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Summary
The present work is concerned with the development and application of two new
multistate multireference perturbation theory methods. In contrast to state-speci�c
perturbation theory methods, multistate methods can simultaneously provide several
states that are allowed to mix under the in�uence of dynamic correlation. The �rst new
method is the 2nd order dynamic correlation dressed complete active space method
(DCD-CAS(2)), which is formulated in terms of an e�ective Hamiltonian that is based
on the theory of intermediate e�ective Hamiltonians. It simultaneously provides the
ground state and a few low-lying excited states. The method is orbitally invariant and
preserves orbital degeneracies of the underlying complete active space self-consistent
�eld solutions. In cases where model space components become nearly degenerate
after the inclusion of dynamic correlation, DCD-CAS(2) is shown to be superior to
state-speci�c 2nd order dynamic correlation methods like the N-electron valence state
perturbation theory (NEVPT2).
It was found that DCD-CAS(2) fails in simultaneously describing ligand �eld and
charge transfer states in a balanced way because of the state-averaged 0th order Hamil-
tonian used in its construction. The multi-partitioning idea allows the use of state-
speci�c 0th order Hamiltonians in a multistate framework and could therefore alle-
viate the mentioned problem. However, the e�ective Hamiltonian is non-Hermitian
in the traditional formulation of multi-partitioning, which can lead to unphysical be-
havior especially for nearly degenerate states. In order to achieve a more balanced
treatment of states with a di�erent physical character and at the same time have a
Hermitian e�ective Hamiltonian, we combine for the �rst time multi-partitioning with
canonical Van Vleck perturbation theory. At the 2nd order, the result is a Hermitian
variant of multi-partitioning quasi-degenerate NEVPT2 (QD-NEVPT2). It is given the
acronym HQD-NEVPT2. The e�ect of model space non-invariance of the method is
discussed and the bene�t of a Hermitian formulation is highlighted with numerical
examples.
Both DCD-CAS(2) and HQD-NEVPT2 are also extended to incorporate spin-dependent
relativistic e�ects into the Hamiltonian. This results in e�ective Hamiltonians that si-
multaneously contain the e�ects of static correlation, dynamic correlation and relativ-
ity. All important contributions necessary for the description of magnetic phenomena
and electron paramagnetic resonance spectroscopy, namely spin-orbit coupling, mag-
netic hyper�ne coupling, Zeeman interaction, and direct electronic spin-spin coupling,
are incorporated. We also suggest a novel analysis of Kramers doublet g-matrices and
A-matrices based on the singular value decomposition. It provides not only the mag-
nitude but also the sign of the principal components and allows for a transparent
decomposition into di�erent physical contributions.
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Tests are performed for excitation energies of �rst-row transition metal ions, as well
as D-tensors and g-shifts of �rst-row transition metal complexes using minimal active
spaces. It is observed that state-mixing e�ects are usually small in these cases and that
the results are comparable to nondegenerate NEVPT2 in conjunction with quaside-
generate perturbation theory (QDPT). Results on EPR parameters of pseudo-square-
planar copper(II) complexes show that state mixing with a ligand-to-metal charge
transfer con�guration greatly improves the results compared with NEVPT2/QDPT.
HQD-NEVPT2 turns out to be more reliable than DCD-CAS(2) for this kind of prob-
lem because of its better 0th order description of the involved states. HQD-NEVPT2 is
also shown to give good results for the calculation of electronic transitions of the tetra-
chlorocuprate(II) complex, which is an example where the balance between ligand-
�eld and charge transfer con�gurations is of utmost importance.
The last part of this work is concerned with the connection of the newly developed
multistate methods with the ab initio ligand �eld theory (AILFT), which has evolved
into an important tool for the extraction of ligand �eld models from ab initio calcula-
tions over the last few years. The incorporation of dynamic correlation was previously
realized at the level of NEVPT2. The two new versions of AILFT are tested for a diverse
set of transition metal complexes. It is found that the multistate methods have, com-
pared to NEVPT2, an AILFT �t with smaller root-mean-square deviations (RMSDs)
between ab initio and AILFT energies. Comparison of AILFT excitation energies with
the experiment shows that for some systems the agreement gets better at the multi-
state level because of the smaller RMSDs. However, for some systems the agreement
gets worse, which can be attributed to a cancellation of errors at the NEVPT2 level that
is partly removed at the multistate level. An investigation of trends in the extracted li-
gand �eld parameters shows that at the multistate level the ligand �eld splitting ∆ gets
larger, while the Racah parameters B and C get smaller and larger, respectively. An in-
vestigation of the reasons for the observed improvement for octahedral chromium(III)
halide complexes shows that the possibility of state mixing relaxes constraints that are
present at the NEVPT2 level and that keep ∆ and B from following their individual
preferences.
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1. Introduction

1.1. Status quo of quantum chemical methods

Quantum chemistry has evolved into an indispensable tool for modern chemical re-
search. It is complementary to experimental techniques and their combination can
be used to extract new information that would not be available from one of the ap-
proaches alone.1

Density functional theory (DFT) has dominated computational molecular research for
many years due to its much lower computational cost compared to accurate wavefunc-
tion methods, which makes it applicable to larger systems. However, the systematic
improvement of the exchange-correlation functional has turned out to be a di�cult
task. Routes toward systematic improvement exist,2–4 but they usually lead to meth-
ods with a computational cost that is comparable to correlated wavefunction methods.
DFT-based methods that include results from wavefunction methods, like correlation
from 2nd order Møller-Plesset perturbation theory (MP2) in double hybrid function-
als,5,6 are quite accurate but also have a much larger computational cost than classical
density functional approximations, while often still including empirical parameters in
their de�nition. In contrast to that, wavefunction methods are increasingly applicable
to large chemical systems due to low-scaling approximations that reduce the com-
putational cost while preserving to a large part the accuracy of the parent canonical
methods.7–11 Furthermore, while pure DFT is often successful in describing the poten-
tial energy surface of single-determinantal systems, it has sometimes turned out to be
too inaccurate for the quantitative prediction of molecular properties that depend on
�ne details of the electronic structure, like nuclear magnetic resonance (NMR) shield-
ing tensors.12 Even in cases where DFT methods work for such properties, they often
rely on error cancelation. This makes the further development of wavefunction-based
quantum chemistry methods a very important task.
Wavefunction-based methods are often based on a single Slater determinant that qual-
itatively describes the electronic structure of a molecule, and such methods are called
“single-reference” methods. The hierarchy of the single-reference coupled cluster (CC)
methods are the prime example for the very high accuracy that can be achieved with
such methods.13 However, a large part of chemistry involves electronic states that are
dominated by more than one Slater determinant, something that is called a “multicon-
�gurational” situation. Multicon�gurational systems are often thought to require a
so-called multireference treatment, i.e. a treatment that starts from a reference wave-
function that involves more than one determinant. This is however wrong and one
should not confuse “multicon�gurational” and “multireference”. An open-shell singlet
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wavefunction can for example qualitatively be described via two Slater determinants.
Hence it is multicon�gurational, or at least multideterminantal. However, this kind of
system can not only be described via multireference methods but for example also via
single-reference spin-�ip methods on top of a MS = 1 triplet determinant.14 On the
other hand, it can be bene�cial to treat systems with a single-determinantal electronic
structure via multireference methods, as is done in this work for some CuII complexes.
Another relevant dimension apart from the correlation treatment is the treatment of
relativistic e�ects. For many applications of quantum chemistry, it is su�cient to
perform calculations based on a spin-independent nonrelativistic or scalar-relativistic
Hamiltonian. There are however molecular properties, e.g. electron paramagnetic
resonance (EPR) g-matrices and hyper�ne coupling constants (HFCC), as well as zero-
�eld splittings (ZFS), for which spin-dependent e�ects like spin-orbit coupling (SOC)
must be included in the treatment. The calculation of such properties is commonly
approached via perturbation theory (sum-over-states) or linear response (derivative)
techniques based on a scalar wavefunction.15 There are many such implementations
of spin-dependent properties for DFT16–21 and wavefunction methods.22–27 A disad-
vantage of these approaches is that they assume that the wavefunction response to
SOC is linear. Hence, they break down whenever SOC is very strong, as with heavy
elements, or when a system has low-lying excited states. An alternative approach that
overcomes this limitation is the direct calculation of relativistic many-electron wave-
functions from which properties are derived. One way to accomplish this is the use
of relativistic 2- or 4-component Hamiltonians.28 These can be used together with the
same methods (e.g. Hartree-Fock (HF), con�guration interaction (CI) or CC) applica-
ble to scalar Hamiltonians, but with a higher prefactor in the computational cost, since
some symmetries disappear that can be exploited in the scalar case. Another possibil-
ity is the use of scalar orbitals and the introduction of spin-dependent e�ects at the
many-electron level. Here, one can distinguish between one-step and two-step proce-
dures.29 In a one-step procedure, SOC is included at the same level into the calculation
as the electron correlation. An example is the spin-orbit CI procedure.29–32 This kind
of method has also recently been combined with the heat bath CI method, a method for
large active spaces.33 In a two-step procedure, one �rst treats electron correlation us-
ing a spin-free Hamiltonian. The resulting states can then interact under the e�ect of
spin-dependent e�ects like SOC. Examples include 1st order quasidegenerate pertur-
bation theory (QDPT)29,34,35 and, in the context of multicon�gurational self-consistent
�eld (MCSCF) wavefunctions, the restricted active space state-interaction spin-orbit
(RASSI-SO)36 procedure. On top of reference wavefunctions of the complete active
space self-consistent �eld (CASSCF) type, these are often the methods of choice be-
cause of their favorable cost-to-performance ratio. Recently, extensions to density
matrix renormalization group wavefunctions have been proposed.37–39
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1.2. Multireference perturbation theory
In this work, we are focussing on the development and application of multireference
perturbation theory (MRPT) methods based on a CASSCF reference. These methods
still represent the most commonly used approach to multireference dynamic correla-
tion calculations since they allow to treat much larger systems than the more accurate
multireference CI (MRCI)40,41 and multireference CC (MRCC)13,42 methods.
The success of Møller-Plesset (MP) perturbation theory43 in the single-reference frame-
work has inspired many extensions to the multireference case. This task has proven to
be much more complicated. One of the most di�cult aspects in formulating an MRPT
is the choice of 0th order Hamiltonian.44 The factors that are desired for a robust
MRPT include invariance with respect to orbital rotations, size consistency, and en-
suring that the wavefunction remains a spin eigenfunction in all orders of the pertur-
bative expansion. The complete active space 2nd order perturbation theory (CASPT2)
method of Andersson et al.45,46 played a vital role in generating interest for MRPT in
particular and for multireference theories in general. A robust and e�cient imple-
mentation of CASPT2 popularized the method among computational chemists. The
CASPT2 as well as the 2nd order multireference Møller-Plesset perturbation theory
(MRMP2) method of Hirao47,48 are among the most straightforward multireference
extensions of MP2. Characteristic features of CASPT2 are the use of a one-electron
Fock operator in the construction of the 0th order Hamiltonian and internally con-
tracted perturber functions that span the �rst-order interacting space (FOIS)49. The
latter di�erentiates CASPT2 from MRMP2 that spans the FOIS with a much larger
set of Slater determinants. Unfortunately, both methods are highly prone to the so-
called intruder state problem.50 An intruder state arises if the 0th order energy of a
FOIS function comes close or even falls below the energy of the reference function.
In this case, the perturbation expansion becomes divergent. Roos et al. proposed a
global level-shift procedure to alleviate this problem.51,52 Hirao and coworkers devised
an analogous method that shifts individual intruder states out of the critical energy
regime.53,54 However, the choice of level shift is somewhat arbitrary, yet it in�uences
the calculations and therefore leads to ambiguous results.55

In order to deal with the intruder-state problem, it was deemed necessary to include
two-electron terms into the 0th order Hamiltonian.56 Such a 0th order Hamiltonian
has an eigenspectrum that more closely resembles the full Hamiltonian, which will
drastically reduce the danger of intruder states. One viable choice that has been used
in the past is the Epstein-Nesbet (EN) Hamiltonian that simply consists of the diagonal
of the CI matrix.57,58 However, in addition to being not orbitally invariant and compu-
tationally expensive for larger systems, the EN 0th order Hamiltonian is known to lack
the desirable property of size extensivity.59 Hence, it has largely been abandoned in
PT approaches. Alternatively, Dyall’s 0th order Hamiltonian consists of the MP choice
in the inactive and virtual orbital spaces while acting inside the active space like the
full Hamiltonian.60

Angeli et al. used a 0th order Hamiltonian based on the Dyall Hamiltonian for their
highly successful N-electron valence state perturbation theory (NEVPT).61,62 NEVPT2
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has attractive features, such as exact separability and great computational bene�ts,63

thanks to the strongly contracted scheme.62,63 It is also less prone to intruder states
than for example CASPT2 without a level shift. Owing to these desirable features
together with the availability of e�cient implementations,63 NEVPT2 has become in-
creasingly popular in recent years.9,64–66

All the above-mentioned methods are state-speci�c in nature and fall under the “diag-
onalize-then-perturb”67 type of perturbation theories. Usually, these methods manage
to predict reasonable ground and excited state energies. Problems arise when the cor-
relation treatment also changes the composition of the wavefunction in the complete
active space CI (CASCI) space to a considerable extent,67 as is commonly encoun-
tered in the treatment of magnetic exchange coupling, ionic-covalent curve crossings,
valence-Rydberg mixing in excited states, and mixing of ligand �eld and ligand-to-
metal charge transfer (LMCT) excitations, to name a few. In these cases, CASSCF gives
a biased description, i.e. it treats some con�gurations better than others, which leads
to their mixing at the CASCI level being wrong. Since the above-mentioned methods
maintain a frozen 0th order wavefunction, this can result in an erroneous prediction
of ionic-covalent curve crossings,68 exchange couplings, or excitation energies. In all
these cases, the nature of the 0th order wavefunction must be revised in order to obtain
accurate results. One therefore needs methods that can treat multiple electronic states
simultaneously. Such approaches are called multistate methods. They can either be
realized by invoking a traditional e�ective-Hamiltonian-like formalism using the full
CASCI space or by applying an a posteriori variational treatment of only a handful of
important states.
Methods following the latter approach fall under the so-called “diagonalize-then-per-
turb-then-diagonalize”67 philosophy. Starting with a state-averaged (SA) CASSCF cal-
culation to provide model-space 0th order functions, an e�ective Hamiltonian is con-
structed in the model space using QDPT. The diagonalization of this e�ective Hamil-
tonian allows for “state mixing”, i.e. it provides wavefunctions and energies that result
from the mixing of several CASCI states. Usually, a small subset of the functions of
the full CASSCF Hamiltonian are used as the model space. The intruder state prob-
lem can be signi�cantly reduced if this model space is well separated from other 0th
order states. Mixing of states was handled with some success by earlier works from
Malrieu and Spiegelmann,69 Sheppard et al.70 and also by extensions of popular MRPT
methods such as Multicon�gurational QDPT (MCQDPT),71 Multistate CASPT2 (MS-
CASPT2),72 and more recently quasidegenerate NEVPT2 (QD-NEVPT2),73 together
with further improvements like the extended MCQDPT (XMCQDPT),74 extended MS-
CASPT2 (XMS-CASPT2)75 and the very recent QD-NEVPT2 based on matrix product
states (MPS).76

Including a large number of states in the subsequent e�ective Hamiltonian treat-
ment increases the risk of running into the intruder-state problem, which the cor-
responding state-speci�c methods tried to avoid in the �rst place. An additional prob-
lem with many QD approaches based on the Bloch e�ective Hamiltonian is the non-
Hermiticity of the resulting Hamiltonian. This non-Hermiticity has a sound physi-
cal reason, namely the non-orthogonality of projections of exact states on the model
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space. This is not per se a problem, since also non-Hermitian matrices can have real-
valued eigenvalues, as it is the case with the exact (in�nite order) e�ective Hamilto-
nian. The non-Hermiticity can however be a practical problem when working with
truncated perturbation expansions of the e�ective Hamiltonian. In these cases un-
physical complex-valued energies can potentially occur. Furthermore, many model
Hamiltonians, like the ligand �eld theory Hamiltonian,77 are Hermitian, and a Hermi-
tian ab initio-derived e�ective Hamiltonian facilitates the mapping onto such a model
Hamiltonian.
The intermediate e�ective Hamiltonians (IEHs), introduced by Malrieu and cowork-
ers,78 can be seen as a compromise between the use of a complete model space and
state-speci�c approaches. IEHs ensure accurate results for a number of low-lying
states but in addition contain a variational “bu�er space”. This can prevent several
problems that are ubiquitous in traditional e�ective Hamiltonian approaches, among
which are the near-degeneracy of high-energy model space components with per-
turber functions (the infamous intruder state problem) and the fact that it is often
impossible to �nd a suitable target state for such high-energy components.79 The IEH
concept is fairly general and can be applied to many problems in quantum chem-
istry.79 One particular application is the self-consistent size-consistent con�guration
interaction ((SC)2CI) of Malrieu and coworkers.80 It is worthwhile to mention that Ger-
shgorn and Shavitt introduced a closely related method, called the Bk method, for the
truncation of the CI problem back in 1968.81 The idea is quite general and applicable
to both single- and multireference problems. It consists in selecting one variational
space (originally suggested to be all single and double excitations from the reference
function) and a perturbative one (for example triples and quadruples). Subsequent
improvements were suggested82–85 and became known under the name “shifted Bk”
method. An approach that is related to IEH methods in the sense that it also divides
the whole model space into a primary and secondary (bu�er) space is the 2nd or-
der generalized Van Vleck perturbation theory (GVVPT2) method developed by Mark
Ho�mann and coworkers.86,87

1.3. The DCD-CAS(2) and HQD-NEVPT2 methods
This work is mainly concerned with the development of two new multistate multiref-
erence perturbation theory methods. The �rst one is the 2nd order dynamic corre-
lation dressed complete active space method (DCD-CAS(2)).88,89 It aims at incorpo-
rating the e�ects of dynamic correlation to 2nd order in perturbation theory into the
diagonalization of the whole CASCI space and can be roughly classi�ed as a perturb-
then-diagonalize method. Since its model space is the whole CASCI space it avoids
ambiguity and has a very �exible wavefunction. The method was designed to be com-
putationally e�cient for not too large active spaces and it simultaneously provides the
ground and a few low-lying excited state roots. Its results will be shown in later sec-
tions to be very close to the already very successful NEVPT2 method in cases where the
CASSCF wavefunction is a good starting point and the e�ect of state mixing is small.
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If state mixing becomes important, DCD-CAS(2) signi�cantly improves over NEVPT2.
The method is inspired by a special case of the IEH approach78 and leads to working
equations that are formally equivalent to those of the (shifted)Bk method. Like previ-
ous approaches,82 our method is not exactly size-consistent. We have addressed this
issue in detail both theoretically and numerically and suggested modi�cations to deal
with this problem.88

Some of the advantages of the DCD-CAS(2) method are a Hermitian e�ective Hamil-
tonian. In contrast to that, other widespread multistate perturbation theories like MS-
CASPT272 and QD-NEVPT290 are formulated in terms of a non-Hermitian e�ective
Hamiltonian. Furthermore, DCD-CAS(2) uses a complete CASCI space (including en-
ergetically very high-lying states) as model space, without the danger to encounter
intruder state problems for the low-lying states of interest. This is a potential advan-
tage in cases where di�erential dynamic correlation e�ects are large. If this is the case,
energetically high-lying roots can drop in energy and get into the energy regime of
interest after including dynamic correlation. When using a small model space one can
potentially miss such roots, while there is no such danger in a complete model space
method like DCD-CAS(2). Another advantage of DCD-CAS(2) is the preservation of
orbital degeneracy of the underlying CASSCF calculation. However, the method re-
quires a so-called bias correction in order to yield reasonable excitation energies for
excited states. In the extension of DCD-CAS(2) to a spin-dependent Hamiltonian,89

one must make some ad hoc choice of states of the CASCI space for which this bias
correction should be applied. It cannot simply be applied to all roots because it can
be a source of divergence for energetically higher-lying CASCI space components. A
limitation of the DCD-CAS(2) method is that it is very expensive for anything but
small active spaces. Furthermore, it became clear from our work on spin-dependent
properties in the DCD-CAS(2) framework that the use of a single, state-averaged 0th
order Hamiltonian (a necessary requirement in DCD-CAS(2)), can lead to problems
when several states with very di�erent physical character (e.g. ligand-�eld and LMCT
states) are included in the CASCI space.89

In order to solve this problem, it was deemed necessary to use a formalism that uses
di�erent state-speci�c 0th order Hamiltonians for di�erent parts of the e�ective Hamil-
tonian. One approach of this kind is multi-partitioning QDPT.91 This method shares
with traditional QDPT the disadvantage of a non-Hermitian e�ective Hamiltonian,
which can lead to unphysical complex eigenvalues. This kind of problem was for ex-
ample observed for the non-Hermitian equation of motion CC (EOM-CC) method.92

Two popular multistate perturbation methods that use a multi-partitioning ansatz are
MS-CASPT272 and QD-NEVPT2.90 They use the 0th order Hamiltonians of the respec-
tive single-state CASPT2 or NEVPT2 methods as state-speci�c 0th order Hamiltonians.
In contrast, MCQDPT,71 XMCQDPT,74 XMS-CASPT275 and QD-NEVPT based on ma-
trix product states76 all use a Hermitian e�ective Hamiltonian according to the Van
Vleck formalism, of which so far no multi-partitioning variant has been formulated.
Since all these methods use a state-averaged 0th order Hamiltonian, they should have
the same problems with di�cult systems as DCD-CAS(2). In an attempt to preserve
the very desirable feature of DCD-CAS(2) that it has a Hermitian e�ective Hamiltonian

6



1.4. Applications

and combine it with the possibility to use state-speci�c 0th order Hamiltonians, we
developed a combination of the multi-partitioning idea with canonical Van Vleck per-
turbation theory. This leads to a Hermitian variant of QD-NEVPT2 (HQD-NEVPT2)
in a straightforward way. The method will be demonstrated to be superior to methods
based on the state-averaged Dyall Hamiltonian60 in a number of test cases.

1.4. Applications
The �nal parts of this dissertation are concerned with tests and applications of the
new methods. Apart from the nonrelativistic variants, we also developed variants
of DCD-CAS(2) and HQD-NEVPT2 that can deal with spin-dependent relativistic ef-
fects. The motivation for this is that the calculation of spin-dependent properties like
g-values and HFCCs in the framework of QDPT1 often su�ers from too inaccurate
CASSCF wavefunctions. For example, the description of metal-ligand bonds is of-
ten too ionic at the CASSCF level.93 The common nondegenerate perturbation theory
(PT) approaches like CASPT245,46 or NEVPT261,62 can provide better energies, but do
not allow for relaxation of the CAS-part of the wavefunction, which ist important
for rendering the wavefunction more covalent. A study using multi-state CASPT2
(MS-CASPT2)72 showed that g-values of square-planar Cu complexes could be greatly
improved when incorporating such relaxation e�ects.94

The principle problem in all multi-step approaches for including dynamic correlation
and spin-dependent e�ects, like QDPT, is that they inherently contain assumptions
about the relative strength of the treated perturbations. For example, the CASSCF
method treats only static correlation. A subsequent NEVPT2 correction adds the ef-
fects of dynamic correlation but without relaxing the CASSCF coe�cients. The subse-
quent QDPT1 treatment of relativistic e�ects then uses diagonal energies from NEVPT2
(or CASPT2) in order to approximately diagonalize SOC and other relativistic opera-
tors. Clearly, this order implies that static correlation is more important than dynamic
correlation, which in turn is more important than relativity. In many cases, this is
certainly a plausible order in which to treat the relevant interactions. However, in
cases where SOC is larger than dynamic correlation e�ects or where dynamic corre-
lation greatly revises the CASSCF descriptions, shortcomings are inevitable. Hence,
our goal was the development of an a�ordable method in which static correlation, dy-
namic correlation and relativistic interactions are treated on an equal footing without
an assumption of their relative magnitudes.
Finally, we will investigate the application of our newly developed methods, DCD-
CAS(2) and HQD-NEVPT2, for the parameterization of ligand �eld models, which are
indispensable tools for understanding the electronic structure of metal complexes.
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2. Theoretical foundations

2.1. Conventions
We use atomic units throughout this thesis, where ~, 4πε0, me and e are set equal to
1.95 With this choice, the speed of light is given as the inverse of the �ne-structure
constant, c = 1/α. Throughout this work, orbital indices ijk... refer to inactive, tuv...
to active, and abc... to virtual orbitals, while the indices pqr... apply to general orbitals.
Spin labels (α or β) are denoted by Greek letters στλ... We use the symbol a†pσ to
denote a creation operator that creates an electron in spatial orbital pwith spin σ. The
corresponding annihilation operator, which destroys an electron in spatial orbital p
with spin σ, is denoted by apσ. The singlet excitation operators96 are de�ned as

Epq = a†pαaqα + a†pβaqβ (2.1)

and
(pq|rs) =

∫∫
ψp(r1)ψq(r1)

1

r12

ψr(r2)ψs(r2)dr1dr2 (2.2)

are two-electron repulsion integrals (ERI) in chemists’ notation.95

2.2. �antum-chemical Hamiltonians

2.2.1. Nonrelativistic and scalar-relativistic Hamiltonians
Quantum chemistry deals to a large part with the solution of the electronic Schrödinger
equation in the electrostatic potential created by nuclei that are �xed at certain po-
sitions in space. This is also called the clamped-nuclei approximation and forms the
basis for the Born-Oppenheimer approximation and more re�ned approximations for
vibronic states that incorporate the coupling of electronic and nuclear degrees of free-
dom.
Accurate calculations of the electronic states and energy levels require the use of
methods that incorporate special relativity, since electrons, especially in molecules
involving heavy elements, can reach speeds that are a sizable fraction of the speed
of light. The most accurate such calculations use the 4-component Dirac-Coulomb(-
Breit) Hamiltonian.28 For such methods, there is apart from energy levels that corre-
spond to electronic states also a part of the spectrum that is continuous and at nega-
tive energies. This negative continuum corresponds to positronic degrees of freedom.
Since chemistry is concerned with electrons, a multitude of di�erent techniques has
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2. Theoretical foundations

been developed over many decades to decouple the electronic and positronic degrees
of freedom.28 Among the �rst were the Pauli (and Breit-Pauli, for multi-electron sys-
tems) treatment. It has the disadvantage that some parts of the e�ective 2-component
Hamiltonian are not bounded from below, and hence can lead to a variational col-
lapse.97 Parts of the Breit-Pauli Hamiltonian, like the spin-orbit operator and the spin-
spin operator, are still in use today in quantum-chemical calculations and are also
(partly approximated) used in this work.
Other approaches for the derivation of e�ective 2-component Hamiltonians are the
Douglas-Kroll-Hess (DKH) theory and the zeroth-order regular approximation (ZORA).
The most widespread versions of these approximations neglect all spin-dependent
terms in the Hamiltonian, arriving at what are called “scalar-relativistic” Hamilto-
nians. They have the same symmetry under spin rotations as the nonrelativistic elec-
tronic Hamiltonian.
The nonrelativistic electronic Hamiltonian for anN -electron system (also called Born-
Oppenheimer (BO) Hamiltonian) is given by95

H =
∑
i

hi +
∑
i<j

1

rij
, (2.3)

where
hi = −1

2
∇2
i −

∑
A

ZA
riA

(2.4)

is the one-electron part of the Hamiltonian. It is given as the sum of electronic kinetic
energy and electronic-nuclear attraction. The second part of Eq. (2.3) is the electron-
electron repulsion energy. Here, rij = |ri − rj|, riA = |ri − RA|, and ZA is the
nuclear charge of nucleus A (in multiples of the elementary charge). The sums over
electrons i and j run from 1 to N , which denotes the total number of electrons in
the system. In the following we will use the term “scalar Hamiltonian” whenever we
mean this nonrelativistic Hamiltonan or a scalar-relativistic one, and the term “scalar
wavefunction” for a wavefunction obtained with such a Hamiltonian.
An important aspect of scalar Hamiltonians is that they commute with the total spin
and its z-projection,

[H,S2] = 0, (2.5)
[H,Sz] = 0, (2.6)

whereS =
∑

i si is the total electronic spin operator. This means that eigenstates ofH
can be written as eigenstates of these two operators. The electronic states |ΨSM〉 can
therefore be characterized by two quantum numbers S and M such that they ful�ll
the eigenvalue equations

S2|ΨSM〉 = S(S + 1)|ΨSM〉, (2.7)
Sz|ΨSM〉 = M |ΨSM〉. (2.8)
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2.2. Quantum-chemical Hamiltonians

There are always 2S + 1 components with M = −S to M = S (in integer steps)
for a given total spin S that are exactly degenerate, i.e. have the same energy. Since
the scalar Hamiltonians are real, orbitals can also chosen to be real (see Appendix
A.8.2), which signi�cantly simpli�es the computational cost of the calculations. Since
all 2S + 1 components are degenerate and related to each other by spin symmetry,
the time-independent Schrödinger equation has to be solved only for one of the com-
ponents. Typically the principal component with M = S is chosen. A �nal advantage
arises when one incorporates spin-dependent relativistic e�ects, like SOC and direct
electronic spin-spin coupling (SSC), on top of solutions of the scalar Hamiltonians
with certain spin. The calculation of matrix elements of the spin-dependent operators
can in this case be simpli�ed via the Wigner-Eckart theorem,98 which is an important
result of group theory.

2.2.2. Spin-dependent operators

In this work, four di�erent spin-dependent additions to the Hamiltonian are consid-
ered: SOC, SSC, hyper�ne coupling (HFC) and the Zeeman interaction. These are the
dominant interactions that are needed to describe EPR spectroscopy. We will express
them in atomic units throughout this work. We use an accurate and e�cient spin-orbit
mean �eld (SOMF) operator99 as the SOC operator, which is a one-electron operator
in contrast to the two-electron Breit-Pauli SOC operator from which it is derived. It is
given by

HSOMF =
∑
i

zi · si (2.9)

with zi being a spatial and purely imaginary operator for electron i.99 The Breit-Pauli
SSC operator used in this work is given by100

HSSC = −g
2
eα

2

4

∑
i<j

3(rij · si)(rij · sj)− r2
ijsi · sj

r5
ij

. (2.10)

Note that the operator in principle also contains a contact contribution in addition to
this dipolar contribution. The contact contribution is, however, a singlet operator and
therefore cannot directly contribute to ZFS. Since its e�ect on energies is expected to
be a few cm−1 at most, much smaller than the intrinsic accuracy of common quantum
chemical methods, it can be safely ignored. We therefore do not consider it in this
work. The hyper�ne interaction operator is given by

HHFC = −
∑
A

MA ·BHFC(RA), (2.11)

where the sum is over all nucleiA that have a nonzero magnetic dipole momentMA =
γAIA and BHFC(RA) is the magnetic hyper�ne �eld produced by the electrons at the
position RA of nucleusA. Here IA is the nuclear spin and the proportionality constant
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2. Theoretical foundations

γA is the gyromagnetic ratio of the nucleus. The hyper�ne �eld consists of three parts:
The nucleus-orbit coupling (NOC) contribution

BNOC(RA) = −α2
∑
i

lAi
r3
iA

, (2.12)

the spin-dipolar (SD) contribution

BSD(RA) = −geα
2

2

∑
i

3riA(si · riA)− r2
iAsi

r5
iA

, (2.13)

and the Fermi contact (FC) contribution

BFC(RA) = −geα
2

2

8π

3

∑
i

siδ
3(riA). (2.14)

Finally, the Zeeman Hamiltonian for the interaction with an external homogeneous
magnetic �eld B is given by

HZeeman = −B ·Mel =
1

2
B · (L + geS) (2.15)

with the electronic magnetic dipole moment operator Mel and operators for total spin
S =

∑
i

si and total orbital angular momentum L =
∑
i

li. In the equations above, ge ≈

2.0023 is the free-electron g-value and α ≈ 1/137 is the �ne-structure constant. Note
that in a rigorous relativistic two-component treatment, there are additional spin- and
magnetic-�eld-dependent terms in the Hamiltonian that result in so-called picture-
change e�ects.27,101 However, such extensions are outside the scope of the current
work.

2.3. Multireference quantum chemistry
Nowadays, the most common multireference treatments of electronic structure start
with CASSCF102–104 reference functions. In this method, the spatial orbitals are divided
into three subspaces, called inactive, active, and virtual orbitals. The wavefunction
is taken as a linear combination of states from the so-called CASCI space, which is
the space of Slater determinants that have doubly occupied inactive orbitals, empty
virtual orbitals, and all possible distributions of the remaining electrons among the
active orbitals. This corresponds to a full CI within the active space. One of the sim-
plest examples often encountered in practice is that of two active electrons in two
active orbitals, which gives rise to a total of six Slater determinants, as shown in Fig-
ure 2.1. A CASCI calculation can be done starting from any set of orbitals, e.g. HF
orbitals. The CASSCF method is de�ned such that not only the CI coe�cients, but
also the orbitals are variationally optimized. It is a special case of the multicon�gu-
rational self-consistent �eld (MCSCF)105 method. Dynamic correlation methods that
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inactive

active

virtual

Figure 2.1.: Determinants of the CASCI(2,2) space.

start from a CASSCF reference are called multireference methods because there are
multiple reference determinants contained in the reference wavefunctions. Examples
are multireference (MR) PT, CI, and CC methods. The use of a CASSCF reference,
however prevalent it might nowadays be, is not mandatory for a multireference treat-
ment. The de�ning feature is simply that more than one reference determinant is
de�ned. The orbitals from which the reference determinants are constructed can also
be MCSCF or even HF orbitals.40,41

2.4. Theory of e�ective Hamiltonians
An important role in this dissertation is played by e�ective Hamiltonians. An e�ec-
tive Hamiltonian He� is a Hamiltonian that describes only part of the spectrum of the
“true microscopic” HamiltonianH and acts in a “model space” that is smaller than the
whole Hilbert space on which H acts. Often these come in the form of “model Hamil-
tonians”, which are de�ned by a small number of parameters that are usually �tted
to match experimental results. Examples are the spin Hamiltonian of EPR and NMR
spectroscopy, the Heisenberg-Dirac-van-Vleck Hamiltonian for magnetic systems, the
ligand �eld Hamiltonian of coordination chemistry, and the Hückel Hamiltonian for
π-electron systems. The bene�t of e�ective Hamiltonians is that they hide much of the
complexity of the true underlying Hamiltonian and provide a language in which one
can think and talk about chemical and physical phenomena. From the point of view
of theory, it is desirable to connect the e�ective Hamiltonians with the underlying
microscopic physics. This is the content of the following sections.

2.4.1. General framework of e�ective Hamiltonian theory

Our discussion is based on the theoretical framework introduced by Shavitt and Red-
mon.106 In this approach, a given basis of the Hilbert space is divided into two or-
thogonal sets: {|ΦI〉}, which spans the so-called model space H0 with projector P =
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2. Theoretical foundations

∑
I |ΦI〉〈ΦI | and {|ΦK〉}, which spans the complementary or outer spaceHouter with

projector Q = 1 − P =
∑

K |ΦK〉〈ΦK |. This means that the Hilbert space is decom-
posed into the direct sum

H = H0 ⊕Houter. (2.16)

We use indices I and J to denote states in the model space, and K and L to denote
states in the complementary space. In this work, the model space can be a subspace of
CASCI roots or even the complete CASCI space, in which case it can equally well be
spanned by a set of orthonormal con�guration state functions (CSFs). For an arbitrary
operator A one can write

A = AD + AX , (2.17)

where
AD = PAP +QAQ (2.18)

is its block diagonal part and

AX = PAQ+QAP (2.19)

is its block o�-diagonal part. An operator for which AX = 0 is called block diagonal
and an operator for whichAD = 0 is called block o�-diagonal. The essence of e�ective
Hamiltonian theory consists in �nding a so-called decoupling operatorU such that the
similarity-transformed Hamiltonian

H = U−1HU (2.20)

is block diagonal.106 This equation can be rewritten as

UH = HU. (2.21)

One can then diagonalize the e�ective Hamiltonian He� = PHP to obtain NP (the
dimension of the model space) exact eigenenergies of H , together with model space
states |Ψ̃I〉 that ful�ll

He�|Ψ̃I〉 = EI |Ψ̃I〉. (2.22)

The states |ΨI〉 = U |Ψ̃I〉 are then exact eigenstates of H with the corresponding
eigenenergy, as can be seen by

H|ΨI〉 = HU |Ψ̃I〉 = UHe�|Ψ̃I〉 = EIU |Ψ̃I〉 = EI |ΨI〉. (2.23)

This also shows that the eigenenergies of the e�ective Hamiltonian are exact. This pro-
cedure is visualized in Figure 2.2. Note that the e�ective Hamiltonian and its eigen-
states are not uniquely de�ned by the requirement that H is block diagonal, since
multiplication of U with any block diagonal operator will leave H block diagonal.106

Therefore, additional conditions need to be imposed on U .
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Figure 2.2.: Block-diagonalization of the Hamiltonian via a similarity trans-
formation.

2.4.2. Choices for the decoupling operator
In practice, one tries to make a choice such that |ΨI〉 and |Ψ̃I〉 have a large overlap.
One possible choice is UD = 1. By acting with the projector P from the left on both
sides of the equation |ΨI〉 = (1 + UX)|Ψ̃I〉, one obtains

|Ψ̃I〉 = P |ΨI〉. (2.24)

Hence, in this case the eigenfunctions of the e�ective Hamiltonian are simply orthog-
onal projections of the exact states on the model space. Since the coe�cient of |Ψ̃I〉
in |ΨI〉 is unity, this choice corresponds to intermediate normalization. Acting with
P from the right on both sides of Eq. (2.21) and de�ning the so-called wave operator
as Ω = UP , one obtains

ΩHe� = HΩ. (2.25)

Acting with P from the left on both sides of this equation, one obtains

He� = PHΩ, (2.26)

which allows to rewrite Eq. (2.25) in the form

ΩHΩ = HΩ. (2.27)

This is a non-perturbative version107 of the generalized Bloch equation for the wave
operator.108 Note that the decoupling operator U is not unitary in intermediate nor-
malization, which means that the e�ective Hamiltonian is in general not Hermitian
and consequently its eigenstates are not necessarily orthogonal.
Another approach is provided by the canonical Van Vleck formalism,106,109 where one
chooses the decoupling operator to be of the form

U = exp(G), (2.28)
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withG being an anti-Hermitian (G† = −G) and block o�-diagonal (GD = 0) operator.
With this choice the decoupling operator is unitary. Hence, one obtains

δIJ = 〈ΨI |ΨJ〉 = 〈Ψ̃I |U †U |Ψ̃J〉 = 〈Ψ̃I |Ψ̃J〉. (2.29)

Therefore, the eigenfunctions of the e�ective Hamiltonian are, in contrast to the inter-
mediate normalization formalism, orthogonal. One can show106 that the decoupling
operators in the two approaches are related by

U(C) = U(I)(U
†
(I)U(I))

−1/2. (2.30)

Here and in the following we use the labels I and C to distinguish quantities in the
intermediate normalization and the canonical Van Vleck formalism, respectively. This
relation means (see Appendix A.7) that the eigenstates of the canonical Van Vleck
e�ective Hamiltonian are obtained by Löwdin symmetrical orthonormalization of the
eigenstates of the intermediate normalization e�ective Hamiltonian, i.e. they are given
by

|Ψ̃I〉L =
∑
J

|Ψ̃J〉S−1/2
JI , (2.31)

where the overlap matrix of the roots of the intermediate normalization e�ective
Hamiltonian is introduced as SJI = 〈Ψ̃J |Ψ̃I〉. Note that the e�ective Hamiltonian
that results from the canonical Van Vleck formalism is identical to the des Cloizeaux110

one, as discussed by Klein109 and Brandow.111,112

If the |Ψ̃I〉 are strongly non-orthogonal, i.e. have a large overlap, the orthogonalized
states |Ψ̃I〉L will be quite di�erent from them. The overlap of the |Ψ̃I〉 is however
bounded by the norms of the parts of the exact states that lie in the complementary
space, by means of the Cauchy-Schwarz inequality. Therefore, whenever the model
space is chosen carefully, i.e. such that all exact states that one wants to describe have
their major parts in the model space, the eigenfunctions |Ψ̃I〉 and |Ψ̃I〉L should be
similar and will both be a valid qualitative description of the exact states.
Knowledge of the eigenfunctions and eigenvalues of the e�ective Hamiltonians allows
to write them via a spectral decomposition. The intermediate normalization Bloch
e�ective Hamiltonian113 is then given by

He�
(I) =

∑
I

|Ψ̃I〉EI〈Ψ̃I |D, (2.32)

where |Ψ̃I〉D =
∑

J |Ψ̃J〉S−1
JI is a state that is dual to the projection |Ψ̃I〉. This is also

called a contravariant state. By de�nition, the set of original states and dual states are
biorthogonal, i.e.

〈Ψ̃I |Ψ̃J〉D = δIJ . (2.33)
The dual states are not in general the same as the original ones, since the projections
are in general not orthogonal. The Hermitian canonical Van Vleck / des Cloizeaux110

e�ective Hamiltonian is given by

He�
(C) =

∑
I

|Ψ̃I〉LEI〈Ψ̃I |L. (2.34)
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2.5. Di�erent �avors of perturbation theory

2.4.3. Concepts of intermediate Hamiltonian theory
The concept of IEHs was introduced in a seminal paper of Malrieu and coworkers.78

They were designed to solve a fundamental problem of earlier e�ective Hamiltonian
approaches: Sometimes determinants contribute strongly to a given exact state, i.e.
should be included into the model space rather than be treated perturbatively, yet there
is no single exact state that can serve as a target state for this determinant. An example
is the Be atom, where apart from (1s)2(2s)2 also the electron con�guration (1s)2(2p)2

is needed for a qualitatively correct description, although no bound exited state of the
Be atom can be identi�ed that has (1s)2(2p)2 as its dominant con�guration.79 In the
IEH approach, one does not ask an M -dimensional e�ective Hamiltonian to deliver
M exact eigenvalues, but only focuses on a few low-lying, say Nm, eigenstates. For
the Be atom, this would be only the ground state. The remaining CSFs are considered
to be part of a variational “bu�er space” that ensures stability against intruder states
and treats the interaction of the main model space CSFs with the CSFs in the bu�er
space to in�nite order. Following Malrieu’s pioneering work,78 one can write the full
many-electron Hilbert space as an orthogonal direct sum of three subspaces,

H = Hm ⊕Hi ⊕Houter. (2.35)

Here one calls Hm the main model space, Hi the intermediate space and Houter the
outer space. The intermediate space serves as the bu�er space mentioned above. The
combination of the main model space and the intermediate space, H0 = Hm ⊕ Hi,
is the whole model space. We assume that there are Nm (the dimension of the main
model space) exact eigenfunctions of the BO Hamiltonian,

H|ΨI〉 = EI |ΨI〉, (2.36)

such that their orthogonal projections on the whole model space,

|Ψ̃I〉 = P |ΨI〉, (2.37)

are linearly independent; i.e. there is a one-to-one relationship between the |ΨI〉 and
|Ψ̃I〉. An IEH H int is then de�ned to be an operator acting on the model space such
that it gives the exact eigenvalues when acting on the projected eigenfunctions,

H int|Ψ̃I〉 = EI |Ψ̃I〉. (2.38)

Since the |Ψ̃I〉 in Hm do not form a complete basis of the whole model space, H int is
not fully de�ned by this equation, which leads to a large variety of di�erent IEHs.

2.5. Di�erent flavors of perturbation theory

2.5.1. �asidegenerate perturbation theory
In order to construct the e�ective Hamiltonians according to Eqs. (2.32) and (2.34), the
exact eigenfunctions of the Hamiltonian must be known, which corresponds to solving
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the full CI problem. In order to make the problem more tractable, one can proceed by
using perturbation theory instead. We assume a partitioning of the Hamiltonian

H = H0 + V (2.39)

into a 0th order Hamiltonian H0 and a perturbation V . The 0th order Hamiltonian is
assumed to be block diagonal, (H0)X = 0, and both parts are assumed to be Hermitian.
The property of block diagonality can also be expressed as H0 being a direct sum of
operators acting in the model space and outer space,

H0 = H0,0 ⊕H0,outer. (2.40)

Diagonalizing H0 gives the 0th order states and 0th order energies,

H0|Ψ(0)
I 〉 = E

(0)
I |Ψ

(0)
I 〉, I ∈ P, (2.41)

H0|Ψ(0)
K 〉 = E

(0)
K |Ψ

(0)
K 〉, K ∈ Q. (2.42)

There are two main requirements for a 0th order Hamiltonian: it should be a good
approximation for the full Hamiltonian H , i.e. V should be small, and it should be
easy to diagonalize it compared to H . The so-called resolvent operator is de�ned by
the spectral decomposition

RI =
∑
K

|Ψ(0)
K 〉〈Ψ

(0)
K |

E
(0)
I − E

(0)
K

. (2.43)

Using this de�nition, it can easily be shown that for any operator A there are the
identities106

−RI [H0, A]|Ψ(0)
I 〉 = QA|Ψ(0)

I 〉, (2.44)

−
∑
I

RI [H0, A]|Ψ(0)
I 〉〈Ψ

(0)
I | = QAP. (2.45)

This result will be useful later, when explicit expressions for a given operator are not
available, but its commutator with the 0th order Hamiltonian is known. The inter-
mediate normalization e�ective Hamiltonian Eq. (2.26) truncated at 2nd order can be
shown to be106

He�(0−2) = PHP + PVXU
(1)
X P = PHP + PHQU

(1)
X P. (2.46)

Note that the e�ective Hamiltonian does not explicitly depend on the choice of 0th
order Hamiltonian and perturbation; the dependence is only indirect through U

(1)
X .

This is because VX = HX is already uniquely de�ned by the choice of model space
and complementary space, since H0 is required to be block diagonal. This point
will become important later when discussing multi-partitioning of the Hamiltonian.
Using Eq. (2.45) and the fact that [H0, U

(1)
X ] = −VX ,106 it follows that QU (1)

X P =∑
I RIH|Ψ(0)

I 〉〈Ψ
(0)
I |, such that the e�ective Hamiltonian can be written

He�(0−2) = PHP + PH
∑
I

RIH|Ψ(0)
I 〉〈Ψ

(0)
I |. (2.47)
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Its matrix representation is given by

H
e�(0−2)
IJ = HIJ + 〈Ψ(0)

I |HRJH|Ψ(0)
J 〉 = HIJ +

∑
K

〈Ψ(0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E
(0)
J − E

(0)
K

.

(2.48)
The form of this e�ective Hamiltonian as the sum of the matrix representation of H
and some “dressing” is very typical for e�ective Hamiltonian theories. In a similar
fashion, one can show that, since U (1)

X = G(1), the matrix representation of the canon-
ical Van Vleck e�ective Hamiltonian to 2nd order is given by106

H
e�(0−2)
IJ = HIJ +

1

2
〈Ψ(0)

I |HRJH|Ψ(0)
J 〉+

1

2
〈Ψ(0)

I |HRIH|Ψ(0)
J 〉

= HIJ +
1

2

∑
K

〈Ψ(0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E
(0)
J − E

(0)
K

+
1

2

∑
K

〈Ψ(0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E
(0)
I − E

(0)
K

.

(2.49)
This is simply the Hermitized version of the 2nd order intermediate normalization
e�ective Hamiltonian,

H
e�(0−2)
(C) =

1

2
(H

e�(0−2)
(I) +H

e�(0−2)†
(I) ). (2.50)

One can easily derive the results of 2nd order nondegenerate114 and degenerate per-
turbation theory (DPT)109 as special cases of the QDPT discussed above. In DPT, all
model space states have the same 0th order energy E(0)

0 , which leads to

H
e�(0−2)
IJ = HIJ +

∑
K

〈Ψ(0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E
(0)
0 − E

(0)
K

. (2.51)

This can be considered as a special case of both the Bloch and canonical Van Vleck
e�ective Hamiltonians, which for a degenerate model space are identical at 2nd order.
If the model space in addition is one-dimensional, the in�nite order e�ective Hamil-
tonian has the exact energy of the target state as its only element. The perturbative
expansion of this e�ective Hamiltonian is then identical to the perturbative expansion
of the total energy, and one obtains to 2nd order

E = 〈Ψ(0)
0 |H|Ψ

(0)
0 〉+

∑
K 6=0

〈Ψ(0)
0 |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
0 〉

E
(0)
0 − E

(0)
K

, (2.52)

which is the usual 2nd order Rayleigh-Schrödinger PT expression.114

2.5.2. Multi-partitioning QDPT
Multi-partitioning QDPT91 was introduced by Zaitsevskii and Malrieu to alleviate the
intruder state problem and improve energy denominators compared to the traditional
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QDPT. Its original formulation is based on intermediate normalization.91 Its basic idea,
re-expressed here in the language of Shavitt and Redmon,106 is the following: The
identity

QUX |Ψ(0)
I 〉 = −RI [H0, UX ]|Ψ(0)

I 〉 (2.53)

holds for any choice of 0th order Hamiltonian H0. One therefore chooses multiple
state-speci�c partitionings

H = H0(I) + V (I), (2.54)

one for each 0th order state |Ψ(0)
I 〉. The 0th order Hamiltonians are assumed to have

the same 0th order eigenfunctions |Ψ(0)
I 〉 in the model space. E(0)

I is de�ned as the 0th
order energy of H0(I) belonging to the eigenfunction |Ψ(0)

I 〉. The eigenfunctions in
the complementary space Q can depend on the reference state,

H0(I)|Ψ(0)
K (I)〉 = E

(0)
K (I)|Ψ(0)

K (I)〉. (2.55)

One can then write

QUXP = −
∑
I

RI(I)[H0(I), UX ]|Ψ(0)
I 〉〈Ψ

(0)
I |, (2.56)

where the resolvents are now not only dependent on the reference energy but also on
the 0th order Hamiltonian for which they are de�ned,

RI(I) =
∑
K

|Ψ(0)
K (I)〉〈Ψ(0)

K (I)|
E

(0)
I − E

(0)
K (I)

. (2.57)

A related idea that also relies on the separate treatment of the di�erent model space
states is the Jeziorski-Monkhorst ansatz for the wave operator,115 which has found
widespread use in MRCC. ExpandingUX in powers of the perturbation operators V (I)
leads to

QU
(1)
X P =

∑
I

RI(I)H|Ψ(0)
I 〉〈Ψ

(0)
I |. (2.58)

Together with Eq. (2.46), the e�ective Hamiltonian up to 2nd order in the V (I) is then

He�(0−2) = PHP + PHU
(1)
X P = PHP + PH

∑
I

RI(I)H|Ψ(0)
I 〉〈Ψ

(0)
I | (2.59)

and its matrix representation

H
e�(0−2)
IJ = HIJ + 〈Ψ(0)

I |HRJ(J)H|Ψ(0)
J 〉

= HIJ +
∑
K

〈Ψ(0)
I |H|Ψ

(0)
K (J)〉〈Ψ(0)

K (J)|H|Ψ(0)
J 〉

E
(0)
J − E

(0)
K (J)

.
(2.60)
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2.5.3. Generalized degenerate perturbation theory

We �nally introduce a variant of perturbation theory that approximates a state-speci�c
IEH and was proposed already in the original paper that introduced the concept.78 One
starts by partitioning the Hamiltonian into a 0th order part and a perturbation,

H = H0 + V, (2.61)

such that H0 is the direct sum of operators acting in the main model, intermediate,
and outer space, i.e. it does not mix states from these three subspaces,

H0 = H0,m ⊕H0,i ⊕H0,outer. (2.62)

Furthermore, one assumes that all main model space functions are eigenfunctions of
H0 with the same eigenvalue E0, i.e.

H0,m = E0Pm, (2.63)

with Pm being the projector on the main model space. In this context, Malrieu et al.78

de�ned an IEH whose expansion, in powers of the perturbation operator V , is given
by

H int =
∑
n

H int,(n), (2.64)

with the �rst few terms

H int,(0) = PH0P, (2.65)
H int,(1) = PV P, (2.66)
H int,(2) = PV RV P = PHRHP, (2.67)
H int,(3) = P

[
V RV RV − V R2V PmV

]
P. (2.68)

This perturbative expansion was given the name generalized degenerate perturbation
theory (GDPT). The so-called resolvent operator is given by

R =
∑
EK

PK
E0 − EK

, (2.69)

where the sum is over all eigenvalues EK (with corresponding projectors PK on the
eigenspaces) of the outer space 0th order Hamiltonian H0,outer. In this work, we will
truncate the expansion at the 2nd order and thus obtain

H int = P

[
H −H

∑
EK

PK
EK − E0

H

]
P. (2.70)
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2.5.4. NEVPT
The most common form of MRPT is nondegenerate perturbation theory based on a
CASSCF reference wavefunction. Two variants of this approach are CASPT245,46 and
NEVPT2.61,62,116 The latter is more relevant for the current work, and we shell describe
it in some detail in the following. All common variants of NEVPT2 are based on the
Dyall Hamiltonian.60 In an orbitally invariant form117 (for orbital rotations inside the
inactive, active and virtual subspaces respectively, not rotations between these sub-
spaces), this operator is de�ned by

HDyall = HDyall
nonact +HDyall

act , (2.71)

HDyall
nonact = C +

∑
ij

FijEij +
∑
ab

FabEab, (2.72)

HDyall
act =

∑
tu

(he�
tu − 1

2

∑
v

(tv|vu))Etu + 1
2

∑
tuvw

(tu|vw)EtuEvw. (2.73)

The Fock matrix is de�ned via

Fpq = hpq +
∑
rs

Drs

[
(pq|rs)− 1

2
(pr|qs)

]
= he�

pq +
∑
tu

Dtu

[
(pq|tu)− 1

2
(pt|qu)

]
.

(2.74)

The other symbols used in the de�nition of HDyall are de�ned as

he�
pq = 〈p|h+

∑
i

(2Ji −Ki)|q〉 = hpq +
∑
i

[2(pq|ii)− (pi|iq)], (2.75)

C = EClosed − 2
∑
i

Fii, (2.76)

EClosed = 2
∑
i

hii +
∑
ij

[2(ii|jj)− (ij|ji)]. (2.77)

The density matrixDrs used in the de�nition of the Fock matrix is usually chosen to be
the state-speci�c density matrix of the CASCI reference state for which one calculates
the NEVPT2 correction. In this work we will also explore the use of a state-averaged
density matrix, which is the average of the density matrices of all states included in
the SA-CASSCF procedure.
The FOIS is the orthogonal direct sum of subspaces S(k)

l ,61 where l represents the
non-active orbital occupation of the CSFs spanning the subspace and k is the change
in the number of electrons occupying active orbitals. In total one can distinguish eight
di�erent kinds of such subspaces: S(0)

ij,ab, S
(−1)
i,ab , S(−2)

ab , S(+1)
ij,a , S(+2)

ij , S(0)
i,a , S(−1)

a , S(+1)
i .

Here i, j, a and b are the indices of non-active electrons that are (de)populated com-
pared to the reference CASCI functions. The perturbation functions, or perturbers, are
usually grouped into eight so-called “excitation classes” depending of the number of
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2.6. Treatment of spin-dependent e�ects via 1st order QDPT

inactive and virtual orbitals in the subspace. The essential feature of NEVPT is the use
of perturber functions that have well-de�ned inactive and virtual orbital occupation
numbers, i.e. the 0th order Hamiltonian is de�ned to have vanishing matrix elements
between di�erent S(k)

l . This is in contrast to CASPT2, where such coupling occurs.46

NEVPT2 comes in three �avors, uncontracted, partially contracted, and strongly con-
tracted NEVPT2, which di�er in the de�nition of the 0th order Hamiltonian. Uncon-
tracted NEVPT2 simply uses the complete Dyall Hamiltonian as 0th order Hamilto-
nian. This is the least e�cient variant since the Dyall Hamiltonian has to be diagonal-
ized in all subspaces S(k)

l , whose sizes are in the same order of magnitude as the CASCI
space. A more economic variant is the partially contracted NEVPT2. Here, the idea is
to reduce the number of perturber functions by excluding those that do not interact
with the reference CASCI function through the Hamiltonian. Hence, the perturbers
and their energies are de�ned by diagonalizing the Dyall Hamiltonian in the space
of internally contracted perturbers, which are functions that are obtained by acting
with single and double excitation operators on the reference CASCI wavefunction. In
this case the number of perturbers per S(k)

l space is reduced to O(NNact), where N is
the number of indices on the two excitation operators that refer to active electrons
and Nact is the number of active electrons. For example, there are only two perturbers
from the subspace S(0)

ij,ab and only 2Nact perturbers from the subspace S−1
i,ab. Note that

all functions from S
(k)
l that are orthogonal to the subspace of internally contracted

perturbers cannot interact with the reference function through the Hamiltonian. This
shows that formally the total number of perturbers stays the same as in uncontracted
NEVPT2 and just the de�nition of 0th order Hamiltonian changes. Finally, there is the
strongly contracted NEVPT2, where a single perturber from each S(k)

l space is de�ned
via P

S
(k)
l
H|Ψ(0)〉 and its energy is de�ned as its expectation value of the Dyall Hamil-

tonian. Here, P
S
(k)
l

is the orthogonal projector on S
(k)
l . One can again see that all

other functions from S
(k)
l that are orthogonal to this single perturber cannot interact

through the Hamiltonian with the reference function.
A multistate method that is derived from NEVPT2 is the quasidegenerate NEVPT2
(QD-NEVPT2).90 It consists in solving the multi-partitioning e�ective Hamiltonian
Eq. (2.60), where the reference-state dependent 0th order Hamiltonians are simply the
ones introduced for the state-speci�c NEVPT2 method.

2.6. Treatment of spin-dependent e�ects via 1st
order QDPT

In the present work, QDPT is the method of choice for comparison with the spin-
dependent versions of our newly developed methods. In QDPT one starts with a set
of scalar many-electron states |ΨSM

I 〉. The full Hamiltonian Hscal + V spin is then di-
agonalized in the set of all M components of these scalar-relativistic states. Usually,
the scalar basis states are obtained from a CI procedure, e.g. CASCI or MRCI with
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single and double excitations (MRCISD), i.e. they diagonalize the scalar part of the
Hamiltonian. The matrix to be diagonalized in the QDPT procedure is then given by

〈ΨSM
I |Hscal + V spin|ΨS′M ′

J 〉 = δIJδSS′δMM ′Escal
I + 〈ΨSM

I |V spin|ΨS′M ′

J 〉. (2.78)

The name quasidegenerate perturbation theory becomes clear when comparing this to
the expression Eq. (2.48) for the perturbative expansion of the intermediate normal-
ization e�ective Hamiltonian: Up to 1st order in perturbation theory, the e�ective
Hamiltonian is simply the matrix representation of the full Hamiltonian in the basis
of states belonging to the model space. Here, the 0th order Hamiltonian is Hscal and
the perturbation V spin. The term “perturbation theory” for this procedure has been
criticized for being misleading and it was suggested that it could be better described
as a contracted spin-orbit CI.29

To improve the results compared to CASSCF/QDPT, a QDPT method involving NEVPT2
has been devised.118 Its basic idea is that the diagonal energies Escal

I in Eq. (2.78) are
replaced by NEVPT2 energies, while the model space is still spanned by CASCI so-
lutions. In this way, some e�ects of dynamic correlation can be introduced into the
treatment. Such a strategy was also suggested for the RASSI-SO method36 and similar
concepts have existed already for a long time.119,120

2.7. Model Hamiltonians in chemistry
In this section, we will take a closer look at two kinds of model Hamiltonians that
are important in this work, namely di�erent variations of spin Hamiltonians and the
ligand �eld Hamiltonian.

2.7.1. Spin Hamiltonians

What is often called the “true microscopic Hamiltonian”, i.e. the electronic Hamilto-
nian Eq. (2.3) including the scalar-relativistic and spin-dependent relativistic exten-
sions discussed in Section 2.2, is actually already an e�ective Hamiltonian itself. It
acts in a Hilbert space that is spanned by products |ΦSM

I 〉 ⊗
⊗NA

A=1 |MA〉, where the
|ΦSM

I 〉 are a complete basis of electronic states. For each nucleus A, only the 2IA + 1
components with di�erent MA of a single state with spin IA can be described. This
means that states of the combined system in which a nucleus is in di�erent states can-
not be simultaneously described with the Hamiltonian above. An example for such
states would be the ground state and 14.4 keV �rst excited state of the 57Fe nucleus
in an Fe-containing molecule, which are relevant for Mössbauer spectroscopy. The
Hamiltonian only gives a subset of all physical states, and is hence an e�ective Hamil-
tonian. All information about the complex nuclear quantum state is condensed into
a single parameter, the gyromagnetic ratio γA. This is an excellent approximation for
chemistry, where energy scales are usually much smaller than the energies needed to
excite nuclei, which are in the range of keV or larger.
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2.7. Model Hamiltonians in chemistry

Magnetic resonance experiments are usually interpreted in terms of so-called spin
Hamiltonians (SH). The foundation of this is the observation that for the energy scales
typically encountered in magnetic resonance (1cm−1 and lower), only a few very low-
lying electronic states are relevant. The microscopic Hamiltonian is then replaced by
an e�ective Hamiltonian that operates only within the set of these low-energy states.
If there are 2S̃ + 1 relevant electronic states, they are typically interpreted as com-
ponents of a spin multiplet with e�ective spin S̃. This is not necessarily identical to
the true spin S of the electronic states in question. We use the tilde to distinguish
the �ctitious spin S̃ introduced here from the physical spin S. A complete basis for
the operators in this space is given by the three e�ective spin operators S̃x, S̃y, S̃z as
well as products of them.121–123 Traditionally, one often restricts the form of the SH to
terms that are up to quadratic and bilinear in the spin operators. In this case, an arbi-
trary e�ective Hamiltonian can in general not be parametrized exactly. The SH is then
written entirely in terms of spin operators and so-called spin Hamiltonian parameters.
These numbers are usually �tted to reproduce experimental results. However, they
can also be connected to the underlying geometric and electronic structure by means
of ab initio theory. This allows to indirectly derive geometric and electronic structure
information from spectroscopic experiments.1 Note that the microscopic Hamiltonian
is already in spin Hamiltonian form for the nuclei, as seen by the presence of the
nuclear spin IA in Eq. (2.11), but not for the electrons.
In this work, we restrict ourselves to only two kinds of SHs. The �rst kind is used for
orbitally nondegenerate molecules for which only the nonrelativistic ground state spin
multiplet is relevant. The 2S+1 components of a scalar ground state with spin S form
the model space for the SH, and in this case one can to a good approximation identify
the �ctitious spin above with the true spin of the system. The SH (up to bilinear in the
spin operators) has the form

Hspin = SDS + µBBgS +
∑
A

IAAAS. (2.79)

Here B, S, and IA are vectors and vector spin operators, while D, g, and AA are 3× 3
matrices and contain the parameters of the model Hamiltonian. D and AA have units
of energy (with AA usually being given in MHz) and g is unitless. The expressions
are interpreted as

SDS =
3∑

i,j=1

DijSiSj (2.80)

and similar for the remaining terms. D is called ZFS tensor or D-tensor. It describes
the breaking of degeneracy of the 2S+ 1 components of the ground multiplet even in
the absence of external magnetic �elds or magnetic nuclei. g is the g-tensor, which de-
scribes the interaction of the system with an external magnetic �eld, i.e. it parametrizes
the system’s magnetic dipole moment. Finally, AA is the HFC tensor or A-tensor,
which parametrizes the interaction of the electrons with nuclear magnetic moments.
This means that it parametrizes the magnetic hyper�ne �eld at the position of the re-
spective nucleus, which is created by the spin and orbital movements of the electrons.
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It is common to transform the coordinate system to the principal axis frame of the
D-tensor and characterize the latter by two parameters

D = Dzz −
1

2
(Dxx +Dyy), (2.81)

E =
1

2
(Dxx −Dyy) (2.82)

called axial and rhombic ZFS parameters, respectively. The ratio E/D, called rhom-
bicity, is often used instead of E. A commonly used convention for the coordinate
system is such that |Dxx| ≤ |Dyy| ≤ |Dzz|, which leads to 0 ≤ E/D ≤ 1/3.
For systems with an odd number of electrons, there is always an even degeneracy
of electronic states in the absence of magnetic �elds. This is the famous Kramers
theorem, which is described in some detail in Appendix A.8.4. If there is no spatial
symmetry, the degeneracy is twofold and the states are called Kramers doublets. The
second kind of SH relevant in this work is one that acts on only the two degenerate
components of a Kramers doublet as the model space. This corresponds to an e�ective
spin of S̃ = 1/2. The SH reads

Hspin = µBBgS̃ +
∑
A

IAAAS̃ (2.83)

and describes the splitting of the Kramers degeneracy due to magnetic �elds. S̃ is a
vector of e�ective spin-1/2 operators that are de�ned as multiples of the Pauli matrices
σk,

S̃k =
1

2
σk. (2.84)

Since these operators simply form a basis and do not have physical meaning like the
real spin, they also do not have a well-de�ned behavior under rotation of the coordi-
nate system. Hence, the parameters g and AA in Eq. (2.83) are no longer tensors, but
should be called g-matrix and A-matrix instead.
Note that other terms than the ones introduced here can be added to the spin Hamilto-
nian, which are however less relevant for EPR. These include the nuclear Zeeman in-
teraction, nuclear quadrupole interactions, and nuclear spin-spin interactions, among
others.

2.7.2. Ligand field theory
Ligand �eld theory (LFT) is a powerful tool for the rationalization of the properties of
transition metal (TM) complexes. At the heart of LFT is the �nding that the ground
state and some of the low-lying excited states of many TM complexes or lanthanide
and actinide complexes can be qualitatively described as linear combinations of Slater
determinants that only di�er in the occupation of a set of �ve (for TM complexes)
or seven (for lanthanide and actinide complexes) molecular orbitals (MOs) that show
similarities with the d and f orbitals of free atoms and ions. For simplicity, one also
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refers to these MOs as d and f orbitals, although they have covalent contributions from
ligand orbitals. The theory can be based on an e�ective Hamiltonian of the form77

HLFT =
∑
i

hLFT
i +

∑
i<j

1

rij
(2.85)

that acts in a model space of Slater determinants that are constructed by distributing
electrons over the d (or f ) orbitals of transition metal (or lanthanide and actinide)
complexes. Most importantly, the sums in Eq. (2.85) run only over the active electrons,
which occupy the d or f orbitals. The one-electron ligand �eld operator hLFT contains
not only the electronic kinetic energy and nuclear attraction, but also the Coulomb
and exchange �eld created by all electrons in closed shells, e.g. core electrons on
the metal center and electrons in ligand orbitals. The matrix representation of the
LFT Hamiltonian in the basis of these Slater determinants is a function of a 5 × 5 or
7 × 7 ligand �eld matrix hLFT

pq and of the ERIs involving the d or f orbitals. With one
additional assumption, namely that the orbitals transform like pure d or f orbitals
among each other under rotations, the latter integrals can be written in terms of three
(four) parameters A, B, C (F0, F2, F4, F6) for TM complexes (lanthanide or actinide
complexes).77 This is the most widespread parametrization of LFT. It follows from
this discussion that the LFT model can exactly parametrize the CASCI matrix for free
atoms or ions, where the assumption of spherical d or f orbitals is exactly ful�lled.
Traditionally, the parameters of the model are obtained by a �t to experimental prop-
erties such as excitation energies, thermochemical data, EPR spectra or magnetization
curves, among many others. There have been some noticeable early successes of this
procedure, for example the explanation of the trends in the heats of hydration of the
�rst row TMs using ligand �eld splittings deduced from absorption spectroscopy.124–126

In fact, ligand �eld parameters are invaluable and intuitively appealing guides to a host
of chemical and physical trends of TM-containing compounds. However, in general –
and in particular for low-symmetry situations – �ts of the LFT model to experimental
data are often severely underdetermined. Consequently, the obtained model parame-
ters may have only limited physical content. It is then appealing to resort to theory
for their de�nition, as is explained later.

2.8. Ab initio calculation of spin Hamiltonian
parameters

We now come to the calculation of EPR spin Hamiltonian parameters from �rst prin-
ciples. We �rst describe two methods to extract intrinsic spin Hamiltonians, where the
e�ective spin can be identi�ed with the physical spin. One of them starts with scalar
wavefunctions and adds the e�ects of spin-dependent operators via degenerate per-
turbation theory. In this way the structure of a spin Hamiltonian arises quite naturally.
In the other method, one starts with states that already contain the e�ect of SOC up to
in�nite order. An exact (in�nite order) e�ective Hamiltonian is then constructed from
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these states, which is �tted via the spin Hamiltonian model. Finally, we also describe
a novel method for the extraction and analysis of e�ective spin-1/2 Kramers doublet
spin Hamiltonians.

2.8.1. Derivation of spin Hamiltonians by DPT
Spin Hamiltonians arise very naturally by using DPT. Consider an orbitally non-de-
generate scalar-relativistic ground state with spin S that is well separated from excited
states. Using the 2S+1 components of this ground multiplet as a model space, one can
use DPT, Eq. (2.51), with the spin-dependent and external-�eld-dependent parts of the
Hamiltonian as a perturbation. Up to 2nd order, this gives the e�ective Hamiltonian

〈ΨSM
0 |He�|ΨSM ′

0 〉 = δMM ′E
(0)
0 + 〈ΨSM

0 |V spin|ΨSM ′

0 〉

−
∑

b6=0,Mb

∆−1
b 〈Ψ

SM
0 |V spin|ΨSbMb

b 〉〈ΨSbMb
b |V spin|ΨSM ′

0 〉. (2.86)

The various operators in V spin give contributions that can be parametrized in the form
of the spin Hamiltonian Eq. (2.79).127 In particular, for D there is a 1st order contribu-
tion from HSSC and a 2nd order contribution that is quadratic in HSOC. For g there is a
1st order contribution due to the spin Zeeman operator and a 2nd order contribution
that is linear in both the orbital Zeeman operator andHSOC. ForA there are �nally two
1st order contributions due to the FC and SD contributions to the magnetic hyper�ne
�eld and a 2nd order contribution that is linear in both the NOC contribution to the
magnetic hyper�ne �eld and HSOC. Here and in the following we drop the label A for
the nucleus on the HFC matrix A if there is no danger of confusion. For this work,
only the contributions to g and A are important for interpretative purposes. They are
given by

g
spin
kl = δklge, (2.87)

gorb/SOC
kl = − 1

S

∑
b

(Sb=S)

∆−1
b

[
〈ΨSS

0 |Lk|ΨSS
b 〉〈ΨSS

b |
∑
i

zlis
z
i |ΨSS

0 〉+ c.c.
]

(2.88)

and

AFC
kl = δkl

1

S
α2γA

ge
2

8π

3
〈ΨSS

0 |
∑
i

δ3(~riA)szi |ΨSS
0 〉, (2.89)

ASD
kl =

1

S
α2γA

ge
2
〈ΨSS

0 |
∑
i

3rkiAr
l
iA − δklr2

iA

r5
iA

szi |ΨSS
0 〉, (2.90)

ANOC/SOC
kl = − 1

S
α2γA

∑
b

(Sb=S)

∆−1
b

[
〈ΨSS

0 |
∑
i

lA,ki

r3
iA

|ΨSS
b 〉〈ΨSS

b |
∑
i

zlis
z
i |ΨSS

0 〉+ c.c.
]

(2.91)
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Here, c.c. denotes the complex conjugate of the term that is explicitly written out.
These expressions are well-known in the literature.100 127 For completeness, we re-
derive them using the notation of this work in Appendix A.11. For the interested
reader we also present in the appendix the derivation of one of the most complicated
examples, the 1st order contribution to the D-tensor that arises from SSC. It should be
noted that these expressions can be reformulated in the linear response framework, to
avoid explicit sums over states.15 Both approaches for the calculation of spin Hamil-
tonian parameters fail whenever the 2nd order of DPT is not su�ciently converged.
This is the case if SOC is too strong or if there are low-lying excited states, such that
the energy denominators get small.

2.8.2. Exact e�ective Hamiltonian treatment

The four spin-dependent operators that we are considering in this work can be put
into two groups. On the one hand, there is SOC and SSC, which are intrinsic proper-
ties of the electronic system. Furthermore, they can be strong enough to in�uence the
electronic structure signi�cantly. Hence, the treatment of these e�ects using DPT2
can lead to large errors and in these cases an in�nite order treatment is mandatory.
The basic idea is therefore to obtain the relativistic wavefunctions |ΨI〉 and energies
ESOC+SSC
I from a calculation that explicitly includes SOC and/or SSC. The Zeeman in-

teraction and magnetic hyper�ne interactions are usually weaker and hence a 1st order
quasidegenerate perturbative treatment within the lowest 2S + 1 relativistic states
is justi�ed. An exception that is not relevant for the current work are very strong
external magnetic �elds. The total energy and eigenstates (including Zeeman and
magnetic hyper�ne interactions) are then given by the diagonalization of the matrix
〈ΨI |(Hscalar+HSOC+HSSC+HZeeman+HHFC)|ΨJ〉. This gives energiesEtotal

I that include
the e�ect of the Zeeman and HFC interactions and states |Ψtotal

I 〉 that are a unitary
transformation of the 2S+ 1 states |ΨI〉. The des Cloizeaux e�ective Hamiltonian Eq.
(2.34), which has these energies as eigenvalues and the symmetrically orthogonalized
projection |Ψ̃total

I 〉L of these states as eigenstates, can be written as

He� =
∑
I

|Ψ̃total
I 〉LEtotal

I 〈Ψ̃total
I |L

=
∑
I

|Ψ̃I〉LESOC+SSC
I 〈Ψ̃I |L +

∑
IJ

|Ψ̃I〉L〈ΨI |(HZeeman +HHFC)|ΨJ〉〈Ψ̃J |L.
(2.92)

Here, |Ψ̃I〉L are the Löwdin symmetrically orthogonalized projections of the |ΨI〉 on
the space spanned by the 2S + 1 degenerate components of the scalar ground state
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spin multiplet. Inserting Eqs. (2.11) and (2.15), the previous equation can be written

He� =
∑
I

|Ψ̃I〉LESOC+SSC
I 〈Ψ̃I |L

+
1

2
B ·
∑
IJ

|Ψ̃I〉L〈ΨI |(L + geS)|ΨJ〉〈Ψ̃J |L

+
∑
A

IA ·
∑
IJ

|Ψ̃I〉L〈ΨI |(−γABHFC(RA))|ΨJ〉〈Ψ̃J |L.

(2.93)

Comparison with the spin Hamiltonian Eq. (2.79) shows that one can associate the
following objects with each other:

SDS =
∑
I

|Ψ̃I〉LESOC+SSC
I 〈Ψ̃I |L, (2.94)

gS =
∑
IJ

|Ψ̃I〉L〈ΨI |(L + geS)|ΨJ〉〈Ψ̃J |L, (2.95)

AAS = −γA
∑
IJ

|Ψ̃I〉L〈ΨI |BHFC(RA)|ΨJ〉〈Ψ̃J |L. (2.96)

Note that the 2nd and 3rd equations are vector equations, i.e. each consists of three
equations at once. One can determine the parameters D,g,A from these equations
by linear least-squares �tting. The solution is uniquely determined since the model is
linear.128

For ZFS, the outlined procedure was introduced by Maurice et al.129. The extraction
of the g-matrix along these lines is to the best of our knowledge unpublished, but has
been available in ORCA for a long time. The extraction of the HFC matrix according
to Eq. (2.96) is a new contribution of the present work.

2.8.3. Extraction and analysis of e�ective spin Hamiltonian
parameters

In EPR spectroscopy, one is often only interested in the 1st order energy change due
to Zeeman and hyper�ne interactions of a single Kramers doublet. Consider the two
states |Φ〉 and |Φ̄〉 of the Kramers doublet that have been obtained by a calculation
including SOC and/or SSC. The 1st order energy changes can then be obtained by
diagonalizing the matrix representation of the Zeeman and HFC operators in the basis
of the two Kramers doublet states (1st order degenerate perturbation theory, DPT1).
By de�ning the elements of the dimensionless g-matrix via130

gl1 = −4<〈Φ̄|M el
l |Φ〉 = 2<〈Φ̄|Ll + geSl|Φ〉, (2.97)

gl2 = −4=〈Φ̄|M el
l |Φ〉 = 2=〈Φ̄|Ll + geSl|Φ〉, (2.98)

gl3 = −4〈Φ|M el
l |Φ〉 = 2〈Φ|Ll + geSl|Φ〉, (2.99)
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2.8. Ab initio calculation of spin Hamiltonian parameters

one can see that the DPT1 e�ective Hamiltonian for the Zeeman operator can be ex-
actly parametrized via

HZeeman =
1

2
BgS̃. (2.100)

This parametrization is possible because the magnetic dipole moment operator is odd
under time-reversal; hence 〈Φ̄|M el

l |Φ̄〉 = −〈Φ|M el
l |Φ〉. See Appendix A.8.3 for a

derivation of this relation.
Similarly, since the operator of the hyper�ne �eld is also odd under time reversal, the
DPT1 e�ective Hamiltonian for the hyper�ne interaction operator can be parametrized
as

HHFC =
∑
A

IAAAS̃ (2.101)

by de�ning the elements of the A-matrix via

AAl1 = −2γA<〈Φ̄|Bl
HFC(RA)|Φ〉, (2.102)

AAl2 = −2γA=〈Φ̄|Bl
HFC(RA)|Φ〉, (2.103)

AAl3 = −2γA〈Φ|Bl
HFC(RA)|Φ〉. (2.104)

There are two major di�erences between these results and the results of the previous
section. The model space for the intrinsic spin Hamiltonians was a scalar ground
state spin multiplet. This is not necessary here, where the model space is spanned by
relativistic states that can include SOC and SSC. Furthermore, the parametrization in
this section is exact, while for the procedure described in the previous section only a
�t of the spin Hamiltonian to the ab initio e�ective Hamiltonian is performed.
By making the proper choice of coordinate system and basis of the Kramers doublet,
one can make the g-matrix or A-matrix diagonal (however in general not both at the
same time, unless the molecule possesses some symmetry). An easy way to accomplish
this is by singular value decomposition (SVD). Given the g-matrix, one can perform
an SVD

g = Ũg̃diagṼ
T , (2.105)

where Ũ and Ṽ are O(3) matrices. We can multiply them by their own determinant
(which is ±1) to obtain matrices U and V that are from SO(3). With their help one
can de�ne a new matrix

gdiag = UTgV (2.106)
that is also diagonal. Its diagonal values are the three g-values. Note that in this
procedure the sign of the g-matrix is preserved, since det(gdiag) = det(g) and all g-
values have the same sign. This is because the singular values, which are the diagonal
elements of g̃diag, are all positive. This is in contrast to the equation proposed by
Gerloch and McMeeking131 and �rst used by Bolvin et al. in the context of ab initio
calculations,132 which can be used to obtain the magnitude of g-values but not their
sign. The matrix U corresponds to a rotation of the coordinate system, while the
matrix V can be associated with a unitary transformation of the two states |Φ〉 and |Φ̄〉
of the Kramers doublet, via the two-to-one map from SU(2) to SO(3).133 We report in
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the results chapters g-shifts, which are de�ned as the deviation of the g-values from
the free-electron g-value,

∆g = g − ge. (2.107)

Similarly, one can �nd two di�erent SO(3) matrices U and V such that the A-matrix
is brought into diagonal form via

Adiag = UTAV. (2.108)

Both the electronic magnetic moment operator and the hyper�ne �eld operator consist
of several terms. The magnetic moment has orbital and spin contributions, while the
hyper�ne �eld has a FC, SD and NOC contribution. Since the g-matrix and A-matrix,
as de�ned in Eqs. (2.97)–(2.99) and Eqs. (2.102)–(2.104), are both linear in these opera-
tors, we can write them as sums over contributions from these several terms. We can
then transform these contributions separately via Eqs. (2.106) and (2.108). The diago-
nal elements of the resulting matrices are interpreted as contributions of the individual
operators to the g-values or HFCCs.

2.9. Ab initio ligand field theory
In the following, we give an overview of the basic ideas of the ab initio ligand �eld
theory (AILFT) as described in the original article introducing the idea134 and a recent
review paper.135 AILFT is based on the observation that the matrix representation of
the LFT model Hamiltonian

HLFT
IJ (p) =

∑
k

HLFT,k
IJ pk (2.109)

is linear in the parameters p, collected here in a vector. The parameters p include
the 15 (for a dn con�guration) or 28 (for a fn con�guration) elements of the one-
electron ligand �eld Hamiltonian hLFT, and the electron repulsion parameters B and
C (for a dn con�guration) or F2, F4, F6 (for a fn con�guration). Note that more than
one electron or hole is necessary to de�ne electron repulsion parameters, and that C
is nonredundant only if more than one multiplicity block is considered. In general,
there is more than one possible multiplicity for a given dn con�guration, meaning
that the Hamiltonian matrix can have an additional index next to IJ that signi�es the
multiplicity. In the following, all these indices are treated as a compound index. One
can then write Eq. (2.109) in the form of the matrix-vector equation

HLFT(p) = Ap. (2.110)

Here, HLFT(p) is the vectorized form of the LFT Hamiltonian Eq. (2.109) and the matrix
A is de�ned by AIJ,k = HLFT,k

IJ . The LFT Hamiltonian is then identi�ed with an ab
initio-derived e�ective Hamiltonian He�

IJ , e.g. the CASCI Hamiltonian, describing the
same part of the electronic spectrum. The optimal parameters describing the ab initio
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2.9. Ab initio ligand �eld theory

Hamiltonian are obtained by least-squares �tting with the model Hamiltonian, which
for linear models has a unique solution given by128

p = A+He�. (2.111)

Here, A+ is the Moore-Penrose pseudoinverse of the matrix A. If the parameters are
nonredundant and there are more matrix elements than parameters (meaning that the
system is not underdetermined), one can express the pseudoinverse as

A+ = (ATA)−1AT . (2.112)

This allows to relate Eq. (2.111) to the equations given in the original AILFT refer-
ence,134

p = (ALFT)−1bLFT, (2.113)

ALFT
kl =

∑
IJ

HLFT,k
IJ HLFT,l

IJ , (2.114)

bLFT
k =

∑
IJ

HLFT,k
IJ He�

IJ . (2.115)
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3. Theory and implementation

3.1. DCD-CAS(2)

3.1.1. Application of the intermediate Hamiltonian to the
multireference dynamic correlation problem

The goal of our work is to develop a method that can be written as a dressed CASCI
problem, where the dressing accounts for the e�ects of dynamic electron correlation
in a perturbative way. Quite generally, a CAS space contains a large amount of super-
�uous information and very high energy determinants. Hence, a straightforward ap-
plication of e�ective Hamiltonian concepts according to Bloch or des Cloizeaux would
lead to intruder state problems in almost all practical applications. However, in most
cases, we are only interested in a few low-lying states. These low-lying states will be
dominated by only a few CSFs or determinants. Conceptually, these low-lying CSFs
span the main model space of our treatment. Which and how many CSFs should be
considered as belonging to the main model space depends of course very much on the
system and active space. Fortunately, it will not be necessary in the 2nd order variant
of our method to draw a sharp line between main model space and the remaining CSFs
in the CAS, as is explained below. In Section 2.5.3 the treatment was quite general. In
order to be more speci�c, we apply the IEH for a degenerate main model space to the
treatment of dynamic correlation. We note that one is in general interested in more
than one single root and that these roots should have di�erent 0th-order energies from
a physical point of view. This de�ciency will later be corrected by applying a second
step called “bias correction” to correct the energies of our method. We now de�ne
the model space to be a CAS(N ,M ) space (with N electrons in M orbitals) composed
of spin-adapted CSFs

{∣∣ΦSM
I

〉}
. The superscript SM refers to the quantum numbers

of the total spin and the projection onto the z-axis. We will drop this superscript
for the nonrelativistic treatment developed here, where only the principal component
with M = S is required. It will, however, be crucial for dealing with spin-dependent
relativistic e�ects later.
The goal of the development of DCD-CAS(2) is to de�ne an e�ective Hamiltonian
HDCD in the CAS(N ,M ) space that adds to the CASCI matrix a state-independent
dressing that incorporates dynamic correlation e�ects to 2nd order in the �uctuation
potential into the treatment. Diagonalization of the dressed CASCI matrix then yields
the actual correlated many-particle states in terms of only the model-space CSFs.
In our formulation we do not explicitly de�ne which part of the CASCI space forms the
main model space and which part the intermediate space. As an example, consider the
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3. Theory and implementation

problem of two exchange-coupled spin-1/2 systems (Section 4.1.4). In order to describe
the energy di�erence between the lowest triplet and the lowest singlet state correctly,
one must allow for state mixing between a low-energy neutral singlet and a high-
energy ionic singlet. The singlet main model space would naturally only contain the
neutral singlet, since this corresponds to the root of interest. In our approach, it is not
necessary to make this choice explicitly.
Regarding the choice of 0th order Hamiltonian, we do not have to de�ne the operator
H0,i because this choice has no e�ect on the form of the DCD-CAS(2) Hamiltonian.
However, it would become important at higher orders of perturbation theory. One
possible explicit choice consists in taking the main model space to be spanned by
the CASCI ground state and taking the whole H0 of Eq. (2.35) to be identical to the
Dyall Hamiltonian. In this case, E0 of Eq. (2.70) would be the CASCI ground state
energy. The main model space energy E0 must be chosen such that it is a reasonable
0th order energy for all roots of interest, which will usually be the ground state and
the �rst few excited states. A safe choice will be the CASCI energy of the lowest
state in a state-averaged calculation. This guarantees numerical stability since it is
unlikely that the energy di�erence in the denominator will approach zero. As one
reviewer of our initial paper on DCD-CAS(2)88 correctly remarked, with this choice
our approach is also formally equivalent to a Bloch e�ective Hamiltonian, which has
no intermediate space at all, acting in the whole CASCI space and with de�cient 0th
order energies for higher excited states. Interestingly, Brandow in his early papers
advocated this possibility to freely choose the 0th order Hamiltonian such that the
whole model space is degenerate, and to add any degeneracy-breaking parts to the
perturbation.112,136 For the action of the 0th order Hamiltonian in the outer space we
choose the Dyall Hamiltonian, which was introduced in Eq. (2.71) in the context of
the NEVPT2 method,

H0,outer = PouterH
DyallPouter. (3.1)

The orbital invariance of HDyall is a prerequisite for the orbital invariance of DCD-
CAS(2), which is proven in Section 3.5.2.1. In the de�nition of the Fock matrix from
which the Dyall Hamiltonian is de�ned,Drs is a suitable density matrix. Since we aim
for the correct description of more than one state, we use the state-averaged density
matrix of the underlying state-averaged CASSCF calculation throughout this work.
This de�nes a state-averaged Dyall Hamiltonian. This kind of 0th order Hamilto-
nian was already experimentally employed for the treatment of mixed-valence com-
pounds137,138 and is the standard choice for the MPS-NEVPT2 method.76 From now on,
we assume canonical orbitals, which diagonalize the Fock matrices, Fij = εiδij and
Fab = εaδab.
Since the BO Hamiltonian contains only one- and two-electron excitation operators,
one can restrict the sum over the outer space perturbers in Eq. (2.70) to functions in
the FOIS. In our implementation this space contains all CSFs with the desired spin
multiplicity that can be constructed from con�gurations (CFGs) that di�er by at most
two excitations from some CFG in the CASCI space. By CFG, we mean a set of orbital
occupation numbers that can be 0,1 or 2. In general, each CFG generates a number
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of CSFs that di�er by the speci�c spin coupling of the unpaired electrons in singly
occupied MOs (SOMOs). Here and in the following, we will use indices K and L for
perturbers. The matrix representation of the DCD-CAS(2) Hamiltonian in the CSF
basis is then simply given by

HDCD
IJ = 〈ΦI |H|ΦJ〉 −

∑
K∈FOIS

〈ΦI |H|Φ̃K〉〈Φ̃K |H|ΦJ〉
EK − E0

, (3.2)

where the perturbers ful�ll the eigenvalue equation

PFOISH
DyallPFOIS|Φ̃K〉 = EK |Φ̃K〉. (3.3)

It is readily seen that this is simply the CASCI matrix dressed with a correction that ac-
counts for dynamic correlation to 2nd order, which explains the name for our method.
There is only a single E0 chosen as the ground-state CASCI energy, instead of many
I-dependent E0 as in QDPT. This makes intruder states less likely and imparts Her-
miticity to the proposed DCD-CAS(2) Hamiltonian. Note that this expression for the
e�ective Hamiltonian is formally identical to the (shifted)Bk method. The latter how-
ever uses simple CSFs as perturbers and expectation values of the full Hamiltonian
as 0th order energies (EN 0th order Hamiltonian). DCD-CAS(2) di�ers substantially
in this respect since it uses the Dyall Hamiltonian. As already mentioned in the in-
troduction of this thesis, the EN denominators have the well-known disadvantages
of destroying size consistency and unitary invariance on top of being computation-
ally expensive, since a subset of the integrals with four virtual labels is required to
compute them. It has also been pointed out by Malrieu et al.139 that the shifted Bk

is equivalent to the original GDPT Intermediate Hamiltonian, from which we derived
our working equation. The same expression for the e�ective Hamiltonian has also
been applied to reduced model spaces based on a CAS.140 While the present work was
in progress, a method with a very similar spirit that is also based on the IEH concept
was proposed for the calculation of magnetic exchange couplings.141 The |Φ̃K〉 in Eqs.
(3.2) and (3.3) are linear combinations of elementary CSFs obtained by diagonalizing
the Dyall Hamiltonian in the relevant excitation subspaces (see Section 3.1.3.1 below).
These are di�erent from the elementary CSFs |ΦK〉 that correspond to speci�c CFGs,
which is why we use the tilde to distinguish them. Details on this aspect can be found
in the implementation section.

3.1.2. Perturbative correction for excitation energies
The DCD-CAS(2) Hamiltonian is a 2nd order approximation to an IEH that yields exact
(correlated) energies and the projection of the exact states onto the CASCI space for all
states where E0 can be considered a suitable 0th order energy. Using the ground state
CASCI energy asE0 will, in most cases, lead to good results for the ground state, even
if the CASCI ground state may not be a good approximation for the projection of the
true ground state. For excited states with small excitation energies, one expects that
this E0 will also be a reasonable 0th order energy. However, for higher excited states,
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the CASCI ground state energy is too low to be a reasonableE0 at 2nd order. Thus, the
higher the excitation energy of a given state, the more the method will underestimate
the e�ect of dynamic correlation, leading to DCD-CAS(2) excitation energies that are
too large. This behavior can be called a “bias toward the ground state” or “ground state
bias”. Assuming that one wants to describe a state for which a more reasonable main
model space energy is given by E0 + ∆, the geometric series

1

1− x
=
∞∑
n=0

xn for |x| < 1 (3.4)

can be used with x = ∆/(EK − E0) to obtain the state-speci�c dressing matrix

H
DCD,(2)
IJ (∆) = −

∑
K∈FOIS

〈
ΦI |H|Φ̃K

〉〈
Φ̃K |H|ΦJ

〉
EK − (E0 + ∆)

= −
∞∑
n=0

∆n
∑

K∈FOIS

〈
ΦI |H|Φ̃K

〉〈
Φ̃K |H|ΦJ

〉
(EK − E0)n+1 .

(3.5)

This series expansion converges if E0 + ∆ < EK for all perturbers. Hence, one can
construct state-speci�c DCD-CAS(2) Hamiltonians from state-speci�c values of ∆ by
truncating the series expansion in Eq. (3.5) after a few terms. The most straightforward
approach would be to diagonalize the e�ective Hamiltonians including these dressings
separately to obtain the respective states. Such an approach would however yield
states that are not orthonormal.
We therefore follow a di�erent approach. We assume that there is an E0 (the ground
state CASCI energy) that yields after the diagonalization of the DCD-CAS(2) Hamil-
tonian qualitatively correct projected states |Ψ̃I〉 for all the targeted roots. If this is
true, one can correct the energies by taking the expectation value of the state-speci�c
dressings in Eq. (3.5). Using only the term that is 1st order in ∆I gives

∆EI = −∆I

∑
K∈FOIS

〈Ψ̃I |H|Φ̃K〉〈Φ̃K |H|Ψ̃I〉
(EK − E0)2 (3.6)

as the correction to the energy of the state |Ψ̃I〉. We de�ne the correction to the main
model space energy to be

∆I = 〈Ψ̃I |H|Ψ̃I〉 − E0. (3.7)
This de�nes the bias-corrected DCD-CAS(2) method. Note that the conditionE0+∆ <
EK is not necessarily ful�lled for high energy roots, which means that the bias correc-
tion can potentially re-introduce intruder states that were avoided by using the ground
state CASCI energy as E0. In this case the state-speci�c nature of the correction en-
sures that lower states are not a�ected. We will show in Chapter 4 that bias correction
leads to signi�cant improvements in the calculated excitation energies. The e�ciency
of this 1st order approach (where the energy is linear in the shift) could have been an-
ticipated from the fact that the interpolation technique used in the shifted Bk method
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leads to essentially straight lines.84 It is also important to note at this point that the bias
correction, in addition to providing better estimates of excitation energies (which was
our primary goal in developing it), also corrects the ground state energy. Especially
in cases where the ground state strongly mixes with excited states, the CASSCF E0

is not a good approximation for the ground state itself and the bias correction might
become important.

3.1.3. Implementation
As will be shown in Section 3.5.3, the cost of a DCD-CAS(2) calculation increases
steeply with the size of the active space, which renders the method practical only
for rather small active spaces. In these cases, a CASCI-size matrix can be held in
memory entirely. We therefore do not resort to direct CI techniques like the Davidson
method142 for diagonalization of the DCD-CAS(2) Hamiltonian, but instead construct
it explicitly and use simple linear algebra routines to diagonalize it. In the following
section we describe the construction of the DCD-CAS(2) e�ective Hamiltonian in our
implementation in the ORCA electronic structure program.143 There are two main
tasks in this context. The �rst is the diagonalization of the Dyall Hamiltonian to obtain
the perturbers of Eq. (3.3). Knowing the rotation matrices for the perturbers |Φ̃K〉 that
diagonalize the Dyall Hamiltonian, the calculation of the matrix elements 〈ΦI |H|Φ̃K〉,
which occur in the numerator of the DCD-CAS(2) Hamiltonian, essentially boils down
to the calculation of matrix elements 〈ΦI |H|ΦK〉 involving only elementary perturber
CSFs. This is the second main task.

3.1.3.1. Diagonalization of the Dyall Hamiltonian

Using canonical orbitals, the Dyall Hamiltonian Eq. (2.71) is given by

HDyall = C +
∑
i

εiNi +
∑
a

εaNa +HDyall
act , (3.8)

where Np = Epp is the occupation number operator for orbital p. All CSFs are eigen-
functions of these occupation number operators, and hence they cannot induce mix-
ing between di�erent CSFs. The Dyall Hamiltonian contains true (non-occupation-
number) excitation operators only for active orbital indices and therefore does not
mix perturbers from di�erent S(k)

l subspaces. This means that the Dyall Hamiltonian
is block diagonal and can be diagonalized within each S(k)

l block separately. Within
each S(k)

l block, the non-active partHDyall
inact +HDyall

virt +C is a constant matrix and there-
fore does not need to be considered in the diagonalization. If for example orbitals i, j
are depopulated and orbitals a, b are populated as compared to the reference CASCI
functions, the value of this constant is εa + εb − εi − εj + EClosed. One therefore just
needs to diagonalize HDyall

act within each of the S(k)
l spaces. At this point it is neces-

sary to think about the structure of the perturber CSFs. The di�erent spin-adapted
CSFs belonging to the subspace S(k)

l can be expanded as a sum over antisymmetrized
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Table 3.1.: Conventional excitation class subspaces and their corre-
sponding non-active occupation patterns.

Excitation class subspaces Non-active occupation patterns
S

(0)
ij,ab (20|...|20), (11|...|20), (20|...|11), (11|...|11)

S
(−1)
i,ab (21|...|20), (21|...|11)
S

(−2)
ab (22|...|20), (22|...|11)
S

(+1)
ij,a (20|...|10), (11|...|10)
S

(+2)
ij (20|...|00), (11|...|00)
S

(0)
i,a (21|...|10)

S
(−1)
a (22|...|10)
S

(+1)
i (21|...|00)

products ∣∣Φl
K

〉
=
∑
µ

∣∣Φl
µΨK,µ

〉
, (3.9)

where
{∣∣Φl

µ

〉}
is a complete set of non-active determinants belonging to the non-

active electron con�guration l. There are 2N such functions for N non-active SOMOs
and µ is a label to distinguish them.

{∣∣ΨK,µ

〉}
is a set of active-orbital wavefunctions

that do not depend on the speci�c orbital indices in l, but only on the occupation
pattern. With non-active and active-orbital states, we mean states in which only non-
active or active orbitals have nonzero occupation numbers, respectively. See Appendix
A.6 for a proof of Eq. (3.9). In total there are 15 occupation patterns, as detailed in
Table 3.1. In this list, we show the occupation numbers of two inactive orbitals and of
two virtual orbitals, separated by |...|, which is a placeholder for the active occupation
numbers. All other inactive orbitals are doubly occupied, all other virtual orbitals
empty. With the structure of the perturbers given in Eq. (3.9), the matrix elements of
HDyall

act are clearly of the form

〈Φl
K |H

Dyall
act |Φl

L〉 =
∑
µ

〈ΨK,µ|H
Dyall
act |ΨL,µ〉. (3.10)

One can see that the matrix elements do not depend on the speci�c orbital indices in
l, but only on the occupation pattern. In practice we therefore diagonalize HDyall

act only
once for each of the 15 occupation patterns. For each occupation pattern we construct
a prototype space of CSFs, which contains only two inactive and two virtual orbitals.
The rotation matrices CLK and active energies Eact

K obtained from diagonalization of
HDyall

act in this prototype space are then valid for all subspaces S(k)
l ,

|Φ̃l
K〉 =

∑
L

CLK |Φl
L〉, (3.11)

HDyall
act |Φ̃l

K〉 = Eact
K |Φ̃l

K〉 (3.12)
and depend not on l, but only on the occupation pattern to which l belongs.
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3.1.3.2. Calculation of Matrix Elements between reference CSFs and
perturbers

The task of calculating the matrix elements 〈ΦI |H|ΦK〉 can be simpli�ed by using
the fact that 〈ΦI |H|ΦK〉 = 〈ΦI |V

(k)
l

†
|ΦK〉 if |ΦK〉 belongs to the subspace S(k)

l . Here
V

(k)
l is one of the perturbation operators introduced in NEVPT2.116 The operator V (k)

l

is simply de�ned to consist of all terms of the Fock space Hamiltonian that result in a
function within the subspace S(k)

l when acting on a function in the CASCI space. The
perturbation operators are given by (assuming i ≤ j, a ≤ b throughout)

V
(0)
ij,ab = γijγab((ai|bj)EaiEbj + (aj|bi)EajEbi), (3.13)

V
(−1)
i,ab = γab

∑
t

((ai|bt)EaiEbt + (at|bi)EatEbi), (3.14)

V
(+1)
ij,a = γij

∑
t

((aj|ti)EajEti + (ai|tj)EaiEtj, (3.15)

V
(−2)
ab = γab

∑
tu

(at|bu)EatEbu, (3.16)

V
(+2)
ij = γij

∑
tu

(ti|uj)EtiEuj, (3.17)

V
(0)
i,a =

∑
tu

((ai|tu)EaiEtu + (ti|au)EtiEau) + he�
aiEai, (3.18)

V (−1)
a =

∑
tuv

(at|uv)EatEuv +
∑
t

h′e�
at Eat, (3.19)

V
(+1)
i =

∑
tuv

(ti|uv)EtiEuv +
∑
t

he�
ti Eti (3.20)

with he�
pq being de�ned in Eq. (2.75) and

h′e�
pq = he�

pq −
∑
t

(pt|tq), (3.21)

γpq = 1− δpq/2 =

{
1 if p 6= q

1/2 otherwise
. (3.22)

As can be seen from these equations, each perturbation operator can be written as
V

(k)
l = V (1)+V (2), where V (1) and V (2) contain only one-particle excitations (Epq)

and two-particle excitations (EpqErs), respectively. The matrix elements of the two-
particle perturbation operators depend on the coupling coe�cients 〈ΦI |EpqErs |ΦK〉,
of which there is a large number. In order to circumvent having to store all double-
excitation coupling coe�cients, we made use of a resolution of the identity (RI) tech-
nique in our original DCD-CAS(2) implementation.88 A similar approach was pro-
posed by Siegbahn for his direct CI method.144 We �rst construct all CFGs R̃ that are
connected to at least one reference CFG and one perturber CFG by a single excita-
tion Epq. This de�nes an RI space. We then calculate the single excitation coupling
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coe�cients
(AĨ,R̃pq )IR = 〈ΦI |Epq|ΦR〉 (3.23)

between all CSFs belonging to the CFGs Ĩ and R̃ (and similarly for K̃ and R̃). One can
then write

〈ΦI |EpqErs|ΦK〉 =
∑

R̃∈RI space

∑
R

〈ΦI |Epq|ΦR〉〈ΦR|Ers|ΦK〉

=
∑

R̃∈RI - space

(
AĨ,R̃
pq (AK̃,R̃

sr )
T
)
IK
.

(3.24)

In practice, all con�gurations Ĩ and K̃ that are connected by a single excitation to a
certain RI con�guration R̃ are stored together with the excitations p → q and r → s
that connect them. For the calculation of the Hamiltonian matrix elements, one then
loops over all R̃ and within this loop calculates for each pair of connected Ĩ and K̃
the contribution given in Eq. (3.24) and multiplies by the corresponding integrals. It
should be noted that the RI space does not have to be complete for this procedure to be
exact. It is just necessary that it contains all CFGs that are connected by single excita-
tions to reference and perturber CFGs. To be more exact, this approach therefore does
not use a “resolution of the identity”, but a “resolution of a projector”. In the subspaces
considered here, this projector is equivalent to the identity. The coupling coe�cient
matrices AĨ,R̃

pq do not depend on the speci�c non-active occupation patterns. They
are therefore determined only once for the prototype perturber CFGs containing two
inactive and two virtual labels that we introduced for the diagonalization of the Dyall
Hamiltonian in the previous section. In the calculation of the perturbation contri-
bution, the actual orbital index is then only important in determining the integrals.
While a two-electron contribution exists for all perturbation operators, V (1) is zero
for the excitation spacesS(0)

ij,ab, S
(−1)
i,ab , S(−2)

ab , S(+1)
ij,a andS(+2)

ij . Only for the three remain-
ing types of perturber spaces there are one-electron excitations. For these classes, the
coupling coe�cient matrices AĨ,K̃

pq (where p → q is the excitation that connects the
two CFGs) are precomputed for all reference CFGs Ĩ and perturber CFGs K̃ that are
connected to them by a single excitation. The one-electron parts of the matrix ele-
ments between functions belonging to such a pair of CFGs are then simply given by
AĨ,R̃
pq multiplied by some appropriate integral. The description given so far applies

to the implementation of DCD-CAS(2) as described in our initial publication of the
method.88

Later we recognized that this is not the most e�cient way to implement DCD-CAS(2).
The key observation for making a more e�cient implementation is the following: For
the four (we leave out S(0)

ij,ab since it is treated separately, see Section 3.1.3.3 below)
excitation classes that contain only doubly excited perturbers, the perturbation oper-
ators are

V
(−1)
i,ab =

∑
v

((ai|bv)EaiEbv + (av|bi)EavEbi), (3.25)
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Table 3.2.: Matrix elements between reference CFGs and perturber CFGs for the di�erent
possible excitations.

Occupation pattern Kind of perturber Matrix element 〈ΦI |H|ΦK〉
21|...|11 it→ ab (ia|tb)〈ΦI |EiaEtb|ΦK〉+ (ta|ib)〈ΦI |EtaEib|ΦK〉
21|...|20 it→ aa (ia|ta)〈ΦI |EiaEta|ΦK〉
11|...|10 ij → ta (ja|it)〈ΦI |EjaEit|ΦK〉+ (ia|jt)〈ΦI |EiaEjt|ΦK〉
20|...|10 ii→ ta (ia|it)〈ΦI |EiaEit|ΦK〉
22|...|11 tu→ ab (ta|ub)〈ΦI |EtaEub|ΦK〉+ (ua|tb)〈ΦI |EuaEtb|ΦK〉

tt→ ab (ta|tb)〈ΦI |EtaEtb|ΦK〉
22|...|20 tu→ aa (ta|ua)〈ΦI |EtaEua|ΦK〉

tt→ aa 1
2(ta|ta)〈ΦI |EtaEta|ΦK〉

11|...|00 ij → tu (it|ju)〈ΦI |EitEju|ΦK〉+ (iu|jt)〈ΦI |EiuEjt|ΦK〉
ij → tt (it|jt)〈ΦI |EitEjt|ΦK〉

20|...|00 ii→ tu (it|iu)〈ΦI |EitEiu|ΦK〉
ii→ tt 1

2(it|it)〈ΦI |EitEit|ΦK〉

V
(−1)
i,aa =

∑
v

(ai|av)EaiEav, (3.26)

V
(+1)
ij,a =

∑
v

((aj|vi)EajEvi + (ai|vj)EaiEvj, (3.27)

V
(+1)
ii,a =

∑
v

(ai|vi)EaiEvi, (3.28)

V
(−2)
ab =

∑
vw

(av|bw)EavEbw, (3.29)

V (−2)
aa =

1

2

∑
vw

(av|aw)EavEaw, (3.30)

V
(+2)
ij =

∑
vw

(vi|wj)EviEwj, (3.31)

V
(+2)
ii =

1

2

∑
vw

(vi|wi)EviEwi. (3.32)

It can be seen that there are at most one or two terms in the perturbation operator
that contribute to a given matrix element 〈ΦI |H|ΦK〉. This is because the CSFs |ΦK〉
have well-de�ned active occupation numbers and therefore only one of the terms in
the sums over active orbitals can contribute. This means that for not too large active
spaces, we can precalculate the double excitation coupling coe�cients once (using the
prototype perturber spaces) and hold them in memory.
Table 3.2 shows the matrix elements for all di�erent kinds of perturbers. Note that for
the cases where 2 occupation numbers change in the active space, one has to distin-
guish the cases where both active orbitals are identical or di�erent. It is now easy to
see that redundant work was done in our original DCD-CAS(2) algorithm. Let |ΦK〉
for example be a perturber from the S(−1)

i,ab space that is connected to the reference CSF
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|ΦI〉 by a double excitation it→ ab. Then the RI space in our initial DCD-CAS(2) im-
plementation contains four RI CFGs, which are connected to the reference CFG by the
excitations i→ a, i→ b, t→ a, and t→ b. But this means that the same contributions
are calculated redundantly, since for example 〈ΦI |EiaEtb|ΦK〉 = 〈ΦI |EtbEia|ΦK〉.
The improved algorithm proceeds as follows for every occupation pattern: First one
loops over all prototype reference CFGs and perturber CFGs. If they are connected via
the Hamiltonian, the active orbitals t (and u) are determined and the necessary two-
electron coupling coe�cients are calculated. We then loop over all possible nonactive
orbitals and all connected CFG pairs. For each such pair we multiply the coupling
coe�cient matrices with the corresponding integral and add the results up to get the
matrix element 〈ΦI |H|ΦK〉. Algorithm 1 shows this in more detail for the S(−1)

i,ab space.

Algorithm 1 Algorithm for computing perturbative corrections for the �ve excitation
classes with only pure double excitations. This scheme shows the procedure for the
example of the S(−1)

i,ab perturber space.
1: # Build coupling coe�cients for prototype con�gurations
2: for all reference CFGs I do
3: for all perturber CFGs K do
4: if I and K are connected then
5: Determine and save active orbital t that is involved in excitation
6: Retrieve coupling coe�cients from container
7:

Multiply coupling coe�cients to obtain 〈ΦI |EiaEtb|ΦK〉 and
〈ΦI |EibEta|ΦK〉

8: end if
9: end for

10: end for
11: # Compute perturbative correction for all i, ab
12: for all inactive orbitals i do
13: For all t read integrals Kti from disk
14: for all virtual pairs a < b do
15: for all reference CFGs I do
16: for all perturber CFGs K connected to I do
17:

Multiply copies of double excitation coupling coe�cient matrices
with integrals (tb|ia) and (ta|ib)

18: Add contributions to 〈ΦI |H|ΦK〉 matrix for current i, ab
19: end for
20: end for
21:

From εi, εa, εb and active energies, calculate denominators for all
perturber CSFs

22: Calculate perturbative correction for given i, a, b and add it to total
23: end for
24: end for
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3.1.3.3. E�icient treatment for ij → ab perturbers and the
di�erence-dedicated scheme

The S(0)
ij,ab perturber functions have a special structure since they are connected to

reference functions by excitations involving only non-active indices. This allows to
carry out much of the calculation of the contribution to the DCD-CAS(2) Hamiltonian
analytically, rendering the computational treatment highly e�cient. This is similar
to NEVPT2, where the contribution of the S(0)

ij,ab space to the correlation energy is the
same (and equal to the MP2 expression) for the uncontracted, partially contracted, and
strongly contracted variant.
We start by writing the DCD-CAS(2) Hamiltonian not in the basis of reference CSFs
|ΦI〉, but instead in the basis of CASCI roots |ΨI〉. For given orbitals i, j, a, b, the per-
turber functions from the linear span of the functionsEaiEbj |ΨI〉 andEbiEaj |ΨI〉 are
eigenfunctions of HDyall

act with eigenvalue Eact
I = 〈ΨI |HDyall

act |ΨI〉. All other perturbers
fromS

(0)
ij,ab, which are orthogonal to this linear span, obviously cannot interact through

the BO Hamiltonian with |ΨI〉. The contribution to the DCD-CAS(2) Hamiltonian due
to the ij → ab class can therefore be written as

〈ΨI |HDCD,(2)
ij,ab |ΨJ〉 = −δIJ

∑
i≤j
a≤b

〈ΨI |HPS(0)
ij,ab

H|ΨI〉

εa + εb − εi − εj + EClosed + Eact
I − E0

, (3.33)

where P
S
(0)
ij,ab

is the projector on the subspace S(0)
ij,ab and we used that the non-active

part of the Dyall Hamiltonian contributes εa + εb − εi − εj + EClosed to the 0th or-
der energy of a perturber. The numerator also occurs in the context of the strongly-
contracted NEVPT2 method and is known to be equal to the squared norm of the
strongly contracted perturbers.116 It has the value

〈ΨI |HPS(0)
ij,ab

H|ΨI〉 = N
(0)
ij,ab = 4γijγab[(ib|ja)2 − (ib|ja)(ia|jb) + (ia|jb)2]. (3.34)

Inserting this into the formula above, we arrive at the equation

〈ΨI |HDCD,(2)
ij,ab |ΨJ〉 = −δIJ

∑
i≤j
a≤b

4γijγab[(ib|ja)2 − (ib|ja)(ia|jb) + (ia|jb)2]

εa + εb − εi − εj + EClosed + Eact
I − E0

. (3.35)

Thus, while the matrix elements for this excitation class are the by far most numerous,
they are also easy to handle since not much logic is involved in their processing. We
also see that this excitation class only provides contributions to the diagonal elements
of the DCD-CAS(2) Hamiltonian (in the basis of CASCI roots). However, the contri-
bution is not independent of the speci�c diagonal element. If this was the case, the
entire spectrum would just shift by the same value and excitation energies would be
rigorously independent of the excitation class ij → ab. This is the most important
idea underlying the di�erence-dedicated CI (DDCI) method145,146 in which this exci-
tation class is eliminated from the treatment. This reduces the computational burden
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signi�cantly and also greatly reduces the size-consistency error, while having only
little e�ect on vertical excitation energies. We note however that this class of exci-
tations can be important for excitation energies at higher orders of the correlation
treatment. In the way we have chosen the 0th order Hamiltonian, a dependence on
the actual wavefunction |ΨI〉 remains through the denominator. At this stage, it is
worthwhile to look back at the reason for choosing the CASSCF ground state energy
as the main model space energy, namely in order to avoid intruder-state problems and
non-Hermiticity of the Bloch e�ective Hamiltonian. Both these e�ects do not occur
for the ij → ab class even if the Bloch e�ective Hamiltonian is chosen, as long as the
energies of all CASCI roots are used as 0th order energies. In this case the contribution
has the form of the MP2 correlation energy,

〈ΨI |HMP2|ΨJ〉 = −δIJ
∑
ijab

(ib|ja)2 − (ib|ja)(ia|jb) + (ia|jb)2

εa + εb − εi − εj
. (3.36)

This can be seen by removing the restrictions on the indices in the sum in Eq. (3.35)
and using the permutation symmetry of the two-electron integrals. The ij → ab con-
tribution therefore amounts to just a constant shift of the spectrum of the Hamiltonian,
while having no e�ect on the eigenstates. In practice, the sums over indices are re-
stricted like in Eq. (3.35) to reduce computational e�ort. Since we are interested in a
good description of some low-lying excited states as well, it seems worthwhile to try
to use this form of the ij → ab contribution instead of the one dictated by rigorously
following the DCD-CAS(2) Hamiltonian formalism. Since the resulting excitation en-
ergies and states would be the same as when leaving out the ij → ab class completely,
this amounts to the de�nition of a “di�erence-dedicated e�ective Hamiltonian”. Note
that the correction in Eq. (3.36) may still be important if potential energy surfaces are
studied since it provides the largest contribution to the correlation energy. Therefore
it is always included in the current implementation. We will investigate the perfor-
mance of the di�erence-dedicated DCD-CAS(2) approach in Chapter 4.

3.1.3.4. RI-DCD-CAS(2)

For single-reference MP2, there exists the very successful resolution of the identity
MP2 (RI-MP2) approximation.147 It can signi�cantly reduce the computational cost and
storage requirements compared to the canonical MP2 method, while keeping the same
formal scaling. Its basic idea is to decompose the 4-index ERIs into the contraction of 3-
index quantities. The nowadays most commonly used variant inserts an approximate
resolution of the identity in the Coulomb metric into the ERIs, i.e.

(ia|jb) ≈
∑
KL

(ia|K)V −1
KL(L|jb), (3.37)

where the |K) are one-electron basis functions that span the so-called auxiliary basis
set and

VKL = (K|L) =

∫∫
ψK(r1)

1

r12

ψL(r2)dr1dr2 (3.38)
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is the overlap matrix between the auxiliary basis functions in the Coulomb metric.
This was originally called the “V approximation”.148 In practice, the inverse matrix is
usually condensed into the auxiliary basis functions, e.g. symmetrically via

|K̃) =
∑
L

|L)V
−1/2
LK , (3.39)

which leads to
(ia|jb) ≈

∑
K

(ia|K̃)(K̃|jb). (3.40)

This corresponds to a Löwdin symmetric orthonormalization of the auxiliary basis
functions in the Coulomb metric. In matrix notation, the contraction in Eq. (3.40) can
be written as

K(ij) = I(i)T I(j), (3.41)
where

I
(i)
Ka = (ia|K̃) (3.42)

are matrices containing the 3-index integrals and the exchange integral matrices

K
(ij)
ab ≈ (ia|jb) (3.43)

contain the RI-approximated 4-index integrals. In these equations, superscript labels
are storage indices, while subscript labels are row and column indices of the matrices.
Along those lines, we implemented an RI version of DCD-CAS(2), which is particularly
suited for large systems where the storage of all 4-index integrals (ia|jb) would be
costly. It was inspired by the unpublished implementation of RI-NEVPT2 in ORCA. In
an RI calculation, the contraction in Eq. (3.41) scales as the 5th power of the number of
basis functions. Any redundancy in this step should therefore be avoided, especially
for the excitation classes with two virtual labels, which dominate the computational
cost. For these classes, we avoid reduncancy by always treating two excitation patterns
together: (20|...|20) with (20|...|11), (11|...|20) with (11|...|11), (21|...|20) with (21|...|11) and
(22|...|20) with (22|...|11). For each set of inactive and/or active labels, we �rst contract
the corresponding integral matrices as shown in Eq. (3.41). Then we use the obtained
4-index integrals to calculate their contributions in both relevant occupation patterns.
As an example, the exchange integral matrix K(ii) for a given inactive orbital i can be
used to calculate contributions to the correlation energy for both the (20|...|20) and the
(20|...|11) occupation patterns.

3.1.4. Di�erent variants of DCD-CAS(2) investigated in this
work

So far, we have introduced several di�erent variants of DCD-CAS(2) that will be com-
pared in Chapter 4. We distinguish between the conventional scheme (DCD-CAS(2),
fully including all excitation classes) and the “di�erence-dedicated” scheme DD-DCD-
CAS(2) = D3CD-CAS(2). In this scheme, the ij → ab class is left out of the treatment
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and only a correction is made to the total energy that is equal for all roots (Eq. (3.36)).
We also compare the performance of the bias correction scheme introduced in Section
3.1.2 with the uncorrected DCD-CAS(2) energies. The bias correction (up to nth or-
der) may be indicated by bc(n)-DCD-CAS(2) but we will leave out the parentheses for
the 1st order correction Eq. (3.6), which is our default choice. Hence, the di�erence-
dedicated variant with a 1st order bias correction would be given the acronym bc-
D3CD-CAS(2). These acronyms were only established for the purpose of comparison
and were dropped once the most e�ective method was established.88

3.2. HQD-NEVPT2

It was already mentioned in the introduction that we observed problems in DCD-
CAS(2) that could be traced back to the use of a state-averaged Dyall Hamiltonian.
We will present these results later in Section 5.3. This brought us to the idea of using
multi-partitioning, which makes use of state-speci�c 0th order energies. In order to
keep the desirable property of a Hermitian e�ective Hamiltonian that is present in the
DCD-CAS(2) method, our aim was to formulate a form of multi-partitioning that leads
to a Hermitian e�ective Hamiltonian, which is the topic of this section.
Our new idea was that in analogy to Eq. (2.56) one can use multiple partitionings of
the Hamiltonian to express the relevant block of the operator G of the canonical Van
Vleck approach as

QGP = −
∑
I

RI(I)[H0(I), G]|Ψ(0)
I 〉〈Ψ

(0)
I |. (3.44)

Note that this expression is exact. Using the relation106

[H0(I), G] = −[VD(I), G]− VX(I)− 1

3
[[VX(I), G], G]− . . . , (3.45)

one can expand G in powers of the perturbation operators V (I) and compare both
sides of Eq. (3.44) order by order. This leads to the explicit expressions

QG(1)P =
∑
I

RI(I)H|Ψ(0)
I 〉〈Ψ

(0)
I |, (3.46)

QG(2)P =
∑
I

RI(I)VD(I)RI(I)H|Ψ(0)
I 〉〈Ψ

(0)
I |

−
∑
IJ

RI(I)RJ(J)H|Ψ(0)
J 〉〈Ψ

(0)
J |VD(I)|Ψ(0)

I 〉〈Ψ
(0)
I |,

(3.47)
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QG(3)P =
∑
I

RI(I)VD(I)RI(I)VD(I)RI(I)H|Ψ(0)
I 〉〈Ψ

(0)
I |

−
∑
I,I′

RI(I)VD(I)RI(I)RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |VD(I)|Ψ(0)

I 〉〈Ψ
(0)
I |

−
∑
I,I′

RI(I)RI′(I
′)VD(I ′)RI′(I

′)H|Ψ(0)
I′ 〉〈Ψ

(0)
I′ |VD(I)|Ψ(0)

I 〉〈Ψ
(0)
I |

+
∑
I,I′,I′′

RI(I)RI′(I
′)RI′′(I

′′)H|Ψ(0)
I′′ 〉〈Ψ

(0)
I′′ |VD(I ′)|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |VD(I)|Ψ(0)

I 〉〈Ψ
(0)
I |

−1

3

∑
I,I′

RI(I)H|Ψ(0)
I′ 〉〈Ψ

(0)
I′ |HRI′(I

′)RI(I)H|Ψ(0)
I 〉〈Ψ

(0)
I |

−2

3

∑
I,I′

RI(I)RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRI(I)H|Ψ(0)

I 〉〈Ψ
(0)
I |

−1

3

∑
I,I′

RI(I)RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRI′(I

′)H|Ψ(0)
I 〉〈Ψ

(0)
I |.

(3.48)
Similarly, higher orders can be obtained straightforwardly, although the explicit ex-
pressions in terms of the resolvent get quickly cumbersome. The canonical Van Vleck
e�ective Hamiltonian can be written order by order as

He�(0−1) = PHP, (3.49)

He�(2) =
1

2
P [H,G(1)]P, (3.50)

He�(3) =
1

2
P [H,G(2)]P, (3.51)

He�(4) =
1

2
P [H,G(3)]P − 1

24
P [[[H,G(1)], G(1)], G(1)]P. (3.52)

These equations can be derived from Eq. (46) of Shavitt and Redmon106 by projection
with P from left and right. An important observation is that one can replace VX in
these equations by H since PVXQ = PHQ. The equations for the e�ective Hamilto-
nian are apparently independent of a particular Hamiltonian partitioning. They only
implicitly depend on the partitioning through the G(n). The analogy to Eq. (2.46) in
canonical Van Vleck perturbation theory is106

He�(0−2) = PHP +
1

2
P [H,G(1)]P. (3.53)

Using the expression of G(1) in terms of the resolvent, Eq. (3.46), this e�ective Hamil-
tonian can be written

He�(0−2) = PHP +
1

2
PHQG(1)P − 1

2
PG(1)QHP

= PHP +
1

2

∑
I

PHRI(I)H|Ψ(0)
I 〉〈Ψ

(0)
I |+

1

2

∑
I

|Ψ(0)
I 〉〈Ψ

(0)
I |HRI(I)HP

(3.54)
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and its matrix representation is

H
e�(0−2)
IJ = HIJ +

1

2

∑
K

〈Ψ(0)
I |H|Ψ

(0)
K (J)〉〈Ψ(0)

K (J)|H|Ψ(0)
J 〉

E
(0)
J − E

(0)
K (J)

+
1

2

∑
K

〈Ψ(0)
I |H|Ψ

(0)
K (I)〉〈Ψ(0)

K (I)|H|Ψ(0)
J 〉

E
(0)
I − E

(0)
K (I)

.

(3.55)

Like Eq. (2.50), this is simply the Hermitized version of the usual multi-partitioning
QDPT e�ective Hamiltonian based on intermediate normalization,

H
e�(0−2)
(MP-C) =

1

2
(H

e�(0−2)
(MP-I) +H

e�(0−2)†
(MP-I) ). (3.56)

Here, the label MP stands for multi-partitioning. We should note that many popular
quantum chemistry packages already implement Eq. (3.56) by performing an ad hoc
Hermitization of the non-Hermitian e�ective Hamiltonian even for methods based on
multi-partitioning. In contrast to such approaches, the multi-partitioning version of
canonical Van Vleck perturbation theory has been obtained here for the �rst time on a
sound theoretical basis, which endows the results with a clear physical meaning. For
completeness, we also write out the 3rd and 4th order in more detail, for which one
obtains

H
e�(3)
IJ =

1

2
〈Ψ(0)

I |HRJ(J)V (J)RJ(J)H|Ψ(0)
J 〉

− 1

2

∑
I′

〈Ψ(0)
I |HRJ(J)RI′(I

′)H|Ψ(0)
I′ 〉〈Ψ

(0)
I′ |V (J)|Ψ(0)

J 〉+ H.c.,
(3.57)

H
e�(4)
IJ =

1

2
〈Ψ(0)

I |HRJ(J)V (J)RJ(J)V (J)RJ(J)H|Ψ(0)
J 〉

− 1

2
〈Ψ(0)

I |HRJ(J)V (J)RJ(J)
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |V (J)|Ψ(0)

J 〉

− 1

2
〈Ψ(0)

I |HRJ(J)
∑
I′

RI′(I
′)V (I ′)RI′(I

′)H|Ψ(0)
I′ 〉〈Ψ

(0)
I′ |V (J)|Ψ(0)

J 〉

+
1

2
〈Ψ(0)

I |HRJ(J)
∑
I′

RI′(I
′)
∑
I′′

RI′′(I
′′)H|Ψ(0)

I′′ 〉〈Ψ
(0)
I′′ |V (I ′)|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |V (J)|Ψ(0)

J 〉

− 1

6
〈Ψ(0)

I |HRJ(J)H
∑
I′

|Ψ(0)
I′ 〉〈Ψ

(0)
I′ |HRI′(I

′)RJ(J)H|Ψ(0)
J 〉

− 1

3
〈Ψ(0)

I |HRJ(J)
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRJ(J)H|Ψ(0)

J 〉 (3.58)

− 1

6
〈Ψ(0)

I |HRJ(J)
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRI′(I

′)H|Ψ(0)
J 〉
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+
1

24
〈Ψ(0)

I |H
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRI′(I

′)RJ(J)H|Ψ(0)
J 〉

+
1

12
〈Ψ(0)

I |HRI(I)H
∑
I′

|Ψ(0)
I′ 〉〈Ψ

(0)
I′ |HRI′(I

′)RJ(J)H|Ψ(0)
J 〉

+
1

24
〈Ψ(0)

I |HRI(I)
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRJ(J)H|Ψ(0)

J 〉+ H.c.

Here, H.c. stands for the Hermitian conjugate of all terms that are explicitly written
out. If the |Ψ(0)

I 〉 are CASCI states and CASCI energies are used as 0th order energies
like for the Dyall Hamiltonian, the 1st order correction to the e�ective Hamiltonian
vanishes, 〈Ψ(0)

I′ |V (J)|Ψ(0)
J 〉 = 0. Then the resulting corrections to the e�ective Hamil-

tonian are given by the simpli�ed expressions

H
e�(3)
IJ =

1

2
〈Ψ(0)

I |HRJ(J)V (J)RJ(J)H|Ψ(0)
J 〉+ H.c., (3.59)

H
e�(4)
IJ =

1

2
〈Ψ(0)

I |HRJ(J)V (J)RJ(J)V (J)RJ(J)H|Ψ(0)
J 〉

−1

6
〈Ψ(0)

I |HRJ(J)H
∑
I′

|Ψ(0)
I′ 〉〈Ψ

(0)
I′ |HRI′(I

′)RJ(J)H|Ψ(0)
J 〉

−1

3
〈Ψ(0)

I |HRJ(J)
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRJ(J)H|Ψ(0)

J 〉

−1

6
〈Ψ(0)

I |HRJ(J)
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRI′(I

′)H|Ψ(0)
J 〉

+
1

24
〈Ψ(0)

I |H
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRI′(I

′)RJ(J)H|Ψ(0)
J 〉

+
1

12
〈Ψ(0)

I |HRI(I)H
∑
I′

|Ψ(0)
I′ 〉〈Ψ

(0)
I′ |HRI′(I

′)RJ(J)H|Ψ(0)
J 〉

+
1

24
〈Ψ(0)

I |HRI(I)
∑
I′

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ |HRJ(J)H|Ψ(0)

J 〉+ H.c.

(3.60)

While we will focus on the 2nd order variant in the following, we might consider the
implementation of higher orders in future work.
Concerning the concrete implementation of the 2nd order version, we �rst assume
that the Hamiltonian can be written

H = Hscal = H0(I) + V scal(I), (3.61)

i.e. it is a spin-independent (scalar) operator, e.g. the nonrelativistic electronic Hamil-
tonian or the ZORA149,150 or DKH151,152 scalar-relativistic Hamiltonian, and I is a label
for the CASCI states. In this case, one can focus on the principal component (M = S)
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of each CASCI spin multiplet and write the multi-partitioning canonical Van Vleck
e�ective Hamiltonian for total spin S as

He�,S
IJ = 〈ΨSS

I |H|ΨSS
J 〉+

1

2

∑
K

〈ΨSS
I |H|ΨSS

K (J)〉〈ΨSS
K (J)|H|ΨSS

J 〉
E

(0)
J − E

(0)
K (J)

+ H.c. (3.62)

We propose to choose the multiple partitionings such that H0(I) are the 0th order
Hamiltonians of the state-speci�c strongly contracted or partially contracted NEVPT2.
Then Eq. (3.62) is precisely the Hermitized version of the usual QD-NEVPT290 e�ec-
tive Hamiltonian. In the results presented in this paper, we restrict ourselves to the
strongly contracted variant. It should be mentioned that, thanks to the simple relation
between the QD-NEVPT2 and HQD-NEVPT2 e�ective Hamiltonians, HQD-NEVPT2
automatically inherits desirable properties like size consistency.

3.3. Incorporation of spin-dependent e�ects
We now consider a Hamiltonian that contains spin-independent (scalar) terms and
additional, possibly spin-dependent, terms that are combined in the operator V spin,

H = Hscal + V spin. (3.63)

Examples are the operators introduced in Section 2.2.2. A straightforward application
of the DCD-CAS(2) formalism using this Hamiltonian leads to

〈ΦSM
I |HDCD|ΦS′M ′

J 〉 =

〈ΦSM
I |Hscal + V spin|ΦS′M ′

J 〉 −
∑

K∈FOIS

〈ΦSM
I |Hscal + V spin|Φ̃K〉〈Φ̃K |Hscal + V spin|ΦS′M ′

J 〉
EK − E0

.

(3.64)
In contrast to the spin-independent case, now di�erent total spins S and all their M
components have to be included in the model space because they can be mixed by the
perturbation. The lowest non-vanishing contributions that introduce dynamic cor-
relation arise at 2nd order of perturbation theory, while the 1st order contribution
vanishes since it simply leads to the CASCI matrix. This is in contrast to the spin-
dependent operators, which already make a nonzero contribution at 1st order. We
therefore choose to keep only the lowest-order term for each of the two e�ects (i.e.
neglect V spin in the 2nd order correction to the e�ective Hamiltonian) and arrive at

〈ΦSM
I |HDCD|ΦS′M ′

J 〉 = δSS′δMM ′HDCD,S
IJ + 〈ΦSM

I |V spin|ΦS′M ′

J 〉, (3.65)

whereHDCD,S
IJ is the scalar DCD-CAS(2) e�ective Hamiltonian for a certain spin S; see

Eq. (3.2). Note that this expression also implies that state-speci�c 0th order energies
E0 are used for di�erent multiplicities. The form of this e�ective Hamiltonian is very
similar to QDPT (Eq. (2.78)) including all CASCI roots (called CI-SOC previously153),
but expressed in the basis of CSFs instead of the basis of CASCI roots and with the
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3.4. Evaluation of matrix elements of spin-dependent operators

scalar DCD-CAS(2) e�ective Hamiltonian instead of the CASCI Hamiltonian. The ef-
fective Hamiltonian Eq. (3.65), just like Eq. (3.2), su�ers from the ground state bias.
In practice, we therefore replace the scalar DCD Hamiltonian by a back-transformed
Hamiltonian of the form

HDCD,S,corr = CDCDE(CDCD)T , (3.66)

where CDCD are the state coe�cients obtained from diagonalizing the DCD-CAS(2)
Hamiltonian Eq. (3.2). E is a diagonal matrix containing the di�erence-dedicated
DCD-CAS(2) energies including 1st order bias correction for all roots over which
the CASSCF is averaged, and containing the uncorrected di�erence-dedicated DCD-
CAS(2) energies for all remaining roots. The reason for this procedure is the possible
divergence of the bias correction expression for very high-energy roots of the CI space,
which can happen if the geometric series Eq. (3.4) used for the derivation of the bias
correction is outside its radius of convergence. The �nal form of the spin-dependent
DCD-CAS(2) e�ective Hamiltonian is89

〈ΦSM
I |HDCD|ΦS′M ′

J 〉 = δSS′δMM ′HDCD,S,corr
IJ + 〈ΦSM

I |V spin|ΦS′M ′

J 〉. (3.67)

In order to construct it, �rst the scalar DCD-CAS(2) problem is solved for each spin
S to construct the matrix HDCD,S,corr and then the matrix elements of the operators V
are calculated in the basis of CSFs |ΦSM

I 〉.
In a similar fashion, we consider the inclusion of spin-dependent e�ects into the Hamil-
tonian for HQD-NEVPT2, i.e.

H = Hscal + V spin = H0(I) + V scal(I) + V spin. (3.68)

Like in the scalar version of the theory introduced in the previous Section 3.2, the state-
speci�c strongly contracted NEVPT2 0th order Hamiltonians are used as H0(I). We
choose the same pragmatic approach as in the spin-dependent DCD-CAS(2) method:
V spin is only kept to 1st order in the e�ective Hamiltonian, while the V scal(I) are kept
to 1st and 2nd order in the e�ective Hamiltonian. This results in the e�ective Hamil-
tonian

〈ΨSM
I |He�|ΨS′M ′

J 〉 = δSS′δMM ′He�,S
IJ + 〈ΨSM

I |V spin|ΨS′M ′

J 〉. (3.69)
It bears similarities with the 1st order QDPT (Eq. (2.78)) and spin-dependent DCD-
CAS(2) (Eq. (3.67)) methods and contains at the same time dynamic and static corre-
lation as well as spin-dependent e�ects.
The evaluation of the matrix elements of V spin is identical for HQD-NEVPT2 and the
spin-dependent DCD-CAS(2) method and will be described below.

3.4. Evaluation of matrix elements of
spin-dependent operators

In this section, we discuss how to calculate matrix elements of the spin-dependent op-
erators between CSFs belonging to a CAS. We will make use of spin-tensor properties
and the Wigner-Eckart theorem98 throughout.
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3.4.1. One-electron operators
An arbitrary one-electron operator A in Fock space can be written as a sum of singlet
and triplet components (see Appendix A.1 for a simple proof of this fact)

A = AS + AT , (3.70)

AT =
∑

m=0,±1

A
(m)
T (m), (3.71)

with the singlet part having the form

AS =
∑
pq

apqEpq (3.72)

and the m-component of the triplet part having the form

A
(m)
T (m′) =

∑
pq

apq(m
′)s(m)

pq . (3.73)

Epq was de�ned in Eq. (2.1) and the three operators

s(m)
pq =

∑
στ=α,β

s(m)
στ a

†
pσaqτ (3.74)

are the three components of the triplet single-excitation operator. More explicitly,
they are given by

s(+1)
pq = − 1√

2
a†pαaqβ, (3.75)

s(0)
pq =

1

2
(a†pαaqα − a

†
pβaqβ), (3.76)

s(−1)
pq =

1√
2
a†pβaqα. (3.77)

By employing the Wigner-Eckart theorem, the matrix elements of the singlet part are

〈ΦSM
I |AS|ΦS′M ′

J 〉 = δSS′δMM ′〈ΦSS
I |AS|ΦSS

J 〉 = δSS′δMM ′

∑
pq

apq〈ΦSS
I |Epq|ΦSS

J 〉

(3.78)
and the matrix elements of the triplet part are

〈ΦSM
I |AT |ΦS′M ′

J 〉 =∑
m=0,±1

〈ΦSM
I |A

(m)
T (m)|ΦS′M ′

J 〉 =
∑

m=0,±1

(
S ′ 1 S
M ′ m M

)
Y SS′

IJ (m).
(3.79)

Note that the label m for the reduced matrix element (RME) Y SS′
IJ (m) corresponds

to m′ in Eq. (3.73); i.e. it is a label for the spatial operator with respect to which the
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3.4. Evaluation of matrix elements of spin-dependent operators

RME is de�ned. In earlier work dealing exclusively with SOC,35,154 the spatial operator
multiplying sm was the −m-component of a vector operator (see Eq (3.85) below)
because the total SOC operator is a scalar. In that case, the label −m was used for the
RMEs and hence what we denote here as Y SS′

IJ (m) was previously called Y SS′
IJ (−m).

We have changed the notation in order to be able to treat the general case, where
operators (e.g. the components of the magnetic hyper�ne �eld) are not necessarily
scalar, and therefore the spatial operators are labeled by the m of the spin operator
which they multiply; see Eqs. (3.71) and (3.73). From the selection rules of the Clebsch-
Gordan coe�cients (CGC) in Eq. (3.79) one knows that the matrix element of a triplet
operator can only be nonzero if ∆S = 0,±1 and ∆M = 0,±1. This means that
only RMEs of the form Y SS

IJ (m), Y S,S−1
IJ (m) and Y S,S+1

IJ (m) (with m = −1, 0, 1) need
to be calculated. Furthermore, we only consider Hermitian operators in this work,
which means that we can restrict ourselves to the calculation of the upper triangle of
the matrix 〈ΦSM

I |AT |ΦS′M ′
J 〉. Using Eq. (3.79) for a matrix element between principal

component states (with M = S) and inserting explicit expressions for the CGC as a
function of S (see Appendix A.2), the RMEs are given by the expressions

Y SS
IJ (m′) =

√
S(S + 1)

S
〈ΦSS

I |A
(0)
T (m′)|ΦSS

J 〉

=

√
S(S + 1)

2S

∑
pq

apq(m
′)〈ΦSS

I |2s(z)
pq |ΦSS

J 〉,
(3.80)

Y S,S−1
IJ (m′) = 〈ΦSS

I |A
(+1)
T (m′)|ΦS−1,S−1

J 〉

= − 1√
2

∑
pq

apq(m
′)〈ΦSS

I |s(+)
pq |Φ

S−1,S−1
J 〉, (3.81)

Y S,S+1
IJ (m′) =

√
2S + 3

2S + 1
〈ΦSS

I |A
(−1)
T (m′)|ΦS+1,S+1

J 〉

=
1√
2

√
2S + 3

2S + 1

∑
pq

apq(m
′)〈ΦSS

I |s(−)
pq |Φ

S+1,S+1
J 〉.

(3.82)

Since we know that matrix elements are evaluated between CAS CSFs, the expressions
for matrix elements obtained so far can be simpli�ed further, based on the di�erence
of occupation numbers. If the two CFGs di�er by two or more excitations, the matrix
element will be 0. If they di�er by one excitation, then the RME will be equal to a
single integral times a coupling coe�cient. If the two CFGs are identical, there will
remain a single sum over orbitals including diagonal elements of the integrals. For
triplet operators we can in this case exclude inactive orbitals from the sum, since

s
(m)
ii |ΦSM

J 〉 = 0. (3.83)

The general methodology presented so far can be used to calculate matrix elements
of arbitrary one-electron operators. All one has to do is specify the operator via the
integrals apq and apq(m′) of Eqs. (3.72) and (3.73), which we will do in the following for
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the one-electron operators considered in this work. We can write the SOMF operator
in Fock space as

HSOMF =
∑
m

∑
pq

(−1)mz(−m)
pq s(m)

pq . (3.84)

Hence, in this case we identify

apq(m) = (−1)mz(−m)
pq . (3.85)

The Fock space version of the l component (l = x, y, z) of the hyper�ne �eld operator
at position RA is

B
(l)
HFC(RA) =

α2

−∑
pq

(
l
A(l)
i

r3
iA

)
pq

Epq −
ge
2

8π

3

∑
pq

ψ∗p(RA)ψq(RA)s(l)
pq −

ge
2

3∑
k=1

∑
pq

V (lk)
pq s(k)

pq

 ,

(3.86)
where ψp is the pth MO and

V (lk)
pq = 〈p|3r

(l)
iAr

(k)
iA − δklr2

iA

r5
iA

|q〉 (3.87)

are electric �eld gradient integrals. For the FC operators, the integrals needed for
evaluation of Eqs. (3.80)–(3.82) are

apq(+1) = − 1√
2
ψ∗p(RA)ψq(RA), (3.88)

apq(−1) =
1√
2
ψ∗p(RA)ψq(RA) (3.89)

for the operator
∑
pq

ψ∗p(RA)ψq(RA)s
(x)
pq ,

apq(+1) = apq(−1) =
i√
2
ψ∗p(RA)ψq(RA) (3.90)

for the operator
∑
pq

ψ∗p(RA)ψq(RA)s
(y)
pq and

apq(0) = ψ∗p(RA)ψq(RA) (3.91)

for the operator
∑
pq

ψ∗p(RA)ψq(RA)s
(z)
pq , with all other apq(m) being zero. For the SD

operator
3∑

k=1

∑
pq

V
(lk)
pq s

(k)
pq one obtains

apq(+1) =
1√
2

(−V (lx)
pq + iV (ly)

pq ), (3.92)
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apq(0) = V (lz)
pq , (3.93)

apq(−1) =
1√
2

(V (lx)
pq + iV (ly)

pq ). (3.94)

These integrals can be inserted into general functions to calculate matrix elements
according to Eqs. (3.80) to (3.82) and (3.79). SOC is however a special case since no
matrix element has to be calculated in the case that two CFGs are equal. This is because
the diagonal integrals z(−m)

pp are Hermitian and purely imaginary and hence 0. For the
spin Zeeman operator (which is a triplet operator) we also do not use this general
machinery, since the action of the total spin operator only depends on the quantum
numbers S and M , and not on any other details of the CSFs.

3.4.2. The spin-spin coupling operator
An arbitrary two-electron operator can, in analogy to Eq. (3.70), be written as a sum
of singlet, triplet, and quintet spin tensor components. We will however not discuss
this most general case, since we are only interested in the SSC operator Eq. (2.10),
which is a pure quintet operator (vide infra). The SSC operator (which is a scalar) can
be expressed as the dot product of two Cartesian tensors,

HSSC =
3∑

k,l=1

∑
i<j

d
(kl)
ij s

(k)
i s

(l)
j , (3.95)

where the Cartesian components of the two-electron electric �eld gradient operator
are given by

d
(kl)
12 = −g

2
eα

2

4

3r
(k)
12 r

(l)
12 − δklr2

12

r5
12

. (3.96)

Here the prefactor is included for convenience. Note that this is a traceless symmetric
tensor, which means it only has a rank 2 (and no rank 1 or rank 0) part.155 Replacing the
Cartesian tensor components by spherical ones, the SSC operator assumes the form

HSSC =
∑

m=0,±1,±2

(−1)m
∑
i<j

d
(−m)
ij S

(m)
ij , (3.97)

where S(m) are the �ve quintet operators acting on the four-dimensional space of two
coupled spin-1/2 systems. They are discussed in more detail in Appendix A.3. The
Fock space version of the SSC operator can then be written

HSSC =
∑

m=0,±1,±2

H
(m)
SSC (m), (3.98)

H
(m)
SSC (m′) =

(−1)m
′

2

∑
pqrs

d(−m′)
pqrs S(m)

pqrs. (3.99)
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Here the two-electron electric �eld gradient integrals in physicists’ notation95 are

d(−m)
pqrs = 〈pq|d(−m)

12 |rs〉. (3.100)

In this work, we use the RI approximation for these integrals.156 The components of
the quintet double excitation operator are given by

S(m)
pqrs =

∑
στλκ

〈στ |S(m)|λκ〉a†pσa†qτasκarλ. (3.101)

More explicitly, they are

S(+2)
pqrs =

1

2
s(+)
pr s

(+)
qs , (3.102)

S(+1)
pqrs = −1

2
[s(z)
pr s

(+)
qs + s(+)

pr s
(z)
qs ], (3.103)

S(0)
pqrs =

1

2
√

6

[
4s(z)

pr s
(z)
qs − δqrEps +

1

2
(EpsEqr − 4s(z)

ps s
(z)
qr )

]
, (3.104)

S(−1)
pqrs =

1

2
[s(z)
pr s

(−)
qs + s(−)

pr s
(z)
qs ], (3.105)

S(−2)
pqrs =

1

2
s(−)
pr s

(−)
qs . (3.106)

Using Eq. (3.98) we can, like we did above, express matrix elements via the Wigner-
Eckart theorem,

〈ΦSM
I |HSSC|ΦS′M ′

J 〉 =
∑

m=0,±1,±2

(
S ′ 2 S
M ′ m M

)
XSS′

IJ (m). (3.107)

After using the selection rules ∆S = 0,±1,±2 and ∆M = 0,±1,±2 there are �ve
kinds of SSC RMEs that need to be calculated. Similarly to the one-electron case, they
can be expressed in terms of principal components (using the CGCs in Appendix A.2)

XSS
IJ (m′) =

√
(S + 1)(2S + 3)

S(2S − 1)
〈ΦSS

I |H
(0)
SSC(m′)|ΦSS

J 〉

=
(−1)m

′

2

√
(S + 1)(2S + 3)

S(2S − 1)

∑
pqrs

d(−m′)
pqrs 〈ΦSS

I |S(0)
pqrs|ΦSS

J 〉
(3.108)

XS,S−1
IJ (m′) =

√
S + 1

S − 1
〈ΦSS

I |H
(+1)
SSC (m′)|ΦS−1,S−1

J 〉

=
(−1)m

′

2

√
S + 1

S − 1

∑
pqrs

d(−m′)
pqrs 〈ΦSS

I |S(+1)
pqrs |Φ

S−1,S−1
J 〉

(3.109)

XS,S−2
IJ (m′) = 〈ΦSS

I |H
(+2)
SSC (m′)|ΦS−2,S−2

J 〉

=
(−1)m

′

2

∑
pqrs

d(−m′)
pqrs 〈ΦSS

I |S(+2)
pqrs |Φ

S−2,S−2
J 〉

(3.110)
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XS,S+1
IJ (m′) =

√
(S + 2)(2S + 3)

S(2S + 1)
〈ΦSS

I |H
(−1)
SSC (m′)|ΦS+1,S+1

J 〉

=
(−1)m

′

2

√
(S + 2)(2S + 3)

S(2S + 1)

∑
pqrs

d(−m′)
pqrs 〈ΦSS

I |S(−1)
pqrs |Φ

S+1,S+1
J 〉

(3.111)

XS,S+2
IJ (m′) =

√
2S + 5

2S + 1
〈ΦSS

I |H
(−2)
SSC (m′)|ΦS+2,S+2

J 〉

=
(−1)m

′

2

√
2S + 5

2S + 1

∑
pqrs

d(−m′)
pqrs 〈ΦSS

I |S(−2)
pqrs |Φ

S+2,S+2
J 〉.

(3.112)

In order to achieve an e�cient implementation, these equations can be further sim-
pli�ed based on a knowledge of the occupation number di�erences of states I and J ,
and by using special properties of the quintet double excitation operators. Here we
follow the discussion of Gilka et al.157 Two essential ingredients of their derivation are
what they call “selection rules” and a “permutational relation”. While they introduce
them on the level of matrix elements, we prefer to discuss them on the level of the
quintet double excitation operators. The permutational relation then corresponds to
the statement that

S(m)
pqrs = −S(m)

pqsr = −S(m)
qprs = S(m)

qpsr, (3.113)
from which it trivially follows that

S(m)
pqrr = S(m)

pprs = 0, (3.114)

which is our analogue of the selection rules. Our proof of the permutational relation
Eq. (3.113) is given in Appendix A.3. Using Eqs. (3.113) and (3.114), we arrive at∑

pqrs

d(m′)
pqrs〈ΦSM

I |S(m)
pqrs|ΦS′M ′

J 〉 = 2
∑
p<q

[d(m′)
pqpq − d(m′)

pqqp]〈ΦSM
I |S(m)

pqpq|ΦS′M ′

J 〉 (3.115)

if I and J have identical occupation numbers,∑
pqrs

d(m′)
pqrs〈ΦSM

I |S(m)
pqrs|ΦS′M ′

J 〉 = 2
∑
p

(p 6=t,u)

[d
(m′)
tpup − d

(m′)
tppu]〈ΦSM

I |S
(m)
tpup|ΦS′M ′

J 〉 (3.116)

if they di�er by a single excitation t→ u (we use active orbital labels since CSFs from
a CAS have identical occupation numbers in the inactive and virtual orbital spaces)
and ∑

pqrs

d(m′)
pqrs〈ΦSM

I |S(m)
pqrs|ΦS′M ′

J 〉 = 2[d
(m′)
tuvw − d

(m′)
tuwv]〈ΦSM

I |S
(m)
tuvw|ΦS′M ′

J 〉 (3.117)

if they di�er by a double excitation tu→ vw (with t 6= u, v 6= w). Furthermore, it was
pointed out by Gilka et al. that closed shells do not contribute,157 which means that
orbitals p and q in Eqs. (3.115) and (3.116) that are doubly occupied in both bra and ket
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can be removed from the summations. This is because the operators S(m)
prqr and S(m)

rprq

produce 0 when they act on a wavefunction in which orbital r is doubly occupied.
Our own proof of this fact is presented in Appendix A.4. To stay in line with the
implementation of SSC within the MRCI/QDPT framework in ORCA,158 only matrix
elements of the SSC operator between states of the same multiplicity are considered
in the following.

3.5. Formal properties of the methods

3.5.1. Lack of size consistency of DCD-CAS(2)
Size consistency is a desirable property for any quantum-chemical method. There is
some ambiguity in this term and it is sometimes used interchangeably with the term
size extensivity.159,160 We understand size consistency as the exact additivity of the
energy of two noninteracting systems A and B. Size consistency is often related to
multiplicative separability of the wavefunction.161

Unfortunately, the DCD-CAS(2) method is not strictly size-consistent. To understand
why, it is important to understand the reason for size consistency of the CASSCF
method. We assume that all orbitals of the supersystemAB of the two noninteracting
systems are localized on either of the fragments, which can always be chosen like this
when using a one-electron basis set consisting of atom-centered functions. Under this
condition, one can show that the Fock space BO Hamiltonian HAB is just the sum of
the corresponding operatorsHA andHB of the isolated systems.96 The same is true for
the Dyall Hamiltonian.61 The reason is that a one- or two-electron integral can only
be nonzero if all involved orbitals are located on the same subsystem. We assume
additionally that a CASSCF calculation on the supersystem yields inactive, active and
virtual orbital spaces that are the combinations of the corresponding orbital spaces of
the fragments.
The fragment Hamiltonians HA and HB clearly conserve the local electron numbers
NA and NB , since they do not contain excitations between orbitals located on di�er-
ent fragments. The same is therefore also true for their sum HAB . This means that
the total Hamiltonian HAB is block diagonal in the supersystem CASCI space, with
di�erent blocks corresponding to di�erent distributions of electrons over the two sub-
systems. The block belonging to a certain choice of electron numbers NA and NB has
the matrix form

HAB = HA ⊗ 1B + 1A ⊗HB, (3.118)

which leads to the eigenstates of HAB being given as antisymmetrized products (ten-
sor products) of the eigenstates of HA and HB (multiplicative separability) and the
corresponding eigenenergies being the sum of the fragment energies (additive sepa-
rability).96,161 This concludes the proof of size consistency of CASSCF under the stated
assumptions. Ideally, the DCD-CAS(2) Hamiltonian should share this property, such
that

HDCD,AB = HDCD,A ⊗ 1B + 1A ⊗HDCD,B. (3.119)
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The 0th and 1st order contribution to the DCD-CAS(2) Hamiltonian is just the CASCI
matrix, which is separable as we have just shown. Therefore we would only have to
show that the 2nd order dynamic correlation contribution alone is separable for Eq.
(3.119) to be true. For the supersystem AB, we only need to consider perturbers that
preserve the electron numbers in the two subsystems, since the total Hamiltonian con-
serves these numbers. Also, since the total Hamiltonian is additive, it cannot connect
perturbers that involve excitations on both subsystems. More explicitly, one has
〈ΦA

I ΦB
J |HAB|ΦA

KΦB
L 〉 = 〈ΦA

I |HA|ΦA
K〉 〈ΦB

J |ΦB
L 〉︸ ︷︷ ︸

=0

+ 〈ΦA
I |ΦA

K〉︸ ︷︷ ︸
=0

〈ΦB
J |HB|ΦB

L 〉 = 0.

(3.120)
Therefore, the most general perturber function that can make a non-vanishing con-
tribution can be written in tensor product form as |Φ̃AB

LI 〉 = |Φ̃A
L〉 ⊗ |ΨB

I 〉 or |Φ̃AB
IL 〉 =

|ΨA
I 〉 ⊗ |Φ̃B

L 〉, where |ΨA
I 〉 and |ΨB

I 〉 are eigenfunctions of the CASCI Hamiltonians of
subsystems A and B with eigenenergies EA,(0)

I and EB,(0)
I . Using the additivity of the

Dyall Hamiltonian, HDyall,AB = HDyall,A +HDyall,B , one obtains

HDyall,AB
∣∣∣Φ̃A

L

〉
⊗
∣∣ΨB

I

〉
=
(
EA
L + E

B,(0)
I

) ∣∣∣Φ̃A
L

〉
⊗
∣∣ΨB

I

〉
,

HDyall,AB ∣∣ΨA
I

〉
⊗
∣∣∣Φ̃B

L

〉
=
(
E
A,(0)
I + EB

L

) ∣∣ΨA
I

〉
⊗
∣∣∣Φ̃B

L

〉
.

(3.121)

Thus, these perturbers indeed diagonalize the supersystem Dyall Hamiltonian. By
choosing the main model space 0th order energy to be additive, EAB

0 = EA
0 +EB

0 (e.g.
by choosing CASCI ground state energies), the 2nd order dressing for the complete
system in the basis of tensor product CASCI roots (for those we use compound labels
IJ and MN , the �rst index referring to a CASCI root of subsystem A and the second
index to a root of subsystem B) is given by

H
DCD,AB(2)
IJ,MN =

∑
K

〈
ΨA
I ΨB

J |HAB|Φ̃AB
IK

〉〈
Φ̃AB
IK |HAB|ΨA

MΨB
N

〉
E
A,(0)
I + EB

K − EA
0 − EB

0

+
∑
K

〈
ΨA
I ΨB

J |HAB|Φ̃AB
KJ

〉〈
Φ̃AB
KJ |HAB|ΨA

MΨB
N

〉
EA
K + E

B,(0)
J − EA

0 − EB
0

=
∑
K

〈
ΨB
J |HB|Φ̃B

K

〉〈
Φ̃B
K |HB|ΨB

N

〉
E
A,(0)
I − EA

0 + EB
K − EB

0

δIM+
∑
K

〈
ΨA
I |HA|Φ̃A

K

〉〈
Φ̃A
K |HA|ΨA

M

〉
EA
K − EA

0 + E
B,(0)
J − EB

0

δJN .

(3.122)
On the other hand, to give a separable dynamic correlation correction, we would need
to have (see Eq. (3.119))

H
DCD,AB(2)
IJ,MN = H

DCD,A(2)
I,M δJN +H

DCD,A(2)
J,N δIM

=
∑
K

〈
ΨA
I |HA|Φ̃A

K

〉〈
Φ̃A
K |HA|ΨA

M

〉
EA
K − EA

0

δJN +
∑
K

〈
ΨB
J |HB|Φ̃B

K

〉〈
Φ̃B
K |HB|ΨB

N

〉
EB
K − EB

0

δIM .

(3.123)
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We see that the DCD-CAS(2) Hamiltonian is not size-consistent because in general
(unless the CASCI space is degenerate) we haveEB,(0)

J −EB
0 6= 0 andEA,(0)

I −EA
0 6= 0

for arbitrary I and J . If E0 is chosen to be the ground state CASSCF energy, the
denominators are then too large in the composite system due to the non-vanishing
terms, leading to a dynamic correlation correction that is underestimated compared
to the two individual systems. For the di�erence-dedicated scheme introduced before,
we note that the ij → ab contribution to the dressing matrix is exactly separable for
all cases, which is clear since MP2 gives separable energies.
One special case that is of interest is that of a closed-shell system A and an open-shell
system B, i.e. all active orbitals of the supersystem are located on B. We derived
above that only locally excited perturbers can make a non-vanishing contribution to
the e�ective Hamiltonian. Since only fragment B has active orbitals, all excitation
classes except ij → ab (where there are no active orbitals involved in the de�nition of
the perturbers) can only contain contributions of perturbers that consist of the ground
state on fragment A and a perturber on fragment B, i.e. |ΨA

0 Φ̃B
K〉. The 2nd order

dressing contribution due to these excitation classes is therefore

H
DCD,AB(2)
JN =

∑
K

〈ΨB
J |HB|Φ̃B

K〉〈Φ̃B
K |HB|ΨB

N〉
EB
K − EB

0

= H
DCD,B(2)
JN . (3.124)

Since the CASCI space on fragment A is one-dimensional, we dropped the super�u-
ous index for fragment A, which is why the dressing matrix on the left side of Eq.
(3.124) has only two indices in contrast to the four indices in Eq. (3.122). This shows
that for this special case (two noninteracting fragments of which one is closed-shell),
all excitation classes except ij → ab are exactly separable. Together with the sepa-
rability of the ij → ab contribution in the di�erence-dedicated scheme, this means
that di�erence-dedicated DCD-CAS(2) is exactly separable for the case of a closed-
shell fragment far apart from another fragment with active orbitals. This is the very
important property of core separability.74 It means that the results will for example
not deteriorate when treating metal complexes with large molecular ligands contain-
ing many atoms. For the non-di�erence-dedicated scheme, there will however be a
size-consistency error that comes from the ij → ab excitation class.
Another interesting observation arises under the assumption that the ground state
DCD-CAS(2) solutions for both the subsystems and the supersystem are identical to
the CASCI ground states, i.e. there is no state mixing. Then the 2nd-order contribution
to the energy is given by

E
DCD,AB(2)
0 = H

DCD,AB(2)
00,00

=
∑
K

〈ΨB
0 |HB|Φ̃B

K〉〈Φ̃B
K |HB|ΨB

0 〉
EB
K − EB

0

+
∑
K

〈ΨA
0 |HA|Φ̃A

K〉〈Φ̃A
K |HA|ΨA

0 〉
EA
K − EA

0

= E
DCD,A(2)
0 + E

DCD,B(2)
0 .

(3.125)

Here we assumed that the ground state CASCI energies are chosen asE0 for the DCD-
CAS(2) procedure. In reality, the assumption will never be exactly ful�lled except in
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special cases. However, it shows that if state mixing e�ects in the ground state are
weak, the DCD-CAS(2) energies can be expected to be approximately size-consistent.
It is also clear that for higher excited states the size-consistency errors will be larger
than for lower excited states. The numerical investigations (vide infra) reveal that
size-consistency errors are also reduced by the bias-correction scheme. Furthermore,
bc-D3CD-CAS(2) results will be shown to be often very close to the results of NEVPT2,
which is exactly size-consistent.

3.5.2. Orbital invariance and preservation of orbital
degeneracy of DCD-CAS(2)

3.5.2.1. Orbital invariance

The discussions of the invariance under orbital rotations and of the preservation of
orbital degeneracies both pro�t from a formulation in terms of operator equations in-
stead of matrix representations in a certain many-electron basis set. The DCD-CAS(2)
e�ective Hamiltonian in basis-independent form is given by (compare with Eq. (2.70))

HDCD = P

[
H −H

∑
EK

PK
EK − E0

H

]
P, (3.126)

where
PK =

∑
K with EK

|Φ̃K〉〈Φ̃K | (3.127)

and
PFOISH

DyallPFOIS|Φ̃K〉 = EK |Φ̃K〉. (3.128)
The CASCI space itself is clearly invariant under rotations among the inactive, active,
and virtual orbitals, respectively, because any determinant expressed in terms of ro-
tated orbitals can be written as a linear combination of determinants formed from the
original orbitals. This is possible since the space is spanned by all determinants that
result from the distribution of the active electrons over the active orbitals, i.e. it is an
active-orbital full CI space. The same is also true for spin-adapted CSFs instead of de-
terminants. This argument can be extended to the space of perturbers: For any given
non-active orbital occupation l, the perturbers again constitute a CAS space (denoted
as S(k)

l in the nomenclature introduced in Section 2.5.4) that is invariant under orbital
rotations. Since the reference space and the perturber spaces are invariant, the same
is true for the projectors P and PFOIS. The Hamiltonians H and HDyall are invariant
since they both contain full contractions of all three sets of orbital indices.162 This
means that the operator PFOISH

DyallPFOIS is invariant and so are its eigenvalues EK
as well as its eigenspaces and the corresponding projectors PK . This shows that the
wholeHDCD, as de�ned by the basis-independent operator equation Eq. (3.126) is con-
structed from operators that are invariant under orbital rotations. Its eigenfunctions
and eigenenergies, i.e. the DCD-CAS(2) solutions, which ful�ll

HDCD|Ψ̃I〉 = ẼI |Ψ̃I〉, (3.129)
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are therefore also independent of the choice of orbitals.
In analogy to Eq. (3.126), we can also write the state-speci�c dressing matrices de�ned
in Eq. (3.5) in a basis-independent form given by

HDCD,(2)(∆) = −
∞∑
n=0

∆nPH
∑
EK

PK
(EK − E0)n+1

HP. (3.130)

The bias-corrected energies, which are de�ned via expectation values of (truncated
forms of) this operator in the invariant states |Ψ̃I〉, are therefore also invariant under
orbital rotations in the three subspaces.

3.5.2.2. Preservation of orbital degeneracy

For the discussion of orbital degeneracies, i.e. degeneracies between states that are
due to spatial symmetry, one can pro�t from the basis-independent operator equa-
tions introduced in the previous section. We assume that the set of active orbitals
is closed under the action of any symmetry operator, i.e. all components of orbitals
that transform according to some multidimensional irreducible representation are in-
cluded. This means that also the CASCI space is closed under the action of any sym-
metry operator. It can easily be shown that the orthogonal projector on a subspace
of states that transform irreducibly among each other is a totally symmetric operator,
i.e. it commutes with any symmetry operator. This means that the projector P on the
CASCI space, and therefore also the CASCI Hamiltonian PHP , are totally symmetric
operators. Then the CASCI solutions transform according to irreducible representa-
tions of the molecular point group. If these representations are multidimensional, this
leads to the occurrence of orbital degeneracy.
This discussion is straightforwardly extended to DCD-CAS(2). Like the CASCI space,
also the FOIS is closed under symmetry operators and therefore the projector PFOIS is
a totally symmetric operator. Then PFOISH

DyallPFOIS is totally symmetric and its eigen-
functions, the perturbers |Φ̃K〉 transform irreducibly. This in turn means that the pro-
jectorsPK are totally symmetric, which shows that both the DCD-CAS(2) Hamiltonian
Eq. (3.126) and the state-speci�c operators Eq. (3.130) de�ning the bias correction are
totally symmetric. The DCD-CAS(2) eigenfunctions |Ψ̃I〉 therefore form irreducible
representations. Furthermore, the shift ∆I and therefore also the dressing matrices
Eq. (3.130) are identical for eigenfunctions |Ψ̃I〉 that belong to the same irreducible
representation. This is because the expectation value of a totally symmetric opera-
tor for states that transform as di�erent components of the same multidimensional
irreducible representation are identical. This �nally shows that orbital degeneracy is
preserved not only for the uncorrected DCD-CAS(2) but also after bias correction.

3.5.3. Computational cost of DCD-CAS(2)
Before coming to numerical results, we brie�y discuss the kind of systems that are
tractable by DCD-CAS(2). Since the method uses an uncontracted perturber space

64



3.5. Formal properties of the methods

and has an asymptotic computational cost that grows approximately as the 3rd power
with the size of the CASCI space, it is obviously not suited for extremely large active
spaces. With the current implementation, systems with up to about 600 to 800 ba-
sis functions can be routinely handled for small to medium-sized active spaces. We
note here that also other multistate MRPT methods like XMS-CASPT2 with the MS-
MR contraction scheme have a cubic scaling with respect to the number of states.163

However, for these methods the scaling does not have any drastic consequences since
usually only a few roots are included into the model space, while DCD-CAS(2) uses
the whole CASCI space as model space. Since the ij → ab class can be handled very
e�ciently as shown in Section 3.1.3.3, the most expensive class for systems that are
currently tractable is i → ab with a (21|..|11) occupation pattern. In the following we
assume determinants instead of CSFs for simplicity, which is justi�ed since the use of
CSFs only reduces the prefactor, but not the exponent of the scaling of the computa-
tional cost with respect to system size. Then the number of perturbers in this class
is proportional to N i,ab

det × Ninact × N2
virt, where N i,ab

det is the number of determinants
with one hole in orbital i and two electrons in orbitals a and b. Therefore, the compu-
tational cost for construction of the 〈ΦI |H|ΦK〉 matrix elements scales quadratically
with the number of virtual orbitals. Since the rotation from the |ΦK〉 to the |Φ̃K〉 basis
is done separately for each choice of i, a and b, the total cost for this transformation
is proportional to Ndet × (N i,ab

det )2 × Ninact × N2
virt, where Ndet is the number of refer-

ence determinants. It again scales quadratically with respect to the number of virtual
orbitals, but dominates the cost due to the larger prefactor for medium-sized systems.
Eventually, for large enough systems, the computational cost will be dominated by the
transformation of ERIs from the atomic orbital (AO) to the MO basis, which scales as
the 5th power of the number of basis functions. However, this step also occurs in the
NEVPT2 or CASPT2 methods. Hence, in the limit of a small active space and a large
molecule, the costs of NEVPT2 and DCD-CAS(2) are comparable. If this is the case,
the computational cost related to the integral transformation can be reduced by using
the RI version of DCD-CAS(2) that was introduced in Section 3.1.3.4. In practice, this
limit has not been observed, and for accessible system sizes the computational cost is
usually dominated by parts of the algorithm other than the integral transformation.

3.5.4. Model space non-invariance

3.5.4.1. Multi-partitioning and model space invariance

Granovsky74 introduced the requirement that the e�ective Hamiltonian of a multi-
state perturbation theory method should be a function of the model space, rather than
a function of any particular choice of basis in this subspace, like the CASSCF roots.
In other words, the e�ective Hamiltonian should be invariant under unitary transfor-
mations of the reference functions. We call this property model space invariance. The
de�nitions given above are somewhat vague, since the CASSCF roots, which are the
usual “particular choice” of basis in the model space, are by themselves a function of
the complete subspace only (obtained by diagonalizing the Hamiltonian in this sub-
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space). The only exception to this statement is the occurrence of degenerate CASSCF
roots. An alternative de�nition of non-invariance could be that the 0th order Hamil-
tonian, as a function of the model space states, must have the same functional form
for any basis of the model space. In our opinion the issue boils down to the follow-
ing: Assuming that at the CASCI level two electronic states are exactly degenerate,
these states can be arbitrary linear combinations of a given set of many-electron basis
functions in the degenerate subspace. The results of a MRPT should then preferably
be invariant under unitary transformations within this degenerate set because oth-
erwise they are not well-de�ned. This invariance property is actually also important
in situations of near-degeneracy of the CASCI solutions (for example around coni-
cal intersections or in the vicinity of avoided crossings), even though a non-invariant
MRPT is also well-de�ned in this case. Consider for example a conical intersection.
The electronic energies for a small degeneracy-breaking displacement from a nuclear
geometry where two states are degenerate can be obtained by considering the dis-
placement as a perturbation and performing 1st order degenerate perturbation theory
(DPT1). This amounts to the diagonalization of the displaced electronic Hamiltonian
in the basis of the degenerate electronic states, leading to two solutions that have the
characteristic double cone topology. Focusing for example on the upper sheet of the
potential energy surface (PES), it is now possible, by properly choosing the direction
of the displacement within the so-called g-h plane164 (the two-dimensional subspace
in which the degeneracy is broken), to obtain any arbitrary linear combination of the
two degenerate electronic states as an eigenstate. This follows from the discussion
of the geometric phase e�ect by Mead and Truhlar.165 But since the result of a non-
invariant MRPT is not independent of the actual linear combination and is continuous
with respect to nuclear displacements, the energy can show unphysical artifacts (while
ideally it should remain constant) when travelling along a small loop around the point
of degeneracy in nuclear space. The usual QDPTs with a single H0 can be considered
as special cases of the intermediate normalization and canonical Van Vleck variants
of multi-partitioning perturbation theory described above, by de�ning

H0(I) = H0 (3.131)
for all 0th order states I . Multi-partitioning therefore provides a uni�ed framework
in which many of the most popular multistate MRPTs can be discussed. We are now
interested in what is needed for a theory to be invariant and investigate why some es-
tablished theories do not have this property. In the following discussion we stick to the
intermediate normalization formalism, since the canonical Van Vleck version does not
add any new aspects regarding non-invariance, and to the 2nd order of perturbation
theory; see the expression for He�(0−2) in Eq. (2.59). All terms in the resolvent in Eq.
(2.57) that correspond to a nondegenerate 0th order CASCI state are well-de�ned. Let
us concentrate on a partial sum of terms that belong to a degenerate level. De�ning
two di�erent bases of the degenerate space (distinguished by primed and unprimed
indices) that are connected via a unitary transformation,

|Ψ(0)
I′ 〉 =

∑
J∈deg

|Ψ(0)
J 〉UJI′ , (3.132)
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it is necessary for uniqueness of the MRPT procedure that

∑
I′∈deg

RI′(I
′)H|Ψ(0)

I′ 〉〈Ψ
(0)
I′ | =

∑
IJ∈deg

∑
I′∈deg

UII′RI′(I
′)U †I′J

H|Ψ(0)
I 〉〈Ψ

(0)
J |

=
∑
I∈deg

RI(I)H|Ψ(0)
I 〉〈Ψ

(0)
I |,

(3.133)

which is ful�lled if ∑
I′∈deg

UII′RI′(I
′)U †I′J = δIJRI(I). (3.134)

Note that the unitary matrix introduced here is unrelated to the unitary decoupling op-
erator of canonical Van Vleck perturbation theory, for which the same symbol U was
used. Eq. (3.134) is true if the 0th order HamiltoniansH0(I) for all I in the degenerate
space are identical, which can for example be achieved by constructing it with state-
averaged orbitals and orbital energies in the case that there are degeneracies among
the CASCI solutions. In order to ensure a continuous PES, it is then necessary to
also have some kind of state-averaging when states are only nearly degenerate, which
could e.g. be achieved with a switching function that mixes in some character of other
states into the 0th order Hamiltonian if these states are close in energy. Such an ap-
proach has been reported recently.166 However, our experience shows that NEVPT2
with a state-speci�c 0th order Hamiltonian usually has a signi�cantly lower total en-
ergy than SA-NEVPT2, sometimes by as much as 10 eV or more; see Appendix B.5 for
an example. With SA-NEVPT2 we mean a version of NEVPT2 that uses the same Dyall
Hamiltonian, constructed using the state-averaged density matrix, for all roots. This
means that using a state-averaged 0th order Hamiltonian in cases of (near-)degeneracy
and using a state-speci�c 0th order Hamiltonian when other states are well separated
probably leads to an unbalanced treatment of di�erent regions on the PES, and possible
arti�cial “bumps” in the MRPT energies in regions of (near-)degeneracy. This leads us
to the conclusion that a balanced and model-space invariant multistate MRPT within
the multi-partitioning framework is only possible by making all 0th order Hamilto-
nians identical, i.e. abandoning the whole multi-partitioning idea and returning to
traditional QDPT.

3.5.4.2. Importance of di�erent forms of invariance

Having established that a true multi-partitioning theory probably cannot be made fully
invariant in a consistent way, we now investigate di�erent forms of non-invariance
and address the question whether the kind of non-invariance introduced by the multi-
partitioning is an acceptable price to pay in order to have a better 0th order description.
The 0th order Hamiltonians can be separated into a part that acts in the model space
and a part that acts in the complementary space,

H0(I) = HPP
0 +HQQ

0 (I) =
∑
J

|Ψ(0)
J 〉E

(0)
J 〈Ψ

(0)
J |+

∑
K∈FOIS

|Ψ(0)
K (I)〉E(0)

K (I)〈Ψ(0)
K (I)|.

(3.135)
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3. Theory and implementation

Note that one can always ensure that the PP part of the 0th order Hamiltonian is iden-
tical for all reference states I by de�ning it like in Eq. (3.135). We discussed above that
one source of non-invariance is multi-partitioning itself, i.e. having di�erent HQQ

0 (I)
for states that are degenerate at the CASCI level. This I-dependence has two common
reasons:

• The spaces of perturbers depend on I (contracted perturbers).

• A state-speci�c model operator (e.g. Fock operator or Dyall Hamiltonian) is
used.

But also in traditional QDPT the single H0 can be ill-de�ned if e.g. CASCI state pro-
jectors are used in its de�nition (called “type I” non-invariance by Granovsky167). This
is the case in traditional MS-CASPT2 (even if the MS-MR contraction scheme and a
state-averaged Fock operator are used) and MCQDPT2. In both cases, the PP part of
H0 is (F denoting the state-averaged Fock operator)

HPP
0 =

∑
I

|Ψ(0)
I 〉〈Ψ

(0)
I |F |Ψ

(0)
I 〉〈Ψ

(0)
I |, (3.136)

which is not well-de�ned if there are accidental degeneracies among the CASCI roots.
This non-invariance issue is solved in XMCQDPT2 and XMS-CASPT2, where the PP
part of H0 is

HPP
0 = PFP =

∑
IJ

|Ψ(0)
I 〉〈Ψ

(0)
I |F |Ψ

(0)
J 〉〈Ψ

(0)
J |. (3.137)

Note that this kind of non-invariance does not occur in QD-NEVPT2. This is because
the latter uses Dyall’s Hamiltonian as a model operator: when replacing F by HDyall,
Eqs. (3.136) and (3.137) are identical, since the Dyall Hamiltonian has vanishing o�-
diagonal matrix elements in the CASCI state basis. Table 3.3 contains an overview of
the di�erent sources of non-invariance in several variants of multistate MRPT. The
only fully invariant methods in this list are uncontracted QD-NEVPT2 with a state-
averaged Dyall Hamiltonian, XMS-CASPT2 with the MS-MR contraction scheme, and
XMCQDPT2. DCD-CAS(2) is excluded from the discussion since it does not properly
�t into the framework introduced here. Also note that XMS-CASPT2 with the SS-SR
scheme (state-speci�c contraction spaces) can be considered as a so far unrecognized
example of the combination of multi-partitioning with Van Vleck perturbation theory.
There are hints that the di�erent sources of non-invariance discussed above are not all
equally bad. In the original paper by Granovsky, the only investigated non-invariant
theories were MS-CASPT2 and MCQDPT2, which both have “type I” non-invariance.
In these cases severe artifacts were observed. There is however a presentation by Gra-
novsky that contains unpublished results about the non-invariance of QD-NEVPT2.167

It is shown there that the non-invariance in QD-NEVPT2 has actually much less severe
consequences than the one in MS-CASPT2 or in MCQDPT2. This leads us to conclude
that non-invariance due to multi-partitioning is not as much of a problem as the “type
I” non-invariance. This assumption will be further investigated in Section 4.4.1.
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3.5. Formal properties of the methods

Table 3.3.: Comparison of di�erent MRPT methods according to di�erent reasons for model
space non-invariance.

Method
HPP

0 not
well-de�ned (“type

I”)

I-dependent
perturber spaces

(multi-partitioning)

State-speci�c model
operator

(multi-partitioning)
Strongly and
partially contracted
QD-NEVPT90

- Yes Yes

Uncontracted
QD-NEVPT2 - - Yes

Uncontracted
QD-NEVPT2 with
state-averaged
Dyall
Hamiltonian76

- - -

MS-CASPT2
(SS-SR)72 Yes Yes Yes

XMS-CASPT2
(SS-SR) - Yes -

XMS-CASPT2
(MS-MR)75 - - -

MCQDPT271 Yes - -
XMCQDPT274 - - -
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4. Tests of the DCD-CAS(2) and
HQD-NEVPT2 methods

In order to assess the di�erent variants of DCD-CAS(2), we discuss in this chapter
calculations for traditional test cases in which multistate methods are crucial, namely
the LiF avoided crossing and the treatment of magnetic exchange coupling. We also
perform numerical tests to investigate basic properties of the methods, like the extent
of size-consistency violation in DCD-CAS(2), the breaking (or not) of orbital degener-
acy, as well as the extent of model space non-invariance and occurrence of complex
eigenvalues in the non-Hermitian QD-NEVPT2.

4.1. Tests of DCD-CAS(2)

4.1.1. Computational details
For the numerical evaluation of the size-consistency errors in the ground state, we per-
formed computations on three systems with varying active spaces: (a) 2 Li2 molecules
with a minimal CASSCF(2,2) for the monomer (2s orbitals active) and a corresponding
CASSCF(4,4) for the noninteracting dimer, (b) 2 Be atoms with CASSCF(2,4) (2s and
2p orbitals active) for the monomer and CASSCF(4,8) for the dimer and (c) 2 N atoms
with CASSCF(3,3) for a single atom (2p orbitals active) and CASSCF(6,6) for the dimer.
For the noninteracting systems, a distance of 100 Å was chosen. The def2-TZVP basis
set168 was used and energy and gradient convergence thresholds of Etol = 10−11 and
gtol = 10−6 were chosen in order to remove numerical noise. For the MRCI calcula-
tions, the thresholds Tsel and Tpre were set to 0.0. Only one root was optimized in all
cases. For Li2 and Be a singlet state was chosen in both the monomer and the non-
interacting dimer. For the N atom, a quartet state was chosen, which is coupled to a
singlet in the noninteracting dimer.
For the investigation of size-intensivity errors in excitation energies, we investigated
a benzene molecule with di�erent noble-gas atoms at a distance of 100 Å from its cen-
ter. The def2-TZVP basis set was used. The reference calculation was a CASSCF(6,6)
(including the six valence π electrons and orbitals of benzene in the active space) av-
eraged over the lowest seven singlet and six triplet roots, with convergence thresholds
Etol = 10−11 and gtol = 10−5.
For the investigation of the avoided crossing between potential energy curves in the
LiF molecule, we also used the def2-TZVP basis. The reference calculation was a
CASSCF(2,2) (Li 2s and F 2pz active), averaged over the two lowest singlet roots and
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4. Tests of the DCD-CAS(2) and HQD-NEVPT2 methods

with convergence thresholds of Etol = 10−11 and gtol = 10−6. For the MRCI calcu-
lations, Tsel and Tpre were set to 0.0 and a direct inversion in the iterative subspace
(DIIS)169 solver was used since for this system the default Davidson solver142 con-
verges to a wrong excited state. The residual and energy convergence thresholds for
the MRCI calculations Rtol and Etol were tightened to 10−8.
For an investigation of magnetic exchange in three model exchange coupled dimers,
the def2-TZVP basis set was used. For the so-called copper “paddlewheel” complex
Cu2(µ-CH3COO)4(H2O)2, the resulting DDCI calculations would be too computation-
ally expensive; hence def2-SVP was used on all atoms except Cu. The reference cal-
culations were CASSCF(2,2) including one localized magnetic orbital on each center
(H atom or Cu atom). For H–He–H, those are the H 1s orbitals, for Cu dimers those
are the d orbitals that have their orbital lobes in the direction of the ligand atoms. The
CASSCF calculations were averaged over the lowest triplet and lowest singlet state
with convergence thresholds of Etol = 10−10 and gtol = 10−4. For the DDCI calcula-
tions, Tpre was set to 0.0 while di�erent values of Tsel were tried (see below). Rtol and
Etol were tightened to 10−8.
All calculations in this section were re-run compared to our original publication,88

with slightly di�erent computational details in a few occasions. For example, our ini-
tial publication used the aug-cc-pVTZ basis set for the investigation of size-consistency
errors in the noninteracting dimers. Also note that the two rows for Li2···Li2 and
Be···Be in Table II of that publication have been accidentally swapped.

4.1.2. Size consistency
Table 4.1 shows, in accordance with the analytical proof in Section 3.5.1, that DCD-
CAS(2) is not strictly size-consistent. However, the ground state size-consistency er-
rors are only on the order of micro-Hartrees for the uncorrected DCD-CAS(2) scheme.
This error is accentuated in the uncorrected DCD-CAS(2) due to the ground state bias
introduced as a result of using the CASSCF ground state energy in the denominator
of the 2nd order Hamiltonian. This is the reason for the observed improvement in
the size consistency when the bias correction is added. Since the ij → ab excitation
class contributes a large amount (also in terms of the bias) to the diagonal matrix ele-
ments of the Hamiltonian, a further substantial improvement is achieved by using the
di�erence-dedicated scheme. Hence, we can safely argue that the slight lack of ground
state size consistency will be of little to no consequences in practical applications.170

Attention is also drawn to the case of the nitrogen molecule, where all variants of
DCD-CAS(2) are exactly size-consistent. This is exactly what was predicted on theo-
retical grounds in Section 3.5.1.
While total energies should be size-extensive159 (i.e. be proportional to the system
size), excitation energies for local excitations should be size-intensive,171 i.e. indepen-
dent of the total system size. For an assessment of size-intensivity errors in excitation
energies, we employed a di�erent model system: a molecular system in the presence
of a spectator system, such that all the active orbitals belong to the molecular sys-
tem alone. This is an important test for transition metal complexes with increasingly
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Table 4.1.: Ground state size-consistency errors (|Edimer − 2Emonomer|) in µHa for several
variants of DCD-CAS(2) along with NEVPT2 and MRCI. A distance of 1.0 Å was maintained
for each Li2 molecule; see the supplementary material of our original publication for Carte-
sian coordinates.88 The noninteracting systems were placed 100 Å away from each other for
the super-molecule calculations.

System NEVPT2 MRCI
Uncorrected

DCD-
CAS(2)

bc-DCD-
CAS(2)

D3CD-
CAS(2)

bc-D3CD-
CAS(2)

Li2···Li2 0.00 13337.44 3.95 0.64 2.64 0.72
Be···Be 0.00 19.55 0.14 0.01 0.06 0.01
N···N 0.00 1125.47 0.00 0.00 0.00 0.00

larger closed-shell ligands. For this case study, we chose our molecular system to be
benzene (Bz) and placed noble-gas atoms of increasing size, namely He, Ne, Ar, and
Kr, far from its center. In Table 4.2 we report the di�erence in valence π-π∗ excitation
energies (in meV) of Bz+X (X=He, Ne, Ar and Kr) with respect to the corresponding
excitation energies of benzene for a few low-lying singlet and triplet states. CASSCF
and NEVPT2 both give the same excitation energies in the presence of all noble-gas
atoms, as is expected of a size-consistent theory. These results are therefore not shown
in the table. In accordance to our theoretical analysis, the error increases with in-
creasing system size for the uncorrected DCD-CAS(2). This is expected since the total
correlation energy is increasing with the system size as well. As can be seen from
the values for bc-DCD-CAS(2) in Table 4.2, the situation improves strongly once the
spectrum is bias-corrected. It is also seen that the error is signi�cantly smaller for
the triplet excitations. The di�erence-dedicated scheme removes all size-intensivity
errors in excitation energies. Both D3CD-CAS(2) and its bias-corrected version pre-
dict exactly the same excitation spectrum in the presence of the noble-gas atoms. This
outcome agrees well with Malrieu’s argument in favor of DDCI that excluding the
ij → ab excitations (or including it globally for all roots, as in our case) reduces size-
consistency errors.145,146 Remember also the theoretical proof we gave in Section 3.5.1
that the D3CD-CAS(2) will be exactly size-consistent for this kind of model problem
(open-shell system in the presence of a noninteracting closed-shell spectator system).

4.1.3. Avoided crossing
Predicting an avoided crossing between the neutral and ionic potential energy curves
of the same spatial and spin symmetry remains a quintessential test in the debate
around multistate methods.69,172,173 On one hand, the CASSCF treatment predicts a
too short distance and too large energy gap for the crossing, which is obviously not
useful for further property computations or collision studies. Dynamic correlation af-
fects the ionic state much more than the neutral state and not including this e�ect
results in a qualitatively incorrect wavefunction. However, straightforward inclusion
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4. Tests of the DCD-CAS(2) and HQD-NEVPT2 methods

Table 4.2.: Size-intensivity errors in valence π-π∗ excitation energies (in meV) with respect to
benzene (Bz) for supersystems consisting of Bz+He, Bz+Ne, Bz+Ar, and Bz+Kr for DCD-CAS(2)
and bc-DCD-CAS(2) methods. D3CD-CAS(2) and bc-D3CD-CAS(2) have no size-intensivity
errors for excitation energies in these systems, since the noble gases are closed-shell atoms.

Uncorrected DCD-CAS(2) bc-DCD-CAS(2)
Excited

state Bz+He Bz+Ne Bz+Ar Bz+Kr Bz+He Bz+Ne Bz+Ar Bz+Kr
1B2u 22 159 279 307 1 5 17 19
1B1u 35 254 438 482 2 11 38 42
1E1u 41 297 509 560 3 16 52 58
1E2g 36 261 450 495 2 15 45 50
3B1u 0 1 2 2 0 0 1 1
3E1u 5 38 67 74 0 1 3 3
3B2u 15 109 193 213 0 1 6 7
3E2g 16 112 198 218 1 4 11 12

of dynamic correlation via state-speci�c theories, 2nd or higher order, based on the
bad CASSCF reference is bound to fail if the wavefunction is not allowed to relax.
“Blindly” following the CASSCF wavefunction results in a double-crossing instead of
an avoided one. The reason is that the reference CASSCF wavefunction is a very bad
approximation for the true correlated state between the distances where the avoided
crossing occurs at the CASSCF and the correlated level. The a posteriori corrections
via a quasidegenerate treatment including only the states of interest improves the de-
scription by removing the double-crossing artifact and otherwise maintaining roughly
the same features as the corresponding contracted formulation. The MS-CASPT2 po-
tential energy curves around conical intersections have however been shown to su�er
from artifacts and singularities.74,174,175 It has been explained that these artifacts stem
from the non-invariance of the method under rotations of the 0th order states in the
model space.74 Similar methods like QD-NEVPT2 are also noninvariant and therefore
expected to show such artifacts.74,76 The presented arguments clearly demonstrate the
need for a “perturb-then-diagonalize” method to tackle this problem. Recently devel-
oped invariant theories, like XMCQDPT2, XMS-CASPT2 and QD-NEVPT2 based on
matrix product states, are expected to further improve the overall nature of the curves
but are not investigated in this work. We apply the DCD-CAS(2) method to compute
the ionic-covalent curve crossing in LiF which has been a subject of study for over
four decades now.176–178 Angeli et al. discuss this case in detail in the papers presenting
their ideas on decontraction.90,179 They use the same basis as used by Bauschlicher and
Langho� in their full CI study.176 In this setting, the CASSCF crossing occurs around
4.1 Å and the full CI crossing around 6.6 Å. The QD-NEVPT2 predicts 5.8 Å and 6.2 Å
for the strongly contracted (SC) and partially contracted (PC) treatments, respectively.
MS-CASPT2 calculations done by the same authors turn out to be closer to the SC vari-
ant. We take these values as rough guidelines for our analysis. In this work, we stick
to a minimal active space of two electrons in two active orbitals, consisting of the 2s of
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4.1. Tests of DCD-CAS(2)

Table 4.3.: Crossing point (in Å) and energy di�erence (in eV) at the crossing point
for the avoided crossing of LiF computed with DCD-CAS(2) variants compared to
CASSCF, QD-NEVPT2, and MRCI+Q at the CAS(2,2)/def2-TZVP level of theory.

Distance of closest approach / Å Energy gap / eV
CASSCF 4.0 0.92
QD-NEVPT2 5.6 0.15
MRCI+Q 5.3 0.22
Uncorrected DCD-CAS(2) 5.7 0.20
bc-DCD-CAS(2) 5.8 0.12
D3CD-CAS(2) 5.7 0.18
bc-D3CD-CAS(2) 5.8 0.13

Li and 2pz of F. When the goal is a very good agreement with the experiment, an active
space of six electrons in six orbitals is often used for this molecule, but we use a mini-
mal active space since it contains all essential physics. The orbitals obtained from the
SA-CASSCF(2,2) calculation are used to perform dynamic correlation computations
via NEVPT2, QD-NEVPT2, MRCI+Q and DCD-CAS(2) variants. Here, +Q denotes the
multireference analog of Davidson’s correction, which is computed as (1−W )Ec, with
Ec being the uncorrected correlation energy and W (≤ 1) the weight of the reference
con�gurations in the total normalized wavefunction. Table 4.3 shows the points of
minimum vertical energy di�erences from the employed methods. It is encouraging
to see that all the reported DCD-CAS(2) variants perform well. All variants predict
qualitatively correct potential energy surfaces. The numerical performance is com-
parable but still shows non-negligible deviations from the MRCI+Q results used as a
reference. We mostly attribute this to the shortcomings of the low-order perturbation
treatment of the dynamic correlation energy. We show the uncorrected DCD-CAS(2)
PES in comparison to the well-known double crossing of NEVPT2 and its correction
by the QD-NEVPT2 in Figure 4.1. Figure 4.2 shows a close-up of the avoided crossing
region of the potential energy curves of the �rst two 1Σ+ states. The DCD-CAS(2)
results in all variants are rather close to the QD-NEVPT2 results. Furthermore, the
potential energy curves are smoother and do not show the unphysical artifact of the
QD-NEVPT2 curve in the avoided crossing region of the CASSCF solutions around
a distance of 4 Å. It is also encouraging to observe that the DCD-CAS(2) and D3CD-
CAS(2) results are very similar after including the bias correction.

4.1.4. Magnetic exchange coupling
The qualitative and quantitative estimation of the electronic structure and properties
of systems consisting of two or more interacting open-shell magnetic ions has been a
constant source of discussion within both the wavefunction and DFT communities.180

Here, we present a brief résumé of the problem. For details, the reader is referred to
a recent review181 as well as the series of landmark papers by Calzado and cowork-
ers.182–184 We use a simple valence only model with two unpaired electrons in two MOs
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Figure 4.1.: Potential energy curves for the �rst two 1Σ+ states of LiF in the avoided crossing
region. The energy of each method is reported relative to the ground state energy in the dis-
sociation limit. The �gure shows a comparison of the uncorrected DCD-CAS(2) with NEVPT2
and QD-NEVPT2.
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Figure 4.2.: Close-up of the potential energy curves for the �rst two 1Σ+ states of LiF in
the avoided crossing region. The energy of each method is reported relative to the ground
state energy in the dissociation limit. The �gure shows a comparison of several DCD-CAS(2)
variants with MRCI+Q.

77



4. Tests of the DCD-CAS(2) and HQD-NEVPT2 methods

a and b, assumed to be localized at the magnetic centers. The corresponding space of
four determinants with MS = 0 gives rise to four wavefunctions. The �rst two are a
purely neutral triplet state

|3Ψu〉 =
1√
2

(|ab̄〉 − |bā〉) (4.1)

and a purely ionic singlet state

|1Ψu〉 =
1√
2

(|aā〉 − |b̄b〉). (4.2)

The two remaining singlet states have the same symmetry and can therefore mix.
They are dominated by either neutral or ionic character and can be written as linear
combinations of two states that are purely neutral or purely ionic,

|1ΨN
g 〉 =

1√
2

(|ab̄〉+ |bā〉), (4.3)

|1ΨI
g〉 =

1√
2

(|aā〉+ |bb̄〉). (4.4)

The lower energy one, which is essentially neutral, is given by

|1Ψg〉 = CN|1ΨN
g 〉+ CI|1ΨI

g〉 (4.5)

with CN > CI > 0. The higher energy, essentially ionic, one is given by

|1Ψ′g〉 = −CI|1ΨN
g 〉+ CN|1ΨI

g〉. (4.6)

As represented schematically in Figure 4.3, one can see that the sign and magnitude
of the coupling constant (2J , the energy di�erence between the lowest singlet and
triplet states) depends on the contribution of the ionic part |1ΨI

g〉 in the �nal corre-
lated ground state wavefunction. This mixing determines the amount of stabiliza-
tion of the essentially neutral |1Ψg〉 state. Kab denotes the direct exchange integral
between magnetic orbitals a and b,182 which quanti�es the stabilization and destabi-
lization of the CSFs with respect to the determinants obtained from orbitals a and
b. The ionic singlets are much too high in energy in CASSCF treatments but relax
greatly under the in�uence of dynamic correlation. In fact, higher order dynamic cor-
relation methods, like the DDCI method,185 are standard tools for such computations
but they become impractical rather quickly with increasing system size. This is the
reason why more cost-e�ective alternatives, like MRPT, are desirable. “Diagonalize-
then-perturb” approaches that apply corrections on top of this badly described 0th
order wavefunction are not able to make much di�erence. Traditional QDPT using
the whole four-dimensional model space is often not very useful because of the high
energy gap between the neutral and ionic singlet states, which can lead to divergence
for the ionic states.179 The ionic character of the ground state singlet is known to in-
crease by a factor of �ve or more, reported as CI/CN ratios in previous DDCI studies
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Figure 4.3.: Schematic representation for the interpretation of magnetic ex-
change coupling between two local spin 1/2 subsystems. The three parts
of the �gure represent (a) pure determinants constructed from the localized
orbitals and (b) spin- and spatial-symmetry adapted CSFs. Here the ones
with gerade symmetry increase their energy by Kab, the ones with unger-
ade symmetry decrease their energy by the same amount. (c) two CSFs of
the same space and spin symmetry are allowed to mix.

of such systems.183 We have chosen three systems to demonstrate the improvements
that DCD-CAS(2) o�ers in predicting magnetic exchange coupling constants relative
to state-speci�c MRPT theories. However, it should not be forgotten that this is only a
2nd order treatment that cannot catch all relevant physical e�ects which enter into the
relative spin-state energies.182 The prototypical model system H–He–H is chosen for
its sheer simplicity in describing the phenomenon. The two other examples involve
two well-studied binuclear CuII complexes with di�erent bridging ligands, [Cu2Cl6]2−

and Cu2(µ-CH3COO)4(H2O)2. A number of studies discuss the physical properties as
well as the electronic structure and magnetic properties of these systems.180,181,186,187

Although there have been some suggestions of using extended active spaces188 and
magnetically optimized orbitals,189 we stick to a minimal active space of two electrons
in two (localized) orbitals to focus on the physics of the problem. In addition to report-
ing the exchange coupling constant (2J ), we also provide the percentage contribution
of the neutral and ionic states to the �nal singlet wavefunction as obtained by the
diagonalization of the corresponding Hamiltonian. This demonstrates the e�ect of
dressing introduced in DCD-CAS(2) on the singlet neutral ground state by increasing
the contribution of the higher lying ionic state.
Before coming to the numerical results, we investigate a technical aspect of the ref-
erence DDCI calculations. The ORCA MRCI program is of the individually selecting
type. This means that among all single and double excitations on top of the refer-
ence space only those CFGs are selected and included into the diagonalization space
that have a contribution at 2nd order PT that is larger than some threshold Tsel. The
sensitivity of the calculated exchange coupling constants on this parameter for DDCI
and DDCI+Q is shown in Table 4.4. It can be seen that for the pure DDCI, the ex-

79



4. Tests of the DCD-CAS(2) and HQD-NEVPT2 methods

Table 4.4.: Convergence of the DDCI and DDCI+Q ex-
change coupling constants 2J (in cm−1) with tightening the
perturber selection threshold Tsel.

Molecule Tsel DDCI DDCI+Q

H-He-H

10−7 −533.5 −534.0
10−8 −533.6 −534.0
10−9 −533.6 −534.0
10−10 −533.6 −534.0

0 −533.6 −534.0

[Cu2Cl6]2−

10−7 −109.6 −13.1
10−8 −5.3 6.2
10−9 19.6 12.8
10−10 22.4 12.9

0 22.6 13.0

Cu2(µ-CH3COO)4(H2O)2

10−7 −269.5 −318.0
10−8 −279.7 −267.4
10−9 −178.6 −240.7
10−10 −134.4 −238.4

0 −128.5 −238.1

change coupling converges fairly slowly. Even at the smallest tested nonzero thresh-
old of 10−10 there is still a relatively large deviation for the Cu2(µ-CH3COO)4(H2O)2
molecule. For DDCI+Q the convergence is quicker, with relatively accurate results al-
ready for a threshold of 10−9. These results still show that the threshold of 10−6 used
in ORCA by default will lead to completely unreliable results. In the following, we
set Tsel to 0, meaning all excited CFGs are included into the diagonalization without
individual selection.
The numerical results are presented in Table 4.5. Results from all the variants of DCD-
CAS(2) lie in between that of NEVPT2 and CI treatments (full CI in the case of H–He–H
model and DDCI+Q in case of the copper complexes). CASSCF and the CI methods
represent the lowest and highest degrees of mixing with the ionic states, respectively.
We expect the mixing achieved by DCD-CAS(2) to fall between these two. For Cu2(µ-
CH3COO)4(H2O)2, the ionic contribution is increased by an order of magnitude for
DDCI and a 2J value roughly six times that of NEVPT2 is achieved. Although DCD-
CAS(2) 2J values are not in perfect agreement with the CI methods, they are a con-
siderable improvement from the CASSCF/NEVPT2 ones. The ionic contribution to
the ground state singlet wavefunction is even almost perfectly reproduced by D3CD-
CAS(2). Decontraction is unavoidable for the calculation of coupling constants and
[Cu2Cl6]2− is a good example. The experimental estimate for the value of 2J for this
complex is in a range of 0 to –40 cm−1 190 and a largely accepted value is around –35
cm−1.183 CASSCF underestimates the mixing so much that a triplet ground state is pre-
dicted for [Cu2Cl6]2− and subsequent NEVPT2 is also not able to predict the correct
ground state multiplicity. While DCD-CAS(2) improves the estimate in the correct di-
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4.1. Tests of DCD-CAS(2)

Table 4.5.: Exchange coupling constants (in cm-1) and contribution of the ionic CFG to the
ground state singlet wavefunction computed at various levels of theory. The CI methods are
Full CI for H–He–H and DDCI+Q for the Cu dimers.

H-He-H [Cu2Cl6]2− Cu2(µ-CH3COO)4(H2O)2
2J % ionic 2J % ionic 2J % ionic

CASSCF −475.0 0.543 20.6 0.006 −18.0 0.011
NEVPT2 −500.2 ... 18.0 ... −39.9 ...
CI methods −524.4 0.753 13.0 0.112 −238.1 0.175
Uncorrected
DCD-CAS(2) −509.5 0.706 9.6 0.026 −53.4 0.032

bc-DCD-CAS(2) −509.5 ... 1.0 ... −63.9 ...
D3CD-CAS(2) −509.5 0.707 −8.3 0.109 −83.1 0.144
bc-D3CD-
CAS(2) −509.5 ... −14.0 ... −88.8 ...

rection, it is still not able to predict the correct sign. With bias correction, the sign is
corrected. D3CD-CAS achieves a very good mixing ratio of the high lying ionic state
and with bias-correction it predicts a value for 2J with roughly the correct magnitude.
A look at the corresponding neutral to ionic ratios in the ground state wavefunction
is helpful in understanding the situation. The ionic contribution in the singlet wave-
function for the conventional DCD-CAS(2) treatment increases but an evidently better
estimate is reached only with the di�erence-dedicated version. Since the energy dif-
ference between the states of same symmetry is quite high, the bias correction plays
an important role in both cases. The e�ects of the DCD/D3CD-CAS(2) corrections
are nicely revealed upon examining the matrix elements of the corresponding e�ec-
tive Hamiltonian. We report in Table 4.6 the di�erence between diagonal elements,
∆ = HII −HNN , and the ionic/neutral o�-diagonal e�ective Hamiltonian matrix el-
ement HIN . CI/CN ratios are also reported to show the extent of mixing of the ionic
with the neutral functions in these methods. The mixing ratios are readily estimated
by 2nd order perturbation theory to be roughly

CI

CN
≈ HNI

∆
. (4.7)

Table 4.6 shows the extent of stabilization of the ionic contribution with respect to
the 0th order treatment. The mixing changes by a factor of four to �ve for D3CD-CAS
compared to CASSCF. This change is almost exclusively caused by the lowering of
the diagonal energy of the ionic con�guration in the dressed Hamiltonian, while the
o�-diagonal coupling matrix element remains largely una�ected by the dynamic cor-
relation dressing. The stabilization of the ionic contributions is dramatic. For the two
dicopper systems, the dressing changes the e�ective energy of the ionic con�gurations
from about 24 eV to 5–6 eV, which is certainly in the realistic range.183 However, the
appropriate stabilization does only occur in the di�erence-dedicated scheme. Hence,
it is instructive to analyze the di�erences between the di�erence-dedicated and non-
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4. Tests of the DCD-CAS(2) and HQD-NEVPT2 methods

Table 4.6.: CI/CN ratio and Hamiltonian matrix elements (in eV).

Molecule Method ∆ HNI CI/CN

H-He-H
CASSCF 12.87 0.96 0.074

DCD-CAS(2) 10.51 0.89 0.084
D3CD-CAS(2) 10.46 0.89 0.084

[Cu2Cl6]2−
CASSCF 23.47 0.18 0.008

DCD-CAS(2) 15.16 0.25 0.016
D3CD-CAS(2) 5.04 0.17 0.034

Cu2(µ-CH3COO)4(H2O)2

CASSCF 23.78 0.25 0.011
DCD-CAS(2) 24.81 0.45 0.018
D3CD-CAS(2) 6.58 0.25 0.038

di�erence-dedicated schemes. We return to the contribution of the ij → ab excitation
class for the conventional DCD-CAS Hamiltonian, as explained in Section 3.1.3.3. One
can write the denominator of Eq. (3.35) as εa + εb − εi − εb + ∆EI . For the ground
state, I = 0, one has ∆EI = 0 and the denominator has the usual MP2 form. But for
excited states the di�erence ∆EI (approximately 24 eV for both Cu complexes at the
CASSCF level) can severely underestimate the contribution from the ij → ab class
and introduce a bias into the diagonal elements, which is particularly large in this
case. Thus, we see that even when dynamic correlation dressing via the conventional
DCD-CAS(2) improves the singlet and triplet ground states, giving better estimates of
the coupling constant, the HII value is rather large (more than the CASSCF one for
the copper acetate complex) because of this unwanted ground state bias. This can be
considered as an artifact of our formulation and we have already proposed a cure for
this via the di�erence-dedicated approach. In this case, an overall inclusion of the
〈ΨI |HDCD,(2)

ij,ab |ΨJ〉 for all CASCI states does not a�ect the ground state but removes
the bias from the excited state, resulting in larger mixing and even better estimates of
the coupling constant. The contribution from the o�-diagonal term is also expected to
increase the mixing between the neutral and ionic contributions but these e�ects are
visible only at the 3rd order in PT and beyond.184 This explains the small values we
obtain for the HNI elements. The change observed in the HNI elements in case of the
DCD-CAS(2) in Table 4.6 is only due to the fact that the contribution to the ij → ab
class is included in the basis of CASCI roots and then transformed back to the CSF
basis.

4.2. Atomic multiplets
We investigated the performance of DCD-CAS(2) and HQD-NEVPT2 for the calcula-
tion of spin-orbit-coupled excitation energies of the series of free divalent 3d TM ions
from Ti2+ to Cu2+. The calculations used the DKH-def2-QZVPP191 basis set and the
DKH2151,152 scalar-relativistic Hamiltonian. A minimal active space with �ve d-like
active orbitals was chosen and the SA-CASSCF was averaged over all possible roots of
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4.2. Atomic multiplets

Table 4.7.: Vertical excitation energies (in cm−1) for all d-d excited states of the Co2+ ion
at the CASSCF(7,5)/DKH-def2-QZVPP level with the DKH2 scalar-relativistic Hamiltonian.
Averaged values and standard deviations thereof (in parentheses) are reported for NEVPT2
(in cm−1). Values for CASSCF and all variants of DCD-CAS(2) are exactly degenerate.

Term CASSCF NEVPT2
Uncorr.
DCD-

CAS(2)

bc-
DCD-

CAS(2)

D3CD-
CAS(2)

bc-
D3CD-
CAS(2)

Expt.

4F 0 0 (22.1) 0 0 0 0 0
4P 18782 15217 (0.0) 16184 15097 16080 15097 14561
2G 18870 16823 (0.5) 16740 16740 16740 16740 16512
2P 25131 21290 (139.9) 20830 20466 20795 20466 ...
2H 25131 21927 (210.4) 22401 22044 22366 22044 22228
2D 27306 23726 (0.2) 24115 23634 24068 23634 ...
2F 43914 36880 (1.1) 38289 36805 38150 36804 36330
2D 68986 58722 (0.0) 61698 58702 61422 58698 ...

all multiplicities. To avoid numerical noise in the investigation of orbital degeneracies,
the calculations were converged to extremescf accuracy.
Before discussing the results in the presence of SOC, we �rst have a look at the non-
relativistic excitation energies for the Co2+ ion in Table 4.7. It can be seen that while
CASSCF gives excitation energies that are systematically too large, NEVPT2 and the
bias-corrected variants of DCD-CAS(2) give excitation energies in quite close agree-
ment with the experiment. These results also show that the errors due to the ground-
state bias in the uncorrected energies can be quite large, here up to about 3000 cm−1.
Another interesting aspect is the fact that NEVPT2, like is expected for an internally
contracted theory, is not model space invariant and therefore breaks orbital degen-
eracy of the underlying CASSCF references. The corresponding standard deviation
within each (ideally exactly degenerate) LS term is given in parentheses. The break-
ing is especially large for the 2P and 2H terms. The reason for this is a peculiar
feature of d3 and d7 free ions or atoms like V2+ and Co2+. At the CASSCF level, there
is an accidental degeneracy between the 2P and 2H terms, which is also shown in
Table 4.7. If spherical symmetry is not exploited, these two terms can arbitrarily mix
at the CASSCF level, leading to unphysical 0th order wavefunctions. A subsequent
NEVPT2 calculation cannot correct these unphysical 0th order wavefunctions, while
DCD-CAS(2) produces pure 2P or 2H states by means of the dynamic-correlation-
induced energy splitting between the two terms.
Having shown the superiority of the bias-correction scheme and the preservation of
orbital degeneracy by all DCD-CAS(2) versions at the nonrelativistic level, we now
move on to excitation energies in the presence of SOC. We sum up the main results of
the calculations in Table 4.8. Detailed information on the excitation energies of all ions
can be found in the supplementary material of our original publication.89 It is evident
that both NEVPT2 and DCD-CAS(2) provide signi�cant improvements over CASSCF
and agree reasonably well with the experimental results. Only for Mn2+ there are still
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4. Tests of the DCD-CAS(2) and HQD-NEVPT2 methods

Table 4.8.: Results for the excitation energies of free transition metal ions, ex-
pressed as mean absolute error (MAE) and maximum absolute error (MAX)
with respect to the experiment for all total J levels of each ion (in eV).

CASSCF NEVPT2 HQD-NEVPT2 DCD-CAS(2)
MAE MAX MAE MAX MAE MAX MAE MAX

Ti2+ 0.38 1.26 0.10 0.44 0.10 0.44 0.09 0.44
V2+ 0.53 1.43 0.11 0.35 0.11 0.35 0.10 0.35
Cr2+ 0.75 2.01 0.14 0.32 0.14 0.32 0.14 0.33
Mn2+ 1.32 2.69 0.24 0.52 0.24 0.52 0.24 0.55
Fe2+ 0.70 1.45 0.12 0.27 0.12 0.27 0.12 0.27
Co2+ 0.57 1.54 0.09 0.26 0.08 0.27 0.08 0.26
Ni2+ 0.47 1.43 0.07 0.35 0.07 0.35 0.07 0.35
Cu2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

relatively large errors. Note that the error for Cu2+ is so small because this ion has only
one LS term (2D); hence the accuracy is not determined by nonrelativistic excitation
energies but by the treatment of SOC. The di�erence between NEVPT2 and DCD-
CAS(2) results is quite small, indicating that state-mixing e�ects in these systems are
weak. We are also interested in a comparison of NEVPT2 and HQD-NEVPT2, since
both are not model space invariant. Table 4.9 shows the average standard deviation
within the total angular momentum multiplets, calculated with NEVPT2 and HQD-
NEVPT2. On average, HQD-NEVPT2 has slightly larger standard deviations, meaning
the breaking of degeneracies is slightly stronger. But with the exception of the Mn2+

ion, the standard deviation always stays in the same order of magnitude as the NEVPT2
one. For two of the ions, namely V2+ and Co2+, the average standard deviation of HQD-
NEVPT2 is considerably lower than that of the nondegenerate NEVPT2. The reason
is that the degeneracy breaking at the NEVPT2 level of the 2H and 2P terms for V2+

and Co2+ also propagates to the relativistic calculations. The exact state energies be-
longing to the 2P and 2H terms are given for the Co2+ ion in Table 4.10. For the 2H
term of Co2+ the degeneracy breaking within the two levels J = 11/2 and J = 9/2 is
so strong that we could not with con�dence assign states to these two levels based on
their energy. We therefore assigned the twelve states with lowest energy to J = 11/2
and the remaining ten states to J = 9/2. The obtained standard deviations within the
two levels of 168.8 cm−1 and 167.7 cm−1 are larger than many energy splittings that are
of relevance for magnetic phenomena. Even though the symmetry breaking in excited
states is probably less important for magnetism, its occurrence is still disconcerting.
DCD-CAS(2) on the other hand does, like CASSCF, exactly preserve the degeneracies
also at the relativistic level. These results also demonstrate that our scheme for apply-
ing the bias-correction idea in the context of the spin-dependent DCD-CAS(2) (Eqs.
(3.66) and (3.67)) leads to results that are consistent with NEVPT2 in cases where state-
mixing e�ects are weak. It is also quite remarkable to observe that HQD-NEVPT2 can
approximately restore the degeneracy within the di�erent terms, considering that it is
based on state-speci�c 0th order Hamiltonians that are constructed for unphysically
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4.3. Final choices for the DCD-CAS(2) method

Table 4.9.: Standard deviation (in cm−1) within total angular momentum mul-
tiplets. The averaging is done over all multiplets except J=0 and J=1/2, which
are always degenerate.

Ti2+ V2+ Cr2+ Mn2+ Fe2+ Co2+ Ni2+ Cu2+

σ̄(NEVPT2) 6.6 6.9 1.3 0.2 1.8 27.8 10.2 0.1
σ̄(HQD-NEVPT2) 7.3 3.2 2.7 1.6 2.7 5.2 12.0 0.5

mixed CASCI states.

4.3. Final choices for the DCD-CAS(2) method
Based on the assembled numerical results, we make a default choice for the DCD-
CAS(2) method. Our tests have demonstrated that the di�erence-dedicated variant is
uniformly superior to the non-di�erence-dedicated method. It is also computationally
more attractive since there is only a single MP2-like energy correction for all states
that can be very e�ciently computed. Likewise, our tests have indicated that the
bias correction is absolutely necessary in order to obtain good excitation energies that
mimic proper state speci�c results. The 1st order bias correction already appears to
be su�cient in practical applications. Finally, it is advantageous to employ the lowest
CASCI energy asE0 since this guarantees numerically stability of the method. Owing
to the bias correction, the sensitivity of the results with respect to this choice is very
limited. Hence, in the future and the remainder of this thesis we will refer to the
variant termed bc-D3CD-CAS(2) in the nomenclature of Section 3.1.4 as the DCD-
CAS(2) method.

4.4. Tests of QD-NEVPT2 and HQD-NEVPT2

4.4.1. Investigation of non-invariance in a model system
In order to assess the severeness of the model space non-invariance of the HQD-
NEVPT2 method, we use as a test case the accidental same symmetry conical inter-
section of the allene molecule in Cs symmetry, as investigated by Granovsky.74 The
geometry, scan parameters, and basis set are chosen exactly identical as in the investi-
gation of the non-invariance of MS-CASPT2 and MCQDPT2;74 see also Appendix C.1.
The result is shown in Figure 4.4, where the scan angles are de�ned relative to the an-
gles in the minimum energy crossing point geometry of the SA-CASSCF calculation.
Since the conical intersection in this system is accidental, it is clear that it will not
occur at exactly the same geometry in the SA-CASSCF (where it occurs by de�nition
at both scanned angles being 0°) and in the HQD-NEVPT2. It was previously shown
that MS-CASPT2 and MCQDPT2 (which have “type I” non-invariance) show severe
irregularities of the PES around the point of degeneracy of the underlying SA-CASSCF
calculation, essentially over the whole range of scanned angles.74 In contrast to that,
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Table 4.10.: Energies of the states (in cm−1) belonging to the 2P and 2H terms of the Co2+ ion
at the NEVPT2 and HQD-NEVPT2 levels. Shown are also the standard deviations σ within the
multiplets of a given total angular momentum quantum number J . For NEVPT2, the energies
were sorted into the di�erent categories by ordering them according to energy, since a clear
assignment was not possible. For comparison, the results of bc-D3CD-CAS(2), which does not
break degeneracy, are also shown.

Term NEVPT2 σ(NEVPT2) HQD-NEVPT2 σ(HQD-NEVPT2) bc-D3CD-CAS(2)
2P3/2 21744.0

84.0

21115.0

5.4

21034.8

21744.0 21115.0 21034.8
21912.0 21125.8 21034.8
21912.0 21125.8 21034.8

2P1/2 22202.4
0

21833.5
0

21751.0

22202.4 21833.5 21751.0
2H11/2 22235.4

168.8

22718.0

12.4

22621.6

22235.4 22718.0 22621.6
22452.2 22722.0 22621.6
22452.2 22722.0 22621.6
22565.6 22726.0 22621.6
22565.6 22726.0 22621.6
22615.8 22733.0 22621.6
22615.8 22733.0 22621.6
22698.4 22737.0 22621.6
22698.4 22737.0 22621.6
22739.3 22755.9 22621.6
22739.3 22755.9 22621.6

2H9/2 22958.8

167.7

23433.3

11.8

23335.9

22958.8 23433.3 23335.9
23181.6 23436.8 23335.9
23181.6 23436.8 23335.9
23265.9 23444.0 23335.9
23265.9 23444.0 23335.9
23371.4 23450.2 23335.9
23371.4 23450.2 23335.9
23440.9 23466.6 23335.9
23440.9 23466.6 23335.9
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Figure 4.4.: Energy di�erence (in Ha) between the two lowest 1A′ states of allene inCs symme-
try calculated by HQD-NEVPT2. Shown is an unrelaxed surface scan varying the two internal
degrees of freedom described in the main text. The reference geometry (center of the �gure)
corresponds to the minimum point of degeneracy between the two states at the SA-CASSCF(4,4)
level.

Figure 4.4 shows that the e�ect of non-invariance of the HQD-NEVPT2 method is
much smaller, and the PES is only a�ected in regions in the center of the �gure where
the reference states are nearly degenerate (closer than about 0.1 eV) in the underlying
SA-CASSCF. In these regions, one observes a slightly increased or reduced distance of
the isolines. Apparently, HQD-NEVPT2 is very useful for most parts of the PES even
though it is not exactly model space invariant.

4.4.2. Occurrence of complex eigenvalues

The main advantage of a Hermitian e�ective Hamiltonian is that its eigenvalues are
guaranteed to be real and its eigenstates are orthonormal. A non-Hermitian real
Hamiltonian can have complex eigenvalues, which come in complex-conjugate pairs.
There is an increased tendency for the appearance of complex eigenvalues for (nearly)
degenerate states, which can be qualitatively understood by investigating as a model
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Table 4.11.: Excitation energies ∆E (real and imaginary parts) of [CuCl4]2− calculated with
non-Hermitian QD-NEVPT2.

State (D4h) ∆Ereal /
eV

∆Eimag
/ meV State (D2d) ∆Ereal /

eV
∆Eimag
/ meV

2B1g

(x2 − y2 → xy) 1.568 0.0 2E (xz/yz → xy) 0.798 ±1.6

2Eg(xz/yz → xy) 1.832 ±0.0 2B1 (x2 − y2 → xy) 0.953 0.0
2A1g (z2 → xy) 2.154 0.0 2A1 (z2 → xy) 1.201 0.0
2Eu(Cl - 3p→ xy) 3.465 0.0 2E (Cl - 3p→ xy) 3.302 ±1.1
2B1u (Cl - 3p→ xy) 3.735 0.0 2E (Cl - 3p→ xy) 4.505 ±1.0
2Eu(Cl - 3p→ xy) 4.978 0.0 2A1 (Cl - 3p→ xy) 5.710 0.0

the real 2× 2 eigenvalue problem HC = EC with

H = E0 +

(
∆/2 a
b −∆/2

)
. (4.8)

It has the eigenvalues E± = E0 ± 1
2

√
∆2 + 4ab. If the matrix is Hermitian, ab is non-

negative and the eigenvalues are obviously real. For a non-Hermitian real matrix, one
can distinguish the following cases:

• ab > 0: The eigenvalues are real and their di�erence is larger than ∆.

• ab = 0: The eigenvalues are equal to the diagonal values E0 ±∆/2.

• −∆2/4 < ab < 0: The eigenvalues are real and their di�erence is smaller than
∆.

• ab = −∆2/4: The eigenvalues are degenerate and equal to E0, the average of
the two diagonal values.

• ab < −∆2/4: The eigenvalues are a conjugate pair of complex numbers.

In Table 4.11 we show the ligand �eld and LMCT excitation energies of the [CuCl4]2−

complex in two di�erent geometries, belonging to the D4h and D2d point groups, and
calculated with the traditional (non-Hermitian) QD-NEVPT2. The geometries were
optimized in the gas phase. The remaining computational details and a more thor-
ough investigation of these complexes can be found in Section 5.4. For the crystal
geometries also introduced in that section, degeneracy is su�ciently broken (corre-
sponding to a larger ∆ in the 2 × 2 model) that complex eigenvalues do not occur.
It can be seen in Table 4.11 that complex energy values appear in some cases. The
real part of the energies is very close to HQD-NEVPT2 results (see Section 5.4) and
the imaginary part is small (in this example not larger than on the order of 1 meV).
There are no pronounced state-mixing e�ects in these systems. The o�-diagonal ele-
ments of the e�ective Hamiltonian have a magnitude of at most around 0.1 eV and the
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non-Hermitian contribution, which can lead to complex eigenvalues, is signi�cantly
smaller than that (on the order of a few meV). This explains the observation that com-
plex eigenvalues only occur for energies that are expected to be (nearly) degenerate.
This is also the reason why possible imaginary parts cannot be large in this system.
It is then clear that for nondegenerate levels (corresponding to large ∆ in the model
problem), even negative (small) ab will not lead to the occurrence of complex roots.
This is only possible if ∆ is equally small. But for other systems with possibly large
state mixings, i.e. with signi�cant o�-diagonal elements, much larger imaginary parts
can be expected for nearly degenerate levels, and in general the occurrence of imag-
inary parts can be expected also for levels that are rather far from being degenerate.
As another example for the occurrence of complex eigenvalues in the non-Hermitian
theory, Figure 4.5 shows a one-dimensional PES scan of the allene system already in-
troduced before. It can be observed that in the region close to where a weakly avoided
crossing is expected, the eigenvalues of the non-Hermitian QD-NEVPT2 become com-
plex, while HQD-NEVPT2 shows the correct expected behavior. It can also be seen that
the energies at the non-Hermitian QD-NEVPT2 level already show unphysical behav-
ior way before they actually become degenerate and acquire an imaginary part. A
similar unphysical behavior has been observed for EOM-CC applied to conical inter-
sections.92 The pragmatic practice of discarding imaginary parts and taking the real
parts as physical energies is not satisfying in such cases because it means that ener-
gies that should not be degenerate are arti�cially made degenerate. This is why we
prefer working with a Hermitian e�ective Hamiltonian from the beginning, obviating
the need to resort to such ad hoc solutions.
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Figure 4.5.: Vertical cut through the surface shown in Figure 4.4 at the non-Hermitian QD-
NEVPT2 and HQD-NEVPT2 levels. The CCCH torsion angle is �xed at 3° relative to the ref-
erence geometry. This is very close to the angle where the HQD-NEVPT2 conical intersection
occurs; hence the very weakly avoided crossing at this level of theory. For non-Hermitian QD-
NEVPT2 both the real part and the sum of real and imaginary part is plotted in case of complex
eigenvalues. The energies are plotted relative to −116.06149 Ha, which is the average energy
of the HQD-NEVPT2 states in the avoided crossing region.
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5. Applications

The spin-dependent DCD-CAS(2) method was tested for a range of properties of TM
complexes.89 After the description of the test sets and computational details, we in-
vestigate the performance of spin-dependent DCD-CAS(2) when using a minimal ac-
tive space containing the �ve metal d-derived MOs together with the appropriate
number n of electrons for the dn con�guration of the metal center. We have calcu-
lated ZFS parameters D and E/D of six 3d TM complexes and g-shifts for a subset
of the complexes studied by Singh et al.192 Afterwards, we present the performance
for the calculation of EPR parameters of (pseudo) square-planar Cu complexes be-
cause the failure of nondegenerate MRPT is well understood in this case. The results
of that study were one of the main motivations for the development of the HQD-
NEVPT2, whose performance for the EPR parameters of the Cu complexes is there-
fore also tested. Finally, we investigate the performance of HQD-NEVPT2 for optical
spectra of two conformers of [CuCl4]2−. Figure 5.1 shows all molecules investigated
in this chapter. The used abbreviations are Ph=phenyl, iPr=isopropyl, Me=methyl,
acac=acetylacetonato, dmiz=dimethylimidazole, sacsac=dithioacetylacetonato, taca-
cen= N,N’-ethylenebis(thioacetylacetoneiminate), cyclam= 1,4,8,11-tetraazacyclotetra-
decane, en=ethylenediamine, gly=glycine, dtc=N,N-diethyldithiocarbamate, mnt=ma-
leonitriledithiolate.

5.1. Test sets and computational details
All calculations were performed using a development version of ORCA.143 For the
minimal active space calculations we used the DKH2 scalar relativistic Hamiltonian
and performed state-averaged (SA)-CASSCF calculations with the set of �ve d orbitals
chosen active, averaged over all roots of all multiplicities of the whole CASCI space.
For the ZFS calculations, both SOC and SSC were included in the relativistic calcu-
lations. Geometry optimizations were performed with BP86, the scalar-relativistic
DKH2 Hamiltonian, DKH-def2-TZVP, SARC/J auxiliary basis and grid5. For the Co
complexes, the linear Fe(I) complex193 as well as the two NiII complexes,194 195 we used
the crystal structures and only optimized the hydrogen atom positions because the
optimized geometries otherwise deviated too much from the crystal structures. In the
case of the Co complexes, we �rst truncated the crystal structures, saturating with
H atoms, in order to reproduce the models previously de�ned as H3 and H4.196 For
the remaining complex [Mn(acac)3], we constructed the structure in silico and did a
full geometry optimization. We used the AutoAux procedure197 in ORCA to generate
auxiliary basis sets for the RI-calculation of two-electron electric �eld gradient inte-
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5. Applications

Figure 5.1.:Molecules (in the geometries employed in the calculations) used
for tests of spin-dependent DCD-CAS(2) and of HQD-NEVPT2. Rows 1 and
2: Molecules used for the investigation of ZFS with a minimal active space.
Rows 3 and 4: Molecules used for the investigation of g-shifts with a minimal
active space. Rows 5 and 6: Pseudo-square-planar Cu complexes used for
the investigation of EPR parameters (g-shifts and HFCCs) using an extended
active space.
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grals needed for SSC. For the systems used in the g-shift study, the geometries were
taken from the supplementary material of Singh et al.192 For both the ZFS and the
g-shift investigation we employed the DKH-def2-TZVP basis set in all multireference
calculations.
The geometries of all complexes for the study of the EPR parameters of (pseudo)
square-planar CuII complexes were optimized at the unrestricted Kohn-Sham (UKS)
level with the BP86 exchange-correlation functional, using the scalar-relativistic DKH2
Hamiltonian and the DKH-def2-TZVP basis set. Since picture-change e�ects on HFCCs
can be large already for relatively light elements (like 3d transition metals)27 and
they are not yet implemented in conjunction with the spin-dependent DCD-CAS(2)
method, we choose to do all HFCC calculations at the nonrelativistic level. Compar-
ison of nonrelativistic domain-based local pair natural orbital coupled cluster singles
doubles (DLPNO-CCSD)8,10 calculations to relativistic ones with picture-change in-
cluded show that the error introduced by this is relatively small compared to the er-
rors intrinsic to the methods. We found that the error is typically smaller than 1% for
SD contributions and smaller than 5% for FC contributions; see Appendix B.1. For g-
matrices of transition metal complexes it has been found that a relativistic calculation
(even without inclusion of picture change e�ects) improves the agreement with ex-
periment.101 For 1st row TM complexes, the improvement is however relatively small,
and the g-shifts are similar between relativistic and nonrelativistic calculations; see
Appendix B.2. For consistency with the HFCC calculations, we therefore choose to
also use the nonrelativistic Hamiltonian in this case.
DLPNO-CCSD calculations of HFCCs198 based on a preceding unrestricted HF (UHF)
calculation were performed with the decontracted def2-TZVP basis set, using Au-
toAux197 to generate the auxiliary basis set and explicitly correlating core electrons
(no frozen core). All multireference calculations for the Cu complexes are based on
a SA-CASSCF(11,6) calculation. The active orbitals were chosen to be the Cu 3d or-
bitals together with the bonding counterpart of the dx2−y2 orbital (with orbital lobes
in the direction of the coordinating atoms). In order not to have the orbitals biased
toward the ligand-�eld states, we chose the weight of the LMCT state to be �ve times
higher than each of the �ve ligand �eld states in the state averaging. Like for the
CC calculations, we use the decontracted def2-TZVP basis set (DKH-def2-TZVP for
relativistic calculations). Finally, we performed B3LYP199 calculations of g-matrices19

and A-matrices20 with the same basis sets and grid6. Note that in some cases we have
reverted the sign of two of the HFCCs in order to match the signs obtained experi-
mentally and/or by the CC calculations. This is possible by a unitary transformation
within the Kramers doublet, which keeps the A-matrix diagonal. In some instances we
also performed calculations with state-averaged NEVPT2 (SA-NEVPT2), which is the
usual (strongly contracted) NEVPT2 with a Dyall Hamiltonian that is not state-speci�c
for each state, but constructed from the state-averaged density matrix. It is exactly this
state-averaged Dyall Hamiltonian that we use in the DCD-CAS(2) method, in order to
ful�ll the requirement of a common 0th order Hamiltonian for all states. In this way,
one can understand which part of the di�erence between NEVPT2 and DCD-CAS(2)
results is simply due to a di�erent 0th order Hamiltonian, instead of state-mixing ef-
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Table 5.1.: Spin Hamiltonian parametersD (in cm−1) andE/D for various mononuclear
3d complexes. Both SOC and SSC are included in the calculations. The spin of the non-
relativistic ground-state multiplets is 1 for the two Ni complexes, 2 for the Mn complex,
and 3/2 for the remainder.

CASSCF
/ QDPT

NEVPT2
/ QDPT

DCD-
CAS(2) Expt.

[Co(N(SPPh2)(SPiPr2))2] D 21.27 15.50 15.64 ±12.9204

E/D 0.27 0.28 0.30 0.33204

[Co(N(SPPh2)2)2] D −16.58 −14.00 −13.30 −11.9204

E/D 0.04 0.04 0.04 0.05204

[Fe(C(SiMe3)3)2]− D −100.47 −108.59 −106.43 ...
E/D 0.00 0.00 0.00 ...

[Mn(acac)3] D −4.00 −4.32 −4.48 −4.52205

E/D 0.00 0.01 0.00 0.06205

[Ni(dmiz)2(HCOO)2(H2O)2] D −7.10 −5.46 −5.42 −7.7194

E/D 0.28 0.32 0.31 0.26194

[Ni(sarcophagine)]2+ D 2.42 1.61 1.42 1.44195

E/D 0.27 0.21 0.25 0195

fects.
We want to point out that all calculations reported in this work are single-point cal-
culations performed at the minimum nuclear con�guration of the respective poten-
tial energy surface. This is an approximation and previous work has shown that
EPR parameters (especially the FC contribution to HFCCs) can in some cases change
quite drastically over the range of nuclear con�gurations accessible in the vibrational
ground state.200–203 When assuming validity of the Born-Oppenheimer approxima-
tion, the e�ect of vibrations can be estimated by calculating the expectation value of
the property hypersurface in the vibrational ground state (vibrational averaging). We
choose not to discuss this procedure further in the following because it is completely
independent of the underlying electronic structure method used to calculate the prop-
erty surface. Since DCD-CAS(2) is not a very high accuracy method, we consider the
vibrational e�ects negligible when comparing the results to experimental numbers.

5.2. Minimal active space results

5.2.1. Zero-field spli�ings
The results of the ZFS calculations are shown in Table 5.1. It can be seen that the pre-
dictions by NEVPT2 and DCD-CAS(2) are usually quite similar. The largest change
occurs for the [Ni(sarcophagine)]2+ complex, with a reduction of D by about 12%
when going from NEVPT2 to DCD-CAS(2). We included the two (pseudo)octahedral
NiII complexes to our test set because we expected that an in�uence of state mixing
behavior could show up there. In an octahedral ligand �eld, d8 systems have a non-
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5.3. Electron paramagnetic resonance parameters of square-planar Cu complexes

relativistic 3A2g ground state. Since the SOC operator transforms as T1g, only excited
states that transform like the product A2g ⊗ T1g = T2g are expected to contribute to
the ZFS. Indeed the ZFS is dominated by an excited 3T2g term and the lower one of
two excited 1T2g terms. Since there is a second term of the same symmetry for the sin-
glet multiplicity, some state mixing could be expected to occur. However, no sizeable
state mixing between those two terms was observed for either Ni complex. For the
[Ni(sarcophagine)]2+ complex, there occurs a di�erent state mixing that can only be
explained by the fact that the complex deviates from perfect Oh symmetry. The states
of the lowest 1T2g term mix with the lowest 1A1g state, which is slightly lower in en-
ergy. The mixing is relatively weak (around 1% admixing) for the �rst two roots of
the 1T2g term, which contribute negatively toD, and sizable (around 7% admixing) for
the third root of the 1T2g term, which contributes positively to D. The mixing pushes
the energy of the third 1T2g state slightly up, reducing the magnitude of its contribu-
tion to D. This can explain the smaller D value obtained by DCD-CAS(2) compared
with NEVPT2. One should also mention the importance of SSC for the accurate pre-
diction of ZFS. For example, the DCD-CAS(2) D value without SSC is −3.99 cm−1 for
Mn(acac)3 and 1.32 cm−1 for [Ni(sarcophagine)]2+ compared with the more accurate
values presented in Table 5.1.

5.2.2. g-shi�s

The minimal active space g-shift results are shown in Table 5.2. It can be seen that
there are some changes in g-shifts between NEVPT2 and DCD-CAS(2). Compari-
son with SA-NEVPT2, which uses the same 0th order Hamiltonian, reveals that these
changes are dominated by state mixing e�ects for the CoII complexes. Analysis of the
state compositions shows that the doublet CASCI roots 5 and 7 of [Co(sacsac)2] are
heavily intermixed in the DCD-CAS(2) state. This mixing is however di�cult to an-
alyze since many di�erent states are involved. In most cases the di�erence between
NEVPT2 and DCD-CAS(2) is very subtle and their (dis)agreement with experiment is
comparable. Also in those cases where DCD-CAS(2) provides a limited improvement
(Co complexes), there is still a very large error with respect to the experiment.

5.3. Electron paramagnetic resonance parameters of
square-planar Cu complexes

In this section, we follow the chronological order in which the results were origi-
nally published and �rst discuss only the results of DCD-CAS(2) compared with state-
speci�c approaches. In the last part, we then include the discussion of HQD-NEVPT2,
which was developed as an answer to the problems found when using DCD-CAS(2).
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Table 5.2.: g-shifts (in ppt) of various mononuclear 3d complexes with spin 1/2.

NEVPT2 SA-NEVPT2 DCD-CAS(2) Expt.192

[Co(sacsac)2] ∆g(1) −1263.7 −1301.4 −1064.9 −103
CAS(7,5) ∆g(2) −1110.6 −1260.4 −840.4 −98.3

∆g(3) 3520.6 3495.3 3261.2 1277
[Co(tacacen)] ∆g(1) −1660.6 −1908.2 −1273.7 −57
CAS(7,5) ∆g(2) −1617.3 −1809.5 −1063.1 −22

∆g(3) 3609.9 3674.2 3372.8 1044
[CrN(CN)5]3− ∆g(1) −37.5 −42.3 −44.1 −26.8
CAS(1,5) ∆g(2) −6.9 −8.1 −8.6 −3.3

∆g(3) −6.9 −8.0 −8.6 −3.3
[MnN(CN)4]− ∆g(1) −20.6 −26.8 −27.8 −3.3
CAS(1,5) ∆g(2) −4.4 −6.0 −6.3 2.2

∆g(3) −4.4 −6.0 −6.3 2.2
[VO(acac)2] ∆g(1) −73.3 −76.0 −78.0 −57
CAS(1,5) ∆g(2) −18.5 −18.7 −19.5 −21

∆g(3) −16.2 −16.5 −17.2 −21
[VO(H2O)5]2+ ∆g(1) −84.7 −88.5 −90.6 −65.3
CAS(1,5) ∆g(2) −15.9 −16.6 −17.2 −18

∆g(3) −15.2 −15.7 −16.5 −10
[Ni(cyclam)]+ ∆g(1) 48.1 49.9 50.7 48
CAS(9,5) ∆g(2) 49.6 56.1 52.2 48

∆g(3) 235.4 253.2 259.0 136
[NiH(CO)3] ∆g(1) −5.0 −4.2 −4.0 −1.9
CAS(9,5) ∆g(2) 208.9 191.1 187.0 65

∆g(3) 208.9 191.2 187.0 65
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5.3. Electron paramagnetic resonance parameters of square-planar Cu complexes

5.3.1. E�ect of state mixing on EPR parameters of
square-planar d9 complexes

The qualitative theory of EPR parameters for CuII complexes has been extensively dis-
cussed over the past decades.127,206–209 We reiterate the pertinent details here in order
to facilitate the discussion of our computational results. The ground state of square-
planar d9 molecules can be qualitatively described as a single Slater determinant in
which all MOs are doubly occupied (DOMOs) except for a single one that is singly
occupied (SOMO) and has the form of a dx2−y2 orbital. Applying 2nd order DPT127

(see Section 2.8.1) to this kind of system leads to the following expressions for the EPR
parameters:

∆gkl = 2
∑

t(doubly)

∆E−1
t 〈ψt|lk|ψSOMO〉〈ψSOMO|zl|ψt〉, (5.1)

ANOC/SOC
kl = 2α2γA

∑
t(doubly)

∆E−1
t 〈ψt|

lA,k

r3
A

|ψSOMO〉〈ψSOMO|zl|ψt〉, (5.2)

AFC
kl = δklα

2γA
ge
2

8π

3
|ψSOMO(RA)|2, (5.3)

ASD
kl = α2γA

ge
2
〈ψSOMO|

3rkAr
l
A − δklr2

A

r5
A

|ψSOMO〉. (5.4)

Here it is assumed that the total spin is S = 1/2 and that all excited states that con-
tribute to the 2nd order properties (Eqs. (5.1) and (5.2)) can be described as a single
Slater determinant where one electron has been excited from a DOMO t to the ground
state SOMO. ∆Et is the corresponding excitation energy. This physical picture is vi-
sualized in Figure 5.2.
In contrast to the other d orbitals, the metal dx2−y2 orbital has its lobes in the direction
of the ligands in a square-planar coordination environment. Hence the ground state
SOMO will be an antibonding linear combination of this orbital with some admixture
of ligand orbitals. A d orbital t that is doubly occupied in the ground state can on
the other hand be assumed to be mostly metal-centered. The angular momentum
operator lk simply rotates it into a linear combination of the whole set of �ve metal
d orbitals. The overlap of its dx2−y2-like contribution with the ground state SOMO
will then be smaller if the latter has more ligand character. The same is true for the
NOC integral, where the operator is even more local due to the r−3

A dependence. For
the SOC operator we assume for our qualitative discussion that it has the form of
the e�ective nuclear charge approximation210 and that only the contribution from the
metal nucleus is included. This is justi�ed since ligand nuclei have smaller angular
momentum and smaller Ze�. This leads to

〈ψSOMO|zl|ψt〉 ≈
α2

2
ZM

e� 〈ψSOMO|
ll

r3
|ψt〉. (5.5)

One can see that under these assumptions the SOC integral is approximately propor-
tional to the NOC integral. Therefore, also the SOC integral will be smaller if the
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LF
CT

Figure 5.2.: Simple orbital diagram (using D4h point group labels) for the
qualitative model assumed for the electronic structure of square-planar CuII

complexes. The orbital occupation belongs to the ground state and the ar-
rows designate the possible excitations leading to excited states: d-d (or lig-
and �eld (LF)) transitions and a ligand-to-metal charge transfer (CT) excita-
tion.

covalency in the ground state SOMO is increased. Finally, the FC and SD integrals in
Eqs. (5.3) and (5.4) will be larger if the AOs of the atom for which the HFCC is evaluated
have a larger contribution to the ground state SOMO, due to the local nature of the
operators. For active spaces containing only a single hole, like the chosen CAS(11,6),
a special property arises. Any given set of states, which are unitary transformations
of the CAS CSFs, can be turned into single Slater determinants by a suitable rotation
among the active orbitals; see Appendix A.5. We call the set of these orbitals single de-
terminant orbitals (SDOs). Using these orbitals, state mixing within our chosen CASCI
space can be interpreted in terms of orbital rotations.
The problem with CASSCF is that its description of the ground state SOMO of the in-
vestigated complexes is too ionic, i.e. with too little contribution from ligand AOs. The
same problem persists for NEVPT2, since it cannot revise the CAS part of the wave-
function. This remains true when one explicitly includes the corresponding ligand-
dominated bonding counterpart to the ground state SOMO in the active space. The
LMCT con�guration, where this orbital is singly occupied, is too high in energy at
the CASSCF level; hence its contribution to the ground state is too small.211 There
is also a recent benchmark of CASSCF and NEVPT2 for the prediction of g-shifts,192

where these trends were thoroughly investigated. Dynamic correlation dressing can
decrease the energy of the LMCT con�guration with respect to the ground state and
therefore allow for state mixing. For the systems studied here, this state mixing be-
tween the ground con�guration and the LMCT con�guration can be described simply
as a change of orbitals. The larger the weight of the LMCT state, the more ligand char-
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Table 5.3.: g-shifts (in ppt) calculated with di�erent methods and compared with the experi-
ment.

CASSCF NEVPT2 DCD-
CAS(2)

HQD-
NEVPT2 B3LYP Expt.

[Cu(NH3)4]2+ ∆g(1) 71 58 39 48 40 45212

∆g(2) 71 58 39 48 40 45212

∆g(3) 415 290 194 239 147 239212

[Cu(en)2]2+ ∆g(1) 65 52 32 40 34 39212

∆g(2) 65 53 32 41 35 39212

∆g(3) 372 257 153 197 125 203212

[Cu(gly)2] ∆g(1) 42 33 29 34 30 23212

∆g(2) 89 73 44 52 45 23212

∆g(3) 363 246 177 209 138 265212

[Cu(dtc)2] ∆g(1) 64 54 9 18 16 18213

∆g(2) 68 55 11 20 23 23213

∆g(3) 334 222 54 94 65 82213

[Cu(mnt)2]2− ∆g(1) 64 53 10 20 20 21214

∆g(2) 64 68 12 20 20 24214

∆g(3) 305 208 51 84 71 84214

D2d-[CuCl4]2− ∆g(1) 181 208 70 145 71 81215

∆g(2) 181 208 70 145 71 97215

∆g(3) 895 753 334 595 242 443215

D4h-[CuCl4]2− ∆g(1) 87 77 33 54 44 47207

∆g(2) 87 77 33 54 44 47207

∆g(3) 609 466 178 320 154 230207

acter will be mixed into the ground state SOMO (which is the singly occupied SDO of
the ground state), meaning the metal-ligand bond will be more covalent.

5.3.2. g-shi�s

The g-shifts calculated at di�erent levels of theory compared with experimental values
can be found in Table 5.3. One readily observes that the values at the CASSCF level
are too large, as expected from the fact that the CASSCF description of metal-ligand
bonds is too ionic. Since the g-shift is a 2nd order property, NEVPT2 can give improved
values through modi�ed nonrelativistic excitation energies. DCD-CAS(2) can revise
the wavefunction and therefore yields smaller values than NEVPT2. The lowering in
magnitude is however too strong and the g-shifts are generally too low at this level of
theory. For the two sulfur-containing complexes ([Cu(dtc)2], [Cu(mnt)2]2−), the values
are even lower than the ones obtained with B3LYP, which is notorious for giving too
small g-shifts due to an overly covalent description of the metal-ligand bond.19

99



5. Applications

5.3.3. Ligand hyperfine couplings

It was previously shown that ligand HFCCs (even for nuclei beyond the 2nd row like
sulfur) are dominated by FC and SD HFC,20 while the SOC-induced NOC contribution
is relatively small and can be approximately neglected here. Therefore, we directly
compare the FC and SD contributions to the ligand HFCCs with the complete isotropic
and anisotropic parts of the experimental HFCCs. This approximation is naturally
worse for the heavier ligand nuclei S and Cl. The results are shown in Table 5.4. For
the ligand HFCCs, there are nonzero FC contributions already for the methods based
on a CAS, due to spin delocalization. The increasing covalency at the DCD-CAS(2)
level improves the values, but they are still too small compared to the DLPNO-CCSD
and experimental results. The remaining error is probably due to the missing spin po-
larization. The SD contribution is also increased when going from CASSCF/NEVPT2
to DCD-CAS(2) and agrees in most cases well with the experimental values.

5.3.4. Cu hyperfine couplings

For a CAS wavefunction, the spin density, which is proportional to the FC contribu-
tion to HFCCs, comes from partial occupation of active orbitals. If all active orbitals
have a node at the metal nucleus (as is the case for the calculations here), there is
no contribution of the FC interaction to metal HFCCs, which is in contrast to experi-
mental results. The problem is that the spin density comes from spin polarization of
the (at the CAS level closed-shell) core electrons due to dynamic correlation, an e�ect
that is present at the CCSD level but not at the CASSCF, NEVPT2 or DCD-CAS(2)
levels. Since this important feature is missing, we can therefore not directly compare
our results with experimental HFCCs. We can however compare the anisotropic part
of the HFCCs (which contains contributions from SD and NOC) with the experiment,
and the results of this comparison are given in Appendix B.3. As it turns out, DCD-
CAS(2) has for this anisotropic part the best agreement with the experiment among
all compared methods, which is due to fortuitous error cancellation. In the following
we take a closer look at the individual contributions. Assuming that DLPNO-CCSD
yields semi-quantitative results for the FC and SD contributions to HFCCs (see Section
5.3.3 and previous benchmarks198), we can compare directly with the SD contribution
as predicted by other methods. The results are shown in Table 5.5. One can see that
there is not much di�erence between CASSCF and NEVPT2 results since the wave-
function is unchanged. The DCD-CAS(2) and B3LYP values are quite similar to each
other and are smaller than the CASSCF/NEVPT2 values, indicating a larger amount of
covalency in the SOMOs of the complexes. The fact that bonds are too covalent at the
DFT level manifests itself in too small HFCCs. The comparison with DLPNO-CCSD
results shows that DFT as well as DCD-CAS(2) underestimate the values, which seems
to indicate that the description of the SOMO at the DCD-CAS(2) level is too covalent.
It is surprising considering the too ionic wavefunction that CASSCF predicts the SD
contributions to the HFCCs quite well compared with DLPNO-CCSD. This good agree-
ment is probably due to a fortuitous error cancellation with electron correlation e�ects
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Table 5.4.: Ligand HFCCs (in MHz).

CASSCF NEVPT2 DCD-
CAS(2)

HQD-
NEVPT2 B3LYP DLPNO-

CCSD Expt.a

[Cu(NH3)4]2+ AFC 15 15 23 20 39 32 34216

(14N) ASD(1) −2 −2 −4 −3 −5 −3 −2216

ASD(2) −2 −2 −4 −3 −5 −3 −2216

ASD(3) 4 4 7 6 10 7 5216

[Cu(en)2]2+ AFC 14 14 19 18 36 29 32216

(14N) ASD(1) −2 −2 −4 −4 −5 −4 −4216

ASD(2) −2 −2 −4 −4 −5 −4 −4216

ASD(3) 5 5 8 7 9 8 8216

[Cu(gly)2] AFC 14 14 17 16 36 29 31216

(14N) ASD(1) −2 −2 −3 −3 −5 −3 −2216

ASD(2) −2 −2 −3 −3 −5 −3 −2216

ASD(3) 5 5 5 5 9 7 4216

[Cu(dtc)2] AFC 18 18 16 19 26 35 35217

(33S) ASD(1) −6 −6 −14 −13 −16 −11 −13217

ASD(2) −6 −6 −15 −13 −17 −12 −18217

ASD(3) 12 12 29 26 33 22 31217

[Cu(mnt)2]2− AFC 22 22 23 23 32 32 39214

(33S) ASD(1) −5 −5 −13 −12 −14 −4 −11214

ASD(2) −6 −6 −13 −13 −16 −5 −16214

ASD(3) 11 11 27 25 30 9 26214

D2d-[CuCl4]2− AFC 9 9 10 10 14 17 ...
(35Cl) ASD(1) −5 −5 −13 −9 −18 −8 ...

ASD(2) −5 −5 −13 −9 −18 −8 ...
ASD(3) 10 10 25 18 36 16 ...

D4h-[CuCl4]2− AFC 16 16 19 18 26 31 34207b

(35Cl) ASD(1) −7 −7 −16 −12 −21 −12 −18207b

ASD(2) −7 −7 −16 −13 −21 −12 −18207b

ASD(3) 14 14 33 25 42 24 36207b

aShown are the isotropic and anisotropic parts of the experimental HFCCs as estimates for the FC and
SD contributions.
bExperimental values are averages for 35Cl and 37Cl because these lines could not be resolved separately.
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Table 5.5.: Comparison of di�erent methods with DLPNO-CCSD for the prediction of the SD
contribution (in MHz) to the 63Cu HFCCs.

CASSCF NEVPT2 DCD-
CAS(2)

HQD-
NEVPT2 B3LYP DLPNO-

CCSD
[Cu(NH3)4]2+ ASD(1) 271 278 239 251 245 282

ASD(2) 271 278 239 251 245 282
ASD(3) −553 −563 −482 −507 −491 −564

[Cu(en)2]2+ ASD(1) 269 276 224 239 232 276
ASD(2) 270 276 225 239 234 277
ASD(3) −548 −557 −452 −482 −466 −553

[Cu(gly)2] ASD(1) 206 212 214 226 204 230
ASD(2) 331 340 272 280 280 337
ASD(3) −547 −556 −489 −509 −484 −567

[Cu(dtc)2] ASD(1) 240 246 121 142 156 222
ASD(2) 240 247 122 142 159 228
ASD(3) −489 −498 −243 −285 −315 −449

[Cu(mnt)2]2− ASD(1) 240 243 129 143 162 227
ASD(2) 243 248 130 145 164 229
ASD(3) −491 −495 −260 −290 −326 −456

D2d-[CuCl4]2− ASD(1) 198 198 190 189 219 283
ASD(2) 198 198 190 189 219 283
ASD(3) −462 −453 −392 −415 −437 −566

D4h-[CuCl4]2− ASD(1) 249 258 191 217 211 272
ASD(2) 249 258 191 217 211 272
ASD(3) −521 −530 −386 −444 −422 −543
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that are missing at the CAS level and are of the opposite sign compared to the e�ect
of missing covalency. The 2nd order NOC contribution to A-matrices is currently not
implemented at the DLPNO-CCSD level. In order to arrive at a reference value, we
subtracted the DLPNO-CCSD values for the FC and the SD contribution from experi-
mental HFCCs to get an estimate for the NOC contribution to the metal HFCCs. The
results of this procedure are shown in Table 5.6.
Since the NOC contribution is a 2nd order property (similar to the g-shift), there is, in
contrast to the SD results before, a large change in values when going from CASSCF to
NEVPT2 due to the corrected excitation energies. Again, DCD-CAS(2) leads to smaller
values than NEVPT2 through the additional e�ect of increased covalency. Like before,
the values are very close to the B3LYP results, which severely underestimate the values
compared to the estimate obtained from the experiment and DLPNO-CCSD calcula-
tions. Together with an overly covalent SOMO, this may also be explained by overesti-
mated excitation energies; see Section 5.3.5 below. It is again surprising that CASSCF
and NEVPT2 yield relatively good results despite the overly ionic wavefunction.

5.3.5. Reason for underestimation of Cu g-shi�s and HFCCs at
the DCD-CAS(2) level

The results obtained so far indicate that at the DCD-CAS(2) level the description of
copper-ligand bonds is too covalent, which a�ects 1st and 2nd order properties. Fur-
thermore, the nonrelativistic excitation energies of states that can directly contribute
to the 2nd order properties are possibly too high. We now investigate the reason for
this behavior. Table 5.7 shows relative nonrelativistic energies at di�erent levels of
theory. We also show in this table values obtained at the SA-NEVPT2 level of theory.
We can see that excitation energies are generally quite similar between NEVPT2 and
SA-NEVPT2, with one exception: The excitation energy to the highest energy state
(which is the LMCT state) is always much smaller at the SA-NEVPT2 level than at the
NEVPT2 level. For the two sulfur-containing complexes, the excitation energy to this
state even drops below 1 eV at the SA-NEVPT2 level. This is clearly a de�ciency of
the 0th order Hamiltonian, which cannot describe such di�erent states as ligand �eld
states and LMCT states simultaneously. We therefore expect that the energy di�erence
of the diagonal elements of the DCD-CAS(2) e�ective Hamiltonian is too low due to
the use of this state-averaged 0th order Hamiltonian. Assuming that o�-diagonal ele-
ments are not a�ected to a large extent, this means that the state mixing between the
CASCI ground state and the CASCI LMCT state is too strong. Hence the description
of the bonding at the DCD-CAS(2) level becomes too covalent. This is also nicely illus-
trated by the Löwdin Cu spin populations shown in Table 5.8. For DLPNO-CCSD, the
spin populations are based on the unrelaxed density. Compared to CASSCF, it can be
seen that CC improves the wavefunction by delocalizing the SOMO from Cu to the lig-
ands. In DCD-CAS(2) and especially B3LYP, this delocalization e�ect seems to be too
strong, as demonstrated by the small Cu spin populations. Another e�ect of the overly
strong mixing is that the ground state energy is lowered much more than it should be.
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Table 5.6.: Comparison of the NOC contribution to the 63Cu HFCCs (in MHz) for di�erent
methods compared with the experimental/DLPNO-CCSD reference. The CASSCF, NEVPT2
and DCD-CAS(2) values have all been obtained through the method described in this work,
while the B3LYP values are obtained via analytical derivative techniques.

CASSCF NEVPT2 DCD-
CAS(2)

HQD-
NEVPT2 B3LYP

Expt. /
DLPNO-
CCSD

[Cu(NH3)4]2+ ANOC(1) 113 85 61 73 62 105212a

ANOC(2) 113 85 61 73 62 105212a

ANOC(3) 533 372 264 321 217 434212a

[Cu(en)2]2+ ANOC(1) 102 76 50 62 55 106212a

ANOC(2) 103 77 50 63 55 108212a

ANOC(3) 485 335 217 273 194 402212a

[Cu(gly)2] ANOC(1) 76 54 46 54 48 63212ab

ANOC(2) 136 105 70 82 72 170212ab

ANOC(3) 479 324 245 285 206 480212a

[Cu(dtc)2] ANOC(1) 106 80 20 36 34 92217c

ANOC(2) 106 83 20 36 36 103217c

ANOC(3) 423 281 79 134 124 412217c

[Cu(mnt)2]2− ANOC(1) 102 80 22 37 35 82214

ANOC(2) 106 102 23 43 37 82214

ANOC(3) 404 276 84 133 125 399214

D2d-[CuCl4]2− ANOC(1) 352 365 128 270 122 ...
ANOC(2) 352 365 128 270 122 ...
ANOC(3) 1122 958 439 776 341 ...

D4h-[CuCl4]2− ANOC(1) 157 126 56 93 64 53207c

ANOC(2) 157 126 56 93 64 53207c

ANOC(3) 769 587 250 430 234 481207c

aExperimental values were reported as �eld di�erences ∆B and were converted to energy units via
the relation A = µBg∆B.
bWhile the two smaller components were quite anisotropic in the CC calculation, they are assigned
the same value experimentally, hence these reference values might be problematic.
cExperimental values are probably averages for both Cu isotopes 63 and 65.
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Table 5.7.: Nonrelativistic energies (in eV) at di�erent levels of theory. GS and LMCT
denote the ground state and LMCT state, which are both of 2B1g symmetry. E1 to E4
denote the d-d excited states.

State ∆ENEVPT2 ∆ESA-NEVPT2
EDCD-CAS(2)−
E0,SA-NEVPT2

∆EDCD-CAS(2)

[Cu(NH3)4]2+ GS 0.000 0.000 −0.342 0.000
E1 2.083 2.178 2.160 2.502
E2 2.402 2.477 2.460 2.802
E3 2.389 2.498 2.482 2.824
E4 2.392 2.501 2.486 2.828

LMCT 5.523 4.104 4.881 5.223

[Cu(en)2]2+ GS 0.000 0.000 −0.462 0.000
E1 2.283 2.395 2.375 2.837
E2 2.630 2.724 2.707 3.169
E3 2.586 2.721 2.703 3.165
E4 2.623 2.751 2.734 3.196

LMCT 4.815 3.354 4.285 4.747

[Cu(gly)2] GS 0.000 0.000 −0.315 0.000
E1 2.333 2.411 2.380 2.696
E2 2.294 2.408 2.388 2.703
E3 2.956 3.006 2.969 3.285
E4 2.946 3.044 3.023 3.338

LMCT 4.247 2.473 3.333 3.648

[Cu(dtc)2] GS 0.000 0.000 −1.490 0.000
E1 2.419 2.667 2.272 3.762
E2 2.036 2.308 2.427 3.916
E3 2.193 2.462 2.621 4.111
E4 2.430 2.681 2.649 4.139

LMCT 2.293 0.991 2.846 4.336

[Cu(mnt)2]2− GS 0.000 0.000 −1.414 0.000
E1 1.570 1.831 1.805 3.219
E2 2.414 2.653 2.464 3.878
E3 2.221 2.493 2.587 4.001
E4 2.497 2.752 2.754 4.168

LMCT 2.298 0.998 2.927 4.340

D2d-[CuCl4]2− GS 0.000 0.000 −0.486 0.000
E1 0.498 0.589 0.566 1.051
E2 0.498 0.589 0.566 1.051
E3 0.676 0.784 0.760 1.246
E4 0.890 0.997 0.975 1.460

LMCT 3.333 1.729 2.463 2.949

D4h-[CuCl4]2− GS 0.000 0.000 −0.669 0.000
E1 1.214 1.362 1.338 2.007
E2 1.494 1.650 1.628 2.297
E3 1.494 1.650 1.628 2.297
E4 1.740 1.875 1.855 2.524

LMCT 3.476 1.942 2.921 3.590
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Table 5.8.: Löwdin Cu spin populations at various levels of theory.

CASSCF DCD-CAS(2) HQD-NEVPT2 B3LYP DLPNO-CCSD
[Cu(NH3)4]2+ 0.84 0.70 0.74 0.63 0.76
[Cu(en)2]2+ 0.82 0.65 0.70 0.60 0.74
[Cu(gly)2]2+ 0.82 0.70 0.74 0.62 0.77
[Cu(dtc)2] 0.75 0.36 0.43 0.40 0.59
[Cu(mnt)2]2− 0.75 0.39 0.44 0.41 0.60
D2d-[CuCl4]2− 0.88 0.67 0.77 0.61 0.83
D4h-[CuCl4]2− 0.83 0.57 0.68 0.54 0.74

Table 5.9.: [Cu(NH3)4]2+ excitation energies (in eV)
of the two states that can in 2nd order PT contribute
to the g-shifts and NOC contributions to HFCCs.

DCD-CAS(2) CCSD(T) Expt.
∆E(B2g) 2.50 1.94 1.74218

∆E(Eg) 2.83 2.27 2.17218

As one can see in the last two columns of Table 5.7, this increases the excitation ener-
gies to the �rst excited states substantially although their total energies remain more
or less unchanged. This provides another possible mechanism for why the 2nd order
properties (g-shifts and NOC contributions to HFCCs) are too small. In the following
we will disentangle these two e�ects for the example of the [Cu(NH3)4]2+ complex.
All three operators that occur in Eqs. (5.1) and (5.2) transform like rotations in the
approximate point group D4h, i.e. they belong to the representation A2g ⊕Eg. Know-
ing that the ground state has approximate B1g symmetry, this means that only the
excited state of B1g ⊗A2g = B2g symmetry can contribute to the parallel component
and only the excited state of B1g⊗Eg = Eg symmetry can contribute to the orthogo-
nal component of ∆g and ANOC. Table 5.9 shows the DCD-CAS(2) excitation energies
for these two states compared with the corresponding values from a coupled cluster
calculation with single, double and perturbative triple excitations (CCSD(T)) and the
experiment. The CC calculations use the excited state determinants constructed from
SDOs as a reference. We loosened the thresholds slightly to enable convergence of
some of the CC calculations; see Appendix B.4 for a demonstration of the validity of
this approach. Assuming validity of DPT2, we can (since only a single state contributes
to each of the EPR parameters for the [Cu(NH3)4]2+ molecule) approximately correct
for the erroneous DCD-CAS(2) excitation energies by scaling the parameters with the
CCSD(T) or experimental excitation energies,

∆gscaled = ∆gDCD-CAS(2) ×
∆EDCD-CAS(2)

∆ECC/exp
, (5.6)

and analogously for the HFCCs. The results of this procedure are shown in Table
5.10. After this correction, the scaled g-shifts come out slightly too large even though

106
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Table 5.10.: g-shifts (in ppt) and NOC contribution to HFCCs (in MHz) for [Cu(NH3)4]2+.
Shown are original DCD-CAS(2) results and results that are improved via scaling with exper-
imental and CCSD(T) excitation energies. The reference values are taken from Table 5.3 and
Table 5.6.

DCD-CAS(2)
DCD-CAS(2)

scaled by
CCSD(T)

DCD-CAS(2)
scaled by Expt. Reference

∆g⊥ 40 50 52 45
∆g‖ 199 257 286 239

ANOC,⊥ 61 76 80 105
ANOC,‖ 264 341 379 434

the wavefunction is too covalent, as demonstrated by the spin populations in Table
5.8. This seems to indicate once more that the in�uence of dynamic correlation on
the wavefunction cannot be neglected, especially for the g-shifts. For the HFCCs on
the other hand, the remaining discrepancy between scaled DCD-CAS(2) results and
experiment are in line with the overestimation of covalency in the ground state SOMO.

5.3.6. Performance of HQD-NEVPT2
We �nally discuss the performance of HQD-NEVPT2 for the prediction of EPR pa-
rameters in the set of square-planar CuII complexes. One of the main motivations for
the development of HQD-NEVPT2 was that with its state-speci�c Dyall Hamiltoni-
ans it should be able to correct for the shortcomings of DCD-CAS(2) observed in the
previous section.
The Löwdin Cu spin populations for the di�erent complexes computed with HQD-
NEVPT2 are also shown in Table 5.8. It can be seen that the results from HQD-NEVPT2
agree on average best with the DLPNO-CCSD spin populations among the compared
methods, although they are still too small, especially for the S-coordinating ligands dtc
and mnt. The values are signi�cantly larger than the DCD-CAS(2) values, which can
be traced back to a better description of the LMCT con�guration with the state-speci�c
Dyall Hamiltonians in the framework of the HQD-NEVPT2.
We now come to the performance for the calculation of EPR parameters. In order to
facilitate the comparison, we also show the results from Tables 5.3, 5.5 and 5.6 graph-
ically. Figure 5.3 and Figure 5.4 show the results for the SD and NOC contributions
to the 63Cu HFCCs for the di�erent molecules in the test set, relative to the reference
values. We noticed in the previous sections that, for these properties, CASSCF/QDPT
and NEVPT2/QDPT performed best among all compared methods. This is quite coun-
terintuitive considering the too ionic wavefunction at this level as demonstrated by
the large spin populations in Table 5.8. We concluded that these properties cannot be
described su�ciently well with a CASCI type wavefunction, to which also the relaxed
wavefunctions of a DCD-CAS(2) or HQD-NEVPT2 calculation belong, and that there
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[Cu(NH3)4]2+ [Cu(en)2]2+ [Cu(gly)2] [Cu(dtc)2] [Cu(mnt)2]2− D2d-[CuCl4]2− D4h-[CuCl4]2−
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Figure 5.3.: Comparison of the SD contribution to 63Cu HFCCs (in MHz) calculated with di�er-
ent methods and DLPNO-CCSD as a reference. For simplicity only the component parallel to
the C4 axis (�lled marker) and the average of the two orthogonal components (hollow marker)
are shown. Perfect agreement is indicated by the dashed gray line.
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[Cu(NH3)4]2+ [Cu(en)2]2+ [Cu(gly)2] [Cu(dtc)2] [Cu(mnt)2]2− D4h-[CuCl4]2−
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Figure 5.4.: Comparison of the NOC contribution to 63Cu HFCCs (in MHz) calculated with
di�erent methods and a combined DLPNO-CCSD and experimental reference. For simplicity
only the component parallel to theC4 axis (�lled marker) and the average of the two orthogonal
components (hollow marker) are shown. Perfect agreement is indicated by the dashed gray line.
The D2d-[CuCl4]2− molecule is excluded here because no suitable experimental reference was
found.
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[Cu(NH3)4]2+ [Cu(en)2]2+ [Cu(gly)2] [Cu(dtc)2] [Cu(mnt)2]2− D2d-[CuCl4]2− D4h-[CuCl4]2−
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Figure 5.5.: Comparison of g-shifts calculated with di�erent methods and the experiment. For
simplicity only the component parallel to the C4 axis (�lled marker) and the average of the
two orthogonal components (hollow marker) are shown. Perfect agreement is indicated by the
dashed gray line.
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is probably a fortuitous cancellation of errors in the case of CASSCF and NEVPT2. It
is still encouraging to see that HQD-NEVPT2 gives better results than DCD-CAS(2)
due to the more balanced description of the wavefunction.
Figure 5.5 shows the parallel and orthogonal g-shifts for the molecules of the test set
calculated with di�erent methods and compared with the experiment. As discussed in
the previous section, NEVPT2 almost always overestimates the g-shifts, while DCD-
CAS(2) almost always underestimates them. HQD-NEVPT2 turns out to be relatively
accurate except for the [CuCl4]2− complexes, where the predicted values are too large,
and the orthogonal component of the [Cu(gly)2] g-shifts. Here the accuracy of the ref-
erence value is unclear because it predicts two equal orthogonal components while all
computational methods predict a quite large di�erence of the two components. On av-
erage, HQD-NEVPT2 performs best among the compared methods for the prediction
of this property. It therefore seems to be a serious alternative to established methods
for the prediction of g-shifts, at least for the case of CuII complexes.

5.4. Ligand field and LMCT excitation energies of
[CuCl4]2−

In Section 5.3 there were hints that a state-averaged H0 is a bad choice when both
ligand �eld and charge transfer states are treated simultaneously. In order to in-
vestigate this further, we compare in this section the performance of state-speci�c
0th order Hamiltonians with state-averaged ones for the simultaneous prediction of
ligand �eld and LMCT excitation energies in the [CuCl4]2− anion. This is a di�-
cult problem for quantum chemistry, although recently there appeared a quite ac-
curate single-reference quantum-chemical treatment of the charge transfer states of
this molecule.219 The di�erence between this section and Section 5.3 is that in the lat-
ter the LMCT state was an “arti�cial” (experimentally non-observable) one that was
only included into the active space to improve the description of the ground state. In
contrast to that, we investigate in this section experimentally observable LMCT states
in order to �nd out whether the previously found behavior is part of a general trend.
The [CuCl4]2− anion exists in two geometries, depending on the crystal environment:
A more common distorted-tetrahedral (D2d) geometry with a 2B2 ground state and
a square-planar (D4h) geometry with a 2B2g ground state (with the ligands between
the coordinate axes, such that the SOMO is the dxy orbital).220 Absorption spectra of a
multitude of compounds from both categories have been recorded for many decades.
For the Cl− ligand, hybridization is expected to be weak. Therefore, only those orbitals
derived from Cl-3p orbitals need to be considered as donor orbitals for the LMCT ex-
citations. There are twelve of them, of which four have σ character and eight have π
character. In the D4h geometry, the σ orbitals transform as A1g ⊕ B2g ⊕ Eu. The π
orbitals can be classi�ed as four in-plane orbitals, which transform as A2g⊕B1g⊕Eu
and four out-of-plane orbitals, which transform as A2u⊕B1u⊕Eg. In the D2d geom-
etry, the σ orbitals and the “out-of-plane” π orbitals transform as A1 ⊕B2 ⊕E, while
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the “in-plane” π orbitals (having vertical nodal planes) transform asA2⊕B1⊕E. Elec-
tric dipole-allowed transitions are only possible toEu andB1u states inD4h symmetry
and toE andA1 states inD2d symmetry. The experimental ultraviolet-visible (UV/Vis)
spectra in the charge-transfer region are dominated by two strong bands in the D4h

case and three strong bands in the D2d case. Assuming that these belong to electric-
dipole allowed transitions, there are three possible sets of ligand donor orbitals in the
D4h case (two times eu and b1u) and �ve possible sets in the D2d case (two times a1

and three times e). For the D4h case, we simply included all eu and b1u ligand orbitals
into the active space, which leads to a SA-CASSCF(19,10) reference calculation, with
a balanced ratio of ligand-�eld versus charge transfer roots in the state averaging. For
theD2d geometry, there are di�ering opinions in the literature regarding the character
of the ligand donor orbitals in the three dominant bands, although there seems to be
consensus that two of them have E symmetry and one of them A1 symmetry.221,222 A
very thorough combined experimental and theoretical work came to the conclusion
that one of them originates from a non-bonding set of p-π orbitals with e symmetry,
while the other two correspond to an excitation from an e set of σ oriented p orbitals
and an a1 orbital of σ character.222 These results were taken into account to choose
the active space for a CASSCF(19,10) calculation on the D2d complex. The choice of
orbitals was also veri�ed by comparison with a larger active space CASSCF(25,13) cal-
culation including all ligand orbitals of e and a1 symmetry; see Appendix B.6. The
SDOs for the two gas phase optimized structures from the previous section are shown
in Figure 5.6.
In order to describe the systems more realistically, we employed an embedded cluster
approach223 that has proven to be a viable technique for the modelling of many di�er-
ent properties of solid systems.224–226 As a crystal with D2d ions we chose Cs2CuCl4,
which crystallizes in the space group type Pnma with lattice parameters a=9.70 Å,
b=7.60 Å, c=12.35 Å and 4 formula units (28 atoms) per unit cell.227 ForD4h symmetry,
we chose (N-mph)2CuCl4 (N-mph = N-methylphenethylammonium), which crystal-
lizes in the space group type P21/c with lattice parameters a=6.4952 Å, b=22.678 Å,
c=8.5844 Å and angle β=116.08°, and two formula units (106 atoms) per unit cell.228

The unit cells were repeated in all three directions to create a supercell whose surface
is at least 30 Å from the atoms in the center. The [CuCl4]2− units were treated quantum
mechanically, and the remaining atoms of the supercell as point charges. To prevent
charge �ow from the quantum region to the embedding charges, SDD e�ective core
potentials229–232 were put on all positive point charges within a distance of 5 Å from
any quantum-mechanical atom. One exception were positive charges representing H
atoms, since the latter do not have core electrons and therefore no ECP is de�ned for
them. We also performed calculations where Li ECPs were put on H point charges
and the results were very similar; see Appendix B.8. The embedding charges were
determined iteratively using CHELPG233 electrostatic charges from DLPNO-CCSD8,10

calculations. The details of the embedding calculations can be found in Appendix
C.2. One important e�ect of this more realistic description is that the symmetry of
the [CuCl4]2− units is lowered. In Cs2CuCl4 the symmetry is lowered from D2d to
Cs, while in (N-mph)2CuCl4 it is lowered from D4h to D2h. We will still use the ap-
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Figure 5.6.: Gas phase CASSCF(19,10) SDOs for [CuCl4]2− in D4h geometry (left) and D2d

geometry (right). From top to bottom, the SDOs correspond to the SOMO of the di�erent
electronic states in order of increasing energy. Isovalues of 0.05 were chosen.
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Table 5.11.: Excitation energies (in eV) belonging to the d-d transitions and the three strongest
bands in the charge transfer region of theD2d-[CuCl4]2− UV/Vis absorption spectrum. For the
DLPNO reference, the threshold on the residual convergence was loosened to 0.003.

CASSCF SA-
NEVPT2

DCD-
CAS(2) NEVPT2 HQD-

NEVPT2
DLPNO-
CCSD(T) Expt.234

2E (xz/yz → xy) 0.298 0.450 0.427 0.417 0.415 0.3 0.6a
2B1 (x2 − y2 → xy) 0.621 1.077 0.907 0.991 0.991 0.7 1.0
2A1 (z2 → xy) 0.703 1.083 1.071 1.014 0.993 0.8 1.1
2E (Cl-3p→ xy) 6.124 1.532 1.857 3.437 3.435 3.9 3.1
2E + 2B1

(Cl-3p→ xy) 7.219 2.876 3.338 4.680 4.691 5.1b 4.2

2A1 (Cl-3p→ xy) 8.018 4.612 5.051 6.129 6.130 6.1 5.2

aExperimentally, the 2E d-d state is slightly split by a distortion. We use the average of the two energies
as a reference.
bThis value is obtained by averaging the energy of only two instead of all three states that correspond
to this level, since one of the calculations did not converge.

proximate D2d and D4h symmetry labels in the following for simplicity. For the D2d

complex, the symmetry lowering had the e�ect that the (19,10) active space was not
stable anymore. The second e set of ligand orbitals mixed with an orbital of pseudo
b1 symmetry. We therefore included this as an active orbital to end up with a (21,11)
active space, with the weights for both d-d and LMCT states adjusted such that each
group contributes 50%.
The DKH2151,152 scalar-relativistic Hamiltonian and the DKH-def2-TZVP191 basis set
was used throughout. The resulting excitation energies calculated with di�erent vari-
ants of NEVPT2 and DCD-CAS(2) on top of the CASSCF references are shown in Table
5.11 and Table 5.12. We also computed excitation energies using “ground-state” open-
shell DLPNO-CCSD(T)10 with the single-determinant CASSCF roots as references and
with AutoAux197 to generate the auxiliary basis set. The convergence threshold for
the CC residual equations unfortunately had to be slightly loosened from the default
value to enable convergence to the excited states; hence we report a reduced num-
ber of digits that, we believe, are still signi�cant. Details can be found in Appendix
B.7. The energies of all states belonging to a degenerate term in the pseudo symmetry
group were averaged. In the case of the second 2E state of the D2d system, we also
included a third state originating from the additional b1 orbital in the average. The ex-
act numbers before the averaging are presented in Appendix B.8. It can be observed
that NEVPT2 and QD-NEVPT2 results are very close, so there is only limited occur-
rence of state mixing and the CASSCF states provide reasonable 0th order references.
On average, both methods overestimate the excitation energies but still compare rel-
atively well with the experiment. The DLPNO-CCSD(T) excitation energies are quite
similar to the NEVPT2 ones, but predict slightly lower excitation energies for d-d tran-
sitions. We assume that the CC results provide good reference numbers to judge the
other methods. We presume that the still relatively large deviations of the CC calcu-
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Table 5.12.: Excitation energies (in eV) belonging to the d-d transitions and the dipole-allowed
bands in the charge transfer region of the D4h-[CuCl4]2− UV/Vis absorption spectrum (with
all H atoms modeled as point charges). For the DLPNO reference, the threshold on the residual
convergence was loosened to 0.0005.

CASSCF SA-
NEVPT2

DCD-
CAS(2) NEVPT2 HQD-

NEVPT2
DLPNO-
CCSD(T) Expt.

2B1g

(x2 − y2 → xy) 1.234 2.048 2.047 1.901 1.900 1.43 1.5235

2Eg (xz/yz → xy) 1.507 2.260 2.263 2.103 2.103 1.65 1.8a 235
2A1g (z2 → xy) 1.550 2.600 2.605 2.475 2.476 1.84 2.1235
2Eu (Cl-3p→ xy) 6.206 2.436 2.683 4.117 4.059 4.28 3.2222
2B1u (Cl-3p→ xy) 6.526 2.511 2.852 4.229 4.236 4.51 ...
2Eu (Cl-3p→ xy) 7.732 3.986 4.545 5.608 5.663 5.77 4.7222

aExperimentally, the 2E d-d state is slightly split by a distortion. We use the average of the two energies
as a reference.

lations from experiment has other reasons than the electronic structure method itself.
For example, some sources of error might be the use of geometries obtained from the
crystal structures, the fact that our methodology cannot describe the polarizability of
the crystal environment, and deviations between vertical excitation energies and ab-
sorption band maxima. Note that the calculated oscillator strength (not shown in the
table) for the transition to the 2B1u excited state inD4h geometry is very small, which
explains why it is not observed experimentally. SA-NEVPT2 and DCD-CAS(2) give
decent results for the ligand �eld excitations but severely underestimate the LMCT
excitation energies compared to the CC results. This is another demonstration of the
fact that the state-averaged Dyall Hamiltonian is simply not accurate enough when
treating ligand-�eld and charge transfer states simultaneously. State-speci�c Dyall
Hamiltonians are necessary, which means that multi-partitioning theory becomes a
necessity.
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Already in our initial work on the DCD-CAS(2) method,88 we observed for one speci�c
complex, [CrF6]3−, that this new method might provide a better starting point for the
AILFT parametrization than the NEVPT2 method that has been predominantly used so
far to include dynamic correlation. In the present chapter, we investigate if this �nding
is part of a more general trend by comparing the performance of our newly developed
multistate methods DCD-CAS(2) and HQD-NEVPT2 when they are combined with
AILFT.

6.1. Choices for the ab initio e�ective Hamiltonians
The most obvious choice for the ab initio e�ective Hamiltonian to be used in the AILFT
procedure (see Section 2.9) is a CASCI Hamiltonian with the corresponding d-like or
f -like MOs chosen as active orbitals. One can write the CASCI matrix via a spectral
resolution as

He�
CASCI = CCASCIECASCIC

T
CASCI, (6.1)

where ECASCI is a diagonal matrix containing the CASCI energies and CCASCI is the
CASCI coe�cient matrix with respect to the CSF basis. As we noted in Section 2.7.2,
the only approximation when describing Eq. (6.1) via the LFT model is the parametriza-
tion of the two-electron integrals. For a real complex, with a symmetry-lowering lig-
and environment, the active orbitals have lower than full spherical symmetry. For
example, the d orbitals in an octahedral complex split into distinct eg and t2g sets. If
covalency is not too large, the CASCI Hamiltonian is usually nevertheless very well
described by the LFT model. Apart from extreme cases, the root-mean-square devia-
tions (RMSD) between ab initio and LFT state energies at the CASCI level are typically
not much larger than 0.1 eV.135

One problem with this version of AILFT is that dynamic correlation is missing from
the CASCI method, which also limits the accuracy of the derived AILFT model. A
way to incorporate dynamic correlation in a computationally e�cient way is MRPT2,
a popular variant of which is NEVPT2. One can de�ne a NEVPT2 e�ective Hamilto-
nian in analogy to Eq. (6.1) via back-transformation of the NEVPT2 energies with the
CASCI coe�cients,

He�
NEVPT2 = CCASCIENEVPT2C

T
CASCI. (6.2)
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This means that the CASCI part of the wavefunction is unchanged, while the total
energies are corrected for dynamic correlation. Here, ENEVPT2 is a diagonal matrix
containing the NEVPT2 energies. This choice of e�ective Hamiltonian often leads to
better agreement with the experiment than the CASCI Hamiltonian. However, past ex-
perience has shown that the LFT model provides a signi�cantly inferior parametriza-
tion for this Hamiltonian than for the CASCI Hamiltonian, as is evident from a larger
RMSD between ab initio and LFT energies, which is often increased by an order of
magnitude or more.135 This large discrepancy can partially absorb the gain in accu-
racy of NEVPT2 over CASCI.
The two multistate methods developed in this thesis, DCD-CAS(2) and HQD-NEVPT2,
do not �x the CASCI parts of the wavefunctions, but instead allow them to mix and re-
lax under the e�ect of dynamic correlation. This potentially provides a more balanced
modi�cation of the CASCI matrix under the e�ect of dynamic correlation, compared
to the NEVPT2 approach where only the diagonal energies are modi�ed but the CASCI
coe�cients stay identical. In DCD-CAS(2), one de�nes the e�ective Hamiltonian as

He�
DCD-CAS(2) = CDCD-CAS(2)EDCD-CAS(2)C

T
DCD-CAS(2). (6.3)

Here, the energies EDCD-CAS(2) contain the 1st order bias correction. In HQD-NEVPT2,
the e�ective Hamiltonian in the CSF basis must also be reconstructed from energies
and CI coe�cients,

He�
HQD-NEVPT2 = CHQD-NEVPT2EHQD-NEVPT2C

T
HQD-NEVPT2, (6.4)

since the e�ective Hamiltonian is usually formulated in the basis of eigenstates of a
prior CASCI calculation. The e�ective Hamiltonians Eqs. (6.3) and (6.4) have been
newly implemented in a development version of the ORCA electronic structure pro-
gram143 for the present work.
Eqs. (6.2), (6.3) and (6.4) represent the di�erent choices for ab initio e�ective Hamilto-
nians including the e�ect of dynamic correlation that we investigate in this chapter.
By �tting the LFT model to these e�ective Hamiltonians, one can then obtain “renor-
malized” parameters in the sense of Gerloch et al.236

6.2. Test set and computational details
To test the di�erent approaches, we compiled a diverse set of spectroscopically well-
documented TM complexes. It includes homoleptic octahedral 3d3 complexes (CrIII

with ligands F−, Cl−, Br−, I−, CN−, NH3), the 4d3 complexes [MoCl6]3− and [TcF6]2−,
and the 5d3 complexes IrF6 and [ReX6]2− (with X=F, Cl, Br). In order to have di�er-
ent dn occupations present, we also include the series of tetrahedral divalent chloride
complexes of metals from the �rst transition row from Ti to Ni. The 3d3 Cr(acac)3
and 3d4 Mn(acac)3 complexes are included as examples for chelate complexes, and the
3d2 [FeO4]2− and [MnO4]3− complexes as examples for TM complexes with high +VI
and +V oxidation states, respectively. Systems with only 1 electron or 1 hole in the dn
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manifold were not included, since electron-electron repulsion does not play a role for
them and they can always be exactly parametrized by the LFT model.
We performed all calculations with a development version of the ORCA electronic
structure program.143 The DKH2 scalar-relativistic Hamiltonian151,152 was used in all
calculations. Since there is no basis set optimized for a relativistic Hamiltonian for
all elements present in the test set, we used DKH-def2-TZVP191 for elements lighter
than Kr (including 3d TMs), Sapporo-DK-TZP237 for elements lighter than Xe (includ-
ing 4d TMs), and SARC-DKH-TZVP191,238–240 for everything heavier. The reason for
this choice is that we wanted to treat as many elements as possible consistently, and
the DKH-def2-TZVP was speci�cally recontracted for use together with the SARC ba-
sis sets.191 Only for 4d elements, where neither of these two basis sets is de�ned, the
Sapporo basis set was used. Auxiliary basis sets, if needed, were constructed using
AutoAux.197 Geometry optimizations were performed with DFT using the BP86241 242

exchange-correlation functional with D3BJ243,244 dispersion correction, grid5 integra-
tion grids, and the conductor-like polarizable continuum model (C-PCM)245 with in-
�nite permittivity in order to approximately account for environment e�ects. Unless
otherwise mentioned, the multireference calculations were performed on top of ref-
erence states and orbitals obtained from a CASSCF(N ,5) calculation averaged over
all possible roots of all multiplicities. The default option in ORCA was used, where
all multiplicity blocks are assigned the same total weight. For a d3 system there are
for example 10 quartet and 40 doublet roots. This gives a weight of 0.5/10=0.05 for
each quartet root and a weight of 0.5/40=0.0125 for each doublet root. The strongly-
contracted62,116 version of (HQD-)NEVPT2 was used throughout.

6.3. Results

6.3.1. Validation of the computational protocol

TM complexes usually exist in some environment (solution, crystal) that in�uences
their properties. An often applied computationally inexpensive approach to account
for such environment e�ects is the use of an implicit solvation model like C-PCM.245

We start by investigating its e�ect for a set of octahedral CrIII complexes with di�erent
ligands.
Table 6.1 shows the bond lengths obtained in a geometry optimization with or without
C-PCM. Table 6.2 shows the quartet excitation energies obtained from CASSCF and
NEVPT2 calculations on top of those geometries, with averaging over all quartet and
doublet states. It can be observed that the structures optimized with C-PCM have
smaller metal-ligand bond lengths, which agree better with the experimental bond
lengths in all cases except for the CN− ligand, where even the gas-phase-optimized
bond length is too short. Taken together, this suggests that the inclusion of C-PCM
will in general be bene�cial for accurate structures. For excitation energies the situ-
ation is less clear-cut. Using C-PCM geometries, the �rst excitation energy is usually
well represented, while the second one is typically overestimated. Using the gas phase
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Table 6.1.: Cr-X bond lengths (in Å) for the [CrX6]n series with and
without C-PCM, compared to the experiment.

X Expt.135 BP86-D3 BP86-D3/C-PCM

F−
1.901 (CrF3)

1.998 1.9411.933 (K2NaCrF6)
1.913 (Cs2NaCrF6)

Cl− 2.347 (CrCl3) 2.446 2.378
Br− 2.524 (CrBr3) 2.609 2.539
I− ... 2.817 2.750
C (CN−) 2.078 (K3Cr(CN)6) 2.063 2.017
N (NH3) 2.074 ([Cr(NH3)6](ClO4)3 2.140 2.081

Table 6.2.: Quartet excitation energies (in eV) for the [CrX6]n series ob-
tained with di�erent geometries.

gas phase structure C-PCM structure
CASSCF NEVPT2 CASSCF NEVPT2 Expt.

[CrF6]3− 1.42 1.64 1.64 1.88 2.00a

2.32 2.58 2.64 2.88 2.90a

3.93 3.94 4.29 4.34 ...
[CrCl6]3− 1.18 1.52 1.36 1.73 1.70b

1.97 2.41 2.23 2.66 2.38b

3.50 3.63 3.76 3.96 ...
[CrBr6]3− 1.10 1.51 1.25 1.69 1.66c

1.85 2.40 2.07 2.61 2.16c

3.37 3.58 3.58 3.86 ...
[CrI6]3− 1.09 1.64 1.21 1.80 ...

1.84 2.56 2.02 2.74 ...
3.33 3.72 3.51 3.99 ...

[Cr(CN)6]3− 3.01 3.69 3.37 4.12 3.29d

4.18 4.71 4.56 5.13 4.02d

6.60 7.64 7.27 8.48 ...
[Cr(NH3)6]3+ 2.08 2.52 2.41 2.89 2.67e

3.17 3.58 3.56 3.96 3.53e

4.98 5.47 5.56 6.17 ...

aK2NaCrF6
246 This system has an experimental metal ligand distance that is clos-

est to the C-PCM geometry among the systems in Table 6.1.
bCrCl3 246
cCrBr3

246
dK3Cr(CN)6

247
e[Cr(NH3)6](ClO4)3 in H2O 248,249

120



6.3. Results

geometries, this situation is reversed: the �rst excitation energy is usually underes-
timated, while the second excitation energy is usually closer to experiment. There
is a general trend that the NEVPT2 method with triple-zeta basis sets overestimates
excitation energies for d-d transitions, as exempli�ed by our recent study of the exci-
tation energies of free ions in the gas phase,89 where discrepancies due to an incorrect
description of the environment can be excluded. This overestimation of excitation en-
ergies was also discussed in the recent AILFT review article.135 This means that the
good results for second excitation energies using NEVPT2 and the gas phase geome-
tries rely on error cancellation between the too long bond distances (leading to smaller
excitation energies) and errors in the NEVPT2 method (leading to larger excitation
energies). We therefore prefer the results based on the C-PCM-optimized geometries,
since they do not rely on such error cancellation. The data suggests that a smaller
metal-ligand distance leads to larger excitation energies, which is also intuitively ob-
vious since in this case the ligand �eld is stronger. This explains that the calculation
of excitation energies based on the gas phase geometry (which is closer to the exper-
imental geometry) agrees better with the experiment for the CN− ligand.
Apart from state averaging over all roots (quartet and doublet), we also investigated
results obtained with state averaging over only the quartet roots; see Appendix B.9.
The results are very similar in the two state averaging protocols. This implies that
here the exact choice is not too important for the results. One should note however
that the quality of the AILFT �t can of course su�er if several multiplicity blocks of
the e�ective Hamiltonian are parametrized simultaneously.

6.3.2. RMSDs and comparison with experimental excitation
energies

Before comparing the RMSD between LFT and ab initio energies for the di�erent meth-
ods investigated in this work, we discuss some fundamental limitations of the most
simple LFT model used here. The parametrization of the electron-electron repulsion
in terms of the three Racah parameters assumes that the partially occupied orbitals
are pure spherically symmetric d orbitals. This is only exactly true for free atoms and
ions. In complexes, this assumption is not exactly ful�lled due to covalency, which
renders the electron-electron repulsion anisotropic. In the most general case, the 120
permutationally distinct two-electron integrals between the d orbitals are all unique
and should be considered as independent parameters in the model. For systems with
some residual symmetry, the number of independent parameters is of course smaller.
For example, in an octahedral complex there are 10 independent parameters which
completely capture the anisotropy of the electron-electron repulsion at the CASSCF
level.250 77 251 Neglecting this anisotropy will inevitably lead to disagreement between
the model energies and the ab initio energies, which correctly include this anisotropy.
Hence the RMSD will be larger. One should however note that for Werner type com-
plexes with limited covalency, the assumption of isotropic electron-electron repulsion
is often a very good one and then RMSDs at the CASSCF level are small. While in this
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Figure 6.1.: Total RMSDs between AILFT and ab initio state energies for
di�erent methods and complexes.

work we focus on the pure LFT model with isotropic electron-electron repulsion, we
plan to investigate models that explicitly include anisotropy in future work.
Figure 6.1 shows the RMSD between the LFT energies and the ab initio energies for all
investigated methods and complexes. The exact numbers are given in Appendix B.11.
Some general trends can be observed. Even at the CASSCF level, the RMSD varies
between 0.01 eV and 0.32 eV, correlating well with the covalency of the d-like active
MOs. This is expected, since overlap with ligand orbitals will reduce the symmetry of
the orbitals from purely spherical and therefore make the approximation of the two-
electron integrals in terms of the three Racah parameters worse. The NEVPT2 RMSD
is always signi�cantly larger than the CASSCF RMSD, and they correlate well: If the
CASSCF RMSD is large for a particular compound, then usually also the NEVPT2 one
will be large compared to other compounds. The RMSDs for the multistate methods
HQD-NEVPT2 and DCD-CAS(2) improve signi�cantly over the NEVPT2 values. DCD-
CAS(2) performs best for all molecules, but its performance is usually closely matched
by HQD-NEVPT2. Only for a few cases (the octahedral 5d complexes, [MnCl4]2−, and
[FeO4]2−) is the HQD-NEVPT2 �t slightly worse than the NEVPT2 one.
The e�ect of these RMSDs is seen in Table 6.3, which shows excitation energies cal-
culated with the ab initio methods and the LFT models derived from them, compared
to experimental band maxima. This comparison is obviously in�icted with a num-
ber of uncertainties since the band maxima do not correspond to vertical excitation
energies and are also in�uenced by a variety of environment e�ects that we do not
attempt to model here. Nevertheless, as shown below, there is still reasonably good
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agreement. It can be observed in Table 6.3 that in cases where NEVPT2 gives results
that are in closer agreement with the experiment, like for the CrIII halide complexes,
the large RMSD of the corresponding AILFT �t (see Appendix B.11 for exact numbers)
leads to AILFT(NEVPT2) energies that are often not better than the CASSCF values.
HQD-NEVPT2 and DCD-CAS(2) on the other hand give, thanks to the much better
�t as re�ected by the smaller RMSDs, LFT models that have a closer agreement with
the experiment than the one �tted to NEVPT2. Also for many other complexes does
the smaller RMSD at the HQD-NEVPT2 and DCD-CAS(2) levels lead to LFT models
that have a better agreement with the experiment than the models that are derived
from state-speci�c NEVPT2. In some cases, one can observe that the large RMSD for
NEVPT2 leads to fortuitous cancellation of errors when the NEVPT2 ab initio ener-
gies already deviate strongly from the experimental values. This is for example the
case for IrF6. Here, NEVPT2 and DCD-CAS(2) both predict a �rst excitation energy
of 1.25 eV, which is larger than the experimental 1.09 eV. Due to the larger RMSD, the
AILFT(NEVPT2) value of 1.07 then agrees better than the corresponding AILFT(DCD-
CAS(2)) value of 1.15 eV. Also for the two complexes with metals in high oxidation
states, [FeO4]2− and [MnO4]3−, the AILFT values, especially the DCD-CAS(2) ones,
bene�t from such error cancellation. One should be careful in using such a model that
has a large RMSD, since the parameters might have limited physical signi�cance.

Table 6.3.: Excitation energies (in eV) compared with the experiment. AI denotes the pure ab
initio numbers, while LFT denotes the energies predicted via the extracted AILFT models.

Point
group

Term
sym-
bol

CASSCF NEVPT2 HQD-
NEVPT2

DCD-
CAS(2) Expt.

AI LFT AI LFT AI LFT AI LFT
[CrF6]3− Oh

4T2g 1.64 1.64 1.88 1.65 1.88 1.84 1.88 1.84 2.00135
4T1g 2.64 2.63 2.88 2.61 2.84 2.80 2.83 2.80 2.90135

[CrCl6]3− Oh
4T2g 1.36 1.30 1.73 1.39 1.73 1.61 1.68 1.56 1.70135
4T1g 2.23 2.13 2.66 2.22 2.60 2.46 2.52 2.41 2.38135

[CrBr6]3− Oh
4T2g 1.25 1.18 1.69 1.30 1.69 1.54 1.64 1.49 1.66135
4T1g 2.07 1.95 2.61 2.08 2.54 2.36 2.45 2.30 2.16135

[Cr(CN)6]3− Oh
4T2g 3.37 3.32 4.12 3.84 4.12 4.00 4.05 3.97 3.29135
4T1g 4.56 4.49 5.13 4.96 5.09 4.98 5.00 4.96 4.02135

[Cr(NH3)6]3+ Oh
4T2g 2.41 2.36 2.89 2.54 2.89 2.78 2.85 2.75 2.67135
4T1g 3.56 3.50 3.96 3.70 3.91 3.82 3.85 3.79 3.53135

[MoCl6]3− Oh
4T2g 2.22 2.15 2.45 2.22 2.45 2.33 2.43 2.34 2.37252
4T1g 3.05 2.97 3.10 2.94 3.07 2.95 3.03 2.96 2.96252
2Eg 1.67 1.59 1.36 1.30 1.36 1.26 1.35 1.28 1.20252
2T2g 2.56 2.42 2.18 2.03 2.16 1.98 2.15 2.01 1.83252

[TcF6]2− Oh
4T2g 3.51 3.46 3.76 3.56 3.76 3.63 3.78 3.69 3.52252
4T1g 4.53 4.47 4.52 4.41 4.50 4.37 4.50 4.44 4.27252
2Eg 1.90 1.84 1.58 1.52 1.58 1.48 1.57 1.51 1.38252
2T2g 3.00 2.89 2.57 2.42 2.55 2.37 2.55 2.41 2.21252
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Table 6.3.: (Continued.)

Point
group

Term
sym-
bol

CASSCF NEVPT2 HQD-
NEVPT2

DCD-
CAS(2) Expt.

AI LFT AI LFT AI LFT AI LFT
IrF6 Oh

2Eg 1.46 1.56 1.25 1.07 1.25 1.05 1.25 1.15 1.09252
2T2g 2.59 2.54 2.00 1.75 2.00 1.72 1.99 1.87 1.75252

[ReF6]2− Oh
4T2g 4.03 3.98 4.17 4.01 4.17 4.05 4.21 4.13 4.07252
2Eg 1.79 1.74 1.58 1.48 1.58 1.45 1.58 1.47 1.38252
2T2g 2.86 2.77 2.52 2.38 2.51 2.32 2.51 2.37 2.27252

[ReCl6]2− Oh
2Eg 1.59 1.47 1.40 1.20 1.40 1.16 1.39 1.19 1.18252
2T2g 2.55 2.32 2.24 1.93 2.22 1.86 2.20 1.91 1.84252

[ReBr6]2− Oh
2Eg 1.56 1.41 1.38 1.13 1.38 1.08 1.36 1.11 1.14252
2T2g 2.49 2.22 2.20 1.80 2.18 1.73 2.15 1.79 1.75252

[MnCl4]2− Td
4T1 3.62 3.61 3.16 3.09 3.14 3.00 3.14 3.02 2.63252
4T2 3.71 3.72 3.32 3.18 3.31 3.15 3.31 3.17 2.78252
4A1 3.74 3.74 3.37 3.19 3.37 3.18 3.36 3.20 2.88252
4E 3.75 3.74 3.38 3.19 3.38 3.18 3.37 3.20 2.88252

[CoCl4]2− Td
4T1 0.55 0.58 0.75 0.58 0.75 0.77 0.74 0.77 0.64252
4T1 2.57 2.60 2.33 2.23 2.34 2.38 2.33 2.38 1.82252
2E 2.43 2.43 2.28 2.16 2.27 2.17 2.26 2.17 1.98252

[NiCl4]2− Td
3T2 0.34 0.38 0.54 0.44 0.54 0.56 0.55 0.57 0.52253
3A2 0.61 0.67 0.95 0.77 0.95 1.00 0.96 1.01 0.91253
3T1 2.61 2.64 2.41 2.43 2.42 2.51 2.41 2.51 1.82253
1T2 2.09 2.11 1.90 1.90 1.89 1.92 1.88 1.93 1.50253
1E 2.23 2.26 2.11 2.07 2.11 2.15 2.10 2.16 1.50253

1T2 3.17 3.19 3.01 2.88 3.01 2.94 3.00 2.95 2.29253

Cr(acac)3 D3 (Oh) 4A1 2.04 2.03 2.38 2.09 2.38 2.31 2.36 2.30 2.19254
4E 2.07 2.07 2.43 2.12 2.43 2.37 2.41 2.36 2.29254
4E 3.14 3.13 3.44 3.18 3.39 3.34 3.36 3.34 2.90254

Mn(acac)3
D4h
(Oh)

5A1g 1.14 1.12 1.29 1.06 1.29 1.23 1.30 1.24 1.18255

5B2g 2.13 2.07 2.59 2.10 2.59 2.44 2.58 2.42 2.22255
5Eg 2.34 2.27 2.81 2.28 2.81 2.65 2.81 2.64 2.67255

[FeO4]2− Td
3T2 1.91 2.11 3.81 2.13 3.81 2.31 3.05 1.70 1.60256
3T1 2.59 2.93 4.48 3.09 4.23 2.83 3.46 2.30 2.29256
1E 1.48 1.42 1.38 0.66 1.35 0.48 1.35 0.59 0.77256

1A1 2.72 2.51 2.55 1.36 2.49 0.95 2.45 1.14 1.13256

[MnO4]3− Td
3T2 1.71 1.69 2.47 1.83 2.47 2.01 2.25 1.81 1.40257
3T1 2.55 2.56 3.30 2.76 3.15 2.68 2.91 2.52 1.80257
1E 1.67 1.56 1.48 1.17 1.47 1.04 1.47 1.09 1.04257

1A1 2.94 2.70 2.66 2.19 2.60 1.89 2.58 1.97 1.64257

We also display the correlation between the calculated and experimental excitation
energies from Table 6.3 in Figure 6.2 for the exact ab initio numbers and in Figure 6.3
for the numbers obtained from the di�erent AILFT models. The complexes [FeO4]2−
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Figure 6.2.: Correlation between experimental excitation energies and exci-
tation energies calculated with di�erent ab initio methods for the data shown
in Table 6.3 (excluding the two complexes with high oxidation states). The
gray dashed line denotes perfect agreement.

and [MnO4]3−, for which LFT was not expected to work well in the �rst place, were ex-
cluded from these �gures since they would signi�cantly distort the results. Table 6.4
gives the slopes of the linear least-squares �ts for the relationship between experimen-
tal and calculated excitation energies. For the methods including dynamic correlation
(NEVPT2, HQD-NEVPT2, DCD-CAS(2)), it can be observed that the slopes of the ab
initio numbers are usually larger than the slopes of the AILFT models. For the lat-
ter, the slopes are much closer to the ideal value of 1.0, which would mean that there
is no systematic under- or overestimation. This behavior is another manifestation
of the above-mentioned error cancellation between the overestimation of excitation
energies at the level of 2nd order perturbation theory and the systematic underesti-
mation of the energies through the imperfect AILFT �ts. As mentioned above, this
error cancellation is partially removed by the better �t and hence lower RMSDs of the
AILFT models derived from the multistate theories HQD-NEVPT2 and DCD-CAS(2).
Therefore, the AILFT slopes of these two methods are slightly larger than the cor-
responding AILFT(NEVPT2) slope. Comparing the Pearson correlation coe�cients r
also shown in Table 6.4, one can observe that the value is closer to the ideal value
of 1.0 for the methods including dynamic correlation than for CASSCF. The AILFT
models have a slightly smaller correlation coe�cient, which can be attributed to the
�tting errors. One can also see that AILFT based on the multistate methods HQD-
NEVPT2 and DCD-CAS(2) has a slightly improved correlation coe�cient compared
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Figure 6.3.: Correlation between experimental excitation energies and en-
ergies of the AILFT models derived from di�erent ab initio methods for the
data shown in Table 6.3 (excluding the two complexes with high oxidation
states). The gray dashed line denotes perfect agreement.
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Table 6.4.: Slopes m of the linear regression line, Pearson correlation coe�cient r,
and MAD between theoretical and experimental excitation energies (excluding the
two complexes with high oxidation states). AI denotes the pure ab initio prediction,
while AILFT denotes the prediction from the extracted LFT model.

CASSCF NEVPT2 HQD-NEVPT2 DCD-CAS(2)
AI AILFT AI AILFT AI AILFT AI AILFT

m 1.11 1.09 1.14 1.05 1.13 1.08 1.13 1.09
r 0.90 0.89 0.98 0.96 0.98 0.97 0.98 0.97
MAD / eV 0.42 0.41 0.31 0.23 0.30 0.21 0.29 0.22

to the state-speci�c NEVPT2 method. The mean absolute deviations (MAD) shown in
Table 6.4 are around 0.3 eV for the correlated methods. This is less than the deviations
at the CASSCF level and certainly in reasonable agreement considering the intrinsic
accuracy of 2nd order perturbation theory63 as well as the neglect of explicit environ-
mental e�ects and experimental uncertainties. It can be observed that the multistate
methods have a slightly smaller MAD than state-speci�c NEVPT2, while the AILFT
models have the smallest MADs, again due to the above-mentioned error cancellation.

6.3.3. Trends in the extracted ligand field parameters
We now investigate the behavior of the ligand �eld parameters extracted via AILFT
from the di�erent ab initio e�ective Hamiltonians. For octahedral and tetrahedral com-
plexes, the one-electron ligand �eld matrix can be parametrized by a single number,
the ligand �eld splitting ∆. This quantity is the di�erence between the ligand-�eld or-
bital energies of the t2(g) and e(g) set. Figure 6.4 shows ∆ for all complexes in the test
set which are (approximately) tetrahedral or octahedral. For the complexes which do
not have this symmetry exactly, orbital energies were averaged to derive the t2(g) and
e(g) orbital energies. One can observe that there is a clear trend toward slightly larger
ligand �eld splittings when using multistate perturbation theory methods compared
to the state-speci�c NEVPT2. Only for the extremely covalent complexes [FeO4]2−

and [MnO4]3− there is an exception to this �nding at the DCD-CAS(2) level. Figures
6.5 and 6.6 show the values of the extracted Racah parameters B and C , while Fig-
ure 6.7 shows their ratio C/B. It can be seen that in almost all cases the extracted
B is smaller, while C is usually slightly larger for the multistate methods than for
NEVPT2. For [FeO4]2− the C parameter is even negative at the NEVPT2 level, which
is clearly unphysical, and a result of the bad �t via the LFT model as a consequence of
the large covalency and anisotropy in this system. At the level of the two multistate
methods, the value of C for this complex is positive, but remains unreasonably small
in magnitude. As a consequence of the larger values of C and smaller values of B
at the multistate level, also the ratio C/B increases in most cases. This results in a
value that is closer to the often cited estimate of C/B ≈ 4 for 3d TM complexes that
can be derived under the assumption that the radial parts of the d orbitals are Slater
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Figure 6.4.: Ligand �eld splittings ∆ for all complexes in the test set that are ap-
proximately octahedral or tetrahedral. All ligand �eld orbital energies belonging
to degenerate sets in the pseudo symmetry group were averaged.
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Figure 6.5.: AILFT Racah parameter B derived from di�erent ab initio methods
for all complexes in the test set.
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Figure 6.6.: AILFT Racah parameter C derived from di�erent ab initio methods
for all complexes in the test set.
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Figure 6.7.: AILFT Racah parameter ratio C/B derived from di�erent ab initio
methods for all complexes in the test set.
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Figure 6.8.: All ligand �eld energies of [CrF6]3− relative to the ground state
calculated with NEVPT2 and HQD-NEVPT2 together with the correspond-
ing AILFT �ts. The quartet energy levels are shown in red and the doublet
energy levels in blue. The vertical axis is cut at 5 eV, i.e. some higher-lying
doublet states are calculated but not shown, to make the di�erences between
the di�erent methods better visible.

functions.135

6.3.4. Analysis of state-mixing e�ects in [CrX6]3−

In order to better understand the observations reported above, we investigate the ef-
fect of state mixing in the multistate MRPT methods for the example of the CrIII halide
complexes, in particular [CrF6]3−. The ab initio and AILFT energies of this system cal-
culated at the state-speci�c NEVPT2 and at the HQD-NEVPT2 level are depicted in
Figure 6.8. At �rst sight, there is no signi�cant di�erence between the energy lev-
els for the di�erent methods. However, upon closer inspection, one observes that
the AILFT(NEVPT2) values di�er much more strongly from the NEVPT2 values than
the AILFT(HQD-NEVPT2) values from the HQD-NEVPT2 values. This �nding is in
agreement with the larger RMSD discussed above. When looking at the energy level
diagrams, this behavior is quite surprising since the results of NEVPT2 and HQD-
NEVPT2 seem very similar. Hence, state mixing seems to have a very minor e�ect on
the energies. Also the general trend that the imperfect AILFT �t leads to an under-
rather than overestimation of the excitation energies at the AILFT level compared to
the ab initio energies is nicely illustrated by Figure 6.8. The ligand �eld energies calcu-
lated with the state-speci�c NEVPT2 and HQD-NEVPT2 are also shown in Table 6.5.
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Table 6.5.: Energies (in eV, relative to the ground state)
of all d-d states of [CrF6]3− for di�erent methods. Pairs
of states in which clearly a repulsion of energies levels
due to state mixing happens are printed in bold.

Level NEVPT2 HQD-NEVPT2 Di�erence
4A2g 0.000 0.000 0.000
4T2g 1.877 1.877 0.000
4T1g(1) 2.879 2.838 −0.041
4T1g(2) 4.345 4.385 0.040
2Eg(1) 2.181 2.173 −0.008
2T1g(1) 2.316 2.310 −0.006
2T2g(1) 3.135 3.114 −0.021
2A1g 3.699 3.699 0.000
2T2g(2) 4.060 4.058 −0.002
2T1g(2) 4.164 4.161 −0.003
2Eg(2) 4.354 4.350 −0.004
2T1g(3) 4.853 4.844 −0.009
2T2g(3) 5.651 5.567 −0.084
2T1g(4) 5.951 5.953 0.002
2A2g 5.988 5.989 0.001
2T2g(4) 6.163 6.250 0.087
2Eg(3) 6.854 6.762 −0.092
2T1g(5) 7.052 7.069 0.017
2Eg(4) 8.962 9.064 0.102
2T2g(5) 9.224 9.242 0.018

One can clearly see that some state mixing between states of the same symmetry takes
place at the HQD-NEVPT2 level, which repels the energy levels compared to NEVPT2.
For example 4T1g(1) and 4T1g(2), 2T2g(3) and 2T2g(4), and 2Eg(3) and 2Eg(4) (high-
lighted with bold font in Table 6.5) are such pairs of levels whose energies are repelled
by letting them mix under the in�uence of dynamic correlation.
For simplicity we now focus on only the quartet roots and try to understand why
state mixing leads to a better parametrization via the LFT model. As shown in Ap-
pendix A.9, one component of the 4T2g level can be chosen as the xy → x2 − y2

excited Slater determinant, while the xy → z2 singly excited Slater determinant and
the xz, yz → z2, x2 − y2 doubly excited Slater determinant correspond to the same
component (belonging to the A2g irreducible representation of the D4h subgroup) of
the two 4T1g CSFs, which will mix to form the �nal 4T1g states. In order to make sure
that these states stay pure in the calculations, i.e. not mixed with the other excited
states of the same energy, we very slightly tetragonally distorted the complex along
the z direction from perfect octahedral symmetry, such that the e�ective point group is
D4h. More explicitly, we elongated the bonds in the z direction by 10−5 Å. A graphical
depiction of the CSFs is shown in Figure 6.9.
The ligand �eld Hamiltonian for the quartet states of an octahedral d3 system (setting
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Figure 6.9.: Quartet CSFs for an octahedral d3 complex. Only one represen-
tative for each multidimensional irreducible representation is shown.

the energy of the lowest state equal to 0) can be written in the basis of the quartet CSFs
Φ1 = |xy, xz, yz〉, Φ2 = |x2−y2, xz, yz〉, Φ3 = |z2, xz, yz〉 and Φ4 = |xy, z2, x2−y2〉
as

HLFT =


0 0 0 0
0 ∆ 0 0
0 0 ∆ + 12B 6B
0 0 6B 2∆ + 3B

 . (6.5)

One can see that in this model the �rst excitation energy is exactly identical toHLFT
22 =

∆. The di�erence between the diagonal valuesHLFT
22 andHLFT

33 (the energies of the two
singly excited Slater determinants) is 12B, which is exactly twice the o�-diagonal
element of the 4T1g block. The last diagonal element is equal to HLFT

44 = 2HLFT
22 + 3B.

It is also important to note that in the LFT model Eq. (6.5) the ratio of ligand �eld
splitting ∆ and Racah parameter B can be written as a function of the coe�cients of
the lower-energy 4T1g state, i.e.

∆

B
= 6

(
C2

C1

− C1

C2

)
+ 9, (6.6)

whereC1 andC2 are the coe�cients of the �rst and second 4T1g CSF, respectively. The
derivation of this equation is shown in Appendix A.10. The ab initio Hamiltonians for
the �uoride, chloride, and bromide complexes are given in Table 6.6. When going
from CASCI to NEVPT2, one can observe in all three cases that the �rst excitation
energy (corresponding to ∆ in the LFT model) increases, while the o�-diagonal matrix
element of the 4T1g block (proportional to B in the LFT model) decreases. At the
same time the eigenfunctions of the CASCI and NEVPT2 e�ective Hamiltonians are
identical by de�nition. This means that, according to Eq. (6.6), the ratio ∆/B should
stay constant if the LFT model provides a perfect �t. These two requirements are
obviously in con�ict, which explains why it is not possible to �t the NEVPT2 e�ective
Hamiltonian as well as the CASCI Hamiltonian with the LFT model. For the DCD-
CAS(2) and HQD-NEVPT2 e�ective Hamiltonians on the other hand, the diagonal
elements of the 4T1g block have a much larger di�erence, corresponding to a larger
∆/B ratio. This leads to better �ts of these e�ective Hamiltonians via the LFT model,
with smaller RMSDs.
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Table 6.6.:Quartet blocks of the ab initio e�ective Hamiltonian matrices for complexes [CrX6]3−

with di�erent halide ligands X−. The matrix elements are given in eV. The DCD-CAS(2) e�ective
Hamiltonians are similar to the HQD-NEVPT2 ones and can be found in Appendix B.10.

X− He�
CASCI He�

NEVPT2 He�
HQD-NEVPT2

F−


0 0 0 0
0 1.644 0 0
0 0 3.239 0.796
0 0 0.796 3.685




0 0 0 0
0 1.877 0 0
0 0 3.413 0.705
0 0 0.705 3.808




0 0 0 0
0 1.877 0 0
0 0 3.174 0.638
0 0 0.638 4.047


Cl−


0 0 0 0
0 1.364 0 0
0 0 2.848 0.755
0 0 0.755 3.140




0 0 0 0
0 1.726 0 0
0 0 3.189 0.638
0 0 0.638 3.436




0 0 0 0
0 1.726 0 0
0 0 2.901 0.582
0 0 0.582 3.724


Br−


0 0 0 0
0 1.252 0 0
0 0 2.706 0.747
0 0 0.747 2.940




0 0 0 0
0 1.689 0 0
0 0 3.140 0.614
0 0 0.614 3.331




0 0 0 0
0 1.689 0 0
0 0 2.822 0.564
0 0 0.564 3.649



Table 6.7.:Racah parameterB (in eV) extracted from
di�erent matrix elements of the e�ective Hamilto-
nian after �xing the ligand �eld splitting.

CASCI NEVPT2 HQD-NEVPT2
F− B33 0.133 0.128 0.108

B34 0.133 0.117 0.106
B44 0.133 0.018 0.098

Cl− B33 0.124 0.122 0.098
B34 0.126 0.106 0.097
B44 0.137 −0.005 0.091

Br− B33 0.121 0.121 0.094
B34 0.124 0.102 0.094
B44 0.145 −0.015 0.091

That the HQD-NEVPT2 e�ective Hamiltonian can be better approximated by the LFT
model than the NEVPT2 e�ective Hamiltonian can also be seen in a di�erent way.
From Eq. (6.5) it follows that, once the parameter ∆ is set equal to the matrix element
HLFT

22 , B can be determined from three di�erent matrix elements, i.e.

B33 = (HLFT
33 −HLFT

22 )/12, (6.7)
B34 = HLFT

34 /6, (6.8)
B44 = (HLFT

44 − 2HLFT
22 )/3. (6.9)

In the LFT model, these three equations must of course lead to exactly the same B
value. One can however also apply these equations to the ab initio e�ective Hamil-
tonian instead of the LFT Hamiltonian, and then the values for B will in general be
di�erent. Their variance is then a measure for how good the e�ective Hamiltonian
can be described with the LFT model. Table 6.7 gives the values for di�erent ab ini-
tio methods and ligands. It can be seen that for CASCI, the three values are almost
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Table 6.8.: Excitation energies and LFT parameters (all quantities
except the nephelauxetic ratio in eV) for octahedral [CrF6]3− with
a bond length of 1.9408 Å (averaged).

CASCI NEVPT2 HQD-NEVPT2 DCD-CAS(2)
4T2g 1.644 1.877 1.877 1.880
4T1g(1) 2.636 2.878 2.837 2.822
4T1g(2) 4.288 4.342 4.383 4.397

∆ 1.641 1.654 1.839 1.835
B 0.133 0.121 0.109 0.111
β 0.92 0.97 0.88 0.89

identical for the quite ionic complex [CrF6]3−, while their di�erence grows when go-
ing to the more covalent chloride and bromide complexes. The reason is that the t2g
and eg orbital sets di�er more in the complexes with stronger covalency, which leads
to more anisotropic electron-electron repulsion. For NEVPT2, the B33 and B34 values
are similar for all three complexes, but B44 is very small or even negative, which is
unphysical. This can again be seen as an e�ect of the too constrained form of the
NEVPT2 e�ective Hamiltonian, which incorporates dynamic correlation only on the
level of total energies, but not on the level of the wavefunctions. HQD-NEVPT2 cor-
rects this shortcoming and the three resultingB values are quite similar, as is expected
by the better AILFT �t for this level of theory.
When comparing the NEVPT2 and HQD-NEVPT2 e�ective Hamiltonians for [CrF6]3−

in Table 6.6 one can also observe that the matrix elements change quite substantially,
e.g. by 0.24 eV for the diagonal matrix elements of the 4T1g block. At the same time
the e�ect of the state mixing on the total energies is relatively small (about 0.04 eV,
see Table 6.5). This explains the question raised by Figure 6.8 why the �t is so much
worse at the NEVPT2 level and shows that one should not judge the importance of
state mixing by only looking at total energies.
The �tted LFT parameters for [CrF6]3− are shown in Table 6.8 together with the quar-
tet energies. The nephelauxetic ratio β = Bcomplex/Bgaseous also given in Table 6.8 is
determined with respect to calculations on the free Cr3+ ion. It can be clearly seen
that the better �t for DCD-CAS(2) and HQD-NEVPT2 improves the value of ∆, which
corresponds to the �rst excitation energy and has an experimental estimate of 2.00 eV
(see Table 6.3). Allen et al. e.g. obtained ∆ = 1.88eV and B = 0.092eV by LFT �tting
to experimental energies, corresponding to a roughly 20% nephelauxetic reduction
with β = 0.81.258 It is interesting that the LFT parameters derived from the multi-
state methods are closer to those parameters than the prediction of the state-speci�c
NEVPT2 method.
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7. Conclusions

7.1. DCD-CAS(2) and HQD-NEVPT2

In the present work, we have developed two new 2nd order perturbative multistate
methods for the inclusion of dynamic correlation on top of CASSCF references. Mul-
tistate dynamic correlation methods do not perform a state-speci�c correction on top
of a single CASSCF state, but construct an e�ective Hamiltonian in a model space, such
that the CASCI coe�cients can relax under the e�ect of dynamic correlation. This is
important whenever there are components in the CASCI space that have large di�er-
ential dynamic correlation, which means that their energetic separation at the CASCI
level is wrong. The amount of mixing of those components in the CASCI states does
then not match that encountered in the exact wavefunctions.
The method developed �rst, DCD-CAS(2), is inspired by an intermediate e�ective
Hamiltonian (IEH) with a one-dimensional main model space, the generalized degen-
erate perturbation theory (GDPT).78 This makes the e�ective Hamiltonian Hermitian
by using a single main model space energy E0 in the denominator, which is chosen as
the ground-state CASSCF energy of the respective multiplicity block. DCD-CAS(2) is
completely uncontracted, i.e. it does not use the CASCI roots in the de�nition of the
0th order Hamiltonian, which leads to the preservation of orbital degeneracies in con-
trast to the widely used contracted perturbation theories like CASPT2 and NEVPT2.
DCD-CAS(2) su�ers from size-inconsistency problems that we have thoroughly dis-
cussed and for which we suggested suitable remedies. Using the CASSCF ground state
energy in the denominator introduces a bias toward the ground state that leads to over-
estimated excitation energies. We introduced the successful bias correction to remove
this problem, of which the 1st order version was already shown to be su�cient in
practice. Our numerical results show that the size-consistency and bias issues can be
e�ciently alleviated for both ground and excited state calculations by means of the
combination of the di�erence-dedicated scheme and bias correction. This results in
a pragmatic two-step approach: �rst, obtain a stable, intruder-free ground state and
second, get good excitation energies by applying the bias correction. This variant was
therefore chosen as the default for DCD-CAS(2) calculations. In general, DCD-CAS(2)
provides results close to NEVPT2 in cases where the 0th order CASSCF wavefunc-
tion is good and superior results otherwise. Recently, �rst results from other groups
appeared that used DCD-CAS(2) for their computational chemistry work.259,260

The DCD-CAS(2) method was also extended to include spin-dependent relativistic ef-
fects into the Hamiltonian. The method consists in the construction of an e�ective
Hamiltonian that contains static correlation, dynamic correlation, and relativistic ef-
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fects on an equal footing. Solving the eigenvalue problem of this Hamiltonian yields
energies that contain dynamic correlation and spin-dependent e�ects and yields wave-
functions that are mixed with respect to the CASCI ones under the combined e�ects
of electron correlation and relativity. The spin-dependent operators considered in this
work comprise everything that is necessary for the prediction of magnetic properties
and EPR parameters, namely, SOC, HFC, Zeeman interaction, and SSC. In order to be
able to directly compare with experimentally determined quantities, we implemented
EPR g-matrices, A-matrices, and D-tensors and presented a novel way to �nd their
principal values and decompose the latter according to di�erent physical contribu-
tions. In the investigation of EPR parameters of square-planar CuII complexes, it was
however found that the use of a single state-averaged Dyall Hamiltonian in DCD-
CAS(2) is a severe limitation for the accuracy of the method, especially if states of
di�erent physical character (like ligand-�eld and charge transfer states) are described
simultaneously.
This led to the development of the HQD-NEVPT2 method. It is based on a novel combi-
nation of multi-partitioning theory with canonical Van Vleck perturbation theory. At
2nd order, the nonrelativistic version of the method turns out to be an e�ective Hamil-
tonian that is simply the Hermitized version of the QD-NEVPT2 e�ective Hamiltonian.
Spin-dependent e�ects are incorporated along the lines of the spin-dependent DCD-
CAS(2) method. Compared with DCD-CAS(2), the proposed method retains the ad-
vantage of a Hermitian e�ective Hamiltonian, which ensures that eigenvalues are real
and makes a mapping to Hermitian model Hamiltonians, like the LFT Hamiltonian,
possible. Due to the state-speci�c 0th order Hamiltonians used in its construction, the
method is expected to perform better in cases where states with very di�erent physi-
cal character are present in the CASCI space. Furthermore, it will be possible to apply
it to much larger active spaces than DCD-CAS(2), essentially for all systems where
state-speci�c NEVPT2 is applicable. One disadvantage of the new approach compared
with DCD-CAS(2) is that it is not based on the IEH idea. This could possibly lead
to intruder state problems when constructing an e�ective Hamiltonian including all
roots of a very large CASCI space. In most cases where DCD-CAS(2) is applicable (due
to the high computational cost when applying it to larger active spaces), e.g. if only
the �ve metal d orbitals are chosen active, it should however not pose any problems
to treat the whole CASCI space as the model space within this method. In such cases
an IEH treatment is often not necessary because there are no unphysical high energy
roots in the CASCI space.
Our analysis showed that it is probably not possible to formulate a multi-partitioning
theory that is exactly model space invariant, a desirable property of multistate meth-
ods that was introduced several years ago.74 Previously, it has been shown that non-
invariant theories can lead to artifacts and irregularities. However, we demonstrated
for the example of the same symmetry conical intersection of the allene molecule that
the non-invariance of HQD-NEVPT2 is much less severe than that of theories like MS-
CASPT2 or MCQDPT2. The small disadvantage of a not exactly invariant theory was
shown to be outweighed by the possibility to use state-speci�c 0th order Hamiltonians.
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7.2. Applications
The nonrelativistic DCD-CAS(2) method was shown to be successful in describing the
avoided crossing between a neutral and ionic state in the LiF molecule, as well as for
the description of magnetic exchange in exchange-coupled dimers. A big advantage of
the method is the fact that it preserves orbital degeneracies. In the absence of strong
state-mixing e�ects, the default version of DCD-CAS(2) was shown to give energies
that are in close agreement with state-speci�c NEVPT2.
Tests of the spin-dependent DCD-CAS(2) method on transition metal systems using
a minimal active space containing only metal d orbitals showed only small e�ects
of state mixing and results that are mostly in agreement with the nondegenerate
NEVPT2/QDPT method. We also compared our new method with other approaches
for the prediction of EPR parameters of pseudo-square-planar CuII complexes, where
it is well understood that CASSCF and nondegenerate NEVPT2 give too large values
due to a ground state SOMO that has too little contribution from ligand orbitals. The
spin-dependent DCD-CAS(2) method was shown to ameliorate this problem by e�ec-
tively reducing the energy of the LMCT con�guration with respect to the ground state
con�guration under the e�ect of dynamic correlation. This leads to enhanced mixing
between the two, which corresponds to a rotation of the ground state SOMO such that
it becomes more covalent. However, we observed that this e�ect is too pronounced
such that the values of EPR parameters are overcorrected compared to results at the
CASSCF or NEVPT2 levels. In many cases, we observed values that were quite similar
to predictions by B3LYP. We found the reason for this behavior of the DCD-CAS(2)
method to be the use of a state-averaged 0th order Hamiltonian.
HQD-NEVPT2 was shown to perform well for the simultaneous treatment of ligand-
�eld and charge transfer states, as shown for the calculation of the excitation energies
of [CuCl4]2− in two di�erent geometries. For this problem, the use of a state-averaged
Dyall Hamiltonian leads to a drastic underestimation of the LMCT excitation ener-
gies. Furthermore, it was shown that it is advantageous to have a Hermitian e�ective
Hamiltonian since the traditional non-Hermitian QD-NEVPT2 leads to the appearance
of complex energy eigenvalues especially in cases of (near-)degeneracy. Tests for the
calculation of EPR parameters in the set of square-planar CuII complexes have shown
that HQD-NEVPT2 leads to a better description of the covalency in the ground state,
due to a more realistic description of the LMCT con�guration that is included in the
active space. This improves the results compared to the spin-dependent DCD-CAS(2)
values. For SD and NOC contributions to HFCCs, the resulting values are still too
low, and the surprising quality of CASSCF and NEVPT2 results indicates that there
are some sizable errors due to the CAS-only wavefunction. However, the description
of g-shifts with our new method is better than with any other method of similar com-
putational cost that we are aware of. Hence, HQD-NEVPT2 is a promising candidate
for the calculation of this property.
Finally, we introduced the DCD-CAS(2) and HQD-NEVPT2 e�ective Hamiltonians
into ab initio ligand �eld theory (AILFT). We compared the new AILFT versions with
the previous ones based on CASSCF and NEVPT2 for a diverse test set of transition
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metal complexes with metals from di�erent periods and groups of the periodic table,
di�erent ligands, di�erent coordination environments, and di�erent oxidation states.
Compared to NEVPT2, which is so far the standard choice for including the e�ects of
dynamic correlation into AILFT, the multistate methods were shown to yield better
�ts of the ligand �eld model to the ab initio e�ective Hamiltonians. For some sys-
tems (e.g. the octahedral CrIII halide series), the better RMSD between the ab initio
energies and the energies predicted by the extracted LFT models led to better agree-
ment between the AILFT energies and the experiment. An investigation of the LFT
parameters for the whole test set showed that for the multistate methods there is a
clear trend for the ligand �eld splitting ∆ of tetrahedral and octahedral complexes to
increase compared to NEVPT2. The Racah parameter B usually decreases, while the
value of C (and therefore also the ratio C/B) increases. Since the agreement of the
extracted model with the ab initio e�ective Hamiltonians is better, these model param-
eters re�ect more closely the physical picture described by the ab initio methods. In
order to understand the mechanism for the smaller RMSDs at the multistate levels, we
investigated in detail the case of the quartet states of the [CrF6]3−complex. We found
that after inclusion of dynamic correlation, there is a tendency to increase the ligand
�eld splitting ∆, which can be interpreted in terms of increased metal-ligand cova-
lence, and to decrease at the same time the magnitude of the Racah parameter B. At
the NEVPT2 level, these parameters cannot change independently from their CASSCF
values since the wavefunctions are required to stay the same. At the multistate level
on the other hand, the CASSCF wavefunctions can mix under the e�ect of dynamic
correlation, which allows ∆ and B to vary independently. We think that a similar
mechanism for the reduction of RMSDs when going from NEVPT2 to the multistate
methods is occurring for the whole test set, i.e. that only after the possibility of state
mixing the parameters ∆ and B are independent of each other and can follow their
individual preferences for change after dynamic correlation. This could explain the
general trends observed for the extracted LFT parameters.

7.3. Outlook
Based on the results in this thesis, there are many interesting possible routes for future
work. We found that CASSCF and NEVPT2 perform quite poorly for the prediction of
g-shifts but give relatively decent results for SD and NOC contributions to HFCCs. In
contrast to that, the values at the HQD-NEVPT2 level, which was thought to provide
a better description due to the better description of covalency, were too low. This
shows that �xing the problem of missing covalency in the CASSCF wavefunction is
probably not su�cient in order to arrive at accurate results for these parameters, and
the in�uence of dynamic correlation on the wavefunction, beyond a rotation within
the 0th order CASCI space, cannot be neglected. In this respect, the further exploration
of two-component correlated methods based on a scalar reference calculation seems
to be a promising direction.261

Our AILFT results showed that methods that allow for state mixing can lead to better
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�ts via the LFT model. The accuracy was however limited by some systematic errors
of the perturbation theory methods. A natural extension would therefore be the use of
more accurate electron correlation treatments that include state mixing, e.g. using the
MR-EOM-CC method.262–264 This can potentially have the same bene�ts of a better �t
between LFT model and ab initio e�ective Hamiltonian as the new methods introduced
in the present work, while not su�ering from the limitations of low-order perturbation
theory. A downside of this approach would be the much larger computational cost.
While many problems have been solved in the presented work, some are still left open.
The two developed multistate perturbation theory methods DCD-CAS(2) and HQD-
NEVPT2 have di�erent advantages and disadvantages. DCD-CAS(2) is very �exible by
using the complete CASCI space as a model space. Since it is based on the IEH concept,
its lowest states are not a�ected by intruder states occurring for high-energy model
space components. Another advantage is that it exactly preserves orbital degenera-
cies. Disadvantages of DCD-CAS(2) are its high computational cost for larger active
spaces and de�ciencies in the state-averaged Dyall Hamiltonian used in its construc-
tion. These problems are solved by HQD-NEVPT2, which improves the simultaneous
description of states with very di�erent physical character, due to the state-speci�c
0th order Hamiltonians used in its construction. However, it acts in a model space
of manually chosen CASCI roots, which limits its �exibility and generality. Further-
more, it was shown in this work that the multi-partitioning concept cannot easily
be reconciled with model space invariance, another desirable property. Therefore,
HQD-NEVPT2 energies show artifacts around points of degeneracy and break orbital
degeneracy, although it was demonstrated that this is much less severe than for other
non-invariant theories like MS-CASPT2 and MCQDPT2. One should mention that it
was previously found that a state-averaged Dyall Hamiltonian can be superior to a
state-speci�c one also in other cases.137,138 A method that is generally applicable to
any multicon�gurational problem and that ful�lls all desirable properties mentioned
in this work while being applicable also to larger molecular systems does therefore
still not exist.
An interesting alternative to the current work is the 0th order Hamiltonian suggested
by Fink in the context of the “retaining the excitation degree perturbation theory”.265,266

It consists of all terms of the Fock space Hamiltonian that leave the number of elec-
trons in the di�erent orbital subspaces (inactive, active, virtual) invariant. Therefore,
it does not depend on the speci�c reference state under investigation. It is very close
to the full electronic Hamiltonian but costly to evaluate since perturber CSFs with
di�erent non-active occupations can be coupled. Using a canonical MRPT implemen-
tation, it is only possible to use this 0th order Hamiltonian for small model systems.
However, there has been interesting recent work that made the use of this 0th or-
der Hamiltonian feasible by using MPS compression76 267 or stochastic sampling.268 A
combination of these approaches with spin-dependent e�ects could be a promising
route for future work. Another alternative is the use of MRCC. Although successful
variants have been developed in recent years, they are still usually limited to rather
small systems. Also the complexity of these theories is very high, and they can only be
implemented using automatic code generation.42 One could also think about includ-
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ing the e�ect of higher excitations by moving toward perturbation theory methods
that are truncated at higher than 2nd order. The equations presented in this work for
the multi-partitioning canonical Van Vleck perturbation theory lay the foundations
for such further developments.
Many of the problems associated with �nding better multireference methods probably
stem from the desire to develop methods that can be applied to any electronic state.
However, the partitioning into single-con�gurational and multi-con�gurational states
is a highly arti�cial one. By de�nition a multicon�gurational system is anything that
is not single-con�gurational. This includes examples like the ozone molecule,269 the
Be atom,270 excited states,271 systems with multiple broken bonds, as well as many
transition metal compounds. Therefore, methods that are supposed to be able to treat
such diverse situations need great �exibility, and therefore are nowadays usually based
on CASSCF reference calculations. A possible route for future work are methods that
are not applicable to any multicon�gurational situation but are tailored toward speci�c
applications. Considering the success of single reference theory, it e.g. seems desirable
to develop methods that can accurately treat the ground states of multicon�gurational
transition metal complexes close to their equilibrium geometry, even if those methods
do not allow for correct bond breaking. Such methods could for example be based
on reference states that correspond to a single orbital con�guration,272 instead of a
whole CASSCF reference. This would mean that some of the “black box” character that
quantum chemical method developers often aim for is lost. Instead, the calculations
need an a priori idea of the electronic structure of the system under investigation,
which could be provided by experimental insight. One should not forget that even for
the highly successful single reference methods the user makes a biased assumption
about the electronic structure of the system under investigation, namely that it can be
described well by a single Slater determinant. Therefore, experimental insight into the
electronic structure of molecules will be necessary to guide our thinking and obtain
meaningful results from computations for a long time to come.
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A. Additional derivations and
theoretical discussion

A.1. Proof that any one-electron operator can be
wri�en as a sum of singlet and triplet parts

The Hilbert space H(1) of a single electron can be written as the tensor product of a
spin space and a coordinate space,

H(1) = Hs ⊗Hr. (A.1)

Here, Hs is isomorphic to the Hilbert space C2 of complex 2-component vectors and
Hr is the space of square-integrable complex functions on the three-dimensional co-
ordinate space. A complete basis for the operators onH(1) is given by tensor products
of basis operators of the spaces Hs and Hr. Let si (i = 0 to 3) denote a set of ba-
sis functions for operators on spin space and oi an in�nite set of basis functions for
operators on coordinate space. Then an arbitrary operator A acting on one-electron
wavefunctions can be written as

A =
∑
ij

Cijsi ⊗ oj =
∑
i

si ⊗
∑
j

Cijoj. (A.2)

If one de�nes a(i) :=
∑
j

Cijoj and chooses as a basis in spin space the 2× 2 identity

matrix together with the irreducible spin operators s(m) (m = 0,±1), this means that
A can be written

A = a+
∑

m=0,±1

a(m)s(m), (A.3)

where a and the a(m) are pure spatial operators. The Fock-space version of the oper-
ator A is then given by

A =
∑
pq

apqEpq +
∑

m=0,±1

∑
pq

apq(m)s(m)
pq . (A.4)

A.2. Important Clebsch-Gordan coe�icients
(
S 1 S
S 0 S

)
=

S√
S(S + 1)

, (A.5)
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S − 1 1 S
S − 1 1 S

)
= 1, (A.6)(

S + 1 1 S
S + 1 −1 S

)
=

√
2S + 1

2S + 3
, (A.7)(

S 2 S
S 0 S

)
=

√
S(2S − 1)

(S + 1)(2S + 3)
, (A.8)(

S − 1 2 S
S − 1 1 S

)
=

√
S − 1

S + 1
, (A.9)(

S − 2 2 S
S − 2 2 S

)
= 1, (A.10)(

S + 1 2 S
S + 1 −1 S

)
=

√
S(2S + 1)

(S + 2)(2S + 3)
, (A.11)(

S + 2 2 S
S + 2 −2 S

)
=

√
2S + 1

2S + 5
. (A.12)

A.3. Derivation of the permutational relation

The space of operators acting on the four-dimensional space of two coupled spin 1/2
systems is spanned by sixteen basis operators. Among these there are �ve quintet
operators that have the form273

S(+2) =
1

2
s

(+)
1 s

(+)
2 , (A.13)

S(+1) = −1

2
(s

(+)
1 s

(z)
2 + s

(z)
1 s

(+)
2 ), (A.14)

S(0) =
1√
6

(2s
(z)
1 s

(z)
2 −

1

2
(s

(+)
1 s

(−)
2 + s

(−)
1 s

(+)
2 )), (A.15)

S(−1) =
1

2
(s

(−)
1 s

(z)
2 + s

(z)
1 s

(−)
2 ), (A.16)

S(−2) =
1

2
s

(−)
1 s

(−)
2 . (A.17)

A good explanation of how to couple tensor operators of lower rank (here 1) to those
of higher rank (here 2) can be found in the book by Boča.274 For our purposes it is
useful to look at the matrix representation in the basis {|αα〉, |αβ〉, |βα〉, |ββ〉}:

S(+2) =


0 0 0 1

2

0 0 0 0
0 0 0 0
0 0 0 0

 , (A.18)

142



A.3. Derivation of the permutational relation

S(+1) =


0 −1

4
−1

4
0

0 0 0 1
4

0 0 0 1
4

0 0 0 0

 , (A.19)

S(0) =


1

2
√

6
0 0 0

0 − 1
2
√

6
− 1

2
√

6
0

0 − 1
2
√

6
− 1

2
√

6
0

0 0 0 1
2
√

6

 , (A.20)

S(−1) =


0 0 0 0
1
4

0 0 0
1
4

0 0 0
0 −1

4
−1

4
0

 , (A.21)

S(−2) =


0 0 0 0
0 0 0 0
0 0 0 0
1
2

0 0 0

 . (A.22)

We denote the Hermitian permutation operator for the two spins by the symbol P . Its
matrix representation is given by

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (A.23)

One can see that for all �ve S(m) operators the 2nd and 3rd columns are identical,
which means that there is the identity

S(m) = S(m)P. (A.24)

From this follows

S
(m)
στλκ = 〈στ |S(m)|λκ〉 = 〈στ |S(m)P |λκ〉 = 〈στ |S(m)|κλ〉 = S

(m)
στκλ, (A.25)

so the quintet double excitation operators ful�ll the permutational relation

S(m)
pqrs =

∑
στλκ

S
(m)
στλκa

†
pσa
†
qτasκarλ = −

∑
στλκ

S
(m)
στκλa

†
pσa
†
qτarλasκ = −S(m)

pqsr. (A.26)

Here we used Eq. (A.25) and anticommuted the two annihilation operators. Anal-
ogously, one can conclude that S(m) = PS(m) because the 2nd and 3rd row in any
of the S(m) operators is identical. Hence, S(m)

στλκ = S
(m)
τσλκ, which leads to the second

permutational relation
S(m)
pqrs = −S(m)

qprs, (A.27)
where we have this time anticommuted the creation operators. This concludes the
proof of Eq. (3.113).
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A.4. Vanishing contribution of closed shells
If the matrix representations of the S(m) operators (Eqs. (A.18) to (A.22)) are divided
into four blocks of size 2 × 2 each, it can be checked by visual inspection that the
diagonal elements of each of these 2 × 2 blocks have opposite sign (or are zero). We
can express this in the form of the equation

S
(m)
σαλα = −S(m)

σβλβ, (A.28)

which is true for any m and spin labels σ, λ and can be rewritten as∑
τ

S
(m)
στλτ = 0. (A.29)

Now, let |Φrr̄〉 be a state in which spatial orbital r is doubly occupied and let p, q be
two orbitals that are di�erent from r. Then

S(m)
prqr|Φrr̄〉 =

∑
στλκ

S
(m)
στλκa

†
pσa
†
rτarκaqλ|Φrr̄〉 =

∑
στλκ

S
(m)
στλκa

†
pσaqλa

†
rτarκ|Φrr̄〉. (A.30)

Here, it is used that q and r are unequal in order to anticommute the annihilator past
the creator. Using

a†rτarκ|Φrr̄〉 = δτκ|Φrr̄〉, (A.31)

we arrive at

S(m)
prqr|Φrr̄〉 =

∑
σλ

(∑
τ

S
(m)
στλτ

)
a†pσaqλ|Φrr̄〉 = 0, (A.32)

which is zero because of Eq. (A.29). By using the permutational relation, it also follows
that

S(m)
rprq|Φrr̄〉 = 0. (A.33)

A.5. Single determinant orbitals
For an active space with 2m − 1 electrons in m orbitals (i.e. one hole in the active
orbital space), each CSF (we choose the principal component with M = S = 1/2) is
associated with exactly one hole in a certain active orbital t, i.e. it can be written

|Φt〉 = atβ|full〉, (A.34)

where |full〉 is the closed-shell Slater determinant that has all active orbitals doubly
occupied. Both CASCI or DCD-CAS(2) states |ΨI〉 are de�ned via a unitary transfor-
mation of those CSFs, i.e.

|ΨI〉 =
∑
t

|Φt〉CtI = ãIβ|full〉 (A.35)
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with
ãIβ =

∑
t

atβCtI . (A.36)

These are annihilators for a unitarily rotated set of active orbitals

ψ̃I =
∑
t

C−1
It ψt. (A.37)

The determinant |full〉 is invariant under this unitary transformation of orbitals. Hence
the states |ΨI〉 are single Slater determinants, with all active orbitals doubly occupied
except for ψ̃I , which is singly occupied. We therefore call this new choice of active
orbitals single-determinant orbitals (SDOs). We note that the set of SDOs is also the
unique set of simultaneous natural orbitals for all the states |ΨI〉. The idea of SDOs has
been discussed for the �rst time (without giving it this name yet) in the supplementary
material of our previous work on the DCD-CAS(2) method.88

A.6. Auxiliary result for the diagonalization of the
Dyall Hamiltonian

For a given total spin S, we use a counting index K for all the di�erent perturber
CSFs |Φl

K〉 from the space S(k)
l . Such a CSF has well-de�ned occupation numbers,

both in the set of non-active orbitals and in the set of active orbitals. l is a label that
denotes collectively the non-active occupation numbers. Let furthermore lact(K) be
a label that denotes the active occupation numbers of the CSF K . Let |Φl

µ〉 be the
full set of Slater determinants with non-active occupation l and having empty active
orbitals, while |Φlact(K)

ν 〉 is the full set of Slater determinants with active occupation
numbers lact(K) and having all non-active orbitals empty. There are 2N such Slater
determinants if there are N SOMOs among the occupation numbers l or lact. The full
set of the antisymmetrized products (tensor products) |Φl

µ⊗Φ
lact(K)
ν 〉 forms a complete

basis for any state that is characterized by the occupation numbers l and lact(K). One
can therefore write

|Φl
K〉 =

∑
µν

CK
µν |Φl

µ ⊗ Φlact(K)
ν 〉 =

∑
µ

|Φl
µ ⊗ΨK,µ〉 (A.38)

with
|ΨK,µ〉 =

∑
ν

CK
µν |Φlact(K)

ν 〉. (A.39)

This result is similar to the Schmidt decomposition. Since the active part of the Dyall
Hamiltonian acts only on the active part of the wavefunction, one has

〈Φl
K |H

Dyall
act |Φl

L〉 =
∑
µµ′

〈Φl
µ|Φl

µ′〉〈ΨK,µ|HDyall
act |ΨL,µ′〉 =

∑
µ

〈ΨK,µ|HDyall
act |ΨL,µ〉,

(A.40)
which is Eq. (3.10). Here we used that the determinants |Φl

µ〉 are orthonormal.
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A.7. Nature of the eigenfunctions of the canonical
Van Vleck e�ective Hamiltonian

Let (I) and (C) denote objects in the intermediate normalization or canonical Van Vleck
formalism, respectively. We start by showing that the operator U †(I)U(I) is positive def-
inite. It is obviously Hermitian, which means that there exists an orthonormal basis
{|α〉} of eigenstates. The corresponding eigenvalues

α = 〈α|U †(I)U(I)|α〉 = ||U(I)|α〉||2 > 0 (A.41)

must be positive, sinceU(I) is assumed to be invertible, which is only possible ifU(I)|α〉 6=
0. Hence, we conclude that U †(I)U(I) is positive de�nite. This is important since it means
that its inverse, square root, and inverse square root all exist.
We can write an exact eigenstate of the Hamiltonian that is modeled by the chosen
model space as

|ΨI〉 = U(I)|Ψ̃(I)
I 〉 = U(C)|Ψ̃(C)

I 〉. (A.42)
Then Eq. (2.30) immediately leads to

|Ψ̃(C)
I 〉 = U−1

(C) U(I)|Ψ̃(I)
I 〉 = (U †(I)U(I))

1/2|Ψ̃(I)
I 〉. (A.43)

Since (U(I))X is anti-Hermitian, one has U(I) = 1 + (U(I))X and U †(I) = 1 − (U(I))X and
therefore U †(I)U(I) = 1− (U(I))

2
X . This shows that U †(I)U(I) is also block diagonal. One can

therefore write

U †(I)U(I)|Ψ̃(I)
I 〉 = PU †(I)U(I)|Ψ̃(I)

I 〉 =
∑
J

|Ψ̃(I)
J 〉

D〈Ψ̃(I)
J |U

†
(I)U(I)|Ψ̃(I)

I 〉

=
∑
J

|Ψ̃(I)
J 〉

D〈ΨJ |ΨI〉 =
∑
J

|Ψ̃(I)
J 〉

DδJI =|Ψ̃(I)
I 〉

D.
(A.44)

Here |Ψ̃(I)
I 〉D is the dual (contravariant) state with respect to |Ψ̃(I)

I 〉, which can be ex-
pressed as

|Ψ̃(I)
I 〉

D =
∑
J

|Ψ̃(I)
J 〉S

−1
JI (A.45)

with the overlap matrix SJI = 〈Ψ̃(I)
J |Ψ̃

(I)
I 〉. Combining Eqs. (A.43), (A.44) and (A.45),

one obtains Eq. (2.31), i.e. the |Ψ̃(C)
I 〉 are given by Löwdin symmetrical orthonormal-

ization of the states |Ψ̃(I)
I 〉.

A.8. Antilinear operators, complex conjugation, time
reversal, and Kramers symmetry

This section is mainly based on the book by Abragam and Bleaney.133 Apart from
the content found there, our own observations are added to the discussion in a few
occasions.
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A.8.1. Antilinear and antiunitary operators
An antilinear operator A on Hilbert space is an operator that ful�lls

A(α|Ψ〉+ β|Φ〉) = α∗A|Ψ〉+ β∗A|Φ〉. (A.46)

Most operators encountered in quantum mechanics are linear operators. From their
theory, one is used to the fact that they can also act to the left on bra states. This does
not make sense for antilinear operators. For example, the expression 〈Φ|A, where
A is an antilinear operator, is obviously an antilinear functional on Hilbert space.
Hence, it is clear that it cannot be written as a single bra state, since any bra is a linear
functional. When encountering matrix elements like 〈Φ|A|Ψ〉, one should therefore
remember that A is only de�ned for operation to the right. To avoid pitfalls, it makes
sense to consider this in the notation and write 〈Φ|AΨ〉. It is also a useful fact that
the product of two antilinear operators is linear and the product of a linear and an
antilinear operator is antilinear.
The adjoint A† of an antilinear operator A is de�ned such that for arbitrary states |Φ〉
and |Ψ〉 one has

〈Φ|AΨ〉 = 〈A†Φ|Ψ〉∗ = 〈Ψ|A†Φ〉. (A.47)
An antilinear operator A is called antiunitary if it ful�lls for arbitrary states |Φ〉 and
|Ψ〉 the relation

〈AΦ|AΨ〉 = 〈Φ|Ψ〉∗, (A.48)
which is equivalent to

AA† = A†A = 1. (A.49)
The latter relation is identical to that ful�lled by linear operators that are unitary.

A.8.2. Complex conjugation
Given a certain orthonormal basis {|a〉} of Hilbert space, the complex conjugation op-
erator Ka with respect to this basis is de�ned to be the antilinear operator which maps
any basis vector |a〉 to itself, i.e.

Ka|a〉 = |a〉. (A.50)

For an arbitrary Hilbert space state |Ψ〉with basis set expansion |Ψ〉 =
∑

aCa|a〉, one
then gets

Ka|Ψ〉 =
∑
a

C∗a |a〉 (A.51)

by extension. In other words, the operator Ka maps any state to the one which has
complex-conjugated coe�cients when represented in the basis {|a〉}. The most com-
mon one-electron basis is that formed by simultaneous eigenstates of the position and
sz operator, |r,ms〉. When talking about the complex conjugation operator in the fol-
lowing, we will always implicitly mean complex conjugation with respect to this basis.
We will therefore drop the label and simply write K . One should also mention that
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the complex conjugation operator is not only antilinear but also antiunitary, i.e. one
has

K† = K = K−1. (A.52)
Equipped with the de�nition of the complex conjugation operator, one can also rigor-
ously de�ne what is meant with the complex conjugate |Ψ〉∗ of a state |Ψ〉, namely

|Ψ〉∗ = K|Ψ〉. (A.53)

This means that the complex-conjugate of an electronic 1-particle state has a 2-com-
ponent wavefunction (representation in the |r,ms〉 basis) that is simply the complex
conjugate of the wavefunction of the original state. We de�ne the complex conjugate
of an operator A as

A∗ = KAK. (A.54)
In analogy to numbers, one calls states and operators real if

|Ψ〉∗ = |Ψ〉, (A.55)

A∗ = A (A.56)
and one calls them purely imaginary if

|Ψ〉∗ = −|Ψ〉, (A.57)

A∗ = −A. (A.58)
A useful property of real Hermitian operatorsH is that their eigenstates can be chosen
real. The reason for this is sketched in the following. Let |Ψ〉 be an eigenstate of a
real Hamiltonian. Then also |Ψ〉∗ is an eigenstate with the same energy. One can
distinguish two cases. If |Ψ〉 and |Ψ〉∗ are linearly dependent, their linear combination
|Ψ〉 + |Ψ〉∗ is real and is also an eigenstate with the same energy. If they are linearly
independent, one can construct the two linearly independent real states |Ψ〉 + |Ψ〉∗
and 1

i
(|Ψ〉 − |Ψ〉∗).

A.8.3. Time reversal
Time reversal is an operation that transforms any quantum state into a state that has
all momenta and angular momenta (including spin) reversed. Since this represents a
“symmetry operator” according to Wigner (meaning that it leaves transition proba-
bilities between states unchanged), the operator can only be represented by a unitary
or antiunitary operator on Hilbert space. This is called Wigner’s theorem. One can
conclude by simple arguments that only the 2nd option leads to physically meaning-
ful results, i.e. time reversal must be represented by an antiunitary operator.133 275

Since the product of two antiunitary operators is a unitary operator, it is clear that
one can pick an arbitrary antiunitary operator and that time reversal can be written
as a product of this operator and a unitary operator. In practice this auxiliary antiuni-
tary operator is usually chosen as the complex conjugation operatorK de�ned above.
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For a single electron, one can then show that the unitary operator is given by a 180°
rotation in spin space around the y-axis, such that one has

θ = K exp(−iπsy). (A.59)

On the many-electron Hilbert space, the time reversal operator is simply de�ned as
the tensor product of the time reversal operators on the one-electron Hilbert spaces,
i.e.

θ =
⊗
n

θn = K exp(−iπSy), (A.60)

where nowK = K1⊗ . . . KN is the complex conjugation operator with respect to the
many-electron space-spin standard basis and Sy is the y-component of the total spin
operator. Given an electronic state |Ψ〉, one de�nes the Kramers conjugate |Ψ̄〉 to be
the state that results from action of the time reversal operator, i.e.

|Ψ̄〉 = θ|Ψ〉. (A.61)

One calls a linear operator A even or odd under time-reversal if

θAθ† = θ†Aθ = ±A†. (A.62)

Examples for odd operators are the momentum as well as spin and orbital angular
momentum operators. One can easily show that a time-odd operator A has opposite
expectation values for a given state and its Kramers conjugate,

〈Ψ̄|A|Ψ̄〉 = 〈Ψ|θ†AθΨ〉∗ = −〈Ψ|A†|Ψ〉∗ = −〈Ψ|A|Ψ〉. (A.63)

A.8.4. Kramers theorem
Consider a system where the number of electronsN is odd. The operator exp(−iπSy)
is real and therefore one has

θ2 = exp(−2πiSy) =
⊗
n

exp(−2πisyn) =
⊗
n

(−1) = −1. (A.64)

Here we used that a 360◦ spin rotation changes the sign of a one-electron wavefunction
and that there is an odd number of terms in the tensor product in Eq. (A.64). The
overlap of a state and its Kramers conjugate is then given by

〈Ψ|Ψ̄〉 = 〈Ψ|θΨ〉 = 〈θΨ|θ2Ψ〉∗ = −〈Ψ|Ψ̄〉. (A.65)

This shows that any state is orthogonal to its Kramers conjugate for systems with an
odd number of electrons. If |Ψ〉 is an eigenstate of a time-reversal-invariant Hamilto-
nian H (i.e. θ†Hθ = H),

H|Ψ〉 = E|Ψ〉, (A.66)
then obviously also

H|Ψ̄〉 = E|Ψ̄〉. (A.67)
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The Hamiltonian is always time-reversal-invariant in the absence of external magnetic
�elds. This shows the famous Kramers theorem: For a system with an odd number of
electrons, the degeneracy of each energy eigenvalue is even in the absence of magnetic
�elds. In the simplest case where there is no other symmetry, the degeneracy of each
level is twofold and one calls the pairs of degenerate states Kramers doublets.

A.9. Representatives of orbitally degenerate quartet
states of octahedral d3 complexes

It is possible to investigate an octahedral system in the D4h subgroup. In this case
xz, yz belong to theEg, xy to theB2g, z2 to theA1g, and x2−y2 to theB1g irreducible
representations. A state that has a half-�lled Eg shell, i.e. both the xz and the yz
orbital singly occupied with a spin-up electron, has symmetry A2g. The ground state,
with xy, xz, and yz singly occupied, therefore has A2g ⊗ B2g = B1g symmetry. The
singly excited Slater determinants have the following symmetries:

• xy → z2: A2g ⊗ A1g = A2g

• xy → x2 − y2: A2g ⊗B1g = B2g

• xz/yz → z2: Eg ⊗B2g ⊗ A1g = Eg

• xz/yz → x2 − y2: Eg ⊗B2g ⊗B1g = Eg

The doubly excited Slater determinants have the following symmetries:

• xz, yz → z2, x2 − y2: B2g ⊗ A1g ⊗B1g = A2g

• xz/yz, xy → z2, x2 − y2: Eg ⊗ A1g ⊗B1g = Eg

The irreducible representations of Oh transform in the D4h subgroup as

• A2g: B1g

• T1g: A2g ⊕ Eg

• T2g: B2g ⊕ Eg

One can see that this is in accordance with the above results and that the xy → x2 −
y2 excited Slater determinant is one component of the 4T2g excited level, while the
xy → z2 and xz, yz → z2, x2 − y2 excited Slater determinants will mix to form one
component of each of the two excited 4T1g levels.
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A.10. Derivation of ∆/B in terms of 4T1g coe�icients
An arbitrary real 2× 2 Hermitian matrix can be written

H = E0I +

(
−∆E/2 V

V ∆E/2

)
, (A.68)

where E0 is a constant shift that does not in�uence the eigenvectors, I is the 2 × 2
identity matrix, ∆E is the di�erence between the diagonal elements, and V is the
o�-diagonal coupling matrix element. Diagonalizing H, i.e. solving its eigenvalue
equation, leads to two solutions with energies

E± = ±1

2

√
(∆E)2 + 4V 2. (A.69)

The eigenvector belonging to the lower-energy solution E− can be written as(
C1

C2

)
= N

(
−(∆E/V +

√
(∆E/V )2 + 4)/2

1

)
, (A.70)

where N is an arbitrary normalization constant. This means that

−(∆E/V +

√
(∆E/V )2 + 4)/2 = C1/C2. (A.71)

Solving this equation for ∆E/V gives

∆E

V
=
C2

C1

− C1

C2

. (A.72)

For the 2× 2 4T1g block of the LFT Hamiltonian of an octahedral d3 complex (see Eq.
(6.5)), one has

∆E

V
=

∆− 9B

6B
=

∆/B − 9

6
, (A.73)

which leads, combined with Eq. (A.72), to Eq. (6.6),

∆

B
= 6

∆E

V
+ 9 = 6

(
C2

C1

− C1

C2

)
+ 9. (A.74)

A.11. Derivation of spin Hamiltonian parameters
using DPT

A.11.1. g-matrix
We start with the derivation of the g-matrix. There is a 1st order contribution coming
from the spin Zeeman interaction,

H
spin
Zeeman = µBgeB · S. (A.75)
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A. Additional derivations and theoretical discussion

This is apparently already in the form of the spin Hamiltonian in Eq. (2.79) and leads
to a contribution to the g-matrix given in Eq. (2.87). Apart from that, there is a 2nd
order contribution coming from the orbital Zeeman interaction,

Horb
Zeeman = µBB · L (A.76)

and the SOC operator HSOC. We assume that the SOC operator is in the form of an
e�ective one-particle operator, like the SOMF operator Eq. (2.9) or the e�ective nuclear
charge SOC operator.210 Inserting these operators into Eq. (2.86), the contribution of
the e�ective Hamiltonian is given by

−
∑

b 6=0,Mb

∆−1
b [〈ΨSM

0 |Horb
Zeeman|Ψ

SbMb
b 〉〈ΨSbMb

b |HSOC|ΨSM ′

0 〉+ c.c.]. (A.77)

Since the orbital Zeeman operator is a singlet operator, it cannot couple di�erent total
spins or MS sublevels. Hence, the matrix element is given by

〈ΨSM
0 |Horb

Zeeman|Ψ
SbMb
b 〉 = δSSb

δMMb
µBB · 〈ΨSS

0 |L|ΨSS
b 〉. (A.78)

The matrix element of the SOC operator is given by (already including the restrictions
imposed by the Kronecker deltas in the previous expression)

〈ΨSM
b |HSOC|ΨSM ′

0 〉 =
∑

m=0,±1

〈ΨSM
b |H

(m)
SOC(m)|ΨSM ′

0 〉

=
1

S

∑
m=0,±1

〈SM |Sm|SM ′〉〈ΨSS
b |H

(0)
SOC(m)|ΨSS

0 〉

=
1

S

3∑
l=1

〈SM |Sl|SM ′〉〈ΨSS
b |H

(0)
SOC(l)|ΨSS

0 〉.

(A.79)

Here we �rst wrote the SOC operator as a sum over spherical spin tensor components
(see Eq. (3.71)), then applied the Wigner Eckart replacement theorem,100 and �nally
switched back from spherical to Cartesian components. Using Eqs. (A.78) and (A.79),
one sees that Eq. (A.77) assumes the form of the SH in Eq. (2.79) with the correspond-
ing contribution to the g-matrix given by Eq. (2.88).

A.11.2. A-matrix
There are two 1st order contributions to the e�ective Hamiltonian that come from the
FC and SD contributions to the hyper�ne interaction operator,

HFC
HFC = α2 ge

2

8π

3

∑
A

γAIA ·
∑
i

δ3(riA)si, (A.80)

HSD
HFC = α2 ge

2

∑
A

γAIA ·
∑
i

3riA(si · riA)− r2
iAsi

r5
iA

. (A.81)
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Both operators are triplet operators, like the SOC operator. In close analogy to Eq.
(A.79), one can therefore write the matrix elements of these operators as

〈ΨSM
0 |HFC/SD

HFC |ΨSM ′

0 〉 =
1

S

3∑
l=1

〈SM |Sl|SM ′〉〈ΨSS
0 |H

FC/SD(0)
HFC (l)|ΨSS

0 〉 (A.82)

with

H
FC(0)
HFC (l) = α2 ge

2

8π

3

∑
A

γAIA,l
∑
i

δ3(riA)szi , (A.83)

H
SD(0)
HFC (l) = α2 ge

2

∑
A

γA
∑
k

IA,k
∑
i

3rkiAr
l
iA − δklr2

iA

r5
iA

szi . (A.84)

With this, Eq. (A.82) is clearly of the form of the SH Eq. (2.79) if the corresponding
contributions to the A-matrix are de�ned as in Eqs. (2.89) and (2.90). Apart from these
two contributions, there is a 2nd order contribution that is given by

−
∑

b 6=0,Mb

∆−1
b [〈ΨSM

0 |HNOC
HFC |Ψ

SbMb
b 〉〈ΨSbMb

b |HSOC|ΨSM ′

0 〉+ c.c.] (A.85)

and arises from SOC and the NOC part of the HFC Hamiltonian,

HNOC
HFC = α2

∑
A

γAIA ·
∑
i

lAi
r3
iA

. (A.86)

Like the orbital Zeeman operator, this is a singlet operator and its matrix elements are
therefore given by

〈ΨSM
0 |HNOC

HFC |Ψ
SbMb
b 〉 = δSSb

δMMb
α2
∑
A

γAIA · 〈ΨSS
0 |
∑
i

lAi
r3
iA

|ΨSS
0 〉. (A.87)

Inserting this, together with Eq. (A.79), into Eq. (A.85) shows that this contribution is
also in the spin Hamiltonian form of Eq. (2.79), with the corresponding contribution
to the A-matrix given by Eq. (2.91).

A.11.3. Derivation of the 1st order contribution of direct
electronic spin-spin coupling to the D-tensor

Using the Wigner Eckart replacement theorem,100 one obtains

〈ΨSM
0 |H

(m)
SSC (m)|ΨSM ′

0 〉 =
〈ΨSS

0 |H
(0)
SSC(m)|ΨSS

0 〉
〈SS|[S⊗ S]20|SS〉

〈SM |[S⊗ S]2m|SM ′〉. (A.88)

The matrix element of the full SSC operator is then given by (after writing the dot
product of 2nd rank tensors in terms of Cartesian instead of spherical components)

〈ΨSM
0 |HSSC|ΨSM ′

0 〉 =
3∑

K,L=1

〈ΨSS
0 |H

(0)
SSC(KL)|ΨSS

0 〉
〈SS|[S⊗ S]20|SS〉

〈SM |SKSL|SM ′〉. (A.89)
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Using [S⊗ S]20 = 1√
6
(3S2

z − S2), the denominator can be shown to be

〈SS|[S⊗ S]20|SS〉 =
1√
6
S(2S − 1). (A.90)

Together with

H
(0)
SSC(KL) = −g

2
eα

2

4

∑
i<j

3rKij r
L
ij − δKLr2

ij

r5
ij

1√
6

(2szi s
z
j − sxi sxj − s

y
i s
y
j ) (A.91)

this gives the �nal result

〈ΨSM
0 |HSSC|ΨSM ′

0 〉 = 〈SM |
3∑

K,L=1

DKLSKSL|SM ′〉 (A.92)

with

DKL =
g2
e

4

α2

S(2S − 1)
〈ΨSS

0 |
∑
i<j

δKLr
2
ij − 3rKij r

L
ij

r5
ij

(2szi s
z
j − sxi sxj − s

y
i s
y
j )|ΨSS

0 〉. (A.93)
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B.1. Comparison of nonrelativistic and relativistic
DLPNO-CCSD Cu-HFCCs

A comparison of nonrelativistic and relativistic DLPNO-CCSD 63Cu HFCCs can be
found in Table B.1.

B.2. Relativistic g-shi�s for square-planar CuII

complexes
Table B.2 shows the scalar-relativistic g-shifts for the test set of square-planar CuII

complexes.

B.3. Comparison of calculated and experimental
anisotropic HFCCs

Table B.3 compares the anisotropic part of the HFCCs obtained from calculations
with the experimental values. Note that the SD contribution (which is completely
anisotropic) and the anisotropic part of the NOC contribution have opposite signs.
Both contributions are individually too small in magnitude at the DCD-CAS(2) level
(see the main text), but the opposite sign of the contributions leads to a fortuitous
error cancellation. Thus it turns out that DCD-CAS(2) has the best agreement with
experiment among the compared methods.

B.4. Calculation of CCSD(T) excitation energies for
[Cu(NH3)4]2+

We calculated CCSD(T) energies for all six states of the [Cu(NH3)4]2+ molecule based
on the CASSCF single-determinant wavefunctions (in the basis of SDOs) of a preceding
SA-CASSCF calculation. We used a nonrelativistic Hamiltonian and the contracted
def2-TZVP basis set. With the default convergence threshold of 2.5 × 10−5 , only
three of the calculations converged. We therefore loosened the threshold to a value of
1.5× 10−4, which made all calculations converge. Table B.4 shows the comparison of
the total energies obtained with the two thresholds.
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Table B.1.:Comparison of nonrelativistic and relativistic DLPNO-CCSD 63Cu HFCCs (in MHz).
The relativistic calculation uses the DKH2 Hamiltonian and picture change e�ects as well as a
�nite nucleus model.

scalar-relativistic nonrelativistic di�erence di�erence(%)
[Cu(NH3)4]2+ AFC −480 −456 24 −5.0

ASD(1) 281 282 1 0.4
ASD(2) 281 282 1 0.5
ASD(3) −562 −564 −3 0.4

[Cu(en)2]2+ AFC −485 −466 18 −3.8
ASD(1) 277 277 1 0.2
ASD(2) 275 276 1 0.3
ASD(3) −551 −553 −1 0.3

[Cu(gly)2] AFC −464 −443 21 −4.5
ASD(1) 334 337 3 0.9
ASD(2) 230 230 1 0.2
ASD(3) −563 −567 −3 0.6

[Cu(dtc)2] AFC −453 −439 14 −3.1
ASD(1) 231 228 −3 −1.4
ASD(2) 224 222 −3 −1.2
ASD(3) −455 −449 6 −1.3

[Cu(mnt)2]2− AFC −440 −426 14 −3.2
ASD(1) 232 229 −2 −1.0
ASD(2) 229 227 −2 −0.9
ASD(3) −461 −456 5 −1.0

D2d-[CuCl4]2− AFC −389 −365 24 −6.1
ASD(1) 283 283 1 0.2
ASD(2) 282 283 1 0.4
ASD(3) −565 −566 −2 0.3

D4h-[CuCl4]2− AFC −451 −428 23 −5.1
ASD(1) 272 272 0 0.0
ASD(2) 271 272 0 0.1
ASD(3) −543 −543 0 0.1
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Table B.2.: Scalar-relativistic (without picture change) g-shifts (in ppt) calculated
with di�erent methods and compared with the experiment.

CASSCF NEVPT2 DCD-CAS(2) B3LYP Expt.
[Cu(NH3)4]2+ ∆g(1) 71 58 40 42 45212

∆g(2) 71 58 41 42 45212

∆g(3) 417 291 199 152 239212

[Cu(en)2]2+ ∆g(1) 65 52 33 36 39212

∆g(2) 65 53 33 36 39212

∆g(3) 375 258 159 130 203212

[Cu(gly)2] ∆g(1) 42 34 30 31 23212

∆g(2) 89 73 45 47 23212

∆g(3) 365 246 181 142 265212

[Cu(dtc)2] ∆g(1) 65 56 11 18 18213

∆g(2) 70 57 13 24 23213

∆g(3) 342 228 63 71 82213

[Cu(mnt)2]2− ∆g(1) 66 54 11 21 21214

∆g(2) 66 70 13 22 24214

∆g(3) 312 212 55 76 84214

D2d-[CuCl4]2− ∆g(1) 183 209 76 77 81215

∆g(2) 183 209 76 77 97215

∆g(3) 910 772 360 256 443215

D4h-[CuCl4]2− ∆g(1) 87 78 35 46 47207

∆g(2) 87 78 35 46 47207

∆g(3) 620 475 192 163 230207
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Table B.3.: Comparison of calculated and experimental anisotropic 63Cu HFCCs (in MHz).

CASSCF NEVPT2 DCD-CAS(2) B3LYP Exp.
[Cu(NH3)4]2+ Aaniso(1) 134 185 173 194 173212

Aaniso(2) 134 184 172 194 173212

Aaniso(3) −269 −369 −345 −388 −345212

[Cu(en)2]2+ Aaniso(1) 144 191 169 229 178212

Aaniso(2) 146 192 170 231 178212

Aaniso(3) −290 −383 −339 −460 −356212

[Cu(gly)2] Aaniso(1) 54 106 141 169 162212

Aaniso(2) 240 286 223 300 162212

Aaniso(3) −295 −392 −364 −469 −325212

[Cu(dtc)2] Aaniso(1) 137 179 101 125 129217

Aaniso(2) 138 184 102 130 111217

Aaniso(3) −275 −363 −204 −255 −240217

[Cu(mnt)2]2− Aaniso(1) 142 171 108 196 124214

Aaniso(2) 147 199 110 201 121214

Aaniso(3) −289 −370 −219 −397 −245214

D2d-[CuCl4]2− Aaniso(1) −37 19 90 145 ...
Aaniso(2) −37 19 90 145 ...
Aaniso(3) 73 −38 −180 −291 ...

D4h-[CuCl4]2− Aaniso(1) 53 109 128 154 129207

Aaniso(2) 53 109 128 154 129207

Aaniso(3) −106 −218 −256 −309 −258207

Table B.4.: Comparison of CCSD(T) total energies (in Ha) with default and loosened
threshold.

State Total energy for
default threshold

Total energy for
loosened
threshold

Di�erence (in eV)

0 −1865.005187 −1865.005146 1.12× 10−3

1 −1864.933946 −1864.933929 4.61× 10−4

2 ... −1864.922772 ...
3 ... −1864.921843 ...
4 ... −1864.921866 ...
5 −1864.764801 −1864.764782 5.21× 10−4
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B.5. Comparison of SA-NEVPT2 and state-speci�c NEVPT2 total energies

For the three states that also converged with default thresholds, one can observe that
the di�erence is smaller than the two digits after the decimal point (in eV) that we
report for excitation energies, hence we conclude that the loosened threshold is ac-
ceptable.

B.5. Comparison of SA-NEVPT2 and state-specific
NEVPT2 total energies

As an example of our observation that total energies obtained with state-speci�c NEVPT2
are usually signi�cantly lower than total energies obtained with state-averaged NEVPT2,
we show in Table B.5 the energies of all ligand �eld roots of the [Co(sacsac)2] complex
calculated with the two methods, using the geometry and computational details from
our previous work.89

Table B.5.: Total energies for all ligand �eld
states of the [Co(sacsac)2] complex with a SA-
CASSCF(7,5) reference.

E(NEVPT2)/Ha E(SA-NEVPT2)/Ha ∆E/eV
−3376.288 −3375.757 14.5
−3376.285 −3375.754 14.4
−3376.276 −3375.747 14.4
−3376.261 −3375.735 14.3
−3376.242 −3375.718 14.3
−3376.219 −3375.690 14.4
−3376.169 −3375.648 14.2
−3376.154 −3375.627 14.3
−3376.141 −3375.616 14.3
−3376.119 −3375.590 14.4
−3376.312 −3375.768 14.8
−3376.311 −3375.770 14.7
−3376.294 −3375.750 14.8
−3376.238 −3375.703 14.6
−3376.207 −3375.675 14.5
−3376.202 −3375.668 14.5
−3376.203 −3375.668 14.6
−3376.204 −3375.671 14.5
−3376.196 −3375.663 14.5
−3376.196 −3375.663 14.5
−3376.193 −3375.658 14.6
−3376.191 −3375.657 14.5
−3376.174 −3375.644 14.4
−3376.167 −3375.634 14.5
−3376.191 −3375.653 14.7

159



B. Additional numerical data

Table B.5.: (Continued.)
E(NEVPT2)/Ha E(SA-NEVPT2)/Ha ∆E/eV
−3376.156 −3375.621 14.6
−3376.153 −3375.617 14.6
−3376.164 −3375.632 14.5
−3376.139 −3375.600 14.7
−3376.097 −3375.570 14.3
−3376.091 −3375.566 14.3
−3376.084 −3375.562 14.2
−3376.078 −3375.556 14.2
−3376.081 −3375.553 14.4
−3376.076 −3375.548 14.3
−3376.070 −3375.547 14.3
−3376.067 −3375.541 14.3
−3376.066 −3375.540 14.3
−3376.065 −3375.532 14.5
−3376.061 −3375.529 14.5
−3376.064 −3375.531 14.5
−3376.052 −3375.518 14.5
−3376.042 −3375.508 14.5
−3376.041 −3375.506 14.5
−3376.032 −3375.501 14.5
−3376.012 −3375.474 14.6
−3375.981 −3375.448 14.5
−3375.961 −3375.429 14.5
−3375.939 −3375.400 14.7
−3375.940 −3375.401 14.7

B.6. Results of CASSCF(25,13) for D2d-[CuCl4]2−

In the CASSCF(25,13) calculation, we included all ligand-based orbitals of e and a1

symmetry together with the d orbitals into the active space. In order to have a bal-
anced treatment of ligand-�eld versus charge transfer states, the latter got assigned a
lower weight, such that the total weight of ligand-�eld versus charge transfer states
is 1:1. As can be seen in Table B.6, the CASSCF(25,13)/NEVPT2 excitation energies
correlate very well with the experimental band maxima and also the computed oscil-
lator strengths predict three dominant transitions. Looking at the SDOs in Figure B.1,
one can see that the ligand donor orbitals belonging to these three dominant LMCT
transitions are exactly the ones that are included in the active space in the calculations
of Section 5.4.
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B.6. Results of CASSCF(25,13) for D2d-[CuCl4]2−

Figure B.1.: Ligand-centered SDOs of the CASSCF(25,13) calcula-
tion on D2d-[CuCl4]2−. From top to bottom, they are the SOMOs
of the LMCT states in order of increasing energy.
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B. Additional numerical data

Table B.6.: Excitation energies (eV) and oscillator strengths f belonging to the d-d transitions
and all bands in the charge transfer region belonging to A1 and E symmetry of the D2d-
[CuCl4]2− UV/Vis absorption spectrum.

CASSCF SA-
NEVPT2 NEVPT2 f (NEVPT2) Expt. f (Expt.)222

2E (xz/yz → xy) 0.509 0.964 0.953 0.000 0.6234a ...
2B1 (x2 − y2 → xy) 0.586 1.033 0.960 0.000 1.0234 ...
2A1 (z2 → xy) 0.736 1.315 1.266 0.000 1.1234 ...
2E (Cl-3p→ xy) 5.972 1.291 3.278 0.028 3.1222 0.050
2A1 (Cl-3p→ xy) 6.484 1.764 3.794 0.001 ... ...
2E (Cl-3p→ xy) 6.536 2.129 3.990 0.007 3.6222 0.008
2E (Cl-3p→ xy) 6.960 2.562 4.455 0.040 4.2222 0.095
2A1 (Cl-3p→ xy) 7.642 4.015 5.683 0.054 5.3222 0.03

aExperimentally, the 2E d-d state is slightly split by a distortion. We use the average of the two
energies as a reference.

B.7. Thresholds for the CC calculations of excitation
energies in [CuCl4]2−

It was demonstrated in Appendix B.4 that one can expect meV accuracy by reducing
the residual convergence threshold to s = 0.00015. Since not all calculations con-
verged with this threshold, we successively loosened the threshold and investigated
the changes in total energy when going from one threshold to the next one. These
numbers are presented in Tables B.7 to B.9. All values that are left out correspond to
calculations that did not converge.
It can be seen that s = 0.0005 introduces errors in the range of a few meV. We therefore
choose to present two digits after the decimal point for numbers obtained with this
threshold. The s = 0.003 threshold introduces additional errors of up to 0.06 eV. We
therefore choose to present only one digit after the decimal point for numbers obtained
with this threshold.

B.8. Excitation energies of [CuCl4]2− before
averaging

Tables B.10 to B.12 show the excitation energies for [CuCl4]2− before averaging over
quasidegenerate roots.
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B.8. Excitation energies of [CuCl4]2− before averaging

Table B.7.: Coupled cluster total energies (in Ha) with di�erent convergence thresh-
olds s for the D2d complex.

State s = 0.00015 s = 0.0005 Change / eV s = 0.003 Change / eV
0 −3505.5887 −3505.5886 0.002 −3505.5879 0.021
1 −3505.5782 −3505.5781 0.002 −3505.5773 0.022
2 −3505.5756 −3505.5755 0.002 −3505.5747 0.022
3 −3505.5634 −3505.5633 0.002 −3505.5612 0.058
4 −3505.56 −3505.5595 0.013
5 −3505.4458 −3505.4458 0.001
6 −3505.4434 −3505.4434 0.001
7
8 −3505.4001
9 −3505.4008
10 −3505.3627

Table B.8.: Coupled cluster total energies (in Ha) with di�erent convergence thresh-
olds s for the D4h complex without ECPs on H point charges.

State s = 0.00015 s = 0.0005 Change / eV s = 0.003 Change / eV
0 −3499.291 −3499.2909 0.003 −3499.2902 0.020
1 −3499.2384 −3499.2383 0.001 −3499.2379 0.010
2 −3499.231 −3499.2303 0.021
3 −3499.2295 −3499.2288 0.019
4 −3499.2232 −3499.2232 0.000 −3499.2213 0.051
5 −3499.1342 −3499.1336 0.016
6 −3499.1329 −3499.1324 0.014
7 −3499.125 −3499.1246 0.012
8 −3499.0792 −3499.0804 0.031
9 −3499.0782 −3499.0791 0.025

Table B.9.: Coupled cluster total energies (in Ha) with di�erent convergence thresh-
olds s for the D4h complex with Li ECPs on some H point charges.

State s = 0.00015 s = 0.0005 Change / eV s = 0.003 Change / eV
0 −3503.1371 −3503.137 0.003 −3503.1363 0.020
1 −3503.0848 −3503.0847 0.002 −3503.0843 0.011
2 −3503.0768 −3503.0767 0.003 −3503.0759 0.021
3 −3503.0753 −3503.0752 0.002 −3503.0745 0.020
4 −3503.0684 −3503.0684 0.000 −3503.0666 0.051
5 −3502.983 −3502.9824 0.017
6 −3502.9816 −3502.9811 0.015
7 −3502.9712 −3502.9707 0.013
8 −3502.9277
9 −3502.9254 −3502.9257 0.010
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B. Additional numerical data

Table B.10.: All excitation energies (in eV) of D2d-[CuCl4]2− in crystal embedding be-
fore averaging over energies that should be degenerate in the pseudo symmetry group.
A residual convergence threshold of 0.003 was used for the DLPNO-CCSD(T) calcula-
tions.

Term CASSCF SA-
NEVPT2

DCD-
CAS(2) NEVPT2 HQD-

NEVPT2
DLPNO-
CCSD(T)

E 0.266 0.397 0.385 0.367 0.366 0.3
0.329 0.502 0.469 0.467 0.464 0.4

B1 0.621 1.077 0.907 0.991 0.991 0.7
A1 0.703 1.083 1.071 1.014 0.993 0.8
E 6.106 1.487 1.798 3.404 3.401 3.9

6.141 1.577 1.915 3.470 3.469 3.9
E +B1 7.135 2.779 3.196 4.589 4.525 not conv.
(mixed) 7.261 2.865 3.403 4.664 4.744 5.1

7.262 2.983 3.414 4.787 4.805 5.1
A1 8.018 4.612 5.051 6.129 6.130 6.1

Table B.11.: All excitation energies (in eV) of D4h-[CuCl4]2− in crystal embedding
(with bare point charges at H atom positions) before averaging over energies that
should be degenerate in the pseudo symmetry group. A residual convergence threshold
of 0.0005 was used for the DLPNO-CCSD(T) calculations.

Term CASSCF SA-
NEVPT2

DCD-
CAS(2) NEVPT2 HQD-

NEVPT2
DLPNO-
CCSD(T)

B1g 1.234 2.048 2.047 1.901 1.900 1.43
Eg 1.491 2.225 2.228 2.075 2.075 1.63

1.522 2.294 2.297 2.130 2.131 1.67
A1g 1.550 2.600 2.605 2.475 2.476 1.84
Eu 6.188 2.404 2.648 4.074 4.025 4.26

6.224 2.468 2.717 4.159 4.092 4.30
B1u 6.526 2.511 2.852 4.229 4.236 4.51
Eu 7.711 3.973 4.519 5.589 5.640 5.76

7.753 3.999 4.571 5.626 5.686 5.79
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B.9. Results for the CrIII series with only quartet roots included

Table B.12.: All excitation energies (in eV) of D4h-[CuCl4]2− in crystal embedding
(with Li ECPs at some H atom positions) before averaging over energies that should be
degenerate in the pseudo symmetry group. A residual convergence threshold of 0.0005
was used for the DLPNO-CCSD(T) calculations, except for the highest energyEu level,
where a threshold of 0.003 was necessary to achieve convergence.

Term CASSCF SA-
NEVPT2

DCD-
CAS(2) NEVPT2 HQD-

NEVPT2
DLPNO-
CCSD(T)

B1g 1.234 2.040 2.039 1.891 1.891 1.42
Eg 1.506 2.244 2.246 2.081 2.081 1.64

1.536 2.309 2.311 2.141 2.142 1.68
A1g 1.575 2.633 2.637 2.505 2.505 1.87
Eu 6.105 2.353 2.582 4.029 3.976 4.19

6.133 2.441 2.621 4.096 4.024 4.23
B1u 6.516 2.504 2.868 4.259 4.255 4.51
Eu 7.640 3.973 4.539 5.579 5.651 5.7

7.694 4.045 4.580 5.647 5.706 5.7

B.9. Results for the CrIII series with only quartet
roots included

Table B.13 shows the quartet excitation energies of the complexes in the CrIII series
with only quartet roots included in the state averaging.

B.10. Additional ab initio e�ective Hamiltonians
The quartet block of the DCD-CAS(2) e�ective Hamiltonian in the CSF basis is

He�
DCD-CAS(2) =


0 0 0 0
0 1.880 0 0
0 0 3.168 0.652
0 0 0.652 4.052

 (B.1)

for the [CrF6]3− complex,

He�
DCD-CAS(2) =


0 0 0 0
0 1.682 0 0
0 0 2.844 0.603
0 0 0.603 3.640

 (B.2)

for the [CrCl6]3− complex and

He�
DCD-CAS(2) =


0 0 0 0
0 1.638 0 0
0 0 2.767 0.591
0 0 0.591 3.550

 (B.3)
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B. Additional numerical data

Table B.13.: Quartet excitation energies (in eV) for the [CrX6]n series
obtained with di�erent geometries and averaged over only the quartet
roots.

gas phase structure C-PCM structure
CASSCF NEVPT2 CASSCF NEVPT2 Expt.

[CrF6]3− 1.41 1.62 1.64 1.86 2.00a

2.32 2.56 2.64 2.86 2.90a

3.95 3.92 4.31 4.32 ...
[CrCl6]3− 1.18 1.48 1.36 1.69 1.70b

1.97 2.37 2.23 2.62 2.38b

3.53 3.58 3.79 3.91 ...
[CrBr6]3− 1.10 1.46 1.25 1.64 1.66c

1.85 2.34 2.07 2.55 2.16c

3.40 3.51 3.61 3.79 ...
[CrI6]3− 1.09 1.57 1.22 1.73 ...

1.84 2.47 2.03 2.65 ...
3.36 3.62 3.55 3.88 ...

[Cr(CN)6]3− 3.00 3.61 3.37 4.04 3.29d

4.20 4.64 4.57 5.05 4.02d

6.61 7.50 7.29 8.32 ...
[Cr(NH3)6]3+ 2.07 2.48 2.40 2.85 2.67e

3.18 3.53 3.57 3.92 3.53e

5.00 5.39 5.57 6.09 ...

aK2NaCrF6
246 This system has an experimental metal ligand distance that is

closest to the C-PCM geometry among the systems in Table 6.1.
bCrCl3 246
cCrBr3

246
dK3Cr(CN)6

247
e[Cr(NH3)6](ClO4)3 in H2O 248,249
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B.11. Exact numerical data for RMSDs and trends in ligand �eld parameters

Table B.14.: Total RMSDs (in eV) between AILFT and ab initio state en-
ergies.

CASSCF NEVPT2 HQD-NEVPT2 DCD-CAS(2)
[CrF6]3− 0.01 0.25 0.09 0.08
[CrCl6]3− 0.10 0.41 0.20 0.18
[CrBr6]3− 0.12 0.48 0.25 0.23
[CrI6]3− 0.15 0.61 0.33 0.31
[Cr(CN)6]3− 0.08 0.24 0.17 0.11
[Cr(NH3)6]3+ 0.08 0.32 0.17 0.13
[MoCl6]3− 0.10 0.19 0.13 0.10
[TcF6]2− 0.07 0.16 0.14 0.09
IrF6 0.12 0.25 0.26 0.07
[ReF6]2− 0.05 0.15 0.16 0.10
[ReCl6]2− 0.14 0.30 0.31 0.23
[ReBr6]2− 0.15 0.40 0.41 0.31
[TiCl4]2− 0.05 0.09 0.08 0.07
[VCl4]2− 0.03 0.14 0.10 0.08
[CrCl4]2− 0.02 0.31 0.16 0.14
[MnCl4]2− 0.01 0.17 0.19 0.16
[FeCl4]2− 0.02 0.16 0.13 0.12
[CoCl4]2− 0.02 0.17 0.07 0.06
[NiCl4]2− 0.03 0.13 0.08 0.07
Cr(acac)3 0.01 0.29 0.11 0.09
Mn(acac)3 0.05 0.41 0.23 0.20
[FeO4]2− 0.32 1.32 1.37 1.16
[MnO4]3− 0.14 0.53 0.51 0.45

for the [CrBr6]3− complex.

B.11. Exact numerical data for RMSDs and trends in
ligand field parameters

The exact numbers for the RMSDs between AILFT and ab initio state energies are
shown in Table B.14. Tables B.15 to B.18 show the exact numbers for the ligand �eld
parameters ∆, B, C , and the ratio C/B.
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B. Additional numerical data

Table B.15.: Ligand �eld splittings ∆ (in eV) for all complexes in the test
set that are approximately octahedral or tetrahedral. All ligand �eld or-
bital energies belonging to degenerate sets in the pseudo symmetry group
were averaged.

CASSCF NEVPT2 HQD-NEVPT2 DCD-CAS(2)
[CrF6]3− 1.64 1.65 1.84 1.84
[CrCl6]3− 1.30 1.39 1.61 1.56
[CrBr6]3− 1.18 1.30 1.54 1.49
[CrI6]3− 1.13 1.31 1.60 1.51
[Cr(CN)6]3− 3.32 3.84 4.00 3.97
[Cr(NH3)6]3+ 2.36 2.54 2.78 2.75
[MoCl6]3− 2.15 2.22 2.33 2.34
[TcF6]2− 3.46 3.56 3.63 3.69
IrF6 5.33 4.92 4.94 5.24
[ReF6]2− 3.98 4.01 4.05 4.13
[ReCl6]2− 3.16 3.27 3.32 3.35
[ReBr6]2− 2.86 3.00 3.06 3.09
[TiCl4]2− 0.40 0.38 0.40 0.39
[MnCl4]2− 0.33 0.29 0.38 0.38
[FeCl4]2− 0.33 0.32 0.42 0.42
[CoCl4]2− 0.33 0.33 0.44 0.44
Cr(acac)3 2.05 2.11 2.35 2.34
[FeO4]2− 2.11 2.13 2.31 1.70
[MnO4]3− 1.69 1.83 2.01 1.81
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B.11. Exact numerical data for RMSDs and trends in ligand �eld parameters

Table B.16.: AILFT Racah parameter B (in eV) derived from di�erent ab
initio methods for all complexes in the test set.

CASSCF NEVPT2 HQD-NEVPT2 DCD-CAS(2)
[CrF6]3− 0.133 0.121 0.109 0.112
[CrCl6]3− 0.124 0.110 0.099 0.101
[CrBr6]3− 0.121 0.106 0.095 0.099
[CrI6]3− 0.117 0.102 0.090 0.094
[Cr(CN)6]3− 0.113 0.104 0.089 0.091
[Cr(NH3)6]3+ 0.125 0.122 0.102 0.103
[MoCl6]3− 0.081 0.068 0.056 0.058
[TcF6]2− 0.094 0.077 0.065 0.068
IrF6 0.085 0.051 0.045 0.047
[ReF6]2− 0.088 0.072 0.066 0.067
[ReCl6]2− 0.072 0.060 0.052 0.054
[ReBr6]2− 0.067 0.057 0.049 0.051
[TiCl4]2− 0.095 0.080 0.078 0.079
[VCl4]2− 0.107 0.088 0.085 0.087
[CrCl4]2− 0.118 0.104 0.095 0.098
[MnCl4]2− 0.130 0.105 0.105 0.107
[FeCl4]2− 0.138 0.113 0.113 0.115
[CoCl4]2− 0.146 0.122 0.122 0.124
[NiCl4]2− 0.154 0.137 0.135 0.135
Cr(acac)3 0.128 0.123 0.103 0.106
Mn(acac)3 0.136 0.124 0.110 0.114
[FeO4]2− 0.081 0.101 0.047 0.059
[MnO4]3− 0.098 0.105 0.064 0.072
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B. Additional numerical data

Table B.17.: AILFT Racah parameter C (in eV) derived from di�erent ab
initio methods for all complexes in the test set.

CASSCF NEVPT2 HQD-NEVPT2 DCD-CAS(2)
[CrF6]3− 0.499 0.426 0.446 0.448
[CrCl6]3− 0.471 0.397 0.414 0.416
[CrBr6]3− 0.467 0.391 0.405 0.407
[CrI6]3− 0.459 0.373 0.387 0.390
[Cr(CN)6]3− 0.435 0.363 0.361 0.371
[Cr(NH3)6]3+ 0.476 0.393 0.416 0.422
[MoCl6]3− 0.329 0.262 0.276 0.280
[TcF6]2− 0.374 0.307 0.320 0.326
IrF6 0.294 0.215 0.226 0.252
[ReF6]2− 0.353 0.302 0.305 0.313
[ReCl6]2− 0.303 0.244 0.246 0.256
[ReBr6]2− 0.297 0.225 0.227 0.238
[TiCl4]2− 0.364 0.296 0.297 0.300
[VCl4]2− 0.407 0.346 0.346 0.349
[CrCl4]2− 0.444 0.379 0.386 0.390
[MnCl4]2− 0.487 0.428 0.425 0.427
[FeCl4]2− 0.512 0.459 0.452 0.456
[CoCl4]2− 0.543 0.491 0.482 0.484
[NiCl4]2− 0.572 0.500 0.501 0.504
Cr(acac)3 0.484 0.398 0.426 0.429
Mn(acac)3 0.515 0.438 0.453 0.456
[FeO4]2− 0.394 −0.060 0.056 0.067
[MnO4]3− 0.402 0.183 0.269 0.271
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B.11. Exact numerical data for RMSDs and trends in ligand �eld parameters

Table B.18.: AILFT Racah parameter ratio C/B derived from di�erent ab
initio methods for all complexes in the test set.

CASSCF NEVPT2 HQD-NEVPT2 DCD-CAS(2)
[CrF6]3− 3.75 3.51 4.07 4.05
[CrCl6]3− 3.81 3.61 4.20 4.14
[CrBr6]3− 3.85 3.69 4.21 4.18
[CrI6]3− 3.93 3.67 4.31 4.19
[Cr(CN)6]3− 3.84 3.49 4.12 4.06
[Cr(NH3)6]3+ 3.82 3.22 4.09 4.14
[MoCl6]3− 4.07 3.84 4.92 4.92
[TcF6]2− 3.99 4.01 4.89 4.89
IrF6 3.46 4.22 5.06 5.43
[ReF6]2− 4.02 4.17 4.64 4.71
[ReCl6]2− 4.23 4.09 4.73 4.86
[ReBr6]2− 4.46 3.94 4.63 4.80
[TiCl4]2− 3.85 3.71 3.79 3.86
[VCl4]2− 3.79 3.96 4.05 4.07
[CrCl4]2− 3.75 3.65 4.05 4.03
[MnCl4]2− 3.73 4.06 4.04 4.03
[FeCl4]2− 3.72 4.06 3.99 4.00
[CoCl4]2− 3.71 4.03 3.94 3.95
[NiCl4]2− 3.71 3.66 3.71 3.75
Cr(acac)3 3.77 3.25 4.12 4.08
Mn(acac)3 3.77 3.54 4.10 4.03
[FeO4]2− 4.87 −0.59 1.21 1.16
[MnO4]3− 4.08 1.75 4.22 3.83

171





C. Miscellaneous

C.1. Geometries and basis set for the non-invariance
test in the allene molecule

The Z-matrix for the scan of the two angles v1 (CCC bend angle) and v2 (simultaneous
CCCH torsion angles) in the ORCA input format is given by

C 0 0 0 0.0 0.0 0.0
C 1 0 0 1.396886 0.0 0.0
C 1 2 0 1.396886 {134.128769+v1} 0.0
H 3 1 2 1.076186 121.393623 {149.053879+v2}
H 3 1 2 1.082524 118.809540 {-51.126972-v2}
H 2 1 3 1.076186 121.393623 {-149.053879-v2}
H 2 1 3 1.082524 118.809540 {51.126972+v2}

The basis set (in the GAMESS-US276 basis set format), which is a modi�cation of the
Dunning-Hay SVP basis set277 as downloaded from the EMSL Basis Set Exchange278

website, is given by

HYDROGEN
S 3

1 19.2384000 0.0328280
2 2.8987000 0.2312040
3 0.6535000 0.8172260

S 1
1 0.1630642 1.0000000

CARBON
S 7

1 4233.0000000 0.0012200
2 634.9000000 0.0093420
3 146.1000000 0.0454520
4 42.5000000 0.1546570
5 14.1900000 0.3588660
6 5.1480000 0.4386320
7 1.9670000 0.1459180

S 2
1 5.1480000 -0.1683670
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2 0.4962000 1.0600910
S 1

1 0.1533000 1.0000000
P 4

1 18.1600000 0.0185390
2 3.9860000 0.1154360
3 1.1430000 0.3861880
4 0.3594000 0.6401140

P 1
1 0.1146000 1.0000000

D 1
1 0.7500000 1.0000000

C.2. Description of the embedded cluster approach

C.2.1. Supercell of the D2d compound
Cs2CuCl4 crystallizes in the space group type Pnma with lattice parameters a=9.70 Å,
b=7.60 Å, c=12.35 Å and 4 formula units (28 atoms) per unit cell. For modelling, we
repeated the unit cell 8 times in a direction, 10 times in b direction and 6 times in c
direction, which leads to an approximately cubic cell of dimension 77.6 Å × 76 Å ×
74.1 Å and a total of 13440 atoms. Of those, only a central [CuCl4]2− unit is treated
quantum mechanically.

C.2.2. Supercell of the D4h compound
(N-mph)2CuCl4 crystallizes in the space group type P21/c with the lattice parameters
a=6.4952 Å, b=22.678 Å, c=8.5844 Å and angle β=116.08°, and two formula units (106
atoms) per unit cell. In our chosen coordinate system, the lattice vectors (in Å) are
given by

a =

 6.4952
0.0
0.0

 , (C.1)

b =

 0.0
22.678

0.0

 , (C.2)

c =

 −3.77392262
0.0

7.71034574

 . (C.3)

In order to have a minimal distance of 35 Å from the center of the supercell to the
surface, one needs a rhombus in the a-c-plane of side length 70 Å / sin(180°−β) ≈
78 Å. In order to approximately ful�ll this, we repeated the unit cell 12 times in a
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Table C.1.: Point charges of D2d-[CuCl4]2− deter-
mined with CHELPG from DLPNO-CCSD densities.
The charges obtained in iteration 2 are the ones used
for the calculation of excitation energies.

Atom Gas phase Iteration 1 Iteration 2
Cu 0.889659 0.604132 0.606962
Cl −0.734461 −0.659272 −0.654081
Cl −0.719149 −0.646083 −0.647632
Cl −0.718515 −0.644436 −0.647592
Cl −0.717534 −0.654341 −0.657657

direction, 4 times in b direction and 9 times in c direction. This gives a supercell with
dimensions of approximately 78 Å × 91 Å × 78 Å. One would expect that this leads to
a total of 45792 atoms (12×4×9×106), but since we chose a unit cell that has Cu atoms
on its surface, the actual total number (including the “duplicates” on the surface) is
45948. To keep the total system neutral, the charges of surface Cu atoms are scaled
down in the embedding calculations, as explained below.

C.2.3. Determination of charges
For the determination of the point charges, we decided to perform calculations only
on single ions. We also tried quantum calculations of larger clusters including both
cations and anions, in order to allow for non-integral total charge on the individual
ions. The presence of several unpaired electrons (on the Cu anions) made it however
hard to converge the SCF. This means that by de�nition the charge of Cs+ is +1, since
it is monoatomic. For the other ions (the two forms of [CuCl4]2− and N-mph+), we
selected representatives from roughly the center of the supercell and performed a se-
ries of DLPNO-CCSD calculations with CHELPG to determine the charges: First a gas
phase calculation, then a calculation with the quantum-mechanical system embedded
in the gas phase charges (iteration 1), and �nally a calculation with the quantum-
mechanical system embedded in charges from the previous embedding calculation
(iteration 2). The resulting charges from that calculation were roughly converged
and were used to calculate the excitation energies presented in the main part of the
manuscript. The detailed values of the point charges are shown in Tables C.1 to C.5.
The order of the atoms in those tables is the same as the order within the Cartesian
coordinates given in Tables C.6 to C.8.
For the D4h crystal, a centrosymmetric unit cell is only possible if some atoms lie on
the border of the cell. If all these atoms are included, the total supercell is charged,
while when leaving only some of them away, the supercell might have a permanent
dipole moment. Both situations are unfavorable. We solved this problem by scaling
the charges of atoms lying on the border of the supercell by 1/2 for atoms lying on a
face, by 1/4 for atoms lying on an edge, and by 1/8 for atoms lying on a corner. For the
speci�c crystal investigated in this work, we managed to construct a centrosymmetric
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Table C.2.: Point charges of D4h-[CuCl4]2− deter-
mined with CHELPG from DLPNO-CCSD densities
without ECPs on H atom point charges. The charges
obtained in iteration 2 are the ones used for the cal-
culation of excitation energies.

Atom Gas phase Iteration 1 Iteration 2
Cu 0.870512 0.774803 0.76939
Cl −0.724692 −0.709682 −0.706339
Cl −0.710611 −0.678634 −0.6793
Cl −0.710646 −0.677606 −0.678383
Cl −0.724564 −0.708881 −0.705368

Table C.3.: Point charges of Nmph+ determined
with CHELPG from DLPNO-CCSD densities with-
out ECPs on H atom point charges. The charges ob-
tained in iteration 2 are the ones used for the calcu-
lation of excitation energies.

Atom Gas phase Iteration 1 Iteration 2
H 0.156951 0.142092 0.141809
N 0.041217 −0.016514 −0.023548
C 0.303324 0.22869 0.239468
C −0.384757 −0.309056 −0.308529
C 0.014434 −0.216146 −0.20904
C −0.195 −0.066735 −0.089262
C −0.277243 −0.235912 −0.250294
C 0.059501 0.250861 0.248742
C −0.258651 −0.249969 −0.253016
H 0.197159 0.181837 0.183921
H 0.127663 0.210218 0.205824
H 0.172749 0.125244 0.127283
H 0.09195 0.075263 0.082499
H 0.055769 0.016814 0.02146
H 0.066556 0.00441 0.010187
H 0.248821 0.300483 0.302288
H 0.2418 0.288897 0.290336
H 0.153045 0.15771 0.158097
H 0.141757 0.111994 0.115117
C −0.054445 −0.097818 −0.104797
C −0.342493 −0.324428 −0.317676
H 0.160251 0.151176 0.151848
H 0.175666 0.170391 0.173412
H 0.103977 0.100501 0.103868

176
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Table C.4.: Point charges of D4h-[CuCl4]2− deter-
mined with CHELPG from DLPNO-CCSD densities
with Li ECPs on H atom point charges in the vicin-
ity of the quantum region. The charges obtained in
iteration 2 are the ones used for the calculation of
excitation energies.

Atom Gas phase Iteration 1 Iteration 2
Cu 0.870512 0.764366 0.758158
Cl −0.724692 −0.705513 −0.701963
Cl −0.710611 −0.677597 −0.678137
Cl −0.710646 −0.675931 −0.67648
Cl −0.724564 −0.705325 −0.701579

Table C.5.: Point charges of Nmph+ determined
with CHELPG from DLPNO-CCSD densities with Li
ECPs on H atom point charges in the vicinity of the
quantum region. The charges obtained in iteration
2 are the ones used for the calculation of excitation
energies.

Atom Gas phase Iteration 1 Iteration 2
H 0.156951 0.142065 0.141702
N 0.041217 −0.020254 −0.028798
C 0.303324 0.210648 0.220526
C −0.384757 −0.302277 −0.301245
C 0.014434 −0.21469 −0.208611
C −0.195 −0.038628 −0.058895
C −0.277243 −0.227573 −0.240522
C 0.059501 0.241242 0.240822
C −0.258651 −0.251022 −0.253361
H 0.197159 0.180939 0.182936
H 0.127663 0.204406 0.200427
H 0.172749 0.115364 0.116848
H 0.09195 0.074047 0.080175
H 0.055769 0.019 0.02297
H 0.066556 0.008456 0.01385
H 0.248821 0.301274 0.303502
H 0.2418 0.290387 0.292092
H 0.153045 0.15792 0.15838
H 0.141757 0.11468 0.117275
C −0.054445 −0.107239 −0.114569
C −0.342493 −0.320541 −0.313449
H 0.160251 0.150081 0.150446
H 0.175666 0.171754 0.174679
H 0.103977 0.09996 0.102817
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Table C.6.:Cartesian coordinates of
D2d-[CuCl4]2−.

Atom x y z

Cu 41.419 36.1 36.0249
Cl 43.65 36.1 35.815
Cl 40.74 38.0 35.1357
Cl 40.74 34.2 35.1357
Cl 40.449 36.1 38.0133

Table C.7.: Cartesian coordinates of D4h-
[CuCl4]2−.

Atom x y z

Cu 25.236149 45.355999 34.696552
Cl 25.130869 43.772400 36.334461
Cl 27.087030 44.378578 33.878563
Cl 23.385269 46.333420 35.514542
Cl 25.341429 46.939610 33.058643

unit cell that had atoms only on faces, not on edges or corners. More information is
provided in the supplementary material of our original publication.
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Table C.8.: Cartesian coordinates of Nmph+.

Atom x y z

H 21.701370 46.605560 30.625492
N 22.030109 47.126701 32.598572
C 22.048269 50.844082 33.393513
C 20.983099 51.541199 32.883854
C 21.095490 52.883049 32.617073
C 22.230179 53.541401 32.859955
C 21.953840 49.374088 33.630215
C 22.136290 48.585800 32.365711
C 22.253250 46.313240 31.384962
H 20.199039 51.032299 32.699574
H 20.444960 53.218460 32.236954
H 22.234760 54.424931 32.707283
H 21.099379 49.140961 33.925522
H 22.935600 48.723679 32.098171
H 21.446869 48.825729 31.689524
H 22.598949 46.904911 33.223885
H 21.237579 46.875431 32.900043
H 22.259640 45.417229 31.581573
H 23.198879 46.462688 31.095823
C 23.292610 52.890308 33.376541
C 23.219570 51.537571 33.642551
H 24.032999 53.220730 33.624813
H 24.028889 51.011890 34.018044
H 22.617689 49.054779 34.233932
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