Wirkstoffe Epothilon A (11), B (12) und Paclitaxel (13) stabilisieren die Mikrotubuli in eukaryotischen Zellen, welchen eine wesentliche Rolle bei der Bekämpfung von Krebs zukommt. Die Epothilone dienten als Leitstruktur für die Entwicklung der synthetischen Analoga ZK-EPO (15) und Ixabepilon (14).

Alle dargestellten Beispiele demonstrieren die Relevanz der Naturstofftotalsynthese für die pharmazeutische Forschung, denn die Entwicklung einer Totalsynthese erlauben gelegentlich einen effizienteren Zugang zu den Naturstoffen. Die synthetische Bereitstellung größerer Mengen eines Naturstoffes ermöglichen umfangreichere klinische Studien. Zusätzlich dienen die Strategien der Totalsynthese häufig als Ausgangspunkt für die Entwicklung von Syntheserouten zu Naturstoffanaloga, wie die letzten beiden Beispiele zeigen.

2. Die Naturstofffamilie der Ajudazole

Im Rahmen der groß angelegten Untersuchungen zur Identifikation biologisch aktiver Naturstoffe aus Myxobakterien durch die Arbeitsgruppe von Höfle und Reichenbach am Helmholtz Zentrum für Infektionsforschung in Braunschweig hat sich neben *Sorangium cellulosum* ebenfalls das Genus von *Chondromyces crocatus* als ausgesprochen vielversprechend erwiesen, da bereits zahlreiche Naturstoffe mit unterschiedlichen Strukturen aus dieser Spezies isoliert werden konnten.^{[30][31]} Im Jahr 2002 wurden die bislang einzigen bekannten Vertreter der Ajudazole, Ajudazol A (**16**, Abb. 2.1) und Ajudazol B (**17**) isoliert und strukturell aufgeklärt.^[32] Die Ajudazole wurden neben den Chondramiden und Crocainen in den Rohextrakten der *Chondromyces crocatus spp.* Cm c1 bis Cm c13 detektiert.^[33] Bei beiden Vertretern handelt es sich um bisher einzigartige Isochromanon-

Derivate mit einem verknüpften Oxazolsystem, und (Z,Z)-Dienseitenkette mit Methoxybutenamideinheit als strukturelle Merkmale.

Abbildung 2.1. Die Ajudazole aus *Chondromyces crocatus*. Ajudazol A (**16**) besitzt an der C¹⁵-Position eine *exo*-Methylengruppe, während Ajudazol B (**17**) an dieser Position eine Methylgruppe besitzt.

2.1. Strukturaufklärung und Isolierung der Ajudazole

Für die Isolation der Ajudazole im großen Maßstab wird gewöhnlich der Stamm Chondromyces crocatus Cm c5 kultiviert (Abb. 2.2).^[33] Für die Fermentation wird eine zuvor hergestellte Keimfermentation in flüssigem Pol1-Medium (0.4% Probion, 0.3% Stärke, 0.2% MgSO₄(H₂O)₇, 0.05% CaCl₂(H₂O)₂, 0.25 mg/mL Vitamin B₁₂ und 1.0 mL/L Spurenelement-Standardlösung, pH = 7.0) unter Rühren für mehrere Tage bei 30 °C und einer Durchlüftungsrate von 80 L/min Luft gerührt, Der Fermentationsprozess wird durch HPLC-Analysen verfolgt. Nach knapp 4 Tagen kann Ajudazol A (16) mit ca. 3.8 mg/L und Ajudazol B (17) mit etwa einem Zehntel davon angereichert werden. Zur Isolierung wird die Zellmasse durch Zentrifugation abgetrennt und mit Aceton extrahiert. Lipophile Nebenprodukte werden über eine weitere Extraktion mit Methanol und Heptan abgetrennt. Aufeinanderfolgende chromatographische Trennungen über RP-18-Kieselgel und Sephadex LH-20 ermöglichen die Isolierung von Ajudazol A (16) und B (17) als farblose, amorphe Feststoffe. Als Grundlage für die Strukturaufklärung dienten EI-(+) und DCI-(+)-Massenspektren mit einem Molpeak m/z = 590.30 für Ajudazol A (16) und m/z = 592.31 für Ajudazol B (17), sowie die NMR-Daten von Ajudazol A (16).^[32] Die ¹H-NMR-Signale konnten über ein zweidimensionales H,C-HSQC-Spektrum eindeutig zugeordnet werden und die Zuordnung quartärer Kohlenstoffatome erfolgte über H,C-HMBC Spektren. Charakteristische Verschiebungen im Kohlenstoffspektrum, sowie ein aromatisches Singulett der C13-Methingruppe (δ = 7.68) weisen auf das Oxazolsystem hin, welches die beiden Teilbereiche des Moleküls miteinander verknüpft. Über die Ermittlung der Kopplungskonstanten im olefinischen Bereich wurden die relativen Konfigurationen der Doppelbindungen bestimmt: So konnte für die Doppelbindung zwischen C^{23} und C^{24} die (*E*)-Stereochemie ermittelt werden und für Doppelbindungen zwischen C^{17} und C^{18} , sowie C^{19} und C^{20} ergibt sich (Z)-Konfiguration beider Doppelbindungen des konjugierten Diens.

Abbildung 2.2. *C. crocatus* Cm c5.^[30] (A) Fermentationskultur. (B) Fruchtkörper verschiedener Größe. (C) Fruchtkörper. (D) Schwarmdecke auf Agar-Medium. (E) Fruchtkörper (Seitenansicht). Maßstabskala: 1mm.

Im rechten Bereich des Moleküls um C^{25} und die *N*-Methylgruppe wurde eine starke Signalverdoppelung beobachtet. Diese Beobachtung ist auf eine stark ausgeprägte Amidresonanz, bedingt durch eine tertiäre Amidstruktur, zurückzuführen. Durch dieses Phänomen wurde die genaue NMR-spektroskopische Charakterisierug erschwert, konnte jedoch durch Messung bei 80 °C in d₆-DMSO/D₂O umgangen werden. Die Verknüpfung der C¹⁵-Vinylidengruppe konnte mit den entsprechenden HMBC-Korrelationen, sowie anhand von NOESY-Experimenten bestätigt werden. Zusätzlich ließ sich die relative Stereochemie der Ajudazole teilweise über NOESY-Experimente absichern (Abb. 2.3). So bestätigt die NOE-Wechselwirkung zwischen der C²⁸-Methoxygruppe Beobachtung einer und C²⁷-Methingruppe die (Z)-Konfiguration der Methoxybutenamideinheit, da keine Wechselwirkung zur C²⁹-Methylgruppe festgestellt werden kann. Mit der C²⁵-Methylengruppe endet die aliphatische Seitenkette, da eine Wechselwirkung zur isolierten Methylamidgruppe festgestellt werden kann. Der Aussagegehalt der NOE-Wechselwirkungen am Isochromanonsystem im linken Halbraum des Moleküls ist aufgrund der zahlreichen Wechselwirkungen geringer. Starke Korrelationen der C⁸-Hydroxymethingruppe zur C¹¹-Methylengruppe, sowie zur C¹⁰-Methylgruppe wiesen auf das Vorliegen von mindestens zwei Konformeren hin. Mit einer Korrelation der C¹⁰-Methylgruppe zu C¹¹-H_b, sowie der starken Korrelation zu C^8 -Methingruppe, wurde eine syn-Korrelation zueinander angenommen.

Abbildung 2.3. Beobachtete NOE-Wechselwirkungen von Ajudazol A (**16**) nach Jansen *et al*.:^[32] NOE-Wechselwirkungen des Methoxybutenamid-Arms ermöglichen die eindeutige Bestimmung der *E*-Konfiguration. Am Isochromanon sind komplexere Wechselwirkungen zu beobachten, sodass keine eindeutige Konfigurationsbestimmung möglich ist.

Für die relative Konfiguration der Protonen H⁸ und H⁹ wurde auf ihre gemeinsame vicinale zurückgegriffen, Kopplungskonstante von J_{8.9} = 6.7 Hz die zur Annahme einer anti-Stereochemie führt. Diese Theorie wird durch den Kopplungskonstantenvergleich mit Benapthamycin (18), einem Naturstoff mit vergleichbarem Hydroxyisochromanonsystem, unterstützt (Abb. 2.4). Bei diesem System wurde ebenfalls die anti-Konfiguration bestimmt, aber diese Zuordnung wurde durch keine weiteren Daten abgesichert, somit übertrug sich die Unsicherheit ebenfalls auf die Ajudazole. Weiterhin bekräftigt der Vergleich von NOE-Spektren bei 80 °C und bei Raumtemperatur die relative anti-Konfiguration der Aiudazole. denn in diesen Spektren konnten starke Korrelationen zwischen H⁸ und der Isochromanon-Seitenkette, speziell H^{11a} und in geringerem Ausmaß zur C¹⁰-Methylgruppe, beobachtet werden.

Abbildung 2.4. Aufklärung der relativen Konfiguration von C^8 - C^{10} des Isochromanongerüstes der Ajudazole durch Abgleich der ¹H-NMR-Daten von Ajudazol A (**16**) (d₆-DMSO, 80 °C) mit Benaphthamycin (**28**) (d₆-DMSO, r.t.).

Da nur geringfügige Abweichungen der chemischen Verschiebungen im ¹³C-Spektrum ausgemacht werden konnten, scheint es sich bei Ajudazol B (**17**) um eine Strukturvariante von Ajudazol A (**16**) zu handeln. Mit identischem UV-Spektrum ist das Ajudazol-Chromophor konserviert und im ¹H-NMR-Spekrum sind identische Verschiebungen zu beobachten. Lediglich die prominenten Singulett-Signale der *exo*-Methylengruppe sind durch ein

Dublettsignal einer aliphatischen Methylgruppe, sowie einer Methingruppensignal ersetzt worden. Die C¹⁶-Methylengruppe tritt als diastereotopes AB-System auf und deutet auf die C¹⁵-Position als weiteres Stereozentrum hin. Eine Bestimmung der relativen Konfiguration der C¹⁵-Methylgruppe über NOE-Effekte war aufgrund der großen Entfernung zum Isochromanonsystem und der Flexibilität der Seitenkette nicht möglich.

2.2. Biosynthese der Ajudazole

Mit der tertiären Amidofunktion der Seitenkette und dem Oxazolsystem als mittlere Einheit muss es sich beim Biosynthesegencluster der Ajudazole um ein hybrides PKS-NRPS-System handeln. Das Biosynthesegencluster aus *Chondromyces crocatus* Cm c5 wurde von R. Müller *et al.* untersucht und im Jahr 2008 veröffentlicht (Schema 2.1).^[34–38] Die Biosynthesemaschinerie ist über zwölf Gene codiert und beinhaltet acht module Typ-I-PKS-Einheiten (*ajuA – ajuC, ajuE – ajuH* und *ajuK*), ein NRPS-PKS-Hybridprotein (*ajuL*), ein NRPS-Modul (*ajuD*) und zwei P450-Enzyme (*ajuI* und *ajuJ*) für post-PKS-Modifikationen. Die ersten Biosyntheseschritte werden vom Modul L+1 (AjuK) synthetisiert, welches Proteindomänen sowohl für den Kettenstart als auch für die Kettenverlängerung enthält und besitzt ebenfalls eine SAM-abhängige *O*-Methyltransferase (*O*-MT), die wahrscheinlich die Enolform der Diketid-Einheit methyliert.

Schema 2.1. Biosynthese der Ajudazole in *Chondromyces crocatus* Cm c5.^[34–38] a.) Organisation des Biosynthesegenclusters. b.) Modell für die Biosynthese von Ajudazol A (**16**) und B (**17**) auf der gemischten PKS-NRPS-Ajudazolsynthase. Die Strukturen von Ajudazol A (**16**) und B (**17**) sind dargestellt. Die DH-Domänen in den Modulen 4, 6 und 13 werden vermutlich iterativ genutzt, während die DH in Modul 12 wahrscheinlich inaktiv ist.

Das PKS-NRPS-Hybridsystem (AjuL) beinhaltet zwei Module. Modul 2 ligiert die Aminosäure Glycin in das Diketid, die Amidfunktion wird anschließend mittels einer N-Methyltransferasedomäne (N-MT) methyliert. Die Ketoacylsynthase (KS) von Modul 3 erweitert die Kette um eine weitere Acyleinheit, welche von einer β -Ketoacylreduktasedomäne (KR) zum sekundären Alkohol reduziert wird. In Modul 4 (AjuA) wird mit einer weiteren Acetyleinheit verlängert, und die neu gebildete
ß-Ketofunktion wird zum Alkohol reduziert. Beide Alkoholfunktionen werden anschließend durch eine Dehydratasedomäne (DH) zu zwei (E)-Doppelbindungen reduziert. Eine Enoylreduktasedomäne (ER) reduziert anschließend die α,β -ungesättigte Doppelbindung zur Methylengruppe. Im Modul 5 (AjuB) wird zuerst um eine Acetyleinheit erweitert und durch eine KR-domäne zum β -Acylalkohol reduziert. Analog zu Modul 3 und 4 erfolgt anschließend in Modul 6 (AjuB) eine zweite Acetyl-Elongation, gefolgt von einer Ketoreduktion zum Alkohol. Beide Alkoholgruppen werden über eine DHdomäne abgespalten, um die (Z,Z)-Dien-Einheit der Seitenkette zu bilden. Während die bisherigen Acyltransferasen der jeweiligen Domänen Malonyl-CoA als Cosubstrat nutzten, erfolgt in Modul 7 (AjuC) eine Verlängerung mit Methylmalonyl-CoA, um die C¹⁵-Methvlgruppe einzubauen. Bei Modul 8, dem Enzym AjuD, handelt es sich um das NRPS-System, welches die Oxazoleinheit aufbaut. Dazu wird die Polyketid-Kette mit einer Serin-Einheit an das Peptidyl-Carrier-Protein (PCP) elongiert. Die Heterocyclasedomäne (HC) cyclisiert die entstandene Peptid-Carbonylgruppe mit der primären Alkoholfunktion des Serinrestes zu einem Oxazolidin-Heterocyclus, welcher darauffolgend unter Katalyse der Oxidasedomäne (Oxy) zum Oxazol aromatisiert. Modul 9 (AjuE) verwendet, analog zu Modul 7, Methylmalonyl-CoA als Cofaktor, um die C^{10} -Methylgruppe zu installieren. Enzym AjuF, also das Modul 10, führt die C⁹-Hydroxyfunktion für die Lactonisierung zur Bildung des Isochromanonsystems ein. Die Module 11 und 12 (AjuG) erweitern die Kette um eine weitere Acetyleinheit, sowie um eine Propionyleinheit als Precursor für die aromatische Methylgruppe. Die KR-domäne reduziert die
ß-Ketoacylfunktion zum Alkohol. In der DH-domäne vom Modul 12 fehlen die notwendigen konservierten Aminosäurereste im aktiven Zentrum, weshalb es sich vermutlich um eine inaktive Domäne handelt. Die iterative Nutzung der DH-domänen aus den Modulen 4 und 6, sowie dem nachfolgenden Modul 13 komplementieren jedoch die Bildung der γ , δ -Alkenylfunktion. In Bakterien erfolgt der Aufbau aromatischer Strukturen in der Regel von Typ-II oder Typ-III-PKS-Systemen. Eine Ausnahme stellt das Chromonsystem von Stigmatellin dar, dessen Vorstufe zuerst von einem Typ-I-PKS-System und anschließend mittels einer C-terminalen Cyclasedomäne aromatisiert wird.^[39] In der letzten Untereinheit, AjuH (Modul 13), befindet sich keine analoge Cyclasedomäne, die das Isochromanonringsystem bilden könnte. Am Ende der Untereinheit 13 befindet sich eine Thioesterasedomäne (TE). Diese katalysiert normalerweise die Produktfreisetzung durch Hydrolyse oder Lactonisierung vom

Carrierprotein.^[40] So ergeben sich für den acyclischen Ajudazol-Vorläufer zwei Möglichkeiten zur Cyclisierung zur Isochromanonstruktur (Schema 2.2): Im ersten möglichen Mechanismus erfolgt ein TE-katalysierter Angriff der C⁹-OH-Funktion auf den ACP-gebundenen Thioester und setzt ein 10-gliedriges Makrolid frei, welches nachfolgend in einer C²-C⁷-Aldoladdition zum Ring I aromatisiert. Der umgekehrte Fall ist ebenfalls möglich, indem zuerst die Aldoladdition/Aromatisierung stattfindet – dabei bleibt das Intermediat an der TE-Domäne gebunden – und das Produkt unter Bildung des Rings II unter der TE-katalysierten Lactonisierung freigesetzt wird.

Schema 2.2. Vorgeschlagene Reaktionsmechanismen für die Entstehung des Isochromanonringsystems und der Produktfreisetzung.^[38] a) Die TE katalysiert die Bildung des Lactonsrings; anschließend Aldoladdition und Aromatisierung von Ring I. b) Bildung von Ring I durch Aldoladdition und Aromatisierung; anschließend TE-katalysierte Lactonisierung und Produktfreisetzung, bei der Ring II entsteht.

Mutationsstudien und Strukturuntersuchungen bestätigten die Struktur von 8-Deshydroxyajudazol B (**19**) als freigesetztes Produkt (Schema 2.3, vgl. Schema 2.1). Die Umwandlung in die beiden Ajudazole erfolgt durch post-PKS-Modifikationen durch die beiden P450-Enzyme Ajul (P450₁) unf AjuJ (P450₂). Wenn das Enzym P450₁ zuerst tätig wird, entsteht Ajudazol B (**17**), welches von P450₂ nicht mehr als Substrat erkannt wird. Wenn jedoch zuerst P450₂ die Bildung von Deshydroxyajudazol A (**20**) katalysiert, wird dieses von P450₁ erkannt und zu Ajudazol A (**16**) umgesetzt.

Schema 2.3. Post-PKS-Modifikationen vom PKS-NRPS-Multienzymprodukt Deshydroxyajudazol B (**19**) in die jeweiligen Ajudazole A (**16**) und B (**17**).^[35] P450₁ katalysiert die Dehydrierung der C¹⁵-Methylgruppe. P450₂ ermöglicht die Umwandlung der jeweiligen Deshydroxyajudazole in die korrespondierenden Ajudazole.

2.3. Bioinformatische Genclusteranalyse zur Strukturabsicherung der Ajudazole

Sowohl die relative, als auch die absolute Konfiguration der vier Stereozentren in Ajudazol B (**17**, s. Schema 2.3) war vorher nicht bekannt. Die absolute Konfiguration wurde durch bioinformatische Genclusteranalysen bestimmt untermauert und konnte durch die Totalsynthese von Ajudazol B (**17**) vollständig abgesichert werden.^[41,42] Bioinformatische Methoden zur Strukturaufklärung erwiesen sich bereits in mehreren Fällen als erfolgreich und wurde daher auf das C⁹-Stereozentrum angewendet.^[43] Durch den bioinformatischen Vergleich der Aminosäuresequenzen durch Sequenzalignment des biosynthetischen Genclusters, welcher zuvor von Müller *et al.* bestimmt wurde,^[34] konnten die Stereozentren genauer vorhergesagt werden.

2003 wurde ein Modell sowohl von McDaniel *et al.* als auch von Caffrey *et al.* vorgeschlagen,^[44] in dem die An- oder Abwesenheit eines Aspartatrestes im Ketoreduktase-Enzym als Vorhersage der absoluten Konfiguration von sekundären Alkoholen verwendet werden konnte. Diese Methode wurde bei den Ajudazolen auf das C⁹-Stereozentrum angewendet, welches bei der Ketoreduktion durch das KR-Enzym im Modul 10 gebildet wird. Die bioinformatische Analyse der Aminosäuresequenz im Gencluster ajuF, welcher die entsprechende KR-Domäne codiert, enthielt den entsprechenden Aspartatrest (Abb. 2.5, oben). Mit dem enthaltenen Aspartatrest konnte die absolute Konfiguration von C⁹ als (R) festgelegt werden. Mit der bereits bekannten relativen Konfiguration konnten die Stereozentren von C^8 als (S) und von C^{10} als (R) bestimmt werden. Für die Bestimmung der absoluten Konfiguration an C¹⁵ wurde die Enovlreduktase im Gencluster ajuC nach einem Modell von Leadlay et al. untersucht.^[45] Nach ihrem Modell gibt es eine Korrelation zwischen der An- und Abwesenheit eines Tyrosinrestes im aktiven Zentrum und der absoluten Konfiguration von Methylgruppen, die durch Enoylreduktasen eingeführt wurden (Abb. 2.5, unten). Die Zuverlässigkeit des Modells war zunächst mangels erfolgreicher Beispiele in der Anwendung nicht geklärt und teilweise gab es widersprüchliche Ergebnisse,^[46] jedoch zeigte die Methode im Fall der Myxobakterien perfekte Übereinstimmung, weshalb die Methode auch auf Ajudazol B (17) angewandt wurde. Die Totalsynthese von Ajudazol B (17) bestätigte die bioinformatischen Vorhersagen und lieferte somit die endgültige Absicherung der Stereochemie.

Abbildung 2.5. Die bioinformatische Bestimmung der Stereozentren C⁹, C¹⁰ und C¹⁵ von Ajudazol B (**17**), basierend auf dem Sequenzalignment von Genclusterdomänen.^[41,42,47] Der konservierte diagnostische Bereich ist rot für (*R*)-konfigurierte und grün für (*S*)-konfigurierte Stereozentren markiert. Oben: Ausschnitt aus dem Alignment der Ajudazol-Ketoreduktase-Domäne aus Modul 10. Unten: Ausschnitt der Enoylreduktase-Domänen aus Modul 7 und 9. Neben dem Ajudazol-Gencluster (Aju) wurden zur Absicherung weitere myxobakterielle Gencluster mit bekannter Stereochemie untersucht.

2.4. Biologische Aktivität der Ajudazole

In ersten Untersuchungen als Rohextrakt neben anderen biologisch aktiven Substanzen wiesen die Ajudazole keine nennenswerte biologische Aktivität auf.^[32] In weiteren Untersuchungen zeigt Ajudazol B (**17**) eine wachstumshemmende Wirkungen gegen Pilze, die für eine Vielzahl von Pflanzenkrankheiten verantwortlich sind.^[33] Ajudazol A (**16**) wies nur eine geringe aktivität gegen einige Pilze und gram-positive Bakterien auf. In Studien zur Untersuchung des Wirkungsmechanismus wurde der Einfluss der Ajudazole auf den Energiestoffwechsel von submitochondrialen Partikeln (SMP) in Rinderherzzellen untersucht. Mit IC₅₀-Werten von 13.0 ng/mL (22.0 nM) für Ajudazol A (**16**) bzw. 10.9 ng/mL (18.4 nM) für Ajudazol B (**17**) konnte eine potente Hemmung der Atmungskette beobachtet werden. Die Wirkung basiert vermutlich auf der selektiven Hemmung des Elektronenflusses an der NADH-Dehydrogenase (Komplex I der Atmungskette, auch bekannt als Coenzym I).^[33]

Die mitochondriale Atmungskette stellt die molekulare Grundlage der aeroben Energieerzeugung in eukaryotischen Zellen dar, somit besitzen Mitochondrien eine Schlüsselfunktion in der Steuerung einer Vielzahl zellulärer Prozesse. Sowohl angeborene als auch nachträglich erworbene Krankheiten stehen mit Fehlfunktionen der mitochondrialen Atmungskette im Zusammenhang. Neuere Studien bringen neurodegenerative Krankheiten wie Morbus Alzheimer, Morbus Parkinson, Chorea Huntington oder die amyotrophe Lateralsklerose (ALS) mit Störungen der mitochondrialen Atmungskette in Verbindung.^[48] Die Ajudazole stellen neben Myxothiazol (**21**, Abb. 2.6), Stigmatellin (**22**) und Crocacin D (**23**) die vierte Stoffklasse dar, die den Elektronentransport in der mitochondrialen Atmungskette inhibieren.

Abbildung 2.6. Weitere myxobakterielle Naturstoffe, welche die Atmungskette inhibieren: Stigmatellin (21), Myxothiazol (22) und Crocacin D (23).

Nach der erfolgreichen Totalsynthese von Ajudazol B (**17**, s. Kap. 2.5.6) konnte die 5-Lipoxygenase (5-LO) als weiteres Target identifiziert werden.^[41] 5-LO ist an der Synthese

von Leukotrienen aus Arachidonsäure verantwortlich, die im Zusammenhang mit allergischen und entzündlichen Reaktionen des Körpers stehen und sind neben anderen Stoffen für die Atemwegsverengung bei Asthma und Heuschnupfen verantwortlich.^[49] Zusätzlich hängen genetische Veränderungen des Enzyms mit einem erhöhten Herzinfarktrisiko zusammen.^[50] Weiterhin ist das Enzym vermutlich für die Neubildung von Blutgefäßen in Tumoren mitverantwortlich, da die Expression des Enzyms bei diversen Krebsarten erhöht ist.^[51] Totalsynthetisches Ajudazol B (**17**) wies in zellfreien Tests einen IC₅₀-Wert von 6.9 µM, sowie 1.6 µM in Versuchen mit intakten menschlichen neutrophilen Granulozyten auf. Diese Werte sind mit Zileuton, dem bisher einzigen zugelassenen 5-LO-Hemmer, vergleichbar. Zileuton besitzt einen IC₅₀-Wert von 1.3 µM und findet Verwendung in der Behandlung von Asthmaerkrankungen.^[41]

2.5. Bisher veröffentliche Arbeiten zur Totalsynthese der Ajudazole

Seit der Isolierung der Ajudazole im Jahr 2002 wurden einige Versuche zur Totalsynthese der Ajudazole unternommen. Mit den Arbeitsgruppen von Taylor,^[52] Rizzacasa und Marquez arbeiteten drei unabhängige Gruppen an dieser Herausforderung,^[53–58] bis der Arbeitsgruppe von Menche die erste Totalsynthese von Ajudazol B (**17**) gelang.^[42] Die bisher veröffentlichten Syntheseansätze für die Ajudazolfamilie, sowie die Totalsynthese von Ajudazol B (**17**) werden im Folgenden beschrieben.^[42,52–58]

2.5.1. Die erste Synthese eines Isochromanons nach Marquez (2008)

Erste Untersuchungen zur Synthese des Isochromanongrundgerüstes am Oxazol wurden von Marquez *et al.* berichtet.^[58] Der Aufbau des Oxazolsystems erfolgt ausgehend von Serinester **24** und Ethylacetimidat, die unmittelbar ein tetraedrisches Intermediat **25** bilden (Schema 2.4). Mittels Kondensation bildet sich ein Oxazolidinsystem **26**, welches in einer basenvermittelten Halogenierungs-Eliminierungsreaktion mit CBrCl₃ und DBU zum Oxazol **27** oxidiert wird.^[59] Die Esterfunktion wird anschließend über zwei Schritte zum Aldehyd **28** reduziert und mit dem Phosphorylid **29** mit vollständiger (*E*)-Selektivität zum Acrylat **30** umgesetzt. Eine Esterreduktion mit folgender Alken-Hydrierung und Swern-Oxidation beendet die Synthese des ersten Schlüsselbausteins **31**.

Schema 2.4. Synthese des Oxazolsystems 31 nach Marquez et al.^[58]

Für das zweite Schlüsselfragment wird zuerst die Carbonylgruppe von Phthalid (**32**) zum Lactol reduziert und zu 1-Methoxyphthalan (**33**) methyliert (Schema 2.5). Eine LDA-vermittelte Eliminierung führt zu einem Isobenzofuran, welches durch ein weiteres LDA-Äquivalent zum lithiierten Isobenzofuran **34** deprotoniert wird. Furan **34** dient als Nucleophil für das Oxazolderivat **31** und generiert über die Addition an die Aldehydgruppe den Furfurylalkohol **35**.

Schema 2.5. Erste Synthese eines Isochromanongrundkörpers nach Marquez et al. [58]

Achmatowicz-Umlagerung Eine führt Aufbau zum des gewünschten Isochromanonsystems.^[60] Dafür wird zuerst in einer hydroxyl-dirigierten Oxidation mit mCPBA regioselektiv das Epoxid 36 gebildet, welches anschließend über das Zwitterion 37 zum Benzaldehyd 38 umlagert. Ein intramolekularer Ringschluss durch den nucleophilen Angriff der Hydroxyfunktion an der Carbonylgruppe erzeugt das Lactol 39, welches in einer Jones-Oxidation zum Lacton 40 umgesetzt wird. Eine darauffolgende Luche-Reduktion ermöglicht die Trennung der Diastereomere *syn*,*syn*-**41** und *syn*,*anti*-**41** mittels Umkristallisation. Die C⁸-Alkoholfunktion der enantiomerenreinen Verbindung syn, anti-41 wird unter Mitsunobu-Bedingungen zur Verbindung 42 invertiert, um die gewünschte anti, anti-Konfiguration zu erhalten. Die Hydrolyse der entstandenen Esterfunktion unter möglichst milden Bedingungen zum freien C⁸-Alkohol wurde erst 2011 für ein Analogon dieser Verbindung veröffentlicht.^[57]

2.5.2. Die Synthese des Ajudazol-Isochromanons nach Marquez (2011)

Mit dem kommerziell erhältlichen Phthalid **32** als Ausgangsmaterial wurde das aromatische Substitutionsmuster der Ajudazole nicht berücksichtigt (s. Schema 2.5). In einer zweiten Veröffentlichung von Marquez *et al.* im Jahr 2011 erfolgte die Synthese eines substituierten Phthalids **43** aus kommerziell erhältlicher 3-Methylsalicylsäure (**44**, Schema 2.6).^[56,57] Zuerst werden alle Sauerstofffunktionalitäten methyliert, daraufhin erfolgt die Hydrolyse der Esterfunktion. Die freie Säure wird mit Thionylchlorid zum korrespondierenden Säurechlorid aktiviert und in das Benzamid **45** überführt. Mittels einer regioselektiven *ortho*-Metallierung wird eine Aldehydfunktion installiert, welche zum Benzylalkohol reduziert wird und anschließend säurevermittelt zum Lacton **46** cyclisiert. Der phenolische Methylether wird mit Hilfe von lodcyclohexan gespalten und durch eine TBS-Schutzgruppe zum Silylether **47** substituiert. Die Synthese des Phthalans **43** mit dem gewünschten Substitutionsmuster wird über eine Reduktion der Lactongruppe und darauffolgender Methylierung abgeschlossen.

Schema 2.6. Synthese eines substituierten Phthalans **43** für den Aufbau des Ajudazol-Isochromanons für die Totalsynthese der Ajudazole nach Marquez *et al.*^[56,57]

Das Aldehydelektrophil wurde ausgehend von Oxazol-4-ylmethanol (48) synthetisiert (Schema 2.7). Zuerst wird der Alkohol zum korrespondierenden Aldehyd oxidiert und in einer Wittig-Homologisierung mit Phosphorylid 29 zum Acrylat 49 transformiert. Die Hydrierung der Doppelbindung, eine Reduktion des Esters, sowie eine chirale Trennung über HPLC und eine erneute Oxidation liefern den Aldehyd 50 enantiomerenrein in 38% Ausbeute über fünf Schritte.

Schema 2.7. Synthese des chiralen Aldehyds 50 für die Isobenzofuran-Umlagerung nach Marquez et al. [56.57]

Analog zur ersten Synthese (Schema 2.8, vgl. Schema 2.5) wird LDA eingesetzt, um eine Eliminierung der Methoxygruppe an Phthalan **43** einzuleiten, um ein lithiiertes Isobenzofuran zu erzeugen. Die sterisch anspruchsvolle TBS-Schutzgruppe beeinflusst die Regioselektivität der Metallierung, sodass bei einer Addition an dem Aldehydelektrophil **50** ausschließlich das Alkylierungsprodukt **51** entsteht. Mittels der hydroxyl-dirigierten *m*CPBA-Epoxidierung wird die Achmatowicz-Umlagerung initiiert, die zur Bildung des Lactols **52** führt. Aufgrund der säurelabilen TBS-Schutzgruppenfunktion erfolgt die Oxidation zum Lacton **53** mit Hilfe von TEMPO und BAIB. Eine anschließende Reduktion liefert den Benzylalkohol **54** als *syn,anti: syn,syn*-Diastereomerengemisch im Verhältnis 3:2. Da aus der Reduktion ausschließlich eine *syn*-Relation entsteht, kann die gewünschte *anti,anti*-Relation des Isochromanonsystems der Ajudazole über eine Mitsunobu-Inversion realisiert werden.^[58]

Schema 2.8. Abschluss der Synthese der Ajudazol-Isochromanon-Grundkörper 54 nach Marquez et al. [56,57]

2.5.3. Taylors Synthese der Methoxybutenamid-Seitenkette (2005)

Die erste Synthese der Methoxybutenamid-Seitenkette von Ajudazol A (**16**) wurde 2005 von R. J. K. Taylor und O. Krebs beschrieben (**55**, Abb. 2.7).^[52] Ihr Ansatz basiert auf einer doppelten Acetylen-Carbocuprierung zur Erzeugung des (*Z*,*Z*)-Dienstrukturmotivs, sowie einer Stille-Kupplung zur Installation der Oxazoleinheit.

Abbildung 2.7. Die synthetische C¹²-C²⁹-Einheit von Ajudazol A nach Taylor *et al.*^[52]

Über eine Normant-Reaktion wird THP-geschütztes 2-lodpropanol (**56**) über einen Lithium-Halogen-Austausch, Zugabe von CuBr·SMe₂ und Behandlung mit Acetylen zum (*Z*,*Z*)-Dienylcuprat **57** umgesetzt (Schema 2.9). Dieses kupferorganische Intermediat wird mit 2,3-Dibrompropen (**58**) abgefangen, um das (*Z*,*Z*)-Dien **59** mit exzellenter Selektivität zu erhalten. Die THP-Schutzgruppe wird in methanolischer Lösung mit Montmorillonit, einem lewis-sauren Schichtsilikat, zum Alkohol **60** gespalten.

Schema 2.9. Taylors Eintopfsynthese des (*Z*,*Z*)-Diens 60.^[52]

Nach DMP-Oxidation der Alkoholgruppe zum korrespondierenden Aldehyd erfolgt eine Wittig-Olefinierung zum (*E*)-Acrylat **61** mit >95% (*E*)-Selektivität (Schema 2.10). Auf die Reduktion der Estergruppe folgen eine erneute THP-Schützung, sowie eine Umwandlung des Vinylbromids zum Vinyliodid **62**. Nach der Entfernung der Schutzgruppe wird der Allylalkohol in das korrespondierende Allylbromid transformiert und mit Methylamin umgesetzt, um das Amin **63** zu erhalten. Eine Amidkupplung mit der Methoxybutensäure **64** schließt die Synthese des Methoxybutenamid-Segments **65** ab. Letztlich beendet eine Stille-Kupplung mit dem stannylierten Oxazol **66** die Darstellung des C¹²-C²⁹-Ajudazol A-

Fragments **55** mit 12 Schritten in der längsten linearen Sequenz mit einer Gesamtausbeute von 9%.

Schema 2.10. Synthese des C¹²-C²⁹-Fragments der Ajudazole, ausgehend von Vinylbromid **60** nach Taylor *et al.* über eine Stille Kreuzkupplung.^[52]

2.5.4. Rizzacasas Seitenkettensynthesen beider Ajudazole (2007)

Basierend auf der Seitenketten-Synthese von Ajudazol nach Taylor *et al.* wurde im Jahr 2007 die Synthese eines C⁹-C²⁹-Modellsystems für beide Vertreter der Ajudazole beschrieben (**67**, Abb. 2.8).^[55] In Rizzacasas Ansatz erfolgt der Aufbau des (*Z*,*Z*)-Dienmotivs erst gegen Ende der Synthese über eine Sonogashira-Kupplung.

Abbildung 2.8. C^9 - C^{29} -Modellsystem der Ajudazole nach Rizzacasa *et al.*^[55] **67a**: Ajudazol A-Modellsystem (R = CH₂); **67b**: Ajudazol B-Modellsystem (R = CH₃).

Zuerst wird der literaturbekannte Alkohol **68** mit PCC zum korrespondierenden Aldehyd oxidiert, welcher unmittelbar zum Acrylester **69** homologisiert wird. (Schema 2.11). Analog zu Taylors Ansatz wird die Estergruppe über drei Schritte zum Allylamin **70** transformiert und in

einer Amidkupplung mit der Carbonsäure **64** zum tertiären Amid **71** verknüpft. Die β -Vinyliodid-Gruppe ermöglicht die Sonogashira-Kupplung kurz vor dem Abschluss der Synthese.

Schema 2.11. Synthese von Vinyliodid 71 nach Rizzacasa et al.[55]

Für das Ajudazol B-Modellsystem **67b** wird der racemische Alkohol **72** mesyliert, durch eine Azid-Gruppe substituiert und anschließend unter Staudinger-Bedingungen zum Amin **73** reduziert (Schema 2.12). Die Amidkupplung mit der racemischen Säure **74** mit folgender Silyl-Entschützung ergibt das Amid **75** als Diastereomerengemisch. DMP-Oxidation und Cyclodehydratisierung mit anschließender Bromwasserstoff-Eliminierung liefern das Modelloxazol **76** in hoher Ausbeute.

Schema 2.12. Synthese des Modelloxazols 76 für Ajudazol B (17) nach Rizzacasa et al. [55]

Eine Sonogashira-Reaktion verknüpft das Vinyliodid **71** mit dem Oxazolsystem **76** zum Produkt **77** (Schema 2.13). Partielle Hydrierung des internen Alkins zum (*Z*)-Alken an einem

heterogenen Nickel-Katalysator in Anwesenheit von Ethylendiamin schließt die Synthese des C^9 - C^{29} -Modellsystems **67b** ab.

Schema 2.13. Abschluss der Synthese des Modellsystems 67b für Ajudazol B nach Rizzacasa et al. [55]

Die Darstellung des Oxazolfragments für die Darstellung des Modellsystems **67a** beginnt mit der Alkylierung von Dimethylmalonat (**78**) mit Propargylbromid (**79**) und nachfolgender Reduktion der Esterfunktionalitäten zum Diol **80** (Schema 2.14).

Schema 2.14. Synthese des Modelloxazols 84 für Ajudazol A (16) nach Rizzacasa et al. [55]

Anschließend erfolgt die Desymmetrisierung durch Monosilylierung und eine zweistufige Oxidation zur Carbonsäure 81, welche in einer Kupplungsreaktion mit 73 den Oxazolvorläufer 82 in hoher Ausbeute liefert. Nach selektiver Entfernung der TBS-Schutzgruppe erfolgen eine DMP-Oxidation der freien Alkoholgruppe und anschließend die

Cyclisierung zum Oxazol **83** in hoher Gesamtausbeute. Zuletzt liefert die TBAF-vermittelte Spaltung der TBDPS-Schutzgruppe den Modellvorläufer **84**.

Die Sonogashira Kreuzkupplung zwischen Alkin **84** und Vinyliodid **71** liefert Enin **85** in guten Ausbeuten (Schema 2.15). Eine partielle Hydrierung der Alkinylgruppe an P-2 Nickel bildet das (Z,Z)-Dienmotiv. Die *exo*-Methylengruppe am Modellsystem **67a** wird in einem zweistufigen Verfahren über eine DBU-induzierte Eliminierung erzeugt.

Schema 2.15. Abschluss der Synthese des Modellsystems 67a für Ajudazol A nach Rizzacasa et al. [55]

2.5.5. Rizzacasas Totalsynthesen von 8-Deshydroxyajudazol A und B (2011)

Die Deshydroxyajudazole A (**20**, Schema 2.3, vgl. Kap. 2.2) und B (**19**) wurden von Müller *et al.* als Intermediate in der Biosynthese beschrieben.^[34–38] Eine Synthese der vorgeschlagenen Struktur von 8-Deshydroxyajudazol B (**19**) wurde von Rizzacasa *et al.* im Jahr 2011 publiziert (Abb. 2.9).^[53] Da die absolute Konfiguration zu diesem Zeitpunkt noch umstritten war, handelt es sich bei dem synthetisierten Molekül **86b** um das C¹⁵-*epi*-Enantiomer zu 8-Deshydroxyajudazol B (**19**).

Abbildung 2.19. Die vorgeschlagenen Strukturen von 8-Deshydroxyajudazol A (**86a**) und 8-Deshydroxyajudazol B (**86b**) nach Rizzacasa *et al.*^[53] Die absolute Konfiguration war zum Zeitpunkt der Veröffentlichung nicht vollständig aufgeklärt. Verbindung **86a** stellt das Enantiomer zu Deshydroxyajudazol A (**20**) dar, während es sich bei Struktur **86b** um das C^{15} -*epi*-Enantiomer zu Deshydroxyajudazol B (**19**) handelt.

Für den Aufbau des Isochromanonsystems erfolgt zuerst eine Wittig-Olefinierung am enantiomerenreinen Aldehyd **87** mit dem Phosphoniumsalz **88** zum Trien **89** (Schema 2.16). Die TBS-Schutzgruppe wird abgespalten, um eine Umesterung des Methylesters **90** zum Propiolat **91** mit dem Otera-Katalysator zu ermöglichen. Das terminale Alkin wird anschließend zum Brompropiolat **92** halogeniert, über eine intramolekulare Diels-Alder-Reaktion cyclisiert und mit DDQ als Oxidationsmittel zum Isochromanon **93** aromatisiert.

Schema 2.16. Die intramolekulare Diels-Alder-Synthese von Isochromanon 97 nach Rizzacasa et al.[53]

Eine Palladium-katalysierte Borierung und darauffolgende oxidative Hydrolyse überführt das Arylbromid **93** in das Phenol **94**. Die Phenolgruppe wird zum PMB-Ether **95** transformiert, worauf eine Hydroborierung mit dem Wilkinson-Katalysator folgt. Eine erneute oxidative Hydrolyse des entstandenen Borans liefert den Alkohol **96**, der mittels DMP-Oxidation und einer Wittig-Homologisierung das Alken **97** als Oxazol-Vorläufer liefern.

Für den Aufbau des Oxazolsystems wird das terminale Alken 97 zum Glykol 98 unter Upjohn-Bedingungen umgesetzt (Schema 2.17). Die primäre Alkoholgruppe wird anschließend regioselektiv mit der (R)-konfigurierten Säure 99 zum Esterprodukt 100 verknüpft. Über eine Mitsunobu-Inversion mit einem Zinkazid-Pyridin-Komplex wird die sekundäre Alkoholfunktion in das Azid 101 umgewandelt und mit Propan-1,3-dithiol zum korrespondierenden Amin reduziert. Die simultane Anwesenheit von Triethylamin in der induziert eine O,N-Acylumlagerung und führt zur Reaktionslösung Bildung des β -Hydroxyamids **102**. Mittels einer Parikh-Doering-Oxidation der primären Hydroxyfunktion wird die Cyclodehydratisierung zum Oxazolsystem **103** über insgesamt zwei Schritte eingeleitet.

Schema 2.17. Aufbau des Oxazolsystems 103 für C¹⁵-epi-ent-Ajudazol B (86b) nach Rizzacasa et al.^[53]

Mittels CSA in Methanol wurde die PMB-Gruppe abgespalten, um das Phenol **104** zu erhalten (Schema 2.18). Analog zu den vorigen Synthesen der Modellajudazole (vgl. Kap. 2.5.4) wird die Kupplung mit dem Vinyliodid **71** über eine Sonogashira Reaktion zum Enin **105** realisiert, welches in einer Hydrierung zum Zielmolekül **86b** reduziert wird.

Schema 2.18. Abschluss der Synthese von epi-C¹⁵-ent-8-Deshydroxyajudazol B (86b) nach Rizzacasa et al.^[53]

Die Synthese von ent-8-Deshydroxyajudazol A (86a) wurde fast zeitgleich mit der Aufklärung der absoluten Stereochemie der Ajudazole veröffentlicht.^[42,54] Die Struktur beruht, ebenso wie die Synthese von Verbindung 86b, auf den Ergebnissen von Müller et al. (s. Kap. 2.2): Der Aufbau erfolgt über eine ähnliche Strategie. Die Seguenz startet mit der Monosilylierung des literaturbekannten Diols 80 (vgl. Kap. 2.5.4). In einer zweistufigen Sequenz erfolgt zuerst die Oxidation zur Carbonsäure **106** (Schema 2.19). Die nächsten sechs Schritte entsprechen *epi*-C¹⁵-*ent*-8-Deshydroxyajudazol B (**86b**) von der Synthese zum Aufbau des Oxazolsystems (vgl. Schema 2.17): Zuerst wird die Carbonsäure 106 mit der primären Dioleinheit des Isochromanonsystems 98 regioselektiv verestert, dann wird die sekundäre Alkoholfunktion durch eine Azidogruppe unter Mitsunobu-Bedingungen substituiert und zuletzt folgt die reduktive Umwandlung des Azids zur korrespondierenden Aminofunktion mit der simultan folgenden O, N-Acylumlagerung zum β -Hydroxyamid **107**. Mittels der Parikh-Doering Oxidation wird in den drei weiteren Schritten die Oxazoleinheit aufgebaut, um Oxazol 108 zu erhalten. Für höchstmögliche Konvergenz der Synthese wird hier die exo-Methylengruppe am Oxazolring der Kreuzkupplung aufgebaut. vor Nach TBAF-vermittelter Abspaltung der Silyl-Schutzgruppe erfolgen die Mesylierung der freien Alkoholfunktion und die Abspaltung der PMB-Schutzgruppe zu Phenol 109. Eine DBU-induzierte Eliminierung liefert das Alkenin 110 für die Sonogashira-Kupplung mit dem Vinyliodid 71 und die partielle Hydrierung an Cu/Ag-aktiviertem Zink schließt die Totalsynthese von ent-8-Deshydroxyajudazol A (86a) ab.

Die Naturstofffamilie der Ajudazole

Schema 2.19. Synthese von *ent*-Deshydroxyajudazol A (**86a**), ausgehend vom literaturbekannten Diol **80** nach Rizzacasa *et al.* mit dem Diol-Westfragment **98** und dem Vinyliodid **71** aus vorherigen Synthesen.^[54]

2.5.6. Menches Totalsynthese von Ajudazol B (2012)

Die absolute Stereokonfiguration der Ajudazole konnte durch bioinformatische Analyse des Biosynthese-Genclusters (s. Kap. 2.3) vorhergesagt und durch die erste Totalsynthese von werden.^[42] Ajudazol B (17) bestätigt Zum Aufbau der Lactoneinheit des Isochromanonsystems wird Ethylglyoxylat (111) in einer Brown-Crotylierung umgesetzt und die entstandene Alkoholfunktion zum Silvlether 112 in einer Gesamtausbeute von 70% und mit einem Enantiomerenüberschuss (ee) von 90% umgesetzt (Schema 2.20). Die Vinylgruppe wird in einem dreistufigen Verfahren mittels Hydroborierung, Dess-Martin-Oxidation und Wittig-Olefinierung zum Ester 113 homologisiert. Zur Darstellung von Aldehyd 114 wird zuerst zum korrespondierenden Alkohol reduziert und anschließend eine Swern-Oxidation durchgeführt.

Schema 2.20. Synthese des Aldehyds 114 für die Totalsynthese von Ajudazol B (17 in unserer Arbeitsgruppe.^[42]

3-Methylsalicylsäure (115, Schema 2.21) dient als Startbaustein für das aromatische System der Isochromanonstruktur. Nach globaler Allylierung der Hydroxyfunktionen erfolgt die Spaltung des resultierenden Esters und die freie Carbonsäure wird anschließend über das Säurechlorid in das Diisopropylamid **116** umgewandelt. Um die atropisomere Amidachse zu fixieren wird mittels einer ortho-Lithierung und dem Andersen-Reagenz (117) eine chirale Sulfoxidgruppe eingeführt, um das enantiomerenreine Atropisomer 118 zu erhalten. So führen eine erneute Lithiierung und die Zugabe des Aldehydelektrophils **114** ausschließlich zur Bildung des anti, anti-konfigurierten Produktes 119. Die entstandene Benzylalkoholgruppe wird in den TBS-Ether 120 umgewandelt und die Palladium-katalysierte Spaltung des Allylethers ermöglicht die mikrowellenunterstützte Cyclisierung zum Isochromanonsystem. Nach erfolgter Cyclisierung wird an der aromatischen Hydroxyfunktion ebenfalls ein TBS-Ether installiert, um den bis-TBS-Ether 121 zu erhalten. Auf die Dihydroxylierung der terminalen Doppelbindung folgt die regioselektive Schützung des primären Alkohols als TBS-Ether. Die Synthese des Westfragments wird abgeschlossen, indem die sekundäre Alkoholfunktion unter Mitsunobu-Bedingungen in das korrespondierende Azid überführt und zum Amin **122** reduziert wird.

Schema 2.21. Aufbau des Westfragments für die Totalsynthese von Ajudazol B (17) in unserer Arbeitsgruppe.^[42]

Für den Aufbau der Ostfragment-Seitenkette wurde auf die literaturbekannte Säure **64** zurückgegriffen, die bereits in den Synthesen von Taylor (vgl. Kap. 2.5.3) und Rizzacasa (vgl. Kap. 2.5.4) zum Aufbau der Enamid-Struktur verwendet wurde (Schema 2.22). Eine Amidkupplung mit *N*-Allylmethylamin (**123**) liefert Butenamid **124**, welches in einer Kreuzmetathese mit dem Alken **125** und nachfolgender Silylether-Spaltung zum Alkohol **26** umgesetzt wird. Eine IBX-Oxidation überführt den Alkohol in den korrespondierenden Aldehyd, welcher mit dem Ohira-Bestmann-Reagenz (**127**) zum terminalen Alkin **128** transformiert wird. Letztlich schließt eine *trans*-selektive Hydroborierung mit guter Selektivität die Synthese des Ostfragments **129** ab.

Schema 2.22. Synthese des Ostfragments (129) für die Totalsynthese von Ajudazol B (17) in unserer Arbeitsgruppe.^[42]

Für den Abschluss der Totalsynthese wird das Westfragment **122** mit der literaturbekannten Säure **99** in einer Amidkupplung verknüpft (Schema 2.23). Eine Spaltung des primären TBS-Ethers erfolgt mit katalytischen Mengen TMSCI in Wasser. Wie in den zuvor vorgestellten Synthesen von Rizzacasa *et al.* wird das entstandende β -Hydroxyamid zum Aldehyd oxidiert,^[53,54] um die Cyclodehydratisierung zum Oxazol **130** einzuleiten. Über Iodierung und Reduktion der terminalen Alkinylgruppe wird das (*Z*)-Vinyliodid **131** dargestellt, welches in einer Suzuki-Kreuzkupplung mit dem Ostfragment **129** verknüpft wird. Die TASF-vermittelte Abspaltung der Silylschutzgruppen schließt die Totalsynthese von Ajudazol B (**17**) in einer Gesamtausbeute von 7% über 24 Schritte ab, ausgehend von Ethylglyoxylat (**111**, Schema 2.20). Mit Abschluss der Totalsynthese und Vergleich der ¹H- und ¹³C-NMR-Daten, sowie ein Vergleich von CD-Spektren und Messung der spezifischen Rotation, konnte die absolute Stereokonfiguration aus den bioinformatischen Vorhersagen (s. Kap. 2.3) bestätigt werden.

Schema 2.23. Abschluss der ersten Totalsynthese von Ajudazol B (17) in unserer Arbeitsgruppe.^[42]

3. Motivation und Zielsetzung

Nach der Totalsynthese von Naturstoffen steht häufig die Bereitstellung von Naturstoffen für die biomedizinische Anwendung im Fokus. Basierend auf der Entwicklung einer ersten Totalsynthese lassen sich nicht selten neue Analoga mit leichterem Zugang oder angepasster biologischer Aktivität herstellen. Sowohl Paclitaxel (**13**, s. Kap. 1.1), die Epothilone (**11**, **12**) und seine Derivate (**14**, **15**), als auch Chlorotonil A (**6**) demonstrieren diese Relevanz. Viele der ersten publizierten Totalsynthesen zu bestimmten Naturstoffen sind lang und umständlich, nicht stereoselektiv oder experimentell schwierig. Einer Totalsynthese geht häufig eine Retrosynthese voraus. Der retrosynthetische Ansatz ist eine Methode zur Zerlegung eines Zielmoleküls in kommerziell erhältliche, kleine Strukturen (Schema 3.1). Jede vereinfachte Struktur wird gegebenenfalls selbst zu einer Zielstruktur für weitere Retrosynthesen, bis kommerziell erhältliche Substrate für die chemische Synthese erhalten werden.

Schema 3.1. Schematische Darstellung einer Retrosynthese. Eine Zielstruktur wird sequenziell in vereinfachte Strukturen zerlegt, bis kommerziell erhältliche Startmaterialien erhalten werden.

Oft stellen lineare Synthesestrategien den ersten Ansatz zum Zugang eines Naturstoffes oder einer Naturstofffamilie dar (Schema 3.2). Lineare Syntheseansätze haben eine lange Tradition in der organischen Synthese und werden auch als "target-oriented synthesis" (TOS) bezeichnet.^[61] Hier steht die Darstellung des Zielmoleküls – auch "Target" genannt – im Vordergrund. Mittels retrosynthetischer Analyse des Zielmoleküls ("Target") werden einzelne Strukturelemente in Reaktionsprodukte zerlegt, bis strukturell simple Verbindungen als Startmaterial, häufig kommerziell erhältliche Grundsubstanzen, für die Synthese erhalten werden. Über Verknüpfungsreaktionen werden die jeweiligen strukturellen Untereinheiten – hier A, B und C – konsekutiv aufgebaut. Die Komplexität der Reaktionsprodukte steigt mit jedem Reaktionsschritt, bis schließlich das Zielmolekül vollständig aufgebaut ist.

Schema 3.2. Schematische Darstellung einer linearen Synthesestrategie. Jede strukturelle Untereinheit wird konsekutiv aufgebaut, bis schließlich die Zielstruktur erreicht ist.

Im Idealfall sollte eine Totalsynthese atomökonomisch, effizient und möglichst ressourcenschonend von einfachen Grundbausteinen entwickelt werden. Naturstoffe enthalten oft eine Vielzahl von funktionellen Gruppen, daher sind Schutzgruppen ein unverzichtbares Werkzeug für die Totalsynthese. Mit der Verwendung von Schutzgruppen sinkt jedoch die Atomökonomie und folglich die Effizienz. Zusätzlich haben die Ausbeuten der einzelnen Reaktionsschritte entscheidenden Einfluss: In einer linearen Seguenz sinkt die Gesamtausbeute mit jedem Reaktionsschritt, vor allem wenn die Ausbeuten pro Schritt unter 90% liegen. Für die Entwicklung von Arzneistoffen stellt nicht nur die die strukturelle Komplexität, sondern auch die strukturelle Diversität einen wesentlichen Faktor. Mit dem linearen Aufbau einzelner Untereinheiten erschwert sich der flexible Austausch einzelner Bausteine, denn die Modifikationen und müssen bereits vor Beginn der Synthese geplant werden. Somit beginnt die Analogasynthese häufig beim ersten Reaktionsschritt und erschwert den effizienten Zugang zu einer Substanzbibliothek einer Naturstoffklasse. Die Effizienz und Flexibilität einer Syntheseroute kann durch Zerlegung des Zielmoleküls in Fragmente mit ähnlicher Komplexität gesteigert werden. Der konvergente Ansatz beinhaltet zwei Phasen: In der ersten Phase (Phase I) erfolgt die unabhängige Synthese der einzelnen Strukturbausteine A, B und C (Schema 3.3). Die Phase II verknüpft die einzelnen Strukturelemente in wenigen Schritten zum Zielmolekül. Da die Synthese von komplexen Strukturelementen separat erfolgt, können einzelne Bausteine flexibel ausgetauscht werden.

Schema 3.3. Schematische Darstellung einer modularen Totalsynthesestrategie. In Phase I werden die Strukturelemente A, B und C unabhängig voneinander aufgebaut. Phase II beinhaltet die Verknüpfung der Strukturfragmente zum Zielmolekül über wenige Schritte. Der separate Aufbau ermöglicht einen flexiblen Austausch einzelner Strukturelemente zu Analoga. Beispielsweise kann das Strukturelement C durch ein simpleres Strukturanalogon D substituiert werden.

3.1. Die Oxazolcyclodehydratisierung als linearer Syntheseansatz

Für den Aufbau einer Zielstruktur und seine synthetischen Vorläufer werden funktionelle Gruppen oder Strukturmotive analysiert.^[62] Häufig dienen funktionelle Gruppen als direkte Schnittstelle zur Vereinfachung eines Strukturmotivs. Beispielsweise befindet sich die retrosynthetische Schnittstelle bei Oxazolmotiven üblicherweise zwischen dem Sauerstoffund Stickstoffatom (Schema 3.4). Als Bausteine für die Darstellung, auch Synthon genannt,^[63] ergeben sich die Carbonsäure **99** und 1,2-Aminoalkohol **122**, welche in einer Amidkupplungs zu einem β -Hydroxyamid als Oxazolvorläufer verknüpft werden.

Schema 3.4. Retrosynthetische Analyse des Oxazolmotivs aus der Totalsynthese von Ajudazol B (17).^[42]

Die Verwendung von β -Hydroxyamiden als Vorläuferstruktur stellt eine zuverlässige Strategie zum Aufbau von Oxazolmotiven dar (vgl. Kap. 1.3.4 – 1.3.6) und ist biomimetisch inspiriert. In der Biosynthese von Oxazolen wird ein Acylrest vom ACP (bzw. PCP) auf eine PCP-gebundene Serineinheit übertragen (Schema 3.5a). Der N-acylierte Serinprecursor wird

Motivation und Zielsetzung

unter Katalyse einer Heterocyclase in ein tetraedrisches Intermediat überführt.^[64] Durch Wasserabspaltung bildet sich anschließend ein Oxazolidinsystem, welches zuletzt über eine Oxidase in einer Zweielektronen-Oxidation zum Oxazol oxidiert wird. Schema 3.5b zeigt den Aufbau der Oxazolstruktur aus der Totalsynthese von Ajudazol B (**17**).^[42] Die Sequenz startet mit der Amidkupplung der Fragmente 122 und 99, gefolgt von einer TBS-Schützung und Oxidation des freien Alkohols zu einem α -Acylaminoketon, welches unter Einwirkung von DTBMP zum Enolat **132** deprotoniert wird.^[65] Der nucleophile Angriff des Sauerstoffatoms bildet das Oxazolidinsystem 133 in einer 5-exo-trig-Cyclisierung. Eine intermediäre Halogenierung von Oxazolidin **133** führt schließlich über eine DBU-vermittelte E1-Eliminierung zum Oxazolsystem 130.

Schema 3.5. Synthese von Oxazolen. a.) Biosynthese.^[64] b.) Strukturzielbasierter Ansatz aus der Totalsynthese von Ajudazol B (**17**).^[42] Das α -Acylaminoaldehydderivat **132** ist ein intermediäres Strukturziel.

Mit dem pharmakologischen Potenzial als Atmungsketteninhibitor und ihrer einzigartigen Struktur stellen die Ajudazole einen interessanten Forschungsgegenstand dar. Die Totalsynthese von Ajudazol B (17) hat eine Vielzahl von synthetischen Herausforderungen zu dieser Naturstoffklasse gelöst, aber besitzt einen stark linearen Charakter. Die hohe Linearität der Syntheseroute resultiert vorwiegend aus der Aufbaustrategie des Oxazolsystems, denn diese basiert nicht nur auf einer strukturzielbasierten, sondern auch auf einem transformationsbasierten Ansatz. Der strukturzielbasierte Aufbauplan zielt auf eine intermediäre Zielstruktur ab, um die Retrosynthese des Zielmoleküls zu vereinfachen. Das α -Acylaminoketonderivat **132** stellt das Hauptintermediat dar und wird über eine Amidkupplung synthetisiert. Eine Kombination von Transformationen überführt das Zwischenprodukt in das Oxazol **130**. Ausgehend von den Synthonen **122** und **99** erfordert der Aufbau des Oxazolsystems eine Reaktionssequenz über vier Schritte. Dieser lineare Aufbau des Oxazolmotivs erschwert den flexiblen Austausch einzelner Strukturkomponenten für medizinisch-chemische Untersuchungen.

3.2. Modulare Oxazolmodifikationen als konvergenter Syntheseansatz

Basierend auf der linearen Totalsynthese von Ajudazol B (17) ist für die Totalsynthese von Ajudazol A (16) eine konvergente Synthesestrategie geplant. Konvergente Syntheseansätze beruhen häufig auf topologischen Strategien.^[66] Grundlegend werden entscheidende Strukturmotive – beispielsweise Ringstrukturen – identifiziert und bei der retrosynthetischen Zerlegung konserviert. Unter diesen Voraussetzungen ist bei der theoretischen Teilung des Zielmoleküls ein wenig Kreativität notwendig. Ajudazol A (16) besitzt drei Ringsysteme: Das bicyclische Isochromanonsystem besteht aus einem Phenylring mit anelliertem δ -Lacton. Ein synthetischer Zugang zu diesem Isochromanon-Grundgerüst ist aufwändig, aber in der Totalsynthese von Ajudazol B (17) elegant gelöst worden. Basierend auf einer stereochemischen Strategie wurden bei der retrosynthetischen Zerlegung jegliche Stereozentren entfernt und während der Synthese unter Substratkontrolle eingeführt.^[66] Eine der asymmetrischen ortho-Lithiierungstrategie für den Aufbau der Beibehaltung Isochromanonstruktur erfordert einen Bindungsbruch im δ -Lactonsystem. Folglich steigt hier die Linearität der Totalsynthese, aber die Strategie bietet eine exzellente Stereoselektivität. Für einen stärker konvergenten Ansatz muss daher das letzte Ringsystem erhalten bleiben. Das dritte Ringsystem, eine 2,4-disubstituierte Oxazoleinheit, dient als Verknüpfungseinheit zwischen dem Isochromanon und der Methoxybutenamid-Seitenkette. Setzt man die retrosynthetischen Schnitte an den Substituentenpositionen des Oxazols, so erhält die Syntheseplanung einen modularen Aufbau (Schema 3.6). Eine weitere retrosynthetische Teilung erfolgt, analog zur Totalsynthese von Ajudazol B (17), zwischen dem (Z,Z)-Dien der Methoxybutenamid-Seitenkette. Die darzustellenden Strukturelemente umfassen ein Westfragment, ein Oxazolfragment und ein Ostfragment. Gemäß einer modularen Totalsynthese erfolgt die Synthese der einzelnen Strukturfragmente (Module) unabhängig voneinander. Nach Abschluss der Fragmentsynthesen werden die Module über Kupplungsreaktionen miteinander verknüpft, um die Totalsynthese in möglichst wenigen Schritten zu beenden. Die Verknüpfung zwischen dem Oxazol- und dem Ostfragment soll analog zur Totalsynthese von Ajudazol B (17) erfolgen. Mit der hohen Modularität dieser Synthesestrategie ergeben sich weitere Vorteile, denn nicht nur die Synthesestrategie für das West-, sondern auch für das Ostfragment können nahezu übernommen werden.

Zusätzlich können sowohl der linke als auch der rechte Molekülhalbraum beliebig und flexibel modifiziert werden, um den Zugang zu Naturstoffanaloga mit spezifischen Eigenschaften zu ermöglichen.

Schema 3.6. Schematische Retrosynthese von Ajudazol A für eine modular-konvergente Totalsynthese (spezifische Syntheseplanung s. Kap. 3.2.2). West-, Oxazol- und Ostfragment werden in Phase I unabhängig voneinander aufgebaut. Die iterative Verknüpfung der drei Fragmente beendet die Totalsynthese in möglichst wenigen Schritten (Phase II).

3.2.1. Die Chemie der Oxazole

Oxazol (**135**) besitzt aufgrund der asymmetrischen Anordnung seiner Heteroatome interessante Aciditätseigenschaften, denn jedes Proton im Ringsystem besitzt einen anderen pK_s-Wert (Schema 3.7). Die C²-Position stellt mit zwei Heteroatomen als Bindungsnachbarn die acideste Position dar, gefolgt von der C⁵-Position mit direkter Nachbarschaft zum Sauerstoffatom. Unsubstituiertes Oxazol reagiert mit *n*-Butyllithium bereits bei –78 °C zu 2-Oxazolyllithium (**136**), welches mit Elektrophilen abgefangen werden kann.

Schema 3.7. a.) Qualtitative pKs-Werte der Protonen am Oxazolringsystem. b.): Reaktion von Oxazol (**135**) mit *n*-Butyllithium. Das entstehende 2-Oxazolyllithium (**136**) kann mit Elektrophilen abgefangen werden.

Die hohe Acidität der C²-Position erlaubt eine zuverlässige und effiziente Funktionalisierung von Oxazol (**135**) zu 2-substituierten Oxazolen. Nach erfolgreicher Installation eines C²-Substituenten führt eine zweite basenvermittelte Funktionalisierung ausschließlich zur Bildung von 2,5-disubstituierten Oxazolen. Eine basenvermittelte Funktionalisierung zu

2,4-disubstituierten Oxazolen ist nicht direkt möglich, da die C⁴-Position die niedrigste Acidität aufweist. Die direkte C⁴-Funktionalisierung ist nur möglich, wenn die C²- und C⁵-Position bereits substituiert sind. Dennoch können die unterschiedlichen Aciditäten der C⁴- und C⁵-Position an 2-substituierten Oxazolderivaten geschickt ausgenutzt werden. Bei der Umsetzung von 2-substituierten 5-Bromoxazolen mit einem Überschuss LDA erfolgt die Migration des Bromatoms von der C⁵-Position auf die C⁴-Position (Schema 3.8).^[67] Formal handelt es sich um eine 1,2-Umlagerung des Bromatoms. Die Reaktion beginnt mit der LDA-vermittelten Lithiierung des 4-Bromoxazols 138. Die lithiierte Spezies 139 reagiert mit dem Substrat 138 unter Bildung des 4,5-Dibromoxazols 140 und 5-Lithiooxazol 141.Unter Rückbildung des Substrats 138 erfolgt ein zweiter Lithium-Halogen-Austausch zwischen den Intermediaten 140 und 141 zum lithiierten 4-Bromoxazol 142. Die höhere Acidität der C⁵-Position stellt die Triebkraft der Halogen-Dance-Umlagerung dar. Wässrige Aufarbeitung 2,4-disubstituierten Oxazols **143**. ermöglicht die Isolierung des Eine reduktive Dehalogenierung über einen direkten Lithium-Halogen-Austausch über das 5 Lithiooxazol 144 zum dehalogenierten Oxazol 145 ist ebenfalls denkbar, aber der Reaktionspfad ist bei niedrigen Temperaturen kinetisch gehemmt.

Schema 3.8. Mechanismus der Halogen-Dance-Reaktion an Oxazolen.^[67]

Mit der Halogenfunktionalisierung an der sp²-hybridisierten C⁴-Position der Oxazole bieten sich Kreuzkupplungen als Verknüpfungsreaktion an. Kreuzkupplungen umfassen Kupplungsreaktionen zwischen einem Metallorganyl und einem Arylhalogenid, bei denen

metallorganisch katalysiert eine Kohlenstoff-Kohlenstoff-Bindung geknüpft wird. Die benötigten Metallorganylsubstrate sind über Metallierungen, Transmetallierungen, Halogen-Metallaustausch oder Metallinsertion in eine Halogen-Kohlenstoffbindung simpel und *in situ* darstellbar. Die meisten Kreuzkupplungen, welche in der organischen Synthesechemie eine Bedeutung haben, sind Palladium- oder Nickel-katalysiert.^[68] Die Bedeutung dieser Reaktionen als essentielles Werkzeug der Synthesechemie wurde durch die Vergabe des Nobelpreises im Jahr 2010 an Richard F. Heck, Ei-ichi Negishi und Akira Suzuki für ihre Entwicklungen an den Palladium-katalysierten Kreuzkupplungen geehrt.^[69] Die heutige Vorstellung über den Mechanismus ist für alle Palladium-katalysierten Kreuzkupplungen gleich (Schema 3.9): Der Katalysezyklus beginnt mit der Oxidativen Addition des Halogenaryls an den Katalysatorkomplex. Im nächsten Schritt erfolgt die Transmetallierung. Der organische Rest des Metallorganyls wird auf den Katalysator übertragen. Zuletzt wird der Katalysator in der reduktiven Eliminierung unter Bildung einer Kohlenstoff-Kohlenstoff-Bindung regeneriert, um den Katalysekreislauf zu schließen.

Schema 3.9. Allgemeiner Mechanismus der Übergangsmetall-katalysierten Kreuzkupplung (M = Metall). Die verwendete Organometallverbindung bestimmt den Namen der Reaktion, benannt nach ihren Entdeckern.

Die metallorganischen Substrate können variiert werden und tolerieren, je nach verwendetem Metallorganyl, eine Vielzahl an funktionellen Gruppen. In Kombination mit den vielseitigen Darstellungsmethoden eignet sich die Palladium-katalysierte Kreuzkupplung als attraktive Synthesemethode für die Endstufenverknüpfung einer modularen Totalsynthese.

3.2.2. Die Syntheseplanung für Ajudazol A

Die strategische Teilung des (Z,Z)-Diens und dem modularen Schnitt zwischen der C¹¹- und C¹²-Position erfordern die Einführung von funktionellen Gruppen als geeignete synthetische

Äquivalente für eine chemische Transformation (vgl. Schema 3.6). In der Totalsynthese von fand bereits eine Suzuki-Kreuzkupplung Ajudazol B (17) Anwendung, um das Ostfragment (129) mit dem restlichen Teil des Moleküls zu verbinden (s. Kap. 2.5.6, Schema 2.23). Die gleiche Strategie wird für die Totalsynthese von Ajudazol A (16) übernommen (Schema 3.10). Pentinol 144 und die Methoxybutensäure 64 dienen als Ausgangsmaterial für die Synthese des Ostfragments (129). Die Verwendung von Boronat 129 als Metallorganyl erfordert das (Z)-Vinyliodid 145 als Kupplungspartner. Die Installation der β -Vinyliodidgruppe soll hier, analog zur Totalsynthese von Ajudazol B (17), aus der korrespondierenden Alkinylgruppe erfolgen. Grundsätzlich sollte daher zuerst die Kreuzkupplung des Oxazolfragments **146** mit dem Westfragment **145** über eine sp²-sp³-Kreuzkupplung durchgeführt werden, um potenzielle Selektivitätsprobleme zu vermeiden.

Schema 3.10. Retrosynthesebaum für die modulare Totalsynthese von Ajudazol A (17).

Für das Westfragment (**146**) wird die bereits angewandte *ortho*-Lithiierungsstrategie aus der Ajudazol B-Totalsynthese übernommen,^[42] da sie mit ihrer hohen Selektivität eine zuverlässige Methode zur Darstellung von 8-Hydroxyisochromanonen bietet.^[70] Als Startmaterialien dienen 3-Methylsalicylsäure (**115**) und Ethylglyoxylat (**111**). Das Schlüsselfragment der Synthese stellt das Oxazolfragment **147** dar, da es als zentrales

Verbindungsstück zwischen den Seitensystemen dient. Kommerziell erhältliches Oxazol (**135**) wird zuerst an der C²-Position funktionalisiert und anschließend an der C⁵-Position halogeniert. Die Halogen Dance Reaktion dient als Umlagerungstransformation vom 2,5-disubstiuierten Oxazol zum korrespondierenden 4-Iodoxazol. Das Alkyliodid **146** wird *in situ* zu einem geeigneten Metallorganyl umgepolt, um die Oxazol-Isochromanon-Kreuzkupplung mit dem Aryliodid **147** zu ermöglichen.

4. Ergebnisse und Diskussion

4.1. C⁴-Oxazolfunktionalisierung über die Halogen-Dance-Reaktion

Über Alkylkreuzkupplungen mit Heteroaromaten, insbesondere Oxazolen, ist bisher wenig bekannt; daher wurden als Erstes Studien zur Realisierbarkeit des Syntheseplans durchgeführt.^[71] Kommerziell erhältliches Oxazol (**135**) wurde zuerst über eine ^{*n*}BuLi vermittelte Deprotonierung und Diphenyldisulfid als Elektrophil zum Thioether **148** umgesetzt, welcher LDA-vermittelt an der C⁵-Position halogeniert wurde (Tabelle 4.1).^[72] Entgegen dem Originalprotokoll gelang die Bromierung mit CBr₄ mit einer Ausbeute von 37% für Produkt **149** (Eintrag 1).^[73] Die Verwendung von frisch umkristallisiertem NBS (in CHCl₃) konnte die Ausbeute auf 57% steigern (Eintrag 2). Eine analoge Halogenierung wurde mit NIS als Elektrophil durchgeführt und lieferte deutlich bessere, sowie reproduzierbare Ausbeuten zum Produkt **150** (Eintrag 3).^[74] Der Wechsel auf elementares Iod als Halogenelektrophil lieferte eine exzellente Ausbeute von über 90% (Eintrag 4).

Tabelle 4.1. Thioethersynthese über C2-Funktionalisierung von Oxazol (135) und erster Versuch zurC5-Bromierung.Bedingungen:1. 135 (1.00 Äquiv.), n BuLi, (1.20 Äquiv.),THF, -78 °C,1 h,dannPh_2S2 (1.40 Äquiv.),1h \rightarrow r.t.,43 h,91%.2. 148 (1.00 Äquiv.),LDA (1.10 Äquiv.),THF, -78 °C,30 min,dannE* (1.10 Äquiv.),1 h.

Eintrag	Hal⁺	Produkt	Ausbeute
1	CBr_4	149	37%
2	NBS	149	57%
3	NIS	150	70%
4	I_2	150	91%

- 44 -

Die erfolgreiche C⁵-Halogenierung am Arylthiooxazol **148** ebnete den Weg zur Untersuchung der Halogen-Dance-Reaktion zur C⁴-Funktionalisierung (Tab. 4.2). Das 4-Bromoxazol **151** war über die Halogen-Dance-Reaktion mit exzellenten Ausbeuten effizient ohne Nebenprodukte zugänglich (Eintrag 1), aber erwies sich als reaktionsträge in Aryl- und Alkyl-Kreuzkupplungen.^[47,71] Die erste Umsetzung des iodierten Analogons **150** ergab ohne Additive lediglich nur 21% des gewünschten 4-lodoxazols **152** und 63% des dehalogenierten Produktes **148** (Eintrag 2). Gleichzeitig wurden Spuren des Ausgangsmaterials **150** isoliert, welche auf einen unvollständigen Umsatz der Reaktion hindeutete. Eine Erhöhung der LDA-Äquivalente führte zwar zu einem vollständigen Umsatz, aber vergleichbaren Ausbeuten (Eintrag 3).

	Hal N 149: Ha 150: Ha	SPh THI al = Br al = I	LDA F, -78 °C	Hal N SPh 151: Hal = Br 152: Hal = I	+ (N) SPh 148
Eintrag	Substrat	Additiv	LDA	Reaktions-	Ausbeute
		(Äquiv.)	(Äquiv.)	zeit	
1	149	_	1.30	50 min	151 (89%)
2	150	_	1.30	50 min	152 (23%), 148 (63%),
3	150	_	1.30	50 min	152 (25%), 148 (70%)
4	150	140 (0 10)	1 20	$60 \min^{[a]}$	152 (990/) ^[b] 1/9 (100/)

Tabelle 4.2. Halogen-Dance-Reaktion an den Halogenoxazolen 149 und 150.

^[a] Zugabezeit der LDA-Lösung. ^[b] enthält ≈ 8% des 4-Bromoxazols **151** als Verunreinigung (GC/MS-Analyse).

Die deutlich geringere Ausbeute an Iodoxazol **152** und das Auftreten des dehalogenierten Hauptproduktes **148** deuten auf eine reduktive Dehalogenierung an der C⁵-Position als dominierende Konkurrenzreaktion hin. Formal handelt es sich bei der reduktiven Eliminierung um einen Lithium-Halogen-Austausch. Deprotonierungen sind im Vergleich zu Lithium-Iod-Austauschreaktionen kinetisch benachteiligt,^[75] daher läuft die Deprotonierung des Substrats **150** zum Intermediat **150a** deutlich langsamer ab (Schema 4.1). Bei der Halogen Dance Reaktion handelt es sich um eine autokatalytische Reaktion, da das Substrat selbst als Katalysator dient: Das deprotonierte Substrat **150a** initiiert einen Lithium-Halogen-Austausch mit **150** zum Dihalogenoxazol **150b** und der dehalogenierten Spezies **148a**. Ein zweiter Austausch zwischen diesen beiden Intermediaten führt zur Bildung des thermodynamisch stabileren Carbanions **152b** und Regeneration des Substrates **150**. Für den Reaktionsmechanismus des Katalysezyklus müssen das Substrat **150** und seine deprotonierte Spezies **150a** gemeinsam in Lösung vorliegen, allerdings ist diese Bedingung aufgrund der schnelleren reduktiven Dehalogenierung nicht erfüllt. Für eine selektive und

effizientere Bildung des gewünschten Produktes **152** muss der Lithium-Iod-Austausch am Substrat **150** unterdrückt werden.

Schema 4.1. Postulierter Mechanismus der Halogen Dance Reaktion am 5-lodoxazol **152** ohne Additiv.^[73] Im Gegensatz zu den 5-Bromoxazolen (vgl. Schema 3.8) verläuft der Lithium-Halogen-Austausch schneller ab als die Deprotonierung an der C⁴-Position.

Die Zugabe vom Bromoxazol 149 als katalytisches Additiv führte zu einer erheblichen 4-lodoxazols 152 Ausbeutesteigerung des gewünschten und die dominierende Konkurrenzreaktion konnte fast vollständig unterdrückt werden (Eintrag 4).^[73] Lediglich 10% des dehalogenierten Produktes 148 wurden isoliert und das gewünschte 2,4-disubstiuierte Oxazol 152 wurde mit einer Ausbeute von 81% gewonnen. Mit einer höheren Bindungsdissoziationsenergie der Brom-Kohlenstoffbindung (D^{0}_{298} (CH₃CH-Br) = 338.3 ± 3.1 kJ mol⁻¹) als die Iod-Kohlenstoff-Bindung ($D_{298}^{0}(C_{sp2}-I) = 259.0 \pm 4.1 \text{ kJ mol}^{-1}$) ist der Lithium-Halogen-Austausch an Arylbromiden kinetisch gehemmt.^[76] Zusätzlich erhöht die höhere Elektronegativität des Bromatoms die Acidität der C⁴-Position. Die Deprotonierung des Additivs 149 zum Intermediat 149a erfolgt selektiv unter einer langsamen Zugabe der LDA-Lösung und dient als Katalysator für diese Reaktion (Schema 4.2). Ein Lithium-Halogen-Austausch von Katalysatorspezies 149a mit dem Substrat 150 führt zur Bildung der beiden gemischten Oxazole 150b und 148a. Analog zu Schema 4.1 bildet sich anschließend das thermodynamisch stabilere 4-lodoxazol 152a unter Rückbildung des katalytischen Additivs 149.

Schema 4.2. Postulierter Mechanismus der Halogen-Dance-Reaktion am 5-lodoxazol **150** mit dem Additiv **149**.^[73] Langsame Zugabe der LDA-Lösung garantiert eine selektive Deprotonierung des Bromoxazols **149** und unterdrückt die Bildung des monosubstituierten Oxazols **148** als dominierendes Nebenprodukt.

Die jeweils unterschiedlichen R_f-Werte des Ausgangsmaterials und der entstandenen Produkte ermöglichten die problemlose säulenchromatographische Aufreinigung. Das ebenfalls entstandene 4-Bromoxazol **151** konnte nicht vom Produkt **152** abgetrennt werden, da beide Substanzen einen identischen R_f-Wert besitzen. Die regioisomeren Halogenoxazole unterscheiden sich nicht nur in ihrem chromatographischen Laufverhalten, sondern auch in ihren NMR-spektroskopischen Eigenschaften: Die Wanderung des Iodsubstituenten am Oxazolsystem ist besonders anschaulich im ¹H-NMR-Spektrum zu erkennen (Abb. 4.1): Mit 7.31 ppm zeigt das H⁴-Signal des 5-Iodoxazols **152** eine Hochfeldverschiebung. Das H⁵-Signal des 4-Iodoxazols **154** befindet sich nach der Halogen-Dance-Reaktion im Tieffeld bei 7.65 ppm.

Abbildung 4.1. Vergleich der Ausschnitte aus den ¹H-NMR-Spektren von 5-Iodoxazol **150** (300 MHz, CDCl₃) und 4-Iodoxazol **152** (400 MHz, CDCl₃). Die Umlagerung des Iodatoms ist eindeutig an den unterschiedlichen chemischen Verschiebungen im aromatischen Bereich zu erkennen.

Nachdem das 4-lodoxazol 152 in ausreichenden Mengen dargestellt werden konnte, wurde die Thioethergruppe zum jeweiligen Sulfon oxidiert (Schema 4.3).^[72] Die Oxidation erfolgte Standardprotokoll mit wässriger H₂O₂-Lösung (30% v/v) gemäß einem und Ammoniummolybdat in EtOH mit quantitativer Ausbeute. Die Sulfonylgruppe an der C²-Position dient als Abgangsgruppe für den eigentlichen Substituenten und kann zu einem späteren Zeitpunkt mit einem Lithiumorganyl substituiert werden. Strategien zur C²-Funktionalisierung über die Sulfonylgruppe wurden von J. P. Gölz untersucht.^[77] In den ersten Kreuzkupplungsversuchen wies das Oxazol **153** eine geringe Reaktivität auf.^[47] Erste Kreuzkupplungsversuche mit dem Iodanalogon 154 ergaben deutlich höhere Ausbeuten.^[71]

Schema 4.3. Oxidation der Phenylthioether **151** und **152** zu den Sulfonen **153** und **154**.^[72] Bedingungen: 30% v/v aq. H_2O_2 , (NH₄)₆Mo₇O₂₄ (2.20 Äquiv.), EtOH, 0 °C \rightarrow r.t., über Nacht.

4.2. Erste Untersuchungen zur sp²-sp³-Suzuki-Kreuzkupplung an Oxazolen

Die erfolgreiche Installation des C⁴-lodosubstituenten zu 2.4-disubstituierten Oxazolen über die Halogen-Dance-Reaktion ebnete den Weg zur Evaluierung der sp³-sp²-Kreuzkupplung an 4-lodoxazolen.^[78] Das am besten entwickelte Kreuzkupplungsverfahren ist die Suzuki-Kreuzkupplung, da der allgemein akzeptierte Reaktionsmechanismus dieser Reaktion am besten erforscht ist (Schema 4.4).^[79] Analog zu den anderen Kreuzkupplungsreaktionen (vgl. Schema 3.9) beginnt der Katalysezyklus mit der oxidativen Addition eines Organohalogenids an den Katalysator und endet mit der reduktiven Eliminierung. Die Suzuki-Reaktion verwendet Organoborane als Transmetallierungsreagenz, die eine Vielzahl funktioneller Gruppen tolerieren und in der Regel eine hohe Stabilität gegenüber Sauerstoff und Feuchtigkeit aufweisen. Für den Ablauf der Reaktion ist der Einsatz einer Base entscheidend, denn diese ermöglicht erst den Organylgruppentransfer in der Transmetallierung. Im Transmetallierungsschritt sind grundsätzlich zwei Reaktionspfade denkbar: ^[80] der Oxo-Palladium-Reaktionsweg (A) und der Boronat-Reaktionsweg (B). Im Reaktionspfad A wird das Halogenid-Ion X⁻ aus der Koordinationssphäre des Katalysators durch ein Hydroxid-Ion verdrängt, um anschließend den Organylrest des Organoborans auf den Pd^{II}-Komplex zu übertragen. Im alternativen Reaktionsweg B erfolgen die Quarternierung des Organoborans und eine konzertierte Substitution des Halogenid-Liganden durch den Boronatkomplex. Triebkraft der Transmetallierung stellt in beiden Reaktionspfaden die hohe Bindungsstärke der Bor-Sauerstoffbindung dar. Theoretische Berechnungen beider Reaktionswege lieferten uneindeutige Ergebnisse, dennoch scheint der Reaktionspfad A den primären Reaktionsweg zu bilden.^[81]

Schema 4.4. Reaktionspfade der Suzuki-Kreuzkupplung.^[80] A: Oxo-Palladium-Reaktionsweg. B: Boronat-Reaktionsweg.

Alkylborverbindungen können ebenfalls in der Suzuki-Kreuzkupplung verwendet werden. Kreuzkupplungen mit Alkylsubstraten konnten sich in der chemischen Synthese bisher nicht vollständig durchsetzen, da viele Nebenreaktionen und –produkte (z.B. Isomerisierungen und Eliminierungen) auftreten können. Alkyl-Suzuki-Miyaura-Kreuzkupplungen fanden - 49 - bereits Anwendung in einigen Totalsynthesen, daher erschien diese Reaktion die vielversprechendste Methode zur Realisierung einer sp²-sp³-Kreuzkupplung.^[82] Die *B*-Alkyl-Kreuzkupplung ist an Oxazolsystemen bisher noch nicht beschrieben worden, daher waren genaue Reaktionsbedingungen für eine erfolgreiche Synthese unbekannt. Zur Untersuchung geeigneter Bedingungen wurde in den ersten Versuchen Phenethylboronsäure (**155**, Abb. 4.2) als sp³-hybridisiertes Modellsystem gewählt, da es kommerziell erhältlich ist und bereits in zahlreichen Kreuzkupplungsreaktionen verwendet wurde.^[83] In diesen Studien erwies sich Pd(dppf)Cl₂ (**156**) mit seinem niedrigen Bisswinkel als Katalysator der Wahl.

Abbildung 4.2. Strukturdarstellung von Phenethylboronsäure (155) und Pd(dppf)Cl₂ (156).^[83]

Bei Alkylkreuzkupplungen hat die Wahl des Katalysators entscheidenden Einfluss auf den Reaktionsverlauf, da sp³-hybridisierte Organometallverbindungen zur β -Hydrideliminierung neigen. Der Einsatz von chelatisierenden Phosphanliganden – wie **156** – kann diese unerwünschte Nebenreaktion unterdrücken. Weiterhin ist der Bisswinkel des Katalysators entscheidend,^[84] der bei Pd(dppf)Cl₂ auf 99.07° mittels Röntgenbeugung bestimmt wurde.^[85] Ein geeigneter Bisswinkel favorisiert die *cis*-Geometrie der Liganden am Metallzentrum und bringt die Kupplungspartner in räumliche Nähe, sodass die reduktive Eliminierung gegenüber der β -Hydrideliminierung bevorzugt stattfindet. Pd(dtbpf)Cl₂ stellt eine verwandte Katalysatorspezies von Pd(dppf)Cl₂ dar, mit der eine erfolgreiche Kreuzkupplungsreaktion zwischen Oxazol **154** und Alkylboronsäure **155** durchgeführt werden konnte (Schema 4.5).^[71] Die beiden entstandenen Regioisomere **157** und **158** konnten chromatographisch nicht getrennt werden, konnten aber über die NMR-Daten im Verhältnis 1:3 (**159:160**) bestimmt werden.

Schema 4.5. Erste erfolgreiche sp²-sp³-Kreuzkupplung an Oxazolen mit dem Modellsystem **157**.^[71] Bedinngungen: **154** (1.00 Äquiv.), Pd(dtbpf)Cl₂ (0.10 Äquiv.), **155** (2.00 Äquiv.), 2.0M aq. Na₂CO₃, THF/Toluol (1:1), 70 C, 18h, 36%. Das Produktverhältnis wurde ¹H-NMR-spektroskopisch ermittelt (**157:158** = 1:3).

Gaschromatographie mit Massenspektrometrie-Kopplung, sowie HSQC- und HMBC-Strukturaufklärung Spektren ermöglichten die der Konstitutionsisomere. Das Konstitutionsisomer, Hauptprodukt **158** ist ein unerwartetes welches über eine Daher wird folgender Mechanismus β Hydrideliminierung entstanden sein muss. angenommen (Schema 4.6): Nach der oxidativen Addition des Aryliodids 154 an den Pd⁰-Katalysator zu Arylkomplex 157a folgt die Transmetallierung zum Dialkylkomplex 157b. Eine reduktive Eliminierung führt zum erwarteten Produkt 157, allerdings ist ein zweiter Reaktionspfad möglich: Über eine β -C,H-agostische Wechselwirkung zwischen dem Metallzentrum und dem β -H-Atom des Alkylliganden kann sich alternativ der Hydrido- μ^2 -Olefinkomplex **158a** bilden. Eine darauffolgende Hydrometallierung bildet den unerwartete Alkylkomplex **158b**, welcher nach der reduktiven Eliminierung das Hauptprodukt 158 liefert. Hydrometallierungen favorisieren üblicherweise die Bildung des Anti-Markownikow-Produktes (vgl. Hydroborierung mit BH₃ an einfach substituierten Olefinen: Anti-Markownikow-Produkt: Markownikow-Produkt \approx 94:6),^[86] daher müssen sich die Schritte von Alkylkomplex 157b zu Komplex 158b in einem schnellen Gleichgewicht befinden. Da Produkt 157 das Anti-Markownikow- und Produkt 158 das Markownikow-Produkt darstellen, muss die reduktive Eliminierung am Komplex 158b wesentlich schneller stattfinden als am Komplex **157b**. Diese Annahme ist auf den höheren sterischen Anspruch des isomerisierten Alkylliganden zurückzuführen, denn der höhere sterische Druck begünstigt die reduktive Eliminierung.

Schema 4.6. Postulierter Mechanismus für die Bildung der Produkte 157 und 158. Die Isomerisierung von Komplex 157b zu Komplex 158b befindet sich in einem schnellen Gleichgewicht. Für die Bildung des Olefinkomplexes 158a kann ein assoziativer Mechanismus angenommen werden.

Dieser erfolgreiche Kreuzkupplungsversuch Oxazol 154 erste mit dem und Phenethylboronsäure (155) führte zu einem unerwarteten Nebenprodukt, aber demonstrierte die Realisierbarkeit einer Alkyl-Kreuzkupplung an 4-Iodoxazolen. Der Einsatz von (dtbpf) als starker σ -Donorligand ermöglicht eine effiziente oxidative Insertion des Katalysatorkomplexes in ein träges Reaktionszentrum, allerdings stellt die β-Hydrideliminierung ein signifikantes Problem dar. In mechanistischen Studien von Fu et al. konnte eine thermische Abhängigkeit der β-Hydrideliminierung beobachtet werden. Mit starken σ -Donorliganden (P^tBu₂Me) am Pd-Komplex gelang die oxidative Addition eines Alkylbromids an den Pd-Komplex selbst bei niedrigen Temperaturen (s. Schema 4.7).^[87] In den Studien war die reduktive Eliminierung bei niedrigen Temperaturen favorisiert, während die β -Hydrideliminierung erst bei Temperaturen ab 50 °C dominierte.

Schema 4.7. Thermische Abhängigkeit der β-Hydrideliminierung und der reduktiven Eliminierung.

Dieser Befund unterstreicht die kritische Rolle von starken σ -Donorliganden und der Reaktionstemperatur. Sterisch gehinderte Liganden sollen die reduktive Eliminierung favorisieren, aber begünstigen bei hohen Temperaturen ebenfalls die Bildung von dreifachkoordinierten Pd^{II}-Addukten. Weiterhin liefert eine höhere Temperatur die benötigte Aktivierungsenergie E_A. Die Aktivierungsenergie der oxidativen Addition kann als Funktion des Bisswinkels betrachtet werden (Abb. 4.3).^[88] Mit größerem Bisswinkel sinkt die E_A und sowohl die Reaktionsgeschwindigkeit der oxidativen Addition als auch der reduktiven Eliminierung nehmen zu.

Abbildung 4.3. a.) Aktivierungsenergie E_A (Strichlinie) als Funktion des P–M–P-Bisswinkels (qualitativ).
b.) Pd(dtbpf)Cl₂ (159) mit Bisswinkel und Arylpalladiumbromidkomplex (160) mit Ar–Pd–Br-Bindungswinkel.

Mit Hilfe einer Röntgenstrukturanalyse von Pd(dtbpf)Cl₂ (**159**) konnte einen Bisswinkel von 104.22° bestimmt werden.^[89] Damit besitzt dieser Katalysator nicht nur den größten P–Pd–P-Winkel aller Bisphosphinoferrocen-Komplexe, sondern der Katalysatorbisswinkel entspricht auch dem Winkel des Produktkomplexes **160** (104.28°), welcher von Hartwig *et al.* dokumentiert wurde.^[90] Daher sollte die Aktivierungsenergie für die oxidative Addition relativ niedrig liegen und eine Umsetzung bei niedrigen Temperaturen möglich sein. Da Pd(dtbpf)Cl₂ das optimale Katalysatorsystem repräsentiert, muss der Transmetallierungsschritt optimiert werden.

Theoretische Untersuchungen der Transmetallierung in der Suzuki-Miyaura-Reaktion zeigen eine sehr hohe Aktivierungsbarriere für eine "basenfreie" Transmetallierung.^[80] Für den Mechanismus wird daher eine vierzentriger Übergangszustand 161 mit Drei-Zentren-Zweielektronen-Bindungen und Hydroxo- μ^2 -Verbrückung angenommen (Schema 4.8a). Der Übergangszustand entsteht entweder durch Adduktbildung des Bororganyls mit R'L₂Pd(OH) (161a, Oxo-Pd-Reaktionsweg) oder durch Koordination eines Hydroxyborans an den Pd⁰-Komplex (**161b**, Boronat-Reaktionsweg, vgl. Schema 4.4). Der Zerfall des Übergangszustandes 161 initiiert den Alkylgruppentransfer über einen S_F2(coord)-Mechanismus.^[79,91] Jüngere Studien aus dem Jahr 2011 bezeichnen die Adduktbildung als Schlüsselkomplex für die Transmetallierung von Bororganylen und gleichzeitig eine Beschleunigung der reduktiven Eliminierung.^[81] Gemäß dieser Ergebnisse muss der Übergangszustand für Bororganyle mit höherer Lewis-Acidität leichter zugänglich sein. Tatsächlich konnte in mechanistischen Studien eine höhere Reaktivität vom B-Hexyl-9-BBN (162) im Vergleich zum korrespondierenden 9-OBBD-Derivat (**163**) beobachtet werden, da Alkylboran **162** in THF mit NaOH hauptsächlich als Boranatkomplex 162a vorliegt (Schema 4.8b). Beim Borinsäurederivat 163 konnte keine wesentliche Bildung des Borinatkomplexes 163a beobachtet werden.

Schema 4.8. a.) Bildung des Übergangszustandes **161** bei der Transmetallierung in der Suzuki-Miyaura-Kupplung. b). Komplexgleichgewichte von 9-Hexyl-BBN (**162**) und 10-Hexyl-OBBD (**163**) mit den chemischen Verschiebungen der unterschiedlichen Spezies im ¹¹B-NMR-Spektrum.

4.3. Erweiterte Studien zur sp²-sp³-Suzuki-Kreuzkupplung an Oxazolen

Ein Organoboran-Modellsystem sollte für erweiterte Studien eine bessere Transmetallierung und auch einen effizienten Umsatz bei niedrigen Temperaturen ermöglichen. Da sowohl ein Einfluss des aromatischen Systems des kommerziell erhältlichen Testsystems **155** als auch die Abwesenheit der β -Methylgruppe auf die β -Hydrideliminierung nicht ausgeschlossen werden konnte, wurde ein Modellsystem aus kommerziell erhältlichem (–)-Isopulegol (**164**) über drei Stufen synthetisiert (Schema 4.9). Nach Silylierung der Alkoholfunktion wurde die Alkenylgruppe über eine Hydroborierung zum Alkohol **165** umgesetzt und in einer Appel-Reaktion zum Alkyliodid **166** transformiert.

Schema 4.9. Synthese von Modellsystem 166. Bedingungen: 1. 164 (1.00 Äquiv.) TBSCI (1.50 Äquiv.), Imidazol (1.50 Äquiv.), CH₂Cl₂, 0 °C → r.t., 16 h, quant. 2a. 165 (1.00 Äquiv.), BH₃·SMe₂ (1.50 Äquiv.), THF, 0 °C → r.t, 3 h, 2b. aq. NaOH (7.5м, 3.00 Äquiv.)/H₂O₂ (30% v/v, 3.00 Äquiv.), 0 °C → r.t. 88% (dr = 12:1). 3. 165 (1.00 Äquiv.), PPh₃ (1.70 Äquiv.), I₂ (1.50 Äquiv.), Imidazol (3.00 Äquiv.), 2.5 h, 68%.

Die Diastereoselektivität der Hydroborierung von (–)-Isopulegol (**164**) ist bekannt und wird hauptsächlich von sterischen Einflüssen bestimmt.^[92] Die konformative Anordnung des Ringsystems ist in Schema 4.10 dargestellt: Zur Minimierung der 1,3-Allylspannung richten sich in allylischen Systemen die kleinsten Substituenten in der Doppelbindungsebene aus.^[93] Da es sich beim Proton um den kleinsten Substituenten handelt, liegt hauptsächlich die energetisch favorisierte Konformation **164a** vor. Die faciale Selektivität der Addition des - 54 -
Borans aus dem sterischen Anspruch der Silylethergruppe. Durch den großen Substituenten ist die *Si*-Seite der Doppelbindung abgeschirmt, sodass die Addition von der weniger sterisch gehinderten *Re*-Seite erfolgt.

Schema 4.10. Erklärung der diastereoselektiven Hydroborierung von (–)-Isopulegol (164): Aufgrund Minimierung der 1,3-Allylspannung stellt 164a die stabilste Konformation dar. Die Addition des Borans erfolgt von der weniger sterisch gehinderten *Re*-Seite.

Um das Alkyliodid **166** in ein geeignetes Transmetallierungsreagenz umzuwandeln, war eine Lithium-Austausch-Reaktion mit darauffolgender Transmetallierung notwendig. Da 9-BBN-Derivate eine höhere Lewis-Acidität – und somit effizientere Transmetallierungs-Eigenschaften (vgl. Schema 4.8) – aufweisen, erfolgte zuerst die Lithiierung in Diethylether in Anwesenheit von MeO-9-BBN (Schema 4.11).

Schema 4.11. *In situ*-Darstellung von Boranat **167** und indirekter Nachweis mittels oxidativer Hydrolyse. Bedingungen: 1. **166** (1.00 Äquiv.), ^{*t*}BuLi (2.00 Äquiv.), 9-BBNOMe (1.10 Äquiv.), Et₂O, $-78 \text{ °C} \rightarrow r.t$, 1 h, 2. aq. NaOH (7.5M, 3.00 Äquiv.)/H₂O₂ (30% v/v, 3.00 Äquiv.), 0 °C \rightarrow r.t., 1 h.

Da die direkte Hydroborierung des korrespondierenden Alkens mit 9-BBN scheiterte, war der Umweg über das lodid **166** notwendig. Die oxidative Hydrolyse mit NaOH und H₂O₂ diente als hinreichender Nachweis der Borspezies **167** und lieferte den Alkohol **165** in einer Ausbeute von 95%. Mit der erfolgreichen *in situ*-Darstellung und Nachweis des 9-BBN-Derivats **167** konnten die Studien zur sp²-sp³-Kreuzkupplung mit Oxazol **154** fortgesetzt werden. Pd(dtbpf)Cl₂ erwies sich als ideales Katalysatorsystem, daher wurde der Einfluss von Lösungsmittteln, Base, Additiven und Reaktionstemperatur untersucht (Tabelle 4.3).

Ergebnisse und Diskussion

Tabelle 4.3. Untersuchung der geeigneten Bedingungen für eine sp²-sp³-Kreuzkupplung an Oxazolen. Bedingungen: **167** (1.40 Äquiv.), **154** (1.00 Äquiv.), Pd(dtbpf)Cl₂ (0.10 Äquiv.), aq. Base (50.0 Äquiv.), 20 h.

TBSO OMe B B B B B B C B C C B C C B C C Me C B C C B C C B C C B C C C C C C C C		$\begin{array}{c} \begin{array}{c} & & \\ I & & \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $		TBSO NSO ₂ Ph 168		
Eintrag	Solvens	aq. Base	Additiv	Т	Umsatz	Ausbeute
			(Äquiv.)		[%]	
1	THF/Toluol (1:1)	2м Na ₂ CO ₃	_	70 °C	100	16%
2	THF/Toluol (1:1)	$2M Na_2CO_3$	_	r.t.	100	13%
3	THF	2м Na ₂ CO ₃	—	r.t.	68	23%
4	1,4-Dioxan	2м Na ₂ CO ₃	_	r.t.	88	<1% ^[a]
5	DMF	3M Cs ₂ CO ₃	_	r.t.	100	_
6	DMF	$3M Cs_2CO_3$	Ag ₂ O (2.00)	r.t.	100	—
7	DMF/THF (3:2)	$3M Cs_2CO_3$	—	r.t.	100	7%
8	THF	3M Cs ₂ CO ₃	_	r.t.	100	58%
9	THF	$3M Cs_2CO_3$	AsPh ₃ (0.30)	r.t.	100	69%

^[a] 3% brsm.

Zuerst wurden die Bedingungen aus dem ersten erfolgreichen Kreuzkupplungsexperiment getestet (Eintrag 1, vgl. Schema 4.5) und bei vollem Reaktionsumsatz wurden die ersten Spuren des Produktes **168** isoliert, allerdings konnte eine mögliche β -Hydrideliminierung aufgrund der erhöhten Reaktionstemperatur nicht ausgeschlossen werden. Analoge Bedingungen bei Raumtemperatur führten ebenfalls zu vollständigem Umsatz des lodoxazols 154 sowie zu einer ähnlichen Ausbeute (Eintrag 2), somit ist die oxidative Insertion des Substrats 154 problemlos bei Raumtemperatur möglich. Ein Erwärmen der Reaktion war in weiteren Untersuchungen nicht notwendig. Da die Verwendung von THF zu einer geringfügigen Ausbeuteerhöhung bei unvollständigen Umsätzen führte (Eintrag 3), wurde der Einfluss des Lösungsmittels weiter untersucht. 1,4-Dioxan sollte als hochpolares, koordinierendes Lösungsmittel die Halogenid-Dissoziation des Aryl-Palladium-Komplexes nach der oxidativen Addition beschleunigen. Dieses Vorgehen verbesserte jedoch Ausbeute und Umsatz nicht (Eintrag 4). DMF in Kombination mit Cs₂CO₃ führte wieder zu vollständigen Umsätzen, aber es konnte kein Produkt isoliert werden (Einträge 5 und 6). Basierend auf den Ergebnissen der Einträge 4 bis 6 schien THF einen entscheidenden Einfluss auf den Reaktionserfolg zu haben, daher wurde im nächsten Versuch ein Solvenssystem aus DMF und THF (3:2) untersucht (Eintrag 7). In diesem Experiment konnte wieder Produkt isoliert werden, somit war die elementare Bedeutung von THF als Lösungsmittel bestätigt. Die Verwendung von THF in Kombination mit Cs₂CO₃ als Base führte zu einer erheblichen Ausbeutesteigerung (Eintrag 8). Mit AsPh₃ als Cokatalysator konnte die Ausbeute auf 69% gesteigert werden (Eintrag 9). Zur Strukturvalidierung wurden zweidimensionale NMR-Daten aufgenommen Der Erfolg der Kreuzkupplung konnte über die HMBC-Korrelationen von C¹⁰ ($\delta_{C} = 138.17 \text{ ppm}$) und C¹¹ ($\delta_{C} = 143.64 \text{ ppm}$) zu den benzylischen Protonen H^{8a} ($\delta_{H} = 2.25 \text{ ppm}$) und H^{8b} ($\delta_{H} = 2.62 \text{ ppm}$) endgültig bestätigt werden (Abb. 4.4).

2D-HMBC (700.41 MHz, CDCl3) anti-H syn-H⁹ **-131** -132 --133 -134 C¹⁵ -135 -136 -137 {2.62,138.17} {2.28.138.16} -138 C¹⁰ Chemical Shift [ppm] -139 -140 -141 -142 {2.63,143.64} -143 (+)C¹¹ -144 -145 -146 -147 -148 -149 L150 2.50 2.45 2.40 Chemical Shift [ppm] 2.75 2.70 2.55 2.35 2.30 2.15 2.65 2.60 2.25 2.20

Abbildung 4.4. Ausschnitt aus dem HMBC-Korrelationsspektrum von Verbindung 168.

4.4. Phase I: Fragmentsynthesen

4.4.1. Westfragmentsynthese

Nach den abgeschlossenen Modellstudien der Alkyl-Suzuki-Kreuzkupplung an 4-lodoxazolen mit dem neuen Modellsystem 166 wurde mit der Synthese des Westfragments 146 begonnen. Die retrosynthetische Zerlegung vom Isochromanon 146 erfolgte in Analogie zur Ajudazol B (17).^[70] Zum Totalsynthese von stereoselektiven Aufbau des anti,anti-konfigurierten Isochromanonfragments dient auch hier die asymmetrische C⁸-Stereozentrums. ortho-Lithiierung als Schlüsselschritt für den Aufbau des 3-Methylsalicylsäure (115) stellt den Grundbaustein für das aromatische Modul des Isochromanons dar (Schema 4.12).

Schema 4.12. Synthese von Amid **116**.^[70] Bedingungen: 1. **115** (1.00 Äquiv.), NaH (2.40 Äquiv.), Allylbromid (3.00 Äquiv.), DMF, 1 h, 92%. 2. aq. NaOH (6.0M, 6.00 Äquiv.), MeOH, reflux, 4 h, 3. SOCl₂ (3.00 Äquiv.), 5 h, $HN^{i}Pr_{2}$ (3.00 Äquiv.), $CH_{2}Cl_{2}$, 0 °C \rightarrow r.t., 12 h, 85% (3 Schritte).

Die Allylierung der Phenolfunktion erfolgte über zwei Schritte mit Allylbromid als Alkylierungsmittel und anschließende alkalische Hydrolyse des entstandenen Allylcarbonsäureesters. Eine Carbonsäureaktivierung mit Thionylchlorid und Umsetzung mit Diisopropylamin lieferte Amid **116** in einer Ausbeute von 85% über 3 Schritte. Aus sterischen Gründen können tertiäre Amide nicht flach in der Ringebene des Aromaten liegen, sondern schließen, je nach Substitutionsmuster, einen Winkel von 57° bis 90° ein (Abb. 4.5).^[94] Durch die sterisch bedingte eingeschränkte Rotation ist die Amid-Aromat-Achse prinzipiell asymmetrisch substitutiert, sodass ein racemisches Gemisch an Atropisomeren vorliegt.

Abbildung 4.5. Räumliche Amidstruktur eines unsubstituierten Aromaten (A) und eines *ortho*-substituierten Aromaten (B) zur Erklärung ihrer Atropisomerie.

metallierungsdirigierende Gruppe (MDG).^[95] Diisopropylamid-Gruppe dient als Die Gruppen Metallierungsdirigierende sind inert gegen nucleophile Angriffe durch Organolithiumverbindungen und besitzen ein Heteroatom (N, O, S), welches durch Bildung von fünfgliedrigen Intermediaten die ortho-Regioselektivität bewirkt (Schema 4.13). Mechanistisch erfolgt die ortho-Metallierung formal über einen SEAr-Mechanismus von Verbindung 169 zu Aryllithium 169c über mehrere vorgeschaltete Gleichgewichtsreaktionen (169a und 169b), sodass die Metallierungszeit zu Komplex 169c, abhängig von Temperatur, Metallierungsreagenz und Konzentrationen, zwischen 5 min und 1 h liegen kann.^[96] Aryllthium 169c kann anschließend mit einem Elektrophil zu Verbindung 170 funktionalisiert werden. Die verwendeten Lithiumorganyle liegen in unpolaren Lösungsmitteln als Aggregate vor, daher werden die Reaktionen in polaren, lewis-basischen Lösungsmitteln wie THF oder Diethylether mit bidentaten Liganden als Additiv, wie TMEDA, durchgeführt, um die Aggregate aufzubrechen und die Reaktivität zu erhöhen.^[75]

Schema 4.13. Mechanismus der dirigierten ortho-Metallierung.

Die Stabilität des metallierten Aromaten **169c** hängt hauptsächlich von der Temperatur ab, aber auch von der Konzentration. Die größte Stabilität ist bei tiefen Temperaturen gewährleistet, weshalb die Reaktion meist bei –78 °C durchgeführt wird.^[96]

Ortho-lithiierte Aromaten mit MDG = NR₂ (R \neq H) weisen – analog zu den tertiären aromatischen Amiden (vgl. Abb. 4.5) – ebenfalls eine atropisomere Struktur auf. Röntgenstrukturanalysen konnten die Atropisomerie der lithiierten Amide **171** und **172** nachweisen (Abb. 4.6).^[94,97]

Abbildung 4.6. Die lithiierten Amide 171 und 172 besitzen eine atropisomere Achse.^[97] Die angegebene räumliche Struktur konnte durch Röntgenstrukturanalyse bestätigt werden. Die ausgeprägte Dimerbildung wird auch in Lösung vermutet.

Mit der hohen Inversionsbarriere der atropisomeren Achse des Diisopropylamids folgt ein erheblicher Einfluss auf die Diastereoselektivität von Reaktionen (Schema 4.14).^[98] Sterische Wechselwirkungen zwischen dem Li-THF-Kontaktionenpaar und der sterisch anspruchsvollen Diisopropylamidgruppe (R_a -173 und S_a -173) führen jeweils zu einer Abschirmung eines Molekülhalbraums, wodurch der Angriff auf das Elektrophil von einer der beiden diastereofacialen Seite bevorzugt stattfindet (R_a -173b und S_a -173b). Die andere Seite (R_a -173a bzw. S_a -173a) ist blockiert und der nucleophile Angrifff erfolgt daher bevorzugt von der freien Seite zum *syn*-Diastereomer *syn*-174 und nur in geringen Mengen von der blockierten Seite zum *anti*-Diastereomer *anti*-174.

Schema 4.14. Mechanismus der atropdiastereoselektiven *ortho*-Lithiierung von tertiären Amiden nach Clayden *et al.*^[99]

Mit Aldehydelektrophilen konnten gute Selektivitäten mit *syn/anti* = 7:3 bis 9:1 erreicht werden.^[99] Da keines der beiden enantiomeren Atropisomere R_a -**173** und S_a -**173** bevorzugt gebildet wird und diese bei höheren Temperaturen ineinander überführbar sind, verläuft die Reaktion diastereoselektiv, aber nicht asymmetrisch. Als Produkt wird ein Gemisch von Atropenantiomeren erhalten. Für eine asymmetrische Reaktionsführung muss die stereogene Achse der Amidgruppe fixiert werden. Zur Bildung einer bevorzugten stereogenen Achse kann ein Hilfsstereozentrum eingeführt werden (Schema 4.15). Die Einführung erfolgt über eine *sec*-BuLi vermittelte *ortho*-Lithiierung von Amid **116** in THF mit TMEDA bei –78 °C und Überführung des lithiierten Aromaten in eine 0.2M Lösung des Andersen-Reagenzes (**117**) in THF bei Raumtemperatur. Bei tiefen Temperaturen liegt zuerst eine Mischung der Atropisomere (R_a)-*syn*-**118** und **118** vor. Letzteres weist mit seiner (S_a)-*anti*-Konfiguration neben der geringeren sterischen Wechselwirkung zwischen der Diisopropylamidgruppe und dem Toluylrest zusätzlich eine günstigere Dipolausrichtung der

C=O- und S=O-Dipole auf, weshalb sich das R_a -konfigurierte *syn*-Diastereomer (R_a) *syn*-**118** in das (S_a)-*anti*-konfigurierte Diastereomer **118** umwandelt. Das diastereomerenreine Atropisomer **118** konnte mit 72% Ausbeute isoliert werden.

Schema 4.15. Einführung eines Hilfsstereozentrums für die asymmetrische *ortho*-Lithiierung nach Clayden *et al.*^[42,70,100] Bedingungen: 1. **116** (1.00 Äquiv.), ^{*t*}BuLi (1.10 Äquiv.), TMEDA (1.10 Äquiv.), THF, −78 °C, 30 min 2. **117** (2.00 Äquiv.), THF, −78 °C→r.t., 90 min, 72%.

Das sulfoxidbasierte Hilfsstereozentrum kann bei tiefen Temperaturen von bis zu -90 °C entfernt werden. So ermöglicht eine niedrige Temperatur in Kombination mit der hohen Inversionsbarriere die nahezu vollständige Überführung in die ortho-Lithiierungsspezies unter Erhalt der zuvor erzeugten Amidatropisomerie. Unter dieser Reaktionsführung besitzt das Molekül ein konformationell bedingtes, chirales Gedächtnis ("chiral memory")^[101] und verläuft bei einer Reaktion mit Elektrophilen hochgradig diastereo- und enantioselektiv.^[102] Mit einem Aldehyd als Elektrophil wurde diese asymmetrische ortho-Lithiierungsstrategie angewandt, um das benzylische C⁸-Stereozentrum aufzubauen. Das Aldehydelektrophil wurde mittels (Schema 4.16).^[103,104] aufgebaut Schlüsselschritt einer Brown-Crotylborierung als Grundlegendes Prinzip der Brown-Crotylierung ist die Reaktion eines Crotylborans 176 mit einem Aldehyd 177 unter Knüpfung einer neuen Kohlenstoff-Kohlenstoff-Bindung. Charakteristisches Produkt ist ein Homoallylalkohol syn-180 oder anti-180. Die Vorstufe vom benötigten Crotylboran (Ipc₂BOMe) ist über die Hydroborierung von α-Pinen darstellbar oder kommerziell erhältlich.^[105] Crotylborane werden *in situ* mittels Deprotonierung von 2-Buten (175) mittels Schlosser-Base dargestellt. Bei der Schlosser-Base handelt es um ein äquimolares Gemisch aus n-Butyllithium und Kalium-tert-butoxid, welches mit seinen superbasischen Eigenschaften die Deprotonierung von Kohlenwasserstoffen, speziell allylischen Methylgruppen, ermöglicht.^[106] Da der große Atomradius des Kaliumions eine n^3 -Bindung in Allyl-, Crotyl- und Prenylderivaten favorisiert, bildet sich bei Deprotonierung von Alken **175** das Ionenpaar **175a** aus.^[107] Die Transmetallierung mit Methoxy-Diisopinocampheylboran führt zur Ausbildung des stabilen Lewis-Säure-Base-Addukts 176a, welches durch Zugabe von Bortrifluorid-Etherat zum freien Boran 176 transformiert wird. Da sowohl Boronat 176a, als auch Boran 176 bei höheren Temperaturen zur Isomerisierung neigen, muss das Reagenz vor jeder Reaktion in situ dargestellt werden. Die Zugabe des

Aldehydelektrophils **177** führt zur Ausbildung der jeweiligen Borinsäureester *syn*-**178** und *anti*-**178**. Anhand der Doppelbindungskonfiguration vom verwendeten 2-Buten wird die relative Konfiguration der Produkte bestimmt: Unter Verwendung (Z)-Buten (*cis*-**176**) wird bevorzugt das *syn*-Produkt gebildet und mit (*E*)-Buten (*trans*-**176**) bildet sich bevorzugt das *anti*-Produkt.

Schema 4.16. Schematische Darstellung der Brown-Crotylierung mit (+)-lpc₂BOMe.^[103] Die relative Konfiguration der Crotylalkohole *syn*-**180** und *anti*-**180** wird über interne chemische Kontrolle anhand der Doppelbindungskonfiguration bestimmt: Bei Verwendung von *cis*-Buten (*cis*-**175**) entstehen bevorzugt *syn*-Produkte, mit *trans*-Buten (*trans*-**175**) entstehen bevorzugt *anti*-Produkte.

Zuletzt erfolgt die Abspaltung des Borinat-Auxiliars mittels alkalischer Hydrolyse unter oxidativen Bedingungen zu den jeweiligen Crotylalkoholen syn-180 und anti-180, sowie zwei Äquivalente Isopinocampheol (179) als Nebenprodukt. Mit dem enantiomeren Bor-Reagenz (-)-lpc₂BOMe entstehen die jeweiligen korrespondierenden Enantiomere von **180**. Folglich wird die relative Konfiguration durch interne chemische Kontrolle, anhand der 2-Buten (**175**), Doppelbindungskonfiguration vom bestimmt, während die relative Konfiguration durch das Bor-Auxiliar bestimmt wird. Die asymmetrische Crotylborierung verläuft über eine Komplexbildung des Borans mit dem Carbonylsauerstoff, gefolgt von einem Crotylgruppentransfer vom Boratom auf das Carbonylkohlenstoffatom. Unter Berücksichtigung der Methylgruppe ergeben sich insgesamt acht mögliche Übergangszustände, wovon nur vier Übergangszustände dominieren (Schema 4.17).

Schema 4.17. Die vier dominierenden Übergangszustände, die aus der Verwendung der enantiomeren Borane (+)-(Ipc)₂BOMe (links) und (-)-(Ipc)₂BOMe (rechts) in Kombination mit (*E*)-Buten (oben) oder (*Z*)-Buten (unten) resultieren.^[103] S = Small, M = Medium, L = Large.

Diese vier Übergangszustände werden durch die Geometrie der asymmetrischen Ipc-Substituenten bestimmt und führen zu vier unterschiedlichen diastereomeren Produkten. Jeder der dargestellten Übergangszustände kann durch geeignete Kombination der enantiomerenreinen B-Methoxy-Diisopinocampheylborane mit (E)- oder (Z)-Buten, sowie darauffolgender Reaktion mit einer Aldehydkomponente, erreicht werden. So sind alle möglichen enantiomere und diastereomere Verbindungen mit hoher Stereoselektivität darstellbar. Da hier in einer Reaktion zwei Stereozentren hochselektiv konstruiert werden, stellt die Brown-Crotylborierung eine elegante Methode zum Aufbau der letzten benötigten Stereozentren (C⁹ und C¹⁰) dar. Für die gewünschte *anti*-Relation mit gewünschter absoluter Konfiguration (2R, 3R) dienten (E)-2-Buten und (+)-lpc₂BOMe als Ausgangsmaterial für die Synthese des Crotylborans trans-176. Analog zur Totalsynthese von Ajudazol B (17) diente Ethylglyoxylat (**111**) als Aldehydkomponente (Schema 4.18).^[42,70] Da bei der Reaktion erhebliche Mengen an Abfallprodukt 179 mit ähnlicher Polarität entstanden sind (s. Schema 3.16) und eine säulenchromatographische Aufreinigung erschwerten, wurde bei größeren Ansätzen eine Vakuumdestillation durchgeführt (64-65 °C, 5.4 mbar). Die Ausbeute für den Crotylalkohol 181 lag mit 56% genau im Rahmen der Literaturausbeute (56-70%).^[47] Auf eine Mosher-Esteranalyse zur Bestimmung des ee wurde verzichtet, da das Diasteromerenverhältnis über ¹H-NMR-Spektrenintegration bestimmt wurde und mit dr = 98:2 (anti:syn) exakt dem Literaturwert entsprach. Die Literatur gibt einen ee von 90% an.^[47,70]

Ergebnisse und Diskussion

Schema 4.18. Synthese von Aldehydelektrophil 182.^[70] Bedingungen: 1a. *trans*-2-Buten (2.80 Äquiv.), KO^{*t*}Bu (1.03 Äquiv.), ^{*n*}BuLi (1.00 Äquiv.), THF, −78 °C→−45 °C→−78 °C, dann BF₃·OEt₂ (1.40 Äquiv.), 20 min, dann 111 (2.50 Äquiv.), 4 h, →r.t.. 1b. aq. NaOH (1.0M, 2.25 Äquiv.)/aq. H₂O₂ (30% v/v, 2.76 Äquiv.), r.t., 2 h, 56%. 2. 181 (1.00 Äquiv.), TESOTf (1.25 Äquiv.), 2,6-Lutidin (2.50 Äquiv.), CH₂Cl₂, 0 °C→r.t., 1 h, 91%. 3. 112 (1.00 Äquiv.), DIBALH (2.10 Äquiv.), -78 °C→0 °C, 1 h, quant. 4. DMSO (2.60 Äquiv.), (COCl)₂ (1.35 Äquiv.), CH₂Cl₂, -78 °C, 1.5 h, dann NEt₃ (4.00 Äquiv.), 30 min, -78 °C→r.t., 83%.

Nach TES-Schützung der neu generierten Alkoholfunktion zum Zwischenprodukt 112 in nahezu quantitativer Ausbeute wurde die Esterfunktion über zwei Schritte zum Aldehyd 182 reduziert. Mit einer Ausbeute von 83% über zwei Schritte entsprach die Ausbeute ungefähr dem Literaturwert.^[70] Sulfoxid 118 und Aldehyd 182 wurden anschließend in der asymmetrischen ortho-Lithiierung zum acyclischen Isochromanon-Precursor 183 vereinigt (Schema 4.19). Da das sulfoxid-basierte Hilfsstereozentrum selbst bei tiefen Temperaturen von bis zu –90 °C entfernt werden kann,^[108] ist die vollständige Überführung in die ortho-lithiierte Spezies 116a unter Erhalt der zuvor erzeugten Amidatropisomerie möglich. Unter Tieftemperaturbedingungen bleibt die chirale Information des Auxiliars in der Konformation des Moleküls erhalten und es bildet sich ausschließlich der Lithium-THF-Komplex **116a**.^[101,102] Der nucleophile Angriff auf das Aldehydelektrophil **182** erfolgt von der sterisch weniger gehinderten Seite und entspricht hier dem rechten Molekülhalbraum, da die Diisopropylamidgruppe weniger Raum beansprucht als der Lithium-THF-Cluster im linken Molekülhalbraum.^[98,99] Die Reaktion läuft bevorzugt über den oberen Übergangszustand 183a ab, der zum anti, anti-konfigurierten Produkt 183 führt, da die Wechselwirkung zwischen den Substraten minimiert ist. Im unteren Übergangszustand 183b führt eine ausgesprochen starke Wechselwirkung zwischen dem aromatischen System und der Silylschutzgruppe zu einer starken Disfavorisierung, woraus eine exklusive Stereoselektivität resultiert. Das Produkt 183 konnte mit einer Ausbeute von 71% isoliert Literaturwert.^[70] leicht über dem werden, damit liegt die Ausbeute Da das *syn,anti*-konfigurierte Produkt 8-*epi*-**183** nicht isoliert wurde, ist eine exklusive Stereoselektivität anzunehmen.

Schema 4.19. Reaktionsmechanismus der asymmetrischen *ortho*-Lithiierung zur Synthese vom acyclischen Isochromanon-Vorläufer 183. Bedingungen: 118 (1.00 Äquiv.), ^tBuLi (1.20 Äquiv), THF, –90 °C, 15 min, dann 182 (1.40 Äquiv.), 1 h, –90 °C→–78 °C, 30 min, 71%.

Die absolute Konfiguration des neu generierten C⁸-Stereozentrums entspricht formal der Konfiguration des Hilfsstereozentrums (vgl. 118, Schema 4.15) und somit stellt die Reaktion eine direkte Anwendung von Seebachs "Prinzip der Selbstregeneration von Stereozentren" (SRS) dar.^[109] Trotz kurzzeitigem Verlust des Stereozentrums nach der Abspaltung des Sulfoxids erfolgt die Addition an das Elektrophil mit Retention der Konfiguration. Die Atropisomerie der Amidachse blieb allerdings nicht erhalten, da die Verbindung bereits bei Raumtemperatur allmählich zum Atropisomer epimerisiert. Durch Silylierung von Benzylalkohol **183** wurde die Atropisomerenreinheit regeneriert (Schema 4.20). Der bis-Silylether **184** konnte mit einer Ausbeute von 90% isoliert werden. Für die mikrowellenunterstützte Cyclisierung zum Isochromanon musste die phenolische Alkoholfunktion frei vorliegen, daher wurde der Allylether mittels Isomerisierung zum korrespondieren Allylether und wässrig-saurer Aufarbeitung zum freien Phenol 185 umgesetzt.^[110] Bei der sauren Aufarbeitung wurde eine partielle Spaltung des TES-Ethers beobachtet, daher wurde das Rohprodukt direkt im Mikrowellenreaktor umgesetzt.

Schema 4.20. TBS-Schützung und Vorbereitung der mikrowellenunterstützten Zyklisierung. Bedingungen: 1. **183** (1.00 Äquiv.), TBSOTf (2.50 Äquiv.), 2,6-Lutidin (5.00 Äquiv.), CH_2CI_2 , 0 °C \rightarrow -78 °C, 21 h, 90%. 2. **184** (1.00 Äquiv.), Pd(PPh₃)₄ (0.01 Äquiv.), K₂CO₃ (3.00 Äquiv.), MeOH, 1 h, quant.

Im Vergleich zur konduktiven Erwärmung von Reaktionsgefäßen mittels externer Wärmequellen führt Mikrowellenstrahlung, völlig unabhängig von der Wärmeleitfähigkeit des Reaktionsgefäßes, zu einem schnellen Anstieg der Reaktionstemperatur. Die Reaktionslösung absorbiert die Strahlung und die Absorption führt zu einer lokalen Überhitzung. Bei den fundamentalen Mechanismen für den Strahlungsenergietransfer auf die Materie wird zwischen Dipolrotation und ionischer Konduktion unterschieden.^[111] Die Dipolrotation resultiert aus einer Wechselwirkung von polaren Molekülen im elektrischen Feld der Mikrowelle. Durch Drehbewegungen richten sich die Moleküle im schnell wechselnden elektrischen Feld aus. Benachbarte Moleküle erfahren ebenfalls ein Drehmoment und rotieren, wodurch sich die kinetische Energie der Lösung - und somit auch die Temperatur erhöht. Der zweite Mechanismus basiert auf der Ionenleitfähigkeit. Die Neuausrichtung von (Partial)Ladungen im schnell wechselnden, elektrischen Feld führt zu lonenbewegungen, woraus die oben genannte lokale Überhitzung resultiert. Mit zunehmender Temperatur sinkt die Viskosität der Lösung und die Effizienz des Energietransfers steigt.

Unter Literaturbedingungen konnte zwar vollständiger Umsatz erzielt werden, allerdings uncyclisierte Intermediat **187** als Hauptprodukt isoliert (Tabelle 4.4, wurde das Eintrag 1).^[42,47,70] Isochromanon **186** konnte nur in geringen Spuren (2%) isoliert werden. Die Fähigkeit, Mikrowellenstrahlung in Wärme umzuwandeln, wird durch den dielektrischen Verlustfaktor tano quantifiziert. Die Einstufung der Solvenzien erfolgt in hoch absorbierende $(\tan \delta > 0.5)$, moderat absorbierende $(0.1 < \tan \delta < 0.5)$ und schlecht absorbierende Lösungsmittel (tan $\delta < 0.1$).^[112] Je höher der dielektrische Verlustfaktor tan δ , desto effizienter die Mikrowellenabsorption und die Erwärmung des Lösungsmittels. Mit der beschriebenen Leistung von 60 W konnte nur eine maximale Temperatur von 138 °C im Reaktor erreicht werden, da es sich bei Toluol und Essigsäure um nahezu mikrowellentransparente Lösungsmittel handelt. Mit Toluol als schlecht absorbierendes Solvens (tan δ = 0.040) und Essigsäure als Cosolvens (tan δ = 0.174) schienen 60 W nicht ausreichend, um die gewünschte Reaktionstemperatur zu erreichen. Daher erfolgte die Erhöhung der Leistung

auf 80 W (Eintrag 2). So konnte die gewünschte Reaktionstemperatur zwar erreicht werden, aber das Zwischenprodukt **187** wurde weiterhin als Hauptprodukt isoliert.

/	TESO,,, OH 0 185	OTBS Tolu N ⁱ Pr ₂	MW, t		ТВSО 	+	HO,,, OTBS OTBS OH O 187
	Eintrag	AcOH	Leistung	T	t	186 ^[a]	187 ^[a]
_		(Aquiv.)	[vv]	[°C]	[min]		
	1	30.0	60	138	210	2%	87%
	2	30.0	80	150	180	9%	57%
	3	50.0	120	165	210	10%	45%
	4	30.0	300	180	85	16%	65%
	5	30.0	300	200	85	30%	58%
	6	30.0	300	220	85	54%	25%
	7	30.0	300	220	120	55%	37%
	8	30.0	300	220	180	68%	19%
	9	50.0	300	220	180	62%	19%
	10	30.0	300	220	210	86%	5%
	11	30.0	300	240	210	_	_

Tabelle 4.4. Isochromanon-Cyclisierung. Bedingungen: 185 (1.00 Äquiv.), AcOH, Toluol.

^[a] Ausbeute über 2 Schritte (ausgehend von **184**).

In weiteren Versuchen wurde die Leistung proportional zur Temperatur erhöht, um die benötigten Reaktionstemperaturen möglichst schnell zu erreichen (Eintrag 3). Eine erste Temperaturerhöhung um 15 °C erbrachte jedoch keine bemerkbare Ausbeuteerhöhung. Zur Optimierung der Reaktion wurden einige Theorien zur Thermodynamik und Kinetik der Reaktion aufgestellt (Schema 4.21): Aufgrund eines ausgeprägten +M-Effektes besitzt das Amid **187** mit ca. 92 kJ mol⁻¹ eine höhere Mesomeriestabilität als das Lacton **186** mit einer Mesomeriestabilisierung von ca. 58.6 kJ mol⁻¹.^[86] Mit Abnahme der Resonsanzstabilisierung handelt es sich um eine endergonische Reaktion thermodynamisch gehemmt. Einzige thermodynamische Triebkraft der Reaktion ist die Zunahme der Entropie, da sich bei der Cyclisierung die Anzahl der Moleküle verdoppelt. Die Bildung des Tetraeder-Intermediats **186-I** erfordert eine spezifische Trajektorie des Nucleophils (Bürgi-Dunitz-Winkel),^[113] verläuft über den Übergangszustand **TS** und ist durch transannulare und ekliptische Wechselwirkungen im Ringsystem kinetisch benachteiligt. Zusätzlich wird die elektrophile Natur des Carboxyl-Kohlenstoffs durch den +M-Effekt der tertiären Amidgruppe

verringert. Somit ist die Reaktion nicht nur thermodynamisch, sondern auch kinetisch beeinträchtigt.

Schema 4.21. Qualitatives Energie-Reaktionsweg-Diagramm für die Cyclisierung von Amid **187** zu Isochromanon **186** über die Tetraeder-Zwischenstufe **186-I**. G = Gibbs-Energie (freie Enthalpie), RK = Reaktionskoordinate.

Aufgrund der endergonischen Natur der Reaktion sollte die Reaktionstemperatur erhöht werden, doch sowohl die thermische Stabilität der C⁸-TBS-Gruppe als auch der Einfluss "nonthermaler Mikrowelleneffekte" waren bis dahin ungeklärt.^[114] Zur Untersuchung dieser Effekte wurde bei den ersten Temperaturerhöhungen die Reaktionszeit erniedrigt (Tabelle 4.4, Einträge 4-6). Die TBS-Schutzgruppe in benzylischer Position erwies sich bis zu einer Temperatur von 220 °C als stabil und die Ausbeute an Isochromanon 186 konnte auf bis zu 54% gesteigert werden (Eintrag 6). Da sich die Temperaturerhöhung als unproblematisch erwies, wurde schrittweise die Reaktionszeit angepasst (Einträge 7-10). Eine Erhöhung der AcOH-Äquivalente hatte keinen Einfluss auf die Produktausbeute (Einträge 8 und 9). Schließlich konnte Isochromanon 186 bei einer Leistung von 300 W, bei einer Reaktionstemperatur von 200 °C und einer Reaktionszeit von 210 Minuten als Hauptprodukt mit einer exzellenten Ausbeute von 86% über zwei Schritte isoliert werden (Eintrag 10). In einem letzten Versuch wurde die Temperatur auf 240 °C erhöht, da immer noch Spuren des intermediären Produktes 187 isoliert wurden (Eintrag 11). Die Temperaturerhöhung ergab zwar vollständigen Umsatz des uncyclisierten Intermediates 187, führte aber zur Abspaltung der C⁸-Schutzgruppe und Translactonisierung zum C⁸-*y*-Lacton.

Nach erfolgreicher Cyclisierung des aromatischen Amids **184** zum Isochromanonsystem **186** wurde die freie Phenolfunktion als TBS-Ether geschützt, um den *bis*-Silylether **188** zu erhalten (Schema 4.22). Eine oxidative Spaltung der Vinylgruppe verlief quantitativ, aber der korrespondierende Aldehyd erwies sich als instabil und wurde unmittelbar zum Alkohol **189** reduziert. So konnte über zwei Schritte eine exzellente Ausbeute von 95% erreicht werden. Eine Appel-Reaktion mit elementarem Iod diente zur Transformation der primären Alkoholfunktion zum Alkyliodid **146**. Die Darstellung des Westfragments konnte mit 97% Ausbeute im letzten Schritt abgeschlossen werden.

Schema 4.22. Abschluss der Westfragmentsynthese. Bedingungen: 1. 186 (1.00 Äquiv.), TBSOTf (2.00 Äquiv.), 2,6-Lutidin (4.00 Äquiv.), 0 °C→r.t., 4 h, 99%. 2a. 188 (1.00 Äquiv.), OsO₄ (0.02 Äquiv.), NaIO₄ (4.00 Äquiv.), 2,6-Lutidin (4.00 Äquiv.), Dioxan/H₂O (3:1), r.t., 3 h. 2b. NaBH₄ (5.00 Äquiv.), MeOH, 0 °C→r.t., 20 min, 95% (2 Schritte). 3. 189 (1.00 Äquiv.), PPh₃ (1.30 Äquiv.), I₂ (1.30 Äquiv.), Imidazol (2.70 Äquiv.), CH₂Cl₂, 0 °C→r.t., 1.5 h, 97%.

4.4.2. C²-Funktionalisierung an Oxazolen

Die urprüngliche Idee zur Verknüpfung der Oxazoleinheit mit der Methoxybutenamid-Seitenkette war die C²-Substitution 2-Sulfonyloxazolen. Dieser Ansatz wurde von J. P. Gölz untersucht.^[77] Zeitgleich wurde im Rahmen dieser Arbeit ein alternativer Ansatz untersucht (Schema 4.23): Analog zur Totalsynthese von Taylor *et al.* kann die Verknüpfung über eine sp²-sp²-Kreuzkupplung erfolgen.^[52]

Schema 4.23. Retrosynthese von Oxazolfragment 147.

Eine Deprotonierung der C²-Position an Oxazol (135) und Transmetallierung mit ZnCl₂ eröffnet die Möglichkeit einer Negishi-Kupplung mit dem Vinyliodid **190**,^[115,116] welches über ist.^[117] Im leicht zugänglich Hydrohalogenierung Anschluss kann die eine C⁴-Funktionalisierung über die Halogen-Dance-Reaktion erfolgen (s. Kap. 4.1). Die Installation einer Alkinylgruppe ist durch die Totalsynthese von Ajudazol B (17) inspiriert, da das Alkin 147 über zwei Schritte über eine NBSH-vermittelte Reduktion selektiv in ein (Z)-Vinyliodid transformiert werden kann.^[42] Die Synthesesequenz begann mit der Hydrohalogenierung von Propargylalkohol (191) zum Allylalkohol 192 (Schema 4.24).^[117]

Schema 4.24. Synthese von Vinyliodid **190**. Bedingungen: 1. **191** (1.00 Äquiv.), Nal (2.00 Äquiv.), TMSCI (2.00 Äquiv.), H₂O (1.00 Äquiv.), CH₃CN, 0 °C, 1.5 h, 46%. 2. **192** (1.00 Äquiv.), TESCI (1.40 Äquiv.), Imidazol (2.80 Äquiv.), CH₂Cl₂, 0 °C→r.t., 1.5 h, 93%.

lodwasserstoffsäure wird in situ aus TMSCI, Nal und H2O dargestellt und addiert nach der Markownikow-Regel an die Dreifachbindung.^[118] Der leicht flüchtige Allylalkohol **192** wurde anschließend mit TESCI in den Silylether überführt. Anstatt der bereits literaturbekannten Stille-Kupplung mit stannylierten Oxazolen,^[119] bekannt aus Taylors Ostfragmentsynthese,^[52] wurde eine Negsihi-Kupplung als effizientere Alternative in Betracht gezogen, da sie mehrere Vorteile bietet: Zinkorganyle sind im Vergleich zu Organostannanen deutlich weniger toxisch und die Reaktion weist zusätzlich eine deutlich bessere Atomökonomie auf, da nur 1.40 anstatt 3.00 Äguivalente metalliertes Oxazol **136b** benötigt werden (Schema 4.25).^[115,116] Außerdem erfolgt die Darstellung des Zinkorganyls in situ über die C²-Lithiierung von Oxazol (135) in THF. Da die C²-Position die höchste Acidität aufweist (vgl. Kap. 3.2.1) entsteht ausschließlich Oxazolyl-2-lithium (136). Der ionische Charakter der Metall-Kohlenstoff-Bindung, sowie die hohe Oxophilie des Lithiumatoms, führen zu einem α-Isonitrilenolat **136a**.^[120] Gleichgewicht mit dem offenkettigen Eine tautomeren Transmetallierung mit Zinkhalogeniden überführt die lithiierte Spezies in ein Zinkorganyl mit einer stärker kovalenten Metall-Kohlenstoffbindung, sodass ausschließlich die cyclisierte Spezies **136b** vorliegt.

Ergebnisse und Diskussion

Schema 4.25. Lithiierung von Oxazol (135). 2-Oxazolyllithium (136) liegt in einem Gleichgewicht mit dem geöffneten Isonitril-Tautomer 136a vor.^[120]

Erste Negishi-Kreuzkupplungen mit dem Vinyliodid **190** führten zwar zur Produktbildung in geringen Ausbeuten, aber niedrigen Umsätzen (Tabelle 4.5., Eintrag 1). Um die oxidative Addition zu untersuchen, wurde ein Pd⁰-Katalysator mit starken σ -Donorliganden eingesetzt, jedoch konnte mit dem neuen Katalysatorsystem keine bemerkbare Verbesserung in Umsatz und Ausbeute beobachtet werden (Eintrag 2).

Tabelle 4.5. Untersuchung der Negishi-Kreuzkupplung zur C2-Funktionalisierung von Oxazolen. Bedingungen:1a. **135** (1.40 Äquiv.), ⁿBuLi (1.68 Äquiv.), THF, -78 °C, 0.5 h. 1b. ZnCl2, -78 °C \rightarrow r.t., [Pd]-Kat.,**190** (1.00 Äquiv.), 60 °C, 2 h.

Eintrag	[Pd]-Kat. (mol-%)	ZnHal₂ (Äquiv.)	t [h]	193	190
1	Pd(PPh ₃) ₄ (10)	ZnCl ₂ (3.00)	2	14%	55%
2	Pd(P ^t Bu ₃) ₂ (10)	ZnCl ₂ (3.00)	2	18%	46%
3	Pd(PPh ₃) ₄ (10)	ZnCl ₂ /LiCl (2.10/2.10)	20	16%	48%
4	Pd(dppf)Cl ₂ (10)	ZnCl ₂ (3.00)	18	5%	24%
5	Pd(dppf)Cl ₂ /DIBALH (10/20)	ZnCl ₂ (3.00)	20	1%	12%
6	Pd(PPh ₃) ₄ (5)	ZnCl ₂ (3.00) ^[a]	2	38%	34%
7	Pd(PPh ₃) ₄ (2.5)	ZnBr ₂ (3.00) ^[a]	2	29%	56%
8	Pd(PPh ₃) ₄ (2.5)	ZnCl ₂ (3.00) ^[b]	2	60%	11%

^[a]ZnHal₂ wurde bis zur Sublimation unter Hochvakuum ausgeheizt und getrocknet, ^[D] ZnCl₂ wurde über Nacht getrocknet (270 °C, 3.00 mbar).

Aufgrund der abgeschlossenen d-Schale ähneln die Zinkorganyle den Grignard-Verbindungen, daher kann ein Schlenk-Gleichgewicht zwischen der heteroleptischen Form (R–ZnCl) und der dimeren Form (R–Zn–R) angenommen werden.^[121] Die niedrige Oxophilie von Zink führt zu einer schlechten Komplexbildung mit etherischen Lösungsmitteln, daher ist ein geringer Einfluss der Konzentration anzunehmen. Die Konzentration von Halogenid-Ionen hat jedoch einen erheblichen Einfluss.^[122] Zinkchlorid besitzt eine höhere Lewis-Acidität als die korrespondierenden Organozinkchloride und begünstigt die Bildung von dimeren Organozinkverbindungen, da das Salz als "Chlorid-Schwamm" fungiert. Um den Einfluss des Schlenk-Gleichgewichtes auf die Kreuzkupplung zu untersuchen, wurde LiCl als Additiv eingesetzt, um die Bildung von heteroleptischen Organozinkat-Komplexen (R-ZnX₃²⁻) zu begünstigen (Eintrag 3). Die Ausbeute blieb hier jedoch unverändert, sodass kein Einfluss des Schlenk-Gleichgewichtes auf die Transmetallierung angenommen werden kann. Da in diesem Versuch zusätzlich die Reaktionszeit verlängert wurde, konnte hier von einem Umsatzstopp ausgegangen werden. Um Schwierigkeiten bei der reduktiven Eliminierung auszuschließen, wurde ein Katalysatorsystem mit Chelatorligand eingesetzt (Einträge 4 und 5). Zwar wurden in beiden Ansätzen höhere Umsätze erzielt, aber deutlich weniger Produkt konnte isoliert werden. Somit konnten Probleme bei der oxidativen Addition (Einträge 2, 4 und 5), der Transmetallierung (Eintrag 3) und der reduktiven Eliminierung (Einträge 4 und 5) vorerst ausgeschlossen werden. Obwohl literaturgemäß nasses Zinkchlorid genutzt werden konnte, wurde das jeweilige Zinkhalogenid bis zur Sublimation erhitzt und unter Hochvakuum getrocknet (Einträge 6 und 7). Mit den getrockneten Zinkhalogeniden ließen sich erste erhebliche Ausbeuteverbesserungen feststellen. Die beste Ausbeute konnte erzielt werden, wenn das verwendete Zinkchlorid über Nacht über Vakuum getrocknet wurde (Eintrag 8). Dennoch ließ sich die Ausbeute nicht immer vollständig reproduzieren.

Die C⁴-Funktionalisierung war analog zur vorigen Strategie (vgl. Kap 4.1) geplant (Schema 4.26). Über die LDA-vermittelte Halogenierung sollte zuerst das 5-lodoxazol **194** dargestellt werden, welches anschließend über die Halogen-Dance-Umlagerung in das 4-lodoxazol **195** überführt wird. Die C⁵-Halogenierung zu Oxazol **194** war in moderaten Ausbeuten möglich, jedoch lieferte die Halogen Dance Reaktion nur geringe Ausbeuten. Sowohl die C⁵-Halogenierung, als auch die LDA vermittelte Umlagerung zum 4-lodoxazol **195** war bei mehrmaligem Wiederholen unter identischen Bedingungen nicht zuverlässig reproduzierbar.

Schema 4.26. Ansatz zur C⁴-Halogenierung von Oxazol **193**. Bedingungen: 1. **193** (1.00 Äquiv.), LDA (1.10 Äquiv.), THF, -78 °C, 1 h, dann I₂ (1.20 Äquiv.), 62%. 2. **194** (1.00 Äquiv.), **149** (0.10 Äquiv.), LDA (1.80 Äquiv.), THF, -78 °C, 1 h.

- 73 -

NMR-spektroskopische Untersuchungen des Produktes **195** nach Reaktionsaufarbeitung und Reinigung wiesen auf eine hohe Labilität der TES-Schutzgruppe hin. Basierend auf dieser Beobachtung wurde am Allylalkohol **192** eine TBS-Schutzgruppe installiert, um eine höhere Stabilität gegenüber den Reaktionsbedingungen zu gewährleisten (Schema 4.27). Die darauffolgende Negishi-Kreuzkupplung lieferte das Oxazol **197** in moderater Ausbeute (48% brsm). Mit der TBS-Schutzgruppe erwies sich die C⁵-Halogenierung zum Oxazol **198** als reproduzierbar und konnte mit einer Ausbeute von 85% isoliert werden. Das Standardprotokoll für die Halogen-Dance-Reaktion (vgl. Kap. 4.1, Tab. 4.2) ergab mit einer Ausbeute von 67% für das Oxazol **199** ein gutes Ergebnis. Durch Verringerung der LDA-Äquivalente konnte die Ausbeute auf reproduzierbare 87% erhöht werden.

Schema 4.27. Synthese von 4-lodoxazol 199. Bedingungen: 1. 192 (1.00 Äquiv.), TBSOTf (1.20 Äquiv.), 2,6-Lutidin (2.40 Äquiv.), CH₂Cl₂, 0 °C→r.t., 1.5h, 92%. 2a. 135 (1.40 Äquiv.), n BuLi (1.68 Äquiv.), THF, -78 °C, 30 min, dann ZnCl₂ (3.00 Äquiv.). 2b. 196 (1.00 Äquiv.), Pd(PPh₃)₄ (2.5mol-%), THF, 60 °C, 2 h, 42%. 3. 197 (1.00 Äquiv.), LDA (1.10 Äquiv.), THF, -78 °C, 1 h, dann I₂ (1.10 Äquiv.), 30 min, 85%. 4. 198 (1.00 Äquiv.), 149 (0.10 Äquiv.), LDA (1.60 Äquiv.), THF, -78 °C, 1 h, 85%.

Durch die erfolgreiche Darstellung von Oxazol 199 in optimalen Ausbeuten ergaben sich für den weiteren Verlauf zwei potenzielle Möglichkeiten zum Abschluss der Totalsynthese (Schema 4.28). Im konvergenten Ansatz erfolgt zuerst die Umwandlung des Allyloxysilylethers zum Alkin 147 in mehreren Reaktionsschritten und anschließend die Kreuzkupplung mit dem Isochromanon **146** zum C⁴-alkylierten Oxazol **201**. Für diese Strategie ist eine Kupfer-katalysierte Substitutionsreaktion mit einem Acetylid denkbar. Alternativ bietet sich die Kreuzkupplung vor der Alkinylierung an, aber diese Strategie besitzt einen stärker linearen Charakter. Um bei diesem Ansatz eine ausreichende Selektivität bei der Schutzgruppenabspaltung zu gewährleisten, sollte die TBS-Schutzgruppe zuerst zum TES-Ether **195** umfunktionalisiert werden. Eine kinetische Reaktionsführung sollte anschließend die problemlose, selektive Spaltung des TES-Ethers in Anwesenheit von zwei TBS-Gruppen ermöglichen. Für die lineare Strategie bieten sich sowohl kupferbasierte Reaktionen (Allylische Substitution) als auch innovative palladiumkatalysierte Reaktionen (Sonogashira-Kupplung/Tsuji-Trost-Reaktionen) an.

Schema 4.28. Zwei mögliche Ansätze für die Fortsetzung der Totalsynthese von Ajudazol A (**16**): linearer Ansatz (links) oder konvergente Verknüpfung (rechts).

In beiden Strategien ist die Reduktion der Alkinylfunktion, analog zur Totalsynthese von Ajudazol B (**17**), zum (*Z*)-Vinyliodid **145** (s. Kap 3.2.2, Schema 3.10) über zwei Schritte geplant. Da die konvergente Verknüpfung eine höhere Modularität der Totalsynthese gewährleistet, wurde dieser Ansatz zuerst untersucht.

Die Spaltung von Silylether-Schutzgruppen kann unter sauren Bedingungen oder mittels Fluoridquellen erfolgen. Beide Methoden erwiesen sich beim Oxazol **199** als Problematisch (Tabelle 4.6). Durch Behandlung mit verdünnter Mineralsäure wurde Zersetzung beobachtet (Eintrag 1), daher wurde in den folgenden Ansätzen auf fluoridbasierte Spaltungsmethoden zurückgegriffen.

Tabelle 4.6. Ansätze zur Silylether-Entschützung an Oxazol 199.

Eintrag	Reagenz	Solvens	т	t	Aufarbeitung	202
	(Aquiv.)			[min]		[%]
1	1м HCI (1.26)	THF	r.t.	5	H ₂ O	_
2	TBAF (1.10)	THF	0 °C→r.t.	5	H ₂ O	8
3	TBAF (1.10)	THF	0 °C→r.t.	30	aq. sat. NH₄Cl ^[a]	67
4	TBAF (1.10)	THF	0 °C→r.t.	50	Amberlyst-15	64
					CaCO ₃ (2.00)	
5	TBAF (1.10)	THF	0 °C→r.t.	20	DOWEX 50WX8,	75
					CaCO ³ (2.00)	
6	CSA (0.10)	CH ₂ Cl ₂ /MeOH (7:3)	0 °C→r.t.	180	-	70
7	CSA (1.10)	CH ₂ Cl ₂ /MeOH (2:1)	0 °C→r.t.	180	NEt ₃	80
^[a] hohor \/o	ruproinigun goontoil		AD Coolstrum	latal/tiart		

 $^{{}_{I^{a_{J}}}}$ hoher Verunreinigungsanteil an NBu_4 $^{+}\text{Hal}^{-}$ & H_2O im NMR-Spektrum detektiert.

Die fluoridvermittelte Entschützung mit TBAF verlief bereits im ersten Ansatz erfolgreich (Eintrag 2), allerdings wurde ein erheblicher Ausbeuteverlust durch die vermeintlich hohe Wasserlöslichkeit des Produktes 202 angenommen. Nach Aufarbeitung mit wässriger, gesättigter NH₄CI-Lösung konnte die Ausbeute erheblich gesteigert werden (Eintrag 3), aber die Tetrabutylammoniumsalze ließen sich aufgrund der ähnlichen Polarität nicht säulenchromatographisch abtrennen. Um die Reaktion wasserfrei aufzuarbeiten, wurde Ionenaustauscherharz in Kombination mit Calciumcarbonat eingesetzt (Einträge 4 und 5).^[123] Die Calciumionen bilden mit den Fluoridionen schwerlösliches Calciumfluorid und die Ammoniumionen werden an das Adsorberharz gebunden. Anschließend können die Salze problemlos über Filtration abgetrennt werden. Mit dieser Methode konnten moderate Ausbeuten von bis zu 75% erreicht werden, jedoch war die Reinheit der Reaktionsprodukte nicht zuverlässig reproduzierbar. Da es sich beim Allylalkohol 202 um ein scheinbar säurelabiles Reaktionsprodukt handelt und der pH-Wert mit dem Ionenaustauscherharz nicht zuverlässig eingestellt werden kann, wurden säurekatalytische Methoden zur Schutzgruppenspaltung untersucht. (Einträge 6 und 7) Zur Reaktionsaufarbeitung wurden einige Tropfen Triethylamin zur Neutralisation zugegeben (Eintrag 7) und über Säulenchromatographie aufgereinigt. Die säurekatalysierte Silyletherspaltung lieferte den reinen Allylalkohol 202 in einer Ausbeute von 85%. Anschließend wurde die Transformation von Allylalkohol 202 zum Allylbromid 203 untersucht (Tabelle 4.7).

Tabelle 4.7. Appel-Reaktion von Alkohol 202 zum Allylbromid 203.

	о N 202	$\xrightarrow{\text{"Br}^+\text{", CH}_2\text{Cl}_2} I \xrightarrow{N} N$	о 03	r
Eintrag	"Br⁺" (Äquiv.)	Solvens	t [min]	Ausbeute
1	PPh ₃ /CBr ₄ (2x 1.20) ^[a]	CH_2CI_2	180	45%
2	PPh ₃ /NBS (2x 1.20) ^[a]	CH_2CI_2	180	72%
3	PPh ₃ /NBS (1.40)	THF/CH_2Cl_2 (2:1)	180	41%
4	PBr ₃ ^[b]	THF/Et ₂ O (2:1)	30	quant.

^[a] Zweite Zugabe nach 1 h., ^[b] durchgeführt von H. M. Reuter-Schniete.^[124]

Die Überführung von Alkoholen in Alkylhalogenide mittels Triphenylphosphin ist ein Spezialfall der Mitsunobu-Reaktion und auch als Appel-Reaktion bekannt (Schema 4.29).^[125] Triphenylphosphin (**204**) wird im ersten Schritt von Tetrabrommethan (**205**) aktiviert und bildet Triphenylphosphoniumbromid (**204a**), sowie ein Bromoform-Anion (**205a**) Das Anion deprotoniert den Alkohol **202** zum korrespondierenden Alkoholat **202a** und anschließend wird ein Bromid-Ion durch Bildung von Phosphonium **202b** abgespalten. Im letzten Schritt wird unter Abspaltung von Triphenylphosphinoxid das Allylbromid **203** gebildet. Triebkraft der Reaktion stellt die Oxidation von P^{III} zu P^V, also die Bildung der P=O Doppelbindung, dar.

Schema 4.29. Mechanismus der Appel-Reaktion.^[125]

Die Verwendung von Tetrabrommethan erwies sich als Ungeeignet (Eintrag 1), da nach 1.5 h Reaktionszeit mit superstöchiometrischen Mengen an in situ erzeugtem Phosphoniumbromid 205a kein vollständiger Umsatz festgestellt wurde (TLC-Kontrolle). Voller Umsatz konnte mit einer zweiten Zugabe von Phosponiumbromid erreicht werden. Da sich CBr₄ bereits bei der C⁵-Halogenierung zur Synthese des Katalysators **149** (s. Kap. 4.1, Tab. 4.1) als ungeeignet erwies, wurde auf NBS als Elektrophilguelle zurückgegriffen (Eintrag 2). Die Ausbeute stieg auf 72% an, jedoch konnten auch hier erst durch verzögerte Zugabe weiterer superstöchiometrischer Mengen an Phosphoniumsalz 205a vollständiger Umsatz erzielt werden. Möglicherweise erklärt die Bildung von N-Phosphoranylidenkomplexen die notwendige zweite Zugabe von Phosphoniumbromid 205a nach kurzen Reaktionszeiten, allerdings wurde dieser Verdacht nicht weiter untersucht.^[126] Weitere Untersuchungen erfolgten durch H. M. Reuter-Schniete im Rahmen ihrer Masterarbeit.^[124] Ihr gelang die PBr₃vermittelte Bromierung des Allylalkohols **202** in guantitativer Ausbeute zum Allylbromid **203** (Eintrag 3).^[127] Mit dieser Methode war eine schnelle und effiziente, sowie eine zuverlässige Reproduzierbarkeit gewährleistet, denn die Allylbromide mussten aufgrund ihrer beschränkten Lagerfähigkeit vor jeder Reaktion frisch hergestellt werden. Zur Darstellung des Oxazolfragments **147** wurden die ersten Susbtitutionsreaktionen mit Ethinylmagnesiumbromid untersucht (Tabelle. 4.8).^[128] In den Untersuchungen wurde ausschließlich kommerziell erhältliche Ethinylmagnesiumbromid-Lösung (0.5M in THF) verwendet. Kupfer(I)-bromid-Dimethylsulfid-Komplex wurde als erstes Katalysatorsystem untersucht. Mit der niedrigsten Beladung (3 mol-%) konnte keinerlei Umsatz des Ausgangsmaterials **203** festgestellt werden (Eintrag 1.)

Ergebnisse und Diskussion

 \sim

2

2

2

2

2

20%^[a]

26%

0°C→r.t.

0°C→r.t.

 $0^{\circ}C \rightarrow r.t.$

0°C→r.t.

0°C→60 °C

203		──MgBr, CuX, THF,		147	
Eintrag	HC≡C−MgBr (Äquiv.)	CuHal (Äquiv.)	т	t [h]	Ausbeute
1	1.20	CuBr·SMe ₂ (0.03)	0°C→r.t.	2	_

CuBr·SMe₂ (0.10)

 $CuBr \cdot SMe_2$ (2.40)

Cul (0.10)

Cul (0.05)

Tabelle 4.8. Untersuchung der Cu-vermittelten Substitution von Allylbromid 203 zum Alkenin 147.

1.20 ^[a] Ausbeute über ¹H-NMR-Analyse bestimmt (42% brsm).

1.20

2.40

2.40

1.20

2

3

4

5

6

Sowohl eine Erhöhung der Katalysatoräquivalente auf 10 mol-% (Eintrag 2), als auch die Zugabe von äquimolaren Mengen an Kupfer(I)-Salz (Eintrag 3) führten zu keinerlei Umsatz.

Da bei einer Blindkontrolle ohne Cu⁺-Katalysator erwartungsgemäß ebenfalls kein Umsatz festgestellt wurde (Eintrag 4), schien das Katalysatorsystem ungeeignet: Gemäß HSAB-Theorie handelt es sich beim Cu⁺-lon um eine weiche Lewis-Säure.^[129] Dialkylsulfide werden als weiche Lewis-Basen klassifiziert. Folglich kann CuBr einen stabilen Komplex mit Dimethylsulfid bilden, sodass der Katalysator durch die Bindung des Sulfid-Liganden inaktiviert bleibt. Um den Verdacht zu untersuchen, wurde das Katalysatorsystem durch Kupfer(I)-iodid ersetzt (Eintrag 5) und es konnten erste unvollständige Umsätze, sowie Spuren an Produkt 147 detektiert werden. Aufgrund der ähnlichen Polaritäten von Substrat 203 und Produkt 147 blieb eine saubere Trennung der beiden Verbindungen erfolglos. Im ¹H-NMR-Spektrum wurde über die Integration der Protonensignale eine Ausbeute von 20% ermittelt. Um die Reaktion zu beschleunigen, wurde die Temperatur auf 60 °C erhöht (Eintrag 6), jedoch hatte die Erwärmung nur wenig Einfluss auf den Umsatz. Lediglich eine Ausbeute von 26% (42% brsm) konnten über die ¹H-Integration im NMR-Spektrum ermittelt werden. Mit diesen Ergebnissen schien die Darstellung vom oxazolsubstituierten Allylacetylen 147 durch weitere Optimierungen realisierbar, jedoch weist das Feld der Organocuprat-Chemie eine unglaubliche Diversität auf. Als Nucleophile können beispielsweise Diorganozink, Grignard- oder Organolithiumreagenzien verwendet werden. Zusätzlich sind die Mechanismen der kupfervermittelten Reaktionen nicht genau erforscht, da die Mechanismen von einer Vielzahl an Faktoren beeinflusst werden. Diese Faktoren beinhalten die Struktur des Substrates, das verwendete Organocuprat, die Stöchiometrie, das verwendete Solvens und die Reaktionsbedingungen. In Schema 4.30 sind die prinzipiell möglichen Mechanismen von Normant-Cupraten (R₂CuMgHal) in der allylischen Substitution dargestellt.[130]

Schema 4.30. Mögliche Mechanismen der allylischen Substitution am Beispiel von Normant-Cupraten (**204**).^[130] X = Halogen, L = Hal⁻ oder CN⁻, LG = Abgangsgruppe (AcO, Cl oder Br)

CuL bildet ersten Schritt mit einem Aquivalent Grignard-Reagenz die im Monoalkylkupferspezies 204. Nun gibt es zwei mögliche Reaktionszyklen: Das Cuprat 204 reagiert mit dem Allylsubstrat 205 (links, Fall A) oder es reagiert mit einem weiteren Äquivalent RMgX zur Dialkylkupferspezies 206. Während die Monoalkylkupferspezies 204 die γ -Alkylierung nach einem S_N2^{\prime}-Mechanismus bevorzugen und ein Prenylderivat **207** als Hauptprodukt liefern, bevorzugen die Dialkylkupferspezies 206 eine α -Alkylierung gemäß dem S_N2-Mechanismus. Höhere Temperaturen, eine langsame Zugabe des Grignardund eine hohe CuL-Katalysatorbeladung beschleunigen Reagenzes den linken Katalysezyklus. Ein Substrat 205 mit hoher Reaktvitität gegenüber dem Cuprat 204 (LG = CI, Br) begünstigt ebenfalls die y-Substitution. Katalysezyklus B (rechts) wird bei niedrigen Temperaturen, schneller Zugabe von RMgX und einem Substrat mit niedriger Reaktivität gegenüber dem Cuprat 204 bevorzugt (LG = OAc). In beiden Reaktionszyklen wird eine oxidative Addition von Cu(I) in die π -Komplexe **205a** und **205b** zu den σ -Allylintermediaten **206a** und **206b** angenommen. Bei diesen σ -Allylkomplexen haben die Liganden entscheidenden Einfluss auf die reduktive Eliminierung: Dialkylkomplexe 206a mit $L = Hal^{-}$ oder CN^{-} (**206a**) führen zu einer schnellen reduktiven Eliminierung.^[131] Beim Trialkyl-Komplex 206b hingegen verläuft die reduktive Eliminierung langsamer, sodass eine Umlagerung zum η^3 -Allylkomplex **206c** möglich ist. Zusätzlich hat das verwendete Lösungsmittel einen erheblichen Effekt auf die Reaktionen: Beispielsweise liegt in Diethylether der Monoalkyltypus 204 als überwiegend katalytische Spezies vor,^[132] in THF hingegen agieren Alkylcuprate höherer Ordnung.^[133] Für die Substitution des Bromids 203 zum Acetylen 147 war somit einiges an Forschungsarbeit und Optimierungen notwendig, die freundlicherweise von H. M. Reuter-Schniete im Rahmen ihrer Abschlussarbeit übernommen wurden.^[124]

4.4.3. Ostfragmentsynthese

4-Pentin-1-ol (144) und die literaturbekannte Säure 64 dienten als Startmaterial für die (Schema 4.31).^[47] Mittels Ostfragmentsynthese einer Swern-Oxidation wurde der Alkohol 144 in den korrespondierenden Aldehyd transformiert und in einer Wittig-Homologisierung zum Acrylat 209 transformiert. Die Umwandlung in das Allylbromid 210 erfolgte über eine zweistufige Sequenz mittels DIBALH-Reduktion und Appel-Reaktion. Die nucleophile Substitution zum Allyamin 211 scheiterte, sodass die DEPBT-vermittelte Amidkupplung mit der Carbonsäure 64 nicht möglich war. Zwar wurde ein vollständiger Umsatz des Allylbromids detektiert, aber die Isolierung des Reaktionsproduktes 211 schlug dargestellt.^[52] fehl. Die Methoxybutensäure 64 wurde analog Taylor et al. zu Methylacetoacetat (212) wurde zuerst mit Trimethylorthoformiat zum korrespondierenden Ester umgesetzt,^[134] welcher anschließend zur Carbonsäure 64 hydrolysiert wurde. Da die Installation der Stickstofffunktion an der Seitenkette scheiterte, wurde die Methylamingruppe an der Carbonsäure installiert, um das Amid 213 zu erhalten.

Schema 4.31. Erste Syntheseschritte zur Darstellung vom Ostfragment 129. Bedingungen: 1a. DMSO (2.50 Äquiv.), (COCI)₂ (1.15 Äquiv.), −78 °C, 30 min, 144 (1.00 Äquiv.), 1 h, NEt₃ (4.00 Äquiv.), 1 h. 2a. Ph₃PCH₂CO₂Me (1.20 Äquiv.), CH₂Cl₂, r.t., 16 h, 60%. 3a. 209 (1.00 Äquiv.), DIBALH (2.50 Äquiv.), CH₂Cl₂, −78°C→r.t., 1 h. 3b. PPh₃ (1.20 Äquiv.), CBr₄ (1.20 Äquiv.), CH₂Cl₂, 0°C→r.t., 1.5h, 71%. 1b. 212 (1.00 Äquiv.), CH(OMe)₃ (1.00 Äquiv.), kat. H₂SO₄, 24 h, r.t., 98%. 2b. LiOH·H₂O (6.90 Äquiv.), THF/H₂O (3:1), reflux, 26 h, 54%. 3b. 64 (1.00 Äquiv.), EDC·HCI (1.25 Äquiv.), MeNH₂ (1.50 Äquiv.), 0°C→r.t., 20 h, 70%.

Sekundäre Amide können mittels Deprotonierung in Nucleophile umgewandelt werden (Schema 4.32). Über eine Natriumhydrid-vermittelte Deprotonierung wurde das Amid **213** in ein Nucleophil transformiert und mit dem Allylbromid **210** zum tertiären Amid **128** verknüpft. Die Ausbeute betrug moderate 68%. Der Abschluss der Ostfragmentsynthese erfolgte über

die rhodiumkatalysierte Hydroborierung mit hoher (*Z*)-Selektivität zum Pinakolboran **129**, analog zur Totalsynthese von Ajudazol B (**16**).^[42]

Schema 4.32. Verknüpfung von Allylbromid 210 mit Amid 213 und Abschluss der Ostfragmentsynthese. Bedingungen: 1. 213 (1.20 Äquiv.), NaH (3.50 Äquiv.), DMF, 0°C \rightarrow r.t., 1.5 h, dann 210 (1.00 Äquiv.), 0°C \rightarrow r.t., 1.5 h, 68%. 2. HBPin (1.10 Äquiv.), [Rh(COD)CI]₂ (0.03 Äquiv.), P^{*i*}Pr₃ (0.14 Äquiv.), 128 (1.15 Äquiv.), NEt₃ (5.00 Äquiv.), Cyclohexan, r.t., 3 h, 61%, *Z*:*E* > 9:1.

Die Ausbeute für die (*Z*)-selektive Hydroborierung lag bei 61% mit einer Diastereoselektivität von Z: E < 9:1 und damit nahe dem Literaturwert.^[42,47]

Klassische Hydroborierungen führen über einen cis-selektiven Mechanismus mit einem viergliedrigen, zyklischen Übergangszustand zu einer (*E*)-konfigurierten Boranverbindung.^[135] Mit Hilfe von übergangsmetallkatalysierten Hydroborierungen können sowohl (E)- als auch (*Z*)-konfigurierte Boranverbindungen hergestellt werden (Schema 4.33). Die übergangsmetallkatalysierte cis-Hydroborierung beinhaltet im ersten Schritt die oxidative Insertion des Katalysators in die B-H-Bindung über eine freie Koordinationsstelle zum Hydridkomplex A (Schema 4.33 oben). Die Koordination eines Alkins zum Komplex B initiiert eine Alkin-Insertion-Hydrid-Migration zum Komplex C,^[136] welcher nachfolgend über eine reduktive Eliminierung das (*E*)-Vinylboronats **D** freisetzt und den Katalysator **F** regeneriert. In dieser konventionellen *cis*-Hydroborierung tritt das (*Z*)-Produkt **E** nur in wenigen unselektiven Fällen als Nebenprodukt auf.^[137] Sowohl beim (Z)-Produkt, als auch beim (E)-Produkt wird das Hydrid des Borans (rot) auf die β -Position des Alkins übertragen. Eine umgekehrte Selektivität wird mit Hilfe von starken σ -Donorliganden und Triethylamin als Additiv erzeugt (Schema 4.33 unten). NEt₃ beschleunigt die reduktive Eliminierung vom Rhodium-Boranatkomplex **A**, während P^{*i*}Pr₃ mit seinen starken σ -Donoreigenschaften die oxidative Addition in den terminalen Alkinylrest begünstigt. Gemäß der mechanistischen Vorstellung findet zunächst eine oxidative Insertion des Rhodiumkomplexes F in die Alkin-Wasserstoff-Bindung zu Organometallkomplex G statt. Über eine Wasserstoffmigration bildet sich anschließend der Metallvinylidenkomplex H, welcher über oxidative Insertion in die Bor-Wasserstoff-Bindung den Hydridkomplex I bildet. Eine 1,2-Migration des Boronats auf das

 α -Kohlenstoffatom führt zum *cis*-Komplex **J**, welcher anschließend unter Bildung des (*Z*)-Produktes **K** und Regeneration des Katalysators **F** reduktiv eliminiert.

Schema 4.33. Angenommene Katalysezyklen für die übergangsmetallkatalysierte *cis*-Hydroborierung und die nichtkonventionelle *trans*-Hydroborierung.

4.5. Phase II: Fragmentkupplungen

4.5.1. Die sp²-sp³-Suzuki-Kreuzkupplung in der Anwendung

Während weitere Arbeiten am Oxazolfragment **147** freundlicherweise von H. M. Reuter-Schniete übernommen wurden, wurde im Rahmen dieser Arbeit zeitgleich die sp²-sp³-Suzuki-Kreuzkupplung des Isochromanons **146** mit 4-Iodoxazolen untersucht. Für die ersten Experimente wurde der Allylalkohol **202** mit TESCI zum Silylether **195** umgesetzt (Schema 4.34).

Schema 4.34. Synthese von 195. Bedingungen: 1. 202 (1.00 Äquiv.), TESCI (1.20 Äquiv.), ImidazoI (2.50 Äquiv.), CH₂Cl₂, 0 °C→r.t., 3 h, 84%.

Die Darstellung von TES-Ether **195** sollte zuerst aus dem korrespondierenden 2-substituierten Oxazol erfolgen, aber die TES-Schutzgruppe erwies sich als instabil (s. Kap. 3.4.2). Mit der Installation der TES-Schutzgruppe soll eine selektive Entschützung zu den korrespondierenden Allylalkoholen garantiert sein, sodass die Acetylengruppe nach der Kreuzkupplung eingeführt werden kann (vgl. Kap. 4.4.2, Schema 4.28) Um die Inkompatibilität der TES-Schutzgruppe ausschließen zu können, wurde zuerst eine Kreuzkupplung mit dem Modellsystem **166** durchgeführt (Schema 4.35). Unter den etablierten Kreuzkupplungsbedingungen war die Ausbeute für das Kupplungsprodukt **214** nahezu identisch (s. Kap. 4.3) und konnte sogar durch Zugabe von DMF als Cosolvens auf 75% erhöht werden.

10 mol-% Pd(dtbpf)Cl₂, 30 mol-% AsPh₃, Cs₂CO₃, H₂O, THF/DMF (3:1), 75%

Schema 4.35. sp²-sp³-Kreuzkupplung von Oxazol 195 mit dem Modellsystem 166 zur Überprüfung der Schutzgruppenkompatibilität mit den Reaktionsbedingungen: 1. 166 (1.40 Äquiv.), 9-BBNOMe (1.50 Äquiv.), ^tBuLi (2.80 Äquiv.), $-78 \ ^{\circ}C \rightarrow r.t.$, 1 h. 1b. 195 (1.00 Äquiv.), Pd(dtbpf)Cl₂ (0.10 Äquiv.), AsPh₃ (0.30 Äquiv.), H₂O (50.0 Äquiv.), Cs₂CO₃ (2.74 Äquiv.), THF/DMF (3:1), r.t., 1 h, 75%.

Die Kompatibilität der TES-Schutzgruppe mit den Reaktionsbedingungen war somit gegeben und die neu optimierten Bedingungen wurden auf die Verknüpfung des Westfragments 146 mit dem Oxazol 195 übertragen (Schema 4.36). Das vermeintliche Kreuzkupplungsprodukt **200** mit der Summenformel $C_{37}H_{63}NO_6Si_3$ konnte zwar massenspektrometrisch nachgewiesen werden, aber in den NMR-Korrelationsdaten der isolierten Reaktionsprodukte konnte keine Korrelation zwischen der Isochromanoneinheit und dem Oxazolfragment ($C^{11} \leftrightarrow H^{13}$, $C^{12} \leftrightarrow H^{11}$ und $C^{12} \leftrightarrow H^{10}$) beobachtet werden.

Schema 4.36. Untersuchungen zur Verknüpfung von 146 mit dem Oxazol 195 über eine sp²-sp³-Suzuki-Kreuzkupplung. Bedingungen: 1a. 146 (1.40 Äquiv.), 9-BBNOMe (1.50 Äquiv.), ^tBuLi (2.80 Äquiv.), Et₂O, −78 °C→r.t., 1 h. 2a. 195 (1.00 Äquiv.), Pd(dtbpf)Cl₂ (0.10 Äquiv.), AsPh₃ (0.30 Äquiv.), H₂O (50.0 Äquiv.), Cs₂CO₃ (2.74 Äquiv.), THF/DMF (3:1), r.t., 20 h. 2b. NaOH (7.5M in H₂O, 3.00 Äquiv.), H₂O₂ (30% *v/v*, 3.00 Äquiv.) 0 °C→r.t. 1b. 146 (1.40 Äquiv.), ^tBuLi, (2.80 Äquiv.), Et₂O, −78 °C→r.t., 1 h. 2c. D₂O (150 Äquiv.).

Da die Kreuzkupplungsbedingungen zwischen Modellsystem **166** und dem Oxazol **195** erfolgreich verlief, wurde die Fehlerdiagnose auf den Lithium-Halogen-Austausch und die Transmetallierung mit *B*-Methoxy-9-BBN fokussiert. Um eine mögliche Wurtz-Reaktion zu vermeiden, sollte 9-BBNOMe bereits vor dem Lithium-Iod-Austausch zugegeben werden,^[138] daher sollte das korrespondierende Boranat von Isochromanon **146** zuerst als Alkohol **189** hinreichend nachgewiesen werden. Hierfür wurde zuerst die Metallierung von Alkyliodid **146** in Anwesenheit von 9-BBNOMe gemäß Protokoll durchgeführt und anschließend mit Natronlauge und Wasserstoffperoxid oxidativ aufgearbeitet. Diese wenig milden Bedingungen führten jedoch zu einer Zersetzung der Reaktionsprodukte. In einem zweiten Ansatz erfolgte die Lithiierung von Alkyliodid **146** ohne vorige Zugabe von 9-BBNOMe und eine anschließende Aufarbeitung mit Deuteriumoxid, um die Verbindung **215** als den notwendigen Nachweis für die erfolgreiche Lithiierung zu erhalten Der Nachweis verlief

ebenfalls wenig erfolgreich, dennoch konnten Spuren eines Nebenproduktes unbekannter Struktur isoliert werden. Durch die Aufnahme eines ¹H-NMR-Spektrums konnten der Erhalt des aromatischen Systems, die aromatische und aliphatische Methylgruppe, sowie die beiden TBS-Schutzgruppen bestätigt werden, doch zugleich konnte im ¹³C-NMR-Spektrum ein neues Signal im Carbonylbereich (190 – 220 ppm) beobachtet werden. Mit einer Ausbeute von 4% ist nicht das deuterierte Isochromanon **215** entstanden, sondern das Keton **216** (Tab. 4.7).

Tabelle 4.7. Reaktionsmechanismus und Strukturaufklärung von Keton **209** (500 MHz/125 MHz in CD_2CI_2) anhand von H,H-COSY- (rot) und HMBC-Korrelationen (blau).

Atom	δ _H [ppm]	m	<i>J</i> [Hz]	δ _c [ppm]
1	-	-	-	203.97
2	-	-	-	130.50
3	-	-	-	151.86
4	-	-	-	131.89
4-Me	2.22	S	-	18.53
5	7.15	d	7.6	121.26
6	6.76	d	7.5	132.88
7	-	-	-	138.27
8	4.81	d	5.1	77.36
9	3.77	m	-	72.90
10	2.15	m ^[a]	-	32.74
10-Me	1.00	d	6.9	17.65
11	2.17	m ^[a]	-	44.96
	2.79	dd	19.0, 13.2	

^[a] Überlagerung $H^{10} \leftrightarrow H^{11}$.

Das Tieffeldsignal bei $\delta_{\rm C} = 203.97$ ppm besitzt die höchste chemische Verschiebung und liegt im Carbonylbereich für nicht endständige Carbonylgruppen (Ketone). Anhand des HMBC-Spektrums wurde die Konnektvität zur C¹¹-Methylengruppe identifiziert, sowie eine Korrelation vom aromatischen Proton H⁶ zu C⁸. Homonukleare COSY-Korrelationen von H¹¹ zu H¹⁰, H¹⁰ zu H⁹ und H⁹ zu H⁸ bestätigen das Vorliegen eines siebengliedrigen Ringsystems. Die unerwartete Bildung von Keton **216** erklärt sich anhand der Eigenschaften von Lithiumorganylen und den Baldwin-Regeln.^[139] Infolge der hohen Elektronegativitätsdifferenz zwischen Lithium ($\chi_{\rm Li} = 0.98$ nach der Pauling-Skala)^[76] und

Kohlenstoff ($\chi_c = 2.55$) besitzt die Lithium-Kohlenstoffbindung einen stark ionischen Charakter. Bedingt durch die hochpolare Bindung besitzt das lithiierte Kohlenstoffatom carbanionische – und somit auch nucleophile – Eigenschaften. Mit der Carbonylgruppe im Lactonsystem besitzt das Isochromanon ein elektrophiles Zentrum, welches von Nucleophilen angegriffen werden kann. Erfolgt der Angriff des carbanionischen Zentrums an der Ester-Carbonylfunktion, so entsteht zuerst der Oxabicyclus **216a** (siehe Tab. 4.7 oben). Gemäß den Baldwin-Regeln ist dieser *5-exo-trig*-Ringschluss erlaubt. Wässrige Aufarbeitung protoniert das geminale Diol **216a** zum korrespondierenden Hemiacetal, welches anschließend zum Keton **216** umlagert.

Die Isolierung dieser unerwarteten Verbindung motivierte zur Inspiration alternativer Strategien zur Metallierung. Hydroborierungen mit 9-BBN-H von einem Alkenylprecursor wären eine denkbare Alternative, aber dieser Ansatz hätte einen neuen retrosynthetischen Ansatz für das Isochromanon erfordert. Zusätzlich wäre die Stereochemie der C¹⁰-Methylgruppe nicht vollständig abgesichert und die β -ständige Position verhinderte bereits die *in situ*-Darstellung des Modellsystems **167** für die Studien zur erfolgreichen Realisierung einer sp²-sp³-Kreuzkupplung an Oxazolen (vgl. Kap. 4.3, Schema 4.11). Um die ursprünglichen Strategien beibehalten zu können, ist die Umpolung der Alkylhalogenid-Bindung über eine "lithiumfreie" Strategie erforderlich. Eine mögliche Methode ist die oxidative Insertion von Organohalogeniden in elementare Metalle, wie z.B. bei der Darstellung von Grignard-Reagenzien.^[140] Alkyl-Grignard-Reagenzien können anschließend in einer Kumada-Kupplung mit sp²-Zentren verknüpft werden.^[141] Da Grignard-Verbindungen ebenfalls eine hohe Nucleophilie besitzen und Bekanntheit durch ihre Reaktionsfreudigkeit mit Carbonylgruppen erlangt haben, wurde die Kumada-Reaktion als Alternative ausgeschlossen.^[142]

4.5.2. Studien zur sp²-sp³-Negishi-Kreuzkupplung an Oxazolen

Mit einer Elektronegativitätsdifferenz von $\Delta \chi_{C,Zn} = 0.85$ (nach Pauling)^[76] besitzen Zinkorganyle eine polare, kovalente Bindung und reagieren daher spezifischer als Lithiumorganyle und Grignard-Verbindungen. Zinkorganyle finden Anwendung in der palladium- oder nickelkatalysierten Negishi-Kupplung, die bereits in der Oxazolsynthese dieser Arbeit angewandt wurde. (s. Kap. 4.4.2). Die Darstellung von Zinkorganylen kann nicht nur über die Transmetallierung von Lithiumorganylen, sondern auch – analog zur Darstellung von Grignard-Verbindungen – über die oxidative Insertion von elementaren Metallen in eine Alkylhalogenid-Bindung erfolgen.^[143] Knochel *et al.* berichten über die Synthese von Arylzinkiodiden mit Esterfunktionen mittels LiCI-vermittelter Zink-Insertionen in

guten Ausbeuten.^[144] Über die Insertion in Alkylhalogenide wurde nicht berichtet, daher wurde die oxidative Insertion von elementarem Zink zuerst am Modellsystem **166** getestet (Schema 4.37).

Schema 4.37. Oxidative Insertion von elementarem Zink in Organohalogenide nach Knochel *et al.*^[144] Der hinreichende Nachweis des Zinkorganyls **217** erfolgte durch Aufarbeitung mit ges. aq. NH₄Cl und Ausbeutebestimmung des Produktes **218**. Bedingungen: 1a. **166** (1.00 Äquiv.), Zn (1.40 Äquiv.), LiCl (1.00 Äquiv.), C₂H₄Br₂ (5 mol-%), TMSCl (1 mol-%), THF, 50 °C, 2 h. 1b. ges. aq. NH₄Cl, 68%.

Für einen hinreichenden Nachweis der Organozinkverbindung **217** erfolgten nach vollständigem Umsatz der Verbindung **166** die wässrige Aufarbeitung mit gesättigter NH₄Cl-Lösung und die säulenchromatographische Aufreinigung. Mit einer Ausbeute von 68% für das Terpen **218** verlief die Zink-Insertion erfolgreich. Zur Entwicklung einer Alkyl-Negishi-Kreuzkupplung an Oxazolen wurde das Zinkorganyl **217** vor jeder Reaktion *in situ* dargestellt, bevor die Kreuzkupplung mit dem Oxazol **199** untersucht wurde (Tab. 4.8). Basierend auf der vorher entwickelten sp²-sp³-Suzuki-Kreuzkupplung (s. Kap. 4.3) wurde 5 mol-% Pd(dtbpf)Cl₂ als Katalysatorsystem verwendet.

Eintrag	LiCI (Äquiv.) ^[a]	Solvens	Additive (Äquiv.) ^[b]	T [°C]	219
1	1.00	THF	AsPh ₃ (0.30)	60	_
2	2.00	THF	AsPh ₃ (0.30)	60	-
3	2.00	THF/DMI (2:1)	AsPh ₃ (0.30)	r.t.	26%
4	2.00	THF/NMP (2:1)	AsPh ₃ (0.30)	r.t.	35%
5	3.00	THF/NMP (2:1)	AsPh ₃ (0.30)	r.t.	51%
6	3.00	THF/NMP (2:1)	_	r.t.	45%
7	3.00	THF/NMP (2:1)	AsPh ₃ (0.30), NMI (1.30)	r.t.	44%

Bedingungen: 1a. **166** (1.40 Äquiv.), Zn (1.96 Äquiv.), LiCl, $C_2H_4Br_2$ (7 mol-%), TMSCI (1.4 mol-%), THF, 50 °C, 2 h. 1b. Pd(dtbpf)Cl₂ (5 mol-%), **199** (1.00 Äquiv.), 2 h. ^[a] Äquivalente relativ zum Alkyliodid **166**, ^[b] Äquivalente relativ zu Oxazol **199**.

Negishi-Kreuzkupplungen wurden im Rahmen dieser Arbeit bereits zur Darstellung des Oxazols 199 angewandt (s. Kap. 4.4.2). Da diese ersten angewandten Negishi-Kreuzkupplungen zur C²-Funktionalisierung eine Reaktionstemperatur von 60 °C erforderten, wurde die Reaktionstemperatur im ersten Ansatz ebenfalls von Raumtemperatur auf 60 °C erhöht (Eintrag 1). Der Reaktionsumsatz des Iodoxazols 199 war vollständig, aber es konnte kein Produkt 219 isoliert werden. Vermutlich verhalten sich Alkylzinkverbindungen in Kreuzkupplungen anders als Arylzinkverbindungen. Um das Schlenk-Gleichgewicht zur Bildung heteroleptischer Organozinkverbindungen (R–ZnHal) zu begünstigen,^[145] wurde zunächst die LiCI-Konzentration in der Reaktionslösung erhöht (Eintrag 2). Die alleinige Erhöhung der LiCI-Äquivalente hatte jedoch keinen Einfluss auf die Kupplung. Mit 1,3-Dimethyl-2-imidazolidinon (DMI) als hochpolares Cosolvens konnte eine niedrige Ausbeute an Kupplungsprodukt 219 isoliert werden, jedoch wurde hier kein vollständiger Umsatz des Iodoxazols festgestellt, denn 24% des Substrates 199 konnten reisoliert werden. Bei Alkyl-Negishi-Kreuzkupplungen werden Organozinkate höherer Ordnung (R-ZnHal₃²⁻) als aktive transmetallierende Spezies angenommen.^[146] Polare Lösungsmittel wie DMI oder N-Methyl-2-pyrrolidon (NMP) ermöglichen die Stabilisierung dieser geladenen Spezies, daher scheint die Zugabe eines polaren Lösungsmittels die Voraussetzung für eine erfolgreiche Transmetallierung zu sein.^[147] Um weiterhin einer Temperaturerhöhung – und somit auch einer möglichen β -Hydrideliminierung – auszuweichen, sollten in weiteren Versuchen die Einflüsse der Solvenszusammensetzung untersucht werden. Mit einer Substitution von DMI durch NMP wurde bei Raumtemperatur vollständiger Umsatz und eine leichte Ausbeuteerhöhung beobachtet (Eintrag 3).^[148] Im Vergleich zu heteroleptischen Zinkorganylen (R–ZnHal) besitzen Zinkhalogenide (ZnHal₂) eine höhere Lewis-Acidität als die Zinkorganyle.^[147] In Anwesenheit von ZnHal₂ wird somit die Bildung von Organozinkaten höherer Ordnung (R–ZnHal₃²⁻) gehemmt, da sich bevorzugt Tri- oder Tetrahalogenidozinkat-Komplexe bilden.^[149] Mit jedem abgeschlossenen Katalysezyklus werden Zinkhalogenide freigesetzt und aufgrund der höheren Lewis-Acidität werden Halogenid-Ionen aus der Lösung mittels Komplexbildung aufgenommen. In Konsequenz verschiebt sich das Schlenk-Gleichgewicht entgegen der Bildung von Zinkaten höherer Ordnung und die Transmetallierung wird geblockt. Basierend auf dieser Theorie wurde die LiCI-Konzentration weiter erhöht (Eintrag 5). Schließlich konnten 51% des Kupplungsproduktes isoliert werden. Die Abwesenheit von AsPh₃ führte zwar nur zu leichten Ausbeuteverlusten (Eintrag 6), allerdings konnten 20% des Substrats 199 reisoliert werden. Vermutlich ist die Anwesenheit von AsPh₃ als Cokatalysator die Voraussetzung für eine effiziente oxidative Addition.^[150] Die Zugabe von N-Methylimidazol (NMI) führte in vorigen Untersuchungen zu einer verbesserten Ausbeute, konnte in diesen Untersuchungen jedoch nicht bestätigt werden (Eintrag 7).^[148,151] 44% des Kreuzkupplungsproduktes 219 und 14% Substrat 199 wurden nach der

Reaktionsaufarbeitung isoliert. DMI und NMI weisen ähnliche Struktureigenschaften auf, demnach scheinen Imidazolderivate die Reaktion zu hemmen.

Mit der neu entwickelten Alkyl-Negishi-Kreuzkupplung wurde die Zink-Insertion in das Westfragment **146** untersucht. Die Kontrolle erfolgte analog zum Modellsystem **166** (vgl. Schema 4.37) über wässrige Aufarbeitung mit gesättigter NH₄CI-Lösung und darauffolgende säulenchromatographische Aufreinigung (Schema 4.38). Mit 61% Ausbeute für das Isochromanon **220** verlief die oxidative Zink-Insertion ohne Nebenprodukte erfolgreich. Bevor erneut mit der Phase II – der Fragmentverknüpfung – begonnen werden konnte, musste jedoch zuerst die Oxazolsynthese angepasst werden.

Schema 4.38. Oxidative Insertion von elementarem Zink in die Kohlenstoff-Iod-Bindung des Westfragments **146**. Der hinreichende Nachweis des Zinkorganyls **217** erfolgte durch Aufarbeitung mit ges. aq. NH₄Cl und Ausbeutebestimmung des Produktes **220**. Bedingungen: 1a. **146** (1.00 Äquiv.), Zn (1.40 Äquiv.), LiCl (1.00 Äquiv.), C₂H₄Br₂ (5 mol-%), TMSCl (1 mol-%), THF, 50 °C, 2 h. 1b. ges. aq. NH₄Cl, 61%.

4.5.3. Anpassung der Oxazolfragmentsynthese

Zeitgleich zur Entwicklung der sp²-sp³-Negishi-Kreuzkupplung wurden die Arbeiten zur Alkinylierung des Oxazols **203** von H. M. Reuter-Schniete übernommen (Schema 4.39).^[124] Die Darstellung des Allylacetylens **221** gelang unter milden, biphasischen Bedingungen mit TMS-Acetylen als Pronucleophil und das Zielfragment konnte mit einer Ausbeute von 28% dargestellt werden.^[152] In allen Untersuchungen konnten nie vollständige Umsätze des Substrates **203** erreicht werden.

Schema 4.39. Allylische Alkinylierung mit TMS-Acetylen als Pronucleophil.^[124] Bedingungen: HC≡C-TMS (1.60 Äquiv.), CuCN (0.20 Äquiv.), TBAB (0.20 Äquiv.), CH₂Cl₂/ges. aq. K₂CO₃ (2:1), r.t., 23 h. 28% (46% brsm).

Weitere Untersuchungen ließen auf eine Produkt- oder Substratinhibition des Cu-Katalysators schließen. Zusätzlich war die Reproduzierbarkeit der Reaktion nicht gewährleistet, da häufig die Zersetzung des Katalysators durch Disproportionierung - 89 -

beobachtet wurde. Diese ungünstigen Parameter erschwerten die Reaktionsoptimierung.^[153] Die Alkinyleinheit sollte ursprünglich als Vorläufer für das (*Z*)-lodoalken dienen, welches als Reaktionspartner für eine Suzuki-Kupplung mit der Seitenkette dient. Basierend auf ihren Ergebnissen erforderte der neue Ansatz eine "kupferfreie" Chemie. Als neue Strategie sollte die Funktionalisierung zum (*Z*)-Vinyliodid **145** direkt aus der Alkoholgruppe von Oxazol **222** über eine Stork-Zhao-Reaktion erfolgen (Schema 4.40).^[154] Zusätzlich bietet diese "kupfer-freie" Methode eine Verkürzung der linearen Sequenz, da sich die Anzahl der Synthesestufen um drei Reaktionsschritte reduziert.

Schema 4.40. Modifizierte Retrosynthese zum (*Z*)-Vinyliodid **145** über eine Stork-Zhao-Olefinierung.^[154] Die Sequenz von **146 + 222** \rightarrow **145** umfasst insgesamt vier Schritte: 1. sp²-sp³-Kreuzkupplung, 2. TES-Entschützung, 3. Oxidation, 4. Stork-Zhao-Olefinierung.

Die Darstellung vom Iodoxazol 222 erforderte eine neue Synthesesequenz, ausgehend von Oxazol (135) und Butinol 223 (Schema 4.41). Allylische TES-Ether erwiesen sich als instabil gegenüber den Bedingungen zur Halogenfunktionalisierung (vgl. Kap. 4.4.2), aber da es sich im modifizierten Fragment um eine homoallylische Gruppe handelt, sollte die Stabilität der TES-Schutzgruppe hinreichend gewährleistet sein. Die Verwendung der TES-Schutzgruppe war von entscheidender Bedeutung, um die selektive Entschützung der primären Alkoholgruppe in Anwesenheit des benzylischen TBS-Ethers zu gewährleisten. 3-Butin-1-ol (223) wurde im ersten Schritt mit einer Ausbeute von 46% hydrohalogeniert und anschließend zum TES-Ether 224 transformiert. In der Negishi-Kupplung mit Oxazol (135) wurden vollständige Umsätze erzielt, sodass das C²-funktionalisierte Oxazol 225 mit einer reproduzierbaren Ausbeute von 72% dargestellt werden konnte. Die Kreuzkupplung mit iodfunktionalisierten Allylalkoholen war nie zuverlässig reproduzierbar (s. Kap. 4.4.2), daher wurde in den Untersuchungen nie ein vollständiger Umsatz der Substrate erzielt. Folglich scheint die Alkoholfunktion in allylischer Position einen entscheidenden Einfluss auf die Reaktionsbereitschaft in Kreuzkupplungen zu haben. Unter den Bedingungen der C⁵-Halogenierung erwies sich die TES-Schutzgruppe als ausreichend stabil, denn das 5-lodoxazol 226 konnte mit einer sehr guten Ausbeute von 82% isoliert werden. Mit einer Ausbeute von 86% an 4-lodoxazol 227 lieferte die anschließende Halogen-Dance-Umlagerung ebenfalls eine exzellente Ausbeute.

Schema 4.41. Synthese von 4-lodoxazol 227. Bedingungen: 1. 223 (1.00 Äquiv.), Nal (2.00 Äquiv.), TMSCI (2.00 Äquiv.), H₂O (1.00 Äquiv.), CH₃CN, 0 °C, 1.5 h, 46%. 2. 192 (1.00 Äquiv.), TESCI (1.40 Äquiv.), Imidazol (2.80 Äquiv.), CH₂Cl₂, 0 °C→r.t., 1.5 h, quant. 3a. 135 (1.40 Äquiv.), ^{*n*}BuLi (1.68 Äquiv.), THF, -78 °C, 30 min, dann ZnCl₂ (3.00 Äquiv.). 3b. 224 (1.00 Äquiv.), Pd(PPh₃)₄ (2.5 mol%), THF, 60 °C, 2 h, 72%. 4. 225 (1.00 Äquiv.), LDA (1.10 Äquiv.), THF, -78 °C, 1 h, dann I₂ (1.10 Äquiv.), 30 min, 82%. 5. 225 (1.00 Äquiv.), 149 (0.10 Äquiv.), LDA (1.60 Äquiv.), THF, -78 °C, 1 h, 85%.

4.5.4. Abschluss der Totalsynthese von Ajudazol A

Mit dem 4-lodoxazol **227** und der erfolgreichen Umpolung von Alkyliodid **146** in ein Alkylzinkiodid *via* Direktsynthese konnte die sp²-sp³-Negishi-Kreuzkupplung zur Verknüpfung der beiden Fragmente angewandt werden (Schema 4.42). Für den Erfolg der oxidativen Metallinsertion in die Alkylhalogenid-Bindung waren hohe Molaritäten ($c \ge 0.8$ M) erforderlich, daher gelang die Kreuzkupplung nur in größeren Ansätzen (n (**146**) \ge 190 µmol). Das Alkyloxazol **228** konnte mit 66% Ausbeute erfolgeich isoliert werden.

Schema 4.42. sp²-sp³-Negishi-Kreuzkupplung in der Anwendung. Bedingungen: 1a. **146** (1.40 Äquiv.), Zn (1.96 Äquiv.), LiCl (4.20 Äquiv.), C₂H₄Br₂ (7 mol%), TMSCl (1.4 mol%), THF, 50 °C, 2 h. 1b. **227** (1.00 Äquiv.), Pd(dtbpf)Cl₂ (5 mol%), AsPh₃ (0.30 Äquiv.), THF/NMP (2:1), r.t., 20h, 66%.

Zur Strukturabsicherung der Verbindung **228** wurden zweidimensionale NMR-Spektren aufgenommen (Abb. 4.7). Die erfolgreiche Verknüpfung der beiden Fragmente kann durch die schwache Korrelation von H^{10} zu C^{12} , sowie den deutlichen Korrelationen H^{11} -Methylenprotonen (2.96 ppm und 2.47 ppm) zum C^{13} -Kohlenstoff des Oxazolsystems bestätigt werden. Im Ausschnitt ist ebenfalls die Korrelation der H^{16} -Methylenprotonen (2.68 ppm) zur C^{15} -Vinylgruppe (119.54 ppm), sowie zum C^{14} -Atom des Oxazols deutlich zu erkennen.

Abbildung 4.7. Ausschnitt aus dem HMBC-Spektrum von Verbindung **228** (700 MHz/175 MHz, d₆-Aceton). Die wichtigsten HMBC-Signale zum Nachweis der Bindung sind rot dargestellt. Die Korrelation $H^{10} \leftrightarrow C^{12}$ ist nur schwach sichtbar (grün markiert).

Mit der erfolgreichen Verknüpfung des Westfragmentes **146** mit dem Oxazol **227** sollte die Totalsynthese in wenigen Schritten abgeschlossen werden. Für die letzte Verknüpfung mit der Seitenkette **129** wurde die Verbindung **228** über drei Schritte in das (*Z*)-lodoalken **145** transformiert (Schema 4.43). Zur selektiven TES-Entschützung des primären Alkohols wurden – inspiriert von der mikrowellenunterstützten Isochromanonzyklisierung – saure Bedingungen als Entschützungsmethode gewählt. Essigsäure erwies sich als zu schwach und führte zu schlechten Umsätzen, daher wurde auf Ameisensäure zurückgegriffen, um den – 92 -

korrespondierenden Alkohol **229** mit einer Ausbeute von 61% darzustellen. Die DMP-Oxidation des primären Alkohols führte zwar zu vollständigen Umsätzen, aber die Ausbeute war nicht reproduzierbar. Grund ist die Labilität des Aldehyds **230**, welcher sich bei der säulenchromatographischen Aufarbeitung über Kieselgel zersetzte. Der Einsatz von IBX als Oxidationsmittel ermöglichte eine schnellere und effiziente Aufarbeitung, indem sowohl das IBX-Reagenz, als auch die Nebenprodukte über eine schnelle Filtration über Kieselgel abgetrennt wurden. Bei der IBX-Oxidation lag die Ausbeute für den Aldehyd **229** bei reproduzierbaren 85%.

Schema 4.43. Synthese von (Z)-Vinyliodid 145. Bedingungen: 1. 228 (1.00 Äquiv.), HCO₂H (4.00 Äquiv.), MeOH/CH₂Cl₂ (2:1), 0 °C, 1.5 h, 61%. 2. 229 (1.00 Äquiv.), IBX (3.00 Äquiv.), EtOAc, 85 °C (reflux), 3 h, 85%.
3. (Ph₃PCH₂I)⁺I⁻ (1.30 Äquiv.), NaHMDS (1.25 Äquiv.), 229 (1.00 Äquiv.), THF/DMI (10:1), -78 °C→r.t., 1 h, 61%.

Aufgrund der hohen Labilität wurde Aldehyd **229** nach der Aufarbeitung direkt in einer Stork-Zhao-Reaktion umgesetzt. Das (*Z*)-Vinyliodid **145** wurde exklusiv mit einer moderaten Ausbeute von 65% erhalten. Die Stork-Zhao-Olefinierung ähnelt der Wittig-Reaktion zur Darstellung von (*Z*)-Iodoalkenen. Mechanistisch verläuft die Wittig-Reaktion über zwei Schritte (Schema 4.44). Die Reaktion beginnt mit einer [2+2]-Cycloaddition des *P*-Ylids **B** an die Carbonylfunktion des Substrates **A** zu den jeweiligen Oxaphosphetan-Intermediaten *cis*-**C** und *trans*-**C**. Die Bildung der beiden cyclischen Oxaphosphetane ist stereogen, aber teilweise reversibel. Während das *trans*-konfigurierte Oxaphosphetan *trans*-**C** langsam, aber irreversibel gebildet wird, bildet sich das *cis*-Oxaphosphetan *cis*-**C** deutlich schneller und reversibel. In einem konzertierten zweiten Reaktionsschritt, der [2+2]-Cycloreversion, bildet sich unter Abspaltung von Triphenylphosphanoxid (**E**) ein Olefin **D**. Der Zerfall erfolgt stereoselektiv, denn das *cis*-disubstituierte Oxaphosphetan *cis*-**C** bildet ausschließlich das (*Z*)-Olefin und *trans*-konfiguierte Oxaphosphetan *trans*-**C** liefert ausschließlich das (*E*)-Olefin.

Schema 4.44. Allgemeiner Mechanismus der Wittig-Reaktion.^[86,155]

Da die Bildung von Oxaphosphetan cis-C reversibel verläuft und ausschließlich das (Z)-Produkt isoliert wird, müssen für die Reaktionsgeschwindigkeiten nicht nur $k_{cis} >> k_{trans}$ sondern auch $k_{cis} >> k_{drift}$ und $k_{rev} >> k_{drift}$ gelten. Die exklusive (Z)-Selektivität der Reaktion resultiert aus der labilen Natur des verwendeten Phosphor-Ylids und lässt sich anhand näherer Betrachtung der möglichen Übergangszustände erklären (Schema 4.45).^[156] Aufgrund ihrer geringen Stabilität reagieren labile Ylide über einen frühen Übergangszustand, die Annäherung der beiden Doppelbindungen erfolgt senkrecht. In diesem eduktähnlichen Übergangszustand ist die Bildung des cis-Oxaphosphetans bevorzugt, da keine 1,2-Wechselwirkungen zwischen den Resten auftreten. Nach der reversiblen Bindungsbildung relaxiert der Vierring zum planaren cis-Oxaphosphetan.

Schema 4.45. Übergangszustände der Wittig-Reaktion mit labilen Yliden. (Aus Übersichtsgründen wurde die Darstellung der 1,3-Wechselwirkungen vernachlässigt.

Die letzte Fragmentverknüpfung von (*Z*)-Vinyliodid **145** mit dem Ostfragment **129** wurde zuerst unter den literaturbeschriebenen Bedingungen mit $Ba(OH)_2 \cdot 8H_2O$ als Base durchgeführt, diese implizierte jedoch eine Zersetzung der Substrate und Produkte. Als deutlich mildere Alternative wurde auf Cs_2CO_3 zurückgegriffen, um schließlich bis-TBS-Ajudazol A (**230**) zu erhalten (Schema 4.46). Zu einem moderaten Anteil wurde die Abspaltung der phenolischen TBS-Gruppe beobachtet (Verhältnis 1:1). Mit der Vereinigung der drei Fragmente mussten die Schutzgruppen im letzten Schritt mittels einer Fluoridquelle abgespalten werden. Die Abspaltung der Schutzgruppen offenbarte sich bereits bei der Totalsynthese von Ajudazol B (**17**) als eine Herausforderung. Sowohl mild saure als auch zu stark alkalische Reaktionsbedingungen könnten eine Translactoniserung des Isochromanons zum C⁸-γ-Lacton zur Folge haben. In der Totalsynthese von Ajudazol B (**17**) wurde die Silylentschützung unter neutralen Bedingungen mittels Tris(dimethylamino)sulfoniumdifluorotrimethylsilikat (TASF) als Fluoridquelle erfolgreich realisiert, schlug jedoch im Rahmen der Totalsynthese von Ajudazol A (**16**) fehl.

Schema 4.46. Finale Fragmentverknüpfung und TASF-vermittelte Entschützung zur Totalsynthese von Ajudazol A (16). Bedingungen: 1. 145 (1.00 Äquiv.), 129 (1.50 Äquiv.), Pd(dppf)Cl₂ (0.15 Äquiv.), Cs₂CO₃ (5.00 Äquiv.), H₂O (50.0 Äquiv.), r.t., 19 h, 63%. 2. 231 (1.00 Äquiv.), TASF (10.0 Äquiv.), H₂O (20.0 Äquiv.), DMF, r.t., 1.5 h.

Zur Entwicklung einer Silylentschützung unter möglichst neutralen Bedingungen wurde das Modellsystem epi-165 eingesetzt (s. Tab. 4.9). Die angegebenen pH-Werte wurden mit angefeuchtetem pH-Indikatorpapier ermittelt. Eintrag 1 stellt die standardisierten Bedingungen dar, welche bereits in der Ajudazol B-Totalsynthese angewandt wurden, führten jedoch zu keinerlei Umsatz. Der Wechsel von TASF auf CsF führte zwar zu geringen Umsätzen, aber gleichzeitig zu einer Erhöhung des pH-Wertes (Eintrag 2). Um den pH-Wert konstant im neutralen Bereich zu halten, wurde pH 7-Pufferlösung zugegeben. Auch hier konnten nur geringe Spuren an Produkt 232 beobachtet werden (Eintrag 3). Ein Wechsel des Lösungsmittels auf THF (Eintrag 4) oder Acetonitril (Eintrag 5) führte zu gar keinem Umsatz, jedoch konnte ein vollständiger Umsatz und eine exzellente Ausbeute an Diol 232 in wasserfreiem DMF erzielt werden (Eintrag 6). Folglich scheint Wasser als Additiv die CsFvermittelte Silyl-Entschützung zu inhibieren.

 Tabelle 4.9.
 Ansätze zur Silylether-Entschützung unter möglichst pH-neutralen Bedingungen.

Eintrag	Reagenz (Äquiv.)	Additiv	Solvens	рН	T [h]	Ausbeute
1	TASF (10.0)	H ₂ O (20.0)	DMF	7	3	kein Umsatz
2	CsF (10.0)	H ₂ O (20.0)	DMF	7–8	3	Spuren
3	CsF (10.0)	pH 7 (20.0) ^[a]	DMF	7	3	Spuren
4	CsF (10.0)	H ₂ O (20.0)	THF	6–7	3	kein Umsatz
5	CsF (10.0)	-	MeCN	7–8	24	kein Umsatz
6	CsF (10.0)	_	DMF	7–8	24	79%
7	TBAT (10.0)	H ₂ O (20.0)	DMF	6–7	23	_[b]
8	TBAT (10.0)	H ₂ O (20.0)	THF	6–7	23	_[b]
9	TBAF (1.10)	AcOH (2.20)	THF	8–9	0.5	65%
10	KF·H ₂ O (1.00)	TMSCI (0.20)	MeCN	6	24	16%
11	KF·H ₂ O (1.00)	TMSCI (0.10)	MeCN	4–5	0.25	80%
12	KF·H ₂ O (1.00)	_	MeCN	8–9	24	kein Umsatz
13	HF, 70 wt-% in py	_	THF/py	6–7	3	85%
	(150)					

^[a] Pufferlösung (Na₂HPO₄/NaH₂PO₄) ^[b] Produkt konnte nicht sauber isoliert werden.

Auf Wasser sollte vorerst nicht verzichtet werden, da es als protisches Reagenz die entstehenden Alkoholat-Intermediate protonieren sollte, um die Translactonisierung zu unterbinden. Tetrabutylammoniumdifluorotriphenylsilikat (TBAT) stellt einen Verwandten von TASF dar und ist ebenfalls kommerziell verfügbar.^[157] Unter analogen Bedingungen konnten mit deutlich längerer Reaktionszeit vollständige Umsätze erzielt werden (Einträge 7 und 8), aber die absolute Ausbeute konnte nicht bestimmt werden, da sich das Diol 232 nicht von Nebenprodukten abtrennen Als Verunreinigung wurden hauptsächlich den ließ. Phenylderivate identifiziert. Um die Menge an Abfallprodukten, welche die Reaktionsaufreinigung erschwerten, zu reduzieren, wurde TBAF mit Essigsäure als Puffer eingesetzt (Eintrag 9).^[158] Der Ansatz führte beim Testsystem epi-165 zu moderaten Ausbeuten von bis zu 65%, führte allerdings bei Übertragung auf das System 231 zur Zersetzung. Anschließend wurde ein katalytischer Ansatz mit TMSCI und KF·2H₂O untersucht (Eintrag 10),^[159] jedoch konnten nur geringe Ausbeuten bei geringem Umsatz isoliert werden. Mit äquimolaren Mengen an TMSCI verlief die Entschützung innerhalb weniger Minuten vollständig (Eintrag 11), aber der pH-Wert erwies sich als zu niedrig. Zur Negativkontrolle erfolgte ein Ansatz ohne den Zusatz von TMSCI (Eintrag 12). Da hier kein Umsatz detektiert wurde, war ein saurer pH-Wert für eine erfolgreiche Entschützung unter diesen Bedingungen essentiell. Diese Untersuchungen verlangten für eine erfolgreiche

Entschützung sowohl wasserfreie, als auch nahezu pH-neutrale Bedingungen. Zusätzlich sollte ein Protonendonor vorhanden sein, um das entstehende Alkoholat abzufangen und eine Translactonisierung zu unterbinden. HF·Pyridin schien diese Voraussetzungen zu erfüllen.^[160] Die sauren Eigenschaften konnten mit Pyridin als Cosolvens gepuffert werden, sodass der pH-Wert auf ca. pH = 6 eingestellt wurde (Eintrag 13).^[161] Da das Diol **231** mit einer Reaktionsausbeute von 85% isoliert wurde, erschien die Methode äußerst vielversprechend. Die Bedingungen konnten erfolgreich auf das authentische System **231** übertragen werden (Schema 4.47). Nach einer semi-präparativen HPLC-Trennung konnte totalsynthetisches Ajudazol A (**16**) mit einer Ausbeute von 53% im letzten Reaktionsschritt erfolgreich isoliert werden.

Schema 4.47. Abschluss der Totalsynthese von Ajudazol A (16). Bedingungen: 231 (1.00 Äquiv.), HF·py (150 Äquiv.), THF/py, 0 °C→r.t., 53%.

R_f-Wert, UV-Spektrum und massenspektrometrische Daten (m/z = 591.3067) sind identisch mit den publizierten Daten und die erhaltenen NMR-Daten stimmen gut mit den Literaturdaten überein. Ein graphischer Vergleich ist nicht möglich, da die publizierten Daten bei 80 °C in d₆-DMSO gemessen wurden.^[32] Da sich der Naturstoff unter diesen Bedingungen allmählich zersetzt, wurden die NMR-Daten in d₆-Aceton aufgenommen (Tab. 4.10). Das Vorliegen des δ-Lactonsystems kann durch Betrachtung des 2D-HMBC-Spektrums bestätigt werden, denn dort ist eine deutliche Korrelation von H⁹ zu C¹ sichtbar. Da keine Korrelation von H⁸ zu C¹ nachgewiesen werden kann, ist eine Translactonisierung zum γ-Lacton ausgeschlossen. Aufgrund der ausgeprägten Amidresonanz kann das Signal vom C²⁶-Kohlenstoff nicht beobachtet werden. Die Rekonstruktion des Signals erfolgte über das 2D-HMBC-Spektrum mittels der Korrelationen von H²⁷ und die Methylamidgruppe zu C²⁶.

Ergebnisse und Diskussion

Tabelle 4.10. Vergleich der NMR-Daten von synthetischem (d₆-Aceton, 700/175 MHz, r.t.) und natürlichem (d₆-DMSO/D₂O, 600/150 MHz, 80 °C) Ajudazol A (**16**). Chemische Verschiebungen δ sind in [ppm] angegeben.

Synthetisch (700/175 MHz, d ₆ -Aceton, r.t.)				Natürlich (600/150 MHz, d ₆ -DMSO, 80 °C)				
Atom	δ _H	m	<i>J</i> [Hz]	δ _c	δ _H	m	<i>J</i> [Hz]	δ _c [ppm]
1	_	_	_	170.19	—	_	_	168.62
2	_	_	_	107.25	—	_	_	106.26
3	_	_	_	160.64	—	_	_	158.63
3-OH	11.29	s	_	_	11.10	S	br	_
4	_	_	_	125.79	—	_	_	125.11
$4-CH_3$	2.22	S	_	15.45	2.17	S	br	14.82
5	7.47	d	7.6	137.99	7.44	dd	7.6, 0.8	137.24
6	7.05	d	7.6	116.71	6.95	d	7.6	116.63
7	_	_	_	140.91	—	_	_	140.21
8	5.00	t	6.71	65.37	4.79	d	6.7	63.87
9	4.47	dd	8.2, 4.6	88.09	4.39	dd	6.7, 5.6	87.26
10	2.48	dqt	8.9, 6.4, 4.5	34.04	2.20	m	_	33.29
10-CH ₃				16.72	0.94	d	6.9	15.78
11 _a	2.95	m	_	28.04	2.78	ddd	14.8, 4.7, 1.1	27.63
11 _b	2.57	dd	14.7, 8.6		2.45	dd	14.9, 8.7	
12	_	_	_	140.37	—	_	_	139.39
13	7.71	S	_	136.51	7.68	S	_	135.75
14	—	-	_	162.43	—	_	_	161.02
15	—	-	_	135.83	—	_	_	134.36
$15-CH_a$	5.92	S	_	117.60	5.85	S	br	117.42
$15-CH_{b}$	5.41	S	_		5.35	S	br	
16	3.38	m	_	31.02	3.27	d	7.8 br	30.03
17	5.60	m	_	128.45	5.52	m	_	127.64
18	6.40	m	_	126.25	6.29	m	_	125.20
19	6.40	m	_	124.67	6.28	m	_	123.64
20	5.45	m	_	132.68	5.45	m	_	131.97
21	2.30	q	7.4	27.94	2.19	m	_	26.75
22	2.17	m	_	33.25	2.08	m	_	31.36
23	5.60	m	_	132.78	5.54	ddt	15.4, 6.7, 1.4	131.97
24	5.51	m	_	126.86	5.39	dt	15.3, 5.7, br	125.70
25	3.92	dt	6.1, 1.3	52.46/49.28	3.84	d	5.7 br	50.05/49.21
25-NCH ₃	2.84/2.82	S	br	35.06/32.81	2.82	S	_	35.01/35.00
26	—	-	_	168.07	—	_	_	167.96
27	5.33	S	br	92.20	5.24	S	br	91.84
28	-	_	-	167.50	—	_	_	166.96
$28-OCH_3$	3.62/3.60	S	br	55.29	3.53	S	_	54.76
29	2.13	S	br	18.73	2.04	S	br	18.10

Legende: br = breites Signal.

4.6. Synthese von strukturmodifizierten Analoga

4.6.1. Modifikation der Westseite

Mit Abschluss der einzelnen Fragmentsynthesen in Phase I und der erfolgreichen Verknüpfung der Fragmente in Phase II konnte die Totalsynthese von Ajudazol A (16) erfolgreich abgeschlossen werden. Um die Modularität der Syntheseroute zu demonstrieren, wurde das Westfragment 146 (s. Kap. 4.4.1) durch das Modellsystem 166 (s. Kap. 4.3) substituiert. Die Verknüpfung von Oxazol 227 mit dem Terpen 166 über die Alkyl-Negishi-Kupplung lieferte eine Ausbeute von 69% für das Produkt 232 (Schema 4.48). Nach selektiver Entschützung zum primären Alkohol 233 konnte der Aldehyd 234 mit fast quantitativer Ausbeute isoliert werden.

Schema 4.48. Erste Schritte zur Westseitenmodifikation zur Derivatsynthese von Ajudazol A (**16**). Bedingungen: 1a. **166** (1.40 Äquiv.), Zn (1.96 Äquiv.), LiCl (4.20 Äquiv.), C₂H₄Br₂ (7 mol%), TMSCl (1.4 mol%), THF, 50 °C, 2 h. 1b. **227** (1.00 Äquiv.), Pd(dtbpf)Cl₂ (0.05 Äquiv.), AsPh₃ (0.30 Äquiv.), THF/NMP (2:1), r.t., 20 h, 66%. 2. **232** (1.00 Äquiv.), HCO₂H (4.00 Äquiv.), MeOH/CH₂Cl₂ (2:1), 0 °C, 1.5 h, 87%. 3. **233** (1.00 Äquiv.), IBX (3.00 Äquiv.), EtOAc, 85 °C (reflux), 3 h, 96%.

Die letzten Schritte beinhalteten die Stork-Zhao-Olefinierung zum (*Z*)-konfigurierten β -Vinyliodid **234**, eine Suzuki-Kupplung mit dem Boronat **129** und die Abspaltung der TBS-Schutzgruppe. Bei der Olefinierung entstand ebenfalls ausschließlich das (*Z*)-konfiguierte Produkt **234** mit einer Ausbeute von 57% (Schema 4.49) und die Suzuki-Kreuzkupplung mit dem Ostfragment **129** lieferte das Kupplungsprodukt **235** mit einer Ausbeute von 60%. Eine Behandlung mit Flussäure in Pyridin bewerkstelligte die Spaltung des TBS-Ethers **235** unter gepufferten Bedingungen, um das erste Ajudazol-Analog **236** mit einer Ausbeute von 53% im letzten Reaktionsschritt darzustellen.

Schema 4.49. Abschluss der ersten Ajudazol-Analogs 237 von Ajudazol A (16). Bedingungen:
1. (Ph₃PCH₂I)⁺I (1.30 Äquiv,), NaHMDS (1.25 Äquiv.), 234 (1.00 Äquiv.), THF/DMI (10:1), -78 °C→r.t., 1 h, 61%.
2. 235 (1.00 Äquiv.), 129 (1.50 Äquiv.), Pd(dppf)Cl₂ (0.15 Äquiv.), Cs₂CO₃ (5.00 Äquiv.), H₂O (50.0 Äquiv.), r.t., 19 h, 63%. 5. 236 (1.00 Äquiv.), HF·py (150 Äquiv.), THF/py, 0 °C→r.t., 3 h, 53%.

Zur Strukturvalidierung wurden sowohl eindimensionale ¹H- und ¹³C-NMR- als auch zweidimensionale NMR-Spektren aufgenommen (s. Tab. 4.11). Die H,H-COSY-Korrelation zwischen H¹⁵ und H¹⁶ bestätigt die erfolgreiche C,C-Bindungsknüpfung über die Suzuki-Kreuzkupplung. Aufgrund einer Signalüberlappung von H¹⁶ mit H²¹ (δ_{H} = 5.52 ppm) können die Kopplungskonstanten von H¹⁵ nicht eindeutig zugeordnet werden, jedoch liegen alle Kopplungskonstanten unter 12 Hz. Da die ${}^{3}J({}^{1}H, {}^{1}H)$ -Kopplungskonstante im Bereich von 14-19 Hz liegt,^[162] gilt die (Z)-Geometrie dieser Bindungsknüpfung als bestätigt. Analog zu den erhaltenen NMR-Daten von Ajudazol A (16) werden Signalverbreiterungen in den ¹Hund ¹³C-Spektren beobachtet. Diese Signalverbreiterungen sind auf die ausgeprägte Amidresonanz der Seitenkette zurückzuführen, daher spalten sowohl die N-Methylgruppe als auch der Methoxybutenamidrest stark auf. Obwohl das Carboxylsignal C²³ aufgrund der schnellen Umwandlung in die jeweiligen Rotamere im ¹³C-Spektrum nahezu unsichtbar ist, kann das Signal über die HMBC-Korrelationen zur N-CH₃-Gruppe und H²⁴ rekonstruiert werden. Ausgehend von H¹ (δ_{H} = 3.45 ppm) und H⁶ (δ_{H} = 1.25 ppm) wurden die restlichen Protonen im Cyclohexylring über räumliche Kopplungen im zweidimensionalen NOESY-Korrelationsspektrum zugeordnet.

Ergebnisse und Diskussion

Tabelle 4.11. NMR-Daten von Verbindung 237	7 (d ₆ -Aceton, 700/175 MHz, r.t.).
--	--

H₃C \		^a H _b N		
	і і н _з с Н Н	H 10 Ó		
Atom	δ _H [ppm]	m	<i>J</i> [Hz]	δ _C [ppm]
1	3.45	td	10.4, 4.2	71.04
2 _{ax}	0.96	m	-	46.40
2 _{eq}	1.93	dtd	12.1, 3.9, 2.0	
3	1.43	dddt	15.4, 11.9, 6.7, 3.3	32.40
$3-CH_3$	0.93	dd	6.9, 1.80	33.21
4 _{ax}	0.85	m	-	35.66
4_{eq}	1.65	m	-	
5 _{ax}	1.14	qd	12.6, 3.14	26.61
5_{eq}	1.65	m	-	
6	1.25	ddt	12.6, 10.1, 2.4	50.35
7	2.36	dddd	9.2, 6.7, 4.5, 2.3	31.02
7-CH₃	0.89	dd	6.6, 1.8	17.69
8 a	2.14	m	_	30.31
8 b	2.71	ddd	14.1, 4.4, 1.4	
9	_	_	_	142.81
10	7.60	S	_	135.79
11	_	_	_	162.09
12	_	_	_	135.98
$12-CH_a$	5.91	dd	2.2, 1.2	117.16 ^[a]
$12-CH_{b}$	5.39	q	1.4	
13	3.40	d	7.6	29.84
14	5.62	m	-	128.60 ^[a]
15	6.42	ddt	9.2, 3.4, 1.6	124.66 ^[a]
16	5.52	m	-	126.87 ^[a]
17	5.46	m	-	132.70 ^[a]
18	2.31	m	-	27.96
19	2.17	m	-	32.83
20	5.62	m	-	133.25 ^[a]
21	5.52	m	-	127.26 ^[a]
22	3.92	m	-	52.45/49.26
22-NCH ₃	2.95/2.83	S	br	35.07 ^[a] /33.02
23	—	-	-	168.80 ^[a,b] /168.55 ^[b]
24	5.34/5.33	S	br	92.20
25	-	-	-	167.49/167.39
25-OCH_3	3.62/3.60	S	br	55.28/54.97
26	2.14	m	br	18.72

^[a] Signalverbreiterung. ^[b] Rekonstruktion des ¹³C-Signals durch HMBC-Korrelationen.

4.6.2. Modifikation der Ostseite

Für die Ostseitenderivatisierung bot sich der Austausch der Amidgruppe durch eine Esterfunktion an, da die Carbonsäure **64** ein Zwischenprodukt der Ostfragmentsynthese (vgl. Kap. 4.4.3) darstellt (Schema 4.50). Zur Synthese der Ester-Seitenkette wurde die Säure **64** mit dem Allylbromid **210** – ebenfalls ein Intermediat für den Zugang zum Ostfragment – in einer nucleophilen Substitution zum Ester **238** alkyliert. Die terminale Alkinfunktion wurde anschließend mit Hilfe der nichtkonventionellen *trans*-Hydroborierung zum Vinylboronat **239** mit einer Selektivität von *Z*:*E* > 9:1 umgesetzt.

Schema 4.50. Strukturmodifikation des Ostfragments und erster Ansatz zur Kreuzkupplung. Bedingungen: 1. **64** (1.00 Äquiv.), NaH (1.20 Äquiv.), DMF, 0°C, 1h, dann **210** (1.10 Äquiv.), DMF, 0°°C \rightarrow r.t., 21 h, 66%. 2. HBPin (1.10 Äquiv.), [Rh(COD)CI]₂ (0.03 Äquiv.) P^{*i*}Pr₃ (0.14 Äquiv.), **238** (1.15 Äquiv.), NEt₃ (5.00 Äquiv.), Cyclohexan, r.t., 3 h, 61%, *Z*:*E* > 9:1. 3. **235** (1.00 Äquiv.), **239** (1.50 Äquiv.), Pd(dppf)Cl₂ (0.15 Äquiv.), Cs₂CO₃ (5.00 Äquiv.), H₂O (50.0 Äquiv.), r.t., 20 h.

Die Kreuzkupplung zwischen Boronat **239** und dem β -Vinyliodid **235** verlief im ersten Versuch erfolglos, sollte aber prinzipiell möglich sein. Sowohl beim Vinyliodid **235**, als auch beim Boronat **238** handelt es sich um labile Verbindungen, sodass diese kurz vor der Verknüpfung über mehrere Stufen dargestellt werden müssen. Aufgrund des limitierten Ausgangsmaterials und dem erhöhten Arbeitsaufwand wurden bisher keine weiteren Optimierungsversuche zur Darstellung von Kupplungsprodukt **239** unternommen.

5. Zusammenfassung und Ausblick

Die Erkenntnis zur chemischen Synthese von Naturstoffen, also aus lebenden Quellen gewonnenen Substanzen, wurde erstmals von Wöhler durch die Synthese von Harnstoff aus anorganischem Ammoniumcyanat realisiert.^[163] Nach dem Fall dieser mentalen Barriere wurde die Bahn für die ersten gezielten Naturstoffsynthesen einfacher Struktur geebnet. Sowohl die Motivation, als auch die Maßstäbe, die an eine Totalsynthese gefordert werden, haben sich in den vergangenen zwei Jahrhunderten immer wieder verändert. In der frühen Neuzeit bis 1960 war eine erfolgreiche Totalsynthese die einzige Methode, um eine angenommene Struktur eines Naturstoffes abzusichern. Der große Fortschritt kam ab 1960 durch die Entdeckung der NMR-Spektroskopie, sodass spektroskopische Methoden neben Kristallstrukturanalysen die Strukturaufklärung von Naturstoffen übernahmen. Mit den neuen modernen Techniken befand sich die Naturstoffsynthese in einer ganz neuen Situation und entwickelte sich zu einer "Herausforderung zur Erfindung und Entwicklung neuer Wege zur Strukturumwandlung".^[164] Zum Jahrtausendwechsel waren die Werkzeuge der organischen Synthesechemie nahezu ausgereift. Zahlreiche Totalsynthesen der letzten Jahre zeigen die Möglichkeiten zur Synthese von Naturstoffen mit beliebiger Komplexität und Größe mit den bestehenden Methoden, weshalb neue Syntheseverfahren rein auf Grundlage Überlegungen – und mechanistischer seltener im Rahmen einer komplexen Naturstoffsynthese – geplant werden. Die Entstehung der chemischen Biologie als interdisziplinäres Forschungsgebiet erweckte jedoch ein neues Interesse an Naturstoffen: Naturstoffe sind dazu qualifiziert in biologischen Systemen mit diversen Proteinen in Wechselwirkung zu treten und die Rolle dieser Proteine in den biologischen Vorgängen zu beeinflussen. Diese biologisch aktiven Substanzen in ausreichender Menge zugänglich zu machen, entwickelte sich zu einer zusätzlichen Aufgabe der Totalsynthese. Dennoch stellen die jeweiligen Naturstoffe nicht den optimalen Bindungspartner für ein Protein dar, weshalb oft kleine Strukturveränderungen in der Peripherie des Naturstoffes vorgenommen werden, um die Bindungseigenschaften zu verbessern. Die Möglichkeiten zur strukturellen Modifikation sind jedoch oft eingeschränkt.

Die hier vorgestellte Synthese von Ajudazol A (**16**) ermöglicht – dank ihrer modularen Syntheseplanung – umfassende Optionen, sodass eine Diversität von modifizierten Produkten zugänglich wird. Eine modulare, retrosynthetische Zerlegung in das Westfragment **146**, das Oxazolfragment **227** und das Ostfragment **129** führte zur erfolgreichen Totalsynthese von Ajudazol A (**16**) über sechs Schritte (Schema 5.1).

Schema 5.1. Modulare Retrosynthese von Ajudazol A (16) aus den drei Fragmenten 146, 227 und 129.

Basierend auf der Totalsynthese von Ajudazol B (17) wurde zuerst 3-Methylsalicylsäure (115) über vier Schritte in das chirale Sulfoxid 118 umgewandelt (Schema 5.2). Ethylglyoxylat (111) wurde ebenfalls über vier Reaktionen in den Aldehyd 182 überführt. Mit Hilfe einer asymmetrischen *ortho*-Lithiierung wurden beide Segmente zum Isochromanonvorläufer 183 miteinander verknüpft und über drei Stufen zum Bicyclus 186 transformiert.

Schema 5.2. Synthese des Westfragments 146 für die modulare Totalsynthese von Ajudazol A (16).

Das 4-lodoxazol **227** ist das Schlüsselfragment der Totalsynthese und wurde direkt aus kommerziell erhältlichem Oxazol (**135**) aufgebaut (Schema 5.3). Eine Negishi-Kreuzkupplung an der C²-Position diente zur Installation der *exo*-Methylengruppe und ebnete den Weg zur Darstellung von 5-lodoxazol **226** über eine LDA-vermittelte C⁵-Halogenierung. Durch langsame Zugabe einer LDA-Lösung wurde die 1,2-Migration des lodsubstituenten initiiert, um das Oxazol **227** mit dem benötigten 2,4-Disubstitutionsmuster darzustellen. Der benötigte Katalysator **149** für die Halogen-Dance-Reaktion wurde ebenfalls aus Oxazol (**135**) über zwei Stufen synthetisiert.

Schema 5.3. Synthese des Oxazolfragments 227 über eine Negishi-Kupplung und die Halogen Dance Reaktion.

Analog zur Totalsynthese von Ajudazol B (17) wurde das Vinylboronat 129 ausgehend von Pentinol 144 und der literaturbekannten Säure 64 synthetisiert (Schema 5.4). Der Alkohol 144 wurde zuerst zum korrespondierenden Aldehyd oxidiert und nach einer Wittig-Homologisierung in das Allylbromid 210 überführt. Carbonsäure 64 wurde in einer Kupplungsreaktion mit Methylamin zum Amid 213 umgesetzt, in einer nucleophilen Substitution mit dem Bromid 210 alkyliert und die terminale Alkinylfunktion hydroboriert.

Schema 5.4. Synthese des Ostfragments (129) für die Ajudazole.

Mit Abschluss der Phase I konnte mit der Phase II begonnen werden. In den ersten Untersuchungen zur Alkyl-Oxazol-Kreuzkupplung wurde eine Suzuki-Reaktion erfolgreich realisiert (s. Kap. 4.2 & 4.3), jedoch erwies sich diese Strategie als ungeeignet (s. Kap. 4.5.1). Problem dieser Strategie war die lithiumbasierte Umpolung des Alkyliodids, daher wurde das Westfragment **146** mittels Direktsynthese in das korrespondierende Zinkorganyl umgewandelt und in einer Negishi-Reaktion mit dem Oxazol **227** umgesetzt (Schema 5.5). Über drei Stufen konnte anschließend das (*Z*)-Vinyliodid **145** mit exklusiver Selektivität synthetisiert werden. Die letzten beiden Syntheseschritte umfassten eine Fragmentverknüpfung mit dem Ostfragment **129** und eine fluoridvermittelte Entschützung der TBS-Ether, um die Totalsynthese von Ajudazol A (**16**) abzuschließen.

Schema 5.5. Abschluss der modularen Totalsynthese von Ajudazol A (16).

Oxazolmotive in Naturstoffen werden häufig biomimetisch über Cyclodehydratisierungsstrategien, ausgehend von Serin-Derivaten, synthetisiert (s. Kap. 2.5.1 und Kap. 2.5.4 bis 2.5.6). Somit stellt die hier vorgestellte Totalsynthese nicht nur die erste Totalsynthese von Ajudazol A (**16**) dar, sondern ist auch eine der ersten Totalsynthesen, wo der Aufbau eines Oxazolmotivs über mehrere Schritte umgangen wird. Die retrosynthetischen Schnittstellen wurden unter Erhalt des Oxazolsystems gesetzt, um Fragmente mit ähnlicher Komplexität zu erhalten. Basierend auf diesem topologischen Ansatz wurde die ungewöhnliche Säure-Base-Chemie der Oxazole ausgenutzt, um das 2,4-Oxazolgrundgerüst über eine **1**,2-Umlagerung (Halogen-Dance-Reaktion) aufzubauen (s. Kap. 3.2.1). Glücklicherweise - 106 - konnten die Synthesestrategien Aufbau anti, anti-konfigurierten zum der Isochromanonstruktur nahezu übernommen werden, denn diese verkörperte sowohl in vorigen Versuchen zur Totalsynthese, als auch in der Totalsynthese von Ajudazol B (17), die größte Herausforderung. Die Synthese und Verknüpfung mit der Methoxybutenamid-Seitenkette 129 wurde prinzipiell beibehalten und nur leicht modifiziert. Ursprünglich war eine sp²-sp³-Suzuki-Reaktion zwischen dem Isochromanonfragment **146** und einem 4-lodoxazol geplant, scheiterte jedoch an der Lithiierung. Dennoch war dieser Ansatz mit einer weniger komplexen Struktur möglich (s. Kap. 4.3). Eine sp²-sp³-Negishi-Kupplung verlief sowohl mit einfacheren Systemen (s. Kap. 4.5.2) als auch mit dem Westfragment erfolgreich und war der entscheidende Schritt für die erfolgreiche Totalsynthese (s. Kap. 4.5.4). Die Gesamtausbeute der Synthesesequenz liegt bei 3.2% über 17 lineare Stufen und beinhaltet insgesamt 35 Stufen. Somit hat sich die längste lineare Sequenz - im Vergleich zur Totalsynthese von Ajudazol B (17) – um 30% reduziert.^[42]

Mit der ersten Totalsynthese von Ajudazol B (17) wurden nicht nur synthetische Herausforderungen gelöst, sondern auch erste synthetische Zugänge zu dieser Naturstoffklasse bewerkstelligt. Dennoch waren die Möglichkeiten zur Strukturmodifikation durch die lineare Synthese stark eingeschränkt. Aufgrund der hohen Toleranz gegenüber funktionellen Gruppen und vielseitigen Reagenzien werden Kreuzkupplungen häufig in der Totalsynthese als Verknüpfungsstrategie angewandt. Diese Arbeit demonstriert die Weiterentwicklung dieser gebräuchlichen Reaktion im Rahmen einer komplexen Naturstoffsynthese, denn die hier entwickelten Alkyl-Oxazol-Kreuzkupplungsreaktionen stellten aufgrund der möglichen Nebenreaktionen eine synthetische Problemstellung dar, aber erwiesen sich als flexibles Verfahren für einen modularen Zugang oxazolhaltigen Naturstoffen oder Analoga. Mit der hohen Toleranz gegenüber funktionellen Gruppen kann diese Methode ebenfalls bei der Totalsynthese weiterer Naturstoffe mit Oxazolstruktur Anwendung finden.

Der unabhängige Aufbau der charakteristischen Strukturmotive gestattet die Synthese von Derivaten nach dem Baukastenprinzip: Die einzelnen Fragmente können bei Bedarf beliebig ausgetauscht werden. So wurde beispielsweise die Isochromanonstruktur von Ajudazol A (**16**) durch ein simpler aufgebautes Terpengerüst substituiert (Schema 5.6). Analog zur Totalsynthese (vgl. Schema 5.5) wurden die drei Fragmente **166**, **227** und **129** über sechs Stufen zum Ajudazol-Analogon **237** vereinigt. Erste Untersuchungen zum Austausch der Seitenkette wurden im Rahmen dieser Arbeit ebenfalls durchgeführt, scheiterten jedoch bei der Verknüpfung in Phase II (s. Kap. 4.6.2).

Schema 5.6. Synthese des Ajudazol-Analogs 236 über sechs Schritte ausgehend von den drei Fragmenten 166, 227 und 129.

Untersuchungen zu weiteren biologischen Aktivitäten von Ajudazol A (16, Schema 5.5) und der biologischen Aktivität von Ajudazol-Analog 237 (Schema 5.6) stehen noch aus. Durch die Simplifizierung der Westseite und Erhalt der Methoxybutenamid-Seitenkette können erste Untersuchungen zur biologischen Aktivität und erste Modelle zum Pharmakophor entwickelt werden. Die Anzahl der Syntheseschritte erhöht sich erheblich durch den Aufbau des anti, anti-konfigurierten 8-Hydroxyisochromanongrundkörpers und erhöht die Labilität des Isochromanonsystems. Eine Vereinfachung der Struktur zu Dihydroisocoumarinen verkürzt die Sequenz zusätzlich, daher sollte die Struktur zu 8-Deshydroxyajudazolen simplifiziert Potenzielle Ausgangsmaterialien für diese Derivatsynthese werden. beinhalten Benzoesäurederivate 240 und Epoxide 241, die mittels ortho-Lithiierung an Amid 242 über eine Epoxidöffnung miteinander verbunden werden (Schema 4.7). Chirale Epoxide können ausgehend von α -Aminosäuren, wie beispielsweise Asparaginsäure (242), synthetisiert werden.^[165] Dihydroisocoumarin 245 sollte somit über insgesamt neun totale Stufen und acht Stufen in der längsten linearen Sequenz zugänglich sein. Damit verkürzt sich die Route um bis zu 25%, relativ zum Westfragment 146 (vgl. Schema 5.2). Analog zur Totalsynthese von Ajudazol A (16) (vgl. Schema 5.5) und seinem Analog 236 (vgl. Schema 5.6) kann die Verknüpfung mit dem Oxazol **226** über die sp²-sp³-Negishi-Reaktion realisiert werden.

Zusammenfassung und Ausblick

Schema 5.7. Synthesevorschlag zur Simplifizierung vom Westfragment, über eine Epoxidöffnung mittels einer *ortho*-Lithiierung. Epoxid **242** kann aus Asparaginsäure dargestellt werden.^[165]

6. Experimenteller Teil

6.1. Allgemeine Arbeitsvorschriften

Reaction handling: Unless stated otherwise, all non-aqueous reactions were performed in flame-dried glassware under an argon atmosphere. All flasks were equipped with rubber septa or were sealed with a glass stopper and a PTFE-collar. Temperatures above r. t. (23–27 °C) refer to oil bath temperatures, which were controlled by a temperature modulator. The following baths were used for cooling: water/ice (0 °C), acetone/dry ice (–78 °C) and acetone/liquid nitrogen (–90 °C). Reactions were magnetically stirred and monitored by TLC, unless otherwise noted.

Microwave reactions were carried out on a Discover SP-D 80 microwave reactor from CEM in septum-sealed microwave vessels.

Solvents and reagents: Unless stated otherwise, solvents were purchased from the central chemical store (ZVE) of the University of Bonn. Cyclohexane (CH) and ethyl acetate (EA) were distilled over a Vigreux column. Dry solvents like dichloromethane, toluene, diethyl ether and acetonitrile were taken out of a solvent purification system MB-SPS 800 from MBraun, Garching. THF was freshly distilled over sodium/benzophenone before use. Reagents were purchased from the following companies: Acros Organics, Geel (Belgium); Alfa-Aesar, Ward Hill, MA (USA); Sigma-Aldrich, St. Louis, MO (USA) and TCI Chemicals, Antwerp (Belgium). Unless stated otherwise all of these chemicals were used without further purification.

The following reagents were prepared according to literature procedures: Andersen's reagent (**117**),^[1] IBX.^[2]

Analytical Thin Layer Chomatography (TLC) was carried out with "Polygram® Sil G/UV254" plastic sheets from Machery-Nagel GmbH & Co. KG, Düren. Detection was carried out using short wave UV-light (254 and 366 nm) and anisaldehyde staining solution (135 mL absolute ethanol, 5 mL concentrated sulfuric acid, 1.5 mL glacial acetic acid and 3.7 mL *p*-anisaldehyde), vanillin staining solution (2 g vanillin in 100 mL EtOH with 1 mL conc. H2SO4), potassium permanganate staining solution (1.5 g KMnO₄, 10 g K₂CO₃, 1.25 mL 10% aq. NaOH in 200 mL water) or cerium(IV)-sulfate staining solution (5 g ammonium dimolybdate, 200 mL H2O, 16 mL conc. H2SO4 with 2 g cerium(IV)-sulfate).

^[1] K. K. Andersen, *Tetrahedron Lett.* **1962**, *3*, 93-95; G. Solladié, J. Hutt, A. Girardin, *Synlett* **1987**, 173.

^[2] M. Figero, M. Santagostino, S. Sputore, *J. Org. Chem.* **1999**, *64*, 4537-4538.

Flash column chromatography was accomplished according to the method introduced by G. Nill^[3,4] using silica gel (pore size 60 Å, 0.040 - 0.063 mm) purchased from Merck Millipore, Massachusetts (USA). The given yields refer to the purified products.

Preparative High Performance Liquid Chromatography (PHPLC) was carried out on a Smartline Series instrument from Knauer with a Eurospher II C18P 100-5, 5 μ m, 250 x 16 mm column with precolumn (30 x 16.0 mm) from Knauer. Operation and analysis were under control of Knauer ChromGate software (version 3.3.2).

Optical rotations were measured with a MCP 150 polarimeter (Anton Paar) in a 1 dm cuvette using a sodium lamp.

¹**H-NMR** spectra were recorded at room temperature (298 K) on Bruker Avance I spectrometers with a ¹H operating frequency of 300, 400 and 500 MHz and Bruker Avance III spectrometers with a ¹H operating frequency of 500 MHz and 700 MHz. Unless stated otherwise, all spectra were recorded at room temperature. All chemical shifts are given in δ units relative to the residual protiated solvent residual peak (CDCI₃: $\delta H = 7.26$ ppm, CD₂Cl₂: $\delta H = 5.32$, d₆-acetone: $\delta H = 2.05$ ppm).^[5] Analyses followed first-order principles and the following abbreviations were used throughout: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants through n bonds (*ⁿJ*) are given in Hertz [Hz].

¹³**C-NMR** spectra were recorded at room temperature on Bruker Avance I spectrometers with a ¹³C operating frequency of 75 and 100 MHz and Bruker Avance III spectrometers with a ¹³C operating frequency of 125 and 175 MHz. Unless stated otherwise, all spectra were recorded at room temperature. All chemical shifts are given in δ units relative to the residual protiated solvent residual peak (CDCl₃: δ C = 77.16 ppm, CD₂Cl₂: δ C = 53.84 ppm, d₆-acetone: δ H = 29.84 ppm).^[5]

* chem. shifts associated with the major rotamer are marked with an asterisk

chem. shifts associated with the major rotamer are marked with an asterisk

Gas-chromatography-Mass spectrometry (GC-MS) were recorded using a GCMS-QP2010 SE from *Shimadzu*, Duisburg (Germany).

Mass spectra (MS) and high-resolution- mass spectra (HR-MS) were recorded on a MAT 95 XL sector field device from Thermo Finnigan (Bremen), mircoTOF-Q from Bruker Daltonik (Bremen) and LTQ Orbitrap XL mass spectrometer from Thermo Fisher Scientific

^[3] W. C. Still, M. Kahn, A. Mitra, *J. Org. Chem.* **1978**, *43*, 2923

^[4] G. Helmchen, G. Nill, D. Flockerzi, M. S. K. Youssef, Angew. Chem., Int. Ed. Engl. 1979, 18, 63-65.

^[5] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176-2179.

(Bremen). Ionization processes and mol peaks were given in combination with characteristic fragmentations.

6.2. C⁴-Oxazolfunktionalisierung über die Halogen-Dance-Reaktion

6.2.1. 2-(Phenylthio)oxazole (148)

^{*n*}BuLi (2.5M in ^{*n*}hexane, 20.0 mL, 50.0 mmol, 1.20 equiv.) was added dropwise to a stirring solution of oxazole (**135**, 2.66 g, 38.5 mmol, 1.00 equiv.) in dry THF (250 mL) at –78 °C and stirred for 1 h. A solution of diphenyl disulfide (12.8 g, 58.4 mmol, 1.40 equiv.) in dry THF (140 mL) was slowly added and stirred for 1 h. The reaction mixture was allowed to warm to room temperature slowly and stirred for 43 h. Aq. sat. NH₄Cl solution (150 mL) was added and the aqueous phase was extracted with Et₂O (3x 50 mL). All organic phases were combined and washed with aq. sat. NaHCO₃ solution (80 mL) and brine (80 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 9:1) gave 2-(phenylthio)oxazole (**148**) as a yellow oil (6.24 g, 35.2 mmol, 91%).

R_f = 0.16 (CH/EA 9:1).

¹**H-NMR (300 MHz, CDCI₃)**: δ [ppm] = 7.13 (d, *J* = 0.9 Hz, 1H), 7.34 – 7.42 (m, 3H), 7.53 – 7.62 (m, 2H), 7.67 (d, *J* = 0.9 Hz, 1H).

¹³C-NMR (75.0 MHz, CDCI₃): δ [ppm] = 128.96, 129.28, 129.61, 133.33, 140.99. HRMS (ESI (+), 6.0 eV): calculated for [M+Na⁺]: 200.0141, found: 200.0144.

The experimental data are in agreement with those previously published.^[72]

6.2.2. 5-Bromo-2-(Phenylthio)oxazole (149)

^{*n*}BuLi (2.5M in ^{*n*}hexane, 1.60 mL, 3.37 mmol, 1.10 equiv.) was slowly added to a stirring solution of $({}^{i}\text{Pr})_{2}\text{NH}$ (720 µL, 4.28 mmol, 1.40 equiv.) in dry THF (210 mL) at 0 °C. After 0.5 h the reaction mixture was cooled to -78 °C and oxazole **148** (1.6 g, 9.03 mmol, 1.00 equiv.) dissolved in THF (8 mL) was added. The reaction mixture was allowed to stir for 1 h at this temperature. A solution of NBS (600 mg, 3.37 mmol, 1.10 equiv.) in THF (10 mL) was slowly added dropwise and stirred for 0.5 h, before the solution was allowed to warm to room temperature slowly. Aq. sat. NH₄Cl solution (30 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 80 mL). All organic phases were combined and washed with brine (200 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 9:1) gave 5-bromooxazole **149** as an orange-yellowish oil (1.31 g, 5.11 mmol, 57%).

*R*_f = 0.30 (CH/EA 9:1).

¹**H-NMR (300 MHz, CDCl₃)**: δ [ppm] = 6.99 (s, 1H), 7.37 – 7.43 (m, 3H), 7.54 – 7.61 (m, 2H). ¹³**C-NMR (75.0 MHz, CDCl₃)**: δ [ppm] = 122.86, 128.49, 129.24, 129.57, 129.75, 133.45, 160.12.

HRMS (EI (+), 70.0 eV): calculated for [M⁺⁺]: 286.9353, found: 286.9350.

The experimental data are in agreement with those previously published.^[72]

6.2.3. 5-lodo-2-(phenylthio)oxazole (150)

^{*n*}BuLi (2.5M in ⁿhexane, 9.93 mL, 24.8 mmol, 1.10 equiv.) was slowly added to a stirring solution of $({}^{i}\text{Pr})_{2}\text{NH}$ (4.45 mL, 31.6 mmol, 1.40 equiv.) in dry THF (210 mL) at 0 °C and stirred for 15 min. The solution was cooled down to -78 °C and a solution of 2-(phenylthio)oxazole (**148**) (3.96 g, 22.3 mmol, 1.00 equiv.) in THF (30 mL) was added dropwise. The resulting yellow cloudy mixture stirred for 1 h at -78 °C and a solution of I₂ (6.83 g, 26.9 mmol, 1.20 equiv.) in dry THF (33 mL) was added slowly. The mixture stirred

for 0.5 h at –78 °C before it was quenched with 30% aq. NaHSO₃ solution (120 mL) and was allowed to warm to room temperature slowly. The phases were separated and the aqueous layer was extracted with Et_2O (3x 100 mL). All organic extractes were combined and washed with brine (60 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and flash column chromatography over silica gel (CH/EA 9:1) gave 5-iodoxazoole **150** as a white-yellowish powder (6.15 g, 20.3 mmol, 91%).

R_f = 0.30 (CH/EA 9:1).

Mp.: 52-53 °C.

¹H-NMR (300 MHz, CDCl₃): δ [ppm] = 7.13 (s, 1H), 7.36 – 7.43 (m, 3H), 7.53 – 7.61 (m, 2H). ¹³C-NMR (75.0 MHz, CDCl₃): δ [ppm] = 87.72, 129.56, 129.74, 133.47, 137.56, 163.03. HRMS (EI (+), 70.0 eV): calculated for [M⁺⁺]: 302.9215, found: 302.9215.

The experimental data are in agreement with those previously published.^[71]

6.2.4. 4-Bromo-2-(phenylthio)oxazole (151)

 $({}^{P}P)_{2}NH$ (270 µL, 1.92 mmol,1.40 equiv.) was dissolved in dry THF (11 mL) and cooled to 0 °C, then ${}^{n}BuLi$ (2.5M in ${}^{n}hexane,744$ µL, 1.86 mmol, 1.30 equiv.) was added. After 5 min the solution was cooled down to -78 °C and halogenoxazole **149** (350 mg, 1.37 mmol, 1.00 equiv.) in THF (2.5 mL) was added and the reaction stirred for 50 min. Aq. sat. NH₄Cl solution (3 mL) and H₂O (6 mL) were added and the solution was allowed to warm to room temperature. The layers were separated and the aqueous layer was extracted with Et₂O (3x 10 mL) and the combined organic phases were dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography (CH/EA 9:1) to gave compound **151** as a yellow oil (313 mg, 1.22 mmol, 89%).

R_f = 0.36 (CH/EA 9:1).

¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.62 (s, 1H), 7.58–7.60 (m, 2H), 7.39–7.42 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 159.69, 139.03, 133.82, 129.73, 127.87, 116.80. HRMS (EI (+), 70.0 eV): calculated for [M⁺⁺]: 254.9353, found: 254.9350.

The experimental data are in agreement with those previously published.^[71]

7. 4-lodo-2-(phenylthio)oxazole (152)

A stirring solution of $({}^{P}r)_{2}NH$ (282 µL, 2.01 mmol, 2.00 equiv.) in dry THF (12 mL) was cooled to 0 °C and ${}^{n}BuLi$ (2.5M in ${}^{n}hexane$, 720 µL, 1.81 mmol, 1.80 equiv.) was added. The solution was allowed to stir for 5 min at this temperature, before it was cooled to -78 °C. 5-Bromooxazole **149** (25.7 mg, 100 µmol, 0.10 equiv.) and 5-iodooxazole **152** (304 mg, 1.00 mmol, 1.00 equiv.) were solved in THF (6 mL) and cooled to -78 °C. The LDA solution was slowly transferred dropwise *via* cannula into the oxazole solution (addition time: 61 min) and stirred for 2 min. Aq. sat. NH₄Cl solution (3 mL) and water (3 mL) were added and the reaction was allowed to warm to r.t. slowly. The layers were separated and the aqueous phase was extracted with Et₂O (3x 15 mL). All organic extracts were combined and dried dried over MgSO₄. Concentration of the crude product *in vacuo* and purification of the residue by flash column chromatography (CH/EA 9:1) afforded 4-iodooxazole **152** as an orange oil containing 8% impurities of 4-bromooxazole **151** (268 mg, 884 µmol, 88%).^[6]

*R*_f = 0.36 (CH/EA 9:1).

¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.65 (s, 1H), 7.56–7.59 (m, 2H), 7.38–7.42 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 160.3, 144.8, 133.7, 129.7 (2C), 129.6, 128.1. HRMS (EI (+), 70.0 eV): calculated for [M^{+*}]: 254.9353, found: 254.9350. The experimental data are in agreement with those previously published.^[71]

7.1.1. 4-Bromo-2-Phenylsulfonyloxazole (153)

Ammonium molybdate tetrahydrate (1.71 g, 1.38 mmol, 2.20 equiv.) was dissolved in aq. hydrogen peroxide solution (30% v/v, 6.8 mL, 2.20 equiv.) at 0 °C. The resulting yellow solution was added dropwise to a solution of thiooxazole **151** (176 mg, 686 µmol, 1.00 equiv.) in EtOH (12 mL) and the reaction was allowed to warm to r.t. and stirred over night (18 h). Et₂O (20 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 20 mL). All organic extracts were combined and washed with

^[6] measured by GC-MS analysis

brine (20 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 3:2) gave sulfonyloxazole **153** as a pale yellow soild (183 mg, 635 μ mol, 92%).

R_f = 0.38 (CH:EA 3:2).

Mp.: 73 °C.

¹**H-NMR (400 MHz, CDCI₃)**: δ [ppm] = 7.60–7.64 (m, 2H), 7.76–7.71 (m, 1H), 7.76 (s, 1H), 8.08–8.11 (m, 2H),

¹³C-NMR (100 MHz, CDCI₃): δ [ppm] = 117.78, 129.20, 129.90, 137.40, 140.56, 158.81. HRMS (EI (+), 70.0 eV): calculated for [M⁺⁺]: 286.9252, found: 286.9251.

7.1.2. 4-lodo-2-Phenylsulfonyloxazole (154)

Ammonium molybdate tetrahydrate (5.99 g, 4.84 mmol, 2.20 equiv.) was dissolved in aq. hydrogen peroxide solution (30% v/v, 25 mL, 2.20 equiv.) at 0 °C and stirred for 15 min. The resulting yellow solution was added dropwise to a solution of thiooxazole **152** (673 mg, 2.22 mmol, 1.00 equiv.) in EtOH (36 mL) and the reaction was allowed to warm to r.t. and stirred over night (18 h). Et₂O (50 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 80 mL). All organic extracts were combined and washed with brine (20 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 3:2) gave sulfonyloxazole **154** as white needles (744 mg, 2.22 mmol, quant.).

 $R_f = 0.38$ (CH:EA 3:2).

Mp.: 73 °C.

¹**H-NMR (400 MHz, CDCI₃)**: δ [ppm] = 7.59–7.66 (m, 2H), 7.71–7.75 (m, 1H), 7.78 (s, 1H), 8.09–8.11 (m, 2H),

¹³**C-NMR (100 MHz, CDCI₃)**: δ [ppm] = 125.0, 129.2, 130.0, 129.9, 135.4, 137.5, 145.9, 159.9

HRMS (EI (+), 70.0 eV): calculated for [M⁺⁺]: 334.9113, found: 334.9105.

The experimental data are in agreement with those previously published.^[71]

7.2. Erste Untersuchungen zur sp²-sp²-Suzuki-Kreuzkupplung an Oxazolen

7.2.1. 4-(1-Phenylethyl)-2-(phenylsulfonyloxazole (158) and 4-Phenethyl-2-(phenylsulfonyl)oxazole (157)

4-lodooxazole **154** (54.8 mg, 153.7 µmol, 1.00 equiv.), Pd(dtbpf)Cl₂ (10.7 mg, 16.4 µmol, 0.10 equiv.) and phenethylboronic acid (49.1 mg, 327.4 µmol, 2.00 equiv.) were dissolved in dry THF (2 mL) and dry toluene (2 mL). To the stirring solution was added aq. Na₂CO₃ solution (2.0M, 1 mL) and the resulting mixture was degassed by an argon flow via cannula for 10 min. The reaction mixture was sealed, heated to 70 °C and stirred for 18 h. Water (3 mL) was added, the phases were separated and the aqueous phase was extracted Et₂O (3x 7 mL). All organic were combined, with phases washed with aq. HCl solution (1.0M, 7 mL) and brine (7 mL), and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash coliumnchromatography (CH/EA 4:1) over silica gel, followed by semi-preparative HPLC (Macherey-Nagel Nucleodur Gravity 100-5 C-18, MeCN/H₂O 60:40, 16.0 mL/min, 188 bar) gave the products 158 and 157 in a ratio of 3:1 (**158:157**)^[7] as a yellow solid (18.6 mg, 58.5 µmol, 36%).

Compound 158:

*R*_f = 0.24 (CH:EA 4:1).

¹**H-NMR (400 MHz, CDCl₃)**: δ [ppm] = 1.60 (d, J = 7.2 Hz, 3H), 4.05 (q, J = 7.2 Hz, 1H), 7.32–7.28 (m, 6H), 7.57–7.61 (m, 2H), 7.69–7.71 (m, 1H), 8.07–8.10 (m, 2H).

¹³**C-NMR (100 MHz, CDCl**₃): δ [ppm] = 20.71, 37.91, 125.9, 127.53, 128.3, 128.82, 128.93, 138.21, 138.5, 140.5, 142.9, 148.35, 158.07

HRMS (EI (+), 70.0 eV): calculated for [M⁺⁺]: 313.0773, found: 313.0772.

Compound **157**:

*R*_f = 0.24 (CH:EA, 4:1).

¹**H-NMR (400 MHz, CDCl₃)**: δ [ppm] =, 2.85–2.97 (m, 4H), 7.32–7.28 (m, 6H), 7.57–7.61 (m, 2H), 7.69–7.71 (m, 1H), 8.07–8.10 (m, 2H)

¹³**C-NMR (100 MHz, CDCl₃)**: δ [ppm] = 20.96, 28.10, 34.27, 126.39, 128.59, 128.47, 129.71, 134.95, 138.36, 140.5, 142.73, 148.35, 158.07.

HRMS (EI (+), 70.0 eV): calcd. for [M⁺⁺]: 313.0773, found: 313.0772.

^[7] GC-MS- and NMR-Analysis

The experimental data are in agreement with those previously published.^[71]

7.3. Erweiterte Studien zur sp²-sp³-Suzuki-Kreuzkupplung an Oxazolen

7.3.1. *tert*-Butyldimethyl(((*1R,2S,5R*)-5-methyl-2-(prop-1-en-2-yl)cyclohexyl)oxy)silane (165)

TBSCI (2.58 g, 17.1 mmol, 1.50 equiv.) was added slowly to a solution of (–)-isopulegol (**164**, 2.02 g, 13.1 mmol, 1.00 equiv.) and imidazole (1.34 g, 19.7 mmol, 1.50 equiv.) in dry CH_2CI_2 (20 mL) at 0 °C. The solution was allowed to warm to r.t. and stirred for 16 h. Water (10 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3x 20 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 99:1) yielded TBS ether **165a** as a colourless liquid (3.52 g, 13.1 mmol, quant.).

*R*_f = 0.55 (CH/EA 99:1).

 $[\alpha]_D^{23} = -31.1^\circ (CHCI_3, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = -0.01 (s, 3H), 0.02 (s, 3H), 0.85 (s, 9H), 0.91 (d, J = 6.6 Hz, 3H), 1.00 (td, J = 12.3, 10.6 Hz, 1H), 1.23 – 1.37 (m, 1H), 1.37 – 1.49 (m, 1H), 1.57 – 1.64 (m, 2H), 1.68 (t, J = 1.2 Hz, 3H), 1.87 (d, J = 22.5 Hz, 2H), 3.47 (ddd, J = 10.6, 9.8, 4.4 Hz, 1H), 4.72 (td, J = 1.4, 0.7 Hz, 1H), 4.74 (dt, J = 3.0, 1.4 Hz, 1H).

¹³**C-NMR (125 MHz, CDCI₃):** δ [ppm] = -4.70, -3.73, 18.25, 21.00, 22.48, 26.01, 30.67, 31.82, 34.54, 45.32, 53.66, 73.47, 111.17, 148.09.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 269.2295 found: 269.2290.

Experimenteller Teil

7.3.2. (*R*)-2-((*1S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4methylcyclohexyl)propan-1-ol (165)

BH₃ (1.0M in THF, 39 mL, 39 mmol, 1.50 equiv.) was slowly added to a stirring solution of protected alcohol **245** (9.39 g, 35.0 mmol, 1.0 equiv.) in dry THF (244 mL) at 0 °C and stirred for 3 h. Water (9 mL) was added, followed by careful addition of aq. NaOH solution (7.5M, 14 mL, 3.00 equiv.) and H₂O₂ (30 vol% in water, 13 mL, 3.00 equiv.). The reaction was allowed to warm to r.t. and stirred for 30 min. The layers were separated and the aqueous phase was extracted with Et₂O (3x 200 mL). All organic phases were combined and washed with brine (200 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 12:1) gave alcohol **166** as a colourless oil (8.82 g, 30.8 mmol, 88%, *dr* = 12:1).*R*_f = 0.22 (CH/EA 12:1).

$$[\alpha]_{D}^{20} = -17.9 (CHCl_3, c = 1.0).$$

Major epimer: ¹**H-NMR (700 MHz, CDCI₃):** δ [ppm] = 0.09 (d, J = 1.2 Hz, 6H), 0.79 – 0.88 (m, 1H), 0.88 – 0.91 (m, 12H), 0.94 (dd, J = 7.2, 0.9 Hz, 3H), 0.96 – 1.01 (m, 1H), 1.03 – 1.11 (m, 1H), 1.33 – 1.41 (m, 2H), 1.59 – 1.65 (m, 2H), 1.77 (br. s, 1H), 1.86 – 1.92 (m, 1H), 2.04 (dqd, J = 12.9, 7.2, 2.3 Hz, 1H), 3.42 – 3.46 (m, 1H), 3.54 (td, J = 10.3, 4.2 Hz, 1H), 3.63 (dd, J = 10.6, 5.8 Hz, 1H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = -4.09, -3.43, 14.31, 18.28, 22.40, 26.17, 27.36, 31.72, 34.88, 36.52, 45.74, 48.05, 66.18, 72.74.

Minor epimer: ¹**H-NMR (700 MHz, CDCI₃):** δ [ppm] = 0.06 (s, 3H), 0.07 (s, 3H), 0.77 (dt, J = 7.0, 0.8 Hz, 3H), 0.89 (s, 9H), 0.90 (d, J = 6.7 Hz, 3H), 1.00 (dddd, J = 18.8, 13.0, 9.3, 3.4 Hz, 2H), 1.33 – 1.44 (m, 2H), 1.52 (dq, J = 13.3, 3.4 Hz, 1H), 1.62 (dp, J = 12.7, 3.2 Hz, 1H), 1.88 (dtd, J = 12.4, 3.9, 2.0 Hz, 1H), 2.21 (hd, J = 7.1, 2.6 Hz, 1H), 3.42 (td, J = 10.3, 4.3 Hz, 1H), 3.47 – 3.50 (m, 2H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = -4.57, -3.57, 11.07, 18.24, 22.47, 23.82, 27.07, 31.69, 34.07, 34.50, 45.38, 45.52, 67.45, 72.10.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 287.2401; found: 287.2409.

7.3.3. *tert*-Butyl(((1*R*,2*S*,5*R*)-2-((*R*)-1-iodopropan-2-yl)-5methylcyclohexyl)oxy)dimethylsilane (166)

 I_2 (1.46 g, 5.76 mmol, 1.50 equiv.) was added to a stirring solution of triphenylphosphine (1.71 g, 6.53 mmol, 1.70 equiv.) and imidazole (784 mg, 11.5 mmol, 3.00 equiv.) in dry CH_2CI_2 at 0 °C and stirred for 15 min. A solution of alcohol **165** (1.13 g, 4.10 mmol, 1.00 equiv.) in dry CH_2CI_2 (84 mL) was added slowly and the reaction was allowed to warm to r.t. and stirred for 2.5 h. Aq. pH 7-buffer solution (7 mL) and aq. sat. Na_2SO_3 solution (7 mL) were added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3x 35 mL). All organic phases were combined and washed with brine (60 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 99:1) yielded alkyl iodide **166** as a colourless liquid (1.10 g, 2.78 mmol, 68%).

*R*_f = 0.55 (CH/EA 99:1).

 $[\alpha]_{D}^{20} = -51.4 \text{ (CHCl}_{3}, c = 0.5).$

¹H-NMR (700 MHz, CDCl₃): δ [ppm] = 0.08 (s, 3H), 0.10 (s, 3H), 0.79 – 0.88 (m, 1H), 0.89 (m, 12H), 0.94 – 1.04 (m, 2H), 1.09 (d, J = 7.0 Hz, 3H), 1.35 (td, J = 11.0, 10.3, 4.0 Hz, 2H), 1.63 (ddt, J = 13.2, 9.8, 3.2 Hz, 2H), 1.84 – 1.91 (m, 1H), 2.32 (tp, J = 11.0, 7.4, 4.0 Hz, 1H), 2.93 (dd, J = 11.0, 9.3 Hz, 1H), 3.34 (dd, J = 9.4, 3.5 Hz, 1H), 3.47 (td, J = 10.3, 4.2 Hz, 1H). ¹³C-NMR (175 MHz, CDCl₃): δ [ppm] = -4.38, -3.43, 13.12, 18.18, 18.80, 22.36, 24.71, 26.17, 31.67, 34.55, 36.04, 45.49, 50.51, 72.26.

HRMS (EI (+), 70.0 eV): calculated for [M⁺-^tBu⁺]⁺: 339.0641; found: 339.0640.

7.3.4. 4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4methylcyclohexyl)propyl)-2-(phenylsulfonyl)oxazole (168)

9-BBN-OMe (1.0M in ^{*n*}hexane, 74 μ L, 73.8 μ mol, 1.50 equiv.) was added to a stirring solution of alkyl iodide **166** at -78 °C. ^{*t*}BuLi (1.7M in ^{*n*}pentane, 80 μ L, 134 μ mol, 2.80 equiv.) was added and the solution was allowed to warm to room temperature and stirred for 1 h.

Aq. Cs_2CO_3 solution (3.0M in water, 43 µL, 2.74 equiv.) was added to a solution of iodoxazole **154** (15.7 mg, 46.9 µmol, 1.00 equiv.), AsPh₃ (4.31 mg, 14.1µmol, 0.30 equiv.) and Pd(dtpbpf)Cl₂ (3.06 mg, 4.69 µmol, 0.10 equiv.) in dry THF (280 µL). The solution was degassed *via* freeze-pump-thaw cycles (3x) and the reaction was sealed and covered in aluminium foil and was allowed to stir for 20 h at r.t. Water (2 mL) and Et₂O (4 mL) were added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 3 mL). All organic phases were combined and washed with aq. sat. NaHCO₃ solution (4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/CH₂Cl₂ 1:1) yielded alkyl oxazole **168** as a yellow oil (15.6 mg, 31.2 µmol, 69%).

 $\mathbf{R}_{f} = 0.38$ (CH:EA, 3:2).

 $[\alpha]_{D}^{20} = -20.0^{\circ} (CHCI_{3}, c = 0.3)$

¹**H-NMR (700 MHz, CDCl₃)**: δ [ppm] = 0.00 (s, 3H), 0.05 (s, 3H), 0.07 (s, 3H), 0.84 (d, J = 6.6 Hz, 3H), 0.86 (s, 9H), 0.87 – 0.90 (m, 4H), 0.93 – 1.00 (m, 2H), 1.20 – 1.27 (m, 2H), 1.36 (tdt, J = 12.0, 6.8, 3.4 Hz, 1H), 1.62 (tdd, J = 12.9, 6.2, 3.4 Hz, 2H), 1.87 (dtd, J = 12.3, 3.9, 1.9 Hz, 1H), 2.23 – 2.26 (m, 1H), 2.27 – 2.31 (m, 1H), 2.62 (ddd, J = 13.6, 2.7, 1.3 Hz, 1H), 3.47 (td, J = 10.3, 4.3 Hz, 1H), 7.45 (t, J = 0.9 Hz, 1H), 7.55 – 7.61 (m, 2H), 7.66 – 7.71 (m, 1H), 8.06 – 8.11 (m, 2H).

¹³**C-NMR (175 MHz, CDCl₃)**: δ [ppm] = -4.32, -3.35, 17.47, 18.20, 22.40, 25.13, 26.14, 27.07, 28.82, 31.25, 31.71, 34.68, 45.64, 49.94, 72.17, 128.93, 129.61, 134.82, 138.33, 143.78, 157.68.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 500.2261; found: 500.2267.

7.4. Phase I: Fragmentsynthesen

7.4.1. Westfragmentsynthese

7.4.1.1. Allyl-2-(allyloxy)-3-methylbenzoate (115a)

NaH (60% suspension in paraffin liquid, 11.4 g, 284 mmol, 2.40 equiv.) was added in six portions over 30 min to a stirring solution of 3-methylsalicylic acid (18.0 g, 118 mmol,

1.00 equiv.) in dry DMF (240 mL) at 0 °C and stirred for 1.5 h. Allyl bromide (30.7 mL, 355 mmol, 3.00 equiv.) was slowly added dropwise,. the reaction was allowed to warm to r.t. and stirred for 1 h. Water (300 mL) and Et_2O (250 mL) were added, the layers were separated and the aqueous phase was extracted with Et_2O (3x 100 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* yielded allyl benzoate **115a** as a yellow liquid, which was used in the next step without further purification (25.3 g, 109 mmol, 92%).

R_f = 0.33 (CH/EA 9:1).

¹**H NMR (700 MHz, CDCI₃)**: δ [ppm] = 2.32 (d, J = 0.6 Hz, 3H), 4.44 (dt, J = 5.7, 1.4 Hz, 2H), 4.81 (dt, J = 5.8, 1.4 Hz, 2H), 5.26 (ddq, J = 26.5, 10.4, 1.3 Hz, 2H), 5.40 (ddq, J = 17.6, 16.1, 1.6 Hz, 2H), 6.04 (ddt, J = 17.2, 10.5, 5.8 Hz, 1H), 6.11 (ddt, J = 17.2, 10.4, 5.7 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 7.34 (ddq, J = 7.5, 1.5, 0.8 Hz, 1H), 7.66 (ddd, J = 7.8, 1.8, 0.7 Hz, 1H).

¹³C NMR (175 MHz, CDCl₃): δ [ppm] = 16.51, 65.85, 75.14, 117.70, 118.70, 123.73, 125.09, 129.29, 132.31, 133.12, 134.00, 135.25, 157.20, 166.28.

HRMS (ESI (+), 6.0 eV): calculated for [M+Na]⁺: 255.099 found: 255.099.

The experimental data are in agreement with those previously published.^[42,47,70]

7.4.1.2. 2-(Allyloxy)-3-methylbenzoic acid (115b)

To a stirring solution of ester **115b** (28.2 g, 121 mmol, 1.00 equiv.) in MeOH (400 mL) was added aq. NaOH (6.0M, 103 mL, 6.00 equiv.) and the reaction was heated to reflux for 4 h. The solvent was removed *in vacuo*, the residue was diluted with water (300 mL) and acidified with aq. H_2SO_4 (1.0M) to pH = 2–3. Et₂O (100 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 150 mL). All organic phases were combined and washed with water (150 mL). Drying over MgSO₄ and removal of the solvent *in vacuo* yielded carboxylic acid **115b** as a white solid (23.3 g, 121 mmol, quant.), which was used in the next step without further purification.

R_f = 0.19 (CH/EA 5:1).

¹**H-NMR (500 MHz, CDCI₃):** δ [ppm] = 2.37 (s, 3H), 4.51 (dt, J = 6.0, 1.2 Hz, 2H), 5.39 (dq, J = 10.4, 1.1 Hz, 1H), 5.48 (dq, J = 17.1, 1.4 Hz, 1H), 6.11 (ddt, J = 16.7, 10.3, 6.0 Hz, 1H), 7.19 (t, J = 7.7 Hz, 1H), 7.41 – 7.48 (m, 1H), 7.97 (dd, J = 7.8, 1.8 Hz, 1H), 11.16 (s, 1H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 16.31, 76.15, 120.74, 122.67, 125.32, 130.87, 131.56, 131.74, 137.08, 156.23, 166.02.

HRMS (ESI (+), 6.0 eV): calculated for [M–H⁺]⁻: 191.071 found: 191.08.

The experimental data are in agreement with those previously published.^[42,47,70]

7.4.1.3. 2-(Allyloxy)-*N*,*N*-diisopropyl-3-methylbenzamide (116)

To a stirring solution of carboxylic acid **115b** (4.83 g, 20.8 mmol, 1.00 equiv.) in dry CH_2CI_2 (50 mL) was added SOCI₂ (4.52 mL, 62.4 mmol, 3.00 equiv.) and the reaction was heated to reflux for 5.5 h. Excess SOCI₂ was removed *in vacuo* (80 °C, 20 mbar) and the residue was dissolved in dry CH_2CI_2 (50 mL). A solution of ^{*i*}Pr₂NH (8.77 mL, 62.44 mmol, 3.00 equiv.) in dry CH_2CI_2 (25 mL) was slowly added at 0 °C. The reaction was allowed to warm to r.t. and stirred overnight (12 h). Water (30 mL) was added, the phases were separated and aqueous phase was extracted with CH_2CI_2 (3x 30 mL). All organic phases were combined and washed with H_2O (30 mL) and brine (30 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 5:1) yielded amide **116** as a white crystalline solid (5.27 g, 19.1 mmol, 92%).

$R_{\rm f} = 0.35 \; (CH/EA \; 5:1).$

¹**H-NMR (500 MHz, CDCI₃):** δ [ppm] = 1.02 (d, J = 6.7 Hz, 3H), 1.17 (d, J = 6.7 Hz, 3H), 1.55 (dd, J = 6.8, 3.7 Hz, 6H), 2.29 (s, 3H), 3.49 (hept, J = 6.8 Hz, 1H), 3.67 (hept, J = 6.7 Hz, 1H), 4.34 (ddt, J = 12.3, 5.6, 1.5 Hz, 1H), 4.55 (ddt, J = 12.3, 5.5, 1.4 Hz, 1H), 5.19 (dq, J = 10.4, 1.4 Hz, 1H), 5.37 (dq, J = 17.2, 1.7 Hz, 1H), 6.04 (ddt, J = 17.2, 10.8, 5.5 Hz, 1H), 6.98 – 7.03 (m, 2H), 7.13 – 7.17 (m, 1H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 16.35, 16.37, 20.36, 20.65, 20.84, 20.87, 45.79, 51.16, 74.75, 117.05, 124.32, 124.74, 131.22, 131.84, 133.43, 134.21, 152.98, 169.03. HRMS (ESI (+), 6.0 eV): calculated for [M+Na]⁺: 298.1778 found: 298.1780.

The experimental data are in agreement with those previously published.^[42,47,70]

Experimenteller Teil

¹BuLi (1.7M in pentane, 17.4 mL, 29.5 mmol, 1.10 equiv.) was added over a period of 15 min to a stirring solution of amide **116** (7.38 g, 26.8 mmol, 1.00 equiv.) in dry THF (130 mL) at -78 °C. After 0.5 h the solution was transferred *via* cannula to a stirring solution of the Andersen reagent (**117**) in dry THF (130 mL) at r.t. and the reaction was allowed to stir for 90 min at ambient temperature. Aq. sat. NH₄Cl solution (100 mL) was added, the layers were separated and the aqueous layer was extracted with EtOAc (3x 100 mL). All organic phases were combined and washed with brine (150 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 3:1) yielded enantiomeric pure sulfoxide **118** as a white solid (7.96 g, 19.3 mmol, 72%).

R_f = 0.31 (CH/EA 5:1).

 $[\alpha]_{D}^{20} = -107.9 \text{ (CHCl}_3, \text{ c} = 1.0\text{)}.$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 1.22 (d, J = 6.7 Hz, 3H), 1.25 (d, J = 6.7 Hz, 3H), 1.59 (d, J = 6.8 Hz, 3H), 1.63 (d, J = 6.8 Hz, 3H), 2.29 (s, 3H), 2.35 (s, 3H), 3.60 (hept, J = 6.8 Hz, 1H), 3.76 (hept, J = 6.8 Hz, 1H), 4.32 (ddt, J = 12.1, 5.6, 1.5 Hz, 1H), 4.57 (ddt, J = 12.1, 5.6, 1.4 Hz, 1H), 5.22 (dq, J = 10.4, 1.4 Hz, 1H), 5.37 (dq, J = 17.2, 1.6 Hz, 1H), 5.97 – 6.08 (m, 1H), 7.24 – 7.27 (m, 3H), 7.43 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 8.2 Hz, 2H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 16.54, 20.40, 20.53, 20.80, 21.12, 21.51, 46.41, 51.95, 75.05, 117.48, 120.86, 124.68, 129.89, 132.52, 133.61, 135.54, 140.84, 142.18, 142.25, 152.41, 165.49.

HRMS (ESI-(+), 5.0 eV): calculated for [M+Na]⁺: 436.1917 found: 436.1920.

The experimental data are in agreement with those previously published.^[42,47,70]

7.4.1.5. Ethyl (2*R*,3*R*)-2-hydroxy-3-methylpent-4-enoate (181)

trans-2-Butene (19 mL, 195 mmol, 2.80 equiv.) was added via transfer cannula to a stirring suspension of KO^rBu (8.03 g, 71.6 mmol, 1.03 equiv.) in dry THF (38 mL) at -78 °C. ^{*n*}BuLi (2.5M in hexane, 28.0 mL, 69.5 mmol, 1.00 equiv.) was added over a period of 30 min. After 30 min the solution was warmed up to -45 °C and stirred for 10 min. A solution of (+)-lpc₂BOMe (26.0 g, 82 mmol, 1.18 equiv.) in dry Et₂O (83 mL) was added over a period of 30 min at -78 °C, followed by addition of BF₃·OEt₂ (12.3 mL, 97.3 mmol, 1.40 equiv.) over a period of 20 min. Ethyl glyoxylate (**111**, 4.9M in toluene, 35.5 mL, 174 mmol, 2.50 equiv.) was added over a period of 30 min and stirring was continued for 4 h at -78 °C. NaOH (1.0M in water, 157 mL, 2.25 equiv.) was added at r.t., followed by careful addition of aq. H₂O₂ solution (30 % *v*/*v*, 21.7 mL, 2.76 equiv.). The solution was allowed to warm to r.t. and stirred for 2 h. The layers were separated and the aqueous phase was extracted with Et₂O (3x 100 mL). All organic phases were combined and washed with water (30 mL) and brine (30 mL). Drying over MgSO₄, careful removal of the solvent *in vacuo* (40 °C, 50 mbar) and vacuum destillation (64-65 °C, 5.4 mbar) yielded crotyl alcohol **181** as a colourless liquid (6.10 g, 38.6 mmol, 56%).

 $R_{f} = 0.14 (CH/EA 10:1).$

 $[\alpha]_{D}^{20} = -2.3 \text{ (CHCl}_{3}, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 1.16 (d, *J* = 7.0 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H), 2.61 – 2.70 (m, 1H), 4.10 (d, *J* = 3.4 Hz, 1H), 4.16 – 4.32 (m, 2H), 5.05 (dd, *J* = 4.2, 1.5 Hz, 1H), 5.08 (d, *J* = 1.5 Hz, 1H), 5.75 (ddd, *J* = 17.8, 9.8, 8.0 Hz, 1H).

¹³**C-NMR (125 MHz, CDCI₃):** δ [ppm] = 14.42, 16.45, 42.05, 61.79, 74.46, 116.55, 137.78, 174.33.

HRMS (ESI-(+), 6.0 eV): calculated for [M+H]⁺: 159.1016; found: 159.1018.

The experimental data are in agreement with those previously published.^[42,47,70]

7.4.1.6. Ethyl-(2*R*,3*R*)-3-methyl-2-((triethylsilyl)oxy)pent-4-enoate (112)

TESOTf (9.10 mL, 47.5 mL, 1.25 equiv.) was slowly added to a stirring solution of crotyl alcohol **181** (6.02 g, 38.0 mmol, 1.00 equiv.) and 2,6-lutidine (11.1 mL, 95.1 mmol, 2.50 equiv.) in dry CH_2Cl_2 (130 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 1 h. Water (100 mL) was added, the phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 100 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 30:1) yielded TES ether **112** as a colourless liquid (9.43 g, 34.6 mmol, 91%).

 $R_{\rm f} = 0.30 \; (CH/EA \; 30:1).$

 $[\alpha]_D^{20} = +18.9 \text{ (CHCl}_3, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 0.61 (qd, *J* = 7.9, 2.7 Hz, 6H), 0.95 (t, *J* = 7.9 Hz, 9H), 1.06 (d, *J* = 6.9 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 2.54 - 2.65 (m, 1H), 4.07 (d, *J* = 4.7 Hz, 1H), 4.11 - 4.22 (m, 2H), 4.98 - 5.05 (m, 2H), 5.82 (ddd, *J* = 17.2, 10.3, 8.0 Hz, 1H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 4.78, 6.87, 14.44, 16.56, 42.89, 60.70, 76.31, 115.44, 139.16, 173.00.

HRMS (ESI (+), 6.0 eV): calculated for [M+Na]⁺: 295.1700; found: 295.1719.

The experimental data are in agreement with those previously published.^[42,47,70]

7.4.1.7. (2*R*,3*R*)-3-Methyl-2-((triethylsilyl)oxy)pent-4-en-1-ol (112a)

DIBALH (1.0M in CH_2CI_2 , 41.0 mL, 2.10 equiv.) was slowly added to a stirring solution of Ester **112** (2.67 g, 9.80 mmol, 1.00 equiv.) in dry CH_2CI_2 at -78 °C. The reaction was allowed to warm to r.t. and stirred for 1 h. Et₂O (100 mL) was added, the solution was poured into aq. sat. Rochelle-salt solution (100 mL) and stirred vigorously until two phases appeared. The layers were separated and the aqueous phase was extracted with Et₂O (3x 50 mL). Drying over MgSO₄ and removal of the solvent *in vacuo* yielded alcohol **112a** as a colourless
liquid, which was used in the next step without further purification (2.26 g, 9.81 mmol, quant.).

R_f = 0.29 (CH/EA 9:1).

 $[\alpha]_D^{20} = +2.6 \text{ (CHCl}_3, c = 1.0).$

¹H-NMR (500 MHz, CDCl₃): δ [ppm] = 0.63 (q, J = 7.9 Hz, 6H), 0.97 (t, J = 7.9 Hz, 9H), 1.02 (d, J = 7.0 Hz, 3H), 1.83 (d, J = 11.2 Hz, 1H), 2.35 – 2.45 (m, 1H), 3.53 (d, J = 5.0 Hz, 2H), 3.65 (q, J = 5.1 Hz, 1H), 4.95 – 5.09 (m, 2H), 5.81 (ddd, J = 17.5, 10.4, 7.5 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 5.24, 7.00, 15.34, 41.43, 64.39, 114.88, 140.62. HRMS (ESI-(+), 6.0 eV): calculated for [M+Na]⁺: 253.1594; found: 253.1591.

The experimental data are in agreement with those previously published.^[42,47,70]

7.4.1.8. (2*R*,3*R*)-3-Methyl-2-((triethylsilyl)oxy)pent-4-enal (182)

DMSO (425 µL, 5.93 mmol, 2.60 equiv.) in dry CH_2CI_2 (3.50 mL) was slowly added over a period of 5 min to a stirring solution of (COCI)₂ (270 µL, 3.08 mmol, 1.35 equiv.) in dry CH_2CI_2 (10.5 mL) at -78 °C. After 25 min alcohol **112a** (525 mg, 2.28 mmol, 1.00 equiv.) in dry CH_2CI_2 (3.50 mL) was added and the solution stirred for 1 h. NEt₃ (1.25 mL, 9.12 mmol, 4.00 equiv.) was slowly added dropwise, stirring was continued for additional 30 min and the reaction was allowed to warm to r.t. over 1 h. Water (11 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3x 15 mL). All organic phases were combined and washed with brine (15 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 50:1) yielded aldehyde **182** as a yellow liquid (432 mg, 1.89 mmol, 83%).

R_f = 0.30 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = +16.6 \text{ (CHCl}_3, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 0.61 (q, J = 7.7 Hz, 6H), 0.96 (t, J = 7.9 Hz, 9H), 1.08 (d, J = 6.9 Hz, 3H), 2.53 - 2.62 (m, 1H), 3.85 (dd, J = 4.5, 2.2 Hz, 1H), 5.03 (d, J = 1.0 Hz, 1H), 5.04 - 5.07 (m, 1H), 5.76 - 5.87 (m, 1H), 9.55 (d, J = 2.2 Hz, 1H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 4.93, 6.83, 16.17, 41.81, 81.02, 116.04, 138.40, 204.55.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 251.1438; found: 251.1445.

The experimental data are in agreement with those previously published.^[42,47,70]

7.4.1.9. 2-(Allyloxy)-6-((1*S*,2*R*,3*R*)-1-hydroxy-3-methyl-2-((triethylsilyl)oxy)pent-4-en-1-yl)-*N*,*N*-diisopropyl-3-methylbenzamide (183)

¹BuLi (1.7M in pentane, 4.06 mL, 6.91 mmol, 1.20 equiv.) was slowly added to a solution of amide **117** (2.38 g, 5.76 mmol, 1.00 equiv.) in dry THF (50 mL) at -90 °C and stirred for 15 min. Aldehyde **182** (1.84 g, 8.06 mmol, 1.40 equiv.) in dry THF (6.70 mL) was slowly added and the solution was allowed to stir for 1 h, before it was allowed to warm to -78 °C and stirred for additional 30 min. Aq. sat. NH₄Cl solution (40 mL) was added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 50 mL). All organic phases were combined and washed with brine (50 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 6:1) yielded benzylic alcohol **183** as a colourless, viscid oil (2.03 g, 4.03 mmol, 71%).

R_f = 0.28 (CH/EA 6:1).

 $[\alpha]_{D}^{20} = +39.5 \text{ (CHCl}_3, \text{ c} = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 0.43 (qd, J = 7.9, 1.8 Hz, 6H), 0.77 (t, J = 8.0 Hz, 9H), 1.04 (d, J = 6.7 Hz, 3H), 1.15 (d, J = 7.1 Hz, 3H), 1.21 (d, J = 6.6 Hz, 3H), 1.54 (d, J = 6.9 Hz, 3H), 1.55 (d, J = 6.8 Hz, 3H), 1.58 – 1.64 (m, 1H), 2.27 (d, J = 0.6 Hz, 3H), 2.75 – 2.83 (m, 1H), 3.50 (hept, J = 6.8 Hz, 1H), 3.76 (hept, J = 6.6 Hz, 1H), 4.18 (dd, J = 9.2, 2.0 Hz, 1H), 4.25 (ddt, J = 12.3, 5.4, 1.5 Hz, 1H), 4.40 (d, J = 9.2 Hz, 1H), 4.46 (ddt, J = 12.3, 5.7, 1.4 Hz, 1H), 5.02 (ddd, J = 10.3, 2.2, 0.7 Hz, 1H), 5.12 (ddd, J = 17.3, 2.3, 1.0 Hz, 1H), 5.20 (dq, J = 10.4, 1.4 Hz, 1H), 5.36 (dq, J = 17.2, 1.7 Hz, 1H), 5.92 (ddd, J = 17.4, 10.3, 8.5 Hz, 1H), 6.03 (ddt, J = 17.2, 10.5, 5.5 Hz, 1H), 7.12 – 7.19 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 5.60, 7.00, 16.08, 17.27, 20.35, 20.52, 20.64, 20.86, 24.38, 32.47, 41.46, 45.96, 51.73, 72.13, 76.65, 115.30, 117.07, 123.01, 130.64, 131.05, 134.14, 134.15, 138.69, 140.50, 152.46, 168.94.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 504.3504; found: 504.3480.

The experimental data are in agreement with those previously published.^[42,47,70]

```
7.4.1.10. 2-(Allyloxy)-6-((5S,6R)-6-((R)-but-3-en-2-yl)-8,8-diethyl-2,2,3,3-
tetramethyl-4,7-dioxa-3,8-disiladecan-5-yl)-N,N-diisopropyl-3-
methylbenzamide (184)
```


TBSOTf (600 μ L, 2.61 mmol, 2.50 equiv.) was added to a stirring solution of benzylic alcohol **183** (526 mg, 1.04 mmol, 1.00 equiv.) and 2,6-lutidine (610 μ L, 5.22 mmol, 5.00 equiv.) in dry CH₂Cl₂ (18 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred overnight (21 h). Water (5 mL) was added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 10 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 50:1) yielded TBS ether **184** as a colourless oil (580 mg, 980 μ mol, 90%).

*R*_f = 0.36 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = -14.8 \text{ (CHCl}_{3}, c = 0.8).$

¹**H-NMR (700 MHz, CDCI₃):** δ [ppm] = -0.37 (s, 3H), 0.10 (s, 3H), 0.28 (dq, *J* = 15.0, 8.1 Hz, 3H), 0.38 (dq, *J* = 15.0, 8.1 Hz, 3H), 0.74 (t, *J* = 8.0 Hz, 9H), 0.82 (s, 9H), 1.10 – 1.15 (m, 9H), 1.55 (t, *J* = 7.0 Hz, 6H), 2.25 (s, 3H), 2.79 (p, *J* = 7.5 Hz, 1H), 3.48 (hept, *J* = 6.7 Hz, 1H), 3.74 – 3.83 (m, 2H), 4.17 (ddt, *J* = 12.4, 5.5, 1.6 Hz, 1H), 4.39 (d, *J* = 8.8 Hz, 1H), 4.54 (ddt, *J* = 12.5, 5.5, 1.5 Hz, 1H), 4.98 – 5.06 (m, 2H), 5.16 (dq, *J* = 10.5, 1.4 Hz, 1H), 5.35 (dq, *J* = 17.2, 1.7 Hz, 1H), 5.86 (ddd, *J* = 17.3, 10.3, 9.0 Hz, 1H), 6.02 (ddt, *J* = 17.2, 10.7, 5.4 Hz, 1H), 7.09 (d, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 7.9 Hz, 1H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = -5.24, -4.98, 5.52, 7.23, 16.07, 18.10, 19.21, 20.46, 20.74, 21.05, 21.51, 26.08, 41.16, 45.83, 50.82, 71.48, 74.68, 81.72, 115.46, 116.68, 123.74, 130.41, 130.75, 134.19, 134.37, 138.98, 140.46, 152.86, 167.53.

HRMS (ESI (+), 6.0 eV): calculated for [M+Na]⁺: 640.4188; found: 640.4189.

The experimental data are in agreement with those previously published.^[42,47,70]

7.4.1.11. (3*R*,4*S*)-3-((*R*)-But-3-en-2-yl)-4-((*tert*-butyldimethylsilyl)oxy)-8hydroxy-7-methylisochroman-1-one (186)

Pd(PPh₃)₄ (3.30 mg, 2.85 µmol, 0.01 equiv.) was added to a stirring suspension of allyl ether **184** (176 mg, 285 µmol, 1.00 equiv.) in dry MeOH (2.40 mL) at r.t. and stirred for 10 min. Dry K_2CO_3 (118 mg, 855 µmol, 3.00 equiv.) was added and stirring was continued for 1 h. The mixture was concentrated *in vacuo*, diluted in CH₂Cl₂ (3 mL) and H₂O (5 mL) and was acidified with aq. HCI (1.0M) to pH = 6. The layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 3 mL). All organic phases were combined and washed with brine (5 mL). Drying over MgSO₄ and removal of the solvent gave a red oil, which was transferred into a septum sealed microwave vessel. Dry toluene (2.30 mL) and AcOH (490 µL, 8.55 mmol, 30.0 equiv.) were added and the solution was heated up to 220 °C in a microwave reactor for 3.5 h (max. Power 300 W). Water (2 mL) was added, the layers were separated and the aqueous phase was extracted with brine (10 mL). Drying over MgSO₄, removal of the solvent *gave* a feating phases were combined and washed with EtOAc (3x 10 mL). All organic phases were separated and the aqueous phase was extracted with EtOAc (3x 10 mL). All organic phases were combined and washed with brine (10 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 30:1) gave isochromanone **186** as a white solid (88.4 mg, 244 µmol, 86%).

 $R_{\rm f} = 0.29 \; (CH/EA \; 30:1).$

 $[\alpha]_D^{20} = +70.2 \text{ (CHCl}_3, c = 1.0).$

¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = -0.01 (s, 3H), 0.13 (s, 3H), 0.87 (s, 9H), 1.07 (d, J = 6.9 Hz, 3H), 2.27 (d, J = 1.0 Hz, 3H), 2.40 (p, J = 6.5 Hz, 1H), 4.39 (dd, J = 7.2, 3.6 Hz, 1H), 4.72 (d, J = 3.6 Hz, 1H), 5.02 (dt, J = 17.2, 1.3 Hz, 1H), 5.07 (dt, J = 10.4, 1.2 Hz, 1H), 5.82 (ddd, J = 17.2, 10.4, 7.5 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 7.34 (dt, J = 7.5, 0.8 Hz, 1H), 11.27 (s, 1H).

¹³C-NMR (175 MHz, CDCl₃): δ [ppm] = -4.10, -4.01, 15.80, 17.18, 18.24, 25.87, 39.29, 66.88, 88.19, 106.99, 116.66, 117.35, 127.23, 136.94, 137.62, 138.07, 160.21, 168.66. HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 363.1986; found: 363.1991.

The experimental data are in agreement with those previously published.^[42,47,70]

- 130 -

7.4.1.12. (3*R*,4*S*)-3-((*R*)-But-3-en-2-yl)-4,8-bis((*tert*-butyldimethylsilyl)oxy)-7methylisochroman-1-one (188)

TBSOTf (950 µL, 4.12 mmol, 2.00 equiv.) was added to a stirring solution of phenol **186** (746 mg, 2.06 mmol, 1.00 equiv.) and 2,6-lutidine (960 µL, 8.24 mmol, 4.00 equiv.) in dry CH_2Cl_2 (8.0 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 2.5 h. Water (10 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 15 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 30:1) yielded bis-silyl ether **188** as a colourless paste (982 mg, 2.06 mmol, quant.).

*R*_f = 0.36 (CH/EA 30:1).

 $[\alpha]_{D}^{20} = +86.0 \text{ (MeOH, } c = 0.5\text{).}$

¹**H-NMR (700 MHz, CDCI₃):** δ [ppm] = 0.02 (s, 3H), 0.14 (s, 3H), 0.15 (s, 3H), 0.17 (s, 3H), 0.88 (s, 9H), 1.04 (s, 9H), 1.07 (d, J = 6.9 Hz, 3H), 2.26 (d, J = 0.7 Hz, 3H), 2.39 (ht, J = 6.9, 1.2 Hz, 1H), 4.19 (dd, J = 7.1, 4.6 Hz, 1H), 4.70 (d, J = 4.6 Hz, 1H), 5.05 (dt, J = 17.2, 1.4 Hz, 1H), 5.09 (dt, J = 10.5, 1.3 Hz, 1H), 5.96 (ddd, J = 17.4, 10.5, 7.0 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 7.33 (dd, J = 7.6, 0.8 Hz, 1H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = -4.02, -3.91, -3.26, -3.21, 17.25, 17.73, 18.27, 18.81, 25.93, 26.16, 27.07, 38.38, 67.86, 86.42, 116.09, 116.31, 119.26, 131.81, 135.71, 138.66, 139.61, 154.94, 161.91.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 477.2856; found: 477.2860.

The experimental data are in agreement with those previously published.^[42,47,70]

2,6-Lutidine (100 μ L, 868 μ mol, 2.00 equiv.), NalO₄ (372 mg, 1.74 mmol, 4.00 equiv.) and OsO₄ (2.5 wt% in ^tBuOH, 110 μ L, 0.02 equiv.) were added to a stirring solution of alkene **188** (207 mg, 434 μ mol, 1.00 equiv.) in dioxane/H₂O (3:1, 4.3 mL) at r.t. and stirred for 3 h. Water (4 mL) and CH₂Cl₂ (4 mL) were added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 3 mL). All organic phases were combined and washed with brine (6 mL). Drying over MgSO₄ and removal of the solvent *in vacuo* gave a green-brownish oil, which was immediately dispensed in MeOH (8 mL) and cooled to 0 °C. NaBH₄ (82.1 mg, 2.17 mmol, 5.00 equiv.) was added to the stirring solution, the reaction was allowed to warm to r.t. and stirred for 20 min. CH₂Cl₂ (3 mL) and aq. sat. NaHCO₃ solution (3 mL) were added, the layers were combined and washed with CH₂Cl₂ (3x 4 mL). All organic phases were combined and were to much the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 4 mL). All organic phases were combined and were to much the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 4 mL). All organic phases were combined and washed with brine (4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography yielded alcohol **189** as a colourless oil (199 mg, 414 µmol, 95%).

R_f = 0.31 (CH/EA 4:1).

 $[\alpha]_{D}^{20} = +70.0 \text{ (MeOH, c} = 0.2\text{).}$

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 0.01 (s, 3H), 0.14 (s, 3H), 0.16 (s, 3H), 0.20 (s, 3H), 0.85 (s, 9H), 0.97 (d, J = 6.8 Hz, 3H), 1.04 (s, 9H), 1.49 – 1.60 (m, 1H), 2.27 (s, 3H), 3.59 – 3.65 (m, 1H), 3.66 – 3.72 (m, 1H), 4.41 (dd, J = 9.8, 2.5 Hz, 1H), 4.95 (d, J = 2.5 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 7.46 (dd, J = 7.5, 0.8 Hz, 1H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = -4.43, -4.16, -3.19, -3.06, 13.94, 17.76, 18.60, 19.21, 26.07, 26.47, 38.43, 63.27, 63.40, 68.64, 84.78, 117.69, 121.29, 132.55, 136.37, 139.46, 155.17, 161.65.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 481.2800; found: 481.2807.

I₂ (118 mg, 465 μmol, 1.30 equiv.) was added to a solution of PPh₃ (122 mg, 465 μmol, 1.30 equiv.) and imidazole (66.0 mg, 966 μmol, 2.70 equiv.) in dry CH₂Cl₂ (2.3 mL) at 0 °C and stirred for 15 min. A solution of alcohol **189** (172 mg, 358 μmol, 1.00 equiv.) in dry CH₂Cl₂ (2.3 mL) was added slowly and the reaction was allowed to warm to r.t. After 1.5 h. the solution was filtered over a plug of silica gel and rinsed with CH/EA (4:1). Aq. pH 7-buffer solution (5 mL) and aq. sat. Na₂SO₃ solution (5 mL) were added to the filtrate, the layers were separated and the aqueous phase was extracted with EtOAc (3x 10 mL). All organic phases were combined and washed with brine (15 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 30:1) yielded alkyl iodide **146** as a colourless oil (206 mg, 348 μmol, 97%).

 $R_{f} = 0.29 (CH/EA 30:1).$

 $[\alpha]_{D}^{20} = +72.5 \text{ (MeOH, } c = 0.4\text{).}$

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 0.03 (s, 3H), 0.15 (s, 3H), 0.18 (s, 3H), 0.22 (s, 3H), 0.86 (s, 9H), 1.04 (d, J = 6.4 Hz, 12H), 1.36 – 1.47 (m, 1H), 2.27 (d, J = 0.7 Hz, 3H), 3.42 (dd, J = 9.9, 6.7 Hz, 1H), 3.52 (dd, J = 9.9, 2.8 Hz, 1H), 4.29 (dd, J = 9.5, 2.7 Hz, 1H), 5.01 (d, J = 2.7 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.48 (dd, J = 7.6, 0.9 Hz, 1H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = -4.42, -4.15, -3.18, -3.04, 13.86, 17.56, 17.72, 18.60, 19.18, 26.04, 26.44, 37.25, 68.23, 86.46, 117.42, 121.22, 132.83, 136.62, 139.32, 155.26, 161.19.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 591.1817; found: 591.1831.

7.4.2. C²-Funktionalisierung an Oxazolen

7.4.2.1. 2-lodoprop-2-en-1-ol (192)

TMSCI (44 mL, 346 mmol, 2.00 equiv.), water (3.12 mL, 173 mmol, 1.00 equiv.) and propargyl alcohol (**191**, 10 mL, 173 mmol, 1.00 equiv.) were added to a stirring solution of NaI (51.9 g, 346 mmol, 2.00 equiv.) in CH₃CN (430 mL) at 0 °C and stirred for 1.5 h. Water (150 ml) was added, the layers were separated and the aqueous phase was extracted with Et_2O (3x 150 mL). All organic phases were combined and washed with aq. sat. NaSO₃ solution (200 mL) and brine (200 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 5:1) yielded allyl alcohol **192** as an orange liquid (14.8 g, 80.4 mmol, 46%).

R_f = 0.26 (CH/EA 5:1).

¹**H-NMR (400 MHz, CDCl₃):** δ [ppm] = 2.06 (br. s, 1H), 4.18 (s, 2H), 5.86 (q, *J* = 1.4 Hz, 1H), 6.39 (q, *J* = 1.7 Hz, 1H).

¹³**C-NMR (100 MHz, CDCI₃):** δ [ppm] = 71.21, 110.60, 124.62.

GC-MS (EI (+), 70.0 eV): calculated for [M]⁺: 183.94; found: 183.85.

The experimental data are in agreement with those previously published.^[117]

7.4.2.2. Triethyl((2-iodoallyl)oxy)silane (190)

TESCI (3.85 mL, 23.8 mmol, 1.40 equiv.) was added dropwise to a stirring solution of allyl alcohol **192** (6.16 g, 33.5 mmol, 1.00 equiv.) and imidazole (6.38 g, 93.8 mmol, 2.80 equiv.) in dry CH_2Cl_2 (120 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 1.5 h. Water (100 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 100 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 99:1) yielded TES ether **190** as a clear liquid (9.27 g, 31.1 mmol, 93%).

*R*_f = 0.38 (CH/EA 99:1).

¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 0.64 (q, J = 7.9 Hz, 6H), 0.98 (t, J = 7.9 Hz, 9H), 4.18 (t, J = 1.8 Hz, 2H), 5.82 (q, J = 1.7 Hz, 1H), 6.44 (q, J = 1.8 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 4.62, 6.87, 70.96, 109.78, 123.11. HRMS (EI (+), 70.0 eV): calculated for [M⁺-Et⁻]⁺: 298.0250; found: 298.0244.

7.4.2.3. 2-(3-((Triethylsilyl)oxy)prop-1-en-2-yl)oxazole (193)

ZnCl₂ (444 mg, 3.26 mmol, 3.00 equiv., dried overnight at 270 °C, 2.6 mbar) was heated under vacuum until free-flowing, recooled to r.t. and suspended in dry THF (1.60 mL). ^{*n*}BuLi (2.5M in ^{*n*}hexane, 730 µL, 1.82 mmol, 1.68 equiv.) was slowly added dropwise to a stirring solution of oxazole (**135**, 100 µL, 1.52 mmol, 1.40 equiv.) in dry THF (11 mL) at -78 °C and stirred for 30 min. The solution was transferred *via* cannula to the stirring ZnCl₂ suspension and was allowed to warm up to r.t. over a period of 15 min. A solution of iodoalkene **190** (320 mg, 1.07 mmol, 1.00 equiv.) in dry THF (550 µL) was slowly added, followed by addition of Pd(PPh₃)₄ (62.4 mg, 54 µmol, 0.05 equiv.) in dry THF (1.2 mL). The reaction was sealed and heated to 60 °C, stirred for 2 h and was concentrated *in vacuo*. EtOAc (12 mL) and aq. sat. NH₄Cl solution (6 mL) were added, the layers were separated and aqueous layer was extracted with EtOAc (3x 8 mL). All organic phases were combined and washed with brine (6 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 19:1) yielded oxazole **193** as a yellow liquid (156 mg, 652 µmol, 61%).

*R*_f = 0.22 (CH/EA 19:1).

¹**H-NMR (400 MHz, CDCl₃):** δ [ppm] = 0.67 (q, J = 7.8 Hz, 6H), 0.99 (t, J = 7.8 Hz, 9H), 4.62 (t, J = 2.0 Hz, 2H), 5.79 (td, J = 2.1, 1.4 Hz, 1H), 6.08 (q, J = 1.8 Hz, 1H), 7.12 (d, J = 0.9 Hz, 1H), 7.60 (d, J = 0.8 Hz, 1H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 4.58, 6.91, 61.38, 116.01, 127.95, 135.37, 138.33, 160.69.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 240.1414; found: 240.1424.

7.4.2.4. 5-lodo-2-(3-((triethylsilyl)oxy)prop-1-en-2-yl)oxazole (194)

^{*n*}BuLi (2.5M in ^{*n*}hexane, 300 µL, 747 µmol, 1.10 equiv.) was added to a stirring solution of ^{*i*}Pr₂NH (134 µL, 950 µmol, 1.40 equiv.) in dry THF (6.4 mL) at 0 °C and stirred for 10 min. A solution of oxazole **193** (163 mg, 679 µmol, 1.00 equiv.) in dry THF (920 µL) was slowly added dropwise at -78 °C and stirred for 1 h. I₂ (207 mg, 815 µmol, 1.20 equiv.) in dry THF (800 µL) was slowly added dropwise and the reaction stirred for additional 30 min. Aqueous NaHSO₃ solution (30 wt%) was added and the reaction was allowed to warm to r.t. The layers were separated and the aqueous layer was extracted with EtOAc (3x 5 mL). All organic phases were combined and washed with brine (5 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 19:1) yielded 5-iodooxazole **194** as a yellow liquid (155 mg, 424 µmol, 62%).

R_f = 0.36 (CH/EA 19:1).

¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 0.66 (q, J = 8.0 Hz, 6H), 0.98 (t, J = 8.0 Hz, 9H), 4.57 (t, J = 2.0 Hz, 2H), 5.79 (td, J = 2.1, 1.2 Hz, 1H), 6.08 (td, J = 1.9, 1.3 Hz, 1H), 7.14 (s, 1H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 4.56, 6.89, 61.08, 86.86, 116.95, 134.72, 136.55, 165.19.

HRMS (EI (+), 70.0 eV): calculated for [M⁺-Et^{*}]⁺: 335.9917; found: 335.9915.

7.4.2.5. *tert*-Butyl((2-iodoallyl)oxy)dimethylsilane (196)

TBSOTf (6.37 mL, 27.7 mmol, 1.20 equiv.) was added dropwise to a solution of allyl alcohol **192** (4.25 g, 21.1 mmol, 1.00 equiv.) and 2,6-lutidine (6.44 mL, 55.4 mmol, 2.40 equiv.) in dry CH_2CI_2 (83 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 1.5 h. Water (80 mL) was added, the phases were separated and the aqueous layer was extracted with CH_2CI_2 (3x 50 mL). All organic phases were combined and dried over MgSO₄.

Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 99:1) yielded TES ether **196** as a clear liquid (6.34 g, 21.3 mmol, 92%).

*R*_f = 0.48 (CH/EA 99:1).

¹**H-NMR (400 MHz, CDCI₃):** δ [ppm] = 0.09 (s, 6H), 0.92 (s, 9H), 4.17 (t, *J* = 1.8 Hz, 2H), 5.81 (q, *J* = 1.7 Hz, 1H), 6.42 (q, *J* = 1.8 Hz, 1H).

¹³**C-NMR (100 MHz, CDCI₃):** δ [ppm] = -5.18, 18.50, 25.96, 71.23, 109.87, 123.11.

HRMS (EI (+), 70.0 eV): calculated for [M^{++-*t*}Bu⁺]⁺: 241.1223 found: 241.1211.

The experimental data are in agreement with those previously published.^[47]

7.4.2.6. 2-(3-((*tert*-Butyldimethylsilyl)oxy)prop-1-en-2-yl)oxazole (197)

ZnCl₂ (12.0 g, 87.9 mmol, 1.40 equiv.) was heated under vacuum until free-flowing, recooled to r.t. and suspended in dry THF (44 mL). "BuLi (2.5M in "hexane, 19.7 mL, 49.2 mmol, 1.68 equiv.) was added dropwise to a stirring solution of oxazole (100 μ L, 1.52 mmol, 1.40 equiv.) in dry THF (190 mL) at -78 °C and stirred for 0.5 h. The solution was transferred *via* cannula to the ZnCl₂ suspension and was allowed to warm up to r.t. over a period of 15 min. A solution of iodoalkene **196** (8.74 g, 29.3 mmol, 1.00 equiv.) in dry THF (8.0 mL) was slowly added, followed by addition of Pd(PPh₃)₄ (847 mg, 733 μ mol, 2.5mol-%). The reaction was sealed, heated to 60 °C and stirred for 19 h and was concentrated *in vacuo*. EtOAc (150 mL) and aq. sat. NH₄Cl solution (100 mL). were added, the layers were separated and the aqueous layer was extracted with EtOAc (3x 100 mL). All organic phases were combined and washed with brine (150 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 19:1) yielded oxazole **197** as a colourless liquid (2.97 g, 12.4 mmol, 42%).

*R*_f = 0.18 (CH/EA 19:1).

¹**H-NMR (500 MHz, CDCI₃):** δ [ppm] = 0.12 (s, 6H), 0.95 (s, 9H), 4.62 (t, *J* = 2.1 Hz, 2H), 5.77 (td, *J* = 2.1, 1.4 Hz, 1H), 6.08 (q, *J* = 1.9 Hz, 1H), 7.12 (d, *J* = 0.8 Hz, 1H), 7.60 (d, *J* = 0.8 Hz, 1H).

¹³**C-NMR (125 MHz, CDCI₃):** δ [ppm] = -5.25, 18.54, 26.06, 27.08, 61.72, 115.98, 127.92, 135.39, 138.33, 160.67.

HRMS (EI (+), 70.0 eV): calcuated for [M⁺-CH₃']⁺: 224.1101; found: 224.1106.

^{*n*}BuLi (2.5M in ^{*n*}hexane, 5.15 mL, 12.9 mmol, 1.10 equiv.) was slowly added to a solution of ^{*i*}Pr₂NH (2.30 mL, 16.4 mmol, 1.40 equiv.) in dry THF (110 mL) at 0 °C and stirred for 15 min. A solution of oxazole **197** (2.80 g, 11.7 mmol, 1.00 equiv.) in dry THF (12 mL) was added at -78 °C and stirred for 1 h. I₂ (3.27 g, 12.9 mmol, 1.10 equiv.) in dry THF (33 mL) was slowly added dropwise and the reaction stirred for additional 30 min. The solution was poured into a separating funnel with aq. sat. NH₄Cl solution (100 mL) and aq. sat. Na₂SO₃ solution (100 mL) and was shaken vigorously until decolouration. The layers were separated and the aqueous phase was extracted with EtOAc (3x 100 mL). All organic phases were combined and washed with brine (150 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 19:1) yielded 5-iodooxazole **198** as a yellow oil (3.62 g, 9.92 µmol, 85%).

*R*_f = 0.36 (CH/EA 19:1).

¹**H-NMR (700 MHz, CD_2CI_2):** δ [ppm] = 0.15 (s, 6H), 0.97 (s, 9H), 4.58 (t, J = 2.0 Hz, 2H), 5.77 (td, J = 2.1, 1.3 Hz, 1H), 6.08 (td, J = 1.8, 1.2 Hz, 1H), 7.17 (s, 1H).

¹³**C-NMR (175 MHz, CD₂Cl₂):** δ [ppm] = -5.74, 18.22, 25.61, 61.37, 86.71, 116.32, 134.93, 136.47, 165.00.

HRMS (EI (+), 70.0 eV): calculated for [M⁺-CH₃[•]]⁺: 350.0068; found: 350.0072.

7.4.2.8. 2-(3-((*tert*-Butyldimethylsilyl)oxy)prop-1-en-2-yl)-4iodooxazole (199)

A stirring solution of $({}^{i}Pr)_{2}NH$ (700 µL, 4.97 mmol, 1.80 equiv.) in dry THF (30 mL) was cooled to 0 °C and ^{*n*}BuLi (2.5M in ^{*n*}hexane, 1.77 mL, 4.42 mmol, 1.60 equiv.) was added. The solution was allowed to stir for 15 min at this temperature, before it was cooled to -78 °C. 5-bromooxazole **149** (70.1 mg, 274 µmol, 0.10 equiv.) and 5-iodooxazole **198** (1.01 g,

- 138 -

2.76 mmol, 1.00 equiv.) were solved in THF (14 mL) and cooled to -78 °C. The LDA solution was transferred dropwise *via* a syringe pump into the oxazole solution over a period of 1 h and stirred for additional 2 min. Aq. sat. NH₄Cl solution (40 mL) was added and the reaction was allowed to warm to r.t. The layers were separated and the aqueous phase was extracted with Et₂O (3x 15 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 50:1) afforded 4-iodooxazole **199** as an orange liquid (875 mg, 2.39 mmol, 87%).

R_f = 0.33 (CH/EA 50:1).

¹**H-NMR (500 MHz, CDCI₃):** δ [ppm] = 0.11 (s, 6H), 0.94 (s, 9H), 4.58 (t, J = 2.1 Hz, 2H), 5.80 (td, J = 2.2, 1.3 Hz, 1H), 6.09 (q, J = 1.8 Hz, 1H), 7.62 (s, 1H).

¹³**C-NMR (125 MHz, CDCI₃):** δ [ppm] = −5.23, 18.50, 26.03, 61.55, 82.72, 117.13, 134.75, 142.19, 161.91.

HRMS (EI (+), 70.0 eV): calculated for [M⁺-CH₃[•]]⁺: 350.0068; found: 350.0072.

7.4.2.9. 2-(4-lodooxazol-2-yl)prop-2-en-1-ol (202)

(+)-CSA (27.8 mg, 120 μ mol, 0.10 equiv.) was added to a solution of TBS Ether **199** (440 mg, 1.20 mmol, 1.00 equiv.) in CH₂Cl₂/MeOH (2:1, 7.2 mL) at r.t. and stirred for 4 h. NEt₃ (500 μ L) was added and the solvent was removed *in vacuo*. Purification of the residue by flash column chromatography over silica gel (CH/EA 3:1) yielded allyl alcohol **202** as a yellowish oil (256 mg, 1.02 mmol, 85%).

R_f = 0.24 (CH/EA 3:1).

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 2.75 (t, J = 6.8 Hz, 1H), 4.52 (ddd, J = 6.8, 1.4, 0.7 Hz, 2H), 5.67 (td, J = 1.3, 0.6 Hz, 1H), 6.06 (t, J = 0.8 Hz, 1H), 7.63 (s, 1H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 63.24, 82.63, 119.12, 134.47, 142.47, 162.22.

HRMS (ESI (+), 6.0 eV): calcd for [M+Na]⁺: 273.9335; found: 273.9344.

Experimenteller Teil

7.4.2.10. 2-(3-Bromoprop-1-en-2-yl)-4-iodooxazole (203)

NBS (20.0 mg, 112 µmol, 1.20 equiv.) was added to a solution of PPh₃ (29.5 mg, 112 µmol, 1.20 equiv.) in dry CH_2Cl_2 (2.3 mL) at 0 °C and stirred for 15 min. A solution of alcohol **189** (23.5 mg, 93.6 µmol, 1.00 equiv.) in dry CH_2Cl_2 (2.3 mL) was added slowly and the reaction was allowed to warm to r.t. After 1.5 h the reaction was recooled to 0 °C, a solution of PPh₃ (29.5 mg, 112 µmol, 1.20 equiv.) and NBS (20.0 mg, 112 µmol, 1.20 equiv.) in dry CH_2Cl_2 was added and stirring was continued for additional 1.5 h. The solution was filtered over a plug of silica gel and rinsed with EtOAc. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel yielded allyl bromide **203** as a yellow liquid (21.1 mg, 67.2 µmol, 72%).

R_f = 0.27 (CH/EA 15:1)

¹**H-NMR (500 MHz, CD₂Cl₂):** δ [ppm] = 4.37 (d, J = 0.9 Hz, 2H), 5.82 (s, 1H), 6.17 (s., 1H), 7.70 (s, 1H).

¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = 30.0, 83.5, 123.2, 133.0, 143.7, 161.7. HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 313.8672; found: 313.8682.

7.4.3. Ostfragmentsynthese

7.4.3.1. Pent-4-ynal (144a)

A solution of DMSO (13.9 mL, 195 mmol, 2.50 equiv.) in dry CH_2Cl_2 (29 mL) was added slowly dropwise to a stirring solution of (COCl)₂ (7.16 mL, 83.4 mmol, 1.15 equiv) in dry CH_2Cl_2 (250 mL) at -78 °C and stirred for 0.5 h. A solution of 4-pentyn-1-ol (**144**) in dry CH_2Cl_2 (21 mL) was slowly added and stirred for 1 h. NEt₃ (40.0 mL, 290 mmol, 4.00 equiv.) was added and the solution stirred for 0.5 h before it was allowed to warm to r.t. over a period of 0.5 h. Water (200 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 100 mL). All organic phases were combined, washed with brine (2x 100 mL) and dried over MgSO₄. The crude product was concentrated *in vacuo*, the precipitate was filtered over a plug of silica gel and rinsed with CH_2Cl_2 . Removal of the solvent yielded aldehyde **144a** as a yellow liquid (5.11 g, 62.2 mmol, 86%).

- 140 -

R_f = 0.5 (CH/EA 9:1).

¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 1.96 (t, J = 2.7 Hz, 1H), 2.51 (tdd, J = 7.1, 2.7, 0.7 Hz, 2H), 2.70 (tt, J = 7.1, 0.8 Hz, 2H), 9.80 (t, J = 1.1 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 11.81, 42.51, 69.43, 82.42, 200.18. MS (EI (+), 70.0 eV): calculated for [M⁺-H⁻]⁺: 81.0; found: 81.0.

The experimental data are in agreement with those previously published.^[42,47]

7.4.3.2. Methyl (E)-hept-2-en-6-ynoate (209)

Methyl(triphenylphosphoranylidene)acetate (23.8 g, 71.2 mmol, 1.20 equiv.) was added to a stirring solution of aldehyde **144a** (4.87 g, 59.3 mmol, 1.00 equiv.) at room temperature and stirred for 16 h. Sat. aq. NH₄Cl (60 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 70 mL). All organic phases were combined and washed with brine (60 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 15:1) yielded acrylate **209** as a colourless liquid (4.95 g, 35.8 mmol, 60%).

R_f = 0.24 (CH/EA 15:1)

¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 2.00 (t, J = 2.6 Hz, 1H), 2.36 (tdd, J = 7.0, 2.7, 0.9 Hz, 2H), 2.40 – 2.46 (m, 2H), 3.74 (s, 3H), 5.90 (dt, J = 15.7, 1.6 Hz, 1H), 6.98 (dt, J = 15.6, 6.8 Hz, 1H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 17.56, 31.16, 51.67, 69.59, 82.78, 122.29, 146.77, 166.93.

MS (EI (+), 70.0 eV): calculated for [M]⁺: 138.0675; found: 183.0660.

The experimental data are in agreement with those previously published.^[42,47]

7.4.3.3. (E)-Hept-2-en-6-yn-1-ol (209a)

DIBALH (1.0M in CH₂Cl₂, 32.2 mL, 32.2 mmol, 2.50 equiv.) was added to a solution of ester **209** (1.78 g, 12.9 mmol, 1.00 equiv.) in dry CH₂Cl₂ (6.3 mL) at -78 °C. The reaction was allowed to warm up to r.t. and stirred for 1 h. Et₂O (40 mL) was added, the solution was poured into sat. aq. Rochelle-salt solution (100 mL) and stirred vigorously until two phases were formed. The layers were separated and the aqueous phase was extracted with Et₂O (3x 100 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in* vacuo yielded alcohol **209a** as a colourless liquid, which was used in the next step without further purification (1.43 g, 12.9 mmol, quant.).

R_f = 0.12 (CH/EA 5:1).

¹**H-NMR (500 MHz, CDCI₃):** δ [ppm] = 1.30 (s, 1H), 1.97 (d, J = 2.5 Hz, 1H), 2.28 (t, J = 2.1 Hz, 4H), 4.12 (d, J = 4.3 Hz, 2H), 5.66 - 5.80 (m, 2H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 18.60, 31.26, 63.69, 68.89, 83.86, 130.62, 130.76. **HRMS (ESI (+), 6.0 eV):** calculated for [M+Na]⁺: 133.0624; found: 130.0620.

The experimental data are in agreement with those previously published.^[42,47]

7.4.3.4. (E)-7-Bromohept-5-en-1-yne (210)

 PPh_3 (1.94 g, 7.41 mmol, 1.20 equiv.) was added in several portions to a solution of CBr_4 (2.46 g, 7.41 mmol, 1.20 equiv.) and alcohol **209a** (680 mg, 6.18 mmol, 1.00 equiv.) in dry CH_2CI_2 (45 mL) was added at 0 °C. The solution was allowed to warm up to r.t. and stirred for 1.5 h. Silica gel was added, the solvent was removed carefully *in vacuo* and the crude product was purified by flash chromatography over silica gel (^{*n*}Pentane/CH₂CI₂ 90:1) to afford allyl bromide **210** as a colourless oil (759 mg, 4.39 mmol, 71%).

 $R_{f} = 0.21 (^{n}Pentane/CH_{2}CI_{2} 90:1).$

¹**H-NMR (400 MHz, CDCl₃):** δ [ppm] = 1.94 - 2.00 (m, 1H), 2.23 - 2.36 (m, 4H), 3.95 (d, J = 6.5 Hz, 2H), 5.70 - 5.91 (m, 2H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 18.34, 31.08, 33.02, 69.14, 83.46, 127.94, 134.01. HRMS (EI (+), 70.0 eV): calculated for [M]⁺: 171.9888; found: 171.9833.

The experimental data are in agreement with those previously published.^[42,47]

7.4.3.5. Methyl (*E*)-3-methoxybut-2-enoate (212a)

Conc. H_2SO_4 (9 drops) was added to a stirring solution of methyl acetoacetate (**212**, 28 mL, 260 mmol, 1.00 equiv.) and trimethyl orthoformate (28.5 mL, 260 mmol, 1.00 equiv.) at r.t. and stirred for 24 h. Quinoline (18 drops) was added and the crude product was purified by vacuum destillation (110 °C, 47 mbar) to afford ester **212a** as a colourless liquid (33.1 g, 254 mmol, 98%).

*R*_f = 0.26 (CH/EA, 15:1).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 2.23 (d, J = 0.5 Hz, 3H), 3.60 (s, 3H), 3.66 (s, 3H), 5.05 (s, 1H).

¹³**C-NMR (125 MHz, d₆-acetone):** δ [ppm] = 18.77, 50.69, 55.95, 91.09, 168.39, 173.55. **MS (EI (+), 70.0 eV):** calculated for [M]⁺: 130.0624; found: 130.0630.

The experimental data are in agreement with those previously published.^[52]

7.4.3.6. (E)-3-Methoxybut-2-enoic acid (64)

LiOH·H₂O (19.1 g, 456 μ mol, 6.90 equiv.) was added to a stirring solution of ester **212a** (8.60 g, 66.1 mmol, 1.00 equiv.) in THF/H₂O (3:1, 427 mL) and heated to reflux for 26 h. The solution was acidified with aq. conc. HCl (37 wt-%) to pH = 3. The layers were separated and the aqueous phase was extracted with Et₂O (3x 200 mL). All organic phases were combined

and washed with brine (200 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and recrystallization of the residue in ^{*n*}hexane/Et₂O (1:1) gave carboxylic acid **64** as a white powder (4.13 g, 35.5 mmol, 54%).^[52]

R_f = 0.22 (CH/EA, 2:1).

¹**H-NMR (700 MHz, CDCI₃):** δ [ppm] = 2.30 (s, 3H), 3.66 (s, 3H), 5.04 (s, 1H), 11.42 (br. s, 1H).

¹³C-NMR (175 MHz, CDCl₃): δ [ppm] = 19.42, 55.80, 90.45, 173.12, 175.43.

HRMS (APCI (+), 5.0 eV): calculated for [M+H]⁺: 117.0546; found: 117.0550.

The experimental data are in agreement with those previously published.^[52]

7.4.3.7. (E)-3-Methoxy-N-methylbut-2-enamide (213)

EDC·HCI (2.56 g, 13.4 mmol, 1.25 equiv.) was added in several portions to a solution of carboxylic acid **213** (1.24 g, 10.7 mmol, 1.00 equiv.) in dry THF (21 mL) at 0 °C. A solution of MeNH₂ (2.0M in THF, 8 mL, 16.0 mmol, 1.50 equiv.) was added and the suspension was allowed to warm to room temperature and stirred for 20 h.Water (10 mL) and EtOAc (15 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 20 mL). All organic phases were combined and washed with brine (10 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (EtOAc 100%) yielded amide **213** as a white solid (947 mg, 7.47 mmol, 70%).

 $R_{\rm f} = 0.26$ (EtOAc 100%).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 2.24 (br. s, 3H), 2.70 (d, J = 4.7 Hz, 3H), 3.54 (s, 3H), 5.11 (s, 1H), 6.71 (br. s, 1H).

¹³**C-NMR (100 MHz, CDCl₃):** δ [ppm] = 18.09, 25.89, 55.09, 94.45, 167.92, 168.16. **HRMS (ESI-(+), 5.0 eV):** calculated for [M+H]⁺: 130.0784; found: 130.0860.

The experimental data are in agreement with those previously published.^[47]

7.4.3.8. (*E*)-*N*-((*E*)-Hept-2-en-6-yn-1-yl)-3-methoxy-*N*-methylbut-2-enamide (128)

A solution of Amide **213** (150 mg, 1.16 mmol, 1.20 equiv.) in dry DMF (800 μ L) was slowly added dropwise to a stirring suspension of NaH (60 wt-% in paraffin liquid, 162 mg, 4.06 mmol, 3.50 equiv) in dry DMF (3.4 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 1.5 h before the mixture was recooled to 0 °C. A solution of bromide **210** (168 mg, 968 μ mol, 1.00 equiv.) in dry DMF (800 μ L) was slowly added dropwise and stirred for 1.5 h. Water (4 mL) was carefully added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 6 mL). All organic phases were combined and washed with brine (6 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography (CH/EA 1:1) yielded amide **128** as a yellow liquid (146 mg, 659 μ mol, 68%).

R_f = 0.21 (CH/EA 1:1).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 2.14 (s, 3H), 2.21 – 2.29 (m, 4H), 2.32 – 2.36 (m, 1H), 2.86 (s, 2H)^{*}, 2.97 (s, 1H)[#], 3.57 – 3.66 (m, 3H), 3.93 – 3.97 (m, 2H), 5.34 (s, 1H)[#], 5.36 (s, 1H)^{*}, 5.40 – 5.62 (m, 1H), 5.67 (dd, J = 15.4, 6.4 Hz, 1H).

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 18.84, 19.16, 30.44, 32.13^{*}, 33.41[#], 49.22[#], 52.51^{*}, 55.42, 70.41, 84.43, 92.34, 127.87^{*}, 128.17[#], 131.51^{*}, 132.16[#], 167.75, 168.17. HRMS (APCI (+), 5.0 eV): calculated for [M+H]⁺: 221.1416; found: 221.1416.

The experimental data are in agreement with those previously published.^[42,47]

7.4.3.9. (*E*)-3-Methoxy-*N*-methyl-*N*-((2*E*,6*Z*)-7-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hepta-2,6-dien-1-yl)but-2-enamide (129)

 $P'Pr_3$ (16 µL, 82.6 µmol, 0.14 equiv.), NEt₃ (410 µL, 2.95 mmol, 5.00 equiv.) and pinacolborane (86 µL, 590 µmol, 1.00 equiv.) were added to a stirring solution of [Rh(COD)CI]₂ (8.73 mg, 17.7 µmol, 0.03 equiv.) in dry cyclohexane (1.7 mL) at r.t. and stirred for 0.5 h. A solution of alkyne **128** (150 mg, 678 µmol, 1.15 equiv.) in dry cyclohexane (1.15 mL) was added and the reaction was allowed to stir for 3 h. MeOH (0.5 mL) was added and the solvent was removed *in vacuo*. Purification of the residue by flash chromatography over silica gel (CH/EA 1:1) yielded vinyl boronate **129** as a red oil (126 mg, 360 µmol, 61%, *Z*:*E* > 9:1).

R_f = 0.21 (CH/EA 1:1).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 1.24 (s, 12H), 2.14 (m, 5H), 2.50 (qd, J = 7.4, 1.3 Hz, 2H), 2.85 (s, 3H)^{*}, 2.95 (s, 3H)[#], 3.61 (br. s, 3H), 3.92 (dd, J = 5.9, 1.4 Hz, 2H), 5.29 (dt, J = 13.5, 1.4 Hz, 1H), 5.34 (br. s, 1H), 5.38 – 5.54 (m, 1H), 5.55 – 5.67 (m, 1H), 6.40 (dt, J = 14.2, 7.5 Hz, 1H).

¹³**C-NMR (125 MHz, d₆-acetone):** δ [ppm] = 18.71, 25.17, 32.52, 32.91, 33.28^{*}, 34.96[#], 49.20[#], 52.47^{*}, 55.26, 83.52, 92.22, 118.68 – 119.88 (m), 126.72[#], 127.03^{*}, 132.81^{*}, 133.45[#], 154.47, 167.58[#], 168.00^{*}, 168.54^{*}, 168.84[#].

HRMS (EI (+), 70.0 eV): calculated for [M]⁺: 221.1416; found: 221.1416.

The experimental data are in agreement with those previously published.^[42,47]

7.5. Phase II

7.5.1. Die sp²-sp³-Suzuki-Kreuzkupplung in der Anwendung

7.5.1.1. 4-lodo-2-(3-((triethylsilyl)oxy)prop-1-en-2-yl)oxazole (195)

TESCI (200 µL, 1.20 mmol, 1.20 equiv.) was added to a solution of alcohol **202** (250 mg, 996 µmol, 1.00 equiv.) and imidazole (163 mg, 2.48 mmol, 2.50 equiv.) in dry CH_2CI_2 (8 mL) at 0 °C. The solution was allowed to warm to r.t. and stirred for 3 h. Water (10 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3x 4 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 50:1) yielded TES ether **195** as a yellow liquid (305 mg, 834 µmol, 84%).

*R*_f = 0.33 (CH/EA 50:1).

¹**H-NMR (400 MHz, CD₂Cl₂):** δ [ppm] = 0.71 (q, J = 7.9 Hz, 6H), 1.01 (q, J = 8.3 Hz, 9H), 4.60 (t, J = 2.0 Hz, 2H), 5.75 - 5.91 (m, 1H), 6.11 (q, J = 1.7 Hz, 1H), 7.70 (s, 1H).

¹³**C-NMR (175 MHz, CD₂Cl₂):** δ [ppm] = 4.33, 6.49, 61.05, 82.45, 116.70, 134.82, 142.27, 161.73.

HRMS (EI (+), 70.0 eV): calcd. for [M⁺-Et^{*}]⁺: 335.9917; found: 335.9910.

7.5.1.2. 4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-butyldimethylsilyl)oxy)-4methylcyclohexyl)propyl)-2-(3-((triethylsilyl)oxy)prop-1-en-2yl)oxazole (214)

9-BBN-OMe (1.0M in ^{*n*}hexane, 24 µL, 73.8 µmol, 1.50 equiv.) was added to a stirring solution of alkyl iodide **166** at -78 °C. ^{*t*}BuLi (1.7M in ^{*n*}pentane, 26 µL, 43.9 µmol, 2.80 equiv.) was added and the solution was allowed to warm to room temperature and stirred for 1 h. A solution of Pd(dtbpf)Cl₂ (997 µg, 1.53 µmol, 0.10 equiv.) in dry DMF (28 µL), a solution of -147 -

iodooxazole **195** (5.60 mg, 15.3 µmol, 1.00 equiv.) and AsPh₃ (1.41 mg, 4.60 µmol, 0.30 equiv.) were added, followed by addition of aq. Cs_2CO_3 solution (3.0M, 43 µL, 2.74 equiv.). The solution was degassed *via* freeze-pump-thaw cycles (3x), sealed and the flask was covered in aluminium foil. The reaction stirred over night (20 h). Water (400 µL) and CH_2CI_2 (600 µL) were added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3x 400 µL). All organic phases were combined and washed with aq. sat. NaHCO₃ solution (400 µL) and brine (400 µL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 100:0–50:1) yielded alkyl oxazole **214** as a yellow oil (5.80 mg, 11.4 µmol, 75%).

*R*_f = 0.28 (CH/EA 50:1).

 $[\alpha]_{D}^{23} = -15.7^{\circ} (CH_{2}CI_{2}, c = 1.0).$

¹H-NMR (700 MHz, CD_2Cl_2): δ [ppm] = 0.10 (s, 3H), 0.13 (s, 3H), 0.67 (q, J = 8.0 Hz, 6H), 0.81 – 0.89 (m, 4H), 0.88 – 0.90 (m, 3H), 0.91 (s, 9H), 0.98 (td, J = 8.0, 1.4 Hz, 9H), 1.01 – 1.08 (m, 1H), 1.22 – 1.29 (m, 1H), 1.41 (tdt, J = 11.8, 6.6, 3.4 Hz, 1H), 1.62 – 1.71 (m, 2H), 1.90 – 1.97 (m, 1H), 2.11 (dd, J = 14.4, 11.5 Hz, 1H), 2.37 – 2.44 (m, 1H), 2.54 (ddd, J = 14.4, 3.3, 1.3 Hz, 1H), 3.56 (td, J = 10.2, 4.4 Hz, 1H), 4.56 (t, J = 2.0 Hz, 2H), 5.69 (q, J = 2.0 Hz, 1H), 5.96 (q, J = 1.8 Hz, 1H), 7.30 – 7.32 (m, 1H).

¹³**C-NMR (175 MHz, CD₂Cl₂):** δ [ppm] = -4.22, -3.33, 4.95, 7.11, 18.11, 18.54, 22.63, 24.85, 26.42, 28.54, 30.70, 32.21, 35.26, 46.21, 51.01, 61.88, 72.41, 114.80, 117.30, 134.67, 136.53, 142.04, 142.85, 160.10.

HRMS (ESI (+), 6.0 eV): calcd for [M+H]⁺: 508.3637; found: 508.3634.

7.5.1.3. (7*R*,8*R*,9*S*)-4,9-*bis*((*tert*-butyldimethylsilyl)oxy)-8-hydroxy-3,7dimethyl-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-one (216)

^{*t*}BuLi (1.7M in ^{*n*}pentane, 40 µL, 67 µmol, 2.00 equiv.) was added to a stirring solution of alkyl iodide **146** at –96 °C and stirred for 1 h. D₂O (91 µL, 5.03 mmol, 150 equiv.) was added and the solution was allowed to warm to r.t. Water (600 µL) and CH₂Cl₂ (600 µL) were added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 800 µL). All organic phases were combined and dried over MgSO₄. Removal of

the solvent *in vacuo* and purification of the residue by flash column chromatography ocer silica gel (CH/EA 30:1) yielded ketone **216** as a colourless oil (0.6 mg, 1.29 µmol, 4%).

R_f = 0.13 (CH/EA 30:1).

¹H-NMR (500 MHz, CD₂Cl₂): δ [ppm] = -0.32 (s, 3H), 0.02 (s, 3H), 0.06 (s, 3H), 0.12 (s, 3H), 0.84 (s, 9H), 0.99 (s, 9H), 1.26 (d, *J* = 6.9 Hz, 3H), 2.17 (dd, *J* = 18.1, 2.2 Hz, 2H), 2.22 (d, *J* = 0.7 Hz, 3H), 2.54 (d, *J* = 10.1 Hz, 1H), 2.79 (dd, *J* = 19.0, 13.2 Hz, 1H), 3.73 – 3.84 (m, 1H), 4.81 (d, *J* = 5.1 Hz, 1H), 6.76 (d, *J* = 7.5 Hz, 1H), 7.15 (dq, *J* = 7.6, 0.8 Hz, 1H). ¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = -5.35, -4.78, -3.12, -3.02, 18.53, 26.05, 26.29, 32.74, 44.96, 72.90, 77.36, 121.26, 131.89, 132.88, 138.27, 151.86, 203.97. HRMS (ESI (+), 6.0 eV): calcd for [M+Na]⁺: 487.2670; found: 487.2670.

7.5.2. Studien zur sp²-sp³-Negishi-Kreuzkupplung an Oxazolen

7.5.2.1. 4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4methylcyclohexyl)propyl)-2-(3-((*tert*-butyldimethylsilyl)oxy)prop-1-en-2-yl)oxazole (219)

Anhydrous LiCl (12.7 mg, 300 µmol, 4.20 equiv.) was heated under vacuum at 150–170 °C for 5 min. Zinc powder (325 mesh, 9.15 mg, 140 µmol, 1.96 equiv.) was added and dried again under vacuum at 150–170 °C for 5 min. The reaction flask was flushed with argon (3x) and dry THF (160 µL) was added. $C_2H_4Br_2$ (0.2 g/mL in dry THF, 6 µL, 5.00 µmol, 0.07 equiv.) and TMSCI (7.5 mg/mL in dry THF, 16 µL, 1.00 µmol, 1.40 mol-%) were added to the stirring suspension and the reaction was heated to 50 °C for 10 min. A solution of alkyl iodide **166** (39.6 mg, 100 µmol, 1.40 equiv.) in dry THF (540 µL) was added and stirred for 2 h. The solution was allowed to cool down to r.t. and a solution of Pd(dtpbf)Cl₂ (12.6 mg, 19.3 µmol, 0.05 equiv.) in dry NMP (690 µL), a solution of AsPh₃ (35.4 mg, 116 µmol, 0.30 equiv) and iodoxazole **199** (26.1 mg, 71.4 µmol, 1.00 equiv.) in dry THF (690 µL) were added. The flask was covered in aluminium foil and the reaction was allowed to stir for 2 h. EtOAc (2 mL) and aq sat. NH₄Cl solution (2 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 5 mL). All organic phases were combined, washed with water (2x 15mL) and brine (5 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel

(CH 100% \rightarrow CH/EA 50:1) yielded alkyl oxazole **219** as a yellow oil (18.5 mg, 36.4 µmol, 51%). $R_{f} = 0.38$ (CH/EA 50:1).

 $[\alpha]_{D}^{20} = -24.4^{\circ} (CH_{2}CI_{2}, c = 0.9).$

¹**H-NMR (700 MHz, CD₂Cl₂):** δ [ppm] = 0.10 (s, 3H), 0.11 (s, 6H), 0.12 (s, 3H), 0.85 (d, J = 7.0 Hz, 3H), 0.91 (s, 9H), 0.92 – 0.97 (m, 12H), 0.97 – 1.00 (m, 1H), 0.99 – 1.08 (m, 1H), 1.22 – 1.28 (m, 1H), 1.41 (tqt, J = 16.6, 6.5, 3.4 Hz, 1H), 1.63 – 1.71 (m, 2H), 1.91 – 1.96 (m, 1H), 2.11 (dd, J = 14.1, 11.5 Hz, 1H), 2.37 – 2.44 (m, 1H), 2.54 (dd, J = 14.4, 3.3 Hz, 1H), 3.56 (td, J = 10.2, 4.4 Hz, 1H), 5.66 (q, J = 2.0 Hz, 1H), 5.96 (q, J = 1.9 Hz, 1H), 7.31 (s, 1H). ¹³**C-NMR (125 MHz, CD₂Cl₂):** δ [ppm] = -5.14, -4.22, -3.33, 1.33, 18.09, 18.54, 18.82, 22.62, 24.86, 26.23, 26.43, 27.49, 28.54, 30.71, 32.20, 46.20, 50.99, 62.27, 72.41, 114.77, 134.66, 136.54, 142.04, 160.07.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺ = 508.3637; found: 508.3642.

7.5.2.2. (3*R*,4*S*)-4,8-*bis*((*tert*-Butyldimethylsilyl)oxy)-3-isopropyl-7methylisochroman-1-one (220)

Anhydrous LiCl (3.25 mg, 76.7 µmol, 3.00 equiv.) was heated under vacuum at 240 °C for 5 min. Zinc powder (325 mesh, 2.34 mg, 35.8 µmol, 1.40 equiv.) was added and dried again under vacuum at 240 °C for 5 min. The reaction flask was flushed with argon (3x) and dry THF (26 µL) was added. $C_2H_4Br_2$ (0.1 g/mL in dry THF, 3 µL, 1.28 µmol, 0.05 equiv.) and TMSCI (7.5 mg/mL in dry THF, 4 µL, 0.26 µmol, 0.01 equiv.) were added to the stirring suspension and the reaction was heated to 50 °C for 10 min. A solution of alkyl iodide **146** (539 µmol, 1.40 equiv.) in dry THF (20 µL) was added and stirred for 2 h. The reaction was allowed to cool down to r.t and EtOAc (800 µL) and sat. aq. NH₄Cl (800 µL) were added. The layers were separated and the aqueous phase was extracted with EtOAc (3x 1.0 mL). All organic phases were combined, washed with brine (1 mL) and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 30:1) yielded compound **220** as a clear oil (7.3 mg, 15.7 µmol, 61%).

R_f = 0.29 (CH/EA 30:1).

 $[\alpha]_{D}^{20} = +47.5^{\circ} (MeOH, c= 0.4)$

¹**H-NMR (700 MHz, CD₂Cl₂):** δ [ppm] = 0.03 (s, 3H), 0.12 (s, 3H), 0.13 (s, 3H), 0.16 (s, 3H), 0.88 (s, 9H), 0.94 (d, *J* = 6.8 Hz, 3H), 1.03 (s, 9H), 1.03 (d, *J* = 6.7 Hz, 3H), 1.73 (h, *J* = 6.7 Hz, 1H), 2.25 (d, *J* = 0.7 Hz, 3H), 4.02 (dd, *J* = 7.7, 4.4 Hz, 1H), 4.72 (d, *J* = 4.3 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 7.35 (dd, *J* = 7.6, 0.8 Hz, 1H).

¹³C-NMR (175 MHz, CD₂Cl₂): δ [ppm] = -4.09, -3.99, -3.32, -3.23, 17.85, 18.54, 18.56, 19.01, 19.60, 26.06, 26.30, 29.59, 68.16, 88.61, 116.89, 119.87, 132.21, 135.96, 140.03, 155.02, 162.16.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺ = 465.2851; found: 465.2857.

7.5.3. Anpassung der Oxazolfragmentsynthese

7.5.4. 3-lodobut-3-en-1-ol (223)

TMSCI (78 mL), 616 mmol, 2.00 equiv.), water (5.55 mL), 308 mmol, 1.00 equiv,) and 3-butyn-1-ol (**223**, 20 mL, 308 mmol, 1.00 equiv.) were added to a stirring solution of Nal (92.4 g, 616 mmol, 2.00 equiv.) in CH₃CN (590 mL) at 0 °C and stirred for 1.5 h. Aq. sat. Na₂SO₃ solution (150 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 200 mL). All organic phases were combined and washed with brine (400 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 4:1) yielded alcohol **223** as an orange liquid (14.8 g, 80.4 mmol, 46%).

*R*_f = 0.22 (CH/EA 4:1).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 2.60 (tdd, J = 6.4, 1.3, 0.6 Hz, 2H), 3.58 – 3.77 (m, 3H), 5.76 (dt, J = 1.3, 0.6 Hz, 1H), 6.16 (q, J = 1.4 Hz, 1H).

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 49.21, 61.35, 108.97, 127.91.

HRMS (EI (+), 70.0 eV): calcd for [M]⁺: 283.0015 found: 283.0013.

The experimental data are in agreement with those previously published.^[47]

Experimenteller Teil

7.5.4.1. Triethyl((3-iodobut-3-en-1-yl)oxy)silane (224)

TESCI (3.61 mL, 21.5 mmol, 1.40 equiv.) was added dropwise to a stirring solution of alcohol **223** (3.04 g, 15.4 mmol, 1.00 equiv.) and imidazole (2.93 g, 93.8 mmol, 2.80 equiv.) in dry CH_2Cl_2 (55 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 2 h. Water (40 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 40 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 99:1) yielded TES ether **224** as a yellow liquid (9.27 g, 31.1 mmol, quant.).

*R*_f = 0.43 (CH/EA 99:1).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 0.56 (qd, J = 8.0, 1.1 Hz, 3H), 0.62 (qd, J = 8.0, 1.1 Hz, 3H), 0.96 (td, J = 8.0, 7.1 Hz, 9H), 3.76 (t, J = 6.2 Hz, 1H), 5.78 (d, J = 1.4 Hz, 1H), 6.05 – 6.48 (m, 1H).

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 4.13, 6.12, 48.19, 61.24, 107.75, 127.31. HRMS (EI (+), 70.0 eV): calcd for [M]⁻⁺: 283.0015; found: 283.0013.

7.5.5. 2-(4-((Triethylsilyl)oxy)but-1-en-2-yl)oxazole (225)

225

ZnCl₂ (5.94 g, 43.6 mmol, 1.40 equiv.) was heated under vacuum until free-flowing, recooled to r.t. and suspended in dry THF (22 mL). ^{*n*}BuLi (2.5M in ^{*n*}hexane, 9.77 mL, 24.4 mmol, 1.68 equiv.) was added dropwise to a stirring solution of oxazole (**135**, 1.34 mL, 20.4 mmol, 1.40 equiv.) in dry THF (80 mL) at -78 °C and stirred for 30 min. The solution was transferred via cannula to the ZnCl₂ suspension and was allowed to warm up to r.t. over a period of 15 min. A solution of iodoalkene **224** (4.54 g, 14.5 mmol, 1.00 equiv.) in dry THF (8.0 mL) was slowly added, followed by addition of Pd(PPh₃)₄ (420 mg, 360 µmol, 2.5mol-%). The reaction was sealed and heated to 60 °C, stirred for 2 h and was concentrated *in vacuo*. EtOAc (50 mL) and aq. sat. NH₄Cl solution (50 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 50 mL). All organic phases were combined and washed with brine (50 mL). Drying over MgSO₄, removal of the solvent - 152 -

in vacuo and purification of the residue by flash column chromatography (CH/EA 19:1) yielded oxazole **225** as a colourless liquid (2.66 g, 10.5 mmol, 72%).

*R*_f = 0.18 (CH/EA 19:1).

¹**H-NMR (500 MHz, CD_2CI_2):** δ [ppm] = 0.57 (q, J = 7.7 Hz, 6H), 0.93 (t, J = 8.0 Hz, 9H), 2.74 (td, J = 6.7, 1.2 Hz, 2H), 3.83 (t, J = 6.7 Hz, 2H), 5.43 (q, J = 1.2 Hz, 1H), 6.00 (d, J = 1.3 Hz, 1H), 7.12 (d, J = 0.8 Hz, 1H), 7.61 (d, J = 0.8 Hz, 1H).

¹³**C-NMR (125 MHz, CD₂Cl₂):** δ [ppm] = 4.92, 7.06, 36.94, 62.03, 119.30, 128.52, 133.67, 138.90, 162.83.

HRMS (ESI (+), 6.0 eV): calcd for [M+H]⁺: 254.1571 found: 254.1563.

7.5.5.1. 5-lodo-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (226)

226

^{*n*}BuLi (2.5M in ^{*n*}hexane, 4.36 mL, 10.9 mmol, 1.10 equiv.) was slowly added to a solution of ^{*i*}Pr₂NH (1.96 mL, 13.9 mmol, 1.40 equiv.) in dry THF (100 mL) at 0 °C and stirred for 15 min. The solution was cooled to -78 °C and oxazole **225** (2.51 g, 9.90 mmol, 1.00 equiv.) in dry THF (11 mL) was added and the reaction stirred for 1 h. A solution of I₂ (3.27 g, 12.9 mmol, 1.10 equiv.) in dry THF (28 mL) was slowly added and the reaction stirred for additional 0.5 h. Aq. sat. NH₄Cl solution (30 mL) and aq. sat. Na₂SO₃ solution(30 mL) were added and the reaction was extracted with EtOAc (3x 80 mL). All organic phases were combined and washed with brine (80 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 19:1) yielded 5-iodooxazole **226** as an orange solid (3.07 g, 8.09 mmol, 82%).

R_f = 0.39 (CH/EA 19:1).

¹**H-NMR (500 MHz, CD**₂**Cl**₂): δ [ppm] = 0.57 (q, J = 7.9 Hz, 6H), 0.93 (t, J = 7.9 Hz, 9H), 2.71 (td, J = 6.7, 1.2 Hz, 2H), 3.81 (t, J = 6.7 Hz, 2H), 5.44 (q, J = 1.2 Hz, 1H), 5.99 (d, J = 1.0 Hz, 1H), 7.15 (s, 1H).

¹³**C-NMR (125 MHz, CD₂Cl₂):** δ [ppm] = 4.92, 7.07, 36.55, 61.93, 87.07, 120.16, 132.97, 137.25, 167.39.

HRMS (EI (+), 70.0 eV): calcd. for [M⁺-Et^{*}]⁺: 350.0068; found: 350.0076.

7.5.5.2. 4-lodo-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (227)

A stirring solution of $({}^{I}Pr)_{2}NH$ (1.90 mL, 13.4 mmol, 1.80 equiv.) in dry THF (80 mL) was cooled to 0 °C and ^{*n*}BuLi (2.5M in ^{*n*}hexane, 4.78 mL, 11.9 mmol, 1.60 equiv.) was added. The solution was allowed to stir for 15 min, before it was cooled to -78 °C. 5-bromooxazole **149** (191 mg, 746 µmol, 0.10 equiv.) and 5-iodooxazole **226** (2.83 g, 7.46 mmol, 1.00 equiv.) were solved in THF (37 mL) and cooled to -78 °C. The LDA solution was transferred dropwise *via* a syringe pump into the oxazole solution over a period of 1 h and was allowed to stir for additional 2 min. Aq. sat. NH₄Cl (80 mL) was added and the solution was extracted with EtOAc (3x 60 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 50:1) afforded 4-iodooxazole **227** as an orange liquid (2.44 g, 6.43 mmol, 86%).

R_f = 0.22 (CH/EA 50:1).

¹**H-NMR (500 MHz, CD₂Cl₂):** δ [ppm] = 0.57 (q, J = 7.9 Hz, 6H), 0.93 (t, J = 7.9 Hz, 9H), 2.71 (td, J = 6.6, 1.2 Hz, 2H), 3.82 (t, J = 6.6 Hz, 2H), 5.48 (q, J = 1.2 Hz, 1H), 6.03 (d, J = 0.9 Hz, 1H), 7.64 (s, 1H).

¹³**C-NMR (125 MHz, CD₂Cl₂):** δ [ppm] = 4.92, 7.07, 36.58, 61.84, 83.22, 120.61, 130.15, 132.90, 142.90, 164.10.

HRMS (EI (+), 70.0 eV): calcd. for [M⁺-Et[•]]⁺: 350.0068; found: 350.0074.

7.5.6. Abschluss der Totalsynthese von Ajudazol A

7.5.6.1. (3*R*,4*S*)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-7-methyl-3-((*R*)-1-(2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one (228)

Anhydrous LiCl (68.7 mg, 1.62 mmol, 4.20 equiv.) was heated under vacuum at 170 °C for 5 min. Zinc powder (325 mesh, 49.3 mg, 755 µmol, 1.96 equiv.) was added and dried again under vacuum at 150 – 170 °C for 5 min. The reaction flask was flushed with argon (3x) and dry THF (160 μ L) was added. C₂H₄Br₂ (0.2 g/mL in dry THF, 27 μ L, 26.9 μ mol, 0.07 equiv.) and TMSCI (0.07M in dry THF, 81 µL, 5.39 µmol, 1.40 mol-%) were added to the stirring suspension and the reaction was heated to 50 °C for 10 min. A solution of alkyl iodide 146 (318 mg, 539 µmol, 1.40 equiv.) in dry THF (540 µL) was added and stirred for 2 h at this temperature. The solution was allowed to cool down to r.t. and a solution of Pd(dtpbf)Cl₂ (12.6 mg, 19.3 µmol, 0.05 equiv.) in dry NMP (690 µL), followed by a solution of AsPh₃ (35.4 mg, 116 µmol, 0.30 equiv.) and iodooxazole 227 (146 mg, 385 µmol, 1.00 equiv.) in dry THF (690 µL) were added. The reaction flask was covered in aluminium foil and the reaction was allowed to stir for 20 h. EtOAc (5 mL) and aq. sat. NH₄Cl solution (5 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 10 mL). All organic phases were combined, washed with water (2x 10 mL) and brine (10 mL) and dried over MgSO₄. Removal of the solvent in vacuo and purification of the residue by flash chromatography over silica gel (CH/EA 19:1) yielded alkyl oxazole 228 as a yellow oil (181 mg, 253 µmol, 66%).**R**_f = 0.29 (CH/EA 30:1).

 $[\alpha]_{D}^{20} = +70.0 \text{ (MeOH, } c = 0.2\text{).}$

¹H-NMR (700 MHz, d₆-acetone): δ [ppm] = 0.04 (s, 3H), 0.17 (d, J = 2.9 Hz, 4H), 0.23 (d, J = 5.7 Hz, 6H), 0.53 (q, J = 8.0 Hz, 6H), 0.87 (s, 9H), 0.90 (t, J = 8.0 Hz, 9H), 0.93 – 0.94 (m, 1H), 1.06 (s, 9H), 1.93 – 1.99 (m, 1H), 2.28 (d, J = 0.7 Hz, 3H), 2.45 – 2.51 (m, 1H), 2.68 (td, J = 6.6, 1.1 Hz, 2H), 2.96 (ddd, J = 14.5, 3.3, 1.2 Hz, 1H), 3.81 (tt, J = 7.0, 3.5 Hz, 2H), 4.32 (dd, J = 9.1, 3.1 Hz, 1H), 5.01 (d, J = 3.1 Hz, 1H), 5.41 (q, J = 1.2 Hz, 1H), 5.91 (d, J = 1.3 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 7.47 (dq, J = 7.5, 0.7 Hz, 1H), 7.63 (s, 1H).

¹³**C-NMR (125 MHz, d₆-acetone):** δ [ppm] = -4.34, -4.01, -3.03, -2.98, 5.02, 7.06, 15.64, 17.73, 18.63, 19.18, 26.12, 26.49, 27.52, 29.23, 34.79, 37.15, 62.13, 68.46, 87.60, 117.66, 118.93, 121.02, 132.48, 134.16, 136.54, 139.76, 140.38, 155.16, 161.64, 162.34.

- 155 -

HRMS (ESI (+), 6.0 eV): calculated for $[M+H]^+ = C_{26}H_{44}O_5Si_2H^+$: 716.4192; found: 716.4181.

7.5.6.2. (*3R,4S*)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-3-((*R*)-1-(2-(4hydroxybut-1-en-2-yl)oxazol-4-yl)propan-2-yl)-7-methylisochroman-1one (229)

Formic 4.00 equiv.) acid (38 µL, 1.01 mmol, was added solution of to а TES ether 228 (181 mg, 253 µmol, 1.00 equiv.) in MeOH/CH₂Cl₂ (2:1, 3.9 mL) at 0 °C and stirred for 1.5 h. Aq. sat. NaHCO₃ solution (5 mL) and CH₂Cl₂ (5 mL) were added and the aqueous phase was extracted with CH₂Cl₂ (3x 4 mL). Drying over MgSO₄, removal of the solvent in vacuo and purification of the residue by flash chromatography over silica gel (CH/EA 4:1) yielded alcohol 229 as a colourless oil (93.1 mg, 155 µmol, 61%).

R_f = 0.22 (CH/EA, 4:1).

 $[\alpha]_{D}^{20} = +66.7 \text{ (MeOH, } c = 0.3\text{)}.$

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 7.63 (s, 1H), 7.46 (dq, J = 7.5, 0.7 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 5.91 (d, J = 1.3 Hz, 1H), 5.42 (q, J = 1.3 Hz, 1H), 5.01 (d, J = 3.1 Hz, 1H), 4.33 (dd, J = 9.1, 3.1 Hz, 1H), 3.73 – 3.69 (m, 1H), 3.63 (t, J = 5.6 Hz, 2H), 2.94 (ddd, J = 14.5, 3.4, 1.2 Hz, 1H), 2.72 – 2.63 (m, 2H), 2.49 (dd, J = 14.5, 9.9 Hz, 1H), 2.28 (d, J = 0.7 Hz, 3H), 1.98 – 1.91 (m, 1H), 1.06 (s, 9H), 0.89 (d, J = 6.5 Hz, 3H), 0.87 (s, 9H), 0.24 (s, 3H), 0.22 (s, 3H), 0.17 (s, 3H), 0.04 (s, 3H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = -4.34, -4.02, -3.04, 15.66, 17.73, 18.63, 19.18, 26.12, 26.48, 29.23, 34.85, 37.19, 61.44, 68.44, 87.52, 118.71, 121.03, 136.39, 140.30, 155.19, 161.64, 162.58.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 602.3328; found: 602.3328.

7.5.6.3. 3-(4-((R)-2-((3R,4S)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-7-methyl-1oxoisochroman-3-yl)propyl)oxazol-2-yl)but-3-enal (230)

IBX (64.1 mg, 229 μ mol, 3.00 equiv.) was added to a stirring solution of alcohol **229** (45.9 mg, 76.3 μ mol, 1.00 equiv.) in EtOAc (820 μ L) and heated to 85 °C under reflux for 3 h. The solution was allowed to cool down to r.t. and filtered through a plug of silica gel to yield aldehyde **230** as a yellow oil (38.9 mg, 64.8 μ mol, 85%).

R_f = 0.24 (CH/EA 9:1).

 $[\alpha]_{D}^{20} = +70.0$ (MeOH, c = 0.2).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 0.04 (s, 3H), 0.17 (s, 3H), 0.22 (s, 6H), 0.87 (s, 12H), 1.06 (s, 9H), 1.93 (dddd, *J* = 10.0, 9.1, 6.9, 3.5 Hz, 1H), 2.28 (d, *J* = 0.7 Hz, 3H), 2.43 – 2.56 (m, 1H), 2.93 (ddd, *J* = 14.5, 3.4, 1.2 Hz, 1H), 3.57 (dt, *J* = 2.8, 1.3 Hz, 2H), 4.31 (dd, *J* = 9.0, 3.2 Hz, 1H), 5.00 (d, *J* = 3.2 Hz, 1H), 5.56 (t, *J* = 1.1 Hz, 1H), 6.09 (d, *J* = 0.8 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 7.46 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.68 (s, 1H), 9.68 (dt, *J* = 6.9, 1.6 Hz, 1H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = -4.34, -4.02, -3.06, -3.05, 15.66, 17.71, 26.12, 26.47, 29.13, 34.75, 47.60, 68.40, 87.50, 117.63, 121.01, 121.05, 129.72, 132.49, 136.39, 137.13, 139.78, 140.62, 155.18, 161.62, 161.88, 198.95.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 600.3171; found: 600.3175.

7.5.6.4. (3R,4S)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-3-((*R*)-1-(2-((*Z*)-5iodopenta-1,4-dien-2-yl)oxazol-4-yl)propan-2-yl)-7-methylisochroman-1-one (145)

NaHMDS (1.0M in THF, 153 μ L, 1.25 equiv.) was added to a stirring solution of (iodomethyl)triphenylphosphonium iodide (84.3 mg, 159 μ mol, 1.30 equiv.) in dry THF (570 μ L) at r.t. and stirred for 5 min. DMI (260 µL) was added and the solution was cooled down to -78 °C. A precooled solution of aldehyde **230** (73.4 mg, 122 µmol, 1.00 equiv.) was added and the reaction stirred for 1 h. Aq. sat. NH₄Cl solution (6 mL) and EtOAc (6 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 6 mL). All organic extracts were washed with brine (10 mL) and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography (CH/EA 19:1) yielded (*Z*)-Vinyliodide **145** as a yellow oil (57.6 mg, 79.6 µmol, 65%).

*R*_f = 0.26 (CH/EA 19:1).

 $[\alpha]_{D}^{20} = +70.0$ (MeOH, c = 0.2).

¹H-NMR (700 MHz, d₆-acetone): δ [ppm] = 0.04 (s, 3H), 0.18 (s, 3H), 0.23 (s, 3H), 0.25 (s, 3H), 0.87 (s, 9H), 0.89 (d, J = 6.7 Hz, 3H), 1.06 (s, 9H), 1.94 – 2.02 (m, 1H), 2.28 (s, 3H), 2.46 – 2.52 (m, 1H), 2.97 (ddd, J = 14.6, 3.4, 1.3 Hz, 1H), 3.32 (ddq, J = 6.5, 5.0, 1.2 Hz, 2H), 4.34 (dd, J = 9.2, 3.1 Hz, 1H), 5.01 (d, J = 3.1 Hz, 1H), 5.40 – 5.44 (m, 1H), 5.92 (q, J = 0.9 Hz, 1H), 6.41 (q, J = 7.0 Hz, 1H), 6.51 (dt, J = 6.9, 1.3 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 7.46 (dd, J = 7.5, 0.8 Hz, 1H), 7.67 (s, 1H).

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = -4.32, -4.01, -2.98, -2.92, 15.66, 17.73, 26.13, 26.50, 29.24, 34.81, 38.55, 68.48, 85.19, 87.54, 117.71, 121.08, 132.53, 133.85, 136.39, 136.94, 138.94, 139.71, 140.54, 155.18, 161.63, 161.98.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 724.2345; found: 724.2340.

To a solution of (*Z*)-vinylboronate **129** (41.7 mg, 119 µmol, 1.50 equiv.) and Cs_2CO_3 (130 mg, 398 µmol, 5.00 equiv.) in H₂O (57 µL, 50.0 equiv.) was added a solution of Pd(dppf)Cl₂ (8.70 mg, 11.9 µmol, 0.15 equiv.) in dry DMF (70 µL) and a solution of (*Z*)-vinyliodide **230** (20.3 mg, 28.0 µmol, 1.00 equiv.) in dry THF (210 µL) subsequently. The solution was degassed by freeze-pump-thaw-cycles (3x) and stirred in the dark for 19 h. Et₂O (3 mL) and aq. sat. NaHCO₃ solution (3 mL) were added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 4 mL). All organic extracts were combined and washed with aq. sat. NaHCO₃ solution (4 mL), water (2x 4 mL) and brine (4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column - 158 -

chromatography (CH:EA 3:1) yielded bis-silylated Ajudazol A (**231**) and 8-*tert*butyldimethylsilyl-Ajudazol A (**231a**) as an orange oil (39 mg, 50 µmol, 63%).

R_f = 0.21 (CH/EA 3:1).

 $[\alpha]_{D}^{20} = -20.0$ (MeOH, c = 0.1).

¹H-NMR (500 MHz, d₆-acetone): δ [ppm] = 0.04 (s, 3H), 0.17 (s, 3H), 0.23 (s, 3H), 0.25 (s, 2H), 0.87 (s, 9H), 0.88 (d, J = 6.8 Hz, 3H), 1.06 (s, 9H), 1.89 – 2.02 (m, 1H), 2.14 (br. s, 5H), 2.28 (s, 3H), 2.44 – 2.53 (m, 1H), 2.75 – 2.78 (m, 1H), 2.85 (br. s, 3H), 2.93 – 3.00 (m, 4H), 3.34 (td, J = 16.4, 14.6, 7.7 Hz, 2H), 3.61 (s, 3H), 3.92 (dd, J = 5.8, 1.6 Hz, 2H), 4.34 (dd, J = 9.2, 3.0 Hz, 1H), 5.01 (d, J = 3.0 Hz, 1H), 5.34 (s, 1H), 5.37 (s, 1H), 5.38 – 5.54 (m, 1H), 5.52 – 5.70 (m, 3H), 5.88 (d, J = 1.1 Hz, 1H), 6.30 – 6.48 (m, 2H), 7.09 (d, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.65 (s, 1H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = -4.33, -4.02, -3.02, -3.00, 15.65, 17.74, 26.12, 26.48, 27.97, 29.29, 30.97, 32.84, 33.30, 34.25, 34.85, 49.21, 52.46, 55.27, 68.46, 87.55, 92.20, 117.25, 117.71, 121.07, 124.62, 126.15, 126.73, 128.49, 132.53, 132.69, 135.91, 136.39, 136.76, 139.69, 140.42, 155.18, 161.64, 162.33.

HRMS-ESI-(+): calculated for $[M+H]^+ = 819.4794$ and 705.3930; found: 819.4786 and 705.3930.

7.5.6.6. (1*R*,2*S*,5*R*)-2-((*S*)-1-Hydroxypropan-2-yl)-5-methylcyclohexan-1ol (232)

To an ice-cooled solution of silvl ether *epi*-**165** (14.8 mg, 51.6 μ mol, 1.00 equiv.) in dry THF (3.7 mL) were added dry pyridine (1.38 mL) and HF·Pyridine (920 μ L). The solution was allowed to warm to r.t. and stirred for 3 h. pH 7 buffer (4 mL) and EtOAc (4 mL) were added at 0 °C, the layers were separated, the aqueous phase was extracted with EtOAc (3x 5 mL) and the combined organic extracts were washed with aq. pH 7 buffer solution (3x 4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel yielded diol **232** as a white solid (7.6 mg, 43.9 μ mol, 85%).

 $R_{\rm f} = 0.21$ (CH/EA 1:2). [α]_D²⁰ = -38.0° (CHCl₃, c = 1.0). ¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 0.88 (d, *J* = 7.0 Hz, 3H), 0.92 (d, *J* = 6.5 Hz, 3H), 0.95 – 1.10 (m, 2H), 1.34 (ddt, *J* = 12.2, 10.1, 3.7 Hz, 1H), 1.43 (dddq, *J* = 15.1, 12.0, 6.5, 3.2 Hz, 1H), 1.64 (dtd, *J* = 16.4, 6.7, 6.2, 3.3 Hz, 2H), 1.74 – 1.96 (m, 1H), 1.95 – 2.09 (m, 2H), 3.46 (td, *J* = 10.5, 4.3 Hz, 1H), 3.52 (dd, *J* = 10.7, 7.3 Hz, 1H), 3.61 (dd, *J* = 10.7, 5.6 Hz, 1H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 12.86, 22.29, 25.66, 31.66, 34.49, 36.11, 45.33, 46.06, 66.98, 71.90.

HRMS-ESI-(+): calculated for [M+H]⁺: 172.1536; found: 172.1533.

7.5.6.7. Ajudazol A (16)

To an ice-cooled solution of compound **231** and **231a** (**231**, 37.9 mg, 46.3 µmol, 1.00 equiv.) in dry THF (1.9 mL) were added dry pyridine (860 µL) and HF·Pyridine (570 µL). The solution was allowed to warm to r.t. and stirred for 3 h. pH 7 buffer solution (4 mL) and EtOAc (4 mL) were added at 0 °C and the layers were separated and the aqueous phase was extracted with EtOAc (3x 5 mL), All organic extracts were combined washed with pH 7 buffer solution (3x 4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by preparative HPLC (MeOH/H₂O 80:20 \rightarrow 100:0 \rightarrow 80:20, RP C-18, flow: 14 mL/min, pressure 173 – 89 mbar, retention time 9.30 min) yielded Ajudazol A (**16**) as a white solid (14.6 mg, 24.7 µmol, 53%).

R_f = 0.31 (CH/EA 1:1).

 $[\alpha]_{D}^{20} = +3.3$ (MeOH, c = 0.8).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 1.09 (d, *J* = 6.6 Hz, 3H), 2.13 (s, 3H), 2.15 – 2.19 (m, 1H), 2.22 (s, 3H), 2.30 (q, *J* = 7.4 Hz, 2H), 2.48 (dqt, *J* = 8.9, 6.8, 4.5 Hz, 1H), 2.57 (dd, *J* = 14.7, 8.6 Hz, 1H), 2.83 (d, *J* = 9.0 Hz, 2H), 2.90 – 3.00 (m, 1H), 3.34 – 3.43 (m, 2H), 3.56 – 3.68 (m, 3H), 3.92 (dt, *J* = 6.1, 1.3, 1.3 Hz, 2H), 4.47 (dd, *J* = 8.2, 4.6 Hz, 1H), 5.00 (t, *J* = 6.7 Hz, 1H), 5.33 (s, 2H), 5.41 (p, *J* = 1.4 Hz, 1H), 5.45 (dt, *J* = 11.0, 8.0 Hz, 1H), 5.51 (dq, *J* = 11.4, 8.4, 7.1 Hz, 1H), 5.56 – 5.66 (m, 2H), 5.92 (d, *J* = 1.3 Hz, 1H), 6.36 – 6.43 (m, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.71 (t, *J* = 1.1 Hz, 1H), 11.29 (s, 1H).

- 160 -

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 15.45, 16.72, 18.73, 27.94, 28.04, 31.02, 32.81, 33.25, 34.04, 35.06, 49.28, 52.46, 55.29, 65.37, 88.09, 92.20, 107.25, 116.71, 117.60, 124.67, 125.79, 126.25, 126.87, 128.45, 132.68, 132.78, 135.83, 136.51, 137.99, 140.91, 160.64, 162.43, 168.07, 170.19.

HRMS-ESI-(+): calculated for [M+H]⁺: 591.3065; found: 591.3067.

7.6. Synthese von strukturmodifizierten Analoga

7.6.1. Modifikation der Westseite

7.6.1.1. 4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4methylcyclohexyl)propyl)-2-(4-((triethylsilyl)oxy)but-1en-2-yl)oxazole (232)

Anhydrous LiCl (159 mg, 3.75 mmol, 4.20 equiv.) was heated under vacuum at 150-170 °C for 5 min. Zinc powder (325 mesh, 114 mg, 1.75 mmol, 1.96 equiv.) was added and dried also under vacuum at 150–170 °C for 5 min. The reaction flask was flushed with argon (3x) and dry THF (360 μ L) was added. C₂H₄Br₂ (6 μ L, 62.5 μ mol, 0.07 equiv.) and TMSCI (0.07M in dry THF, 180 µL, 13.8 µmol, 1.40 mol%) were added to the stirring suspension and the reaction was heated to 50 °C for 10 min. A solution of alkyl iodide 166 (1.25 mmol, 1.40 equiv.) in dry THF (540 µL) was added and stirred for 2 h. The solution was allowed to cool down to r.t. and a solution of Pd(dtpbf)Cl₂ (29.1 mg, 44.7 µmol, 0.05 equiv.) in dry NMP (1.1 mL), followed by a solution of AsPh₃ (82.1 mg, 268 µmol, 0.30 equiv) and iodooxazole 227 (339 mg, 893 µmol, 1.00 equiv.) in dry THF (1.1 mL) were added. The flask was covered in aluminium foil and was allowed to stir for 2 h. EtOAc (4 mL) and aq. sat. NH₄Cl solution (4 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 9 mL). All organic phases were combined and washed with brine (10 mL). Drying over MgSO₄, removal of the solvent in vacuo and purification of the residue by flash column chromatography over silica gel (CH/EA 50:1) yielded alkyl oxazole **232** as a yellow oil (321 mg, 615 µmol, 69%). **R**_f = 0.26 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = -27.0 \text{ (MeOH, c = 1.0)}.$

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 0.12 (s, 3H), 0.18 (s, 3H), 0.57 (q, J = 7.9 Hz, 6H), 0.87 (d, J = 7.0 Hz, 3H), 0.87 – 0.90 (m, 1H), 0.89 – 0.96 (m, 12H), 1.00 (td, J = 12.2, 10.5 Hz, 1H), 1.11 (qd, J = 14.5, 13.8, 4.1 Hz, 1H), 1.27 (ddd, J = 11.9, 10.0, 3.7 Hz, 1H), 1.47 (dddt, J = 15.3, 8.9, 6.6, 3.3 Hz, 1H), 1.65 – 1.73 (m, 2H), 1.99 (dddd, J = 12.2, 4.3, 3.4, 2.0 Hz, 1H), 2.12 – 2.19 (m, 1H), 2.49 – 2.56 (m, 1H), 2.59 (ddd, J = 14.2, 3.4, 1.3 Hz, 1H), 2.73 (tdd, J = 6.6, 2.3, 1.1 Hz, 2H), 3.66 (td, J = 10.2, 4.4 Hz, 1H), 3.87 (td, J = 6.6, 2.1 Hz, 2H), 5.42 (q, J = 1.3 Hz, 1H), 5.93 (d, J = 1.4 Hz, 1H), 7.55 (d, J = 0.8 Hz, 1H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = -4.18, -3.34, 5.06, 7.08, 18.26, 18.66, 22.64, 24.85, 26.54, 28.33, 30.78, 32.30, 35.49, 37.32, 46.60, 51.54, 62.19, 72.51, 118.63, 134.34, 135.67, 142.39, 162.11.

HRMS (ESI (+), 5.0 eV): calculated for [M+H]⁺: 522.3793; found: 522.3791.
7.6.1.2. 3-(4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4methylcyclohexyl)propyl)-oxazol-2-yl)but-3-en-1-ol (233)

HCO₂H (5 wt-% in MeOH, 4 mL, 12.0 equiv.) was added to a stirring solution of TES ether **232** (215 mg, 413 µmol, 1.00 equiv.) in CH₂Cl₂ (2 mL) at 0°C and stirred for 1.5 h. Aq. sat. NaHCO₃ solution (9 mL) was added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 5 mL). All organic phases were combined, washed with brine (9 mL) and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 4:1) yielded alcohol **233** as a colourless oil (146 mg, 358 µmol, 87%).

R_f = 0.31 (CH/EA 4:1).

 $[\alpha]_{D}^{20} = -32.0$ (MeOH, c = 1.0).

¹H-NMR (700 MHz, d₆-acetone): δ [ppm] = 0.12 (s, 3H), 0.17 (s, 3H), 0.87 (d, J = 7.1 Hz, 4H), 0.91 (d, J = 6.6 Hz, 3H), 0.92 (s, 9H), 1.00 (td, J = 12.2, 10.5 Hz, 1H), 1.11 (qd, J = 14.4, 13.7, 4.1 Hz, 1H), 1.26 (tdd, J = 9.9, 3.2, 2.2 Hz, 1H), 1.47 (dddt, J = 15.3, 8.8, 6.6, 3.3 Hz, 1H), 1.65 – 1.73 (m, 2H), 1.99 (dddd, J = 12.3, 4.3, 3.4, 2.0 Hz, 1H), 2.12 – 2.19 (m, 1H), 2.46 – 2.54 (m, 1H), 2.59 (ddd, J = 14.3, 3.4, 1.3 Hz, 1H), 2.73 (tdd, J = 6.4, 4.9, 1.1 Hz, 2H), 3.66 (dd, J = 10.1, 4.6 Hz, 1H), 3.72 – 3.82 (m, 2H), 5.43 (q, J = 1.3 Hz, 1H), 5.92 (d, J = 1.3 Hz, 1H), 7.56 (dd, J = 1.4, 0.6 Hz, 1H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = -4.20, -3.35, 18.27, 22.64, 24.86, 26.51, 28.38, 30.82, 32.29, 35.48, 37.35, 46.59, 51.53, 61.41, 61.54, 72.51, 118.46, 134.82, 135.68, 142.35, 162.36.

HRMS (ESI (+), 6.0 eV): calculated for [M+H]⁺: 408.2928 found: 408.32924.

7.6.1.3. 3-(4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*ter*t-Butyldimethylsilyl)oxy)-4methylcyclohexyl)propyl)oxazol-2-yl)but-3-enal (234)

IBX (309 mg, 1.10 mmol, 3.00 equiv.) was added to a stirring solution of alcohol **233** (149.8 mg, 368 µmol, 1.00 equiv.) in EtOAc (3.7 mL) and refluxed for 4 h. The precipitate was filtered off over a plug of silica gel and rinsed with EtOAc. Concentration of the filtrate *in vacuo* yielded aldehyde **234** as a yellow oil (143 mg, 352 µmol, 96%).

R_f = 0.26 (CH/EA 15:1).

 $[\alpha]_{D}^{20} = -32.5$ (MeOH, c = 0.4).

¹**H-NMR (400 MHz, CD_2CI_2):** δ [ppm] = 0.83 – 0.85 (m, 3H), 0.86 – 0.91 (m, 1H), 0.90 – 0.93 (m, 15H), 0.93 – 1.03 (m, 2H), 1.10 (qd, J = 14.2, 13.6, 3.9 Hz, 1H), 1.20 (td, J = 7.2, 1.8 Hz, 1H), 1.22 – 1.29 (m, 1H), 1.47 (ddddd, J = 16.4, 14.2, 11.2, 7.3, 3.9 Hz, 1H), 1.64 – 1.74 (m, 3H), 1.98 (dtd, J = 12.2, 4.1, 1.9 Hz, 2H), 2.15 (dd, J = 14.2, 11.5 Hz, 1H), 2.44 – 2.54 (m, 2H), 2.57 (ddd, J = 14.2, 3.3, 1.4 Hz, 1H), 3.61 (dt, J = 7.6, 1.4 Hz, 2H), 3.62 – 3.67 (m, 1H), 5.56 (q, J = 1.1 Hz, 1H), 6.10 (d, J = 0.9 Hz, 1H), 7.60 (d, J = 1.3 Hz, 1H), 9.73 (t, J = 1.6 Hz, 1H).

¹³**C-NMR (175 MHz, CD_2CI_2):** δ [ppm] = -4.18, -3.37, 18.25, 18.65, 22.63, 24.79, 26.51, 28.23, 30.71, 32.28, 35.47, 46.58, 47.69, 51.52, 72.49, 120.74, 129.87, 136.29, 142.64, 161.69, 198.99.

HRMS (APCI (+), 5.0 eV): calcd for [M+H]⁺: 406.2772; found: 406.2772.

7.6.1.4. 4-((S)-2-((1S,2R,4R)-2-((*tert*-Butyldimethylsilyl)oxy)-4methylcyclohexyl)propyl)-2-((Z)-5-iodopenta-1,4-dien-2-yl)oxazole (235)

NaHMDS (1.0m in THF, 60 μ L, 1.30 equiv.) was added to a stirring suspension of (iodomethyl)triphenylphosphonium iodide (31.9 mg, 60.3 mmol, 1.30 equiv.) in dry THF (200 μ L) at r.t. and stirred for 5 min. The suspension was cooled to -78 °C and a

solution of aldehyde **234** (18.8 mg, 46.3 µmol, 1.00 equiv.) was added, followed by addition of dry DMI (50 µL). The reaction stirred for 40 min before it was allowed to warm up to r.t. and stirred for additional 20 min. Cyclohexane (1 mL) and aq. sat. NH_4CI solution (1 mL) were added, the layers were separated and the aqueous phase was extracted with cyclohexane (3x 1.5 mL). All organic phases were combined, washed with brine (1.5 mL) and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 50:1) yielded vinyl iodide **235** as a yellow oil (13.9 mg, 26.3 µmol, 57%).

*R*_f = 0.39 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = -26.7$ (MeOH, c = 0.2).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 0.12 (s, 3H), 0.19 (s, 3H), 0.87 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 3.7 Hz, 1H), 0.91 (d, J = 6.7 Hz, 3H), 0.93 (s, 9H), 1.00 (td, J = 12.2, 10.4 Hz, 1H), 1.11 (qd, J = 14.0, 13.4, 3.8 Hz, 1H), 1.21 – 1.28 (m, 1H), 1.47 (dddd, J = 15.3, 12.1, 6.7, 3.4 Hz, 1H), 1.64 – 1.75 (m, 2H), 1.99 (dq, J = 12.2, 4.3, 3.4, 2.0 Hz, 1H), 2.12 – 2.20 (m, 1H), 2.50 – 2.55 (m, 1H), 2.56 – 2.64 (m, 1H), 3.31 – 3.42 (m, 2H), 3.66 (td, J = 10.2, 4.4 Hz, 1H), 5.44 (q, J = 1.3 Hz, 1H), 5.94 (q, J = 1.0 Hz, 1H), 6.49 (dt, J = 7.4, 6.7 Hz, 1H), 6.55 (dt, J = 7.4, 1.2 Hz, 1H), 7.60 (d, J = 1.2 Hz, 1H).

¹³**C-NMR (125 MHz, d₆-acetone):** δ [ppm] = s -4.14, -3.31, 18.32, 22.64, 24.77, 28.29, 30.69, 32.29, 35.47, 38.62, 46.58, 51.56, 72.48, 85.13, 117.41, 134.01, 136.09, 139.03, 142.53, 161.78.

HRMS (ESI (+), 6.0 eV): calcd for [M+H]⁺: 530.1946; found: 530.1944.

7.6.1.5. N-((2E,6Z,8Z)-11-(4-((S)-2-((1S,2R,4R)-2-((*tert*-

butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)oxazol-2-

yl)dodeca-2,6,8,11-tetraen-1-yl)-3-methoxy-N-methylbutanamide (236)

To a solution of (*Z*)-Vinylboronate **129** (36.2 mg, 104 μ mol, 1.50 equiv.) and Cs₂CO₃ (113 mg, 346 μ mol, 5.00 equiv.) in H₂O (50 μ L, 50.0 equiv.) was added a solution of Pd(dppf)Cl₂ (7.61 mg, 10.4 μ mol, 0.15 equiv.) in dry DMF (170 μ L) and a solution of (*Z*)-Vinyliodide **235** (36.6 mg, 69.0 μ mol, 1.00 equiv.) in dry THF (520 μ L) subsequently. The solution was degassed by freeze-pump-thaw-cycles (3x), the flask was covered in aluminium - 165 -

foil and the reaction stirred for 20 h. Et_2O (2 mL) and aq. sat. NaHCO₃ solution (2 mL) were added, the layers were separated and the aqueous phase was extracted with Et_2O (3x 4 mL). All organic extracts were combined and washed with aq. sat. NaHCO₃ solution (4 mL), water (2x 4 mL) and brine (4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue yielded (*Z*,*Z*)-diene **236** as an orange oil (25.7 mg, 41.1 µmol, 60%).

 $R_{\rm f} = 0.12 \, ({\rm CH/EA}, \, 4.1).$

 $[\alpha]_{D}^{20} = -14.0$ (MeOH, c = 0.5).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 0.12 (s, 3H), 0.19 (s, 3H), 0.83 – 0.90 (m, 4H), 0.91 (d, J = 6.6 Hz, 3H), 0.93 (s, 9H), 1.00 (td, J = 12.2, 10.5 Hz, 1H), 1.11 (qd, J = 12.6, 12.2, 3.0 Hz, 1H), 1.23 – 1.29 (m, 1H), 1.47 (dddd, J = 15.3, 8.8, 6.7, 3.4 Hz, 1H), 1.64 – 1.74 (m, 1H), 1.99 (dddd, J = 12.2, 4.3, 3.3, 1.9 Hz, 1H), 2.12 – 2.15 (m, 5H), 2.15 – 2.18 (m, 2H), 2.31 (q, J = 7.4 Hz, 2H), 2.50 – 2.56 (m, 1H), 2.59 (ddd, J = 14.1, 3.3, 1.3 Hz, 1H), 2.85 (s, 2H), 2.95 (s, 1H), 3.41 (dt, J = 7.5, 1.4 Hz, 2H), 3.56 – 3.64 (m, 3H), 3.66 (td, J = 10.2, 4.4 Hz, 1H), 3.92 (dq, J = 6.0, 1.3 Hz, 2H), 5.33 (s, 1H), 5.38 (q, J = 1.4 Hz, 1H), 5.39 – 5.47 (m, 1H), 5.47 – 5.55 (m, 2H), 5.58 – 5.68 (m, 2H), 5.91 (d, J = 1.1 Hz, 1H), 6.36 – 6.45 (m, 1H), 7.58 (s, 1H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = -4.18, -3.31, 18.33, 18.67, 18.72, 22.65, 24.80, 26.56, 27.52, 28.35, 30.74, 30.97, 32.30, 32.84, 33.32, 35.01, 35.48, 46.59, 49.22, 51.56, 52.48, 55.27, 72.50, 92.20, 116.93, 124.64, 126.11, 126.81, 126.92, 128.66, 132.68, 133.25, 135.87, 136.08, 142.46, 162.12.

HRMS (ESI-(+), 6.0 eV): calcd for [M+H]⁺: 625.4395; found: 625.4399.

7.6.1.6. (*E*)-*N*-((2*E*,6*Z*,8*Z*)-11-(4-((*S*)-2-((1*S*,2*R*,4*R*)-2-Hydroxy-4methylcyclohexyl)propyl)oxazol-2-yl)dodeca-2,6,8,11-tetraen-1-yl)-3methoxy-*N*-methylbut-2-enamide (237)

To an ice-cooled solution of silyl ether **236** (25.7 mg, 41.1 μ mol, 1.00 equiv.) in dry THF (1.7 mL) were added dry pyridine (760 μ L) and HF·pyridine (500 μ L). The solution was allowed to warm to r.t. and stirred for 3 h. Aq. pH 7 buffer solution (8 mL) and EtOAc (6 mL) were added at 0 °C, the layers were separated, the aqueous phase was extracted with

EtOAc (3x 10 mL). All organic extracts were combined and washed with aq. pH 7 buffer solution(2x 8 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography (CH/EA 1:1) yielded alcohol **237** as a yellow oil (14.6 mg, 24.7 µmol, 53%).

 $R_{\rm f} = 0.12 \, ({\rm CH/EA} \, 1.1).$

 $[\alpha]_{D}^{20} = -33.3 \text{ (MeOH, c} = 0.6\text{)}.$

¹H-NMR (700 MHz, d_6 -acetone): δ [ppm] = 0.81 – 0.88 (m, 1H), 0.89 (dd, J = 6.6, 1.8 Hz, 3H), 0.93 (dd, J = 6.9, 1.8 Hz, 3H), 0.94 – 1.04 (m, 1H), 1.14 (qd, J = 12.6, 3.1 Hz, 1H), 1.25 (ddt, J = 12.6, 10.1, 2.4 Hz, 1H), 1.43 (dddt, J = 15.4, 11.9, 6.7, 3.3 Hz, 1H), 1.60 – 1.69 (m, 2H), 1.93 (dtd, J = 12.1, 3.9, 2.0 Hz, 1H), 2.12 – 2.16 (m, 4H), 2.16 – 2.18 (m, 1H), 2.27 – 2.33 (m, 2H), 2.36 (dddd, J = 9.2, 6.7, 4.5, 2.3 Hz, 1H), 2.71 (ddd, J = 14.0, 4.4, 1.4 Hz, 1H), 2.77 – 2.87 (m, 5H), 2.95 (s, 1H), 3.40 (d, J = 7.6 Hz, 2H), 3.45 (td, J = 10.4, 4.2 Hz, 1H), 3.55 (d, J = 20.6 Hz, 0H), 3.60 (s, 2H), 3.62 (s, 1H), 3.91 – 3.95 (m, 2H), 5.33 (s, 1H), 5.39 (q, J = 1.4 Hz, 1H), 5.40 – 5.50 (m, 1H), 5.49 – 5.55 (m, 1H), 5.57 – 5.68 (m, 2H), 5.91 (dd, J = 2.2, 1.2 Hz, 1H), 6.42 (ddt, J = 9.2, 3.4, 1.6 Hz, 2H), 7.60 (t, J = 1.0 Hz, 1H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 17.69, 18.72, 22.63, 26.61, 27.96, 30.31, 31.02, 32.40, 32.83, 33.02, 33.21, 35.07, 35.66, 46.40, 49.26, 50.35, 52.45, 54.97, 55.28, 71.04, 92.20, 117.16, 124.66, 126.87, 127.26, 128.54, 128.66, 132.64, 132.75, 133.25, 135.79, 135.98, 142.81, 162.09, 167.39, 167.49.

HRMS (ESI (+), 6.0 eV): calcd for [M+H]⁺: 511.3530; found: 511.43531.

7.6.2. Modifikation der Ostseite

NaH (60 wt% in paraffin liquid, 33 mg, 820 μ mol, 1.20 equiv.) was added in portions to a stirring solution of carboxylic acid **64** (79.4 mg, 683 μ mol, 1.00 equiv.) in dry DMF (1.5 mL) at 0 °C and stirred for 1 h. A solution of bromide **210** (130 mg, 751 μ mol, 1.10 equiv.) in dry DMF (380 μ L) was added. The suspension was allowed to warm to r.t. and stirred for 21 h. Water (2 mL) was carefully added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 3 mL). All organic phases were combined and washed with brine

(3 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 19:1) yielded ester **238** as a yellowish liquid (94.6 mg, 454 µmol, 66%).

R_f = 0.24 (CH/EA 19:1).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 2.24 (d, J = 0.5 Hz, 3H), 2.25 – 2.28 (m, 4H), 2.34 – 2.37 (m, 1H), 3.67 (s, 3H), 4.51 (dt, J = 6.2, 1.0 Hz, 2H), 5.06 (s, 1H), 5.64 – 5.74 (m, 1H), 5.77 – 5.90 (m, 1H).

¹³**C-NMR (125MHz, d₆-acetone):** δ [ppm] = 18.73, 18.84, 32.02, 55.99, 64.13, 70.31, 84.18, 91.27, 127.14, 133.58, 167.70, 173.69.

HRMS (ESI (+), 6.0 eV): calcd. for [M+H]⁺: 209.1172; found: 209.1171.

7.6.2.2. (2*E*,6*Z*)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2,6dien-1-yl-(*E*)-3-methoxybut-2-enoate (239)

 $P'Pr_3$ (13 µL, 66.6 µmol, 0.14 equiv.), NEt₃ (330 µL, 2.38 mmol, 5.00 equiv.) and Pinacolborane (70 µL, 476 µmol, 1.00 equiv.) were added to a stirring solution of [Rh(COD)Cl]₂ (7.05 mg, 14.3 µmol, 0.03 equiv.) in dry cyclohexane (1.3 mL) at room temperature and stirred for 0.5 h. A solution of alkyne **237** (114 mg, 547 µmol, 1.15 equiv.) in dry cyclohexane (1.3 mL) was added and the reaction was allowed to stir for 3 h. MeOH (0.2 mL) was added and the solvent was removed *in vacuo*. Purification of the residue by flash chromatography over silica gel (CH/EA 19:1) yielded vinyl boronate **238** as a green oil (101 mg, 300 µmol, 63%, *Z*:*E* > 9:1).

*R*_f = 0.17 (CH/EA, 19:1).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 1.25 (s, 12H), 2.08 – 2.19 (m, 2H), 2.24 (s, 3H), 2.50 (qd, J = 7.4, 1.4 Hz, 2H), 3.67 (s, 3H), 4.49 (dq, J = 6.3, 1.1 Hz, 2H), 5.06 (s, 1H), 5.30 (dt, J = 13.5, 1.3 Hz, 1H), 5.62 (dtt, J = 15.4, 6.3, 1.4 Hz, 1H), 5.79 (dtt, J = 14.8, 6.7, 1.2 Hz, 1H), 6.41 (dt, J = 14.0, 7.4 Hz, 1H).

¹³**C-NMR (125 MHz, d₆-acetone):** δ [ppm] = 18.83, 20.42, 25.16, 32.22, 32.86, 55.97, 64.36, 83.52, 91.34, 126.24, 135.10, 154.24, 167.72, 173.59.

HRMS (APCI (+), 5.0 eV): calcd. for [M+H]⁺: 337.2180; found: 337.218.

- NMR-Spektren beginnen auf der nächsten Seite -

- 171 -

13C-NMR, 75.48 MHz, CDCl3

- 179 -

- 183 -

- 187 -

- 188 -

- 189 -

- 190 -

- 191 -

- 192 -

- 193 -

- 194 -

- 199 -

- 201 -

- 205 -

- 207 -

- 209 -

- 210 -

- 220 -

- 221 -

- 222 -

- 223 -

- 224 -

- 225 -

- 227 -

- 229 -

- 230 -

- 231 -

- 232 -

- 233 -

	· · · · ·					 ·	· · · · ·	·	· · · · ·	·	·	 ·		· · · · ·	· · · ·	 		 	
ŀ	15	OTBS 96	C ₉ I 298.	H ₁₉ IOS 24 g/n	Si 10l				— 123	— 109		с <i>т</i> —	— 71.î			25.0		5.1	
13C-I CDCI	NMR, 10 3	0.63 MH	z,						23.11	09.87		7.16 CDC	1.23			5.96	8.50	5.18	,

- 234 -

- 235 -

- 236 -

- 237 -

- 239 -

- 241 -

- 242 -

- 243 -

- 245 -

- 247 -

13C-NMR, 176.12 MHz, CDCI3	— 166.93	— 146.77	 - 82.78 - 77.16 CDCl3 - 69.59	— 51.67	— 31.16 — 17.56	

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 chemical shift [ppm]

0 -10

1

- 249 -

- 251 -

- 253 -

- 255 -

120 110 100 90 chemical shift [ppm] 70

80

220 210 200

190 180 170

160 150

140

130

- 256 -

257 -

- 263 -

- 264 -

- 266 -

- 271 -

273 -

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1C chemical shift [ppm]

- 275 -

- 276 -

- 277 -

- 279 -

- 281 -

- 283 -

- 286 -

- 287 -

- 289 -

- 295 -

60

50

40

30

20

10

0

-10

80 70

 260
 250
 240
 230
 220
 210
 200
 190
 180
 170
 160
 150
 140
 130
 120
 110
 100
 90

 chemical shift [ppm]
 chemical shift [ppm]

- 297 -

- 299 -

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift [ppm]

- 303 -

- 304 -

- 305 -

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift [ppm]

- 308 -

- 309 -

- 312 -

9. Literaturverzeichnis

- [1] G. R. Hamilton, T. F. Baskett, CAN J ANESTH. 2000, 47, 367.
- [2] A. Fleming, Br. J. Exp. Pathol. 1929, 10, 226.
- [3] M. A. Fischbach, C. T. Walsh, Science (New York, N.Y.) 2009, 325, 1089.
- [4] R. Bade, H.-F. Chan, J. Reynisson, Eu. J. Med. Chem. 2010, 45, 5646.
- [5] a) D. J. Newman, G. M. Cragg, K. M. Snader, *Nat. Prod. Rep.* 2000, *17*, 215; b) Y.-W. Chin, M. J. Balunas, H. B. Chai, A. D. Kinghorn, *AAPS J.* 2006, *8*, E239-53.
- [6] C. Hertweck, Angew. Chem. 2009, 121, 4782.
- [7] M. Strieker, A. Tanović, M. A. Marahiel, Curr. Opin. Struct. Biol. 2010, 20, 234.
- [8] M. A. Fischbach, C. T. Walsh, Chem. Rev. 2006, 106, 3468.
- [9] K. Han, Z.-f. Li, R. Peng, L.-p. Zhu, T. Zhou, L.-g. Wang, S.-g. Li, X.-b. Zhang, W. Hu, Z.-h. Wu et al., *Scientific reports* 2013, 3, 2101.
- [10] K. J. Weissman, R. Müller, Nat. Prod. Rep. 2010, 27, 1276.
- [11] S. Schneiker, O. Perlova, O. Kaiser, K. Gerth, A. Alici, M. O. Altmeyer, D. Bartels, T. Bekel, S. Beyer, E. Bode et al., *Nature Biotech.* 2007, 25, 1281.
- [12] J. Herrmann, A. A. Fayad, R. Müller, Nat. Prod. Rep. 2017, 34, 135.
- [13] H. Reichenbach, J. Ind. Microbiol. and Biotechnol. 2001, 27, 149.
- [14] M. Huss, F. Sasse, B. Kunze, R. Jansen, H. Steinmetz, G. Ingenhorst, A. Zeeck, H. Wieczorek, BMC Biochemistry 2005, 6, 13.
- [15] S. Bockelmann, D. Menche, S. Rudolph, T. Bender, S. Grond, P. von Zezschwitz, S. P. Muench, H. Wieczorek, M. Huss, *J. Biol. Ch.* 2010, 285, 38304.
- [16] D. Menche, J. Hassfeld, J. Li, S. Rudolph, J. Am. Chem. Soc. 2007, 129, 6100.
- [17] J. P. Gölz, S. Bockelmann, K. Mayer, H.-J. Steinhoff, H. Wieczorek, M. Huss, J. P. Klare, D. Menche, *ChemMedChem* **2016**, *11*, 420.
- [18] K. Gerth, H. Steinmetz, G. Höfle, R. Jansen, Angew. Chem. Int. Ed. 2008, 47, 600.
- [19] K. Jungmann, R. Jansen, K. Gerth, V. Huch, D. Krug, W. Fenical, R. Müller, ACS Ch. Biol. 2015, 10, 2480.
- [20] J. Held, T. Gebru, M. Kalesse, R. Jansen, K. Gerth, R. Müller, B. Mordmüller, Antimicrob. Agents Chemother. 2014, 58, 6378.
- [21] N. Rahn, M. Kalesse, Angew. Chem. Int. Ed. 2008, 47, 597.
- [22] F. Sasse, H. Steinmetz, J. Heil, G. Höfle, H. Reichenbach, J. Antibiot. 2000, 53, 879.

- [23] a) S. Braig, R. M. Wiedmann, J. Liebl, M. Singer, R. Kubisch, L. Schreiner, B. A. Abhari, E. Wagner, U. Kazmaier, S. Fulda et al., *Cell Death Dis.* 2014, *5*, e1001; b) S. Rath, J. Liebl, R. Fürst, A. Ullrich, J. L. Burkhart, U. Kazmaier, J. Herrmann, R. Müller, M. Günther, L. Schreiner et al., *Br. J. Pharmacol* 2012, *167*, 1048; c) V. K. Kretzschmann, D. Gellrich, A. Ullrich, S. Zahler, A. M. Vollmar, U. Kazmaier, R. Fürst, *Arter. Thromb. Vasc. Biol.* 2014, *34*, 294.
- [24] R. Kubisch, M. von Gamm, S. Braig, A. Ullrich, J. L. Burkhart, L. Colling, J. Hermann, O. Scherer, R. Müller, O. Werz et al., *J. Nat. Prod.* 2014, 77, 536.
- [25] a) G. Höfle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth, H. Reichenbach, Angew. Chem. Int. Ed. 1996, 35, 1567.
- [26] D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, C. M. Woods, *Cancer Res.* **1995**, *55*, 2325.
- [27] a) A. Balog, D. Meng, T. Kamenecka, P. Bertinato, D.-S. Su, E. J. Sorensen, S. J. Danishefsky, *Angew. Chem. Int Ed.* **1996**, *35*, 2801; b) D.-S. Su, D. Meng, P. Bertinato, A. Balog, E. J. Sorensen, S. J. Danishefsky, Y.-H. Zheng, T.-C. Chou, L. He, S. B. Horwitz, *Angew. Chem. Int. Ed.* **1997**, *36*, 757.
- [28] U. Klar, B. Buchmann, W. Schwede, W. Skuballa, J. Hoffmann, R. B. Lichtner, Angew. Chem. 2006, 118, 8110.
- [29] E. S. Thomas, H. L. Gomez, R. K. Li, H.-C. Chung, L. E. Fein, V. F. Chan, J. Jassem, X. B. Pivot, J. V. Klimovsky, F. H. de Mendoza et al., *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 2007, 25, 5210.
- [30] N. Zaburannyi, B. Bunk, J. Maier, J. Overmann, R. Müller, Appl. Environ. Microbiol. 2016, 82, 1945.
- [31] R. Jansen, B. Kunze, H. Reichenbach, G. Höfle, Eur. J. Org. Chem. 2003, 2003, 2684.
- [32] R. Jansen, B. Kunze, H. Reichenbach, G. Höfle, Eur. J. Org. Chem. 2002, 2002, 917.
- [33] B. Kunze, R. Jansen, G. Höfle, H. Reichenbach, J. Antibiot. 2004, 57, 151.
- [34] K. Buntin, S. Rachid, M. Scharfe, H. Blöcker, K. J. Weissman, R. Müller, Angew. Chem. Int. Ed. Engl. 2008, 47, 4595.
- [35] K. Buntin, S. Rachid, M. Scharfe, H. BI¶cker, K. J. Weissman, R. Müller, Angew. Chem. Int. Ed. Engl. 2009, 48, 9773.
- [36] K. Buntin, S. Rachid, M. Scharfe, H. Blöcker, K. J. Weissman, R. Müller, *Angew. Chem.* **2008**, *120*, 4671.
- [37] K. Buntin, S. Rachid, M. Scharfe, H. Blöcker, K. J. Weissman, R. Müller, Angew. Chem. 2009, 121, 9957.
- [38] K. Buntin, K. J. Weissman, R. Müller, ChemBioChem 2010, 11, 1137.

- [39] N. Gaitatzis, B. Silakowski, B. Kunze, G. Nordsiek, H. Blöcker, G. Höfle, R. Müller, J. Biol. Chem. 2002, 277, 13082.
- [40] R. M. Kohli, C. T. Walsh, Chem. Commun. 2003, 297.
- [41] S. Essig, B. Schmalzbauer, S. Bretzke, O. Scherer, A. Koeberle, O. Werz, R. Müller, D. Menche, J. Org. Chem. 2016, 81, 1333.
- [42] S. Essig, S. Bretzke, R. Müller, D. Menche, J. Am. Chem. Soc. 2012, 134, 19362.
- [43] a) D. Janssen, D. Albert, R. Jansen, R. Müller, M. Kalesse, *Angew. Chem. Int. Ed.* 2007, *46*, 4898; b) T. Brodmann, D. Janssen, M. Kalesse, *J. Am. Chem. Soc.* 2010, *132*, 13610; c) D. Menche, F. Arikan, O. Perlova, N. Horstmann, W. Ahlbrecht, S. C. Wenzel, R. Jansen, H. Irschik, R. Müller, *J. Am. Chem. Soc.* 2008, *130*, 14234.
- [44] R. Reid, M. Piagentini, E. Rodriguez, G. Ashley, N. Viswanathan, J. Carney, D. V. Santi, C. R. Hutchinson, R. McDaniel, *Biochemistry* 2003, 42, 72.
- [45] D. H. Kwan, Y. Sun, F. Schulz, H. Hong, B. Popovic, J. C. C. Sim-Stark, S. F. Haydock, P. F. Leadlay, *Chem. Biol.* 2008, 15, 1231.
- [46] C. Jahns, T. Hoffmann, S. Müller, K. Gerth, P. Washausen, G. Höfle, H. Reichenbach, M. Kalesse, R. Müller, Angew. Chem. Int. Ed. 2012, 51, 5239.
- [47] Sebastian Essig, *Die Totalsynthese von Ajudazol B im Kontext eines interdisziplinären Forschungsansatzes.* Inaugural-Dissertation, Universität Heidelberg **2013**.
- [48] a) C. Carvalho, S. C. Correia, S. Cardoso, A. I. Plácido, E. Candeias, A. I. Duarte, P. I. Moreira, *Expert. Rev. Neurother.* 2015, *15*, 867; b) S. DiMauro, E. A. Schon, *Annu. Rev. Neurosci.* 2008, *31*, 91; c) L. J. Martin, *Prog Mol Biol Transl Sci* 2012, *107*, 355; d) W. E. Müller, A. Eckert, C. Kurz, G. P. Eckert, K. Leuner, *Mol. Neurobiol* 2010, *41*, 159; e) A. H. V. Schapira, *Lancet* 2008, *7*, 97; f) B. Su, X. Wang, L. Zheng, G. Perry, M. A. Smith, X. Zhu, *Biochim. Biophys. Acta* 2010, *1802*, 135.
- [49] a) C. L. Malmsten, *Crit. Rev. Immunol.* 1984, *4*, 307; b) O. Rådmark, O. Werz, D. Steinhilber, B. Samuelsson, *Biochim. Biophys. Acta* 2015, *1851*, 331; c) B. Samuelsson, *Science (New York, N.Y.)* 1983, *220*, 568.
- [50] H. Allayee, A. Baylin, J. Hartiala, H. Wijesuriya, M. Mehrabian, A. J. Lusis, H. Campos, Am. J. Clin. Nutr 2008, 88, 934.
- [51] a) V. Barresi, E. Vitarelli, G. Tuccari, G. Barresi, Arch. Pathol. Lab. Med. 2008, 132, 1807; b) J. Ghosh, C. E. Myers, Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 13182; c) B. Sveinbjörnsson, A. Rasmuson, N. Baryawno, M. Wan, I. Pettersen, F. Ponthan, A. Orrego, J. Z. Haeggström, J. I. Johnsen, P. Kogner, FASEB J. 2008, 22, 3525; d) L. G. Melstrom, D. J. Bentrem, M. R. Salabat, T. J. Kennedy, X.-Z. Ding, M. Strouch, S. M. Rao, R. C. Witt, C. A. Ternent, M. S. Talamonti et al., Clin. Cancer Res. 2008, 14, 6525.
- [52] O. Krebs, R. J. K. Taylor, Org. Lett. 2005, 7, 1063.

- [53] S. Birkett, D. Ganame, B. C. Hawkins, S. Meiries, T. Quach, M. A. Rizzacasa, Org. Lett. 2011, 13, 1964.
- [54] S. Birkett, D. Ganame, B. C. Hawkins, S. Meiries, T. Quach, M. A. Rizzacasa, J. Org. Chem. 2013, 78, 116.
- [55] D. Ganame, T. Quach, C. Poole, M. A. Rizzacasa, Tetrahedron Lett. 2007, 48, 5841.
- [56] B. A. Egan, M. Paradowski, L. H. Thomas, R. Marquez, Org. Lett. 2011, 13, 2086.
- [57] B. A. Egan, M. Paradowski, L. H. Thomas, R. Marquez, Tetrahedron 2011, 67, 9700.
- [58] S. J. Hobson, A. Parkin, R. Marquez, Org. Lett. 2008, 10, 2813.
- [59] H. A. SMITH, G. GORIN, J. Org. Chem. 1961, 26, 820.
- [60] O. Achmatowicz, P. Bukowski, B. Szechner, Z. Zwierzchowska, A. Zamojski, *Tetrahedron* 1971, 27, 1973.
- [61] S. L. Schreiber, Science (New York, N.Y.) 2000, 287, 1964.
- [62] E. J. Corey, A. K. Long, S. D. Rubenstein, Science (New York, N.Y.) 1985, 228, 408.
- [63] E. J. Corey, Pure Appl. Chem. 1967, 14, 19.
- [64] R. S. Roy, A. M. Gehring, J. C. Milne, P. J. Belshaw, C. T. Walsh, Nat. Prod. Rep. 1999, 16, 249.
- [65] H. H. Wasserman, F. J. Vinick, J. Org. Chem. 1973, 38, 2407.
- [66] E. J. Corey, Chem. Soc. Rev. 1988, 17, 111.
- [67] P. Stanetty, M. Spina, M. D. Mihovilovic, Synlett 2005, 1433.
- [68] M. J. West, A. J. B. Watson, Org. Biomol. Chem. 2019, 17, 5055.
- [69] C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062.
- [70] S. Essig, D. Menche, J. Org. Chem. 2016, 81, 1943.
- [71] Philipp Wollnitzke, *Studien zur modularen Totalsynthese von Ajudazol A*, Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn **2015**.
- [72] D. R. Williams, L. Fu, Org. Lett. 2010, 12, 808.
- [73] N. Proust, M. Chellat, J. Stambuli, Synthesis 2011, 2011, 3083.
- [74] D. R. Williams, L. Fu, Synlett 2009, 2010, 591.
- [75] C. A. Stein, T. H. Morton, Tetrahedron Lett. 1973, 14, 4933.
- [76] D. R. Lide, H. P. R. Frederikse, CRC handbook of chemistry and physics. A ready-reference book of chemical and physical data : 1997-1998, CRC Press, Boca Raton, New York, op. 1997.
- [77] J. P. Gölz, *Dissertation*. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn 2019.
- [78] R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417.

- [79] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
- [80] A. A. C. Braga, N. H. Morgon, G. Ujaque, F. Maseras, J. Am. Chem. Soc. 2005, 127, 9298.
- [81] C. Amatore, A. Jutand, G. Le Duc, Chem. Eur. J. 2011, 17, 2492.
- [82] a) V. Domingo, L. Silva, H. R. Diéguez, J. F. Arteaga, J. F. Quílez del Moral, A. F. Barrero, J. Org. Chem. 2009, 74, 6151; b) C. Herb, M. E. Maier, J. Org. Chem. 2003, 68, 8129; c) T. Hu, N. Takenaka, J. S. Panek, J. Am. Chem. Soc. 2002, 124, 12806; d) A. K. Mandal, Org. Lett. 2002, 4, 2043; e) J. A. Marshall, M. P. Bourbeau, J. Org. Chem. 2002, 67, 2751; f) C. Schnabel, M. Hiersemann, Org. Lett. 2009, 11, 2555; g) A. B. Smith, A. H. Davulcu, L. Kürti, Org. Lett. 2006, 8, 1665; h) C. Taillier, V. Bellosta, J. Cossy, Org. Lett. 2004, 6, 2149; i) C. Tsukano, M. Ebine, M. Sasaki, J. Am. Chem. Soc. 2005, 127, 4326; j) H. Yamanaka, K. Sato, H. Sato, M. Iida, T. Oishi, N. Chida, Tetrahedron 2009, 65, 9188; k) Y. Yuan, H. Men, C. Lee, J. Am. Chem. Soc. 2004, 126, 14720.
- [83] G. A. Molander, C.-S. Yun, Tetrahedron 2002, 58, 1465.
- [84] M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, Chem. Ber. 1998, 1998, 155.
- [85] T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, J. Am. Chem. Soc. 1984, 106, 158.
- [86] R. Brückner, Reaktionsmechanismen. Organische Reaktionen, Stereochemie, Moderne Synthesemethoden, Springer Spektrum, Berlin, Heidelberg, 2015.
- [87] J. H. Kirchhoff, M. R. Netherton, I. D. Hills, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 13662.
- [88] P. Dierkes, P. W. N. M. van Leeuwen, J. Chem. Soc., Dalton Trans. 1999, 1519.
- [89] G. A. Grasa, T. J. Colacot, Org. Lett. 2007, 9, 5489.
- [90] G. Mann, Q. Shelby, A. H. Roy, J. F. Hartwig, Organometallics 2003, 22, 2775.
- [91] K. Matos, J. A. Soderquist, J. Org. Chem. 1998, 63, 461.
- [92] K. H. Schulte-Elte, G. Ohloff, HCA 1967, 50, 153.
- [93] R. W. Hoffmann, Chem. Rev. 1989, 89, 1841.
- [94] P. Beak, S. T. Kerrick, D. J. Gallagher, J. Am. Chem. Soc. 1993, 115, 10628.
- [95] P. Beak, R. A. Brown, J. Org. Chem. 1982, 47, 34.
- [96] P. Beak, V. Snieckus, Acc. Chem. Res. 1982, 15, 306.
- [97] J. Clayden, R. P. Davies, M. A. Hendy, R. Snaith, A. E. H. Wheatley, Angew. Chem. Int. Ed. 2001, 40, 1238.
- [98] P. Bowles, J. Clayden, M. Helliwell, C. McCarthy, M. Tomkinson, N. Westlund, *J. Chem. Soc., Perkin Trans.* 1 1997, 2607.
- [99] J. Clayden, N. Westlund, R. L. Beddoes, M. Helliwell, J. Chem. Soc., Perkin Trans. 1 2000, 1351.
- [100] J. Clayden, D. Mitjans, L. H. Youssef, J. Am. Chem. Soc. 2002, 124, 5266.

- [101] K. Fuji, T. Kawabata, *Chem. Eur. J.* **1998**, *4*, 373.
- [102] J. Clayden, C. C. Stimson, M. Keenan, Synlett 2005, 1716.
- [103] H. C. Brown, K. S. Bhat, J. Am. Chem. Soc. 1986, 108, 5919.
- [104] H. C. Brown, K. S. Bhat, J. Am. Chem. Soc. 1986, 108, 293.
- [105] H. C. Brown, M. C. Desai, P. K. Jadhav, J. Org. Chem. 1982, 47, 5065.
- [106] M. Schlosser, Pure Appl. Chem. 1988, 60, 1627.
- [107] M. Schlosser, M. Stähle, Angew. Chem. Int. Ed. 1980, 19, 487.
- [108] a) M. A. M. Capozzi, C. Cardellicchio, F. Naso, *Eur. J. Org. Chem.* 2004, 2004, 1855; b) O. Riant, G. Argouarch, D. Guillaneux, O. Samuel, H. B. Kagan, *J. Org. Chem.* 1998, *63*, 3511.
- [109] D. Seebach, A. R. Sting, M. Hoffmann, Angew. Chem. Int. Ed. 1996, 35, 2708.
- [110] D. R. Vutukuri, P. Bharathi, Z. Yu, K. Rajasekaran, M.-H. Tran, S. Thayumanavan, *J. Org. Chem.* **2003**, *68*, 1146.
- [111] B. L. Hayes, *Microwave synthesis. Chemistry at the speed of light*, CEM Pub, Matthews, NC, **2002**.
- [112] C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, D. Michael P. Mingos, *Chem. Soc. Rev.* 1998, 27, 213.
- [113] a) H. B. B:urgi, J. D. Dunitz, J. M. Lehn, G. Wipff, *Tetrahedron* 1974, *30*, 1563; b) H. B. Burgi, J. D. Dunitz, E. Shefter, *J. Am. Chem. Soc.* 1973, *95*, 5065.
- [114] a) C. O. Kappe, B. Pieber, D. Dallinger, *Angew. Chem. Int. Ed.* 2013, *52*, 1088; b) G. B. Dudley, A. E. Stiegman, M. R. Rosana, *Angew. Chem. Int. Ed.* 2013, *52*, 7918.
- [115] B. A. Anderson, N. K. Harn, *Synthesis* **1996**, *1996*, 583.
- [116] M. R. Reeder, H. E. Gleaves, S. A. Hoover, R. J. Imbordino, J. J. Pangborn, Org. Process Res. Dev. 2003, 7, 696.
- [117] N. Kamiya, Y. Chikami, Y. Ishii, Synlett 1990, 675.
- [118] W. Markownikoff, Eur. J. Org. Chem. 1870, 153, 228.
- [119] A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici, P. Pedrini, Synthesis 1987, 1987, 693.
- [120] B. Iddon, *Heterocycles* **1994**, *37*, 1321.
- [121] a) W. Schlenk, W. Schlenk, *Ber. dtsch. Chem. Ges. A/B* 1929, *6*2, 920; b) J. Bacsa, F. Hanke,
 S. Hindley, R. Odedra, G. R. Darling, A. C. Jones, A. Steiner, *Angew. Chem. Int. Ed.* 2011, *50*, 11685.
- [122] R. Neufeld, T. L. Teuteberg, R. Herbst-Irmer, R. A. Mata, D. Stalke, J. Am. Chem. Soc. 2016, 138, 4796.
- [123] Y. Kaburagi, Y. Kishi, Org. Lett. 2007, 9, 723.

- [124] H. M. Reuter-Schniete, *Contributions to the Total Synthesis of Ajudazol A*, Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn **2018**.
- [125] R. Appel, Angew. Chem. Int. Ed. 1975, 14, 801.
- [126] R. Appel, R. Kleinstück, K.-D. Ziehn, Chem. Ber. 1971, 104, 2250.
- [127] J. Backenköhler, B. Reck, M. Plaumann, P. Spiteller, Eur. J. Org. Chem. 2018, 2018, 2806.
- [128] S. Nunomoto, Y. Kawakami, Y. Yamashita, J. Org. Chem. 1983, 48, 1912.
- [129] a) R. G. Pearson, J. Chem. Educ. 1968, 45, 581; b) R. G. Pearson, J. Chem. Educ. 1968, 45, 643; c) R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533.
- [130] J. E. Baeckvall, M. Sellen, B. Grant, J. Am. Chem. Soc. 1990, 112, 6615.
- [131] a) T. Yamamoto, A. Yamamoto, S. Ikeda, J. Am. Chem. Soc. 1971, 93, 3350; b) T.
 Yamamoto, A. Yamamoto, S. Ikeda, J. Am. Chem. Soc. 1971, 93, 3360.
- [132] B. H. Lipshutz, J. A. Kozlowski, C. M. Breneman, J. Am. Chem. Soc. 1985, 107, 3197.
- [133] B. H. Lipshutz, E. L. Elsworth, T. J. Siahaan, J. Am. Chem. Soc. 1989, 111, 1351.
- [134] E. E. Smissman, A. N. Voldeng, J. Org. Chem. 1964, 29, 3161.
- [135] H. C. Brown, *Tetrahedron* **1961**, *12*, 117.
- [136] J. Cid, J. J. Carbó, E. Fernández, *Chem. Eur. J.* **2012**, *18*, 1512.
- [137] S. Pereira, M. Srebnik, *Tetrahedron Lett.* **1996**, 37, 3283.
- [138] A. Wurtz, *Eur. J. Org. Chem.* **1855**, *96*, 364.
- [139] J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734.
- [140] J. F. Garst, M. P. Soriaga, Coord. Chem. Rev. 2004, 248, 623.
- [141] K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 1972, 94, 4374.
- [142] H. Gilman, R. H. Kirby, Org. Synth. 1925, 5, 75.
- [143] R. D. Rieke, Science (New York, N.Y.) 1989, 246, 1260.
- [144] A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, *Angewandte Chemie (International ed. in English)* **2006**, *45*, 6040.
- [145] L. C. McCann, M. G. Organ, Angew. Chem. Int. Ed. 2014, 53, 4386.
- [146] L. C. McCann, H. N. Hunter, J. A. C. Clyburne, M. G. Organ, Angew. Chem. Int. Ed. 2012, 51, 7024.
- [147] H. N. Hunter, N. Hadei, V. Blagojevic, P. Patschinski, G. T. Achonduh, S. Avola, D. K. Bohme, M. G. Organ, *Chem. Eur. J.* 2011, *17*, 7845.
- [148] J. Zhou, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 12527.

- [149] G. T. Achonduh, N. Hadei, C. Valente, S. Avola, C. J. O'Brien, M. G. Organ, *Chem. Commun.* 2010, 46, 4109.
- [150] V. Farina, B. Krishnan, J. Am. Chem. Soc. 1991, 113, 9585.
- [151] S. Inoue, Y. Yokoo, J. Organomet. Chem. 1972, 39, 11.
- [152] X.-Y. Cui, Y. Ge, S. M. Tan, H. Jiang, D. Tan, Y. Lu, R. Lee, C.-H. Tan, J. Am. Chem. Soc. 2018, 140, 8448.
- [153] Q. Zhang, P. Wilson, Z. Li, R. McHale, J. Godfrey, A. Anastasaki, C. Waldron, D. M. Haddleton, J. Am. Chem. Soc. 2013, 135, 7355.
- [154] G. Stork, K. Zhao, *Tetrahedron Lett.* **1989**, *30*, 2173.
- [155] E. Vedejs, T. J. Fleck, J. Am. Chem. Soc. 1989, 111, 5861.
- [156] R. Robiette, J. Richardson, V. K. Aggarwal, J. N. Harvey, J. Am. Chem. Soc. 2005, 127, 13468.
- [157] A. S. Pilcher, H. L. Ammon, P. DeShong, J. Am. Chem. Soc. 1995, 117, 5166.
- [158] B. M. Trost, G. Dong, J. Am. Chem. Soc. 2010, 132, 16403.
- [159] Y. Peng, W.-D. Li, Synlett 2006, 2006, 1165.
- [160] U. Bhatt, M. Christmann, M. Quitschalle, E. Claus, M. Kalesse, J. Org. Chem. 2001, 66, 1885.
- [161] S. Scheeff, D. Menche, Org. Lett. 2019, 21, 271.
- [162] M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*, Thieme, Stuttgart, New York, **2005**.
- [163] F. Wöhler, Ann. Phys. Chem. 1828, 87, 253.
- [164] A. Eschenmoser, *Die Naturwissenschaften* **1974**, *61*, 513.
- [165] N. P.H. Tan, C. D. Donner, Tetrahedron 2009, 65, 4007.